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Résumé

Nous étudions la stratification de Newton des variétés de Shimura de type PEL aux places
de bonne réduction.

Nous considérons la strate basique de certaines variétés de Shimura simples de type PEL
modulo une place de bonne réduction. Sous des hypotheses simplificatrices nous prouvons une
relation entre la cohomologie ¢-adique de ce strate basique et la cohomologie de la variété de
Shimura complexe. En particulier, nous obtenons des formules explicites pour le nombre de
points dans la strate basique sur des corps finis, en termes de représentations automorphes.
Nous obtenons les résultats a ’aide de la formule des traces et de la troncature de la formule
de Kottwitz pour le nombre de points sur une variété de Shimura sur un corps fini.

Nous montrons, en utilisant la formule des traces, que n’importe quelle strate de Newton
d’une variété de Shimura de type PEL de type (A) est non vide en une place de bonne
réduction. Ce résultat a déja été établi par Viehmann-Wedhorn [104]; nous donnons une
nouvelle preuve de ce théoreme.

Considerons la strate basique des variétés de Shimura associées a certains groupes uni-
taires dans les cas ol cette strate est une variété finie. Alors, nous démontrons un résultat
d’équidistribution pour les opérateurs de Hecke agissant sur cette strate. Nous relions le taux
de convergence avec celui de la conjecture de Ramanujan. Dans nos formules ne figurent
que des représentations automorphes cuspidales sur GL,, pour lesquelles cette conjecture est
connue, et nous obtenons donc des estimations tres bonnes sur la vitesse de convergence.

En collaboration avec Erez Lapid nous calculons le module de Jacquet d’une représentation
en échelle pour tout sous-groupe parabolique standard du groupe général linéaire sur un corps

local non-archimédien.



Abstract

We study the Newton stratification of Shimura varieties of PEL type, at the places of
good reduction.

We consider the basic stratum of certain simple Shimura varieties of PEL type at a place
of good reduction. Under simplifying hypotheses we prove a relation between the /f-adic
cohomology of this basic stratum and the cohomology of the complex Shimura variety. In
particular we obtain explicit formulas for the number of points in the basic stratum over finite
fields, in terms of automorphic representations. We obtain our results using the trace formula
and truncation of the formula of Kottwitz for the number of points on a Shimura variety over
a finite field.

We prove, using the trace formula that any Newton stratum of a Shimura variety of PEL-
type of type (A) is non-empty at a prime of good reduction. This result is already established
by Viehmann-Wedhorn [104]; we give a new proof of this theorem.

We consider the basic stratum of Shimura varieties associated to certain unitary groups in
cases where this stratum is a finite variety. Then, we prove an equidistribution result for Hecke
operators acting on the basic stratum. We relate the rate of convergence to the bounds from
the Ramanujan conjecture of certain particular cuspidal automorphic representations on GLj,.
The Ramanujan conjecture turns out to be known for these automorphic representations, and
therefore we obtain very sharp estimates on the rate of convergence.

We prove that any connected reductive group G over a non-Archimedean local field has
a cuspidal representation.

Together with Erez Lapid we compute the Jacquet module of a Ladder representation at
any standard parabolic subgroup of the general linear group over a non-Archimedean local
field.
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Introduction

Dans cette thése, nous étudions la réduction des variétés de Shimura de type PEL ' modulo
des nombres premiers de bonne réduction. Plus précisément, nous étudions la stratification
de Newton de ces variétés modulo p. Les variétés de Shimura de type PEL sont des espaces de
modules de variétés abéliennes avec certaines structures additionnelles de type PEL. La strat-
ification de Newton des variétés de Shimura de type PEL consiste en des lieux ou l'isocristal
attaché aux variétés abéliennes est constant. Ces strates de Newton sont elles-mémes des

variétés et nous voulons comprendre leur cohomologie /-adique.

1. Histoire et motivation

L’étude des strates de Newton a commencé avec Frans Oort, qui les a définies pour 1’espace
classique de Siegel. A son tour, il étend le travail de Grothendieck et aussi de Katz qui ont
étudié le comportement des cristaux associés a des groupes p-divisibles dans les familles.

Pour I'espace de Siegel, Oort a déterminé les strates de Newton non vides, et a calculé
les dimensions de ces strates [85]. Le premier résultat d’Oort (le fait que les strates sont non
vides) est démontré dans [84] et a été conjecturé plus tot par Grothendieck dans [42]. Oort
a étudié en outre les orbites de Hecke dans les strates de Newton, et a introduit d’autres
stratifications différentes de la stratification de Newton (que nous ne considérerons pas dans
cette these).

La définition de la stratification de Newton a ensuite été étendue a toutes les variétés de
Shimura de type PEL par Rapoport et Richarz [88]. Leur article est apparu apres les travaux
de Kottwitz sur les isocristaux avec des structures additionnelles [55] (voir aussi [60]).

Pour une discussion plus détaillée de ’histoire du sujet nous renvoyons le lecteur a I’article
de Rapoport [87]; une autre référence utile est l’article de Mantovan [74].

2. La stratification de Newton

Avant d’énoncer les résultats de cette these, rappelons d’abord plus précisément la défi-
nition de la stratification de Newton.

Nous avons déja expliqué brievement ci-dessus que 'on étudie les variétés de Shimura de
type PEL et que ces variétés ont une interprétation comme espaces de modules de variétés
abéliennes avec certaines structures additionelles de type PEL.

1. Polarization, Endomorphisms and Level structure.

1



2 INTRODUCTION

Pourquoi est-ce que cette interprétation comme probleme des modules est utile? Nous
I’utilisons pour réduire la variété de Shimura modulo p et définir la stratification de Newton :
A priori une variété de Shimura S est définie seulement sur un certain corps des nombres
E (le corps réflex), et donc “réduction modulo p” n’a aucun sens. Avant de pouvoir réduire
la variété modulo un nombre premier p, nous avons besoin d’'un modele de S de S, sur,
disons, I'anneau Op ® Z;,). Bien sur, les modeles existent, mais ils ne sont pas uniques et
leur réduction dépend du modele que 'on choisit. Mais rappelons que nous avons supposé
que S a une interprétation comme probleme des modules de type PEL sur E, et donc les
choses se simplifient. Le probleme des modules peut étre étendu & un probleme des modules
sur 'anneau Op ® Z,), et le probleme étendu est représentable par un champ de Deligne-
Mumford [59, §5]. Sous des hypotheses naturelles, ce champ est un schéma quasi-projectif lisse
sur Op ®Z ). Pour avoir la représentabilité par un schéma lisse il faut que le groupe compact
ouvert K C G(A¢) soit suffisamment petit hors p et hyperspecial & p; nous supposerons, pour
simplifier, que ce soit le cas. Ensuite, nous avons un choix canonique pour le modele & de S
sur O @ Zp), et nous choisissons ce modele. On remplace désormais S par son modele S sur
Op ® L)

La variété S ® F, se décompose canoniquement en certaines pieces appelées strates de
Newton. Pour définir ces strates, on utilise de nouveau l'interprétation de S comme espace
de modules : Pour chaque point x € S(?p) on peut considérer le module de Dieudonné
rationnel D(A, [p™]) ® Q de la variété abélienne A, correspondant au point z. Ces modules de
Dieudonné sont des isocristaux et les structures additionnelles sur A, induisent des structures
additionnelles sur l'isocristal D(A;[p™]) ® Q. Lorsqu'il est équipé de ces structures, 'objet
D(AL[p>]) @ Q est un isocristal avec G-structure (ici, G est le groupe de la donnée de Shimura
de S). Nous sommes intéressés par cet objet a isomorphisme pres. On note B(GQP) pour
I'ensemble des isocristaux avec des G-structures additionelles. Donc D(A; [p™])®Q € B(Gg, ).

Maintenant, pour chaque élément b € B(Gg,) on note Sy(Fp) le sous-ensemble de S(F))

constitué d’éléments = € S(IF,) tels que b = D(A.[p™]) ® Q € B(Gg,). Le sous-ensemble
Sp(F,) C S(Fp) provient d'un sous-schéma réduit et localement fermé Sj, de S [88]. La collec-
tion des schémas {Sb}beB(G@p) est la stratification de Newton de S, et les Sy, sont les strates
de Newton.

Les correspondances de Hecke sur la variété S(C) sont algébriques, et définies sur le corps
E. Elles s’étendent aussi au modele de S sur O ® Z,), parce que leur action peut étre
décrite en termes de I'interprétation de S comme probleme des modules. En particulier, nous
avons les correspondances de Hecke sur S ® [F),. Ces correspondances de Hecke respectent
la stratification de Newton, de sorte qu’elles peuvent étre restreintes aux différentes strates
de Newton. Par conséquent les espaces de cohomologie Hét(Sbfp,@g) (avec £ # p) sont des
modules sur l'algebre de Hecke de G. Ces espaces de cohomologie portent aussi une action
du groupe de Galois Gal(F,/k) (ol k est un corps résiduel de Op ® Z,)) qui commute avec

I’action de l'algebre de Hecke.
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3. Cette thése

Nous donnons un bref apercu des nos résultats.

Dans cette theése, on étudie la stratification de Newton des variétés de Shimura de type
PEL, en des places de bonne réduction. Nous introduisons une nouvelle méthode pour étudier
les strates de Newton. Notre méthode utilise (la restriction de) la formule de Kottwitz et
des formes automorphes. En utilisant cette méthode nous répondrons a certaines questions
classiques.

Nous nous posons quatre questions générales sur les strates de Newton Sp (cf. §1) :

(1) Pour quels éléments b € B(Gq,), la strate S, C S correspondante est-elle non vide ?
(2) Pour b € B(Gq,) donné, peut-on calculer la dimension de la variété S, 7

(3) Peut-on décrire la fonction zéta de S ?

(4) Peut-on décrire le cohomologie (-adique de S en tant que module de Galois/Hecke 7

Nous avons numéroté les questions en difficulté croissante. Souvent, une réponse satisfaisante
a la question (i) donne également une réponse satisfaisante a la question (i — 1).

Dans cette these, nous répondrons partiellement aux quatre questions ci-dessus. Main-
tenant nous écrivons quelques énoncés imprécis afin de donner une idée des résultats. Nous

préciserons nos théoréemes principaux dans la section suivante.

Question (1). Kottwitz a introduit I’ensemble des isocristaux p-admissibles B(G, u) C
B(G), ot p1 est défini par la variété de Shimura. Pour tout point z € S(F,) l'isocristal associé se
trouve dans le sous-ensemble B(G, u) C B(G) (Rapoport-Richarz). Ainsi, les strates de New-
ton associées aux isocristaux non-admissibles sont vides. Récemment Wedhorn et Viehmann
ont établi, pour les variétés de PEL de type (A) et (C), qu’inversement, pour b un isocristal
p-admissible donné, il existe un point z € S(F,) dont lisocristal est b. Nous établissons le
résultat de Wedhorn et Viehmann dans le Chapitre 4 pour les variétés de type (A). Méme
si notre résultat n’est pas nouvau, notre preuve est compléetement différente : la formule des

traces remplace des arguments délicats de géométrie algébrique.

Question (2). Dans le Chapitre 2 on établit une formule pour la dimension de la strate
basique d’une variété de Kottwitz, sous des conditions simplificatrices. Dans le Chapitre 3 on
établit des résultats partiels qui vont en direction d’une formule pour la dimension de la strate
basique d’une variété de Kottwitz, dans des conditions beaucoup plus légeres. Une variété de
Kottwitz est une variété de Shimura de type PEL de type (A), et est associée a une algebre
de division avec une involution de seconde espece. Ces variétés sont nettement plus simples

que toute la classe des variétés de PEL de type (A), ou ’endoscopie joue un role.

Question (3). Considérons a nouveau la strate basique des variétés de Kottwitz en des
places de bonne réduction. Nous supposons maintenant que p est completement déployé dans
le centre de l'algebre a division D qui vient avec la variété de Kottwitz. Au Chapitre 3, sous
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ces hypotheses, nous répondons a la question (4) par “oui” et on obtient, comme corollaire, la
réponse “oui” & la question (3).

Question (4). Dans le chapitre 3, nous calculons I'objet Z;’io(—l)iHét(BFp, t*L) comme
élément du groupe de Grothendieck de H(G(AF)) x Q[Gal(F,/k)]-modules?. Ici, B est la
strate basique d’une variété de Kottwitz (associé a une algebre a division D) en un nombre
premier p tel que D ® Q) est isomorphe a un produit d’algebres de la forme M, (Q,). L’objet
s’exprime en fonction de formes automorphes sur le groupe G et certains polyndémes de nature

combinatoire (voir la réponse a la question (3)).

Méthode. Nous allons maintenant expliquer la nouvelle méthode que nous utilisons dans
cette these. Nous commencons avec la formule de Kottwitz pour le nombre de points d’une
variété de Shimura de type PEL-sur un corps fini (cf. [57,59]) :

(3.1)
S m@x L) = [ker (@)Y elh0i 7, 004 (FP)TOx(ga) Tr éc(30).

@/ €Fixgg  oop (Fp) (7057,9)

Cette introduction n’est pas le lieu pour définir toutes les notations et définitions impliquées
dans cette formule. Nous n’expliquerons ici que certains des éléments principaux. Il convient
de mentionner d’abord que Kottwitz a uniquement prouvé cette formule pour les variétés S
de type PEL, lorsque le groupe est de type (A) ou (C). Pour les variétés de type PEL de type
(D), Kottwitz ne prouve ni ne conjecture une telle formule 3.

— f°P est un opérateur de Hecke quelconque dans l'algebre de Hecke H(G(A})) des fonc-
tions localement constantes sur G (A? ) (ot G est le groupe qui intervient dans la donnée
de Shimura) ;

— @, est élément de Frobenius géométrique dans le groupe de Galois Gal(F,/k);

— « est un entier positif;

— & est une représentation complexe irréductible de G¢, et L est le systeme local /-adique
associé a la représentation & (¢ est un nombre premier fixé différent de p, et nous avons
fixé, et supprimé, un isomorphisme entre C et Q) ;

~ La somme du ¢6té droit de Equation (3.1) porte sur les triplets de Kottwitz (yo;, 8).
Ces triplets sont associés aux classes d’isogénie des variétés abéliennes virtuelles. L’élé-
ment 7y parcourt les classes de conjugaison stables R-elliptiques de G(Q).

— Pour la description des points z’ du point associé x € Shg (F,), voir ’Equation (2.3.3).

L’énoncé précis du résultat se trouve dans l'article de Kottwitz [59], voir en particulier §19
et I'introduction de cet article.

2. Tl faut dire que I’'on doit fixer un isomorphisme de C avec Q, pour avoir une action de 1’algebre de Hecke

sur la cohomologie /-adique.
3. Dans l'article [57] il ne conjecture une formule que pour les groupes connexes ; dans 'article [59] il définit

les variétés de type (D), mais, quand les preuves commencent, il exclut ce cas.
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En regardant la formule de I’Equation (3.1) nous pouvons expliquer I'idée principale de
notre méthode. La formule de Kottwitz concerne le nombre de points dans toute la variété
de Shimura Shx modulo un nombre premier p du corps réflex E. L’idée principale est de
restreindre le coté droit de I’Equation (3.1) en comptant seulement les points dans une strate
de Newton donnée. Ainsi, nous fixons un isocristal b € B(Gq,) avec des G-structures addi-
tionelles. Cet élément correspond & une classe de o-conjugaison dans le groupe G(L), ou L est
la complétion de 'extension maximale non ramifiée de Q, et o est ’élément de Frobenius de
la complétion du corps réflex F en la place p. Alors b définit une strate Shl}{yp de Shx modulo
p. Nous restreignons la somme dans I'Equation (3.1) sur les triplets de Kottwitz (o;7,d) tels
que 0 définit I'isocristal b. Le c6té gauche doit alors étre limité aux points fixes de la corre-
spondance [P x @y agissant sur la b-ieme strate de Newton Shlj(jp de Shg . Les restrictions
des deux cotés de I'Equation (3.1) sont égales, et nous obtenons une version b-restreinte de la
formule de Kottwitz.

Dans son article de la conférence de Ann Arbor, Kottwitz montre comment (le c6té droit
de) ’Equation (3.1) se stabilise. Cet argument de stabilisation est également valable pour
notre formule b-restreinte. Donc nous pouvons encore comparer la formule b-restreinte avec la
formule des traces. Ce faisant, nous arrivons & une somme de traces sur des représentations
automorphes des groupes endoscopiques de G. Notre méthode consiste a traduire une question
donnée sur une strate de Newton, par la formule restreinte de Kottwitz, en une question sur les
représentations automorphes, et de voir si nous pouvons répondre a cette question traduite.
Nous montrons dans cette thése que nous pouvons répondre a la question traduite dans
certains cas. Par exemple, pour répondre a la question (1) ci-dessus, on doit montrer qu'une
somme de traces de certains opérateurs de Hecke (transférés) agissant sur les représentations
automorphes de groupes endoscopiques de G est non nulle (Chapitre 4, voir ci-dessous).

Il se trouve que les questions traduites sont souvent des problemes combinatoires. Essayons
d’expliquer un de ces problemes combinatoires, et comment nous le résolvons. A I’exception du
Chapitre 4, nous avons restreint notre attention a la strate basique dans cette these. Dans cette
section, nous limitons aussi notre attention a la strate basique. En outre, nous considérons une
variété de Shimura “de Kottwitz”. Nous restreignons 'Equation (3.1) & la strate basique. Par
les arguments que nous avons esquissés ci-dessus, le coté droit de cette équation restreinte peut
étre comparé a une formule des traces. Une caractéristique des variétés de Kottwitz est que
I’endoscopie ne joue pas de role. C’est pourquoi nous allons obtenir simplement une trace de la
forme Tr((Xg(Qp ) fa)fP, A(Q)). Ici A(G) est Pespace des formes automorphes sur le groupe G,
fP est opérateur de Hecke en dehors de p, et en p nous avons 'opérateur de Hecke XCG(QP ) fa-
La fonction f, est la fonction de Kottwitz [54]. Cette fonction est fondamentale, et Kottwitz
a montré que 1'on doit prendre cette fonction en p, si 'on veut que la trace Tr(f, f?, A(G))
soit égale au coté gauche de I’Equation (3.1). Une fois que cela est établi, on peut faire appel
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aux théoremes de Fujiwara et Grothendieck-Lefschetz afin de trouver I'identité :
Tr(fu f7, A(G Zﬁ (72 > o, WLy (Shyc,, Q)

C’est 'identité que Kottwitz utilise pour associer une représentation galoisienne & certaines
formes automorphes pour le groupe G dans article [58]. Nous avons restreint la formule & la
strate basique, ce qui donne l'identité

Tr((e @ fa) 7, AG ZTr (£7 x @5 Hi (Bg, Q)

ou B est la strate basique. Le probleme combinatoire que nous avons mentionné ci-dessus
est le calcul des traces compactes Tr(xe ¢(Qr) fa,T™p) pour toute représentation automorphe 7
contenue dans l'espace de formes automorphes A(G).

Dans son article sur le lemme fondamental [22], Clozel a donné une formule pour la trace
compacte d’une fonction de Hecke sur les représentations irréductibles lisses des groupes
réductifs p-adiques :

(@ fm) = 3 e T (T wn ()
P=MN
(la somme s’étend sur les sous-groupes paraboliques standard ; pour les autres notations, nous
renvoyons le lecteur a la Proposition 2.1.2). Cependant, cette formule est une somme alternée
impliquant tous les modules de Jacquet de la représentation. Il n’est pas facile d’évaluer la
formule pour une représentation arbitraire d’'une manieére satisfaisante (du moins, ’auteur ne
sait pas comment), pour deux raisons : (1) les modules de Jacquet sont trés compliqués, (2)
la somme est tres redondante et beaucoup des termes s’annulent.

Avec seulement le formule de Clozel, nous ne pensons pas avoir assez d’information pour
dire quelque chose d’intéressant. Dans cette these, nous travaillons souvent avec 'hypothése
supplémentaire que le centre de F' de l'algebre a division D se déploie en un compositum
F =KF*, ot F* est un corps de nombres totalement réel, et K est quadratique imaginaire.
Nous supposons également que le nombre premier p de réduction est déployé dans 'exten-
sion K/Q. Ces hypotheses nous permettent d’utiliser le changement de base quadratique. En
appliquant le changement de base du groupe G' au groupe G* = Resy /oG, nous pouvons
comparer les représentations automorphes m C A(G) avec des représentations automorphes
du groupe général linéaire. Ces représentations automorphes sont discretes, et Moeglin et
Waldspurger ont classifié le spectre discret du groupe général linéaire. Cela nous donne une
liste explicite de représentations possibles 7, en p, et il suffit pour nos besoins de calculer

(Qp)fa

les traces Tr(xe Tp) pour ces représentations m,. Les représentations sont, & induction
parabolique pres, des représentations de Speh. Tadic a trouvé une expression explicite des
représentations de Speh dans le groupe de Grothendieck des représentations lisses. Il prouve

une formule explicite qui exprime toute représentation de Speh donnée en un somme alternée
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des représentations standard. Nous savons comment calculer les traces compactes sur les
représentations standard. Ainsi, il ne reste plus qu’a calculer la somme alternée.

Malheureusement, il se trouve que la somme alternée restante n’est pas facile a calculer
en général. Dans le Chapitre 2, nous avons travaillé avec des conditions choisies de sorte que
la somme est facile (triviale) & calculer (donc nous évitons ce probleme dans le Chapitre 2).
Dans le Chapitre 3 nous travaillons sous I’hypothese que p est completement déployée dans le
corps F'*, la somme est alors aussi plus simple, mais non-triviale. Nous interprétons la somme
comme une somime sur les polynoémes associés & certains chemins dans Q?, et nous montrons,
en utilisant le Lemme de Lindstrém-Gessel-Viennot bien connu en combinatoire, que la somme
se réduit a une certaine somme sur des chemins sans intersection. Puis nous déterminons les
représentations qui contribuent a la (somme alternée des espaces de) cohomologie de la strate
basique.

4. Les résultats de cette these
Nous indiquons chapitre par chapitre les résultats principaux de cette these.

Chapitre 1 : La courbe modulaire. Ce chapitre d’introduction ne contient pas de
nouveaux résultats. Le théoréme principal que nous prouvons est classique et peut étre déduit
facilement des travaux de Deligne et Rapoport [34].

Nous avons écrit ce chapitre comme un exemple de la méthode que nous avons esquissé

dans la section précédente. Nous démontrons le théoreme suivant :

THEOREME (Deligne-Rapoport). Soit N un entier avec N > 4 et considérons la courbe
modulaire Y1(N). Soit p un nombre premier qui ne divise pas N. Nous écrivons Y1(N )ss pour
le lieu supersingulier de Y1(N)®F,. Soit X'(N) la compactification de la courbe correspondant
au groupe I'1(N) NTy(p). Soit o un entier positif. Si a est pair, nous avons

#Y1(N)ss(Fpa) = 1+ genre(X'(N)) — 2 - genre(X1(N)).
St « est impair, nous avons

BYI(N)s(Fp) = 1+ 3 dim(m)X” - (),

ou 7 porte sur les représentations suivantes de GLa(A). Nous écrivons Z(R)t pour l’ensem-
ble des matrices diagonales dans GLa(R) de la forme diag(z,z) avec x € RZ,, et nous
écrivons LE(GL2(Q)Z(R)"\GLa(Ayf)) pour l'espace des formes paraboliques muni de lac-
tion de GLo(A) par translations a droite. Alors w porte sur les sous-espaces irréductibles
de LE(GLa(Q)Z(R)T\GLa(Ay)) avec
— Tso st la série discréte holomorphe de poids 2 ;
— mp est un twist par un caractere non ramifié de la représentation de Steinberg de
GL2(Qp), e(mp) = 1 si m, = St et e(mp) = —1 si Ty = St ® ¢ avec ¢ le caractére
quadratique non-ramifié.
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Chapitre 2 : La strate basique de quelques variétés de Shimura simples. Nous
considérons une classe restreinte de certaines variétés de Shimura simples de type PEL, et nous
considérons la strate de Newton en une place déployée de bonne réduction. Nous établissons
une relation entre la cohomologie de la strate basique de la variété de Shimura et I'espace des
formes automorphes sur le groupe G. Nous montrons que ’espace des formes automorphes
décrit completement la cohomologie de la strate basique comme module de Hecke, ainsi que
I’action de I’élément de Frobenius.

Donnons maintenant 1’énoncé précis. Soit D une algebre de division sur Q équipée d’un
anti-involution *. On note F' le centre de 'algebre D. Nous supposons que F' est un corps de
multiplication complexe, que * induit la conjugaison complexe sur le centre F' et que D # F.
Nous supposons que F' est un compositum d’une extension quadratique imaginaire I de Q
et du sous-corps totalement réel F* de F. Nous choisissons un morphisme hy de R-algebres
de C dans Dg tel que ho(z)* = ho(Z) pour tout nombre complexe z, et nous supposons que
Iinvolution 2 + ho(i) "'z*ho(i) sur Dg est positive (cf. Deligne [31, (2.1.1.2)]). Alors (D, h)
induit une donnée de Shimura (G, X, h™1). Soit K C G(A¢) un sous-groupe compact ouvert de
G et p un nombre premier tel que nous avons bonne réduction en p (dans le sens de [59, §6])
et tel que le groupe K se décompose en un produit K,K? ou K, C G(Q,) est hyperspécial
et le groupe hors p, KP, est suffisamment petit, pour qu’on puisse prendre Shg la variété de
Shimura qui représente le probleme des modules de variétés abéliennes de type PEL définie
chez Kottwitz [59, §6]. Nous notons A(G) l'espace des formes automorphes sur G. Soit £ une
représentation irréductible complexe algébrique de G(C). Soit fo, une fonction (quelconque)
sur le groupe G(R) ayant les intégrales orbitales stables prescrites par les identités dans [54].
Pour f, nous pouvons prendre une fonction d’Euler-Poincaré [58, Lemma 3.2] (modulo un
certain scalaire explicite, cf. [loc. cit.]). Nous supposons que le nombre premier p est déployé
dans 'extension K/Q. Soit B la strate basique de la réduction de la variété Shx modulo une
place p du corps réflex E au-dessus de p, et soit F, le corps résiduel de £/ en p. Nous notons
& du
systeme local f-adique associé a & sur Sh K, ét [59, §6]. Soit f°°P un opérateur de Hecke KP-

®, € Gal(F,/F,) pour le Frobenius géométrique x 297", Soit £ la restriction en By,

sphérique dans lalgebre H(G(AF)), ot Af est 'anneau des adeles finies dont la composante
en p est triviale. Enfin, nous supposons une condition simplificatrice sur l'isocristal basique
p-admissible. Soit b € B(Gq,, u) I'isocristal avec des G-structures additionelles correspondant
a la strate basique. Le groupe G(Q,) est égal & Q,™ x GL,(F" ® @), et I'ensemble B(Gq,)
se décompose suivant les facteurs irréductibles de l'algebre de F'* ® Q,. Par conséquent, nous
avons pour chaque F-place p au-dessus de p un isocristal b, € B(GL,(F})). La condition
simplificatrice sur l'isocristal b est, pour chaque p, la seule pente de b, avec multiplicité > 1
est la pente 0. Sous ces conditions, nous avons le théoreme suivant :
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THEOREME. La trace de la correspondance fP> x Py agissant sur la somme alternée des

espaces de cohomologie z;ﬁo(—l)iHEt(Bﬁp, (*L) est égale a

(41)  |Ker'(G:Q)|P(¢%) > TP 4 Y Te(fP, )

TCA(G) TCA(G)
dim(mw)=1,7p nr. mp type St.

pour tous les entiers positifs a. La condition “m, de type Steinberg” dans Z’Equation (4.1)

signifie que, pour chaque FT-place ¢ au-dessus de p on a les conditions suivantes :

(1) si le composant en o de lisocristal basique n’est pas étale (i.e. a des pentes non
nulles), alors m, est un twist par un caractére non ramifié de la représentation de
Steinberg de GLy(F)) ;

(2) si le composant en @ est étale (toutes les pentes sont nulles), alors la représentation

T, est non ramifiée et générique.

Le symbole € € {£1} dans I’Equation (4.1) est égal d (—1)("71)#R3m$ ot Ram,| est I’ensemble
des FT-places ¢ divisant p telles que ’isocristal b, n’est pas étale. Le nombre (; est un
certain qg-nombre de Weil dont le poids dépend de & (voir Lemme 2.3.11). Le symbole P(q*)
est une certaine fonction polynomiale, voir la Définition 2.8.12 et la discussion qui suit cette

définition.

Pour donner un idée de sa forme nous donnons dans cette introduction la fonction P(g%)
sous deux autres hypotheses simplificatrices (pour 1’énoncé complet nous devons nous référer
au Chapitre 2). Soit n 'entier positif tel que n? est la dimension de 1’algebre de D sur le corps
F'. Par la classification des groupes unitaires sur les nombres réels, le groupe G(R) induit pour
chaque F*-place infinie v un ensemble de nombres non-négatifs {p,, g, } tels que p, + g, = n.
Supposons dans cette introduction que p, = 0 pour toute place v, sauf pour une unique
FT-place infinie vg. Deuxiémement, nous supposons que p est compleétement déployé dans le
corps F™. Alors il existe un polynéme Pol € C[X] tel que P(g®) est égal & Pol|x—4o. Notre
condition sur l'isocristal basique correspond a la condition que le nombre p,, soit premier
avec n (voir paragraphe §2.3.2). Nous noterons s pour la signature p,,. Alors, le polynéme

P(q“) est égal a I’évaluation du polyndme

(4.2) XY X X, Xi, € CIX, X1, Xo,..., X,

: s(n—s) i—n 3—n n—1 .
au point X = ¢% 2 ,Xlzqo‘12 ,ngqa32 ey Xn = q° 2. Dans la somme de I’Equa-
tion (4.2) les indices 41, @2, . . ., i5 portent sur ’ensemble {1,2, ..., n} et satisfont aux conditions

01 <ig<iz< ... <ig;

o iy =1;

e Si s> 1ily a une condition supplémentaire : Pour chaque sous-indice j € {2,...,s}
onai; <1+%(j—1).
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FIGURE 1. Calculer la trace compact de la fonction de Kottwitz f,qs sur la
représentation de Steinberg.

Dans le cas de Harris et Taylor [45] le polynome Pol(g®) est égal a 1 (la strate basique est
alors une variété finie).

La définition ci-dessus est courte, mais ne nous aide a comprendre ce qu’est ce polynome.
Dans la Figure 1, nous donnons une interprétation graphique pour n = 16 et s = 8. Nous
tragons la ligne ¢ de pente % = % passant par l'origine. Nous marquons 'origine (0,0) et le
point (16, 8). On considere certains chemins qui vont de l'origine au point (16, 8). Ces chemins
se composent en deux types d’étapes : celles qui vont vers l’est de la forme (a,b) — (a +1,b)
et celles qui vont vers le nord-est de la forme (a,b) — (a+1,b+ 1) (aucune autre étape n’est
permise pour tracer les chemins). De plus les chemins doivent rester strictement sous de la
ligne £. Soit L un tel chemin, prenons le produit des puissances p** sur I’ensemble des étapes
nord-est (a,b) — (a+1,b+ 1) qui font parti du chemin L. Ce produit est appellé poids de L ;
on le note poids(L). Le polynéme P(q%) est égal a la somme des poids de tous les chemins
qui vont de (0,0) vers le point (16,8).

Le lecteur remarquera que dans cet exemple nous avons mis de cote la condition selon
laquelle s est premier avec n. Dans le cas ou n et s ont des diviseurs en commun, la formule
ci-dessus donne toujours la trace compacte de la fonction de Kottwitz agissant sur la représen-
tation de Steinberg (au signe prés : on a Tr(XSL"(Qp)fWS, Star.(g,) = (=1)""'P(»*)). La
formule pour la trace compacte sur la représentation triviale est presque la méme, la seule
chose qui change, c’est que, pour la représentation triviale, les chemins se trouvent aussi sous
de la droit £, mais pas strictement : les chemins peuvent la toucher. Dans le cas ol n et s sont
premiers entre eux il n’y a pas de différence car il n’y a pas de point entier (z,y) sur ¢ avec
0<z<n.

Chapitre 3 : La strate basique et des exercices combinatoires. Ce chapitre est la
suite du Chapitre 2. Nous enlevons une hypothese du théoreme principal du chapitre précé-
dent. Dans le dernier chapitre, nous avons (essentiellement) supposé que le polygone de New-
ton associé a la strate basique n’avait pas de point intégral autre que le point de début et le
point final. Nous résolvons les problemes combinatoires qui résultent de la supression de cette
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condition simplificatrice dans le cas ou le nombre premier p de réduction est completement
déployé dans le centre F' de I'algebre a division D qui définit la variété de Kottwitz.

Une conséquence de notre résultat final est une expression explicite de la fonction zéta de
la strate basique. Les expressions sont en termes : (1) des formes automorphes sur le groupe G
de la donnée de Shimura, (2) du déterminant du facteur en p de leur représentation galoisienne
associée, et (3) des polynomes en ¢%, associés a certains chemins non-intersectant dans les
treillis du plan Q2.

Avant que nous puissions donner 1’énonce du résultat nous avons besoin d’introduire trois
classes de représentations.

Considérons le groupe général linéaire G,, = GL,,(F') sur un corps local non-archimédien
F.

Soient x,y des entiers tels que n = xy. Nous définissons la représentation Speh(z,y) de
G, : C’est 'unique quotient irréductible de la représentation | det |%Stgx x | det |y2;38t(;x X
<o X | det |_y7718tgz ou les produits “x” signifient induction parabolique unitaire a partir du
sous-groupe parabolique standard de G,, avec chaque bloc de taille x. Une représentation de
Speh semi-stable de G,, est, par définition, une représentation isomorphe & Speh(z,y) pour
des entiers positifs x,y avec n = xy. Nous soulignons que nous n’avons pas défini toutes les
représentations de Speh, nous avons seulement introduit celles qui sont semi-stables (ce qui
est suffisant pour nos besoins ici).

Une représentation 7 de Gy, est appelée représentation rigide (semi-stable) si elle est égale
a un produit de la forme

k
I Speh(za, y)(za).
a=1

ou y est un diviseur de n et (x,) est une partition de %, et les g, sont des caracteres unitaires
non-ramifiés.

Une représentation m du groupe G(Qp) = Q x [], GLn(F, o) est appelé représentation
rigide (semi-stable) si pour chaque FT-place p au-dessus de p, la composante 7, est une

représentation (semi-stable) rigide du groupe GL,,(F, ;j ) dans la sens précédent :

k
ﬂ-@ = H Speh(xp,au y@)(gpva)’

a=1

ot deux conditions supplémentaires devraient étre vraies : (1) y, = y,r pour tout g, ©'[p, et
(2) le facteur de similitude Q) de G/(Q,) agit par un caractere non ramifié sur I'espace de 7.
Nous écrirons y := y,, et on appelle 'ensemble des données (2, q,€p.q,Y) les paramétres de .

Considérons une variété de Shimura de Kottwitz que nous avons introduit dans le para-
graphe précédent. Cependant nous faisons deux changements :

— On oublie ’hypothese sur les pentes de I'isocristal basique ;

— On ajoute la condition que le nombre premier p est compléetement déployé dans le centre

de F de D.
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Nous avons alors :

THEOREME. Soit o un entier positif. Alors

(4.3) DD T(fP x 0 H(Bg L) = Y Te(xE farmp) - Te(f7, 7).
i=0 TCA(Q)

7p est rigide

On pourrait penser que le théoréme ci-dessus est le résultat principal de ce chapitre, mais
le travail n’est pas fini ici. Le but de ce chapitre est de calculer la trace compacte Tr(xcG fa,Tp)
pour toute représentation rigide. Nous trouvons des expressions tout a fait explicites pour ces
traces compactes en termes de chemins qui se ne coupent pas. Malheureusement, la définition
de ces polynomes est trop technique pour étre énoncée ici : on consultera le corps du chapitre
pour les définitions. Nous nous contenterons d’un exemple d’un polynéme typique.

Considérons la représentation 7, = Speh(20,4) de GLgo(Qp). Prenons deux copies du
plan Q? et tracons la ligne ¢ de pente % = % passant par 'origine (voir la Figure 2). Dans la
Figure 2, appelons ¢4 la ligne sur le plan a gauche et £p la ligne sur le plan a droite. Sur la

droite £4 nous avons placé quatre points définis par :

T :=(-8,—-4) v;:=
T3 := (—10,-5) ¢35 := (10,5)

et sur /p quatre points définis par

Ty = (=9,-43) = (11,53)
Ty = (—11,-53) 7= (9,43).

Ces points sont déterminés par des formules explicites a partir des segments de Zelevinsky
de 7,. La pente des droites £4 et {p est déterminée par le cocaractere de Shimura p. Les
Figures 2A et 2B définiront chacune un polynome ; voyons d’abord le définition du polynéme
pour la Figure 2A (la définition du polynoéme de la Figure 2B sera analogue). Comme le montre
la figure, nous considérons des chemins qui relient le point &3 avec le point ¢ et le point &y
avec le point ¢3. Ces chemins se composent de deux types d’étapes, les étapes vers l'est de la
forme (a,b) — (a+1,b) et les étapes vers le nord-est de la forme (a,b) — (a+1,b+1) (aucune
autre étape n’est permise dans les chemins). En outre, il y a deux conditions que les chemins
doivent satisfaire : (C1) les chemins doivent rester strictement en-dessous de la ligne {4 et,
(C2) les chemins ne doivent pas se croiser. Nous appelons 2-chemin la donnée simultanée de
deux chemins, 'un reliant les points 23 et ¢, et 'autre reliant &1 et ¢3. Nous appelons un 2-
chemin de Dyck un 2-chemin qui satisfait les conditions (C1) et (C2). A tout 2-chemin de Dyck
L on associe une certaine puissance de p® (« est un entier positif fixé). Nous notons poids(L)
pour ce p“-puissance et nous 'appelons poids de L. Ce poids est défini comme suit. Pour L
donné, prenons le produit des p** sur l’ensemble des étapes nord-est (a,b) — (a + 1,b+ 1)
qui font partie du 2-chemin L. Le polynéme P4 associée a la Figure 2A est alors la somme
des poids de tous les 2-chemins de Dyck. Le polynéme associé a la Figure 2B est similaire;
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FIGURE 2. Exemple de chemins non-intersectants.

nous utilisons les points Za, Z4, U2, ¥4. La trace compacte (de la fonction de Kottwitz fpqs) sur
la représentation m, est alors le produit de P4 avec Pp (multiplié par un certain facteur de
normalisation, que nous ignorons ici).

Un autre résultat de ce chapitre est le calcul de la dimension de la strate basique.

Avant d’énoncer notre résultat nous avons besoin d’introduire les nombres s,. Plongeons
le corps F' dans le corps C. Considérons le sous-groupe U formé des éléments g € G dont le
facteur de similitude est égal & 1. Ce sous-groupe est obtenu par restriction a QQ d’un groupe
unitaire définie sur le corps F'*. Donc on a U(R) = [Toetiom(r+ r) U(sv,n — sy) pour des

entiers s, € Z avec 0 < s, < %n

THEOREME. La dimension de B est égal d :

Sy—1

O
0

v

v€Hom(F+,C) J=

Chapitre 4 : Les strates de Newton sont non vides. Considérons une variété de
Shimura de type PEL et réduisons modulo un nombre premier p de bonne réduction. La variété
de Shimura paramétrise des variétés abéliennes en caractéristique p avec certaines structures
additionnelles de type PEL. A chaque variété abélienne nous pouvons associer son isocristal
de Dieudonné. Les structures PEL sur la variété abélienne donne des structures PEL sur
I'isocristal, et en tant que tels les isocristaux se situent dans la catégorie des “isocristaux avec
structures additionnelles” (Kottwitz [55]). Nous regardons ces objets & isomorphisme pres. I
n’est pas vrai que chaque G-isocristal résulte d’un point géométrique sur cette variété. En
fait, il y a seulement un nombre fini d’isocristaux possibles ; depuis les travaux de Rapoport-
Richarz et Kottwitz [60,88] nous savons qu'ils se trouvent tous dans un certain ensemble fini
B(Gg,, i) d’isocristaux “admissibles”, mais ils n’ont pas montré que B(Gq,, 1) est exactement
I'ensemble des possibilités : Il n’était pas clair que pour chaque élément b € B(Gq,, i) il existe
une variété abélienne en caractéristique p avec structures additionnelles de type PEL dont
ce module de Dieudonné rationnel est égal & b. Récemment Wedhorn et Viehmann [104] ont

prouvé par des moyens géométriques que c’est effectivement le cas si le groupe de la donnée
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de Shimura est de type (A) ou (C). Dans ce chapitre, nous allons montrer que l'on peut
également démontrer ce résultat en utilisant les formes automorphes et la formule de trace
dans le cas ou le groupe est de type (A). Au moment de la rédaction de ce chapitre, Sug Woo
Shin, dans une conférence de BIRS, a annoncé une démonstration de ce résultat différent de
celle de Viehmann-Wedhorn et de la notre.

En ce moment, nous sommes en train d’écrire la preuve pour le cas (C). Nous pensons que
notre méthode donne également une preuve a certains variétés de Shimura de type Hodge,
au moins dans les cas ou le groupe est classique, si I’on peut démontrer pour ces variétes la
formule de Kottwitz.

Chapitre 5 : Equidistribution. Nous démontrons un résultat d’équidistribution pour
les opérateurs de Hecke agissant sur la strate basique des variétés de Kottwitz dans les cas ou
cette strate est une variété finie. Nous pouvons montrer que le taux de convergence est aussi
bon que la borne qui provient de la conjecture de Ramanujan.

Considérons une variété de Kottwitz comme dans le Chapitre 2, mais faisons ’hypothese
supplémentaire que la strate basique est une variété finie. Nous supposons aussi que I'image
de K dans le cocentre de G soit maximale.

Soit A D’espace vectoriel complexe sur I’ensemble des points géométriques de la strate
basique. Fixons une norme | - | sur 'espace vectoriel A. L’espace A est un module sur l'al-
gebre de Hecke. Soit T}, ,,, 'opérateur de Hecke dans 'algebre H(G(AY)) qui est obtenu par
changement de base, de 'opérateur de Hecke habituel T, ,, du groupe G(Af ® K) (qui est
isomorphe & un produit de groupes linéaires genéraux). Le lecteur peut trouver la définition
précise de cette suite d’opérateurs de Hecke dans la Section 5.2. Sur 'espace A on définit
I’endomorphisme “moyenne”, Moy, qui & un vecteur v associe sa moyenne sur les fibres de la
fleche Shg (Fp,) — mo(Shg ) (Fp).

Nous prouvons le résultat d’équidistribution ci-dessous :

THEOREME. Soit v € A un élément. Alors il ewiste une constante C € Rsg ayant la
proprieté suivante. Pour tout € > 0, il existe un entier M, tel que pour tout entier m > M,

sans facteur carré, et tout r avec 1 <r <n —1, nous avons

r(n—r)

Ty m(v)
deg(Tym)

— Moy(v)| < Cms~ 0

Le théoreme peut étre prouvé aussi pour d’autres suites d’opérateurs de Hecke, mais
— bien str — le taux de convergence dépend du choix de la suite.

Nous avons aussi un résultat partiel pour une large classe de variétés de Shimura de type
PEL unitaires, mais toujours dans I’hypothese ou la strate basique est finie. Nous prévoyons
d’étre en mesure de prouver un résultat d’équidistribution, avec probablement un taux de

convergence similaire, mais nous avons encore a estimer certains termes dans les expressions.
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Annexe A : Existence de représentations cuspidales. Nous montrons que tout
groupe réductif connexe G sur un corps local non-archimédien a une représentation cuspidale
complexe.

Nous n’avons pas utilisé ce résultat dans cette these, donc 'appendice est indépendant
du reste de la these. Nous l'utilisons seulement pour le groupe général linéaire, pour lequel
le résultat est bien connu. En fait, dans la littérature, il est souvent supposé que l'existence
de représentations cuspidales est connue, mais nous n’avons pas trouvé de référence. Cette
annexe pourrait combler cette lacune.

Nous avons besoin du résultat pour ’extension des résultats du chapitre 4 a certains
variétés de Shimura de type Hodge. Actuellement, nous travaillons sur ce résultat, et cette

annexe sera nécessaire dans cette preuve.

Annexe B : Modules de Jacquet de représentations en échelle (avec Erez
Lapid). Nous calculons explicitement la semi-simplification des modules de Jacquet de
représentations en échelle (anglais : “ladder representations”).

Ce résultat est nécessaire (et presque suffisant) si on veut étendre les résultats des
Chapitres 2 et 3 aux autres strates de Newton. Malheureusement, nous n’avons pas eu le
temps de compléter ce travail. Nous avons donc choisi d’inclure le résultat sur les modules de
Jacquet comme une annexe qui ne dépend pas du reste de la these.

L’énoncé précis du résultat n’est pas plus long que les premieres pages de I’annexe B. Par

conséquent, nous renvoyons le lecteur a ’annexe B pour le théoreme.






CHAPTER 1

The modular curve

We explain a new method to count points in the supersingular locus of the modular curves
Y1(N). We will count the number of supersingular points in the set Y;(N)(Fpe), where N is
an integer greater or equal than 3, « is a positive integer, p is a prime number which does
not divide N, and e is a finite field of order p®. The final result is Theorem 3.3.

Our computation of the number of supersingular points on Y;(N) is a variation on the
classical method of Thara-Langlands (refined by Kottwitz) [24,46,47,62,69,70,76]. This
classical method computes the cardinality of the full set Y;(/V)(Fpa) of elliptic curves over
Fpe with I'1 (N)-level structure. We alter the computation to calculate instead the number of
supersingular elliptic curves with I'y (IV)-level structure.

Our result is certainly not new: The final result of this chapter (Theorem 3.3) follows
directly from the result of Deligne and Rapoport [34]. However, our argument is completely
different from theirs, and in later chapters we show that our method also works for higher
dimensional Shimura varieties. Thus, it is not really the end result of this chapter which is
important, it is rather the method of proof.

This chapter is technically less demanding than the other chapters of this thesis. We
try to avoid generality: We replace references to general arguments/theorems by short and
simple calculations which are valid for GL2 but not necessarily for any other group. As a
consequence, some of the statements that we prove in this chapter will be a special case of
lemmas and propositions that we prove in later chapters.

Our aim in this introductory chapter is not to prove the most general result possible, even
for GLo. We just want to explain the method for an easy example. In particular the reader
will notice that we have included some simplifying conditions which are not really needed,
but do make the text more readable.

Notations: The letter G denotes the algebraic group GLo over the integers Z. The group B
is the standard Borel subgroup of G, T' C B is the standard maximal torus on the diagonal,
and Z C T is the center of G. We write Z(R)T for the topological neutral component of
the group Z(R). Let I, C G(Z,) the group consisting of those matrices g € G(Z,) such that
g € B(F,) (the standard Iwahori subgroup). The field L is the completion of a maximal
unramified extension Q)" of Q. We write Oy, for the ring of integers of L. Let a be a positive
integer. Let Que C L be the subfield of degree o over Q,, we let Zye C Qpe be the ring of
integers of Qpe, and Fpe is the residue field of Zy«. Finally Q, is an algebraic closure of Q,

17
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containing Q,™, the subring Z, C @p is the ring of integers and F,, is by definition the residue
field of Zp.

1. The modular curve

Consider the complex double half plane h* = {z € C | 3(z) # 0} on which the group
G(R) acts by fractional linear transformations:

<‘CL 2) -z:%, (‘CZ 2) €G(R), zebh*.

We pick the point i € h*, and define K, C G(R) to be the stabilizer of i. We define the
morphism h: C* — G(R) by (a+bi) — (% %). The image of & is the group K and the orbit
of h under the conjugation action of G(R) is equal to h*. The couple (G, h*) is a Shimura
datum.

Let N be an integer with N > 4. Let K;(N) be the subgroup of G(z) consisting of the
matrices g € G(Z) such that g = ({¥) € G(Z/NZ). We have the (complex points of the)
Shimura variety Sh(G, K1(N)):

(1.1) G(Q\G(A)/Kx K1 (N) = G(Q)\b* x G(Ag)/K1(N).

The variety Sh(G, K1(IV)) is equal to the modular curve Y; (V) over the reflex field Q.

The curve Y7 (V) has a natural model over the ring Z[1/N], for which we also write Y7 (N).
This model represents the following functor. For any scheme S with N € Og(S)* the set
Y1(N)(S) is equal to the set of equivalence classes of pairs (E, P) consisting of an elliptic
curves E/S and P € E(S) a point of order N. Two pairs (E1, Py), (E2, P2) are equivalent if
there is an S-isomorphism of elliptic curves E; = Ey sending the point P; to the point P,.

2. The Ihara-Langlands method

We recall a classical theorem of Thara, Langlands, Kottwitz and also Milne. This theorem

expresses the number of points on the curve Y7 (V) in terms of orbital integrals on the group
G(A).

THEOREM 2.1 (Ihara-Langlands-Kottwitz [62]). Let a be a positive integer. Then we have
that

(2.1) #YLN)(Fpe) = Y v(7)04(f),
v
where
— v ranges over a set of representatives for the set of the reqular semi-simple R-elliptic
G(Q)-conjugacy classes;
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— foo s a smooth function on G(R), with compact support on G(R)/Z(R), such that the
following property holds. There exists a choice of Haar measures such that the orbital
integral Oy(fs) = 0 for v reqular semi-simple non-elliptic and O(fs) = £1 for ~
reqular elliptic. The sign of O,(fx) is —1 is 7y is central, and equal to 1 otherwise;

— fa is the function in the unramified Hecke algebra Ho(G(Qp)) whose Satake transform
is equal to p*/?(X® +Y®) € C[X*1, Y% = H,(G(Q,));

— [P is the characteristic function of the compact open subgroup Ki(N)P C G(A});

— we write f = foo ® fo @ fP;

—v(7) is the volume term Vol(G,(Q)\G~(A¢)) with respect to certain normalized Haar

measures.

The proof of the above theorem has been carried out in detail by Kottwitz in a course
he gave in Orsay, see the notes [62] (cf. [54]) and see also the article [76]. Note that these
results are also proved in the (published) articles [58,59], but in much greater generality than
needed here. Clozel gives a summary of the argument for GLy in his Bourbaki talk [24]. See
also [12].

We will use a slightly stronger statement than Theorem 2.1. In fact, the proof of the
above theorem gives more than the theorem states: Both the left hand side and the right
hand side of Equation (2.1) decompose along isogeny classes, as follows. For any elliptic
curve E € Y1 (N)(Fpe) we look at the subset Y7 (N)(Fpe )(E) C Y1(INV)(Fpe) consisting of those
E’' € Y1(N)(Fpo) such that E is isogenous to E’. To E we may associate, via Honda-Tate
theory, an element v € GL2(Q). We make the following complement to Theorem 2.1:

(2.2) #Y1(N)(Fpe ) (E) = v(7)O4(f)-

By taking the sum over all isogeny classes one will recover Theorem 2.1.
We use this last Equation to count supersingular elliptic curves.

3. The number of supersingular points on the modular curve

Define Y] (N )ss(Fpe) to be the subset of Y1 (IN)(Fpe) consisting of the supersingular elliptic
curves with K (N)-level structure. The goal of this section is to give an expression for the
cardinal #Y7 (N )gs(Fpa).

We restrict the sum in Theorem 2.1 to run only over those conjugacy classes v whose
eigenvalues have the same p-adic valuation (cf. Equation (2.2)). The formula will then count
the isogeny classes of supersingular elliptic curves. To achieve this, let x be the characteristic
function of the set € of elements g € G(Q,) whose eigenvalues all have the same p-adic
absolute value. The set Q C G(Q)) is invariant under G(Qp)-conjugation and open and
closed. In particular the function xf, lies in the space Cg°(G(Q))). One checks easily that
the orbital integral O(x fa) is equal to the orbital integral O,(f,) for elements v in © and
that the orbital integral O,(xfo) vanishes for any element v not lying in 2. Consequently
the cardinal #Y71(N)ss(Fpe) is equal to the sum 3 v(v)O(x [).
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The trace formula of Selberg! applied to the function y f reads

S 010 (x) + 3 VOl(A@NA(AL) O (£7x o) (2>

- 1= t1/f2]os

(3.1) = Te(xf,m),

where 7 in the ranges over the irreducible subspaces of L?(Z(R)*G(Q)\G(A)), and in the first
sum ~y ranges over the semi-simple G(Q) conjugacy classes which are G(R)-elliptic, and in the
second sum v ranges over the rational elements v = (" ,, ) of A(Q)™ such that [t1]os > [t2|so-

The second large sum in Equation (3.1) is the corrective term; we claim that this corrective
term vanishes (for our Hecke function). By the properties of the Satake transformation ? the
orbital integral O, (f) is non-zero only if 7, is elliptic or if one of its eigenvalues has non-zero
p-adic valuation and the other one p-adic valuation equal to zero. Assume that the conjugacy
class 7, contains an element the split torus A(Q,) and assume that the integral O, (faX) is
non-zero. The conjugacy class v, lies in A(Q,), and thus cannot be elliptic, and therefore the
p-adic valuations of its eigenvalues are different (one is zero and the other one is «). However,
v is compact and therefore the valuations of its eigenvalues are equal. This is a contradiction,
and thus the integral O, (fax) is zero for v, € A(Qp). This proves the claim.

The corrective term in Equation (3.1) vanishes and we obtain simply

(3.2) #HY1(N)ss(Fpe) = > 0(1)05(xf) = Y Tr(xf,m).
Yy g
In the following 3 subsections we will compute the traces Tr(x f, ) for all discrete automorphic

representations 7 of G(A).

3.1. A Local Computation at p. Let us first focus on the trace at p in Equation (3.2).
To simplify notations, we write G for the group G(Q)), T for T(Q,), B for B(Qy), and N for
N(Qp) in this subsection. The computation of the traces at p is easy using Clozel’s formula
for compact traces (see [22, p. 259] or Proposition 2.1.2 of this thesis). The formula applied
to GLo states

(3:3) Tr(xfa, ™) = Tr(fa, m) = Trr (YNféB),WN(5;1/2)> 7

where we need to recall some definitions:
— The symbol 7 is a smooth representation of G of finite length.
— The T-representation 7y is the Jacquet module of m, i.e. the C[T]-module of N-

coinvariants in 7.

1. See Duflo & Labesse [38]. Note that this reference gives the trace formula for PGL2, not for GLy. The
formula applies to the case at hand, because the automorphic representations 7 for which Tr(x f, 7) is non-zero
have trivial central character (wy is trivial on det(K;(N)?) = Z»* and trivial on Zy by Proposition 3.1).

2. For a proof, see for example [72, thm 4.5.5], or the argument at Proposition 2.1.7.
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— The character dp is the modulus character of B with respect to a right > Haar measure.
Explicitly, we have the formula 6(z) = | det(z, Lie(N))| = ad~!| if x = (* ;) € T

— The function X is the characteristic function of those matrices (¢ ;) € T with |ad~!| <
1. Note that the function X is not defined in this manner in the reference [22, p. 259],
but see Section 2.1.5 of this thesis for the proof that the function Yy satisfies the above
description in case the group is GLs.

— The function fo(éB): T — C is the constant term of f at B; it is defined by

£ (1) = 6, (1) /N f(tn)dn,

for all elements t of the torus 7. Here the Haar measure on IV is normalized so that it
is compatible with the Haar measure on G via the Iwasawa decomposition G = KAN.
By definition, a representation 7 of G is semi-stable if it has invariant vectors for the
standard Iwahori subgroup. A first consequence of Formula (3.3) is that Tr(x fo, 7) is non-zero
only if 7 is semi-stable. Thus, there are no cuspidal representations which contribute. To see
this: From Formula 3.3 follows that if the trace Tr(x fa, 7) is nonzero, then the representation
7 is unramified or the Jacquet module 7y is nonzero. The result in Proposition 2.4 of [16]
states that the vector space (WN)Z; * s isomorphic to the vector space w’». Thus, in both
cases it follows that 7 is semi-stable.
Assume from now on that the representation 7 is semi-stable. These semi-stable repre-
sentations are classified [13, thm 9.11] and divided into 3 groups:

(1) The irreducible representations of the form Ind% (), where y: T — C* is an unram-
ified character (the induction is unitary).

(2) The unramified, one-dimensional smooth representations.

(3) The semi-stable special representations. These are the twists of the Steinberg repre-
sentation Stg by an unramified character of G.

We compute the compact traces on the representations in the above list:

ProproSITION 3.1. The following statements are true:

(i) Let x be an unramified character of the torus T'. Then:
Tr (X fa, Ind§(x)) = 0.
(i) Let ¢ be an unramified character of the group G. Then:
Tr (xfa, C(¢)) = (" 1) ™"
(ii1) Let ¢ be an unramified character of the group G. Then:

Tr (X fas Sta(9)) = —o(" )%

3. We often refer to the book of Henniart and Bushnell [13] in this text. Note that in [loc. cit] the modulus
character is normalized with respect to a left Haar measure, hence some sign differences appear.
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PROOF. In each case we compute using Formula (3.3). Let us first make the function
XN féB) explicit (this function occurs in Formula (3.3)). We have

B 2
£ =12 - (L mp-o jtal=1 + Lits| =1, ta] =p—=)

as function in the Hecke algebra H(T') of T. Hence
NP =02 11 Zpa )21 € H(D).

We begin with case (7). Let w be the matrix ({}) in G. Let the characters x;: Q,* — C*
for i = 1,2 be such that X(“g) = x1(a)x2(d). Let x* be the character w!yw, i.e. the
character on the torus T' given by x*(?,) = x1(a)x2(d). The Jacquet module TrN(5§1/2) is 4
equal to C(x) ® C(x"). Hence

Tr ()?NféB), mv(égm)) = (xalp™®) 1+ 1-x2(p™®).
We have
Tr(fa, 7) = 2% (xa(®@™) + x2(p™*)) -

Thus Clozel’s Formula 3.3 implies that the trace Tr(x fo,7) vanishes.
We now do case (7i). The representation 7 is one-dimensional, isomorphic to C(¢), where

¢: G — C* is an unramified character. We have
Tr(Xn f2, 7n) = Te(@? - Ly j—pa o)1 C(¢65"%) = p(P 1)~
We have
Tr(fa, ) = P2 (0" + 7)o (P )"
Thus, by Formula 3.3:
Tr(xfa,m) = o(" )"
Assume for case (i17) that m = Stg(¢), where ¢ is an unramified character G — C*. We have
an exact sequence 1(¢) — Ind%(1)(¢) — Stg(¢). Therefore the trace Tr(fox, Ind%(1)(¢)) is

equal to the sum Tr(fax, Sta(¢)) + Tr(fax,1(¢)). The result now follows by combining ()
and (ii). This completes the proof. O

3.2. The trace at infinity. The trace at infinity Tr(f, 7o) is computed by Kottwitz
for the determination of the Zeta function of the modular curve [62]. We recall the result in
this subsection.

We define a certain discrete series representation 70, of G(R). Consider the induced
representation I(y) := Indg?ﬁ;(x) where X(% n) = |t1|%|t2|*%. The semi-simplification

I(x)® is equal to the direct sum of the trivial representation of G(R) and a discrete series
0

representation 7O . This defines the representation 72

4. See for example the restriction-induction Lemma in [13, p. 63].
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PROPOSITION 3.2. Let T be an irreducible admissible G(R)-representation. The trace
of foo on m wvanishes unless the isomorphism class of the representation 7wy lies in the set
{1,1(sign o det), 7% }. The trace of foo on 1 and 1(sign o det) is equal to 1, and the trace of

foo on % is equal to —1.

PROOF. For a proof, see the notes of Kottwitz [62]. O

3.3. The number of supersingular points. In this section we compute the number
of supersingular points on the modular curve Y7 (V) at a prime of good reduction.

We need to consider a certain finite cover of the curve Y7 (V). We define:

K'(N) def {g € G(z) lg=('%) mod N, g=(*1) modp}.

We have K'(N) = K;(N)PI,. Thus we have replaced the component K;(N), = G(Z,) at p
of the group Ki(N) with the Iwahori group I,. This way we get the compact open group
K' := K (N)PI, C G(Z). We let Y'(Np) be the Shimura variety Sh(G, K'), it is a smooth
quasi-projective curve defined over Q, and a finite cover of Y;(Np) ® Q. We write X'(Np) for
the compactification of Y’'(Np) (see [51, chap. §]).

Let ¢ be the non-trivial unramified character of G(Q,) whose square is 1. Define the
constant e(mp) for a smooth irreducible representation of G(Q)) to be 1 if 7, is isomorphic to
Sta, to be —1 if m, is isomorphic to Stg(¢) and to be equal to 0 for all other representations.

THEOREM 3.3. Let a be a positive integer. If o is even we have
#Y1(N)ss(Fpa) = 1 + genus(X'(Np)) — 2 - genus(X1(N)).
If o is odd we have

#Y1(N)gs(Fpe) =1+ Y dim(m)X" - (my),

where T ranges over those irreducible subspaces of L3(G(Q)Z(R)T\G(Ay)) with
- o = ﬂ-go;

- mp is an unramified twist of the Steinberg representation of G(Qp).

PROOF. By applying Proposition 3.1 and Equation (3.2) we see that the cardinal

#Y1(N)ss(Fpa) is equal to
(B4) Y TSm = 3 Tlf" () Y Te(feef? ) (<67 1))

m,mp€(2) m,mp€(3)

where in each sum 7 ranges over the irreducible G(A)-subspaces of L?*(Z(R)TG(Q)\G(A)).
The notation “m, € (2)” refers to the classification of semi-stable representations of G(Q,) on

9

page 21 and similarly for the notation “m, € (3)
The discrete spectrum L, (Z(R)TG(Q)\G(A)) of G decomposes as a direct sum of the
cuspidal spectrum L3(Z(R)"G(Q)\G(A)) and the residual spectrum L2, (Z(R)TG(Q)\G(A)).

res

The residual spectrum is the Hilbert direct sum of the spaces C(e o det), where ¢ ranges over
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the characters of RS,Q*\A*. If 7 is an irreducible cuspidal G(A)-representation then all
its local factors are infinite dimensional®. Therefore the first sum on the right hand side
of Equation (3.4) runs over the residual spectrum of G and the second sum runs over the
cuspidal spectrum.

Let m = C(e o det) be a residual automorphic representation of G such that the trace
Tr(fx,m) is nonzero. The character e is trivial on the set det(K;(IV)P) = ZP* . By Proposi-
tion 3.1 the factor ¢, must be unramified. Therefore the character ¢ is unramified at all finite
places and thus trivial. Applying Proposition 3.2 we obtain

(3.5) > Tr(foof?, )P )T = Te(foofP far 1) = 1.

m,mpE(2)

We will now evaluate the sum ) _Tr(fo f?, 7P) <—¢7r(p 1 )7a) where 7 ranges over the
cuspidal automorphic representations of G (this is the last sum in Equation (3.4)). Thus
assume that 7 is cuspidal automorphic representation of G such that the trace of the truncated
function xf on 7 does not vanish. The central character w; of 7 is trivial on the group
det (K1(IV)P) and also trivial on the group Z,. Hence the character w, must be trivial, and
therefore the square ¢2 is trivial as well. Consequently, the value ¢.(” ) is either 1 or —1.
The representation at infinity 7 is generic and thus infinite dimensional. By Lemma 3.2 we
must have mo, = 70, and therefore Tr(foo, Too) = —1. The trace Tr(fP>°, 77°°) is equal to

o0
dim((7P>°)K1(N)") " Thus the second sum in Equation (3.4) is equal to

(3.6) 3 dim 7P F 1N g (P e

T, Moo 2w, mpE(3)

Assume « is odd. Then the Theorem follows from the above Equation (3.6) and the remark
that if m, is ramified at p, and semi-stable, then , is either St or Stg(¢).

Now assume « to be even so that the sign ¢.(? )~ is equal to 1. If the representation
7 contributes to the sum in Equation (3.6), then ), is an unramified twist of the Steinberg
representation and the dimension of the space (ﬂ'p)IP is equal to 1. Hence we may write
¢(? )" = dim(mp)’ as both sides of this equation are equal to 1. The sum in Equation (3.6)
simplifies to

(3.7) > dim () &
T, Moo 2w, mpE(3)

Drop for the moment the condition that m, € (3). In the article [30] is proved that cuspidal
automorphic representations of GLo with factor 72 at infinity correspond to cuspidal modular

5. The component at a place v of a cuspidal automorphic representation of GL,, is generic, see [93] or [48].
In the special case of the group GL2(Qp) a smooth irreducible representation is generic if and only if it is

infinite dimensional, and similarly for GL2(R).
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forms:

(3.8) > dim(m)™ = dim Sy(I),

Y =,

where S5(T") is the space of weight 2 modular forms for the congruence subgroup I' := K' N
G(Z) of G(Z). The value in Equation (3.7) is equal to the value in Equation (3.8) minus the
following sum:

(3.9) > dim () *,

T, Moo=l mp=unr

where with the abbreviation “m, = unr” we mean that the representation 7, is unramified. For
an unramified generic representation 7, of G(Q,) the dimension of the space (m,)’* is equal
to 2. In particular, Equation (3.9) equals 2 - dim S2(K;(N)) and the number of supersingular
points on the modular curve Yj(N) is equal to 1 4+ dim Sa(I") — 2 - dim So(K71(NV)). This
completes the proof. O

4. The Deligne and Rapoport model

We show that, for a even, Theorem 3.3 follows from the description of the reduction
modulo p of the curve Xy(p) by Deligne and Rapoport [34].

Consider, on the category of eliptic curves over Z[1/Np], the moduli problem of elliptic
curves with Kj(N)-structure. A priori this problem is only defined over Z[1/Np|, but one
extends its definition to the ring Z[1/N] [51, chap. 1] (one can even extend to Z, see [loc. cit.]).
In particular we have a model of the scheme Y'(Np) over Z[1/N], and the compactification
X'(Np) is also defined over Z[1/N] [chap. 8, loc. cit.]. The curve X'(Np) has semi-stable
reduction at p [34].

In Theorem 3.3 we established that the number of supersingular points on the modular
curve Y1 (N) is equal to

1 + genus(X'(Np)) — 2 - genus(X1(N)).

In this section we show that this formula agrees with the description of the supersingular
points on X;(N) by [34, V.1.18].

Let n be the generic point of Spec(zp), and let s be the special point of Spec(zp). Then
Deligne and Rapoport have proved that

X'(Np)s = Z1 1lg Zs,

where Z; := X1(N)s and S C Y1(N)s C X1(N)s is the supersingular locus.
Let iy (resp. i2) denote the inclusion of Z; (resp. Z3) in X'(Np)s. Consider the morphism

OX’(Np)S — 7;1*0Z1 D i2*022
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of sheaves on X’(Np);. Its cokernel is a direct sum over all points P € Z; N Z5 of sky-scraper
sheaves. At each supersingular point P € Z; N Zy we may consider the induced mapping on

the completed local rings

—

OX’(Np)S,P — (il*ozl ©® ’L'Q*OZQ)Q.

This mapping coincides with the reduction map

Fyllz.yl] . Flla]] _F,
(my) @

whose cokernel is identified with F, via the mapping

Fyllz]] ., Flly]

(z) ()
defined by (f,g) — f(0) — g(0). We have an exact sequence

— F,

0 — Oxr(np), — 1:02z, © 2.0z, — @ F, — 0.
PeZ1NZy

The Euler-Poincaré characteristic is additive on exact sequences, and thus
X(X'(Np)s, Os) + 21 0 Za| = x(Z1,0z,) + x(Z2, Oz,).
We have 7] = 75 = Xl(N)FP, and we have
X(Z1,0z,) =1 — genus(X;(N)).
The Euler characteristic x(X'(Np)s, Os) is equal to 1 — genus(X), and therefore
1 — genus(X) + #Y1(N)ss(Fp) = 2+ (1 — genus(X1(N)),

which is equivalent to the formula we found in Theorem 3.3.



CHAPTER 2

The cohomology of the basic stratum I

[A paraitre dans Mathematische Annalen [63].]

We consider a restricted class of certain simple Shimura varieties called the Kottwitz
varieties, and we study them modulo a split prime of good reduction. We assume (essentially)
there are no integral points on the Newton polygon of the basic stratum (other than the begin
and end point). In this setting we establish a relation between the cohomology of the basic
stratum of the Shimura variety S modulo p and the space of automorphic forms on G. The
space of automorphic forms completely describes the cohomology of the basic stratum as
Hecke module, as well as the action of the Frobenius element. The main result of this chapter
is Theorem 3.13.

Let us comment on the strategy of proof of the main theorem. The formula of Kottwitz for
Shimura varieties of PEL-type [59] is an expression for the number of points over finite fields
on these varieties at primes of good reduction. We truncate the formula of Kottwitz to only
contain the conjugacy classes which are compact at p. Thus we count virtual Abelian varieties
with additional PEL-type structure lying in the basic stratum. The stabilization argument
of Kottwitz carried out in his Ann Arbor article [57] still applies because the notion of p-
compactness is stable under stable conjugacy. After stabilizing we obtain a sum of stable
orbital integrals on the group G(A), which can be compared with the geometric side of the
trace formula. Ignoring endoscopy and possible non-compactness of the variety, the geometric
side is equal to the compact trace Tr(xg;(Q” ) f, A(G)) as considered by Clozel in his article
on the fundamental lemma [22]. Using base change and Jacquet-Langlands we compare
this compact trace with the twisted trace of a certain truncated Hecke operator acting on
automorphic representations of the general linear group. We arrive at a local combinatorial
problem at p to classify the contributing representations (rigid representations, Section 2),
and the computation of the compact trace of the Kottwitz function on these representations
(Section 1). The computation of these compact traces turns out to be easy because we
assumed there is no integral point lying on the Newton polygon of the basic isocrystal.

The main theorem is established in Section 3. In Subsections 4.1 and 4.2 we deduce
two applications, in the first we express the zeta function of the basic stratum in terms
of automorphic data, in the second application we derive a dimension formula for the basic
stratum. In the first Section §1 we carry out the necessary local computations at p. In Section
§1 we also prove a vanishing result of the truncated constant terms of the Kottwitz function

27
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due to the imposed conditions on the basic isocrystal (Proposition 1.10). This result is the
technical reason for the simplicity of the formula in Theorem 3.13: without the conditions on
the basic isocrystal, the final theorem contains a more complicated conclusion and involves
a larger class of representations at p (see Chapter 3). In Section §2 we apply the Moeglin-
Waldspurger classification to determine the smooth irreducible representations of the general
linear group occurring as components of discrete automorphic representations at finite places
of a number field. This result is important for the final argument in Section §3.

1. Local computations

In this section we compute the compact traces of the functions of Kottwitz against the rep-
resentations of the general linear group that occur in the (alternating sum of the) cohomology

of unitary Shimura varieties.

1.1. Notations. Let p be a prime number and let F' be a non-Archimedean local field
with residue characteristic equal to p. Let Of be the ring of integers of F', let wr € OF be
a prime element. We write IF, for the residue field of OF, and the number ¢ is by definition
its cardinal. The symbol G,, denotes the locally compact group GL, (F'). If confusion is
not possible then we drop the index n from the notation. We call a parabolic subgroup P
of G standard if it is upper triangular, and we often write P = M N for its standard Levi
decomposition. We write K for the hyperspecial subgroup GL,(Of) C G. Let H(G) be the
Hecke algebra of locally constant compactly supported complex valued functions on G, where
the product on this algebra is the one defined by the convolution integral with respect to the
Haar measure giving the group K measure 1. We write Ho(G) for the spherical Hecke algebra
of G with respect to K. Let Py be the standard Borel subgroup of GG, let T' be the diagonal
torus of GG, and let Ny be the group of upper triangular unipotent matrices in G.

We write 1¢,, for the trivial representation and St, for the Steinberg representation of
Gn. If P = MN C G is a standard parabolic subgroup, then dp is equal to | det(m, n)|, where
n is the Lie algebra of N. The induction Indg is unitary parabolic induction. The Jacquet
module 7 of a smooth representation is not normalized by convention, for us it is the space
of coinvariants for the unipotent subgroup N C G. For the definition of the constant terms
) and the Satake transform we refer to the article of Kottwitz [562, §5]. The valuation v on
F' is normalized so that p has valuation 1 and the absolute value is normalized so that p has
absolute value ¢~ !. Finally, let z € R be a real number, then |z| (floor function) (resp. [x],
ceiling function) denotes the unique integer in the real interval (x — 1, z] (resp. [z,z + 1)).

Let n € Z>(o be a non-negative integer. A composition of n is an element (n,) € Z’;l for
some k € Z>; such that n = 25:1 ng. We write £(n,) for k and call it the length of the
composition. The set of compositions (n,) of n is in bijection with the set of standard parabolic
subgroups of G, = GL,(F'). Under this bijection a composition (n,) of n corresponds to the
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standard parabolic subgroup

def g1 *
P(ng) =< {( >€Gn
0 Ik

We also consider extended compositions. Let k& be a non-negative integer. An extended

Jda € Gna} C Ghy.

composition of n of length ¢(n,) = k is an element (n,) € Zgo such that n = 25:1 Ng.

1.2. Compact traces. In this subsection we work in a slightly more general setting.
We assume that G is the set of F-points of a smooth reductive group G over Or. We pick a
minimal parabolic subgroup Py of G and we standardize the parabolic subgroups of G with
respect to Py. A semisimple element g of G is called compact if for some (any) maximal torus
T in G containing g the absolute value |a(g)| is equal to 1 for all roots o of T in g. We
now wish to define compactness for the non semisimple elements g € G. We first pass to
the algebraic closure: An element g € G(F) is compact if its semisimple part is compact. A
rational element g € G is compact if it is compact when viewed as an element of G(F). Let
X% be the characteristic function on G of the set of compact elements G. C G. The subset
G. C G is open, closed and stable under stable conjugation. We wish to make the following
remark: Let M be a Levi subgroup of G and let g be an element of M C G. The condition
“g is compact for the group M” is not equivalent to “g is compact for the group G”. We need
the two notions and therefore we put the group G in the exponent & to clearly distinguish
between the two.

Let f be a locally constant, compactly supported function on G. The compact trace of
f on the representation m is defined by Tr(Xg f,m) where Xf f is the point-wise product. We
define f to be the conjugation average of f under the maximal compact subgroup K of G.
More precisely, for all elements g in G the value f(g) is equal to the integral [ P (kgk—1)dk
where the Haar measure is normalized so that K has volume 1.

Let P be a standard parabolic subgroup of G and let Ap be the split center of P, we
write ep = (—1)4™(Ar/4¢), Define ap to be X.(Ap)r and define a§ to be the quotient of
ap by ag. To the parabolic subgroup P we associate the subset Ap C A consisting of those
roots acting non trivially on Ap. We write ap = ap, and ag = ago. For each root o in A we

have a coroot o in aoq For o € Ap C A we send the coroot a¥ € aOG to the space ag via
the canonical surjection aOG —» aIGD. The set of these restricted coroots av|ag with « ranging

over Ap form a basis of the vector space a%. By definition the set of fundamental weights

{w§ € a&* | o € Ap} is the basis of a$* = Hom(a%, R) dual to the basis {a)e} of coroots.
P

We let Tg be the characteristic function on the space aIG; of the acute Weyl chamber,
(1.1) oSt = {2 € af | Va € Ap (a,z) >0} .
We let ?g be the characteristic function on aIGD of the obtuse Weyl chamber,

(1.2) Taf = {z €af | Va € Ap (@, z) > 0}.
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Let P = M N be a standard parabolic subgroup of G. Let X (M) be the group of rational
characters of M. The Harish-Chandra mapping' Hy; of M is the unique map from M to
Homgz (X (M),R) = ap, such that the g-power ¢~ Hm (M) ig equal to |y (m)], for all elements
m of M and rational characters x in X (M). We define the function yy to be the composition
Tgo(ap —» a]GD)oHM, and we define the function ¥y to be the composition ?go(ap —» ag)oHM.

The functions yy and X are locally constant and Kjs-invariant, where Ky = M (Op).

LEMMA 1.1. Let P = M N be a standard parabolic subgroup of G. Let m be a semisimple
element of M, then

(1) xn(m) is equal to 1 if and only if for all roots v in the set Ap we have |a(m)| < 1;

(2) xn(m) is equal to 1 if and only if for all roots a in the set Ap we have |wy(m)| < 1.

PROPOSITION 1.2. Let m be an admissible G-representation of finite length, and let f be
an element of H(G). The trace Tr(f,m) of f on the representation m is equal to the sum

Y opern Trare <XN?(P), 7TN(5;1/2)) where P ranges over the standard parabolic subgroups of
G.

PROOF. For the proof see [21, prop 2.1]. Another proof of this proposition is given
in [22, p. 259-262]. 0

PROPOSITION 1.3. Let m be an admissible G-representation of finite length, and let f be
an element of H(G). The compact trace Tr(xSf,m) of f on the representation 7 is equal
to the sum Y p_ynep oy ()?NT(P), 7rN((5;1/2)) where P ranges over the standard parabolic
subgroups of G.

PRrROOF. This is the Corollary to Proposition 1 in the article [22]. O

REMARK. Proposition 1.2 and Proposition 1.3 are true for reductive groups over non-
Archimedean local fields in general.

We record the following corollary. We have a parabolic subgroup Py C G such that
Py = Py(F). Let I C G(OF) be the group of elements g € G(Op) that reduce to an element
of the group Py(Op/wr) modulo wpr. The group I is called the standard Twahori subgroup of
G. A smooth representation m of G is called semi-stable if it has a non-zero invariant vector
under the subgroup I of G.

COROLLARY 1.4. Let m be a smooth admissible representation of G such that the trace
Tr(xG f,7) does not vanish for some spherical function f € Ho(G). Then 7 is semi-stable.

1. In the definition of the Harish-Chandra map there are different sign conventions possible. For example [1]
and [44] use the convention ¢ 3 (™) — |y (m)|, instead. Our sign follows that of [102]. In the article [22]
there is no definition of the Harish-Chandra map but we have checked that Clozel uses our normalization.
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PROOF. (cf. [43, p. 1351-1352]). By Proposition 1.3 the trace Tr()?Nf(P),ﬂN(é;/Q)) is
nonzero for some standard parabolic subgroup P = M N of G. The function Xy f) is K-
spherical, and therefore 7TN((5;1/ 2) is an unramified representation of M. In particular the
representation my has an invariant vector for the Iwahori subgroup I of M. The Proposition

M( I

2.4 in [16] gives a linear bijection from the vector space (mn )™ ©r) to the vector space w

Therefore the space 7! cannot be 0. O

PROPOSITION 1.5. Let §2 be an open and closed subset of G invariant under conjugation by
G. Let P = MN be a standard parabolic subgroup of G. Let p be an admissible representation
of M of finite length, and let m be the induction Indg(p) of the representation p to G. Then
for all f in H(G) the trace Tr(xqf, ™) is equal to the trace Tr(xg(?(P)), p).

PROOF. By the main theorem of [37] we have

(1.3) Tra(xaf, ) = Tra((xaf) ), p).

We prove that the functions XQ-(f(P)) and (xq (?(P)

Let v € M. Then the orbital integral O,]YW (xa- (?
for v ¢ 2. By Lemma 9 in [37] we have

0} (xa(H)) = Y (xaHP) = D)0 (xaf),

where D(y) = Dys(7)~Y2Dg(7)Y/? is a certain Jacobian factor for which we do not need to
know the definition; we refer to [loc. cit] for the definition. By applying Lemma 9 of [loc. cit]
once more the orbital integral OG(XQf) is equal to OG(f) D(v )OM(f(P ) for v € Q and
the orbital integral is 0 for v ¢ . Therefore, the orbital integrals of the functions xq - (f(P))

and (XQ?(P)) agree.
Recall Weyl’s integration formula for the group M: for any h € H(M) we have

(14) T(h, p) = Z,WMT | aursooima,

where 0, is the Harish-Chandra character of p and where T' runs over the Cartan subgroups
of M modulo M-conjugation, and W (M, T) is the rational Weyl group of T' in M, see [32,
p. 97] (cf. [21, p. 241]). The right hand side in Equation (1.4) depends only on the orbital
integrals of the function h. Thus, two functions h, h’ € H(M) with the same orbital integrals

)) in H (M) have the same orbital integrals.
)

® )) equals O (?(P)) if v € Q and vanishes

have the same trace on all smooth M-representations of finite length. Therefore the M-
trace Traz((xaf)), p) of the function (yof)®) against p is equal to Trar(xa(fF)),p). By
combining Equation (1.4) with Equation (1.3) we obtain the proposition. O

1.3. The Kottwitz functions f,,s. From this point onwards G is the general linear
group. Let n and « be positive integers, and let s be a non-negative integer with s < n. We
call the number s the signature, and we call the number « the degree. Let pus € X,.(T) = 7Z"
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be the cocharacter defined by
(1,1,...,1,0,0,...,0) € Z".
S n—s

We write A, for the algebra C[X:t!, ... X1, The function f,as € Ho(G) is the spherical

function with

SG(fnas) _ qas(n—s)/2 Z [V]a _ qas(n—s)/2 Z HX’LQ €A,

VeGn'H/s IC{L...,TL},#I:S el

as Satake transform (cf. [54]). When n, a, s € Z>( are such that n < s, then we put fpqs = 0.

DEFINITION 1.6. Let X = X“'X52 ... Xt € C[X{',..., X;F'] be a monomial. Then the
degree of X is 31" | e; € Z. We call an element of the algebra C[X;, ... X] homogeneous
of degree d if it is a linear combination of monomials of degree d. These notions extend
to the algebras Ho(G) and A, via the isomorphism Ho(G) = A, and the inclusion A4,, C
CIXE, ..., XFY.

LEMMA 1.7. Let f € Ho(G) be a homogeneous function of degree d. Then f is supported

on the set of elements g € G with | det g| = ¢~ .

PROOF. (cf. [4, p. 34 bottom]). The function (%) is supported on the set of elements
t € T with |dett| = ¢~¢. Let x be the characteristic function of the subset {g € G | | det g| =
¢~%} C G. The Satake transform (xf)?) is equal to x|7 - (f(F%)). The function xf is equal
to f by injectivity of the Satake transform. U

By taking f = f,as We obtain in particular:

LEMMA 1.8. The function fnas is supported on the set of elements g € G with |det g| =

—Qas

q

PROOF. The Satake transform Sg(fnas) of the Kottwitz function f,,4s is homogeneous of
degree as in the algebra A,,. O

LEMMA 1.9. Let P = MN be a standard parabolic subgroup of G corresponding to the
composition (ng) of n. Let k be the length of this composition. The constant term of fnas at
P is equal to

(1.5) an.C(na,sa) . (fn1a81 ® frpas, @ ® fnkask) ’
(sa)

where the sum ranges over all extended compositions (sq) of s of length k. The constant

C(ng, sa) is equal to @ — 3k M

REMARK. In the above sum only the extended compositions (s,) of s with s, < ng
participate: If s, > n, for some a, then f,, 45, = 0 by our convention.
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PRrROOF. (cf. [81, Prop. 4.2.1]). Let I, C {1,2,...,n} be the blocks corresponding to
the composition (n,). If I is a subset of the index set {1,...,n}, then we write X; for the
monomial [[,.; X; € C[X1, Xo,..., X,,] in this proof. Taking constant terms is transitive and
the constant term of a spherical function is spherical. Therefore it suffices to prove that both
frnas and the function in Equation (1.5) have the same Satake transform. We compute

k

k
Z qa-C(na,sa) H SG(fTLaOésa) = Z qa-C(na,sa) H qaw Z XIO[
a=1 (sa)

(sa) a=1 ICI, #1=5s4

k
L 3 | D S

(sa) a=1ICI,#I=54

s(n—s)
:anZZX;Y (Ic{l,...,n}, Ya: |[INI]=s,)
(sa) 1

oés(n—s) o
IC{1,mon b=

This concludes the proof. ]

1.4. Truncation of the constant terms. In this subsection we compute the truncated
function x&( f,(lii) This result is crucial to determine the representations of G contributing
to the cohomology of the basic stratum of Shimura varieties associated to unitary groups.

PROPOSITION 1.10. Let P = M N be a standard parabolic subgroup of G, and let (ng) be
the corresponding composition of n. Let k be the length of the composition (n,) and let d be
the greatest common divisor of n and s. The truncated constant term Xf(fé’;i) 1§ MON-zero
only if there exists a composition (d,) of d such that for all indices a the number n, is obtained
from d, by multiplying with . If such a composition (d,) exists, then the function Xf(fé@)

s equal to

. Gn Gn Gn
(1.6) Xf(fr(zgg) =q” C(nassa) . (Xc "frias: @ Xe  fnpasy @ @ Xe kfnkaSk) € Ho(M),

s(n—s)

where s, = 5 -dq for all a € {1,2,...,k}, and the constant C(ng,sq.) equals ==
k  sa(na—Sa)
D=1 g
PRrROOF. By Lemma 1.9 the truncated constant term Xf(fﬁ’;g) is a sum of terms of the
form XS (frias; ® -+ @ fupas,) Where (s,) ranges over extended compositions of s. To prove
the Proposition we describe precisely the extended compositions with non-zero contribution.
Thus assume that one of those terms is non-zero; say the one corresponding to the extended
composition (s,) of s. Let m be a semisimple point in M where this term does not vanish.
Let m, € Gy, be the a-th block of m, and let mg1,...,mMan, € F be the set of eigenvalues
of mg. The element m is compact not only in the group M, but also in the group G, and
therefore the absolute value |my ;| is equal to the absolute value |my, ;| for all indices a, i, b and



34 2. THE COHOMOLOGY OF THE BASIC STRATUM I

4. In particular the value | det(m,)|'/™ is equal to | det(my)|/™. By Lemma 1.8 the absolute

—QSq

value of the determinant det(m,) is equal to ¢ . Therefore the fraction fTZ is equal to the

S

fraction fL—b for all indices a and b. We claim that the fraction fL—‘Z equals =. To see this, we

have ny 2% = s;, for all indices a, b, and thus

S s
(1.7) n—"=(ni+ng+...+ng)— =8 +82+...+ 5 =5,

Ng Ng
proving the claim. We have g ©Sq = g “Ng % = % - ng. Because ny - % = s, is integral, the

number 1,4 = 5,2 is integral as well. This implies that the composition (ng) (resp. (sq)) is

obtained from the composition (d,) := (nad) by multiplying with % (resp. J). O

1.5. The functions yy fnas and Yy fnas Let P = M N be a standard parabolic sub-
group of GG. The functions xn fmS and Xn fmS occur in the formulas for the compact traces
on smooth representations of G of finite length (see Proposition 1.2 and Proposition 1.3). For
later computations it will be useful to have them determined explicitly.

PROPOSITION 1.11. Let P = MN be a standard parabolic subgroup of G, and let (ng)
be the corresponding composition of n. Write k for the length of the composition (ng). The
following statements are true:

(i) The function XNf,SZﬁ € Ho(M) is equal to
ancnmsa fn181 ®fn282 '®fnksk))
(sa)

where the sum ranges over all extended compositions (s,) of s of length k satisfying

S1 52 Sk
—_— > — > ... > —.
niy no ng

(i) The function QNf,Siﬁ € Ho(M) is equal to

Z qaC’(na,Sa fnlasl & fn2a32 Y fnkask) 3

(sa)

where the sum ranges over all extended compositions (s,) of s of length k satisfying
S
(81+82—|—...+Sa) > ﬁ(m—l—ng—i-...#—na),

for all indices a strictly smaller than k.

PRroOOF. Let H; for i = {1,2,...,n} denote the i-th vector of the canonical basis of the
vector space ap = R™. The subset Ap of A is the subset consisting of the roots o, 1ny+..4n,
for a € {1,2,...,k — 1}. For any root o = «;|q, in Ap we have:

)
(1.8) wfj:(H1+---+Hi—E(H1+H2+~-+Hn))yap.

Let m be an element of the standard Levi subgroup M. By Lemma 1.1 the element m lies in
the obtuse Weyl chamber if and only if the absolute value | (m)| is smaller than 1 for all
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roots « in Ap. By Equation (1.8) the evaluation at m = (m,) of the characteristic function
X~ (m) is equal to 1 if and only if
ni+no+...+nqg

(1.9) |det(my)| - |det(ma)|- - - |det(ma)| < |det(m)| " =
for all indices a € {1,...,k —1}.

We determine the function Xy féﬁg Let m = (m,) be an element of M. Assume m lies
in the obtuse Weyl chamber (cf. Equation (1.9)). Let (s,) be an extended composition of s.
Besides the condition Xy (m) # 0 we assume that (fn,as; @ froass @ - @ frias,) (M) # 0.
By Lemma (1.8) the absolute value | det(m,)| is equal to ¢~ for all indices a. By Equation
(1.9) we thus have the equivalent condition

(1.10) (81+82+...+8a)>%(n1—|—n2+...+na)

for all indices a € {1,...,k—1}. We have proved that if the product of the obtuse function X
with the function (fn,as; ® froass @ -+ ® frpas,) is non-zero, then the extended composition
(sq) satisfies Equation (1.10) for all indices a < k. Conversely, if the extended composition (s,)
satisfies the conditions in Equation (1.10), then any element m of M with | det(mg)| = g%
satisfies X (m) = 1. This completes the proof of the proposition for the function Xy féﬁﬁ.
The proof for the function xn f7§§§ is the same: Instead of using Equation (1.9), one uses
that xn(m) equals 1 if and only if |a(m)| < 1 for all roots aw € Ap. Therefore the element m

lies in the acute Weyl chamber if and only if
(1.11) |det(m)]Y™ < |det(ms)[V/"2 < - -+ < | det(my)|"/™.

This completes the proof. ]

1.6. Computation of some compact traces. In this subsection we compute compact
traces against the trivial representation and the Steinberg representation.

DEFINITION 1.12. If 7 is an unramified representation of some Levi subgroup M of G then
we write ppr . € M for the Hecke matriz of this representation. We recall the definition of
the Hecke matrix. For an unramified representation 7 of GG there exists a smooth unramified
character x of the torus T' and a surjection IndJGDO (x) = m. Fix such a character x together
with such a surjection. Let T be the complex torus dual to T. We compose any rational
cocharacter F* — T'(F') with x, and then we evaluate this composition at the prime element
wr. This yields an element of Hom(X,(T"),C*). The set Hom(X,(T'), C*) is equal to the set
X,(T) ® C* = T(C). Thus we have an element of T(C) well-defined up to the action of the
rational Weyl-group of T in M. This element in T\(C) is the Hecke matriz o~ € M.

PROPOSITION 1.13. Let f € Ho(G) be a spherical function on G. Let Stg be the Steinberg
representation of G. The compact trace Tr(x$ f, Ste) is equal to €PUST(5(\N0f(PO))(90T s12)-
k) PO
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PrOOF. By Proposition 1.3 we have

Tr(x$fm) = Y epTe(xn /P, (Ste)n(6p7)).
P=MN

The normalized Jacquet module (St¢g) N(égl/ 2) at a standard parabolic subgroup P = M N
is equal to an unramified twist of the Steinberg representation of M (cf. [5, thm 1.7(2)]).
Assume that the parabolic subgroup P = M N C G is not the Borel subgroup. Then the
representation Stys of M is ramified while the function Xy f(*) is spherical. The contribution
of P thus vanishes and consequently only the term corresponding to Py remains in the above
formula. The Jacquet module (Stg)n, is equal to 1(dp,). This completes the proof. O

LEMMA 1.14. Let P = M N be a standard parabolic subgroup of G which is proper. Let
f € Ho(G) be a homogeneous spherical function of degree coprime to n. Then XCGf(P) =0.

PROOF. Write s for the degree of f. Let (n,) be the composition of n corresponding to
P. We may write XCG =M X% as functions on M, where Xﬁ, € C*°(M) is the characteristic
function of the set of elements m = (m,) € M = H];:l G, such that

(1.12) |det mq|Y/™ = |detmo|/™2 = - = | det my| /™.

We claim that x§,f) = 0. Let m = (m,) € M be an element such that f(7)(m) # 0
and x§;(m) # 0. Thus Equation (1.12) is true for (m,). Let s, be the integer such that
|detmg| = ¢~%. From Equation (1.12) we obtain that 2+ = Z—’; for all indices @ and b. We

Sa

have s1 + s2 4+ ... + s = s. Use the argument at Equation (1.7) to obtain e = > for all

indices a. We find in particular that n,> is an integer. Because n and s are coprime this

implies that n, = n, i.e. that P = G. This completes the proof. O

PROPOSITION 1.15. Let f € Ho(G) be a homogeneous function of degree s. Assume s is
prime to n. The compact trace Tr(xS f,1) is equal to ep, Tr(XS f, Stq).

PRrROOF. For the trivial representation 1 of G we have the character identity 1 =
> P_MN 5p5p01nd]G3(StM(5;1/2)) holding in the Grothendieck group of G. By the Propo-

sition 1.5 we have
-1/2 -1/2
Tr(xE £ IndB(Star (05"7%))) = e P, Star (5,"7%)).
By Lemma 1.14 we have & f (P) = 0 if P is proper. The statement follows. n

ExXAMPLE. We claim that the polynomial St (xn, é’;(;)) in the ring C[XT!, X3, ... XF!
is equal to the polynomial qO‘S(n;S) XX - Xt where the indices i1, i3, ..., s in the sum
range over the set {1,2,...,n} and satisfy the conditions (1) i} < 2 < i3 < ... < ig; (2)
i1 = 1; (3) If s > 1 then for each subindex j € {2,...,s} we have i; < 14 2(j —1). The

verification is elementary from Equation (4.3) but let us give details anyway. Let (s;) be an
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extended composition of s of length n with s; € {0, 1} for all ¢ and assume that the monomial
M(s;) == X7 X5%2 - X3®" occurs in ST(XNOfégg)) with a non-zero coefficient. We have

(1.13) S1+ 82 .. s > o
n

for all i < n. Define for each subindex j < s the index 7; to be equal to inf{i : s1+s2+...+s; =
j}. With this choice for i; we have M(s;) = XX --- X, Equation (1.13) forces i1 = 1
and for all j < s —1 that i;4; — 1 is equal to the supremum sup{i : s; + s2 + ...+ s; = j}.
Consequently j > >(ij41 — 1) for all j < s — 1. By replacing j by j — 1 in this last formula
we obtain for all j with 2 < j < s the inequality

1 < 1+ (j - 1)

n
S

In the inverse direction, starting from this inequality for all j together with the condition

“j1 = 1”7 we may go back to the inequalities in Equation (1.13). This proves the claim.

EXAMPLE. We have

Tr(XE fra1, 1) = 1
Te(XC fra2,1) = 1+ % + % + ... + ¢@5]-D),

2. Discrete automorphic representations and compact traces

We introduce two classes of semi-stable representations, the Speh representations and the
rigid representations which are certain products of Speh representations. Then we deduce from
the Moeglin-Waldspurger classification the possible components at p of discrete automorphic
representations in the semi-stable case.

Let z,y be integers such that n = zy. We define the representation Speh(z,y) of G to
be the unique irreducible quotient of the representation | det \%St9$ x | det \yTigSth X e X
| det |_%Stgm where the product means unitary parabolic induction from the standard para-
bolic subgroup of G, with y blocks and each block of size x. A semi-stable Speh representation
of G is, by definition, a representation isomorphic to Speh(z,y) for some z,y with n = xy.
We emphasize that we did not introduce all Speh representations, we have introduced only
the ones which are semi-stable.

A smooth representation m, of G is called semi-stable rigid representation if it is isomorphic

to a representation of the following form. Consider the following list of data

e ke {l,2,...,n};

e for each a € {1,2,...,k} an unitary unramified character ¢,: G — C*;
e for each a € {1,2,...,k} a real number e, in the open (real) interval (—1,1);
k

e positive integers vy, x1, 2, ..., T such that % =) o _1%a,
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then we form the representation
k

d$ ) Speh(wa, y)(eal - ),

a=1
where P = M N C G is the parabolic subgroup corresponding to the composition (yz,) of n
and where the tensor product is taken along the blocks of M = Hszl Gyz,- We remark that
these representations are irreducible.

THEOREM 2.1 (Moeglin-Waldspurger). Let F' be a number field and let v be a finite place
of F. Let m, be the local factor at v of a discrete (unitary) automorphic representation m of
GL,(AF). Assume that m, is semi-stable. Then m, is a semi-stable rigid representation.

REMARK. Let 7, be a semi-stable component of a discrete automorphic representation, as
considered in the Theorem 2.1. Then using the definition of rigid representation we associate,
among other data, to m, the real numbers e, in the open interval (—3, ) (see above). The
Ramanujan conjecture predicts that the numbers e, are 0. This conjecture is proved in the
restricted setting of Section §3 where we work with automorphic representations occurring in
the cohomology of certain Shimura varieties. Therefore the numbers e,, which a priori could

be there, will not play a role for us.
PROOF OF THEOREM 2.1. By the classification of the discrete spectrum of GL,,(Af) in
[80] there exist
e a decomposition n = xy, x,y € Z>1;
e a cuspidal automorphic representation w of GL,(Afp);
e a character e: GL,(Ap) — C*,
such that after twisting by ¢, the represgritz?‘go)n T is thelirreducible quotient J of the induced
n(Ap ( =

Po(Ar) wl- |2
induction is unitary and P, = M,N, C GL, is the standard parabolic subgroup of GL,

representation I which is equal to Ind ooy w| |%> In this formula the
with y-blocks, each one of size x x z. By applying the local component functor [86, prop
2.4.1] to the surjection I — J we obtain a surjection I, — J,. The component at v of I, is

simply TndGln(£v) (wv\ . ]yz;l, cey Wyl - ll_Ty> The representation w, is a factor of a cuspidal

Py (Fy
automorphic (reI))resentation of GL,(AFr) and therefore generic?.
From this point onwards we work locally at v only, so we drop the GL,,(F),)-notation and
write simply G,,. By the Zelevinsky classification of p-adic representations [105] any generic
representation is of the form oq|det |1 X o9|det |2 X - x oy| det |** where the o, are square
integrable representations and the e, € R lie in the open interval (—%, %) The o, are equal to
the unique irreducible subquotient of a representation of the form p x p| det [*x - - - x p| det [F~!

where p is cuspidal and where the central character of p| det |% is unitary. We assumed that

2. This follows from the results in [93], combined with the method in [48], see the discussion on the end

of page 172 and beginning of page 173 in the introduction to [93].
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Ty is semi-stable. Therefore p is semi-stable and cuspidal, and therefore a one-dimensional
unramified character. This implies that o, is equal to Stg,, (€q) for some n, € Z>p and
some unramified unitary character ¢, of G,. Thus o, is equal to Stg, (e1)det | x --- x
Sta,, (k)| det |. For the representation I, we obtain

Iv:wv|det|y%1 X-"xwv\det|l%y

= (01| det | x - oy det [) |det |["Z x -+ x (1] det | x --- o] det [) | det | ="

k
= H (Ua’det ’6a+% X o0 X Ua]det ’ea+l_Ty) .
a=1

For each a, the representation o,|det \€“+y7_1 X o X 0g|det \€“+1_Ty has
Speh(zq,y)(eq| det |°¢) as (unique) irreducible quotient. Thus we obtain a surjection
I, — Hl;:l Speh(zq,y)(eq| det |°*). The representations Speh(zq,y)(e,) are unitary and be-
cause |eq| is strictly smaller than i it is impossible to have a couple of indices (a, b) such that
the representation Speh(z,,y)(g4| det [°) is a twist of Speh(zp, y)(ep| det |°0) with | det|. By
the Zelevinsky segment classification it follows that the product HI;:l Speh(zq,y)(eq| det [¢2)
is irreducible. By uniqueness of the Langlands quotient the representation .J,, is isomorphic
to the product H’;Zl Speh(zq,y)(eq| det |*¢), as required. O

PROPOSITION 2.2. Let m be a semi-stable rigid representation of G = GLy(F) where F
is a finite extension of Q. Let f be a homogeneous function in Ho(G) of degree s coprime
to n, then the compact trace Tr(xccf, ) vanishes unless 7 is the trivial representation or the

Steinberg representation.

PRrROOF. Assume that Tr(xcG f,m) is non-zero. By Proposition 1.5 the compact trace of
X&) against the representation ®?:1 Speh(x;,y)(gq| - |°*) is non zero. The truncated con-
stant term Xf f (P) vanishes if the parabolic subgroup P C G is proper (Lemma 1.14). There-
fore 7 is a Speh-representation; say x and y are its parameters. The character formula of
Tadic [99, p. 342] expresses 7 as an alternating sum of induced representations:

Y

et |2 u(Stey) = > e(w) [[ 8l 2 +w(i) —1] e R

wes), i=1

(for notations see [loc. cit]). The compact trace on all these induced representations van-
ish unless they are induced from the parabolic subgroup P = G. This is true only if the
representation 0[i,z + w(i) — 1] is the unit element in R for all indices except one, i.e. if
(x +w(i) —1) —i+1 = 0. After simplifying we find that w(i) = i — z for all indices ¢
except one. Make the assumption that y > 1. Then clearly, if x > 1, the number ¢ — x is
non-positive for the indices ¢ = 1 and ¢ = 2. It then follows that w(i) is non-positive for
1 = 1 or i = 2. However, that is impossible because w is a permutation of the index set
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{1,2,...,y}. The conclusion is that either y = 1 or x = 1. But then 7 is the Steinberg or the
trivial representation. ]

3. The basic stratum of some Shimura varieties associated to division algebras
In this section we establish the main result of this chapter.

3.1. Notations and assumptions. As explained in the introduction, we place ourselves
in a restricted version of the setting of Kottwitz in the article [58]. We start by copying some
of the notations from that article. Let D be a division algebra over Q equipped with an
anti-involution *. Let Q be the algebraic closure of Q inside C. Write F' for the center of
D and we embed F into Q. We assume that F is a CM field and we assume that * induces
the complex conjugation on F. We write F'* for the totally real subfield of F' and we assume
that F' decomposes into a compositum KF*1 where K/Q is quadratic imaginary. Let n be the
positive integer such that n? is the dimension of D over F. Let G be the Q-group such that for
each commutative Q-algebra R the set G(R) is equal to the set of elements x € D ®g R with
xzz* € R*. The mapping c: G — Gy, @ defined by z — za* is called the factor of similitudes.
Let ho be an algebra morphism hg: C — Dg such that ho(z)* = ho(Z) for all z € C. We
assume that the involution  + ho(i)~'z*ho(i) is positive. We restrict hg to C* to obtain a
morphism h from Deligne’s torus Resc/rGm c to Gr; we let X be the G(R) conjugacy class
of 3 h=!. Let u € X.(G) be the restriction of h ® C: C* x C* — G(C) to the factor C* of
C* x C* indexed by the identity isomorphism C = C. We write E C Q for the reflex field of
this Shimura datum (see below for a description of E)). We obtain varieties Shx defined over
the field E' and these varieties represent corresponding moduli problems of Abelian varieties
of PEL-type as defined in [59].

Let p be a prime number where the group G, is unramified over Q, and the conditions of
[59, §5] are satisfied so that the moduli problem and the variety Shx extend to be defined over
the ring Op ® Z,, [loc. cit.]. We assume that the prime p splits in the field K. Let K C G(Ay)
be a compact open subgroup, of the form K = K,K?, with K,, C G(Q,) hyperspecial (coming
from the choice of a lattice and extra data, see [loc. cit., §5]). Furthermore, we assume that
K? C G(AY) is small enough such that Shx /Op®Zy, is smooth [loc. cit, §5]. Fix an embedding
vp: B — @p. The embedding v, induces an E-prime p lying above p. We write I, for the
residue field of E at the prime p.

Let £ be an irreducible algebraic representation over Q of G’@ and let £ be the local system
corresponding to £ ® C on the variety S K,0p,- Let g be the Lie algebra of G(R) and let Ko
be the stabilizer subgroup in G(R) of the morphism h. Let fo be a function at infinity whose
stable orbital integrals are prescribed by the identities of Kottwitz in [57]; it can be taken

3. The reason for this sign is that the formula conjectured by Kottwitz in the article [58] turned out to be
slightly mistaken. When Kottwitz proved his conjecture in [59] he found that a different sign should be used.
However he did not change the sign in the conclusion of his theorem, rather he introduced it at the beginning

by replacing h by h~'. We follow the conventions of Kottwitz because we refer to both articles constantly.
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to be (essentially) an Euler-Poincaré function [58, Lemma 3.2] (cf. [27]). The function has
the following property: Let mo be an (g, K )-module occurring as the component at infinity
of an automorphic representation m of G. Then the trace of f., against 7 is equal to the
Euler-Poincaré characteristic Y o0 Noo(—1)* dim H (g, Koo; Moo ® £), Where N is a certain
explicit constant (cf. [58, p. 657, Lemma 3.2]). Let £ be an auxiliary prime number (different
from p) and Q, an algebraic closure of Q, together with an embedding Q C Q,. We write £
for the ¢-adic local system on SthEp associated to the representation ¢ ® Q, of G@Z.
Because p splits in the extension K/Q, the group Gg, splits into a direct product of

general linear groups:

(3.1) Go, = G, X H ReSFJ/@pGLn,Fg"
wlp

where the product ranges over the set of FT-places above p. Observe that we wrote ‘=’ and
not ‘=". The choice of an isomorphism amounts to the choice of, for each F*-place p of an
F-place ¢ above p. Recall that we have embedded K into C and that F' = K® F". Therefore,
we have in fact for each p such an p'. We fix for the rest of this chapter in Equation 3.1
the isomorphism corresponding to this choice of F-primes above the F'"-primes above p. We
write T, C Ggq, for the diagonal torus. Observe that the group Gg, has an obvious model
over Zy; we will write Gz, for this model, and we assume K, = Gz, (Zy).

The field E is included in the field F'. We copy Kottwitz’s description of the reflex field
E (cf. [58, p. 655]). Consider the subgroup consisting of the elements g € G whose factor
of similitudes is equal to 1. This subgroup is obtained by Weil restriction of scalars from an
unitary group U defined over the field F*. Let v: F* — R be an embedding and let vy, vo
be the two embeddings of F' into C that extend v. We associate a number n,, to v; and
a number n,, to ve such that the group U(R,v) is isomorphic to the standard real unitary
group U(ny, ,ny,). The group Aut(C/Q) acts on the set of Z-valued functions on Hom(F, C)
by translations. The reflex field F is the fixed field of the stabilizer subgroup in Aut(C/Q) of
the function v — n,.

We write V(F*) := Hom(F*,Q). We identify V(F*) with Hom(F*,Q,) via the em-
bedding v, and also with Hom(F*,R) via the inclusion F© C R. In particular V(F) is a
Gal(Q,/Qp)-set and a Gal(C/R)-set. For every FT-prime p above p we write V() for the
Galois orbit in V(FT) corresponding to p.

We have embedded the field K into C, and thus each Gal(C/R)-orbit in V(F*) contains
a distinguished point, i.e. for each each embedding v: F™ — C we have a distinguished
extension v: I — C. We write s, for the number n,,. We define s, := Zvev(p) Su. We
define Unr;f to be the set of F™-places p above p such that s, = 0, and Ram; to be the set
of F-places above p such that s, > 0. We work under one additional technical assumption:
We assume that for every p € Rama;r the number s, is coprime with n.
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3.2. Isocrystals and the basic stratum. Write Ay for the universal Abelian variety
over Shy and \, 4,7 for its additional PEL type structures [59, §6]. Let L be the completion
of the maximal unramified extension of QQ, contained in @p. Then E, , is a subfield of L. Let
a > 0 be a positive integer, write E, o, C Q; for the unramified extension of degree a of Ej,
and write Fgo for the residue field of Ej, ,. We write o for the automorphism of L acting by
x +— xP on the residue field of L. We write V for the D°PP-module with space D where an
element d € D°PP acts on the left through multiplication on the right on the space D.

Let z € Shg (Fge) be a point. The rational Dieudonné module D(Ag »)qg is an (Epo/Qp)-
isocrystal. The couple (A,4) induces via the functor D(0)g additional structures on this
isocrystal. There exists an isomorphism ¢: V @ Ey o — D(Ak)g of skew-Hermitian B-
modules [59, p. 430], and via this isomorphism we can send the crystalline Frobenius on
D(Ak ) to a o-linear operator on V ® E, o. This operator on V ® E, , may be written
in the form 0 - (idy ®o) where § € G(E, o) is independent of ¢ up to o-conjugacy. We also
have the L-isocrystal D(Agx , ® E])Q = D(Ag )1, inducing in the same manner an element
of G(L), well defined up to o-conjugacy. Let B(Gg,) be the set of all o-conjugacy classes
in G(L) from [55]. This set classifies the L isocrystals with additional Gg,-structure up to
isomorphism.

In the articles [88] and [60] there is introduced the subset B(Gg,, u@p) C B(Gg,) of g,
admissible isocrystals. The point is that if an isocrystal arises from some element « € Shg (IF,)
then this isocrystal is always u@p—admissible. The set B(Gg,) can be described explicitly as
follows. We have G, = Gn g, X Res ng /Qp GLn’ Fde inducing the decomposition

B(Gg,) = B(Gm) x [| B(Res s g GL, pt)-
plp

Write p, for the component at o of the cocharacter . Fix one p|p. There is the Shapiro
bijection [60, Eq. 6.5.3]

B(ReSFg'/QpGLn,FJ’ M@) = B(GLn,Fg"H{p)

where the right hand side is the set of ol 4 ‘@l_conjugacy classes in GLy, (L) and pr is defined
by

/’L{PdZBf Z (1717"'7170707"'70)EZ”'
—_——— ——
veV (p) Su n—=sy

There is an unique element b € B(Gq,) with the property that, for each g, the corresponding
isocrystal bf, in B(GL, R 11,) has precisely one slope (i.e. b is basic). This slope must then
be %‘“ because the end point of the Hodge polygon of pr is (n,sp). The component of b at
the factor of similitude is the o-conjugacy class equal to the set of elements x € L™ whose

valuation is equal to 1.

LEMMA 3.1. We have (n,s,) = 1 if and only if the isocrystal V,, is simple.
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Proor. We have V,, = V| where V), is the simple object of slope A = ‘%p In case s, and
n are coprime this simple object is of height n; otherwise its height is strictly less than n, and
it occurs with positive multiplicity. O

The isocrystal b introduced above characterises the basic stratum B C Shgxp, as the
reduced subscheme such that for all points € B(F,) the isocrystal associated to the Abelian
variety A ; is equal to b. The variety B is projective, but in general not smooth 4.

The Hecke correspondences on Shi may be restricted to the subvariety t: B — Shg, .
The algebra H(G(Af)) and the Galois group Gal(F,/F,) act on the cohomology spaces

Hét(BFq, t*L), and these actions cummute with each other.

3.3. The function of Kottwitz. Let o be a positive integer. Let E, ,/FE, be an un-
ramified extension of degree ae. We write ¢,, for the characteristic function of the double coset
G(Og, . )up™")G(Og,..) in G(Ep ). The function f, is by definition obtained from ¢, via
base change from G(E; o) to G(Qp). We call the functions f, the functions of Kottwitz; these
functions play a fundamental role in the point-counting formula of Kottwitz for the number
of points of the variety Shx over finite fields. In this section we give an explicit description
of these functions f, of Kottwitz.

DEFINITION 3.2. Let o be an FT'-place above p. We write V,(p) for the set of
Gal(Q,/Ey,o)-orbits in the set V(p), and Vo (FT) for the set of Gal(Q,/Epq) orbits in the
set V(FT). If v € Vo(F™) is such an orbit, then this orbit corresponds to a certain finite
unramified extension Ej,[v] of E, . Let o, be the degree over Q, of the field Ej o[v], we
then have Ey o[v] = Ey o,

REMARK. Let T be an element of V,,(p), then the number s, is independent of the choice

of representative v € v.

REMARK. Observe that if F't is Galois over Q, then all the Galois orbits in V(F'*) have
the same length.

ProrosITION 3.3. The function f, is given by

GL, (FF
Ja = 1q_aZ§ ® ® H fnavssj ») € HO(G(Q;D))v
plp vEVa(p)

where the product is the convolution product.

ProOF. We have the Gal(Q,/Qp)-set V(F*1) = Hom(F*,Q,). This Galois set is un-
ramified and we have the Frobenius o acts on V(F*). The Galois set V(F*) decomposes:
V(F*) =11, V(p), where V(p) := Hom(F],Q,). We have

F*® Byo = [[(Bpa)*).
plp

4. The only cases where we know it is smooth is when it is a finite variety.
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Because p splits in K we have K C Q, C Ej o and therefore

(3.2) G(Epa) =B x[[ TI GLu(Bpan)

plp 1E€Va(p)
Recall that, by the definition of the reflex field, if two elements v,v’ € V(F*) lie in the same
o Ql_orbit, then s, = s,,. Thus, with respect to the decomposition in Equation (3.2) we

may write

¢a = 1p_10Ep,a ® ® ® 1GL"(OEp,av) . /Jﬁ(p_l) . 1GL7L(0Ep,aU) E HO(G(E'LQ)),
plp vE€Va(p)

where ji is the cocharacter (pg, )!ZreviFral ¢ Xi(Resg, ., /B, .Gm) = 7 BpaviBp,al

The explicit description of f, now follows by applying the base change morphism from
the spherical Hecke algebra of the group G(Ey ) to the spherical Hecke algebra of the group
G(Qp) = Q" x [, GL,(F). This completes the proof. O

3.4. An automorphic description of the basic stratum. Let ¢ be the inclusion
B < Shgr,. For each positive integer a and each [P € H(G(Af)) we define the constant

oo
P def 1\ oop « % %
TB(f ,Oé) - ZO( 1) Tl'(f x @ aHét(B]Fq7[’ E))
1=
We write f for the function fP f, fo in the Hecke algebra of G and similarly for XCG @) f
even though the truncation occurs only at p.
We first give an automorphic expression for the trace T (fP, ) for all sufficiently large

integers .

PROPOSITION 3.4. There exists an integer ag depending on the function fP such that
Tp(fP,a) equals Tr(XcG(Qp)f,A(G)) for all a > ay.

PROOF. The main theorem of the article [59] gives an equation of the form
(3.3)
| Ker'(Q, G)l- > Te(@p x [P, L) = Y e(70:7,6)0(fP)TOs(da) Tr éc(0),

itleFin)gtxfoop (]Fq) ('YO§’776)

the notations are from [loc. cit], see especially §19. (In the above formula the point z
associated to an z’ € Fixggxfoop is the image of 2’ in B via the canonical map Fixggxfoop —
B.) We restrict this formula to the basic stratum B by considering on the right hand side
only basic Kottwitz triples. In this context basic means that the stable conjugacy class v in
(70;7y,0) is compact at p, or, equivalently that the isocrystal corresponding to ¢ is the basic
isocrystal in B(Ggq,, ). The elements 2" € Fixeg x por (F,) in the sum in the left hand side of
the Equation then have to be restricted to range over the set of fix points Fixg’?X foop of the

correspondence @y x f°°P acting on the variety B. Everything else remains unchanged. This
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follows from the arguments of Kottwitz given for the above equation (see [loc. cit, §19], cf.
Scholze [92, Prop. 6.6]).
From Fujiwara’s trace formula [40, thm 5.4.5] we obtain

Tp(fP,a) = > Tr(®g x P, 0" Ly)

x/eFixgg x fooP (Fq)

for « large enough; say that this formula is true for all @ > ag. Note that in Fujiwara’s
statement the integer ap depends on the correspondence and the sheaf L.

We recall the definition of the norm N of (certain) o-conjugacy classes (cf. [4] [53, p. 799]).
To any element § € G(F,) we associate the element N(6) := 6o (5)--- 0" (8) € G(F,). For
any element 0 € G(F,), defined up to o-conjugacy, with semi-simple norm N(J) one proves
(see [loc. cit.]) that N(§) actually comes from a conjugacy class N'(d) in the group G(F).

The element 6 € G(E, ) is called o-compact if its norm N (g) is a compact conjugacy
class in G(Q,). Let XE(Q” ) be the characteristic function on G(Qp) of the subset of compact
elements (cf. §1.2). We let XEC(EF"“) be the characteristic function on G(Ej ) of the set of

o-compact elements. Consequently T (P, «) is equal to

S e10:7: )05 (F*)TOs (x5 ) ha) Tr éc(70)
(v0;7,9)

where (79; 7, d) ranges over all Kottwitz triples. Kottwitz has pseudo-stabilized this formula:

@) S Y (a(0:7.6).8)e(v, )0 (FP)TO5(x5e ™ 6a) Tr & (70):
(7077,9) KER(Io/Q)
(3.4) - Vol(Ag(R)°\I(c0)(R)) ',

see [57, Eq. (7.5)]. By the base change fundamental Lemma (see [22] and [56]) the functions
¢q and f, have matching stable orbital integrals (the functions are associated). By construc-
tion of the function XEC(E"’“) this is then also the case for the truncated functions XEC(EP’“)(%
and X,;G(Qp ) fa. The group G arises from a division algebra and therefore the group R(G,/Q) is
trivial for any (semisimple) element v € G(Q) [58, Lemma 2]. Let 7 be a semisimple element
of G(R). Then the stable orbital integral SO, (fs) vanishes unless v is elliptic, in which
case it is equal to Vol(Ag(R)\I(R))te(I), where I denotes the inner form of the centralizer
of Yoo in G that is anisotropic modulo the split center Ag of G [58, Lemma 3.1]. Consequently
Equation (3.4) is equal to the stable formula 7(G) >_, SO, (fOOP(Xg;(Qp)fa)foo).

By the argument at [58, Lemma 4.1] the above stable formula is the geometric side of
the trace formula for the group G and the function Xf @) f; therefore it is equal to the trace
of Xf((@p)f on the space of automorphic forms A(G) on G. We have obtained that T (f?, a)

equals Tr(xg(@p)f, A(@)) for all a > ayp. O
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DEFINITION 3.5. We call a smooth representation m, of G(Q,) of Steinberg type if the
following two conditions hold: (1) For all F*-places g above p we have
o=
Generic unramified € Unr,}
where ¢, is an unramified character. (2) The factor of similitudes Q,* of G(Q,) acts through
an unramified character on the space of 7.

LEMMA 3.6. Let m be an automorphic representation of G. Then 7 is one-dimensional if

the component m, is one-dimensional for some F*-place o above p.

PROOF. Assume 7, is one-dimensional. By twisting = with a character we may assume
that 7, is the trivial representation. Let H C G(Af) be a compact open subgroup such
that 77 # 0. We embed 7 in the space of automorphic forms on G. Then elements of 7
are complex valued functions on G(A). The group U C G is the unitary group of elements
whose factor of similitude is trivial, and this group U arises by restriction of scalars from
a unitary group U’ over ™. Let SU be the derived group of U’. Then SU is a simply
connected algebraic group over F*. We may restrict the automorphic representation m of G
to obtain a representation of the group SU(Ap+) (which is reducible in general). Let h € 7
be an element, then h is a complex valued function on G(Ap+) invariant under the groups
SU(FT), H and also under the group SU(F[) because m, is the trivial representation. By
strong approximation for the group SU we see that SU(Ap+) acts trivially on h € 7. Thus
SU(Ap+) acts trivially on the space m. Therefore 7 is an Abelian automorphic representation
of G and thus one-dimensional. O

PROPOSITION 3.7. For all a > v the trace Tp(fP, ) is equal to

G G
(3.5) oo el am Y ™ ),
TCA(G) TCA(G)
dim(7)=1,7p=Unr mp= St. type

where both sums range over the irreducible subspaces of A(G).

PROOF. Fix throughout this proof an automorphic representation # C A(G) of G such
that Tr(x? @) fym) # 0. We base change 7 to an automorphic representation BC() of the
algebraic group K* x D*. Here we are using that D is a division algebra and therefore
the second condition in Theorem A.3.1(b) of the Clozel-Labesse appendix in [65] is satisfied
(cf. [45, §VI.2] and [96]). In turn we use the Jacquet-Langlands correspondence [101] (cf. [45,
§VI.1] and [6]) to send BC(m) to an automorphic representation II := JL(BC(w)) of the Q-
group Gt = Res,c/@((}m x RespoGLy, F.

The transferred representation II is discrete and f-stable, meaning that II is isomorphic
to the representation I1? obtained from IT by precomposition G*(A) — G*(A) — Endg(I1)*
with 6. Because II is a subspace of the space of automorphic forms A(G™) it comes with a



3. THE BASIC STRATUM OF SOME SHIMURA VARIETIES ASSOCIATED TO DIVISION ALGEBRAS 47

natural intertwining operator Ag: IT = II? induced from the action of # on A(G*) (here we
are using that multiplicity one is true for the discrete spectrum of G*). The group G (Q,)
is isomorphic to G(Q)) x G(Q,) and the representation II, is isomorphic to 7, ® m,. We have
Tr(xf((@p ) fasmp) # 0. Therefore m, is semi-stable by Corollary 1.4. For each FT-prime p
the component m, is equal to a component I, for some (any) F-place ¢’ above p. As the
representation I is a discrete automorphic representation of the group G*(A) the component
7, = Il is a semi-stable rigid representation by the Moeglin-Waldspurger theorem (Theorem
2.1).
We prove a lemma before finishing the proof of Proposition 3.7.

LEMMA 3.8. Assume that w is infinite dimensional and that Tr(XcG(Qp)fa,W) # 0. Then

the transferred representation 11 is cuspidal.

PRroOF. We use the divisibility conditions on n and s, to see that II is cuspidal: Because
of these conditions, the Proposition 2.2 implies that the component 7, of 7 at the prime g is an
unramified twist of either the trivial representation or of the Steinberg representation if p lies
in the set Ram;;, i.e. if the basic isocrystal is not étale at p. The trivial representation is not
possible by the Lemma 3.6 and the assumption that 7 is infinite dimensional. There is at least
one g such that b, is not étale (thus Ram; # 0), and therefore the discrete representation II is
an unramified twist of the Steinberg representation at some finite F'"-place. By the Moeglin-
Waldspurger classification of the discrete spectrum, the G (A)-representation II must be

cuspidal. 0

Continuation of the proof of Proposition 3.7. If the prime p € Unr; is such that the basic
isocrystal at g is étale at p then the function XCGL”(FJ) [ is simply the unit of the spherical
Hecke algebra, hence unramified, and therefore 7, is an unramified representation; because
T, occurs in a cuspidal automorphic representation of G*(A) the representation 7, is fur-
thermore generic by the result of Shalika [93]. By Lemmas 3.6 and 3.8 there are the following
possibilities for . Either 7 is one-dimensional and the component m, is unramified, or 7
is infinite dimensional, and the component m, is of Steinberg type. We have proved that

Tp(fP,a) is equal to

(3.6) SN @+ Y md @ g,
TCA(G) TCA(G)
dim(7)=1 7p= St. type
where both sums range over the irreducible subspaces of A(G). t

The main theorem is now essentially established, we only need to expand the above sums
slightly further using the calculations that we did in the first two sections.

We define a number ¢, € C for the two types of representations at p that occur in
Equation (3.5): those of Steinberg type and the one-dimensional, unramified representations.
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DEFINITION 3.9. Assume that m, = 1(¢,,) is unramified and one-dimensional. We define

(3.7) ey E0cla) [ o0la®) €CX,

pERam;!

where ¢, is the character by which the factor of similitude acts on the space of m,. Assume
that m, is of Steinberg type. Then for all p € Ram;or we have 7, = StGLn(F;;)(‘%) for some
unramified character ¢, of F;j X, Let ¢, be the character by which the factor of similitude of
G(Qp) acts on the space of m,. We define (,, again by Equation (3.7).

DEFINITION 3.10. Let m be a &-cohomological automorphic representation of G. The
center Z of G contains the torus Gy,. We may precompose the central character w, of = with
the inclusion A* C Z(A) to obtain a character A* — C*. Let w € Z be the unique integer
such that the composition

(3.8) AX — o LR

is the character || - ||*/2.

LEMMA 3.11. Let w be a &-cohomological automorphic representation of G which is either
unramified and one-dimensional, or of Steinberg type at p. Then (; is a Weil-g-number of
weight w/n.

PROOF. Let ¢, be the character of GLn(Fg) as defined in Equation 3.9. Let w; be the

+
V4 Y

G(Qp) we have wy . = ¢. Thus, the number (,, is an n-th root of the number

central character of . Then wr , = ¢¢ for all p € Ram,, and at the factor of similitude of

(39) Nrp = Wc(‘]) H Ww,p(qsg)) eC”.

pGRam;

Thus, to prove that ( is Weil-g-number, it suffices to prove that 7., is a Weil-g-number.
The central character w; is a Grossencharakter of the center Z C G. The center Z of GG is
the set of elements z € F* C D> such that the norm of z down to F'™* lies in the subset
Q* C F™*. Because 7 is {¢ cohomological we have wy o = 5(51]Z(R). Let Uz C Z be
the subtorus consisting of elements in F* whose norm to F> is equal to 1. We have an
exact sequence jo — Uz X Gy, g — Z of algebraic groups over Q, where the injection is the
embedding on the diagonal and the surjection is the multiplication map ¢: (u,x) — uzx. We
may restrict the character w, of Z(A) to the group Uz(A) x A* and we obtain in this manner
a character wy of Uz(A) and a character wy o of A*.
The component at p of the mapping ¢: Uz(A) x A* — Z(A) is the identity mapping

Uz(Qp) x Q@ = Fg * x Q) — Fg * x Q) = Z(Qp).
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Let K1 x Ko C U(A)xA* be a compact open subgroup such that wy ; is Kj-spherical and such
that wr o is Ko-spherical. The group U(Q)K1\U(A) is compact and therefore the product

H wro(g%) € C,

(cf. Equation (3.9)) is a Weil-g-number of weight 0. The group Q* K2\A* is non-compact
and thus wr .(q) is a Weil-g-number whose weight is w, where w is defined in Definition 3.10.
This completes the proof. O

DEFINITION 3.12. We write P(¢®) for the trace Tr(x. ¢(Q) fas1).

In general P(g®) is not a polynomial in ¢, it depends on « in the following manner. The
explicit description of the function f, from Proposition 3.3 shows

(3.10) Py =TT o (s T s

pERam;f veV (p

The traces in the product in Equation (3.10) are computed in Subsection 1.6 (see Proposition
1.15).

REMARK. In general the function P(¢®) is not a polynomial in ¢®. The number ¢, o
depends on the class of « in the group Z/MZ, where M is large such that the algebra FT®Ey pr
is isomorphic to a product of copies of Ej p;. For the a that range over the elements of a
fixed class ¢ € Z/MZ there exists a polynomial Polz € C[X] such that P(¢%) = Polg|x_a-

THEOREM 3.13. The trace of the correspondence fP x ®y acting on the alternating sum
of the cohomology spaces Z?io(_l)inét(BFq7 L*L) is equal to
(3.11)

| Ker'(Q, G)|P(¢%) ST e TP aP) 4 () FRem N oy (fp 7P)

TCA(G) TCA(G)
dim(7)=1,mp=unr mp= St. type

for all positive integers a.

PRrROOF. Assume that a > «agp. In Proposition 3.7 we established that

Ta(ffa)= Y. T Prm+ Y Tl ).

TCA(G) TCA(G)
dim(m)=1,7p=Unr mp= St. type

Let m be an automorphic representations contributing to one of the above two sums. We have
G(Q G(Q
Tr(xe @) £, 7) = Tr(x& @) £, ) Tr(f7, 7P).

For m, there are two possibilities: (1) 7, is one-dimensional, (2) m, is of Steinberg type. In
the first case we have

Tr(x &) fo, mp) = €2 - P(q).
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In the second case we have

») (Gln(F
elp
GL, (F, n—1 GLn (F,
By Proposition 1.15 we have Tr(x. fp,StGL (F+)) = (—=1)"" Tr(xec fp, 1) and

therefore
G a n—1)- am el
Tr(xe @) fo, mp) = (2 (~1) VAR pge),

Thus Equation (3.11) is true for all & > ag; observe that it must then be true for all o > 0.
This completes the proof. ]

4. Applications

In this section we deduce two applications from our main theorem. We first deduce an
expression for the zeta function of the basic stratum in terms of the cohomology of a complex
Shimura variety. In the second application we deduce an explicit formula for the dimension
of the variety B/IF,,.

4.1. The number of points in B. Let I, C K, be the standard Iwahori subgroup
at p. We use Theorem 3.13 to deduce a formula for the zeta function of B in terms of the
cohomology of the complex variety Shx»y,(C).

COROLLARY 4.1. We have

#B(Fge) = |Ker' (Q, G)|Noo P(q) - ZZ )'¢2 dim H' (Shgey, (C), £)[1(¢p)]

1(¢p) 1=0

(4.1) 4+ (—1)mD#RamE § Z )¢ dim Hi (Shgeor, (C), £)[mp?]

mp St. type =0

for all positive integers . The numbers (; are roots of unity whose order is bounded by

n-#(Z(QN\Z(Ar)/ (K N Z(Ag)).

PRrOOF. Take f*P = 1x» and &c the trivial representation of G¢. By the Grothendieck-
Lefschetz trace formula, the Theorem 3.13 provides an expression for the cardinal #B(Fg)
for all positive integers a:

#BFe) =P | > G -dim(@)T |+
TCA(G)
dim(w)=1,m00=1

(4.2) + (=) D#ERam pgey | N 2 ep(a) dim (7F) ]

TCA(G)
mp= St. type
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where ep(7) is the Euler-Poincaré characteristic > 5o, (—1)? dim H(g, Ko; oo ). The repre-
sentation £ at infinity is trivial; therefore the component at infinity of the central character of
any automorphic representation contributing to the sums in Equation (4.2) is trivial as well.
Thus the numbers (¢ € C* are roots of unity. The first part of the statement now follows
from the formula of Matsushima [10, Thm. VII.3.2]. The bound on the order of the roots of
unity (¢ follows from the proof of Lemma 3.11. g

REMARK. Note that #B(Fg) is (for sufficiently divisible @) a sum of powers of ¢*.

This suggests that B may have a decomposition in affine cells as in the case of signatures

4.2. A dimension formula. In this subsection we show that the dimension of the variety
B/F, can be deduced from Corollary 4.1. The strategy is to look for the highest order terms
in the combinatorial polynomials that describe the compact traces on the representations that
occur in the alternating sum of the cohomology of B.

PROPOSITION 4.2. The dimension of the variety B/F, is equal to

sp—1

N D= ZOUST;W

pGRamIf veV (p)

PROOF. The Galois group Gal(F,/F,) acts through a finite cyclic group on the set of
geometric components of the variety B/F,. In particular the a-th power of the Frobenius
does not permute these components if « is sufficiently divisible, say divisible by M € Z
suffices. Assume from now on that M divides . Then each irreducible component of the
variety By . is a geometric component. Pick a component of maximal dimension and inside it
a dense open affine subset. By Noether’s normalization Lemma this affine subset is finite over
an affine space qua where d is the dimension of B. Thus the number of Fye-points in B is a
certain constant times ¢®? plus lower order terms. From Equation (4.1) we obtain a formula
of the form #B(Fqe) = P(q®) - C where C' is a complicated constant equal to a difference of
dimensions of cohomology spaces.

There are two ways to see that the constant C is non-zero. First Fargues established
in his thesis [39] that the basic stratum is non-empty, and thus the constant C' is non-
zero. Second, we sketch an argument for non-emptiness of B using Theorem 3.13. Use an
existence theorem of automorphic representations (for example [20]) to find after shrinking
the group K at least one automorphic representation m of G contributing to the sums in
Theorem 3.13. By base change and Jacquet-Langlands we can send any such automorphic
representation to an automorphic representation of the general linear group (plus similitude
factor). By strong multiplicity one for GL,, the contributing automorphic representations
of G are determined up to isomorphism by the set of local components outside any given
finite set of places. Therefore we can find a Hecke operator fP acting by 1 on 7P and by 0
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on all other automorphic representations contributing to Equation (4.2) (which are finite in
number). The trace of the correspondence fP x ¢, acting on the cohomology of the variety
B is then certainly non-zero. In particular the variety has non-trivial cohomology and must
be non-empty. Therefore the constant C' is non-zero.

For the determination of the dimension we forget about the constant C. By increasing M
(and thus «) if necessary we may (and do) assume that the E, ,-algebra F* ® E, , is split.
Then, by Proposition 3.3 we have

f =1 _QZX ®® H fGaIst E HO( (Qp))
plp vEV (p)

We make the formulas for the compact trace of f, on the trivial representation and on
the Steinberg representation explicit. Fix a p and write f,, for the component of the function
fa at the prime p. Write z := #V (p). The Satake transform ST()A(NOngPO)) is equal to the
polynomial

z Sv(”*Sv)
(4.3) qa i, Z XOé(tn+t21+---+tz1)Xg(t12+t22+---+tzz) o _Xg(t1n+t2n+v--+tzn)

1
(t13)5(t2i)ss(t24)

in the ring (C[XllLl,XZﬂ,...,X,;—Ll]. In the above sum, for an index v given, the symbol
(tyi) ranges over the extended compositions of the number s, of length n with the following
properties:

(C1) for each index i we have t,; € {0,1};
(C1) define for each ¢ the number ¢; to be the sum ¢1; + to; + ... + t.;, then we have

S
(4.4) ity oot > 5,

for every index i € {1,2,...,n — 1}.

The highest order term of the polynomial P(¢"®) corresponds to extended composition
(t;) of s defined by the equalities

S
bt byttt ...+t = LifJ—i—l

for all ¢ < n. This extended composition gives the monomial

(

aZ’U o 23 o “ e &3
v X ERRICES R (IS

of the truncated Satake function Sr(Xn;, pro)) € C[X.(T,)]. We evaluate this monomial at
the Hecke matrix of the T|,-representation (5113(/) to obtain

svn . _1 2[4 )—|+17n
(Zvev(p) ( )+Z © %2

) € Clg"].



+

By summing over all p € Ram,

>

pGRam;

This completes the proof.

4. APPLICATIONS

we see that the dimension of the variety B is equal to

sp—1

> ) sy
j=0 ¥

veV(p)
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CHAPTER 3

The cohomology of the basic stratum II

We remove an hypothesis from the main Theorem of the previous chapter. In the pre-
vious chapter we proved a relation between the f-adic cohomology of the basic stratum of
some simple Shimura varieties and the cohomology of the complex Shimura variety. These
simple Shimura varieties are those of Kottwitz considered in his Inventiones article [58] on the
construction of Galois representation. The varieties are associated to certain division algebras
over Q with involution of the second kind; we call such varieties Kottwitz varieties. We proved
the main theorem of the previous chapter assuming (essentially) that the Newton polygon
associated to the basic stratum has no integral point other than the begin point and the end
point. In this chapter we solve the resulting combinatorial problems when one removes this
simplifying condition from the theorem in case the prime p of reduction is split in the center
of the division algebra defining the Kottwitz variety.

A consequence of our final result is an explicit expression for the zeta function of the
basic stratum of Kottwitz’s varieties at split primes of good reduction. The expressions are in
terms of: (1) Automorphic forms on the group G of the Shimura datum, (2) The determinant
of the factor at p of their associated Galois representations, and (3) Polynomials in ¢ of
combinatorial nature, associated to certain non-crossing lattice paths in the plane Q2.

As an application we deduce a formula for the dimension of the basic stratum. Our
formula agrees with the conjecture from [61] (cf. [87, Conj. 7.5], [17]) for the dimension of
the Newton strata, specialized to the cases considered in this chapter.

1. Notations

Let p be a prime number and let F' be a non-Archimedean local field with residue charac-
teristic equal to p. Let wp € O be a prime element, and define q := #(Op/wp). We write
G,, for the topological group GL,(F'), and we write H(G) for the Hecke algebra of locally
compact constantly supported functions on G. We often drop the index n from the notation
if confusion is not possible. We call a parabolic subgroup P of G standard if it is upper
triangular, and we write P = M N for its standard Levi decomposition. We write K for the
hyperspecial group GL,(OF) and Ho(G) for the Hecke algebra of G with respect to K. The
group Py C G is the standard Borel subgroup of GG, T is the diagonal torus of G, and Ny is
the group of upper triangular unipotent matrices in G.

55
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We write @,T\, ]\/4\, ... for the corresponding complex dual groups, G = GL,(C), T =
(C*)™, and so on. If 7 is an unramified representation of some Levi subgroup M of G then
we write @y . € M for the Hecke matrix of this representation.

Let n be a positive integer. A partition of n is a finite, non-ordered list of non-negative
numbers whose sum is equal to n. A composition of n is a finite, ordered list of positive
numbers whose sum is equal to n. Recall that the compositions of n correspond to the
standard parabolic subgroups of G.

We write A for the ring C[Xlil,XQﬂ, ..., X% The Satake transform S provides an
isomorphism from H(G) onto the ring A.

Let n and « be positive integers, and let s be a non-negative integer with s < n. We call
the number s the signature, and we call the number « the degree. The function fras € Ho(G)
is the spherical function whose Satake transform is

(11) qas(n—s)/Z Z [V]a _ qcxs(n—s)/2 Z HXza c A

VeGn'Ns IC{I,...,n},#[:s i€l

We put fras = 0 when n,a, s € Z>¢ are such that n < s. We will call f,,s a simple Kottwitz
function. The composite Kottwitz functions f,.. are obtained from partitions o of s as follows.
Let 0 = (01,09, ...,0,) be a partition of s. Then we write f,oo € Ho(G) for the convolution
product fnae, * fraos * *** * fnao, € Ho(G).

We write x& for the characteristic function on G of the subset of compact elements. Let 7
be a smooth G-representation of finite length and f a locally constant, compactly supported
function on G. Then we write Tr(x$ f, 7) for the compact trace [22] of f against 7.

Let m,m’ € Z>;. If m (resp. n') is a smooth admissible representation of G,, (resp.
Gp), then we write m x 7’ for the G, -representation parabolically induced (unitary
induction) from the representation = ® 7’ of the standard Levi subgroup consisting of two
blocks, one of size m, and the other one of size m’. The tensor product 7 ® 7’ in the above
formula is taken along the blocks of this Levi subgroup. We write R for the direct sum
@nez>0 Groth(G,) with the convention that Gq is the trivial group. The group Gy has
one unique irreducible representation oy (the space C, with trivial action). The operation
“direct sum of representations” together with the product “x” turns the vector space R into
a commutative C-algebra with og as unit element. We call it the ring of Zelevinsky.

The ring of Zelevinsky has an involution ¢, called the Zelevinsky involution. Aubert
[5] gave a refined definition of this involution, making sense for all reductive groups. The
involution is defined by X* := 3 ,_ 1,y epInd%(Xn(55"/%)) for all X € R. With ‘involution’
we mean that ¢ is an automorphism of the complex algebra R and it is of order two: ¢? = Idx.

We write v for the absolute value morphism from GL;(F) = F* to C*. By a segment
S = (x,y) we mean a set of numbers {z,z + 1,...,y} where z,y € Q and where we need to
explain the conventions in case y < x. In case y is strictly smaller than 2 — 1, then (z,y) = (;
in case x is equal to y, then the segment (z,y) = {z} has one element. We have one unusual
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convention: For y = z — 1 we define the segment (z,y) to be the set {x} of one element
containing a distinguishing symbol “x”. The length £(S) of a segment S = (x,y) is defined to
be y — z + 1. Thus the segment {x} has length 0, the segment {z} has length 1, the segment
{z,z + 1} has length 2, etc. We put ¢(z,y) = —1in case y < z — 1.

For any segment (x,y) with y > x we write A(z,y) for the unique irreducible quotient of
the induced representation 1% x v*+1 x ... x Y. We define A{x} to be o (the one-dimensional
representation of the trivial group GLo(F')), and we define A(z,y) to be 0 in case y < z — 1.
For any segment S of non-negative length the object AS is a representation of the group
GL,(F), where n is the length of S.

For the standard properties of segments we refer to Zelevinsky’s work [105] (cf. [90]),
but note that our conventions are slightly different, because we allow rational numbers in the
segments and we have the segment {x}. We mention that this difference is there only for
notational purposes, and that it does not change the mathematics.

For any finite ordered list of segments 57, S5s,...,5; we have the product representation
7= (AS7) x (AS2) X --+ x (AS;). Observe that, due to our conventions, in case S, = {x}
for some a, then AS, is the unit in R, and
(1.2) 7= (AS)) x (ASp) x -+ x (AS,) x -~ x (AS;) € R,
where the hat means that we leave the corresponding factor out of the product. In case S, = ()
for some index b, then we have m = 0 in R.

In the combinatorial part of this chapter the representations of interest are the Speh
representations. We recall their definition here. Let ¢, h be positive integers such that n tzlth.

We define Speh(h, t) to be the (unique) irreducible quotient of the representation Stg, v 2 x
1-¢

cee X StGhl/%. This representation has ¢ segments, S, = (z4,va), a = 1,...,t, where
t—h t+h
xa:T—(a—l) and ya:%—a.

Observe that, for each index a, we have £S, = h. Furthermore, for each index a < t, we have
Tat1 = Tq — 1 and Ya1 = yo — 1.

If P= MN C G is a standard parabolic subgroup of G, then we have the spherical
functions xn, Xn in Ho(M) associated to the acute and obtuse Weyl chambers. We refer
to Equations (2.1.1) and (2.1.2) for the precise definition and explicit description of these

functions.

2. Computation of some compact traces

In this section we compute the compact traces Tr(xg; frnas, ™) of the simple Kottwitz
functions f on a certain class of representations w. This class will be sufficiently large to
contain all smooth representations that occur in the cohomology of (basic) strata of unitary
Shimura varieties at primes of good reduction.
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We will follow the following strategy to compute Tr(x$ fras, 7). A semistable representa-
tion 7w of G is called standard if it is isomorphic to a product of essentially square integrable
representations. The computation of the compact trace Tr()(g*v fnas, ™) on a square-integrable
representation is easy, and using van Dijk’s formula adapted for compact traces Proposi-
tion 2.1.5, we easily deduce formulas for compact traces on the standard representations. Any
semistable irreducible representation 7 may be ! (uniquely) written as asum 7 = >, ;-1 € R
where I ranges over the standard representations, and the coefficients ¢y € C are 0 for nearly

all I. We have
fm Z cr Tr(x. f, 1

Thus, there are two steps to compute Tr(XC fym): (Probl) Know the coefficients ¢; and
(Prob2) Make the sum Y, ¢; Tr(xS f, I). The first problem (Prob1) is related to the Kazhdan-
Lustzig conjecture®. The “Kazhdan-Lustzig Theorem” of Beilinson-Bernstein [8] (and [50])
interprets the multiplicity of any given irreducible representation 7 in the representation
I. The Kazhdan-Lustzig Theorem interprets this multiplicity as the dimension of certain
intersection cohomology spaces, and also as the value at ¢ = 1 of certain Kazhdan-Lustzig
polynomials.

For the irreducible representations 7 contributing to the cohomology of Newton strata of
unitary Shimura varieties we will not have to deal with problem (Probl). The Theorem of
Moeglin-Waldspurger [80] (cf. (Theorem 2.2.1)) for the discrete spectrum of the general linear
group implies that these representations must be of a very particular kind (rigid represen-
tations). Any rigid representation is a product of unramified twists of Speh representations
in R, and therefore we restrict our attention to these Speh representations only. Tadic has
solved the first problem (Probl) for the Speh representations. The coefficients ¢y turn out to
be —1,0 or 1 for these representations (precise statement in Theorem 2.1). Therefore, we are
mostly concerned with the second problem (Prob2).

2.1. Tadic’s determinantal formula. We recall an important character formula of
Tadic for the Speh representations. This formula is a crucial ingredient for our computations.

Let S1 = (x1,y1), 52 = (x2,¥y2),...,St = (x4, y:) be an ordered list of segments defining
a representation of the group G = GL,(F). Let &; be the symmetric group on {1,2,...,t}.
For any w € &; we define the number ng' to be y, — ) + 1. We have

k k k k k k
(2.1) Zné" = <Zya> - <wa(a)> +k= (Zya> - <Zxa> +k= Zna =n.
a=1 a=1 a=1 a=1 a=1 a=1

The numbers n? need not be positive. We define &, C &; to be subset consisting of those
permutations w € &; such that the numbers nl are positive or 0. If the permutation w lies

1. Zelevinsky proved in [105] that the standard representations form a basis of R as complex vector space.
2. This conjecture is a Theorem, see [19, Thm. 8.6.23]



2. COMPUTATION OF SOME COMPACT TRACES 59

in the subset &, C &;, then (n?) is a composition of n. Assuming that w € &} we will write
P, = M,N,, for the parabolic subgroup of G corresponding to the composition (n¥).

Let w € &;. We define the segments S{’ := (Ty(1),41), 95 = (Tw(),¥2),---, 5 =
(Tw(), yt)- We have £(Sy’) = ng'. We let A,, be the representation of M,, defined by (AS}") ®
- ®(AS}), where the tensor product is taken along the blocks of M,,. The representation I,,
is defined to be the product AS}’ x ASY x --- AS{, i.e. it is the (unitary) parabolic induction

IndgwAw of Ay to G. In case w € &;\&) we define both A,, and I, to be 0.

REMARK. It is possible that S¥ = {x} for some permutation w. In that case the rep-
resentation ASY is the unit element oy of R, and thus can be left out of the product that
defined I, (cf. Equation (1.2)).

In these notations we have the following theorem:

THEOREM 2.1 (Tadic). Let m be a Speh representation of G and let S1 = (x1,y1),S2 =
(x2,Y2),...St = (xy,ys) be its segments. The representation 7 satisfies Tadic’s determinantal
formula

T = Z sign(w) 1.
weSy

PROOF. This Theorem was frst proved by Tadic in [99] for Speh representations with a
difficult argument. Chenevier and Renard simplified the proof and observed that the above
expression is a determinant of a matrix with coefficients in Zelevinsky’s ring R. Also Badulescu
gave a simpler proof of Theorem 2.1 in the note [7] using the Moeglin-Waldspurger algorithm
[79]. Recently Lapid and Minguez [71, Thm. 1] extended the formula to the larger class of
ladder representations. O

REMARK. Our formulation of Theorem 2.1 is weaker than the theorem proved by the
above authors, because we consider only semistable Speh representations. (They have a
similar statement also for the non semistable Speh/ladder representations.)

By the definition of the subset &) C &; we have for all w € &; that I, # 0 if and only
if w € &}, and thus we may as well index over the elements w € &} in the sum in the above
Theorem. In the cases where the inclusion &) C &; is strict, the subset & is practically
never a subgroup of &;, it will neither be closed under composition nor contain inverses of

elements.

2.2. Lattice paths and the Steinberg representation. In this section we will express
the compact trace of the functions f,,s on the Steinberg representation in terms of certain
lattice paths in Q2.

We fix throughout this section a positive integer «, called the degree. This integer will
play only a minor role in the computations of this section as it affects only the weights of the
paths. The degree will become more important later.
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Let AT be the polynomial ring C[¢%|a € Q] of rational, formal powers of the variable q.
Equivalently, AT is the complex group ring C[Q™] of the additive group Q* underlying Q.
A path L in Q? is a sequence of points ¥y, U1, U2, . . ., ¥, such that @11 — @ = (1,0) (east),
or U;j41 — U; = (1,1) (north-east). The starting point of L is 0y and the end point is ¥;
the number 7 is the length. An eastward step (1,0) has weight 1 and a north-eastward step
(a,b) = (a+ 1,b+ 1) has weight ¢=*% € AT. The weight of the path L is defined to be the
product in AT of the weights of its steps.

REMARK. We allow paths of length zero; such a path consists of one point @ and no
steps. The weight of a path of length 0 is equal to 1. The paths of length 0 correspond to
compact traces on the special segments {x} introduced earlier.

Let L be a path in Q2. Connect the starting point @y of L with its end point #, via a
straight line ¢. Then L is called a Dyck path if all of its points ¢, lie on or below the line /¢
in the plane Q2. The Dyck path is called strict if none of its points i, other than the initial
and end point, lies on the line /.

Let &, be two points in Q2. Then we write Dyck,(Z, ) € AT for the sum of the weights
of all the strict Dyck paths that go from the point & to the point 3. We call the polynomial
Dyck, (%, i) the strict Dyck polynomial. There are also non-strict Dyck polynomials Dyck(z, 7)
but we are not concerned with those in this subsection; they are important for the computation
of compact traces on the trivial representation.

Let f € Ho(G) be a function. We abuse notation and write YyS(f) for the T-Satake
transform of the function Y f?). This truncation Yn f of an element f € A is best under-
stood graphically.

We first extend the notion of a path slightly to the concept of a graph. A graph in Q2
is a sequence of points ¥y, ¥1,. .., U, with ¥;11 — ¥; = (1,e), where e is an integer. Thus the
paths are those graphs with e € {0,1} for each of its steps. We define the weight of a step
(a,b) — (a+1,b+¢) to be ¢7*¢% € AT, and the weight of a graph is the product of the
weights of its steps.

To a monomial X = X' X52--- X& € C[X:H, XF ..., X;F) with e; € Z and 307 e; =
s we associate the graph Gx with points

(2.2) o = 0(152), T =0+ (isen + en—1+ ... +ent1-;) € Q7

fori=1,...,n. If z € Q, then we write £(x) for the point (x, >x) on the line £. Because the
sum Y . e; is equal to s, the end point of the graph is

0(52) + (n,s) = (%52 + 1) € Q%
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We have Yy, X = X if and only if 3

(23) 61+62+...+6i>§i,

n
for all indices i < n (and if Xy, X # X, then x¥n,M = 0). The condition in Equation (2.3)
is true if and only if the graph defined in Equation (2.2) lies strictly below the straight line
¢ C Q? of slope 2 going through the origin. Furthermore, the evaluation of X at the point

1-n  3—n n—1 ~
(2'4) q 2 ) q 2 AR ] q 2 e T7
equals the weight of the graph Gx.

REMARK. The reader might find it strange that in Equation (2.2) we let the graphs go in
the inverse direction. Why did we make this convention? We made this convention because
we want graphs that stay below the line ¢. If we draw the graphs using the ‘natural’ formula,
then we get a graph above the line ¢ going from right to left. So why not consider only graphs
that stay above £7 Of course this is equivalent, but later, when we compute the graph for the
trivial representation, we get get graphs whose ‘natural’ formula stays below £ and goes from
left to right. Thus, either way, we have to invert directions.

LEMMA 2.2. Consider the representation m = lT(éllgéz) of the group T'. Let f be a function

in the spherical Hecke algebra of T'. Then the trace of f against w is equal to the evaluation

of S(f) € A at the point
1-n 3—n n—1 ~
(q 2,42 ,...,q 2 >€T,

PRrROOF. The character (5113{) 2on T is equal to

n—1 n—3 n—1
T3 (tta,. ) — 1] 2 [t 2 - fta] 2 €T

To any (rational) cocharacter v € X, (T") we may associate the composition (5113(/)2 ov): F* —
T — C*. We evaluate this composition at the prime element wp € F*. Thus we have an
element of the set

(2.5) Hom (X, (T),C*) = Hom(X*(T),C*) = X,(T) ® C* = T(C),
where the last isomorphism is given by
X (T)®zC* 3 v® z+— v(2) € T(C).

We have T' = (F*)" and thus we have the standard basis e; on X, (7). This corresponds to

~

the standard basis e; on X, (T) via the first two equalities in Equation (2.5). If we take v = ¢;

3. This is true because the fundamental weights w;{. of the general linear group are of the form H; +

-+ H; — %(Hl + Hz+ ...+ H,) on ap. The statement follows also directly from the conclusion made at
Equation (2.1.10).
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. c1)2
in (6p," ov)(wr) then we get

1/2 n—1 . 1-n .
(G5 oei)(wp) = wp| 2 Hl=g2 L

This completes the verification. O

Let £ C Q? be the line of slope > through 0 € Q? that we introduced earlier. We write
{(z) for the point (z,7x) on £ if z € Q.

LEMMA 2.3. The compact trace Tr(xccfms, Stg) on the Steinberg representation is equal
to the polynomial (—1)"~1g*"=9)/2 . Dyck (¢(352), £(25E + 1)) € A*.

PROOF. The proof is a translation of a result that we obtained in Chapter 2:
(26) Tr(Xchy StG) = (_1)n71 Tr (X\Nofnoz& 1T(51P{,2)> )

(see Proposition 2.1.13). NB: We wrote (5113(/)2 and not (51_31/2

0
the Jacquet module at Py of the Steinberg representation Stg is 17(dp,).

; the additional sign is there because

In case f = fuas then every monomial X occurring in S(f) is multiplicity free?, and
therefore the graph Gx is in fact a path. The above construction X — Gx provides a bijection
between the monomials that occur in S(f) and the possible paths that go from the point %
to the point 7,. Finally Xn,X # 0 if and only if the corresponding path is a Dyck path (see
Equation (2.3)). This completes the proof. O

Compact traces are compatible with twists:

LEMMA 2.4. Let x be an unramified character of F*, m a smooth irreducible G representa-
tion, and fnao € Ho(G) a function of Kottwitz. Then Tr(Xchmo, TRX) = X(w%S)-Tr(XCGf, ).

PrRoOOF. Lemma 2.1.8. O

LEMMA 2.5. Assume that 7 is an essentially square integrable representation of the form
AS, where S = (x,y) is a segment of length n. Then

TS, Aleyg)) = (~1)" - g™ 7 - Dyek, (6(a), £y + 1)).

1—n
PROOF. The representation (AS) ® v **72 is the Steinberg representation, and so
Lemma 2.3 applies to it. The result then follows from Lemma 2.4. [l

4. Multiplicity free in the sense that no variable X; occurs with exponent e; > 1 in X.
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2.3. Lattice t-paths and standard representations. We describe the compact traces
on the standard representations of G using “t-paths”.

Let ¢t be a positive integer. Let & = (Z,) and ¥ = (4,) be two ordered lists of points
in Q2, both of length t. A t-path from ¥ to ¥ is the datum consisting of, for each index
a€{l,2,...,t}, a path L, from the point Z, to the point 7,. A t-path (L,) is called a Dyck
t-path if all the paths L, are Dyck paths. The Dyck path (L,) is called strict if, for each
index a, no point ¥; of L, other than ¢y and @, lies on the line ¢. The weight weight(L,)
of a t-path (L,) is the product of the weights of the paths L,, where a ranges over the set
{1,2,...,t}. We extend the definition of the strict Dyck polynomial Dycky(Z,7) € AT also
to t-paths: The polynomial Dyck,(¥, %) € A" is by definition the sum of the weights of the
strict Dyck ¢-paths from the points (Z,) to the points (7). We have

t
(2.7) Dyck,(, §) = | [ Dycky(Za, 7a) € AT
a=1
LEMMA 2.6. Let S1 = (x1,y1), 52 = (x2,Y2), ..., St = (x4, y¢) be a list of segments and let
I be the representation (ASy) x (ASs) x -+ x (AS;). Then the compact trace Tr(XS fras, I)
is equal to (—1)""'Dyck,(Z, %), where for the indices a = 1,...,t we have T, = {(x,) and
Ya :=L(ya +1).

REMARK. The sign (—1)""" is equal to €pnp,, where M is the standard Levi subgroup

of G corresponding to the composition 22:1 £(ng) of n.

PROOF. Let P be the parabolic subgroup of G corresponding to the composition n =
S 0(Sa) of n. Let x§; be the characteristic function on M of the subset of elements

m € M such that (&, Hy(m)) = 0 for all @ € Ap. By the integration formula of van Dijk

for compact traces Proposition 2.1.5 we have
Te(C S 1) = Tr (XEFIE (AS1) x (AS5) x -+ x (AS))

(2.8) =Ty (ngxgg (P) (AS)) x (ASy) X - - x (Ast)).

nas?
We proved in Proposition 2.1.10 that the function x& féﬁg is equal to

(29) qaC(na,sa)fna81 & fnoz52 X ® fnasty

where s, 1= 25, and

Clngsp) o= 02 3 salita = 5a),

a=1
The constant term in Equation (2.9) vanishes in case one of the numbers s, is non-integral. We
have (x& f£§§)<P 0oNM) — x§ fr(ffg). Consequently, one may rewrite the trace in Equation (2.8)

to the product
t

g0 TT Te (X7 fagasas ASa),

a=1
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By Lemma 2.5 we obtain

na(na_sa)

t
) T (-1 g 2 “Dycky(U(za), £(ya + 1))
a=1

Note that the condition that s, is integral precisely corresponds to the condition that the
vertical distance between the point %, and the point ¥, has to be integral before paths can
exist. Therefore the expression in this last Equation simplifies to the one stated in the Lemma

and the proof is complete. ]

2.4. Non-crossing paths. We express the compact traces on Speh representations in
terms of non-crossing lattice paths.

We call a t-path (L) crossing if there exists a couple of indices a, b with a # b such that
the path L, has a point ¥ € Q2 in common with the path L;. There is an important condition:

e The point ¥ of crossing must appear in the list of points v, ; that define L, and it
must also occur in the list of points 4 ; that define Ly.

(Because we work with rational coordinates, the point of intersection could be a point lying

halfway a step of a path (for example). We are ruling out such possibilities.)

FI1GURE 1. An example of a 3-path corresponding to the representation 7« of
GL54(F) defined by the segments (3,20), (2,19) and (1, 18). We take s = 27
and we take the permutation w = (13) € &%. The 3 dots on the lower left
hand corner are the points #1, Z» and @3 in Q? respectively; the points 7, 7>
and 73 are in the upper right corner. Observe that this 3-path is non-strict.

We write Dyck! (Z,7) for the sum of the weights of the non-crossing strict Dyck ¢-
paths. Let m be the Speh representation of G associated to the Zelevinsky segments
(X1,y1), (X2, Y2)s - -, (Te,ye) With 1 > @9 > ... > zp and y1 > y2 > ... > y;. We define
the points &, := £(z,) € Q? and ¢, := l(y, + 1) € Q?, for a = 1,2,...,t. The group &; acts
on the free Q%-module Q* = (Q?)! by sending the a-th standard basis vector e, € (Q?)! to
the basis vector e, () € (Q%)". Thus if we have the vector Z € Q*, then we get the new vector
¥ whose a-th coordinate 7% € Q% is equal to w(a)-th coordinate of the vector 7.

REMARK. The difference 2 - (y, + 1) — 2 - 2, need not be integral. In that case there do
not exist paths from the point Z¥ € Q? to ¥, € Q%
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Let m be a Speh representation of type (h,t). The points #, € Q? and g, € Q? lie on
the line ¢ C Q?, and the point #, lies on the left of the point 7, with horizontal distance
Yo + 1 — x4 = £(S,) = h. The two lists of points may overlap: There could exist couples
of indices (a,b) such that ¥, = ¢j. All points #, and ¥, are distinct if we have h > t (cf.
Figure 1).

Assume h > t. Then, because all the points Z,, 3 are distinct, there is no permutation
w € &; such that one of the segments Sy’ = (4, ¥a) is empty or equal to {x} for some
index a. In particular we have &} = &,.

DEFINITION 2.7. To any point © € Q? we associate the invariant p(7) := p2(¥) € Q/Z
where py: Q2 — Q is projection on the second coordinate.

REMARK. The horizontal distance between the point Z, and the point ¢, is integral for
all indices. Therefore the invariant of the first coordinate is not of interest. However, the
vertical distance is the number sg’ = 2ng’ € Q, which certainly need not be integral.

Using this invariant we define a particular permutation wg € Gy:

DEFINITION 2.8. Assume h >t and assume that for each invariant p € Q/Z the number
of indices a such that the point Z, has invariant p is equal to the number of indices a such
that the point 7, has invariant p. The element wy € &; is the unique permutation such that
for all indices a, b we have
(2.10)

(et and p(a) = p(a) ) = (w'(@ > s ) and pli) = pli) = pld) ).

REMARK. Observe that the permutation wg depends on the integer s because the heights
of the points Z,, ¥,, and therefore also their invariants depend on s.

REMARK. If our assumption on the invariants p(Z,) and p(y,) in Definition 2.8 is not
satisfied, then the permutation wg cannot exist because it has to induce bijections between
sets of different cardinality.

One could also define the permutation wy € &; inductively: First the index wg L) e
{1,2,3,...,t} is the minimal index b such that the points Z; and g, have the same invariant.
Next, the index wo_l(t— 1) € {1,2,3,...,t} is the minimal index b, different from wo_l(t), such
that Z, and 4, have the same invariant. And so on: wo_l(t —i) € {1,2,3,...,t} is the minimal
index b different from the previously chosen indices wy*(t), wy ' (t — 1), ..., wo ' (t — i + 1),

such that the points i and Z;_; have the same invariant.

LEMMA 2.9. Let w be a Speh representation with parameters h,t with h > t. Let d be
the greatest common divisor of n and s and write m for the quotient 7. Define the points
Zg = Ll(zq) and Yo := L(yq + 1). Let d be the greatest common divisor of n and s, and write
m for the number % € Z. The following two statements are equivalent:
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(i) for each invariant p € Q/Z the number of indices a such that the point T, has
invariant p is equal to the number of indices a such that the point i, has invariant
ps

(ii) m divides t or m divides h.
REMARK. The number m is the order of the element > in the torsion group Q/Z.
PROOF. We first claim that “m|t = (i)”. We have

(2'11) p(fa-i-l) = p(fa) - % € Q/Z
and the same relation for the points ¢,. Therefore, if m divides ¢, then the possible classes
of the points 7, are equally distributed over the subset 7Z/Z C Q/Z, and every invariant
occurs precisely % times. The same statement also holds for the points #,, and in particular
(4) is true. This proves the claim.

We now claim that “m|h = (i)”. Assume m|h. Then the invariants of #, and g, are the
same for all indices a. Thus (i) is true.

We prove that “(m ft and m fh) = ((i) is false)”. Assume m [t and m fh. We first reduce
to the case where ¢t < m. Assume t > m. Consider the elements

(2.12) p(Z1), p(T2), -, p(Tm), and  p(§1), p(G2); - - -, P(Fm) € Q/Z.

By Equation (2.11) every possible class in 27 /Z occurs precisely once in both lists. Thus, the
truth value of (i) is not affected if we remove the elements 1, Zs, ..., Zy and 41,92, .., Um
from the respective lists. Renumber the indices and repeat this argument until ¢ < m. Because
we assumed that ¢ did not divide m there remains a positive number of elements in the list
Z, and ¥,. We renumber so that the indices range from 1 to t. Then we have reduced to the
case where 1 <t < m.

Now look at the two lists p(Z1), p(Z2), ..., p(#) and p(#1), p(¥2), ..., p(F:). In both lists
every class in Q/7Z occurs at most once. We assumed that m does not divide h, and therefore
p(Z1) # p(y1). If there does not exist an index b such that p(Z1) = p(4), then (i) is false and
we are done. Thus assume p(Z1) = p(7,) for some 1 < b < t. By Equation (2.11) we then
have p(ijy—1) = p(%h) + 5 = p(Z1) + 5. The invariant £ := p(#1) + > € Q/Z does not occur in
the list p(Z1), p(Z2), ..., p(Z:). Thus, we have found an invariant, namely &, occurring once
in the list of invariants of the elements ¢, and does not occur in the list of invariants of the
elements Z,. This contradicts (i) and completes the proof. O

THEOREM 2.10. Let m be a Speh representation with parameters h,t with h > t. Let d
be the greatest common divisor of n and s and write m for the quotient 7. Define the points
Ty = l(zq) and G, := Ly, +1). The compact trace Tr(XS fras, ™) on m is non-zero if and
only if m divides t or m divides h, and if the compact trace is non-zero, then it is equal to

s(n—s)
(=)™ tsign(wg)g~ 2 “Dyckd (#40, %), where the permutation wy € &; depends on s and is
defined in Definition 2.8.
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REMARK. Perhaps one could extend this Theorem to obtain formulas for compact traces
on Ladder representations as considered by Minguez and Lapid in [71].

Proor oF THEOREM 2.10. For a technical reason we assume that 0 < s < n. In case
s = 0 we have fnas = lgr,(0p)- All the elements in GL,(Or) are compact and therefore
Xf fra0 = frnao. The compact trace becomes the usual trace and the theorem is easy. A
similar argument applies in case s = n. Thus we may indeed assume 0 < s < n.

By Theorem 2.1 the compact trace Tr(x$f,m) is equal to the combinatorial sum
> wees, Sign(w) Tr(xS f, I,) for any Hecke operator f € H(G). We apply it to the Kottwitz
functions f = fras. We have &, = &; because h > t. Let w € &;. Recall that van Dijk’s
formula is also true for truncated traces Proposition 2.1.5, and thus for any w € &} the trace
Tr(xS f, I,) equals Tr(xG f(P»), A,,). Thus we have the formula

(2.13) Tr(xd f,m) = ) sign(w) - Tr(xd f7), Ay).
weES
By Lemma 2.6 we get for f = fras,

s(n—s)
(2.14) T (XS fn)=¢q 2 © Z sign(w) - epynnr,, - Dycky (27, 7).
weS,

We apply a standard combinatorial argument ®. Put the lezicographical order < on Q?:
\V/ﬁ,ﬁé Q2 : (l_[ < 17) <~ (ﬁl < U1 or (’[[1 =7 and Uy < 52))

Let (Lg) be a strict Dyck ¢-path from the points &% to the points ¥, and assume that (L,)
has at least one point of crossing. Let ¥ € Q? be the point chosen among the points of
crossing which is minimal for the lexicographical order on Q2. Let (a,b) a couple of different
indices, minimal for the lexicographical order on the set of all such couples, such that ¢ lies
on the path L, and also on the path L,. We define a new path L/, defined by following
the steps of L; until the point ¥ and then following the steps of the path L,. We define Lj
by following L, until the point ¢ and then continuing the path L;. For the indices ¢ with
¢ # a,b we define L', := L.. Observe that (L,) is a t-path from the points Z(®" to the
points ¢. Furthermore, it is a Dyck path (with respect to this new configuration of points),
and we have weight(L,) = weight(L/) because the weight is the product of the weights of
the steps, and only the order of the steps has changed in the construction (L,) — (L). The
construction is self-inverse: If we apply the construction to the path (L!) then we re-obtain
(Lg). Both paths (Lg) and (L]) occur in the sum of Equation (2.14). The sign ep,naz, is
equal to (—1)"~1(=1)t-1(—1)#eetl 2t Fwe) =V} | By the assumption that k > ¢, the points
in the list & are all different to the points in the list 7/, and therefore the sign €p s, equals

5. The Lindstrém-Gessel- Viennot Lemma. The argument appears in many (almost) equivalent forms in the
literature. We learned and essentially copied it from Stanley’s book [97, Thm 2.7.1]. Note however that, strictly
speaking, the Theorem 2.7.1 there does not apply as stated at this point in our argument. In the paragraph
that follows we show that Stanley’s argument may be adapted so that it does apply to our situation.
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(—=1)"t (and does not depend on the permutation w). The sign of the permutation w is
opposite to the sign of (ab)w. Consequently, the contributions of the paths (L,) and (L)) to
Equation (2.14) cancel, and only the non-crossing paths remain in the sum. We find

s(n—s)
(2.15) Tr(xSf,m) = (-1)""'¢" 2 ) sign(w) - Dyck! (7", 7).
weS;

We need a second notion of crossing paths, called topological intersection. Here we mean
that, when the t-path L is drawn in the plane Q? there is a point Z € Q? lying on two paths
L, Ly occurring in L. Because we allow rational coordinates, topological intersection is not
the same as intersection: It is easy to give an example of a 2-path, which, when drawn in
the plane Q2 has one topological intersection point & € Q2 but the point & does not occur
in the lists of points 010, 01,1,...,T10, U20,021,...,02,, defining the 2-path. Such paths
are considered non-crossing under our definition, even though they may have topological
intersection points°.

We claim that there is at most one permutation w € &; such that the polynomial
Dyck™ (£, ) is non-zero, and that this permutation is the one we defined in Definition 2.8.
Let & be the set of all permutations such that Dyck™ (%, %) # 0, and assume that &
contains an element w € &}. We first make the following observation:

(Obs) To any point 7 € Q? we associated the invariant p(v) := p2(¥) € Q/Z. The horizontal
distance between the point Z',,) and the point g, is the number ng’. The vertical
distance is the number s = 2ny € Q. Because w € &} there exists a path from
the point ¥, to the point y,. Consequently s’ is integral. This implies that
P(Zw(a)) = p(Ya) for all indices a and in particular the invariant of the point 7\, is
independent of w € &}.

We show inductively that w is uniquely determined. We start with showing that the index
w™l(t) € {1,2,...,t} is determined. We claim that w=!(¢t) € {1,2,...,t} is the minimal
index such that the point #,-1(;) has the same invariant as #;. To see that this claim is true,
suppose for a contradiction that it is false, i.e. assume the index w1 (t) is not minimal. Then
there is an index b strictly smaller than w~!(¢) such that ¢, has the same invariant as 7;.
By the observation (Obs) there exists an index a # ¢ such that &, has the same invariant as
Zy and such that Z, is connected to g,. Draw a picture (see Figure 2) to see that the paths
L, and L; must intersect topologically. But, by construction, the invariants of Z, and Z; are
the same. Therefore, any topological intersection point of the paths L, and L; is a point of
crossing. Thus, the paths L, and L; are crossing. This is a contradiction, and therefore the
claim is true. Thus the value w™!(¢) is determined.

We now look at the index ¢ — 1. The point Z;—; is connected to the point gy,—1;_1). We
claim that w=t(t — 1) € {1,2,...,t} is the minimal index, different from w~!(¢), such that

6. If one uses the wrong, topological notion of intersection, then the proof breaks at 8 lines below Equa-
tion (2.14): The constructed ‘path’ (L) is not a path.
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FIGURE 2. The leftmost point #; is connected to the third point -1,
and the second point Z, is connected to the last point 4j,. Any 2-path staying
below the line £ must self-intersect topologically.

Yw-1(t—1) has the same invariant as Z¢—;. The proof of this claim is the same as the one
we explained for the index t. We may repeat the same argument for the remaining indices
t—2,t— 3, etc. Consequently w is uniquely determined by its properties, and equal to the
permutation wgy defined in Definition 2.8.

We proved that if the set &} is non-empty, then it contains precisely one element, and
this element is equal to wg. Therefore, if the compact trace does not vanish, then m must
divide ¢ or m divides A by Lemma 2.9. Inversely, assume that m divides ¢ or m divides h.
The permutation wy € &; exists by Lemma 2.9. We claim that Dyck] (£%°,7) # 0, so that
wp € &Y. To prove this, it suffices to construct one non-crossing ¢t-path from the points 0 to
the points y. This is easy (see Figure 3): Let a be an index, and write ny° for the horizontal

distance between ¥

0 and ¥, and s¥° for the vertical distance. The path L, from Z¥° to ¥,
is defined to be the path taking ny° — s’° horizontal eastward steps, and then s}° diagonal
northeastward steps. Then (L,) is a strict non-crossing t-path and therefore Dyck (7“°, %)

is non-zero. This completes the proof. O

3. A dual formula

The argument for Theorem 2.10 extends to the case where h < t. This computation more
complicated, because the permutation w € &; that contributes to Equation (2.15) is no longer
unique and the signs ep,nar, in Equation (2.14) depend on the contributing permutations w
(these signs are independent of w only in case h > t). We don’t reproduce the computation
here, because there is a more elegant approach using the duality of Zelevinsky.

The Zelevinsky dual of a Speh representation with parameters (h,t) is a Speh represen-
tation with the role of the parameters inversed, thus of type (¢, h). Furthermore, taking the
Zelevinsky dual of the formula of Tadic yields a new character formula, now in terms of duals
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FIGURE 3. An example of a non-crossing 4-path (L) in case £ = 1 € Q/Z

and t = 4. For each a, the path L, first takes n%® — s horizontal steps and
then s vertical steps. Note that paths with the same invariant do not inter-
sect.

of standard representations. Of course, the Zelevinsky dual of a standard representation is not
standard, rather it is an unramified twist of products in R of one dimensional representations.
Therefore, we compute first the compact trace on the one dimensional representations, then
use van Dijk’s theorem, Proposition 2.1.5, to obtain formulas for products in R of one dimen-
sional representations, and finally use the dual of Tadic’s formula to compute the compact
traces on Speh representations with h < ¢ (opposite inequality to Theorem 2.10). We will
then have computed the formula for all Speh representations. This approach seems longer
but that is not true: The individual steps we take also appear in an equivalent form in our

original computation.

3.1. The trivial representation. We compute the compact traces of spherical Hecke
operators acting on the trivial representation of G. We recall some definitions on roots and
convexes from [73, §1] and [68, Chap. 1].

Let P be a standard parabolic subgroup of G. Let Ap be the center of P. We write

ep = (—1)4mAP/Ac)  We define ap := X,(Ap) ® R. If P C P’ then we have Ap, C Ap and

thus an induced map apr — ap. We write T' = Ap,. We define allzl to be the quotient of ap

by ap. We write agp = ap, and ag; = ago.

We write A for the set of simple roots of T' occurring in the Lie algebra of Ny. For each

root o in A we have a coroot o in a§. We write Ap C A for the subset of a € A acting non-

trivially on Ap. For € Ap C A we send the coroot o € ag to the space CLIGD via the canonical

surjection aOG —» ag. The set of these restricted coroots V| e with o ranging over Ap form

a basis of the vector space a%. By definition the set of fundamental weights {w$ € a$* | a €
Ap} is the basis of a* = Hom(a$, R) dual to the basis {a)s} of coroots. Recall that we have
" G+
P

the acute and obtuse Weyl chambers of G. The acute chamber a7™ is the set of x € a]G; such

that (o, z) > 0 for all roots & € Ap. The obtuse chamber *a$ is the set of z € a§ such that
we have the inequality (&, z) > 0 for all fundamental weights ¢, associated to a € Ap.
We need another chamber, defined by <a% = {z € a% | Va € Ap (@, z) < 0}. We call this

chamber the closed opposite obtuse Weyl chamber. Let g?lg be the characteristic function on
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ap of this chamber. Let Hy;: M — ap be the Harish-Chandra mapping, normalized such
that |x(m)], = ¢~ XHm ) for all rational characters y of M. We define the function £ on
My =T to be the composition S?go o (ap, —» ago) o Hpy, .

If f € Ho(G) is a function whose Satake transform is the function h € A, then we often
abuse notation, and write £h for the Satake transform of the function £5 f (P0) and similarly
for the functions yn f and Xy f if f € Ho(M).

The following Proposition and proof are valid for any split reductive group G over a

non-Archimedean local field.

PROPOSITION 3.1. Let f be a function in the Hecke algebra Ho(G). The compact trace
Tr(xS f,1a) is equal to Tr (chf(PO), 1T(5;301/2))'

PROOF. For comfort we prove the proposition under the additional assumption that G is

its own derived group. We have
TS ) = 30 e T S 106"
P=MN

Recall that we have the notation ¢,/ , € M for the Hecke matrix of a representation p of M.

The Hecke matrix s 51/ is conjugate in M to the Hecke matrix O sV/2g712 = (5T 5oL/2 €
9 b 0 b} 0

T C M. Recall that the Satake transform is defined by the composition of the morphism
f + fP) with the obvious isomorphism Ho(T') = C[X.(T)] (the Satake transformation for
T). Therefore

Te(Rn f P 1(55"%)) = SR f ) (o 5002):
Py
Using linearity of the Satake transform we obtain

Te(xd @1, 1) :5< S ap@vﬂpo)) (Ppgoir2):
0]

P=MN

Thus we have to compute the function ) ,_,,; epXn on the group T'. By definition we have
SC\N = ?Ig o} HM
Let Wy be the rational Weyl group of T'in M. Let t € T. Then

Hy(t) = —— 3 wHr(t).

#WM weWns
Thus Xn () =1 if and only if
VaeAp: > (@S wHr(t) > 0.

weW s

We have for all @ € Ap the inequality (S, Hr(t)) > 0 if and only if we have (G, wH7(t)) >
0 for all w € Wjy. Therefore, we have on the group T’

-~ ~G
XN =Tp OHT.
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Thus
S oty - ( 5 epa%‘) o Hy.
P=MN P=MN
By inclusion-exclusion we have
P=MN
This proves the proposition in case G = Gger- It is easy to deduce the statement from the
case G = Ger- L]

REMARK. Consider the space I of locally constant functions from G/Py to C, and equip
I with the G-action through right translations. Then, with an argument similar to the one
above, one may compute the compact traces on the irreducible subquotients V' of C. Recall
from Borel and Wallach [10] that these representations are all mutually non-isomorphic and
occur with multiplicity one in I. Borel and Wallach describe the representations V' precisely;

they are indexed by the standard parabolic subgroups of G.
3.2. The dual formula. In this subsection we prove the dual version of Theorem 2.10.

LEMMA 3.2. Let T} = (uy,v1), To = (ug,v2), ..., Ty, = (up,vp) be a list of segments and
consider the representation J := (ATy)" x (ATy)* x - x (ATy)". Then Tr(XS fras, ™) is equal
to ¢*"=9)/2Dyck(w, T), where iy = l(ug) and Ty = l(va + 1) fora=1,2,... t.

REMARK. Recall that for the compact trace on the Steinberg representation,
TY(XCG fnas, Stg) we had the sign ep, multiplied with a strict Dyck polynomial. In case n
and s are coprime, then any Dyck polynomial from the point E(l_T”) to the point E("T_l +1)
is strict; consequently the trace on Steinberg and trivial representation differ only by the sign

EPy-

PRrROOF. The proof is the same as the proof for Lemma 2.3, replacing the result in Equa-
tion (2.6) with the result from Proposition 3.1. However, we repeat the argument for verifi-
cation purposes (one has to be careful with the signs).

Assume first that h = 1 and that 7 is the trivial representation of G. In the previous

subsection we proved that
Tr (4 faass ) = T (640, 10(67,7%))

To a monomial X = X1 X5 ... X¢» ¢ C[XT!, X5, ... X with ¢; € Z and 31" ¢; = 5 we
associate the graph Gx with points

(3.1) Uy = E(PT”), U =T+ (i,e1 +ea+ ...+ €) e Q?,
fori=1,2,...,n. We have (X = X if and only if

(3-2) e +est+ -t e < 2,
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for all indices i < n, and €5 X = 0 otherwise. The evaluation of X at the point
n—-1 n=3 1-n
(3'3) <q 2 ) q 2 AR q 2 >

equals the weight 7 of the graph Gx.

The trace of f,.s against the representation 1T(5;01/ 2) is equal to the evaluation of f, s
at the point in Equation (3.3) (use Lemma 2.2 but notice that the signs are different). The
monomials X occurring S(fyas) yield paths from the point £(152) € Q? to the point £(252+1).
The condition in Equation (3.2) is true if and only if the graph Gx lies (non-strictly) below
the line £. Therefore we have

s(n—s)
Te(xC frass 16) =q 2 Dyck(£(152), £(75 + 1)).
1-n
By twisting with the character v~ 2 as we did in Lemma 2.5 we find

s(n—s)

Tr (X, (A(u,0))") = ¢ 2 Dyck(é(x), £(y + 1)),

for all segments (u,v). Finally the argument in Lemma 2.6 may be repeated to find the

compact traces on duals of standard representations as stated in the Lemma. ]

THEOREM 3.3. Let w be a Speh representation with parameters h,t with h < t. Let d be
the greatest common divisor of n and s and write m for the quotient %. Let T, = (uq,Va)
be the segments of m*. Define the points g := l(ug) and U, := €(ve + 1). The compact trace

Tr(xS fras, ™) is non-zero if and only if m divides h or m divides t. Assume that the compact
s(n—s)

S
trace is mon-zero, then it is equal to sign(wo)q 2 “Dyck™(@“°,¥), where the permutation
wo € &y, is defined in Definition 2.8.

PROOF. Let 7* be the representation dual to the representation 7. After dualizing the
formula of Tadic for m* we obtain an expression of the form
(3.4) m= Y sign(w)I,.

wES),
The involution ¢+ on R commutes with products. Therefore, if T1,...,T} are the Zelevinsky
segments of the dual representation 7*, then I, is equal to (ATy)" x (ATy)" x --- (ATy)". By
Lemma 3.2 we obtain
Tr(XE fras: Iy) = ¢*" 9/ 2Dyck(a@®, 7).

A crucial remark is that the points ¢ and ¥ are all different because we assume that h < t.
Therefore one may repeat the argument in the proof of Theorem 2.10 using the dual formula
in Equation (3.4); one only has to interchange ¢ with h and every occurrence of the word
“strict Dyck t-path” with “Dyck h-path”, as the paths that describe the compact traces on
(products in R of) trivial representations are not necessary strict. O

7. Equation (3.3) differs from Equation (2.4) by a sign in the exponents. However, observe also that the
graph in Equation (3.1) is traced in the direction opposite to the graph in Equation (2.2).
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4. Return to Shimura varieties

In Chapter 2 we proved a formula for the basic stratum of certain Shimura varieties
associated to unitary groups, subject to a technical condition on the Newton polygon of the
basic stratum (that it has no non-trivial integral points). In the previous sections we have
completely resolved the combinatorial issues that arise if you remove this condition in case
p is totally split in the center of the division algebra. We may now essentially repeat the
argument from Chapter 2 to obtain the description of the cohomology if there is no condition
on the Newton polygon of the basic stratum. A large part of the argument remains the same,
that part will only be sketched and we refer to Chapter 2 for the details.

4.1. Notations and assumptions. Let Shx/Op®Z,) be a Kottwitz variety [58]. Here
we have fixed the following long list of notations and assumptions:

(1) Let D be a division algebra over Q;

(2) F is the center of D, assume F is a CM field of the form F = KFT C Q, where F™
is totally real, and K/Q is quadratic imaginary;

(3) * is an anti-involution on D inducing complex conjugation on F’

(4) n € Z>p is such that dimp(D) = n?;

(5) G is the Q-group with G(R) = {z € D}|g*g € R*} for every commutative Q-algebra
R;

(6) h is an algebra morphism h: C — Dg such that h(z)* = h(Z) for all z € C;

(7) the involution z + k(i) ~'x*h(i) on Dy is positive;

(8) X is the G(R) conjugacy class of the restriction of h to C* C C;

(9)

9) p € X«(G) is the restriction of h@ C: C* x C* — G(C) to the factor C* of C* x C*
indexed by the identity isomorphism C = C;

(10) E C Q is the reflex field of this Shimura datum (G, X, h™!);
(11) € is an (any) irreducible algebraic representation over Q of Goi

(12) Let fo be a function at infinity having its stable orbital integrals prescribed by the
identities of Kottwitz in [57]; it can be taken to be (essentially) an Euler-poincaré
function [58, Lemma 3.2] (cf. [27]). The function has the following property: Let
Too be an (g, Ko )-module occurring as the component at infinity of an automorphic
representation 7w of G. Then the trace of f, against 7 is equal to the Euler-Poincaré
characteristic Y ;% Noo(—1)" dim H (g, Koo; Too ® €), where N, is a certain explicit
constant (cf. [58, p. 657, Lemma 3.2]).

(13) p is a prime number where Shx has good reduction [59, § 5|, and we assume that p
is split in K/Q;
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(14) K C G(Ay) is a compact open subgroup, small enough that Shx /Of ® Z,, is smooth
and such that K decomposes as KPK, where K? is a compact open subgroup of
G(AY) and K, is a hyperspecial compact open subgroup of G(Qp).

(15) vp: Q — @p is a fixed embedding, Vs : Q — C is another fixed embedding, the fields
F,FT,E K are all embedded into C;

(16) p is the E-prime induced by vp;
(17) F, is the residue field of E at the prime p and F, is the residue field of Q at v,; for

every positive integer a, Ey o C @p is the unramified extension of E, of degree a;
Fya is the residue field of Ey ;

(18) ¢: B < Shg, is the basic stratum [87] (cf. [39,59,60,88]);

(19) x¢ is the characteristic function on G(Q,) of the subset of compact elements (cf.
[22));

(20) ¢ is a prime number and Q, an algebraic closure of Q together with an embedding
Qc Q4

(21) L is the f-adic local system on Shx /O ®Z,) associated to the representation § ®Q,
of Gg, [59, p. 393];

(22) U C G is the subgroup of elements with trivial factor of similitudes;

1

(23) for each infinite F*-place v, the number s, is the unique integer 0 < s, < 37 such

that U(R) =[], U(sv,n — sv);

24) the embedding Q C @, induces an action of the group Gal(Q,/Q,) on the set
P A p/ \ep
of infinite F*-places. For each Gal(Q,/Q,)-orbit p we define the number s, :=
> vep Svs and we write oy, for the partition (sy)vep of the number s;

(25) the function f, is the function of Kottwitz [57] associated to p (cf. Proposition 2.3.3).

REMARK. The second condition (2) is particular for our arguments, and does not occur
in [58].

4.2. The main argument. We compute the factors Tr(XcG(Qp ) fa,mp) occurring in The-
orem 4.3 below. We need to introduce two classes of representations:

DEFINITION 4.1. Consider the general linear group G, over a non-Archimedean local field.
Then a representation m of G,, is called a (semistable) rigid representation if it is equal to a

product of the form
k
] Speh(za. y)(za) € R,
a=1

where y is a divisor of n and (x,) is a composition of %, and e, are unramified unitary
characters.
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DEFINITION 4.2. A representation 7 of the group G(Q,) = Q,* X L GL(F,) is called
a rigid representation if for each F*-place p above p the component T, is a (semistable) rigid

representation of GL,,(F) in the previous sense:

k
7o = [T Speh(zpa:50) (c0) € R.

a=1
where two additional conditions hold: (1) y, = y, for all p,¢|p, and (2) the factor of
similitudes Q, of G(Qp) acts through an unramified character on the space of 7. We write
y =y, and call the set of data (2 q,€p,q,Y) the parameters of .

REMARK. Recall that we work in the semistable setting, both notions of rigid represen-
tations that we introduced above in the semistable setting also have a natural variant in the

non-semistable case.

THEOREM 4.3. Let o be a positive integer. Assume the conditions (1)-(25) from §5.1.
Then

(4'1) Z(_l)i Tr(foop X (I)av Hét(BFq7 L*‘C)) - Z Tr(Xchom Trp) : Tr(fpv ﬂ'p)'
=0 TCA(G)

7p rigid
REMARK. Using recent results obtained with Lapid (see Appendix B) it is possible to

extend the above theorem to the other Newton strata. However the result will be combina-

torially complicated. We hope to include this result soon.

PROOF OF THEOREM 4.3. Write T'(fP, «v) for the left hand side of Equation (4.1). By
Proposition 3.4 of Chapter 2 we have

(4.2) T(f7,0) = Tr(x¢ foo fa f7, A(G)),
for all sufficiently large integers «. To simplify notations, we write f := foo fo fP.

Let # C A(G) be an automorphic representation of G contributing to the trace
Tr(xS f, A(G)). During the proof of Proposition 2.3.4 of the previous chapter we explained
that m may be base changed to an automorphic representation BC(mw) of the algebraic
group K* x D*, and that, in turn, BC(7) may be send to an automorphic representation
1 := JL(BC(7)) of the Q-group Gt = K* x GL,,(F).

The representation Il is a discrete automorphic representation of the group G*(A), and II
is semistable at p. The classification of Moeglin-Waldspurger implies that 7, is the irreducible

quotient of the induced representation
1

GLy (A y—1 1-y
IndP(Af(’)F) <W|| 2 7'-'>w|" 2 >>

where P C GL, is the homogeneous standard parabolic subgroup having y blocks, and each
block is of size n/y; the inducing representation w is a cuspidal automorphic representation
of GLn/y(AF)
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The representation II comes from an automorphic representation of the group G via
Jacquet Langlands and base change. Therefore, II is cohomological and conjugate self dual.
These properties descend, up to twist by a character, to the representation w. The Ramanujan
conjecture is proved to be true for the representation w by the articles [14,25,95]. Thus the
components w, of w are tempered representations. Note that, of course, the components II,
are not tempered if II is not cuspidal.

An easy computation shows that 7, is a rigid representation for all F'*-places p dividing
p (Theorem 2.2.1). This means that there exists a positive divisor y of n, a composition
% = 22:1 T4, and unramified unitary characters €, such that

(4'3) 77@ = GLH(FP ) ® Speh Lay Yy a)>

where P C GL,, is the standard parabolic subgroup corresponding to the composition (z,y)
of n, and the tensor product is along the blocks of the standard Levi factor M of P. In
Equation (4.3) the number y is of global nature and does not depend on . The other data,
k, (z,) and €, do depend on the place . O

We work under the condition that p is split in the center F' of the algebra D. Because the
prime p is completely split in the extension F'/Q we have by Proposition 2.3.3 that

fa=lpe® @  fan® e Ho(G(@)),

vEHom(F+,R)

where the numbers s, are the signatures of the unitary group (cf. subsection 1). We compute

Tr(XS(Qp)fav 7Tp) =

— H Tr (XE}L"(@P)fmsv,I dGL" Qp ® Speh(zy,y Z:‘U’a))
)

ve€Hom(F+,R

. —s, LZay,
J— v
= I | | | 5v,a(q n

ve€Hom(F+ R) a=1

H Tr (XGLH(Qp)fnasv,I dGLn ®Speh Ty,a,Y ) .
)

veHom(F+ R

Y Za
Write ¢¢ € C for the product [, [[,ca(¢”* » ¢). The polynomial

(4.4) Tr <XGL" fm%,l dGL”(F )®Speh (Ta,y ) € Clg”],

is computed in Theorems 2.10 and 3.3 to be a polynomial defined by the weights of certain
non-intersecting lattice paths. In particular the trace in Equation (4.4) vanishes unless the
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number
_ Y- ‘T@ﬂ _ Y- xp,a
ged (y - 2pa, F2%s,)  ged(n, sp)

(4.5) My

)

is an integer, and divides either x, , or y. We make the assumption that the compact trace
Tr(x¢ fa, mp) is non-zero and therefore these divisibility relations are satisfied.
The number (¢ € C is determined by the central character w,: Z(A) — C* of the

automorphic representation 7w via the Equation:

(4.6) onl@)® = 2,(q®) - T] TL ev (55) = 2.

plp a=1

where ¢ is the contribution of the factor of similitudes, and = € Z(A) is the following element
of the center Z of G:

zi= (1)  [g (a0)o] € Z(87) x [Q) x FE¥| = Z(A).

The divisibility relations in Equation (4.5) assure that taking the rational power s/n of wy(x)

on the left hand side makes sense.

REMARK. The number (, is a Weil-g-number of weight determined by the local system
L, cf. Equation (2.3.10).

DEFINITION 4.4. We call a rigid representation 7, of G(Q,) of B-type if for all p, gcd(n, s,)
divides the product y -z, 4. Furthermore, for each F'*-prime p and each index a, the number

My o divides either y or z, 4.

We have proved that only the B-type representations contribute to the (alternating sum
of the cohomology spaces) of B. Let m, be a B-type representation of G(Q)). Then we write

Pol(r) & T (x @ f,, m, ) € Clg)

We computed this polynomial in the first 4 sections of this chapter. Explicitely, it is the

product over all p, over all indices a of the polynomial

sp(n—sp)

(4.7) e-q 2z “-Dyckt(@,7),
where the lists of points Z, i € Q? are defined by:

(1) If z, <y, then &, ¢ are of length x,, and for each b we have

Z : e(x;y> and gb:g(%;y)?

(2) if 24 >y, then &, ¥ are of length y, and for each b we have

2 e(y;:”“), and g,,::z(xa;y),
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where ¢ C Q? is the line of slope ‘%" going through the origin. The notation does not show,
but the points Z, ¥/ and the permutation wy depend on . The symbol wq is a permutation

in the group &y and is determined by Definition 2.8. The symbol ¢ in Equation (4.7)

xavy)
is a sign and is equal to

(4.8) v - sign(wp),
where the sign v is equal to (—1)""% if 2, < n and it is equal to 1 otherwise.

4.3. Application: A dimension formula. In Chapter 2 we explained that For-
mula (4.1) gives a formula for the number of points in B if one takes fP = 1gp» and £
equal to the trivial local system. Using this simplified formula we proved in Proposition.2.4.2
a dimension formula for the basic stratum. We now extend this result to the Shimura varieties
satisfying conditions (1)-(25) from the first subsection, with p completely split in F'*.

Take fP = 1gp» and £ in Theorem 4.3 so that the right hand side of Equation (4.1) counts
the number of points in B over finite fields. We computed the class of representations at p
contributing to this formula. Each representation m, at p contributes with a certain function
P(g*) to the zeta function of B. We call the order of m, the order of the function P(¢%) (as
function in ¢%).

PROPOSITION 4.5. The trivial representation m, = 1 contributes with the largest order to
the right hand side of Equation (4.1).

REMARK. In the statement of the proposition, we mean ‘largest order’ in the non-strict
sense. In general there are multiple representations contributing to the formula with the same
order.

The order of the trivial representation is easily computed, it is equal to:

sp—1

(19 > ).
=0

plp \vEPR

(cf. Equation (2.4.4))

PROOF OF PROPOSITION 4.5. Let m, be a unitary rigid representation. Pick one p|p.
The component 7, is a rigid representation of G, := GLn(Fp+ ).

Assume first that 7, is a Speh representation. We assume that h < ¢, so we will work
in the dual setting. Treatment of the non-dual case is essentially the same (see Eq. (4.25) at
the end of this argument below). Let 71 = (uy,v1), To = (u2,v2), ..., T = (up,v) be the
segments of the Zelevinsky dual m(, of m,. By Tadic’s formula the compact trace Tr(XCG “formp)
is an alternating sum of compact traces Tr(Xf ? fo, It,) on Zelevinsky duals of certain standard
representations [,,. The traces Tr(X?vp fo,I},) can be described using graphs as we explained
in the first section. The intuition is that the closer the graph is to the line ¢, the larger its
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weight is, and we claim that the largest weight is attained by trivial representation. More
precisely, we claim that for all f € Ho(G,,) and for all permutations w € &, we have

(4.10) Ord(Tr(xe® f, I4,)) < Ord(Tr(x<* f, 1)),

where with Ord(h) € Q of an element h € AT we mean the largest element z € Q such that
q”® occurs as a monomial in the expression of A with non-zero coefficient. By Proposition 3.1
and Dijk’s integration formula for compact traces we have

s(n—s)
Te(xe"f, 1) =q 2 - Y. cx-Gx(@®,7) € AT,

Gp G
X, & gJXMiX#O

where X ranges over the monomials X € A of the Satake transform S(f) of f, cx € C is
their coefficient and where we should explain the notation Gx (4%, ). The symbol 4 denotes
the list of points i, := #(u,) € Q? for a = 1,...h and the list of points ¥ is defined by
U, := (vq + 1) € Q2. The symbol Gx is the graph of the monomial X as defined in the first
section. Recall however that Gy is only well-defined up to the definition of its starting point.
The representation I} is obtained by induction from a one dimensional representation of a
standard Levi subgroup M,, of G,. Let (n{) be the corresponding composition of n, and let
ky be the length of this composition. We cut the graph Gx into k,, pieces, the first piece
contains the first n{’ steps of Gx, the second piece contains the next block of ng steps of Gx
and so on. Thus instead of one graph Gx we now have k,, graphs, g}g,l, g;"m, . ,Q}gkw, all
well defined up to their starting points. We let the starting point of the graph G ; be 4y,
the starting point of the graph G¥ , is by definition @3, and so on. Then G¥,, 0% ,, ...are
well defined graphs in Q2, and due to our definition of starting points, we have

kw
(4.11) [ weight(G%,,) = T (X, (1) no (57 2)) c At
a=1
The condition ch © Xff;X # 0 on X means precisely that the graphs Q}"(, ., have endpoint equal
to ¥, and that these graphs do not cross, but may touch, the line £.
Starting from the monomial X we can also defined a second graph Hx, such that

weight(Hy ) = Tr (X, 165" 2)) e At

n—1

This graph has starting point # = ¢(152) and end point § = ¢(%;1 4 1); the steps of Hx are
defined by Formula (2.2).
We now claim that

h
(4.12) [ [ weight(G% ) < weight(Hx) € A*,

a=1

for the obvious meaning of ‘<’.
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Before we prove the claim, let us first show a simple fact of graphs. Let G be any graph
in Q2. Then we have, for any point (a,b) € Q? that

(4.13) Ord(G + (z,y)) = Ord(G) — x - Height(G),

where the height of G, Height(G), is the vertical distance between the initial point of G and
its end point. This formula is easily seen to be true: The order Ord(G) is equal to the sum
of —a - e over all diagonal steps (a,b) — (a+ 1,b + e) occurring in the graph G. Adding the
point (z,y) to G amounts to changing —a - e to —(a + x)e in the definition of the order of G.
Thus the order of G is shifted by the sum, over all diagonal steps (a,b) — (a + 1,b+ €), of
the value —ze. This gives the formula in Equation (4.13).

We now return to the graphs Gx and H x introduced earlier. We cut H x into h consecutive
graphs. The first graph H 1 consists of the first n}’ steps of Hy, the second graph Hx
consists of the second block of ng steps of Hx, and so on. The graphs Gx , have the same
shape as the graphs Hx q, but they are shifted (the graphs are constructed starting from the
same monomial X). Therefore we have the relations:

(4.14) (Va) : ’HXﬂ :QXﬂ —E(uw(a))+f(1_Tn+nzlu+...nng),

(we subtract the initial point of Gx 4, and then add the initial point of Hx 4); in the above
formula we have the convention that

ny+ny +...+ny_; =0,

in case a = 1. Note also that

h
Ord(Hx) = > Ord(Hx.),

a=1

and similarly for Gx. By Equations (4.13) and (4.14) we have

Ord(Hxq) = Ord(Gxq) — Up(a) * Sg T (1_7" +nf 4+ ...+ ny) sy,

where sy :=ny - & = Height(Gx,.) = Height(Hx ,). Thus we have to compute the following
expression
sSe~/1-n
(4.15) C(w) = 52 <2—|—n’1“—|—n’2“+...—|—n}f_1 —uw(a)> ny.
a=1

To show that Equation (4.12) is true, we show that C'(w) < 0 for all permutations w.

To prove that C(w) < 0, we may ignore the factor 7 in the above expression. We prove
in two steps that C'(w) < 0 for all w. We first determine the permutation w such that the
value C(w) is maximal (Step 1). Then we compute for this particular permutation the value

C(w), and observe that it is non-positive (Step 2).
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We begin with Step 1. We want to determine w such that C'(w) is maximal. Let us first
simplify the expression somewhat. The expression C'(w) is maximal for w if and only if

h
(4.16) S (Y 0y 0l = ) nY,
a=1
is maximal. To derive (4.16) we used %, that the sum >'_, 2-1n¥ equals ni5™ and therefore

this sum does not depend on w. (Similar arguments will appear also below.) We have

(4.17) ny = <t+2h—a> - <h2_t—(w(a)—1)> +1=t—a+w(a).
and
(4.18) tho(a) = % — (w(a) - 1).

We plug Equations (4.17) and (4.18) into Equation (4.16) to get
h

Z<(t—1+w(1))+...—|—(t—(a—1)+w(a—1))—tQh%—(w(a)—1)>n}f

a=1
As before, this expression is maximal for w, if and only if the expression

h
(4.19) d (w@) —1+w@)-2+...+wla—1) - (a—1) +w(a)) (t — a+w(a))

a=1
is maximal. Equation (4.19) is maximal for w if and only if the expression

h
(4.20) Y (w(1) ~1+w(@) —2+...+wia—1) - (a 1)+ w(a)) (w(a) - a)

a=1
is maximal. We may rewrite (4.20) to

h h

(4.21) > (w@) +w@) + ... +wa)a—Y (1+2+...+ (a—1))w(a)

a=1 a=1
We rearrange the first sum as follows. Count for each index a the coefficient of w(a) to get

h

h
Z(w(l) +w(2)+...+w(a))a= Zp(h +1—a)w(a),
a=1

a=1
where
pla) :=14+2+3+...+a=3ala+1).

Thus (4.21) equals
h

S (ot +1 - a) — pla — 1))w(a)

a=1

8. See Equation (2.1), but note that by duality the roles of h and t are switched.
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The function v(a) defined by v(a) = p(h+1—a)— p(a—1), is strictly decreasing in a because
via+1)—v(a)=—(h+1).

We are looking for w such that

> v(a)-wla)

a=1
is maximal, with v(a) a strictly decreasing function for a € {1,2,...,h}. This maximum is
attained by the permutation w defined by a — h + 1 — a. This completes Step 1.
We now do Step 2. Thus we have w(a) = h + 1 — a for all indices a € {1,2,...,h}. We

compute the sum

I—n w w w w
(4.22) C’(w)zz<2+n1 +ngy +...+na1—uw(a)> ny.
a=1
We have
h+t h—t
Mg = Yo — Uy(a) + :<2 —a)—(2 —(w(a)—1)>+1
(4.23) =t—a+wa)=t—a+(h+1)—a=t+h+1-2a,
and we have
t—nh t—nh
(4.24) uw(a):T—(w(a)—l):T—(h—a).
Note also that,
h h
n:an’:Zt—i—h—l—l—m.
a=1 a=1

(cf. Equation (2.1)). Thus, Equation (4.22) becomes

" (1-n (“1 ) t—h )
+ t+h+1-20)—(———(h—a)) |- (t+h+1-2a)
> (5 (5 (5" -0-0)

a=1

An easy (but somewhat lengthy) computation shows that this last formula simplifies to
n(h —t). By assumption we have h < ¢. We conclude that the value in Equation (4.22)
is non-positive, which is what we wanted to show. We have now established the claim in
Equation (4.12).

With the same proof, but using the non-dual instead, one can show that
G G
(4.25) Ord(Tr(xc" f, Iw)) < Ord(Tr(xc" f, Sta,, ),

is true for all representation I, occurring in Tadic’s formula for Speh representations 7 with
h > t. Because

Ord(Tr(x<* f,Ste,)) < Ord(Tr(x* f,16,)),
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the inequality of Equation (4.10) is true for all Speh representations. We leave it to the reader
to deduce that Equation (4.10) also holds for products of Speh representations, and also for
the rigid representations of G, (with the characters ¢, trivial).

We return to the group G(Q,) and the full representation m,. The compact trace
Tr(xg;(Qp)fa, mp) is the product of the traces on the components,

G G
Te(xe @ o mp) = Trg,« (forms) - [ TrOE™ o).
elp
(the first term in the product is the contribution of the factor of similitudes). We proved that
all the terms of this product are bounded by the trace on the trivial representation. This is

then also true for the entire product. ]
We now deduce a formula for the dimension.

THEOREM 4.6. The dimension of the basic stratum B is equal to

sp—1

Su(1 = sy) n
2\ ]
— Sp
gg‘p vEP ]70
PRrROOF. Apply Proposition 4.5 and Theorem 4.3 to find
(1 ) sp—1
. Spll — Sy .n
dim(B) < —_ —
(e < 3° (300 S
plp \vep J=0

We now prove the opposite inequality. We return to the final formula we found in Theorem 4.3:

o0

(4.26) D (1) Te(foP x & Hy (B, L)) = > Tr(xE fa, mp) - Te(f7, 7).
=0 wCA(f)
Tp Tigl

We take in this formula fP and L of the following form. Let p; be a prime number with

— pq is different from ¢, p;

— the group G splits over Qp, ;

— the group K splits into a product K, KP! of a hyperspecial group at p; and a compact

open subgroup KP' C G(A!") outside p;.

We take

— fPPY = 1w

— fp, is an arbitrary K, -spherical function;

— L = Qy (the trivial local system).
There exist only a finite number of representations m,, contributing to Equation (4.26), and
one of these representations is the trivial representation. Thus we may find a spherical Hecke
operator f,, € H(G(Qp,)) such that
1 mp = 1@y,)

Tr(fpy, mp,) =
P 0 otherwise,
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for all representations m,, occurring in Equation (4.26). We consider the Hecke operator
fP = 1gw ® fp, in Equation (4.26). By construction, any automorphic representation
m C A(G) contributing to Equation (4.26) has m,, = 1g(q,,)- By a strong approximation
argument, the representation 7 is one dimensional ?, and in particular Abelian. Consequently,
at the prime p # pi, the representation , is a twist of 15(g,) by an unramified character x;.
Because the representation { at infinity is trivial, the character x;, is of finite order. Therefore
there exists an integer r > 0 such that, whenever r divides «, we have

Tr(XcG(Qp)faa 7Tp) = Tr(Xg(Qp)faa ]-)a

for all representations 7, contributing to Equation (4.26). From now on we consider only o
such that r|a. The right hand side of Equation (4.26) simplifies to

C : TT(XS(Qp)fOH 1)7

where C' is some non-zero constant. Thus for our choice of f*°P the trace

oo

(4.27) D ()P T(fP x &y HE (Bg,, Q)

i=0
grows with the order of the trivial representation. View > 0% (—1)HY, (Bﬁq,@g) as a virtual
representation of the group (@;)Z, and write it as a linear combination of the characters of this
group. The character of highest order occurring in this expression determines the dimension
of the variety B. By the conclusion in Equation (4.27) there occurs a character whose order
is at least Ord(Tr(Xf(Qp ) fa,1)). This means that

sp—1

. sv(l - Sv) . n
> A Sl -
dim(B) > Z Z 5 + Z [J SK’—|
This completes the proof of the Theorem. O

REMARK. The above formula confirms the conjecture for the dimension of the basic stra-

tum specialized to the cases we consider. See for example [61].

4.4. Application: Vanishing of the cohomology. In Chapter 2 we assumed that
the signatures s, are coprime to the number n. Under these conditions the cohomology of
the basic stratum is very simple: Locally at the prime p, only the trivial representation and
(essentially) the Steinberg representation contribute to Expression (4.1). In fact this is true

in a larger class of cases:

COROLLARY 4.7. Assume there is one FT-place p above p such that s, is coprime to n.
Then only the Steinberg representation and the trivial representation contribute to the formula
in Equation (4.1).

9. See for example Lemma 3.6 in Chapter 2, although this result is of course well known.
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Proor. This follows directly form the definition of rigid representation of the group
G(Qp). 0

REMARK. In Chapter 2 we assumed that, for all p, the number s, is coprime to n or s,
is equal to 0 or n. Only under this larger assumption the compact trace on the Steinberg
representation coincides with the compact trace on the trivial representation (up to sign),
just as in Chapter 2. In the above Corollary this need not be the case.

4.5. Application: Euler-Poincaré characteristics. Finally we have a remark on the
Euler-Poincaré characteristic of the variety B. The evaluation at ¢ = 1 of our formula gives
the expression of the Euler-Poincaré characteristic. Thus to compute the Euler-Poincaré
characteristic we get the combinatorial problem to compute, apart from dimensions of spaces
of automorphic forms, the number of non-intersecting Dyck paths. This problem has been
considered in an equivalent forms in the literature; a good starting point are the books of
Stanley [97] and the references therein.

5. Examples

We end this chapter with some examples. Let us first explain why we need the condition
that p splits completely in the center of D.

5.1. Products of simple Kottwitz functions. To study the reduction modulo p of
unitary Shimura varieties, the simple Kottwitz functions f,,os as we defined them in Equa-
tion (1.1) are not enough. These functions count only points of unitary Shimura varieties
if the group G of the Shimura datum is of the following kind. Consider a unitary Shimura
variety associated to a division algebra D as in the previous section. Let U in G be the
subgroup of elements whose factor of similitudes is equal to one. Then U is a unitary group
and U(R) is isomorphic to a product of standard unitary groups U(p;,q,) with 7 ranging
over the infinite places of the maximal totally real subfield F'* of the center F' of D. The
function f,.s counts points on the reduction of Shx modulo p if we have p, = 0 or g, = 0
for all F'T-places 7, but with one FT-place excluded. For the excluded FT-place 19 we must
have p;, = s or p;, = n — s. For unitary Shimura varieties with several non-zero signatures
at infinity, one will need to consider products of the functions f,,s for several different values
of s.

REMARK. Compact traces do not commute with products of Hecke operators.

EXAMPLE. Let us assume that there are two infinite F*-places 19,71 with p;, = pr, = 1
and that p, = 0 for all other 7. Choose embeddings C > Q C @p, so the group
Gal(Q,/Qp) acts on the set of infinite places of F*. Assume the places 7o and 71 lie in
the same Gal(Q,/Q,)-orbit and assume « is sufficiently divisible such that the Ej o-algebra
F* @ Ep, is split. Then the function counting points in the set #Shy (Fge) is (essen-
tially) the convolution product f = fna1 * fna1 € Ho(GL,(F)), where F is some finite
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extension of Q. An easy computation shows that f = 2¢%fna2 + fn(24)1, and therefore
Tr(xSf,1g) = 2(¢ + ¢* + ... + qaL%J) + 1. Consequently the number of points in the ba-
sic stratum over the field Fye is the product of the above polynomial times a cohomological
expression depending only on the class of the degree « in the group Z/hZ, where h is re-
lated to the class number of the cocenter of G (Corollary 2.4.1). In particular the variety is of
dimension | %] in this case. If we assume instead that 7o and 71 lied in a different Gal(Q,/Qp)-
orbit, then the basic stratum of Shy is a finite variety. Whether or not 79 and 71 lie in the
same Gal(@p /Qp)-orbit is a condition on how the prime p decomposes as a product of prime
ideals in the ring of integers O+ of F*. Thus, roughly speaking, the form of the function
a = Te(xe @,
the unitary group at infinity, and (2) how the prime p decomposes in F'*.

1¢(q,)) depends only on two pieces of information: (1) The signatures of

5.2. Two different prime factors. Assume F'T is of degree 2 over Q and n is a product
of two primes z,y with x < y. Let U C G be the subgroup of elements whose factor of
similitudes is trivial. We assume U(R) is isomorphic to U(z,n — z)(R) x U(y,n —y)(R). The
reflex field F of the Shimura datum coincides with the field F.

There are two cases to consider, either the prime p where we reduce Sh splits in F'* or p is
inert (but unramified). Assume that p splits, then G(Q,) = @, XGL,,(Q,) x GL,(Qp). Recall
that we picked an embedding v,: Q- @p. Therefore the factors of the product GL,(Qy) x
GL,(Q,) are ordered: the embbeding v, identifies the two F"-places 71, 72 at infinity with the
two FT-places g1, p2 above p. Via the isomorphism U(R) 2 U(z,n — z)(R) x U(y,n — y)(R)
we associate to 71,72 (and thus to @1, p2) a signature equal to = or y. Assume that p; (and
71) correspond to x and gy (and 79) correspond to y. Similarly, the first factor of the group
GL,(Qp) x GL,(Qp) corresponds to g and the second factor corresponds to @s.

The B-type representations of G(Qp) are the representations contributing to the coho-
mology of the basic stratum. Ignoring the factor of similitudes, the B-type representations of

G(Qp)/Qp™ = GLn(Qp) x GLn(Qp) are:

(5.1) Speh(z,y)(e) ® ﬁlspeh(wa, y)(ea),
!

(5.2) li[l Speh(ya, )(q) ® Speh(z, y)(e),

(5.3) Sta(e) ® Sta(e'),

(5.4) 1a(e) ® 1(e"),

where, in these equations the number k can, a priori, be any positive number. In Equa-
tion (5.1), the symbol (z,) ranges over the compositions of the prime x and in Equation (5.2),
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the symbol (y,) ranges over the compositions of the prime y. The symbols ¢,¢’, &, denote
arbitrary, unrelated, unramified unitary characters.

5.3. Some explicit polynomials. We specialize our first example further, and assume
that © = 2 and y = 3, so U(R) 2 U(2,4)(R) x U(3,3)(R). We write down the polynomials
Tr(XS fa, mp) € AT for the representations that occur. The unramified characters ¢, ¢4, ¢’ and
the factor of similitudes have no influence on the form of the polynomials, so we leave them
out.

The computation of the compact traces on the representations 7, = Speh(3,2) and 7, =
Speh(2,3) is done in the Figures 4 and 5. Recall that the computuation on Speh(3,2) is
done via the segments of its dual representation Speh(2,3). The Zelevinsky segments of the
representation Speh(2,3) are {—%, %,% and {—%, —%, %} To compute the compact traces
we consider the line ¢ in Q2 of slope > and consider the weights of non-crossing lattice paths.
In our case there are two possible slopes, slope % and slope %; these yield several different
polynomials.

FIGURE 4. The compact trace on the representation Speh(3,2) with respect to
the function feas. We have £ = 1 and & = £(—3), Zo = ((—3), h = (3 +1)
and ¢ = £(1 +1). The permutation wy is equal to (12). We see that there are
two Dyck 2-paths going from the points £*° to the points ¥, and one of those

—

paths is non-strict because it touches the line £. Therefore Dyck! (F*°, ¢)

g Y2e-1/20-3/200 — (=5/2a 5 Dyck™ (20, 7) = q~%/?*4¢=3/2*, We conclude:

s(n—s)
Tr(xS P foas, Speh(3,2)) = (—1)"Isign(wo)g 2 %q~%/2 = —¢2*,

In the illustrations we found that
Tr(xe’ " foas, Spe(3,2)) = —¢~>°
Tr(xS Y fsa2, Speh(3,2)) = —g°.
Using the duality and the computation in the figures, we find that
Tr(x ™ foas, Speh(2,3)) = ¢* + ¢*°
Tr(x &% foaz, Speh (2, 3)) = ¢
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FIGURE 5. The compact trace on the representation m, = Speh(3,2) with

respect to the function fgao. We have & = %, and 71 = f(—%), Ty = E(—%),
71 = ((3+1) and ¥ = £(3+1). The permutation wy is the trivial permutation.
There is one Dyck 2-path going from the points £*° to the points ¢ and this 2-
path is strict. Therefore Dyck! (740, §/) = Dyck™ (Z%0, ) = ¢~ 1/22=3/22 = =,

s(n—s) 3

We conclude: Tr(XcG(Qp)fmg, Speh(3,2)) = (=1)""tsign(wg)q 2 = —q

By drawing the picture, we see in a similar manner to the illustrations that
(5.5) Tr(x* f1a2, Speh(2,2)) = ¢*.
and
Tr(XS® foazs 1) = 1+ ¢* + ¢*
Tr (X" foa2, Stas) = — (4% + ¢*%)
Tr(xS® foas, 1as) = 1+ ¢% +2¢°* + ¢*
(5.6) Tr(X¢® foas, Stas) = —(1+¢%).

The representations at p occurring in the alternating sum of the cohomology of the basic

stratum are (up to twists):

Speh(2,3) © Speh(2,3),  Speh(2,3) @ (Lg, X 1a,);

Speh(3,2) ® Speh(3,2), (Speh(2,2) x 1¢,) ® Speh(3,2) (1g, x Speh(2,2)) ® Speh(3,2),
(1g, X 1g, X 1¢,) ® Speh(3,2);
Stge @ Stag;
1o, ® 1g,.
Let us ignore the factor of similitudes of the group G(Q,). On the group GL2(Q),) X
GL2(Qp) the function of Kottwitz is equal to fea2 @ foaz € Ho(GLn(Qp)) @ Ho(GL,(Qp)).

With the formulas we gave above the compact traces on the representations in this list are
now all explicit.






CHAPTER 4

Non-emptiness of the Newton strata

Recently Wedhorn and Viehmann [104] have proved through geometric means that, for
a Shimura variety of PEL type of type (A) or (C), the Newton strata at a prime of good
reduction are non-empty. We reprove this result using automorphic forms and the trace
formula in case the group is of type (A). At the time of writing this chapter we learned that
Sug Woo Shin also found a proof of this theorem with yet another method.

Let us explain our method of proof. The formula of Kottwitz for the number of points
on a Shimura variety modulo p can be restricted to count the number of points in any given
Newton stratum. Thus, it suffices that this restriction be non-zero. Kottwitz rewrites the
formula in terms of stable orbital integrals on certain endoscopic groups of G. This stable
expression coincides with the geometric side of the stable trace formula. The geometric side
equals the spectral side, so we get a sum over the endoscopic groups of GG of certain truncated,
transferred Hecke operators acting on automorphic representations of these endoscopic groups.
(The truncation is defined by the element of B(Gq,,x).) A general objective is to try and
work out this expression; one will then get a description (of the alternating sum) of the
cohomology of the Newton strata. Here we have aimed at a simpler goal: We do not describe
the cohomology of the Newton stratum defined by b € B(Gg,, ), we only show that the
cohomology does not vanish, so that the corresponding Newton stratum must be non-empty.

We pick one very particular Hecke operator fP and carry out the computation sketched
above only for this particular Hecke operator. We choose our Hecke operator with care, so
that all the proper endoscopy vanishes and that in the end, after applying a simple version of
the trace formula, we arrive at a sum of certain b-truncated traces on cuspidal automorphic
representations of the quasi-split inner form G* of the group G (Equation (7.11)):

(0.7) S () - Te((f7)E A0, 11P) Te (O £, T0,).
II

We choose the function f? so that, based on general conjectures, we expect that there is
precisely one automorphic representation Ily contributing to this sum (for « sufficiently di-
visible). Therefore no cancellations occur and the sum is non-zero. We do not prove these
general conjectures. However, we show that there is at least one contributing representation
[Ty, and that for any other hypothetical II contributing to Equation (0.7), the quotient

m(IT) - Tr(( )G D, TP) Te (@) £, 11,)
m(Io) - Tr((f7)8" 4D, T8) Tr(xy @) £, Tlo,)

91

(0.8)
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is a positive real number (here « is sufficiently divisible). Then, the sum in Equation (0.7)
is non-zero. Thus the formula of Kottwitz does not vanish as well, and this means that the
corresponding Newton stratum is nonempty.

An important step in the argument is showing that the representation Ilj exists. In partic-
ular we have to find a local representation Il , at p such that we have Tr(xf((@p ) fa,op) # 0.
In the first section we find a set of such representations Iy with positive Plancherel measure.
General theory of automorphic forms then assures the existence of a global automorphic
representation Il lying in our Plancherel set.

1. Isocrystals

We start this preliminary section with some notations. Let p be a prime number and
let ' be a finite extension of Q,. Let Op be the ring of integers of F', let wr € OF be a
prime element. We write I, for the residue field of Op, and the number ¢ is by definition its
cardinality. We fix an algebraic closure @p of F', and we let Fy, be the unramified extension of
F of degree « in @p. Let G be a smooth reductive group over O (then G is an unramified
group [100]). We fix a minimal parabolic subgroup Py of G, and we standardize the parabolic
subgroups of G with respect to Py. We write T' C Py for the Levi component of Py and Ny for
the unipotent part, so that we have Py = T'Ng. We call a parabolic subgroup P of G standard
if it contains Py, and we write P = M N for its standard Levi decomposition. We write K for
the hyperspecial subgroup G(Or) C G(F'). Let H(G) be the Hecke algebra of locally constant
compactly supported complex valued functions on G(F), where the product on this algebra
is the one defined by the convolution integral with respect to the Haar measure giving the
group K measure 1. We write Ho(G) for the spherical Hecke algebra of G with respect to K.
We write p for the half sum of the positive roots of G.

We write Z C G for the center of GG, and we write A C Z for the split center. Similarly
Zyr (resp. Zp) is the center of the Levi-subgroup M (resp. parabolic subgroup P); and
we write Ay (resp. Ap) for the split center of M. We write Ag for Ap, C T. We write
ap := X«(Ap) ® R, and Cj for the closed, positive chamber in ag:

Co :={z € ag | for all roots « in A(Ap, Lie(Ny)): (z,a) > 0}.

Let B(G) be the set of o-conjugacy classes in G(L), where L is the completion of the
maximal unramified extension of F' and o is the arithmetic Frobenius of L over F. Let
€ X«(T) be a G-dominant minuscule cocharacter. Recall that Kottwitz has defined the
subset B(G, 1) C B(G) of p-admissible isocrystals [60, 88|.

Let D be the protorus over F' with character group given by X.(ID) = Q and trivial
Galois action. For any b € G(L) we have an unique morphism v,: D, — G, characterized by
the following property: For every algebraic representation (p, V') of G on a finite dimensional
vector space V' the composition pov, determines the slope filtration on (V®L, p(b)(1®01)) [55,
§4]. Replacing b by a o-conjugate amounts to conjugating v, with some G(L)-conjugate.
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Moreover, one can replace b so that v, has image inside the torus Ag 1, so that v} defines an
element of ay [60, p. 267] [88, 1.7]. Write 7}, for the unique element of Cy whose orbit under
the Weyl group meets v,. The morphism 7, is called the slope morphism and the mapping
B(G) — Cy, b — 1y is called the Newton map. Note that the mapping b — 7 is not injective
in general (it is injective in case G = GL,,(F)).

Recall that we fixed an embedding F' C @p. For each finite subextension I’ C @p of
F we have the unique mapping Hp: T(F') — X,.(T)r such that q;,<X’H(t)> = |x(t)| for all
t € T(F'"), where gps is the cardinal of the residue field of F’, and the norm is normalized
so that [p| equals g5, where e is the ramification index of F'/F. By taking the union over
all F/ we get a mapping Hp: T (@p) — X4 (T)gr. Consider the composition H,4 defined by
T(Q,) — X.(T)r — X.(A)r = ap. Let G(Q,)ss C G(Q,) be the subset of semisimple
elements. If g € G(@p)ss, then we may conjugate g to an element ¢’ of T(@p) and then
consider Ha(g') € ap. This element of ag is only defined up to conjugacy, but we can take
a representative in the, closed positive Weyl chamber H(g) € C’O+ which is well-defined.
Thus we have a map ®: G(@p)ss — () defined on the semisimple elements. We extend the
definition of ® to G(Q,) by defining ®(g) := ®(gss), where gy is the semisimple part of the
element g € G(Q,). We restrict to G(F) C G(Q,) to obtain the mapping ®: G — Cy. In
Proposition 1.1 we establish a relation between the map ® and the Newton polygon mapping
of isocrystals.

We recall the definition of the norm N of (certain) o-conjugacy classes (cf. [4] [53, p. 799]).
To any element § € G(F,) we associate the element N(6) := do(d)---0*1(8) € G(F,). For
any element 0 € G(F,), defined up to o-conjugacy, with semi-simple norm N(§) one proves
(see [loc. cit.]) that N () actually comes from a conjugacy class N'(9) in the group G(F).

PROPOSITION 1.1. Let o be a positive integer and let 6 € G(Fy,) be an element of semi-
simple norm, defined up to o-conjugacy. Let v € G(F) be an element in the conjugacy class
N (6), and let b be the isocrystal with additional G-structure defined by 6. Then T, = a-®(y) €
Cop.

Proor. We first prove the case where G is the general linear group. If G = GL,, r, then
an isocrystal “with additional G-structure” is simply an isocrystal, i.e. a pair (V,®) where V'
is an n-dimensional L vector space and @ is a o-linear bijection from V onto V. Because b
is induced by some § € G(F,), we may find a F,-vector space V' together with a o-linear
bijection ®': V' — V' such that (V,®) is obtained from (V,®) by extending the scalars
V=V'®p, Land ®(v'®1) := ®'(v') @ c(l). Then (V',®’) is an F,-space in the terminology
of Demazure [35], and a theorem of Manin gives the relation 7, = o - ®(y) (cf. [35, p. 90]).

Drop the assumption that G = GL,. Pick a representation p: G — GLy of G in some
finite dimensional Q,-vector space V. Then, by the statement for GL,, we see that o -
®cr, (p(7)) determines the slope filtration on the space (V ® L, p(b)(1 ® or,)). Thus povy, =
a - dar, (p(7)) for all p, and then the equality is also true for the group G. O
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FIGURE 1. The dark line is an example of the Newton polygon of an isocrystal
b with additional Uj-structure. The horizontal line from (0, 0) to (10, 0) is the
Newton polygon of the basic isocrystal. The vertical dotted line indicates the
mirror symmetry of the Newton polygons of the G-isocrystals.

We now study the set B(G) where G is an unramified unitary group over F' splitting over
the extension Fy/F. The absolute root system of G is isomorphic to the usual root system in
R™ of type A (cf. Bourbaki [11, chap. 6]), and the non-trivial element of the group Gal(Fy/F')
acts on R™ via the operator 6 defined by (z1,z2,...,2,) — (—%n, —Tp—1,...,—x1). The
space ag is the subspace of # invariant elements in R™, thus it is equal to the set of (z;) € R”
with #; = —x,,41-; for all indices i. The dimension of this space is equal to |n/2].

Whenever b € B(G) is an isocrystal with G-structure, we have its slope morphism 7, € Cj.
We may view the slope morphism 7, as an f-invariant element of R™. This way we get the
slopes A1, A2,..., A, of b. These slopes are just the coordinates of the vector 7, € R™. We
order them so that A\ < Ao < --- < \j,. These slopes satisfy the property \; = —Ap,11-;. We
associate to these slopes the Newton polygon G, of b. The Newton polygon is by definition
the continuous piecewise linear function from the real interval [0,n] to R with the property
that the only points where it is possibly not differentiable are the integral points [0, n|NZ; the
value of Gy, at these points is defined by: G,(0) := 0 and Gp(i) := A1 + A2 + ...+ A;. Observe
that, due to the #-invariance, we have Gy(n) = A\; + ... + A, = 0. Furthermore the graph
(or polygon) G is symmetric around the vertical line that goes through the point (%,0). In
Figure 1 we show a typical unitary Newton polygon. In particular negative slopes may occur,
which does not happen for the group GL, (F) nor for the group Gspay (F).
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Let us now determine what the Hodge polygons looks like. The minuscule cocharacter p
is defined over F, and is given by

w=(0,0,...,0,1,1,...,1) € Z" C R",
~—
n—s S
for some integer s with 0 < s < n. To define the set B(G, u) Kottwitz [60, §6] takes the
average of u under the Galois action to get

— 1 1 1 1 1 1 1 n
=s(u+46 =(—5,—5,.--,—5,0,0,...,0,5,5,...,5) € ag CR",
1% 2(,“ (N)) ( 2572 2 2 ) 2) 0
s’ n—2s’ s

where s’ := min(s,n — s). To this element 7 € R™ we may associate in the same manner a
graph G, as in Figure 1. Then b € B(G) lies in B(G, i) if and only if the end point of G, is
(n,0) and if G, lies above ! the graph G,,.

2. PEL datum

Let G/Q be a unitary group of similitudes arising from a PEL type Shimura datum [59, §5].
We recall briefly the definition of G from [loc. cit.]. Let B/Q be a finite dimensional simple
algebra and write F' for its center, and assume that F' is a CM field. Let x be a positive
involution on B over Q inducing on F the complex conjugation. Write F* C F for the
fixed field of * on F. Let V be a nonzero finitely generated left B-module. Let (-,-) be a
non-degenerate Q-valued alternating form on V such that (bv,w) = (v,b*w) for all v,w € V
and all b € B. Then G/Q is the algebraic group with for all commutative Q-algebras R:

(2.1) G(R) = {g € Endp(V)*[3c(g9) € R : (g9-,9°) = ¢(g)(-,-) on V}.

Let G; C G be the kernel of the similitudes ratio. Then G is obtained by restriction of
scalars of a unitary group Gy defined over the totally real field F'™ (following the notations
of [loc. cit.]. The group G, is isomorphic to a product of groups

(2.2) Gl:@p = HGLP?
elp

where p ranges over the F™-places above p, and where the group G, is either the restriction
of scalars to Q, of GLn, Ff Or of an unramified unitary group over F, g . We will study the group
G1,g, factor by factor. Thus, in this chapter we will need to work not only with unramified
unitary groups, but with the slightly more general class of groups of the form Res P/ rU,
where Fé /F,, is some unramified extension and U is an unramified unitary group over FK’J.
The study of isocrystals over these groups reduces quickly to the study of isocrystals over the
group U (which we did above), by the Shapiro bijection (cf. [60, 6.5.3]):

(2.3) B(Respy /r,U) = B (U),

1. Lies above in the non-strict sense, the two graphs may touch, or even be the same (the ordinary case).
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where we have added the subscript “F{’J” in the right hand side to indicate that there we
work with o’-conjugacy classes, where o’ is the arithmetic Frobenius of Q,, over F;). Under
the Shapiro bijection the subset B(Res F /7, U, le) corresponds to the subset BFK’)(U; fig,) of
By (U), where pg, is defined by

:u{@d:e{‘ Z (1717"-7170707"'70)GZTL‘

veV (p) So n—=sy

Thus, the combinatorics for isocrystals with Resps,pU-structure is almost the same as the
combinatorics for the case I’ = F'; only the Hodge polygons are slightly more complicated.

We recall briefly how the functions of Kottwitz ¢, and f, are constructed [59, §5] [57,
p. 173]. Let E be the reflex field, let p be a prime number where the Shimura variety has
good reduction in the sense of [59, §6]. In particular the field E is unramified at p; let p be an
E-prime above p. Write E,, for the completion of E at p, fix an embedding £, C @p and let
for each positive integer «, the field E, , C @p be the unramified extension of F, of degree «.
In the PEL datum there is fixed a s-morphism h: C — End(B)g*. This morphism induces a
morphism of algebraic groups from Deligne’s torus Resc/gGm to the group Gg. Tensor this
morphism with C to get a morphism from Gy, x Gy, to G¢ and then restrict to the factor Gy,
of the product Gy, X Gy, corresponding to the identity R-isomorphism C — C. This way we
obtain a cocharacter u € X,.(G). We quote from Kottwitz’s article at Ann Arbor, p. 173: The
G(C) conjugacy class of u gives a G(Q,) conjugacy class of morphisms fixed by the Galois
group Gal(@p/Ep’a). Let S, be a maximal Ej ,-split torus in the group G over the ring of
integers Op, ,. Using Lemma (1.1.3) of [54] we choose u so that it factors through S,. Then
$a = GG ua is the characteristic function of the double coset G(Opo)p(p™')G(Op,0). The
function f, = fg o is by definition the base change [4,77] of ¢, from the group G(E, o) to
the group G(Qp).

3. Truncated traces

We revert to the general notations of the beginning of the first section, thus G is a
connected unramified reductive group over a local field. In this section we introduce the
concept of truncated traces of smooth representations with respect to elements of the set
B(G), i.e. the isocrystals with additional G-structure. We will then compute these truncated
traces on the Steinberg representation and on the trivial representation.

Using the mapping ® from the previous section we define the truncated traces with respect
to an arbitrary element b € B(G):

DEFINITION 3.1. Let v € Cy. We define:
(3.1) Q8 Y e G INERS: Bg)=\-ve ).

We let x§ be the characteristic function on of the subset Q5 of G. Let b € B(G) be an
isocrystal with additional G-structure. Then we will write xf = ng and QbG = ng .
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REMARK. The Newton mapping B(G) 2 b — 7y, € Cj is injective for a simply connected,
connected quasi-split reductive group over a non-Archimedean local field [60, §6].

Let P = M N be a standard parabolic subgroup of G and let Ap be the split center of P,
we write ep = (—1)4m(AP/A6)  To the parabolic subgroup P we associate the subset Ap C A
consisting of those roots acting non trivially on Ap. Define ap to be X.(Ap)r and define ag
to be the quotient of ap by ag, and define aJ]S by

ap = {z € ap | for all roots a in Ap: (x,a) > 0}.

We recall the definition of the obtuse and acute Weyl-chambers [68,102]. Let P be a standard

parabolic subgroup of G. We write a9 = ap, and a§ = ago. For each root o in A we have

a coroot aV in a§. For @ € Ap C A we send the coroot o € af to the space a§ via

the canonical surjection aOG —» ag. The set of these restricted coroots av|ag with « ranging

over Ap form a basis of the vector space ag. By definition the set of fundamental weights

{ws € a8 | a € Ap} is the basis of a%* = Hom(a%,R) dual to the basis {a)s} of coroots.
P

We let Tg be the characteristic function on the space a}GD of the acute Weyl chamber,
(3.2) a%t = {z €af | Va € Ap (a,z) > 0}.
We let ?g be the characteristic function on ag of the obtuse Weyl chamber,

(3.3) taf = {z e a% | Vo€ Ap (w8, z) > 0}.

We define the function yn to be the composition Tg o(ap —» ag) o Hys, and we define the

function Xy to be the composition ?ch o(ap —» ag) o Hy;. The functions xny and Xy are
locally constant and K js-invariant, where Ky = M(Op).

Let b € B(G) be an isocrystal with additional G structure and let 7, € Cp be its slope
morphism. For any standard parabolic subgroup P C G we have the subset aJIS C Cy. Let
Py be the standard parabolic subgroup of G such that 7, € aa. We call the group P, the
subgroup of G contracted by the isocrystal b € B(G). These groups are precisely the parabolic
subgroups appearing in the Kottwitz decomposition of the set B(G) (see [60, 5.1.1]). We write
Py, = MyN, for the standard decomposition of P.

We write mgp for the projection from the space ag onto ap, it sends an element X € ag
to its average under the action of the Weyl group.

We introduce a certain characteristic function on G associated to the isocrystal b € B(G):

DEFINITION 3.2. Let P, = M N, be the standard parabolic subgroup of G contracted by
b. We define 7 to be the characteristic function on G of the set of elements g € G such that
there exists a A € RX such that mop(®(g)) = A - 7 € af.

REMARK. If the isocrystal b is basic, then we have P = G, and the element 7, € Cj is
central. Therefore the function n;, is spherical.

In case the isocrystal b € b(G) is basic then x§' coincides with ;x5
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LEMMA 3.3. Let b € B(G) be a basic isocrystal. Then we have x§ = npx&.

PROOF. Let g € G, and consider ®(g) € Cy. Then g is compact if and only if it contracts
G as parabolic subgroup (which means that ®(g) lies in ag C Cf). Assume g is compact.
Then Xf(g) = 1 if and only if the slope morphism 7, of b lies in ag, i.e. if and only if
the centralizer of the slope morphism of b is equal to G. But that means that b is basic.
Conversely, assume b is basic. Then its slope morphism is central, thus Xf (9) = 1 if and only
if g contracts G, i.e. g is compact. Furthermore we have n,(g) = 1 because ®(g) equals 7, up
to a positive scalar. This completes the proof. ]

We call the collection of subsets QbG for b € B(G) the Newton polygon stratification of
the group G. For our proofs we will also need to study another stratification, called the

Casselman stratification of G:

DEFINITION 3.4. Let @ be a standard parabolic subgroup of G. We define Qg C G to
be the subset of elements g € G contracting [22, §1] a parabolic subgroup conjugate to Q.
Write Xg for the characteristic function on G of the subset Qg C G. These sets Qg form the
Casselman stratification of G.

For truncated traces with respect to the Casselman stratification we have:

ProprosiTION 3.5. Let Q = LU be a standard parabolic subgroup of G. Let f €
H(G) be a locally constant function with compact support. Then we have Tr(ng,ﬂ) =

Tr(xox2 7Y, 70 (557%).

PRrROOF. By the Proposition [22, prop 1.1] on compact traces, for all functions f on G, the
full trace Tr(f, ) is equal to the sum of compact traces ZTrM(XéV[?(P),WN(é;/Z)), where
the sum ranges over the standard parabolic subgroups P = M N of G. Consider only those
functions of the form ng € H(G). Then we obtain that the trace Tr(ng, ) is equal to

the sum ZTrM(X(]:V[Xg?(P),WN((S;l/Q)) where P = M N ranges over the standard parabolic
subgroups of G. Observe that yM Xg = 0 if P # Q. Therefore only the term corresponding
to P = () remains in the sum. This completes the proof. O

Let us now explain the relation between the Casselman stratification and the Newton
stratification. The following Proposition gives the relation between the Casselman stratifica-

tion of G and the Newton stratification:
PROPOSITION 3.6. For all b € B(G) we have QY C Q]GJb.

PROOF. Assume that g € Q. Then ®(g) = A7, € ap. Let P be the standard parabolic
subgroup of G conjugate to the parabolic subgroup of G contracted by g. Then 7, = A®(g) €
aJIS. Then, by definition, P is the parabolic subgroup contracted by b. This completes the

proof. O
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ExXAMPLE. The inclusion Qg; C QIGDb is strict in general. Consider for example the case
G = GL, g, to see that it is non-strict only in particular cases, such as when n = 2. In the
particular case of the Shimura varieties of Harris-Taylor [45], the Casselman stratification

also separates the isocrystals.
We will now compute the truncated trace on the Steinberg representation.

DEFINITION 3.7. Let 5;7% be the characteristic function on T defined by 5;)% =
X NonM, XN, Tb; Where with the notation Xn,nas we mean the characteristic function on the
Levi subgroup M, C G, corresponding to the obtuse chamber relative to the minimal parabolic

subgroup of M.

PROPOSITION 3.8. Let f € Ho(G) be a spherical Hecke operator. Then we have
(3.4 Te(xf £, Sta) = snens, Ter (£, 1057, 2037 0,).

Proor. Write P = M N for the parabolic subgroup contracted by the isocrystal b. We
compute:
(3.5) Tr(x§' f. Ste) = Trar (v 0 (Ste)w (5577,
(Proposition 3.5). Let by € B(M) be a G-regular basic element such that its image
in B(G) is equal to b [55, prop. 6.3]. By [loc. cit.] the set of all such by are G-
conjugate. As functions on M we have XbGXN = X{J,\j@ xnN. Therefore we may simplify
Equation (3.5) to TrM(Xé\;[/[XNf(P), (Stg)N(dl_Dl/Q)). By Lemma 3.3 the latter trace equals
TrarOAMnpxn f, (Stg)N(élglﬂ)). In Chapter 2 we computed the compact traces on the
Steinberg representation for all spherical Hecke operators. By Proposition 2 1.13 we get

~ —1/2:1/2
(3.6) Tr(x§ f,Ste) = epon Tr(Xngnmmpxn FE0, 155 / 5p{)mM))-
This completes the proof. ]

In the same way one may compute the truncated traces on the trivial representation.
We have to introduce two more notations. Let )?JSVOO M, be the characteristic function on M;
corresponding to the negative closed obtuse chamber in ap. Then we define:

DEFINITION 3.9. Let b € B(G) be an isocrystal. We define £} := QJS\/OmeXanb'

PROPOSITION 3.10. We have Tr(x{' f,1) = Trp (&L fU0), 1(5;01/2)).

ProOF. The proof of Proposition 3.8 may be repeated without change up to Equa-
tion (3.6). Replace the result in that last Equation with the result from Proposition 3.1
from [64]. This Proposition gives the compact trace on the trivial representation for any

Hecke operator (and any unramified group). ]

REMARK. With a method similar to the above one may compute the truncated traces
on the irreducible subquotients of the G-representation on the space C*°(G/F,) of locally
constant functions on G/ F.
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4. The class of %i(b)-representations

For the global applications to Shimura varieties we find a class representations R (b)
of positive Plancherel density on which the truncated trace of the Kottwitz functions are
non-zero. In fact we take for most of the isocrystals b € B(G,u) simply the Steinberg
representation at p, but there are some exceptions where the truncated trace on the Steinberg
representation vanishes; in those cases we take a different representation.

Let G be a connected, reductive unramified group over Q,, let Py be a Borel subgroup of
G. Let T be the Levi-component of Py. Then T is a maximal torus in G, and let W be the
absolute Weyl group of T in G. Let u € X, (T') be a minuscule cocharacter.

We write in this section E for an arbitrary, finite unramified extension of Q,. In later
sections, the field F that we consider here will be the completion of the reflex field at a prime
of good reduction. We fix an embedding of E into @p, and for each positive integer a we
write E, C @p for the unramified extension of degree o of E.

DEFINITION 4.1. (cf. [54]). Let a be a positive integer, and E, the unramified extension
of E of degree o contained in Q,. We write W, for the subgroup W(G(E,),T(Eq)) of W.
Write S, for a maximal E,-split subtorus of Gg,. We define ¢g . € Ho(G(E)) to be the
spherical function whose Satake transform is equal to

(4.1) poe) > [w(p)] € CIX(Sa)]"™,
weWy [stabyy,, (1)

where stabyy, (1) C W, is the stabilizer of p in the group W,. We define fg, o to be the
function obtained from ¢, via base change from the group G(E,) to the group G(F™T).
We call fg o the function of Kottwitz.

REMARK. Kottwitz proves in [54] that the definition of the Kottwitz functions fg ;. and
®G,u,e coincide with the definition that we gave at the end of section 2.

REMARK. We note that the notation for the functions fg , o and ¢q , « is slightly abusive,
as they also depend on the field E. Because confusion will not be possible, we have decided
to drop the field E from the notations.

PROPOSITION 4.2. Let P = M N be a standard parabolic subgroup of G. We have
P _ _
fé#z’a =q alpG—pum ) Z fM,w(,u),a € Ho(M),

weWq [staby,, (1) War o
where stabyy, (L)Wir.o C Wy is the subgroup of Wy, generated by the group Wiy o of the Weyl
group of T(E,) in M(E,) and the stabilizer subgroup of p in W,,.
Proor. Compute the Satake transform of both sides to see that they are equal. O

The integer o will later be the degree of the finite field over which we will count points

in the Newton stratum. In this chapter we only want to show that the Newton-strata are
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non-empty. Therefore, we will take « large so that the combinatorial problems simplify (large
in the divisible sense).

We make the function of Kottwitz explicit in case G is either the restriction of scalars of
a general linear group over F'* or the restriction of scalars of an unramified unitary group
over F'T. From this point onwards we assume that we are in one of the following two cases:

(4.2) G- ReSF+/@p(GLn,F+) (linear type)
ReSFJr/Qp (U) (unitary type)

where F7/Q, is a finite unramified extension, and where U/F™ is an unramified unitary
group, outer form of GL, p+. These groups G occur as the components in the product
decomposition in Equation (2.2). We assume that the cocharacter p € X, (T arises from a
PEL-type datum, as we have explained in the discussion below Equation (2.1).

We begin with the linear case. We have a cocharacter p € X,.(T) (see below Equa-
tion (2.2)). Thus, for each Qy-embedding v of F into @, we get a cocharacter p, of the

form

(1,1,...,1,0,0,...,0) € Z".

Su n—=sy

To each such integer s, we associate the spherical function f,as, on GL,(FT) whose Satake
transform is defined by

s(n—s)

(4.3) S(frass)=0¢ 2 > XAXp- XP eCXi,..., X7

11<12<...<lg,

We write V,, for the set of Gal(Q,/Eq)-orbits in the set Hom(F*,Q,). If v € V, is such an
orbit, then this orbit corresponds to a certain finite unramified extension E,[v] of E,. Let a,
be the degree over Q) of the field E,[v], we then have E,[v] = E,,. The function f, is given
by

(4.4) fo= [ £ € Ho(G(Qp)),

’UGVa

where the product is the convolution product (cf. Proposition 2.3.3).

Let us now assume that we are in the unitary case (cf. Equation (4.2)). We will make
the function fg , o explicit only in case a is even. To obtain the function of Kottwitz on G,
we have to apply base change from G(E,) to G(Qp). Assume that a is even. Let Q2 be
the quadratic unramified extension of Q, contained in @p. The base change factors over the
composition of base changes G(Ey) ~ G(Qp2) ~ G(Qp). The base change of ¢, to G(Q,2)
is a function of the form fg+ , (a/2) on the group Gt = ReSQP2 /@p(G@p2)' Explicitly, the last
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quadratic base change G(Q,2) ~ G(Qy) is given by:

v (C[Xlil, ... ,X,fl}en — C[Xli1, o 7XTﬂL:1]6m><(Z/2Z)m’
X; 1<i<|n/2],
(4.5) Xi— <1 i= |5+ 1], and n is odd,
Xphoi nt+l—|n/2]<i<n,

n

where m := | 5| (cf. [77]). Thus we get fo ua = Vit u(a/2)-

LEMMA 4.3. Let G be an algebraic group over Q, defined as in Equation (4.2). Let m be a
generic unramified representation of G, and f = fa .« @ function of Kottwitz, and b € B(G)
an isocrystal. Let o € Z~qg be an integer, sufficiently divisible such that Wy, is the absolute
the Weyl group of T in G. Then, the truncated trace Tr(XbeG%a, ) is non-zero if and only
if there exists some w € W, and some A € RY, such that w(u) = AT, € af’.

REMARK. In case G is the general linear group, then there exists a pair w € W, X € RZ,
such that w(p) = Apy, if and only if the slopes A; of b all lie in the set {0, 1}.

PrROOF. We have m = Ind$(p), where p is some smooth character of the torus 7. By van
Dijk’s formula for truncated traces (Proposition 2.1.1) we have Tr(x& f, ) = Tr(x§ ), p).
The truncation operation h — th on Ho(T), corresponds via the Satake transform to an
operation on C[X,(T)] sending certain monomials [M] € C[X,(T)] associated to elements
M € X, (T) to zero, and leaves certain other monomials invariant. Thus to compute the trace
Tr(x§ fUI0), p) one takes the set of monomials [w(y)], w € W occurring in f(°), and removes
some of them (maybe all), and then evaluate those that are left at the Hecke matrix of p. The
lemma now follows from the observation that x§'S7*[w(u)] # 0 if and only if w(x) = Aw for
some positive scalar A € RZ;. This completes the proof. O

We have to distinguish further between (essentially) two cases at p. The case the group is
the general linear group, and the case where the group is the unramified unitary group. We

begin with the general linear group.

PROPOSITION 4.4. Let G be an algebraic group over Q, defined as in Equation (4.2), and
assume it is of linear type, so G(Qp) = GL,(FT). Let b € B(G, p) be a p-admissible isocrystal
having the property that the number of slopes equal to 0 is at most 1, and the number of slopes
equal to 1 is also at most 1. Let x be an unramified character of GL,(F1). Then, for «
sufficiently divisible, we have Tr(XbeG,“,a, Sta(x)) # 0.

REMARK. In the proof of the Proposition we use the divisibility of « at two places. First,
it simplifies the function of Kottwitz (cf. Equation (4.4)). Second, we want « sufficiently
divisible so that the Weyl group W(T'(E,), G(E,)) relative to the field E, is the full Weyl

group.
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REMARK. In case the isocrystal b has two or more slopes with value 0 (or 1), then the
truncated trace of the Kottwitz function on the Steinberg representation vanishes.

PrOOF. By Proposition 3.8 we have to show that the function fst fgji?a does not vanish.
Recall that the function fg , . is obtained from a function ¢, through base change from the
group GL,(FT®E,). Let us first assume that the F,-algebra F* ® F,, is a field. In that case
we have that fg ;o = fnas in the notations from Chapter 2, i.e. S(fg,u,a) is (up to scalar) an
elementary symmetric function in the Satake algebra,

(4.6) S(fope) =T 3 xdexde.. xe eClxE,. . X5,
i1 <in <. <is

We have to show that under the truncation operation h +— £5'h on H(T) at least one of the
monomials remains in Equation (4.6). Observe that the scalars in front of the monomials in
Equation (4.6) all have the same sign, and that to get the truncated trace on the Steinberg
representation we evaluate these monomials at a certain, nonzero point. Thus, the only
problem is to see that there is at least one monomial X occurring in S(fg o) and surviving
the truncation X +— betX . At this point it will be useful to give a graphical interpretation of
this truncation process.

A remark on the notation: With §§tX for X a monomial in the Satake algebra of T,
we mean the element Sy (£°S71(X)) of the Satake algebra of T. Below we will use similar
conventions for the truncations x X, Xnynn, X and 7, X.

A graph in Z? is a sequence of points @, ¥, ..., v, with ;41 — @ = (1,e), where e is
an integer. To a monomial X = X' X52... X¢ ¢ C[X:H, XF!, ... XF!], with e¢; € Z and
Yo, e; = s we associate the graph Gx with points

(4.7) U := (0,0), T :=7vp+ (,en+epn—1+ ...+ €nt1—) € ZQ,

for i =1,...,n. Because the sum )", ¢; is equal to s, we see that the end point of the graph
is (n,s). The function fga, is (up to scalar) the elementary symmetric function of degree s
in n variables, thus its monomials correspond precisely to the set of graphs that start at the
point (0,0), have end point (n,s) and satisfy @;+1 — v; € {(1,0), (1,1)} for all 7.

To the slopes A1 < Ao < --- < A\, of the isocrystal b we associate the graph G, with points

(4.8) To:=(0,0), Ti:=do+ (i, \14+Xo+...+N)€Z2
fori=1,...,n. (Remark: To obtain the usual convex picture of the Newton polygon we had
to invert the order of the vector ey, ..., e, in Equation (4.7). Without the inversion we would

be considering concave polygons.)
We may now explain the truncation X — Q,StX in terms of graphs. We have fE’tX =X
or fEtX = 0. We claim that we have fEtX = X if the following conditions hold:

(C1) We have Gy(n) = AGx(n) for some positive scalar A € R-q;
(C2) For every break point = € Z? of Gy, the point x also lies on the graph AGx;
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(C3) Outside the set of breakpoints of G, the graph AGx lies strictly below the graph Gy.

Thus, in short: Gx lies below G, and the set of contact points between the two graphs is
precisely the begin point, end point and the set of break points of G,. See also Chapter 3 this

construction in an analogous context.

REMARK. In the claim above we say “if” and not “if and only if”. The conditions (C1),
(C2) and (C3) are stronger than the condition £&3'X = X. In Lemmas 4.5, 4.6 and 4.7 below
we give conditions (C1’), (C2’) and (C3’) which, when taken together, are equivalent to
“S'X = X" However (C1, C2, C3) is not equivalent to (C1’, C2’, C3’). If one would one

replace condition (C3’) with the stronger condition
(C3”) We have G = AGy, for some \ € Ry,
then we have (C1,C2,C3) < (C1’,C2’,C3”).

Because the above fact is crucial for the argument, let us prove the claim with complete
details. Let X = (e1,e2,...,6e,) € Z" = X.(Ap). We want to express the condition £5'X = X
in terms of Gx. The Satake transform for the maximal torus T'= (Resp+ /g, Gm)" is simply

Ho(T) = CXF, XF . X,

(4.9) 1 s XX X

(P~ 105 )X (P20 ) x-x(pn O )

We have fgt = XNonM, XN, - Let (n,) be the composition of n corresponding to the standard
parabolic subgroup P, of G. Let g = (g1,...,9n) € T such that xn,(¢g) = 1. Explicitly, this
means that

|1/n1 1/ng
)

(4'10) |glg2 cOng < |gn1+1gn1+2 *Oni4ng ’1/n2 <...< ‘gnkflgnkfﬁrl o 'Qn‘

(cf. Equation (2.1.11)). In terms of the graph Gx of X this means the following. We have
X € ap and we have the projection 7y p, (X) of X in ap, (obtained by taking the average under
the action of the Weyl group of M,). We write Gx for the graph of my p,(X) € ap, C ag. This
graph G x is obtained from the graph Gy as follows. Consider the list of points
(4.11)

po:=(0,0), p1:=(n1,Gx(n1)), p2:=(n1+n2,Gx(n1+n2)), ... pr:=(n,Gx(n)).
Connect, using a straight line, the point pg with p;, and with another straight line, the point

p1 with pa, etc, to obtain the graph Gx from Gy. From Equations (4.9) and (4.10) we get:

LEMMA 4.5. For a monomial X we have xn,X = X if and only if the following condition
18 true:

(C1’) The graph Gy is convex.

(Remark: We have xn, X = 0 if condition (C1°) is not satisfied. This remark also applies
to Lemmas 4.6 and 4.7.)
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Before discussing the function Xnynas,, let us first discuss in detail the maximal case,
i.e. the function Xy, for the group G (cf. Proposition 2.1.11). We have ap = R", write
Hy, ..., H, for the basis of aj dual to the standard basis of R". Write «; for root H; — H; 41
in aj. We have

1
(4.12) wg = <H1+H2+...+HZ~— n(H1+H2+...+Hn)) € a(?*.
Thus, for a monomial X = X{' X352 X2 the condition (w§ , X) > 0 corresponds to

7
(4.13) €1—|—€2—|—...+6Z’>E(€1+€2+...+€n)
Thus we obtain
(4.14) Gx(n+1—i)> s,
n

where s is the degree of X, i.e. s = 3.1 | ¢;. Demanding that (@, X) is positive for all roots
«a of G, is demanding that the graph Gx lies strictly below the straight line connecting the
point (0,0) with the point (n,Gx(n)). (We get ‘below’ and not ‘above’ due to the inversion
“ej > ent1—;  in Equation (4.7).)

We now turn to the function Xn,naz. The group M}, decomposes into a product of general
linear groups, say it corresponds to the composition (n,) of the integer n. Thus, the condition

Va € AMv (M X)) > 0,

is the condition in Equation (4.13) but, then for each of the blocks of M} individually. The

conclusion is :

LEMMA 4.6. For any monomial X we have Xnynx, - X = X if and only if the following
condition is true:

(C2’) The graph Gx lies below G x and the two graphs touch precisely at the points p;.

The condition “mX = X” means my p,(P(g)) equals A7}, for all g lying in the support
of the function S} L(X) on the group T. By the explicit formula for the Satake transform
(Equation (4.9)), the condition is equivalent to the existence of a permutation w € &,, such
that the vector

Cw(1) + Cw(2) +eey Cw(ni+1) + Cw(ni+2) LRRREEE ) Cw(ny+not...dng_14+1) +-- | €ap,
n n i

is a positive scalar multiple of the vector 7. Using earlier notations we get:

LEMMA 4.7. For any monomial X we have mp X = X if and only if the following condition

15 true:

(C3’) There exists an element w € &,, such that ?w(X) = AGy for some A € Ryy.



106 4. NON-EMPTINESS OF THE NEWTON STRATA

FIGURE 2. The dark line is an example of the Newton polygon of an
isocrystal b with additional GLja(F*)-structure whose slope morphism is
(é,%,%,%,%,%,%,%,%,%,%,%). The thin line is a &'-admissible path. For
this Newton polygon there exist precisely two admissible paths. In general
one takes the ‘ordinary’ path starting with horizontal steps within the blocks

where the Newton polygon is of constant slope, and ending with diagonal steps.

To prove the claim we show that the group of conditions (C1), (C2) and (C3) implies
the group of conditions (C1’), (C2’) and (C3?).

Thus, assume the conditions (C1), (C2) and (C3) are true for the monomial X. The
parabolic subgroup P, is contracted by the isocrystal b. Thus the set of breakpoints of the
polygon Gy is equal to the set

90 = (0,0), @ = (n1,G5(n1)), @2 = (n1+n2,Gp(n1+n2)) ... qx=(n,Gn)).

By condition (C1) there is a A € Rsg such that Gy(n) = AGx(n). By conditions (C2) and
(C3) the set {qo,- .., qn} is then precisely the set of points where the graph A\Gx touches the
graph Gy,. Taking averages, we get the relation G, = A\Gx. We have G, = G (because P, is
associated to b), and therefore G, = AGx. Thus condition (C3’) is true for w = Id € &,,.
The condition (C2’) is now implied by (C2) and (C3). Finally we prove condition (C1’).
We have \Gx = Gy, and the graph G, is convex. Thus Gx is convex. The three conditions
(C1’), (C2’) and (C3’) are now verified, and therefore the claim is true.

The monomials M occurring in S(fg u,a) corresponds to the set of graphs from (0,0) to
(n,s) whose steps consist of diagonal, north-eastward steps, or horizontal, eastward steps.
Thus, it suffices to show that there exists a graph satisfying the conditions (C1), (C2) and
(C3) above. This is indeed possible under the condition on the slopes of \; of b (see Figure
2 for the explanation). This completes the proof in case F* ® E, is a field.

We now drop the assumption that the algebra FT®FE,, is a field. By Proposition 2.3.3 there
exists a sufficiently large integer M > 1 such that for all degrees « divisible by M, the function
fGua is (up to a scalar) a convolution product of the form []}_; fnas;, where 7 = [FF : Q]
and (s;) is a certain given composition of an integer s of length r. Any monomial occurring
in S(fnas) also occurs in the product [[;_; S(fnas,) with a positive coefficient. Thus we may
write [[;_; frnas; = frnas + R € H(G) for some function R € H(G), whose Satake transform is
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a linear combination of monomials, with all coefficients positive. Consequently, to check that
the truncated trace of [[;_; fnas, on the Steinberg representation is non-zero, it suffices to
check that the truncated trace of f,os on Steinberg is non-zero. This completes the proof. [

PROPOSITION 4.8. Let G be an algebraic group over Q, defined as in Equation (4.2),
and assume it is of linear type. Let b € B(G, ) be a p-admissible isocrystal. Let mg be the
number of indices i such that \; = 0, and let my be the number of indices i such that A\; = 1.
Write m := n — mgo — my. Let my, (resp. mm,) be any generic unramified representation of
GLy (F1) (resp. GLp, (F1)), and x an unramified character of GL,,(FT). Let P be the
standard parabolic subgroup of G with 3 blocks, the first of size my, the second of size m and

the last one of size ms. Then for a sufficiently divisible we have

Tr (X?fG,u,a» IndIGD (Trml ® StGLm(F+)(X) ® 71'mo)) 7& 0.

REMARK. We have abused language slightly saying that P has 3 blocks. We could have
m, mg or my equal to 0, in which case P has less than 3 blocks. If one of the numbers
m,mg or m1 is 0, then one simply removes the corresponding factor from tensor product
Tmy @ StQL,.( F+)(X) ® Tmg, and one induces from a parabolic subgroup with two blocks (or
one block).

PROOF OF PROPOSITION 4.8. By van Dijk’s formula for truncated traces (Proposi-
tion 2.1.5), we get a trace on M:

(4.15) Tr (XbG &) o Ty ® Star,(r+) ® 7Tm0> .

By Proposition 4.2 we have

(4.16) fC(;,D/Z,a = q—a(pc—pM#) Z fM,w(u),Oé € Ho(M).
weWa) /stabyy, )y (1) War o

The intersection ng N M is equal to a union J Q?f(vb) with w ranging over the permutations
w € W such that w(7y) is M-positive. Consequently, if we plug Equation (4.16) into Equa-
tion (4.15), then we get a large sum, call it (x), of traces of functions fys ()« against a
representation of the form my,, ® Stgy,,(F+) ® Tm,. All the signs are the same in this large
sum (x), therefore it suffices that there is at least one non-zero term. Take by; € B(M) the
isocrystal whose slope morphism is Ay < Ay < --- < ), in the M-positive chamber of ag. Then
by has only slopes 0 on the first block of M and only slopes 1 on the third block, and all its
slopes # 0,1 are in the second block. The trace Tr(X{)\@ IM e Tmy @ Star,, (r+) ® Tm, ) Occurs
as a term in the expression (x). By Lemma 4.3 and Proposition 4.4 this term is non-zero.
This completes the proof. ]

We now establish the cases where the group is an unramified unitary group over F'*
(unitary type, cf. Equation (4.2)).
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LEMMA 4.9. Let G be an algebraic group over Q, defined as in Equation (4.2), and assume
it is of unitary type. Let b € B(G,u) be an p-admissible isocrystal whose slope morphism
Uy € ag has no coordinate equal to 0 and no coordinate equal to 1. Then, for a sufficiently

divisible, the trace Tr(XbeG%a, Stg(q,)) s non-zero.

PROOF. We use the explicit description fg o = Vfg+ /) Of the Kottwitz function
that we gave in Equation (4.5). Assume the algebra F* @ E, is a field; then the base change
mapping from G(F.) — G(F}) is given by X; — X?/Q on the Satake algebras. Over FI, the
Weyl group W, is equal to &,, with its natural action on R™. The formula for the base change
mapping ¥ from Equation (4.5) also makes sense over the Satake algebras of the maximal
split tori, i.e. we have a map W from the algebra C[XT', ..., X;F!] to C[X;F, ..., X;F1]. The
monomials occurring in fg o are those monomials of the form W[w(u)| where w is some
element of &,,. The Weyl group translates [w(u)] of [u] correspond to all paths from (0,0)
to (n,s), and the monomials of the form U[w(u)] = [w(w)] + [6(ww)] correspond to all paths
from (0,0) to (n,0) staying below the horizontal line with equation y = s, and above the
horizontal line with equation y = —s. The truncation XbG(Qp)\IJ[w(,u)] is non-zero if the path G
of W[w(u)] lies below Gp, and the set of contact points between the two graphs is precisely the
initial point, end point and the set of break points of G;. This is the same condition as had for
the general linear group (see above Equation (4.9)) because the root systems are the same.
Such graphs exist in case b has no slopes equal to —1,0 or 1 (draw a picture). Consequently
Xf(Qp)fG%a # 0, and then also Tr(XbG(Q")fG%a, Stg) # 0 by Proposition 3.8.

Forget the assumption that F'T ® FE, is a field. We proceed just as we did for the general
linear group (cf. Lemma 4.4), we write fg, o = A+ R, where R is a function whose Satake
transform is a linear combination of monomials in the Satake algebra with all coefficients
positive, and A is a function for which we already know that its truncated trace on the
Steinberg representation does not vanish. This completes the proof. O

PROPOSITION 4.10. Let G be an algebraic group over Q, defined as in Equation (4.2), and
assume it is of unitary type. Let b € B(G, ) be an isocrystal with slopes Ay < Ag < -+ <\,
(cf. the discussion below Proposition 1.1). Let n = mj + mga + ms be the composition of n
such that the first block of m1 slopes A; satisfy A\; = —1, the second block of slopes \; satisfy
—1 < X\; < 1 and is of size ma, the third block of slopes \; satisfy A\; = 1 and is of size ms. We
have m1 = mg. Let P = M N be the standard parabolic subgroup of G corresponding to this
composition of n, thus M is a product of two groups, M = My x My, where My = GLyy,, (F'™)
is a general linear group and My is an unramified unitary group. For o sufficiently divisible
the trace Tr(xf(FJr)fG,u’a, e) against the representation Indggig(ﬁm1 ® Stim, (X)) is non-zero

if Tmy 18 an unramified generic representation and x an unramified character of GLy,, (FT).

REMARK. The group M; could be trivial. This happens in case —1 < A < 1 for all indices
1. When M; is trivial, the considered representation is simply an unramified twist of the

Steinberg representation.
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PROOF. The proof is the same as the proof in case of the general linear group (cf. Propo-
sition 4.8): one easily reduces the statement to Lemma 4.9. O

Let now G/Q be an unitary group of similitudes arising from a Shimura datum of PEL-
type (cf. Equation (2.1)), and let G; C G be the kernel of the factor of similitudes. The group
(1 is defined over a totally real field '™, and defined with respect to a quadratic extension
F of F*, which is a CM field. Let Ag C G be a maximally split torus, then we may write
Ap = Gy, x A} (not a direct product), where A, C G; be the maximally split torus of G
defined by G1 N Ag. At p we have a decomposition of F* ® Q, into a product of fields Fg ,
where p ranges over the primes above p. Let p be a prime number where G is unramified.
The group G g, is of the form G g, = ]_[p Reng/QpGLp, where the group G, is either an
unramified unitary group over Fg , or the general linear group. In the first case we call the
F*-prime p unitary and in the second case we call the prime linear.

Consider an isocrystal b € B(G). To b we may associate its slope morphism 7, € ag.
Let AE),@ C G1,p be the p-th component of Aj; it is a split maximal torus in Gy, and write
ao(p) = X«(Aj,,). The space ag decomposes along the split center and the F*-primes o
above p: ap = R x HKJ ap(p). Thus we can speak for each p of the p-component 7y, of 7.
In case p is linear, the Proposition 4.8 gives us a class of representations 7rfp of G1,,(Qp) such
that the by-truncated trace on 71';9 does not vanish. In case g is unitary, we get such a class
7, from Proposition 4.10. Let 7’ be the representation of G1(Q,) obtained from the factors

T, by taking the tensor product.

DEFINITION 4.11. We write 931 (b) for the just constructed class of G'1(Q))-representations
/

.
REMARK. The set of representations 2R;(b) has positive Plancherel measure in the set of
G1(Qp) representations, and the b-truncated trace of the Kottwitz function on these repre-

sentations does not vanish by construction.
We now extend the class 21 (b) to a class of G(Q))-representations, as follows:

DEFINITION 4.12. Let m € f1(b). Then 7 is an H(Q,)-representation; let w, be its central
character, thus wy is a character of Z;(Q,). Assume x is a character of Z(Q,) extending wx.
Then we may extend the representation 7 to a representation mx of the group H(Q,)Z(Q,).
We define R (b)’ to be the set of H(Q)p)Z(Qp)-representations of the form mx. Not all the

inductions Indg((%; )) (mx) have to be irreducible, we ignore the reducible ones. We define R (b)

to be the set of representations II isomorphic to an irreducible induction Indg((%’; )) Z(Qp)(ﬂx)

with mx € R1(b)".

The required non-vanishing property of the representations in fR; will be shown in the

next section.
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5. Local extension

We need to extend from G1(Q,) to the group G(Q,). Let Z be the center of the group
G. Consider the morphism of algebraic groups v: G1 g, X Zg, — Gg,; the group Ker(v) is
the center Z7 of the group G, so

(5.1) Ker () = H Gm g is linear

o (Ul g is unitary,

where Uy is the unramified non-split form of Gy, over Fg . Over Q, Z is defined by
Z(Q) = {z € F*|Ng/p+(z) € Q*}. Using Equation (5.1), the long exact sequence for
Galois cohomology and Shapiro’s lemma, the group G(Q,)/G1(Qp)Z(Qp) maps injectively
into the group (Z/27Z)*, where t is the number of unitary places of F'™ above p.

Write p/ € X, (T) for the cocharacter of the maximal torus (TN G1) N Z of G1 x Z
obtained from p via restriction. Let fg,xz /.o be the corresponding function of Kottwitz on
the group G1(Qp) x Z(Qp). Furthermore we write Xflxz for the characteristic function on
G1(Qp) x Z(Qyp) of elements (g, z) such that we have XbG(Qp)(gz) = 1. We prove the following

statement:

PROPOSITION 5.1. Fiz a representation my of G1(Qp). Let II be a smooth irreducible

representation of G(Qp) containing the representation my of G1(Qp) upon restriction to
G1(Qp) x Z(Qp). Assume the central character of 11 is of finite order. Then, for all suf-

ficiently divisible o, we have

G
T % f s T1) = HI) T (57 fx 2. 70)
where t(IT) is a positive real number.

Before proving Proposition 5.1 we first establish some technical results. We fix smooth
models of G,G1,Z, etc. over Z, (and use the same letter for them). We have the exact
sequence Z; — Z x G1 — G, so the cokernel of Z(Q,)G1(Qp) in G(Qyp) is a subgroup of
HY(Qy, Z1) = (Z/27)t, where t is the number of unitary places.

LEMMA 5.2. The mapping G1(Zy) x Z(Zy) — G(Zy) is surjective.

PROOF. We have an exact sequence Z; — G1 x Z — G of algebraic groups over Spec(Zy).
Thus we get Z1(F,) — G1(F,) x Z(F,) — G(F,) — HY(F,, Z1). The group Z; is a torus
and therefore connected. By Lang’s theorem we obtain Hl(]Fp, Z1) = 1. Thus the mapping
G1(Fp) x Z(F,) — G(IF,) is surjective. By Hensel’s lemma the mapping G1(Zy,) x Z(Z,) —
G(Zy) is then also surjective. O

LEMMA 5.3. The function of Kottwitz fg .o has support on the subset Z(Q,)G1(Qp) C
G(Qp)-
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PROOF. Define x on G(Q,) to be the characteristic function of the subset Z(Q,)G1(Q,) C
G(Qp). The mapping Z x G — G is surjective on Zy-points, and therefore x is spherical.
The functions x fg o A fG uq are then both spherical functions and to show that they are
equal it suffice to show that their Satake transforms agree (the Satake transform is injective).
We have S(xfc ua) = X|aQ,)S(fG,ua), Where A is a maximal split torus of G, x|a(q,) is
the characteristic function of the subset Z(Q,)G1(Qp) N A(Qp) C A(Qp). Observe that, in

fact, Z(Qp)G1(Qp) N A(Qp) = A(Qp). This implies x|a(q,)S(f6,ua) = S(fG u.a), and shows
that xfau« and fg .« have the same Satake transform. This completes the proof of the

lemma. 0
We now turn to the proof of Proposition 5.1.

PROOF OF PROPOSITION 5.1. By Clifford theory [103, thm 2.40] the representation II
restricted to G1(Qp)Z(Qp) is a finite direct sum of irreducible representations m;, where m;
satisfies m;(g) = mo(x; gx;l) for some x; not depending on g. We clarify that in this finite direct
sum multiplicities may occur. As characters on G1(Q,)Z(Q,) we may write 1 = S__, Or,wi,
where 6, is the Harish-Chandra character of m;, viewed as a G1(Qj)-representation, and w;

is the central character of 7;. Using Lemma 5.3 we may now compute:

Tr(xy % fa o T1) = / G g bndg
Qp Gl(Qp)

- Z/ Qp)fG Sy aemwzdg
Z(Qp)Ga( Qp)

G(Qp) po;
(5.2) - / V@) G dg,
Z 2(Q,)G1(Qy) b G’ ™0

—1
where fél o 18 the conjugate of fg o by z; ! Note, however, that the function of Kottwitz

-1
is stable under the action of the Weyl group of G. Therefore féi pa = fG o We get the

t/ G(Qp fG N7R agﬂ'ow(]dg
Z(@p)Gl(Qp)

On the other hand we have

0 75 TI'( XGleXG’l,u omﬂ-O) / Xp XGleXGl,p a[eﬂ'o X WO]dg
(Qp) xG1(Qp)

expression:

We compute the right hand side:

ZXG1 ,
/z<@_>p>xc1(@p) /Z ©, )(Xb fzxcyw al0r X wo)l(z21, hz1)dz
Z1(@p) !

(5.3)

d(z, h)
21

d(z, h)
— ZXGl
o /(Qp)xGl(Qp) Xb /Zl((@p) fZXGl o a(ZZthl)le(eﬂ-OWO)(Z h) dz; ’

Z1(Qp)
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We claim that

(5.4) / fZ><G1,u’,a(Zzla hz1)dz1 = fG,u,oz(zv h).
Zl(Qp)

The map Z x G — G is surjective on Zy-points, and therefore the function

fzxcy o221, hz1)dz
Al
is G(Zy)-spherical. Therefore, to show that Equation (5.4) is true, it suffices to show that the
Satake transforms of these functions agree.

We compute the Satake transform of the left hand side:

51301 / / fzxanw o(221m0, hz1ng)dz1dng
NO(QP) Zl(@p)
:5P01/ / fzxGy ' ,a(221M0, hzing)dnodzy
Zl(@p) NO(QP)

= / Spy fzxay p a(221m0, hz1ng)dnodzy
Zl(Qp) NO(QP)

= / (fZXGl,,u/,a)(PO) (221, hz1)dz
Zl(@p)

By Definition 4.1 the last expression is equal to fépz)a(z, h). This proves Equation (5.4). We

may continue with Equation (5.3) to obtain

ZxG1 0 d(Z7 h)
W .
/Z(Qp)xcl(t@p) Xp fG,u,oz ToW0 le
Z1(Qp)

Now wy is of finite order by assumption, and the function fg,, restricted to Q,* = A(Q),) C
Z(Qp) is the characteristic function of p~®Z,’. For « sufficiently divisible this is then, up
to normalization of Haar measures, just the trace Tr(XbZ xGh JZxGi1 0> T0). This proves that
TI"(XbeG,u,a, IT) and TT(XbZXG1 fzxcy w > o) differ by a positive, non-zero, scalar. The proof
of the theorem is now complete. O

6. Global extension

In this section we prove a technical proposition concerning the restriction of automorphic
representations of G to the subgroup G; C G (the kernel of the factor of similitudes). Recall
that we have the surjection G; x Z — G.

PROPOSITION 6.1. Let I be a cuspidal automorphic representation of G(A), then its

restriction to the group G1(A) x Z(A) contains a cuspidal automorphic representation of

G1(A) x Z(A).

REMARK. The proof we give here is copied from Clozel’s article [23, p. 137]; cf. Labesse-
Schwermer [67, p. 391].
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PrROOF OF PROPOSITION 6.1. Let A C Z be the split center. Define G1 to be the
subset G; := A(A)G(Q)G1(A) C G(A). Then G; is a subgroup because G(Q) normalizes
G1(A). Furthermore the subgroup Gy is closed in G(A), and we have [A(A)G1(A)|NG(Q) =
A(Q)G1(Q) € G(A) (cf. Clozel [Lemme 5.8, loc. cit.]). Let x be the central character of II;
and let € be the restriction of x to G1(A) x A(A). Let pp be the representation of G1(A) on the
space L3(G1(Q)\G1(A),¢) of cuspidal functions transforming under G;(A) via e. We extend
the representation pg to a representation of Gy by defining: p1(2v2)f(y) = x(2)f(v tyyz),
for z € A(A),y € G(Q),z € G1(A),y € G1(A). We do not copy the verification that this
representation is well-defined [loc. cit, 5.16]. Define the representation p = IndgEA)(pl) of
G(A). A computation shows that p is isomorphic to the representation of G(A) on the space
L3(G(Q)\G(A), x) of functions on G(Q)\G(A) transforming via x under the action of A(A).
Consequently, if II occurs in the representation IndgEA) (p1), then its restriction to G; will
contain irreducible G1-subrepresentations of p;. O

7. The isolation argument

Let Shx be a Shimura variety of PEL-type of type (A), and let G be the corresponding
unitary group of similitudes over Q (cf. Equation (2.1)). We write E for the reflex field and
we let p be a prime of good reduction?. Let b € B (Gg,,n) be an admissible isocrystal. Let p
be a prime of the reflex field E above p. Let F, be the residue field of E at p. Let Shl}gp be
the corresponding Newton stratum of Shg ,, a locally closed subvariety of Shy , over I, [88].

Let o be a positive integer. We fix an embedding E, C @p and we write Ej , for the
extension of the field E, of degree « inside @p.

THEOREM 7.1 (Wedhorn-Viehmann). The variety Shl[’gp s not empty.

REMARK. In the statement of the above theorem we have not been precise about the form
of the compact open subgroup K C G(A¢). Note however that for any pair (K, K') of compact
open subgroups, hyperspecial at p, we have the finite étale morphisms Shx < Shgnxs — Shg
respecting the Newton stratification modulo p. Therefore, showing the Newton stratum is
non-empty for one K is equivalent to showing it is non-empty for all K.

PRrROOF. Fix a sufficiently divisible and even integer « such that the conclusion of Propo-
sition 5.1 is true. We start with the formula of Kottwitz. We write ¢, for the function ¢g , o
from the previous section® on G(Ey). Similarly fo := fg ua. We pick a prime £ # p and fix
an isomorphism Q, = C (and suppress it from all notations). Let ¢ be an irreducible complex
(algebraic) representation of G, and write £ for the corresponding ¢-adic local system on the

2. Here ‘good reduction’ is in the sense of Kottwitz [59, §6]; in particular K decomposes into a product
K = K,K? with K, C G(Q,) hyperspecial.

3. Where the notation E, from that section should be replaced with F, o, and similarly F'* of that section
should be replaced by the algebra F™ ® Q, =[] o FQ‘ , where @ ranges over the places above p.
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Shimura tower. Then the Kottwitz formula states:

(7.1)
Yo T(Px@5, 5 (L)e) = [Ker (QG) D (9057, 8)05(f*F)TOs(¢a) Tr Ec(70),
'€Fixt, " F,) (7057,9)
where Fix? ___ _ is the set of fixed points of the Hecke correspondence fP x ®¢ acting
fPxop (Fq) p

on Shl}(’wq, and where the sum ranges of the Kottwitz triples (vo;~,d) with the additional
condition that the isocrystal defined by d is equal to b. In Equation (7.1) the map ¢ is the
embedding of Sh p into Shg,.

We may rewrite the right hand side of Equation (7.1) as

G(Ep,a
(7.2) [Ker'(Q,6)] Y e(10:7,0) - O5(F)TOs (x5 "™ ba) T £c(0),
(v037,9)
where now the sum ranges over all Kottwitz triples and where be(E"’“) is the character-

istic function on G(FEp o) such for each element § € G(Ep.) we have be(E"’“)(é) =1
if and only if the conjugacy class v = N(0) satisfies ®(y) = AU for some positive
real number A € RZ,. Assume the triple (yp;7,0) is such that the corresponding term
0(70;’y,5)07(f°°p)T05(be(E”‘a)¢a)Tr&c('yo) is non-zero. Then, by the proof of Kottwitz
[57], we know that the triple (y0;7,9) arises from some virtual Abelian variety with ad-
ditional PEL-type structures. In particular the isocrystal defined by ¢ lies in the subset
B(Gq,, 1) C B(Gg,). Thus its end point is determined. We have v = N'(6) and ®(v) = A7,
for some A\ (Proposition 1.1). Therefore the isocrystal defined by ¢ must be equal to b. Thus
the above sum precisely counts Abelian varieties with additional PEL type structures over
F4o such that their isocrystal equals b.

We show that the sum in Equation (7.2) is non-zero. Let &€ be the (finite) set of endoscopic
groups H associated to G and unramified at all places where the data (G, K) are unramified.
By the stabilization argument of Kottwitz [58], the expression in Equation (7.2) is equal to
the stable sum

(7.3) > G H)-STH(x5 fa)™),s
E

where (x¥' fo) are the transferred functions, whose existence is guaranteed by the funda-
mental lemma, the % in ST} means that one only considers stable conjugacy classes satisfying
a certain regularity condition (which is empty in case H is a maximal endoscopic group),
and finally «(G, H) is a constant depending on the endoscopic group (cf. [loc. cit.] for the
definition).

We consider only functions such that the transfer (XbG fa) vanishes for proper endoscopic
groups, and therefore we may ignore the regularity condition*. Thus, Equation (7.3) simplifies

4. In fact, due to the form of the function fo, we have ST; = ST, see [81, thm 6.2.1] or [25, (2.5)].
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for such functions and gives the equation:

(7.4) Yo TP x gt (£)e) = Y oG H)STe((xf fa)™)-
x’EFixl}p X (Fq) €

Visibly, if we show that the left hand side of Equation (7.4) is non-zero for some Hecke
operator fP, then the variety Shl}(’]Fq is non-empty. We will show that the right hand side of
Kottwitz’s formula does not vanish for some choice of KP and some choice of fP.

We write Gj), G7, G* for the quasi-split inner forms of Gy, G1, and G respectively (we
remind the reader that Gg is defined over '™ and that G; = Resp+ /@Go). The group G* is
the maximal endoscopic group of G. Let {x1,z2,...,24} be the set of prime numbers such
that the group Gg,, is ramified. For v a prime number with v ¢ {x1,x2,...,24} the local
group G, is quasi-split, and therefore we may (and do) identify it with the group Gg .
Below we will transfer functions from the group G(A) to the group G*(A); at the places v
with v ¢ {z1,29,...,24,00} we have G(Q,) = G*(Q,) and using this identification we may
(and do) take (h,)®" (@) = h, for any h, € H(G(Q,)).

To help the reader understand what we do below at the places z; (and why we do this),
let us interrupt this proof with a general remark on the fundamental lemma. It is important
to realise that if v = z; is one of the bad places, then the fundamental lemma guarantees
the ezistence of the transferred function h, ~» (hy)% (@): however, in its current state, the
fundamental lemma does not give an explicit description of a transferred function (h, )¢ (@),
The fundamental lemma only gives explicit transfer in case the group is unramified and the
level is hyperspecial. In our case the transferred function (hv)G*(Q”) is not explicit, and this
could introduce signs and cancellations that we cannot control. This makes it hard to show
that expressions such as the one in Equation (7.10) do not vanish. In the argument below
we solve the issue by taking h, to be a pseudocoefficient of the Steinberg representation.
For these functions an explicit transfer is known (the transfer is again a pseudocoefficient of
the Steinberg representation) and therefore we will be able to control the signs and avoid
cancellations. This ends the remark, let us now continue with the proof.

We are going to construct an automorphic representation Iy of G* with particularly nice
properties. From this point onward we take £ to be a fixed, sufficiently regular complex
representation (in the sense of [28, Hyp. (1.2.3)]). We also assume that £ defines a coefficient
system of weight 0 (cf. [25]), and even better that £ is trivial on the center of G*. Fix
three additional, different, prime numbers pi, p2, ps (# p) such that the group G@m is split
for i = 1,2,3. Let Ily ), be a cuspidal representation of the group G(Q,,) = G*(Qp,). Let
A(R)™ be the topological neutral component of the set of real points of the split center A of
G. We apply a theorem of Clozel and Shin [20,94] to find an automorphic representation
Iy C LA(G*(Q)A(R)T\G*(A)) of G*(A) with:

(1) IIp,o is in the discrete series and is &-cohomological;

(2) Iy, lies in the class PR(b) (cf. Definition 4.12);
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(3) Mo, lies in the inertial orbit® I(Ilg,,) of o ,, at pi;

(4) Iy p, is isomorphic to the Steinberg representation (up to an unramified twist of

finite order);

(5) g, is isomorphic to an unramified twist (of finite order) of the Steinberg represen-
tation of G(Qy,) (for i =1,2,...,d);
(6) Iy, is unramified for all primes v ¢ {p, p1,p2, P3, 1,22, ..., Ta};
(7) The central character of Il has finite order.
Because the component at p; of I1j is cuspidal, the representation Il is a cuspidal automorphic
representation. The point (7) is possible because of the condition on the weight of &.

We now choose the group K C G(A¢), and we will also choose a compact open group K*
in G*(A¢). Write S = {p,p1,p2,p3}. Write S" = {p, p1,p2,p3, 21,2, ..., 24} for the union of
S with the set of all places where the group G is ramified.

The compact open group K C G(Ay) is a (any) group with the following properties:

(1) K is a product [[, K, C G(A¢) of compact open groups;
(2) for all v ¢ S’ the group K, is hyperspecial;

(3) Kp is hyperspecial;

(
(

4) K, is sufficiently small so that Shx is smooth and (IIg , )%rs # 0;

)
)
)
5) K, is sufficiently small so that the function f;, is K,-spherical;

(6) for all v ¢ {x1,x2,...,24} the space (IIp,)%* is non-zero.
The group K* C G*(Ay) is a (any) group with the following properties:

(1) K*is a product [[, K C G*(A¢) of compact open groups;

(2) for any prime v ¢ {z1,...,24} we have K = K, C G(Q,) = G*(Qy);

(3) for all i € {1,2,...,d} we have (Tly )%= # 0;
We now choose the Hecke function f € H(G(Ay¢)). Consider the function fP*° € H(G(A¢)) of

the form

(7.5) TP = for @ fo ® fog @ fur ® fua ® - ® fuy ® f¥

where
— fp: is a pseudo-coefficient on G(Qy,) of the representation II,, ;
— fp, is a pseudo-coefficient of the Steinberg representation of G(Qp,);
- fp3 = 1Kp3§
— fx, is (essentially) a pseudo-coefficient of the Steinberg representation of G(Q,) for
i=1,2,...,d (see below for the precise statement and the construction);

5. For the definition of inertial orbit, see [89, V.2.7].
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— Before we define the function f5" we explain a fact: There are only finitely many cuspidal
automorphic representations I1 C L3(G*(Q)A(R)™\G*(A)) of G* whose component at
infinity is equal to Il and have invariant vectors under the group K. In particular also
the set of their possible outside S’-components II°" is finite. Therefore, we may find a
function f% € H(G*(A2")) = H(G(A}")) whose trace on IT% is equal to 1 if 1% = IT§’
and whose trace equals 0 otherwise for all IT with I, = Ilg o and T # 0. We fix I
to be a function having this property.

We need to comment on the pseudo-coefficients f,,. In the literature these coefficients
are usually only constructed for groups under conditions on the center [26, §3.4], such as the
group be semi-simple, or with anisotropic center. We have neither of these conditions. Let
x = x; be one of the bad places and write H for the derived group of G, we write Z for the
center of G. We write H* for the derived group of G* (then H* is the quasi-split inner form
of H). The center Z of G is canonically isomorphic with the center of G* (and the same is
true for the centers of H and H*). Let k be any smooth function on the group H(Q,). Let
O, C Z(Q,) be the maximal compact open subgroup of the center Z(Q,) of G(Q,). We now
define a function k on the group G(Q,). Consider first the following function on the group

H(Q,) x Z(Qy):
(7.6) (g,2) — (k x 10,)(gt, 2t)dt,
(HNZ)(Qz)

where dt is an invariant measure on the finite group (H N Z)(Q). The function in Equa-

tion (7.6) is (H N Z)(Q)-invariant, and thus defines a function on the subgroup

H(Qz) x Z(Qy)
(HNZ)(Qx)

We extend this function by 0 to obtain the function & on the group G (Qy).
Let H* be the quasi-split inner form of H; then H* is also the derived group of G*. By

C G(Qu)-

the fundamental lemma we may transfer smooth functions on the group G(Q,) to functions
on the group G*(Q;), and similarly functions from the group H(Q,) to functions on the
group H*(Q,). The formula in Equation (7.6) makes sense if we replace H by its quasi-
split inner form; thus we also have a construction k& — k for smooth functions on H* (Qg).
The construction in Equation (7.6) is compatible with transfer of functions, i.e. the function

—_~—

(k)¢ (@) on G*(Q,) has the same stable orbital integrals as the function (kH*(@2)) for all
ke H(H(Q,)).

We now take the function k£ on H(Q,) to be a certain sign ¢ times a pseudocoefficient of
the Steinberg representation, which exists because the center of H is anisotropic. (We choose
the sign € later). Define f, := k. In case the group has anisotropic center, the transfer of a
pseudocoeflicient of the Steinberg representation is again a pseudocoeflicient of the Steinberg
representation. Thus we may (and do) take the transferred function (f,)¢ (@) to be the one
obtained from a pseudocoefficient via the construction in Equation (7.6).
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We show that the function (f,)% (@) is (essentially) a pseudocoefficient of the Steinberg
representation. Let us first make this statement precise. Let x be a character of the group
G(Qz). The character y induces a character X of the cocenter C'(Q) of the group G(Q,).
We call the character y unramified if x is trivial on the maximal compact open subgroup K¢
of C(Q,). We claim that the sign & can be chosen so that the function (f,)¢ (@) has the
following two properties:

— For every unramified character y of G(Qy):

(7.7) Tr(f9 (@) St (q,) (X)) # 0.

— For every smooth irreducible representation I, occurring as the z-component of a

cuspidal automorphic representation II of G* we have
(7.8) Te(f6" (@), L) € Ry

We first verify Equation (7.8). Let II, be a smooth irreducible representation of the group
G*(Qy), let 011, be its character. We assume that II, is the z-component of a cuspidal auto-
morphic representation II of the group G*. Let 71, ..., 74 be the irreducible H*(Q,)Z(Q,)-

subrepresentations of Il,, and let 6;,...,60; be their characters. We have 6y, = Zle 0;.

Then (modulo a positive constant depending on dt):

(7.9)

Tr(f¢ @), 10,) _/ F4 @) (g )Z 9)dg = Z/ £ @) (g)6i(g9)dg.
H*(Q2)Z(Q2) i—1 H*(Q2)Z(Qx)

By the definition of the function f& (@) from Equation (7.6) the summand on the right
hand side equals, up to some positive constant, the trace of the pseudocoefficient of the
Steinberg representation on the group H(Q,) against ;. Such a trace is non-zero only if
m; is isomorphic to one of the representations Vp defined by Borel-Wallach [10, 6.2.14]. We
show that m; must be the Steinberg representation. The representation I, occurs as the
component at x of a cuspidal automorphic representation. Therefore II, is unitary. Thus
the representation m; is unitary as well. By [6.4, loc. cit.] the only representations Vp
which are unitary, are the Steinberg representation and the trivial representation. Let us
exclude the trivial representation. By Clifford theory, all the representations occurring in
I1, are conjugate under elements of the group G(Q,). Consequently, if one of the occurring
representations is finite dimensional, then they are all finite dimensional. This means that
II, is finite dimensional and thus the representation II is finite dimensional. Thus m; cannot
be trivial. Therefore we can pick the sign e such that Equation (7.8) is true.

We now verify Equation (7.7). By construction the function fG"(@) is supported on the
inverse image of K¢ in G. Because x is unramified it is constant on the support of f&" (@),
Therefore we have Tr(ff*((@w), Stae(@.) (X)) = Tr(ff*(Q’”), Stg=(Q,)). We verify that the trace
Tr(fG*(@w),StG*(Qx)) is non-zero. Let Py, be a Borel subgroup of G —and let Py, be the
pull back of Py, to H@: Let I be the space of locally constant complex valued functions
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on G*(Qg)/Po(Qz) and I’ be the same space, but then for the group H*(Q,). We extend
any function h € I’ by 0 and this gives us the composition of maps I’ — I — Ster(q,)- This
composition is trivial on the subspaces C*°(H*(Q,)/P(Q,)) C I' for any proper parabolic
subgroup P of H* containing Py ,. We obtain an H*(Qy)-injection Sty (q,) = Sta=(q,)- It
follows from Equation (7.9) that Tr(f¢ (@) Sta+(@.)) 7 0

We have now completed the definition of the components f,,, thus also the definition of
the Hecke operator fP* is complete (see Equation (7.5)). We emphasize that at the primes
v ¢ {21, 29,...,24} we take (f,)¢ (@) = f, (we have G*(Q,) = G(Q,)) and at the primes
v € {x1,22,...,x4} we control the traces of the transferred function (f,)¢ (@) against smooth
representations via the conclusion in Equation (7.7).

Due to the cuspidal component fp,, of fP, the trace formula simplifies. Because fp, is
stabilizing (Labesse [65]), the contribution of the proper endoscopic groups are zero, and the
right hand side of Equation (7.4) becomes a sum of the form

(7.10) Zm ) Tr((foo /7)) (g @ f0), 1),

where II ranges over cuspidal automorphic representations of G*(A), and m(II) is the mul-
tiplicity of IT in the discrete spectrum of G*(A) with trivial central character on A(R)* (A
is both the split center of the group G as well as the split center of the group G*). Here we
are applying the simple trace formula of Arthur [3, Cor. 23.6] (cf. proof of [2, thm 7.1]),
the correcting term in Arthur’s formula vanishes due to the pseudocoefficients in the Hecke
operator. The sum in Equation (7.10) expands to the sum

d
(7.11) S m() Te(fS ®, ) Te(xg @ fe e Tp) dim (T,) %) T Tr(fer @ 10,
i=1
where IT ranges over the irreducible subspaces of LZ(A(R)*G*(Q)\G*(A)) such that
I CE=3 1
II,, lies in the inertial orbit Z(II,,) of the representation II,,,;
— II,,, is, up to unramified twist, isomorphic to the Steinberg representation of G(Qy,);
— II,, is such that Tr(fs,,I;,) # 0.
By Proposition 6.1 we may find a cuspidal automorphic representation mp of G5(A) contained
in ITy. Let now II be an automorphic representation of G*(A) contributing to Equation (7.11).
Thus the representation % is isomorphic to the representation Hﬁq/. Let m be a cuspidal
automorphic subrepresentation of Resjg:x 7)(a) (I1) (Proposition 6.1). Enlarge S’ to a larger
finite set S” so that the representations m and II are unramified for all places outside the set
S”. At the unramified places v ¢ S” the representation Res|gsx z)(q,)(Ho,v) contains exactly
one unramified representation: 7. Therefore we have ()% = (m)S".
We now apply base change. The representation 7 has the following properties:

(1) = is cuspidal;
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(2) oo is in the discrete series;
(3) mp, is cuspidal;
(4) mp, is an unramified twist of the Steinberg representation.

Consider the group G := Resp/p+(Gp ). Let Ap+ := A ®q FT and Ap := A®qg F. Then
GiT(Ap+) = Gi(AFp). Because of the above properties (1), ..., (4), we may base change
T to an automorphic representation BC(w) of G5'(Ap+). Here we are using Corollary 5.3
from Labesse [66] to see that 7w has a weak base change, and then the improvement of the
statement at Theorem 5.9 of [loc. cit.], stating that 6. at the places where the unitary group
is quasi-split (so in particular at p) the (local) base change of the representation m, is the
representation BC(7),. By the same argument the base change BC(m) exists as well. By
strong multiplicity one for the group G§* we have BC(m,) = BC(m,,) for all F-places p
above p.

We give the final argument when F/F7 is inert at the F"-place p|p, the case of the

general linear groups being easier.

G1(Fy)
P(FJ)
induction the parabolic subgroup P has Levi component M with M(Q,) = M1 x M, 2 with

The representation , is of the form Ind (pp) because mp lies in the set 81 (). In this
M., 1 a general linear group and M, > is a unitary group. The representation p, decomposes
into p, = py1 @ py 2, Where pg, 1 is a generic unramified representation of M, 1 and p, 2 is
an unramified twist of the Steinberg representation of M, 2. The base change is compatible
with parabolic induction, the base change of a generic unramified representation is again
unramified [77] and the base change of a twist of the Steinberg representation is again a
twist of the Steinberg representation [78]. Thus the representation BC(7,) = BC(m,,) is an
induction from a representation of the form

(Xla X2y - 7Xapa StGL,}(FJ)?Y(;;ay;;_l) s 7yfl>
where a, = Rank(M,, 1) and b, = n — a,,. Consequently, we have the character relations
(7.12) Ongp ON = O, o N,

where N is the norm mapping from G§*(F;) to G§(F,). The norm mapping N from 6-
conjugacy classes in GSJF(FQL ) to G’E;(Fg ) is surjective for the semi-simple conjugacy classes
(91, Prop. 3.11(b)]. Thus the characters O, and O, , coincide on Go(F,). By Proposi-
tion 5.1 there is a positive constant Cy € R-q such that (for « sufficiently divisible)

(7.13) Tr(xy @) £,,10,) = Cn Tr(x S @) £, 0 ).

6. Labesse assumes that the extension F'*/Q is of degree at least 2. We we do not have this assumption.
Labesse only needs his assumption to apply the simple trace formula. For our representation m Labesse’s

assumption is redundant, because we have an auxiliary place (v = p1) where the representation 7 is cuspidal.
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Remark: To find Equation (7.13) we applied Proposition (5.1) two times: first to compare
Tr(x G(Qp)fa, II,) with Tr(x, G1x2 C1xZ ), and then to compare Tr(xf(Qp)fa,Hoyp) with
Tr(x GlXZfo?X21’7r07p)‘

We may now complete the proof. We return to Equation (7.11):

d
(7.14) " m() Tr(fS® o) Tr(xy ) fa, 10,) dim (1) oe) T T4 @0, 10,,),

i=1
where II ranges over the irreducible subspaces of LZ(A(R)*G*(Q)\G*(A)) satisfying the con-
ditions listed below Equation (7.11). The following 6 facts have been established:

(1) The sum in Equation (7.14) is non-empty because IIy occurs in it (by the Proposi-
tions 4.8 and 4.10, and the Equations (7.7), (7.8), the term corresponding to Il in
the Sum (7.14) is non-zero).

(2) The multiplicity m(II) is a positive real number.

(3) For any H in Equation (7.14) with II 2 IIp we must have Te(fS ® 1 o) =

Tr( foo Ho o) (here we use that & is sufficiently regular).

(4) By Equation (7.13) the trace Tr(Xf(Q”)fa,Hp) equals Tr(XbG(Qp)fa,Hojp) up to the
positive number Cfy.

(5) The dimensions dim ((IT,,)*?3) and dim ((ITo,)*?s) differ by a positive real number.

(6) The product Hle Tr(f¢" (@) 1I,) is a non-negative real number for all automorphic
representations IT contributing to Equation (7.14).

(facts (2) and (5) are trivial). From facts (1), (2), ..., (6) we conclude that Equation (7.14)
must be non-zero. This completes the proof. (|






CHAPTER 5
Equidistribution

Let S be an unitary Shimura variety of PEL type and consider a prime p where S has
good reduction. The Newton stratification of S modulo p is a canonical decomposition of
Sr, into an union of locally closed subvarieties. These subvarieties are stable under the
Hecke correspondences. We consider the supersingular stratum B of S, and work under
the condition that B is a finite variety and that the Shimura variety is a variety of Kottwitz
(as in Chapter 2). The set of geometric points B(F,) is then a finite set, equipped with an
action of the Hecke correspondences and the Frobenius element. We study the orbits of points
T € B(ﬁq) under sequences of Hecke operators. We give an explicit description of these Hecke
orbits and show, under mild conditions (§7), that the Hecke operators act inside the Hecke
orbits with equidistribution. See Theorem 3.1 for the precise statement.

We would like to mention the work of Menares [75]. We learned the idea of equidistribution
in supersingular Hecke orbits from his article. He proved that the Hecke operators T}, for the
group GLy(Q) act with equidistribution on the supersingular stratum of the modular curve

Xo(p)-

1. Some simple Shimura varieties

Consider the class of Shimura varieties of Kottwitz [58]. Such varieties are associated to a
division algebra D whose center is a CM field F'. We will embed the field F' into the complex
numbers, and we assume that F splits into a compositum F' = KF™T of a quadratic imaginary
number field X C C and a totally real number field F'T.

For any commutative Q-algebra R, the group G(R) is by definition the group of elements
g € D ®q R such that za* € R*. If K C G(Ay) is a compact open subgroup, sufficiently
small, then we have a variety Shx defined over the reflex field E. Let p be an E-prime where
the variety Shi has good reduction in the sense defined by Kottwitz [59]. In particular Shg
extends to a smooth and proper scheme defined over Op,. We write [, for the residue field
of E/ at p. Let p be the rational prime number under p. We fix an embedding v,: £ — @p
which is compatible with p.

We will always work under the assumption that the prime number p is split in the field
K. Let B be the supersingular locus of Shx r, [87]. We assume that B is a finite variety.
In fact, among the set of all Kottwitz varieties, this rarely happens. However, the class of
varieties for which B is 0-dimensional is still quite interesting; for example it contains all the
varieties considered by Harris and Taylor to prove the local Langlands conjecture [45].

123
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To simplify the exposition, we also assume that the image of the group K in the cocenter
of the group G is maximal.

The condition that B is finite is a condition on the signatures of the unitary group at
infinity, and the decomposition of the prime number p in the field F*. More explicitly, let
U C G be the subgroup of elements with trivial factor of similitude. Then U(R) is isomorphic
to a product of real, standard unitary groups U(s,,n — s,), where v ranges over the infinite
FT-places. We may, and do, assume that s, < %n The field F* is embedded into Q@ C C and
also in @p, and therefore the group Gal(@p /Qp) acts on the set of infinite F'"-places. In case
8y > 1 for some v, then certainly B is infinite. Assume that s, < 1 for all v. Then the variety
B is finite if and only if s, = 1 for at most one infinite F"-place in each Gal(Q,/Q,)-orbit of
infinite F'"-places. For the proof of this statement, see § 3.4.3.

Let A be the free complex vector space on the set B(F,). The Hecke algebra H(G(Af)//K)
acts on the variety B through correspondences and on the vector space A via endomorphisms.
Let f- be a function at infinity whose stable orbital integrals are prescribed by the identities of
Kottwitz in [57]; it can be taken to be (essentially) an Euler-Poincaré function [58, Lemma 3.2]
(cf. [27]). The function has the following property: Let 7o be an (g, Ko )-module occurring
as the component at infinity of an automorphic representation m of G. Then the trace of f
against 7o is equal to the Euler-Poincaré characteristic Y50 ) Noo(—1)% dim H*(g, Koo; oo ®E),
where N is a certain explicit constant (cf. [58, p. 657, Lemma 3.2]).

By the main result of Chapter 2 we have for every Hecke operator f? € H(G(A})//K)
that

(L1) Tr(ff®1k,, A) =¢ > Tr(foof, 7P) + > Tr(foof, 7P),

wCA(G),mp Steinberg type TCA(G), dim(7)=1

where the sign ¢ is equal to (—1)!®~1) with ¢ the number of infinite F*-places v such that
Py = 1. We recall the definition of “Steinberg type”:

DEFINITION 1.1. A smooth representation 7, of G(Q,) is of Steinberg type if the following
two conditions hold: (1) For all F*-places g above p we have

St ® s, =1
Ty = GLn(F) b e
Generic unramified s, =0,

where ¢,, is an unramified character. (2) The factor of similitude Q,* of G(Q)) acts through

an unramified character on the space of .

We use the result in Equation (1.1) to deduce an equidistribution statement of Hecke

operators acting on the basic stratum B(F,).
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2. Hecke operators

In this section we define a sequence of Hecke operators T;.,, € H(G(A¢)). Consider the
Q-group G := Resg oGk with G4 (Q) = KX x D*. Let S be a finite set of finite, rational
primes, such that:

(1) for all primes ¢ that do not lie in S, the group G4 (Qy) is a product of general linear
groups over finite, unramified extensions of Qy;

(2) K splits into a product K = KgK*®, where Kg is a subgroup of G(Ats) and K is
a subgroup of G(A?);

(3) The prime p lies in S;

(4) The group K* is obtained by taking the iS—points of a smooth model G of G+ over
the ring Z[¢(~!|¢ € 9].

Let Gt be the Q-group K* x GL,(F). Then G is an inner form of G4, and we have
GT(Qp) = G4 (Qy) for all primes £ not in S. The group G has an obvious model over Z, and
thus we have the hyperspecial subgroup G™ (2) C Gt (Ag). Let m and r be integers, where
we have 0 < 7 < n (no condition on m). Then, by definition, the operator T,!,, is defined to

be the characteristic function:

+ +(7 : +(7 +
(2.1) T, :=char [ GT(Z)- (1) x dlag(m,m,r. omy1,10001) - GT(Z) | € H(GT (Ay)),
where we should clarify the notation. We have G (Z) = @,é x GL,(Op), where @,é is the
factor of similitude. With (1) x diag(...), we mean an element of G*(Z) that has trivial factor
of similitude, and diag(...) describes a diagonal matrix in the general linear group over Op.
Because the group G (A7) is isomorphic to GT(Af), the operator 1,1 = Qs TT(Q@ lives
also in the algebra H (G (A?)). We have the base change morphism

BC: H(G+(Af)//GL(Z7)) — H(G(AT)//K).
We define the operator )7, to be BC(T;;;?), and we define
(2.2) Tym = 1gs ® T, € CX(G(Ar)//K).

We define the Hecke algebra 7 C C2°(G(Af)) to be the complex algebra generated by the
operators T} ,,. The operators T;.,,, commute with each other, and satisfy no other algebraic
relation. Thus the algebra 7 is isomorphic to the polynomial ring C[T.,,|r, m| on a count-
able, infinite number of variables. The module A is semi-simple as H(G(A}))-module (thus
also as T-module) because we know from our formula in Equation (1.1) that all irreducible
subquotients occurring in A occur in the discrete spectrum of G.

Using K we define the degree of the operator T.,, via the integral

(2.3) deg(Tym) = /G , Tenle) ),



126 5. EQUIDISTRIBUTION

where the Haar measure p on G(Ay) is normalized so that it gives K measure 1.

3. Hecke orbits

The Hecke algebra 7 does not act transitively on the supersingular stratum; there are
two innocent obstructions: (1) an obstruction from the cocenter of the group G, and (2) the
Hasse invariant Ker! (G, Q), which need not be trivial. In this section we will define certain
‘candidate’ orbits of 7 acting on B. Our main Theorem will state that 7 acts transitively
and with equidistribution on these orbits.

Note that obstructions (1) and (2) are what one expects: For the first one (1): If the
image of K C G(A¢) in the cocenter C'(Ay) is not sufficiently large (and this will always be the
case for many C, due to the presence of Abelian class groups), then the double coset space

(3.1) GQ\X x G(Ay)/K),

is not connected, and a point in one connected component will be sent by a Hecke operator to
another connected component only if this operator is non-trivial on the cocenter. However,
our operators in T all act trivially.

The second condition (2) is there because Shi (C) is not equal to the double coset space
in Equation (3.1), rather it is a disjoint union

(3.2) Sh(C) = [] G@Q\X x G(Ag)/K),

Ker! (G:Q)

of copies of this double coset space, indexed by the group Ker!(G : Q) (this group depends
only on the cocenter of G, and is trivial in case n is even, see [59, p. 393]). The Hecke
correspondences act on the right hand side via their natural action on the double coset spaces.
Thus, clearly, over C, all points in a Hecke orbit will have the same invariant in Kerl(G 1 Q).

Let d: G — C be the cocenter of the group. We have the morphism h from Deligne’s
torus S := Resc/rGm to Ggr. By composing this morphism with the natural morphism
we obtain a morphism hA': S — Cg. The couple (C,{h'}) is a zero dimensional Shimura
datum. Deligne [29] has proved that Sh(C, {h’}) parametrizes the connected components of
the original variety, i.e. the natural morphism

(3-3) mo(GQNX x G(Ap)/K)) — C(Q\({h} x C(Ag)/d(K)),

is an isomorphism. Via this mapping, the action of the Hecke operator f € H(G(Af)) on the
left hand side coincides with the action of the operator W(f) in H(C'(A¢)) on the right hand
side. Here the map W: H(G(Ag)) — H(C(A¢)) is characterized by

Ve € C(Ag) Vf € H(G(Ap) :

decr( ap fgh)du(h) if ¢ =7 € Im(G(Ar) — C(Ay))

0 otherwise,

[Wfl(e) =
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where the Haar measure on Gger(Af) is the one which gives the group K N Gyer(Af) volume
1. Let E be the reflex field of the datum (G, X). Deligne proved that the mapping in
Equation (3.3) is Aut(C/E)-equivariant. Thus the map in Equation (3.3) descents to an
isomorphism of E-schemes 7o(Sh(G : K)) = Sh(C : d(K)). The variety Shx is an union of
# Ker'(G, Q) copies of the variety Sh(G : K) [59, §6]. We obtain an E-isomorphism

(3.4) mo(Shix) — [ Sh(C:d(K)).
Ker!(G,Q)

Both sides are finite étale E-schemes and the Gal(Q/FE)-action is unramified at p. Locally at
the prime p we have a natural model of Shx over the ring of integers O,, and we construct
a model of the right hand side in the straightforward manner: Take the global sections A of
the scheme [[y.1(qq)Sh(C : d(K))g,. Then A is a Qp-algebra; let A° C A be the integral
closure of Z, in A. Then Spec(A°) is our integral model. We write Y = Spec(A°) and view it
as a as scheme over Op . We reduce the map in Equation (3.4) modulo p and compose with
B C Shgp — m(Shgp) to obtain the map

(3.5) p:B—Y

For each point y € Y we have the fibre B, of ¢ above y. Define A, to be the free complex

vector space on the set By(IF,). Then A is the direct sum of the A, with y ranging over the

set Y(F,). For each y € Y we have the map (of vector spaces):

(3.6) v,: A, — C, Z ag - [z] — Z ag.
z€By(Fq) z€By (Fq)

Write B, = > . B, (Fq)[:r] € A,. Define the endomorphism

Avg,: Ay — Ay, v L(U)-Ey.

#By(Fy)
The fibres By (F,) are all of the same cardinality #C (2) Jd(K). Take the direct sum of Avg,
over all y € Y to obtain an endomorphism

(3.7) Avg: A — A

which takes the ‘average’ of an element v € A along the fibres of the mapping ¢: B — Y.
We will prove that any element v € A will converge to its average under the action of the
sequence of Hecke operators T, ,, € T.

The complex vector space A is finite dimensional and therefore carries a norm |- |, uniquely
defined up to equivalence of norms. Using this norm we may give the statement of the main
Theorem:

THEOREM 3.1. Let v € A be an element. Then there exists a constant C € Rsq such that
for any € > 0 there exist an index M, such that for all square free integers m > M and all r
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with 1 <r <n-—1 we have

Ty m(v)
deg(Tym)

REMARK. With the same method of proof we obtain equidistribution results also for other

r(n—r)

— Avg(v)| < Oms AT

sequences of Hecke operators. For example, fix an operator T' € T and consider the sequence
of its powers for the convolution product {7V} Nezs,- Of course, the rate of convergence will
depend on the sequence of operators you choose.

REMARK. Perhaps one could relax the condition that m be square free somewhat. One
will then have to deal with some combinatorial issues related to the Satake transform. The
condition becomes relevant at Equation 4.4 of the proof; the resulting combinatorial problem
is discussed (for example) in the article [41].

In sections 4-5 we prove Theorem 3.1.

4. A vanishing statement

Observe that to the character formula for A in Equation (1.1) expresses A as a sum of
Hecke modules of the form (7 )K", We define Ag C A to be the T-submodule generated by
modules (7F)%" for 7 an infinite dimensional automorphic representation of G(A).

The following Proposition proves the essential part of Theorem 3.1.

PROPOSITION 4.1. Let v € Ay, then there exists a constant C' € Rsg such that for all

integers v with 0 < r < n and all square free integers m coprime to S we have

Tr m(U) n er(m) —[F:Q) M
— | < ) 2.
‘deg(TT,m) ’ N C(T) "

NOTATION. Let m be a positive integer, unramified in F. We wrote cg(m) for the number
of Op-prime ideals A\ containing the number m.

PrROOF. By our Theorem in Equation (1.1) it suffices to prove that the limit
lim,, 00 Cg%ﬂ(z) vanishes ! for each vector v € 7er in each automorphic representation 7
contributing to the character formula of Ay. Let m be one of these cuspidal automorphic
representations. We may use base change to send 7 to an automorphic representation BC(7)
of the algebraic group K£* x D* (see [4]), and we may send the automorphic represen-
tation BC(w) to an automorphic representation II := JL(BC(7)) of the algebraic group
Gt := K* x GL,(F) (see [101] and [6]). This automorphic representation is discrete. At p
we have G1(Q,) & G(Q,) x G(Q,) and II,, is isomorphic to m, ® m,. The representation 7, is

essentially square integrable because it is an unramified twist of the Steinberg representation,

1. Here, and hereafter, when we say “limit” or “vanishes”, we mean that this limit does so with the correct

rate of convergence stated in the Proposition.
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and therefore II, also has this property. The representation II is then forced to be cuspidal
by the classification of Moeglin-Waldspurger of the discrete spectrum [80].

Because II is cuspidal the Ramanujan conjecture applies to it. This conjecture is true for
IT because II is obtained by base change and Jacquet-Langlands from an automorphic repre-
sentation 7 of an unitary group (of similitudes). Thus II is conjugate self-dual. Furthermore,
IT is cohomological because 7 has the property that Tr(fo, Too) 7 0. For such representations
IT the conjecture is proved to be true in the articles [14,25,95]. Thus the components IT) are
tempered GL,,(F)y)-representations for all primes \ of F.

The non-trivial element 6 of the group Gal(K/Q) acts on the group G, and, ‘par transport
du structure’, 6 acts on the space of automorphic forms A(G") on G*. The transferred
representation II is #-stable. On the one hand the two isomorphic representations IT and
1% both occur as subspaces in A(G*), and on the other hand we have (strong) multiplicity
one for the group Gt. Therefore IT and IIY are the same subspace and we have a natural
isomorphism Ay : II = II? induced by 6 acting on the space A(G™).

We must show that the limit limy,, oo T (v)/ deg(T;,m) vanishes for all vectors v €
7er . Let v be one such vector, and assume that v # 0. We have 7 = 79 ® 7° and we
may assume that v is an elementary tensor v = vg ® v°, with vg € mg and v° € 7%, To
prove that the limit limy, oo Ty (v)/ deg(T}.,m) vanishes it suffices to prove that the limit
limy,—00 Trom (v)/ deg(T;, ) vanishes. The space 9K is one-dimensional and v° is a basis
of this space. Therefore Tr(T)?  7°) is the scalar A such that T;?m(v) = Mv. Up to possibly

m
a sign we have \ = Tr(T,?fn‘z, I1%), and thus
T S Tr T—i—S’ HS
(4.1) Vr,m ‘T’m(v ) ‘ 7( i 1) ;
deg(Trm) deg(Trm)

for some constant C' which does not depend on r, m.

To bound the right hand side of Equation (4.1) we will focus first on the degree deg(7. ),
and we will compare it with the classical notion of degree deg(T,fjm) for the Hecke operators on
the general linear group. It suffices to do this comparison up to a constant independent of r, m.
The function T}, on G(Ay) is the transfer of the function T;!,, on G*(Ag) via the functorialities
G ~ G4 ~ GT (base change and Jacquet-Langlands respectively). The transfer of the trivial
representation along these functorialities is the again the trivial representation. Thus, up to

a constant C' not depending on r,m, we have

(4.2) deg(Tym) = C T (9) dplg),
GH(AP)
which is (up to a constant) the volume of the subset

(4.3) GH(Z) - (1) x diag(m, m,...,m,1,1,...1) - GT(Z) C Gt (Ay),

~

In turn this volume is the number of right G (Z)-cosets of the subset in Equation (4.3), and
this gives back the classical notion of “degree”.



130 5. EQUIDISTRIBUTION

Let £ be a prime divisor of m. Because m is square free, the prime ¢ divides m precisely
once, and the /-th part of the function Tﬁfm equals

(4.4) char (GT(Zy) - (1) x diag((, £, ..., 6,1,1,...,1) - GT(Zy)) € H(G(Qy)).

The element (1) x diag(¢,¢,...,¢,1,1,...,1) € GT(Qy) is the evaluation at ¢ of a miniscule
cocharacter y, € X,(GT). The field F' is unramified above ¢, and therefore £ is a prime
element of the local field F) for every F-place A dividing ¢. Because p, is miniscule there is
a simple formula for the Satake transform of T ( ) (cf. [54]):

T(n )

(4.5) ST =19Q)q, * > Xiy Xiy -+ Xi,,

e 1<i1 <ia<-<ir<n

in the algebra

(4.6) C[X.(Tg,)] = C[Z] ® Q) CIXi, X5, ... X,
Al
where T, C G@ is the diagonal torus. We specify that the big tensor product in these
Equations ranges over all the F-places A lying above £, and for such an F-place A\, we write
g for the cardinality of the residue field at A.
The degree deg(T;. ) is the evaluation of the polynomial S(7, T(,?@) at the Hecke matrix of
the trivial representation ¢ryiy, and is therefore made completely explicit at this point. We

79

may now estimate |S(Trmn)(@1viv)|. If we evaluate the symmetric polynomial
> Xiy Xy - X,

1<i1 <2< <ir<n
at the Hecke matrix of the trivial representation of GL,,(F) ), then the largest monomial which
appears is

n—1 n-3 n—2r+1 r(n—r)

e e

A 2 =g, 2

Thus we have the following lower bound:

r(n 7")

r(n—r)

ST )l = [[ay 2 =7
e

The representation Il, is tempered, and therefore the absolute values of the eigenvalues of its

Hecke matrix are all equal to 1. Thus

ST ) < T <Z> - <Z> "

I\l

We now return to the estimation started in Equation (4.1). We have

(0) (m) r(n—r
T 1) oy | SO | (1), ot
deg( r,m) fm S(Tr,m)(SOTriv) "

where C is a certain constant not depending on r and m. This completes the proof. (|
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To turn the convergence rate of the above Proposition 4.1 to the convergence rate of the
Theorem 3.1 we weaken our result slightly using Stirling’s formula.

LEMMA 4.2. For any € > 0 there exists an integer M > 0 such that for all square free
m > M we have (f)cF(m) <mf

REMARK. We prove this for F' = Q; we leave it to the reader to reduce to this case, or to
extend the argument below.

PROOF OF LEMMA 4.2. We have (cg(m))! < m. Write m = I'(z) for some z € Rxg
where I is the usual Gamma function. Then cg(m) <  and from Stirling’s formula we get

cg(m) co(m) 1
Q -~ Q < '
log(m) log(\/%e_xmw) o log(z) — 1+ log(v27x)

xT

The right hand side converges to 0 for  — co. Thus we may find (for any € > 0) an M such
that exp(cg(m)) < m® for all m > M. This completes the proof. O

5. Completion of the proof

The proof of the main theorem is now not more than a formality. Recall that in Equa-
tion (3.6) we constructed, for each point y € Y (F,), a mapping ¥, : A, — C. We may take the
sum over all y and obtain in this way an equivariant surjection from A onto the free complex
vector space Aap, on the set Y (F,). Then Aap accounts precisely for the contribution of the
one dimensional representations

D s
TCA(G),dim(7)=1,m00c=1
to the automorphic character formula for A (cf. Equation (1.1)). We have an exact sequence
Ay — A — Aayp of Hecke modules, and the ‘average’ mapping Avg: Aap, — A from Equa-

tion (3.7) splits this sequence. For v = vg+wvap € Ag® Aap, we have vap = Avg(v) on the one

hand, and on the other hand the sequence dg%% converges to vayp with the correct rate of
convergence by Proposition 4.1 (and Lemma 4.2). This completes the proof. O

6. Towards the general case of unitary Shimura varieties

In this section we sketch how to extend result of our article [63] to a larger class of Shimura
varieties which may have endoscopy and be non-compact, but satisfy a simplifying condition
on the basic isocrystal.

The discussion in this section is still incomplete, because there are corrective terms in the
trace formula which need to be estimated. We have not yet done this estimation.

We will consider a Shimura variety of PEL-type, of type A, as considered by Kottwitz
in [59]. Thus we assume fixed a PEL-datum consisting of
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(A1) A simple algebra? Y over a CM field F;

(A2) A positive involution on the algebra Y which induces complex conjugation on F’
(A3) A Hermitian Y-module (V, (-,-)), where (-,-) is symplectic;

(A4) h: C — Endy (V)g is a morphism of R-algebras such that h(z) = h(z)* for all z € C.

Let (G,X) be the Shimura datum associated to (A1), (A2), (A3) and the morphism
h~'. We assume that there is a quadratic imaginary extension I of Q and a totally real
extension F'T of Q such that F' = KF™. Then the group Gy is isomorphic to a product of
(Weil-restriction of scalars of ) general linear groups. We let p be a prime of good reduction in
the sense of Kottwitz [59, §5] and we assume that p splits in /Q. We write E for the reflex
field of the Shimura datum. Furthermore we let K C G(Af) be a compact open subgroup of
the form K = K,KP?, with K, hyperspecial and K? sufficiently small so that the PEL-type
moduli problem of level K is defined over O ® Zpy and the variety Shg is smooth and
quasi-projective.

Pick an E-prime p above p and let B be the basic stratum of the variety Shg r,, where
F, is the residue field of O at p. We pick an embedding of Q — @p which extends the
embedding of F into @p defined by p. We fix once and for all an embedding of F' into C, and
Q will always mean the algebraic closure of Q in C. The field Fq is the residue field of @p and
the field Iy is the residue field of E at p.

Because we have the embeddings FF C Q C @p, the Galois group Gal(@p /Q,) acts on
the set of infinite F*-places V(F*) and we may identify any p|p with a Galois orbit V()
of infinite places. Let U C G be the subgroup of elements with trivial factor of similitude.
Then U(R) is a product of standard real groups: U(R) = [,y (p+) U(sv,n — su) for certain
numbers s,. We assume that s, < %n so that these numbers are well defined. The additional
technical condition that we make is the following:

HYPOTHESIS 6.1. There exists an F+-prime o such that the number s, is coprime to n.

Let a be a integer. Consider the function f = fo fo fP in the Hecke algebra of G, where f
is a Clozel-Delorme function for the trivial complex representation of G¢ and f? € H(G(AF))
is any KP-spherical Hecke operator. Let ¢ be a prime number different from p and fix an
isomorphism Q, = C of abstract fields. Without further mention, we will use this isomorphism
to turn the complex valued function fP* into a function which is Q-valued in the cases where
this is necessary. Write ¢ for the inclusion B < Shx r,. Recall that the article [59] gives the

result:
(6.1)
Do Te(@ x fP,(Qp)a) = ket (QG)| DY (1037, 8)04(£P)TOs(¢a),
@/ €Fixpg  poop F,) (Y0;759)

2. The notation Y is nonstandard and questionable; we use it because the usual notation B conflicts with

our notation for the basic stratum.
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where the notations are from [§19, loc. cit]. We restrict this formula to the basic stratum B
by considering on the right hand side only basic Kottwitz triples. The equation then becomes

> Tr(®y x £, 5 (Qo)a) =

:vleFixg? « fooP (?q)

(6.2) = ket (Q, Q)| Y ¢(10;7,6)04(F*P)TOs(xoa " da),
(Y037,6)

where Ej , is the unramified extension of degree a of E, (in @p). The function Xg;c(E" @) is the

characteristic function of the subset of o-compact elements in G(Ey ), and FixgéIX foor 18 the
fibre product Fin)ng foor XA B, where A is the diagonal variety in Sh KJF, X Shgp,. By the
stabilization argument of Kottwitz in [57] the right hand side of Equation (6.2) simplifies to
x, G
(6.3) > UG H) ST 1),
£

where £ is the set of isomorphism classes of elliptic endoscopic triples of G, and ST} is
a sum of stable integral orbitals on the elliptic (G, H)-regular elements in H(Q) [57]. If
H is the maximal endoscopic group, then this regularity condition is empty, and we have
STZ(XE;(QP)]") = STe(XCG(Qp)f). We also mention that the notation Xg;(Qp)fH is slightly

abusive, because f¥ is a global function, while XCG(QP ) is a function at p. When we write

the product X(;G(Q”)f we actually mean the function fP ® (Xg;((@”)fa), so the truncation only

occurs at p.

LEMMA 6.2. Let P C G(Q,) be a proper standard parabolic subgroup of G(Qp). Then the

truncated constant term Xf((@p ) ép) vanishes.

PROOF. Let P be a parabolic subgroup of G(Q,). We have f(gp) =1,0® ®p|p II fTSIS@),
where P is the p-th component of P. If P is proper, then P, is proper as well. Pick some
o|p such that s, is coprime to n (Hypothesis 6.1). We look at the p-th component f& of the
function fo € Ho(G(Qp)) via the isomorphism Ho(G(Qp)) = Ho(Qy*) ® @), Ho(GLn(Fy)).
In the notation of [63], we have f§ = fra,s, [Prop. 3.3, loc. cit.]. By the explicit description
in [Lem. 1.9, loc. cit.] of the truncated constants terms of fpqa,s, We see that these constant
terms vanish for the proper parabolic subgroups in case s is coprime to n. ]

PROPOSITION 6.3. For any proper endoscopic group H of G we have (Xf(@p)f)g{ =0.

ProOF. The transfer f ~» f¥ from the function on G(A) to the endoscopic group H(A)
factors through the transfer from G to its quasi-split inner form G*. At p, the group G(Q))
is quasi split and therefore G(Q,) = G*(Qp) and we take the transfer from functions on
G(Qp) to functions on G*(Q,) to be trivial. Thus we must transfer the function XCG(Q” ) fa
on G*(Qp) to H(Qp). We first consider the function f, € Ho(G*(Qp)) (Ho denotes the
spherical Hecke algebra). In section 3.4, case 2 on page 1668 of [95], Sug Woo Shin describes
explicitly the transfer for quasi-split similitudes unitary groups. He starts by describing
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the endoscopic groups, and explains that any H can be identified with a group of the form
G(GU*(n1) x GU*(n2)) with n = nj+ng (there are some conditions on the possible partitions
n = ny + ng here, but they are of no importance to us). In particular we assume H is the
Levi-component of a maximal standard parabolic subgroup Py of G*. By the second last
displayed formula on page 1668 of [loc. cit] the transfer of f, to a function on H(Q)) is given
by f(gPH @), X > Where xf ., is some function which we will not need to specify for our
argument. The transfer of a conjugacy class in H(Q),) to a conjugacy class in G*(Q,) is the
obvious construction (i.e. induced from the inclusion H(Q,) C G*(Qp)). Consequently the

function
G P,
(6.4) (g ) 1O L € HH(@,)),

is a transfer of the function XCG (@) fa to H(Qp). Therefore the transfer vanishes by Lemma
6.2. t

A function h is called cuspidal if for every non-elliptic semi-simple conjugacy class - the
orbital integral O, (h) vanishes.

LEMMA 6.4. The truncated function Xf(Q”)fa s cuspidal.

PROOF. Any non-elliptic conjugacy class of G(Q,) is conjugated to an element of M for
some proper standard Levi-subgroup M of G(Q,). Let P be the corresponding standard
parabolic subgroup of G. Then the orbital integral O, (Xf (@) f) is the product of a certain
Jacobean factor with the M-orbital integral of + of the function XCG(Q” ) fP) =0 (Proposi-
tion 6.3). Thus the function is cuspidal. O

We are thus left with the term Stg- ((XCG(Qp)f)G*) in Equation (6.3), which can be treated

by base change as in [28, §4.3]. The final result is, as above, that the dominant term is given
by the trivial representation (or Abelian characters).



APPENDIX A

Existence of cuspidal representations of p-adic reductive

groups

We prove the following Theorem:

THEOREM 0.5. Let G be a connected reductive group over F. Then G(F') has a cuspidal

complex representation.

This theorem is “folklore”, but we have not found a proof for it in the literature. After
some reduction steps the proof consists of finding certain characters in general position of
elliptic maximal tori of GG. In case the cardinal of the residue field of F' is “large with respect
to G”, then there are quick arguments to show that characters in general position exist; see
for example [15, lemma 8.4.2]. It is the small groups over small fields and big Weyl groups
that might cause problems, and in this chapter we show that such problems do not occur.

This appendix is independent of the rest of this thesis.

1. Reduction to a problem of classical finite groups of Lie type

Let P C G(F) be a maximal proper parahoric subgroup with associated reductive quo-
tient M over k. We claim that M (k) has an irreducible cuspidal representation o. When
o is proved to exist, then we may construct a cuspidal representation of G as follows,
see [83], [82] and [83]. Inflate o to obtain a P-representation. We may compactly induce
the P-representation o to a representation of G(F'). This G(F')-representation need not be
irreducible, but its irreducible subquotients are all cuspidal. Therefore Theorem 0.5 reduces
to the next proposition.

PropPOSITION 1.1. Let G be a connected reductive group over the finite field k. The group
G(k) has a cuspidal complex representation.

PrOOF. We will first reduce to G simple and adjoint. Consider the morphism G(k) —
Gad(k). If 7 is a irreducible representation of G,q(k), then, when restricted to a representation
of G(k) it will decompose as a finite direct sum 7 = @, m; of irreducible representations.
Recall that 7 is cuspidal if and only if HO(IV(k), V) = 0 for all rational parabolic subgroups
P C G with Levi decomposition P = MN. The map G — (G,q is an isomorphism on its
image when restricted to N. For any parabolic subgroup P = M N C G,q the inverse image
of P in G is a parabolic subgroup with the same unipotent part. Thus, if 7 is cuspidal

135
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as Gaa(k)-representation, then the m; are cuspidal representations of G(k). Therefore, we
may assume that G is adjoint. But then G is a product of k-simple adjoint groups. If the
theorem is true for all the factors, then the theorem is true for G. So we may assume that
G = Resy/,G" where G’ is (absolutely) simple and defined over some finite extension &’ of
k. We have G(k) = G'(k’), and under this equality cuspidal representations correspond to
cuspidal representations. Therefore, we may assume that G is simple and adjoint.

The simple reductive groups G over k are classified by their root system. We will dis-
tinguish cases between the possible root systems. Let us first assume that the root system
of G is exceptional, i.e. of the form 3Dy, Eg, 2Es, E7, Fg, Fy, 2Fy, Go or 2Gs. In Carter’s
book [15, §13.9] one finds for each exceptional group the complete list of its unipotent ir-
reducible complex trace characters. He also mentions for each group how many of these
characters are cuspidal. As it turns out, in each of the exceptional cases, this number is > 0
and so in particular all the exceptional groups have a cuspidal representation. Some of the
classical groups do not have cuspidal unipotent characters. So unfortunately for those groups
we cannot find a cuspidal representation in Carter’s list.

It remains to verify Proposition 1.1 for the simple adjoint groups G/k which are classical.
Thus if G is split, then it is of type Ay, By, Cp, or Dy, and if it is non-split, then it is of type
2A,, or 2D,,. To do this we will use Deligne-Lusztig theory in Section 2 to reduce the problem
to finding characters in general position. In section 3 we will then verify that all split groups
have such a character. In sections 4 and 5 we will then find characters in general position for
the remaining non-split root systems. The proof of Proposition 1.1 will then be complete. [J

2. Characters in general position

Let G/k be a reductive group with connected center. We will apply results of Deligne-
Lusztig [33]. Pick ¢ a prime number different from p. Suppose that we are given the following
data: T C G a maximal torus and 6: T'(k) — @Z a rational character. Then, to this data
Deligne and Lusztig associate a virtual character R, of G(k) with Q-coefficients [33, p. 114].

Let o(G) be the k-rank of G and let o(T') be the k-rank of T. Proposition [33, Prop.
7.4] states that the character (—1)7(@=7(TIRY comes from an actual irreducible G(k)-
representation 7['% if the character 6 is in general position, ie if the rational Weyl group of
T acts freely on it. Theorem [33, thm 8.3] states that if, additionally, T is elliptic, then
7r:9p is cuspidal. Assume for the moment that we have such a pair (7,6). Pick an isomor-
phism ¢: Q, = C; then the G(k)-representation 7% ®, C is complex cuspidal and irreducible.
Therefore, the proof of Proposition 1.1 is reduced to Proposition 3.2, Proposition 4.1 and

Proposition 5.1.

3. The split classical groups

Before continuing with the proof, we recall some generalities. Let G/k be a reductive
group. Let (Tp, Byg) be a pair consisting of a maximal torus and a Borel subgroup which
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contains Ty, both defined over k. Let Wy /k be the Weyl group of Ty C G. The Frobenius
Frob, = (z + 29) € Gal(k/k) acts on the root datum of G by a diagram automorphism. By
abuse of notation this diagram automorphism is also denoted Frob,.

We carry out the following construction. Let x: T 0F Gm,E be a character. Restrict

to To(k) to get a morphism Tp(k) < To(k) — k. From this construction we obtain a map
X*(Tp) — Hom(Ty(k), k), and this map fits in the exact sequence

(3.1) 0 — X*(Tp) 223 X*(Ty) — Hom(Ty(k), k) — 0,

of Z[Wy(k)]-modules (see [33, §5]). Here & is the relative g-Frobenius of T}, 7 over k, i.e. given
by f® A+ f¢® X on the global sections Or, (Ty) @ k of T, 7- Recall that we write Frob, for
the Frobenius f ® A — f ® A\ on Or,(Ty) ® k.

DEFINITION 3.1. Two elements w,w’ in Wy(k) are Frobenius conjugate, or Frobg-

conjugate, if there exists an @ € Wy (k) such that w’ = zwFrob,(z)~1.

The G(k)-conjugacy classes of rational maximal tori in G are parametrized by the Frobe-

nius conjugacy classes of Wy(k) in the following manner. Let Ny be the normalizer of Tp in
G. We have a surjection from G(k) to the set of maximal tori in G by sending g € G(k) to
the torus 9Ty := gTpg~'. The torus 9Ty C Gy is rational (i.e. Gal(k/k)-stable) if and only if
g 1Frob,(g) € No(k).

Assume that we have two elements g, € G(k) such that the tori 97y, 9Ty in Gy, are
rational. Then, g~ 'Frob,(g) and ¢’ 'Frob,(¢') lie in Np(k) so we map them to elements of

the Weyl group Wy(k) via the canonical surjection 7: No(k) — Wo(k). The torus 9Ty C G
is equal to the torus 9T, C Gy if and only if

7T(gilFrObq(g)) = 7T(glilFI‘Obq(gl)) € WO(E>/Frobenius conjugacy s

(for the proof of this fact, see [36, I11.3.23]). This completes the description how Frobenius

conjugacy classes in Wy(k) parametrize G(k)-conjugacy classes of maximal tori in G7.
NoTATION. We will write Ty(w) for the torus 975.

PROPOSITION 3.2. Let G/k be a classical simple adjoint group. Then G has an anisotropic

mazimal torus T C G together with a character 0: T'(k) — C* in general position.

Proo¥r. To prove this proposition we will translate it to an explicit combinatorial problem
on Dynkin diagrams. We will then use the classification of such diagrams and calculate to
obtain the desired result.

Let (Tp, By) be a pair consisting of a split maximal torus and a Borel subgroup which

contains Tp, both defined over k. Let w € Wy(k) be a Coxeter element and let T = Tyh(w) C G

be the maximal torus corresponding to the Frobenius conjugacy class w C Wy(k) generated
by w.
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Pick g € G(k) such that g~ 'Frob,(g) € No(k) and 7(g~'Frob,(g)) = w € Wy(k). The
conjugation-by-g-map Gz — Gz induces an isomorphism from 7| 0k to 9T07E = T, and in turn
an isomorphism X*(T') = X*(Tp). Under this isomorphism, the Frobenius Frob, on X*(T')
corresponds to the automorphism wFrob, on X*(7j), and similarly ® on X*(T") corresponds
to w® on X*(Tp).

To see that the torus Tp(w) is anisotropic it suffices to prove that X*(Tp(w))F°Ps = 0.
We will verify this in each individual case below.

The rational Weyl group Wr(k) of the torus T is equal to the set of those elements
w € Wr(k) in the absolute Weyl group whose action on the characters X*(7T) is equivariant
for the Frobenius Frob,. Therefore, under the bijection Wr (k) = Wy(k), the image of Wr (k)
in Wy (k) is equal to the set of all t € Wy(k) such that t(wFrob,) = (wFrob,)t. Because T
is split, the automorphism Frob, acts trivially on X*(7j). Therefore, the image of Wy (k)

in Wy(k) is the centralizer of w € Wy(k). Because w is a Coxeter element this centralizer is
equal to the subgroup generated by w € Wy (k).

Choose an embedding of groups ¢: S L Then, using ¢, we may identify
Hom(T'(k), k) with Hom(T(k),C*). The set Hom(T(k),C*) is the set of characters of T(k).
We are interested in the subset of Hom(7'(k), C*) consisting of those characters which are in
general position. Under the bijection % = Hom(T'(k), C*) the action of the group
Wr(k) on the right corresponds to the action of the subgroup (w) C Wy(k) on the set on the
left. The problem of finding an elliptic torus together with a character in general position is
thus translated into a problem of the root system of (G, By, Tp): Pick any Coxeter element
w in the Weyl group of the root system, and find an element v in % which is such
that w"v # v for all r = 1...h, where h = #(w) is the Coxeter number of G.

Before starting the computations, let us make the following 3 remarks to clarify. First,
the relative g-Frobenius ® acts on X*(7p) by x — x4 (Tp is split). And second, because the
group G is adjoint, the root lattice of G is equal to the weight lattice X*(7p). Finally, the

facts on Dynkin diagrams that we state below come from Bourbaki [11, chap 6, §4 — §13].

e (G is split of type B,, with n € Z>3. The root system of G may be described as follows.
Let V = R" with its canonical basis ej,...,e, and the standard inner product. Define
Q1 =€]—€,09 =€ —€3,...,0,_1 = €y_1 — €y, 0y = €,. The elements aq,...,q, € Z™ are
the simple roots, and the root lattice is equal to Z™ C R". The element w = wq, Wa, - - - Wa,
is a Coxeter element of the Weyl group; it acts on R™ by (z1,...,2,) — (—Zp, 1, ..., Tn-1)-
It is clear that there are no elements in the root lattice invariant under the action of wFrob,.
This implies that Ty(w) is anisotropic.

We claim that the element e; € Z" reduces to an element of Z"/(w® — 1)Z" in general
position. The order of w is equal to 2n, so #stab,, (v) divides 2n. Therefore, it suffices to
check that for all r € {1,...,n} we have w"(e1) —e; ¢ (w® — 1)Z".
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We distinguish cases. Assume first » = n. Then w" acts on V by v — —v. We have
w™(e1)—e1 = (—2,0,...,0). Assume that we have an z = (z1,...,2,) € Z" with (w®—1)z =
(—=2,0,0,...,0). Then

(3.2) —qrp—11=-2, qv1 —22=0, gro—23=0, ..., qTp_1 — Ty, = 0.
From this we get =, = ¢" 'z, and —2 = —¢"x; — 21 = —(1 4+ ¢")x1 which is not possible.
So we have dealt with the case r = n.

Now assume that r € {1,...,n—1}. Then w"(e;) —e; = e,4+1 — e1. Assume that we have
an x = (x1,...,oy) € Z" such that
(3.3) —qrp—x1=-1, qr,—x,41 =1, and qr,1—x;=0 (Vi¢ {1,r+1}).
We find

Ty = qn—'r’—lmr+1 — qn—r—l(qu _ 1) — qn—rmr _ qn—'r—l — qn—lml _ qn—r—l’

and 21 — 1 = —qx, = —q(¢" ‘21 — ¢""1), which implies
qn—r + 1
T =
@t +1

but [¢"7" — 1|eo < |¢"™ + 1|eo, SO 271 is not integral: contradiction. This completes the proof
that e; € X(T) is a character in general position in case G is of type B,,.

e G is split of type C), with n € Z>3. The root system of G may be described as follows.

Let V = R" with its canonical basis ej,...,e, and the standard inner product. Define
a1 = €] —e2,09 =€y —€3,...,0,_1 = €n_1 — €n,n = 2€,. The elements ay,...,a, € Z"
are the simple roots, and the root lattice A is equal to the set of (z1,...,2,) € Z" C R"

with Z?:l z; =0 mod 2. The element w = Wy, Wa, - - - Wa,, is a Coxeter element of the Weyl
group; it acts on R™ by (x1,...,2,) — (—=p,21,...,2p—1). It is clear that there are no
elements in the root lattice invariant under the action of wFrob,. This implies that Tp(w) is
anisotropic.

We claim that the element 2e; € A reduces to an element of A/(w® — 1)A in general
position. It suffices to verify that w"(2e;) — 2e; ¢ (w® — 1)A for all r € {1,...,n}. Let

x = (x1,...,2,) € R" be the vector satisfying the equations in Equation 3.3. Then the vector
2’ = 2x satisfies w"(2e1) — 2e; = (w® — 1)a’. Therefore,
, q’n—’r‘ + 1
q" +1

For g # 2 we have 2|¢"™" + 1|oc < |¢" + 1|o0, and for ¢ = 2 the numerator and denominator
are coprime. Therefore x; is not integral.

e G is split of type A, with n € Z>1. Consider inside R"*! the hyperplane V with equation
Z?jll i = 0. Define ay = e; —eg,a0 = €3 —€3,...,an, = €, — ep41 (simple roots), A =
7" NV (root lattice), and w = Wa, Wa, - - - Wa, (Coxeter element). The element w acts on
V C R™*! by rotation of the coordinates: (x1,a,...,Tn, Tni1) = (Tni1, 1, T2, ..., T,). We
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have (w®—1)(z1,...,Tnt1) = (¢Tpi1 —T1,qT1 — T2, QT2 — X3, . . ., qTy — Tp41). 1t is clear that
there are no elements in the root lattice invariant under the action of wFrob,. This implies
that Tp(w) is anisotropic.

We claim that the element v := e; — e,41 € A reduces to an element of A/(w® — 1)A
which is in general position. The order of w equals n + 1. Let r € {1,...,n}. Suppose for
a contradiction that w"(v) —v = (ey41 — €r) — (e1 — €nt1) € (WP — 1)A. Then we have an
element (x1,...,2p+1) € A such that

qTpy1 — 21 = —1, qUr_1 — x = -1, gz, — Try1 = 1, qx, — Tpy1 = 1,

qri-1—x; =0 Mig{r+1,r1,n+1}).

By substitution we deduce from this ¢""'z,11 = Tpi1 — ¢° — ¢V +¢"" + 1. But,
Tt —1>q"+ ¢t —¢"" — 1, 50 2,41 cannot be integral: contradiction.

e (G issplit of type D,, withn € Z>4. Define ay = e1—ez, ag = ea—e€3, ..., @p_1 = €p—1—€yp,
Qn = €p—1 + €y, (simple roots), A the set of (z1,...,2,) € Z" such that > " ; ; =0 mod 2
(root lattice).

Unfortunately the above procedure to produce anisotropic tori and characters in general
position does not work for this group G for the following reason. Let w = wq, - - - w,,, be the
Coxeter element of the Weyl group which is the product of the reflections in the simple roots.
Then w acts on V' by

(1,22, ..., Tp) = (—Tp, T1, ..., Tp_2, —Tp_1).

This implies that the vector (2,...,2,—2) € A is stable under the action of Frobenius and
thus the corresponding torus is not anisotropic.
Let Wy be the Weyl group of the system D,,. We have a split exact sequence

(3.4) 1 — {1}y — Wop — 6, — 1,

where &,, acts on Z" via the natural action and an € = (g;) € {—1}},_, acts on a vector
e; € Z' of the standard basis by ee; = €;¢;.

Write n = m + 1. Let w = (123...m) € &,,. Write t; € {—1}" for the element with —1
on the k-th coordinate, and with 1 on all other coordinates. Define w' = t,t,,w € Wy. We
consider the maximal torus T" in G of type w’. The action of Frob, on the character group of
this torus is given by

Z" > (x1, ..o Ty ) > (T X1y ooy —Tp—1, —Tp)-

We see that there are no non-zero vectors in Z™ which are invariant under this action. There-
fore the torus T is anisotropic.

The rational Weyl group of T is the set of s € W which commute with w’. Let us compute
this group. Write ¢: Wy — &,, the natural surjection (see Equation 3.4). Let s € Wrp(k),
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then w = p(w') = p(sws™!). Therefore (s) commutes with w. This implies that ¢(s) is a
power of w. Write s = ew® for some v € {—1}7%._,. We have

stps 1 = tn, Stms L= bk (m)s and  sws tewFww e = cwe.

Therefore

s(w')s™t = s(tptmw)s™t = ok (m)EWE,

which is equivalent to
(5w(i)5i) = twk(m)tm-
A priori there are 4 solutions ¢ € {—1}" of this equation. When we add the condition

det(e) = 1, then precisely 2 of those solutions remain.

Let € € {—1}{.—; be such that (e,;)&i) = ty(m)tm- We have an exact sequence
1 —{l,v} — Wp(k) — (ew) — 1,

where v € {—1}5.,_, is given by v; = —1 for i« < m and v, = (—1)™.
We claim that v = 2e,, € A reduces to an element of A/(w'® — 1)A in general position.
Assume that

(W'® = 1) (@1, .. T,y Tn) = (qTm — 1,921 — T2, ..., —qTm—1 — Tm, —qLy — Tn).

We ignore the last coordinate, and only work with the vector (z1,...,x,). By substitution
we deduce that ¢"xz,, = —2 — x,, + 2¢"""". This implies

g+ 1
For (¢,7) # (2,1) we have |¢™ + 1| > 2|¢"™ " + 1|0, and for (¢,7) = (2,1) the numerator
and denominator have a gcd which divides 3, so then ¢™ 4+ 1 = 3 and we must have m = 1,

but we assumed m > 2. Therefore x,, is not integral. O

4. The unitary groups

PROPOSITION 4.1. Let n > 3. The simple adjoint group over k with root system %A, _q
has an anisotropic maximal torus T together with a character T'(k) — C* in general position.

PRrROOF. Let E C k be the quadratic extension of k, and let o: E = E be the unique
non-trivial k-automorphism of E. The unitary group U, over k is the group of matrices
g € Resg/,GLy g such that o(g)tg = 1. The adjoint group Uy, 4 of U,, is the group PU,, and
this group has root system 2A4,,_1.

We will distinguish cases between n odd and n even. Assume first that n is odd. Let Tj
be the torus (U;)"™ embedded diagonally in U,,. Then Frob, acts on X*(Tp) by z — —z. We

have X*(Tp) = Z" and under this equality, the Weyl group Wy, (k) is identified with &,,. Let
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w=(123...n) € &, = Wr,(k) and let T be the torus Tp(w). The relative Frobenius ® acts
on X*(T') =7Z" by

(4.1) (1, xn) = (—Tp, —T1, ..., —Tp—1).
We claim that the torus 7' is anisotropic over k. To see this, let z = (x1,...,z,) € Z"
be wFrobg-invariant. Then (z1,...,2,) = (—2n, —21,..., —Zp—1), it follows z1 = (—1)"x1,

and because n is odd, this implies ; = 0. The same argument applies to the other z;, and
therefore z = 0. We proved X*(T)F°P« = 0, and thus T is anisotropic.

The center of U, is equal to U; embedded diagonally. Let T,4 be the image of the torus T’
in the adjoint group of U,,. Then A = X*(T,q) is the subset of Z" consisting of those vectors
xz € Z" such that > ;"  x; = 0. The Weyl group is &,, and it acts on A via the restriction
of the natural action &,, © Z" to A. The rational Weyl group Wr,, (k) C &, is the set of
elements w commuting with Frob,. The rational Weyl group is equal to (w) C &,, because
all elements of the Weyl group commute with —1.

To find an element in general position we must find a vector v € A which is such that
w'(v) —v ¢ (P—1)Aforallr=1...n—1. We claim that v =e; — e, € A is such a vector.

Assume for a contradiction that (w® — 1)x = w"v — v for some x € A. Then

(_qxn — X1, —4qT1 —X2y..., —qTn—-1 — xn) = (er+1 - er) - (61 - en)~

By substitution we deduce from this (—q)"z, = z, — (—¢)" ' — (=) " + (—¢)" 17" + 1,

and thus

(_q)n—l + (_q)n—r _ (_q)n—l—r -1
(=g -1

We show that this is not possible. We will distinguish cases. Assume first that the pair (g, r)

is such that the inequality |(—q)" + (—¢) + 1| < ¢"*! — 2 holds. We may then estimate

(=)™ + ()" = ()" = Lo = (=) ((—q)" + (—q) = 1) — 1
<"V ()" + (—g) - 1 +1
< qn _ 2qn—1—r +1< qn 1< ’(_q)n o 1’00'

€.

Ty = —

This proves that x, cannot be integral.

Let us determine the pairs (g,r) for which the above inequality is not true. We have
|(—q)" + (—q) + 1] < ¢" + g+ 1. The inequality ¢" + ¢ + 1 < ¢"! — 2 does not hold for
(q,7m) € {(2,1),(2,2),(3,1)}. To see that it holds in all other cases, observe first that if the
inequality holds for (g,r) then it holds also for (¢, + 1). By direct verification we see that it
holds for (2,3), (3,2), and for (¢,1) in case g > 3.

For (¢,7) € {(2,2),(3,1)} we have the inequality |(—q)"+(—¢)+1| < ¢""!1—2, so the above
n—2
proof also applies to these cases. In case (¢,7) = (2,1), then we obtain x; = —1 + ((:3))7”_1,
which is not integral. This completes the proof for n odd.

Now assume that n is even. Write n = m + 1, so that m is odd. Let Ty C U, be the torus

(U1)™ embedded on the diagonal of U,. Let w = (123...m) € &,, = Wr,(k), and consider
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the torus T := Tp(w). We have X*(T') = Z" on which the Frobenius acts by —w. The
rational Weyl group Wr(k) C &, is the set of s € &,, which commute with —w. Therefore
Wr(k) = (w), and in particular Wp(k) C &,,. Let T,q be the image of the torus 7 in the
adjoint group of U,,. The lattice X*(Toq) = A C Z" is the set of vectors (z1,...,x,) with
Z?Zl x; = 0. The tori T and T,q are anisotropic. Write T' = T,,, x Uy, where the torus T,,
is the maximal torus in the group U, that we considered in the odd case. The rational Weyl
group Wr(k) preserves this decomposition of 7. We have the map X* (T}, ada) — X*(Tad),
(1, ., 2m) = (1,...,2Zm,0). This map is &,,-equivariant, and it induces a map

X* (Tm,ad) N X* (Tad)
(w® — 1) X* (T d) (w® — 1) X*(Thq)’

which is w-equivariant. Therefore characters in general position are send to characters in
general position. By the argument above we know that 7, has characters in general position,

so this completes the proof for n even. O

5. The non-split orthogonal groups

PROPOSITION 5.1. Let n € Z>4. The simple adjoint group G over k with root system

’D,—1 has a mazimal torus T C G with a character T'(k) — C* in general position.

Proof.  Let J be the 2n x 2n-matrix consisting of the blocks (; 1) on the diagonal, and
all other entries 0. The group Os, over k is the set of matrices g € GLg,  which are such
that ¢'Jg = J. The group SOs, is the group of matrices g € Og, such that det(g) = 1.
The non-split form SO%,, over k is obtained from SOy, by twisting the action of Frob, with
the matrix s € GLg, consisting of the blocks (! ) on the diagonal, except for the last block
on the diagonal which is (; !). This corresponds to replacing the matrix J with the matrix
sJs~! = s.Js in the definition of the orthogonal group.

In characteristic p # 2, the group SOg,, (resp. SOsz,) is connected and has root system
D,,_1 (vesp. 2D,,_1). For p = 2 it is the connected component of identity, SO3, (resp. SO%,),
that has root system D,,_1 (resp. 2D,_1).

The torus (SO3)"™ on the diagonal in SOS, is a maximal torus, and the torus Ty =
(SO$)"~1 x Uy is a maximal torus of SO%,. We have X*(Tp) = Z" and Frob, acts on X*(Tp)
by (z1,...,2n) = (1,...,Tn_1, —xy). Let Wy be the absolute Weyl group of Ty. We have a
split exact sequence

(5.1) 1 — {1} — Wy — 6, — 1,

where &,, acts on Z™ by permuting the standard basis vectors, and where an ¢ = (g;) €
{—1}4._, acts on a vector e; € Z™ of the standard basis by ee; = €;¢;.

Let w € &,, C Wy be the n-cycle (123...n) and consider the torus T' := Tp(w). Then
X*(T) = Z™ via which the action Frob, () X*(T) corresponds to the action of wFrob, on Z".
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We verify that this torus is anisotropic. Let = = (21, ...,x,) € X*(Ty)*"°Ps. Then
(x1,...,2n) = wFroby(z1,...,2n) = (—Zp, T1,...,Tn_1),

which implies © = 0. Therefore T is anisotropic.

The rational Weyl group Wr (k) C Wy is the set of s € Wy which commute with wFrob,.
Let us determine this group. Write ¢ for the map Wy — &,, (see Equation 5.1), and write
tj € {—1}" for the element with —1 on the j-th coordinate, and with 1 on all other coordinates.
Then Froby = t,,.

If s € Wy(k), then s(wt,)s™! = wt,. We apply ¢ to this equality to obtain w = p(w) =
¢(sws™!), and thus ¢(s) € &,, commutes with w. This implies that ¢(s) is a power of w.
Write s = ew® where ¢ € {—1}7.,_,. We have

stpsT! = ewf(ty)w ke = 1,
and

sws™t = ewPwwFe = swe.
Therefore,

wty, = s(wty)s™! = cwe - ty,.

This is equivalent to,
1

EW TeWw = tgty.
Write € = (g;) € {—=1}4,_;- Then we have,
(5.2) ew tew = (€4) - (5w(i)) = (€i€i+1) = tgtn.

We will now distinguish cases between n is odd and n is even. Assume first that n is odd.
Return to Equation 5.2, we have (g;6;+1) = txt,. After the choice of €,, the g; for i < n
are uniquely determined by this equation. If ¢ is one of the solutions, then —¢ is the other
solution. We have det(—¢) = (—1)"det(¢) = —det(e). Therefore, precisely one of the two
solutions has determinant 1. We conclude that the rational Weyl group Wr (k) is equal to
(ew), where e € {—1}% ;| is the unique element such that (e;e;41) = tit,.

Let SO3, .q be the adjoint group of SO3, and let Toq be the image of the torus T in
SO3,, 2a- Then X*(Taq) C X*(T) = Z" is the sublattice of elements (z1,...,2,) € Z" such
that > ", z; = 0.

We claim that the element v = 2e,, € A reduces to an element 7 € A/(w® —1)A in general
position. We have (ew)"2e,, = +2¢,,_,, for all r = 1,...,n — 1. We left the sign unspecified,
but we mention that it depends on r.

Suppose that there exists an x = (z1,...,x,) € A such that
(w® —1)(x1,...,2n) = (—qTn, qx1, .., qTp—1) — (T1,...,Tpn) = 26, £ 2¢,.
This implies —¢"x, = —2¢" " + 2 + x,,, and thus

T +1
" +1

Ty —
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We have already verified in Equation 3.5 that x,, cannot be integral. This completes the proof
for n odd.

Assume now that n is even. We have —1 € {—1}},_; in case n is even. In Equation
5.2 we found that (g;6,41) = txt,. We obtain from this, ¢; = 1 for i < k and ¢; = —e; for
i > k. Therefore det(¢) = (—1)¥, independently of e;. Therefore, ¢ € {~1}2_ _, only if k
is even, and if this is the case, then the equation (g;6,11) = tit, has exactly 2 solutions for
e € {—1}Ge—1-

We conclude that #Wr(k) = n, but the group is not cyclic: Pick an e € {—1}},_,, such
that (;g;11) = tat, holds. Then the rational Weyl group Wr (k) is equal to {—1} x (sw?).
We have

Vin € {—1}3e € {1} vi(ew?) (2e,) = va2ea;.
We show that 2e,, + 2e,_9, ¢ (w® — 1)A for all r = {1, e %}, and all signs, so that the
element 2¢, € A/(w® — 1)A is in general position. Assume for a contradiction that z € A is
such that
(w® —1)(x1,...,25) = 2€, £ 269,.
Then we may proceed as in Equation 3.5 to find that x,, is not integral.
All possible cases are now verified and the proof of Theorem 0.5 is completed. [






APPENDIX B

Jacquet modules (joint with Erez Lapid)

Let F' be a non-Archimedean local field with residue characteristic p and consider the
locally compact, totally disconnected group Gy, := GL,(F'). Let P = M x N be the standard,
block upper triangular, parabolic subgroup of type (ni,ns,...,ng) with the standard Levi
decomposition. Thus M ~ Hle Gn,;. The normalized Jacquet functor Jp is a functor from
the category of smooth admissible complex representations of GG, to those of M. It is defined
as the space of coinvariants for the action of the unipotent group N on m, twisted by a certain

normalizing character. More precisely,
Jp(n) :=nn[6p"%), where dp(m) := |det(Ad(m)[Lie(N))|,m € M.

In general, it is a difficult problem to compute Jp(7), or even its semisimplification, for an
arbitrary irreducible 7. In this appendix we will give an explicit formula for Jp () for a certain
class of irreducible representations, namely the ladder representations introduced in [71]. The
case where P is the minimal parabolic subgroup for which Jp(7) # 0 was considered in [ibid.].
Here we will extend it to any P.

The class of ladder representations contains the class of Speh representations. The main
result of [71] is to extend the determinantal formula of Tadi¢ for Speh representations [99] (cf.
also [18]) to ladder representations (see (1.2) below). Speh representations are important in
the representation theory of the general linear group, because they form the building blocks for
the unitary dual of GG,,. More precisely, it was shown by Tadi¢ that any irreducible unitary
representation is isomorphic to the parabolic induction of Speh representations twisted by
certain (explicit, but not necessarily unitary) characters [98]. In particular, this is the case
for the local components of representations occurring in the discrete automorphic spectrum
of G,, over a global field.

We prove that the Jacquet module of a ladder representation is semisimple, multiplicity
free, and that its irreducible constituents are themselves tensor products of ladder represen-
tations. In contrast, the class of Speh representations is not stable under taking the Jacquet
module. In other words, (non Speh) ladder representations are encountered in the Jacquet
module of Speh representations. Hence, ladder representations are important for global ap-
plications.

Our result has an application to Shimura varieties. In Chapters 2 and 3 we computed
the Hasse-Weil zeta function of the basic stratum of certain simple Shimura varieties at split

147
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primes of good reduction following the method of Langlands and Kottwitz [59]. Apart from
the basic stratum, these varieties admit additional Newton strata (cf. [87]). In order to
compute the zeta function of a given stratum .S one may proceed as in [63] provided that one
knows the Jacquet modules of the representations occurring in the cohomology of S. These
representations turn out to be (essentially) Speh representations, and hence the problem
reduces to the one considered in this appendix. Details will be given elsewhere.

1. The Jacquet modules of a Ladder representation

We first introduce some more notation. We write R = P,z Groth(Gy) where
Groth(G,,) is the Grothendieck group of the category Rep(G,) of smooth complex repre-
sentations of G,, of finite length. The group R has a structure of a graded ring (introduced
by Zelevinsky in [105]) with multiplication given by

Gn n
7 X g = Indj, 1+22(7r1 ®@m2) € Rep(Gpy+ns)s

g
(normalized induction) for m; € Rep(Gp,),m € Rep(Gp,), ni,n2 € Z>o where P, 5, is
the standard parabolic subgroup of G, 4n, of type (n1,n2). The unit element of R is the
one-dimensional representation of Gy.

Fix an integer d > 0 and a cuspidal representation p of G4. For our purposes, a segment
[a,b] is a set of integers of the form {a,a + 1,...,b} with b > a. For any segment [a,b|
the representation p[|det-|*] x --- x p[|det-|’] admits a unique irreducible quotient §([a,b]),
the so-called generalized Steinberg representation. A ladder is a finite sequence of segments
[a1,b1],...,[as, b such that a1 > ag > --+ > a; and by > by > --- > b;. Given a ladder of
segments, we may form the representation 0([a1,b1]) x -+ x §([at, b]). This representation
admits a unique irreducible quotient, LQ(d([a1,b1]) x - -+ x §([at, bt])) which is the Langlands
quotient in the case at hand. The representations which arise in this manner are by definition
the ladder representations. The subclass of Speh representations (up to twists) is obtained by
taking a;y1 =a; —land b4y =b; —1foralle=1,...,t —1.

The ring R is actually a bi-algebra (and in fact has an additional structure of a Hopf-
algebra) with respect to the comultiplication A: R — R®R defined by m+— > Jp, ,_, (1),
7 € Rep(Gy,). In particular we have

(1.1) AG(a, b)) = 3 8(e +1,5) © ([a, ),
where we have used the convention that d([a,b]) =0if b <a—1 and 6([a,a —1]) =1 € R.
THEOREM 1.1. Suppose that ay > --- > a; and by > --- > bs. Then

A(LQ(0([ar,b1]), - - -, 6([ar, be]))) =
> LQ([er +1,01]), -, 6([er + 1, b)) @ LQ(5([ax, ca]), .- -, 6([ar, cr])).-

1> > €L
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REMARK. Note the similarity between this formula and the formula

A(([ar, ba]) > - - x d([ar, be])) =
Z d(fer +1,b1]) x - x 0([er + 1, b)) ® d([ar, e1]) X -+ x 8([ar, cr))-

Cl,...,CtEZ

Let us now prove Theorem 1.1. By the determinantal formula of Tadi¢ [71] we have

(1.2) LQ(4([a1,01]), - -, 6([at, bi)) = det(d([as, bj]))ij=1,...s-
Therefore,

ALQ(([ar, b)), - -, 6([ar, b)) = det(A(6([ai, bj])))ij=1....-
By (1.1) and using the multi-linearity of the determinant we get

> det(d(le; + 1,b]) @6([ai e)) = D (] 6(es +1,8])) @ det(5([ai, ¢51)).

Cly...,CtEL C1,.-Cct€Z  j=1

Write S for the symmetric group on the set {1,2,...,t}. Observe that if ¢; = ¢} for some
J # k then det(d([ai, ¢;])) = 0 since two columns in the matrix are identical. Therefore, only
distinct ¢y, ..., ¢ contribute to the right hand side of the above equation, and we can write
the sum as

t
S ST (I 8esqs) +1.51) @ det(3([ai, eq())

c1>>c€EL s€Sy j=1
t

= > > sens( H (lesg) + 1.b5))) @ det(6([az, ¢)))

c1>>ctEL SESt j=1

= Y det(d([e; + 1,b5)) @ det(6([as, c5])).-

1> >c€L
Applying (1.2) once more, we obtain Theorem 1.1.

COROLLARY 1.2. Suppose that a1 > --- > ay and by > --- > b;. Then the Jacquet module
of LQ(d([a1,b1]), ..., d([at, b])) with respect to the parabolic subgroup of type (ni,...,ng) is

(1.3) EBLQ(JH(U) ® - @ LQ(f (k)

where the sum is over all k-colorings f : Ut_([a;,b;] x {i}) — {1,...,k} such that
(1) 7= f(j,1) is (weakly) monotone decreasing for alli =1,...,t,
(2) np=d- |f_1(l)’ foralll=1,... k,

(3) foranyl=1,...,kandi=1,...,t, let m;; =min{j € [a;,b; + 1] : f(j,i) <1} (with
f(bi+1,i) = —c0) and n;; = max{j € [a;—1,b;] : f(j,7) > I} (with f(a;—1,7) = 00).
Then m;; > mup1y and ngg > nipry foralle=1,...,t—=1,1=1,... k.
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FIGURE 1. An example of a 4-coloring of 3 segments satisfying the conditions above.

The corollary extends the result of [71] (i.e., the case ny = --- = n; = d). Up to
semisimplification, the corollary follows from Theorem 1.1 by induction on k. To show that
the Jacquet module is semisimple it suffices to note that the summands in (1.3) have distinct
supercuspidal supports. This follows from the fact that given b; > --- > b; and a multiset
A of integers, there is at most one sequence a; > --- > a; such that a; < b; + 1 for all ¢
and A = Ufa;, b;]. We apply this inductively on [ to show that m;; and n;;, i = 1,...,t are
determined by the supercuspidal support.
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