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Résumé

Résumé

Dans le Chapitre 1, nous explorons le comportement joint des variables d’une
marche aléatoire (X1, . . . , Xn) lorsque leur valeur moyenne tend vers l’infini quand
n → ∞. Il est prouvé que toutes ces variables doivent partager la même valeur,
ce qui généralise les résultats précédents, dans le cadre de grands dépassements de
sommes finies de i.i.d variables aléatoires.

Dans le Chapitre 2, nous montrons un théorème de Gibbs conditionnel pour
une marche aléatoire (X1, .., Xn) conditionnée à une déviation extrême de sa somme
(Sn = nan) ou (Sn > nan) où an → ∞. Il est prouvé que lorsque les opérandes
ont des queues légères avec une certaine régularité supplémentaire, la distribution
asymptotique conditionnelle de X1 peut être approximée par la distribution tiltée
au point an en norme de la variation totale, généralisant ainsi le cas classique du
LDP.

Le troisième Chapitre explore le principe du maximum de vraisemblance dans
les modèles paramétriques, dans le contexte du théorème de grandes déviations de
Sanov. Le MLE est associé à la minimisation d’un critère spécifique de type diver-
gence, qui se généralise au cas du bootstrap pondéré, où la divergnce est fonction
de la distribution des poids. Certaines propriétés de la procédure résultante d’infé-
rence sont présenteés ; l’efficacité de Bahadur de tests est également examinée dans
ce contexte.

Mots-clefs

Déviation extrême, Principe de Gibbs, Développements d’Edgeworth, Diver-
gence, Bootstrap pondéré

Abstract

In Chapter one, we explore the joint behaviour of the summands of a random
walk when their mean value goes to infinity as its length increases. It is proved that
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all the summands must share the same value, which extends previous results in the
context of large exceedances of finite sums of i.i.d. random variables.

In Chapter two, we state a conditional Gibbs theorem for a random walk (X1, .., Xn)
conditioned on an extreme deviation of its sum (Sn = nan) or (Sn > nan) where
an → ∞. It is proved that when the summands have light tails with some addi-
tional regulatity property, then the asymptotic conditional distribution of X1 can
be approximated by the tilted distribution at point an in variation norm, extending
therefore the classical LDP case.

The third Chapter explores Maximum Likelihood in parametric models in the
context of Sanov type Large Deviation Probabilities. MLE in parametric models un-
der weighted sampling is shown to be associated with the minimization of a specific
divergence criterion defined with respect to the distribution of the weights. Some
properties of the resulting inferential procedure are presented; Bahadur efficiency of
tests is also considered in this context.

Keywords

Extreme deviation, Gibbs principle, Edgeworth expansion, Divergence, Weighted
bootstrap
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Introduction

What portion of a sample makes a statistics large ?

What is done in this thesis

Consider two independent random variables (r.v’s) with common standard nor-
mal distribution on R. The r.v’s U := (X1 +X2) /2 and V := (X1 −X2) /2 are
independent, centered and normally distributed. Denote T := X1 + X2. Then the
distribution of (X1/a,X2/a) given T ≥ 2a is that of (U/a, U/a)+(V/a,−V/a) given
U ≥ a. By independence of U and V the pair (V/a,−V/a) goes to (0, 0) as t goes
to infinity. Since U is gaussian, U/a converges to 1 as a tends to infinity. Thus,
conditionally on X1 +X2 ≥ 2a the pair (X1/a,X2/a) converges to (1, 1) as a tends
to infinity.

This example shows that for fixed n, in some cases, the conditional distribution
of Xn

1 := (X1, ..., Xn) given (Tn := X1 + ...+Xn ≥ na) concentrates on (a, ..., a),
the point in Rn with all coordinates equal to a as a tends to infinity. This fact has
been considered in much greater generality in [4] for many kinds of statistics ; this
question is of interest in statistics. In the case of a simple statistics as the sum
of the sample points, it leads to the well known typology of distributions in sub
and over exponential distributions. The extension of this work from fixed sample
size asymptotics to extreme deviations is the starting point of the first part of this
thesis.

The question to be addressed in this work can be written somewhat as follows :
We assume that the generic random variable is non negative and has a light

unbounded tail, namely that its moment generating function is finite in a non void
neighborhood of 0 and inf {x : P (X1 > x) = 0} = +∞. We consider the statistics
Tn defined above.

Assuming that for any fixed n it holds

lim
a→∞

P (Xn
1 ∈ aBn|Tn ≥ na) = 0 (1)

for any Borel set Bn in Rn such that (1, ..., 1) /∈ Bn.
Fix a sequence Bn and define an such that for any s > an

sup
s>an

P (Xn
1 ∈ sBn|Tn ≥ ns) ≤ 1/n.

Such an surely exists, and is of interest. Obviously we could have defined an
through some other upper bound for the above probability, and the sequence an
depends on the sequence of sets Bn. The qualitative question raised by the existence
of such an’s is the asymptotic behaviour of the whole sample Xn

1 as n increases
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when conditioning upon very rare events of the form (Tn ≥ nan) . In other words,
our question is :

For which classes of distributions and for which order of magnitude of the condi-
tioning barrier an do we have

lim
n→∞

P (∩Xi ∈ (an − εn, an + εn)|Tn ≥ nan) = 1.

In the above display the sequence εn is also a part of the debate : can we have

lim
n→∞

εn = 0

and, if yes, at which rate ?
Such questions are also of interest in many branches of physics ; the illuminating

book by Sornette [75] and the paper by Frisch and Sornette [38] handle the notion of
so-called “democratic localization” of a sample, which correspond precisely to (1) for
fixed n and a→∞. These authors explore the consequences of (1) in fragmentation
processes and in turbulence, among others ; we do not enter these considerations,
out of the field of our knowledge.

Fixed sample size asymptotics have been considered by many authors ; the book
by Field and Ronchetti [37] can be considered as a milestone in the area, and has
given rise to the interest for these question in statistical robustness analysis ; we
may quote however that the topics considered in these approaches is anyhow different
from the one usually covered by robustness concepts, since small sample asymptotics
have to do with sampling under the assumed sampling scheme, and has nothing to do
with misspecification or outliers. The same approach is handled here. Other related
works, pertaining to fixed sample size asymptotics, include Jurečková ([51], [52] and
[53]), Kušnier and Mizera [57], and Broniatowski and Fuchs [17] among others.

The case when a = an grows together with n is clearly related to the extreme
deviation approach, extending therefore the Large deviation case to very rare events.
The papers by Broniatowski and Mason [21] and Nagaev [54] handle these topics.

The main result of the first chapter of this thesis is a characterization of sequences
an and εn according to the form of the density of X1. By its very nature this result is
strongly dependent upon regularity conditions on the upper tail of the density. These
conditions are best stated in terms of notions imported from asymptotic analysis, as
developed in extreme value theory, with which it bears many similarities. However
we did not establish a precise link with the theory of extreme order statistics ; this
link certainly exists, as could be argumented looking at Erdös-Rényi laws for the
largest local slopes of a random walk. An attempt in this direction is presented
shortly in the first chapter, when considering Erdös-Rényi laws for random walks
conditioned on a large deviation event pertaining to its sum. The order of magnitude
of the sequence an for which the sequence εn obeys limn→∞ εn = 0 is quite large.

Apart from arguments directly related to the proof of the result, it may also be
the case that the requirement that all the summands Xi’s share the same behaviour
is quite strong. Besides its probabilistic content, this chapter bears a statistical
question which has been a main motivation for this work ; somehow unexpectedly,
robustness and loyalty concepts do not coexist, at least when it turns to statistics.
This is the essence of a deep result by He, Jureskova, Koenker and Portnoy [46],
although not phrased as such in their paper ; we explore their statement and provide
some extension, according to our results, in the following paragraphs.
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Breakdown point, loyalty and robustness

For fixed n, let X1, ..., Xn be independently random variables distributed with a
common distribution F (x), and which have a symmetric density f(−x) = f(x) with
x ∈ R. Jereckova [52] shows the following result

Theorem 1. Let Tn = X1 + ...+Xn, if for some b > 0 and r ≥ 1

lim
a→∞

− ln(1− F (a))

bar
= 1 (A)

then

lim
a→∞

lnP (|Tn| > na)

lnP (|X1| > a)n
= 1.

The breakdown point as a useful concept in robust statistics has been introduced
since 1970. Hodges [47] gave its oldest definition, Hampel [44] provided a much more
general but rather mathematical formulation, Donoho and Huber [33] introduced a
simple finite sample version of this concept. Let X = (x1, ..., xn) denote a finite
sample of size n ; we can corrupt this sample by replacing an arbitrary subset of
size m of X with arbitrary values. The proportion of such “bad values” in the new
sample X ′ is ϵ = m/n. The breakdown point ϵ∗ is defined as the least ϵ such that

ϵ∗(X,Tn) = inf
{
ϵ
∣∣∣∣ sup |Tn(X)/n− Tn(X ′)/n| =∞

}
.

Of course, here Tn(X) could be some other statistics, but we are only interested
in the sample sum. Let m∗ denote the least m such that ϵ∗ attains its minimum, He,
Jureskova, Koenker and Portnoy [46] showed

Theorem 2. Suppose that for any fixed c > 0, it holds

lim
x→∞

− ln(1− F (x+ c))

− ln(1− F (x))
= 1, (B)

then

lim
a→∞

lnP (|Tn| > na)

lnP (|X1| > a)
= n−m∗ + 1.

Note firstly that (B) is commonly met ; for example all distributions with Weibull
tails satisfy (B).

Theorem is of great interest since it proves that the lack of robustness of Tn ,
as measured by m∗, has a strong impact on the weight of the tail behaviour of the
Xi’s in the large values of Tn. When m∗ = 1, as in the case when Tn is the sample
mean, then lnP (|Tn| > na) = lnP n(|X1| > a) (1 + o(1)) as a → ∞, which is to
say that Tn would take very large and abnormal values only when all the summands
would (see the proof of Theorem 4 for an explanation of this fact). In some sense the
estimator of the mean is “loyal” with respect to the sampling, but is very “weak”
under contamination, which is the meaning of its lack of robustness.

At the contrary, consider a very “robust” statistics of location, the median. It is
well known, and easy to verify, that m∗ = n/2. Hence n−m∗ + 1 is minimal, which
proves that robust estimators are unfaithfull in alleagence under the sampling.
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This is indeed the starting point of our research. In this thesis, we only consider
the case of the empirical mean, for which m∗ = 1 whenever n is fixed or n tends to
infinity.

Evidently, for fixed n, we have ϵ∗ = 1/n and m∗ = 1. Hence Theorem 2 comes
back to Theorem 1. What interests us is : does Theorem 2 still holds if n goes to ∞
and a depends on n ? When n tends to ∞, we prefer the following definition of the
breakdown point

Definition 3. Let X = (x1, ..., xn) be a infinite sample of size n, and corrupt this
sample by replacing an arbitrary subset of size m of X with arbitrary values. Denote
by X ′ the corrupted sample. The breakdown point ϵ∗ is defined as the least ϵ such
that

ϵ∗(X,Tn) = inf
{
ϵ
∣∣∣∣ lim sup

n→∞
|Tn(X ′)/Tn(X)| =∞

}
.

By this definition, it is straightforward that m∗ = 1. As a result of this thesis
we obtain the following expansion of Theorem 2

Theorem 4. Let X1, ..., Xn be i.i.d. real valued random variables with common
density f(x) = c exp (−(g(x) + q(x))), where g(x) is some positive convex function
on R+ and g is twice differentiable. Assume that g(x) is increasing on some interval
[X,∞) and satisfies

lim
x→∞

g(x)/x =∞.
Let M(x) be some nonnegative continuous function on R+ for which

−M(x) ≤ q(x) ≤M(x) for all positive x

together with
M(x) = O (log g(x))

as x→∞.
Let an be some positive sequence such that an →∞ and ϵn = o(an) be a positive

sequence. Assume

lim inf
n→∞

log g(an)

log n
> 0 (0.0.1)

lim
n→∞

n log g (an + ϵn)

H(an, ϵn)
= 0, (0.0.2)

lim
n→∞

nG(an)

H(an, ϵn)
= 0, (0.0.3)

where

H(an, ϵn) = min (Fg1
(an, ϵn), Fg2

(an, ϵn))− ng(an),

G(an) = g

(
an +

1

g(an)

)
− g(an),

Fg1
(an, ϵn) and Fg2

(an, ϵn) are defined as in Lemma 1.3.1.
Then

lim
n→∞

lnP (|Tn| > nan)

lnP (|X1| > an − ϵn)n
= 1.
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Proof :

P (∩Xi ∈ (an − εn, an + εn)|Tn ≥ nan)

≤ P (∩Xi ≥ an − εn|Tn ≥ nan)

≤ P (∩Xi ≥ an − εn)

P (Tn ≥ nan)
=
P (X1 ≥ an − εn)n

P (Tn ≥ nan)
,

by Theorem 1.4.1, we have

lim
n→∞

P (|Tn| > nan)

P (|X1| > an − ϵn)n
= 1.

Hence the proof.
Evidently, condition (B) consists of a larger family of density functions than

condition (A). For example, if we set f(x) = c exp(−g(x)), then g(x) can be any
regularly varying function such that condition (B) is satisfied. But it is not the case
for condition (A).

For applying the results of Theorems 1 and 2 to infinite sample and making a
depend on n, we have to impose further conditions on f(x). Roughly speaking, if
g(x) has the form of a power function, its exponent should be strictly larger than
1. However, our result applies to rapidly varying functions which do not satisfy
condition (B), namely, g(x) tends to ∞ faster than any power function.

Finally, for simplifying the proof, we suppose x > 0, but it is straightforward
that our results hold still for symmetric density f(x) = f(−x) with x ∈ R.

Extended Gibbs Principle under extreme deviation

The second chapter considers a Gibbs type result, namely a conditional limit
theorem under extreme deviation in the standard i.i.d. setting. The aim of this
chapter can be stated as follows :

We consider a point conditioning event of the form (Tn = nan) where the sequence
an tends to infinity. The chapter provides an approximation of the distribution of
X1 given (Tn = nan) and some extension for the case when the conditioning event
is “thick”, namely (Tn ≥ nan) . Compared with the first chapter, it mainly quotes
that such sequences an grow to infinity in a much more moderate way. Note however
that the resulting behaviour pertaining to the summands is much weaker, since it
says nothing about the joint distribution of the Xi’s.

The classical Gibbs conditioning result in its local form can be stated as follows :
Under (Tn = na) for fixed a ̸= EX1 and when X1 satisfies a Cramer type condition

ϕ(t) := E exp tX1 <∞
for t in a non void neighborhood of 0

then
lim
n→∞

∥Pn,a − Πa∥TV = 0

where ∥•∥TV is the total variation norm,

Pn,a(B) := P (X1 ∈ B|Tn = na)
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and Πa is the probability measure with density πa defined through

πa(x) :=
exp tx

ϕ(t)
p(x)

with t defined through (d/dt) log ϕ(t) = a. See Diaconis and Freedman [32].
It is of some importance to consider the case when a is substituted by an →∞.

In some cases it can be seen that the distribution Πan tends to concentrate around
an with a smaller and smaller variance ; this is indeed the case when X1 has a
Weibull distribution with a shape parameter larger than 1. This phenomenon would
obviously be compatible with the result of the first chapter. Therefore the aim of
the second chapter is to consider the validity of

lim
n→∞ ∥Pn,an − Πan∥TV = 0.

This result requires a sharp extension of the local Edgeworth expansion for arrays of
r.v’s Zi,kn of row-wise independent terms where the expectations of the independent
r.v’s (Zi,kn)i=1,...,kn

go to infinity. This extension of Feller’s proof leads to the deve-
lopment of a new proof for the total variation approximation in the same spirit as
developed in Broniatowski and Caron [16]. The analytical form of the underlying
density p of X1 borrows some properties from Nagaev [54] and are quite natural for
these problems.

What is not done in this thesis

Obviously the main question is the relation between the present approach and the
theory of extreme order statistics. It is well known that the asymptotic behaviour of
the maximal term of an i.i.d. sample X1, ..., Xn approaches an, the quantile of order
1− 1/n of the distribution of X1 when the tail of this distribution decays rapidly to
0, plus some regularity assumption. A simple sufficient condition is provided by a
criterion stated by Geffroy ([39] [40] and [41]) : whenever 1−F (x) = exp−xa(x) log x
for some function a(·) which tends to infinity as x tends to infinity, then Xn,n :=
max(X1, ..., Xn) almost surely satisfies

lim
n→∞

Xn,n − an = 0. (2)

No attempt has been performed to put forwards any relation between this profound
result and the results presented in this thesis.

Also the following facts could (should ?) have been studied in connexion with
the present attempt. We still consider the context of light tailed distributions. The
classical Erdös-Rényi law of large numbers asserts that the maximum local slope of
the trajectory of a random walk characterizes the distribution of the i.i.d. summands
when evaluated on blocks of length of order log n. More specifically, almost surely,
for any positive C

lim
n→∞

max
1≤j≤n−[C logn]

Sj+[C logn] − Sj
C log n

=: lim
n→∞

∆n,C logn = I(C)

where C → I(C) characterizes the distribution of X1. When C log n is replaced by
any larger window bin (in order of magnitude, obviously), then the strong law of large
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number applies, so that the limit in the above display is EX1. This interesting result
can also be compared with the behavior of the local slope for blocks smaller than
C log n. Not surprisingly the behaviour of this slope depends sharply upon the tail
behaviour of the distribution of X1. When (2) holds the a.s. asymptotic behaviour
of limn→∞∆n,Rn for “small” Rn inherits from limn→∞∆n,1 = limn→∞Xn,n . For
larger Rn (still smaller than log n in order of magnitude), then the situation may
be somehow different. We refer to Broniatowski [13] and Broniatowski and Mason
[21] for details. Clearly these facts may be put in relation with the present work :
on the one hand, in the realm of the classical Erdös-Rényi law, the ingredient in
the proof is related to a large deviation result pertaining to i.i.d. sequences, in the
spirit of Cramer or, for sharper results, of Petrov [70] or Höglund [48] type. It can
readily be seen that the local behaviour of a random walk conditioned on a large
deviation event pertaining to its sum would require extreme deviation probabilities ;
this would be a natural extension of the present work.

Other extensions should be considered in relation with physics. We quoted the
papers by Frisch and Sornette [38], and the book by Sornette [75], which is in close
connection with the present problems on collective behaviour under a constraint.
In the same vein the model in fragmentation processes which is presented in this
book raises questions in accordance with the present cases. Extensions of the Gibbs
conditional principle as presented in Chapter 2 might be put in relation with clas-
sical statistical thermodynamics, for example assuming an increasing density (with
respect to the size of the system under consideration) for a system of particles. The
construction by Lanford [58] would then lead to the present setting (at least for zero
correlation description).

Maximum likelihood, large deviations and weighted sampling

What is done in this thesis

The third chapter of the thesis is of a quite different nature and handles some
topics in mathematical statistics.

It explores Maximum Likelihood paradigm in the context of sampling. It mainly
quotes that inference criterion is strongly connected with the sampling scheme ge-
nerating the data. Under a given model, when i.i.d. sampling is considered and
some standard regularity is assumed, then the Maximum Likelihood principle loo-
sely states that conditionally upon the observed data, resampling under the same
i.i.d. scheme should resemble closely to the initial sample only when the resampling
distribution is close to the initial unknown one.

Keeping the same definition it appears that under other sampling schemes, the
Maximum Likelihood Principle yields a wide range of statistical procedures. Those
have in common with the classical simple i.i.d. sampling case that they can be
embedded in a natural class of methods based on minimization of ϕ−divergences
between the empirical measure of the data and the model. In the classical i.i.d. case
the divergence is the Kullback-Leibler one, which yields the standard form of the
Likelihood function. In the case of the weighted bootstrap, the divergence to be
optimized is directly related to the distribution of the weights.

This chapter discusses the choice of an inference criterion in parametric setting.
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We consider a wide range of commonly used statistical criterions, namely all those
induced by the so-called power divergence, including therefore Maximum Likelihood,
Kullback-Leibler, Chi-square, Hellinger distance, etc. The steps of the discussion are
as follows.

We first insert Maximum Likelihood paradigm at the center of the scene, putting
forwards its strong connection with large deviation probabilities for the empirical
measure. The argument can be sketched as follows : for any putative θ in the pa-
rameter set, consider n virtual simulated r.v’s Xi,θ with corresponding empirical
measure Pn,θ. Evaluate the probability that Pn,θ is close to Pn , conditionally on Pn,
the empirical measure pertaining to the observed data ; such statement is refered to
as a conditional Sanov theorem, and for any θ this probability is governed by the
Kullback-Leibler distance between Pθ and PθT

where θT stands for the true value of
the parameter. Estimate this probability for any θ, obviously based on the observed
data. Optimize in θ; this provides the MLE, as shown in the two cases of the i.i.d.
sample scheme ; our first example is the case when the observations take values in a
finite set, and the second case (infinite case), helps to set the arguments to be put
forwards. Introducing MLE’s through Large deviations for the empirical measure is
in the vein of various recent approaches ; see Grendar and Judge [43].

We next consider a generalized sampling scheme inherited from the bootstrap,
which we call weighted sampling ; it amounts to introduce a family of i.i.d. weights
W1, ...,Wn with mean and variance 1. The corresponding empirical measure pertai-
ning to the data set x1 , ..., xn is just the weighted empirical measure. The MLE is
defined through a similar procedure as just evoqued. The conditional Sanov Theo-
rem is governed by a divergence criterion which is defined through the distribution
of the weights. Hence MLE results in the optimization of a divergence measure bet-
ween distributions in the model and the weighted empirical measure pertaining to
the dataset. Resulting properties of the estimators are studied, together with the
optimality of some weighting designs in the context of the Bahadur slope.

Optimization of ϕ−divergences between the empirical measure of the data and
the model is problematic when the support of the model is not finite. A number
of authors have considered so-called dual representation formulas for divergences
or, globally, for convex pseudodistances between distributions. We will make use of
the one exposed in [19] ; see also [15] for an easy derivation. A somehow similar
approach, using variational techniques, has been proposed by Pelletier [69].

What is not done in this thesis

Two major questions are not discussed in this chapter.
The first one is related to the role of randomly weighting a dataset. The argument

may be seen as follows : randomly weighting data amounts to resampling ; indeed
consider the empirical distribution function Fn pertaining to a dataset (X1, ..., Xn)
obtained through i.i.d. sampling with common d.f. F. Let W1, ...,Wn be i.i.d. non
negative random weights with mean 1 and FW

n denote the function defined through

FW
n (x) :=

1

n

n∑

i=1

Wi1 {Xi ≤ x} .

Plugging this empirical distribution in place of the standard one in estimating equa-
tions produces a simple way to obtain realizations of estimators ; indeed this pro-
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cedure is known as “wild bootstrap” or “weighted bootstrap” and the properties of
the resulting estimators, obtained through the classical MLE technique, for example,
have been considered in Barbe and Bertail [3] or Mammen [63]. However we conjec-
ture that weighting the empirical measure can be of greater generality ; this results
from various simulations in the field of biostatistics where this plug in has been
tested in estimating equations. The resulting estimators have been calculated using
the present MLE approach and the resulting estimate has been obtained averaging
the MLE’s obtained on each run. The theoretical aspects have still to be achieved.

The reciprocal question pertaining to weights is as follows : for a given statis-
tical criterion in the class of divergences, is it possible to determine weights such
that this criterion would have some good properties when used under this scheme ?
This question is relevant since the choice of a statistical criterion depends on the
requirement about accuracy ; for example the Chi square distance measures a mean
square relative error and is known to enjoy nice robustness properties. A systematic
approach of this question remains to be performed.





Chapter 1

Stretched random walks and
behavior of their summands

1.1 Context and scope

This paper considers the following question: Let X,X1, ..., Xn denote real valued
independent random variables (r.v’s) distributed asX and let Sn1 := X1+...+Xn. We
assume that X is unbounded upwards. Let an be some positive sequence satisfying

lim
n→∞

an = +∞. (1.1.1)

Assuming that
Cn := (Sn1 /n > an) (1.1.2)

holds, what can be inferred on the r.v’s Xi’s as n goes to infinity?
Let εn denote a positive sequence and let

In := ∩ni=1 (Xi ∈ (an − ϵn, an + ϵn)) . (1.1.3)

We consider cases when

lim
n→∞

P (In|Cn) = 1. (1.1.4)

The relation between the various parameters in this problem is of interest and opens
a variety of questions. For which distributions PX pertaining to X is such a result
valid? Which is the acceptable growth of the sequence an and the possible behaviours
of the sequence ϵn such that

ϵn = o (an) (1.1.5)

and is it possible to achieve
lim
n→∞

ϵn = 0 (1.1.6)

under a large class of choices for PX?
In the case when the r.v. X has light tails conditional limit theorems exploring

the behavior of the summands of a random walk given its sum have been developed
extensively in the range of a large deviation conditioning event, namely similar as
defined by Cn with fixed an, hence lower-bounding Sn/n independently on n; the
papers [27], or [32] together with their extension in [30] explore the asymptotic
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properties of a relatively small number of summands; the main result in these pa-
pers, named as Gibbs conditional principle, lies in the fact that under such Cn,
the Xi’s are asymptotically i.i.d. with distribution Πa defined through dΠa(x) :=
(E (exp tX))−1 exp(tx)dPX(x) where t satisfies E (X exp tX) (E (exp tX))−1 = a; in
this range (1.1.6) does not hold. The joint distribution of X1, .., Xkn given Cn (with
fixed an) for large kn (close to n) is considered in [16].

Extended large deviations results for an →∞ have been considered in [13], [21],
in relation with versions of the Erdös-Rényi law of large numbers for the small
increments of a random walk, and [54].

The case when X is heavy tailed is considered in [2] where the authors consider
the support of the distribution of the whole sample X1, ..., Xn when Cn holds for
fixed an .

A closely related problem has been handled by statisticians in various contexts,
exploring the number of sample observations which push a given statistics far away
from its expectation, for fixed n. Although similar in phrasing as the so-called
“breakdown point” paradigm of robust analysis, the frame of this question is quite
different from the robustness point of view, since all the observations are supposed
to be sampled under the distribution PX , hence without any reference to outliers or
misspecification. The question may therefore be stated as: how many sample points
should be large making a given statistics large? This combines both the asymptotic
behavior of the statistics (as a function defined on Rn) and the tail properties of
PX . In the case when the statistics is Sn1 /n and X has subexponential upper tail, it
is well known that, denoting

Ca := (Sn1 /n > a)

only one large value of the Xi’s generates Ca for a → ∞; clearly Sn/n is not a
loyal statistics under this sampling. This result turns back to Darling [29]. For light
tails, under Ca, all sampled values should exceed a (indeed they should be closer
and closer to a as a→∞), so that Sn/n is faithful in allegiance with respect to the
sample. In this case, denoting

Ia := ∩ni=1 (Xi > a)

it holds

lim
a→∞

P (Ia|Ca) = 1. (1.1.7)

Intermediate cases exist, leading to partial loyalty for a given statistics under a given
sampling scheme. See [17], [8], and [4] where more general statistics than Sn/n are
considered when a→∞. According to the tail behavior of the distribution of X the
situation may take quite different features.

Related questions have also been considered in the realm of statistical physics.
In [38] the property (1.1.7) is stated in an improved form, namely stating that
when the Xi’s are i.i.d. with Weibull density with shape index larger than 2 then
the conditional density of (X1, ..., Xn) given (Sn1 /n = a) concentrates at (a, ..., a) as
a→∞, which in the authors’ words means that the Xi’s are democratically localized.
Applications of this concept in fragmentation processes, in some form of anomalous
relaxation of glasses and in the study of turbulence flows are discussed.
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We now come to a consequence of the present results considering the local be-
haviour of a random walk conditioned on its end value. Let Sji := Xi + ...+Xj with
1 ≤ i ≤ j ≤ n and k = kn denote an integer valued sequence such that

kn ≤ n

and
lim
n→∞

kn =∞.
Let further

∆j,n := Sj+kj+1/k

denote the local slope of the random walk on the interval [j + 1, j + k] where 1 ≤
j ≤ n− k. The limit behaviour of max1≤j≤n−k ∆j,n has been considered extensively
in various cases, according to the order of magnitude of k. The case k = C log n for
positive constant C defines the so-called Erdös-Rényi law of large numbers; see [35].
In the present case we consider random walks conditioned upon their end value,
namely assuming that

Sn1 > na

for fixed a > EX. The path defined by this random walk exhibits anomalous local
behavior that can be captured through the extended democratic localization principle
stated in our results. Indeed there exist segments of length kn (say, kn has smaller
order than log n) on which the slope ∆j,n tends to infinity. Obviously, when a is not
fixed but goes to infinity with n then the extended democratic localization principle
applies to the whole sample path of the random walk, and its trajectory is nearly a
straight line from the origin up to its extremity. When conditioning in the range of
the large deviation only, this property should hold locally; this will be studied in a
future work.

This paper is organized as follows. Section 2 states the notation and hypotheses.
Section 3 states the results in two cases; the first one pertains to the case when
X has a log-concave density and the second case is a generalization of the former.
Examples are provided. The proofs of the results are rather long and technical; they
have been postponed to Section 1.5.

1.2 Notation and hypotheses

The n real valued random variables X1, ..., Xn are independent copies of a r.v.
X with density p whose support is R+. As seen by the very nature of the problem
handled in this paper, this assumption puts no restriction to the results. We write

p(x) := c exp (−h(x))

for positive functions h which are defined and denoted according to the context, and
c is some positive normalized constant. For x ∈ Rn define

Ih (x) :=
∑

1≤i≤n
h(xi),

and for A a Borel set in Rn denote

Ih(A) = inf
x∈A

Ih (x) .
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Two cases will be considered: in the first one h is assumed to be a convex function,
and in the second case h will be the sum of a convex function and a “smaller” function
h in such a way that we will also handle non log-concave densities (although not too
far from them). Hence we do not consider heavy tailed r.v. X.

1.3 Random walks for log-concave Density under extreme
deviation

Lemma 1.3.1. Let g be a positive convex differentiable function defined on R+.
Assume that g is strictly increasing on some interval [Y,∞). Let (1.1.1) hold. Then

Ig(I
c
n ∩ Cn) = min

(
Fg1

(an, ϵn), Fg2
(an, ϵn)

)
,

where

Fg1
(an, ϵn) = g(an + ϵn) + (n− 1)g

(
an −

1

n− 1
ϵn

)
,

and

Fg2
(an, ϵn) = g(an − ϵn) + (n− 1)g

(
an +

1

n− 1
ϵn

)
.

Theorem 1.3.1. Let X1, ..., Xn be i.i.d. copies of a r.v. X with density p(x) =
c exp (−g(x)), where g(x) is a positive convex function on R+. Assume that g is
increasing on some interval [Y,∞) and satisfies

lim
x→∞

g(x)/x =∞.

Let an satisfy

lim inf
n→∞

log g(an)

log n
> 0 (1.3.1)

and that for some positive sequence ϵn

lim
n→∞

n log g (an + ϵn)

H(an, ϵn)
= 0, (1.3.2)

lim
n→∞

nG(an)

H(an, ϵn)
= 0, (1.3.3)

where

H(an, ϵn) = min (Fg1
(an, ϵn), Fg2

(an, ϵn))− ng(an),

G(an) = g

(
an +

1

g(an)

)
− g(an),

Fg1
(an, ϵn) and Fg2

(an, ϵn) are defined as in Lemma 1.3.1. Then it holds

lim
n→∞

P (In|Cn) = 1.
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Remark 1.3.1. Conditions (1.3.1), (1.3.2) and (1.3.3) state the relations between
n, an and ϵn. Roughly speaking, under condition (Cn), in order that X1, ..., Xn

concentrate in the “cube” In, we need to control the speed of ϵn such that it cannot
tend to 0 too fast which is characterized by conditions (1.3.2) and (1.3.3). Intuitively,
this is also correct because if the width (2ϵn) of the “cube” In is too “thin”, then there
will be more outliers falling outside In.

Example 1.3.1. Let g(x) := xβ. For power functions, through Taylor expansion it
holds

g

(
an +

1

g(an)

)
− g(an) =

β

an
+ o

(
1

an

)
= o (log g(an))

hence condition (1.3.3) holds as a consequence of (1.3.2). If we assume that ϵn =
o(an), by Taylor expansion we obtain

min
(
Fg1

(an, ϵn), Fg2
(an, ϵn)

)
= naβn + C2

β

n

n− 1
aβ−2
n ϵ2

n + o(aβ−2
n ϵ2

n).

Condition (1.3.2) then becomes

lim
n→∞

n log an

aβ−2
n ϵ2

n

= 0. (1.3.4)

Case 1: 1 < β ≤ 2.
To make (1.3.4) hold, if we take n = aαn with 0 < α < β, we need ϵn be large

enough, specifically,

a
1−β

2
n

√
n log an = o (ϵn) = o (an)

which shows that ϵn →∞.
Case 2: β > 2.
In this case, if we take n = aαn with 0 < α < β − 2, then condition (1.3.4)

holds for arbitrary sequences ϵn bounded by below away from 0. The sequence ϵn may
also tend to 0; indeed with ϵn = O(1/ log an), condition (1.3.4) holds. Also setting
an := nα for α > 1/(β − 2) there exist sequences ϵn which tend to 0 such that the
conclusion in Theorem 1.3.1 holds.

Example 1.3.2. Let g(x) := ex. Through Taylor expansion

g

(
an +

1

g(an)

)
− g(an) = 1 + o

(
1

an

)
= o (log g(an)) = o (an) ,

and if ϵn → 0, it holds

min (Fg1
(an, ϵn), Fg2

(an, ϵn)) = nean +
1

2

n

n− 1
eanϵ2

n + o(eanϵ2
n).

Hence condition (1.3.3) follows from condition (1.3.2); furthermore condition (1.3.2)
follows from

lim
n→∞

nan
eanϵ2

n

= 0

if we set an := nα where α > 0 then condition (1.3.3) holds, and ϵn is rapidly
decreasing to 0; indeed we may choose ϵn = o(exp(−an/4)).
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Corollary 1.3.1. Let X1, ..., Xn be independent r.v’s with common Weibull density
with shape parameter k and scale parameter 1,

p(x) =




kxk−1e−x

k
when x > 0

0 otherwise,

where k > 2. Let

an = n
1

α , (1.3.5)

for some 0 < α < k − 2 and let ϵn be a positive sequence tending to 0 such that

lim
n→∞

n1−(k−2)/α log n

ϵ2
n

= 0. (1.3.6)

Then
lim
n→∞P (In|Cn) = 1.

Proof. Set g(x) = xk− (k−1) log x, which is a convex function for k > 2. Also when
x→∞, g′(x) and g′′(x) are both infinitely small with respect to g(x) as x→∞.

Both conditions (1.3.2) and (1.3.3) in Theorem 1.3.1 are satisfied. As regards to
condition (1.3.3), notice firstly that, under the Weibull density by Taylor expansion

g(an + ϵn) = g(an) + g′(an)ϵn +
1

2
g′′(an)ϵ2

n + o
(
g′′(an)ϵ2

n

)
.

Hence it holds

log g (an + ϵn) ≤ log (3g(an)) ≤ log
(
3akn

)
= log 3 + k log an. (1.3.7)

Using Taylor expansion in g(an + ϵn) and g
(
an − ϵn

n−1

)
, it holds

Fg1
(an, ϵn)− ng(an) = g(an + ϵn) + (n− 1)g

(
an −

ϵn
n− 1

)
− ng(an)

=
(
g(an) + g′(an)ϵn +

1

2
g′′(an)ϵ2

n + o
(
g′′(an)ϵ2

n

))

+

(
(n− 1)g(an)− g′(an)ϵn +

1

2
g′′(an)

ϵ2
n

n− 1
+ o

(
g′′(an)ϵ2

n

))
− ng(an)

=
1

2
g′′(an)ϵ2

n + o
(
g′′(an)ϵ2

n

)
=
k(k − 1)

2
ak−2
n ϵ2

n + o
(
ak−2
n ϵ2

n

)
.

In the same way, it holds when an →∞

Fg2
(an, ϵn)− ng(an) =

k(k − 1)

2
ak−2
n ϵ2

n + o
(
ak−2
n ϵ2

n

)
.

Thus we have

H(an, ϵn) =
k(k − 1)

2
ak−2
n ϵ2

n + o
(
ak−2
n ϵ2

n

)
. (1.3.8)
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Hence, when n→∞, with (1.3.7), (1.3.8), the condition (1.3.2) of Theorem (1.3.1)
becomes

n log g (an + ϵn)

H(an, ϵn)
≤ n log 3 + kn log an

k(k−1)
2

ak−2
n ϵ2

n + o (ak−2
n ϵ2

n)

≤ 2kn log an
k(k−1)

4
ak−2
n ϵ2

n

=
8

k − 1

n log an
ak−2
n ϵ2

n

−→ 0.

The last step holds from conditions (1.3.5) and (1.3.6). As for condition (1.3.3)
of Theorem 1.3.1, when an →∞, it holds

nG(an) = ng

(
an +

1

g(an)

)
− ng(an)

= ng(an) + n
g′(an)

g(an)
+ o

(
g′(an)

g(an)

)
− ng(an)

= n
g′(an)

g(an)
+ o

(
g′(an)

g(an)

)
= o(n).

Hence under conditions (1.3.5) and (1.3.6), it holds nG(an) = o(H(an, ϵn)), which
means that condition (1.3.3) of Theorem 1.3.1 holds under conditions (1.3.5) and
(1.3.6), which completes the proof.

1.4 Random walks for non log-concave Density under ex-
treme deviation

In this section, we pay attention to exponential density functions whose ex-
ponents are non-convex functions. Namely, i.i.d random variables X1, ..., Xn have
common density with

f(x) = c exp
(
− (g(x) + q(x))

)

assuming that the convex function g is twice differentiable and q(x) is of smaller
order than log g(x) for large x.

Theorem 1.4.1. X1, ..., Xn are i.i.d. real valued random variables with common
density f(x) = c exp (−(g(x) + q(x))), where g(x) is some positive convex function
on R+ and g is twice differentiable. Assume that g(x) is increasing on some interval
[Y,∞) and satisfies

lim
x→∞

g(x)/x =∞.
Let M(x) be some nonnegative continuous function on R+ for which

−M(x) ≤ q(x) ≤M(x) for all positive x

together with

M(x) = O (log g(x)) (1.4.1)
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as x→∞.
Let an be some positive sequence such that an →∞ and ϵn = o(an) be a positive

sequence. Assume

lim inf
n→∞

log g(an)

log n
> 0 (1.4.2)

lim
n→∞

n log g (an + ϵn)

H(an, ϵn)
= 0, (1.4.3)

lim
n→∞

nG(an)

H(an, ϵn)
= 0, (1.4.4)

where

H(an, ϵn) = min (Fg1
(an, ϵn), Fg2

(an, ϵn))− ng(an),

G(an) = g

(
an +

1

g(an)

)
− g(an),

Fg1
(an, ϵn) and Fg2

(an, ϵn) are defined as in Lemma 1.3.1. Then it holds

lim
n→∞P (In|Cn) = 1.

Remark 1.4.1. Log-concavity is a classical hypothesis in limit theorems related with
convolution or concentration of measure; in relation with the present context, Jensen
[49] developed a complete set of large deviation sharp results; log concave densities
are closed under convolution. Nearly log-concave densities do not share the same
simple features but, hopefully, their convolutions can be somehow controlled by log-
concave approximating densities. Log concave measures also appear as extending the
gaussian case in the concentration phenomenon; see [7] for details, outside the frame
of the present work.

We now provide examples of densities which define r.v’s X ′i’s for which the above
Theorem 1.4.1 applies. These densities appear in a number of questions pertaining
to uniformity in large deviation approximations; see [49] Ch 6.

Example 1.4.1. Almost Log-concave densities 1: p can be written as

p(x) = c(x) exp−g(x), 0 < x <∞

with g a convex and twice differentiable function, and where for some x0 > 0 and
constants 0 < c1 < c2 <∞, we have

c1 < c(x) < c2 for x0 < x <∞,

and g(x) is increasing on some interval [Y,∞) and satisfies

lim
x→∞ g(x)/x =∞.

Examples of densities which satisfy the above conditions include the Normal, the
hyperbolic density, etc.
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Example 1.4.2. Almost Log-concave densities 2: A wide class of densities
for which our results apply is when there exist constants x0 > 0, α > 0, and A such
that

p(x) = Axα−1l(x) exp (−g(x)) x > x0

where l(x) is slowly varying at infinity, g a convex and twice differentiable function,
increasing on some interval [Y,∞) and satisfies

lim
x→∞

g(x)/x =∞.

Remark 1.4.2. All density functions in Examples (1.4.1) (1.4.2) satisfy the as-
sumptions of the above Theorem 1.4.1 . Also the conditions in Theorem 1.4.1 about
an and ϵn are the same as those in the convex case, so that if g(x) is some power
function with index larger than 2, ϵn can go to 0 more rapidly than O(1/ log an)(see
Example 1.3.1); If g(x) is of exponential function form, ϵn goes to 0 more rapidly
than any power 1/an (see Example 1.3.2 ).

1.5 Proofs

1.5.1 Proof of Lemma 1.3.1

Proof. Write x := (x1, ..., xn) ∈ Rn
+, we firstly define the following sets. Let for all

k between 0 and n

Ak :=
{
there exist i1, ..., ik such that xij ≥ an + ϵn for all j with 1 ≤ j ≤ k

}

and

Bk :=
{
there exist i1, ..., ik such that xij ≤ an − ϵn for all j with 1 ≤ j ≤ k

}
.

Define

A =
∪ n

lim
k=1

Ak

and

B =
∪ n

lim
k=1

Bk.

It then holds
Icn = A ∪B.

It follows that

Ig(I
c
n ∩ Cn) = Ig ((A ∪B) ∩ Cn) = inf

x∈(A∩Cn)∪(B∩Cn)
Ig(x)

= min (Ig(A ∩ Cn), Ig(B ∩ Cn)) .

Thus we may calculate the minimum values of both Ig(A ∩ Cn) and Ig(B ∩ Cn)
respectively, and finally Ig(I

c
n ∩ Cn).

Step 1: In this step we prove that

Ig(A ∩ Cn) = Fg1
(an, ϵn). (1.5.1)
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Without loss of generality, assume that the xi’s are ordered ascendently, x1 ≤ ... ≤
xi ≤ xi+1 ≤ ... ≤ xn and let i and k := n− i with 1 ≤ i ≤ n such that

n−k︷ ︸︸ ︷
x1 ≤ ... ≤ xi < an + ϵn ≤

k︷ ︸︸ ︷
xi+1 ≤ ... ≤ xn .

We first claim that k < n. Let xA∩Cn := (x1, ..., xn) belong to A∩Cn and assume that
Ig(A ∩ Cn) = Ig(xA∩Cn). Indeed let y := (y1 = an − ϵn, y2 = ... = yn−1 = an + ϵn)
which clearly belongs to A ∩ Cn. For this y it holds Ig(y) = (n − 1)g(an + ϵn) +
g(an − ϵn) which is strictly smaller than ng(an + ϵn) = Ig(An ∩ Cn) for large n. We
have proved that xA∩Cn does not belong to An ∩ Cn.

Let αi+1, ..., αn be nonnegative, and write xi+1, ..., xn as

xi+1 = an + ϵn + αi+1, ..., xn = an + ϵn + αn.

Under condition (Cn), it holds

x1 + ...+ xi ≥ nan − (xi+1 + ...+ xn)

= nan − k(an + ϵn)− (αi+1 + ...+ αn) .

Applying Jensen’s inequality to the convex function g, we have

n∑

l=1

g(xl) = (g(xi+1) + ...+ g(xn)) + (g(x1) + ...+ g(xi))

≥ (g(xi+1) + ...+ g(xn)) + (n− k)g(x∗),

where equality holds when x1 = ... = xi = x∗, with

x∗ =
nan − k(an + ϵn)− (αi+1 + ...+ αn)

n− k . (1.5.2)

Define now the function function (αi+1, ..., αn, k)→ f(αi+1, ..., αn, k) through

f(αi+1, ..., αn, k) = g(xi+1) + ...+ g(xn) + (n− k)g(x∗)

= g(an + ϵn + αi+1) + ...+ g(an + ϵn + αn) + (n− k)g(x∗).

Then Ig(A ∩ Cn) is given by

Ig(A ∩ Cn) = inf
αi+1,...,αn≥0,1≤k<n

f(αi+1, ..., αn, k).

We now obtain (1.5.1) through the properties of the function f. Using (1.5.2), the
first order partial derivative of f(αi+1, ..., αn, k) with respect to αi+1 is

∂f(αi+1, ..., αn, k)

∂αi+1

= g′(an + ϵn + αi+1)− g′(x∗) > 0,

where the inequality holds since g(x) is strictly convex and an + ϵn + αi+1 > x∗.
Hence f(αi+1, ..., αn, k) is an increasing function with respect to αi+1. This implies
that the minimum value of f is attained when αi+1 = 0. In the same way, we have
αi+1 = ... = αn = 0. Therefore it holds

Ig(A ∩ Cn) = inf
1≤k<n

f(0, k),
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with
f(0, k) = kg(an + ϵn) + (n− k)g(x∗0),

where

x∗0 = an −
k

n− kϵn.

The function y → f(0, y) with 0 < y < n is increasing with respect to y, since

∂f(0, y)

∂y
= g(an + ϵn)− g(x∗0)−

nϵn
n− yg

′(x∗0)

=
nϵn
n− y

(
g(an + ϵn)− g(x∗0)
an + ϵn − x∗0

− g′(x∗0)
)
> 0,

due to the convexity of g(x) and an + ϵn > x∗0. Hence f(0, k) is increasing with
respect to k; the minimal value of f(0, k) attains with k = 1. Thus we have

Ig(A ∩ Cn) = f(0, 1) = Fg1
(an, ϵn)

which proves (1.5.1).

Step 2: In this step, we follow the same proof as above and prove that

Ig(B ∩ Cn) = Fg2
(an, ϵn). (1.5.3)

Assume that the xi’s are ranked in ascending order, with k such that 1 ≤ k ≤ n and

k︷ ︸︸ ︷
x1 ≤ ... ≤ xk ≤ an − ϵn <

n−k︷ ︸︸ ︷
xk+1 ≤ ... ≤ xn

we obtain k < n, otherwise condition (Cn) won’t be satisfied. Denote x1, ..., xk by

x1 = an − ϵn − α1, ..., xk = an − ϵn − αk,
where α1, ..., αk are nonnegative. Under condition (Cn), it holds

xk+1 + ...+ xn ≥ nan − (x1 + ...+ xk)

= nan − k(an − ϵn) + (α1 + ...+ αk) .

Using Jensen’s inequality to the convex function g(x), we have

n∑

l=1

g(xl) = (g(x1) + ...+ g(xk)) + (g(xk+1) + ...+ g(xn))

≥ (g(x1) + ...+ g(xk)) + (n− k)g(x♯),

where the equality holds when xk+1 = ... = xn = x♯, with

x♯ =
nan − k(an − ϵn) + (α1 + ...+ αk)

n− k . (1.5.4)

Define the function (α1, ..., αk, k)→ f(α1, ..., αk, k) through

f(α1, ..., αk, k) = g(x1) + ...+ g(xk) + (n− k)g(x♯)

= g(an − ϵn − α1) + ...+ g(an − ϵn − αk) + (n− k)g(x♯),
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then Ig(B ∩ Cn) is given by

Ig(B ∩ Cn) = inf
α1,...,αk≥0,1≤k<n

f(α1, ..., αk, k).

Using (1.5.4), the first order partial derivative of f(α1, ..., αk, k) with respect to
α1 is

∂f(α1, ..., αk, k)

∂α1

= −g′(an − ϵn − α1) + g′(x♯) > 0,

where the inequality holds since g(x) is convex and an − ϵn − α1 < x♯. Hence
f(α1, ..., αk, k) is increasing with respect to α1. This yields

α1 = ... = αk = 0.

Therefore it holds
Ig(B ∩ Cn) = inf

1≤k<n
f(0, k),

with
f(0, k) = kg(an − ϵn) + (n− k)g(x♯0),

where

x♯0 = an +
k

n− kϵn.
The function y → f(0, y) with 0 < y < n is increasing with respect to y, since

∂f(0, y)

∂y
= g(an − ϵn)− g(x♯0) +

nϵn
n− yg

′(x♯0)

=
nϵn
n− y

(
g′(x♯0)−

g(x♯0)− g(an − ϵn)

x♯0 − (an − ϵn)

)
> 0,

by the convexity of g ; in the above display x♯0 > an− ϵn. Hence f(0, k) is increasing
with respect to k. Thus we have

Ig(B ∩ Cn) = f(0, 1) = Fg2
(an, ϵn)

which proves the claim.
Thus the proof is completed using (1.5.1) and (1.5.3).

1.5.2 Proof of Theorem 1.3.1

For x := (x1, ..., xn) ∈ Rn
+ and positive r, define

Sg(r) =



x :

∑

1≤i≤n
g(xi) ≤ r



 .

Then for any Borel set A in Rn
+ it holds

P (A) =cn
∫

A
exp


−

∑

1≤i≤n
g(xi)


 dx1...dxn

= cn exp(−Ig(A))
∫

A
dx1...dxn

∫
1[∑

1≤i≤n
g(xi)−Ig(A),∞

)(s)e−sds

= cn exp(−Ig(A))
∫ ∞

0
V olume(A ∩ Sg(Ig(A) + s))e−sds. (1.5.5)
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For proving Theorem 1.3.1, we state firstly the following two Lemmas.

Lemma 1.5.1. With the same notation and hypothesis as in Theorem 1.3.1, it holds

P (Cn) ≥ cn exp (−Ig(Cn)− τn − n log g(an)) ,

where

τn = ng

(
an +

1

g(an)

)
− ng(an). (1.5.6)

Proof. By convexity of the function g, and using condition (Cn), applying Jensen’s
inequality, with x1 = ... = xn = an it holds

Ig(Cn) = ng(an).

We now consider the largest lower bound for

log V olume (Cn ∩ Sg(Ig(Cn) + τn)) .

DenoteB =
{
x : xi ∈

[
an, an + 1

g(an)

]
, i = 1, ..., n

}
, Sg(Ig(Cn)+τn) = {x :

∑n
i=1 g(xi) ≤

ng(an) + τn}.
For large n and any x in B, it holds

n∑

i=1

g(xi) ≤
n∑

i=1

g
(
an +

1

g(an)

)
= ng

(
an +

1

g(an)

)
= ng(an) + τn,

where we used the fact that g(x) is an increasing function for large x. Hence

B ⊂ Sg(Ig(Cn) + τn).

It follows that

log V olume (Cn ∩ Sg(Ig(Cn) + τn)) ≥ log V olume(B) = log

(
1

g(an)

)n
= −n log g(an),

(1.5.7)

which in turn using (1.5.5) and (1.5.7) implies

logP (Cn) := log cn
∫

Cn

exp


−

∑

1≤i≤n
g(xi)


 dx1...dxn

≥ n log c+ log
(

exp(−Ig(Cn))
∫ ∞

τn

V olume(Cn ∩ Sg(Ig(Cn) + s))e−sds
)

≥ n log c− Ig(Cn)− τn + log V olume(Cn ∩ Sg(Ig(Cn) + τn))

≥ n log c− Ig(Cn)− τn − n log g(an),

This proves the claim.

Lemma 1.5.2. With the same notation and hypothesis as in Theorem 1.3.1, it holds

P (Icn ∩ Cn) ≤ cn exp (−Ig(Icn ∩ Cn) + n log Ig(I
c
n ∩ Cn) + log(n+ 1)) .



32 Chapter 1. Stretched random walks and behavior of their summands

Proof. For positive s, let

Sg(Ig(Cn) + s) =



x :

∑

1≤i≤n
g(xi) ≤ Ig(Cn) + s





and
F = {x : g(xi) ≤ Ig(Cn) + s, i = 1, ..., n} .

It holds
Sg(Ig(Cn) + s) ⊂ F.

Since limx→∞ g(x)/x = +∞

F ⊂ {x : xi ≤ (Ig(Cn) + s), i = 1, ..., n},
which yields

Sg(Ig(Cn) + s) ⊂ {x : xi ≤ (Ig(Cn) + s), i = 1, ..., n},

from which we obtain

V olume(Cn ∩ Sg(Ig(Cn) + s)) ≤ V olume(Sg(Ig(Cn) + s)) ≤ (Ig(Cn) + s)n.

With this inequality and (1.5.5) we get as n→∞

logP (Cn) = log cn
∫

Cn

exp


−

∑

1≤i≤n
g(xi)


 dx1...dxn

= n log c− Ig(Cn) + log
∫ ∞

0
V olume(Cn ∩ Sg(Ig(Cn) + s))e−sds

≤ n log c− Ig(Cn) + log
∫ ∞

0
(Ig(Cn) + s)n e−sds,

with integrating repeatedly by parts it holds
∫ ∞

0
(Ig(Cn) + s)n e−sds

= Ig(Cn)n + n
∫ ∞

0
(Ig(Cn) + s)n−1 e−sds

= Ig(Cn)n + nIg(Cn)n−1 + n(n− 1)
∫ ∞

0
(Ig(Cn) + s)n−2 e−sds

≤ (n+ 1)Ig(Cn)n, (1.5.8)

where the inequality holds because of Ig(Cn) = ng(an) with n→∞, hence we have

logP (Cn) ≤ n log c− Ig(Cn) + log ((n+ 1)Ig(Cn)n)

= n log c− Ig(Cn) + n log Ig(Cn) + log(n+ 1).

Replace Cn by Icn ∩ Cn. We then obtain

P (Icn ∩ Cn) ≤ cn exp (−Ig(Icn ∩ Cn) + n log Ig(I
c
n ∩ Cn) + log(n+ 1))

as sought.
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Proof of Theorem 1.3.1. We will complete the proof, showing that

lim
n→∞

P (Icn ∩ Cn)

P (Cn)
= 0. (1.5.9)

By Lemma 1.3.1,

Ig(I
c
n ∩ Cn) = min (Fg1

(an, ϵn), Fg2
(an, ϵn)) .

Using Lemma 1.5.1 and Lemma 1.5.2 it holds

P (Icn ∩ Cn)

P (Cn)
≤ exp (−H(an, ϵn) + n log Ig(I

c
n ∩ Cn) + τn + n log g(an) + log(n+ 1)) .

Under conditions (1.3.3), by (1.5.6) when n→∞, we have

τn
H(an, ϵn)

=
nG(an)

H(an, ϵn)
−→ 0, (1.5.10)

Using condition (1.3.2), when n→∞,

n log g(an)

H(an, ϵn)
−→ 0, and

log(n+ 1)

H(an, ϵn)
−→ 0. (1.5.11)

As to the term n log Ig(I
c
n ∩ Cn), we have

n log Ig(I
c
n ∩ Cn) = n log min (Fg1

(an, ϵn), Fg2
(an, ϵn))

≤ n log (ng(an + ϵn))

= n log n+ n log g (an + ϵn) .

Under condition (1.3.2), n log g (an + ϵn) is of small order with respect to H(an, ϵn)
as n tends to infinity. Under condition (1.3.1), for an large enough, there exists some
positive constant Q such that log n ≤ Q log g(an). Hence we have

n log n ≤ Qn log g(an)

which under condition (1.3.2), yields that n log n is negligible with respect toH(an, ϵn).
Hence when n→∞, it holds

n log (Ig(I
c
n ∩ Cn))

H(an, ϵn)
−→ 0. (1.5.12)

Further, (1.5.10), (1.5.11) and (1.5.12) make (1.5.9) hold. This completes the proof.

1.5.3 Proof of Theorem 1.4.1

The proof is is in the same vein as that of Theorem 1.3.1; some care has to be
taken in order to get similar bounds as developped in the convex case.

Denote x = (x1, ..., xn) in Rn
+ and, for a Borel set A ∈ R+

n define

Ig,q(A) = inf
x∈A

Ig,q(x),
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where
Ig,q(x) :=

∑

1≤i≤n
(g(xi) + q(xi)) .

Also for any positive r define

Sg,q(r) =



x :

∑

1≤i≤n
(g(xi) + q(xi)) ≤ r



 .

Then it holds

P (A) = cn
∫

A
exp


−

∑

1≤i≤n
(g(xi) + q(xi))


 dx1...dxn

= cn exp(−Ig,q(A))
∫

A
dx1...dxn

∫
1[∑

1≤i≤n
(g(xi)+q(xi))−Ig,q(A),∞

)(s)e−sds

= cn exp(−Ig,q(A))
∫ ∞

0
V olume(A ∩ Sg,q(Ig,q(A) + s))e−sds. (1.5.13)

The proof of Theorem 1.4.1 relies on the following four Lemmas.

Lemma 1.5.3. With the same notation and hypothesis as in Theorem 1.4.1, it holds

Ig,q(Cn) ≥ ng(an)− nN log g(an).

Proof. For large x it holds

g(x)−M(x) ≤ g(x) + q(x) ≤ g(x) +M(x). (1.5.14)

Set g1(x) = g(x)−M(x) and g2(x) = g(x) +M(x), then it follows

Ig1
(Cn) ≤ Ig,q(Cn) ≤ Ig2

(Cn). (1.5.15)

In the same way, it holds

Ig1
(Icn ∩ Cn) ≤ Ig,q(I

c
n ∩ Cn) ≤ Ig2

(Icn ∩ Cn). (1.5.16)

By condition (1.4.1), there exists some sufficiently large positive y0 and some positive
constant N such that for x ∈ [y0,∞)

M(x) ≤ N log g(x). (1.5.17)

Set r(x) = g(x)−N log g(x), the second order derivative of r(x) is

r′′(x) = g′′(x)

(
1− N

g(x)

)
+
N (g′(x))2

g2(x)
,

where the second term is positive. The function g is increasing on some interval
[Y,∞) where we also have g(x) > x. Hence there exists some y1 ∈ [Y,∞) such that
g(x) > N when x ∈ [y1,∞). This implies that r′′(x) > 0 and r′(x) > 0 and therefore
r(x) is convex and increasing on [y1,∞).

In addition, M(x) is bounded on any finite interval; there exists some y2 ∈ [y1,∞)
such that for all x ∈ (0, y2)

M(x) ≤ N log g(y2). (1.5.18)
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The function g is convex and increasing on [y2,∞). Thus there exists y3 such that

g′(y3) > 2g′(y2) and g(y3) > 2N. (1.5.19)

We now construct a function h as follows. Let

h(x) = r(x)1[y3,∞)(x) + s(x)1(0,y3)(x), (1.5.20)

where s(x) is defined by

s(x) = r(y3) + r′(y3)(x− y3). (1.5.21)

We will show that
g1(x) ≥ h(x) (1.5.22)

for x ∈ (0,∞) .
If x ∈ [y3,∞), then by (1.5.17), it holds

h(x) = r(x) = g(x)−N log g(x) ≤ g(x)−M(x) = g1(x). (1.5.23)

If x ∈ (y2, y3), using (1.5.21), we have

s(x) ≤ r(x) = g(x)−N log g(x) ≤ g(x)−M(x) = g1(x), (1.5.24)

where the first inequality comes from the convexity of r(x). We now show that
(1.5.22) holds when x ∈ (0, y2] if y3 is large enough. For this purpose, set

t(x) = g(x)− s(x)−N log g(y2).

Take the first order derivative of t and use the convexity of g on (0, y2]. We have

t′(x) = g′(x)− s′(x) = g′(x)− r′(y3) = g′(x)−
(
g′(y3)−

Ng′(y3)

g(y3)

)

= g′(x)−
(

1− N

g(y3)

)
g′(y3) ≤ g′(y2)−

(
1− N

g(y3)

)
g′(y3)

<
1

2
g′(y3)−

(
1− N

g(y3)

)
g′(y3) < 0,

where the inequalities in the last line hold from (1.5.19). Therefore t is decreasing
on (0, y2]. It follows that

t(x) ≥ t(y2) = g(y2)−N log g(y2)− s(y2) ≥ g(y2)−N log g(y2)− r(y2) = 0,

which, together with (1.5.18), yields, when x ∈ (0, y2]

g1(x) = g(x)−M(x) ≥ g(x)−N log g(y2) ≥ s(x).

Together with (1.5.23), (1.5.24) and (1.5.20), this last display means that (1.5.22)
holds.

We now prove that h is a convex function on (0,∞); indeed for x such that
0 < x ≤ y3, h

′′(x) = 0, and if x > y3, h
′′(x) = r′′(x) > 0. The left derivative

of h(x) at y3 is h′(y−3 ) = r′(y3), and it is obvious that the right derivative of h(x)
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at y3 is also h′(y+
3 ) = r′(y3); hence h is derivable at y3 and h′(y3) = r′(y3), hence

h′′(y3) = r′′(y3) > 0. This shows that h is convex on (0,∞).

Now under condition (Cn), using the convexity of h and (1.5.22), it holds

Ig1
(x) =

n∑

i=1

(g(xi)−M(xi)) ≥
n∑

i=1

h(xi) ≥ nh

(∑n
i=1 xi
n

)
= nh(an).

Using (1.5.15), we obtain the lower bound of Ig,q(Cn) under condition (Cn) for an
large enough (say, an > y3)

Ig,q(Cn) ≥ Ig1
(Cn) ≥ nh(an) = nr(an) = ng(an)− nN log g(an).

Lemma 1.5.4. With the same notation and hypothesis as in Theorem 1.4.1, the
following lower bound of P (Cn) holds

P (Cn) ≥ cn exp (−Ig,q(Cn)− τn − n log g(an)) ,

where τn is defined by

τn = ng

(
an +

1

g(an)

)
− ng(an) + nN log g

(
an +

1

g(an)

)
+ nN log g(an)

= nG(an) + nN log g(an) + nN log g

(
an +

1

g(an)

)
. (1.5.25)

Proof. Denote B =
{
x : xi ∈

[
an, an + 1

g(an)

]
, i = 1, ..., n

}
. If x ∈ B, by (1.5.17),

which holds for large an (say, an > y3 and g is an increasing function on (y3,∞)),
we have

Ig,q(x) ≤
n∑

i=1

(g(xi) +M(xi)) ≤
n∑

i=1

(g(xi) +N log g(xi))

≤
n∑

i=1

(
g

(
an +

1

g(an)

)
+N log g

(
an +

1

g(an)

))

= ng

(
an +

1

g(an)

)
+ nN log g

(
an +

1

g(an)

)

= τn + ng(an)− nN log g(an) ≤ τn + Ig,q(Cn),

where the last inequality holds from Lemma 1.5.3. Since B ⊂ Cn, we have

B ⊂ Cn ∩ Sg,q(Ig,q(Cn) + τn).

Now we may obtain the lower bound

log V olume (Cn ∩ Sg,q(Ig,q(Cn) + τn)) ≥ log V olume(B) = −n log g(an). (1.5.26)



1.5. Proofs 37

Using (1.5.13) and (1.5.26), it holds

logP (Cn) = log cn
∫

Cn

exp


−

∑

1≤i≤n
(g(xi) + q(xi))


 dx1...dxn

= n log c− Ig,q(Cn) + log
∫ ∞

0
V olume(Cn ∩ Sg,q(Ig,q(Cn) + s))e−sds

≥ n log c− Ig,q(Cn) + log
∫ ∞

τn

V olume(Cn ∩ Sg,q(Ig,q(Cn) + τn))e−sds

≥ n log c− Ig,q(Cn)− τn − n log g(an),

so the lemma holds.

Lemma 1.5.5. With the same notation and hypothesis as in Theorem 1.4.1, the
following upper bound holds

P (Icn ∩ Cn) ≤ cn exp (−Ig,q(Icn ∩ Cn) + n log Ig(I
c
n ∩ Cn) + log(n+ 1) + n log 2) .

Proof. For any positive s,

Sg,q(Ig,q(Cn) + s) =



x :

∑

1≤i≤n
(g(xi) + q(xi)) ≤ Ig,q(Cn) + s





is included in {x : g(xi) + q(xi) ≤ Ig,q(Cn) + s, i = 1, ..., n} which in turn is included
in F = {x : g(xi)−M(xi) ≤ (Ig,q(Cn) + s), i = 1, ..., n} by (1.5.14).

Set H = {x := (x1, ..., xn) : xi ≤ 2(Ig,q(Cn) + s), i = 1, ..., n}, we will show it
holds for an large enough

F ⊂ H. (1.5.27)

Suppose that for some x := (x1, ..., xn) in F , some xi is larger than 2(Ig,q(Cn) + s).
For an large enough, by Lemma 1.5.3, it holds

xi ≥ 2(Ig,q(Cn) + s) ≥ 2 (ng(an)− nN log g(an))

> 2
(
ng(an)− 1

4
ng(an)

)
=

3

2
ng(an).

Since 3
2
ng(an) ≥ 3

2
nan for large n, by (1.5.17) and since x → g(x) − N log g(x) is

increasing, we have

g(xi)−M(xi) ≥ g(xi)−N log g(xi) ≥ g (2(Ig,q(Cn) + s))−N log g (2(Ig,q(Cn) + s))

> g (2(Ig,q(Cn) + s))− 1

2
g (2(Ig,q(Cn) + s))

≥ 1

2
(2(Ig,q(Cn) + s)) = Ig,q(Cn) + s.

Therefore since x ∈ F , xi ≤ 2(Ig,q(Cn)+s) for every i, which implicates that (1.5.27)
holds. Thus we have

Sg,q(Ig,q(Cn) + s) ⊂ H,
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from which we deduce that

V olume (Cn ∩ Sg,q(Ig,q(Cn) + s)) ≤ V olume (Sg,q(Ig,q(Cn) + s))

≤ V olume(H) = 2n(Ig,q(Cn) + s)n.

With this inequality, the upper bound of integration (1.5.13) can be given when
n→∞ through

logP (Cn) = log cn
∫

Cn

exp


−

∑

1≤i≤n
(g(xi) + q(xi))


 dx1...dxn

= n log c− Ig,q(Cn) + log
∫ ∞

0
V olume(Cn ∩ Sg,q(Ig,q(Cn) + s))e−sds

≤ n log c− Ig,q(Cn) + log
∫ ∞

0
(Ig,q(Cn) + s)n e−sds+ n log 2.

According to (1.5.8), it holds
∫ ∞

0
(Ig,q(Cn) + s)n e−sds ≤ (n+ 1)Ig,q(Cn)n,

Hence we have

logP (Cn) ≤ n log c− Ig,q(Cn) + log ((n+ 1)Ig,q(Cn)n) + n log 2

= n log c− Ig,q(Cn) + n log Ig,q(Cn) + log(n+ 1) + n log 2.

This completes the proof with replacing Cn by Icn ∩ Cn.

Lemma 1.5.6. With the same notation and hypothesis as in Theorem 1.4.1, we
derive the crude upper bound for Ig2

(Cn)

Ig2
(Cn) ≤ ng(an) + nN log g(an), (1.5.28)

the lower bound for Ig1
(Icn ∩ Cn)

Ig1
(Icn ∩ Cn) ≥ min (Fg1

(an, ϵn), Fg2
(an, ϵn))− nN log g (an + ϵn) , (1.5.29)

and the upper bound for log Ig2
(Icn ∩ Cn)

log Ig2
(Icn ∩ Cn) ≤ log n+ log(N + 1) + log g

(
an +

ϵn
n− 1

)
. (1.5.30)

Proof. From (1.5.17) and (1.5.18), there exists some an ∈ [Y,∞) (say, an > y2) such
that

M(x) ≤ max(N log g(an), N log g(x)) (1.5.31)

holds on (0,∞). Hence for an large enough

g2(x) = g(x) +M(x) ≤ g(x) + max(N log g(an), N log g(x)),

which in turn yields

Ig2
(Cn) ≤ inf

x∈Cn

(
n∑

i=1

g(xi) +
n∑

i=1

max(N log g(an), N log g(xi))

)
. (1.5.32)
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It holds

inf
x∈Cn

(
n∑

i=1

max(N log g(an), N log g(xi))

)
= nN log g(an) (1.5.33)

which implies that

inf
x∈Cn

(
n∑

i=1

g(xi) +
n∑

i=1

max(N log g(an), N log g(xi))

)

= inf
x∈Cn

(
n∑

i=1

g(xi)

)
+ inf

x∈Cn

(
n∑

i=1

max(N log g(an), N log g(xi))

)

= inf
x∈Cn

(
n∑

i=1

g(xi)

)
+ nN log g(an)

= Ig(Cn) + nN log g(an) = ng(an) + nN log g(an).

Thus we obtain the inequality (1.5.28).
We now provide a lower bound of Ig1

(Icn∩Cn). Consider the inequality of (1.5.22)
in Lemma 1.5.3, where we have showed that h is convex for x large enough; hence,
using (1.5.22) when an is sufficiently large, it holds

Ig1
(Icn ∩ Cn) ≥ Ih(I

c
n ∩ Cn) = min (Fh1

(an, ϵn), Fh2
(an, ϵn)) ,

where the second inequality holds from Lemma 1.3.1. By the definition of the
function h in (1.5.20), for large x it holds h(x) = r(x) which yields the following
lower bound of Ig1

(Icn ∩ Cn)

Ig1
(Icn ∩ Cn) ≥ Ih(I

c
n ∩ Cn) = Ir(I

c
n ∩ Cn) = min (Fr1

(an, ϵn), Fr2
(an, ϵn)) .

By Lemma 1.3.1, it holds

Fr1
(an, ϵn) = g(an + ϵn) + (n− 1)g

(
an −

1

n− 1
ϵn

)

−N log g(an + ϵn)− (n− 1)N log g
(
an −

1

n− 1
ϵn

)

≥ g(an + ϵn) + (n− 1)g
(
an −

1

n− 1
ϵn

)
− nN log g (an + ϵn) ,

by the same way, we have also

Fr2
(an, ϵn) ≥ g(an − ϵn) + (n− 1)g

(
an +

1

n− 1
ϵn

)
− nN log g (an + ϵn) ,

hence (1.5.29) holds.
The method of the estimation of the upper bound of Ig2

(Icn ∩ Cn) is similar to
that used for Ig2

(Cn) above. In (1.5.32), replace Cn by Icn ∩ Cn; we obtain

Ig2
(Icn ∩ Cn) ≤ inf

x∈Ic
n∩Cn

(
n∑

i=1

g(xi) +
n∑

i=1

max(N log g(an), N log g(xi))

)

≤ inf
x∈Ic

n∩Cn

(
n∑

i=1

g(xi) +
n∑

i=1

max
(
N log g

(
an +

ϵn
n− 1

)
, N log g(xi)

))
.
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Similarly to (1.5.33), it holds

inf
x∈Ic

n∩Cn

(
n∑

i=1

max
(
N log g

(
an +

ϵn
n− 1

)
, N log g(xi)

))
= nN log g

(
an +

ϵn
n− 1

)
,

where equality is attained setting x1 = ... = xn−1 = an + ϵn/(n − 1), xn = an − ϵn.
Hence we have, when n→∞

Ig2
(Icn ∩ Cn) ≤ inf

x∈Ic
n∩Cn

(
n∑

i=1

g(xi) +
n∑

i=1

max
(
N log g

(
an +

ϵn
n− 1

)
, N log g(xi)

))

= inf
x∈Ic

n∩Cn

n∑

i=1

g(xi) + nN log g
(
an +

ϵn
n− 1

)

= Ig(I
c
n ∩ Cn) + nN log g

(
an +

ϵn
n− 1

)

≤ g(an − ϵn) + (n− 1)g
(
an +

1

n− 1
ϵn

)
+ nN log g

(
an +

ϵn
n− 1

)

≤ ng
(
an +

ϵn
n− 1

)
+ nN log g

(
an +

ϵn
n− 1

)

≤ n(N + 1)g
(
an +

ϵn
n− 1

)
.

Therefore we obtain (1.5.30).

Proof of Theorem 1.4.1. We complete the proof of Theorem 1.4.1 by showing that

lim
n→∞

P (Icn ∩ Cn)

P (Cn)
= 0. (1.5.34)

Using the upper bound of P (Icn ∩ Cn) in Lemma 1.5.5, together with the lower
bound of P (Cn) in Lemma 1.5.4, we have when an is large enough

P (Icn ∩ Cn)

P (Cn)
≤ exp

(
− (Ig,q(I

c
n ∩ Cn)− Ig,q(Cn)) + n log Ig,q(I

c
n ∩ Cn)

+ τn + n log g(an) + log(n+ 1) + n log 2
)

≤ exp (− (Ig,q(I
c
n ∩ Cn)− Ig,q(Cn)) + n log Ig,q(I

c
n ∩ Cn) + τn + 2n log g(an))

≤ exp (− (Ig1
(Icn ∩ Cn)− Ig2

(Cn)) + n log Ig2
(Icn ∩ Cn) + τn + 2n log g(an)) .

The last inequality holds from (1.5.15) and (1.5.16). Replace Ig1
(Icn ∩ Cn), Ig2

(Cn)
by the upper bound of (1.5.28) and the lower bound of (1.5.29), respectively, we
obtain

Ig1
(Icn ∩ Cn)− Ig2

(Cn) ≥ min (Fg1
(an, ϵn), Fg2

(an, ϵn))− nN log g (an + ϵn)

− (ng(an) + nN log g(an))

= H(an, ϵn)− nN log g (an + ϵn)− nN log g(an)

≥ H(an, ϵn)− 2nN log g (an + ϵn) . (1.5.35)

Under condition (1.4.2), there exists some Q such that n log n ≤ Qn log g(an),
which, together with (1.5.30) and (1.5.35), gives
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P (Icn ∩ Cn)

P (Cn)
≤ exp

(
− (H(an, ϵn)− 2nN log (an + ϵn)) + n log n+ n log(N + 1)

+ n log g
(
an +

ϵn
n− 1

)
+ τn + 2n log g(an)

)

≤ exp
(
−H(an, ϵn) + n(2N + 1) log g (an + ϵn)

+ τn + 2n log g(an) + n log n+ n log(N + 1)
)

≤ exp (−H(an, ϵn) + n(2N + 1) log g (an + ϵn) + τn + 2n log g(an) + 2n log n)

≤ exp (−H(an, ϵn) + n(2N + 1) log g (an + ϵn) + τn + (2Q+ 2)n log g(an))

≤ exp (−H(an, ϵn) + n(2N + 2Q+ 3) log g (an + ϵn) + τn) . (1.5.36)

The second term in the exponent in the last line above and τn are both of small
order with respect to H(an, ϵn). Indeed under condition (1.4.3), when an → ∞, it
holds

lim
n→∞

n(2N + 2Q+ 3) log g (an + ϵn)

H(an, ϵn)
= 0. (1.5.37)

For τn which is defined in (1.5.25) under conditions (1.4.3), (1.4.4), nN log g(an)
and nG(an) are both of smaller order than H(an, ϵn). As regards to the third term
of τn, it holds

nN log g

(
an +

1

g(an)

)
= nN log

(
g

(
an +

1

g(an)

)
− g(an) + g(an)

)

≤ nN log (2 max (G(an), g(an)))

= nN log 2 + max (nN logG(an), nN log g(an)) .

Under conditions (1.4.3) and (1.4.4), both nN logG(an) and nN log g(an) are small
with respect to H(an, ϵn); therefore nN log g (an + 1/g(an)) is small with respect to
H(an, ϵn) when n→∞. Hence it holds when n→∞

lim
n→∞

τn
H(an, ϵn)

= 0. (1.5.38)

Finally, (1.5.36), together with (1.5.37) and (1.5.38), implies that (1.5.34) holds.





Chapter 2

A conditional limit theorem for
random walks under extreme
deviation

2.1 Introduction

Let Xn
1 := (X1, ..., Xn) denote n independent unbounded real valued random

variables and Sn1 := X1 + ... + Xn denote their sum. The purpose of this paper is
to explore the limit distribution of the generic variable X1 conditioned on extreme
deviations (ED) pertaining to Sn1 . By extreme deviation we mean that Sn1 /n is
supposed to take values which are going to infinity as n increases. Obviously such
events are of infinitesimal probability. Our interest in this question stems from a
first result which assesses that under appropriate conditions, when the sequence an
is such that

lim
n→∞

an =∞
then there exists a sequence εn which tends to 0 as n tends to infinity such that

lim
n→∞

P (∩ni=1 (Xi ∈ (an − εn, an + εn))|Sn1 /n > an) = 1

which is to say that when the empirical mean takes exceedingly large values, then all
the summands share the same behaviour. This result obviously requires a number
of hypotheses, which we simply quote as “light tails” type. See Chapter 1 for this
result and the connection with earlier related works.

The above result is clearly to be put in relation with the so-called Gibbs condi-
tional Principle which we recall briefly in its simplest form.

Consider the case when the sequence an = a is constant with value larger than
the expectation of X1. Hence we consider the behaviour of the summands when
(Sn1 /n > a), under a large deviation (LD) condition about the empirical mean. The
asymptotic conditional distribution of X1 given (Sn1 /n > a) is the well known tilted
distribution of PX with parameter t associated to a. Let us introduce some notation
to put this in light. The hypotheses to be stated now together with notation are
kept throughout the entire paper.

It will be assumed that PX , which is the distribution of X1, has a density p with
respect to the Lebesgue measure on R. The fact that X1 has a light tail is captured
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in the hypothesis that X1 has a moment generating function

Φ(t) := E exp tX1

which is finite in a non void neighborhood N of 0. This fact is usually refered to as
a Cramer type condition.

Defined on N are the following functions. The functions

t→ m(t) :=
d

dt
log Φ(t)

t→ s2(t) :=
d

dt
m(t)

t→ µj(t) :=
d

dt
s2(t) , j = 3, 4

are the expectation and the three first centered moments of the r.v. Xt with density

πt(x) :=
exp tx

Φ(t)
p(x)

which is defined on R and which is the tilted density with parameter t. When Φ is
steep, meaning that

lim
t→t+

m(t) =∞

where t+ := ess supN then m parametrizes the convex hull of the support of PX .
We refer to Barndorff-Nielsen [6] for those properties. As a consequence of this fact,
for all a in the support of PX , it will be convenient to define

πa = πt

where a is the unique solution of the equation m(t) = a.
We now come to some remark on the Gibbs conditional principle in the standard

above setting. A phrasing of this principle is:
As n tends to infinity the conditional distribution of X1 given (Sn1 /n > a) is Πa,

the distribution with density πa.
Indeed we prefer to state Gibbs principle in a form where the conditioning event

is a point condition (Sn1 /n = a) . The conditional distribution ofX1 given (Sn1 /n = a)
is a well defined distribution and Gibbs conditional principle states that this con-
ditional distribution converges to Πa as n tends to infinity. In both settings, this
convergence holds in total variation norm. We refer to [32] for the local form of the
conditioning event; we will mostly be interested in the extension of this form in the
present paper.

For all α (depending on n or not) we will denote pα the density of the random

vector Xk
1 conditioned upon the local event (Sn1 = nα) . The notation pα

(
Xk

1 = xk1
)

is sometimes used to denote the value of the density pα at point xk1. The same
notation is used when X1, ..., Xk are sampled under some Πα, namely πα(Xk

1 = xk1).
In [16] some extension of the above Gibbs principle has been obtained. When

an = a > EX1 a second order term provides a sharpening of the conditioned Gibbs
principle, stating that

lim
n→∞

∫
|pa(x)− ga(x)| dx = 0 (2.1.1)
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where

ga(x) := Cp(x)n
(
a, s2

n, x
)
. (2.1.2)

Hereabove n (a, sn, x) denotes the normal density function at point x with expec-
tation a, with variance s2

n, and s2
n := s2(t)(n − 1). In the above display, C is a

normalizing constant. Obviously developing in this display yields

ga(x) = πa(x) (1 + o(1))

which proves that (2.1.1) is a weak form of Gibbs principle, with some improvement
due to the second order term.

The paper is organized as follows. Notation and hypotheses are stated in Section
2.2, along with some necessary facts from asymptotic analysis in the context of
light tailed densities. In Section 2.3, the approximations of the expectation and
the two first centered moments of the tilted density are given. Section 2.4 states
the Edgeworth expansion under extreme normalizing factors. Section 2.5 provides a
local Gibbs conditional principle under EDP, namely producing the approximation
of the conditional density of X1, ..., Xk conditionally on ((1/n) (X1 + ...+Xn) = an)
for sequences an which tend to infinity, and where k is fixed, independent on n. The
approximation is local. This result is further extended to typical paths under the
conditional sampling scheme, which in turn provides the approximation in variation
norm for the conditional distribution; in this extension, k is equal to 1, although the
result clearly also holds for fixed k > 1. The method used here follows closely the
approach by [16]. The differences between the Gibbs principles in LDP and EDP
are discussed. Section 2.6 states similar results in the case when the conditioning
event is ((1/n) (X1 + ...+Xn) > an).

The main tools to be used come from asymptotic analysis and local limit theo-
rems, developed from [36] and [10]; we also have borrowed a number of arguments
from [54]. A number of technical lemmas have been postponed to Section 2.7.

2.2 Notation and hypotheses

In this paper, we consider the uniformly bounded density function p(x)

p(x) = c exp
(
−
(
g(x)− q(x)

))
x ∈ R+, (2.2.1)

where c is some positive normalized constant. Define h(x) := g′(x). We assume that
there exists some positive constant ϑ , for large x, it holds

sup
|v−x|<ϑx

|q(v)| ≤ 1

x
√
h(x)

. (2.2.2)

The function g is positive and satisfies

g(x)

x
−→∞, x→∞. (2.2.3)
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Not all positive g’s satisfying (2.2.3) are adapted to our purpose. Regular func-
tions g are defined as follows. We define firstly a subclass R0 of the family of slowly
varying function. A function l belongs to R0 if it can be represented as

l(x) = exp
( ∫ x

1

ϵ(u)

u
du
)
, x ≥ 1, (2.2.4)

where ϵ(x) is twice differentiable and ϵ(x)→ 0 as x→∞.
We follow the line of Juszczak and Nagaev [54] to describe the assumed regularity

conditions of h.
Class Rβ : h(x) ∈ Rβ, if, with β > 0 and x large enough, h(x) can be represented

as
h(x) = xβl(x),

where l(x) ∈ R0 and in (2.2.4) ϵ(x) satisfies

lim sup
x→∞

x|ϵ′(x)| <∞, lim sup
x→∞

x2|ϵ′′
(x)| <∞. (2.2.5)

Class R∞ : Further, l ∈ R̃0, if, in (2.2.4), l(x)→∞ as x→∞ and

lim
x→∞

xϵ′(x)

ϵ(x)
= 0, lim

x→∞
x2ϵ

′′
(x)

ϵ(x)
= 0, (2.2.6)

and for some η ∈ (0, 1/8)
lim inf
x→∞

xηϵ(x) > 0. (2.2.7)

We say that h ∈ R∞ if h is increasing and strictly monotone and its inverse function
ψ defined through

ψ(u) := h←(u) := inf {x : h(x) ≥ u} (2.2.8)

belongs to R̃0.
Denote R : = Rβ ∪R∞. In fact, R covers one large class of functions, although,

Rβ and R∞ are only subsets of Regularly varying and Rapidly varying functions,
respectively.

Remark 2.2.1. The role of (2.2.4) is to make h(x) smooth enough. Under (2.2.4)
the third order derivative of h(x) exists, which is necessary in order to use a Laplace
method for the asymptotic evaluation of the moment generating function Φ(t) as
t→∞, where

Φ(t) =
∫ ∞

0
etxp(x)dx = c

∫ ∞

0
exp

(
K(x, t) + q(x)

)
dx, t ∈ (0,∞)

in which
K(x, t) = tx− g(x).

If h ∈ R, K(x, t) is concave with respect to x and takes its maximum at x̂ =
h←(t). The evaluation of Φ(t) for large t follows from an expansion of K(x, t) in a
neighborhood of x̂; this is Laplace’s method. This expansion yields

K(x, t) = K(x̂, t)− 1

2
h′(x̂)

(
x− x̂

)2 − 1

6
h′′(x̂)

(
x− x̂

)3
+ ε(x, t),

where ε(x, t) is some error term. Conditions (2.2.6) (2.2.7) and (2.2.5) guarantee
that ε(x, t) goes to 0 when t tends to ∞ and x belongs to some neighborhood of x̂.
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Example 2.2.1. Weibull Density. Let p be a Weibull density with shape param-
eter k > 1 and scale parameter 1, namely

p(x) = kxk−1 exp(−xk), x ≥ 0

= k exp
(
−
(
xk − (k − 1) log x

))
.

Take g(x) = xk − (k − 1) log x and q(x) = 0. Then it holds

h(x) = kxk−1 − k − 1

x
= xk−1

(
k − k − 1

xk

)
.

Set l(x) = k − (k − 1)/xk, x ≥ 1, then (2.2.4) holds, namely,

l(x) = exp
( ∫ x

1

ϵ(u)

u
du
)
, x ≥ 1,

with

ϵ(x) =
k(k − 1)

kxk − (k − 1)
.

The function ϵ is twice differentiable and goes to 0 as x → ∞. Additionally, ϵ
satisfies condition (2.2.5). Hence we have shown that h ∈ Rk−1.

Example 2.2.2. A rapidly varying density. Define p through

p(x) = c exp(−ex−1), x ≥ 0.

Then g(x) = h(x) = ex−1 and q(x) = 0 for all non negative x. We show that
h ∈ R∞. It holds ψ(x) = log x + 1. Since h(x) is increasing and monotone, it

remains to show that ψ(x) ∈ R̃0. When x ≥ 1, ψ(x) admits the representation of
(2.2.4) with ϵ(x) = 1/(log x + 1). Also conditions (2.2.6) and (2.2.7) are satisfied.
Thus h ∈ R∞.

Throughout the paper we use the following notation. When a r.v. X has density
p we write p(X = x) instead of p(x). This notation is useful when changing measures.
For example πa(X = x) is the density at point x for the variable X generated under
πa, while p(X = x) states for X generated under p. This avoids constant changes of
notation.

2.3 Approximations of the expectation and moments of the
tilted density

We inherit of the definition of the tilted density πa defined in Section 2.1, and
of the corresponding definitions of the functions m, s2 and µ3. Because of (2.2.1)
and the various conditions on g those functions are defined as t→∞. The following
Theorem is basic for the proof of the remaining results.

Theorem 2.3.1. Let p(x) be defined as in (2.2.1) and h(x) ∈ R. Denote by

m(t) =
d

dt
log Φ(t), s2(t) =

d

dt
m(t), µ3(t) =

d3

dt3
log Φ(t),
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then with ψ defined as in (2.2.8) it holds as t→∞

m(t) ∼ ψ(t), s2(t) ∼ ψ′(t), µ3(t) ∼
M6 − 9

6
ψ

′′
(t),

where M6 is the sixth order moment of standard normal distribution.

Proof. The proof of this result relies on a series of Lemmas. Lemmas (2.7.2), (2.7.3),
(2.7.4) and (2.7.5) are used in the proof. Lemma (2.7.1) is instrumental for Lemma
(2.7.5). The proof of Theorem 2.3.1 and these Lemmas are postponed to Section
2.7.1.

Corollary 2.3.1. Let p(x) be defined as in (2.2.1) and h(x) ∈ R. Then it holds as
t→∞

µ3(t)

s3(t)
−→ 0. (2.3.1)

Proof. Its proof relies on Theorem 2.3.1 and is also put in Section 2.7.1.

2.4 Edgeworth expansion under extreme normalizing fac-
tors

With πan defined through

πan(x) =
etxp(x)

Φ(t)
,

and t determined by m(t) = an, define the normalized density of πan by

π̄an(x) = sπan(sx+ an),

where s is defined in Section 2.1 (notice that it depends on an here). Denote the
n-convolution of π̄an(x) by π̄an

n (x), and denote by ρn the normalized density of n-
convolution π̄an

n (x),
ρn(x) :=

√
nπ̄an

n (
√
nx).

The following result extends the local Edgeworth expansion of the distribution of
normalized sums of i.i.d. r.v.’s to the present context, where the summands are
generated under the density π̄an . Therefore the setting is that of a triangular array
of rowwise independent summands; the fact that an → ∞ makes the situation
unusual. We mainly adapt Feller’s proof (Chapter 16, Theorem 2 [36]).

Theorem 2.4.1. With the above notation, uniformly upon x it holds

ρn(x) = ϕ(x)
(

1 +
µ3

6
√
ns3

(
x3 − 3x

))
+ o

(
1√
n

)
.

where ϕ(x) is standard normal density.

proof. The proof of this Theorem relies on Lemmas 2.7.6 and 2.7.7. Its proof and
these two Lemmas are postponed to Section 2.7.2.
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2.5 Gibbs’ conditional principles under extreme events

We now explore Gibbs conditional principles under extreme events. The first

result is a pointwise approximation of the conditional density pan

(
yk1
)

on Rk for

fixed k. As a by-product we also address the local approximation of pAn where

pAn

(
yk1
)

:= p
(
Xk

1 = yk1
∣∣∣Sn1 > nan

)
.

However this local approximation is of poor interest when comparing pan to its
approximation.

We consider the case k = 1. For Y1 a random variable with density pan we first
provide a density gan on R such that

pan (Y1) = gan (Y1) (1 +Rn)

where Rn is a function of the vector Y n
1 which goes to 0 as n tends to infinity. The

above statement may also be written as

pan (y1) = gan (y1)
(
1 + oPan

(1)
)

(2.5.1)

where Pan is the joint probability measure of the vector Y n
1 under the condition

(Sn1 = nan) . This statement is of a different nature with respect to the above one,
since it amounts to prove the approximation on typical realisations under the condi-
tional sampling scheme. We will deduce from (2.5.1) that the L1 distance between
pan and gan goes to 0 as n tends to infinity. It would be interesting to extend these
results to the case when k = kn is close to n, as done in [16] in all cases from the
CLT to the LDP ranges. The extreme deviation case is more envolved, which led us
to restrict this study to the case when k = 1 (or k fixed, similarly).

2.5.1 A local result in Rk

Fix yk1 := (y1, ..., yk) in Rk and define sji := yi + ...+ yj for 1 ≤ i < j ≤ k. Define
t through m(t) = an, similarly, define ti through

m(ti) :=
nan − si1
n− i . (2.5.2)

For the sake of brevity, we writemi instead ofm(ti), and define s2
i := s2(ti). Consider

the following condition

lim
n→∞

ψ(t)2

√
nψ′(t)

= 0, (2.5.3)

which can be seen as a growth condition on an, avoiding too large increases of this
sequence.

For 0 ≤ i ≤ k − 1, define zi through

zi =
mi − yi+1

si
√
n− i− 1

.
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Remark 2.5.1. Formula (2.5.3) states the precise behaviour of the sequence an
which defines the present extended Gibbs principle. In the case when the common
density p(x) is Weibull with shape parameter k, using Theorem 2.3.1, we obtain
ψ(t) ∼ m(t) = an and ψ′(t) ∼ a2−k

n . Replace ψ(t) and ψ′(t) in (2.5.3) by these two
terms, we have

lim
n→∞

akn√
n

= 0.

This rate controls the growth of an to infinity.

Lemma 2.5.1. Assume that p(x) satisfies (2.2.1) and h(x) ∈ R. Let ti be defined
in (2.5.2). Assume that an →∞ as n→∞ and that (2.5.3) holds. Then as n→∞

lim
n→∞

sup
0≤i≤k−1

zi = 0, and lim
n→∞

sup
0≤i≤k−1

z2
i = o

(
1√
n

)
.

Proof. When n→∞, it holds

zi ∼ mi/si
√
n− i− 1 ∼ mi/(si

√
n).

From Theorem 2.3.1, it holds m(t) ∼ ψ(t) and s(t) ∼
√
ψ′(t). Hence we have

zi ∼
ψ(ti)√
nψ′(ti)

. (2.5.4)

By (2.5.2), mi ∼ m(t) as n→∞. Then

mi ∼ ψ(t) = an.

In addition, mi ∼ ψ(ti) by Theorem 2.3.1, this implies

ψ(ti) ∼ ψ(t). (2.5.5)

Case 1: if h(x) ∈ Rβ. We have h(x) = xβl0(x), l0(x) ∈ R0, β > 0. Hence

h
′
(x) = xβ−1l0(x)

(
β + ϵ(x)

)
,

set x = ψ(u), we get

h
′(
ψ(u)

)
=
(
ψ(u)

)β−1
l0
(
ψ(u)

)(
β + ϵ

(
ψ(u)

))
. (2.5.6)

Notice ψ
′
(u) = 1/h

′
(
ψ(u)

)
, combine (2.5.5) with (2.5.6), we obtain

ψ′(ti)

ψ′(t)
=

h
′
(
ψ(t)

)

h′
(
ψ(ti)

) =

(
ψ(t)

)β−1
l0
(
ψ(t)

)(
β + ϵ

(
ψ(t)

))

(
ψ(ti)

)β−1
l0
(
ψ(ti)

)(
β + ϵ

(
ψ(ti)

)) −→ 1, (2.5.7)

where we use the slowly varying propriety of l0. Thus it holds

ψ′(ti) ∼ ψ′(t),
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which, together with (2.5.5), is put into (2.5.4) to yield

zi ∼
ψ(t)√
nψ′(t)

. (2.5.8)

Hence we have under condition (2.5.3)

z2
i ∼

ψ(t)2

nψ′(t)
=

ψ(t)2

√
nψ′(t)

1√
n

= o
(

1√
n

)
, (2.5.9)

which implies further zi → 0. Note that the final step is used in order to relax the
strength of the growth condition on an.

Case 2: if h(x) ∈ R∞. By (2.5.2), it holds m(ti) ≥ m(t) as n → ∞. Since the
function t→ m(t) is increasing, we have

t ≤ ti.

Notice the function x→ ψ(x) is also increasing, we get

ψ(ti) ≥ ψ(t).

The function x→ ψ
′
(x) is decreasing, since

ψ
′′
(x) = −ψ(x)

x2
ϵ(x)

(
1 + o(1)

)
< 0 as x→∞. (2.5.10)

Therefore as n→∞
ψ′(t) ≥ ψ′(ti) > 0.

Perform one Taylor expansion of ψ(ti) for some θ1 ∈ (0, 1)

ψ(ti)− ψ(t) = ψ′(t)(ti − t) +
1

2
ψ

′′
(t+ θ1(ti − t))(ti − t)2

=
ψ(t)ϵ(t)

t
(ti − t) +

1

2
ψ

′′
(t+ θ1(ti − t))(ti − t)2. (2.5.11)

By (2.5.5)

ψ(ti)− ψ(t)

ψ(t)
−→ 0,

which together with (2.5.10) and (2.5.11) yields

ϵ(t)

t
(ti − t) −→ 0. (2.5.12)

Perform one Taylor expansion of ψ′(ti) for some θ2 ∈ (0, 1)

ψ′(ti)− ψ′(t) = ψ
′′
(t)(ti − t) +

1

2
ψ

′′′
(t+ θ2(ti − t))(ti − t)2

= −ψ(t)ϵ(t)

t2
(ti − t)

(
1 + o(1)

)
+

1

2
ψ

′′′
(t+ θ2(ti − t))(ti − t)2,

where the first term goes to 0 as n→∞ by (2.5.12), and the second term is infinitely
small with respect to the first term (see Section 2.7, e.g. (2.7.18)). Hence

ψ′(ti) ∼ ψ′(t).

The proof is completed by repeating steps (2.5.8) and (2.5.9).
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Theorem 2.5.1. With the same notation and hypotheses as in Lemma 2.5.1, it
holds

pan(yk1) = p(Xk
1 = yk1 |Sn1 = nan) = gm(yk1)

(
1 + o

( 1√
n

))
,

with

gm(yk1) =
k−1∏

i=0

(
πmi(Xi+1 = yi+1)

)
.

Proof. Using Bayes formula,

pan

(
yk1
)

:= p(Xk
1 = yk1 |Sn1 = nan)

= p(X1 = y1|Sn1 = nan)
k−1∏

i=1

p(Xi+1 = yi+1|X i
1 = yi1, S

n
1 = nan)

=
k−1∏

i=0

p(Xi+1 = yi+1|Sni+1 = nan − si1). (2.5.13)

We make use of the following invariance property: for all yk1 and all α > 0

p(Xi+1 = yi+1|X i
1 = yi1, S

n
1 = nan) = πα(Xi+1 = yi+1|X i

1 = yi1, S
n
1 = nan)

where on the LHS, the r.v’s X i
1 are sampled i.i.d. under p and on the RHS, sampled

i.i.d. under πα. It thus holds

p(Xi+1 = yi+1|Sni+1 = nan − Si1) = πmi(Xi+1 = yi+1|Sni+1 = nan − si1)

= πmi(Xi+1 = yi+1)
πmi(Sni+2 = nan − si+1

1 )

πmi(Sni+1 = nan − si1)

=

√
n− i√

n− i− 1
πmi(Xi+1 = yi+1)

π̃n−i−1(
mi−yi+1

si

√
n−i−1

)

π̃n−i(0)
, (2.5.14)

where π̃n−i−1 is the normalized density of Sni+2 under i.i.d. sampling with the density
πmi ; correspondingly, π̃n−i is the normalized density of Sni+1 under the same sampling.
Note that a r.v. with density πmi has expectation mi and variance s2

i .
Write zi = mi−yi+1

si

√
n−i−1

, and perform a third-order Edgeworth expansion of π̃n−i−1(zi),

using Theorem 2.4.1. It follows

π̃n−i−1(zi) = ϕ(zi)
(

1 +
µi3

6s3
i

√
n− 1

(z3
i − 3zi)

)
+ o

(
1√
n

)
, (2.5.15)

The approximation of π̃n−i(0) is obtained from (2.5.15)

π̃n−i(0) = ϕ(0)
(

1 + o
( 1√

n

))
. (2.5.16)

Put (2.5.15) and (2.5.16) into (2.5.14) to obtain

p(Xi+1 = yi+1|Sni+1 = nan − Si1)

=

√
n− i√

n− i− 1
πmi(Xi+1 = yi+1)

ϕ(zi)

ϕ(0)

[
1 +

µi3
6s3

i

√
n− 1

(z3
i − 3zi) + o

(
1√
n

)]

=

√
2π(n− i)
√
n− i− 1

πmi(Xi+1 = yi+1)ϕ(zi)
(
1 +Rn + o(1/

√
n)
)
, (2.5.17)
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where

Rn =
µi3

6s3
i

√
n− 1

(z3
i − 3zi).

Under condition (2.5.3), using Lemma 2.5.1, it holds zi → 0 as an → ∞, and
under Corollary (2.3.1), µi3/s

3
i → 0. This yields

Rn = o
(
1/
√
n
)
,

which, combined with (2.5.17), gives

p(Xi+1 = yi+1|sni+1 = nan − Si1) =

√
2π(n− i)
√
n− i− 1

πmi(Xi+1 = yi+1)ϕ(zi)
(
1 + o(1/

√
n)
)

=

√
n− i√

n− i− 1
πmi(Xi+1 = yi+1)

(
1− z2

i /2 + o(z2
i )
)(

1 + o(1/
√
n)
)
,

where we use one Taylor expansion in second equality. Using once more Lemma
2.5.1, under conditions (2.5.3), we have as an →∞

z2
i = o(1/

√
n),

hence we get

p(Xi+1 = yi+1|Sni+1 = nan − si1) =

√
n− i√

n− i− 1
πmi(Xi+1 = yi+1)

(
1 + o(1/

√
n)
)
,

which together with (2.5.13) yields

p(Xk
1 = yk1 |Sn1 = nan) =

k−1∏

i=0

( √
n− i√

n− i− 1
πmi(Xi+1 = yi+1)

(
1 + o(1/

√
n)
))

=
k−1∏

i=0

(
πmi(Xi+1 = yi+1)

) k−1∏

i=0

( √
n− i√

n− i− 1

) k−1∏

i=0

(
1 + o

( 1√
n

))

=
(

1 + o
( 1√

n

)) k−1∏

i=0

(
πmi(Xi+1 = yi+1)

)
,

The proof is completed.

In the present case, namely for fixed k, an equivalent statement is

Theorem 2.5.2. Under the same notation and hypotheses as in the previous The-
orem, it holds

pan(yk1) = p(Xk
1 = yk1 |Sn1 = nan) = gan(yk1)

(
1 + o

( 1√
n

))
,

with

gan(yk1) =
k∏

i=1

(
πan(Xi = yi)

)
.
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Proof. Using the notations of Theorem 2.5.1, by (2.5.13), we obtain

p(Xk
1 = yk1 |Sn1 = nan) =

k−1∏

i=0

p(Xi+1 = yi+1|Sni+1 = nan − Si1). (2.5.18)

(2.5.14) is replaced by

p(Xi+1 = yi+1|Sni+1 = nan − Si1) =

√
n− i√

n− i− 1
πan(Xi+1 = yi+1)

π̃an
n−i−1(

(i+1)an−Si+1

1

s
√
n−i−1

)

π̃an
n−i
(
ian−Si

1

s
√
n−i

) ,

(2.5.19)

where π̃an
n−i−1 is the normalized density of Sni+2 under i.i.d. sampling with πan , here

πan has the expectation an and variance s. Correspondingly, π̃an
n−i is the normalized

density of Sni+1 under the same sampling.

Write zi =
(i+1)an−Si+1

1

s
√
n−i−1

, by Theorem 2.4.1 one three-order Edgeworth expansion

yields

π̃an
n−i−1(zi) = ϕ(zi)

(
1 +Ri

n

)
+ o

(
1√
n

)
, (2.5.20)

where
Ri
n =

µ3

6s3
√
n− 1

(z3
i − 3zi).

Set i = i− 1, the approximation of π̃an
n−i is obtained from (2.5.20)

π̃n−i(zi−1) = ϕ(zi−1)
(

1 +Ri−1
n

)
+ o

(
1√
n

)
. (2.5.21)

When an →∞, using Theorem 2.3.1, it holds

sup
0≤i≤k−1

z2
i ∼

(i+ 1)2a2
n

s2n
≤ 2k2a2

n

s2n
=

2k2(m(t))2

s2n

∼ 2k2(ψ(t))2

ψ′(t)n
=

2k2(ψ(t))2

√
nψ′(t)

1√
n

= o
(

1√
n

)
, (2.5.22)

where last step holds under condition (2.5.3). Hence it holds zi → 0 for 0 ≤ i ≤ k−1
as an →∞, and by Corollary (2.3.1), µ3/s

3 → 0, then it follows

Ri
n = o

(
1/
√
n
)

Ri−1
n = o

(
1/
√
n
)
,

then put (2.5.20) and (2.5.21) into (2.5.19), we obtain

p(Xi+1 = yi+1|Sni+1 = nan − Si1) =

√
n− i√

n− i− 1
πan(Xi+1 = yi+1)

ϕ(zi)

ϕ(zi−1)

(
1 + o(1/

√
n)
)

=

√
n− i√

n− i− 1
πan(Xi+1 = yi+1)

(
1− (z2

i − z2
i−1)/2 + o(z2

i − z2
i−1)

)(
1 + o(1/

√
n)
)
,

where we use one Taylor expansion in second equality. Using (2.5.22), we have as
an →∞

|z2
i − z2

i−1| = o(1/
√
n),
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hence we get

p(Xi+1 = yi+1|Sni+1 = nan − Si1) =

√
n− i√

n− i− 1
πan(Xi+1 = yi+1)

(
1 + o(1/

√
n)
)
,

which together with (2.5.18) yields

p(Xk
1 = yk1 |Sn1 = nan) =

k−1∏

i=0

(
πan(Xi+1 = yi+1)

√
n

n− k
) k−1∏

i=0

(
1 + o

( 1√
n

))

=
(

1 + o
( 1√

n

)) k−1∏

i=0

(
πan(Xi+1 = yi+1)

)
. (2.5.23)

This completes the proof.

Remark 2.5.2. The above result shows that asymptotically the point condition
(Sn1 = nan) leaves blocks of k of the X ′is independent. Obviously this property does
not hold for large values of k, close to n. A similar statement holds in the LDP
range, conditioning either on (Sn1 = na) (see Diaconis and Friedman 1988)), or on
(Sn1 ≥ na); see Csiszar 1984 for a general statement on asymptotic conditional in-
dependence.

When an = a, decide t by m(t) = a, use the same proof as Theorem (2.5.2), we
obtain the following corollary.

Corollary 2.5.1. X1, ..., Xn are i.i.d. random variables with density p(x) defined
in (2.2.1) and h(x) ∈ R. Then it holds

pa(y
k
1) = p(Xk

1 = yk1 |Sn1 = na) = ga(y
k
1)
(

1 + o
( 1√

n

))
,

with

ga(y
k
1) =

k∏

i=1

(
πa(Xi = yi)

)
.

2.5.2 Strenghtening of the local Gibbs conditional principle

We now turn to a stronger approximation of pan . Consider Y1 with density pan

and the resulting random variable pan (Y1) . We prove the following result

Theorem 2.5.3. With the same notation and hypotheses as in Theorem 2.5.2, it
holds

pan (Y1) = gan (Y1) (1 +Rn)

where
gan = πan

the tilted density at point an, and where Rn is a function of Y n
1 such that Pan (|Rn| > δ

√
n)→

0 as n→∞ for any positive δ.
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This result is of much greater relevance than the previous ones. Indeed under
Pan the r.v. Y1 may take large values. On the contrary simple approximation of
pan by gan on R+ only provides some knowledge on pan on sets with smaller and
smaller probability under pan . Also it will be proved that as a consequence of the
above result, the L1 norm between pan and gan goes to 0 as n→∞, a result out of
reach through the aforementioned results.

In order to adapt the proof of Theorem 2.5.2 to the present setting it is necessary
to get some insight on the plausible values of Y1 under Pan . It holds

Lemma 2.5.2. Under Pan it holds

Y1 = OPan
(an)

Proof. This is a consequence of Markov Inequality:

P (Y1 > u|Sn1 = nan) ≤ E (Y1|Sn1 = nan)

u
=
an
u

which goes to 0 for all u = un such that limn→∞un/an =∞.

We now turn back to the proof of our result, replacing yi+1 by Y1 in (2.5.19).
It holds

P (X1 = Y1|Sn1 = nan) = P (X1 = Y1)
P (Sn2 = nan − Y1)

P (Sn1 = nan)

in which the tilting substitution of measures is performed, with tilting density πan ,
followed by normalization. Now if the growth condition (2.5.3) holds, namely

lim
n→∞

ψ(t)2

√
nψ′(t)

= 0

with m(t) = an it follows that

P (X1 = Y1|Sn1 = nan) = πan (Y1) (1 +Rn)

as claimed where the order of magnitude of Rn is oPan
(1/
√
n). We have proved

Theorem 2.5.3.
Denote the conditional probabilities by Pan and Gan which correspond to the

density functions pan and gan , respectively.

2.5.3 Gibbs principle in variation norm

We now consider the approximation of Pan by Gan in variation norm.
The main ingredient is the fact that in the present setting approximation of pan

by gan in probability plus some rate implies approximation of the corresponding
measures in variation norm. This approach has been developped in Broniatowski
and Caron [16]; we state a first lemma which states that wether two densities are
equivalent in probability with small relative error when measured according to the
first one, then the same holds under the sampling of the second.

Let Rn and Sn denote two p.m’s on Rn with respective densities rn and sn.
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Lemma 2.5.3. Suppose that for some sequence ϖn which tends to 0 as n tends to
infinity

rn (Y n
1 ) = sn (Y n

1 ) (1 + oRn(ϖn)) (2.5.24)

as n tends to ∞. Then

sn (Y n
1 ) = rn (Y n

1 ) (1 + oSn(ϖn)) . (2.5.25)

Proof. Denote

An,ϖn := {yn1 : (1−ϖn)sn (yn1 ) ≤ rn (yn1 ) ≤ sn (yn1 ) (1 +ϖn)} .

It holds for all positive δ
lim
n→∞

Rn (An,δϖn) = 1.

Write

Rn (An,δϖn) =
∫

1An,δϖn
(yn1 )

rn (yn1 )

sn(yn1 )
sn(yn1 )dyn1 .

Since
Rn (An,δϖn) ≤ (1 + δϖn)Sn (An,δϖn)

it follows that
lim
n→∞

Sn (An,δϖn) = 1,

which proves the claim.

Applying this Lemma to the present setting yields

gan (Y1) = pan (Y1)
(
1 + oGan

(
1/
√
n
))

as n→∞, which together with Theorem 2.5.3 implies

pan (Y1) = gan (Y1)
(
1 + oGan

(
1/
√
n
))
. (2.5.26)

This fact entails, as in Broniatowski and Caron [16]

Theorem 2.5.4. Under all the notation and hypotheses above the total variation
norm between Pan and Gan goes to 0 as n→∞.

Proof. For all δ > 0, let

Eδ :=

{
y ∈ R :

∣∣∣∣∣
pan (y)− gan (y)

gan (y)

∣∣∣∣∣ < δ

}

which by Theorem 2.5.3 and (2.5.26) satisfies

lim
n→∞

Pan (Eδ) = lim
n→∞

Gan (Eδ) = 1. (2.5.27)

It holds

sup
C∈B(R)

|Pan (C ∩ Eδ)−Gan (C ∩ Eδ)| ≤ δ sup
C∈B(R)

∫

C∩Eδ

gan (y) dy ≤ δ.
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By (2.5.27)
sup

C∈B(R)
|Pan (C ∩ Ek,δ)− Pan (C)| < ηn

and
sup

C∈B(R)
|Gan (C ∩ Eδ)−Gan (C)| < ηn

for some sequence ηn → 0 ; hence

sup
C∈B(R)

|Pan (C)−Gan (C)| < δ + 2ηn

for all positive δ, which proves the claim.
As a consequence, applying Scheffé’s Lemma

∫
|pan − gan| dx→ 0 as n→∞.

Remark 2.5.3. This result is to be paralleled with Theorem 1.6 in Diaconis and
Freedman [32] and Proposition 2.15 in Dembo and Zeitouni [30] which provide a
rate for this convergence in the LDP range.

2.5.4 The asymptotic location of X under the conditioned distribution

This section intends to provide some insight on the behaviour of X1 under the
condition (Sn1 = nan) ; this will be extended further on to the case when (Sn1 ≥ nan)
and to be considered in parallel with similar facts developed in [16] for larger values
of an.

It will be seen that conditionally on (Sn1 = nan) the marginal distribution of the
sample concentrates around an. Let Xt be a r.v. with density πan where m(t) = an
and an satisfies (2.5.3). Recall that EXt = an and VarXt = s2. We evaluate the
moment generating function of the normalized variable (Xt − an) /s. It holds

logE expλ (Xt − an) /s = −λan/s+ log Φ

(
t+

λ

s

)
− log Φ (t) .

A second order Taylor expansion in the above display yields

logE expλ (Xt − an) /s =
λ2

2

s2
(
t+ θλ

s

)

s2

where θ = θ(t, λ) ∈ (0, 1) . It holds

Lemma 2.5.4. Under the above hypotheses and notation, for any compact set K,

lim
n→∞

sup
u∈K

s2
(
t+ u

s

)

s2
= 1.
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Proof. Case 1: if h(t) ∈ Rβ. By Theorem 2.3.1, it holds s2 ∼ ψ′(t) with ψ(t) ∼
t1/βl1(t), where l is some slowly varying function. Consider ψ′(t) = 1/h

′
(
ψ(t)

)
,

hence by (2.5.6)

1

s2
∼ h

′(
ψ(t)

)
= ψ(t)β−1l0

(
ψ(t)

)(
β + ϵ

(
ψ(t)

))

∼ βt1−1/βl1(t)
β−1l0

(
ψ(t)

)
= o(t),

where l0 ∈ R0. This implies for any u ∈ K
u

s
= o(
√
t),

which together with (2.5.7) yields

s2 (t+ u/s)

s2
∼ ψ′(t+ u/s)

ψ′(t)
=

ψ(t)β−1l0
(
ψ(t)

)(
β + ϵ

(
ψ(t)

))

(
ψ(t+ u/s)

)β−1
l0
(
ψ(t+ u/s)

)(
β + ϵ

(
ψ(t+ u/s)

))

∼ ψ(t)β−1

ψ(t+ u/s)β−1
∼ t1−1/βl1(t)

β−1

(t+ u/s)1−1/βl1(t+ u/s)β−1
−→ 1.

Case 2: if h(t) ∈ R∞. Then ψ(t) ∈ R̃0, hence it holds

1

st
∼ 1

t
√
ψ′(t)

=

√
1

tψ(t)ϵ(t)
−→ 0,

which last step holds from condition (2.2.7). Hence for any u ∈ K, we get as n→∞
u

s
= o(t),

thus using the slowly varying propriety of ψ(t) we have

s2 (t+ u/s)

s2
∼ ψ′(t+ u/s)

ψ′(t)
=
ψ(t+ u/s)ϵ(t+ u/s)

t+ u/s

t

ψ(t)ϵ(t)

∼ ϵ(t+ u/s)

ϵ(t)
=
ϵ(t) +O

(
ϵ′(t)u/s

)

ϵ(t)
−→ 1, (2.5.28)

where we use one Taylor expansion in the second line, and last step holds from
condition (2.2.6). This completes the proof.

Applying the above Lemma it follows that the normalized r.v’s (Xt − an) /s con-
verge to a standard normal variable N(0, 1) in distribution, as n→∞. This amount
to say that

Xt = an + sN(0, 1) + oΠan (1).

which implies that Xt concentrates around an with rate s. Due to Theorem 2.5.4 the
same holds for X1 under (Sn1 = nan) .
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2.5.5 Differences between Gibbs principle under LDP and under ED

It is of interest to confront the present results with the general form of the Gibbs
principle under linear contraints in the LDP range. We recall briefly and somehow
unformally the main classical facts in a simple setting similar as the one used in this
paper.

Let X1, ..., Xn denote n i.i.d. real valued r.v’s with distribution P and density
p and let f : R→ R be a measurable function such that Φf (λ) := E expλf(X1)
is finite for λ in a non void neighborhood of 0 (the so-called Cramer condition).
Denote mf (λ) and s2

f (λ) the first and second derivatives of log Φf (λ). Consider the

point set condition En :=
(

1
n

∑n
i=1 f(Xi) = 0

)
and let Ω be the set of all probability

measures on R such that
∫
f(x)dQ(x) = 0.

The classical Gibbs conditioning principle writes as follows:
The limiting distribution P ∗ of X1 conditioned on the family of events En exists

and is defined as the unique minimizer of the Kullback-Leibler distance between P
and Ω, namely

P ∗ = arg min {K(Q,P ), Q ∈ Ω}
where

K(Q,P ) :=
∫

log
dQ

dP
dQ

whenever Q is absolutely continuous w.r.t. P , and K(Q,P ) = ∞ otherwise. Also
it can be proved that P ∗ has a density, which is defined through

p∗(x) =
expλf(x)

Φf (λ)
p(x)

with λ the unique solution of the equation mf (λ) = 0. Take f(x) = x − a with a
fixed to obtain

p∗(x) = πa(x)

with the current notation of this paper.
Consider now the application of the above result to r.v’s Y1, ..., Yn with Yi :=

(Xi)
2 where the X ′is are i.i.d. and are such that the density of the i.i.d. r.v’s

Y ′i s satisfy (2.2.1), where let h ∈ Rβ ∪ R∞ with β > 1. By the Gibbs conditional
principle, for fixed a, conditionally on (

∑n
i=1 Yi = na) the generic r.v. Y1 has a non

degenerate limit distribution

p∗Y (y) :=
exp ty

E exp tY1

pY (y)

and the limit density of X1 under (
∑n
i=1 X

2
i = na) is

p∗X(y) :=
exp tx2

E exp tX2
1

pX(y)

whereas, when an → ∞, Y1’s conditional limit distribution is degenerate and con-
centrates around an. As a consequence the distribution of X1 under the condition
(
∑n
i=1 X

2
i = nan) concentrates sharply at −√an and +

√
an.
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2.6 EDP under exceedance

The following proposition states the marginally conditional density under con-
dition An = {Sn1 ≥ nan}, we denote this density by pAn to differentiate it from
pan which is under condition {Sn1 = nan}. For the purpose of proof, we need the
following lemma, based on Theorem 6.2.1 of Jensen [49], to provide one asymptotic
estimation of tail probability P (Sn1 ≥ nan) and n-convolution density p(Sn1 /n = u)
for u > an.

Define

I(x) := xm−1(x)− log Φ
(
m−1(x)

)
. (2.6.1)

Lemma 2.6.1. X1, ..., Xn are i.i.d. random variables with density p(x) defined in
(2.2.1) and h(x) ∈ R. Set m(t) = an. Suppose as n→∞

ψ(t)2

√
nψ′(t)

−→ 0, (2.6.2)

then it holds

P (Sn1 ≥ nan) =
exp(−nI(an))√

2π
√
nts(t)

(
1 + o

( 1√
n

))
. (2.6.3)

Let further tτ be decided by m(tτ ) = τ with τ ≥ an, it then holds

p(Sn1 = nτ) =
exp(−nI(τ))√

2π
√
ns(tτ )

(
1 + o

( 1√
n

))
. (2.6.4)

Proof. For the density p(x) defined in (2.2.1), we show g(x) is convex when x is
large enough. If h(x) ∈ Rβ, for x large enough

g
′′
(x) = h

′
(x) =

h(x)

x

(
β + ϵ(x)

)
> 0. (2.6.5)

If h(x) ∈ R∞, its reciprocal function ψ(x) ∈ R̃0. Set x = ψ(v), hence

g
′′
(x) = h

′
(x) =

1

ψ′(v)
=

v

ψ(v)ϵ(v)
> 0, (2.6.6)

where the inequality holds since ϵ(v) > 0 under condition (2.2.7) when v is large
enough. (2.6.5) and (2.6.6) imply that g(x) is convex for x large enough.

Therefore, the density p(x) with h(x) ∈ R satisfies the conditions of Jensen’s
Theorem 6.2.1 ([49]). Denote by pn the density of X̄ = (X1 + ...+Xn)/n. We obtain
with the third order’s Edgeworth expansion from formula (2.2.6) of ([49])

P (Sn1 ≥ nan) =
Φ(t)n exp(−ntan)√

nts(t)

(
B0(λn) +O

( µ3(t)

6
√
ns3(t)

B3(λn)
))
, (2.6.7)

where λn =
√
nts(t), B0(λn) and B3(λn) are defined by

B0(λn) =
1√
2π

(
1− 1

λ2
n

+ o(
1

λ2
n

)
)
, B3(λn) ∼ − 3√

2πλn
.
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We show, under condition (2.6.2), it holds as an →∞
1

λ2
n

= o
( 1

n

)
. (2.6.8)

Since n/λ2
n = 1/(t2s2(t)), (2.6.8) is equivalent to show

t2s2(t) −→∞. (2.6.9)

By Theorem 2.3.1, m(t) ∼ ψ(t) and s2(t) ∼ ψ′(t), combined with m(t) = an, it
holds t ∼ h(an)l1(an), where l1 is some slowly varying function.

If h ∈ Rβ, notice

ψ′(t) =
1

h′(ψ(t))
=

ψ(t)

h
(
ψ(t)

)(
β + ϵ(ψ(t))

) ∼ an

h(an)
(
β + ϵ(ψ(t))

) ,

hence

t2s2(t) ∼ h(an)2l1(an)2 an

h(an)
(
β + ϵ(ψ(t))

) =
anh(an)l1(an)2

β + ϵ(ψ(tn))
−→∞. (2.6.10)

If h ∈ R∞, then ψ(t) ∈ R̃0, thus

t2s2(t) ∼ t2
ψ(t)ϵ(t)

t
= tψ(t)ϵ(t) −→∞, (2.6.11)

where last step holds from condition (2.2.7). We have showed (2.6.8) , therefore it
holds

B0(λn) =
1√
2π

(
1 + o(

1

n
)
)
.

By (2.6.9), λn goes to ∞ as an → ∞, this implies further B3(λn) → 0. On the
other hand, by (2.3.1) it holds µ3/s

3 → 0. Hence we obtain from (2.6.7)

P (Sn1 ≥ nan) =
Φ(t)n exp(−ntan)√

2πnts(t)

(
1 + o

( 1√
n

))
,

which together with (2.6.1) gives (2.6.3).
By Jensen’s Theorem 6.2.1 and formula (2.2.4) in [49] it follows uniformly in τ

p(Sn1 /n = τ) =

√
nΦ(tτ )

n exp(−ntττ)√
2πs(tτ )

(
1 + o

( 1√
n

))
,

which, together with p(Sn1 = nτ) = (1/n)p(Sn1 /n = τ), gives (2.6.4).

Proposition 2.6.1. X1, ..., Xn are i.i.d. random variables with density p(x) defined
in (2.2.1) and h(x) ∈ R. Set m(t) = an. Suppose as n→∞

ψ(t)2

√
nψ′(t)

−→ 0, (2.6.12)
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and

ηn −→ 0 and nm−1(an)ηn −→∞, (2.6.13)

then

pAn(y1) = p(X1 = y1|Sn1 ≥ nan) = gAn(y1)
(

1 + o
( 1√

n

))
,

with

gAn(y1) = ts(t)enI(an)
∫ an+ηn

an

gτ (y1) exp
(
− nI(τ)− log s(tτ )

)
dτ,

where gτ = πτ with tτ decided by m(tτ ) = τ.

Proof. Denote pAn(y1) by the integration of pan(y1)

pAn(y1) =
∫ ∞

an

p(X1 = y1|Sn1 = nτ)p(Sn1 = nτ |Sn1 ≥ nan)dτ

=
p(X1 = y1)

P (Sn1 ≥ nan)

∫ ∞

an

p(Sn2 = nτ − y1)dτ

=
(

1 +
P2

P1

)
p(X1 = y1)

P (Sn1 ≥ nan)

∫ an+ηn

an

p(Sn2 = nτ − y1)dτ

=
(

1 +
P2

P1

) ∫ an+ηn

an

p(X1 = y1|Sn1 = nτ)p(Sn1 = nτ |Sn1 ≥ nan)dτ (2.6.14)

where the second equality is obtained by Bayes formula, and P1 =
∫ an+ηn
an

p(Sn2 =
nτ − y1)dτ , P2 =

∫∞
an+ηn

p(Sn2 = nτ − y1)dτ. In fact P2 is one infinitely small term
with respect to P1, which is proved below. Further we have

P2 =
1

n
P
(
Sn2 ≥ n(an + ηn)− y1

)
=

1

n
P
(
Sn2 ≥ (n− 1)cn

)
,

P1 + P2 =
1

n
P
(
Sn2 ≥ nan − y1

)
=

1

n
P
(
Sn2 ≥ (n− 1)dn

)
,

where cn =
(
n(an + ηn) − y1

)
/(n − 1) and dn = (nan − y1)/(n − 1). Denote

tcn = m−1(cn) and tdn = m−1(dn). Using Lemma (2.6.1), it holds

P2

P1 + P2

=
(

1 + o
( 1√

n

))tdns(tdn)

tcns(tcn)
exp

(
− (n− 1)

(
I(cn)− I(dn)

))
. (2.6.15)

Using the convexity of the function I, it holds

exp
(
− (n− 1)

(
I(cn)− I(dn)

))
≤ exp

(
− (n− 1)(cn − dn)m−1(dn)

))

= exp
(
− nηnm−1(dn)

)

Consider u → m−1(u) is increasing. Since dn ≥ an as an →∞, it holds m−1(dn) ≥
m−1(an), hence under condition (2.6.13)

exp
(
− (n− 1)

(
I(cn)− I(dn)

))
≤ exp

(
− nηnm−1(an)

)
−→ 0. (2.6.16)
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Then we show

tdns(tdn)

tcns(tcn)
−→ 1. (2.6.17)

By definition, cn/dn → 1 as an →∞. If h ∈ Rβ, by (2.6.10), it holds

(
tdns(tdn)

tcns(tcn)

)2

∼
(

dnh(dn)

β + ϵ
(
ψ(dn)

)
)2(β + ϵ

(
ψ(cn)

)

cnh(cn)

)2

∼
(
h(dn)

h(cn)

)2

−→ 1.

If h ∈ R∞, by (2.6.11),

t2s2(t) ∼ tψ(t)ϵ(t),

hence

(
tdns(tdn)

tcns(tcn)

)2

∼ dnψ(dn)ϵ(dn)

cnψ(cn)ϵ(cn)
∼ ϵ(dn)

ϵ(cn)
=
ϵ
(
cn − nηn/(n− 1)

)

ϵ(cn)
−→ 1,

where last step holds by using the same argument as in the second line of (2.5.28).

Using (2.6.15), (2.6.16) and (2.6.17), we obtain

P2

P1

= o
(
1
)
.

Turn back to (2.6.14), pAn(y1) can be approximated by

pAn(y1) =
(

1 + o
(
1
)) ∫ an+ηn

an

p(X1 = y1|Sn1 = nτ)p(Sn1 = nτ |Sn1 ≥ nan)dτ.

(2.6.18)

By Lemma 2.6.1, it follows uniformly when τ ∈ [an, an + ηn]

p(Sn1 = nτ |Sn1 ≥ nan) =
p(Sn1 = nτ)

P (Sn1 ≥ nan)

=
(

1 + o
( 1√

n

)) ts(t)
s(tτ )

exp
(
− n(I(τ)− I(an))

)
, (2.6.19)

Inserting (2.6.19) into (2.6.18), we obtain

pAn(y1) =
(

1 + o
( 1√

n

))
ts(t)enI(an)

∫ an+ηn

an

gτ (y1) exp
(
− nI(τ)− log s(tτ )

)
dτ,

this completes the proof.
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2.7 Proofs

2.7.1 Proofs of Theorem 2.3.1 and Corollary 2.3.1

For density functions p(x) defined in (2.2.1) satisfying also h(x) ∈ R, denote by

ψ(x) the reciprocal function of h(x) and σ2(v) =
(
h′(v)

)−1
, v ∈ R+. For brevity, we

write x̂, σ, l instead of x̂(t), σ
(
ψ(t)

)
, l(t).

When t is given, K(x, t) attain its maximum at x̂ = ψ(t). The fourth order
Taylor expansion of K(x, t) on x ∈ [x̂− σl, x̂+ σl] yields

K(x, t) = K(x̂, t)− 1

2
h′(x̂)

(
x− x̂

)2 − 1

6
h′′(x̂)

(
x− x̂

)3
+ ε(x, t), (2.7.1)

with some θ ∈ (0, 1)

ε(x, t) = − 1

24
h

′′′(
x̂+ θ(x− x̂)

)
(x− x̂)4. (2.7.2)

For proving Theorem 2.3.1 and Corollary 2.3.1, we state firstly the following
Lemmas.

Lemma 2.7.1. For p(x) in (2.2.1), h(x) ∈ R, it holds when t→∞,

| log σ
(
ψ(t)

)
|

∫ t
1 ψ(u)du

−→ 0. (2.7.3)

Proof. If h(x) ∈ Rβ, by Theorem (1.5.12) of [10], there exists some slowly varying
function such that it holds ψ(x) ∼ x1/βl1(x). Hence as t→∞ (see [36], Chapter 8)

∫ t

1
ψ(u)du ∼ t1+ 1

β l1(t). (2.7.4)

On the other hand, h′(x) = xβ−1l(x)
(
β + ϵ(x)

)
, thus we have as x→∞

| log σ(x)| =
∣∣∣ log

(
h′(x)

)− 1

2

∣∣∣ =
∣∣∣∣
1

2

(
(β − 1) log x+ log l(x) + log(β + ϵ(x))

)∣∣∣∣

≤ 1

2
(β + 1) log x,

set x = ψ(t), then when t→∞, it holds x < 2t1/βl1(t) < t1/β+1, hence we get

| log σ
(
ψ(t)

)
| < (β + 1)2

2β
log t,

which, together with (2.7.4), yields (2.7.3).

If h(x) ∈ R∞, then by definition ψ(x) ∈ R̃0 is slowly varying as x→∞, and as
t→∞ (see [36], Chapter 8)

∫ t

1
ψ(u)du ∼ tψ(t). (2.7.5)
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Additionally, we have h′(x) = 1/ψ′(t) with x = ψ(t), it follows

| log σ(x)| =
∣∣∣ log

(
h′(x)

)− 1

2

∣∣∣ =
1

2
| logψ′(t)|.

Since ψ(t) ∈ R̃0, it holds

| log σ
(
ψ(t)

)
| = 1

2
| logψ′(t)| = 1

2

∣∣∣∣ log
(
ψ(t)

ϵ(t)

t

)∣∣∣∣

=
1

2

∣∣∣ logψ(t) + log ϵ(t)− log t
∣∣∣

≤ log t+
1

2
| log ϵ(t)| ≤ 2 log t, (2.7.6)

where last inequality follows from (2.2.7). (2.7.5) and (2.7.6) imply (2.7.3). This
completes the proof.

Lemma 2.7.2. For p(x) in (2.2.1), h ∈ R, then for any varying slowly function
l(t)→∞ as t→∞, it holds

sup
|x|≤σl

h′′′(x̂+ x)σ4l4 −→ 0 as t→∞. (2.7.7)

Proof. Case 1: h ∈ Rβ. We have h(x) = xβl0(x), l0(x) ∈ R0, β > 0. Then

h
′′
(x) = β(β − 1)xβ−2l0(x) + 2βxβ−1l

′

0(x) + xβl
′′

0 (x). (2.7.8)

and

h
′′′

(x) = β(β − 1)(β − 2)xβ−3l0(x) + 3β(β − 1)xβ−2l
′

0(x) + 3βxβ−1l
′′

0 (x) + xβl
′′′

0 (x).
(2.7.9)

Since l0 ∈ R0, it is easy to obtain

l
′

0(x) =
l0(x)

x
ϵ(x), l

′′

0 (x) =
l0(x)

x2

(
ϵ2(x) + xϵ′(x)− ϵ(x)

)
, (2.7.10)

and

l
′′′

0 (x) =
l0(x)

x3

(
ϵ3(x) + 3xϵ′(x)ϵ(x)− 3ϵ2(x)− 2xϵ

′
(x) + 2ϵ(x) + x2ϵ

′′
(x)
)
.

Under condition (2.2.5), there exists some positive constant Q such that it holds

|l′′0 (x)| ≤ Q
l0(x)

x2
, |l′′′0 (x)| ≤ Q

l0(x)

x3
,

which, together with (2.7.9), yields with some positive constant Q1

|h′′′
(x)| ≤ Q1

h(x)

x3
. (2.7.11)

By definition, we have σ2(x) = 1/h
′
(x) = x/

(
h(x)(β + ϵ(x))

)
, thus it follows

σ2 = σ2(x̂) =
x̂

h(x̂)(β + ϵ(x̂))
=

ψ(t)

t(β + ϵ(ψ(t)))
=
ψ(t)

βt

(
1 + o(1)

)
, (2.7.12)
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this implies σl = o(ψ(t)) = o(x̂). Thus we get with (2.7.11)

sup
|x|≤σl

|h′′′
(x̂+ x)| ≤ sup

|x|≤σl
Q1
h(x̂+ x)

(x̂+ x)3
≤ Q2

t

ψ3(t)
, (2.7.13)

where Q2 is some positive constant. Combined with (2.7.12), we obtain

sup
|x|≤σl

|h′′′
(x̂+ x)|σ4l4 ≤ Q2

t

ψ3(t)
σ4l4 =

Q2l
4

β2tψ(t)
−→ 0,

as sought.
Case 2: h ∈ R∞. Since x̂ = ψ(t), we have h(x̂) = t. Thus it holds

h′(x̂) =
1

ψ′(t)
and h′′(x̂) = − ψ′′(t)

(
ψ′(t)

)3 , (2.7.14)

further we get

h′′′(x̂) = −
ψ

′′′
(t)ψ

′
(t)− 3

(
ψ

′′
(t)
)2

(
ψ′(t)

)5 . (2.7.15)

Notice if h(x̂) ∈ R∞, then ψ(t) ∈ R̃0. Therefore we obtain

ψ
′
(t) =

ψ(t)

t
ϵ(t), (2.7.16)

and

ψ
′′
(t) = −ψ(t)

t2
ϵ(t)

(
1− ϵ(t)− tϵ

′
(t)

ϵ(t)

)

= −ψ(t)

t2
ϵ(t)

(
1 + o(1)

)
as t→∞, (2.7.17)

where last equality holds from (2.2.6). Using (2.2.6) once again, we have also ψ
′′′

(t)

ψ
′′′

(t) =
ψ(t)

t3
ϵ(t)

(
2 + ϵ2(t) + 3tϵ

′
(t)− 3ϵ(t)− 2tϵ

′
(t)

ϵ(t)
+
t2ϵ

′′
(t)

ϵ(t)

)

=
ψ(t)

t3
ϵ(t)

(
2 + o(1)

)
as t→∞. (2.7.18)

Put (2.7.16) (2.7.17) and (2.7.18) into (2.7.15) we get

h
′′′

(x̂) =
t

ψ3(t)ϵ3(t)

(
1 + o(1)

)

Thus by (2.2.7) as t→∞

sup
|v|≤t/4

h′′′
(
ψ(t+ v)

)
= sup
|v|≤t/4

t+ v

ψ3(t+ v)ϵ3(t+ v)

(
1 + o(1)

)

≤ sup
|v|≤t/4

2(t+ v)11/8

ψ3(t+ v)
≤ 4t11/8

ψ3(t)
, (2.7.19)
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where last inequality holds from the slowly varying propriety: ψ(t+v) ∼ ψ(t). Using

σ =
(
h

′
(x̂)
)−1/2

, it holds

sup
|v|≤t/4

h
′′′(
ψ(t+ v)

)
σ4 ≤ 4t11/8

ψ3(t)

1

(h′(x̂))2
=

4t11/8

ψ3(t)

ψ2(t)ϵ2(t)

t2
=

4ϵ2(t)

ψ(t)t5/8
−→ 0.

Hence for any slowly varying function l(t)→∞ it holds as t→∞
sup
|v|≤t/4

h
′′′(
ψ(t+ v)

)
σ4l4 −→ 0.

Consider ψ(t) ∈ R̃0, thus ψ(t) is increasing, we have the relation

sup
|v|≤t/4

h
′′′(
ψ(t+ v)

)
= sup
|ζ|≤[ζ1,ζ2]

h
′′′

(x̂+ ζ),

where

ζ1 = ψ(3t/4)− x̂, ζ2 = ψ(5t/4)− x̂.
Hence we have showed

sup
|ζ|≤[ζ1,ζ2]

h
′′′

(x̂+ ζ)σ4l4 −→ 0.

For completing the proof, it remains to show

σl ≤ min(|ζ1|, ζ2) as t→∞. (2.7.20)

Perform first order Taylor expansion of ψ(3t/4) at t, for some α ∈ [0, 1], it holds

ζ1 = ψ(3t/4)− x̂ = ψ(3t/4)− ψ(t) = −ψ′(
t− αt/4

) t
4

= −
ψ
(
t− αt/4

)

4− α ϵ
(
t− αt/4

)
,

thus using (2.2.7) and slowly varying propriety of ψ(t) we get as t→∞

|ζ1| ≥
ψ
(
t− αt/4

)

4
ϵ
(
t− αt/4

)
≥ ψ(t)

5
ϵ
(
t− αt/4

)
≥ ψ(t)

5t1/8
. (2.7.21)

On the other hand, we have σ =
(
h

′
(x̂)
)−1/2

=
(
ψ(t)ϵ(t)/t

)1/2
, which, together with

(2.7.21), yields

σ

|ζ1|
≤ 5

√√√√ ϵ(t)

ψ(t)
√
t
−→ 0 as t→∞,

which implies for any slowly varying function l(t) it holds σl = o(|ζ1|). By the same
way, it is easy to show σl = o(ζ2). Hence (2.7.20) holds, as sought.

Lemma 2.7.3. For p(x) in (2.2.1), h ∈ R, then for any varying slowly function
l(t)→∞ as t→∞, it holds

sup
|x|≤σl

h′′′(x̂+ x)

h′′(x̂)
σl −→ 0 as t→∞, (2.7.22)

and

h
′′
(x̂)σ3l −→ 0, h

′′
(x̂)σ4 −→ 0. (2.7.23)
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Proof. Case 1: h ∈ Rβ. Using (2.7.8) and (2.7.10), we get h
′′
(x) =

(
β(β − 1) +

o(1)
)
xβ−2l0(x) as x→∞, where l0(x) ∈ R0. Hence it holds

h
′′
(x̂) =

(
β(β − 1) + o(1)

)
ψ(t)β−2l0(ψ(t)), (2.7.24)

which, together with (2.7.12) and (2.7.13), yields with some positive constant Q3

sup
|x|≤σl

∣∣∣∣
h′′′(x̂+ x)

h′′(x̂)
σl
∣∣∣∣ ≤ Q3

t

ψ3(t)

1

ψ(t)β−2l0(ψ(t))

√
ψ(t)

βt
l =

Q3√
β

√
t

ψ(t)β+1/2l0(ψ(t))
l.

Notice ψ(t) ∼ t1/βl1(t) for some slowly varying function l1(t), then it holds
√
tl =

o
(
ψ(t)β+1/2

)
. Hence we get (2.7.22).

From (2.7.12) and (2.7.24), we obtain as t→∞

h
′′
(x̂)σ3l =

(
β(β − 1) + o(1)

)
ψ(t)β−2l0(ψ(t))

(
ψ(t)

βt

)3/2

l

=
(
β(β − 1) + o(1)

)ψ(t)β−1/2

β3/2t3/2
l0(ψ(t))l

∼ β − 1

β1/2

l1(t)
β−1/2

t1/2+1/2β
l0(ψ(t))l (2.7.25)

This implies the first formula of (2.7.23) holds.
Case 2: h ∈ R∞. Using (2.7.14) and (2.7.17) we obtain

h′′(x̂) = − ψ′′(t)
(
ψ′(t)

)3 =
t

ψ2(t)ϵ2(t)

(
1 + o(1)

)
. (2.7.26)

Combine (2.7.19) and (2.7.26), using σ =
(
h

′
(x̂)
)−1/2

, we have as t→∞

sup
|v|≤t/4

h
′′′
(
ψ(t+ v)

)

h′′(x̂)
σ ≤ 5ϵ2(t)t3/8

ψ(t)

1√
h′(x̂)

=
5ϵ(t)5/2

t1/8
√
ψ(t)

→ 0,

where ϵ(t)→ 0 and ψ(t) varies slowly. Hence for arbitrarily slowly varying function
l(t) it holds as t→∞

sup
|v|≤t/4

h
′′′
(
ψ(t+ v)

)

h′′(x̂)
σl −→ 0.

Define ζ1, ζ2 as in Lemma 2.7.2, we have showed

sup
|ζ|≤[ζ1,ζ2]

h
′′′

(x̂+ ζ)

h′′(x̂)
σl −→ 0.

(2.7.22) is obtained by using (2.7.20). Using (2.7.26), for any slowly varying function,
it holds

h
′′
(x̂)σ3l ∼ l√

ψ(t)ϵ(t)t
−→ 0.
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By the same method as proving h
′′
(x̂)σ3l → 0, it is easy to get for Case 1 and

Case 2

h
′′
(x̂)σ4 −→ 0.

Hence the proof.

Lemma 2.7.4. For p(x) in (2.2.1), h ∈ R, then for any slowly varying function
l(t)→∞ as t→∞, it holds

sup
y∈[−l,l]

|ξ(σy + x̂, t)|
h′′(x̂)σ3

−→ 0,

where ξ(x, t) = ε(x, t) + q(x).

Proof. A close look to the proof of Lemma 2.7.3, it is straightforward that (2.7.22)
can be slightly modified as

sup
|x|≤σl

h′′′(x̂+ x)

h′′(x̂)
σl4 −→ 0 as t→∞.

Hence for y ∈ [−l, l], by (2.7.2) and Lemma 2.7.3 it holds as t→∞
∣∣∣∣∣
ε(σy + x̂, t)

h′′(x̂)σ3

∣∣∣∣∣ ≤ sup
|x|≤σl

∣∣∣∣
h′′′(x̂+ x)

h′′(x̂)

∣∣∣∣σl
4 −→ 0. (2.7.27)

Under condition (2.2.2), set x = ψ(t), we get

sup
|v−ψ(t)|≤ϑψ(t)

|q(v)| ≤ 1

t
√
ψ(t)

.

Then we show
∣∣∣∣∣
q(σy + x̂)

h′′(x̂)σ3

∣∣∣∣∣ −→ 0. (2.7.28)

Case 1: h ∈ Rβ. We have h(x) = xβl0(x), l0(x) ∈ R0, β > 0. Hence

h
′
(x) = xβ−1l0(x)

(
β + ϵ(x)

)
.

Notice ψ
′
(t) = 1/h

′
(
ψ(t)

)
, it holds as t→∞

σl

ϑψ(t)
=

√
ψ′(t)l

ϑψ(t)
=

l

ϑψ(t)
√
h′(ψ(t))

=
l

ϑ
(
ψ(t)

)(β+1)/2
l0
(
ψ(t)

)1/2(
β + ϵ

(
ψ(t)

))1/2
−→ 0.

It follows

sup
|v−ψ(t)|≤σl

|q(v)| ≤ 1

t
√
ψ(t)

.
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Using the above inequality and by the second line of (2.7.25), when y ∈ [−l, l], it
holds as t→∞

∣∣∣∣∣
q(σy + x̂)

h′′(x̂)σ3

∣∣∣∣∣ ∼
∣∣∣∣∣∣
q(σy + x̂)

(
β − 1√

β

ψ(t)β−1/2

t3/2
l0(ψ(t))

)−1
∣∣∣∣∣∣

≤ 2

∣∣∣∣∣

√
β

β − 1

∣∣∣∣∣ sup
|v−ψ(t)|≤σl

|q(v)| t3/2

ψ(t)β−1/2l0(ψ(t))

≤ 2

∣∣∣∣∣

√
β

β − 1

∣∣∣∣∣

√
t

ψ(t)βl0(ψ(t))
−→ 0,

where last step holds since ψ(t) ∼ t1/βl1(t) for some slowly varying function l1.
Case 2: h ∈ R∞. For any slowly varying function l(t) as t→∞

σl

ϑψ(t)
=

√
ψ′(t)l

ϑψ(t)
=

√√√√ ϵ(t)

tψ(t)

l

ϑ
−→ 0,

hence

sup
|v−ψ(t)|≤σl

|q(v)| ≤ 1

t
√
ψ(t)

.

Using this inequality and (2.7.26), when y ∈ [−l, l], it holds as t→∞
∣∣∣∣∣
q(σy + x̂)

h′′(x̂)σ3

∣∣∣∣∣ ≤ 2|q(σy + x̂)|
√
ψ(t)ϵ(t)t ≤ 2 sup

|v−ψ(t)|≤σl
|q(v)|

√
ψ(t)ϵ(t)t ≤

√
ϵ(t)/t→ 0.

(2.7.28), together with (2.7.27), completes the proof.

Lemma 2.7.5. For p(x) belonging to (2.2.1), h(x) ∈ R, α ∈ N, denote by

Ψ(t, α) :=
∫ ∞

0
(x− x̂)αetxp(x)dx,

then there exists some slowly varying function l(t) such that it holds as t→∞

Ψ(t, α) = cσα+1eK(x̂,t)T1(t, α)
(
1 + o(1)

)
,

where

T1(t, α) =
∫ l1/3

√
2

− l1/3
√

2

yα exp
(
− y2

2

)
dy − h

′′
(x̂)σ3

6

∫ l1/3
√

2

− l1/3
√

2

y3+α exp
(
− y2

2

)
dy.

Proof. By (2.7.2) and Lemma 2.7.2, for any slowly varying function l(t) it holds as
t→∞

sup
|x−x̂|≤σl

|ε(x, t)| → 0.

Given a slowly varying function l with l(t)→∞ and define the interval It as follows

It :=
(
− l1/3σ√

2
,
l1/3σ√

2

)
.
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For large enough τ , when t→∞ we can partition R+ as

R+ = {x : 0 < x < τ} ∪ {x : x ∈ x̂+ It} ∪ {x : x ≥ τ, x /∈ x̂+ It},

where τ large enough such that it holds for x > τ

p(x) < 2ce−g(x). (2.7.29)

Obviously, for fixed τ , {x : 0 < x < τ} ∩ {x : x ∈ x̂ + It} = ‰ since for large t

we have min
(
x : x ∈ x̂+ It

)
→∞ as t→∞. Hence it holds

Ψ(t, α) =
∫ τ

0
(x− x̂)αetxp(x)dx+

∫

x∈x̂+It

(x− x̂)αetxp(x)dx+
∫

x/∈x̂+It,x>τ
(x− x̂)αetxp(x)dx

:= Ψ1(t, α) + Ψ2(t, α) + Ψ3(t, α). (2.7.30)

We estimate sequentially Ψ1(t, α),Ψ2(t, α),Ψ3(t, α) in Step 1, Step 2 and Step
3.

Step 1: Using (2.7.29), for τ large enough, we have

|Ψ1(t, α)| ≤
∫ τ

0
|x− x̂|αetxp(x)dx ≤ 2c

∫ τ

0
|x− x̂|αetx−g(x)dx

≤ 2c
∫ τ

0
x̂αetxdx ≤ 2ct−1x̂αetτ . (2.7.31)

We show it holds for h ∈ R as t→∞

t−1x̂αetτ = o(σα+1eK(x̂,t)h
′′
(x̂)σ3). (2.7.32)

(2.7.32) is equivalent to

σ−α−4t−1x̂αetτ
(
h

′′
(x̂)
)−1

= o(eK(x̂,t)),

which is implied by

exp
(
− (α+ 4) log σ − log t+ α log x̂+ τt− log h

′′
(x̂)
)

= o(eK(x̂,t)).

Since x̂ = ψ(t), it holds

K(x̂, t) = tψ(t)− g(ψ(t)) =
∫ t

1
ψ(u)du+ ψ(1)− g(1), (2.7.33)

where the second equality can be easily verified by the change of variable u = h(v).
By Lemma (2.7.1), we know log σ = o(eK(x̂,t)) as t → ∞. So it remains to show
t = o(eK(x̂,t)), log x̂ = o(eK(x̂,t)) and log h

′′
(x̂) = o(eK(x̂,t)).

If h(x) ∈ Rβ, by Theorem (1.5.12) of [10], it holds ψ(x) ∼ x1/βl1(x) with some
slowly varying function l1(x). (2.7.4) and (2.7.33) yield t = o(eK(x̂,t)). In addi-

tion, log x̂ = logψ(t) ∼
(
(1/β) log t + log l1(t)

)
= o(eK(x̂,t)). By (2.7.24), it holds

log h
′′
(x̂) = o(t). Thus (2.7.32) holds.

If h(x) ∈ R∞, ψ(x) ∈ R̃0 is slowly varying as x→∞. Therefore, by (2.7.5) and
(2.7.33), it holds t = o(eK(x̂,t)) and log x̂ = logψ(t) = o(eK(x̂,t)). Using (2.7.26), we
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have log h
′′
(x̂) ∼ log t− 2 log x̂ − 2 log ϵ(t). Under condition (2.2.7), log ϵ(t) = o(t),

thus it holds log h
′′
(x̂) = o(t). We get (2.7.32).

(2.7.31) and (2.7.32) yield together

|Ψ1(t, α)| = o(σα+1eK(x̂,t)h
′′
(x̂)σ3). (2.7.34)

Step 2: Notice min
(
x : x ∈ x̂+ It

)
→∞ as t→∞, which implies both ε(x, t)

and q(x) go to 0 when x ∈ x̂+ It. By (2.2.1) and (2.7.1), as t→∞

Ψ2(t, α) =
∫

x∈x̂+It

(x− x̂)αc exp
(
K(x, t) + q(x)

)
dx

=
∫

x∈x̂+It

(x− x̂)αc exp
(
K(x̂, t)− 1

2
h′(x̂)

(
x− x̂

)2

− 1

6
h′′(x̂)

(
x− x̂

)3
+ ξ(x, t)

)
dx,

where ξ(x, t) = ε(x, t) + q(x). Make the change of variable y = (x− x̂)/σ, it holds

Ψ2(t, α) = cσα+1 exp
(
K(x̂, t)

) ∫ l1/3
√

2

− l1/3
√

2

yα exp
(
− y2

2
− h

′′
(x̂)σ3

6
y3 + ξ(σy + x̂, t)

)
dy.

(2.7.35)

On y ∈
(
− l1/3/

√
2, l1/3/

√
2
)
, by (2.7.23), |h′′

(x̂)σ3y3| ≤ |h′′
(x̂)σ3l| → 0 as t→∞.

Perform the first order Taylor expansion, as t→∞

exp
(
− h

′′
(x̂)σ3

6
y3 + ξ(σy + x̂, t)

)
= 1− h

′′
(x̂)σ3

6
y3 + ξ(σy + x̂, t) + o1(t, y),

where

o1(t, y) = o
(
− h

′′
(x̂)σ3

6
y3 + ξ(σy + x̂, t)

)
.

Hence we obtain
∫ l1/3

√
2

− l1/3
√

2

yα exp
(
− y2

2
− h

′′
(x̂)σ3

6
y3 + ξ(σy + x̂, t)

)
dy

=
∫ l1/3

√
2

− l1/3
√

2

(
1− h

′′
(x̂)σ3

6
y3 + ξ(σy + x̂, t) + o1(t, y)

)
yα exp

(
− y2

2

)
dy

=
∫ l1/3

√
2

− l1/3
√

2

yα exp
(
− y2

2

)
dy − h

′′
(x̂)σ3

6

∫ l1/3
√

2

− l1/3
√

2

y3+α exp
(
− y2

2

)
dy

+
∫ l1/3

√
2

− l1/3
√

2

(
ξ(σy + x̂, t) + o1(t, y)

)
yα exp

(
− y2

2

)
dy.

Define T1(t, α) and T2(t, α) as follows

T1(t, α) =
∫ l1/3

√
2

− l1/3
√

2

yα exp
(
− y2

2

)
dy − h

′′
(x̂)σ3

6

∫ l1/3
√

2

− l1/3
√

2

y3+α exp
(
− y2

2

)
dy,

T2(t, α) =
∫ l1/3

√
2

− l1/3
√

2

(
ξ(σy + x̂, t) + o1(t, y)

)
yα exp

(
− y2

2

)
dy. (2.7.36)
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For T2(t, α), it holds

|T2(t, α)| ≤
∫ l1/3

√
2

− l1/3
√

2

(
|ξ(σy + x̂, t)|+ |o1(t, y)|

)
|y|α exp

(
− y2

2

)
dy

≤ sup
y∈[−l,l]

|ξ(σy + x̂, t)|
∫ l1/3

√
2

− l1/3
√

2

|y|α exp
(
− y2

2

)
dy +

∫ l1/3
√

2

− l1/3
√

2

|o1(t, y)||y|α exp
(
− y2

2

)
dy

≤ sup
y∈[−l,l]

|ξ(σy + x̂, t)|
∫ l1/3

√
2

− l1/3
√

2

|y|α exp
(
− y2

2

)
dy

+
∫ l1/3

√
2

− l1/3
√

2

(∣∣∣o
(h′′

(x̂)σ3

6
y3
)∣∣∣+

∣∣∣o
(
ξ(σy + x̂, t)

)∣∣∣
)
|y|α exp

(
− y2

2

)
dy

≤ 2 sup
y∈[−l,l]

|ξ(σy + x̂, t)|
∫ l1/3

√
2

− l1/3
√

2

|y|α exp
(
− y2

2

)
dy + |o(h′′

(x̂)σ3)|
∫ l1/3

√
2

− l1/3
√

2

|y|3+α exp
(
− y2

2

)
dy

= |o(h′′
(x̂)σ3)|

( ∫ l1/3
√

2

− l1/3
√

2

|y|α exp
(
− y2

2

)
dy +

∫ l1/3
√

2

− l1/3
√

2

|y|3+α exp
(
− y2

2

)
dy
)
,

where last equality holds from Lemma 2.7.4. Since the integrals in the last equality
are both bounded, it holds as t→∞

T2(t, α) = o(h
′′
(x̂)σ3).

When α is even, the second term of T1(t, α) vanishes. When α is odd, the first
term of T1(t, α) vanishes. h

′′
(x̂)σ3 → 0 by (2.7.23), thus T1(t, α) is at least the same

order than h
′′
(x̂)σ3. It follows as t→∞

T2(t, α) = o(T1(t, α)). (2.7.37)

Using (2.7.35), (2.7.36) and (2.7.37) we get

Ψ2(t, α) = cσα+1 exp
(
K(x̂, t)

)
T1(t, α)

(
1 + o(1)

)
. (2.7.38)

Step 3: Given h ∈ R, for any t, K(x, t) as a function of x (x > τ) is concave
since

K ′′(x, t) = −h′(x) < 0.

Thus we get for x /∈ x̂+ It and x > τ

K(x, t)−K(x̂, t) ≤
K(x̂+ l1/3σ√

2
sgn(x− x̂), t)−K(x̂, t)

l1/3σ√
2
sgn(x− x̂)

(x− x̂), (2.7.39)

where

sgn(x− x̂) =





1 if x ≥ x̂,

−1 if x < x̂.
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Using (2.7.1), we get

K(x̂+
l1/3σ√

2
sgn(x− x̂), t)−K(x̂, t) ≤ −1

8
h′(x̂)l2/3σ2 = −1

8
l2/3,

which, combined with (2.7.39), yields

K(x, t)−K(x̂, t) ≤ −
√

2

8
l1/3σ−1|x− x̂|.

We obtain

|Ψ3(t, α)| ≤ 2c
∫

x/∈x̂+It,x>τ
|x− x̂|α exp

(
K(x, t)

)
dx

≤ 2ceK(x̂,t)
∫

|x−x̂|> l1/3σ√
2

|x− x̂|α exp
(
−
√

2

8
l1/3σ−1|x− x̂|

)
dx

= 2ceK(x̂,t)σα+1
∫

|y|> l1/3
√

2

|y|α exp
(
−
√

2

8
l1/3|y|

)
dy

= 2ceK(x̂,t)σα+1
∫

|y|> l1/3
√

2

exp
(
−
√

2

8
l1/3|y|+ α log |y|

)
dy

= 2ceK(x̂,t)σα+1
(

2e−l
2/3/8

(
1 + o(1)

))
,

where last equality holds when l → ∞ (see e.g. Theorem 4.12.10 of [10]). With
(2.7.38), we obtain

∣∣∣∣
Ψ3(t, α)

Ψ2(t, α)

∣∣∣∣ ≤
8e−l

2/3/8

|T1(t, α)| .

In Step 2, we know T1(t, α) has at least the order h
′′
(x̂)σ3. Hence there exists some

positive constant Q and some slowly varying function l2 with l2(t) → ∞ such that
it holds as t→∞

∣∣∣∣
Ψ3(t, α)

Ψ2(t, α)

∣∣∣∣ ≤
Qe−l

2/3

2
/8

h′′(x̂)σ3
.

For example, we can take l2(t) = (log t)3.
If h ∈ Rβ, one close look to (2.7.25), it is easy to know h

′′
(x̂)σ3 ≥ 1/t1+1/(2β),

with the choice of l2 as above, we have
∣∣∣∣
Ψ3(t, α)

Ψ2(t, α)

∣∣∣∣ ≤ Q exp
(
− l2/3

2 /8 + (1 + 1/(2β)) log t
)
−→ 0.

If h ∈ R∞, using (2.7.26), then it holds as t→∞
∣∣∣∣
Ψ3(t, α)

Ψ2(t, α)

∣∣∣∣ ≤ 2Q exp
(
− l2/3

2 /8 + log
√
tψ(t)ϵ(t)

)

= 2Q exp
(
− l2/3

2 /8 + (1/2)
(

log t+ logψ(t) + log ϵ(t)
))

−→ 0, (2.7.40)

where last line holds since logψ(t) = O(log t). The proof is completed by combining
(2.7.30), (2.7.34), (2.7.38) and (2.7.40).
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Proof of Theorem 2.3.1. By Lemma 2.7.5, if α = 0, it holds T1(t, 0) ∼
√

2π as
t→∞, hence for p(x) defined in (2.2.1), we can approximateX’s moment generating
function Φ(t)

Φ(t) =
∫ ∞

0
etxp(x)dx = c

√
2πσeK(x̂,t)

(
1 + o(1)

)
. (2.7.41)

If α = 1, it holds as t→∞,

T1(t, 1) = −h
′′
(x̂)σ3

6

∫ l1/3
√

2

− l1/3
√

2

y4 exp
(
− y2

2

)
dy = −

√
2πh

′′
(x̂)σ3

2

(
1 + o(1)

)
,

hence we have with Ψ(t, α) defined in Lemma 2.7.5

Ψ(t, 1) = −c
√

2πσ2eK(x̂,t)h
′′
(x̂)σ3

2

(
1 + o(1)

)
= −Φ(t)

h
′′
(x̂)σ4

2

(
1 + o(1)

)
, (2.7.42)

which, together with the definition of Ψ(t, α), yields

∫ ∞

0
xetxp(x)dx = Ψ(t, 1) + x̂Φ(t) =

(
x̂− h

′′
(x̂)σ4

2

(
1 + o(1)

))
Φ(t). (2.7.43)

Hence we get

m(t) =
d log Φ(t)

dt
=

∫∞
0 xetxp(x)dx

Φ(t)
= x̂− h

′′
(x̂)σ4

2

(
1 + o(1)

)
. (2.7.44)

By (2.7.23), as t→∞

m(t) ∼ x̂ = ψ(t). (2.7.45)

Set α = 2, as t→∞, it follows

Ψ(t, 2) = cσ3eK(x̂,t)
∫ l1/3

√
2

− l1/3
√

2

y2 exp
(
− y2

2

)
dy
(
1 + o(1)

)

= c
√

2πσ3eK(x̂,t)
(
1 + o(1)

)
= σ2Φ(t)

(
1 + o(1)

)
. (2.7.46)

Using (2.7.42), (2.7.44) and (2.7.46), we have

∫ ∞

0

(
x−m(t)

)2
etxp(x)dx =

∫ ∞

0

(
x− x̂+ x̂−m(t)

)2
etxp(x)dx

=
∫ ∞

0

(
x− x̂

)2
etxp(x)dx+ 2

(
x̂−m(t)

) ∫ ∞

0
(x− x̂)etxp(x)dx+

(
x̂−m(t)

)2
Φ(t)

= Ψ(t, 2) + 2
(
x̂−m(t)

)
Ψ(t, 1) +

(
x̂−m(t)

)2
Φ(t)

= σ2Φ(t)
(
1 + o(1)

)
− h′′

(x̂)σ4
(

Φ(t)
h

′′
(x̂)σ4

2

)(
1 + o(1)

)
+
(
h

′′
(x̂)σ4

2

)2

Φ(t)
(
1 + o(1)

)

= σ2Φ(t)
(
1 + o(1)

)
− (h

′′
(x̂)σ3)2

4
σ2Φ(t)

(
1 + o(1)

)
= σ2Φ(t)

(
1 + o(1)

)
,
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where last equality holds since h
′′
(x̂)σ3 goes to 0 by (2.7.23), thus as t→∞

s2(t) =
d2 log Φ(t)

dt2
=

∫∞
0

(
x−m(t)

)2
etxp(x)dx

Φ(t)
∼ σ2 = ψ′(t). (2.7.47)

Set α = 3, the first term of T1(t, 3) vanishes, we obtain as t→∞

Ψ(t, 3) = −c
√

2πσ4eK(x̂,t)h
′′
(x̂)σ3

6

∫ l1/3
√

2

− l1/3
√

2

1√
2π
y6 exp

(
− y2

2

)
dy

= −cM6

√
2πeK(x̂,t)h

′′
(x̂)σ7

6

(
1 + o(1)

)
= −M6

h
′′
(x̂)σ6

6
Φ(t)

(
1 + o(1)

)
,

(2.7.48)

where M6 denotes the sixth order moment of standard normal distribution. Using
(2.7.42), (2.7.44), (2.7.46) and (2.7.48), we have as t→∞
∫ ∞

0

(
x−m(t)

)3
etxp(x)dx =

∫ ∞

0

(
x− x̂+ x̂−m(t)

)3
etxp(x)dx

=
∫ ∞

0

(
(x− x̂)3 + 3(x− x̂)2

(
x̂−m(t)

)
+ 3(x− x̂)

(
x̂−m(t)

)2
+
(
x̂−m(t)

)3
)
etxp(x)dx

= Ψ(t, 3) + 3
(
x̂−m(t)

)
Ψ(t, 2) + 3

(
x̂−m(t)

)2
Ψ(t, 1) +

(
x̂−m(t)

)3
Φ(t)

= −M6
h

′′
(x̂)σ6

6
Φ(t)

(
1 + o(1)

)
+ (3/2)h

′′
(x̂)σ4(σ2Φ(t))

(
1 + o(1)

)

− 3
(
h

′′
(x̂)σ4

2

)2

Φ(t)
h

′′
(x̂)σ4

2

(
1 + o(1)

)
+
(
h

′′
(x̂)σ4

2

)3

Φ(t)
(
1 + o(1)

)

=
9−M6

6
h

′′
(x̂)σ6Φ(t)

(
1 + o(1)

)
− h

′′
(x̂)σ6Φ(t)

(h
′′
(x̂)σ3)2

4

(
1 + o(1)

)

=
9−M6

6
h

′′
(x̂)σ6Φ(t)

(
1 + o(1)

)
,

where last equality holds since h
′′
(x̂)σ3 → 0 by (2.7.23). Hence we get as t→∞

µ3(t) =
d3 log Φ(t)

dt3
=

∫∞
0

(
x−m(t)

)3
etxp(x)dx

Φ(t)

∼ 9−M6

6
h

′′
(x̂)σ6 = −9−M6

6

ψ
′′
(t)

ψ′(t)3
ψ′(t)3 =

M6 − 9

6
ψ

′′
(t). (2.7.49)

The proof is completed by combining (2.7.45) (2.7.47) with (2.7.49).

Proof of Corollary 2.3.1. The proof is immediate by (2.7.23) of Lemma 2.7.3, from
which we get h

′′
(x̂)σ3 → 0 since l(t) → ∞ as t → ∞. By (2.7.47) and (2.7.49), it

holds as t→∞
µ3

s3
∼ 9−M6

6
h

′′
(x̂)σ3 −→ 0. (2.7.50)
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2.7.2 Proof of Theorem 2.4.1

Lemma 2.7.6. With the same notation as in Theorem 2.4.1, it holds

∣∣∣∣ρn(x)− ϕ(x)− µ3

6
√
ns3

(
x3 − 3x

)
ϕ(x)

∣∣∣∣

≤ 1

2π

∫ ∞

−∞

∣∣∣∣
(
φan(τ/

√
n)
)n − e− 1

2
τ2 − µ3

6
√
ns3

(iτ)3e−
1

2
τ2

∣∣∣∣dτ.

Proof. Let

G(x) := ρn(x)− ϕ(x)− µ3

6
√
ns3

(
x3 − 3x

)
ϕ(x).

From

ϕ(x) =
1

2π

∫ ∞

−∞
e−iτxe−

1

2
τ2

dτ, (2.7.51)

it follows that

ϕ′′′(x) = − 1

2π

∫ ∞

−∞
(iτ)3e−iτxe−

1

2
τ2

dτ. (2.7.52)

On the other hand

ϕ′′′(x) = −(x3 − 3x)ϕ(x),

which, together with (2.7.52), gives

(x3 − 3x)ϕ(x) =
1

2π

∫ ∞

−∞
(iτ)3e−iτxe−

1

2
τ2

dτ. (2.7.53)

Let φan(τ) be the characteristic function (c.f) of π̄an ; the c.f of ρn is
(
φan(τ/

√
n)
)n

.

Hence it holds by Fourier inversion theorem

ρn(x) =
1

2π

∫ ∞

−∞
e−iτx

(
φan(τ/

√
n)
)n
dτ. (2.7.54)

Using (2.7.51), (2.7.53) and (2.7.54), we have

G(x) =
1

2π

∫ ∞

−∞
e−iτx

((
φan(τ/

√
n)
)n − e− 1

2
τ2 − µ3

6
√
ns3

(iτ)3e−
1

2
τ2

)
dτ.

Hence the proof is completed.

Lemma 2.7.7. With the same notation as in Theorem 2.4.1, the characteristic
function φan of π̄an(x) satisfies

sup
an∈R+

∫
|φan(τ)|2dτ <∞ and sup

an∈R+,|τ |≥ϱ>0

|φan(τ)| < 1,

for any positive ϱ .
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Proof. It is easy to verify that r-order (r ≥ 1) moment µr of πan(x) satisfies

µr(t) =
dr log Φ(t)

dtr
with t = m←(an),

By Parseval identity

∫
|φan(τ)|2dτ = 2π

∫
(π̄an(x))2dx ≤ 2π sup

x∈R
π̄an(x). (2.7.55)

For the density function p(x) in (2.2.1), Theorem 5.4 of Juszczak and Nagaev [54]
states that the normalized conjugate density of p(x), namely, π̄an(x) has the propri-
ety

lim
an→∞

sup
x∈R
|π̄an(x)− ϕ(x)| = 0.

Thus for arbitrary positive δ, there exists some positive constant M such that it
holds

sup
an≥M

sup
x∈R
|π̄an(x)− ϕ(x)| ≤ δ,

which entails that supan≥M supx∈R π̄
an(x) <∞. When an < M , supan<M supx∈R π̄

an(x) <
∞; hence we have

sup
an∈R+

sup
x∈R

π̄an(x) <∞,

which, together with (2.7.55), gives the first inequality of the Lemma. Furthermore,
φan(τ) is not periodic, hence the second inequality of the Lemma holds from Lemma
4 (Chapter 15, section 1) of [36].

Proof of Theorem 2.4.1. We complete the proof by showing that for n large enough

∫ ∞

−∞

∣∣∣∣
(
φan(τ/

√
n)
)n − e− 1

2
τ2 − µ3

6
√
ns3

(iτ)3e−
1

2
τ2

∣∣∣∣dτ = o
(

1√
n

)
. (2.7.56)

For arbitrarily positive sequence an we have

sup
an∈R+

∣∣∣∣φ
an(τ)

∣∣∣∣ = sup
an∈R+

∣∣∣∣
∫ ∞

−∞
eiτxπ̄an(x)dx

∣∣∣∣ ≤ sup
an∈R+

∫ ∞

−∞

∣∣∣∣e
iτxπ̄an(x)

∣∣∣∣dx = 1.

In addition, πan(x) is integrable, by Riemann-Lebesgue theorem, it holds when
|τ | → ∞

sup
an∈R+

∣∣∣∣φ
an(τ)

∣∣∣∣ −→ 0.

Thus for any strictly positive ω, there exists some corresponding Nω such that if
|τ | > ω, it holds

sup
an∈R+

∣∣∣∣φ
an(τ)

∣∣∣∣ < Nω < 1. (2.7.57)

We now turn to (2.7.56) which is splitted on |τ | > ω
√
n and on |τ | ≤ ω

√
n .
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It holds

√
n
∫

|τ |>ω√n

∣∣∣∣
(
φan(τ/

√
n)
)n − e− 1

2
τ2 − µ3

6
√
ns3

(iτ)3e−
1

2
τ2

∣∣∣∣dτ

≤ √n
∫

|τ |>ω√n

∣∣∣∣
(
φan(τ/

√
n)
)∣∣∣∣
n

dτ +
√
n
∫

|τ |>ω√n

∣∣∣∣e
− 1

2
τ2

+
µ3

6
√
ns3

(iτ)3e−
1

2
τ2

∣∣∣∣dτ

≤ √nNn−2
ω

∫

|τ |>ω√n

∣∣∣∣
(
φan(τ/

√
n)
)∣∣∣∣

2

dτ +
√
n
∫

|τ |>ω√n
e−

1

2
τ2

(
1 +

∣∣∣∣
µ3τ

3

6
√
ns3

∣∣∣∣
)
dτ.

(2.7.58)

where the first term of the last line tends to 0 for n large enough, since

√
nNn−2

ω

∫

|τ |>ω√n

∣∣∣∣
(
φan(τ/

√
n)
)∣∣∣∣

2

dτ

= exp
(

1

2
log n+ (n− 2) logNω + log

∫

|τ |>ω√n

∣∣∣∣
(
φan(τ/

√
n)
)∣∣∣∣

2

dτ
)
−→ 0, (2.7.59)

where the last step holds from Lemma 2.7.7 and (2.7.57). As for the second term
of (2.7.58), by Corollary (2.3.1), for n large enough, we have |µ3/s

3| → 0. Hence it
holds for n large enough

√
n
∫

|τ |>ω√n
e−

1

2
τ2

(
1 +

∣∣∣∣
µ3τ

3

6
√
ns3

∣∣∣∣
)
dτ

≤ √n
∫

|τ |>ω√n
e−

1

2
τ2 |τ |3dτ =

√
n
∫

|τ |>ω√n
exp

{
− 1

2
τ 2 + 3 log |τ |

}
dτ

= 2
√
n exp

(
− ω2n/2 + o(ω2n/2)

)
−→ 0, (2.7.60)

where the second equality holds from, for example, Chapter 4 of [10]. (2.7.58),
(2.7.59) and (2.7.60) implicate that, for n large enough

∫

|τ |>ω√n

∣∣∣∣
(
φan(τ/

√
n)
)n − e− 1

2
τ2 − µ3

6
√
ns3

(iτ)3e−
1

2
τ2

∣∣∣∣dτ = o
(

1√
n

)
. (2.7.61)

If |τ | ≤ ω
√
n, it holds

∫

|τ |≤ω√n

∣∣∣∣
(
φan(τ/

√
n)
)n − e− 1

2
τ2 − µ3

6
√
ns3

(iτ)3e−
1

2
τ2

∣∣∣∣dτ

=
∫

|τ |≤ω√n
e−

1

2
τ2

∣∣∣∣
(
φan(τ/

√
n)
)n
e

1

2
τ2 − 1− µ3

6
√
ns3

(iτ)3

∣∣∣∣dτ

=
∫

|τ |≤ω√n
e−

1

2
τ2

∣∣∣∣ exp
{
n logφan(τ/

√
n) +

1

2
τ 2
}
− 1− µ3

6
√
ns3

(iτ)3

∣∣∣∣dτ. (2.7.62)

The integrand in the last display is bounded through

|eα − 1− β| = |(eα − eβ) + (eβ − 1− β)| ≤ (|α− β|+ 1

2
β2)eγ, (2.7.63)

where γ ≥ max(|α|, |β|); this inequality follows replacing eα, eβ by their power series,
for real or complex α, β. Denote by

γ(τ) = logφan(τ) +
1

2
τ 2.
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Since γ′(0) = γ′′(0) = 0, the third order Taylor expansion of γ(τ) at τ = 0 yields

γ(τ) = γ(0) + γ′(0)τ +
1

2
γ′′(0)τ 2 +

1

6
γ′′′(ξ)τ 3 =

1

6
γ′′′(ξ)τ 3,

where 0 < ξ < τ . Hence it holds

∣∣∣∣γ(τ)− µ3

6s3
(iτ)3

∣∣∣∣ =
∣∣∣∣γ
′′′(ξ)− µ3

s3
i3
∣∣∣∣
|τ |3
6
.

Here γ′′′ is continuous; thus we can choose ω small enough such that |γ′′′(ξ)| < ρ
for |τ | < ω. Meanwhile, for n large enough, according to Corollary (2.3.1) , we have
|µ3/s

3| → 0. Hence it holds for n large enough

∣∣∣∣γ(τ)− µ3

6s3
(iτ)3

∣∣∣∣ ≤
(
|γ′′′(ξ)|+ ρ

) |τ |3
6

< ρ|τ |3. (2.7.64)

Choose ω small enough, such that for n large enough it holds for |τ | < ω

∣∣∣∣
µ3

6s3
(iτ)3

∣∣∣∣ ≤
1

4
τ 2, |γ(τ)| ≤ 1

4
τ 2.

For this choice of ω, when |τ | < ω we have

max
(∣∣∣∣
µ3

6s3
(iτ)3

∣∣∣∣, |γ(τ)|
)
≤ 1

4
τ 2. (2.7.65)

Replacing τ by τ/
√
n, it holds for |τ | < ω

√
n

∣∣∣∣n logφan(τ/
√
n) +

1

2
τ 2 − µ3

6
√
ns3

(iτ)3

∣∣∣∣

= n
∣∣∣∣ logφan(τ/

√
n) +

1

2

(
τ√
n

)2

− µ3

6s3

(
iτ√
n

)3∣∣∣∣

= n

∣∣∣∣γ
(
τ√
n

)
− µ3

6s3

(
iτ√
n

)3∣∣∣∣ <
ρ|τ |3√
n
, (2.7.66)

where the last inequality holds from (2.7.64). In a similar way, with (2.7.65), it also
holds for |τ | < ω

√
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τ 2
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4
τ 2. (2.7.67)

Apply (2.7.63) to estimate the integrand of last line of (2.7.62), with the choice
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of ω in (2.7.64) and (2.7.65), using (2.7.66) and (2.7.67) we have for |τ | < ω
√
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{
n logφan(τ/

√
n) +

1

2
τ 2
}
− 1− µ3

6
√
ns3

(iτ)3

∣∣∣∣

≤
(∣∣∣∣n logφan(τ/

√
n) +

1

2
τ 2 − µ3

6
√
ns3

(iτ)3

∣∣∣∣+
1

2

∣∣∣∣
µ3

6
√
ns3

(iτ)3

∣∣∣∣
2)

× exp
[

max
(∣∣∣∣n logφan(τ/

√
n) +

1

2
τ 2

∣∣∣∣,
∣∣∣∣
µ3

6
√
ns3

(iτ)3

∣∣∣∣
)]

≤
(
ρ|τ |3√
n

+
1

2

∣∣∣∣
µ3

6
√
ns3

(iτ)3

∣∣∣∣
2)

exp
(
τ 2

4

)

=
(
ρ|τ |3√
n

+
µ2

3τ
6

72ns6

)
exp

(
τ 2

4

)
.

Use this upper bound to (2.7.62), we obtain

∫

|τ |≤ω√n

∣∣∣∣
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where both the first integral and the second integral are finite, and ρ is arbitrarily
small; additionally, by Corollary (2.3.1), µ2

3/s
6 → 0 when n large enough, hence it

holds for n large enough

∫
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)
. (2.7.68)

Now (2.7.61) and (2.7.68) give (2.7.56). Further, using (2.7.56) and Lemma 2.7.6,
we obtain ∣∣∣∣ρn(x)− ϕ(x)− µ3

6
√
ns3

(
x3 − 3x

)
ϕ(x)

∣∣∣∣ = o
(

1√
n

)
,

which concludes the proof.



Chapter 3

Weighted sampling, MLE and
minimum divergence estimator

3.1 Motivation and context

This paper explores Maximum Likelihood (ML) paradigm in the context of sam-
pling. It mainly quotes that inference criterion is strongly connected with the sam-
pling scheme generating the data. Under a given model, when i.i.d. sampling is
considered and some standard regularity is assumed, then the Maximum Likelihood
principle loosely states that conditionally upon the observed data, resampling under
the same i.i.d. scheme should resemble closely to the initial sample only when the
resampling distribution is close to the initial unknown one.

Keeping the same definition it appears that under other sampling schemes, the
Maximum Likelihood Principle yields a wide range of statistical procedures. Those
have in common with the classical simple i.i.d. sampling case that they can be
embedded in a natural class of methods based on minimization of ϕ−divergences
between the empirical measure of the data and the model. In the classical i.i.d. case
the divergence is the Kullback-Leibler one, which yields the standard form of the
Likelihood function. In the case of the weighted bootstrap, the divergence to be
optimized is directly related to the distribution of the weights.

This paper discusses the choice of an inference criterion in parametric setting.
We consider a wide range of commonly used statistical criterions, namely all those
induced by the so-called power divergence, including therefore Maximum Likelihood,
Kullback-Leibler, Chi-square, Hellinger distance, etc. The steps of the discussion are
as follows.

We first insert Maximum Likelihood paradigm at the center of the scene, putting
forwards its strong connection with large deviation probabilities for the empirical
measure. The argument can be sketched as follows: for any putative θ in the
parameter set, consider n virtual simulated r.v’s Xi,θ with corresponding empirical
measure Pn,θ. Evaluate the probability that Pn,θ is close to Pn , conditionally on Pn,
the empirical measure pertaining to the observed data; such statement is refered to
as a conditional Sanov theorem, and for any θ this probability is governed by the
Kullback-Leibler distance between Pθ and PθT

where θT stands for the true value of
the parameter. Estimate this probability for any θ, obviously based on the observed
data. Optimize in θ; this provides the MLE, as shown in the two cases of the i.i.d.
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sample scheme; our first example is the case when the observations take values in a
finite set, and the second case (infinite case), helps to set the arguments to be put
forwards. Introducing MLE’s through Large deviations for the empirical measure is
in the vein of various recent approaches; see Grendar and Judge [43].

We next consider a generalized sampling scheme inherited from the bootstrap,
which we call weighted sampling; it amounts to introduce a family of i.i.d. weights
W1, ...,Wn with mean and variance 1. The corresponding empirical measure per-
taining to the data set x1 , ..., xn is just the weighted empirical measure. The MLE
is defined through a similar procedure as just evoqued. The conditional Sanov The-
orem is governed by a divergence criterion which is defined through the distribution
of the weights. Hence MLE results in the optimization of a divergence measure
between distributions in the model and the weighted empirical measure pertaining
to the dataset. Resulting properties of the estimators are studied.

Optimization of ϕ−divergences between the empirical measure of the data and
the model is problematic when the support of the model is not finite. A number of
authors have considered so-called dual representation formulas for divergences or,
globally, for convex pseudodistances between distributions. We will make use of the
one exposed in [19]; see also [15] for an easy derivation.

3.1.1 Notation

Divergences

The space S is a Polish space endowed with its Borel field B (S) . We consider an
identifiable parametric model PΘ on (S,B (S)), hence a class of probability distri-
butions Pθ indexed by a subset Θ included in Rd; Θ needs not be open. The class of
all probability measures on (S,B (S)) is denoted P and M(S) designates the class
of all finite signed measures on (S,B (S)) .

A non negative convex function φ with values in R+ belonging to C2 (R) and
satisfying φ (1) = φ′ (1) = 0 and φ′′ (1) is a divergence function. An important class
of such functions is defined through the power divergence functions

φγ (x) :=
xγ − γx+ γ − 1

γ (γ − 1)
(3.1.1)

defined for all real γ ̸= 0, 1 with φ0 (x) := − log x+ x− 1 (the likelihood divergence
function) and φ1 (x) := x log x − x + 1 (the Kullback-Leibler divergence function).
This class is usually refered to as the Cressie-Read family of divergence functions,
a custom we will follow, although its origin takes from [74]. When x is such that
φγ (x) is undefined by the above definitions, we set φγ (x) := +∞, by which the
definition above is satisfied for all φγ . It consists in the simplest power-type class of
functions (with the limits in γ → 0, 1) which fulfill the definition. The L1 divergence
function φ (x) := |x− 1| is not captured by the Cressie-Read family of functions.

Associated with a divergence function φ is the divergence pseudodistance between
a probability measure and a finite signed measure; see [22].
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For P and Q in M define

ϕ (Q,P ) :=
∫
φ

(
dQ

dP

)
dP whenever Q is a.c. w.r.t. P

:= +∞ otherwise.

The divergence ϕ (Q,P ) is best seen as a mapping Q → ϕ (Q,P ) from M onto
R+ for fixed P in M. Indexing this pseudodistance by γ and using φγ as di-

vergence function yields the likelihood divergence ϕ0 (Q,P ) := − ∫ log
(
dQ
dP

)
dP ,

the Kullback-Leibler divergence ϕ1 (Q,P ) :=
∫

log
(
dQ
dP

)
dQ, the Hellinger diver-

gence ϕ1/2 (Q,P ) := 1
2

∫ (√dQ
dP
− 1

)2

dP , the modified χ2 divergence ϕ−1 (Q,P ) :=

1
2

∫ (dQ
dP
− 1

)2 (dQ
dP

)−1
dP . All these divergences are defined on P. The χ2 divergence

ϕ2 (Q,P ) := 1
2

∫ (dQ
dP
− 1

)2
dP is defined on M. We refer to [19] for the advantage

to extend the definition to possibly signed measures in the context of parametric
inference for non regular models.

The conjugate divergence function of φ is defined through

φ̃ (x) := xφ
(

1

x

)
(3.1.2)

and the corresponding divergence pseudodistance ϕ̃ (P,Q) is

ϕ̃ (P,Q) :=
∫
φ̃

(
dP

dQ

)
dQ

which satisfies
ϕ̃ (P,Q) = ϕ (Q,P )

whenever defined, and equals +∞ otherwise. When φ = φγ then φ̃ = φ1−γ as
follows by substitution. Pairs (φγ, φ1−γ) are therefore conjugate pairs. Inside the
Cressie-Read family, the Hellinger divergence function is self-conjugate.

In parametric models φ−divergences between two distributions take a simple
variational form. It holds, when φ is a differentiable function, and under a commonly
met regularity condition, denoted (RC) in [15]

ϕ(Pθ, PθT
) = sup

α∈U

∫
φ′
(
dPθ
dPα

)
dPθ −

∫
φ#

(
dPθ
dPα

)
dPθT

(3.1.3)

where φ#(x) := xφ′(x) − φ(x). In the above formula, U designates a subset of Θ
containing θT such that for any θ, θ′ in U , ϕ (Pθ, Pθ′) is finite. This formula holds
for any divergence in the Cressie Read family, as considered here.

Denote

h(θ, α, x) :=
∫
φ′
(
dPθ
dPα

)
dPθ − φ#

(
dPθ
dPα

(x)

)

from which

ϕ(Pθ, PθT
) := sup

α∈U

∫
h(θ, α, x)dPθT

(x). (3.1.4)
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For CR divergences

h(θ, α, x) =
1

γ − 1



∫ (

dPθ
dPα

)γ−1

dPθ − 1


− 1

γ

[(
dPθ
dPα

(x)

)γ
− 1

]
.

Weights

For a given real valued random variable W denote

M(t) := logE exp tW (3.1.5)

its cumulant generating function which we assume to be finite in a non void interval
including 0 (this is the so-called Cramer condition). The Fenchel Legendre transform
of M is also called the Chernoff function and is defined through

φW (x) = M∗(x) := sup
t
tx−M(t). (3.1.6)

The function x → φW (x) is non negative, is C2 and convex. We also assume

that EW = 1 together with V arW = 1 which implies φW (1) =
(
φW

)′
(1) = 0 and

(
φW

)′′
(1) = 1. Hence φW (x) is a divergence function with corresponding divergence

pseudodistance ϕW . Associated with φW is the conjugate divergence ϕ̃W with

divergence function φ̃W , which therefore satisfies

ϕW (Q,P ) = ϕ̃W (P,Q) .

Whether there exists a random variable V satisfying

ϕ̃W = ϕV

is discussed further on in the paper.

Measure spaces

This paper makes extensive use of Sanov type large deviation results for empirical
measures or weighted empirical measures. This requires some definitions and facts.

The vector space M(S) is endowed with the τ−topology, which is the coarest
making all mappings Q→ ∫

fdQ continuous for any Q ∈ M(S) and any f ∈ B(S)
which denotes the class of all bounded measurable functions on (S,B (S)) . A slightly
stronger topology will be used in this paper, the τ0 topology, introduced in [27],
which is the natural setting for our sake. This topology can be described through
the following basis of neighborhoods. Consider P the class of all partitions of S and
for k ≥ 1 the class Pk of all partitions of S into k disjoint sets, Pk := (A1, ..., Ak)
where the Ai’s belong to B (S) . For fixed P inM, for any k, any such partition Pk
in Pk and any positive ε define the open neighborhood U (P, ε,Pk) through

U (P, ε,Pk) :=
{
Q ∈M such that max

1≤i≤k
|P (Ai)−Q(Ai)| < ε and Q(Ai) = 0 if P (Ai) = 0

}
.
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The additional requirement Q(Ai) = 0 if P (Ai) = 0 in the above definition with
respect to the classical definition of the basis of the τ−topology is essential for the
derivation of Sanov type theorems. Endowed with the τ0−topology,M is a Hausdorff
locally convex vector space.

The following Pinsker type property holds

sup
k

k∑

i=1

φ

(
Q (Ai)

P (Ai)

)
P (Ai) = ϕ (Q,P )

see [45].
For any P in M the mapping Q → ϕ(Q,P ) is lower semi continuous; see [18],

Proposition 2.2. Denoting (a, b) the domain of φ whenever

lim
x→a
x>a

φ(x)

x
= lim

x→b
x<b

φ(x)

x
= +∞

then for any positive C, the level set {Q : ϕ (Q,P ) ≤ C} is τ0−compact, making
Q→ ϕ(Q,P ) a so-called good rate function. Divergence functions φ satisfying this
requirement for example are φγ with γ > 1; see [18] for different cases.

Minimum dual divergence estimators

The above formula (3.1.3) defines a whole range of plug in estimators of ϕ(Pθ, PθT
)

and of θT . Let X1, ..., Xn denote n i.i.d. r.v’s with common didistribution PθT
.

Denoting

Pn :=
1

n

n∑

i=1

δXi

the empirical measure pertaining to this sample. The plug in estimator of ϕ(Pθ, PθT
)

is defined through

ϕn(Pθ, PθT
) := sup

α∈U

∫
h(θ, α, x)dPn (x)

and the family of M-estimators indexed by θ

αn (θ) := arg sup
α∈U

∫
h(θ, α, x)dPn (x)

approximates θT . In the above formulas U is defined after (3.1.3). See [19] and [76]
for asymptotic properties and robustness results.

Since ϕ(PθT
, PθT

) = 0 a natural estimator of θT which only depends on the choice
of the divergence function φ is defined through

θn := arg inf
θ
ϕn(Pθ, PθT

)

= arg inf
θ∈U

sup
α∈U

∫
h(θ, α, x)dPn (x) ;

see [19] for limit properties.
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3.1.2 Main topics treated in this paper

We now turn to the derivation of the ML estimate through the approximations
obtained hereabove. Although much of the development seems unneccessary due to
the very form of the Kullback-Leibler divergence. We intend to stress the fact that a
large deviation rate in Sanov Large deviation Theorem defined through a divergence
function φ induces a Maximum Likelihood estimator which is an M-estimator for a
statistical functional defined through the conjugate divergence function of φ. This is
developped in details for the classical ML pertaining to the simple sampling scheme
and will be extended to the weighted bootstrap sampling scheme in the next section.

3.2 Large deviation and maximum likelihood

3.2.1 ML under finite supported distributions and simple sampling

Suppose that all probability measures Pθ in PΘ share the same finite support
S := {1, ..., k} . Let X1, ..., Xn be a set of n independent random variables with
common probability measure PθT

and consider the Maximum Likelihood estimator
of θT . A common way to define the ML paradigm is as follows: For any θ consider
independent random variables (X1,θ, ..., Xn,θ) with probability measure Pθ , thus
sampled in the same way as the Xi’s, but under some altermative θ. Define θML as
the value of the parameter θ for which the probability that, up to a permutation
of the order of the Xi,θ’s, the probability that (X1,θ, ..., Xn,θ) occupies S as does
X1, ..., Xn is maximal, conditionaly on the observed sample X1, ..., Xn. In formula,
let σ denote a random permutation of the indexes {1, 2, ..., n} and θML is defined
through

θML := arg max
θ

1

n!

∑

σ∈S
Pθ
((
Xσ(1),θ, ..., Xσ(n),θ

)
= (X1, ..., Xn)

∣∣∣ (X1, ..., Xn)
)

(3.2.1)
where the summation is extended on all equally probable permutations of {1, 2, ..., n} .

Denote

Pn :=
1

n

n∑

i=1

δXi

and

Pn,θ :=
1

n

n∑

i=1

δXi,θ

the empirical measures pertaining respectively to (X1, ..., Xn) and (X1,θ, ..., Xn,θ)
An alternative expression for θML is

θML := arg max
θ
Pθ (Pn,θ = Pn|Pn) . (3.2.2)

An explicit enumeration of the above expression Pθ (Pn,θ = Pn|Pn) involves the
quantities

nj := card {i : Xi = j}
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for j = 1, ..., k and yields

Pθ (Pn,θ = Pn|Pn) =

k∏

j=1

nj!Pθ (j)nj

n!
(3.2.3)

as follows from the classical multinomial distribution. Optimizing on θ in (3.2.3)
yields

θML = arg max
θ

k∑

j=1

nj
n

logPθ (j)

= arg max
θ

1

n

n∑

i=1

logPθ (Xi) .

Consider now the Kullback-Leibler distance between Pθ and Pn which is non com-
mutative and defined through

KL (Pn, Pθ) :=
k∑

j=1

φ

(
nj/n

Pθ (j)

)
Pθ (j)

=
k∑

j=1

(nj/n) log
nj/n

Pθ (j)
(3.2.4)

where
φ(x) := x log x− x+ 1 (3.2.5)

which is the Kullback-Leibler divergence function. Minimizing the Kullback-Leibler
distance KL (Pn, Pθ) upon θ yields

θKL = arg min
θ
KL (Pn, Pθ)

= arg min
θ
−

k∑

j=1

nj
n

logPθ (j)

= arg max
θ

k∑

j=1

nj
n

logPθ (j)

= θML.

Introduce the conjugate divergence function φ̃ of φ, inducing the modified Kullback-
Leibler, or so-called Likelihood divergence pseudodistance KLm which therefore
satisfies

KLm (Pθ, Pn) = KL (Pn, Pθ) .

We have proved that minimizing the Kullback-Leibler divergenceKL (Pn, Pθ) amounts
to minimizing the Likelihood divergence KLm (Pθ, Pn) and produces the ML esti-
mate of θT .

Kullback-Leibler divergence as defined above by KL (Pn, Pθ) is related to the
way Pn keeps away from Pθ when θ is not equal to the true value of the parameter
θT generating the observations Xi’s and is closely related with the type of sampling
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of the Xi’s. In the present case i.i.d. sampling of the Xi,θ’s under Pθ results in the
asymptotic property, named Large Deviation Sanov property

lim
n→∞

1

n
logPθ (Pn,θ = Pn|Pn) = −KL (PθT

, Pθ) . (3.2.6)

This result can easily be obtained from (3.2.3) using Stirling formula to handle the
factorial terms and the law of large numbers which states that for all j’s, nj/n
tends to PθT

(j) as n tends to infinity. Comparing with (3.2.4) we note that the ML
estimator θML estimates the minimizer of the natural estimator of KL (PθT

, Pθ) in θ,
substituting the unknown measure generating the Xi’s by its empirical counterpart
Pn . Alternatively as will be used in the sequel, θML minimizes upon θ the Likelihood
divergence KLm (Pθ, PθT

) between Pθ and PθT
substituting the unknown measure

PθT
generating the Xi’s by its empirical counterpart Pn . Summarizing we have

obtained:
The ML estimate can be obtained from a LDP statement as given in (3.2.6),

optimizing in θ in the estimator of the LDP rate where the plug-in method of
the empirical measure of the data is used instead of the unknown measure PθT

.
Alternatively it holds

θML := arg min
θ
K̂Lm (Pθ, PθT

) (3.2.7)

with
K̂Lm (Pθ, PθT

) := KLm (Pθ, Pn) .

In the rest of this section we will develop a similar approach for a model PΘ whose
all members Pθ share the same infinite (countable or not) support S.

The statistical properties of θML are obtained under the i.i.d. sampling having
generated the observed values.

This principle will be kept throughout this paper: the estimator is defined as
maximizing the probability that the simulated empirical measure be close to the
empirical measure as observed on the sample, conditionally on it, following the same
sampling scheme. This yilds a maximum likelihood estimator, and its properties a
re then obtained when randomness is introduced as resulting from the sampling
scheme.

3.2.2 ML under general distributions and simple sampling

When the support of the generic r.v. X1 is not finite some of the arguments above
are not valid any longer and some discretization scheme is required in order to get
occupation probabilities in the spirit of (3.2.3) or (3.2.6). Since all distributions Pθ
in PΘ have infinite support, i.i.d. sampling under any Pθ yields (X1,θ, ..., Xn,θ) such
that

Pθ (Pn,θ = Pn|Pn) = 0

for all n, so that we are lead to consider the optimization upon θ of probabilities of
the type Pθ (Pn,θ ∈ V (Pn)|Pn) where V (Pn) is a (small) neighborhood of Pn. Con-
sidering the distribution of the outcomes of the simulating scheme Pθ results in the
definition of neighborhoods through partitions of S, hence through the τ0−topology.

When Pn is the empirical measure for some observed r.v’sX1, ...Xn , an ε−neighborhood
of Pn contains distributions whose support is not necessarily finite, and may indeed
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be equivalent to the measures in the model PΘ when defined on the Borel σ−field
B (S).

Let Pk := (A1, ..., Ak) be some partition in Pk. Denote

Vk,ε (Pn) :=
{
Q ∈M such that max

i=1,...,k
|Pn(Ai)−Q(Ai)| < ε and Q(Ai) = 0 if Pn(Ai) = 0

}

(3.2.8)
an open neighborhood of Pn.

We also would define the Kullback-Leibler divergence between two probability
measures Q and P on the partition Pk through

KLAk
(Q,P ) :=

∑

Aj∈Pk

log

(
Q(Aj)

P (Aj)

)
Q(Aj).

Also we define the corresponding Likelihood divergence on Pk through

(KLm)Pk
(Q,P ) := KLPk

(P,Q) . (3.2.9)

As in the finite case for any θ in Θ denote (X1,θ, ..., Xn,θ) a set of n i.i.d. random
variables with common distribution Pθ. We have

Lemma 3.2.1. For large n

1

n
logPθ (Pn,θ ∈ Vk,ε (Pn)|Pn) ≥ −KLPk

(Vk,ε (Pn) , Pθ)−
k log(n+ 1)

n

:= − inf
Q∈Vk,ε(Pn)

KLPk
(Q,Pθ)−

k log(n+ 1)

n

Proof. The proof uses similar arguments as in [27] Lemma 4.1. For fixed k and large
n, PθT

belongs to Vk,ε (Pn), by the law of large numbers. Indeed for large n , Pn (Aj)
is positive and |PθT

(Aj)− Pn (Aj)| < ε for all j in {1, ..., k} . Assuming that for all
θ in Θ

KL (PθT
, Pθ) <∞

and taking into account the fact (see [71]) that for any probability measures P and
Q, K(P,Q) = supk supPk∈Pk

KLPk
(P,Q) where Pk is the class of all partitions of

S in k sets in B (S), it follows that

KLPk
(Vk,ε (Pn) , Pθ) is finite

for all fixed k and large n. For positive δ let P (n) in Vk,ε (Pn) with

KLPk

(
P (n), Pθ

)
< KLPk

(Vk,ε (Pn) , Pθ) + δ.

Let 0 < ε′ < ε and non negative numbers rj , 1 ≤ j ≤ k such that

∣∣∣rj − P (n) (Aj)
∣∣∣ < ε′, and rj = 0 if P (n) (Aj) = 0 and

k∑

j=1

rj = 1.

The probability vector (r1, ..., rk) defines a probability measure R on (S,Pk) , and
R belongs to Vk,ε (Pn) . By continuity of the mapping x→ x log x

Pθ(Aj)
it is possible

to fit the rj’s such that for all j between 1 and k
∣∣∣∣∣rj log

rj
Pθ (Aj)

− P (n) (Aj) log
P (n) (Aj)

Pθ (Aj)

∣∣∣∣∣ <
δ

k
. (3.2.10)
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Indeed since all the Pθ’s share the same support, if Pθ (Aj) = 0 then PθT
(Aj) = 0

which in turn yields Pn(Aj) = 0 which through (3.2.8) implies P (n) (Aj) = 0. This
plus the conventions 0/0 = 0 and 0 log 0 = 0 implies that (3.2.10) holds true for
some choice of the rj’s. Choose further the rj’s in such a way that lj := nrj is an
integer for all j. Let Pn,θ denote the empirical distribution of the Xi,θ’s. We now
proceed to the evaluation of Pθ (Pn,θ ∈ Vk,ε (Pn)|Pn) . It holds

Pθ (Pn,θ ∈ Vk,ε (Pn)|Pn) ≥ Pθ (Pn,θ (Aj) = rj, 1 ≤ j ≤ k|Pn)

=

k∏

j=1

lj!

n!

k∏

j=1

Pθ (Aj)
lj

≥ (n+ 1)−k exp−n
k∑

j=1

rj log
rj

Pθ (Aj)

where we used the same argument as in [27], Lemma 4.1. In turn using (3.2.10)

k∑

j=1

rj log
rj

Pθ (Aj)
≤

k∑

j=1

P (n) (Aj) log
P (n) (Aj)

Pθ (Aj)
+ δ

≤ KLPk
(Vk,ε (Pn) , Pθ) + 2δ

and the proof is completed.

The reverse inequality is as in [27] p 790: The set Vk,ε (Pn) is completely convex,
in the terminology of [27], whence it follows

Lemma 3.2.2. For all n

1

n
logPθ (Pn,θ ∈ Vk,ε (Pn)|Pn) ≤ −KLPk

(Vk,ε (Pn) , Pθ)

Lemmas 3.2.1 and 3.2.2 link the Maximum Likelihood Principle with the Large
deviation statements. Define

θML := arg max
θ

1

n
logPθ (Pn,θ ∈ Vk,ε (Pn)|Pn) (3.2.11)

and
θLDP := arg min

θ
−KLPk

(Vk,ε (Pn) , Pθ)

assuming those parameters defined, possibly not in a unique way. Denote

Lk,ε (θ) :=
1

n
logPθ (Pn,θ ∈ Vk,ε (Pn)|Pn)

and
Kk,ε (θ) := −KLPk

(Vk,ε (Pn) , Pθ) .

We then deduce that

−k
n

log (n+ 1) ≤ Lk,ε (θML)−Kk,ε (θML) ≤ 0

0 ≤ −Lk,ε (θLDP )−Kk,ε (θLDP ) ≤ k

n
log (n+ 1)
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whence

0 ≤ Lk,ε (θML)− Lk,ε (θLDP ) ≤ k

n
log (n+ 1) (3.2.12)

from which θLDP is a good substitute for θML for fixed k and ε in the partitioned
based model. Note that the bounds in (3.2.12) do not depend on the peculiar choice
of Pk in Pk .

Fix k = kn such that limn→∞ kn = ∞ together with limn→∞ kn/n = 0. Define
the partition Pk such that Pn(Aj) = kn/n for all j = 1, ..., k. Hence Aj contains only
k sample points. Let ε > 0 such that max1≤j≤k |PθT

(Aj)− kn/n| < ε. Then clearly
PθT

belongs to Vk,ε (Pn) and Vn,ε (Pn) is included in Vk,2ε (PθT
) . Therefore for any θ

it holds

KLPk
(Vk,2ε (PθT

) , Pθ) ≤ KLPk
(Vk,ε (Pn) , Pθ) ≤ KLPk

(PθT
, Pθ) (3.2.13)

which proves that infθ KLPk
(Vk,ε (Pn) , Pθ) = 0 with attainment on θ′ such that Pθ′

and PθT
coincide on Pk.

We now turn to the study of the RHS term in (3.2.13). Introducing the likelihood
divergence φ̃ defined in (3.2.9) leads

KLPk
(PθT

, Pθ) = (KLm)Pk
(Pθ, PθT

)

whence minimizing KLPk
(PθT

, Pθ) over θ in Θ amounts to minimizing the likelihood
divergence θ → (KLm)Pk

(Pθ, PθT
) . Set therefore

θLDP,Pk
:= arg min

θ
KLPk

(PθT
, Pθ) = arg min

θ
(KLm)Pk

(Pθ, PθT
) .

Based on the σ−field generated by Pk on S the dual form (3.1.3) of the Likelihood
divergence pseudodistance (KLm)Pk

(Pθ, PθT
) yields

arg min
θ

(KLm)Pk
(Pθ, PθT

) = arg min
θ

sup
η

∑

Bj∈Pk

φ̃

(
Pθ
Pη

(Aj)

)
Pθ (Aj)

−
∑

Bj∈Pk

(φ̃)∗
(
Pθ
Pη

(Aj)

)
PθT

(Aj) . (3.2.14)

with φ̃(x) = − log x + x − 1 and (φ̃)∗ (x) = − log (1− x) . With the present choice
for φ̃ the terms in Pη vanish in the above expression ; however we complete a full
development, as required in more envolved sampling schemes. Now an estimate of
θT is obtained substituting PθT

by Pn in (3.2.14) leading, denoting nj the number
of Xi’s in Aj

θ̂LDP,Pk
:= arg min

θ
sup
η

∑

Aj∈Pk

φ̃

(
Pθ
Pη

(Aj)

)
Pθ (Aj)−

∑

Aj∈Pk

nj
n

(φ̃)∗
(
Pθ
Pη

(Aj)

)
.

Letting n tend to infinity yields (recall that k = kn)

lim
n→∞

sup
η

∣∣∣∣
[ ∑

Aj∈Pk

φ̃
(
Pθ
Pη

(Aj)
)
−

∑

Aj∈Pk

(φ̃)∗
(
Pθ
Pη

(Aj)
)
PθT

(Aj)
]

−
[ ∫

φ̃
(
pθ
pη

(x)
)
pθ (x) dx−

∫
(φ̃)∗

(
pθ
pη

(x)
)
dPn(x)

]∣∣∣∣ = 0
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w.p. 1 which in turn implies

lim
n→∞

θ̂LDP,Pk
− θ̂ML = 0

where θ̂ML is readily seen to be the usual ML estimator of θ defined through

θ̂ML := arg sup
θ

n∏

i=1

pθ (Xi)

where X1, ..., Xn have the common density pθ.

3.3 Weighted sampling

This section extends the previous arguments for weighted sampling schemes. We
will show that the Maximum Likelihood paradigm as defined above can be extended
for these schemes, leading to operational procedures involving the minimization of
specific divergence pseudodistances defined in strong relation with the distribution
of the weights.

The sampling scheme which we consider is commonly used in connection with the
bootstrap and is refered to as the weighted or generalized bootstrap, sometimes called
wild bootstrap, first introduced by Newton and Mason [64]. The main simplification
which we consider in the present setting lies in the fact that we assume that the
weights Wi are i.i.d. while being exchangeable random variables in the generalized
bootstrap setting.

Let x1, ..., xn be n independent realizations of n i.i.d. r.v’s X1, ..., Xn with com-
mon distribution PθT . It will be assumed that

For all θ in Θ, EθX and EθX
2 are finite. (3.3.1)

This entails that both
1

n

n∑

i=1

xi and
1

n

n∑

i=1

x2
i

converge PθT
−a.e. to EθT

X and EθT
X2 respectively; also the same holds with θT

substituted by any θ in Θ when x1, ..., xn is sampled under Pθ. This assumption is
necessary when studying the properties of the estimates of θT and of ϕ (θT , θ) under
some alternative θ.

Consider a collection W1, ...,Wn of independent copies of W , whose distribution
satisfies the conditions stated in Section 1. The weighted empirical measure PW

n is
defined through

PW
n :=

1

n

n∑

i=1

Wiδxi
.

This empirical measure need not be a probability measure, since its mass may not
equal 1. Also it might not be positive, since the weights may take negative values.
The measure PW

n converges almost surely to PθT
when the weights Wi’s satisfy the

hypotheses stated in Section 1. Indeed general results pertaining to this sampling
procedure state that under regularity, functionals of the measure PW

n are asymptoti-
cally distributed as are the same functionals of Pn when the Xi’s are i.i.d. Therefore
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the weighted sampling procedure mimicks the i.i.d. sampling fluctuation in a two
steps procedure: choose n values of xi such that they asymptotically fit to PθT

,
which means

lim
n→∞

1

n

n∑

i=1

δxi
= PθT

deterministically and then play the Wi’s on each of the xi’s. Then get PW
n , a proxy

to the random empirical measure Pn .
For any θ in Θ consider a similar sampling procedure under the weights W ′

i

’s which are i.i.d. copies of the Wi’s. Let therefore x1,θ, ..., xn,θ denote n i.i.d.
realizations of X1,θ, ..., Xn,θ with distribution Pθ yielding the empirical measure

PW ′

n,θ :=
1

n

n∑

i=1

W ′
iδxi,θ

the corresponding empirical measure. Note that except for the choice of the gener-
ating measure Pθ , PW ′

n,θ is obtained in the same way as PW
n . The ML principle turns

out to select the value of θ making PW ′
n,θ as close as possible from PW

n , conditionally

upon PW
n .

The resulting estimates are optimal in many respects, as is the classical ML
estimator for regular models in the i.i.d. sampling scheme. The proposal which
is presented here also allows to obtain optimal estimators for some non regular
models. This approach is in line with [19] who developped a whole range of first
order optimal estimation procedures in the case of the i.i.d. sampling, based on
divergence minimization.

Using the notations of section 3.1.1, we endow M(S) with τ0-topology rather
than the weak topology, and define accordingly the σ-field B(M) onM(S). Denote
by M1(S) the space of probability measure on S, endowed with the τ0−topology.

3.3.1 A Sanov conditional theorem for the weighted empirical measure

The procedure which we are going to develop can be stated as follows.

Similarly as in the simple i.i.d. setting select some (small) neighborhood Vϵ
(
PW
n

)
of

PW
n and define the MLE of θT as the value of θ which optimizes the probability that

the simulated empirical measure PW ′
n,θ belongs to Vϵ

(
PW
n

)
. This requires a condi-

tional Sanov type result, substituting Lemmas 3.2.1 and 3.2.2. This result is pro-
duced in Theorem 3.3.1 in Section 3.3.1. In the same vein as in Lemmas 3.2.1 and
3.2.2, maximizing in θ this probability amounts to minimizing a LDP rate between
Pθ and Vϵ (PθT

) . The rate is in strong relation with the distribution of the Wi’s. Call

it ϕW (Vϵ (PθT
) , Pθ) := inf

{
ϕW (Q,Pθ) , Q ∈ Vϵ (PθT

)
}
.

Since ϵ is small, this rate is of order ϕW (PθT
, Pθ) ; this is Corollary 3.3.1 in

Section 3.3.1. Turn to the original data and estimate ϕW (PθT
, Pθ) by some plug in

method to be stated in Section 3.3.2. Define the ML estimator of θT through the
minimization of the proxy of ϕW (PθT

, Pθ) . We will prove that minimum divergence
estimators play a key role in this setting.

In order to state our conditional Sanov theorem we put forwards the following
lemma, which is in the vein of Theorem 2.2 of Najim [66] which states the Sanov
large deviation theorem, where the weights are i.i.d random variables. Trashorras
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and Wintenberger [77] have investigated the large deviations properties of weighted
(bootstrapped) empirical measure with exchangeable weights under appropriate as-
sumptions of the weights. Both papers equip M(S) with the weak topology.

The lemma’s proof is defered to Section 3.7.

Lemma 3.3.1. Assume that Pθ(U) > 0 for any non-empty open set U ∈ S, and that
limn→∞ Pn = limn→∞

1
n

∑n
i=1 δxi

= Pθ ∈ M1(S), where the convergence holds under
τ0. Then PW

n,θ satisfies the LDP in (M(S),B(M)) equipped with the τ0-topology with
the good convex rate function:

ϕW (ζ, Pθ) = sup
f∈B(Rd)

{ ∫

Rd
f(x)ζ(dx)−

∫

Rd
M(f(x))Pθ(dx)

}

=





∫
Rd M∗( dζ

dPθ
)dPθ, if ζ is a.c. w.r.t. Pθ

∞, otherwise

where M∗(x) = supt tx −M(t) for all real x and M(t) is the moment generating
function of W.

Let Pk = (A1, ..., Ak) denote an arbitrary partition of S with Ai in B(S) for all
i = 1, ..., k , and define the pseudometric dPk

on M(S) by

dPk
(Q,R) = max

1≤j≤k
|Q(Bj)−R(Bj)|, Q,R ∈M(S).

For any positive ϵ, let

Vϵ(P
W
n ) = {Q ∈M(S) : dPk

(Q,PW
n ) < ϵ}

denote an open neighborhood of the weighted empirical measure PW
n in the τ0 -

topology. Then we have the following conditional LDP theorem.

Theorem 3.3.1. With the above notation and assuming that PθT
is absolutely con-

tinuous with respect to Pθ, for any positive ϵ, the following conditional LDP result
holds

lim
n→∞

1

n
logPθ

(
PW ′

n,θ ∈ Vϵ(PW
n )|Pn

)
= −ϕW (Vϵ(PθT

), Pθ).

Proof. In the following proof, Pk is an arbitrary partition on S.

Pθ

(
PW ′

n,θ ∈ Vϵ(PW
n )|Pn

)
= Pθ

(
dPk

(PW ′

n,θ , P
W
n ) < ϵ|Pn

)

≥ Pθ

(
dPk

(PW ′

n,θ , PθT
) + dPk

(PθT
, PW

n ) < ϵ|Pn
)

= Pθ

(
dPk

(PW ′

n,θ , PθT
) < ϵ− dPk

(PθT
, PW

n )|Pn
)
.

Since dPk
(PθT

, PW
n )→ 0 when n→∞, for any positive δ and sufficiently large n we

have:

Pθ

(
PW ′

n,θ ∈ Vϵ(PW
n )|Pn

)
≥ Pθ

(
dPk

(PW ′

n,θ , PθT
) < ϵ− δ

)
= Pθ

(
PW ′

n,θ ∈ Vϵ−δ(PθT
)
)
.



3.3. Weighted sampling 97

By Lemma 3.3.1, we obtain the conditioned LDP lower bound

lim inf
n→∞

1

n
logPθ

(
PW ′

n,θ ∈ Vϵ(PW
n )|Pn

)
≥ −ϕW (Vϵ−δ(PθT

), Pθ),

In a similar way, we obtain the large deviation upper bound

Pθ

(
PW ′

n,θ ∈ Vϵ(PW
n )|Pn

)
= Pθ

(
dPk

(PW ′

n,θ , P
W
n ) < ϵ|Pn

)

≤ Pθ

(
dPk

(PW ′

n,θ , PθT
)− dPk

(PθT
, PW

n ) < ϵ|Pn
)

≤ Pθ

(
dPk

(PW ′

n,θ , PθT
) < ϵ+ δ′

)
= Pθ

(
PW ′

n,θ ∈ Vϵ+δ′(PθT
)
)
,

for some positive δ′. We thus obtain

lim sup
n→∞

1

n
logPθ

(
PW ′

n,θ ∈ Vϵ(PW
n )|Pn

)
≤ −ϕW (Vϵ+δ′(PθT

), Pθ).

Let δ′′ = max(δ, δ′), we have

−ϕW (Vϵ−δ′′(PθT
), Pθ) ≤ lim inf

n→∞
1

n
logPθ

(
PW ′

n,θ ∈ Vϵ(PW
n )|Pn

)

≤ lim sup
n→∞

1

n
logPθ

(
PW ′

n,θ ∈ Vϵ(PW
n )|Pn

)
≤ −ϕW (Vϵ+δ′′(PθT

), Pθ).

Denote clτ0
(Vϵ(PθT

)) the closure of the open set Vϵ(PθT
) in the τ0-topology, and note

δ′′ is arbitrarily small, then it holds

−ϕW (Vϵ(PθT
), Pθ) ≤ lim inf

n→∞
1

n
logPθ

(
PW ′

n,θ ∈ Vϵ(PW
n )|Pn

)

≤ lim sup
n→∞

1

n
logPθ

(
PW ′

n,θ ∈ Vϵ(PW
n )|Pn

)
≤ −ϕW

(
clτ0

(Vϵ(PθT
)), Pθ

)
.

It remains to show that

ϕW (Vϵ(PθT
), Pθ) = ϕW

(
clτ0

(Vϵ(PθT
)), Pθ

)
. (3.3.2)

Since PθT
is absolutely continuous with respect to Pθ, by Lemma 3.3.1 we have

ϕW
(
clτ0

(Vϵ(PθT
)), Pθ

)
≤ ϕW (Vϵ(PθT

), Pθ) ≤ ϕW (PθT
, Pθ) <∞. (3.3.3)

Given some small positive constant ω, then there exists µ ∈ clτ0
(Vϵ(PθT

)) satisfying

ϕW (µ, Pθ) < ϕW
(
clτ0

(Vϵ(PθT
)), Pθ

)
+ ω.

Set v ∈ Vϵ(PθT
), and define z(α) = αµ+ (1− α)v, where 0 < α < 1. Obviously, we

have z(α) ∈ Vϵ(PθT
). By Lemma 3.3.1, the map ζ → ϕ(ζ, Pθ) is convex, hence we

get

ϕW (Vϵ(PθT
), Pθ) ≤ lim

α→1
ϕW (z(α), Pθ) ≤ lim

α→1

(
αϕW (µ, Pθ) + (1− α)ϕW (v, Pθ)

)

= ϕW (µ, Pθ) < ϕW
(
clτ0

(Vϵ(PθT
)), Pθ

)
+ ω, (3.3.4)

where the equality holds since ϕW (v, Pθ) is finite by (3.3.3). Combine (3.3.3) with
(3.3.4) to get (3.3.2). This proves the conditional large deviation result.
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Using the above theorem, we obtain the following corollary.

Corollary 3.3.1. Under the assumptions of Theorem 3.3.1, it holds

lim
ϵ→0

ϕW (Vϵ(PθT
), Pθ) = ϕ(PθT

, Pθ).

Proof. By Lemma 3.3.1, the rate function ϕW (µ, Pθ) is a good rate function, hence
it is lower semi-continuous; this implies

lim
ϵ→0

ϕW (Vϵ(PθT
), Pθ) ≥ ϕ(PθT

, Pθ). (3.3.5)

For any ϵ > 0, we have ϕW (PθT
, Pθ) ≥ ϕW (Vϵ(PθT

), Pθ); this together with (3.3.5)
completes the proof.

3.3.2 Divergences associated to the weighted sampling scheme

For any Q in Vϵ(PθT
) rewrite the good rate function using the divergence notation

ϕW (Q,Pθ) =
∫
M∗

(
dQ

dPθ

)
dPθ =

∫
φW

(
dQ

dPθ

)
dPθ (3.3.6)

from which ϕW (Q,Pθ) is the divergence associated with the divergence function
φW := M∗.

Commuting PθT
and Pθ in (3.3.6) and introducing the conjugate divergence func-

tion φ̃W yields

ϕW (Q,Pθ) =
∫
φW

(
dQ

dPθ

)
dPθ =

∫
φ̃W

(
dPθ
dQ

)
dQ = ϕ̃W (Pθ, Q). (3.3.7)

By Theorem 3.3.1, maximizing Pθ(P
W ′
n,θ ∈ Vϵ(P

W
n )|Pn) amounts to minimize

ϕW (Vϵ(PθT
), Pθ). A final approximation now yields the form of the criterion to be es-

timated in order to define the MLE in the present setting. As ϵ→ 0 the asymptotic

order of ϕW (Vϵ(PθT
), Pθ) is equal to ϕ̃W (Pθ, PθT

) by Corollary 3.3.1 and (3.3.7), which
is a proxy of ϕW (PθT

, Pθ) and therefore the theoretical criterion to be optimized in
θ.

We now state the dual form of the theoretical criterion ϕ̃W (Pθ, PθT
) using the

dual form (3.1.3) and (3.1.4). It holds

ϕ̃W (Pθ, PθT
) = sup

α∈U

∫
h̃(θ, α, x)dPθT

(x) (3.3.8)

with

h̃(θ, α, x) =
∫ (

φ̃W
)′
(
dPθ
dPα

)
dPθ −

(
φ̃W

)#
(
dPθ
dPα

(x)

)

We now turn to the definition of the MLE in this context, estimating the criterion
and deriving the estimate.
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3.3.3 MLE under weighted sampling

Using the dual representation of divergences, the natural estimator of ϕ(Pθ, PθT
)

is

ϕ̃n(Pθ, PθT
) := sup

α∈U

{∫
h̃(θ, α, x) dPW

n (x)
}
. (3.3.9)

From now on, we will use ϕ(θ, θT ) to denote ϕ(Pθ, PθT
); whence the resulting

estimator of ϕ(θT , θT ) is

ϕ̃n(θT , θT ) := inf
θ∈Θ

ϕ̃n(θ, θT ) = inf
θ∈Θ

sup
α∈U

{∫
h̃(θ, α, x) dPW

n (x)
}

and the resulting MLE of θT is obtained as the minimum dual ϕ̃W estimator

θ̂ML,W := arg inf
θ∈Θ

sup
α∈U

{∫
h̃(θ, α, x) dPW

n (x)
}
. (3.3.10)

Formula (3.3.10) indeed defines a Maximum Likelihood estimator, in the vein of
(3.2.1) and (3.2.11). This estimator requires no grouping nor smoothing.

3.4 Bahadur slope of minimum divergence tests for weighted
data

Consider the test of some null hypothesis H0: θT = θ versus a simple hypothesis
H1 θT = θ′.

We consider two competitive statistics for this problem. The first one is based
on the estimate of ϕ̃W (Pα, Pβ) defined for all (α, β) in Θ×Θ through

Tn (α) := sup
η∈Θ

∫
φ̃W

(
pα
pη

)
pηdµ−

∫ (
φ̃W

)∗
(
pα
pβ

)
dPW

n

where the i.i.d. sample X1, ..., Xn has distribution Pβ. The test statistics Tn (θ)
converges to 0 under H0.

A competitive statistics ψ̂ (θ) writes

ψ̂ (θ) := ψ
(
θ, PW

n

)

where Q → ψ (θ,Q) is assumed to satisfy ψ (θ, Pθ) = 0 , and is τ−continuous with
respect to Q, which implies that under H0 the following Large Deviation Principle
holds

lim
n→∞

1

n
logPθ

(
ψ̂ (θ) ≥ t

)
= −I(t) (3.4.1)

= − inf
{
ϕW (Pθ, Q) , ψ (θ,Q) ≥ t

}

for any positive t. Also we assume that under H1,ψ̂ (θ) converges to ψ (θ, Pθ′)

lim
n→∞

ψ̂ (θ) =θ′ ψ (θ, Pθ′) (3.4.2)
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where (3.4.2) stands in probability under θ′.

We now state the Bahadur slope of the test ϕ̂W (θ, θ) .
Under H0

lim
n→∞

2

n
logPθ (Tn (θ) ≥ t) = −2 inf

{
ϕW (Pθ, Q) , ϕ̃W (Q,Pθ) ≥ t

}

= −2 inf
{
ϕW (Pθ, Q) , ϕW (Pθ, Q) ≥ t

}

= −2t

while, under H1
lim
n→∞

Tn (θ) = ϕW (Pθ, Pθ′) in probability

since PW
n converges weakly to Pθ′ .

It follows that the Bahadur slope of the minimum divergence test ϕ̂W (θ, θ) is

eTn(θ) = −2ϕW (Pθ, Pθ′) .

Let us evaluate the Bahadur slope of the test ψ̂ (θ) .
Following (3.4.1) and (3.4.2) it holds

e
ψ̂(θ)

= −2 inf
{
ϕW (Pθ, Q) , ψ (θ,Q) ≥ ψ (θ, Pθ′)

}
.

Since inf
{
ϕW (Pθ, Q) , ψ (θ,Q) ≥ ψ (θ, Pθ′)

}
≤ ϕW (Pθ, Pθ′) it follows that e

ψ̂(θ)
≤

eTn(θ).
We have proved

Proposition 3.4.1. Under the weighted sampling the test statistics ψ̂ (θ) is Bahadur
efficient among all tests which are empirical versions of τ0− continuous functionals.

3.5 Weighted sampling in exponential families

In this short section we show that MLE’s associated with weighted sampling
are specific with respect to the weighting; this is in contrast with the unweighted
sampling (i.i.d. simple sampling), under which all minimum divergence estimators
coincide with the standard MLE; see [15].

Let
pθ(x) = exp [θt(x)− C(θ)] dµ(x) (3.5.1)

be an exponential family with natural parameter θ in an open set Θ in Rd, and
where µ denotes a common dominating measure for the model. We assume that
this family is full i.e. that the Hessian matrix (∂2/∂θ2)C(θ) is definite positive.
Recall that under the standard i.i.d. X1, ..., Xn sampling the MLE θML of θ satisfies

∇C(θ)θML
=

1

n

n∑

i=1

t (Xi) .

Under the weighted sampling W1 , ...,Wn corresponding to the divergence function
φW , conditionally on the observed data x1, ..., xn the MLE writes
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θML,W := arg inf
θ∈Θ

sup
α∈U

∫ (
φ̃W

)′
(
pθ
pα

)
pθdµ−

∫ (
φ̃W

)#
(
pθ
pα

)
dPW

n .

We prove that θML,W satisfies

∇C(θ)θML,W
=

1

n

n∑

i=1

Wit (xi) .

Denote

Mn (θ, α) :=
∫ (

φ̃W
)′
(
pθ
pα

)
pθdµ−

∫ (
φ̃W

)#
(
pθ
pα

)
dPW

n .

Clearly, subsituting using (3.5.1) it holds for all θ

inf
θ∈Θ

sup
α∈U

Mn (θ, α) ≥Mn (θ, θ) = 0. (3.5.2)

We prove that Mn (θML,W , α) is maximal for α = θML,W which closes the proof.
Let X1, ..., Xn be n i.i.d. random variables with common distribution PθT

with
θT in Θ. Introduce

Mn (θ, α) :=
∫
φ′
(
dPθ
dPα

)
dPθ −

1

n

n∑

i=1

φ#

(
dPθ
dPα

(Xi)

)

We prove that

α = θML,W is the unique maximizer of Mn (θML,W , α) (3.5.3)

which yields

inf
θ

sup
α
Mn (θ, α) ≤ sup

α
Mn (θML,W , α) = Mn (θML,W , θML,W ) = 0 (3.5.4)

which together with (3.5.2) completes the proof.

Define

Mn,1 (θ, α) :=
∫
φ′ (expA(θ, α, x)) expB (θ, x) dλ(x)

Mn,2 (θ, α) :=
1

n

n∑

i=1

Wi exp (A (θ, α, xi))φ
′ (expA(θ, α, xi))

Mn,3 (θ, α) :=
1

n

n∑

i=1

Wiφ (expA(θ, α, xi))

with

A(θ, α, x) := T (x)′ (θ − α) + C(α)− C(θ)

B(θ, x) := T (x)′θ − C(θ).

It holds
Mn (θ, α) = Mn,1 (θ, α)−Mn,2 (θ, α) +Mn,3 (θ, α)



102Chapter 3. Weighted sampling, MLE and minimum divergence estimator

with
∂

∂α
Mn,1 (θ, α)α=θ = −φ(2) (1) [∇C (θ)−∇C (α)α=θ] = 0

for all θ,

∂

∂α
Mn,2 (θ, α)α=θML,W

= φ(2) (1)
1

n

n∑

i=1

Wi

[
−T (xi) +∇C (α)α=θML,W

]
= 0

and
∂

∂α
Mn,3 (θML,W , α) =

1

n

n∑

i=1

Wi

[
−T (xi) +∇C (α)α=θML,W

]
= 0

where the two last displays hold iff α = θML. Now

∂2

∂α2
Mn,1 (θ, α)α=θML,W

=
(
φ(3)(1) + 2φ(2)(1)

) (
∂2/∂θ2

)
C(θML,W )

∂2

∂α2
Mn,2 (θ, α)α=θML,W

=
(
φ(3)(1) + 4φ(2)(1)

) (
∂2/∂θ2

)
C(θML,W )

∂2

∂α2
Mn,3 (θML, α)α=θML,W

= φ(2)(1)
(
∂2/∂θ2

)
C(θML,W ),

whence

∂

∂α
Mn (θ, α)α=θML,W

= 0

∂2

∂α2
Mn (θ, α)α=θML,W

= −φ(2)(1)
(
∂2/∂θ2

)
C(θML,W )

which proves (3.5.3), and closes the proof.
In contrast with the i.i.d. sampling case minimum divergence estimators in expo-

nential families under appropriate weighted sampling do not coincide independently
upon the divergence.

3.6 Weak behavior of the weighted sampling MLE’s

The distribution of the estimator is obtained under the sampling scheme which
determines its form. Hence under the weighted sampling one. So the observed
sample x1, ..., xn is considered non random, and is assumed to satisfy

lim
n→∞

1

n

n∑

i=1

δxi
= PθT

and randomness is due to the set of i.i.d. weights W1, ...,Wn.
All those estimators can be written as approximate linear functionals of the

weighted empirical measure PW
n . Therefore all the proofs in [19] can be adapted to

the present estimators. Even the asymptotic variances of the estimators are the same,
and subsequently, Wilk’s tests , confidence areas, minimum sample sizes certifying a
given asympptotic power, etc, remain unchanged. The only arguments to be noted
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are the following: All arguments pertaining to laws of large numbers for functionals
of the empirical measure carry over to the present setting, conditionally on the
observations x1, ..., xn . Indeed consider a statistics

Un :=
1

n

n∑

i=1

Wif(xi)

where the function f satisfies

lim
n→∞

1

n

n∑

i=1

f(xi) = µ1,f <∞

and

lim
n→∞

1

n

n∑

i=1

f 2(xi) = µ2,f <∞.

Then clearly
lim
n→∞

EUn = µ1,f

and
lim
n→∞

V arUn = µ2,f − (µ1,f )
2 .

Weak behavior of the estimates follow also from similar arguments: Consider for
example the statistics

Tn :=
√
n (Un − µ1,f ) /

√
µ2,f − (µ1,f )

2.

Using Lindeberg Central limit theorem for triangular arrays , we obtain that Tn is
asymptotically standard normal conditionally upon x1, ..., xn. It follows that the

limit distributions of ϕ̃W (θ, θT ) and of θ̂ML,W conditionally on x1, ..., xn coincide

with those of ϕn(θ, θT ) and of θ̂n as stated in [19] under the i.i.d. sampling. Also all
results pertaining to tests of hypotheses are similar, as is the possibility to handle
non regular models.

3.7 Proof of Lemma 3.3.1

Proof. Recall that B(S) denotes the class of all bounded measurable functions on
S. Write B′(S) as the algebraic dual of B(S). We equip B′(S) with B(S)-topology,
it is the weakest topology which makes continuous the following linear functional:

ζ 7→< f, ζ >: B′(S)→ R, for all f in B(S),

where < f, ζ > denotes the value of f(ζ). It follows thatM(S) is included in B′(S)
and is endowed with the τ0-topology induced by B(S). Construct the projection:
pf1,...,fm : B′(S) → Rm,m ∈ Z+, namely, pf1,...,fm(ζ) = (< f1, ζ >, ..., < fm, ζ >
), f1, ..., fm ∈ B(S). Then for pf1,...,fm(PW

n,θ) = (< f1, P
W
n,θ >, ..., < fm, P

W
n,θ >) we

define the corresponding limit logarithm moment generating function as follows

h(t) := lim
n→∞

1

n
logE(exp(n < t, Ym >)) = lim

n→∞
1

n
logE(exp(

m∑

j=1

< tjfj,
n∑

i=1

Wiδxi
>))

= lim
n→∞

1

n

n∑

i=1

logE exp




m∑

j=1

tjfj(xi)Wi


 =

∫ 


m∑

j=1

M(tjfj)


 dPθ
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where t = (t1, ..., tm) ∈ Rm and Ym = (< f1, P
W
n,θ >, ..., < fm, P

W
n,θ >). The function

h(t) is finite since f ∈ B(S). M(f) is Gateaux-differentiable since the function
s→M(f + sg) is differentiable at s = 0 for any f, g ∈ B(S)

d

ds
M(f + sg)|s=0 =

∫
gefdPW∫
efdPW

,

where PW is the law of W . Further, the Gateaux-differentiability of M(f) together
with the interchange of integration and differentiation justified by dominated con-
vergence theorem show that h(t) is also Gateaux-differentiable in t = (t1, ..., tm).
Hence by the Gartner-Ellis Theorem (see e.g. Theorem 2.3.6 of [31]), pf1,...,fm(PW

n,θ)
satisfies the LDP in Rm with the good rate function

Φf1,...,fm(< f1, ζ >, ..., < fm, ζ >) = sup
t1,...,tm∈R

{ m∑

i=1

ti < fi, ζ > −
∫
M

(
m∑

i=1

tifi

)
dPθ

}

≤ sup
f∈B(S)

Φf (< f, ζ >) := ϕW (ζ, Pθ) . (3.7.1)

Since m is arbitrary positive integer, by Dawson-Gartner’s Theorem (see e.g. The-
orem 4.6.1 of [31]), PW

n,θ satisfies the LDP in B′(S) with the good rate function

ϕW (ζ, Pθ), which is:

ϕW (ζ, Pθ) = sup
f∈B(S)

Φf (< f, ζ >) = sup
f∈B(S)

{ ∫

S
f(x)ζ(dx)−

∫

S
M(f)Pθ(dx)

}

=
∫

S
M∗

(
dζ

dPθ

)
dPθ,

note that B′(S) is endowed with the τ0-topology, the proof of last equality is given
below. Here we always assume ζ is absolutely continuous with respect to Pθ, oth-
erwise ϕW (ζ, Pθ) = ∞. Consider M(S) ⊂ B′(S), and set ϕW (ζ, Pθ) = ∞ when
ζ /∈M(S). Hence PW

n,θ satisfies the LDP inM(S) with the rate function ϕW (ζ, Pθ),
for ζ ∈ M(S). As mentioned before, M(S) is endowed with the topology induced
by B′(S), namely the τ0-topology.

Nown we give another representation of the rate function ϕW (ζ, Pθ). We have:

sup
ζ∈M(S)

{ ∫

S
f(x)ζ(dx)−

∫

S
M∗

(
dζ

dPθ

)
dPθ

}

= sup
ζ∈M(S)

{ ∫

S

(∫

S
fdζ −M∗

(
dζ

dPθ

))
dPθ

}
≤
∫

S
M(f)dPθ,

where the inequality holds from the duality lemma and when dζ = (dPθ)M
′(f)

the equality holds. Using once again the duality lemma, we obtain the following
identity:

∫

S
M∗

(
dζ

dPθ

)
dPθ = sup

ζ∈M(S)

{ ∫

S
f(x)ζ(dx)−

∫

S
M(f)dPθ

}
= ϕW (ζ, Pθ).

The convexity of the rate function ζ → ϕW (ζ, Pθ) holds from Theorem 7.2.3 of
[31] where they show the convexity of ϕW (ζ, Pθ) on M(S) endowed with B(S)-
topology. Hence this is also applied to τ0-topology which is induced by B(S)-
topology.
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This completes the proof of the lemma.

Remark 3.7.1. By the classical Gartner-Ellis Theorem, in (3.7.1), the essential
smoothness of h(t) is needed for Φf1,...,fm to be a “good rate function”. But on a
locally convex Hausdorff topological vector space, the essential smoothness of h(t)
can be reduced to Gateaux differentiability; see Corollary 4.6.14 (page 167) and the
proof Theorem 6.2.10 (page 265) of [31].

Remark 3.7.2. Since Φf1,...,fm(< f1, ζ >, ..., < fm, ζ >) is a good rate function
in Rm, its level sets Φ−1

f1,...,fm
(α) = {(y1, ..., ym) ∈ Rm : Φf1,...,fm(y1, ..., ym) ≤ α} are

compact, for all α in [0,∞). Denote the projective limit of Φ−1
f1,...,fm

(α) by Φ−1
f (α) =

lim←−Φ−1
f1,...,fm

(α). According to Tychonoff’s theorem, the projective limit Φ−1
f (α) of the

compact set Φ−1
f1,...,fm

(α) is still compact, so ϕW (ζ, Pθ) = supf∈B(S) Φf (< f, ζ >) is
also a good rate function in (M(S),B(M)).
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[57] Kušnier, J. and Mizera, I. (2001). Tail behavior and breakdown proper-
ties of equivariant estimators of location. Ann. Inst. Statist. Math. 53,
no. 2, 244-261.

[58] Lanford, O. E. (1973). Entropy and equilibrium states in classical sta-
tistical mechanics, in Statistical Mechanics and Mathematical Problems.
Berlin: Springer-Verlag.

[59] Letac, Gérard and Mora, Marianne (1990). Natural real exponential fam-
ilies with cubic variance functions. Ann. Statist. 18, no. 1, 1–37.

[60] Liese, F., Vajda, I. (1987). Convex statistical distances. Teubner-Texte
zur Mathematik [Teubner Texts in Mathematics], 95. BSB B. G. Teubner
Verlagsgesellschaft, Leipzig, ISBN: 3-322-00428-7 .

[61] Liese, F., Vajda, I. (2006). On divergences and informations in statistics
and information theory. IEEE Trans. Inform. Theory 52, no. 10, 4394–
4412

[62] Lynch, J., Sethuraman, J. (1987). Large deviations for processes with
independent increments, Ann. Probab., 15(2), pp. 610-627.

[63] Mammen, E. and Nandi, S. (2004). Bootstrap and resampling. Handbook
of computational statistics, 467–495, Springer, Berlin.

[64] Mason, D. M. and Newton, M. A. (1992) A rank statistic approach to the
consistency of a general bootstrap, Ann. Statist. Vol. 20, pp. 1611-1624.



Bibliography 111

[65] Morris, Carl N. (1982). Natural exponential families with quadratic vari-
ance functions. Ann. Statist. 10, no. 1, 65–80.

[66] Najim, J. (2002). A Cramer type theorem for weighted random variables,
Electron. J. Probab., Vol. 7.

[67] Neyman, J. and Pearson, E. S. (1933). On the problem of the most
efficient tests of statistical hypotheses, Philos. Trans. Roy. Soc. London
Ser. A, Vol. 231, pp. 289-337.

[68] Neyman, J. and Pearson, E. S. (1936). Contributions to the theory of
testing statistical hypotheses, Stat. Res. Memoirs, Vol.1 , pp. 1-37.

[69] Pelletier, Bruno (2011). Inference in ϕ-families of distributions. Statistics
45, no. 3, 223-236.

[70] Petrov, V. V. (1975). Sums of independent random variables. Translated
from the Russian by A. A. Brown. Ergebnisse der Mathematik und ihrer
Grenzgebiete, Band 82. Springer-Verlag, New York-Heidelberg.

[71] Pinsker, M. S. (1964). Information and information stability of ran-
dom variables and processes. Translated and edited by Amiel Feinstein
Holden-Day, Inc., San Francisco, Calif.-London-Amsterdam xii+243 pp,
94.20

[72] Praestgaard, J. and Wellner, J.A. (1993). Exchangeably weighted boot-
strap of the general empirical process, Ann. Probab. Vol. 21, pp. 2053–
2086.

[73] Read, T. R. C. and Cressie, N. A. C. (1988). Goodness-of-fit statistics for
discrete multivariate data. Springer Series in Statistics. Springer-Verlag,
New York. xii+211 pp. ISBN: 0-387-96682-X

[74] Rényi, A. (1961). On measures of entropy and information. Proc. 4th
Berkeley Sympos. Math. Statist. and Prob., Vol. I pp. 547–561 Univ.
California Press, Berkeley, Calif.

[75] Sornette, Didier (2004). Critical phenomena in natural sciences. Chaos,
fractals, selforganization and disorder: concepts and tools. Second edi-
tion. Springer Series in Synergetics. Springer-Verlag, Berlin.

[76] Toma, A. and Broniatowski, M. (2011). Dual divergence estimators and
tests: robustness results. J. Multivariate Anal. 102, no. 1, 20–36.

[77] Trashorras J. and Wintenberger O. Large deviations for bootstrapped
empirical measures. arXiv:1110.4620v1

[78] Tweedie, M. C. K. (1947). Functions of a statistical variate with given
means, with special reference to Laplacian distributions. Proc. Cam-
bridge Philos. Soc. 43. 41–49.

[79] Withers, C. S. and Nadarajah, S. (2011). On the compound Poisson-
gamma distribution. Kybernetika (Prague) 47, no. 1, 15–37.




