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L'objet de cette thèse consiste en la construction de nouveaux exemples de surfaces (ou hypersurfaces) minimales dans les espaces euclidiens R 3 , R n ×R avec n 3 ou dans l'espace homogène S 2 × R. Nous prouvons dans le chapitre I l'existence de surfaces minimales dans R 3 arbitrairement proches d'un polygone convexe. Dans le chapitre II, nous prouvons l'existence d'hypersurfaces minimales de type Riemann dans R n × R, n 3. Celles-ci peuvent être interprétées comme étant une famille d'hyperplans horizontaux (des bouts) reliés les uns aux autres par des morceaux de caténoïdes déformés (des cous). Nous donnons un résultat général pour ce type d'objet quand il est périodique ou bien quand il a un nombre ni de bouts horizontaux. Cela se fait sous certaines hypothèses de contraintes sur les forces intervenant dans la construction. Nous nissons en donnant plusieurs exemples, notamment l'existence d'une hypersurface de type Wei verticale qui n'existe pas en dimension 3. Dans le chapitre III, nous prouvons l'existence d'une surface minimale de type Riemann dans S 2 × R telle que deux sphères sont reliés entre elles alternativement par 1 cou et 2 cous. Là aussi, nous mettons en évidence le rôle joué par les forces lors de la construction. De même que dans le chapitre précédent, la méthode repose sur un processus de recollement.

Dans le chapitre IV, nous donnons une description très précise de la caténoïde et la surface de Riemann dans S 2 × R.

Enn, dans le chapitre V, nous établissons l'existence dans R n ×R d'hypersurfaces de type Scherk lorsque n 3.

Introduction

Les surfaces minimales constituent une branche de la géométrie riemannienne qui a connu de vastes progrès lors des dernières décennies. Celles-ci sont des points critiques pour la fonctionnelle aire, c'est-à-dire qu'une surface S d'une variété M de dimension 3 est dite minimale si pour toute courbe fermée simple γ contenue dans cette surface, la partie de S située à l'intérieur de γ est point critique de la fonctionnelle aire parmi toutes les surfaces qui ont pour bord γ. On peut prouver que cette notion est équivalente au fait que la courbure moyenne de S est nulle, en d'autres termes, que la moyenne de ses courbures principales s'annule. Bien entendu, ce genre d'objet se généralise aux hypersurfaces incluses dans une variété de dimension n où n est un entier supérieur ou égal à 4. En 1873, Joseph Plateau, de par son étude du comportement des lms de savon qui sont en réalité des surfaces minimales énonce les lois de Plateau qui régissent la géométrie de ces interfaces physiques. Le problème de Plateau, quant à lui, consiste à déterminer si une courbe fermée simple est le contour d'une surface minimale. Ce problème sera résolu dans les années 30 de deux façons diérentes : d'une part par Jesse Douglas qui utilise les intégrales qui portent dorénavant son nom et pour lesquelles il reçoit la médaille Fields en 1936 et d'autre part par Tibor Radó [START_REF] Radò | The Problem of Plateau[END_REF] qui utilise l'existence d'un minimiseur de l'énergie. Ce type de résultat sera notamment utilisé dans le chapitre V.

En 1984, Celso J. Costa a relancé la recherche dans le domaine des surfaces minimales en prouvant [START_REF] Costa | Example of a complete minimal immersion in r3 of genus one and three embedded ends[END_REF] l'existence d'une surface minimale, complète, de genre 1 avec trois bouts. L'année d'après, David Homan et William H. Meeks démontrent [START_REF] Homan | A complete embedded minimal surface in R 3 with genus one and three ends[END_REF] que c'est en fait une surface plongée. Jusqu'alors, il était conjecturé que les seules surfaces minimales complètes, plongées et de topologie nie étaient le plan, l'hélicoïde et la caténoïde. Dès lors, de nombreux exemples ont été construits. Parmi eux, citons la surface de Costa-Homan-Meeks qui est la généralisation d'une surface de Costa de genre quelconque [START_REF] Homan | Embedded Minimal Surfaces of Finite Topology[END_REF] ou bien l'hélicoïde de genre 1 [START_REF] Karcher | Adding Handles to the Helicoid[END_REF] qui est en fait une hélicoïde à laquelle on a rajouté une poignée. La preuve de l'existence de ces théorèmes se fait essentiellement à l'aide de leur représentation de Weirstrass. points de recollement. Toutefois, ces techniques ne procurent des exemples qu'avec un paramètre petit ; en d'autres termes, la surface construite est presque singulière, ce qui n'est pas nécessairement le cas pour la méthode utilisant la représentation de Weirstrass.

Initiation aux outils utiles à la thèse

Notre approche concernant la théorie des surfaces (ou hypersurfaces) minimales se base essentiellement sur des méthodes d'analyses propres aux diérentes équations aux dérivées partielles qui peuvent intervenir. Ces dernières sont des EDP de même nature que l'équation développée par Lagrange (0.0.1).

En particulier, comme cela est le cas dans les chapitres I, II et III, nous séparons l'analyse en deux parties. En eet, d'une part, nous étudions les propriétés d'injectivité ou de surjectivité des linéarisés des opérateurs que nous rencontrons. D'autre part, on traite les termes restants (que nous qualions de terme d'erreur) qui regroupent les termes quadratiques et supérieurs à l'aide de théorèmes d'inversion locale, de fonctions implicites ou de points xes, l'idée consistant à dire que ces termes sont négligeables devant le terme linéaire et que l'on peut bouger un peu ce dernier de telle sorte qu'il compense l'erreur commise.

Il s'avère que pour les exemples que nous voulons construire, les opérateurs cinommés sont en général dénis sur des espaces de fonctions qui sont elles-mêmes dénies soit au-dessus d'un domaine non régulier comme c'est le cas dans le chapitre I (c'est un triangle), soit sur des domaines non compacts comme c'est le cas pour les trois chapitres suivants. C'est la raison pour laquelle nous privilégions le travail dans des espaces à poids. Ces derniers sont des espaces de fonctions dont le comportement est en quelque sorte prescrit par un terme de croissance ou de décroissance : par exemple, pour des triangles, on impose que le comportement près des sommets soit au pire d'ordre r δ pour un certain réel δ où r représente la distance à un sommet ; pour des cylindres du type M × R, on impose un comportement du type e -δt où t est la seconde coordonnée dans M × R. Il est à noter que dans le cas du triangle, si on eectue un changement de variable r = e -t , les espaces à poids associés peuvent être considérés comme des espaces à poids sur des fonctions dénies sur des domaines non compacts. Nous donnons une dénition pour illustrer cette notion dans un cadre L 2 mais en pratique, nous utiliserons plutôt des cadres de régularité hölderienne.

Dénition 1 Si C = M × R + est un demi-cylindre et δ est un nombre réel, on dénit l'espace à poids L 2 δ (C) comme étant L 2 δ (C) := e δt L 2 (C) , où t désigne la seconde coordonnée de M × R.

De façon générale, l'analyse d'un opérateur linéaire L d'ordre deux sur un cylindre C = M × R se fait tout d'abord par l'étude de ses racines indicielles qui sont dénies comme suit.

Dénition 2 Un nombre réel δ est appelé racine indicielle en +∞ de l'opérateur linéaire L s'il existe une fonction v de classe C 2 sur C et un nombre δ < δ tels que les deux assertions suivantes soient vériées : lim inf v L ∞ (M ×{t}) > 0 et lim e -δ t L e δt v = 0 quand t tend vers +∞.

En particulier, on en déduit que la fonction L e δt v est négligeable devant e δt . En pratique, nous déterminerons certaines racines indicielles en utilisant des éléments du noyau de L. Le rôle des racines indicielles est primordiales. On peut montrer que sous certaines hypothèse sur l'opérateur L, ce dernier a de très bonnes propriétés si on le considère comme un opérateur de L 2 δ (C) dans lui-même du moment que δ n'est pas une racine indicielle : des propriétés de type Fredholm peuvent être prouvées et des arguments de dualité peuvent être utilisés pour relier la surjectivité à l'injectivité, etc... Dans nombre d'articles est utilisée la théorie des opérateurs sur des espaces à poids. Nous donnerons de nombreuses références par la suite. Toutefois, un exposé complet de celle-ci pourra être trouvée dans les lectures [START_REF] Pacard | Lectures on Connected Sum Constructions in Geometry and Nonlinear Analysis[END_REF] qui traitent de l'analyse sur des variétés ayant un nombre ni de bouts de type cylindrique.

Le chapitre V se distingue des autres chapitres de par la nature de la construction que nous faisons. Celle-ci repose essentiellement sur le principe du maximum et le principe de réection. Nous en rappelons les énoncés se reporter à [GT01, Theorem 3.3] ou [START_REF] Colding | Minimal submanifolds[END_REF]1.3] pour le principe du maximum, à 1 [ST, Lemma 3.1] pour le principe de réexion.

Théorème 1 (Principe du maximum) Soit Σ 1 et Σ 2 deux hypersurfaces minimales dans R n ×R telles que Σ i est le graphe d'une fonction u i : D ⊂ R n -→ R où D est un compact. Alors : 1) si le bord de Σ 1 est au dessus du bord de Σ 2 , la surface Σ 1 est au-dessus de Σ 2 ;

2) si Σ 1 et Σ 2 sont tangentes en un point p qui appartient à l'intérieur de ces deux surfaces et que l'une est au-dessus de l'autre, alors Σ 1 et Σ 2 sont égales.

Théorème 2 (Principe de réexion)

Soit Ω ⊂ R n un domaine dont la frontière contient un ouvert V d'un hyperplan H et supposons que Ω est situé de l'un des deux côtés de H et que ∂Ω ∩ H = V . Soit s la réexion orthogonale de R n par rapport à H et u : Ω -→ R une solution à l'équation des graphes minimaux qui est continue sur Ω ∪ V telle qu'elle s'annule sur V . Alors u peut être analytiquement prolongée à travers V en une fonction u : Ω ∪ V ∪ s (Ω) -→ R qui satisfait également l'équation des graphes minimaux en posant u (p) = u (p) when p ∈ Ω ∪ V, -u (s (p)) when p ∈ s (Ω) .

Présentation des travaux eectués

Le parti pris est de formuler les diérents résultats obtenus de façon indépendante. En particulier, les chapitres II et III, même s'ils sont légèrement redondants, doivent être considérés comme deux prépublications diérentes.

Chapitre I.

Construction de polygones minimaux dans R 3

Bien que ce ne soit pas le résultat essentiel de ma thèse, j'ai choisi de présenter ce chapitre en premier lieu car il est à mon sens un moyen ecace de se familiariser avec la théorie des espaces à poids et d'illustrer les propriétés énoncées dans [START_REF] Pacard | Lectures on Connected Sum Constructions in Geometry and Nonlinear Analysis[END_REF].

Nous présentons donc ici la construction de surfaces minimales dans l'espace euclidien R 3 de type polygonal. Par polygone, nous voulons signier que la surface construite est compacte et sa frontière est de classe C 2,α par morceaux et ne présente qu'un nombre ni de points singuliers.

Pour cela, nous déformons un polygone plat P que l'on suppose inclus dans le plan horizontal {x 3 = 0} de R 3 . Nous supposons qu'il a m sommets. Il est à noter que des résultats de déformation avaient déjà été obtenus par Brian White [START_REF] White | The Space of m-dimensional surfaces that are stationary for a parametric elliptic functional[END_REF] pour des surfaces à bord susamment régulier. L'idée de la preuve dans les deux cas consiste à appliquer un théorème des fonctions implicites qui utilise les propriétés de l'opérateur de Jacobi J associé. Toutefois, dans notre cas, celui-ci n'est autre que le Laplacien classique car nous avons choisi un polygone plat.

Comme nous l'avons déjà dit plus haut, le rôle des espaces à poids est primordial pour traiter les singularités que constituent les sommets du polygone P. D'une certaine manière, ce changement de point de vue transforme ce dernier en une variété de dimension 2 qui a m bouts de type cylindrique. Cela consiste à dire que la croissance d'une fonction u dénie sur P est typiquement r δ i pour un certain nombre réel δ où r i désigne la distance au i-ème sommet. Le lecteur remarquera que, puisque l'on travaille a priori avec des petites déformations, le paramètre de poids δ sera choisi positif de telle façon à ce que r δ tende vers 0 quand on s'approche de l'un des sommets.

Par exemple, pour tout m-uplet δ = (δ i ), on peut dénir l'espace à poids L ∞ δ (P) comme l'espace des fonctions u de L ∞ loc (P) telles que la norme

u L ∞ δ (P) = i r -δ i i u L ∞ (P)
xviii soit nie. Pour la dénition un peu plus technique des espaces à poids C 2,α δ (P) de type Hölder, nous renvoyons à la section 3 du chapitre dont il est question.

Le théorème que nous prouvons peut être résumé comme suit.

Théorème 3

Notons 0 < ω i < 2π l'angle au i-ème sommet. Alors pour tout m-uplet δ qui satisfait ∀i,

δ i ∈ [1, 2] ∩ 0, π ω i ,
si Z : P -→ R 3 est un champ de vecteur de classe C 3 susamment petit, il existe une unique fonction u dans l'espace à poids C 2,α δ (P) qui s'annule au bord telle que la surface P u,Z dont le graphe est donné par le graphe p ∈ P -→ p + Z (p) + u (p) e 3 soit minimale, où e 3 est le vecteur unitaire vertical qui pointe vers le haut de R 3 .

Il est intéressant de noter au passage que le bord du polygone minimal P u,Z alors construit est donné par le graphe de p -→ p + Z (p) .

La condition sur les poids vient essentiellement de deux arguments diérents.

• L'inégalité δ 2 provient du fait que lors de notre démonstration, un point légèrement technique consiste à vérier qu'un certain opérateur H doit envoyer l'espace à poids de paramètre δ dans l'espace à poids δ -2 où 2 est le m-uplet (2, . . . , 2). • D'autre part, l'inégalité δ i 1 est à considérer comme étant plutôt une condition sur l'angle ω i qui doit, pour qu'un δ i convenable existe, être plus petit que π. La raison en est que dans ce cas, on ne peut plus s'attendre à ce que la surface minimale construite soit un graphe au-dessus d'un domaine que l'on souhaite prescrire nous renvoyons pour cela à la dernière remarque du chapitre I.

Chapitre II.

Construction d'hypersurfaces minimales de type Riemann dans R n × R Ce chapitre constitue la partie la plus importante de mon travail et correspond à la prépublication [START_REF] Coutant | Riemann minimal hypersurfaces in R n × R[END_REF].

Les surfaces minimales découvertes par Riemann forment une famille à 1 paramètre de surfaces qui sont feuilletées par des cercles horizontaux. Si des caractérisations de telles surfaces ont été développées dans [START_REF] Homan | Embedded minimal annuli in R 3 bounded by a pair of straight lines[END_REF] et [MPR], nous nous intéressons plutôt à la généralisation de l'existence de ce type de surfaces. Le premier exemple autre que celui de Riemann a été produit par F. Wei [START_REF] Wei | Adding handles to the Riemann examples[END_REF] dans R 2 × R. Celui-ci consiste en une surface périodique, présentant de nombreuses symétries, à savoir une symétrie centrale et une symétrie par rapport au plan vertical {x 1 = 0}, telle que les niveaux 2l et 2l + 1 sont reliés entre eux par 1 cou tandis que les niveaux 2l + 1 et 2l + 2 sont reliés entre eux par 2 cous. Le lecteur pourra en trouver une illustration se reporter à la gure III.1 page 98.

Dans R 2 × R, des cas très généraux ont été prouvés par M. Traizet [START_REF] Traizet | Adding handles to riemann minimal examples[END_REF] et [START_REF] Traizet | An embedded minimal surface with no symmetries[END_REF]. Dans le premier article, il prouve que sous certaines contraintes de conguration géométrique des points où sont placés les cous, à savoir les conditions équilibrée et non dégénérée, on peut produire des exemples de surfaces de type Riemann périodiques avec un nombre arbitraire de cous. Dans le second article, il prouve que l'on peut produire, sous des contraintes similaires, des surfaces de type Riemann non périodiques avec un nombre ni de bouts et également un nombre arbitraire de cous. Des exemples numériques ont été fournis et le lecteur pourra trouver des illustrations dans [Tra] Encore plus récemment, en collaboration avec F. Morabito [START_REF] Morabito | Non-periodic Riemann examples with handles[END_REF], il a prouvé l'existence de ce type de surface non périodique ayant un nombre inni de bouts. La méthode utilisée repose en grande partie sur les représentations de Weirstrass et ne peuvent donc pas s'appliquer au cas de R n × R.

Toutefois, par des méthodes de recollement issues de l'analyse d'opérateurs, S.

Fakhi et mon directeur de thèse F. Pacard [START_REF] Fakhi | Existence of complete minimal hypersurfaces with nite total curvature[END_REF] ont prouvé l'existence d'hypersurfaces de type Riemann dans R n × R, avec n supérieur ou égal à 3, ayant un nombre ni de bouts, telles que deux niveaux sont reliés entre eux par 1 cou. Plus récemment a été prouvée dans [KP07] l'existence de l'exemple de Riemann en plus grande dimension : la surface est périodique avec une innité de bouts reliés deux à deux par 1 cou. En revanche, contrairement au cas n = 2, elles ne sont pas feuilletées par des sphères horizontales.

Mon travail a consisté à obtenir des résultats similaires à ceux de M. Traizet en dimension plus grande. La méthode utilisée fait en quelque sorte la jonction entre xx ses travaux et ceux de F. Pacard. En eet, bien que la méthode que nous utilisons soit diérente en ce qui concerne l'analyse, nous avons obtenu des résultats tout à fait comparables à ceux de M. Traizet en ce qui concerne les congurations de points et tout particulièrement les conditions équilibrée et non dégénérée et l'idée de la preuve qui consiste à procéder à divers recollements.

Il est à noter que nous obtenons des congurations pour lesquelles nous avons un degré de liberté supplémentaire. Cela est essentiellement dû au fait que les caténoïdes de R 2 × R et ceux de R n × R avec n > 2 n'ont pas le même type de comportement.

En eet, si le caténoïde classique présente une croissance logarithmique, le caténoïde en dimension supérieure est en revanche asymptote à deux hyperplans horizontaux.

Ainsi, si l'on cherche dans R 2 × R à obtenir des surfaces à bouts horizontaux, il faut que la contribution des caténoïdes, qui est du type i a i ln (|x|)

sur un bout R 2 × {s i }, où les a i correspondent aux tailles des caténoïdes que l'on placera au i-ème point du i-ème niveau, soit telle que la limite quand |x| tend vers l'inni soit nie. En d'autres termes, il faut nécessairement imposer la condition i a i = 0 à tous les niveaux, ce qui n'est pas le cas en dimension supérieure. Cela explique par exemple que pour la surface de Wei, la distance entre deux niveaux reliés par un seul cou soit deux fois plus grande que la distance entre deux niveaux reliés par deux cous.

Comme je l'ai dit ci-dessus, nous pouvons produire des surfaces uniquement sous certaines conditions. Ces dernières sont en réalité formulées en terme de forces. Il faut comprendre la force en un point de recollement comme l'interaction qu'il y a entre ce point et les autres points de recollement. Notez au passage que cette force apparait de façon naturelle comme le terme linéaire du développement limité des fonctions de Green. Ces dernières sont des fonctions harmoniques dont le Laplacien est une somme de masses de Dirac. Nous prouvons que leur existence et leur comportement sont étroitement liés à l'existence des caténoïdes. Plus de détails à ce sujet seront donnés dans le chapitre II.

En revanche, il semble essentiel dans cette introduction de donner plus d'informations concernant les forces. On se donne, pour chaque niveau k, un nombre ni n k de points p k,j de R n avec 1 j n k . Géométriquement, ces points sont les lieux où l'on procède aux recollements. Pour illustrer, l'exemple dû à Riemann est tel que n vaut 2, qu'il y a une innité de niveaux k ∈ Z, que n k vaut 1 et que l'on obtient p k+1,1 à partir de p k,1 grâce à une translation t hor de R 2 qui ne dépend pas du niveau auquel on se situe. Pour chaque niveau, on se donne un paramètre de poids a k qui est un nombre réel strictement positif. Géométriquement, ce paramètre est relié à la distance entre les niveaux k et k + 1 ; c'est la même chose que de dire que a k détermine la taille des caténoïdes que l'on recolle entre ces deux niveaux. On prouve que celle-ci est de l'ordre de (a k ) 1 n-1 dans R n × R avec n 3. Dans ce cas, contrairement à ce qui se passe en dimension inférieure, on peut choisir les poids de façon indépendante, ce qui procure un degré de liberté supplémentaire comme annoncé. J'invite le lecteur à se reporter à la gure 3 pour avoir une idée de l'allure de l'objet que l'on souhaite construire. On dénit la force f (p, q) d'interaction entre deux points comme étant le vecteur f (p, q) := (n -2) p -q |p -q| n et la force totale F k,j qu'exercent tous les autres points sur le point p k,j comme étant le vecteur

F k,j := 2 n k i=1 i =j a k f (p k,j , p k,i ) - n k-1 i=1 a k-1 f (p k,j , p k-1,i ) - n k+1 i=1 a k+1 f (p k,j , p k+1,i ) .
Ainsi, celle-ci dépend uniquement de l'interaction avec les points du même niveau (avec un facteur 2) et de celle avec les niveaux juste au-dessus et juste en-dessous.

Dénition 4 On dit que la conguration de points pondérés {(a k , p k,j )} est équilibrée si toutes les forces sont nulles.

xxii Le sens géométrique de ces forces pour les surfaces de type de Riemann peut être interprété comme étant la façon dont on penche les cous lors du recollement.

En eet, si on fait un zoom sur l'un des cous de l'exemple classique de Riemann, on obtient la gure 4. On constate eectivement dans ce cas que les cous ne sont pas verticaux mais légèrement penchés dans une direction privilégiée, à savoir la direction opposée à celle donnée par le terme horizontal de la période. Le fait que la conguration soit balancée correspond géométriquement au fait que les cous ne peuvent pas être tordus , c'est-à-dire que leur axe n'est pas courbé.

La condition de non dégénérescence, quant à elle, est légèrement plus technique.

On la résume dans la dénition suivante.

Dénition 5 Une conguration initiale de points est dite non dégénérée si l'application F qui associe, à une conguration, l'ensemble des forces totales F k,j est de rang maximal en cette conguration.

Nous explicitons le rang maximal dont il est question dans l'introduction du chapitre. Essentiellement, le fait que F ne soit pas de rang plein provient du groupe de symétries G inhérent aux surfaces que l'on veut construire : parmi celles-ci citons notamment les rotations, les dilatations et les translations. Géométriquement, le fait que la condition soit non dégénérée se traduit par la capacité à pouvoir bouger légèrement les points et les poids de la conguration initiale de façon à prescrire n'importe quelle force arbitrairement petite.

Le théorème d'existence que nous prouvons est le suivant.

Théorème 4

Étant donnée une conguration balancée et non dégénérée, on peut construire une famille à 1 paramètre d'hypersurfaces minimales (S ) de type Riemann dans R n × R telles que les cous entre deux niveaux consécutifs sont placés dans un voisinage des points de la conguration initiale. De plus, la distance entre deux niveaux est de l'ordre de a 1/(n-1) k 1/(n-1) .

Nous terminons le chapitre en donnant quelques exemples.

Chapitre III.

Construction de surfaces minimales de type Riemann-Wei dans S 2 × R Ce chapitre se consacre à nouveau aux surfaces minimales de type Riemann, mais cette fois-ci dans S 2 × R. C'est l'objet de la prépublication [START_REF] Coutant | The Wei-Riemann minimal surface in S 2 × R[END_REF]. Nous démontrons le théorème suivant.

Théorème 5

Il existe une famille de surfaces minimales de type Riemann dans S 2 × R qui correspond à l'analogue de la surface de Wei.

Tout d'abord, précisons ce que l'on entend par analogue de la surface de Wei .

Dans un article non publié [START_REF] Wei | Adding handles to the Riemann examples[END_REF], F. Wei établit l'existence dans R 2 × R d'une surface minimale simplement périodique avec une innité de bouts plans qui sont reliés entre eux par alternativement 1 cou et 2 cous nous renvoyons à la gure III.1 page 98. Le théorème prouvé pendant cette thèse stipule donc qu'une telle surface existe dans S 2 × R : on peut la voir comme une surface périodique (dans un sens que l'on précise dans le chapitre III) qui relie une innité de sphères par alternativement 1 cou et 2 cous.

La raison pour laquelle nous n'avons pas démontré un théorème plus global de type Traizet comme nous l'avons eectué dans le chapitre II est que la géométrie de S 2 complique techniquement le problème.

Ceci dit, nous utilisons à nouveau des arguments faisant appel à des conditions balancées et non dégénérées, même si cette dernière condition n'est pas explicitée car elle est cachée dans la preuve de la dernière proposition du chapitre.

Chapitre IV.

Paramétrisation des surfaces minimales de Riemann dans S 2 × R Ce court chapitre se consacre à l'étude de la paramétrisation de l'analogue de l'exemple de Riemann dans S 2 × R.

Son existence a déjà été démontrée par L. Hauswirth [START_REF] Hauswirth | Minimal surfaces of Riemann type in three-dimensional product manifolds[END_REF]. L'intérêt du chapitre réside essentiellement dans le fait qu'il permet d'obtenir une description relativement précise de ladite surface. De plus, elle a le mérite d'être très parlante s'agissant de sa représentation géométrique.

En particulier, nous en déduisons l'existence de l'analogue de la caténoïde dans S 2 × R. De plus, nous démontrons que les cous reliant deux niveaux de la surface de Riemann ressemblent à des caténoïdes penchés comme cela est prouvé dans [START_REF] Hauswirth | Higher genus riemann minimal surfaces[END_REF].

Chapitre V.

xxiv Construction d'hypersurfaces de Scherk dans R n × R Ce dernier chapitre a été placé en dernier car les techniques utilisées pendant les preuves dièrent complètement des précédentes. Nous y démontrons l'existence d'hypersurfaces de type Scherk dans R n × R avec n 3.

Je tiens à souligner que ce chapitre n'est pas complet au sens où j'ai arrêté de m'y consacrer au bout d'un an. En eet, il s'agit de mon premier travail eectué pendant la thèse. Malheureusement, nous nous sommes rendu compte en n de première année qu'un article d'E. Tomaini [START_REF] Tomaini | Innite boundary value problems for surfaces of prescribed mean curvature[END_REF] 

Introduction

The theory of minimal surfaces in the 3-dimensional Euclidean space has been specically developed for the last thirty years. In particular, numerous examples of perturbations of minimal surfaces have been produced. For example, in [START_REF] White | The Space of m-dimensional surfaces that are stationary for a parametric elliptic functional[END_REF],

B. White proved that if a compact minimal surface has smooth boundary, then one can perturb its boundary keeping the surface minimal. One of the most useful application of this kind of perturbation is to construct new minimal surfaces by performing a connected sum of two dierent surfaces Σ 1 and Σ 2 : the idea is to take o a small disk in Σ 1 and Σ 2 and to deform the punctured minimal surfaces we obtain in order to match their boundary data. For more details, we refer to [START_REF] Mazzeo | Constant mean curvature surfaces with delaunay ends[END_REF],

[MPP01] or [START_REF] Pacard | Construction de surfaces à courbure moyenne constante[END_REF].

In this chapter, we are interested in the perturbation of specic minimal surfaces, namely the polygons. The type of result we obtain could be expected to be similar to the one of B. White, but the fact there are vertices modies its proof.

The main idea of the method lies in applying a well chosen implicit function theorem. It amounts to study the Laplacian operator which is the linearization of the mean curvature about domains with singularities. P. Grisvard in [START_REF] Grisvard | Singularities in Boundary Value Problems[END_REF] or M. Dauge in [START_REF] Dauge | Elliptic Boundary Value Problems on Corner Domains[END_REF] already studied this operator around polygons. Nevertheless, it seems that the theory of weighted spaces proves its eciency in our case. We refer to the lectures [START_REF] Pacard | Lectures on Connected Sum Constructions in Geometry and Nonlinear Analysis[END_REF] for main results.

In the following, we only consider the case of a triangle but it can be easily extended to the case of polygons. Let T be a triangle in R 3 such that its interior T is non empty and T is closed, that is to say T = T . Without loss of generality, we assume that T is horizontal, in other words, we assume that T belongs to the plane {x 3 = 0}. Of course, since T is at, it is a minimal surface. To perform a perturbation, we introduce two types of terms, namely :

• normal perturbation given by

p ∈ T -→ p + u (p) e 3 ,
where e 3 = (0, 0, 1) is the unit normal vector of T that points upwards and u is a regular enough function which vanishes on the boundary ∂T of the triangle ; • any perturbation given by

p ∈ T -→ p + Z (p) ,
where Z : T -→ R 3 is a regular enough vector eld. The reader may wonder why we do not have directly chosen a vector eld Z that would hold the component u (p) e 3 . The reason for this is that u corresponds to the classical perturbation parameter (usually, we consider normal perturbations) while Z has to be understood as a parameter that transforms the boundary of the triangle. We then denote by T u,Z the surface in R 3 which is the graph of t u,Z whose denition is

t u,Z : p ∈ T -→ p + u (p) e 3 + Z (p) ∈ R 3 .
Notice that for u and Z small enough, T u,Z is an embedded surface with 3 vertices.

We now state the main theorem 1 . Theorem 0.0.1

For all δ = (δ 1 , δ 2 , δ 3 ) such that ∀i ∈ {1, 2, 3} , δ i ∈ [1, 2] ∩ - π ω i , π ω i
where the ω i 's denote the angles of T , there exists a neighbourhood U of 0 in C 2,α δ,0 (T , R), a neighborhood V of 0 in C 2,α (T , R 3 ) and an application ϕ : V -→ U such that T u,Z is a minimal surface with (u, Z) ∈ U × V if and only if u = ϕ(Z).

The minimal surface equation

In this section, we establish the formula which ensures that the deformed triangle T u,Z is minimal.

The Jacobi operator J T about T is the linearization of the mean curvature operator. It reads

J T = ∆ g T + |A g T | 2
where ∆ g T is the Laplace Beltrami operator on T endowed with metric g T and A g T is the shape operator of T . But the metric on T is nothing but the one induced by the Euclidean metric and since T is at, we nd that

∆ g T = ∆ R 2 and A g T = 0.
1. See the denition of the weighted spaces C 2,α δ in section 2.1.

According to [START_REF] Barbosa | Stability of Hypersurfaces with Constant Mean Curvature[END_REF], the mean curvature of the surface T u,0 obtained performing only normal perturbations is given by

H (T u,0 ) = ∆u + Q (u) ,
where Q is a non linear term that collects all terms of order larger or equal to 2. When there is no confusion, we note ∆ = ∆ R 2 . Lemma 1.0.2 Let u and Z be small enough. Then the mean curvature of T u,Z is given by

H (T u,Z ) = ∆u + ∆ Z, e 3 R 3 + Q (u, Z) . (1.0.1)
where Q is a non linear expression.

Proof

We give the proof in our case because it is very simple. Notice that it is enough to prove that the linear term in Z is exactly ∆ Z, e 3 .

Assume in the rst place that Z is always vertical, that is to say that Z (p) = Z 3 (p) e 3 . Then Z is a normal perturbation term and the linear term is ∆Z 3 which is equal to Z, e 3 .

Assume in the second place Z is tangent to the triangle. Then the surface T 0,Z lies in the horizontal plane x 3 = 0, thus it is minimal. It is the same to say H (T 0,Z ) vanishes.

Corollary 1.0.3 The surface T u,Z is minimal if and only if the relation

∆u + ∆ Z, e 3 R 3 = -Q (u, Z) (1.0.2) holds true.

Analysis in weighted spaces

The weighted function spaces provide a powerful theory of analysis on noncompact domains or on domains with singularities. The idea is to reduce to analysis on an innite cylinder with prescribed asymptotic behaviour at innity. Denote by S 1 , S 2 and S 3 the vertices of T , chosen in counterclockwise. For all i in {1, 2, 3}, we dene ω i to be the oriented angle in S i and B i to be the open set of T such that

B i := {P ∈ T : P -S i 2 < 1} .
Without loss of generality, we can assume that the sides of T are big enough to ensure the B i do not intersect themselves. Finally, we dene K to be the compact set

K := T \ ∪ i B i .
Denote by (x, y) Cartesian coordinates on T . If P ∈ B i , we can choose to work with polar coordinates (see the gure I.1) (r i , θ i ) or cylindrical coordinates (t, θ) with the help of following identications :

(x, y) ∈ B i ⇐⇒ (x, y) = (r i cos θ i , r i sin θ i ) with (r i , θ i ) ∈ B i,pol ⇐⇒ (x, y) = (e -t i cos θ i , e -t i sin θ i ) with (t i , θ i ) ∈ C i where B i,pol is the open set (0, 1)×(0, ω i ) and C i is the half-cylinder (0, +∞)×(0, ω i ).
Note that we have assumed without loss of generality that the line (S i S i+1 ) coincides with the x-axis. By using cylindrical coordinates, we notice that one can consider the triangle as a manifold with three cylindrical ends : it is exactly the framework used in [START_REF] Pacard | Lectures on Connected Sum Constructions in Geometry and Nonlinear Analysis[END_REF]. In addition to that, the cylindrical coordinates are conformal. 

B 2 B 3 B 1 S 1 S 2 S 3 K ω 3 ω 1 P ω 2 θ 1
(x, y) ∈ T u car : (x, y) -→ u (x, y) polar (r, θ) ∈ B pol u pol : (r, θ) -→ u (r cos θ, r sin θ) cylindrical (t, θ) ∈ C u cyl : (t, θ) -→ u (e -t cos θ, e -t sin θ)
Then the expression of the metric or the Laplace-Beltrami operator dened by

∆ g = 1 √ det g ∂ ∂x j det g g ij ∂ ∂x i ,
where (g ij ) i,j denotes the inverse of the matrix (g ij ) i,j , depends of our choice of coordinates. We sum up this in the following 

g car = dx 2 + dy 2 ∆ car = ∂ 2 ∂x 2 + ∂ 2 ∂y 2 polar g pol = dr 2 + r 2 dθ 2 ∆ pol = ∂ 2 ∂r 2 + 1 r ∂ ∂r + ∂ 2 ∂θ 2 cylindrical g cyl = e -2t (dt 2 + dθ 2 ) ∆ cyl = 1 e -2t ∂ 2 ∂t 2 + ∂ 2 ∂θ 2
The most useful expression is undoubtedly the last one because it gives us a way to highlight the asymptotic behaviour when one approaches one of the vertices.

Weighted spaces

As announced, the theory of weighted spaces is very useful in our study because they provide an ecient tool to study analysis on manifolds with cylindrical ends.

Denition 2.1.1 Recall that the cylinder C is dened to be (0, +∞) × (0, ω).

Let δ ∈ R, k ∈ N and α ∈ (0, 1). We dene the weighted Hölder space C k,α δ (C) with weight δ over C by

C k,α δ (C) := e δt C k,α (C) ,
endowed with the norm

u cyl C k,α δ (C) := e -δt u cyl C k,α (C) ,
where the classical Hölder norm is dened to be

v C k,α (D) := k i=0 |β|=i ∂ β v cyl ∂z β L ∞ (D) + |β|=k sup p =q∈D ∂ β v cyl ∂z β (p) - ∂ β v cyl ∂z β (q) p -q α .
for any domain D ⊂ R 2 and any v : D -→ R.

Remark 2.1.2 Note that we can also dene weighted Hölder spaces on B pol by writing

u pol ∈ C k,α δ (B pol ) ⇐⇒ u cyl ∈ C k,α -δ (C) .
The idea is that a function u belongs to the weighted space if u and its derivatives ∂ k u ∂r k are bounded by a constant times r δ-k . Typically, we want to deal with bounded perturbations to build a new minimal surface arbitrarily close to T , so we do not want that u explodes near a vertice S. Therefore we choose δ > 0 to ensure lim r→0 r δ = 0.

With the help of the above denition, it is natural to dene weighted Hölder spaces on the triangle. Denition 2.1.3 Let δ = (δ 1 , δ 2 , δ 3 ) ∈ R 3 . We dene the weighted Hölder space C k,α δ (T ) to be the set

C k,α δ (T ) := u ∈ C k,α (T ) : ∀i ∈ {1, 2, 3} , u cyl,i ∈ C k,α δ i (C i ) , endowed with the norm u C k,α δ (T ) := u |K C k,α (K) + 3 i=1 u cyl,i C k,α δ i (C i ) .
Remark 2.1.4 For our study, it is also relevant to dene the weighted spaces with vanishing data boundary

C k,α δ,0 (C) := u ∈ C k,α δ (C) : u |∂C = 0 together with C k,α δ,0 (T ) := u ∈ C k,α δ (T ) : u |∂T = 0 .

2.2

The Laplace-Beltrami operator in Hölder weighted spaces over a cylinder

In order to become familiar with weighted spaces, we introduce the following property.

Property 2.2.1 Let k be a positive integer such that k 2.

Then if u cyl belongs to C k,α -δ (C), the function ∆ cyl u cyl belongs to C k-2,α -δ+2 (C).

Proof

It does not represent any diculty, but it is a way to have a better understanding of these spaces. Therefore assume that u cyl belongs to C k,α -δ (C). There exists v cyl ∈ C k,α (C) such that u cyl = e -δt v cyl .

We deduce from this relation that

∂ 2 u cyl ∂t 2 = e -δt δ 2 v cyl -2δ ∂v cyl ∂t + ∂ 2 v cyl ∂t 2 and ∂ 2 u cyl ∂θ 2 = e -δt ∂ 2 v cyl ∂θ 2 .
Consequently, there exists exists a function w cyl ∈ C k-2,α (C) such that

∆ cyl u cyl = 1 e -2t ∂ 2 u cyl ∂t 2 + ∂ 2 u cyl ∂θ 2 = e (-δ+2)t w cyl (2.2.3)
and the conclusion follows.

We are interested in the study of the following operator

∆ cyl,-δ : C k,α -δ,0 (C) -→ C k-2,α -δ+2 (C) u cyl -→ 1 e -2t ∂ 2 u cyl ∂t 2 + ∂ 2 u cyl ∂θ 2 .
Instead of giving results about ∆ cyl,-δ , we rather study the elliptic operator L cyl,-δ dened by

L cyl,-δ : u cyl ∈ C k,α -δ,0 (C) -→ e -2t ∆ cyl,-δ u cyl ∈ C k-2,α -δ (C) .
Note that L cyl is nothing but the Laplace-Beltrami operator on C endowed with metric dt 2 + dθ 2 which satises conditions that appear in [START_REF] Pacard | Lectures on Connected Sum Constructions in Geometry and Nonlinear Analysis[END_REF].

The role of indicial roots is fundamental in studying the mapping properties of an elliptic operator. They are deeply linked to mapping properties of the operator that acts on weighted spaces. 

lim t→+∞ inf u cyl L ∞ ({t}×(0,ω)) > 0 and e -δ t L cyl e δt u ----→ t→+∞ 0.
We denote by Ind (L cyl ) the associated set and by Isom (L cyl ) the set dened to be

Isom (L cyl ) := δ : ∀δ ∈ Ind (L cyl ) ∩ R + , δ ∈ (δ , -δ ) .
The set Isom (L cyl ) is essential in our study : we make use of its denition in order to establish that some operators are isomorphisms (see [Pac09, Proposition 12.4.3]).

Proposition 2.2.3 For all δ such that -π ω < δ < π ω , the operator L -δ is an isomorphism.

Of course, we directly deduce from the above proposition an analysis result for the Laplace-Beltrami operator.

Corollary 2.2.4 For all δ such that -π ω < δ < π ω , the operator ∆ cyl,-δ is an isomorphism.

Proof

The proof is organized as follows : we determine the indicial roots of L cyl , we prove that the operator L δ is injective when δ is negative and we conclude by using duality results.

First step the spectrum of the Laplacian over (0, ω). Analysis about the cylinder C = R + × (0, ω) can be done with the help of a Fourier type decomposition of (0, ω). We thus introduce the operator l ω dened to be

l ω : C 2 0 ((0, ω)) -→ C 0 ((0, ω)) ϕ -→ -d 2 ϕ dθ 2 ,
where C 2 0 ((0, ω)) is the set of C 2 functions which vanish on the boundary {0, ω}. Then it is easy to check that the spectrum of l ω is given by

Sp (l ω ) = m 2 π 2 ω 2 : m ∈ N * ,
with associated eigenfunctions ϕ m,ω : θ -→ sin mπ ω θ .

Second step indicial roots. Let m ∈ N * . We use the spectrum of l ω in order to study the ODE 

d 2 dt 2 - m 2 π 2 ω 2 = 0.
Ind (L cyl ) = ± mπ ω : m ∈ N * .
(2.2.4) Therefore, we obtain

Isom (L cyl ) = - π ω , π ω .
Third step injectivity. Let us x some δ 0 > 0 and u cyl ∈ ker (L -δ 0 ). Then u cyl is harmonic over C and there exists v cyl ∈ C k,α (C) such that

u cyl = e -δ 0 t v cyl .
The idea is to apply the maximum principle to innity : let M > 0 and dene the bounded cylinder C M to be

C M := (0, M ) × (0, ω) ⊂ C.
Then the restriction u cyl |C M of u cyl to C M is harmonic and its boundary data satises

u cyl |∂C M = 0 over ∂C M \ ({M } × (0, ω)) , u cyl |∂C M e -δ 0 M v cyl L ∞ (C) over {M } × (0, ω) .
According to the classical maximum principle, we then obtain sup

C M |u cyl | = sup C M u cyl |∂C M e -δ 0 M v cyl L ∞ (C) .
Since it is true for all M > 0, we end up with u cyl ≡ 0 and thus, the operator L -δ 0 is injective.

Conclusion.

According to second step, there exists δ 0 > 0 such that -δ 0 ∈ Isom (L) .

But we know by third step that L -δ 0 is injective. Application of [Pac09, Proposition 12.4.3] then implies the result.

2.3

The Laplace-Beltrami operator in Hölder weighted spaces over a triangle

We make use of the above results to deduce properties of the Laplacian about the triangle.

Denition 2.3.1 We construct a partial order ≺ in R 3 by

δ ≺ δ ⇐⇒ ∀i ∈ {1, 2, 3} , δ i < δ i .
We can dene the same way , or .

We now extend the notion of indicial roots to the case of the triangle.

Denition 2.3.

2 A 3-tuple δ = (δ 1 , δ 2 , δ 3 ) is an indicial root of ∆ car if for all i ∈ {1, 2, 3}, the real number δ i is an indicial root of ∆ cyl,i : C k (C i ) -→ C k-2 (C i )
where C i = (0, +∞) × (0, ω i ). We denote their set by Ind (∆ car ) and we dene Isom (∆ car ) to be the set

Isom (∆ car ) := -δ : ∀ -δ ∈ Ind (∆ car ) , -δ 0 =⇒ δ ≺ -δ ≺ -δ ,
where 0 := (0, 0, 0).

Let -δ ∈ R 3 . Like in the previous section, we deal with the following operator :

∆ car,-δ : C 2,α -δ,0 (T ) -→ C 0,α -δ+2 (T ) ,
where 2 = (2, 2, 2). 

(∆ car ) = ± m 1 π ω 1 , ± m 2 π ω 2 , ± m 3 π ω 3 : ∀i, m i ∈ N * , (2.3.5) from what we deduce Isom (∆ car ) = 3 i=1 - π ω i , π ω i .
To deal with injectivity, let δ 0 0 and let u car ∈ ker ∆ car,-δ 0 .

Then u car ∈ C 2,α (T ), is harmonic over T , continuous 2 over T and vanishes over ∂T . By the maximum principle, u vanishes on T , ie ∆ car,-δ 0 is injective. Since there exists -δ 0 ∈ Isom (∆ car ) such that δ 0 0, the proposition 12.4.3. in [START_REF] Pacard | Lectures on Connected Sum Constructions in Geometry and Nonlinear Analysis[END_REF] implies the following one : 2. To see u car is continuous in a neighborhood of a vertex, note that for all i, u cyl,i ∈ C k,α -δi (B i ), therefore lim P →Si u car (P ) = 0 since δ i > 0.

Proposition 2.3.3 For all -δ ∈ Isom (∆ car ), ∆ car,-δ is an isomorphism.

Perturbing triangles

Recall that T u,Z is minimal if and only if equation (1.0.2) is satised. As announced, our aim is to apply an implicit function theorem. But rst, we have to dene which spaces u and Z belong to. Of course, we would like to work in weighted spaces.

In this purpose, we dene the mean curvature operator H -δ in the following proposition.

Proposition 3.0.4 Let δ ∈ R 3 a weight parameter. Then there exists a positive real number 0 > 0 such that if U -δ and V denote the open sets dened to be

       U -δ := u car ∈ C 2,α -δ,0 (T ) : u C 2,α -δ,0 (T ) < 0 , V := Z car ∈ C 3 (T , R 3 ) : Z C 3 (T ,R 3 ) < 0 ,
then the mean curvature operator

H -δ : U -δ × V -→ C 0,α -δ+2 (T ) (u, Z) -→ H (T u,Z )
is well dened for all δ such that 1 δ 2.

Remark 3.0.5 The choice of 0 is a technical condition under which the perturbed surface T u,Z is a well dened embedded surface in R 3 .

Proof

It is enough to work near one of the vertices. We omit the index i to relieve notations. The Hölder's condition : Observe that

C 3 T , R 3 ⊂ C 2,α T , R 3 .
Thus it is clear that when T u,Z is a well dened surface,

(u, Z) ∈ C 2,α -δ,0 (T ) × C 3 T , R 3 =⇒ H (T u,Z ) ∈ C 0,α (T ) .
The weight's condition : It remains to see why there is the weight -δ + 2. For example, according to [BG92, 10.6.5], the mean curvature of a surface Σ whose parametrization is given by some function f : (r, θ) -→ f (x, y) ∈ R 3 satises the relation

H = 1 2 E D + G D + 2F D (E G -F 2 ) 3/2 ,
where E, F and G are the coecients of the metric on Σ, that is to say 

E = ∂f ∂x 2 , F = ∂f ∂x ,
D = det ∂ 2 f ∂y 2 , ∂f ∂x , ∂f ∂y .
In our case, we work with the parametrization t u,Z given by t u,Z :

B i -→ R 3 (x, y) -→   x + Z 1 (x, y) y + Z 2 (x, y) A (x, y)   where A := Z 3 + u.
Then it is easy to compute the rst derivatives

∂ x t u,Z =   1 + ∂ x Z 1 ∂ x Z 2 ∂ x A   and ∂ y t u,Z =   ∂ y Z 1 1 + ∂ y Z 2 ∂ y A  
together with the second derivatives

∂ xx t u,Z =   ∂ xx Z 1 ∂ xx Z 2 ∂ xx A   , ∂ yy t u,Z =   ∂ yy Z 1 ∂ yy Z 2 ∂ yy A   and ∂ xy t u,Z =   ∂ xy Z 1 ∂ xy Z 2 ∂ xy A   .
From now on, it is useful to consider the asumptions we made about Z and u.

More precisely, one checks that

∂ w Z = O ( 0 ) , ∂ w u = O r δ-1 0 , ∂ wz Z = O ( 0 ) and ∂ wz u = O r δ-2 0 ,
where the index w or z denote an element of {x, y}. It follows that, since he weight parameter δ is chosen so that δ ∈ [1, 2],

∂ w A = O ( 0 ) and ∂ wz A = O r δ-2 0 .
We deduce from the above estimates that the induced metric is such that

E = 1 + O ( 0 ) , F = O ( 0 ) and G = 1 + O ( 0 )
while the determinants D, D and D can be written as

O ( 0 ) 1 + O ( 0 ) O ( 0 ) O ( 0 ) O ( 0 ) 1 + O ( 0 ) O r δ-2 0 O ( 0 ) O ( 0 ) = O r δ-2 0
for 0 small enough. Therefore, the mean curvature satises

H = 1 2 O r δ-2 0 (1 + O ( 0 )) 3 2 = O r δ-2 0 ,
and the result follows.

Remark 3.0.6 Indeed, the condition δ 1 is necessary. If H is well-dened, we can take Z ≡ 0 and hence :

∀u car ∈ C k,α -δ,0 (T ) , H (T ucar,0 ) ∈ C k-2,α -δ+2 (T ) .
But, recall that for graphs, the mean curvature is given by the following equation 3 is

H (T ucar,0 ) = 1 2 div   ∇u car 1 + |∇u car | 2   .
It is useful to rewrite the above equation as follows :

H (T ucar,0 ) = 1 2 1 + |∇u car | 2 ∆u car - Hess (u car ) (∇u car , ∇u car ) 1 + |∇u car | 2 .
The Laplacian term can be estimated as

∆u car = O r δ-2
while the second term satises

Hess (u car ) (∇u car , ∇u car ) = O r 3δ-4 .
Consequently, if we want H (T ucar ) to belong to the weighted space C 0,α -δ+2 (T ), it is necessary to ensure r 3δ-4 r δ-2 for small r. Thus it is necessary that the following inequality δ 1 holds true.

See for example [CM99].

3.1 Proof of theorem 0.0.1

First of all, observe that there always exists a 3-tuple δ such that

1 δ 2 together with -δ ∈ Isom (∆ car ) (3.1.6)
because for all i in {1, 2, 3}, the angle ω i is less than π and the set Isom (∆ car ) is described in (2.3). More precisely, it is easy to check that δ satises (3.1.6) if and only if for all i ∈ {1, 2, 3},

δ i belongs to [1, 2] ∩ -π ω i , π ω i
; this is why it is this condition which appears in the theorem.

The idea lies in applying an implicit function theorem to the operator H -δ we have dened in proposition 3.0.4.

First, observe that since T is minimal, H -δ satises H -δ (0, 0) = 0.

Next, according to the equation (1.0.1), we can calculate the dierential D 1 H -δ (0, 0) of H -δ in comparison with the rst variable u in (0, 0). We nd

D 1 H -δ (0, 0) : C 2,α -δ,0 (T , R) -→ C 0,α -δ+2 (T , R) u car -→ ∆ car (u car ).
Consequently, D 1 H -δ (0, 0) is nothing but the operator ∆ car,-δ . Therefore, according to the proposition 2.3.3, it is an isomorphism.

We can then apply the implicit function theorem to H -δ with which we build U in U -δ , V in V and suitable ϕ, QED.

Perturbation of polygons

Our work naturally extends to some polygons P with j vertices which are included in the plane {z = 0}. We dene in the same way the angles ω i , the sets B i or C i , the weighted spaces, and so on. . . This gives a theorem similar to theorem 0.0.1.

Theorem 3.2.1

For all -δ such that

1 δ 2 and -δ ∈ Isom (∆ car ) , there exists a neighbourhood U of 0 in U -δ ⊂ C k,α
δ,0 (P, R), a neighbourhood V of 0 in C k,α (P, R 3 ) and an application ϕ : V -→ U such that P u,Z is a minimal surface with (u, Z) ∈ U × V if and only if u = ϕ(Z).

Remark 3.2.2 Note that such a δ does not exist in general case : if one of the angles ω i is more that π in other words, if P is not convex then we can not use this above theorem. Heuristically, what happens is that if ω 1 is more than π, then we lose the property that the map is a vertical : even if the solution to the Plateau's problem exists, the surface is not a vertical graph over P.

ω i P T u,Z Figure I.2: T u,Z is not a graph over P.
Chapter II Construction d'hypersurfaces minimales de type Riemann dans

R n × R 1 Introduction

and statements of the results

The Riemann minimal surfaces or hypersurfaces form a subject that has been studied over last years. They are minimal surfaces with planar ends which are simply-periodic, embedded and complete. Usually, a Riemann minimal surface belongs to a one parameter family.

In [START_REF] Riemann | ×uvres mathématiques de Riemann[END_REF], Bernhard Riemann discovered one family of such surfaces foliated by horizontal circles in 3-dimensional Euclidean-space. Such a surface could be seen as planes which are linked to each other by one catenoid (or one neck ). Enneper in 1869 and Shiman [START_REF] Shiman | On surfaces of stationary area bounded by two circles, or convex curves, in parallel planes[END_REF] in 1956 gave a characterization of these : a minimal annulus which holds two circles in parallel planes is either a part of catenoid or a part of the Riemann example. More general characterizations have been given the last twenty years, especially by Homan, Karcher and Rosenberg [START_REF] Homan | Embedded minimal annuli in R 3 bounded by a pair of straight lines[END_REF] or Meeks, Pérez and Ros [MPR]. L. Hauswirth [START_REF] Hauswirth | Minimal surfaces of Riemann type in three-dimensional product manifolds[END_REF] proved the existence and classify the minimal surfaces foliated by horizontal constant curvature curves in R 2 × R, H 2 × R and S 2 × R.

In an unpublished paper [START_REF] Wei | Adding handles to the Riemann examples[END_REF], F. Wei builds a more general Riemann example with alternatively one neck and two necks between horizontal planes. Recently, Martin Traizet proved the existence of such families with an arbitrary number of necks and planes in [START_REF] Traizet | Adding handles to riemann minimal examples[END_REF] and [START_REF] Traizet | An embedded minimal surface with no symmetries[END_REF] (in this last paper, there is a nite number of planar ends) in the Euclidean space R 3 . With this aim, he introduces a points conguration which satises dierent hypotheses, namely the balanced and the non-degenerate conditions. The rst is necessary for existence while the second is a condition under which he can produce examples by using implicit function theorem. The Weirstrass representation of minimal surface plays a signicant role in the construction and the same method cannot be applied in a higher dimensional case. Besides, it will be shown that in R n+1 with n 3, there are more degrees of freedom because the catenoid lies between two horizontal hyperplanes while the Chapter II. Construction d'hypersurfaces minimales de type Riemann dans R n × R catenoid in R 3 is not bounded in any direction ; equivalently, to enforce the surfaces to be embedded, the ux at innity has to vanish. More recently, F. Morabito and M. Traizet [START_REF] Morabito | Non-periodic Riemann examples with handles[END_REF] proved the existence of non-periodic minimal surfaces with an innite number of parallel ends. In [START_REF] Hauswirth | Higher genus riemann minimal surfaces[END_REF], L. Hauswirth and F. Pacard add genus to the Riemann example (1 genus 37) : these surfaces have two ends which are asymptotic to halves of Riemann's surface.

In papers by S. Fakhi and F. Pacard [START_REF] Fakhi | Existence of complete minimal hypersurfaces with nite total curvature[END_REF] or by S. Kaabachi and F. Pacard [START_REF] Kaabachi | Riemann minimal surfaces in higher dimensions[END_REF], the existence of some examples of such hypersurfaces is proved when n 3

: one with a nite number of planar ends (non periodic example) and one which generalises the Riemann example, namely horizontal hyperplanes with only one neck between two of them. However, the tools are very dierent from the Weirstrass representation theorem since they come from non linear analysis. Note that this kind of method provides us with an accurate description of the surface.

In this paper, we give more general examples in R n+1 with n 3 for points congurations that satisfy similar conditions to those of M. Traizet. First of all, we need to give some denitions.

Let N be a positive natural number and t h be a vector in R n . For all k in Z, we assume we are given (i) n k a positive natural number, (ii) for all j ∈ 1, n k , a point p k,j of R n with a weight a k , where a k denotes a positive real number, (iii) for all j = j ∈ 1, n k , for all j + ∈ 1, n k+1 , for all j -∈ 1, n k-1 , p k,j = p k,j , p k,j = p k+1,j + and p k,j = p k-1,j -, (iv) for all k and for all j ∈ 1, n k , a k+N = a k and p k+N,j = p k,j + t h .

We then say the family {(a k , p k,j )} is a t h -periodic weighted points conguration.

The interpretation is the following : k is the index of the k-th horizontal hyperplane, n k is the number of necks we want to put between the k-th hyperplane and the (k + 1)-th one, p k,j is the emplacement of those necks while the weight a k is their size notice that the distance between two consecutive hyperplanes has to be independent of the dierent necks we glue, thus it is why a k is chosen so that it does not depend on p k,j but only on k. The hypothesis (iii) is necessary since we do not want to glue a neck to another. Finally, the hypothesis (iv) is the periodicity of the conguration and N is the number of hyperplanes we want to consider modulo to this condition.

We dene in the same way a non-periodic weight points conguration with a nite number N + 1 of hyperplanes : we take k ∈ 0, N -1 rather than k ∈ Z and we omit the periodicity condition (iv).

Remark 1.0.3 In what follows, it will also be convenient to consider weighted congurations {(a k,j , p k,j )} with a k,j chosen in a small neighbourhood of a k .

Introduction and statements of the results

In all cases, we denote by Ne the total number of necks we consider, that is to say Ne

:= N -1 k=0 n k .
The force f (p, q) between two distinct points is dened to be the vector in R n such that f (p, q) := (n -2) p -q |p -q| n .

The total force F k,j that all the points exert on p k,j is

F k,j := 2 n k i=1 i =j a k f (p k,j , p k,i ) - n k-1 i=1 a k-1 f (p k,j , p k-1,i ) - n k+1 i=1 a k+1 f (p k,j , p k+1,i ) , (1.0.1)
in other words, we consider the interaction between p k,j the points of the same level with a factor 2 and the interaction between p k,j and the points of level k -1 and k +1 with a factor -1. This denition also makes sense for non-periodic congurations if we omit the terms that do not exist in this case (for example, in F 0,j , we replace the contribution at level -1 by 0). Note that the forces F k,j depend on the emplacement of the points together with the weights. Moreover, note it also makes sense to dene these forces with weights a k,j : it is enough to replace a k (resp. a k-1 , a k+1 ) by a k,i (resp. a k-1,i , a k+1,i ).

Denition 1.0.4 We say the conguration {(a k , p k,j )} is balanced if all forces vanish, i.e. if ∀ (k, j) , F k,j = 0. This condition could be interpreted as as geometrical one. As a matter of fact, the forces are deeply linked to the way we bend the necks we glue between two consecutive levels. To say the conguration is balanced is the same to say the axis of each neck is straight.

Those forces are quite similar to the ones M. Traizet develops in his papers concerning the construction of minimal surfaces. However, let us remark that in our case, there are more freedom degrees, namely the family of weights {a k,j }, while in the 2-dimensional case, a k is prescribed by a k = 1 n k . The reason for this is the catenoid in R 3 goes to innity, it is not asymptotic to any plane. The ux at innity has to vanish and then, the weight is prescribed.

It turns out that our construction lies on the inverse function theorem, thus we have to determine under which conditions we could prescribe the forces. Assume we are given a t h -periodic weighted conguration. For convenience, let us dene the linear subspace W of R n spanned by the points, that is to say W = Span {q -p : p, q ∈ {p k,j }} .

Since the problem is invariant under the group of translations, we can assume, without loss of generality, that all p k,j are in W in other words, that the ane space W a = p 0,1 + W passes through 0. Thus we identify a point p k,j of the ane space with a vector in W . Note that the forces are in W . We denote by m the dimension of W and by (e i ) 1 i n an orthonormal basis of R n such that (e i ) 1 i m is an orthonormal basis of W . We dene G W = id W ⊗ O W ⊥ to be the subgroup of the isometry group of R n whose elements u can be written

u = I m 0 0 v with v ∈ O n-m (R) .
Notice that an element u of G W is such that u (p k,j ) = p k,j for all k and for all j. We also dene the subgroup G W ⊥ = O (W ) ⊗ id W ⊥ the same way. From now on, the vectors e i is either considered as a vector of R n or as a vector of R n × R, in which case e i is said to be horizontal. We note e n+1 = (0, • • • , 0, 1) a unit vertical vector in R n × R.

With the help of these denitions, we notice that the forces satisfy dierent relations under the action of translations, rotations and dilation.

• If u t is a translation, then F k,j • u t = F k,j : the forces are invariant under the group of translations.

• If r is a rotation of G W ⊥ , then F k,j • r = r • F k,j .
Besides, in the t h -periodic case, if we enforce the new conguration {r (p k,j )} to be t h -periodic, r has to be chosen so that r (t h ) = t h . It is relevant only when t h = 0. • In the non-periodic case or in the 0-periodic case, if λ • id R n is a dilation (or a contraction) with scale factor λ > 0, then F k,j • λ • id R n = λ 1-n F k,j . Here, we do not consider the t h -periodic case with t h = 0 since a dilation with scale factor λ = 1 changes the period into λt h = t h . It follows that, when the conguration {(å k , pk,j )} is balanced, the points force function

F : {p k,j } ∈ W N e -→ {F k,j } ∈ W N e (1.0.2)
can not be a dieomorphism near the initial conguration {p k,j } since the kernel of its dierential holds the three following linear subspaces :

       V t := Span (v, • • • , v) ∈ (R n ) N e : v ∈ W for translations, V r := Rp 0,1 , • • • , Rp N -1,n N -1 : R ∈ Skew t h
for rotations,

V d := λ p0,1 , • • • , pN-1,n N -1 ∈ W N e : λ ∈ R for dilation,
where Skew t h is the set of the skew-symmetric matrices which span, with the help of the exponential mapping, the rotations r of G W such that r (t h ) = t h , that is to

say Skew t h = A 0 0 0 ∈ M n (R) : A ∈ M m (R)
is skew-symmetric and At h = 0 .

Introduction and statements of the results

Furthermore, notice that the sum V t + V r + V d is direct and we do not consider V d in the non-vanishing periodic case.

As a matter of fact, we also can collect information regarding the image of the force function. For any conguration {(a k,j , p k,j )}, since f (p, q) = -f (q, p), the relation

N -1 k=0 n k j=1 a k,j F k,j = 0
(1.0.3) holds true. Moreover, for all skew-symmetric matrix A, the scalar product f (p, q) , Ap is equal to -(n -2) q,Ap |p-q| n and q, Ap = -Aq, p . Consequently, we obtain the additional property

∀R ∈ Skew t h , N -1 k=0 n k j=1 a k,j F k,j , Rp k,j = 0.
(1.0.4) Thus, F does not have full rank. That is why we introduce the non-degenerate condition.

Denition 1.0.5 An initial weighted points balanced conguration

C := {(å k , pk,j )}
is said to be non-degenerate if the dierential of the force function F dened to be so that

F : {(a k , p k,j )} -→ {F k,j }
has maximum rank on account of the invariants at the initial conguration C, that is to say

dim Im (dF C ) =      (Ne -1) m -(m-1)(m-2) 2 when t h = 0, (Ne -1) m -m(m-1) 2 when t h = 0,
in the non-periodic case.

The reader should pay attention to the fact that in this denition, we enforce the a k,j to be the same at level k.

Remark 1.0.6 If we write dF = d a F + d p F where the index denotes the derivative parameter (the weights or the points), then

dim (ker d p F )      m + (m-1)(m-2) 2 when t h = 0, m + m(m-1) 2 + 1 when t h = 0
in the non-periodic case.

Heuristically, when we can dilate the conguration, we assume that a perturbation of the weight parameters osets the part of the kernel that comes from the dilation.

It is the same kind of hypothesis as the one in the theorem 1 of [START_REF] Traizet | An embedded minimal surface with no symmetries[END_REF].

We are now in a position to state the main result of the paper.

Theorem 1.0.7

Let {(a k , p k,j )} be a balanced and non-degenerate conguration. Then there exists a 1-parameters family of embedded, complete and minimal hypersurfaces (S ) ∈(0, 0 )

such that the following assertions hold true :

symmetries : S is invariant under the action of the subgroup G W ×R = G W ⊗id R of the isometry group of R n × R whose elements u can be written

u = u 0 0 1 with u ∈ G W ;
the t h -periodic case : (i) S is simply t-periodic, with t = t h + t v where the

vertical vector t v = O →0 1 n-1 e n+1 ;
(ii) S /tZ has N horizontal hyperplanar ends ;

(iii) from a topological point of view, S /tZ is the connected sum of N horizontal hyperplanes H k with n k + n k-1 punctures at p k,j and p k-1,j ;

the non-periodic case : (i) S has N +1 horizontal hyperplanar ends and the distance between the two extremal hyperplanar ends is O →0

1 n-1 ;
(ii) from a topological point of view, S is the connected sum of N + 1 horizontal hyperplanes H k with n k + n k-1 punctures at p k,j and p k-1,j .

2 Adding necks to hyperplane

The goal of the sections concerning horizontal hyperplanes is to build minimal surfaces close enough to these (it will correspond to the hyperplanar ends of the Riemann surfaces we want to construct) such that they have necks (or catenoidal shape) at each gluing point p k,j .

As announced in the introduction, we work with a slightly perturbed weighted conguration {(a k,j , p k,j )} of {(a k , p k,j )}. Let us x l ∈ Z (it is the index of the l-th end) and consider the n l weighted points

((a l,1 , p l,1 ) , • • • , (a l,1 , p l,n l ))
together with the n l-1 weighted points

(a l-1,1 , p l-1,1 ) , • • • , a l-1,n l-1 , p l-1,n l-1 .
We then dene the l-th Green function by

Γ : R n -→ R x -→ - n l-1 i=1 a l-1,i |x -p l-1,i | 2-n + n l i=1 a l,i |x -p l,i | 2-n .
It is well known that Γ is a harmonic function over the set R n l := R n \{p l-1,1 , • • • , p l,n l }. More precisely, Γ satises following equation :

∆ R n Γ = c (n) - n l-1 i=1 a l-1,i δ p l-1,i + n l i=1 a l,i δ p l,i , where c (n) = - 1 Vol(S n-1 )
is a constant that depends on n.

Besides, note that this Green function is chosen so that it point upwards near the points p l,i and downwards near the other points p l-1,i . As a matter of fact, we will use Γ at the l-th level to glue this one to the (l + 1)-th level near p l,i and to the (l -1)-th level near p l-1,i . Note that Γ and its derivatives continuously depend on the choice of weighted points.

Remark 2.0.8 All the results we prove for the above Green's function could be applied in the case of a nite number N + 1 of horizontal ends, i.e. when we give a nite number of weighted points (a k,j , p k,j ) j∈ 1,n k with k = 0, 1, • • • , N . We dene the 0-th Green's function and the N -th Green's function by

Γ 0 := n 0 i=1 a 0,i |• -P 0,i | 2-n and Γ N := - n N -1 i=1 a N -1,i |• -p N -1,i | 2-n .
At level 0, we only add necks that point upwards since there is not any lower level while at level N , we only add necks that point downwards since there is not any upper level.

Behaviour near singularities

We have in mind to conduct a gluing process to build minimal hypersurfaces.

This kind of method requires a thorough description of local behaviour near the gluing points. Thus it is useful to give the Taylor expansion of Green's function near its singularities. In this purpose, we give the typical Taylor expansion

|x -p| 2-n = |p| 2-n + (n -2) |p| -n x, p + • O x→0 |x| 2 ,
where we write f (x) =

• O x→0 (|x| m ) with m ∈ Z if for all k ∈ N, the equality ∇ k f (x) = O x→0 (|x| m-k
) is satised. We will see later that this kind of equality proves to be very ecient in weighted spaces theory.

Behaviour near p l-1,j with 1 j n l-1 Without diculty, one nds

Γ (x) = -a l-1,j |x -p l-1,j | 2-n + C l-1,j,+ + x -p l-1,j , F l-1,j,+ + • O x→p l-1,j |x -p l-1,j | 2 , (2.1.5)
where the real constant C l-1,j,+ is given by C l-1,j,+ := -

n l-1 i=1 i =j a l-1,i |p l-1,j -p l-1,i | 2-n + n l i=1 a l,i |p l-1,j -p l,i | 2-n , (2.1.6)
and the partial force F l-1,j,+ of R n is dened by

F l-1,j,+ := - n l-1 i=1 i =j a l-1,i f (p l-1,j , p l-1,i ) + n l i=1 a l,i f (p l-1,j , p l,i ) , (2.1.7)
Behaviour near p l,j with 1 j n l Similar calculus leads us to

Γ (x) = a l,j |x -p l,j | 2-n + C l,j,- + x -p l,j , F l,j,-+ • O x→p l,j |x -p l,j | 2 , (2.1.8)
where the real constant C l,j,-is given by C l,j,-:= -

n l-1 i=1 a l-1,i |p l,j -p l-1,i | 2-n + n l i=1 i =j a l,i |p l,j -p l,i | 2-n ,
(2.1.9) and the partial force F l,j,-of R n is dened by

F l,j,-:= - n l-1 i=1 a l-1,i f (p l,j , p l-1,i ) + n l i=1 i =j a l,i f (p l,j , p l,i ) ,
(2.1.10) Remark 2.1.1 • It is relevant to note that the partial forces F k,j,+ (resp.

F k,j,-) corresponds to the interaction between the point p k,j and all other points of same level k together with the the level k -1 (resp. k + 1).

• Geometrically, the force term in p k,j corresponds to leaning a neck in some special direction during the gluing process.

2.2

The rst error term and its correction Let > 0 and r := 2 3(n-1) we'll see later why we have chosen this radius r (cf. remark 5.3.1). Let us note R n l, the set R n without small balls of radius r centred in the singularities p k,i , namely

R n l, := R n \   p=p l-1,1 ,••• ,p l-1,n l-1 B (p, r ) p=p l,1 ,••• ,p l,n l B (p, r )   .
From now on, we suppose the parameter small enough in comparison with the distance between the points p k,j for the purpose of ensuring that the balls B (p, r )

do not intersect.
Unfortunately, although the hyperplane {x n+1 = 0} is clearly a minimal hypersurface in R n × R, it is not the case with regard to the graph of Green's function.

On the other hand, this one performs a relatively good approximation to the minimal surface equation. More precisely, a function f over an open set of R n denes a minimal hypersurface if it satises the equation div

  ∇f 1 + |∇f | 2   = 0.
In this paper, it is more convenient to translate this equation into

∆f -G (f ) = 0 with G (f ) = ∇ 2 f (∇f, ∇f ) 1 + |∇f | 2 ,
where ∇ 2 f is the symmetric bilinear form dened by the Hessian of f . This writing makes it possible to put the role of harmonic functions (especially Green's function)

forward. From a heuristics point of view, if a function f has small C 2 norm, then the main term of previous equation is given by the linear part, in other words the Laplacian, whereas the remainder is cubic type and so is small in comparison to the Laplacian. More exactly, in our case, let us search for the error we make if we consider the function Γ over R n l, . We multiply it by a small parameter in order to ensure the small C 2 norm of Γ. The question is to estimate the term G ( Γ) because the Laplacian vanishes. Since Green's function explodes near the singularities, it is enough to work in a neighbourhood of one of them, let's say p l,j for example. We write

Γ (x) = a l,j |x -p l,j | 2-n + C l,j,-+ • O x→p l,j x∈R n l, ( |x -p l,j |)
In this case, easy computation shows that we can write

G ( Γ) -∆ ( Γ) = (2 -n) 3 (n -1) a l,j 3 3 |x -p l,j | 2-3n + • O 3 |x -p l,j | 1-2n .
Note that the main term is radial, which is in agreement with the construction of Green's function : if we are close to the singularity p l,j , the contribution of |x -p k,i | 2-n for p k,i = p l,j is bounded whereas the radial term |x -p l,j | 2-n explodes.

Besides, the rough estimate of the error is 3 r 2-3n = r -1 , the one for the next term being r n-2 .

For the gluing method we will conduct later, it is useful to introduce a new function Cor such that Cor corrects the main term of the above error. In a neighbourhood of the singularity p l,j , the function x → (n-2) 3 2(3n-4) a 3 l,j 3 |x -p l,j | 4-3n is such that its Laplacian is equal to this one. Since there are other singularities, we rather introduce the function Cor dened over R n l, by

Cor (x) := (n -2) 3 2 (3n -4) 3 - n l-1 i=1 a 3 l-1,i |x -p l-1,j | 4-3n + n l i=1 a 3 l,i |x -p l,j | 4-3n .
The choice of the quantity r leads to equality 3 r 4-3n = r . In other words, this correcting function has the same rough estimate than the second term in the Taylor expansion of Green's function when one approaches the boundary of the ball B (p, r ), although they are dierent types : its main term is radial and thus does not favour any directions.

By construction, it follows that we can approach a minimal hypersurface with much more precision. It is the object of the following lemma.

Lemma 2.2.1 Let Γ cor, the function dened by Γ cor, := Γ + Cor. Then for all k ∈ N, there exists a constant c k := c (n, k) such that for all x ∈ R n l, , we have the inequality

∇ k (∆Γ cor, -G (Γ cor, )) (x) c k r 3n-3 r 1-2n-k , (2.2.11)
where r is chosen to be the distance between x and the set of points {p l-1,i } i∈ 1,n l ∪ {p l,i } i∈ 1,n l . It amounts to writing

(∆Γ cor, -G (Γ cor, )) (x) = r 3n-3 • O r→0 r 1-2n .
In other words, we have improved the approximation of a solution to the minimal hypersurface equation over R n l, by a factor r n-2 r -1 = r n-1 compared with the approximation in the case where we only consider Green's function Γ.

Analysis in weighted spaces

We have in mind to glue the necks of the graph of Γ cor, with small truncated catenoids. Besides, there are two types of terms of order 1 in the Taylor expansion of Γ cor, , namely a radial one that comes from the correcting function Cor, and a force term with one direction (a priori, it does not vanish) that comes from Green's function. Their rough estimate is r . Henceforth, our aim is to build a minimal graph over R n l, whose boundary data is Γ cor, +Φ where Φ < κ r for some positive constant κ that does not depend on and that we will determine later.

For this, we are looking for a small perturbation Γ cor, + v of Γ cor, where v is a small function such that we are able to solve the following problem :

∆ (Γ cor, + v) -G (Γ cor, + v) = 0 in R n l, ; Γ cor, + v = Γ cor, + Φ on ∂R n l, .
(3.0.12)

In other words, given an arbitrary element Φ, can we nd a minimal graph over the non compact domain R n l, that takes boundary value (Γ cor, ) |∂R n l,

+ Φ ?

For practical use, we write Φ p : S -→ R such that for all z ∈ S,

Φ p (z) := Φ p + z r for each p = p l-1,1 , • • • , p l-1,n l-1 , p l,1 , • • • , p l,n l .
Let us very briey expose the heuristics to solve this problem :

• if v 0 and are small enough, then

∆ (Γ cor, + v) -G (Γ cor, + v) ≈ ∆v,
thus we rst solve ∆v 0 = 0 with v 0 ≈ Φ on the boundary ; • by a xed point theorem argument, we search for a solution v that takes the form ω = Γ cor, + v 0 + v with v << v 0 .

Laplacian and weighted spaces

We are interested in the following Dirichlet problem :

∆ R n v = f over R n l, ; v = 0 over ∂R n l, .
(3.1.13)

It is a partial dierential equation over an unbounded domain. To deal with it in a suitable theory, we introduce the weighted spaces. These have already proved to be useful, especially for gluing process.

We have seen in the previous section that the Laplacian plays a prominent role in the resolution to the minimal graph equation. Indeed, it is its inverse that gives us the possibility to apply a well chosen xed point theorem.

We introduce two quantities ρ 0 := min p =q∈{p l-1,i} i∈ 1,n l-1 ∪{p l,i} i∈ 1,n l dist (p, q) 3 and ρ * := max

p =q∈{p l-1,i} i∈ 1,n l-1 ∪{p l,i} i∈ 1,n l {dist (0 R n , p) + dist (p, q)} + 1.
We then dene the sets : 

                     R n l, * := R n \ {p l-1,1 , • • • , p l,n l } , not bounded open set; B p := B (p, ρ 0 ) , p = p l-1,1 , • • • , p l,
K := B ρ * \ p=p l-1,1 ,••• ,p l,n l B p , compact set; Ω := R n \ B ρ * ,
not bounded open set.

Note that we have chosen those sets and ρ 0 together with ρ * such that the balls B p do not intersect and B ρ * is a large ball centred in 0 which contains all the B p . Besides, none of those depend on the parameter . Denition 3.1.1 Let µ and ν be real numbers. We dene the weighted space

L ∞ µ,ν R n l, * as the set of functions f ∈ L ∞ loc R n l, * such that f L ∞ µ,ν (R n l, * ) := p=p l-1,1 ,••• ,p l,n l |x -p| -µ f L ∞ (B p ) + f L ∞ (K) + |x| -ν f L ∞ (Ω) < +∞.
Remark 3.1.2 In particular, if f is an element of L ∞ µ,ν R n l, * , then we control f near the possible singularities p = p l-1,1 , • • • , p l,n l : f does not increase faster than r µ when r tends to 0. Likewise, the behavior of f near innity is at the most r ν when r is large and f is bounded for all compact set included in R n l, * .

We also give the denition of such weighted spaces for more regular Hölder functions.

Denition 3.1.3 Let µ, ν ∈ R, k ∈ N and α ∈ (0, 1). We dene the Hölder weighted space C k,α µ,ν R n l, * as the set of functions f ∈ C k,α loc R n l, * such that the fol- lowing norm is nite :

f C k,α µ,ν (R n l, * ) := p=p l-1,1 ,••• ,p l,n l k i=0 |x -p| i-µ ∇ i f L ∞ (B p \{p}) + sup 0<2r< ρ 0 r k+α-µ sup x =y∈P +Ar ∇ k f (x) -∇ k f (y) |x -y| α + f C k,α (K) + k i=0 |x| i-ν ∇ i f L ∞ (Ω) + sup r>ρ 2 * r k+α-ν sup x =y∈Ar ∇ k f (x) -∇ k f (y) |x -y| α .
Remark 3.1.4 For practical purposes, a function f ∈ C k,α µ,ν R n l, * (resp. its derivatives) is bounded by c r µ (resp. the derivatives of r µ ) near the points p = p l-1,1 , • • • , p l,n l , by r ν (resp. the derivatives of r ν ) near innity, where c is a constant

(c = f C 2,α µ,ν (R n l, * ) ). Moreover, ∇ k f (x) -∇ k f (y) < c r µ-k-α |x -y| α (resp. < c r ν-k-α |x -y| α ).
Denition 3.1.5 Let U be an open subset of R n l, * . Then we dene in the same way the weighted spaces

L ∞ µ,ν (U ) (resp. C k,α µ,ν (U )) endowed with the norm • L ∞ µ,ν (U ) (resp. • C k,α µ,ν (U ) ) induced by • L ∞ µ,ν (R n l, * ) (resp. • C k,α µ,ν (R n l, * ) ).
Remark 3.1.6 The spaces we have dened are Banach spaces. In particular, classical xed point theorems can be used.

Remark 3.1.7 Suppose k 2. The denition of weighted spaces implies that

if f ∈ C k,α µ,ν R n l, * , then ∆ R n f ∈ C k-2,α µ-2,ν-2 R n l, * .
Proposition 3.1.8 Assume that µ, ν ∈ (2 -n, 0). Then there exists some constant c := c (µ, ν, α, n, l) such that for all f ∈ C k-2,α µ-2,ν-2 R n l, * , there exists one and only one function v such that :

v ∈ C k,α µ,ν R n l, * ; ∆ R n v = f over R n l, * . (3.1.14)
Besides, for such a solution v, we have the following estimate :

v C 2,α µ,ν (R n l, * ) c f C 0,α µ-2,ν-2 (R n l, * ) . (3.1.15) We note ∆ -1 µ,ν, * : C k-2,α µ-2,ν-2 R n l, * -→ C k,α µ,ν R n l, * the right inverse.

Proof

We use the same approach than the study of similar problem in L ∞ with only one singularity in [START_REF] Pacard | Lectures on Connected Sum Constructions in Geometry and Nonlinear Analysis[END_REF]Chapter 4]. Essentially, we divide up our case into two parts : one for the singularities and one for innity. Estimates are obtained by well chosen barrier functions and the maximum principle.

The Laplacian for well chosen radial functions : Observe, by using the expression of Laplacian in polar coordinates, that

∆ R n |x| β = β (n + β -2) |x| β-2 .
Moreover, note that the constant β (n + β -2) is negative if, and only if, β ∈ (2 -n, 0). This simple property will be very useful to solve our Dirichlet problem since it is the rst brick in the construction of a barrier function.

Decomposition of

f : We write f = f K + f ∞ where f K is supported in the rel- atively compact set K := B 2ρ * \ {p l-1,1 , • • • , p l,n l } ( K is
chosen so that K is a ball large enough to hold all singularities), and f ∞ is supported in the non compact domain Ω. We may assume f K and f ∞ have the same regularity as f 1 .

The f K -part : We want to build a solution v K such that ∆ R n v K = f K over R n l, * . The domain is not compact, thus we cannot apply directly classical existence results. To make up for this problem, we solve it by using a sequence of solutions on open sets (U i ) i that converges to R n l, * dened by

U i := B (0, i + 2ρ * ) \ p=p l-1,1 ,••• ,p l,n l B p, ρ 0 i .
1. For example, with the help of a well chosen cut-o function

C ∞,α -function χ : R n l, * -→ [0, 1] such that χ = 1 over B ρ 2 * and χ = 0 over R n \ B 2ρ 2 * : then put f K := χ • f and f ∞ := f -f K . By [GT01, Theorem 4.3.], there exists a unique solution v i, K ∈ C 2,α (U i ) to the following Dirichlet problem ∆ R n v i, K = f K in U i ; v i, K = 0 on ∂U i .
Before doing i → ∞, it is necessary to obtain estimates for this solution. For this purpose, we build a barrier function. Let

w := C f K C 0,α µ-2,ν-2 (R n l, * ) µ (2 -n -µ) p=p l-1,1 ,••• ,p l,n l |• -p| µ -v i, K ,
where C is a positive constant. Thus the Laplacian of w is determined by

∆ R n (w)(x) = -C f K C 0,α µ-2,ν-2 (R n l, * ) p=p l-1,1 ,••• ,p l,n l |x -p| µ-2 -f K (x).
Then one proves that we can take C = C (µ, ν) big enough (which does not depend on i) to ensure that for all x ∈ U i , the inequality ∆ R n (w)(x) 0 holds true. Moreover, w 0 over ∂U i . Consequently, we can apply the maximum principle (cf. [GT01, Theorem 3.3]) to obtain the following pointwise bound :

∀x ∈ U i , v i,C (x) C f K C 0,α µ-2,ν-2 (R n l, * ) p=p l-1,1 ,••• ,p l,n l |x -p| µ .
Working in a similar way with -v i, K , we then obtain the uniform bound :

∀x ∈ U i , v i, K (x) C f K C 0,α µ-2,ν-2 (R n l, * ) p=p l-1,1 ,••• ,p l,n l |x -p| µ .
According to [GT01, Corollary 4.7.] 2 , the previous inequality and a diagonal extraction argument, we conclude that there exists

v K ∈ C 2,α loc R n l, * such that ∆ R n v K = f K over R n l, * .
Besides, since the convergence is uniform, with the help of same inequality, we have :

∀x ∈ R n l, * , v K (x) C f K C 0,α µ-2,ν-2 (R n l, * ) p=p l-1,1 ,••• ,p l,n l |x -p| µ , (3.1.16)
in other words, we already know that v K belongs to a space of the form L ∞ µ, * R n l, * ; v K has the right behaviour near the singularity points p. To deal with the case x → ∞, we use another barrier function. More precisely, since

f K vanishes over R n \ K, the function v K is harmonic over R n \ K. Note 2. Any bounded sequence of solutions of Poisson's equation ∆ R n v = f in a domain U with f ∈ C 0,α (U ) contains a subsequence converging uniformly on compact subdomains to a solution. v K the function induced by v K on R n \ K. But we know that Green's function |•| 2-n is also harmonic. Let K v K be the Kelvin transform of v K , ie : K v K : B 1/ρ 2 * \ {0} -→ R y -→ |y| 2-n v K y |y| 2 .
According to [ABR01, Theorem 4.7], this function is harmonic. According to the pointwise estimate (3.1.16), the limit lim x→∞ v K vanishes. Therefore, applying [ABR01, Theorem 4.8], K v K has a removable singularity at the origin and the maximum principle leads us to :

sup

y∈B 1/ρ 2 * K v K (y) = sup |y|=1/ρ 2 * K v K (y) .
In other words, we have obtained a new pointwise bound for v K :

∀x ∈ R n l, * \ K, v K (x) C f K C 0,α µ,ν (R n l, * ) |x| 2-n .
Note that this inequality is stronger than the previous one for

x large enough since 2 -n < µ. Indeed, we conclude that v K belongs to L ∞ µ,ν R n l, * .
The f ∞ -part : by similar arguments, we prove that there exists

v ∞ ∈ C 2,α loc R n l, * a solution to the problem ∆ R n v ∞ = f ∞ on R n l, * with the estimate ∀x ∈ R n l, * , |v ∞ (x)| C f K C 0,α µ,ν (R n l, * ) |x| ν , (3.1.17) 
where C = C (n, µ, ν).

To deal with the case x → p with p = p l-1,1 , • • • , p l,n l , we use classic results about isolated singularity for harmonic functions(Cf. [ABR01, theorem 10.5])

to show the singularities at P are removable since ν > 2 -n. By maximum principle, we nd

sup |x| ρ 2 * |v ∞ (x)| C f K C 0,α µ,ν (R n l, * ) p=p l-1,1 ,••• ,p l,n l |x -p| µ , for some positive constant C = C (n, µ, ν).
Collecting previous cases : we are now able to solve the problem (3.1.14). Let

v := v K +v ∞ . By linearity of the Laplacian operator, it is clear that ∆ R n v = f . It remains to see why v belongs to the Hölder weighted space C 2,α µ,ν R n l, * . Collecting all previous estimates, we see that v ∈ L ∞ µ,ν R n l, * ∩ C 2,α loc R n l, * and there exists c = c (n, µ, ν) > 0 such that v L ∞ µ,ν (R n l, * ) c f C 0,α µ,ν (R n l, * ) .
We now have in mind to obtain the same type estimate of for Hölder spaces as in L ∞ . We only prove that the estimate for case |x| very large ; we can prove in the same way that the estimate in a neighbourhood of the singularities.

The key of the proof is the Schauder's interior estimates (cf. [GT01, Theorem 6.2.]). More precisely, for |x| large enough, we work on an annulus A R with R big enough and we boil down to the case A 1 after a contraction ; we apply the estimate to this new function and we perform a dilatation to return to the case |x| large. First of all, since for R ρ * , the set B p ∩ A R is empty, we have the estimate

v C 2,α µ,ν (A R ) (2R) -ν 2 i=0 |x| i ∇ i v L ∞ (A R ) + R -ν sup R<2r<2R r k+α sup x =y∈Ar |∇ 2 v(x) -∇ 2 v(y)| |x -y| α ,
therefore, applying Schauder's interior estimates, there exists

C = C (n, α, ν, l) that does not depend on R such that v C 2,α µ,ν (A R ) C f C 0,α µ,ν (A R ) , from what we conclude that v C 2,α µ,ν (Ω) C f C 0,α µ,ν (Ω)
.

By using exactly the same method in the B p and K, we nally end up with

v C 2,α µ,ν (R n l, * ) c f C 0,α µ,ν (R n l, * ) ,
where c = c (µ, ν, α, n, l).

Uniqueness : It is again an application of the maximum principle. Assume that we have two solutions v 1 and v 2 to the problem (3.1.14

). Then v 1 -v 2 is harmonic on R n l, * and belongs to C 2,α µ,ν R n l, * . So, if p = p l-1,1 , • • • , p l,n l , p is a removable singularity since µ > 2 -n. Therefore v 1 -v 2 is bounded over all compact sets. Moreover, since ν < 0, (v 1 -v 2 ) (x) -→ |x|→∞ 0, then, v 1 -v 2 is bounded over R n . According to Liouville's theorem [ABR01, Theorem 2.1], v 1 -v 2 is constant ; but the behavior at innity implies this constant is necessarily 0, in other words v 1 = v 2 .
Using exactly the same arguments, one can prove the following : Proposition 3.1.9 Assume that µ, ν ∈ (2 -n, 0). Then there exists some constant c := c (µ, ν, α, n, l) such that for all > 0 and for all f

∈ C k-2,α µ-2,ν-2 R n l, * ,
there exists one and only one function v such that :

v ∈ C k,α µ,ν R n l, and 
∆ R n v = f over R n l, ; v = 0 on ∂R n l, .
(3.1.18)

Besides, for such a solution v, we have the following estimate :

v C 2,α µ,ν (R n l, ) c f C 0,α µ-2,ν-2 (R n l, ) . (3.1.19) We note ∆ -1 µ,ν, : C k-2,α µ-2,ν-2 R n l, -→ C k,α µ,ν R n l,
the right inverse.

Note that the important point is that the constant c does not depend on .

Harmonic function (a)

The harmonic extension on R n \ B 1

In the previous proposition, we have studied the problem of a prescribed Laplacian with boundary data equal to 0 over R n l, and the result corresponds to the part xed point theorem we will apply later to build minimal hypersurface in a neighbourhood of the graph of Γ cor, . However, we also must consider the problem of prescribed boundary data that will be the key of the gluing process.

We look for an operator W e that is equivalent to an exterior harmonic extension.

Indeed, we are interested in the following Dirichlet problem :

∆ R n W e (Φ) = 0 over R n \ B 1 ; W e (Φ) = Φ over ∂B 1 = S; (3.2.20)
where Φ belongs to L 2 (S). The role of Fourier decomposition is fundamental. According to [GHL93, Corollary 4.49 and Lemma 4.50], the eigenvalues of -∆ S 2 are the λ j := j(n -2 + j) for j ∈ N. Moreover, by [START_REF] Hörmander | The spectral function of an elliptic operator[END_REF], there exists some constant c = c(n) such that for all j, for all eigenfunction Φ j that belongs to the j th eigenspace E j , we have the following Hörmander's estimate :

Φ j L ∞ (S) c |λ j | n-2 4 Φ j L 2 (S) , (3.2.21)
and according to [START_REF] Donnelly | Eigenfunctions of the Laplacian on compact Riemannian manifolds[END_REF], the dimension of E j is bounded by

c |λ j | n-2 2 . (3.2.22)
Furthermore, the L 2 -orthogonal basis of the E j span L 2 (S), thus we can write

Φ = +∞ j=0 Φ j with ∆ S 2 Φ j = -λ j Φ j .
Notation 3.2.1 It will be convenient to write π j the orthogonal projection on the eigenspace E j and π ⊥ the projection on the modes j 2 ; thus we could decompose Φ as Φ 0 + Φ 1 + Φ ⊥ . Besides, recall that the mode 1 is spanned by the

• , e i for i ∈ 1, n ; we write π 1,i the orthogonal projection on the eigenfunction

• , e j and we could decompose Φ 1 as n i=1 Φ 1,i • , e i . Note that Φ 0 and the Φ 1,i are real numbers.

Let I be a real interval, bounded or not. We note E ⊥ (I × S) (resp. E 0 (I × S) and E 1 (I × S)) the set of function f on I × R such that for all s ∈ I, the function f (s, •) : S -→ R belongs to E ⊥ (resp. E 0 and E 1 ). Proposition 3.2.2 There exists some constant c = c (n, α) and one and only one linear operator W e : C 2,α (S) -→ C 2,α 0,2-n (R n \ B 1 ) such that for all Φ ∈ C 2,α (S), W e (Φ) is a solution to Dirichlet problem (3.2.20) that belongs to the Hölder weighted space C 2,α 0,2-n (R n \ B 1 ). Besides, we have the following estimate :

W e (Φ) C 2,α 0,2-n (R n \B 1 ) c Φ C 2,α (S) ; (3.2.23)
More precisely, one can rene this kind of estimate : if Φ ≡ 0 and j 0 := min {j :

Φ j ≡ 0}, then W e (Φ) is an element of C 2,α 0,2-n-j 0 (R n \ B 1 ) and W e (Φ) C 2,α 0,2-n-j 0 (R n \B 1 ) c Φ C 2,α (S) .
(3.2.24)

Note that c does not depend on j 0 .

Proof

Using similar method to the proof of proposition 3.1.8, one can demonstrate the existence and the uniqueness of such a solution, as well as the estimate (3.2.23).

However, there exists another proof (by explicit construction of the solution) that leads to better estimate (3.2.24).

Formal solution : if Φ ≡ 0, then it is clear that W e (Φ) ≡ 0 is the solution.

Otherwise, we formally dene

W e (Φ) : x ∈ R n \ B 1 -→ j j 0 |x| 2-n-j Φ j x |x| .
It is an easy calculus to check that if this series has good properties (uniform convergence, ...), then it denes a solution. So, it is enough to prove the convergence of the formal series to conclude.

W e (Φ) has the right weight in L ∞ : using Hörmander's estimate (3.2.21), we have :

|x| 2-n-j Φ j x |x| c |x| 2-n-j 0 |x| j 0 -j |λ j | n-2 4 Φ j L 2 (S) .
But, since Φ j is the L 2 -orthogonal projection on the eigenspace E j ,

Φ j 2 L 2 (S) Φ 2 L 2 (S) Vol (S) Φ 2 L ∞ (S) ,
and thus there exists some constant c = c(n) such that for all j ∈ N, following inequality holds :

Φ j L 2 (S) c Φ L ∞ (S) c Φ C 2,α (S) .
We can deduce

|W e (Φ) (x)| c |x| 2-n-j 0 Φ C 2,α (S) j j 0 |x| j 0 -j |λ j | n-2 4 .
(3.2.25)

Observe that for all i ∈ N * , since λ j ∼ j→∞ j 2 , this series uniformly converges on R n \ B 1+1/i . So we just have proved that W e (Φ) is well dened for |x| >

1 + 1/i and is an element of L ∞ 0,2-n-j 0 R n \ B 1+1/i . It remains to prove that it also denes an element of L ∞ 0,2-n-j 0 (R n \ B 1 ) ∩ C 2,α loc (R n \ B 1 ).
W e (Φ) has the right regularity : From standard estimates for elliptic operators ([Aub82, Theorem 3.58]) together with an induction argument, one can demonstrate that for all k ∈ N, there exists some constant c = c (n, k) such that for all j j 0 , we have :

Φ j W 2k,2 (S) c Φ C 2,α (S) k =0 |λ j | l .
We apply Sobolev imbedding theorem for compact manifold ([Aub82, Theorem

2.20]) with k 0 := n-1 4 + 1 + α 2
to see that Φ j belongs to C 2,α (S) and there exists some constant c = c(n, α) such that

Φ j C 2,α (S) c P n (j) Φ C 2,α (S) ,
where P n denotes a polynomial expression of degree 2k 0 . Let us x i > 0 and let A i be the annulus B 1+i \ B 1+1/i which tends to R n \ B 1 . Then collecting previous inequalities, there exists some constant c = c(n, α, i) such that

r 2-n-j Φ j C 2,α (A i ) c Φ C 2,α (S) P n (j) 1 + 1 i 2-n-j
, which is the general term of a convergent series (with index j). Therefore, for all i, W e (Φ) belongs to C 2,α (A i ), thus belongs to C 2,α loc (R n \ B 1 ). Now we know that W e (Φ) is a well dened harmonic function in R n \ B 1 , thus by maximum principle and inequality (3.2.25), for all 1 < |x| < 2 :

|W e (Φ) (x)| max Φ L ∞ (S) , c Φ C 2,α (S) j j 0 2 2-n-j |λ j | n-2 4 < +∞, so W e (Φ) ∈ L ∞ 0,2-n-j 0 (R n \ B 1 ) ∩ C 2,α loc (R n \ B 1 ).
In weighted Hölder space : To conclude with the derivatives of W e (Φ), it is enough to apply Schauder's estimates : it is exactly the same argument as in the proof of proposition 3.1.8.

(b)

The harmonic extension on R n l,

Let Φ : ∂R n l, -→ R be a C 2,α function. We use the construction of harmonic functions on R n \ B 1 in proposition 3.2.2 to dene the following harmonic extension on R n l, :

h Φ : x ∈ R n l, -→ p=p l-1,1 ,••• ,p l-1,n l-1 W e (Φ p ) x -p r + p=p l,1 ,••• ,p l,n l W e (Φ p ) x -p r .
The reader will pay attention to the boundary data of h Φ . Indeed, in each singularity p k,j , the terms that come from the p k ,j for (k , j ) = (k, j) create small perturbations of the boundary function Φ we want to prescribe, namely a contribution whose rough estimate is r n-2 . It is the object of the following proposition whose result arises from the previous one 3.2.2.

Proposition 3.2.3 The function h Φ belongs to C 2,α 2-n,2-n R n l,
and there exists

c = c (n, α, l) such that h Φ C 2,α 2-n,2-n (R n l, ) c r n-2 Φ C 2,α (∂R n ) , (3.2.26)
where we have dened

Φ C 2,α (∂R n ) := max p=p l-1,1 ,••• ,p l,n l-1 p=p l,1 ,••• ,p l,n l Φ p C 2,α (S) .
Moreover, near the boundary ∂R n l, , for all p = p l-1,1 ,

• • • , p l,n l , we have h Φ (x) -W e (Φ p ) x -p r C 2,α (p+Ar ) c • r n-2 Φ C 2,α (∂R n ) .
4 Deforming Green's function to nd a minimal graph

In the previous sections, we have developed two essential points :

• How to build small catenoidal necks by using the harmonic Green's function Γ cor, and how to deal with the main part of the error to the minimal graph equation.

• A thorough analysis of the Laplacian operator in R n . It should be noted that in our case, we rather consider it like the Jacobi operator over the hyperplane {x n+1 = 0}, in other words, the dierential of the mean curvature. Combining surjectivity with vanishing boundary data and the harmonic extensions with prescribed boundary data, we are in a position to solve a more general problem ∆ R n f = g on R n l, with boundary data Γ cor, + Φ + (small term in comparison with Φ). For all function Φ over ∂R n l, , let dene ω Φ (that continuously depends on the weighted points) by ω Φ := Γ cor, + h Φ . Let µ, ν ∈ (2 -n, 0). From the writing of minimal graph problem (3.0.12), if v is a xed point of the operator F dened by

F : C 2,α µ,ν (R n ) -→ C 2,α µ,ν R n l, v -→ ∆ -1 µ,ν, (G (ω Φ + v) -∆ (Cor)) ,
then ω Φ + v satises the minimal graph equation.

A xed point theorem

We propose to prove a xed point theorem for the operator F. The reader will keep in mind that we will perform similar method for the deformation of a truncated catenoid. We briey expose the reasoning.

• We analyze the image of the function 0, especially its rough estimate R, in order to nd one suitable radius 2R for a closed ball centered whose image by the functional F is inside itself. • We show that the functional is 1 2 -lipschitz over a closed ball with radius 2R. Thus we could demonstrate F has a xed point. Note that even if it is enough in our case, one could prove that for all 0 < k < 1, F is k-contracting over a ball whose radius is R + a k where (a k ) k tends to 0 when k tends to 0.

(a)

Denition of the operator F First and foremost, we have to justify that F is a well dened operator for some suitable weight parameters. By proposition 3.2.3, together with the denition of Γ cor, , the functions Γ cor, and h Φ belong to the weighted Hölder space

C 2,α 2-n R n l, , which is included in C 2,α µ,ν R n l, for all µ, ν ∈ (2 -n, 0), from what we conclude that G (ω Φ + v) ∈ C 2,α µ-2,ν-2 R n l,
, and the conclusion holds.

(b)

The ω Φ -part

Here, we want to estimate the contribution of the term ω Φ in the denition of the operator F ; in other words, we are interested in the study of F (0). According to the construction of Green's function, the corrective term Cor and the harmonic extension h Φ (3.2.26), there exists c = c (ρ, n, α, l) such that

Γ (x) = • O r 2-n , Cor (x) = • O 3 r 4-3n and h Φ (x) = • O r n-2 r 2-n Φ . Let us write |G (ω Φ ) -∆Cor| (x) |G (Γ cor, ) -∆Cor| (x) + |G (ω Φ ) -G (Γ cor, )| (x) .
First term : We already have an estimate that comes from the construction of the corrected Green's function Γ cor, , namely the estimation (2.2.11) in lemma 2.2.1 : there exists c = c (n, α) such that

G (Γ cor, ) -∆Cor C 0,α µ-2,ν-2 (R n l, ) c r 3n-3 r 1-2n-(µ-2) = c r n+1-µ .
Second term : Here we use a Taylor formula. More precisely, computation proves that the dierential of G is such that for all f and g, we have

dG f (g) = ∇ 2 g (∇f, ∇f ) + 2∇ 2 f (∇f, ∇g) 1 + |∇f | 2 -2 ∇f, ∇g G(f ) 1 + |∇f | 2 .
We have in mind to apply the mean value theorem 3

G (ω Φ ) -G (Γ cor, ) C 0,α µ-2,ν-2 (R n l, ) sup f ∈[ω Φ ,Γcor, ] dG f ω Φ -Γ cor, C 2,α µ,ν (R n l,
) .

If we choose Φ such that its norm is smaller than κ r in the space C 2,α R n Thus, for all function f in the set [ω Φ , Γ cor, ], it is possible to decompose f as

f = Γ + f , where f (x) (1 + κ) c r ,
that is to say f is very small in comparison with Green's function Γ. Then we check that for all function

g in C 2,α µ,ν R n l, , for all x in R n l, , dG f (g) (x) c 2 r 2-2n + 2 r 2-2n + 2 r 2-2n 2 r µ-2 g L ∞ µ-2,ν-2 (R n l, ) .
So, for a parameter small enough,

dG f (g) L ∞ µ-2,ν-2 (R n l, ) c 2 r 2-2n g L ∞ µ-2,ν-2 (R n l, )
.

By similar calculus, we nally end up with

dG f c 2 r 2-2n . Besides, since ω Φ -Γ cor, = h Φ , the estimate (3.2.26) implies ω Φ -Γ cor, C 2,α µ,ν (R n l, ) cr -µ Φ C 2,α (∂R n l, ) . Using the two previous inequalities together with Φ C 2,α (∂R n l, ) κ r , we get G (ω Φ ) -G (Γ cor, ) C 0,α µ-2,ν-2 (R n l, ) cκ 3 r 3-2n-µ = cκ r n-µ .

Conclusion :

For the parameter small enough,

G (Γ cor, ) -∆Cor C 0,α µ-2,ν-2 (R n l, ) c κ r n-µ . (4.1.27) 4.1 (c)
The contraction mapping Proposition 4.1.1 For all µ, ν ∈ (2 -n, 0), there exists some constant c = c (n, µ, ν, α) > 0 such that for all κ > 0, there exists κ > 0 such that : for all ∈ (0, κ ), for all Φ which satises

Φ C 2,α (∂R n ) < κ r , F maps the ball B of radius 2c r n-µ , centred in the function 0, which is contained in C 2,α µ,ν R n l, , into itself and is a 1 2 -Lipschitz operator in the ball B : for all v 1 , v 2 ∈ B, F (v 1 ) -F (v 2 ) C 2,α µ,ν (R n l, ) 1 2 v 1 -v 2 C 2,α µ,ν (R n l,
) .

(4.1.28)

In this case, we work with the operator

G : C 2,α µ,ν R n l, -→ C 0,α µ-2,ν-2 R n l, .
Proof

The image of 0 : According to previous estimate (4.1.27) together with the estimate of the norm of operator ∆ -1 µ,ν (3.1.19), there exists

c = c (n, µ, ν, α) > 0 such that F (0) C 0,α µ,ν (R n l, ) c κ r n-µ
Note that it is this estimate which conducts us to the choice of the radius of B. Besides, µ ∈ (2 -n, 0) implies that for small (and thus for small r ),

r n-µ << r 1-µ ,
thus F (0) is small in comparison with the corrective term Cor, the harmonic extension h Φ and the rst order term of Γ.

The Contracting part : let v 1 , v 2 ∈ B. To deal with the dierence of the F (v i ),

we make use of the PDE they satisfy. Thus we obtain

∆ (F (v 1 ) -F (v 2 )) = G (ω Φ + v 1 ) -G (ω Φ + v 2 ) .
According to Taylor's theorem, we get

G (ω Φ + v 1 ) -G (ω Φ + v 2 ) C 2,α µ-2,ν-2 (R n l, ) sup f ∈[ω Φ +v 1 ,ω Φ +v 2 ] dG f v 1 -v 2 C 2,α µ,ν (R n l, ) ,
therefore it is enough to estimate the norm of the dierential of G. It is the same kind of computation than the one we used previously, except f belongs to

[ω Φ + v 1 , ω Φ + v 2 ] and not to [ω Φ , Γ cor, ]. However, since v i is small in comparison with ω Φ , if f is an element in [ω Φ , Γ cor, ]
, its main part is given by Γ and it follows that

sup f ∈[ω Φ +v 1 ,ω Φ +v 2 ] dG f c 2 r 2-2n ,
and conclusion holds since ∆ -1 µ,ν, is a continuous linear operator.

(d) A theorem of existence

If we apply a xed point theorem with parameters

{(a l-1,1 , p l-1,1 ) , • • • , (a l,n l , p l,n l )}
for the operator F, one deduces the next theorem.

Theorem 4.1.2

For all µ, ν ∈ (2 -n, 0), there exists some constant c = c (n, µ, ν, α) > 0 such that for all κ > 0, there exists κ > 0 such that : for all ∈ (0, κ ), for all Φ which satises Φ C 2,α (∂R n ) < κ r , there exists v Φ satisfying following assertions :

(i) Γ cor, + h Φ + v Φ satises the minimal graph equation on R n l, . (ii) v Φ belongs to C 2,α µ,ν R n l, with v Φ C 2,α µ,ν (R n l, ) 2c r n-µ ;
(iii) The solution v Φ continuously depends on the weighted points.

Description of the solution near its boundaries

We have seen that there exists v Φ such that the surface whose parametrization is given by Γ + h Φ + v Φ is minimal, but we do not know much about the boundary data of this minimal hypersurface ; by construction, we only can say that h Φ + v Φ looks like Γ cor, +Φ on its boundary. But we have to give a more accurate description for gluing process. Instead of looking this problem on ∂R n l, , it is enough to consider the case near one of the balls ∂B (p, r ) for some p = p k,j , the other cases can be deduced from this one. We dilate the function near a neighbourhood of p + ∂B r into u Φ,p,± :

A 1 -→ R x -→ (Γ cor, + h Φ + v Φ ) (p + r x) ,
where A 1 is the open annulus B 2 \ B 1 and the index ± is -(resp. +) when k = l (resp. k = l -1). We omit it until the end of this section to relieve notations.

Theorem 4.2.1

(i) u Φ,p is an element of C 2,α (A 1 ) and u Φ,p -Γ cor, (r •) -W e (Φ p ) C 2,α (A 1 ) c κ r n-1 ; (4.2.29) in particular, if a p = a k,j (resp. a p = -a k,j ) when k = l (resp. k = l -1) and ± is -(resp. +) when k = l (resp. k = l -1), the dierence function d Φ,p dened by d Φ,p (x) := u Φ,p (x) -a p r 2-n |x| 2-n + (n -2) 3 2 (3n -4) a 3 p r |x| 4-3n + C k,j,± + r x, F k,j,± + W e (Φ p ) (x) , is such that d Φ,p C 2,α (A 1 ) c r 2 (4.2.30)
and it depends continuously on the weighted points

(a l-1,1 , p l-1,1 ) , • • • , a l-1,n l-1 , p l-1,n l-1 .
(ii) If Φ and Φ are smaller than κ r , then

d Φ,p -d Φ,p C 2,α (A 1 ) c r n-2 Φ -Φ C 2,α (∂R n ) ; (4.2.31)
it follows that the map Φ → d Φ,p is a contraction for small enough.

Remark 4.2.2 As a matter of fact, inequality (4.2.30) will be useful to describe the behaviour of the minimal hypersurface near one of its boundaries p + ∂B r and thus for the gluing procedure. The second inequality (4.2.31) is established because we have in mind to apply an other xed point theorem in the gluing process.

Proof (i) First, note that u Φ -Γ (r •) -W e (Φ p ) C 2,α (A 1 ) h Φ -W e (Φ p ) C 2,α (A 1 ) + v Φ (r •) C 2,α (A 1 ) .
Using the proposition 3.2.3 for the harmonic exterior extension part together with the existence theorem 4.1.2 for the v Φ part, one then checks that

u Φ -Γ (r •) -W e (Φ p ) C 2,α (A 1 ) cr n-2 Φ C 2,α (∂R n l, ) + 2c r n-µ r µ ,
and inequality (4.2.29) holds for small enough.

Concerning the dierence function d Φ,p 0 , it directly follows from the expansion of Green's function Γ in (2.1.5).

(ii) Notice that

d Φ,p 0 -d Φ,P 0 C 2,α (A 1 ) v Φ (r •) -v Φ (r •) C 2,α (A 1 ) + h Φ (r •) -W e (Φ p ) -h Φ (r •) -W e Φ p C 2,α (A 1 ) .
• To deal with the rst term, we use linearity of the exterior harmonic extension operator together with the result of proposition 3.2.3 to obtain

h Φ (r •) -W e (Φ p ) -h Φ (r •) -W e Φ p C 2,α (A 1 ) c • r n-2 Φ -Φ C 2,α (∂R n l, ) .
• To deal with the other term, we use similar tools to the proof of proposition 4.1.2. By construction, the dierence v Φ -v Φ satises the PDE

∆ (v Φ -v Φ ) = G (ω Φ + v Φ ) -G (ω Φ + v Φ ) ,
thus, if we use the same method than for the estimate of G (ω Φ ) -G (Γ cor, ) and the continuity of the linear operator ∆ -1 µ,ν, we end up with

v Φ -v Φ C 2,α µ,ν (R n l, ) c r n-1 h Φ -h Φ C 2,α µ,ν (R n l, ) + v Φ -v Φ C 2,α µ,ν (R n l, ) ,
from what we deduce, with the help of proposition 3.2.3, that

1 -c r n-1 v Φ -v Φ C 0,α µ,ν (R n l, ) c r n-1-µ Φ -Φ C 2,α (∂R n l, )
, where c is a universal constant that does not depend on the parameter κ.

Consequently, for small enough, since cr n-1 << 1,

v Φ -v Φ C 2,α µ,ν (R n l, ) c r n-1-µ Φ -Φ C 2,α (∂R n l, ) ,
and the conclusion holds.

5 The n-catenoid

Some properties of the n-catenoid

The catenoid is a well known minimal surface in R 3 : it is the minimal surface with rotational invariance whose boundary is given by two parallel circles. There exists a generalization of such a surface in higher dimension : it is what we call the n-catenoid. Since we need dierent explicit formula for our study, we briey recall the construction of this minimal hypersurface in R n+1 .

We are looking for a hypersurface of revolution around the e n+1 -axis the vertical one thus we choose a parametrization whose form is the following :

X : S n-1 × R -→ R n+1 (z, s) -→ (ϕ(s)z, ψ(s)) ,
where ϕ and ψ are unknown. The function ϕ corresponds to the radius while the function ψ corresponds to the height. Then the metric g c of such a hypersurface is given by :

g c = φ2 + ψ2 ds 2 + ϕ 2 g S n-1 .
We enforce the equality φ2 + ψ2 = ϕ 2 in order to ensure a conform parametrization g c = ϕ 2 (ds 2 + g S n-1 ). Therefore, the second fundamental form and the mean curvature satisfy the relations

II c = φ ψ -φ ψ ϕ ds 2 + ψg S n-1
and

H c = φ ψ -φ ψ ϕ 3 + (n -1) ψ ϕ 2 .
Thus, if we are looking a solution of H c = 0 for which we enforce ψ to be a polynomial expression in ϕ, we nd that the couple of functions (ϕ, ψ) has to be a solution to the ODE system given by ψ = ϕ2-n ; φ2 + ϕ 4-2n = ϕ 2 .

(5.1.32)

If we want the size of the neck to be 1, an explicit solution is chosen so that ϕ(s) = cosh ((n -1) s)

1 n-1 and ψ(s) = s 0 ϕ 2-n (t)dt.
It will be convenient to use dierent formula to study deformations of the ncatenoid. We collect them into the next lemma.

Lemma 5.1.1 The unit normal is chosen to be

N c = -ϕ 1-n z, φ/ϕ ; the second fundamental form is II c = ϕ 2-n (1 -n) ds 2 + g S n-1 ;
the radius function is a solution to the ordinary dierential equation

φ = ϕ 1 + (n -2) ϕ 2-2n .
(5.1.33) Besides, Taylor expansions provide us the behaviour of the radius even function ϕ

near innity ϕ (s) = 2 -1 n-1 e s + 2 -1 n-1 n -1 e (3-2n)s + O s→+∞ e
(5-4n)s

(5.1.34)

and the height odd function ψ

ψ (s) = H 2 - 2 n-2 n-1 n -2 e (2-n)s + 2 n-2 n-1 (n -2) (n -1) (3n -4) e (4-3n)s + O s→+∞ e (6-5n)s , (5.1.35)
where H (cosh (nt))

1-n n dt = 1 n 1 0 u -n+1 n u 1 -u 2 -1 2 du, then integrating by substitution v = √ 1 -u 2 , +∞ 0 (cosh (nt)) 1-n n dt = 1 n 1 0 1 -v 2 -n+1 2n dv. If y is dened to be y = 1 2 + v 2 , then +∞ 0 (cosh (nt)) 1-n n dt = 2 -1+n n n 1 0 (y (1 -y)) -n+1 2n dy = 2 -1+n n n B ( n-1 2n , n-1 2n ) ,
where B denotes the Bêta function. Therefore, +∞ 0 (cosh (nt))

1-n n dt = 2 -1+n n n Γ n-1 2n 2 Γ n-1 n .
The result directly follows from the application of the duplication Legendre formula together with the analytic continuation formula

2 1 n √ π Γ n-1 2n + 1 2 = Γ n-1 2n Γ n-1 n and Γ - 1 2n = -2nΓ n -1 2n + 1 2 .

5.2

Local description of a truncated n-catenoid near its boundaries

We have in mind to glue a truncated catenoid with the graph of perturbed Green functions over hyperplanes. The catenoid has two ends, namely the horizontal

hyperplanes x n+1 = ± H 2 .
It is useful to write the parametrization of this minimal hypersurface in a neighbourhood of those hyperplanes as a vertical graph, which amounts to consider the height function over some annulus B (0, x ) \ B (0, x /2) where x is large when is small. Let us make the change of variables dened by x := ϕ (s) z. By Taylor expansion of the radius function (5.1.34), calculus leads us to the equality

e s = 2 1 n-1 |x| 1 - 1 4 (n -1) |x| 2-2n + O |x| 4-4n ,
which could be written

s = ln 2 1 n-1 |x| - 1 4 (n -1) |x| 2-2n + O |x| 4-4n
as well. Injecting this relation into the Taylor expansion of the height function (5.1.35), we nd

ψ ϕ -1 (|x|) = H 2 - 1 n -2 |x| 2-n - 1 2 (3n -4) |x| 4-3n + O |x| 6-5n .
(5.2.36)

for the upper part of the catenoid. As regards the lower part, it is enough to multiply this equality by a factor -1.

Remark 5.2.1 The rst non constant term corresponds to Green's function whose singularity is at the origin. This highlights once again the essential role that Green function plays in the theory of deformation of minimal hypersurfaces.

Furthermore, we could have computed the second term with the help of the minimal hypersurface graph equation in R n : it exactly matches the correcting term Cor we have introduced for Γ. More accurately, one easily checks that

∆ R 2 1 2 (3n -4) |•| 4-3n = -(n -1) |x| 2-3n = ∇ 2 - 1 n -2 |•| 2-n ∇ - 1 n -2 |•| 2-n , ∇ - 1 n -2 |•| 2-n .

5.3

Rescaling of the n-catenoid

The upper part of the catenoid can be parametrised by

x ∈ R n \ B 1 -→ (x, u (x)) ,
where u (x) = ψ (s) = ψ • ϕ -1 (|x|) ; remark that the choice of B 1 is done in such a way that min R ϕ = 1. Besides, the behaviour of u when s is large (or |x|) is given by (5.2.36).

Let η > 0 be a small dilation factor ; we rescale the n-catenoid by η to nd following parametrization with y := ηx :

y -→ y, η H 2 - 1 n -2 η n-1 |y| 2-n - 1 2 (3n -4) η 3(n-1) |y| 4-3n + • O y→0 η 5(n-1) |y| 6-5n .
Since we have in mind to glue a catenoid with the minimal surface we have constructed for the hyperplane-case, at the point p k,j , we choose η to be η k,j := (n -2)

1 n-1 a 1 n-1 k,j 1 n-1 . (5.3.37)
It is essential for a good understanding of the situation to notice that for an arbitrary choice of parameters a k,j , the catenoid C p k,j has a priori a dierent height from the other catenoids C P k ,j . However, we will see in gluing process that for xed k, the (a k,j ) j∈ 1,n k are almost equal ; in other words, the catenoids we glue between levels k and k + 1 have almost the same height.

Remark 5.3.1 For such a choice of η, the coecients in front of |x| 2-n are the same for the catenoid and for Green's function Γ. Besides, if we want to enforce the coecient |x| 4-3n to have the same rough estimate than the term •, F of Γ cor, , we nd 3 r 4-3n ≈ r : this is why we dene the radius r to be equal to 2 3(n-1) .

In terms of r , we have following relation :

r = ((n -2) a k,j ) -2 3(n-1) η 2 3 k,j .
Therefore, we note that the coecients of Taylor expansion are given by -a k,j

for |x| 2-n , -1 2(3n-4) (n -2) 3 a 3 k,j 3 for |x| 4-3n ,
in other words, they coincide with the expansion of the function Γ cor, we have introduced in the hyperplane case near p k,j see the section 2.2. Since |x| = ϕ (s), it will be convenient to dene a large real number s ,k,j as follows

ϕ (s ,k,j ) = 1 η k,j r , i.e.
s ,k,j := ϕ -1 r η k,j .

To relieve notations, we omit the indices k and j for all sections concerning the catenoid. To clarify the context, it is very useful to have estimates of the dierent quantities based on we use in this paper :

s ∼ →0 ln r η ∼ →0 -1 3(n-1) .
Notice that the equivalence does not depend on the point p k,j .

5.4

Some operators on the n-catenoid

(a)

The Jacobi operator

The Jacobi operator is interpreted as the dierential of the mean curvature operator. Like in the hyperplane case in which we have given an accurate description of the Laplacian, we have to develop similar propositions for the catenoid.

By construction, the metric g c on the n-catenoid can we written as g c = ϕ 2 (ds 2 + g S n-1 ).

Thus, the Laplace-Beltrami operator is given by

∆ c = 1 ϕ n ∂ s ϕ n-2 ∂ s • + 1 ϕ 2 ∆ S n-1 .
The Jacobi operator on the n-catenoid and its conjugate. Recall that we can write

II c = (1 -n) ϕ 2-n 0 0 ϕ 2-n g S n-1 ,
so we obtain the expression of the Jacobi operator J c = ∆ c +|A c | 2 , where A c denotes the shape operator :

J c = 1 ϕ n ∂ s ϕ n-2 ∂ s • + 1 ϕ 2 ∆ S n-1 + n (n -1) ϕ -2n .
The conjugate operator on the n-catenoid. Since the above expression is relatively inconvenient, we rather choose to study the conjugate operator L c dened by

L c := ϕ n+2 2 J c ϕ 2-n 2
• .

Then a direct computation shows that

L c = ∂ 2 s + 2 -n 2 φ ϕ -1 - n 2 -6n + 8 4 φ2 ϕ -2 + ∆ S n-1 + n (n -1) ϕ 2-2n .
Using the dierential equation (5.1.32) for ϕ together with the expression of the second derivative (5.1.33), we end up with

L c = ∂ 2 s + ∆ S n-1 - n -2 2 2 + n (3n -2) 4 ϕ 2-2n , (5.4.38)
whose formula is relatively simpler than the one for the Jacobi operator. Note that the potential term is bounded and is almost equal to n-2 2 2 when s is large. We will use this fact in the study of the Fredholm properties of this operator.

(b)

Jacobi elds and conjugate Jacobi elds Denition 5.4.1 A function f is a Jacobi (resp. conjugate Jacobi) eld if J c (f )

(resp. L c (f )) vanishes everywhere.
An ecient way to produce such elds is to consider the space of transformations which leave invariant the mean curvature. These transformations provide elements which belong to the kernel of the Jacobi operator since modify the vanishing mean curvature. For the n-catenoid, there are three classes of transformations, namely the translations, the dilatations and the rotations around the vertical axis Span (e n+1 ).

Jacobi eld associated to dilation. In this case, Y = X c , in other words, the vectoreld associated with dilation is nothing but the position vector. Then we get

Y, N c = -ϕ 2-n + ψ • φ ϕ .
The conjugate Jacobi eld for the conjugate operator L c is given by :

φ 0 - = -ϕ 2-n 2 + ϕ n-2 2 φ ϕ ψ.
(5.4.39)

Moreover, φ 0 -admits the following Taylor expansion :

φ 0 -(s) = a - 0 e n-2 2 s + b - 0 e -n-2 n s + O e 2-3n 2 s , (5.4.40) with a - 0 = 2 -n-2 2(n-1) H 2 and b - 0 = 1 n-2 -2 n-2 2(n-1) .
Jacobi eld associated with the vertical translation. In this case, Y = e n+1 , the Jacobi eld is given by Y, N c = φ ϕ and the conjugate Jacobi eld is

φ 0 + = ϕ n-2 2 φ ϕ .
(5.4.41)

Moreover, φ 0 + admits the following Taylor expansion :

φ 0 + (s) = a + 0 e n-2 2 s + b + 0 e -3n-2 2 s + O e 2-3n 2 
s ,

(5.4.42)

with a + 0 = 2 -n-2 2(n-1) and b + 0 = 2-3n 2(n-1) 2 -n-2 2(n-1) .
Jacobi elds associated with the horizontal translations. Since the (e j ) 1 j n span the horizontal translations, it is enough to consider the case Y = e j for some j ∈ 1, n . Then the Jacobi eld is ϕ 1-n z , e j and the conjugate Jacobi eld is given by

φ 1,j + (s, z) = φ 1 + (s) z , e j where φ 1 + = ϕ -n 2 .
(5.4.43)

Moreover, φ 1 + has the following asymptotic behaviour :

φ 1 + (s) = 2 n 2(n-1) e -n 2 s + O e 4-5n 2 s .
Jacobi elds associated with horizontal rotations. In this case, we chose Y to be such that the Jacobi eld is

Y, N c = ϕ 1-n ψ + φ z , e j ,
and the conjugate Jacobi eld is given by

φ 1,j -(s, z) = φ 1 -(s) z , e j where φ 1 - = ϕ -n 2 ψ + ϕ n 2 φ ϕ .
Furthermore, φ 1 -admits the following asymptotic behaviour :

φ 1 -(s) = a - 1 e n 2 s + b - 1 e -n 2 s + O e 4-3n 2 s , (5.4.44) where a - 1 = 2 -n 2(n-1) and b - 1 = 2 n 2(n-1) H 2 .
Remark 5.4.2 φ 1,j + is an even function while φ 1,j -is an odd one. Besides, φ 1 + exponentially decreases when |s| tends to ∞ while φ 1 -exponentially increases. We'll see it is a central point for deforming a catenoid : we won't be able to deform it anyhow since we'll have to enforce some conditions about the data boundary Ψ see the remark 6.3.7.

6 Fredholm properties of the Laplace Beltrami and the Jacobi operators

Indicial roots

The indicial roots of a second order elliptic operator play an essential role in studying its mapping properties. They provide a relatively simple method to check injectivity, surjectivity, together with asymptotic behaviour of functions. The reader could nd more details in the lectures [START_REF] Pacard | Lectures on Connected Sum Constructions in Geometry and Nonlinear Analysis[END_REF].

Denition 6.1.1 If L is an elliptic operator on a cylinder M × R, we say that a real number δ is an indicial root of L in +∞ if there exists a a C 2 -function v on M × R and a real number δ such that following assertions hold :

(i) δ < δ ; (ii) lim s→+∞ v L ∞ (M ×{s}) > 0 ;
(iii) e -δ s L e δs v -→ s→+∞ 0.

(a)

Decomposition on eigenspaces associated with the sphere S n-1 .

We use here the tools of Fourier analysis we have given in section 3.2 (a).

Let us write, for all function w ∈ C 2,α (S n-1 × R) the formula w = j∈N w j , where for all s ∈ R, the function w j (s, •) belongs to the eigenspace E j . It is the same to write w j = π j (w), where the projection π j is dened in 3.2.1. More precisely, if (ε j,i ) i denotes an orthonormal basis of E j , there exists w j,i : R -→ R such that for all s and for all z, w (s, z) = j i w j,i (s) ε j,i (z) .

Then one checks that L c (w) vanishes if, and only if, for all j ∈ N, for all i ∈ 1, dim E j , L j (w j,i ) = 0 where

L j := ∂ 2 s + n (3n -2) 4 ϕ 2-2n - n -2 2 + j
2 denes an ordinary dierential equation.

Remark 6.1.2 • We recall that if P is a homogeneous harmonic polynomial of degree j dened in R n , then its restriction to the sphere S n-1 is an element of the eigenspace E j . Thus constant functions belong to E 0 and functions of form z, e j are in E 1 . Therefore, the jacobi elds associated with dilation and vertical translation φ ± 0 satisfy L 0 φ ± 0 = 0 and the jacobi elds φ ± 1,j associated with horizontal translations or rotations satisfy L 1 φ ± 1,j = 0. In particular, the kernels of L 0 and L 1 are non empty.

• Moreover, φ i ± (with i ∈ {0, 1}) satisfy an ODE whose form is given by y +by = 0 and we notice that the coecient in front of y vanishes. Consequently, the wronskian w i of φ i -, φ i + is constant. More precisely, w 0 = 1 -n and w 1 = -n. For practical purpose, we multiply φ i ± by real constants c i ± such that the wronskian of the family c i

+ φ i + , c i -φ i -is equal to 1. 6.1 (b)
Indicial roots of the operator L j

Let us note δ j := n-2 2 + j. We easily check that

L j e ±δ j s = n (3n -2) 4 ϕ 2-2n (s) e ±δ j s .

But the term ϕ 2-2n (s) exponentially tends to 0 when |s| tends to innity. Indeed, the contribution of the term n(3n-2) 4

ϕ 2-2n (s) in the operator L j (or L c ) near innity can be neglected. More precisely, we the following lemma.

Lemma 6.1.3 The indicial roots of L j are ±δ j .

Corollary 6.1.4 The indicial roots of L c are the same than the operator ∂ 2

s + ∆ S n-1 -n-2 2 2
, namely the ±δ j for j ∈ N.

Proof (Of lemma 6.1.3) Note that e -δ s L j e ±δ j s ∼ s→∞ n (3n -2) 4 e (2-2n±δ j -δ )s ---→ s→∞ 0 provided δ ∈ (±δ j + (2 -2n) , ±δ j ), which is possible since 2 -2n < 0. Therefore ±δ j is an indicial root of L j .
It remains to prove that ±δ j are the only ones. By [Pac09, 5.2.1], the indicial roots of ∂ 2 s -δ 2 j are ±δ j . Therefore, if δ is an indicial root of L j and δ < δ together with v are the associated real number and function with δ (see denition 6.1.1), then

e -δ s ∂ 2 ss -δ 2 j e δs v = e -δ s L j e δs v + n (3n -2) 4 ϕ 2-2n (s) e (δ-δ )s v ---→ s→∞ 0,
from what we conclude that δ is an indicial root of ∂ 2 s -δ 2 j and conclusion holds.

(c)

Injectivity of L c Proposition 6.1.5 Let δ < -n 2 . Suppose there exists some function w and some constant c > 0 such that

L c (w) = 0 ; ∀z ∈ S n-1 , |w (s, z)| c (cosh s) δ .
Then w = 0.

Proof

We write w (s, z) = j,i w j,i (s) ε j,i (z). Then, according to paragraph 6.1 (a), we get L j (w j,i ) = 0. Besides, for all s, w j,i (s) is the orthogonal projection of w (s, •) with respect to the space Span (ε j,i ),

thus |w j,i | (s) w (s, •) L 2 (S n-1 ) ; therefore, for all s ∈ R, w j,i (s) c • (cosh s) δ .
We claim that w j,i ≡ 0.

The case j = 0, 1 : it is enough to remark that the conjugate Jacobi elds we have described in 5.4 (b) span all solutions of L 0 (w) = 0 and L 1 (w) = 0.

More precisely, by Cauchy-Lipschitz theory, the dimension of the solutions to the ordinary dierential equation L j w = 0 is 2. Moreover, E 0 has dimension 1 and E 1 has dimension n. Since φ 0 -, φ 0 + is a linearly independent family, it spans ker L 0 , just as the family (φ ± 1,j ) j∈ 1,n span ker L 1 . But none of these elements decrease as quickly than (cosh s) δ . Thus w j,i ≡ 0.

The case j 2 : the idea is to apply a maximum principle. Indeed, we compare the function w j,i with one of the conjugate Jacobi elds we have studied previously.

Since L j (w j,i ) = 0 and φ + 1,1 belongs to ker (L 1 ), we use the two dierential equations they satisfy to dene

w t : s -→ ϕ -n 2 (s) -t w j,i (s) ,
where t denotes a real number. Then w t satises

L j (w t ) = -(j -1) (n -1 + j) ϕ -n 2 < 0 (6.1.45) because j > 1.
Moreover, we know the asymptotic behaviour of ϕ (see (5.1.34)) and w j,i near innity :

w j,i (s) = O |s|→∞ cosh (s) δ = o |s|→∞ ϕ -n 2 (s) .
It follows that w t is non negative near innity. Reductio ad absurdum, suppose w j,i does not vanish everywhere. We then choose t in such a way that w t is positive on R and vanishes in at least one point s 0 . Therefore w t reaches its minimum 0 in s 0 and ẅt must be positive : it contradicts the inequality (6.1.45).

One proves with similar method the following proposition.

Proposition 6.1.6 Let s 1 < s 2 . Suppose there exists some bounded function

w : [s 1 , s 2 ] × S n-1 -→ R such that      L c (w) = 0 ; ∀s ∈ (s 1 , s 2 ) , w (s, •) ∈ E ⊥ 0,1 ; ∀j ∈ {1, 2} , w (s j , •) = 0.
Then w = 0.

Analysis in weighted spaces

We have seen in the proposition 6.1.5 that when we enforce a certain behaviour of a function near innity, we can give some properties about the action of operator L c on such a function. This is why we consider our problem in well chosen function spaces : the weighted spaces. The reason is quite similar to the hyperplane case.

Denition 6.2.1 Let δ be a real number.

• Let p ∈ [1, +∞]. We dene the weighted space L p δ on R × S n-1 as follows :

L p δ R × S n-1 := (cosh s) δ L p R × S n-1 , endowed with the norm • L p δ (R×S n-1 ) dened by f L p δ (R×S n-1 ) := (cosh s) -δ f L p (R×S n-1 )
.

• Let k ∈ N and α ∈ (0, 1). We dene the weighted space C k,α δ on R × S n-1 as follows :

C k,α δ R × S n-1 := (cosh s) δ C k,α R × S n-1 , endowed with the norm • L p δ (R×S n-1 ) dened by f C k,α δ (R×S n-1 ) := (cosh s) -δ f C k,α (L p (R×S n-1 ))
.

Heuristically, a function f which belongs to some weighted space is bounded by a constant times (cosh s) δ : it prevents functions from exploding too fast. Dierential operators on weighted functions have a kernel and an image that depend on the choice of the weight parameter δ. Remark 6.2.2 One can dene in the same way the weighted spaces L p δ (I × S n-1 ) (resp. C k,α δ (I × S n-1 )) where I is an interval of R.

Remark 6.2.3 Unlike the case of weighted spaces on hyperplanes, for all k 2, the operator L c satises

L c : C k,α δ R × S n-1 -→ C k-2,α δ R × S n-1 ,
and the weight parameter δ does not change. Mainly, it can be explained by the fact that the derivative of an exponential e δs is also e δs while the derivative of r δ is r δ-1 .

According to the proposition 6.1.5, we obtain Fredholm properties for L c on weighted spaces. Proposition 6.2.4 Let δ < -n 2 .

Then

L c : C 2,α δ (R × S n-1 ) -→ C 0,α δ (R × S n-1
) is an injective operator.

Previous proposition is an injectivity property, but we do not know yet if there is surjectivity or isomorphism. It is the object of the following proposition.

Proposition 6.2.

5 Let δ ∈ n 2 , n+2 2 . Then there exists a constant c = c (δ, α, n) such that for all f ∈ C 0,α δ (R × S n-1 ) ∩ E ⊥ (R × S n-1
) (recall E is dened in notation 3.2.1), there exists one and only one function v such that :

v ∈ C 2,α δ (R × S n-1 ) ; L c (v) = f over R × S n-1 . (6.2.46)
Besides, for such a solution, we have the following estimate :

v C 2,α δ (R×S n-1 ) c f C 0,α δ (R×S n-1 ) . (6.2.47) We note L -1 c δ ,⊥ : C 0,α δ (R × S n-1 ) ∩ E ⊥ (R × S n-1 ) -→ C 2,α δ (R × S n-1 ) the right inverse.

Proof

Before giving the details of the proof, we briey explain the main ideas. First, we rst study the compact case : we solve the PDE on a compact set (s 0 , s 1 ) × S n-1 and we give an estimate which depends a priori on the choice (s 0 , s 1 ). Next, we prove by contradiction that, a fortiori, the estimate does not depend on these parameters.

In this purpose, we use the fact that

• a function which vanishes at a point x and takes value 1 at a point y with y close to x has a gradient that explodes ; • the Arzela-Peano theorem [GT01, theorem 4.6] could be used to study a limit PDE.

Bounded case : We show that we are able to solve the problem over an interval of the form [s 0 , s 1 ], together with a right estimate, namely : for all s 0 < s 1 , there exists a solution to

     v ∈ C 2,α δ ((s 0 , s 1 ) × S n-1 ) ; L c (v) = f over (s 0 , s 1 ) × S n-1 ; v = 0 on {s 0 , s 1 } × S n-1 .
Besides, there exists some constant c such that we have the following estimate :

v C 2,α δ ((s 0 ,s 1 )×S n-1 ) c f C 0,α δ ((s 0 ,s 1 )×S n-1 ) .
The existence follows from the injectivity of L c for bounded functions (proposition 6.1.6) together with the compactness of [s 0 , s 1 ] × R and the self-adjoint property of the operator L c .

The constant depends neither on s 0 nor on s 1 : We only prove that it is the case for s 1 and we conclude by symmetry. Reductio ad absurdum, suppose it is not the case, i.e. suppose there exists a sequence (s m ) m∈N * of (s 0 , +∞) such that for all m > 0, there exists f m and v m which satisfy

       Lc (v m ) = f m ; f m L ∞ δ ((s 0 ,sm)×S n-1 ) ---→ m→∞ 0; v m L ∞ δ ((s 0 ,sm)×S n-1 ) = 1.
We then dene a sequence ((s * m , z * m )) m such that

(cosh s * m ) -δ |v m (s * m , z * m )| = v m L ∞ δ ((s 0 ,sm)×S n-1 ) = 1.
We then compute a new function v * m which is chosen to be v * m :

[s 0 -s * m , s m -s * m ] × S n-1 -→ R (s, z) -→ (cosh s * m ) -δ v m (s + s * m , z) . Remark that v * m is nothing but a translation and a dilation of v m such that |v * m |takes value 1 at (0, z * m ) and v * m (s m -s * m , •) = 0.
We claim that (s m -s * m ) m does not tend to 0 : indeed, if it is the case, the gradient of v * m would degenerate near (0, z * m ) and it is impossible. More precisely, note that for all s and z,

|v m (s, z)| (cosh s) δ and |f m (s, z)| (cosh s) δ f m L ∞ δ ([s 0 ,sm]×S n-1 ) .
Moreover, using the PDE that v m satises and after noticing that ϕ 2-2n is a bounded function, simple calculation leads us to

∂ 2 s + ∆ S n-1 (v m ) c (cosh s m ) δ ,
where c = c (n). By [GT01, Theorem 4.11], there exists c = c (n) such that for all s in [s m -1, s m ] and for all z in S n-1 , ∇v m (s, z) c (cosh s m ) δ .

By Taylor's theorem between (s m , z m ) and (s * m , z m ), we then deduce that

1 c (cosh s m ) δ |s m -s * m | , thus |s m -s * m | c (cosh s m ) -δ
and this quantity does not tend to 0 since s m > s 0 and -δ > 0.

Even if it means extracting a subsequence, one can assume that the sequence

(s * m ) m converges in R. Now, let us write the partial dierential equation the function v * m satises. ∂ 2 s + ∆ S n-1 - n -2 2 2 v * m (s, z) = - n (3n -2) 4 ϕ 2-2n (s + s * m ) v * m (s, z) + f m (s + s m , z) (6.2.48)
First case s m → +∞ : We prove that we can extract a subsequence of (v * m ) m which converges to a solution v * ∞ to the following equation :

∂ 2 s + ∆ S n-1 - n -2 2 2 v * ∞ (s, z) = 0. (6.2.49)
In other words, the contribution of the terms in the second member of (6.2.48) can be neglected when m is large since ϕ 2-2n tends to 0 when s tends to ∞ and f m converges to 0. We rst assume s m -s * m → c 0 . The number c 0 is not equal to 0 by previous claim. If a is a xed real number, we have a uniform bound for the quantity

v m C 2,α ([s * m -a,s * m +a]×S n-1 ) .
By Arzela-Peano theorem, one can extract a subsequence which uniformly

converges in C 2,α ([s * m -a, s * m + a] × S n-1 ) to v * ∞ .
Therefore, equation (6.2.49) is satised. By an diagonal argument, one checks that it is true on (-∞, c 0 ) × S n-1 . Besides, if we want the boundary data of v * ∞ , a simple argument proves it is 0 :

|v * m (s m -s * m , •) -v * ∞ (c 0 , •)| |(v * m -v * ∞ ) (s m -s * m , •)| + |v * ∞ (s m -s * m , •) -v * ∞ (c 0 , •)| ---→ m→∞ 0, and conclusion holds since v * m (s m -s * m , •) = 0. Moreover, if we study the norm of v * ∞ , one nds (cosh s) -δ v * m (s, z) = (cosh s) -δ (cosh s * m ) -δ w m (s + s * m , z) , thus v * m L ∞ δ ((-∞,c 0 )×S n-1 ) ∼ m→∞ c v m L ∞ δ ((s 0 ,sm)×S n-1 ) c and v * ∞ belongs to the weighted space L ∞ δ ((-∞, c 0 ) × S n-1 ). But, according to proposition 6.2.4, v * ∞ ≡ 0 and it is a contradiction with v * ∞ (0, •) L ∞ (S n-1 ) = 1.
With the help of very similar arguments, one also nds a contradiction in the case s m -s * m → +∞.

Second case s m → s ∞ ∈ R : like in the previous case, even if it means extracting a subsequence, one shows that we can assume (v * m ) m uniformly converges (on all compact sets) to a solution v * ∞ of the following partial dierential equation

L c (v * ∞ ) = 0,
and we conclude in the same way as previous one.

Construction of a solution on R × S n-1 : we conclude in the same way of the study of the hyperplane case. More precisely, one considers a sequence of solutions on (-m, m) × S n-1 with boundary data 0 and we let m → +∞. We use the universal constant c to conclude we have the right estimate (6.2.47).

Uniqueness : if v 1 and v 2 are two solutions, then

L c (v 1 -v 2 ) = 0. But v 1 -v 2 belongs to C 2,α δ (R × S n-1
) and is orthogonal to the modes 0 and 1. 

c = c (δ, α, n) such that for all f ∈ C 0,α δ (R × S n-1 ) ∩ E 0,1 (R × S n-1
), there exists one function v such that :

v ∈ C 2,α δ (R × S n-1 ) ; L c (v) = f over R × S n-1 . (6.2.50)
Besides, for such a solution, we have the following estimate :

v C 2,α δ (R×S n-1 ) c f C 0,α δ (R×S n-1 ) . (6.2.51) We note L -1 c δ : C 0,α δ (R × S n-1 ) ∩ E 0,1 (R × S n-1 ) -→ C 2,α δ (R × S n-1 ) the right inverse.

Proof

Let us write f = f 0 + f 1 where f j belongs to E j for j = 0, 1. By linearity, it is enough to solve the problem with v = v 0 + v 1 where L j (v j ) = f j .

Explicit construction of solutions : we use the variation of constants to dene solutions to L j (v j ) = f j together with the help of the construction of conjugate Jacobi elds that belong to ker L 0 and ker L 1 . Recall that the wronskian of φ i -, φ i + with i ∈ {0, 1} is chosen so that it is equal to 1 see remark 6.1.2.

We check that v 0 (s) := φ 0 + (s)

s 0 φ 0 -(t) f 0 (t) dt -φ 0 -(s) s 0 φ 0 + (t) f 0 (t) dt and v 1 (s, z) := n i=1 φ 1,i + (s, z) s 0 φ 1,i -(t, z) f 1,i (t, z) dt -φ 1,i -(s, z) s 0 φ 1,i + (t, z) f 1,i (t, z) dt are solutions.
Right weighted space and estimate : we have not proved that our solutions v j belong to the space C 2,α δ (R × S n-1 ). By classical results on elliptic partial dierential equations, v j belongs to C 2,α loc (R × S n-1 ). It remains to prove the weight part. According to Schauder's estimates, it is enough to demonstrate that v j belongs to L ∞ δ (R × S n-1 ). For example, we deal with the rst term of v 0 as follows : we use the denition of the conjugate Jacobi elds together with the estimate

f 0 L ∞ δ (R×S n-1 ) c f L ∞ δ (R×S n-1 ) to get φ 0 + (s, z) s 0 φ 0 -(t, z) f 0,1 (t) dt c (cosh s) δ + (cosh s) 2-n 2 f L ∞ δ (R×S n-1 ) ,
where c = c (δ, n). Doing similar computation for the other term, we nally obtain

|v 0 (s, z)| c f L ∞ δ (R×S n-1 ) (cosh s) n-2 2 + (cosh s) -n-2 2 + (cosh s) δ , thus v 0 L ∞ δ (R×S n-1 ) c f L ∞ δ (R×S n-1 ) , provided δ n-2

2

(and it is the case), where c = c (δ, n).

Harmonic extensions

Like in the case of the study of minimal hypersurfaces over punctured hyperplanes, we make use of the harmonic function theory. As a matter of fact, the previous analysis provides us a way to solve the problem L c (v) = f but we have not yet prescribed a Dirichlet data. It is the object of this section.

Let us dene the harmonic operator H c as follows :

H c := ∂ 2 s + ∆ S n-1 - n -2 2 2 .
First of all, note that H c is also equal to L c -n(3n-2) 4 ϕ 2-2n , thus it is very close to the operator L c when |s| is large. From a heuristic point of view, the solutions to Dirichlet problems

H c (h) = 0 h (±s , z) = Ψ and L c (h) = 0 h (±s , z) = Ψ
are similar and have same kinds of estimate when s is suciently large for a boundary data Ψ on {±s } × S n-1 .

The reason for which we have called H c the harmonic extension is that there is a deep link between H c on a cylinder R × S n-1 and the interior harmonic extension W i on the ball B 1 . Indeed, it is the same object in dierent coordinates.

The interior harmonic extension has the same type than W e , except it denes an harmonic function on the interior of the ball B 1 with prescribed boundary data while W e denes an harmonic function on the exterior of the ball B 1 . Like in the proof of proposition 3.2.2, one checks that if Ψ is a function on S n-1 , then the explicit formula for W i (Ψ) is given by

∀t ∈ B 1 , W i (Ψ) (t) = j 0 |t| j Ψ j t |t| . Moreover, if h Ψ : (s, z) ∈ [0, +∞) × S n-1 -→ f c (s, z) ∈ R is a solution to the problem H c (h Ψ ) = 0 in [0, +∞) × S n-1 , h Ψ (0, •) = Ψ (•) on S n-1 , (6.3.52)
then calculus shows that for all t ∈ B 1 \ {0},

W i (Ψ) (t) = |t| 2-n 2 h Ψ -log |t| , t |t| .
Given an arbitrary boundary data Ψ, we decompose each function Ψ ± (•) = Ψ (±s , •) dened on the sphere S n-1 by using eigenmodes of the Laplacian. We distinguish the modes 2, 3, 4 and so on from the other ones because we will use the conjugate Jacobi elds to study the problem with modes 0 and 1.

(a)

The modes 2, 3, 4, etc Proposition 6.3.1 There exists some constant c := c (α, n) such that for all Ψ ∈ C 2,α (S n-1 ) ∩ E ⊥ (S n-1 ), there exists one and only one function h Ψ in C 2,α loc ([0, +∞) × S n-1 ) which is a solution to the problem (6.3.52). Besides, h Ψ belongs to C 2,α n+2 2

([0, +∞) × S n-1 ) and following estimate holds true :

h Ψ C 2,α n+2 2 ([0,+∞)×S n-1 ) c Ψ C 2,α (S n-1
) .

(6.3.53) Remark 6.3.2 The weight parameter could be improved in some special cases : if Ψ = 0 and j 0 := min {j 2 : Ψ j = 0}, then we have same result with weight parameter δ j 0 .

Before giving the proof, we deduce from the above proposition the Corollary 6.3.3 There exists some constant c := c (α, n) such that for all

s 0 ∈ R + and Ψ ∈ C 2,α ({±s 0 } × S n-1 ) ∩ E ⊥ , there exists one function h Ψ in C 2,α loc ([-s 0 , +s 0 ] × S n-1
) which satises the assertions :

(i) h Ψ is harmonic, i.e. H c (h Ψ ) = 0 in [-s 0 , +s 0 ] × S n-1 ; (ii) h Ψ belongs to C 2,α n+2 2 
([-s 0 , +s 0 ] × S n-1 ) and we have the estimate

h Ψ C 2,α n+2 2 ([-s 0 ,+s 0 ]×S n-1 ) c cosh (s 0 ) -n+2 2 Ψ C 2,α (S n-1 ) ; (6.3.54)
(iii) we have an accurate description of the solution in a neighbourhood of the boundary, namely :

h Ψ (s, z) -e n-2 2 (s-s 0 ) W i (Ψ + ) e s-s z C 2,α ([s 0 -2,s 0 ]×S n-1 ) c cosh (s 0 ) -(n+2) Ψ C 2,α (S n-1
) . (6.3.55) Remark 6.3.4 Of course, there exists a similar result for the lower part of the catenoid, namely the inequality

h Ψ (s, z) -e n-2 2 (-s+s 0 ) W i (-Ψ -) e s-s z C 2,α ([-s 0 ,-s 0 +2]×S n-1 ) c cosh (s 0 ) -(n+2) Ψ C 2,α (S n-1 )
.

The reader will mind the change of signs in the interior harmonic extension.

Sketch of the proof (Of proposition 6.3.1)

Either we use the link between W i and H c or one checks, like in the hyperplane case, that

h Ψ (s, z) := ∞ j=2 dim E j i=1 e -δ j s Ψ j,i (z)
is a solution with weight parameter -δ 2 = -n+2 2 .

Proof (of the corollary)

It is enough to apply previous proposition. Let h Ψ + (resp. h Ψ -) be the solution given by the problem (6.3.52) with boundary data

Ψ (s 0 , •) (resp. Ψ (-s 0 , •)). We dene h Ψ by h Ψ : (s, z) -→ h Ψ + (s 0 -s, z) + h Ψ -(s 0 + s, z) .
We easily check that this sum of translated functions satises H c (h Ψ ) = 0.

We deal with the estimate (6.3.54) as follows : we prove it in the L ∞ . The boundary estimate (6.3.55) can be proved with same method by noting the equality

h Ψ + (s 0 -s, z) = e 2-n 2 (s-s 0 ) W i (Ψ + ) e s-s 0 , z .
Remark 6.3.5 Note that since δ j 0 n+2 2 , the harmonic extension h Ψ always belongs to C 2,α δ ((s 0 , +∞) × S n-1 ) for all δ ∈ n 2 , n+2 2 .

(b)

The mode 0 and the s-odd mode 1

Unlike the method described in particular in the articles [START_REF] Fakhi | Existence of complete minimal hypersurfaces with nite total curvature[END_REF] or [KP07, Part 4] in which the gluing process is conducted by leaning the deformed catenoid in some direction (in our case, we would need to look in the direction given by the force F ), we will treat terms of order 0 and 1 by using the conjugate Jacobi elds because they span the kernel of L c for weight parameter smaller than n 2 . However, we will also prove that this approach is very close to that of harmonic extensions. Denition 6.3.6 For all function Ψ over {±s } × S n-1 , we decompose its mode 1, namely Ψ 1 as

Ψ 1 = Ψ 1 odd + Ψ 1 even
where Ψ 1 odd (resp. Ψ 1 even ) is s-odd (resp. s-even). By misuse of notation, we also identify the function Ψ 1 odd (resp. Ψ 1 even ) with the vector Ψ 1 odd such that Ψ 1 odd (±s , z) = ±Ψ 1 odd , z (resp. Ψ 1 even (±s , z) = Ψ 1 even , z ).

Remark 6.3.7 We say that en element Ψ is s-odd when Ψ (s 0 , z) = -Ψ (-s 0 , z), in other words, when Ψ + = -Ψ -where Ψ ± := Ψ (±s 0 , •) .

In this section, we cannot use the s-even Jacobi elds φ + 1,j . This particular choice is a fundamental point on which we have to enlarge upon. The nature of Jacobi elds associated with rotation or dilation turns out to be very dierent. Indeed, a rough asymptotic behaviour of φ 1 -is given by (cosh s) n 2 which explodes when s is large while the inverse phenomena occurs for φ 1 + which decreases like (cosh s) -n 2 . If we chose any function Ψ with no symmetry, we would observe that we have to make use a term like φ 1 + and the solution we want to construct in the following proposition would not be bounded in s = 0 : its rough estimate would be (cosh (s 0 ))

n-2

2 . In other words, a generic boundary data implies we do not control the norm of the solution and we no longer are able to perform the xed point theorem to deform a truncated catenoid.

Geometrically, this condition states that the axis of the deformed truncated catenoid is straight.

Proposition 6.3.8 There exists some constant c := c (α, n) such that for all

s 0 ∈ R + and Ψ ∈ C 2,α ({±s 0 } × S n-1 ) ∩ E 0 (resp. C 2,α ({±s 0 } × S n-1 ) ∩ E 1 odd ,
where E 1 odd denotes the the s-odd functions of E 1 ), there exists one function

Ψ ∈ C 2,α loc ([-s 0 , s 0 ] × S n-1
) which is a solution to the following problem :

L c ( Ψ ) = 0 in [-s 0 , s 0 ] × S n-1 ; Ψ = Ψ on {±s 0 } × S n-1 . (6.3.56) Besides, Ψ belongs to C 2,α n-2 2 ([-s 0 , s 0 ] × S n-1 ) (resp. C 2,α n 2
[-s 0 , s 0 ] × S n-1 ) and following estimates hold :

Ψ C 2,α n-2 2 ([-s 0 ,s 0 ]×S n-1 ) c (cosh s 0 ) -n-2 2 Ψ C 2,α (S n-1 ) if Ψ ∈ E 0 (resp. c (cosh s 0 ) -n 2 Ψ C 2,α (S n-1 ) if Ψ ∈ E 1 -).
Moreover, it is possible to have more ecient estimate near the boundary, namely :

Ψ (s, z) -e n-2 2 (s-s 0 ) W i (Ψ + ) e s-s 0 , z C 2,α ([s 0 -2,s ]×S n-1 ) c cosh (s 0 ) -n+2 Ψ C 2,α (S n-1 ) if Ψ ∈ E 0 ; c cosh (s 0 ) -n Ψ C 2,α (S n-1 ) if Ψ ∈ E 1 -.
(6.3.57) Remark 6.3.9 Concerning the lower part, the same kind can be proved with a change of signs in interior harmonic extensions, just like in remark 6.3.4.

Proof

Here, it us very useful to explicit the solutions since an accurate description of the solution highlights the role of the harmonic extensions.

The mode 0 : Suppose Ψ ∈ E 0 . We already know that the family φ 0 -, φ 0 + spans the Jacobi elds associated with this mode. Thus we look for a solution Ψ whose form is given by λφ 0 -+ µφ 0 + . The boundary conditions for s = ±s 0 imply the following linear system

φ 0 -(s 0 ) φ 0 + (s 0 ) φ 0 -(s 0 ) -φ 0 + (s 0 ) λ µ = Ψ + Ψ - ,
from what we deduce

Ψ = Ψ + φ 0 - 2φ 0 -(s 0 ) + φ 0 + 2φ 0 + (s 0 ) + Ψ - φ 0 - 2φ 0 -(s 0 ) - φ 0 + 2φ 0 + (s 0 )
.

It is an easy computation to see it is really a solution to the problem (6.3.56).

It remains to check this function Ψ begins to some weighted space and to esti- mate its norm. As a matter of fact, this directly derives from the construction of Jacobi eld (cf. (5.4.39) et (5.4.41)). First of all, observe those elds acts as ϕ n-2

2 , thus exponentially increases as (cosh s)

n-2 2 , so Ψ is an element of the weighted space L ∞ n-2 2 ([-s 0 , s 0 ] × S n-1 ).
To estimate its norm, we use the Taylor expansion (5.4.40) : there exists a constant c = c (n) which does not depend on s 0 , such that for all s ∈ R + , we can decompose ϕ -

0 into ϕ - 0 (s) = a - 0 e n-2 2 s + r - 0 (s)
where the function r - 0 is much smaller than the rst term, namely r - 0 (s) ce -n-2 2 s . Therefore, the inequality

φ 0 -(s) φ 0 -(s 0 ) -e n-2 2 (s-s 0 ) c e n-2 2 (s-s 0 ) e (2-n)s -e (2-n)s 0 ,
provides a way to prove

e -n-2 2 s φ 0 -(s) φ 0 -(s 0 ) ce -n-2 2 s 0 .
By doing likewise for the case s ∈ R -, we nally end up with

φ 0 -(•) φ 0 -(s 0 ) L ∞ n-2 2 ([-s 0 ,s 0 ]×S n-1 ) c (cosh s 0 ) -n-2 2 .
The calculus for the φ 0 + part is quite similar. We nd

Ψ L ∞ n-2 2 ([-s 0 ,s 0 ]×S n-1 ) c (cosh s 0 ) -n-2 2 Ψ C 2,α ({±s 0 }×S n-1 )
.

the same kind of computation regarding the norm C 2,α n-2 2 ([-s 0 , s 0 ] × S n-1 ) together with the Schauder's estimates leads to the estimate (6.3.8).

Furthermore, in order to compare the solution with the harmonic extension, the estimate (6.3.57) can be easily checked by noting that W i (Ψ + ) = Ψ + it is the constant term of the interior harmonic extension and by applying above inequalities.

The mode 1 : It is an argument quite similar to the previous one. Indeed, if

Ψ + (z) = -Ψ -(z) = i Ψ 1,i
z, e i , then the solution is given by

Ψ (s, z) = i Ψ 1,i φ - 1 (s) φ - 1 (s 0 )
z, e i .

The estimate (6.3.57) can be deduced from the equality

e n 2 (s-s 0 ) Ψ + (z) = e n-2
2 (s-s 0 ) W i (Ψ + ) e s-s 0 , z .

(c)

To deal with the s-even mode 1

In the above proposition, we enforce the boundary data Ψ 1 to be s-odd. However, for a general case, there is a priori no symmetry in the weighted conguration {a k,j , p k,j }, thus no reason why the truncated catenoids of the gluing method could have s-odd mode 1 boundary data. It turns out that for any function Ψ 1 , we are not able to solve the minimal surface equation with the method we use. To make up for this problem, we rather solve a problem whose type is

H ω = ϕ * V, Jacobi elds
where * is a well chosen real number. We explain the choice of this equation and the choice of * in section 7. that takes value 1 for |s| s -1, vanishes for |s| s -2. We suppose its C ∞ -norm does not depend on . There exists a constant c = c (n, α) such that for all Ψ 1 even ∈ C 2,α ({±s } × S n-1 ), there exists one function Ψ 1 even which is a solution to the problem

L c Ψ 1 even (s, z) = -1 M (1 -|χ (s)|) φ 1 + (s) Ψ 1 even , z over [-s , s ] × S n-1 , Ψ 1 even (±s , z) = Ψ 1 even , z over {±s } × S n-1 , (6.3.58)
where M is a large positive constant we determine during the proof. Besides,

Ψ 1
even belongs to the Hölder weighted space C 2,α n 2 ([-s , s ] × S n-1 ) and

Ψ 1 even C 2,α n 2 ([-s ,s ]×S n-1 ) c cosh (s ) -n 2 Ψ 1 even C 2,α ({±s }×S n-1 ) . (6.3.59)
Moreover, it is possible to obtain more ecient estimate near the boundary with the help of harmonic extensions, namely :

Ψ 1 even (s, z) -e n-2 2 (s-s ) W i Ψ 1 even , z e s-s z C 2,α ([s -2,s ]×S n-1 ) c cosh (s ) -n Ψ 1
even C 2,α ({±s }×S n-1 ) . (6.3.60)

Proof

By standard variation of constants for the operator L 1 together with the remark 6.1.2 about the wronskian of φ 1 -, φ 1 + , the function dened by

(s) := (1 -|χ (s)|) • φ 1 + (s) s 0 ϕ (t) -n 2 φ 1 -(t) dt -φ 1 -(s) s 0 ϕ (t) -n 2 φ 1 + (t) dt satises L 1 = (1 -|χ |) ϕ -n 2 .
Besides, according to the construction of the Jacobi elds φ 1 ± , we check that there exists a constant c = c (n) such that for all s, (s) c cosh (s )

n 2 .
We choose M := (s ) and

Ψ 1 even (s, z) := - 1 (s ) (s) Ψ 1 even , z .
Then Ψ 1 even is a solution to the problem (8.2.88). Besides, the above inequality together with Schauder's estimates prove the estimate (6.3.59).

To conclude with (6.3.60), it is enough to obtain Taylor expansion for (s) when |s| is large. For example, note that

s 0 φ 1 + (t) ϕ (t) -n 2 dt = +∞ 0 ϕ (t) -n dt - +∞ s ϕ (t) -n dt = +∞ 0 ϕ (t) -n dt + O |s|→+∞ cosh (s) -n .
We deal with the other terms of in the same way.

Remark 6.3.11 It is a result analogous in shape to the one we prove for the s-odd part Ψ 1 odd . Besides, in a neighbourhood of ±s , the solution Ψ 1 even looks like the solution to the one of the problem L c ( Ψ 1 even ) = 0 with boundary data Ψ 1 even ; it can be fundamentally explained with the inequality

1 -|χ | (s ) ϕ -n 2 Ψ 1 even c cosh (s ) -n Ψ 1 even << Ψ 1 even .
7 Hypersurface near the n-catenoid

Mean curvature and minimal hypersurfaces

We have in mind to deform a truncated n-catenoid whose boundary data is prescribed. In this purpose, we consider normal deformations. For a function ω on

S n-1 × R, let X ω := X c + ωN c = X c + ω N c where ω = ω ϕ , N c = ϕN c
and denote by Σ ω the associated hypersurface.

It is well konwn (cf. [START_REF] Barbosa | Stability of Hypersurfaces with Constant Mean Curvature[END_REF] for example) that the Jaboci operator is the linearization of the mean curvature. Nevertheless, for our purposes, it is necessary to give an accurate description of the minimal surface equation we want to solve : we compute the rst variation of area to obtain asymptotic behaviour of the non linear terms.

(a)

The normal deformations case Metric on Σ ω . Calculus demonstrates that the metric on the surface Σ ω is given by the matrix

g ω = ( ∂ x i X ω , ∂ x j X ω R n+1 ) i,j
which satises equalities

(g ω ) s,s = ϕ 2 1 + 2 (n -1) ωϕ 1-n + ω 2 1 + n (n -2) ϕ 2-2n + ˙ ω 2 + 2 ω ˙ ω φ ϕ ,
together with

(g ω ) z i ,z j = ϕ 2 1 -ωϕ 1-n 2 (g S n-1 ) i,j + ∂ z j ω∂ z i ω and (g ω ) s,z i = ϕ 2 ∂ z i ω ˙ ω + ω φ ϕ .
Let g ω,S n-1 be the extracted (n -1)-matrix from g ω given by the spherical coordinates. For small ω, we can write

g ω,S n-1 = ϕ 2 1 -ωϕ 1-n 2 • g S n-1 • I n-1 + 1 (1 -ωϕ 1-n ) 2 g -1 S n-1 (∂ z i ω∂ z j ω) i,j .
Note the matrix equality g -1

S n-1 (∂ z i ω∂ z j ω) i,j = ∂ z l ω∇ k S n-1 ω k,l .
For practical purpose, we give the following denition.

Denition 7.1.1 For a function f , we write

f ( ω) = Q i ( ω) = Q i s, ω, ∇ ω, ∇ 2 ω
for 0 i 3 (resp. i = 4) if the following assertions are satised :

(i) Q i (ω) is an expression of order i (resp. collects all the terms whose order is larger than 3) in ω and its derivatives ;

(ii) the coecients of Q i and their derivatives are s-uniformly bounded functions.

In particular, there exists universal constant c i = c i (n, α) such that

|Q i ( ω)| c ω i C 2,α
and

|Q i ( ω 1 -ω 2 )| c ω 1 -ω 2 C 2,α max { ω 1 C 2,α , ω 2 C 2,α } i-1 .
Thus, the determinant of g ω,S n-1 satises :

det g ω,S n-1 = ϕ 2(n-1) • det g S n-1 1 -2 (n -1) ωϕ 1-n + (n -1) (2n -3) ω 2 ϕ 2(1-n) + ϕ 3(1-n) Q 3 ( ω) + ϕ 4(1-n) Q 4 ( ω) • det I n-1 + 1 + ϕ 1-n Q 1 ( ω) + ϕ 2(1-n) Q 2 ( ω) ∂ z l ω∇ k S n-1 ω k,l .
We use the classical asymptotic formula for the last term

det (I n-1 + H) = 1 + tr (H) + 1 2 (tr (H)) 2 -tr H 2 + q 3 (H) + q 4 (H)
where q 3 collects all the terms of degree 3 and q 4 collects the higher terms in order to obtain, according to the identity

|∇ S n-1 ω| 2 S n-1 = i ∂ z i ω∇ i S n-1 ω, det I n-1 + 1 + ϕ 1-n Q 1 ( ω) + ϕ 2(1-n) Q 2 ( ω) ∂ z l ω∇ k S n-1 ω k,l = 1 + |∇ S n-1 ω| 2 S n-1 + ϕ 1-n Q 3 ( ω) + Q 4 ( ω) .
The reader will mind the dierent coecients in front of Q 3 and Q 4 . The terms whose higher is larger than 4 come from two kinds of objects : on one hand, those we obtain with quantity ϕ 2(1-n) Q 2 ( ω) • ∂ z l ω∇ k S n-1 ω, on the other hand those we obtain with quantity

∂ z l ω∇ k S n-1 ω • ∂ z l ω∇ k S n-1 ω.
Therefore, the determinant of the metric g ω is given by

det g ω = ϕ 2n det g S n-1 1 + ω 2 + ω 2 -n 2 + n -1 ϕ 2-2n + ˙ ω 2 + 2 ω ˙ ω φ ϕ + ∇ ω 2 S n-1 + ϕ 1-n Q 3 ( ω) + Q 4 ( ω) .
In terms of ω, we get

det g ω = ϕ 2n det g S n-1 1 + ϕ -2 ω2 + ∇ω 2 S n-1 -n (n -1) ω 2 ϕ -2n + ϕ 1-n Q 3 ϕ -1 ω + Q 4 ϕ -1 ω , thus det g ω = ϕ n det g S n-1 1 + ϕ -2 2 ω2 + ∇ω 2 S n-1 - n (n -1) 2 ω 2 ϕ -2n + ϕ 1-n Q 3 ϕ -1 ω + Q 4 ϕ -1 ω . (7.1.61)
Minimal hypersurface equation. Here, we want to obtain the description of the link between the rst variation of area and the Jacobi operator which is the dierential of mean curvature. By denition, the area of X ω is given by A ω =

R×S n-1 √ det g ω ds dz. According to the equation (7.1.61), one proves the dierential of the area functionnal at ω is given by

dA ω (h) = R×S n-1 det g S n-1 ϕ n-2 ω ḣ + ϕ n-2 ∇ S n-1 ω, ∇ S n-1 h S n-1 -n(n -1)ωhϕ -n + Q 2 ϕ -1 ω (h) + ϕ n-1 Q 3 ϕ -1 ω (h) ds dz, where Q i ( ω) (h) is the dierential of Q i+1 at point ω in h. Integration by parts leads us to dA ω (h) = - R×S n-1 det g S n-1 ϕ n J c (ω) + Q 2 ϕ -1 ω + ϕ n-1 Q 3 ϕ -1 ω h ds dz. (7.1.62) It follows that Σ ω is minimal if this dierential vanishes, i.e. when L c ϕ n-2 2 ω = ϕ 2-n 2 Q 2 ϕ -1 ω + ϕ n 2 Q 3 ϕ -1 ω .
Instead of considering the parametrization X ω = X c + ωN c , it will be convenient to use another conjugate parametrization X ω := X c + ϕ 2-n 2 ωN c . Then the previous minimal surface equation turns into

L c (ω) = ϕ 2-n 2 Q 2 ϕ n 2 ω + ϕ n 2 Q 3 ϕ n 2 ω . (7.1.63) 7.1 (b)
The mean curvature equation

In the above paragraph, we develop an accurate description of the minimal graph equation. Nevertheless, as said in section 6.3 (c), for a problem with no symmetries, we are not able to solve it. We rather solve equation whose type is mean curvature = sum of Jacobi elds. Consequently, we have to explicit the mean curvature equation. In this purpose, we use the classical formula for normal

deformations X ω = X c + ωN c dA ω (h) = Σω H ω N ω , N c h dvol Σω ,
where H ω is the mean curvature of Σ ω , N ω is its unit normal and dvol Σω is its volume form. According to this equation together with (7.1.62), we nd

H ω = - ϕ n J c (ω) + Q 2 (ϕ -1 ω) + ϕ n-1 Q 3 (ϕ -1 ω) N ω , N c √ det g ω det g S n-1 .
The only data we do not have described yet is the unit normal N ω . We give a broad outline of its tedious computation. We look for a representation such that

N ω = 1 (α 2 + i β 2 i + γ 2 ) 1/2 αz + i β i ∂ z i z, γ ∈ R n × R. Relations N ω , ∂ s X ω = 0 and N ω , ∂ z i X ω = 0 show we can choose α = -(ϕ 3-n + φ ω + (1 -n) ωϕ 3-2n ) , β i = -ϕ∇ i S n-1 ω + ϕ 3-n Q 2 (ϕ -1 ω) + ϕ 4-2n Q 3 (ϕ -1 ω) , γ = φϕ -ωϕ 2-n + (n -1) ω φϕ 1-n .
Consequently, in order to normalize the vector N ω , it remains to explicit

α 2 + i β 2 i + γ 2 -1/2 = ϕ -2 1 -(n -1) ϕ -1 ω ϕ 1-n -2ϕ 3(1-n) + Q 2 ϕ -1 ω + ϕ 1-n Q 3 ϕ -1 ω . It follows that N ω , N c -1 = 1 + ϕ 1-n Q 1 ϕ -1 ω + Q 2 ϕ -1 ω ,
from what we conclude 

H ω = -J c (ω) + ϕ -n Q 2 ϕ -1 ω + ϕ -1 Q 3 ϕ -1 ω . ( 7 
H ω = ϕ -n+2 2 -L c (ω) + ϕ 2-n 2 Q 2 ϕ n 2 ω + ϕ n 2 Q 3 ϕ n 2 ω .
(7.1.65)

(c) A more convenient deformation

As said previously, when |s| is very large, the catenoid is almost at, asymptotic to a horizontal hyperplane and its unit normal is quasi vertical. For the gluing process, it will be more convenient to consider that in this case, we can write the piece of catenoid as a graph over an open set of an horizontal hyperplane. We choose an annulus whose radius is large enough to ensure we can write the piece of catenoid as a vertical graph. To avoid this annulus depends on the choice of the small perturbation ω we perform, we change the unit normal N c as a vector N such that N is equal to N c for |s| small and N is a vertical vector when |s| is large. We then work with the small perturbation X ω, = X c + ϕ

2-n n ωN . Let χ a smooth increasing cuto function over R with values in [0, 1] such that χ (s) =      0 if |s| ∈ [0, s -2] , 1 if s ∈ [s -1, +∞] , -1 if -s ∈ [s -1, +∞] ,
and such that its C ∞ norm does not depend on the choice of parameter . We then dene N := (1 -|χ |) N c + χ e n+1 . In this case, we can write

N , N c (s, z) -1 = -|χ | + χ e n+1 , N c = χ (s) • (-sgn(s) + tanh ((n -1) s)) ,
and we check that for all k ∈ N, there exists a universal constant c k = c (n, k) such that for all |s| ∈ [s -2, s ],

∇ k ( N , N c (s, z) -1) c k (cosh s ) 2-2n .
Therefore, N corresponds to a very small perturbation of the unit normal N c . According to the minimal graph equation for the case of normal deformations (7.1.63)

together with an argument whose source is the inverse function theorem 4 , we prove that the mean curvature H ω, of X ω, satises the following PDE :

H ω, = ϕ -n+2 2 -L c (ω) -L (ω) + ϕ 2-n 2 Q 2, ϕ n 2 ω + ϕ n 2 Q 3, ϕ n 2 ω , (7.1.66)
where

• for all |s| ∈ [0, s -2], the dierent quantities are such that

L = 0, Q 2, = Q 2 and Q 3, = Q 3
because for small |s|, N = N c ; • L can be interpreted as a linear error term whose coecients are very small bounded by c k (cosh s ) 2-2n for all k in norm C k,α ([-s , s ] × S n-1 ). Indeed, L is equal, modulo the conjugate operation, to the dierence between the Jacobi operator and the rst variation of area operator for an hypersurface parametrised by X ω, . We then check in this case that

L = L c ((1 -N c , N ) •). • Q 2, (resp. Q 3,
) is a quadratic term (resp. a term which includes the higher ones) whose coecients and their derivatives do not depend on .

Resolution of the mean curvature equation

As announced, we want to solve problem

H ω, = 1 (s ) (1 -|χ |) ϕ * φ + 1 Ψ 1 even , z over [-s , s ] × S n-1 , ω = Ψ + smaller terms over {±s } × S n-1 , (7.2.67)
for well chosen parameters > 0, Ψ ∈ C 2,α ({±s } × S n-1 ) and * ∈ R recall the denition of in the proof of proposition 6.3.10. First of all, note that like in the hyperplane case, we do not solve exactly the boundary condition ω = Ψ. According to the equation (7.1.66), if ω is a solution, then

-L c (ω) -L (ω) + ϕ 2-n 2 Q 2 ϕ n 2 ω + ϕ n 2 Q 3 ϕ n 2 ω = 1 -|χ | (s ) ϕ n+2 2 + * φ 1 + Ψ 1 even , z .
That is why we choose * := -n+2 2 . Indeed, in rst approximation, the linear term 4. The reader could refer to the section 3.3 and the annex of the article by R. Mazzeo, F. Pacard and D. Pollack [START_REF] Mazzeo | Connected sums of constant mean curvature surfaces in euclidean 3 space[END_REF] From now on, we suppose

satises L c (ω) = -1-|χ | (s ) φ 1 + Ψ 1 even , z ,
Ψ C 2,α ({±s }×S n-1 ) κ r (cosh s ) 2+ n 2
where κ is a constant. We explain this choice in remark 7.2.6.

Then we dene ω Ψ to be

ω Ψ : (s, z) ∈ [-s , s ] × S n-1 -→ Ψ 0 + Ψ 1 odd + Ψ 1 even + h Ψ ⊥ .
As a result, we remark that

L c (ω Ψ ) = - 1 -|χ | (s ) φ 1 + Ψ 1 even , z + n (3n -2) 4 ϕ 2-2n h Ψ ⊥
and we check that it is almost a solution.

We perform a small perturbation of ω Ψ : we look for a small function v such that the graph of X ω, with ω = ω Ψ + v is a solution. In terms of v, the equation

(7.1.66) turns into L c (v) = L (ω Ψ + v) + ϕ 2-n 2 Q 2, ϕ n 2 (ω Ψ + v) + ϕ n 2 Q 3, ϕ n 2 (ω Ψ + v) - n (3n -2) 4 ϕ 2-2n h Ψ ⊥ . (7.2.68)
To solve this equation, we have in mind to prove a xed point theorem for a well chosen operator F c : the approach is quite similar to the steps we used in the case of the hyperplane.

However, we have to pay attention to the denition of operator L c δ which is dened for functions over R × S n-1 whereas ω Ψ is dened only over [-s , s ] × S n-1 . It is the reason why we build an operator extension E and an injection operator I. This last is nothing but the canonical one I :

f ∈ C 2,α δ (R × S n-1 ) -→ f |[-s ,s ]×S n-1 ∈ C 2,α δ ([-s , s ] × S n-1
), which is linear and continuous. Moreover, its linear norm does not depend on the choice of . Regarding the extension one, we dene a cuto function χ (independent of ), smooth, increasing, such that χ (R -) = {1} and χ (1, +∞) = {0}, from what we set

E : C 2,α δ ([-s , s ] × S n-1 ) -→ C 2,α δ (R × S n-1 ) f -→ E (f ) where E (f ) : (s, z) -→      f (s, z) if s ∈ [-s , s ] ; χ (s -s ) f (s , z) if s s ; χ (-s -s ) f (s , z) if s -s .
By construction, the restriction of the function E (f ) to [-s , s ] × S n-1 is f and its support is included in the compact set [-s -1, s + 1] × S n-1 . Furthermore, E is linear, continuous and its linear norm does not depend on .

Henceforth, we can rewrite the mean curvature equation (7.2.68) as a xed point for the functional

F c : C 2,α δ [-s , s ] × S n-1 -→ C 2,α δ [-s , s ] × S n-1 dened by F c (v) = I • L -1 c δ • E L (ω Ψ + v) + ϕ 2-n 2 Q 2, ϕ n 2 (ω Ψ + v) + ϕ n 2 Q 3, ϕ n 2 (ω Ψ + v) - n (3n -2) 4 ϕ 2-2n h Ψ ⊥ .
The ω Ψ -part

We are interested in the study of F c (0). According to inequalities from propositions 6.3.3, 6.3.8, 6.3.10, together with the properties of L , Q 2, and Q 3, , the main part of the quantity

L (ω Ψ ) + ϕ 2-n 2 Q 2, ϕ n 2 ω Ψ + ϕ n 2 Q 3, ϕ n 2 ω Ψ - n (3n -2) 4 ϕ 2-2n h Ψ ⊥ (s, z)
concentrates into the last term ϕ 2-2n h Ψ ⊥ for < κ small enough. Therefore, for such ,

L (ω Ψ ) + ϕ 2-n 2 Q 2, ϕ n 2 ω Ψ + ϕ n 2 Q 3, ϕ n 2 ω Ψ - n (3n -2) 4 ϕ 2-2n h Ψ ⊥ L ∞ δ ([-s ,s ]×S n-1 ) c (cosh s ) -n+2 2 Ψ ,
where c does not depend on κ and Ψ := Ψ C 2,α ({±s }×S n-1 ) . We prove the same kind of estimate in the weighted space C 0,α δ ([-s , s ] × S n-1 ). Using propositions 6.2.5 and 6.2.6, we conclude that

F c (0) C 2,α δ ([-s ,s ]×S n-1 ) c (cosh s ) -n+2 2 Ψ .
(7.2.69) Remark 7.2.1 Note that this previous estimate shows that in a neighbourhood of |s| = s , F c (0) (s, z) is small as compared with the term h Ψ ⊥ (s, z). It is the rst step to prove that the image of a small ball by F stays in the same ball.

The contracting part

In this paragraph, we demonstrate that F c is a contracting operator in a small ball around 0. Let v 1 and v 2 be two functions of C 2,α δ ([-s , s ] × S n-1 ) such that their C 2,α δnorms are less than c (cosh s ) -n+2 2 Ψ . We are interested in an estimate of the quantity F c (v 1 ) -F c (v 2 ). By linearity, we note that it is enough to estimate the three quantities

L (v 1 -v 2 ) , ϕ 2-n 2 Q 2, ϕ n 2 (ω Ψ + v 1 ) -Q 2, ϕ n 2 (ω Ψ + v 2 ) and ϕ n 2 Q 3, ϕ n 2 (ω Ψ + v 1 ) -Q 3, ϕ n 2 (ω Ψ + v 2 ) .
First term : According to the properties of L , one checks that

L (v 1 -v 2 ) C 0,α δ ([-s ,s ]×S n-1 ) c (cosh s ) 2-2n →0 --→0 v 1 -v 2 C 2,α δ ([-s ,s ]×S n-1 ) .
Second and third terms : We only deal with the second one since the third one follows from similar arguments. Using the property

|Q 2, (f ) -Q 2, (g)| c max {|f | , |g|} |f -g|
together with the fact that the main part of ω Ψ + v i concentrates into ω Ψ , we end up with

(cosh s) -δ ϕ (s) 2-n 2 Q 2, ϕ n 2 (ω Ψ + v 1 ) -Q 2, ϕ n 2 (ω Ψ + v 2 ) (s, z) c (cosh s) 2+n 2 cosh s cosh s n-2 2 Ψ v 1 -v 2 C 2,α δ ([-s ,s ]×S n-1 ) cκ (cosh s ) 4-2n →0 --→0 v 1 -v 2 C 2,α δ ([-s ,s ]×S n-1 ) .
Conclusion : for < κ small enough, , there exists some constant c := c (n, α, δ) > 0 such that for all κ > 0, there exists κ > 0 such that : for all ∈ (0, κ ), for all Ψ which belongs to the space C 2,α ({±s } × S n-1 ) and whose norm is less than κ r (cosh s ) 2+ n 2 , there exists v Ψ satisfying following assertions :

F c (v 1 ) -F c (v 2 ) C 2,α δ ([-s ,s ]×S n-1 ) 1 2 v 1 -v 2 C 2,α δ ([-s ,s ]×S n-
(i) the function X c + ϕ 2-n 2 (ω Ψ + v Ψ ) N denes a hypersurface C Ψ on [-s , s ] × S n-1 whose mean curvature is exaclty 1-|χ (s)| (s ) ϕ (s) -n+2 2 φ 1 + (s) Ψ 1 even , z ; (ii) v Ψ belongs to C 2,α δ ([-s , s ] × S n-1 ) with v Ψ C 2,α δ ([-s ,s ]×S n-1 ) 2c (cosh s ) -n+2 2 Ψ .
Remark 7.2.3 It should be noted that for |s| ∈ [s -1, s ], the mean curvature of Σ ω vanishes. Therefore, it is minimal in a neighbourhood of its boundary.

(b)

The link with harmonic extensions

In the case of hyperplane, we already have seen that the role of harmonic extensions over R n \B 1 is really of importance. Moreover, we also have seen that harmonic extensions on B 1 come naturally considering the resolution of the prescribed mean curvature equation : it is the second method we use in the proof of proposition 6.3.1.

Like in the deformation of hyperplane, it is essential to describe the behaviour of ω Ψ near the boundary. In short, it amounts to prove that when s is large enough, the term in Ψ -is from very small contribution at +s and reciprocally, the function behaves like harmonic extension. Heuristically, near the neighbourhood, the operator L c looks like H c up to a factor ϕ 2-2n . But this quantity is negligible in comparison with the constant n-2 2 2 when |s| is large enough. It is the object of the following proposition.

Proposition 7.2.4 There exists a constant c = c (n, α) such that for all Ψ ∈ C 2,α ({±s } × S n-1 ),

ϕ 2-n 2 (s) ω Ψ (s, z) -x 2-n 2 W i (Ψ + ) x x C 2,α ([s -2,s ]×S n-1 ) c cosh (s ) -3(n-2) 2 Ψ C 2,α ({±s }×S n-1 ) , (7.2.71)
where x := ϕ (s) z, x := ϕ (s ) = r η and W i is the interior harmonic extension operator dened in the beginning of the section 6.3. There is also the same kind of result regarding the lower part of the catenoid, but care must be taken to replace

Ψ + by -Ψ -.

Proof

Here, we only give a L ∞ estimate. Schauder's theory provides the C 2,α case.

First of all, we decompose the problem into three parts by writing

ϕ 2-n 2 (s) ω Ψ (s, z) -x 2-n 2 W i (Ψ + ) x x = ϕ 2-n 2 (s) ω Ψ (s, z) -e n-2 2 (s-s ) W i (Ψ + ) e s-s z + ϕ 2-n 2 (s) e n-2 2 (s-s ) W i (Ψ + ) e s-s z -W i (Ψ + ) x x + ϕ 2-n 2 (s) e n-2 2 (s-s ) -x 2-n 2 W i (Ψ + ) x x .
First term : It is enough to collect the results of corollary 6.3.3 for the h Ψ ⊥ part, those of propositions 6.3.8 and 6.3.10 for Ψ and Ψ parts. We end up with

ϕ 2-n 2 (s) ω Ψ (s, z) -e n-2 2 (s-s ) W i (Ψ + ) e s-s ,z L ∞ ([s -2,s ]×S n-1 ) c cosh (s ) -3(n-2) 2 Ψ C 2,α (S n-1 ) .
Second term : Here, the use the regularity of W i (Ψ + ). Indeed, after noticing the inequality e s e s -|x| x c cosh (s ) -2(n-1) , we nd

ϕ 2-n 2 (s) e n-2 2 (s-s ) W i (Ψ + ) e s-s z -W i (Ψ + ) x x L ∞ ([s -2,s ]×S n-1 ) c cosh (s ) -5n+6 2 Ψ C 2,α (S n-1 ) .
Last term : The inequality

ϕ 2-n 2 (s) e n-2 2 (s-s ) -x 2-n 2 W i (Ψ + ) x x L ∞ ([s -2,s ]×S n-1 ) c cosh (s ) -5n+6 2 Ψ C 2,α (S n-1 )
holds true because the Taylor expansion of ϕ in (5.1.34) implies

ϕ 2-n 2 s = 2 n-2 2(n-1) e 2-n 2 s + O e -5n+6 2 
s Therefore, the main term is the rst one since -5n + 6 < -3n + 6 and conclusion holds.

(c) Description of the solution near its boundaries

We have in mind to obtain the behaviour of the solution near its boundaries.

For that purpose, let us rescale the deformed n-catenoid by 5 η, ie x = y η . Then, if

C Ψ denotes the perturbed catenoid we have constructed in theorem 7.2.2, the upper part of the associated rescaled hypersurface is the graph of the function

u Ψ + : A 1/2 -→ R t -→ η ψ + ϕ 2-n 2 (ω Ψ + v Ψ ) ϕ -1 y |t| η , t
|t| where y = r t (recall that r = ηx ). The point in this dilatation lies in having a function dened over a normalised annulus A 1/2 . It will simplify the gluing in S n-1 with the function dened over A 1 in the hyperplane case.

Theorem 7.2.5

(i) u Ψ + is an element of C 2,α A 1/2 and u Ψ + -ηψ ϕ -1 r |•| η -W i η n 2 r 2-n 2 Ψ + C 2,α (A1/2) 2c r (cosh s ) (δ-n+2 2 ) . (7.2.72)
5. We have introduced the dilatation factor η in (5.3.37).

In particular, if η = η a and d Ψ + denotes the dierence dened by • Besides, note that δ -n+2 2 is negative, thus d Ψ + is small in comparison with r .

d Ψ + := u Ψ + -η H 2 -a r 2-n |•| 2-n - (n -2) 3 2 (3n -4) a 3 r |•| 4-3n + W i η n 2 r 2-n 2 Ψ + , then d Ψ + C 2,α (A1/2) 2c r (cosh s ) (δ-n+2 2 ) . (7.2.73) (ii) If Ψ and Ψ are smaller than κ r (cosh s ) 2+ n 2 , then d Ψ + -d Ψ + C 2,α (A1/2) c (cosh s ) 2-n η n 2 r 2-n 2 Ψ -Ψ C 2,α (S n-1 ) . ( 7 
• Similar result holds for the lower part of the catenoid, but we have to mind the signs. More precisely, u Ψ -and d Ψ -are dened to be

u Ψ -: t ∈ A 1/2 -→ η ψ + ϕ 2-n 2 (ω Ψ + v Ψ ) φ ϕ ϕ -1 - y |t| η , t |t| ∈ R and d Ψ -:= u Ψ -+ η H 2 -a r 2-n |•| 2-n - (n -2) 3 2 (3n -4) a 3 r |•| 4-3n + W i η n 2 r 2-n 2 Ψ - . Proof (i) Recall that ϕ (s) z = r η t and W i is a linear operator. It follows that u Ψ + (t) -ηψϕ -1 r |t| η -W i η n 2 r 2-n 2 Ψ + (t) = η n 2 r 2-n 2 |t| 2-n 2 v Ψ (s, z) + η n 2 r 2-n 2 |t| 2-n 2 ω Ψ (s, z) -|t| n-2 2 W i (Ψ + ) (t) .
Now, we must give an upper bound for the two above terms. By existence theorem 7.2.2, we can estimate v Ψ in order to obtain the inequality, for all s ∈ (s -2, s )

|v Ψ (s, z)| c (cosh s ) -n+2 2 +δ Ψ C 2,α ({±s }×S n-1 ) .
Regarding the second term, we use proposition 7.2.4 to nd

ω Ψ (s, z) -|t| n-2 2 W i (Ψ + ) (t) c (cosh s ) -(n-2) Ψ C 2,α ({±s }×S n-1 ) .
This last one is negligible in comparison with the rst one. Consequently, we end up with the estimate (7.2.72) by noticing

η n 2 r 2-n 2 |t| 2-n 2 (cosh s ) -n+2 2 +δ Ψ C 2,α ({±s }×S n-1 ) ≈ κ r (cosh s ) δ-n+2 2
and by choosing κ large enough (κ ≈ 2c).

The estimate (7.2.73) comes from the above one, together with the work of section 5.3. Note that O η 5(n-1) r 6-5n = o ( r ).

(ii) We study dierence of two solutions with dierent boundary data. According to the linearity of Ψ → ω Ψ and the linearity of W i , we nd

d Ψ + (t) -d Ψ + (t) = η n 2 r 2-n 2 |t| 2-n 2 (v Ψ -v Ψ ) (s, z) + η n 2 r 2-n 2 |t| 2-n 2 ω Ψ-Ψ (s, z) -|t| n-2 2 W i Ψ + -Ψ + (t) .
The second term is already handled during the analysis of (i) and we get :

ω Ψ-Ψ (s, z) -|t| n-2 2 W i Ψ + -Ψ + (t) C 2,α ((s -2,s )×S n-1 ) c (cosh s ) -(n-2) Ψ -Ψ C 2,α ({±s }×S n-1 ) . (7.2.75)
The diculty lies in the estimation of the dierence v Ψ -v Ψ . The method we use is the same kind of the one we use for the hyperplane case, namely the PDE that this dierence satises see the proof of theorem 4.2.1. Indeed, we can write

L c (v Ψ -v Ψ ) = L (v Ψ -v Ψ ) + L ω Ψ-Ψ + e + f + g, where e := ϕ 2-n 2 Q 2, ϕ n 2 (ω Ψ + v Ψ ) -Q 2, ϕ n 2 (ω Ψ + v Ψ ) , f := ϕ n 2 Q 3, ϕ n 2 (ω Ψ + v Ψ ) -Q 3, ϕ n 2 (ω Ψ + v Ψ ) , and g := - n (3n -2) 4 ϕ 2-2n h Ψ ⊥ -h Ψ ⊥ .
It remains to give estimates for the ve quantities.

• First of all, according to the denition of L , we check

L (v Ψ -v Ψ ) C 0,α ((s -2,s )×S n-1 ) c (cosh s ) 2-2n v Ψ -v Ψ C 2,α ((s -2,s )×S n-1 ) . • Likewise, since ω Ψ-Ψ C 2,α ((s -2,s )×S n-1 ) c Ψ -Ψ C 2,α ({±s }×S n-1 ) , we get L ω Ψ-Ψ C 0,α ((s -2,s )×S n-1 ) c (cosh s ) 2-2n Ψ -Ψ C 2,α ({±s }×S n-1 ) .
• For all (s, z) ∈ (s -2, s ) × S n-1 , using properties of Q 2, like we have done to prove that F c is a contracting operator, we demonstrate that

|e (s, z)| cκ (cosh s ) 4-2n Ψ -Ψ C 2,α ({±s }×S n-1 ) + cκ (cosh s ) 4-2n v Ψ -v Ψ C 2,α ((s -2,s )×S n-1 ) .
This estimate holds in L ∞ , but Schauder's estimates prove that there is the same kind of estimate in Hölder space.

• With similar method, we get

f C 0,α ((s -2,s )×S n-1 ) cκ 2 (cosh s ) 6-3n Ψ -Ψ C 2,α ({±s }×S n-1 )
+ cκ 2 (cosh s ) 6-3n v Ψ -v Ψ C 2,α ((s -2,s )×S n-1 ) .

• Finally, following inequality holds :

g C 0,α ((s -2,s )×S n-1 ) c (cosh s ) 2-2n Ψ -Ψ C 2,α ({±s }×S n-1 ) .
We deduce from above calculus that

L c (v Ψ -v Ψ ) C 2,α ((s -2,s )) c a κ Ψ -Ψ C 2,α ({±s }×S n-1 ) + v Ψ -v Ψ C 2,α ((s -2,s )×S n-1 ) ,
where a κ = (cosh s ) 2-2n + κ (cosh s ) 4-2n + κ 2 (cosh s ) 6-3n tends to 0 when tends to 0 and whose main term is κ (cosh s ) 4-2n . Consequently,

(1 -ca κ ) v Ψ -v Ψ C 2,α ((s -2,s )×S n-1 ) ca κ Ψ -Ψ C 2,α ({±s }×S n-1 ) ,
from what we deduce that at xed κ, for

κ , we nd v Ψ -v Ψ C 2,α ((s -2,s )×S n-1 ) cκ (cosh s ) 4-2n Ψ -Ψ C 2,α ({±s }×S n-1 ) . (7.2.76)
According to inequalities (7.2.75) and (7.2.76) together with 4 -2n 2 -n, the conclusion holds, up to reduce the parameter κ .

8 The gluing process : proof of theorem 1.0.7

In previous sections, we have developed a way to build minimal hypersurfaces near hyperplanes with small catenoidal necks and hypersurfaces with prescribed small mean curvature near truncated catenoids. In this section, we explain how to glue these dierent hypersurfaces in order to obtain more complex ones that look like a family of horizontal hyperplanes which are linked together by small truncated catenoids.

First of all, according to the regularity theory for minimal hypersurfaces (cf.

[CM05]), if a minimal hypersurface is C 1 , then it is C ∞ . Therefore, it is enough to perform a C 1 gluing to ensure the connected sum has the mean curvature we want to prescribe.

Besides, as said before, since the quantity η

n 2 r 2-n 2 behaves like (cosh s ) -2-n 2 ,
it will be shrewder to work with a boundary data Υ := η n 2 r 2-n 2 Ψ regarding the catenoid. Note in this case that Υ and Φ have the same rough estimate κ r . Furthermore, a small perturbation of one of the weighted points generates a small continuous perturbation of η, Γ cor, and u Φ,P . We will allow ourselves to perturb the parameters in a small neighbourhood.

8.1

The gluing equations

The point is to glue the hypersurfaces we build near the singularities p k,j . In this purpose, we use the description we gave for the deformed horizontal hyperplane u Φ,P over A 1 together with the one we gave for the truncated catenoid u Υ ± over A 1/2 . Then the point lies in C 1 -matching the boundary data over ∂B 1 = S n-1 . This is why we have performed changes in scales.

As done before, it is wise to distinguish the modes 0 and 1 (especially the s-even and the s-odd ones) from the others. So we write the gluing equations we obtain by projection on those dierent modes.

(a)

The choice of boundary data Φ for hyperplanes and Υ for catenoids Because of the dierent symmetries of the problem (especially the rotations and the translations which preserve the mean curvature), we can't choose any boundary data.

For example, in the N -periodic case, or in the case of a non periodic hypersurface with N + 1 horizontal ends, we consider the following boundary data

(Φ, Υ) = Φ p k,j,± , Υ p k,j,± j∈ 1,n k k∈ 0,N -1
for which we enforce the vectors 6 Υ 1 k,j,even to be equal to (Υ 1 even + Rp k,j ), where Υ 1 even 6. Recall we identify the rst eigenmode of U psilon 1 k,j with a vector in R n see denition 6.3.6.

is a vector of W and R is an element of Skew t h such that max Υ 1 even ∞ , R ∞ κ r .

Notice that Υ 1 even and R do not depend on the points p k,j . We have made this choice to ensure that for well chosen parameter ν, the mean curvature of the hypersurface we construct vanishes see the proof of proposition 8.3.1. Therefore, there are 2 • 2 • Ne boundary data functions over S n . The rst factor 2 comes from the gluing with upper or lower level ; the second 2 corresponds to dierent boundary data for the hyperplane or the catenoid.

For the N -periodic case, this above denition holds because (a k+N,j , p k+N,j ) = (a k,j , p k,j + t h ) for all k ∈ N and j ∈ 1, n k . Thus it is enough to perform the gluing on a period.

The data boundary for other levels are obtained by

Φ p k+N Z,j,± , Υ p k+N Z,j,± := Φ p k,j,± , Υ p k,j,± .
In all cases, Φ k,j,-(resp. Φ k,j,+ ) is the boundary data we want to enforce at the hyperplane k (resp. k + 1) at point p k,j while Ψ k,j,+ (resp. Ψ k,j,-) is the boundary data we want to enforce for the upper (resp. lower) part of the catenoid at point p k,j at the hyperplane k + 1 (resp. k). Besides, we dene the norm of Φ as the maximum of the C 2,α (S)-norms of its dierent elements, in other words,

Φ C 2,α := max k,j,± Φ p k,j,± C 2,α (S) ,
and we have the same kind of denition for Υ C 2,α .

(b) Shape of the gluing equation

We consider one of the gluing points, say p k,j for example. We have in mind to C 1 -match the boundary data of the minimal hypersurface we obtain for the k-th hyperplane at p k,j (which points upwards) to that of the lower part of the catenoid we obtain with parameter η = η k,j . Besides, we want to proceed likewise regarding the k + 1-th deformed hyperplane at p k,j (which points downwards) to that of the upper part of the above catenoid.

Before writing equations, let us note that it is more convenient to translate the dierent hypersurfaces. Let h k,-be the height of the k-th horizontal hyperplane, h k,+ the the height of the k + 1-th horizontal hyperplane and δh k be the height dierence between the k + 1-th and k-th ones, that is to say δh k = h k+1,--h k,-= h k,+ -h k-1,+ . We will determine this quantity when we perform the gluing of modes 0 in proposition 8.2.1. Let t k,j,v = t k,j,v e n+1 be a vertical vector where t k,j,v is a positive number we will determine in section 8.2 (a). Instead of considering the catenoid C p k,j centred in 0, we rather consider this one after a translation of t k,j,v + p k,j .

It follows that the gluing equation at point p k,j can be written

∀z ∈ S n-1 , u Φ,p k,j,± (z) + h k,± = u Υ,p k,j,± (z) + t k,j,v , ∂ r u Φ,p k,j,± (z) = ∂ r u Υ,p k,j,± (z) , (8.1.77)
where the index ± isat level k and is + at level k + 1.

Here, it is relevant to use the description of local behaviour near the boundaries that we have given in previous description theorems 7.2.5 and 4.2.1 in order to rewrite the above system. Recall that

u Φ,p k,j,± = d Φ,p k,j,± ∓ a k,j r 2-n |•| 2-n ∓ (n -2) 3 2 (3n -4) a 3 k,j r |•| 4-3n + C k,j,± + r •, F k,j,± + W e Φ p k,j,± and u Υ,p k,j,± = d Φ,p k,j,± ∓ a k,j r 2-n |•| 2-n ∓ (n -2) 3 2 (3n -4) a 3 k,j r |•| 4-3n ± η k,j H 2 ± W i Υ p k,j,± ,
where the sign ∓ is the opposite of ±.

Remark 8.1.1 According to the choice of η k,j we have explained in section 5.3, the terms |x| 2-n and |x| 4-3n are the same ones in the right and left members.

Consequently, the system (8.1.77) is written

∀z ∈ S n-1 ,          d Φ,p k,j,± (z) + C k,j,± + r •, F k,j,± + W e Φ p k,j,± (z) + h k,± = d Υ,p k,j,± (z) ± η k,j H 2 ± W i Υ p k,j,± (z) + t k,j,v , ∂ r d Φ,p k,j,± + r •, F k,j,± + W e Φ p k,j,± (z) = ∂ r d Υ,p k,j,± ± W i Υ p k,j,± (z) . 
(8.1.78)

(c) Gluing equations after orthogonal projections on eigenmodes

We perform the projection of the solutions on the dierent modes since they do not behave in the same way.

The mode 0. We nd following equations at p k,j :

h k,± + C k,j,± + Φ 0 p k,j,± + π 0 d Φ,p k,j,± = ±η k,j H 2 ± Υ 0 p k,j,± + π 0 d Υ,p k,j,± + t k,j,v , (2 -n) Φ 0 p k,j,± + π 0 ∂ r d Φ,p k,j,± = π 0 ∂ r d Υ,p k,j,± , (8.1.79)
where the sign ± isat level k and is + at level k + 1. Mind the change of signs in front the boundary data Υ and η k,j H 2 .

The mode 1. When f is a function over S, we write π 1 (f ) = F 1 the vector such that for all z ∈ S, f 1 (z) = F 1 , z . Then equations can be written at p k,j :

F k,j,± r + Φ 1 p k,j,± + π 1 d Φ,p k,j,± = Υ 1 p k,j ,odd ± (Υ 1 even + Rp k,j ) + π 1 d Υ,p k,j,± , F k,j,± r + (1 -n) Φ 1 p k,j,± + π 1 ∂ r d Φ,p k,j,± = Υ 1 p k,j ,odd ± (Υ 1 even + Rp k,j ) + π 1 ∂ r d Υ,p k,j,± . (8.1.80)
The mode ⊥. Regarding the modes 2, 3, etc., we get

Φ ⊥ p k,j,± + π ⊥ d Φ,p k,j,± = ±Υ ⊥ p k,j,± + π ⊥ d Υ,p k,j,± , ∂ r W e Φ ⊥ p k,j,± + π ⊥ ∂ r d Φ,p k,j,± = ∂ r W i ±Υ ⊥ p k,j,± + π ⊥ ∂ r d Υ,p k,j,± .
Indeed, it is more ingenious to rewrite the above system by highlighting the contracting part. In this purpose, we dene the operator H by

H : f ∈ C 2,α S n-1 -→ ∂ r W e -W i (f ) |S n-1 ∈ C 1,α S n-1 .
It is known, according to the article [MP99] by R. Mazzeo et F. Pacard, that H is an isomorphism. Besides, the space E ⊥ is H-stable. Therefore the system turns into :

Φ ⊥ p k,j,± = H -1 • π ⊥ ∂ r (Id -W i ) d Υ,p k,j,± -d Φ,p k,j,± , ±Υ ⊥ p k,j,± = Φ ⊥ p k,j,± -π ⊥ d Υ,p k,j,± -d Φ,p k,j,± .
(8.1.81)

Resolution of gluing equations

In this section, we explain how to solve all gluing equations. One of the key arguments is the xed point theorem. Of course, we decompose the resolution into three parts : one for each mode we consider.

We briey expose the ideas to solve these dierent equations. The mode 1 is the most complex : it is the last we solve.

• Regarding the mode 0, the main point lies in choosing suitable vertical translations parameters it is the object of proposition 8.2.1 then we use a xed point theorem by using the contracting properties we have demonstrated for both cases.

• For the mode 2, 3, etc, the same kind of xed point holds true.

• For the mode 1, we highlight the balanced and non degenerate conditions and we make use of a Brouwer xed point theorem by changing parameters of the construction.

(a)

The mode 0, the height of horizontal hyperplanes and the height of catenoids

In the resolution of this mode, very dierent terms take place. More exactly, when k is xed, there are :

• The height of k-th level h k,-= h k-1,+ . I has to be the same for all p k,j with j ∈ 1, n k . • The vertical translation term t k,j,v for the catenoid we glue at p k,j between the levels k and k + 1. It does not depend on level k or level k + 1. • The constant term ±η k,j H 2 which we could interpret as the height of the catenoid at p k,j . It has to be the same at levels k and k + 1. • The constant term C k,j,± that comes from Green function.

• The constant terms that come from the orthogonal projection of Φ and Υ on mode 0.

• Very small constant terms that come from perturbation of Green function (the d-part) or catenoid (the d-part). For all weighted conguration {a k,j , p k,j }, we dene the constant C k,j by

C k,j = C k,j,--C k,j,+ = 2 n k i=1 i =j a k,j |p k,j -p k,i | 2-n - n k-1 i=1 a k-1,j |p k,j -p k-1,i | 2-n - n k+1 i=1 a k+1,j |p k,j -p k+1,i | 2-n .
Note that this constant only depends on the conguration but not depends on the small parameter . Besides, this denition is similar to the one of the force F k,j .

Determining the heights of hyperplanes, the translation vectors and a well chosen weighted conguration. In this paragraph, we suppose we are given a conguration {a k , p k,j } together with the height h 0,-∈ R of level 0.

According to the second equation of the system (8.1.79), Φ 0

p k,j,± is such that Φ 0 p k,j,± = 1 n -2 π 0 ∂r d Φ,p k,j,± -d Υ,p k,j,± , (8.2.82) 
therefore its rough estimate is given by c r cosh (s ) δ-n+2 2 . Thus Φ 0 is necessarily small in comparison with κ r . Most of the information lies in the rst equation of system (8.1.79) whose main terms are the heights h k,± of hyperplanes, the half height of catenoids ±η k,j H 2 and the constant term C k,j,± . Moreover, if we subtract the equation at level k from the one at level k + 1, we get

h k,+ -h k,-= η k H + C k,j ({(a k , p k,j )}) + E k,j ( , {a k , p k,j } , Φ, Υ) (8.2.83)
where η k := ((n -2) a k )

1 n-1 , the error function E k,j is continuous and its L ∞ norm is smaller than κ r , thus is very small in comparison with the other terms. Therefore, if h 0,-denotes a xed real number, we dene the height of other levels h k,± and the vertical vector t k,j,v to be

h k,+ = h k+1,-:= h k,-+ η k H + C k,1 ({a k , p k,j }) , (8.2.84) t k,j,v := h k,+ -η k H 2 + C k,j,+ ({a k , p k,j }) e n+1 .
(8.2.85) However, the dierence of heights between the hyperplanes k + 1 and k has to be independent of the choice of the gluing point p k,j for j ∈ 1, n k . This kind of problem occurs when there are several catenoids to glue between those hyperplanes, i.e. when n k 2. This is why we introduce the following proposition. The reader could notice that the h k,± and t k,j,v continuously depend on the weighted conguration {a k , p k,j }.

Proposition 8.2.1 Given a conguration {a k , p k,j } and the real number h 0,-, we dene the h k,± and t k,j,v as above. Then there exists a C 1 weight mapping

W : R * + N × W Ne -→ R * + × W
Ne such that the weighted conguration {{a k,j , p k,j }} = W ({a k , p k,j }) satises following assertions :

(i) for all j ∈ 1, n k , we can write a k,j = a k 1 + n-2 n-1 α k,j with α k,1 = 0 and |α k,j | M for some positive constant M ;

(ii) for all k such that n k 2, for all j = j ∈ 1, n k ,

(η k,j -η k,j ) H + (C k,j -C k,j ) ({a l,i , p l,i }) = O →0 2n-3 n-1 . (8.2.86)
Besides, W does not depend on and does not change the placement of the points.

Proof

It turns out that solving the equation (8.2.86) at order 1 is enough. Moreover, note that the problem can be reduced to the case j = 1 and any j . More exactly, when α l,i is bounded, we rewrite it as

1 -1 + n-2 n-1 α k,j 1 n-1 = - n-2 n-1 c k (C k,1 -C k,j ) ({a l , p l,i }) + O →0 2 n-2 n-1
, where c k := ((n -2) a k ) -1 n-1 H -1 . This equation justies we look for parameters a k,j whose form is given by a k 1 + n-2 n-1 α k,j . The main part of the right member does not depend on the family (α l,i ) l,i . A Taylor expansion when is small gives

1 n -1 α k,j = c k (C k,1 -C k,j ) ({a l , p l,i }) + O →0 n-2 n-1 , therefore α k,j := (n -1) c k (C k,1 -C k,j ) ({a l , p l,i }) suits to the problem.
Determining the boundary data Φ 0 and Υ 0 . From now on, given initial weights {a k }, we build from any conguration {p k,j } a new conguration {a k,j , p k,j } given by the mapping W.

Proposition 8.2.2 Let (Φ i , Υ i ) be elements whose mode is i for i = 1, ⊥.

Assume their C 2,α norm is smaller than κ r . Then there exists (Φ 0 , Υ 0 ) such that if Φ = Φ 0 + Φ 1 + Φ ⊥ and Υ = Υ 0 + Υ 1 + Υ ⊥ , then following assertions hold :

(i) the gluing equation (8.1.79) of mode 0 is satised ;

(ii) max {|Φ 0 | , |Υ 0 |} c r cosh (s ) δ-n-2 2 .
Furthermore, (Φ 0 , Υ 0 ) continuously depends on the parameters , {a k }, {p k,j }, (Φ i , Υ i ) i∈{2,⊥} and is a contraction mapping on the variables (Φ i , Υ i ) i∈{2,⊥} .

Proof

As said before, Φ 0 has to satisfy equation (8.2.82). Therefore, according to the theorems 4.2.1 and 7.2.5, it describes the Φ 0 p k,j,± as functions which depend, in a contracting way, on (Φ i , Υ i ) i∈{1,⊥} and on Υ 0 . Besides, these functions are continuous on and {p l,i } l,i . By a standard xed point with parameters, we can solve this equation.

It remains to determine Υ 0 . For example, at level k, we use the denition of h k,± and t k,j,v to rewrite the rst equation of the system (8.1.79) as

Υ 0 p k,j,- = (η k,1 -η k,j ) H 2 + [C k,1 ({a l,i , p l,i }) -C k,j ({a l,i , p l,i })] + [C k,1 ({a l , p l,i }) -C k,1 ({a l,i , p l,i })] + [C k,j,+ ({a l , p l,i }) -C k,j,+ ({a l,i , p l,i })] -Φ 0 p k,j,-+ π 0 d Υ,p k,j,--d Φ,p k,j,-.
According to the weighted conguration proposition 8.2.1, the rst three lines of the right member do not depend on the choice of (Φ, Υ) and their norms have the rough

estimate 2n-3 n-1 = o →0 r cosh (s ) δ-n-2 2 .
With similar arguments than of the Φ 0 case, the conclusions follows.

(b)

The mode ⊥

This mode is by far the easiest to solve since it is a straightforward application of the contracting properties. Once again, we suppose we are given the slightly perturbed conguration {a k,j , p k,j }. As a matter of fact, the system (8.1.81) is almost solved. More precisely, we can check the two equations describe Φ ⊥ p k,j,± and

Υ ⊥ p k,j,±
as functions which depend, in a contracting way, on Φ and Υ : according to the description theorems 4.2.1 and 7.2.5 together with properties of H, we prove

that for κ , max Φ ⊥ p k,j,± C 2,α (S) , Υ ⊥ p k,j,± C 2,α (S) 1 2 max { Φ C 2,α , Υ C 2,α } .
Note also that the right members of system (8.1.81) continuously depend on weighted points, Φ and Υ and their C 2,α -norms are less than c r cosh (s ) δ-n+2 2 . By a standard xed point theorem with parameters together with the previous proposition, we get the following :

Proposition 8.2.3 Let (Φ 1 , Υ 1 ) be elements whose mode is 1. Assume its C 2,α norm is smaller than κ r . Then there exists Φ 0 , Φ ⊥ , Υ 0 , Υ ⊥ such that if Φ = Φ 0 + Φ 1 + Φ ⊥ and Υ = Υ 0 + Υ 1 + Υ ⊥ , then the following assertions hold true :

(i) the gluing equations (8.1.79) and (8.1.81) of modes 0 and ⊥ are satised ;

(ii) max |Φ 0 | , |Υ 0 | , Φ ⊥ C 2,α , Υ ⊥ C 2,α c r cosh (s ) δ-n-2 2 .
Furthermore, Φ 0 , Φ ⊥ , Υ 0 , Υ ⊥ continuously depends on the parameters , {a k }, {p k,j }, (Φ 1 , Υ 1 ) and is a contraction mapping on the variables (Φ 1 , Υ 1 ).

(c)

The mode 1 : balanced and non-degenerate congurations in the periodic case This mode is the trickiest one to solve. Its resolution implies the use of hypothesis regarding the balanced and non-degenerate conditions. First of all, we have to rewrite the system (8.1.80) in order to highlight the contracting part. If we subtract the second equation to the rst one, we nd

Φ 1 p k,j,± = 1 n π 1 (Id -∂ r ) d Υ,p k,j,± -d Φ,p k,j,± ,
therefore a similar xed point theorem with parameters to the one we have used for the mode ⊥ holds. Besides, the norm of Φ 1 p k,j,± admits the rough estimate 2c r cosh (s ) δ-n+2 2 .

It remains to solve the rst equation of the system (8.1.80). The main problem lies in the fact that Υ 1 k,j,even is enforced to be equal to Υ 1 even + Rp k,j . Therefore, there are a priori more equations than unknowns. Let us write the equations at levels k and k + 1 :

F k,j,-r + Φ 1 p k,j,-+ π 1 d Φ,p k,j,-= Υ 1 p k,j ,odd -(Υ 1 even + Rp k,j ) + π 1 d Υ,p k,j,-, F k,j,+ r + Φ 1 p k,j,+ + π 1 d Φ,p k,j,+ = Υ 1 p k,j ,odd + (Υ 1 even + Rp k,j ) + π 1 d Υ,p k,j,+ ,
from what we deduce that

2Υ 1 p k,j ,odd = (F k,j,-+ F k,j,+ ) r + Φ 1 p k,j,-+ Φ 1 p k,j,+ + π 1 d Φ,p k,j,--d Υ,p k,j,-+ d Φ,p k,j,+ -d Υ,p k,j,+ (8.2.87) together with 2 Υ 1 even + Rp k,j = F k,j r + -Φ 1 p k,j,-+ Φ 1 p k,j,+ + π 1 -d Φ,p k,j,-+ d Υ,p k,j,-+ d Φ,p k,j,+ -d Υ,p k,j,+ , (8.2.88)
where F k,j is the force at p k,j dened in denition 1.0.1 :

F k,j := (-F k,j,-+ F k,j,+ ) .
As before, the equation (8.2.87) can be solved by similar arguments to the previous ones. 

β ∈ 0, 1 3(n-1) n+2 
2 -δ , there exists a weighted points conguration {a k,j , p k,j } such that :

(i) all the gluing equations are solved ;

(ii) for all k, j, |p k,j -pk,j | β .

(iii) The t h -periodic case with t h = 0 : the conguration {a k,j , p k,j } is t hperiodic and the weights a k,j are associated to the conguration {å k , p k,j }. In particular, a k,j

-åk = O n-2 n-1 .
The t h -periodic case with t h = 0 : the conguration {a k,j , p k,j } is 0periodic and the weights a k,j are associated to the conguration {a k , p k,j } where |a k -åk | β . In particular, a k,j -åk = O β .

The non-periodic case : the weights a k,j are associated to the congura-

tion {a k , p k,j } where |a k -åk | β . In particular, a k,j -åk = O β .
Besides, in the periodic case, the hypersurface S we obtain is t-periodic, where t can be decomposed as t = t h + t v and its vertical component t v is

t v = N -1 k=0 [η k H + C k,1 ({a l , p l,i })] e n+1 .
In the non-periodic case, |t v | is the distance between the two extremal horizontal hyperplanes.

Remark 8.2.5 Note that n-2 n-1 = o →0 β . In the periodic case with non- vanishing period, we can solve the equations without changing the weights åk while it is not the same for the other cases in which we have to deal with the inuence of the dilation.

Proof

The idea lies in applying a well chosen Brouwer xed point : we prove that if we slightly deform the initial conguration of points {å k , pk,j }, then we can solve the problem.

To any conguration {a k , p k,j } such that

|p k,j -pk,j | β and |a k -åk | β is continuously associated a new close weighted conguration {a k,j , p k,j } = W ({a k , p k,j })
given by the proposition 8.2.1. According to previous paragraphs, for all Υ 1 even and R such that their norm is less than κ r , we can nd boundary data (Φ, Υ) such that all gluing equations are solved except the equation (8.2.88) together with ∀k, ∀j, Υ 1 k,j,even

= Υ 1 even + Rp k,j
Besides, Φ and Υ continuously depend on Υ 1 even , R and {a k,j , p k,j }.

From now on, we assume the conguration is either 0-periodic or non-periodic 7 .

To relieve notations, we dene

Υ 1 even := 2 r Υ 1 even and R := 2 r R
so that their norm has rough estimate 1. Then we can rewrite all the equations (8.2.88) as

G {a k , p k,j } , Υ 1 even , R = E {a k , p k,j } , Υ 1 even , R (8.2.89)
where the mapping G is dened to be

G : {a k , p k,j } , Υ 1 even , R ∈ R * + N × W Ne × W × Skew t h -→ F • W ({a k , p k,j }) -Υ 1 even , • • • , Υ 1 even -Rp 0,1 , • • • , Rp N -1,n N -1 ∈ W Ne ,
the force function F : {a k,j , p k,j } -→ {F k,j } is dened in (1.0.2) and the error function E is such that

E : {a k , p k,j } , Υ 1 even , R -→ E k,j {a l , p l,i } l,i , Υ 1 even , R k,j
.

The error functions E k,j are continuous and their L ∞ -norm is smaller than 2c cosh (s ) δ-n+2 2 .

Necessarily, equation (8.2.89) implies the forces to be small : this is why we are close to the balanced conguration.

Description of G . We claim that G is locally a C 1 -submersion at point ( C, 0, 0).

More precisely, the rank of a matrix is an open property. Since W slightly changes the weights, the rank of dG is the same than the rank of dG 0 at ( C, 0, 0), where G 0 is dened to be

G 0 : {a k , p k,j } , Υ 1 even , R -→ F ({a k , p k,j }) -Υ 1 even + Rp 0,1 , • • • .
Dierentiation at ( C, 0, 0) then leads us to

dG 0 ( C,0,0) : {w k , p k,j } , Υ 1 even , R ∈ R N × W Ne × W × Skew t h -→ dF C ({w k , p k,j }) -Υ 1 even + Rp 0,1 , • • • , Υ 1 even + Rp N -1,n N -1 ∈ W Ne .
Because of the non-degenerate hypothesis, the rst term dF C has full rank (Ne -1) m -dim (Skew t h ). Thus the idea is to prove the contribution of Υ 1 even and R makes up for the loss of m + dim (Skew t h ) dimensions. But recall the denitions of the kernels V t and V d in the introduction. Then it is enough to demonstrate that

Im (dF C ) + V t + V r = W Ne .
7. See the remark 8.2.6 for the periodic case with t h = 0

We have already established that the sum V t + V r is direct. Besides, its dimension is m + dim (Skew t h ). Therefore, it remains to prove

Im (dF C ) ∩ (V t ⊕ V r ) = {0} .
Consider an element e in this intersection. Then there exists ({w k , p k,j } , Υ 1 even , R) such that e is read as

e = dF C ({w k , p k,j }) = Υ 1 even + Rp 0,1 , • • • , Υ 1 even + Rp N -1,n N -1 .
Furthermore, recall that we have provided forces relations in (1.0.3) and (1.0.4) which are valid for any conguration. The dierentiation of the rst one implies

k,j åk d (F k,j ) C ({w l , p l,i }) = 0 = k,j åk Υ 1 even + Rp k,j
and since the conguration C is balanced,

k,j åk d (F k,j ) C ({w l , p l,i }) , Rp k,j = 0 = k,j åk Υ 1 even + Rp k,j , Rp k,j
regarding the second one. Therefore, injecting the rst relation into the second one, we end with

k n k åk • k,j åk |Rp k,j | 2 = k,j åk Rp k,j 2 .
Consequently, by standard Cauchy-Schwarz inequality, all Rp k,j are aligned, thus R vanishes and so does Υ 1 even , from what we deduce e = 0. Therefore, G 0 is locally a submersion near initial conguration C.

Last xed point theorem. According to the submersion theorem, there exists a neighbourhood U of ( C, 0, 0), a C 1 -dieomorphism

Λ : U -→ Λ (U) ⊂ R N × W Ne × W × Skew t h with Λ C, 0, 0 = ({0, 0} , 0, 0) such that G • Λ -1 a k , p k,j , Υ 1 even , R = F • W C + p 0,1 , • • • , p N -1,n N -1 .
Up to reducing U, we assume that for r small enough, Λ (U ) is the compact convex set

Λ (U ) = [-r, r] N × (B W (0, r)) Ne × B W (0, r) × B Skew t h (0, r) .
The choice of r does not depend on < 0 where 0 is small enough. By construction, the size (or the diameter) of U is of same type than the size of Λ (U), that is to say r since G behaves like G 0 which does not depend on .

Then, if we look for a solution of (8.2.89) in U, we can rewrite it as

F • W C + p 0,1 , • • • , p N -1,n N -1 = E • Λ -1 a k , p k,j , Υ 1 even , R .
To apply a classical Brouwer xed point theorem, it remains to give rough estimates of the dierent quantities which appear in the above equation. We claim that for < 0 small enough and for r := β , the inclusion E (U) ⊂ G (U)

holds true.

As a matter of fact, for all ({a k , p k,j } , Υ 1 even , R) ∈ U, we have the estimate

E {a k , p k,j } , Υ 1 even , R = O →0 cosh (s ) δ-n+2 2 = o →0 β .
Note that this is why we have chosen such a denition of β. Besides, according to the choice of the a k,j in proposition 8.2.1 together with the balanced condition of the initial conguration C, we get

G C, 0, 0 = F • W C = O →0 n-2 n-1 = o →0 β , therefore E (U) ⊂ G (U) is true for small enough.
It follows that for all

{a k } , Υ 1 even , R such that {a k } , Υ 1 even , R β ,
we are looking for a conguration p k,j ∈ W Ne such that p k,j β which satises the equation

p 0,1 , • • • , p N -1,n N -1 = E • Λ -1 a k , p k,j , Υ 1 even , R + G C is solved. Since E is continuous, it is also the case of E • Λ -1 .
The right member of the above equation is made of vectors whose norm is bounded by is much more smaller than β while the left member is made of vectors whose norm describes 0, β by construction. besides, both of us are continuous data.

According to the Brouwer xed point, there exists a solution which depends on the choice of ({a k } , Υ 1 even , R ). It follows that

{a k , p k,j } , Υ 1 even , R := Λ P k,j {a k } , Υ 1 even , R , Υ 1 even , R
is a solution to the equation (8.2.89), QED.

Remark 8.2.6 The proof is a similar one in the periodic case when t h = 0, except it is not necessary to change the weights. As a matter of fact, suppose the family {a k } = {å k } is xed. Since the kernel of the force function F {å k } : W Ne -→ W Ne is exactly V t ⊕ V r , to say F is non-degenerate at {å k , pk,j } is the same than to say the dierential of F {å k } at {p k,j } has full rank Ne -dim (V t ⊕ V r ). Thus the same proof with xed {a k } holds true.

The mean curvature vanishes

To end with this section, it remains to prove that the mean curvature of the smooth hypersurface S we have built by gluing process vanishes everywhere. We know by construction that the parts which are close to the horizontal hypersurfaces are minimal hypersurfaces, but it is not yet the case for the small catenoids. It is the object of following proposition.

Proposition 8.3.1 Assume the weight parameter ν < 3-n 2 . Then when is small enough, S is minimal.

Proof

We only give the proof in the periodic case. The non-periodic one can be demonstrated in the same way.

The result comes from the rst variation formula of area by using the mean curvature on small catenoids which behaves like the Jacobi eld associated to the horizontal translations.

Reductio ad absurdum, suppose S is not minimal. Then its mean curvature does not vanish anywhere, that is to say (Υ 1 even , R) = (0, 0), where Υ 1 even is a vector in W and R is a skew-symmetric matrix such that the boundary data satises

Υ 1 k,j,even = Υ 1 even + Rp k,j .
First of all, let us introduce some notations. We denote by S ⊂ S an element which represents the periodic surface S , that is to say such that S + tZ = S . Without loss of generality, we assume S contains the levels 0, 1, • • • , N -1. Finally, for large radius R > R 0 , we denote by S R the intersection of the cylinder B (0, R)×R with the surface S , in other words

S R = (B (0, R) × R) ∩ S .
The ball B (0, R) denotes a subset in R n . Besides, we assume R 0 is large enough to ensure all the p k,j are in this ball, for k = 0, • • • , N -1.

Let w be a vector of W × {0} and r = exp R be the rotation of

R n × R such that R := R 0 0 0 and R ∈ Skew t h .
Then the area of S R is the same than the translated and rotated surface r (S R )+w. Thus, according to the rst variation formula of area, if we denote by A the area function, we can write

d dt |t=0 A exp (tR ) (S R ) + tw -A (S R ) = 0 = - S R H, w + R S R dvol S R + ∂S R n, w + R S R dvol ∂S R ,
where H is the mean curvature vector of S R and n is the outward pointing unit normal eld of the boundary ∂S R . By construction, the mean curvature vanishes for the part of S R which corresponds to the case of hyperplanes. Furthermore, the boundary ∂S R is the union of N connected components ∂S R,k which are graphs over ∂B (0, R). Thus the above formula turns into

N -1 k=0 j Cat k,j H, w + R S R dvol Cat k,j = N -1 k=0 ∂S R,k n k , w + R S R dvol ∂S R,k , (8.3.90)
where Cat k,j is the catenoid we glue at p k,j between levels k and k + 1 and n k is the outward pointing unit normal eld of the boundary ∂S R,k .

The clue then lies in proving that the right member vanishes for well chosen weight parameter ν. We then consider well chosen w and R to demonstrate that the vector Υ 1 even is 0 and that the skew symmetric matrix R vanishes, that is to say the rotation is nothing but the identity.

The integral over ∂S R,k : notice that the left member does not depend on R, thus it is also the case for the ∂S R,k -part. The idea is to let R → ∞ and to prove that the unit normal is close enough to the unit normal associated with a sphere of radius R in R n .

To relieve notations, we omit the index k. The key is the minimal graph over R n is almost at far away from the singularities. More exactly, according to theorem 4.1.2, S R is parametrized by

X : (r, z) ∈ [0, R] × S -→ rz h (r, z) ∈ B (0, R) × R,
where the height function h satises

h (r, z) = h k,-+ • O r→∞ r 2-n + r n-µ • O r→∞ (r ν ) = h k,-+ r n-µ • O r→∞ (r ν ) because ν > 2 -n.
Here, the important point is that the constants which appear on the denition of O do not depend on , they are universal, that is to say there exists c such that for all small enough,

∇ i (O (r ν )) cr ν-i .
Besides, since R (e n+1 ) = 0, we have the relation R (X (r, z)) = (rR z, 0) .

Since the tangent space of S R is spanned by the vectors ∂ r X and ∂ z i X, there exists a family of n -1 real numbers (λ i ) such that n is written

n = c n n-1 i=1 λ i 1 r ∂ z i X + ∂ r X = c n i λ i ∂ z i z + z r n-µ ( i λ i + 1) • O r→∞ (r ν-1 )
,

where c n is a constant such that n = 1. Besides, n must be orthogonal to the boundary ∂S R which is parametrized by z ∈ S → X (R, z). Thus for all j ∈ 1, n -1 , n, ∂ z j X = 0, from what we conclude

λ i = 2 r 2n-2µ • O r→∞ r 2ν-2 .
Finally, we deduce the unit normal n is very close to the normal to ∂B (0, R)× {0}, namely

n (z, r) = z 0 +   2 r 2n-2µ • O r→∞ (r 2ν-2 ) r n-µ • O r→∞ (r ν-1 )   .
With similar arguments, we prove that there exists a constant c which does not depend on such that in cylindrical coordinates,

dvol ∂S R -R n-1 dvol S c 2 r 2n-2µ R n-1+2ν-2 dvol S .
Therefore, if we write w = (w, 0) with w ∈ R n and if we use the equality S z dvol S = 0, we can estimate the integral as

∂S R n, w + R S R R n+1 dvol ∂S R c ( w ∞ + R ∞ ) 2 r n-µ R n-3+2ν .
This right member tends to 0 when R tends to 0 when n -3 + 2ν < 0 : this is why we have chosen such a ν. Since the integral does not depend on R,

∂S R n, w + R S R R n+1 dvol ∂S R = 0. (8.3.91)
The integral over a catenoid : by construction, the mean curvature vector is H k,j = H k,j N k,j where N k,j is the unit normal vector associated to the truncated catenoid Cat k,j whose boundary data is prescribed. Note that H k,j is given by theorem 7.2.2 up to the dilation factor η k,j . Besides, recall that we have enforced the relation

Ψ 1 k,j,even = η -n 2 k,j r 2-n 2 Υ 1 even + Rp k,j
in the gluing process. For practical use, we denote by N c (resp. N k,j , N ) the vector of R n such that its components are the n rst components of the vector N c of R n+1 (resp. N k,j , N ). We choose w and R such that

w = η -n 2 0,1 r 2-n 2 Υ 1 even and R = η -n 2 0,1 r 2-n 2 R.
We check that the rotated catenoid R Cat k,j is parametrized by

R Cat k,j = R p k,j + η k,j R X c + ϕ 2-n 2 ω k,j N .
According to the denition of the Killing eld φ 1 + , in local coordinates, we can write Cat k,j

H k,j , w + R S R dvol Cat k,j = s -s S f k,j (s, z) w + R p k,j , N c (s, z) • N k,j (s, z) , w + Rp k,j + η k,j R X c + ϕ 2-n 2 ω k,j N dsdz,
where the positive function f k,j is dened to be

f k,j (s, z) := η 0,1 η k,j n 2 1 -|χ (s)| η k,j (s ) ϕ -2 (s) |g k,j (s, z)|
and g k,j is the metric on Cat k,j . We check that |g k,j | is almost η n k,j |g c |. Calculus demonstrates there exists a constant c which does not depend on < 0 such that for all (k, j),

1 -|χ (s)| c cosh (s ) -n 2 ϕ n-2 (s) f k,j (s, z) c (1 -|χ (s)|) cosh (s ) -n 2 ϕ n-2 (s) . (8.3.92)
Consequently, the mapping

•, • W ×Skew t h : ((w 1 , R 1 ) , (w 2 , R 2 )) -→ k,j s -s S f k,j (s, z) w 1 + R 1 p k,j , N c w 2 + R 2 p k,j , N c dsdz denes a scalar product on W × Skew t h .
Furthermore, according to the denition of N c , we can check that there exists some positive constant c such that for all < 0 , for all vector w in W , for all R in Skew t h , we obtain the equality

1 c ϕ 1-n 2 w + R p k,j 2 S w + R p k,j , N c 2 dz c ϕ 1-n 2 w + R p k,j 2 ,
from what we deduce the norm

• W ×Skew t h satises 1 c cosh (s ) -n 2 ( w ∞ + R ∞ ) 2 (w , R ) 2 W ×Skew t h c cosh (s ) -n 2 ( w ∞ + R ∞ ) 2 . (8.3.93)
To end with this case, we put equation (8.3.91) in equation (8.3.90), we write

N k,j = N c + (N k,j -N c ) in order to obtain 0 = k,j Cat k,j H k,j , w + RS R dvol Cat k,j = (w, R) 2 W ×Skew t h + I 1 + I 2 , (8.3.94)
where the integrals I 1 and I 2 are dened by

I 1 = k,j f k,j N c , w + Rp k,j • N k,j -N c , w + Rp k,j dsdz and I 2 = k,j f k,j N c , w + Rp k,j • N k,j , η k,j R X c + ϕ 2-n 2 ω k,j N dsdz.
Similar arguments than those in section 7.1 (b) prove that N k,j -N c = O →0 ( r ). Consequently, according to the Cauchy-Schwarz inequality, there exists c > 0 such that for all < 0 ,

|I 1 | c r (w, R) 2 W ×Skew t h .
Moreover, since z, Rz = 0, we can write

N k,j , R X c + ϕ 2-n 2 ω k,j N = N k,j -N c , R X c + ϕ 2-n 2 ω k,j N , consequently, |I 2 | cη k,j r R ∞ (w, R) W ×Skew t h • k,j f k,j ϕ 2 1 2
.

According to the description of f k,j (8.3.92) together with inequality (8.3.93), we nd

|I 2 | cr 5n 4 (w, R) 2 W ×Skew t h
.

Finally, we put the estimates for I 1 and I 2 in (8.3.94) : there exists some positive constant c which does not depend on < 0 such that (w, R) 2

W ×Skew t h cr 5n 4 (w, R) 2 W ×Skew t h
, thus w = 0 and R = 0 for small enough. In other words, for all k, j, the quantity Ψ 1 k,j,even vanishes : the surface is minimal.

Examples

We provide some examples of balanced and non-degenerate weighted points congurations. For convenience, in all this section, we omit the factor (n -2) in the denition of the force f (p, q) between two points p and q it is possible since the rank of the force function F is invariant under the multiplication by a non-vanishing real number.

9.1

Periodic examples with non-vanishing horizontal period 9.1 (a) The Riemann minimal hypersurface example

Here, we prove the generalization of the Riemann's example (only one neck between planes) in higher dimensional space given by S. Kaabachi and F. Pacard [START_REF] Kaabachi | Riemann minimal surfaces in higher dimensions[END_REF].

Let ρ be a positive real number and consider the ρe 1 -periodic conguration given by

{p k,1 } k := {(kρ, 0, • • • , 0)} k .
We note a the weight of all points, that is to say that equality a = a k holds for all k.

Then the conguration is always balanced because of the symmetry of the problem.

Moreover, W = Span {e 1 } is a one-dimensional linear space. Thus the conguration is non-degenerate if, and only if the rank of the jacobian matrix is 0 (ant it is its maximal rank) : it is always the case.

(b)

The Wei example

We have in mind to construct the analogue of the Wei example [START_REF] Wei | Adding handles to the Riemann examples[END_REF] with alternatively one neck and two necks between horizontal hyperplanes. Notice that this kind of example has already been produced in S 2 × R [START_REF] Coutant | The Wei-Riemann minimal surface in S 2 × R[END_REF].

Let ρ be a positive real number and consider the 2e 1 -periodic conguration {P k,j } dened as follows :

∀k ∈ Z,      n 2k = 1 and p 2k,1 = (2k, 0, • • • , 0) , n 2k+1 = 2 and p 2k+1,1 = (2k + 1, ρ, 0, • • • , 0) , p 2k+1,2 = (2k + 1, -ρ, 0, • • • , 0) .
Note that this conguration is invariant under the action of the orthogonal symmetry with respect to the vertical hyperplane {x 2 = 0}. Then the linear space spanned by the points is W = Span {e 1 , e 2 }. In particular, its dimension is 2 and the dimension of Skew t h is 0. Consequently, the conguration is non degenerate when the Jacobian of F has rank 4.

Then the forces of the weighted conguration are such that F 0,1 = 0,

F 1,1 = -F 1,2 = 2 a 1 (2ρ) 1-n -a 0 ρ (1+ρ 2 ) n 2 e 2 ,
thus the conguration is balanced if, and only if a 1,1 and a 0,1 are related by the equation

a 1 (2ρ) 1-n = a 0 ρ (1 + ρ 2 ) n 2
.

Since t h = 0, it is enough to consider the force function F with xed weights. In this case, computation leads us to Jacobian matrix J F ∈ M 6 (R) of the force function F

J F = C 1 0,1 , C 2 0,1 , C 1 1,1 , C 2 1,1 , C 1 1,2 , C 2 1,2 ,
where the columns

C i k,j = ∂F ∂p i k,j
are such that its components

(C i k,j ) l vanish when l / ∈ {i, i + 2, i + 4}. Besides, C i 0,1 + C i 1,1 + C i 1,2 = 0 since V = {v, • • •
, v} belongs to the kernel of J F . Thus we easily check the rank of the Jacobian is the same than the rank of its 4 rst columns. After calculus, we obtain

C 1 0,1 , C 2 0,1 , C 1 1,1 , C 2 1,1 =         -4bα 0 2bα 0 0 -4bβ 0 2bβ 2aα 0 a -2aα 0 0 2aβ 0 (1 -n) a -2aβ 2aα 0 -a 0 0 2aβ 0 -(1 -n) a        
, where the real numbers a, b, α and β are dened to be a = a 0

(1 + ρ 2 ) n 2 , b = a 1 (1 + ρ 2 ) n 2 , α = 1 - n 1 + ρ 2 and β = 1 - nρ 2 1 + ρ 2 .
Therefore, the above matrix has maximal rank 4 if α and β do not vanish, i.e. when ρ = (n -1) ± 1 2 and in this case, the conguration is non-degenerate.

The conclusion is that we construct the Wei example for parameters

ρ = (n -1) ± 1 2 , a 0 ∈ R * + and a 1 = a 0 (2) n-1 ρ n (1 + ρ 2 ) n 2 .
Moreover, the period is such its horizontal component is 2e 1 .

Periodic example with vanishing horizontal period

Here, we assume t h = 0. We give examples for which we do not suppose the weights are xed. We prove the existence of a type of surface that does not exist in R 2 × R, namely a kind of degenerate Wei example : a conguration similar to the one of section 9.1 (b), except we enforce the horizontal period to vanish. It could be named the vertical Wei's example.

Let ρ be a positive real number and consider the 0-periodic conguration dened as follows :

∀k ∈ Z,      n 2k = 1 and p 2k,1 = (0, 0, • • • , 0) , n 2k+1 = 2 and p 2k+1,1 = (ρ, 0, • • • , 0) , p 2k+1,2 = (-ρ, 0, • • • , 0) .
Then W = Span {e 1 } and the conguration is non-degenerate if the rank of the dierential of the force function is 2.

(a) Why we have to change the weights

We note a = a 2k and b = a 2k+1 . Then the forces satisfy

F 0,1 = 0, F 1,1 = -F 1,2 = 2ρ 1-n (2 1-n b -a) e 1 .
Consequently, the conguration is balanced for 2 1-n b = a. Easy calculus demonstrates that the Jacobian J F ,p dened to be the matrix associated with the dierential d p F of F with respect to the points (and not the weights) is given by

J p F = ∂F ∂p 1 0,1 , ∂F ∂p 1 1,1 , ∂F ∂p 1 1,2 = α   -2b b b a 2 -n b -a -2 -n b a -2 -n b 2 -n b -a   ,
where α = 2 1-n ρ n . But the balancing condition enforces b = 2 n-1 a and then 2 -n b-a = -1 2 a : J F has rank 1 and thus has not full rank 2. This is why it is necessary to change the weights, which is impossible for minimal surfaces in R 2 × R.

(b)

If we change the weights Heuristically, the problem of the above conguration comes from the symmetries : they are too numerous to ensure the dierential of F to have maximal rank.

As announced, we change the weights parameters a and b. We then check that the dierential d a F of F with respect to the weights is given by

J a F = ∂F ∂a , ∂F ∂b =   0 0 -2ρ 1-n 2 2-n ρ 1-n 2ρ 1-n -2 2-n ρ 1-n   .
Obviously, this above matrix has rank 1 and its columns don't belong to the linear space that the columns of J p F span.

Therefore, dF has rank 2 : the conguration is balanced and non-degenerate when the equality 2 1-n b = a holds true. In this case, it is possible to produce the vertical Wei's example.

Non-periodic example

We have in mind to construct a minimal hypersurface with 3 hyperplanar ends and 3 necks.

We consider the non-periodic conguration given by

     n 0 = 1 and p 0,1 = (0, 0, • • • , 0) , n 1 = 2 and p 1,1 = (ρ, 0, • • • , 0) , p 1,2 = (-ρ, 0, • • • , 0) ,
where ρ denotes a positive real number. For convenience, we note a := a 0 and b := a 1 . Then the forces satisfy

F 0,1 = 0, F 1,1 = 2 2-n b -a ρ n-1 e 1 and F 1,2 = -2 2-n b -a ρ n-1 e 1 .
Therefore, the conguration is balanced when the relation a = 2 2-n b holds true.

For the non-degenerate part, since here the space W that the points span is 1-dimensional, we have to prove that the rank of dF is equal to 2. An easy computation yields to

∂F ∂a , ∂F ∂b , ∂F ∂p 1 0,1 , ∂F ∂p 1 1,1 , ∂F ∂p 1 1,2 = ρ n-1 (n -1)   0 0 2b -a -a -1 n-1 2 2-n n-1 a 2 1-n b -a -2 1-n b 1 n-1 -2 2-n n-1 a -2 1-n b 2 1-n b -a  
whose rank is 2 when the conguration is balanced. Consequently, the conguration is non-degenerate and it provides a non-periodic Riemann example when a = 2 2-n b.

Chapitre III Construction de surfaces minimales de type Riemann-Wei dans

S 2 × R 1 Introduction
The classical Riemann minimal surfaces form a 1-parameter family of simply periodic minimal surfaces with an innite number of planar ends which are linked to each other by one neck. One way to study it is to consider it as the connected sum of Euclidean catenoids.

Many generalizations of this kind of minimal surfaces have been done, especially since the last twenty years. Essentially, there are three types of results that have been established, namely : characterizations in [START_REF] Homan | Embedded minimal annuli in R 3 bounded by a pair of straight lines[END_REF] or in [MPR], generalizations with an arbitrary number of necks in the Euclidean 3-space in [START_REF] Traizet | Adding handles to riemann minimal examples[END_REF], [START_REF] Traizet | An embedded minimal surface with no symmetries[END_REF], [START_REF] Morabito | Non-periodic Riemann examples with handles[END_REF] or in [START_REF] Hauswirth | Higher genus riemann minimal surfaces[END_REF] and generalizations in other homogeneous spaces. In this paper, we are interested in this last kind of result. In 2006, L. Hauswirth ([Hau06]) proved that the Riemann example exists in space products H × R and S 2 × R. In [START_REF] Kaabachi | Riemann minimal surfaces in higher dimensions[END_REF] or [START_REF] Fakhi | Existence of complete minimal hypersurfaces with nite total curvature[END_REF], the existence of this kind of minimal hypersurface is proved in R n × R with n 3. In [START_REF] Coutant | Riemann minimal hypersurfaces in R n × R[END_REF] is proved an extension of the results by M. Traizet with an arbitrary number of necks in R n × R.

For the time being, there are few examples of minimal surfaces in S 2 × R. In this paper, we prove that there exists the analogue of the Wei example in S 2 × R.

The example that Wei (cf. [START_REF] Wei | Adding handles to the Riemann examples[END_REF]) produced is a simply periodic minimal surface in R 2 × R with alternatively one and two necks between two consecutive planar ends see gure III.1. An other way to describe it is to consider the classical Riemann minimal surface and to add one handle every two planar ends. Notice that the distance between two planar ends that are linked to each other by only one neck is twice larger than the distance in the case where there are two necks. The reason for that is that the logarithmic growths of the catenoids have to make up for one another.

In our case, we generate in S 2 ×R ⊂ R 3 ×R a minimal periodic minimal surface Σ that can be seen as punctured spheres (the analogue of punctured planar ends) which are linked to each other by alternatively one and two small truncated catenoids. By periodic, we mean there exists a vertical vector t ver ∈ Span (e 4 ) where e 4 = (0, 0, 0, 1) and a rotation R of R 4 that preserves the vertical vector e 4 such that R (Σ) + t ver = Σ.

We note k the period transformation, i.e. k maps a point (s, t) of S 2 × R to R (s, t) + t ver and K the group spanned by k. As a matter of fact, R has to be seen as the generalization of the horizontal component of the translation that characterizes the period in R 2 × R.

First of all, we dene the gluing points, that is to say the points in which we will glue catenoids. Let s p , s q and s r be three points on the sphere S 2 ⊂ R 3 whose geometric conguration is given by an isosceles triangle on the sphere : s p := (sin θ + , 0, cos θ + ) , s q := (0, sin θ -, cos θ -) and s r := (0, -sin θ -, cos θ -) ,

(1.0.1) where θ + and θ -are real numbers in (0, π). Note that the North pole N is exactly the middle of the geodesic which passes through the two points s q and s r . We identify this sphere with the sphere at level 0, that is to say S 2 × {0}. Then the punctured sphere at upper level 1 will be given by S 2 × {t 1 } (where t 1 is a positive real number that corresponds to the size of the catenoid we glue at s p ) and the upper level 2 of this last will be given by S 2 × {t ver } where t ver = t 1 + t 2 . The points s 1 p , s 1 q and s 1 r on S 2 S 2 × {t 1 } we consider are given by s 1 p = s p , s 1 q = (cos θ -sin 2θ + , sin θ -, cos θ -cos 2θ + )

and

s 1 r = (cos θ -sin 2θ + , -sin θ -, cos θ -cos 2θ + )
while at level 2, we consider the points s 2 p = (sin 3θ + , 0, cos 3θ + ) , s 2 q = s 1 q and s 2 r = s 1 r .

Introduction

In other words, the conguration at level 2 is obtained by the conguration at level 0 after the rotation R S 2 of angle -2θ + around the e 2 -axis. We then dene s k p for all k ∈ Z by using the periodicity condition ∀g ∈ {p, q, r} , ∀k ∈ Z,

s k+2 g = R S 2 s k g
and the level k of the sphere is

S 2 × {t 1 + lt ver } when k = 2l + 1 and S 2 × {lt ver } when k = 2l. θ + s q s r s p s 1 q 2θ + x 1 x 2 x 3 N θ - Figure III
.2: The dierent points s g we consider on S 2 .

S 2 × {0}

S 2 × {t 1 } S 2 × {t ver } S 2 × {-t ver + t 1 } s p s q s r s 1 p s 1 q s 1 r s 2 p s 2 q s 2 r s -1 p s -1 q s -1 r x 1 x 2 , x 3 x 4 S 2 R Figure III.3:
The kind of surface whom we prove the existence. Indeed, the rotation R associated with the period of the example we want to construct is such that its restriction on the sphere is

R |S 2 = R S 2 .
In our construction, we glue one truncated catenoid at point s 2l p and s 2l+1 p between levels 2l and 2l +1 while we glue two truncated catenoids at points s 2l+1 q (resp. s 2l+1 r ) and s 2l+2 q (resp. s 2l+2 r ) so that there is alternatively one neck or two necks between two consecutive levels.

Before giving the main theorem of this paper, we have to give some denitions.

First of all, at all level, one easily checks that the conguration is invariant under the action of the orthogonal symmetry s with respect to the plane {x 2 = 0} note that it is a real plane if we consider the k-th level as a sphere S 2 or it is a hyperplane if we consider the global product space S 2 × R. We note G the group of isometries {Id, s}.

According to dierent cases, we see this group as a group that acts on S 2 or S 2 × R. Notice that s s i p = s i p and s s i q = s i r for all i ∈ Z. We also denote by c the point reection of S 2 × R in respect to the point s p × t 1 2 and by H the group spanned by c and s ; by point reection, we mean that if s, t 1 2 + t belongs to S 2 × t 1 2 + t for some real number t, then c s, t 1 2 + t is the point c s , t 1 2 -t of S 2 × t 1 2 -t where s is chosen to be the point of S 2 so that s p is the middle of the geodesic which passes through the points s and s . In particular, the isometry c satises the relations c (s

1 r ) = s 0 q , c s 1 q = s 0 r , c (s 2 r ) = s -1 q , c s 2 q = s -1 r and c s 2 p = s -1 p . Notice that the point s p × t 1
2 is seen as the centre of the only neck which links the level S 2 × {0} with the level S 2 × {t 1 }.

Denition 1.0.1 We say the conguration given by θ ± is balanced if the relation θ -= arccos -1 + 1 + 8 cos 2 θ + 2 cos θ + .

holds true.

Even if this denition seems technical, it is essentially a generalization of the condition associated with the force which is used in the papers of M. Traizet or in [START_REF] Coutant | Riemann minimal hypersurfaces in R n × R[END_REF]. It comes from the Taylor expansion of Green's function. We rather explain it in the discussion we have made after the equivalent denition 2.1.7.

We now state the result of this paper.

Theorem 1.0.2

Let a be a positive number and ( θ+ , θ-) ∈ (0, π). Then, if the point conguration {s p , s q , s r } given by (1.0.1) is balanced, there exists a 1-parameter family of surfaces (Σ ) ∈(0, 0 ) embedded in S 2 × R such that for all , (i) Σ is minimal ;

(ii) Σ is invariant under the action of the group H ;

(iii) Σ is 1-periodic with parameters R and t ver where

R |S 2 = R S 2 , θ+ and t ver = 3 2 a ln + O →0 ( ) .
In addition to that, the quotient space Σ ω /K is the connected sum S 2 × {0} with the upper level S 2 × {t 1 } at point s p and of this last one with S 2 × {t ver } in a neighbourhood of points s q and s r , where

t 1 = a ln + O ( ) .
Remark 1.0.3 For all in (0, 0 ), the distance between levels 2l and 2l + 1 is

t 1 = a ln + O ( )
and the distance t 2 between levels 2l + 1 and 2l is

t 2 = 1 2 a ln + O ( ) .
This is in agreement with the remark we have made about Wei's example in R 2 × R.

2 Analysis about a sphere in S 2 × R

Green's function

In [START_REF] Coutant | Riemann minimal hypersurfaces in R n × R[END_REF], we have already highlighted the key role of Green's function Γ associated to the Jacobi operator in order to build minimal Riemann hypersurfaces in R n × R with an innite number of hyperplanar ends. They satisfy the PDE equation

∆ R n Γ = i a g δ p i ,
where the p i are the points in which we perform the connected sum of hyperplanes and a g are non vanishing real numbers that provide the size of necks between two consecutive hyperplanar ends. We have in mind to generalize it to the sphere case.

For all g in {p, q, r}, let a g be a positive real number more precisely, it is what we call a weight parameter. Green's function we have in mind to construct is such that

∆ S 2 Γ = -2π a p δ sp -a q δ sq -a r 1 2 δ sr .
Notice that for the gluing process, it is essential to provide an accurate description of the solution near its singularities. In particular, near one of the s g 's, the term of order 1 in its Taylor expansion corresponds to what we call the force F g which is nothing but a tangent vector that describes the interaction between s g and the other singularities.

In this paper, we make use of the stereographic projection π : S 2 -→ R 2 from North pole. We choose to work with this projection because it is conformal and thus, it simplies the analysis on the sphere.

Notation 2.1.1 For convenience, we dene x := π (s) to be the point of R 2 which represents the point s of the sphere and for all g ∈ {p, q, r}, we note x g := π (s g ).

The metric associated with the parametrization π -1 is given by

g π,S 2 = φ dx 2
where φ is the conformal parameter, i.e.

φ = 4 1 + | | 2 2 ,
where | | denotes the classical Euclidean norm on R 2 . The Laplace Beltrami operator in these coordinates is

∆ π,S 2 = 1 + |x| 2 2 4 ∆ R 2 . 2.1 (a)
The existence part First of all, since constant functions belong to the kernel of the Laplace-Beltrami operator, Green's functions are dened up to a constant. To ensure uniqueness, we agree that

S 2 Γ = 0.
Next, the choice of the coecients in the denition of Green's function has to satisfy a necessary condition. Indeed, if Γ suits the problem with points s g and weights a g , then for any smooth function

f on S 2 , g a g f (s g ) = S 2 f ∆ S 2 Γ = S 2 ∆ S 2 f Γ.
Thus if we choose f ≡ 1 the constant function, we end up with g a g = 0.

Consequently, this fact together with the fact we want to construct a minimal surface which is invariant under the action of the orthogonal symmetry with respect to the vertical set {x 2 = 0}, we enforce the coecients to have the type

(a p , a q , a r ) = a 1, - 1 2 , - 1 2 
for some positive real number a.

As a matter of fact, another way to explain the above choice is to recall that our method consists in gluing small catenoids with the sphere. However, catenoids in the Euclidean space R 2 × R are not bounded and have logarithmic growth. The weight parameter a g matches the size of the catenoid we want to glue. The condition a p = a q + a r is an equality under which the asymptotic behaviour of classical catenoids make up for each other. It is the same condition that M. Traizet uses in its construction see [START_REF] Traizet | Adding handles to riemann minimal examples[END_REF] or [START_REF] Traizet | An embedded minimal surface with no symmetries[END_REF].

Lemma 2.1.2 For all positive a, there exists an unique Green's function Γ such that

∆ S 2 Γ = -2πa δ sp - 1 2 δ sq - 1 2 δ sr together with S 2 Γ = 0.
Moreover, the explicit formula for Γ is given by

Γ : S 2 -→ R s -→ g∈{p,q,r} a g ln (|π (s) -π (s g )|) + c π ,
where the constant c π is chosen so that the integral of Γ on the sphere vanishes.

Remark 2.1.3 • Since g a g = 0, we check that

g a g ln (|π (s) -π (s g )|) -----→ s→North 0.
Therefore, it makes sense to consider Γ as a continuous function on the punctured sphere S 2 * = S 2 \ (s p , s q , s r ). If g a g = 0, then Green's function would tend to innity when one approaches the North pole. It is another way to understand why the assumption about the coecients has to be true.

• The graph of Green's function points upwards when one approaches the singularity s p and points downwards when one approaches the singularity s q or s r . Heuristically, the positive part well be used to glue some catenoid with an upper level while the negative part will be used to connect two catenoids with the lower one.

• According to the explicit formula of Γ, one easily checks that if Σ denotes the surface we obtain as the graph of Γ over S 2 \ {s p , s q , s r }, then Σ is invariant under the action of the group G.

Proof (Of lemma 2.1.2)

Naturally, we deal with the equation by using the conformal properties of the stereographic projection. For convenient purpose, if f is a function on the sphere, then we compute f := f • π -1 the associated function on R 2 . The problem then turns into

-2π i a g f (s g ) = S 2 ∆ S 2 Γ f = R 2 1 + |x| 2 2 4 ∆ R 2 Γ f 4dx 2 1 + |x| 2 2 = R 2 ∆ R 2 Γ f dx 2 = -2π i a g f (π (s g )) .
Furthermore, it is well known that, in R 2 , we have

∆ R 2 (ln (|x -p|)) = -2πδ p .
Consequently, the function

s -→ g a g ln (|π (s) -π (s g )|)
is chosen to be a solution up to a constant. The constant c π is dened to ensure S Γ = 0. Note that the denition of c π makes sense since in stereographic coordinates, we can rewrite its expression as follows :

c π = R 2 g a g ln (|x -x g |) 4dx 2 1 + |x| 2 2 .
At innity, the integral converges absolutely because

ln (|x -x g |) 4 1 + |x| 2 2 ∼ x→∞ ln |x| |x| 4 with 4>2. Near a singularity x i , it is enough to remark B R 2 (x i ,1) ln (|x -x i |) con- verges absolutely since in polar coordinates, B R 2 (0,1) ln (|x|) = 2π 1 0 r ln |r| dr = - π 2 .
The uniqueness follows from maximum principle.

(b) Local description near the singularities

We have in mind to give an accurate description of Green's function in a neighbourhood of one of the points s g . The main diculty lies in relating the asymptotic behaviour of the term ln (|x -x g |) which explodes when s tends to s g with ln (r g ) where r g (s) denotes the geodesic distance between the points s and s g on the sphere. We dene angles θ g on small geodesic circles ∂B (s g , r 0 ) with 0 < r 0 << 1 to be the oriented angle in R 3 between a point that belongs to the plane that holds ∂B (s g , r 0 ) and the unit vector e g , based at the center of the circle (seen as an object in R 3 ), which belongs to this plane and whose coordinates are e 1 g , 0, e 3

g with e 3 g negative. We also denote by e ⊥ g 0, e ⊥,2 g , e ⊥,3 g the unit vector which is orthogonal to e g and tangent to the sphere at s g such that its component e ⊥,2 g is positive on the Northern hemisphere and is negative on the Southern hemisphere. In other words, (r g , θ g ) denotes the geodesic coordinates. The reader can refer to the gure III.4 for an illustration. Lemma 2.1.4 Recall that x = π (s). In a neighbourhood of s g , following expansion holds true :

ln (r g (s)) = ln (|x -x g |) -c π,g - x -x g , x g 1 + |x g | 2 + O x→0 |x -x g | 2 , (2.1.2)
where c π,g is a constant that depends on s g and the projection π we determine in the proof.

Before giving the proof of this technical lemma, we give a description of Γ near one of its singularities.

Corollary 2.1.5 Near s g , Green's function has following expansion :

Γ (s) = a g ln r g (s) + c g + r g (s) F g , cos θ g (s) e ρ + sin θ g (s) e ⊥ ρ S 2 + O ∞ s→sg r 2 g (s) ,
where the force F g ∈ T sg (S 2 ) is given by

F g := - 1 2 g =g a g cotan r g (s g ) 2 cos θ g (s g ) e g + sin θ g (s g ) e ⊥ g (2.1.3)
and where the constant c g is

c g = a g c π,g + c π + g =g a g ln (|x g -x g |) .
Remark 2.1.6 As a matter of fact, the force F g can be seen as the gradient at point s g of the C ∞ function Γ -a g (ln (r g (s))) in a ball centred in s g .

Proof (Of the corollary 2.1.5)

According to the lemma 2.1.2 together with asymptotic behaviour 2.1.2, we can write

Γ (s) = a g ln (|x -x g |) + g =g 1 2 ln |x -x g + x g -x g | 2 + c π = a g ln (r g ) + a g c π i + a g x -x g , x g 1 + |x g | 2 + c π + g =g a g ln (|x g -x g |) + 1 2 g =g ln 1 + 2 x -x g , x g -x g |x g -x g | 2 + O ∞ |x -x g | 2 + O ∞ |x -x g | 2 ,
from what we deduce (because |x -

x g | = O ∞ (r g )) the following expansion : Γ (s) = a g ln r g + c g + f g (s) + O ∞ s→sg r 2 g ,
where the function f g on the punctured sphere S 2 * is dened to be

f g (s) = a g x -x g , x g 1 + |x g | 2 + g =g a g x -x g , x g -x g |x g -x g | 2 .
We then express this above formula in more useful coordinates r g e ıθg . If π denotes the stereographic projection from the antipodal point -s g , then the formula of f g becomes

f g (s) = - g =g a g x, x g R 2 |x g | 2 R 2
.

But one easily transposes this formula in spherical coordinates since |x| R 2 is given by tan rg 2 . We then get

f g (s) = - g =g a g tan rg(s) 2 e ıθg(s) , tan rg(s g ) 2 e ıθg(s g ) R 2 tan 2 rg(s g ) 2 = - g =g a g tan rg(s) 2 tan rg(s g ) 2 e ıθg(s) , e ıθg(s g ) R 2
.

We now use the Taylor expansion of tan to obtain

f g (s) = r g (s) F g , cos θ g (s) e ρ + cos θ g (s) e ⊥ ρ S 2 + O r 3 ,
and the result follows.

Proof (Of the lemma 2.1.4)

The main idea is to explicit the link between r g (s) that does not depend on the parametrization of the sphere and the quantity |x -x g |. The metric g π,S 2 on the associated with the stereographic projection from North pole is such that

g π,S 2 (x) = 4 1 + |x g | 2 2 1 - 4 x g , x -x g 1 + |x g | 2 + O |x -x g | 2 dx 2 .
Moreover, since the stereographic projection is conformal, the equation of the geodesics

γ : R -→ R 2 is given by γ - 1 2φ | γ| 2 ∇φ + 1 φ ∇φ, γ γ = 0.
Therefore, if γ is a geodesic with unit initial speed v such that

γ (0) = x g and | γ (0)| π,S 2 = |v| π,S 2 = 1, i.e. |v| = φ (x g ) -1 2 , then we get γ (t) -x g = tv + t 2 2φ (x g ) 1 2 |v| 2 ∇φ (x g ) -∇φ (x g ) , v v + O t→0 t 3 .
Consequently, if we denote by x the quantity γ (t), we obtain

t = |x -x g | |v| 1 + 1 4φ (x g ) x -x g , ∇φ (x g ) + O x→0 |x -x g | 3 ,
from what we deduce

r g (s) = 2 1 + |x g | 2 |x -x g | 1 -x -x g , x g 1 + |x g | 2 + O |x -x g | 2 . (2.1.4)
Finally, we end up with expression (2.1.2) where the constant c is c π,g := -1 2 ln (φ (x g )) .

(c) Forces and balanced condition

We need to explicit the dierent force terms because their behaviour is not the same and play an essential role in constructing the minimal Riemann surface for which we want to prove the existence. As a matter of fact, these terms geometrically explain how to bend the small truncated catenoids in the gluing process we will discuss about that in the proof of proposition 4.2.5.

For all g, we decompose F g into

F g = F 1,1 g e g + F 1,2 g e ⊥ g . F 1,1 p = a 2 tan rg(sq) 2 cos (θ g (s q )) and F 1,2 p = 0.
Thus the symmetries enforce the force F p to lie in the vertical plane {x 2 = 0}.

Heuristically, the catenoid we will glue at s p will be bent only in the direction e g . Moreover, since θ q (s r ) = 3π 2 , the force F q is such that

F 1,1 q = - a 2 tan rq(sp) 2 cos θ q (s p ) and F 1,2 q = a 2 1 tan rq(sp) 2 sin (-θ q (s p )) - 1 2 tan rq(sr) 2 (2.1.5)
where we notice that sin (-θ q (s p )) is positive since θ q (s p ) belongs to (π, 2π). By symmetry, we obtain a similar formula for F r . Unlike the case of F p , a priori, the force F q does not favour any direction. But for symmetries reasons, the catenoids we will glue at s q and s r can't bend in any direction. This is why we introduce the Denition 2.1.7 We say the conguration (s p , s q , s r ) is balanced if the component F 1,2 q and F 1,2 r of the forces F q and F r vanish. It is the same to say that for all g, the force F g belongs to the line Span (e g ).

Of course, the above denition is equivalent to the denition 1.0.1 of the introduction. Indeed, the distance between the points s q and s r is r q (s r ) = 2θ -. To obtain the distance r q (s p ) between the points s p and s q , we use the formula r q (s p ) = arccos (cos θ + cos θ -) and thus, according to the relation tan θ = 1-cos θ 1+cos θ for all θ in (0, π), we get tan r q (s p ) 2 = 1 -cos θ + cos θ - 1 + cos θ + cos θ - .

To determine the angle θ q (s p ), we use

θ q (s p ) = 3π 2 -arcsin sin θ + 1 -cos 2 θ + cos 2 θ - from what we deduce that sin (-θ q (s p )) = sin θ -cos θ + 1 -cos 2 θ + cos 2 θ - .
We put these dierent formula in the expression of F 1,2 q and we nd

F 1,2 q = a 2 sin θ -cos θ + 1 -cos θ + cos θ - - 1 2 tan θ - = - a 4 cos 2 θ -cos θ + + cos θ --2 cos θ + sin θ -(1 -cos θ + cos θ -) . 
(2.1.6)

Given θ + , it is always possible to nd θ -such that we obtain a balanced conguration. One checks that it is enough to choose

θ -= arccos -1 + 1 + 8 cos 2 θ + 2 cos θ + ,
which is nothing but the relation of denition 1.0.1.

Introduction of a rst corrective term

Green's function is a tool that produces a graph with singularities whose type is locally radial and logarithmic. In some sense, it looks like to the classical expansion of the catenoid. In this section, we describe the dierence between this graph and a minimal surface.

First of all, recall that for a surface Σ which is the graph of a function f dened over the sphere, its mean curvature H is given by the formula

H = 1 2 div S 2   ∇ S 2 f 1 + |∇ S 2 f | 2 S 2   .
Therefore, the graph is minimal if and only if its mean curvature vanishes, in other words if and only if f is a solution to the following PDE :

∆ S 2 f = G (f )
where

G (f ) = Hess S 2 f (∇ S 2 f, ∇ S 2 f ) 1 + |∇ S 2 f | 2 S 2
.

We have chosen to work with this expression because it highlights the essential role that harmonic functions play in the minimal surface theory.

The natural question which arises in our context is to determine the kind of error we produce when we use Green's function alone.

We dene a smooth increasing function χ : R -→

[0, 1] such that χ (-∞, 1) = {0} and χ (2, +∞) = {1} .
Proposition 2.2.1 Let ρ 0 be a positive real number such that the geodesic balls B (s g , ρ 0 ) do not intersect themselves and do not hold the North pole. For small positive parameter , let Γ cor, be the function on the sphere such that Γ cor, (s) = Γ (s) -g∈{p,q,r}

3 a 3 g 4 1 -χ 2 rg ρ 0 r 2 g .
Then for all k in N, there exists a positive constant c k such that

∇ k S 2 (∆ S 2 (Γ cor, ) -G (Γ cor, )) c k 3 r -3 ,
where the quantity r is the minimum of {r p , r q , r s }.

Before giving the proof, note that this result is really similar to the one we have obtained in the case of punctured hyperplanes in R n × R. It is a little bit more technical since we work with graphs over the sphere, but the main ideas are the same. The corrective term only appears in the neighbourhood of the singularities of Γ.

Remark 2.2.2 Once again, notice that if Σ denotes the surface we obtain as the graph of Γ cor, , then Σ is invariant under the action of G.

Proof

The proof divides into two parts : in the rst, we study G ( Γ) and in the second, we introduce a corrective function that makes up for the main term of G ( Γ).

First, let us give some formula which are useful to solve the problem. If (r, θ) denotes the polar coordinates in R 2 , then the stereographic projection is such that

π -1 : (r, θ) -→ 2r cos θ 1 + r 2 , 2r sin θ 1 + r 2 , -1 + r 2 1 + r 2 ∈ S 2 .
Consequently, the induced metric is given by

g = 4 (1 + r 2 ) 2 dr 2 + 4r 2 (1 + r 2 ) 2 dθ 2
and the square root of its determinant is

|g| = 4r (1 + r 2 ) 2 .
The Christoel symbols satisfy following expressions :

     Γ r rr = -2r 1+r 2 , Γ r rθ = 0, Γ r θθ = r -1+r 2 1+r 2 and      Γ θ rr = 0, Γ θ rθ = -1+r 2 r(1+r 2 ) , Γ θ θθ = 0.
The Laplace Beltrami operator is given by

∆ S 2 = (1 + r 2 ) 2 4 ∂ 2 ∂r 2 + 1 r ∂ ∂r + 1 r 2 ∂ 2 ∂θ 2 , the gradient satises ∇ S 2 (f ) = (1 + r 2 ) 2 4 ∂f ∂r ∂ r + (1 + r 2 ) 2 4r 2 ∂f ∂θ ∂ θ
and the hessian is

Hess S 2 = ∂ 2 ∂r 2 + 2r 1+r 2 ∂ ∂r ∂ 2 ∂r∂θ + 1-r 2 r(1+r 2 ) ∂ ∂θ ∂ 2 ∂r∂θ + 1-r 2 r(1+r 2 ) ∂ ∂θ ∂ 2 ∂θ 2 + r 1-r 2 1+r 2 ∂ ∂r
.

We now compute the estimate of the error we perform when use only Green's function. Assume that r g ρ 0 for one of the elements g ∈ {p, q, r}. It is convenient to work with the stereographic projection π -sg from the antipodal point of the singularity s g since in this case, x g = 0. According to the formula (24), we can write

Γ (s) = a g ln (r g ) + c + O ∞ rg→0 ( r g ) , from what we deduce 1 ∇ S 2 ( Γ) = a g 4r + O ∞ ( ) ∂r + O ∞ r -1 ∂ θ and Hess S 2 ( Γ) =   -a g r -2 + O ∞ ( r -1 ) O ∞ ( r -1 ) O ∞ ( r -1 ) O ∞ ( r -1 )   .
Consequently, we check that

G ( Γ) = -3 a 3 g 4 2 r 4 + O ∞ 3 r -3 .
Note that the main term is radial because the behaviour of Γ near s g is given by the rotational invariant function a g ln r g .

We now make use of the above expression and we add the corrective term Cor (s) := -

g 3 a 3 g 4 1 -χ 2 rg ρ 0 r 2 g .
1. The reader will pay attention to the fact that r = |x| is not exactly r g .

functions f that belong to C k,α loc (S 2 * ) such that the following norm

f C 2,α µ (S 2 * ) := f C 2,α (K) + k l=0 g r -µ+l g ∇ l f L ∞ (B(sg,ρ 0 )\{sg}) + g sup r∈(0,ρ 0 ) s 1 =s 2 ∈B(sg,r)\B(sg, r 2 ) r k+α-µ ∇ k f (s 1 ) -∇ k f (s 2 ) |r g (s 1 ) -r g (s 2 )| α is nite.
Remark 2.3.4 It is convenient to remark that this denition allows us to consider the punctured sphere S 2 * as a manifold with three ends. In fact, we could identify the ball B (s g , ρ 0 ) with a cylinder [a, +∞) × S 1 by writing r g = e -t with t ∈ [a, +∞). We will use PDE theory developed in lectures [START_REF] Pacard | Lectures on Connected Sum Constructions in Geometry and Nonlinear Analysis[END_REF].

The properties of an operator dened on this kind of manifolds come from the study of its indicial roots : these are a tool that yields to estimates of solutions when one approaches the singularities. It is an easy check to see the indicial roots of the Laplace-Beltrami operator on the punctured sphere are the elements of Z (it can be seen with the help of classical Fourier series on the sphere S 1 for which the eigenfunctions are the elements e ıjθ for j ∈ Z).

The harmonic extension

We have already highlighted the essential role that Green's function plays in the theory of minimal surfaces. In this section, we build harmonic extensions on a punctured sphere in order to prescribe local behaviour near singularities.

For all > 0, let r be the radius r := 2 3 we will explain this choice in remark 3.1. Let S 2 be the sphere punctured by geodesic balls of radius r around the singularities s g :

S 2 := S 2 \ g B (s g , r )
.

From now on, we identify a point z g of the circle ∂B (s g , r ) with its angle θ g . Let Φ := (Φ g ) g be a family of 3 functions dened on the circle S 1 . Our goal is to build an harmonic extension h Φ on S 2 such that ∆ S 2 h Φ = 0 in one hand and ∀g {p, q, r} , ∀z g ∈ ∂B (s g , r ) , h Φ (z g ) = Φ g (θ g ) in other hand. Indeed, we do not solve exactly this problem : in what follows, the data boundary is almost equal to Φ g modulo an error term whose rough estimate is small in comparison with Φ.

Denition 2.4.1 By misuse of language, we say that Φ is G-invariant if Φ p (θ p ) = Φ p (-θ p ) and φ q (θ q ) = Φ r (-θ r ) .

This denition makes sense because is we consider the graph L in S 2 × R of Φ over ∪ g ∂B (s g , r ), then L is invariant under the action of G.

Notation 2.4.2 • For all Φ dened on the circle, we use classical Fourier analysis to write

Φ = k 0 Φ k ,
where Φ k belongs to the k-th eigenmode of the Laplacian on the circle, that is to say ∆ S 1 Φ k = -k 2 Φ k . In other words, Φ k is a linear combination of cos (kθ) and sin (kθ). For i in {0, 1} We denote by π i (resp. π ⊥ ) the linear function which maps a L 2 function f on f i (resp. on j 2 f j ).

• We note C 2,α (∂S 2 ) ⊥ 0 the set whose elements Φ have vanishing 0-th eigenmode, in other words such that for all g, Φ 0 g vanishes. It is the same to say that for all g, the average of Φ g is equal to 0. • We dene the Hölder norm of an element Φ as the maximum of the norms of Φ g , in other words :

Φ C 2,α (∂S 2 ) := max g∈{p,q,r} Φ g C 2,α (S 1 ) .

Before giving the result for harmonic extensions on S 2 , we rst give a result concerning the harmonic extension on R 2 \ B (0, 1). It is this one we use to build our solution for S 2 .

(a)

Harmonic extension on R 2 \ B (0, 1) Denition 2.4.3 Let µ be a real number, k ∈ N and α an element of (0, 1).

We dene the weighted Hölder space C k,α µ (R 2 \ B (0, 1)) as the set of functions f ∈ C k,α loc (R 2 \ B (0, 1)) such that the following norm

f C 2,α µ (R 2 \B(0,1)) := k i=0 | | -µ ∇ i f L ∞ (R 2 \B(0,1)) + sup r 1
r k+α-µ sup

x =y∈B(0,2r)\B(0,r)

∇ k f (x) -∇ k f (y) |x -y| α is nite.
Proposition 2.4.4 There exists an universal positive constant c such that there exists a continuous linear operator

W e : Φ ∈ C 2,α S 1 ⊥ 0 -→ W e (Φ) ∈ C 2,α -1 R 2 \ B (0, 1)
such that W e (Φ) is harmonic and W e (Φ) = Φ on S 1 . Moreover, the following estimate holds true

W e (Φ) C 2,α -1 (R 2 \B(0,1))
c Φ C 2,α (S 1 ) .

(2.4.7)

We call W e the exterior harmonic extension. We will see that when we deform a truncated catenoid, the interior harmonic extension W i plays a similar role.

Remark 2.4.5 We choose to work with vanishing 0-eigenmode. The reason is that harmonic extensions of constants are either constants or logarithmic functions.

In both cases, it implies estimates we cannot use for the construction of the minimal surface.

Proof

We only give the explicit formula that will be used in the gluing process :

W e (Φ) re ıθ = j 1 r -j Φ j (θ) .
For precise proof, it is a slightly modied method than the proposition 3.1 in [PR] in which is proved same kind of result for the interior harmonic extension.

(b) Harmonic extensions on punctured sphere

We make use of the above proposition in order to construct harmonic extensions on S 2 . Proposition 2.4.6 There exists an universal positive constant c such that for all > 0, there exists a continuous linear operator

h : Φ ∈ C 2,α ∂S 2 ⊥ 0 -→ h Φ ∈ C 2,α -1 S 2
such that h Φ is harmonic and satises following assertions :

(i) the estimate h Φ C 2,α -1 (S 2 ) c Φ C 2,α (∂S 2 ) (2.4.8)
holds true ;

(ii) for all g, we have the estimate

h Φ (r r, θ g ) -W e (Φ g ) (r, θ g ) C 2,α (B R 2 (0,2)\B R 2 (0,1)) c r Φ C 2,α (∂S 2 ) ; (2.4.9)
(iii) furthermore, if Φ is G-invariant, then the surface we obtain as the graph of h Φ is invariant under the action of G.

Remark 2.4.7 The point (ii) of the proposition species that in a small annulus aroud s g , the harmonic extension h Φ is equal to Φ modulo an error term whose rough estimate is r Φ : it is small in comparison with the data boundary we want to prescribe.

Proof

With the help of proposition 2.4.4, it is relatively simple. As a matter of fact, we perform the sum of the harmonic extensions of each Φ g . Let π -sg be the stereographic projection from the antipodal point -s g of s g . The reader will pay attention to the orientation we choose concerning the plane on which we perform this projection. As a bases of this plane, we choose e g , e ⊥

g where e ⊥ g is the unit vector we obtain after a rotation of angle θ g = π 2 .

More precisely, if we dene h P Φ,g as

h P Φ,g : re ıθg ∈ R 2 \ B R 2 0, tan r 2 -→ W e (Φ g ) r tan r 2 e ıθg
where we have noted the exponant P to describe functions on planes we identify with R 2 , then the induced function h Φ,g = h P Φ,g • π -sg is harmonic on S 2 \ B S 2 (s g , r ) (because the stereographic projection is conform) and is equal to Φ g (θ g ) on ∂B S 2 (s g , r ). Notice that the quantity tan r 2 is nothing but the radius of the projected circle ∂B (s g , r ) of S 2 on the plane after the stereographic projection. In particular, one easily checks that in spherical coordinates (r g , θ g ), we have the relation h Φ,g (r g , θ g ) = W e tan rg 2 r 2 , θ g .

We then claim that h Φ := g h Φ,g suits to the problem.

It is an harmonic function by construction. Besides, according to the estimate (2.4.7), together with the formula tan r 2 = r 2 + O (r 3 ), we obtain the estimate

h P Φ,g re ıθg c r r Φ C 2,α (∂S 2 ) .
It gives locally that h Φ,g belongs to the weighted space L ∞ -1 (B (s g , ρ 0 ) \ {s g }).

Concerning the second estimate (2.4.9), if s belongs to the small annulus B S 2 (s g , 2r )\ B S 2 (s g , r ), we write r g = r r with r ∈ (1, 2) and

h Φ (r r, θ g ) -W e (Φ g ) (r, θ g ) = W e (Φ g ) tan r r 2 tan r 2 , θ g -W e (Φ g ) (r, θ g ) + g =g h Φ,g (s) 
.

If we focus on the inuence of h Φ,g near the point s g with g = g, then one nds that for all s in the annulus B S 2 (s g , 2r ) \ B S 2 (s g , r ), we get the estimate

|h Φ,g (s)| c r Φ C 2,α (∂S 2 ) .
If we focus on the dierence on the harmonic extensions, we note that

tan rg 2 tan r 2 = 1 + O ∞ r 2 , therefore we obtain W e (Φ g ) tan r r 2 tan r 2 , θ g -W e (Φ g ) (r, θ g ) c r 2 Φ C 2,α (∂S 2 ) ,
which is less than the contribution of h Φ,g for small .

Consequently, the estimates are proved in the L ∞ sense. We obtain the result in C 2,α with the help of Schauder's estimates for the derivatives.

To end up with the proof, it is enough to observe that if Φ is G-invariant, then, using explicit formula of h Φ,g , one nds h P Φ,p (r, θ) = h Φ,p (r, -θ) and h P Φ,q (r, θ) = h P Φ,r (r, -θ) , thus the associated surface Σ is invariant under the action of the group G.

Analysis of the Laplacian on the punctured sphere

In what follows, we go on studying properties of the Laplace-Beltrami operator over a punctured sphere. In the previous section, we have turned our attention to nd harmonic functions with prescribed data boundary. In this section, we focus on mapping properties of this operator.

In the above proposition, we give a result about the injectivity of the operator.

Proposition 2.5.1 Assume that µ belongs to (0, 1). Then if a function f satises

∆ S 2 f = 0 on S 2 * together with f ∈ C 2,α µ S 2 * ,
then f is the function 0.

Proof

The proof is relatively simple in this case. Indeed, if f is a harmonic function over S 2 * such that in a neighbourhood of the singularities, f (s) r µ g , we observe that f tends to 0 as one approaches the point s g . By standard harmonic function theory, the singularities of f are removable and thus, f is harmonic on S 2 * .

Theorem 2.6.1

For all µ that belongs to (0, 1), there exists a universal positive constant c such that for all positive parameter κ, there exists κ > 0 such that for all ∈ (0, κ ), for all data boundary Φ whose C 2,α norm is smaller than κ r and whose 0-eigenmode vanishes, then there exists a function v Φ which satises the following assertions :

(i) the surface given by the graph of Γ cor, + h Φ + v Φ over S 2 is minimal ;

(ii) the function v Φ belongs to the weighted space C 2,α µ (S 2 ) and its norm is such

that v Φ C 2,α µ (S 2 ) 2c 7-2µ
3 ;

(2.6.13) (iii) the function v Φ continuously depends on parameters a, θ p and θ q ;

(iv) if Φ is G-invariant, then the associated surface Σ Φ is invariant under the action of G.

Notice that the estimate (2.6.13) provides us an idea of the description of the minimal surface near its boundaries : the main terms come from the Γ function, the corrective term, the harmonic extension while inequality |v Φ (s)| 2c

7-2µ 3 r µ implies v Φ has rough estimate 7 3 = r 2 near one singularity, which is very small in comparison with the quantity r that comes from 1) the force term that Γ yields ;

2) the radial term that Cor produces ;

3) the choice of the rough estimate for the boundary data Φ.

2.7

Local description of the minimal surface near its boundaries

In the above theorem, we have established the existence part : we can build a minimal surface under some conditions. The goal of this section is to compute an accurate description of the solution in a neighbourhood of s g for some g ∈ {p, q, r}.

Essentially, there are two reasons to explicit that : in one hand, it produces a way to have a good geometric idea of the surface we have built, in the other hand, it will be necessary when we perform the gluing process.

Among main problems we have encountered, there is the fact that in S 2 , dierent local coordinates can be used to describe the same phenomenon. Until now, we have used dierent stereographic projections. However, we will see that for the catenoid we want to glue, it is suitable to consider spherical coordinates (r, θ) → (sin r cos θ, sin sin θ, cos r). For our description, we choose these last coordinates.

In spherical coordinates with origin in g, we note s g + r g e ıθg the point of the sphere whose distance from s g is given by r g and whose angle with unit vector e g is An other way to parametrize the catenoid consists in writing its upper part (i.e. the part with positive height t) as a graph over R 2 \ B (0, 1). More precisely, let x := cosh (t) e ıθ . Then t = arccosh |x| = ln |x| + |x| 2 -1 .

An easy calculus leads us to the asymptotic behaviour :

t = ln |x| + ln 2 - 1 4 |x| 2 + O x→∞ 1 |x| 4 .
Let η > 0 be a small dilation factor and consider the change of variables y := ηx.

Then the corresponding catenoid is parametrized by

y ∈ R 2 \ B (0, η) -→ y η ln |y| -η ln η + η ln 2 -η 3 1 4|y| 2 + O |y|→+∞ η 5 1 |y| 4
.

In order to glue the necks over the sphere with catenoids, we want the main terms to have same rough estimates. For the catenoid, it is given by η ln |y| while for the punctured sphere, it is given by Green's function, more exactly, by a g ln r g near s g . In other words, we enforce relation 3

η ∼ a g .

Obviously, η depends on g. For the catenoid part, we note η alone but in the gluing process, in order to avoid ambiguities, we note η g to precise that at point s g , we glue a catenoid whose size is determined by η g .

In the gluing process, we deal with the constants by using suitable vertical translations. The next non-constant term has rough estimate r for the punctured sphere and η 3 r -2 for the small catenoid.

This is why we choose boundary the radius r to be such that η 3 r -2 ∼ r and the boundary data so that Φ ∼ r .

For practical purpose, we also dene the large parameter t to be such that cosh t := r η .

Here again, t depends on the weight parameter a g at point s g . Notice that t ∼ ln -1 3 .

We briey recall some well known operators on the catenoid. First, its Jacobi operator J c , which is the linearization of the mean curvature operator for normal deformations

(t, z) ∈ R × S 1 -→ X (t, z) + ω (t, z) N (t, z)
3. As a matter of fact, in the gluing process, we prove that we can choose η = a g + o ( ).

is given by the formula

J c (ω) = 1 ϕ 2 ∆ R×S 1 ω + 2 ϕ 4 ω,
where ϕ := cosh. Moreover, since ϕ -4 is very small in comparison with ϕ -2 when t is large, it is natural to introduce the operator

H c := 1 ϕ 2 ∆ R×S 1 .
Jacobi elds. The Jacobi elds are functions that belong to the kernel of J c . Using some isometries which preserve the mean curvature, we can explicit dierent ones :

these that come from the dilation, the translations and the horizontal rotations.

Of course, one does not modify the mean curvature is we perform a dilation of the catenoid. Then the associated deformation can be seen as

p ∈ Σ c -→ p + c X c
for a constant c. Then one nds the Jacobi eld

k (t, θ) = φ 0 -(t) = N, X c = 1 -t tanh t.
If we perform a vertical translation, the transformation is given by p ∈ Σ c -→ p + c e 3 and we nd the Jacobi eld k (t, θ) = φ 0 + (t, θ) = tanh t.

We do same kind of calculus for the horizontal translations to obtain killings elds that are given by

k (t, θ) = φ 1 + (t) (A cos θ + B sin θ)
where A and B are any constants and

φ 1 + (t) = 1 cosh t .
Finally, for the rotations that preserve the vertical unit vectors e 1 or e 2 , we end up with

k (t, θ) = φ 1 -(t) (A cos θ + B sin θ)
where A and B are any constants and φ 1 -(t) = t cosh t + sinh t.

3.2

A small catenoid in S 2 × R

In this section, we describe how to put a small deformed truncated catenoid in S 2 × R. To do this, we use the classical catenoid of R 3 we dilate by a small factor η > 0 and we compute its mean curvature in S 2 × R.

Let Σ 0 be the classical truncated Euclidean catenoid we put in S 2 × R, that is to say that the upper part of Σ 0 is parametrized by

X 0 : (r, θ) ∈ (η, r ) × S 1 -→     sin r cos θ sin r sin θ cos r f 0 (t)     ∈ S 2 × R,
where t := arccosh r η and f 0 (t) = η arccosh (t) .

The lower part of Σ 0 has same parametrization with -f 0 (t) instead of f 0 . As announced, its mean curvature is very small : its rough estimate is given by η see the formula (3.3.17) with ω = 0.

Our method to produce minimal surfaces which are close to Σ 0 lies in performing a small perturbation of this surface. Let ω be a function which is dened over the cylinder [-t , t ] × S 1 and N be a unit vectoreld. We then consider the surface Σ ω which is given by p = X 0 (r, θ) ∈ Σ 0 -→ p + η ω (t, θ) N (p) .

Here, it is necessary to discuss the choice of N . In general case, when we perform deformations of a surface, we consider normal deformations. It turns out that in our case, we proceed to a slightly modied transformation. The reason for this is that the normal vector to Σ 0 is almost vertical when r is close to r and that it is more useful to describe the surface we construct near its boundaries as the graph of a function over an annulus, like we have done for the deformation of the punctured sphere. Consequently, if N 0 denotes the normal vector of Σ 0 that points upwards for its upper part and N v = e 4 be the vertical unit vector in S 2 × R, we choose N so that near the boundary r = r , we have the inequality N = N v . However, then one approaches the neck of Σ 0 (i.e. when r tends to η), then Σ 0 is not a vertical graph since N 0 is horizontal. We thus enforce N = N 0 near r = η. To sum up, we choose

N = (1 -| χ|) N 0 + χ e 4
where χ is a function we construct with the help of the cut-o function χ we have introduced for the proposition 2.2.1 so that χ (t) = χ (t) -χ (-t) .

In other words, χ is a smooth increasing function whose Hölder norm does not depend on t such that χ ((2, +∞)) = {1} , χ ((-∞, -2)) = {-1} and χ ((-1, 1)) = {0} .

3.3

The mean curvature equation

We have in mind to compute the mean curvature of Σ ω . In this purpose, we rst calculate the mean curvature for vertical graphs (i.e. we consider the case N = e 4 ), then we give the more general formula for the N dened in the above paragraph. The reason for what we have chosen to work with vertical graphs is it is more convenient for the calculus and it highlights the fact that the sphere is almost at if we zoom in enough.

We thus dene a graph over a piece of the sphere S 2 as follows :

(r, θ) ∈ (η, r ) × S 1 -→     sin r cos θ sin r sin θ cos r f ω (r, θ)     ∈ S 2 × R,
where f ω is the function

f ω : B (0, r ) \ B (0, η) -→ R
(r cos θ, r sin θ) -→ η arccosh r η + η ω arccosh r η , θ .

Before giving the formula for the mean curvature of this graph, we introduce the following notation.

Denition 3.3.1 For all i ∈ {0, 1, 2, 3}, we note Q i a function

Q i : C 2,α -(t , t ) × S 1 -→ C 0,α -(t , t ) × S 1
such that there exists a positive constant c which satises • Q 0 only depends on t, Q 1 is linear, Q 2 is quadratic and Q 3 collects all terms of higher order ;

• for all f , Q i (f ) depends on t, f , ∇f and Hess (f ) ;

• for all f ,

|Q i (f ) (t)| c |f (t)| i
and for all f 1 and f 2 , for i 1,

|Q i (f 1 ) -Q i (f 2 )| (t) c |f 1 (t) -f 2 (t)| (|f 1 (t)| + |f 2 (t)|) i-1 .
Lemma 3.3.2 The mean curvature H ω of the surface Σ ω that we obtain by vertical deformations satises following equation :

H ω = 1 2 η r cos r -sin r r 2 sin r + η (r 2 -η 2 ) 1 2 r 1 r 2 ω + 1 sin 2 r ω θθ + η r cos r (r 2 -η 2 ) -sin r (r 2 -3η 2 ) r 4 sin r ω + ηr -2 Q 2 ϕ -1 ω + r -1 Q 3 ϕ -1 ω . (3.3.16)
Before giving a more suitable formula for H ω with the help of the Jacobi operator, let us discuss the dierent terms very quickly. The rst comes from the catenoid we put in S 2 × R. More precisely, since we have used the parametrization of the Euclidean truncated catenoid of R 3 , there is an error term caused by the curvature of the sphere. The second term is very close to the Laplacian of ω. Besides, note that there is no linear term in which ω appears. It can be easily explained by the fact that a vertical translation does not change the mean curvature.

Corollary 3.3.3 There exists some universal constant c such that there exists 0 > 0 such that for all ∈ (0, 0 ), the mean curvature of the surface Σ ω that we obtain via N -deformations can be rewritten as follows :

H ω = 1 2η J c (ω) + J (ω) - η 2 3 + η 4 ϕ 2 Q 0, + η 2 ϕQ 1, ϕ -1 ω + ϕ -2 Q 2, ϕ -1 ω + ϕ -1 Q 3, ϕ -1 ω , (3.3.17)
where J is a second order operator whose coecients are bounded by cϕ (t ) -2 and the Q i, 's enjoy similar properties than the Q i 's except they depend also on but the constant that appears in the denition of the Q i, is c.

This above formula is more useful than the previous one since it highlights the role that the Jacobi operator of an Euclidean catenoid plays here ; besides, its mapping properties are well known. The denition of the constant 0 is such that the mean curvature is very close to the mean curvature of a catenoid with vertical deformation in R 3 provided the area in which we perform the calculus is small enough.

The proof of the lemma is a little bit technical, but the proof of the corollary is more interesting.

Proof (of lemma 3.3.2)

First of all, we recall some riemannian geometry formula associated with the local parametrization of the sphere near its North pole :

X S 2 : (r, θ) -→ (sin r cos θ, sin r sin θ, cos r) ∈ S 2 ⊂ R 3 .

We note ∂ r (resp. ∂ θ ) the tangent vector Γ θ rr = 0, Γ θ θθ = 0, Γ θ rθ = tan -1 r.

For convenience, we dene ω := ϕ -1 ω and t = argcosh r η so that f ω (r, θ) = η argcosh r η + r ω (t, θ) .

We note

˙ ω = ∂ ω ∂t and ω θ = ∂ ω ∂θ .
We make use of the mean curvature formula for graphs :

H ω = 1 2 div ∇f ω 1 + |∇f ω | 2
where all terms are considered endowed with the metric g S 2 . To compute this formula for f ω , we give the main steps of the calculus. First of all, the gradient is

∇f ω = η r 2 -η 2 + ω + r r 2 -η 2 ˙ ω ∂ r + r sin 2 r ω θ ∂ θ .
The reader could notice that, since r is small, the quantity r sin 2 r has rough estimate 1 r : it is the term which appears in the gradient if we consider polar coordinates in the plane R 2 . According to the Taylor's expansion

r 2 sin 2 r = 1 + O ∞ r 2 ,
the above expression yields to

1 + |∇f ω | 2 = r 2 r 2 -η 2 1 + 2η (r 2 -η 2 ) 1 2 r 2 ω + 2η 1 r ˙ ω + Q 2 ( ω) .
Note that the contribution of terms which come specically from the sphere and not from the plane are quadratic.

The Laplacian of f ω is given by the expression

∆f ω = η -r sin r + cos r (r 2 -η 2 ) sin r (r 2 -η 2 ) 3 2 + tan -1 ω + sin r (r 2 -η 2 ) + r cos r (r 2 -η 2 ) sin r (r 2 -η 2 ) 3 2 + r r 2 -η 2 ¨ ω + r sin 2 r ω θθ .
Moreover, the Hessian is given by

         Hess (f ω ) rr = -η r (r 2 -η 2 ) 3 2 + r r 2 -η 2 ¨ ω + r 2 -2η 2 (r 2 -η 2 ) 3 2 ˙ ω, Hess (f ω ) rθ = Q 1 ( ω) , Hess (f ω ) θθ = r ω θθ + cos r sin r η 1 (r 2 -η 2 ) 1 2 + ω + r (r 2 -η 2 ) 1 2 ˙ ω ,
from what we deduce that

Hess (f ω ) (∇f ω , ∇f ω ) = -η 3 r (r 2 -η 2 ) 5 2 + η 2 r (r 2 -η 2 ) 2 -2 ω + ¨ ω -η 2 r 2 + 2η 2 (r 2 -η 2 ) 5 2 ˙ ω + ηr -2 Q 2 ( ω) + r -1 Q 3 ( ω) .
We make use of the formula

H ω = 1 2   ∆f ω 1 + |∇f ω | 2 1 2 - Hess (f ω ) (∇f ω , ∇f ω ) 1 + |∇f ω | 2 3 2  
in order to obtain, after a tedious calculus, the expression

H ω = 1 2 η r cos r -sin r r 2 sin r + r 2 cos r + η 2 (3r 2 sin r -2r 3 cos r) + η 4 (r cos r -3 sin r) r 4 sin r (r 2 -η 2 ) 1 2 ω + r 4 sin r + r 5 cos r -2η 2 r 3 cos r + η 4 (r cos r -sin r) r 3 sin r (r 2 -η 2 ) ˙ ω + (r 2 -2 ) 1 2 r 2 ¨ ω + (r 2 -2 ) 1 2 sin 2 r ω θθ + ηr -2 Q 2 ( ω) + r -1 Q 3 ( ω) .
(3.3.18)

We express the above expression in terms of ω. In particular, we use relations

˙ ω = η 1 r ω -η (r 2 -η 2 ) 1 2 r 2 ω, ω θθ = η 1 r ω θθ and ¨ ω = η 1 r ω -2η (r 2 -η 2 ) 1 2 r 2 ω + η r 2 -2η 2 r 3 ω.
Injecting these relations into equation 3.3.18, we get the result.

Proof (of the corollary 3.3.3)

There are two kinds of terms to evaluate : those that come from the curvature of the sphere and those that can be associated with the Jacobi operator.

We rst perform the formula for vertical deformations.

We begin with the expression which does not depend on ω. Classical Taylor's expansion provides η r cos r -sin r r 2 sin r = -η

1 3 -η 1 45 r 2 + O ∞ ηr 4 .
Same method leads us to the term ω :

η r cos r (r 2 -η 2 ) -sin r (r 2 -3η 2 ) r 4 sin r = η 3 2 r 4 -η r 2 -η 2 3r 2 + O ∞ r 2 .
We then rewrite the equation (3.3.16) in terms of ϕ rather than in terms of r. We obtain :

H ω = 1 2η -η 2 1 3 + ϕ 2 -1 ϕ 3 (ω + ω θθ ) + 2 ϕ 4 ω + η 4 ϕ 2 Q 0 + η 2 ϕQ 1 ϕ -1 ω + ϕ -2 Q 2 ϕ -1 ω + ϕ -1 Q 3 ϕ -1 ω .
Note that the linear term Q 1 is small in comparison with the other linear terms.

To establish the link with the Jacobi operator, we could use the formula of [PR, Proposition 2.2] that provides the linearization of the mean curvature operator for any deformation of a surface. In our case, we rather perform the calculus explicitly.

If N 0 = (0, 0, 1) is the vertical unit vector in R 2 × R and N is the unit vector of the Euclidean catenoid, then we obtain

J c ( N 0 , N R 3 ω) = ϕ 2 -1 ϕ 3 (ω + ω θθ ) + 2 ϕ 4 ω
and the same equation of the proposition for vertical deformations holds true follows by taking

J (ω) := J c N, N v R 3 -1 ω ,
where N is the normal to the Euclidean catenoid and N v is the vertical vector in R 3 , and by using the lemma 3.1.1.

For the general case with deformations which make use of N , it is same kind of method except that one nds

J (ω) := J c N R 3 , N -sgn N R 3 , N ω ,
where the vector N R 3 has a similar denition than the denition of N , namely

N R 3 := (1 -| χ|) N + χN v ∈ R 3 .

3.4

Construction of a minimal surface near the catenoid

(a) Analysis results

The Jacobi operator J c over the catenoid is a well known operator. We recall the main results. First, we dene the weighted spaces on cylinder R × S 1 . Denition 3.4.1 Let δ be a real number, k a non negative integer and α an element of (0, 1). We dene the Hölder weighted space C k,α δ (R × S 1 ) to be the set of functions f that belong to C k,α loc (R × S 1 ) such that the norm

f C k,α δ (R×S 1 ) := sup t∈R (cosh t) -δ f C 2,α ((t-1,t+1)×S 1 )
is nite.

Remark 3.4.2 We dene in the same way the weighted Hôlder spaces C k,α δ ((t 1 , t 2 ) × S 1 ) where t 1 < t 2 .

We recall the result from proposition 3 in [START_REF] Pacard | Construction de surfaces à courbure moyenne constante[END_REF] or proposition 4 in [START_REF] Mazzeo | Connected sums of constant mean curvature surfaces in euclidean 3 space[END_REF] for the existence of a right inverse for the Jacobi operator J c . Proposition 3.4.3 For all weight parameter δ that belongs to (1, 2), there exists an universal constant c = c (α, δ) such that for all positive real number t 0 , there exists a continuous linear operator

J -1 δ : f ∈ C 2,α δ-2 (-t 0 , t 0 ) × S 1 -→ J -1 δ (f ) ∈ C 2,α δ (-t 0 , t 0 ) × S 1 such that J c J -1 δ (f ) = f on (-t 0 , t 0 ) × S 1 , π ⊥ J -1 δ (f ) = 0 on {±t 0 } × S 1 .
Moreover, the estimate

J -1 δ (f ) C 2,α δ (R×S 1 ) c f C 2,α δ-2 (R×S 1 )
holds true. Furthermore, if f is G-invariant (that is to say f (t, θ) = f (t, -θ), then we can choose J 1 δ (f ) also G-invariant.

Remark 3.4.4 The proof in the references does not hold the G-invariant part.

However, to prove this last, it is enough to use similar arguments than in the proposition 2.5.2.

The above proposition is useful to prescribe the quantity J c (v). We have the counterpart in order to obtain a result to enforce data boundary see the proposition 5 in [START_REF] Mazzeo | Connected sums of constant mean curvature surfaces in euclidean 3 space[END_REF].

Before giving the proposition, we introduce W i to be the linear operator that maps a boundary data Υ on S 1 to its interior harmonic extension W i (Υ) dened on B R 2 (0, 1). This operator satises similar properties than the exterior harmonic extension W e see for example the proposition 2.4.4 or paper [START_REF] Coutant | Riemann minimal hypersurfaces in R n × R[END_REF].

Proposition 3.4.5 There exists an universal constant c = c (α) such that for all real number t 0 2, then there exists a continuous linear operator

h : Ψ ⊥ = j 2 Ψ j ∈ C 2,α {±t 0 } × S 1 -→ h Ψ ⊥ such that H c (h Ψ ⊥ ) = 0 on (-t 0 , t 0 ) × S 1 together with h Ψ ⊥ (t, θ) -W i Ψ ⊥ + e t-t 0 , θ C 2,α ([t 0 -2,t 0 ]×S 1 ) c (ϕ (t 0 )) -4 Ψ ⊥ C 2,α ({±t 0 }×S 1 ) . (3.4.19)
Moreover, h Ψ ⊥ belongs to the weighted space C 2,α 2 ((-t 0 , t 0 ) × S 1 ) and the estimate

h Ψ ⊥ C 2,α 2 ((-t 0 ,t 0 )×S 1 ) c 1 ϕ (t 0 ) 2 Ψ ⊥ C 2,α ({±t 0 }×S 1 ) holds true. Furthermore, if Ψ ⊥ is G-invariant, then so is h Ψ ⊥ .
Remark 3.4.6 Of course, same type of estimate (3.4.19) takes place for the lower part of the catenoid, i.e. when t ∈ (-t 0 , -t 0 + 2).

To deal with the rst eigenmode is slightly dierent. Indeed, we already know the functions associated with the rst eigenmode, namely the Jacobi elds φ 1 ± . As said previously, φ 1 -and φ 1 + do not behave in the same way : the Jacobi eld φ 1 + associated with the horizontal translation is a function that exponentially decreases like (cosh t) -1 while the Jacobi eld φ 1 -associated with the rotation exponentially increases like cosh t. This is why we decompose data the eigenmode Ψ 1 of a boundary

Ψ on {±t 0 } × S 1 into Ψ 1 = Ψ 1 odd + Ψ 1 even where Ψ 1 odd (t 0 , •) = -Ψ 1 odd (-t 0 , •) and Ψ 1 even (t 0 , •) = Ψ 1 even (-t 0 , •) .
We then check, by using the odd Jacobi eld φ 1 -:

Proposition 3.4.7 There exists an universal constant c = c (α) such that for all real number t 0 2, then there exists a continuous linear operator

: Ψ 1 odd ∈ C 2,α {±t 0 } × S 1 -→ Ψ 1 odd such that J c Ψ 1 odd = 0 on (-t 0 , t 0 ) × S 1 , Ψ 1 odd = Ψ 1 odd on {±t 0 } × S 1 .
Moreover, Ψ 1 odd belongs to the weighted space C 2,α 1 ((-t 0 , t 0 ) × S 1 ) and the two estimates

Ψ 1 odd C 2,α 1 ((-t 0 ,t 0 )×S 1 ) c 1 ϕ (t 0 ) Ψ 1 odd C 2,α ({±t 0 }×S 1 )
and

Ψ 1 odd (t, θ) -W i Ψ 1 odd,+ e t-t 0 , θ C 2,α ([t 0 -2,t 0 ]×S 1 ) c t 0 (ϕ (t 0 )) -2 Ψ ⊥ C 2,α ({±t 0 }×S 1 ) . (3.4.20) hold true. Furthermore, if Ψ 1 odd is G-invariant, then so is Ψ 1 odd .
Remark 3.4.8 Of course, same type of estimate (3.4.20) takes place for the lower part of the catenoid, i.e. when t ∈ (-t 0 , -t 0 + 2).

Proof

We easily check that

Ψ (t, θ) := φ 1 - φ 1 -(t 0 ) Ψ 1 odd,+ (θ) 
suits to the problem. The estimate (3.4.20) is obtained by noticing that for all t ∈ (t 0 -2, t 0 ),

φ 1 -(t) φ 1 -(t 0 )
-e t-t 0 c t 0 e -2t 0 .

(b)

Dealing with the curvature of the sphere

In the mean curvature equation appears the term -η 2 3 which comes form the fact that the metric on the sphere is not exactly at near the North pole. For the construction we have in mind, it is primordial to explain how to deal with this term with the help of a corrective function.

We would like to solve J c (f ) = -η 2 3 .

(d) Local description of the minimal surface near its boundaries

To perform the gluing, we need an accurate description of the surface we have constructed in a neighbourhood of its boundaries. For all boundary data Ψ which satises the hypothesis of theorem 3.4.10, Σ ω Ψ +v Ψ is a vertical graph on an small annulus B (N, r ) \ B N, r 2 here, N refers to the North pole of S 2 .

To describe the upper part of the small catenoid, it is useful to perform a change of scales : we dene u

Ψ + on B R 2 (0, 1) \ B R 2 0, 1 2 to be u Ψ + (y) := f ω Ψ +v Ψ (r y) .
Theorem 3.4.11

Let δ ∈ (1, 2), Ψ a boundary data which satises the previous hypothesis. Then the function d Ψ + dened on the annulus B R 2 (0, 1)

\ B R 2 0, 1 2 by d Ψ + (y) := u Ψ + (y) -η ln 2 r η |y| + 1 4 η 3 r -2 |y| -2 -W i (ηΨ + ) (y)
satises following assertions :

(i) we have the estimate

d Ψ + C 2,α (B R 2 (0,1)\B R 2 (0, 1 2 )) c 5 3 2-δ 3 ; (3.4.21) (ii) the mapping Ψ -→ d Ψ + is 1 2 -contracting.
Remark 3.4.12 • The estimate (3.4.21) demonstrates that the terms that come from v Ψ are very small in comparison with the data boundary. • Obviously, same kind of result holds true for the lower part of the catenoid.

In this case, the reader will pay attention to the fact that there is a change of signs : d Ψ -is dened by It is this term that yields to estimate (3.4.21).

d Ψ -(y) := u Ψ -(y) + η ln 2 r η |y| - 1 4 η 3 r -2 |y| -2 + W i (ηΨ -) (y) .
It remains to deal with the part that establishes the link with the interior harmonic extensions. In this purpose, we make use of inequalities (3.4.19) and

(3.4.20) to nally obtain

η h Ψ ⊥ + Ψ 1 odd (t, θ) -W i (ηΨ + ) (y) c κ 7 3 t .
Notice that this quantity in also small in comparison with the contribution of v Ψ . The estimate follows from these dierent estimates.

(ii) Let Ψ and Ψ be two boundary data on {±t } × S 1 such that their C 2,α -norm is smaller than κr . Then we can write

d Ψ + (t, θ) -d Ψ + (t, θ) = η (ω Ψ -ω Ψ ) (t, θ) -W i η Ψ -Ψ (y) + η (v Ψ -v Ψ ) (t, θ) .
Like in the previous inequality, we check that

η (ω Ψ -ω Ψ ) (t, θ) -W i η Ψ -Ψ (y) c η 5 3 t Ψ -Ψ C 2,α ({±t }×S 1 ) .
Concerning the part with v Ψ -v Ψ , we use a method similar to the one we have used in the proof of theorem 3.4.10 after writing

J c (v Ψ -v Ψ ) = - 2 ϕ 4 h Ψ ⊥ -Ψ⊥ -J (ω Ψ -ω Ψ + v Ψ -v Ψ ) + η 2 ϕQ 1 1 ϕ (ω Ψ -ω Ψ + v Ψ -v Ψ ) + ϕ -2 (Q 2 (ω Ψ + v Ψ ) -Q 2 (ω Ψ + v Ψ )) + ϕ -1 (Q 3 (ω Ψ + v Ψ ) -Q 3 (ω Ψ + v Ψ )) . This implies that ϕ 2-δ J c (v Ψ -v Ψ ) c 2 3 Ψ -Ψ C 2,α ({±t }×S 1 ) + c 2 3 v Ψ -v Ψ C 2,α δ ([-t ,t ]×S 1 ) ,
Moreover, the Riemann minimal surface we have in mind to construct is invariant under the action of the group of isometries G. Consequently, on one hand, for Φ, we enforce the relations Φ p (cos θ, sin θ) = Φ p (cos θ, -sin θ) and Φ q (cos θ, sin θ) = Φ r (cos θ, -sin θ) .

These equalities hold because of the orthogonal symmetry s with respect to the vertical set {x 1 = 0}. In other hand, for Υ, we enforce relations

Υ p,+ (cos θ, sin θ) = Υ p,+ (cos θ, -sin θ) = Υ p,-(-cos θ, -sin θ) together with Υ q,+ (cos θ, sin θ) = Υ q,-(-cos θ, sin θ) = Υ r,+ (cos θ, -sin θ) = Υ r,-(-cos θ, -sin θ) . (4.1.22)
In addition to that, recall that in our construction of a deformed truncated catenoid, we have enforced the mode 1 to be odd, that is to say

Υ 1 g,+ = -Υ 1 g,-.
(4.1.23)

Here again, me make use of the above orthogonal symmetry. Regarding the link between the upper data and the lower data Υ + and Υ -, we use the point reection c with respect to the center of the catenoid we glue at s p . Therefore, to give a boundary data is the same to give a 9-tuple

Φ 1,1 p , Φ ⊥ p , Φ 1,1 q , Φ 1,2 q , Φ ⊥ q , Υ 1,1 p,+ , Υ ⊥ p,+ , Υ 1,1 q,+ , Υ ⊥ q,+
where Φ 1,i g and Υ 1,i g are real numbers such that 4

Φ 1 g (cos θ, sin θ) = Φ 1,1 g cos θ + Φ 1,2 g sin θ, Φ ⊥ g and Υ ⊥ g are functions that satisfy the symmetries hypothesis.

Remark 4.1.1 It could be interesting to develop the case of Υ q in order to check that the equations (4.1.22) and (4.1.23) are in agreement when Υ 1,2 = 0. First of all, let us write Υ q,+ (cos θ, sin θ) = 0

mode 0 + Υ 1,1 q,+ cos θ + Υ 1,2 q,+ sin θ mode 1 +Υ ⊥ q,+ (cos θ, sin θ) .
According to the equation (4.1.22), the function Υ q,-then satises Υ q,-(cos θ, sin θ) = Υ q,+ (-cos θ, sin θ) = -Υ 1,1 q,+ cos θ + Υ 1,2 q,+ sin θ + Υ ⊥ q,+ (-cos θ, sin θ) ,

It follows that the equation (4.1.23) implies Υ 1,1 q,+ cos θ + Υ 1,2 q,+ sin θ = --Υ 1,1 q,+ cos θ + Υ 1,2 q,+ sin θ = Υ 1,1 q,+ cos θ -Υ 1,2 q,+ sin θ.

Consequently, Υ 1,2 q,+ has to be chosen so that it vanishes. Geometrically, it means that the necks we glue at s q and s r are sloped away from the direction given by ±e q and ±e r .

4. Same denition holds for Υ 1 g .

4.2

The gluing equations

(a) Shape

Because of the symmetries of the problem, it is enough to conduct the gluing in s p and s q : what happens in s r is obtained by the orthogonal symmetry with respect to the plane {x 1 = 1} while what happens at upper and lower levels can be deduced with the help of a suitable translation and the point reection.

Since we do not change the mean curvature under the action of the vertical translations, we introduce t g,ver := t g,ver e 4 a vertical vector we determine in the gluing of the mode constant. Rather than directly using u Ψ , we allow ourselves to perform a vertical translation of the catenoid Σ ωg . We also allow ourselves to use a suitable rotation so that s g is the North pole. Then the general shape of the gluing equation in s g can be written

∀θ ∈ S 1 , u Φ,g (cos θ, sin θ) = u Ψ ±,g (cos θ, sin θ) + t g,ver , ∂ r u Φ,g (cos θ, sin θ) = ∂ r u Ψ ±,g (cos θ, sin θ) , (4.2.24)
where the index ± for the catenoid part iswhen g = p (we glue the lower part of a small truncated catenoid with the catenoidal neck that points upwards whose main term is given by a p ln (|y|)) and is + when g = q (we glue the upper part of a small truncated catenoid with the catenoidal neck that points downwards whose main term is given by -a q ln (|y|)).

(b)

Resolution : proof of theorem 1.0.2

As announced, we project the equations of the system (4.2.24) on the dierent eigenmodes 0, 1 and the others. We begin with the constant mode by using a Brouwer xed point theorem in order to determine η which lies in a neighbourhood of a g , then we determine the vertical translation vector. After, we solve the modes associated with 2, 3, etc. A xed point with parameters will be useful by applying the contracting properties for d and d. We end up with the mode 1 which is the more dicult to solve since we have to deal with the force term and we explain in what the balanced condition is satised.

The mode 0. Here, it is not necessary to distinguish in which point we perform the gluing because the method can be applied of all s g . We project on the constant mode the equations of the system 4.2.24 with the help of the description theorems 3.4.11 and 2.7.1. We obtain

       a g ln r + c Γ,g -1 4 a 3 g 3 r -2 + π 0 (d Φ,g ) = η g ln 2 r ηg -1 4 η 3 g r 2 +π 0 d Ψ,±,g + t g,ver , a g + 1 8 3 r -2 a 3 g + π 0 (∂ r d Φ,g ) = η g + 1 8 η 3 g r -2 + π 0 ∂ r d Ψ,±,g . (4.2.25)
These above equations do not depend on the choice of the boundary data Υ and Φ. Besides, note that if we can solve the second equation, then we can also solve the rst one by using a suitable vertical translation parameter. Moreover, the second equation implies that 

(a g -η g ) 1 + 1 8 r -2 a 2 g 2 + η 2 g + a g η g = π 0 ∂ r d Ψ,±,g -∂ r d Φ,
(a g -η g ) 1 + O 2 3 = O 5 3 2-δ 3
.

That is why we have to choose η g close to a g . More precisely, we have the Proposition 4.2.1 Assume that Φ and Υ have the same rough estimate κ r .

Then for all, g, there exists t g,ver and η g such that the system (4.2.25) is solved.

Moreover, following equations hold true :

η = a g + O 5 3 2-δ 3 and t g,ver = η g ln (η g ) + O ( ) .
The main term of the translation vector is η g ln (η g ) : the vertical period of the surface we want to build has rough estimate ln ( ).

Proof

As announced previously, it is enough to solve the second equation and we use a Brouwer xed point theorem. By construction, ∂ r d Ψ,±,g continuously depends on η g for η g ∼ a g r . To x ideas, assume that a g - The mode ⊥. From now on, we suppose and η g are xed such that they satisfy the conditions of the above proposition. This mode is maybe the easiest to solve since it is nothing but an application of a xed point theorem for contracting mappings. Like for the constant mode, the resolution of the projected system on S 1 ,

Φ ⊥ g + π ⊥ (d Φ,g ) = Υ ⊥ + π ⊥ d Ψ,±,g , ∂ r W e Φ ⊥ g + π ⊥ (∂ r d Φ,g ) = ∂ r W i Υ ⊥ + π ⊥ ∂ r d Ψ,±,g
can be generally done without considering a specic point s g : the method works for the three points s p , s q and s r . It is more useful to rewrite the above system in order to highlight the contracting part. In this purpose, we recall the following lemma (cf. section 11 in [START_REF] Mazzeo | Constant mean curvature surfaces with delaunay ends[END_REF]). Lemma 4.2.3 The linear mapping

H : Υ ⊥ ∈ π ⊥ C 2,α S 1 -→ ∂ r W e -W i Υ ⊥ |S 1 ∈ π ⊥ C 1,α S 1 is an isomorphism.
We deduce from it we can rewrite the above system as :

on S 1 ,          Φ ⊥ g -Υ ⊥ ±,g = π ⊥ d Ψ,±,g -d Φ,g , Υ ⊥ ±,g = H -1 π ⊥ ∂ r d Ψ,±,g -d Φ,g -∂ r W e π ⊥ d Ψ,±,g -d Φ,g . (4.2.27)
By contracting properties of the mappings d and d, one checks that we can apply a xed point theorem with parameters to obtain the Proposition 4.2.4 Assume that for all boundary data Υ, Φ whose norm is less than κ r and whose mode 1 is prescribed. Then we can solve the system (4.2.27) and the solution continuously depends on the parameters Φ 1 and Υ 1 ± .

The forces and the mode 1. From now on, we assume for all boundary data with xed eigenmode 1, we have solved the gluing equations of modes 0 and ⊥.

It remains to match the mode 1. We perform the projection of system (4.2.24) to obtain :

on S 1 , r F g 1, e ıθg + Φ 1 g e ıθg + π 1 (d Φ,g ) = Υ 1 g,± + π 1 d Υ,±,g , r F g 1, e ıθg -Φ 1 g e ıθg + π 1 (∂ r d Φ,g ) = Υ 1 g,± + π 1 ∂ r d Υ,±,g , (4.2.28)
where we have used the relations for the harmonic extensions

W e (Φ) re ıθ = j 1 r -j Φ j (θ) , ∂ r W e (Φ) re ıθ = j 1 -j r -j-1 Φ j (θ) , together with W i (Υ ± ) re ıθ = j 1 r j Φ j (θ) and ∂ r W i (Υ ± ) re ıθ = j 1 j r j-1 Υ j ± (θ) .
Proposition 4.2.5 Assume that the conguration associated with parameters ( θ+ , θ-) is balanced. Then there exists θ -such that (i) θ -is close to θin the sense that for all parameter 1 3 * 2 3 , θ --θ-= O ( * ) and (ii) there exists boundary data Υ and Φ such that all gluing equations are solved.

Proof

Here, we can't go on without being more precise because the resolution at point s p diers from the resolution at s q . For all eigenfunction f 1 associated with the eigenmode 1, we write

f 1 e ıθ = f 1,1 cos θ + f 1,2 sin θ and π 1,i the associated projections. Note that because of the symmetries, the component Υ 1,2 g,± always vanishes and thus, according to the construction of the truncated deformed catenoid,

π 1,2 d Ψ,±,g = π 1,2 ∂ r d Ψ,±,g = 0.
Then, in one hand, at s p , the above system (4.2.28) has components on cos θ p only and it is written

r F 1,1 p + Φ 1,1 p + π 1,1 (d Φ,p ) = Υ 1,1 p,-+ π 1,1 d Υ,-,p , r F 1,1 p -Φ 1,1 p + π 1,1 (∂ r d Φ,p ) = Υ 1,1 p,-+ π 1,1 ∂ r d Υ,-,p , from what we deduce 2Φ 1,1 p = π 1,1 (Id -∂ r ) d Υ,-,p -d Φ,p , Υ 1,1 p,- = r F 1,1 p + Φ 1,1 p + π 1,1 d Φ,p -d Υ,-,p . (4.2.29)
On the other hand, at s q we have to deal with the projections π 1,1 and π 1,2 . We get, after rewriting equations as above,

2Φ 1,1 q = π 1,1 (Id -∂ r ) d Υ,+,q -d Φ,q , Υ 1,1 q,+ = r F 1,1 q + Φ 1,1 q + π 1,1 d Φ,q -d Υ,+,q .
(4.2.30)

The shape for after projection π 1,2 is completely dierent because the small catenoids do not have bend on the associated direction. We get the system :

r F 1,2 q + Φ 1,2 q + π 1,2 (d Φ,q ) = 0, r F 1,2 q -Φ 1,2 q + π 1,2 (∂ r d Φ,q ) = 0.
It is this last system in which the balanced condition appears : we can rewrite it as

2Φ 1,2 q = π 1,2 [(Id -∂ r ) (d Φ,q )] , 2 r F 1,2 q = π 1,2 [(Id + ∂ r ) (d Φ,q )] . (4.2.31) Therefore F 1,2 q has rough estimate 2 3
. This is why we assume F 1,2 q vanishes at the initial condition. We then claim that a Brouwer xed point theorem yields to the result.

More exactly, we rst consider the ve equations given by

• the systems (4.2.29) and (4.2.30) together with • the rst equation of the system (4.2.31). Using the contracting properties of d and d, it is easy to apply a xed point theorem with parameters to prove that we can solve these ve equations and the solution continuously depends on θ -and θ + .

It remains to solve

F 1,2 q = 1 2 r π 1,2 [(Id + ∂ r ) (d Φ,q )] . (4.2.32)
The right member continuously depends on θ + and θ -by construction. Moreover, there exists a constant c that does not depend on θ ± such that for all constructed solution (Φ, Υ),

-c 2 3 1 2 r π 1,2 [(Id + ∂ r ) (d Φ,q )] c 2 3 .
But, according to the expression of F 1,2 q (cf. (2.1.6)), one proves that for all * in Although we do not provide such examples in S 2 × R, it is a rst step to a better understanding of the Riemann's minimal example in this space. In particular, we highlight its dierent symmetries and provide the description of a catenoid in S 2 ×R.

Riemann minimal surface in R 3

As a warm-up, we briey expose the computation of the classical Riemann example. Recall that it is foliated by circles whose center describes a straight line.

Let t denote the height parameter, r(t) be the radius of the horizontal circle whose center is (a(t), 0, t). We then look for functions a and r such that the parametrization

X : R 2 -→ R 3 (t, θ) -→   a(t) 0 0   +   r (t) cos θ r (t) sin θ t   (1.0.1)
describes a minimal surface. The rst term can be interpreted as the action of an horizontal translation. The function t could be interpreted as the height funcion.

Notice that when a ≡ 0, then this problem is nothing but the construction of the catenoid.

2 Riemann minimal surface in S 2 × R

We look for the analogue of the previous section in the geometry of the homogeneous space S 2 × R. From now on, we consider S 2 as a submanifold of R 3 and we denote by (e i ) 1 i 4 an orthonormal basis of R 3 × R.

Like in the Riemann example, we enforce this surface to be foliated by circles.

However, we can't work with an horizontal translation term as before. In order to make up for this problem, it is enough to consider the horizontal translation in R 2 × R as an horizontal isometry. If we transpose this in S 2 × R, it is natural to consider horizontal rotations. In addition to that, recall that in the Euclidean case, the translation term lies in the line Span (e 1 ) ; in S 2 × R, we choose a rotation R so that e 2 is invariant under its action. More exactly, we consider the following parametrization :

X : R 2 -→ S 2 × R (t, θ) -→ R (t) 0 0 1 X s (t, θ) t , where X s (t, θ) =   cos b (t) cos θ cos b (t) sin θ sin b (t)   ∈ S 2 and R (t) =   cos a (t) 0 -sin a (t) 0 1 0 sin a (t) 0 cos a (t)  
denotes the rotation of angle a (t) which preserves the direction e 2 . This choice can be explained in the same way that the choice of translations in previous case in which the center of the circles covers straight line. We refer to the following gure to illustrate this kind of parametrization.

x 1 The parameter b corresponds to the radius r of the R 2 × R-case : the surface associated with the parameter is foliated by circles chose radius is cos b. Moreover, the parameter a corresponds to the translation term of the R 2 × R-case, except that in S 2 × R, we replace the translation with rotations. Obviously, the surface we construct with the help of X is invariant under the action of the orthogonal reection with respect to the linear space {x 2 = 0} of R 3 × R.

x 2 x 3 X s (t, S 2 ) R (t) X s (t, S 2 ) cos b (t) sin a (t)
From now on, we assume that b is not a constant function. This hypothesis makes sense because of the Euclidean case : regarding the classical catenoid or the Riemann minimal exammple, the radius function is not constant and there does not exist minimal surfaces foliated by circles of constant radius in R 2 × R.

2.1

The minimal surface equation

Our aim is to obtain a similar ODE system than the one we have explicited in the Euclidean case see (1.0.3). Thus we compute the mean curvature of a surface in S 2 × R whose parametrization is given by X.

When f is a function which depends on the variable t, we note ḟ (t) = df dt (t).

Thus the tangent vectors of the surface are given by

Ẋ (t, θ) = Ṙ (t) X s (t, θ) + R (t) Ẋs (t, θ) t and ∂ θ X (t, θ) = R (t) ∂ θ X s (t, θ) 0 .
In order to compute the induced metric, we check the relations In order to describe an unit normal N , we remark that it has to be orthogonal to Ẋ, ∂ θ X and also to (X s , 0). The last vector takes place because we have chosen to work with the sphere S 2 we suppose embedded in R 3 . Thus if we choose N so that 1

N = c α ṘX s + βR Ẋs γ ,
where α, β, γ are real numbers and c is a positive real number such that N is a unit vector, we nd that N can be written

N = c R Ẋs -ḃ2 -ȧḃ cos θ .
1. Recall that b is not constant, thus ḃ = 0 and N does not vanish.

Lemma 2.2.1 The ordinary dierential equation (2.2.6) has a periodic solution. Besides, its period is such that the radius cos (b (0)) is arbitrary small. Moreover, locally, when the radius is small, in a small area around the initial conguration, S 2 behaves like R 2 and its metric is almost at. It is in agreement with the catenoidal shape of the surface near this point.

• when A tends to 1, T = 2π - π 2 (A -1) + O (A -1) 2 ; • when A tends to ∞, T = 2 ln (A) √ A + O A -1 . Furthermore, if ḃ (0) = 0, then for all |t| t A with t A = ln A-1 2 √ A , b (t) = - π 2 + 1 √ A cosh √ At + O ∞ A→∞ 1 A 3 2 cosh √ At sinh 2 √ At , ( 
• Unlike the Euclidean case, the periodicity condition implies that the catenoid of S 2 × R is also periodic, that is to say that the surface S we obtain is invariant under the action of the vertical translation t = T e 4 . In addition to that, if b (0) = -b A , then we check that S is invariant under the action of point reection with respect to the origin. Finally, notice that since a is chosen so that it vanishes everywhere, S is a surface of revolution around the vertical axis.

Proof

Assume b (0) = -b A . Then, a solution b is necessarily order-preserving in a neighbourhood of 0 + . It follows that, for positive height t small enough, we can write

dt = db √ A cos 2 b -1 and thus t (b) = b -b A du √ A cos 2 u -1 .
Therefore, it is enough to prove that the height does not explode when b increases. For example, near b = -b A , a Taylor's expansion provides the expression

A cos 2 (-b A + h) -1 -1/2 ∼ h→0 2 √ A -1 h
and this is the term of an improper integral that converges when h tends to 0. Same kind of result holds when b lies in a neighbourhood of +b A . Therefore, the height is nite for all angle b : the solution is dened on R. Thus the solution is periodic and its period is

T := 4 b A 0 du √ A cos 2 u -1 = 4 1 1 √ A dv (1 -v 2 ) (Av 2 -1
) .

The behaviour of T when A tends to 1 or ∞ follows from the positivity of the integrand together with its asymptotic expansion in the ∞-case, we make use of formula

1 1 √ A dv √ Av 2 -1 = ln (A) 2 √ A + O A -1 .
In the case A very large, it is more convenient to dene β such that b (t) = -π 2 + β (t) and we dene the critical angle β A to be 

β A := arcsin 1 √ A = β (0) . Thus, β ( 
β A cosh √ At + O 1 A sinh √ At .
Therefore, it makes sense to look for a solution whose form is given by

β (t) = β A cosh √ Av (t)
for some function v such that v (0) = 0. In terms of v, (2.2.6) gives equation

v2 = sin 2 β A cosh √ Av -sin 2 (β A ) β 2 A sinh 2 √ Av = ∞ k=1 (-1) m+1 2 2m-1 (2m)! β 2m-2 A cosh 2m √ Av -1 cosh 2 √ Av -1 . Assume t (1 -c) v ( 
t) t for some positive real number c ∈ (0, 1). Then previous expansion implies

1 -cβ 2 A cosh 2 √ At v 1, therefore v (t) = t + O ∞ A→∞   β 2 A sinh 2 √ At 4 √ A   .
It follows that the assumption is correct for |t| t A . We end by using the Taylor's expansion of β A

β A = 1 √ A 1 + O A→∞ 1 A .

2.3

Analysis in the case C very large From now on, we omit the overline on functions to relieve notations and we assume µ is a constant real number.

(a)

A rst approach to reduce the problem

In order to describe solutions of the above system when C is very large (that is to say when λ is very small), it makes sense to analyse it when λ = 0 : it will provide us dierent data to study the general case. Therefore, we are interested in the system in which we replace λ in the second equation with 0 and we nd ȧ = cos 2 b, ḃ2 = cos 2 b (µ + cos 2 b) .

(2.3.9) Notice that the last equation implies that µ has to be chosen so thatµ -1.

Lemma 2.3.1 Assume b (0) > 0 and ḃ (0) > 0. Then solutions of the above system are : Remark 2.3.2 The lack of periodicity can be explained by the approximation we do when we assume λ = 0.

Proof

The second equation implies that for t small enough, dt = db cos b µ + cos 2 b .

On one hand, when µ ∈ (-1, 0), as done in the proof of lemma 2.2.1, we check in this case the solution is periodic and its period T is T = 4 Besides, the limit radius cos b λ corresponds to the case in which µ + cos 2 b λ vanishes, that is to say b λ = arccos ( √ -µ).

On the other hand, when µ is positive or vanishes, the only problem which might occur is when b approaches π If we integrate it by substitution u = sin b, we end up with the explicit formula of a ∞ . Assume that ω (t) -√ µt < c for some positive constant for all t in [-t * , t * ] with t * > 0. Then the solution ω is such that

∀t ∈ [-t * , t * ] , ω (t) = √ µt + O ∞ λ→0 λ 2 cosh 2 ( √ µt) ,
and we check the estimate about ω holds true provided c is chosen big enough for t * = T λ -1. The result for b then follows and the estimate for a is established by using Taylor's expansion e of cos 2 b together with the integration ȧ = e.

It is very useful to describe the solution as a vertical graph upon a small annulus.

In this purpose, we perform the change of coordinates r cos z, r sin z, -√ 1 -r 2 , t = X (t, θ) .

According to the above lemma, we demonstrate the following corollary.

Corollary 2.3.6 Let r be the small radius dened by r λ := λ µ . Then following expansions holds true :

t (r, z) = 1 √ µ ln r λ + 1 2 √ µ ln (4µ) - 1 2 √ µ r cos z + O ∞ λ→0 (λ) ,
where O ∞ (f (r)) denotes a function that is bounded by a constant times f on the annulus A r λ := B (0, 2r λ )\B 0, r λ 2 (and its derivatives are bounded by a constant times the derivatives of f ).

Proof

It is similar to the proof of lemma 3.2 in [START_REF] Hauswirth | Higher genus riemann minimal surfaces[END_REF]. We briey recall the main steps.

Let us dene t λ := - 

m (r) = r 2 2 + O ∞ λ 3 2
, where O ∞ (f (r)) aects functions dened on the annulus A r λ . The expansion of t follows.

Introduction

The Scherk surface, discovered in 1834 by Heinrich Scherk, is an unbounded minimal surface that can be seen as the graph over a square which takes alternatively +∞ value and -∞ value on its boundaries. More precisely, it is the graph of u over the domain D = -π 2 , π 2 dened by u : (x, y) ∈ D -→ log cos x -log cos y.

Then u is +∞ on the sides y = ± π 2 and is -∞ on the other sides x = ± π 2 . The goal of this paper is to prove the existence of such objects in R n × R.

We can except to have some restrictions about the geometry of domain D we choose. Indeed, H. Jenkins and J. Serrin [START_REF] Jenkins | Variational Problems for Minimal Surface Type, II. Boundary Value Problems for the Minimal Surface Equation[END_REF] proved that in R 2 × R, if a minimal graph u takes innite value on a part B of the boundary of the domain, then B must be a geodesic. Moreover, in this paper is proved that the lengths of the boundary on which u takes innite value have to satisfy some conditions for example, when there are only innite values on ∂D, the length of the boundary part in which u takes +∞ value has to be equal to the length of the boundary part in which u takes -∞ value. This kind of result has been extended by B. We have in mind to generalize the existence of such u for domains with many symmetries. For example, we would like to construct a Scherk type hypersurface over a regular octahedron which takes alternatively innite values ±∞ over the faces.

The existence and uniquiness have been proven by R. Sa Earp and É. Toubiana in [ST] for some polyedra in H n or R n . In our case, we will use dierent approach and build Sherk type hypersurfaces over an ocathedron whose faces are minimal surfaces (it is the analogous of the condition under which in dimension 2, the part B of the boundary is a geodesic).

1. Building Scherk type hypersurfaces in R n × R

We then discuss about the regularity of such hypersurfaces near their boundary, also with the help of reection principle. Lemma 0.3.10 Let Σ denote the minimal hypersurface of R 3 × R associated with the above corollary when O is a regular octahedron. Then Σ is smooth everywhere except on the vertices of O in which the surface is continuous but not dierentiable.

Finally, we give in the last section a result whose type is the same than the Jenkins-theorem.

1 Building Scherk type hypersurfaces in R n × R Note that if D has Lipshitz continuous boundary, we are in the case of [START_REF] Miranda | Un principio di Massimo Forte per le frontiere minimali e una sua applicazione alla risoluzione del problema al contorno per l'equazione delle superci di area minima[END_REF] ; if D has C 2 boundary, then we are in the case of [START_REF] Jenkins | The Dirichlet Problem for the Minimal Surface Equation in Higher Dimension[END_REF].

First and last, let us x some notation and hypothesis for the rest of our study.

We assume we are given a pseudoconvex set Ω of R n-1 such that its interior Ω is non empty. Moreover, we also assume that there exists a minimal hypersurface S of R n which is the graph of some function s dened on Ω and a convex hypersurface Γ which is the graph of some convex function γ dened over Ω such that ∂Γ = ∂S, in other words, such that the functions s and γ line up on the boundary ∂Ω of Ω. We also assume that γ (p) = s (p) for all p ∈ Ω. Notice that this assumption makes sense because of the convex hull property for minimal hypersurfaces ([CM99, proposition 1.7]) that species a minimal graph lies in the convex hull of its boundary. In particular, we can suppose without loss of generality that the surface S is below Γ and Γ is not minimal. We also denote by C a convex set of R n which holds the domain D of R n whose boundary is exactly Γ ∪ S for example, we could choose D so that it would be the convex hull of Γ ∪ S. We refer to the gure V.1 for an illustration. Notice that if ∂Γ is continuous, then the existence of a minimal graph S over the pseudoconvex set Ω is provided by the result of R. Bassanezi and U. Masseri [START_REF] Carlos | The Dirichlet Problem for the Minimal Surface Equation in Nonregular Domains[END_REF].

Example 1.1.2 As an illustration of the above conditions, the classical Scherk surface provides a nice example. In this case, we choose Ω to be (-1, 1). Then the minimal surface is in this case a geodesic : to x ideas, we choose S = Ω × {0}, in other words, s ≡ 0. Concerning Γ, we choose γ (x) = 1 -|x| . Remark 1.1.3 We do not give directly the result for deformed polyhedra because we use this above theorem to construct this new hypersurface with reections.

For example, note the classical Sherk surface can be obtained by both the existence of minimal surface over a triangle which vanishes over two sides et takes innite data over the other side and reections see gure V.3. 

Horizontal problem

There are two main ideas to prove the above theorem :

1) we solve a bounded problem by prescribing boundary data +m for some positive integer m rather than +∞ then we let m to tend to +∞ ;

2) we change what we call the vertical problem into the horizontal problem it is more useful to prove that the sequence of solutions has a limit when m tends to +∞. Notice that according to [START_REF] Carlos | The Dirichlet Problem for the Minimal Surface Equation in Nonregular Domains[END_REF], since Ω m 0 is pseudoconvex (because Ω is pseudoconvex), the Dirichelt problem (1.2.4) has a solution. Besides, according to the maximum principle, the solution is unique. Therefore, it makes sense to consider u hor m .

As announced, we prove the existence of an uniform bound, which allows us to consider the case m → +∞. Corollary 1.2.2 For all t 0 ∈ R + , for all p ∈ Ω, the sequence (u hor m (p, t 0 )) m t 0 converges simply to a limit, denoted by u hor (p, t 0 ).

Proof

Here again, it is a well chosen of the maximum principle.

The key lies in proving the increasing property ∀t 0 ∈ R + , ∀p ∈ Ω, ∀m t 0 , u hor m (p, t 0 ) u hor m+1 (p, t 0 ) .

(1.2.7)

The above inequality together with the uniform upper bound we have demonstrated in the proposition 1.2.1 then yields to the conclusion.

Consequently, let us prove the claim (1.2.7). We refer to the gure V.5 for a better understanding. We observe that u hor m and the restriction u hor (1.2.8)

In other words, u hor m is decreasing along the direction t. Note that the case p ∈ ∂Ω is more easy since for all t ∈ [0, m], u hor m (p, t) = s(p). This property is central to show that we can consider a solution of (1.2.4) as a solution of the other Dirichlet problem (1.2.3) see corallary 1.2.4.

Proof

The main idea of this proof is to compare Σ hor m with another minimal surface that is nothing but a translated of Σ hor m and to use a maximum principle. 

(b)

Not bounded horizontal problem We now prove that the limit u hor we have dened in corollary 1.2.2 is actually the Scherk type surface we want to construct.

Theorem 1.2.5

The graph of u hor is minimal over the interior ΩR + where the set Ω R + is dened to be

Ω R + := Ω × R + .
Moreover, if Σ hor denotes the associated surface, then its boundary satises ∂Σ hor = (Γ × {0}) ∪ ∂S × R + ,

(1.2.9)

and the hypersurface S × R + is asymptotic to Σ hor when t tends to +∞.

Before giving the proof, the reader should note the last point of the above theorem is the reason for which we have chosen a domain D whose boundary is Γ ∪ S with S minimal. It is nothing but the generalization of the condition of Jenkins and Serrin that states if a minimal graph takes +∞ value on a part of the boundary, then this part must be a geodesic.

Proof

The proof turns on four points. We briey expose them before giving all the details : 1) we prove that the surface is minimal it comes from a compactness principle together with the uniform bound we have proved ;

2) we prove the boundary conditions are satises ;

3) we demonstrate that u hor (p, t) converges when t tends to +∞ it comes from a decreasing property like the one we have used in the proof of proposition 1.2.3

; 4) we end up with proving that the limit is exactly s that parametrizes the minimal surface S.

Fourth step. To complete the proof, it remains to demonstrate that the limit function v is exactly s. The idea of the proof looks like the proof of property 1.2.3 : we make use of a suitable translation of Σ hor along the t-axis. We claim that z satises the minimal graph equation. For that, we consider an increasing sequence of compact subsets of ΩR which converges to ΩR . Then analogous arguments to rst step enable us to conclude.

(iii) Now, let us show that v = s. First, note that similar methods to second step show that z in an element of C 0 (Ω R , R). Then Σ z is a minimal hypersurface in R n+1 . But it is also invariant under translations along the t-axis. Consequently, v is a minimal graph over Ω. But v ∂Ω = s ∂Ω because of both the continuity of v and ∀ ((p, t) , m) ∈ (∂Ω × R) × N * , z m (p, t) = s(p).

The maximum principle for minimal graphs over Ω leads to the conclusion.

1.3

Proof of theorem 0.3.8

Like we have done to prove that to solve the bounded horizontal problem is the same than to solve the bounded vertical problem, we prove that the solution u hor determines a way to compute a solution u ver of the vertical version of the problem. where ∂ (∂O) is the collection of the sides of the octahedron. Then Σ is C 2 everywhere, except in the vertices of O in which Σ is continuous but is not C 1 . Consequently, we can't expect to have the same regularity than in the 2-dimensional case. holds true. Let M t be the middle of [R t , T t ] and P the plane such that M t ∈ P and P is parallel to the plane that holds B,G,B m and G m . We denote by M 1 and M 2 the points given by the intersection of P with ∂ABC. Finally, let Ω ∈ R 3 the domain whose boundary is

∂ M 1 M 2 A × [0, m] ∪ M 1 M 2 A × {0, m}
and Ω (resp. A 1 ) be the symmetric of Ω (resp. A) with respect to the plane P. m M 1 m ), s 1 (P ) = s 2 (P ) = 0; ∀P ∈ (M 1 M 2 M 2 m M 1 m ), s 1 (P ) = s 2 (P ) = 0; ∀P ∈ (M 1 M 2 A 1 ) , s 2 (P ) s 1 (P ) .

M t A B C P Q G M 2 M 1 A 1 P t R t R t Q t
Note that the last inequality holds true because of the geometry of a regular tetrahedron T . Maximum principle then implies that s 2 s 1 over Ω , thus

u hor m (R t ) = s 2 (Q t ) s 1 (Q t ) = u hor m (Q t ) .
Second step : By letting m → +∞ in inequality (2.1.11), one can nd similar property for u hor : ∀t ∈ R + , u hor (R t ) u hor (T t ) .

(2.1.12)

Third step : The second step gives us an indication of the geometry of Σ.

We denote by Σ the graph of u hor over (ABG) × R + . We claim that the orthogonal projection π of Σ onto the sloping hyperplane H of R 

π (Q t ) = π (R t )
and thus, π is injective.

Last step : according to previous step, Σ hor is then the graph of some function u s over H s such that u s vanishes over ([A, B] × R + ) ∪ (ABO). We use twice the reection principle : rst, the reection with respect to the plane, included in H, which holds A, B and the direction t-axis, next with respect to the plane {t = 0} ⊂ H. We obtain a new minimal surface over a domain such that (AB) × {0} belongs to its interior : Σ is C 2 over (AB) × {0}.

3. We relieve notations by omitting index t and exponent hor. T u,Z is not a graph over P. 
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 3 Figure 3 Un exemple de conguration périodique avec consécutivement 1 cou et 2 cous entre deux niveaux consécutifs.
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 4 Figure 4 Dans l'exemple de Riemann, les cous sont orientés selon une certaine direction.
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  n l , relatively compact open set; B r := B (0, r) for r > 0, ; relatively compact open set; A r := B 2r \ B r for r > 0, relatively compact open annulus;

then

  Cor and h Φ have same rough estimate, namely |Cor| (x) c r and |h Φ | (x) κc r .
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  Figure II.1: The catenoid in R n × R has two asymptotic hyperplanar ends.

  s estimates give the result in C 2,α n+2 2

  2. Proposition 6.3.10 Let |χ | be a smooth cuto function with values in [0, 1]
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 1 Figure III.1: The Wei's example in R 2 × R.
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  Figure III.4: The geometric meaning of r g and θ g .

  Γ r θθ = -cos r sin r,

ProofFor convenience, we write t = argcosh r η |y| and θ = y 3 .

 3 -2 |y| -2 + O →0 7 Moreover, the contribution of the corrective function Cor is such that |η Cor (|t|)| c to the construction of the term v Ψ in theorem 3.4.10, we get η |v Ψ (t,

  Then equation (4.2.26) can be rewritten η g = a g 1 + O that continuously depends on η g and which is bounded by a constant times does not depend on η g . By Brouwer xed point theorem, there exists a solution η g . Remark 4.2.2 Indeed, one can prove that |η g -a g | belongs to (0, * ) where * is a power such that * >>

,

  for all θ -that belongs to [ θ-- * , θ-+ * ], F 1,2 q describes an interval whose form is [-c 1 * , c 2 * ] where the constants c i have rough estimate 1. Since * is much more larger than 2 3 , a Brouwer xed point gives the result. Chapitre IV Paramétrisation des surfaces minimales de Riemann dans S 2 × R Introduction In this chapter, we provide a thorough local description of the Riemann's minimal example in the homogeneous space S 2 × R. In particular, we prove that its necks behave like small truncated catenoids. Similar work was done in [HP07] in R 2 × R. The authors used it to study the Jacobi operator on a half Riemann's example in order to construct new minimal surfaces. These examples could be considered as two half Riemann's surfaces connected to each other by a number k of catenoidal necks with 1 k 37.

Figure IV. 1 :

 1 Figure IV.1: Geometric meaning of the parametrization.

ṘX s 2 =

 2 ȧ2 cos 2 b cos 2 θ + sin 2 b and R Ẋs , ṘX s = ȧḃ cos θ. Besides, since R is an isometry of R 3 , we obtain metric induced by the parametrization is given by g = 1 + ȧ2 cos 2 b cos 2 θ + ȧ2 sin 2 b + 2 ȧḃ cos θ + ḃ2 ȧ cos b sin b sin θ ȧ cos b sin b sin θ cos 2 b .

(

  Instead of considering the functions a and b, we rescale the problem by introducing a and b such that a (t) := a t C and b (t) := b t C . Then the minimal surface system equations (2.1.5) turns into ȧ = cos 2 b, ḃ2 = µ cos 2 b + cos 4 b -λ 2

•

  such that ȧ and b are periodic functions when µ belongs to (-1, 0) and for all t, b (t) ∈ [-b λ , b λ ] where b λ := arccos √ -µ ;• non-periodic when µ 0, dened for all height t ∈ R and b (t) ----→

  v 2 ) (µ + v 2 ) .

2.

  Since b → 1 cos b is not integrable in π 2 , it follows that innite height is necessary to reach this critical angle. Besides, b reaches all angles in -To integrate this relation between the heights ±∞ is the same to integrate it between angles ± π 2 for b. We then nd lim t→∞ (a (t) -a (-t)) = 2 b db.

  Lemma 2.3.5 The solution (a (t) , b (t)) of system (2.3.8) has the following expansion :∀t ∈ [-T λ + 1, T λ -1] ,    b (t) = -π 2 + ρ (t) + O ∞ λ→0 λ 3 cosh √ µt sinh 2 √ µt , a (t) = m (t) + O ∞ λ→0 λ 4 cosh 3 √ µt sinh √ µt , (2.3.11)where the functions ρ and m are dened to be and O ∞ (f (t)) denotes a function that is bounded by a constant times f (and its derivatives are bounded by a constant times the derivatives of f ).ProofTo simplify the analysis, we dene ω byb (t) = -π 2 + b m cosh (ω (t))with ω (0) = 0 to ensure b (0) = -π 2 + b m . According to the denition of b m , in terms of ω, the ordinary dierential equation that b satises changes into ω2 = µ + sin 2 b m + sin 2 (b m cosh ω) sin 2 (b m cosh ω) -sin 2 b m b 2 m cosh 2 ω -1 .

  Nelli and H. Rosenberg in H 2 × R [NR02], then by A. L. Pinheiro [Pin09] or L. Mazet, M. M. Rodríguez and H. Rosenberg [MRR11] in M 2 × R. That is why we choose to work with domain whose par of boundary is a minimal surface. Moreover, the existence of Scherk type hypersurface has been proved by F. Pacard in [Pac02].

  As announced, geometric restrictions about the geometry of the domain D are expected in view of the Jenkins-Serrin theorem. We already know that the Dirichlet problem with continuous data over the boudary of a domain D is solvable if D is a C 2 bounded domain in R n whose boundary has nonnegative mean curvature see theorem 16.8 in[START_REF] Gilbarg | Elliptic Partial Dierential Equations of Second Order[END_REF] or the article[START_REF] Jenkins | The Dirichlet Problem for the Minimal Surface Equation in Higher Dimension[END_REF]. There also exists more sophisticated existence theorem in[START_REF] Miranda | Un principio di Massimo Forte per le frontiere minimali e una sua applicazione alla risoluzione del problema al contorno per l'equazione delle superci di area minima[END_REF] for locally pseudoconvexs sets in R n , generalized by R.C. Bassanezi and U. Massari in[START_REF] Carlos | The Dirichlet Problem for the Minimal Surface Equation in Nonregular Domains[END_REF] for pseudoconvex sets. Denition 1.1.1 A subset D ⊂ R n is pseudoconvex if for all open bounded subset A of R n and for all E such that E is a compact of A, following inequality holds true :A |D 1 D | A |D 1 D∪E | , where A |D 1 D | denotes total variation of the function 1 D over A, that is to say A |D 1 D | = sup {g∈C 1 0 (A,R n ): g L ∞ (A) 1} A 1 D div g .

Figure V. 1 :

 1 Figure V.1: Example of domain.

Ω

  Figure V.2: The Scherk surface takes +∞ value on S and vanishes on Γ as a graph on D.

Figure V. 3 :

 3 Figure V.3: Scherk surface over a triangle then over a square.

  As announced, we introduce the following vertical Dirichlet problem for m ∈ N * :u ver m is a minimal graph over D; ∀x ∈ ∂D, u ver m (x) = 0 if x ∈ Γ, else m.

  Σ ver m the graph of such a solution. Indeed, we have in mind to use compactness results for minimal graphs. It is known that in the case n = 2, we can obtain a solution of Dirichlet problem (0.3.1) by letting m → ∞ see [JS65]. We use a dierent approach with the introduction to the following horizontal Dirichlet problem : graph over Ω m 0 := Ω × [0, m] ; ∀p ∈ ∂Ω, ∀x ∈ [0, m] , u hor m (p, x) = γ(p) = s(p); ∀p ∈ Ω, u hor m (p, 0) = γ(p); ∀p ∈ Ω, u hor m (p, m) = s(p).

Figure V. 4 :

 4 Figure V.4: The horizontal problem and the vertical problem.

  Proposition 1.2.1 The sequence u hor m m is uniformly bounded. More precisely, for all m ∈ N * , for all (p, t) ∈ Ω m 0 , we have the following inequalities :

  types of arguments : we deal with the lower bound with the help of the maximum principle while we deal with the upper bound by using the convex hull property.First, since S is a minimal graph over Ω, it is clear that S × [0, m] is also a minimal graph over Ω × [0, m]. Moreover, its boundary is given by∂ (S × [0, m]) = (S × {0}) ∪ (∂S × [0, m]) ∪ (S × {m}) .Therefore, the boundary of the minimal surface S × [0, m] is below the boundary of Σ hor m because Γ is above S. According to the maximum principle (see[START_REF] Gilbarg | Elliptic Partial Dierential Equations of Second Order[END_REF] for example), we deduce from this fact that Σ hor m is above S × [0, m]. In other words, we obtain the uniform lower bound∀(p, t) ∈ Ω m 0 , uhor m (p, t) s(p).Next, by the convex hull property, it is an easy check to see that Σ hor m lies in the set D × [0, m]. In particular, Σ hor m is below Γ × [0, m], from what we deduce the uniform upper bound. The above proposition yields to the convergence of the sequence of solutions u hor m m .

m+1 |Ω m 0 of u hor m+1 to Ω m 0 Figure V. 5 :

 05 Figure V.5: Comparison of Σ hor m and Σ hor m+1 .

  u ver m : (p, τ ) ∈ D ⊂ R n -→ if (p, τ ) ∈ D \ (Γ ∩ S) , m if (p, τ ) ∈ ∂Ω × {0} ,denes a solution to Dirichlet problem (1.2.3) since the graph of u hor,(p) m over D coincides with Σ hor m which is a minimal hypersurface and boundary conditions are satised by construction.

  × [-m, +∞[ and we dene the translated function z m to bez m : Ω +∞ -m -→ R (p, t) -→ u hor (p, t + m) .It is clear that z m satises the minimal graph equation. Moreover, its boundary data is determined by ∀p ∈ Ω, z m (p, -m) = s (p) and ∀ (p, t) ∈ ∂Ω × R + , z m (p, t) = s(p).

  Furthermore, according to the third step, z m has a limit when m tends to +∞ :z m (p, t) ---→ m→∞ v(p).

(

  ii) Let us dene z to be the t-invariant functionz : Ω R -→ R (p, t) -→ v(p).

Figure

  Figure V.9: Scherk hypersurface after a reection and the function v.

Figure V. 12 :

 12 Figure V.12: Notations. Ω is the light gray piece ; Ω is the dark gray piece.

Trigonometric calculus leads us to 3 :P

 3 -π (R) = cos α -arctan u (R) d (P, R) P -R 2 + u (R) 2 = P -R cos α + u(R) sin α.Since u hor is an increasing function on [P t , Q t ] together with the fact that the distance P -R is less than the distance P -T , we end up withP -π (R) < P -T cos α + u(T ) sin α = d (P, π (Q)) ,from what we deduce that
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  Introduction de cous entre les diérents niveaux, d'autre part l'existence dans des espaces homogènes M × R où M est une variété de dimension au moins égale à 2. Avant d'aller plus loin, nous donnons la dénition de ce que nous appelons (hyper)surfaces de type Riemann. Dénition 3 Nous disons qu'une surface Σ d'une variété homogène M × R est de type Riemann si elle est connexe, complète, plongée et qu'elle présente des bouts asymptotiques à M × {s i } pour des réels s i (en nombre ni ou inni). Nous appelons M × {s i } le i-ème niveau. Nous appelons cous les parties de Σ situées entre deux niveaux consécutifs. De façon générale, les surfaces construites constituent une famille à 1 paramètre (ou plus) arbitrairement petit. Nous appelons point de recollement le point correspondant à la limite des cous quand le paramètre

	tend
	vers 0.

Elles sont essentiellement de deux natures : d'une part l'existence avec un nombre arbitraire xix Chapitre . Il est à noter que dans cette dénition, nous ne supposons pas de critère de périodicité. Nous nous concentrons sur le cas particulier où M = S 2 dans le chapitre III.

  utilisant surtout des techniques de théorie géométrique de la mesure résolvait toutes les questions que nous nous posions et ce, dans un cadre beaucoup plus général que le nôtre. Malgré tout, j'ai tenu à le mettre en raison des techniques utilisées qui dièrent des outils classiques permettant d'étudier les surfaces de type Scherk. En particulier, l'essentiel de nos raisonnements se font à la main et reposent sur des arguments très visuels.

La surface de Scherk est une surface minimale qui a 4 bouts plans parallèles deux à deux. Dans ce chapitre, nous construisons d'autres hypersurfaces minimales de type Scherk nous en donnons la dénition. Dénition 6 Une hypersurface minimale Σ de R n × R est de type Scherk si elle peut être représentée comme le graphe d'une fonction u au-dessus d'un domaine D de R n qui vaille +∞ ou -∞ sur une partie du bord. Mon directeur de thèse a déjà prouvé dans [Pac02] qu'il existe une hypersurface analogue dans l'espace euclidien de dimension plus grande. Par ailleurs, R. Sa Earp et É. Toubiana [ST] ont prouvé l'existence d'hypersurfaces de type Scherk dans H n × R et R n × R qui sont des graphes au-dessus de domaines ayant de nombreuses symétries, à savoir sur des polytopes réguliers. H. Jenkins et J. Serrin [JS65] ont prouvé qu'il était possible d'exhiber de tels objets modulo certaines contraintes sur le domaine D dans l'espace euclidien de dimension 3. En eet, ils prouvent que les parties du bord sur lesquelles u prend une valeur innie doivent nécessairement être des segments droits. De plus, des conditions concernant leur longueur doivent être satisfaites : par exemple, si l'on veut prescrire sur le bord de D des valeurs toutes innies, la longueur -des parties des ∂D sur laquelle u vaut +∞ doit être égale à la longueur -des parties de ∂D sur laquelle u vaut -∞. Cela est dû à une condition de ux sur la surface ; géométriquement, si par exemple + > -, on trouve un graphe u qui vaut +∞ partout, ce qui n'est pas d'un vif intérêt. Des résultats semblables ont été établis par B. Nelli et H. Rosenberg [NR02] dans H 2 × R et par A. Pinheiro [Pin09] ou encore L. Mazet, M. Rodríguez et H. Rosenberg [MRR11] dans le cas de M × R, où M est une variété de dimension 2. Dans ces derniers cas, les segments sont remplacés par des géodésiques.

Ainsi, il est tout à fait raisonnable de s'attendre à avoir des contraintes géométriques sur D. En particulier, les parties de ∂D sur lesquelles u prend une valeur innie sont choisies comme étant elles-mêmes des hypersurfaces minimales de R n .

Nous ne prouvons pas que c'est une condition nécessaire mais le lecteur pourra en trouver l'explication dans

[START_REF] Tomaini | Innite boundary value problems for surfaces of prescribed mean curvature[END_REF]

. Nous démontrons diérents résultats (parfois partiels).

  Supposons que le bord du domaine D est exactement S ∪ Γ, où S (resp. Γ) est le graphe d'une fonction s (resp. γ) au-dessus d'un même ouvert pseudoconvexe de R n-1 tel que S est minimale et Γ est convexe. Alors il existe une surface de type Scherk qui soit le graphe d'une fonction u au-dessus de D qui s'annule sur l'intérieur de Γ et qui prenne la valeur +∞ sur l'intérieur de S.

	Théorème 6

  Denition 2.2.2 A real number δ is an indicial root of L cyl if there exists a non-zero function u cyl ∈ C 2 0 (C) \ {0} and δ < δ such that

  8.2.4 Let C = {å k , pk,j } be a balanced and non-degenerate con-

	guration. Then for all δ ∈ n 2 , n+2 2	, for all	< 0 small enough and for all

To deal with the equation (8.2.88) is quite more dicult because of the term Υ 1 even + Rp k,j . It is the object of the next proposition. Proposition

  g , (4.2.26) what we could rewrite, if we choose η g with rough estimate is , as

  t) is very small in a neighbourhood of t = 0. In rst approximation,

	equation (2.2.6) turns into
	1 + β2 = Aβ 2 ,
	whose solution is

  √ µt λ . From the lemma 2.3.5, ρ and m satisfy the expansions

			ln(λ) 2 √ µ	so that t λ ∼ T λ 8	and r λ = λ √ µ e
	ρ (t) =	λ √ 2 µ	e √ µt + O ∞ λ	3 2	and	m (t) =	λ 2 3 8µ 2

e 2 √ µt + O ∞ λ 2 ln λ , where O ∞ (f (t)) denotes a function that is bounded by a constant times f on the set [-T λ + 1, T λ -1]. Then m (t) -ρ 2 (t) 2 = O ∞ λ 2 ln λ .

Moreover, by the choice of new coordinates,

ρ (t) 2 = r (t) 2 -2r (t) m (t) cos z + O ∞ λ 2 .

Consequently, if we inject this relation into the previous one, we get

  a bijective function which maps [0, m] to [s(p), γ(p)]. Let ((p, τ ) , 0) ∈ D × R in other words, τ is such that τ ∈ [s(p), γ(p)].Then if p ∈ Ω \ ∂Ω, there exists only one t ∈ [0, m] such that u . We deduce from these facts that the function u ver m chosen so that

	hor,(p)		
	More precisely, let 0 t < t 0 dened by Ω m	m, and we consider the translated Ω m-(t -t) -(t -t)	of
	m-(t -t) Ω -(t -t)		

:= Ω × [-(t -t), m -(t -t)]

together with the translated function w m of u hor m dened by

w m : (p, τ ) ∈ Ω m-(t -t) -(t -t) -→ u hor m (p, τ + (t -t)) ∈ R. is m (t) = τ

  4 that holds A, B, O and the t-axis is injective. Denote by H s ⊂ H its image. 2. Scherk type hypersurface over a deformed octahedron and regularity Notice that it is enough to prove that π R t , u hor (R t ) = π T t , u hor (T t ) because of the inclusion π ([P t , Q t ]) ⊂ D t,P , where D t,P is the line that holds the points P, t, u hor (P, t) and Q, t, u hor (Q, 0) . The reader can observe the conguration of the problem in gure V.13. Figure V.13: Conguration to prove the injectivity of π. Note that convex hull property already shows that the graph of u hor is below H.
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	I.2

Parmi les diérentes questions que pose la théorie des surfaces minimales, il semble primordial de pouvoir exhiber des exemples et c'est là l'objet de ma thèse.Bref historiqueLa première surface minimale non triviale a été découverte par Leonhard Euler en 1744 : il s'agit de la caténoïde. Mis à part le plan, c'est l'unique surface minimale de révolution de l'espace euclidien R 3 . Il s'agit de la surface obtenue par rotation d'une chaînette autour d'un axe vertical. Nous verrons dans le chapitre II que la généralisation de cet objet dans l'espace euclidien de dimension supérieure existe et qu'il en est de même dans S 2 × R (voir les chapitres III et IV). Nous renvoyons à la gure 1 pour une illustration.

Pour cela, la procédure est la suivante : on se donne une image assez correcte de la surface que l'on souhaite construire, on en déduit un bon candidat pour sa structure de surface de Riemann sous-jacente et une application méromorphe de Gauss associée (à certains paramètres près), on utilise les diérentes symétries et les diérents bouts que nous voulons prescrire à la surface pour trouver une famille raisonnable de représentations généralisées de Weirstrass ; reste ensuite à déterminer les derniers paramètres c'est le fameux period problem de telle sorte que l'on obtienne nalement la surface que l'on veut.En parallèle à ces techniques, des démonstrations d'analyse linéaire et non linéaire reposant essentiellement sur les propriétés de l'opérateur de Jacobi (qui doit être considéré comme le linéarisé de la courbure moyenne) associé aux surfaces ont permis de construire de nouvelles surfaces minimales par des méthodes de recollement. L'exemple sans doute le plus parlant est en fait celui dû à Riemann. En eet, on peut considérer la surface de Riemann comme étant la somme connexe d'une innité de caténoïdes ; c'est d'ailleurs cette approche que nous développons dans les chapitres II et III. Généralement, l'idée essentielle repose sur un argument de recollement. On considère deux surfaces minimales Σ 1 et Σ 2 auxquelles on enlève un petit disque D i de rayon r avec i ∈ {1, 2}, où r est un paramètre qui tend vers 0 quand tend vers 0. On prouve ensuite que l'on peut déformer les surfaces Σ i \ D i alors obtenues en gardant le critère minimal et en assignant une certaine condition de bord sur ∂D i . On prouve ensuite que l'on peut trouver des conditions de bord de telle sorte que l'on puisse recoller les surfaces alors déformées. De nombreux exemples ont été élaborés par cette méthode et nous reviendrons sur ceux-ci lors de la présentation des chapitres II et III. Cette approche a le mérite de fournir généralement une description assez précise de la surface alors obtenue, notamment aux

Analysis in weighted spaces

denotes the half height of the n-catenoid, that is to sayH = +∞ -∞ ϕ 2-n (t)dt = -2 √ π Γ n-2 2(n-1) Γ -1 2(n-1).Remark 5.1.2 The unit normal is almost vertical for large |s| ; it points up when s tends to +∞ and points down when s tends to -∞. Moreover, unlike the case n = 2 where catenoids have innite height, catenoids in greater dimension have nite height H and admits two horizontal asymptotic hyperplanes.

(1.2.5)The idea of the transformation lies in the gure V.4. The point is that in the horizontal problem, the boundary data is continuous and we are able to give an uniform bound for the solutions.

Remerciements

When s belongs to the geodesic ball B s g , ρ 0 2 , then this function is equal to -3 a 3 g 4r 2 g . According to the formula (2.1.4) we have developed in the proof of lemma 2.1.4, in stereographic coordinates from the antipodal point -s g , we get Cor (s) = -3 a 3 g 4 2 r 2 + O ∞ 3 r and thus, its Laplacian is

its main term is the same than the main term G ( Γ) and this is why we have introduced this corrective function.

This proves the result for the continuity property in a neighbourhood of s g , but same kind of estimates hold true for the derivatives. Regarding the points which are far from the s g 's, it is enough to note that Γ and its derivatives are bounded by a constant times : it is small as compared with what happens near singularities.

The weighted spaces

In this paragraph, we give some denitions in order to use PDE theory in well chosen spaces to deal with the singularities. Before giving the results, we dene the weighted Hölder spaces in punctured spheres.

We note S 2 * the sphere without the singularities s g for all g ∈ {p, q, r}. Recall ρ 0 is a positive real number such that the geodesic balls B (s g , ρ 0 ) do not intersect themselves and do not hold the North pole. Finally, let K be the compact set dened to be the sphere excised from the three balls B s g , ρ 0 2 in S 2 . It is also convenient to dene r g (s) the geodesic distance between a point s of the sphere and s g . Denition 2.3.1 Let µ be a real number. We dene the weighted space L ∞ µ (S 2 * ) to be the set of all functions f ∈ L ∞ loc (S 2 * ) such that the quantity

is nite, that is to say (i) f is bounded far away the singularities ;

(ii) in a neighbourhood of s g , f is bounded by a constant times r µ g .

Remark 2.3.2 If U denotes an open space of S 2 * , we dene in the same way the weighted space L ∞ µ (U ) endowed with the norm • L ∞ µ (U ) .

Denition 2.3.3 Let µ be a real number, k be a non negative integer and α ∈ (0, 1). Then the weighted Hölder space C k,α µ (S 2 * ) is dened to be the set of

In particular, f is continuous and, since the sphere is compact, f is bounded. By Liouville theorem, we conclude from this fact that f is constant. But this constant value is necessary equal to the limit of f (s) when s tends to s g , thus this constant is nothing but 0.

We now apply duality theory in manifolds with ends together with estimates ([Pac09, Chapter 10 and 12]) in order to obtain the following :

Proposition 2.5.2 For all µ ∈ (-1, 0), there exists an universal constant c

such that for all , there exists a continuous operator

such that for all f which belongs to the weighted space C 0,α µ-2 (S 2 * ),

together with the estimate

µ-2 (S 2 * ) .

(2.5.10) Moreover, we can can choose ∆ -1 µ so that if the graph Σ f of f is invariant under the action of G, then it is also the case of the graph of ∆ -1 µ (f ).

Remark 2.5.3 • There is not uniqueness of such an operator. The reason for this lack of uniqueness is that the Laplace-Beltrami operator over the punctured sphere S 2 * has a 3-dimensional kernel on the weighted spaces C 0,α µ (S 2 * ) when µ belongs to (-1, 0). More exactly, it is spanned by constant functions and two Green's functions ω pq and ω pr which satisfy ∆ S 2 (ω pq ) = δ sp -δ sq and ∆ S 2 (ω pr ) = δ sp -δ sr .

The construction of these two functions could be performed by a slightly modied proof of the construction of Γ (see lemma 2.1.2). We then check that near singularities, we have logarithmic growth : it is what ensures these functions to belong to the weighted space with parameter µ ∈ (-1, 0) because ln r = o (r µ ). In what follows, we always consider the operator ∆ -1 µ such that for all f , ∆ -1 µ (f ) is L 2 -orthogonal to the constants, w pq and w pr . • Similar result holds true for functions dened over S 2 and the constant does not depend on the small parameter . The continuous operator is noted ∆ -1 µ, .

Proof

The only point that does not come from [START_REF] Pacard | Lectures on Connected Sum Constructions in Geometry and Nonlinear Analysis[END_REF] is the geometric invariance under the action of G. Indeed, if we have an operator ∆ -1 µ which is a right inverse of ∆ S 2 on S 2 * , then it is an easy check to see that the operator ∆ -1

where s = (s 1 , -s 2 , s 3 ), suits to the problem.

Resolution of the minimal graph equation

Green's function with its corrective term transforms the sphere into a sphere with necks whose type is catenoidal. The harmonic extensions are a tool in order to prescribe data boundary. We perform a small perturbation of these two objects to construct a minimal graph over S 2 .

Let µ be a real number in (-1, 0). Assume we are given a data boundary Φ whose norm is smaller than κ r and whose rst eigenmode vanishes. Then if v is a function over S 2 , we know that the surface described by the graph of ω Φ,v where ω Φ,v is the function

is minimal of and only if v is a xed point of the operator F dened by

Therefore, we use classical arguments to prove that F admits a xed point : rst, we compute the image of 0 in order to nd a well chosen radius for a ball of C 2,α µ (S 2 ) centred in 0, next we prove that F is a contracting operator.

The image of 0 by the operator F. The rst step consists in establishing an estimate for the dierence G (ω Φ,0 ) -∆ S 2 (Cor). We then use properties of the Laplacian ant its inverse. We divide the above dierence into two parts as follows :

The last term has already been studied in proposition 2.2.1 from which we deduce

The rst term is a little bit more technical. We only give a broad outline of the situation because the main ideas are the same than those we have used for the hyperplane case in R n × R. We write

2. In this formula, we have relieved notations by omitting index S 2 , but the hessian, the norm and the scalar product have to be considered on S 2 . We use the formula Γ cor, (s) = O ( ln r) together with the estimate (2.4.8) to obtain

where c does not depend on or κ.

Collecting previous estimates, there exists c > 0 such that for all κ > 0, there exists κ such that for all 0 < < κ ,

Finally, we end up with

(2.6.11) F is a contracting mapping. Assume we are given two functions v 1 and v 2 in the weighted space C 2,α µ (S 2 ) such that their norm is smaller than 2c 7-2µ 3 as announced, we choose a radius on this function space that depends on the image of 0 by the operator F. We then claim that, up to reducing κ

(2.6.12) which is obviously a contracting criterion.

The proof of this claim has same kind than the work we did in the above paragraph to compare G (ω Φ,0 ) with G (Γ cor, ). As a matter of fact, we make use of the

As done previously, we use the linearization of G in order to estimate this quantity.

We prove that

from what we deduce the coecient belongs to 0, 1 2 for small enough and the conclusion holds true.

A rst xed point theorem. According to previous paragraphs, we can use a xed point with parameters in order to construct a minimal surface. We have proved the following : exactly θ g . We then dene a function u Φ,g on the annulus A 1 = B R 2 (0, 2) \ B R 2 (0, 1)

as follows :

u Φ,g : re ıθg -→ (Γ cor, + h Φ + v Φ ) s g + r re ıθg .

Note that this function yields the behaviour of our solution in a small annulus a radii 2r and r near s g . We have performed a change of scales to help along the gluing method.

Theorem 2.7.1

The function u Φ,g satises following assertions :

(i) it is an element of C 2,α (A 1 ) ;

(ii) if we denote by d Φ,g the dierence d Φ,g re ıθg := u Φ,g -a g ln (r r) + c Γ,g -3 r -2 a 3 g 4r 2 + r F g re ıθg + W e (Φ g ) re ıθg , then we get the estimate

(2.7.14) (iii) up to reducing κ , the contracting property

(2.7.15) holds true.

Proof

We use the formula of u Φ,g . According to the corollary 2.1.5 together with the proposition 2.2.1, the corrected Green's function Γ cor, provides the Taylor expansion

We then end up with the estimate (2.7.14) by using proposition 2.4.6 and in particular the inequality (2.4.9).

In order to obtain the contracting inequality, we use similar method than the one we have used to prove that the operator F is contracting (cf. inequality (2.6.12)).

Remark 2.7.2 This last theorem is undoubtedly one of the keys for the gluing process. The point (ii) will be very useful to establish gluing equations wile the point (iii) will be useful to solve them by a xed point argument.

3 The small truncated catenoid in S 2 × R

In this section, we prove the existence of small truncated catenoids in S 2 × R together with the existence of minimal surfaces in a neighbourhood of these catenoids we obtain with the help of a small perturbation argument.

We briey expose the method we use. First, we recall some well-known about the classical Euclidean catenoid in R 3 ; in particular, we explain our choice of the parameter r after a dilation of this surface. Next, we make use of normal coordinates on the sphere near the singularities s g in order to obtain a metric on the sphere that can be locally written

in other words, if we zoom in one point of the sphere, then we can consider locally the sphere is almost at. We then inject the coordinates of a small truncated Euclidean catenoid which is not minimal in S 2 × R and we compute the mean curvature equation for small perturbations of this surface. We solve the equation by a xed point method.

3.1

Small catenoid in R 3 and choice of parameters

The well known catenoid of R 3 , found by Euler, is the minimal surface of revolution whose parametrization is (up to a dilation)

and we note the associated surface Σ c . We choose the normal vector to this surface so that it points upwards for the upper part of the catenoid, in other words :

Notice that when t is large, this normal is almost vertical. More precisely, one checks the :

Lemma 3.1.1 Let N v := (0, 0, 1) be the vertical unit vector of R 2 × R. Then for all non negative integer k, there exists an universal constant c k such that the following estimate holds true :

Remark 3.1.2 Obviously, same kind of estimate can be obtained with negative t, i.e. for the lower part of the catenoid.

However, we do not solve exactly the above equation but a more simpler one, namely

The reason is that the dierence between H c and J c is very small when |t| is large and that we can produce explicit solutions for the operator H c . Thus, we dene Cor to be a solution of the ordinary dierential equation

and we easily checks that

suits to the equation for H c . More exactly, we obtain the Lemma 3.4.9 For all no negative integer k, there exists a universal constant c = c (k) such that there exists k > 0 such that for all that belongs to (0, k ), we have inequality

(c) An application of a xed point theorem

In the above sections, we have described a method to produce minimal surfaces with catenoidal necks over the punctured sphere. Here, we explain how to build minimal surface in S 2 × R close to a small truncated catenoid. Like before, we rst prove the existence and then we give an accurate description of the solution near its boundaries in order to use it for the gluing process.

Let Ψ be a boundary data on {±t } × S 1 such that

We then dene ω Ψ by

Our method relies on a xed point theorem. Indeed, the idea is to perform a small perturbation of ω Ψ in order to solve the equation

According to lemma 3.4.9, we see that

We remark that the constant term in front of Q 0 is η 2 ϕ -2 which is much larger from η 4 ϕ 2 (the term in front of Q 0 in the equation of H ω ). Therefore, injecting this relation in the equation (3.3.17) from corollary 3.3.3, we obtain that the surface Σ ω is minimal if and only if v is a xed point for the operator F whose denition is the following :

Theorem 3.4.10

For all δ ∈ (1, 2), there exists an universal positive constant c = c (α, δ) such that for all positive κ, there exists κ > 0 such that for all ∈ (0, κ ), for all boundary data Ψ ∈ C 2,α ({±t } × S 1 ) which satises (i) its eigenmode associated with eigenvalue 0 vanishes, (ii) its eigenmode associated with the eigenvalue 1 is odd and (iii) its norm is smaller than κr , then there exists v Ψ in the weighted space C 2,α δ ([-t , t ] × S 1 ) such that following assertions hold true :

(i) the surface Σ ω is minimal and

(ii) we have the estimate

In addition to that, if Ψ is G-invariant (resp. H-invariant), then the minimal surface Σ ω is invariant under the action of G (resp. H).

Proof

We use a xed point argument with parameters : rst, we evaluate the image of 0 by F, then we prove that F is a contraction mapping on a small ball centred in 0.

We prove all estimates in L ∞ δ the result for the derivatives comes from Schauder's theory.

First of all, we estimate ω Ψ . According to the denition of Cor together with the propositions 3.4.5 and 3.4.7, we nd

We then claim that the main term in the denition of F is given by the harmonic extension h Ψ ⊥ . As a matter of fact, we check the following estimates :

It implies that there exists κ > 0 such that for all ∈ (0, κ ),

This above estimate provides us the choice of a suitable radius for a small ball centred in 0. Let v 1 and v 2 be two functions such that

We then claim that

for all ∈ (0, κ ) and thus, a xed point with parameters gives the result. Note that

and that

We give the main estimates to establish F is 1 2 -contraction mapping. According to the denition of the linear operator J see corollary 3.3.3 we nd

Collecting the above inequalities, we end up with

and the conclusion holds up to reducing κ .

from which we deduce

Thus for small enough,

for all t ∈ [t -2, t ] and the result follows since 2 3 ϕ (t ) tends to 0 as tends to 0.

The gluing

In the previous sections, we have produced a way to build two types of minimal surfaces in the homogeneous space S 2 ×R : one on a punctured sphere with catenoidal necks and one that looks like to an Euclidean truncated catenoid. We now perform the gluing, i.e. we prove that we can glue these two kinds of minimal surfaces by choosing suitable boundary data. By minimal surface theory, it is enough to proceed to a C 1 gluing on the boundaries. For convenience, we dene the boundary data Υ := ηΨ so that Υ and Φ have the same rough estimate κ r .

To this aim, the local description (see theorems 3.4.11 and 2.7.1) of the surfaces we have constructed plays an essential role. In particular, there are dierent kinds of terms in this :

• for both constructions, the main term that is given by the logarithmic growth of the form a g ln (r |y|) it is this comparison that yields to the choice of η ; • the following radial term whose form is a 3 g 3 r -2 |y| -2 up to a constant ;

• a constant we will deal with it by using vertical translations ;

• the force that comes from Green's function whose rough estimate is κ r ; • the harmonic extensions of boundary data with same rough estimate than the force the properties of the linear operator W i -W e will be necessary for the gluing ;

• smaller terms.

The idea is again to apply a xed point theorem by using the contracting properties of the operators d and d.

The choice of boundary data

Here, we explain the shape of boundary data Υ and Φ that the object we want to construct enforces. Like the reader could suspect, we highlight the role of the dierent eigenmodes by using orthogonal projection.

First of all, recall that in our construction, the constant projections Φ 0 and Υ 0 vanish. The reason for this is that harmonic extensions of constants are either logarithmic (which explodes) or constants. In all cases, it implies that the estimates we have made are not valid. Furthermore, the surface that X describes is invariant under the action of the orthogonal reection with recpect to the plane {x 2 = 0}.

The induced metric is given by

where ḟ denotes d dt f . Then one checks that the unit normal is such that

Consequently, X describes a minimal surface if its mean curvature H vanishes, that is to say if the ordinary dierential equation

Since it has to be true for any angle θ, this above equality can be reduced to the system rr = 1 + ṙ2 + ȧ2 , 2 ṙ ȧ = rä.

(1.0.2)

The second equation can be integrated and we nd ȧ = Cr 2 , where C is a positive constant. Thus the rst one can be rewritten in order to obtain

Thus, if r is a solution, we easily check that d dt ṙ2 r 2 = 2 ṙr -3 + 2C 2 r ṙ and integration leads us to the system

where A and C are constants.

Note that we do not have to explicit the positive real number c because we want to build a minimal surface ; it would not be the case if we want to build a non-vanishing constant mean curvature surface.

Regarding the second fundamental form, we make use of relations

and Ẋs , Ẍs = ḃb , together with the isometry properties of the rotation R and

Then calculus demonstrates that the second fundamental form is given by the following matrix :

Since the mean curvature is given by the formula Thus the system (2.1.4) turns into

where A and C are constants. Once again, the reader will pay attention to the likeness between this case and the R 2 × R case.

2.2

The analogue of the catenoid in S 2 × R

The catenoid and the Riemann minimal surface of R 2 × R are both foliated by circles. However, we could consider the catenoid as a specic Riemann example :

a vertical example, that is to say when the center of circles don't move ; it is the case when the function a is a constant. In terms of equation (1.0.3), the catenoid matches with the case in which the constant C vanishes. Therefore, it is natural to explain the similar case in S 2 × R : it is what we call the catenoid.

Therefore, let us assume C = 0. Then a(t) = a 0 is constant. Without loss of generality, we assume a 0 = 0, up to applying a suitable rotation. The ordinary dierential equation of b turns into 1 + ḃ2 = A cos 2 b.

(2.2.6)

Consequently, the constant A has to be chosen so that A > 1. The case A = 1 is left out since X no longer parametrizes a surface. Furthermore, this equation implies that |cos b| To interpret this, we should remark that it enforces b to be dierent from the angle π 2 .

This condition then says that the radius cos b of the horizontal circle never vanishes.

On the left are represented phase portraits associated to the ODE (2. 

(b)

What happens when we also consider the contribution of λ

We now consider the problem with additional term λ 2 , like in system (2.3.8). Here we assume b (0) is the minimal value of b and µ is a positive real number ; in particular, ḃ (0) = 0. Up to using a suitable rotation, we also assume a (0) = 0.

We (2.3.10)

Lemma 2.3.3 Assume λ ∈ (0, 1). Then solutions to the minimal surface system equations (2.3.8) are such that ȧ and b are periodic functions. Moreover, the period T λ is such that

The rough estimate of the period makes sense regarding the case λ = 0 in lemma 2.3.1 since it tends to innity.

Remark 2.3.4 The periodicity condition implies that the minimal surface S also admits a period.

More precisely, S is invariant under the action of the isometry wich maps a point (s, t) of S 2 × R to the point (s , t Thus it is enough to prove that it is integrable in b (0). Let β be dened so that b (t) = -π 2 + β (t). According to the equality

Therefore, solutions are periodic and the period is

We perform a change of variables and we dene is dened to be

Then the period is given by the formula

In order to estimate T when tends to 0, we rst consider the integral in which we neglect the contribution at u = 1 and we obtain

Then we prove that the dierence between this above term and the period T is bounded. More precisely, we prove that there exists a constant c which only depends on µ such that

According to the inequality

(1) .

The result follows.

Local description of the solution

Here, we prove that a similar description to the one in [HP07, Lemma 3.1] holds true.

The general case together with a Jenkins-Serrin theorem has been solved by E.

Tomaini [START_REF] Tomaini | Innite boundary value problems for surfaces of prescribed mean curvature[END_REF]. However, it seems relevant to explain our method which is almost completely self-contained.

Denition 0.3.7 Let D be a bounded domain in R n with continuous boundary ∂D. We say Σ ⊂ R n+1 is a Scherk type hypersurface over D if there exists u : D -→ R such that following conditions hold true:

(i) Σ is the graph of u ;

(ii) Σ is a minimal hypersurface, that is to say that u is a solution of the minimal

(iii) there exists B a subset of ∂D such that its interior B is non empty and u takes innite value over B : u |B = +∞ (or -∞).

We now state the main result. Corollary 0.3.9 Let O ⊂ R 3 be a simply connected domain such that (i) the origin 0 R 3 belongs to the interior O of O,

(ii) O is invariant under the action of the orthogonal reections s i of R 3 (i ∈ {1, 2, 3}) with respect to the plane {x i = 0}, (iii) its boundary O is the collection of 8 faces F j which are minimal surfaces of R 3 . Then there exists a function u : O -→ R which is a solution to the minimal graph equation and which takes alternatively +∞ value and -∞ value on its faces.

Then w m satises the minimal graph equation over Ω

m-(t -t) -(t -t)

since we just have performed a translation. We note Σ t ,t the associated surface. We dene Ω to be the intersection of the two domains we consider, that is to say

We refer to the gure V.6 for the idea of the proof and the notations. First step. We claim u hor is a minimal graph over ΩR + . To see that, for positive integer k large enough, let us dene Ω k to be the compact subset of ΩR + such that

Notice that the sequence of sets ( Ω k ) k converges to the set ΩR + . Besides, according to propostion 1.2.1, the sequence (u hor m| Ω k ) m k of minimal graphs over Ω k is uniformly bounded. From compactness principle (cf. [START_REF] Gilbarg | Elliptic Partial Dierential Equations of Second Order[END_REF]), there exists a subsequence that uniformly converges to a minimal graph v k over Ω k .

By uniqueness of the limit,

hence u hor is a minimal graph other Ω k for all k and the claim follows.

Second step. Let us show that boundary conditions (1.2.9) are satised and that u is continuous over Ω R + . It follows directly from applications of property 1.2.1 together with the construction of u hor m which is continuous, like γ and s. Concerning the part Ω × {0} of the boundary ∂Ω R + , we check that the inequalities ∀ (p, x) ∈ Ω 1 0 , u hor 1 (p, x) u hor (p, x) γ(p) hold true. But, by construction, we get the limits

Injecting these relations into the previous inequalities, we nally nd that

in other words, Γ × {0} belongs to the boundary of ∂Σ hor . With similar method, we prove that ∂S × R + also belongs to the boundary of this surface.

Third step. We claim that u hor (p, t) converges when t tends to +∞. We check that for all p ∈ Ω, the function u hor,(p) dened to be

is decreasing it follows from proposition 1.2.3. But proposition 1.2.1 implies that u hor,(p) is bounded. Then it converges. We denote the limit by v : Ω -→ R.

First step. First, we claim that for all p ∈ Ω, the function

We already know that u hor,(p) is decreasing according to the third step in previous proof. Let t < t ∈ R + and m ∈ N * such that m t . Then we consider the restriction of u hor to Ω m-t +t 0 and the following translation of u hor :

By using exactly the same method than in the proof of proposition 1.2.3, the claim follows.

Second step. Σ hor can be seen as the graph of some function u ver which is a solution to Dirichlet problem (0.3.1) with boundary conditions (0.3.2). The mechanisms are the same than in the proof of corollary 1.2.4. Since for all p in Ω \ ∂Ω, the function u hor,(p) is bijective and maps R + to [s(p), γ(p)], we can dene u ver to be : 2 Scherk type hypersurface over a deformed octahedron and regularity

We have in mind to study some properties of such minimal surfaces. Note the Sherk surface is nothing but the case n = 2 ; this surface is C 2 everywhere including on its boundary. Besides, we can obtain this surface from a Scherk type surface over a triangle 2 . In this section, we work with n = 3 and our goal is to prove the corollary 0.3.9 together with the lemma 0.3.10.

Example : regular octahedron

Let us consider an octahedron O ⊂ R 3 with (open) faces F 1 , . . . , F 8 . We would like to build a minimal hypersurface in R 3 × R over O such that it takes alternately ±∞ data value over faces. It is already known that such a hypersurface exists see the article of R. Sa Earp and É. Toubiana [ST]. We briey recall the idea of the construction.

Only two results are necessary : on the one hand, the existence of Sherk type hypersurface over a tetrahedron which takes value 0 on three faces and +∞ on the last one, on the other hand, the reection principle we refer to [START_REF] Sa Earp | Minimal Graphs in H n × R and R n+1[END_REF]Lemma 3.1].

The result in this last paper is proved for minimal graphs in H n × R but similar arguments work in R n × R. By reection principle, we extend u to some new minimal graph v over the domain T ∪ (OAB) ∪ T where T is the reection of T with respect to the plane {z = 0}

as follows :

v(x, y, z) :=

Then v is a function which satises the minimal graph equation together with (see gure V.9) :

We can go on with reections and build a minimal hypersurface over the octahedron O see gure V.10 : we use the reection with respect to the plane {y = 0}, then with respect to the plane {x = 0}. Regularity over (open side×{0}) : It is the most important point in the proof of the lemma. We need several steps to conclude.

See remark

First step : We work with the solution u hor m of the bounded horizontal prob- lem.

First of all, we introduce notations see gure V.12. Let us denote by G the orthogonal projection of the vertex O of the tetrahedron T on the plane that holds A, B and C in other words, G is the centre of mass of the triangle (ABC). Let P ∈ (AB) and denote by Q the point of (ABC) such that Q ∈ (AG) ∪ (BG) and the straight lines (P Q) and (BC) are parallel. We note, for all t ∈ [0, m], the point P t := (P, t) (we dene in the same way A t , B t ,...). Then we claim that u hor m is monotonic over

We want to demonstrate that the inequality u hor m (R t ) u hor m (T t ) . We conclude like before that Σ is C 2 over {B} × R * + .

Σ is not C 1 over (vertex) × {0} : We give a proof by contradiction. Suppose Σ in C 1 on : (A, 0). Then its the tangent space T (A,0) Σ is well dened. However, the t-axis belongs to T (A,0) Σ since we know the boundary of Σ (cf. (2.1.10)), and so do (AO), (BO) and (CO) : we have four independent directions in the 3-dimensional space T (A,0) Σ and it cannot be the case.

Remark 2.1.2 Similar results hold true in higher dimension : if n > 3 and Σ is a Scherk type hypersurface over a regular polytope O ⊂ R n with 2 n hyperfaces 4 , then Σ is C 2 everywhere, except over ∂ (∂ (∂O)) × {0}.

Sherk type hypersurfaces over deformed tetrahedron

We keep notations of the study of Scherk hypersurface over a regular octahedron T = (OABC). Let Ω be a convex subset of (ABC) such that G belongs to the interior of Ω. We are typically in the case of gure V.1 page 164. According to the theorem 0.3.8, there exists a minimal graph u over D such that u vanishes over Γ and takes innite value +∞ over S 1 := S ; the surface S 1 will play the role of the face F 1 of the regular octahedron T . By reections, like in the previous section, we can build a new minimal surface Σ over a deformed octahedron that takes alternatively ±∞ value over its boundary. Note that its boundary is the union of eight minimal surfaces S i and all S i are obtained from S by symmetries cf. gure V.15. Note that this construction shows that u is C 2 over ∂T \ S, but we cannot expect to have regularity results for Σ near S × R by using symmetries.

Of course, there are similar constructions in higher dimensions. 3 A Jenkins-Serrin type condition with 3 n 7

Each hyperface is a regular simplex.

In this section, we give the proof of a Jenkins-Serrin type condition which is necessary for the existence of some Scherk type hypersurfaces for 3 n 7.

Let D on open bounded pseudoconvex simply connected domain of R n whose boundary is piecewise C 1 and satises

where S + i , S - j and S 0 s are minimal hypersurfaces of R n . Let P be a piecewise C 1 subset of D and dene the non negative real numbers α, β and γ to be

where . denotes the (n -1)-volume.

Theorem 3.0.1 Suppose there exists a minimal graph u over D such that u takes +∞ (resp. -∞) value over S + i (resp. S - j ) and is continuous over S 0 s . Then if γ = 0, then α = β; else 2α < γ and 2β < γ.

(3.0.13)

Sketch of the proof

We use smilar arguments to the articles [START_REF] Jenkins | Variational Problems for Minimal Surface Type, II. Boundary Value Problems for the Minimal Surface Equation[END_REF], [START_REF] Nelli | Minimal Surfaces in H 2 ×R[END_REF], [START_REF] Lucia | A Jenkins-Serrin Theorem in M 2 × R[END_REF] and [START_REF] Mazet | The Dirichlet Problem for the Minimal Surface Equation with possible innite boundary data over domains in a riemannian surface[END_REF]. The proof is done as follows : rst, we formulate the ow condition, then we prove that N is vertical only on the minimal surfaces S i + and S - j . We conclude with dierentiating the cases γ = 0 and γ = 0. According to Stoke's theorem, we then rewrite the above relation as

where ν R n+1 is the outward conormal to the boundary of D . This above equation is nothing but a ow condition. It also holds tre for P which, in general case, is not a compact subset of D : it is enough to consider a sequence of compact piecewise C 1 subdomains of P which converges to P for example (3.0.15)

The proof is similar to the proof of [NR02, Lemma 1] : suppose it is not the case. We only consider the problem for S + i . Then there exists ε > 0 and a sequence (p m ) m of D which converges to p as m tends to +∞ such that N (p m ), ν R n+1 (p)

> -1 + ε.

(3.0.16)

Besides, there exists r > 0 such that, if B (q, r) denotes the disk contained in Σ centered at q of intrinsic radius r, for all m, B ((p m , u (p m )) , r) ⊂ Σ because u takes +∞ value over S + i . According to [SSY75, Theorem 3] for 3 n 5 together with [Sim] for n = 6 or n = 7, we can use curvatures estimates, namely there exists an absolute constant C = C(r) such that : ∀m, ∀q ∈ B (p m , u (p m )) , r 2 , |A(q)| C,

where A denotes the second funamental form of Σ. Hence Σ is a bounded graph over a disk B ((p m , u (p m )) , r ) contained in the tangent space T (pm,u(pm)) Σ.

Notice that r can be chosen so that it does not depend on m. But the horizontal projection of those disks is not contained in D when p m approaches p because of inequality (3.0.16) : it is a contradiction. The inequality with β can be proved in the same way.