Y. Amice and J. Vélu, Distributions p-adiques associées aux séries de Hecke, pp.119-131, 1975.

D. Barsky, Fonctions k-lipschitziennes sur un anneau local et polynômespolynômesà valeursentì eres, Bull. S.M.F, pp.397-411, 1973.

L. Barthel and R. Livné, Irreducible modular representations of GL 2 of a local field, Duke Math, J, vol.75, pp.261-292, 1994.

L. Barthel and R. Livné, Modular Representations of GL2 of a Local-Field: The Ordinary, Unramified Case, Journal of Number Theory, vol.55, issue.1, pp.1-27, 1995.
DOI : 10.1006/jnth.1995.1124

L. Berger, Représentations modulaires de GL 2 (Q p ) et représentations galoisiennes de dimension 2, pp.263-279, 2010.

L. Berger, La correspondance de Langlands p-adique pour GL 2, Séminaire Bourbaki, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00605400

N. Bourbaki, Variétés différentielles et analytiques, Fascicule de résultats, 1967.

C. Breuil, Sur quelques représentations modulaires et p-adiques de GL 2 (Q p ) I, Compositio Math, pp.165-188, 2003.

C. Breuil, SUR QUELQUES REPR??SENTATIONS MODULAIRES ET $p$-ADIQUES DE $\mathrm{GL}_2(\bm{Q}_{p})$. II, Journal of the Institute of Mathematics of Jussieu, vol.2, issue.01, pp.1-36, 2003.
DOI : 10.1017/S1474748003000021

C. Breuil, Invariant L et série spéciale p-adique, Ann, pp.559-610, 2004.

C. Breuil, Representations of Galois and of GL 2 in characteristic p, Note from a course at Columbia University, 2007.

C. Breuil, Série spéciale p-adique et cohomologié etale complétée, pp.65-115, 2010.

C. Breuil, Correspondance de Langlands p-adique, compatibilité local-global et applications, Séminaire Bourbaki, pp.1031-1031, 2010.

C. Breuil, The Emerging p-adic Langlands Programme, Proceedings of the International Congress of Mathematicians 2010 (ICM 2010), pp.203-230, 2010.
DOI : 10.1142/9789814324359_0047

C. Breuil, Remarks on some locally Q p -analytic representations of GL 2 (F ) in the crystalline case, Non-abelian Fundamental Groups and Iwasawa Theory, 2012.

C. Breuil and M. Emerton, Représentations p-adiques ordinaires de GL 2 (Q p ) et compatibilité local-global, pp.255-315, 2010.

C. Breuil and P. Schneider, First steps towards p-adic Langlands functoriality, Journal f??r die reine und angewandte Mathematik (Crelles Journal), vol.2007, issue.610, pp.149-180, 2007.
DOI : 10.1515/CRELLE.2007.070

P. Colmez, Série principale unitaire pour GL 2 (Q p ) et représentations triangulines de dimension 2, 2004.

P. Colmez, Fonctions d'une variable p-adique, pp.13-59, 2010.

P. Colmez, La série principale unitaire de GL 2, pp.213-262, 2010.

P. Colmez, Représentations de GL 2 (Q p ) et (?, ?)-modules, pp.281-509, 2010.

P. Colmez and J. Fontaine, Construction des repr??sentations p-adiques semi-stables, Inventiones mathematicae, vol.140, issue.1, pp.1-43, 2000.
DOI : 10.1007/s002220000042

M. D. Ieso, Espaces de fonctions de classe C r sur O F, Indag. Math, 2013.

P. Deligne, Les Constantes des Equations Fonctionnelles des Fonctions L, Lect. Notes Math, vol.349, pp.501-597, 1981.
DOI : 10.1007/978-3-540-37855-6_7

E. De-shalit, Mahler bases, Lubin-Tate groups and elementary p-adic analysis, preprint, 2009.

S. and D. Smedt, Local invertibility of non-archimedean vector-valued functions, Annales math??matiques Blaise Pascal, vol.5, issue.1, pp.13-23, 1998.
DOI : 10.5802/ambp.102

M. Emerton, p-adic L-functions and unitary completions of representations of p-adic reductive groups, Duke Math, J, vol.130, pp.353-392, 2005.

M. Emerton, Local-global compatibility in the p-adic Langlands programme for GL 2, 2011.

J. Fontaine, Représentations p-adiques de corps locaux I, The Grothendieck Festschrift, Progr. Math., Birkhauser, vol.87, pp.249-309, 1990.

J. Fontaine, Représentations p-adiques semi-stables, Astérisque 223, pp.113-184, 1994.

J. Fontaine, Représentations l-adiques potentiellement semi-stables, Astérisque 223, pp.321-347, 1994.

H. Frommer, The locally analyitic principal series of split reductive groups, preprint, 2003.

E. Grosse-klönne, Integral structures in automorphic line bundles on the p-adic upper half plane, Math. Annalen, vol.329, pp.463-493, 2004.

Y. Hu, Normes invariantes et existence de filtrations admissibles, Journal f??r die reine und angewandte Mathematik (Crelles Journal), vol.2009, issue.634, pp.107-141, 2009.
DOI : 10.1515/CRELLE.2009.070

URL : http://arxiv.org/abs/0709.3122

Y. Hu, Sur quelques repr??sentations supersinguli??res de <mml:math altimg="si1.gif" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd"><mml:msub><mml:mi mathvariant="normal">GL</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:mo stretchy="false">(</mml:mo><mml:msub><mml:mi mathvariant="double-struck">Q</mml:mi><mml:msup><mml:mi>p</mml:mi><mml:mi>f</mml:mi></mml:msup></mml:msub><mml:mo stretchy="false">)</mml:mo></mml:math>, Sur quelques représentationssupersingulì eres de GL 2, pp.1577-1615, 2010.
DOI : 10.1016/j.jalgebra.2010.06.006

D. Kazhdan and E. De-shalit, Kirillov models and integral structures in p-adic smooth representations of <mml:math altimg="si1.gif" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd"><mml:msub><mml:mi mathvariant="italic">GL</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:mo stretchy="false">(</mml:mo><mml:mi>F</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:math>, Journal of Algebra, vol.353, issue.1, pp.212-223, 2012.
DOI : 10.1016/j.jalgebra.2011.12.017

J. Kohlhaase, The cohomology of locally analytic representations, Journal f??r die reine und angewandte Mathematik (Crelles Journal), vol.2011, issue.651, pp.187-240, 2011.
DOI : 10.1515/crelle.2011.013

R. Liu, Locally Analytic Vectors of some crystabeline representation of GL 2, Compos . Math

E. Nagel, Fractional non-archimedean calculus in one variable, to appear P-Adic Numbers

E. Nagel, Fractional non-archimedean calculus in many variables, to appear in P-Adic Numbers, pp.2012-106

E. Nagel, The intertwined open cells in the universal unitary lattice of an unramified algebraic principal series, prépublication disponible sur http

V. Pa?k¯-unas, Coefficient systems and supersingular representations of GL, Mémoires de la Soc. Math. de France 99, 2004.

V. Pa?k¯-unas, Admissible unitary completions of locally Q p -rational representations of GL 2 (F ), Representation theory 14, pp.324-354, 2010.

V. Pa?k¯-unas, The image of Colmez's Montreal Functor, 2011.

M. Kisin, The Fontaine-Mazur conjecture for $ {GL}_2$, Journal of the American Mathematical Society, vol.22, issue.3, pp.641-690, 2009.
DOI : 10.1090/S0894-0347-09-00628-6

W. Schikhof, Non-archimedian calculus, preprint 1978

W. Schikhof, An introduction to p-adic analysis, Cambridge Studies in Advanced Math, 1984.

P. Schneider, Nonarchimedean Functional Analysis, 2002.
DOI : 10.1007/978-3-662-04728-6

P. Schneider and J. Teitelbaum, Locally analytic distributions and p-adic representation theory, with an application to GL 2, J. Amer. Math. Soc, vol.15, pp.51-125, 2002.

P. Schneider and J. Teitelbaum, Banach space representations and Iwasawa theory, Israel Journal of Mathematics, vol.36, issue.1, pp.359-380, 2002.
DOI : 10.1007/BF02784538

URL : http://arxiv.org/abs/math/0005066

P. Schneider and J. Teitelbaum, Algebras of p-adic distributions and admissible representations, Inventiones Mathematicae, vol.153, issue.1, pp.145-196, 2003.
DOI : 10.1007/s00222-002-0284-1

P. Schneider and J. Teitelbaum, Banach-Hecke algebras and p-adic galois representations, honour of John Coates' 60th Birthday, pp.631-684, 2006.

B. Schraen, Repr??sentations p-adiques de GL2(L) et Cat??gories D??riv??es, Israel Journal of Mathematics, vol.141, issue.4, pp.307-362
DOI : 10.1007/s11856-010-0031-z

B. Schraen, Sur la présentation des représentations supersinguliéres de GL 2 (F ), 2012.

J. Serre, Arbres et amalgames, 1977.

C. Sorensen, A proof of the Breuil-Schneider conjecture in the indecomposable case, Annals of Mathematics, vol.177, issue.1, 2011.
DOI : 10.4007/annals.2013.177.1.7

M. Van and . Put, Algèbres de fonctions continues p-adiques, Proc. Kon. Ned. Akad. v. Wetensch. A 71, pp.556-661, 1968.

M. Vignéras, A criterion for integral structures and coefficients systems on the three of P GL, Pure and Applied Mathematics Quaterly 4, pp.1291-1316, 2008.

M. Vishik, NON-ARCHIMEDEAN MEASURES CONNECTED WITH DIRICHLET SERIES, Mathematics of the USSR-Sbornik, vol.28, issue.2, pp.216-228, 1976.
DOI : 10.1070/SM1976v028n02ABEH001648