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Numquam ponenda est pluralitas sine necessitate
Plurality must never be posited without necessity

William of Ockham (c. 1288 – c. 1348)

William of Ockham was a English Franciscan friar of the 14th century. He was also a scholastic
philosopher which is often credited for the law of parsimony that states roughly that among good
explanations one should favor the simplest ones. Although he was not the first to postulate this principle
of simplicity, this idea can be traced back to Aristotle, his name is now associated to this idea which is
often called Ockham’s principle or Ockham’s razor.

I would not consider this principle as a philosophical doctrine but rather as a loose heuristic principle
used in sciences: a good solution is often obtained by balancing its apparent goodness and its complexity.
Although very naive, this principle turns out to be the cornerstone of my scientific contributions. For
sure, we will have to specify definitions for good solution, apparent goodness and complexity, but it is
nevertheless amusing to me that up to some technicalities this simple idea summarizes most of my works.
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Chapitre 0

Survol

Ce manuscrit décrit mon travail scientifique de ces dix dernières années. Celui peut-être découpé autour
des dix thèmes suivants :

Thème 0. Bandelettes et approximations (2000-2005)

Dans ce travail, qui correspond à ma thèse de doctorat réalisé sous la direction de S. Mallat, j’ai construit
une nouvelle représentation d’image adaptée aux images géométriques : la représentation en bandelettes.
Nous avons démontré que les propriétés d’approximation de ce frame adaptatif conduisait pour les images
géométriques à des vitesses d’approximation non linéaires adaptatives à des termes logarithmique près.
Ces résultats ont été transcrits en des résultats de compression à la fois théoriquement et numériquement.

Thème 1. Bandelettes et estimations (2002-2011)

Profitant des propriétés d’approximations des bandelettes, nous avons proposé un premier algorithme de
débruitage d’image basé sur le principe MDL (Comprimer c’est presque estimer). En utilisant ensuite
les bases de bandelettes de seconde génération de G. Peyré, nous avons en collaboration avec Ch. Dossal
utilisé les techniques de L. Birgé et P. Massart pour proposer un algorithme de sélection de modèles de
bandelettes dont nous avons pu prouver la quasi optimalité minimax pour des images géométriques.

Thème 2. Maxiset (2004-2009)

Une question naturelle est de se demander pour quelles fonctions l’estimateur précédent est-il efficace.
Dans ce travail réalisé en collaboration avec F. Autin, J.-M. Loubes et V. Rivoirard, on montre que, sous
des hypothèses faibles de structure, les fonctions bien estimées sont exactement celles bien approchées
par des modèles de faibles dimensions de la collection.

Thème 3. Dantzig (2006-2010)

En partant d’une question que nous a posée S. Tsybakov, j’ai étudié avec K. Bertin et V. Rivoirard une
variation du Lasso dans un cadre d’estimation de densité. Nous avons pu calibrer de manière fine la
pénalité de cet estimateur de Dantzig et vérifier théoriquement et numériquement ses performances.

Thème 4. Radon (2007-2012)

En partant de la superbe construction de la représentation en needlet de P. Petrushev et des coauteurs,
j’ai proposé avec G. Kerkyacharian et D. Picard une stratégie de seuillage en needlet pour inverser une
transformée de Radon d’un objet dans le cadre du modèle du bruit blanc. Nous avons prouvé que cet
estimateur est adaptatif et presque minimax pour une large gamme d’espace de Besov. Ces résultats ont
été confirmés numériquement. En utilisant une construction similaire, j’ai obtenu en collaboration avec

7



8 CHAPITRE 0. SURVOL

M. Bergounioux et E. Trélat des résultats de type inégalité oracle pour la transformée de Radon d’objet
axisymétrique.

Thème 5. Copule (2008-2009)
Les stratégies de seuillage en ondelettes sont connues pour être efficaces. Dans ce travail avec F. Autin
et K. Tribouley, nous montrons que c’est également le cas pour l’estimation des copules. Nous avons
obtenu des estimateurs adaptatifs et quasi minimax pour les espaces de Besov. Ces résultats théoriques
ont été confirmés par nos expériences numériques.

Thème 6. NL-Means (2008-2009)
Ce travail correspond au début de la thèse de J. Salmon. Nous avons essayé d’étudier le lien entre
l’une des méthodes numériques les plus efficaces de débruitage, les NL-means, et le principe statistique
de pondération exponentielles. Notre analyse a conduit à des améliorations numériques publiées par J.
Salmon.

Thème 7. Modèle du choix binaire (2010-2011)
Dans ce travail avec E. Gautier, nous étudions un modèle classique économétrique : le modèle du choix
binaire. Il s’agit d’un problème inverse qui se combine à une estimation de densité conditionnelle. Nous
proposons une technique basé sur les ondelettes permettant d’obtenir des estimations adaptatives.

Thème 8. Segmentation d’image hyperspectrale (2010-2012)
Une des techniques les plus classiques de classification non supervisée est basée sur des mélanges de
gaussiennes dont les composantes sont associées à des classes. Avec S. Cohen, nous avons proposé une
extension de ce modèle permettant de prendre en compte une covariable importante dans les images
hyperspectrales, la position. Nous avons proposé un schéma numérique efficace qui nous a permis de
tester avec succès notre algorithme sur des jeux de données réels venant de la plateforme IPANEMA du
synchrotron Soleil.

Thème 9. Estimation de densité conditionnelle (2010-2012)
L’algorithme précédent repose sur une estimation de densité par sélection de modèles. Nous avons cher-
ché, et réussi, à le justifier théoriquement. Nous avons ainsi donné une nouvelle technique d’estimation
de densité conditionnelle par maximum de vraisemblance pénalisé dont on contrôle l’efficacité sous des
hypothèses faibles. L. Montuelle travaille sous notre direction sur des extensions du modèle de mélanges
de gaussienne rentrant dans ce cadre.

Après une introduction aux questions abordées à travers l’exemple jouet de l’estimation de la moyenne
d’un vecteur gaussien, le manuscrit reprend, en anglais, la description de ces 10 thèmes. Il se concentre
autour des thèmes de 1 à 9 en les organisant autour des modèles statistiques utilisés.



Chapter 1

Estimating the mean of a Gaussian: a toy
example

We focus in this first chapter on a very simple statistic problem: estimation of the mean of a Gaussian
random vector of covariance matrix a known multiple of the identity. Let X ∈ RN be the unknown
mean, this problem can be rewritten as the observation of

Y = S + σW

whereW is a standard Gaussian vector and σ the known standard deviation. Our goal is now to estimate
S from the observation Y .

1.1 Trivial estimate and James-Stein’s one

The most natural estimate is the trivial one: one estimates S by Ŝ = Y itself. This is indeed an unbiased
estimate which seems the best possible without any further assumptions. Using the quadratic risk, which
corresponds here to the Kullback-Leibler risk up to the variance factor, as a good solution criterion, we
obtain a goodness of

E
[
‖S − Ŝ‖2

]
= E

[
‖S − Y ‖2

]
= σ2N.

Is this the best one can do? No, as proved first by James and Stein [JS61]. They proposed to shrink
toward 0 the previous estimate using

ŜJS =
(

1− (N − 2)σ2

‖Y ‖2

)
+
Y

and have shown that as soon as n ≥ 3 this estimate always has a smaller quadratic risk than the trivial
one. Heuristically, the shrinkage reduces the variance but augments the bias. The factor (N−2)σ2

‖Y ‖2 is such
that the gain is greater is than the loss. Note that this estimate is very close to the trivial one when the
norm of Y is large but much close to 0 when the norm of Y is small.

1.2 Projection based estimator

Instead of being applied globally, this strategy could be applied locally. Indeed, if for any subset I of
{1, . . . , N}, we define ŜI as the following projection estimator

ŜI [k] =
{
Y [k] if k ∈ I
0 otherwise

9



10 CHAPTER 1. ESTIMATING THE MEAN OF A GAUSSIAN: A TOY EXAMPLE

The quadratic risk of such an estimator is given by

E
[
‖S − ŜI‖2

]
= ‖S − SI‖2 + σ2|I|

where |I| denotes the cardinal of I and

SI [k] =
{
S[k] if k ∈ I
0 otherwise

.

Obviously, as soon as the deterministic quantity ‖S − SI‖2 is smaller than σ2|I|, this estimator outper-
forms the trivial one. The best subset IO is the one that minimizes over all subsets I

‖S − SI‖2 + σ2|I|.

This good solution is thus obtained by an application of Ockham’s principle where the apparent goodness
is the quadratic norm of the bias and the complexity the variance term, that is proportional to the size
of I. A straightforward computation shows that IO can be expressed as the set of index of coefficients
larger, in absolute value, than the standard deviation σ:

IO = {k ∈ {1, . . . , n}||Sk| ≥ σ} .

The best subset IO depends on the unknown mean S and thus ŜIO is not an acceptable estimator of S.
It is however often called an oracle estimator.

1.3 Model selection and thresholding

Two strategies, strictly equivalent in the setting, can be used to obtain an estimator almost as efficient
as the previous oracle one. In the model selection approach one starts from the definition of IO as the
minimizer of the quadratic risk while in the thresholding approach one capitalizes on its definition as
the set of indices of the largest coefficients.

As observed by Akaike [Ak74] and Mallows [Ma73],

‖Y − ŜI‖2 + σ2(2|I| −N)

is an unbiased estimator of the quadratic risk of ŜI . This suggest as in the Cp and AIC approach to
replace IO by the subset minimizing the previous quantity or equivalently the subset minimizing

‖Y − ŜI‖2 + 2σ2|I|.

This good solution is again obtained as a tradeoff between an apparent goodness measured by the
quadratic distance between the observation Y and the proposed estimate ŜI , and a complexity mea-
sured by the size of I times 2σ2. Our hope is to prove that if ÎAIC is the subset minimizing the previous
quantity then the risk of the estimate Ŝ

ÎAIC
is small. One way to prove this is to obtain than

E
[
‖S − Ŝ

ÎAIC
‖2
]
≤ C min

I⊂{1,...,n}
‖S − SI‖2 + σ2|I| = C min

I⊂{1,...,n}
E
[
‖S − ŜI‖2

]
.

Such an inequality, called an oracle inequality, means that the estimate Ŝ
ÎAIC

is almost as efficient as
the best fixed one in the family ŜI . It turns out that the complexity term 2σ2, often called penalty, is
not large enough to ensure this behavior when I can be chosen among all subsets.

Starting from the observation that

ÎAIC =
{
k ∈ {1, . . . , N}

∣∣|Y [k] ≥
√

2σ
}

is almost a good replacement for IO, Donoho and Johnstone [DJ94b] propose to replace it with

ÎTh = {k ∈ {1, . . . , N}||Y [k]| ≥ T}
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with T = σ
√

2 logN . They are then able to prove that

E
[
‖S − Ŝ

ÎTh
‖2
]
≤ (2 logn+ 2.4)

(
min

I⊂{1,...,N}
‖S − SI‖2 + σ2|I|+ σ2

)
.

The adaptive estimator Ŝ
ÎTh

achieves up to a logarithmic factor the best risk among the family consid-
ered.

A very similar result can be obtained following the model selection approach of Barron, Birgé, and
Massart [BBM99], they explicitly modified the complexity term of AIC and define ÎMS as the minimizer
of

‖Y − ŜI‖2 + T 2|I|

with T = κσ(1 +
√

2 logN) and κ > 1. They are then able to prove

E
[
‖S − Ŝ

ÎMS
‖2
]
≤ C(κ)

(
min

I⊂{1,...,N}
‖S − SI‖2 + T 2|I|+ σ2

)
≤
(
C(κ)κ2(1 +

√
2 logN)2

)(
min

I⊂{1,...,n}
‖S − SI‖2 + σ2|I|+ σ2

)
where C(κ) > 1. Obviously those estimators coincide for the same threshold T and thus Donoho and
Johnstone’s result, which allows a smaller threshold and yields a smaller constant in the oracle inequality,
is better in this case.

Both principles can be related to Ockham’s principle. In thresholding, each coefficient is considered
individually: if it is large enough and thus useful for the apparent goodness and one should estimate
it in a good solution and thus pay its price in term of complexity, otherwise not. In model selection,
coefficients, or more precisely spaces, are considered jointly: the good solution is obtained by explicitly
balancing an apparent goodness, the contrast, and a complexity, a multiple of the dimension. Although
this approach coincide when dealing with orthonormal bases, we will see that this is not always the case.

1.4 Importance of the basis

We have considered so far estimators that are projection of the observation on spaces spanned by the
axes of the canonical basis. As we are working in a quadratic norm the very same results holds after
any change of orthonormal basis. If we denote by Φ the matrix in which each column is an element of
the new basis, our estimator ŜI becomes ŜΦ,I = Φ(Φ′S)I where

(Φ′S)I [k] =
{

(Φ′S)[k] if k ∈ I
0 otherwise

.

From both the thresholding and the model selection approaches, we obtain

E
[
‖S − ŜΦ,Î‖

2
]
≤ C(n)

(
min

I⊂{1,...,N}
‖(S′Φ)− (S′Φ)I‖2 + σ2|I|+ σ2

)
with only a slightly different C(n). The performance of those methods depends thus on the basis used.

The oracle risk

min
I⊂{1,...,N}

‖(S′Φ)− (S′Φ)I‖2 + σ2|I|

corresponds to a good solution obtained by an optimal balance between an apparent goodness, the approx-
imation error using only the coefficients in I, and a complexity measured by the number of coefficients
used multiplied by a factor σ2. It is small when the object of interest S can be well approximated with
few elements in the basis Φ. A natural question is thus the existence of a best basis. This question is
hopeless if one does not specify a set, or a collection of set, to which our object is known to belong. In
that case, we are indeed in the setting of classical approximation theory.
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Not surprisingly, those good approximation properties can also be translated into good compression
properties. Indeed it is known since the 50’s (see for instance Kramer and Mathews [KM56]), that
transforming linearly a signal can help its coding and this is through this angle that I encountered first
these approximation issues. In a basis, transform coding corresponds simply to the quantification of the
basis coefficients and their lossless coding using an entropic coder. When there is a large number of
coefficients quantized to 0, the performance of the code can be explicitly linked to the approximation
performance.

1.5 Basis choice

It is then natural to ask whether one can choose the basis Φ among a family, in order to use the best
of each for each object of interest. It turns out that Donoho and Johnstone’s approach can no longer
be used: their proofs are valid only when the estimator is obtained by projection on a subset I of its
coordinates in any fixed orthogonal basis and that subset I is chosen among all possible subsets. Only
Barron, Birgé, and Massart’s one can be applied, as noted by Donoho and Johnstone [DJ94a], to select
an orthogonal basis amongst a dictionary onto which to project the observation Y . Note also that the
first inequality obtained following Barron, Birgé, and Massart [BBM99] is slightly finer that the second
one as the factor in front of the bias term is much smaller. Although those types of inequalities linking
the estimation risk with a deterministic quantity depending on the unknown S that is valid for every S
are not oracle inequalities in the original sense, I will call them so in the sequel.

1.6 What’s next?

A lot of questions are raised by such a simple example. Among those, I have considered the following
ones

• Can we provide a theoretical guaranty on the performance of these estimators? In the minimax
sense? In an oracle way?

• How precisely the performance of such an estimator is related to approximation theory? How does
this constrain the choice or the design of the basis?

• Is there a way to extend those types of result to select a basis among a family? To cope with
frames or arbitrary dictionary?

• Can we go beyond the quadratic loss case?

• Can this type of result be extended to inverse problem? To density estimation?

• Can we implement efficiently those estimators?



Chapter 2

Overview

The next three chapters are devoted to the description of the results I (with my coauthors) have obtained
so far. I have organized them around 10 themes presented here in approximate chronological order of
beginning:

Theme 0. Bandlets and geometrical image compression

Theme 1. Bandlets and geometrical image denoising

Theme 2. Maxiset of penalized model selection in the white noise model

Theme 3. Dictionary and adaptive `1 penalization for density estimation

Theme 4. Inverse tomography and Radon needlet thresholding

Theme 5. Copula estimation with wavelet thresholding

Theme 6. NL-Means and statistical aggregation

Theme 7. Adaptive thresholding for the binary choice model

Theme 8. Unsupervised hyperspectral image segmentation

Theme 9. Conditional density estimation by penalized maximum likelihood

2.1 Brief overview

Theme 0. Bandlets and geometrical image compression

Publications: [Proc-LPM00 ; Proc-LPM01a; Proc-LPM01b; Proc-LPM03a; Proc-LPM03b; Art-LPM05a;
Art-LPM05b]
Coauthor: S. Mallat (Supervisor)

In this work, which corresponds to my PhD thesis under the supervision of S. Mallat, I have con-
structed a novel image representation adapted to geometrical image, the bandlets. We have been able
to prove that the approximation properties of this adaptive frame representation leads to an adaptive
optimal non linear approximation rate up to a logarithmic factor for geometrical images. This result has
been translated into compression performance both theoretically and numerically.

13
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Theme 1. Bandlets and geometrical image denoising

Publications: [Art-DLPM11 ; Proc-LePe+07 ; Art-LPM05a; Proc-Pe+07 ]
Coauthors: Ch. Dossal, S. Mallat and G. Peyré

Capitalizing on the approximation properties of the bandlets, we have proposed a first bandlet image
denoising algorithm based on the MDL approach: it suffices to use the coding algorithm to denoise
efficiently geometrical image. Using the second generation bandlet basis construction of G. Peyré, with
S. Mallat and Ch. Dossal, using techniques from L. Birgé and P. Massart [BM97], we have been able to
propose a model selection based bandlet image denoising, for which the (quasi) minimax optimality for
geometrical images can be proved.

Theme 2. Maxiset of penalized model selection in the white noise model

Publication: [Art-Au+10 ]
Coauthors: F. Autin, J.-M. Loubes and V. Rivoirard

A natural question arising is the previous work is which are the functions well estimated by the
model selection bandlet estimator. In this work, with F. Autin, J.-M. Loubes and V. Rivoirard, we show
under mild assumption on the model structure, that one can estimate well the function that can be
approximated well by the model collections and only those functions.

Theme 3. Dictionary and adaptive `1 penalization for density estimation

Publication: [Art-BLPR11 ]
Coauthors: K. Bertin and V. Rivoirard

Trying to answer a question asked by A. Tsybakov, I have considered, with K. Bertin and V. Rivoirard,
a density estimation algorithm based on a variation of the Lasso, the Dantzig estimator. In this setting,
we have shown how to fully exploit the density framework to calibrate accurately and automatically the
Dantzig constraints from the data both theoretically and numerically.

Theme 4. Inverse tomography and Radon needlet thresholding

Publications: [Unpub-BLPT12 ; Art-Ke+10 ; Art-KLPP12 ]
Coauthors: G. Kerkyacharian and D. Picard / M. Bergounioux and E. Trélat

Capitalizing on the beautiful needlet representation construction of P. Petrushev and his coau-
thors [NPW06a; NPW06b; PX08], we have proposed, with G. Kerkyacharian and D. Picard, a needlet
thresholding strategy to inverse the fanbeam tomography operator, which is a case of Radon type trans-
form, in the white noise model. The resulting estimator is proved to be adaptive and almost minimax for
a large range of Besov spaces. Numerical experiments confirm this good behavior. A similar construction
and analysis has been conducted with M. Bergounioux and E. Trélat for an axisymmetric objet. We
have obtained oracle type inequalities in this setting.

Theme 5. Copula estimation with wavelet thresholding

Publication: [Art-ALPT10 ]
Coauthors: F. Autin and K. Tribouley

Wavelet thresholding strategies have been proved to be a versatile technique. In this work with F.
Autin and K. Tribouley, we apply this technique to non parametric estimation of copulas. Our estimator
is proved to be adaptive and almost minimax for standard Besov bodies. Numerical experiments on
artificial and real datasets are conducted.

Theme 6. NL-Means and statistical aggregation

Publications: [Proc-LPS09a; Proc-LPS09b; Proc-SLP09 ]
Coauthor: S. Salmon (PhD Student)
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Exponential weighting schemes have proved to be very efficient in statistic estimation. In this work,
which corresponds to the beginning of J. Salmon’s thesis under my supervision, we have tried to link this
scheme with the NL-Means image denoising technique. This has leads to some improvements published
by J. Salmon.

Theme 7. Adaptive thresholding for the binary choice model
Publications: [Unpub-GLP11 ]
Coauthor: E. Gautier

In this work with E. Gautier, we tackle a classical economotric model, the binary choice model,
whose geometry corresponds to a half hypersphere, using adapted needlet construction as well as adapted
thresholds.

Theme 8. Unsupervised hyperspectral image segmentation
Publications: [Art-Be+11 ; Proc-CLP11b; Art-CLP12b; Unpub-CLP12c]
Coauthor: S. Cohen

Unsupervised classification is often perform using Gaussian Mixture Model, whose components are
associated to classes. With S. Cohen, we have proposed an extension of this model in which the mixture
proportions depend of a covariate, the position. We have proposed an efficient numerical scheme that
leads to an unsupervised hyperspectral image segmentation used with real datasets at IPANEMA, an
ancient material study platform located at Synchrotron Soleil.

Theme 9. Conditional density estimation by penalized maximum likelihood
Publications: [Unpub-CLP11a; Unpub-CLP12a; Art-CLP12b; Unpub-MCLP12 ]
Coauthors: S. Cohen and L. Montuelle (PhD Student)

The algorithm of the previous section relies on a model selection principle to select a suitable number
of classes. In this work, with S. Cohen, we prove that, more generally, conditional density estimation
can be performed by a penalized maximum likelihood principle under weak assumptions on the model
selection. This analysis is exemplified by two piecewise constant with respect to the covariate partition-
based conditional density strategy, one combined with piecewise polynomial density and the other with
Gaussian Mixture densities. L. Montuelle is beginning a PhD on this theme under our supervision.

2.2 Manuscript organization

2.2.1 A chronological point of view?
Ordering the manuscript in chronological order would have been a natural point of view. As illustrated in
Figure 2.1, my contributions can be roughly be decomposed into 4 periods: 1998-2002 in which I worked
on geometrical approximation (Theme 0), 2002-2005 in which I considered some statistical extension
of this question (Themes 1 and 2), 2006-2010 in which I have considered statistical problem in which
approximation theory plays a central role (Themes 3, 4, 5, 6 and 7) and 2010-2011 in which I started to
look at some extension of Gaussian Mixture Models for unsupervised segmentation and its conditional
density estimation counterpart (Themes 8 and 9). Not surprisingly, those periods coincides, up to some
inertia, with the different positions I had so far:

• PhD student at the CMAP (1998-2002), where I have learned from S. Mallat image processing and
approximation theory,

• Post-Doc at LetItWave (2002-2004), during which I have focused on denoising while working on
more industrial math,

• Assistant Professor (Maitre de Conférence) at the university Paris Diderot in the statistical team of
the LPMA (2004-2009), during it which, under the guidance of D. Picard, I have really discovered
the (mathematical) statistical world and
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1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 ...

0. Bandlets and App.

1. Bandlets and Est.

2. Maxiset

3. Adaptive `1

4. Radon

5. Copula

6. NL-Means

7. Binary Choice

8. Unsup. Segment.

9. ML Cond. Dens. Est.

Figure 2.1: Chronological view

• Research Associate (Chargé de Recherche) at Inria Saclay (2009-) in the SELECT project, in which
I have learned from P. Massart and G. Celeux how to combine model selection and mixtures.

This ordering is however too rough to be used as there is too many overlaps as soon as one looks
carefully...

2.2.2 An approximation theory point of view?

As hinted in the previous chapter, approximation theory plays a central role in most of my contributions.
In all my works but the one on NL-means (and even that could be discussed), there is the idea that
the object of interest can be approximated, with respect to a certain distance, by a simple parametric
model. As always, the more complex the model, the higher the cost. For instance, in estimation
estimating within a complex model will lead to a large variance term, while in compression the storage
cost of a very complex model may become prohibitive. A good model is one that realizes a good balance
between this complexity and the model proximity with the object of interest. Of course, as this object
is unknown, the best possible model, the oracle one, is unknown and one has to rely on a proxy of it.
This best model is always obtained by a tradeoff between a complexity term and an empirical model
proximity term related to the distance used. Those terms depend on the kind of model used as well on
the observation model considered.

The representations I have used the most are the bandlets with Ch. Dossal, S. Mallat and G. Peyré
(Themes 0 and 1), the needlets with G. Kerkyacharian, D. Picard and E. Gautier (Themes 4 and 7)
and, of course, the wavelets with F. Autin, J-M. Loubes, V. Rivoirard and K. Tribouley (Themes 2 and
5). I have also considered some more abstract approximation setting with F. Autin, J-M. Loubes, V.
Rivoirard, S. Cohen and L. Montuelle (Themes 2 and 9). Recently, I have considered generalization of
the Gaussian Mixture Model with S. Cohen and L. Montuelle (Themes 8 and 9). I should also stress than
even in the NL-Means study with J. Salmon (Theme 6) approximation theory plays a central role as we
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were looking for an oracle type inequality. Figure 2.2 summarizes this point of view. While being a key
tool, approximation theory does not provide a satisfactory ordering. In turns out that the observation
model and the related goal is a much more interesting guideline.

2.2.3 A Statistical point of view!
The aim of my PhD thesis was the compression of geometrical images. We have proposed a novel
image representation, the bandlet representation, and an efficient algorithm to compute a best M -term
approximation of a given image. The performance of this method has been analyzed by proving non
linear approximation property of the bandlet representation (Theme 0). Following the folk’s theorem
Well approximating is well estimating, with S. Mallat and then Ch. Dossal and G. Peyré, we have used
a thresholding principle in this representation to obtain an image denoising algorithm. Image denoising
is naturally modeled in a stochastic world and our analysis has been performed in this framework
(Theme 1).

More precisely, we have considered the white noise model, which is probably the simplest stochastic
model and, at least, the one I have more studied. Indeed, a question raised by our bandlet estimation
study is whether one can slightly reverse the previous folk’s theorem: Well estimating a function in
a representation means that it is well approximated. With F. Autin, J.-M. Loubes and V. Rivoirard,
who were working on a similar issue, we have studied this question for a large class of penalized model
selection estimators (Theme 2). With G. Kerkyacharian and D. Picard, we have used the same white
noise model to analyze the performance of a needlet based inversion of the Radon transform (Theme
4). This is also the model used with J. Salmon in the PAC-Bayesian analyze of the NL-Means image
estimator.

The most classical model arises probably in the density estimation problem I have considered with
K. Bertin and V. Rivoirard as well as with F. Autin and K. Tribouley. In the first work, we have studied
a specific `1 type density estimator (Theme 3). In the second one, we have considered a related issue,
which is the estimation of the copula, which can be seen as the density of the uniformized observations
and propose a wavelet based approach (Theme 5).

Finally, working on an unsupervised classification algorithm for hyperspectral image with S. Cohen
(Theme 8), we have discovered that the most natural framework for our problem was to rephrase as
a conditional density estimation problem. We have then studied a quiet general penalized maximum
likelihood estimator adapted to conditional density estimation (Theme 9). It also turns out that the
work in progress with E. Gautier on the binary choice model which can be seen at first as a density
estimation problem is much closer to a conditional density problem (Theme 7).

For the manuscript, I have eventually settled for this ordering illustrated in Figure 2.3.
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Chapter 3

Estimation in the white noise model

3.1 Image acquisition and white noise model

The first statistical I have encountered is the white noise model, seen as a noisy image acquisition model.
Indeed, during the digital acquisition process, a camera measures an analog image s0 with a filtering and
sampling process corrupted by some noise. More precisely, if we denote the “noisy” measurement of a
camera with N pixels by Ybn , where bn belongs to a family of N impulse responses of the photo-sensors,
those “noisy” measurements are often modeled as sums of ideal noiseless measurements and Gaussian
noises:

Ybn = 〈s0, bn〉+ σWbn for 0 ≤ n < N

where (Wbn)0≤n<N is a centered Gaussian vector and σ is a known noise level parameter. When the
family (bn)0≤n<N is an orthonormal family, the Gaussian vector (Wbn)0≤n<N is often assumed to be
white; its components are assumed independents. For a general family of impulse responses (bn)0≤n<N ,
this assumption is relaxed and the correlation between two measures is linked to the correlation between
the two correspond impulse responses: more precisely, the covariance matrix of the Gaussian vector
(Wbn)0≤n<N is assumed to be the following Gramm matrix (〈bn, bn′)0≤n,n′≤N .

This situation corresponds to the (classical) white noise statistical model which is formally described
as the observation of a process Y that satisfies

dYx = s0(x)dx+ σdWx,

where Wx is now the Wiener process. This equation means that one is able to observe a Gaussian field
Yg indexed by functions g ∈ L2([0, 1]2) of mean E(Yg) = 〈f, g〉 and covariance E [YgYg′ ] = 〈g, g′〉. It
generalizes the model of the previous paragraph in which the Gaussian field Yg can only be observed
for function g in the space VN generated by the family of impulse responses (bn)0≤n<N . Using a more
abstract model that allows to state the statistical problem in the continuous framework will be important
to consider asymptotics over the noise level σ: smaller noise level will require a better resolution for the
camera measurement process than larger one.

Indeed, this white noise model allows us to define for any space V spanned by some functions {bn}n∈I
a “projection” PV Y of the same observation dY on V . When the family {bn}n∈I is orthonormal, PV
can be written as

PV Y =
∑
n∈I

Ybnbn

whereas the decomposition coefficients are slightly more involved in the general case. Nevertheless, this
projection depends only on the space V spanned by the functions {bn}n∈I and not on the functions
themselves. In the following, we will work mainly in term of spaces and thus may assume, with no loss
of generality, that {bn}n∈I is an orthogonal family so that the decomposition PV Y =

∑
n∈I Ybnbn holds.

Following ideas I discovered with Donoho [Do93], I have studied projection estimator in which estimates
of s0 are obtained by projecting the observation Y onto a space V chosen adaptively.

21
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3.2 Projection Estimator and Model Selection

More precisely, we follow here the setting proposed with Ch. Dossal and S. Mallat [Art-DLPM11 ]
which have been implemented with the help of G. Peyré [Proc-LePe+07 ; Proc-Pe+07 ]. We have con-
sidered projection estimators that are decomposed in two steps. First, a linear projection reduces the
dimensionality of the problem by projecting the noisy observation into a finite dimensional space. In
signal processing, this first projection is typically performed by the digital acquisition device. Then, a
non-linear projection estimator refines this projector by reprojecting the resulting finite dimensional ob-
servation into a space that is chosen depending upon this observation. In the setting we have considered,
this non-linear projection can be termed as a thresholding in a best basis selected from a dictionary
of orthonormal bases. Best basis algorithms for noise removal have been introduced by Coifman and
Wickerhauser [CW92]. As recalled by Candès [Ca06], their risks have already been studied by Donoho
and Johnstone [DJ94a] and are a special case of the general framework of model selection proposed by
Birgé and Massart [BM97] Note that Kolaczyk and Nowak [KN04] have studied a similar problem in
a slightly different setting. We recall in this section the model selection estimators principle and its
relation with thresholding estimation when using orthonormal basis.

3.2.1 Approximation space VN and further projection
The first step of our estimators is a projection in a finite dimension space VN spanned by an orthonormal
family {bn}0≤n<N . The choice of the dimension N and of the space VN depends on the noise level σ
but should not depend on the function f to be estimated. Assume for now that VN is fixed and thus
that we observe PVNX. This observation can be decomposed into PVN s0 + σWVN where WVN is a finite
dimensional white noise on VN .

Our final estimator is a reprojection of this observation PVNY onto a subspaceM⊂ VN which may
(and will) depend on the observation: the projection based estimator PMPVNY = PMX. The overall
quadratic error can be decomposed in three terms:

‖s0 − PMY ‖2 = ‖s0 − PVN s0‖2 + ‖PVN s0 − PMs0‖2 + σ2‖PMW‖2.

The first term is a bias term corresponding to the first linear approximation error due to the projection
on VN , the second term is also a bias term which corresponds to the non linear approximation of PVN s0
onM while the third term is a “variance” term corresponding to the contribution of the noise onM.

The dimension N of VN has to be chosen large enough so that with high probability, for reasonable
M, ‖s0 − PVN s0‖2 ≤ ‖PVN s0 − PMs0‖2 + ‖PMW‖2. From the practical point of view, this means that
the acquisition device resolution is set so that the first linear approximation error due to discretization
is smaller than the second non linear noise related error. Engineers often set N so that both terms are
of the same order of magnitude, to limit the cost in terms of storage and computations. In our white
noise setting, we will explain how to chose N depending on σ.

For a fixed VN , in order to obtain a small error, we need to balance between the two remaining terms.
A space M of large dimension may reduce the second bias term but will increase the variance term, a
spaceM of small dimension does the opposite. It is thus necessary to find a trade-off between these two
trends, and select a spaceM to minimize the sum of those two terms.

3.2.2 Model selection in a single orthonormal basis
We consider a (not that) specific situation in which the space M is spanned by some vectors from an
orthonormal basis of VN . More precisely, let B = {Φn}0≤n<N be an orthonormal basis of VN , that may
be different from {bn}, we consider spaces M spanned by a sub-family {Φnk}1≤k≤M of M = dim (M)
vectors and the projections of our observation on those spaces

PMY =
M∑
k=1

YΦnk Φnk .

Note that this projection, or more precisely its decomposition in the basis {bn}, can be computed easily
from the decomposition of PMY in the same basis.
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As a projection estimator yields an estimation error

‖s0 − PMY ‖2 = ‖f − PVN ‖
2 + ‖PVN − PMs0‖2 + ‖PMW‖2 = ‖f − PMs0‖2 + ‖PMW‖2,

the expected error of such an estimator is given by

E
[
‖s0 − PMY ‖2

]
= ‖f − PMs0‖2 + σ2 dim (M) .

The best subspace for this criterion is the one that realizes the best trade-off between the approximation
error ‖f − PMs0‖2 and the complexity of the models measured by σ2 dim (M).

This expected error cannot be computed in practice since we have a single realization of dY (or
of PVNY ) . To (re)derive the classical model selection procedure of Birgé and Massart [BM97] or
the thresholding theorems of Donoho and Johnstone [DJ94b], we first slightly modify our problem by
searching for a subspaceM such that the estimation error obtained by projecting PVNY on this subspace
is small with an overwhelming probability. As in most model selection analysis, we use an upper bound of
the estimation error obtained from an upper bound of the energy of the noise projected onM. Each of the
KN projections of the noise on the KN different vectors in the bases of the dictionary DN is thusWΦk Φk.
Its law is a Gaussian random variable of variance σ2 along the vector Φk. A standard large deviation
result proves that the norms of KN such Gaussian random variables are bounded simultaneously by
T = σ

√
2 logKN with a probability that tends to 1 when N increases. Since the noise energy projected

in M is the sum of dim (M) squared dictionary noise coefficients, we get ‖PMW‖2 ≤ dim (M) T 2. It
results that

‖s0 − PMY ‖2 ≤ ‖s0 − PMs0‖2 + dim (M) T 2. (3.1)

over all subspacesM with a probability that tends to 1 as N increases. The estimation error is small if
M is a space of small dimension dim (M) which yields a small approximation error ‖s0 − PMs0‖. We
denote byMO ∈ CN the space that minimizes the estimation error upper bound (3.1)

MO = argmin
M∈CN

(‖s0 − PMs0‖2 + dim (M) T 2).

Note that this optimal space cannot be determined from the observation Y since s0 is unknown. It is
called the oracle space , hence the O in the notation, to remind this fact.

To obtain an estimator, it is thus necessary to replace this oracle space by a best space obtained only
from the observation PVNY that yields (hopefully) a small estimation error. A first step toward this goal
is to notice that since all the spacesM are included into VN , minimizing

‖s0 − PMs0‖2 + dim (M) T 2

is equivalent to minimizing
‖PVN s0 − PMs0‖2 + dim (M) T 2.

A second step is to consider the crude estimation of ‖PVN s0 − PMs0‖2 given by the empirical norm

‖PVNY − PMY ‖
2 = ‖PVNY ‖

2 − ‖PMY ‖2.

This may seem naive because estimating ‖PVN s0 − PMs0‖2 with ‖PVNY − PMY ‖2 yields a large error

‖PVNY − PMY ‖
2 − ‖PVN s0 − PMs0‖2 = (‖PVNY ‖

2 − ‖PVN s0‖2) + (‖PMs0‖2 − ‖PMY ‖2),

whose expected value is (N − dim (M))σ2, with typically dim (M) � N . However, most of this error
is in the first term on the right hand-side, which has no effect on the choice of space M. This choice
depends only upon the second term and is thus only influenced by noise projected in the space M of
lower dimension dim (M). The bias and the fluctuation of this term, and thus the choice of the basis,
are controlled by increasing the parameter T .

We define the best empirical projection estimator P
M̂

as the estimator that minimizes the resulting
empirical penalized risk:

M̂ = argmin
M∈CN

‖PVNY − PMY ‖
2 + dim (M) T 2. (3.2)
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As the spaces M are spanned by subsets of the same orthogonal basis, this minimization can be per-
formed coefficientwise and M̂ is the space spanned by the basis elements corresponding to the observed
coefficients larger than T in absolute value. Donoho and Johnstone [DJ94b] have shown that this esti-
mator is efficient:

(1 + o(1)) argmin
M∈CN

(‖s0 − PMs0‖2 + dim (M) T 2)

≤ E [‖P
M̂
Y − s0

∥∥2] ≤ (2 logN + 1) argmin
M∈CN

(‖s0 − PMs0‖2 + dim (M) T 2).

3.2.3 Model Selection in a dictionary of orthonormal bases
Now, instead of choosing a specific single orthonormal basis B, we define a dictionary DN which is a
collection of orthonormal bases in which we choose adaptively the basis used. Note that some bases
of DN may have vectors in common. This dictionary can thus also be viewed as set {Φn} of P ≥ N
different vectors, that are regrouped to form many different orthonormal bases. Any collection of M
vectors from the same orthogonal basis B ∈ DN generates a space M of dimension M that defines a
possible estimator PMY of s0. Let CN = {Mγ}ΓN be the family of all such projection spaces. Ideally
we would like to find the spaceM∈ CN which minimizes ‖s0−PMY ‖. We want thus to choose a “best”
modelM among a collection that is we want to perform a model selection task.

Notice that the analysis of the previous section has never really used the fact that the spaces are
spanned by subsets of a single orthonormal basis. We could have repeated the previous analysis up to
the search for the best estimator. Indeed, finding the minimizer of (3.2) may seem computationally now
untractable because the number of possible spaces M ∈ C is typically an exponential function of the
number P of vectors in DN and there is no way to reduce this question to a coefficientwise estimation.
We show that this best estimator may however still be found with a thresholding strategy, but one in a
best basis. as soon as one thatM are generated by a subset of vectors from a basis B ∈ DN . One can
verify that this implies that the best projection estimator is necessarily a thresholding estimator in some
basis. Minimizing ‖PVNY − PMY ‖2 + dim (M) T 2 overM∈ C is thus equivalent to find the basis B̂ of
VN which minimizes the thresholding penalized empirical risk:

B̂ = argmin
B∈DN

‖PVNY − PMB,Y,T Y ‖
2 + dim (M) T 2.

The best space which minimizes the empirical penalized risk in (3.2) is derived from a thresholding in
the best basis M̂ = M

B̂,T
. The following theorem, similar to the one obtained first by Barron, Birgé,

and Massart [BBM99] proves that the thresholding estimation error in the best basis is bounded by the
estimation error by projecting in the oracle spaceMO, up to a multiplicative factor. Note that a similar
result can be found in an earlier article of Donoho and Johnstone [DJ94a].

Theorem 1. There exists an absolute bounded function λ0(P ) ≥
√

2 and some absolute constants ε > 0
and κ > 0 such that if we denote CN = {Mγ}Γ the family of projection spaces generated by some vectors
in an orthogonal basis of a dictionary DN and denote P be the number of different vectors in DN . Then
for any σ > 0, if we let T = λ

√
log(P )σ with λ ≥ λ0(P ), then for any s0 ∈ L2, the thresholding

estimator F = PM
B̂,X,T

Y in the best basis

B̂ = argmin
B∈DN

‖PVNY − PMB,Y,T Y ‖
2 + dim (MB,Y,T ) T 2

satisfies

E
[
‖s0 − ŝ‖2

]
≤ (1 + ε)

(
min
M∈CN

‖s0 − PMs0‖2 + dim (M) T 2
)

+ κ

P
σ2. (3.3)

For the sake of completion, in our paper [Art-DLPM11 ], we propose a simple proof of Theorem 1,
inspired by Birgé and Massart [BM97], which requires only a concentration lemma for the norm of
the noise in all the subspaces spanned by the P generators of DN but with worse constants: λ0(P ) =
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√
32 + 8

log(P ) , ε = 3 and κ = 64. Note that this Theorem can be deduced from Massart [Ma07] with

different (better) constant (and for roughly λ0(P ) >
√

2) using a more complex proof based on subtle
Talagrand’s inequalities. It results that any bound on minM∈CN ‖s0 − PMs0‖2 + dim (M) T 2, gives a
bound on the risk of the best basis estimator ŝ.

To obtain a computational estimator, the minimization

B̂ = argmin
B∈DN

‖PVNY − PMB,Y,T Y ‖
2 + dim (MB,Y,T ) T 2 ,

should be performed with a number of operations typically proportional to the number KN of vectors
in the dictionary. This requires to construct appropriate dictionaries of orthogonal bases. Examples of
such dictionaries have been proposed by Coifman and Wickerhauser [CW92] with wavelet packets or by
Coifman and Meyer [CM91] with local cosine bases for signals having localized time-frequency structures.

3.3 Best basis image estimation and bandlets

Given those theoretical results, a natural question arise: are those types of estimators efficient? This
will depend heavily on the representation used and the bandlets, introduced in my thesis [Proc-LPM00 ;
Proc-LPM01a; Proc-LPM01b; Proc-LPM03a; Proc-LPM03b; Art-LPM05a; Art-LPM05b] and further
enhanced by Peyré and Mallat [PM08], will prove to be a very valuable tool when one wants to estimate
geometrically regular images.

3.3.1 Minimax risk and geometrically regular images
Indeed, we study the maximum risk of estimators for images f in a given class with respect to σ. Model
classes are often derived from classical regularity spaces (Cα spaces, Besov spaces,. . . ). This does not take
into account the existence of geometrically regular structures such as edges. Here, we use a geometric
image model appropriate for edges, but not for textures, where images are considered as piecewise
regular functions with discontinuities along regular curves in [0, 1]2. This geometrical image model has
been proposed by Korostelev and Tsybakov [KT93] in their seminal work on image estimation. It is used
as a benchmark to estimate or approximate images having some kind of geometric regularity (Donoho
[Do99], Shukla, Dragotti, Do, and Vetterli [Sh+05],...). An extension of this model that incorporates
a blurring kernel h has been proposed by Le Pennec and Mallat [Art-LPM05a] to model the various
diffraction effects. The resulting class of images, the one studied here, is the set of Cα geometrically
regular images specified by the following definition.

Definition 1. A function s ∈ L2([0, 1]2) is Cα geometrically regular over [0, 1]2 if

• s = s̃ or s = s̃ ? h with s̃ ∈ Cα(Λ) for Λ = [0, 1]2 − {Cγ}1≤γ≤G,

• the blurring kernel h is Cα, compactly supported in [−s, s]2 and ‖h‖Cα ≤ s−(2+α),

• the edge curves Cγ are Cα and do not intersect tangentially if α > 1.

Korostelev and Tsybakov [KT93] have built an estimator that is asymptotically minimax for geomet-
rically regular functions s0, as long as there is no blurring and hence that s0 = s̃0. With a detection
procedure, they partition the image in regions where the image is either regular or contains a “boundary
fragment”, a subpart of a single discontinuity curve. In each region, they use either an estimator tailored
to this “boundary fragments” or a classical kernel estimator adapted to regular regions. This yields a
global estimate ŝ of the image s0. If the s0 is Cα outside the boundaries and if the parametrization of
the curve is also Cα then there exists a constant C such that

∀σ , E
[
‖s0 − ŝ‖2

]
≤ Cσ

2α
α+1 .

This rate of convergence achieves the asymptotic minimax rate for uniformly Cα functions and thus
the one for Cα geometrically regular functions that includes this class. This means that sharp edges do
not alter the rate of asymptotic minimax risk. However, this estimator is not adaptive relatively to the
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Holder exponent α that must be known in advance. Furthermore, it uses an edge detection procedure
that fails when the image is blurred or when the discontinuity jumps are not sufficiently large.

Donoho [Do99] and Shukla, Dragotti, Do, and Vetterli [Sh+05] reuse the ideas of “boundary fragment”
under the name “horizon model” to construct a piecewise polynomial approximation of images. They
derive efficient estimators optimized for α ∈ [1, 2]. These estimators use a recursive partition of the
image domain in dyadic squares, each square being split in two parts by an edge curve that is a straight
segment. Both optimize the recursive partition and the choice of the straight edge segment in each dyadic
square by minimizing a global function. This process leads to an asymptotically minimax estimator up
to a logarithmic factor which is adaptive relatively to the Holder exponent as long as α ∈ [1, 2].

Korostelev and Tsybakov [KT93] as well as Donoho [Do99] and Shukla, Dragotti, Do, and Vetterli
[Sh+05] rely on the sharpness of image edges in their estimators. In both cases, the estimator is chosen
among a family of images that are discontinuous across parametrized edges, and these estimators are
therefore not appropriate when the image edges are blurred. We will consider estimators that do not have
this restriction: they project the observation on adaptive subspaces in which blurred as well as sharp
edges are well represented. They rely on two ingredients: the existence of bases in which geometrical
images can be efficiently approximated and the existence of a mechanism to select, from the observation,
a good basis and a good subset of coefficients onto which it suffices to project the observation to obtain
a good estimator. We focus first on the second issue.

3.3.2 Estimation in a single basis
When the dictionary DN is reduced to a single basis B, and there is thus no basis choice, Theorem 1
clearly applies and reduces to the classical thresholding Theorem of Donoho and Johnstone [DJ94b].
The corresponding estimator is thus the classical thresholding estimator which quadratic risk satisfies

E
[
‖s− PMB,Y,T Y ‖

2] ≤ (1 + ε)
(

min
M∈CN

‖s− PMs‖2 + dim (M) T 2
)

+ κ

N
σ2

It remains “only” to choose which basis to use and how to define the space VN with respect to σ.
Wavelet bases provide a first family of estimators used commonly in image processing. Such a two

dimensional wavelet basis is constructed from two real functions, a one dimensional wavelet ψ and a
corresponding one dimensional scaling function φ, which are both dilated and translated:

ψj,k(x) = 1
2j/2

ψ

(
x− 2jk

2j

)
and φj,k(x) = 1

2j/2
φ

(
x− 2jk

2j

)
.

Note that the index j goes to −∞ when the wavelet scale 2j decreases. For a suitable choice of ψ and
φ, the family {ψj,k(x)}j,k is an orthogonal basis of L2([0, 1]) and the following family constructed by
tensorization  ψVj,k(x) = ψVj,k(x1, x2) = φj,k1 (x1)ψj,k2 (x2),

ψHj,k(x) = ψHj,k(x1, x2) = ψj,k1 (x1)φj,k2 (x2),
ψDj,k(x) = ψDj,k(x1, x2) = ψj,k1 (x1)ψj,k2 (x2)


(j,k1,k2)

is an orthonormal basis of the square [0, 1]2. Furthermore, each space

Vj = Span{φj,k1 (x1)φj,k2 (x2)}k1,k2 ,

called approximation space of scale 2j , admits {ψol,k}o,l≥j,k1,k2 as an orthogonal basis. The approximation
space VN of the previous section coincides with the classical wavelet approximation space Vj when
N = 2−j/2.

A classical approximation result ensures that for any function s ∈ Cα, as soon as the wavelet has
more than bαc + 1 vanishing moments, there is a constant C such that, for any T , minM∈CN ‖PVN s −
PMs‖2 + dim (M) T 2 ≤ C(T 2)

α
α+1 , and, for any N , ‖PVN s − s‖2 ≤ CN−α. For N = 2−j/2 with

σ2 = [2j , 2j+1], Theorem 1 thus implies

E[‖s− ŝ‖2] ≤ C(| log(σ)|σ2)
α
α+1 .
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This is up to the logarithmic term the best possible rate for Cα functions. Unfortunately, wavelets
bases do not provide such an optimal representation for the Cα geometrically regular functions specified
by Definition 1. Wavelets fail to capture the geometrical regularity of edges: near them, the wavelets
coefficients remain large. As explained in Mallat [Ma08], by noticing that those edges contribute at scale
2j to O(2−j) coefficients of order O(2j/2), one verifies that the rate of convergence in a wavelet basis
decays like (| log(σ)|σ2)1/2, which is far from the asymptotically minimax rate.

3.3.3 Estimation in a fixed frame
No known basis seems able to capture the geometric regularity, however a remarkably efficient represen-
tation was introduced by Candès and Donoho [CD99]. Their curvelets are not isotropic like wavelets but
are more elongated along a preferential direction and have two vanishing moments along this direction.
They are dilated and translated like wavelets but they are also rotated. The resulting family of curvelets
C = {cn}n is not a basis of L2([0, 1]2) but a tight normalized frame of L2(R2). This means that for any
s ∈ L2([0, 1]2) ∑

cn∈C

|〈s, cn〉|2 = ‖s‖2

which implies
s =

∑
cn∈C

〈s, cn〉cn.

Although this is not an orthonormal basis, the results of Section 3.2 can be extended to this setting by
replacing the thresholding operator by the search of the space M spanned by a subset of (cn)0≤n<N ,
which spans VN , that minimizes

‖PVNY − PMY ‖
2 + T 2 dim (M)

with N = σ−1/2. The error rate for Cα geometrically regular function with α ∈ [1, 2] is

E

[∑
n

‖f − F‖2
]
≤ C(| log σ|σ2)

α
α+1

which is up to the logarithmic factor the minimax rate. Unfortunately, computing this estimator is
complex as it requires to compute all the projections PMY which is not an easy task. This difficulty
may be overcome by working in the coefficient domain. Projecting the data on the first N = σ−1/2

curvelets with significant intersection with the unit square and thresholding the remaining coefficients
with a threshold λ =

√
logNσ yields an estimator ̂〈s0, cn〉 of the coefficients 〈s0, cn〉. Those estimated

coefficients are such that

E

[∑
n

(〈s0, cn〉 − ̂〈s0, cn〉)2

]
≤ C(| log σ|σ2)

α
α+1

with a constant C that depends only on s0. Using the inverse frame operator as defined by Christensen
[Ch03], one obtains an estimator ŝ not necessarily equal to

∑
n

̂〈s0, cn〉cn that nevertheless satisfies

E

[∑
n

‖s0 − ŝ‖2
]
≤ C(| log σ|σ2)

α
α+1

for Cα geometrically regular functions with α ∈ [1, 2].
While the two error bounds of those two estimators are similar, they are deduced from two different

kinds of control. The first one is obtained by a synthesis control: a control on the error of the best
approximation with a given number of coefficients. The second one is obtained by an analysis control:
a control on the number of coefficients above a threshold. Although the first (synthesis) approach and
the second (analysis) approach are equivalent for orthonormal basis, they are very different for frames.
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Figure 3.1: a) a geometrically regular image, b) the associated wavelet coefficients, c) a close-up of
wavelet coefficients in a detail space W o

j that shows their remaining regularity, d) the geometrical flow
adapted to this square of coefficients, here it is vertically constant and parametrized by a polynomial
curve γ

Other fixed representations, such as the shearlets of Labate, Lim, Kutyniok, and Weiss [La+05],
achieve this optimal rate for α = 2 by being able to approximate C2 curve with anisotropic elements
approximately aligned with their tangent and having 2 vanishing moments. Unfortunately, no fixed
representation is known to achieve a similar result for α larger than 2; More adaptivity seems required.

3.3.4 Dictionary of orthogonal bandlet bases
To cope with higher regularity, S. Mallat and I [Art-LPM05a; Art-LPM05b] and then Peyré and Mallat
[PM08], inspired by the curvelets and the shearlets that are optimal for C2 geometrically regular func-
tions, have searched basis elements with a more “curvy” geometry and more anisotropy to follow Cα

edges efficiently, and with more vanishing moments. Arandiga, Cohen, Donat, Dyn, and Matei [Ar+08]
has proposed a very different approach: a ENO-EA wavelet type lifting scheme in which the “wavelets”
are defined only through the computation of the corresponding coefficients. Although well understood
in the noiseless case as shown by Matei [Ma05], the mathematical analysis of those schemes in presence
of noise remains a challenge.

We will thus use the bandlet bases of Peyré and Mallat [PM08] that are orthogonal bases whose
elements have the required anisotropy, directionality and vanishing moments. Their construction is
based on the observation that even if the wavelet coefficients are large in the neighborhood of an edge,
these wavelets coefficients are regular along the direction of the edge as illustrated by Fig 3.1.

To capture this geometric regularity, the key tool is a local orthogonal transform, inspired by the
work of Alpert [Al92], that combines locally the wavelets along the direction of regularity, represented
by arrows in the rightmost image of Fig 3.1, to produce a new orthogonal basis, a bandlet basis. By
construction, the bandlets are elongated along the direction of regularity and have the vanishing moments
along this direction. The (possibly large) wavelets coefficients are thus locally recombined along this
direction, yielding more coefficients of small amplitudes than before.

More precisely, the construction of a bandlet basis of a wavelet multiresolution space Vj = Span{φj,k1,k2}k1,k2

starts by decomposing this space into detail wavelet spaces

Vj =
⊕
o,l>j

W o
l with W o

l = Span{ψol,k1,k2}k1,k2 .

For any level l and orientation o, the detail space W o
l is a space of dimension (2−l)2. Its coefficients

are recombined using the Alpert transform induced by some directions of regularity. This geometry is
specified by a local geometric flow, a vector field meant to follow the geometric direction of regularity.
This geometric flow is further constrained to have a specific structure as illustrated in Fig. 3.2. It is
structured by a partition into dyadic squares in which the flow, if there exists, is vertically or horizontally
constant. In each square of the partition, the flow being thus easily parametrized by its tangent.

For each choice of geometric flow, a specific orthogonalization process given by Peyré and Mallat
[PM08] yields an orthogonal basis of bandlets that have vanishing moments along the direction of the
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Figure 3.2: a) a geometrically regular image b) the corresponding wavelet coefficients c) the quadtree
associated to the segmentation of a detail space W o

j . In each square where the image is not uniformly
regular, the flow is shown.

geometric flow. This geometry should obviously be adapted to each image: the partition and the flow
direction should match the image structures. This choice of geometry can be seen as an ill posed problem
of estimation of the edges or of the direction of regularity. To avoid this issue, the problem is recasted
as a best basis search in a dictionary. The geometry chosen is the one of the best basis.

The first step is to define a dictionary D(2−j)2 of orthogonal bandlet bases of Vj or equivalently a
dictionary of possible geometric flows. Obviously this dictionary should be finite and this requires a
discretization of the geometry. As proved by Peyré and Mallat [PM08], this is not an issue: the flow
does not have to follow exactly the direction of regularity but only up to a sufficient known precision.
It is indeed sufficient to parametrize the flow in any dyadic square by the tangent of a polynomial of
degree p (the number of vanishing moments of the wavelets). The coefficients of this polynomial can be
further quantized. The resulting family of geometric flow in a square is of size O(2−jp).

A basis of the dictionary D(2−j)2 is thus specified by a set of dyadic squares partitions for each details
spaces W o

l , l > j, and, for each square of the partition, a flow parametrized by a direction and one of
these O(2−jp) polynomials. The number of bases in the dictionary D(2−j)2 grows exponentially with
2−j , but the total number of different bandlets P grows only polynomially like O(2−j(p+4)). Indeed
the bandlets in a given dyadic square with a given geometry are reused in numerous bases. The total
number of bandlets in the dictionary is thus bounded by the sum over all O(2−2j) dyadic squares and
all O(2−jp)) choices for the flow of the number of bandlets in the square. Noticing that (2−j)2 is a rough
bound of the number of bandlets in any subspaces of Vj , we obtain the existence of a constant CK such
that 2−j(p+4) ≤ P ≤ CK2−j(p+4).

3.3.5 Approximation in bandlet dictionaries
The key property of the bandlet basis dictionary is that it provides an asymptotically optimal represen-
tation of Cα geometrically regular functions. Indeed Peyré and Mallat [PM08] proved

Theorem 2. Let α < α0 where α0 in the number of wavelet vanishing moments, for any s0 Cα geomet-
rically regular function, there exists a real number C such that for any T > 0 and 2j ≤ T

min
B∈D(2−j)2

‖s0 − PMB,s,T s0‖2 + dim (MB,s,T )T 2 6 CT 2α/(α+1)

where the subspaceMB,s,T is the space spanned by the vectors of B whose inner product with s0 is larger
than T .

This Theorem gives the kind of control we require in Theorem 1.
For practical applications the possibility to compute efficiently the above minimization is as important

as the bound CT 2α/(α+1) itself. It turns out that a fast algorithm can be used to find the best basis that
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minimizes ‖s0−PMB,s,T s0‖2 +dim (MB,s,T )T 2 or equivalently ‖PVj s0−PMB,s,T s0‖2 +dim (MB,s,T )T 2.
We use first the additive structure with respect to the subbandW o

l of this “cost” ‖PVj s0−PMB,s,T s0‖2 +
dim (MB,s,T )T 2 to split the minimization into several independent minimizations on each subbands.
A bottom-top fast optimization of the geometry (partition and flow) similar to the one proposed by
Coifman and Wickerhauser [CW92], and Donoho [Do97] can be performed on each subband thanks to
two observations. Firstly, for a given dyadic square, the limited number of possible flows is such that the
best flow can be obtained with a simple brute force exploration. Secondly, the hierarchical tree structure
of the partition and the additivity of the cost function with respect to the partition implies that the best
partition of a given dyadic square is either itself or the union of the best partitions of its four dyadic
subsquares. This leads to a bottom up optimization algorithm once the best flow has been found for
every dyadic squares. Note that this algorithm is adaptive with respect to α: it does not require the
knowledge of the regularity parameter to be performed.

More precisely, the optimization algorithm goes as follows. The brute force search of the best flow is
conducted independently over all dyadic squares and all detail spaces with a total complexity of order
O(2−j(p+4)). This yields a value of the penalized criterion for each dyadic squares. It remains now to
find the best partition. We proceed in a bottom up fashion. The best partition with squares of width
smaller than 2j+1 is obtained from the best partition with squares of width smaller than 2j : inside each
dyadic square of width 2j+1 the best partition is either the partition obtained so far or the considered
square. This choice is made according to the cost computed so far. Remark that the initialization is
straightforward as the best partition with square of size 1 is obviously the full partition. The complexity
of this best partition search is of order O(2−2j) and thus the complexity of the best basis is driven by
the best flow search whose complexity is of order O(2−j(p+4)), which nevertheless remains polynomial in
2−j .

3.3.6 Bandlet estimators

Estimating the edges is a complex task on blurred function and becomes even much harder in presence
of noise. Fortunately, the bandlet estimator proposed by Peyré, Le Pennec, Dossal, and Mallat [Proc-
Pe+07 ] do not rely on such a detection process. The chosen geometry is obtained with the best basis
selection of the previous section. This allows one to select an efficient basis even in the noisy setting.

Indeed, combining the bandlet approximation result of Theorem 2 with the model selection results
of Theorem 1 proves that the selection model based bandlet estimator is near asymptotically minimax
for Cα geometrically regular images.

For a given noise level σ, one has to select a dimension N = (2−j)2 and a threshold T . The best
basis algorithm selects then the bandlet basis B̂ among DN = D(2−j)2 that minimizes

‖PVNY − PMB,Y,T Y ‖
2 + T 2 dim (MB,Y,T )

and the model selection based estimate is F = PMB,Y,T Y . We should now specify the choice of N =
(2−j)2 and T in order to be able to use Theorem 1 and Theorem 2 to obtain the near asymptotic
minimaxity of the estimator. On one hand, the dimension N should be chosen large enough so that the
unknown linear approximation error ‖s0−PVN s0‖2 is small. One the other hand, the dimension N should
not be too large so that the total number of bandlets P , which satisfies

√
N

(p+4) ≤ KN ≤ CK
√
N

(p+4),
imposing a lower bound on the value of the threshold remains small. For the sake of simplicity, as we
consider an asymptotic behavior, we assume that σ is smaller than 1/4. This implies that it exists j < 0
such that σ ∈ (2j−1, 2j ] The following theorem proves that choosing N = 2−2j and T = λ̃

√
| log σ|σ

with λ̃ large enough yields a nearly asymptotically minimax estimator.

Theorem 3. Let α < p where p in the number of wavelet vanishing moments and let K0 ∈ N ∗ and
λ̃ ≥

√
2(p+ 4) supK≥K0 λ0(K). For any Cα geometrically regular function s0, there exists C > 0 such

that for any

σ ≤ min(1
4 ,max(CK ,K0/2)−1/(p+4)),
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Image Noise Wavelet Curvelet Bandlet
Polygons 22 32.73 32.36 34.56
Lena 22 28.15 28.29 28.7

Barbara 22 26.57 27.49 28.14
Peppers 22 27.85 27.74 28.49

Table 3.1: PSNR for the wavelet, curvelet and bandlet estimators for a geometrical image (Polygons
given in Figure 3.3) and three classical images (Lena, Barbara and Peppers) with a noise level of 22 dB.

if we let N = 2−2j with j such that σ ∈ (2j−1, 2j ] and T = λ̃
√
| log σ|σ, the estimator ŝ = PM

B̂,Y,T
Y

obtained by thresholding PVNY with a threshold T in the basis B̂ of DN that minimizes

‖PVNY − PMB,Y,T Y ‖
2 + T 2 dim (MB,Y,T )

satisfies

E
[
‖s0 − ŝ‖2

]
≤ C(| log σ|σ2)

α
α+1 .

Theorem 3 is a direct consequence of Theorem 1 and Theorem 2.
The estimate F = PM

B̂,T
Y is computed efficiently by the same fast algorithm used in the approx-

imation setting without requiring the knowledge of the regularity parameter α. The model selection
based bandlet estimator is thus a tractable adaptive estimator that attains, up to the logarithmic term,
the best possible asymptotic minimax risk decay for Cα geometrically regular function.

Although Theorem 3 applies only to Cα geometrically regular functions, one can use the bandlet
estimator with many kinds of images. Indeed for any function for which a theorem similar to Theorem 2
exists, the proof of Theorem 3 yields a control on the estimation risk. An important case is the Besov
bodies. As among the bandlets bases there is the classical wavelet basis, any Besov function can be
approximated optimally in this specific “bandlet” basis. The bandlet estimate will thus provide, up to a
logarithmic term, an optimal asymptotic minimax rate.

To illustrate the good numerical behavior of the bandlet estimator, we show some experiments ex-
tracted from [Proc-Pe+07 ] and completed by a comparison with a (translation invariant) curvelet esti-
mator. Table 3.1 shows the improvement due to the bandlet representation by comparing the PSNR for
an optimized thresholding method in a wavelet representation, a curvelet representation and a bandlet
representation. As expected, the bandlet estimator yields the best results. This quantitative improve-
ment translates into a better visual quality as illustrated in Figure 3.3. Both curvelets and bandlets
preserve much more geometric structures than wavelets. Curvelets are even better than bandlets to pre-
serve the geometry of true edges but at the price of introducing some geometric artifacts mostly parallel
to true edges as visible in the Polygons example but also in random direction due to noise shaping as
visible in the top part of Lena’s hat. This effect is nevertheless less visible in natural images than in
artificial ones because of texture masking effect.

3.4 Maxiset of model selection

So far, I had shown that the bandlets are useful to estimate geometrically regular images. A natural
question is then to ask whether they are other functions well estimated by such an estimator or more
precisely to characterize those functions. It turns out that this problem had already been addressed by
Kerkyacharian and Picard [KP00] and Cohen, De Vore, Kerkyacharian, and Picard [Co+01] for wavelet
basis and termed the maxiset approach. With F. Autin, V. Rivoirard and J.-M. Loubes [Art-Au+10 ], I
have studied this question for general model selection estimators. Our purpose is not to build new model
selection estimators but to determine thoroughly the functions for which well known model selection
procedures achieve good performances. Of course, approximation theory plays a crucial role in our
setting but surprisingly its role is even more important than the one of statistical tools. This statement
will be emphasized by the use of the maxiset approach, which illustrates the well known fact that well
estimating is well approximating.
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Polygons

Original Noisy

Wavelets Curvelets Bandlets

Lena (closeup)

Original Noisy

Wavelets Curvelets Bandlets

Figure 3.3: Visual comparison of the different estimators
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3.4.1 Model selection procedures
The model selection methodology of the previous sections seems restricted to the proposed two step pro-
jection strategy. This is not the case and we have considered a more general case. Roughly speaking, the
model selection methodology consists in choosing a collection of set, called model collection, construction
for each set an estimator by minimizing an empirical contrast γ and finally selecting a best model within
this collection. The pioneer work in model selection goes back in the 1970’s with Mallows [Ma73] and
Akaike [Ak73]. Birgé and Massart, with the help of Barron, develop the whole modern theory of model
selection in [BM00; BM01; BM07] or [BBM99] for instance. Estimation of a regression function with
model selection estimators is considered by Baraud in [Ba00; Ba02], while inverse problems are tackled
by Loubes and Ludeña [LL08; LL10]. Finally model selection techniques provide nowadays valuable
tools in statistical learning (see Boucheron, Bousquet, and Lugosi [BBL05]).

We continue here with the quadratic loss and hence use the following empirical contrast:

γ(s) = −2Ys + ‖s‖2.

For any model (set) Sm, we define ŝm as the minimizer of the contrast over this set:

ŝm = argmin
s∈Sm

γ(s).

Note that when Sm′ ⊂ Sm then one also has

ŝm′ = argmin
s∈Sm′

‖ŝm − s‖2.

Finally, when Sm is a linear space V , as in the previous section, one verifies immediately that

ŝm = PV Y.

Combining those two observations allows to slightly generalize the setting of the previous sections.
From now on, we assume we are given a dictionary of functions of L2, denoted by D = (Φp)p∈I where

I is a countable set. We consider then a collection of modelMN in which every model Sm is spanned
by some functions of the dictionary. For any Sm ∈Mn, we denote by Im the subset of I such that

modelm = Span{ϕp : p ∈ Im}

and Dm ≤ |Im| the dimension of Sm. As observed previously, as the model Sm are linear space, one has

ŝm = PSmY.

Let {bm1 , . . . , bmDm} an orthonormal basis (not necessarily related to Φ) of Sm then

ŝm =
∑
p∈Im

Ybmp b
m
p , and γ(ŝm) = −

∑
p∈Im

(Ybmp )2.

Now, the issue is the selection of the best model m̂ from the data which gives rise to the model selection
estimator ŝm̂. For this purpose, a penalized rule is considered, which aims at selecting an estimator,
close enough to the data, but still lying in a small space to avoid overfitting issues. Let penN (m) be a
penalty function, the model m̂ is selected using the following penalized criterion

m̂ = arg min
m∈MN

{γ(ŝm) + penn(m)} . (3.4)

The choice of the model collection and the associated penalty are then the key issues handled by model
selection theory. We point out that the choices of both the model collection and the penalty function
should depend on the noise level σ. This is emphasized by the subscript N for MN and penN (m)
which has been already used in the previous sections. For sake of simplicity, we will use the calibration
σ = 1/

√
N (the one that corresponds to the asymptotic equivalence between the white noise model and

the regression one). For sake of simplicity, we will consider only integer values of N , but this can be
easily overcome.
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The asymptotic behavior of model selection estimators has been studied by many authors. We refer
to Massart [Ma07] for general references and recall hereafter the main oracle type inequality. Such an
oracle inequality provides a non asymptotic control on the estimation error with respect to a bias term
‖s0−sm‖, where sm stands for the best approximation (in the L2 sense) of the function s0 by a function
of Sm. In other words sm is the orthogonal projection of s0 onto Sm, defined by

Sm =
∑
p∈Im

βmp b
m
p , βmi =

∫
bmi (t)s0(t)dt.

Theorem 1 was indeed a special case of

Theorem 4 (Theorem 4.2 of [Ma07]). Let N be fixed and let (xm)m∈MN be some family of positive
numbers such that ∑

m∈MN

exp(−xm) = ΣN <∞. (3.5)

Let κ > 1 and assume that

penN (m) ≥ κ

N

(√
Dm +

√
2xm

)2
. (3.6)

Then, almost surely, there exists some minimizer m̂ of the penalized least-squares criterion

γ(ŝm) + penN (m)

over m ∈ Mn. Moreover, the corresponding penalized least-squares estimator ŝm̂ is unique and the
following inequality holds:

E
[
‖ŝ0 − sm̂‖2

]
≤ C

[
inf

m∈Mn

{
‖s0 − sm‖2 + penN (m)

}
+ 1 + ΣN

n

]
, (3.7)

where C depends only on κ.

As shown in the previous sections, an equation of type (3.7) is a key result to establish optimality of
penalized estimators under oracle or minimax points of view. We focus now on an alternative to these
approaches: the maxiset point of view.

3.4.2 The maxiset point of view
Before describing the maxiset approach, let us briefly recall that for a given procedure s∗ = (s∗N )N ,
which may differ for different noise level, the minimax study of s∗ consists in comparing the rate of
convergence of s∗ achieved on a given functional space F with the best possible rate achieved by any
estimator. More precisely, let F(R) be the ball of radius R associated with F , the procedure s∗ = (s∗N )N
achieves the rate ρ∗ = (ρ∗N )N on F(R) if

sup
N

{
(ρ∗N )−2 sup

s∈F(R)
E
[
‖s∗N − s0‖2

]}
<∞.

To check that a procedure is optimal from the minimax point of view (said to be minimax), it must be
proved that its rate of convergence achieves the best rate among any procedure on each ball of the class.
This minimax approach is extensively used and many methods cited above are proved to be minimax in
different statistical frameworks.

However, the choice of the function class is subjective and, in the minimax framework, statisticians
have no idea whether there are other functions well estimated at the rate ρ∗ by their procedure. A
different point of view is to consider the procedure s∗ as given and search all the functions s that are
well estimated at a given rate ρ∗: this is themaxiset approach, which has been proposed by Kerkyacharian
and Picard [KP00]. The maximal space, or maxiset, of the procedure s∗ for this rate ρ∗ is defined as
the set of all these functions. Obviously, the larger the maxiset, the better the procedure. We set the
following definition.
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Definition 2. Let ρ∗ = (ρ∗N )N be a decreasing sequence of positive real numbers and let s∗ = (s∗N )N be
an estimation procedure. The maxiset of s∗ associated with the rate ρ∗ is

MS(s∗, ρ∗) =
{
s0 ∈ L2(D) : sup

N

{
(ρ∗N )−2E

[
‖s∗N − s0‖2

]}
<∞

}
,

the ball of radius R > 0 of the maxiset is defined by

MS(s∗, ρ∗)(R) =
{
s0 ∈ L2(D) : sup

N

{
(ρ∗N )−2E

[
‖s∗N − s0‖2

]}
≤ R2

}
.

Of course, there exist connections between maxiset and minimax points of view: s∗ achieves the rate
ρ∗ on F if and only if

F ⊂MS(s∗, ρ∗).

In the white noise setting, the maxiset theory has been investigated for a wide range of estimation
procedures, including kernel, thresholding and Lepski procedures, Bayesian or linear rules. We refer
to Autin [Au08]; Autin, Picard, and Rivoirard [APR06]; Bertin and Rivoirard [BR09]; Cohen, De Vore,
Kerkyacharian, and Picard [Co+01]; Kerkyacharian and Picard [KP00]; Rivoirard [Ri04; Ri05] for general
results. Maxisets have also been investigated for other statistical models, see Autin [Au06]; Rivoirard
and Tribouley [RT07].

Our goal was to investigate maxisets of model selection procedures. Following the classical model
selection literature, we only use penalties proportional to the dimension Dm of m:

penN (m) = λN
N
Dm, (3.8)

with λN to be specified. Our main result characterizes these maxisets in terms of approximation spaces.
More precisely, we establish an equivalence between the statistical performance of ŝm̂ and the approxi-
mation properties of the model collectionsMN . With

ρN,α =
(
λN
N

) α
1+2α

(3.9)

for any α > 0, Theorem 5, combined with Theorem 4 proves that, for a given function s, the quadratic
risk E[‖s0 − ŝm̂‖2] decays at the rate ρ2

N,α if and only if the deterministic quantity

Q(s,N) = inf
m∈MN

{
‖s0 − sm‖2 + λN

N
Dm

}
(3.10)

decays at the rate ρ2
N,α as well. This result holds with mild assumptions on λN and under an embedding

assumption on the model collections (MN ⊂MN+1). Once we impose additional structure on the model
collections, the deterministic condition can be rephrased as a linear approximation property and a non
linear one as stated in Theorem 6.
We illustrate these results for three different model collections based on wavelet bases. The first one deals
with sieves in which all the models are embedded, the second one with the collection of all subspaces
spanned by vectors of a given basis. For these examples, we handle the issue of calculability and give
explicit characterizations of the maxisets. In the third example, we provide an intermediate choice of
model collections and use the fact that the embedding condition on the model collections can be relaxed.
Finally performances of these estimators are compared and discussed.

As explained, our goal is to investigate maxisets associated with model selection estimators ŝm̂ where
the penalty function is defined in (3.8) and with the rate ρα = (ρN,α)N where ρn,α is specified in
(3.9). Observe that ρN,α depends on the choice of λN that defines the penalty. It can be for instance
polynomial, or can take the classical form

ρN,α =
( logN

N

) α
1+2α

.
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So we wish to determine

MS(ŝm̂, ρα) =
{
s ∈ L2(D) : sup

n

{
ρ−2
n,αE

[
‖ŝm̂ − s‖2

]}
<∞

}
.

In the sequel, we use the following notation: if F is a given space

MS(ŝm̂, ρα) :=: F

means that for any R > 0, there exists R′ > 0 such that

MS(ŝm̂, ρα)(R) ⊂ F(R′) (3.11)

and for any R′ > 0, there exists R > 0 such that

F(R′) ⊂MS(ŝm̂, ρα)(R). (3.12)

3.4.3 Abstract maxiset results
The case of general dictionaries

In this section, we make no assumption on Φ. Theorem 4 is a non asymptotic result while maxisets
results deal with rates of convergence (with asymptotics in n). Therefore obtaining maxiset results for
model selection estimators requires a structure on the sequence of model collections. We first focus on
the case of nested model collections (MN ⊂ MN+1). Note that this does not imply a strong structure
on the model collection for a given N . In particular, this does not imply that the models are nested.
Identifying the maxiset MS(ŝm̂, ρα) is a two-step procedure. We need to establish inclusion (3.11) and
inclusion (3.12). Recall that we have introduced previously

Q(s,N) = inf
m∈MN

{
‖s0 − sm‖2 + λn

n
Dm

}
.

Roughly speaking, Theorem 4 established by Massart proves that any function s satisfying

sup
N

{
ρ−2
N,αQ(s, n)

}
≤ (R′)2

belongs to the maxisetMS(ŝm̂, ρα) and thus provides inclusion (3.12). The following theorem establishes
inclusion (3.11) and highlights that Q(s,N) plays a capital role.
Theorem 5. Let 0 < α0 < ∞ be fixed. Let us assume that the sequence of model collections satisfies
for any N

MN ⊂MN+1, (3.13)

and that the sequence of positive numbers (λN )N is non-decreasing and satisfies

lim
N→+∞

N−1λn = 0, (3.14)

and there exist N0 ∈ N∗ and two constants 0 < δ ≤ 1
2 and 0 < p < 1 such that for N ≥ N0,

λ2n ≤ 2(1− δ)λN , (3.15)

∑
m∈MN

e−
(
√
λn−1)2Dm

2 ≤
√

1− p (3.16)

and

λN0 ≥ Υ(δ, p, α0), (3.17)

where Υ(δ, p, α0) is a positive constant only depending on α0, p and δ. Then, the penalized rule ŝm̂ is
such that for any α ∈ (0, α0], for any R > 0, there exists R′ > 0 such that for s0 ∈ L2(D),

sup
N

{
ρ−2
N,αE

[
‖s0 − ŝm̂‖2

]}
≤ R2 ⇒ sup

N

{
ρ−2
N,αQ(s, n)

}
≤ (R′)2.
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Technical Assumptions (3.14), (3.15), (3.16) and (3.17) are very mild and could be partly relaxed
while preserving the results. Assumption (3.14) is necessary to deal with rates converging to 0. Note
that the classical cases λN = λ0 or λN = λ0 log(N) satisfy (3.14) and (3.15). Furthermore, Assumption
(3.17) is always satisfied when λN = λ0 log(N) or when λN = λ0 with λ0 large enough. Assumption
(3.16) is very close to Assumptions (3.5)-(3.6). In particular, if there exist two constants κ > 1 and
0 < p < 1 such that for any n, ∑

m∈MN

e−
(
√
κ−1λN−1)2Dm

2 ≤
√

1− p (3.18)

then, since

penN (m) = λN
N
Dm,

Conditions (3.5), (3.6) and (3.16) are all satisfied. The assumption α ∈ (0, α0] can be relaxed for
particular model collections, which will be highlighted in Proposition 2 of Section 3.4.4. Finally, As-
sumption (3.13) can be removed for some special choice of model collectionMN at the price of a slight
overpenalization as it shall be shown in Proposition 1 and Section 3.4.4.

Combining Theorems 4 and 5 gives a first characterization of the maxiset of the model selection
procedure ŝm̂:

Corollary 1. Let α0 <∞ be fixed. Assume that Assumptions (3.13), (3.14), (3.15) (3.17) and (3.18)
are satisfied. Then for any α ∈ (0, α0],

MS(ŝm̂, ρα) :=:
{
s ∈ L2(D) : sup

n

{
ρ−2
n,αQ(s, n)

}
<∞

}
.

The maxiset of ŝm̂ is characterized by a deterministic approximation property of s with respect to the
modelsMn. It can be related to some classical approximation properties of s in terms of approximation
rates if the functions of Φ are orthonormal.

The case of orthonormal bases

From now on, D = {Φi}i∈I is assumed to be an orthonormal basis (for the L2 scalar product). We also
assume that the model collectionsMn are constructed through restrictions of a single model collection
M. Namely, given a collection of models M we introduce an increasing sequence Jn of collection of
indice subsets, and define the intermediate collectionM′n as

M′N = {S′m = Span{Φi : i ∈ Im ∩ JN} : Sm ∈M} (3.19)

where the sets Im do not depend onN The model collectionsM′n do not necessarily satisfy the embedding
condition (3.13). Thus, we define

MN =
⋃
k≤N

M′k

so Mn ⊂ Mn+1. The assumptions on D and on the model collections allow to give an explicit char-
acterization of the maxisets. We denote M̃ = ∪NMn = ∪NM′n. Remark that without any further
assumption M̃ can be a larger model collection than M. Now, let us denote by V = (VN )N the
sequence of approximation spaces defined by

VN = Span{φi : i ∈ JN}

and consider the corresponding approximation space

LαV =
{
s ∈ L2(D) : sup

n

{
ρ−1
N,α‖PVN s− s‖

}
<∞

}
,
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where PVN s is the projection of s onto VN . Define also another kind of approximation sets:

Aα
M̃

=

{
s ∈ L2(D) : sup

M>0

{
Mα inf

{m∈M̃:Dm≤M}
‖sm − s‖

}
<∞

}
.

The corresponding balls of radius R > 0 are defined, as usual, by replacing ∞ by R in the previous
definitions. We have the following result.

Theorem 6. Let α0 < ∞ be fixed. Assume that (3.14), (3.15), (3.17) and (3.18) are satisfied. Then,
the penalized rule ŝm̂ satisfies the following result: for any α ∈ (0, α0],

MS(ŝm̂, ρα) :=: Aα
M̃
∩ LαV .

The result pointed out in Theorem 6 links the performance of the estimator to an approximation
property for the estimated function. This approximation property is decomposed into a linear approxi-
mation measured by LαV and a non linear approximation measured by Aα

M̃
. The linear condition is due

to the use of the reduced model collectionMn instead ofM, which is often necessary to ensure either
the calculability of the estimator or Condition (3.18). It plays the role of a minimum regularity property
that is easily satisfied.

Observe that if we have one model collection, that is for any k and k′,Mk =Mk′ =M, Jn = I for
any n and thus M̃ =M. Then

LαV = span {ϕi : i ∈ I}
and Theorem 6 gives

MS(ŝm̂, ρα) :=: AαM .
The spaces Aα

M̃
and LαV highly depend on the models and the approximation space. At first glance,

the best choice seems to be Vn = L2(D) and

M = {m : Im ⊂ I}

since the infimum in the definition of Aα
M̃

becomes smaller when the collection is enriched. There is
however a price to pay when enlarging the model collection: the penalty has to be larger to satisfy
(3.18), which deteriorates the convergence rate. A second issue comes from the tractability of the
minimization (3.4) itself which will further limit the size of the model collection.

To avoid considering the union ofM′k, that can dramatically increase the number of models considered
for a fixed n, leading to large penalties, we can relax the assumption that the penalty is proportional to
the dimension. Namely, for any n, for any m ∈M′n, there exists m̃ ∈M such that

Sm = Span {Φi : i ∈ Im̃ ∩ Jn} .

Then for any model m ∈M′n, we replace the dimension Dm by the larger dimension Dm̃ and we set

p̃enn(m) = λn
n
Dm̃.

The minimization of the corresponding penalized criterion over all model inM′n leads to a result similar to
Theorem 6. Mimicking its proof, we can state the following proposition that will be used in Section 3.4.4:

Proposition 1. Let α0 <∞ be fixed. Assume (3.14), (3.15) (3.17) and (3.18) are satisfied. Then, the
penalized estimator ŝm̃ where

m̃ = arg min
m∈M′n

{
γ(ŝm) + p̃enn(m)

}
satisfies the following result: for any α ∈ (0, α0],

MS(s̃m̃, ρα) :=: AαM ∩ L
α
V .

Remark that Mn, LαV and Aα
M̃

can be defined in a similar fashion for any arbitrary dictionary D.
However, one can only obtain the inclusion MS(ŝm̂, ρα) ⊂ Aα

M̃
∩ LαV in the general case.
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3.4.4 Comparisons of model selection estimators
The aim of this section is twofold. Firstly, we propose to illustrate our previous maxiset results to different
model selection estimators built with wavelet methods by identifying precisely the spaces Aα

M̃
and LαV .

Secondly, comparisons between the performances of these estimators are provided and discussed.
For sake of simplicity, we work with periodic functions on the interval [0, 1] and will use the associated

periodic wavelet base construction (see Daubechies [Da92] for instance). We recall the characterization
of Besov spaces using wavelets. Such spaces will play an important role in the following. In this section
we assume that the multiresolution analysis associated with the basis Ψ is r-regular with r ≥ 1 as defined
by Meyer [Me90]. In this case, for any 0 < α < r and any 1 ≤ p, q ≤ ∞, the periodic function s belongs
to the Besov space Bαp,q if and only if |α00| <∞ and

∞∑
j=0

2jq(α+ 1
2−

1
p

)‖βj.‖q`p <∞ if q <∞,

sup
j∈N

2j(α+ 1
2−

1
p

)‖βj.‖`p <∞ if q =∞

where (βj.) = (βjk)k. This characterization allows to recall the following embeddings:

Bαp,q ( Bα
′

p′,q′ as soon as α− 1
p
≥ α′ − 1

p′
, p < p′ and q ≤ q′

and
Bαp,∞ ( Bα2,∞ as soon as p > 2.

Collection of Sieves

We consider first a single model collection corresponding to a class of nested models

M(s) = {m = span{φ00, ψjk : j < Nm, 0 ≤ k < 2j} : Nm ∈ N}.

For such a model collection, Theorem 6 could be applied with VN = L2. One can even remove Assump-
tion (3.17) which imposes a minimum value on λn0 that depends on the rate ρα:

Proposition 2. Let 0 < α < r and let ŝ(s)
m̂ be the model selection estimator associated with the model

collectionM(s). Then, under Assumptions (3.14), (3.15) and (3.18),

MS(ŝ(s)
m̂ , ρα) :=: Bα2,∞.

Remark that it suffices to choose λN ≥ λ0 with λ0, independent of α, large enough to ensure
Condition (3.18).

It is important to notice that the estimator ŝ(s)
m̂ cannot be computed in practice because to determine

the best model m̂ one needs to consider an infinite number of models, which cannot be done without
computing an infinite number of wavelet coefficients. To overcome this issue, we specify a maximum
resolution level j0(N) for estimation where n 7→ j0(N) is non-decreasing. This modification is also in
the scope of Theorem 6: it corresponds to

VN = span{φ00, ψjk : 0 ≤ j < j0(N), 0 ≤ k < 2j}

and the model collectionM(s)
N defined as follows:

M(s)
N = M′ (s)N = {Sm ∈M(s) : Nm < j0(n)}.

For the specific choice

2j0(n) ≤ Nλ−1
N < 2j0(n)+1, (3.20)

we obtain:

LαV = B
α

1+2α
2,∞ .

Since B
α

1+2α
2,∞ ∩ Bα2,∞ reduces to Bα2,∞, arguments of the proofs of Theorem 6 and Proposition 2 give:
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Proposition 3. Let 0 < α < r and let ŝ(st)
m̂ be the model selection estimator associated with the model

collectionM(s)
n . Then, under Assumptions (3.14), (3.15) and (3.18)

MS(ŝ(st)
m̂ , ρα) :=: Bα2,∞.

This tractable procedure is thus as efficient as the original one. We obtain the maxiset behavior of
the non adaptive linear wavelet procedure pointed out by Rivoirard [Ri04] but here the procedure is
completely data-driven.

The largest model collections

In this paragraph we enlarge the model collections in order to obtain much larger maxisets. We start
with the following model collection

M(l) = {Sm = Span{φ00, ψjk : (j, k) ∈ Im} : Im ∈ P(I)}

where
I =

⋃
j≥0

{(j, k) : k ∈ {0, 1, . . . , 2j − 1}}

and P(I) is the set of all subsets of I. This model collection is so rich that whatever the sequence (λN )n,
Condition (3.18) (or even Condition (3.5)) is not satisfied. To reduce the cardinality of the collection,
we restrict the maximum resolution level to the resolution level j0(N) defined in (3.20) and consider the
collectionsM(l)

N defined fromM(l) by

M(l)
N = M′ (l)N =

{
m ∈M(l) : Im ∈ P(Ij0 )

}
where

Ij0 =
⋃

0≤j<j0(N)

{(j, k) : k ∈ {0, 1, . . . , 2j − 1}}.

The classical logarithmic penalty

penN (m) = λ0 log(N)Dm
N

,

which corresponds to λN = λ0 log(N), is sufficient to ensure Condition (3.18) as soon as λ0 is a constant
large enough (the choice λN = λ0 is not sufficient). The identification of the corresponding maxiset
focuses on the characterization of the space AαM(l) since, as previously, LαV = B

α
1+2α
2,∞ . We rely on

sparsity properties of AαM(l) . In our context, sparsity means that there is a small proportion of large
coefficients of a signal. Introduce for, for N ∈ N∗, the notation

|β|(N) = inf
{
u : card

{
(j, k) ∈ N× {0, 1, . . . , 2j − 1} : |βjk| > u

}
< N

}
to represent the non-increasing rearrangement of the wavelet coefficient of a periodic signal s:

|β|(1) ≥ |β|(2) ≥ · · · ≥ |β|(N) ≥ · · · .

As the best model Sm ∈ M(l) of prescribed dimension M is obtained by choosing the subset of index
corresponding to the M largest wavelet coefficients, a simple identification of the space AαM(l) is

AαM(l) =

s = α00φ00 +
∞∑
j=0

2j−1∑
k=0

βjkψjk ∈ L2 : sup
M∈N∗

M2α
∞∑

i=M+1

|β|2(i) <∞

 .

Theorem 2.1 of Kerkyacharian and Picard [KP00] provides a characterization of this space as a weak
Besov space:

AαM(l) =W 2
1+2α
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with for any q ∈]0, 2[,

Wq =

s = α00φ00 +
∞∑
j=0

2j−1∑
k=0

βjkψjk ∈ L2 : sup
n∈N∗

n1/q|β|(n) <∞

 .

Following their definitions, the larger α, the smaller q = 2/(1+2α) and the sparser the sequence (βjk)j,k.
We obtain thus the following proposition.

Proposition 4. Let α0 < r be fixed, let 0 < α ≤ α0 and let ŝ(l)
m̂ be the model selection estimator

associated with the model collectionM(s)
N . Then, under Assumptions (3.14), (3.15), (3.17) and (3.18):

MS
(
ŝ

(l)
m̂ , ρα

)
:=: B

α
1+2α
2,∞ ∩W 2

1+2α
.

Observe that the estimator ŝ(l)
m̂ is easily tractable from a computational point of view as one easily

verify that the best subset Im̂ is the set {(j, k) ∈ Ij0 : |β̂jk| >
√
λn/n} and ŝ(l)

m̂ corresponds to the
well-known hard thresholding estimator,

ŝ
(l)
m̂ = α̂00φ00 +

j0(n)−1∑
j=0

2j−1∑
k=0

β̂jk1
|β̂jk|>

√
λN
N

ψjk.

Proposition 4 corresponds thus to the maxiset result established by Kerkyacharian and Picard [KP00].

A special strategy for Besov spaces

We consider now the model collection proposed by Massart [Ma07]. This collection can be viewed as an
hybrid collection between the two previous collections. This strategy turns out to be minimax for all
Besov spaces Bαp,∞ when α > max(1/p− 1/2, 0) and 1 ≤ p ≤ ∞.

More precisely, for a chosen θ > 2, define the model collection by

M(h) = {m = span{φ00, ψjk : (j, k) ∈ Im} : J ∈ N, Im ∈ PJ(I)},

where for any J ∈ N, PJ(I) is the set of all subsets Im of I that can be written

Im =
{

(j, k) : 0 ≤ j < J, 0 ≤ k < 2j
}⋃

∪j≥J
{

(j, k) : k ∈ Aj , |Aj | = b2J(j − J + 1)−θc
}

with bxc := max{n ∈ N : n ≤ x}.
As remarked by Massart [Ma07], for any J ∈ N and any Im ∈ PJ(I), the dimension Dm of the

corresponding model m depends only on J and is such that

2J ≤ Dm ≤ 2J
(

1 +
∑
n≥1

n−θ

)
.

We denote by DJ this common dimension. Note that the model collectionM(h) does not vary with n.
Using Theorem 6 with Vn = L2, we have the following proposition.

Proposition 5. Let α0 < r be fixed, let 0 < α ≤ α0 and let ŝ(h)
m̂ be the model selection estimator

associated with the model collectionM(h). Then, under Assumptions (3.14), (3.15), (3.17) and (3.18):

MS
(
ŝ

(h)
m̂ , ρα

)
:=: Aα

M(h) ,
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with

Aα
M(h) =

s = α00φ00 +
∑
j≥0

2j−1∑
k=0

βjkψjk ∈ L2 :

sup
J≥0

22Jα
∑
j≥J

∑
k≥b2J (j−J+1)−θc

|βj |2(k) <∞

 ,

where (|βj |(k))k is the reordered sequence of coefficients (βjk)k:

|βj |(1) ≥ |βj |(2) · · · |βj |(k) ≥ · · · ≥ |βj |(2j).

Remark that, as in Section 3.4.4, as soon as λn ≥ λ0 with λ0 large enough, Assumption (3.18) holds.
This large set cannot be characterized in terms of classical spaces. Nevertheless it is undoubtedly a

large functional space, since for every α > 0 and every p ≥ 1 satisfying p > 2/(2α+ 1) we get

Bαp,∞ ( AαM(h) . (3.21)

This new procedure is not computable since one needs an infinite number of wavelet coefficients to
perform it. The problem of calculability can be solved by introducing, as previously, a maximum scale
j0(n) as defined in (3.20). We consider the class of collection models (M(h)

n )n defined as follows:

M(h)
n = {m = span{φ00, ψjk : (j, k) ∈ Im, j < j0(n)} :

J ∈ N, Im ∈ PJ(I)}.

This model collection does not satisfy the embedding condition M(h)
n ⊂ M(h)

n+1. Nevertheless, we can
use Proposition 1 with

p̃enn(m) = λn
n
DJ

if m is obtained from an index subset Im in PJ(I). This slight over-penalization leads to the following
result.

Proposition 6. Let α0 < r be fixed, let 0 < α ≤ α0 and let ŝ(ht)
m̃ be the model selection estimator

associated with the model collectionM(h)
n . Then, under Assumptions (3.14), (3.15), (3.17) and (3.18):

MS
(
ŝ

(ht)
m̃ , ρα

)
:=: B

α
1+2α
2,∞ ∩ Aα

M(h) .

Modifying Massart’s strategy in order to obtain a practical estimator changes the maxiset perfor-
mance. The previous set Aα

M(h) is intersected with the strong Besov space Bα/(1+2α)
2,∞ . Nevertheless, the

maxiset MS
(
ŝ

(ht)
m̃ , ρα

)
is still a large functional space. Indeed, for every α > 0 and every p satisfying

p ≥ max(1, 2
(

1
1+2α + 2α

)−1)

Bαp,∞ ⊆ B
α

1+2α
2,∞ ∩ AαM(h) . (3.22)

Comparisons of model selection estimators

In this paragraph, we compare the maxiset performances of the different model selection procedures
described previously. For a chosen rate of convergence let us recall that the larger the maxiset, the better
the estimator. To begin, we propose to focus on the model selection estimators which are tractable from
the computational point of view. Gathering Propositions 3, 4 and 6 we obtain the following comparison.

Proposition 7. Let 0 < α < r.
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- If for every n, λn = λ0 log(n) with λ0 large enough, then

MS(ŝ(st)
m̂ , ρα) (MS(ŝ(ht)

m̃ , ρα) (MS(ŝ(l)
m̂ , ρα). (3.23)

- If for every n, λn = λ0 with λ0 large enough, then

MS(ŝ(st)
m̂ , ρα) (MS(ŝ(ht)

m̃ , ρα). (3.24)

It means the followings.

- If for every n, λn = λ0 log(n) with λ0 large enough, then, according to the maxiset point of view,
the estimator ŝ(l)

m̂ strictly outperforms the estimator ŝ(ht)
m̃ which strictly outperforms the estimator

ŝ
(st)
m̂ .

- If for every n, λn = λ0 or λn = λ0 log(n) with λ0 large enough, then, according to the maxiset
point of view, the estimator ŝ(ht)

m̃ strictly outperforms the estimator ŝ(st)
m̂ .

The hard thresholding estimator ŝ(l)
m̂ appears as the best estimator when λn grows logarithmically while

estimator ŝ(ht)
m̃ is the best estimator when λn is constant. In both cases, those estimators perform very

well since their maxiset contains all the Besov spaces B
α

1+2α
p,∞ with p ≥ max

(
1,
(

1
1+2α + 2α

)−1
)
.

We forget now the calculability issues and consider the maxiset of the original procedure proposed
by Massart. Propositions 4, 5 and 6 lead then to the following result.

Proposition 8. Let 0 < α < r.

- If for any n, λn = λ0 log(n) with λ0 large enough then

MS(ŝ(h)
m̂ , ρα) 6⊂MS(ŝ(l)

m̂ , ρα) and MS(ŝ(l)
m̂ , ρα) 6⊂MS(ŝ(h)

m̂ , ρα). (3.25)

- If for any n, λn = λ0 or λn = λ0 log(n) with λ0 large enough then

MS(ŝ(ht)
m̃ , ρα) (MS(ŝ(h)

m̂ , ρα). (3.26)

Hence, within the maxiset framework, the estimator ŝ(h)
m̂ strictly outperforms the estimator ŝ(ht)

m̃

while the estimators ŝ(h)
m̂ and ŝ

(l)
m̂ are not comparable. Note that we did not consider the maxisets of

the estimator ŝ(s)
m̂ in this section as they are identical to the ones of the tractable estimator ŝ(st)

m̂ .
We summarize all those embeddings in Figure 3.4 and Figure 3.5: Figure 3.4 represents these maxiset
embeddings for the choice λn = λ0 log(n), while Figure 3.5 represents these maxiset embeddings for the
choice λn = λ0.

3.5 Inverse problem, needlet and thresholding

With D. Picard and G. Kerkyacharian [Art-Ke+10 ; Art-KLPP12 ], I have worked on a natural extension
of the previous white noise model to inverse problem. Let A be a compact linear operator from one
Hilbert space H to another H, we assume now we observe

dYx = As0(x)dx+ σdWx

and want to estimate s0 from Y .
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Bα
p,∞

B
α

1+2α
2,∞

W 2
1+2α

MS(ŝ(h)
m̂ , ρα) MS(ŝ(st)

m̂ , ρα)

MS(ŝ(l)
m̂ , ρα)

MS(ŝ(ht)
m̃ , ρα)

Figure 3.4: Maxiset embeddings when λn = λ0 log(n) and max(1, 2
(

1
1+2α + 2α

)−1) ≤ p ≤ 2.

3.5.1 Inverse problem, SVD and needlets
SVD and smoothed inversion

The key property of such a compact linear operator is the existence of the Singular Value Decomposition
(SVD), i.e. the existence of two orthonormal bases {bn}n∈N and {bn}n∈N of respectively H and ImA and
of a sequence {µ2

n}n∈N of decreasing positive number vanishing to 0 such that

Abn = µn bn and A∗bn = µn bn

where A∗ denotes the adjoint of A. Indeed, thanks to this representation, the white noise model becomes
a much simpler sequential model: it is equivalent to the observation of

Ybn = 〈As0, bn〉+ σWbn

= µn〈s0, bn〉+ σWbn

where (Wbn) is nothing but an i.i.d. sequence of standard Gaussian variables. As

s0 =
∑
n∈N

〈s0, bn〉 bn,

this paves the way for SVD based estimator of type

ŝ =
∑
n∈N

θn

(
Ybn

µn

)
bn

where the θn are functions that may depends on the whole observation. As described by Cavalier
[Ca11], the most classical choice for θn is a simple multiplication by a factor γn (θn(y) = γny). Classical
choices for γn range from a simple cut-off (γn = 1{n≤N} with N to be defined) to implicit definition using
iterative scheme through subtle Pinsker weighting scheme. Several procedures (including model selection
procedures) have been proposed to select automatically the parameters of those methods yielding efficient
adaptive estimation procedure. This SVD method is very attractive theoretically and can be shown to
be asymptotically optimal in many situations (see Dicken and Maass [DM96], Mathé and Pereverzev
[MP03] together with their nonlinear counterparts Cavalier and Tsybakov [CT02], Cavalier, Golubev,
Picard, and Tsybakov [Ca+02], Tsybakov [Ts00], Goldenshluger and Pereverzev [GP03], Efromovich
and Koltchinskii [EK01]). It also has the big advantage of performing a quick and stable inversion of
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Bα
p,∞

B
α

1+2α
2,∞

W 2
1+2α

MS(ŝ(h)
m̂ , ρα) MS(ŝ(st)

m̂ , ρα) MS(ŝ(ht)
m̃ , ρα)

Figure 3.5: Maxiset embeddings when λn = λ0 and max(1, 2
(

1
1+2α + 2α

)−1) ≤ p ≤ 2.

the operator A. As explained by Loubes and Rivoirard [LR09], when considering the quadratic loss,
regularity spaces associated to these methods, whether in the minimax approach or the maxiset one, are
of Sobolev scales type, i.e. of type {

s|
∑
n∈N

βn

∣∣∣∣∣〈s, bn〉|2 < +∞

}
where bn is the basis associated to the SVD decomposition and βn are some increasing weights specifying
the space. Unfortunately, those spaces are not necessarily adapted to the function s0 of interest. For
instance, if one consider a (periodic) image deconvolution problem, the SVD basis is the usual Fourier
basis and those spaces are classical Sobolev spaces, which are known to be not well suited for natural
images. Along the same line, the Sobolev space are intimately related to the quadratic loss and are not
adapted to other losses.

Generic needlet construction

As discovered by Petrushev and Xu [PX05] and generalized by Coulhon, Kerkyacharian, and Petrushev
[CKP12], a much better well localized representation, the needlet representation, can often be constructed
from the SVD basis. We refer to Coulhon, Kerkyacharian, and Petrushev [CKP12] for the general con-
struction or to Kerkyacharian, Kyriazis, Le Pennec, Petrushev, and Picard [Art-Ke+10 ]; Kerkyacharian,
Petrushev, Picard, and Willer [Ke+07]; Narcowich, Petrushev, and Ward [NPW06b]; Petrushev and Xu
[PX05; PX08] for some specific ones. For sake of completeness, we present here a rough sketch of the
construction. With a slight change of notation, we let now (bn,k)(n,k) be a SVD basis such that (bn,k) is
a basis of the eigenspace of A∗A associated to µ2

n. For any positive function a bounded by 1, equal to 1
on [−1/2, 1/2] and equal to 0 outside of [−1, 1], one can define a smoothed projector:

Pa,Ns =
∑
n∈N

a
(
n

N

)∑
k

〈s, bn,k〉bn,k.

As soon as a is regular, one can often obtained that the associated kernel

Aa,N (x, x′) =
∑
n∈N

a
(
n

N

)∑
k

bn,k(x)bn,k(x′),

which is always well localized spectrally, is well localized spatially. Capitalizing on this result, one
obtains that those smoothed projectors are continuous for all Lp norm. This exact construction has
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been proposed Petrushev and Xu [PX05] when the SVD basis is a Jacobi polynomial basis but can be
traced back to the work of Gottlieb [GS97] in the Fourier case. In inversion method, this amounts to
choose the multipliers γn,k as a(n/N). A better insight on this method is obtained with the needlets
constructed by Petrushev and Xu [PX05]. Let

Ba,N (x, x′) =
∑
n∈N

√
a
(
n

N

)∑
k

bn,k(x)bn,k(x′)

a straightforward computation shows that

〈Ba,N (x, x′′), Ba,N (x′′, x′)〉 = Aa,N (x, x′).

Assume now that there is a cubature scheme (ξ, ωξ)ξ∈ΞN associated to the SVD basis (bn,k) with n ≤ N
then the previous equality can be rewritten as a sum∑

ξ∈ΞN

ωξBa,N (x, ξ)Ba,N (ξ, x′) = Aa,N (x, x′).

If the ωξ are positive, one can define the father needlets

φN,ξ(x) = √ωξBa,N (x, ξ) = √ωξ
∑
n∈N

√
a
(
n

N

)∑
k

bn,k(x)bn,k(ξ)

which are such that

Pa,Ns =
∑
ξ∈ΞN

〈s, φN,ξ〉φN,ξ.

A multiscale representation can be deduced from this one by letting d(x) = a(x/2)− a(x) and defining
the needlets

ψN,ξ(x) = √ωξ
∑
n∈N

√
d
(
n

N

)∑
k

bn,k(x)bn,k(ξ).

One easily verifies then that

{φ1,ξ}ξ∈Ξ1
∪
⋃
j≥0

{
ψ2j ,ξ

}
ξ∈Ξ2j

is a tight frame. Under some regularity assumptions on the cubature, those well localized spectrally
functions are well localized spatially around cubature points ξ with a support of size of order 2−j . This
frame is such that one has a reconstruction formula

s =
∑
ξ∈Ξ1

〈s, φ1,ξ〉φ1,ξ +
∑
j≥0

∑
ξ∈Ξ2j

〈s, ψ2j ,ξ〉ψ2j ,ξ.

Furthermore, thanks to the good localization properties, Lp spaces and more generally Besov spaces can
be characterized in term of needlet coefficients. Finally as

〈s, ψ2j ,ξ〉 = √ωξ
∑
n

√
d
(
n

2j
)∑

k

〈s, bn,k〉

= √ωξ
∑
n

√
d
(
n
2j
)

µn

∑
k

〈As, bn,k〉,
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〈s0, ψ2j ,ξ〉 is naturally estimated (without bias) by

√
ωξ
∑
n

√
d
(
n
2j
)

µn

∑
k

Ybn,k

leading to efficient estimators. Finally, one should stress that the classical wavelets share these good lo-
calization properties and, as stressed already by Donoho, Johnstone, Kerkyacharian, and Picard [Do+96],
one can prove that the thresholding procedure of the previous sections is also efficient for all Lp losses.

We examplify this construction with two instances of the Radon transform: the fan beam Radon
transform on the sphere [Art-Ke+10 ; Art-KLPP12 ] and the Radon transform of axially symmetric
objects [Unpub-BLPT12 ]. In both examples, in 2D, we will try to estimate a function from its integral
along lines.

3.5.2 A needlet based inversion for Radon transform
With G. Kerkyacharian and D. Picard, we have focused our analysis on this particular inverse problems.

SVD of Radon transform

We recall the definition and some basic facts about the Radon transform (cf. Helgason [He99], Natterer
[Na01], Logan and Shepp [LS75]). Denote by Bd the unit ball in Rd and by Sd−1 the unit sphere in Rd.
The Lebesgue measure on Bd will be denoted by dx and the usual surface measure on Sd−1 by dσ(x)

The Radon transform of a function s is defined by

Rs(θ, t) =
∫

y∈θ⊥

tθ+y∈Bd

s(tθ + y)dy, θ ∈ Sd−1, t ∈ [−1, 1],

where dy is the Lebesgue measure of dimension d − 1 and θ⊥ = {x ∈ Rd : 〈x, θ〉 = 0}. It is easy to see
(cf. e.g. Natterer [Na01]) that the Radon transform is a bounded linear operator mapping L2(Bd, dx)
into L2 (Sd−1 × [−1, 1], dµ(θ, t)

)
, where

dµ(θ, t) = dσ(θ) dt

(1− t2)(d−1)/2 .

The SVD of the Radon transform was first established by Cormack [Co64]; Davison [Da81]; Louis [Lo84].
In this regard we also refer the reader to Natterer [Na01]; Xu [Xu07].

The Radon SVD bases are defined in terms of Jacobi and Gegenbauer polynomials. The Jacobi
polynomials P (α,β)

n , n ≥ 0, constitute an orthogonal basis for the space L2([−1, 1], wα,β(t)dt) with
weight wα,β(t) = (1 − t)α(1 + t)β , α, β > −1. They are standardly normalized by P (α,β)

n (1) =
(
n+α
n

)
and then, following Andrew, Askey, and Roy [AAR06]; Erdélyi, Magnus, Oberhettinger, and Tricomi
[Er+81]; Szegö [Sz75], ∫ 1

−1
P (α,β)
n (t)P (α,β)

m (t)wα,β(t)dt = δn,mh
(α,β)
n ,

where

h(α,β)
n = 2α+β+1

(2n+ α+ β + 1)
Γ(n+ α+ 1)Γ(n+ β + 1)
Γ(n+ 1)Γ(n+ α+ β + 1) . (3.27)

The Gegenbauer polynomials Cλn are a particular case of Jacobi polynomials, traditionally defined by

Cλn(t) = (2λ)n
(λ+ 1/2)n

P (λ−1/2, λ−1/2)
n (t), λ > −1/2,

where (a)n = a(a+ 1) . . . (a+ n− 1) = Γ(a+n)
Γ(a)
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Let Πn(Rd) be the space of all polynomials in d variables of degree ≤ n. We denote by Pn(Rd) the
space of all homogeneous polynomials of degree n and by Vn(Rd) the space of all polynomials of degree
n which are orthogonal to lower degree polynomials with respect to the Lebesgue measure on Bd. V0 is
the set of constants. We have the following orthogonal decomposition:

Πn(Rd) =
n⊕
k=0

Vk(Rd).

Also, denote by Hn(Rd) the subspace of all harmonic homogeneous polynomials of degree n and by
Hn(Sd−1) the restriction of the polynomials from Hn(Rd) to Sd−1. Let Πn(Sd−1) be the space of restric-
tions to Sd−1 of polynomials of degree ≤ n on Rd. As is well known

Πn(Sd−1) =
n⊕

m=0

Hm(Sd−1)

(the orthogonality is with respect of the surface measure dσ on Sd−1).
Let Yl,i, 1 ≤ i ≤ Nd−1(l), be an orthonormal basis of Hl(Sd−1), i.e.∫

Sd−1
Yl,i(ξ)Yl,i′(ξ)dσ(ξ) = δi,i′ .

Then the natural extensions of Yl,i on Bd are defined by Yl,i(x) = |x|lYl,i
(
x
|x|

)
and satisfy∫

Bd

Yl,i(x)Yl,i′(x)dx = δi,i′
1

2l + d
.

Assume that {Yl,i : 1 ≤ i ≤ Nd−1(l)} is an orthonormal basis for Hl(Sd−1). The SVD basis of the Radon
operator is given by

bk,l,i(x) = (2k + d)1/2P
(0, l+d/2−1)
j (2|x|2 − 1)Yl,i(x), 0 ≤ l ≤ k, k − l = 2j, 1 ≤ i ≤ Nd−1(l),

as the orthonormal basis of Vk(Bd),

bk,l,i(θ, t) = [h(d/2)
k ]−1/2(1− t2)(d−1)/2C

d/2
k (t)Yl,i(θ), k ≥ 0, l ≥ 0, 1 ≤ i ≤ Nd−1(l),

as the orthonormal basis of L2(Sd−1 × [−1, 1], dµ(θ, s)), while the eigenvalues

µ2
k = 2dπd−1

(k + 1)(k + 2) . . . (k + d− 1) = 2dπd−1

(k + 1)d−1
∼ k−d+1. (3.28)

For more details we refer the reader to Dunkl and Xu [DX01], Natterer [Na01] and Xu [Xu07].

Needlet and Besov spaces

Following the generic construction, one defines the smoothed projection

P2j s =
∑
k

a
(
k/2j

)∑
l,i

〈s, bk,l,i〉bk,l,i

and, for an existing collection of cubatures (see [Art-Ke+10 ] for the details), the father needlets and the
needlets

φ2j ,ξ = √ωξ
∑
k

√
a (k/2j)

∑
l,i

bk,l,i

ψ2j ,ξ = √ωξ
∑
k

√
d (k/2j)

∑
l,i

bk,l,i.
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Thanks to Petrushev and Xu [PX08], one knows that

|φ2j ,ξ(x)|, |ψ2j ,ξ(x)| ≤ CM
2jd/2√

Wj(ξ)(1 + 2jd(x, ξ))M
∀M > 0

where Wj(x) = 2−j +
√

1− |x|2, |x|2 = |x|2d =
∑d

i=1 x
2
i , and

d(x, y) = Arccos(〈x, y〉+
√

1− |x|2
√

1− |y|2).

Nontrivial lower bounds for the norms of the needlets can be deduced. More precisely, Kyriazis, Petru-
shev, and Xu [KPX08] show that for 0 < p ≤ ∞

‖ψ2j ,ξ‖p ∼ ‖φ2j ,ξ‖p ∼
( 2jd

Wj(ξ)

)1/2−1/p
, ξ ∈ Ξ2j .

In order to introduce the Besov spaces of positive smoothness on the ball as spaces of Lp-approximation
from algebraic polynomial, using the notations from Kyriazis, Petrushev, and Xu [KPX08], we will denote
by En(s, p) the best Lp-approximation of s ∈ Lp(Bd) from Πn.

Definition 3. Let 0 < t <∞, 1 ≤ p ≤ ∞, and 0 < q ≤ ∞. The space Bt,0p,q on the ball is defined as the
space of all functions s ∈ Lp(Bd) such that

|s|
B
t,0
p,q

=
(∑
n≥1

(ntEn(s, p))q 1
n

)1/q
<∞ if q <∞,

and |s|
B
t,0
p,q

= supn≥1 n
tEn(f, p) <∞ if q =∞. The norm on Bs,0p,q is defined by

‖s‖
B
t,0
p,q

= ‖s‖p + |s|
B
t,0
p,q
.

From the monotonicity of {En(s, p)} it readily follows that

‖f‖
B
t,0
p,q
∼ ‖f‖p +

(∑
j≥0

(2jtE2j (s, p))
q
)1/q

with the obvious modification when q = ∞. There are several different equivalent norms on the Besov
space Bs,0p,q .

Theorem 7. With indexes t, p, q as in the above definition the following norms are equivalent to the
Besov norm ‖s‖

B
t,0
p,q

:

(i) N1(s) = ‖s‖p + ‖(2jt‖P2j s‖p)j≥0‖lq ,

(ii) N2(s) = ‖s‖p + ‖(2jt‖P2j+1s− P2j‖p)j≥1‖lq ,

(iii) N3(s) = ‖s‖p + ‖(2jt
∑
ξ∈χj

|〈s, ψj,ξ〉|p‖ψj,ξ‖pp)j≥−1‖lq .

Note that this space is not the classical Besov space Btp,q but a slightly larger one.

Linear needlet estimator

We consider first linear estimator related to the smoothed projection operator. Namely, we define our
estimator by

ŝJ =
∑
k

a
(
k

2J
)

µk

∑
l,i

Ybk,l,ibk,l,i
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or equivalently by

ŝJ =
∑
ξ∈Ξ2J

α̂2J ,ξφ2J ,ξ

with

α̂2J ,ξ = √ωξ
∑
k

√
a
(
k

2J
)

µk

∑
l,i

Ybk,l,i

=
∑
k

1
µk

∑
l,i

〈φ2J ,ξ, bk,l,i〉Ybk,l,i .

Remark that the needlets are not necessary to define the estimator here, they are nevertheless a very
valuable tool in its analysis.

We obtain:

Theorem 8. Let 1 ≤ p ≤ ∞, 0 < t <∞, and assume that s0 ∈ Bt,0p,∞ with ‖s0‖Bt,0p,∞ ≤M . Let ŝJ be the
needlet estimator defined above, assume J is selected depending on the parameters as described below

1. If M2−J(t+d) ∼ σ when p =∞, then

E [‖s0 − ŝJ‖∞] ≤ c∞M
d
t+d

σ
t
t+d
√

logM/σ.

2. If M2−Jt ∼ σ2J(d−2/p) when 4 ≤ p <∞, then

E
[
‖s0 − ŝJ‖pp

]
≤ cpM

(d−2/p)p
t+d−2/p σ

tp
t+d−2/p ,

where when p = 4 there is an additional factor log(M/σ) on the right.

3. If M2−Js ∼ σ2J(d−1/2) when 1 ≤ p < 4, then

E
[
‖s0 − ŝJ‖pp

]
≤ cpM

(d−1/2)p
t+d−1/2 σ

tp
t+d−1/2 .

• As shown in the next section, the following rates of convergence are, in fact, minimax, i.e. there
exist positive constants c1 and c2 such that

sup
‖s0‖

B
t,0
p,∞
≤M

inf
s̃ estimator

E
[
‖s0 − s̃‖pp

]
≥ c1 max{σ

tp
t+d−2/p , σ

tp
t+d−1/2 },

sup
‖s0‖

B
t,0
∞,∞

≤M
inf

s̃ estimator
E [‖s0 − s̃‖∞] ≥ c2σ

s
s+d
√

log 1/σ.

• The case p = 2 above corresponds to the standard SVD method which involves Sobolev spaces.
In this setting, minimax rates have already been established (cf. Cavalier, Golubev, Picard, and
Tsybakov [Ca+02]; Cavalier and Tsybakov [CT02]; Dicken and Maass [DM96]; Efromovich and
Koltchinskii [EK01]; Goldenshluger and Pereverzev [GP03]; Mathé and Pereverzev [MP03]; Tsy-
bakov [Ts00]); these rates are σ

2t
t+d−1/2 . Also, it has been shown that the SVD algorithms yield

minimax rates. These results extend (using straightforward comparisons of norms) to Lp losses
for p < 4, but still considering the Sobolev ball {‖s‖

B
t,0
2,∞
≤ M} rather than the Besov ball

{‖s‖
B
t,0
p,∞
≤M}. Therefore, our results can be viewed as an extension of the above results, allow-

ing a much wider variety of regularity spaces.

• The Besov spaces involved in our bounds are in a sense well adapted to our method. However, one
verify that the bounds from Theorem 8 hold in terms of the standard Besov spaces as well. This
means that in using the Besov spaces described above, our results are but stronger.
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• In the case p ≥ 4 we exhibit here new minimax rates of convergence, related to the ill posedness
coefficient of the inverse problem d−1

2 along with edge effects induced by the geometry of the ball.
These rates have to be compared with similar phenomena occurring in other inverse problems
involving Jacobi polynomials (e.g. Wicksell problem), see Kerkyacharian, Petrushev, Picard, and
Willer [Ke+07].

Needlet inversion of a noisy Radon transform and minimax performances

We propose here an adaptive method based on a thresholding of needlet coefficients. Starting from the
observation that

s0 =
∑
ξ∈Ξ1

〈s0, φ1,ξ〉φ1,ξ +
∑
j≥0

∑
ξ∈Ξ2j

〈s0, ψ2j ,ξ〉ψ2j ,ξ

and

〈s0, ψ2j ,ξ〉 = √ωξ
∑
k

√
d
(
k
2j
)

µk

∑
l,i

〈As0, bk,l,i〉,

we let

α̂2j ,ξ = √ωξ
∑
k

√
a
(
k
2j
)

µk

∑
l,i

Ybk,l,i

β̂2j ,ξ = √ωξ
∑
k

√
d
(
k
2j
)

µk

∑
l,i

Ybk,l,i

and define our estimator by

ŝ =
∑
ξ∈Ξ1

α̂1,ξ φ1,ξ +
∑

0≤j≤Jσ

∑
ξ∈Ξ2j

ρT2j ,ξ

(
β̂2j ,ξ

)
ψ2j ,ξ.

where ρT is the hard threshold function ρT (β) = β1{|β|≥T}.
The tuning parameters of this estimator are

• The range Jσ of resolution levels will be taken such that

2Jσ(d− 1
2 ) ≤

(
σ
√

log 1/σ
)−1

< 2(Jσ+1)(d− 1
2 ).

• The thresholds T2j ,ξ that will be chosen in our theoretical analysis as

T2j ,ξ = κ2jνcσ

where

– The threshold constant κ is an important tuning of our method. The theoretical point of view
asserts that, for κ above a constant (for which our evaluation is probably not optimal), the
minimax properties hold.

– cσ is a constant depending on the noise level. We shall see that the following choice is
appropriate:

cσ = σ
√

log 1/σ.

– Notice that the threshold function for each coefficient contains 2jν . This is due to the inversion
of the Radon operator and the concentration relative to the bk,l,i’s of the needlets.
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It is important to remark here that, unlike the (linear) procedures proposed in the previous section,
this one does not require the knowledge of the regularity while, as will be seen in the sequel, it attains
bounds that are as good as the linear ones and even better since they are handling much wider ranges
for the parameters of the Besov spaces.

Theorem 9. For 0 < r ≤ ∞, π ≥ 1, 1 ≤ p <∞, there exist some constant cp = cp(t, π, r,M), κ0 such
that if κ ≥ κ0, t > (d+ 1)( 1

π
− 1

p
)+ and, in addition, if π < p, t > d+1

π
− 1

2 :

• If 1
p
< d

d+1 ,

sup
s0∈Bsπ,r(M)

(E
[
‖ŝ− s0‖pp

]
)

1
p

≤ cp(log 1/σ)
p
2

×
(
σ
√

log 1/σ
) t−(d+1)(1/π−1/p)

t+d−(d+1)/π ∧ t
t+d−1/2∧

t−2(1/π−1/p)
t+d−2/π .

• If d
d+1 ≤

1
p
and d > 2 or p > 1,

sup
s0∈Bsπ,r(M)

(E
[
‖ŝ− s0‖pp

]
)

1
p ≤ cp(log 1/σ)

p
2
(
σ
√

log 1/σ
) t
t+d−1/2∧

t−2(1/π−1/p)
t+d−2/π .

• If d = 2 and p = 1,

sup
f∈Bsπ,r(M)

(E
[
‖f̂ − f‖1

]
) ≤ c1(log 1/σ)

1
2
(
σ
√

log 1/σ
) t
t+2−1/2 .

Up to logarithmic terms, the rates observed here are minimax, as will appear in the following theorem.
It is known that in this kind of estimation, full adaptation yields unavoidable extra logarithmic terms.
The rates of the logarithmic terms obtained in these theorems are, most of the time, suboptimal (for
instance, for obvious reasons, the case p = 2 yields fewer logarithmic terms). A more detailed study
could lead to optimized rates, which we decided not to include here for the sake of simplicity.

The cumbersome comparisons of the different rates of convergence are summarized in Figures 3.6
and 3.7 for the case 0 < 1

p
< d

d+1 . These figures illustrate and highlight the differences between the
cases p > 4 and p < 4. We put 1

p
as the horizontal axis and the regularity t as the vertical axis. As

explained later, after the lower-bound results, zones I and II correspond to two different types of the so
called “dense” case, whereas zone III corresponds to the “sparse” case.

For the case of an L∞ loss function, we have a slightly different result since the thresholding depends
on the L∞ norm of the local needlet. Let us consider the following estimate:

ŝ∞ =
Jσ∑
j=−1

∑
ξ∈Ξj

ρκ2jdcσ/‖ψ2j ,ξ‖

(
β̂2j ,ξ

)
ψj,ξ,

2Jσd =
(
σ
√

log 1/σ
)−1

.

Then, for this estimate, we have the following results:

Theorem 10. For 0 < r ≤ ∞, π ≥ 1, t > d+1
π

, there exist some constants c∞ = c∞(t, π, r,M) such
that if κ2 ≥ 4τ∞, where τ∞ := supj,ξ 2−j

d+1
2 ‖ψj,ξ‖∞,

sup
f∈Btπ,r(M)

E‖ŝ∞ − s‖∞ ≤ c∞
(
σ
√

log 1/σ
) t−(d+1)/π
t+d−(d+1)/π .

The following theorem states lower bounds for the minimax rates over Besov spaces in this model.

Theorem 11. Let E be the set of all estimators, for 0 < r ≤ ∞, π ≥ 1, t > d+1
π

.
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Figure 3.6: The three different minimax rate type zones are shown with respect to the Besov space
parameters s and π for a fixed loss norm Lp with 0 < 1

p
< 1

4 .

1. There exists some constant C∞ = C∞(t, π, r,M) such that,

inf
s?∈E

sup
s0∈Bsπ,r(M)

E [‖s? − s0‖∞] ≥ C∞
(
σ
√

log 1/σ
) t−(d+1)/π
t+d−(d+1)/π .

2. For 1 ≤ p <∞, there exists some constant Cp = Cp(t, π, r,M) such that if t > ( d+1
π
− d+1

p
)+,

(a) If 1
p
< d

d+1

inf
s?∈E

sup
s0∈Btπ,r(M)

(
E
[
‖s? − s0‖pp

]) 1
p

≥ Cpσ
t−(d+1)(1/π−1/p)
t+d−(d+1)/π ∧ t

t+d−1/2∧
t−2(1/π−1/p)
t+d−2/π .

(b) If d
d+1 ≤

1
p
and d > 2 or p > 1

inf
s?∈E

sup
s0∈Btπ,r(M)

(
E
[
‖s? − s0‖pp

]) 1
p ≥ Cpσ

t
t+d−1/2∧

t−2(1/π−1/p)
t+d−2/π .

(c) If d = 2 and p = 1
inf
s?∈E

sup
s0∈Btπ,r(M)

(E‖s? − s0‖1) ≥ Cpσ
t

t+2−1/2 .

A careful look at the proof shows that the different rates observed in the two preceding theorems
can be explained by geometrical considerations. In fact, depending on the cubature points around which
they are centered, the needlets do not behave the same way. In particular, their Lp norms differ. This
leads us to consider two different regions on the sphere, one near the pole and one closer to the equator.
In these two regions, we considered dense and sparse cases in the usual way. This yielded four rates.
Then it appeared that one of them (sparse) is always dominated by the others.

3.5.3 A needlet based inversion for Radon transform of axially symmetric objects
M. Bergounioux and E. Trélat [BT10] has been working on this special case of Radon transform thanks
to a contract funded by the CEA. They asked me if I could provide them a numerical implementation of
a wavelet based inversion in order to compare its performance on their model. Instead of this, we have
worked on a new needlet based inversion method [Unpub-BLPT12 ].



54 CHAPTER 3. ESTIMATION IN THE WHITE NOISE MODEL

Figure 3.7: The three different minimax rate type zones are shown with respect to the Besov space
parameters s and π for a fixed loss norm p with 1

4 <
1
p
< d

d+1 .

A SVD type decomposition

Assume, we observe an axially symmetric object defined by its cylindrical density u(r, z) by measuring
integrals along line orthogonal to the revolution axis and thus characterized by its distance y to the axis
and its height z. This tomographic observation A is given by

As(y, z) = 2
∫ +∞

|y|
s(r, z) r√

r2 − y2
dr.

This operator does nothing along the z axis so we can focus on

As(y) = 2
∫ +∞

|y|
s(r) r√

r2 − y2
dr.

This transform is related to the classical Abel integral transform T1/2 defined by

T1/2s(x) =
∫ x

0

s(t)
(x− t)1/2 dt.

as soon as we assume that s(r) = 0 for r > 1. Indeed, we have then

As(y) =
∫ 1−|y|2

0
s(
√

1− t) 1√
1− y2 − t

dt

so that if we let s : t 7→ s(
√

1− t)

= T1/2s(1− y2).

A key result obtained by Ammari and Karoui [AK10] is a SVD type decomposition of the Tα operator.
More precisely, let Pα,βn be the classical nth degree Jacobi polynomial on [−1, 1] and

Qα,βn (x) =
√
n!(2n+ α+ β + 1)Γ(n+ α+ β + 1)

Γ(n+ α+ 1)Γ(n+ β + 1) Pα,βn (2x− 1)
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a rescaled version so that the Qα,βn s yield an orthogonal basis of L2([0, 1], (1 − x)αxβ). Ammari and
Karoui [AK10] prove

T1/2(Q0,0
n )(x) = βn,1/2x

αQ−1/2,1/2
n (x)

with

βn,1/2 = Γ(1/2)
√

Γ(n+ 1/2)
Γ(n+ 3/2) ∼

Γ(1/2)
(n+ 3/2)1/2 .

Translating their result in term of the tomography operator A yields

A
(
Q0,0
n (1− r2)

)
(y) = βn,1/2

√
1− y2Q−1/2,1/2

n (1− y2).

As by construction, for any (n, n′) ∈ N2,∫ 1

0
Q0,0
n (1− r2)Q0,0

n′ (1− r2)2rdr = δn,n′ and
∫ 1

0

√
1− y2Q−1/2,1/2

n (1− y2)Q′−1/2,1/2
n (1− y2)2dy = δn,n′ ,

we have obtained a pseudo SVD decomposition of A as an operator from L2([0, 1], 2rdr) to L2([0, 1], 2dr)
by letting bn(r) = Q0,0

n (1 − r2), bn(y) =
√

1− y2Q
−1/2,1/2
n (1 − y2) and µn = βn,1/2. This decompo-

sition is not a SVD basis as (bn)n is not an orthonormal basis. However, (bn)n is a basis for which(
b̃n(y) = Q

−1/2,1/2
n (1− y2)

)
n
is a dual basis. Nevertheless, a SVD type scheme based on the not in-

dependent anymore observations of Ybn can be derived. Observe that the needlet construction can be
applied nevertheless to the orthonormal family bn leading to the Legendre needlet studied by Petrushev
and Xu [PX05] and Kerkyacharian, Petrushev, Picard, and Willer [Ke+07] up to the change of variable
r to 1− r2. A line by line needlet inversion scheme using either a smoothed projection or a thresholding
can then be considered.

2D scheme

This 1D scheme can be easily extended into a 2D scheme. We introduce first the Legendre orthonormal
basis {Bn′ = R0,0

n′ (z)}n′∈N on the support [−Z,Z] of the vertical axis and, following Ivanov, Petrushev,
and Xu [IPX12], consider a tensorial construction. By construction, we have a pseudo SVD decomposition
for the 2D transform

As(y, z) = 2
∫ +∞

|y|
s(r, z) r√

r2 − y2
dr.

Indeed, if we let bn,n′(r, z) = bn(r)Bn′(z), bn,n′(y, z) = bn(y)Bn′(z) and b̃n,n′(y, z) = b̃n(y)Bn′(z) then
we have

Abn,n′ = βn,1/2bn,n′∫
[0,1]×[−Z,Z]

bn,n′bl,l′2rdrdz = δn,lδn′,l′∫
[0,1]×[−Z,Z]

bn,n′ b̃l,l′2dydz = δn,lδn′,l′ .

With a construction similar to the one use to obtain the 2D tensorial wavelets, we can construct a 2D
tensorial needlet basis. Along the horizontal axis, we use the needlet φ2j ,ξ/ψ2j ,ξ with cubature sets Ξ2j ,
as described quickly in the previous section, while we use Legendre needlets Φ2j ,ξ′/Ψ2j ,ξ′ with cubature
sets Ξ′2j , along the vertical axis. We define then

Φ2j ,ξ,ξ′(r, z) = φ2j ,ξ(r)Φ2j ,ξ′(r), Ψad
2j ,ξ,ξ′(r, z) = φ2j ,ξ(r)Ψ2j ,ξ′(r),

Ψda
2j ,ξ,ξ′(r, z) = ψ2j ,ξ(r)Φ2j ,ξ′(r) and Ψdd

2j ,ξ,ξ′(r, z) = ψ2j ,ξ(r)Ψ2j ,ξ′(r)
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or equivalently

Ψo
2j ,ξ(r, z) = √ωξ

√
ωξ′

∑
n≤2j+1

∑
n≤2j+1

√
ao
(
n

2j ,
n′

2j
)
Q0,0
n (1− ξ2)R0,0

n′ (ξ′)Q0,0
n (1− r2)R0,0

n′ (z)

with aad(w,w′) = a(w)d(w′), ada(w,w′) = d(w)a(w′) and add(w,w′) = d(w)d(w′). Those functions can
be proved to be well localized around (ξ, ξ′) with support of size of order 2−j and linear combination
of the first 2j+1 × 2j+1 polynomial tensor products. They are such that, if we let ξ = (ξ, ξ′) and
Ξ2j = Ξ2j × Ξ′2j ,

s0 =
∑
ξ∈Ξ1

(∫
[0,1]×[−Z,Z]

s0(r, z)Φ1,ξ(r, z)2rdrdz
)

Φ1,ξ

+
∑
j≥0

∑
o∈{ad,da,dd}

∑
ξ∈Ξ2j

(∫
[0,1]×[−Z,Z]

u(r, z)Ψo
2j ,ξ(r, z)2rdrdz

)
Ψo

2j ,ξ

while

Pa,2J s0 =
∑
ξ∈Ξ1

(∫
[0,1]×[−Z,Z]

s0(r, z)Φ1,ξ(r, z)2rdrdz
)

Φ1,ξ

+
J−1∑
j=0

∑
o∈{ad,da,dd}

∑
ξ∈Ξ2j

(∫
[0,1]×[−Z,Z]

s0(r, z)Ψo
2j ,ξ(r, z)2rdrdz

)
Ψo

2j ,ξ.

Again it remains to estimate the needlet coefficients We rely on the decomposition of the Ψ into the
polynomial basis which yields

co2j ,ξ =
∫

[0,1]×[−Z,Z]
u(r, z)Ψo

2j ,ξ(r, z)2rdrdz

= √ωξ
√
ωξ′

∑
n≤2j+1

∑
n≤2j+1

√
do
(
n

2j ,
n′

2j
)
Q0,0
n (1− ξ2)R0,0

n′ (ξ′)

∫
[0,1]×[−Z,Z] H0(y, z)b̃m,m′ (y, z)2dydz

βn,1/2

so that those coefficients can be estimated by

ĉo2j ,xi = √ωξ
√
ωξ′

∑
n≤2j+1

∑
n≤2j+1

√
do
(
n

2j ,
n′

2j
)
Q0,0
n (1− ξ2)R0,0

n′ (ξ′)
Y ˜b
m,m′

βn,1/2
.

Combined with the thresholding strategy, we obtain an estimator

ŝ =
∑
ξ∈Ξ1

ĉaa2j ,xiΦ1,ξ +
∑

0≤j≤Jσ

∑
o∈{ad,da,dd}

∑
ξ∈Ξ2j

ρT
o,2j ,ξ

(
ĉo2j ,xi

)
Ψo

2j ,ξ

As in the previous section, the parameters are the maximum level Jσ and the thresholds To,2k,ξ. We
propose to use here a threshold proportional to the standard deviation σo,2j ,ξ of the coefficients: T =
κσo,2j ,ξ. Note that this standard deviation is known in the white noise model.

Using the proofs of [Unpub-GLP11 ], which follows a slightly different path than the one used in the
proof of the theorems of the previous section, we can obtain an oracle type inequality for this estimator.



3.5. INVERSE PROBLEM, NEEDLET AND THRESHOLDING 57

Figure 3.8: Estimation of u with several methods: from top to bottom and left to right: original,
projection of the original on Needlet basis, inversion without thresholding, smoothed projection, under-
smoothed projection, thresholding estimation, two estimation obtain by Bergounioux and Trélat [BT10].

Theorem 12. There exist some absolute constants Cp, Cp, Cξ depending only on the needlets used and
the Lp loss considered such that for κ =

√
2γJσ log 2 with γ > 1, the previous estimator satisfies

E
[
‖ŝ− s0‖pp
(3Jσ + 5)p

]
≤ Cp

(
1 + Cp

(1/2)p(2κJσ log 2)p/2

)
[ ∑
ξ∈Ξ1

(
|caa1,ξ|p1{|caa1,ξ|≤3/2

√
2κJσ log 2σaa,1,ξ

} +Cpσ
p
1,ξ1{|caa1,ξ|≥3/2

√
2κJσ log 2σaa,1,ξ

})

+
Jσ∑
j=0

2j(p−2)
∑

o=ad,da,dd

∑
ξ∈Ξ2j

|co2j ,ξ|p1{
|co

2j ,ξ
|≤3/2

√
2κJσ log 2σ

o,2j ,ξ

} + σp
o,2j ,ξ1

{
|co

2j ,ξ
|≥3/2

√
2κJσ log 2σ

o,2j ,ξ

}]
+ ‖P2Jσ u− u‖

p
p

+ 3CpCp(1/2)p−1 (2κJσ log 2)(p−1)/2 Cξσ
p 2Jσ(3/2(p−1/6κ))

1− 2−(3/2p)

Finally, we are also considering a more complex model in which one observe

dYx = G ? As(x) + σdWx

where G? denotes the convolution with a known (Gaussian) kernel. Inspired by Neelamani, Choi, and
Baraniuk [NCB04], we have implemented a numerical scheme based on a first smoothed inversion of G?
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Figure 3.9: Binarized estimation of u with several methods: from top to bottom and left to right:
original, projection of the original on Needlet basis, inversion without thresholding, smoothed projection,
undersmoothed projection, thresholding estimation, two estimation obtain by Bergounioux and Trélat
[BT10].

followed by a needlet based inversion of A. The results are promising but no theoretical studies have
been conducted yet.

3.6 Recreation: NL-Means and aggregation

I would like to conclude this section by the description of a very different approach followed with J. Salmon
during his PhD thesis [Proc-LPS09a; Proc-LPS09b; Proc-SLP09 ]. It all started by the observation that
some of the best denoising results are obtained by the patch based NL-means method proposed by
Buades, Coll, and Morel [BCM05] or by some of its variants (for instance the one proposed by Kervrann
and Boulanger [KB06]). These methods are based on a simple idea: consider the image not as a collection
of pixels but as a collection of sub-images, the “patches”, centered on those pixels and estimate each
patch as a weighted average of patches. These weights take into account the similarities of the patches
and are often chosen proportional to the exponential of the quadratic difference between the patches with
a renormalization so they sum to 1. Understanding why these methods are so efficient is a challenging
task.

In their seminal paper, Buades, Coll, and Morel [BCM05] show the consistency of their method
under a strong technical β-mixing assumption on the image. NL-Means methods can also be seen as a
smoothing in a patch space with a Gaussian kernel and their performances are related to the regularity
of the underlying patch manifold (see for instance Peyré [Pe09] for a review). While intuitive and
enlightening, those points of view have not yet permited to justify mathematically the performance of
the NL-Means methods.

Inspired by Dalalyan and Tsybakov [DT07], we propose to look at those methods with a different
eye so as to propose a different path to their mathematical justification. We consider them as special
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instance of statistical aggregation. In this framework, one consider a collection of preliminary estimators
and a noisy observation. We search then for a weighted average of those preliminary estimators. This
aggregate estimate should be as close as possible to the unknown original signal. If one uses patches as
preliminary estimators, a special case of a recent method inspired by PAC-Bayesian techniques considered
by Dalalyan and Tsybakov [DT07] almost coincides with the NL-Means.

In the sequel, we describe this framework, propose some novel variants of patch based estimators and
give some insights on their theoretical performances.

3.6.1 Image denoising, kernel and patch methods
We consider an image S defined on a grid (i, j), 1 ≤ i ≤ N and 1 ≤ j ≤ N , of N2 pixels and assume we
observe a noisy version Y :

Y (i, j) = S(i, j) + σW (i, j)

where W is a white noise, an i.i.d. standard Gaussian sequence and σ is a known standard deviation
parameter. Our goal is to estimate the original image I from the noisy observation Y .

Numerous methods have been proposed to fulfill this task. Most of them share the principle that the
observed value should be replaced by a suitable local average, a local smoothing. Indeed all the kernel
based methods, and even the dictionary based methods (thresholding for example), can be put in this
framework. They differ in the way this local average is chosen. Those methods can be represented as a
locally weighted sum

Ŝ(i, j) =
∑
k,l

λi,j,k,lY (k, l)

where the weights λi,j,k,l may depend in a complex way on both the indices and the values of Y . The
weights λi,j,k,l for a fixed pixel (i, j) are nothing but the weights of a local smoothing kernel. The most
famous weights are probably those of the Nadaraya-Watson estimator,

λi,j,k,l = K(i− k, j − l)∑
k′,l′ K(i− k′, j − l′)

,

where K is a fixed kernel (Gaussian for example). To make the estimator more efficient, the kernel and
its scale can also vary depending on the local structure of the image such as in some locally adaptive
method. Even if this is less explicit the representation based method can be put in this framework with
a subtle dependency of the weights i, j, k, l on the values of Y .

Patch based methods can be seen as extensions of such methods in which the image f and the
observation Y are lifted in a higher dimensional space of patches. More precisely, for a fixed integer odd
S, we define the patch P (S)(i, j) as the sub-image of I of size K ×K centered on (i, j) (for the sake of
simplicity we assume here a periodic extension across the boundaries):

P (S)(i, j)(k, l) = S (i+ k, j + l) for −K − 1
2 ≤ k, l ≤ K − 1

2 .

An image S belonging to RN
2
can thus be sent in a space of patch collection of dimension RN

2×S2

through the application
S 7→ P (S) = (P (S)(i, j))1≤i,j≤N .

The denoising problem is reformulated as retrieving the original patch collection P(S) from the noisy
patch collection P(Y ). Note that an estimate Ŝ of the original image S can be obtained from any
estimate P̂ (S) of the original patch collection through a simple projection operator for example using
the central values of the patches

P̂ (S)→ Ŝ =
(
Ŝ(i, j) = ̂P (S)(i, j)(0, 0)

)
1≤i,j≤N

.

This simple projection can also be replaced by a more complex one, in which the value of a given pixel
is obtained by averaging the values obtained for this pixel in different patches, as explored by Salmon
and Strozecki [SS10; SS12].
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Figure 3.10: Adaptation of the NL-Means kernel to the local structures. The two right images show the
kernel weights (λi,j,k,l)k,l obtained for a patch in a uniformly regular zone and a patch centered on an
edge.

Following the approach used for images, we consider here patch methods based on weighted sums

̂P (S)(i, j) =
∑
k,l

λi,j,k,lP (Y )(k, l)

Note that when the λi,j,k,l are chosen as in the Nadaraya-Watson estimator, the patch based estimator
and the original pixel based estimator coincide. We will thus consider some other weight choices in which
the weights for a given patch depends on the values of the other patches.

The method proposed by Buades, Coll, and Morel [BCM05] corresponds exactly to the use of the
weights λi,j,k,l;

λi,j,k,l = e
− 1
β
‖P (S)(i,j)−P (S)(k,l)‖2∑

k,l
e
− 1
β
‖P (S)(i,j)−P (S)(k,l)‖2

where ‖ · ‖2 is the usual euclidean distance on patches. They have called this method Non Local Means
(NL-Means from now on) as the weights depends only on the values of the patches and not on the distance
between the patches (the distance between their centers). The influence of a patch on the reconstruction
of another patch depends thus on their similarity so that the corresponding local smoothing kernels
adapt themselves to the local structures in the image as illustrated in Figure 3.10.

They obtain the consistency of their method for stochastic process under some technical β-mixing
conditions. Most of the other explanations of this method rely on the existence of a patch manifold of
low dimension in which the patches live as for instance in the work of Peyré [Pe09]. The NL-Means
method appears then as a local averaging using a Gaussian kernel in this patch space. Under the strong
assumptions that the patches are evenly spaced on the patch manifold and that this manifold is flat
enough to be approximated by an affine space, the performance of the NL-Means can be explained.
Unfortunately, there is no guarantee this is the case.

Note that the strict non locality of this construction has been contradicted by a further study of J.
Salmon [Sa10], which shows that using only patches in a neighborhood of the considered patch in the
weights formula yields a significant improvement. The temperature parameter β is also an important
issue from both the theoretical and the practical point of view. We conclude this review by stressing
that adding a localization term, such as a classical spatial kernel, renders the scheme close to a bilateral
filtering in which the data dependent term is computed on the patch metric.
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3.6.2 Aggregation and the PAC-Bayesian approach
We propose now a different point of view on this method: the aggregation point of view. In this setting,
we consider a collection of preliminary estimates ŝp of a given object s0 and search for the best adaptive
weighted combination

ŝλ =
P∑
p=1

λmŝp

of those estimates from a noisy observation Y = s0 + σW (or more generally in the white noise model).
This setting has been introduced by Nemirovski [Ne00] and Yang [Ya00] and is the subject of a lot of
studies since. This model is quite general as, for instance, both thresholding and estimator selection can
be put in this framework. The key question is how to choose the aggregating weights.

We focus here on a special case in which the estimators are constructed for patches and the aggregation
is based on the PAC-Bayesian approach considered by Catoni [Ca04]; Dalalyan and Tsybakov [DT07].

For any patch P (S)(i, j), we assume we observe a noisy patch P (Y )(i, j) and a collection of P
preliminary estimators P1,...,PM . We look then for an estimate

̂P (S)(i, j)λ =
P∑
p=1

λpPp

where λ belongs to RP . The weights λp are chosen, in the PAC Bayesian approach, in a very specific
way from an arbitrary prior law π on RP . The PAC-Bayesian aggregate ̂P (S)(i, j)

π

is defined by the
weighted “sum”

̂P (S)(i, j)
π

=
∫
RP

e
− 1
β
‖P (Y )(i,j)− ̂P (S)(i,j)λ‖

2∫
RP e

− 1
β
‖P (Y )(i,j)− ̂P (S)(i,j)λ′‖2

dπ(λ′)
P̂ (S)λdπ(λ) .

or equivalently by its weight components

λπ =
∫
RP

e
− 1
β
‖P (Y )(i,j)− ̂P (S)(i,j)λ‖

2∫
RP e

− 1
β
‖P (Y )(i,j)− ̂P (S)(i,j)λ′‖2

dπ(λ′)
λdπ(λ) .

Note that this estimator can be interpreted as a pseudo Bayesian estimator with a prior law π in
which the noise of variance σ2 is replaced by a Gaussian noise of variance β/2.

The formula defining the estimator in the PAC-Bayesian approach looks similar to the formula
defining the weights of the NL-Means, they are indeed equivalent when the preliminary estimators Pm
span the set of the noisy patches P (Y )(k, l) and the prior law π is chosen as the discrete law

π = 1
N2

∑
(k,l)

δe(k,l)

where the sum runs across all the patches and δe(k,l) is the Dirac measure charging only the patch
P (Y )(k, l). This choice leads to the estimate

̂P (S)(i, j)
π

=
∑
(k,l)

e
− 1
β
‖P (Y )(i,j)−P (Y )(k,l)‖2∑

(k′,l′) e
− 1
β
‖P (Y )(i,j)−P (Y )(k′,l′)‖2 P (Y )(k, l) ,

that is exactly the NL-Means estimator.
A lot of other variants of patch based method can be obtained through a suitable choice for the prior

π. For example, for any kernel K,

π =
∑
(k,l)

K(i− k, j − l)∑
(k′,l′) K(i− k′, j − l′)

δek,l

yields the localized NL-Means often used in practice.
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3.6.3 Stein Unbiased Risk Estimator and Error bound
The analysis of the risk of this family of estimator is based on a SURE (Stein Unbiased Risk Estimator)
principle as explained by Dalalyan and Tsybakov [DT07]; Leung and Barron [LB06]. Indeed, assume
that the preliminary estimators Pm are independent of P (Y )(i, j), a simple computation shows that

r̂λ = ‖P (Y )(i, j)− ̂P (S)(i, j)λ‖
2 − S2σ2

is an unbiased estimate of the risk of the estimator ̂P (S)(i, j)λ, ‖P (S)(i, j)− ̂P (S)(i, j)λ‖
2. As S2σ2 is

a term independent of λ, the PAC-Bayesian estimate of the previous section can be rewritten as

̂P (S)(i, j)
π

=
∫
RP

e
− 1
β
r̂λ∫

RP e
− 1
β
r̂λ′ dπ(λ′)

̂P (S)(i, j)λdπ(λ)

Using Stein’s formula, one is able to construct an unbiased estimate r̂ of the risk of this estimator such
that, as soon as β ≥ 4σ2,

r̂ ≤
∫
RP

e
− 1
β
r̂λ∫

RP e
− 1
β
r̂λ′ dπ(λ′)

r̂λdπ(λ) .

The key is then to notice (see for instance Catoni [Ca04]) that this renormalized exponential weights are
such that for any probability law p∫

RP

e
− 1
β
r̂λ∫

RP e
− 1
β
r̂λ′ dπ(λ′)

r̂λdπ(λ) + βK

(
e
− 1
β
r̂λ∫

RP e
− 1
β
r̂λ′

π, π

)
≤
∫
RP

r̂λdp(λ) + βK(p, π)

where K(p, π) is the Kullback divergence between p and π:

K(p, π) =
{ ∫

RP log
(
dp
dπ

(λ)
)
dp(λ) if p� π,

+∞ otherwise

Thus, as K(p, π) is always a positive quantity,

r̂ ≤ inf
p∈P

∫
RP

r̂λdp(λ) + βK(p, π) .

Taking the expectation and interchanging the order of the expectation and the infimum yield

E(r̂) ≤ E
(

inf
p∈P

∫
RP

r̂λdp(λ) + βK(p, π)
)
≤ inf
p∈P

(∫
RP

E(r̂λ)dp(λ) + βK(p, π)
)

or more explicitly using the fact that the r̂ are unbiased estimates of the risks

E
(
‖P (S)(i, j)− ̂P (S)(i, j)

π

‖2
)
≤ inf
p∈P

(∫
RP
‖P (S)(i, j)− ̂P (S)(i, j)λ‖

2dp(λ) + βK(p, π)
)

.

The PAC-Bayesian aggregation principle is thus supported by a strong theoretical result when the
preliminary estimators Pm are independent of P (Y ), often call the frozen preliminary estimators case,
and β is larger than 4σ2. The quadratic error of the PAC-Bayesian estimate is bounded by the best
trade-off between the average quadratic error of fixed λ estimators under a law p and an adaptation
price corresponding to the Kullback distance between p and the prior π. The optimal p is thus one both
concentrated around the best fixed λ estimator and close to the prior law π.

So far, these results have been proved only when the preliminary estimators are independent of the
observation, which is obviously not the case when they are chosen as patches of the noisy images. We
conjecture that the following similar inequality holds, up to a slight modification of the aggregation
weights, with a γ possibly larger than 1

E‖P (S)(i, j)− ̂P (S)(i, j)
π

‖2 ≤ inf
p∈P

(∫
RP

(
‖P (S)(i, j)− P (S)(i, j)λ‖2 + γK2σ2‖λ‖2

)
dp(λ) + βK(p, π)

)
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Figure 3.11: Numerical results on a small part of House for the 3 studied priors.

where the K2σ2‖λ‖2 term appears as the variance of the estimator for a fixed λ, which is nothing but
a classical kernel estimator. The trade-off for p is thus between a concentration around the best linear
kernel and a proximity with the prior law π. The aggregation point of view shows that this patch
based procedure is close to a search for an optimal local kernel, which is one of the intuition behind the
NL-Means construction.

We have obtained this result so far in three cases: when patches are computed on another noisy
image, when all patches intersecting the central patch are removed from the collection and with a small
modification of the weights when the image is split into two separate images with a quincunx grid. We
are still working on a proof for the general case that requires some more modifications of the weights.

3.6.4 Priors and numerical aspects of aggregation
The most important parameter to obtain a good control of the error is thus the prior π. A good choice
is one such that for any natural patch P (i)(i, j) there is a probability law p close to π and concentrated
around the best kernel weights. The goal is to prove that the penalty due to the Kullback divergence
term is not too big compare to the best kernel performance. We have conducted numerical experiments,
using a Langevin Monte Carlo method, in [Proc-LPS09a; Proc-LPS09b; Proc-SLP09 ].

Our numerical experiments can be summarized as follows:

• There is still a slight loss between our method using a Gaussian mixture prior and the optimized
classical NL-Means. We have observed PAC-Bayesian aggregation is less sensitive to the parame-
ters. The same parameter set yields good results for all our test images while for the NL-Means
the temperature has to be tuned.

• The choice β = 4σ2, recommended by the theory, does not lead to the best results: the choice
β = 2σ2 which corresponds to a classical Bayesian approach leads to better performances.
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• The correction proposed for the central patch is effective as described by Salmon [Sa10].

• We have observed that the central point is responsible for more than .5 dB gain in the NL-Means
approach and less in the PAC-Bayesian approach.

• We are still facing some convergence issues in our Monte Carlo scheme which could explain our
loss of performances. We are working on a modified scheme to overcome this issue.

The PAC-Bayesian approach provides a novel point of view on patch based method. From the
theoretical point of view, we have not yet however been able to control the performance of our method.



Chapter 4

Density estimation

4.1 Density estimation

I have also considered the classical density estimation framework. We observe n random variables
((Xi))1≤i≤N of random variables and are interested in estimating the law of this variable Xi ∈ X . We
further assume that the observations Xi’s are independent and identically distributed and follow a law
of density s0(·|Xi) with respect to a known measure dλ. Our goal is to estimate this density function
s0(·) from the observations. We refer to the book of Tsybakov [Ts08] for an introduction as well as an
analysis of kernel based estimators.

We will focus here on contrast based methods. When the losses considered are the quadratic loss or
the Kullback-Leibler divergence, two natural contrasts appear: for the quadratic loss,

γ(s) = 1
2‖s‖

2
2 −

1
N

N∑
i=1

−s(Xi)

and for the Kullback-Leibler divergence

γ(s) = 1
N

N∑
i=1

−log (s(Xi)) .

In this chapter, we will focus on the first one.

4.2 Dictionary, adaptive threshold and `1 penalization

4.2.1 Dictionary, Lasso and Dantzig

Assume we have at hand a dictionary of functions D = (ϕp)p=1,...,P a natural idea is to estimate s0 by
a weighted sum sλ of elements of D

sλ =
P∑
p=1

λpϕp.

The quadratic loss contrast γ(sλ) can be rewritten in this case as

γ(sλ) = 1
2‖sλ‖

2 − 1
n

n∑
i=1

sλ(Xi)

= 1
2λ
′Gλ−A′Xλ

65



66 CHAPTER 4. DENSITY ESTIMATION

with

Gp,p′ = 〈ϕp, ϕp′〉 and Ax,p = 1
n

n∑
i=1

φp(Xi)

whose minimizer are the solutions of Gλ = AX . As long as G is invertible, i.e. the family (φp) is free,
there is a unique solution but this assumption is strong. Furthermore, it could be interesting to select a
few functions in the dictionary and estimate only the projection in this restricted model. The penalized
model principle selection of the previous chapter can also be applied as described for instance by Massart
[Ma07]. Unfortunately, the associated procedures may be hardly tractable from the numerical point of
view as they often amount to a brute force exhaustive search algorithm. Various ideas has been proposed
to replace this exhaustive search algorithm by a much more efficient one. A very succesful idea has been
to replace the usual penalty proportional to the dimension by a penalty proportional to the `1 norm of
the coefficients. The resulting estimator can be computed by a simple convex function minimzation for
which numerous efficient algorithms exist. The two most famous one are probably the LASSO procedure
of Tibshirani [Ti96] and the Dantzig procedure of Candès and Tao [CT07]. The computational study
has been performed notably by Efron, Hastie, Johnstone, and Tibshirani [Ef+04]; Osborne, Presnell,
and Turlach [OPT00a; OPT00b]. Both has been widely considered in white noise and regression models,
but only the Lasso estimator had been studied in the density model (see the works of Bunea, Tsybakov,
and Wegkamp [BTW07b]; Bunea, Tsybakov, Wegkamp, and Barbu [Bu+10]; Geer [Ge08]) at the time I
started this analysis with K. Bertin and V. Rivoirard [Art-BLPR11 ].

The Dantzig selector has been introduced by Candès and Tao [CT07] in the linear regression model.
More precisely, given

Y = Aλ0 + ε,

where Y ∈ Rn, A is a n by M matrix, ε ∈ Rn is the noise vector and λ0 ∈ RM is the unknown regression
parameter to estimate, the Dantzig estimator is defined by

λ̂D = arg min
λ∈RM

||λ||`1 subject to ||A′(Aλ− Y )||`∞ ≤ η,

where || · ||`∞ is the sup-norm in RM , || · ||`1 is the `1 norm in RM , and η is a regularization parameter.
A natural companion of this estimator is the Lasso procedure or more precisely its relaxed form

λ̂L = arg min
λ∈RM

{1
2 ||Aλ− Y ||

2
`2 + η||λ||`1

}
,

where η plays exactly the exact same role as for the Dantzig estimator. This `1 penalized method is also
called basis pursuit in signal processing (see Chen, Donoho, and Saunders [CDS01]; Donoho, Elad, and
Temlyakov [DET06]).

Candès and Tao [CT07] have obtained a bound for the `2 risk of the estimator λ̂D, with large prob-
ability, under a global condition on the matrix A (the Restricted Isometry Property) and a sparsity
assumption on λ0, even for P ≥ N . Bickel, Ritov, and Tsybakov [BRT09] have obtained oracle inequal-
ities and bounds of the `p loss for both estimators under weaker assumptions. Actually, Bickel, Ritov,
and Tsybakov [BRT09] deal with the non parametric regression framework in which one observes

Yi = s0(Xi) +Wi, i = 1, . . . , N

where s0 is an unknown function while (Xi)i=1,...,N are known design points and (Wi)i=1,...,N is a noise
vector. There is no intrinsic matrix A in this problem but for any dictionary of functions D = (ϕp)p=1,...,P
one can search s0 as a weighted sum sλ of elements of D

sλ =
P∑
p=1

λpϕp

and introduce the matrix Φ = (ϕp(Xi))i,p, which summarizes the information on the dictionary and on
the design. Notice that if there exists λ0 such that s0 = sλ0 then the model can be rewritten exactly as
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the classical linear model. However, if it is not the case and if a model bias exists, the Dantzig and Lasso
procedures can be after all applied under similar assumptions on A. Oracle inequalities are obtained
for which approximation theory plays an important role in the studies of Bickel, Ritov, and Tsybakov
[BRT09]; Bunea, Tsybakov, and Wegkamp [BTW07a; BTW07c]; Geer [Ge08].

Let us also mention that in various settings, under various assumptions on the matrix φ (or more
precisely on the associated Gram matrix G = Φ′Φ), properties of these estimators have been established
for subset selection (see Bunea [Bu09]; Lounici [Lo08]; Meinhausen and Yu [MY09]; Meinshausen and
Bühlmann [MB06]; Yu and Zhao [YZ06]; Zhang and Huang [ZH08]) and for prediction (see Bickel, Ritov,
and Tsybakov [BRT09]; Knight and Fu [KF00]; Lounici [Lo08]; Meinhausen and Yu [MY09]; Zou [Zo06]).

In the density framework, the Dantzig estimate f̂D is then obtained by minimizing ||λ||`1 over the set
of parameters λ satisfying the adaptive Dantzig constraint:

∀ p ∈ {1, . . . , P}, |(Gλ)p − β̂p| ≤ ηγ,p

where for p ∈ {1, . . . , P}, (Gλ)p is the scalar product of sλ with ϕp,

ηγ,p =

√
2σ̃2

pγ logM
n

+ 2||ϕp||∞γ logP
3N ,

σ̃2
p is a sharp estimate of the variance of β̂p and γ is a constant to be chosen. Section 4.2.2 gives precise

definitions and heuristics for using this constraint. We just mention here that ηγ,p comes from sharp
concentration inequalities to give tight constraints. Our idea is that if s0 can be decomposed on D as

so =
P∑
p=1

λ0,mϕp,

then we force the set of feasible parameters λ to contain λ0 with large probability and to be as small as
possible. Significant improvements in practice are expected.

Our goals is mainly twofold. First, we aim at establishing sharp oracle inequalities under very mild
assumptions on the dictionary. Our starting point is that most of the papers in the literature assume that
the functions of the dictionary are bounded by a constant independent of P and N , which constitutes a
strong limitation, in particular for dictionaries based on histograms or wavelets (see for instance Bunea
[Bu09]; Bunea, Tsybakov, and Wegkamp [BTW06; BTW07a; BTW07b; BTW07c] or Geer [Ge08]).
Such assumptions on the functions of D will not be considered here. Likewise, our methodology does
not rely on the knowledge of ||s0||∞ that can even be infinite (as noticed by Birgé [Bi08] for the study
of the integrated L2-risk, most of the papers in the literature typically assume that the sup-norm of
the unknown density is finite with a known or estimated bound for this quantity). Finally, let us
mention that, in contrast with what Bunea, Tsybakov, Wegkamp, and Barbu [Bu+10] did, we obtain
oracle inequalities with leading constant 1, and furthermore these are established under much weaker
assumptions on the dictionary than the ones of Bunea, Tsybakov, Wegkamp, and Barbu [Bu+10].

The second goal deals with the problem of calibrating the so-called Dantzig constant γ: how should
this constant be chosen to obtain good results in both theory and practice? Most of the time, for Lasso-
type estimators, the regularization parameter is of the form a

√
logM
n

with a a positive constant (see
Bickel, Ritov, and Tsybakov [BRT09]; Bunea, Tsybakov, and Wegkamp [BTW06; BTW07b; BTW07c],
Candès and Plan [CP09], Lounici [Lo08] or Meinhausen and Yu [MY09] for instance). These results are
obtained with large probability that depends on the tuning coefficient a. In practice, it is not simple to
calibrate the constant a. Unfortunately, most of the time, the theoretical choice of the regularization
parameter is not suitable for practical issues. This fact is true for Lasso-type estimates but also for many
algorithms for which the regularization parameter provided by the theory is often too conservative for
practical purposes (see Juditsky and Lambert-Lacroix [JL04] who clearly explains and illustrates this
point for their thresholding procedure). So, one of the main goals here is to fill the gap between the
optimal parameter choice provided by theoretical results on the one hand and by a simulation study
on the other hand. Only a few papers are devoted to this problem. In the model selection setting,
the issue of calibration has been addressed by Birgé and Massart [BM07] who considered `0-penalized
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estimators in a Gaussian homoscedastic regression framework and showed that there exists a minimal
penalty in the sense that taking smaller penalties leads to inconsistent estimation procedures. Arlot and
Massart [AM09] generalized these results for non-Gaussian or heteroscedastic data and Reynaud-Bouret
and Rivoirard [RR10] addressed this question for thresholding rules in the Poisson intensity framework.

Now, let us describe in a nutshell our results. By using the previous data-driven Dantzig constraint,
oracle inequalities are derived under local conditions on the dictionary that are valid under classical
assumptions on the structure of the dictionary. We extensively discuss these assumptions and we show
their own interest. Each term of these oracle inequalities is easily interpretable. Classical results are
recovered when we further assume:

||ϕp||2∞ ≤ c1
(

N

logP

)
||s0||∞,

where c1 is a constant. This assumption is very mild and, unlike in classical works, allows to consider
dictionaries based on wavelets. Then, relying on our Dantzig estimate, we build an adaptive Lasso
procedure whose oracle performances are similar. This illustrates the closeness between Lasso and
Dantzig-type estimates.

Our results are proved for γ > 1. For the theoretical calibration issue, we study the performance
of our procedure when γ < 1. We show that in a simple framework, estimation of the straightforward
signal s0 = 1[0,1] cannot be performed at a convenient rate of convergence when γ < 1. This result
proves that the assumption γ > 1 is thus not too conservative.

Finally, a simulation study illustrates how dictionary-based methods outperform classical ones. More
precisely, we show that our Dantzig and Lasso procedures with γ > 1, but close to 1, outperform classical
ones, such as simple histogram procedures, wavelet thresholding or Dantzig procedures based on the
knowledge of ||s0||∞ and less tight Dantzig constraints.

4.2.2 The Dantzig estimator of the density s0

As said in Introduction, our goal is to build an estimate of the density f0 with respect to the measure dx
as a linear combination of functions of D = (ϕp)p=1,...,P , where we assume without any loss of generality
that, for any p, ‖ϕp‖2 = 1:

sλ =
P∑
p=1

λpϕp.

For this purpose, we naturally rely on natural estimates of the L2-scalar products between s0 and the
ϕp’s. So, for p ∈ {1, . . . , P}, we set

β0,p =
∫
ϕp(x)so(x)dx,

and we consider its empirical counterpart

β̂p = 1
N

N∑
i=1

ϕp(Xi)

that is an unbiased estimate of β0,p. The variance of this estimate is Var(β̂p) = σ2
0,p
N

where

σ2
0,p =

∫
ϕ2
p(x)so(x)dx− β2

0,p.

Note also that for any λ and any p, the L2-scalar product between fλ and ϕp can be easily computed:∫
ϕp(x)fλ(x)dx =

P∑
p′=1

λp′

∫
ϕp′(x)ϕp(x)dx = (Gλ)p
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where G is the Gram matrix associated to the dictionary D defined for any 1 ≤ p, p′ ≤ P by

Gp,p′ =
∫
ϕp(x)ϕp′(x)dx.

Any reasonable choice of λ should ensure that the coefficients (Gλ)p are close to β̂p for all p. Therefore,
using Candès and Tao’s approach, we define the Dantzig constraint:

∀ p ∈ {1, . . . , P}, |(Gλ)p − β̂p| ≤ ηγ,p (4.1)

and the Dantzig estimate ŝD by ŝD = fλ̂D,γ with

λ̂D,γ = argmin
λ∈RM

||λ||`1 such that λ satisfies the Dantzig constraint (4.1),

where for γ > 0 and p ∈ {1, . . . , P},

ηγ,p =

√
2σ̃2

pγ logP
N

+ 2||ϕp||∞γ logP
3N , (4.2)

with

σ̃2
p = σ̂2

p + 2||ϕp||∞

√
2σ̂2

pγ logP
N

+ 8||ϕp||2∞γ logP
N

and

σ̂2
p = 1

N(N − 1)

n∑
i=2

i−1∑
j=1

(ϕp(Xi)− ϕp(Xj))2.

Note that ηγ,p depends on the data, so the constraint (4.1) will be referred as the adaptive Dantzig
constraint in the sequel. We now justify the introduction of the density estimate ŝD.

The definition of ηλ,γ is based on the following heuristics. Given p, when there exists a constant
c0 > 0 such that s0(x) ≥ c0 for x in the support of ϕp satisfying ‖ϕp‖2∞ = oN (N(logP )−1), then, with
large probability, the deterministic term of (4.2), 2||ϕp||∞γ logP

3N , is negligible with respect to the random

one,
√

2σ̃2
pγ logP
N

. In this case, the random term is the main one and we asymptotically derive

ηγ,p ≈

√
2γ logP σ̃2

p

N
. (4.3)

Having in mind that σ̃2
p/N is a convenient estimate for Var(β̂p), the shape of the right hand term of the

formula (4.3) looks like the bound proposed by Candès and Tao [CT07] to define the Dantzig constraint in
the linear model. Actually, the deterministic term of (4.2) allows to get sharp concentration inequalities.
As often done in the literature, instead of estimating Var(β̂p), we could use the inequality

Var(β̂p) =
σ2

0,p

N
≤ ||s0||∞

N

and we could replace σ̃2
p with ||s0||∞ in the definition of the ηγ,p. But this requires a strong assumption:

s0 is bounded and ||s0||∞ is known. In our study, Var(β̂p) is estimated, which allows not to impose these
conditions. More precisely, we slightly overestimate σ2

0,p to control large deviation terms and this is the
reason why we introduce σ̃2

p instead of using σ̂2
p, an unbiased estimate of σ2

0,p. Finally, γ is a constant
that has to be suitably calibrated and plays a capital role in practice.

The following result justifies previous heuristics by showing that, if γ > 1, with high probability, the
quantity |β̂p − β0,p| is smaller than ηγ,p for all p. The parameter ηγ,p with γ close to 1 can be viewed as
the smallest quantity that ensures this property.
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Theorem 13. Let us assume that P satisfies

N ≤ P ≤ exp(Nδ) (4.4)

for δ < 1. Let γ > 1. Then, for any ε > 0, there exists a constant C1(ε, δ, γ) depending on ε, δ and γ
such that

P
{
∃p ∈ {1, . . . , P}, |β0,p − β̂p| ≥ ηγ,p

}
≤ C1(ε, δ, γ)P 1− γ

1+ε .

In addition, there exists a constant C2(δ, γ) depending on δ and γ such that

P
{
∀p ∈ {1, . . . , P}, η(−)

γ,p ≤ ηγ,p ≤ η(+)
γ,p

}
≥ 1− C2(δ, γ)P 1−γ

where, for p ∈ {1, . . . , P},

η(−)
γ,p = σ0,p

√
8γ logP

7N + 2||ϕp||∞γ logP
3N

and

η(+)
γ,p = σ0,p

√
16γ log p

N
+ 10||ϕp||∞γ logP

N
.

The first part is a sharp concentration inequality proved by using Bernstein type controls. The second
part of the theorem proves that, up to constants depending on γ, ηγ,p is of order σ0,p

√
logP
N

+ ||ϕp||∞ logP
N

with high probability. Note that the assumption γ > 1 is essential to obtain probabilities going to 0.
Finally, let λ0 = (λ0,p)p=1,...,P ∈ RP such that

PDf0 =
P∑
p=1

λ0,pϕp

where PD is the projection on the space spanned by D. We have

(Gλ0)p =
∫

(PDs0)ϕp =
∫
s0ϕp = β0,p.

So, Theorem 13 proves that λ0 satisfies the adaptive Dantzig constraint (4.1) with probability larger than
1 − C1(ε, δ, γ)P 1− γ

1+ε for any ε > 0. Actually, we force the set of parameters λ satisfying the adaptive
Dantzig constraint to contain λ0 with large probability and to be as small as possible. Therefore,
ŝD = sλ̂D,γ is a good candidate among sparse estimates linearly decomposed on D for estimating so.

We mention that Assumption (4.4) can be relaxed and we can take P < N provided the definition
of ηγ,p is modified.

It turns out that a similar bound, with slightly better constant, could also be obtained using some
results due to Maurer and Pontil [MP09]. More precisely, if we let now

ηγ,p =

√
2σ̂2

pγ logP
N

+ 7||ϕp||∞γ logP
3(N − 1) ,

where we use directly σ̂2
p instead of σ̃2

p but have replaced a 2 with a 7 in the second term and a N by
N − 1 then

P
{
∃p ∈ {1, . . . , P}, |β0,p − β̂p| ≥ ηγ,p

}
≤ 2P 1−γ

and
P
{
∃p ∈ {1, . . . , P}, |σ̂p − σp| > 2u ||φp||∞

N

}
≤ 2P 1−γ .

So that our results holds also for this modified thresholds up to some straightforward modifications.

4.2.3 Results for the Dantzig estimators
In the sequel, we will denote λ̂D = λ̂D,γ to simplify the notations, but the Dantzig estimator f̂D still
depends on γ. Moreover, we assume that (4.4) is true and we denote the vector ηγ = (ηγ,p)p=1,...,P
considered with the Dantzig constant γ > 1.
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The main result under local assumptions

Let us state the main result. For any J ⊂ {1, . . . , P}, we set JC = {1, . . . , P} r J and define λJ the
vector which has the same coordinates as λ on J and zero coordinates on JC . We introduce a local
assumption indexed by a subset J0.

• Local Assumption Given J0 ⊂ {1, . . . ,M}, for some constants κJ0 > 0 and µJ0 ≥ 0 depending
on J0, we have for any λ,

||sλ||2 ≥ κJ0
||λJ0 ||`1√
|J0|

− µJ0√
|J0|

(
||λJC0 ||`1 − ||λJ0 ||`1

)
+
. (LA(J0, κJ0 , µJ0 ))

Note that this Assumption is a slight generalization of the one published in [Art-BLPR11 ]. We obtain
the following oracle type inequality without any assumption on s0.

Theorem 14. With probability at least 1 − C1(ε, δ, γ)M1− γ
1+ε , for all J0 ⊂ {1, . . . , P} such that there

exist κJ0 > 0 and µJ0 ≥ 0 for which (LA(J0, κJ0 , µJ0 )) holds, we have, for any α > 0,

||ŝD − s0||22 ≤ inf
λ∈RM

{
||sλ − s0||22 + α

(
1 + 2µJ0

κJ0

)2 Λ(λ, Jc0)2

|J0|
+ 16|J0|

(
1
α

+ 1
κ2
J0

)
||ηγ ||2`∞

}
, (4.5)

with

Λ(λ, Jc0) = ||λJC0 ||`1 +

(
||λ̂D||`1 − ||λ||`1

)
+

2 .

Let us comment each term of the right hand side of (4.5). The first term is an approximation term
which measures the closeness between s0 and sλ. This term can vanish if s0 can be decomposed on the
dictionary. The second term, a bias term, is a price to pay when either λ is not supported by the subset
J0 considered or it does not satisfy the condition ||λ̂D||`1 ≤ ||λ||`1 which holds as soon as λ satisfies the
adaptive Dantzig constraint. Finally, the last term, which does not depend on λ, can be viewed as a
variance term corresponding to the estimation on the subset J0. The parameter α calibrates the weights
given for the bias and variance terms in the oracle inequality. Concerning the last term, remember that
ηγ,p relies on an estimate of the variance of β̂p. Furthermore, we have with high probability:

||ηγ ||2`∞ ≤ 2 sup
p

(
16σ2

0,pγ logP
N

+
(

10||ϕp||∞γ logP
N

)2
)
.

So, if s0 is bounded then, σ2
0,m ≤ ||s0||∞ and if there exists a constant c1 such that for any m,

||ϕp||2∞ ≤ c1
(

N

logP

)
||s0||∞, (4.6)

(which is true for instance for a bounded dictionary), then

||ηγ ||2`∞ ≤ C||s0||∞
logP
N

,

(where C is a constant depending on γ and c1) and tends to 0 when N goes to ∞. We obtain thus the
following result.

Corollary 2. With probability at least 1 − C1(ε, δ, γ)P 1− γ
1+ε , if (4.6) is satisfied, then, for all J0 ⊂

{1, . . . , P} such that there exist κJ0 > 0 and µJ0 ≥ 0 for which (LA(J0, κJ0 , µJ0 )) holds, we have, for
any α > 0 and for any λ that satisfies the adaptive Dantzig constraint,

||ŝD − s0||22 ≤ ||sλ − s0||22 + αc2(1 + κ−2
J0 µ

2
J0 )
||λJC0 ||

2
`1

|J0|
+ c3(α−1 + κ−2

J0 )|J0|||f0||∞
logM
n

, (4.7)

where c2 is an absolute constant and c3 depends on c1 and γ.
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If s0 = sλ0 and if (LA(J0, κJ0 , µJ0 )) holds with J0 the support of λ0 then, under (4.6), with probability
at least 1− C1(ε, δ, γ)M1− γ

1+ε , we have

||ŝD − s0||22 ≤ C′|J0|||f0||∞
logP
N

,

where C′ = c3κ
−2
J0

.

Note that the second part of Corollary 2 is, strictly speaking, not a consequence of Theorem 14 but
only of its proof.

Assumption (LA(J0, κJ0 , µJ0 )) is local, in the sense that the constants κJ0 and µJ0 (or their mere
existence) may highly depend on the subset J0. For a given λ, the best choice for J0 in Inequalities (4.5)
and (4.7) depends thus on the interaction between these constants and the value of λ itself. Note that
the assumptions of Theorem 14 are reasonable as the next section gives conditions for which Assump-
tion (LA(J0, κJ0 , µJ0 )) holds simultaneously with the same constant κ and µ for all subsets J0 of the
same size.

Results under global assumptions

As usual, when P > N , properties of the Dantzig estimate can be derived from assumptions on the
structure of the dictionary D. For l ∈ N, we denote

φmin(l) = min
|J|≤l

min
λ∈RP
λJ 6=0

||fλJ ||
2
2

||λJ ||2`2

and φmax(l) = max
|J|≤l

max
λ∈RP
λJ 6=0

||fλJ ||
2
2

||λJ ||2`2

.

These quantities correspond to the restricted eigenvalues of the Gram matrix G. Assuming that φmin(l)
and φmax(l) are close to 1 means that every set of columns of G with cardinality less than l behaves like
an orthonormal system. We also consider the restricted correlations

θl,l′ = max
|J|≤l
|J′|≤l′

J∩J′=∅

max
λ,λ′∈RP

λJ 6=0,λ′
J′ 6=0

〈fλJ , fλ′
J′
〉

||λJ ||`2 ||λ′J′ ||`2
.

Small values of θl,l′ mean that two disjoint sets of columns of G with cardinality less than l and l′ span
nearly orthogonal spaces. We will use one of the following assumptions considered by Bickel, Ritov, and
Tsybakov [BRT09].

• Assumption 1 For some integer 1 ≤ s ≤ P/2, we have

φmin(2s) > θs,2s. (A1(s))

Oracle inequalities of the Dantzig selector were established under this assumption in the parametric
linear model by Candès and Tao [CT07]. It was also considered by Bickel, Ritov, and Tsybakov
[BRT09] for non-parametric regression and for the Lasso estimate. The next assumption, proposed
by Bickel, Ritov, and Tsybakov [BRT09], constitutes an alternative to Assumption 1.

• Assumption 2 For some integers s and l such that

1 ≤ s ≤ P

2 , l ≥ s and s+ l ≤ P, (4.8)

we have

lφmin(s+ l) > sφmax(l). (A2(s,l))

If Assumption 2 holds for s and l such that l � s, then Assumption 2 means that φmin(l) cannot
decrease at a rate faster than l−1 and this condition is related to the incoherent designs condition
stated by Meinhausen and Yu [MY09].
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In the sequel, we set, under Assumption 1,

κ1,s =
√
φmin(2s)

(
1− θs,2s

φmin(2s)

)
> 0, µ1,s = θs,2s√

φmin(2s)

and under Assumption 2,

κ2,s,l =
√
φmin(s+ l)

(
1−

√
φmax(l)

φmin(s+ l)

√
s

l

)
> 0, µ2,s,l =

√
φmax(l)

√
s

l
.

Now, to apply Theorem 14, we need to check (LA(J0, κJ0 , µJ0 )) for some subset J0 of {1, . . . , P}. Either
Assumption 1 or Assumption 2 implies this assumption. Indeed, we have the following result.

Proposition 9. Let s and l two integers satisfying (4.8). We suppose that (A1(s)) or (A2(s,l)) holds.
Let J0 ⊂ {1, . . . , P} of size |J0| = s and λ ∈ RP , then Assumption LA(J0, κs,l, µs,l), namely,

||fλ||2 ≥ κs,l
||λJ0 ||`1√

s
− µs,l√

s

(
||λJC0 ||`1 − ||λJ0 ||`1

)
+
,

holds with κs,l = κ1,s and µs,l = µ1,s under (A1(s)) (respectively κs,l = κ2,s,l and µs,l = µ2,s,l under
(A2(s,l)). If (A1(s)) and (A2(s,l)) are both satisfied, κs,l = max(κ1,s, κ2,s,l) and µs,l = min(µ1,s, µ2,s,l).

Proposition 9 proves that Theorem 14 can be applied under Assumptions 1 or 2. In addition, the
constants κs,l and µs,l are the same for all subset J0 of size |J0| = s. From Theorem 14, we deduce the
following result.

Theorem 15. With probability at least 1 − C1(ε, δ, γ)P 1− γ
1+ε , for any two integers s and l satisfying

(4.8) such that (A1(s)) or (A2(s,l)) holds, we have for any α > 0,

||ŝD − s0||22 ≤ inf
λ∈RP

inf
J0⊂{1,...,P}
|J0|=s

{
||sλ − so||22 + α

(
1 + 2µs,l

κs,l

)2 Λ(λ, Jc0)2

s
+ 16s

(
1
α

+ 1
κ2
s,l

)
||ηγ ||2`∞

}
where

Λ(λ, Jc0) = ||λJC0 ||`1 +

(
||λ̂D||`1 − ||λ||`1

)
+

2 ,

and κs,l and µs,l are defined as in Proposition 9.

Remark that the best subset J0 of cardinal s in Theorem 15 can be easily chosen for a given λ: it is
given by the set of the s largest coordinates of λ. This was not necessarily the case in Theorem 14 for
which a different subset may give a better local condition and then may provide a smaller bound. If we
further assume the mild assumption (4.6) on the sup norm of the dictionary introduced in the previous
section, we deduce the following result.

Corollary 3. With probability at least 1−C1(ε, δ, γ)P 1− γ
1+ε , if (4.6) is satisfied, for any integers s and

l satisfying (4.8) such that (A1(s)) or (A2(s,l)) holds, we have for any α > 0, any λ that satisfies the
adaptive Dantzig constraint, and for the best subset J0 of cardinal s (that corresponds to the s largest
coordinates of λ in absolute value),

||ŝD − s0||22 ≤ ||sλ − s0||22 + αc2(1 + κ−2
s,l µ

2
s,l)
||λJC0 ||

2
`1

s
+ c3(α−1 + κ−2

s,l )s||f0||∞
logM
n

, (4.9)

where c2 is an absolute constant, c3 depends on c1 and γ, and κs,l and µs,l are defined as in Proposition 9.

Note that, when λ is s-sparse so that λJC0 = 0, the oracle inequality (4.9) corresponds to the classical
oracle inequality obtained in parametric frameworks (see Candès and Plan [CP09]; Candès and Tao
[CT07] for instance) or in non-parametric settings. See, for instance Bunea [Bu09]; Bunea, Tsybakov,
and Wegkamp [BTW06; BTW07a; BTW07b; BTW07c] or Geer [Ge08] but in these works, the functions
of the dictionary are assumed to be bounded by a constant independent of M and n. So, the adaptive
Dantzig estimate requires weaker conditions since under (4.6), ||ϕp||∞ can go to ∞ when n grows. This
point is capital for practical purposes, in particular when wavelet bases are considered.



74 CHAPTER 4. DENSITY ESTIMATION

4.2.4 Connections between the Dantzig and Lasso estimates
We show in this section the strong connections between Lasso and Dantzig estimates, which has already
been illustrated by Bickel, Ritov, and Tsybakov [BRT09] for non-parametric regression models. By
choosing convenient random weights depending on ηγ for `1-minimization, the Lasso estimate satisfies
the adaptive Dantzig constraint. More precisely, we consider the Lasso estimator given by the solution
of the following minimization problem

λ̂L,γ = argmin
λ∈RP

{
1
2R(λ) +

P∑
p=1

ηγ,p|λp|

}
, (4.10)

where

R(λ) = ||sλ||22 −
2
N

n∑
i=1

sλ(Xi).

Note that R(·) is the quantity minimized in unbiased estimation of the risk. For simplifications, we write
λ̂L = λ̂L,γ . We denote f̂L = fλ̂L . As said in Introduction, classical Lasso estimates are defined as the
minimizer of expressions of the form {

1
2R(λ) + η

P∑
p=1

|λp|

}
,

where η is proportional to
√

logP
N

. So, λ̂L appears as a data-driven version of classical Lasso estimates.
The first order condition for the minimization of the expression given in (4.10) corresponds exactly

to the adaptive Dantzig constraint and thus Theorem 15 always applies to λ̂L. Working along the lines
of the proof of Theorem 15, one can prove a slightly stronger result.

Theorem 16. With probability at least 1− C1(ε, δ, γ)P 1− γ
1+ε , for any integers s and l satisfying (4.8)

such that (A1(s)) or (A2(s,l)) holds, we have, for any J0 of size s and for any α > 0,

∣∣||ŝD − s0||22 − ||ŝL − s0||22
∣∣ ≤ α(1 + 2µs,l

κs,l

)2 ||λ̂L
JC0
||2`1

s
+ 16s

(
1
α

+ 1
κ2
s,l

)
||ηγ ||2`∞

where κs,l and µs,l are defined as in Proposition 9.

To extend this theoretical result, numerical performances of the Dantzig and Lasso estimates have
been performed in [Art-BLPR11 ].

4.2.5 Calibration
We present here only the results concerning the calibration of the previous estimate. We show that
the sufficient condition γ > 1 is almost a necessary condition since we derive a special and very simple
framework in which Lasso and Dantzig estimates cannot achieve the optimal rate if γ < 1 (almost means
that the case γ = 1 remains an open question). Let us describe this simple framework. The dictionary
D considered in this section is the orthonormal Haar system:

D =
{
φjk : −1 ≤ j ≤ j0, 0 ≤ k < 2j

}
,

with φ−10 = 1[0,1], 2j0+1 = n, and for 0 ≤ j ≤ j0, 0 ≤ k ≤ 2j − 1,

φjk = 2j/2
(
1[k/2j ,(k+0.5)/2j ] − 1[(k+0.5)/2j ,(k+1)/2j ]

)
.

In this case, P = N and, since functions of D are orthonormal, the Gram matrix G is the identity. Thus,
the Lasso and Dantzig estimates both correspond to the soft thresholding rule:

ŝD = ŝL =
p∑
p=1

sign(β̂p)
(
|β̂p| − ηγ,p

)
1{|β̂p|>ηγ,p}ϕp.
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Figure 4.1: Graphs of γ 7→ log2(Rn(γ)) for n = 2J with, from top to bottom, J = 4, 5, 6, . . . , 13

Now, our goal is to estimate f0 = φ−10 = 1[0,1] by using f̂D depending on γ and to show the influence of
this constant. Unlike previous results stated in probability, we consider the expectation of the L2-risk:
Theorem 17. On the one hand, if γ > 1, there exists a constant C such that

E||ŝD − s0||22 ≤
C logn
n

.

On the other hand, if γ < 1, there exist a constant c and δ < 1 such that

E||ŝD − s0||22 ≥
c

nδ
.

This result shows that choosing γ < 1 is a bad choice in our setting. Indeed, in this case, the
Lasso and Dantzig estimates cannot estimate a very simple signal (s0 = 1[0,1]) at a convenient rate of
convergence.

A small simulation study is carried out to strengthen this theoretical asymptotic result. Performing
our estimation procedure 100 times, we compute the average risk Rn(γ) for several values of the Dantzig
constant γ and several values of n. This computation is summarized in Figure 4.1 which displays the
logarithm of Rn(γ) for n = 2J with, from top to bottom, J = 4, 5, 6, . . . , 13 on a grid of γ’s around
1. To discuss our results, we denote by γmin(n) the best γ: γmin(n) = argminγ>0 Rn(γ). We note that
1/2 ≤ γmin(n) ≤ 1 for all values of n, with γmin(n) getting closer to 1 as n increases. Taking γ too
small strongly deteriorates the performance while a value close to 1 ensures a risk withing a factor 2
of the optimal risk. The assumption γ > 1 giving a theoretical control on the quadratic error is thus
not too conservative. Following these results, we set γ = 1.01 in our numerical experiments in the next
subsection.

4.3 Copula estimation by wavelet thresholding

We continue this chapter on density estimation by the study of a related, but different, problem: copula
estimations. In risk management, in the areas of finance, insurance and climatology, for example, this
new tool has been developed to model the dependence structure of data. It comes from the seminal
results of Sklar [Sk59]
Theorem 18 (Sklar (1959)). Let d ≥ 2 and H be a d−variate distribution function. If each margin
Sm, m = 1, . . . d, of H is continuous, a unique d−variate function C with uniform margins U[0,1] exists,
so that

∀(x1, . . . , xd) ∈ Rd, H(x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)).
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The distribution function C is called the copula associated with the distributionH. Sklar’s Theorem
allows us to separately study the laws of the coordinates Xm,m = 1, . . . d, of any vector X, and the
dependence between the coordinates.

The copula model has been extensively studied within a parametric framework. Numerous classes
of parametric copulas, parametric distribution functions C, have been proposed. For instance there is
the elliptic family, which contains the Gaussian copulas and the Student copulas, and the Archimedian
family, which contains the Gumbel copulas, the Clayton copulas and the Frank copulas. The first step
of such a parametric approach is to select the parametric family of the copula being considered. This is
a modeling task that may require finding new copula and methodologies to simulate the corresponding
data. Usual statistical inference (estimation of the parameters, goodness-of-fit test, etc) can only take
place in a second step. Both tasks have been extensively studied.

With F. Autin and K. Tribouley [Art-ALPT10 ], we propose to study the copula model within a non-
parametric framework. Our aim is to make very mild assumption about the copula. Thus, contrary to the
parametric setting, no a priori model of the phenomenon is needed. For practitioners, non-parametric
estimators could be seen as a benchmark that makes it possible to select the right parametric family by
comparing them to an agnostic estimate. In fact, most of the time, practitioners observe the scatter
plot of {(X1

i , X
2
i ), i = 1, . . . , N}, or {(R1

i , R
2
i ), i = 1, . . . , N} where R1 and R2S are the rank statistics

of respectively (X1
i ) and (X2

i ), and then attempt, on the basis of these observations, only to guess the
family of parametric copulas the target copula belongs to. Providing good non-parametric estimators of
the copula makes this task easier and provides a more rigorous way to describe the copula.

In our study, we propose non-parametric procedures to estimate the copula density c associated with
the copula C. More precisely, we consider the following model. We assume that we are observing an
N -sample (X1

1 , . . . , X
d
1 ), . . . , (X1

N , . . . , X
d
N ) of independent data with the same distribution S0 (and the

same density s0) as (X1, . . . , Xd). Referring to the margins of the coordinates of the vector (X1, . . . , Xd)
as F1, . . . , Fd, we are interested in estimating the copula density c0 defined as the derivative (if it exists)
of the copula distribution

c0(u1, . . . , ud) =
s0(F−1

1 (u1), . . . , F−1
d (ud))

f1(F−1
1 (u1)) . . . fd(F−1

d (ud))

where F−1
p (up) = inf{x ∈ R : Fp(x) ≥ up}, 1 ≤ p ≤ d and u = (u1, . . . , ud) ∈ [0, 1]d. This would be a

classical density model if the margins, and thus the direct observations, (U1
i = F1(X1

i ), . . . , Udi = Fd(Xd
i ))

for i = 1, . . . , n , were known. Unfortunately, this is not the case. We can observe that this model is
somewhat similar to the non-parametric regression model with unknown random design studied by
Kerkyacharian and Picard [KP04] with their warped wavelet families.

Instead of using the `1 strategy of the previous section, we use a projection based approach. More
precisely, we propose two wavelet-based methods, a Local Thresholding Method and a Global Thresholding
Method, that are both extensions of the methods studied by Donoho and Johnstone [DJ95]; Donoho,
Johnstone, Kerkyacharian, and Picard [Do+96]; Kerkyacharian, Picard, and Tribouley [KPT96] in the
classical density estimation framework. In the first, unbiased estimate of the wavelet coefficients are
thresholded independently while in the second one they are thresholded levelwise. We first measure the
performance for both estimators on all copula densities that are bounded and that belong to a very large
class of regularity. The good behavior of our procedures is due to the approximation properties of the
wavelet basis. A regular copula can be approximated by few non zero-wavelet coefficients leading to
estimators with both a small bias and small variance. The wavelet representation is connected to well-
known regularity spaces: Besov spaces, in particular, that contain Sobolev spaces or Holder spaces, can
be defined through the wavelet coefficients. Our first result in this setting is that the rate of convergence
of our estimators are:

1. optimal in the minimax sense (up to a logarithmic factor),

2. the same as in the standard density model. Using pseudo data instead of direct observations does
not damage the quality of the procedures.

It should be observed that the same behavior also arises for linear wavelet procedures (see Genest,
Masiello, and Tribouley [GMT09]). However, the linear procedure is not adaptive in the sense that we
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need to know the regularity index of the copula density to obtain optimal procedures. We provide here
a solution to this drawback.

Following the maxiset approach, we then characterize the precise set of copula densities estimated
at a given polynomial rate for our procedures. We verify that the local one outperforms the others, in
the sense that this is the procedure for which the set of copula densities estimated at a given rate is the
largest.

One of the main difficulties of copula density estimation lies in the fact that most of the pertinent
information is located near the boundaries of [0, 1]d (at least for the most common copulas like the
Gumbel copula or the Clayton copula). In the theoretical construction, we use a family of wavelets
especially designed for this case: they extend only within the compact set [0, 1]d, do not thus cross the
boundary and are optimal in terms of the approximation. In the practical construction, boundaries
remain an issue. Note that the theoretically optimal wavelets are rarely implemented and when they
are, they are not as efficient as in the theory. We propose an appropriate symmetrization/periodization
process of the original data here in order to deal with this problem and also enhance the scheme by
adding some translation invariance. We numerically verify the good behavior of the proposed scheme for
simulated data with the usual parametric copula families. In [Art-ALPT10 ], we illustrate those resylts
by an application on financial data by proposing a method to choose the parametric family and the
parameters based on a preliminary non-parametric estimator used as a benchmark. Our contribution is
thus also to propose an implementation that is very easy to use and that provides good estimators.

4.3.1 Estimation procedures
For a copula density c0 belonging to L2([0, 1]d), estimation of c0 is equivalent to estimation of its wavelet
coefficients. It turns out that this can be easily done. Observe that, for any d−variate function Φ

Ec0 (Φ(U1, . . . , Ud)) = Es0

(
Φ(F1(X1), . . . , Fd(Xd))

)
or equivalently∫

[0,1]d
Φ(u)c0(u)du =

∫
Rd

Φ(F1(x1), . . . , Fd(xd))s0(x1, . . . , xd)dx1 . . . dxd .

This means that the wavelet coefficients of the copula density c0 on the wavelet basis are equal to the
coefficients of the joint density s0 on the warped wavelet family

{φj0,k(F1(·), . . . , Fd(·)), ψεj,`(F1(·), . . . , Fd(·))

|j ≥ j0, k ∈ {0, . . . , 2j0}d, ` ∈ {0, . . . , 2j}d, ε ∈ Sd}.

The corresponding empirical coefficients are

ĉj0,k = 1
n

n∑
i=1

φj0,k(F1(X1
i ), . . . , Fd(Xd

i ))

and

ĉεj,k = 1
n

n∑
i=1

ψεj,k(F1(X1
i ), . . . , Fd(Xd

i )). (4.11)

These coefficients cannot be evaluated since the distributions functions associated to the margins F1, . . . , Fd
are unknown. We propose to replace these unknown distributions functions by their corresponding em-
pirical distributions functions F̂1, . . . F̂d. The modified empirical coefficients are

c̃j0,k = 1
n

n∑
i=1

φj0,k(F̂1(X1
i ), . . . , F̂d(Xd

i )) = 1
n

n∑
i=1

φj0,k

(
R1
i − 1
n

, . . . ,
Rdi − 1
n

)
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and

c̃εj,k = 1
n

n∑
i=1

ψεj,k(F̂1(X1
i ), . . . , F̂d(Xd

i )) = 1
n

n∑
i=1

ψεj,k

(
R1
i − 1
n

, . . . ,
Rdi − 1
n

)
where Rpi denotes the rank of Xp

i for p = 1, . . . , d

Rpi =
n∑
l=1

1{Xp
l ≤ X

p
i }.

The most natural way to estimate the density c0 is to reconstruct a function from the modified
empirical coefficients. We consider here the very general family of truncated estimators of c0 defined
by

c̃T := c̃T (jn, Jn) =
∑
k

c̃jn,kφjn,k +
Jn∑
j=jn

∑
k,ε

ωεj,k c̃
ε
j,kψ

ε
j,k, (4.12)

where the indices (jn, Jn) are such that jn ≤ Jn and where, for any (j, k, ε), ωεj,k belongs to {0, 1}. Notice
that ωεj,k may or may not depend on the observations.

The later case has been considered by Genest, Masiello, and Tribouley [GMT09] who proposed to
use a linear procedure

c̃L := c̃L(jn) =
∑
k

c̃jn,kφjn,k (4.13)

for a suitable choice of jn. The accuracy of this linear procedure relies on the fast uniform decay of
the wavelets coefficients across the scale as soon as the function is uniformly regular. The trend at the
chosen level jn becomes a sufficient approximation. The optimal choice of jn depends on the regularity
of the unknown function to be estimated and thus the procedure is not data-driven.

We propose here to use some non linear procedures based on hard thresholding (see for instance Kerky-
acharian and Picard [KP92], Kerkyacharian and Picard [KP00], and Donoho and Johnstone [DJ95])) that
overcome this issue. In hard thresholding procedures, the small coefficients are killed by setting the cor-
responding ωεj,k to 0. They differ by the definition of small. We study here two strategies: a local one,
where each coefficient is considered individually, and a global one, where all the coefficients at the same
scale are considered globally.

For a given threshold level λn > 0 and a set of indices (jn, Jn), the local hard threshold weights ωε,Lj,k
and the global hard threshold weights ωε,Gj,k are defined respectively by

ωε,HLj,k = 1{|c̃εj,k| > λn}. and ωε,HGj,k = 1{
∑
k

|c̃εj,k|
2 > 2jdλ2

n} .

Let us put c̃ε,HLj,k = ωε,HLj,k c̃εj,k and c̃ε,HGj,k = ωε,HGj,k c̃εj,k. The corresponding local hard thresholding estima-
tors c̃HL and global hard thresholding estimators c̃HG are defined respectively by

c̃HL := c̃HL(jn, Jn, λn) =
∑
k

c̃jn,kφjn,k +
Jn∑
j=jn

∑
k,ε

c̃ε,HLj,k ψεj,k. (4.14)

and

c̃HG := c̃HG(jn, Jn, λn) =
∑
k

c̃jn,kφjn,k +
Jn∑
j=jn

∑
k,ε

c̃ε,HGj,k ψεj,k. (4.15)

The non linear procedures given in (4.14) and (4.15) depend on the level indices (jn, Jn) and on the
threshold value λn. In the next section, we define a criterion to measure the performance of our proce-
dures and explain how to choose those parameters to achieve optimal performance.
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4.3.2 Minimax Results
Provided the wavelet used is regular enough, Genest, Masiello, and Tribouley [GMT09] prove that the
linear procedure c̃L = c̃L(j∗n) defined in (4.13) is minimax optimal on the Besov body Bs2∞ for all s > 0
provided j∗n is chosen so that:

2j
∗
n−1 < n

1
2s+d ≤ 2j

∗
n .

As hinted in a previous section, this result is not fully satisfactory because the optimal procedure depends
on the regularity s of the density which is generally unknown.

The thresholding procedures described in (4.14) and (4.15) do not suffer from this drawback: the
same choice of parameters jn, JN and λn yields an almost minimax optimal estimator simultaneously
for any Bs2,∞. The following theorem (which is a direct consequence of Theorem 20 established in the
following section) ensure indeed that

Theorem 19. Assume that the wavelet is continuously differentiable and let s > 0. For any choice of
level jn and Jn and threshold λn such that

2jn−1 < (log(n))1/d ≤ 2jn , 2Jn−1 <

(
n

logn

)1/d

≤ 2Jn , λn =

√
κ log(n)

n

for some κ large enough,

∀s > 0, c ∈ Bs2∞ ∩ L∞([0, 1]d) =⇒ sup
n

(
n

log(n)

) 2s
2s+d

E‖c̃− c0‖22 <∞

where c̃ stands either for the hard local thresholding procedure c̃HL(jn, Jn, λn) or for the hard global
thresholding procedure c̃HG(jn, Jn, λn).

Observe that, when s > d/2, one has the embedding Bs2∞ ( L∞([0, 1]d), and thus the assumption
c0 ∈ Bs2∞ ∩ L∞([0, 1]d) in Theorem 19 could be replaced simply by c0 ∈ Bs2∞.

We immediately deduce

Corollary 4. The hard local thresholding procedure c̃HL and the hard global thresholding procedure c̃HG
are adaptive minimax optimal up to a logarithmic factor on the Besov bodies Bs2∞ for the quadratic loss
function.

Notice that this logarithmic factor is nothing but the classical price of adaptivity.
As always, the minimax theory requires the choice of the functional space F or of a sequence of

functional spaces Fs. The arbitrariness of this choice is the main drawback of the minimax approach.
Indeed, Corollary 4 establishes that no other procedures could be uniformly better on the spaces Bs2∞
but it does not address two important questions. What about a different choice of spaces? Both of our
thresholding estimators achieve the minimax rate on the spaces Bs2,∞ but is there a way to distinguish
their performance? To answer to these questions, we propose to explore the maxiset approach.

4.3.3 Maxiset Results
We define here the local weak Besov spaces WL(r) and the global weak Besov spaces WG(r) by

Definition 4 (Local weak Besov spaces). For any 0 < r < 2, a function c ∈ L2([0, 1]d) belongs
to the local weak Besov space WL(r) if and only if its sequence of wavelet coefficients cεj,k satisfies the
following equivalent properties:

• sup
0<λ≤1

λr−2
∑
j≥0

∑
k,ε

(cεj,k)21{|cεj,k| ≤ λ} <∞,

• sup
0<λ≤1

λr
∑
j≥0

∑
k,ε

1{|cεj,k| > λ} <∞.
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and

Definition 5 (Global weak Besov spaces). For any 0 < r < 2, a function c ∈ L2([0, 1]d) belongs to
the global weak Besov space WG(r) if and only if its sequence of wavelet coefficients cεj,k satisfies the
following equivalent properties:

• sup
0<λ≤1

λr−2
∑
j≥0

∑
k,ε

(cεj,k)21{
∑
k

(cεj,k)2 ≤ 2djλ2} <∞,

• sup
0<λ≤1

λr
∑
j≥0

2dj
∑
ε

1{
∑
k

(cεj,k)2 > 2djλ2} <∞.

As in the definition of the Besov bodies, the definition depends on the wavelet basis. However, as
established by Meyer [Me90] and Cohen, De Vore, Kerkyacharian, and Picard [Co+01], this dependency
is quite weak. Note that the equivalences between the properties used in the definitions of the weak
Besov spaces can be proved as in Cohen, De Vore, Kerkyacharian, and Picard [Co+01].

These spaces are clearly related to the Besov bodies Bs2,∞. Indeed some computation proves that
Bs2,∞ ⊂ WG

(
2d

2s+d

)
and Bs2,∞ ⊂ WL

(
2d

2s+d

)
. We have obtained the following strict inclusion property

Proposition 10. For any 0 < r < 2, WG(r) (WL(r).

We study the maxisets of the linear procedure and of the thresholding procedures. We focus on the
near minimax optimal procedures that is we use the only following choices of parameters:

2jn−1 < (log(n))1/d ≤ 2jn , 2Jn−1 <

(
n

log(n)

)1/d

≤ 2Jn

2j
∗
n−1 <

(
n

log(n)

) 1
2s+d

≤ 2j
∗
n , λn =

√
κ log(n)

n

for some κ > 0 and we study the linear estimator c̃L = c̃L(j∗n), the local thresholding estimator c̃HL =
c̃HL(jn, Jn, λn) and the global thresholding estimator c̃HG = c̃HG(jn, Jn, λn).

Let us fix s > 0. We focus on the rate rn =
(
n−1 log(n)

)2s/(2s+d) which is the (near) minimax rate
achieved on the space Bs2∞. The following theorem exhibits the maxisets of the three procedures with
this target rate rn.

Theorem 20. Let s > 0, and assume that c ∈ L∞([0, 1]d). For a large enough κ, we get

sup
n

(
n

log(n)

) 2s
2s+d

E‖c̃L − c‖2
2 <∞ ⇐⇒ c ∈ Bs2∞, (4.16)

sup
n

(
n

log(n)

) 2s
2s+d

E‖c̃HL − c‖2
2 <∞ ⇐⇒ c ∈ B

ds
2s+d
2∞ ∩WL(

2d

2s + d
), (4.17)

sup
n

(
n

log(n)

) 2s
2s+d

E‖c̃HG − c‖2
2 <∞ ⇐⇒ c ∈ B

ds
2s+d
2∞ ∩WG(

2d

2s + d
). (4.18)

Note that the same spaces arise if we assume that the marginal distributions are known (see Autin,
Le Pennec, and Tribouley [Unpub-ALPT08 ]). This is also a nice result to prove that the lack of direct
observations does not make the problem harder.

The following strict embedding,

Bs2∞ ( B
ds

2s+d
2∞ ∩WG( 2d

2s+ d
)

implies

Corollary 5. Let s > 0 and let us consider the target rate

rn =
(

log(n)
n

) 2s
2s+d

. (4.19)
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Then we get

MS(c̃L, rn) (MS(c̃HG, rn) (MS(c̃HL, rn).

In other words, in the maxiset point of view and when the quadratic loss is considered, the threshold-
ing rules outperform the linear procedure. Moreover, the hard local thresholding estimator c̃HL appears
to be the best estimator among the considered procedures since it strictly outperforms the hard global
thresholding estimator c̃HG.

Numerical aspects of the thresholding estimation have been considered. We refer to the article for
those aspects.

To summarize, when the unknown copula density is uniformly regular (in the sense that it is not too
peaky on the corners), the thresholding wavelet procedures associated with the symmetrization extension
produce good non parametric estimation. If the copula presents strong peaks at the corner (for instance
the Clayton copula which has a large Kendall tau), our method is much less efficient. We think that
improvements will come from a new family of wavelet adapted to singularity on the corners.

As shown in our numerical experiments, those procedures can be used in the popular two steps
decision procedure: first use a nonparametric estimator to decide which copula family to consider and
second estimate the parameters within this family. We do not claim that the plug-in method used with
our estimate as a benchmark is optimal (it is slightly biased), but it provides a simple single framework.
We did not study here the properties of such an estimator or of the corresponding goodness-of-fit test
problem and refer to Gayraud and Tribouley [GT11] for this issue.
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Chapter 5

Conditional density estimation

5.1 Conditional density, maximum likelihood and model selection

This is a model I have studied the most during the last three years at SELECT. In this framework, we
observe N pairs ((Xi, Yi))1≤i≤N of random variables, we are interested in estimating the law of the second
one Yi ∈ Y, called variable, conditionally to the first one Xi ∈ X , called covariate. In this study, we
assume that the pairs (Xi, Yi) are independent while Yi depends on Xi through its law. More precisely,
we assume that the covariates Xi’s are independent but not necessarily identically distributed. The
assumptions on the Yis are stronger: we assume that, conditionally to the Xi’s, they are independents
and each variable Yi follows a law with density s0(·|Xi) with respect to a common known measure dλ.
Our goal is to estimate this two-variable conditional density function s0(·|·) from the observations.

This problem has been introduced by Rosenblatt [Ro69] in the late 60’s. He considered a stationary
framework in which s0(y|x) is linked to the supposed existing densities s0′(x) and s0′′(x, y) of respectively
Xi and (Xi, Yi) by

s0(y|x) = s0′′(x, y)
s0′(x) ,

and proposed a plugin estimate based on kernel estimation of both s0′(x) and s0′′(x, y). Few other
references on this subject seem to exist before the mid 90’s with a study of a spline tensor based
maximum likelihood estimator proposed by Stone [St94] and a bias correction of Rosenblatt’s estimator
due to Hyndman, Bashtannyk, and Grunwald [HBG96].

Kernel based method have been much studied since. For instance, Fan, Yao, and Tong [FYT96] and
Gooijer and Zerom [GZ03] consider local polynomial estimator, Hall, Wolff, and Yao [HWY99] study a
locally logistic estimator that is later extended by Hyndman and Yao [HY02]. In this setting, pointwise
convergence properties are considered, and extensions to dependent data are often obtained. The results
depend however on a critical bandwidth that should be chosen according to the regularity of the unknown
conditional density. Its practical choice is rarely discussed with the notable exceptions of Bashtannyk
and Hyndman [BH01], Fan and Yim [FY04] and Hall, Racine, and Li [HRL04]. Extensions to censored
cases have also been discussed for instance by Keilegom and Veraverbeke [KV02]. See for instance Li
and Racine [LR07] for a comprehensive review of this topic.

In the approach of Stone [St94], the conditional density is estimated through a parametrized mod-
elization. This idea has been reused since by Györfi and Kohler [GK07] with a histogram based approach,
by Efromovich [Ef07; Ef10] with a Fourier basis, and by Brunel, Comte, and Lacour [BCL07] and Akakpo
and Lacour [AL11] with piecewise polynomial representation. Those authors are able to control an inte-
grated estimation error: with an integrated total variation loss for the first one and a quadratic distance
loss for the others. Furthermore, in the quadratic framework, they manage to construct adaptive es-
timators, estimators that do not require the knowledge of the regularity to be minimax optimal (up
to a logarithmic factor), using respectively a blockwise attenuation principle and a model selection by
penalization approach. Note that Brunel, Comte, and Lacour [BCL07] extend their result to censored
cases while Akakpo and Lacour [AL11] are able to consider weakly dependent data.

83
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The very frequent use of conditional density estimation in econometrics, see Li and Racine [LR07] for
instance, could have provided a sufficient motivation for this study. However it turns out that this work
stems from a completely different subject: unsupervised hyperspectral image segmentation. Using the
synchrotron beam of Soleil, the IPANEMA platform [Art-Be+11 ], in which S. Cohen is working, is able
to acquire high quality hyperspectral images, high resolution images for which a spectrum is measured
at each pixel location. This provides rapidly a huge amount of data for which an automatic processing
is almost necessary. One of these processings is the segmentation of these images into homogeneous
zones, so that the spectral analysis can be performed on fewer places and the geometrical structures can
be exhibited. The most classical unsupervised classification method relies on the density estimation of
Gaussian mixture by a maximum likelihood principle. Components of the estimated mixtures correspond
to classes. In the spirit of Kolaczyk, Ju, and Gopal [KJG05] and Antoniadis, Bigot, and Sachs [ABS08],
with S. Cohen, I have extended this method by taking into account the localization of the pixel in the
mixing proportions, going thus from density estimation to conditional density estimation. As stressed
by Maugis and Michel [MM12a; MM12b], understanding finely the density estimator is crucial to be able
to select the right number of classes. This work has been motivated by a similar issue for the conditional
density estimation case.

Measuring losses in a conditional density framework can be performed in various way. We focus
here on averaged density losses. Namely, let ` be a density loss and a design on the Xi’s, we define a
corresponding tensorized loss `⊗n by

`⊗n(s, t) = 1
N

N∑
i=1

E [` (s(·|Xi), t(·|Xi))] .

Although this loss may seems, at first, artificial, it is the most natural one. Furthermore, it reduces to
classical one in several cases:

• If the law of Yi is independent of Xi, that is s(·|Xi) = s(·) and t(·|Xi) = t(·) do not depend on Xi,
this loss reduces to the classical `(s, t).

• If the Xi’s are not random but fixed, that is we consider a fixed design case, this loss is the classical
fixed design type loss in which there is no expectation.

• If the Xi’s are i.i.d., this divergence is nothing but E [`(s(·|X1), t(·|X1))] .

• If the density of the law of anXi is lower and upper bounded on its support then E [`(s(·|Xi), t(·|Xi))]
can be replaced by

∫
SuppXi

`(s(·|Xi), t(·|Xi)), up to a multiplicative constant.

We stress that these types of loss is similar to the one used in the machine-learning community (see for
instance Catoni [Ca07] that has inspired our notations). Such kind of losses appears also, but less often,
in regression with random design (see for instance Birgé [Bi04]) or in other conditional density estimation
studies (see for instance Brunel, Comte, and Lacour [BCL07] and Akakpo and Lacour [AL11]). When
ŝ is an estimator, or any function that depends on the observation, KL⊗nλ (s, ŝ) measures this (random)
integrated divergence between s and ŝ conditionally to the observation while E

[
KL⊗nλ (s, ŝ)

]
is the average

of this random quantity with respect to the observations.
When the losses considered are the quadratic loss or the Kullback-Leibler divergence, two natural

contrasts appear: for the quadratic loss,

γ(s) = 1
N

N∑
i=1

1
2‖s(·|Xi)‖

2
2 − s(Yi|Xi) (5.1)

and for the Kullback-Leibler divergence

γ(s) = 1
N

N∑
i=1

−log (s(Yi|Xi)) . (5.2)
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We refer to Brunel, Comte, and Lacour [BCL07] and Akakpo and Lacour [AL11] for the first case and
focus only to the second case.

More precisely, we consider a direct estimation of the conditional density function through this
maximum likelihood approach. Although natural, this approach has been considered so far only by Stone
[St94] as mentioned before and by Blanchard, Schäfer, Rozenholc, and Müller [Bl+07] in a classification
setting with histogram type estimators. Assume we have a set Sm of candidate conditional densities,
our estimate ŝm is simply the maximum likelihood estimate

ŝm = argmin
sm∈Sm

(
−

N∑
i=1

logsm(Yi|Xi)

)
.

Although this estimator may look like a maximum likelihood estimator of the joint density of (Xi, Yi),
it does not generally coincide, even when the Xi’s are assumed to be i.i.d., with such an estimator as
every function of Sm is assumed to be a conditional density and not a density. The only exceptions are
when the Xi’s are assumed to be i.i.d. uniform or non random and equal. Our aim is then to analyze
the finite sample performance of such an estimator in term of Kullback-Leibler type loss. As often, a
trade-off between a bias term measuring the closeness of s0 to the set Sm and a variance term depending
on the complexity of the set Sm and on the sample size appears. A good set Sm is thus one for which
this trade-off leads to a small risk bound.

For any model Sm, a set comprising some candidate conditional densities, we estimate s0 by the
conditional density ŝm that maximizes the likelihood (conditionally to (Xi)1≤i≤N ) or equivalently that
minimizes the opposite of the log-likelihood, denoted -log-likelihood from now on:

ŝm = argmin
sm∈Sm

(
N∑
i=1

−log(sm(Yi|Xi))

)
.

To avoid existence issue, we should work with almost minimizer of this quantity and define a η -log-
likelihood minimizer as any ŝm that satisfies

N∑
i=1

−log(ŝm(Yi|Xi)) ≤ inf
sm∈Sm

(
N∑
i=1

−log(sm(Yi|Xi))

)
+ η.

We are working with a maximum likelihood approach and thus the Kullback-Leibler divergence KL.
As we consider law with densities with respect to the known measure dλ, we use the following notation

KLλ(s, t) = KL(sdλ, tdλ) =
{
−
∫

Ω log
(
t
s

)
sdλ if sdλ� tdλ

+∞ otherwise

where sdλ � tdλ means ⇔ ∀Ω′ ⊂ Ω,
∫

Ω′ tdλ = 0 =⇒
∫

Ω′ sdλ = 0. As explained before, as we deal
with conditional densities and not classical densities, the previous divergence should be adapted so that
we use the following tensorized divergence:

KL⊗nλ (s, t) = E

[
1
N

N∑
i=1

KLλ(s(·|Xi), t(·|Xi))

]
.

5.2 Single model maximum likelihood estimate

5.2.1 Asymptotic analysis of a parametric model
Assume that Sm is a parametric model of conditional densities,

Sm =
{
sθm(y|x)

∣∣θm ∈ Θm ⊂ RDm
}
,
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to which the true conditional density s0 does not necessarily belongs. In this case, if we let

θ̂m = argmin
θm∈Θm

(
N∑
i=1

−log(sθm(Yi|Xi))

)
then ŝm = s

θ̂m
. White [Wh92] has studied this misspecified model setting for density estimation but its

results can easily been extended to the conditional density case.
If the model is identifiable and under some (strong) regularity assumptions on θm 7→ sθm , provided

the Dm ×Dm matrices A(θm) and B(θm) defined by

A(θm)k,l = E

[
1
N

N∑
i=1

∫
−∂2 log sθm
∂θm,k∂θm,l

(y|Xi) s0(y|Xi)dλ

]

B(θm)k,l = E

[
1
N

N∑
i=1

∫
∂ log sθm
∂θm,k

(y|Xi)
∂ log sθm
∂θm,l

(y|Xi) s0(y|Xi)dλ

]
exists, the analysis of White [Wh92] implies that, if we let

θ?m = argmin
θm∈Θm

KL⊗nλ (s0, sθm),

E
[
KL⊗nλ (s0, ŝm)

]
is asymptotically equivalent to

KL⊗nλ (s0, sθ?m) + 1
2N Tr(B(θ?m)A(θ?m)−1).

When s0 belongs to the model, i.e. s0 = sθ?m , B(θ?m) = A(θ?m) and thus the previous asymptotic
equivalent of E

[
KL⊗nλ (s0, ŝm)

]
is the classical parametric one

min
θm

KL⊗nλ (s0, sθm) + 1
2N Dm.

This simple expression does not hold when s0 does not belong to the parametric model as Tr(B(θ?m)A(θ?m)−1)
cannot generally be simplified.

A short glimpse on the proof of the previous result shows that it depends heavily on the asymp-
totic normality of

√
N(θ̂m − θ?m). One may wonder if extension of this result, often called the Wilk’s

phenomenon [Wi38], exists when this normality does not hold, for instance in non parametric case or
when the model is not identifiable. Along these lines, Fan, Zhang, and Zhang [FZZ01] propose a gen-
eralization of the corresponding Chi-Square goodness-of-fit test in several settings and Boucheron and
Massart [BM11] study the finite sample deviation of the corresponding empirical quantity in a bounded
loss setting.

Our aim is to derive a non asymptotic upper bound of type

E
[
KL⊗nλ (s0, ŝm)

]
≤
(

min
sm∈Sm

KL⊗nλ (s0, sm) + 1
2N Dm

)
+ C2

1
N

with as few assumptions on the conditional density set Sm as possible. Note that we only aim at having
an upper bound and do not focus on the (important) question of the existence of a corresponding lower
bound.

Our answer is far from definitive, the upper bound we obtained is the following weaker one

E
[
JKL⊗nρ,λ(s0, ŝm)

]
≤ (1 + ε)

(
inf

sm∈Sm
KL⊗nλ (s0, sm) + κ0

N
Dm

)
+ C2

1
N

in which the left-hand KL⊗nλ (s0, ŝm) has been replaced by a smaller divergence JKL⊗nρ,λ(s0, ŝm) described
below, ε can be chosen arbitrary small, Dm is a model complexity term playing the role of the dimension
Dm and κ0 is a constant that depends on ε. This result has nevertheless the right bias/variance trade-off
flavor and can be used to recover usual minimax properties of specific estimators.
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5.2.2 Jensen-Kullback-Leibler divergence and bracketing entropy
The main visible loss is the use of a divergence smaller than the Kullback-Leibler one (but larger than
the squared Hellinger distance and the squared L1 loss whose definitions are recalled later). Namely, we
use the Jensen-Kullback-Leibler divergence JKLρ with ρ ∈ (0, 1) defined by

JKLρ(sdλ, tdλ) = JKLρ,λ(s, t) = 1
ρ
KLλ (s, (1− ρ)s+ ρt) .

Note that this divergence appears explicitly with ρ = 1
2 in Massart [Ma07], but can also be found

implicitly in Birgé and Massart [BM98] and Geer [Ge95]. We use the name Jensen-Kullback-Leibler
divergence in the same way Lin [Li91] uses the name Jensen-Shannon divergence for a sibling in his
information theory work. The main tools in the proof of the previous inequality are deviation inequalities
for sums of random variables and their suprema. Those tools require a boundness assumption on the
controlled functions that is not satisfied by the -log-likelihood differences −log sm

s0
. When considering

the Jensen-Kullback-Leibler divergence, those ratios are implicitly replaced by ratios − 1
ρ
log (1−ρ)s0+ρsm

s0
that are close to the -log-likelihood differences when the sm are close to s0 and always upper bounded by
− log(1−ρ)

ρ
. This divergence is smaller than the Kullback-Leibler one but larger, up to a constant factor,

than the squared Hellinger one, d2
λ(s, t) =

∫
Ω |
√
s −
√
t|2dλ, and the squared L1 distance, ‖s − t‖2λ,1 =(∫

Ω |s− t|dλ
)2, as proved in our technical report [Unpub-CLP11a]

Proposition 11. For any probability measures sdλ and tdλ and any ρ ∈ (0, 1)

Cρ d
2
λ(s, t) ≤ JKLρ,λ(s, t) ≤ KLλ(s, t).

with Cρ = 1
ρ

min
(

1− ρ
ρ

, 1
)(

log
(

1 + ρ

1− ρ

)
− ρ
)

while

max(Cρ/4, ρ/2)‖s− t‖2λ,1 ≤ JKLρ,λ(s, t) ≤ KLλ(s, t).

Furthermore, if sdλ� tdλ then

d2
λ(s, t) ≤ KLλ(s, t) ≤

(
2 + log

∥∥∥s
t

∥∥∥
∞

)
d2
λ(s, t)

while
1
2‖s− t‖

2
λ,1 ≤ KLλ(s, t) ≤

∥∥∥1
t

∥∥∥
∞
‖s− t‖2λ,2.

More precisely, as we are in a conditional density setting, we use their tensorized versions

d2⊗n
λ (s, t) = E

[
1
N

N∑
i=1

d2
λ(s(·|Xi), t(·|Xi))

]
and JKL⊗nρ,λ(s, t) = E

[
1
N

N∑
i=1

JKLρ,λ(s(·|Xi), t(·|Xi))

]
.

We focus now on the definition of the model complexity Dm. It involves a bracketing entropy
condition on the model Sm with respect to the Hellinger type divergence d⊗nλ (s, t) =

√
d2⊗n
λ (s, t). A

bracket [t−, t+] is a pair of functions such that ∀(x, y) ∈ X ×Y, t−(y|x) ≤ t+(y|x). A conditional density
function s is said to belong to the bracket [t−, t+] if ∀(x, y) ∈ X × Y, t−(y|x) ≤ s(y|x) ≤ t+(y|x).
The bracketing entropy H[·],d⊗n

λ

(δ, S) of a set S is defined as the logarithm of the minimum number of
brackets [t−, t+] of width d⊗nλ (t−, t+) smaller than δ such that every function of S belongs to one of these
brackets. Dm depends on the bracketing entropies not of the global models Sm but of the ones of smaller
localized sets Sm(s̃, σ) =

{
sm ∈ Sm

∣∣d⊗nλ (s̃, sm) ≤ σ
}
. Indeed, we impose a structural assumption:

Assumption (Hm). There is a non-decreasing function φm(δ) such that δ 7→ 1
δ
φm(δ) is non-increasing

on (0,+∞) and for every σ ∈ R+ and every sm ∈ Sm∫ σ

0

√
H[·],d⊗n

λ

(δ, Sm(sm, σ)) dδ ≤ φm(σ).
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Note that the function σ 7→
∫ σ

0

√
H[·],d⊗n

λ

(δ, Sm) dδ does always satisfy this assumption. Dm is then

defined as nσ2
m with σ2

m the unique root of 1
σ
φm(σ) =

√
Nσ. A good choice of φm is one which leads

to a small upper bound of Dm. This bracketing entropy integral, often call Dudley integral, plays an
important role in empirical processes theory, as stressed for instance in Vaart and Wellner [VW96] and
in Kosorok [Ko08]. The equation defining σm corresponds to a crude optimization of a supremum bound
as shown explicitly in the proof. This definition is obviously far from being very explicit but it turns out
that it can be related to an entropic dimension of the model. Recall that the classical entropy dimension
of a compact set S with respect to a metric d can be defined as the smallest non negative real D such
that there is a non negative V such that

∀δ > 0, Hd(δ, S) ≤ V +D log
(1
δ

)
where Hd is the classical entropy with respect to metric d. The parameter V can be interpreted as the
logarithm of the volume of the set. Replacing the classical entropy by a bracketing one, we define the
bracketing dimension Dm of a compact set as the smallest real D such that there is a V such

∀δ > 0, H[·],d(δ, S) ≤ V +D log
(1
δ

)
.

As hinted by the notation, for parametric model, under mild assumption on the parametrization, this
bracketing dimension coincides with the usual one. Under such assumption, one can prove that Dm is
proportional to Dm. More precisely, working with the localized set Sm(s, σ) instead of Sm, we obtain,
in our technical report [Unpub-CLP11a],

Proposition 12. • if ∃Dm ≥ 0, ∃Cm ≥ 0,∀δ ∈ (0,
√

2], H[·],d⊗n
λ

(δ, Sm) ≤ Vm +Dmlog 1
δ
then

– if Dm > 0, (Hm) holds with Dm ≤

(
2C?,m + 1 +

(
log N

eC?,mDm

)
+

)
Dm with C?,m =(√

Vm
Dm +

√
π
)2

,

– if Dm = 0, (Hm) holds with φm(σ) = σ
√
Vm such that Dm = Vm,

• if ∃Dm ≥ 0,∃Vm ≥ 0, ∀σ ∈ (0,
√

2], ∀δ ∈ (0, σ], H[·],d⊗n
λ

(δ, Sm(sm, σ)) ≤ Vm +Dmlogσ
δ

then

– if Dm > 0, (Hm) holds with φm such that Dm = C?,mDm with C?,m =
(√

Vm
Dm +

√
π
)2

,

– if Dm = 0, (Hm) holds with φm(σ) = σ
√
Vm such that Dm = Vm.

Note that we assume bounds on the entropy only for δ and σ smaller than
√

2, but, as for any
conditional densities pair (s, t) d⊗nλ (s, t) ≤

√
2,

H[·],d⊗n
λ

(δ, Sm(sm, σ)) = H[·],d⊗n
λ

(δ ∧
√

2, Sm(sm, σ ∧
√

2))

which implies that those bounds are still useful when δ and σ are large. Assume now that all models
are such that VmDm ≤ C, i.e. their log-volumes Vm grow at most linearly with the dimension (as it is
the case for instance for hypercubes with the same width). One deduces that Assumptions (Hm) hold
simultaneously for every model with a common constant C? =

(√
C +
√
π
)2. The model complexity Dm

can thus be chosen roughly proportional to the dimension in this case, this justifies the notation as well
as our claim at the end of the previous section.
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5.2.3 Single model maximum likelihood estimation

For technical reason, we also need a separability assumption on our model:

Assumption (Sepm). There exist a countable subset S′m of Sm and a set Y ′m with λ(Y \Y ′m) = 0 such
that for every t ∈ Sm, there exists a sequence (tk)k≥1 of elements of S′m such that for every x and for
every y ∈ Y ′m, log (tk(y|x)) goes to log (t(y|x)) as k goes to infinity.

We are now ready to state our risk bound theorem:

Theorem 21. Assume we observe (Xi, Yi) with unknown conditional density s0. Assume Sm is a set
of conditional densities for which Assumptions (Hm) and (Sepm) hold and let ŝm be a η -log-likelihood
minimizer in Sm

N∑
i=1

−log(ŝm(Yi|Xi)) ≤ inf
sm∈Sm

(
N∑
i=1

−log(sm(Yi|Xi))

)
+ η

Then for any ρ ∈ (0, 1) and any C1 > 1, there are two constants κ0 and C2 depending only on ρ and
C1 such that, for Dm = nσ2

m with σm the unique root of 1
σ
φm(σ) =

√
Nσ, the likelihood estimate ŝm

satisfies

E
[
JKL⊗nρ,λ(s0, ŝm)

]
≤ C1

(
inf

sm∈Sm
KL⊗nλ (s0, sm) + κ0

N
Dm

)
+ C2

1
N

+ η

N
.

This theorem holds without any assumption on the design Xi, in particular we do not assume that
the covariates admit upper or lower bounded densities. The law of the design appears however in the
divergence JKL⊗nλ and KL⊗nλ used to assess the quality of the estimate as well as in the definition of
the divergence d⊗nλ used to measure the bracketing entropy. By construction, those quantities however
do not involve the values of the conditional densities outside the support of the Xis and put more focus
on the regions of high density of covariates than the other. Note that Assumption Hm could be further
localized: it suffices to impose that the condition on the Dudley integral holds for a sequence of minimizer
of d2⊗n

λ (s0, sm).
We obtain thus a bound on the expected loss similar to the one obtained in the parametric case

that holds for finite sample and that do not require the strong regularity assumptions of White [Wh92].
In particular, we do not even require an identifiability condition in the parametric case. As often in
empirical processes theory, the constant κ0 appearing in the bound is pessimistic. Even in a very simple
parametric model, the current best estimates are such that κ0Dm is still much larger than the variance
of Section 5.2.1. Numerical experiments show there is a hope that this is only a technical issue. The
obtained bound quantifies however the expected classical bias-variance trade-off: a good model should
be large enough so that the true conditional density is close from it but, at the same time, it should also
be small so that the Dm term does not dominate.

It should be stressed that a result of similar flavor could have been obtained by the information
theory technique of Barron, Huang, Li, and Luo [Ba+08] and Kolaczyk, Ju, and Gopal [KJG05]. Indeed,
if we replace the set Sm by a discretized version Sm so that

inf
sm∈Sm

KL⊗nλ (s0, sm) ≤ inf
sm∈Sm

KL⊗nλ (s0, sm) + 1
N
,

then, if we let ŝm be a -log-likelihood minimizer in Sm,

E
[
D2⊗n
λ (s0, ŝm)

]
≤ inf
sm∈Sm

KL⊗nλ (s0, sm) + 1
N

log|Sm|+
1
N

where D2⊗n
λ is the tensorized Bhattacharyya-Renyi divergence, another divergence smaller than KL⊗n ,

|Sm| is the cardinality of Sm and expectation is taken conditionally to the covariates (Xi)1≤i≤N . As
verified by Barron, Huang, Li, and Luo [Ba+08] and Kolaczyk, Ju, and Gopal [KJG05], Sm can be
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chosen of cardinality of order lognDm when the model is parametric. We obtain thus also a bound of
type

E
[
D2⊗n
λ (s0, ŝm)

]
≤ inf
sm∈Sm

KL⊗nλ (s0, sm) + C1

N
lognDm + 1

N
.

with better constants but with a different divergence. The bound holds however only conditionally to
the design, which can be an issue as soon as this design is random, and requires to compute an adapted
discretization of the models.

5.3 Model selection and penalized maximum likelihood

5.3.1 Framework
A natural question is then the choice of the model. In the model selection framework, instead of a
single model Sm, we assume we have at hand a collection of models S = {Sm}m∈M. If we assume that
Assumptions (Hm) and (Sepm) hold for all models, then for every model Sm

E
[
JKL⊗nρ,λ(s0, ŝm)

]
≤ C1

(
inf

sm∈Sm
KL⊗nλ (s0, sm) + κ0

N
Dm

)
+ C2

1
N

+ η

N
.

Obviously, one of the models minimizes the right hand side. Unfortunately, there is no way to know
which one without knowing s0, i.e. without an oracle. Hence, this oracle model can not be used to
estimate s0. We nevertheless propose a data-driven strategy to select an estimate among the collection
of estimates {ŝm}m∈M according to a selection rule that performs almost as well as if we had known
this oracle.

As always, using simply the -log-likelihood of the estimate in each model
N∑
i=1

−log(ŝm(Yi|Xi))

as a criterion is not sufficient. It is an underestimation of the true risk of the estimate and this leads to
choose models that are too complex. By adding an adapted penalty pen(m), one hopes to compensate

for both the variance term and the bias between 1
N

∑N

i=1−log
ŝ
m̂

(Yi|Xi)

s0(Yi|Xi)
and infsm∈Sm KL⊗nλ (s0, sm).

For a given choice of pen(m), the best model S
m̂

is chosen as the one whose index is an almost minimizer
of the penalized η -log-likelihood :

N∑
i=1

−log(ŝ
m̂

(Yi|Xi)) + pen(m̂) ≤ inf
m∈M

(
N∑
i=1

−log(ŝm(Yi|Xi)) + pen(m)

)
+ η′.

The analysis of the previous section turns out to be crucial as the intrinsic complexity Dm appears
in the assumption on the penalty. It is no surprise that the complexity of the model collection itself
also appears. We need an information theory type assumption on our collection; we assume thus the
existence of a Kraft type inequality for the collection:
Assumption (K). There is a family (xm)m∈M of non-negative number such that∑

m∈M

e−xm ≤ Σ < +∞

It can be interpreted as a coding condition as stressed by Barron, Huang, Li, and Luo [Ba+08] where
a similar assumption is used. Remark that if this assumption holds, it also holds for any permutation of
the coding term xm. We should try to mitigate this arbitrariness by favoring choice of xm for which the
ratio with the intrinsic entropy term Dm is as small as possible. Indeed, as the condition on the penalty
is of the form

pen(m) ≥ κ (Dm + xm) ,

this ensures that this lower bound is dominated by the intrinsic quantity Dm.
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5.3.2 A general theorem for penalized maximum likelihood conditional density
estimation

Our main theorem is then:

Theorem 22. Assume we observe (Xi, Yi) with unknown conditional density s0. Let S = (Sm)m∈M be
at most countable collection of conditional density sets. Assume Assumption (K) holds while Assumptions
(Hm) and (Sepm) hold for every model Sm ∈ S. Let ŝm be a η -log-likelihood minimizer in Sm

N∑
i=1

−log(ŝm(Yi|Xi)) ≤ inf
sm∈Sm

(
N∑
i=1

−log(sm(Yi|Xi))

)
+ η

Then for any ρ ∈ (0, 1) and any C1 > 1, there are two constants κ0 and C2 depending only on ρ and
C1 such that, as soon as for every index m ∈M

pen(m) ≥ κ (Dm + xm) with κ > κ0

where Dm = nσ2
m with σm the unique root of 1

σ
φm(σ) =

√
Nσ, the penalized likelihood estimate ŝ

m̂
with

m̂ such that
N∑
i=1

−log(ŝ
m̂

(Yi|Xi)) + pen(m̂) ≤ inf
m∈M

(
N∑
i=1

−log(ŝm(Yi|Xi)) + pen(m)

)
+ η′

satisfies

E
[
JKL⊗nρ,λ(s0, ŝ

m̂
)
]
≤ C1 inf

m∈M

(
inf

sm∈Sm
KL⊗nλ (s0, sm) + pen(m)

N

)
+ C2

Σ
N

+ η + η′

N
.

Note that, as in 5.2.3, the approach of of Barron, Huang, Li, and Luo [Ba+08] and Kolaczyk, Ju,
and Gopal [KJG05] could have been used to obtain a similar result with the help of discretization.

This theorem extends Theorem 7.11 Massart [Ma07] which handles only density estimation. As in
this theorem, the cost of model selection with respect to the choice of the best single model is proved to
be very mild. Indeed, let pen(m) = κ(Dm + xm) then one obtains

E
[
JKL⊗nρ,λ(s0, ŝ

m̂
)
]

≤ C1 inf
m∈M

(
inf

sm∈Sm
KL⊗nλ (s0, sm) + κ

N
(Dm + xm)

)
+ C2

Σ
N

+ η + η′

N

≤ C1
κ

κ0

(
max
m∈M

Dm + xm
Dm

)
inf
m∈M

(
inf

sm∈Sm
KL⊗nλ (s0, sm) + κ0

N
Dm

)
+ C2

Σ
N

+ η + η′

N
.

As soon as the term xm is always small relatively to Dm, we obtain thus an oracle inequality that show
that the penalized estimate satisfies, up to a small factor, the bound of Theorem 21 for the estimate in
the best model. The price to pay for the use of a collection of model is thus small. The gain is on the
contrary very important: we do not have to know the best model within a collection to almost achieve
its performance.

So far we do not have discussed the choice of the model collection, it is however critical to obtain
a good estimator. There is unfortunately no universal choice and it should be adapted to the specific
setting considered. Typically, if we consider conditional density of regularity indexed by a parameter α,
a good collection is one such that for every parameter α there is a model which achieves a quasi optimal
bias/variance trade-off. Efromovich [Ef07; Ef10] considers Sobolev type regularity and use thus models
generated by the first elements of Fourier basis. Brunel, Comte, and Lacour [BCL07] and Akakpo and
Lacour [AL11] considers anisotropic regularity spaces for which they show that a collection of piecewise
polynomial models is adapted. Although those choices are justified, in these papers, in a quadratic loss
approach, they remain good choices in our maximum likelihood approach with a Kullback-Leibler type
loss. Estimator associated to those collections are thus adaptive to the regularity: without knowing the
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regularity of the true conditional density, they select a model in which the estimate performs almost as
well as in the oracle model, the best choice if the regularity was known. In both cases, one could prove
that those estimators achieve the minimax rate for the considered classes, up to a logarithmic factor.

As in Section 5.2.3, the known estimate of constant κ0 and even of Dm can be pessimistic. This
leads to a theoretical penalty which can be too large in practice. A natural question is thus whether the
constant appearing in the penalty can be estimated from the data without loosing a theoretical guaranty
on the performance? No definitive answer exists so far, but numerical experiment in specific case shows
that the slope heuristic proposed by Birgé and Massart [BM07] may yield a solution.

The assumptions of the previous theorem are as general as possible. It is thus natural to question the
existence of interesting model collections that satisfy its assumptions. We have mention so far the Fourier
based collection proposed by Efromovich [Ef07; Ef10] and the piecewise polynomial collection of Brunel,
Comte, and Lacour [BCL07] and Akakpo and Lacour [AL11] considers anisotropic regularity. We focus
on a variation of this last strategy. Motivated by an application to unsupervised image segmentation, we
consider model collection in which, in each model, the conditional densities depend on the covariate only
in a piecewise constant manner. After a general introduction to these partition-based strategies, we study
two cases: a classical one in which the conditional density depends in a piecewise polynomial manner
of the variables and a newer one, which correspond to the unsupervised segmentation application, in
which the conditional densities are Gaussian mixture with common Gaussian components but mixing
proportions depending on the covariate.

5.4 Partition-based conditional density models

5.4.1 Covariate partitioning and conditional density estimation

Following an idea developed by Kolaczyk, Ju, and Gopal [KJG05], we partition the covariate domain and
consider candidate conditional density estimates that depend on the covariate only through the region
it belongs. We are thus interested in conditional densities that can be written as

s(y|x) =
∑
Rl∈P

s(y|Rl)1{x∈Rl}

where P is partition of X , Rl denotes a generic region in this partition, 1 denotes the characteristic
function of a set and s(y|Rl) is a density for any Rl ∈ P. Note that this strategy, called as in Willet and
Nowak [WN07] partition-based, shares a lot with the CART-type strategy proposed by Donoho [Do97]
in an image processing setting.

Denoting ‖P‖ the number of regions in this partition, the model we consider are thus specified by a
partition P and a set F of ‖P‖-tuples of densities into which (s(·|Rl))Rl∈P is chosen. This set F can
be a product of density sets, yielding an independent choice on each region of the partition, or have a
more complex structure. We study two examples: in the first one, F is indeed a product of piecewise
polynomial density sets, while in the second one F is a set of ‖P‖-tuples of Gaussian mixtures sharing
the same mixture components. Nevertheless, denoting with a slight abuse of notation SP,F such a model,
our η-log-likelihood estimate in this model is any conditional density ŝP,F such that(

N∑
i=1

−log(ŝP,F (Yi|Xi))

)
≤ min
sP,F∈SP,F

(
N∑
i=1

−log(sP,F (Yi|Xi))

)
+ η.

We first specify the partition collection we consider. For the sake of simplicity, our description is
restricted to the case where the covariate space X is simply [0, 1]dX . We stress that the proposed strategy
can easily be adapted to more general settings including discrete variable ordered or not. We impose a
strong structural assumption on the partition collection considered that allows to control their complexity
and only consider five specific hyperrectangle based collections of partitions of [0, 1]dX :

• Two are recursive dyadic partition collections.
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Figure 5.1: Example of a recursive dyadic partition with its associated dyadic tree.

– The uniform dyadic partition collection (UDP(X )) in which all hypercubes are subdivided
in 2dX hypercubes of equal size at each step. In this collection, in the partition obtained
after J step, all the 2dXJ hyperrectangles {Rl}1≤l≤‖P‖ are thus hypercubes whose measure
|Rl| satisfies |Rl| = 2−dXJ . We stop the recursion as soon as the number of steps J satisfies
2dX
N
≥ |Rl| ≥ 1

N
.

– The recursive dyadic partition collection (RDP(X )) in which at each step a hypercube of
measure |Rl| ≥ 2dX

N
is subdivided in 2dX hypercubes of equal size.

• Two are recursive split partition collections.

– The recursive dyadic split partition (RDSP(X )) in which at each step a hyperrectangle of
measure |Rl| ≥ 2

N
can be subdivided in 2 hyperrectangles of equal size by an even split along

one of the dX possible directions.
– The recursive split partition (RSP(X )) in which at each step a hyperrectangle of measure
|Rl| ≥ 2

N
can be subdivided in 2 hyperrectangles of measure larger than 1

N
by a split along

one a point of the grid 1
N
Z in one the dX possible directions.

• The last one does not possess a hierarchical structure. The hyperrectangle partition collection
(HRP(X )) is the full collection of all partitions into hyperrectangles whose corners are located on
the grid 1

N
ZdX and whose volume is larger than 1

N
.

We denote by S?(X )
P the corresponding partition collection where ?(X ) is either UDP(X ), RDP(X ),

RDSP(X ), RSP(X ) or HRP(X ).
As noticed by Kolaczyk and Nowak [KN05], Huang, Pollak, Do, and Bouman [Hu+06] or Willet and

Nowak [WN07], the first four partition collections, (SUDP(X )
P , SRDP(X )

P , SRDSP(X )
P , SRSP(X )

P ), have a tree
structure. Figure 5.1 illustrates this structure for a RDP(X ) partition. This specific structure is mainly
used to obtain an efficient numerical algorithm performing the model selection. For sake of completeness,
we have also added the much more complex to deal with collection SHRP(X )

P , for which only exhaustive
search algorithms exist.

As proved in our technical report [Unpub-CLP11a], those partition collections satisfy Kraft type
inequalities with weights constant for the UDP(X ) partition collection and proportional to the number
‖P‖ of hyperrectangles for the other collections. Indeed,

Proposition 13. For any of the five described partition collections S?(X )
P , ∃A?0, B?0 , c?0 and Σ0 such that

for all c ≥ c?(X )
0 : ∑

P∈S?(X)
P

e
−c
(
A
?(X)
0 +B?(X)

0 ‖P‖
)
≤ Σ?(X )

0 e
−cmax

(
A
?(X)
0 ,B

?(X)
0

)
.

This will prove useful to verify Assumption (K) for the model collections of the next sections.
In those sections, we study the two different choices proposed above for the set F . We first consider

a piecewise polynomial strategy similar to the one proposed by Willet and Nowak [WN07] defined for
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Y = [0, 1]dY in which the set F is a product of sets. We then consider a Gaussian mixture strategy
with varying mixing proportion but common mixture components that extends the work of Maugis and
Michel [MM12a] and has been the original motivation of this work. In both cases, we prove that the
penalty can be chosen roughly proportional to the dimension.

5.4.2 Piecewise polynomial conditional density estimation
In this section, we let X = [0, 1]dX , Y = [0, 1]dY and λ be the Lebesgue measure dy. Note that, in
this case, λ is a probability measure on Y. Our candidate density s(y|x ∈ Rl) is then chosen among
piecewise polynomial densities. More precisely, we reuse a hyperrectangle partitioning strategy this time
for Y = [0, 1]dY and impose that our candidate conditional density s(y|x ∈ Rl) is a square of polynomial
on each hyperrectangle RYl,k of the partition Ql. This differs from the choice of Willet and Nowak
[WN07] in which the candidate density is simply a polynomial. The two choices coincide however when
the polynomial is chosen among the constant ones. Although our choice of using squares of polynomial
is less natural, it already ensures the positiveness of the candidates so that we only have to impose that
the integrals of the piecewise polynomials are equal to 1 to obtain conditional densities. It turns out to
be also crucial to obtain a control of the local bracketing entropy of our models. Note that this setting
differs from the one of Blanchard, Schäfer, Rozenholc, and Müller [Bl+07] in which Y is a finite discrete
set.

We should now define the sets F we consider for a given partition P = {Rl}1≤l≤‖P‖ of X = [0, 1]dX .
Let D = (D1, . . . ,DdY ), we first define for any partition Q = {RYk }1≤k≤‖Q‖ of Y = [0, 1]dY the set FQ,D
of squares of piecewise polynomial densities of maximum degree D defined in the partition Q:

FQ,D =

s(y) =
∑
RY
k
∈Q

P 2
RY
k

(y)1{y∈RYk }

∣∣∣∣∣∣ ∀R
Y
k ∈ Q, PRY

k
polynomial of degree at most D,∑

RY
k
∈Q

∫
RY
k

P 2
RY
k

(y) = 1


For any partition collection QP = (Ql)1≤l≤‖P‖ =

(
{RYl,k}1≤k≤‖Ql‖

)
1≤l≤‖P‖

of Y = [0, 1]dY , we can thus
defined the set FQP ,D of ‖P‖-tuples of piecewise polynomial densities as

FQP ,D =
{

(s(·|Rl))Rl∈P
∣∣∀Rl ∈ P, s(·|Rl) ∈ FQl,D} .

The model SP,FQP ,D , that is denoted SQP ,D with a slight abuse of notation, is thus the set

SQP ,D =

{
s(y|x) =

∑
Rl∈P

s(y|Rl)1{x∈Rl}

∣∣∣∣∣(s(y|Rl)Rl∈P ∈ FQP ,D
}

=

s(y|x) =
∑
Rl∈P

∑
RY
l,k
∈Ql

P 2
Rl×RYl,k

(y)1{
y∈RY

l,k

}1{x∈Rl}

∣∣∣∣∣∣∣
∀Rl ∈ P,∀RYl,k ∈ Ql,
PRl×RYl,k

polynomial of degree at most D,
∀Rl ∈ P,

∑
RY
l,k
∈Ql

∫
RY
l,k

P 2
Rl×RYl,k

(y) = 1


Denoting R×l,k the product Rl×RYl,k, the conditional densities of the previous set can be advantageously
rewritten as

s(y|x) =
∑
Rl∈P

∑
RY
l,k
∈Ql

P 2
R×
l,k

(y)1{
(x,y)∈R×

l,k

}
As shown by Willet and Nowak [WN07], the maximum likelihood estimate in this model can be obtained
by an independent computation on each subset R×l,k:

P̂R×
l,k

=

∑N

i=1 1{
(Xi,Yi)∈R

×
l,k

}∑N

i=1 1{Xi∈Rl}
argmin

P,deg(P )≤D,
∫
RY
l,k

P2(y)dy=1

N∑
i=1

1{
(Xi,Yi)∈R

×
l,k

}log
(
P 2(Yi)

)
.
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This property is important to be able to use the efficient optimization algorithms of Willet and Nowak
[WN07] and Huang, Pollak, Do, and Bouman [Hu+06].

Our model collection is obtained by considering all partitions P within one of the UDP(X ), RDP(X ),
RDSP(X ), RSP(X ) or HRP(X ) partition collections with respect to [0, 1]dX and, for a fixed P, all
partitions Ql within one of the UDP(Y), RDP(Y), RDSP(Y), RSP(Y) or HRP(Y) partition collections
with respect to [0, 1]dY . By construction, in any cases,

dim (()SQP ,D) =
∑
Rl∈P

(
‖Ql‖

dY∏
d=1

(Dd + 1)− 1

)
.

To define the penalty, we use a slight upper bound of this dimension

DQP ,D =
∑
Rl∈P

‖Ql‖
dY∏
d=1

(Dd + 1) = ‖QP‖
dY∏
d=1

(Dd + 1)

where ‖QP‖ =
∑
Rl∈P

‖Ql‖. is the total number of hyperrectangles in all the partitions:

Theorem 23. Fix a collection ?(X ) among UDP(X ), RDP(X ), RDSP(X ), RSP(X ) or HRP(X ) for
X = [0, 1]dX , a collection ?(Y) among UDP(Y), RDP(Y), RDSP(Y), RSP(Y) or HRP(Y) and a maximal
degree for the polynomials D ∈ N dY .

Let

S =
{
SQP ,D

∣∣∣P = {Rl} ∈ S?(X )
P and ∀Rl ∈ P,Ql ∈ S?(Y)

P

}
.

Then there exist a C? > 0 and a c? > 0 independent of n, such that for any ρ and for any C1 > 1,
the penalized estimator of Theorem 22 satisfies

E
[
JKL⊗nρ,λ(s0, ŝQ̂P ,D)

]
≤ C1 inf

SQP ,D∈S

(
inf

sQP ,D∈SQP ,D
KL⊗nλ (s0, sQP ,D) + pen(QP ,D)

N

)
+ C2

1
N

+ η + η′

N

as soon as

pen(QP ,D) ≥ κ̃DQP ,D

for

κ̃ > κ0

(
C? + c?

(
A
?(X )
0 +B

?(X )
0 +A

?(Y)
0 +B

?(Y)
0

)
+ 2logn

)
.

where κ0 and C2 are the constants of Theorem 22 that depend only on ρ and C1. Furthermore C? ≤
1
2 log(8πe) +

∑dY
d=1 log

(√
2(Dd + 1)

)
and c? ≤ 2log2.

A penalty chosen proportional to the dimension of the model, the multiplicative factor κ̃ being
constant over n up to a logarithmic factor, is thus sufficient to guaranty the estimator performance.
Furthermore, one can use a penalty which is a sum of penalties for each hyperrectangle of the partition:

pen(QP ,D) =
∑

R×
l,k
∈QP

κ̃

(
dY∏
d=1

(Dd + 1)

)
.

This additive structure of the penalty allows to use the fast partition optimization algorithm of Donoho
[Do97] and Huang, Pollak, Do, and Bouman [Hu+06] as soon as the partition collection is tree structured.
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The requirement on the penalty can be weakened to

pen(QP ,D) ≥ κ

((
C? + 2log N√

‖QP‖

)
DQP ,D

+ c?

(
A
?(X )
0 +

(
B
?(X )
0 +A

?(Y)
0

)
‖P‖+B

?(Y)
0

∑
Rl∈P

‖Ql‖

))
in which the complexity part and the coding part appear more explicitly. This smaller penalty is no
longer proportional to the dimension but still sufficient to guaranty the estimator performance. Using
the crude bound ‖QP‖ ≥ 1, one sees that such a penalty can still be upper bounded by a sum of penalties
over each hyperrectangle. The loss with respect to the original penalty is of order κ log ‖QP‖DQP ,D,
which is negligible as long as the number of hyperrectangle remains small with respect to n2.

Some variations around this Theorem can be obtained through simple modifications of its proof. For
example, the term 2log(n/

√
‖QP‖) disappears if P belongs to SUDP(X )

P while Ql is independent of Rl
and belongs to SUDP(X )

P . Choosing the degrees D of the polynomial among a family DM either globally
or locally as proposed by Willet and Nowak [WN07] is also possible. The constant C? is replaced by its
maximum over the family considered, while the coding part is modified by replacing respectively A?(X )

0
by A?(X )

0 + log|DM | for a global optimization and B
?(Y)
0 by B?(Y)

0 + log|DM | for a local optimization.
Such a penalty can be further modified into an additive one with only minor loss. Note that even if the
family and its maximal degree grows with n, the constant C? grows at a logaritmic rate in n as long as
the maximal degree grows at most polynomially with n.

Finally, if we assume that the true conditional density is lower bounded, then

KL⊗nλ (s, t) ≤
∥∥∥1
t

∥∥∥
∞
‖s− t‖⊗n,2λ,2

as shown by Kolaczyk and Nowak [KN05]. We can thus reuse ideas from Willet and Nowak [WN07],
Akakpo [Ak12] or Akakpo and Lacour [AL11] to infer the quasi optimal minimaxity of this estimator for
anisotropic Besov spaces (see for instance in Karaivanov and Petrushev [KP03] for a definition) whose
regularity indices are smaller than 1 along the axes of X and smaller than D + 1 along the axes of Y.

5.4.3 Spatial Gaussian mixtures, models, bracketing entropy and penalties
In this section, we consider an extension of Gaussian mixture that takes account into the covariate
into the mixing proportion. This model has been motivated by the unsupervised hyperspectral image
segmentation problem mentioned in the introduction. We recall first some basic facts about Gaussian
mixtures and their uses in unsupervised classification.

In a classical Gaussian mixture model, the observations are assuming to be drawn from several
different classes, each class having a Gaussian law. Let K be the number of different Gaussians, often
call the number of clusters, the density s0 of Yi with respect to the Lebesgue measure is thus modeled
as

sK,θ,π(·) =
K∑
k=1

πkΦθk (·)

where

Φθk (y) = 1
(2π det Σk)p/2

e−
1
2 (y−µk)′Σ−1

k
(y−µk)

with µk the mean of the kth component, Σk its covariance matrix, θk = (µk,Σk) and πk its mixing
proportion. A model SK,G is obtained by specifying the number of component K as well as a set G to
which should belong the K-tuple of Gaussian (Φθ1 , . . . ,ΦθK ). Those Gaussians can share for instance the
same shape, the same volume or the same diagonalization basis. The classical choices are described for
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instance in Biernacki, Celeux, Govaert, and Langrognet [Bi+06]. Using the EM algorithm, or one of its
extension, one can efficiently obtain the proportions π̂k and the Gaussian parameters θ̂k of the maximum
likelihood estimate within such a model. Using tools also derived from Massart [Ma07], Maugis and
Michel [MM12a] show how to choose the number of classes by a penalized maximum likelihood principle.
These Gaussian mixture models are often used in unsupervised classification application: one observes
a collection of Yi and tries to split them into homogeneous classes. Those classes are chosen as the
Gaussian components of an estimated Gaussian mixture close to the density of the observations. Each
observation can then be assigned to a class by a simple maximum likelihood principle:

k̂(y) = argmax
1≤k≤K̂

π̂kΦ
θ̂k

(y).

This methodology can be applied directly to an hyperspectral image and yields a segmentation method,
often called spectral method in the image processing community. This method however fails to exploit
the spatial organization of the pixels.

To overcome this issue, Kolaczyk, Ju, and Gopal [KJG05] and Antoniadis, Bigot, and Sachs [ABS08]
propose to use mixture model in which the mixing proportions depend on the covariate Xi while the
mixture components remain constant. We propose to estimate simultaneously those mixing proportions
and the mixture components with our partition-based strategy. In a semantic analysis context, in which
documents replace pixels, a similar Gaussian mixture with varying weight, but without the partition
structure, has been proposed by Si and Jin [SJ05] as an extension of a general mixture based semantic
analysis model introduced by Hofmann [Ho99] under the name Probabilistic Latent Semantic Analysis.
A similar model has also been considered in the work of Young and Hunter [YH10]. In our approach,
for a given partition P, the conditional density s(·|x) are modeled as

sP,K,θ,π(·|x) =
∑
Rl∈P

(
K∑
k=1

πk[Rl]Φθk (·)

)
1{x∈Rl}

which, denoting π[R(x)] =
∑
Rl∈P

π[Rl] 1{x∈Rl}, can advantageously be rewritten

=
K∑
k=1

πk[R(x)]Φθk (·) .

The K-tuples of Gaussian can be chosen is the same way as in the classical Gaussian mixture case.
Using a penalized maximum likelihood strategy, a partition P̂, a number of Gaussian components K̂,
their parameters θ̂k and all the mixing proportions π̂[R̂l] can be estimated. Each pair of pixel position
and spectrum (x, y) can then be assigned to one of the estimated mixture components by a maximum
likelihood principle:

k̂(x, y) = argmax
1≤k≤K̂

π̂k[R̂l(x)]Φ
θ̂k

(y).

This is the strategy we have used at IPANEMA [Art-Be+11 ] to segment, in an unsupervised manner,
hyperspectral images. In these images, a spectrum Yi, with around 1000 frequency bands, is measured
at each pixel location Xi and our aim was to derive a partition in homogeneous regions without any
human intervention. This is a precious help for users of this imaging technique as this allows to focus
the study on a few representative spectrums. Combining the classical EM strategy for the Gaussian
parameter estimation (see for instance Biernacki, Celeux, Govaert, and Langrognet [Bi+06]) and dynamic
programming strategies for the partition, as described for instance by Kolaczyk, Ju, and Gopal [KJG05],
we have been able to implement this penalized estimator and to test it on real datasets. Figure 5.2
illustrates this methodology. The studied sample is a thin cross-section of maple with a single layer of
hide glue on top of it, prepared recently using materials and processes from the Cité de la Musique,
using materials of the same type and quality that is used for lutherie. We present here the result for a
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Figure 5.2: Unsupervised segmentation result: a) with constant mixing proportions b) with piecewise
constant mixing proportions.

low signal to noise ratio acquisition requiring only two minutes of scan. Using piecewise constant mixing
proportions instead of constant mixing proportions leads to a better geometry of the segmentation, with
less isolated points and more structured boundaries. As described in a more applied study [Unpub-
CLP12c], this methodology permits to work with a much lower signal to noise ratio and thus allows to
reduce significantly the acquisition time.

We should now specify the models we consider. As we follow the construction of Section 5.4.1, for
a given segmentation P, this amounts to specify the set F to which belong the ‖P‖-tuples of densities
(s(y|Rl))Rl∈P . As described above, we assume that s(y|Rl) =

∑K

k=1 πk[Rl]Φθk (y). The mixing propor-
tions within the region Rl, π[Rl], are chosen freely among all vectors of the K − 1 dimensional simplex
SK−1:

SK−1 =

{
π = (π1, . . . , πk)

∣∣∣∣∣∀k, 1 ≤ k ≤ K,πk ≥ 0,
K∑
k=1

πk = 1

}
.

As we assume the mixture components are the same in each region, for a given number of components
K, the set F is entirely specified by the set G of K-tuples of Gaussian (Φθ1 , . . . ,ΦθK ) (or equivalently
by a set Θ for θ = (θ1, . . . , θK)).

To allow variable selection, we follow Maugis and Michel [MM12a] and let E be an arbitrary subspace
of Y = Rp, that is expressed differently for the different classes, and let E⊥ be its orthogonal, in which
all classes behave similarly. We assume thus that

Φθk (y) = ΦθE,k (yE)Φθ
E⊥

(yE⊥)

where yE and yE⊥ denote, respectively, the projection of y on E and E⊥, ΦθE,k is a Gaussian whose
parameters depend on k while Φθ

E⊥
is independent of k. A model is then specified by the choice of

a set GKE for the K-tuples (ΦθE,1 , . . . ,ΦθE,K ) (or equivalently a set ΘK
E for the K-tuples of parameters

(θE,1, . . . , θE,K)) and a set GE⊥ for the Gaussian Φθ
E⊥

(or equivalently a set ΘE⊥ for its parameter
θE⊥). The resulting model is denoted SP,K,G

SP,K,G =

sP,K,θ,π(y|x) =
K∑
k=1

πk[R(x)] ΦθE,k (yE) Φθ
E⊥

(yE⊥)

∣∣∣∣∣∣
(ΦθE,1 , . . . ,ΦθE,K ) ∈ GKE ,
Φθ

E⊥
∈ GE⊥ ,

∀Rl ∈ P, π[Rl] ∈ SK−1

 .



5.4. PARTITION-BASED CONDITIONAL DENSITY MODELS 99

The sets GKE and GE⊥ are chosen among the classical Gaussian K-tuples, as described for instance in
Biernacki, Celeux, Govaert, and Langrognet [Bi+06]. For a space E of dimension pE and a fixed number
K of classes, we specify the set

G =
{

(ΦE,θ1 , . . . ,ΦE,θK )
∣∣∣θ = (θ1, . . . , θK) ∈ Θ[·]KpE

}
through a parameter set Θ[·]KpE

defined by some (mild) constraints on the means µk and some (strong)
constraints on the covariance matrices Σk.

The K-tuple of means µ = (µ1, . . . , µK) is either known or unknown without any restriction. A
stronger structure is imposed on theK-tuple of covariance matrices (Σ1, . . . ,ΣK). To define it, we need to
introduce a decomposition of any covariance matrix Σ into LDAD′ where, denoting |Σ| the determinant
of Σ, L = |Σ|1/pE is a positive scalar corresponding to the volume, D is the matrix of eigenvectors of Σ
and A the diagonal matrix of renormalized eigenvalues of Σ (the eigenvalues of |Σ|−1/pEΣ). Note that
this decomposition is not unique as, for example, D and A are defined up to a permutation. We impose
nevertheless a structure on the K-tuple (Σ1, . . . ,ΣK) through structures on the corresponding K-tuples
of (L1, . . . , LK), (D1, . . . , DK) and (A1, . . . , AK). They are either known, unknown but with a common
value or unknown without any restriction. The corresponding set is indexed by [µ? L? D? A?]KpE where
? = 0 means that the quantity is known, ? = K that the quantity is unknown without any restriction
and possibly different for every class and its lack means that there is a common unknown value over all
classes.

To have a set with finite bracketing entropy, we further restrict the values of the means µk, the volumes
Lk and the renormalized eigenvalue matrix Ak. The means are assumed to satisfy ∀1 ≤ k ≤ K, |µk| ≤ a
for a known a while the volumes satisfy ∀1 ≤ k ≤ K,L− ≤ Lk ≤ L+ for some known positive values
L− and L+. To describe the constraints on the renormalized eigenvalue matrix Ak, we define the set
A(λ−, λ+, pE) of diagonal matrices A such that |A| = 1 and ∀1 ≤ i ≤ pE , λ− ≤ Ai,i ≤ λ+. Our
assumption is that all the Ak belong to A(λ−, λ+, pE) for some known values λ− and λ+.

Among the 34 = 81 such possible sets, six of them have been already studied by Maugis and Michel
[MM12a; MM12b] in their classical Gaussian mixture model analysis:

• [µ0 LK D0 A0]KpE in which only the volume of the variance of a class is unknown. They use this
model with a single class to model the non discriminant variables in E⊥.

• [µK LK D0 AK ]KpE in which one assumes that the unknown variances Σk can be diagonalized in the
same known basis D0.

• [µK LK DK AK ]KpE in which everything is free,

• [µK L D0 A]KpE in which the variances Σk are assumed to be equal and diagonalized in the known
basis D0.

• [µK L D0 AK ]KpE in which the volumes Lk are assumed to be equal and the variance can be diago-
nalized in the known basis D0

• [µK L D A]KpE in which the variances Σk are only assumed to be equal

All these cases, as well as the others, are covered by our analysis with a single proof.
To summarize, our models SP,K,G are parametrized by a partition P, a number of components K, a

set G of K-tuples of Gaussian specified by a space E and two parameter sets, a set Θ[µ? L? D? A?]KpE
of

K-tuples of Gaussian parameters for the differentiated space E and a set Θ[µ? L? D? A?]p
E⊥

of Gaussian
parameters for its orthogonal E⊥. Those two sets are chosen among the ones described above with the
same constants a, L−, L+, λ− and λ+. One verifies that

dim (()SP,K,G) = ‖P‖(K − 1) + dim
((

Θ[µ? L? D? A?]KpE

))
+ dim

((
Θ[µ? L? D? A?]p

E⊥

))
.

Before stating a model selection theorem, we should specify the collections S considered. We consider
sets of model SP,K,G with P chosen among one of the partition collections S?P , K smaller thanKM , which
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can be theoretically chosen equal to +∞, a space E chosen as Span{ei}i∈I where ei is the canonical
basis of Rp and I a subset of {1, . . . , p} is either known, equal to {1, . . . , pE} or free and the indices
[µ? L? D? A?] of ΘE and ΘE⊥ are chosen freely among a subset of the possible combinations.

Without any assumptions on the design, we obtain

Theorem 24. Assume the collection S is one of the collections of the previous paragraph.
Then, there exist a C? > π and a c? > 0, such that, for any ρ and for any C1 > 1, the penalized

estimator of Theorem 22 satisfies

E
[
JKL⊗nρ,λ(s0, ŝP̂,K,G)

]
≤ C1 inf

SP,K,G∈S

(
inf

sP,K,G∈SP,K,G
KL⊗nλ (s0, sP,K,G) + pen(P,K,G)

N

)
+ C2

N
+ η + η′

N

as soon as

pen(P,K,G) ≥ κ̃1 dim (()SP,K,G) + κ̃2DE

for

κ̃1 ≥ κ
((

2C? + 1 +
(

log N

eC?

)
+

+ c?

(
A
?(X )
0 +B

?(X )
0 + 1

)))
and κ̃2 ≥ κc?

with κ > κ0 where κ0 and C2 are the constants of Theorem 22 that depend only on ρ and C1 and

DE =


0 if E is known,

pE
if E is chosen among spaces spanned by the
first coordinates,

(1 + log2 + log p
pE

)pE if E is free.

As in the previous section, the penalty term can thus be chosen, up to the variable selection term DE ,
proportional to the dimension of the model, with a proportionality factor constant up to a logarithmic
term with n. A penalty proportional to the dimension of the model is thus sufficient to ensure that
the model selected performs almost as well as the best possible model in term of conditional density
estimation. As in the proof of Antoniadis, Bigot, and Sachs [ABS08], we can also obtain that our
proposed estimator yields a minimax estimate for spatial Gaussian mixture with mixture proportions
having a geometrical regularity even without knowing the number of classes.

Moreover, again as in the previous section, the penalty can have an additive structure, it can be
chosen as a sum of penalties over each hyperrectangle plus one corresponding to K and the set G.
Indeed

pen(P,K,G) =
∑
Rl∈P

κ̃1(K − 1) + κ̃1

(
dim

((
Θ[µ? L? D? A?]KpE

))
+ dim

((
Θ[µ? L? D? A?]p

E⊥

)))
+ κ̃2DE

satisfies the requirement of Theorem 24. This structure is the key for our numerical minimization
algorithm in which one optimizes alternately the Gaussian parameters with an EM algorithm and the
partition with the same fast optimization strategy as in the previous section.

In Appendix, we obtain a weaker requirement

pen(P,K,G) ≥ κ

((
2C? + 1 +

(
log N

eC? dim (()SP,K,G)

)
+

)
dim (()SP,K,G)

+ c?

(
A
?(X )
0 +B

?(X )
0 ‖P‖+ (K − 1) +DE

))
in which the complexity and the coding terms are more explicit. Again up to a logarithmic term in
dim (()SP,K,G), this requirement can be satisfied by a penalty having the same additive structure as in
the previous paragraph.

Our theoretical result on the conditional density estimation does not guaranty good segmentation
performance. If data are generated according to a Gaussian mixture with varying mixing proportions,
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one could nevertheless obtain the asymptotic convergence of our class estimator to the optimal Bayes
one. We have nevertheless observed in our numerical experiments at IPANEMA that the proposed
methodology allow to reduce the signal to noise ratio while keeping meaningful segmentations.

Two major questions remain nevertheless open. Can we calibrate the penalty (choosing the constants)
in a datadriven way while guaranteeing the theoretical performance in this specific setting? Can we derive
a non asymptotic classification result from this conditional density result? The slope heuristic, proposed
by Birgé and Massart [BM07], we have used in our numerical experiments, seems a promising direction.
Deriving a theoretical justification in this conditional estimation setting would be much better. Linking
the non asymptotic estimation behavior to a non asymptotic classification behavior appears even more
challenging.

With our PhD student L. Montuelle, we are considering extensions of this framework. We have first
considered a similar model in which both the proportions and the means of the Gaussian depends on the
covariate. Using a logistic model for the weights, she has been able to show that a penalty proportional
to the dimension of the models also leads to oracle inequalities in this case [Unpub-MCLP12 ]. She has
also obtained results when replacing the Gaussian mixtures by Poissonian Mixtures.

5.5 Binary choice model

I would like to conclude this chapter with a description of work in progress with E. Gautier [Unpub-
GLP11 ]. The model we consider is a complex inverse model called the binary choice model in which
the unknown is a density which is observed indirectly through a conditional density. In this model,
one observe i.i.d. samples (Xi, Yi) where the Xi are random vectors of norm 1 that has density sX
on the hypersphere and Yi = 21{〈Xi,βi〉>0} − 1 where the βi are random vectors of norm 1 of density
sβ on the hypersphere independents of all Xi’s. The goal is to estimate sβ from the observation. As
explained later, the conditional probability P{Y = 1|X = x} is related to the density sβ by a simple
known compact estimator. The key to estimate sβ is thus to estimate first the conditional probability.

This model originates from econometrics in which Discrete choice models are important models in
economics for the choice of agents between a number of exhaustive and mutually exclusive alternatives.
They have applications in many areas ranging from empirical industrial organizations, labor economics,
health economics, planning of public transportation, evaluation of public policies, etc. For a review, the
interested reader can refer to the Nobel lectures of Mc Fadden [McFa01]. We consider here a binary choice
model where individuals only have two options. In a random utility framework, an agent chooses the
alternative that yields the higher utility. Assume that the utility for each alternative is linear in regressors
which are observed by the statistician. The regressors are typically attributes of the alternative faced by
the individuals, e.g. the cost or time to commute from home to one’s office for each of the two transport
alternatives. Because this linear structure is an ideal situation and because the statistician is missing
some factors, the utilities are written as the linear combination of the regressors plus some random error
term. When the utility difference is positive the agent chooses the first alternative, otherwise he chooses
the second. The Logit, Probit or Mixed-Logit models are particular models of this type. We consider
the case where the coefficients of the regressors are random. This accounts for heterogeneity or taste
variation: each individual is allowed to have his own set of coefficients (the preferences or tastes). Like in
the work of Gautier and Kitamura [GK12]; Ichimura and Thompson [IT98], we consider a nonparametric
treatment of the joint distribution of the error term and vector of random coefficients. Nonparametric
treatment of unobserved heterogeneity is very important in economics, references include the work of
Beran and Hall [BH92]; Elbers and Ridder [ER82]; Gautier and Kitamura [GK12]; Heckman and Singer
[HS84]; Hoderlein, Klemelä, and Mammen [HKM10]; Ichimura and Thompson [IT98]. It allows to be
extremely flexible about the joint distribution of the preferences (as well as the error term). Random
coefficients models can be viewed as mixture models. They also have a Bayesian interpretation, see for
example the work of Healy and Kim [HK96] for a similar model on the sphere. Nonparametric estimation
of the density of the vector of random coefficients corresponds to nonparametric estimation of a prior in
the empirical Bayes setting.

In the nonparametric random coefficients binary choice model we assume that we have n i.i.d. ob-
servations (xi, yi) of (X,Y ) where X is a random vector of Euclidean norm 1 in Rd and Y is a discrete
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random variable and Y and X are related through a non observed random vector β of norm 1 by

Y = 21{〈X,β〉>0} − 1 =
{

1 if X and β are in the same hemisphere
−1 otherwise.

(5.3)

In (5.3), 〈·, ?〉 is the scalar product in Rd. We make the assumption that X and β are independent.
This assumption corresponds to the exogeneity of the regressors. It could be relaxed using instrumental
variables (see Gautier and Kitamura [GK12]). −1 and 1 are labels for the two choices. They correspond
to the sign of 〈X,β〉. X and β are assumed to be of norm 1 because only the sign of 〈X,β〉 matters in the
choice mechanism. The regressors in the latent variable model are thus assumed to be properly rescaled.
Model (5.3) allows for arbitrary dependence between the random unobservables. In this model, X
corresponds to a vector of regressors where, in an original scale, the first component is 1 and the remaining
components are the regressors in the binary choice model. The 1 stands because in applications we always
include a constant in the latent variable model for the binary choice model. The first element of β in
this formulation absorbs the usual error term as well as the constant in standard binary choice models
with non-random coefficients. We assume that X and β have densities sX and sβ with respect to the
spherical measure σ on the unit sphere Sd−1 of the Euclidean space Rd. Because in the original scale the
first component of X is 1, the support of X is included in H+ = {x ∈ Sd−1 : < x, (1, 0, . . . , 0) >≥ 0}. We
assume, for simplicity, through this paper, that the support of X satisfies supp sX = H+. In the work of
Gautier and Kitamura [GK12], the case of regressors with limited support, including dummy variables
is also studied but identification requires that these variables, as well as one continuously distributed
regressor, are not multiplied by random coefficients.

The estimation of the density of the random coefficient can be rewritten as a kind of linear ill-posed
inverse problem. We can write for x ∈ H+,

E[Y |X = x] =
∫
b∈Sd−1

sign (〈x, b〉) sβ(b)dσ(b) (5.4)

where sign denotes the sign. This can then be rewritten in terms of another operator from integral
geometry:

P(Y = 1|X = x) = E[Y |X = x] + 1
2 =

∫
b∈Sd−1

1{〈x,b〉>0}sβ(b)dσ(b) , H (sβ) (x). (5.5)

The operator H is called the hemispherical transform. H is a special case of the Pompeiu operator (see,
e.g., Zalcman [Za92]). The operator H arises when one wants to reconstruct a star-shaped body from its
half-volumes (see Funk [Fu16]). Inversion of this operator was studied by Funk [Fu16]; Rubin [Ru99], it
can be achieved in the spherical harmonic basis (also called the Fourier Laplace basis as the extension of
the Fourier basis on S1 and the Laplace basis in S2), using polynomials in the Laplace-Beltrami operator
for certain dimensions and using a continuous wavelet transform. Rubin [Ru99], and in a certain extent
Groemer [Gr96], also discuss some of its properties. It is an operator which is diagonal in the spherical
harmonic basis and which eigenvalues are known explicitly. Were the function P{Y = 1|X = x} exactly
known, this would have been a deconvolution problem on the sphere. It is however not the case and this
function can only be estimated: this can be seen as a regression problem with unknown random design
or equivalently here as a conditional density estimation problem.

Deconvolution on the sphere has been studied by various authors among which Healy and Kim [HK96];
Kerkyacharian, Phan Ngoc, and Picard [KPNP11]; Kim and Koo [KK00]. Because of the indicator
function, this is a type of boxcar deconvolution. Boxcar deconvolution has been studied in specific cases
by Johnstone and Raimondo [JR04]; Kerkyacharian, Picard, and Raimondo [KPR07]. There are two
important difficulties regarding identification: (1) because of the intercept in the latent variable model,
the left hand side of (5.5) is not a function defined on the whole sphere, (2) H is not injective. Proper
restrictions are imposed to identify sβ . Treatment of the random design (possibly inhomogeneous)
with unknown distribution appearing in the regression function that has to be inverted is an important
difficulty. Regression with random design is a difficult problem, see for example Kerkyacharian and
Picard [KP04]; Kulik and Raimondo [KR09] for the case of wavelet thresholding estimation using warped
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wavelet for a regression model on an interval, or Gaïffas [Ga09] in the case of inhomogeneous designs.
For the conditional density estimation method, we refer at the beginning of this chapter.

Gautier and Kitamura [GK12] propose an estimator using smoothed projections on the finite di-
mensional spaces spanned by the first vectors of the spherical harmonics basis. It is straightforward to
compute in every dimension d. Convergence rates for the Lp-losses for p ∈ [1,∞] and CLT are obtained
by Gautier and Kitamura [GK12]. They depend on the degree of smoothing of the operator which is
ν = d/2 in the Sobolev spaces based on L2, the smoothness of the unknown function, the smoothness of
sX as well as its degeneracy (when it takes small values or is 0, in particular when x is approaching the
boundary of H+). The treatment of the random design is a major difficulty that we have try to cope
with.

The goal of our study was to provide an estimator of sβ which is adaptive in the unknown smoothness
of the function. As the eigenfunctions of the operator are spherical harmonic basis, we have used the cor-
responding needlets introduced by Narcowich, Petrushev, and Ward [NPW06a]. They were successfully
used in statistics to provide adaptive estimation procedures of Baldi, Kerkyacharian, Marinucci, and
Picard [Ba+09]; Kerkyacharian, Petrushev, Picard, and Willer [Ke+07]; Kerkyacharian, Phan Ngoc,
and Picard [KPNP11] and Kerkyacharian, Kyriazis, Le Pennec, Petrushev, and Picard [Art-Ke+10 ].
As described in our preliminary report [Unpub-GLP11 ], we have considered a method based on the
observation that ∫

Sd−1
P(Y = 1|X = x)b(x)dx =

∫
Sd−1

P(Y = 1|X = x)
sX(x) b(x)s(x)dx

which can be estimated without bias by
n∑
i=1

1{Yi=1}

sX(Xi)
b(Xi).

As sX is unknown, we rely on a preliminary estimate of this quantity ŝX that we plug in this question
to estimate the spherical harmonic coefficients. Those coefficients are recombined to obtain needlet
coefficients that are then, in the spirit of [Art-BLPR11 ], thresholded using a data-drive threshold. In
our study, we obtain a general oracle inequality which, unfortunately, depends heavily on the properties
of the preliminary estimate ŝX . After proving lower bounds, we show that those bounds are close to
be optimal if sX is lower and upper bounded and smooth enough. Better results could probably be
obtained by estimation P{Y = 1|X = x}, a conditional density, without resorting to the usual plugin
estimate. Indeed, as shown in the beginning of this chapter, we do not really need to estimate sX to
estimate P{Y = 1|X = x}...
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Chapter 6

Conclusion

This manuscript is an attempt to summarize my contributions of the last ten years. They share some
properties: I have studied statistical problems and propose solutions with a strong flavor of approximation
theory. The main principle is the one I have attributed to Ockham’s: A good solution is a tradeoff between
fidelity and complexity. In all my contribution, I have tried to give both theoretical and practical, if not
numerical, answers. All the themes I have mentioned in the overview are not in the same states.

The NL-Means study (Theme 6) is still a preliminary study from my side but not from J. Salmon’s
side, which has further studied this model and related ones. The bandlet studies (Themes 0 and 1) as
well as the maxiset study of model selection estimator can be considered as closed from my point of
view. Most of my questions around those themes are answered, but one that relates precisely the two:
Is there a simple characterization of the maxisets of bandlet estimators? The study of wavelet based
copula estimation (Theme 5) is also quite comprehensive, but preliminary numerical studies show that
better estimators can be obtained by using needlet based estimators. Concerning the Radon transform
(Theme 4), the needlet approach has proved to be successful and the results on the axisymmetric case
are still to be published. Conditional density estimation appears now as my main subject. On one side,
I’m working on the maximum likelihood approach and its application to hyperspectral image analysis
(Themes 9 and 8) which are the sources of numerous extension. One the other side, the study of the
binary choice model (Theme 7) which falls in this setting still requires some polishing.

I’m currently working on two new projects: the combination of random projection and GMM to
reduce the computational cost of unsupervised clustering methods and a project on anomaly detection
in complex texture. In the first project with L. Montuelle and S. Cohen, we want to obtain theoretical
guarantees of the robustness of the randomly projected GMM method. The last project takes place in
an industrial setting as this is the subject of S. Thivin’s beginning PhD thesis performed in collaboration
with M. Prenat from Thales Optronics. On a lighter note, I’m confident I will eventually encounter the
most famous absent statistical model of my previous work: the regression one. My feeling is that this
absence is more probably due to technical reasons than practical ones...
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Appendix A

Let It Wave

Working (and funding) Let It Wave with Ch. Bernard, J. Kalifa and S. Mallat has been such a tremendous
scientific and human adventure that I feel that summarizing my contributions of the last ten years without
mentionning the Let It Wave part would have been misleading... As I am not allowed describe accurately
what I have done in Let It Wave/Zoran/CSR, I have decided to only make a list à la Prévert of some
topics I have been working on along those years:

• face detection and compression,

• seismic flattening and inversion,

• video deinterlacing,

• video denoising and deblocking,

• video frame rate detection and conversion,

• video superresolution,

• video sharpening,

• video dynamic range compensation,

• LED backlight compensation,

• automatic 2D video to 3D video conversion,

• chroma upsampling,

• video scaling detection...

Working on those subjects has been a pleasure, but what I have probably enjoyed the most is the
interaction with the employees, and the Algo team in particular. It is a pleasure to conclude this
manuscript by a huge Thank you to them.
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