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Problèmes de placement, de coloration et d’identification

Résumé : Dans cette thèse, nous nous intéressons à trois problèmes issus de l’informatique
théorique, à savoir le placement de formes rectangulaires dans un conteneur (OPP), la coloration
dite "forte" d’arêtes des graphes et les codes identifiants dans les graphes.

L’OPP consiste à décider si un ensemble d’items rectangulaires peut être placé sans chevauche-
ment dans un conteneur rectangulaire et sans dépassement des bords de celui-ci. Une contrainte
supplémentaire est prise en compte, à savoir l’interdiction de rotation des items. Le problème
est NP-difficile même dans le cas où le conteneur et les formes sont des carrés. Nous présentons
un algorithme de résolution efficace basé sur une caractérisation du problème par des graphes
d’intervalles, proposée par Fekete et Schepers. L’algorithme est exact et utilise les MPQ-arbres
- structures de données qui encodent ces graphes de manière compacte tout en capturant leurs
propriétés remarquables. Nous montrons les résultats expérimentaux de notre approche en les
comparant aux performances d’autres algorithmes existants.

L’étude de la coloration forte d’arêtes et des codes identifiants porte sur les aspects structurels
et de calculabilité de ces deux problèmes. Dans le cas de la coloration forte d’arêtes nous nous
intéressons plus particulièrement aux familles des graphes planaires et des graphes subcubiques.
Nous montrons des bornes optimales pour l’indice chromatique fort χ′s des graphes subcubiques en
fonction du degré moyen maximum et montrons que tout graphe planaire subcubique sans cycles
induits de longueur 4 et 5 est coloriable avec neuf couleurs. Enfin nous confirmons la difficulté du
problème de décision associé, en prouvant qu’il est NP-complet dans des sous-classes restreintes
des graphes planaires subcubiques.

La troisième partie de la thèse est consacrée aux codes identifiants. Nous proposons une
caractérisation des graphes identifiables dont la cardinalité du code identifiant minimum γID est
n− 1, où n est l’ordre du graphe. Nous étudions la classe des graphes adjoints et nous prouvons
des bornes inférieures et supérieures serrées pour le paramètre γID dans cette classe. Finalement,
nous montrons qu’il existe un algorithme linéaire de calcul de γID dans la classe des graphes
adjoints L(G) où G a une largeur arborescente bornée par une constante. En revanche nous nous
apercevons que le problème est NP-complet dans des sous-classes très restreintes des graphes
parfaits.

Mots clefs : problème de placement orthogonal, graphes d’intervalles, MPQ-arbres, coloration
forte d’arêtes, déchargement, graphes planaires, graphes parfaits, graphes adjoints, codes identi-
fiants, complexité
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LaBRI
Université Bordeaux 1
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On packing, colouring and identification problems

Abstract : In this thesis we study three theoretical computer science problems, namely the
orthogonal packing problem (OPP for short), strong edge-colouring and identifying codes.

OPP consists in testing whether a set of rectangular items can be packed in a rectangular
container without overlapping and without exceeding the borders of this container. An additional
constraint is that the rotation of the items is not allowed. The problem is NP-hard even when
the problem is reduced to packing squares in a square. We propose an exact algorithm for solving
OPP efficiently using the characterization of the problem by interval graphs proposed by Fekete
and Schepers. For this purpose we use some compact representation of interval graphs - MPQ-
trees. We show experimental results of our approach by comparing them to the results of other
algorithms known in the literature. We observe promising gains.

The study of strong edge-colouring and identifying codes is focused on the structural and
computational aspects of these combinatorial problems. In the case of strong edge-colouring we
are interested in the families of planar graphs and subcubic graphs. We show optimal upper
bounds for the strong chromatic index χ′s of subcubic graphs as a function of the maximum
average degree. We also show that every planar subcubic graph without induced cycles of length
4 and 5 can be strong edge-coloured with at most nine colours. Finally, we confirm the difficulty
of the problem by showing that it remains NP-complete even in some restricted classes of planar
subcubic graphs.

For the subject of identifying codes we propose a characterization of non-trivial graphs having
maximum identifying code number γID, that is n−1, where n is the number of vertices. We study
the case of line graphs and prove lower and upper bounds for γID parameter in this class. At
last we investigate the complexity of the corresponding decision problem and show the existence
of a linear algorithm for computing γID of the line graph L(G) where G has the size of the tree-
width bounded by a constant. On the other hand, we show that the identifying code problem is
NP-complete in various subclasses of planar graphs.

Keywords : orthogonal packing problem, interval graphs, MPQ-trees, strong edge-colouring,
discharging, planar graphs, perfect graphs, line graphs, identifying codes, complexity

Discipline : Computer Science

LaBRI
Université Bordeaux 1

351 cours de la Libération,
33405 Talence Cedex (FRANCE)
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Chapter 1

Introduction

1.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Some concepts on graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Some classes of graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

In this chapter we begin with some standard definitions and notations. We follow up with
common concepts and classes of graphs which will be used later on in this thesis. At the end of
the chapter we present an overview of the problems considered.

1.1 Preliminaries
Graph A graph G = (V,E) is a set of elements V and a symmetric binary relation E defined
on V . The elements of V are called vertices and the elements of E are called edges. To simplify
notations, we will write V (G) (respectively E(G)) for the set of vertices (respectively edges) of a
graph G. Two vertices u and v are adjacent if there exists an edge uv ∈ E. Two distinct edges uv
and xy are adjacent if they share an endpoint (u = x for example). A graph is finite if the vertex
set V is finite. A graph is simple if there can be at most one edge between every two vertices.
Finally, a graph has a loop if there exists a vertex v ∈ V such that vv ∈ E, that is, v has an edge
back to itself. In this document, unless specified, the graphs which are considered will be finite,
simple and without loops.

Subgraph A subgraph of a graph G = (V,E) is a graph H = (V ′, E′) such that V ′ ⊆ V and
E′ ⊆ E(V ′). If for every edge xy ∈ E(G) with x, y ∈ V ′, xy ∈ E(H), then H is said to be the
subgraph of G induced by V ′ and is denoted G[V ′].

Distance Two vertices u and v are at distance 1 if uv ∈ E. More generally, u and v are at
distance k, if the length of a shortest path from u to v (the length being the number of edges)
is k. For two vertices x and y of a graph G, distG(x, y) (or dist(x, y) if there is no ambiguity)
denotes the distance between x and y in G.

Neighbourhood, degree The adjacent vertices of a vertex v are also called neighbours of v.
The open neighbourhood of a vertex v, denoted by N(v), is the set of vertices adjacent to v and
the closed neighbourhood, denoted by N [v], is defined as the union N(v) ∪ {v}. Two vertices u
and v are called twins in G if N [u] = N [v]. The number of vertices adjacent to a vertex v is the
degree of v, denoted by dG(v) (d(v) if no ambiguity). We denote the maximum degree of a graph
G by ∆(G) (∆ if no ambiguity). A graph in which all vertices have the same degree k is said to

3



4 CHAPTER 1. INTRODUCTION

be k-regular. A class of graphs which we study in particular is the one of subcubic graphs which
are graphs with maximum degree at most 3.

Connectivity A graph G is connected if for every pair of vertices u, v there exists a path
between u and v in G. Otherwise the graph is said to be disconnected. A k-connected graph G is
such that for every subset S of vertices with |S| = k − 1, G− S is connected.

Girth The girth of a graph is the length of one of its shortest cycles.

Cliques and stable sets A clique is a set of vertices which induces a complete graph that is
a graph in which all vertices are pairwise adjacent. A clique of a graph G is a set of vertices of
G inducing a subgraph which is isomorphic to a complete graph. The clique number ω(G) is the
order of a maximum clique of G. In contrast, a stable or independent set of a graph G is a subset
of pairwise non-adjacent vertices of G. Given an integer k ≥ 2, a subset I of vertices of G is
called a k-independent set if for all distinct vertices x, y of I, distG(x, y) ≥ k. A 2-independent
set is simply an independent set.

1.2 Some concepts on graphs

Operations on graphs

The complement of a graph G, denoted by G, is the graph whose vertex set is V (G) with two
vertices being adjacent if and only if there is no edge between them in G.

Given a graph G, the k-th power Gk is the graph with vertex set V (G) such that two vertices
are adjacent in Gk if and only if their distance in G is at most k.

We denote by G \ uv the graph obtained from G by removing the edge uv. Similarly, G − v
denotes the graph obtained from G by removing vertex v from V (G) and all edges having v as
an endpoint.

The join of two graphs, G1 = (V1, E1) and G2 = (V2, E2), denoted G1 ./ G2, is a graph whose
vertex set is V1 ∪ V2 and its edge set is E1 ∪ E2 ∪ {v1v2 | v1 ∈ V1, v2 ∈ V2}.

Vertex and edge-colourings

A proper k-colouring of vertices of a graph G is a mapping from the vertex set to the set of
integers {1, . . . , k} (called colours) such that two adjacent vertices have distinct colours. A graph
is k-colourable if it admits a proper k-colouring. The chromatic number of G, denoted χ(G), is
the smallest integer k such that G admits a k-colouring.

The notion of edge-colouring is defined similarly. A proper k-edge-colouring of a graph G
is a mapping from the edge set to the set of integers {1, . . . , k} such that two adjacent edges
have distinct colours. A graph is k-edge-colourable if it admits a proper k-edge-colouring. The
chromatic index of G, denoted χ′(G), is the smallest integer k such that G admits a proper
k-edge-colouring.

Dominating sets and Vertex covers

Given a graph G, a subset of vertices D ⊆ V (G) is called a dominating set if for every vertex
v ∈ V (G), D ∩N [v] 6= ∅.

A vertex cover of a graph G is a subset of vertices C ⊆ V (G) such that for every edge
uv ∈ E(G), {u, v} ∩ C 6= ∅.



1.3. SOME CLASSES OF GRAPHS 5

Matchings

A matching is a set of pairwise non-adjacent edges, and a perfect matching is a matching
which covers all the vertices of the graph.

1.3 Some classes of graphs
In this section we recall some known families of graphs. We first fix the notations for the

common classes of graphs that we will use throughout this manuscript.
We denote by Cn, Pn and Kn the cycle, path and complete graph on n vertices respectively.

Trees, Bipartite graphs

A tree is a connected graph with no cycle. In particular, the path Pn is a tree. A graph whose
connected components are trees is called a forest.

A bipartite graph is a graph G = (V,E) such that the vertex set is partitioned V = V1∪̇V2
such that V1 and V2 are independent sets. A complete bipartite graph Kn,m is a bipartite graph
with |V1| = n and |V2| = m such that ∀u ∈ V1 and ∀v ∈ V2, uv is an edge of this graph. In other
words Kn,m contains the maximum possible number of edges.

It is an easy fact that forests are bipartite. For examples of such graphs see Figure 1.1.

V1

V2
(a) A general bipartite graph (b) A tree

Figure 1.1: Bipartite graphs

Planar graphs and Outerplanar graphs

A planar graph is a graph that can be drawn on the plane without edges crossing (see Fig-
ure 1.2a for an example). A face of a planar graph G is the region bounded by the edges of G
in a plane drawing of G. An outerplanar graph is a planar graph having a plane representation
with all its vertices on the outer-face. An example is given in Figure 1.2b. Also, notice that the
graph K4 (Figure 1.2a) is not outerplanar.

(a) A non-planar and a planar drawing of K4 (b) An outerplanar graph

Figure 1.2: Examples of planar graphs and outerplanar graphs
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Hypercubes

The hypercube of dimension d, denoted Hd, is a graph whose vertices are words of d bits such
that two vertices are adjacent if the corresponding words differ on a single bit, (equivalently one
can say that the Hamming distance between these words must be equal to 1). The hypercube of
dimension d can also be viewed as a union of two disjoint copies H0 and H1 of Hd−1, by adding
a new bit with value 0 (respectively 1) to the left of the words representing the vertices of H0
(respectively H1) and by adding the edges between the corresponding vertices of two copies H0
and H1. The hypercubes for the first three dimensions are shown in Figure 1.3.

0

1

00

01

10

11

000

001

010

011

100

101

110

111

Figure 1.3: Hypercubes H1, H2, H3 respectively

Interval graphs

An interval graph is a graph G = (V,E) such that there is an assignment of intervals Iv
(v ∈ V ) of the real line to the vertices of G such that for every pair of vertices u and v, uv is
an edge if and only if Iu ∩ Iv 6= ∅. An example is shown in Figure 1.4. This class of graphs will
be the main topic of study in the second chapter of this manuscript, where we describe them in
more details.

8
63

2 4 7
1 5

8

4
3

5

1

2

6

7

Figure 1.4: An example of interval graph

Split graphs, Chordal graphs

A graph G is a split graph if its set of vertices can be partitioned into two sets V1 and V2 such
that V1 is a clique and V2 is an independent set.

A graph is chordal if it has no induced cycle of length k ≥ 4. In particular, interval graphs
and split graphs are chordal.

Line graphs

The line graph L(G) of a graph G is the graph with vertex set E(G), where two vertices
of L(G) are adjacent if the corresponding edges are adjacent in G. We provide an example in
Figure 1.5.
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(a) A graph G (b) The line graph L(G) of G

Figure 1.5: An example of graph and its associated line graph

Perfect graphs

A graph G is perfect if for every induced subgraph H of G, χ(H) = ω(H). The perfect graphs
which we mentioned in this section are bipartite graphs, interval graphs, split graphs and chordal
graphs.

1.4 Overview
The three major subjects of this thesis are orthogonal packing, strong edge-colouring and

identifying codes. In this section we give a brief introduction to these topics. Further discussions
on the problems considered are developed in the corresponding chapters. We observe that the
orthogonal packing problem can be formulated as a set-packing problem, whereas strong edge-
colouring and identifying codes both have a natural formulation as a set covering problem.

The set packing problem (SPP for short) is defined as follows.

Definition 1.1. Let U be a set of m elements and S be a family of subsets of U . A packing
P ⊆ S is a family of pairwise disjoint subsets P1, . . . , Pk. The set packing problem asks to find
P of largest cardinality (that is the maximum number of subsets Pi). In the weighted version of
the problem, each set Pi has a positive weight w(Pi) and the goal is to find P of maximum total
weight.

The set cover problem (SCP for short) is defined as follows.

Definition 1.2. Let U be a set of m elements and S be a family of subsets of U . A cover C ⊆ S
is a family of subsets C1, . . . , Ck such that U = C1 ∪ . . . ∪Ck. The set cover problem is to find C
of smallest cardinality (that is the minimum number of subsets Ci). In the weighted version of
the problem, each set Ci has a positive weight w(Ci) and the goal is to find C of minimum total
weight.

Set packing and set covering are two fundamental dual concepts in combinatorial optimization:
each of them can be suitably transformed to the other. More precisely, let xS be a binary decision
variable such that

xS = 1 if subset S ⊂ S is selected, 0 otherwise
An integer linear programming formulation of the weighted set packing problem is:

max
∑
S∈S

w(S)xS

subject to
∑
S∈S:
e∈S

xS ≤ 1, ∀e ∈ U

xS ∈ {0, 1}, ∀S ∈ S
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where the constraint is that for every element e ∈ U there is at most one selected subset of S
containing it.

The following dual formulation of the weighted set packing problem is an integer linear pro-
gramming of the weighted set covering problem:

min
∑
S∈S

w(S)xS

subject to
∑
S∈S:
e∈S

xS ≥ 1, ∀e ∈ U

xS ∈ {0, 1}, ∀S ∈ S

and the constraint is that for every element e ∈ U , at least one subset of S containing it must be
selected.

The Orthogonal Packing Problem

Let V be a set of D-dimensional rectangular items and let C be a D-dimensional rectangular
container. Let wd(v) ∈ Q+ and wd(C) be the length on dimension d of item v ∈ V and C
respectively. For a set of items S, we define wd(S) =

∑
v∈S

wd(v).

The problem which we are interested in here in this manuscript, is defined as follows:

Definition 1.3. TheD-dimensional orthogonal packing problem (OPP-D) is to decide if the set of
items V fits into the container C without overlapping and with no rotation of the items. Formally
speaking, we have to find out whether there exists a function fd : V → Q+, ∀d ∈ {1, . . . , D},
corresponding to the position of the left corner of each of the items on dimension d, such that:

∀v ∈ V, fd(v) + wd(v) ≤ wd(C) (1.1)
∀v1, v2 ∈ V, (v1 6= v2), [fd(v1), fd(v1) + wd(v1)) ∩ [fd(v2), fd(v2) + wd(v2)) = ∅ (1.2)

Constraint 1.1 is that item v must be packed without exceeding the width of C and Constraint
1.2 models the non-overlapping of the items.

OPP-D is a sub-problem of a well-known general problem whose objective in the base case is
to minimize the total unused space:

Definition 1.4. Let V be a set of D-dimensional items and C a D-dimensional container. For
each v ∈ V , let pv be an associated profit value. The D-dimensional orthogonal knapsack problem
(OKP-D) consists in selecting a subset V ′ ⊆ V such that V ′ is feasible and with maximum profit:

max
V ′⊆V

∑
v∈V ′

pv : V ′ satisfies 1.1 and 1.2


We focus on the two-dimensional case as it is the most studied one. However, our approach

is general enough to be applied to the d-dimensional case, for any d ≥ 1.
We define the following binary decision variables:

ψiab =
{

1 if the coordinate (a, b) is covered by item i

0 otherwise
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liab =
{

1 if the coordinate (a, b) is covered by the bottom left corner of item i

0 otherwise

A naive integer linear programming formulation of OKP uses space discretization ideas and can
be seen as a set packing problem, which we provide below. By simplification, in the inequalities
we ignore the containers’ boundary constraints:

max
∑
i

∑
a

∑
b

piliab (1.3)

subject to ψi(a+j)(b+k) ≥ liab, ∀i, 0 ≤ j ≤ w1(i)− 1, 0 ≤ k ≤ w2(i)− 1 (1.4)∑
i

ψiab ≤ 1, ∀a,∀b (1.5)∑
a

∑
b

liab ≤ 1, ∀i (1.6)

ψiab ∈ {0, 1}, liab ∈ {0, 1}, ∀i, a, b (1.7)

Constraint 1.4 ensures that a selected item i covering the coordinate (a, b) with its bottom
left corner must cover all the coordinates (a + j, b + k), for 0 ≤ j ≤ w1(i) − 1, 0 ≤ k ≤
w2(i) − 1. Constraint 1.5 is an overlapping constraint: there cannot be more than one item
covering coordinate (a, b). Constraint 1.6 is to ensure that an item i is used only once.

The first formulation of the problem in the bidimensional case was given by Beasley in [9] and
it uses a discretization technique similar to the one described above. Since then other authors
provided similar approaches [26, 7, 16]. Other mathematical programming formulations exploit
the information given by the placement of items relative to each other. For a deep survey of these
approaches we refer to the PhD thesis of Joncour [63].

The main line of our research (described in Chapter 2) on this problem is based on a graph-
theoretic model. Specifically, inspired by the characterization of packing solutions using interval
graphs given by Fekete and Schepers in [39, 40] and by the competitive results based on this
characterization [41], we propose an equivalent combinatorial formulation using MPQ-trees - a
data structure which gives a compact representation of interval graphs, introduced in [68]. We
describe an algorithm to enumerate the MPQ-trees under several constraints, in order to produce
a solution to OPP-2.

Strong edge-colouring

Previously we defined proper edge-colouring. We are interested in one variant of proper edge-
colouring with an extra condition:

Definition 1.5. A strong edge-colouring of a graph G is a proper edge-colouring of G such that
every two edges at distance exactly 2 are also assigned distinct colours. The strong chromatic
index of G, denoted χ′s(G), is the smallest integer k such that G can be strong edge-coloured with
k colours.

Clearly, we have χ′s(G) = χ(L(G)2), where χ is the classical chromatic number.
This observation gives rise to the following indirect but natural reformulation as an integer

linear program of the strong edge-colouring problem

• Compute L(G)2 (this can be done in polynomial time).
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• Formulate χ(L(G)2) as the set covering problem with S as the set of all stable sets of L(G)2:

min
∑
S∈S

xS

subject to
∑

S∈S:v∈S
xS ≥ 1, ∀v ∈ V (L(G)2)

xS ∈ {0, 1}, ∀S ∈ S

S =
{
stable sets of L(G)2

}
Up to our knowledge, the strong chromatic index has not been studied yet with the help of linear
programming techniques.

Strong edge-colouring is closely related to another concept which gives a trivial lower bound
for the strong chromatic index:

Definition 1.6. An antimatching is a set of edges such that no two edges are at distance strictly
greater than 2. Denote by a(G), the size of the maximum antimatching of a graph G.

As in the case of strong edge-colouring, a(G) = ω(L(G)2). Obviously we have χ′s(G) ≥ a(G).

Definition 1.7. Let G = (V,E) be a graph. We define the closed neighbourhood of a clique Q,
denoted N [Q], as the set of edges S, such that each edge of S has at least one end in Q. The
maximal clique-neighbourhood is defined as:

ω′s(G) = max {|N [Q]| , Q maximal clique of G}

= max

 ∑
v∈V (Q)

d(v)− |V (Q)| (|V (Q)| − 1)
2 , Q maximal clique of G


It is easy to see that for any graph G, ω′s(G) ≤ a(G) ≤ χ′s(G). However, the inequalities

can be strict: there are graphs such that ω′s(G) < a(G) − λ, for a large value of λ. This is
illustrated in Figure 1.6, where all the edges of the graph form an antimatching of size 3λ + 4
while ω′s(G) = 2λ+ 3.

a

c

x1 · · ·
xλ

··
·

λ
2

··
·

λ
2

Figure 1.6: A graph G such that ω′s(G) < a(G)− λ

Proposition 1.8. If G is chordal, then χ′s(G) = ω′s(G).

Proposition 1.8 is an immediate consequence of the two following theorems proved in [17]:

Theorem 1.9. (Cameron, 1989 [17]) If G is chordal, then L(G)2 is chordal.
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Theorem 1.10. (Cameron, 1989 [17]) If G is chordal, then ω′s(G) = a(G).

Since chordal graphs are perfect, for a chordal graph G we have ω′s(G) = a(G) = ω(L(G)2) =
χ(L(G)2) = χ′s(G).

Lemma 1.11. If G has no induced C4 and C5, then a(G) = ω′s(G).

Proof. Let S be an antimatching of G and G[V (S)] be the graph induced by the endpoints of the
edges of S. By hypothesis of the lemma and by definition of an antimatching, G[V (S)] does not
contain an induced cycle of length k ≥ 4. Therefore, G[V (S)] is chordal and, by Theorem 1.10,
ω′s(G[V (S)]) = a(G[V (S)]).

Now, choose S of maximum size. We have: ω′s(G[V (S)]) = |S| = a(G[V (S)]) = a(G).
Moreover, ω′s(G[V (S)]) ≤ ω′s(G) and ω′s(G) ≤ a(G). So, ω′s(G) = a(G) as claimed.

A famous result of Grötschel, Lovász and Schrijver [56] states that the Lovász function ϑ(G)
such that ω(G) ≤ ϑ(G) ≤ χ(G) can be computed in polynomial time. Hence we can derive the
following:

Remark 1.12. Let G be a graph such that χ′s(G) = a(G). We have

χ′s(G) = χ(L(G)2) = ϑ(L(G)2) = ω(L(G)2) = a(G)

Therefore, using the result of [56], χ′s(G) can be computed in polynomial time by solving, in
polynomial time, the linear program for the chromatic number.

The corresponding decision problem: given a graph G and an integer k, decide whether
χ′s(G) ≤ k, is known to be NP-hard [78]. A natural question would be to know how "deep" is this
NP-hardness. That is to say, under which restrictions on graphs, the problem still remains NP-
hard. Moreover, given this hardness result, a combinatorial point of view becomes all the more
relevant: find polynomial-time computable lower and upper bounds for χ′s on different classes of
graphs. The main goal of Chapter 3 is to examine these two aspects: we show that strong edge-
colouring remains NP-hard within very restricted subclasses of planar graphs; being motivated
by several conjectures from the early 90’s, we also study the strong chromatic index on the family
of subcubic graphs and outerplanar graphs.

Identifying codes

An identifying code of a graphG is a subset C of vertices ofG such that ∀x ∈ V (G), N [x]∩C 6= ∅
(i.e. C is a dominating set) and ∀u, v ∈ V (G), N [u]∩C 6= N [v]∩C (i.e. C is a separating set) [66].
It is easy to see that a graph admits an identifying code if and only it has no twins.

One of the main questions is to find the size of a smallest identifying code of a graph G,
denoted γID(G). Computing γID(G) is another instance of a set cover problem, which can be
seen by the following reformulation:

Let GID be the identifying code hypergraph of G, where V (G) is the vertex set of GID and there
are two kinds of hyperedges: the closed neighbourhood of each vertex of G and the symmetric
difference of each pair of vertices of G. More formally, E(GID) = {N [v], N [u] 	 N [v]|u, v ∈
V (G)}, where N [u]	N [v] is the symmetric difference of N [u] and N [v]. It is then evident that
finding γID(G) is equivalent to computing the size of a minimum hitting set of GID, that is of a
smallest subset of vertices covering all the hyperedges of GID. Therefore, we have the following
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straightforward integer linear programming formulation:

min
∑
v∈V

xv (1.8)

subject to
∑

v∈N [u]
xv ≥ 1, ∀u ∈ V (1.9)

∑
v∈N [u]	N [w]

xv ≥ 1, ∀u,w ∈ V, u 6= w (1.10)

xu ∈ {0, 1}n, ∀u ∈ V (1.11)

Here Constraints 1.9 and 1.10 are the domination and separation respectively.
Note that the identifying code problem was studied from the set cover perspective in [70].

Namely, it was proved by reduction from the set cover problem, that it is NP-hard to approximate
γID(G) within a factor of o(log(n)).

It is known that for every twin-free graph G, except forKn, γID(G) ≤ |V (G)|−1 [11, 55]. Some
conjectures have been proposed for the classification of graphs achieving this extremal bound. In
our work, disproving these conjectures, we give a full characterization of these graphs. We also
improve lower and upper bounds for the identifying code number for the family of line graphs.
Finally, we study the complexity of the problem by showing that it remains NP-hard in some
restricted classes of perfect graphs.

In summary, in this manuscript we have considered three instances of integer linear program-
ming problems. For each of them, we have tried to find better solutions by considering the
additional information we get from the structure behind the problem. In the case of OPP, we
introduce an algorithm that, in practice, works better than previously known algorithms. For the
other two problems we considered (strong edge-colouring and identifying codes), on the one hand
we improve previously known bounds, sometimes by considering restricted families of graphs such
as planar graphs of high girth or line graphs. On the other hand, we show that finding the exact
solution for these problems remains NP-hard even for such restricted families of graphs.



Chapter 2

Orthogonal packing problem

Given a set of rectangular items of different sizes and a rectangular container, the aim of
the two-dimensional Orthogonal Packing Problem (OPP-2), is to decide whether there exists a
non-overlapping packing of the items in that container. The rotation of items is not allowed.
This problem was proved to be NP-hard even in the restricted case, were a set of squares must
be packed into a bigger square [73].

In this chapter, we present a new exact algorithm for solving OPP-2, detailed in Section 2.2.1.
This procedure is based on the characterization of solutions using interval graphs proposed by
Fekete and Schepers [39, 40] and described in Section 2.1. The algorithm usesMPQ-trees as data
structures, which were introduced by Korte and Möhring in [67, 68] to recognize interval graphs.
In Section 2.3 we establish the effectiveness of this algorithm on standard benchmarks. The main
results we obtained and describe in this chapter are published in [65].

2.1 Formulation using interval graphs . . . . . . . . . . . . . . . . . . . . . 14
2.2 MPQ-trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.1 Algorithm to check feasibility . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.2.2 Symmetries and early unfeasibility detection . . . . . . . . . . . . . . . . 27

2.3 Computational results and perspectives . . . . . . . . . . . . . . . . . . 31

Let V be a set of D-dimensional rectangular shapes. For d ∈ {1, . . . , D} and every v ∈ V ,
let wd(v) ∈ Q+ (resp. wd(C)) be the length of v (resp. of the container C) with respect to the

dimension d. For every subset of items S ⊆ V , let wd(S) =
∑
v∈S

wd(v). Let W (v) =
D∏
d=1

wd(v) and

W (C) =
D∏
d=1

wd(C) be the volumes of the item v and of the container C respectively.

Formally OPP is defined as follows.

Definition 2.1. The D-dimensional orthogonal packing problem (OPP-D) is to decide if the set
of items V fits into the container C without overlapping (if true, V is said to be feasible). Formally
speaking, we have to find out whether ∀d ∈ {1, . . . , D} there exists a function fd : V → Q+, such
that:

∀v ∈ V, fd(v) + wd(v) ≤ wd(C) (2.1)
∀v1, v2 ∈ V, (v1 6= v2), [fd(v1), fd(v1) + wd(v1)) ∩ [fd(v2), fd(v2) + wd(v2)) = ∅ (2.2)

where fd(v) denotes the coordinate of the left corner of item v with respect to dimension d.

13



14 CHAPTER 2. ORTHOGONAL PACKING PROBLEM

A natural generalization of the problem is the well-known orthogonal knapsack problem:

Definition 2.2. Let V be a set of D-dimensional items and C a D-dimensional container. For
each v ∈ V , let pv be an associated profit value. The D-dimensional orthogonal knapsack problem
(OKP-D) consists in selecting a subset V ′ ⊆ V such that V ′ is feasible and with maximum profit:

max
V ′⊆V

∑
v∈V ′

pv : V ′ satisfies 2.1 and 2.2


A major step for solving the OPP, especially on hard instances, was made by Fekete and

Schepers in late 90’s when they proposed to model the problem from a new graph-theoretic
perspective. In the following section we explain their main idea as it is the basis of our approach.

2.1 Formulation using interval graphs
Fekete and Schepers [39, 40] introduced a powerful characterization of feasible packings, based

on interval graphs: given a feasible packing of a set of items V , for every dimension d, let
Gd = (V,Ed) be the interval graph with vertex set V and edge set Ed, such that ij is an edge if
and only if the projections of the packing of items i ∈ V and j ∈ V onto the dimension d intersect
(see Fig. 2.1 for an illustration).

G11

2

34

5

d = 1

d = 2

4

1 3
5

2

G21

2

34
5

Figure 2.1: Example of 2D packing and its associated interval graphs

Hence every feasible packing induces a D-tuple of interval graphs which capture the relative
positions of items. Fekete and Schepers established that the converse also holds:

Theorem 2.3 (Fekete and Schepers [39, 40]). Given a D-dimensional container C, a set of items
V is feasible, if and only if there is a set of D graphs Gd = (V,Ed), with d ∈ {1, . . . , D}, such
that:

(P1) Every graph Gd is an interval graph;

(P2) For every stable set S of Gd, wd(S) ≤ wd(C);

(P3)
D⋂
d=1

Ed = ∅.

Definition 2.4. The D-tuple of graphs Gd satisfying the properties (P1), (P2) and (P3) of
Theorem 2.3, is called a packing class.

Fekete, Schepers and van der Veen gave an efficient algorithm for solving OKP-D by solving
its subproblem OPP-D [41]. The underlying idea of their algorithm is an exhaustive generation
of tuples of interval graphs in order to find a packing class. To perform this generation efficiently,
they used the following characterization of interval graphs:
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Theorem 2.5 (Ghouilà-Houri [52], Gilmore and Hoffman [53]). Let a 2-chordless cycle be a cycle
v0, . . . , vn−1, v0 such that there is no edge vivj for i, j ∈ {0, . . . , n− 1} and |i− j| mod n = 2. A
graph G is an interval graph if and only if it contains no induced C4 and its complement contains
no 2-chordless cycle of odd length.

1

2 3 4

5

1

2 3 4

5

1

2 3 4

5

Figure 2.2: Symmetrical solutions in Fekete and Schepers’ model

Despite its efficiency, their algorithm may enumerate symmetrical solutions. An example is
given in Figure 2.2 where "almost" similar packing configurations are modeled by different pairs
of interval graphs. Moreover, there are some degeneracy issues of Fekete and Schepers’ algorithm
pointed out in [42], implying the generation of some unnecessary pairs of interval graphs. In
Figure 2.3, we illustrate a packing configuration together with its associated interval graphs.
These graphs are obtained with Fekete and Schepers’ algorithm and satisfy the properties of
Theorem 2.3. However, there are some equivalent solutions which can be obtained by removing
some edges in G1 or G2. For example, the edge between vertices 3 and 6 in G1 or between 1 and
3 in G2 can be removed.

3

5

6 4

2

1

1

2
3

4

5
6

G2

1

2
3

4

5
6

G1

Figure 2.3: Degeneracy issues in Fekete and Schepers’ algorithm

To handle the issues mentioned above, Joncour and Pêcher [64] designed an algorithm based
on some other characterization of interval graphs proposed by Fulkerson and Gross [50]. Before
stating this characterization, we need the following definition.

Definition 2.6. Let G = (V,E) be a graph and Q1, . . . , Qm its maximal cliques. A consecutive
arrangement of the maximal cliques of G is an order ≺ over the maximal cliques such that Qi ≺ Qj
if:
∀v ∈ V , if v ∈ Qi and v ∈ Qj , then v ∈ Qk for all k s.t. Qi ≺ Qk ≺ Qj .
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Theorem 2.7 (Fulkerson and Gross [50]). A graph G is an interval graph if and only if the
maximal cliques of G can be linearly ordered to obtain a consecutive arrangement.

Definition 2.8. Let Q1, . . . , Qm be the maximal (inclusionwise) cliques of a graph G. The
matrix M ∈ Mn,m({0, 1}) defined by Mij = 1 if and only if vertex i belongs to clique Qj is the
vertex/clique matrix of G. If there exists a consecutive arrangement of Q1, . . . , Qm, then on every
row of M , the 1’s occur consecutively and in this cases M is said to be a consecutive-ones matrix.

In other words, one can consider a vertex/clique matrix M which is a 0-1 matrix were rows
represent vertices, columns represent maximal cliques and M [i, j] = 1 if and only if vertex i
belongs to clique j. Therefore, Theorem 2.7 states that a graph G is an interval graph if and only
ifM associated to G has the consecutive-ones property. The idea of the algorithm of Joncour and
Pêcher was to generate consecutive ones matrices satisfying a condition equivalent to Property
(P2) of Theorem 2.3. The main issue of this approach is that the same interval graph can be
represented by several distinct vertex/clique matrices having the consecutive-ones property.

In the following section we detail our approach which uses a compact data-structure, designed
to capture isomorphic interval graphs - MPQ-trees. These trees are an enriched representation
of PQ-trees which were invented for testing the consecutive-ones property as well as graph pla-
narity [15].

2.2 MPQ-trees

We start with main definitions and some useful results on MPQ-trees.
Let M be a set of elements and M a set of subsets of M . A PQ-tree is a data-structure

representing all permutations of M in which the elements of each M ′ ∈ M occur consecutively.
It was introduced by Booth and Lueker in [14, 15]. In the case of an interval graph, M is the
set of maximal cliques, andM is the set of all C (v), for every vertex v, where C (v) denotes the
set of all maximal cliques containing vertex v. Namely, the constraints over M are designed to
model the consecutive arrangement of the maximal cliques according to Theorem 2.7. For a better
understanding we give an example in Figure 2.4. For the interval graph of this figure, there are
four possible permutations of the maximal cliques such that in the representation of the associated
vertex/clique matrix with the columns given by these orders, the 1’s occur consecutively:



c1 c2 c3 c4

a 1 1 1 1
b 1 0 0 0
c 1 0 0 0
d 0 1 1 0
e 0 1 0 0
f 0 1 0 0
g 0 0 1 1
h 0 0 0 1





c1 c4 c3 c2

1 1 1 1
1 0 0 0
1 0 0 0
0 0 1 1
0 0 0 1
0 0 0 1
0 1 1 0
0 1 0 0





c2 c3 c4 c1

1 1 1 1
0 0 0 1
0 0 0 1
1 1 0 0
1 0 0 0
1 0 0 0
0 1 1 0
0 0 1 0





c4 c3 c2 c1

1 1 1 1
0 0 0 1
0 0 0 1
0 1 1 0
0 0 1 0
0 0 1 0
1 1 0 0
1 0 0 0



Before explaining the way how these permutations are captured by the PQ-tree illustrated on
the figure, we provide few definitions from [14, 15]:

Definition 2.9. A PQ-tree is a planar drawing of a rooted tree with two types of internal vertices:
P and Q, represented by circles and rectangles respectively. The leaves of a PQ-tree are in one-
to-one correspondence with the elements of M (the maximal cliques of an interval graph G). For
an example see Figure 2.4. To avoid ambiguity between vertices of a graph and vertices of a
PQ-tree, we call the latter ones nodes.
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a

b c

d

ef g h

Maximal cliques:
c1 = {a, b, c}
c2 = {a, d, e, f}
c3 = {a, d, g}
c4 = {a, g, h}

M = {c1, c2, c3, c4}

C (a) = {c1, c2, c3, c4}, C (b) = C (c) = {c1}
C (d) = {c2, c3}, C (e) = C (f) = {c2}

C (g) = {c3, c4}, C (h) = {c4}

M = {{c1, c2, c3, c4}, {c1}, {c2}, {c2, c3}, {c3, c4}, {c4}}

c1

c2 c3 c4

Figure 2.4: An interval graph, its consecutive constraints and a PQ-tree representation.

The difference between P- and Q-nodes consists in the possible permutations of the reading
orders of their sons:

Definition 2.10. The frontier F (T ) of a PQ-tree T , represents the permutation of the maximal
cliques obtained by the ordering of the leaves of T from left to right. Two PQ-trees T and T ′ are
equivalent, if one can be obtained from the other by applying the following rules a finite number
of times:

1. Arbitrarily permute the children of a P-node

2. Reverse the order of children of a Q-node

c1 c2 c3

c4 c5

c6 c7 c8 c8 c7 c6

c5 c4

c2 c3 c1

Figure 2.5: Equivalent PQ-trees

Figure 2.5 shows an example of two equivalent PQ-trees: the frontier of the right picture is
obtained from the frontier of the left one, by reversing the order of the sons of both Q-nodes and
by permuting the leaves c1, c2 and c3, sons of the P-node.

Now, let us come back to the PQ-tree of Figure 2.4. The main constraint over M of the
corresponding interval graph is that the maximal cliques c2, c3 and c4 can appear only in two
possible orders c2, c3, c4 and the reversed order c4, c3, c2 (because of vertices d and g). Therefore,
it can be easily checked that c1, c2 and c3 must be sons of a Q-node as it is the only way to model
exactly these two permutations.

A proper PQ-tree is a PQ-tree for which every P-node has at least two children and the Q-
node has at least three children. From now on, by the term PQ-tree we will consider a proper
PQ-tree.
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An important result of Booth and Lueker is the following characterization of interval graphs
using PQ-trees:

Theorem 2.11 (Booth and Lueker [14, 15]). A graph G is an interval graph if and only if there
exists a PQ-trees T such that F (T ) is a consecutive arrangement of the maximal cliques of G.

In the same articles, Booth and Lueker gave an algorithm recognizing interval graphs in linear
time. The input of this algorithm is a graph G and it returns a PQ-tree associated to G if G is
an interval graph and rejects the input otherwise. We do not describe their approach as in our
algorithm for solving OPP-2 we use an extension of the notion of PQ-trees, introduced by Korte
and Möhring in [67] for the same purpose of recognition of interval graphs. This extension allows
to store more information about the vertices of the maximal cliques in the nodes of the tree and
gives an easier method of recognizing interval graphs than the method using classical PQ-trees
proposed by Booth and Lueker. We provide its definition below:

Definition 2.12. A modified PQ-tree (MPQ-tree for short) associated with a graph G is an
extension of a PQ-tree where the nodes of the tree are labelled with some subsets of vertices of
G, such that each branch of the MPQ-tree represents a maximal clique. A P-node is assigned
only one set, while a Q-node is assigned a set for each of its children. Here are the rules of the
labelling:

• A P-node is labelled by the set of vertices of G which are only contained in all cliques
represented by the subtree of T rooted in this node.

• A leaf is labelled by the set of vertices of G contained only in the clique represented by this
leaf.

• A Q-node, with m children F1, . . . , Fm, is labelled by a list of sets Sk, for k ∈ {1, . . . ,m},
each of them being called a section such that a section Sk corresponds to the child Fk in
the left-to-right order. Each section Sk (k ∈ {1, . . . ,m}) is a subset Sk of vertices of G such
that Sk is contained in all cliques represented by the subtree rooted in Fk. Additionally,
every vertex of Sk must belong to all cliques represented by the subtree rooted in some
other child of the Q-node, say Fl, where l ∈ {1, . . . ,m} and l 6= k.

a

b c

d

ef g h
{a}

{b, c} {d} {d, g} {g}

{e, f} ∅ {h}
Maximal cliques: c1 = {a, b, c} c2 = {a, d, e, f} c3 = {a, d, g} c4 = {a, g, h}

Figure 2.6: The interval graph of Figure 2.4 and an MPQ-tree representation.

We will say that a node N of an MPQ-tree associated with a graph G contains a vertex v of
G if v ∈ VN , where VN is the vertex set or section (in case of a Q-node) of the label of N . Notice
that from the definition of an MPQ-tree, a vertex v of G is contained in exactly one MPQ-tree
node. However, v can be contained in more than one section of a Q-node. Figure 2.6 gives an
illustration of an MPQ-tree based on the interval graph of Figure 2.4. Observe that the structure
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of both the PQ-tree of Figure 2.4 and the MPQ-tree of Figure 2.6 are the same, only the labels
of the nodes are different, the branches of the MPQ-tree being the maximal cliques.

Figure 2.7 shows an example of an MPQ-tree associated with an interval graph G, where both
representations model the intersections in dimension 1 of a feasible packing in terms of maximal
cliques (the intersections are given by the strips in the picture).

2

3

54

6

7

81
{2} {2, 5} {5, 7} {7}

{1} ∅

{3, 4} {6}

∅ {8}

Maximal cliques: {1, 2}, {2, 3, 4, 5}, {2, 5, 6}, {5, 7}, {7, 8}

2 7

1

5

8

3
6

4

7

Figure 2.7: An interval graph, an associated MPQ-tree and the packing configuration

Similarly as in the case of PQ-trees, Korte and Möhring established the connection between
MPQ-trees and interval graphs by proving the following characterization of interval graphs:

Theorem 2.13 (Korte and Möhring [67, 68]). A graph G is an interval graph if and only if there
exists an MPQ-tree associated with G.

Therefore, we may consider MPQ-trees instead of interval graphs as Theorem 2.13 gives an
equivalence between the two structures. The following lemma is crucial for our algorithm since
it is the basis for an incremental generation of MPQ-trees.

Lemma 2.14 (Korte and Möhring [68]). Let G be an interval graph and T its associated MPQ-
tree. Then G+u (where u is a vertex added to G) is an interval graph if and only if the following
holds:

1. All vertices adjacent to u are contained in a unique path of T .

2. For each Q-nodeN , labelled with sections S1, . . . , Sm, let S = S1∪. . .∪Sm. Then S∩N(u) ⊆
S1 or S ∩N(u) ⊆ Sm

In other words, Lemma 2.14 says that while building an MPQ-tree incrementally from an
interval graph (i.e. adding vertices of the graph one by one) only one path of this tree must be
updated and due to the properties of the reading orders of children of nodes of an MPQ-tree, this
path can be chosen to be the leftmost one. This restricts considerably the number of cases to
consider while updating the MPQ-tree.

To describe the idea of Korte and Möhring’s algorithm for the recognition of interval graphs,
an idea which is reused in our approach, we first need to provide the following definition:

Definition 2.15. Given a graph G, a simplicial elimination scheme (also called a perfect vertex
elimination scheme) is an ordering σ = [v1, . . . , vn] of the vertices of G such that the graph induced
by the vertices of N(vi) ∩ {vi+1, . . . , vn} is a clique.

An important fact is that a graph is a chordal graph if there exists a simplicial elimination
scheme for the vertices of this graphs [33, 50, 87]. Therefore, interval graphs being chordal must
admit one too.
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A simplicial elimination scheme for the vertices of a graph G can be obtained by running a
LexBFS algorithm on G (introduced in [88]). In particular, if a graph is chordal, then a LexBFS
algorithm produces an order of the vertices σ = [v1, . . . , vn], such that [vn, vn−1, . . . , v1] is a
simplicial elimination scheme.

Using Theorem 2.13 and Lemma 2.14, Korte and Möhring gave a much simpler linear algo-
rithm than the one of Booth and Lueker, recognizing interval graphs, by building iteratively an
associated MPQ-tree [68]. Their algorithm uses a LexBFS-ordering of the vertices of the input
graph to iteratively build a corresponding MPQ-tree. Let G = (V,E) be an interval graph with
an associated MPQ-tree TG and u the vertex to be inserted in TG to obtain the MPQ-tree TG+u
associated with the graph G+ u. Since vertices are inserted in LexBFS-order, N(u) must induce
a clique. Let N be a node of TG. If N is of type P or a leaf, then let VN be its associated vertex
set and if N is a Q-node, let VN be the vertex set corresponding to the first section. The principle
of Korte and Möhring’s algorithm is the following:

• Find the unique path P of the current MPQ-tree having a node N such that VN ∩N(u) 6= ∅.
This path can be either leftmost or rightmost.

• Find the first node N∗ in the bottom-up traversal such that ∃j ∈ VN∗ , j ∈ N(u).

• Select the corresponding pattern and apply the suitable replacement: let VN∗ = A ∪ B be
the partition of VN∗ such that A = VN∗∩N(u) and B = VN∗ \A. Let N∗ be the highest node
in P such that VN∗ \N(u) 6= ∅ if it exists and let N∗ = N∗ otherwise. Due to Lemma 2.14,
the patterns which can be applied are described in Figures 2.8, 2.9 and 2.10. In the case
when N∗ 6= N∗ the patterns are applied recursively by rewriting the current tree starting
from N∗ up to N∗, to obtain a valid MPQ-tree. We omit details which are rather technical.
For an elaborate explanation, see the original paper [68]. We just strengthen the fact that
the process is deterministic e.g. at each step only one pattern can apply. If no pattern can
be applied to the current configuration, then G+ u is not an interval graph.

[A ∪B]
B = ∅ [A ∪ u]

B 6= ∅ A

u B

[A ∪B] N∗ 6= N∗
A A

u B

Figure 2.8: Templates for a leaf: VN∗ = A ∪B

For an example of construction of an MPQ-tree from an interval graph using Korte and
Möhring’s templates, we illustrate the successive application of patterns in Figure 2.11. The
LexBFS order applied in the figure is σ = [8, 7, 5, 6, 2, 3, 4, 1]. The building of the MPQ-tree is
done in eight step (from s1 to s8 in the picture), provided the default operation in the very first
step s0: an empty MPQ-tree T is created and vertex 8 is inserted in T as a leaf. Below, we give
a detailed explanation of which of the templates of Figures 2.8, 2.9, 2.10 is applied in each of the
steps together with the value of each of the parameters VN∗ , B:

• s1: a leaf template of Figure 2.8 with VN∗ = {8}, B = ∅, N∗ = N∗;

• s2: a leaf template of Figure 2.8 with VN∗ = {7, 8}, B 6= ∅, N∗ = N∗;

• s3: since vertex 6 is not adjacent to vertex 7, N∗ is the root P-node with VN∗ = {7} and
hence N∗ 6= N∗. Therefore, the leaf template of Figure 2.8 with VN∗ = {5}, N∗ 6= N∗ is
applied. In the following step the higher nodes of the tree must be changed in order to
obtain N∗ = N∗;
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A ∪B

T1 · · · Tm

B
= ∅

A

u T1 · · · Tm

B 6= ∅ A

u B

T1 · · · Tm

A ∪B

T1 · · · Tm

N∗ 6= N∗

A A

u B

T1 · · · Tm

(a) P1 and P2: VN∗ = A ∪B

A ∪B

S0 S1 · · · Sm′

u T ′1 · · · T ′m′

T1 · · · Tm

A ∪ S0 A ∪B ∪ S1 · · · A ∪B ∪ Sm′ A ∪B

T ′1 · · · T ′m′u ∅

T1 · · · Tm

(b) P3: VN∗ = {u} and N∗ 6= N∗

Figure 2.9: Templates for a P-node

A ∪B1 · · · A ∪Bm

T1 · · · Tm

N∗
= N
∗

A

u B1 · · · Bm

T1 · · · Tm

N∗ 6= N ∗
A A

u B1 · · · Bm

T1 · · · Tm

(a) Q1

Figure 2.10: Templates for a Q-node
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A ∪B S1 · · · Sm

T0 T1 · · · Tm

B = ∅

A S1 · · · Sm

∅

u T0

T1 · · · Tm

B 6= ∅ or N∗ 6= N ∗ A A ∪B S1 · · · Sm

u T0 T1 · · · Tm

(b) Q2

A ∪B S′1 · · · S′m′

S0 S1 · · · Sm

u T1 · · · Tm

T ′1 · · · T ′m′

A ∪ S0 A ∪B ∪ S1 · · · A ∪B ∪ Sm S′ · · · S′m′

u T1 · · · Tm T ′1 · · · T ′m′

(c) Q3

Figure 2.10: Templates for a Q-node

• s4: the P-node template P3 of Figure 2.9b with VN∗ = {5}, N∗ 6= N∗, B 6= ∅ is applied and
at the end we obtain N∗ = N∗;

• s5: a leaf template of Figure 2.8 VN∗ = {6}, B = ∅, N∗ = N∗;

• s6: a leaf template of Figure 2.8 VN∗ = {2, 6}, B 6= ∅, N∗ = N∗;

• s7: a leaf template of Figure 2.8 VN∗ = {3}, B = ∅, N∗ = N∗;

• s8: a leaf template of Figure 2.8 VN∗ = {3, 4}, N∗ 6= N∗, then the higher nodes of the tree
must be changed in order to obtain N∗ = N∗;

• s9: the Q-node template Q3 of Figure 2.10c is applied.

The order σ is not the only LexBFS order possible. For instance, one could start building from
vertex 1, in which case the obtained MPQ-tree would be the equivalent of the one of Figure 2.11
(with the reading order from right to left).

In order to formulate Property (P2) of Theorem 2.3 with respect to MPQ-trees we define the
width of the nodes:

Definition 2.16. For every node N of an MPQ-tree associated with a dimension d of a packing
configuration, the width λN ∈ Q+ of N is as described below:
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{8} s1 {7, 8} s2
{7}

{5} {8}

s3
{7}

{5} {5}

{6} ∅

{8}

s4 {5} {5, 7} {7}

{6} ∅ {8}

s5

{5} {5, 7} {7}

{2, 6} ∅ {8}

s6
{5} {5, 7} {7}

{2}

{3} {6}

∅ {8}

s7
{5} {5, 7} {7}

{2}

{3, 4} {6}

∅ {8}

s8

{5} {5, 7} {7}

{2} {2}

{1} ∅

{3, 4} {6}

∅ {8}

s9
{2} {2, 5} {5, 7} {7}

{1} ∅

{3, 4} {6}

∅ {8}

Figure 2.11: Building the MPQ-tree of Figure 2.7 with the templates from [68]

• If N is a leaf L labelled with the set VL, then λL = max
i∈VL
{wd(i)} if VL 6= ∅ and λL = 0

otherwise.

• If N is a P-node P labelled with the set VP , and λf1 , . . . , λfm are the widths of each of its
children, then

λP = max


m∑
j=1

λfj ,max
i∈VP

{wd(i)}


• If N is a Q-node Q, let S1, . . . , Sm be its sections and λf1 , . . . , λfm the widths of each of
the children of the node. In order to define the width λQ, we first define, recursively from
m to 1, the widths of its sections: λSj ,∀1 ≤ j ≤ m:

λSm = λfm

Suppose λSk+1 , . . . , λSm are defined, then

λSk = max

λfk , max
i∈Sk,i/∈Sk−1

wd(i)− ∑
h>k, i∈Sh

λSh
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The width of N is given by the following formula

λQ =
m∑
k=1

λSk

It follows from definition that for every node N with children f1, . . . , fm, λN ≥
m∑
k=1

λfk .

In Figure 2.12 we illustrate the notion of widths on the MPQ-tree and the corresponding
packing configuration from Figure 2.7. The sizes of the items in dimension 1 are given in the
right part of the picture.

{2}

λ = 1

{2, 5}

λ = 3

{5, 7}

λ = 1

{7}

λ = 1

{1}
λ = 1

∅
λ = 3

{3, 4}
λ = 2

{6}
λ = 1

∅
λ = 0

{8}
λ = 1

2 7

1

5

8

3

6
4

7 w1(1) = 1
w1(2) = 4
w1(3) = 2
w1(4) = 2
w1(5) = 3
w1(6) = 1
w1(7) = 2
w1(8) = 1

Figure 2.12: An MPQ-tree with the widths of its nodes and a corresponding packing

We now establish the inequality relation between the width of an item and the width of the
MPQ-tree node containing this item:

Lemma 2.17. Let Gd = (V,Ed) be an interval graph of a packing class and Td an associated
MPQ-tree. Let v be an item of V . For every P-node or leaf N such that v belongs to the label of
N , we have wd(v) ≤ λN . For every Q-node N containing v in the labels of some of its sections,

we have wd(v) ≤
l∑

h=k
λSh , where Sk, . . . , Sl are the sections of N containing v.

Proof. The cases of a P-node and of a leaf are obvious. Suppose N is a Q-node with sections
S1, . . . , Sm and children f1, . . . , fm. Since branches associated with sections Sk, . . . , Sl of N are

all the cliques containing v, we have λSk ≥ wd(v)−
l∑

h=k+1
λSh . Hence, wd(v) ≤

l∑
h=k

λSh .

The following proposition translates Property (P2) of Theorem 2.3 in terms of widths of the
MPQ-tree nodes, the previous lemma being helpful to prove the converse part of the equivalence.

Proposition 2.18. Let G be an interval graph. The graph G satisfies Property (P2) if and only
if for every associated MPQ-tree T of G, the width λR of the root of T verifies λR ≤ wd(C).

Proof.
Suppose G satisfies Property (P2) and consider an MPQ-tree T of G with root R. We will prove
that λR ≤ wd(C).

The proof is by induction on the distance between R and the nodes of T . Let H(k) be the
assertion: ”If N is a node of T at distance k from R, then there is a stable set S of G[N ] such
that λN ≤ wd(S), where G[N ] is the subgraph of G induced by the set of vertices of G contained
in the labels of the subtree of T rooted in N .”
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• Let M be the maximal distance from R in T . Let N be any node of T at distance M from
R. Hence N is a leaf. Due to the definition of a leaf, there is i in VN such that wd(i) = λN .
Hence, S = {i} and H(M) is true.

• Assume that H(k) is true for k ≤ M (induction hypothesis). Let N be any node of T at
distance k − 1 from R.

– If N is a leaf, then the above argument applies again.

– If N is a P-node with m sons, then we distinguish two cases. If max
j∈VN
{wd(j)} ≤

m∑
k=1

λfk ,

then let S =
m⋃
k=1

Zk, where Zk is the stable set associated to son fk such that, due to

induction hypothesis, λfk ≤ wd(Zk). Since in the graph Gd there are no edges between
two vertices contained in two different children of N , S is clearly an independent set

of G[N ]. Applying the induction hypothesis, λN ≤
m∑
k=1

λfk ≤ wd(S) and we are done.

If max
j∈VN
{wd(j)} >

m∑
k=1

λfk then let S = {i} where i is such that wd(i) = max
j∈VN
{wd(j)}.

Thus λN = wd(S) and we are done.
– If N is a Q-node with sections S1, . . . , Sm, then let Zk be the stable set of G built by

iteration of k from 1 to m:
∗ k = 1. If the width of S1 is equal to the width of its child f1, then due to the
induction hypothesis, Z1 is a stable set of G[N ] such that λS1 ≤ wd(Z1); otherwise
there is a vertex b ∈ S1 such that λS1 = wd(b)−

∑
h>1,b∈Sh

λSh , in which case define

Z1 = {b}.
∗ k ≥ 2. If there is a vertex b ∈ Sk, b ∈ Sk−1 and Zk−1 = {b}, define Zk = {b};
otherwise, if there is a vertex b ∈ Sk, b /∈ Sk−1 and λSk = wd(b)−

∑
h>k,b∈Sh

λSh , then

Zk = {b}; otherwise, necessarily λSk = λfk , in which case, due to the induction
hypothesis, Zk can be chosen to be the stable set of G[fk] such that λfk ≤ wd(Zk).

Let S =
m⋃
k=1

Zk. Clearly, S is a stable set of GN such that λN =
m∑
k=1

λSk ≤
∑
s∈S

wd(s) =

wd(S).

Hence H(k − 1) is true.

Due to the induction, H(0) is true, and since wd(S) ≤ wd(C) (Property (P2) of Theorem 2.3),
we have λR ≤ wd(C).

Conversely, suppose λR ≤ wd(C). Consider an independent set S of Gd. By definition of an
MPQ-tree, ∀u ∈ S, in Td there exist exactly two distinct cases for the node N of Td containing u:

1. N is a Q-node. Let Sk, . . . , Sl be the sections of N containing u. In this case, let Λu =
l∑

h=k
λSh .

2. N is a P-node or a leaf. In this case, let Λu = λNu .

Since S is an independent set, no two vertices of S are contained in the same branch of Td. Hence,
by definition of λR, we have

∑
s∈S

Λs ≤ λRd . By Lemma 2.17, we have ∀x ∈ V, wd(x) ≤ Λx. Hence,
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wd(S) ≤ λRd . Applying the hypothesis, wd(S) ≤ wd(C) which is exactly the Property (P2) of
Theorem 2.3.

Notice that Property (P3) of Theorem 2.3 may be easily translated with respect to MPQ-trees,
since the branches of an MPQ-tree represent the maximal cliques of its corresponding interval
graph.

2.2.1 Algorithm to check feasibility

The main idea of our approach for solving the orthogonal packing problem is to build an
MPQ-tree Td for each dimension d such that λTdR ≤ wd(C) and Property (P3) of Theorem 2.3 is
verified. The construction of the valid MPQ-tree is done through an exhaustive enumeration of
all possible MPQ-trees containing all items, until one is found. If the MPQ-tree cannot be built,
then the algorithm stops rejecting the input. The procedure is applied for all dimensions.

More precisely, for a given dimension and a given order on items, the (pseudo) Algorithm 1
constructs all the MPQ-trees to get the one representing this dimension. The items are added
one by one in the MPQ-tree with respect to the templates of Figures 2.8, 2.9, 2.10 and such that
for every node N , λN ≤ wd(C). Observe that the algorithm may have to consider all possible
orders σ. If this happens, the generation will not be efficient at all. However, in next sections,
we explain that in fact we have to consider only a reduced subset of orders.

Algorithm 1 recursive enumeration of MPQ-trees to check feasibility
Require: order σ, (int) n, MPQ-tree T
Ensure: TRUE if there exists a feasible packing, FALSE otherwise
recurse(MPQ-node currentNode, int i)
if i > n then
return TRUE

end if
repeat
for all corresponding patterns do
apply the modification with vertex σ(nrVertex)
currentNode ← new created leaf L
for all N in leftmost branch of T do
update λN

end for
if λR ≤ wd(C) then
if recurse(currentNode,i+1) then
return TRUE

end if
end if
for all N in leftmost branch of T do
backup λN

end for
undo the modification

end for
currentNode ← currentNode.getFather()

until currentNode 6= NULL
return FALSE
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2.2.2 Symmetries and early unfeasibility detection

The structure of an MPQ-tree provides some partial information about the position of the
items which can be easily exploited. For instance, its frontier gives the order of appearance
of items in the packing configuration. In addition, the higher an item is contained in the tree
associated with a dimension d, the more items it "covers" in d (i.e. the more are the intersections
of its projection on d with the projections of the other items on d). Being able to compute at each
step the widths of each node, we provide some optimizations of the algorithm by adding some
valid constraints, breaking some symmetries and early detecting some unfeasible configurations.

Two-dimensional case: remaining areas, widths and branches heights

In the bidimensional case, a few basic valid constraints may be applied when enumerating
MPQ-trees in dimension 1:

1. Assume that at the step i of the algorithm, an MPQ-tree T1 containing σ(1), . . . , σ(i) was
constructed with the root having m children f1, . . . , fm. After the step i, the widths of the
children f2, . . . , fm cannot be modified (since only the leftmost branch can be modified),
therefore by Proposition 2.18, the remaining items σ(i + 1), . . . , σ(n) have to be packed in

the area W (C)− w2(C) ∗
m∑
h=2

λfh . Hence the following constraint is valid:

n∑
h=i+1

W (σ(h)) + w2(C) ∗
m∑
h=2

λfh ≤W (C)

2. The width of any item among σ(i+ 1), . . . , σ(n) cannot exceed the remaining width of the
container after removing λf2 , . . . , λfm :

m∑
h=2

λfh + max{w1(σ(i+ 1)), . . . , w1(σ(n))} ≤ w1(C)

3. Let B be a branch of T1. Since all the items contained in this branch overlap in the dimension
2, the sum of the size of these items in dimension 2 cannot exceed w2(C):∑

i∈B
w2(i) ≤ w2(C)

Positive widths

The left part of the Figure 2.13 is an example of packing which is somehow similar to the
right part. In the following we give a precise definition of this equivalence notion:

Definition 2.19. Two packings with (xi, yi) and (x′i, y′i) being the coordinates of the right upper
corner of item i in each of them, are said to be equivalent if either

xi = x′i and yi ≥ y′i, ∀i or
yi = y′i and xi ≥ x′i, ∀i

Next lemma establishes a sufficient condition for avoiding the enumeration of this type of
equivalent packing configurations. Hence, our algorithm generates only the right packing of
Figure 2.13.

Lemma 2.20. Let Gd be an interval graph of a packing class. There is an associated MPQ-tree
of Gd such that for every internal node N with m sons f1, . . . , fm, the following holds:
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VN

Vf1 · · · Vfl · · · Vfm

i

VN

Vf1 · · · Vfl · · · Vfm

i

Figure 2.13: Example of "similar" packing configurations

• If N is a P-node, then ∀i ∈ VN , wd(i)−
m∑
k=2

λfk > 0

• If N is a Q-node with sections S1, . . . , Sm, then ∀k ∈ {1, . . . ,m}, ∀i ∈ Sk, wd(i) −∑
h>k,i∈Sh

λSh > 0

Proof. Recall that, from Definition 2.16, for every node or section X, λX ≥ 0.
Let T ′ be an MPQ-tree associated with Gd and let N ′ be an internal node of T ′ not satisfying

the statement.

• Suppose N ′ is a P-node. Then there is i ∈ VN ′ , such that wd(i)−
m∑
k=2

λfk ≤ 0.

We choose i such that wd(i) = min
j∈VN′

{wd(j)}. Let l = max{h ≥ 2 | wd(i) ≤
m∑
k=h

λfk}. We

distinguish two cases for the value of l.

VN′

f1 fl fm· · · · · ·

VN

f1 fl−1 {i}

fl fm· · ·

· · ·

Figure 2.14: P-node replacement

• Suppose l < m. Let T be the MPQ-tree obtained from T ′ by replacing N ′ as shown
in Figure 2.14. Observe that the MPQ-trees associated to dimension 1 of the packing
configurations of Figure 2.13 are the MPQ-trees of Figure 2.14 when f1, . . . , fm are
leaves. In T , N is the P-node replacing N ′ of T ′ and having VN = VN ′ \ {i} as a
labelling set, {i} is the labelling set of a new P-node, say A, having fl, . . . , fm as

children. In T , λA =
m∑
k=l

λfk and, therefore,
m∑
k=1

λfk =
l−1∑
k=1

λfk + λA. Hence, λN = λN ′ .

Finally, we note that wd(i)−
m∑

k=l+1
λfk > 0.

• Suppose l = m. Let T be the MPQ-tree obtained from T ′ by removing i from the set
VN ′ and modifing fm as follows. If fm is a leaf or a P-node, then we insert i in the
labelling set of fm. If fm is a Q-node, then we insert i in every section of fm. Now, if
fm is a leaf, then we are done. Otherwise, if i does not satisfy the statement for fm,
then we apply the proof on fm.
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• Suppose N ′ is a Q-node with sections S′1, . . . , S′m. Then there are i and a section S′k with
i ∈ S′k, such that wd(i)−

∑
h>k,i∈S′

h

λS′
h
≤ 0. We choose k such that k = min{h | i ∈ Sh}. Let

l = min{h | wd(i) >
∑

h′>h,i∈S′
h′

λS′
h′
}. We have wd(i)−

∑
h≥l,i∈S′

h

λSh ≤ 0. We distinguish two

cases for the value of l.

S′1 · · · S′k · · · S′l · · · S′m

f1 · · · fk · · · fl · · · fm

∀h,
k ≤

h <
l,

S
′
k
\ {i}

6= ∅

S′1 · · · S′k−1 Sk · · · Sl−1 S′l · · · S′m

f1 · · · fk−1 fk · · · fl−1 fl · · · fm

∃h, k ≤ h < l,
S ′
h \ {i} = ∅

∅

S′1 · · · S′k−1 Sk · · · Sh−1

f1 · · · fk−1 fk · · · fh−1

Sh+1 · · · Sl−1 S′l · · · S′m
fh

fh+1 · · · fl−1 fl · · · fm

Figure 2.15: Q-node replacement

• Suppose l < m. Intuitively, one has to remove i from every section of N ′ which does
not satisfy the statement of the lemma in case of a Q-node. We apply the replacement
of Figure 2.15 to construct from T ′ an MPQ-tree T , in which ∀h ∈ {k, . . . , l − 1},
Sh = S′h \ {i} and the other sections do not change. To distinguish the widths of T
and T ′, let λTM (resp. λT ′M ) denote the width of any node (or section) M of T (resp. of
T ′).
Consider the upper case of the replacement of Figure 2.15. We have ∀h ∈ {l, . . . ,m},
λT
′

S′
h

= λTS′
h
. Since wd(i)−

∑
h≥l,i∈Sh

λT
′

Sh
≤ 0, we have ∀h ∈ {k, . . . , l− 1}, λTSh = λT

′

S′
h
and,

therefore, ∀h ∈ {1, . . . , k − 1}, λTS′
h

= λT
′

S′
h
. Hence λTN = λT

′
N .

Consider the bottom case. We suppose that there exists only one section Sh containing
only item i. If there are more than one section of this type, one can easily use the same
technique of replacement. Let N be the new created P-node and N1 and N2 be the two
created Q-nodes. Obviously, ∀h′ ∈ {l, . . . ,m}, λT ′S′

h′
= λTS′

h′
. By the same arguments as

in the upper case of the figure, we have ∀h′ ∈ {h+1, . . . , l−1}, λT ′S′
h′

= λTSh′ . Now, since
Sh−1 ∩Sh+1 = ∅, ∀h′ ∈ {k, . . . , h− 1}, λT ′S′

h′
= λTSh′ and, therefore, ∀h

′ ∈ {1, . . . , k− 1},
λT
′

S′
h′

= λTS′
h′
. In T ′, S′h = {i} and the subtree rooted in fh is not empty, because

otherwise the branch of T ′ containing S′h and fh would not represent a maximal clique.

Thus λT ′S′
h

= λTfh > 0 and λTfh = λT
′

fh
. We have λN1 =

h−1∑
h′=1

λT
′

Sh′
and λN2 =

m∑
h′=h+1

λT
′

Sh′
.

Hence, λN = λN1 + λTfh + λN2 = λT
′

N ′ .
Notice that in both cases of the replacement, every item satisfying the condition of the
lemma in T ′, satisfies it also in T .
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• Suppose l = m. Similarly to the case when l = m and N ′ is a P-node, we build an
MPQ-tree T from T ′. For this purpose, we remove i from every section of N ′ containing
i and modify fm by inserting i as in the case when N ′ is a P-node. Now, if S′m = {i},
then we apply the replacement of Figure 2.16. The case when m > 3 (the upper case
of the Figure) is straightforward. Consider the case when m = 3. Recall that by
definition of a Q-node, every item of any section must be contained in at least two
sections of the same Q-node. Hence, S′1 ⊂ S′2, S′3 ⊂ S′2 and S′2 = S′1 ∪ S′3. Therefore,
S′1 = S′2 \ {i} = A and N ′ is replaced by a P-node as shown in the bottom case of the
replacement of Figure 2.16.
Finally, if fm is a leaf, we are done. Otherwise, if i does not satisfy the statement of
the lemma for fm, we apply the proof for the new node fm.

S′1 · · · S′k · · · S′m

f1 · · · fk · · · fm

m > 3

∅

S′1 · · · S′k \ {i} · · · S′m−1 \ {i}

f1 · · · fk · · · fm−1

fm ∪ {i}

m = 3
A

f1 f2 f3 ∪ {i}

Figure 2.16: Q-node replacement when S′m = {i}

By applying the replacement of Figures 2.14, 2.15, 2.16 for all internal nodes (P-type or Q-
type) of T ′, for every item i not satisfying the statement of the lemma, we can construct another
MPQ-tree associated with a feasible packing in which every item satisfies this statement.

Order on the children of a node

A

f1 · · · fm {1} {2}

>

A

f1 · · · fm {2} {1}

S1 S2 · · · Sm−1 Sm

{1} f2 · · · fm−1 {2}

> Sm Sm−1 · · · S2 S1

{2} fm−1 · · · f2 {1}

Figure 2.17: Lexicographic order between equivalent MPQ-trees

Using the general properties of PQ-trees, we impose an order on the children of a node during
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the generation. We define for any subtree Ts of an MPQ-tree T , a variable mT = min{i | i ∈ Ts}.
We say that T is lexicographically ordered if:

• For any two subtrees T1 and T2 children of the same P-node such that T1 is the first in the
right to left reading order, we have mT1 > mT2 .

• For two subtrees T1 and T2 children of the same Q-node where T1 is the rightmost and T2
is the leftmost, we have mT1 > mT2 .

An example of lexicographically ordered MPQ-trees is depicted in Figure 2.17. Notice that
due to the definition of PQ-trees, for every MPQ-tree, there is an equivalent lexicographically
ordered MPQ-tree with respect to Definition 2.10. Therefore, our algorithm to check feasibility
generates all lexicographically ordered possible MPQ-trees.

2.3 Computational results and perspectives

We report the performance of our algorithm on 37 classical benchmarks for OKP-2 from
[9, 8, 26, 41] (Tables 2.1) and on 42 benchmarks for OPP-2 defined in [28] (Table 2.2). For
OKP-2 instances, we used a basic branch-and-bound procedure to select the items to be checked
for feasibility designed in [64].

The program was implemented in Java 6 and was tested on a PC (Pentium IV, 3GHz). These
conditions of experimentation are identical to the ones of Joncour and Pêcher [64] and are quite
similar to the ones used by Fekete and Schepers [41] (PC with Pentium IV processor, 2,8 GHz,
using C++).

Table 2.1 shows the running times of our algorithm along with the ones existing in the lit-
erature, as reported in [41]. The first column (JPV) gives our runtimes. The column JP gives
the runtimes of the algorithm from [64] and the column FS gives the runtimes of the algorithm
from [41]. The column BB corresponds to the algorithm of Baldacci and Boschetti [5], imple-
mented in Visual Digital Fortran 6.0 and run on a Laptop equipped with an Intel Pentium IV,
2.5 GHz. The columns A0, A1, A2 and A3 correspond to the algorithms of Caprara and Monaci,
as depicted in [18] and which were implemented in ANSI C and run on a Pentium III 800 MHz.
We also report the number of unsolved benchmarks (within the time limit of 1800 seconds) and
the average time (computed on the set of instances cgcut, gcut and okp), with the convention
that an unsolved benchmark counts for 1800 seconds.

The running times of our algorithm are of interest since it is one of the two algorithms to solve
all, but one, of the benchmarks within the time limit of 1800 seconds (gcut13 is still open, the
optimal value being unknown). Compared to Fekete and Schepers’, on an average, our running
times turned out to be smaller and were significantly better for 6 instances (cgcut2, gcut3,
gcut8, gcut11, gcut12 and okp1), though Fekete and Schepers’ algorithm outperforms ours for
the 2 instances okp2 and okp5. Compared to Joncour and Pêcher’s, the times are significantly
better for 5 okp instances and are significantly worse for 3 instances: cgcut2, gcut4 and gcut8.
Additionally, compared to other authors’, our running times are considerably better. Note that
considering the big difference between our processors and the ones used by Caprara and Monaci
for their experiments, one can see that algorithms A1 and A3 are also competitive.

Table 2.2 shows the running times on benchmarks defined in [28]. The third column cor-
responds to the algorithm of Clautiaux, Carlier and Moukrim [28] implemented in C on a PC
(Pentium IV, 2.6 GHz). The size of the containers is (20,20) and there are 10 to 23 items to be
packed. These benchmarks are designed to check feasibility (OPP-2) and therefore relevant to
our approach. However, the size of containers being small, our approach as well as Joncour and
Pêcher’s and Fekete and Schepers’ is less appropriate compared to the methods using a space
discretization. The F (resp. N) character in the name of the instance stand for "feasible" (resp.
"non feasible") and X character is used when there exists another instance being of the same
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type (feasible or unfeasible) and with the same number of items to be packed. In the case of
feasible instances our algorithm has generally a better performance than Fekete and Schepers’
and Carlier and Moukrim’s, however for half of feasible instances they are slower than Joncour
and Pecher’s. For unfeasible instances, the running times are generally better that those of the
algorithm of Joncour and Pêcher and about half of them are equivalent to those of the other
authors. However, for six instances the running times are less competitive than those of the other
two algorithms, while only one instance is not solved. In average, our algorithm is thrice faster
than Fekete and Schepers’, slightly faster than Joncour and Pêcher’s but significantly slower than
Clautiaux, Carlier and Moukrim’s.

Solving the instance gcut13 is still a challenging issue, the best solution being obtained in [64].
The particularity of this benchmark is that the size of the container is big (3000 by 3000) while
there are many items (32) of relatively small sizes to be packed.

We underline the fact that our algorithm is an exact one and that at any moment of the
execution we do not use heuristic-like techniques. This is contrary to Fekete and Schepers’
algorithm which consists mainly of two parts: in the first one it tries to guess with a heuristic
a feasible packing and when it fails, it launches the main procedure which generates the interval
graphs in order to check the feasibility (and this is the second part). Nevertheless, our results
are competitive, thus have a significant potential to be reused within heuristics. For instance,
for gcut13 as well as for all other instances for which our algorithm is not efficient, one could
adapt it by cutting the enumeration scheme. In this perspective, recall that an advantage of the
approach using MPQ-trees is that at any moment, it is possible to obtain the current packing
configuration. Therefore, it is possible to detect the total size P of portions of the container
which are not available any more while building an MPQ-tree. Consequently, intuitively one
could assume that for any other MPQ-tree containing the same set of items, the total size of not
available portions must not exceed P . We think, that in this case, the obtained results should
not omit too much of the potential solutions.
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Benchmark JPV1 JP1 FS2 BB3 A04 A14 A24 A34

ngcut1 . . . ngcut11 0 0 0 0
hccut2 . . . hccut5 0 0 0 0
wang20 0 0 0 - 6 6 17 2
cgcut1 0 0 0 0 0 1 1 1
cgcut2 108 39 >1800 >1800 >1800 >1800 533 531
cgcut3 1 0 0 95 23 23 4 4
gcut1 0 0 0 0 0 0 0 0
gcut2 0 0 0 0 0 0 25 0
gcut3 0 0 4 2 >1800 2 276 3
gcut4 154 28 195 46 >1800 346 >1800 376
gcut5 0 0 0 0 0 0 0 0
gcut6 0 0 0 1 0 0 9 0
gcut7 0 0 2 3 1 0 354 1
gcut8 67 17 253 186 1202 136 >1800 168
gcut9 0 0 0 0 0 0 0 0
gcut10 0 0 0 0 0 0 6 0
gcut11 2 1 8 3 16 14 >1800 16
gcut12 7 3 109 12 63 16 >1800 25
gcut13 >1800 >1800 >1800 >1800 >1800 >1800 >1800 >1800
okp1 1 1 10 779 24 25 72 35
okp2 54 477 20 288 >1800 >1800 1535 1559
okp3 1 7 5 0 21 1 465 10
okp4 1 23 2 14 40 2 0 4
okp5 274 >1800 11 190 40 >1800 513 488
# unsolved 1 2 2 2 5 4 5 1
Average time 66 113 114 248 474 353 582 228

1Java, Pentium IV, 3GHz
2C++, Pentium IV, 2.8GHz
3Visual Digital Fortran 6.0, Pentium IV, 2.5 GHz
4ANSI C, Pentium III, 800 MHz

Table 2.1: Running times in seconds for OKP-2 benchmarks
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Benchmark JPV1 JP1 FS2 CCM3

E02F17 0 0 7 12
E02F20 2 0 > 1800 12
E02F22 2 0 167 4
E04F15 1 2 0 1
E04F17 19 0 13 26
E04F19 15 0 560 7
E04F20 0 0 22 3
E05F15 0 0 0 3
E05F18 0 3 0 126
E05F20 6 0 491 2
E07F15 0 0 0 1
E08F15 0 0 0 117
E20F15 2 0 0 1
E00X23 > 1800 > 1800 > 1800 289
E03X18 26 17 0 22
E05X15 144 336 2 0
E07X15 94 236 0 1
E10X15 46 162 0 1
E13X15 3 7 0 0
E20X15 5 3 0 44

E00N10 0 9 0 0
E00N15 2 1 0 2
E00N23 103 45 > 1800 86
E02N20 0 0 0 1
E03N10 0 0 0 0
E03N15 26 21 0 1
E03N16 48 22 2 32
E03N17 59 57 0 4
E04N15 7 5 0 1
E04N17 3 35 0 1
E04N18 8 26 10 7
E05N15 4 27 0 0
E05N17 1 42 0 1
E07N10 0 0 0 0
E07N15 0 6 0 0
E08N15 4 74 0 1
E10N10 0 0 0 0
E10N15 0 8 0 0
E13N10 0 0 0 0
E13N15 0 0 0 0
E15N10 0 0 0 0
E15N15 0 1 0 0
# unsolved 1 1 3 0
Average 55 73 158 19time

1Java, Pentium IV, 3GHz
2C++, Pentium IV, 2.8GHz
3C, Pentium IV, 2.6 GHz

Table 2.2: Running times in seconds for OPP-2 benchmarks



Chapter 3

Strong edge-colouring

In this chapter we study a problem of graph colouring which models a conflict-free channel
assignment in radio networks. We consider two major families of graphs: subcubic graphs (Sec-
tion 3.1 and outerplanar graphs (Section 3.2). In the third section, we discuss complexity issues
and the last section is devoted to open problems.

3.1 Subcubic graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
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We first present some definitions, few of them being already mentioned in Chapter 1.
A strong edge-colouring c of a graph G is a proper edge-colouring of G, such that for every

path uvxy of length 3, we have c(uv) 6= c(xy). We denote by χ′s(G) the strong chromatic index
of G which is the smallest integer k such that G can be strongly edge-coloured with k colours.

We will say that two edges uv and xy are at distance 2 if these edges are not adjacent and
there exists a path uvxy of length 3.

An easy observation (mentioned in Chapter 1) is that χ′s(G) = χ(L(G)2), where χ is the
chromatic number and L(G)2 is the square of the line graph of G.

Strong edge-colouring was introduced by Fouquet and Jolivet in [47, 48]. This type of colour-
ing can be used to represent the conflict-free channel assignment in radio networks. Imagine
a simplified model of a radio network where transceivers communicate among each other over
different frequencies. Since it is a radio network every message sent by a transceiver u on a given
frequency is received by all transceivers "close" to u. This observation yields the two following
interference situations:

1. Suppose transceivers u and w send a message to v. If both u and w use the same frequency,
then v will not be able to understand their messages as they will interfere with each other.
Hence they must use distinct frequencies.

2. Suppose now that transceiver u wants to communicate with transceiver v, transceiver w
wants to communicate with transceiver x, and v and w are close. If u and w send their
messages on a same frequency, then v will receive both messages on the same frequency
and so messages will interfere with each other. This type of interference is illustrated in
Figure 3.1

35
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If we consider the graph whose vertices are the transceivers, and there is an edge if the
corresponding transceivers are close, then solving the frequency assignment problem is equivalent
to finding a strong edge-colouring of the graph. For more details on applications and protocols
we refer the reader to [6, 75, 77, 82, 85].

u
v w

x

Figure 3.1: The second type of interference. The conflict is on node v.

One of the main questions in studying strong edge-colouring is the following:

"Does there exist a bound of the strong chromatic index in terms of ∆?"

A natural answer for the lower bound can be seen by a simple counting argument on the
maximal number of edges adjacent to an edge in the graph:

χ′s(G) ≥ max
xy∈E(G)

{d(x) + d(y)− 1}

This bound was proved to be tight for trees [38] and in the case of some sparse random graphs:

Theorem 3.1 (Frieze et al., 2005 [49]). Let G = G(n, p) be the random graph on n vertices
where every edge appears with probability p such that np < 1

100
√

logn/ log logn. Then with high
probability χ′s(G) = max

xy∈E(G)
{d(x) + d(y)− 1}.

As described in the first chapter of this thesis, another natural lower bound for χ′s(G) is the
size of the maximum antimatching a(G): χ′s(G) ≥ a(G) ≥ max

xy∈E(G)
{d(x) + d(y)− 1}. In [78]

Mahdian proved that the antimatching problem is NP-complete for the class of simple graphs
and for bipartite multigraphs, and polynomially solvable for graphs without 4-cycles.

As of upper bounds for the strong chromatic index, the natural one can be obtained by a
greedy algorithm and is the maximum number of edges at distance at most 2 from a given edge.
Therefore, we have:

χ′s(G) ≤ 2∆(∆− 1) + 1

One of the major attempts in refining this bound was proposed in 1985 by Erdős and Nešetřil
who conjectured the following:

Conjecture 3.2 (Erdős and Nešetřil, 1985 [35, 37]). For every graph G,

χ′s(G) ≤
{5

4∆2 if ∆ is even
1
4(5∆2 − 2∆ + 1) if ∆ is odd

The bounds of the conjecture are tight as the authors gave a construction of graphs reaching
them (see Figure 3.2). The conjecture is still open, the only case being solved is when ∆ ≤ 3 [1, 61].
For some special classes of graphs, such as trees, chordal graphs or Kneser graphs, the conjecture
holds [77]. In the case when ∆ = 4, Conjecture 3.2 states that χ′s(G) ≤ 20 and the best proved
upper bound is 22 [31].

In [27] Chung et al. proved the following result which goes as a support to Conjecture 3.2.
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I1

I2

I3

I4 I5

././
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./

./

Every Ij is an independent set

If ∆ = 2k, then |Ij | = k

If ∆ = 2k + 1, then |I1| = |I2| = |I3| = k

and |I4| = |I5| = k + 1

Figure 3.2: Erdős and Nešetřil’s construction.

Theorem 3.3 (Chung et al., 1990 [27]). Let G be a graph with no induced path of four edges.
Then |E(G)| ≤ 5

4∆2 if ∆ is even and |E(G)| ≤ 1
4(5∆2 − 2∆ + 1), if ∆ is odd.

In particular, Theorem 3.3 shows that the construction of Figure 3.2 is a biggest antimatching
possible and hence if Conjecture 3.2 is not true, the counterexample must be a graph where there
are edges at distance strictly greater than 2.

Several authors tried to give upper bounds for the strong chromatic index in terms of the
maximum degree using probabilistic methods.

Theorem 3.4 (Molloy and Reed, 1997 [79]). For sufficiently large ∆, every graph G satisfies
χ′s(G) ≤ 1.998∆2.

In [37] Faudree et al. stated the following conjecture.

Conjecture 3.5 (Faudree et al., 1990 [38]). Every bipartite graph has a strong edge-colouring
with ∆2 colours.

The first results on planar graphs were proved in the same paper. The authors proved the
following upper bound for planar graphs:

Theorem 3.6 (Faudree et al., 1990 [38]). For every planar graph G, χ′s(G) ≤ 4∆ + 4.

However, until now it is not known whether this bound is tight as the authors showed a
construction of planar graphs with χ′s(G) = 4∆ − 4 and no better lower and upper bounds for
this family of graphs were found since then. In Section 3.2 we improve Theorem 3.6 in the
case of outerplanar graphs by showing that every non-trivial outerplanar graph can be strongly
edge-coloured with at most 3∆− 3 colours (Theorem 3.22). The obtained result is tight.

The class of Halin graphs was studied in [90, 91, 69, 74, 20] and tight upper bounds were
given for different subfamilies of this class. The case of planar 3-regular graphs was first studied
in [48]. In the case of subcubic planar graphs, Faudree et al. stated the following conjecture:

Conjecture 3.7 (Faudree et al., 1990 [38]). For every planar subcubic graph G, χ′s(G) ≤ 9.

The bound the authors proposed is tight, the example proving it being the prism graph (or
the complement of a C6, C6) depicted in Figure 3.3. Moreover, this graph is 3-regular and to our
knowledge it is the only subcubic planar graph with χ′s = 9. That is why this conjecture is cited
in many articles as a conjecture on cubic graphs (i.e. 3-regular graphs).

Conjecture 3.7 is a special case of an older conjecture stated by Wegner in 1977:

Conjecture 3.8 (Wegner, 1977 [98]). If G is a planar graph with maximum degree ∆, then

χ(G2) ≤


7 if ∆ = 3
∆ + 5 if 4 ≤ ∆ ≤ 7
3∆
2 + 1 if ∆ ≥ 8
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Figure 3.3: The graph C6 has χ′s(C6) = 9

For instance, since a line graph of a planar subcubic graph is a planar graph of maximum
degree 4, Conjecture 3.8 for the case when ∆ ≤ 4 implies Conjecture 3.7.

For cubic Halin graphs Conjecture 3.7 holds [74, 20]. In Section 3.1.3 we give some progress
towards Conjecture 3.7, by showing that it holds in a large subclass of planar subcubic graphs.
More precisely, in Theorem 3.20 we prove that every planar subcubic graph with no induced
cycles of length 4 or 5 has the strong chromatic index at most 9.

Motivated by the same conjecture, we studied the case of general sparse subcubic graphs
(Section 3.1.1) by giving upper bounds on the strong chromatic index in terms of maximum
average degree and by deriving some immediate consequences for the case of subcubic planar
graphs. To this regard, in Theorem 3.9, we show that every subcubic graph with maximum
average degree strictly less than 7

3 (resp. 5
2 ,

8
3 ,

20
7 ) can be strongly edge-coloured with six (resp.

seven, eight, nine) colours. In the following section (3.1.2) we discuss on the optimality of the
upper bounds on the maximum average degree. We show that except for the bound 8

3 , the other
ones are optimal. Some of the results we obtained in this section have been published in [59].

From the computational point of view, deciding whether a bipartite graph with girth g is
strongly k-edge-colourable for every k ≥ 4 was proved to be NP-complete by Mahdian [78].
The same author showed that the strong edge-colouring problem can be solved in polynomial
time for chordal graphs and co-comparability graphs. In [89] Salavatipour showed a polynomial
algorithm for graphs of bounded tree-width. Bunde et al. proved that strong 5-edge-colouring
is NP-complete in the class of bipartite 2-degenerate graphs with girth 6 and maximum degree
3 [36]. However, for planar graphs no complexity result was stated. In Section 3.3 we show
that the strong k-edge-colouring problem for k = 4, 5, 6 remains NP-complete in some restricted
subclasses of planar graphs of maximum degree 3.

A closely related notion to strong edge-colouring is induced matching. An induced matching
I of a graph G is a set of non-adjacent edges of G (matching) such that no two of them are
joined by an edge in G. In other words, the graph induced by the endpoints of the edges of I
has maximum degree 1. The strong edge-colouring can be seen as a partition of the set of edges
into a set of induced matchings (see [47, 37, 38]). Induced matchings are also known as strong
matchings, see [47]. Clearly from the definitions, one can observe that finding the size of the
maximum induced matching in a graph G is equivalent to finding the maximum independent set
in L(G)2.

Recall that an antimatching of a graph G is a subset of its edges which are pairwise at distance
at most 2. As showed in the first chapter, finding the size of the maximum antimatching is equiv-
alent to finding the size of the maximum clique in L(G)2. Thus we have a clear correspondence
between the strong edge-colouring, induced matchings and antimatchings and respectively the
classical vertex-colouring, independent sets and cliques of L(G)2.

The notion of induced matchings was first studied by Stockmeyer and Vazirani in [95]. They
proved that the maximum induced matching problem is NP-hard even for bipartite graphs of
maximum degree 4 [95]. Cameron proved in [17] that finding a maximum induced matching in
chordal graphs can be done in polynomial time and that the problem is NP-complete for bipartite
graphs of girth at least g, for every g positive integer. Lozin proved in [76] that deciding whether
a set of edges is a maximum induced matching is NP-complete for bipartite graphs of maximum
degree 3. Duckworth et al. proved in [34] that the induced matching problem is NP-complete
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even when restricted to planar cubic graphs. In [58] we unified all these results and proved that
the problem is NP-complete for bipartite planar graphs of maximum degree 3 with an arbitrarily
large girth g.

This chapter has four sections. In Section 3.1 we consider two restrictions of subcubic graphs:
sparse graphs and planar graphs. Section 3.2 is devoted to the case of outerplanar graphs and in
Section 3.3 we study some complexity aspects of the problem. We end the chapter by a discussion
on our results and some open problems for future work (Section 3.4).

3.1 Subcubic graphs
In this section we concentrate on the family of graphs with maximum degree 3. We prove

lower and upper bounds for the strong chromatic index of different subclasses of this family. First,
we study the case of sparse graphs.

3.1.1 Sparse graphs through maximum average degree (mad)

Let mad(G) be the maximum average degree of the graph G defined as follows:

mad(G) = max
{2|E(H)|
|V (H)| , H ⊆ G

}
In some sense, the maximum average degree of a graph measures its sparseness. This param-

eter can be computed in polynomial time [29, 62]. We study the family of subcubic graphs in
terms of the maximum average degree. Namely, we prove the following results:

Theorem 3.9. Let G be a subcubic graph:

(i) If mad(G) < 7
3 , then χ

′
s(G) ≤ 6.

(ii) If mad(G) < 5
2 , then χ

′
s(G) ≤ 7.

(iii) If mad(G) < 8
3 , then χ

′
s(G) ≤ 8.

(iv) If mad(G) < 20
7 , then χ′s(G) ≤ 9.

An interesting fact about these upper bounds on the maximum average degree is that for parts
(i), (ii) and (iv) they are tight. We show it on examples of graphs after proving the theorem.

Recall that if a graph G has mad(G) < 2, then G is a forest. We observe that every subcubic
graph G with mad(G) < 2 verifies χ′s(G) ≤ 5 and the bound on the maximum average degree is
best possible (sine there exist graphs with mad(G) = 2 and χ′s(G) = 6, see Figure 3.4).

Figure 3.4: A graph G with mad(G) = 2 and χ′s(G) = 6

The following lemma that belongs to folklore gives the relationship between the maximum
average degree and the girth of a planar graph.

Lemma 3.10 (Folklore). Let G be a planar graph with girth at least g. Then, mad(G) < 2g
g−2 .
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Proof. Let G be a connected planar graph with girth at least g. Let H be a subgraph of G. Note
that H is planar and has girth at least g. Hence, g|F (H)| ≤ 2|E(H)|, where F (H) is the set of
faces of H. According to Euler’s Formula, we obtain:

2g − g|V (H)|+ g|E(H)| = g|F (H)| ≤ 2|E(H)|

Hence,
2g + (g − 2)|E(H)| ≤ g|V (H)|

2|E(H)|(2g + (g − 2)|E(H)|) ≤ 2|E(H)|g|V (H)|

2|E(H)|
|V (H)| ≤

2g|E(H)|
2g + (g − 2)|E(H)| <

2g
g − 2

for every subgraph H of G.

According to Lemma 3.10 and Theorem 3.9, one can derive the following result:

Corollary 3.11. Let G be a planar subcubic graph with girth g:

(i) If g ≥ 14, then χ′s(G) ≤ 6.

(ii) If g ≥ 10, then χ′s(G) ≤ 7.

(iii) If g ≥ 9, then χ′s(G) ≤ 8.

(iv) If g ≥ 7, then χ′s(G) ≤ 9.

We will later improve part (iv) by showing that every planar graph G without cycles of length
4 and 5 verifies χ′s(G) ≤ 9 (Theorem 3.20 of Section 3.1.3).

Notations Let G be a graph. A vertex of degree k (resp. at most k) is called a k-vertex (resp.
k−-vertex). A good 2-vertex is a vertex of degree 2 being adjacent to two 3-vertices, otherwise
it is a bad 2-vertex. A 3k-vertex is a 3-vertex adjacent to exactly k 2-vertices. Two edges are at
distance 1 if they are adjacent. Two edges are at distance 2 if they are not at distance 1 and
there exists an edge adjacent to both of them. We define N2(uv) as the set of edges at distance
at most 2 from the edge uv and we denote by SC(N2(uv)) the set of colours used by edges in
N2(uv). Finally, we use JnK to denote the set of integers {1, 2, . . . , n}.

The proof of Theorem 3.9 uses the method of reducible configurations and the discharging
technique. The proof is done by minimum counterexample. In each of the cases, for the minimum
counterexample H, we prove the non-existence of some configurations i.e. a set S of subgraphs
which cannot appear in H. We define the weight function ω : V (H) → R with ω(x) = d(x) −
m (where m ∈ R is the value of the upper bound on the maximum average degree given by
Theorem 3.9). It follows from the hypothesis on the maximum average degree that the total sum
of weights is strictly negative. In the next step, we define discharging rules to redistribute weights
and once the discharging process is finished, a new weight function ω∗ will be produced. During
the discharging process the total sum of weights is kept fixed. Nevertheless, by the non-existence
of S, we can show that ω∗(x) ≥ 0 for all x ∈ V (H). This leads to the following contradiction:

0 ≤
∑

x∈V (H)
ω∗(x) =

∑
x∈V (H)

ω(x) < 0

and hence, this counterexample cannot exist.



3.1. SUBCUBIC GRAPHS 41

Proof of (i) of Theorem 3.9

Let H be a counterexample to part (i) of Theorem 3.9 minimizing |E(H)|+ |V (H)|: H is not
strongly edge-colourable with six colours, mad(H) < 7

3 and ∀e ∈ E(H), χ′s(H \ e) ≤ 6. One can
assume that H is connected; otherwise, by minimality of H, we can colour independently each
connected component. A 3-vertex adjacent to a 1-vertex is a light 3-vertex. Otherwise it is a
heavy 3-vertex.

Claim 3.12. The minimal counterexample H to part (i) of Theorem 3.9 satisfies the following
properties:

1. H does not contain a 1-vertex adjacent to a 2-vertex.

2. H does not contain a 3-vertex adjacent to a 1-vertex and a 2−-vertex.

3. H does not contain a path uvw where u, v and w are 2-vertices.

4. H does not contain a path uvw where u, v and w are three light 3-vertices.

5. H does not contain a triangle xyz, where x is a light 3-vertex.

6. H does not contain a path stuvw where s, t, v and w are four light 3-vertices, u is a 3-vertex
adjacent to a third light 3-vertex x.

Proof. In the following, we give a proof for each of the items of the claim.

1. Suppose H contains a 1-vertex u adjacent to a 2-vertex v. Let us consider H ′ = H \ {uv},
which by minimality of H is strongly edge-colourable with six colours. By counting the
number of available colours to extend a colouring of H ′ to H, it is easy to see that we have
at least three colours left for uv.

2 Trivial by a counting argument.

3. Suppose H contains a path uvw where u, v and w are 2-vertices. Let us consider H ′ =
H \ {uv, vw}, which by minimality of H is strongly edge-colourable with six colours. By
counting the number of available colours to extend a colouring of H ′ to H, it is easy to see
that we have at least two colours left for uv and at least one colour left for vw (after the
colouring of uv).

4. Suppose H contains a path xuvwy where u, v and w are three light 3-vertices. Call u1 (resp.
v1, w1) the neighbour of u (resp. v, w) of degree 1. Assume N(x) = {u, x1, x2}, N(u) =
{x, u1, v}, N(v) = {u, v1, w}, N(w) = {v, w1, y}, N(y) = {w, y1, y2} (see Figure 3.5). Let
us consider H ′ = H \ {uu1, uv, vv1, vw,ww1}. By minimality of H, there exists a strong
edge-colouring φ of H ′, using six colours. We will extend this colouring to H. Suppose first,
φ(ux) = φ(wy). We colour uv, vw, uu1, ww1 and vv1 in this order, which is possible by
counting for each edge the number of available colours to extend the colouring. Suppose
now, φ(ux) 6= φ(wy). W.l.o.g. we can assume that φ(ux) = 5 and φ(wy) = 6. First,
we try to colour the edge uu1 with the colour 6. If it is possible, then we assign the
colour 6 to uu1 and we colour uv, vw, ww1 and vv1 in this order, which is possible by
counting the number of available colours to extend the colouring. If we cannot colour
uu1 with the colour 6, we are sure that the colour 6 appears in the neighbourhood of x.
W.l.o.g. we can assume that φ(xx1) = 6. By applying the same reasoning on ww1, we
can assume w.l.o.g. that φ(yy1) = 5. We assign now the same colour α to uu1 and ww1,
with α 6∈ {φ(xx2), 5, 6, φ(yy2)}. Finally, we colour uv, vw and vv1 in this order, which is
possible by counting the number of available colours to extend the colouring. In each case
the extension of φ to H is possible which is a contradiction.
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x1

x2

x u v w

u1 v1 w1

y

y1

y2

Figure 3.5: The configuration of Claim 3.12(4)

5. Suppose H contains a triangle xyz, where x is a light 3-vertex and let x1 be the 1-vertex
neighbour of x. By minimality of H, the graph H \ xx1 can be strongly edge-coloured with
at most six colours. Since |N2(xx1)| ≤ 5, every colouring of H \ xx1 using the minimum
number of colours can be extended to H.

6. Suppose H contains a path stuvw where s, t, v and w are four light 3-vertices, u is a 3-vertex
adjacent to a light 3-vertex x distinct from s, t, v, w. Call s1 (resp. t1, v1, w1, x1) the
neighbour of s (resp. t, v, w, x) of degree 1. Let r (resp. y, z) be the third neighbour of
s (resp. x, w). Also, for i = 1, 2, let ri (resp. yi, zi) be the neighbours of r (resp. y, z),
other than s (resp. x, w). By Claim 3.12(2), r, y and z are 3-vertices. By Claims 3.12(4)
and 3.12(5), we can assume that Figure 3.6 illustrates the given configuration (with r, y, z
possibly not distinct).
Let us consider H ′ = H \ {ss1, tt1, vv1, ww1, xx1, st, tu, uv, vw, ux}. By minimality of H,
there exists a strong edge-colouring φ of H ′, using six colours. We show how to extend this
colouring to H.

r

r1

r2
s

s1

t

t1

u v

v1

w

w1

z

z1

z2

x x1

y

y1 y2

Figure 3.6: The configuration of Claim 3.12(6)

Without loss of generality we can suppose that φ(xy) = 1, φ(yy1) = 2 and φ(yy2) = 3.
First, we colour edge ux and we distinguish two cases:

(a) Suppose ux can be coloured with the same colour as rs, say colour 4. We colour now
uv with a colour of yy1, yy2 that does not appear on wz. Finally, we consider the
remaining edges in the following order: vw, ww1, vv1, tu, st, ss1, tt1 and xx1. At each
step, there exists an available colour for the corresponding edge.

(b) Suppose ux cannot be coloured with the same colour as rs or wz. Hence φ(rs), φ(wz) ∈
{1, 2, 3}. Then it is easy to observe that there exists a colour, say 4, such that ux and
ss1, can be coloured with 4. We fix φ(ux) = φ(ss1) = 4.
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Next, we distinguish the following cases for φ(rs) and φ(wz):
• Suppose φ(rs) ∈ {φ(yy1), φ(yy2)} = {2, 3} and φ(wz) 6= φ(rs). Without loss of
generality we can suppose that φ(rs) = φ(yy1) = 2. Then we fix φ(uv) = 2. We
colour the remaining edges in the following order: vw, ww1, vv1, tu, st, tt1 and
xx1. Note that at each step, there exists a colour left for the corresponding edge.
• Suppose φ(rs) ∈ {φ(yy1), φ(yy2)} = {2, 3} and φ(wz) = φ(rs). Without loss of
generality we can suppose that φ(wz) = φ(rs) = 2 and we fix φ(uv) = 3.
Suppose we can assign φ(ww1) = 4. Next, we colour first st and then tu (note that
at each step there is at least one colour left). If there is a colour left for vw, then
the colouring of H can be finished easily as edges tt1, vv1 and xx1 are pairwise at
distance 3 and for each of these edges there would be a colour left. Therefore, there
is no colour left for vw which implies that {φ(tu), φ(zz1), φ(zz2)} = {1, 5, 6} and
since tu cannot be coloured 1, without loss of generality we can assume φ(tu) = 5,
φ(zz1) = 1 and φ(zz2) = 6. Similarly, by uncolouring st, recolouring tu with 6
and assigning to vw colour 5, we conclude that {φ(rr1), φ(rr2)} = {1, 5}. But
then we do the following reassignment of colours φ(ss1) = 6, φ(st) = 4, φ(tu) = 5,
φ(ux) = 6, φ(vw) = 4, φ(ww1) = 5. Finally there is a colour left for each of the
edges tt1, vv1 and xx1, thus we are done.
Suppose ww1 cannot be coloured with 4. Therefore, without loss of generality
φ(zz1) = 4. On the other hand, recall that φ(ss1) = φ(ux) = 4 and by previous
paragraphs, it is not possible to colour ss1, ux and ww1 with the same colour (4,
5 or 6). Hence we must have {5, 6} ⊆ {φ(zz2), φ(rr1), φ(rr2)}. Obviously one of
the colours 5 or 6, say 5, is not assigned to zz2 and is assigned to either rr1 or rr2
(we can suppose φ(rr1) = 5). Hence we can assign φ(ww1) = φ(tu) = 5 and we
colour the remaining edges in the following order: vw, vv1, st, tt1, xx1. Observe
that at each step there exists at least one colour left for every edge.
• Suppose {φ(rs), φ(wz)}∩{φ(yy1), φ(yy2)} = ∅. Hence, φ(rs) = φ(wz) = 1. We fix
φ(tu) = 2 and then we colour the following edges in the given order: st, vw, uv,
vv1, tt1 and xx1. It remains to colour ww1. If we have a colour left for ww1, then
we are done. Otherwise, {φ(uv), φ(vv1), φ(vw), φ(zz1), φ(zz2)} = {2, 3, 4, 5, 6}.
Therefore, {φ(uv), φ(vv1), φ(vw)} = {3, 5, 6} and {φ(zz1), φ(zz2)} = {2, 4}. But
then we permute the colours of tu and uv and we obtain a free colour for ww1
(which is the same as the colour of tu). A contradiction.

As a corollary from the proof of Claim 3.12 we derive the following:

Corollary 3.13. The minimal counterexample H to part (i) of Theorem 3.9 does not contain a
path stuvw where s, t, v and w are either light 3-vertices or 2-vertices and u is a 3-vertex adjacent
to a vertex x which is either a light 3-vertex x or a 2-vertex.

Let H ′′ be the graph obtained from H by removing all 1-vertices of H, i.e. H ′′ = H \ {v ∈
V (H), dH(v) = 1}. Clearly, H ′′ is connected and mad(H ′′) < 7

3 .
One can derive the following structural properties of H ′′:

Claim 3.14. Due to Claim 3.12 and to Corollary 3.13, H ′′ has the following properties:

1. δ(H ′′) ≥ 2, where δ(H ′′) is the minimum degree of H ′′ (from Claim 3.12(1) and 3.12(2)).

2. H ′′ does not contain a path uvw where u, v, w are 2-vertices (from Claims 3.12(2), 3.12(3)
and 3.12(4)).

3. H ′′ does not contain a 33-vertex adjacent to two bad 2-vertices (from Corollary 3.13).
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For each vertex x ofH ′′, we assign a charge w(x) equal to d(x)− 7
3 . We apply now a discharging

procedure on H ′′ with the following rules:

(R1) Every 3-vertex gives 1
3 to each adjacent bad 2-vertex.

(R2) Every 3-vertex gives 1
6 to each adjacent good 2-vertex.

Let v ∈ V (H ′′) be a k-vertex. By Claim 3.14(1), k ≥ 2. Consider the following cases:

Case k = 2. Observe that ω(v) = −1
3 . Suppose v is a bad 2-vertex. By Claim 3.14(2), v is

adjacent to a 3-vertex. Hence, by (R1), ω∗(v) = −1
3 + 1

3 = 0. If v is a good 2-vertex, then
ω∗(v) = −1

3 + 2× 1
6 = 0 by (R2).

Case k = 3. Observe that ω(v) = 2
3 . Suppose v is adjacent to a bad 2-vertex. By

Claim 3.14(2), v is not adjacent to another bad 2-vertex. Hence, by (R1) and (R2),
ω∗(v) ≥ 2

3−1× 1
3−2× 1

6 = 0. If v is not adjacent to a bad 2-vertex, then ω∗(v) ≥ 2
3−3× 1

6 > 0
by (R2).

Therefore, H ′′ cannot exist and consequently H does not exist neither. This completes the
proof.

Proof of (ii) of Theorem 3.9

Let H be a counterexample to part (ii) of Theorem 3.9 minimizing |E(H)| + |V (H)|: H is
not strongly edge-colourable with seven colours, mad(H) < 5

2 and for any edge e, χ′s(H \ e) ≤ 7.
Recall that ω(x) = d(x)− 5

2 . In this subsection a 3-vertex adjacent to a 2-vertex is a light 3-vertex.
Otherwise it is a heavy 3-vertex.

Claim 3.15. The minimal counterexample H satisfies the following properties:

1. H does not contain 1−-vertices.

2. H does not contain a path uvw where u, v and w are 2-vertices.

3. H does not contain a 3-vertex adjacent to two 2-vertices one of them being bad.

4. H does not contain two 33-vertices having a 2-vertex as a common neighbour.

5. H does not contain a 33-vertex u with one of the neighbours, say v, adjacent to a 32-vertex
w having as neighbours a 2-vertex w1 and a 3-vertex w2, such that:

(a) either w1 is adjacent to a 33-vertex
(b) or w2 is a 32-vertex
(c) or w2 is a light 3-vertex

Proof.

1-2. Trivial.

3. Suppose H contains a 3-vertex u having a bad 2-vertex v as a neighbour. Call w, the bad
2-vertex adjacent to v. Let us consider H ′ = H \ {uv, vw}, which by minimality of H is
strongly edge-colourable with seven colours. By counting the number of available colours
to extend a colouring of H ′ to H, it is easy to see that we have at least one colour left for
uv and at least one colour left for vw (after the colouring of uv).
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4. Suppose H contains two 33-vertices u and w having a 2-vertex v as a common neighbour.
N(u) = {u1, u2, v}, N(w) = {w1, w2, v}, N(u1) = {u, x}, N(u2) = {u, y}, N(x) =
{u1, x1, x2}, N(y) = {u2, y1, y2}, N(w1) = {w, t}, N(w2) = {w, z}, N(t) = {w1, t1, t2},
N(z) = {w2, z1, z2} (see Figure 3.7). Let us consider H ′ = H \ {uv, vw}. Since H is a
minimum counterexample, χ′s(H ′) ≤ 7 and there exists a strong edge-colouring of H ′, φ
using seven colours. We will extend this colouring to H. First, we want to colour vw.
Observe that |J7K \ SC(N2(vw))| ≥ 1, so we pick the colour left and we colour vw. Next,
if we cannot colour uv, then |J7K \ SC(N2(uv))| = 0 and without loss of generality, we can
assume that φ(vw) = 1, φ(ww1) = 2, φ(ww2) = 3, φ(uu1) = 4, φ(uu2) = 5, φ(u1x) =
6, φ(u2y) = 7. If we can recolour recolour vw, then we could assign φ(uv) = 1. Therefore,
without loss of generality φ(w1t) = 6, φ(w2z) = 7. If it is possible to recolour ww1 with 4
or 5, then we could assign φ(uv) = 2 and we would complete the colouring of H. Therefore,
we have φ(tt1) = 5, φ(tt2) = 4. Similarly, we cannot recolour ww2 with 4 or 5 and hence
φ(zz1) = 5, φ(zz2) = 4. Symmetrically, we continue to try to recolour in the same manner
the edges uu1 and uu2. If in one of the steps, the recolouring is possible, then we will
have a colour free to use for uv. At the end, without loss of generality we obtain the
following colours: φ(xx1) = 2, φ(xx2) = 3, φ(yy1) = 3, φ(yy2) = 2. Next, having this
knowledge about the colours of the edges, we can recolour some of the edges as follows:
φ(uu2) = φ(ww1) = 1, φ(vw) = 5, φ(uv) = 2. It is easy to see that there are no "conflicts"
between the colours. Hence the extension of φ to H is possible which is a contradiction.
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Figure 3.7: The configuration of Claim 3.15(4)

5. Suppose H contains a path uvw where u is a 33-vertex, v is a 2-vertex, w is a 32-vertex
and w is adjacent to a 2-vertex w1 (distinct from v) and to a 3-vertex w2. Let H ′ =
H \ {u1u, u2u, uv, vw}. By minimality of H, χ′s(H ′) ≤ 7 and there exists a strong edge-
colouring φ of H ′, which uses seven colours. We will extend this colouring to H. We colour
the edges vw, uv and u2u in this order. Note that at each step there exists at least one
colour left for the corresponding edge. In order to complete the strong edge-colouring of
H, we must assign a colour to u1u. If |J7K \ SC(N2(u1u))| ≥ 1, then we are done. Hence
|J7K \ SC(N2(u1u))| = 0 and since |N2(u1u)| = 7, all the colours of SC(N2(u1u)) must be
distinct. Next, observe that it is possible to colour u1u with the colour of u2u, uncolour u2u
and then apply the same argument as previously to show that all the colours of SC(N2(u2u))
must be distinct. And then similarly, it is possible to colour u1u with the colour of uv, to
uncolour uv and if there is no colour left for uv, then all the colours of SC(N2(uv)) must be
distinct. We conclude that w1 6= u1, u2 and w2 6= x, y, x1, x2, y1, y2. Hence the configuration
and its fixed precolouring of edges is as depicted in Figure 3.8.

5.a Suppose w1 is adjacent to a 33-vertex t as in Figure 3.9.
Let us consider the edge ww1. Observe that SC(N2(ww1)) contains the colours 1, 4
and 5. Otherwise, we can recolour ww1 with 1 (or 4, or 5), vw with 6 and u1u with 3.
This extends the colouring to whole H which is a contradiction.
Observe that 3 ∈ {φ(tt1), φ(tt2)}. Otherwise, we can permute the colours of vw and
ww1, and assign colour 3 to u1u. Similarly, if we could permute the colours of ww1
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Figure 3.8: A fixed precolouring of the configuration of Claim 3.15(5)
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Figure 3.9: The configuration of Claim 3.15(5.a)

and uv, then u1u could be coloured with 2, which is impossible. Therefore, we have
2 ∈ {φ(w1t), φ(tt1), φ(tt2), φ(w2z1), φ(w2z2)}.
We conclude that {φ(w1t), φ(tt1), φ(tt2), φ(w2z1), φ(w2z2)} = {1, 2, 3, 4, 5} and 3 ∈
{φ(tt1), φ(tt2)} (w1t, tt1, tt2, w2z1, w2z2 are assigned pairwise distinct colours).
Suppose that {φ(t1t′1), φ(t2t′2)} 6= {φ(w2z1), φ(w2z2)}. Let α ∈ {φ(w2z1), φ(w2z2)} \
{φ(t1t′1), φ(t2t′2)}, α ∈ {1, 2, 4, 5} (3 ∈ {φ(tt1), φ(tt2)}).
We do the following assignment of colours (in the given order): φ(u1u) = 2, φ(uv) = 3,
φ(vw) = 6, φ(ww1) = φ(w1t), φ(w1t) = α.
It follows that {φ(t1t′1), φ(t2t′2)} = {φ(w2z1), φ(w2z2)} and 6 6∈ {φ(t1t′1), φ(t2t′2)}. But
then we permute the colours of w1t and ww1, recolour uv with colour 6 and assign to
u1u colour 2. We obtain a strong edge-colouring of H and this is a contradiction.

5.b Suppose w2 is a 32-vertex as depicted in Figure 3.10.
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Figure 3.10: The configuration of Claim 3.15(5.b)

Consider in this case the edge ww2.
Observe that 3 ∈ {φ(z1s), φ(z2r)}. If not, we can permute the colours of vw and ww2,
and assign 3 to u1u. Observe that 1, 2, 4, 5 ∈ {φ(w1t), φ(w2z1)φ(w2z2), φ(z1s), φ(z2r)}.
Otherwise we can recolour ww2 with 1 or 2 or 4 or 5, uv with 7, and assign colour 2
to u1u. Hence {φ(w1t), φ(w2z1)φ(w2z2), φ(z1s), φ(z2r)} = {1, 2, 3, 4, 5}. Observe that
3 ∈ {φ(tt1), φ(tt2)}. Otherwise we can permute the colours of vw and ww1, and assign
colour 3 to u1u. Hence, without loss of generality we can assume φ(tt1) = φ(z1s) = 3.
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Moreover, we prove that φ(tt2) = φ(z2r). By contradiction, assume that φ(z2r) = α 6=
φ(tt2) (α ∈ {1, 2, 4, 5}). We recolour ww1 with α, uv with 6, and assign 2 to u1u.
Now let us uncolour uv and assign colour 2 to u1u. Observe that 7 ∈ {φ(ss1), φ(ss2)}.
Otherwise we can permute the colours of ww2 and w2z1, and assign colour 7 to uv.
Observe that φ(w1t) ∈ {φ(ss1), φ(ss2)}. Otherwise we use φ(w2z1) to recolour ww1, we
recolour w2z1 with φ(w1t) (recall that {φ(tt1), φ(tt2)} = {φ(z1s), φ(z2r)}), and assign
colour 6 to uv. It follows that {7, φ(w1t)} = {φ(ss1), φ(ss2)} (φ(w1t) 6= 6).
Finally we permute the colours of w2z1 and ww1 and assign 6 to uv. A contradiction.

5.c Suppose w2 is a light 3-vertex as depicted in Figure 3.11.
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Figure 3.11: The configuration of Claim 3.15(5.c)

Exactly as the first part of the proof of Claim 3.15(5.a) we have:

{φ(w1t), φ(tt1), φ(tt2), φ(w2z1), φ(w2z2)} = {1, 2, 3, 4, 5}, 3 ∈ {φ(tt1), φ(tt2)}.

Let us uncolour uv and assign to u1u colour 2. If the permutation of the colours of
ww2 and w2z2 is possible, then uv can be recoloured with 7. Hence φ(rr1) = 7.
Now we uncolour vw and assign colour 3 to uv. Observe that {φ(w1t), φ(tt1), φ(tt2)} =
{φ(z1s1), φ(z1s2), φ(z2r)}. By contradiction, let us suppose that there exists α ∈
{{φ(w1t), φ(tt1), φ(tt2)} \ {φ(z1s1), φ(z1s2), φ(z2r)}. Recall that α ∈ {1, 2, 3, 4, 5} and
φ(w2z2) 6= 3. We colour vw with 7, assign colour φ(w2z2) to ww2, and recolour w2z2
with α.
Finally we permute the colours of ww1 and w2z2, assign colour 6 to uv and colour 3
to vw.

The discharging rules are defined as follows:

(R1) Every 33-vertex gives 1
6 to each adjacent good 2-vertex.

(R2) Every 32-vertex and 31-vertex gives 1
4 to each adjacent good 2-vertex if this 2-vertex is not

adjacent to a 33-vertex.

(R3) Every 30-vertex gives 1
12 to each adjacent 32-vertex if any.

(R4) Every 31-vertex u gives 1
12 to each adjacent 32-vertex v if v has a 2-neighbour w adjacent

to a 33-vertex.

(R5) Every 3-vertex gives 1
3 to each adjacent 2-vertex which is a neighbour of 33-vertex.

(R6) Every 3-vertex gives 1
2 to each adjacent bad 2-vertex.

Let v ∈ V (H) be a k-vertex. By Claim 3.15(1), k ≥ 2.
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Case k = 2. Observe that ω(v) = −1
2 . Suppose v is a good 2-vertex. If v is adjacent

to a 33-vertex, then v cannot be adjacent to another 33-vertex by Claim 3.15(4). Hence,
ω∗(v) ≥ −1

2 + 1× 1
6 + 1× 1

3 = 0 by (R1) and (R5). If v is not adjacent to a 33-vertex, then
ω∗(v) ≥ −1

2 + 1 × 1
4 + 1 × 1

4 = 0 by (R2). Suppose v is bad. Vertex v is adjacent to one
3-vertex by Claim 3.15(2). Hence, ω∗(v) = −1

2 + 1× 1
2 = 0 by (R6).

Case k = 3. Observe that ω(v) = 1
2 . We have the following cases for v:

• Vertex v is adjacent to three 2-vertices. By Claim 3.15(3) these 2-vertices are good.
Moreover, by Claim 3.15(4) none of these 2-vertices is adjacent to another 33-vertex.
Hence, ω∗(v) = 1

2 − 3× 1
6 = 0 by (R1).

• Vertex v is adjacent to exactly two 2-vertices. By Claim 3.15(3), none of these 2-
vertices is bad. Suppose that none of these 2-vertices are adjacent to a 33-vertex.
Hence, ω∗(v) ≥ 1

2 −2× 1
4 = 0 by (R2). Assume now that one of the 2-vertices adjacent

to v is adjacent to a 33-vertex (note that among the 2-vertices adjacent to v, at most
one can be adjacent to a 33-vertex by Claim 3.15(5.a)). Hence v cannot be adjacent
to a 32-vertex by Claim 3.15(5.b). Then, v must have either a 31-vertex or a 30-vertex
as a neighbour. Hence, ω∗(v) ≥ 1

2 − 1× 1
4 + 1× 1

12 − 1× 1
3 = 0 by (R2), (R3) (or (R4))

and (R5).
• Vertex v is adjacent to exactly one 2-vertex u. If u is a bad 2-vertex, then by
Claim 3.15(5.c), v cannot be adjacent to a 32-vertex w which has a 2-neighbour y
adjacent to a 33-vertex. Hence, ω∗(v) ≥ 1

2 − 1 × 1
2 = 0 by (R6). Suppose u is a good

2-vertex. Let w be the other neighbour of u (d(w) = 3). If w is a 33-vertex, then
ω∗(v) ≥ 1

2 − 2 × 1
12 − 1 × 1

3 = 0 by (R4) and (R5). If w is not a 33-vertex then,
ω∗(v) ≥ 1

2 − 2× 1
12 − 1× 1

4 > 0 by (R2) and (R4).
• Vertex v is a 30-vertex. Hence, ω∗(v) ≥ 1

2 − 3× 1
12 > 0 by (R3).

This completes the proof.

Proof of (iii) of Theorem 3.9

Let H be a counterexample to part (iii) of Theorem 3.9 minimizing |E(H)| + |V (H)|: H is
not strongly edge-colourable with eight colours, mad(H) < 8

3 and for any edge e, χ′s(H \ e) ≤ 8.
Recall that ω(x) = d(x)− 8

3 .

Claim 3.16. The minimal counterexample H to part (iii) of Theorem 3.9 satisfies the following
properties:

1. H does not contain 1−-vertices.

2. H does not contain two adjacent 2-vertices.

3. H does not contain a 3-vertex adjacent to three 2-vertices.

4. H does not contain a 2-vertex adjacent to two 32-vertices.

Proof.

1. Trivial.

2. Suppose H contains a 2-vertex u adjacent to a 2-vertex v. Let t and w be the other
neighbours of u and v respectively. By minimality of H, the graph H ′ = H \ {tu, uv, vw}
is strongly 8-edge-colourable. Consequently, there exists a strong edge-colouring φ of H ′
with eight colours. Observe that |J8K \ SC(N2(tu))| ≥ 2, |J8K \ SC(N2(uv))| ≥ 4 and
|J8K \ SC(N2(vw))| ≥ 2. Therefore, the colouring φ can be easily extended to H, which is
a contradiction.
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3. Suppose H contains a 3-vertex v adjacent to three 2-vertices u, w and t. By minimality
of H, there exists a strong edge-colouring φ of H ′ = H \ {vt, vu, vw} with eight colours.
Observe that |J8K \ SC(N2(vt))| ≥ 3, |J8K \ SC(N2(vu))| ≥ 3 and |J8K \ SC(N2(vw))| ≥ 3.
Therefore, we can extend φ to H, which is a contradiction.

4. Suppose H contains two 32-vertices having a 2-vertex as a common neighbour. Hence, there
exists a path of five vertices in H, uvwxy such that u, w and y are 2-vertices and v, x are
32-vertices. Let v1 (respectively x1) be the third neighbour of v (respectively x) other than
u and w (respectively w and y). Let us consider H ′ = H \ {uv, vw,wx, xy, vv1, xx1}. Since
H is a minimum counterexample, χ′s(H ′) ≤ 8 and there exists a strong 8-edge-colouring φ
of H ′. We extend this colouring to H. Let us first colour the edges vv1 and xx1. Next, we
colour uv and xy. Each of these edges has two colours left to use: c1

uv, c2
uv for uv and c1

xy,
c2
xy for xy. Suppose, there exists at least one colour in common: c1

uv = c1
xy. We choose these

colours to colour uv and xy. After the colouring of these edges, vw and wx have each at
least two colours left and we can colour them easily. Suppose now that c1

uv, c2
uv, c1

xy and c2
xy

are all different. Let us colour uv with c1
uv and xy with c1

xy. Since vw has three colours left
to use at the beginning of the process, in the worst case there exists one colour non used,
cvw. So, we colour vw with this colour. At the last step we need to colour wx. If it is not
possible, then all three colours left to use for this edge at the beginning of the process of
extension of φ to H, were used by uv, vw and xy. In this case if c2

uv 6= cvw, then we change
the colour of uv to c2

uv. Otherwise we change the colour of xy to c2
xy (which is possible since

c1
uv, c2

uv, c1
xy and c2

xy are all different). Hence, we have a colour left for wx, to complete the
colouring of H.

Claim 3.17. The minimal counterexample H to part (iii) of Theorem 3.9 does not contain:

1. A 3-vertex adjacent to a 32-vertex and to a 2-vertex.

2. A 3-vertex adjacent to two 32-vertices.

Before proving Claims 3.17(5) and 3.17(6), we need to introduce some definitions and nota-
tions. Let φ be a partial strong 8-edge-colouring of H. For an edge uv, we denote by PCφ(uv)
the set of permissible colours that would extend φ to uv. Let SC(N1(uv)) be the set of coloured
edges at distance 1 from uv.

Observation 3.18. Suppose H contains a 32-vertex x. Let u and r be its adjacent 2-neighbours,
and let y be its adjacent 3-neighbour. Also let v and s be the other neighbours (distinct from x)
of u and r respectively. Finally let z and t be the other neighbours of y (distinct from x).

Consider φ a strong 8-edge-colouring of H ′ = (V (H), E(H) \ {xy, xu, uv, xr, rs}). Then φ
satisfies the following:

O1. PCφ(uv) ∩ PCφ(rs) = ∅. Otherwise, let α be a colour of the intersection. First we colour
uv and rs with α, then we colour xy (|PCφ(xy)| ≥ 2; hence it remains at least one colour).
Finally we colour ux (|SC(N2(ux))| = 7) and xr (|SC(N2(ux))| = 8, but colour α is
repeated twice).

O2. {φ(zy), φ(yt)} ∩ (PCφ(uv) ∪ PCφ(rs)) = ∅. Otherwise assume that φ(zy) ∈ PCφ(uv). We
colour uv with φ(zy). Then we colour xy (|PCφ(xy)| ≥ 2; hence it remains at least one
colour). We colour sequentially rs (at least one available colour), xr (at least two available
colours, since zy and uv have the same colour), and ux (at least one available colour, again
zy and uv have the same colour).
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O3. PCφ(xy) ⊆ PCφ(uv)∪PCφ(rs). By contradiction. Observe that |PCφ(uv)| ≥ 2. Let α, β ∈
PCφ(uv). Similarly, let γ, λ ∈ PCφ(rs). Finally let ζ ∈ PCφ(xy) \ (PCφ(uv) ∪ PCφ(rs)).
Assign ζ to xy, α to uv, β to ux, γ to rs. Finally, by O1 and O2 we can assign colour λ to
xr.

O4. SC(N1(uv)) = SC(N1(rs)). By contradiction. Colour first xy, then uv and rs. Count the
number of available colours for ux and xr. If one of them has two available colours, then
we colour it the last. So each has one available colour. Suppose these two colours are the
same. Then we have SC(N1(uv)) = SC(N1(rs)).

O5. |PCφ(uv)| = 2 = |PCφ(rs)|. By contradiction suppose |PCφ(uv)| ≥ 3 and α, β, γ ∈
PCφ(uv). Suppose PCφ(xy) * PCφ(uv). Colour first xy with a colour that does not
appear in PCφ(uv), then rs. Assign α to uv, β to ux, and γ to xr (possible by O1 and O2).
Now suppose that PCφ(xy) ⊆ PCφ(uv) and PCφ(xy) contains α, β. Colour xy with α, ux
with β, uv with γ, xr and rs with the colours of PCφ(rs) (that is possible by O1).

O6. SC(N1(uv)) ∩ {φ(zy), φ(yt)}) = ∅. Otherwise colour sequentially xy, uv, rs, xr, ux.

To summarize one can assume without loss of generality that: PCφ(uv) = {1, 2}, PCφ(rs) =
{3, 4}, φ(zy) = 5, φ(yt) = 6, SC(N1(uv)) = SC(N1(rs)) = {7, 8}, PCφ(xy) ⊆ {1, 2, 3, 4}.

Now, we prove Claim 3.17.

Proof.

1. This follows from the previous discussion in Observation 3.18. By contradiction suppose t is
a 2-vertex. Observe that the edge yt is coloured with α and has also an other available colour,
say β (at most six other coloured edges at distance at most 2). Now β /∈ PCφ(uv)∪PCφ(rs).
Otherwise we permute α and β, and this contradicts O2. It suffices then to colour xy with
β, the edges uv and ux with the colours of PCφ(uv), and the edges rs and xr with the
colours of PCφ(rs). This extends φ to whole H.

2. By contradiction, suppose H contains a 3-vertex y adjacent to two 32-vertices x1 and
x2. Let ui and ri be the two 2-neighbours of xi (i = 1, 2). Finally let vi and si be the
two other neighbours of ui and ri respectively (i = 1, 2). Consider H ′ = (V (H), E(H) \
{yx1, x1u1, u1v1, x1r1, r1s1}). By minimality of H, H ′ admits a strong 8-edge-colouring φ.
By the previous discussion and without loss of generality one can assume that PCφ(u1v1) =
{1, 2}, PCφ(r1s1) = {3, 4}, φ(zy) = 5, φ(yx2) = 6, SC(N1(u1v1)) = SC(N1(r1s1)) = {7, 8},
PCφ(yx1) ⊆ {1, 2, 3, 4}.
Hence observe that if we can change the colour of yx2, then we will be able to extend the
colouring (by O2 or O6). To do this uncolour x2r2. Recolour yx2 with an available colour
distinct from 6. Colour x2r2. We are done.

The discharging rule is defined as follows :

(R) Every 3-vertex gives 1
3 to each adjacent 2-vertex and to each adjacent 32-vertex.

Let v ∈ V (H) be a k-vertex. By Claim 3.16(1), k ≥ 2.

Case k = 2. Observe that ω(v) = −2
3 . By Claim 3.16(2), the neighbours of v have degree

3. Hence v receives twice 1
3 by (R), and so ω∗(v) = −2

3 + 2× 1
3 = 0.

Case k = 3. Observe that ω(v) = 1
3 . We have the following cases for v:
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• If v is not adjacent to any 2-vertices, then v is adjacent to at most one 32-vertex by
Claim 3.17(5), and so gives at most 1

3 by (R); it follows ω∗(v) ≥ 1
3 −

1
3 = 0.

• If v is adjacent to exactly one 2-vertex, then its 3-neighbours are not 32-vertices by
Claim 3.16(4). It follows that ω∗(v) = 1

3 −
1
3 = 0 by (R).

• If v is a 32-vertex, then it receives 1
3 from its 3-neighbour (which is not a 32-vertex by

Claim 3.16(4)) and gives 1
3 to each adjacent 2-vertex. Hence ω∗(v) = 1

3 + 1
3−2× 1

3 = 0.
• The case where v is adjacent to three 2-vertices does not appear by Claim 3.16(3).

This completes the proof.

Proof of (iv) of Theorem 3.9

Let H be a counterexample to part (iv) of Theorem 3.9 minimizing |E(H)| + |V (H)|: H is
not strongly edge-colourable with nine colours, mad(H) < 20

7 and for any edge e, χ′s(H \ e) ≤ 9.
Recall that ω(x) = d(x)− 20

7 .

Claim 3.19. The minimal counterexample H to part (iv) of Theorem 3.9 satisfies the following
properties:

1. H does not contain 1−-vertices.

2. H does not contain two adjacent 2-vertices.

3. H does not contain a 3-vertex adjacent to two 2-vertices.

4. H does not contain two adjacent 31-vertices.

5. H does not contain a triangle.

6. H does not contain a path of three 3-vertices ztu where z and u are 31-vertices.

Proof.

1-2. Trivial by counting argument.

3. Suppose H contains a 3-vertex v adjacent to two 2-vertices u and w. Call t the third
neighbour of v. By minimality of H, there exists a strong edge-colouring φ of H ′ = H \
{vt, vu, vw} with nine colours. We show that we can extend this colouring to H. One can
observe that |J9K \ SC(N2(vt))| ≥ 3, |J9K \ SC(N2(vu))| ≥ 3 and |J9K \ SC(N2(vw))| ≥ 3.
Obviously, we can extend the colouring φ to H, which is a contradiction.

4. Suppose H contains two adjacent 31-vertices. Let u and v be these 31-vertices and x and y
respectively, their adjacent 2-vertices.

(a) Suppose x = y. Let z be the third adjacent vertex of u. By minimality of H, there
exists a strong edge-colouring φ of H ′ = H \ {zu, ux, xv, vu}. By counting the number
of available colours for each of the edges zu, ux, xv, vu, one can easily extend φ to H.

(b) Suppose x 6= y. Let t be the 3-vertex adjacent to x. Consider the path txuvy. By
minimality of H, there exists a strong edge-colouring φ of H ′ = H \ {tx, xu}. We will
extend φ to H. First, we uncolour the edges uv and vy. The edges tx, vy and uv have
each two colours left to use. Moreover, xu have three colours left to use. Suppose we
can colour tx with α ∈ {a1, a2} and vy with β ∈ {a3, a4}. We distinguish two cases for
the available colours of tx and vy:
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i. There exists at least one colour in common, say a1 = a3. We colour tx and vy
with a1 (since these edges are at distance 3, they can have the same colour). Then,
we have at least one colour left for uv and we colour this edge with this colour.
The edge xu has at least one colour left to use and we choose it. This extends the
colouring to H and this is a contradiction.

ii. All four colours are different and without loss of generality a1 = 1, a2 = 2, a3 = 3
and a4 = 4. Let us colour tx and vy with 1 and 3, respectively. We try to
colour uv: either we have at least one colour left, say b, and we assign it to uv or
SC(N2(uv)) \ {1, 3} = J9K \ {1, 3}. We distinguish these two cases:
• Suppose there exists a colour b which can be used for uv. If xu has one colour

left, φ would be extendible to H, which would be a contradiction. Hence, all
three possible choices of colours we had initially for xu are 1, 3 and b. If we
can recolour tx with 2, we are done, since we would obtain a new colour for
xu. Therefore, we have b = 2. But then we can change the colour of vy to 4
and we have again, a colour left for xu to extend φ to H. A contradiction.
• Suppose SC(N2(uv)) = J9K. We recolour tx with 2 and we colour uv with

1. Now, we try to colour xu: either we are done or this means that all three
possible choices we had initially for the colouring of xu are 1, 2 and 3. In
that case, we recolour vy with 4 and we colour xu with 3. This extends the
colouring to H - a contradiction.

5. Suppose H contains a triangle xyz.
If d(x) = 2, then by minimality of H, the graph H \ xy can be strongly edge-coloured with
at most nine colours. Since |N2(xy)| ≤ 6, there exists at least three colours left for xy.
Hence d(x) = d(y) = d(z) = 3.
Let u, v and t be the neighbours of x, y and z respectively (u, v and t being outside the
triangle). Let H ′ = H \ x. By minimality of H, we have χ′s(H ′) ≤ 9. Consider a strong
edge-colouring φ of H ′ using the minimum number. We show how to extend it to H. We
colour xu and xy (in each case there exists a free colour). If we have a colour left for xz,
then we are done. Therefore, |N2(xz)| = 9 and |SC(N2(xz))| = 9, which implies that all
edges in N2(xz) are assigned pairwise distinct colours. Now, one of the following assignment
of colours is possible:

• Assign φ(xz) = φ(yz) and recolour yz with a free colour
• Assign φ(xz) = φ(xy) and recolour xy with a free colour

This is a contradiction.

6. Let ztu be such a path and y and v be the 2-vertices neighbours of z and u respectively.
Let x be the neighbour of y distinct from z and w be the neighbour of v distinct from u. By
Claims 3.19(1), 3.19(2) and 3.19(3), x and w are 3-vertices. By Claims 3.19(3) and 3.19(4),
t is a 30-vertex. Let z1, t1 and u1 be the neighbours of z, t and u respectively. Since H has
no triangles (by Claim 3.19(5)), we have the configuration depicted in Figure 3.12. Note
that in H there might exist edges z1t1, t1u1 or z1u1 and the representation of the given
figure is a general one.
Let H ′ = H − y. By minimality of H, H ′ can be strongly edge-coloured with at most nine
colours. Let us consider such a colouring φ. We show how to extend φ to H.
In order to complete the colouring of H one need to assign a colour to xy and yz. By
counting the number of edges in N2(xy), it is easy to see that there is at least one colour
left for xy, so we assign it to this edge. Now, if there is a colour left for yz, then we are done.
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Figure 3.12: The configuration of Claim 3.19(5)
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Figure 3.13: The initial fixed colouring of the edges of the configuration of Claim 3.19(5). Edge
yz is the only non-coloured edge.

Therefore, since |N2(yz)| = 9, all the colours of J9K must appear exactly once in N2(yz)
and without loss of generality we can fix the colours of all edges of N2(yz) as depicted in
Figure 3.13.

Observe that {5, 6, 7, 9} ⊆ SC(N2(xy)) as otherwise one could recolour xy with one of these
colours and assign φ(yz) = 1. Therefore, all edges incident to x1 and x2 for which we
did not fix a colour yet, must have distinct colours from the set {5, 6, 7, 9}. If one could
recolour tu with 1, 2, 3, 5 or 6 then yz could be coloured 9 which is impossible. Hence
{1, 2, 3, 5, 6} ⊆ SC(N2(tu)). Observe that t cannot be neither x1 nor x2 as none of the
edges incident to t is coloured 2 or 3. Also, since u is adjacent to v which is a 2-vertex, by
Claim 3.19(4) u cannot be neither x1 nor x2. Therefore, if one could permute the colours of
tu and zt, then 8 would not belong to SC(N2(xy)) any more, thus xy could be recoloured
with 8 and yz could be assigned colour 1. Therefore, 8 ∈ {φ(u1u2), φ(u1u3), φ(vw)}.

Observe that recolouring zz1 with 2 or 3 must not be possible as otherwise colour 4 could
be used for yz to complete the colouring of H. Hence out of all the edges incident to z2
and z3, two of them must be coloured 2 and 3 respectively. Let us uncolour edges xy, zz1,
zt and tu. We claim that it is not possible to assign colour 4 to tu. Indeed, if tu could be
coloured with 4, then we assign φ(tu) = φ(xy) = 4 and by using the fact that two out of all
the edges incident to z2 and z3 must be coloured 2 and 3 respectively, one of the following
assignments of colours would be valid:

• φ(yz) = 1, φ(zz1) = 9 and φ(zt) = 8
• φ(yz) = 9, φ(zz1) = 1 and φ(zt) = 8
• φ(yz) = 1, φ(zz1) = 8 and φ(zt) = 9

Therefore, tu cannot be assigned colour 4 and we must have the following statement:

{φ(t1t2), φ(t1t3), φ(uu1), φ(u1u2), φ(u1u3), φ(uv), φ(vw)} = {1, 2, 3, 4, 5, 6, 8} (?)
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Observe that in (?) both sets have the same cardinality and hence φ(t1t2), φ(t1t3), φ(uu1),
φ(u1u2), φ(u1u3), φ(uv), φ(vw) are pairwise distinct and this implies that there is no edge
between t1 and u1.
Consider the edge uv. Since at the beginning of the proof we have fixed φ(tt1) = 7, φ(zt) = 8
and φ(tu) = 9, obviously φ(uv) ∈ J6K.
We distinguish the following cases for φ(uv):

(a) Suppose φ(uv) ∈ {1, 2, 3, 5, 6}. We will denote this colour a. By (?) we know that
φ(t1t2) 6= a and φ(t1t3) 6= a. We uncolour uv and do the following assignment of
colours: φ(xy) = 1, φ(yz) = 9, φ(zt) = 8 and φ(tu) = a. If we manage to colour
uv, then we are done. In order to do this, observe that by (?), {9, φ(t1t2), φ(t1t3)} ∩
{φ(uu1), φ(u1u2), φ(u1u3), φ(vw)} = ∅. Therefore we could use one of the three colours
9, φ(t1t2) or φ(t1t3) for uv, distinct from the colours assigned to ww1 and ww2. A
contradiction.

(b) We have φ(uv) = 4. Let us come back to the fixed colouring of Figure 3.13. If one
could recolour zt with 2 or 3, then yz could be coloured 8. Therefore, two of the
three edges t1t2, t1t3 and uu1 must be coloured with 2 and 3 respectively. With-
out loss of generality we can assume that φ(t1t2) = 2. Moreover, by (?) φ(uv) 6∈
{φ(t1t2), φ(t1t3)} = {2, φ(t1t3)}, which means that {φ(ww1), φ(ww2)} = {2, φ(t1t3)}
and without loss of generality we can fix φ(ww1) = 2. Now, we uncolour zz1, zt, uv
and assign φ(xy) = φ(tu) = 4. We obtain a valid partial stong edge-colouring of the
configuration as depicted in Figure 3.14.

x1

x2

x y z t u v w

z1

z2 z3

t1

t2 t3

u1

u2 u3

w1

w2

4
2

2

3

5 6

7

4
2

φ(t1t3)

Figure 3.14: Case (b) of the proof of Claim 3.19(5). The dashed edges are not coloured.

Since φ(t1t3) 6= 9 and none of the other edges of N2(uv) is coloured 9, we assign
φ(uv) = 9.
We claim that out of all edges incident to z2 and z3, two of them must be coloured
with 1 and 9. Indeed, if it is not the case then by assigning φ(zt) = 8, we could assign
either φ(zz1) = 1 and φ(yz) = 9 or φ(zz1) = 9 and φ(yz) = 1 and we would be done.
Therefore, four edges incident to z2 and z3 except z1z2 and z1z3 must have distinct
colours which are namely 2, 3, 1 and 9. If none of the edges t1t3 and uu1 is coloured 1
then one of the following assignments of colours would be a valid strong edge-colouring:
• φ(yz) = 1, φ(zt) = 8 and φ(zz1) = 9
• φ(yz) = 9, φ(zt) = 8 and φ(zz1) = 1
• φ(yz) = 9, φ(zt) = 1 and φ(zz1) = 8

Therefore, one of the edges t1t3 and uu1 must be coloured 1. On the other hand, as
proved previously, one of these edges must be coloured 3 and hence {φ(t1t3), φ(uu1)} =
{1, 3}. Recall from the previous paragraph that in N2(zz1), none of the edges is
coloured 7. We recolour zz1 with 7 and uncolour edges tt1 and tu. Observe that
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by (?) 7 6∈ {φ(uu1), φ(u1u2), φ(u1u3), φ(vw), φ(ww1), φ(ww2)}, so we recolour uv with
7. Moreover, we assign colour 1 to yz and obtain the partial strong edge-colouring of
the configuration as depicted in Figure 3.15.
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x y z t u v w

z1

z2 z3

t1

t2 t3

u1

u2 u3

w1

w2

4 1

72
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5 6

7
2

φ(t1t3)

Figure 3.15: A partial strong edge-colouring of the configuration of Claim 3.19(5). The dashed
edges are not coloured.

In order to finish the colouring of H we must assign colours to zt, tt1 and tu. We
know that φ(t1t3) ∈ {1, 3} and φ(t1t2) = 2. Let us consider temporarily the colouring
given in Figure 3.13. If one could recolour edge tt1 with 5 or 6, then colour 7 could
be assigned to yz which implies that out of all the edges incident to t2 and t3, two of
them must be coloured 5 and 6 respectively. Applying these to the colouring given in
Figure 3.15, we conclude that one of the following assignments of colours is valid:
• φ(zt) = 8, φ(tt1) = 4 and φ(tu) = 9
• φ(zt) = 8, φ(tt1) = 9 and φ(tu) = 4
• φ(zt) = 9, φ(tt1) = 8 and φ(tu) = 4

This is a contradiction.

We carry out the discharging procedure as follows:

(R) Every 3-vertex gives 1
7 to each 2-vertex at distance at most 2 from itself.

Let v ∈ V (H) be a k-vertex. By Claim 3.19(1), k ≥ 2.

Case k = 2. Observe that ω(v) = −6
7 . By Claims 3.19(2), 3.19(3), 3.19(4), 3.19(6), v has

six 3-vertices at distance at most two. Hence, ω∗(v) = −6
7 + 6× 1

7 = 0.

Case k = 3. Observe that ω(v) = 1
7 . By Claims 3.19(3), 3.19(4) and 3.19(6), v has at most

one 2-vertex at distance at most two. Hence ω∗(v) ≥ 1
7 −

1
7 = 0.

This completes the proof.

3.1.2 Optimality of the bounds on the mad

In order to emphasize the relevance of the upper bounds proved in Theorem 3.9 we illustrate
the graphs of Figure 3.16. Observe that the graph of Figure 3.16c is the graph of Figure 3.2 for
∆ = 3.

Let f(n) = inf{mad(G) | χ′s(G) > n}. By Theorem 3.9, we have the following lower bounds
for this function:

7
3 ≤ f(6), 5

2 ≤ f(7), 8
3 ≤ f(8) and 20

7 ≤ f(9)
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(a) A graphG with mad(G) = 7
3 and χ′s(G) >

6
(b) A graph G with mad(G) = 5

2 and
χ′s(G) > 7

(c) A graph G with mad(G) = 20
7 having

χ′s(G) > 9

Figure 3.16: Graphs proving the optimality of the bounds of parts 1, 2 and 4 of Theorem 3.9

On the other hand, the graphs of Figure 3.16 satisfy respectively mad(G) = 7
3 ,

5
2 ,

20
7 and

χ′s(G) > 6, 7, 9. It follows:

f(6) ≤ 7
3 , f(7) ≤ 5

2 and f(9) ≤ 20
7

and so parts (i), (ii) and (iv) of Theorem 3.9 are optimal.
The case of f(8) remains open. The problem of finding this value is even more challenging since

until now we do not have an example of subcubic graph G having χ′s(G) = 9 and mad(G) < 20
7 .

3.1.3 Subcubic planar graphs

In this section we prove that Conjecture 3.7 holds for a large class of subcubic planar graphs.

Theorem 3.20. Let G be a planar subcubic graph with no induced k-cycles with k ∈ {4, 5}.
Then χ′s(G) ≤ 9.

Proof. The proof is done by contradiction. Suppose the statement is not true and let H be a
counterexample minimizing |V (H)|+ |E(H)|. Let us prove some structural properties of H.

First, observe that Claim 3.19 of Theorem 3.9 holds in the case of planar subcubic graphs, as
no planarity argument is used in the proof of this claim.

Claim 3.21. H has no 6-cycle C = xyztuvx where y is a 2-vertex.

Proof. Suppose there exists such a cycle C as depicted in Figure 3.17. Observe that x, z, t,
u, v, x1, z1, t1, v1 are 3-vertices by Claims 3.19(2), 3.19(3), 3.19(4) and u1 is a 3-vertex by
Claim 3.19(6).

Consider the graph H ′ = H − y. Consider a strong edge-colouring φ of H ′ using at most nine
colours. We will extend φ to H in order to obtain a contradiction. Observe that |SC(N2(xy))| ≤
8, thus there exists a colour left for xy. If we can colour yz, then we are done. Therefore,
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z′′1

Figure 3.17: An induced cycle C of length 6 of H having a 2-vertex on its boundary

since |N2(yz)| = 9, we must have SC(N2(yz)) = J9K and every colour is used exactly once in
N2(yz). Therefore, we claim that |SC(N2[xy])| = 9 as otherwise one could recolour xy with
another colour and obtain a free colour for yz. Without loss of generality we can assume that
φ(zt) = 1, φ(zz1) = 2, φ(xx1) = 3, φ(vx) = 4, φ(uv) = 5, φ(vv1) = 6, φ(x1x

′
1) = 7, φ(x1x

′′
1) = 8

and φ(xy) = 9. Since SC(N2(yz)) = J9K we have {φ(tu), φ(tt1), φ(z1z
′
1), φ(z1z

′′
1 )} = {5, 6, 7, 8}.

Observe that since 5 ∈ SC(N2(tu)) and 5 ∈ SC(N2(tt1)), without loss of generality we can assume
that φ(z1z

′
1) = 5. Also, 6 ∈ SC(N2(tu)) and therefore φ(tu) ∈ {7, 8}. Since colours 7 and 8 are

fixed only on edges x1x
′
1 and x1x

′′
1 respectively, we can assume without loss of generality that

φ(tu) = 7 and therefore {φ(tt1), φ(z1z
′′
1 )} = {6, 8}. Figure 3.18 resumes the unique colouring (up

to permutation) of the edges described previously.
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Figure 3.18: The unique colouring of C − yz in H ′

We claim that one of the edges v1v
′
1 or v1v

′′
1 , say v1v

′
1, must have the same colour as the edge
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zt (colour 1 in Figure 3.18). Otherwise, one could change the colour of vx to the colour of zt and
colour yz with 4. Similarly, 2 ∈ {φ(v1v

′′
1), φ(uu1)} (we can assign 2 to vx and 4 to yz). Observe

that one can use the same argument conversely (by trying to assign to tz the colour of vx) by
recalling from the previous paragraph that {φ(tt1), φ(z1z

′′
1 )} = {6, 8}. Hence, we conclude that

one of the edges t1t′1 or t1t′′1, say t1t
′
1, must have the same colour as the edge vx (colour 4 in

Figure 3.18). If it is possible to permute the colours of edges uv and vx, one could obtain a free
colour (colour 4) for yz, thus either uu′1 or uu′′1 must have the same colour as vx (colour 4 in
Figure 3.18). Without loss of generality φ(u1u

′
1) = 4. If it is possible to permute the colours of

edges tu and uv (7 and 5 respectively), then one could obtain a free colour for yz. Hence either
φ(v1v

′′
1) = 7 or φ(t1t′′1) = 5 (or both).

1. Suppose φ(v1v
′′
1) = 7. Hence φ(uu1) = 2. If one can permute the colours of tu and zt, such

that tu is assigned colour 1 and zt is assigned colour 7, then xy could be recoloured with 1
and colour 9 would be free for yz. Hence φ(u1u

′′
1) = 1. But now it is possible to permute

the colours of xy and uv and to use colour 9 for yz. A contradiction.

2. Suppose φ(t1t′′1) = 5. If it is possible to change the colour of edge zt (which is 1) to the
colour of the edge xx1 (which is 3), then yz could be coloured with 1. Hence φ(uu1) = 3 and
therefore, φ(v1v

′′
1) = 2. By permuting the colours of edges vx and xy (4 and 9 respectively)

and by recolouring zt with 9, we can colour yz with 1. A contradiction.

By Claim 3.19(5), H has no triangle and by hypothesis of the theorem H contains no induced
cycle of length 4 nor cycle of length 5. Hence, the counterexample H must have girth g ≥ 6.

Consider now the graph H1 obtained from H by replacing each path of two edges xyz, where
y is a 2-vertex and x, z are 3-vertices, by an edge xz. Clearly, H1 is planar. By Claim 3.19(5),
H has no triangle and since it does not contain an induced 4-cycle, H1 is simple. Moreover,
since H has no 1−-vertices (Claim 3.19(1)) and no two adjacent 2-vertices (Claim 3.19(2)), H1
is 3-regular. Therefore, H1 must contain a face of length at most 5, say C ′ (this can be easily
seen using Euler’s formula). Recall that H has girth at least 6, thus by Claims 3.19(2), 3.19(3)
and 3.19(4), C ′ cannot be obtained from a cycle of H of length l ≥ 7. Therefore, in H there
exists a cycle C of length 6 having a vertex of degree 2 on its boundary. But this is impossible
by Claim 3.21. Hence H cannot exist.

3.2 Outerplanar graphs
Theorem 3.22. For every outerplanar graph G with maximum degree ∆ ≥ 3, χ′s(G) ≤ 3∆− 3.

Proof. In this proof, the term pendant edge is an edge incident to a vertex of degree 1. We define
the partial order � on graphs such that G1 ≺ G2 if and only if

• |E(G1)| < |E(G2)| or

• |E(G1)| = |E(G2)| and G1 contains strictly more pendant edges than G2.

Let k ≥ 3 be an integer and G be an outerplanar graph with maximum degree k such that
χ′s(G) > 3k − 3 and that is minimal with respect to �.

We first show that G does not contain Configuration 1 depicted in Figure 3.19a. That is, two
adjacent vertices x and y, such that the graph G′ obtained from G by removing the set S of edges
incident to x or y (G′ = G− {x, y}) contains two edges in distinct connected components.

Suppose that G contains Configuration 1. Let G1, · · · , Gk be the connected components of
G′. Since they contain fewer edges than G, by minimality of G with respect to �, the graphs
induced by the edges of Gi ∪ S admit a strong edge-colouring with at most 3k − 3 colours. Since
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x

y

(a) Configuration 1

ux

v

··
· ∆− 1

(b) Configuration 2

Figure 3.19: Forbidden configurations

the colours of the edges of S are distinct, we can permute the colours in the colouring of Gi ∪ S
so that the colouring of S is the same in every Gi ∪S. By gluing up the graphs Gi ∪S, we obtain
a valid strong edge-colouring of G since the distance between an edge in Gi and an edge in Gi′
for i 6= i′ is at least 3. This is a contradiction.

Configuration 2 depicted in Figure 3.19b consists of a vertex u adjacent to at most one vertex
x with degree at least 2 and to at least one vertex v of degree 1. The graph G does not contain
Configuration 2 since otherwise we could obtain a colouring of G by extending a colouring of
G \ {uv}.

· · ·
∆− 2

··
·

∆− 2

··
· ∆− 2

Figure 3.20: Example of outerplanar graph such that χ′s(G) = 3∆− 3.

Let G′ be the graph induced by the vertices of G of degree at least 2. Since Configuration 2
is forbidden in G, G′ has minimum degree 2.

We claim that G′ is 2-connected. Suppose the contrary and let v be a vertex of G′ such that
G′−v is disconnected. Let G′1, . . . , G′k be the connected components of G′−v. Observe that each
of the graphs G′i ∪N [v] with i ∈ {1, . . . , k} is smaller than G with respect to � and thus for each
of them there exists a strong edge-colouring φi using at most 3k − 3 colours. One can permute
the colours of the edges incident to v for every φi so that the colouring of the edges of N [v] is
the same in every G′i ∪ N [v]. The colourings φ1, . . . , φk provide a valid strong edge-colouring of
G′ and this is a contradiction.

Let C be the cycle of the outer-face. Again, since Configuration 1 is forbidden in G, the chords
of C join vertices at distance 2 in the cyclic order. It is easy to check that if C contains at most
four vertices, then the theorem holds. So C contains n vertices (n ≥ 5) v1, . . . , vn in cyclic order
and G is the graph induced by the vertices of the cycle C which can be adjacent to some vertices
of degree 1.

Let us suppose that C contains a chord, say the edge v1v3. Notice that since Configuration 1
is forbidden, v2 is only adjacent to v1 and v3. The graph G′ is obtained from G by splitting the
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vertex of degree 2 v2 into v′2, which is only adjacent to v1, and v′′2 , which is only adjacent to v3.
Notice that G′ and G have the same number of edges but G′ has two more pendant edges than
G, so G′ ≺ G. The graph G′ thus admits a valid strong edge-colouring using 3k − 3 colours and
this colouring remains valid if we identify v′2 and v′′2 to form G. This shows that vertices of degree
at least 2 in G form a chordless cycle.

To finish the proof, we have to consider only the worst case of graphs of this form, where
every vertex on the chordless cycle is incident to ∆(G) − 2 pendant edges. It is easy to check
that if ∆(G) = k = 3, then we can colour G using at most 3k − 3 = 6 colours. We iteratively
construct a suitable colouring for larger values of k: when k is incremented by 1, there is at most
one new pendant edge for each vertex on the cycle and three more available colours. We use the
three new colours to colour the new edges such that two new edges incident to adjacent vertices
get distinct colours.

3.3 Complexity

A natural question in the study of any colouring problem is what could be said about its
complexity. In this section we study the complexity of the problem in the class of planar graphs.
The STRONG k-EDGE-COLOURING problem is defined as follows:

INSTANCE: A graph G.
QUESTION: Does G have a strong edge-colouring with k colours?

The 3-COLOURING problem is defined as follows:
INSTANCE: A graph G.
QUESTION: Does G have a proper vertex colouring with three colours?

3-COLOURING was proved to be NP-complete even when restricted to planar graphs of
maximum degree 4 [51].

Theorem 3.23. STRONG 4-EDGE-COLOURING is NP-complete for planar bipartite graphs
with maximum degree 3 and with an arbitrarily large girth.

Proof. The problem is clearly in NP since it can be checked in polynomial time whether a given
assignment of colours to edges is a strong edge-colouring. We will prove the theorem by reduction
from 3-COLOURING of planar graphs of maximum degree 4.

x
y

t
z

2

3

41 1

Figure 3.21: Forcing a colour

1 1
(a) Odd number of claws

1 1 1
(b) Even number of claws

Figure 3.22: Transportation of a colour

First let us observe that in a strong 4-edge-colouring of the graph of Figure 3.21, the edges
xy, zt must receive the same colours. By gluing several copies of this graph as shown in Fig-
ures 3.22a, 3.22b, we can increase the distance between the edges that must be coloured the
same. Moreover, by choosing an odd or an even number of copies of the graph of Figure 3.21, we
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may force the two end vertices of the constructed graph to be in a same or in different parts of a
bipartition of the graph. In Figures 3.22a and 3.22b, the bipartitions are given by small and big
vertices.

1
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4 11

3

4
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1 32342143

42 3 3
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M
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2 2
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Figure 3.23: Sub-gadget M

Now, we are ready to build the generic sub-gadget M (Figure 3.23) which will be used in
our reduction. It can be checked by case analysis that up to permutation of colours, the strong
4-edge-colouring of M , given in Figure 3.23, is unique. Also M is bipartite (the bipartition is
given in the picture by big and small vertices) and of arbitrarily large girth.
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(a) Vertex gadget Q
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(b) Connecting two vertex gadgets in G′

Figure 3.24: Vertex and edge gadgets

Given a planar graph G with maximum degree 4, we construct a graph G′ as follows. Every
vertex v of G is replaced by a copy Qv of the graph Q depicted in Figure 3.24a which contains
three copies of the sub-gadget M . Notice that since M is bipartite and of arbitrarily large girth,
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so is Q.
For every edge uv in G, we choose an index i for Qu and j for Qv and join xi of Qu with xj

of Qv and one of the vertices y1
i , y2

i with one of the vertices y1
j , y2

j . These connections are done
using an arbitrarily large number of claws as depicted in Figure 3.24b. It is easy to observe that
we can make the choice of connections such that the obtained graph is planar. Furthermore, by
construction the obtained graph G′ is bipartite and of arbitrarily large girth.

We say that the colour of Q is the colour of the edges incident to the vertices xi in Q (colour
2 in Figure 3.24a). Also, the forbidden colour of Q is the colour of the edges incident to y1

i and
y2
i (colour 3 in Figure 3.24a).

Figure 3.24b shows that for every edge uv ∈ G, Qu and Qv are assigned distinct colours and
the same forbidden colour. Since G is connected, all copies of Q have same forbidden colour, say
3, and thus no copy of Q is coloured 3.

If G is 3-colourable, then for every vertex v ∈ G, we can assign the colour of v to Qv and
extend this to a strong 4-edge-colouring of G′. Conversely, given a strong 4-edge-colouring of G′,
we obtain a 3-colouring of G by assigning the colour of Qv to the vertex v. So G′ is strongly
4-edge-colourable if and only if G is 3-colourable and this completes the proof.

Theorem 3.24. STRONG 5-EDGE-COLOURING is NP-complete for planar bipartite graphs
with maximum degree 3 and girth 8, and for planar graphs with maximum degree 3 and girth 9.

Proof. In the following we will give the proof for the case of girth 8 since the same argument
applies for the case of girth 9.

The problem is clearly in NP since it can be checked in polynomial time whether a given
edge-colouring is a strong edge-colouring. As in the case of Theorem 3.23, we will reduce 3-
COLOURING of planar graphs of degree 4 to STRONG 5-EDGE-COLOURING.

1 1 1 1
2 3 2 3 2 3 2 3

x1

y1

x2

y2

x3

y3

x4

y4

Figure 3.25: Vertex gadget for the case of girth 8 of Theorem 3.24

Given a planar graph G with maximum degree 4, we construct a graph G′ as follows. Every
vertex v in G is replaced by a copy Qv of the vertex gadget Q depicted in Figure 3.25. For every
edge uv in G, we identify a vertex xi of Qu with a vertex xj of Qv and add a vertex of degree 1
adjacent to the common vertex of Qu and Qv, as depicted in Figure 3.26. We identify vertices in
such a way that the obtained graph G′ is planar. Observe that Q is bipartite and the bipartition
is given by small and big vertices in Figure 3.25. Hence, it is easy to see that G′ is bipartite too.

Moreover, G′ has no cycle of size strictly less than eight, hence G′ has girth 8.
We will show that up to permutation of colours, the strong 5-edge-colouring of Q given in

Figure 3.25 is unique. To do this, first observe that the strong 5-edge-precolouring of the subgraph
of Q depicted in Figure 3.27a, cannot be extended to the whole subgraph without using a sixth
colour. Therefore if it is possible to give a strong 5-edge-colouring of Q, the only way to do it is
with the strong 5-edge-colouring of the subgraph of Q as depicted in Figure 3.27b.
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Qu
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Figure 3.26: Edge gadget for the case of girth 8 of Theorem 3.24
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(a) Non valid strong 5-edge-precolouring
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(b) Valid strong 5-edge-precolouring

Figure 3.27: Two possible precolourings of a subgraph of Q

Using this observation it is easy to prove that up to permutation of colours the strong 5-edge-
colouring of Q is unique.

We say that the colour of Q is the colour of the edges xiyi in Q (colour 1 in Figure 3.25).
Also, the forbidden colours of Q are the colours of the edges incident to yj in Q, different from
xiyi (colours 2 and 3 in Figure 3.25). Figure 3.26 shows that for every edge uv ∈ G, Qu and Qv
have distinct colours and same forbidden colours. Since G is connected, all copies of Q have same
forbidden colours, 2 and 3, and thus no copy of Q is coloured 2 or 3.

If G is 3-colourable, then for every vertex v ∈ G, we can assign the colour of v to Qv and
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extend this to a strong 5-edge-colouring of G′. Conversely, given a strong 5-edge-colouring of G′,
we obtain a 3-colouring of G by assigning the colour of Qv to the vertex v. So G′ is strongly
5-edge-colourable if and only if G is 3-colourable, which completes the proof.

x1

y1

x2

y2

Figure 3.28: Vertex gadget for the case of girth 9 of Theorem 3.24

For the case of girth 9 the same argument applies by using the vertex gadget Q obtained by
gluing three copies of the graph of Figure 3.28, in order to obtain four pairs of vertices (xk, yk)
(k ∈ {1, . . . , 4}). The edge gadget is the same as in the case of girth 8. Checking the strong
edge-colouring of Q is much more tedious than in the case of the vertex gadget of girth 8. We
will give the idea of the proof that up to permutation of colours, the strong 5-edge-colouring of Q
is unique. To do this first observe that the strong 5-edge-precolourings of the subgraphs of Q as
depicted in Figures 3.29a, 3.29b, 3.29c cannot be extended to the whole subgraph without using
a sixth colour. Therefore if it is possible to give a strong 5-edge-colouring of this graph, the only
way to do it is when the subgraph of Q has the colours assigned as in Figure 3.30. Moreover, the
same configuration of colours is repeated as shown in the figure, thus it can be extended up to
the whole graph Q.

An interesting fact about Theorem 3.24 is that for subcubic planar graphs with girth g ≥ 31,
χ′s(G) ≤ 5 [19] and thus there exists a trivial polynomial-time algorithm for this class of graphs.
Before the result of [19] was proved, we were trying to increase the value of the girth as much as
possible and see whether the problem still was remaining NP-complete. Although, there is a gap
between the values 9 and 31 for the girth, it explains partially why it is not easy to increase the
size of the girth and prove that the problem remains NP-complete.

Theorem 3.25. STRONG 6-EDGE-COLOURING is NP-complete for planar bipartite graphs
with maximum degree 3.

Proof. The problem is clearly in NP since it can be checked in polynomial time whether a
given edge-colouring is a strong edge-colouring. Again, we prove the theorem by reduction from
3-COLOURING of planar graphs with maximum degree 4. For a graph G of instance of 3-
COLOURING of planar graphs with maximum degree 4 we will give a construction of a graph
G′ such that G is 3-colourable if and only if G′ is strongly 6-edge-colourable.

We first want to point out two easy but very useful observations.

Observation 3.26. In any strong edge-colouring with six colours of the graphs of Figure 3.31a,
the colours of edges at distance 3 have to be the same (colours 1 and 2 are forced).

Observation 3.27. For any strongly 6-edge-colourable subcubic graph with an embedding such
that two edges coloured distinctly cross each other in the plane, there exists a strongly 6-edge-
colourable subcubic planar graph obtained by replacing this crossing as depicted in Figure 3.31b.
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(c) For any choice of colours in squares, the given colouring cannot be extended to the given subgraphs
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Figure 3.29: Non-valid strong 5-edge-precolourings of the graph of Figure 3.28
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Figure 3.30: A valid and unique strong 5-edge-precolouring of the gadget of Figure 3.28
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Figure 3.31: Transportation of colours in a strong 6-edge-colouring

Let us take a look at the graph P of Figure 3.32, obviously it has χ′s(P ) ≥ 6 and it can be
easily strongly edge-coloured with six colours. Following Observation 3.26, up to a permutation,
in any strong 6-edge-colouring of this graph the colours 1 and 2 are forced. We call pendant edges
the edges of P incident to a vertex of degree one and coloured 1 and 2 in the figure. Notice that
P is bipartite.

Next, we construct the vertex gadget i.e. the graph Gv that will replace a vertex v of G in
G′, as depicted in Figure 3.33. First we build the graph of Figure 3.33a:

Take two copies of graph P with six pairs of pendant edges and connect them in order to
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Figure 3.32: Graph P and some of its forced colours
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Figure 3.33: Vertex gadget Q for Theorem 3.25

obtain a graph with eight pairs of pendant edges, as shown in the figure. Observe that due to the
connection between these copies, the colours of pendant edges of the left copy must be distinct
from the colours of pendant edges of the right copy ({1, 2} and {3, 4} respectively). It is easy to
see that the obtained graph Q is planar, bipartite, subcubic, and such that χ′s(Q) = 6.

Now, we show how to obtain the final representation of this gadget (the one of Figure 3.33b):
Take a copy of the graph Q and choose an embedding such that there are four quadruples of
edges coloured 1, 2, 3 and 4 in this order. Note that according to Observation 3.27, each crossing
of edges is replaced as shown in Figure 3.31b, such that the obtained graph is planar. Consider
four pendant edges (one for each quadruple) of the obtained graph having the same colour, say
colour 1. For each of these edges, label its incident vertex of degree 1, xvk (1 ≤ k ≤ 4).

For an edge uv of G, in G′ we identify vertices xui et xvj and connect the other three pairs of
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Figure 3.34: Edge gadget for Theorem 3.25 and its forced colouring

edges as shown in Figure 3.34. We remark that edges of Gu adjacent to the edge coloured with
4 (5 or 6) can be coloured with the same colours as the edges of Gv adjacent to the second edge
coloured with 4 (5 or 6). This would make the strong 6-edge-colouring of the gadget impossible.
In order to avoid this type of conflicts while transporting a colour, according to Observation 3.26,
one could add an additional cycle C4 between edges coloured 4, 5 and 6.

Note that if G′ is connected, in any strong 6-edge-colouring of G′ the colours 4, 5 and 6 used
in Figure 3.34 are not used to colour any edge incident to some vertex labelled xvi .

We claim that the obtained graph G′ is strongly 6-edge-colourable if and only if G is 3-
colourable. Similar to the proof of Theorem 3.23, the forbidden colours in a strong 6-edge-
colouring of the graph G′ are the colours of edges not incident to some vertex labelled xvi . Hence,
in G′ there are three forbidden colours. If G is 3-colourable then we can assign the colour of a
vertex v of G to the pendant edge Gv incident to xvi in G′ and extend this colouring to a valid
strong 6-edge-colouring of G′. Conversely, given a strong 6-edge-colouring of G′, since there are
three forbidden colours for G′, we can use the colour of the edge incident to xvi in the graph Gv,
to colour v in G.

3.4 Open problems

In part (iii) of Theorem 3.9 we proved that every subcubic graph G with mad(G) < 8
3 satisfies

χ′s(G) ≤ 8. By part (iv) of the same theorem we know that if mad(G) < 20
7 then χ′s(G) ≤ 9.

Moreover, this bound is tight as there exists a subcubic graph with mad(G) = 20
7 and χ′s(G) = 10.

Even though all graphs with mad(G) < 20
7 are strongly 9-edge-colourable, we do not know any

example of subcubic graph with mad(G) < 20
7 and χ′s(G) = 9. This leaves a natural open question

of moving the bound 8
3 closer to 20

7 :

Question 3.28. Does there exist a subcubic graph G with mad(G) < 20
7 and having χ′s(G) = 9?

We do not believe that the same local discharging technique as used in our proof of part (iii)
of Theorem 3.9, would help to answer the above question. It might be interesting to investigate
this problem through global discharging approach.

Derived from Theorem 3.9, Corollary 3.11 states that every subcubic planar graph with girth
g at least 14 (resp. 10, 9, 7) can be strongly edge-coloured with six (resp. seven, eight, nine)
colours. The case of g ≥ 7 and χ′s(G) ≤ 9 is improved by Theorem 3.20 but we do not know if it
is optimal. As of the relevance of the lower bounds on the girth parameter provided by the other
three parts of Corollary 3.11, we think that there is scope for further research:
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Question 3.29. What is the minimum size of the girth of a subcubic planar graph G such that
χ′s(G) is at most 6, 7, 8 respectively? In case if Conjecture 3.7 is not true, what is the minimum
size of the girth of G such that χ′s(G) ≤ 9?

Conjecture 3.7 still remains a challenging open problem. For this purpose studying subcubic
planar graphs without C4 or without C5 could be the next step. For instance, can one use
discharging method and Euler’s formula to prove the conjecture for these restricted cases?

We recall that C6 is the only known subcubic planar graph, having the strong chromatic index
equal to 9. The other subcubic graphs with χ′s(G) = 9 we found are not planar, thus another
question related to Conjecture 3.7 would be:

Question 3.30. Does there exist a subcubic planar graph G other than C6 of Figure 3.3, such
that χ′s(G) = 9? If yes, is it possible to find G having at least one vertex v with d(v) ≤ 2?

In Section 3.3 we proved that STRONG k-EDGE-COLOURING is NP-complete for various
restrictions of subcubic planar graphs when k = 4, 5, 6. When k = 4 this restriction is the
class of planar subcubic bipartite graphs of an arbitrarily large girth. There is not much room
for improvement in this case since for the intuitive smaller class of trees the problem is clearly
polynomial (quadratic in the number of edges in the worst case). For k ≥ 5 the problem becomes
polynomial when the input graph is subcubic planar and of girth at least 31 [19]. On the other
hand, when k = 5, we showed that the problem is NP-complete when restricted to subcubic planar
graphs of girth 9. For k = 6, the problem is yet again NP-complete for the class of subcubic planar
bipartite graphs. According to Corollary 3.11, when the girth is at least 14, every subcubic graph
is strongly 6-edge-colourable. It is very likely that the span between the bounds 9 and 31 is not
optimal in the case of STRONG 5-EDGE-COLOURING and between the bounds 4 and 14 in the
case of STRONG 6-EDGE-COLOURING. That is:

Question 3.31. Unless P=NP, what is the smallest value of the girth of a subcubic planar graph,
such that STRONG k-EDGE-COLOURING is polynomial for k = 5, 6?

The question whether there exists a polynomial algorithm for k = 7, 8, 9 for the class of
subcubic planar graphs is not studied. However, if Conjecture 3.7 is solved, the case when k = 9
becomes trivial. If the answer for Question 3.30 is negative for one of the questions, the case
when k = 8 becomes also trivial.

Finally, since for chordal graphs the problem is polynomial [17], it would also be interesting
to examine the complexity of the problem for other classes of perfect graphs.
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Chapter 4

Identifying codes

Given a graph G, a vertex-identifying code of G or simply identifying code, is a subset C of
vertices of G such that every vertex of G is uniquely determined within C. Formally speaking:

Definition 4.1. The subset C of V (G) is an identifying code of G if C is both:

• a dominating set of G, i.e. ∀x ∈ V (G), N [x] ∩ C 6= ∅, and

• a separating set of G, i.e. ∀u, v ∈ V (G) (u 6= v), N [u] ∩ C 6= N [v] ∩ C.

In this chapter, we investigate vertex-identifying codes, and identifying codes of line graphs,
called also edge-identifying codes (Sections 4.1 and 4.2). We also discuss the complexity issues
of these types of identification (Section 4.3). We conclude the chapter with some open questions
and remarks (Section 4.4).
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Identifying codes have been widely studied since the introduction of the concept in [66], and
have been applied to problems such as fault-diagnosis in multiprocessor systems [66], compact
routing in networks [71], emergency sensor networks in facilities [86] or the analysis of secondary
RNA structures [57].

The concept of identifying codes of graphs is related to several other concepts, such as locating-
dominating sets [94, 93] for graphs or Bondy’s theorem on induced subsets [12, 46].

Before giving the state of the art, we introduce some additional notations. A vertex x of G
is universal if N [x] = V (G). Given a subset S of V (G), we say that a vertex x is S-universal if
S ⊆ N [x]. The symmetric difference of two sets A and B is denoted by A 	 B. We recall that
two vertices x and y are called twins in G if N [x] = N [y] and a graph is called twin-free if it has
no pair of twin vertices.

71
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a{b, d} b

{b, c, d}

c

{b, c, e}

d

{b, d, e}

e

{c, d, e}

f {c, e}

Figure 4.1: An example of identifying code (vertices in gray). The sets represent the neighbours
within the identifying code.

A subset S separates two vertices x and y, if N [x] ∩ S 6= N [y] ∩ S. A subset S of vertices
is a separating set if it separates any pair of distinct vertices. The cardinalities of a minimum
separating set and minimum identifying code of G are denoted γS(G) and γID(G), respectively.
If S is dominating and separates vertices of V (G) \ S, it is called a locating-dominating set, this
concept was introduced in [94]. The cardinality of a minimum locating-dominating set of a graph
G is denoted γLD(G). Observe that we have the following relation: γLD(G) ≤ γID(G). Although
identifying codes and locating-dominating sets are closely related, in this chapter we will focus
mainly on identifying codes.

Observe that to admit a separating set, a graph must be twin-free. Moreover, this condition
is sufficient, as V (G) is a separating set of G. A graph G admits a separating set if and only
if it is twin-free. Therefore, a graph admits an identifying code if and only if it is twin-free. In
contrast to the case of identifying codes, observe that every graph admits a locating-dominating
set.

Since a set C of k elements can uniquely identify at most 2k elements and every vertex of the
graph must be dominated, the parameter γID(G) has a natural lower bound:

Theorem 4.2 (Karpovsky et al., [66]). Let G be a twin-free graph G on n vertices. Then
γID(G) ≥ dlog2(n+ 1)e.

Moreover, equality holds for infinitely many graphs and this collection of graphs was classified
in [80].

When speaking about upper bounds, in the case of locating-dominating sets it has been shown
that for every graph G with at least one edge, γLD(G) ≤ |V (G)| − 1 [93, 25]. Moreover, in [93] it
was proved that for a connected graph G, γLD(G) = |V (G)| − 1 if and only if G is either K1,t or
a complete graph.

Naturally, the same question was raised and studied in the case of identifying codes and a
similar result was shown:

Theorem 4.3 (Bertrand, 2001 [11], Gravier and Moncel, 2007 [55]). Let G be a twin-free graph
on n vertices having at least one edge. Then γID(G) ≤ n− 1.

This bound is tight. For example, it can be easily checked that γID(K1,t) = t for t ≥ 2. In [21]
Charbit et al. conjectured that the only graphs with γID(G) = |V (G)|−1 are the star K1,t and the
complete graph Kn minus a maximum matching. In [92] Skaggs proposed a different conjecture
stating that these graphs are exactly the closure of P = {P4} under operation ./ and P ./ K1. In
Section 4.1.2, we disprove these conjectures by characterizing all graphs with γID(G) = |V (G)|−1.
We note that contrary to locating-dominating sets, this class is a much richer family.

Conjecture 4.4 (Foucaud et al., [45]). For every connected twin-free graph G on n vertices,
there exists a constant such that γID(G) ≤ n− n

∆ + c.
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In support of this conjecture, in [44] we proved the following weaker upper bound for the size
of a minimum identifying code of a twin-free graph:

Theorem 4.5 ([44]). Let G be a connected twin-free graph on n vertices.
Then γID(G) ≤ n− n

Θ(∆5) . Moreover, if G is ∆-regular, then γID(G) ≤ n− n
Θ(∆3) .

In the case of triangle-free graphs, this bound is improved in [45]:

Theorem 4.6 (Foucaud et al., [45]). Let G be a connected twin-free graph on n vertices and
with no triangles. Then γID(G) ≤ n− n

∆+o(∆) .

From a computational point of view, finding the exact value of γID for a graph G is known
to be NP-hard [23]. In fact, it remains NP-hard for many subclasses of graphs such as bipartite
graphs [24] or some restricted subclasses of planar graphs [3, 4]. Furthermore, approximating
γID(G) is not easy neither as shown in [70, 54, 96]. We point out that the proof of hardness of
approximation given in [54, Theorem 3] can actually be adapted in order to show that finding
the minimum size identifying code in the class of chordal graphs is NP-hard: the authors use an
L-reduction from the total dominating set problem, which is known to be NP-hard in the class
of chordal graphs [72]; moreover, one can check that their proof preserves chordality and thus
we conclude that the identifying code problem is NP-hard for chordal graphs. In Section 4.3 we
improve this result by showing that the problem remains NP-hard for an even smaller subclass of
chordal graphs, namely split graphs. We also prove that the identifying code problem is NP-hard
for another restricted subclass of perfect graphs: perfect 3-colourable planar line graphs.

4.1 Vertex-identifying codes
This section is dedicated to the study of upper bounds for the minimum size of identifying

codes. In particular, we characterize all graphs such that γID(G) = |V (G)| − 1. The results
presented in this section are published in [44].

The next section provides a set of preliminary results, necessary for proving the main result
of this section (Theorem 4.15).

4.1.1 Preliminary results

We start by providing necessary tools (observations and propositions) for proving Theo-
rem 4.15.

Observation 4.7. Let G be a twin-free graph and let C be an identifying code of G. Then, any
set C′ ⊆ V (G) such that C ⊆ C′ is an identifying code of G.

The next proposition is useful in proving upper bounds on minimum identifying codes by
induction.

Proposition 4.8. Let G be a twin-free graph and S ⊆ V (G) such that G−S is twin-free. Then
γID(G) ≤ γID(G− S) + |S|.

Proof. Take a minimum code C0 of G − S. Consider the vertices of S in an arbitrary order
(x1, . . . , x|S|). Using induction we extend C0 to a subset Ci of G which identifies the vertices
in Vi = V (G) \ {xi+1, . . . , x|S|}. To do this, if Ci−1 identifies all the vertices of Vi, we are done.
Otherwise, since all the vertices in Vi−1 are identified, either N [xi]∩Ci−1 = N [y]∩Ci−1 for exactly
one vertex y in Vi−1, or xi is not dominated by Ci−1. In the first case xi and y are separated in
G by some vertex, say u, so let Ci = Ci−1 ∪ {u}. In the second case, let Ci = Ci−1 ∪ {xi}. Now, in
both cases, Ci identifies all the vertices of Vi. At step |S|, C|S| is an identifying code of G of size
at most |C0|+ |S| ≤ γID(G− S) + |S|.
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We derive the following special case of the previous proposition.

Corollary 4.9. Let G be a connected graph with γID(G) = |V (G)| − 1, G � K1,2, then there is
a vertex x of G such that G− x is still connected and γID(G− x) = |V (G− x)| − 1.

Proof. If G ∼= K1,t, t 6= 2, then any leaf vertex works. Thus, we may suppose G � K1,t. Then by
Theorem 4.3, there is a vertex x of G such that V (G−x) is an identifying code of G and thus G−x
is twin-free and G−x � Kn. By Proposition 4.8, we have γID(G−x) ≥ γID(G)−1 = |V (G−x)|−1.
Equality holds since otherwise γID(G− x) = |V (G− x)|. To complete the proof, we show that x
can be chosen such that G − x is connected. To see this, assume G − x is not connected. Since
γID(G − x) = |V (G − x)| − 1, except one component, every component of G − x is an isolated
vertex. If there are two or more such isolated vertices, then either one of them can be the vertex
we want. Otherwise there is only one isolated vertex, call it y. Now if G−y is twin-free, then y is
the desired vertex, else there is a vertex x′ such that N [x′] = N [x]− y. Then G− x′ is connected
and twin-free.

Lemma 4.10. Let G be a twin-free graph and let v ∈ V (G). Let x, y be a pair of twins in G− v.
If G− x or G− y has a pair of twins, then v must be one of the vertices of the pair.

Proof. Since v separates x and y, it is adjacent to one of them (say x) and not to the other.
Suppose z, t are twins in G− x. Suppose z is adjacent to x and t is not. If z 6= v, then y is also
adjacent to z and, therefore, t is also adjacent to y which implies x being adjacent to t. This
contradicts the fact that x separates z and t. The other case is proved similarly.

Proposition 4.11. LetG1 andG2 be twin-free graphs such that for every minimum separating set
S there is an S-universal vertex. If G1 ./ G2 is twin-free, then γS(G1 ./ G2) = γS(G1)+γS(G2)+1.
Furthermore, if S is a separating set of size γS(G1) + γS(G2) + 1 of G1 ./ G2, then there is an
S-universal vertex.

Proof. Let S be a minimum separating set of G1 ./ G2. Since vertices of G2 do not separate any
pair of vertices in G1, S ∩V (G1) is a separating set of G1. By the same argument S ∩V (G2) is a
separating set of G2. Therefore, |S| ≥ γS(G1) + γS(G2). But if |S| = γS(G1) + γS(G2), then there
is an [S ∩V (G1)]-universal vertex x in G1 and an [S ∩V (G2)]-universal vertex y in G2. But then,
x and y are not separated by S.

Given a separating set S1 of G1 and a separating set S2 of G2, the set S1 ∪ S2 separates all
pairs of vertices except the S1-universal vertex of G1 from the S2-universal vertex of G2. But
since G1 ./ G2 is twin-free, we could add one more vertex to S1 ∪S2 to obtain a separating set of
G1 ./ G2 of size γS(G1) + γS(G2) + 1.

For the second part assume S is a separating set of size γS(G1)+γS(G2)+1 of G1 ./ G2. Then
we have either |S ∩V (G1)| = γS(G1) or |S ∩V (G2)| = γS(G2). Without loss of generality assume
the former. Then there is an [S ∩ V (G1)]-universal vertex z of G1. Since z is also adjacent to all
the vertices of G2, it is an S-universal vertex of G1 ./ G2.

We remark that in Proposition 4.11 if G1 � K1 and G2 � K1, then γID(G1 ./ G2) = γS(G1 ./
G2) = γS(G1) + γS(G2) + 1.

4.1.2 Graphs having maximum possible identifying code number

In this section we classify all graphs G for which γID(G) = |V (G)| − 1. As already mentioned,
some of them are stars and joins of copies of P4 are examples of such graphs. To classify the rest
we show that special powers of paths are the basic examples of such graphs. Then we show that
any other example is mainly obtained from the join of some basic elements.

Definition 4.12. For an integer k ≥ 1, let Ak = (Vk, Ek) be the graph with vertex set Vk =
{x1, . . . , x2k} and edge set Ek = {xixj

∣∣ |i− j| ≤ k − 1}.



4.1. VERTEX-IDENTIFYING CODES 75

xk+1 xk+2 xk+3 ... x2k−1 x2k

x1 x2 x3
...

xk−1 xk

Clique on {xk+1, ..., x2k}

Clique on {x1, ..., xk}

Figure 4.2: The graph Ak which needs |V (Ak)| − 1 vertices for any identifying code

An illustration of graph Ak is given in Figure 4.2. We note that for k ≥ 2 we have Ak = P k−1
2k

and A1 = K2. It is also easy to check that the only non-trivial automorphism of Ak is the mapping
xi → x2k+1−i. It is not hard to observe that Ak is twin-free, ∆(Ak) = 2k − 2 and that Ak and
Ak are connected if k ≥ 2.

Proposition 4.13. For k ≥ 1, we have: γS(Ak) = 2k− 1 with N [xk] and N [xk+1] being the only
separating sets of size 2k − 1 of Ak. Furthermore, if k ≥ 2, γID(Ak) = 2k − 1.

Proof. Let S be a separating set of Ak. For i < k, we have 	(xi, xi+1) = {xi+k} and for
k < i ≤ 2k − 1, we have 	(xi, xi+1) = {xi−k+1}. Thus, {x2, . . . , x2k−1} ⊂ S. But to separate
xk and xk+1, we must add x1 or x2k. It is now easy to see that Vk \ {x1} = N [xk+1] and
Vk \ {x2k} = N [xk], each is a separating set of size 2k− 1. If k ≥ 2, then they both dominate Ak
and therefore are also identifying codes.

As a corollary of the previous proof, we have:

Corollary 4.14. For k ≥ 1 every minimum separating set S of Ak has a S-universal vertex.

Let A be the closure of {Ai | i = 1, 2, . . .} with respect to operation ./.

Theorem 4.15. Given a connected graph G, we have γID(G) = |V (G)| − 1 if and only if G ∈
{K1,t | t ≥ 2} ∪ A ∪ (A ./ K1) and G 6∼= A1.

In the following we prove this Theorem.

Proof of Theorem 4.15

First we show that elements of A are also extremal graphs with respect to both separating
sets and identifying codes.

Proposition 4.16. For every graph G ∈ A, we have γS(G) = |V (G)| − 1. Furthermore, every
minimum separating set S of G has an S-universal vertex.

Proof. The proposition is true for basic elements of A by Proposition 4.13 and by Corollary 4.14.
For a general element G = G1 ./ G2 it is true by Proposition 4.11 and by induction.

Corollary 4.17. If G ∈ A and G � A1, then γID(G) = |V (G)| − 1.

Further examples of graphs extremal with respect to separating sets and identifying codes can
be obtained by adding a universal vertex to each of the graphs in A, as we prove below.

Proposition 4.18. For every graph G in A ./ K1 we have γID(G) = γS(G) = |V (G)| − 1.
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Proof. Assume G = G1 ./ K1 with G1 ∈ A, and assume u is the vertex corresponding to K1.
Suppose S is a minimum separating set of G. We first note that since S ∩ V (G1) is a separating
set of G1, we have |S ∩ V (G1)| ≥ |V (G1)| − 1. But if |S ∩ V (G1)| = |V (G1)| − 1, then by
Proposition 4.16, there is an [S ∩ V (G1)]-universal vertex y of G1. Then y is not separated from
x. Thus |S ∩ V (G1)| = |V (G1)| and therefore S = V (G1). It is easy to check that S is also an
identifying code.

It was proved in [25] that γID(Kn \M) = n− 1 where Kn \M is the complete graph minus a
maximal matching. We note that this graph, for even values of n, is the join of n2 disjoint copies
of A1, thus it belongs to A. For odd values of n, it is built from the previous graph by adding a
universal vertex.

So far we have seen that γID(G) = |V (G)| − 1 for G ∈ {K1,t | t ≥ 2}∪A∪ (A ./ K1), G 6∼= A1.
We also know that γID(Kn) = n. More examples of graphs with γID(G) = |V (G)| − 1 can be
obtained by adding isolated vertices. In the next theorem we show that for any other twin-free
graph G we have γID(G) ≤ |V (G)| − 2.

Proposition 4.19. Let G be a connected twin-free graph such that γID(G) = |V (G)| − 1. Then
G ∈ {K1,t | t ≥ 2} ∪ A ∪ (A ./ K1) and G 6∼= A1.

Proof. We proceed by induction on the number of vertices of G. For graphs on at most 4 vertices
this is easy to check. Assume the claim is true for graphs on at most n − 1 vertices and, by
contradiction, let G be a twin-free graph on n ≥ 5 vertices such that γID(G) = n − 1 and
G /∈ {K1,t | t ≥ 2} ∪ A ∪ (A ./ K1).

By Corollary 4.9 there is a vertex x ∈ V (G) such that G− x is connected and γID(G− x) =
|V (G − x)| − 1. By the induction hypothesis we have G − x ∈ {K1,t | t ≥ 2} ∪ A ∪ (A ./ K1).
Depending on which one of these three sets G− x belongs to, we will have three cases.

Case 1, G − x ∈ {K1,t | t ≥ 2}. In this case we consider a minimum identifying code C of
G− x. If C does not already identify x, then either deg(x) ≤ 3 or deg(x) ≥ n− 2. We leave it to
the reader to check that in each of these cases, there is an identifying code of size n− 2.

Case 2, G − x ∈ A. We consider two subcases. Either G − x ∼= Ak for some k or G − x =
G1 ./ G2, with G1, G2 ∈ A.

(1) G− x ∼= Ak, for some k ≥ 2. If x is adjacent to all the vertices of G− x, then G ∈ A ./ K1
and we are done. Otherwise there is a pair of consecutive vertices of Ak, say xi and xi+1,
such that one is adjacent to x and the other is not. By the symmetry of Ak we may
assume i ≤ k. We claim that one of the sets C = V (G) \ {x2k, x}, C′ = V (G) \ {x1, x} or
C′′ = V (G) \ {xk, xk+1} is an identifying code of G. This would contradict our assumption.
Note that for each of the sets C, C′ and C′′, vertices of V (G − x) are all separated. If x is
also separated from all the vertices of G− x then we are done. Otherwise there will be two
possibilities.
First we consider the possibility: x is not adjacent to xi and adjacent to xi+1. Let us choose
C as a potential identifying code. Each vertex xj , j > i + k, is separated from x by xi+1
and each vertex xj , j < i + k, is separated from x by xi. Since there must exist a vertex
from which x must not be separated, we conclude that x is not separated from xi+k and
therefore x must be adjacent to xi+1, . . . , x2k−1. On the other hand, if we consider C′, then
x is not separated only from xk (it is the only vertex adjacent to x2k−1 but not to x2k).
Therefore, x is adjacent to exactly x2, . . . , x2k−1. And in this case C′′ is an identifying code
of G. Indeed, x is separated from all other vertices of G and also it separates x1 from x2
and x2k−1 from x2k.
In the other possibility, x is adjacent to xi and not adjacent to xi+1. If we consider C, a
similar argument implies that x is separated from every vertex but x2k. Then C′ would be
an identifying code.
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(2) G − x ∼= G1 ./ G2 with G1, G2 ∈ A. If x is adjacent to all the vertices of G − x, then
G ∈ A ./ K1 and we are done. Thus there is a vertex, say y, that is not adjacent to x.
Without loss of generality, we can assume y ∈ V (G1). Let C1 be an identifying code of size
γID(G1) = |V (G1)| − 1 of G1 which contains y. The existence of such an identifying code
becomes apparent from the proof of Proposition 4.16. Then C = C1∪V (G2) is an identifying
code of G1 ./ G2 of size |V (G1 ./ G2)| − 1 = |V (G)| − 2. Thus C does not separate a vertex
of G1 ./ G2 from x. Call this vertex z. Since y ∈ C, z is not adjacent to y, hence z ∈ V (G1).
Therefore, z is adjacent to all the vertices of G2. So x should also be adjacent to all the
vertices of G2. Thus we have G = (G1 + x) ./ G2 and any minimum identifying code of
G1 + x together with all vertices of G2 would form an identifying code of G. This proves
that γID(G1 + x) = |V (G1 + x)| − 1. Since G1 + x has less vertices than G, by induction
hypothesis, we have G1 + x ∈ {K1,t | t ≥ 2} ∪ A ∪ (A ./ K1) and G 6∼= A1. Since G1 ∈ A,
and since x is not adjacent to a vertex of G1, we should have G1 + x ∈ A but all graphs in
A have an even number of vertices and this is not possible.

Case 3, G − x ∈ A ./ K1. Suppose G − x ∼= Ai1 ./ Ai2 ./ . . . ./ Aij ./ K1 and let u be the
vertex corresponding to K1.

If x is also adjacent to u, then u is a universal vertex ofG andG−u is also twin-free. In this case
we apply the induction on G−u: by Proposition 4.8, γID(G−u) = |V (G−u)|−1 and by induction
hypothesis G − u ∈ {K1,t | t ≥ 2} ∪ A ∪ (A ./ K1). But if G − u ∈ {K1,t | t ≥ 2} ∪ (A ./ K1),
there will be two universal vertices, and therefore twins. Thus G− u ∈ A and G ∈ A ./ K1.

We now assume x is not adjacent to u and we repeat the argument with G−u if it is twin-free.
In this case if G− u ∈ {K1,t | t ≥ 2} ∪A, we apply Case 1 or Case 2. If G− u ∈ A ./ K1 with u′
being the vertex of K1, then u and u′ induce an isomorphic copy of A1 and G ∈ A.

If G− u is not twin-free, then by Lemma 4.10, x must be one of the twin vertices. Let x′ be
its twin and suppose x′ ∈ V (Ai1) with V (Ai1) = {z1, z2, . . . , z2k}. Without loss of generality we
may assume x′ = zl with l ≤ k. If l ≥ 2, then we claim C = V (G) \ {zl, z2k} is an identifying code
of G which is a contradiction. To prove our claim notice first that vertices of Ai2 ./ · · · ./ Aij are
already identified from each other and from the other vertices. Now each pair of vertices of Ai1 is
separated by a vertex in V (Ai1)∩C except zl+k−1 and zl+k which are separated by x. The vertex
x is also separated from all the other vertices by u. It remains to show that u is separated from
vertices of Ai1 . It is separated from vertices in {z1, . . . , zl+k−1} by x and from {zk+1, . . . , z2k} by
z1 (l ≥ 2). Thus x′ = x1 and now it is easy to see that the subgraph induced by V (Ai1), u and x
is isomorphic to Ai1+1 and, therefore, G ∼= Ai1+1 ./ Ai2 ./ . . . ./ Aij .

Since every graph G ∈ {K1,t | t ≥ 2} ∪ A ∪ (A ./ K1) has maximum degree |V (G)| − 2, we
obtain the following:

Corollary 4.20. Let G be a twin-free connected graph on n ≥ 3 vertices and maximum degree
∆ ≤ n− 3. Then γID(G) ≤ n− 2.

We remark that the definition of an identifying code can be easily extended to infinite graphs.
In contrast to finite graphs there are non-trivial infinite graphs for which the whole vertex set
is needed to form an identifying code. Examples of these graphs are given in [25]. In [44] we
classified all such infinite graphs.

4.2 Edge-identification

In this section, we study the identification of edges by edges or edge-identifying codes. The
results of this section are published in [43].

Let SE be a subset of edges of a graph G. We define the graph induced by SE as the graph
with the set of all endpoints of the edges of SE as its vertex set and SE as its edge set.
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Given a graph G and an edge e of G, we define N [e] to be the set of edges adjacent to e
together with e itself. An edge-identifying code of a graph G is a subset CE of edges such that for
each edge e the set N [e] ∩ CE is non-empty and uniquely determines e:

Definition 4.21. The subset CE of E(G) is an edge-identifying code of G if CE is both:

• an edge-dominating set of G, i.e. for each edge e ∈ E(G), N [e] ∩ CE 6= ∅, and

• an edge-separating set of G, i.e. for each pair e, f ∈ E(G) (e 6= f), N [e] ∩ CE 6= N [f ] ∩ CE .

One can easily observe that an edge-identifying code of a graph G is an identifying code of
the line graph of G, L(G). Therefore, a graph G admits an edge-identifying code if and only if
L(G) is twin-free.

We say that an edge e separates two edges f and g if either e belongs to N [f ] but not to
N [g], or vice-versa. To avoid trivial cases, when considering edge-identifying codes, we assume
that the edge set of the graph is non-empty. A pair of twins in L(G) may correspond in G to a
pair of: parallel edges, or a pair of adjacent edges whose non common ends are of degree 1, or a
pair of adjacent edges whose non common ends are of degree 2 but they are connected to each
other. Here parallel edges are not allowed and we consider simple graphs only. A pair of edges
of the other two types will be called edge-twins. We illustrate the possible pairs of edge-twins
in Figure 4.3. Therefore, it is easy to see that a graph is edge-identifiable if and only if it is
edge-twin-free. The smallest size of an edge-identifying code of an edge-identifiable graph G is
denoted by γEID(G) and is called the edge-identifying code number of G.

G G

Figure 4.3: Two possible pairs of edge-twins (thick edges) in G.

In Figure 4.4, we show an edge-identifying code of the Petersen graph. The lower bound of
Theorem 4.2 proves that γEID(P ) ≥ 4. Later, by improving this bound for line graphs, we will
see that in fact γEID(P ) = 5 (see Theorem 4.25 of Section 4.2.1).

Figure 4.4: An edge-identifying code of the Petersen graph.

4.2.1 Preliminary results

In this section we first give some easy tools which help for finding the minimum edge-identifying
code of graphs. We then apply these tools to determine the exact values of γEID for some basic
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families of graphs.

Lemma 4.22. Let G be a simple graph with girth at least 5. Let CE be a subset of edges of G
that covers vertices of G (that is, an edge cover of G), such that the graph (V (G), CE) is edge-
twin-free. Then CE is an edge-identifying code of G. In particular, if G has a perfect matching
M , then M is an edge-identifying code of G.

Proof. The code CE is an edge-dominating set of G because it covers all the vertices of G. To
complete the proof, we need to prove that CE is also an edge-separating set. Let e1, e2 be two
edges of G. If e1, e2 ∈ CE , then CE ∩ N [e1] 6= CE ∩ N [e2] because (V (G), CE) is edge-twin-free.
Otherwise, we can assume that e2 /∈ CE . If e1 ∈ CE and CE ∩N [e1] = CE ∩N [e2], then e2 must
be adjacent to e1. Let u be their common vertex and e2 = uv. Since CE is an edge cover, there
is an edge e3 ∈ CE which is incident to v. However, e3 cannot be adjacent to e1 because G is
triangle-free. Therefore e3 separates e1 and e2. Finally, we assume neither of e1 and e2 is in CE .
Then there are two edges of CE , say e3 and e4, adjacent to the two ends of e1. But since G has
neither C3 nor C4 as a subgraph, e3 and e4 cannot both be adjacent to e2 and, therefore, e1 and
e2 are separated.

We note that in the previous proof the absence of C4 is only used at the last part where
e1, e2, e3, e4 could induce a C4 which is not adjacent to any other edge of CE . Thus, we have the
following stronger statement:

Lemma 4.23. Let G be a triangle-free graph. Let CE be a subset of edges of G that covers
vertices of G, such that CE is edge-twin-free. If for no pair xy, uv of isolated edges in CE , the set
{x, y, u, v} induces a C4 in G, then CE is an edge-identifying code of G.

We will also need the following lemma about edge-twin-free trees.

Lemma 4.24. If T is an edge-twin-free tree on more than two vertices, then T has two vertices
of degree 1 each adjacent to a vertex of degree 2.

Proof. Take a longest path in T , then it is easy to verify that both ends of this path satisfy the
condition of the lemma.

The following general theorem together with its corollary, will be useful for determining the
edge-identifying code number of several classes of graphs.

Theorem 4.25. Let G be a connected edge-twin-free graph. We have:

γEID(G) ≥ |V (G)|
2

Proof. Let CE be an edge-identifying code of G. Let G′ be the subgraph induced by CE and let
G1, . . . , Gs be the connected components of G′. Let ni be the order of Gi and ki be its size (thus∑s
i=1 ki = |CE |). Let X = V (G)\V (G′) and n′i be the number of vertices in X that are joined to a

vertex of Gi in G. We show that n′i+ni ≤ 2ki. If ki = 1, then clearly n′i = 0 and n′i+ni = 2 = 2ki.
If Gi is a tree, then ni = ki + 1 and, by Lemma 4.24, Gi must have two vertices of degree 2 each
having a vertex of degree 1 as a neighbour. Then no vertex of X can be adjacent to one of these
two vertices in G. Moreover, each other vertex of Gi can be adjacent to at most one vertex in X.
So n′i ≤ ki − 1, and finally ni + n′i ≤ 2ki. If Gi is not at tree, we have ni ≤ ki and n′i ≤ ni and,
therefore, n′i + ni ≤ 2ki. Finally, since G is connected, each vertex in X is connected to at least
one Gi. Hence by counting the number vertices of G we have:

|V (G)| ≤
s∑
i=1

(ni + n′i) ≤ 2
s∑
i=1

ki ≤ 2|CE |
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Theorem 4.25 together with Lemma 4.23 leads to the following result:

Corollary 4.26. Let G be an edge-identifiable triangle-free graph. Suppose G has a perfect
matching M with the property that for any pair xy, uv of edges in M , the set {x, y, u, v} does
not induce a C4. Then M is an optimal edge-identifying code and γEID(G) = |V (G)|

2 .

This shows for example that the edge-identifying code of the Petersen graph given in Figure 4.4
is optimal. This result can be extended to graphs with girth 4 which have a perfect matching
with no pair of edges of the matching that induces a C4.

4.2.2 Edge-identification for some classes of graphs

In this section we determine γEID of some families of graphs.

Proposition 4.27. We have γEID(Kn) =
{

5, if n = 4 or 5
n− 1, if n ≥ 6

. Furthermore, let CE be an

edge-identifying code of Kn of size n− 1 (n ≥ 6) and let G1, G2, . . . , Gk be the connected compo-
nents of (V (Kn), CE). Then exactly one component, say Gi, is isomorphic to K1 and every other
component Gj (j 6= i) is isomorphic to a cycle of length at least 5.

Proof. We note that L(K4) is isomorphic to K6 \M , where M is a perfect matching of K6. One
can check that this graph has identifying code number 5. By a case analysis, we can show that K5
does not admit any edge-identifying code of size 4. Indeed, since an edge-identifying code must
be edge-twin-free, there are only two graphs possibly induced by an edge-identifying code of this
size: a path P5 or a cycle C4. In both cases, there are edges which are not separated. Edges of
a C5 form an edge-identifying code of size 5 of K5, hence γEID(K5) = 5. Furthermore, it is not
difficult to check that the set of edges of a cycle of length n− 1 (n ≥ 6) identifies all edges of Kn.
Thus we have γEID(Kn) ≤ n− 1.

Let us prove γEID(Kn) ≥ n− 1. Let CE be an edge-identifying code of Kn of size n− 1 or less
(n ≥ 6). Let G′ = (V (Kn), CE). Let G1, G2, . . . , Gk be the connected components of G′. Since
G′ has n vertices but at most n − 1 edges, at least one component of G′ is a tree. On the other
hand we claim that at most one of these components can be a tree and that such tree would be
isomorphic to K1. Let Gi be a tree. First we show that |V (Gi)| ≤ 2. If not, by Lemma 4.24,
there is a vertex x of degree 1 in Gi with a neighbour u of degree 2. Let v be the other neighbour
of u. Then the edges xv and uv are not identified. If V (Gi) = {x, y} then for any other vertex
u, the edges ux and uy are not separated. Finally, if there are Gi and Gj with V (Gi) = {x} and
V (Gj) = {y}, then the edge xy is not dominated by CE . Thus exactly one component of G′, say
G1, is a tree and G1 ∼= K1. This implies that γEID(Kn) ≥ n − 1. Therefore, γEID(Kn) = n − 1
and, furthermore, each Gi, (i ≥ 2), is a graph with a unique cycle.

It remains to prove that each Gi, i ≥ 2 is isomorphic to a cycle of length at least 5. By
contradiction suppose one of these graphs, say G2, is not isomorphic to a cycle. Since G2 has a
unique cycle, it must contain a vertex v of degree 1. Let t be the neighbour of v in G2 and let
u be the vertex of G1. Then the edges tv and tu are not separated by CE . Finally we note that
such cycle cannot be of length 3 or 4, because C3 is not edge-twin-free and in C4, the two chords
(which are edges of Kn) would not be separated.

The following examples show that if true, the upper bound of Conjecture 4.4 is tight even
in the class of line graphs. These examples were first introduced in [45] but without using the
notion of edge-identifying codes.

Proposition 4.28. Let G be a k-regular multigraph (k ≥ 3). Let G1 be obtained from G by
subdividing each edge exactly once. Then γEID(G1) = (k − 1)|V (G)| = |E(G1)| − |E(G1)|

2k−2 =
|V (L(G1))| − |V (L(G1))|

∆(L(G1)) .



4.2. EDGE-IDENTIFICATION 81

Proof. Let x be a vertex of G1 of degree at least 3 (an original vertex from G). For each edge
exi incident to x, let e′i

x be the edge adjacent to exi but not incident to x and let Ax = {e′xi }ki=1.
Then {Ax | x ∈ V (G)} is a partition of E(G1). For any edge-identifying code CE of G1, if two
elements of Ax, say e′x1 and e′x2 , are both not in CE , then ex1 and ex2 are not separated. Thus
|CE ∩Ax| ≥ k − 1. This proves that |CE | ≥ (k − 1)|V (G)|.

We now build an edge-identifying code of this size by choosing one edge of each set Ax, in
such a way that for each vertex x originally from G, exactly one edge incident to x is chosen.
Then the set of non-chosen edges will be an edge-identifying code. To select this set of edges,
one can consider the incident bipartite multigraph H of G: the vertex set of H is V ∪ V ′ where
V and V ′ are copies of V (G) and there is an edge xx′ in H if x ∈ V , x′ ∈ V ′ and xx′ ∈ E(G).
The multigraph H is k-regular and bipartite, thus it has a perfect matching M . For each vertex
x ∈ V , let ρ(x) be the vertex in V ′ such that xρ(x) ∈ M . Let now e′xM be the edge of G1 that
belongs to the set Ax and is incident to ρ(x) (in G1). Finally, let CE = E(G1) \ {e′xM}x∈V (G).
Exactly one element of each Ax is not in CE , and for each vertex x, exactly one edge incident to
x is not in CE . This implies that CE is an edge-identifying code.

Hypercubes, being the natural ground of code-like structures, have been a center of focus
for determining the smallest size of their identifying codes. The problem has proved to be a
challenging one from both theoretical and computational points of view. Today the precise
identifying code number is known for only seven hypercubes [22]. In contrast, using Corollary 4.26,
we show here that finding the edge-identifying code number of a hypercube is not so difficult. For
this purpose, we recall that as mentioned in the previous section of preliminaries, Corollary 4.26
can be extended to graphs with girth 4 which have a perfect matching with no pair of edges of
the matching that induces a C4. This is the case for the hypercube of dimension d ≥ 4.

Proposition 4.29. For d ≥ 4, we have γEID(Hd) = 2d−1.

Proof. By Theorem 4.25, we have γEID(Hd) ≥ 2d−1. We will construct by induction a perfect
matching Md of Hd such that no pair of edges induces a C4, for d ≥ 4. By Lemma 4.23, Md will
be an edge-identifying code of Hd, proving the result. Two such matchings of H4, which are also
disjoint, are presented in Figure 4.5. The matching M5 can now be built using each of these two
matchings of H4 — one matching per copy of H4 in H5. It is easily verified that M5 has the
required property. Furthermore, M5 has the extra property that for each edge uv of M5, u and v
do not differ on the first coordinate (recall that we build H5 from H4 by adding a new coordinate
on the left, hence the first coordinate is a the new one). We now build the matching Md of Hd
(d ≥ 6) from Md−1 in such a way that no two edges of Md belong to a 4-cycle in Hd and that for
each edge uv of Md, u and v do not differ on the first coordinate. To do this, let H′1 be the copy
of Hd−1 in Hd induced by the set of vertices whose first coordinate is 0. Similarly, let H′2 be the
copy of Hd−1 in Hd induced by the other vertices. LetM′1 be a copy of Md−1 in H′1 and letM′2
be a matching in H′2 obtained fromM′1 by the following transformation: for e = uv ∈M′1, define
ψ(e) = σ(u)σ(v) where σ(x) = x+ (1, 0, 0, . . . , 0). It is now easy to check that the new matching
Md =M′1 ∪M′2 has both properties we need.

We note that the formula of Proposition 4.29 does not hold for d = 2 and d = 3. For d = 2 the
hypercube H2 is isomorphic to C4 and thus γEID(H2) = 3. For d = 3, we note that an identifying
code of size 4, if it exists, must be a matching with no pair of edges belonging to a 4-cycle. But
this is not possible. An identifying code of size 5 is shown in Figure 4.6, therefore γEID(H3) = 5.

4.2.3 Lower Bounds

Recall from Theorem 4.2 that γID(G) is bounded below by a function of the order of G. As
mentioned before, this bound is tight. Let C be a set of c isolated vertices. We can build a graph
G of order 2c − 1 such that C is an identifying code of G. To do this, for every subset X of C
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Figure 4.5: Two disjoint edge-identifying codes of H4 .

Figure 4.6: An optimal edge-identifying code of H3.

with |X| ≥ 2, we associate a new vertex which is joined to all vertices in X and only to those
vertices. Then, it is easily seen that C is an identifying code of this graph. However, the graph
built in this way is far from being a line graph as it contains K1,t for even large values of t. In
fact this lower bound turns out to be far from being tight for the family of line graphs. In this
section we give a tight lower bound on the size of an edge-identifying code of a graph in terms of
the number of its edges. Equivalently we have a lower bound for the size of an identifying code
in a line graph in terms of its order. This lower bound is of the order Θ(

√
n) and thus is a much

improved lower bound with respect to the general bound of Theorem 4.2.
Let G be an edge-identifiable graph and let CE be an edge-identifying code of G. To avoid

trivialities such as having isolated vertices we may assume that G is connected. We note that this
does not mean that the subgraph induced by CE is also connected, in fact we observe almost the
contrary, i.e. in most cases, an edge-identifying code of a minimum size will induce a disconnected
subgraph of G. We first prove a lower bound for the case when an edge-identifying code induces
a connected subgraph.

Theorem 4.30. If an edge-identifying code CE of a non-trivial graph G induces a connected
subgraph of G which is not isomorphic to K2, then G has at most

(|CE |+2
2
)
−4 edges. Furthermore,

inequality can only hold if CE induces a path.

Proof. Let G′ be the subgraph induced by CE . Since we assumed G′ is connected, and since G′ is
edge-twin-free, it cannot have three vertices. Since we assumed G′ � K2, we conclude that G′ has
at least four vertices. For each vertex x of G′, let CxE be the set of all edges incident to x in G′.
Let e = uv be an edge of G, then one or both of u and v must be in V (G′). Therefore, depending
on which of these vertices belong to CE , e is uniquely determined by either CuE (if u ∈ V (G′) and
v /∈ V (G′)), or CvE (if u /∈ V (G′) and v ∈ V (G′)), or CuE ∪ CvE (if both u, v ∈ V (G′)). The total
number of sets of this form can be at most |V (G′)|+

(|V (G′)|
2

)
=
(|V (G′)|+1

2
)
, thus if |V (G′)| ≤ |CE |

we are done. Otherwise, since G′ is connected, |V (G′)| = |CE | + 1 and G′ is an edge-twin-free
tree on at least 4 vertices. If v is a vertex of degree 1 adjacent to u, then we have CvE = {uv} but
uv ∈ CuE and, therefore, CuE = CuE ∪CvE . On the other hand, by Lemma 4.24, there are two vertices
of degree 2 that have neighbours of degree 1. Let u be such a vertex, let v be its neighbour
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of degree 1 and x be its other neighbour. Then CvE = {uv} and CuE = {uv, ux} and, therefore,
CuE ∪ CxE = CvE ∪ CxE . Thus the total number of distinct sets of the form CyE or CyE ∪ CzE is at most(|CE |+2

2
)
− 4. But if equality holds there can only be two vertices of degree 1 in G′ and hence CE

is a path.

We note that if this bound is tight, then G′ is a path. Furthermore, for each path Pk+1 one
can build many graphs which have Pk+1 as an edge-identifying code and have

(k+2
2
)
−4 edges. The

set of all these graphs will be denoted by Jk. An example of such a graph is obtained from Kk+2
by removing a certain set of four edges as shown in Figure 4.7. Note that every other member of
Jk is obtained from the previous example by splitting the vertex that does not belong to Pk+1
(but without adding any new edge).

a (k + 1)-clique with
two edges removed· · ·

Figure 4.7: An extremal graph of Jk with its connected edge-identifying code

Next we consider the case when the subgraph induced by CE is not necessarily connected.

Theorem 4.31. Let G be an edge-identifiable graph and let CE be an edge-identifying code of
G with |CE | = k. Then we have:

|E(G)| ≤


( 4

3k
2
)
, if k ≡ 0 mod 3( 4

3 (k−1)+1
2

)
+ 1, if k ≡ 1 mod 3( 4

3 (k−2)+2
2

)
+ 2, if k ≡ 2 mod 3

Proof. Let G be a graph with maximum number of edges among all graphs with γEID(G) = k.
It can be easily checked that for k = 1, 2 or 3, the maximum number of edges of G is 1, 3 or 6
respectively. For k ≥ 4, we prove a slightly stronger statement: given an edge-identifying code
CE of G of size k, all but at most two of the connected components of the subgraph induced by
CE must be isomorphic to P4. When there is only one component not isomorphic to P4, it must
be isomorphic to a P2, a P5 or a P6. If there are two such components, then they can be two
copies of P2, a P2 with a P5, or just two copies of P5. This depends on the value of k mod 3.

To prove our claim let G be a graph as defined above, let CE be an edge-identifying code of
size k of G and let G′ be the subgraph induced by CE . For each vertex u ∈ V (G) \ V (G′), we
can assume that u has degree 1: if u has degree d > 1, with neighbours v1, . . . , vd necessarily in
V (G′), then replace u by d vertices of degree 1: u1, . . . , ud, connecting ui to vi. Then the number
of edges does not change, and the code CE remains an edge-identifying code of size k, thus it
suffices to prove our claim for this new graph. Let G′1, G′2, . . . , G′r be the connected components
of G′ with |V (G′i)| = n′i. For each i ∈ {1, . . . , r}, let Gi be the graph induced by the vertices of
G′i and the vertices connected to G′i only. To each vertex x of G′ we assign the set CxE of edges in
G′ incident to x.

We first note that no G′i can be of order 3, because there is no connected edge-twin-free graph
on three vertices. If u and v are vertices from two disjoint components of G′ with each component
being of order at least 4, then the pair u, v is uniquely determined by CuE∪CvE , thus by maximality
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of G, uv is an edge of G. If a component of G′ is isomorphic to K2, assuming u and u′ are vertices
of this component, then for any other vertex v of G′ exactly one of uv or u′v is an edge of G.

We now claim that each G′i with n′i ≥ 4 is a path. By contradiction, if a G′i is not a path, we
replace Gi by a member Jn′i−1 of Jn′i−1 with Pn′i being its edge-identifying code. Then we join
each vertex of Pn′i to each vertex of each G′j (with j 6= i and n′j ≥ 4) and to exactly one vertex of
each Gj with n′j = 2. We note that the new graph still admits an edge-identifying code of size k.
However, it has more edges than G. Indeed, while the number of edges connecting G′i and the
G′j ’s (j 6= i) is not decreased, the number of edges in Gi is increased when we replace Gi by Jn′i−1.
This can be seen by applying Theorem 4.30 on Gi.

We now show that none of the G′i’s can have more than six vertices. By contradiction, suppose
G′1 is a component with n′1 ≥ 7 vertices (thus n′1 − 1 edges). We build a new graph G∗1 from
G as follows. We take disjoint copies of J3 ∈ J3 and Jn′1−4 ∈ Jn′1−4 with P4 and Pn′1−3 being,
respectively, their edge-identifying codes. We now let V (G∗1) = V (J3)∪V (Jn′1−4)∪(V (G)\V (G1)).
The edges of J3, Jn′1−4 and G−G1 are also edges of G∗1. We then add edges between these three
parts as follows. We join every vertex of P4 to each vertex of Pn′1−3. For i = 2, 3, . . . , r if n′i ≥ 4,
join every vertex of G′i to each vertex of P4 ∪ Pn′1−3. If n′i = 2, we choose exactly one vertex of
G′i and join it to each vertex of P4 ∪ Pn′1−3. The construction of G∗1 ensures that it still admits
an edge-identifying code of size k, but it has more edges than G. In fact, the number of edges
is increased in two ways. First, because P4 ∪ Pn′1−3 has one more vertex than G′1, the number
of edges connecting P4 ∪ Pn′1−3 to G − G1 has increased (unless r = 1). More importantly, the

number of edges induced by J3 ∪ Jn′1−4 is 6 +
(n′1−2

2
)
− 4 + 4 × (n′1 − 3) = n′1

2

2 + 3n′1
2 − 7 which

is strictly more than |E(G′1)| = n′1
2

2 + n′1
2 − 4 for n′1 ≥ 3. Since n′1 ≥ 7, this contradicts the

maximality of G.
With a similar method, the following transformations strictly increase the number of edges

while the new graph still admits an edge-identifying code of size k:

1. Two components of G′ each on six vertices transform into two graphs of J3 and a graph of
J4.

2. One component of G′ on six vertices and another component on five vertices transform into
three graphs of J3.

3. One component of G′ on six vertices and one on two vertices transform into two graphs of
J3.

4. Three components of G′ each on five vertices transform into four graphs of J3.

5. Two components of G′ on five vertices and one on two vertices transform into three graphs
of J3.

6. A component of G′ on five vertices and two on two vertices transform into two graphs of
J4.

7. Three components of G′ each isomorphic to P2 transform into a graph of J3.

For the proof of case 7, we observe that the number of edges identified by the three P2’s would
be the same as the number of edges identified by the P4. However, since k ≥ 4, there must be
some other component in G′. Moreover, the number of vertices of the three P2’s, which are joined
to the vertices of the other components of G′, is three, whereas the number of these vertices of
the P4, is four. Hence the maximality of G is contradicted.

We note that cases 1, 2 and 3 imply that if a component of G′ is isomorphic to P6, every other
component is isomorphic to P4. Then cases 4, 5 and 6 imply that if a component is isomorphic to
P5, then at most one other component is not isomorphic to P4 and such component is necessarily
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either a P2 or a P5. Finally, case 7 shows that there can be at most two components both
isomorphic to P2.

We conclude that each of the components of G′ is isomorphic to P4 except for possibly two
of them. These exceptions are dependent on the value of k mod 3 as we described. The formulas
of the theorem can be derived using these structural properties of G. For instance, in the case
k ≡ 0 mod 3, each component of G′ is isomorphic to P4. There are k

3 such components. For each
component G′i, there are six edges in the graph Gi. That gives 2k edges. The other edges of G
are edges between two components of G′. By maximality of G, between two components of G′,
there are exactly 16 edges. There are

( k
3
2
)
pairs of components of G′. Hence, the number of edges

in G is:

2k + 16
(
k
3
2

)
=
(

4
3k

2

)
.

The other cases can be proved with the same method.

We note that this bound is tight and the examples were in fact built inside the proof. More
precisely, for k ≡ 0 mod 3 we take k

3 disjoint copies of elements of J3 each having a P4 as an edge-
identifying code. We then add an edge between each pair of vertices coming from two distinct
such P4’s. We note that the union of these P4’s is a minimum edge-identifying code of the graph.
If k 6≡ 0 mod 3, then we build a similar construction. This time we use elements from J3 with at
most two exceptions that are elements of J4 or J5.

The above theorem can be restated in the language of line graphs as follows.

Corollary 4.32. Let G be a line graph. Then we have γID(G) ≥ 3
8(1 +

√
1 + 8|V (G)|) >

3
√

2
4
√
|V (G)|.

Proof. Suppose G is the line graph of an edge-twin-free graph H (L(H) = G). Let k = γID(G) =
γEID(H), and let n be the number of vertices of G (n = |E(H)|). Then, after solving the quadratic
inequalities of Theorem 4.31 for k, we have:

k ≥3
8 + 3

√
8n+ 1
8 , for k = 0 mod 3

k ≥5
8 + 3

√
8n− 7
8 , for k = 1 mod 3

k ≥3
8 + 3

√
8n− 15

8 , for k = 2 mod 3

It is then easy to check that the right-hand side of each of the three inequalities is at least as
3
√

2
4
√
n for n ≥ 3.

Remark. Note that the lower bound of γID(G) ≥ Θ(
√
|V (G)|), which holds for the class of

line graphs, is also implied by Theorem 4.25. However, the bound of 4.32 is more precise. In [10],
Beineke characterized line graphs by a list of nine forbidden induced subgraphs. Considering
Beineke’s characterization, the lower bound of Corollary 4.32 can be restated as follows: γID(G) ≥
Θ(
√
|V (G)|) holds if G has no induced subgraph from Beineke’s list. It is then natural to ask

what is a minimal list of forbidden induced subgraphs for which a similar claim would hold. Note
that the claw graph, K1,3, belongs to Beineke’s list of forbidden subgraphs. However, we remark
that the bound γID(G) ≥ Θ(

√
|V (G)|) does not hold for the class of claw-free graphs. Examples

can be built as follows: let A be a set of size k and let B be the set of nonempty subsets of A. Let
G be the graph built on A ∪ B, where A and B each induce a complete graph and a vertex a of
A is joined to a vertex b of B if a ∈ b. This graph is claw-free and it is easy to find an identifying
code of size at most 2k = Θ(log |V (G)|) in G.
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4.2.4 Upper bounds

In Theorem 4.15 of the previous section we gave the characterization of graphs having γID ≤
|V (G)|−1. It is easy to check that only six of these graphs are line graphs, namely P3, P4, C4, P4 ./
K1, C4 ./ K1, L(K4). Thus we have the following corollary:

Corollary 4.33. If G is a line graph with G /∈ {P3, P4, C4, P4 ./ K1, C4 ./ K1,L(K4)}, then we
have γID(G) ≤ |V (G)| − 2.

Since γEID(K2,n) = 2n−2, γID(L(K2,n)) = |V (L(K2,n))|−2 and the bound of Corollary 4.33 is
tight for an infinite family of graphs. Conjecture 4.4 proposes a better bound in terms of both the
number of vertices and the maximum degree of a graph. As pointed out in Proposition 4.28, most
of the known extremal graphs for Conjecture 4.4 are line graphs. In this section, after proving
some general bound for the edge-identifying code number of an edge-twin-free graph we will show
that Conjecture 4.4 holds for the class of line graphs of high enough density.

A graph on n vertices is 2-degenerate if its vertices can be ordered v1, v2, . . . , vn such that each
vi is joined to at most two vertices in {v1, v2, . . . , vi−1}. Our main idea for proving upper bounds
is to show that given an edge-twin-free graph G, any (inclusionwise) minimal edge-identifying
code CE induces a 2-degenerated subgraph of G and hence |CE | ≤ 2|V (G)| − 3. Our proofs are
constructive and one could build such small edge-identifying codes.

Theorem 4.34. Let G be an edge-twin-free graph and let CE be a minimal edge-identifying code
of G. Then G′, the subgraph induced by CE , is 2-degenerated.

Proof. Let uv be an edge of G′ with dG′(u), dG′(v) ≥ 3. By minimality of CE the subset C′ =
CE − uv of E(G) is not an edge-identifying code of G. By the choice of uv, C′ is still an edge-
dominating set, thus there must be two edges, e1 and e2, that are not separated by C′. Hence
one of them, say e1, is incident either to u or to v (possibly to both) and the other one (e2) is
incident to neither one.

We consider two cases: either e1 = uv or e1 is incident to only one of u and v. In the first
case, e2 is adjacent to every edge of C′ which uv is adjacent to. Since for each vertex of uv there
are at least two edges in C′ incident to this vertex, the subgraph induced by u, v and the vertices
of e2 must be isomorphic to K4 and there should be no other edge of C′ incident to any vertex of
this K4 (see Figure 4.8a).

In the other case, suppose e1 is adjacent to uv at u. Let x and y be two neighbours of u in
G′ other than v. Then it follows that e2 = xy and, therefore, dG′(u) = 3. Let z be the other end
of e1. We consider two subcases: either z /∈ {x, y}, or, without loss of generality, z = x. Suppose
z /∈ {x, y}. Recall that uv is the only edge separating e1 and e2, but e1 must be separated
from ux. Thus zy ∈ CE . Similarly, e1 must be separated from uy, so zx ∈ CE . Furthermore,
dG′(x) = dG′(y) = dG′(z) = 2 and {x, y, z, u} induces a C4 in G′ (see Figure 4.8b). Now suppose
e1 = ux, since uv is the only edge separating e1 and e2, then uy and possibly xy are the only
edges in G′ incident to y, so dG′(y) ≤ 2 and dG′(u) = 3 (see Figures 4.8c and 4.8d).

To summarize, we proved that given an edge uv, in a minimal edge-identifying code CE , we
have one of the following cases.

• One of u or v is of degree at most 2 in G′.

• Edge uv is an edge of a connected component of G′ isomorphic to K−4 (that is K4 with an
edge removed), see Figure 4.8a.

• dG′(u) = 3 (considering the symmetry between u and v) in which case either u is incident
to a C4 whose other vertices are of degree 2 in G′ (Figure 4.8b), or to a vertex of degree 1
in G′ (Figure 4.8c) or to a triangle with one vertex y of degree 2 in G′ and y is not adjacent
to v (Figure 4.8d).
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Figure 4.8: Case distinctions in the proof of Theorem 4.34. Black vertices have fixed degree in
G′. Thick edges belong to CE .

In either case, there exists a vertex x of degree at most 2 in G′ such that when x is removed,
at least one of the vertices u, v has degree at most 2 in the remaining subgraph of G′. In this way
we can define an order of elimination of the vertices of G′ showing that G′ is 2-degenerated.

By further analysis of our proof we derive the following corollary, the upper bound 2n − 3
being much easier to prove:

Corollary 4.35. If G is an edge-twin-free graph on n vertices not isomorphic to K4 or K−4 , then
γEID(G) ≤ 2n− 5.

Proof. We first prove that if G is an edge-twin-free graph on n vertices not isomorphic to K4,
then γEID(G) ≤ 2n − 4. Let CE be a minimal edge-identifying code and let G′ be the subgraph
induced by CE . Then, by Theorem 4.34, G′ is 2-degenerated. Let vn, vn−1, . . . , v1 be a sequence
of vertices of G′ obtained by a process of eliminating vertices of degree at most 2. Since v1
and v2 can induce at most a K2, we notice that there could only be at most 2n− 3 edges in G′.
Furthermore, if there are exactly 2n−3 edges in G′, then v1v2 ∈ CE and each vertex vi, 3 ≤ i ≤ n,
has exactly two neighbours in {v1, . . . , vi−1}. Hence, the subgraph induced by {v1, v2, v3, v4} is
isomorphic to K−4 . Considering symmetries, there are three possibilities for the subgraph induced
by {v1, . . . , v5} (recall that v5 is of degree 2 in this subgraph): see Figure 4.9 . In each of these
three cases, the edge uv has both ends of degree at least 3. Thus, we can apply the argument used
in the proof of Theorem 4.34 on G′ and uv, showing that we have one of the four configurations
of Figure 4.8. But none of them matches with the configurations of Figure 4.9, a contradiction.

u v

u v
u

v

Figure 4.9: The three maximal 2-degenerated graphs on five vertices.

Now we show that if γEID(G) = 2n − 4, then G ∼= K−4 . This can be easily checked if G
has at most four vertices, so we may assume n ≥ 5. Let G′′ be the subgraph of G′ induced by
{v1, v2, v3, v4, v5}. If G′′ has seven edges, then it is isomorphic to one of the graphs of Figure 4.9,
and we are done just like in the last case. Therefore, we can assume that G′′ has exactly six
edges and, since it is 2-degenerated, by an easy case analysis, it must be isomorphic to one of the
graphs of Figure 4.10.

If G′′ is a graph in part (i), (ii) or (iii) of Figure 4.10, then again one could repeat the
arguments of the proof of Theorem 4.34 with G′ and the edge uv of the corresponding figure, to
obtain a contradiction.



88 CHAPTER 4. IDENTIFYING CODES

u v

(i)
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v

(ii)
u

v

(iii)

v′

v u

(iv)

t

u

v

(v)

Figure 4.10: The five possibilities of 2-degenerated graphs on five vertices with six edges.

Suppose G′′ is isomorphic to the graph of Figure 4.10(iv). Since G′′ is not edge-twin-free, there
must be at least one more vertex in G′. Let v6 be as in the sequence obtained by 2-degeneracy
of G′. Since G′ has exactly 2n − 4 edges, v6 must have exactly two neighbours in G′′. By the
symmetry of the four vertices of degree 2 in G′′, we may assume uv6 ∈ CE . Then u and v are
both of degree at least 3 in G′. Therefore, we could again repeat the argument of Theorem 4.34
with G′ and uv, where only one of the configurations of this theorem, namely 4.8d, matches G′′.
Furthermore, if this happens then v′v6 should also be an edge of G′. Now u and v′ are both
of degree at least 3 and we apply the argument of Theorem 4.34 with G′ and uv′ to obtain a
contradiction.

Finally, let G′′ be isomorphic to the graph of Figure 4.10(v). We claim that every other vertex
vi (i ≥ 6) is adjacent , in G′, only to u and v. By contradiction suppose v6 is adjacent to t. Then
using the technique of Theorem 4.34 applied on G′ and tu (respectively tv), we conclude that v6
is adjacent to u (respectively v).

Since |E(G′)| = |CE | = 2n− 4, G′ is a spanning subgraph of G. But then it is easy to verify
that CE \ {xu, xv} is an edge-identifying code of G — a contradiction.

We note that γEID(K2,n) = 2n−2 = 2|V (K2,n)|−6 thus this bound cannot be improved much.
Corollary 4.35 implies that Conjecture 4.4 holds for a large subclass of line graphs:

Corollary 4.36. If G is an edge-twin-free graph on n vertices and with average degree d̄(G) ≥ 5,
then we have γID(L(G)) ≤ n− n

∆(L(G)) .

Proof. Let u be a vertex of degree d(u) ≥ d̄(G) ≥ 5. Since G is edge-twin-free there is at
least one neighbour v of u that is of degree at least 2. Thus there is an edge uv in G with
d(u) + d(v) ≥ d̄(G) + 2 and, therefore, ∆(L(G)) ≥ d̄(G). Hence, considering Corollary 4.35, it is
enough to show that 2|V (G)| − 5 ≤ |E(G)| − |E(G)|

d̄(G) .
To this end, since d̄(G) ≥ 5, we have 4|V (G)| ≤ (d̄(G)− 1)|V (G)|, therefore,

4|V (G)| − 10 ≤ (d̄(G)− 1)|V (G)|

Mutiplying both sides by d̄(G)
2 we have:

(2|V (G)| − 5)d̄(G) ≤ (d̄(G)− 1) d̄(G)
2 |V (G)| = (d̄(G)− 1)|E(G)|

4.3 Complexity

This section is devoted to the study of the decision problem associated to the concept of
identifying codes. We study it for both vertex- and edge-identifying codes.
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4.3.1 Vertex-identification for split graphs

The IDCODE problem is defined as follows:
INSTANCE: A graph G and an integer k.
QUESTION: Does G have an identifying code of size at most k?

The 3-SAT problem is defined as follows:
INSTANCE: A collection Q of clauses over a set X of boolean variables, where each clause

contains at most three distinct literals (a variable xi or its negation xi).
QUESTION: Can Q be satisfied, i.e. is there a truth assignment of the variables of X such

that each clause contains at least one true literal?

Theorem 4.37. IDCODE is NP-complete even when restricted to split graphs (and therefore to
chordal graphs and complements of chordal graphs as well).

Proof. The problem is clearly in NP: given a subset of vertices of G, one can check in polynomial
time whether it is an identifying code of G by computing and comparing the identifying sets of
all the vertices of G.

We now reduce 3-SAT, which is known to be NP-hard, to IDCODE for split graphs.
Given an instance Q = {C1, . . . , Cm} of 3-SAT over the set of boolean variables X =

{x1, . . . , xn}, we build the split graph GQ as follows:
For each variable xj and clause Ci we build the subgraphs Gxj and GCi respectively, as shown

in Figure 4.11. For each clause Ci = {li1 , li2 , li3} we add the three edges {ti, li1}, {ti, li2}, {ti, li3}.

si ti

ui vi

−
−

−
−

− −

(a) Clause gadget

−
−−

− · · · −
−−

− · · ·
xj xj

aj bj cj dj

ej
fj gj

hj

ij

(b) Variable gadget

Figure 4.11: Reduction gadgets for clause Ci and variable xj . Circled vertices belong to the clique
of the split graph.

The constructed graph GQ = (V,E) is clearly split and twin-free. |V | = 4m + 11n and
therefore the construction is polynomial in n + m. Moreover, we set k = 2m + 6n and we claim
that Q is satisfiable if and only if GQ has an identifying code of size k.

On the one hand, suppose Q is satisfiable. We build the identifying code I as follows: for
each clause Ci let si, ui ∈ I. For each variable xj let cj , fj , hj , ij ∈ I. If xj is true then aj , xj ∈ I.
Otherwise, xj , bj ∈ I. Now, using the fact that Q is satisfiable and assuming that Q contains at
least one clause and one variable, one can check that I is an identifying code of GQ of size k.

On the other hand, suppose I is an identifying code of GQ of size at most k. Note that for
each subgraph GCi , |V (GCi) ∩ I| ≥ 2. Indeed, to separate ui from vi, one of these two vertices,
say ui, must belong to I. Now, if no other vertex of V (GCi) is in the code, vi is not dominated.
Note also that for each subgraph Gxj , in order to separate cj from dj , ij must belong to I.
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Moreover, necessarily |{aj , bj , cj , dj , ej , fj , gj , hj} ∩ I| ≥ 4. Indeed, similarly to the case of GCi ,
one of {ej , fj} (say ej) as well as one of {gj , hj} (say gj) must belong to I. In order to dominate
and separate fj and hj , one can see that two additional vertices of {aj , bj , cj , dj , ej , fj , gj , hj} are
required. Now, in order to separate aj from bj , either xj or xj must belong to I. Hence we
already fixed k − n vertices in I, i.e. |(

⋃m
i=1 V (GCi) ∪

⋃n
j=1(V (Gxj ) \ {xj , xj})) ∩ I| ≥ 2m+ 5n.

Therefore, by the "pigeonhole principle", for each subgraph Gxj , exactly one of {xj , xj} belongs
to I. Let us build the following truth assignment of the variables of X: for each variable xj , if
vertex xj ∈ I, xj ← "true"; otherwise xj ← "false". Finally, since I is an identifying code, for
each subgraph GCi , si and ti are separated in GQ by at least one of the three neighbours of ti.
Therefore this neighbour belongs to I. Hence, at least one literal of Ci has been set to "true" and
Q is satisfiable.

Note that 3-SAT is known to remain NP-hard even when each variable appears at most three
times (as itself or its negation) and each literal appears at most two times in the formula [99].
Therefore, in the previous proof, one can do the reduction from this restricted version of 3-SAT.
Let G be the constructed split graph with V (G) = K ∪ S, K ∪ S being the decomposition of
V (G) into a clique K and a stable set S. It follows from the construction that a vertex from K
has at most five neighbours in S, and a vertex of S has at most five neighbours in K. Hence we
can strengthen the theorem as follows:

Corollary 4.38. IDCODE is NP-complete even when restricted to split graphs whose vertex set
V can be partitioned into a clique K and a stable set S such that a vertex of K has at most five
neighbours in S, and a vertex of S has at most five neighbours in V .

4.3.2 Edge-identification

The EDGE-IDCODE problem is defined as follows:
INSTANCE: A graph G and an integer k.
QUESTION: Does G have an edge-identifying code of size at most k?

We will prove that EDGE-IDCODE is NP-hard in some restricted class of graphs by reduction
from PLANAR (≤ 3, 3)-SAT, which is a variant of the SAT problem and is defined as follows [32]:

PLANAR (≤ 3, 3)-SAT
INSTANCE: A collectionQ of clauses over a setX of boolean variables, where each clause contains
at least two and at most three distinct literals (a variable x or its negation x). Moreover, each
variable appears in exactly three clauses: twice in its non-negated form, and once in its negated
form. Finally, the bipartite incidence graph of Q, denoted B(Q), is planar (B(Q) has vertex set
Q∪X and Q ∈ Q is adjacent to x ∈ X if x or x appears in clause Q).
QUESTION: Can Q be satisfied, i.e. is there a truth assignment of the variables of X such that
each clause contains at least one true literal?

PLANAR (≤ 3, 3)-SAT is known to be NP-complete [32]. We are now ready to prove the
main result of this subsection.

Theorem 4.39. EDGE-IDCODE is NP-complete even when restricted to bipartite planar graphs
of maximum degree 3 and arbitrarily large girth.

Proof. The problem is clearly in NP: given a subset C of edges of G, one can check in polynomial
time whether it is an edge-identifying code of G by computing the sets C ∩N [e] for each edge e
and comparing them pairwise.

We now reduce PLANAR (≤ 3, 3)-SAT to EDGE-IDCODE. We first give the proof for the
case of girth 8 and show that it can be easily extended to an arbitrarily large girth.
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We first need to define a generic sub-gadget (denoted P -gadget) that will be needed for the
reduction. In order to have more compact figures, we will use the representation of this gadget
as drawn in Figure 4.12. We will say that a P -gadget is attached at some vertex x if x is incident
to edge a of the gadget as depicted in the figure.

x

a

b c

d

e

G

x

G

P

Figure 4.12: The generic P -gadget

We make the following claims.

Claim 4.40. In any graph containing a P -gadget, at least three edges of this gadget must belong
to any edge-identifying code.

Claim 4.40 is true because d is the only edge separating b and c. Similarly c is the only edge
separating d and e. Finally, in order to separate d and c, one has to take at least one of a, b or e.

Claim 4.41. If G is an edge-twin-free graph obtained from a graph H with a P -gadget attached
at a vertex x of H, then any edge-identifying code of G must contain an edge of H incident to x.

Claim 4.41 follows from the fact that edge a must be separated from edge b.
We are now ready to describe the reduction.
Given an instance Q = {Q1, . . . , Qm} of PLANAR (≤ 3, 3)-SAT over the set of boolean

variables X = {x1, . . . , xn} together with an embedding of its bipartite incidence graph B(Q) in
the plane, we build the graph GQ as follows.

For each variable xj and clause Qi we build the subgraphs Gxj and GQi respectively, as shown
in Figure 4.13. We recall that a given variable xj appears in positive form in exactly two clauses,
say Qp, Qq, and in negative form in exactly one clause, say Qr. We then unify vertex x1

j of
Gxj with vertex lpk of GQp which corresponds to xj . We do a similar unification for vertices x2

j

and xj
1 with corresponding vertices from GQq and GQr . This can be done while ensuring the

planarity of GQ, using the given planar embedding of B(Q). Moreover, GQ is bipartite since
B(Q) is bipartite and there are no odd cycles in the variable and clause gadgets. Finally, it is
easy to see that GQ has maximum degree 3 and girth 8. Since a clause gadget has fourty-five
vertices and a variable gadget, fourty-two vertices, GQ has 45m+ 42n vertices and, therefore, the
construction has polynomial size in terms of the size of Q.

We will need two additional claims in order to complete the proof.

Claim 4.42. In a variable gadget Gxj , in order to separate the four pairs of edges {di, ei} for
1 ≤ i ≤ 4, at least two edges of A = {di, ei | 1 ≤ i ≤ 4} ∪ {t1j , tj

1
, t2j , tj

2} belong to any
edge-identifying code C. Moreover, if |C ∩A| = 2, then either C∩A = {t1j , t2j} or C∩A = {tj1

, tj
2}.
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Figure 4.13: Reduction gadgets for clause Qi and variable xj .

The first part of Claim 4.42 follows from the fact that the two edges of each of the pairs
{d1, e1} and {d3, e3} must be separated. The second follows from an easy case analysis.

The following claim follows directly from Claim 4.41.

Claim 4.43. Let v1v2v3v4 be a path of four vertices where each of the vertices v2 and v3 has its
own P -gadget attached and both v2 and v3 have degree 3. Then, at least one of the three edges
of the path belong to any identifying code of the graph. If exactly one belongs to a code, it must
be v2v3.

We now claim that Q is satisfiable if and only if GQ has an edge-identifying code of size at
most k = 25m+ 22n.

For the sufficient side, given a truth assignment of the variables satisfying Q, we build an
edge-identifying code C as follows. For each P -gadget, edges a, c, d are in C. For each clause
gadget GQi , edge c0 belongs to C. For each literal lik of Qi, 1 ≤ k ≤ 3, if lik is true, edge aik
belongs to C; otherwise, edge bik belongs to C. If Qi has only two literals and vertex lik is the
vertex not corresponding to a literal of Qi, then edge bik belongs to C. Now, one can see that
all edges of GQi are dominated. Furthermore, all pairs of edges of GQi are separated. This can
be easily seen for all pairs besides {c1, c2}. For this pair, since we are considering a satisfying
assignment of Q, in every clause Qi of Q, there exists a true literal. Hence, for each clause Qi, at
least one edge aij with 1 ≤ j ≤ 3, must be in the code and, therefore, the pair {c1, c2} is separated.
Next, in each variable gadget Gxj , if xj is true, edges t1j and t2j belong to C. Otherwise, edges
tj

1 and tj2 belong to C. Edges f1, f2, f3, f4 and f5 also belong to C. Because of this choice, all
edges of Gxj \ {t1j , t2j , tj

1} are dominated. Since each of the three edges t1j , t2j , tj
1 is incident to

a vertex of a P -gadget of some clause gadget, they are also dominated. Moreover, all pairs of
edges containing at least one edge of Gxj \ {t1j , t2j , tj

1} are clearly separated. Now, since for each
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P -gadget of the clause gadgets, edge a is in C, t1j , t2j , tj
1 are separated from all edges in GQ. It

remains to prove that C separates the pair {c1, c2} of each clause gadget. Since we are considering
a satisfying assignment of Q, in every clause Qi of Q, there exists a true literal. Hence, for each
clause Qi, at least one edge aij with 1 ≤ j ≤ 3, must be in the code and, therefore, the pair
{c1, c2} is separated. We conclude that C is an edge-identifying code of size k.

For the necessary side, let C′ be an edge-identifying code of GQ with |C′| ≤ k. It follows from
Claim 4.40 that three edges of each of the seven P -gadgets of a clause gadget GQi must belong
to C′. Moreover, by Claim 4.41, edge c0 is forced to be in any code. Finally, by Claim 4.41, for
each vertex lik (1 ≤ k ≤ 3) of GQi , one of the edges aik and bik is in C′.

Note that this is a total of at least twenty-five edges per clause gadget.
Similarly, it follows from Claim 4.40 that in each variable gadget Gxj , at least fifteen edges of

C′ are contained in the P -gadgets of Gxj . Following Claim 4.41, all edges fi (1 ≤ i ≤ 5) belong to
C′. Note that this is a total of at least twenty edges in each variable gadget. We have considered
25m+ 20n edges of C′ so far. Hence 2n edges remain to be considered. It follows from Claim 4.42
that for each variable gadget, at least two additional edges belong to C′ (in order to separate the
pairs {di, ei}, for 1 ≤ i ≤ 4). Therefore, in each variable gadget, exactly two of these edges belong
to C′. Hence, following the second part of Claim 4.42, either {t1j , t2j} or {tj

1
, tj

2} is a subset of C′.
Remark that we have now considered all k = 25m+ 22n edges of C′. Therefore, in each clause

gadget GQi , exactly one of the edges aik and bik of GQi belongs to C′.
We can now build the following truth assignment: for each variable gadget, if {t1j , t2j} is a

subset of C′, xj is set to TRUE. Otherwise, {tj1
, tj

2} is a subset of C′ and xj is set to FALSE. Let
us prove that this assignment satisfies Q.

In each clause gadget GQi , note that edges c1 and c2 must be separated by C′; this means
that one edge aik from {ai1 , ai2 , ai3} belongs to C′. Hence, as noted in the previous paragraph,
bik /∈ C′ and by Claim 4.43, in the path formed by edges {aik , bik , t1j}, t1j belongs to the code
(without loss of generality, we suppose that lik = xj and t1j is the edge of Gxj incident to vertex
lik of GQi). Therefore, in the constructed truth assignment, literal lik has value TRUE, and the
clause is satisfied. Repeating this argument for each clause shows that the formula is satisfied.

Now, it remains to show that similar arguments can be used to prove the final statement of
the theorem for larger girth. Consider some integers λ ≥ 1 and µ ≥ 2. We build the graph
GQ(λ, µ) using modified variable gadgets Gxj (µ) and modified clause gadgets GQi(λ), which are
depicted in Figure 4.14. The construction is the same as in the previous proof and GQ(λ, µ)
has (36λ + 9)m + (30µ − 18)n vertices. We claim that the girth of GQ(λ, µ) is now at least
min{4µ, 8(λ+ 1)}. Indeed, Gxj (µ) has a cycle of size exactly 4µ and since the girth of B(Q) is at
least 4, it follows that the minimum length of a cycle between some clause gadgets (at least two)
and some variable gadgets (at least two) is at least 4(2λ+ 1) + 2 + 2 = 8(λ+ 1).

Now, using a similar proof as the proof for girth 8, it can be shown that Q is satisfiable if and
only if GQ(λ, µ) has an identifying code of size at most k = (21λ+ 4)m+ (17µ− 12)n.

It is known that a line graph L(G) is perfect if and only if G has no odd cycles of length more
than 3, see [97]. Moreover, one can check that the line graphs of the graphs constructed in the
previous proof are planar, have maximum degree 4 and clique number 3. Therefore, the following
corollary follows:

Corollary 4.44. IDCODE is NP-complete even when restricted to perfect 3-colourable planar
line graphs of maximum degree 4.

In the following, by slightly restricting the class of graphs considered in Theorem 4.39, we
show that EDGE-IDCODE becomes linear-time solvable in this restricted class.

Let us first introduce some necessary concepts.
A graph property P is expressable in counting monadic second-order logic, CMSOL for short

(see [30] for further reference), if P can be defined using:
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Figure 4.14: Reduction gadgets for clause Qi and variable xj for arbitrarily large girth.

• vertices, edges, sets of vertices and sets of edges of a graph

• the binary adjacency relation adj where adj(u, v) holds if and only if u, v are two adjacent
vertices

• the binary incidence relation inc, where inc(v, e) holds if and only if edge e is incident to
vertex v

• the equality operator = for vertices and edges

• the membership relation ∈, to check whether an element belongs to a set

• the unary cardinality operator card for sets of vertices
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• the logical operators OR, AND, NOT (denoted by ∨, ∧, ¬)

• the logical quantifiers ∃ and ∀ over vertices, edges, sets of vertices or sets of edges

It has been shown that CMSOL is particularly useful when combined with the concept of the
graph parameter tree-width (we refer the reader to [30] for a definition). Some important classes
of graphs have bounded tree-width. For example, trees have tree-width 1, series-parallel graphs
have tree-width 2 and outerplanar graphs have tree-width 3.

The following result shows that many graph properties can be checked in linear time for graphs
of bounded tree-width.

Theorem 4.45 (Courcelle [30]). Let P be a graph property expressible in CMSOL and let c be a
constant. Then, for any graph G of tree-width at most c, it can be checked in linear time whether
G has property P.

We now show that CMSOL can be used in the context of edge-identifying codes:

Proposition 4.46. Given a graph G and an integer k, let EID(G, k) be the property that
γEID(G) ≤ k. Property EID(G, k) can be expressed in CMSOL.

Proof. Let V = V (G) and E = E(G). We define the CMSOL relation dom(e, f) which holds if
and only if e, f are edges of E and e, f dominate each other, i.e. e and f are incident to the same
vertex. We have dom(e, f) := ∃x ∈ V, (inc(x, e) ∧ inc(x, f)).

Now we define EID(G, k) as follows:

EID(G, k) := ∃C, C ⊆ E, card(C) ≤ k,
(
∀e ∈ E,∃f ∈ C, dom(e, f)

)
∧(

∀e ∈ E,∀f ∈ E, e 6= f,∃g ∈ C,
(
(dom(e, g) ∧ ¬dom(f, g)) ∨

(dom(f, g) ∧ ¬dom(e, g))
))

This together with Theorem 4.45 implies the following corollary.

Corollary 4.47. EDGE-IDCODE can be solved in linear time for all classes of graphs having
their tree-width bounded by a constant.

This result implies, in particular, that one can find the edge-identifying code number of a
tree in linear time. Note that a similar approach has been used for the case of vertex-identifying
codes in [81]. The proof of Theorem 4.45 is constructive and gives a linear-time algorithm, but
it is very technical. Therefore, it would be interesting to give a simpler linear-time algorithm for
EDGE-IDCODE in trees. Observe that this has been done in [3] for the case of vertex-identifying
codes.

4.4 Open problems
In this chapter we studied identifying codes in different classes of graphs. In particular, in

Section 4.1 we gave a characterization of graphs having the maximum identifying code number
at most |V (G)| − 1. Proving the upper bound of Conjecture 4.4 remains a challenging problem.

As we mentioned in the introduction, the identifying code problem is NP-hard in the class of
planar graphs [3]. Thus finding some bounds on the identifying code number becomes even more
motivating. In terms of the upper bounds, since the star K1,t is a planar graph which achieves
the bound |V (G)| − 1, this bound cannot be improved in the case of planar graphs. But what
about lower bounds? In [94] it is proved that for every planar graph γLD(G) ≥ n+10

7 and thus
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if G is twin-free, then γID(G) ≥ n+10
7 . Is it possible to improve this lower bound in the class of

planar graphs?
From the computational point of view, we proved that the problem of finding the minimum

identifying code of some restricted families of perfect graphs is NP-hard. One of the intriguing
open questions remains the following:

Question 4.48. What is the complexity of the problem for the class of interval graphs?

It is known that the dominating set problem is linear time solvable when the input is an
interval graph [13] and even when considered different versions of weighted dominating sets [84].
However, for identifying codes no complexity result has been found until now. Naturally, a next
step in the study of the algorithmic part of the identifying code problem, could be the class of
interval graphs.

As regards the weighted version of the problem, one could investigate the polyhedral approach.
We note that there is some ongoing work on this [2].



Chapter 5

Conclusion

In this thesis, we focused on the study of three problems: orthogonal packing (Chapter 2),
strong edge-colouring (Chapter 3) and identifying codes (Chapter 4). The core subject of our
work includes the algorithmic and complexity issues of these problems. For OPP we designed
an exact algorithm exploiting the nice properties of MPQ-trees, whereas in the case of strong
edge-colouring and identifying codes we addressed the corresponding decision problems: are they
polynomial or NP-hard for various classes of graphs?

We proved that STRONG k-EDGE-COLOURING remains NP-hard even within very re-
stricted subclasses of planar graphs. Similarly, we established that IDCODE remains NP-hard
in various restricted subclasses of perfect graphs. However, the hardness of these two problems
does not seem to be of the same nature. For example, when the input graph is a chordal graph,
STRONG k-EDGE-COLOURING is polynomial whereas IDCODE is NP-hard (c.f. page 73).
This asymmetry deserves to be investigated.

As of chordal graphs, split graphs and interval graphs are two of its well-known subclasses.
For split graphs, we have shown that IDCODE is still NP-hard. Interestingly, for the case of
interval graphs the IDCODE complexity is not known till date. Moreover, we do not even know
a tight lower bound of the identifying code number for this family of graphs while many graphs
having γID(G) = |V (G)| − 1 described in Section 4.1.2 of Chapter 4, are interval graphs.

Given that we have studied interval graphs in the context of orthogonal packing using the
MPQ-tree data structure, a natural line of work would be to look at identifying codes in interval
graphs using MPQ-trees. One could arguably say that MPQ-trees encode interval graphs effi-
ciently by capturing all possible orders of the maximal cliques. Intuitively, the fact that each
branch of an MPQ-tree is distinct from the others somehow models the symmetric differences
between the vertices. This makes us think that one "efficient" technique for computing the mini-
mum identifying code could be obtained by exploiting this information. Additionally, one could
check, if it is possible to derive lower and upper bounds for this parameter using the MPQ-tree
data-structure.

Similar to STRONG k-EDGE-COLOURING, deciding whether a graph can be edge-coloured
using k colours is known to be NP-hard [60]. But a striking fact is that the fractional version of the
edge-colouring problem can be solved in polynomial time [83]. It would therefore be interesting to
examine the fractional version of strong edge-colouring too. In this version, instead of assigning
one colour per edge, sets of colours of a given size are assigned. The constraint is that edges at
distance at most 2 must have disjoint sets of colours. Given a graph G, let us denote by b the size
of the sets of colours of each edge and by χ′sb(G) the minimum number of colours needed to obtain
a fractional strong edge-colouring with sets of size b. The question to study would be then: what is

the smallest value of the fractional strong chromatic index χ′sf (G) = lim
b→∞

χ′sb(G)
b

? Equivalently,
fractional strong edge-colouring is just a linear relaxation of the strong edge-colouring integer

97
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linear program given in the introduction chapter.

At last, we would like to mention that by identifying two opposite boundaries of the container,
the orthogonal packing problem would be turned into a "circular" orthogonal packing problem,
suitable to modelize periodic scheduling problems. Intuitively, the feasible solutions could be
characterized by circular interval graphs. However, these graphs are in general not perfect, and
therefore one of the basic arguments used by Fekete & Schepers would not be available any more.
We believe that the techniques we used in our algorithm could be adapted with a limited overhead.
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