

Fig.1-1. Evolution de la demande d'énergie primaire française corrigée des variations climatiques, 2010 [2].

Fig.1-10. Coûts d'extraction du pétrole non conventionnel [10].

⁴¹ Selon l'Agence Internationale de l'Energie (AIE), avec 1 tep = 11 630 kWh, i.e. 1 Mtep = 11,63 TWh.

	CED (GJ/kWc)	EPBT	(années)	GWP (gCO ₂ /kWh)		
	brut	normalisé	brut	normalisé	brut		normalisé
toit incliné						_	
filière européenne	30	33	2,6	2,4		50	47
filière chinoise	30	33	2,6	2,5		74	70
filière française	32	35	2,7	2,6	27		26
filière européenne					-		
toit incliné	30	33	2,6	2,4		50	47
toit plat	32	35	2.7	2,6		53	50
au sol	27	30	2,2	2,2		45	45
façade	30	33	3,8	3,6		74	70

TAB.1-1. PARAMETRES RESULTANT DE L'ANALYSE DE CYCLE DE VIE DU SILICIUM MULTICRISTALLIN [13].

Fig.1-12. Schéma illustratif de l'influence de l'inclinaison (en °) sur le flux d'irradiation solaire (en W/m²) [17].

Fig.1-13. Production photovoltaïque (en W) simulée pour un système (3 kWc, Corse) sur la même plage horaire (entre 7h et 18h) par temps nuageux (gauche) et clair (droite).

Fig.1-14. Variation sur un an de la production PV simulée (Corse, 3 kWc).

Fig.1-15. Variation sur un an de l'irradiation solaire journalière hors atmosphère (AM = 0) [17].

Fig.1-21. Comparaison des courbes d'irradiation solaire, de production PV (échelle de gauche, en W) et de tension du réseau (échelle de droite, en V) par temps couvert [24].

Fig.1-25. Profils et moyens de production pendant une semaine d'automne 2003 [PPI, 2006].

Type de moyen de production	Technologie	Caractéristiques				
Base (5000 à 6000	Centrales hydrauliques au fil de l'eau Centrale de cogénération	Centrales dont la production fatale est perdue si elle n'est pas consommée				
beures par an)	Centrales nucléaires Centrales à cycle combiné au gaz naturel	Centrales dont le coût du combustible est faible ce qui se traduit par des coûts incrémentaux faibles				
Semi-base (jusqu'à 3500 heures par an)	Centrales au charbon Centrale au fioul	Les centrales à fioul ont un coût de fonctionnement plus élevé				
Pointe (quelques centaines d'heures par an)	Centrales hydrauliques à réservoir Turbines à combustion Centrales au charbon ou au fioul maintenues en réserve Moteur diesel couplé à des alternateurs	Centrales qui peuvent démarrer très rapidement (moins de 15 min pour les centrales hydrauliques et les turbines à combustion) et en quelques heures pour celles maintenues en réserve Dispositif de secours pour les moteurs diesel car très coûteux				

TAB.1-2. TABLEAU CARACTERISTIQUE DU MODE DE PRODUCTION DE L'ELECTRICITE FRANÇAISE [DIGEC, 1997].

Fig.1-26. Prototypes de borne de recharge rapide (gauche) et de station d'échange de batteries (droite) [26].

Fig.1-27. Epave de Toyota Prius après un feu de batteries A123System [28].

Chapitre 2

Fig.2-1. Schéma illustratif d'un habitat solaire en site isolé (ex : chalet en haute montagne) [4].

Fig.2-2. Schéma illustratif d'un habitat solaire en connecté réseau (ex : maison privative, habitat principal) [4].

Fig.2-3. Schéma comparatif des étapes de conversion de l'énergie pour un véhicule à batteries ou à hydrogène [17].

Fig.2-4. Schéma illustratif d'un habitat solaire connecté réseau à alimentation continue (DC) équipé d'un véhicule hybride électrique [Lien].

Fig.2-12. Schéma de fonctionnement d'un système de stockage d'air comprimé en caverne [20].

Fig.2-13. Schéma de fonctionnement d'une station de transfert d'énergie par pompage (STEP) [20].

Fig.2-14. Schéma de fonctionnement d'un système de stockage thermique à turbine [20].

Chapitre 3

Fig.3-2. Évolution stationnaire de la série différenciée des prix du lithium entre 1970 et 2010.

Fig.3-3. Diagramme d'autocorrélation de la série différenciée typique d'un modèle ARIMA(1,1).

	Unit	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
Lithium price [Econometric model ARIMA (1,1)]	\$/kg	5.42	6.35	7.40	8.60	10.13	11.82	13.80	16.10	18.77	21.88	25.50
Lithium price for battery (hypothesis: LCE = 0.6 kg Li/kWh)	\$/kWh	3.25	3.81	4.44	5.16	6.08	7.09	8.28	9.66	11.26	13.13	15.30
Lithium cost in HEV battery (hypothesis: Capacity = 2 kWh)	\$	6.50	7.62	8.88	10.32	12.16	14.18	16.56	19.32	22.52	26.26	30.60
Lithium cost in PHEV battery (hypothesis: Capacity = 7 kWh)	\$	22.76	26.67	31.08	36.12	42.55	49.64	57.96	67.60	78.83	91.90	107.10
Lithium cost in EV battery (hypothesis: Capacity = 25 kWh)	\$	81.30	95.25	111.00	129.00	151.95	177.30	207.00	241.44	281.55	328.20	382.50
Battery price forecast [Crédit Suisse]	\$/kWh	1,100	1,000	900	850	800	750	700	<mark>650</mark>	600	550	500
HEV battery price forecast (hypothesis: Capacity = 2 kWh)	\$	2,200	2,000	1,800	1,700	1,600	1,500	1,400	1,300	1,200	1,100	1,000
PHEV battery price forecast (hypothesis: Capacity = 7 kWh)	\$	7,700	7,000	6,300	5,950	5,600	5,250	4,900	4,550	4,200	3,850	3,500
EV battery price forecast (hypothesis: Capacity = 25 kWh)	\$	27,500	25,000	22,500	21,250	20,000	18,750	17,500	16,250	15,000	13,750	12,500
Lithium share in battery price	%	0.30%	0.38%	0.49%	0.61%	0.76%	0.95%	1.18%	1.49%	1.88%	2.39%	3.06%

TAB.3-1. ÉVOLUTION DU PRIX DU LITHIUM ET IMPACT SUR LA PART DU COUT DU LITHIUM DANS LE PRIX DES BATTERIES.

Fig.3-4. Parts de marché des produits commerciaux à base de lithium [d'après les données de Roskill, 2009].

Fig.3-5. Répartition par application du lithium consommé dans le monde en 2007 [23].

Fig.3-6. Distribution du lithium par poste dans les batteries lithium-ion [17].

Fig.3-7. Évolution récente de la demande de lithium par secteur d'application consommateur [17].

Fig.3-8. Carte de la ceinture de Kings Mountain (gauche) et photo satellite de la mine de Chemetall (droite) [30].

Fig.3-9. Schéma en coupe de la mine et du gisement de Quebec Lithium [33].

Salar	Hectares	Samples	Li (ppm) up to	K (ppm) up to
Salar Grande	4,000	4	123	2,770
Piedra Parada	1,500	14	103	2,040
La Isla	16,500	19	1,080	10,800
Agua Amarga	3,100	6	157	2,490
Las Parinas	5,400	7	477	7,820
Aguilar	8,800	3	337	3,990
Maricunga	104	18	916	11,400

TAB.3-2. VARIETE DE COMPOSITION EN SELS MINERAUX DE DIVERS SALARS D'ATACAMA [31].

Fig.3-10. Exemple de dispersion de la teneur en sels minéraux (ici le bromure, en ppm) d'un salar [31].

Fig.3-12. Schéma de zonalité des filons de pegmatites autour d'un granite et accessibilité selon le niveau d'érosion [32].

Name, Formula	Li content	Colour	Hardness	Density
Spodumene LiAlSi ₂ O ₆	3.73 wt.%	grayish white, pink, violet, emerald green, yellow	6.5-7	3.1-3.2
Petalite LiA1Si ₄ O ₁₀	2.09 wt.%	colorless, gray, yellow, yellow gray, white	6-6.5	2.39-2.46
Amblygonite (Li,Na)AlPO ₄ (F,OH)	3.44 wt. %	white, yellow, gray, bluish gray, greenish gray	5.5-6	2.98-3.11
Lepidolite K(Li,Al) ₃ (Si,Al) ₄ O ₁₀ (F,OH) ₂	3.58 wt.%	colorless, gray white, lilac, yellowish, white	2.5-3	2.8-2.9
Zinnwaldite KLiFe ²⁺ A1(A1Si ₃)O ₁₀ (F,OH) ₂	1.59 wt.%	light brown, silvery white, gray, yellowish white, greenish white	3.5-4	0.9-3.1
Eucryptite LiAlSiO ₄	5.51 wt.%	brown, colorless, white	6.5	2.67

TAB.3-3. CARACTERISTIQUES DES MINERAIS DE ROCHES DURES ISSUS DES PEGMATITES RICHES EN LITHIUM [34].

Fig.3-13. Modèle conceptuel de formation du bassin d'Olaroz [34].

Fig.3-14. Champ pétrolier à aquifère (gauche) et récupération assistée par injection d'eau (droite) [Wikipedia].

Country	Deposit	Туре	Min (kt)	Max (kt)
USA	Kings Mountain Belt	MPS	5,450	5,450
Serbia	Jadar Valley	MEJ	953	990
RDC	Manono	MPS	835	835
Australia	Greenbushes Mine	MPS	560	560
China	Gajika	M	560	591
China	Yichun	MPL	325	513
RDC	Kitotolo	MPS	310	310
Russia	Kolmozerskoe	M	288	844
China	Jiajika	MPS	240	480
China	Maerkang / Barkam	M	220	225
Canada	Quebec Lithium	MPS	163	365
Russia	Goltsovoe	M	139	288
Russia	Polmostundrovskoe	MPS	139	363
Russia	Ulug-Tanzekskoe	M	139	288
Russia	Urikskoe	M	139	288
China	Daoxian	MPL	125	182
USA	Kings River Valley / Caldera McDermitt	MSH	114	2,000
Austria	Koralpe	MPS	100	100
Brazil	MIBRA	MP	100	100
Zimbabwe	Bikita	MPP	57	168
China	Lijiagou	MP	53	53
Canada	Separation Rapids / Big Whopper	MPP	50	72
Russia	Achivansky (Uchastok)	M	46	46
Russia	Belorechenskoe	M	46	46
Russia	Etykinskoe	M	46	46
Russia	Orlovskoe	M	46	46
Russia	Pogranichnoe	M	46	46
Russia	Tastygskoe	M	46	46
Russia	Vishnyakovskoe	M	46	46
Russia	Voronietundrovskoe (Vasin-Mylk)	MPS	46	820
Russia	Voznesenskoe	M	46	139
Russia	Zavitinskoe	M	46	139
China	Hupei	MP	42	42
Canada	Moblan	MPS	37	37
Canada	Gods Lake / Godslith Lithium	MPS	25	25
Brazil	Cachoeira	MP	23	23
Canada	Bernic Lake / Bird River Greenstone Belt	MPS	19	19
Canada	Moose 2	MPS	16	16
Portugal	Mesquitila / Guarda	MP	10	10
Canada	Niemi Lake	MPS	1	1
MINERALS		М	11,693	16,659

Country	Deposit	Туре	Min (kt)	Max (kt)	
Afghanistan	Helmand Basin	MPS		-	
Afghanistan	Katawaz Basin	MPS		-	
Canada	Big Bird, Curlew	MPS		-	
Canada	English River Greenstone Belt	MPS		-	
Canada	McAvoy	MPS		-	
Canada	Separation Rapids / Big Mack, Zone 11	MPP	-	-	
China	Jinchuan	MP		-	
China	Ningdu	MP	-	-	
Russia	Alahinskoe	M	-	-	
Russia	Belo-Tagninskoe	M	-	-	
Russia	Bolchoï Potchemvarek	M	-	-	
Russia	Diturskoe	M	-	-	
Russia	Knyazheskoe	M	-	-	
Russia	Ohmylk	M	-	-	
Russia	Oleniy Hrebet	M	-	-	
Russia	Olondinskoe	M	-	-	
Russia	Otboïnoe	M	-	-	
Russia	Pellapahik	M	-	-	
Russia	Podgorskoe	M	-	-	
Russia	Raduga	M	-	-	
Russia	Severny Vystup	M	-	-	
Russia	Tala	M	-	-	
Spain	Mina Feli	MP	-	-	
					Minerals
Country	Deposit	Type	Min (kt)	Max (kt)	16 7 Mt
Bolivia	Salar de Uyuni	BS	10,200	10,200	10.7 WIL
Chile	Salar de Atacama	BS	6,300	6,300	11.7 Mt
China	Qaidam Basin	BS	2,020	3,300	
China	Zhabuye Lake	BS	1,530	1,530	
Argentina	Salar del Rincón	BS	1,118	1,118	Di
USA	Brawley	BG	1,000	1,000	Brines
Argentina	Salar del Hombre Muerto	BS	800	800	26 Q M+
USA	Smackover	BO	750	750	20.3 MIL
Canada	Beaverhill Lake	BO	515	515	25.4 Mt
USA	Salton Sea	BG	316	316	
USA	Clayton Valley / Silver Peak	BS	300	400	
Chile	Salar de Maricunga	BS	220	220	
China	DXC / Da	BS	170	181	
Argentina	Salar d'Olaroz	BS	156	280	43.6 Mt
BRINES		В	25,395	26,910	
TOTAL			37,088	43,569	37.1 Mt

TAB.3-4. INVENTAIRE DES GISEMENTS ET INTERVALLE DE RESSOURCE ESTIMEE CORRESPONDANT (EN KILOTONNES DE LITHIUM).

Fig.3-15. Synthèse cartographique de la répartition mondiale des gisements de saumures et de minerais lithiés.

Fig.3-16. Superposition des gisements de minerais avec la carte géologique mondiale [superposition de nos données sur un fond de carte de l'USGS].

Fig.3-17. Superposition des gisements de saumure avec la carte des bassins (*gris*) et lacs (*noir*) endoréiques [superposition de nos données sur un fond de carte de Wikipédia].

 $\mathbf{FePO}_4 - \mathrm{Fe}^{+3} \iff \mathrm{Fe} \; 3d_{\uparrow}^5$; strong hybridization of $\mathrm{Fe} \; 3d_{\uparrow}$ and $\mathrm{O} \; 2p_{\uparrow}$ bands $\mathbf{LiFePO}_4 - \mathrm{Fe}^{+2} \iff \mathrm{Fe} \; 3d_{\uparrow}^5 \; d_{\downarrow}^1$; Fe 3d states form narrow bands with very little O 2p character

Fig.3-21. Densités partielles de spin des états FePO₄ (haut) et LiFePO₄ (bas) [26].

Fig.3-22. Représentation des structures magnétiques pour LiFePO₄ (gauche) et FePO₄ (droite) [17].

Fig.3-23. Synthèse de modèles d'insertion/désinsertion et transport/migration d'ions lithium dans le LiFePO₄ [30].

Fig.3-24. Vue schématique du mécanisme en cascade de dominos inhérent à une cristallite de LiFePO₄ [18].

Fig.3-33. Évolution sur 5 cycles de la capacité (en Ah) des cellules typées puissance en tests d'initialisation.

Fig.3-35. Évolution des courbes-frontières de l'OCV (en V) en fonction du SOC (en %) pour une batterie typée puissance (3,6 Ah) et variation de leur allure selon le temps de repos observé à chaque mesure (de 30 min à 3h).

Fig.3-37. Profils de tension, courant et capacité en phase de décharge puis charge pour les mesures d'OCV opérées sur une série de trois batteries avec des intervalles de SOC de 5%. En encadré l'allure des courbes de relaxation.

Fig.3-42. Évolution du potentiel électrochimique de 3 types d'électrodes mettant en jeu une transition de phases lors de l'insertion/désinsertion d'ions lithium [46].

Fig.3-44. Évolution des courbes-frontières de l'OCV (gauche) et de l'hystérésis (droite) échantillonnées à des pas de 5% de SOC [44].

Fig.3-45. Schéma illustratif de la méthode d'estimation en cascade (gauche) [44] et circuit électrique équivalent (droite) [45].

Fig.3-46. Caractéristiques à 1C (gauche) et réponse en tension à un pulse de courant de 20C à 50% de SOC (droite) pour des cellules neuves ou après 1 500 et 3 000 cycles [45].

Fig.3-47. *Gauche* : comparaison des états de charge réel et estimé en simulant une erreur d'initialisation du SOC ; en quelques itérations, l'erreur est réduite à 2%. *Droite* : le modèle *fitte* bien les yeux d'hystérésis mesurés [44].