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General Introduction 

Foreword 

Since the dawn of mankind, through sciences and philosophy, we have developed a 

staggering body of knowledge both about the universe that surrounds us and about ourselves. 

This gave us the role of a prominent element in our ecosystem on global scale. This is of 

course due to our intelligence, which is incomparable to any other known living kind. This 

intelligence, however, does not come from nowhere, but reposes on the powerful cognitive 

system that we, humans, have in possession. 

Human cognition is indeed a huge source of inspiration and since the time of classical 

philosophers it remains one of the key research domains in human sciences. Being too 

difficult to be grasped in a single theory or model, it has been studied from many 

perspectives. Some scientists explore its links to human culture (Tomasello, 1999), others 

investigate its connection to brain structures and functions (Koechlin et al., 1999), yet others 

focus on human cognition as a social function (Wyer and Srull, 1986) and the list could go on 

and on. 

A dictionary definition
1
 describes cognition as a “mental action or process of 

acquiring knowledge”, the term originating through late Middle English from Latin cognitio, 

from cognoscere: “get to know”. While the definition implies that cognition is proper to 

humans, cognitive phenomena in machines are making part of research efforts since the rise 

of artificial intelligence in the middle of the last century. The fact that human-like (and even 

animal-like) machine cognition is still beyond the reach of contemporary science only proves 

how difficult the problem is. Partly this is certainly caused by the fact that we still do not 

fully understand the human cognitive system. Yet what we know about it is a valuable 

inspiration for designing machine cognitive systems. This is precisely the way I have taken in 

this thesis, whose goal is a contribution to development of human-like machine cognition 

through inspiration from biological and human systems. 

                                                      

1
 Oxford Dictionary of English, (Pearsall, 2010) 
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Motivation and Objectives 

The objective of this thesis, which has been previously informally stated as “a 

contribution to development of human-like machine cognition through inspiration from 

biological and human systems” will be described more specifically in following lines. 

However, why the problem of developing autonomous and human-like machine cognition is 

so important? For me, the motivation comes from the state of the art in robotics, intelligent 

systems and technology in general. Nowadays there exist many systems, such as sensors or 

robots that outperform human capacities. Yet none of existing machines can be called truly 

intelligent and humanoid robots sharing everyday life with humans are still far away. It is so 

because contemporary machines are often automatic, but rarely fully autonomous in their 

knowledge acquisition. This is why the conception of bio-inspired human-like machine 

cognition is so important for future systems and intelligent robots. It is because this is the 

way of a major contribution to a true autonomy of future intelligent systems. For example, 

but not being limited to, the development of humanoid robots capable of autonomous 

operation in real world conditions.  

The term “cognitive system” means here specifically that characteristics of such a 

system are similar to those of human cognitive system. It refers the reader to the fact that a 

cognitive system, which would be able to comprehend the world on its own, but whose 

comprehension would be non-human, would subsequently be incapable of communicating 

about it with its human counterparts. It is obvious that such a cognitive system would be 

useless. 

Machine cognition implies an autonomous machine knowledge acquisition. Therefore 

the work presented in this thesis falls to the general domain of development of autonomous 

knowledge acquisition system.  In order to be called “autonomous”, a knowledge acquiring 

system should satisfy the condition that it develops its own high-level (semantic) 

representation of facts from low level sensory data, such as image, sound, tactile perception 

etc. All this way of information processing from the “sensory level” to the “semantic level” 

should be performed solely by the machine, without human supervision. This however does 

not exclude human interaction, which is, on the contrary, vital for any cognitive system, be it 

human or machine. This may be seen on the example the troublesome effects, which the 

condition of deprivation of the presence of other persons has on so called “feral children” 

(McNeil, Polloway and Smith, 1984). 
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In accordance with the requirement of autonomy in context of the machine cognitive 

system and knowledge acquisition capacities, I set up the following objectives for the work 

that is developed throughout the present thesis: 

 Explore and realize the state of the art of autonomous knowledge acquisition 

(cognition) performed by an embodied agent in real world environment. 

 Understand basic principles of human cognition and draw an inspiration from 

them to conception of a machine cognitive system enabling the machine to be 

itself the initiator and the actor of the knowledge acquisition. 

 Contribute to a conception of an intelligent system capable of autonomous 

knowledge acquisition from low level data by a) observation and b) interaction 

with its environment including humans; of a system capable of high-level 

representation of such a knowledge, which would be practicable in real world 

conditions (i.e. robust, real-time, …) 

 

Especially the third objective is very challenging. To reflect the fact, that a doctoral 

study has a firmly given 3-years-long time-frame, I have focused on fulfilling the objective in 

a way, that, while still keeping its generality, tends to its application in the area of humanoid 

robotics. This is also the scope in which the final system has been tested. 

Contribution 

The work accomplished in this thesis has allowed for bringing several contributions 

to the conception of artificial autonomous cognitive systems: 

 First, the state-of-the-art on autonomous acquisition of knowledge has been 

realized in various research domains and it has demonstrated the complexity of the 

problems being dealt with in this thesis. Giving an overview of existing solutions, 

the bibliographical study has notably pointed out problems related to previously 

proposed solutions. It has allowed for an objective evaluation of achievements 

concerning autonomous acquisition of knowledge by machines as well as an 

outline of open problems currently existing in this domain. 

 The second contribution is the study, the conception and the realization of a low-

level cognitive system based on the principle of perceptive curiosity. The 

approach is based on salient object detection realized by creation of a fast, real-
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world robust algorithm for salient object detection and learning. This algorithm 

has several important properties that make it stand out from similar existing 

algorithms and which make it particularly suitable for use in the cognitive system 

developed in this thesis, such as real-time speed, self-tuned visual attention scale 

and robustness to difficult illumination conditions. 

 The third major contribution of this thesis is the conception of a high-level 

cognitive system, based on a generic approach, which allows for acquisition of 

knowledge from observation and from interaction with the environment (including 

humans). Based on the epistemic curiosity, thesis high-level cognitive system 

allows a machine (e.g. a robot) to become itself the actor of its own learning. One 

important consequence of this system is the possibility of conferring multimodal 

cognitive capacities to robots in order to increase their autonomy in a real 

environment (human environment). Comparing with existing high-level cognitive 

systems, the present one bring important functionalities such as significantly less 

exposures needed for successful learning. It is also possible to generalize this 

approach in order to process, on high-level, as well absolute visual features (e.g. 

color, shape) as immaterial relative features (e.g. motion or position). 

 The last major contribution of this work is the realization of the strategy proposed 

in the context of autonomous robotics. The studies and experimental validations 

done had confirmed notably that our approach allows increasing the autonomy of 

robots in real-world environment. 

Thesis Organization 

This thesis is constituted of five chapters, leading the reader from the state of the art 

and theoretical basis of my research, through conception of different parts of the proposed 

cognitive system up to its concrete application in real world environment. 

Chapter 1 introduces the reader into the state of the art in different domains which are 

concerned by autonomous acquisition of knowledge. It discusses different works which 

inspired me and influenced me in my research. Among others it discusses works from the 

field of semantic simultaneous localization and mapping (SLAM), visual saliency detection 

and works accounting on human-robot communication and interaction in knowledge sharing. 

This chapter should give the reader a general overview on the state of the art, existing 
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techniques and terminology on which I further develop my own research described in 

chapters that follow. 

In Chapter 2 theoretical foundations of my work are presented. A cognitive 

architecture is devised in order to cope with problems and objectives that have been discussed 

earlier in “Motivation and Objectives”. This chapter provides a theoretical framework 

defining constitutive parts of my research work, which are subsequently concretized in 

chapters 3 and 4. It shows how the concept of curiosity is used within the presented cognitive 

system to motivate its actions and its seeking for new knowledge both on the low, sensory 

level and on the high, semantic level.  

Chapter 3 is dedicated to the realization of what will be further explained as the 

“perceptual curiosity”, i.e. a lower cognitive lever of the system. I propose a technique of 

doing this based on visual saliency and on detection of salient objects. The first part of the 

chapter describes a novel approach to salient object detection and extraction. Then a learning 

method for the extracted objects is presented. The salient object extraction method is further 

refined my automatic estimation of the visual attention scale. Finally several experiments are 

described validating the proposed salient object extraction and learning approach. 

If the previous chapter described in some way “unconscious” or “low-level” cognitive 

mechanism of acquiring information about surrounding objects, Chapter 4 presents a 

comparatively higher-level cognitive function of the entire system, realizing the “epistemic 

curiosity” (explained in sub-section 2.2.2.1). It uses partly results of salient object learning 

and partly it relies on other mechanisms in order to present a general and flexible framework 

for knowledge acquisition and knowledge sharing between human and robot. It allows a robot 

to build up its own representation of the world from observation and from interaction with 

human beings found in the environment. 

Concrete approaches for realization of different parts of the cognitive system have 

been developed in previous two chapters. It is the purpose of Chapter 5 to presents how they 

work together constituting a single system. The chapter reports on experiments made in real 

world indoor environment and it shows how the system allows us to make a step towards a 

fully autonomous acquisition of knowledge in machines. For didactical purposes the chapter 

also briefly remembers the reader basis of the most important algorithms and techniques used 

in realization of the system. 

The closing chapter of this thesis is the General Conclusion. That is where the reader 

is given a summary conclusion and an evaluation of the research presented here. Finally, 

perspectives of possible future directions of the work are provided. 
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Chapter 1. State of the Art 

1.1. Introduction 

This chapter will help us, first, to get a better understanding of the main concepts with 

which I am dealing in this thesis. In addition, it will provide us with the terminology and 

existing approaches to which I am referring in next chapters. It will also enlighten 

achievements made so far on several different research fields that are implicated in the 

research presented here as well as the unsolved problems and difficulties that each of the 

domains is encountering in present days.  

One of the most prominent keywords of this thesis is “knowledge acquisition”. In the 

Oxford Dictionary of English
2
, the word “knowledge” is defined as: 

 Facts, information, and skills acquired through experience or education; the 

theoretical or practical understanding of a subject 

 The sum of what is known 

 Information held on a computer system. 

 In philosophy: true, justified belief; certain understanding, as opposed to opinion. 

 Awareness or familiarity gained by experience of a fact or situation 

 

In this thesis the word “knowledge” is used predominantly in sense of the first and the 

last of the definitions given. Otherwise said, it is perceived as a sum of facts contributing to 

familiarity with the subject, which is acquired through proper experience (cf. Chapter 3 and 

Chapter 4) and education (cf. Chapter 4, especially section 4.4). The double aspect of 

knowledge acquisition, which is the “proper experience” on one side and the “education” on 

the other one are further investigated in the following Chapter 2. 

Knowledge acquisition is not a research field per se. Rather it is an objective which 

different research domains are trying to attain by using different methods and starting from 

different theoretical foundations. In this work I am building on the work done in several 

domains including cognitive science, machine learning, machine perception and especially 

machine vision, linguistic and developmental psychology. What I propose in following 

                                                      

2
 Adopted from (Pearsall, 2010) 
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chapters is a fruit of an inspiration gained while studying these domains. Each of them deals, 

from its own point of view, with knowledge acquisition in machines, in humans and in mixed 

human-robot groups. It is thus well-founded if I conceive following sections of this chapter as 

a cross-section of the fields and of works that inspired me and that directed my attention and 

my efforts of accomplishing the research presented this thesis. Although certain of them have 

later proved to only be a dead-end, I include them too as I wish to provide the reader the same 

point of departure that I had, before diving in succeeding chapters. 

As it has been stated previously, the problem of cognition – be it human or machine – 

is an extremely vast one and it is not the purpose of this thesis, nor it is permitted by its 

scope, to address it fully in its completeness. Instead of this, in the following section I will 

focus on research efforts that were in some way influential for my work or that are closely 

related to its subject. It therefore focuses on cognitive systems and the appearance of curiosity 

in existing works concerning specifically cognition in robots. The next section accounts on 

perception in context of perceptual curiosity and notably visual saliency. As autonomous 

learning requires the capacity of distinguishing the pertinent information from the impertinent 

one, visual saliency is one of the key techniques used here to extract important information in 

context of visual stimuli. Further, works concerning knowledge acquisition in human infants 

and works relating the biologically inspired knowledge acquisition techniques to artificial 

agents, i.e. mobile robots, are presented. 

 

1.2. Cognitive Systems and Curiosity 

As a departure point it is worth of mentioning the work of (Langley, Laird and 

Rogers, 2009). It brings an in-depth review on a number of existing cognitive architectures 

such as ACT-R, which adheres to the symbolic theory and reposes on the assumption that 

human knowledge can be divided to two kinds: declarative and procedural. Another 

discussed architecture is Soar, which is based on a system of if-then production rules or 

ICARUS, based again on two kinds of knowledge: concepts and skills … only to mention a 

few examples and to give the reader an idea about the heterogeneity in the field. The work 

also discusses challenges for their future development. Further in the work, a thorough 

discussion is provided on necessary capabilities of cognitive systems as well as on the 

properties that make such a system viable. The work written by (Vernon, Metta and Sandini, 

2007) provides a survey on cognitive systems from another point of view. It accounts on 
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different paradigms of cognition in artificial agents notably on the contrast of emergent vs. 

cognitivist paradigms and on their hybrid combinations. In contrast to previously mentioned 

works, which accounts on cognitive architectures in a wide manner, the work of (Levesque 

and Lakemeyer, 2010), while still useful for its broad perspective, focuses on the area of 

research on cognition, which is much closer to the subject of this thesis, i.e. the cognitive 

robotics. The work discusses questions like knowledge representation in cognitive robots, 

sensing, reasoning and several other areas. However, there is no cognition without perception 

(a cognitive system without the capacity to perceive would miss the link to the real world and 

so it would be impaired) and thus autonomous acquisition of knowledge from perception is a 

problem that should not be skipped when dealing with cognitive systems. More importantly, 

what is the drive or the motivation for a cognitive system to acquire new knowledge? For 

human cognitive system (Berlyne, 1954) states, that it is the curiosity that is the motor of 

seeking for new knowledge. Consequently a number of works have been since there 

dedicated to incorporation of artificial curiosity into a variety of artificial systems including 

embodied agents or robots. However the number of works using some kind of curiosity 

motivated knowledge acquisition with implementation to real agents (robots) is still relatively 

small. Often authors view curiosity only as an auxiliary mechanism in robot’s exploration 

behavior. 

One of early implementations of artificial curiosity may be found in (Schmidhuber, 

1991). In this work a model-building control system is extended by a form of artificial 

curiosity in order to learn to distinguish situations, in which the system has previously 

learned new information. This further helps the system to actively seek similar situations in 

order to learn more. On the field of developmental and cognitive robotics a partially similar 

approach may be found in the work of (Oudeyer, Kaplan and Hafner, 2007), which presents 

an approach including artificial curiosity mechanism (called “Intelligent Adaptive Curiosity” 

in the work). This mechanism drives the robot into situations where finding new information 

to learn is more likely. Two experiments with AIBO robot are presented showing that the 

curiosity mechanism successfully stimulates the learning progress and that it drives the robot 

out of situations where no useful or new information could be learned. Authors of (Macedo 

and Cardoso, 2012) implement the psychological construct of surprise-curiosity into the 

process of decision making while their agent is exploring an unknown environment. Authors 

conclude that the surprise-curiosity driven strategy outperformed classical exploration 

strategy regarding the time/energy consumed in exploring the entirety of the environment. 

Also the self-organizing multi-robot system accounted in (Kernbach et al., 2009) takes 

curiosity in consideration, but rather as a general bias towards explorative behavior without a 



Chapter 1: State of the Art 

34 

strict connection with robots cognition. The concept of surprise, which is closely related to 

curiosity, is exploited in (Maier and Steinbach, 2011) where a cognitive robot uses the 

surprise in order to discover new objects and acquire their visual representations. It is worth 

mentioning that the concept of curiosity is not bound only to cognitive systems and it has 

been successfully used in robotics e.g. for learning affordances in traversability task for a 

mobile robot in (Ugur et al., 2007). 

The mentioned works (and it is also the case of this thesis) consider autonomy of the 

agent (robot) in performing cognitive tasks as the desired state. In this context, the work of 

(Vernon, 2011) is of interest as it addresses the problem of robot autonomy in contrast to the 

external control. Otherwise said, the author is attempting to respond the question: “how can 

an autonomous cognitive system be designed so that it can exhibit the behaviours and 

functionality that its users require of it” (Vernon, 2011: p. 1). The conclusion is that a 

cognitive system is trainable and will respond to instructions if the exploration and the social 

motivation are properly balanced in it. 

1.3. Perception in Context of Perceptual Curiosity 

In this work perceptual saliency is used in order to realize the “perceptual curiosity” 

mechanism. This section will deal with existing techniques on the field of visual saliency, 

which is itself a specialized form of perceptual saliency dealing with visual inputs. As such 

visual saliency is acting as a tool for extracting important visual information from the 

background and it allows for autonomous learning from observation. The following text will 

discuss on the basic principles and state of the art in the domain of visual saliency detection. 

1.3.1. Basic Principles 

Visual saliency (also referred in the literature as visual attention, unpredictability or 

surprise) is described as a perceptual quality that makes a region of image stand out relative 

to its surroundings and to capture attention of observer (from (Achanta et al., 2009)). The 

inspiration for the concept of visual saliency comes from the functioning of early processing 

stages of human vision system and is roughly based on previous clinical research.  

In early stages of the visual stimulus processing, human vision system first focuses in 

an unconscious, bottom-up manner, on visually attractive regions of the perceived image. The 

visual attractiveness may encompass features like intensity, contrast and motion. Although 
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solely biologically based approaches to visual saliency computation do exist, most of the 

existing works do not claim to be biologically plausible. Instead, they use purely 

computational techniques to achieve their goal.  

In this work visual saliency is used build a low level cognitive system. As such, visual 

saliency is acting as a tool for extracting important visual information from the background, a 

realization of “curiosity” on the sensory level. 

1.3.2. Existing Techniques Overview 

One of the first works to use visual saliency in image processing has been published 

by (Itti, Koch and Niebur, 1998). Authors there use a biologically plausible approach based 

on a center-surround contrast calculation using Difference of Gaussians. Other common 

techniques of visual saliency calculation published more recently include graph-based 

random walk (Harel, Koch and Perona, 2007), center-surround feature distances (Achanta et 

al., 2008), multi-scale contrast, center-surround histogram and color spatial distribution (Liu 

et al., 2011) or features of color and luminance (Achanta et al., 2009). 

 

In image processing, identification of visually salient regions of an image is used in 

numerous areas including smart image resizing (Avidan and Shamir, 2007), adaptive image 

display on small devices screens (Chen et al., 2003), amelioration of object detection and 

recognition (Navalpakkam and Itti, 2006), web image search intelligent thumbnail generation 

 

Figure 1: Top row: original images. Middle row: saliency maps for each photo. 

Bottom row: extracted salient object masks. Adopted from (Cheng et al., 2011) 
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(Wang et al., 2012), real-time pedestrian detection (Montabone and Soto, 2010), content 

based image retrieval and adaptive image compression or image collection browsing to 

mention only a few.  

Depending on the particular technique, many approaches like (Achanta et al., 2009), 

(Achanta et al., 2008) or (Liu et al., 2011) output a saliency map, which is an image whose 

pixel intensities correlate with the saliency of the corresponding pixels of the original image. 

An example of this is shown on Fig. 1. Selection of the most salient regions from saliency 

map by application of a threshold or a segmentation algorithm is subsequently performed. It 

results into extraction of visually important object or a patch of objects rather than just of a 

semantically incoherent fragment of the image. This property is exploited by several authors. 

In (Borba et al., 2006) a biologically-motivated saliency detector is used along with an 

unsupervised grouping algorithm to group together images containing visually similar 

objects. Notably in the work (Rutishauser et al., 2004) a purely bottom-up system based on 

visual attention is presented, investigating the feasibility of unsupervised learning of objects 

from unlabeled images. Experiments are successfully conducted by its authors on real world 

high-resolution still images and on a camera-equipped mobile robot, where the capacity to 

learn landmark objects during its navigation in an indoor environment is shown. The main 

difference between this approach and the presented by us (cf. section 3.4) is that (Rutishauser 

et al., 2004) use visual saliency rather to indicate interesting parts of the input image, while in 

the present work it is used use explicitly for extraction of individual visually important 

objects. More recently (Frintrop and Kessel, 2009) has used a real-time method for salient 

object tracking on a mobile robotic platform. However, objects are learned here in a 

supervised manner with assistance of the operator. 

A singular approach is presented in (Hou and Zhang, 2007), where the saliency of 

image regions is calculated based on spectral residues found on image when log-spectrum is 

calculated. The technique is very fast and authors show correct responses for natural images 

and psychological patterns. The method, however, is scale dependent and its authors provide 

only results at one scale claiming it yields best results for normal visual conditions. Another 

uncommon approach is described in (Liang et al., 2012). It uses content-sensitive hypergraph 

representation and partitioning instead of using more traditional fixed features and parameters 

for all the images. In this regard it exhibits the same per-image auto-tuning properties as my 

approach presented in section 3.6. However it works on completely different basis. From the 

description it results that it is incapable of extracting multiple salient objects at once without 

re-calculating the potential region of interest. 
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By contrast to somehow “exotic” mathematical approaches used in the last mentioned 

works, a recent publication by (Cheng et al., 2011) uses very simple and straightforward 

features. Nonetheless, its authors show it outputs full-resolution saliency maps with precise 

salient object masks and they claim the method outperforms consistently existing state of the 

art methods. The method is based on global contrast calculated using simple histograms. In 

addition spatial information is included using contrast between regions by sparse histogram 

comparison. The regions are generated using a graph-based image segmentation method. The 

approach has low computational complexity and saliency map is calculated very fast 

(approximately only two times slower than in (Achanta et al., 2009)). It is, however, unclear, 

what is the subsequent speed of the saliency cut, i.e. the method authors use to get saliency 

mask from the saliency map. 

 

1.4. Autonomous Systems for High-level Knowledge 

Acquisition 

1.4.1. General Observations 

In recent years, there has been a substantial progress in robotic systems able to 

robustly recognize objects in real world using a large database of pre-collected knowledge 

(see (Meger et al., 2008) for a notable example). There has been, however, comparatively less 

advance in autonomous acquisition of such knowledge. In fact, if a humanoid robot is 

required to learn to share the living space with its human counterparts and to reason about it 

in “human terms”, it has to face at least two important challenges. One, coming from the 

world itself, is the vast number of objects and situations, the robot may encounter in the 

world. The other one comes from humans: it is the richness of the ways that we use to 

address those objects or situations using natural language. Moreover, the way we perceive the 

world and speak about it is strongly culturally dependent. It is shown e.g. in (Kay, Berlin and 

Merrifield, 1991) regarding usage of color terms by different people around the world, or in 

(Bowerman, 1983) regarding cultural differences in description of spatial relations.  

A robot, that is supposed to respond correctly to those challenges, cannot rely solely 

on a priori knowledge that has been given to it by a human expert. On the contrary, it should 

be able to learn on-line, in the place where it is used and by interaction with the people it 
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encounters there. On this subject, the reader may refer to (Kuhn et al., 1995) for a monograph 

on knowledge acquisition strategies, to (Goodrich and Schultz, 2007) for a survey on human-

robot interaction and learning and to (Coradeschi and Saffiotti, 2003) for an overview of the 

problem of anchoring. This learning should be completely autonomous, but still able to 

benefit from interaction with humans in order to acquire their way of describing the world. 

This will inherently require that the robot has the ability of learning without an explicit 

negative evidence or “negative training set” and from a relatively small number of samples. 

This important capacity is observed in children learning the language (see e.g. (Regier, 

1995)). 

This section discusses first so-called Semantic Simultaneous Localization and 

Mapping (semantic SLAM). This technique is interesting as it allows autonomous acquisition 

of high-level knowledge from environment by a mobile robot. Further in this section state of 

the art in techniques concerning autonomous learning and human-robot interaction in the 

context of autonomous knowledge acquisition are presented. 

1.4.2. Semantic SLAM 

In this research domain techniques from the classical SLAM are combined with a 

higher-level (semantic) notion of the places and objects encountered, resulting in a form of 

autonomous high-level knowledge acquisition. This gives the robot performing semantic 

SLAM better capacities in understanding its environment and the human way of referring to 

it. However, as it will be shown, it relies often on rigid pre-programmed structures, while the 

aim of the present work is to propose a very flexible framework with as less of a-priori 

knowledge as possible. 

1.4.2.1. Basic Principles 

One of the latest research directions on the field of SLAM, the so-called semantic 

SLAM, is discussed here. While being so recent – virtually all the works linking semantics to 

SLAM belong to the current decade, many of them to the past five years – the concept itself 

may be perceived as a very important and pertinent one for future mobile robots, especially 

those who will interact directly with humans and perform tasks in human-made environment. 

In fact, it is the human-robot interaction, which is probably one of the main motives for 

passing “from zeros and ones to words and meanings” in robotic SLAM. 
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Semantics may be clearly incorporated into the concept of robotic localization and 

mapping in many different ways to achieve different goals. One aspect of this may be the 

introduction of human spatial concepts into maps. In fact, humans usually do not use metrics 

to locate themselves but rather object-centric concepts and use them for purposes of 

navigation (“I am in the kitchen near the sink” and not “I am on coordinates [12, 59]”). 

Moreover, the presence of certain objects is often the most important clue for human place 

recognition. An interesting work addressing the mentioned problems has been published in 

(Vasudevan et al., 2007), in which the world is represented topologically with a hierarchy of 

objects and place recognition is performed based on probability of presence of typical objects 

in an indoor environment. A part of this work shows a study based on questioning about fifty 

people with the aim to understand human concepts of self-localization and place recognition. 

It suggests that humans generally tend to understand places in terms of significant objects 

present in them and in terms of their function. A similar way (i.e. place classification by 

presence of objects) has been taken by (Galindo et al., 2005) where low-level spatial 

information (grid maps) is linked to high-level semantics via anchoring. During experiments, 

the robot was interfaced with humans and performed tasks based on high-level orders (e.g. 

“go to the bedroom”) involving robots “understanding” of the concept of bedroom and usage 

of low-level metric map for path planning. However, in this work, object recognition is 

black-boxed and the robot is not facing any real objects in the experiments but only boxes 

and cylinders of different colors representing different real-world objects.  

1.4.2.2. Object Recognition and the Semantic SLAM 

An approach considering this “gap” between object recognition and semantic SLAM is 

presented in (Persson et al., 2007). Here, a system based on a mobile robotic platform with an 

omnidirectional camera is developed to map an outdoor area. The outcome is a semantic map 

of surroundings with buildings and non-buildings marked on it. In (Nüchter and Hertzberg, 

2008), a more general system is presented, using a wheeled robot equipped with a laser 3D 

scanner. Authors show the ability of their robot to evolve in an indoor environment 

constructing a 3D semantic map with objects like walls, doors, floor and ceiling labeled. The 

process is based on Prolog clauses enveloping common knowledge about such an 

environment (i.e. the doors are always a part of a wall and never a part of the floor), which 

enable the robot to reason about the environment. Further in the paper, an object detection 

method using the laser range data is shown with a classifier able to distinguish and tag objects 

surrounding the robot like humans and other robotic platforms. In (Ekvall, Jensfelt and 
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Kragic, 2006) active object recognition is performed by a mobile robot equipped by a laser 

range finder and a camera with zoom. A semantic structure is extracted from the environment 

and integrated to robots map, allowing it to search objects in an indoor environment. Another 

object recognition technique is shown in (Meger et al., 2008) including an attention system. 

Based on recognized objects a spatial-semantic map is built. An inverse approach is presented 

in (Hertzberg et al., 2010), where a concept of anchored knowledge base is presented. By 

contrast to more common bottom-up approaches in semantic mapping, which build a 

geometry map with a set of tags, the proposed technique is based on instantiation of a 

knowledge base. It does so by providing sensor data and spatial information concerning 

instances of object and further it aggregates categories in the knowledge base, which finally 

results in anchoring of the perceived objects in the knowledge base. A more recent 

contribution from (Civera et al., 2012) presents yet another unconventional technique 

merging monocular SLAM and a structure-from-motion technique and object recognition 

techniques allowing insertion of pre-computed known objects into a standard point-based 

monocular SLAM map. 

The left part of Fig. 2 is adopted from (Galindo et al., 2005) and it describes the way 

in which spatial and semantic information is commonly anchored together in semantic 

SLAM. On the right sub-image, originating from (Nüchter and Hertzberg, 2008), a 3D laser 

scan is presented with tags associated to different “meaningful” objects perceived on the 

scene. 

 

 

Figure 2: Examples of different representation of acquired sematic knowledge 

about the space in cases of two different Semantic SLAM approaches. 
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1.4.3. Autonomous Learning and Human-robot Interaction in 

Knowledge Acquisition 

The problem of autonomous learning has been addressed on different degrees in 

previous works. For example, in (Greeff, Delaunay and Belpaeme, 2009) a computational 

model of word-meaning acquisition by interaction is presented. The work also discusses the 

problem of word-meaning acquisition in young children. In (Wellens, Loetzsch and Steels, 

2008) authors present a computational model for acquisition of a lexicon describing simple 

objects. The model is verified in a population of humanoid robots. While it does not directly 

aim to learning by interaction with humans, it shows an interesting approach to autonomous 

forming of concepts in robots. On the other hand the work is interesting because it shows 

how the knowledge propagates in the population of robots in a way much resembling to what 

is happening in similar populations of humans. It would be very appealing to use the concepts 

proposed in the mentioned work to apply them on a mixed human-robot community using 

human language and to observe sharing of human knowledge with robots. 

In (Saunders, Nehaniv and Lyon, 2010), a humanoid robot is taught by a human tutor 

to associate simple shapes to human lexicon in an interactive way. The interactive learning is 

explored also in (Griffith et al., 2009), where a robot is required to learn to distinguish two 

classes of objects. In (Lütkebohle et al., 2009), a humanoid robot is taught through a dialog 

with untrained user with the aim to learn different objects and to grasp them properly.  

When robot learning is mediated through human-robot interaction, identification 

(verbal or nonverbal) of the referred-to objects is very important. See (Schauerte and Fink, 

2010) for a recent contribution on joint attention in human-robot dialogs. 

In the work of (Ogino, Kikuchi and Asada, 2006), a lexical acquisition model is 

presented combining more traditional approaches with the concept of curiosity to alternate 

the attention of the learning robot. A more advanced work on autonomous robot learning 

using a weak form of interaction with the tutor has been recently presented in (Araki et al., 

2011). Its authors propose an online algorithm allowing a robot to perform multimodal 

categorization of objects with limited verbal input from human. Another interesting approach 

to autonomous learning of visual concepts in robots has been published in (Skocaj et al., 

2011). Authors show capacity of their robotic platform to engage in different kinds of 

learning in interaction with a human tutor. The latter two mentioned works are to date 

perhaps the most advanced examples of autonomous acquisition of knowledge by observation 

and interaction in embodied agents, i.e. humanoid robots. Both approaches bear some 
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resemblance with what I describe of my approach in Chapter 4 and it is also in this chapter 

that some observations are given comparing my work to theirs. 

1.5. Conclusion 

This chapter has given the reader an overview of the fields and of the techniques that 

had an influence on my work and on which my work is based. It has familiarized the reader 

with important works and approaches that have been published in A) domains of low level 

knowledge acquisition concerning notably visual saliency, and of B) high-level knowledge 

acquisition techniques such as semantic SLAM and works that deal with autonomous 

learning and learning by human-robot interaction. Some critical observations have been made 

regarding the mentioned works. The aim was to discuss certain aspects occurring in state-of-

the art works that are linked to problems that are dealt in the present thesis. 

I would like to emphasize two observations regarding existing visual saliency 

techniques. The first is concerning psychological patterns. On Fig. 3 (adopted from (Hou and 

Zhang, 2007)) several forms of so-called psychological patterns are shown. These are 

synthetic images devised specially to test how the attention of a human (or a machine) vision 

is driven towards specific kinds of irregularities on the image. It should be further 

investigated which of the psychological pattern images, and to what extent, are processed in 

purely in the bottom-up manner in human vision system and which of them require on the 

contrary the top-down attention. Most of the existing approaches to visual saliency 

calculation focus on the bottom-up saliency without considering psychological or task-

specific top-down feedback. It is therefore arguable whether correct response to 

psychological patterns should be considered as one of criteria in evaluation of quality of a 

given approach. Techniques like (Hou and Zhang, 2007), (Li et al., 2011) or (Sun, Yao and 

Ji, 2012) show correct responses to at least some of psychological patterns. On the other hand 

approaches like (Achanta et al., 2009) or (Cheng et al., 2011), which sometimes outperform 

the previously mentioned on natural image benchmarks, do not show psychological patterns 

response. The second observation is that many methods (e.g. like (Liu et al., 2011) or (Cheng 

et al., 2011)) work in a manner that directly presumes the existence of only one salient object 

on the image. While this presumption may be plausible for a number of applications, it does 

not hold for general natural images, especially in mobile robotic applications. On a scene the 

attention of the spectator is rarely attracted only by one object, but commonly several fixation 

points exist and the spectator fixes his attention successively on several objects in order of 
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their visual attractiveness (or saliency). It would be therefore reasonable to expect salient 

object detectors to output natively not only one, but several salient objects, if they are present 

on the examined scene. 

 

Concerning knowledge acquisition, in context of semantic SLAM, it should be 

stressed that in the predominant approach, seen in works like (Galindo et al., 2005) and 

(Vasudevan et al., 2007), to mention only a few, is to anchor the detected objects to a form of 

a hand-made taxonomy or ontology hierarchy (see Fig. 2). For example a room is called 

“kitchen” when a sink and a cooker is found inside. This approach by itself is a very pertinent 

one as it is coherent with the way that humans use to call places a name. However the 

 

Figure 3: Various so-called psychological patterns (first column) with saliency 

maps and objects detected by (Hou and Zhang, 2007) (2
nd

 and 3
rd

 column). Finally the 4
th
 

column shows saliency map obtained by (Itti, Koch and Niebur, 1998). 
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awareness of the fact that places e.g. with a sink and a cooker are usually called “kitchen” is 

most usually hard-coded by an expert and as such it is inflexible and incapable to 

accommodate to special properties of a particular environment. As a consequence the robot 

will produce consistently wrong behavior in situations like e.g. a dining hall that by accident 

contains also a sink and a cooker for re-heating of served meal. From the point of view of 

autonomous knowledge acquisition used to improve autonomy of mobile robots, an approach 

allowing learning of the “semantic” relation of the “kitchen” and the “sink” and “cooker”, 

instead of having them hard-coded, would be much more flexible and also more natural. It is 

in this direction that my research is aimed; see Chapter 2 and Chapter 4. 

Concerning the use of curiosity in machine cognitive systems, by observing the state 

of the art it may be concluded that the curiosity is usually used as an auxiliary, single-purpose 

mechanism, instead of being the fundamental basis of the knowledge acquisition. To my best 

knowledge there is no work to date which considers curiosity in context of machine cognition 

as a drive for knowledge acquisition on both low (perceptual) level and high (“semantic”) 

level of the system, as it is done in this thesis. 

The next chapter will be consecrated to the theoretical background of my work and to 

conception of the two-level cognitive system which has been outlined in General 

Introduction. 
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Chapter 2. Machine Cognition and Knowledge 

Acquisition as Foundations of the Presented 

System 

2.1. Introduction 

The previous chapter has given a frame of research initiatives in various fields 

contributing to the conception of systems with the capacity of turning low-level sensory data 

into high-level semantic information or knowledge. In the following chapter the main 

strategy to the solution of the problem of autonomous knowledge acquisition in context of the 

present thesis is presented. Step by step a theoretical scheme of a cognitive system is devised 

while respecting the objectives drawn in the General Introduction.  

As already discussed in the Motivation, the conception of a human-like machine 

cognitive system represents an important step towards the autonomy of systems such as 

mobile robots. Indeed, over the last roughly five decades, autonomous robotics has been and 

continues to be subject to an ever increasing interest and has been the origin of numerous 

works and realizations. However, the performances of existing robots are still far from those 

of humans and in the 21st century robots will be supposed to share with humans’ their living 

space (and vice-versa) and they won’t be any more operated by skilled technicians. In fact, 

they will have to be self-sufficient enough to perform tasks in co-operation with their human 

users, who may have no a-priori technical skills. In order to achieve this, future works in the 

robotic field should focus on the increasing of robots’ autonomy and indeed one of the major 

ways of contributing to this autonomy is research on machine cognition and, in relation to 

this, on autonomous knowledge acquisition. This is also the aim of the system described in 

this chapter and further developed in the rest of this thesis. The approach that is presented in 

this work is general. However, for the sake of feasibility in the course of three-years-long 

PhD studies I have focused particularly to its robotic application. 

This chapter first discusses two main sources of inspiration for this work. First, it is a 

specific machine learning approach, in which the machine itself is an independent and active 

actor of its learning. Second, it is the concept of two distinct types of curiosity, the 
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“perceptual curiosity” and the “epistemic curiosity”, and its implications for a conception of a 

two-level cognitive system. 

2.2. Sources of Inspiration for Designing of the 

Envisaged Cognitive System 

There are two main sources of inspiration that have played an important role in 

conception of the presented system. Each of them is explained in following sub-sections. 

The first one is concerning different machine learning paradigms. I first discuss the 

traditional supervised and unsupervised approach, and then I describe the approach to 

machine learning taken in this thesis, which I call “Human-like learning”. 

The second source of inspiration concerns curiosity as a fundamental motivation for 

knowledge acquisition in cognitive systems. It should be stressed here that the use I make of 

curiosity in the present cognitive system is merely inspired by its biological function in 

human, but in no way I am attempting to model it in a biologically plausible way. 

2.2.1. “Human-like learning” 

In order to clarify the position of the machine learning approach used my work in 

context of other machine learning approaches, I first discuss the supervised and unsupervised 

learning. The focus is put here on roles of humans and machines it the process of knowledge 

acquisition and use of acquired knowledge. 

2.2.1.1. Supervised Learning based Intelligent Systems 

This kind of intelligent systems needs a human to provide features e.g. in form of 

labeled data, hand-segmented images or other. From this data the system is able to learn the 

intended function. 

To illustrate it, let us take an example from the Viola-Jones detection framework. The 

framework is capable of learning to detect a class of objects (e.g. human faces). However, 

before the detector is capable to detect faces on an image, it has to be learned on a database of 

human face specimens extracted by hand by a human expert. This means that the features 
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have to be provided by the human and the machine is not able to collect them in an 

autonomous manner.  

2.2.1.2. Unsupervised Learning based Intelligent Systems 

In this kind of systems, the necessity of human in the feature extraction or data 

acquisition step is generally suppressed. They can learn from unlabeled data, thus features are 

acquired solely by the machine. The use of them is, too, performed by the machine. 

For a concrete example, let us take a self-organizing map from (Kohonen, 1982). It 

takes features directly from the raw input. After the adaptation it can be used e.g. to cluster 

input patterns. An important point here is that the acquired knowledge is not directly 

intelligible to humans. It is so for two reasons. The first and the most obvious is that it is 

encoded into the system structures. In our example it would be the weights of neurons in the 

map. The second reason is that the system has, in fact, evolved without interference with 

humans and thus it does not share any substantial common ground with them. This makes the 

question of human intelligibility of such systems somehow obscure. All this does not mean 

that such systems are black-boxes with no connection with the surrounding world. It simply 

means that “nobody knows what happens inside” of such a system. To explain this point 

better, let us mention the work of (Wellens, Loetzsch and Steels, 2008), in which a 

community of humanoid robots is developing its proper language to describe objects they 

perceive. They do so using unsupervised learning techniques without any human interfering. 

The robots are thus fully autonomous in terms of cognition, meaning that they do not rely on 

humans, however as there is no interaction with humans, the terms they use to describe 

objects and their qualities is not immediately intelligible to humans. 

2.2.1.3. “Human-like Learning” based Approach 

By contrast to the previously mentioned approaches, the approach to machine 

learning taken in this thesis is characterized by the following principles: 

 Autonomous acquisition of features: features, or, in general, information about 

the world, are, by contrast to the supervised learning, gathered autonomously. 

This on the other hand does not exclude their acquisition by means of 

communication with human (which contrasts to the paradigm of unsupervised 
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learning) as far as this is done in a seamless, natural way, i.e. as far as the 

intelligent system would pass the so-called Turing test. 

 Autonomous use of features: the system handles the knowledge in an 

autonomous way, there is no need for human to supervise the course of their 

processing. 

 The knowledge is intelligible to both human and machine: Internally it may be 

encoded in a “machine way”, which is comparable to knowledge encoding in 

neural synapses in human brain. However, the intelligent system should be able to 

communicate his encoded knowledge to humans in human way and should in turn 

comprehend the knowledge communicated by humans in natural language, 

gestures etc. 

 The machine is itself an active actor of learning: it does not passively rely on 

knowledge inserted by human, but it actively seeks new knowledge about the 

world A) by its observation and B) by knowledge sharing with other entities 

(including humans) and it decides independently what knowledge should be 

learned. 

 

Concerning the last point: in the domain of supervised learning, an approach called 

Active learning exists (see (Settles, 2010) for a recent survey on the topic). While this 

approach bears some resemblance with the “Human-like learning” approach, notably by the 

fact that the machine actively queries a human in order to obtain labels for new features (data 

points), it does not fall completely into this domain. The ability of filling knowledge gaps or 

to precise uncertain knowledge is indeed a part of the proposed learning approach and it is 

explained more in detail in the following sub-section accounting for the curiosity. However, 

the notion of learning in “Human-like learning” is much broader than in the case of active 

learning. Notably it is the fact that learning is not performed only by querying new data from 

human, but also by observation. The observation here means bot observation of the state of 

the world and observation of human speech. The latter mentioned kind of observation is often 

found in children, who learn basic language concepts not only from direct discourse with 

adults, but even by a mere listening to discussions between adults that are not directed 

towards the child (cf. (Saffran et al., 1997)). Provided all this, the learning approach I use is 

probably closer to the active learning as a human educational technique (see e.g. (Bonwell 

and Eison, 1991) for a reference), than to the notion of this term in machine learning 

community. 
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Intelligent systems based on completely implemented “Human-like learning” clearly 

are, and for years will still remain, beyond the reach of state-of-the-art in the domain of 

artificial intelligence. However, it is precisely this direction, that is the most appealing and to 

which this thesis is making an unpretentious contribution. Classical and currently 

commercially used systems rely often on principles of supervised learning
3
 or unsupervised 

learning
4
. By setting this work in context of what I call “Human-like learning”, my aim is to 

contribute to conception of a system, where human being is no more an internal element, 

without which the system cannot work, but where it is an external element with which the 

machine cognitive system collaborates as an equal-to-equal. 

2.2.2. Curiosity 

2.2.2.1. Role of Curiosity 

Curiosity is indeed an important factor both for human cognition and in conceiving an 

artificial system that gathers knowledge autonomously. To explain this affirmation, let us 

focus on curiosity in more depth.  

In the introduction to his “Theory of human curiosity”, Berlyne says, that “Few 

phenomena have been the subject of more protracted discussion than human knowledge. Yet 

this discussion has usually paid little attention to the motivation underlying the quest for 

knowledge, with the result that two important questions still confront us. The first question is 

why human beings devote so much time and effort to the acquisition of knowledge” (Berlyne, 

1954: 180). The question is posed: why are humans keen to acquire knowledge? Why do 

people always seek new information, a more comprehensive knowledge? In the same work, 

the author proposes splitting up the curiosity into two kinds. 

The first is so-called “perceptual curiosity”, which leads to increased perception of 

stimuli. It is a lower level function, more related to perception of new, surprising or unusual 

sensory input. It contrasts to repetitive or monotonous perceptual experience. 

The other one is called “epistemic curiosity”, which is more related to the “desire for 

knowledge that motivates individuals to learn new ideas, eliminate information-gaps, and 

                                                      

3
 Take for example digital camera systems, which are capable of detection of human faces and 

of focusing on them. 
4
 See e.g. Google Translator, whose operation is mostly given by unsupervised learning on 

extremely large corpuses of multi-language texts. 
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solve intellectual problems” (Litman, 2008). It also seems that it acts to stimulate long-term 

memory in remembering new or surprising (e.g. which is contradictory to what has been 

previously learned) information (Kang et al., 2009). 

Without striving for biological plausibility, what has been previously said about the 

curiosity gives an important biological motivation for building of our system. On Fig. 4, a 

diagram is shown, which depicts the way in which curiosity stimulates acquisition of new 

knowledge and in turn the newly learned knowledge appeases or inhibits the curiosity. I 

adopt this as the basic working scheme for the envisaged system. By consequence, it is the 

curiosity, which motivates any action of the system. 

 

In conformity with the aforementioned concept of two kinds of curiosity, i.e. the 

“perceptual curiosity” and the “epistemic curiosity”, I break down the process that has been 

shown on Fig. 4 to capture the role of both kinds of curiosity. This is shown on Fig. 5. On the 

left hand side of the figure, sample sensory data (an image) is shown. On this data the 

perceptual curiosity motivates or stimulates what I call the low level knowledge acquisition. 

It seeks “surprising” or “attention-drawing” information in given sensory data and thus 

devises of it a low-level knowledge. The task of the perceptual curiosity is realized by 

perceptual saliency detection mechanisms (see further in Chapter 3). This gives the basis for 

operation of high level knowledge acquisition, which is stimulated by the epistemic curiosity. 

Being previously defined as the process, that motivate to “learn new ideas, eliminate 

 

Figure 4: Diagram of the role of curiosity in stimulation of new knowledge 

acquisition in a cognitive system. 
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information-gaps, and solve intellectual problems”, the epistemic curiosity is here the motor 

of a) learning new concepts based on what has been gathered on the lower-level and b) 

eliminating information gaps by encouraging an active search for the missing information 

(see further in Chapter 4). Finally, this high-level (semantic) knowledge is stored and used 

when needed. 

 

2.2.2.2. Perceptual Curiosity Realization through Perceptual Saliency 

In their perception, humans rely strikingly much on vision. It is then only pertinent to 

consider chiefly the visual information and learning processes connected to it. This sub-

section focuses on this fundamental skill, a learning process based on visual perception, in 

relation to humanoid robots. Following the scheme from Fig. 5, this is the place, where the 

perceptual curiosity is realized through a perceptual saliency detection approach. 

The design of perceptual functions is a major problem in robotics. Fully autonomous 

robots need perception to navigate in space and recognize objects and environment in which 

they evolve. However the question of how humans learn, represent, and recognize objects 

under a wide variety of viewing conditions presents a great challenge to both 

neurophysiology and cognitive research (Bülthoff, Wallraven and Giese, 2008). If we want an 

intelligent system to learn an unknown object from an unlabeled image, a clear need is the 

ability to select from the overwhelming flow of sensory information only the pertinent one. 

 

Figure 5: The place of the perceptual and the epistemic curiosity in learning of 

complex knowledge from raw sensory data. 

 



Chapter 2: Machine Cognition and Knowledge Acquisition as Foundations of the Presented 

System 

52 

 And it appears appropriate to draw inspiration from studies on human infants and 

robots learning by demonstration. Experiments in (Brand, Baldwin and Ashburn, 2002) show 

that it is the explicitness or exaggeration of an action that helps a child to understand, what is 

important in the actual context of learning. It may be generalized, that it is the saliency (in 

terms of motion, colors, etc.) that lets the pertinent information “stand-out” from the context 

(Wolfe and Horowitz, 2004). This is supported by a number of existing works. For example 

(Zukow-Goldring and Arbib, 2007) are convinced that important variations in the input 

sensory signal make the child distinguish the pertinent information from the informational 

background. Similarly, experiments conducted in (Brand, Baldwin and Ashburn, 2002) show, 

that it is the explicitness or certain exaggeration of an action or presented information (in 

terms of voice, movement, color, etc.) that helps a child to understand, what is significant in 

the actual context of learning and what is unimportant. I argue that in this context the visual 

saliency may be helpful to enable unsupervised extraction and subsequent learning of a 

previously unknown object by a machine in a way that realizes the perceptual curiosity. 

Further in this thesis, an approach is presented, enabling unsupervised real-time 

learning of objects from unlabeled images, and recognition of those objects when seen again. 

The cognitive visual architecture is given on Fig. 6. 

 

In the present work the term “cognition” is considered as human-like functionality 

(behavior) of humanoid machines (robots) and their autonomy. In (Madani and Sabourin, 

 

Figure 6: Block diagram of robot’s cognitive architecture. 
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2011), a multi-level cognitive machine-learning based concept for human-like “artificial” 

walking is proposed. This paper defines two kinds of cognitive functions: the “unconscious 

cognitive functions” (UCF: that is identified as “instinctive” cognition level handling 

reflexive abilities) and “conscious cognitive functions” (CCF: that is distinguished as 

“intentional” cognition level handling thought-out abilities). 

The present approach is inspired by human vision system and by existing research on 

juvenile human (infants) learning process. The proposed approach extracts, first, objects of 

interest by means of visual saliency and secondly categorizes those objects using such 

acquired data for learning, which is identified as an unconscious cognitive function (UCF). 

Then a conscious cognitive function (CCF) is realized, on a higher level, by an intentional 

acquisition of new knowledge and seeking to fill informational gaps. This is discussed in the 

following sub-section. 

2.2.2.3. Epistemic Curiosity Realization through Learning by Observation and 

by Interaction with Humans 

In this sub-section the high level knowledge acquisition mechanism (cf. Fig. 5) is 

briefly described. It is this mechanism, which is stimulated by the epistemic curiosity in order 

to produce new semantic knowledge and to fill the gaps of missing knowledge. Contrary to 

the previously described perceptual curiosity apparatus, which is performed in an 

unconscious manner, the realization of the epistemic curiosity is inherently a conscious 

cognitive function, as it requires an intentional search and interaction with the environment. 

The mechanism allows an embodied agent (e.g. a humanoid robot) to learn to interpret the 

world, in which it evolves, using appropriate terms from human language. It is important to 

stress that this is done without making use of a priori knowledge. The task is realized by 

word-meaning anchoring based on learning by observation (see section 4.3) and by 

interaction with its human tutor (cf. sub-section 4.4).  

The model is closely inspired by learning behavior of human infants (see e.g. (Yu, 

2005) or (Waxman and Gelman, 2009)). The robot shares the world with a human tutor and 

interacts with him. The tutor on his turn shares with the robot his knowledge about the world 

in the form of natural speech (utterances), which accompany observations made by the robot. 

The goal of this system is to allow a humanoid robot to anchor the heard terms to its 

sensorimotor experience and to flexibly shape this anchoring according to its growing 

knowledge about the world.  
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The described system can play a key role in linking existing object extraction and 

learning techniques (e.g. SIFT matching or salient object extraction techniques) on one side, 

and ontologies on the other side. The former ones are closely related to perceptual reality, but 

are unaware of the meaning of objects they are treated, while the latter ones are able to 

represent complex semantic knowledge about the world, but, they are unaware of the 

perceptual reality of concepts, which they are handling. 

 

2.3. General Constitution of the System 

Provided what has been told about the inspiration for conception of the cognitive 

system, more precision on its development are presented here. On Fig. 7, four main units of 

the system are identified. Their function is derived from the needs outlined earlier in sub-

section 2.2.2 and from what has been previously said about the role of curiosity. The 

Knowledge acquisition unit’s function is knowledge gathering and handling, derivation of 

high-level representation from low-level sensory data. Its higher level and lower level 

correspond to what is shown on Fig. 5.  

The task of the Communication unit is to allow communicating this knowledge to the 

outer world and to handle inputs from humans and transfer them into a machine readable 

 

Figure 7: Block diagram of constitutive units of the system. 
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form. It enables the system to communicate in two ways with other actors, be it similar 

intelligent machines or human beings.  

An intelligent system that is not omnipresent and that is intended to evolve in the real 

world should be able to move freely in its environment in order to discover and interact with 

it. This is the purpose of the Navigation unit. Finally the Behavior Control Unit is acting as a 

controller. It supervises the interaction of other units and defines the system behavior logic, 

i.e. its reactions to external stimuli coming from the environment and its reactions to internal 

stimuli, coming from the “compulsions” of the machine itself (e.g. the “curiosity”). All units 

are connected to the sensors, interfaces and actuators that they use. 

2.4. Conclusion 

In this chapter the problem of autonomous knowledge acquisition has been defined. A 

cognitive system for autonomous knowledge acquisition has been proposed and put in 

context of an informal classification of existing intelligent systems. 

The notion of curiosity has been inspected and it has been identified as the key motor 

of the mentioned cognitive system. This notion of curiosity helped to drawing some 

interesting inspiration for the system design. Especially the concept of the perceptual and the 

epistemic curiosity were related to two key mechanisms of knowledge acquisition. This has 

helped us to prepare the ground for following chapters 3 and 4, where both of the mentioned 

mechanisms are separately concretized and developed.  
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Chapter 3. Autonomous Detection and 

Learning Objects by means of Visual Saliency 

3.1. Introduction 

In accordance with what has been said in the previous chapter, in this chapter a 

system for lower level knowledge acquisition is presented. As the realization of the 

perceptual curiosity has been identified with the perceptual (especially visual) saliency, the 

chapter focuses on a visual saliency based autonomous technique for object detection and 

learning. 

In the past decade, the scientific community has witnessed great advance on the field 

of techniques for object detection and recognition, such as SIFT (Lowe, 1999), SURF (Bay et 

al., 2008), Viola-Jones detection framework (Viola and Jones, 2004), color co-occurrence 

histograms (Chang and Krumm, 1999), to mention only a few. Many of them were so 

successful, that we are already meeting them in commercial applications like cameras 

focusing automatically on human faces or product logo recognition in mobile applications. 

While these methods show often high rates of recognition and are able to operate in real time, 

they all rely on human made databases of manually segmented or labeled images containing 

the object of interest without extensive spurious information and background. Some of the 

techniques use such a database as learning samples to learn e.g. a set of classifiers (Viola and 

Jones, 2004) others use it as a bank of templates for matching process (e.g. (Bay et al., 

2008)). The mentioned database is sine qua non for a successful recognition process, but its 

manual creation often requires a considerable time and a skilled human expert. This impedes 

design of a fully autonomous machine vision system, which would learn to recognize new 

objects on its own. 

Motivated by the mentioned shortcoming regarding existing object recognition 

methods, in this chapter an intelligent machine vision system is presented. It is able to learn 

autonomously individual objects present in real environment. Its key capacities are the 

following ones: 

 Autonomous extraction of multiple objects from raw unlabeled camera images,  

 Learning of those objects autonomously without human intervention 
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 Recognition of the learned objects in different conditions or visual contexts. 

 

The goal for this system is to allow an embodied agent, e.g. a humanoid robot to learn 

to recognize objects encountered in its environment in a completely autonomous manner. The 

system itself is however not limited to mobile platforms and it can be very well used in 

context of sensor networks, intelligent houses etc. With respect to this envisaged goal, the 

system is designed with emphasis on on-line and real-time operation and we have validated it 

on a color camera equipped mobile robot in an explore-and-learn task performed in a real-

world office environment. 

In design of such a system, the approach was inspired partly by existing clinical 

investigations describing human vision system and partly by the way human infants learn 

objects in pre-lingual age. The extraction of objects of interest from raw images is driven by 

visual saliency. Building on existing work on the field of visual saliency, a novel salient 

object detection algorithm is proposed. It works in a spherical interpretation of RGB color 

space (cf. e.g. (Mileva, Bruhn and Weickert, 2007) and (Moreno, Graña and d'Anjou, 2011)), 

thus making use of photometric invariants. This, along with a fast image segmentation 

algorithm, which is robust to real-world illumination conditions, serve to extract image 

fragments containing objects. These image fragments are further used for learning. This way 

the perceptual (visual) saliency enables learning of objects from raw, i.e. unlabeled images 

without human supervision. 

Resulting extracted objects can be exploited by most of the up to date object 

recognition methods. Here it is demonstrated how the present system performs when 

employing two fast recognition methods. It is the Speeded-up Robust Features (SURF) 

introduced in (Bay et al., 2008) and the Viola-Jones object detection framework, presented in 

(Viola and Jones, 2004). The machine learning aspects of this work have been specifically 

detailed in (Ramík, Sabourin and Madani, 2011). 

The reminder of the chapter is organized as follows. Section 3.2 present constitutive 

parts of our system and explains their interaction. In section 3.3 the saliency detection 

approach is presented. In section 3.4, I detail on the salient object extraction technique and 

compare the quality of object extraction of this algorithm with other state-of-the-art 

approaches. Learning procedures are detailed in section 3.5. In section 3.6 details are given 

about our approach to estimation of visual attention scale. Section 3.7 reports and discusses 

results of validation of the proposed concepts. Conclusion and further work perspectives are 

presented in section 3.8. 
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3.2. General Overview of the Approach 

The system I propose here consists of several units which collaborate together to 

accomplish the goal, which have been fixed in the previous section. On Fig. 8 a block-

diagram of the system is depicted showing the individual units and their relations. Two main 

parts may be identified. The first one, labeled “Acquisition of new objects for learning” takes 

a raw image from the camera, detects visually important objects on it and extracts them so 

that they can be used as prospective samples for learning. These samples are then used in the 

section 3.5, where learning of the extracted objects is done and thus further recognition of 

those objects is made possible. 

 

Each of the two mentioned parts contains several processing units. In the first unit, as 

a new image is acquired by the camera, it is processed by the “Salient region detection” unit 

(described in section 3.3). Here, using features of chromaticity and luminosity along with 

local features of center-surround histogram calculation, a saliency map is constructed. It 

highlights regions of the image that are visually important, i.e. that are visually more salient 

with respect to the rest of the image. In parallel the input image is processed in the “Fast 

image segmentation” unit (sub-section 3.4.1), which splits the image into a set of segments 

according to the chromatic surface properties. The algorithm is shown to be robust to 

common illumination effects like shadows and reflections, which helps our system to cope 

with real illumination conditions. Finally the “Salient object extraction” unit (sub-section 

3.4.2) combines results of the two previous, extracting the segments found on regions that 

 

Figure 8: Block diagram of the system with the salient object detection unit and 

the learning unit. 
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exhibit significant saliency and forming them together to present at the end salient objects 

extracted from the input image. 

 

As images are taken consecutively by the camera, salient objects extracted from each 

image are fed into the “Incremental fragment grouping” unit (sub-section 3.5.1). Here, an on-

line classification is performed on each object by a set of weak classifiers and incrementally 

groups containing the same object extracted from different images are formed. These groups 

can be then used as a kind of visual memory of visual database describing each of the 

extracted objects. This alone could be enough for recognition of each of the objects, if it was 

ensured that each particular object will be found in the same visual context (i.e. in the context 

where the object is salient with respect to its surroundings) next time it is encountered by our 

system. This is clearly too restrictive for a system with a goal to recognize the once learned 

objects in any conditions. That is why the last unit of the system, tagged “Object recognition 

methods”, is added, (sub-section 3.5). Its role is, by employing existing object recognition 

algorithms, to learn from the visual database built by “incremental fragment grouping” unit 

 

Figure 9: Overview of the entire proposed system's work-flow. An unknown 

object is incrementally learned by extracting it and providing it as learning samples to the 

object detector (solid arrows). This enables recognition of the object when encountered 

again (the dotted arrow). 
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and to recognize those objects regardless to their saliency in new settings. Thus for once 

learned objects, they can be recognized directly on the input image, which is denoted by the 

very bottom arrow on the Fig. 9 labeled “Direct detection of already learned objects”. A 

different view on our system is presented on Fig. 8, where its work-flow is visualized. 

3.3. Visual Saliency Calculation 

3.3.1. A Spherical Interpretation of RGB Color Space 

In the proposed saliency computation algorithm, colors are represented using a 

spherical interpretation of RGB color space (siRGB further on). This allows us to work with 

photometric invariants instead of pure RGB information. There are several works that explain 

and deal with the siRGB color space and photometric invariants, see (Mileva, Bruhn and 

Weickert, 2007) and (van de Weijer and Gevers, 2004). We are particularly interested in the 

correspondence between the angular parameters (𝜃, 𝜙) and the chromaticity  Ψ. The choice 

of siRGB over a more common HSV has been motivated by roughly 20% increase of 

performance of salient object extraction when using siRGB over HSV. Precise analysis of 

reasons of this increase are, however, beyond the scope of this thesis. 

 

 

Figure 10: Diagram of relation between RGB and its spherical representation. 

 



Chapter 3: Autonomous Detection and Learning Objects by means of Visual Saliency 

62 

 Any image pixel’s color corresponds to a point in the RGB color space 𝑐 =

{𝑅𝑐 , 𝐺𝑐 , 𝐵𝑐}. The vector going from the origin up to this point can be represented using 

spherical coordinates = {𝜃𝑐, 𝜙𝑐 , 𝑙𝑐} (see Fig. 10), where 𝜃, is zenithal angle, 𝜙 is azimuthal 

angle and 𝑙 is the vector’s magnitude (intensity). In RGB color space, chromaticity Ψ𝑐 of a 

color point is represented by its normalized coordinates 𝑟𝑐 =
𝑅𝑐

𝑅𝑐+𝐺𝑐+𝐵𝑐
, 𝑔𝑐 =

𝐺𝑐

𝑅𝑐+𝐺𝑐+𝐵𝑐
, 

𝑏𝑐 =
𝐵𝑐

𝑅𝑐+𝐺𝑐+𝐵𝑐
, such that  𝑟𝑐 + 𝑔𝑐 + 𝑏𝑐 = 1. That is, chromaticity corresponds to the 

projection on the chromatic plane  ΠΨ, defined by the collection of vertices of RGB cube 

{(1,0,0), (0,1,0), (0,0,1)}, along the line defined as 𝐿𝑐 = {𝑦 = 𝑘 ∙ Ψ𝑐; 𝑘 ∈ ℝ}. In other words, 

all the points in line 𝐿𝑐 have the same chromaticity Ψ𝑐, which is a 2D representation 

equivalent to one provided by the zenithal and azimuthal angle components of the spherical 

coordinate representation of the color point.  

Given an image Ω(𝑥) = {(𝑅, 𝐺, 𝐵)𝑥; 𝑥 ∈ ℕ
2}, where 𝑥 refers to the pixel coordinates 

in the image grid domain, he corresponding spherical representation is denoted as Ω(𝑥) =

{(𝜃, 𝜙, 𝑙)𝑥; 𝑥 ∈ ℕ
2}, which allows us to use (𝜃, 𝜙)𝑥 as the chromaticity representation of the 

pixel’s color. For computational purposes, further the angle 𝜃 and 𝜙 and the value 𝑙 is 

normalized into a range from 0 to 255. 

3.3.2. Saliency Calculation in siRGB Color Space 

In the present system, object of interest extraction is driven by the perceptual 

curiosity realized as the visual saliency. Therefore accurate and fast salient region detection is 

crucial for our system. Although there exist numerous approaches described in the literature, 

not all of them are suitable for this purpose. Often they lack precision or good resolution in 

frequency domain, are only able to extract the one most salient object from the image, or are 

computationally too heavy to be used in real-time. A comparison of some state-of-the-art 

algorithms in these terms may be found in (Achanta et al., 2009). 

I propose a novel visual saliency detector composed of two independent parts, which 

can be computed in parallel. The first part captures saliency in terms of hybrid distribution of 

colors (i.e. a global saliency characteristic, sub-section 3.3.2.1). The second part calculates 

local characteristics of the image using a center-surround operation (sub-section 3.3.2.2). 

Their resulting saliency maps are eventually merged together using a translation function, 

resulting in the final saliency map. Images used in for evaluation throughout this work come 
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from MSRA Salient Object Database from (Liu et al., 2011) and the authors own data-set 

acquired by camera of Aldebaran Nao humanoid robot. 

3.3.2.1. Global Saliency Features 

For the first part, calculation of color saliency is done using two features: the intensity 

saliency (defined by Eq. (1)) and the chromatic saliency (defined by Eq. (2)). Here the 

saliency is defined as Euclidean distance of intensity 𝑙 (or azimuth 𝜙 and zenith 𝜃 

respectively) of each pixel to the mean of the entire image. Index 𝑙 stands for intensity 

channel of the image, Ω𝜇𝑙 is the average intensity of the channel, similarly for azimuth 𝜙 and 

zenith 𝜃 in Eq. (2). Term (𝑥) denotes coordinates of a given pixel on the image. 

 

 

The composite color saliency map 𝑀 is a hybrid result of combination of maps 

resulted from Eq. (1) and Eq. (2). Blending of the two saliency maps together is driven by a 

function of color saturation of each pixel. For this purpose, the color saturation 𝐶𝑐 is defined. 

It is calculated from RGB color model for each pixel as pseudo-norm given by 𝐶𝑐 =

max[𝑅, 𝐺, 𝐵] −min[𝑅, 𝐺, 𝐵] normalized to 0 − 1 range. When 𝐶𝑐 is low (too dull, 

unsaturated colors), more importance is given to intensity saliency (Eq. (1)). When 𝐶𝑐 is high 

(vivid colors), chromatic saliency (Eq. (2)) is emphasized. As blending function we use the 

logistic sigmoid, so that the composite saliency map 𝑀 is calculated following Eq. (3), where 

𝐶 = 10(𝐶𝑐 − 0,5) in order to fit the logistic sigmoid.  

 

 

A similar feature as the one computed in Eq. (1) is used by (Achanta et al., 2009). However 

its authors use there only a single distance for all three channels, mixing chromaticity and 

intensity value of pixels together, while my approach respects the color saturation, which 

allows treating separately chromatic and achromatic regions. This is particularly helpful in 

cases where both chromatic and achromatic objects are present on the image. 

𝑀𝑙(𝑥) = ‖Ω𝜇𝑙 − Ωl(𝑥)‖ (1) 

 

𝑀𝜙𝜃(𝑥) = √(Ω𝜇𝜙 − Ω𝜙(𝑥))
2

+ (Ω𝜇𝜃 − Ω𝜃(𝑥))
2

 (2) 

 

𝑀(𝑥) = (
1

1 + 𝑒−𝐶
)𝑀𝜙𝜃(𝑥) + (1 −

1

1 + 𝑒−𝐶
)𝑀𝑙(𝑥) (3) 
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3.3.2.2.  Local Saliency Features 

On Fig. 11 some resulting saliency maps of the presented algorithm are shown. Note 

that for the second image (leopard) the saliency map 𝑀 (i.e. the global features, column b) 

does not highlight entirely the leopard’s body. This image was selected to illustrate cases, 

where saliency consists in shape or texture of an object, which is distinct to its surroundings, 

rather than simply in its color. To capture this aspect of saliency, I compute the second (local) 

feature over the image: a center-surround difference of histograms (feature originally inspired 

by (Liu et al., 2011)). The idea is to go through the entire image and to compare the content 

of a sliding window with its surroundings to determine, how similar the two are. If the 

similarity is low, it may be a sign of a salient region. Let us have a sliding window 𝑃 of size 

𝑝, centered over pixel (𝑥). Define a (center) histogram 𝐻𝐶 of pixel intensities inside it. Then 

let us define a (surround) histogram 𝐻𝑆 as histogram of intensities in a window 𝑄 surrounding 

𝑃 in a manner that the area of (𝑄 − 𝑃) = 𝑝2. The center-surround feature d is then given as 

 

over all histogram bins (𝑖). The |𝐻𝐶| and |𝐻𝑆| are pixel counts for each histogram allowing it 

to be normalized although a part of the windows is out of the image frame. In this case only 

pixels inside the image are counted. Calculating the 𝑑(𝑥) throughout all the 𝐿, 𝜙 and 𝜃 

channels, we can compute the resulting center-surround saliency 𝐷 on a given position (𝑥) as 

follows in Eq. (5). To improve the performance of this feature on images with mixed 

achromatic and chromatic content, a similar approach of hybrid combination of chromaticity 

and intensity is used as the one described by Eq. (3). However, here the color saturation 

𝐶 refers to average saturation over the sliding window 𝑃.  

 

In the column c of Fig. 11, sample center-surround saliency maps are presented. By 

using integral histograms described in (Porikli, 2005), all the mentioned histogram operations 

can be done very efficiently in constant time with respect to parameter 𝑝. This parameter 

permits moreover a top-down control of the attention and of the sensitivity of the feature in 

scale space. High 𝑝 value with respect to the image size will make the feature more sensitive 

to large objects; low values will allow focusing to smaller objects and details. Note however, 

𝑑(𝑥) =∑|
𝐻𝐶(𝑖)

|𝐻𝐶|
−
𝐻𝑆(𝑖)

|𝐻𝑆|
|

𝑖

 (4) 

 

𝐷(𝑥) = (
1

1 + 𝑒−𝐶
)𝑑𝑙(𝑥) + (1 −

1

1 + 𝑒−𝐶
)max (𝑑𝜙(𝑥), 𝑑𝜃(𝑥)) (5) 
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that the experiments described further on were carried out with a constant value of 𝑝 fixed on 

0.4, unless stated otherwise. 

 

a b c d 

    

    

    

    

    

    
 

Figure 11: Sample saliency maps for different features. Column a: original 

images, b: composite saliency map 𝑴, c: center-surround saliency 𝑫, d: the final saliency 

map 𝑴𝒇𝒊𝒏𝒂𝒍. 
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As the last step, both the global color saliency 𝑀(𝑥) from Eq. (3) and the local center-

surround feature 𝐷(𝑥) from Eq. (4) are combined together by application of Eq. (6), resulting 

in the final saliency map 𝑀𝑓𝑖𝑛𝑎𝑙, which is then smoothed by Gaussian filter of size 3x3 pixels 

(for 320x240 pixels images). The upper part of the condition in Eq. (6) describes a particular 

case, where a part of image consists of a color, that is not considered salient (i.e. pixels with 

low 𝑀(𝑥)) measure), but which is distinct to the surroundings by virtue of its texture. Several 

final saliency map samples are shown on the very right column of Fig. 11. 

Regarding the features used for saliency map calculation, our algorithm belongs to the 

group of saliency detection approaches, which are not able to cope with psychological 

patterns like “curve”, “intersection”, “closure” etc. However, we do not perceive this as a 

shortcoming as our algorithm is primarily aimed for processing natural images and not to 

mimic precisely human psychological or vision system. This issue has been already discussed 

in sub-section 1.5. 

3.4. Salient Object Extraction 

Having the saliency map of the input image computed, we can proceed to extraction 

of visually salient objects themselves. A manual fixed-value thresholding on the final 

saliency map and automatic thresholding using the Otsu’s method from (Otsu, 1979) have 

proven themselves as impracticable as well as other statistics based methods that have been 

applied on the saliency map. The problem is that all these methods work only over the 

saliency map and do not take into account the original image. Given this observation, I have 

decided to first apply a segmentation algorithm on the original image to obtain coherent parts 

of it and then to extract only those segments that are salient enough. 

3.4.1. Fast Image Segmentation in siRGB Color Space 

There are sophisticated techniques for image segmentation like growing-neural-gas 

approaches applied in real time, such as (García-Rodríguez and García-Chamizo, 2011) or 

𝑀𝑓𝑖𝑛𝑎𝑙(𝑥) = {
𝐷(𝑥) 𝑖𝑓 𝑀(𝑥) < 𝐷(𝑥)

√𝑀(𝑥)𝐷(𝑥) 𝑒𝑙𝑠𝑒
 (6) 
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(Angelopoulou et al., 2008), however here the focus will be given to reflectance physics 

properties of the image for the following segmentation process. 

3.4.1.1. Main Segmentation Problems 

Image segmentation can be defined as a process which divides an image into different 

regions such that each region is homogenous, but the union of any two adjacent regions is not 

homogeneous. A formal definition of image segmentation is given in (Fu and Mui, 1981). 

According to this work: If 𝑊 is a homogeneity predicate defined on groups of connected 

pixels, then segmentation is a partition of the set 𝐹 into connected subsets or regions 

(𝑆1, 𝑆2, … , 𝑆𝑛) such that with ⋃ 𝑆𝑖
𝑛
𝑖=1 = 𝐹 and ∀𝑖 ≠ 𝑗, 𝑆𝑖 ∩ 𝑆𝑗 = ∅ 𝑎𝑛𝑑 ∀𝑥, 𝑦 ∈ 𝑆𝑖;𝑊(𝑥) =

𝑊(𝑦). 

There are four main problems in image segmentation: these are problems derived of 

a) the illumination, b) noise effects, c) edge ambiguity and d) the computational cost. The 

first three problems are closely related.  

In segmentation processes the use of a suitable distance measure is very important. 

Therefore a hybrid distance is introduced, which works with intensity and chromaticity. On 

one hand, this hybrid distance allows parameterization of noise tolerance and on the other 

hand, we can adapt this distance for optimal edge detection. Furthermore, this distance is 

grounded in the dichromatic reflection model from (Shafer, 1985) by a spherical 

interpretation of the RGB color space from (Moreno, Graña and d'Anjou, 2011). So, this 

approach helps to avoid the first mentioned problem as well. Finally, in this method only 4 

neighboring pixels will be used, instead of the full 8 pixel neighboring. This helps to decrease 

the computing time. The presented segmentation algorithm has thus the following properties: 

a good behavior in shadows and shines, avoids effect of noise and finally it is cheap in terms 

of computing time. 

3.4.1.2. Distance 

A distance based in the spherical interpretation of the RGB color space is proposed 

here. Given an image Ω(𝑥) = {(𝑅, 𝐺, 𝐵)𝑥; 𝑥 ∈ ℕ
2} where 𝑥 refers to the pixel coordinates in 

the image grid domain, the corresponding spherical representation is denoted as Ω(𝑥) =

{(𝜙, 𝜃, 𝑙)𝑥; 𝑥 ∈ ℕ
2}, which allows us to use (𝜙, 𝜃)𝑥 as the chromaticity representation of the 

pixel’s color. 
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Empirical experiments tell us that intensity is the most important clue in overly dark 

regions, and that on the other hand it is better to use the chromaticity component when the 

illumination is good. Like in previous works of (Moreno, Graña and Zulueta, 2010) a hybrid 

distance is proposed. Fig. 12 shows the chromatic activation function. For values less than 𝑎, 

the chromatic component is inactive, for values that belong to the interval [𝑎, 𝑏], we take into 

account the chromatic component from its minimum energy to its maximum energy 𝑐 by 

following a sinusoidal shape. Finally for values bigger than 𝑏 its energy is always 𝑐. The 

three parameters 𝑎, 𝑏, 𝑐 are in the range [0,1]. The region under the green line is the 

chromatic importance and its complementary, the region over this line is the intensity 

importance. 

 

The function 𝛼(𝑥) depends of the image intensity. Its complementary function 𝛼̅(𝑥) 

is the intensity activation function where 𝛼̅(𝑥) = 1 − 𝛼(𝑥)  and hence 𝛼̅(𝑥) + 𝛼(𝑥) = 1. The 

below equation is the mathematical expression of 𝛼(𝑥). 

 

Using this expression we can formulate a hybrid distance between any two pixels 𝑝, 𝑞 

on an image as follows: 

 

 

Figure 12: Chromatic activation function 𝜶(𝒙). 

 

𝛼(𝑥) = {

0 𝑥 ≤ 𝑎
𝑐

2
−
𝑐

2
sin (

(𝑥 − 𝑎)𝜋

𝑏 − 𝑎
) 𝑎 < 𝑥 < 𝑏

𝑐 𝑥 ≥ 𝑏

 (7) 

 

𝑑ℎ(𝑝, 𝑞) = 𝛼̅(𝑝, 𝑞) ∙ 𝑑𝑙(𝑝, 𝑞) + 𝛼(𝑝, 𝑞) ∙ 𝑑Ψ(𝑝, 𝑞) (8) 
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In Eq. (8), the relationship between 𝛼(𝑥) and 𝛼(𝑝, 𝑞) is given by 𝑥 =
𝑙𝑝+𝑙𝑞

2
, where 𝑙𝑝 

and 𝑙𝑞 are the intensities 𝑙 in spherical coordinates. The distance 𝑑𝑙 is an intensity distance 

defined by Eq. (9) and the chromaticity distance 𝑑Ψ is finally defined by Eq. (10). 

 

 

3.4.1.3. Segmentation Method 

All of the previously described techniques are joined here covering the four desired 

goals. On one hand we are going to use the spherical interpretation of the RGB image, and on 

other hand we are going to use the aforementioned hybrid distance expressed in the Eq. (8). 

For edge detection a formal gradient is not necessary because it can be calculated “ad-

hoc” using the hybrid distance and a threshold. In fact this method is focused to detection of 

homogeneous regions. When the distance between some pixels is less than this threshold we 

are going to admit that these pixels are homogeneous and then they belong to the same 

region. Homogeneous connected regions are easily identified because all of them have the 

same label. The method is explained by the following algorithm. 

3.4.1.4. Algorithm 

This algorithm returns a bi-dimensional integer matrix of labels. For computation of 

this algorithm a structure is also needed that relates each label with a chromaticity and the 

number of pixels labeled with it. That is necessary because each time a new pixel is assigned 

to a label the chromaticity of this label has to be actualized. This is given by the mean 

chromaticity of all pixels labeled with it. 

The most important parameter for this algorithm is the threshold 𝛿. Both the 

granularity and the noise tolerance depend on this parameter. For a very small value we will 

obtain a lot of small regions, and on the contrary, by using a high value we obtain several 

large and visually more important regions. On the other hand the parameters 𝑎, 𝑏 and 𝑐 used 

𝑑𝑙(𝑝, 𝑞) = |𝑙𝑝 − 𝑙𝑞| (9) 

 

𝑑Ψ(𝑝, 𝑞) = √(𝜙𝑞 − 𝜙𝑝)
2
+ (𝜃𝑞 − 𝜃𝑝)

2
 (10) 
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in Eq. (8) allows to adjust the distance type. If 𝑏 = 0 and 𝑐 = 1 it is a purely chromatic 

distance. If 𝑎 = 1, it is a purely intensity distance. In other cases it is a hybrid distance. 

The Algorithm 3 gives details of our method. For the sake of fluidity of the text, in its 

formal version it is placed in Appendix A. In this algorithm 𝐿(𝑥) denotes the label of pixel 𝑥 

and 𝐿4(𝑥) denotes the set of labels of the neighbors of pixel 𝑥. This can be expressed as 

𝐿4(𝑥) = ⋃ 𝐿(𝑥′)𝑥′∈𝑁4(𝑥)
, where 𝑁4(𝑥) are the 4 neighboring pixels of pixel 𝑥. The algorithm 

may be applied to any color image Ω(𝑥). There is a need for specification of the distance 

𝑑𝐻(𝑥, 𝑦), which provides a measure of the similarity between pixel colors Ω(𝑥)  and Ω(𝑦). 

To label the regions we keep a counter 𝑅, and we build up a map Ψ𝑅 assigning to each region 

label a chromatic value. We also define a counter 𝐶𝑅 counting the number of pixels in the 

image region of a particular label 𝑅. 

On Fig. 13, several sample results of the described segmentation algorithm are shown. 

First two scenes have been arranged to contain important highlights and reflections on 

reflective surfaces. The second two cases are natural images containing shadows. The way 

how the algorithm reacts to difficult illumination conditions is presented. Correct 

segmentation results are obtained even in presence of strong directional light, reflections and 

shadows. 

 

3.4.2. Extraction of Salient Objects using Segmented Image 

The segmentation described by Algorithm 3 (in Appendix A) splits an image into a 

set of chromatically coherent regions. Objects present on the scene are composed of one or 

    

    
 

Figure 13: Sample results of the present segmentation algorithm. Top row: 

original images, bottom row: the resulting segmentation. 
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multiple such segments. For objects that conform to conditions of “explicitness” discussed in 

2.2.2.2, the segments forming them should cover areas of saliency map with high overall 

saliency. On the other hand visually unimportant objects and background should have this 

measure comparatively low. 

 

The input image is thus segmented into connected subsets of pixels or segments 

(𝑆1, 𝑆2, … 𝑆𝑛). For each one of the found segments 𝑆𝑖 ∈ {𝑆1, 𝑆2, … , 𝑆𝑛}  its average saliency 𝑆𝑖̅  

is computed over the saliency map 𝑀𝑓𝑖𝑛𝑎𝑙 as well as the variance of saliency values 𝑉𝑎𝑟(𝑆𝑖). 

All the pixel values Ω(𝑥) ∈ 𝑆𝑖 of the segment are then set following Eq. (11), where 𝑡𝑆̅ and 

𝑡𝑉𝑎𝑟 are thresholds for average salience and its variance respectively. The result is a binary 

map containing a set of connected components 𝐶 = {𝐶1, 𝐶2, … , 𝐶𝑛} formed by adjacent 

segments 𝑆𝑖 evaluated by Eq. (11) as 1. To get rid of noise, a membership condition is 

imposed that any 𝐶𝑖 ∈ 𝐶 has its area larger than a given threshold. Finally, the binary map is 

projected on the original image, which gives as a result parts of the original image containing 

its salient objects.  

For our experiments, we set 𝑡𝑆̅ to 50% of the maximal possible saliency, 𝑡𝑉𝑎𝑟 to 20 

and the minimal area to 1% of total image area.  

3.4.3. Salient Object Extraction Results 

On Fig. 14, sample results of my salient object detection algorithm are compared with 

ground truth and two others state of the art algorithms. I have chosen to compare with the 

work presented in (Achanta et al., 2009) and (Liu et al., 2011) as the first one presents a fast 

algorithm potentially suitable for real-time application in machine vision, while the latter one 

shows high performance in terms of precision and correctness. No claims are made by 

authors of the latter one about its speed, but with respect to the description of algorithm 

provided in (Liu et al., 2011) it may be assumed that it is not suitable for a real-time 

application. 

Shown results illustrate the typical performance of presented algorithms. Although 

(Achanta et al., 2009) is computationally very cheap (saliency map calculation takes about 

45ms on a 320x240px image), its results vary largely in quality depending on the nature of 

∀𝑆𝑖 ∈ {𝑆1, 𝑆2, … 𝑆𝑛}; ∀Ω(𝑥) ∈ 𝑆𝑖; 

Ω(𝑥) = {1 𝑖𝑓 𝑆𝑖̅ > 𝑡𝑆̅ 𝑎𝑛𝑑 𝑉𝑎𝑟(𝑆𝑖) > 𝑡𝑉𝑎𝑟
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
(11) 
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salient objects on the image. Algorithm of (Liu et al., 2011) produces results much close to 

human perception and more precise in terms of resolution (sample results are published 

online
5
). However, it suffers from two major drawbacks in context of the learning system 

presented here. It does not claim to be applicable in real time, and more importantly it outputs 

only one salient object (i.e. the most salient one) at time, although authors suggest for future 

work a workaround to this using inhibition-of-return technique. However this would come 

with even more increased expenses in terms of time. 

 

On the other hand our approach outputs natively multiple salient objects if they are 

present on the image. An illustrative example may be found on Fig. 14 the last row, where 

                                                      

5
 accessible on Microsoft Research website: 

http://research.microsoft.com/en-us/um/people/jiansun/salientobject/submitted_1303/index.htm 

Original AC LI ours Ground truth 

     

     

     

     

     
 

Figure 14: Comparison of different salient object detection algorithms. First 

column: original image. Second column: results of the approach of (Achanta et al., 2009). 

Third column: results of the approach of (Liu et al., 2011). Fourth column: results of our 

approach. Last column: ground truth (taking into account multiple objects in the scene). 
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two visually attractive objects are found on the same image: the F1 racing car and the 

“orange” logo. As they are both highly salient and clearly distinct in terms of their position 

on the image, our algorithm marks them both as visually salient. This property appears to be 

crucial while extracting unknown objects for learning as there is no reason why only the most 

salient object should be considered. This is especially true in real conditions with highly 

structured environment and many objects present in the field of view. 

The present algorithm has been tested against the benchmark on MSRA Salient 

Object Database
6
. The scores that have been obtained are resumed on Table 1. While these 

results are close to the results obtained by Liu et al. (2011) (the F-measure differs from the 

Liu et al. (2011) only by about 0,05), our algorithm brings the benefit of high-speed 

processing and native output of multiple salient regions, if they are present on the image. 

 

Values of precision, recall and the F-measure were calculated following the 

appropriate equations given on Eq. (12) (adapted from (Liu et al., 2011)) and with parameter 

𝛼 set to 0,5. In the equation, 𝑔𝑥 stands for the ground truth for the 𝑥-th pixel and 𝑎𝑥 stand for 

the label (salient/non-salient) given by the algorithm for the 𝑥-th pixel of the image. 

 

In terms of average speed, on 320x240px the method of Achanta calculated the 

saliency map in 45ms, but takes another 2900ms per image to extract salient segments using 

                                                      

6
 available on: 

http://research.microsoft.com/en-us/um/people/jiansun/salientobject/salient_object.htm 

 

 Precision Recall F-measure 

Data-set A 0,73 0,75 0,74 

Data-set B 0,75 0,76 0,75 
 

Table 1: Scores obtained by our salient object detection algorithm on the MSRA 

dataset. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 
∑ 𝑔𝑥𝑎𝑥𝑥

∑ 𝑎𝑥𝑥

𝑅𝑒𝑐𝑎𝑙𝑙 =
∑ 𝑔𝑥𝑎𝑥𝑥

∑ 𝑔𝑥𝑥

𝐹 −𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
(1 + 𝛼) ∙ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑅𝑒𝑐𝑎𝑙𝑙

𝛼 ∙ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

 

  

 

(12) 
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mean-shift segmentation
7
. Our algorithm in its non-optimized version takes in average 100ms 

per image (saliency map and image segmentation are calculated in parallel as they are two 

independent processes), which allows us to run it on speed about 10 frames per second. All 

algorithms were run on an Intel i5 CPU at 2,25Ghz machine. 

 

The described algorithm has been run on some specifically selected images in order to 

illustrate how it is able to of coping with certain particular illumination conditions or cases. 

On Fig. 15 it is first shown how the algorithm copes with difficult illumination conditions in 

presence of strong directional light. The red ball is extracted correctly and the strong 

reflection is not marked as a salient object as the shine does not change the chromatic 

property of the surface. A similar case can be noticed on the following image, where a 

Khepera robot is shown on a reflective floor.  

In case of Fig. 16, we can observe changes in parameter 𝑝 from Eq. (11). In the 

middle column, the saliency is focused towards larger objects (high 𝑝), extracting mainly the 

human head and the entire American flag. On the other hand in the second case the emphasis 

is put on smaller details (low 𝑝), which allows extraction of eyes, mouth, hair and other small 

details on the face image, or star, stripes and windows on the flag image. 

                                                      

7
 Based on executable available online: 

 http://ivrg.epfl.ch/supplementary_material/RK_CVPR09/index.html 

  

  
 

Figure 15: Particular cases of our algorithm in conditions of strong illumination 

which is causing reflections and shadows. Left: original images. Right: extracted salient 

objects. 
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Figure 16: Particular cases of our algorithm: adjusting sensitivity to large or 

smaller objects using parameter 𝒑. Left: original images. Middle: Extracted objects with 

focus on large objects. Right: extracted objects with focus on smaller details. 

 

  

  

  
 

Figure 17: Particular cases of our algorithm: objects with camouflage pattern or 

colors similar to background close to the background such as military uniforms or animal 

camouflage. Left: original images. Right: extracted salient objects. 
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Finally on Fig. 17 we can observe extraction of objects with color and texture close to 

image background, such as military disruptive patterns found on combat uniforms in the first 

two images, or a natural animal camouflage in the case of veka bird captured on the last 

image. 

3.5. Learning and Recognition of Salient Objects 

The approach described in sections 3.3 and 3.4 allows us to split an image into a set 

of fragments, each containing a visually salient object. In this section it is explained how we 

can use this to enable a machine vision system to learn an object from unlabeled images. For 

experiments in real environment described further a mobile humanoid robot has been used, 

which was equipped with a color CMOS camera as a source of images. 

 

When acquired, images are processed to extract fragments containing salient objects; 

those fragments are grouped online using approach presented in sub-section 3.5.1. Only those 

groups with a significant number of members are used as samples database for object 

recognition methods. This has several effects. It enables recognition of previously seen 

objects in different visual context or environment and moreover it allows for learning of 

multiple objects in the same time. 

Algorithm 1 describes the learning work-flow. At first time, the algorithm classifies 

each found fragment, and in the second step, the learning process is updated (on-line 

learning). 

acquire image 

extract fragments by salient object detector 

for each fragment 𝐹 

   if(𝐹 is classified into one of groups) 

      populate the group by 𝐹 

   if(𝐹 is classified into multiple groups) 

      populate by 𝐹 the closest one by Euclidian dist. of features 

   if(𝐹 is not classified to any group) 

      create a new group and place 𝐹 inside 

select the most populated group 𝐺 

   use fragments from 𝐺 as learning 

Algorithm 1: On-line salient object learning. 
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3.5.1. Incremental Fragment Grouping 

To preserve the on-line and real time nature of learning, image fragments have to be 

grouped incrementally as they come from salient object detector with comparatively low 

calculation efforts. For this task a combination of weak classifiers {𝑤1, 𝑤2, … , 𝑤𝑛} is 

employed, each one classifying a fragment as belonging (result 1) or not belonging (result 0) 

to a certain class. Each classifier has a high level of false positives but a very low level of 

false negatives. In this case four weak classifiers (𝑛 = 4) are employed, covering several 

chief properties of object on the fragment. 

 A fragment belongs to a class if and only if ∏ 𝑤𝑖 = 1
𝑛
𝑖=1 . A class is allowed to be 

populated only once by one fragment per image to prevent overpopulation by repeating 

patterns on the same image. If a fragment is not put into any class by classifiers, a new class 

is created for it. If a fragment satisfies this equation for multiple classes, it is assigned to the 

one whose Euclidian distance is smaller in terms of features measured by each classifier (i.e. 

𝑐𝑤𝑛). Features taken into account by weak classifiers are as follows. In all equations, 𝐹 

denotes the currently processed fragment, whereas 𝐺 denotes an instance of the group in 

question. All other symbols are explained further on in the text. 

Area: the 𝑤1 in Eq. (13) classifier separates fragments, whose difference of areas is 

too large. In experiments, 𝑡𝑎𝑟𝑒𝑎 is set to 10. 

 

Aspect: the 𝑤2 in Eq. (14) classifier separates fragments, whose aspect ratios are too 

different to belong to the same object. In experiments, 𝑡𝑎𝑠𝑝𝑒𝑐𝑡  is set to 0.3. 

 

Chromaticity distribution: the 𝑤3 in Eq. (15) classifier separates fragments with 

clearly different chromaticity. It works over 2D normalized histograms of 𝜙 and 𝜃 

component of fragment denoted by 𝐺𝜙𝜃 and 𝐹𝜙𝜃 respectively with 𝑁 histogram bins, 

𝑤1 = {
1 𝑖𝑓 𝑐𝑤1 < 𝑡𝑎𝑟𝑒𝑎
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

𝑤ℎ𝑒𝑟𝑒 𝑐𝑤1 =
max(𝐺𝑎𝑟𝑒𝑎, 𝐹𝑎𝑟𝑒𝑎)

min(𝐺𝑎𝑟𝑒𝑎, 𝐹𝑎𝑟𝑒𝑎)
 

(13) 

 

𝑤2 = {
1 𝑖𝑓 𝑐𝑤2 < 𝑡𝑎𝑠𝑝𝑒𝑐𝑡
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

𝑤ℎ𝑒𝑟𝑒 𝑐𝑤2 = |log (
𝐺𝑤𝑖𝑑𝑡ℎ
𝐺ℎ𝑒𝑖𝑔ℎ𝑡

) − log (
𝐺𝑤𝑖𝑑𝑡ℎ
𝐺ℎ𝑒𝑖𝑔ℎ𝑡

)| 

(14) 
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calculating their intersection. 𝑁 equal to 32 is used to avoid too sparse histogram and 𝑡𝜙𝜃 

equal to 0.35. 

 

Texture uniformity: the 𝑤4 in Eq. (16) classifier separates fragments, whose texture is 

too different. The measure of texture uniformity is used, calculated over the 𝑙 channel of 

fragment. In Eq. (16),  Ω(𝑧𝑖); 𝑖 = 1,2,…𝐿 is a normalized histogram of 𝑙 channel of the given 

fragment and 𝑁 is the number of histogram bins. In experiments, 32 histogram bins is used to 

avoid too sparse histogram and value 𝑡𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝑖𝑡𝑦 of 0.02. 

 

3.5.2. Object Detection Algorithms 

We are able to extract individual objects by means of their visual saliency (c.f. section 

3.4). However, this ability alone cannot be used for their further re-detection in different 

conditions e.g. by a mere comparison of the extracted object with the ones already acquired. 

It is because there is no guarantee that next time we encounter the object it will be distinct to 

its surroundings (i.e. salient) and it won't be cluttered or partially occluded by other objects. 

To cope with this, we use existing object recognition approaches to detect in new conditions 

the objects we already acquired. 

In any time of learning the fragment grouping algorithm provides us a set of groups, 

each one populated by fragments of images containing the same objects, seen from different 

viewpoints or different distances. We can choose any of those groups and use fragments 

contained in it as a database of samples for an object recognition algorithm.  

For detection of objects in context of the present system, any suitable real time 

recognition algorithm can be used. To demonstrate how different kinds of recognition 

𝑤3 = {
1 𝑖𝑓 𝑐𝑤3 < 𝑡𝜙𝜃
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 𝑤ℎ𝑒𝑟𝑒 𝑐𝑤3 =
∑ ∑ min (𝐺𝜙𝜃(𝑗, 𝑘) − 𝐹𝜙𝜃(𝑗, 𝑘))

𝑁
𝑘=1

𝑁
𝑗=1

𝐿2
 

(15) 

 

𝑤4 = {
1 𝑖𝑓 𝑐𝑤4 < 𝑡𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝑖𝑡𝑦
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 𝑤ℎ𝑒𝑟𝑒 𝑐𝑤4 = |∑Ω𝐺
2(𝑧𝑗)

𝑁

𝑗=1

−∑Ω𝐹
2(𝑧𝑘) 

𝑁

𝑘=1

| 

(16) 
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algorithms can be employed within the system, I have employed two widely used object 

recognition algorithms. In following sub-sections I will explain basics of their function and 

how they make use of data about objects acquired in form of groups of fragments in order to 

learn the representation of each object and to enable its detection.  

3.5.2.1. Speed-up Robust Features 

The first object recognition technique, we use, Speed-up Robust Features, or SURF, 

described in (Bay et al., 2008) is a well-established technique based on matching interest 

points on the source image with interest points coming from the template. It describes a scale- 

and rotation-invariant interest point detector and descriptor. It allows detection robust to 

partial occlusions and perspective deformations. 

The detector is based on the Hessian matrix. For a given pixel 𝑥 = (𝑥, 𝑦) in image Ω, 

the Hessian matrix ℋ(𝑥, 𝜎) in pixel 𝑥 and scale 𝜎  is defined by (Bay et al., 2008) following 

Eq. (17). Symbol 𝐿𝑥𝑥(𝑥, 𝜎) stands for the convolution of the Gaussian second order derivate 

described as 
𝜕2

𝜕𝑥2
𝑔(𝜎) on image Ω. For 𝐿𝑥𝑦(𝑥, 𝜎) and  𝐿𝑦𝑦(𝑥, 𝜎) the expression under the line 

of fraction is 𝜕𝑥𝑦 and 𝜕𝑦2 respectively. 

 

In order to enable object recognition, the SURF method needs first a template. A 

template is an image showing the target object with very little background. Some 

background, however, is needed to be present on the image so that the edges of the object (the 

transition between the “object” and the “background”) are clearly visible. From this template, 

key-points are extracted and stored. When a new image is presented, key-points are extracted 

from it and are matched against the set of template key-points. The matching follows the 

nearest-neighbor scheme, working with the Euclidian distance of feature vectors of each key-

point.  

To increase the processing speed, only key-points with similar contrast are matched. 

On the top of this, additional geometrical constraints are imposed on matching key-points in 

order to exclude false positive matches. When enough matching key-points between the 

template set and the image set are found, the area occupied by them is said to contain the 

searched object. Using the matching key-points the projection of the original template to the 

current image is calculated, which allows for drawing an appropriate bounding box around 

ℋ(𝑥, 𝜎) = [
𝐿𝑥𝑥(𝑥, 𝜎) 𝐿𝑥𝑦(𝑥, 𝜎)

𝐿𝑥𝑦(𝑥, 𝜎) 𝐿𝑦𝑦(𝑥, 𝜎)
] (17) 
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the found object. An example of the described process is presented on Fig. 18
8
. On the right 

side of the image, the template (a food box) is shown. On the left, an entire scene containing 

the searched object is shown. Circles mark positions of key-points; matching key-points are 

linked by white lines. The found object on the scene is marked by a red rectangle, that has 

undergone an affine transformation to represent the most probable position of the searched 

box in space. 

 

In our case we use the fragments acquired as matching templates. To preserve the 

real-time operation of detection even with high numbers of templates, we pre-extract key 

points from each template in advance. In detection stage, we match first in several parallel 

threads templates with the greatest number of key-points (i.e. containing more visual 

information) and stop this process when another image from camera arrives. This allows 

testing up to few tens template matches per frame. Further important speed-up can be 

achieved using parallel computation power of CUDA-like architectures on modern GPUs. 

3.5.2.2. Viola-Jones Detection Framework 

The second object recognition method, used for applications in the present work, is 

the Viola-Jones detection framework. The framework has been published in the work of  

                                                      

8
 Adopted from the EmguCV code sample for SURF matching, online on:  

http://www.emgu.com/wiki/index.php/SURF_feature_detector_in_CSharp  

   

Figure 18: An example of SURF matching in object recognition. On the right 

there is the template. On the left, a scene containing the searched object. 
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(Viola and Jones, 2004) with a notable application to real-time human face detection. Its 

principle relies on browsing sub-windows over the target image and on a cascade of 

classifiers. This cascade determines, whether the processed part of image does, or does not 

belongs to a class of objects on which the classifier was trained. 

The classifier relies on rectangular features, which are calculated as sums of pixels in 

adjacent rectangular areas of different kinds. In order to compute those features sufficiently 

rapidly, the notion of integral images is developed. An integral image is an image, on which 

each pixel contains the sum of all the pixels above and on the left of it. This is captured by 

Eq. (18). Using two simple recurrences from Eq. (19) an integral image can be computed 

from the original one in constant time. Using integral images, features at any given scale can 

be computed in constant time. 

 

 

As the total number of possible features is overwhelming, the AdaBoost learning 

algorithm from (Freund and Schapire, 1995) is first used to select best features to train the 

classifier. In order to create a classifier which can evaluate the input in real time, a cascade of 

classifiers is created, in which each successive classifier is trained only on those selected 

samples which pass through the classifiers that precede it. The classifiers in the cascade have 

relatively low false negative rate and a very high false positive rate. By cascading them, most 

of non-perspective areas of the image are rejected in early stages and only promising regions 

are further processed. 

In case of this work, we use acquired fragments of an object as positive samples to learn the 

cascade of classifiers (the learning here is carried out offline due to the nature of this 

method). As this method requires negative samples as well, we use the original images with 

the learned object replaced by a black rectangle. To be precise enough, the method needs up 

to several thousands of samples for learning. We achieved this number by applying random 

contrast changes, perspective deformations and rotation of learning fragments. Although 

Viola-Jones framework was originally designed to recognize a class of objects (i.e. human 

faces), rather than single instances, in our case we use it in the way that it recognizes a class 

of only one object (i.e. the one found on learning fragments). It must be noticed that having 

Ω𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙(𝑥, 𝑦) = ∑ Ω(𝑥, 𝑦)

𝑥′≤𝑥;𝑦′≤𝑦

 (18) 

 

Ω𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙(𝑥, 𝑦) = Ω𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙(𝑥 − 1, 𝑦) + 𝑠(𝑥, 𝑦) 

𝑤ℎ𝑒𝑟𝑒 𝑠(𝑥, 𝑦) = 𝑠(𝑥, 𝑦 − 1) + Ω(𝑥, 𝑦) 

 

(19) 
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the object detector learned, known objects can be detected directly from the input image 

when seen again, without passing by the salient object detection. 

3.6. Focusing Visual Attention 

Local features from sub-section 3.3.2.2 are scale-dependent. This gives us two 

options. First, a “universal” fixed value of the visual attention parameter 𝑝 (the sliding 

window size) can be used, which was the case of results presented on Fig. 14. This approach 

as the advantage of simplicity (the 𝑝 can be set once for all and its value may be estimated by 

a heuristic). However, the downside of this approach is that it does not allow reflecting the 

nature of any particular image. It is obvious that if the salient object extraction algorithm is 

run on images containing objects of different sizes and/or different texture properties, it will 

yield best (i.e. closes to the reality) extraction results on different values of 𝑝. 

 

As it has been  explained previously, the visual attention parameter 𝑝 permits for a 

top-down control of the attention and of the sensitivity of the feature in scale space. High 𝑝 

value (resulting in a large sliding window size) with respect to the image size will make the 

local saliency feature more sensitive to large coherent parts of the image. On the other hand, 

low values of 𝑝 will allow focusing to smaller details. The situation is described on Fig. 19, 

where large 𝑝 allows for extraction of the entire face, while low 𝑝 focuses on smaller features 

   

   
 

Figure 19: Impact of different values of visual attention 𝒑 setting. Left: original 

images. Middle: salient objects extracted with high 𝒑 value. Right: salient objects 

extracted with low 𝒑 value. 
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like eyes and lips and patches of hair. A similar situation may be observed on the image of 

sportsmen, where the entire group of three persons may be perceived as a salient object, or 

each person can be considered individually, depending on the level of granularity desired. 

However, as shown in the labeling consistency analysis in (Liu et al., 2011), for most images 

there is very little doubt about what object is (or what objects are) salient and what are not. 

This permits for each image to determinate the appropriate granularity level and consequently 

the most appropriate visual attention parameter 𝑝. 

3.6.1. Examining Possible Correlation between the 𝒑 and the 

Salient Object Size 

The common sense would suggest that high values of 𝑝 would give better results of 

salient object extraction for images with large salient objects and small 𝑝 values would be 

more suitable for small salient objects. While this observation may be plausible in particular 

cases (see Fig. 16), I have decided to examine its generality. The number of 525 images has 

been selected from the MSRA dataset. Those images contain only one salient object per 

image, for the sake of transparency of results. The salient object sizes are ranging from 

approximately 10% of the image area up to approximately 75%.  

For each image, an exhaustive search for the best 𝑝 value (between 0.2 and 0.5) has 

been performed. The best 𝑝 value has been determined as the one, which would yield the best 

F-measure of the extracted region. Results are plotted on Fig. 20. Each point of the plot 

represents an image taken from the MSRA selection. On the x-axis the proportional size of 

the salient object contained on the image is shown. On the y-axis, the corresponding best 𝑝 

value for the given image is captures. 

There are two obvious conclusions we may make based on the results shown on Fig. 

20. The first one is, that fixed values of 𝑝 between approximately 0.35 and 0.45 will provide 

“good enough” results of extraction for most of the images, regardless to the size of the 

salient object. This justifies the heuristic choice of the 𝑝 parameter that we have made in sub-

section 3.3.2.2. 

The second conclusion is, that there is no important correlation between the 

proportional size of salient objects and the value of 𝑝. The 𝑅2 value (coefficient of 

determination) for the obtained data was approximately 0.015, which means no significant 

correlation. This fact is not particularly surprising if we consider, that the hybrid center-
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surround feature as defined in sub-section 3.3.2.2 is influenced not only by the size of the 

object, but also by the texture of the surface of the object and of the background. 

 

3.6.2. Visual Attention Parameter Estimation 

Given observations I have made in the previous sub-section, it is pertinent to say, that 

an approach enabling correct estimation of the visual attention parameter on a per-image 

basis could improve salient object extraction results. This estimation must be, however, fully 

automatic, if we want to preserve the autonomous nature of the entire process of salient 

object extraction. 

As we have seen, the value of 𝑝 is dependent on the size of coherent regions (i.e. 

segments). I propose an estimation method based on calculation of a histogram of segment 

sizes from the input image. This gives us a feature vector, which is provided as an input of an 

artificial neural network trained to output the sliding window value. The weights of the neural 

network are adapted in training stage using a genetic algorithm. The process of automatic 

 

Figure 20: Graph of relation between the best performing value of visual attention 

parameter 𝒑 and the proportional size of the salient object on image. 
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estimation of the visual attention parameter, that I propose, is depicted on Fig. 21 (by orange 

boxes) in context of the entire salient object extraction (cf. Fig. 8). 

 

3.6.3. Features Extraction 

In sub-section 3.4.1, an algorithm for image segmentation is presented, having some 

interesting properties like robustness to difficult real-world illumination conditions such as 

shadows and shines and its relatively high speed. Results of this algorithm are exploited here 

for both feature extraction for visual attention parameter estimation and for the eventual 

extraction of salient objects (in sub-section 3.4.2). 

To obtain the feature vector, the input image is segmented into 

segments(𝑆1, 𝑆2, … , 𝑆𝑛). For each one of the found segments 𝑆𝑖 ∈ {𝑆1, 𝑆2, … , 𝑆𝑛} its size in 

pixels |𝑆𝑖| is divided by the overall image size |Ω|. An (absolute) histogram 𝐻𝑆𝐴 of segment 

sizes is then constructed. To avoid a too sparse histogram, the 𝑖-th bin of histogram 𝐻𝑆𝐴  is 

populated by a sum of similarly large segments as described by Eq. (20). This ensures that the 

 

Figure 21: Graphical depiction of the work-flow of our salient object extraction 

system. The two orange boxes represent visual attention estimation process, which are 

discussed in this section. 
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first histogram bin contains the number of segments with area larger that 1/10 of the image 

size, the second contains segments from 1/10 to 1/100 of the image size etc. For practical 

reasons a 4-bin histogram is used, as fragments counted in the 5
th
 and succeeding bins would 

be insignificantly small. 

 

To obtain relative values instead of absolute counts, we calculate a (relative) 

histogram 𝐻𝑆𝑅, where each bin is assigned a number following Eq. (21). 

 

3.6.4. Construction and Learning of Visual Attention Parameter 

Estimator 

The core of the proposed visual attention parameter estimator is an artificial neural 

network, a multilayer perceptron (see (Minsky and Papert, 1988)) with a sigmoidal activation 

function. A fully connected three-layer feed-forward network (MLP) is used. Its structure is: 

four input nodes, three hidden neurons and one output neuron. The number of hidden neurons 

has been determined comparing trials with different neuron numbers. The four input nodes 

are connected each to its respective bin from the 𝐻𝑆𝑅 histogram. The value of the output node 

ranging from 0 to 1 is interpreted as the ratio of the estimated sliding window size 𝑝 and the 

long side of the image. Before being used, the MLP needs to have its weights adjusted. This 

is done in the learning loop, which is described by Algorithm 2. The learning makes use of a 

genetic algorithm (cf. (Holland, 1992)). As learning data-set, 10% of the MSRA-B data-set 

images are used. Measures proposed in the same work are then used to evaluate quantitatively 

the salient object extraction. The remaining 90% of the data-set images are left out for the 

purpose of validation. 

Each organism in the population consists of a genome - an array of floating point 

numbers whose length corresponds with the number of weights in MLP. To calculate the 

fitness of each organism, the MLP weights are set according to its genome.  

𝐻𝑆𝐴(𝑖) =∑{1 𝑖𝑓 10𝑖−1 ≤ (
|𝑆𝑗|

|Ω|
) < 10𝑖

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑛

𝑗=𝑖

 (20) 

 

𝐻𝑆𝑅(𝑖) =
𝐻𝑆𝐴(𝑖)

∑ 𝐻𝑆𝐴(𝑗)
𝑛
𝑗=1

 (21) 
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The input image from training set is segmented, 𝐻𝑆𝑅 calculated and used as input to 

the MLP. Once visual attention parameter 𝑝 is calculated according to the MLP output, 

set popSize /population size 

set genSize //length of genome 

set population //a set of organisms 

set mlp //multilayer perceptronacquire image 

 

//random initialization of population 

for(i = 1 to popSize){  

   set newOrganism 

   for(j = 1 to genSize) 

      newOrganism[j]=rnd //initialization by a small random number 

   population.Add(newOrganism) 

} 

 

//evolution starts 

do{ 

 

   set fitnesses //array of fitnesses of members of the population 

   for(i = 1 to popSize){ 

      set organism = population[i] 

      initialize mlp weights with organism 

      calculate 𝐻𝑆𝑅 

      input 𝐻𝑆𝑅 into mlp and do feed-forward 

      set p according to mlp output 

      foreach(image in learning set){ 

         extract salient objects with p parameter 

         compare results with ground truth 

         calculate F-ratio 

      } 

      fitnesses[i] = average F-ratio 

   } 

   set newPopulation //new generation 

   //elitist selection 

   newPopulation.Add(organism with max(fitnesses)) 

   for(i = 1 to popSize - 1) 

      newPopulation.Add(crossover rnd organisms with high fitness) 

   mutate randomly newPopulation 

   population = newPopulation 

   //stopping condition with an arbitrary threshold 

 

}until(max(fitnesses) > threshold) 

Algorithm 2: Adjusting neural network weights by genetic algorithm. 
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saliency is computed over the image and salient objects are extracted. The result is compared 

with ground truth and the precision, recall and the F-measure are calculated (according to 

(Liu et al., 2011)). The F-measure, representing the overall quality of the extraction, is then 

used as the measure of fitness for the given organism. In each generation, the elitism rule is 

used in order to explicitly preserve the best solution found so far. Organisms are mutated with 

5% of probability. 

Once the MLP is learned, its weights are saved and the estimator is ready to be used. 

Input image processing follows then the work-flow depicted on Fig. 21. 

3.7. Experiments 

To verify the performance of our system, a number of experiments have been 

performed with learning objects present in a common office environment. For the sake of 

repeatability and convenience in evaluation of results, ten common house or office objects 

have been collected in order to be explicitly learned (although the system naturally learns any 

salient objects in its surroundings without any specific preference). A sample of scene images 

containing those objects is presented of Fig. 26. Illustrative photos of the objects that have 

been used in this experiment are shown on Fig. 25 in order to give the reader a better idea 

about their nature.  

In order to approach to the real conditions as much as possible objects with different 

surface properties (chromatic, achromatic, textured, smooth, reflective …) have been chosen 

and they were put in a wide variety of light conditions and visual contexts. The number of 

images acquired for scenes containing each object varied between 100 and 600 for learning 

image sequences and between 50 and 300 for testing sequences, always with multiple objects 

occurring on the same scene. Note that the high number of learning images was taken 

primarily in order to test sufficiently our saliency detection and segment grouping algorithm. 

The learning process itself would generally require significantly less samples acquired in 

order to perform sufficiently well, depending on the actual object detection algorithm 

employed.  

On Fig. 26 random images from the learning sequence are presented for each learned 

object along with fragments extracted from them. These fragments, containing salient objects 

found on each image are subsequently processed by the incremental fragment grouping (sub-

section 3.5.1) and the selected ones are used for learning of the object detector. 
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3.7.1. Validation of Visual Attention Parameter Estimation 

To evaluate the presented approach of automatic visual attention parameterization, its 

results have been compared to those achieved by the same approach using a fixed 𝑝 value and 

to results of other state of the art algorithms. For quantitative comparison, the previously 

mentioned MSRA-B data-set was used. It contains 5000 images with hand-labeled salient 

objects as well as measures to quantify the correctness of salient object extraction. For 

evaluation, 90% of this set was used, excluding the 10% used for training. 

Regarding the learning process, it usually converged in about 30 generations. A 

sample fitness evolution curve is presented on Fig. 22. The fitness curve is monotonically 

increasing because the elitism rule is used in the genetic algorithm. This ensures that in any 

new generation the previous best solution is automatically included and thus the best fitness 

of the population never decreases. 

 

When being run over the testing data-set, the 𝑝 algorithm was resulting in average F-

measure of 0,75 (compare to Table 1 in sub-section 3.4.3). After the visual attention estimator 

has been fully learned, the performance of salient object extraction over the testing data-set in 

terms of F-measure was 0,84 in average. This gives us about 11% increase in performance. It 

 

Figure 22: An instance of fitness convergence during the evolution. 
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may be also observed that the approach with automatically estimated 𝑝 tends to be more 

precise in extraction (the measure of precision increased from 0,75 to 0,87). The results of the 

fixed 𝑝 approach are compared to those that were obtained using automatic estimation of 𝑝 in 

Table 2. 

 

 

 

 

 Precision Recall F-measure 

Best fixed 𝒑 value 0,75 0,76 0,75 

Automatic estimation 0,87 0,83 0,84 
 

Table 2: Comparison of scores obtained in MSRA-B dataset using a fixed 𝒑 

approach and using the automatic estimation of 𝒑. 

 
Original AC LI Ours Ground Truth 

     

     

     

     
 

Figure 23: Comparison of different salient object detection algorithms. First 

column: original image. Second column: results of (AC) (Achanta et al., 2009). Third 

column: results of (LI) (Liu et al., 2011). Fourth column: results of the present approach 

with automatic estimation of 𝒑. Last column contains ground truth, considering multiple 

objects in the scene. 

 



Chapter 3: Autonomous Detection and Learning Objects by means of Visual Saliency 

91 

 

On Fig. 23, sample results of our algorithm with automatic estimation of the visual 

attention scale are compared with the ground truth and two others state of the art algorithms. 

As it was the case of Fig. 14, we have chosen to compare with the work presented in 

(Achanta et al., 2009) (AC) as it presents a computationally very fast approach and (Liu et al., 

2011) (LI) as a source of the used benchmark. After programming code optimization, no 

major increase in computing time of our algorithm has been observed, with respect to the 

fixed 𝑝 version. This means that the algorithm is still capable of real time operation. 

Although (Achanta et al., 2009) is computationally very cheap, its results vary largely 

in quality depending on the nature of salient objects on the image. Algorithm of (Liu et al., 

 Original image Fixed 𝑝 Estimated 𝑝 

 

   

 

   

 

   

 

   
 

Figure 24: Random images from the MSRA data-set processed by the fixed 𝒑 

salient object extraction and compared to results achieved with automatic 𝒑 estimator. The 

last row illustrates a case when the estimator failed to find the appropriate 𝒑. 
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2011) produces results much close to human perception and more precise in terms of 

resolution. Our approach outperforms considerably the one of (Liu et al., 2011), while 

maintaining both important benefits, that have been discussed in sub-section 3.4.2, that is its 

high processing speed and the fact, that it outputs natively multiple salient objects if they are 

present on the image. 

On Fig. 24 some random images from the MSRA data-set are presented, showing 

processing results of the fixed 𝑝 approach and those of the automatically estimated 𝑝 

approach. The difference is particularly visible in the second row, where the size of the 

salient object (the surfer) is proportionally very small with respect to the image size. 

3.7.2. Validation of Salient Object Extraction and Learning 

First, results of salient object extraction and fragment grouping are presented. To 

investigate the effectiveness of the salient object extraction, the percentage of learning set 

images, on which the learned object have been correctly detected and extracted by salient 

object detector, has been counted. Correct extraction means here that the object has been 

extracted entire and without any other objects co-occurring on the fragment.  

 

Illustrative photos of the objects we used in this validation are shown on Fig. 25 in 

order to give the reader a better idea about their nature. Objects with different surface 

apple beans beer book coke 

     

khepera mouse mug pda shoe 

     
 

Figure 25: Images of objects used throughout the described experiments. Note 

that the white background is here merely for the sake of clarity. During experiments those 

objects were presented in various situations, visual contexts and backgrounds. 
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properties (chromatic, achromatic, textured, smooth, reflective …) have been chosen and put 

in a wide variety of light conditions and visual contexts.  

On Fig. 26 some images from the training set are shown along with salient objects 

extracted from them. Usually multiple salient objects were extracted from each scene. 

Successful extraction has been achieved approximately on 82% of images in the set. The 

subsequent grouping of fragments has achieved on the same data-set success rate of 96%, i.e. 

only 4% of fragments, which were usually bearing visual resemblance to other objects on the 

scene, were placed into a wrong group. 

 

Original Processed Original Processed 

    

    

    

    

    
 

Figure 26: Sample images from the training sequence for each of the used objects.  

Fragments containing salient objects detected by our algorithm are marked by green 

rectangles. 
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Figure 27: Percentage of correct detections of learned objects over testing image 

set using Viola-Jones algorithm and SURF algorithm. 

 

 

 

 

Figure 28: Images from tracking a previously learned moving object. Robot 

camera picture is shown in upper right corner of each image. 

 



Chapter 3: Autonomous Detection and Learning Objects by means of Visual Saliency 

95 

On Fig. 27 detection rates over testing data-set using a trained Viola-Jones detection 

framework are provided along with performance of SURF algorithm on the same data-set. In 

average over all the objects in testing set, the detection rate for Viola-Jones was about 81.3%. 

In case of SURF, the average detection rate was, higher about 90.3%. The numbers reflect 

only true positive detections. Average rate of false positive detections was around 0.5% for 

both methods. 

 

To demonstrate real-time abilities of our system, several experiments were 

successfully run, where a mobile robot equipped with color camera was required to learn a 

presented object. When learned, the robot was required to find the object in its environment 

  

  

  
 

Figure 29: Camera pictures from single (first column) object detection and 

multiple (second column) previously learned object detection. Successfully detected 

objects are marked by green lines. 
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and to track and follow it. Images from a video
9
  acquired during those experiments are 

shown on Fig. 28. On Fig. 29, sample detection results are shown with a system having 

learned several objects. Boundary lines determine objects previously encountered by the 

robot and successfully recognized on the new scene. 

3.7.3. Discussion 

In sub-section 3.4.3, some quantitative results of our salient object extraction 

technique were given and compared with existing approaches. We have seen that the quality 

of our approach is comparable with the existing ones (considering the fixed 𝑝 version) or 

superior to them (when using the automatic estimation of 𝑝). At the same time it brings the 

advantage of real-time processing, native extraction of multiple salient objects and robustness 

to certain difficult illumination conditions. This confirms that our salient object extraction 

technique is performing well enough to play its part in the proposed system for autonomous 

acquisition of knowledge. 

On Fig. 26, some qualitative results of our salient object extraction in real 

environment are given. The figure shows several typical views acquired during learning of 

the system. Salient objects extracted from them are marked by green rectangles. On all 

images (except of the “mouse” one, where only one object is present) multiple visually 

important objects were extracted apart of the one we placed intentionally to the scene. This 

indeed is the desired behavior as the system is expected to extract (and learn) autonomously 

the encountered objects without any a-priory preference. On the other hand, as illustrated on 

the “mouse” and “shoe” images, the algorithm does not extract the “false objects” created by 

reflections found on the floor.  

The percentage of successfully extracted samples of a same object usable to learn this 

object is 82% of its occurrences throughout a sequence of images. This means that more than 

4 of 5 acquired images of that object contribute in fact to correct learning of this object. As 

our learning system is incremental, the needed number of sample images for each object can 

be achieved accurately and fast enough. 

Two fundamentally different object recognition algorithms have been employed in 

this system, each yielding different rate of recognition. The SURF detector has shown 

superior performance 90.3% of average detection rate by contrast to Viola-Jones detection 

                                                      

9
 This video can be found to the following address: 

 http://www.youtube.com/watch?v=xxz3wm3L1pE 
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framework, which performed by about 9% worse. This shows that Viola-Jones framework 

may not be best suited for this kind of task. It is presumes that it is so mainly because of the 

fact that in order to achieve high recognition rates it needs typically thousands of learning 

samples, however the number of unique samples acquired for each learned object was in 

order of hundreds. Also its long learning time makes it impractical in the strict sense of on-

line learning.  

On the other hand results achieved with SURF are encouraging both for the relatively 

high percentage of correct recognitions and for the fact that it allows recognition of the 

learned object even with only several samples acquired. Some camera views of already 

learned system are shown on Fig. 29 with objects recognized marked by bounding shapes. On 

the first row individual objects are correctly detected. On the second row, three views on 

similar scenes containing multiple objects are shown. Between the scenes the system was 

progressively learning new objects so that e.g. the orange mug is recognized only on the last 

scene as prior to this it was not learned. These images show the flexibility of recognition of 

the learned objects that are recognized in different orientation and perspective (the book), 

different illumination conditions (the shoe) or different distance and orientation (the coke 

bottle). 

Regarding experiments with a robot searching or tracking a previously learned object 

(see Fig. 28), the present system was successfully validated. It has enabled the robot to fulfill 

the required cognitive tasks, correctly responding to the input. Because of limited computing 

capacity of the robot used, it has been chosen to run the system on a remote computer. In this 

experimental context, despite of the specific communication protocol implemented by the 

constructor on the robot, the system itself has been capable of real-time processing 

performance. However, one may observe observed a slow-down in robots reactions due to the 

limited bandwidth. This is the consequence of inadequacy of the aforementioned protocol 

regarding image transfer. 

Certain shortcomings have been also identified in learning chain naturally bound to 

the method of object extraction that was used. In fact, our system shows worsening 

performance in learning objects that are not enough visually distinct with respect to their 

background. The same happens in cases where two visually important objects are seen one 

behind another and thus are wrongly extracted as one by our current system. By consequence, 

in order to respond correctly to this complex situation, it would be necessary to extend the 

present salient object extraction system by an additional level of machine intelligence. 

However, it is pertinent to emphasize, that in the actual system, once an object is correctly 
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learned, its further detection (thanks to the object detectors employed) is practically 

independent from its visual context. 

3.8. Conclusion 

In this chapter a low level cognitive system is proposed, benefiting from the 

perceptual (visual) saliency as an implementation of the concept of perceptual curiosity. It 

has the capacity of autonomous learning of objects present in real environment. It has been 

inspired by early processing stages of human visual system and by existing work studying the 

way human infants learn. In this context a novel algorithm for visually salient object 

detection is suggested, taking advantage of using photometric invariants. The algorithm has 

low complexity and can be run in real-time on contemporary processors.  Moreover it 

exhibits robustness to difficult real-world light conditions.  

Further a machine learning approach is developed using an artificial neural network 

and genetic algorithm, which allows us to estimate automatically the visual attention 

parameter for each image based on its features. Observations have been made supporting the 

fact, that the learning process converges and once fully learned, the MLP allows for a 

consistent estimation of the 𝑝 parameter. This has been verified by a quantitative evaluation 

on the MSRA benchmark. The results show an increase in overall quality and precision of 

salient object extraction, when compared to our previous approach with a fixed visual 

attention parameter. 

The presented algorithm is the first key part of the proposed lower level knowledge 

acquisition unit. It is demonstrated that the detected salient objects can be efficiently used for 

training the second key part of this unit, which ensures a machine learning-based object 

detection and recognition. Encouraging results were obtained especially when SURF detector 

was employed as an object detector.  

In future this approach could evolve in several ways. As there does not exist a 

universal recognition algorithm that suits any existing class of objects, other object detection 

algorithms, like GLOH in (Mikolajczyk and Schmid, 2005) or receptive field co-occurrence 

histograms in (Ekvall and Kragic, 2005), could be adopted along with surface descriptors for 

each learned object. Objects of different characteristics could be then learned by algorithms 

that best suit the nature of the object in a “mixture of experts” manner.  

As to the visual saliency detector, the center-surround feature detector could be 

supplied by or replaced by an interesting approach of spectral residua detection published in 
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(Hou and Zhang, 2007). A top-down feedback based on already acquired and grouped 

fragments could also greatly improve the saliency detector. The results presented here have 

been achieved with a monocular camera. However, there are valid reasons to believe that the 

performance of the entire system could be enhanced by use of a stereo camera. In this case 

the depth-separation of objects would serve side-by-side with the segmentation algorithm to 

cope with the mentioned cases, where two visually important objects are one behind another. 

An open question is, whether the presented technique, instead of learning solely 

individual objects, could be used as well for place learning and recognition, extracting 

visually important objects from the entire place like room or office or for visual navigation of 

a mobile robot. It would also be interesting to investigate, how the saliency-based method 

could have an overlap outside the image processing domain, to be applied for learning of 

other than visual data (e.g. audio). 
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Chapter 4. Learning by Interaction 

4.1. Introduction 

In this section, I detail on my approach to autonomous knowledge acquisition by 

interaction. This represents the high level, epistemic curiosity driven knowledge acquisition 

process discussed in Chapter 2. At first I outline its general principles concerning learning of 

a single type of features (originating from one sensor only) at one time. Then I explicate how 

beliefs about the world are generated by the robot based on its autonomous observations of 

the world and on its interaction with a human tutor. Then I detail on how the robot uses those 

beliefs to interpret the environment in which it evolves. Next, the role of interaction between 

the human tutor and the robot during different stages of the learning process is described. 

Finally the outlined learning principles are generalized in order to allow learning of multiple 

types of features from multiple sensors at the same time. 

The problem of learning brings an inherent problem of distinguishing the pertinent 

sensory information (the one to which the tutor is referring) and the impertinent one. It indeed 

is a paradox, but in contrary to what one may believe, sensors provide generally too much 

data input, a lot more than effectively needed. It is the task of higher structures (e.g. an 

attention system or in general a machine learning system adapted to this task) to draw the 

attention to particular features of the data, which are pertinent in context of a particular task. 

This problem has been addressed by researchers on different fields (for a reference, see e.g. 

(Blum and Langley, 1997) or (Soderland, 1999)). The solution to this task is not obvious even 

if we achieve joint attention in the robot. This is illustrated on Fig. 30. Consider a robot 

learning a single type of features, e.g. colors. If a tutor points to one object (e.g. a yellow fish) 

among many others, and describes it by saying “The fish is yellow!” the robot still has to 

distinguish, which of the several colors and shades found on the object the tutor is referring 

to. This step is an inevitable one before we can proceed to the learning itself. In traditional 

learning systems, this task-relevant (i.e. pertinent) information is extracted by hand by a 

human expert. In a system capable of autonomous learning, however, this has to be done in 

an autonomous way and without recourse to human-extracted features. 
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4.2. General Overview of the System 

As it has been depicted on Fig. 30, sensor data bring inherently both pertinent and 

impertinent information mixed up. To achieve correct detection of pertinent information in 

spite of such an uncertainty, we adopt the following strategy.  The robot extracts features 

from important objects found in the scene along with words the tutor used to describe the 

presented objects. Then, the robot generates its beliefs about which word could describe 

which feature (see subsection 4.3.2). The beliefs are used as organisms in a genetic algorithm. 

Here, the appropriate fitness function is of major importance. To calculate the fitness, a 

classifier is trained based on each belief about the world. Using it, the cognitive system tries 

to interpret the objects the robot has already seen. The utterances pronounced by the human 

tutor in presence of each such object are compared with the utterances the robot would use to 

describe it based on the current belief. The closer the robot's description is to the one given by 

the human, the higher the fitness is.  

 

Once the evolution has been finished, the belief with the highest fitness is adopted by 

the robot and is used to interpret occurrences of new (unseen) objects. On Fig. 31, important 

parts of the system proposed in this chapter are depicted. The “Genetic algorithm” box is 

further expanded and explained in sub-section 4.3.3. Further in the chapter the Fig. 39 shows 

the humanoid robot along with different objects that have been used to evaluate the present 

learning system in real-world conditions.  

 

Figure 30: A human would describe this fish as being yellow in spite of the fact, 

that this is not by far its only color. Symbols 𝒊𝒊, 𝒊𝒑 and 𝝐 refer to Eq. (22). 
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Although one could argue the system presented here is not specifically bound to 

humanoid robots, it is pertinent to state two main reasons why a humanoid robot is used for 

the system’s validation. The first reason for this is that a humanoid robot by definition 

possesses a number of sensors (such as camera and microphones) that make its perception 

close to the human perception, entailing a more human-like experience of the world. This is 

an important aspect to consider in context of sharing knowledge between a human and a 

robot endowed with a cognitive system. Some aspects of this problem are discussed e.g. in 

(Klingspor, Demiris and Kaiser, 1997)).  

The second reason is that humanoid robots are specifically designed to interact with 

humans in a “natural” way by using e.g. a loudspeaker and microphone set in order to allow 

for a bi-directional communication with human by speech synthesis and speech analysis and 

recognition. This is of importance when speaking about a natural human-robot interaction 

during learning. 

 

 

 

Figure 31: Graphical depiction of the proposed system for learning a single type 

of features. For the sake of comprehensibility it is shown in context of a particular 

learning task, i.e. color learning, instead of a purely symbolic description. Symbols used 

refer to those defined in sub-section 4.3.1 and following. 
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4.3. Learning by Interaction from One Sensor 

4.3.1. Observation and Interpretation 

Let us have a robot endowed with by a sensor, which makes it able to observe the 

world around it. The world is represented as a set of features 𝐼 = {𝑖1, 𝑖2, … 𝑖𝑘}, which can be 

acquired by this sensor. Each time the robot makes an observation 𝑜, a human tutor gives it a 

set of utterances 𝑈𝑚 describing important objects found currently in the world. Let us denote 

the set of all utterances ever given about the world as 𝑈. The goal for the robot is to 

distinguish the pertinent information present in the observation from the impertinent one and 

to correctly map the utterances to appropriate perceived stimuli (features). In other words, the 

robot is required to establish a word-meaning relationship between the uttered words and its 

own perception. The robot is further allowed to interact with the human in order to clarify and 

verify its interpretations, following the stimulation of curiosity. 

For this purpose, let us define an observation 𝑜 as an ordered pair 𝑜 = { 𝐼𝑙, 𝑈𝑚}, 

where 𝐼𝑙 ⊆ 𝐼 stands for the set of features obtained by observing the world and 𝑈𝑚 ⊆ 𝑈 is a 

set of utterances given in the context of the observation. Following Eq. (22), 𝐼𝑙 is a union of 

all the pertinent information 𝑖𝑝 for a given 𝑢 (i.e. features that can be described as 𝑢 in the 

language used for communication between the human and the robot), all the impertinent 

information 𝑖𝑖 (i.e. features that are not described by the given 𝑢, but might be described by 

another 𝑢𝑖 ∈ 𝑈) and sensor noise 𝜖 

 

Let us define an interpretation 𝑋(𝑢) of an utterance 𝑢 as an ordered pair 𝑋(𝑢) =

{𝑢, 𝐼𝑗 ⊆ 𝐼}, which denotes that a set of features 𝐼𝑗 from all the features 𝐼 of the world is 

interpreted as 𝑢. Then a belief is defined following Eq. (23) as an ordered set of 𝑋(𝑢) 

interpreting all utterances 𝑢 from 𝑈. 

 

Now, according to Eq. (24), we can calculate the belief 𝐵, which interprets in the 

most coherent way the observations made so far. It is done by looking for such a belief, 

𝐼𝑙 = ⋃𝑖𝑝(𝑢) + ⋃𝑖𝑖(𝑢) + 𝜖 (22) 

 

𝐵 = {𝑋(𝑢1),…𝑋(𝑢𝑛); 𝑛 = |𝑈|} (23) 

 



Chapter 4: Learning by Interaction 

105 

which minimizes across all the observations 𝑜𝑞 ∈ 𝑂 the difference between the utterances 

𝑜𝑞[𝑈𝑚]10 made on each particular observation by human, and those utterances 𝑈𝐵𝑞, which 

would make the robot by using the belief 𝐵. In other words, we are looking for a belief 𝐵, 

which would make the robot describe a particular scene with utterances as much close as 

possible to those, that would make a human on the same scene. 

 

 

On Fig. 32 an alternative view on the previously defined terms and their relations is 

presented. It depicts a state when three observations 𝑜1, 𝑜2, 𝑜3 were made. On first 

observation, features 𝑖1, 𝑖2 were observed along with utterances 𝑢1, 𝑢2 and likewise for the 

                                                      

10
 To simplify the text and to avoid too much repetition, henceforth I will adopt the following 

notation. I use square brackets as e.g. in 𝑜𝑞[𝑈𝑚] to denote the set of utterances 𝑈𝑚 from the 

observation 𝑜𝑞 where 𝑜 = { 𝐼𝑙 , 𝑈𝑚}. Similarly 𝑜𝑞[𝐼𝑙] would be the set of features 𝐼𝑙  belonging to 𝑜𝑞 and 

so forth … 

argmin
𝐵
(∑|𝑜𝑞[𝑈𝑚] − 𝑈𝐵𝑞|

|𝑂|

𝑞=1

) (24) 

 

 

Figure 32: Graphical depiction of relations between observations, features, beliefs 

and utterances in sense of terms defined in the text. 
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second and the third observation. It is visible that the entire set of features {𝑖1, … , 𝑖6} gives 

together the set 𝐼 of all features ever observed, while sub-sets 𝐼1, 𝐼2, 𝐼3 refer to features 

observed on particular corresponding observations. Similarly the utterances {𝑢1, … , 𝑢4} give 

the set 𝑈 of all utterances and their sub-sets 𝑈1, 𝑈2, 𝑈3 refer to corresponding observations. In 

this view an interpretation 𝑋(𝑢1) is a relation of 𝑢1 with a set of features from 𝐼. Then a 

belief 𝐵 is a relation between the set of 𝑈 to 𝐼 following Eq. (25). All members of 𝑈 map to 

one or more members of 𝐼 and no two members of 𝑈 map to the same member of 𝐼. 

 

4.3.2. Most Coherent Interpretation Search 

To find a solution to Eq. (24), an exhaustive search over all possible beliefs will 

ensure that we eventually find the best fitting belief to explain the perceived world. However, 

this approach is impractical in real world conditions due to its high complexity, entailing an 

enormously large search space. Instead, we propose to search for a (sub)optimal belief 𝐵 

according to Eq. (24) by means of a genetic algorithm. Each organism within it has its 

genome constituted by a belief, which, results into genomes of equal size |𝑈| containing 

interpretations 𝑋(𝑢) of all utterances from 𝑈. 

Let us have a belief generation process to generate genomes of organisms for the 

genetic algorithm as follows. For each interpretation 𝑋(𝑢) let us go through the entire set 𝑂 

of all observations made so far. On each observation 𝑜𝑞 ∈ 𝑂, if 𝑢 ∈ 𝑜𝑞[𝑈𝑚], features 𝑜𝑞[𝐼𝑙] 

are extracted. This set of features, as described in Eq. (22), contains pertinent and impertinent 

features (with respect to current 𝑢) and noise. The task of coherent belief generation is to 

generate beliefs, which are coherent with the observed reality. This is done by deciding, 

which features 𝑖 ∈ 𝑖𝑞[𝐼𝑙] may possibly the pertinent ones. The decision is driven by two 

principles. The first one is the principle of proximity. As it is well known, similar things are 

more likely to be called the same name, than those less similar. As an application of it, any 

feature 𝑖 is more likely to be selected to be pertinent in the context of 𝑢, if its distance to 

other features already selected is comparatively small. If a feature is too dissimilar to features 

interpreting a particular utterance, the feature is more likely to be considered impertinent in 

context of that particular utterance. The second factor is the coherence with all the 

observations in 𝑂. This means, that any observation 𝑜𝑞 ∈ 𝑂, where 𝑢 ∈ 𝑜𝑞[𝑈𝑚], has to have 

𝐵: 𝐼 → 𝑈 (25) 
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at least one feature from 𝑜𝑞[𝐼𝑙] assigned into 𝐼𝑗 of the current 𝑋(𝑢) = {𝑢, 𝐼𝑗}. Thus, it is both 

the similarity of features and the combination of certain utterances with certain features in 

observations from 𝑂, that guide the belief generation process. These beliefs may be perceived 

as “informed guesses” on the interpretation of the world made by the robot. The coherent 

belief generation procedure is outlined on Algorithm 5, which is for space reasons placed in 

Appendix C. 

Before generating beliefs about the world, under some circumstances it might be 

appropriate to determine, whether there is enough information for a successful solution of Eq. 

(24). Take into account the following example. A robot is learning to name different shapes. 

It observes at one time a ball and a box while hearing “round” and “rectangular”. Next time it 

observes a soup plate and a book, again hearing utterances “round” and “rectangular”. Given 

those two observations, there is no way (without introducing a supplementary information 

e.g. by joint attention) to find a unique solution for Eq. (24).  It is impossible to distinguish, 

whether the word “round” is applied to circular or to rectangular things (and likewise for the 

word “rectangular”) as both interpretations have the same probability. Obviously this 

ambiguity may occur even with more than only two utterances. If such ambiguous situation 

happens, it may be identified by means of Algorithm 4 described under Appendix B. In this 

case the robot will attempt to make additional observations or will ask the human tutor to 

introduce new information which would allow for an unambiguous interpretation. In the 

given example, the robot could interact with the tutor in the following way: “I am unable to 

distinguish what is ‘round’ and what ‘rectangular’. Please, show me some other round 

objects.” 

4.3.3. Evolution 

4.3.3.1. Genetic Algorithms 

Before explaining the further specific use of genetic algorithms in search of 

interpretation of observations, let us remind briefly some of their general principles. In the 

domain of machine learning, the idea of genetic algorithms was first exploited by (Holland, 

1992) in his book “Adaptation in Natural and Artificial Systems”. A genetic algorithm is a 

search heuristic through the solution space. In its function it is inspired by the process of 

natural selection, roughly based on the Darwinian theory of evolution from (Darwin, 1859) 

(in contrast to the Lamarckian theory of evolution, cf. (Ross, 1999)). It is used prominently, 
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but not solely, in cases, where the solution space is too large or in process of optimization, 

scheduling or engineering and design. 

The main terminology of genetic algorithms is borrowed from biology and will be 

explained further: 

 Organism: represents a single solution to the given problem, is constituted of a 

series of genes, which encodes the solution 

 Gene: a constitutive part of each organism, in the basic generic algorithm, it may 

have binary values of 0 and 1, alternatively it may be arbitrary numbers, strings or 

complex objects 

 Population: a group of organisms evolving together, each organism is evaluated 

by the fitness function, which determines its chances to take part on reproduction 

in creation of next generation’s population 

 Fitness function: is a function evaluating how “good” is the solution encoded by 

the given organism with respect to the desired state, when an organism receives 

high enough value of fitness, the evolution is usually stopped and the organism is 

presented as the final solution 

 Crossover: best fitting organisms have better chances to transfer their genes to the 

next generation’s population, it takes parts of genomes of parenting organisms and 

recombines them creating offspring; the aim is to transfer genes that contribute to 

the desired solution, into the next generation 

 Mutation: in order to maintain genetic diversity, mutation is applied, changing 

with a small probability certain genes in a random fashion 

 Elitist selection: best solutions (organisms) may be lost due to mutation or bad 

crossover, hence one or several best fitting organisms are automatically 

transferred to the next generation without any alternation 

The operation cycle of a genetic algorithm is resumed on Fig. 33. The first generation 

population is generated randomly. Then fitness of each organism is calculated. If the best 

fitness is above the given threshold, evolution stops, otherwise reproduction is performed, 

generating new organisms based on best fitting parents. Mutation is performed as well, the 

resulting population is transferred to the next generation and the cycle continues. 

In this work, I am mostly using an extended notion of genetic algorithm. Contrary to 

(Holland, 1992), in my work genomes are not composed of a series of bits (0 or 1), but are 

rather represented by chains of real numbers (as in 3.6.4) or complex objects (as in 4.3.3). 

Nonetheless, the scheme of operation of the genetic algorithm remains the same. 
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4.3.3.2. Fitness Evaluation 

In the previous section, an approach has been defined for generation of coherent 

beliefs about the world, which are coherent with existing observations. Each of these beliefs 

makes one organism, which is used inside a genetic algorithm. To evaluate the fitness of each 

organism, a good fitness function is crucial. Here, the fitness function is defined as an 

inverted value of the sum in Eq. (24). To evaluate a given organism, a classifier is trained, 

whose classes are the utterances from 𝑈 and training data for each class 𝑢 are given by 

𝑋(𝑢)[𝐼𝑗], i.e. the features associated with the given 𝑢 in the genome. Then, we can use this 

classifier through the entire set of observations 𝑂, and for each 𝑜𝑞 ∈ 𝑂 its observed features 

𝑜𝑞[𝐼𝑙] are classified, which results in a set of utterances 𝑈𝐵𝑞 (provided that a belief 𝐵 is tested 

on the 𝑞-th observation from 𝑂). 

Having previously calculated the set 𝑈𝐵𝑞, which are the robot's utterances interpreting 

features observed in the 𝑞-th observation, this set can be compared with 𝑜𝑞[𝑈𝑚], i.e. the 

utterances made on the same features by a human. Here, we are in the core of the sum from 

     

Figure 33: A general schema of genetic algorithm operation. 
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Eq. (24) and the distance |𝑜𝑞[𝑈𝑚] − 𝑈𝐵𝑞| can be finally calculated as the disparity between 

sets 𝑜𝑞[𝑈𝑚] and 𝑈𝐵𝑞 for each 𝑞 respectively. The disparity is calculated as follows: let 
1

1+𝑣
 be 

the fitness. The value of 𝑣 is given as in Eq. (26), i.e. it is the number of elements that are not 

present in both sets, which means missed and superfluous utterances interpreting the given 

features. 

 

 

At the end of the evolution, the globally best fitting organism is chosen as the belief 

that best explains observations 𝑂 made so far about the world. 

On Fig. 34 a functional diagram of the genetic algorithm described in this sub-section 

is depicted. On the right-hand side of the diagram the workflow of fitness evaluation is 

depicted identifying the key parts of the fitness calculation process. On the left hand side (the 

𝑣 = |𝑜𝑞[𝑈𝑚] ∪ 𝑈𝐵𝑞| − |𝑜𝑞[𝑈𝑚] ∩ 𝑈𝐵𝑞| (26) 

 

 

Figure 34: Graphical depiction of genetic algorithm workflow described in sub-

section 4.3.3. The left part describes the genetic algorithm itself, while the right part 

focuses on the fitness evaluation workflow. 
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genetic algorithm), the step of reproduction and the mutation are further detailed in sub-

section 4.3.3.4. 

4.3.3.3. Population Control 

To avoid possible loss of the best performing organism in each generation, I apply the 

elitism rule, which automatically preserves the best fitting organism into the next generation. 

Thus the evolution of fitness is monotonically increasing. 

To avoid stagnation of evolution due to too high homogeneity of the population, the 

saturation of population 𝜚 is calculated according to (27), where 𝑝𝑜𝑝𝑢 is the number of 

unique genomes in the population and 𝑝𝑜𝑝𝑡𝑜𝑡𝑎𝑙 is the total size of the population. If in any 

generation the 𝜚 is higher than 0,5 (i.e. less than half of the population is constituted of 

unique genomes), all the organisms are mutated with increased probability, thus introducing 

genetic diversity into the population. This is done with the exception of the best fitting 

organism, which is preserved from mutation. 

 

4.3.3.4. Crossover Operator 

The crossover operator serves to produce offspring of the actual population in order to 

propagate potentially benefit genes into the new generation. The standard one-point crossover 

approach is used here, where the genome of two organisms (parents) is split at random point. 

All genes beyond that point in either organism string are swapped so that both offspring 

receive the first part of the genome from their first parent and the second one from their 

second parent. Parents are selected by “Roulette wheel selection” method from (Holland, 

1992), where the probability of an organism being selected is proportionate to its fitness 

according to Eq. (28), where 𝑃𝑖 is the probability of the 𝑖-th organism to be selected as a 

parent. 𝑓𝑖𝑡𝑖 denotes the fitness of the 𝑖-th organism. 

 

𝜚 = 1 −
𝑝𝑜𝑝𝑢
𝑝𝑜𝑝𝑡𝑜𝑡𝑎𝑙

 (27) 

 

𝑃𝑖 =
𝑓𝑖𝑡𝑖

∑ 𝑓𝑖𝑡𝑗
𝑝𝑜𝑝𝑡𝑜𝑡𝑎𝑙
𝑗=1

 (28) 
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4.3.3.5. Mutation Operator 

The primary reason for the mutation operator is to maintain genetic diversity in the 

population in order to avoid local minima. The most common way of realization of mutation 

is to pick up a random gene of an organism and change its value randomly to another value 

from the range of possible values. 

In the population, beliefs are playing the role of organisms and interpretations are 

playing the role of genes. Application of the mutation operator would thus require a particular 

interpretation 𝑋(𝑢) = {𝑢, 𝐼𝑗 ⊆ 𝐼} of utterance 𝑢  to be changed randomly. However this is not 

acceptable, because this way the entire belief could lose its coherency. As a consequence, 

such organism could achieve only low fitness. This would be due to its lack of coherency 

with the real world and inherently incorrect interpretation of the world. Remember that in 

sub-section 4.3.2 beliefs are not produced randomly, but are carefully generated in a way that 

makes them coherent with the observed reality. 

Instead of making random changes in the genome, which would mostly lead to lose of 

fitness, I re-define the mutation in the following way. Let us mutate a particular 𝑋𝑖(𝑢) ∈ 𝐵, 

where 𝐵 is the belief constituting the currently processed organism. As the interpretation 

𝑋𝑖(𝑢) is defined as 𝑋𝑖(𝑢) = {𝑢, 𝐼𝑗 ⊆ 𝐼}, the mutation will induce changes of the set of 

features 𝐼𝑗 associated to interpretation 𝑋𝑖(𝑢) in the way that does not harm the coherency of 

the entire belief 𝐵. It is achieved by at first generating an auxiliary set of features 𝐼𝑎𝑢𝑥. This 

is a set of all the features that have been observed in presence of utterance 𝑢 from 𝑋𝑖(𝑢) but 

which are not contained in any other interpretation of the current 𝐵. In other words, 𝐼𝑎𝑢𝑥 is a 

set composed of “free” features and those that were previously rejected as being possibly 

impertinent. All of them, of course, are connected to 𝑢 by observation. Constructing the set 𝐼𝑗 

of 𝑋𝑖(𝑢) = {𝑢, 𝐼𝑗 ⊆ 𝐼} from members of 𝐼𝑎𝑢𝑥 ensures the entire belief 𝐵 remains still coherent 

with reality.  

Having the feature set 𝐼𝑎𝑢𝑥 ready, its random member is picked and placed into the 

set 𝐼𝑗. For all the other features in 𝐼𝑎𝑢𝑥 their average distance to members of 𝐼𝑗 is measured. 

Based on this distance they are either included into the 𝐼𝑗 or they are discarded as impertinent 

in a similar way features are distributed in Algorithm 5. Eventually the interpretation 

𝑋𝑖(𝑢) = {𝑢, 𝐼𝑗 ⊆ 𝐼} contains a new set 𝐼𝑗, which is different to the original one and thus the 

genome has been mutated while its coherency has been preserved. 
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4.4. Human-robot Interaction during Learning 

As showed in works from domains of linguistics and psychology (see e.g. (Waxman 

and Gelman, 2009)), human language is not a mere static set of “tags”, that we give to entities 

of the world around us, but it is a dynamic system, which influences the perception and which 

is at the same time influenced by the perception. An example of this flexibility has been 

reported in (Tomasello, 2003), p. 73: “For example, many young children overextend words 

such as dog to cover all four-legged furry animals. One way they home in on the adult 

extension of this word is by hearing many four-legged furry animals called by other names 

such as horse and cow”.  

Another important remark is that human beings learn both by observation and by 

interaction with the world and with other human beings. The former is captured in our system 

in the “best interpretation search” outlined in sub-section 4.3.2. It is a state resembling to 

human infants in pre-lingual age. The latter type of learning requires that the robot is able to 

communicate with its environment (as it is a case for a child with developed speech 

capabilities) and is facilitated by previous learning by observation, which may serve as its 

bootstrap. In the present approach, this learning by interaction is carried out in two manners 

implying two directions: human-to-robot and robot-to-human. 

Let us have a robot co-operating with its human counterpart. The first manner 

(human-to-robot) is employed anytime the robot interprets wrongly the world (due to 

incomplete knowledge about it, e.g. by bringing a “purple” mug when asked for a “red” one, 

provided that it has never encountered a “purple” thing before and thus it interprets it as a 

“red” one). If the human sees this wrong response, he provides the robot a new observation 

by uttering the desired interpretation (“purple” in our example) in presence of the wrongly 

interpreted features (i.e. the purple mug). The robot takes this new, corrective, knowledge 

about the world into account and searches for a new interpretation of the world (sub-section 

4.3.2), which would be conform to this new observation. 

The second manner (robot-to-human) may be employed when the robot attempts to 

interpret a particular feature. If the classifier trained with the current belief classifies the 

given feature with a very low confidence, this may be a sign, that this feature is a borderline 

example. In this case, it may be beneficial to clarify its true nature. Thus, led by the epistemic 

curiosity, the robot asks its human counterpart to make an utterance about the observation in 

question. If the robot's interpretation is not conforming to the utterance given by the human 

(robot's interpretation was wrong), this observation is recorded as a new knowledge and a 

search for the new interpretation of the world is started as in the previous case. 
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Using these two ways of interactive learning, the robot's interpretation of the world 

evolves both in quantity, covering increasingly more phenomena as they are encountered, and 

in quality, shaping the meaning of words (utterances) to conform with the perceived world. 

4.5. Generalization for Multimodal Data 

So far we have been interested in establishing the word-meaning relationship in an 

intelligent agent using one sensor only. In this section, this approach is going to be extended 

to multiple sensors. It should be noted here, that these sensors do not necessarily need to be 

the classical ones (camera, laser or ultrasound device) and we can work with soft-sensor. 

Thus, an agent equipped with a camera can work with several soft-sensors based on the 

camera image, such as sensors of color, shape, motion, egocentric position etc. It is in this 

context, that terms like “sensor” or “multimodal data” will be used henceforth. 

The situation, with which we are dealing in the case of multiple sensors, can be 

described by the following example. We have an agent perceiving through its camera a big 

yellow book on a shelf (along with other “impertinent” visual information) and a ping-pong 

ball. This view (observation) is accompanied by an utterance “big yellow rectangle” and 

“white small sphere” given by a human.  

Let us have this agent equipped by sensors of color, shape and size. The task of the 

agent now is not only to associate the appropriate feature (e.g. the RGB[242, 251, 0] value) to 

the correct utterance, which in this case would be “yellow”. Moreover he needs to decide, 

which utterances belong to which sensor to prevent a cross-talk situation in the genetic 

algorithm, i.e. trying to interpret a particular feature by an utterance that can never be 

associated with it. In our example this would be the situation of trying to interpret the square-

like shape feature by utterances like “yellow” or the round shape by “small”, which were in 

fact uttered in the presence of the mentioned features, but were not addressing them. 

4.5.1. Observing Features from Multiple Sensors at the Same 

Time 

Let us have an ordered set of sensors 𝑆 = {𝑠1, … , 𝑠𝑟}. To reflect the presence of 

multiple sensors in observations, I extend the definition of an observation from sub-section 

4.3.1 following Eq. (29): 
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It means that the human provides on each observation a set of sets of utterances (i.e. a 

set of phrases) {𝑈𝑚1, … , 𝑈𝑚𝑥} to accompany the set of sets of features {𝐼𝑙1, … , 𝐼𝑙𝑟}, each set 

from 𝐼𝑙1 to 𝐼𝑙𝑟 retrieved by one of the sensors from 𝑆 = {𝑠1, … , 𝑠𝑟}. Each set of utterances 

(each phrase) from 𝑈𝑚1 to 𝑈𝑚𝑥 is describing a particular subject on the scene. Following the 

example given earlier, we could denote seeing a ping-pong ball and a big yellow book on the 

same scene as an observation denoted by the following:  

𝑜 = {{𝐼𝑙1, … , 𝐼𝑙𝑟}, {{𝑏𝑖𝑔, 𝑦𝑒𝑙𝑙𝑜𝑤, 𝑟𝑒𝑐𝑡𝑎𝑛𝑔𝑙𝑒}, {𝑤ℎ𝑖𝑡𝑒, 𝑠𝑝ℎ𝑒𝑟𝑒, 𝑠𝑚𝑎𝑙𝑙}}}, provided that 

{𝐼𝑙1, … , 𝐼𝑙𝑟} would represent the set of all features extracted from the scene by each of the 

sensors. To address the cross-talk problem and to establish the word-meaning relation using 

multimodal data, the previously described approach is extended by a new layer of processing. 

The previously (sub-section 4.3.1) introduced concept of interpretation of an utterance 

defined an interpretation as 𝑋(𝑢) = {𝑢, 𝐼𝑗}. In a similar way as let us have an interpretation of 

a particular sensor 𝑠𝑡 ∈ 𝑆 defined as an ordered pair 𝑋𝑆(𝑠𝑡) = {𝑠𝑡, 𝑈𝑚}. This means that 

utterances from 𝑈𝑚 are all associated to a particular sensor 𝑠𝑡 and they describe linguistically 

different features, which can be found by this sensor. For example the set 𝑈𝑚 belonging to a 

shape-detecting sensor may contain utterances like “round”, “rectangular”, “triangular” and 

so forth. The union of all utterances associated to all sensors gives exactly the set 𝑈. On the 

other hand in order to function correctly, there is absolutely no need for the cognitive system 

to have each object fully qualified with respect to all its sensors. For example, if a robot has 

the capacity to perceive the color, sound and the tactile information, there is no need to 

require the tutor to qualify an object as “red, furry and clicking”. The qualification can be 

(and in most cases is) only partial. The tutor could e.g. say only that the object is “red”. The 

robot would then add all the missing perceptual categories to the object from its previous 

experience with other “furry” or “clicking” objects. 

4.5.2. Belief Generation and Co-evolution with Multiple Sensors 

Again similarly to the definition of a belief 𝐵 = {𝑋(𝑢1),… , 𝑋(𝑢𝑛); 𝑛 = |𝑈|} from 

sub-section 4.3.1, let us define a belief about multimodal data as an ordered set of 

interpretations of sensors, following Eq. (30). 

𝑜 = {{𝐼𝑙1, … , 𝐼𝑙𝑟}, {𝑈𝑚1, … , 𝑈𝑚𝑥}} (29) 
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Beliefs generated about appurtenance of each of the utterances from 𝑈 to a particular 

sensor can be generated in the manner similar to coherent belief generation procedure from 

sec. 4.3.2. 

We are thus searching for a belief 𝐵𝑆, which divides the set of 𝑈 among all existing 

sensors 𝑆 in the most coherent manner, i.e. in the manner with the lowest possible crosstalk. 

As lower crosstalk will generally lead to more accurate interpretations, the fitness of a 

particular belief 𝐵𝑆 can be safely defined as the best average fitness 𝑓𝑎 achieved in evolution 

for each single sensor using interpretation from 𝐵𝑆. Therefore I propose to run a co-evolution 

of several such beliefs. 

Each belief gives an environment for a genetic algorithm (sub-section 4.3.3), which is 

then run in the context of a particular sensor. The description of the mentioned genetic 

algorithm is modified so that given a 𝑋𝑆(𝑠𝑡) = {𝑠𝑡, 𝑈𝑚}, where each 𝑋𝑆 ∈ 𝐵𝑆, we try to 

interpret all features observed by sensor 𝑠𝑡 by using only utterances from 𝑈𝑚. As a result of 

this process, we obtain a belief 𝐵𝑆 showing which utterances are commonly associated to 

which sensor, and at the same time a theory 𝐵 for each sensor interpreting the observations 

made on it. Thus the word-meaning anchoring is achieved in in multimodal data. A schematic 

depiction of such co-evolution is shown on Fig. 35. Each box from the “co-evolution” field 

represents one complete genetic algorithm described in sub-section 4.3.3. 

It is possible that the approach of multilevel evolutionary algorithm presented 

recently in (Akbari and Ziarati, 2011) could be adopted or modified to be used in place of the 

aforementioned co-evolution process. This is a matter of further investigation. 

4.6. System Validation 

4.6.1. Simulation 

To evaluate the behavior of the described system, it has been implemented first in a 

simulated environment with a virtual robot. Then, it has been have deployed on a real 

humanoid robot and tested using complex real-world objects. Both experimental settings are 

described below. The approach is applied on the color names learning problem. In everyday 

𝐵𝑆 = {𝑋𝑆(𝑠1),… , 𝑋𝑆(𝑠𝑟); 𝑟 = |𝑆|} (30) 
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dialogs, people tend to describe objects, which they see, with only a few color terms (usually 

only one or two), although the objects in itself contains many more colors. Also different 

people can have slightly different preferences on what names to use for which color and all 

those aspects are highly varying across the cultures. Due to this, learning color names is a 

difficult task and it is a relevant sample problem to be used to test the present system. 

 

In the simulated environment, images of real-world objects were presented to the 

robot alongside with textual tags describing colors present on each object. The images were 

taken from the Columbia Object Image Library database (Nene, Nayar and Murase, 1996), 

which contains color images of 100 every-day objects taken from different perspectives, in 

total 1000 images. Five subjects (all fluent English speakers) were asked to describe each 

object in terms of colors as if they were describing it in a normal conversation. For coherency 

the choice of colors was restricted to “black, gray, white, red, green, blue and yellow”, based 

 

Figure 35: Schema of co-evolution during search of interpretation in case where 

multiple sensors are used. Symbols used are explained in text. 
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on the color opponent process theory (cf. (Schindler and Goethe, 1964)). The average number 

of colors per object given by the subjects was two. The tagging of the entire set of images 

was highly coherent across the subjects. In each run of the experiment, one tagged set coming 

from a random subject was chosen. 

 

In this experiment, the utterances (see sub-section 4.3.1) were given in the form of 

text strings as color terms extracted from the descriptions. Images were segmented by 

algorithm described in 3.4.1 and the average color of each segment was used as a feature. As 

for the classifier required in sub-section 4.3.3, a classical Bayesian classifier has been used. 

First, the available images of objects were divided randomly into two equally large 

sets, one for learning and the other for testing. After the learning took place, objects from the 

 

 

 

Figure 36: Upper: the WCS color table. Middle: interpretation made by the robot 

regarding each color present. Lower: the WCS color table interpreted by robot taught to 

distinguish warm (marked by red), cool (blue) and neutral (white) colors. 
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testing set were presented to the simulated robot. Each object was interpreted by a set of color 

names and the robot's interpretation was compared to the ground truth given by the human 

subject (see. Eq. (24)). The object was accepted as correctly interpreted if the robot's and the 

human's interpretations were equal. The rate of correctly described objects from the test set 

was approximately 91% in average with the robot fully learned. To allow for visual 

evaluation, a color table
11

 from World Color Survey (Kay et al., 2003) has been used. On Fig. 

36 (middle) a sample interpretation of the colors of the WCS table are given after the system 

was learned. Fig. 37 shows visualization of interpretations of several testing objects from 

COIL database made by our system after learning took place. 

 

To investigate the speed of learning, a series of 13 tests have been run. In the first 

test, the number of the objects in the training set was selected in the manner that it contained 

only one occurrence of each color. The second test contained two occurrences of each color 

and so forth. One half of the COIL objects (containing unused objects) formed the testing set. 

Each test was run ten times and the average values were plotted on the graph on Fig. 38. With 

one exposure, the system was capable to describe using correct terms only about 38% of the 

testing set. This number rises fast to approximately 80% after 5 or 6 exposures and then 

continues to rise slowly towards 90%. 

                                                      

11
 Available online on: http://www.icsi.berkeley.edu/wcs/data.html 

    

    
 

Figure 37: Several objects from the COIL database. The second row shows 

visualizations of interpretation of those objects by our system fully learned. 
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Finally, the same five subjects were asked to go again through the COIL image set, 

this time determining on each object, whether it contained warm colors (red, yellow, orange, 

...), cool colors (blue, green, ...) or neutral colors (white, gray, black, ...) or any combination 

of them. Selecting again randomly one half from the whole image set for training, the virtual 

 

Figure 38: Evolution of number of correctly described objects with increasing 

number of exposures of each color to the simulated robot. 

 

 

Figure 39: The humanoid robot alongside the objects used in experiments 

described in sub-section 4.6.2. 
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robot was required to learn to distinguish colors based on their temperature. In average 96% 

of objects were correctly described once the learning was finished. On Fig. 36 (lower) is 

presented an example of interpretation of the WCS color table done by the robot after 

learning took place. 

4.6.2. Experiment in Real Environment with a Humanoid 

Robot 

After verifying the approach in a simulated environment, it has been tested using a 

real humanoid robot
12

. Several experimental scenarios have been created to verify both the 

acquisition of knowledge and its use by the robot. The total of 25 every-day objects was 

collected for purposes of the experiment (see Fig. 39). They were randomly divided into two 

sets for training and for testing. 

The learning set objects were placed around the robot and then a human tutor pointed 

to each of them calling it by its name. Using its 640x480 monocular color camera, the robot 

discovered and learned the objects around it by the salient object detection approach I have 

described earlier in sub-section 3.4. Here, this approach has been extended by detecting the 

movement of the tutor's hand to achieve joint attention. This way the robot was able to 

determine what object the tutor is referring to and to learn its name. The tutor addressed to 

the robot in natural speech. The TreeTagger tool
13

 was used in combination with robot's 

speech-recognition system to obtain the part-of-speech information from situated dialogs. 

Standard English grammar rules were used to determine whether the phrase is demonstrative 

(e.g. “This is an apple.”), descriptive (e.g. “The apple is red.”) or an order (e.g. “Describe this 

thing!”). To communicate with the tutor, the robot used its text-to-speech engine. 

After learning the names of objects, those were presented randomly to the robot 

alongside of other objects. Then the tutor described each object in the view by saying e.g. 

“The handbook is black”. The robot was required to localize the object (e.g. “handbook”) 

among the presented objects based on the previous learning and to extract its color features 

along with the uttered information that the book was “black”. Then learning of the colors 

took place.  

                                                      

12
 A video capturing different parts of the experiment may be found online on: 

http://youtu.be/W5FD6zXihOo 
13

 Developed by the ICL at University of Stuttgart, available online at: 

http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger 
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To verify the results of learning, objects from the testing set were presented to the 

robot by the tutor, who then asked the robot to describe objects he was pointing towards (see 

Fig. 40). Using the same joint attention scheme, as described before, the robot extracted the 

object in question, interpreted its appearance (see Fig. 41 for visualization) and spoke aloud 

the colors it believes the object contains. When the robot described the object by wrong 

terms, the tutor corrected it by uttering the correct properties. In this case, the robot would 

add this information to the already gathered knowledge and use it in further learning. The 

tutor would latter verify whether the robot has assimilated correctly the new information by 

presenting the same object in new conditions. The last experimental scenario we used 

involved distinguishing objects of the same class based on their color. First, several objects of 

the same class (e.g. a “book”) were presented to the robot. Then, the robot was asked to 

locate a particular object among all others given its color (see Fig. 42). 

 

 

  

Figure 40: Left: the experimental setup. The tutor is asking the robot to describe 

the box he is pointing on. Left: the robot's view, with the object in question detected. The 

robots response was “It is yellow”. 

 

       

Figure 41: Two objects extracted from robot's surroundings. Right: the original 

image, left: features interpreted. For the “apple”, the robot's given description was “the 

object is red”. For the box, the description was “the object is blue and white”. 
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Figure 42: Images from a video sequence showing the robot searching for the 

book (1st row). Localizing several of them, it receives an order to fetch the one which is 

“red” (2nd row). The robot interprets colors of all the detected books and finally reaches 

the desired one (3rd row). The right column shows robot's camera view and visualization 

of color interpretation of the searched object. 
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4.7. Conclusion 

This chapter discusses details of realization of an epistemic curiosity driven high level 

cognitive system allowing a humanoid robot to learn in an autonomous manner new 

knowledge about the surrounding world. The system has been first described in a general 

manner. Then, in order to validate it, it has been applied on a concrete problem, i.e. 

autonomous learning of names of colors. This learning has been done based on independent 

observation of colored objects and from further interaction with humans in non-trivial 

conditions using real-world objects. 

Experimental results in simulated environment are provided and then the approach is 

verified on a humanoid robot in a real-world environment using every-day objects. However, 

it is pertinent to underline, that no constitutive part of the described approach is task-specific. 

Although in system validation the results obtained on the problem of learning of colors are 

presented, the approach is not tied to any particular type of features. Rather it provides a 

generic framework which allows learning of any kind of features … as far as there exists an 

appropriate classifier for them. As a consequence a robot may benefit from this versatility to 

acquire knowledge about physical qualities such as color, shape, size as well as about “non-

material” features such as spatial position relations (on the left, on the top, …) or names of 

types of motion (falling, rolling left, …). 

We have observed that using the described learning approach, the robot endowed with 

the present cognitive system was able to successfully anchor the meaning of uttered words to 

its perception. This was verified by learning basic color terms and by learning to distinguish 

color temperature. In both tasks, the system was able to achieve high success rate (91% and 

96% respectively) on the testing set. The robot's interpretations of colors from the WCS table 

were also close to human (see Fig. 36). 

The present approach exhibits two interesting properties found in human children 

learning. The first one is the ability to learn without a negative input, just by a mere 

observation. The second one is the capacity to achieve high percentage of correct 

interpretations after only a few exposures to the stimulus (see Fig. 38, the learning curve is 

steepest during first few exposures). Experiments with the real humanoid robot have 

confirmed the practicability of our approach in real-world environment. The robot was able to 

interact with the tutor in real time. 

At the current state I have provided validation results showing the robot is able to 

learn a single category or property at a time, (e.g. the color in utterances like “it is red”). In 

section 4.5 I lay down a basis for an extension of this system in order to learn multiple 
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categories at the same time and to distinguish, which of the used words are related to which 

category. This will be done by means of co-evolution of several instances of the system 

described in this chapter, each of them dedicated to a different category. The validation of the 

proposed extension will be a part of future work on this learning system. 





Chapter 5: Towards Autonomous Knowledge Acquisition in Real World Conditions 

127 

Chapter 5. Towards Autonomous Knowledge 

Acquisition in Real World Conditions 

5.1. Introduction 

In Chapter 2 a theoretical basis of my approach to autonomous acquisition of 

knowledge has been outlined and its concept has been presented. Through Chapter 3 and 

Chapter 4 solutions have been proposed to different aspects of this concept. Each of them has 

been validated separately in order to verify if they are capable to play their role it he 

envisaged cognitive system. In this chapter I am going to bring all the previously mentioned 

parts together in one functioning system and I will describe its application. Through the 

chapter, the design choices made in practical realization of the system, will be explained as 

well as results obtained by its deployment in real world conditions. Thus, this chapter is 

meant to provide an “all-in-one” realization description and validation of the entire system 

and to show how it contributes to research towards enabling fully autonomous knowledge 

acquisition capabilities in a robot. 

In the first part of this chapter, section 5.2, the NAO robot is presented. It is a 

humanoid mobile robot platform used in experiments throughout this work. It is pertinent to 

describe here its general properties and its particularities as they inherently influence the 

practical application of my work in real environment. In section 5.3 I describe algorithms and 

techniques that have been adopted in realization of the described system. The section 5.4 is 

dedicated to description of performance of the entire system in real world conditions. The 

chapter is concluded with section 5.5. 

5.2. NAO, the Humanoid Robotic Platform 

NAO is a humanoid robot manufactured and merchandised since 2004 by a French 

company Aldebaran Robotics
14

. This sub-section familiarizes the reader with this robot. 

                                                      

14
 Company website: http://www.aldebaran-robotics.com 
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5.2.1. Overall Description of the Platform 

Compared to other humanoid platforms like the HPR or Honda’s Asimo, the robot is 

relatively small: about 58cm in height with weight slightly exceeding 4kg. The hardware 

version of the robot used by our laboratory is V3 and the following technical details refer to 

this version. It has 25 degrees of freedom, resumed on Table 3. They enable the robot to 

walk, grasp small objects and turn its head in exploring the environment with sufficient 

freedom. 

For simulation purposes, a virtual version of Nao is available for the Webots 

simulation program, which was developed by Cyberbotics
15

. Basic simulation capabilities are 

offered also by Choreographe, an application shipped with the robot. Those were, however, 

used only in early stages of development and practically all the presented work has been done 

using the real robot.  

 

5.2.1.1. Sensors and Communication Devices 

Concerning the available sensors, the robot is equipped with two color CMOS 

cameras with resolution up to 640x480 pixels each in a non-stereo arrangement. One camera 

is on the front of the head and ensures the forward vision. The other one is mounted lower on 

the head and is covering the space around the feet of the robot that is unreachable by the main 

camera. Two-channel sonar is mounted into the robot’s chest and two infrared distance 

meters are mounted where the robot would normally have eyes. The robot also possesses a 

tactile sensor, bumpers and inertial sensors. To interact with humans, robot is equipped with 

two loudspeakers and a voice synthesizer capable of “text-to-speech” in English and French. 

This is completed with four microphones a speech recognition unit. The robot is depicted on 

Fig. 43 with important parts being annotated. 

                                                      

15
 Company website: http://www.cyberbotics.com/ 

   

 Head Arms Grasping Pelvis Legs 

DOF # 2 5 (2x) 1 (2x) 1 5 (2x) 
 

Table 3: Degrees of freedom of NAO, the humanoid robot 
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The NAO can operate in fully autonomous mode using its onboard AMD Geode 

500MHz processing unit to run programs and behaviors stored in its memory. Alternatively, 

it can be operated remotely from another computer via a network (WiFi or Ethernet) 

connection. 

 

5.2.1.2. Motion Control 

When discovering the environment, the robot cannot stay motionless, but it walks 

around to take a closer look to objects, search for an object or simply to follow a human tutor. 

For this reason the main principles of control of the robot’s walking will be very briefly 

presented here. 

NAO is capable of omnidirectional walk. The walk is stabilized using feedback from 

sensors placed in its joints and inertial sensors. This makes the walk robust against small 

disturbances and absorbs torso oscillations in the frontal and lateral planes. The robot is 

capable of walking on different floor surfaces such as carpet, tiles and wooden floors; 

     

Figure 43: NAO robot V3. Scheme adopted from Technical documentation 

provided by Aldebaran Robotics. 
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however the assumption is that the floor is flat. As a consequence the robot can have 

difficulties with walking on uneven surface. 

 

The robot’s walk control is using a simple dynamic model called Linear Inverse 

Pendulum. This model is inspired by the classical work of (Kajita and Tanie, 1995) and 

detailed e.g. in (Kajita et al., 2009). The model is solved using quadratic programming 

method presented in (Wieber, 2006). Each step is composed two phases: a double leg support 

and a single leg support phase. The double leg support time uses one third of the step time. 

The preview controller length is 0.8s. The walk is initialized and ended with a 0.6s phase of 

double support. More recently in (Gouaillier, Collette and Kilner, 2010) authors from 

Aldebaran research have presented an updated closed loop walk algorithm improving both 

the stability and speed of the walk. On Fig. 44 a graph is shown presenting three different 

walking patterns generated by omnidirectional walk control unit of NAO. 

5.2.2. Software and Hardware Architecture Employed 

5.2.2.1. Remote Processing Architecture 

As it has been said in sub-section 5.2.1.1, NAO possesses an on-board CPU AMD 

Geode 500MHz. However its processing speed and its limited memory do not allow real-time 

     

Figure 44: Omnidirectional walk of NAO showing different walking patterns. Red 

is the left leg, green is the right leg. Adopted from Tech. doc. from Aldebaran. 
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execution of computationally heavy tasks such as many image processing and machine 

learning algorithms. This has determined the choice of remote processing architecture. As a 

consequence all computationally demanding tasks are executed on a remote full-featured PC 

and the input and the output is communicated via network. An appealing option would be to 

use a wireless connection. However the NAOqi
16

 API the Aldebaran is currently providing 

uses a transmission protocol which has limited efficiency on some data structures, such as 

images. Such transfers consequently require a large bandwidth and this demand cannot be 

satisfied by standard WiFi transfer. For this reason during most of the experiments with NAO 

it had to be connected by an Ethernet cable to the remote processing station. 

 

5.2.2.2. Wrapper Class and Framework for Robot Programming 

The entire development has been done in C# on .NET platform. To facilitate 

implementation of the previously proposed algorithms on the NAO robot and to enable an 

efficient use of 3
rd

 party data structures and programs, a wrapper class “CSharpNAO” has 

been developed over the standard NAOqi API. This wrapper class hides some lower-level 

                                                      

16
 The application programming interface of NAO, the documentation can be found online on: 

http://developer.aldebaran-robotics.com/doc/1-12/naoqi/index.html 

     

Figure 45: Software architecture used for implementation of the work presented in 

this thesis. 
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aspects of the NAOqi and facilitates tasks like speech recognition, robot walk command or 

image processing (done using EmguCV
17

, a C# wrapper of OpenCV). 

Although there exist software frameworks for robot software development such as 

ROS
18

, they could not be used in context of this work due to existing incompatible 

dependency software. Instead I have developed a framework “mAPPle” based on generic 

programming techniques and webserver architecture. Wrapper classes for other robots used 

by our laboratory have been developed too. The framework allows interfacing with various 

applications including Matlab via HTTP protocol. It has been used for other research projects 

in our laboratory as well, for example for the one presented in (Wang et al., 2011). The entire 

software architecture is depicted on Fig. 45. 

5.3. Techniques and Algorithms Used 

In the following, I am going to remind the reader some of the most prominent 

techniques and algorithms, I have been using, and which were not mentioned in the previous 

text along with basic principles of their operation. It is also pertinent to make such 

clarification on this place, because it is in this chapter where I report on practical 

implementation of my research work and the nature of the techniques and algorithms used 

has obviously an influence on the behavior of the system as a whole. 

5.3.1. Multilayer Perceptron 

A multilayer perceptron (MLP) is a class of artificial neural networks (cf. (Haykin, 

2008)) consisting of several interconnected layers of perceptrons (Rosenblatt, 1957). An 

MLP is able to distinguish data, which are not linearly separable (Barron, 1994) and is 

inherently capable of approximation of any continuous function from an interval of the real 

numbers into the interval of [-1,1] with arbitrary precision, as shown in (Auer, Burgsteiner 

and Maass, 2008). 

Each layer of MLP consists of artificial neurons (cf. (McCulloch and Pitts, 1988)), 

which have inputs, outputs and an activation function much like their biological counterparts. 

A mathematical model of a single neuron with a sigmoidal activation is described by Eq. 

                                                      

17
 Available on: http://www.emgu.com 

18
 Available on: http://www.ros.org/wiki/ 
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(31). 𝓎𝑘 stands for the output of the 𝑘-th neuron, function 𝒮 is the activation function, 𝑁 is 

the number of inputs of the neuron, 𝑤𝑖 and 𝑥𝑖 are the weight of the 𝑖-th input and its value 

respectively. 

 

Neurons in an MLP are organized into layers. Neurons of N-th layer are not 

interconnected, but they take all their inputs from the (N-1)-th layer and produce their outputs 

to the (N+1)-th layer. Inputs of the first layer are connected to inputs from the environment; 

outputs of the last layer are considered as output of the entire neural network and can be 

further post-processed. In operation mode, inputs are provided to the first layer and for each 

of the input neurons their 𝓎 is computed following Eq. (31). This 𝓎 serves in turn as the 

input of the second layer and so forth until the output of the last layer is not calculated. This 

process is called feed-forward as there are no recurrent or backward connections in the 

network. 

In this work I use neuroevolution for adjusting neural network weights, while keeping 

a fixed network topology. The technique is roughly inspired by the work of (Stanley, 

D'Ambrosio and Gauci, 2009) and the one of (Stanley and Miikkulainen, 2002). The choice 

of this approach has been made due to the nature of the problems treated here. Regarding 

problems discussed in sub-section 3.6.4, it would be very difficult to create a well-balanced 

training set of input-output pairs. Instead of it the performance of the neural network is 

measured, which can be done easily, and then this performance is converted into fitness value 

for the genetic algorithm. 

5.3.2. Orientation of Robot in Environment 

5.3.2.1. Obstacle Avoidance 

When exploring the environment and gathering new knowledge about it, the robot is 

often required to move around. A basic capacity of orientation in the environment is thus 

necessary. Capacities needed in this context are obstacle avoidance and determination of 

𝓎𝑘 = 𝒮 (∑(𝑤𝑖𝑥𝑖)

𝑁

𝑖=1

) 

𝑤ℎ𝑒𝑟𝑒 𝒮(𝑥) =
1

1 + 𝑒−𝑥
 

(31) 
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distance to objects. This has to be done using only the NAO’s monocular vision as the sonar 

and infrared sensors of the robot are not completely suitable for this task. 

 

To resolve the obstacle avoidance problem, I have adopted a technique based on 

ground color modeling. Color model of the ground helps the robot to distinguish free-space 

from obstacles. The approach is loosely inspired by the work presented in (Hoffmann, Jüngel 

and Lötzsch, 2004). An assumption is made that obstacles repose on ground (i.e. overhanging 

and floating objects are not taken into account). With this assumption the distance of 

obstacles can be inferred even from monocular camera data. The approach of distance 

inference will be detailed in the next sub-section. On Fig. 46 (adopted from (Hoffmann, 

Jüngel and Lötzsch, 2004)) an example of obstacle detection results using ground color 

model and monocular vision is shown. 

5.3.2.2. Inference of Distance and Size using Monocular Vision 

When vision is used to estimate the 3-D model of the scene, techniques like stereo-

imaging or structure-from-motion are the usual choice (for an overview on 3-D vision see 

(Daniilidis and Eklundh, 2008)). With a static monocular camera, on the other hand, it is 

impossible to recover the distance and the size of objects seen on the scene. To enable this 

capacity, an additional knowledge is needed. 

In (Ramík, Sabourin and Madani, 2010) some aspects of distance estimation from a 

static monocular camera have been mentioned. I have developed the approach presented there 

in order to give the robot the capacity to infer distances and sizes of surrounding objects. This 

is achieved by making the following assumptions: 

     

Figure 46: Left: robot’s vision with obstacle and ground detection superimposed. 

Right: map of obstacle around the robot.  
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 Objects repose on the ground. However inference of distance and size of objects 

superposed on another object is also feasible after the height of the bottom object 

has been estimated. 

 Height and tilt of the camera is known. This is a reasonable assumption as this 

information can be gathered from robot’s technical documentation and from its 

internal state sensors. 

 Camera parameters are known. The angle of camera’s field of view and 

resulting image size in pixels can be obtained from robot’s documentation. 

 

 

Knowing the position of the camera in space, it is possible to estimate the distance 

and the size of objects on the image in the way depicted on Fig. 47. The height of the camera 

is denoted by ℎ𝑐𝑎𝑚, 𝑑𝑜𝑏𝑗 and ℎ𝑜𝑏𝑗 (all in meters) stand for the distance of the object and the 

height of the object respectively. 𝜏 (radians) is the tilt of the camera, 𝜑𝑓𝑜𝑣 (radians) is the 

field of view. ℎ𝑦 (pixels) is the height of the object on camera image, Δ𝑦 (pixels) is the 

distance of the bottom of the object from the middle of the image, which is at the same time 

    

Figure 47: Distance inference from known camera spatial position using 

monocular camera. Symbols used are explained in text. 
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projection of the tilt angle of the camera to the image. ℎΩ (pixels) denote the height of the 

camera image Ω. 

Calculation of 𝑑𝑜𝑏𝑗 and ℎ𝑜𝑏𝑗 from given camera height ℎ𝑐𝑎𝑚, field of view 𝜑𝑓𝑜𝑣 and 

camera tilt 𝜏 and from known image height ℎΩ and object apparent height ℎ𝑦 and position Δ𝑦 

is done as shown on Eq. (32), (33) and (34). The expression 
𝜑𝑓𝑜𝑣

ℎΩ
  in Eq. (32) is the number of 

radians per pixel of the image. 𝛾1 and 𝛾2 then stand respectively for the angle between the 

vertical and the line of sight to the lower and upper boundary of the object. 

 

 

 

Calculation of width of the object is analogous to the calculation of the height or it 

can be derived from ℎ𝑜𝑏𝑗 and proportions of the object on image in pixels. The calculations 

presented above are simplified as they do not take into account picture distortion due to 

projection through lenses (for a discussion on this problem see (Fisher and Konolige, 2008)). 

However, this does not cause any major detriment of estimation precision as the used camera 

does not use wide-angle lenses and the image distortion is only minor. 

A similar approach to the one described here has been independently presented in 

(Hoiem, Efros and Hebert, 2008), but with some additional techniques like viewpoint 

discovery. 

5.3.3. Human-robot Verbal Communication 

For knowledge transfer between a human and a robot a suitable communication 

channel is necessary. The choice of verbal communication is obvious as it is arguably the 

most natural way for humans to share their thoughts and their knowledge. In order to enable 

𝛾1 = 𝜏 −
𝜑𝑓𝑜𝑣

ℎΩ
(Δ𝑦) 

𝛾2 = 𝜏 −
𝜑𝑓𝑜𝑣

ℎΩ
(Δ𝑦 + ℎ𝑦) 

(32) 

 

𝑑𝑜𝑏𝑗 =
sin 𝛾1 ℎ𝑐𝑎𝑚

sin (
𝜋
2 − 𝛾1)

 (33) 

 

ℎ𝑜𝑏𝑗 =
sin(𝛾2 − 𝛾1) 

sin(𝜋 − 𝛾
1
)
√𝑑𝑜𝑏𝑗

2 + ℎ𝑐𝑎𝑚
2
 (34) 
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verbal communication capabilities in a robot, there must be at least two requirements 

fulfilled: a hardware support present in the robot (i.e. microphones and loudspeakers) and a 

software support (a text-to-speech generator and automated speech recognition). In NAO 

robot both hardware components are present, as described in sub-section 5.2.1.1. For the 

software part, it is equipped by text-to-speech module and automated speech recognition 

developed by Nuance
19

. They are both exposed on NAOqi API. 

Another part of the problem of human-robot verbal communication is the 

understanding of what the human is saying. The product of speech recognition is a string 

containing words heard by the robot. To obtain the important information from the string, e.g. 

the subject and object of the phrase or the verb, a syntactic analysis is necessary. To perform 

syntax analysis, TreeTagger
20

 tool is used. TreeTagger is a tool for annotating text with part-

of-speech and lemma information. On Table 4 a simple English phrase is shown along with 

syntactic analysis output of TreeTagger in form of tokens. The “Part-of-speech” row gives 

tokens explanation
21

 and the “Lemma” row shows lemmas output, which is the neutral form 

of each word in the phrase. This information along with known grammatical rules for 

creation of English phrases may further serve to determine the nature of the phrase as 

declarative (“This is a box.”), interrogative (“What is the name of this object?”) or imperative 

(“Go to the office!”). It can be also used to extract the subject, the verb and other parts of 

speech, which are further processed in order to motivate the appropriate response action in 

the robot. 

Algorithms used by the TreeTagger tool are based on the work published in (Schmid, 

1994) and (Schmid, 1995). 

 

                                                      

19
 Company website: http://www.nuance.com 

20
 Available online at: http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/ 

21
 Documentation for English tokens is available online on: 

 http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/Penn-Treebank-Tagset.pdf 

  

Phrase Robots are our friends 

Tokens NNS VBP PP$ NNS 

Part-of-speech noun, plural verb, pres. t. possessive pron. noun, plural 

Lemma robot be our friend 
 

Table 4: A sample English phrase and its corresponding syntactic analysis output 

generated by TreeTagger.  
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In spite of its usefulness, syntactic analysis only cannot provide sufficient information 

in a number of cases. Think about a situation, where a human says to the robot “go to the 

office”. Syntactic analysis may result into an order (“go”) and a place (“office”). This may be 

related by the robot to an entity on its map and the robot can plan its path to the office and 

finally get there. Consider on the other hand this counter-example. A human is pointing 

towards the office and says “go there”. With syntactic analysis done, the meaning of “there” 

is still difficult to resolve as it is unrelated to any physical entity of the world. This task of 

symbol resolving requires additional information. In this case it is the visual information 

about in which direction the speaker was pointing while speaking. This problem is addressed 

in works covering joint attention and situated speech, c.f. (Roy and Mukherjee, 2005). As it 

has been mentioned in sub-section 4.6.2, I use a hand detection algorithm and couple it with 

the object detection algorithm in order to provide this supplementary information. When the 

robot is unable to resolve a particular phrase, it recourses to this joint attention mechanism as 

shown of the flow diagram on Fig. 48. 

Phrases the robot uses to communicate with the tutor are generated from templates 

that take keywords from the context of the communication as parameters. The approach is in 

some of its aspects inspired by ELIZA, the influential artificial agent processing natural 

language as a chatterbot described in (Weizenbaum, 1966).  

     

Figure 48: Flow diagram of communication between a robot and a human which 

is used in this work. 
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5.4. Autonomous Knowledge Acquisition by Robot in 

Real Environment 

Previous sub-sections have discussed all the techniques implicated in application of 

our work to the real world. Having accomplished this, we can finally proceed to description 

the environment used and of the performance and the behavior of our system. 

5.4.1. Environment Description 

Although the NAO humanoid robot is far smaller than an average human, the 

decision has been taken to employ it in a human-sized environment for the sake of realism. 

For practical reasons we have chosen to deploy it in an office environment on the site of our 

university, which bring us several benefits. Most importantly it is the fact that we have 

control over the conditions. It allows us to use different light sources such as direct and 

diffused daylight or artificial illumination and observe how robust the behavior of our system 

is in changing conditions. Besides it is a readily available common kind of environment, in 

which future operation of companion (humanoid) robots is very likely. It also allows us to use 

the existing networking infrastructure for communication between the robot and the remote 

processing platform. 

 

On Fig. 49 two pictures are shown capturing the office room in which we have 

deployed NAO, the humanoid robot with our system. Different everyday objects have been 

      

Figure 49: Two photos showing the robot in a real office environment. Some 

every-day objects like books, bottles and product boxes were added in order to enrich the 

environment by new visual stimuli. 
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distributed in the environment in different manners. The reason for this was to increase the 

number of possibilities of the robot to learn and to interact with the environment. Most of the 

objects that have been used are depicted on Fig. 39 in section 4.6.2. Varying intensity of 

illumination in different parts of the room as well as slightly glossy floor causing reflections 

made the tasks involving camera image processing challenging. 

 

5.4.2. Scheme of System Operation 

This sub-section aims to explain the composition of the entire system and the way in 

which its different parts interact. On Fig. 50 the composition of the system is depicted. Please 

note that this is a concretized version of the general diagram provided on Fig. 7 in Chapter 2. 

It is split into five main units (Communication Unit, Navigation Unit, Low-level Knowledge 

Acquisition Unit, High-level Knowledge Acquisition Unit, Behavior Control Unit), which are 

explained in following sub-sections. Most of the main units are composed of smaller 

processing units, which were mostly subject of description in previous chapters and for this 

reason their nature is just briefly reminded while making reference to their corresponding part 

 

Figure 50: Composition of the entire system in deployment. Each box 

corresponds to a processing unit described in text. 
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of text. Fig. 50 contains also parts marked by dark-orange rectangles. Those parts represent 

hardware units with whose units of the system are interfaces. 

5.4.2.1. Communication Unit 

The Communication Unit has been outlined in sub-section 5.3.3. It has an output 

communication channel and an input communication channel. The output channel is 

composed of a Text-to-speech engine which generates human voice through Loudspeakers. It 

receives the text to say from the Behavior Control Unit. The input channel takes its input 

from a Microphone and through an Automated Speech Recognition engine and the Syntax 

and Semantic Analysis it provides the Behavior Control Unit labeled chain of strings 

representing the heard speech. It does so with the aid of visual cues from the Joint Attention 

Analysis. It also provides its outputs to the High-level Knowledge Acquisition Unit, where it 

is used in process of generation of beliefs about the world (see sub-section 4.3.1). 

5.4.2.2. Navigation Unit 

The purpose of this unit is to allow the robot to position itself in space with respect to 

objects around it and to use this knowledge to navigate in the environment. Its sub-unit for 

Spatial Orientation takes its input from the camera and from the Object Recognition sub-unit 

from the Low-level Knowledge Acquisition Unit. It operates using the approach described in 

sub-section 5.3.2 and feeds the Behavior Control Unit with data about navigable space and 

distances to different objects. The Path and Motion Planning sub-unit supplies Actuators with 

command signals. Those are used to accomplish what is required by the Behavior Control 

Unit in order to go towards or to avoid certain objects. 

5.4.2.3. Low-level Knowledge Acquisition Unit 

This unit ensures gathering of knowledge on lower levels of semantics, such as 

detection of salient objects (by the Salient Object Detection sub-unit) and their learning and 

subsequent recognition (in the Object Recognition sub-unit). Those activities are carried out 

mostly in an “unconscious” manner, i.e. they are run as an automatism in “background” while 

collecting salient objects and learning them. The learned knowledge is stored in Long-term 

Memory for further use.  
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The “lower level of semantics” means that the knowledge extracted on this level bears 

somewhat less semantic information if compared to outputs of the High-level Knowledge 

Acquisition Unit. The knowledge here is bound mostly to visual features without any link to 

linguistic terms describing it. In other words using this unit the robot acquires an animal-like 

capacity of learning objects and e.g. finding them again in different conditions, which means 

it has built certain inner representations of them. However it does not give the robot the 

capacity to communicate this knowledge to humans. This lower level is important for two 

reasons: it enables lower cognitive level actions like object recognition and it provides 

valuable features for the High-level Knowledge Acquisition Unit (see the connection to the 

Multimodal Features Extraction sub-unit). 

As this unit is one of the key parts of the entire system, most of the Chapter 3 has 

been dedicated to description of its principles and its operation. 

5.4.2.4. High-level Knowledge Acquisition Unit 

The High-level Knowledge Acquisition Unit is the place where outputs from other 

units (prominently the Low-level Knowledge Acquisition Unit for its features output and the 

Communication Unit for its linguistic output) are combined together and where high-level 

semantic representation is derived from them. Unlike the Low-level Knowledge Acquisition 

Unit, this unit represents conscious and intentional cognitive activity much like a baby which 

learns from observation and from verbal interaction with adults about the world and develops 

in this way its own representation of the world. 

The complete structure of the unit is presented in Chapter 4, where other important 

details about functioning of the unit are provided. For the sake of readability this unit is 

depicted on Fig. 50 only by two sub-units. The first one is the Multimodal Feature Extraction 

sub-unit. It is responsible for extraction of useful features from the linguistic input from the 

Syntax and Semantic Analysis sub-unit and of features derived from the vision input. It 

should be emphasized that on the place of the vision input there could be any sensor or a set 

of different sensors as discussed in section 4.7.  

The second sub-unit is called World Interpretation. It is presented in detail in section 

4.3 and following. Its main role is to develop a high-level (semantic) representation of the 

world based on past sensory experience and on the linguistic input and interaction with 

human tutor (see section 4.4). The sub-unit is connected to long-term memory, where the 

gathered sensory experience and the acquired knowledge are stored for further use. 
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5.4.2.5. Behavior Control Unit 

This unit plays the key role of a coordinator among other units of the system. It 

directs data flows and issues command signals for other units. Also, as its name suggests, it 

controls the behavior of the robot and alternates it in order to respond properly to external 

events. 

On Fig. 51 the Behavior Control Unit (BCU) operation is depicted in form of a 

flowchart. Some of the boxes of the flowchart are filled with colors corresponding to one of 

the four main units. This is to indicate that the particular unit is involved in the operation 

described by the box.  

 

The BCU operation starts with initialization of all the units and with starting of their 

proper operation cycle. Then, data about the environment from the Navigation unit is 

gathered and the robot starts moving through the environment in order to explore it. This 

 

Figure 51: A flowchart representing the Behavior Control Unit operation. Color 

of boxes indicates which of the four main units is participating in each particular step. The 

processing logic is explained in text. 
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could be considered “idling around” or “free exploration” and satisfying its own curiosity in 

moments when the robot has got no particular order. If a new object is found, the robot 

attempts to ask somebody about the object in order to learn more knowledge about it. This 

behavior cycle breaks when an input from the tutor is received, be it a response to a robot’s 

enquiry or the tutor’s proper intention to interact with the robot. Remember that the tutor 

could be any human willing to interact with the robot while possibly sharing his own 

knowledge.  

If a (vocal) input is received, the robot tries to resolve symbols used in the input. 

Consider the input stating “Can you tell me, what the red thing over there is?” The symbols 

used in the phrase would be “red”, “thing over there”. The BCU would receive an input from 

the High-level Knowledge Acquisition Unit saying the concept of “red” is already known, it 

would receive an input from the Communication Unit resolving the joint attention problem of 

“over there” and finally the Low-level Knowledge Acquisition Unit would say that the object 

is not yet in its long-term memory and thus it is unknown to it. At this stage, the symbol 

cannot be resolved and the BCU will initiate a behavior directed to get information about the 

unknown symbol (i.e. about “the red thing over there”) possibly by asking somebody about it 

by saying “Please, tell me what is the name of this object”.  

This “curious” behavior would also be initiated if all the symbols were resolved, but 

some of them without a sufficient certainty. Imagine the robot had seen very few red things 

so far and the concept of “red” was anchored with high uncertainty. In this case, the robot 

could engage in a behavior trying to refine its knowledge by asking “Sorry, I am unsure about 

what is ‘red’, could you show me some more objects that are red”. Both behaviors described 

here are intended to drive the robot towards enriching and enhancing its knowledge about the 

world, which has been discussed in section 4.4. 

If all symbols are known with a sufficient certainty, the input from the tutor is further 

processed. If it is an affirmative phrase, i.e. it contains a knowledge explicitly expressed like 

in the phrase “The book is heavy”, it is extracted and the robot’s inner representation of the 

world is updated. If the phrase is a question, it is replied using symbols resolved earlier. If it 

is an order, it is executed. In case the type of phrase could not be decided (possibly a 

grammatically incorrect or incoherent phrase), the robot asks for a reformulation of the input. 

The same happens if the phrase is beyond the robot’s understanding, which would be most 

likely due to limited vocabulary or comprehension of the robot. 

When interaction is finished the BCU falls back to the “free exploration” behavior 

until new interaction is initiated from the side of the robot or of the tutor. 
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5.4.3. System Behavior and Outcomes 

In the following sub-section different aspects of the behavior of the present cognitive 

system in various stages of its operation will be described. 

5.4.3.1. Free Exploration 

As mentioned in sub-section 5.4.2.5, the system starts with a free exploration 

behavior. The robot freely navigates through the environment and tries to learn by 

observation about it. This behavior is depicted on Fig. 52. On its left part the robot is shown 

in its environment while walking around. The yellow arrow indicates approximately its 

motion in the free space between sofas during exploration. As described in sub-section 

5.4.2.3, the Low-level Knowledge Acquisition Unit is operating and it extracts visually 

important objects from the environment. 

 

On Fig. 53 some of objects discovered during exploration are shown. Note that 

varying quality of the samples is caused by different distance from which they were captured 

resulting in different resolution of the extracted object on the image. Color tone and contrast 

of images varies due to the fact that they were captured from different viewpoints as the robot 

 

Figure 52: NAO the humanoid robot during free exploration behavior (on the 

left). The red arrow indicates robots trajectory. Behind the robot the operator is holding 

robot’s cable for security reasons. On the right four sample views from the robot’s camera 

taken during the exploration are presented. 
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was walking and looking around. As a result, automatic white balance and sensitivity was 

applied causing slight differences in the appearance of objects. 

 

5.4.3.2. Interaction with Tutor 

At one moment the “passive” learning-by-observation behavior is interrupted and the 

robot engages in a dialog with the tutor in order to learn more about objects it has seen during 

its exploration of the environment. The robot shares with the tutor its knowledge about the 

objects, which is merely limited to whether it had or had not seen them before during the 

exploration. The tutor in turn shares some of his much complete knowledge about the object 

with the robot. A sample of such a dialog follows, accompanied by Fig. 54 where two 

snapshots from two stages of the dialog are shown: 

 Robot: I have finished the exploration and I have seen some interesting objects 

here. Could you tell me about them? 

 Human: [takes a first-aid-kit and points to it, Fig. 54 left] Have you seen this? 

 Robot: Yes, I have seen this, tell me what is it? 

 Human: This is a first-aid-kit! 

 Robot: OK, I will remember that this is a first-aid-kit. [… and learns this new 

information] 

 Human: It is red and white. 

 

Figure 53: Various objects captured and extracted from different points of view 

during free exploration of the environment. 
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 Robot: I am learning the red and the white. [… takes the features and 

learns/improves the concepts of “red” and “white” as in sub-section 4.6.2] 

 Tutor: [draws from his pocket a teddy-bear, which the robot had not seen 

previously, Fig. 54 right] Have you seen this? 

 Robot: No, I haven’t seen this yet. Tell me, what is it? [… and learns the visual 

appearance of the new object, the teddy-bear] 

 Tutor: This is a teddy-bear and it’s color is blue. 

 Robot: OK, I will remember it. [… links the appearance to the name “teddy-bear” 

and learns its color as in the previous case] 

 Tutor: [places the first-aid-kit somewhere in the environment] Search for the 

first-aid-kit! 

 Robot: I am searching the first-aid-kit. [… resolves that it knows what is the first-

aid-kit and starts exploration behavior while actively searching for it using the 

knowledge it has learned about it before] 

 

This dialog sample shows how the robot and the tutor communicate on different 

subjects. First the robot learns the name of an object it has previously seen, but did not know 

the name. Then it anchors two terms for colors, “white” and “red” using features from the 

visual appearance of the first-aid-kit. Then it encounter a new object, that the tutor shows, a 

teddy-bear, and the robot learns both its visual appearance and its name and ultimately it 

anchors a new color term, “blue”. Finally thanks to the newly learned knowledge the robot is 

able to respond properly to the order “Search the first-aid-kit!”. 

The communication can be, of course, much trickier as in the following example, 

when the robot has learned to associate the term “book” with several different books. The 

tutor asks the robot to fetch a book and further specifies that he is interested in the red one. 

The robot interprets features of all the books it sees around and evaluates which one is fitting 

the concept of “red” which the robot has learned previously. Based on this interpretation the 

robot fetches the book it believes to be red.  

 Tutor: Fetch a book. 

 Robot: [looks around] I can see two books, which one should I fetch? 

 Tutor: Fetch the red one. 

 Robot: [resolves the visual appearance of both books based on its current 

understanding of the term “red” and goes towards it] OK, I have found the red 

book and I am fetching it. 
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Figure 54: Interaction of the tutor and the robot on subject of things the robot had 

or had not seen during its exploration. Left: learning the name of a previously seen object 

(a first-aid-kit). Right: learning the visual appearance and the name of a completely new 

object (a teddy-bear). 

 

  

  

Figure 55: Two different illumination conditions applied while the robot was 

searching for the same object. Top: external view on the environment. Bottom: robot’s 

proper view through the camera. Left: direct artificial illumination (causing reflections). 

Right: Natural ambient light illuminating the room through the window. A cloudy day. 
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5.4.3.3. Different Illumination Conditions 

Robustness to changing conditions is one of the key parameters of any system 

deployed in real environment. Here it is described how the system performs in changing light 

conditions. Fig. 55 shows two different settings of illumination. One is the natural ambient 

light (right); the other is artificial illumination from ceiling (left). It is clearly visible that the 

later one is causing reflections on floor and glossy objects like the one the robot is searching 

for (a blue box of milk).  

Apart of this, the robot’s camera is obviously having difficulties with white balance 

for this particular color temperature. This is alternating the color balance, rendering the entire 

image yellowish. Both effects combined make this illumination particularly challenging. On 

the other hand the left part of Fig. 55 shows conditions of natural ambient illumination of the 

environment. Due to cloudy weather the amount of light coming to the room was insufficient 

and the robot’s camera was producing images with significantly more noise and with a bluish 

tint. 

Although the system was tested several times in such greatly varying conditions of 

illumination, no visible impact on the behavior of the system itself has been observed and the 

robot was fully able to pursue its normal cycle of operation. 

5.5. Conclusion 

The purpose of this chapter was to “close the loop” of design of the system presented 

here and to show practical aspects of its deployment in real conditions and its behavior. The 

reader was first familiarized with NAO, the humanoid robotic platform used in the 

deployment. Then, in the next section, foundations of some of the most important techniques 

used were reminded to the reader. The aim of this was to further enlighten the design choices 

that have been made and the influence that the nature of those methods have to the behavior 

of the system as a whole. Then the scheme of the system with regard to each of its unit has 

been explained. Some concrete examples from the deployment have finally been given in the 

last section. 

In this chapter all the constitutive parts of the system were put together and operated 

as one structure. This has been successful and all units of the system were effectively 

collaborating in acquiring high-level semantic knowledge from unstructured data from the 
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environment. The system in its complete state has shown that it is capable of fulfilling tasks 

for which it was designed.  

A video showing different aspects of what has been described in this chapter is 

available online
22

. It captures the system’s operation in a real office environment and it 

completes videos shown in sub-section 3.7.2
23

 and in sub-section 4.6.2
24

. 

                                                      

22
 http://youtu.be/Y_JM0KfJb8Q 

23
 http://www.youtube.com/watch?v=xxz3wm3L1pE 

24
 http://youtu.be/W5FD6zXihOo 
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General Conclusion 

Conclusion 

Autonomous machine cognition is an important, yet extremely difficult problem. Its 

importance for conception of a true autonomy for future intelligent systems, including 

humanoid robots, has been discussed in the Introduction to this thesis. The difficulty of this 

problem comes from multiple sources. First, it is due to the complexity and incessant change 

present in the real world, which is thus difficult to capture or model. Secondly, the nature of 

machines and their function is fundamentally different from the nature and the function of 

human cognitive apparatus. It is thus a major challenge to reunite these two entities so 

different in their essence in a way which would allow a seamless knowledge transfer from 

one to the other. 

In order to address the problem of machine cognition, different methods have been 

developed, approaching it from different points of view or addressing its particular aspects. A 

representative sample of existing methods, that in some way cope with this problem, have 

been provided in Chapter 1. 

In this thesis, in order to contribute to development of autonomous machine 

cognition, the way I have taken reposes on the assumption that it is the curiosity which 

motivates a cognitive system to acquire new knowledge. Further two distinct kinds of 

curiosity are identified in conformity to human cognitive system. On this I build a two level 

cognitive architecture. I identify its lower level with the perceptual saliency mechanism (cf. 

Chapter 3), while the higher level performs knowledge acquisition from observation and 

interaction with the environment (cf. Chapter 4). The interaction also includes interaction 

with humans. This interaction is crucial for forming of human-like concepts in the mentioned 

bio-inspired cognitive system; however it is the robot who is the principal actor of the 

learning. 

Constitutive parts of this system, i.e. both the low-level and the high-level cognitive 

units, have been separately tested. This has been done both in a virtual environment via 

simulations and through experiments in real world. Results of these partial validations have 

shown that each of the parts separately can be efficiently applied to the problem areas they 

were designed for. In particular, the algorithm for salient object detection, which has been 
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developed in order to realize the low level (perceptual) curiosity mechanism, is shown to be 

superior to other comparable contemporary approaches in terms of processing speed and 

correctness of its output. Equally, on the higher cognitive level of the system, which realizes 

the mechanism of epistemic curiosity, the presented approach has shown the capacity of 

acquisition of high lever knowledge from low-level features. Notably it has shown its 

capacity to acquire the desired knowledge on higher rate, i.e. needing fewer exposures to the 

subject, than other comparable approach recently published. 

Finally the entire described system has been implemented on an embodied agent, a 

humanoid robot, and tested in a series of experiments in challenging real world conditions of 

an indoor (human) environment. This has been done not only with the aim to validate the 

ensemble of all sub-units of the system, but also to verify the concept of “human-like 

learning” introduced earlier in this work. Apart of the primary problem of autonomous 

machine cognition, many secondary problems had to be addressed in implementation of this 

system in order to make it capable of operation in physical world. These problems include 

e.g. navigation in space and realization of communication with humans and they are 

developed in Chapter 5. Results of the experiments conducted with this entire system 

implemented to a humanoid robot show an augmentation of the robot’s overall autonomy. 

They notably show that, through embodiment to a humanoid robot, the present cognitive 

system is capable of a completely autonomous knowledge acquisition from observation and 

of interaction with humans in real time. 

In first chapters of this thesis we have seen, that the lack of autonomy in current 

machine systems (e.g. robots) is due in particular to the lack of an appropriate autonomous 

machine cognitive system, through which such a robot could gradually acquire knowledge 

about the world and apprehend it in an autonomous manner. The work accomplished through 

this thesis is a step towards such autonomous machine cognition applicable in mobile 

robotics in conditions of real world. Its notable contribution lies both in theoretical 

development and in practical realization of an autonomous knowledge acquisition system and 

its embodiment to a mobile robot.  

Knowledge acquisition is motivated here by the curiosity, a biologically inspired 

concept. Although usage of this concept in cognitive sciences and cognitive robotics is not 

new, in this thesis it is viewed from a new point of view, different from its usual use in 

existing works. In the present thesis, curiosity acts in its different forms (perceptual vs. 

epistemic) on both cognitive levels of the system. Through the two-tier architecture with a 

lower level (close to sensory data) and a higher level (close to semantic information) the 

cognitive system achieves the capacity of linking the perceptual experience with its high level 
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(semantic) representation. This link is acquired through a process called “human-like 

learning” – a human-inspired learning approach. It enables a humanoid robot endowed with 

this system to acquire knowledge in a manner that is inspired from young children learning 

and which makes the robot an active, enterprising partner in human-robot knowledge sharing, 

rather than a passive receptor. This represents a step from human-supervised learning towards 

a fully autonomous and self-motivated knowledge acquisition in robots and ultimately, on a 

broader view, to the full autonomy of robots. 

Perspectives 

The cognitive system that has been presented in this thesis has met the objectives 

given in the General Introduction and has proven itself to be practicable in real environment. 

This being said, as a matter of fact, a number of perspectives remain still open and some 

aspects of the work could not be reasonably addressed in the limited timeframe of the thesis. 

These are subject for future development of the work accomplished here. 

On the lower cognitive level, the problems of perceptual saliency that have been 

addressed cover specifically visual saliency. However, image can be interpreted simply as a 

general 2D signal. It is thus reasonable to expect that algorithms developed in this thesis will 

be in general applicable to other signal data, e.g. the sound. As an interesting future direction 

this could enrich the lower level cognition by adding other (non-visual) sources of 

information in a multimodal fusion. This general saliency detecting algorithm can be 

expected to be of interest for another of research interests of our laboratory, which is 

intelligent fault detection. The fault, being an anomalous state, would be detected as it stands 

out form the normal pattern of the monitored system’s operation. 

The functioning of the higher cognitive level is motivated by epistemic curiosity. 

Consequently the knowledge acquisition on this level relies on a) evolution of beliefs about 

the world, which are coherent with the currently known state of the world and b) 

identification of “knowledge gaps”, i.e. missing knowledge which should be filled. 

Validation results in Chapter 4 show the robot endowed with the present system is able of 

learning of a single category semantic at one time. Meanwhile, in the same chapter an 

extension of this is proposed in order to learn multiple categories at the same time. This 

extension inherently enables distinguishing of which of the used words are related to which 

category. As for the perspective of the future work, the validation of this extension will take 
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place. A natural evolution following this will tend towards a seamless integration of the 

cognitive experience coming from multiple sensors. 

In humans, the general intelligence reposes on human cognitive system as a basis (c.f. 

(Geary, 2005)). It is thus justified to say, that a machine system endowed with human-like 

intelligence will necessarily include an autonomous cognitive system as its basis, over which 

this artificial intelligence will operate as a higher functional level. With respect to this, the 

long-term perspectives regarding the autonomous cognitive system presented in this thesis 

will focus on its integration to a system of larger scale realizing artificial-intelligence in 

machines, such as mobile robots. There, it will play the role of an underlying system for 

machine cognition and knowledge acquisition. This knowledge will be subsequently 

available as the basis for tasks proper for (machine) intelligence such as reasoning, decision 

making and an overall autonomy. 
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Appendices 

Appendix A. Image Segmentation in siRGB 

 

Input: Ω(𝑥) //the color image in spherical coordinates 

𝛿, 𝑎, 𝑏, 𝑐 // threshold and three distance parameters values 

Output: bi-directional matrix 𝐿 containing pixel labels 𝑙 and an array 

of region chromaticity representations Ψl∀𝑙 

 

𝑥 = Ω(0,0): 𝐿(𝑥 ) = 𝑛𝑒𝑤𝑙𝑎𝑏𝑒𝑙, Ψ𝑙(𝑥 ) = Ψ(𝑥 ) 

for each 𝑥 do 

   if 𝐿4(𝑥) = {𝑙} //there is only one label in 𝑁4(𝑥) 

      evaluate_neighbor(x) 

   else 

      𝐷  {𝑑ℎ(𝐿(𝑦), 𝐿(𝑧)) = 𝑑𝑦,  |𝑦, 𝑧 ∈ 𝑁4(𝑥)   𝐿(𝑦) ≠ 𝐿(𝑧) } 

      for all 𝑑𝑦, ∈ 𝐷 s.t. 𝑑𝑦, < 𝛿 //region merging 

         𝐿(𝑦) = 𝑚𝑒𝑟𝑔𝑒(𝑦, 𝑧) //merge both regions into 𝐿(𝑦)   

         Ψ (𝑦) = 𝑎𝑣𝑔 Ψ( ) ∀𝑤 ∈ Ω  where 𝐿(𝑤) = 𝐿(𝑦) //update reg. chroma.      

      if 𝐿4(𝑥) = {𝑙} //there is only one label in 𝑁4(𝑥)   

         evaluate_neighbor(x) 

      else 

         𝑑  min{𝑑ℎ(𝑥, 𝑦)|𝑦 ∈ 𝑁4(𝑥)} 

         if 𝑑 < 𝛿 //assign to region with lower distance 

            𝐿(𝑥) = 𝐿(𝑦)     𝑑ℎ(𝑥, 𝑦) = 𝑑 

            Ψ (𝑦) = 𝑎𝑣𝑔 Ψ( ) ∀𝑤 ∈ Ω  where 𝐿(𝑤) = 𝐿(𝑦) //update reg.chroma. 

         else //current pixel cannot be assigned to any region 

            create_new_label(x) 

end for 

 

function: create_new_label(x) 

   𝐿(𝑥) = newlabel //create a new region label 

   Ψ (𝑥) = Ψ(𝑥 ) //init region label chromaticity 

 

function: evaluate_neighbor(x) 

   𝑑  min{𝑑ℎ(𝑥, 𝑦)|𝑦 ∈ 𝑁4(𝑥)} 

   if 𝑑 < 𝛿 //neighbor colors are similar 

      𝐿(𝑥) = 𝑙; Ψ (𝑦) = 𝑎𝑣𝑔 Ψ( ) ∀𝑤 ∈ Ω  where 𝐿(𝑤) = 𝐿(𝑦) //upd.reg.chroma.      

   else create_new_label(x) 

Algorithm 3: Hybrid segmentation method in siRGB color space. 
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Appendix B. Detection of Ambiguities in a Set of 

Utterances 

Under some conditions, a set of utterances on observations (see sub-section 4.3.1) 

may be ambiguous, which would lead to multiple plausible interpretations of the world by the 

cognitive system although indeed only one would be conforming to the reality. In order to 

detect such ambiguities and to initiate the search for completing the missing information (i.e. 

to disambiguate the set), the following algorithm is used. 

𝒰 is the set of all sets of utterances given on all observations. 𝒟 is the set of 

disambiguated utterances and 𝒜 is the set of ambiguous utterances. We go through all 

combinations of any two members of 𝒜 and test if a) their intersection produces one and only 

one utterance (let us call it 𝑢𝑖), or b) their symmetric difference produce one and only one 

utterance 𝑢𝑖. In case a) it means that “the only similarity in observations belonging to sets of 

utterances 𝒶 and 𝒷 is called 𝑢𝑖”. In case b) it means that “the only difference in observations 

belonging to sets of utterances 𝒶 and 𝒷 is called 𝑢𝑖”. Thus we have disambiguated the 

utterance 𝑢𝑖 and we include it into 𝒟. When no further additions into 𝒟 are possible, the set 

of ambiguous utterances 𝒜 is given as the relative component of all utterances 𝑈 and 

disambiguated utterances 𝒟. 

 

𝒜 = (𝑈 − 𝒟) 

Initialization: 

𝒰 = {𝑈1, … , 𝑈𝑚} // set to all sets of utterances 

𝒟 = ∅ 

 

while (𝒟 changes){ 

  //find any combination of sets of utterance from 𝒰 

  foreach (𝒶 from 𝒜) 

    foreach (𝒷 from (𝒜 − 𝒶) ){ 

      𝒶 = (𝒶 − 𝒟) //remove already disambiguated utterances 

      𝒷 = (𝒷 − 𝒟) 

      if(|𝒶 ∩ 𝒷| = 1) 𝒶 ∩ 𝒷 → 𝒟 //intersection 

      else if(|𝒶  𝒷| = 1) 𝒶 ∪ 𝒷 → 𝒟 //symmetric difference 

    } 

} 

if(|𝒜| = 0) no ambiguity 

else ambiguity detected 

Algorithm 4: Detection of ambiguities in a set of utterances. 
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Appendix C. Coherent belief generation procedure 

 

 

Initialization: 

𝑖𝑛𝑡 = new array of length |𝑈| //interpretations of all utterances 

𝑟𝑒𝑚𝑓 = I //set remaining features to all observed features 

do{ 

  𝑟𝑒𝑚𝑢 = 𝑈 //set remaining utterances to all heard utterances 

  do{ 

    //pick up a random utterance and construct its interpretation 

    𝑟 = random utterance from 𝑟𝑒𝑚𝑢 

 

    if(𝑖𝑛𝑡[𝑟] has no features assigned yet){ 

      //get all features observed in presence of the 𝑟-th utterance 

      𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒𝑓 = features from 𝑟𝑒𝑚𝑓 observed in presence of 𝑟 

      //get the feature the most dissimilar to any feature already  

      //assigned to any of the interpretations 

      𝑓 = feature from 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒𝑓 where |𝑓 − 𝑓𝑝| = 𝑚𝑎𝑥∀𝑓𝑝 ∈ 𝑖𝑛𝑡 

      add 𝑓 to 𝑖𝑛𝑡[𝑟] 

      remove 𝑓 from 𝑟𝑒𝑚𝑓 

    } 

    else{ 

      //get all features observed in presence of the 𝑟-th utterance 

      𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒𝑓 = features from 𝑟𝑒𝑚𝑓 observed in presence of 𝑟 

      //get the feature the most similar to features from 𝑖𝑛𝑡[r] 

      𝑓 = feature from from 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒𝑓 where |𝑓 − 𝑓𝑝| = 𝑚𝑖𝑛∀𝑓𝑝 ∈ 𝑖𝑛𝑡[𝑟] 

      //get average distance of 𝑓 normalized to 0..1 scale 

      𝑑𝑠𝑡 = average distance |𝑓 − 𝑓𝑝| ∀𝑓𝑝 ∈ 𝑖𝑛𝑡[𝑟] from features in 𝑖𝑛𝑡[𝑟] 

      //probability of the feature being pertinent is proportional to  

      //its distance to other features in 𝑖𝑛𝑡[𝑟] 

      if(random number from 0 to 1 > 𝑑𝑠𝑡){ 

        //consider the feature as pertinent in context of 𝑟 

        add 𝑓 to 𝑖𝑛𝑡[r]  

      }else{//do nothing … consider the feature as impertinent} 

      remove 𝑓 from 𝑟𝑒𝑚𝑓} 

    remove 𝑟 from 𝑟𝑒𝑚𝑢 

  }while(|𝑟𝑒𝑚𝑢| > 0) //repeat while there are unassigned utterances 

}while(|𝑟𝑒𝑚𝑓| > 0) //repeat while there are still unassigned features 

Algorithm 5: Coherent belief generation procedure. 
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Abstract 

The work accomplished in this thesis concerns development of an autonomous machine cognition 

system. The proposed solution reposes on the assumption that it is the curiosity which motivates a 

cognitive system to acquire new knowledge. Further, two distinct kinds of curiosity are identified in 

conformity to human cognitive system. On this I build a two level cognitive architecture. I identify its 

lower level with the perceptual saliency mechanism, while the higher level performs knowledge 

acquisition from observation and interaction with the environment. This thesis brings the following 

contribution: A) Investigation of the state of the art in autonomous knowledge acquisition. B) 

Realization of a lower cognitive level in the ensemble of the mentioned system, which is realizing the 

perceptual curiosity mechanism through a novel fast, real-world robust algorithm for salient object 

detection and learning. C) Realization of a higher cognitive level through a general framework for 

knowledge acquisition from observation and interaction with the environment including humans. 

Based on the epistemic curiosity, the high-level cognitive system enables a machine (e.g. a robot) to be 

itself the actor of its learning. An important consequence of this system is the possibility to confer high 

level multimodal cognitive capabilities to robots to increase their autonomy in real-world environment 

(human environment). D) Realization of the strategy proposed in the context of autonomous robotics. 

The studies and experimental validations done had confirmed notably that our approach allows 

increasing the autonomy of robots in real-world environment. 

 

Resumé 

Le travail effectué lors de cette thèse concerne le développement d’un système cognitif artificiel 

autonome. La solution proposée repose sur l'hypothèse que la curiosité est une source de motivation 

d’un système cognitif dans le processus d’acquisition des nouvelles connaissances. En outre, deux 

types distincts de curiosité ont été identifiés conformément au système cognitif humain. Sur ce 

principe, une architecture cognitive à deux niveaux a été proposée. Le bas-niveau repose sur le principe 

de la saillance perceptive, tandis que le haut-niveau réalise l'acquisition des connaissances par 

l'observation et l'interaction avec l'environnement. Cette thèse apporte les contributions suivantes : A) 

Un état de l'art sur l'acquisition autonome de connaissance. B) L’étude, la conception et la réalisation 

d'un système cognitif bas-niveau basé sur le principe de la curiosité perceptive. L’approche proposée 

repose sur la saillance visuelle réalisée grâce au développement d’un algorithme rapide et robuste 

permettant la détection et l’apprentissage d'objets saillants. C) La conception d’un système cognitif 

haut-niveau, basé sur une approche générique, permettant l’acquisition de connaissance à partir de 

l’observation et de l’interaction avec son environnent (y compris avec les êtres humains). Basé sur la 

curiosité épistémique, le système cognitif haut-niveau développé permet à une machine (par exemple 

un robot) de devenir l'acteur de son propre apprentissage. Une conséquence substantielle d’un tel 

système est la possibilité de conférer des capacités cognitives haut-niveau multimodales à des robots 

pour accroitre leur autonomie dans un environnement réel (environnement humain). D) La mise en 

œuvre de la stratégie proposée dans le cadre de la robotique autonome. Les études et les validations 

expérimentales réalisées ont notamment confirmé que notre approche permet d’accroitre l’autonomie 

des robots dans un environnement réel. 
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