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Résumeé

L’objet de cette thése consiste en la construction de nouveaux exemples de sur-
faces (ou hypersurfaces) minimales dans les espaces euclidiens R3, R" x R avec n > 3
ou dans l'espace homogéne S? x R.

Nous prouvons dans le chapitre [I| 'existence de surfaces minimales dans R? ar-
bitrairement proches d’un polygone convexe.

Dans le chapitre [II, nous prouvons I'existence d’hypersurfaces minimales de type
Riemann dans R" x R, n > 3. Celles-ci peuvent étre interprétées comme étant
une famille d’hyperplans horizontaux (des bouts) reliés les uns aux autres par des
morceaux de caténoides déformés (des cous). Nous donnons un résultat général pour
ce type d’objet quand il est périodique ou bien quand il a un nombre fini de bouts
horizontaux. Cela se fait sous certaines hypothéses de contraintes sur les forces
intervenant dans la construction. Nous finissons en donnant plusieurs exemples,
notamment l'existence d’une hypersurface de type Wei verticale qui n’existe pas en
dimension 3.

Dans le chapitre [[II} nous prouvons I'existence d’'une surface minimale de type
Riemann dans S? x R telle que deux sphéres sont reliés entre elles alternativement
par 1 cou et 2 cous. La aussi, nous mettons en évidence le role joué par les forces
lors de la construction. De méme que dans le chapitre précédent, la méthode repose
sur un processus de recollement.

Dans le chapitre [V] nous donnons une description trés précise de la caténoide
et la surface de Riemann dans S? x R.

Enfin, dans le chapitre[V] nous établissons I'existence dans R” xR d’hypersurfaces
de type Scherk lorsque n > 3.

Mots-clés : surfaces minimales, surfaces minimales de Riemann, surfaces de
Scherk, méthode de recollement, espaces a poids.



Abstract

This thesis is devoted to the construction of numerous examples of minimal
surfaces (or hypersurfaces) in the Euclidean 3-space, R™ x R with n > 3 or in the
homogeneous space S? x R.

We prove in the chapter [I| the existence of minimal surfaces in R? as close as we
want to a convex polygon.

In the chapter we prove the existence of minimal hypersurfaces in R" x R,
n > 3, that have Riemann’s type. These ones could be considered as a family
of horizontal hyperplanes (the ends) which are linked to each other by pieces of
deformed catenoids (the necks). We provide a general result in the simply-periodic
case together with the case of a finite number of hyperplanar ends. Our construction
lies on some conditions associates with the forces that characterize the different
configurations. We end with giving some examples ; in particular, we exhibit the
existence of vertical Wei example that does not exists in the 3-dimensional case.

In the chapter [T, we prove the existence of the analogous of the Wei example in
S? x R. The surface is such that two spheres are linked by 1 neck and 2 necks alter-
natively. Here again, we highlight the role that the forces play in the construction.
Moreover, like in the previous chapter, the method lies on a gluing process.

In the chapter [V] We give an accurate description of the catenoid and the
Riemann’s minimal example in S? x R.

Finally, in the chapter [V we demonstrate the existence of Scherk type hyper-
surfaces in R"® x R when n > 3.

Keywords : minimal surfaces, Riemann minimal examples, Scherk surfaces,
gluing method, weighted spaces.
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Introduction

Les surfaces minimales constituent une branche de la géométrie riemannienne
qui a connu de vastes progrés lors des derniéres décennies. Celles-ci sont des points
critiques pour la fonctionnelle aire, ¢’est-a-dire qu'une surface S d’'une variété M de
dimension 3 est dite minimale si pour toute courbe fermée simple v contenue dans
cette surface, la partie de S située & l'intérieur de «y est point critique de la fonction-
nelle aire parmi toutes les surfaces qui ont pour bord . On peut prouver que cette
notion est équivalente au fait que la courbure moyenne de S est nulle, en d’autres
termes, que la moyenne de ses courbures principales s’annule. Bien entendu, ce genre
d’objet se généralise aux hypersurfaces incluses dans une variété de dimension n ot
n est un entier supérieur ou égal a 4.

Parmi les différentes questions que pose la théorie des surfaces minimales, il
semble primordial de pouvoir exhiber des exemples et c¢’est 14 'objet de ma thése.

Bref historique

La premiére surface minimale non triviale a été découverte par Leonhard Euler
en 1744 : il s’agit de la caténoide. Mis a part le plan, c’est 'unique surface minimale
de révolution de I'espace euclidien R3. Il s’agit de la surface obtenue par rotation
d’une chainette autour d’'un axe vertical. Nous verrons dans le chapitre [lI| que la
généralisation de cet objet dans I’espace euclidien de dimension supérieure existe et
qu’il en est de méme dans S* x R (voir les chapitres et [[V]). Nous renvoyons a la
figure [I] pour une illustration.

FIGURE 1 — La caténoide.

En 1755, grace au calcul des variations, Joseph-Louis Lagrange formule une équa-
tion aux dérivées partielles qui correspond a une condition nécessaire et suffisante
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Chapitre . Introduction

pour qu'une fonction u d’un ouvert de R? dans R décrive un graphe minimal, a
savoir

div [V ]~ (0.0.1)

1+ [Vul

oll || désigne la norme euclidienne de R?. Une équation semblable existe pour les
surfaces (ou hypersurfaces) de M x R qui sont des graphes au-dessus d’un ouvert de
la variété M. Nous verrons que cette équation nous a été utile pour tous les travaux
présentés dans cette thése, excepté pour le chapitre [V]

En 1834, Heinrich Scherk démontre I'existence des surfaces minimales qui portent
maintenant son nom. Celles-ci peuvent étre considérées comme étant des graphes
minimaux définis au-dessus d’un carré et qui prennent alternativement les valeurs
400 et —oo sur ses cotés. En dimension supérieure, des objets similaires existent :
c’est objet du chapitre [V]

L’un des outils les plus puissants concernant la théorie des surfaces minimales
réside en le théoréme de représentation de Karl Weirstrass (1866) qui relie profon-
dément ces objets & la la théorie des fonctions complexes. Malheureusement, les
techniques développées grace & ce théoréme sont propres a la dimension 2 — par
exemple, elles ne peuvent pas se généraliser aux hypersurfaces de R" avec n quel-
conque.

Dans un article publié & titre posthume [Rie98|, Bernhard Riemann découvre
les surfaces minimales de Riemann. Celles-ci sont simplement périodiques, plongées
dans R? et admettent une infinité de bouts planaires horizontaux reliés entre eux
par des cous; par ailleurs, elles sont feuilletées par des cercles horizontaux. Nous
renvoyons a la figure [2] pour une représentation. Nous étudions ce type d’objets

dans les chapitres [T [TI] et [V]
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FIGURE 2 — La surface minimale de Riemann.

En 1873, Joseph Plateau, de par son étude du comportement des films de savon
— qui sont en réalité des surfaces minimales — énonce les lois de Plateau qui
régissent la géométrie de ces interfaces physiques. Le probléme de Plateau, quant a
lui, consiste & déterminer si une courbe fermée simple est le contour d’une surface
minimale. Ce probléme sera résolu dans les années 30 de deux facons différentes :
d’une part par Jesse Douglas qui utilise les intégrales qui portent dorénavant son
nom et pour lesquelles il recoit 1la médaille Fields en 1936 et d’autre part par Tibor
Rado [Rad32| qui utilise I'existence d’un minimiseur de 1’énergie. Ce type de résultat
sera notamment utilisé dans le chapitre [V}

En 1984, Celso J. Costa a relancé la recherche dans le domaine des surfaces mini-
males en prouvant [Cos84| Pexistence d’une surface minimale, compléte, de genre 1
avec trois bouts. L’année d’aprés, David Hoffman et William H. Meeks démontrent
[HMS85] que c’est en fait une surface plongée. Jusqu’alors, il était conjecturé que les
seules surfaces minimales complétes, plongées et de topologie finie étaient le plan,
I’hélicoide et la caténoide. Dés lors, de nombreux exemples ont été construits. Parmi
eux, citons la surface de Costa-Hoffman-Meeks qui est la généralisation d’une surface
de Costa de genre quelconque [HM90] ou bien I'hélicoide de genre 1 [DHW93| qui
est en fait une hélicoide a laquelle on a rajouté une poignée. La preuve de 'existence
de ces théorémes se fait essentiellement a ’aide de leur représentation de Weirstrass.
Pour cela, la procédure est la suivante : on se donne une image assez correcte de la
surface que ’on souhaite construire, on en déduit un bon candidat pour sa structure
de surface de Riemann sous-jacente et une application méromorphe de Gauss asso-
ciée (& certains paramétres prés), on utilise les différentes symétries et les différents
bouts que nous voulons prescrire a la surface pour trouver une famille raisonnable
de représentations généralisées de Weirstrass ; reste ensuite a déterminer les derniers
parameétres — c’est le fameux peritod problem — de telle sorte que 'on obtienne
finalement la surface que I'on veut.

En paralléle a ces techniques, des démonstrations d’analyse linéaire et non li-
néaire reposant essentiellement sur les propriétés de 'opérateur de Jacobi (qui doit
étre considéré comme le linéarisé de la courbure moyenne) associé aux surfaces ont
permis de construire de nouvelles surfaces minimales par des méthodes de recolle-
ment. L’exemple sans doute le plus parlant est en fait celui di & Riemann. En effet,
on peut considérer la surface de Riemann comme étant la somme connexe d’une
infinité de caténoides; c’est d’ailleurs cette approche que nous développons dans
les chapitres [T et [[T]] Généralement, I'idée essentielle repose sur un argument de
recollement. On considére deux surfaces minimales ¥; et Yo auxquelles on enléve
un petit disque D; de rayon r. avec i € {1,2}, ou r. est un paramétre qui tend
vers 0 quand € tend vers 0. On prouve ensuite que 'on peut déformer les surfaces
Y; \ D; alors obtenues en gardant le critére minimal et en assignant une certaine
condition de bord sur 9D;. On prouve ensuite que I’on peut trouver des conditions de
bord de telle sorte que I'on puisse recoller les surfaces alors déformées. De nombreux
exemples ont été élaborés par cette méthode et nous reviendrons sur ceux-ci lors de
la présentation des chapitres [II] et Cette approche a le mérite de fournir géné-
ralement une description assez précise de la surface alors obtenue, notamment aux

XV



Chapitre . Introduction

points de recollement. Toutefois, ces techniques ne procurent des exemples qu’avec
un parameétre € petit ; en d’autres termes, la surface construite est presque singuliére,
ce qui n’est pas nécessairement le cas pour la méthode utilisant la représentation de
Weirstrass.

Initiation aux outils utiles a la theése

Notre approche concernant la théorie des surfaces (ou hypersurfaces) minimales
se base essentiellement sur des méthodes d’analyses propres aux différentes équations
aux dérivées partielles qui peuvent intervenir. Ces derniéres sont des EDP de méme
nature que I’équation développée par Lagrange ([0.0.1)).

En particulier, comme cela est le cas dans les chapitres et [[II] nous sépa-
rons 'analyse en deux parties. En effet, d’'une part, nous étudions les propriétés
d’injectivité ou de surjectivité des linéarisés des opérateurs que nous rencontrons.
D’autre part, on traite les termes restants (que nous qualifions de terme d’erreur)
qui regroupent les termes quadratiques et supérieurs a ’aide de théoréemes d’inver-
sion locale, de fonctions implicites ou de points fixes, I’idée consistant & dire que ces
termes sont négligeables devant le terme linéaire et que 'on peut bouger un peu ce
dernier de telle sorte qu’il compense I'erreur commise.

Il s’avére que pour les exemples que nous voulons construire, les opérateurs ci-
nommeés sont en général définis sur des espaces de fonctions qui sont elles-mémes
définies soit au-dessus d’'un domaine non régulier comme c’est le cas dans le chapitre
(c’est un triangle), soit sur des domaines non compacts comme c’est le cas pour les
trois chapitres suivants. C’est la raison pour laquelle nous privilégions le travail dans
des espaces a poids. Ces derniers sont des espaces de fonctions dont le comportement
est en quelque sorte prescrit par un terme de croissance ou de décroissance : par
exemple, pour des triangles, on impose que le comportement prés des sommets soit
au pire d’ordre r® pour un certain réel § oil r représente la distance a4 un sommet :
pour des cylindres du type M xR, on impose un comportement du type e~% ot ¢ est
la seconde coordonnée dans M x R. Il est & noter que dans le cas du triangle, si on
effectue un changement de variable r = e~ %, les espaces a poids associés peuvent étre
considérés comme des espaces a poids sur des fonctions définies sur des domaines
non compacts. Nous donnons une définition pour illustrer cette notion dans un cadre
L? mais en pratique, nous utiliserons plutot des cadres de régularité holderienne.

Définition 1 — Si C' = M x R, est un demi-cylindre et ¢ est un nombre réel, on
définit I'espace a poids L? (C') comme étant

L3 (C) = "L*(0),

ol t désigne la seconde coordonnée de M x R.

De facon générale, 'analyse d’un opérateur linéaire £ d’ordre deux sur un cy-
lindre C' = M x R se fait tout d’abord par ’étude de ses racines indicielles qui sont
définies comme suit.
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Définition 2 — Un nombre réel J est appelé racine indicielle en +oo de 'opérateur
linéaire £ s’il existe une fonction v de classe C? sur C' et un nombre §' < § tels que
les deux assertions suivantes soient vérifiées :

Hminf [|o]] oo aruyy >0 et lim (e"wﬁ (e5tv)> =0
quand t tend vers +o0.

En particulier, on en déduit que la fonction £ (e*v) est négligeable devant ¢®*. En
pratique, nous déterminerons certaines racines indicielles en utilisant des éléments
du noyau de L. Le role des racines indicielles est primordiales. On peut montrer que
sous certaines hypothése sur 'opérateur £, ce dernier a de trés bonnes propriétés
si on le considére comme un opérateur de L2 (C) dans lui-méme du moment que
0 n’est pas une racine indicielle : des propriétés de type Fredholm peuvent étre
prouvées et des arguments de dualité peuvent étre utilisés pour relier la surjectivité
a l'injectivité, etc...

Dans nombre d’articles est utilisée la théorie des opérateurs sur des espaces a
poids. Nous donnerons de nombreuses références par la suite. Toutefois, un exposé
complet de celle-ci pourra étre trouvée dans les lectures [Pac09] qui traitent de
I’analyse sur des variétés ayant un nombre fini de bouts de type cylindrique.

Le chapitre[V]se distingue des autres chapitres de par la nature de la construction
que nous faisons. Celle-ci repose essentiellement sur le principe du maximum et
le principe de réflection. Nous en rappelons les énoncés — se reporter a [GTO01,
Theorem 3.3] ou [CM0F, 1.3] pour le principe du maximum, a[] [ST, Lemma 3.1]
pour le principe de réflexion.

Théoréme 1 (Principe du maximum)
Soit X1 et Yo deux hypersurfaces minimales dans R™ X R telles que X3; est le graphe
d’une fonction u; : D C R" — R ou D est un compact. Alors :

1) sile bord de ¥y est au dessus du bord de X, la surface 31 est au-dessus de 3y ;

2) si %4 et Yo sont tangentes en un point p qui appartient & l'intérieur de ces deux
surfaces et que l'une est au-dessus de 'autre, alors Xy et Yo sont égales.

Théoréme 2 (Principe de réflexion)

Soit Q0 C R™ un domaine dont la frontiere contient un ouvert V- d’un hyperplan H

et supposons que Q) est situé de l'un des deuz cotés de H et que 0QNH =V.
Soit s la réflexion orthogonale de R™ par rapport a H et u : @ — R une

solution a l’équation des graphes minimauz qui est continue sur QUYV telle qu’elle

s’annule sur V. Alors u peut étre analytiquement prolongée a travers V en une

1. Dans cet article, le principe de réflexion est écrit pour des graphes dans H" x R mais la
preuve donnée fonctionne églement dans R™ x R.
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fonction w : QUV U s(Q) — R qui satisfait également ’équation des graphes
minimaux en posant

u(p) =

{ u(p) when peQUYV,
—u(s(p)) when pes(Q).

Présentation des travaux effectués

Le parti pris est de formuler les différents résultats obtenus de fagon indépen-
dante. En particulier, les chapitres [[I] et [[TI] méme s’ils sont légérement redondants,
doivent étre considérés comme deux prépublications différentes.

Chapitre [I.
IConstruction de polygones minimaux dans R’|

Bien que ce ne soit pas le résultat essentiel de ma thése, j’ai choisi de présenter
ce chapitre en premier lieu car il est & mon sens un moyen efficace de se familiariser
avec la théorie des espaces a poids et d’illustrer les propriétés énoncées dans [Pac09).

Nous présentons donc ici la construction de surfaces minimales dans I'espace
euclidien R? de type polygonal. Par polygone, nous voulons signifier que la surface
construite est compacte et sa frontiére est de classe C*“ par morceaux et ne présente
qu'un nombre fini de points singuliers.

Pour cela, nous déformons un polygone plat P que I'on suppose inclus dans le
plan horizontal {x3 = 0} de R3. Nous supposons qu’il a m sommets. Il est & noter
que des résultats de déformation avaient déja été obtenus par Brian White [Whi&7]
pour des surfaces a bord suffisamment régulier. L’idée de la preuve dans les deux cas
consiste & appliquer un théoréme des fonctions implicites qui utilise les propriétés
de opérateur de Jacobi J associé. Toutefois, dans notre cas, celui-ci n’est autre que
le Laplacien classique car nous avons choisi un polygone plat.

Comme nous ’avons déja dit plus haut, le role des espaces a poids est primordial
pour traiter les singularités que constituent les sommets du polygone P. D’une
certaine maniére, ce changement de point de vue transforme ce dernier en une variété
de dimension 2 qui a m bouts de type cylindrique. Cela consiste a dire que la
croissance d’une fonction u définie sur P est typiquement r? pour un certain nombre
réel ) ou r; désigne la distance au i-éme sommet. Le lecteur remarquera que, puisque
Pon travaille a priori avec des petites déformations, le paramétre de poids § sera
choisi positif de telle facon a ce que r° tende vers 0 quand on s’approche de I'un des
sommets.

Par exemple, pour tout m-uplet § = (d;), on peut définir 'espace a poids L (P)

comme l'espace des fonctions u de L2 (P) telles que la norme

HUHL?(P) = ZHTZ'_&UHL"O(P)
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soit finie. Pour la définition un peu plus technique des espaces a poids Cg’a (P) de
type Holder, nous renvoyons & la section 3 du chapitre dont il est question.

Le théoréme que nous prouvons peut étre résumé comme suit.

Théoréme 3 B
Notons 0 < w; < 27 l'angle au i-éme sommet. Alors pour tout m-uplet & qui
satisfait

)

Vi, 6 € [1,2]m(o,i>,

si Z : P — R3 est un champ de vecteur de classe C® suffisamment petit, il existe
une unique fonction u dans l’espace G poids ng,a (P) qui s’annule au bord telle que
la surface P,z dont le graphe est donné par le graphe

peEP +— p+Z(p)+u(p)es

soit minimale, ot es est le vecteur unitaire vertical qui pointe vers le haut de R3.

I est intéressant de noter au passage que le bord du polygone minimal P, ; alors
construit est donné par le graphe de

p p—i—Z(p).

La condition sur les poids vient essentiellement de deux arguments différents.

e L’inégalité 4 < 2 provient du fait que lors de notre démonstration, un point
légérement technique consiste & vérifier qu’un certain opérateur H doit envoyer
'espace a poids de paramétre § dans Pespace & poids 0 — 2 ot 2 est le m-uplet
(2,...,2).

e D’autre part, I'inégalité J; > 1 est a considérer comme étant plutét une condi-
tion sur I’angle w; qui doit, pour qu’un J; convenable existe, étre plus petit
que 7. La raison en est que dans ce cas, on ne peut plus s’attendre a ce que
la surface minimale construite soit un graphe au-dessus d’un domaine que
I’on souhaite prescrire — nous renvoyons pour cela a la derniére remarque du
chapitre [[}

Chapitre [[].
|Construction d hypersurfaces minimales de type Riemann dans R™ x R

Ce chapitre constitue la partie la plus importante de mon travail et correspond
a la prépublication [CP11].

Les surfaces minimales découvertes par Riemann forment une famille & 1 para-
métre de surfaces qui sont feuilletées par des cercles horizontaux. Si des caractéri-
sations de telles surfaces ont été développées dans [HKR91| et [MPR], nous nous
intéressons plutot a la généralisation de I'existence de ce type de surfaces. Elles sont
essentiellement de deux natures : d’une part ’existence avec un nombre arbitraire
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de cous entre les différents niveaux, d’autre part 'existence dans des espaces homo-
génes M x R ou M est une variété de dimension au moins égale & 2. Avant d’aller
plus loin, nous donnons la définition de ce que nous appelons (hyper)surfaces de
type Riemann.

Définition 3 — Nous disons qu’'une surface ¥ d’une variété homogéne M x R
est de type Riemann si elle est connexe, compléte, plongée et qu’elle présente des
bouts asymptotiques & M x {s;} pour des réels s; (en nombre fini ou infini). Nous
appelons M x {s;} le i-éme niveau. Nous appelons cous les parties de 3 situées entre
deux niveaux consécutifs. De facon générale, les surfaces construites constituent
une famille & 1 paramétre (ou plus) € arbitrairement petit. Nous appelons point de
recollement le point correspondant & la limite des cous quand le paramétre e tend
vers 0.

Il est & noter que dans cette définition, nous ne supposons pas de critére de
périodicité. Nous nous concentrons sur le cas particulier oit M = S? dans le chapitre

[0

Le premier exemple autre que celui de Riemann a été produit par F. Wei [Wei94]
dans R? x R. Celui-ci consiste en une surface périodique, présentant de nombreuses
symétries, & savoir une symétrie centrale et une symétrie par rapport au plan vertical
{z1 = 0}, telle que les niveaux 2l et 20 4 1 sont reliés entre eux par 1 cou tandis que
les niveaux 2/ + 1 et 2] + 2 sont reliés entre eux par 2 cous. Le lecteur pourra en
trouver une illustration — se reporter a la figure [[TL.1] page [98]

Dans R? x R, des cas trés généraux ont été prouvés par M. Traizet [Tra02al et
[Tra02b]. Dans le premier article, il prouve que sous certaines contraintes de configu-
ration géométrique des points ol sont placés les cous, a savoir les conditions équilibrée
et non dégénérée, on peut produire des exemples de surfaces de type Riemann pé-
riodiques avec un nombre arbitraire de cous. Dans le second article, il prouve que
I'on peut produire, sous des contraintes similaires, des surfaces de type Riemann
non périodiques avec un nombre fini de bouts et également un nombre arbitraire
de cous. Des exemples numériques ont été fournis et le lecteur pourra trouver des
illustrations dans [Tra|] Encore plus récemment, en collaboration avec F. Morabito
IMTT11], il a prouvé l'existence de ce type de surface non périodique ayant un nombre
infini de bouts. La méthode utilisée repose en grande partie sur les représentations
de Weirstrass et ne peuvent donc pas s’appliquer au cas de R™ x R.

Toutefois, par des méthodes de recollement issues de 'analyse d’opérateurs, S.
Fakhi et mon directeur de thése F. Pacard [FP00] ont prouvé 'existence d’hypersur-
faces de type Riemann dans R™ x R, avec n supérieur ou égal & 3, ayant un nombre
fini de bouts, telles que deux niveaux sont reliés entre eux par 1 cou. Plus récem-
ment a été prouvée dans [KP07] Pexistence de 'exemple de Riemann en plus grande
dimension : la surface est périodique avec une infinité de bouts reliés deux a deux
par 1 cou. En revanche, contrairement au cas n = 2, elles ne sont pas feuilletées par
des sphéres horizontales.

Mon travail a consisté a obtenir des résultats similaires & ceux de M. Traizet en
dimension plus grande. La méthode utilisée fait en quelque sorte la jonction entre
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ses travaux et ceux de F. Pacard. En effet, bien que la méthode que nous utilisons
soit différente en ce qui concerne ’analyse, nous avons obtenu des résultats tout a
fait comparables a ceux de M. Traizet en ce qui concerne les configurations de points
— et tout particuliérement les conditions équilibrée et non dégénérée — et 'idée de
la preuve qui consiste a procéder & divers recollements.

Il est & noter que nous obtenons des configurations pour lesquelles nous avons un
degré de liberté supplémentaire. Cela est essentiellement da au fait que les caténoides
de R? x R et ceux de R” x R avec n > 2 n’ont pas le méme type de comportement.
En effet, si le caténoide classique présente une croissance logarithmique, le caténoide
en dimension supérieure est en revanche asymptote a deux hyperplans horizontaux.
Ainsi, si 'on cherche dans R? x R & obtenir des surfaces & bouts horizontaux, il faut
que la contribution des caténoides, qui est du type

Zailnﬂx])

i

sur un bout R? x {s;}, ou les a; correspondent aux tailles des caténoides que 1'on
placera au i-éme point du i-éme niveau, soit telle que la limite quand |z| tend vers
I'infini soit finie. En d’autres termes, il faut nécessairement imposer la condition

Zai == 0

%

a tous les niveaux, ce qui n’est pas le cas en dimension supérieure. Cela explique
par exemple que pour la surface de Wei, la distance entre deux niveaux reliés par
un seul cou soit deux fois plus grande que la distance entre deux niveaux reliés par
deux cous.

Comme je I’ai dit ci-dessus, nous pouvons produire des surfaces uniquement sous
certaines conditions. Ces derniéres sont en réalité formulées en terme de forces. Il faut
comprendre la force en un point de recollement comme l'interaction qu’il y a entre ce
point et les autres points de recollement. Notez au passage que cette force apparait
de fagon naturelle comme le terme linéaire du développement limité des fonctions
de Green. Ces derniéres sont des fonctions harmoniques dont le Laplacien est une
somme de masses de Dirac. Nous prouvons que leur existence et leur comportement
sont étroitement liés & D'existence des caténoides. Plus de détails a ce sujet seront
donnés dans le chapitre

En revanche, il semble essentiel dans cette introduction de donner plus d’infor-
mations concernant les forces. On se donne, pour chaque niveau k£, un nombre fini
ny de points py ; de R™ avec 1 < j < nyg. Géométriquement, ces points sont les lieux
oll 'on procéde aux recollements. Pour illustrer, 'exemple di & Riemann est tel que
n vaut 2, qu’il y a une infinité de niveaux k € Z, que ny vaut 1 et que 'on obtient
Dr+1,1 & partir de py 1 grace a une translation ty,, de R? qui ne dépend pas du niveau
auquel on se situe. Pour chaque niveau, on se donne un paramétre de poids a, qui
est un nombre réel strictement positif. Géométriquement, ce parameétre est relié¢ a
la distance entre les niveaux k et k + 1; c’est la méme chose que de dire que a
détermine la taille des caténoides que ’on recolle entre ces deux niveaux. On prouve
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que celle-ci est de 'ordre de

(ay €)™

dans R™ x R avec n > 3. Dans ce cas, contrairement a ce qui se passe en dimension
inférieure, on peut choisir les poids de fagon indépendante, ce qui procure un degré
de liberté supplémentaire comme annoncé. J'invite le lecteur a se reporter a la figure
pour avoir une idée de 'allure de I'objet que I'on souhaite construire.

Niveau 3 -
I 1 cou

Niveau 2 .

. ‘ L
Niveau 1 - ~aglen T
Niveau 0

Config. initiale

FIGURE 3 — Un exemple de configuration périodique avec consécutivement 1 cou et
2 cous entre deux niveaux consécutifs.

On définit la force f (p, q) d’interaction entre deux points comme étant le vecteur

pP—q

fpaq) = (n—z)m

et la force totale Fj, ; qu’exercent tous les autres points sur le point p; ; comme étant
le vecteur

ng Nk—1 Nk+1
Foj = 2 anf (Prjiped) = O ahorf (PrgsPro1) — Y @kt f (P Preti)
=1 i=1

i=1
i#]

Ainsi, celle-ci dépend uniquement de l'interaction avec les points du méme niveau
(avec un facteur 2) et de celle avec les niveaux juste au-dessus et juste en-dessous.

Définition 4 — On dit que la configuration de points pondérés {(ay,px;)} est
équilibrée si toutes les forces sont nulles.
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Le sens géométrique de ces forces pour les surfaces de type de Riemann peut
étre interprété comme étant la facon dont on penche les cous lors du recollement.
En effet, si on fait un zoom sur I'un des cous de I'exemple classique de Riemann,
on obtient la figure [} On constate effectivement dans ce cas que les cous ne sont
pas verticaux mais légérement penchés dans une direction privilégiée, a savoir la
direction opposée a celle donnée par le terme horizontal de la période.
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FIGURE 4 — Dans I'exemple de Riemann, les cous sont orientés selon une certaine
direction.

Le fait que la configuration soit balancée correspond géométriquement au fait que
les cous ne peuvent pas étre « tordus », c’est-a-dire que leur axe n’est pas courbé.

La condition de non dégénérescence, quant & elle, est légérement plus technique.
On la résume dans la définition suivante.

Définition 5 — Une configuration initiale de points est dite non dégénérée si I'ap-
plication F qui associe, & une configuration, I’ensemble des forces totales Fy, ; est de
rang maximal en cette configuration.

Nous explicitons le rang maximal dont il est question dans l'introduction du
chapitre. Essentiellement, le fait que F ne soit pas de rang plein provient du groupe
de symétries & inhérent aux surfaces que 'on veut construire : parmi celles-ci citons
notamment les rotations, les dilatations et les translations. Géométriquement, le
fait que la condition soit non dégénérée se traduit par la capacité a pouvoir bouger
légérement les points et les poids de la configuration initiale de facon a prescrire
n’importe quelle force arbitrairement petite.

Le théoréme d’existence que nous prouvons est le suivant.

Théoréme 4

Etant donnée une configuration balancée et non dégénérée, on peut construire une
famille 6 1 parameétre d’hypersurfaces minimales (Se)e de type Riemann dans R™ x
R telles que les cous entre deux niveaux consécutifs sont placés dans un voisinage
des points de la configuration initiale. De plus, la distance entre deux niveauzr est
de Uordre de a,/ ™ Vel/(n=1),
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Nous terminons le chapitre en donnant quelques exemples.

Chapitre [ITI]
|Construction de surfaces minimales de type Riemann-Wei dans S? x R

Ce chapitre se consacre a nouveau aux surfaces minimales de type Riemann, mais
cette fois-ci dans S* x R. C’est I'objet de la prépublication [CP12]. Nous démontrons
le théoréme suivant.

Théoréme 5
Il existe une famille de surfaces minimales de type Riemann dans S* x R qui
correspond a l'analogue de la surface de Wei.

Tout d’abord, précisons ce que 'on entend par « analogue de la surface de Wei ».
Dans un article non publi¢ [Weid4], F. Wei établit I'existence dans R? x R d’une
surface minimale simplement périodique avec une infinité de bouts plans qui sont
reliés entre eux par alternativement 1 cou et 2 cous — nous renvoyons a la figure
[11.1] page Le théoréme prouvé pendant cette thése stipule donc qu’une telle
surface existe dans S? x R : on peut la voir comme une surface périodique (dans
un sens que l'on précise dans le chapitre qui relie une infinité de sphéres par
alternativement 1 cou et 2 cous.

La raison pour laquelle nous n’avons pas démontré un théoréme plus global de
type Traizet comme nous ’avons effectué dans le chapitre [LI] est que la géométrie de
S? complique techniquement le probléme.

Ceci dit, nous utilisons a nouveau des arguments faisant appel a des conditions
balancées et non dégénérées, méme si cette derniére condition n’est pas explicitée
car elle est cachée dans la preuve de la derniére proposition du chapitre.

Chapitre [IV]
IParamétrisation des surfaces minimales de Riemann dans S* x Rl

Ce court chapitre se consacre a ’étude de la paramétrisation de 'analogue de
I'exemple de Riemann dans S? x R.

Son existence a déja été démontrée par L. Hauswirth [Hau06]. L’intérét du cha-
pitre réside essentiellement dans le fait qu’il permet d’obtenir une description re-
lativement précise de ladite surface. De plus, elle a le mérite d’étre trés parlante
s’agissant de sa représentation géométrique.

En particulier, nous en déduisons I'existence de I’analogue de la caténoide dans
S? x R. De plus, nous démontrons que les cous reliant deux niveaux de la surface de
Riemann ressemblent & des caténoides penchés comme cela est prouvé dans [HPO7].

Chapitre [V]
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|Construction d hypersurfaces de Scherk dans R" x R

Ce dernier chapitre a été placé en dernier car les techniques utilisées pendant
les preuves différent complétement des précédentes. Nous y démontrons I'existence
d’hypersurfaces de type Scherk dans R” x R avec n > 3.

Je tiens a souligner que ce chapitre n’est pas complet au sens ou j’ai arrété de
m’y consacrer au bout d’un an. En effet, il s’agit de mon premier travail effectué
pendant la thése. Malheureusement, nous nous sommes rendu compte en fin de
premiére année qu’un article d’E. Tomaini [Tom86| utilisant surtout des techniques
de théorie géométrique de la mesure résolvait toutes les questions que nous nous
posions et ce, dans un cadre beaucoup plus général que le noétre. Malgré tout, j’ai
tenu a le mettre en raison des techniques utilisées qui différent des outils classiques
permettant d’étudier les surfaces de type Scherk. En particulier, I'essentiel de nos
raisonnements se font a la main et reposent sur des arguments trés visuels.

La surface de Scherk est une surface minimale qui a 4 bouts plans paralléles
deux a deux. Dans ce chapitre, nous construisons d’autres hypersurfaces minimales
de type Scherk — nous en donnons la définition.

Définition 6 — Une hypersurface minimale > de R"” x R est de type Scherk si elle
peut étre représentée comme le graphe d’une fonction u au-dessus d’'un domaine D
de R" qui vaille +00 ou —oo sur une partie du bord.

Mon directeur de thése a déja prouvé dans [Pac02] qu’il existe une hypersurface
analogue dans I'espace euclidien de dimension plus grande. Par ailleurs, R. Sa Earp
et B. Toubiana [ST] ont prouvé Iexistence d’hypersurfaces de type Scherk dans
H" x R et R™ x R qui sont des graphes au-dessus de domaines ayant de nombreuses
symétries, a savoir sur des polytopes réguliers.

H. Jenkins et J. Serrin [JS65| ont prouvé qu’il était possible d’exhiber de tels
objets modulo certaines contraintes sur le domaine D dans l'espace euclidien de
dimension 3. En effet, ils prouvent que les parties du bord sur lesquelles u prend une
valeur infinie doivent nécessairement étre des segments droits. De plus, des conditions
concernant leur longueur doivent étre satisfaites : par exemple, si ’on veut prescrire
sur le bord de D des valeurs toutes infinies, la longueur /_ des parties des 9D sur
laquelle u vaut +oo doit étre égale & la longueur /_ des parties de 0D sur laquelle
u vaut —oo. Cela est di a une condition de flux sur la surface ; géométriquement, si
par exemple ¢, > ¢_, on trouve un graphe u qui vaut +oo partout, ce qui n’est pas
d’un vif intérét. Des résultats semblables ont été établis par B. Nelli et H. Rosenberg
INR02] dans H? x R et par A. Pinheiro [Pin09)] ou encore L. Mazet, M. Rodriguez
et H. Rosenberg [MRR11] dans le cas de M x R, ou M est une variété de dimension
2. Dans ces derniers cas, les segments sont remplacés par des géodésiques.

Ainsi, il est tout a fait raisonnable de s’attendre a avoir des contraintes géomé-
triques sur D. En particulier, les parties de 0D sur lesquelles v prend une valeur
infinie sont choisies comme étant elles-mémes des hypersurfaces minimales de R".
Nous ne prouvons pas que c’est une condition nécessaire mais le lecteur pourra en
trouver l'explication dans [Tom86]. Nous démontrons différents résultats (parfois
partiels).
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Théoréme 6

Supposons que le bord du domaine D est exactement SUT, ou S (resp. T') est
le graphe d’une fonction s (resp. v) au-dessus d’un méme ouvert pseudoconvezxe
de R"! tel que S est minimale et T' est convexe. Alors il existe une surface de
type Scherk qui soit le graphe d’une fonction u au-dessus de D qui s’annule sur
Uintérieur de T et qui prenne la valeur 400 sur l'intérieur de S.

Ce théoréme permet ensuite de retrouver les exemples de [ST]. Nous construisons
également un exemple dans R? x R au dessus d’un octaédre dont les faces sont des
triangles minimaux.

Enfin, nous terminons en donnant des conditions sur la géométrie de D de type
Jenkins-Serrin en ce qui concerne le (n — 1)-volume des parties du bord sur lesquelles
u est continue ou infinie.
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Chapitre |

Construction de polygones
minimaux dans R’

Introduction

The theory of minimal surfaces in the 3-dimensional Euclidean space has been
specifically developed for the last thirty years. In particular, numerous examples of
perturbations of minimal surfaces have been produced. For example, in [Whi87],
B. White proved that if a compact minimal surface has smooth boundary, then
one can perturb its boundary keeping the surface minimal. One of the most useful
application of this kind of perturbation is to construct new minimal surfaces by
performing a connected sum of two different surfaces ¥; and ¥, : the idea is to
take off a small disk in ¥; and Y5 and to deform the punctured minimal surfaces we

obtain in order to match their boundary data. For more details, we refer to [MPO1],
IMPPO1] or [Pac98].

In this chapter, we are interested in the perturbation of specific minimal surfaces,
namely the polygons. The type of result we obtain could be expected to be similar
to the one of B. White, but the fact there are vertices modifies its proof.

The main idea of the method lies in applying a well chosen implicit function
theorem. It amounts to study the Laplacian operator — which is the linearization
of the mean curvature — about domains with singularities. P. Grisvard in |Gri92] or
M. Dauge in [Dau8§| already studied this operator around polygons. Nevertheless,
it seems that the theory of weighted spaces proves its efficiency in our case. We refer
to the lectures [Pac09] for main results.

In the following, we only consider the case of a triangle but it can be easily
extended to the case of polygons. Let T be a triangle in R3 such that its interior
7 is non empty and 7T is closed, that is to say 7 = 7. Without loss of generality,
we assume that 7 is horizontal, in other words, we assume that 7 belongs to the
plane {z3 = 0}. Of course, since T is flat, it is a minimal surface. To perform a
perturbation, we introduce two types of terms, namely :

e normal perturbation given by

peT +—— pt+ul(p)es,



Chapitre I. Construction de polygones minimaux dans R3

where e3 = (0,0, 1) is the unit normal vector of 7 that points upwards and w is
a regular enough function which vanishes on the boundary 07 of the triangle ;
e any perturbation given by

peT +— p+Z(p),

where Z : T — R? is a regular enough vector field.

The reader may wonder why we do not have directly chosen a vector field Z
that would hold the component u (p) es. The reason for this is that u corresponds
to the classical perturbation parameter (usually, we consider normal perturbations)
while Z has to be understood as a parameter that transforms the boundary of the
triangle. We then denote by 7, 7 the surface in R which is the graph of ¢, z whose
definition is

tuﬁz:pETb—>p+u(p)e3+Z(p)ER3.

Notice that for v and Z small enough, 7, 7 is an embedded surface with 3 vertices.
We now state the main theorem[]

Theore_m 0.0.1
For all § = (01,09,03) such that

™ T

Vie {1,2,3}, 5 €[1,2]N (——,—>

Wi Wi
where the w;’s denote the angles of T, there exists a neighbourhood U of 0 in
C§’§ (T,R), a neighborhood V of 0 in C*>* (T,R3) and an application p : V — U
such that T, 7z is a minimal surface with (u, Z) € U X V if and only if u = p(Z).

1 The minimal surface equation

In this section, we establish the formula which ensures that the deformed triangle
T,z is minimal.

The Jacobi operator Jy about T is the linearization of the mean curvature
operator. It reads
2
Jroo= Dy 4 Ay
where A, is the Laplace Beltrami operator on 7 endowed with metric gr and Ay,
is the shape operator of 7. But the metric on 7 is nothing but the one induced by
the Euclidean metric and since 7 is flat, we find that

Ay =Ag  and A, =0.

9T

.. . 2,a . .
1. See the definition of the weighted spaces Cg in section



2. Analysis in weighted spaces

According to [BAC84], the mean curvature of the surface 7, o obtained performing
only normal perturbations is given by

H(Tuo) = Au+Q(u),

)

where () is a non linear term that collects all terms of order larger or equal to 2.
When there is no confusion, we note A = Ag2.

Lemma 1.0.2 — Let u and Z be small enough. Then the mean curvature of T, z
15 given by

H(Toz) = Au+tA(Zesha+Q(u,2). (1.0.1)

)

where () is a non linear expression.

PROOF
We give the proof in our case because it is very simple. Notice that it is enough to
prove that the linear term in Z is exactly A (Z, e3).

Assume in the first place that Z is always vertical, that is to say that Z (p) =
Z3(p) es. Then Z is a normal perturbation term and the linear term is AZ3 which
is equal to (Z, e3).

Assume in the second place Z is tangent to the triangle. Then the surface 7y
lies in the horizontal plane x3 = 0, thus it is minimal. It is the same to say H (7o z)
vanishes. 0J

Corollary 1.0.3 — The surface T, z ts minimal if and only if the relation
Au+A(Zes)ps = —Q(u,2) (1.0.2)

holds true.

2 Analysis in weighted spaces

The weighted function spaces provide a powerful theory of analysis on non-
compact domains or on domains with singularities. The idea is to reduce to analysis
on an infinite cylinder with prescribed asymptotic behaviour at infinity.

Denote by S, 55 and S3 the vertices of T, chosen in counterclockwise. For all 4
in {1,2,3}, we define w; to be the oriented angle in S; and B; to be the open set of
T such that

B = {PeT:|P-5S,<1}.
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Without loss of generality, we can assume that the sides of 7 are big enough to
ensure the B; do not intersect themselves. Finally, we define K to be the compact
set

Denote by (z,y) Cartesian coordinates on 7. If P € B;, we can choose to work with
polar coordinates (see the figure (14, 0;) or cylindrical coordinates (¢, 6) with the
help of following identifications :

(x,y) € B; <= (x,y) = (ricosb;,r;sinb;) with  (r;,0;) € Bipol
< (z,y) = (e ticosh;,etising;) with (¢;,6;) € C;

where B; 01 is the open set (0, 1) x (0,w;) and C; is the half-cylinder (0, 4+00) X (0, w;).
Note that we have assumed — without loss of generality — that the line (S;S;41)
coincides with the z-axis. By using cylindrical coordinates, we notice that one can
consider the triangle as a manifold with three cylindrical ends : it is exactly the
framework used in |[Pac09]. In addition to that, the cylindrical coordinates are
conformal.

S

Figure I.1: Notations for the angles in 7.

We work with different points of view on T : with cartesian, polar or cylindrical
coordinates. More precisely, let v : 7 — R. We collect the different coordinates
we use in the following table.

coordinates set function
cartesian (,y) €T Uear = (z,y) —> u(z,y)
polar (r,0) € Bpor  Upor = (1,0) —> u (rcos,rsind)

cylindrical ~ (¢,0) € C Ueyr = (1,0) —> u (e " cosB, e sin )
Then the expression of the metric or the Laplace-Beltrami operator defined by
1 0 y
A, = — [ v/det g g¥
g V/det g Oz < 99 )’

where (g”), ; denotes the inverse of the matrix (g;;), ;, depends of our choice of
coordinates. We sum up this in the following table :

0
oxt

4



2. Analysis in weighted spaces

coordinates metric Laplace-Beltrami operator
Cartesian  gear = da? + dy? Agar = 88122 + 8822

2 2
polar Gpol = dT2 + T‘2d92 APOI = arr? + r 8r + 3892
cylindrical gy = e (dt* +d6?) A = =5 (g—:z + 88—;2)

The most useful expression is undoubtedly the last one because it gives us a way to
highlight the asymptotic behaviour when one approaches one of the vertices.

2.1 Weighted spaces

As announced, the theory of weighted spaces is very useful in our study because
they provide an efficient tool to study analysis on manifolds with cylindrical ends.

Definition 2.1.1 — Recall that the cylinder C is defined to be (0, 4+00) x (0,w).
Let 6 € R, k€ Nand o € (0,1). We define the weighted Hélder space Cy™ (C) with
weight o over C by

chee) = et (0,
endowed with the norm
o -5
Hucychgv“(c) = He tUCYchk,a(c) )

where the classical Holder norm is defined to be

8 Ucyl
028

dPu, dPv,
|2 (p) - 52 (a)
+ Z sup =
Lo(D)  |g=p PFIED Ip — 4l

HUHck,a(D)

=0 |B|=i
for any domain D C R? and any v : D — R.

Remark 2.1.2 — Note that we can also define weighted Holder spaces on By, by
writing

Upol € C3* (Bpo) = e €CH5(C).
The idea is that a function u belongs to the weighted space if v and its derivatives

g  are bounded by a constant times r°~*.

Typically, we want to deal with bounded perturbations to build a new minimal
surface arbitrarily close to 7, so we do not want that v explodes near a vertice S.
Therefore we choose § > 0 to ensure lim,_,o7° = 0.

With the help of the above definition, it is natural to define weighted Holder
spaces on the triangle.

Definition 2.1.3 — Let § = (61, 62, 63) € R3. We define the weighted Hélder space
Cg’a (T) to be the set
CrT) = {uech e (T):vie (1,23} um, € C(C)

endowed with the norm

HUHC?“(T) = H“IK}|ck7a(/C)+ZHuCyl»"HC§;‘*(Cz)
=1
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Remark 2.1.4 — For our study, it is also relevant to define the weighted spaces
with vanishing data boundary

CZ;’OO‘ ) = {u € Cy(C) : upe = 0}
together with
Cg’g (7T) = {u € Cg’a (T) : wor = O} :

2.2 The Laplace-Beltrami operator in Holder weighted
spaces over a cylinder

In order to become familiar with weighted spaces, we introduce the following
property.

Property 2.2.1 — Let k be a positive integer such that k > 2. Then if ucy
belongs to Cﬁ’éo‘ (C), the function Agyucy belongs to Cfﬁ; ().

PrOOF
It does not represent any difficulty, but it is a way to have a better understanding

of these spaces. Therefore assume that .y belongs to Cﬁ’? (C). There exists vey €

C*“(C) such that

—dt
Ueyl = € Ugyl-

We deduce from this relation that

2 2 2 2
0 teyl = % (521) 1 — 25avcyl + 0 Ucy1> and O Ucyi = ~500 eyt
— oy

o2 ot o 02~ ¢ o2

Consequently, there exists exists a function wey € C*2%(C) such that

1 82u 1 82’& 1
Bepttie = 6_2t( (9t;y + 89;y = 6(_Hmwcyl (2.2.3)

and the conclusion follows. O

We are interested in the study of the following operator

chen(€) — ()
1 82ucy1 82ucyl
R e U e

Instead of giving results about A _5, we rather study the elliptic operator Ly _s
defined by

A(:yl,—é :

k, _ k—2,
Lcyl,—é DUyl € C_(sojo (C) e 2tACy17_5uCy1 € C_5 « (C) .



2. Analysis in weighted spaces

Note that L.y is nothing but the Laplace-Beltrami operator on C endowed with
metric dt? + df? which satisfies conditions that appear in [Pac09).

The role of indicial roots is fundamental in studying the mapping properties of
an elliptic operator. They are deeply linked to mapping properties of the operator
that acts on weighted spaces.

Definition 2.2.2 — A real number ¢ is an indicial root of L.y if there exists a
non-zero function ucy, € C3 (C) \ {0} and &’ < § such that

and

5
e ? tﬁcyl (e&u) — 0.
t—400

We denote by Ind (L) the associated set and by Isom (L) the set defined to be

Isom (Ley) := {8 : V6" € Ind (Leyt) NRY, 6 € (8, —5")} .

The set Isom (L) is essential in our study : we make use of its definition in
order to establish that some operators are isomorphisms (see [Pac09, Proposition
12.4.3|).

Proposition 2.2.3 — For all § such that —Z < § < Z, the operalor L s is an
isomorphism.

Of course, we directly deduce from the above proposition an analysis result for
the Laplace-Beltrami operator.

Corollary 2.2.4 — For all § such that —Z < 6 < I, the operator A.y 5 1s an
1somorphism.

Proor
The proof is organized as follows : we determine the indicial roots of L.y, we prove
that the operator Ls is injective when 9§ is negative and we conclude by using duality
results.

First step — the spectrum of the Laplacian over (0,w). Analysis about the
cylinder C = R, X (0,w) can be done with the help of a Fourier type decom-
position of (0,w). We thus introduce the operator [, defined to be

L G ((O,w) — CO(Q(O,W))
o — -2
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where C2 ((0,w)) is the set of C? functions which vanish on the boundary {0, w}.
Then it is easy to check that the spectrum of [, is given by

2.2
Sp(l,) = {mwf :meN*},

with associated eigenfunctions

mm
Omw 0 — sin (—9) .
w
Second step — indicial roots. Let m € N*. We use the spectrum of [, in order
to study the ODE
d?2  m?2n?
ez w2
£mry

Its solutions is the set spanned by the function e* ", therefore, according to
[Pac09, proposition 5.2.1.], the indicial roots of Ly are

=0.

Ind (L)) = {i% m € N*} . (2.2.4)
Therefore, we obtain
T
Isom (Ley1) = (—;, ;) )

Third step — injectivity. Let us fix some dp > 0 and uey € ker (£_5,). Then
Uey is harmonic over C and there exists vey € C (C) such that

—dot

Ucyl = (& Ucyl-

The idea is to apply the maximum principle to infinity : let M > 0 and define
the bounded cylinder CM to be

cM = (0,M)x(0,w) c C.

Then the restriction Ucyl|car of Uy to CM is harmonic and its boundary data
satisfies

{ Ueylgerr = 0 over ACM\ ({M} x (0,w)),

ucyl‘ac]\{ < 6*50M ||va1HLoo(C) over {M} X (07 w) .

According to the classical maximum principle, we then obtain

—doM |

ucyl X € |Ucy1 || Le(C) *

sup |uCy1 | = Sup |ocM
oM oM

Since it is true for all M > 0, we end up with uc; = 0 and thus, the operator
L_s, is injective.
Conclusion. According to second step, there exists dg > 0 such that
—dp € Isom (L) .

But we know by third step that L£_s, is injective. Application of [Pac09,
Proposition 12.4.3| then implies the result. U



2. Analysis in weighted spaces

2.3 The Laplace-Beltrami operator in Holder weighted
spaces over a triangle

We make use of the above results to deduce properties of the Laplacian about
the triangle.

Definition 2.3.1 — We construct a partial order < in R? by
0<0 <<= Vie{l,2,3},6 <4
We can define the same way =<, > or .

We now extend the notion of indicial roots to the case of the triangle.

Definition 2.3.2 — A 3-tuple 0 = (61, 62, 83) is an indicial root of A, if for all
i € {1,2,3}, the real number ¢; is an indicial root of

ACyl,i : Ck (Cz) — Ck72 (CZ>

where C; = (0,+00) x (0,w;). We denote their set by Ind (Aca) and we define
Isom (Acar) to be the set

Tsom (Acar) 1= {_5 V-3 €d(Aw), 0 -0=08 <3< _5’} ,
where 0 := (0,0,0).

Let —0 € R3. Like in the previous section, we deal with the following operator :

A5 C2(T) — € (T,

car,—3 - O 5 543
where 2 = (2,2,2). Tt is well defined according to (2.2.3)). Besides, by (2.2.4) in the
second step of the proof of property [2.2.3] we easily check that

md (Aw) = {(imlw,imzﬂ,img’W) i, m, € N*}, (2.3.5)

w1 W2 ]

from what we deduce
Isom (Acar) = f[ (—5, wl) :
i=1 v
To deal with injectivity, let 6y > 0 and let
Uear € ker (Acan_go) )

Then ue,, € C**(T), is harmonic over T, Continuous over 7 and vanishes over
OT. By the maximum principle, u vanishes on 7, ie A, ;5 is injective. Since
there exists —dy € Isom (Acar) such that 0o = 0, the proposition 12.4.3. in [Pac09]
implies the following one :

2. To see ¢y, is continuous in a neighborhood of a vertex, note that for all 4, ucy,; € Cf;” (B;),
therefore limp_, g, Ucar (P) = 0 since 6; > 0.
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Proposition 2.3.3 — For all —0 € Isom (Acy), A,,,_5 05 an isomorphism.

car,

3 Perturbing triangles

Recall that 7, 7 is minimal if and only if equation (1.0.2) is satisfied. As an-
nounced, our aim is to apply an implicit function theorem. But first, we have to
define which spaces u and Z belong to. Of course, we would like to work in weighted
spaces.

In this purpose, we define the mean curvature operator ﬁ_g in the following
proposition.

Proposition 3.0.4 — Let 6 € R? ¢ weight parameter. Then there exists a pos-
itive real number €g > 0 such that if U_5 and V denote the open sets defined to
be

Us = {ucar € Ci’;o (T) : Hu”Ci’go(T) < 60} ,
Vo= {an,ec3 (TR < |12l o gy <60},

then the mean curvature operator

) 0,a
ﬁ 5 u_g XYy — C—3+§(T>
- (u,Z) — H(T.z)
is well defined for all & such that
1<0=2
Remark 3.0.5 — The choice of ¢, is a technical condition under which the per-

turbed surface 7, 7 is a well defined embedded surface in R3.

ProoF
It is enough to work near one of the vertices. We omit the index i to relieve notations.

The Hoélder’s condition : Observe that
c? (T, ]R3) c Cc* (T, ]RS) .
Thus it is clear that when 7, 7 is a well defined surface,

(w,2) €C*2 (T)x C*(T,R*) = H(T.z)€C™(T).

10



3. Perturbing triangles

The weight’s condition : It remains to see why there is the weight —6 + 2. For
example, according to [BG92, 10.6.5], the mean curvature of a surface ¥ whose
parametrization is given by some function f : (r,0) — f (z,y) € R? satisfies
the relation

1ED" +GD+2F D/
2 (EG-F?)*?

)

where F, F' and GG are the coefficients of the metric on 3, that is to say

of||I” _Jof of o
% s F—<%,a—y s and G— 8_y

2

Y

-

and the other coeflicients are defined to be

OF OF OFN o (92 OF OF
0x2’ 0z’ Oy )’ N 0xdy’ 0z’ Oy

D = det (
together with

D//:det(32f of 3f).

9y?’ 0z’ Oy

In our case, we work with the parametrization t,  given by

" ) B — R3
vt 7 (ny)
(r,y) — |y + Z%(x,y) where A :=Z3+u.

A(z,y)

Then it is easy to compute the first derivatives

1 + 9,2t 0, 7"
&ctuz = axZQ and aytmz =11 + ayZQ
9, A 9,4

together with the second derivatives

A A A
8mtu,z = awaQ s 8yytu7Z = (9yyZ2 and 8xytu,Z = @cyZQ
Dy A 0,,A 0,y A

From now on, it is useful to consider the asumptions we made about Z and u.
More precisely, one checks that

OwZ =0 (&), Opyu=0 (7‘5_160) , 0w:Z =0(¢) and Oy,u=0 (7“6_260) ,

where the index w or z denote an element of {x,y}. It follows that, since he
weight parameter ¢ is chosen so that 6 € [1, 2],

OwA=0(e) and 0, A=0 (7‘5_260) .

11



Chapitre I. Construction de polygones minimaux dans R3

We deduce from the above estimates that the induced metric is such that
E=14+0(e), F=0(¢) and G=1+0 (&)
while the determinants D, D’ and D" can be written as

O (60) 1 + O (EO) O (60)
O (60) O (60) 1 + O (60) = O (7”67260)
@) (7”6_260) O (60) O (60)

for €y small enough. Therefore, the mean curvature satisfies

1 O (r'2¢) 52
H = —-——— = 0((r" “e),
2(14 0 («))? ( )

and the result follows. O

Remark 3.0.6 — Indeed, the condition 6 > 1 is necessary. If H is well-defined,
we can take Z = 0 and hence :

k.« k—2,a
YVear € C_&0 (T), H (Tuewo) € C55 (7).
But, recall that for graphs, the mean curvature is given by the following equationf]
is

1 Vicar
H (Typr0) = gdiv -

2 \/1+ |Vucar|2

It is useful to rewrite the above equation as follows :

1 Hess (tcar) (Vtcars Vcar) }

H (ncamo) = Aucar

o 2
24/ 1+ [Vtear|? { L |Vt

The Laplacian term can be estimated as

AUesyy = O(r‘sd)

while the second term satisfies
Hess (tcar) (Vucar, Viiear) = O (7”35’4) .

) to belong to the weighted space C*¢ _ (7)), it is

Consequently, if we want H (7, 3

Ucar
necessary to ensure

36—4 0—2

T < r
for small r. Thus it is necessary that the following inequality
o = 1

holds true.
3. See for example [CM99].

12



3. Perturbing triangles

3.1 Proof of theorem [0.0.1

First of all, observe that there always exists a 3-tuple 6 such that
1=<6=<2  together with — 6 € Isom (Acar) (3.1.6)

because for all ¢ in {1,2, 3}, the angle w; is less than 7 and the set Isom (Ac,,) is

described in (2.3). More precisely, it is easy to check that § satisfies (3.1.6) if and
only if for all i € {1,2,3}, d; belongs to [1,2] N (—f, f), this is why it is this

condition which appears in the theorem.

The idea lies in applying an implicit function theorem to the operator }AI_g we
have defined in proposition [3.0.4]

First, observe that since 7 is minimal, H_j satisfies

~

H 50,00 = o

Next, according to the equation (|1.0.1]), we can calculate the differential D, ]TLg (0,0)
of H 3 in comparison with the first variable w in (0,0). We find
2, 0,
~ . R o R
Dl 5(0,0): S0l TR) 7 CGn (T R)
Ucar H— Acar(ucar)-
Consequently, le:'\[ig (0, 0) is nothing but the operator A
to the proposition [2.3.3] it is an isomorphism.

5. Therefore, according

car,—

We can then apply the implicit function theorem to 1) _5 with which we build U/
in U 5, V in V and suitable ¢, QED.

3.2 Perturbation of polygons

Our work naturally extends to some polygons P — with j vertices — which are
included in the plane {z = 0}. We define in the same way the angles w;, the sets
B; or C;, the weighted spaces, and so on. .. This gives a theorem similar to theorem

0.0.11

Theorenrl 3.2.1
For all —§ such that

1<6=<2 and — 6§ € Isom (D),

there exists a neighbourhood U of 0 in Z;{Vfg C Cg’g (P,R), a neighbourhood V of 0

in CH (P, R3) and an application ¢ : V — U such that P, z is a minimal surface
with (u, Z) € U x V if and only if u= p(Z).

13
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Remark 3.2.2 — Note that such a ¢ does not exist in general case : if one of the
angles w; is more that m — in other words, if P is not convex — then we can not
use this above theorem. Heuristically, what happens is that if w; is more than m,
then we lose the property that the map is a vertical : even if the solution to the
Plateau’s problem exists, the surface is not a vertical graph over P.

Figure 1.2: 7, z is not a graph over P.

14



Chapter ||

Construction d hypersurfaces

minimales de type Riemann dans
R" x R

1 Introduction and statements of the results

The Riemann minimal surfaces — or hypersurfaces — form a subject that has
been studied over last years. They are minimal surfaces with planar ends which
are simply-periodic, embedded and complete. Usually, a Riemann minimal surface
belongs to a one parameter family.

In [Rie98|, Bernhard Riemann discovered one family of such surfaces foliated by
horizontal circles in 3-dimensional Euclidean-space. Such a surface could be seen
as planes which are linked to each other by one catenoid (or one neck). Enneper
in 1869 and Shiffman [Shi’6] in 1956 gave a characterization of these : a minimal
annulus which holds two circles in parallel planes is either a part of catenoid or a
part of the Riemann example. More general characterizations have been given the
last twenty years, especially by Hoffman, Karcher and Rosenberg [HKRI1] or Meeks,
Pérez and Ros [MPR]. L. Hauswirth [Hau06] proved the existence and classify the
minimal surfaces foliated by horizontal constant curvature curves in R? x R, H? x R
and S% x R.

In an unpublished paper [Wei94|, F. Wei builds a more general Riemann exam-
ple with alternatively one neck and two necks between horizontal planes. Recently,
Martin Traizet proved the existence of such families with an arbitrary number of
necks and planes in [Tra02al] and [Tra02b] (in this last paper, there is a finite num-
ber of planar ends) in the Euclidean space R3. With this aim, he introduces a
points configuration which satisfies different hypotheses, namely the balanced and
the non-degenerate conditions. The first is necessary for existence while the second
is a condition under which he can produce examples by using implicit function the-
orem. The Weirstrass representation of minimal surface plays a significant role in
the construction and the same method cannot be applied in a higher dimensional
case. Besides, it will be shown that in R™™ with n > 3, there are more degrees
of freedom because the catenoid lies between two horizontal hyperplanes while the
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catenoid in R? is not bounded in any direction ; equivalently, to enforce the surfaces
to be embedded, the flux at infinity has to vanish. More recently, F. Morabito and
M. Traizet [MT1I]| proved the existence of non-periodic minimal surfaces with an
infinite number of parallel ends. In [HP07|, L. Hauswirth and F. Pacard add genus
to the Riemann example (1 < genus < 37) : these surfaces have two ends which are
asymptotic to halves of Riemann’s surface.

In papers by S. Fakhi and F. Pacard [FP00] or by S. Kaabachi and F. Pacard
IKP0OT7], the existence of some examples of such hypersurfaces is proved when n > 3
: one with a finite number of planar ends (non periodic example) and one which
generalises the Riemann example, namely horizontal hyperplanes with only one neck
between two of them. However, the tools are very different from the Weirstrass
representation theorem since they come from non linear analysis. Note that this
kind of method provides us with an accurate description of the surface.

In this paper, we give more general examples in R"*! with n > 3 for points
configurations that satisfy similar conditions to those of M. Traizet. First of all, we
need to give some definitions.

Let N be a positive natural number and t; be a vector in R™. For all k in Z, we
assume we are given

(i) nx a positive natural number,

(ii) for all j € [1,nk], a point py; of R™ with a weight ay, where a; denotes a
positive real number,

(iii) for all j # j" € [1,n], for all j/. € [1,np41], for all j* € [1,ng_4],
Pk,j 7 Dhjs Pkj 7 P17, and  prj # Dr-15'
(iv) for all k and for all j € [1,ny],
aprN = Qj and  prin; = Prj + ba

We then say the family {(ax,pr )} is a tj,-periodic weighted points configuration.

The interpretation is the following : k is the index of the k-th horizontal hy-
perplane, n, is the number of necks we want to put between the k-th hyperplane
and the (k+ 1)-th one, py; is the emplacement of those necks while the weight ay
is their size — notice that the distance between two consecutive hyperplanes has to
be independent of the different necks we glue, thus it is why a; is chosen so that it
does not depend on pj ; but only on k. The hypothesis (iii) is necessary since we do
not want to glue a neck to another. Finally, the hypothesis (iv) is the periodicity of
the configuration and N is the number of hyperplanes we want to consider modulo
to this condition.

We define in the same way a non-periodic weight points configuration with a
finite number N + 1 of hyperplanes : we take k& € [0, N — 1] rather than k € Z and
we omit the periodicity condition (iv).

Remark 1.0.3 — In what follows, it will also be convenient to consider weighted
configurations {(ax j, prj)} with ay ; chosen in a small neighbourhood of a.

16



1. Introduction and statements of the results

In all cases, we denote by Ne the total number of necks we consider, that is to
say

2
L

i
o

The force f(p,q) between two distinct points is defined to be the vector in R"™
such that

pP—4q

fpaq) = (”—Q)M-

The total force Fy ; that all the points exert on py ; is

"k Ng—1

Iy = 2Zasz (Prjs Pri) — Zak71f<pk,j>pkfl,i)
i=1 i=1
i#]

NE+1

- Zak+1f<pk,j>pk+1,z‘)a (1.0.1)
=1

in other words, we consider the interaction between py, ; the points of the same level
with a factor 2 and the interaction between pj, ; and the points of level k—1 and k+1
with a factor —1. This definition also makes sense for non-periodic configurations if
we omit the terms that do not exist in this case (for example, in Fp j, we replace the
contribution at level —1 by 0). Note that the forces Fj, ; depend on the emplacement
of the points together with the weights. Moreover, note it also makes sense to define
these forces with weights ay; : it is enough to replace aj (resp. ax—1, ax+1) by ak,;
(resp. Af—1,i, ak+1,i)-

Definition 1.0.4 — We say the configuration {(ay,px;)} is balanced if all forces
vanish, i.e. if

\V/(k’,]), de :0

This condition could be interpreted as as geometrical one. As a matter of fact,
the forces are deeply linked to the way we bend the necks we glue between two
consecutive levels. To say the configuration is balanced is the same to say the axis
of each neck is straight.

Those forces are quite similar to the ones M. Traizet develops in his papers
concerning the construction of minimal surfaces. However, let us remark that in
our case, there are more freedom degrees, namely the family of weights {ay ;}, while

in the 2-dimensional case, aj is prescribed by a; = n—lk The reason for this is the

catenoid in R? goes to infinity, it is not asymptotic to any plane. The flux at infinity
has to vanish and then, the weight is prescribed.

It turns out that our construction lies on the inverse function theorem, thus we
have to determine under which conditions we could prescribe the forces. Assume we
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are given a tp-periodic weighted configuration. For convenience, let us define the
linear subspace W of R™ spanned by the points, that is to say

W = Span{q—p : p,q € {pr;}}-

Since the problem is invariant under the group of translations, we can assume,
without loss of generality, that all p;; are in W — in other words, that the affine
space Wag = po1 + W passes through 0. Thus we identify a point py ; of the affine
space with a vector in W. Note that the forces are in W. We denote by m the
dimension of W and by (e;),;,, an orthonormal basis of R™ such that (e;),;,, is
an orthonormal basis of W. We define &y = idyy ® O (WL) to be the subgroup of
the isometry group of R™ whose elements u can be written

u= (]m O) with v € O, (R).
0 v
Notice that an element u of By is such that u (py ;) = py,; for all k and for all j. We
also define the subgroup &y,10 = O (W) ® idy,1 the same way. From now on, the
vectors e; is either considered as a vector of R™ or as a vector of R” x R, in which
case e; is said to be horizontal. We note e,,1 = (0,---,0,1) a unit vertical vector
in R" x R.
With the help of these definitions, we notice that the forces satisfy different
relations under the action of translations, rotations and dilation.
o If uy is a translation, then Fj ; o uy = F}; : the forces are invariant under the
group of translations.
o If r is a rotation of &y ., then Fj; or = r o Fy ;. Besides, in the tj,-periodic
case, if we enforce the new configuration {r (px;)} to be t,-periodic, r has to
be chosen so that r (t;) = tp. It is relevant only when t; # 0.
e In the non-periodic case or in the O-periodic case, if A - idg~ is a dilation (or
a contraction) with scale factor A > 0, then Fy ;o X - idgn = A'""F} ;. Here,
we do not consider the t,-periodic case with t; # 0 since a dilation with scale
factor X\ # 1 changes the period into At;, # tj.
It follows that, when the configuration {(ax,px;)} is balanced, the points force
function

F Aprsy € WY — {Fy;} e W (1.0.2)

can not be a diffeomorphism near the initial configuration {py ;} since the kernel of
its differential holds the three following linear subspaces :

V, := Span {(v, e V) E (R")N6 vV E W} for translations,
V, = {(Rﬁo,h e ,RﬁN_LnN_l) 'R € Skewth} for rotations,
Vi == {\(Bot, Pty ) €WV X ER] for dilation,

where Skew,, is the set of the skew-symmetric matrices which span, with the help
of the exponential mapping, the rotations r of &y such that r (t,) = t;, that is to
say

Skewy, = { <61 8) e M, (R): Ae M, (R) is skew-symmetric and At, = 0} )

18



1. Introduction and statements of the results

Furthermore, notice that the sum V; + V,. + V; is direct and we do not consider V,
in the non-vanishing periodic case.

As a matter of fact, we also can collect information regarding the image of the

force function. For any configuration {(ax;,pk;)}, since f(p,q) = —f (¢,p), the
relation
N—1 ng
Y apiF; = 0 (1.0.3)
k=0 j=1

holds true. Moreover, for all skew-symmetric matrix A, the scalar product (f (p, q), Ap)
is equal to — (n — 2) é‘fﬁ’ﬁ and (q, Ap) = — (Aq, p). Consequently, we obtain the ad-
ditional property

N—-1 ng

VR € Skewth, Z Z ag,; <Fk,j7 Rpk,j> = 0. (104)

k=0 j=1
Thus, .% does not have full rank. That is why we introduce the non-degenerate

condition.

Definition 1.0.5 — An initial weighted points balanced configuration
¢ = {(ak, Pry)}

is said to be non-degenerate if the differential of the force function .# defined to be
so that

T A{(an, pry)} — {Frj}

has maximum rank on account of the invariants at the initial configuration C , that
is to say

(Ne—l)m—w when t, # 0,

(Ne — 1) m — ™=l {

dimIm (d.%s) = when t;, = 0,

in the non-periodic case.

The reader should pay attention to the fact that in this definition, we enforce
the a; ; to be the same at level £.

Remark 1.0.6 — If we write d.% = d,.# + d,.# where the index denotes the
derivative parameter (the weights or the points), then

m+(m_1)2ﬂ when t;, # 0,

dim (kerd,.#) >
( 14 ) = m + m('n;—l) +1 {

when t, =0

in the non-periodic case.

Heuristically, when we can dilate the configuration, we assume that a perturbation
of the weight parameters offsets the part of the kernel that comes from the dilation.
It is the same kind of hypothesis as the one in the theorem 1 of [Tra02b).

We are now in a position to state the main result of the paper.
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Theorem 1.0.7

Let {(ax, prj)} be a balanced and non-degenerate configuration. Then there exists a
1-parameters family of embedded, complete and minimal hypersurfaces (%)
such that the following assertions hold true :

ec(0,e0)

symmetries : .7, is invariant under the action of the subgroup By «r = Gy Ridr
of the wsometry group of R™ X R whose elements u can be written

u 0 .
uz(o 1) with  u' € Gyy;

the t,-periodic case : (i) 7, is simply t-periodic, with t = t, + t, where the
1

vertical vector t, = O (eﬁ) €ni1 ;

(i) ./tZ has N horizontal hyperplanar ends ;

(i1i) from a topological point of view, .7./tZ is the connected sum of N
horizontal hyperplanes Hy, with ny, +ng—1 punctures at py; and pr_1; ;

the non-periodic case : (i) ., has N +1 horizontal hyperplanar ends and the
distance between the two extremal hyperplanar ends is O._ (eﬁ) ;

(i1) from a topological point of view, .7, is the connected sum of N + 1
horizontal hyperplanes Hy with ny + ni_1 punctures at py; and py_1 ;.

2 Adding “necks” to hyperplane

The goal of the sections concerning horizontal hyperplanes is to build minimal
surfaces close enough to these (it will correspond to the hyperplanar ends of the
Riemann surfaces we want to construct) such that they have necks (or catenoidal
shape) at each gluing point py ;.

As announced in the introduction, we work with a slightly perturbed weighted
configuration {(ax.;, pr;)} of {(ar, px;)}- Let us fix [ € Z (it is the index of the [-th
end) and consider the n; weighted points

((al,hpl,l) y Ty (a/l,lapl,nl))

together with the n;_; weighted points

((al—1,17pl—1,1) T (al—l,n;_lapl—l,nl_l)) .
We then define the [-th Green function by

F:R —>Rm

T o= = | — pl—l,i‘z_n

+ M iay|r— pz,z‘|2_n
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2. Adding “necks” to hyperplane

It is well known that I' is a harmonic function over the set R := R™\{p;—1.1, - , Prn, }-
More precisely, I' satisfies following equation :

ni—1

ny
A" = ¢(n) —E a-1,i0p_,; + ai0p, ; |
i=1 i=1

where ¢ (n) = — gy is a constant that depends on n.

Besides, note that this Green function is chosen so that it point upwards near
the points p;; and downwards near the other points p;_; ;. As a matter of fact, we
will use I" at the I-th level to glue this one to the (I + 1)-th level near p;; and to the
(I — 1)-th level near p;_; ;. Note that I and its derivatives continuously depend on
the choice of weighted points.

Remark 2.0.8 — All the results we prove for the above Green’s function could be
applied in the case of a finite number N + 1 of horizontal ends, i.e. when we give a
finite number of weighted points <ak=j7pkvj)j€[[1,nk}] with £ =0,1,--- , N. We define
the 0-th Green’s function and the N-th Green’s function by

o nN_1
Ly = Zao,i - — Py ™" and Iy i=— Z an-1i |- — py-ril’ "
i=1 i=1

At level 0, we only add necks that point upwards since there is not any lower level
while at level N, we only add necks that point downwards since there is not any
upper level.

2.1 Behaviour near singularities

We have in mind to conduct a gluing process to build minimal hypersurfaces.
This kind of method requires a thorough description of local behaviour near the
gluing points. Thus it is useful to give the Taylor expansion of Green’s function
near its singularities. In this purpose, we give the typical Taylor expansion

o =pl = Pl (= 2) Pl (@ p) + O ([2])
where we write f(z) = O, (|2|™) with m € Z if for all & € N, the equality

VFf(x) = Opol|z|™ ") is satisfied. We will see later that this kind of equality
proves to be very efficient in weighted spaces theory.

Behaviour near p,_; ; with 1 <j <n;_,;
Without difficulty, one finds
I'(z) = —ar_1y |$—pz—1,j|2_n + Cro1j+
+ (x—p-1y, Fioqe) + O (|»’U—plf1,j|2); (2.1.5)

T—Pi—1,5
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where the real constant C;_; ;  is given by
ny—1 ny
2—n 2—n
Cioij+ = — E —1, |pie1, — pietil + ay; |pi—1,; — pul , (2.1.6)
i=1 i=1
i#£]

and the partial force Fj_; ; 1 of R™ is defined by

ni—1 ny

Fioij+ = —ZGZ—uf (P1-15,P1-1,i) + Zal,if (D1—1,5 Pri) 5 (2.1.7)
i=1 i=1
i#]

Behaviour near p;; with 1 < j <y

Similar calculus leads us to

(z) = aylz—pyl"™" + Gy
+ Ty Fiye) x_él’j (lz = pegl?) . (2.18)
where the real constant C; _ is given by
-1 n
Crj— = — Z Wi lpry — piord”" 4 ai lpry — pual”™" (2.1.9)
=
and the partial force Fj ; _ of R" is defined by
ni—1 ny
F- = —Zalq,if (Prjs Pr-14) + Zal,if (Prgs PLi) (2.1.10)
=
Remark 2.1.1 — e It is relevant to note that the partial forces Fj ; (resp.

Fy. j—) corresponds to the interaction between the point pj; and all other
points of same level k together with the the level k£ — 1 (resp. k + 1).

o Geometrically, the force term in py; corresponds to leaning a neck in some
special direction during the gluing process.

2.2 The first error term and its correction

2
Let € > 0 and r. := €3»-1 — we’'ll see later why we have chosen this radius
re (cf. remark 5.3.1). Let us note R}, the set R without small balls of radius 7.
centred in the singularities pj;, namely

Rje = R” \ U B(p,re) U B (p,rc)

P=PI—1,1"" Pi—1,nj_; P=PI,1," Pl

From now on, we suppose the parameter ¢ small enough in comparison with the
distance between the points py ; for the purpose of ensuring that the balls B (p, )
do not intersect.

22



2. Adding “necks” to hyperplane

Unfortunately, although the hyperplane {z,1; = 0} is clearly a minimal hyper-
surface in R™ x R, it is not the case with regard to the graph of Green’s function.
On the other hand, this one performs a relatively good approximation to the mini-
mal surface equation. More precisely, a function f over an open set of R™ defines a
minimal hypersurface if it satisfies the equation

div —Vf = 0.

VI+IVH?

In this paper, it is more convenient to translate this equation into

Vi (VLY

Af=G(N =0 with  G(f)=" 2

Y

where V2 £ is the symmetric bilinear form defined by the Hessian of f. This writing
makes it possible to put the role of harmonic functions (especially Green’s function)
forward. From a heuristics point of view, if a function f has small C? norm, then
the main term of previous equation is given by the linear part, in other words the
Laplacian, whereas the remainder is cubic type and so is small in comparison to
the Laplacian. More exactly, in our case, let us search for the error we make if we
consider the function I' over R}'.. We multiply it by a small parameter € in order to
ensure the small C* norm of eI". The question is to estimate the term G (eI') because
the Laplacian vanishes. Since Green’s function explodes near the singularities, it is
enough to work in a neighbourhood of one of them, let’s say p;; for example. We
write

o]
el (I‘) = ey |l‘ . pl,jlz_n —+ ECM?_ + 1’—>Opzj (6 |[E — p17j|)
xERfe

In this case, easy computation shows that we can write

g (GF) - A (EF) = (2 — n)3 (n — 1) CL[JSGB‘x — pl,j|2_3n +0 (63 |.I’ o pl,j|1_2n) .

Note that the main term is radial, which is in agreement with the construction
of Green’s function : if we are close to the singularity p;;, the contribution of
|z — pri|* " for pr; # pij is bounded whereas the radial term |z — py;|°~" explodes.
Besides, the rough estimate of the error is €3r>73" = er~!, the one for the next term
being er 2.

For the gluing method we will conduct later, it is useful to introduce a new
function Cor such that Cor corrects the main term of the above error. In a neigh-
bourhood of the singularity p; ;, the function = — 2((7;”2)4) ajy ;€ e |r — pl]| " is such
that its Laplacian is equal to this one. Since there are other singularities, we rather

introduce the function Cor defined over R}, by

(n—2 =

ny
4—3n 4—3n
Cor (z) := 2(3n_ Zaz 1 |l =Pl +ZG?, — puj
i=1
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The choice of the quantity r. leads to equality e3ri=3" = er.. In other words,

this correcting function has the same rough estimate than the second term in the
Taylor expansion of Green’s function when one approaches the boundary of the ball
B (p,r.), although they are different types : its main term is radial and thus does
not favour any directions.

By construction, it follows that we can approach a minimal hypersurface with
much more precision. It is the object of the following lemma.

Lemma 2.2.1 — Let I'o, . the function defined by I'cop e := €I’ + Cor. Then for
all k € N, there exists a constant ¢, := c¢(n, k) such that for all x € R}, we have
the inequality

|Vk (AT core — G (Ceore)) (x)} < cker;o’”_37“1_2"_k, (2.2.11)

where r is chosen to be the distance between x and the set of points {pl—lvi}ie[[l il U
{Priticpng- 1t amounts to writing

(AFCOT,E - g (ch«,e)) (ZE) = €T3n—3 é (Tl—Qn) )

In other words, we have improved the approximation of a solution to the min-

n—2
€re n—1

imal hypersurface equation over R}, by a factor T =T, compared with the

€
approximation in the case where we only consider Green’s function el

3 Analysis in weighted spaces

We have in mind to glue the “necks” of the graph of ', with small truncated
catenoids. Besides, there are two types of terms of order 1 in the Taylor expansion
of I'core, namely a radial one that comes from the correcting function Cor, and a
“force term” with one direction (a priori, it does not vanish) that comes from Green’s
function. Their rough estimate is er.. Henceforth, our aim is to build a minimal
graph over R} whose boundary data is T'c; .+ ® where |®|| < kere for some positive
constant x that does not depend on € and that we will determine later.

For this, we are looking for a small perturbation I'cor ¢ + v of I'cor . Where v is a
small function such that we are able to solve the following problem :

{ A (Fcor,e + ’U) -G (Fcor,e + U) =0 in R?é (3 0 12)

FCOI‘,E + v — Fcor,g + @ on 8RZE

In other words, given an arbitrary element ®, can we find a minimal graph over the
non compact domain R}, that takes boundary value (Fcor’e)| orn T @7
’ le

For practical use, we write ®, : S — R such that for all 2 €S,

O(2) = CD(p—i— 3)

Te
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3. Analysis in weighted spaces

for each p =pr—11,+ , Pi—1m_15 P11, 5 Pimy-
Let us very briefly expose the heuristics to solve this problem :
e if vy and € are small enough, then

A (Fcor,e + U) - g (Fcor,e —|— ’U) ~ AU’

thus we first solve Avg = 0 with vg = ® on the boundary ;
e by a fixed point theorem argument, we search for a solution v that takes the
form w = €leor e + vo + v With |[v]] << ||vo]|-

3.1 Laplacian and weighted spaces

We are interested in the following Dirichlet problem :

{ Agnv = f over R}; (3.1.13)

v =0 over R},.

It is a partial differential equation over an unbounded domain. To deal with it
in a suitable theory, we introduce the weighted spaces. These have already proved
to be useful, especially for gluing process.

We have seen in the previous section that the Laplacian plays a prominent role
in the resolution to the minimal graph equation. Indeed, it is its inverse that gives
us the possibility to apply a well chosen fixed point theorem.

We introduce two quantities

. . ti )

00 = min
p?éqe{Plfl,i}ie[[lﬁnl_l]]u{pl’i}ieﬂl,nlﬂ

and

P — max {dist (Ogn, p) + dist (p, q)} + 1.
piqe{plﬂ@}ie[[1,n171]]u{plvi}ie[[1,nl]]

We then define the sets :

L = R*\{pivg, i b not bounded open set;
BP = B(p,po),p="0pi-11, " ,Pin,, relatively compact open set;
B, := B(0,r) forr > 0,; relatively compact open set;
A, = By \ B, forr >0, relatively compact open annulus;
K := B, \ (Up=p171,1,---,pz,nl BP> ,  compact set;
Q = R"\B,, not bounded open set.

Note that we have chosen those sets and py together with p* such that the balls
BP do not intersect and B,, is a large ball centred in 0 which contains all the B?.
Besides, none of those depend on the parameter e.
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Definition 3.1.1 — Let p and v be real numbers. We define the weighted space
Ly, (]R?*) as the set of functions f € L (Rf*) such that

loc

HfHLﬁou(Rln*) = Z H|:E —p|_ﬂf||Loo(Bp)

P=Pi—1,1,"""»Pl,n;

1 ooy + 12177 f] ooy < 00

Remark 3.1.2 — In particular, if f is an element of L7°, ( l"*), then we control f
near the possible singularities p = pj_11, - ,pin, : [ does not increase faster than
r# when r tends to 0. Likewise, the behavior of f near infinity is at the most r”
when 7 is large and f is bounded for all compact set included in R}',.

We also give the definition of such weighted spaces for more regular Holder
functions.

Definition 3.1.3 — Let u,v € R, kK € N and o € (0,1). We define the Hdlder
weighted space Cﬁﬁ (Rl"*) as the set of functions f € Cl’f)f‘ (]Rl”*) such that the fol-
lowing norm is finite :
k .
lege ey = > (ZH\x—pv-Mvv
=0

p:plfl,lf'"pl,nl 1=

- { wp V@ =V f<y>\}>

(0%
0<2r<po aAyEP+A, |z — y|

‘L‘X’(BP\{p})

+ [ fllera ey
k
3 [,
{ [V*f (@) = V*I ()| } |

+ sup

7> p2

sup -
TAYEA, |z —y|

Remark 3.1.4 — For practical purposes, a function f € Ck® (Rf*) (resp. its

v
derivatives) is bounded by ¢ r# (resp. the derivatives of r#) near the points p =
Di—11," " s Diny, by ¥ (resp. the derivatives of 7) near infinity, where c is a constant

(c= HfHCi’ﬁ(RZ*))' Moreover,
V(@) = Vi F ()] < et eyt
(resp. <c rV—k—O{ ‘(L’ o y‘a).

Definition 3.1.5 — Let U be an open subset of R}’,. Then we define in the same
way the weighted spaces LyY, (U) (resp. Ci% (U)) endowed with the norm [|-|| )
) ’ v

(resp. H'HCﬁZ?(U)) induced by ”'HLﬁ‘,’V(RZ*) (resp. H~HC§:3(RZ*) ).

Remark 3.1.6 — The spaces we have defined are Banach spaces. In particular,
classical fixed point theorems can be used.
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3. Analysis in weighted spaces

Remark 3.1.7 — Suppose k£ > 2. The definition of weighted spaces implies that
if f el (Ry,), then Agaf € Cr 30, (R2).

pn—2,v—2

Proposition 3.1.8 — Assume that p,v € (2 —n,0). Then there erists some
constant ¢ := c(p, v, a,n,l) such that for all f € Cﬁ:gﬁ,Q ( ?*), there exists one
and only one function v such that :

k,a R™ ) -
voo€ (R (3.1.14)
Agnv = f over RY,.

Besides, for such a solution v, we have the following estimate :

[|v] cis(®rp,) < ¢ ||f||c2f2,u—2(R’lrf*) . (3.1.15)

We note A, Cﬁ:;:S_Q (R}I*) — Cﬁ:,‘f (Rln*) the right inverse.

PrOOF

We use the same approach than the study of similar problem in L with only one
singularity in [Pac09, Chapter 4|. Essentially, we divide up our case into two parts :
one for the singularities and one for infinity. Estimates are obtained by well chosen
barrier functions and the maximum principle.

The Laplacian for well chosen radial functions : Observe, by using the ex-
pression of Laplacian in polar coordinates, that

Apn|z]® = B(n+p—2) |z,

Moreover, note that the constant §(n+  —2) is negative if, and only if]
p € (2 —mn,0). This simple property will be very useful to solve our Dirichlet
problem since it is the first brick in the construction of a barrier function.

Decomposition of f : We write f = fr + fo where f5 is supported in the rel-

atively compact set K = Bop \{pi=11, s 0in} ([? is chosen so that K is
a ball large enough to hold all singularities), and f. is supported in the non
compact domain €. We may assume fz and fo have the same regularity as

i

The fz-part : We want to build a solution vz such that Agnvg = fi over R},.
The domain is not compact, thus we cannot apply directly classical existence
results. To make up for this problem, we solve it by using a sequence of
solutions on open sets (U;); that converges to R}, defined by

voo= BOi+2)\ U B(nD).

=
1
P=PI—1,1,""" Pln,

1. For example, with the help of a well chosen cut-off function C>*-function x : R, — [0,1]
such that x = 1 over B,> and x = 0 over R" \ B2 : then put fz := x - f and f = f — fx.
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By [GT0I, Theorem 4.3.], there exists a unique solution v; z € C** (U;) to the
following Dirichlet problem

AR"Ui,f{ :ff{ in UZ-;
U =0 on 0U,.

Before doing i — o0, it is necessary to obtain estimates for this solution. For
this purpose, we build a barrier function. Let

Hff(HcO*“ -(R2,)

—2,v— J%
w = C — Z |-—p\“—vi,[~(,

p(EZ=n—p) P=PI—1,1,""" Plny

where C' is a positive constant. Thus the Laplacian of w is determined by

Aw(@)@) = =Cllle,, ey 22l plT - ()

P=Pi—1,1,"" 7pl,nl

Then one proves that we can take C' = C (u,v) big enough (which does not
depend on @) to ensure that for all x € U, the inequality Ag»(w)(z) < 0 holds
true. Moreover, w > 0 over OU;. Consequently, we can apply the maximum
principle (cf. [GT01, Theorem 3.3]) to obtain the following pointwise bound :

Vo € Ui, 1)@0(1‘) < C ||fKHCO a2u , R,f*) Z ’ZL‘ _pl'“ .

P=Pi—1,1,"""Pl,n;

Working in a similar way with —v, zz, we then obtain the uniform bound :

Vo e U,

@] < CWallos, ) D el

P=Pi—1,1,"""»Pl,n;

According to [GT0I, Corollary 4.7.]F] the previous 1nequahty and a diagonal
extraction argument, we conclude that there exists vz € Cloc (]R”*) such that
Agpnvg = fr over R},. Besides, since the convergence is uniform, with the
help of same inequality, we have :

Vo € Ry, |v[~<(x)| < ¢ HfKHcfj“QU 2(R2) Z @ =pl",

P=PI—1,1,""" Plny

(3.1.16)

in other words, we already know that vz belongs to a space of the form
Ly, (R?*) ; U has the right behaviour near the singularity points p.

To deal with the case x — oo, we use another barrier function. More precisely,
since fz vanishes over R”\ K, the function vz is harmonic over R™\ K. Note

2. “Any bounded sequence of solutions of Poisson’s equation Agr~v = f in a domain U with
f €C%(U) contains a subsequence converging uniformly on compact subdomains to a solution.”
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3. Analysis in weighted spaces

Uz the function induced by vz on R™\ K. But we know that Green’s function
|-|*™™ is also harmonic. Let K [0z] be the Kelvin transform of v, ie :
By \{0} — R

K |vz] :

According to [ABRO1, Theorem 4.7|, this function is harmonic. According
to the pointwise estimate (3.1.16), the limit lim, o Uz vanishes. Therefore,
applying [ABRO1, Theorem 4.8], K [5;(] has a removable singularity at the
origin and the maximum principle leads us to :

sup K [0z] (y)] = sup |K [0z] (v)]-
YEB, 2 lyl=1/p3

In other words, we have obtained a new pointwise bound for v :
n > 2
vz e R}, \ K, lvz(z)] < C Hff(HCﬂ;‘,f(Rf*) 2

Note that this inequality is stronger than the previous one for = large enough
since 2 — n < p. Indeed, we conclude that vz belongs to L7, (Rf*)

The f,-part : by similar arguments, we prove that there exists v, € CZQO’? ( f*) a
solution to the problem Agnv, = fo On R{f* with the estimate

vz € R}, lvo(z)] < C Hff(Hcﬁ;ﬁ(R;f*) ", (3.1.17)

where C' = C (n, p, v).

To deal with the case x — p with p = pj_11, - , Pin,, We use classic results
about isolated singularity for harmonic functions(Cf. [ABROI), theorem 10.5])
to show the singularities at P are removable since v > 2 — n. By maximum
principle, we find

sup [vso(@)] - < Cllfglloveeey Do el
|z|<p3 " p=pi_1a. Pl
for some positive constant C' = C (n, u, v).

Collecting previous cases : we are now able to solve the problem (3.1.14)). Let
V1= Uz +Us. By linearity of the Laplacian operator, it is clear that Agnv = f.
It remains to see why v belongs to the Holder weighted space Cﬁ:ﬁ (R?*)
Collecting all previous estimates, we see that

ve I, (RL) NG (RY)

and there exists ¢ = ¢ (n, u,v) > 0 such that

e, @) < M les )

We now have in mind to obtain the same type estimate of for Holder spaces as
in L>. We only prove that the estimate for case |x| very large ; we can prove
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Chapter II. Construction d'hypersurfaces minimales de type Riemann dans R x R

in the same way that the estimate in a neighbourhood of the singularities.
The key of the proof is the Schauder’s interior estimates (cf. [GT01, Theorem
6.2.]). More precisely, for |z| large enough, we work on an annulus Ag with
R big enough and we boil down to the case A; after a contraction ; we apply
the estimate to this new function and we perform a dilatation to return to the
case |z| large. First of all, since for R > p., the set B? N Ap is empty, we have
the estimate

2
s < CRY ||l

2 o 2
+ R—l/ sup (rk’—‘,—a sup |V U(l’) V U(y)|> 7

R<2r<2R TAYEA, ‘.T - y‘a

therefore, applying Schauder’s interior estimates, there exists C' = C (n, a, v, 1)
that does not depend on R such that

IWlezean < Clifllesean

from what we conclude that

[ollza < Cllifllcoso) -

By using exactly the same method in the BP and K, we finally end up with
HUHcﬁfj(Rﬁ*) < C HfHCB‘L’f(R?*) s

where ¢ = ¢ (u,v,a,n,l).

Uniqueness : It is again an application of the maximum principle. Assume that
we have two solutions v; and vy to the problem (3.1.14). Then vy — vq is
harmonic on R}, and belongs to Cﬁﬁ (R?*) So, if p=pi—11, ,Pin, Pis a
removable singularity since p > 2 — n. Therefore v; — v, is bounded over all
compact sets. Moreover, since v < 0,

(v —vg) () — O,
|x|—o00
then, v; — vy is bounded over R". According to Liouville’s theorem [ABROT,

Theorem 2.1|, v; — vq is constant ; but the behavior at infinity implies this
constant is necessarily 0, in other words v; = vs.

Using exactly the same arguments, one can prove the following :

Proposition 3.1.9 — Assume that p,v € (2—mn,0). Then there exists some
constant ¢ := ¢ (u,v,a,n,l) such that for all ¢ > 0 and for all f € Cﬁ:;:;ﬁz (RP,).
there exists one and only one function v such that :

AR"U — f over Rn ’
. Ck’a . p l,er 3.1.18
veCl,, ( z,e) an { v =0 ondRp,. ( )
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3. Analysis in weighted spaces

Besides, for such a solution v, we have the following estimate :

[v] ch(ry,) < c ||f|’c2f‘2w72(ﬂgﬁe) . (3.1.19)

We note A, 65:533_2 (]R;fe) — Cﬁ;,‘j (RZE) the right inverse.

Note that the important point is that the constant ¢ does not depend on e.

3.2 Harmonic function
3.2 — (a) The harmonic extension on R" \ B;

In the previous proposition, we have studied the problem of a prescribed Lapla-
cian with boundary data equal to 0 over R}'_ and the result corresponds to the part
“fixed point theorem” we will apply later to build minimal hypersurface in a neigh-
bourhood of the graph of I'c,; .. However, we also must consider the problem of
prescribed boundary data that will be the key of the gluing process.

We look for an operator W€ that is equivalent to an exterior harmonic extension.
Indeed, we are interested in the following Dirichlet problem :

{ AgnWe(®) =0 over R"\ By;

(3.2.20)
We(®) =& over 0B, =S;

where ® belongs to L? (S). The role of Fourier decomposition is fundamental. Ac-
cording to [GHLI3, Corollary 4.49 and Lemma 4.50|, the eigenvalues of —Ag: are
the \; := j(n — 2+ j) for j € N. Moreover, by |[H668], there exists some constant
¢ = c(n) such that for all j, for all eigenfunction ®7 that belongs to the j* eigenspace
E’, we have the following Hormander’s estimate :

. weo
||(I)]HL°°(S) SRS |>\]| ‘ ||(I)JHL2(S)’ (3221)

and according to [Don06], the dimension of E7 is bounded by
e N7 (3.2.22)

Furthermore, the L2-orthogonal basis of the E7 span L?(S), thus we can write

Notation 3.2.1 — It will be convenient to write 7/ the orthogonal projection on
the eigenspace E’ and 7+ the projection on the modes j > 2 : thus we could
decompose ® as P° + d! + d. Besides, recall that the mode 1 is spanned by the
(- ,e;) for i € [1,n] ; we write "' the orthogonal projection on the eigenfunction
(- ,e;) and we could decompose ®' as > &Y (- |e;). Note that ®° and the P+
are real numbers.

Let I be a real interval, bounded or not. We note £+ (I x S) (resp. £°(I x S)
and &' (I x S)) the set of function f on I x R such that for all s € I, the function
f(s,+) : S — R belongs to £+ (resp. E° and E').
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Proposition 3.2.2 — There ezists some constant ¢ = c(n,«) and one and
only one linear operator W¢ : C**(S) — Cg:;n (R™\ By) such that for all
® € C*>*(S), W¢(®) is a solution to Dirichlet problem (5.2.20) that belongs to
the Holder weighted space Cg:;‘_n (R™\ By). Besides, we have the following esti-
mate :

W @)z gy < clDllen: (3.2.23)
More precisely, one can refine this kind of estimate : if ® # 0 and jo :=
min {j : &I # 0}, then W¢ (®) is an element of Coy (R™\ By) and

0,2—n—jo

[We(@)]lc20

0,2—n—jo

®n\B) S € ||(I)Hc2,a(s)' (3.2.24)

Note that ¢ does not depend on jg.

PROOF
Using similar method to the proof of proposition |3.1.8) one can demonstrate the
existence and the uniqueness of such a solution, as well as the estimate (3.2.23).
However, there exists another proof (by explicit construction of the solution) that
leads to better estimate (3.2.24).

Formal solution : if & = 0, then it is clear that W*¢(®) = 0 is the solution.
Otherwise, we formally define

i [T
We(®):x €R"\ By — Y |z[*"7 @ (W)
J=jo t
It is an easy calculus to check that if this series has good properties (uniform
convergence, ...), then it defines a solution. So, it is enough to prove the

convergence of the formal series to conclude.

We (®) has the right weight in L*° : using Hérmander’s estimate (3.2.21)), we
have :

o (S < el el o

|$’27n7j HL2(S) :

But, since ®7 is the L2-orthogonal projection on the eigenspace E7,
i12 2 2
H(I)]HLz(S) < HCI)HLZ(S) g Vol (S) ||CI>||L°°(S) )

and thus there exists some constant ¢ = ¢(n) such that for all 7 € N, following
inequality holds :

H(I)jHL2(S) < Plpes < ¢ [Pllerag) -
We can deduce

We (@) (2)] < e a TR g D T INT (3:2.25)

Jj=jo
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3. Analysis in weighted spaces

Observe that for all i € N*, since \; ~;_, j2, this series uniformly converges
on R™\ Blﬂ/z So we just have proved that W€ (®) is well defined for |z| >
1+1/i and is an element of Lg%, . (R™\ Bi11/;). It remains to prove that

(R*\ B)) NCH* (R \ By).

it also defines an element of L&° o

0,2—n—jo
We (®) has the right regularity : From standard estimates for elliptic operators
(JAub82, Theorem 3.58]) together with an induction argument, one can demon-
strate that for all £ € N, there exists some constant ¢ = ¢ (n, k) such that for

all 5 > 79, we have :

k
Hq)ijzk,z(S) < c ||q)||CQsQ(S)Z|)‘j|l'

We apply Sobolev imbedding theorem for compact manifold ([Aub82, Theorem
2.20]) with ko := [ + 1+ ]| to see that ® belongs to C**(S) and there
exists some constant ¢ = ¢(n, ) such that

Hq)chZa(s) < e P()) ||q)‘|c2,a(s) 5

where P, denotes a polynomial expression of degree 2ky. Let us fix ¢+ > 0 and
let A; be the annulus Bi; \ Bi41/; which tends to R™ \ B;. Then collecting
previous inequalities, there exists some constant ¢ = ¢(n, «, ) such that

o ‘ 1 2—n—j
H’l“Q_n_J(I)]HCQ,a(Ai) < CH(I)HCQ%"(S) Pn(j) (1_‘_;) ’

which is the general term of a convergent series (With index 7). Therefore, for
all i, We (®) belongs to C>* (A;), thus belongs to C;.* (R™ \ By). Now we know
that W (®) is a well defined harmonic function in R\ By, thus by maximum
principle and inequality (3.2.25)), for all 1 < |z| < 2:

We (@ < o o 22— |\ |
W @) @) < max (@] s 5 ¢ [Plleza 227
Jzjo
< 00,
50 W*(P) € Lgh_,j, (R"\ B1) Nt (R™\ By).
In weighted Holder space : To conclude with the derivatives of W€ (®), it is
enough to apply Schauder’s estimates : it is exactly the same argument as in
the proof of proposition [3.1.8] O

3.2 — (b) The harmonic extension on R},

Let & : 6’]R" —— R be a C*“ function. We use the construction of harmonic

functions on R" \ By in proposition [3.2.2] to define the following harmonic extension
on R?, :

he i1 € R —» 3 vve(cpp)(x;p)Jr Z W@(@)(x;).

€
P=PI—1,15"""Pl—1,n;_4 P=D1,1,""" Pl
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The reader will pay attention to the boundary data of hg. Indeed, in each sin-
gularity py ;, the terms that come from the py ; for (K,j") # (k,j) create small
perturbations of the boundary function & we want to prescribe, namely a contri-
bution whose rough estimate is 772, Tt is the object of the following proposition
whose result arises from the previous one [3.2.2]

Proposition 3.2.3 — The function he belongs to Cgfng_n (RZG) and there exists
c=c(n,a,l) such that
n—2
”hq)”cgfnzfn(Rfé) < cCrTe H®HCQ,(X(8R?) s (3226)

where we have defined

1®]lceniorey = max {112 llcrae) } -

P=Pi—-1,1,"""»Pl,n;_4
P=P1,15"" Pl,n,;

Moreover, near the boundary OR},, for allp=pi—11, "+ ,Pin,, we have

< el zagom

he () — W* () (x _p>

Te

C2e(pt+Are)

4 Deforming Green’s function to find a minimal
graph

In the previous sections, we have developed two essential points :

e How to build small catenoidal “necks” by using the harmonic Green’s function
Leore and how to deal with the main part of the error to the minimal graph
equation.

e A thorough analysis of the Laplacian operator in R™. It should be noted
that in our case, we rather consider it like the Jacobi operator over the
hyperplane {z,,1 = 0}, in other words, the differential of the mean curva-
ture. Combining surjectivity with vanishing boundary data and the harmonic
extensions with prescribed boundary data, we are in a position to solve a
more general problem Ag.f = g on R} with boundary data e + @ +
(small term in comparison with ).

For all function ® over IR}, let define wg (that continuously depends on the

weighted points) by we := Teore + ho. Let p,v € (2 —n,0). From the writing of
minimal graph problem (3.0.12)), if v is a fixed point of the operator F defined by

Coo (R) — Cip (R}
v — AL (G (we +v)—A(Cor)),

Hsv,e

F

then we + v satisfies the minimal graph equation.
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4. Deforming Green's function to find a minimal graph

4.1 A fixed point theorem

We propose to prove a fixed point theorem for the operator F. The reader will
keep in mind that we will perform similar method for the deformation of a truncated
catenoid. We briefly expose the reasoning.

e We analyze the image of the function 0, especially its rough estimate R, in
order to find one suitable radius 2R for a closed ball centered whose image by
the functional F is inside itself.

e We show that the functional is %—lipschitz over a closed ball with radius 2R.
Thus we could demonstrate F has a fixed point. Note that even if it is enough
in our case, one could prove that for all 0 < £ < 1, F is k-contracting over a
ball whose radius is R + a;, where (a;), tends to 0 when & tends to 0.

4.1 — (a) Definition of the operator F

First and foremost, we have to justify that F is a well defined operator for some
suitable weight parameters. By proposition [3.2.3] together with the definition of
[eore, the functions I'cor . and hg belong to the weighted Holder space C;f‘n (RZE),
which is included in C3 (Rp,) for all p,v € (2 —n,0), from what we conclude that

G (we +0v) €C%5 o (R]

lve), and the conclusion holds.

41 — (b) The wg-part
Here, we want to estimate the contribution of the term wg in the definition of
the operator F ; in other words, we are interested in the study of F (0). According
to the construction of Green’s function, the corrective term Cor and the harmonic
extension he (3.2.26)), there exists ¢ = ¢ (p, n, a, 1) such that
el (z) = O (er* ™), Cor (z) = O (€er'™")

and

he (z) = O (r22r* || @) .

Let us write

|G (we) = ACor|(z) < [G (Leore) = ACor| (2) + G (wa) = G (Teor.c)| () -

First term : We already have an estimate that comes from the construction of
the corrected Green’s function I'co, ., namely the estimation (2.2.11)) in lemma
. there exists ¢ = ¢(n, ) such that

||g (Fcor,e) - ACOTHCO’QQ 2(R" ) < Cer?n—Bri—Qn—(u—Q) = CET?—H_M'
n—2,v— l,e }

Second term : Here we use a Taylor formula. More precisely, computation proves
that the differential of G is such that for all f and g, we have

_ V%V V) +2VEf(VEVe) (VL V9)G(f)
dgr(g) = LT 2 T
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We have in mind to apply the mean value theoremﬂ

Hg (WCD) - g (Fcor,e)Hcﬁflu_Q(Rﬁe) < sup Hdng HCWD - FCOT’E”C;Q/,S (R?,e) .

fE[Wévrcor,e

If we choose ® such that its norm is smaller than xer. in the space C* (RZG),
then Cor and hg have same rough estimate, namely

|Cor| (z) < cer. and |he| (x) < Keere.

Thus, for all function f in the set [we, [eor |, it is possible to decompose f as
f=el+ f, where ‘ﬂ (1+ R) cere,

that is to say fis very small in comparison with Green’s function el’. Then
we check that for all function g in C2% (R7,), for all  in R}

les

dGs (9) (x) < | 4 &2 4 (% 2")2] gl (ep) -

So, for a parameter € small enough,

190G Dleze,, o) < e Mol mp)-

By similar calculus, we finally end up with
4Gl < et
Besides, since wg — I'core = ha, the estimate (3.2.26) implies
qu> - FCOT,E||0513(RZ€> < C’rﬁ_'u ||®”CQQ(8R?€) .

Using the two previous inequalities together with ||®|| .0 /inn \ < KETe, We get
c2e(oRry, )
|G (we) — G (FCO”)HCO o o (RD) < ke rPTIH = crer™ R

Conclusion : For the parameter € small enough,

|G (Ceore) — ACOT”ClOaQV () < cperli (4.1.27)

4.1 — (c) The contraction mapping

Proposition 4.1.1 — For all p,v € (2 —n,0), there exists some constant ¢ =
c(n, p,v,a) >0 such that for all k > 0, there exists €, > 0 such that :

for all e € (0,¢,), for all ® which satisfies HCDHCQ,Q(aR?) < Kkere, F maps the ball
AB of radius 2cer™", centred in the function 0, which is contained in Cg:‘j (RZG),

into itself and is a %-Lipschitz operator in the ball B : for all vi,vy € B,

1
|F (v1) — ‘F(U2>”Cilg(Rﬁe> < B l|vr — UQHC;Q/,CVX(RZG) . (4.1.28)

n—2,v—2

3. In this case, we work with the operator G : CZ‘;?,‘ (]Rfe) — 0 (RZG)
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4. Deforming Green's function to find a minimal graph

PROOF
The image of 0 : According to previous estimate (4.1.27)) together with the esti-

mate of the norm of operator A;}/ (3.1.19)), there exists
c=c(n,prv,a)>0

such that

123

Hf (0) Hcﬂ:‘; (R?{e) < cqert”

Note that it is this estimate which conducts us to the choice of the radius of
2. Besides, p € (2 —n,0) implies that for small € (and thus for small ),

n—u 1—p
erl TH << er. M,

thus F'(0) is small in comparison with the corrective term Cor, the harmonic
extension hg and the first order term of el

The Contracting part : let vy, vo € Z. To deal with the difference of the F (v;),

we make use of the PDE they satisfy. Thus we obtain
A(F () = F(n) = Gws+v1)—G(we+v2).

According to Taylor’s theorem, we get

I (wo+ 1) = G (wa + ez, (ep,)

—2,v—2

< sup 4G [Hlvr = vallz.e (gp ) »
felwe+v1,we+v2] ' “

therefore it is enough to estimate the norm of the differential of G. It is
the same kind of computation than the one we used previously, except f
belongs to [we + v1, we + v2] and not to [we, Leor|. However, since v; is small
in comparison with we, if f is an element in [wg, [eor |, its main part is given
by eI’ and it follows that

2, 2-2n
sup  [ldGgl| < e
felwa+v1,we+v2]
and conclusion holds since A1 is a continuous linear operator. U

Hyvs€

4.1 — (d) A theorem of existence

If we apply a fixed point theorem with parameters

{(al—lﬂvl”—lﬂ)v"' 7(ahnm]%ﬂw)}

for the operator F, one deduces the next theorem.
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Theorem 4.1.2
For all p,v € (2 —n,0), there exists some constant ¢ = ¢ (n, ju, v, ) > 0 such that
for all k > 0, there exists €¢,, > 0 such that :

for all € € (0, ), for all © which satisfies || Q|| 2.0 orn) < K €Te, there exists v
satisfying following assertions :

(i) Teore + hao + ve satisfies the minimal graph equation on R},

(ii) ve belongs to C2% (Ry,) with
T

(15i) The solution ve continuously depends on the weighted points.

4.2 Description of the solution near its boundaries

We have seen that there exists vg such that the surface whose parametrization
is given by el' 4 hg + vg is minimal, but we do not know much about the boundary
data of this minimal hypersurface ; by construction, we only can say that he + ve
looks like I'cor  + P on its boundary. But we have to give a more accurate description
for gluing process. Instead of looking this problem on JR7,, it is enough to consider
the case near one of the balls B (p,r.) for some p = py ;, the other cases can be
deduced from this one. We dilate the function near a neighbourhood of p + 0B,

into

A1—>R

Uepx T —> (Fcor,e + he + 7)<I>> (p + Te :E) )

where A; is the open annulus B, \ B; and the index & is — (resp. +) when k = [
(resp. k =1—1). We omit it until the end of this section to relieve notations.

Theorem 4.2.1
(i) ua, is an element of C* (A;) and

[uap = Ceore (rer) = WE () lpnaa,y < crert™ (4.2.29)
in particular, if a, = ay; (resp. a, = —ay;) when k=1 (resp. k=1—1)

and £ is — (resp. +) when k =1 (resp. k =1 — 1), the difference function
09, defined by

(n —2)°
2(3n —4)

aser. |z|* %"

Vo, () = usy,(z)— (aperf_” |x|2_n +

+ OkJ’:tG + €T <$, Fk,j,:i:> + We (q)p) (.I) ) s
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4. Deforming Green's function to find a minimal graph

18 such that

Poplleza,y < ce r? (4.2.30)
and it depends continuously on the weighted points
((01—1,17131—1,1) yT s (GZ—l,nl,ppl—l,nl,l))-

(ii) If ® and ® are smaller than ker., then
Pop = 5,llnnis, < CErE =] aniop (4.2.31)

it follows that the map ® — 0, is a contraction for € small enough.

Remark 4.2.2 — As a matter of fact, inequality will be useful to describe
the behaviour of the minimal hypersurface near one of its boundaries p + 0B, and
thus for the gluing procedure. The second inequality is established because
we have in mind to apply an other fixed point theorem in the gluing process.

PrROOF
(i) First, note that

HU@ — el (Te') - we (‘I)p)ch,a(Al)
< e =W @) llezagay) + 102 (re)llezacay)

Using the proposition for the harmonic exterior extension part together
with the existence theorem for the ve part, one then checks that

Hu<1> - CF (’]”€~> — We ((I)P)HCQ»Q(Al)

< cr?—2 ”CDHCM(BJR{I ) + 2cerHrt

and inequality (4.2.29)) holds for € small enough.

Concerning the difference function 0¢ ,,, it directly follows from the expansion
of Green’s function I" in (2.1.5)).

(ii) Notice that

Hai’,po — 03 p, Hc2,a(,41) < e (rer) — U@(Te')ncza(m)
+ Hh‘i’ (re:) = We (D) — (}@ (re:) —W* @p)) Hc2=a(A1) ’

e To deal with the first term, we use linearity of the exterior harmonic exten-
sion operator together with the result of proposition to obtain

[he (rer) = W (@) = (hg (re) = W (D)) || 204,

< crtle- 6”@»&(8{@;;) :
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e To deal with the other term, we use similar tools to the proof of proposition
By construction, the difference vy — vg satisfies the PDE

Awe —vg) = G(we+ve)—G(wg+vg),

thus, if we use the same method than for the estimate of |G (we) — G (Feor.e) ||

and the continuity of the linear operator A7} we end up with

lve = vglleze (mp. )
< cr?il [th - hEHcﬁﬁ(]R{fs) +[Jva — %HC?L?(;(R&)} ’

from what we deduce, with the help of proposition that

(1= cr?™) [lve — vg| < e [0 =9 o

cus (Rp.) R, )’

where ¢ is a universal constant that does not depend on the parameter k.

Consequently, for € small enough, since er®! << 1,

lve = vallezgmp ) < ere™ 1P = @llan pogy -

and the conclusion holds. O

5 The n-catenoid

5.1 Some properties of the n-catenoid

The catenoid is a well known minimal surface in R? : it is the minimal surface
with rotational invariance whose boundary is given by two parallel circles. There
exists a generalization of such a surface in higher dimension : it is what we call the
n-catenoid. Since we need different explicit formula for our study, we briefly recall
the construction of this minimal hypersurface in R**!,

We are looking for a hypersurface of revolution around the ey, i-axis — the
“vertical” one — thus we choose a parametrization whose form is the following :
S xR — R
(2,8) — (p(s)2,6(5)).
where ¢ and 1 are unknown. The function ¢ corresponds to the radius while the

function v corresponds to the height. Then the metric g. of such a hypersurface is
given by :

X

ge = (@2 + W) ds® + @*ggn-1.

We enforce the equality ¢? + 1) = ? in order to ensure a conform parametriza-
tion g. = ©? (ds? + ggn-1). Therefore, the second fundamental form and the mean
curvature satisfy the relations

IT,

ds® + Yggn1 and H. %
2
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5. The n-catenoid

Thus, if we are looking a solution of H. = 0 for which we enforce ¢ to be a polynomial
expression in ¢, we find that the couple of functions (¢, 1) has to be a solution to

the ODE system given by
N 2—n.
{ o= (5.1.32)

@2 + S04—271 = 2
If we want the size of the neck to be 1, an explicit solution is chosen so that
@(s) = cosh ((n—1) s)ﬁ and P(s) = / ©* " (t)dt.
0

It will be convenient to use different formula to study deformations of the n-
catenoid. We collect them into the next lemma.

Lemma 5.1.1 — The unit normal is chosen to be
Ne=(—¢'""2,9/¢);
the second fundamental form is
II.=¢* " (1 = n)ds® + gsn—1) ;
the radius function is a solution to the ordinary differential equation

p=p(l+n-2)"). (5.1.33)

Besides, Taylor expansions provide us the behaviour of the radius even function o
near infinity

1
2 n—1 (

_ -1 3—2n)s 5—4n)s
p(s)=2"mn1¢€"+ P )8 4 S_)(’J)roO (eB4m2) (5.1.34)

and the height odd function 1
n=2 n=2
H 21 (2—n)s 2n-1 (7’L B 2)

- (4—3n)s (6—5n)s
LA M L Fans yy T Q. ),
(5.1.35)

where % denotes the half height of the n-catenoid, that is to say

b r (%)
H= M)At = =2/ m——

r <_2(n171)>

Remark 5.1.2 — The unit normal is almost vertical for large |s| ; it points up
when s tends to +00 and points down when s tends to —oo. Moreover, unlike the
case n = 2 where catenoids have infinite height, catenoids in greater dimension have
finite height H and admits two horizontal asymptotic hyperplanes.
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Chapter II. Construction d'hypersurfaces minimales de type Riemann dans R x R

Figure II.1: The catenoid in R™ x R has two asymptotic hyperplanar ends.

ProoF

Here, we only give the proof for the half height of catenoid. For convenient purpose,
we consider the catenoid of R™™ x R. First of all, integrating by substitution
u = cosh (nt)~", we find

+oo 1—n 1 1 _ntl
/ (cosh (nt)) ™ dt = —/ (1—20*)" 2 do.
0 0

If y is defined to be y = 1 + 2, then

_14n
n

/ " (cosh (nt)) ' dt = 2 [ - a2

n

where B denotes the Béta function. Therefore,

2 T ()

noT (=)

n

+oo 1—n
/0 (cosh (nt)) = dt =

The result directly follows from the application of the duplication Legendre for-
mula together with the analytic continuation formula

2 /T INE=Y ( 1) (n—l 1)
— = . and 'i——)=-2nl" +=]. 0
T +3) T
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5. The n-catenoid

5.2 Local description of a truncated n-catenoid near its
boundaries

We have in mind to glue a truncated catenoid with the graph of perturbed
Green functions over hyperplanes. The catenoid has two ends, namely the horizontal
hyperplanes {xnﬂ = j:%} It is useful to write the parametrization of this minimal
hypersurface in a neighbourhood of those hyperplanes as a vertical graph, which
amounts to consider the height function over some annulus B (0,z.) \ B (0, z./2)
where z. is large when € is small. Let us make the change of variables defined by
z := ¢ (s) z. By Taylor expansion of the radius function (5.1.34), calculus leads us
to the equality

=2 el 1~ o240 1)),

4(n—1)
which could be written
1 1
=t (277 ol ) = gy e 4+ O (117

as well. Injecting this relation into the Taylor expansion of the height function

(5.1.35)), we find
H 1 1

—1 2—n 4—3n 6—5n
== - — - @ ) 5.2.36
Wl o) = 5 = g e = g g T O (e (230
for the upper part of the catenoid. As regards the lower part, it is enough to multiply
this equality by a factor —1.

Remark 5.2.1 — The first non constant term corresponds to Green’s function
whose singularity is at the origin. This highlights once again the essential role
that Green function plays in the theory of deformation of minimal hypersurfaces.
Furthermore, we could have computed the second term with the help of the minimal
hypersurface graph equation in R" : it exactly matches the correcting term Cor we
have introduced for I'. More accurately, one easily checks that

Age (m \'|4_3n) = —(n—1) ]z

o) ) ()

5.3 Rescaling of the n-catenoid

The upper part of the catenoid can be parametrised by
r €R"\ By — (z,u(x)),

where u () =1 (s) =1 o' (Jz|) ; remark that the choice of B; is done in such a
way that ming ¢ = 1. Besides, the behaviour of u when s is large (or |z|) is given

by (5.2.36)).
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Let n > 0 be a small dilation factor ; we rescale the n-catenoid by 1 to find
following parametrization with y :=nx :

1 3(n—1) |, |43 A (5(n—1) |, 6=5
SR Py O (P [y P

— H 1 n71| ‘2—n
(Y y,n n Y 2 (3n — 4) 450
Since we have in mind to glue a catenoid with the minimal surface we have con-
structed for the hyperplane-case, at the point py ;, we choose 7 to be

1 1

My = (n—2)7 af e, (5.3.37)

It is essential for a good understanding of the situation to notice that for an arbitrary
choice of parameters ay, ;, the catenoid C), . has — a priori — a different height from
the other catenoids Cpk,,]_/. However, we will see in gluing process that for fixed k,
the <ak’j)j€[[1,nk]] are almost equal ; in other words, the catenoids we glue between
levels k and k£ 4 1 have almost the same height.

Remark 5.3.1 — For such a choice of 7, the coefficients in front of |z|*™" are the

same for the catenoid and for Green’s function eI'. Besides, if we want to enforce

the coefficient |x]473" to have the same rough estimate than the term (-, F') of I'¢op,
2

we find €3r373" ~ er, : this is why we define the radius r. to be equal to ¢3-1.

In terms of r., we have following relation :
2 2
re = ((n—=2)ar;) @00

Therefore, we note that the coefficients of Taylor expansion are given by

2—n
—e€ay ; for lx|"™,
1 3 4-3
—m (n — 2) (Z%JEB fOY |l’| " s
in other words, they coincide with the expansion of the function I'c,.. we have
introduced in the hyperplane case near p; ; — see the section

Since |z] = ¢ (s), it will be convenient to define a large real number s, ; as
follows
1 1 -1 Te
©(Sehj) = —Te, i.e. Sekj = ( )
T o Nk, j

To relieve notations, we omit the indices k and j for all sections concerning the
catenoid. To clarify the context, it is very useful to have estimates of the different
quantities based on € we use in this paper :

Te N
S¢ ~ Inf|— ~ € 31,
e—0 n e—0

Notice that the equivalence does not depend on the point py ;.
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5. The n-catenoid

5.4 Some operators on the n-catenoid
5.4 — (a) The Jacobi operator

The Jacobi operator is interpreted as the differential of the mean curvature op-
erator. Like in the hyperplane case in which we have given an accurate description
of the Laplacian, we have to develop similar propositions for the catenoid.

By construction, the metric g, on the n-catenoid can we written as g. = ¢* (ds? + ggn-1).
Thus, the Laplace-Beltrami operator is given by

1 1
A, = — 0, (0" 20,) + — Agn-1.
Spn (SO ) ¢2 S

The Jacobi operator on the n-catenoid and its conjugate. Recall that we can

write .
m = (1—n)p L 0 ’
O 90 ”gS7171

so we obtain the expression of the Jacobi operator J. = A.+ |AC|2, where A. denotes
the shape operator :

1 . 1 o
Jo = — 0 (¢"%05") +E Agni4n(n—1)p 2"
The conjugate operator on the n-catenoid. Since the above expression is rel-
atively inconvenient, we rather choose to study the conjugate operator L. defined

by

L. = gpnTHJC (gpz_Tn >
Then a direct computation shows that
2—-n . _, n*—6n+8 ., _ _
L. = 8§+T wp 1_T @ 94+ Agnr +n(n—1) "7

Using the differential equation (5.1.32)) for ¢ together with the expression of the
second derivative (5.1.33)), we end up with

-2\’ 3n — 2
Lo = &+ Mgt — (“ 5 ) L 71 ) o (5.4.38)
whose formula is relatively simpler than the one for the Jacobi operator. Note that

the potential term is bounded and is almost equal to (”7_2)2 when s is large. We

will use this fact in the study of the Fredholm properties of this operator.

5.4 — (b) Jacobi fields and conjugate Jacobi fields

Definition 5.4.1 — A function f is a Jacobi (resp. conjugate Jacobi) field if .J. (f)
(resp. L. (f)) vanishes everywhere.

An efficient way to produce such fields is to consider the space of transformations
which leave invariant the mean curvature. These transformations provide elements
which belong to the kernel of the Jacobi operator since modify the vanishing mean
curvature. For the n-catenoid, there are three classes of transformations, namely the
translations, the dilatations and the rotations around the vertical axis Span (e,1).
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Jacobi field associated to dilation. In this case, Y = X, in other words, the
vectorfield associated with dilation is nothing but the position vector. Then we get

The conjugate Jacobi field for the conjugate operator L. is given by :

2—n

P = —p 4z ;@w. (5.4.39)

Moreover, ¢° admits the following Taylor expansion :

P (s) = aae%2 *+ bge_n%2 *+0 (6272371 S) : (5.4.40)

n—2

n—2
. ——=H 1 =
— 2(n—1) 4L _ = 2(n—1
with Qg = 2 ) 2 and bO = =2 22 ),

Jacobi field associated with the vertical translation. In this case, Y = e, 1,
the Jacobi field is given by (Y, N.) = % and the conjugate Jacobi field is

g = T 2 (5.4.41)
Moreover, ¢9 admits the following Taylor expansion :
¢ (s) = afe T i4bie T 40 (e% 5) : (5.4.42)

__n=2 _ n—2
with aar =927 2(»-1) gnd bar = % 27 2(n=1) .

Jacobi fields associated with the horizontal translations. Since the (¢;), .,
span the horizontal translations, it is enough to consider the case Y = e; for some
j € [1,n]. Then the Jacobi field is ¢'™" (2 , e;) and the conjugate Jacobi field is
given by

Yi(sz) = ¢L(s)(z,e) where gL = o5 (5.4.43)

Moreover, ¢! has the following asymptotic behaviour :

4—5n
25>_

Jacobi fields associated with horizontal rotations. In this case, we chose Y to
be such that the Jacobi field is

(YN = (97" +9¢) (2, e,

and the conjugate Jacobi field is given by

n

oL (s) = 2me’%s+(’)(e

69 (s,2) = ol(s){z,e)  where ¢ = w’%ww%g
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6. Fredholm properties of the Laplace Beltrami and the Jacobi operators

Furthermore, ¢! admits the following asymptotic behaviour :

6L (s) = are b i 40 (e) , (5.4.44)
where ay = 2770 and by =270 I,

Remark 5.4.2 — ¢}r’j is an even function while ¢'7 is an odd one. Besides, (b}r
exponentially decreases when |s| tends to co while ¢! exponentially increases. We’ll
see it is a central point for deforming a catenoid : we won’t be able to deform it
anyhow since we’ll have to enforce some conditions about the data boundary ¥ —

see the remark [6.3.71

6 Fredholm properties of the Laplace Beltrami
and the Jacobi operators

6.1 Indicial roots

The indicial roots of a second order elliptic operator play an essential role in
studying its mapping properties. They provide a relatively simple method to check
injectivity, surjectivity, together with asymptotic behaviour of functions. The reader
could find more details in the lectures [Pac(09].

Definition 6.1.1 — If £ is an elliptic operator on a cylinder M x R, we say that
a real number ¢ is an indicial root of £ in +oo if there exists a a C?>-function v on
M x R and a real number ¢’ such that following assertions hold :

(i) ¢ <0 ;

(i) Lm0 [Vl e (argsy) > 0

(iii) e 7L (e”*v) —> 0.

s——+00

6.1 — (a) Decomposition on eigenspaces associated with the sphere S"~.

We use here the tools of Fourier analysis we have given in section
Let us write, for all function w € C*>*(S"~' x R) the formula w = > w’,

where for all s € R, the function w’ (s,-) belongs to the eigenspace E7. It is the
same to write w’ = 77 (w), where the projection 7/ is defined in[3.2.1] More precisely,
if (%), denotes an orthonormal basis of E7, there exists w’ : R — R such that
for all s and for all z,

w(s,z) = Z (Z w’ (s) el (z)) :

J
Then one checks that L. (w) vanishes if, and only if, for all j € N, for all i €
[1,dim E;], L; (w’*) = 0 where

n@Bn—2) 5 4, n—2 \°

defines an ordinary differential equation.
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Remark 6.1.2 — e We recall that if P is a homogeneous harmonic polynomial
of degree j defined in R", then its restriction to the sphere S"~! is an element
of the eigenspace E7. Thus constant functions belong to EY and functions of
form (z, e;) are in E'. Therefore, the jacobi fields associated with dilation and
vertical translation qb(j)[ satisfy Ly (q%) = 0 and the jacobi fields ¢fj associated
with horizontal translations or rotations satisfy Ly (¢1;) = 0. In particular,
the kernels of Ly and L; are non empty.

e Moreover, ¢, (with i € {0,1}) satisfy an ODE whose form is given by " +by =
0 and we notice that the coefficient in front of 3’ vanishes. Consequently,
the wronskian w’ of (¢, ¢ ) is constant. More precisely, w® = 1 — n and
w' = —n. For practical purpose, we multiply ¢, by real constants ¢!, such

that the wronskian of the family (¢, ¢, ¢’ ¢" ) is equal to 1.

6.1 — (b) Indicial roots of the operator L;
Let us note ¢; := ”T_z + 5. We easily check that

n(3n —2)
4
But the term p?~?" (s) exponentially tends to 0 when |s| tends to infinity. Indeed,

the contribution of the term “®2=2) ,2=2% (5 in the operator L; (or L) near infinity
can be “neglected”. More precisely, we the following lemma.

Lj (eigjs) _ g027271 (S) eidjs.

Lemma 6.1.3 — The indicial roots of L; are £6;.

Corollary 6.1.4 — The indicial roots of L. are the same than the operator 0% +

Agn-1 — ("772)2, namely the £0; for j € N.

PROOF (OF LEMMA |6.1.3])
Note that

efé’sLj (ei6j5> 9:00 We@Zni@J’)s g} 0
provided 0" € (£d; + (2 — 2n),+4;), which is possible since 2 — 2n < 0. Therefore
+4; is an indicial root of Lj;.
It remains to prove that £¢; are the only ones. By [Pac09, 5.2.1], the indicial
roots of 92 — 07 are £0;. Therefore, if ¢ is an indicial root of L; and ¢’ < § together
with v are the associated real number and function with § (see definition[6.1.1]), then

o—'s (8523 B 5J2) (65511) _ e—é’sLj (6681}) + n (37;_ 2) 5 0, (s) o(0-3")s,,
— 0,
S—00

from what we conclude that § is an indicial root of 07 — 67 and conclusion holds. (]
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6. Fredholm properties of the Laplace Beltrami and the Jacobi operators

6.1 — (c) Injectivity of L.

n

Proposition 6.1.5 — Let § < —5. Suppose there erists some function w and
some constant ¢ > 0 such that

Le(w) = 0;
Vze S |w(s, z)| < c¢(coshs)’.

Then w = 0.

PROOF
We write w (s, 2) = >, w’* (s) €’ (2). Then, according to paragraph (6.1 — (a)l we
get L; (w?') = 0. Besides, for all s, w’"(s) is the orthogonal projection of w (s, )
with respect to the space Span (¢7), thus [w’’| (s) < |lw (s, )|l 2gn-1y ; therefore,
for all s € R,

lw”| (s) < ¢ (cosh s)’.
We claim that w’ = 0.

The case j = 0,1 : it is enough to remark that the conjugate Jacobi fields we
have described in span all solutions of Ly (w) = 0 and Ly (w) = 0.
More precisely, by Cauchy-Lipschitz theory, the dimension of the solutions to
the ordinary differential equation Ljw = 0 is 2. Moreover, £, has dimension
1 and E; has dimension n. Since (¢°,¢7) is a linearly independent family,
it spans ker Lg, just as the family (gbfj)je[[mﬂ span ker L;. But none of these
elements decrease as quickly than (cosh s)’. Thus w' = 0.

The case 7 > 2 : the idea is to apply a maximum principle. Indeed, we com-
pare the function w?? with one of the conjugate Jacobi fields we have studied
previously.

Since L; (w’’) = 0 and ¢, belongs to ker (L), we use the two differential
equations they satisfy to define

wy s — @2 (s) — tw(s),
where t denotes a real number. Then w, satisfies
Li(w) = —@G-1Dm-1+j)¢ 2 < 0 (6.1.45)

because j > 1.

Moreover, we know the asymptotic behaviour of ¢ (see (5.1.34)) and w’* near
infinity :

wie) = 0 (wn@) (= 0 (F).

|s|—o00 |s| =00

It follows that w; is non negative near infinity.

Reductio ad absurdum, suppose w’? does not vanish everywhere. We then
choose t in such a way that w; is positive on R and vanishes in at least one
point sg. Therefore w; reaches its minimum 0 in sy and @; must be positive :

it contradicts the inequality (6.1.45)). U
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One proves with similar method the following proposition.

Proposition 6.1.6 — Let 51 < so. Suppose there exists some bounded function
w : [s1,80] X S — R such that

Le(w) = 0;
VS € (317 52) , w (87 ) € Edjl ,
v] S {1;2}7 U](Sj,‘) = O

Then w = 0.

6.2 Analysis in weighted spaces

We have seen in the proposition that when we enforce a certain behaviour
of a function near infinity, we can give some properties about the action of operator
L. on such a function. This is why we consider our problem in well chosen function
spaces : the weighted spaces. The reason is quite similar to the hyperplane case.

Definition 6.2.1 — Let ¢ be a real number.
e Let p € [1,+0c]. We define the weighted space L§ on R x S*~! as follows :

LE(RxS" ') := (cosh s)° LP (RxS™),

endowed with the norm ||'||L§(R><S”*1) defined by

)
HfHL{;(RXgn—l) = H(Coshs) f‘

Lp(RxSn-1)

e Let k € Nand a € (0,1). We define the weighted space Cf“ on R x S"! as
follows :

cy® (RxS*") = (cosh s)° Che (RxsS™),

endowed with the norm ||~HL§(RX§”,1) defined by

-6
||f||c§’a(RxSnfl) = H(COSh 8) f

ch.a(Lp(RxSn—1))

Heuristically, a function f which belongs to some weighted space is bounded by a
constant times (cosh 5)5 : it prevents functions from exploding too fast. Differential
operators on weighted functions have a kernel and an image that depend on the
choice of the weight parameter §.

Remark 6.2.2 — One can define in the same way the weighted spaces LE (I x S"!)
(resp. Cy® (I x S*1)) where I is an interval of R.
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6. Fredholm properties of the Laplace Beltrami and the Jacobi operators

Remark 6.2.3 — Unlike the case of weighted spaces on hyperplanes, for all £ > 2,
the operator L. satisfies

Le: G (Rx S — ¢ (Rx S"71),

and the weight parameter § does not change. Mainly, it can be explained by the

fact that the derivative of an exponential e is also e’ while the derivative of 0 is
5—1
ro—t

According to the proposition [6.1.5] we obtain Fredholm properties for L. on
weighted spaces.

Proposition 6.2.4 — Let 6 < —%5.  Then L. : C*(R xS —
C(?’“ (R x S™71) is an injective operator.

Previous proposition is an injectivity property, but we do not know yet if there
is surjectivity or isomorphism. It is the object of the following proposition.

Proposition 6.2.5 — Let § € (%,”TH) Then there exists a constant ¢ =

¢ (0,a,n) such that for all f € C3* (R x S" 1) N EL (R x S™Y) (recall £ is de-
fined in notation , there exists one and only one function v such that :

e Cy*(RxS™);
! i >’1 (6.2.46)
L.(v) = f over RxS"
Besides, for such a solution, we have the following estimate :
||U||C§‘°‘(R><S”*1) < c ||f||cg’°‘(IR><S"*1) : (6.2.47)

We note Lc_;l L O R XS NELR xS — CP* (R x S the right
inverse.

PrOOF
Before giving the details of the proof, we briefly explain the main ideas. First, we
first study the compact case : we solve the PDE on a compact set (sg, s1) x S"~! and
we give an estimate which depends a priori on the choice (s, s1). Next, we prove
by contradiction that, a fortiori, the estimate does not depend on these parameters.
In this purpose, we use the fact that
e a function which vanishes at a point x and takes value 1 at a point y with y
close to x has a gradient that explodes ;
e the Arzela-Peano theorem |[GT01, theorem 4.6] could be used to study a limit
PDE.
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Bounded case : We show that we are able to solve the problem over an interval
of the form [sg, s1], together with a right estimate, namely :

for all sy < s1, there exists a solution to

v o€ Cr*((so,s1) x SP1);
L.(v) =f over (sg,s1) xS" !

v =0 on {sg,s1}xS"L
Besides, there exists some constant ¢ such that we have the following estimate :

HUHC?Q((SO,sl)XS”—l) < ¢ Hf”cg’a((so,ﬁ)XS"_l) :
The existence follows from the injectivity of L. for bounded functions (propo-
sition [6.1.6]) together with the compactness of [sg, s1] x R and the self-adjoint
property of the operator L.

The constant depends neither on sy nor on s; : We only prove that it is the
case for s; and we conclude by symmetry. Reductio ad absurdum, suppose it
is not the case, i.e. suppose there exists a sequence (8,,),,cn- Of (5o, +-00) such
that for all m > 0, there exists f,, and v,, which satisfy

Le(vy) = fol
HmeLgo((so,sm)XSn_l) w 07
”Um||L§o((8()757n)><sn71) - 1
We then define a sequence ((s,, 25,)),, such that
* \—0 * * = =
(coshs? ) o (sh,20)] = HUmHLgO((so,sm)xgn—l) = 1L

We then compute a new function v}, which is chosen to be

. [so—st,s5m—si] xS — R
(s,2) +—> (coshs®) v, (s+ s, 2).

Remark that v, is nothing but a translation and a dilation of v, such that
|vf |takes value 1 at (0, zf)) and v, (s, — s5,, ) = 0.

We claim that (s,, — s;,),, does not tend to 0 : indeed, if it is the case,
the gradient of v, would degenerate near (0,z}) and it is impossible.
More precisely, note that for all s and z,

1) 1)
o (5,2)] < (coshs)®  and [ fon (5,2)] < (c8h 8)° | fonll e ety -

Moreover, using the PDE that v,, satisfies and after noticing that ¢*~2"

is a bounded function, simple calculation leads us to

|(8§ + Asnfl) (Um)‘ < ¢ (cosh sm)é,
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6. Fredholm properties of the Laplace Beltrami and the Jacobi operators

where ¢ = ¢(n). By |[GT01, Theorem 4.11|, there exists ¢ = ¢(n) such
that for all s in [s,, — 1, s,,] and for all z in S*!,

[Vum (s,2)| < ¢ (coshsy)’.

By Taylor’s theorem between (s, zp,) and (s, z,,), we then deduce that

1 < c(coshsy) [sm— sk,

thus
|sm —si| = c(cosh sm)_‘S
and this quantity does not tend to 0 since s,, > so and —§ > 0.

Even if it means extracting a subsequence, one can assume that the sequence

(sz,),, converges in R.

Now, let us write the partial differential equation the function v}, satisfies.

2 n—2 2 "
0% + Agn-1 — 5 vy (8, 2)

3n —2
= —% G (5 + 50 Ul (5,2) + Fon (5 + 5y 2) (6.2.48)
First case — s,, & 400 : We prove that we can extract a subsequence of

(v},),, which converges to a solution v’ to the following equation :

2
(83 + Agn1 — (" ; 2) ) o' (s,2) = 0. (6.2.49)

In other words, the contribution of the terms in the second member of
(6.2.48)) can be neglected when m is large since ©?>~2" tends to 0 when s
tends to oo and f,, converges to 0.

We first assume s, — s;, — co. The number ¢y is not equal to 0 by
previous claim. If @ is a fixed real number, we have a uniform bound for
the quantity
||vm||Cz*“([sjn—a,s;‘n+a]><8"*1) :

By Arzela-Peano theorem, one can extract a subsequence which uniformly
converges in C?%([s}, —a, s’ +a] x S™™1) to v%. Therefore, equation
(6.2.49) is satisfied. By an diagonal argument, one checks that it is true
on (—oo,cy) x S*L.

*
o0 ?

Besides, if we want the boundary data of v
itis 0 :

a simple argument proves

*

|Um (Sm - Sjm ) - U;o (CO7 >|
< (g = 03%) (8m = i )| 4 |5 (8m — s, 1) — V5 (<o, )|
— 0,
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: : . . N
and conclusion holds since v}, (s, — s5,,-) = 0.
Moreover, if we study the norm of v}, one finds

(cosh s) 7 v? (s, 2)

- ‘(cosh )7 (cosh s%,) " wp, (s + 55, 2)|

thus

~

||U:1HL§°((—oo,co)><S”*1) s © ||UmHL§°((so,s,,L)><S"*1) Sc

and v, belongs to the weighted space L$° ((—o0,cg) x S™71).

But, according to proposition vi = 0 and it is a contradiction with
103 (0, )] oo gn-1y = L.

With the help of very similar arguments, one also finds a contradiction
in the case s, — s}, — +00.

Second case — s, — S5 € R : like in the previous case, even if it means
extracting a subsequence, one shows that we can assume (v,),  uniformly
converges (on all compact sets) to a solution v, of the following partial
differential equation

L.(v) =0,

o
and we conclude in the same way as previous one.

Construction of a solution on R x S"! : we conclude in the same way of the
study of the hyperplane case. More precisely, one considers a sequence of
solutions on (—m,m) x S"~! with boundary data 0 and we let m — +oo. We
use the universal constant ¢ to conclude we have the right estimate (6.2.47)).

Uniqueness : if v; and vy are two solutions, then L. (v; — v9) = 0. But v; — v
belongs to C;* (R x S"~1) and is orthogonal to the modes 0 and 1. Moreover,
recall these modes are deeply linked to the indicial roots "7_2 and 4 while the
weight parameter § is chosen so that § > 7. According to [Pac09, proposition
12.4.1), v; — v2 = 0. 0

Proposition 6.2.6 — Let § €
c(9,a,n) such that for all f € Cg’
function v such that :

"TH) Then there exists a constant ¢ =
x S"1) N EYL (R x S*71), there exists one

(5
“(

2, n—1

) R .

vo€ GURXSTY; (6.2.50)
L.(v) =f overRxS" L

Besides, for such a solution, we have the following estimate :
Hv”cgva(Rxs'rH) < ¢ ||f||cg""(Rx§n71) : (6.2.51)

We note L' Co* (R xS NE (R xS ) — CF* (R x S™ 1) the right
muerse.
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6. Fredholm properties of the Laplace Beltrami and the Jacobi operators

PrOOF
Let us write f = f% + f! where f7/ belongs to £ for j = 0,1. By linearity, it is
enough to solve the problem with v = v + v! where L; (v7) = fJ.

Explicit construction of solutions : we use the variation of constants to define
solutions to L; (v7) = f7 together with the help of the construction of conjugate
Jacobi fields that belong to ker Ly and ker L;. Recall that the wronskian of
(¢, ¢",) with i € {0,1} is chosen so that it is equal to 1 — see remark
We check that

0" (s) = ¢% (s) /0 ¢° (t) fO(t)dt — ¢° (s) /0 o9 (t) fO(t)dt

and

vl (s, 2) = Z( L (s, 2) /0 S OV (4, 2) fY (L, 2) At — oM (s, 2) /0 S oM (¢, 2) fU (L 2) dt)

=1

are solutions.

Right weighted space and estimate : we have not proved that our solutions
v; belong to the space Cg’a (R x S*~1). By classical results on elliptic partial
differential equations, v; belongs to Clzof‘ (R x S"71). Tt remains to prove the
weight part. According to Schauder’s estimates, it is enough to demonstrate
that v; belongs to L (R x S"1).

For example, we deal with the first term of v, as follows : we use the definition
of the conjugate Jacobi fields together with the estimate

||fOHL§;°(R><Sn*1) Sc ||fHL§°(R><S”*1)

to get

s [ 0
0
< ¢ ((COSh 5)” + (cosh s)%) 1] Lo gy -

where ¢ = ¢(d,n). Doing similar computation for the other term, we finally
obtain

n—2

n—2
[vo (5,2)] < cllfll e @usny <(Cosh s)" 2 + (coshs)” 2 + (cosh 3)5> :

thus
HUOHL?(RXS"—I) < ¢ HfHLgO(RxSn—l) )
provided ¢ > %52 (and it is the case), where ¢ = ¢ (d,n). O
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Chapter II. Construction d'hypersurfaces minimales de type Riemann dans R x R

6.3 Harmonic extensions

Like in the case of the study of minimal hypersurfaces over punctured hyper-
planes, we make use of the harmonic function theory. As a matter of fact, the
previous analysis provides us a way to solve the problem L. (v) = f but we have not
yet prescribed a Dirichlet data. It is the object of this section.

Let us define the harmonic operator H,. as follows :

HC = 88 + ASnfl - 2 .

First of all, note that H. is also equal to L. — W(p%%, thus it is very close to

the operator L. when |s| is large. From a heuristic point of view, the solutions to
Dirichlet problems

H.(h) =0 d L. (h) =0
h(£se,z) = V¥ . h(£se,z) = ¥

are similar and have same kinds of estimate when s, is sufficiently large for a bound-
ary data ¥ on {#4s.} x S*L.

The reason for which we have called H, the harmonic extension is that there is
a deep link between H, on a cylinder R x S"~! and the interior harmonic extension
W on the ball By. Indeed, it is the same object in different coordinates.

The interior harmonic extension has the same type than W€, except it defines an
harmonic function on the interior of the ball By with prescribed boundary data while
We defines an harmonic function on the exterior of the ball B. Like in the proof
of proposition one checks that if U is a function on S*!, then the explicit
formula for W* (W) is given by

Vie B, Wi = ijqﬂ(i).

Moreover, if hy : (s,2) € [0,+00) x S"! — f.(s,2) € R is a solution to the
problem

{Hc(h\l’> =0 in [0’+OO>X8n_1’ (6352)

he(0,) = () on S,

then calculus shows that for all ¢t € By \ {0},

W) = [ he (—1og 1], é—,) .

Given an arbitrary boundary data W, we decompose each function ¥4 () =
U (&s,,-) defined on the sphere S"~! by using eigenmodes of the Laplacian. We
distinguish the modes 2, 3, 4 and so on from the other ones because we will use the
conjugate Jacobi fields to study the problem with modes 0 and 1.
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6. Fredholm properties of the Laplace Beltrami and the Jacobi operators

6.3 — (a) The modes 2, 3, 4, etc

Proposition 6.3.1 — There exists some constant ¢ = c(a,n) such that for
all U e C>*(S"1) N &L (S, there exists one and only one function hy in
cre([o, —|—oo) x S"71) which is a solution to the problem Besides, hy
belongs to Cn+2 ([0, +00) x S"™1) and following estimate holds true

||h\1;||62a ([0,400)xSn—1) =X C||\I]||62a Sn—1) - (6353)
T

Remark 6.3.2 — The weight parameter could be improved in some special cases
:if U # 0 and jo := min{j < 2: ¥/ # 0}, then we have same result with weight
parameter J;,.

Before giving the proof, we deduce from the above proposition the

Corollary 6.3.3 — There exists some constant ¢ := c(a,n) such that for all
S € R, and ¥ € C>* ({£so} x S"7 1) N EL, there emists one function hy in
Co™ ([—sg, +s0] X S"1) which satisfies the assertions :

loc

(i) hy is harmonic, i.e.

H.(hg) = 0 in [—so, +s0] x S"L;
(ii) hy belongs to C22, ([—so, +so] X S"71) and we have the estimate
2
_nt2
Hh\IjHCi’iz([—8(17+so]><S"‘1) < ccosh (SO) : H\IJHCZQ(S"—l) ; (6354)
2

(7ii) we have an accurate description of the solution in a neighbourhood of the
boundary, namely :

Hh\p (s,2) — S (Uy) (e5%2)

C2*O‘([SO 2,80]xXS"— 1)

< ccosh (s9)" ™2 H\I]”czagn 1. (6.3.55)

Remark 6.3.4 — Of course, there exists a similar result for the lower part of the
catenoid, namely the inequality

e (5.2) = T Cor oW (—w ) (e702)

02541([_507_50_’_2] XSn_l)

—(n+2)

< ccosh (sp) 9] 2.0 (gn-1y -

The reader will mind the change of signs in the interior harmonic extension.
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Chapter II. Construction d'hypersurfaces minimales de type Riemann dans R x R

SKETCH OF THE PROOF (OF PROPOSITION [6.3.1])
Either we use the link between W% and H, or one checks, like in the hyperplane
case, that

oo dim EJ
hy(s,z) = Y > e Wi(z)
=2 i=1
is a solution with weight parameter —dy = —”T“. 0

PROOF (OF THE COROLLARY) N N
It is enough to apply previous proposition. Let hy, (resp. hy_) be the solution
given by the problem (6.3.52)) with boundary data W (sg,-) (resp. ¥ (—sq,-)). We
define hy by B _

hy : (s,2) — hy, (S0 —8,2) + ha_ (so+ 5, 2) .

We easily check that this sum of translated functions satisfies H. (hy) = 0.
We deal with the estimate (6.3.54) as follows : we prove it in the L3, sense,
2

then Schauder’s estimates give the result in C>%,. The boundary estimate (6.3.55))

2
can be proved with same method by noting the equality

Equr (s —s,2) = e (s (Ty) (657, 2) . O
Remark 6.3.5 — Note that since ¢;, > "T*Z, the harmonic extension hg always
belongs to C;* (s, +00) x S*71) for all § € (%, 22).

6.3 — (b) The mode 0 and the s-odd mode 1

Unlike the method described in particular in the articles [FP00] or [KP07, Part
4] in which the gluing process is conducted by leaning the deformed catenoid in some
direction (in our case, we would need to look in the direction given by the force F'),
we will treat terms of order 0 and 1 by using the conjugate Jacobi fields because

they span the kernel of L. for weight parameter smaller than 7. However, we will

also prove that this approach is very close to that of harmonic extensions.
Definition 6.3.6 — For all function ¥ over {+s.} x S""!, we decompose its mode
1, namely U! as

vho= W+

EVEN

where W}, (resp. W? ) is s-odd (resp. s-even). By misuse of notation, we also iden-

tify the function Wl (resp. Wl ) with the vector W!,, such that W}, (£s,,2) =

even

(£l 4, 2) (resp. Wl (Ls.,2) = (VL. 2)).

even even?

Remark 6.3.7 — We say that en element VU is s-odd when ¥ (sg, 2) = =V (—so, 2),
in other words, when

U, =—U_ where Uy :=WV(+sp,).

o8



6. Fredholm properties of the Laplace Beltrami and the Jacobi operators

In this section, we cannot use the s-even Jacobi fields qﬁfj. This particular choice is
a fundamental point on which we have to enlarge upon. The nature of Jacobi fields
associated with rotation or dilation turns out to be very different. Indeed, a rough

n

asymptotic behaviour of ¢! is given by (cosh s)? which explodes when s is large while
the inverse phenomena occurs for ¢} which decreases like (cosh s)_%. If we chose any
function ¥ with no symmetry, we would observe that we have to make use a term
like ¢! and the solution we want to construct in the following proposition would not

be bounded in s = 0 : its rough estimate would be (cosh (so))%z. In other words, a
generic boundary data implies we do not control the norm of the solution and we no
longer are able to perform the fixed point theorem to deform a truncated catenoid.
Geometrically, this condition states that the axis of the deformed truncated catenoid
is straight.

Proposition 6.3.8 — There exists some constant ¢ := ¢ (a,n) such that for all
so € Ry and U € C** ({£so} x S ) NEY (resp. C>*({£so} xS HNEL,,
where E),, denotes the the s-odd functions of E'), there exists one function by €

C2% ([—s0, 50] X S™1) which is a solution to the following problem :

{LC(E\I,) = 0 i [—so, 80 X S"; (6.3.56)

by = U on {£so} xS L

Besides, ly belongs to C2% ([—s0, o] X S"1) (resp. C2*[—s0, s0] X S"1) and fol-
2 2
lowing estimates hold :

_n=2 .

1eolleze, (spsopxsnny S c(coshso) ™= [[W]laagny if U € E
2 n -~

(resp. < c(coshsg) 2 || coagn-ry P E EV).

Moreover, it is possible to have more efficient estimate near the boundary,
namely :

Jes (5.2) — -0 () (e, 2

C2:2([sp—2,s¢]xSn—1)

, —n+2 : 0.
< ccoshleo) [Wlczogeyy 4 W€ 51’_ (6.3.57)
ccosh (so) " [|Wleoagn-ry of W EE.
Remark 6.3.9 — Concerning the lower part, the same kind can be proved with a

change of signs in interior harmonic extensions, just like in remark [6.3.4]
ProOOF

Here, it us very useful to explicit the solutions since an accurate description of the
solution highlights the role of the harmonic extensions.
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Chapter II. Construction d'hypersurfaces minimales de type Riemann dans R x R

The mode 0 : Suppose U € E. We already know that the family (¢°,¢%) spans

60

the Jacobi fields associated with this mode. Thus we look for a solution fy
whose form is given by A\¢? + pu¢S. The boundary conditions for s = +sg
imply the following linear system

v,

\Ilf )

Gt o) ()
o=t (%éﬁiso) " 2¢§9E50>) v (%559(30) N 2&%%50)) '

from what we deduce

It is an easy computation to see it is really a solution to the problem (|6.3.56]).
It remains to check this function fg begins to some weighted space and to esti-
mate its norm. As a matter of fact, this directly derives from the construction
of Jacobi field (cf. (5.4.39) et (5.4.41))). First of all, observe those fields acts

n—2

as 90%, thus exponentially increases as (cosh s) 2, so £y is an element of the
weighted space L, ([—so, So] X S*71).
2

To estimate its norm, we use the Taylor expansion ([5.4.40) : there exists a
constant ¢ = ¢ (n) which does not depend on sg, such that for all s € R, , we
can decompose ¢, into

vy (s) = age™= *+ry (s)

where the function r; is much smaller than the first term, namely |ry (s)| <

ce™ "8, Therefore, the inequality

¢2 (8) o 6"772 (s—s0)
@2 (s0)

provides a way to prove

< ce™T (57s0) | (2=m)s _ 6(2_n)50{

Y

a2, 92 (5)
@2 (s0)

By doing likewise for the case s € R_, we finally end up with
H ° ()

@2 (s0)

—n=24
< ce 20,

e

< ¢(cosh 30)_%2

L%, ([—s0,s0]xS"1)
T

The calculus for the ¢ part is quite similar. We find
_n—2
HK\I/HL%O_Q ([—s0,s0] xS"—1) <c (COSh 80) 2 H\DHCQ’Q({iSO}XSn—l) .
2

the same kind of computation regarding the norm C>% ([—so, so] X S*~!) to-

gether with the Schauder’s estimates leads to the esti;nate .
Furthermore, in order to compare the solution with the harmonic extension,
the estimate can be easily checked by noting that W* (¥, ) = ¥, —
it is the constant term of the interior harmonic extension — and by applying
above inequalities.



6. Fredholm properties of the Laplace Beltrami and the Jacobi operators

The mode 1 : It is an argument quite similar to the previous one. Indeed, if
U, (2) =—=VU_(z) =), U (z,e;), then the solution is given by

_ 1,z'¢1_(3) 2 e,
o) = 2 e

The estimate (6.3.57) can be deduced from the equality
e (2) = "7 CTOW (W) (57, 2) -

6.3 — (c) To deal with the s-even mode 1

In the above proposition, we enforce the boundary data ¥ to be s-odd. However,
for a general case, there is a priori no symmetry in the weighted configuration
{ak.;, pr;}, thus no reason why the truncated catenoids of the gluing method could
have s-odd mode 1 boundary data. It turns out that for any function ¥!, we are
not able to solve the minimal surface equation with the method we use. To make
up for this problem, we rather solve a problem whose type is

H, = " (V,Jacobi fields)

where x is a well chosen real number. We explain the choice of this equation and
the choice of * in section

Proposition 6.3.10 — Let |x.| be a smooth cutoff function with values in [0, 1]
that takes value 1 for |s| > s — 1, vanishes for |s| < sc — 2. We suppose its
C>-norm does not depend on €. There exists a constant ¢ = c(n,«) such that for
all Wl . € C> ({£s.} x S"™'), there exists one function E\I’iven which is a solution
to the problem

Le(Tan,.,) (5:2) = =5 (L= e (5)) 64 () (Wl 2) over [ x §7°7,
Z\piven (£8e,2) = (Pl ...2) over {+s.} xS,
(6.3.58)

where M, is a large positive constant we determine during the proof. Besides,
f\péve belongs to the Holder weighted space Cza ([=se, 8¢) x S™71) and

2

even

< ccosh(s) 7 || @ (6.3.59)

2 ([—se,5] xS"1) evenle2 (o gxsn 1y
2

Moreover, it is possible to obtain more efficient estimate near the boundary with
the help of harmonic extensions, namely :

‘Z‘Ifl (s,2) —e e (<\I’€U€n, >) <€S—S€Z) C20 ([se—2,5|xSn—1)

< ccosh(s ||\If

bvenll 2 (as,yxgnry - (6:3.60)
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PrOOF
By standard variation of constants for the operator L, together with the remark

about the wronskian of (¢', ¢} ), the function ¢ defined by

is) = (-l
- (¢i<s>]ﬁ ¢<t>‘?¢£<t>dt—-¢£<s>jﬁ w(ty*?¢i<w(n)

satisfies Ly (Z) = (1 —|xc|]) 2. Besides, according to the construction of the
Jacobi fields ¢, we check that there exists a constant ¢ = ¢ (n) such that for all s,
‘E ‘ ccosh (s)2.

We choose M, := £ (s.) and

lyr, (s5,2) = _Z(S) <\Ifeven, >

Then z\péven is a solution to the problem (8.2.88)). Besides, the above inequality
together with Schauder’s estimates prove the estimate (6.3.59).

To conclude with (6.3.60), it is enough to obtain Taylor expansion for £ (s) when
|s| is large. For example, note that

[owewta=[Towma- [T owma

:/OOO (t)"dt+ O (cosh(s)™").

|s| =400
We deal with the other terms of ¢ in the same way. U

Remark 6.3.11 — It is a result analogous in shape to the one we prove for the
s-odd part W}.,. Besides, in a neighbourhood of +s,, the solution g1 looks like
the solution to the one of the problem Lc(%%m) = (0 with boundary data ¥! i
can be fundamentally explained with the inequality

even 7

1;(—“;'@ h| < ccosh (s) 7 W] << 0

7 Hypersurface near the n-catenoid

7.1 Mean curvature and minimal hypersurfaces

We have in mind to deform a truncated n-catenoid whose boundary data is
prescribed. In this purpose, we consider normal deformations. For a function w on
St x R, let

X, =X, +wN, = X, + &N,
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7. Hypersurface near the n-catenoid

where

aj:ga j\?c:SONc

and denote by X, the associated hypersurface.

It is well konwn (cf. [BAC84] for example) that the Jaboci operator is the lin-
earization of the mean curvature. Nevertheless, for our purposes, it is necessary to
give an accurate description of the minimal surface equation we want to solve : we
compute the first variation of area to obtain asymptotic behaviour of the non linear
terms.

7.1 — (a) The normal deformations case

Metric on ¥,,. Calculus demonstrates that the metric on the surface ¥, is given
by the matrix

G = (<8$1Xw , 8$ij>R"“)z’,j

which satisfies equalities

~ 1_ ~ _ 2 SN
(gw)s?S:go2 [1+2(n—1)wgpl "4 (1+n(n—2)902 2”)+w +2ww£},

together with

(gw)zz‘,zj = ¢’ [(1 - @9017n)2 (gS”_l)z’,j + 8ch~uaz@}

and

(gw>s,zi = @2821& (& + wg) .

Let g, gn—1 be the extracted (n — 1)-matrix from g,, given by the spherical coor-
dinates. For small w, we can write

~ o2 1 _ —q o~
gwjgnfl - ()02 (1 — wg&l ) . gSnfl . ([n—l _I_ —~ 1771)29Sn171 (azlwaﬁw)zd) *

(1—we

Note the matrix equality g,gnl_1 (821‘@82]'(:])7:’]. = (GZ@Vgn_@)
pose, we give the following definition.

.- For practical pur-

Definition 7.1.1 — For a function f, we write
@) =Qi (@) =Qi (5.0, V&, V0)

for 0 < i < 3 (resp. i = 4) if the following assertions are satisfied :

(i) @Q;(w) is an expression of order i (resp. collects all the terms whose order is
larger than 3) in @ and its derivatives ;

(ii) the coefficients of @Q); and their derivatives are s-uniformly bounded functions.
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In particular, there exists universal constant ¢; = ¢; (n, &) such that

Qi @) < c|@gee

and
Qi@ — @) < |1 — Dallpne max {||@ ]| poe s [D2llpaa )

Thus, the determinant of g, sn-1 satisfies :

det g, sn—1 = 0 . det ggn
(1=2(n—=1)@p"" + (n—1) (20 = 3) P* ™ + P17 Qy (@) + "7 Qy (@)
det (Loy + (14 ¢'77Q1 (@) + 90 7Q3 (@) (045VED),,,)

We use the classical asymptotic formula for the last term
1
det (I + H) =1+ tr (H) + 5 ((tr (H))" — tr (H?)) + g5 (H) + g4 (H)

where g3 collects all the terms of degree 3 and ¢4 collects the higher terms in order
to obtain, according to the identity |Vsn71c~u|§n,1 =3, 0,0V, 0,

det (In—l + (1 + wl—an @) + g02(1—71)@ @)) (3Z@Vgn_1@)kl>
= 1+ |VgnaBlge + 9" "Qs (@) + Q4 (@).

The reader will mind the different coefficients in front of ()3 and 4. The terms
whose higher is larger than 4 come from two kinds of objects : on one hand, those
we obtain with quantity p*1="Qq (@) - 9.0V, 1@, on the other hand those we
obtain with quantity 9,0VE, @ - 8erc~uV§;,@. Therefore, the determinant of the
metric g, is given by

det g, = ¢*"det ggn [1 +0+ & (- +n—1) " "+ 5 2@&f

¥
VB0 +¢'7Qs (@) + (@) |.

In terms of w, we get

det g, = ©*"det ggn1 [1 + 072 (W% + ||Vw|ze-1) —n(n— 1) e
+ 01 7Qs (¢7'w) + Qu (¢ 7w) |,

thus

-2

Vdet g, = ¢"v/det gsn [1 + L

2 n(n—1) 2 —on
2 S7L 1)_—

(@ + |Vw

+ 0 7Qs (¢7'w) + Qu (¢ W) } . (7.1.61)
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7. Hypersurface near the n-catenoid

Minimal hypersurface equation. Here, we want to obtain the description of
the link between the first variation of area and the Jacobi operator which is the
differential of mean curvature. By definition, the area of X, is given by A, =
fogn,l vdet g, ds dz. According to the equation 1) one proves the differen-
tial of the area functionnal at w is given by

dA, (h) = /R . v det ggn—1 (w—%h + "2 (Vn-1w, Vgn-1h)gn 1
(= Dwhg ™ + G () (1) + ¢ s (o7') (0) ) ds d,

where Q; (@) (h) is the differential of ;41 at point & in h. Integration by parts leads
us to

dA, (h) = —/ v det ggn—1 (go"]c (W) + Q, (¢7'w) + 0" Qs (go_lw)) h ds dz.
RxSn—1
(7.1.62)
It follows that >, is minimal if this differential vanishes, i.e. when
L (w%@ = ¢ Qa(p7'w) +93Qs (p'w) |

Instead of considering the parametrization X, = X, + wN,, it will be convenient
. . 2-—n .
to use another conjugate parametrization X, := X.+ ¢ 2 wN,.. Then the previous

minimal surface equation turns into

Le(w) = ¢ 7 Qs (p30) + 92 Qs (p3w) . (7.1.63)

7.1 — (b) The mean curvature equation

In the above paragraph, we develop an accurate description of the minimal
graph equation. Nevertheless, as said in section , for a problem with
no symmetries, we are not able to solve it. We rather solve equation whose type
is “mean curvature = sum of Jacobi fields”. Consequently, we have to explicit the
mean curvature equation. In this purpose, we use the classical formula for normal
deformations X, = X, + wNN,

dA, (h) = H, (N,, N.) h dvols,,
3w

where H,, is the mean curvature of X, N, is its unit normal and dwvolys,, is its volume
form. According to this equation together with (7.1.62)), we find

0" (W) + Qo (97'w) + ¢"1Q5 (¢ lw)
Hw — _— d t n—1.
(N, N.) v/det g, ML

The only data we do not have described yet is the unit normal N,. We give a broad
outline of its tedious computation. We look for a representation such that

1
N, = <az + Zﬁiazizm) eR" x R.

(a2 + Zz @2 + 72)1/2
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Relations (N, 0sX,,) = 0 and (N,,, 0,:X,) = 0 show we can choose

a = — (@ w+ (1 -n)we'™"),
Bi = —¢Viaw +¢*"Qa (¢7w) + 9" Qs (97 'w)
Vo= e+ (n = Dwpp! T

Consequently, in order to normalize the vector N, it remains to explicit

~1/2
(oz2 + Z 87 + 72>
=02 (1-(n—1) ¢ 'w (™ =20""") + Qs (¢7'w) + ¢ "Q5 (¢ 'w)) .

It follows that

(No, N8 = 1+ (¢7'w) + Q2 (¢ 'w),

from what we conclude

H, = —J.()+¢"Q (¢ 'w)+¢ Qs (¢ 'w). (7.1.64)

As well as in the minimal hypersurface equation ((7.1.63)), if we use the conjugate
parametrization X, := X, + cp%w]\fc, the above equality turns into

n+2

He = 78 [FL@+eTQ(et) + 03 (eiu)].  (7169)

7.1 — (c) A more convenient deformation

As said previously, when |s| is very large, the catenoid is “almost flat”, asymptotic
to a horizontal hyperplane and its unit normal is quasi vertical. For the gluing
process, it will be more convenient to consider that in this case, we can write the
piece of catenoid as a graph over an open set of an horizontal hyperplane. We
choose an annulus whose radius is large enough to ensure we can write the piece of
catenoid as a vertical graph. To avoid this annulus depends on the choice of the
small perturbation w we perform, we change the unit normal N, as a vector N, such
that N, is equal to N, for |s| small and N, is a vertical vector when |s| is large. We
then work with the small perturbation X, . = X, + @Q%w]\/e.

Let x. a smooth increasing cutoff function over R with values in [0, 1] such that

0 if |s| € [0,s.—2],
Xe(s) = 1if s € [se—1,+00],
-1 if —s € [sc—1,+00],

and such that its C> norm does not depend on the choice of parameter e. We then
define N, := (1 — |x¢|) Ve + xc€nt1- In this case, we can write

<N67NC> (572) -1 = _’XE‘ + Xe <en+1>Nc>
= Xe(s)-(—sgn(s)+tanh ((n —1)s)),
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7. Hypersurface near the n-catenoid

and we check that for all £ € N, there exists a universal constant ¢, = ¢ (n, k) such
that for all |s| € [se — 2, s],

‘V’f ((Ne, Ne) (s, 2) — 1)| < e (coshs )2

Therefore, N, corresponds to a very small perturbation of the unit normal N.. Ac-
cording to the minimal graph equation for the case of normal deformations
together with an argument whose source is the inverse function theorem[f] we prove
that the mean curvature H, . of X, . satisfies the following PDE :

_n+42

Hw,e = p 2 [_Lc (w) - Le (w) + QO%Tane (SO%W) + ¢%Q3,6 (@%w>i| 9
(7.1.66)

where
e for all |s| € [0, s. — 2], the different quantities are such that

L.=0, Qz,e = ()2 and Qs,e =3

because for small |s|, N, = N, ;

e [, can be interpreted as a linear error term whose coefficients are very small
— bounded by ¢ (coshs.)> " for all k in norm C* ([—s,,s] x S*1). In-
deed, L. is equal, modulo the conjugate operation, to the difference between
the Jacobi operator and the first variation of area operator for an hypersurface
parametrised by X, .. We then check in this case that L. = L. ((1 — (N., N.)) -).

o (). (resp. Q3.) is a quadratic term (resp. a term which includes the higher
ones) whose coefficients and their derivatives do not depend on e.

7.2 Resolution of the mean curvature equation

As announced, we want to solve problem

{ H,. = Z(i ) (1 — |xe|) o (Wl 2) over [—s, s x S,

w = U+ smaller terms over {#4s.} x S*L,

(7.2.67)

for well chosen parameters ¢ > 0, ¥ € C>* ({£s.} x S"!) and * € R — recall the
definition of ¢ in the proof of proposition First of all, note that like in the
hyperplane case, we do not solve exactly the boundary condition w = W. According
to the equation (7.1.66)), if w is a solution, then

- |X5|
l(sc)

That is why we choose * := —”T”. Indeed, in first approximation, the linear term

L) — L (@) + 9 7 Qs (9Fw) + 02 Qs (piw) = PTGl (WL )

satisfies L. (w) = —%qﬁ (Ul . z), and this is why we have previously considered

the PDE problem ([8.2.88|).

4. The reader could refer to the section 3.3 and the annex of the article by R. Mazzeo, F. Pacard
and D. Pollack [MPPOI]
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From now on, we suppose

W[ .o (s, yxgn—1) S KeTe (cosh se )25
where x is a constant. We explain this choice in remark [7.2.6]
Then we define wy to be

W\I’ : <S7 Z) e [_867 SE] X Snil = g\l;[) _'_ K\Ij})dd + Z\Péven + h‘IIL

As a result, we remark that

L. (W\p) = 7 (S|);€|¢+ < even’ > + W

9927271 h\pi

and we check that it is almost a solution.

We perform a small perturbation of wy : we look for a small function v such
that the graph of X, . with w = wy + v is a solution. In terms of v, the equation
(7.1.66) turns into

L.(v) = Le(wy+v)+ gO%TnQ27€ (gog (wy +v))
n(3n —2)

1 ©> *hy, . (7.2.68)

+ SO%Q?),e (90% (we + U)) -

To solve this equation, we have in mind to prove a fixed point theorem for a well
chosen operator F. : the approach is quite similar to the steps we used in the case
of the hyperplane.

However, we have to pay attention to the definition of operator L., which is
defined for functions over R x S"~! whereas wy is defined only over [—s,, s.] x S*~1.
It is the reason why we build an operator extension £ and an injection operator Z.
This last is nothing but the canonical one Z : f € C;* (R x S"™1) — fii_s. sjxsn-1 €
Cy* ([=5e, 5] x S™~1), which is linear and continuous. Moreover, its linear norm
does not depend on the choice of e. Regarding the extension one, we define a cut-
off function y (independent of €), smooth, increasing, such that X( ) ={1} and
X (1,400) = {0}, from what we set

C?a ([=86,5¢] % an) ?a (R x Snil)

_ — C
& [

where

f(s,z) if s €[5 s;
E(f):(s,2)— X (5= 5) f(8,2) if s> s
X (=s—=5¢) f(8e,2) if s< —s..

By construction, the restriction of the function € (f) to [—s, sc] x S" ! is f and its
support is included in the compact set [—s. — 1, s, + 1] x S"~!. Furthermore, & is
linear, continuous and its linear norm does not depend on e.
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7. Hypersurface near the n-catenoid

Henceforth, we can rewrite the mean curvature equation (|7.2.68)) as a fixed point
for the functional

Fo.: C?’O‘ ([—36, Se] X S"_l) — Cg’a ([—se, Se] X S”_l)
defined by

Fov) =To Lyl o &L (wy +v) + 62" Qac (9 (wy +v))

n(3n —2)

- (pzanh\IlL] '

+ 92 Qs (92 (wy +v)) —

The wy-part

We are interested in the study of F. (0). According to inequalities from proposi-
tions [6.3.3] [6.3.8] [6.3.10] together with the properties of L., Q)2 and @3, the main
part of the quantity

2-n n n n 3n — 2
‘Le (W\Il) + P 2 QZ,e (SDEW\I!) + 905623,6 (QOEW\IJ) - %

('02—271 hqu

(s, 2)

concentrates into the last term 2 2"hy. for € < ¢, small enough. Therefore, for
such e,

where ¢ does not depend on £ and [[¥[| := |[¥||c2.a (45, xgn-1y- We prove the same

n (3n — 2)

1 s02—271 hqjl

Lo () + 0% Qu (ohew) + 3Qu, (pFun) —

L3 ([—se,5¢]xSn1)

_ni2
< c(coshs.) 2z ||V

9

kind of estimate in the weighted space Cy'® ([—s., s] x S"~1). Using propositions
16.2.5| and [6.2.6] we conclude that

n+2
> |

||‘FC(0)||C§’a([—se,s€]><8"*1) < c(coshs)” 2 ||V]. (7.2.69)

Remark 7.2.1 — Note that this previous estimate shows that in a neighbourhood
of |s| = s¢, F.(0) (s, 2) is small as compared with the term hy. (s, 2). It is the first
step to prove that the image of a small ball by F stays in the same ball.

The contracting part

In this paragraph, we demonstrate that J. is a contracting operator in a small
ball around 0. Let v; and vy be two functions of Co® ([—s, s x S*~1) such that
their C;*— norms are less than ¢ (cosh SE)JLT+2 ||¥||. We are interested in an estimate
of the quantity F. (v;) — F. (v9). By linearity, we note that it is enough to estimate

the three quantities

2—n

L (v —vg), 07 [Que (9?7 (wu + 1)) — Qo (¢ (wu + 12))]

and § § )
02 [Qse (2 (wy +01)) — Qs (92 (wy +12))] .
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First term : According to the properties of L., one checks that

2—2n
| L (v — UQ)HCQ,Q([_S&SE]XSn_l) < c(coshs,) l|vr — U2Hcg,a([_sﬁse]xgn_1) :
e—0 0
Second and third terms : We only deal with the second one since the third one
follows from similar arguments. Using the property

Q2.6 (f) — Q2 (9)| < cmax {|f],|g]}|f — g

together with the fact that the main part of wg + v; concentrates into wy, we
end up with

2—n

(cosh s) ™ (s) 2

Q2,e (80% (we + U1)) — Q2 (80% (we + Uz))‘ (s,2)
n—2
2¢n [ coshs \ 2
< cleoshs) ¥ () T 1001~ el g
472n|

7

< ck(coshs,)

-~

|U1 B UQ”C?’O‘([—SE,SJXS"*l) :

e—0

—0

Conclusion : for € < ¢, small enough,
1
||fc (Ul) - -FC (U2>HC?’[X([*S@SJXS”_I) < 5 ||U1 - U2”C§’a([785786]><8n_1) (7270)

7.2 — (a) Construction of hypersurface near the n-catenoid with
prescribed curvature

According to the previous computations, we can deduce an important corollary
by the fixed point theorem, namely :

Theorem 7.2.2
For all § € (g, "T“), there exists some constant ¢ :== ¢ (n,«,d) > 0 such that for
all k > 0, there exists €, > 0 such that :
for all € € (0,¢,), for all U which belongs to the space C* ({£s.} x S*1)
and whose norm is less than ker, (cosh 36)2+%7 there exists vy satisfying following
assertions :
(i) the function Xﬁ—chiTn (wy + vy) Ne defines a hypersurface C'y on [—S., S| X

n+42
S"~! whose mean curvature is exaclty %5()5)'@ (s)f% O (8) (Wipems 2) 5

i) vy belongs to C* ([—s., sd] x S*™1) with
5

_nt2
||’U\I/’|662,a([_86786]><gn—1) < 2c(coshs.)” 2 ||¥].

Remark 7.2.3 — It should be noted that for |s| € [s. — 1, s.|, the mean curvature
of ¥, vanishes. Therefore, it is minimal in a neighbourhood of its boundary.
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7. Hypersurface near the n-catenoid

7.2 — (b) The link with harmonic extensions

In the case of hyperplane, we already have seen that the role of harmonic exten-
sions over R™\ By is really of importance. Moreover, we also have seen that harmonic
extensions on B; come naturally considering the resolution of the prescribed mean
curvature equation : it is the second method we use in the proof of proposition [6.3.1]

Like in the deformation of hyperplane, it is essential to describe the behaviour
of wy near the boundary. In short, it amounts to prove that when s, is large
enough, the term in U_ is from very small contribution at +s. and reciprocally, the
function behaves like harmonic extension. Heuristically, near the neighbourhood,
the operator L. looks like H, up to a factor ¢>~2". But this quantity is negligible
in comparison with the constant (”7_2)2 when |s| is large enough. It is the object of
the following proposition.

Proposition 7.2.4 — There exists a constant ¢ = ¢ (n,«) such that for all ¥ €
C® ({£s.} x S™71),

2

Hso (o (5:2) = a7 W () ()

Le

C2:2([se—2,8¢] xSn—1)

_3(7’1,72)
< ccosh(se) T [Vl craiasynsn-y s (7:2.71)

where = ¢ (s) z, T == ¢ (s) = = and W is the interior harmonic extension
operator defined in the beginning of the section [6.5 There is also the same kind

of result regarding the lower part of the catenoid, but care must be taken to replace
U, by —V_.

PROOF
Here, we only give a L™ estimate. Schauder’s theory provides the C*® case.
First of all, we decompose the problem into three parts by writing

o (s)wn (5,2) — w2 W (W) (_)

= @z (s) [w\p (s,2z) — e’z (TSI () (68736'2)}

Te
2—n n—2 2—n .
+ [s@T ()7 7 — g2 } W () (ﬁ) :
Te
First term : Tt is enough to collect the results of corollary for the hy, part,

those of propositions |6.3.8| and |6.3.10| for /g and Z\p parts. We end up with

n—2

ng%Tn (s) [wq, (5,2) — ez CSIW () (65_85’2)]

HLOO([SE—Q,SC} xSn—1)
3(n—2)

< ceosh(s)™ 2 V][ ezagnty -
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Second term : Here, the use the regularity of W (¥, ). Indeed, after noticing the

inequality
G < ccosh (s) 2"V
ese Te
we find
Le Lo ([sc—2,8¢]xS™ 1)
—5n+6
< ceosh(s) 7 F W gnuonny.
Last term : The inequality
n e 2—n .
H 5" ()"0 T W () (E)
Le /|l Loo([se—2,8¢]xSn—1)

—5n+6

< ceosh(se) 2 [|¥|czagn)

holds true because the Taylor expansion of ¢ in (5.1.34) implies

2—n

n—2 2—n —5n+6
% 2 S — 22(n—-1) eTS —+ O <QTS>

Therefore, the main term is the first one since —5n + 6 < —3n + 6 and conclusion
holds. O

7.2 — (c) Description of the solution near its boundaries

We have in mind to obtain the behaviour of the solution near its boundaries.
For that purpose, let us rescale the deformed n-catenoid byp|n, ie x = % Then, if
C'y denotes the perturbed catenoid we have constructed in theorem the upper
part of the associated rescaled hypersurface is the graph of the function

.Al/g — R
t — @ +p 7 (we + U@)) <<P_1 (yT't‘) , ﬁ)
where y = r.t (recall that r. = nz.). The point in this dilatation lies in having a

function defined over a normalised annulus Aj; 5. It will simplify the gluing in S"~
with the function defined over A; in the hyperplane case.

ﬂ\p+2

Theorem 7.2.5
(i) Ty, is an element of C** (Ais2) and

7-6 . i n 2—n
Ty, —mp (%0_1 (J)> -W (7]27“6 ’ ‘I’+>
77 CZ,Q(AI/Q)

< ZCere(coshse)@_%). (7.2.72)

5. We have introduced the dilatation factor n in ([5.3.37).
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7. Hypersurface near the n-catenoid

In particular, if n = n, and Oy, denotes the difference defined by

3
2— n||2 R—MCLETE||4 3n

— _ H
Oy, =Ty, — 775—@67" 2 (3n — 1)

then
Hﬁm HCQ,Q<A1/2> < 2cer, (cosh 36)(57%2) : (7.2.73)
(i) If U and U are smaller than rer, (coshs.)*"2, then
o5y < o 0
(7.2.74)
Remark 7.2.6 — e Here, we can justify the choice of the norm of . As a mat-

ter of fact, the quantity 77%752 has rough estimate e8-1) ,i.e. cosh (s¢)” (2+5)
Thus, the rough estimate of n2r. N U is ker,, that is to say, the same than ¢
we use in the hyperplane case. It is consistent for the gluing process.

e Besides, note that 6 — ”TJFQ is negative, thus dy, is small in comparison with
€re.

e Similar result holds for the lower part of the catenoid, but we have to mind
the signs. More precisely, y_ and dy_ are defined to be

Y ‘ Nt
Uy :tEAl/an(w+¢22 (w\p—i"l}\p)g) (30_1 <_y7]| |>,—> eR

i

and

PROOF
(i) Recall that ¢ (s) z = %=t and W' is a linear operator. It follows that

_ (et if, 0
e, ()= () < (T 0 ) 0

= T v (s 2) b T [F (wu (5,2) — T (04 (1)
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74

Now, we must give an upper bound for the two above terms. By existence
theorem [7.2.2, we can estimate vy in order to obtain the inequality, for all
s € (se—2,8)

_n+2
lve (s,2)] < c(coshs) 2+5H\Il’|c2ﬁa({j:s€}><S”*1)'

Regarding the second term, we use proposition to find
n=2 i —(n—2
wu (5,2) = I ZWH @) (0] < eleoshs) ™ W a ooy

This last one is negligible in comparison with the first one. Consequently, we
end up with the estimate ((7.2.72) by noticing

2-n  2-n _n+2 _nt2
nire® |72 (coshis) ™ Wl eaa g,y ugnoty A Rere (coshs)’

and by choosing x large enough (k & 2¢).

The estimate (7.2.73)) comes from the above one, together with the work of
section . Note that O (n°™=Dr6=57) = ¢ (er,).

We study difference of two solutions with different boundary data. According
to the linearity of ¥ +— wy and the linearity of W*, we find

_ 2—n
2

Bu, (1) =Ty, () = nirc® |07 (v —vg) (s,2)
n 277'"' —n n— . J—
Ftrct |07 (woig (s,2) = 1077 W (0 - Ts) (1)

The second term is already handled during the analysis of (i) and we get :

wuog (s.2) = 11177 W (0, = T) (1)

C2((se—2,8¢)xSn—1)
—(n—2 T
< c(coshs) TN = | oy yignry - (7:2.75)

The difficulty lies in the estimation of the difference vy — vy. The method we
use is the same kind of the one we use for the hyperplane case, namely the
PDE that this difference satisfies — see the proof of theorem [4.2.1] Indeed, we
can write

Lc(vg —vg) = Le(ve —vg) + Le (wy_g) +e+ f + 9,
where

e = o7 [Que(pF (wutva)) — Que (¢F (wy+rg))]

f = 90% [Qiﬁ,e (90% (W\P + U\I/)) - Q3,e ((10% (w@_‘_ ”U@) } )
and

3n—2) 4.,
_n(z )9022 (h\h_hﬁL)-

It remains to give estimates for the five quantities.

g =



7. Hypersurface near the n-catenoid

e First of all, according to the definition of L., we check

||L€ (U‘I/ - Uﬁ) ||C0aa((5572,se)><8”*1)

< ce(cosh s )* ™" |lug — Ul 2 (2,50 x8-1) -
e Likewise, since

‘}W‘I’—aHC’Q’O‘((SEfQ,se)XS”—l) < cf|T - ﬁHcm({ise}xSn—l) ’

we get

)27271

L (wo_v) ch((se_Q,se)xsnﬂ) < c(coshs o~ m}cz,a({i&}xsn,l) .

e For all (s,2) € (sc —2,s.) x S""!, using properties of @z like we have done
to prove that F. is a contracting operator, we demonstrate that
)4—271

le(s,2)] < ck(coshs, H\II_EHCZQ({ise}xS"*l)

)4—271

+ ck (cosh s v — Uﬁ”cla((srzse)xsn—l) :

This estimate holds in L, but Schauder’s estimates prove that there is the
same kind of estimate in Holder space.
e With similar method, we get

HfHCOva((seste)xS”—l) < cr?(cosh 56)67371 ’

’\Ij B ‘IIHCQv“({ise}XS”—l)
+ er? (cosh 5)° " v — gl e, 2y -
e Finally, following inequality holds :
2—2n T
||g||Coﬂ‘1((se—2,se)><S”—1) < c¢(coshs) ”\I’ - \I]Hcm({ise}xsn—l) :

We deduce from above calculus that

[Le (V9 — vg) lleza (s, —2,50))
< cag <||\I’ - \IJHCZ,Q({:‘:SS}XSnfl) + HU‘I’ - UWHCQvQ((SE—Z,sE)XS”—l)) )

where a, = [(coshs.)* " + k (cosh s,)" ™" + x2 (cosh 5.)° "] tends to 0 when

)4—2n

¢ tends to 0 and whose main term is x (cosh s, . Consequently,

(1 = cax) [[ve — Uﬁ”c%a((se_z,se)xsn—l) S g H‘I’ - EH(:Q,a({j:sg}xsnfl) '

from what we deduce that at fixed k, for € < ¢, we find

”U\If - Uﬁ”cla((SE,Q’se)XSn—l)

)4—2n ‘

< ¢k (cosh s 7.2.76)

According to inequalities ([7.2.75)) and ((7.2.76) together with 4 —2n < 2 — n,

the conclusion holds, up to reduce the parameter e,. [l

‘\D o §||02’a({ise}><S"—1) -
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8 The gluing process : proof of theorem [1.0.7

In previous sections, we have developed a way to build minimal hypersurfaces
near hyperplanes with small catenoidal necks and hypersurfaces with prescribed
small mean curvature near truncated catenoids. In this section, we explain how to
glue these different hypersurfaces in order to obtain more complex ones that look
like a family of horizontal hyperplanes which are linked together by small truncated
catenoids.

First of all, according to the regularity theory for minimal hypersurfaces (cf.
[CMO03]), if a minimal hypersurface is C!, then it is C*°. Therefore, it is enough to
perform a C! gluing to ensure the connected sum has the mean curvature we want
to prescribe.

2on n
Besides, as said before, since the quantity n2r.? behaves like (cosh 86)7275,
2—n

it will be shrewder to work with a boundary data YT := n2r.2 VU regarding the
catenoid. Note in this case that T and ® have the same rough estimate xer..

Furthermore, a small perturbation of one of the weighted points generates a small
continuous perturbation of 7, I'cor  and ue p. We will allow ourselves to perturb the
parameters in a small neighbourhood.

8.1 The gluing equations

The point is to glue the hypersurfaces we build near the singularities py ;. In
this purpose, we use the description we gave for the deformed horizontal hyperplane
ugp p over A; together with the one we gave for the truncated catenoid uy, over
Al/g. Then the point lies in C'-matching the boundary data over 0B, = S"~!. This
is why we have performed changes in scales.

As done before, it is wise to distinguish the modes 0 and 1 (especially the s-even
and the s-odd ones) from the others. So we write the gluing equations we obtain by
projection on those different modes.

8.1 — (a) The choice of boundary data ® for hyperplanes and T for
catenoids

Because of the different symmetries of the problem (especially the rotations and
the translations which preserve the mean curvature), we can’t choose any boundary
data.

For example, in the N-periodic case, or in the case of a non periodic hypersurface

with N + 1 horizontal ends, we consider the following boundary data

(q)y T) = ((ka7j7i7 Tpk,j,i)je[[lmkﬂ) ke[[O,N—l]]

for which we enforce the vectors[| T} to be equal to (YTa,e +Rprk,;), where T}

k,j,even even

6. Recall we identify the first eigenmode of
Upsilon,lc’j with a vector in R™ — see definition m
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is a vector of W and R is an element of Skew, such that

max (|| T, HOO,HRHOO) < Kere.

even

Notice that Y., and R do not depend on the points py ;. We have made this choice
to ensure that for well chosen parameter v, the mean curvature of the hypersurface
we construct vanishes — see the proof of proposition [8.3.1]

Therefore, there are 2 - 2 - Ne boundary data functions over S”. The first factor
2 comes from the gluing with upper or lower level ; the second 2 corresponds to
different boundary data for the hyperplane or the catenoid.

For the N-periodic case, this above definition holds because

(ak+N,japk+N,j) = (ak,japk,j + tn)

for all k € N and j € [1,n;]. Thus it is enough to perform the gluing on a period.
The data boundary for other levels are obtained by

(CID T = (<I> T

Pk+NZ,j,+° pk+NZ,j,i) Pk,j, 4 pk,j,i)‘

In all cases, @y (resp. @i ;) is the boundary data we want to enforce at the
hyperplane k (resp. k+ 1) at point py; while Wy, ; . (resp. Wy ;_) is the boundary
data we want to enforce for the upper (resp. lower) part of the catenoid at point py
at the hyperplane k+1 (resp. k). Besides, we define the norm of ® as the maximum
of the C* (S)-norms of its different elements, in other words,

[@llze = max||®

k.j Pk,j,+ Hc2,a(g) ’

and we have the same kind of definition for || 1| 2.

8.1 — (b) Shape of the gluing equation

We consider one of the gluing points, say py; for example. We have in mind
to C'-match the boundary data of the minimal hypersurface we obtain for the k-th
hyperplane at py ; (which points upwards) to that of the lower part of the catenoid
we obtain with parameter n = 7, ;. Besides, we want to proceed likewise regarding
the k& + 1-th deformed hyperplane at py; (which points downwards) to that of the
upper part of the above catenoid.

Before writing equations, let us note that it is more convenient to translate the
different hypersurfaces. Let hj_ be the height of the k-th horizontal hyperplane,
hi+ the the height of the k + 1-th horizontal hyperplane and dhj; be the height
difference between the £ 4 1-th and k-th ones, that is to say dhy = hyy1,— — hy— =
hi,+ — hi—1 +. We will determine this quantity when we perform the gluing of modes
0 in proposition Let ty v = tpjvent1 be a vertical vector where t;;, is a
positive number we will determine in section Instead of considering
the catenoid Cp, . centred in 0, we rather consider this one after a translation of
thjo 1 Drj-

It follows that the gluing equation at point py ; can be written

Vz € Sn—l7 U pp j,+ (Z> + hk,:‘: = ET_,Pk,j,i (Z) + ks (8.1.77)
aru@»pk,j,i (Z) = 8TuT:pk,j,i (Z) )
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where the index 4 is — at level k£ and is + at level k& + 1.

Here, it is relevant to use the description of local behaviour near the boundaries
that we have given in previous description theorems [7.2.5| and 4.2.1] in order to
rewrite the above system. Recall that

3
—n | 2— (n—2)
Ui, e = oy, F argere "I F mai,j

+ eCdeE + €re <‘7 Fk,j,:i:> + W ((bpk,j,i)

4—3n
ere ||

and

3
2—n Han (n B 2) 3 |‘|473n
€

Urp, .. = Oy, . . T Qg €T F——t—aj er
sPk,j,+ sPk,j,+ 5J 2 (Bn o 4) k,j €

H .
+ 771437]'5 + W (T

pk,j,:t) ’
where the sign F is the opposite of +.

Remark 8.1.1 — According to the choice of 7, ; we have explained in section
the terms |z|*™" and |z|*™®" are the same ones in the right and left members.

Consequently, the system (8.1.77]) is written

Vo0 (2) + €Crjs +ere (-, Froja) + We (D, ) (2) + s
= vy, (1) £ My g+ W! (Tpk,j,i) (2) + thjo,
O (00, s Fere (- Frja) + W (P, ,.)) (2)
= O (ﬁTvpk,jd: W (Tpk,j,i)) (2).

Vz e St

(8.1.78)

8.1 — (c) Gluing equations after orthogonal projections on eigenmodes

We perform the projection of the solutions on the different modes since they do
not behave in the same way.

The mode 0. We find following equations at py; :

Pk,j,+ Pk,j,+

(2 — Tl) q)O + 7TO (@D@,pk,j’i) = 7TO (87"5T,pk,j,i) )

Pk,j,+

{ hk,:l: + Clw}i €+ (I)O + 7T0 (0¢7pk7j7i) = ink,j% + TO + 7TO (ETJ?k,j,i) + thﬂ”

(8.1.79)

where the sign + is — at level £ and is + at level £ + 1. Mind the change of signs
in front the boundary data Y and nk,j%.

The mode 1. When f is a function over S, we write 7! (f) = F' the vector such
that for all z € S, f!(2) = (F',2). Then equations can be written at py ; :

Fk»j»iere + (I)Zl%,j,:l: + ! (04’7Pk,j,i> = Tgl:k,j,odd + (Téven + Rpk,j) + ! (ﬁTfk,j,i) )
F’w}ierﬁ + (1 - n) q);lokyjyi + ! (8T0‘1’7pk,j,i> = Tglak,j,odd + (Téven + Rpk,j) + ! (aTDTJ)k,j,i) :
(8.1.80)
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8. The gluing process : proof of theorem [1.0.7

The mode 1. Regarding the modes 2, 3, etc., we get

(I)ka,j,j: +7 (D‘P»Pk,]‘,i) = :l:frlék,j,j: +7 (5T7Pk,j,i) ),
oW (@h )+ 7 (000p,,.) = OW (FT4 L)+ (90r,,.)

Indeed, it is more ingenious to rewrite the above system by highlighting the
contracting part. In this purpose, we define the operator H by

H:fe o2 (S”—l) — O, ((We . Wz) (f))|Sn*1 c L (Sn—l) '

It is known, according to the article [MP99] by R. Mazzeo et F. Pacard, that H
is an isomorphism. Besides, the space E+ is H-stable. Therefore the system turns
into :

(I);_k,j,i = H'lort [87” (Ud - WZ) (ﬁTvpkﬁjﬁi - O‘I’vpk’,j,i))] )
ZETJ' = (I)J‘ — 7TJ‘ (5Tvpk,j,i — Dé,[’k,j,t) .

Pk,j,+ Pk,j,+

(8.1.81)

8.2 Resolution of gluing equations

In this section, we explain how to solve all gluing equations. One of the key
arguments is the fixed point theorem. Of course, we decompose the resolution into
three parts : one for each mode we consider.

We briefly expose the ideas to solve these different equations. The mode 1 is the

most complex : it is the last we solve.

e Regarding the mode 0, the main point lies in choosing suitable vertical trans-
lations parameters — it is the object of proposition [8.2.1 — then we use a
fixed point theorem by using the contracting properties we have demonstrated
for both cases.

e For the mode 2, 3, etc, the same kind of fixed point holds true.

e For the mode 1, we highlight the balanced and non degenerate conditions and
we make use of a Brouwer fixed point theorem by changing parameters of the
construction.

8.2 — (a) The mode 0, the height of horizontal hyperplanes and the
height of catenoids

In the resolution of this mode, very different terms take place. More exactly,
when £ is fixed, there are :

e The height of k-th level hy _ = hj_1 4. I has to be the same for all p; ; with
j S ﬂl,nk]]

e The vertical translation term ty ;, for the catenoid we glue at pj ; between the
levels k and k + 1. It does not depend on level k or level k + 1.

e The constant term j:n;wg which we could interpret as the height of the
catenoid at py ;. It has to be the same at levels k and £k + 1.

e The constant term Cj ; + € that comes from Green function.

e The constant terms that come from the orthogonal projection of ® and T on
mode 0.
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e Very small constant terms that come from perturbation of Green function (the
0-part) or catenoid (the d-part).
For all weighted configuration {ay ;, px;}, we define the constant Cj ; by

Ckj = Crj— — Ckj+

N Nk—1
-9 2—n 2—n
= Qg ; |pk,j - pk:,i’ - Ar—1,5 |pk,j - pk—l,i|
1=1 1=1
i#]
N1
2—n
— A+1,5 \pk,j - pk+1,i\
=1

Note that this constant only depends on the configuration but not depends on the
small parameter e. Besides, this definition is similar to the one of the force Fj ;.

Determining the heights of hyperplanes, the translation vectors and a well
chosen weighted configuration. In this paragraph, we suppose we are given a
configuration {ay,py ;} together with the height hy_ € R of level 0.
. . 0 .
According to the second equation of the system (8.1.79)), <I>pmi is such that

1 _
(I)gk,j,i = n — 271'0 [87’ (D‘?mk,]‘,i - ‘OT,pkﬂjﬂi>:| X (8282)

therefore its rough estimate is given by cer, cosh (36)5_%2. Thus ®° is necessarily
small in comparison with rer,.

Most of the information lies in the first equation of system (8.1.79) whose main
terms are the heights hy  of hyperplanes, the half height of catenoids imwg and
the constant term Cj, ; +e. Moreover, if we subtract the equation at level k from the
one at level k + 1, we get

hk7+ — hk,, = 77k:H + Ckyj ({(ak,pk,j)}) €+ E];j (E, {ak,ka} s (I), T) (8283)

where 7 := ((n — 2) ake)ﬁ, the error function Ej ; is continuous and its L> norm is
smaller than ker,, thus is very small in comparison with the other terms. Therefore,
if ho,— denotes a fixed real number, we define the height of other levels i+ and the
vertical vector ty ;, to be

hk7+ = hk—i—l,— = hk7_ + ﬁkH + CkJ ({ak,pm}) €, (8284)
H
tk,j,v = th_ — nk? + Ck,j,—‘r ({ak,pkvj}) €l €nt1- (8285)

However, the difference of heights between the hyperplanes k£ + 1 and £ has to be
independent of the choice of the gluing point py, ; for j € [1,ni]. This kind of problem
occurs when there are several catenoids to glue between those hyperplanes, i.e. when
ng = 2. This is why we introduce the following proposition. The reader could notice
that the hy 1 and ty ;, continuously depend on the weighted configuration {ay, pi ; }-
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8. The gluing process : proof of theorem [1.0.7

Proposition 8.2.1 — Given a configuration {ay, pr;} and the real number hy _,
we define the hy i and ty j, as above. Then there exists a C' “weight” mapping

W (RN x W s (R% x W)™

such that the weighted configuration {{ax;, pr;}} =W ({ar, pr;}) satisfies follow-
ing assertions :
(i) for all j € [1,nk], we can write ay; = ax <1 + e%ak,j> with ag = 0 and
lag ;| < M for some positive constant M ;
(ii) for all k such that ny > 2, for all j # j' € [1,n4],

(s = Meg) H + € (Crg = Crg) Qagomid) = O (¢55). (8.2.86)

e—0

Besides, W does not depend on € and does not change the placement of the points.

Proor

It turns out that solving the equation (8.2.86) at order 1 is enough. Moreover, note
that the problem can be reduced to the case j = 1 and any j’. More exactly, when
ay; is bounded, we rewrite it as

1

1 - (1 + E%O‘ku‘)m = _E%Ck (Ck,1 - Ck,j’) ({alapl,i}> + (_?0 (622:?) )
where ¢, = ((n —2) ak)_ﬁ H~'. This equation justifies we look for parameters

ar,;» whose form is given by a (1 + en=t akﬁj/). The main part of the right member

does not depend on the family (ay;),,. A Taylor expansion when ¢ is small gives

1 n—2
{0k = G (Ce1 — Crj) ar, pii}) + e(—9>0 (6”*1> ;
therefore ay, j := (n — 1) ¢4 (Crq — Cyjr) ({a, pii}) suits to the problem. O

Determining the boundary data ®° and Y°. From now on, given initial weights
{ax}, we build from any configuration {pj ;} a new configuration {ay;,pr;} given
by the mapping W.

Proposition 8.2.2 — Let (', %) be elements whose mode is i for i = 1, L.
Assume their C** norm is smaller than rer.. Then there exists (®°, T°) such that
if ® = P0 + & 4 dL and T = YO 4+ Y1 4+ T+, then following assertions hold :

(i) the gluing equation (8.1.79) of mode 0 is satisfied ;
(ii) max {|8°],|T°|} < cer, cosh (s.)? 7.

Furthermore, (®°,Y%) continuously depends on the parameters €, {ar}, {pr;},
(@ Ti)ie{Q 1} and is a contraction mapping on the variables (@ Ti)ie{2 1
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PrOOF
As said before, ®° has to satisfy equation . Therefore, according to the
theorems |4.2.1| and 7.2.5L it describes the @gkdi as functions which depend, in a
contracting way, on (®°, Ti)ie{u} and on Y. Besides, these functions are continuous
on € and {p;;},,. By a standard fixed point with parameters, we can solve this
equation. 7

It remains to determine Y°. For example, at level k, we use the definition of hy, +

and ty ;, to rewrite the first equation of the system (8.1.79) as

H
Tg,w.ﬁ = (M1 — Mkyj) 5 +€[Cra {ari, pri}) — Crj ({ari, pii})]

+€[Cra ({ar, pri}) — Cra ({ani, pui})]
+€[Crjr Ha,pii}) — Cryt Qi pril}))
a (I)gk,j,— +7 (5T7Pk,j,f - D(I)apk,j,—) .

According to the weighted configuration proposition [8.2.1] the first three lines of the
right member do not depend on the choice of (¢, T) and their norms have the rough
estimate

n— _n=2
e = o <er6 cosh (s.)° 2 ) :
e—0
With similar arguments than of the ®° case, the conclusions follows. U

8.2 — (b) The mode L

This mode is by far the easiest to solve since it is a straightforward application

of the contracting properties. Once again, we suppose we are given the slightly
perturbed configuration {ay;,pr;}. As a matter of fact, the system (8.1.81) is

“almost” solved. More precisely, we can check the two equations describe (IJ;M , and

Tjk L. s functions which depend, in a contracting way, on ® and T : according

to the description theorems [4.2.1] and [7.2.5| together with properties of H, we prove
that for € < e,

1

I
max < ||P
{H c2a(s)’ H Phot

Pk,j,+

1
0270‘(8)} g émaX{Hq)HCZa ) HT||C2,a}-

Note also that the right members of system (8.1.81]) continuously depend on weighted

n+2
points, ® and T and their C>“norms are less than cer, cosh (36)57%. By a standard
fixed point theorem with parameters together with the previous proposition, we get
the following :

Proposition 8.2.3 — Let (®',T!) be elements whose mode is 1. Assume its
C*“ norm is smaller than rker.. Then there exists (CIDD, G TL) such that if
O =+ P4 DL and T = YO+ YL+ T4, then the following assertions hold true

(i) the gluing equations (8.1.79)) and (8.1.81) of modes 0 and L are satisfied ;
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8. The gluing process : proof of theorem [1.0.7

(it) max {|®°|,[TO], (IJL”CM : HTLHcZa} < cer, cosh (35)57%2.

Furthermore, (<I>07<I>l,TO,TL) continuously depends on the parameters €, {a},
{pr;}, (@1, YY) and is a contraction mapping on the variables (', T1).

8.2 — (c) The mode 1 : balanced and non-degenerate configurations in
the periodic case

This mode is the trickiest one to solve. Its resolution implies the use of hypothesis
regarding the balanced and non-degenerate conditions. First of all, we have to rewrite
the system in order to highlight the contracting part. If we subtract the
second equation to the first one, we find

1 _ _
(I)zlm,j,i - ﬁﬁl [(]d - @) (aTvpk,j,i - O‘Pvpk,j,i)} )

therefore a similar fixed point theorem with parameters to the one we have used
for the mode L holds. Besides, the norm of ®! admits the rough estimate

Pk,j,+
2cer, cosh (36)67%2.
It remains to solve the first equation of the system . The main problem
lies in the fact that Y} is enforced to be equal to Y&, +Rpk ;. Therefore, there

k,j,even
are g priori more equations than unknowns. Let us write the equations at levels k

and k+1:

Fk7j7—€T€ + (I);})k,j,, + ! (D‘D,Pk,jﬁ) - Tzl)kyj,odd - (Tileven + Rpk,j) + ! (6T7Pk,j,7) )
Frjyere+ @, 4+ Qap,.) = Thoooad + (Toven + Roxg) + 7" Oy, ) s

from what we deduce that

2T}17k,j,0dd = (de”, + F]f7]’7+> €Te + <q)}17k,j,f + q)l )

Pk,j,+

+ mt (D@J)k,j’i — ST,pk,j,f + 0‘1’7Pk,j,+ — 6T7pk,j,+) (8287)

together with

2 (Telzven + 'Rp;w') = Fyjerc+ <_(I)117k,j,7 + @, )

Dk,j,+
+ 7 (Ve T 0T, F 00p, . — 0T,y ) (8.2.88)
where [, ; is the force at py ; defined in definition [I.0.1]:
Frj = (=Frj-+ Frjy)-

As before, the equation (8.2.87)) can be solved by similar arguments to the pre-
vious ones. To deal with the equation (8.2.88)) is quite more difficult because of the
term Y. ., + Rpr . It is the object of the next proposition.

evern
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Proposition 8.2.4 — Let C = {ak, prj} be a balanced and non-degenerate con-
figuration. Then for all 0 € (g,”T”), for all € < €y small enough and for all
RS (0, m (”T” — 5)), there exists a weighted points configuration {ax;, pr;}
such that :

(i) all the gluing equations are solved ;

(ii) for all k,j, |pr; — Pr;l < €.
(iii) The tj-periodic case with t, # 0 : the configuration {ay;,pr;} s th-
periodic and the weights ay; are associated to the configuration
{ak, prj}- In particular, ar; — ar = O <e%>
The t,-periodic case with t, =0 : the configuration {ay;,pr,;} is O-

periodic and the weights ay, ; are associated to the configuration {ay, pr ;}
where |ay — ai| < €°. In particular, ay,; — ax = O (eﬂ).

The non-periodic case : the weights ay; are associated to the configura-
tion {ay, px;} where |ay — ax| < €. In particular, a; — ax = O (E’B).

Besides, in the periodic case, the hypersurface . we obtain is t-periodic, where t
can be decomposed as t =ty + t, and its vertical component t, is

t, = [ H + €Crq {an, piit)] €ntr-
0

=

B
Il

In the non-periodic case, |t,| is the distance between the two extremal horizontal
hyperplanes.

Remark 8.2.5 — Note that 6% = 0¢_0 (6’8). In the periodic case with non-
vanishing period, we can solve the equations without changing the weights a; while
it is not the same for the other cases in which we have to deal with the influence of
the dilation.

PrROOF

The idea lies in applying a well chosen Brouwer fixed point : we prove that if we
slightly deform the initial configuration of points {ax,py ;}, then we can solve the
problem.

To any configuration {ay, px;} such that

Pk — Dyl <€’ and |ag — ag] < €

is continuously associated a new close weighted configuration

{arj pest = W({ak prs})
given by the proposition According to previous paragraphs, for all Y. and

even
R such that their norm is less than ker., we can find boundary data (®,7T) such

that all gluing equations are solved except the equation (8.2.88]) together with
Vk,Vj, Ti&:,j,even = T, + Rka

even
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8. The gluing process : proof of theorem [1.0.7

Besides, ® and T continuously depend on Y. .., R and {ay;,px}-

From now on, we assume the configuration is either O-periodic or non—periodicﬂ
To relieve notations, we define

= 2 2
Y., = aTéven and R = e_rER

so that their norm has rough estimate 1. Then we can rewrite all the equations

s
9 ({o ot Tha R) = & ({0 prs} Thon R) (8.2.89)
where the mapping ¢ is defined to be
G - ({ak,pk,j} : T;ven,ﬁ) € (Ri)N x WNe x W x Skews,
— F oW ({ak, prj}) — <Téven7'” 7Téven> - (ﬁpo,h“' aﬁPN—l,Wl) e W,

the force function . : {ak;,pr;} — {Fk,} is defined in (1.0.2) and the error
function & is such that

& <{ak,pk,j} , Tévenaﬁ) — {Ellm <{al7pl7i}l,i J Tévenaﬁ> }k]

The error functions £}, . are continuous and their L>°-norm is smaller than 2c cosh (85)5_

Necessarily, equation (8.2.89) implies the forces to be small : this is why we are close
to the balanced configuration.

Description of ¢. We claim that ¢ is locally a C!'-submersion at point (C, 0,0).
More precisely, the rank of a matrix is an open property. Since W slightly
changes the weights, the rank of d¥ is the same than the rank of d¥° at
(C,0,0), where ¥° is defined to be

g0 ({%Pk,j}»fivenﬂz) — F ({ar, prs}) — <:féven +Rpoy, - > :
Differentiation at (C,0,0) then leads us to

47,
(

¢.0,0) : ({wbpku‘} N S R) e RN x WNe x W x Skewy,,

— dgC ({U)k, ka}) - (Téven + RﬁO,h T 7T(1,ven + RﬁN*L”N71> S WNe‘

Because of the non-degenerate hypothesis, the first term d.#4 has full rank
(Ne — 1) m — dim (Skewy, ). Thus the idea is to prove the contribution of YL ..
and R makes up for the loss of m + dim (Skewy, ) dimensions. But recall the
definitions of the kernels V; and V; in the introduction. Then it is enough to

demonstrate that

Im(dZs) +Vi+ Ve = WH

7. See the remark for the periodic case with t; # 0

85
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We have already established that the sum V; 4V, is direct. Besides, its dimen-
sion is m + dim (Skewy, ). Therefore, it remains to prove

(A7) N (VieV) = {0},

R)

Consider an element e in this intersection. Then there exists ({wg, Pr;}, Yo
such that e is read as

even’

- d‘g\c ({wlﬁ pk,j}) - (Téven + RpO,l? T Téven + RpN—l,anl) :

Furthermore, recall that we have provided forces relations in (1.0.3)) and (1.0.4)
which are valid for any configuration. The differentiation of the first one
implies

Y wd(Fij)e {wnp}) = 0 = D dan (Tien + Riry)

k,j k,j

and since the configuration Cis balanced,

Zak (Frg)e: ({wnpuid)  Riw) = 0= (Llen + Ribj, Ripi )
k,j

regarding the second one. Therefore, injecting the first relation into the second
one, we end with

(Z nk’&k’> : (Z ay, |Rﬁkz,j|2) =
Y ko

Consequently, by standard Cauchy-Schwarz inequality, all Rpy ; are aligned,

thus R vanishes and so does Y., from what we deduce e = 0.

2

Z apRpy. ;

khj

Therefore, 4° is locally a submersion near initial configuration C.

Last fixed point theorem. According to the submersion theorem, there exists a
neighbourhood U of (C,0,0), a C'-diffeomorphism

A:U— AU) CRY x WY x W x Skews,
with
A (é,o,o) —  ({0,0},0,0)
such that
GoA! ({a;,p;w} T1R> = FoW (C) + (pg,l, S ,p’N_l,nN,l) :

Up to reducing U, we assume that for r small enough, A (U) is the compact
convex set

AU) = [V x (Bw (0,7))" x Bw (0,7) X Bskews, (0,7).
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8. The gluing process : proof of theorem [1.0.7

The choice of r does not depend on € < ¢, where ¢, is small enough. By
construction, the size (or the diameter) of U is of same type than the size of
A (U), that is to say r since ¢4 behaves like ¢° which does not depend on e.

Then, if we look for a solution of (8.2.89) in U, we can rewrite it as
F o w (é) + (pé),h e aplN—l,nN,1> = & o A_l ({a;wp;c,j} 7T/ivena Rl) .

To apply a classical Brouwer fixed point theorem, it remains to give rough
estimates of the different quantities which appear in the above equation. We
claim that for € < € small enough and for r := ¢, the inclusion & (U) C 4 (U)
holds true.

As a matter of fact, for all ({ax,pr;}, Téven, 75) € U, we have the estimate

5— n+2

£<{ak,pk7j},féven,7€> = Oo (cosh (Se) T) = o ().

€—s e—0
Note that this is why we have chosen such a definition of 3. Besides, accord-
ing to the choice of the a;; in proposition together with the balanced
condition of the initial configuration C', we get

g(o",o,o) :901/\)(6) ~- 0 (6f> — o (&),

e—0 e—0

therefore & (U) C ¢4 (U) is true for € small enough.
It follows that for all

(fai} Yo ®)  suchthat  |{aj}, Yo R|| <"

we are looking for a configuration
{pi;} € W such that Pl ,] < €

which satisfies the equation
(Fow s Phornns) = oA ({aiply} Then R) +9(€)

is solved. Since & is continuous, it is also the case of & o A~!. The right
member of the above equation is made of vectors whose norm is bounded by
is much more smaller than €® while the left member is made of vectors whose
norm describes [O, eﬂ] by construction. besides, both of us are continuous data.
According to the Brouwer fixed point, there exists a solution which depends

on the choice of ({a,}, YL, R'). It follows that

even’

({alﬁpk,j} ) Téven? R) = A ({Pli,g ({a;} ) T/i,ven? R,) } ) Ti,ven? R)
is a solution to the equation (8.2.89), QED. O
Remark 8.2.6 — The proof is a similar one in the periodic case when t; # 0,

except it is not necessary to change the weights. As a matter of fact, suppose the
family {a,} = {a@} is fixed. Since the kernel of the force function Fs,y : WN¢ —s
WNe is exactly V; @ V,, to say % is non-degenerate at {ax, px;} is the same than
to say the differential of F,} at {pr;} has full rank Ne — dim (V; @ V;.). Thus the
same proof with fixed {a;} holds true.
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8.3 The mean curvature vanishes

To end with this section, it remains to prove that the mean curvature of the
smooth hypersurface . we have built by gluing process vanishes everywhere. We
know by construction that the parts which are close to the horizontal hypersurfaces
are minimal hypersurfaces, but it is not yet the case for the small catenoids. It is
the object of following proposition.

3—n

Proposition 8.3.1 — Assume the weight parameter v < =5*. Then when € is

small enough, . is minimal.

Proor
We only give the proof in the periodic case. The non-periodic one can be demon-
strated in the same way.

The result comes from the first variation formula of area by using the mean
curvature on small catenoids which behaves like the Jacobi field associated to the
horizontal translations.

Reductio ad absurdum, suppose .¥ is not minimal. Then its mean curvature
does not vanish anywhere, that is to say (T..,,R) # (0,0), where Y. _ is a vector

even’ even
in W and R is a skew-symmetric matrix such that the boundary data satisfies

1 _ 1
Tk,j,even - Teven + Rka'

First of all, let us introduce some notations. We denote by ./ C .7 an element
which represents the periodic surface ., that is to say such that It = .
Without loss of generality, we assume .7 contains the levels 0,1,---, N—1. Finally,
for large radius R > Ry, we denote by .#% the intersection of the cylinder B (0, R)xR

with the surface ., in other words

Fp=(B(0,R) x R)N.7.
The ball B (0, R) denotes a subset in R". Besides, we assume Ry is large enough to
ensure all the p; ; are in this ball, for k =0,--- | N — 1.

Let w be a vector of W x {0} and r = exp R’ be the rotation of R" x R such
that

!/
R' = (78 8) and R’ € Skewy,.

Then the area of .5 is the same than the translated and rotated surface r (/z) +w.
Thus, according to the first variation formula of area, if we denote by A the area
function, we can write

d

T [.A(exp(tR’) (yR)HW}_ Al 5@) o

= —/ (H,w + R'.7g) dvol », + / (n,w + R' ) dvoly.z,,
yR 8yR
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8. The gluing process : proof of theorem [1.0.7

where H is the mean curvature vector of ./ and n is the outward pointing unit
normal field of the boundary 0.7;. By construction, the mean curvature vanishes
for the part of . which corresponds to the case of hyperplanes. Furthermore, the
boundary 0.7% is the union of N connected components 0.7 which are graphs
over OB (0, R). Thus the above formula turns into

>y

J

N-1

/ <H, w + RlyR> dUOlCatk i / <Ilk, w + RlyR> dUOlaryR L
Caty,; ’ OSR k Y

(8.3.90)

k=0

where Caty ; is the catenoid we glue at py ; between levels k£ and £+ 1 and ny, is the
outward pointing unit normal field of the boundary 0.5 .

The clue then lies in proving that the right member vanishes for well chosen
weight parameter v. We then consider well chosen w and R’ to demonstrate that
the vector TL,, is 0 and that the skew symmetric matrix R vanishes, that is to say

the rotation is nothing but the identity.

The integral over 0.3, : notice that the left member does not depend on R,
thus it is also the case for the faym—part. The idea is to let R — oo and to

prove that the unit normal is close enough to the unit normal associated with
a sphere of radius R in R"™.

To relieve notations, we omit the index k. The key is the minimal graph over
R? is almost flat far away from the singularities. More exactly, according to
theorem Sk is parametrized by

rz

X :(r,z) €[0,R] xS+ (h(r,z)

) € B(0,R) x R,

where the height function h satisfies

h(r,z)=hg_+e€ ( O (r*=") + P O (r”)) = hy— +erl™" O (r")

r—00

because v > 2 — n. Here, the important point is that the constants which
appear on the definition of O do not depend on ¢, they are universal, that is
to say there exists ¢ such that for all € small enough,

}Vi (O (TV))‘ < ert Tl
Besides, since R’ (e,,11) = 0, we have the relation
R' (X (r,2)) = (rR'z,0) .

Since the tangent space of . is spanned by the vectors 9,X and 0,: X, there
exists a family of n — 1 real numbers ();) such that n is written

e S YN0z + 2
s | AN 0N = | ey ) O e )

r—00
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where ¢, is a constant such that ||n|| = 1. Besides, n must be orthogonal to
the boundary 0.7 which is parametrized by z € S — X (R, z). Thus for all
j€el,n—1], (n,0,;X) =0, from what we conclude

e]
_ 2 2n—2 2v—2
A= EriT O (r?).
r—00

Finally, we deduce the unit normal n is very close to the normal to 9B (0, R) x
{0}, namely

€2r§n—2u 5 (7,,2V—2)
n(z,r) = )+ o
0 er™r O (rv7h)
T—00

With similar arguments, we prove that there exists a constant ¢ which does
not depend on € such that in cylindrical coordinates,

|dv0layR — R”_ldvolg‘ < e R 2o,

Therefore, if we write w = (w,0) with w € R™ and if we use the equality
fs zdvolg = 0, we can estimate the integral as

< celllwll + IR ) €78 R

/ (n,w + R .SR) g1 dvolyz,
055

This right member tends to 0 when R tends to 0 when n — 3 4 2v < 0 : this
is why we have chosen such a v. Since the integral does not depend on R,

- 0. (8.3.91)

J/p <Il,'VV _F I%!LSZG%>IR7V+1 (11)0l8;7R
0SRr

The integral over a catenoid : by construction, the mean curvature vector is

90

Hy; = Hj ; Ny ; where Ny ; is the unit normal vector associated to the trun-
cated catenoid Caty; whose boundary data is prescribed. Note that Hj ; is
given by theorem up to the dilation factor 7 ;. Besides, recall that we
have enforced the relation

n 2-n
1

\Ijk,j,even = 77];]5 reT (Téven -+ Rka)

in the gluing process. For practical use, we denote by N, (resp. Ny ;, N.) the
vector of R™ such that its components are the n first components of the vector
N, of R"™! (resp. Ny ;, N.). We choose w and R’ such that

. n 2-n n 2-n

w=1ycre? T, and  R'=mnir® R.

even

We check that the rotated catenoid R'Caty ; is parametrized by

R/Catm s R/pk,j + nk,jR/ (Xc + SO%ankvjNﬁ> :



8. The gluing process : proof of theorem [1.0.7

According to the definition of the Killing field gzﬁ, in local coordinates, we can
write

/ (Hy;, w + R'.7R) dvolcay,
Catk,]-

:/ /[fk,j (s, 2) (w + R'pry. Ne (s, 2))
—se JS
' <Nk,j (8,2) s w + Rpyj + ni /R’ (XC + goQ_ank,jNe) > ] dsdz,

where the positive function fj ; is defined to be
To, : 1— |X5 (S)I —
haten) = (B0) IR o)
Mk.j Mgl (Se)

and gy, ; is the metric on Caty ;. We check that |gy ;] is almost 7}, ; |g.|. Calculus
demonstrates there exists a constant ¢ which does not depend on € < ¢y such
that for all (k, j),

1 — [xe (s)]

ecosh (s.) 72 "2 (s)
c

< frj(s,2) < e(1—|xc(s)])ecosh(s) 2 9" % (s). (8.3.92)

Consequently, the mapping

<'7 '>W><Skewth : ((wh Rl) ) (w27 RQ))

— Z/ /fk,j (s, 2) (w1 + Rapr,j, Ne) (wa + Ropyj, Ne) dsdz
kj ) Se S

defines a scalar product on W x Skewy, .

Furthermore, according to the definition of N., we can check that there exists
some positive constant ¢ such that for all € < ¢, for all vector w’ in W, for all
R’ in Skewy, , we obtain the equality

() o + R'pr s

ol

2
< / W+ Rpep N Az < e () + Ry
S

from what we deduce the norm H-HWXSkeWth satisfies

1 _n 2
Eecosh (s) 2 (']l + IR )

2 —n 2
< R i, < cecosh(s)7E (]l + [RL)7 . (8:3.93)
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To end with this case, we put equation (8.3.91f) in equation (8.3.90)), we write
Ni; = N.+ (Ny; — N) in order to obtain

0 = Z / <Hk,j, W+ ReyR> d’UOlCath
Catk,j

k.j
= H(w7R>H12/V><Skewth + I+ I, (8.3.94)

where the integrals I; and [5 are defined by

Lo = Z/fk,j (Neyw + Rprj) - (Nij — Ney w + Ry j) dsdz
k,j
and
2-n
I, = Z/fk,j <Nc,U)+Rpk,j> . <Nk,j,77k,jR (Xc—i—gp 2 Wk,jNe>>deZ.
k?j

Similar arguments than those in section [7.1 — (b)| prove that N, ; — N, =
Oc0 (ere). Consequently, according to the Cauchy-Schwarz inequality, there

exists ¢ > 0 such that for all € < ¢,
1Ll < e l(w, R) ke, -
Moreover, since (z, Rz) = 0, we can write
(N, R (Xe+ 9" wiiNe) ) = (Nig = No R (Xe + 9" wi N )

consequently,

=

2

1| < empgere Rl 1w, R)llw wskews, -

;j/fk,j‘;@Q

According to the description of fj ; (8.3.92) together with inequality (8.3.93),

we find

sn 2
1Ll < erd [(w, R)llw wsiew, -

Finally, we put the estimates for I; and I, in (8.3.94)) : there exists some positive
constant ¢ which does not depend on € < ¢y such that

2 ' 2
10 R)lwssiem,, < et 1@, R)lwcsiem,

thus w = 0 and R = 0 for € small enough. In other words, for all k, 7, the quantity

1 . . . . .
W) even Vanishes : the surface is minimal. O
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9. Examples

9 Examples

We provide some examples of balanced and non-degenerate weighted points con-
figurations. For convenience, in all this section, we omit the factor (n — 2) in the
definition of the force f (p,q) between two points p and ¢ — it is possible since the
rank of the force function .# is invariant under the multiplication by a non-vanishing
real number.

9.1 Periodic examples with non-vanishing horizontal period
9.1 — (a) The Riemann minimal hypersurface example

Here, we prove the generalization of the Riemann’s example (only one neck
between planes) in higher dimensional space given by S. Kaabachi and F. Pacard
IKPO17].

Let p be a positive real number and consider the pe;-periodic configuration given
by

{pk‘,l}k = {(kpa 07 70)}k

We note a the weight of all points, that is to say that equality a = a; holds for all k.
Then the configuration is always balanced because of the symmetry of the problem.

Moreover, W = Span {e; } is a one-dimensional linear space. Thus the configu-
ration is non-degenerate if, and only if the rank of the jacobian matrix is 0 (ant it
is its maximal rank) : it is always the case.

9.1 — (b) The Wei example

We have in mind to construct the analogue of the Wei example [Wei94] with
alternatively one neck and two necks between horizontal hyperplanes. Notice that
this kind of example has already been produced in S$* x R [CP12].

Let p be a positive real number and consider the 2e;- periodic configuration
{Ps,;} defined as follows :

nop =1 and  py1 = (2k,0,---,0),
VEk€Z,q nopp1 =2 and pyn = (2k+1,p,0,---,0),
P2k+1,2 = (2k+17_/0>07 7O>
Note that this configuration is invariant under the action of the orthogonal symmetry
with respect to the vertical hyperplane {z5 = 0}. Then the linear space spanned by
the points is W = Span {e;, e2}. In particular, its dimension is 2 and the dimension

of Skewy, is 0. Consequently, the configuration is non degenerate when the Jacobian
of .# has rank 4.

Then the forces of the weighted configuration are such that
FO,I = 07

Fl,l = —FLQ = 2 (a1 (2p>1—n — &0@%) €,
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thus the configuration is balanced if, and only if a;; and ap; are related by the
equation

= ao(

)1771 4
1+ p2)?

ay (2p

Since t, # 0, it is enough to consider the force function .# with fixed weights.
In this case, computation leads us to Jacobian matrix Jz € Mg (R) of the force
function .#

‘]5'7 = (03,1’ Og,lv C’11,17 C’12,17 C'11,27 C112,2) )

0F
Bp";e,j
1 ¢ {i,i+2,i+ 4}. Besides, Cf, + C} | + Cj, = 0since V = {v,---, v} belongs to
the kernel of Jz. Thus we easily check the rank of the Jacobian is the same than
the rank of its 4 first columns. After calculus, we obtain

where the columns Cj ; = are such that its components (C} ;); vanish when

—4ba 0 2ba 0
0 —4bp3 0 200
1 o2 ol 2 - 2aa 0 a-—2a«x 0
(Co, G, Gl CF) - = 0 2af3 0 (1-n)a—2ap |’
2ac 0 —a 0
0 2ap3 0 —(1-=n)a
where the real numbers a, b, & and [ are defined to be
2
(1+p2)2 (14 p2)2 1+p IT+p

Therefore, the above matrix has maximal rank 4 if & and 5 do not vanish, i.e. when
1
p#(n— 1)jEE and in this case, the configuration is non-degenerate.

The conclusion is that we construct the Wei example for parameters
n—=1 n
. (2" p
(1+p%)?

Moreover, the period is such its horizontal component is 2e;.

N

p#(n—1)2, ap € R, and a =a

9.2 Periodic example with vanishing horizontal period

Here, we assume t;, = 0. We give examples for which we do not suppose the
weights are fixed. We prove the existence of a type of surface that does not exist in
R? x R, namely a kind of “degenerate Wei example” : a configuration similar to the

one of section except we enforce the horizontal period to vanish. It could
be named the vertical Wei’'s example.

Let p be a positive real number and consider the O-periodic configuration defined
as follows :

Nok = 1 and P2kl = (Oa 07 e 70) )
Vk € Z, Nok+1 = 2 and Pok+1,1 = (p, O, o ,0) ,
P2k+12 = <_p7 07 T 70) .
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Then W = Span{e;} and the configuration is non-degenerate if the rank of the
differential of the force function is 2.

9.2 — (a) Why we have to change the weights

We note a = ag and b = aggy 1. Then the forces satisfy

FO,l = 07
Fl,l = —FLQ = 2p1—n (21—nb — Cl) e.

Consequently, the configuration is balanced for 2'7"b = a. Easy calculus demon-
strates that the Jacobian Jz, defined to be the matrix associated with the differ-
ential d,.# of .# with respect to the points (and not the weights) is given by

JpF = (&1% , &1/ , &1/ ) = afl a 27"—a -27"b |,
apo,l apm a]71,2 a _9-np  9-np _ g

1-n
pm
—% a : Jz has rank 1 and thus has not full rank 2. This is why it is necessary to

change the weights, which is impossible for minimal surfaces in R? x R.

. But the balancing condition enforces b = 2" 1a and then 27 "b—a =

where v = 2

9.2 — (b) If we change the weights

Heuristically, the problem of the above configuration comes from the symmetries :
they are too numerous to ensure the differential of .# to have maximal rank.

As announced, we change the weights parameters a and b. We then check that
the differential d,.# of .% with respect to the weights is given by

0 0

0F 0.F

g _9,1-n 2—n ,1-n

S = (aa’ab) 22p S
1%

1-n _227np17n
Obviously, this above matrix has rank 1 and its columns don’t belong to the linear
space that the columns of J,.%# span.

Therefore, d.# has rank 2 : the configuration is balanced and non-degenerate
when the equality 2'7"b = a holds true. In this case, it is possible to produce the
vertical Wei’s example.

9.3 Non-periodic example

We have in mind to construct a minimal hypersurface with 3 hyperplanar ends
and 3 necks.

We consider the non-periodic configuration given by

ng = 1 and pO,l = (0, 07 e, 0) s
n = 2 and p11 = (p,0,---.,0),
P12 = (_PaO, 70)7
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where p denotes a positive real number. For convenience, we note a := ag and
b := ay. Then the forces satisfy

Fou=0, Fii=(2""b—a)p" 'e; and Fio=—(2""b—a)p" e
Therefore, the configuration is balanced when the relation
a = 227"

holds true.

For the non-degenerate part, since here the space W that the points span is
1-dimensional, we have to prove that the rank of d.% is equal to 2. An easy compu-
tation yields to

0F 0 0F O0F O0F
da " 9b Opy, Op1y Opis

0 0 2b —a —a
= p"tn-1) —ﬁ %j ; a 2'™™b—a —2'"7
ﬁ —f:; a =2'""p 217"p—q

whose rank is 2 when the configuration is balanced. Consequently, the configuration
is non-degenerate and it provides a non-periodic Riemann example when a = 227"b.
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Chapitre |11

Construction de surfaces
minimales de type Riemann-Wei

dans S? x R

1 Introduction

The classical Riemann minimal surfaces form a 1-parameter family of simply
periodic minimal surfaces with an infinite number of planar ends which are linked
to each other by one “neck”. One way to study it is to consider it as the connected
sum of Euclidean catenoids.

Many generalizations of this kind of minimal surfaces have been done, especially
since the last twenty years. Essentially, there are three types of results that have
been established, namely : characterizations in [HKR91] or in [MPR], generalizations
with an arbitrary number of necks in the Euclidean 3-space in [Tra02a], [Tra02b,
IMT11] or in [HPOT7| and generalizations in other homogeneous spaces. In this paper,
we are interested in this last kind of result. In 2006, L. Hauswirth ([Hau06]) proved
that the Riemann example exists in space products H x R and S* x R. In [KP07]
or [FP0O0], the existence of this kind of minimal hypersurface is proved in R” x R
with n > 3. In [CP1I] is proved an extension of the results by M. Traizet with an
arbitrary number of necks in R™ x R.

For the time being, there are few examples of minimal surfaces in S* x R. In
this paper, we prove that there exists the analogue of the Wei example in S? x R.
The example that Wei (cf. [Wei94]) produced is a simply periodic minimal surface
in R? x R with alternatively one and two necks between two consecutive planar ends
— see figure An other way to describe it is to consider the classical Riemann
minimal surface and to add one handle every two planar ends. Notice that the
distance between two planar ends that are linked to each other by only one neck is
twice larger than the distance in the case where there are two necks. The reason
for that is that the logarithmic growths of the catenoids have to make up for one
another.

In our case, we generate in S xR C R3 xR a minimal periodic minimal surface ¥
that can be seen as punctured spheres (the analogue of punctured planar ends) which
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Figure I11.1: The Wei’s example in R? x R.

are linked to each other by alternatively one and two small truncated catenoids. By
periodic, we mean there exists a vertical vector ty, € Span (e4) where e, = (0,0,0, 1)
and a rotation R of R* that preserves the vertical vector e, such that

R(E) +tye = 2.

We note € the period transformation, i.e. € maps a point (s,t) of S* xR to R (s,t) +
tyer and K the group spanned by €. As a matter of fact, R has to be seen as the
generalization of the horizontal component of the translation that characterizes the
period in R? x R,

First of all, we define the gluing points, that is to say the points in which we
will glue catenoids. Let s,, s, and s, be three points on the sphere S* C R whose
geometric configuration is given by an isosceles triangle on the sphere :

Sp = (sinf,0,cos6,), s, :=(0,sinf_,cosf_) and s, := (0, —sinf_, cosb_),
(1.0.1)

where 0, and 0_ are real numbers in (0, 7). Note that the North pole N is exactly
the middle of the geodesic which passes through the two points s, and s,. We
identify this sphere with the sphere at level 0, that is to say S* x {0}. Then the
punctured sphere at upper level 1 will be given by S? x {t;} (where ¢, is a positive
real number that corresponds to the size of the catenoid we glue at s,) and the
upper level 2 of this last will be given by S? X {t.; } where tye; = t; + 5. The points
sy, o and s} on S§? ~ §? x {t1} we consider are given by

sllj = Sp, 5(11 = (cosf_sin20,,sinf_, cos_cos26.)

and

1

s, = (cosf_sin20,,—sinf_, cosf_ cos26.)

while at level 2, we consider the points

sf) = (sin36,,0,cos36,), st=s and S5 =s,.
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In other words, the configuration at level 2 is obtained by the configuration at level
0 after the rotation Rg2 of angle —260, around the ej-axis. We then define s’; for all
k € Z by using the periodicity condition

Vg € {p,q,r},Vk € Z, 52 = R (s];)

g

and the level k of the sphere is

S* x {t; + ltyer} when k=2[+1 and S* x {ltye} when k=2l

A”

ATy
S? X {tyer}
R o &t
T2, T3
/SQ—> S? x {O}

2 _
% S? X {—tyer + 11}

Figure I11.3: The kind of surface whom we prove the existence.

Indeed, the rotation R associated with the period of the example we want to
construct is such that its restriction on the sphere is Rigz = Rge.
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In our construction, we glue one truncated catenoid at point s2 and s2*! between

levels 2/ and 21+ 1 while we glue two truncated catenoids at points s2** (resp. s2*)
and s272 (resp. s7'*?) so that there is alternatively one neck or two necks between

two consecutive levels.

Before giving the main theorem of this paper, we have to give some definitions.
First of all, at all level, one easily checks that the configuration is invariant under the
action of the orthogonal symmetry s with respect to the plane {xs = 0} — note that
it is a real plane if we consider the k-th level as a sphere S? or it is a hyperplane if we
consider the global product space S? x R. We note & the group of isometries {Id, s}.
According to different cases, we see this group as a group that acts on S? or S% x R.
Notice that s (s}) = s, and s (s}) = s for all i € Z. We also denote by ¢ the point
reflection of S* x R in respect to the point s, x {%} and by $ the group spanned
by ¢ and s ; by point reflection, we mean that if (s, % + t) belongs to S? x {% + t}
for some real number ¢, then ¢ (s, % +t) is the point ¢ (s, & —t) of S? x {& —t}
where s’ is chosen to be the point of S? so that s, is the middle of the geodesic
which passes through the points s and s’. In particular, the isometry ¢ satisfies the
relations ¢ (s;) = s0, ¢ (sg) = sv, ¢(s2) = s;', ¢(s2) = 5" and ¢ (s2) = s, . Notice
that the point s, x {%} is seen as the centre of the only neck which links the level
S? x {0} with the level S* x {t;}.

Definition 1.0.1 — We say the configuration given by 6. is balanced if the relation

(—1 + 1 +800829+>
f_ = arccos )

2cos by

holds true.

Even if this definition seems technical, it is essentially a generalization of the
condition associated with the force which is used in the papers of M. Traizet or in
[CP11). It comes from the Taylor expansion of Green’s function. We rather explain
it in the discussion we have made after the equivalent definition [2.1.7]

We now state the result of this paper.

Theorem 1.0.2

Let a be a positive number and (90+,90,) € (0,7). Then, if the point configuration
{Sp, Sq» Sr} given by 15 balanced, there exists a 1-parameter family of surfaces
(3e) ce(0,c) €mbedded in S? x R such that for all e,

(i) e is minimal ;
(ii) X is invariant under the action of the group $) ;

(15i) X is 1-periodic with parameters R and t,. where

3
Rz = RSQﬁ; and tyer = 5@ elne+ O (e).

e—0
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In addition to that, the quotient space 3, /8 is the connected sum S* x {0} with
the upper level S* x {t1} at point s, and of this last one with S* X {tye} in a
neighbourhood of points s, and s,, where

ti, = aelne+O(e).

Remark 1.0.3 — For all € in (0, ¢y), the distance between levels 2] and 2] + 1 is

t1 = aelne+ O (e)
and the distance ¢ between levels 2] + 1 and 2[ is
1
ty = 3 aelne+ O (e).

This is in agreement with the remark we have made about Wei’s example in R? x R.

2 Analysis about a sphere in S* x R

2.1 Green’s function

In [CP11], we have already highlighted the key role of Green’s function I' asso-
ciated to the Jacobi operator in order to build minimal Riemann hypersurfaces in
R"™ x R with an infinite number of hyperplanar ends. They satisfy the PDE equation

ARn r = Z Qg 6171‘ y

where the p; are the points in which we perform the connected sum of hyperplanes
and ay are non vanishing real numbers that provide the size of necks between two
consecutive hyperplanar ends. We have in mind to generalize it to the sphere case.

For all g in {p, ¢, 7}, let a, be a positive real number — more precisely, it is what
we call a weight parameter. Green’s function we have in mind to construct is such
that

Al = =27 (apésp — ag40s, — a,.%55r> .
Notice that for the gluing process, it is essential to provide an accurate description
of the solution near its singularities. In particular, near one of the s,’s, the term
of order 1 in its Taylor expansion corresponds to what we call the force Fj which
is nothing but a tangent vector that describes the interaction between s, and the
other singularities.

In this paper, we make use of the stereographic projection 7 : S? — R? from
North pole. We choose to work with this projection because it is conformal and
thus, it simplifies the analysis on the sphere.
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Notation 2.1.1 — For convenience, we define x := 7 (s) to be the point of R?
which represents the point s of the sphere and for all g € {p,¢,7}, we note z, :=

7 (Sg)-
The metric associated with the parametrization 7! is given by

gﬂ',S2 - Cb de

where ¢ is the conformal parameter, i.e.
4
212’
(1+117)

where | | denotes the classical Euclidean norm on R2. The Laplace Beltrami operator
in these coordinates is

2\ 2

2.1 — (a) The existence part

First of all, since constant functions belong to the kernel of the Laplace-Beltrami
operator, Green’s functions are defined up to a constant. To ensure uniqueness, we

agree that
/r )
S2

Next, the choice of the coefficients in the definition of Green’s function has to
satisfy a necessary condition. Indeed, if I' suits the problem with points s, and
weights a,, then for any smooth function f on S?

> agf(s,) = fAel = / Agf T.
p S2 S2
Thus if we choose f =1 the constant function, we end up with
Z ag = 0.
g

Consequently, this fact together with the fact we want to construct a minimal surface
which is invariant under the action of the orthogonal symmetry with respect to the
vertical set {xos = 0}, we enforce the coefficients to have the type

1 1
(ap7aq7a7") - a (17_57_5)

for some positive real number a.
As a matter of fact, another way to explain the above choice is to recall that
our method consists in gluing small catenoids with the sphere. However, catenoids
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in the Euclidean space R? x R are not bounded and have logarithmic growth. The
weight parameter a, matches the size of the catenoid we want to glue. The condi-
tion a, = a4 + a, is an equality under which the asymptotic behaviour of classical
catenoids make up for each other. It is the same condition that M. Traizet uses in
its construction — see [Tra02al or [Tra02b].

Lemma 2.1.2 — For all positive a, there exists an unique Green’s function I’
such that
1 1 .
AgI' = =2ma | ds, — =0s, — =0s, together with I'=0.
P2t 2 S2

Moreover, the explicit formula for T is given by

S — R
s Zgé{p,qar}agln(h(s)_W(59>|)+Cm

where the constant c, is chosen so that the integral of I on the sphere vanishes.

Remark 2.1.3 — e Since ) a, = 0, we check that
> agIn (| (s) — 7 (s9)]) v O
g

Therefore, it makes sense to consider I' as a continuous function on the punc-
tured sphere S = §?\ (s, 8¢, 5,). If 37 a, # 0, then Green’s function would
tend to infinity when one approaches the North pole. It is another way to
understand why the assumption about the coefficients has to be true.

e The graph of Green’s function points upwards when one approaches the sin-
gularity s, and points downwards when one approaches the singularity s, or
s,. Heuristically, the positive part well be used to glue some catenoid with an
upper level while the negative part will be used to connect two catenoids with
the lower one.

e According to the explicit formula of I, one easily checks that if > denotes the
surface we obtain as the graph of I over S? \ {s,, 54, s, }, then X is invariant
under the action of the group &.

PROOF (OF LEMMA [2.1.2])

Naturally, we deal with the equation by using the conformal properties of the stere-
ographic projection. For convenient purpose, if f is a function on the sphere, then
we compute f := f onm ! the associated function on R%. The problem then turns
into

2
— QWZagf (Sg> = / A§2F f = TAR2F f
- S2? R2
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Furthermore, it is well known that, in R?, we have
Ag: (In(lz —p|)) = —276,.

Consequently, the function
s> agln (|7 (s) = 7 (s)])
g

is chosen to be a solution — up to a constant. The constant c. is defined to
ensure fS = 0. Note that the definition of ¢, makes sense since in stereographic
coordinates, we can rewrite its expression as follows :

4da?
o = [ Yanle-a)
g9

(1+[a)*

At infinity, the integral converges absolutely because

4 In |z|

In (| — ) —
TP’ e 2!

with 4>2. Near a singularity ;, it is enough to remark [, () 1 (|lx — x;]) con-
R

zi,1)
verges absolutely since in polar coordinates,

1
/ In(|z|]) = 27T/ rin|r|dr = T
By (0.1) 0 2

The uniqueness follows from maximum principle. O

2.1 — (b) Local description near the singularities

We have in mind to give an accurate description of Green’s function in a neigh-
bourhood of one of the points s,. The main difficulty lies in relating the asymptotic
behaviour of the term In (| — z,|) which explodes when s tends to s, with In (ry)
where r, (s) denotes the geodesic distance between the points s and s, on the sphere.

We define angles 6, on small geodesic circles 9B (sq4,79) with 0 < 79 << 1 to
be the oriented angle in R3 between a point that belongs to the plane that holds
0B (s4,79) and the unit vector e,, based at the center of the circle (seen as an
object in R®), which belongs to this plane and whose coordinates are (e, 0, €3) with
e negative. We also denote by e, (0,e,7%, e,?) the unit vector which is orthogonal
to e, and tangent to the sphere at s, such that its component egL’2 is positive on the
Northern hemisphere and is negative on the Southern hemisphere. In other words,
(rg,8,) denotes the geodesic coordinates. The reader can refer to the figure for

an illustration.
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2. Analysis about a sphere in S? x R

Figure I11.4: The geometric meaning of r, and 6.

Lemma 2.1.4 — Recall that x = w(s). In a neighbourhood of s,, following
expansion holds true :

T — Ty, T
In(ry(s)) = In(jJx—x4]) —cay— W + O (lz —24%), (2.1.2)
g

where ¢, 4 s a constant that depends on s, and the projection ™ we determine in

the proof.

Before giving the proof of this technical lemma, we give a description of [' near
one of its singularities.

Corollary 2.1.5 — Near s,, Green’s function has following expansion :
I'(s) = aglnry(s) + ¢
+ 14 (s) (F,, cosfy(s)e,+sinb, (s) ej>S2 + O (12 (9)),
5—Sg

where the force Fy € Ty, (S?) is given by

1 T (Sg .
F, = —3 Z ag cotan (#) (cos b, (s5) ey + sinb, (sg) ej) (2.1.3)

9#9g

and where the constant cy is

g = QyCrg + Cr + Zagln(|xg—x§|).
979
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Remark 2.1.6 — As a matter of fact, the force Fj, can be seen as the gradient at
point s, of the C* function I' — a, (In (r, (s))) in a ball centred in s,.

PROOF (OF THE COROLILARY|2.1.5])
According to the lemma [2.1.2 together with asymptotic behaviour [2.1.2) we can

write

1
['(s) = agln(]x—xg])+Z§ln(\x—x9—|—mg—x§‘2) +c,

979
T — g,
MﬂLcﬂ%—Zagln (|Jzg — 24])
L+|e 9‘ 979

1 — —
e e o (o)
X

979 g — &g

+ O (\:c - a:g]2) ,

= agln(ry) + agcr, + aq

from what we deduce (because |x — z,| = O (1)) the following expansion :

['(s) = aglnry + ¢4 + fy(s) + O (ﬁ)?

5—8g

where the function f, on the punctured sphere S? is defined to be

fo(s) = agw 4 Zag (z — $g,$gi—2 £E§>'

2
1+ |x9| 979

We then express this above formula in more useful coordinates rgewg. If 7 denotes
the stereographic projection from the antipodal point —s,, then the formula of f,
becomes

Z‘l’
fo(s) = _Z ng
G#g ’9‘]12{2

But one easily transposes this formula in spherical coordinates since |z|g. is given
by tan £, We then get

]RQ

<tan rg(s) 299( ) , tan @6Z0g(5‘9)>
fols) = =) ag

9#9 tan

rg(s)

— J— Z Q= tarl—2 <6299(8) 6269<s§)> .
g Tg (59) ’ R2

9#9 tan 5

We now use the Taylor expansion of tan to obtain
fo(s) = s) (F, , cosb,(s)e,+ cosby,(s)e L>82—i—(’)(r3),

and the result follows. O
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PROOF (OF THE LEMMA [2.1.4])
The main idea is to explicit the link between r, (s) that does not depend on the
parametrization of the sphere and the quantity |z — x|

The metric g, s> on the associated with the stereographic projection from North
pole is such that

4 4{x,,x —x
Ons2 () = — 3 <1 — % +0 (|x—xg]2)> dz?.
(14 |z,|?) + |z

Moreover, since the stereographic projection is conformal, the equation of the geodesics
v : R +— R? is given by
1

o1 N
7—%\7\ V¢+5<V¢,7>7 = 0

Therefore, if v is a geodesic with unit initial speed v such that
Y (0) =z, and  |[5(O)], e = [v]e =1, Le o] =6 (z,)F,
then we get
2
2¢ (zg)
Consequently, if we denote by = the quantity v (¢), we obtain

y(t)—z, = tv+

(3107 Vo (e - (Vo (o). 00) + 0, (7).

_ |$—Ig|( 1 T —x €T ) I—xg
t o 1+4¢($g)< - Vo (24)) +:r:(20 (| gl )7

from what we deduce

2 T
7"9 (S) = W |ZE — IL'g| (1 — <Z’ — ZEQ, T&QF> + O (|Z’ — Ig|2)> . (214)

Finally, we end up with expression (2.1.2)) where the constant c is

1
Crg = —§ln(¢(a:g)). O

2.1 — (c) Forces and balanced condition

We need to explicit the different force terms because their behaviour is not the
same and play an essential role in constructing the minimal Riemann surface for
which we want to prove the existence. As a matter of fact, these terms geometrically
explain how to bend the small truncated catenoids in the gluing process — we will
discuss about that in the proof of proposition [4.2.5]

For all g, we decompose F}, into

_ 1,1 1,2, 1
F, = Fg eg—i—Fg e, .
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Then for F),, one checks that

e e 12
& B Qtan@ cos (g (sq)) and F) —

Thus the symmetries enforce the force F, to lie in the vertical plane {z, = 0}.
Heuristically, the catenoid we will glue at s, will be bent only in the direction e,.
Moreover, since 0§, (s,) = 2, the force Fy is such that

Fpl = cos O, (sp)

B 2 tan —”‘(25")
and

a 1 . 1
2 tan —Tq(;p) sin (=a (sp)) = 2 tan _rq(er)

1,2 _
F}? = (2.1.5)

where we notice that sin (-6, (s,)) is positive since 6, (s?) belongs to (m,27). By
symmetry, we obtain a similar formula for F,. Unlike the case of F},, a priori, the
force F;, does not favour any direction. But for symmetries reasons, the catenoids
we will glue at s, and s, can’t bend in any direction. This is why we introduce the

Definition 2.1.7 — We say the configuration (s,, s,, s,) is balanced if the compo-
nent F»* and F* of the forces F; and F, vanish. It is the same to say that for all
g, the force F, belongs to the line Span (e,).

Of course, the above definition is equivalent to the definition [I.0.1] of the intro-
duction. Indeed, the distance between the points s, and s, is 7, (s,) = 20_. To
obtain the distance r, (s,) between the points s, and s,, we use the formula

r,(sp) = arccos(cosf cosf_)

1—cosf
1+cos 6

G (sp) B 1 —cosf; cosf_
2 N 1+ cosfy cosf_’

To determine the angle 6, (s,), we use

0,(sp) = ST _ arcsin sin O,
e 2 V/1—cos20, cos?0_

and thus, according to the relation tanf = for all 6 in (0, 7), we get

from what we deduce that

sinf_ cosfy
/1 —cos?6, cos?0_ '

sin (=g (sp)) =
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We put these different formula in the expression of F, qlv? and we find

g2 _ O sinf_ cosf, 1
1 2 |1—cosf, cosf_ 2tanf_

a cos?f_ cosf, + cosf_ —2cosf,
- o . (2.1.6)
4 sinf_ (1 —cosf, cosf_)

Given 6., it is always possible to find #_ such that we obtain a balanced config-
uration. One checks that it is enough to choose

<—1+ V1 —|—8C0829+>
f_ = arccos ,

2cos by

which is nothing but the relation of definition [1.0.1]

2.2 Introduction of a first corrective term

Green’s function is a tool that produces a graph with singularities whose type is
locally radial and logarithmic. In some sense, it looks like to the classical expansion
of the catenoid. In this section, we describe the difference between this graph and a
minimal surface.

First of all, recall that for a surface 3 which is the graph of a function f defined

over the sphere, its mean curvature H is given by the formula

1 Ve f

H = 5 diVSQ
V1+ Ve fle

Therefore, the graph is minimal if and only if its mean curvature vanishes, in other
words if and only if f is a solution to the following PDE :

_ Hesss: f (Vs2 f, V2 f) .

Agf=G(f)  where  G(f) Lt [Verf 2
2 f|g2

We have chosen to work with this expression because it highlights the essential role
that harmonic functions play in the minimal surface theory.

The natural question which arises in our context is to determine the kind of error
we produce when we use Green’s function alone.

We define a smooth increasing function x : R — [0, 1] such that

X (—o0,1) = {0} and X (2,+00) = {1}.
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Proposition 2.2.1 — Let py be a positive real number such that the geodesic
balls B (sq4, po) do not intersect themselves and do not hold the North pole. For
small positive parameter €, let I'or o be the function on the sphere such that

5 g I=x (2;_2)
Toore (s) = €e[(s)— > e 4
ge{p.ar} g

Then for all k in N, there exists a positive constant ci such that
}vlé? (ASZ (Fcor,e) -G (Fcor,e))’ < Ckegf_?);

where the quantity r is the minimum of {rp,r4,7s}.

Before giving the proof, note that this result is really similar to the one we have
obtained in the case of punctured hyperplanes in R™ x R. It is a little bit more
technical since we work with graphs over the sphere, but the main ideas are the

same. The corrective term only appears in the neighbourhood of the singularities of
r.

Remark 2.2.2 — Once again, notice that if > denotes the surface we obtain as
the graph of I'cor ., then X is invariant under the action of &.

PrOOF
The proof divides into two parts : in the first, we study G (eI') and in the second,
we introduce a corrective function that makes up for the main term of G (eI').

First, let us give some formula which are useful to solve the problem. If (r,0)
denotes the polar coordinates in R?, then the stereographic projection is such that

14727 14727 1412

' (r,0) — (QTCOSQ 2r sin 6 —1+T2> e s2.

Consequently, the induced metric is given by

4 4
g = —er2—i——r 2d92
(1+72) (1+72)

and the square root of its determinant is

4
Vil =

(1+ 7’2)2'

The Christoffel symbols satisfy following expressions :

r _ 2r 7] _
I, = —1= . =0,
r _ 6 _ —14r2
FT@ = O’ and Fr6’ = 142y
T _ —1+72 0 _
Toe = 7552 Tgo = 0.
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The Laplace Beltrami operator is given by

Au (1+72)? # 10 18
52 4 or2  ror 1200%2)°

the gradient satisfies

(1+7r2)?0f (1+r2)*of

\V4 = —— 0, -0,

2 (/) 1 o T T 9
and the hessian is
92 9 r2 9
+ +
Hesse _ <8_2r2 11+rr2 87‘8 3@ . (11+TT2 )(599) )
orol r(1+r2) 00 002 "2 or

We now compute the estimate of the error we perform when use only Green’s
function. Assume that r, > po for one of the elements g € {p, ¢, r}. It is convenient
to work with the stereographic projection m_,, from the antipodal point of the
singularity s, since in this case, z, = 0. According to the formula (24)), we can write

el (s) = eazIn (ry) + ec + Ou (ery) ,

rg—0

from what we deduce[l
Vsz (eI') = (e& + O (6)) Or + Ou (er™") 0

and
Hessg: (eI') =

Consequently, we check that

G() = 55+ 0. ().

Note that the main term is radial because the behaviour of I' near s, is given by the
rotational invariant function ea,Inr,.

We now make use of the above expression and we add the corrective term

Cor(s) := Z 3 3 ﬂ.

1. The reader will pay attention to the fact that » = |z| is not exactly r,.
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When s belongs to the geodesic ball B (397 5 ) then this function is equal to —634—3

2

J
According to the formula (2.1.4) we have developed in the proof of lemma [2.1.4] in
stereographic coordinates from the antipodal point —s,, we get

CL3 63
Cor(s) = —642—2—|—O <7“)

and thus, its Laplacian is

5 % ¢
Ag:Cor (s) = —¢ yE + O (ﬁ) ;

its main term is the same than the main term G (e[') and this is why we have
introduced this corrective function.

This proves the result for the continuity property in a neighbourhood of s,, but
same kind of estimates hold true for the derivatives. Regarding the points which are
far from the s/’s, it is enough to note that I' and its derivatives are bounded by a
constant times € : it is small as compared with what happens near singularities. [J

2.3 The weighted spaces

In this paragraph, we give some definitions in order to use PDE theory in well
chosen spaces to deal with the singularities. Before giving the results, we define the
weighted Holder spaces in punctured spheres.

We note S? the sphere without the singularities s, for all g € {p,¢,r}. Recall
po is a positive real number such that the geodesic balls B (s,, pg) do not intersect
themselves and do not hold the North pole. Finally, let K be the compact set defined
to be the sphere excised from the three balls B (sg, @) in S2. Tt is also convenient

2
to define r, (s) the geodesic distance between a point s of the sphere and s,.

Definition 2.3.1 — Let x be a real number. We define the weighted space L3? (S2)
to be the set of all functions f € L2, (S?) such that the quantity

loc

ey = D Ird "l ooy + 1)

g€{p,q,m}

is finite, that is to say
(i) f is bounded far away the singularities ;

(ii) in a neighbourhood of s,, f is bounded by a constant times 7.

Remark 2.3.2 — If U denotes an open space of S?, we define in the same way the
weighted space Lj? (U) endowed with the norm |[-[| o 1)-
I

Definition 2.3.3 — Let 1 be a real number, £ be a non negative integer and
€ (0,1). Then the weighted Holder space C*(S2) is defined to be the set of
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functions f that belong to szf‘ (S?) such that the following norm
k
o —ptll
Ifllezee = Ifllezane + ZZZ (PR | PR
=0 g
VEf(s))—VFEf(s
BN | TS B 1O
LA, g (52) — 7 (52)]
sl;éngB(sg,r)\B(sg,%)
is finite.
Remark 2.3.4 — It is convenient to remark that this definition allows us to con-

sider the punctured sphere S? as a manifold with three ends. In fact, we could
identify the ball B (s,, po) with a cylinder [a,+00) x S' by writing 7, = e™* with
t € [a,4+00). We will use PDE theory developed in lectures [Pac09].

The properties of an operator defined on this kind of manifolds come from the
study of its indicial roots : these are a tool that yields to estimates of solutions
when one approaches the singularities. It is an easy check to see the indicial roots
of the Laplace-Beltrami operator on the punctured sphere are the elements of Z (it
can be seen with the help of classical Fourier series on the sphere S' for which the
eigenfunctions are the elements e’ for j € Z).

2.4 The harmonic extension

We have already highlighted the essential role that Green’s function plays in
the theory of minimal surfaces. In this section, we build harmonic extensions on a
punctured sphere in order to prescribe local behaviour near singularities.

For all ¢ > 0, let r. be the radius r. := €5 — we will explain this choice in
remark . Let S? be the sphere punctured by geodesic balls of radius 7. around
the singularities s, :

S o= §*\ UB (8g,7¢) -
g

From now on, we identify a point z, of the circle 0B (s4, 7€) with its angle 6,. Let
® := (®,), be a family of 3 functions defined on the circle S*. Our goal is to build
an harmonic extension hg on S? such that

Ag2h¢; - 0
in one hand and
v.g {pa Q7 T’} ) vZg € @B (Sg7 Te) I hq;. (Zg) = CI)g (99)

in other hand. Indeed, we do not solve exactly this problem : in what follows, the
data boundary is almost equal to ®, modulo an error term whose rough estimate is
small in comparison with .
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Definition 2.4.1 — By misuse of language, we say that ® is G-invariant if
D, (6p) = O (—0,) and ¢q (0g) = P (=0:).

This definition makes sense because is we consider the graph £ in S? x R of ®
over U,0B (sg4,7c), then L is invariant under the action of &.

Notation 2.4.2 — e For all ® defined on the circle, we use classical Fourier
analysis to write

o o= ) o

k=0

where ®* belongs to the k-th eigenmode of the Laplacian on the circle, that
is to say Agi (®F) = —k*®*. In other words, ®* is a linear combination of
cos (kf) and sin (kf). For i in {0,1} We denote by 7 (resp. 7) the linear
function which maps a L* function f on f* (resp. on >_.., 7).

e We note C*“ (88?)LO the set whose elements ® have vanishing 0-th eigenmode,
in other words such that for all g, @S vanishes. It is the same to say that for
all g, the average of ®, is equal to 0.

e We define the Holder norm of an element ® as the maximum of the norms of
®,, in other words :

HCI)HCQ’Q([)‘SE) = max {H(I)g”cz,a(gl)} .

g9€{p,qr}

Before giving the result for harmonic extensions on S?, we first give a result
concerning the harmonic extension on R? \ B (0,1). It is this one we use to build
our solution for S2,

2.4 — (a) Harmonic extension on R*\ B(0,1)

Definition 2.4.3 — Let u be a real number, £ € N and « an element of (0, 1).
We define the weighted Holder space C)* (R*\ B(0,1)) as the set of functions f €

CF(R2\ B(0,1)) such that the following norm

loc

k
HfHCi"“(R?\B(O,l)) = Z H| " vZfHLOO(RQ\B(O,l))
=0
VEf (z) — VF
i ay [T@-T W)
r=1 z#£y€eB(0,2r)\B(0,r) ’m - y’
is finite.
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Proposition 2.4.4 — There exists an universal positive constant ¢ such that
there exists a continuous linear operator

We:d e > (S — We (D) e 2 (R?\ B(0,1))

such that W¢(®) is harmonic and W¢(®) = ® on S'. Moreover, the following
estimate holds true

HWE ((I))HCQ_’T(RQ\B(OJ)) < & H(I)HCQ,Q(S1) . (247)

We call W€ the exterior harmonic extension. We will see that when we deform
a truncated catenoid, the interior harmonic extension W' plays a similar role.

Remark 2.4.5 — We choose to work with vanishing 0-eigenmode. The reason is
that harmonic extensions of constants are either constants or logarithmic functions.
In both cases, it implies estimates we cannot use for the construction of the minimal
surface.

Proor
We only give the explicit formula that will be used in the gluing process :

We (@) (re?) = > r 7 (6).
j=1
For precise proof, it is a slightly modified method than the proposition 3.1 in |[PR]
in which is proved same kind of result for the interior harmonic extension. 0]
2.4 — (b) Harmonic extensions on punctured sphere
We make use of the above proposition in order to construct harmonic extensions

on S2.

Proposition 2.4.6 — There exists an universal positive constant ¢ such that for
all € > 0, there exists a continuous linear operator
h:® e (9S?)° — he € C2 (S?)
such that he is harmonic and satisfies following assertions :
(i) the estimate

Hh(I)HCi;’(SE) < c H(I)HC27Q(BS?) (248)
holds true ;
(i1) for all g, we have the estimate
thb (T6r7 9g) - We (ég) (r7 99)HCQ’O‘(BRQ(0,2)\BR2(071))
< CTe Hq)H(jQ,a(aS?) 3 (249)

(1ii) furthermore, if ® is B-invariant, then the surface we obtain as the graph of
he is invariant under the action of &.

115



Chapitre 1ll. Construction de surfaces minimales de type Riemann-Wei dans S? x R

Remark 2.4.7 — The point (%) of the proposition specifies that in a small annulus
aroud s, the harmonic extension hg is equal to ® modulo an error term whose rough
estimate is r [|®| : it is small in comparison with the data boundary we want to
prescribe.

PROOF
With the help of proposition [2.4.4] it is relatively simple. As a matter of fact, we
perform the sum of the harmonic extensions of each @,.

Let m_;, be the stereographic projection from the antipodal point —s, of s,. The
reader will pay attention to the orientation we choose concerning the plane on which
we perform this projection. As a bases of this plane, we choose (eg, egL) where e;
is the unit vector we obtain after a rotation of angle 6, = 7.

More precisely, if we define hg g as

hg’g :re" € R?\ Bp» (O,tan %) — We(D,) ( r ezag)

Te
tan 5

where we have noted the exponant P to describe functions on planes we identify with
R?, then the induced function hg 4 = h§ , 0 m_,, is harmonic on §*\ Bg (sg,7c) (be-
cause the stereographic projection is conform) and is equal to @, (6,) on 0Bs2 (s, 7).

Notice that the quantity tan % is nothing but the radius of the projected circle

JB (s4,7.) of S* on the plane after the stereographic projection. In particular, one
easily checks that in spherical coordinates (74, 6,), we have the relation

tan 22
he g (Tgvgg) = W (T—Qveg) .

Te
2

We then claim that
hq; = Z hq>7g
g

suits to the problem.

It is an harmonic function by construction. Besides, according to the estimate
(2.4.7), together with the formula tan % = Z + O (r?), we obtain the estimate

15y (re®)| < e @ camgues -

It gives locally that he , belongs to the weighted space L™ (B (sg4, po) \ {54})-

Concerning the second estimate (2.4.9), if s belongs to the small annulus Bgz (s4, 27)\
Bse (84, 7¢), we write r, = r.r with r € (1,2) and

he (rer, 6’9) - W (Cbg) (7, 99)
= W(®) (Jm—?7 69) — W (D) (r,0,) + Z hag(s).

9#9
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If we focus on the influence of he 5 near the point s, with g # ¢, then one finds that
for all s in the annulus Bs2 (s,4,27¢) \ Bs2 (s,4,7¢), we get the estimate

hag (s)] < e[ @l ooz -

If we focus on the difference on the harmonic extensions, we note that

tan 22
2o 140.().
tan 5
therefore we obtain
tan L
W) () W @) (8)] < e Ol
2

which is less than the contribution of hg 5 for small e.

Consequently, the estimates are proved in the L* sense. We obtain the result in
C?“ with the help of Schauder’s estimates for the derivatives.

To end up with the proof, it is enough to observe that if ® is &-invariant, then,
using explicit formula of he 4, one finds

hg,p (7”7 9) = hgp (7", —9) and hg’q (7"7 9) — hg,r (7“, _9) ’

thus the associated surface X is invariant under the action of the group &. U

2.5 Analysis of the Laplacian on the punctured sphere

In what follows, we go on studying properties of the Laplace-Beltrami operator
over a punctured sphere. In the previous section, we have turned our attention to
find harmonic functions with prescribed data boundary. In this section, we focus on
mapping properties of this operator.

In the above proposition, we give a result about the injectivity of the operator.

Proposition 2.5.1 — Assume that p belongs to (0,1). Then if a function f
satisfies

Ag2f =0 on S together with fecy(s7),

then f is the function 0.

PROOF
The proof is relatively simple in this case. Indeed, if f is a harmonic function over
S? such that in a neighbourhood of the singularities,

fls) < 1y,

we observe that f tends to 0 as one approaches the point s,. By standard harmonic
function theory, the singularities of f are removable and thus, f is harmonic on S2.
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In particular, f is continuous and, since the sphere is compact, f is bounded. By
Liouville theorem, we conclude from this fact that f is constant. But this constant
value is necessary equal to the limit of f (s) when s tends to s,, thus this constant
is nothing but 0. U

We now apply duality theory in manifolds with ends together with estimates
(|[Pac09, Chapter 10 and 12]) in order to obtain the following :

Proposition 2.5.2 — For all pp € (—1,0), there ezists an universal constant c
such that for all €, there exists a continuous operator

AL O (ST) — 2 (S)
such that for all f which belongs to the weighted space Cg’fz (S?),

Az o AJN(f) = f

together with the estimate
~1

Moreover, we can can choose A;l so that if the graph X¢ of f is invariant under
the action of &, then it is also the case of the graph of A;l (f)-

Remark 2.5.3 — e There is not uniqueness of such an operator. The reason
for this lack of uniqueness is that the Laplace-Beltrami operator over the
punctured sphere S2 has a 3-dimensional kernel on the weighted spaces C;y* (S?)
when p belongs to (—1,0). More exactly, it is spanned by constant functions
and two Green’s functions wy,, and w,, which satisfy

Ag2 (Wpq) = 05, — s, and Ag2 (Wpr) = 05, — s,

The construction of these two functions could be performed by a slightly mod-
ified proof of the construction of I' (see lemma [2.1.2). We then check that
near singularities, we have logarithmic growth : it is what ensures these func-
tions to belong to the weighted space with parameter p € (—1,0) because
Inr = o (r*). In what follows, we always consider the operator A;' such that

for all f, AJ'(f) is L*-orthogonal to the constants, w,, and wy,.
e Similar result holds true for functions defined over S? and the constant does
not depend on the small parameter e. The continuous operator is noted A;}E

PROOF
The only point that does not come from [Pac09| is the geometric invariance under

the action of &. Indeed, if we have an operator Z;l which is a right inverse of Ag2
on S?, then it is an easy check to see that the operator A;l defined by

Vs (s €8, AN () =3 A (N5, (HE)].
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where 5 = (s1, —Ss, $3), suits to the problem. O

2.6 Resolution of the minimal graph equation

Green’s function with its corrective term transforms the sphere into a sphere
with necks whose type is catenoidal. The harmonic extensions are a tool in order to
prescribe data boundary. We perform a small perturbation of these two objects to
construct a minimal graph over S2.

Let p be a real number in (—1,0). Assume we are given a data boundary ®
whose norm is smaller than ker. and whose first eigenmode vanishes. Then if v is
a function over S?, we know that the surface described by the graph of wg, where
W, is the function

We,p : 8 €SP Teore (8) + ha (5) + v ()
is minimal of and only if v is a fixed point of the operator F defined by

Cro (879 — oo (SD)

a 0 — Ar1(G (wa) — Ag: (Cor)).

Therefore, we use classical arguments to prove that F admits a fixed point : first,
we compute the image of 0 in order to find a well chosen radius for a ball of C>* (S?)
centred in 0, next we prove that F is a contracting operator.

The image of 0 by the operator F. The first step consists in establishing an
estimate for the difference G (weo) — Ag2 (Cor). We then use properties of the
Laplacian ant its inverse.

We divide the above difference into two parts as follows :
g (W‘I),()) - ASQ (COI‘) = (g (w@,O) - g (Fcor,e)) + (g (Fcor,e) - ASQ (COI')) .
The last term has already been studied in proposition from which we deduce

1G (Teor.) = Az (Con)llgze 2) < cer?™.

The first term is a little bit more technical. We only give a broad outline of
the situation because the main ideas are the same than those we have used for the
hyperplane case in R" x R. We write

G (wao) =G (Teore) = dOr.,..(ha) + O (h3),

wherell

HeSS (f) (VFCOI",E7 VFcor,e) + 2H€SS (Fcor,e) (Vf, VFCo1r,e)
1+ |Veor|”

dgrcor,g (f) =

9 <Vf, VFcor,e> g (Fcor,e)
1 + |Vrcor,5|2

2. In this formula, we have relieved notations by omitting index S?, but the hessian, the norm
and the scalar product have to be considered on S2.
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We use the formula

Feore(s) = Ofelnr)
together with the estimate (2.4.8) to obtain

_9_ 2
Hg (Cde),O) - g (Fcor,e)HcifQ(Sg) < C (re 2—p H(I)ch,a(agg) -+ ’f‘? H(I)cha(agg))

where ¢ does not depend on € or k.
Collecting previous estimates, there exists ¢ > 0 such that for all x > 0, there
exists €, such that for all 0 < € < ¢,

Hg (W@p) — ASQ (C0r>HCi’f‘2(S§) < ce 3
Finally, we end up with

17 (0)]

2oy S CE B (2.6.11)

F is a contracting mapping. Assume we are given two functions v; and vy in
the weighted space Ci’a (S?) such that their norm is smaller than 2ce 3" — as
announced, we choose a radius on this function space that depends on the image of
0 by the operator F. We then claim that, up to reducing ¢,

1
IF @) = F@lzeen < 5l vallze (2.6.12)

which is obviously a contracting criterion.

The proof of this claim has same kind than the work we did in the above para-

graph to compare G (wg ) with G (Icore). As a matter of fact, we make use of the
PDE

Ag (F (o) = F(v2)) = G(Waou) =G (Waw)-

As done previously, we use the linearization of G in order to estimate this quantity.
We prove that

2
Hg (CU<I>,U1) -G (wfb,vz)HcifQ(Sg) < C €3 H’Ul - 'UQHCEL,&(SE) )

from what we deduce the coefficient belongs to (O, %) for € small enough and the
conclusion holds true.

A first fixed point theorem. According to previous paragraphs, we can use a fixed
point with parameters in order to construct a minimal surface. We have proved the
following :
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Theorem 2.6.1

For all p that belongs to (0,1), there exists a universal positive constant ¢ such
that for all positive parameter K, there exists €, > 0 such that for all e € (0,¢,), for
all data boundary ® whose C* norm is smaller than ker. and whose 0-eigenmode
vanishes, then there exists a function ve which satisfies the following assertions :

(i) the surface given by the graph of T orc + ha + ve over S? is minimal ;

(i1) the function ve belongs to the weighted space Ci’a (S?) and its norm is such
that

T—2p

”U@’”ciwa(gg) < 2ce 3 (2.6.13)

(iii) the function ve continuously depends on parameters a, 6, and 6, ;

(iv) if ® is B-invariant, then the associated surface ¥ is invariant under the
action of &.

Notice that the estimate (2.6.13)) provides us an idea of the description of the
minimal surface near its boundaries : the main terms come from the I' function, the
corrective term, the harmonic extension while inequality

lvg (s)] < 2ce s ph

. . . 7 2 . . . . .
implies vy has rough estimate €3 = er? near one singularity, which is very small in
comparison with the quantity er. that comes from

1) the force term that €I yields ;
2) the radial term that Cor produces ;
3) the choice of the rough estimate for the boundary data .

2.7 Local description of the minimal surface near its
boundaries

In the above theorem, we have established the existence part : we can build a
minimal surface under some conditions. The goal of this section is to compute an
accurate description of the solution in a neighbourhood of s, for some g € {p, ¢, 7}.
Essentially, there are two reasons to explicit that : in one hand, it produces a way
to have a good geometric idea of the surface we have built, in the other hand, it will
be necessary when we perform the gluing process.

Among main problems we have encountered, there is the fact that in S?, different
local coordinates can be used to describe the same phenomenon. Until now, we
have used different stereographic projections. However, we will see that for the
catenoid we want to glue, it is suitable to consider spherical coordinates (r,6) —
(sinrcosf,sinsin @, cosr). For our description, we choose these last coordinates.

In spherical coordinates with origin in g, we note s, + 7‘96199 the point of the
sphere whose distance from s, is given by r, and whose angle with unit vector e, is
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exactly 6,. We then define a function ug , on the annulus A; = Bg2 (0,2)\ Bg2 (0, 1)
as follows :

Up g ! re?s — (Fcor,e + he + "Uq)) (Sg + rerewg) .

Note that this function yields the behaviour of our solution in a small annulus a
radii 27 and r. near s,. We have performed a change of scales to help along the
gluing method.

Theorem 2.7.1
The function ue 4 satisfies following assertions :

(i) it is an element of C** (A;) ;
(it) if we denote by dq 4, the difference

3
2 4y

2

+er F, (7“6199) + We(2,) (7“6199) >7

0.4 (re’eg) = Upg — <ageln (rer) + ecry — 637“6_

then we get the estimate

Pogllezacs,, < cei. (2.7.14)
(75i) up to reducing €., the contracting property
1 —
s =5yl ey < 5 12~ Plenaia- (2.7.15)
holds true.
Proor

We use the formula of ug,. According to the corollary [2.1.5 together with the
proposition the corrected Green’s function I'¢o, . provides the Taylor expansion

3

a
20 . 3,.—2 79

Leore (sg +rere 9) = ageln(rer) 4+ ecrg — €1, e

+ erer <Fg , e’eg> +0 (67’62) .

We then end up with the estimate (2.7.14]) by using proposition and in partic-
ular the inequality (2.4.9)).

In order to obtain the contracting inequality, we use similar method than the one
we have used to prove that the operator F is contracting (cf. inequality (2.6.12)).00

Remark 2.7.2 — This last theorem is undoubtedly one of the keys for the gluing

process. The point (i7) will be very useful to establish gluing equations wile the
point (4ii) will be useful to solve them by a fixed point argument.
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3 The small truncated catenoid in $Z x R

In this section, we prove the existence of small truncated catenoids in S? x R
together with the existence of minimal surfaces in a neighbourhood of these catenoids
we obtain with the help of a small perturbation argument.

We briefly expose the method we use. First, we recall some well-known about
the classical Euclidean catenoid in R?® ; in particular, we explain our choice of the
parameter r. after a dilation of this surface.

Next, we make use of normal coordinates on the sphere near the singularities s,
in order to obtain a metric on the sphere that can be locally written

gs2 = Geud + O (7’;) )

in other words, if we zoom in one point of the sphere, then we can consider locally the
sphere is almost flat. We then inject the coordinates of a small truncated Euclidean
catenoid — which is not minimal in S? x R — and we compute the mean curvature
equation for small perturbations of this surface. We solve the equation by a fixed
point method.

3.1 Small catenoid in R? and choice of parameters

The well known catenoid of R3, found by Euler, is the minimal surface of revo-
lution whose parametrization is (up to a dilation)

20
X:(t,0) eR xS —> (COSh(tt) ¢ ) c R

and we note the associated surface ¥.. We choose the normal vector to this surface
so that it points upwards for the upper part of the catenoid, in other words :

N@io —= L (¢
(t.0) = cosht \sinht /)~

Notice that when ¢ is large, this normal is almost vertical. More precisely, one checks
the :

Lemma 3.1.1 — Let N, := (0,0,1) be the vertical unit vector of R* x R. Then
for all non negative integer k, there exists an universal constant ¢y such that the
following estimate holds true :

vt > 0, }Vk ((N,N,) = 1| < o (cosht)™>.

Remark 3.1.2 — Obviously, same kind of estimate can be obtained with negative
t, i.e. for the lower part of the catenoid.
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An other way to parametrize the catenoid consists in writing its upper part (i.e.
the part with positive height ¢) as a graph over R?* \ B (0,1). More precisely, let
x := cosh (t) e*. Then

t = arccoshlz| = In (|m|+ ]a:|2—1).

An easy calculus leads us to the asymptotic behaviour :

1 1
t = Infz|+In2- s+ O (—4>
dfz[”  amoe \ |z

Let n > 0 be a small dilation factor and consider the change of variables y := nz.
Then the corresponding catenoid is parametrized by

Y
2 ;
y € R\ B(0,7) (nln|y|—nlnn+nln2—n34;|2+ @ (775'%))
|y]—=+o0 Y

In order to glue the necks over the sphere with catenoids, we want the main
terms to have same rough estimates. For the catenoid, it is given by nln|y| while
for the punctured sphere, it is given by Green’s function, more exactly, by agselnr,
near s,. In other words, we enforce relationﬂ

n o~ age.

Obviously, n depends on g. For the catenoid part, we note n alone but in the gluing
process, in order to avoid ambiguities, we note 7, to precise that at point s;, we
glue a catenoid whose size is determined by 7.

In the gluing process, we deal with the constants by using suitable vertical trans-
lations. The next non-constant term has rough estimate

3

er. for the punctured sphere and n 7}_2 for the small catenoid.

This is why we choose boundary the radius 7. to be such that 73772 ~ er. and the
boundary data so that || ®| ~ er..

For practical purpose, we also define the large parameter ¢. to be such that
r
cosht, = =,
n
Here again, t. depends on the weight parameter a, at point s,. Notice that t. ~
Ines.
We briefly recall some well known operators on the catenoid. First, its Jacobi

operator J., which is the linearization of the mean curvature operator for normal
deformations

(t,2) eERxS" +—— X (t,2)+w(t,2)N(t,2)

3. As a matter of fact, in the gluing process, we prove that we can choose n = agze + o (¢).
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is given by the formula
1
Jo(w) = EA]RXS“U + EW,

where ¢ := cosh. Moreover, since ¢ is very small in comparison with ¢ =2 when ¢
is large, it is natural to introduce the operator

1
Hc = EARXSL

Jacobi fields. The Jacobi fields are functions that belong to the kernel of .J.. Using
some isometries which preserve the mean curvature, we can explicit different ones :
these that come from the dilation, the translations and the horizontal rotations.

Of course, one does not modify the mean curvature is we perform a dilation of
the catenoid. Then the associated deformation can be seen as

peEY, +—=pt+cX,
for a constant c. Then one finds the Jacobi field
k(0 =¢"(t) = (N,X.) = 1—ttanht.
If we perform a vertical translation, the transformation is given by
pEX., > p+tces
and we find the Jacobi field
k(t,0) = ¢5(60) = tanht.

We do same kind of calculus for the horizontal translations to obtain killings fields
that are given by

k(t,0) = ¢ (t)(Acosf+ Bsinb)

where A and B are any constants and

1
cosht

oL (1) =

Finally, for the rotations that preserve the vertical unit vectors e; or e;, we end up
with

k(t,0) = o' (t)(Acosf+ Bsinf)

where A and B are any constants and

Pt (t) + sinh ¢.

COS
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3.2 A small catenoid in S? x R

In this section, we describe how to put a small deformed truncated catenoid in
S? x R. To do this, we use the classical catenoid of R? we dilate by a small factor
n > 0 and we compute its mean curvature in S? x R.

Let Yo be the classical truncated Euclidean catenoid we put in S? x R, that is
to say that the upper part of X is parametrized by

sinr cos @
sin 7 sin 6
cos T

fo(t)

X : (r,0) € (n,r) xSt — cS? xR,

where

r
t := arccosh— and fo(t) = n arccosh ().
n
The lower part of ¥y has same parametrization with — f, (¢) instead of fy. As
announced, its mean curvature is very small : its rough estimate is given by n —

see the formula (3.3.17) with w = 0.

Our method to produce minimal surfaces which are close to > lies in performing
a small perturbation of this surface. Let w be a function which is defined over the
cylinder [—t.,t] x S and N be a unit vectorfield. We then consider the surface %,
which is given by

p=Xo(r,0) €Sy > p+nw(t0)N(p).

Here, it is necessary to discuss the choice of N. In general case, when we perform
deformations of a surface, we consider normal deformations. It turns out that in
our case, we proceed to a slightly modified transformation. The reason for this is
that the normal vector to >y 1s almost vertical when r is close to r. and that it is
more useful to describe the surface we construct near its boundaries as the graph of
a function over an annulus, like we have done for the deformation of the punctured
sphere. Consequently, if Ny denotes the normal vector of Xy that points upwards
for its upper part and N, = e4 be the vertical unit vector in S? x R, we choose N so
that near the boundary r = r., we have the inequality N = N,. However, then one
approaches the neck of 3y (i.e. when r tends to 7), then ¥y is not a vertical graph
since Ny is horizontal. We thus enforce N = Ny near r = 7. To sum up, we choose

N o= (1= X)) No+ xees

where Y is a function we construct with the help of the cut-off function x we have
introduced for the proposition so that

X)) = x()—x(=1).

In other words, Y is a smooth increasing function whose Holder norm does not
depend on £, such that

X ((2,+00)) = {1}, X((=00,-2)) = {1} and Xx((-1,1)) ={0}.
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3.3 The mean curvature equation

We have in mind to compute the mean curvature of ¥,. In this purpose, we first
calculate the mean curvature for vertical graphs (i.e. we consider the case N = ey),
then we give the more general formula for the N defined in the above paragraph. The
reason for what we have chosen to work with vertical graphs is it is more convenient
for the calculus and it highlights the fact that the sphere is almost flat if we zoom
in enough.

We thus define a graph over a piece of the sphere S? as follows :
sinr cos ¢

sinrsin 6
cosT

Jo (1,0)

(r,0) € (n,re) x St — € S* xR,
where f, is the function
f . B(O7r6>\B(0777) — R
o (rcost,rsinf) +—— narccoshy +nw (arccosh%, 9) :
Before giving the formula for the mean curvature of this graph, we introduce the

following notation.
Definition 3.3.1 — For all i € {0, 1,2, 3}, we note @; a function

Qi C** (= (te,te) X S') — €% (= (te, te) x S1)

such that there exists a positive constant ¢ which satisfies
e ()y only depends on t, ), is linear, ()5 is quadratic and ()3 collects all terms
of higher order ;
e forall f, Q;(f) depends on ¢, f, Vf and Hess (f) ;
e for all f,

Qi < elf @I

and for all f; and f,, for ¢ > 1,

1
Qi () = Qi (L)1) < e i) = (S @+[L20ON"

Lemma 3.3.2 — The mean curvature H,, of the surface ¥, that we obtain by
vertical deformations satisfies following equation :
1 rcosr —sinr
H, = -|pltEr-sr
2 [77 r2sinr
1
r2—n?)z (1 . 1
r r sin” r
rcosr (r? —n?) —sinr (r? — 3n?) .
o ( 772 _ ( ) .
risinr
+r Qs (7 w) +17Qs (9 w) ] . (3.3.16)
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Before giving a more suitable formula for H, with the help of the Jacobi operator,
let us discuss the different terms very quickly. The first comes from the catenoid
we put in S? x R. More precisely, since we have used the parametrization of the
Euclidean truncated catenoid of R?, there is an error term caused by the curvature
of the sphere. The second term is very close to the Laplacian of w. Besides, note
that there is no linear term in which w appears. It can be easily explained by the
fact that a vertical translation does not change the mean curvature.

Corollary 3.3.3 — There exists some universal constant ¢ such that there exists
€0 > 0 such that for all € € (0,¢p), the mean curvature of the surface ¥, that we
obtain via N-deformations can be rewritten as follows :

1 0’ -
He = 5 (Jc @)+ Je (@) = 5 + 1" Qoe + 1 0Que (¢7'w) +

0 Qo (p7'w) + 0 Qs (¢ 'w) ) . (3.3.17)

where J. is a second order operator whose coefficients are bounded by cp (te)_2 and
the Q;.’s enjoy similar properties than the Q;’s except they depend also on € but
the constant that appears in the definition of the Q; ¢ is c.

This above formula is more useful than the previous one since it highlights the
role that the Jacobi operator of an Euclidean catenoid plays here ; besides, its
mapping properties are well known. The definition of the constant ¢y is such that
the mean curvature is very close to the mean curvature of a catenoid with vertical
deformation in R3 provided the area in which we perform the calculus is small
enough.

The proof of the lemma is a little bit technical, but the proof of the corollary is
more interesting.

PROOF (OF LEMMA [3.3.2))
First of all, we recall some riemannian geometry formula associated with the local
parametrization of the sphere near its North pole :

Xg2 1 (1,0) — (sinrcosf,sinrsinf,cosr) € S* C R,

We note 0, (resp. dyp) the tangent vector ag(fQ (resp. 82(52 ). Then the metric satisfies

/10
g = 0 sin’r

thus the Christoffel symbols are given by

. 0 _
rr. = 0, Iy, = 0,
r _ ; 0 —
Ity = —cosrsinr, and L% 0,
T _ 0 _ -1
Iy = 0 Iy = tan™ 7.
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For convenience, we define & := ¢~ lw and t = argcosh% so that

fo(r,0) = n argcoshf +7rw(t0).
n
We note
L Ow d . Ow
W= —— an W = —.
ot Y
We make use of the mean curvature formula for graphs :
1 w
H, = =div Vi

2 1 VAL

where all terms are considered endowed with the metric gs2. To compute this formula
for f,, we give the main steps of the calculus. First of all, the gradient is

T
O + ——5—wy0p.

Ui ~ r -
V6w = |——+0+——0w
f (,/7’2—772 “ ,/r2—772 ) simn-r

The reader could notice that, since r is small, the quantity —>— has rough estimate
% : it is the term which appears in the gradient if we consider polar coordinates in

the plane R2. According to the Taylor’s expansion

7,2

= 1404 (r?,
sin’ r ( )
the above expression yields to
1
r? r2—n?)? _ 1. ~
1+ |V = - <1 + QU#w + 2n-w + Q2 (w)) :
r2—mn r r

Note that the contribution of terms which come specifically from the sphere and not
from the plane are quadratic.

The Laplacian of f,, is given by the expression

—rsinr + cosr (r? — n? ~
Af, = n—> i ( 3 77)+1;em—1w
2

sinr (r2 —n?)

. 2 2 2 2
sinr (r“ — +rcosr(re— oo oo
(r* = n°) 3( 77)+2 S
sinr (r2 — n2)2 r’—mn sin“r
Moreover, the Hessian is given by
_ r r_~ r2—2n® ~
Hess (fw)mn - _77(#7772)% + r2—n2w + (r27772)%w’
Hess (fu),, = Q1(@),
_ ~ . 1 ~ r ~
Hess (fu)gy = reg + CosTSinr <n(r2_n2)% +w+ (T2_n2)%w) ,
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from what we deduce that

Hess (fw) (Vfw, Vfw) = _773;;
(7‘2 _ 772)2

r ~ o 7’2 + 27]2 -

4+ (—20+0) - ——L 5

N (r2 — 772)2 ( ) " (r2 — 772)5
+1r2Q, (W) + r Qs ().
We make use of the formula
H = 1 Af, _ Hess (f.,) (Vfu, V)
2\ 1+ |vLP)? (1+|VLP)?

in order to obtain, after a tedious calculus, the expression

1 rCcosST —SsinTr
H, = =-|lp— "

n :
2 rZsinr

r?cosr +n* (3r¥sinr — 2r3cosr) + nt (rcosr — 3sinr) _
@

rdsinr (r? — 172)%

risinr + 175 cosr — 2n*r3cosr +n* (rcosr —sinr) -

r3sinr (r2 —n?)

2 23 . 2 2\3
-+ (T T2€ ) w + (TSin;T) CJ@Q +777’72Q2 (@) +7’71Q3 (a) ) (3318)

We express the above expression in terms of w. In particular, we use relations

s 1. (r? — 7]2)% _ 1
w = W= W, Weg = 1) Woo
r r r
and
1
s 1. 2 —n?)? . r? — 2n?
w = n-w- QU#w + 7)—3nw.
r r r
Injecting these relations into equation |3.3.18] we get the result. 0

PROOF (OF THE COROLLARY [3.3.3))
There are two kinds of terms to evaluate : those that come from the curvature of
the sphere and those that can be associated with the Jacobi operator.

We first perform the formula for vertical deformations.

We begin with the expression which does not depend on w. Classical Taylor’s
expansion provides

7 COST — SInrT 1 1,
- — i Ooo 4
T 2sinr (AT * ()
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3. The small truncated catenoid in S x R

Same method leads us to the term w :

rcosr (r? —n?) —sinr (r* — 3n?) 52 r? —n?
n YT = Nn—-n D)
rdsinr T 3r

+ O (67‘2) )

We then rewrite the equation (3.3.16) in terms of ¢ rather than in terms of r. We
obtain :

1 1 er—1 . 2
Ho = gy|=mat g @rew) 50

+ 7' 0*Qo + Q1 (¢ 'w) + ¢ °Qs (¢ 'w) + ¢7'Q3 (¢ 'w) |.

Note that the linear term (); is small in comparison with the other linear terms.

To establish the link with the Jacobi operator, we could use the formula of [PR],
Proposition 2.2| that provides the linearization of the mean curvature operator for
any deformation of a surface. In our case, we rather perform the calculus explicitly.
If Ny = (0,0, 1) is the vertical unit vector in R? x R and N is the unit vector of the
Euclidean catenoid, then we obtain

Ver—1 . 2.
Je((Nos N)gow) = = (@ ww) + 0

and the same equation of the proposition for vertical deformations holds true follows
by taking

Jo(w) = Jc[(<N,Nv>R3—1)w},

where NN is the normal to the Euclidean catenoid and NN, is the vertical vector in
R?, and by using the lemma [3.1.1]

For the general case with deformations which make use of N , it is same kind of
method except that one finds

= [( (o) s (o)) o]

where the vector NRS has a similar definition than the definition of N , namely

Npgs = (1—=|X)N+xN, €R® O

3.4 Construction of a minimal surface near the catenoid
3.4 — (a) Analysis results

The Jacobi operator .J. over the catenoid is a well known operator. We recall
the main results. First, we define the weighted spaces on cylinder R x S!.
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Definition 3.4.1 — Let 0 be a real number, £ a non negative integer and « an
element of (0,1). We define the Holder weighted space Cy® (R x S') to be the set
of functions f that belong to C{Z? (R x S') such that the norm
-6
F et = sup ((cosh )™ [Fllczeqssnynon)

is finite.

Remark 3.4.2 — We define in the same way the weighted Holder spaces Cy*® ((t1,t5) x S')
where t1 < to.

We recall the result from proposition 3 in [Pac98| or proposition 4 in [MPPO1]
for the existence of a right inverse for the Jacobi operator J..

Proposition 3.4.3 — For all weight parameter ¢ that belongs to (1,2), there
exists an universal constant ¢ = ¢ (a, ) such that for all positive real number t,
there exists a continuous linear operator

Tyt feCr ((—to, to) x SY) — Jy (f) € C3™ ((—to, o) x SV
such that

{ J.(J7N() = f on (—toto) xS,
™ (J5N(f)) = 0 on {*te} xS

Moreover, the estimate
HJ(;l <f)HC§’°‘(]R><Sl) S ¢ HfHC(?’fQ(RXSl)

holds true. Furthermore, if f is G-invariant (that is to say f(t,0) = f(t,—0),
then we can choose J} (f) also &-invariant.

Remark 3.4.4 — The proof in the references does not hold the G-invariant part.
However, to prove this last, it is enough to use similar arguments than in the propo-
sition [2.5.2

The above proposition is useful to prescribe the quantity J.(v). We have the
counterpart in order to obtain a result to enforce data boundary — see the propo-
sition 5 in [MPPOI].

Before giving the proposition, we introduce W* to be the linear operator that
maps a boundary data T on S'! to its interior harmonic extension W (Y) defined
on Bge (0,1). This operator satisfies similar properties than the exterior harmonic
extension W¢ — see for example the proposition or paper [CP1I].
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Proposition 3.4.5 — There exists an universal constant ¢ = ¢ («) such that for
all real number tq > 2, then there exists a continuous linear operator

he Ut =" e ({&to} x S') > hyu
i>2
such that
Hc (h\pl) = 0 on (—t(), to) X Sl

together with

|hwe (t,0) = W (T5) (e, 0)

HCZ“([thQ,to]XSl)
< (@) O na iy eey - (3:419)

Moreover, hy. belongs to the weighted space C3™ ((—to, to) x SY) and the estimate

1 1
Hh‘I}J‘HCg’a((fto,to)Xgl) < ¢ gp(t())Q ||\II HCZ"Y({:‘:tQ}XSl)

holds true. Furthermore, if U+ is &-invariant, then so is hy..

Remark 3.4.6 — Of course, same type of estimate (3.4.19) takes place for the
lower part of the catenoid, i.e. when t € (—tq, —to + 2).

To deal with the first eigenmode is slightly different. Indeed, we already know
the functions associated with the first eigenmode, namely the Jacobi fields ¢l. As
said previously, ¢! and ¢! do not behave in the same way : the Jacobi field ¢!
associated with the horizontal translation is a function that exponentially decreases
like (cosh t)_l while the Jacobi field ¢! associated with the rotation exponentially
increases like cosh ¢t. This is why we decompose data the eigenmode ¥ of a boundary
U on {+t5} x St into

U= U+

even

where

Wlaq (to, ) = =Wlaq (—to, ) and Udven (o) = Wlyen (—to, ) -

even

We then check, by using the odd Jacobi field ¢! :

Proposition 3.4.7 — There exists an universal constant ¢ = ¢ («) such that for
all real number tq > 2, then there exists a continuous linear operator

0 Woyq € C* ({Fto} x SY) — L1,
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such that

Jc <£\Ij}>dd) = 0 on (—tg,to) X Sl,
lgn = Wi, on {£te} xSh

odd
Moreover, ly1 = belongs to the weighted space CP™ ((—to, to) x SY) and the two es-

timates

1 1
cf’a((,tmto)xgl) < ¢ SO(tO) Hl:[loddHCQ,a({itO}XSl)

H&vzdd

and

Héllll,dd <t7 9) - Wz (\ijllddﬂr) (6t_to7 9) C2([tog—2,t0] xS1)
< oty (¢ (750))_2 H\I}J_HCQ="({:tto}><Sl) - (34.20)

hold true. Furthermore, if Ul,, is &-invariant, then so is E\I,Idd.

Remark 3.4.8 — Of course, same type of estimate (3.4.20) takes place for the
lower part of the catenoid, i.e. when t € (—tg, —to + 2).

PrOOF
We easily check that

oL
by (t,0) = ———— U, 0
‘1’( ) ¢1_ (tO) dd,+( )
suits to the problem. The estimate (3.4.20]) is obtained by noticing that for all
t € (to— 2,tp),

oL (t) _ ptto
oL (to)

< e tge o, ]

3.4 — (b) Dealing with the curvature of the sphere

In the mean curvature equation appears the term —% which comes form the
fact that the metric on the sphere is not exactly flat near the North pole. For the
construction we have in mind, it is primordial to explain how to deal with this term
with the help of a corrective function.

We would like to solve
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3. The small truncated catenoid in S x R

However, we do not solve exactly the above equation but a more simpler one, namely
N
H. (f) = — -

The reason is that the difference between H. and J, is very small when |t is large
and that we can produce explicit solutions for the operator H.. Thus, we define Cor
to be a solution of the ordinary differential equation

1 . 2
—Cor =-1L
@ 3
and we easily checks that
n?
Cor(t) := 1 ((,02 (t) + t2)

suits to the equation for H.. More exactly, we obtain the

Lemma 3.4.9 — For all no negative integer k, there exists a universal constant
c = c(k) such that there exists e, > 0 such that for all € that belongs to (0,€), we
have inequality

U U
‘Vﬂkp (Jc (Cor) + g)‘ < ck? on [—te,t] x Sh.

3.4 — (c) An application of a fixed point theorem

In the above sections, we have described a method to produce minimal surfaces
with catenoidal necks over the punctured sphere. Here, we explain how to build
minimal surface in S? x R close to a small truncated catenoid. Like before, we first
prove the existence and then we give an accurate description of the solution near its
boundaries in order to use it for the gluing process.

Let ¥ be a boundary data on {#t.} x S' such that
e =92=0 and U, =0.
We then define wy by
wy = Cor+ hgt + E\I,(l)dd.

Our method relies on a fixed point theorem. Indeed, the idea is to perform a
small perturbation of wy in order to solve the equation H, = 0. If v is some function
in the weighted space Co* ([—t., t.] x S') with & € (1,2), we then define

W = Wyt .
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According to lemma [3.4.9] we see that

2
9
J(w) = {k(v)+—%;—%n2¢%90+—;zth

We remark that the constant term in front of Qg is 7%¢~2 which is much larger
from n*¢? (the term in front of Qg in the equation of H,). Therefore, injecting this
relation in the equation from corollary we obtain that the surface ¥,
is minimal if and only if v is a fixed point for the operator F whose definition is the
following :

_ 2 _ _
F) = Ji' —;ﬂwL—de%+ﬁ¢2Qo+ﬁ¢Qd¢1@

+o7Qa (v w) + 9T Qs (¢ w) |

Theorem 3.4.10

For all § € (1,2), there exists an universal positive constant ¢ = c(«, ) such that
for all positive k, there exists €,, > 0 such that for all € € (0,¢,), for all boundary
data U € C> ({£t.} x S') which satisfies

(i) its eigenmode associated with eigenvalue 0 vanishes,
(i) its eigenmode associated with the eigenvalue 1 is odd and
(1) its norm is smaller than kre,

then there exists vy in the weighted space c(?’“ ([—te,td] x SY) such that following
assertions hold true :

(i) the surface ¥, is minimal and

(11) we have the estimate
HU\I’Hcg’a([ftmte}Xsl) < 2ces.

In addition to that, if VU is G-invariant (resp. $H-invariant), then the minimal
surface ¥, is invariant under the action of & (resp. $).

ProoF
We use a fixed point argument with parameters : first, we evaluate the image of 0
by F, then we prove that F is a contraction mapping on a small ball centred in 0.
We prove all estimates in L3® — the result for the derivatives comes from Schauder’s
theory.

First of all, we estimate wg. According to the definition of Cor together with
the propositions [3.4.5] and [3.4.7] we find

o (t)

Y (t,0) € [~te,t] x S', we (8,0)] < P (t) + o) 1|2 garyxs)

< chne(t).
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We then claim that the main term in the definition of F is given by the harmonic
extension hg.. As a matter of fact, we check the following estimates :

* oA hy | < cres,
>0 J (wy)] < ckes,
> P % Qo < e,
PP Qi (v 'we)| < ere's
P72 Qa (97 we)| < er’e,
SOQ_(SSO_I Q3 (QO_ICU\II> g C/i3€3.

It implies that there exists €, > 0 such that for all € € (0, ¢,),

4
3

”‘F<O>||C§’a([7t€7t6]xgl) < C K €3,

This above estimate provides us the choice of a suitable radius for a small ball
centred in 0. Let v; and vy be two functions such that

: 1
for i =1,2, ||Ui||(j§’o‘([—te,t€}><81) S 2ches

We then claim that

1
”‘F(Ul)_‘F(UQ)|’C§’Q([—tE7t€]><Sl) < b Hvl_’U2HC§’O‘([—t€,t€}XSl)

for all € € (0, ¢,) and thus, a fixed point with parameters gives the result. Note that
Je(F (o) = F(v2)) = —Jo(wi—ws) +n*p (Q1(w1) — Q1 (w2))
+ 7 (Qa (w1) = Qo (w2)) + ¢ (Qs (w1) — Qs (w2)) -
and that
W1 — Wy = V1 — Vg,

We give the main estimates to establish F is %—Contraction mapping. According to
the definition of the linear operator J. — see corollary — we find

PP (Wi —wa)| = [P0 (01— wo)
2
< ced o - UQ”C?’“([—te,te]xSl) :
We deal with the terms @1 (we use the fact that @ is linear) to obtain
_ 4
0P (Qr(w1) — Q1 (wa))] < ce o — valle2e (g, e 1x8) -
By definition of ()5 and ()3, we get
|902_590_2 (Q2(w1) — Q2 (w2))| < chrelln - U2||C§’D‘([—te,t€]><81)
and
’%0276%071 (Q3 (w1) — Q3 (Wz))‘ < crE o — UQHC?“([—te,te]xSl) '
Collecting the above inequalities, we end up with
2
|F (v1) — f(’UQ)HCg,a([itE’te}Xsl) < ¢ (65 +Ke+ :‘1262>

and the conclusion holds — up to reducing e,. U
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3.4 — (d) Local description of the minimal surface near its boundaries

To perform the gluing, we need an accurate description of the surface we have
constructed in a neighbourhood of its boundaries. For all boundary data ¥ which
satisfies the hypothesis of theorem [3.4.10] X, 4, is a vertical graph on an small
annulus B (N, r.) \ B (N, %) — here, N refers to the North pole of S.

To describe the upper part of the small catenoid, it is useful to perform a change

of scales : we define Ty, on Bg2 (0,1) \ Bge (O, %) to be

ﬂ\I/+ (y) = qu;+v\1; (Tey) .

Theorem 3.4.11
Let § € (1,2), U a boundary data which satisfies the previous hypothesis. Then
the function dy, defined on the annulus Bgz (0,1) \ Bg: (0,3) by

2

Te 1, _ _ ;
B, ) o= e )=t (251l ) G W ) )

satisfies following assertions :

(i) we have the estimate

HD\IUrHC2v°‘(BR2(O,1)\BR2(0,%)) S e T (3.4.21)
(ii) the mapping ¥V — Vg, is %-contmcting.
Remark 3.4.12 — e The estimate (3.4.21) demonstrates that the terms that

come from vy are very small in comparison with the data boundary.

e Obviously, same kind of result holds true for the lower part of the catenoid.
In this case, the reader will pay attention to the fact that there is a change of
signs : 0g_ is defined by

_ Te 1 - - i
B ) = we )t (211 G W ) ).

PROOF

For convenience, we write ¢ = argcosh <%

y|> and ¢ = ..
(i) We recall the expansion

1

1
argcoshz = 1In(2z) — 12 + O (—4)
x x—00 \ T

in order to obtain
e e 15 o, = 7
nargcosh (T— Iyl) = 7l (2T— !yl) — Py P+ O (e:?) .
n n 4 e—0
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Moreover, the contribution of the corrective function Cor is such that

nCor(lth)] < e,

.. . . . 5 2-6
thus it is very small in comparison with e3¢5 .

Furthermore, according to the construction of the term vy in theorem [3.4.10
we get

nlve (t,0)] < 2c ede’s

It is this term that yields to estimate (3.4.21)).
It remains to deal with the part that establishes the link with the interior

harmonic extensions. In this purpose, we make use of inequalities (3.4.19) and

(3.4.20) to finally obtain
‘77 (h\pi + g‘l/(l)dd) (t,0) — W' (n¥,) (y)’ < ckes te.

Notice that this quantity in also small in comparison with the contribution of
vy. The estimate follows from these different estimates.

(ii) Let ¥ and ¥ be two boundary data on {#£t.} x S' such that their C*®norm
is smaller than xr.. Then we can write

oy, (1,0) =g, (t,0) = n(we —wy)(t,0)
— W' (n (¥ —¥)) (y) +n(vw — vg) (t,6) .

Like in the previous inequality, we check that

0 (we — wy) (£,0) = W' (n (T = T)) (y)|
s _
< et H\I[ - \IJHCQva({:tte}xSl) :

Concerning the part with vy — vy, we use a method similar to the one we have
used in the proof of theorem [3.4.10] after writing

2
Jo(vg —vg) = — E%L@ — Je (wy — wg + vy — vy)

1
+ 7%pQ1 (; (wy — wg + vy — Uq,)>

+ ¢ (Qq (wy + vy) — Q2 (wyg
+ o Qs (wy +vy) — Q3 (wyg

+vg))
+vg))-
This implies that

R ] L (I

2
+ ce3 |lvg — U@|lc§*"([—t€,te]xSl) )
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from which we deduce
2 2 —_
(1 - 063) [vw = vgllczer pxsy S ced [~ \I}”C?ﬁa({j:te}xSl) :
Thus for € small enough,
2 5 —
’U\Ij - U@‘ (t7 0) < c 6390 (t) H\Il - \IJHC2’Q({:|:t€}><Sl) ’

for all t € [t — 2.t/ and the result follows since €3¢ (f.) tends to 0 as € tends
to 0. U

4 The gluing

In the previous sections, we have produced a way to build two types of minimal
surfaces in the homogeneous space S?xR : one on a punctured sphere with catenoidal
necks and one that looks like to an Fuclidean truncated catenoid. We now perform
the gluing, i.e. we prove that we can glue these two kinds of minimal surfaces
by choosing suitable boundary data. By minimal surface theory, it is enough to
proceed to a C! gluing on the boundaries. For convenience, we define the boundary
data T :=nWV so that T and ® have the same rough estimate rere.

To this aim, the local description (see theorems [3.4.11{ and [2.7.1)) of the surfaces
we have constructed plays an essential role. In particular, there are different kinds
of terms in this :

e for both constructions, the main term that is given by the logarithmic growth
of the form ageln (1. |y|) — it is this comparison that yields to the choice of
UR
the following radial term whose form is a2e*r;%[y|™* up to a constant ;

a constant — we will deal with it by using vertical translations ;

the force that comes from Green’s function whose rough estimate is rer ;
the harmonic extensions of boundary data with same rough estimate than the
force — the properties of the linear operator W¢ — W€ will be necessary for
the gluing ;

e smaller terms.

The idea is again to apply a fixed point theorem by using the contracting properties
of the operators 0 and 0.

4.1 The choice of boundary data

Here, we explain the shape of boundary data T and ® that the object we want
to construct enforces. Like the reader could suspect, we highlight the role of the
different eigenmodes by using orthogonal projection.

First of all, recall that in our construction, the constant projections ®° and
T? vanish. The reason for this is that harmonic extensions of constants are either
logarithmic (which explodes) or constants. In all cases, it implies that the estimates
we have made are not valid.
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Moreover, the Riemann minimal surface we have in mind to construct is invariant
under the action of the group of isometries &. Consequently, on one hand, for ®,
we enforce the relations

®, (cosf,sinf) = @,(cosf, —sinb)
and
®, (cosf,sinf) = @, (cosf,—sind).

These equalities hold because of the orthogonal symmetry s with respect to the
vertical set {x; = 0}. In other hand, for T, we enforce relations

Y, (cosf,sinfd) = 7T, (cos#,—sinf) = T, _(—cosf,—sinbh)
together with
T,+ (cosf,sinf) = 7T, (—cosb,sinb)
= T,;(cos@,—sinf) = 7T, _(—cosh,—sinf). (4.1.22)

In addition to that, recall that in our construction of a deformed truncated catenoid,
we have enforced the mode 1 to be odd, that is to say

T,, = -T,_. (4.1.23)

Here again, me make use of the above orthogonal symmetry. Regarding the link
between the upper data and the lower data T, and YT _, we use the point reflection
¢ with respect to the center of the catenoid we glue at s,. Therefore, to give a
boundary data is the same to give a 9-tuple

11 4l all s12 ;L ALl Asl L1 Al
((I)p ’q)p ) CI)q ’(I)q ’q)q ) Tpﬂ-’ Tp#r’ Tq7+’ Tq,+)
where q);’i and T;ﬂ' are real numbers such thatlﬂ
®, (cosf,sinf) = D' cosh+ Py sinb,

CIDj and TgL are functions that satisfy the symmetries hypothesis.

Remark 4.1.1 — Tt could be interesting to develop the case of T in order to check

that the equations (4.1.22)) and (4.1.23) are in agreement when Y12 = (. First of

all, let us write

T,+ (cosf,sinf) = 0  + T;:}r cosf + T;i sinf 4+, (cosf,sin6).

mode 0 mode 1

According to the equation (4.1.22), the function T, _ then satisfies

T, (cosf,sinf) =T, (—cosb,sinh) = —T;’}r cosf + T;i sinf + Y, (—cosf,sinb),
It follows that the equation implies

T;’i cos 0 + T;:i sinf = - (—T;}r cos 0 + T;’i sing) = T;’fr cosf — T;i sin 6.

Consequently, T;:i has to be chosen so that it vanishes. Geometrically, it means
that the necks we glue at s, and s, are sloped away from the direction given by +e,
and +e,.

4. Same definition holds for T;.
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4.2 The gluing equations
4.2 — (a) Shape

Because of the symmetries of the problem, it is enough to conduct the gluing in
sp and s, : what happens in s, is obtained by the orthogonal symmetry with respect
to the plane {z; = 1} while what happens at upper and lower levels can be deduced
with the help of a suitable translation and the point reflection.

Since we do not change the mean curvature under the action of the vertical
translations, we introduce tgyer 1= t4ver€4 & vertical vector we determine in the
gluing of the mode constant. Rather than directly using uy, we allow ourselves to
perform a vertical translation of the catenoid ¥, . We also allow ourselves to use a
suitable rotation so that s, is the North pole. Then the general shape of the gluing
equation in s, can be written

o e S, Ug,g (cos 6, sin 8) = Ty, , (cosf,sin «9) + tgvers (4.2.24)
Orug g (cost,sinf) = 0.uy,  (cosf,sinf),
where the index =+ for the catenoid part is “—” when g = p (we glue the lower part

of a small truncated catenoid with the catenoidal neck that points upwards whose
main term is given by ea, In (Jy|)) and is “4+” when g = ¢ (we glue the upper part of
a small truncated catenoid with the catenoidal neck that points downwards whose
main term is given by —ea,In (|y|)).

4.2 — (b) Resolution : proof of theorem [1.0.2]

As announced, we project the equations of the system (4.2.24) on the different
eigenmodes 0, 1 and the others. We begin with the constant mode by using a
Brouwer fixed point theorem in order to determine 1 which lies in a neighbourhood
of age, then we determine the vertical translation vector. After, we solve the modes
associated with 2, 3, etc. A fixed point with parameters will be useful by applying
the contracting properties for d and 9. We end up with the mode 1 which is the
more difficult to solve since we have to deal with the force term and we explain in
what the balanced condition is satisfied.

The mode 0. Here, it is not necessary to distinguish in which point we perform
the gluing because the method can be applied of all s,. We project on the constant
mode the equations of the system with the help of the description theorems
3.4.11] and 2.7.11 We obtain

agelnr, + ecr g — iage%f + 7% (0p,) = nyIn (2%) _ in;j’rf
—|—7T0 (ﬁ‘l/,i,g) + tg,vem
ag€ + %e3r€_2a2 + 7 (000 4) = n,+ %7737"6_2 + 70 (arﬁ\ll,i,g) )

(4.2.25)

These above equations do not depend on the choice of the boundary data T and
®. Besides, note that if we can solve the second equation, then we can also solve the
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first one by using a suitable vertical translation parameter. Moreover, the second
equation implies that

1 _ —
(age —n,) (1 + 37 2(a2e® + . + ageng)> = 7 (0:0p4y— 00ay), (4.2.26)

what we could rewrite, if we choose 7, with rough estimate is €, as

(age —ny) (1 +0 <€%>> = 0O (e%€%> .

That is why we have to choose 7, close to a,e. More precisely, we have the

Proposition 4.2.1 — Assume that ® and T have the same rough estimate ker,.
Then for all, g, there exists ty ,er and 1, such that the system (4.2.25)) is solved.

Moreover, following equations hold true :

n=ase+ 0O <€%€23;6> and  typer = 1,10 (n,) + O ().

The main term of the translation vector is 7, 1n (n,) : the vertical period of the
surface we want to build has rough estimate eln (e).

Proor

As announced previously, it is enough to solve the second equation and we use a
Brouwer fixed point theorem. By construction, 9,0y + 4 continuously depends on 7,
for ny ~ agyr.. To fix ideas, assume that

5 5
g€ — €3 < 1Ny K Qg€+ €3,

Then equation (4.2.26]) can be rewritten

b = aelivo (@)
2-46

where O <e§e 3 ) denotes a function that continuously depends on 7, and which is

bounded by a constant times €5¢%5° where the constant does not depend on 7,. By
Brouwer fixed point theorem, there exists a solution 7,. O

Remark 4.2.2 — Indeed, one can prove that |, — a,e| belongs to (0,€*) where
is a power such that ¢* >> S Tl

The mode L. From now on, we suppose € and 7, are fixed such that they satisfy
the conditions of the above proposition.

This mode is maybe the easiest to solve since it is nothing but an application
of a fixed point theorem for contracting mappings. Like for the constant mode, the
resolution of the projected system

on St (I); + 7 (0a) = T + (5‘1”1’9)’
LW @)+ @an) = AT+ ()

143



Chapitre 1ll. Construction de surfaces minimales de type Riemann-Wei dans S? x R

can be generally done without considering a specific point s, : the method works for
the three points s, s, and s,. It is more useful to rewrite the above system in order
to highlight the contracting part. In this purpose, we recall the following lemma (cf.
section 11 in [MPOI]).

Lemma 4.2.3 — The linear mapping

HoTh et (@ () o (0w (1) ent (@ (8)

st
s an isomorphism.
We deduce from it we can rewrite the above system as :
(I)gL - Ti,g = ’ﬂ'i 6@’:&& - an,g) ,
on S'. TL, = H! [wi CACTTE ) (4.2.27)

—&W‘f (7TJ' (6\1/7:|:79 — a¢79)> } .

By contracting properties of the mappings 0 and 0, one checks that we can apply a
fixed point theorem with parameters to obtain the

Proposition 4.2.4 — Assume that for all boundary data T, ® whose norm is
less than ker. and whose mode 1 is prescribed. Then we can solve the system
(4.2.27) and the solution continuously depends on the parameters ®' and T,

The forces and the mode 1. From now on, we assume for all boundary data
with fixed eigenmode 1, we have solved the gluing equations of modes 0 and L.
It remains to match the mode 1. We perform the projection of system (4.2.24) to
obtain :

on S! ereky (1’ ewg) + @
’ ereFy (1,e%) — @

(%) +7' Qay) = Yo+ (rey),
(e%) + 7 (0,00,) = T, .+ (0,0r,2)
(4.2.28)

1
g
1
g

where we have used the relations for the harmonic extensions

We (@) (re?) = r®7(0), W (D) (re”) =D —jr e (6),

Jj=1 Jjz1

together with

W (Ty) (re?) = erqﬂ () and O.W'(Yy)(re’) = Zj =1 (6).

Jjz1 Jjz1
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4. The gluing

Proposition 4.2.5 — Assume that the configuration associated with parameters
(04,0_) is balanced. Then there exists 0_ such that
(i) 0_ is close to O_ in the sense that for all parameter % <x < %,

and

(ii) there exists boundary data T and ® such that all gluing equations are solved.

PROOF

Here, we can’t go on without being more precise because the resolution at point
s, differs from the resolution at s,. For all eigenfunction f' associated with the
eigenmode 1, we write

ft (e’e) =  fblcosh+ fH2sinb

and 7! the associated projections. Note that because of the symmetries, the compo-
nent T;i always vanishes and thus, according to the construction of the truncated
deformed catenoid,

’/Tl’2 (5\p7i7g) = ’/Tl’2 (é?rﬁq,,i,g) = 0.

Then, in one hand, at s,, the above system (4.2.28) has components on cos 6,
only and it is written

ererl’l -+ q)llj,l + 7T1’1 (0<b,p> = Tll)zl_ + 77'1’1 (ﬁT;f,p) s
erFM — @M 4 7l (9,05,) = Tyl +ab (00r,-,),

from what we deduce

2011 = b (Id —-0,) (0y_, — ,
Tl’li — F[l(’l (I)l,l) ( T’1,17p Qp)_] (4'2'29)
p— = €Tk + » + 7 (Dcpm —D’r,_m).
On the other hand, at s, we have to deal with the projections 7! and 7'2. We
get, after rewriting equations as above,

{ 2(1);,1 = bl [(Id — ar) (5T,+,q - Dq’»‘l” ’

£ 4.2.30
Toh = erdFP 4+ M+l (0g, —dr i) ( )

The shape for after projection 7'+ is completely different because the small catenoids

do not have bend on the associated direction. We get the system :

byt + Ot (00,) = 0,
ercFp? — @02 + 7152 (0,00,4) 0.
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It is this last system in which the balanced condition appears : we can rewrite it as

1,2 _ 1,2 _
20, Ny m [(Id — 9;) (0a,4)] . (4.2.31)
257’qu7 = T [(Id + ar) (D@,q)] :

Therefore F»* has rough estimate ¢5. This is why we assume F)* vanishes at the
initial condition. We then claim that a Brouwer fixed point theorem yields to the
result.

More exactly, we first consider the five equations given by

e the systems and together with

e the first equation of the system (4.2.31]).
Using the contracting properties of 9 and 9, it is easy to apply a fixed point theorem
with parameters to prove that we can solve these five equations — and the solution
continuously depends on 6_ and 6, .

It remains to solve

1
1,2 _ 1,2
FP = 5 1 +0,) (ag)]. (4.2.32)
The right member continuously depends on 6, and #_ by construction. Moreover,

there exists a constant ¢ that does not depend on A4 such that for all constructed
solution (®,7T),

! ™2 [Id+0,) (0s,)] < ¢ €.

2
—ce3 <
2er,

But, according to the expression ?f F}? (Cf (2.1.6))), one proves that for all * in
(%, %), for all 6_ that belongs to [0_ — €*,0_ + €], Fql’2 describes an interval whose
form is [—c1€*, co€*] where the constants ¢; have rough estimate 1. Since €* is much

more larger than eg, a Brouwer fixed point gives the result. 0]
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Chapitre IV

Parameétrisation des surfaces
minimales de Riemann dans S§? x R

Introduction

In this chapter, we provide a thorough local description of the Riemann’s minimal
example in the homogeneous space S? x R. In particular, we prove that its necks
behave like small truncated catenoids.

Similar work was done in [HP07] in R? x R. The authors used it to study the
Jacobi operator on a half Riemann’s example in order to construct new minimal sur-
faces. These examples could be considered as two half Riemann’s surfaces connected
to each other by a number k of catenoidal necks with 1 < k& < 37.

Although we do not provide such examples in S? x R, it is a first step to a better
understanding of the Riemann’s minimal example in this space. In particular, we
highlight its different symmetries and provide the description of a catenoid in S? x R.

1 Riemann minimal surface in R?

As a warm-up, we briefly expose the computation of the classical Riemann ex-
ample. Recall that it is foliated by circles whose center describes a straight line.

Let t denote the height parameter, () be the radius of the horizontal circle whose
center is (a(t),0,t). We then look for functions a and r such that the parametrization

R? — R?

X
a(t) r(t) cosd
(t,0) — 0 |+ |r(t)sind (1.0.1)
0 t

describes a minimal surface. The first term can be interpreted as the action of an
horizontal translation. The function ¢ could be interpreted as the height funcion.
Notice that when a = 0, then this problem is nothing but the construction of the
catenoid.
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Furthermore, the surface that X describes is invariant under the action of the
orthogonal reflection with recpect to the plane {z = 0}.

The induced metric is given by

_ 72 +a*+2racosf +1 —rasinf
g —rasin 6 r? ’

where f denotes %f. Then one checks that the unit normal is such that

1 —cosf
N = I NS — —sinf
V1472 +a2cos? 0+ 2racosf 4 acosf
and the second fundamental form is
o - 1 (—7’"’ — acost 0)
V14724 a2cos? + 2rracosd 0 r)’

Consequently, X describes a minimal surface if its mean curvature H vanishes, that
is to say if the ordinary differential equation

1+7*4+a” —rit+ (2ra —rd) cos = 0

is satisfied. Since it has to be true for any angle 0, this above equality can be reduced
to the system

ri = 14724 a2,
.. . (1.0.2)
2ra = ra.
The second equation can be integrated and we find ¢ = Cr?, where C is a positive
constant. Thus the first one can be rewritten in order to obtain
L+7* = ri—C%*%

Thus, if r is a solution, we easily check that

d [r?
a(%) = 277" 4 20
T

and integration leads us to the system

1472 — A2 2,4
{ —l—r. r+ C*r®, (10.3)

a = Cr?
where A and C are constants.
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2. Riemann minimal surface in S? x R

2 Riemann minimal surface in §? x R

We look for the analogue of the previous section in the geometry of the homo-
geneous space S? x R. From now on, we consider S as a submanifold of R? and we
denote by (e;), ;<4 an orthonormal basis of R® x R.

Like in the Riemann example, we enforce this surface to be foliated by circles.
However, we can’t work with an horizontal translation term as before. In order
to make up for this problem, it is enough to consider the horizontal translation in
R? x R as an “horizontal” isometry. If we transpose this in S? x R, it is natural
to consider “horizontal” rotations. In addition to that, recall that in the Euclidean
case, the translation term lies in the line Span (e) ; in S? x R, we choose a rotation
R so that ey is invariant under its action. More exactly, we consider the following
parametrization :

X . R? — S?xR
(t.0) — (Rét) (1)> (Xs(tt,e))’

where
cos b (t) cosd cosa(t) 0 —sinal(t)
X, (t,0) = | cosb(t)sind | €S* and R(t) = 0 1 0
sinb () sina(t) 0 cosal(t)

denotes the rotation of angle a (¢) which preserves the direction e,. This choice can
be explained in the same way that the choice of translations in previous case in
which the center of the circles covers straight line. We refer to the following figure
to illustrate this kind of parametrization.

Figure IV.1: Geometric meaning of the parametrization.
The parameter b corresponds to the radius 7 of the R? x R-case : the surface

associated with the parameter is foliated by circles chose radius is cosb. Moreover,
the parameter a corresponds to the translation term of the R? x R-case, except
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that in S? x R, we replace the translation with rotations. Obviously, the surface
we construct with the help of X is invariant under the action of the orthogonal
reflection with respect to the linear space {z3 = 0} of R® x R.

From now on, we assume that b is not a constant function. This hypothesis
makes sense because of the Euclidean case : regarding the classical catenoid or the
Riemann minimal exammple, the radius function is not constant and there does not
exist minimal surfaces foliated by circles of constant radius in R? x R.

2.1 The minimal surface equation

Our aim is to obtain a similar ODE system than the one we have explicited in
the Euclidean case — see (|1.0.3)). Thus we compute the mean curvature of a surface
in S? x R whose parametrization is given by X.

When f is a function which depends on the variable ¢, we note f (£) = L (¢).

dt
Thus the tangent vectors of the surface are given by

X (10) = (R (t) X, (t,H)JtrR(t) X, (t, 9)) and 0 (1.0) = (R (t) 895(5 (t,Q)).

In order to compute the induced metric, we check the relations

. 2
HRXS

=2 (cos2 bcos? 6 + sin? b) and <RXS, RXS> = ab cos 0.

Besides, since R is an isometry of R3, we obtain

. 2 . 2 .
HRXS _ HX 3

Therefore, the metric induced by the parametrization is given by

B 14 a2cos?beos? 0 + a2 sin® b+ 2abcos 6 + b* G cosbsinbsin 6
n a cos bsin bsin 0 cos® b ’

In order to describe an unit normal N, we remark that it has to be orthogonal
to X, X and also to (X, 0). The last vector takes place because we have chosen
to work with the sphere S? we suppose embedded in R®. Thus if we choose N so
that[]

N = C(ozRXs;rﬁRXs>7

where «, 8, v are real numbers and c is a positive real number such that N is a unit
vector, we find that N can be written

RX
N = . s .
¢ (—62 — abeos 0)

1. Recall that b is not constant, thus b # 0 and N does not vanish.
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2. Riemann minimal surface in S? x R

Note that we do not have to explicit the positive real number ¢ because we
want to build a minimal surface ; it would not be the case if we want to build a
non-vanishing constant mean curvature surface.

Regarding the second fundamental form, we make use of relations
HXSH2 = 17 <X37Xs> =0 and <XS7XS> = bb7

together with the isometry properties of the rotation R and

aR = aR—& | R—

o O O
o = O
o OO

Then calculus demonstrates that the second fundamental form is given by the fol-
lowing matrix :

M= bb + ibcos — a2bcosbsinbsin®@  —abcos? bsin 6
N —ab cos? bsin 0 bcosbsinb /-
Since the mean curvature is given by the formula

1111911 — 21112912 + 1122922
det g

H =

it is enough that the quantity I1y;g;; — 21115912 + 1152995 vanishes to obtain a minimal
surface. Consequently, X describes a minimal surface if a and b are solutions of the
following equation :

0 = bcosh+ (1+d2 +62> sinb + (dcosb+2absinb> cos 0.

The hypothesis about b is reasonable : the quantity b0 is the analogue of the radius
r in the R? x R case and this last never is a constant.

Since the above equation has to be true for any angle 6, it is equivalent to the
system

(2.1.4)

Bcosb+<1+a2+l52>sinb = 0,
dcosb+ 2absinb = 0.

Notice the similarity of this system with the classical Riemann example (1.0.2)). As
done in R? x R, we can integrate the second equation in order to obtain

a = Ccos’h,
where C'is a constant. Then the first one can be rewritten

bcosbh + <1+C2cos4b+62) sinb = 0.
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However, if b is a solution, then

d [ »* :
T <cosQ b) = —2bsinb (cos.’3 b+ C?cos b) )

Thus the system (2.1.4) turns into

1+ b2 Acos? b+ C? cost b,
@ = Ccos?b,

(2.1.5)

where A and C' are constants. Once again, the reader will pay attention to the
likeness between this case and the R? x R case.

2.2 The analogue of the catenoid in S? x R

The catenoid and the Riemann minimal surface of R? x R are both foliated by
circles. However, we could consider the catenoid as a specific Riemann example :
a vertical example, that is to say when the center of circles don’t move ; it is the
case when the function a is a constant. In terms of equation (1.0.3)), the catenoid
matches with the case in which the constant C' vanishes. Therefore, it is natural to
explain the similar case in S? x R : it is what we call the catenoid.

Therefore, let us assume C' = 0. Then a(t) = ag is constant. Without loss of
generality, we assume ay = 0, up to applying a suitable rotation. The ordinary
differential equation of b turns into

140 = Acos?bh. (2.2.6)

Consequently, the constant A has to be chosen so that A > 1. The case A = 1 is left
out since X no longer parametrizes a surface. Furthermore, this equation implies
that |cosb| > \/LZ’ thus we introduce the critical angle b4 such that

1
by := arccos | — and Vt, b(t) € |[—ba,bal.
’ () () € [basb

To interpret this, we should remark that it enforces b to be different from the angle 7.
This condition then says that the radius cosb of the horizontal circle never vanishes.

On the left are represented phase por-
traits associated to the ODE that
b satisfies. The variable b can be read
on the abscissa while its derivative b is
on the ordinate. Moreover, we clockwise
cover the curves. Here, we have repre-
sented the cases A = 1.2, A = 5 and
A = 10. The size of A matches the size
of curves.
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Lemma 2.2.1 — The ordinary differential equation (2.2.6) has a periodic solu-
tion. Besides, its period is such that
e when A tends to 1,
m 2
T = 27?—5(14—1)—1—0((14—1) )

e when A tends to oo,

T = 2

Furthermore, if b (0) = 0, then for all |t| <t with ty = 1‘;%1,

b(t) = —g + % cosh (\/Zt) + ﬁogo (% cosh (\/Zt> sinh? (\/Zt>) ,
(2.2.7)

where Ou (f (t)) is a function that is bounded by a constant times f (and

its derivatives are bounded by a constant times the derivatives of f).

Remark 2.2.2 — e The expansion (2.2.7) at first order is equivalent to the

classical vertical catenoid in R® whose minimal radius is LA. The reason is

relatively simple. As a matter of fact, when A is large, b (0) is close to —7, thus
the radius cos (b (0)) is arbitrary small. Moreover, locally, when the radius is
small, in a small area around the initial configuration, S? behaves like R? and
its metric is almost flat. It is in agreement with the catenoidal shape of the
surface near this point.

e Unlike the Fuclidean case, the periodicity condition implies that the catenoid
of S? x R is also periodic, that is to say that the surface .7 we obtain is
invariant under the action of the vertical translation t = Te;. In addition
to that, if b(0) = —ba, then we check that .7 is invariant under the action
of point reflection with respect to the origin. Finally, notice that since a is
chosen so that it vanishes everywhere, .% is a surface of revolution around the
vertical axis.

PrOOF
Assume b (0) = —bs. Then, a solution b is necessarily order-preserving in a neigh-
bourhood of 0*. It follows that, for positive height ¢ small enough, we can write
db b d
dt=———2 andthus  t(b) ¢

VAcos?b—1 B oy VAcos2u—1

Therefore, it is enough to prove that the height does not explode when b increases.

For example, near b = —b4, a Taylor’s expansion provides the expression
_1
(Acos? (<by+h) = 1) ~ (2/A=Th) *
—
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and this is the term of an improper integral that converges when h tends to 0. Same
kind of result holds when b lies in a neighbourhood of +b4.

Therefore, the height is finite for all angle b : the solution is defined on R. Thus
the solution is periodic and its period is

ba du

! dv
o VAcos?u—1 /\/12 V(1 —0?) (Av? — 1)

The behaviour of T" when A tends to 1 or oo follows from the positivity of the
integrand together with its asymptotic expansion — in the oo-case, we make use of
formula

T = 4

! dv ~ In(4) 3
/;Z——AUQ—l = —2\/Z+O(A ).

In the case A very large, it is more convenient to define 3 such that b(t) =
—% + [ (t) and we define the critical angle 34 to be

VA

Thus, §(t) is very small in a neighbourhood of ¢ = 0. In first approximation,
equation (2.2.6) turns into

B = arcsin (L) — B(0).

1+5% = AP,
whose solution is
(B4 cosh (\/Zt> + 0O (%) sinh (\/Zi&) )
Therefore, it makes sense to look for a solution whose form is given by
B(t) = fBacosh <\/Zv (t))

for some function v such that v (0) = 0. In terms of v, gives equation
sin? (BA cosh <\/ZU>) — sin? (8,4)

32 sinh” <\/ZU)

o0

22m 1
. m+1 62m72
= )l A
=1

cosh®™ (\/ZU) -1
cosh? <\/Zv> -1 .

Assume ¢ (1 — ¢) < v (t) < t for some positive real number ¢ € (0, 1). Then previous
expansion implies

1—cﬁicosh2(\/2t) < v < 1,

154



2. Riemann minimal surface in S? x R

therefore

sinh (2 \/Zif)
4A

v(t) = t+ O |5
A—o0

It follows that the assumption is correct for |¢| < t4. We end by using the Taylor’s
expansion of 54

"o e ) :

2.3 Analysis in the case C very large

Instead of considering the functions a and b, we rescale the problem by intro-
ducing @ and b such that

a() ::a(é) and  B(1) ::b(é).

Then the minimal surface system equations (2.1.5)) turns into

a = cos®bh,
- . _ (2.3.8)
b = pcos’b+costh— \?
where
1 A
A= ol and W= o2

From now on, we omit the overline on functions to relieve notations and we assume
(4 is a constant real number.
2.3 — (a) A first approach to reduce the problem

In order to describe solutions of the above system when C is very large (that
is to say when A is very small), it makes sense to analyse it when A = 0 : it will
provide us different data to study the general case. Therefore, we are interested in
the system in which we replace A in the second equation with 0 and we find

. 2
{ a = cos“b, (2.3.9)

B = cos?b(p+ cos?bh).

Notice that the last equation implies that ;2 has to be chosen so thaty > —1.

Lemma 2.3.1 — Assume b(0) > 0 and b(0) > 0. Then solutions of the above
system are :
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e such that a and b are periodic functions when p belongs to (—1,0) and for

all't, b(t) € [—bx,by] where
by := arccos (\/—,u) ;

e non-periodic when p > 0, defined for all height t € R and

b(t) — £—.

t—+oo 2

Furthermore, if a (0) = 0, then

1
a(t) —— ta where (oo = arcsin < ) :

Vit h

Remark 2.3.2 — The lack of periodicity can be explained by the approximation
we do when we assume A\ = 0.

PrOOF
The second equation implies that for ¢ small enough,

db
cos b/t + cos? b’

On one hand, when p € (—1,0), as done in the proof of lemma we check
in this case the solution is periodic and its period T is

dt =

b d 1 d
T = 4 “ — 4/ - :
0 cosur/p+ cos?u Vi v/ (1 —02) (p+0?)

Besides, the limit radius cos by corresponds to the case in which p+ cos? by vanishes,
that is to say by = arccos (/—p).

On the other hand, when p is positive or vanishes, the only problem which might

occur is when b approaches 7. Since b — ﬁ) is not integrable in 7, it follows that

infinite height is necessary to reach this critical angle. Besides, b reaches all angles

1 m™ T
in (—%.3).

Moreover, we check that
da cosb
db NI

To integrate this relation between the heights 400 is the same to integrate it between
angles 7 for b. We then find

lm (o (1) —a(—t) = [ —=Y

———db.
t=oo —z \/p 4 cos?b

If we integrate it by substitution v = sinb, we end up with the explicit formula of
Qoo - O
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2.3 — (b) What happens when we also consider the contribution of A

We now consider the problem with additional term A2, like in system ([2.3.8)).
Here we assume b (0) is the minimal value of b and pu is a positive real number ; in
particular, b(O) = 0. Up to using a suitable rotation, we also assume a (0) = 0.

We introduce the angle by, such that b(0) = —F + by,. Since

A2 = sin?b, (,u + sin? bm) ,

sin b,, has to be small and so does b,,. Easy calculus demonstrates that

— A 3
b = ﬁ+A(—9>o(>\)' (2.3.10)

Lemma 2.3.3 — Assume A\ € (0,1). Then solutions to the minimal surface
system equations (2.3.8) are such that a and b are periodic functions. Moreover,
the period T is such that

In A\

T>\ = _4ﬁ+)\30<1)

and if a (0) = 0, a describes [—as0, o] where

. <cosbm> ~ ( ! ) X o (3
(0789 = arcsin = arcsin — - .
VIt VI+p 2uz A0

The rough estimate of the period makes sense regarding the case A = 0 in lemma
since it tends to infinity.

Remark 2.3.4 — The periodicity condition implies that the minimal surface .
also admits a period. More precisely, . is invariant under the action of the
isometry wich maps a point (s,t) of S? x R to the point (s',t+ Ty) where s =
cos (2as) 1 —sin(2as)
0 1 0 ().
sin (2a0,) 0 cos (2a)

PrROOF
As done in previous proofs, we use relation between height and angle, namely

db

dt = .
\/cos?b (1 + cos? b) — A2

Thus it is enough to prove that it is integrable in b(0). Let 8 be defined so that
b(t) = =5 4 B (t). According to the equality

sin? B (p+sin®B) —A* = (sinB —sinb,,) (sin B + sinby,)
. (1 + sin? 3 + sin? bm) ,
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1
it is enough to prove that 8+ (sin 8 — sinb,,)” 2 is integrable in b,,. It is the case
since

sin (by, + h) —sin(b,) = hcosb, + O (h?).
h—0
Therefore, solutions are periodic and the period is

2=bm db

T = 4 .
0 /€082 b (1 + cos? b) — A2

We perform a change of variables and we define € is defined to be

_ AN — A
€ :=sin (by,) = ( 5 = ﬁ—i_x\go (X% .

Then the period is given by the formula

! du
n = 4 .
A / V=) (- + &) (7 = &)

In order to estimate T" when € tends to 0, we first consider the integral in which we
neglect the contribution at v = 1 and we obtain

~ o).

[ i "G

Then we prove that the difference between this above term and the period T is
bounded. More precisely, we prove that there exists a constant ¢ which only depends

on p such that
1
21 — /1 — 2
< cf 1+ i S
. /02 — €2

1
T4 / o dw
e V(U —e)
According to the inequality
1-vV1-uw? < o,

we end up with

! du Vo2 du 1
T—4 i — < cll1+ — | =c|1+=+ 0 (1)].
/e Vi (u? —€e2) ( e VU2—62> ( 8 HO( )>
The result follows. O

Local description of the solution

Here, we prove that a similar description to the one in [HP07, Lemma 3.1] holds
true.
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Lemma 2.3.5 — The solution (a(t),b(t)) of system (2.3.8)) has the following
erpansion !
Vit € [—T)\—i‘ 1,71y — 1],
b(t) = —2+p(t)+ Ox (A cosh (y/at) sinh?® (\/nt))
A—0

a(t) = m(t)+ ?_38 (X cosh® (\/7it) sinh (/7)) (2.3.11)

where the functions p and m are defined to be

A A2 A2
t) := — cosh t and m (t) == —t + — sinh (2,/ut
p(8) 1=~ cosh (it ()= gt + g s 2V

and O« (f (1)) denotes a function that is bounded by a constant times f (and its

derivatives are bounded by a constant times the derivatives of f).

PrOOF
To simplify the analysis, we define w by

b(t) = —g+bmcosh(w(t))

with w (0) = 0 to ensure b (0) = —F +by,. According to the definition of b,, in terms
of w, the ordinary differential equation that b satisfies changes into

sin? (b,, cosh w) — sin® by,
b2, (cosh®w — 1)

W = (p+sin®by, + sin® (b, coshw))

Assume that |w (t) — \/ut| < c for some positive constant for all ¢ in [—t,,t,]
with ¢, > 0. Then the solution w is such that

Vte[—t,t), w(t) = ut+Ou (\cosh? (i),

A—0

and we check the estimate about w holds true provided c is chosen big enough for
t, = T\ — 1. The result for b then follows and the estimate for a is established by
using Taylor’s expansion e of cos? b together with the integration a = e. 0

It is very useful to describe the solution as a vertical graph upon a small annulus.
In this purpose, we perform the change of coordinates

(rcosz,rsinz,—\/l—r2,t) = X (t,0).

According to the above lemma, we demonstrate the following corollary.
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Corollary 2.3.6 — Let r. be the small radius defined by ry := \/% Then fol-
lowing expansions holds true :
1 r 1

1
t(r,z) = \/ﬁln(/\>—i—mln(élu)—z\/ﬁrcos,z#—g’)sg(/\),

where O (f (1)) denotes a function that is bounded by a constant times f on the

annulus A,, == B (0,2r)\)\ B (0,2) (and its derivatives are bounded by a constant
times the derivatives of f).

ProOOF
It is similar to the proof of lemma 3.2 in [HP07]. We briefly recall the main steps.
Let us define ¢t := —% so that ¢y ~ % and ry = \/iﬁe\/mk, From the lemma [2.3.5]

p and m satisfy the expansions

A 3 A2
= — \/ﬁt 2 = — 2\//7’t 2 l
p (%) 2\/ﬁ€ + O ()\2) and m (t) 8,u% e + O ()\ n)\) ,

where O (f(t)) denotes a function that is bounded by a constant times f on the
set [=Th+ 1,7\ — 1]. Then

=8~ o (my).

Moreover, by the choice of new coordinates,

p(1)? = r)*=2rt)m(t)cosz + Ou (A?).

Consequently, if we inject this relation into the previous one, we get
2

m(r) = %—FOOO ()\%)7

where O« (f (7)) affects functions defined on the annulus A,,. The expansion of ¢

follows. O
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Chapitre V

Construction d'hypersurfaces de
Scherk dans R" x R

Introduction

The Scherk surface, discovered in 1834 by Heinrich Scherk, is an unbounded
minimal surface that can be seen as the graph over a square which takes alternatively

400 value and —oo value on its boundaries. More precisely, it is the graph of u over
the domain D = ( % E) defined by

T2 2

u: (z,y) € D — logcosx — logcosy.

Then u is 400 on the sides {y = j:%} and is —oo on the other sides {x = j:g} The
goal of this paper is to prove the existence of such objects in R" x R.

We can except to have some restrictions about the geometry of domain D we
choose. Indeed, H. Jenkins and J. Serrin [JS65] proved that in R? x R, if a minimal
graph u takes infinite value on a part B of the boundary of the domain, then B must
be a geodesic. Moreover, in this paper is proved that the lengths of the boundary
on which u takes infinite value have to satisfy some conditions — for example, when
there are only infinite values on D, the length of the boundary part in which
takes +o00 value has to be equal to the length of the boundary part in which u takes
—oo value. This kind of result has been extended by B. Nelli and H. Rosenberg in
H? x R [NRO2|, then by A. L. Pinheiro [Pin09] or L. Mazet, M. M. Rodriguez and
H. Rosenberg [MRRI1] in M? x R. That is why we choose to work with domain
whose par of boundary is a minimal surface. Moreover, the existence of Scherk type
hypersurface has been proved by F. Pacard in [Pac(2].

We have in mind to generalize the existence of such u for domains with many
symmetries. For example, we would like to construct a Scherk type hypersurface
over a regular octahedron which takes alternatively infinite values +00 over the faces.
The existence and uniquiness have been proven by R. Sa Earp and E. Toubiana in
[ST] for some polyedra in H" or R™. In our case, we will use different approach and
build Sherk type hypersurfaces over an ocathedron whose faces are minimal surfaces
(it is the analogous of the condition under which in dimension 2, the part B of the
boundary is a geodesic).
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The general case together with a Jenkins-Serrin theorem has been solved by E.
Tomaini [Tom86|. However, it seems relevant to explain our method which is almost
completely self-contained.

Definition 0.3.7 — Let D be a bounded domain in R"™ with continuous boundary
0D. We say ¥ C R is a Scherk type hypersurface over D if there exists u : D —
R such that following conditions hold true:

(i) X is the graph of u ;

(ii) ¥ is a minimal hypersurface, that is to say that u is a solution of the minimal
graph equation

div Ve = 0

1+|Vul

(iii) there exists B a subset of 0D such that its interior B is non empty and u takes
infinite value over B : ujp = +00 (or —00).

We now state the main result.

Theorem 0.3.8

Let D a compact domain of R™ such that its boundary is ' US where I and S
are respectively a convexr graph and a minimal graph over a pseudoconvewﬂ set
Q C R L. Then there exists a Scherk type hypersurface ¥ over D in R® x R such
that it is the graph of some function u with

wp =0 and  wg = +o0. (0.3.1)
Besides, the boundary of ¥ is given by

0 = ([Ix{0}hu(dSxR"). (0.3.2)

By using reflection principle (see [ST, Lemma 3.1]), we then obtain the existence
of Scherk type hypersurfaces over deformed octahedron.

Corollary 0.3.9 — Let O C R? be a simply connected domain such that
(i) the origin Ogs belongs to the interior O of O,

(ii) O is invariant under the action of the orthogonal reflections s; of R (i €
{1,2,3}) with respect to the plane {x; = 0},

(11t) its boundary O is the collection of 8 faces F; which are minimal surfaces of
R3.

Then there exists a function u : O — R which is a solution to the minimal graph

equation and which takes alternatively 400 value and —oo value on its faces.
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1. Building Scherk type hypersurfaces in R" x R

We then discuss about the regularity of such hypersurfaces near their boundary,
also with the help of reflection principle.

Lemma 0.3.10 — Let ¥ denote the minimal hypersurface of R3 x R associated
with the above corollary when O is a reqular octahedron. Then X is smooth ev-
erywhere except on the vertices of O in which the surface is continuous but not
differentiable.

Finally, we give in the last section a result whose type is the same than the
Jenkins-theorem.

1 Building Scherk type hypersurfaces in R"” x R

1.1 Geometry of domains

As announced, geometric restrictions about the geometry of the domain D are
expected in view of the Jenkins-Serrin theorem. We already know that the Dirichlet
problem with continuous data over the boudary of a domain D is solvable if D is a
C? bounded domain in R" whose boundary has nonnegative mean curvature — see
theorem 16.8 in [GTO01] or the article [JS68|. There also exists more sophisticated
existence theorem in |[Mir71] for locally pseudoconvexs sets in R™, generalized by
R.C. Bassanezi and U. Massari in [BM78] for pseudoconvex sets.

Definition 1.1.1 — A subset D C R™ is pseudoconver if for all open bounded
subset A of R™ and for all £ such that E is a compact of A, following inequality

holds true :
/|an| < /|DnDUE|,
A A

where [, |Dy,| denotes total variation of the function 1p over A, that is to say

/’DILD’ = sup (/ 1p divg).
4 {oeci (AR llgl oo (4y<1} N A

Note that if D has Lipshitz continuous boundary, we are in the case of [Mir71] ;
if D has C? boundary, then we are in the case of [JS68].

First and last, let us fix some notation and hypothesis for the rest of our study.
We assume we are given a pseudoconvex set ) of R"™! such that its interior Q is
non empty. Moreover, we also assume that there exists a minimal hypersurface S of
R™ which is the graph of some function s defined on €2 and a convex hypersurface I"
which is the graph of some convex function ~ defined over 2 such that o' = 0S5, in
other words, such that the functions s and ~ line up on the boundary 912 of 2. We
also assume that y (p) # s (p) for all p € Q. Notice that this assumption makes sense
because of the convex hull property for minimal hypersurfaces (J[CM99, proposition
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1.7]) that specifies a minimal graph lies in the convex hull of its boundary. In
particular, we can suppose without loss of generality that the surface & is below
I' and T" is not minimal. We also denote by C a convex set of R” which holds the
domain D of R™ whose boundary is exactly I' US — for example, we could choose
D so that it would be the convex hull of I' US. We refer to the figure for an
illustration.

Figure V.1: Example of domain.

Notice that if JI' is continuous, then the existence of a minimal graph S over

the pseudoconvex set €2 is provided by the result of R. Bassanezi and U. Masseri
IBMTS|.

Example 1.1.2 — As an illustration of the above conditions, the classical Scherk
surface provides a nice example. In this case, we choose 2 to be (—1,1). Then the
minimal surface is in this case a geodesic : to fix ideas, we choose & = ) x {0}, in
other words, s = 0. Concerning I', we choose

V(@) = 1-lal.
Of course, one check the boundary condition

y(=1)=s(-1)=0 and  ~y(+1)=s(+1) =0.
We give an illustration in figure [V.2]
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1. Building Scherk type hypersurfaces in R" x R

RxR

%
\/

@) >

Figure V.2: The Scherk surface takes 400 value on S and vanishes on I" as a graph
on D.

Remark 1.1.3 — We do not give directly the result for deformed polyhedra be-
cause we use this above theorem to construct this new hypersurface with reflections.
For example, note the classical Sherk surface can be obtained by both the existence
of minimal surface over a triangle which vanishes over two sides et takes infinite
data over the other side and reflections — see figure

Yy Yy
+00
0 0
_— T
P
—00 —00 —00
0 0
+00

Figure V.3: Scherk surface over a triangle then over a square.

1.2 *“Horizontal”’ problem

There are two main ideas to prove the above theorem :

1) we solve a bounded problem by prescribing boundary data +m for some positive
integer m rather than +oo then we let m to tend to 400 ;

2) we change what we call the “vertical” problem into the “horizontal” problem — it
is more useful to prove that the sequence of solutions has a limit when m tends
to +o0.
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1.2 — (a) Bounded “horizontal”’ problem

As announced, we introduce the following “vertical” Dirichlet problem for m € N*

ure” is a minimal graph over D; (1.2.3)
Vee oD, w(x)=0 if zel, else m. o

We denote by X7 the graph of such a solution. Indeed, we have in mind to use
compactness results for minimal graphs. It is known that in the case n = 2, we can
obtain a solution of Dirichlet problem by letting m — oo — see [JS65]. We
use a different approach with the introduction to the following “horizontal” Dirichlet
problem :

uhor is a minimal graph over Q' := Q x [0,m];

VpedQ,  Vxel0m], up(px) =)= sp); (12,9
VpeQ,  u(p,0) =(p);

VpeQ,  wy(p,m)=s(p).

We denote by ¥2 the graph of such a solution u2. Note that, by construction, we
have
T = (I' x {0}) U (S x [0,m]) U (S x {m}) = =¥, (1.2.5)

The idea of the transformation lies in the figure [V.4] The point is that in the
horizontal problem, the boundary data is continuous and we are able to give an
uniform bound for the solutions.

S x {m}

ver
Em

N

hor
Zm

Q/X{Q}’QS” Q/x{ﬁf}'

Figure V.4: The horizontal problem and the vertical problem.

Notice that according to [BMTS], since " is pseudoconvex (because €2 is pseu-
doconvex), the Dirichelt problem ((1.2.4]) has a solution. Besides, according to the

maximum principle, the solution is unique. Therefore, it makes sense to consider

hor
Upy -
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As announced, we prove the existence of an uniform bound, which allows us to
consider the case m — +o0.

Proposition 1.2.1 — The sequence (uﬁfr)m 1s uniformly bounded. More pre-

cisely, for all m € N*, for all (p,t) € QF', we have the following inequalities :

vp) = u(pt) = s(p). (1.2.6)

Proor
There are two types of arguments : we deal with the lower bound with the help of
the maximum principle while we deal with the upper bound by using the convex
hull property.

First, since S is a minimal graph over €, it is clear that S x [0,m] is also a
minimal graph over Q x [0, m]. Moreover, its boundary is given by

D(Sx[0,m]) = (Sx{0})U(@Sx[0,m])U(S x {m}).

Therefore, the boundary of the minimal surface S x [0,m] is below the boundary
of 3hor hecause I is above S. According to the maximum principle (see [GT0T] for
example), we deduce from this fact that 31 is above & x [0,m]. In other words,
we obtain the uniform lower bound

Vip,t) €Qp,  ul(p,t) = s(p).

Next, by the convex hull property, it is an easy check to see that X1 lies in
the set D x [0,m]. In particular, X2 is below I" x [0, m], from what we deduce the
uniform upper bound. O

The above proposition yields to the convergence of the sequence of solutions

(u?r?r)m'

Corollary 1.2.2 — For all ty € R, for all p € Q, the sequence (ul*" (p, o)) m>t
converges simply to a limit, denoted by u™"(p,to).

PROOF
Here again, it is a well chosen of the maximum principle.
The key lies in proving the increasing property

Vty € RT,Vp € Q,Vm > to, ul (p,tg) < ult (p,to). (1.2.7)

The above inequality together with the uniform upper bound we have demonstrated
in the proposition then yields to the conclusion.
Consequently, let us prove the claim (1.2.7). We refer to the figure for a

: hor Pats hor hor
better understanding. We observe that u,>" and the restriction LR of u, i, to

(2" are minimal graphs. Moreover, by construction, these functions coincide on the
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part 090"\ (2 x {m}) of the boundary of Q. In addition to that, by construction,
we also know that for all p € ,

U (p,m) = s(p)

and using property

hor

Uiy (pym) = s(p).

In other words, ul®", is greater than u/X°" on the part Q2 x {m} of the boundary 9Q".
Then, by maximum principle, we end up with

uer < u?ﬁl‘%n over Qu,
so inequality (1.2.7)) holds true.
' x {0}
S
S hor Sx{m} Sx{m+1}
Qg QxR
| 0 | —
Q x {0} Qx{m} Qx{m+1}

Figure V.5: Comparison of 31" and Xhov .

Proposition 1.2.3 — Let m € N*, p be a point of Q\ 0Q and t < t' € [0,m)].
Then

up (p,t) > up (p,t'). (1.2.8)

In other words, u1°" is decreasing along the direction t. Note that the case p € 95

is more easy since for all ¢t € [0,m], ut*(p,t) = s(p). This property is central to
show that we can consider a solution of (1.2.4) as a solution of the other Dirichlet

problem ([1.2.3)) — see corallary

PrOOF
The main idea of this proof is to compare YT with another minimal surface that
is nothing but a translated of X" and to use a maximum principle.

More precisely, let 0 < ¢ < ¢’ < m, and we consider the translated Q’f(;,(ft;t) of
(" defined by

Q" = Q[ —t),m — ('~ 1)]

together with the translated function w,, of ul°" defined by
Wy ¢ (p,T) € QT(;/(ft;t) — u (p, 7+ (' — 1)) € R.
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Then w,, satisfies the minimal graph equation over QT(;,(Z;” since we just have

performed a translation. We note ¥, ; the associated surface. We define Q to be
the intersection of the two domains we consider, that is to say

O = Oxom-(—1 = Qrnom

We refer to the figure for the idea of the proof and the notations.

hor
S she

—E(t/—t) 0= TJl—(t/—t)ﬂiL >

Figure V.6: The surface X1 and its translated E?P{

Large inequality : It is once again an application of the maximum principle, in
other words, we compare the boundaries of the surface defined over the same
same domain Q.

Applying inequalities (1.2.6) of property we obtain for all (p,0) which
belongs to the part £ x {0} of the boundary 0%,

ut (p,0) = (p) = ul(p,t' —t) = wy(p,0).

With similar method, for all (p,m — (¢ —t)) which belongs to the part { x
{p,m — (t' —t)} of the boundary 052, we get

u (pom— (' —1t) = s(p) = u(p,m) = Wi (p, (' = 1))

It remains to consider the points (p,7) € 9Q x [0, m — (¢’ — t)] of 0w for which
the equality

U (0, 7) = s(p) = wng(p,7)

holds true. According to the maximum principle, since
hor
Umg S Umg
on 8@, we end up with
hor
on . Consequently, for all p € €, we get the inequality
u (0) = wa(pt) = u(pt),

hence decreasing property is proved.
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Strict inequality : It remains to prove that for there is no equality in the above

inequality when p belongs to Q\ 9. By the maximum principle, it is enough
to prove that there exists a point py of €2 such that

u};"?r (va t/) < u?r?r (p(]? t) :

Reductio ad absurdum, assume it is not the case. Then for all p € €, the
relation

w0, ) = (p,t)
holds true. Since ul°" is decreasing along ¢, we then obtain
V(p,7) € Qx [t 1], ulr (p, 1) = W (p,t).

In other words, the part of Yhor which is the graph of uhor over Q x [t,#] has
cylindrical type S x [t, '] where S is the graph of
peEQ —  u(p,t).

m

Refer to the following figure for an illustration.

3 x [t, 1]

hor
Z:m

| | | |
| | T i >
0 t t m

Figure V.7: The part of the surface over Q x [t, t'] does not depend on 7 € [t, t'].

Consequently, ¥ has to be a minimal graph over Q. Moreover, on 952, ¥ and
S are equal. According to the maximum principle, ¥ is nothing but S. We
deduce from this fact that 35" and S x [0, m] are tangent minimal surfaces in
a point which belongs to their interior, thus they are equal. That contradicts
[' x {0} belongs to Xhor, O

Corollary 1.2.4 — For all m € N*, we can consider a solution u"" of Dirichlet

problem as a solution ul®" of problem (1.2.9).

PROOF

From property [1.2.3} for all p € Q \ 09,
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is a bijective function which maps [0,m] to [s(p),v(p)]. Let ((p,7),0) € D x R —
in other words, 7 is such that 7 € [s (p ,7(p)]. Then if p € Q\ 09, there exists only

one t € [0, m] such that u" (P )( t) = 7. We deduce from these facts that the function
uye" chosen so that

(uﬂfr@)_l (1) i (pr)eD\(TNS),

u o (p, 7)€ D CR" —>
m if (p,7) € 00 x {0},

defines a solution to Dirichlet problem 1} since the graph of ul™® over D
coincides with ¥8°" — which is a minimal hypersurface — and boundary conditions
are satisfied by construction. O

1.2 — (b) Not bounded “horizontal”’ problem

We now prove that the limit u"" we have defined in corollary is actually
the Scherk type surface we want to construct.

Theorem 1.2.5 )
The graph of u™" is minimal over the interior Qg+ where the set Qg+ is defined
to be

QR+ = Q x R+.
Moreover, if £ denotes the associated surface, then its boundary satisfies
gxrr = (I x{0})U (S xR"), (1.2.9)

and the hypersurface S x R* is asymptotic to X" when t tends to 4oo.

Before giving the proof, the reader should note the last point of the above theorem
is the reason for which we have chosen a domain D whose boundary is I'US with S
minimal. Tt is nothing but the generalization of the condition of Jenkins and Serrin
that states if a minimal graph takes +o0o value on a part of the boundary, then this
part must be a geodesic.

PROOF
The proof turns on four points. We briefly expose them before giving all the details

1) we prove that the surface is minimal — it comes from a compactness principle
together with the uniform bound we have proved ;

2) we prove the boundary conditions are satisfies ;

3) we demonstrate that u"°" (p,t) converges when ¢ tends to +0o — it comes from
a decreasing property like the one we have used in the proof of proposition [1.2.3]

4) we end up with proving that the limit is exactly s that parametrizes the minimal
surface S.
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First step. We claim «"" is a minimal graph over QR+. To see that, for positive
integer k large enough, let us define QO to be the compact subset of Qr+ such
that

QF = {(p,x)EQS:d((pw),ang)2%}.

Notice that the sequence of sets (Qk)k converges to the set Ors. Besides,
according to propostion [1.2.1} the sequence (U};’Lol%zk)mgk of minimal graphs over

QF is uniformly bounded. From compactness principle (cf. [GT01]), there

exists a subsequence that uniformly converges to a minimal graph v, over QF.
But corollary implies that

hor uhgr
mqk k—+o00 |k

By uniqueness of the limit,

hor

ulﬁk Vg,

hor

hence ©"°" is a minimal graph other QF for all k and the claim follows.

Second step. Let us show that boundary conditions are satisfied and that
u is continuous over Qg+. It follows directly from applications of property
together with the construction of u!° which is continuous, like v and
s. Concerning the part Q x {0} of the boundary 0Qg+, we check that the
inequalities

V(px) € w™ (px) <u' () <(p)
hold true. But, by construction, we get the limits

u” (p,x) ——— 7y (po)  and v (p) — ¥ (po).
(p,%)%(po,o) P—DPo

Injecting these relations into the previous inequalities, we finally find that

uhor (pa I) —_— v (pO) )
(p,x)—+(po,0)

in other words, I' x {0} belongs to the boundary of 9%,
With similar method, we prove that S x R also belongs to the boundary of
this surface.

Third step. We claim that u"(p,t) converges when ¢ tends to +o0o. We check
that for all p € €, the function u"® defined to be

ur ) st e R—s ub(p,t) € R

is decreasing — it follows from proposition [I.2.3] But proposition implies
that u"°"®) is bounded. Then it converges. We denote the limit by v : Q@ — R.
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Fourth step. To complete the proof, it remains to demonstrate that the limit func-
tion v is exactly s. The idea of the proof looks like the proof of property
: we make use of a suitable translation of 3" along the t-axis.

(i) Let w> be the set
QF* = Qx[-m,+oo|
and we define the translated function z,, to be

Qe — R

Zm - (p7 t) — ’I,Lhor <p7 t + m) .

It is clear that z,, satisfies the minimal graph equation. Moreover, its
boundary data is determined by

Vp e, zn(p,—m)=s(p) and  V(p,t) € xR, z,(p,t) = s(p).

Furthermore, according to the third step, z,, has a limit when m tends
to 400 :

zm(p,t)  ——  wv(p).

m—0o0
(ii) Let us define z to be the t-invariant function

QR — R
(p,t) — v(p).

We claim that z satisfies the minimal graph equation. For that, we con-
sider an increasing sequence of compact subsets of (g which converges
to (dg. Then analogous arguments to first step enable us to conclude.

(iii) Now, let us show that v = s. First, note that similar methods to second
step show that z in an element of C°(Qg,R). Then ¥, is a minimal
hypersurface in R**1. But it is also invariant under translations along
the t-axis. Consequently, v is a minimal graph over ). But vgg = ssn
because of both the continuity of v and

YV ((p,t),m) € (02 x R) x N*, z,,, (p, t) = s(p).

The maximum principle for minimal graphs over () leads to the conclu-
sion. 0]

1.3 Proof of theorem [0.3.8

Like we have done to prove that to solve the bounded horizontal problem is the
same than to solve the bounded vertical problem, we prove that the solution wP°r
determines a way to compute a solution v of the vertical version of the problem.
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First step. First, we claim that for all p € (02, the function
uhon @) (pt) € Qps — v (p,z) €R

is strictly decreasing — it is constant equal to s(p) if p € 9.

We already know that u""(®) is decreasing according to the third step in
previous proof. Let t < ¢ € RT and m € N* such that m > #. Then
we consider the restriction of u"" to Q"+ and the following translation of

uhor .

W (p,7) — Ul (p, 7+ (¥ —1)).

By using exactly the same method than in the proof of proposition the
claim follows.

Second step. X"" can be seen as the graph of some function «'" which is a so-

lution to Dirichlet problem (0.3.1) with boundary conditions (0.3.2). The
mechanisms are the same than in the proof of corollary Since for all p
in Q\ 09, the function u""® is bijective and maps R* to [s(p),y(p)], we can
define u"*" to be :

DcCR* — RTU{+o0}

(uhor’(p))_l (r) if (p,7) € D\S;
p.7) = { +oo if (p,7) €S.

ver .

By construction, we check that

{(p, u’ (p, 1) ,7'> c(p,T) € D}
= {(p, t, uher (p, t)) : (p,t) € QR+U{+<><>} \ (09 X R+)} ,
where we have defined

u" (p, +00) := s(p) = lim u""(p, 2) and Qr+Uftoo} i= 2 x (RT U {+00}) .

t—o00

We deduce from this equality that

{(p, u’ (p,T) ,7') :(p,7) € D}
= (ZU{(p,+00,5(p)) :p € QP \ {(p,t,7(p)) : (p,t) € 0Q x RT}

which is a minimal hypersurface of R"*!. Then u'*" is a solution of first
Dirichlet problem and satisfies theorem [0.3.8]

2 Scherk type hypersurface over a deformed
octahedron and regularity

We have in mind to study some properties of such minimal surfaces. Note the
Sherk surface is nothing but the case n = 2 ; this surface is C? everywhere —
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including on its boundary. Besides, we can obtain this surface from a Scherk type
surface over a triangleP] In this section, we work with n = 3 and our goal is to prove

the corollary together with the lemma [0.3.10]

2.1 Example : regular octahedron

Let us consider an octahedron O C R? with (open) faces Fi,. .., Fs. We would
like to build a minimal hypersurface in R? x R over O such that it takes alternately
400 data value over faces. It is already known that such a hypersurface exists —
see the article of R. Sa Earp and E. Toubiana [ST]. We briefly recall the idea of the
construction.

Only two results are necessary : on the one hand, the existence of Sherk type
hypersurface over a tetrahedron which takes value 0 on three faces and +o0o on the
last one, on the other hand, the reflection principle — we refer to [ST, Lemma 3.1].
The result in this last paper is proved for minimal graphs in H" x R but similar
arguments work in R™ x R.

Denote by OABC' the open tetrahedron T such that (OC), (OB) and (OA) are
orthogonal with

length (OA) = length (OB) = length (OC)

and by F; the (open) face ABC. According to theorem [0.3.8] there exists a minimal
graph u : 7 — R such that (see figure [V.8) :

+00 over Ji.

{u = 0 over OT\F;

By reflection principle, we extend u to some new minimal graph v over the domain
T U(OAB)U T’ where T is the reflection of T with respect to the plane {z = 0}
as follows :

u(z,y, 2) if (v,9,2) € T;
U(xvya Z) = —U([L‘,y,—Z) if (J:’ya _Z> € Ta
0 it (z,y,2) € (OAB).

Then v is a function which satisfies the minimal graph equation together with (see

figure |[V.9) :

v = 0 over Int(d(TU(OAB)UT))\ (FLUF;s);
v = +00 over Fi;
v = —o00 over Fs.

We can go on with reflections and build a minimal hypersurface over the octahe-
dron O — see figure : we use the reflection with respect to the plane {y = 0},
then with respect to the plane {z = 0}.

2. See remark page and figure page m
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Figure V.8: Scherk type hypersurface
over a tetrahedron 7 and the function
U.

Figure V.9: Scherk hypersurface after
a reflection and the function v.

Figure V.10: Scherk type hypersurface over an octahedron.

It is interesting to observe that this construction proves that the function wu is
C? over 0T \ F,.

So we can wonder what is the regularity of the Scherk type hypersurface on its
boundary.

Lemma 2.1.1 — Let X the Scherk type hypersurface over O C R? in R3 x R.
Recall that its boundary is given by

9L = (0(00) xR) C (R* xR), (2.1.10)

where 9 (00) is the collection of the sides of the octahedron. Then Y is C* every-
where, except in the vertices of O in which ¥ is continuous but is not C'.

Consequently, we can’t expect to have the same regularity than in the 2-dimensional
case.
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PROOF
We first note that it is enough to consider the case in which X is a minimal graph
over a tetrahedron 7T .

Regularity over (open side) x R : By construction of Scherk type hypersuface
Y over T, ¥ can be seen as the graph of u"" over the domain (ABC) x Rt
where (ABC') denotes the (open) triangle whose vertices are A, B and C.
Moreover, on the boundary of (ABC) x R, " is constructed so that

u™ =0 over 0(ABC)xRT;

over the other part (ABC) x {0} of the boundary, u"" is the graph of the
upper piece of the tetrahedron, in other words, it is the graph of 0T \ (ABC).
Without loss of generality, we may assume the open segment (AB) belongs to
the plane {z = 0}. We then construct a new hypersurface over (ACBC’) x R*
by reflection principle — we refer to figure to illustrate this. Then this
new graph is C? over the interior of this domain. In particular, it is C? over
(AB) x R%, so is X.

Figure V.11: The first symmetry.

Regularity over (open side x {0}) : It is the most important point in the proof
of the lemma. We need several steps to conclude.

hor
m

First step : We work with the solution u°" of the bounded horizontal prob-
lem.

First of all, we introduce notations — see figure Let us denote by
G the orthogonal projection of the vertex O of the tetrahedron 7 on the
plane that holds A, B and C'— in other words, G is the centre of mass of
the triangle (ABC). Let P € (AB) and denote by @ the point of (ABC)
such that @ € (AG) U (BG) and the straight lines (PQ) and (BC) are
parallel. We note, for all ¢ € [0,m], the point P, := (P,t) (we define
in the same way Ay, By,...). Then we claim that «!* is monotonic over
[P, Q.

To prove this, let R, T, € [P, Q] such that

1R — Bl < [Ti—F.
We want to demonstrate that the inequality

ul (Ry) < ulo" (Th). (2.1.11)
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holds true. Let M; be the middle of [R;, T;] and P the plane such that
M,; € P and P is parallel to the plane that holds B,G,B,, and G,,. We
denote by M! and M? the points given by the intersection of P with
OABC. Finally, let ' € R? the domain whose boundary is

(0 (M'M?A) x [0,m]) U ((M'M?A) x {0,m})

and Q" (resp. A') be the symmetric of ' (resp. A) with respect to the
plane P.

c Q R

Figure V.12: Notations. € is the light gray piece ; Q" is the dark gray
piece.

Now, denote by s' the restriction of the function u!* to " and s? the
symmetry of the restriction of ul®" to €’ with respect to the plane P.
By construction, s! et s? satisfy the minimal graph equation over " and
their regularity is such that they belong to C? (") UC® (Q”). Moreover,
we can explicit the boundary conditions as follows

VPePno(), st(P) = $*(P) = ubr(P);
VP e (MTATAL ML),  sY(P) = s*(P) = 0

VP e (M*M2M2 ML), s'(P) = s*P) = 0

VP e (M'M?AY), s2(P) < s'(P).

Note that the last inequality holds true because of the geometry of a
regular tetrahedron 7. Maximum principle then implies that s < s!
over )", thus

W (Ry) = Q) < s'(Q) = ul(Q).

Second step : By letting m — +o0o in inequality (2.1.11]), one can find sim-
ilar property for u"°r :

VieR,, W™ (R) < WM (T)). (2.1.12)

Third step : The second step gives us an indication of the geometry of .
We denote by X' the graph of u"" over (ABG) x R,. We claim that the
orthogonal projection m of ¥ onto the sloping hyperplane H of R* that
holds A, B, O and the t-axis is injective. Denote by H® C H its image.
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Notice that it is enough to prove that
T (R, u (Ry))  # w (T, u™ (T}))
because of the inclusion
m([F, Q) C  Dyp,

where D, p is the line that holds the points (P, ¢, v (P,t)) and (Q, ¢, u" (Q,0)).
The reader can obhserve the configuration of the problem in figure [V.13]

H

Q:

b, Ry T;

Figure V.13: Configuration to prove the injectivity of m. Note that convex hull
property already shows that the graph of "’ is below H.

Trigonometric calculus leads us tof]:

|P—m(R)| = cos (Oz—arctan (%)) \/HP_RHZ—I—U(R)Q
= ||P - R| cosa + u(R)sin .

Since u°" is an increasing function on [P;, Q;] together with the fact that

the distance ||P — R|| is less than the distance ||P — T'||, we end up with
|P—7m(R)| < ||P=T|cosa+u(T)sina = d(Pn(Q)),
from what we deduce that

m(Q1) # (1)

and thus, 7 is injective.

Last step : according to previous step, " is then the graph of some func-
tion u® over H® such that «® vanishes over ([A4, B] x R,) U (ABO). We
use twice the reflection principle : first, the reflection with respect to the
plane, included in H, which holds A, B and the direction t-axis, next
with respect to the plane {t = 0} C H. We obtain a new minimal surface
over a domain such that (AB) x {0} belongs to its interior : X is C? over

(AB) x {0}.

3. We relieve notations by omitting index ¢ and exponent hor.
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Regularity over (vertex) x RY : It directly follows from other reflections and
from our choice of T : since the angle

BAC = —
C 3

we can build a hypersurface over (ACA'C'A"C") x R — see figure

Figure V.14: hexagon x R,.

We conclude like before that X is C? over {B} x R%.

¥ is not C! over (vertex) x {0} : We give a proof by contradiction. Suppose X
in C' on : (A4,0). Then its the tangent space T(4,0)% is well defined. However,
the t-axis belongs to T{4,0)% since we know the boundary of ¥ (cf. (2.1.10)),
and so do (AO), (BO) and (CO) : we have four independent directions in the
3-dimensional space T{4,0)2 and it cannot be the case. 0

Remark 2.1.2 — Similar results hold true in higher dimension : if n > 3 and X
is a Scherk type hypersurface over a regular polytope @ C R™ with 2" hyperfaces[’]
then X is C? everywhere, except over 9 (9 (00)) x {0}.

2.2 Sherk type hypersurfaces over deformed tetrahedron

We keep notations of the study of Scherk hypersurface over a regular octahedron
T = (OABC). Let Q be a convex subset of (ABC') such that G belongs to the
interior of 2. We are typically in the case of figure page According to the
theorem[0.3.8] there exists a minimal graph u over D such that u vanishes over I" and
takes infinite value +o00 over §; := S ; the surface S; will play the role of the face
F; of the regular octahedron 7. By reflections, like in the previous section, we can
build a new minimal surface ¥ over a deformed octahedron that takes alternatively
400 value over its boundary. Note that its boundary is the union of eight minimal
surfaces S; and all S; are obtained from S by symmetries — cf. figure [V.15]

Note that this construction shows that u is C2 over 9T \ S, but we cannot expect
to have regularity results for 3 near § x R by using symmetries.

Of course, there are similar constructions in higher dimensions.

4. Each hyperface is a regular simplex.
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Figure V.15: Scherk hypersurface over a deformed tetrahedron.

3 A Jenkins-Serrin type condition with 3 <n <7

In this section, we give the proof of a Jenkins-Serrin type condition which is
necessary for the existence of some Scherk type hypersurfaces for 3 <n < 7.

Let D on open bounded pseudoconvex simply connected domain of R™ whose
boundary is piecewise C! and satisfies

op = (USHUUns)) U Uns)).

where S, §; and S are minimal hypersurfaces of R”. Let P be a piecewise C'
subset of D and define the non negative real numbers «, 5 and v to be

o= Z HS;FQ87D| , B= Z ||Sj_ﬂ873H and v :=[|0P|,

ie[[1,k] JEe[L]

where ||.|| denotes the (n — 1)-volume.

Theorem 3.0.1
Suppose there exists a minimal graph u over D such that u takes 400 (resp. —o0)
value over S;" (resp. ;) and is continuous over S. Then

if v =0, then o = f3;

else 20 < v and 206 < 7. (3.0.13)
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SKETCH OF THE PROOF

We use smilar arguments to the articles [JS65], [NR0O2|, [Pin09] and [MRRII]. The
proof is done as follows : first, we formulate the flow condition, then we prove
that N is vertical only on the minimal surfaces S;+ and S;. We conclude with
differentiating the cases v = 0 and v # 0.

Let .
N = ——— ( —1Vu )
1+ ||Vu]|2

be the normal to the minimal hyperface, let vg» be the outward conormal to the
boundary of P and let vgn+1 := (vgn, 0).

First step. Let D’ be a piecewise C' compact subset of D. Since u satisfies the
minimal graph equation, we have the equality

/div Ve ) 2
' 1+||Vu||2

According to Stoke’s theorem, we then rewrite the above relation as

0 = / <L’I/ﬁ§n> = —/ <N,V{Rn+1>,
o> \ /14 ||Vul? o

where vg,,, is the outward conormal to the boundary of D’. This above
equation is nothing but a flow condition. It also holds tre for P which, in
general case, is not a compact subset of D : it is enough to consider a sequence
of compact piecewise C! subdomains of P which converges to P — for example

1
D) = <{P € P d(P.OP) > E})
for m large enough. Thus, we obtain
/ (N, vgrr) = 0. (3.0.14)
oP

Second step. We claim that if p belongs to the interior of S, then

(N(p),venia(p))| < 1.

The proof is similar to the one of [Pin09, assertion 5.2| : suppose it is not the
case. Then the hypersurfaces ¥ and S? x R have the same vertical tangent
space in (p,u(p)) and ¥ is in the same side of S? x R. Then the bound-
ary maximum principle implies that those two minimal surfaces coincide in a
neighbourhood of (p,u(p)) : it is not possible.

Third step. If p belongs to one of the Int (Sf) (resp. Int (S[)), then we claim
that

(N(p),vgnt1(p)) = -1 (resp. = 1). (3.0.15)
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Last

The proof is similar to the proof of [NR02, Lemma 1] : suppose it is not the
case. We only consider the problem for S;. Then there exists ¢ > 0 and a
sequence (py,),, of D which converges to p as m tends to +oo such that

(N(pm), Vns (p)) > —1+e. (3.0.16)

Besides, there exists r > 0 such that, if B(q,r) denotes the disk contained in
Y centered at ¢ of intrinsic radius r, for all m, B ((pm,w (pm)),r) C X because
u takes +oo value over S;. According to [SSY75, Theorem 3] for 3 <n < 5
together with [Sim| for n = 6 or n = 7, we can use curvatures estimates,
namely there exists an absolute constant C' = C(r) such that :

vmYg € B((pmulpn).5). MW@l < C

where A denotes the second funamental form of 3. Hence Y is a bounded graph
over a disk B ((pm,u (pm)),r’) contained in the tangent space T(p,. u(pn))>-
Notice that ' can be chosen so that it does not depend on m. But the
horizontal projection of those disks is not contained in D when p,, approaches
p because of inequality . it is a contradiction.

step : Finally, collecting the equations (3.0.14)), (3.0.16) and (3.0.15) give,
we end up with

k l
0 = / <N, VRn+1> + / <N, VRn+1>

noP
+ / <N, VRWL+1> s
OP\((uis) U(1s57))
and thus, we find the flow equation
a—p = / (N, Vgn+1) . (3.0.17)
oP((0is) U(ss; )

It remains to separate the cases.

First case : v = 0 and we consider P := D. Then the equation (3.0.17)
yields to

a—B = 0. (3.0.18)

Second case : ~ # 0. If p is a point of 9P \ ((UiS;") U (U;S;)), either p
belongs to the interior of D and then |(V, vga+1)| < 1 or p belongs to one
of the Int (S8?) and same inequality holds. Therefore equation (3.0.17)
provides

o < arfory (LsHUWS))]
< BH+(y—(a+p),

from what we deduce
2 < . (3.0.19)
The inequality with 5 can be proved in the same way. O]
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