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Soutenue le 10 Décembre 2012 devant la Commission d’examen :

M. Henri CARAYOL (Rapporteur)

M. Laurent CLOZEL (Directeur de thèse)
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Résumé

Nous étudions la stratification de Newton des variétés de Shimura de type PEL aux places

de bonne réduction.

Nous considérons la strate basique de certaines variétés de Shimura simples de type PEL

modulo une place de bonne réduction. Sous des hypothèses simplificatrices nous prouvons une

relation entre la cohomologie ℓ-adique de ce strate basique et la cohomologie de la variété de

Shimura complexe. En particulier, nous obtenons des formules explicites pour le nombre de

points dans la strate basique sur des corps finis, en termes de représentations automorphes.

Nous obtenons les résultats à l’aide de la formule des traces et de la troncature de la formule

de Kottwitz pour le nombre de points sur une variété de Shimura sur un corps fini.

Nous montrons, en utilisant la formule des traces, que n’importe quelle strate de Newton

d’une variété de Shimura de type PEL de type (A) est non vide en une place de bonne

réduction. Ce résultat a déjà été établi par Viehmann-Wedhorn [104] ; nous donnons une

nouvelle preuve de ce théorème.

Considerons la strate basique des variétés de Shimura associées à certains groupes uni-

taires dans les cas où cette strate est une variété finie. Alors, nous démontrons un résultat

d’équidistribution pour les opérateurs de Hecke agissant sur cette strate. Nous relions le taux

de convergence avec celui de la conjecture de Ramanujan. Dans nos formules ne figurent

que des représentations automorphes cuspidales sur GLn pour lesquelles cette conjecture est

connue, et nous obtenons donc des estimations très bonnes sur la vitesse de convergence.

En collaboration avec Erez Lapid nous calculons le module de Jacquet d’une représentation

en échelle pour tout sous-groupe parabolique standard du groupe général linéaire sur un corps

local non-archimédien.



Abstract

We study the Newton stratification of Shimura varieties of PEL type, at the places of

good reduction.

We consider the basic stratum of certain simple Shimura varieties of PEL type at a place

of good reduction. Under simplifying hypotheses we prove a relation between the ℓ-adic

cohomology of this basic stratum and the cohomology of the complex Shimura variety. In

particular we obtain explicit formulas for the number of points in the basic stratum over finite

fields, in terms of automorphic representations. We obtain our results using the trace formula

and truncation of the formula of Kottwitz for the number of points on a Shimura variety over

a finite field.

We prove, using the trace formula that any Newton stratum of a Shimura variety of PEL-

type of type (A) is non-empty at a prime of good reduction. This result is already established

by Viehmann-Wedhorn [104]; we give a new proof of this theorem.

We consider the basic stratum of Shimura varieties associated to certain unitary groups in

cases where this stratum is a finite variety. Then, we prove an equidistribution result for Hecke

operators acting on the basic stratum. We relate the rate of convergence to the bounds from

the Ramanujan conjecture of certain particular cuspidal automorphic representations on GLn.

The Ramanujan conjecture turns out to be known for these automorphic representations, and

therefore we obtain very sharp estimates on the rate of convergence.

We prove that any connected reductive group G over a non-Archimedean local field has

a cuspidal representation.

Together with Erez Lapid we compute the Jacquet module of a Ladder representation at

any standard parabolic subgroup of the general linear group over a non-Archimedean local

field.



Remerciements
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m’a expliqué la méthode, et donné ses notes sur la courbe modulaire (Chapitre 2). Après que
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Introduction

Dans cette thèse, nous étudions la réduction des variétés de Shimura de type PEL 1 modulo

des nombres premiers de bonne réduction. Plus précisément, nous étudions la stratification

de Newton de ces variétés modulo p. Les variétés de Shimura de type PEL sont des espaces de

modules de variétés abéliennes avec certaines structures additionnelles de type PEL. La strat-

ification de Newton des variétés de Shimura de type PEL consiste en des lieux où l’isocristal

attaché aux variétés abéliennes est constant. Ces strates de Newton sont elles-mêmes des

variétés et nous voulons comprendre leur cohomologie ℓ-adique.

1. Histoire et motivation

L’étude des strates de Newton a commencé avec Frans Oort, qui les a définies pour l’espace

classique de Siegel. À son tour, il étend le travail de Grothendieck et aussi de Katz qui ont

étudié le comportement des cristaux associés à des groupes p-divisibles dans les familles.

Pour l’espace de Siegel, Oort a déterminé les strates de Newton non vides, et a calculé

les dimensions de ces strates [85]. Le premier résultat d’Oort (le fait que les strates sont non

vides) est démontré dans [84] et a été conjecturé plus tôt par Grothendieck dans [42]. Oort

a étudié en outre les orbites de Hecke dans les strates de Newton, et a introduit d’autres

stratifications différentes de la stratification de Newton (que nous ne considérerons pas dans

cette thèse).

La définition de la stratification de Newton a ensuite été étendue à toutes les variétés de

Shimura de type PEL par Rapoport et Richarz [88]. Leur article est apparu après les travaux

de Kottwitz sur les isocristaux avec des structures additionnelles [55] (voir aussi [60]).

Pour une discussion plus détaillée de l’histoire du sujet nous renvoyons le lecteur à l’article

de Rapoport [87] ; une autre référence utile est l’article de Mantovan [74].

2. La stratification de Newton

Avant d’énoncer les résultats de cette thèse, rappelons d’abord plus précisément la défi-

nition de la stratification de Newton.

Nous avons déjà expliqué brièvement ci-dessus que l’on étudie les variétés de Shimura de

type PEL et que ces variétés ont une interprétation comme espaces de modules de variétés

abéliennes avec certaines structures additionelles de type PEL.

1. Polarization, Endomorphisms and Level structure.

1



2 INTRODUCTION

Pourquoi est-ce que cette interprétation comme problème des modules est utile ? Nous

l’utilisons pour réduire la variété de Shimura modulo p et définir la stratification de Newton :

A priori une variété de Shimura S est définie seulement sur un certain corps des nombres

E (le corps réflex), et donc “réduction modulo p” n’a aucun sens. Avant de pouvoir réduire

la variété modulo un nombre premier p, nous avons besoin d’un modèle de S de S, sur,

disons, l’anneau OE ⊗ Z(p). Bien sûr, les modèles existent, mais ils ne sont pas uniques et

leur réduction dépend du modèle que l’on choisit. Mais rappelons que nous avons supposé

que S a une interprétation comme problème des modules de type PEL sur E, et donc les

choses se simplifient. Le problème des modules peut être étendu à un problème des modules

sur l’anneau OE ⊗ Z(p), et le problème étendu est représentable par un champ de Deligne-

Mumford [59, §5]. Sous des hypothèses naturelles, ce champ est un schéma quasi-projectif lisse

sur OE⊗Z(p). Pour avoir la représentabilité par un schéma lisse il faut que le groupe compact

ouvert K ⊂ G(Af) soit suffisamment petit hors p et hyperspecial à p ; nous supposerons, pour

simplifier, que ce soit le cas. Ensuite, nous avons un choix canonique pour le modèle S de S

sur OE ⊗Z(p), et nous choisissons ce modèle. On remplace désormais S par son modèle S sur

OE ⊗ Z(p).

La variété S ⊗ Fp se décompose canoniquement en certaines pièces appelées strates de

Newton. Pour définir ces strates, on utilise de nouveau l’interprétation de S comme espace

de modules : Pour chaque point x ∈ S(Fp) on peut considérer le module de Dieudonné

rationnel D(Ax[p
∞])⊗Q de la variété abélienne Ax correspondant au point x. Ces modules de

Dieudonné sont des isocristaux et les structures additionnelles sur Ax induisent des structures

additionnelles sur l’isocristal D(Ax[p
∞]) ⊗ Q. Lorsqu’il est équipé de ces structures, l’objet

D(Ax[p
∞])⊗Q est un isocristal avec G-structure (ici, G est le groupe de la donnée de Shimura

de S). Nous sommes intéressés par cet objet à isomorphisme près. On note B(GQp) pour

l’ensemble des isocristaux avec des G-structures additionelles. Donc D(Ax[p
∞])⊗Q ∈ B(GQp).

Maintenant, pour chaque élément b ∈ B(GQp) on note Sb(Fp) le sous-ensemble de S(Fp)

constitué d’éléments x ∈ S(Fp) tels que b = D(Ax[p
∞]) ⊗ Q ∈ B(GQp). Le sous-ensemble

Sb(Fp) ⊂ S(Fp) provient d’un sous-schéma réduit et localement fermé Sb de S [88]. La collec-

tion des schémas {Sb}b∈B(GQp )
est la stratification de Newton de S, et les Sb sont les strates

de Newton.

Les correspondances de Hecke sur la variété S(C) sont algébriques, et définies sur le corps

E. Elles s’étendent aussi au modèle de S sur OE ⊗ Z(p), parce que leur action peut être

décrite en termes de l’interprétation de S comme problème des modules. En particulier, nous

avons les correspondances de Hecke sur S ⊗ Fp. Ces correspondances de Hecke respectent

la stratification de Newton, de sorte qu’elles peuvent être restreintes aux différentes strates

de Newton. Par conséquent les espaces de cohomologie Hi
ét(Sb,Fp

,Qℓ) (avec ℓ 6= p) sont des

modules sur l’algèbre de Hecke de G. Ces espaces de cohomologie portent aussi une action

du groupe de Galois Gal(Fp/k) (où k est un corps résiduel de OE ⊗ Z(p)) qui commute avec

l’action de l’algèbre de Hecke.
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3. Cette thèse

Nous donnons un bref aperçu des nos résultats.

Dans cette thèse, on étudie la stratification de Newton des variétés de Shimura de type

PEL, en des places de bonne réduction. Nous introduisons une nouvelle méthode pour étudier

les strates de Newton. Notre méthode utilise (la restriction de) la formule de Kottwitz et

des formes automorphes. En utilisant cette méthode nous répondrons à certaines questions

classiques.

Nous nous posons quatre questions générales sur les strates de Newton Sb (cf. §1) :
(1) Pour quels éléments b ∈ B(GQp), la strate Sb ⊂ S correspondante est-elle non vide ?

(2) Pour b ∈ B(GQp) donné, peut-on calculer la dimension de la variété Sb ?

(3) Peut-on décrire la fonction zêta de Sb ?

(4) Peut-on décrire le cohomologie ℓ-adique de Sb en tant que module de Galois/Hecke ?

Nous avons numéroté les questions en difficulté croissante. Souvent, une réponse satisfaisante

à la question (i) donne également une réponse satisfaisante à la question (i− 1).

Dans cette thèse, nous répondrons partiellement aux quatre questions ci-dessus. Main-

tenant nous écrivons quelques énoncés imprécis afin de donner une idée des résultats. Nous

préciserons nos théorèmes principaux dans la section suivante.

Question (1). Kottwitz a introduit l’ensemble des isocristaux µ-admissibles B(G,µ) ⊂
B(G), où µ est défini par la variété de Shimura. Pour tout point x ∈ S(Fp) l’isocristal associé se

trouve dans le sous-ensemble B(G,µ) ⊂ B(G) (Rapoport-Richarz). Ainsi, les strates de New-

ton associées aux isocristaux non-admissibles sont vides. Récemment Wedhorn et Viehmann

ont établi, pour les variétés de PEL de type (A) et (C), qu’inversement, pour b un isocristal

µ-admissible donné, il existe un point x ∈ S(Fp) dont l’isocristal est b. Nous établissons le

résultat de Wedhorn et Viehmann dans le Chapitre 4 pour les variétés de type (A). Même

si notre résultat n’est pas nouvau, notre preuve est complètement différente : la formule des

traces remplace des arguments délicats de géométrie algébrique.

Question (2). Dans le Chapitre 2 on établit une formule pour la dimension de la strate

basique d’une variété de Kottwitz, sous des conditions simplificatrices. Dans le Chapitre 3 on

établit des résultats partiels qui vont en direction d’une formule pour la dimension de la strate

basique d’une variété de Kottwitz, dans des conditions beaucoup plus légères. Une variété de

Kottwitz est une variété de Shimura de type PEL de type (A), et est associée à une algèbre

de division avec une involution de seconde espèce. Ces variétés sont nettement plus simples

que toute la classe des variétés de PEL de type (A), où l’endoscopie joue un rôle.

Question (3). Considérons à nouveau la strate basique des variétés de Kottwitz en des

places de bonne réduction. Nous supposons maintenant que p est complètement déployé dans

le centre de l’algèbre à division D qui vient avec la variété de Kottwitz. Au Chapitre 3, sous
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ces hypothèses, nous répondons à la question (4) par “oui” et on obtient, comme corollaire, la

réponse “oui” à la question (3).

Question (4). Dans le chapitre 3, nous calculons l’objet
∑∞

i=0(−1)iHi
ét(BFp

, ι∗L) comme

élément du groupe de Grothendieck de H(G(Ap
f )) × Qℓ[Gal(Fp/k)]-modules 2. Ici, B est la

strate basique d’une variété de Kottwitz (associé à une algèbre à division D) en un nombre

premier p tel que D⊗Qp est isomorphe à un produit d’algèbres de la forme Mn(Qp). L’objet

s’exprime en fonction de formes automorphes sur le groupe G et certains polynômes de nature

combinatoire (voir la réponse à la question (3)).

Méthode. Nous allons maintenant expliquer la nouvelle méthode que nous utilisons dans

cette thèse. Nous commençons avec la formule de Kottwitz pour le nombre de points d’une

variété de Shimura de type PEL-sur un corps fini (cf. [57,59]) :

(3.1) ∑

x′∈FixΦα
p ×f∞p (Fp)

Tr(Φα
p × f∞p,Lx) = | ker1(Q, G)|

∑

(γ0;γ,δ)

c(γ0; γ, δ)Oγ(f
∞p)TOδ(φα) Tr ξC(γ0).

Cette introduction n’est pas le lieu pour définir toutes les notations et définitions impliquées

dans cette formule. Nous n’expliquerons ici que certains des éléments principaux. Il convient

de mentionner d’abord que Kottwitz a uniquement prouvé cette formule pour les variétés S

de type PEL, lorsque le groupe est de type (A) ou (C). Pour les variétés de type PEL de type

(D), Kottwitz ne prouve ni ne conjecture une telle formule 3.

– f∞p est un opérateur de Hecke quelconque dans l’algèbre de Hecke H(G(Ap
f )) des fonc-

tions localement constantes sur G(Ap
f ) (où G est le groupe qui intervient dans la donnée

de Shimura) ;

– Φp est l’élément de Frobenius géométrique dans le groupe de Galois Gal(Fp/k) ;

– α est un entier positif ;

– ξ est une représentation complexe irréductible de GC, et L est le système local ℓ-adique

associé à la représentation ξ (ℓ est un nombre premier fixé différent de p, et nous avons

fixé, et supprimé, un isomorphisme entre C et Qℓ) ;

– La somme du côté droit de l’Équation (3.1) porte sur les triplets de Kottwitz (γ0; γ, δ).

Ces triplets sont associés aux classes d’isogénie des variétés abéliennes virtuelles. L’élé-

ment γ0 parcourt les classes de conjugaison stables R-elliptiques de G(Q).

– Pour la description des points x′ du point associé x ∈ ShK(Fp), voir l’Équation (2.3.3).

L’énoncé précis du résultat se trouve dans l’article de Kottwitz [59], voir en particulier §19
et l’introduction de cet article.

2. Il faut dire que l’on doit fixer un isomorphisme de C avec Qℓ pour avoir une action de l’algèbre de Hecke

sur la cohomologie ℓ-adique.

3. Dans l’article [57] il ne conjecture une formule que pour les groupes connexes ; dans l’article [59] il définit

les variétés de type (D), mais, quand les preuves commencent, il exclut ce cas.
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En regardant la formule de l’Équation (3.1) nous pouvons expliquer l’idée principale de

notre méthode. La formule de Kottwitz concerne le nombre de points dans toute la variété

de Shimura ShK modulo un nombre premier p du corps réflex E. L’idée principale est de

restreindre le côté droit de l’Équation (3.1) en comptant seulement les points dans une strate

de Newton donnée. Ainsi, nous fixons un isocristal b ∈ B(GQp) avec des G-structures addi-

tionelles. Cet élément correspond à une classe de σ-conjugaison dans le groupe G(L), où L est

la complétion de l’extension maximale non ramifiée de Qp, et σ est l’élément de Frobenius de

la complétion du corps réflex E en la place p. Alors b définit une strate ShbK,p de ShK modulo

p. Nous restreignons la somme dans l’Équation (3.1) sur les triplets de Kottwitz (γ0; γ, δ) tels

que δ définit l’isocristal b. Le côté gauche doit alors être limité aux points fixes de la corre-

spondance fp∞×Φα
p agissant sur la b-ième strate de Newton ShbK,p de ShK,p. Les restrictions

des deux côtés de l’Équation (3.1) sont égales, et nous obtenons une version b-restreinte de la

formule de Kottwitz.

Dans son article de la conférence de Ann Arbor, Kottwitz montre comment (le côté droit

de) l’Équation (3.1) se stabilise. Cet argument de stabilisation est également valable pour

notre formule b-restreinte. Donc nous pouvons encore comparer la formule b-restreinte avec la

formule des traces. Ce faisant, nous arrivons à une somme de traces sur des représentations

automorphes des groupes endoscopiques de G. Notre méthode consiste à traduire une question

donnée sur une strate de Newton, par la formule restreinte de Kottwitz, en une question sur les

représentations automorphes, et de voir si nous pouvons répondre à cette question traduite.

Nous montrons dans cette thèse que nous pouvons répondre à la question traduite dans

certains cas. Par exemple, pour répondre à la question (1) ci-dessus, on doit montrer qu’une

somme de traces de certains opérateurs de Hecke (transférés) agissant sur les représentations

automorphes de groupes endoscopiques de G est non nulle (Chapitre 4, voir ci-dessous).

Il se trouve que les questions traduites sont souvent des problèmes combinatoires. Essayons

d’expliquer un de ces problèmes combinatoires, et comment nous le résolvons. À l’exception du

Chapitre 4, nous avons restreint notre attention à la strate basique dans cette thèse. Dans cette

section, nous limitons aussi notre attention à la strate basique. En outre, nous considérons une

variété de Shimura “de Kottwitz”. Nous restreignons l’Équation (3.1) à la strate basique. Par

les arguments que nous avons esquissés ci-dessus, le côté droit de cette équation restreinte peut

être comparé à une formule des traces. Une caractéristique des variétés de Kottwitz est que

l’endoscopie ne joue pas de rôle. C’est pourquoi nous allons obtenir simplement une trace de la

forme Tr((χ
G(Qp)
c fα)f

p,A(G)). Ici A(G) est l’espace des formes automorphes sur le groupe G,

fp est l’opérateur de Hecke en dehors de p, et en p nous avons l’opérateur de Hecke χ
G(Qp)
c fα.

La fonction fα est la fonction de Kottwitz [54]. Cette fonction est fondamentale, et Kottwitz

a montré que l’on doit prendre cette fonction en p, si l’on veut que la trace Tr(fαf
p,A(G))

soit égale au côté gauche de l’Équation (3.1). Une fois que cela est établi, on peut faire appel
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aux théorèmes de Fujiwara et Grothendieck-Lefschetz afin de trouver l’identité :

Tr(fαf
p,A(G)) =

∞∑

i=0

Tr
(
fp∞ × Φα

p ,H
i
ét(ShK,Fp

,Qℓ)
)
.

C’est l’identité que Kottwitz utilise pour associer une représentation galoisienne à certaines

formes automorphes pour le groupe G dans l’article [58]. Nous avons restreint la formule à la

strate basique, ce qui donne l’identité

Tr((χ
G(Qp)
c fα)f

p,A(G)) =
∞∑

i=0

Tr
(
fp∞ × Φα

p ,H
i
ét(BFp

,Qℓ)
)
,

où B est la strate basique. Le problème combinatoire que nous avons mentionné ci-dessus

est le calcul des traces compactes Tr(χ
G(Qp)
c fα, πp) pour toute représentation automorphe π

contenue dans l’espace de formes automorphes A(G).
Dans son article sur le lemme fondamental [22], Clozel a donné une formule pour la trace

compacte d’une fonction de Hecke sur les représentations irréductibles lisses des groupes

réductifs p-adiques :

Tr(χ
G(Qp)
c f, πp) =

∑

P=MN

εP Tr
(
χ̂Nf

(P )
, πN (δ

−1/2
P )

)
,

(la somme s’étend sur les sous-groupes paraboliques standard ; pour les autres notations, nous

renvoyons le lecteur à la Proposition 2.1.2). Cependant, cette formule est une somme alternée

impliquant tous les modules de Jacquet de la représentation. Il n’est pas facile d’évaluer la

formule pour une représentation arbitraire d’une manière satisfaisante (du moins, l’auteur ne

sait pas comment), pour deux raisons : (1) les modules de Jacquet sont très compliqués, (2)

la somme est très redondante et beaucoup des termes s’annulent.

Avec seulement le formule de Clozel, nous ne pensons pas avoir assez d’information pour

dire quelque chose d’intéressant. Dans cette thèse, nous travaillons souvent avec l’hypothèse

supplémentaire que le centre de F de l’algèbre à division D se déploie en un compositum

F = KF+, où F+ est un corps de nombres totalement réel, et K est quadratique imaginaire.

Nous supposons également que le nombre premier p de réduction est déployé dans l’exten-

sion K/Q. Ces hypothèses nous permettent d’utiliser le changement de base quadratique. En

appliquant le changement de base du groupe G au groupe G+ = ResK/QGK, nous pouvons

comparer les représentations automorphes π ⊂ A(G) avec des représentations automorphes

du groupe général linéaire. Ces représentations automorphes sont discrètes, et Moeglin et

Waldspurger ont classifié le spectre discret du groupe général linéaire. Cela nous donne une

liste explicite de représentations possibles πp en p, et il suffit pour nos besoins de calculer

les traces Tr(χ
G(Qp)
c fα, πp) pour ces représentations πp. Les représentations sont, à induction

parabolique près, des représentations de Speh. Tadic a trouvé une expression explicite des

représentations de Speh dans le groupe de Grothendieck des représentations lisses. Il prouve

une formule explicite qui exprime toute représentation de Speh donnée en un somme alternée
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des représentations standard. Nous savons comment calculer les traces compactes sur les

représentations standard. Ainsi, il ne reste plus qu’à calculer la somme alternée.

Malheureusement, il se trouve que la somme alternée restante n’est pas facile à calculer

en général. Dans le Chapitre 2, nous avons travaillé avec des conditions choisies de sorte que

la somme est facile (triviale) à calculer (donc nous évitons ce problème dans le Chapitre 2).

Dans le Chapitre 3 nous travaillons sous l’hypothèse que p est complètement déployée dans le

corps F+, la somme est alors aussi plus simple, mais non-triviale. Nous interprétons la somme

comme une somme sur les polynômes associés à certains chemins dans Q2, et nous montrons,

en utilisant le Lemme de Lindström-Gessel-Viennot bien connu en combinatoire, que la somme

se réduit à une certaine somme sur des chemins sans intersection. Puis nous déterminons les

représentations qui contribuent à la (somme alternée des espaces de) cohomologie de la strate

basique.

4. Les résultats de cette thèse

Nous indiquons chapitre par chapitre les résultats principaux de cette thèse.

Chapitre 1 : La courbe modulaire. Ce chapitre d’introduction ne contient pas de

nouveaux résultats. Le théorème principal que nous prouvons est classique et peut être déduit

facilement des travaux de Deligne et Rapoport [34].

Nous avons écrit ce chapitre comme un exemple de la méthode que nous avons esquissé

dans la section précédente. Nous démontrons le théorème suivant :

Théorème (Deligne-Rapoport). Soit N un entier avec N ≥ 4 et considérons la courbe

modulaire Y1(N). Soit p un nombre premier qui ne divise pas N . Nous écrivons Y1(N)ss pour

le lieu supersingulier de Y1(N)⊗Fp. Soit X
′(N) la compactification de la courbe correspondant

au groupe Γ1(N) ∩ Γ0(p). Soit α un entier positif. Si α est pair, nous avons

#Y1(N)ss(Fpα) = 1 + genre(X ′(N))− 2 · genre(X1(N)).

Si α est impair, nous avons

#Y1(N)ss(Fpα) = 1 +
∑

π

dim(πf)
K′ · ε(πp),

où π porte sur les représentations suivantes de GL2(A). Nous écrivons Z(R)+ pour l’ensem-

ble des matrices diagonales dans GL2(R) de la forme diag(x, x) avec x ∈ R×
>0, et nous

écrivons L2
0(GL2(Q)Z(R)+\GL2(Af)) pour l’espace des formes paraboliques muni de l’ac-

tion de GL2(A) par translations à droite. Alors π porte sur les sous-espaces irréductibles

de L2
0(GL2(Q)Z(R)+\GL2(Af)) avec

– π∞ est la série discrète holomorphe de poids 2 ;

– πp est un twist par un caractère non ramifié de la représentation de Steinberg de

GL2(Qp), ε(πp) = 1 si πp ∼= St et ε(πp) = −1 si πp ∼= St ⊗ ϕ avec ϕ le caractère

quadratique non-ramifié.
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Chapitre 2 : La strate basique de quelques variétés de Shimura simples. Nous

considérons une classe restreinte de certaines variétés de Shimura simples de type PEL, et nous

considérons la strate de Newton en une place déployée de bonne réduction. Nous établissons

une relation entre la cohomologie de la strate basique de la variété de Shimura et l’espace des

formes automorphes sur le groupe G. Nous montrons que l’espace des formes automorphes

décrit complètement la cohomologie de la strate basique comme module de Hecke, ainsi que

l’action de l’élément de Frobenius.

Donnons maintenant l’énoncé précis. Soit D une algèbre de division sur Q équipée d’un

anti-involution ∗. On note F le centre de l’algèbre D. Nous supposons que F est un corps de

multiplication complexe, que ∗ induit la conjugaison complexe sur le centre F et que D 6= F .

Nous supposons que F est un compositum d’une extension quadratique imaginaire K de Q

et du sous-corps totalement réel F+ de F . Nous choisissons un morphisme h0 de R-algèbres

de C dans DR tel que h0(z)
∗ = h0(z) pour tout nombre complexe z, et nous supposons que

l’involution x 7→ h0(i)
−1x∗h0(i) sur DR est positive (cf. Deligne [31, (2.1.1.2)]). Alors (D,h)

induit une donnée de Shimura (G,X, h−1). Soit K ⊂ G(Af) un sous-groupe compact ouvert de

G et p un nombre premier tel que nous avons bonne réduction en p (dans le sens de [59, §6])
et tel que le groupe K se décompose en un produit KpK

p où Kp ⊂ G(Qp) est hyperspécial

et le groupe hors p, Kp, est suffisamment petit, pour qu’on puisse prendre ShK la variété de

Shimura qui représente le problème des modules de variétés abéliennes de type PEL définie

chez Kottwitz [59, §6]. Nous notons A(G) l’espace des formes automorphes sur G. Soit ξ une

représentation irréductible complexe algébrique de G(C). Soit f∞ une fonction (quelconque)

sur le groupe G(R) ayant les intégrales orbitales stables prescrites par les identités dans [54].

Pour f∞ nous pouvons prendre une fonction d’Euler-Poincaré [58, Lemma 3.2] (modulo un

certain scalaire explicite, cf. [loc. cit.]). Nous supposons que le nombre premier p est déployé

dans l’extension K/Q. Soit B la strate basique de la réduction de la variété ShK modulo une

place p du corps réflex E au-dessus de p, et soit Fq le corps résiduel de E en p. Nous notons

Φp ∈ Gal(Fp/Fq) pour le Frobenius géométrique x 7→ xq
−1
. Soit L la restriction en BFp,ét

du

système local ℓ-adique associé à ξ sur ShK,Fp,ét
[59, §6]. Soit f∞p un opérateur de Hecke Kp-

sphérique dans l’algèbre H(G(Ap
f )), où Ap

f est l’anneau des adèles finies dont la composante

en p est triviale. Enfin, nous supposons une condition simplificatrice sur l’isocristal basique

µ-admissible. Soit b ∈ B(GQp , µ) l’isocristal avec des G-structures additionelles correspondant

à la strate basique. Le groupe G(Qp) est égal à Qp
× ×GLn(F

+ ⊗Qp), et l’ensemble B(GQp)

se décompose suivant les facteurs irréductibles de l’algèbre de F+⊗Qp. Par conséquent, nous

avons pour chaque F+-place ℘ au-dessus de p un isocristal b℘ ∈ B(GLn(F
+
℘ )). La condition

simplificatrice sur l’isocristal b est, pour chaque ℘, la seule pente de b℘ avec multiplicité > 1

est la pente 0. Sous ces conditions, nous avons le théorème suivant :
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Théorème. La trace de la correspondance fp∞ ×Φα
p agissant sur la somme alternée des

espaces de cohomologie
∑∞

i=0(−1)iHi
ét(BFp

, ι∗L) est égale à

(4.1) |Ker1(G : Q)|P (qα)




∑

π⊂A(G)
dim(π)=1,πp nr.

ζαπ · Tr(fp, πp) + ε
∑

π⊂A(G)
πp type St.

ζαπ · Tr(fp, πp)


 .

pour tous les entiers positifs α. La condition “πp de type Steinberg” dans l’Équation (4.1)

signifie que, pour chaque F+-place ℘ au-dessus de p on a les conditions suivantes :

(1) si le composant en ℘ de l’isocristal basique n’est pas étale (i.e. a des pentes non

nulles), alors π℘ est un twist par un caractère non ramifié de la représentation de

Steinberg de GLn(F
+
℘ ) ;

(2) si le composant en ℘ est étale (toutes les pentes sont nulles), alors la représentation

π℘ est non ramifiée et générique.

Le symbole ε ∈ {±1} dans l’Équation (4.1) est égal à (−1)(n−1)#Ram+
p où Ram+

p est l’ensemble

des F+-places ℘ divisant p telles que l’isocristal b℘ n’est pas étale. Le nombre ζπ est un

certain q-nombre de Weil dont le poids dépend de ξ (voir Lemme 2.3.11). Le symbole P (qα)

est une certaine fonction polynomiale, voir la Définition 2.3.12 et la discussion qui suit cette

définition.

Pour donner un idée de sa forme nous donnons dans cette introduction la fonction P (qα)

sous deux autres hypothèses simplificatrices (pour l’énoncé complet nous devons nous référer

au Chapitre 2). Soit n l’entier positif tel que n2 est la dimension de l’algèbre de D sur le corps

F . Par la classification des groupes unitaires sur les nombres réels, le groupe G(R) induit pour

chaque F+-place infinie v un ensemble de nombres non-négatifs {pv, qv} tels que pv + qv = n.

Supposons dans cette introduction que pv = 0 pour toute place v, sauf pour une unique

F+-place infinie v0. Deuxièmement, nous supposons que p est complètement déployé dans le

corps F+. Alors il existe un polynôme Pol ∈ C[X] tel que P (qα) est égal à Pol|X=qα . Notre

condition sur l’isocristal basique correspond à la condition que le nombre pv0 soit premier

avec n (voir paragraphe §2.3.2). Nous noterons s pour la signature pv0 . Alors, le polynôme

P (qα) est égal à l’évaluation du polynôme

(4.2) X
∑

Xi1Xi2 · · ·Xis ∈ C[X,X1, X2, . . . , Xn],

au point X = qα
s(n−s)

2 , X1 = qα
1−n
2 , X2 = qα

3−n
2 , . . . , Xn = qα

n−1
2 . Dans la somme de l’Équa-

tion (4.2) les indices i1, i2, . . . , is portent sur l’ensemble {1, 2, . . . , n} et satisfont aux conditions

• i1 < i2 < i3 < . . . < is ;

• i1 = 1 ;

• Si s > 1 il y a une condition supplémentaire : Pour chaque sous-indice j ∈ {2, . . . , s}
on a ij < 1 + n

s (j − 1).
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Figure 1. Calculer la trace compact de la fonction de Kottwitz fnαs sur la

représentation de Steinberg.

Dans le cas de Harris et Taylor [45] le polynôme Pol(qα) est égal à 1 (la strate basique est

alors une variété finie).

La définition ci-dessus est courte, mais ne nous aide à comprendre ce qu’est ce polynôme.

Dans la Figure 1, nous donnons une interprétation graphique pour n = 16 et s = 8. Nous

traçons la ligne ℓ de pente 1
2 = 8

16 passant par l’origine. Nous marquons l’origine (0, 0) et le

point (16, 8). On considère certains chemins qui vont de l’origine au point (16, 8). Ces chemins

se composent en deux types d’étapes : celles qui vont vers l’est de la forme (a, b)→ (a+ 1, b)

et celles qui vont vers le nord-est de la forme (a, b)→ (a+1, b+1) (aucune autre étape n’est

permise pour tracer les chemins). De plus les chemins doivent rester strictement sous de la

ligne ℓ. Soit L un tel chemin, prenons le produit des puissances paα sur l’ensemble des étapes

nord-est (a, b)→ (a+1, b+1) qui font parti du chemin L. Ce produit est appellé poids de L ;

on le note poids(L). Le polynôme P (qα) est égal à la somme des poids de tous les chemins

qui vont de (0, 0) vers le point (16, 8).

Le lecteur remarquera que dans cet exemple nous avons mis de côte la condition selon

laquelle s est premier avec n. Dans le cas où n et s ont des diviseurs en commun, la formule

ci-dessus donne toujours la trace compacte de la fonction de Kottwitz agissant sur la représen-

tation de Steinberg (au signe près : on a Tr(χ
GLn(Qp)
c fnαs, StGLn(Qp)) = (−1)n−1P (pα)). La

formule pour la trace compacte sur la représentation triviale est presque la même, la seule

chose qui change, c’est que, pour la représentation triviale, les chemins se trouvent aussi sous

de la droit ℓ, mais pas strictement : les chemins peuvent la toucher. Dans le cas où n et s sont

premiers entre eux il n’y a pas de différence car il n’y a pas de point entier (x, y) sur ℓ avec

0 < x < n.

Chapitre 3 : La strate basique et des exercices combinatoires. Ce chapitre est la

suite du Chapitre 2. Nous enlevons une hypothèse du théorème principal du chapitre précé-

dent. Dans le dernier chapitre, nous avons (essentiellement) supposé que le polygone de New-

ton associé à la strate basique n’avait pas de point intégral autre que le point de début et le

point final. Nous résolvons les problèmes combinatoires qui résultent de la supression de cette
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condition simplificatrice dans le cas où le nombre premier p de réduction est complètement

déployé dans le centre F de l’algèbre à division D qui définit la variété de Kottwitz.

Une conséquence de notre résultat final est une expression explicite de la fonction zêta de

la strate basique. Les expressions sont en termes : (1) des formes automorphes sur le groupe G

de la donnée de Shimura, (2) du déterminant du facteur en p de leur représentation galoisienne

associée, et (3) des polynômes en qα, associés à certains chemins non-intersectant dans les

treillis du plan Q2.

Avant que nous puissions donner l’énonce du résultat nous avons besoin d’introduire trois

classes de représentations.

Considérons le groupe général linéaire Gn = GLn(F ) sur un corps local non-archimédien

F .

Soient x, y des entiers tels que n = xy. Nous définissons la représentation Speh(x, y) de

Gn : C’est l’unique quotient irréductible de la représentation | det | y−1
2 StGx × | det |

y−3
2 StGx ×

· · · × | det |− y−1
2 StGx où les produits “×” signifient induction parabolique unitaire à partir du

sous-groupe parabolique standard de Gn avec chaque bloc de taille x. Une représentation de

Speh semi-stable de Gn est, par définition, une représentation isomorphe à Speh(x, y) pour

des entiers positifs x, y avec n = xy. Nous soulignons que nous n’avons pas défini toutes les

représentations de Speh, nous avons seulement introduit celles qui sont semi-stables (ce qui

est suffisant pour nos besoins ici).

Une représentation π de Gn est appelée représentation rigide (semi-stable) si elle est égale

à un produit de la forme
k∏

a=1

Speh(xa, y)(εa),

où y est un diviseur de n et (xa) est une partition de n
y , et les εa sont des caractères unitaires

non-ramifiés.

Une représentation π du groupe G(Qp) = Q×
p ×

∏
℘|pGLn(F

+
℘ ) est appelé représentation

rigide (semi-stable) si pour chaque F+-place ℘ au-dessus de p, la composante π℘ est une

représentation (semi-stable) rigide du groupe GLn(F
+
℘ ) dans la sens précédent :

π℘ =
k∏

a=1

Speh(x℘,a, y℘)(ε℘,a),

où deux conditions supplémentaires devraient être vraies : (1) y℘ = y℘′ pour tout ℘, ℘′|p, et
(2) le facteur de similitude Q×

p de G(Qp) agit par un caractère non ramifié sur l’espace de π.

Nous écrirons y := y℘ et on appelle l’ensemble des données (x℘,a, ε℘,a, y) les paramètres de π.

Considérons une variété de Shimura de Kottwitz que nous avons introduit dans le para-

graphe précédent. Cependant nous faisons deux changements :

– On oublie l’hypothèse sur les pentes de l’isocristal basique ;

– On ajoute la condition que le nombre premier p est complètement déployé dans le centre

de F de D.
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Nous avons alors :

Théorème. Soit α un entier positif. Alors

(4.3)

∞∑

i=0

(−1)iTr(f∞p × Φα
p ,H

i
ét(BFp

, ι∗L)) =
∑

π⊂A(G)
πp est rigide

Tr(χG
c fα, πp) · Tr(fp, πp).

On pourrait penser que le théorème ci-dessus est le résultat principal de ce chapitre, mais

le travail n’est pas fini ici. Le but de ce chapitre est de calculer la trace compacte Tr(χG
c fα, πp)

pour toute représentation rigide. Nous trouvons des expressions tout à fait explicites pour ces

traces compactes en termes de chemins qui se ne coupent pas. Malheureusement, la définition

de ces polynômes est trop technique pour être énoncée ici : on consultera le corps du chapitre

pour les définitions. Nous nous contenterons d’un exemple d’un polynôme typique.

Considérons la représentation πp = Speh(20, 4) de GL80(Qp). Prenons deux copies du

plan Q2 et traçons la ligne ℓ de pente 1
2 = 40

80 passant par l’origine (voir la Figure 2). Dans la

Figure 2, appelons ℓA la ligne sur le plan à gauche et ℓB la ligne sur le plan à droite. Sur la

droite ℓA nous avons placé quatre points définis par :

~x1 := (−8,−4) ~y1 := (12, 6)

~x3 := (−10,−5) ~y3 := (10, 5)

et sur ℓB quatre points définis par

~x2 := (−9,−41
2) ~y2 := (11, 51

2)

~x4 := (−11,−51
2) ~y4 := (9, 41

2).

Ces points sont déterminés par des formules explicites à partir des segments de Zelevinsky

de πp. La pente des droites ℓA et ℓB est déterminée par le cocaractère de Shimura µ. Les

Figures 2A et 2B définiront chacune un polynôme ; voyons d’abord le définition du polynôme

pour la Figure 2A (la définition du polynôme de la Figure 2B sera analogue). Comme le montre

la figure, nous considérons des chemins qui relient le point ~x3 avec le point ~y1 et le point ~x1

avec le point ~y3. Ces chemins se composent de deux types d’étapes, les étapes vers l’est de la

forme (a, b)→ (a+1, b) et les étapes vers le nord-est de la forme (a, b)→ (a+1, b+1) (aucune

autre étape n’est permise dans les chemins). En outre, il y a deux conditions que les chemins

doivent satisfaire : (C1) les chemins doivent rester strictement en-dessous de la ligne ℓA et,

(C2) les chemins ne doivent pas se croiser. Nous appelons 2-chemin la donnée simultanée de

deux chemins, l’un reliant les points ~x3 et ~y1, et l’autre reliant ~x1 et ~y3. Nous appelons un 2-

chemin de Dyck un 2-chemin qui satisfait les conditions (C1) et (C2). A tout 2-chemin de Dyck

L on associe une certaine puissance de pα (α est un entier positif fixé). Nous notons poids(L)

pour ce pα-puissance et nous l’appelons poids de L. Ce poids est défini comme suit. Pour L

donné, prenons le produit des paα sur l’ensemble des étapes nord-est (a, b) → (a + 1, b + 1)

qui font partie du 2-chemin L. Le polynôme PA associée à la Figure 2A est alors la somme

des poids de tous les 2-chemins de Dyck. Le polynôme associé à la Figure 2B est similaire ;
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Figure 2. Exemple de chemins non-intersectants.

nous utilisons les points ~x2, ~x4, ~y2, ~y4. La trace compacte (de la fonction de Kottwitz fnαs) sur

la représentation πp est alors le produit de PA avec PB (multiplié par un certain facteur de

normalisation, que nous ignorons ici).

Un autre résultat de ce chapitre est le calcul de la dimension de la strate basique.

Avant d’énoncer notre résultat nous avons besoin d’introduire les nombres sv. Plongeons

le corps F dans le corps C. Considérons le sous-groupe U formé des éléments g ∈ G dont le

facteur de similitude est égal à 1. Ce sous-groupe est obtenu par restriction à Q d’un groupe

unitaire définie sur le corps F+. Donc on a U(R) =
∏

v∈Hom(F+,R) U(sv, n − sv) pour des

entiers sv ∈ Z avec 0 ≤ sv ≤ 1
2n.

Théorème. La dimension de B est égal à :

∑

v∈Hom(F+,C)


sv(1− sv)

2
+

sv−1∑

j=0

⌈j n
sv
⌉


 .

Chapitre 4 : Les strates de Newton sont non vides. Considérons une variété de

Shimura de type PEL et réduisons modulo un nombre premier p de bonne réduction. La variété

de Shimura paramétrise des variétés abéliennes en caractéristique p avec certaines structures

additionnelles de type PEL. À chaque variété abélienne nous pouvons associer son isocristal

de Dieudonné. Les structures PEL sur la variété abélienne donne des structures PEL sur

l’isocristal, et en tant que tels les isocristaux se situent dans la catégorie des “isocristaux avec

structures additionnelles” (Kottwitz [55]). Nous regardons ces objets à isomorphisme près. Il

n’est pas vrai que chaque G-isocristal résulte d’un point géométrique sur cette variété. En

fait, il y a seulement un nombre fini d’isocristaux possibles ; depuis les travaux de Rapoport-

Richarz et Kottwitz [60,88] nous savons qu’ils se trouvent tous dans un certain ensemble fini

B(GQp , µ) d’isocristaux“admissibles”, mais ils n’ont pas montré que B(GQp , µ) est exactement

l’ensemble des possibilités : Il n’était pas clair que pour chaque élément b ∈ B(GQp , µ) il existe

une variété abélienne en caractéristique p avec structures additionnelles de type PEL dont

ce module de Dieudonné rationnel est égal à b. Récemment Wedhorn et Viehmann [104] ont

prouvé par des moyens géométriques que c’est effectivement le cas si le groupe de la donnée
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de Shimura est de type (A) ou (C). Dans ce chapitre, nous allons montrer que l’on peut

également démontrer ce résultat en utilisant les formes automorphes et la formule de trace

dans le cas où le groupe est de type (A). Au moment de la rédaction de ce chapitre, Sug Woo

Shin, dans une conférence de BIRS, a annoncé une démonstration de ce résultat différent de

celle de Viehmann-Wedhorn et de la nôtre.

En ce moment, nous sommes en train d’écrire la preuve pour le cas (C). Nous pensons que

notre méthode donne également une preuve à certains variétés de Shimura de type Hodge,

au moins dans les cas où le groupe est classique, si l’on peut démontrer pour ces variétes la

formule de Kottwitz.

Chapitre 5 : Équidistribution. Nous démontrons un résultat d’équidistribution pour

les opérateurs de Hecke agissant sur la strate basique des variétés de Kottwitz dans les cas où

cette strate est une variété finie. Nous pouvons montrer que le taux de convergence est aussi

bon que la borne qui provient de la conjecture de Ramanujan.

Considérons une variété de Kottwitz comme dans le Chapitre 2, mais faisons l’hypothèse

supplémentaire que la strate basique est une variété finie. Nous supposons aussi que l’image

de K dans le cocentre de G soit maximale.

Soit A l’espace vectoriel complexe sur l’ensemble des points géométriques de la strate

basique. Fixons une norme | · | sur l’espace vectoriel A. L’espace A est un module sur l’al-

gèbre de Hecke. Soit Tr,m l’opérateur de Hecke dans l’algèbre H(G(Ap
f )) qui est obtenu par

changement de base, de l’opérateur de Hecke habituel Tr,m du groupe G(Ap
f ⊗ K) (qui est

isomorphe à un produit de groupes linéaires genéraux). Le lecteur peut trouver la définition

précise de cette suite d’opérateurs de Hecke dans la Section 5.2. Sur l’espace A on définit

l’endomorphisme “moyenne”, Moy, qui à un vecteur v associe sa moyenne sur les fibres de la

flèche ShK(Fp)→ π0(ShK)(Fp).

Nous prouvons le résultat d’équidistribution ci-dessous :

Théorème. Soit v ∈ A un élément. Alors il existe une constante C ∈ R>0 ayant la

proprieté suivante. Pour tout ε > 0, il existe un entier M , tel que pour tout entier m > M ,

sans facteur carré, et tout r avec 1 ≤ r ≤ n− 1, nous avons

∣∣∣∣
Tr,m(v)

deg(Tr,m)
−Moy(v)

∣∣∣∣ ≤ Cm
ε−[F :Q]

r(n−r)
2 .

Le théorème peut être prouvé aussi pour d’autres suites d’opérateurs de Hecke, mais

— bien sûr — le taux de convergence dépend du choix de la suite.

Nous avons aussi un résultat partiel pour une large classe de variétés de Shimura de type

PEL unitaires, mais toujours dans l’hypothèse où la strate basique est finie. Nous prévoyons

d’être en mesure de prouver un résultat d’équidistribution, avec probablement un taux de

convergence similaire, mais nous avons encore à estimer certains termes dans les expressions.
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Annexe A : Existence de représentations cuspidales. Nous montrons que tout

groupe réductif connexe G sur un corps local non-archimédien a une représentation cuspidale

complexe.

Nous n’avons pas utilisé ce résultat dans cette thèse, donc l’appendice est indépendant

du reste de la thèse. Nous l’utilisons seulement pour le groupe général linéaire, pour lequel

le résultat est bien connu. En fait, dans la littérature, il est souvent supposé que l’existence

de représentations cuspidales est connue, mais nous n’avons pas trouvé de référence. Cette

annexe pourrait combler cette lacune.

Nous avons besoin du résultat pour l’extension des résultats du chapitre 4 à certains

variétés de Shimura de type Hodge. Actuellement, nous travaillons sur ce résultat, et cette

annexe sera nécessaire dans cette preuve.

Annexe B : Modules de Jacquet de représentations en échelle (avec Erez

Lapid). Nous calculons explicitement la semi-simplification des modules de Jacquet de

représentations en échelle (anglais : “ladder representations”).

Ce résultat est nécessaire (et presque suffisant) si on veut étendre les résultats des

Chapitres 2 et 3 aux autres strates de Newton. Malheureusement, nous n’avons pas eu le

temps de compléter ce travail. Nous avons donc choisi d’inclure le résultat sur les modules de

Jacquet comme une annexe qui ne dépend pas du reste de la thèse.

L’énoncé précis du résultat n’est pas plus long que les premières pages de l’annexe B. Par

conséquent, nous renvoyons le lecteur à l’annexe B pour le théorème.





CHAPTER 1

The modular curve

We explain a new method to count points in the supersingular locus of the modular curves

Y1(N). We will count the number of supersingular points in the set Y1(N)(Fpα), where N is

an integer greater or equal than 3, α is a positive integer, p is a prime number which does

not divide N , and Fpα is a finite field of order pα. The final result is Theorem 3.3.

Our computation of the number of supersingular points on Y1(N) is a variation on the

classical method of Ihara-Langlands (refined by Kottwitz) [24, 46, 47, 62, 69, 70, 76]. This

classical method computes the cardinality of the full set Y1(N)(Fpα) of elliptic curves over

Fpα with Γ1(N)-level structure. We alter the computation to calculate instead the number of

supersingular elliptic curves with Γ1(N)-level structure.

Our result is certainly not new: The final result of this chapter (Theorem 3.3) follows

directly from the result of Deligne and Rapoport [34]. However, our argument is completely

different from theirs, and in later chapters we show that our method also works for higher

dimensional Shimura varieties. Thus, it is not really the end result of this chapter which is

important, it is rather the method of proof.

This chapter is technically less demanding than the other chapters of this thesis. We

try to avoid generality: We replace references to general arguments/theorems by short and

simple calculations which are valid for GL2 but not necessarily for any other group. As a

consequence, some of the statements that we prove in this chapter will be a special case of

lemmas and propositions that we prove in later chapters.

Our aim in this introductory chapter is not to prove the most general result possible, even

for GL2. We just want to explain the method for an easy example. In particular the reader

will notice that we have included some simplifying conditions which are not really needed,

but do make the text more readable.

Notations: The letter G denotes the algebraic group GL2 over the integers Z. The group B

is the standard Borel subgroup of G, T ⊂ B is the standard maximal torus on the diagonal,

and Z ⊂ T is the center of G. We write Z(R)+ for the topological neutral component of

the group Z(R). Let Ip ⊂ G(Zp) the group consisting of those matrices g ∈ G(Zp) such that

g ∈ B(Fp) (the standard Iwahori subgroup). The field L is the completion of a maximal

unramified extension Qnr
p of Qp. We write OL for the ring of integers of L. Let α be a positive

integer. Let Qpα ⊂ L be the subfield of degree α over Qp, we let Zpα ⊂ Qpα be the ring of

integers of Qpα , and Fpα is the residue field of Zpα . Finally Qp is an algebraic closure of Qp

17
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containing Qp
nr, the subring Zp ⊂ Qp is the ring of integers and Fp is by definition the residue

field of Zp.

1. The modular curve

Consider the complex double half plane h± = {z ∈ C | ℑ(z) 6= 0} on which the group

G(R) acts by fractional linear transformations:

(
a b

c d

)
· z = az + c

bz + d
,

(
a b

c d

)
∈ G(R), z ∈ h±.

We pick the point i ∈ h±, and define K∞ ⊂ G(R) to be the stabilizer of i. We define the

morphism h : C× → G(R) by (a+bi) 7→
(

a b
−b a

)
. The image of h is the group K∞ and the orbit

of h under the conjugation action of G(R) is equal to h±. The couple (G, h±) is a Shimura

datum.

Let N be an integer with N ≥ 4. Let K1(N) be the subgroup of G(Ẑ) consisting of the

matrices g ∈ G(Ẑ) such that g = ( 1 ∗
0 ∗ ) ∈ G(Z/NZ). We have the (complex points of the)

Shimura variety Sh(G,K1(N)):

(1.1) G(Q)\G(A)/K∞K1(N) = G(Q)\h± ×G(Af)/K1(N).

The variety Sh(G,K1(N)) is equal to the modular curve Y1(N) over the reflex field Q.

The curve Y1(N) has a natural model over the ring Z[1/N ], for which we also write Y1(N).

This model represents the following functor. For any scheme S with N ∈ OS(S)
× the set

Y1(N)(S) is equal to the set of equivalence classes of pairs (E,P ) consisting of an elliptic

curves E/S and P ∈ E(S) a point of order N . Two pairs (E1, P1), (E2, P2) are equivalent if

there is an S-isomorphism of elliptic curves E1
∼→ E2 sending the point P1 to the point P2.

2. The Ihara-Langlands method

We recall a classical theorem of Ihara, Langlands, Kottwitz and also Milne. This theorem

expresses the number of points on the curve Y1(N) in terms of orbital integrals on the group

G(A).

Theorem 2.1 (Ihara-Langlands-Kottwitz [62]). Let α be a positive integer. Then we have

that

(2.1) #Y1(N)(Fpα) =
∑

γ

v(γ)Oγ(f),

where

– γ ranges over a set of representatives for the set of the regular semi-simple R-elliptic

G(Q)-conjugacy classes;
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– f∞ is a smooth function on G(R), with compact support on G(R)/Z(R), such that the

following property holds. There exists a choice of Haar measures such that the orbital

integral Oγ(f∞) = 0 for γ regular semi-simple non-elliptic and Oγ(f∞) = ±1 for γ

regular elliptic. The sign of Oγ(f∞) is −1 is γ is central, and equal to 1 otherwise;

– fα is the function in the unramified Hecke algebra H0(G(Qp)) whose Satake transform

is equal to pα/2(Xα + Y α) ∈ C[X±1, Y ±1]S2 ∼= H0(G(Qp));

– fp,∞ is the characteristic function of the compact open subgroup K1(N)p ⊂ G(Ap
f );

– we write f = f∞ ⊗ fα ⊗ fp;
– v(γ) is the volume term Vol(Gγ(Q)\Gγ(Af)) with respect to certain normalized Haar

measures.

The proof of the above theorem has been carried out in detail by Kottwitz in a course

he gave in Orsay, see the notes [62] (cf. [54]) and see also the article [76]. Note that these

results are also proved in the (published) articles [58,59], but in much greater generality than

needed here. Clozel gives a summary of the argument for GL2 in his Bourbaki talk [24]. See

also [12].

We will use a slightly stronger statement than Theorem 2.1. In fact, the proof of the

above theorem gives more than the theorem states: Both the left hand side and the right

hand side of Equation (2.1) decompose along isogeny classes, as follows. For any elliptic

curve E ∈ Y1(N)(Fpα) we look at the subset Y1(N)(Fpα)(E) ⊂ Y1(N)(Fpα) consisting of those

E′ ∈ Y1(N)(Fpα) such that E is isogenous to E′. To E we may associate, via Honda-Tate

theory, an element γ ∈ GL2(Q). We make the following complement to Theorem 2.1:

(2.2) #Y1(N)(Fpα)(E) = v(γ)Oγ(f).

By taking the sum over all isogeny classes one will recover Theorem 2.1.

We use this last Equation to count supersingular elliptic curves.

3. The number of supersingular points on the modular curve

Define Y1(N)ss(Fpα) to be the subset of Y1(N)(Fpα) consisting of the supersingular elliptic

curves with K1(N)-level structure. The goal of this section is to give an expression for the

cardinal #Y1(N)ss(Fpα).

We restrict the sum in Theorem 2.1 to run only over those conjugacy classes γ whose

eigenvalues have the same p-adic valuation (cf. Equation (2.2)). The formula will then count

the isogeny classes of supersingular elliptic curves. To achieve this, let χ be the characteristic

function of the set Ω of elements g ∈ G(Qp) whose eigenvalues all have the same p-adic

absolute value. The set Ω ⊂ G(Qp) is invariant under G(Qp)-conjugation and open and

closed. In particular the function χfα lies in the space C∞
c (G(Qp)). One checks easily that

the orbital integral Oγ(χfα) is equal to the orbital integral Oγ(fα) for elements γ in Ω and

that the orbital integral Oγ(χfα) vanishes for any element γ not lying in Ω. Consequently

the cardinal #Y1(N)ss(Fpα) is equal to the sum
∑

γ v(γ)Oγ(χf).
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The trace formula of Selberg 1 applied to the function χf reads

∑

γ

v(γ)Oγ(χf) +
∑

γ

Vol(A(Q)\A(Af))Oγ(f
pχfα)

(
2

|1− t1/t2|∞

)

=
∑

π

Tr(χf, π),(3.1)

where π in the ranges over the irreducible subspaces of L2(Z(R)+G(Q)\G(A)), and in the first

sum γ ranges over the semi-simple G(Q) conjugacy classes which are G(R)-elliptic, and in the

second sum γ ranges over the rational elements γ =
(
t1

t2

)
of A(Q)+ such that |t1|∞ > |t2|∞.

The second large sum in Equation (3.1) is the corrective term; we claim that this corrective

term vanishes (for our Hecke function). By the properties of the Satake transformation 2 the

orbital integral Oγp(fα) is non-zero only if γp is elliptic or if one of its eigenvalues has non-zero

p-adic valuation and the other one p-adic valuation equal to zero. Assume that the conjugacy

class γp contains an element the split torus A(Qp) and assume that the integral Oγp(fαχ) is

non-zero. The conjugacy class γp lies in A(Qp), and thus cannot be elliptic, and therefore the

p-adic valuations of its eigenvalues are different (one is zero and the other one is α). However,

γ is compact and therefore the valuations of its eigenvalues are equal. This is a contradiction,

and thus the integral Oγp(fαχ) is zero for γp ∈ A(Qp). This proves the claim.

The corrective term in Equation (3.1) vanishes and we obtain simply

(3.2) #Y1(N)ss(Fpα) =
∑

γ

v(γ)Oγ(χf) =
∑

π

Tr(χf, π).

In the following 3 subsections we will compute the traces Tr(χf, π) for all discrete automorphic

representations π of G(A).

3.1. A Local Computation at p. Let us first focus on the trace at p in Equation (3.2).

To simplify notations, we write G for the group G(Qp), T for T (Qp), B for B(Qp), and N for

N(Qp) in this subsection. The computation of the traces at p is easy using Clozel’s formula

for compact traces (see [22, p. 259] or Proposition 2.1.2 of this thesis). The formula applied

to GL2 states

(3.3) Tr(χfα, π) = Tr(fα, π)− TrT

(
χ̂Nf

(B)
α , πN (δ

−1/2
B )

)
,

where we need to recall some definitions:

– The symbol π is a smooth representation of G of finite length.

– The T -representation πN is the Jacquet module of π, i.e. the C[T ]-module of N -

coinvariants in π.

1. See Duflo & Labesse [38]. Note that this reference gives the trace formula for PGL2, not for GL2. The

formula applies to the case at hand, because the automorphic representations π for which Tr(χf, π) is non-zero

have trivial central character (ωπ is trivial on det(K1(N)p) = Ẑp,× and trivial on Z×
p by Proposition 3.1).

2. For a proof, see for example [72, thm 4.5.5], or the argument at Proposition 2.1.7.
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– The character δB is the modulus character of B with respect to a right 3 Haar measure.

Explicitly, we have the formula δ(x) = | det(x,Lie(N))| = |ad−1| if x = ( a d ) ∈ T .
– The function χ̂N is the characteristic function of those matrices ( a d ) ∈ T with |ad−1| <
1. Note that the function χ̂N is not defined in this manner in the reference [22, p. 259],

but see Section 2.1.5 of this thesis for the proof that the function χ̂N satisfies the above

description in case the group is GL2.

– The function f
(B)
α : T → C is the constant term of f at B; it is defined by

f (B)
α (t) = δ

−1/2
B (t)

∫

N
f(tn)dn,

for all elements t of the torus T . Here the Haar measure on N is normalized so that it

is compatible with the Haar measure on G via the Iwasawa decomposition G = KAN .

By definition, a representation π of G is semi-stable if it has invariant vectors for the

standard Iwahori subgroup. A first consequence of Formula (3.3) is that Tr(χfα, π) is non-zero

only if π is semi-stable. Thus, there are no cuspidal representations which contribute. To see

this: From Formula 3.3 follows that if the trace Tr(χfα, π) is nonzero, then the representation

π is unramified or the Jacquet module πN is nonzero. The result in Proposition 2.4 of [16]

states that the vector space (πN )Z
×2
p is isomorphic to the vector space πIp . Thus, in both

cases it follows that π is semi-stable.

Assume from now on that the representation π is semi-stable. These semi-stable repre-

sentations are classified [13, thm 9.11] and divided into 3 groups:

(1) The irreducible representations of the form IndGT (χ), where χ : T → C× is an unram-

ified character (the induction is unitary).

(2) The unramified, one-dimensional smooth representations.

(3) The semi-stable special representations. These are the twists of the Steinberg repre-

sentation StG by an unramified character of G.

We compute the compact traces on the representations in the above list:

Proposition 3.1. The following statements are true:

(i) Let χ be an unramified character of the torus T . Then:

Tr
(
χfα, Ind

G
B(χ)

)
= 0.

(ii) Let φ be an unramified character of the group G. Then:

Tr (χfα,C(φ)) = φ( p 1 )
−α.

(iii) Let φ be an unramified character of the group G. Then:

Tr (χfα, StG(φ)) = −φ( p 1 )
−α.

3. We often refer to the book of Henniart and Bushnell [13] in this text. Note that in [loc. cit ] the modulus

character is normalized with respect to a left Haar measure, hence some sign differences appear.
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Proof. In each case we compute using Formula (3.3). Let us first make the function

χ̂Nf
(B)
α explicit (this function occurs in Formula (3.3)). We have

f (B)
α = pα/2 ·

(
1|t1|=p−α,|t2|=1 + 1|t1|=1,|t2|=p−α

)

as function in the Hecke algebra H(T ) of T . Hence

χ̂Nf
(B)
α = pα/2 · 1|t1|=p−α,|t2|=1 ∈ H(T ).

We begin with case (i). Let w be the matrix ( 0 1
1 0 ) in G. Let the characters χi : Qp

× → C×

for i = 1, 2 be such that χ
(
a b
d

)
= χ1(a)χ2(d). Let χw be the character w−1χw, i.e. the

character on the torus T given by χw( d a ) = χ1(a)χ2(d). The Jacquet module πN (δ
−1/2
B ) is 4

equal to C(χ)⊕ C(χw). Hence

Tr
(
χ̂Nf

(B)
α , πN (δ

−1/2
B )

)
= pα/2 ·

(
χ1(p

−α) · 1 + 1 · χ2(p
−α)
)
.

We have

Tr(fα, π) = pα/2 ·
(
χ1(p

−α) + χ2(p
−α)
)
.

Thus Clozel’s Formula 3.3 implies that the trace Tr(χfα, π) vanishes.

We now do case (ii). The representation π is one-dimensional, isomorphic to C(φ), where

φ : G→ C× is an unramified character. We have

Tr(χ̂Nf
(B)
α , πN ) = Tr(pα/2 · 1|t1|=p−α,|t2|=1,C(φδ

−1/2
B )) = pαφ( p 1 )

−α.

We have

Tr(fα, π) = pα/2(pα/2 + p−α/2)φ( p 1 )
−α.

Thus, by Formula 3.3:

Tr(χfα, π) = φ( p 1 )
−α.

Assume for case (iii) that π ∼= StG(φ), where φ is an unramified character G→ C×. We have

an exact sequence 1(φ)֌ IndGB(1)(φ)։ StG(φ). Therefore the trace Tr(fαχ, Ind
G
B(1)(φ)) is

equal to the sum Tr(fαχ, StG(φ)) + Tr(fαχ,1(φ)). The result now follows by combining (i)

and (ii). This completes the proof. �

3.2. The trace at infinity. The trace at infinity Tr(f∞, π∞) is computed by Kottwitz

for the determination of the Zeta function of the modular curve [62]. We recall the result in

this subsection.

We define a certain discrete series representation π0∞ of G(R). Consider the induced

representation I(χ) := Ind
G(R)
B(R)(χ) where χ

(
t1 ∗
0 t2

)
:= |t1|

1
2 |t2|−

1
2 . The semi-simplification

I(χ)ss is equal to the direct sum of the trivial representation of G(R) and a discrete series

representation π0∞. This defines the representation π0∞.

4. See for example the restriction-induction Lemma in [13, p. 63].
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Proposition 3.2. Let π∞ be an irreducible admissible G(R)-representation. The trace

of f∞ on π vanishes unless the isomorphism class of the representation π∞ lies in the set

{1,1(sign ◦ det), π0∞}. The trace of f∞ on 1 and 1(sign ◦ det) is equal to 1, and the trace of

f∞ on π0∞ is equal to −1.

Proof. For a proof, see the notes of Kottwitz [62]. �

3.3. The number of supersingular points. In this section we compute the number

of supersingular points on the modular curve Y1(N) at a prime of good reduction.

We need to consider a certain finite cover of the curve Y1(N). We define:

K ′(N)
def
=
{
g ∈ G(Ẑ) | g ≡ ( 1 ∗

∗ ) mod N, g ≡ ( ∗ ∗
∗ ) mod p

}
.

We have K ′(N) = K1(N)pIp. Thus we have replaced the component K1(N)p = G(Zp) at p

of the group K1(N) with the Iwahori group Ip. This way we get the compact open group

K ′ := K1(N)pIp ⊂ G(Ẑ). We let Y ′(Np) be the Shimura variety Sh(G,K ′), it is a smooth

quasi-projective curve defined over Q, and a finite cover of Y1(Np)⊗Q. We write X ′(Np) for

the compactification of Y ′(Np) (see [51, chap. 8]).

Let φ be the non-trivial unramified character of G(Qp) whose square is 1. Define the

constant ε(πp) for a smooth irreducible representation of G(Qp) to be 1 if πp is isomorphic to

StG, to be −1 if πp is isomorphic to StG(φ) and to be equal to 0 for all other representations.

Theorem 3.3. Let α be a positive integer. If α is even we have

#Y1(N)ss(Fpα) = 1 + genus(X ′(Np))− 2 · genus(X1(N)).

If α is odd we have

#Y1(N)ss(Fpα) = 1 +
∑

π

dim(πf)
K′ · ε(πp),

where π ranges over those irreducible subspaces of L2
0(G(Q)Z(R)+\G(Af)) with

– π∞ ∼= π0∞;

– πp is an unramified twist of the Steinberg representation of G(Qp).

Proof. By applying Proposition 3.1 and Equation (3.2) we see that the cardinal

#Y1(N)ss(Fpα) is equal to
∑

π

Tr(χf, π) =
∑

π,πp∈(2)
Tr(f∞f

p, πp)( p 1 )
−α +

∑

π,πp∈(3)
Tr(f∞f

p, πp)
(
−φπ( p 1 )

−α
)
,(3.4)

where in each sum π ranges over the irreducible G(A)-subspaces of L2(Z(R)+G(Q)\G(A)).
The notation “πp ∈ (2)” refers to the classification of semi-stable representations of G(Qp) on

page 21 and similarly for the notation “πp ∈ (3)”.

The discrete spectrum L2
disc(Z(R)

+G(Q)\G(A)) of G decomposes as a direct sum of the

cuspidal spectrum L2
0(Z(R)

+G(Q)\G(A)) and the residual spectrum L2
res(Z(R)

+G(Q)\G(A)).
The residual spectrum is the Hilbert direct sum of the spaces C(ε ◦ det), where ε ranges over
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the characters of R×
>0Q

×\A×. If π is an irreducible cuspidal G(A)-representation then all

its local factors are infinite dimensional 5. Therefore the first sum on the right hand side

of Equation (3.4) runs over the residual spectrum of G and the second sum runs over the

cuspidal spectrum.

Let π = C(ε ◦ det) be a residual automorphic representation of G such that the trace

Tr(fχ, π) is nonzero. The character ε∞ is trivial on the set det(K1(N)p) = Ẑp×. By Proposi-

tion 3.1 the factor εp must be unramified. Therefore the character ε is unramified at all finite

places and thus trivial. Applying Proposition 3.2 we obtain

(3.5)
∑

π,πp∈(2)
Tr(f∞f

p, πp)φπ(
p
1 )

−α = Tr(f∞f
pfα,1) = 1.

We will now evaluate the sum
∑

π Tr(f∞f
p, πp)

(
−φπ( p 1 )

−α
)
where π ranges over the

cuspidal automorphic representations of G (this is the last sum in Equation (3.4)). Thus

assume that π is cuspidal automorphic representation of G such that the trace of the truncated

function χf on π does not vanish. The central character ωπ of π is trivial on the group

det (K1(N)p) and also trivial on the group Z×
p . Hence the character ωπ must be trivial, and

therefore the square φ2π is trivial as well. Consequently, the value φπ(
p
1 ) is either 1 or −1.

The representation at infinity π∞ is generic and thus infinite dimensional. By Lemma 3.2 we

must have π∞ ∼= π0∞, and therefore Tr(f∞, π∞) = −1. The trace Tr(fp,∞, πp,∞) is equal to

dim((πp,∞)K1(N)p). Thus the second sum in Equation (3.4) is equal to

(3.6)
∑

π,π∞
∼=π0

∞,πp∈(3)
dimπ

p,K1(N)p

f φπ(
p
1 )

−α.

Assume α is odd. Then the Theorem follows from the above Equation (3.6) and the remark

that if πp is ramified at p, and semi-stable, then πp is either StG or StG(φ).

Now assume α to be even so that the sign φπ(
p
1 )

−α is equal to 1. If the representation

π contributes to the sum in Equation (3.6), then πp is an unramified twist of the Steinberg

representation and the dimension of the space (πp)
Ip is equal to 1. Hence we may write

φπ(
p
1 )

−α = dim(πp)
Ip as both sides of this equation are equal to 1. The sum in Equation (3.6)

simplifies to

(3.7)
∑

π,π∞
∼=π0

∞,πp∈(3)
dim(πf)

K′
.

Drop for the moment the condition that πp ∈ (3). In the article [30] is proved that cuspidal

automorphic representations of GL2 with factor π0∞ at infinity correspond to cuspidal modular

5. The component at a place v of a cuspidal automorphic representation of GLn is generic, see [93] or [48].

In the special case of the group GL2(Qp) a smooth irreducible representation is generic if and only if it is

infinite dimensional, and similarly for GL2(R).
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forms:

(3.8)
∑

π,π∞
∼=π0

∞

dim(πf)
K′

= dimS2(Γ),

where S2(Γ) is the space of weight 2 modular forms for the congruence subgroup Γ := K ′ ∩
G(Z) of G(Z). The value in Equation (3.7) is equal to the value in Equation (3.8) minus the

following sum:

(3.9)
∑

π,π∞
∼=π0

∞,πp=unr

dim(πf)
K′
,

where with the abbreviation“πp = unr”we mean that the representation πp is unramified. For

an unramified generic representation πp of G(Qp) the dimension of the space (πp)
Ip is equal

to 2. In particular, Equation (3.9) equals 2 · dimS2(K1(N)) and the number of supersingular

points on the modular curve Y1(N) is equal to 1 + dimS2(Γ) − 2 · dimS2(K1(N)). This

completes the proof. �

4. The Deligne and Rapoport model

We show that, for α even, Theorem 3.3 follows from the description of the reduction

modulo p of the curve X0(p) by Deligne and Rapoport [34].

Consider, on the category of eliptic curves over Z[1/Np], the moduli problem of elliptic

curves with K1(N)-structure. A priori this problem is only defined over Z[1/Np], but one

extends its definition to the ring Z[1/N ] [51, chap. 1] (one can even extend to Z, see [loc. cit.]).

In particular we have a model of the scheme Y ′(Np) over Z[1/N ], and the compactification

X ′(Np) is also defined over Z[1/N ] [chap. 8, loc. cit.]. The curve X ′(Np) has semi-stable

reduction at p [34].

In Theorem 3.3 we established that the number of supersingular points on the modular

curve Y1(N) is equal to

1 + genus(X ′(Np))− 2 · genus(X1(N)).

In this section we show that this formula agrees with the description of the supersingular

points on X1(N) by [34, V.1.18].

Let η be the generic point of Spec(Zp), and let s be the special point of Spec(Zp). Then

Deligne and Rapoport have proved that

X ′(Np)s = Z1 ∐S Z2,

where Zi := X1(N)s and S ⊂ Y1(N)s ⊂ X1(N)s is the supersingular locus.

Let i1 (resp. i2) denote the inclusion of Z1 (resp. Z2) in X
′(Np)s. Consider the morphism

OX′(Np)s −→ i1∗OZ1 ⊕ i2∗OZ2
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of sheaves on X ′(Np)s. Its cokernel is a direct sum over all points P ∈ Z1 ∩Z2 of sky-scraper

sheaves. At each supersingular point P ∈ Z1 ∩ Z2 we may consider the induced mapping on

the completed local rings

̂OX′(Np)s,P −→ (i1∗OZ1 ⊕ i2∗OZ2)
∧
P .

This mapping coincides with the reduction map

Fp[[x, y]]

(x, y)
−→ Fp[[x]]

(x)
⊕ Fp[[y]]

(y)

whose cokernel is identified with Fp via the mapping

Fp[[x]]

(x)
⊕ Fp[[y]]

(y)
−→ Fp

defined by (f, g) 7→ f(0)− g(0). We have an exact sequence

0 −→ OX′(Np)s −→ i1∗OZ1 ⊕ i2∗OZ2 −→
⊕

P∈Z1∩Z2

Fp −→ 0.

The Euler-Poincaré characteristic is additive on exact sequences, and thus

χ(X ′(Np)s,Os) + |Z1 ∩ Z2| = χ(Z1,OZ1) + χ(Z2,OZ2).

We have Z1
∼= Z2

∼= X1(N)Fp
, and we have

χ(Z1,OZ1) = 1− genus(X1(N)).

The Euler characteristic χ(X ′(Np)s,Os) is equal to 1− genus(X), and therefore

1− genus(X) + #Y1(N)ss(Fp) = 2 · (1− genus(X1(N)),

which is equivalent to the formula we found in Theorem 3.3.



CHAPTER 2

The cohomology of the basic stratum I

[À parâıtre dans Mathematische Annalen [63].]

We consider a restricted class of certain simple Shimura varieties called the Kottwitz

varieties, and we study them modulo a split prime of good reduction. We assume (essentially)

there are no integral points on the Newton polygon of the basic stratum (other than the begin

and end point). In this setting we establish a relation between the cohomology of the basic

stratum of the Shimura variety S modulo p and the space of automorphic forms on G. The

space of automorphic forms completely describes the cohomology of the basic stratum as

Hecke module, as well as the action of the Frobenius element. The main result of this chapter

is Theorem 3.13.

Let us comment on the strategy of proof of the main theorem. The formula of Kottwitz for

Shimura varieties of PEL-type [59] is an expression for the number of points over finite fields

on these varieties at primes of good reduction. We truncate the formula of Kottwitz to only

contain the conjugacy classes which are compact at p. Thus we count virtual Abelian varieties

with additional PEL-type structure lying in the basic stratum. The stabilization argument

of Kottwitz carried out in his Ann Arbor article [57] still applies because the notion of p-

compactness is stable under stable conjugacy. After stabilizing we obtain a sum of stable

orbital integrals on the group G(A), which can be compared with the geometric side of the

trace formula. Ignoring endoscopy and possible non-compactness of the variety, the geometric

side is equal to the compact trace Tr(χ
G(Qp)
c f,A(G)) as considered by Clozel in his article

on the fundamental lemma [22]. Using base change and Jacquet-Langlands we compare

this compact trace with the twisted trace of a certain truncated Hecke operator acting on

automorphic representations of the general linear group. We arrive at a local combinatorial

problem at p to classify the contributing representations (rigid representations, Section 2),

and the computation of the compact trace of the Kottwitz function on these representations

(Section 1). The computation of these compact traces turns out to be easy because we

assumed there is no integral point lying on the Newton polygon of the basic isocrystal.

The main theorem is established in Section 3. In Subsections 4.1 and 4.2 we deduce

two applications, in the first we express the zeta function of the basic stratum in terms

of automorphic data, in the second application we derive a dimension formula for the basic

stratum. In the first Section §1 we carry out the necessary local computations at p. In Section

§1 we also prove a vanishing result of the truncated constant terms of the Kottwitz function

27
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due to the imposed conditions on the basic isocrystal (Proposition 1.10). This result is the

technical reason for the simplicity of the formula in Theorem 3.13: without the conditions on

the basic isocrystal, the final theorem contains a more complicated conclusion and involves

a larger class of representations at p (see Chapter 3). In Section §2 we apply the Moeglin-

Waldspurger classification to determine the smooth irreducible representations of the general

linear group occurring as components of discrete automorphic representations at finite places

of a number field. This result is important for the final argument in Section §3.

1. Local computations

In this section we compute the compact traces of the functions of Kottwitz against the rep-

resentations of the general linear group that occur in the (alternating sum of the) cohomology

of unitary Shimura varieties.

1.1. Notations. Let p be a prime number and let F be a non-Archimedean local field

with residue characteristic equal to p. Let OF be the ring of integers of F , let ̟F ∈ OF be

a prime element. We write Fq for the residue field of OF , and the number q is by definition

its cardinal. The symbol Gn denotes the locally compact group GLn(F ). If confusion is

not possible then we drop the index n from the notation. We call a parabolic subgroup P

of G standard if it is upper triangular, and we often write P = MN for its standard Levi

decomposition. We write K for the hyperspecial subgroup GLn(OF ) ⊂ G. Let H(G) be the

Hecke algebra of locally constant compactly supported complex valued functions on G, where

the product on this algebra is the one defined by the convolution integral with respect to the

Haar measure giving the group K measure 1. We write H0(G) for the spherical Hecke algebra

of G with respect to K. Let P0 be the standard Borel subgroup of G, let T be the diagonal

torus of G, and let N0 be the group of upper triangular unipotent matrices in G.

We write 1Gn for the trivial representation and StGn for the Steinberg representation of

Gn. If P =MN ⊂ G is a standard parabolic subgroup, then δP is equal to | det(m, n)|, where
n is the Lie algebra of N . The induction IndGP is unitary parabolic induction. The Jacquet

module πN of a smooth representation is not normalized by convention, for us it is the space

of coinvariants for the unipotent subgroup N ⊂ G. For the definition of the constant terms

f (P ) and the Satake transform we refer to the article of Kottwitz [52, §5]. The valuation v on

F is normalized so that p has valuation 1 and the absolute value is normalized so that p has

absolute value q−1. Finally, let x ∈ R be a real number, then ⌊x⌋ (floor function) (resp. ⌈x⌉,
ceiling function) denotes the unique integer in the real interval (x− 1, x] (resp. [x, x+ 1)).

Let n ∈ Z≥0 be a non-negative integer. A composition of n is an element (na) ∈ Zk
≥1 for

some k ∈ Z≥1 such that n =
∑k

a=1 na. We write ℓ(na) for k and call it the length of the

composition. The set of compositions (na) of n is in bijection with the set of standard parabolic

subgroups of Gn = GLn(F ). Under this bijection a composition (na) of n corresponds to the
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standard parabolic subgroup

P (na)
def
=

{(
g1 ∗

. . .
0 gk

)
∈ Gn

∣∣∣∣∣ ga ∈ Gna

}
⊂ Gn.

We also consider extended compositions. Let k be a non-negative integer. An extended

composition of n of length ℓ(na) = k is an element (na) ∈ Zk
≥0 such that n =

∑k
a=1 na.

1.2. Compact traces. In this subsection we work in a slightly more general setting.

We assume that G is the set of F -points of a smooth reductive group G over OF . We pick a

minimal parabolic subgroup P0 of G and we standardize the parabolic subgroups of G with

respect to P0. A semisimple element g of G is called compact if for some (any) maximal torus

T in G containing g the absolute value |α(g)| is equal to 1 for all roots α of T in g. We

now wish to define compactness for the non semisimple elements g ∈ G. We first pass to

the algebraic closure: An element g ∈ G(F ) is compact if its semisimple part is compact. A

rational element g ∈ G is compact if it is compact when viewed as an element of G(F ). Let

χG
c be the characteristic function on G of the set of compact elements Gc ⊂ G. The subset

Gc ⊂ G is open, closed and stable under stable conjugation. We wish to make the following

remark: Let M be a Levi subgroup of G and let g be an element of M ⊂ G. The condition

“g is compact for the group M” is not equivalent to “g is compact for the group G”. We need

the two notions and therefore we put the group G in the exponent χG
c to clearly distinguish

between the two.

Let f be a locally constant, compactly supported function on G. The compact trace of

f on the representation π is defined by Tr(χG
c f, π) where χ

G
c f is the point-wise product. We

define f to be the conjugation average of f under the maximal compact subgroup K of G.

More precisely, for all elements g in G the value f(g) is equal to the integral
∫
K f(kgk−1)dk

where the Haar measure is normalized so that K has volume 1.

Let P be a standard parabolic subgroup of G and let AP be the split center of P , we

write εP = (−1)dim(AP /AG). Define aP to be X∗(AP )R and define aGP to be the quotient of

aP by aG. To the parabolic subgroup P we associate the subset ∆P ⊂ ∆ consisting of those

roots acting non trivially on AP . We write a0 = aP0 and aG0 = aGP0
. For each root α in ∆ we

have a coroot α∨ in aG0 . For α ∈ ∆P ⊂ ∆ we send the coroot α∨ ∈ aG0 to the space aGP via

the canonical surjection aG0 ։ aGP . The set of these restricted coroots α∨|aGP with α ranging

over ∆P form a basis of the vector space aGP . By definition the set of fundamental weights

{̟G
α ∈ aG∗

P | α ∈ ∆P } is the basis of aG∗
P = Hom(aGP ,R) dual to the basis {α∨

aGP
} of coroots.

We let τGP be the characteristic function on the space aGP of the acute Weyl chamber,

(1.1) aG+
P =

{
x ∈ aGP | ∀α ∈ ∆P 〈α, x〉 > 0

}
.

We let τ̂GP be the characteristic function on aGP of the obtuse Weyl chamber,

(1.2) +aGP =
{
x ∈ aGP | ∀α ∈ ∆P 〈̟G

α , x〉 > 0
}
.
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Let P =MN be a standard parabolic subgroup of G. Let X(M) be the group of rational

characters of M . The Harish-Chandra mapping 1 HM of M is the unique map from M to

HomZ(X(M),R) = aP , such that the q-power q−〈χ,HM (m)〉 is equal to |χ(m)|p for all elements

m ofM and rational characters χ in X(M). We define the function χN to be the composition

τGP ◦(aP ։ aGP )◦HM , and we define the function χ̂N to be the composition τ̂GP ◦(aP ։ aGP )◦HM .

The functions χN and χ̂N are locally constant and KM -invariant, where KM =M(OF ).

Lemma 1.1. Let P =MN be a standard parabolic subgroup of G. Let m be a semisimple

element of M , then

(1) χN (m) is equal to 1 if and only if for all roots α in the set ∆P we have |α(m)| < 1;

(2) χ̂N (m) is equal to 1 if and only if for all roots α in the set ∆P we have |̟α(m)| < 1.

Proposition 1.2. Let π be an admissible G-representation of finite length, and let f be

an element of H(G). The trace Tr(f, π) of f on the representation π is equal to the sum∑
P=MN TrM,c

(
χNf

(P )
, πN (δ

−1/2
P )

)
where P ranges over the standard parabolic subgroups of

G.

Proof. For the proof see [21, prop 2.1]. Another proof of this proposition is given

in [22, p. 259–262]. �

Proposition 1.3. Let π be an admissible G-representation of finite length, and let f be

an element of H(G). The compact trace Tr(χG
c f, π) of f on the representation π is equal

to the sum
∑

P=MN εP TrM

(
χ̂Nf

(P )
, πN (δ

−1/2
P )

)
where P ranges over the standard parabolic

subgroups of G.

Proof. This is the Corollary to Proposition 1 in the article [22]. �

Remark. Proposition 1.2 and Proposition 1.3 are true for reductive groups over non-

Archimedean local fields in general.

We record the following corollary. We have a parabolic subgroup P0 ⊂ G such that

P0 = P0(F ). Let I ⊂ G(OF ) be the group of elements g ∈ G(OF ) that reduce to an element

of the group P0(OF /̟F ) modulo ̟F . The group I is called the standard Iwahori subgroup of

G. A smooth representation π of G is called semi-stable if it has a non-zero invariant vector

under the subgroup I of G.

Corollary 1.4. Let π be a smooth admissible representation of G such that the trace

Tr(χG
c f, π) does not vanish for some spherical function f ∈ H0(G). Then π is semi-stable.

1. In the definition of the Harish-Chandra map there are different sign conventions possible. For example [1]

and [44] use the convention q〈χ,HM (m)〉 = |χ(m)|p instead. Our sign follows that of [102]. In the article [22]

there is no definition of the Harish-Chandra map but we have checked that Clozel uses our normalization.
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Proof. (cf. [43, p. 1351–1352]). By Proposition 1.3 the trace Tr(χ̂Nf
(P ), πN (δ

−1/2
P )) is

nonzero for some standard parabolic subgroup P = MN of G. The function χ̂Nf
(P ) is KM -

spherical, and therefore πN (δ
−1/2
P ) is an unramified representation of M . In particular the

representation πN has an invariant vector for the Iwahori subgroup I of M . The Proposition

2.4 in [16] gives a linear bijection from the vector space (πN )M(OF ) to the vector space πI .

Therefore the space πI cannot be 0. �

Proposition 1.5. Let Ω be an open and closed subset of G invariant under conjugation by

G. Let P =MN be a standard parabolic subgroup of G. Let ρ be an admissible representation

of M of finite length, and let π be the induction IndGP (ρ) of the representation ρ to G. Then

for all f in H(G) the trace Tr(χΩf, π) is equal to the trace Tr(χΩ(f
(P )

), ρ).

Proof. By the main theorem of [37] we have

(1.3) TrG(χΩf, π) = TrM ((χΩf)
(P ), ρ).

We prove that the functions χΩ·(f (P )
) and (χΩ(f

(P )
)) inH(M) have the same orbital integrals.

Let γ ∈M . Then the orbital integral OM
γ (χΩ · (f (P )

)) equals OM
γ (f

(P )
) if γ ∈ Ω and vanishes

for γ /∈ Ω. By Lemma 9 in [37] we have

OM
γ ((χΩ(f)

(P ))) = OM
γ ((χΩf)

(P )) = D(γ)OG
γ (χΩf),

where D(γ) = DM (γ)−1/2DG(γ)
1/2 is a certain Jacobian factor for which we do not need to

know the definition; we refer to [loc. cit ] for the definition. By applying Lemma 9 of [loc. cit ]

once more the orbital integral OG
γ (χΩf) is equal to OG

γ (f) = D(γ)OM
γ (f (P )) for γ ∈ Ω and

the orbital integral is 0 for γ /∈ Ω. Therefore, the orbital integrals of the functions χΩ · (f (P )
)

and (χΩf
(P )

) agree.

Recall Weyl’s integration formula for the group M : for any h ∈ H(M) we have

(1.4) Tr(h, ρ) =
∑

T

1

|W (M,T )|

∫

Treg

∆M (t)2θρ(t)Ot(h)dt,

where θρ is the Harish-Chandra character of ρ and where T runs over the Cartan subgroups

of M modulo M -conjugation, and W (M,T ) is the rational Weyl group of T in M , see [32,

p. 97] (cf. [21, p. 241]). The right hand side in Equation (1.4) depends only on the orbital

integrals of the function h. Thus, two functions h, h′ ∈ H(M) with the same orbital integrals

have the same trace on all smooth M -representations of finite length. Therefore the M -

trace TrM ((χΩf)
(P ), ρ) of the function (χΩf)

(P ) against ρ is equal to TrM (χΩ(f
(P )), ρ). By

combining Equation (1.4) with Equation (1.3) we obtain the proposition. �

1.3. The Kottwitz functions fnαs. From this point onwards G is the general linear

group. Let n and α be positive integers, and let s be a non-negative integer with s ≤ n. We

call the number s the signature, and we call the number α the degree. Let µs ∈ X∗(T ) = Zn
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be the cocharacter defined by

(1, 1, . . . , 1︸ ︷︷ ︸
s

, 0, 0, . . . , 0︸ ︷︷ ︸
n−s

) ∈ Zn.

We write An for the algebra C[X±1
1 , . . . , X±1

n ]Sn . The function fnαs ∈ H0(G) is the spherical

function with

SG(fnαs) = qαs(n−s)/2
∑

ν∈Sn·µs

[ν]α = qαs(n−s)/2
∑

I⊂{1,...,n},#I=s

∏

i∈I
Xα

i ∈ An

as Satake transform (cf. [54]). When n, α, s ∈ Z≥0 are such that n < s, then we put fnαs = 0.

Definition 1.6. Let X = Xe1
1 X

e2
2 · · ·Xen

n ∈ C[X±1
1 , . . . , X±1

n ] be a monomial. Then the

degree of X is
∑n

i=1 ei ∈ Z. We call an element of the algebra C[X±1
1 , . . . , X±1

n ] homogeneous

of degree d if it is a linear combination of monomials of degree d. These notions extend

to the algebras H0(G) and An via the isomorphism H0(G) = An and the inclusion An ⊂
C[X±1

1 , . . . , X±1
n ].

Lemma 1.7. Let f ∈ H0(G) be a homogeneous function of degree d. Then f is supported

on the set of elements g ∈ G with | det g| = q−d.

Proof. (cf. [4, p. 34 bottom]). The function f (P0) is supported on the set of elements

t ∈ T with | det t| = q−d. Let χ be the characteristic function of the subset {g ∈ G | | det g| =
q−d} ⊂ G. The Satake transform (χf)(P0) is equal to χ|T · (f (P0)). The function χf is equal

to f by injectivity of the Satake transform. �

By taking f = fnαs we obtain in particular:

Lemma 1.8. The function fnαs is supported on the set of elements g ∈ G with | det g| =
q−αs.

Proof. The Satake transform SG(fnαs) of the Kottwitz function fnαs is homogeneous of

degree αs in the algebra An. �

Lemma 1.9. Let P = MN be a standard parabolic subgroup of G corresponding to the

composition (na) of n. Let k be the length of this composition. The constant term of fnαs at

P is equal to

(1.5)
∑

(sa)

qα·C(na,sa) · (fn1αs1 ⊗ fn2αs2 ⊗ · · · ⊗ fnkαsk) ,

where the sum ranges over all extended compositions (sa) of s of length k. The constant

C(na, sa) is equal to s(n−s)
2 −∑k

a=1
sa(na−sa)

2 .

Remark. In the above sum only the extended compositions (sa) of s with sa ≤ na

participate: If sa > na for some a, then fnaαsa = 0 by our convention.
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Proof. (cf. [81, Prop. 4.2.1]). Let Ia ⊂ {1, 2, . . . , n} be the blocks corresponding to

the composition (na). If I is a subset of the index set {1, . . . , n}, then we write XI for the

monomial
∏

i∈I Xi ∈ C[X1, X2, . . . , Xn] in this proof. Taking constant terms is transitive and

the constant term of a spherical function is spherical. Therefore it suffices to prove that both

fnαs and the function in Equation (1.5) have the same Satake transform. We compute

∑

(sa)

qα·C(na,sa)
k∏

a=1

SG(fnaαsa) =
∑

(sa)

qα·C(na,sa)
k∏

a=1

qα
sa(na−sa)

2

∑

I⊂Ia,#I=sa

Xα
I

= qα
s(n−s)

2

∑

(sa)

k∏

a=1

∑

I⊂Ia,#I=sa

Xα
I

= qα
s(n−s)

2

∑

(sa)

∑

I

Xα
I (I ⊂ {1, . . . , n}, ∀a : |I ∩ Ia| = sa)

= qα
s(n−s)

2

∑

I⊂{1,...,n},|I|=s

Xα
I .

This concludes the proof. �

1.4. Truncation of the constant terms. In this subsection we compute the truncated

function χG
c (f

(P )
nαs). This result is crucial to determine the representations of G contributing

to the cohomology of the basic stratum of Shimura varieties associated to unitary groups.

Proposition 1.10. Let P = MN be a standard parabolic subgroup of G, and let (na) be

the corresponding composition of n. Let k be the length of the composition (na) and let d be

the greatest common divisor of n and s. The truncated constant term χG
c (f

(P )
nαs) is non-zero

only if there exists a composition (da) of d such that for all indices a the number na is obtained

from da by multiplying with n
d . If such a composition (da) exists, then the function χG

c (f
(P )
nαs)

is equal to

(1.6) χG
c (f

(P )
nαs) = qα·C(na,sa) ·

(
χ
Gn1
c fn1αs1 ⊗ χ

Gn2
c fn2αs2 ⊗ · · · ⊗ χ

Gnk
c fnkαsk

)
∈ H0(M),

where sa = s
d · da for all a ∈ {1, 2, . . . , k}, and the constant C(na, sa) equals s(n−s)

2 −∑k
a=1

sa(na−sa)
2 .

Proof. By Lemma 1.9 the truncated constant term χG
c (f

(P )
nαs) is a sum of terms of the

form χG
c (fn1αs1 ⊗ · · · ⊗ fnkαsk) where (sa) ranges over extended compositions of s. To prove

the Proposition we describe precisely the extended compositions with non-zero contribution.

Thus assume that one of those terms is non-zero; say the one corresponding to the extended

composition (sa) of s. Let m be a semisimple point in M where this term does not vanish.

Let ma ∈ Gna be the a-th block of m, and let ma,1, . . . ,ma,n1 ∈ F be the set of eigenvalues

of ma. The element m is compact not only in the group M , but also in the group G, and

therefore the absolute value |ma,i| is equal to the absolute value |mb,j | for all indices a, i, b and
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j. In particular the value | det(ma)|1/na is equal to | det(mb)|1/nb . By Lemma 1.8 the absolute

value of the determinant det(ma) is equal to q
−αsa . Therefore the fraction sa

na
is equal to the

fraction sb
nb

for all indices a and b. We claim that the fraction sa
na

equals s
n . To see this, we

have nb
sa
na

= sb for all indices a, b, and thus

(1.7) n
sa
na

= (n1 + n2 + . . .+ nk)
sa
na

= s1 + s2 + . . .+ sk = s,

proving the claim. We have d
s · sa = d

s · na · sn = d
n · na. Because na · sn = sa is integral, the

number na
d
n = sa

d
s is integral as well. This implies that the composition (na) (resp. (sa)) is

obtained from the composition (da) := (na
d
n) by multiplying with n

d (resp. s
d). �

1.5. The functions χNf
(P )
nαs and χ̂Nf

(P )
nαs. Let P = MN be a standard parabolic sub-

group of G. The functions χNf
(P )
nαs and χ̂Nf

(P )
nαs occur in the formulas for the compact traces

on smooth representations of G of finite length (see Proposition 1.2 and Proposition 1.3). For

later computations it will be useful to have them determined explicitly.

Proposition 1.11. Let P = MN be a standard parabolic subgroup of G, and let (na)

be the corresponding composition of n. Write k for the length of the composition (na). The

following statements are true:

(i) The function χNf
(P )
nαs ∈ H0(M) is equal to

∑

(sa)

qα·C(na,sa) · (fn1s1 ⊗ fn2s2 ⊗ · · · ⊗ fnksk) ,

where the sum ranges over all extended compositions (sa) of s of length k satisfying

s1
n1

>
s2
n2

> . . . >
sk
nk
.

(ii) The function χ̂Nf
(P )
nαs ∈ H0(M) is equal to

∑

(sa)

qαC(na,sa) · (fn1αs1 ⊗ fn2αs2 ⊗ · · · ⊗ fnkαsk) ,

where the sum ranges over all extended compositions (sa) of s of length k satisfying

(s1 + s2 + . . .+ sa) >
s

n
(n1 + n2 + . . .+ na),

for all indices a strictly smaller than k.

Proof. Let Hi for i = {1, 2, . . . , n} denote the i-th vector of the canonical basis of the

vector space a0 = Rn. The subset ∆P of ∆ is the subset consisting of the roots αn1+n2+...+na

for a ∈ {1, 2, . . . , k − 1}. For any root α = αi|aP in ∆P we have:

(1.8) ̟G
α = (H1 + · · ·+Hi −

i

n
(H1 +H2 + · · ·+Hn))|aP .

Let m be an element of the standard Levi subgroup M . By Lemma 1.1 the element m lies in

the obtuse Weyl chamber if and only if the absolute value |̟G
α (m)| is smaller than 1 for all
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roots α in ∆P . By Equation (1.8) the evaluation at m = (ma) of the characteristic function

χ̂N (m) is equal to 1 if and only if

(1.9) | det(m1)| · | det(m2)| · · · | det(ma)| < | det(m)|
n1+n2+...+na

n

for all indices a ∈ {1, . . . , k − 1}.
We determine the function χ̂Nf

(P )
nαs. Let m = (ma) be an element of M . Assume m lies

in the obtuse Weyl chamber (cf. Equation (1.9)). Let (sa) be an extended composition of s.

Besides the condition χ̂N (m) 6= 0 we assume that (fn1αs1 ⊗ fn2αs2 ⊗ · · · ⊗ fnkαsk) (m) 6= 0.

By Lemma (1.8) the absolute value | det(ma)| is equal to q−saα for all indices a. By Equation

(1.9) we thus have the equivalent condition

(1.10) (s1 + s2 + . . .+ sa) >
s

n
(n1 + n2 + · · ·+ na)

for all indices a ∈ {1, . . . , k−1}. We have proved that if the product of the obtuse function χ̂N

with the function (fn1αs1 ⊗ fn2αs2 ⊗ · · · ⊗ fnkαsk) is non-zero, then the extended composition

(sa) satisfies Equation (1.10) for all indices a < k. Conversely, if the extended composition (sa)

satisfies the conditions in Equation (1.10), then any element m of M with | det(ma)| = q−saα

satisfies χ̂N (m) = 1. This completes the proof of the proposition for the function χ̂Nf
(P )
nαs.

The proof for the function χNf
(P )
nαs is the same: Instead of using Equation (1.9), one uses

that χN (m) equals 1 if and only if |α(m)| < 1 for all roots α ∈ ∆P . Therefore the element m

lies in the acute Weyl chamber if and only if

(1.11) | det(m1)|1/n1 < | det(m2)|1/n2 < · · · < | det(mk)|1/nk .

This completes the proof. �

1.6. Computation of some compact traces. In this subsection we compute compact

traces against the trivial representation and the Steinberg representation.

Definition 1.12. If π is an unramified representation of some Levi subgroupM of G then

we write ϕM,π ∈ M̂ for the Hecke matrix of this representation. We recall the definition of

the Hecke matrix. For an unramified representation π of G there exists a smooth unramified

character χ of the torus T and a surjection IndGP0
(χ) ։ π. Fix such a character χ together

with such a surjection. Let T̂ be the complex torus dual to T . We compose any rational

cocharacter F× → T (F ) with χ, and then we evaluate this composition at the prime element

̟F . This yields an element of Hom(X∗(T ),C×). The set Hom(X∗(T ),C×) is equal to the set

X∗(T̂ ) ⊗ C× = T̂ (C). Thus we have an element of T̂ (C) well-defined up to the action of the

rational Weyl-group of T in M . This element in T̂ (C) is the Hecke matrix ϕM,π ∈ M̂ .

Proposition 1.13. Let f ∈ H0(G) be a spherical function on G. Let StG be the Steinberg

representation of G. The compact trace Tr(χG
c f, StG) is equal to εP0ST (χ̂N0f

(P0))(ϕ
T,δ

1/2
P0

).
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Proof. By Proposition 1.3 we have

Tr(χG
c f, π) =

∑

P=MN

εP Tr(χ̂Nf
(P ), (StG)N (δ

−1/2
P )).

The normalized Jacquet module (StG)N (δ
−1/2
P ) at a standard parabolic subgroup P = MN

is equal to an unramified twist of the Steinberg representation of M (cf. [5, thm 1.7(2)]).

Assume that the parabolic subgroup P = MN ⊂ G is not the Borel subgroup. Then the

representation StM of M is ramified while the function χ̂Nf
(P ) is spherical. The contribution

of P thus vanishes and consequently only the term corresponding to P0 remains in the above

formula. The Jacquet module (StG)N0 is equal to 1(δP0). This completes the proof. �

Lemma 1.14. Let P = MN be a standard parabolic subgroup of G which is proper. Let

f ∈ H0(G) be a homogeneous spherical function of degree coprime to n. Then χG
c f

(P ) = 0.

Proof. Write s for the degree of f . Let (na) be the composition of n corresponding to

P . We may write χG
c = χM

c χ
G
M as functions on M , where χG

M ∈ C∞(M) is the characteristic

function of the set of elements m = (ma) ∈M =
∏k

a=1Gna such that

(1.12) | detm1|1/n1 = | detm2|1/n2 = · · · = | detmk|1/nk .

We claim that χG
Mf

(P ) = 0. Let m = (ma) ∈ M be an element such that f (P )(m) 6= 0

and χG
M (m) 6= 0. Thus Equation (1.12) is true for (ma). Let sa be the integer such that

| detma| = q−sa . From Equation (1.12) we obtain that sa
na

= sb
nb

for all indices a and b. We

have s1 + s2 + . . . + sk = s. Use the argument at Equation (1.7) to obtain sa
na

= s
n for all

indices a. We find in particular that na
s
n is an integer. Because n and s are coprime this

implies that na = n, i.e. that P = G. This completes the proof. �

Proposition 1.15. Let f ∈ H0(G) be a homogeneous function of degree s. Assume s is

prime to n. The compact trace Tr(χG
c f,1) is equal to εP0 Tr(χ

G
c f, StG).

Proof. For the trivial representation 1 of G we have the character identity 1 =∑
P=MN εP εP0Ind

G
P (StM (δ

−1/2
P )) holding in the Grothendieck group of G. By the Propo-

sition 1.5 we have

Tr(χG
c f, Ind

G
P (StM (δ

−1/2
P ))) = Tr(χG

c f
(P ), StM (δ

−1/2
P )).

By Lemma 1.14 we have χG
c f

(P ) = 0 if P is proper. The statement follows. �

Example. We claim that the polynomial ST (χN0f
(P0)
nαs ) in the ring C[X±1

1 , X±1
2 , . . . X±1

n ]

is equal to the polynomial qα
s(n−s)

2
∑
Xα

i1
Xα

i2
· · ·Xα

is
where the indices i1, i2, . . . , is in the sum

range over the set {1, 2, . . . , n} and satisfy the conditions (1) i1 < i2 < i3 < . . . < is; (2)

i1 = 1; (3) If s > 1 then for each subindex j ∈ {2, . . . , s} we have ij < 1 + n
s (j − 1). The

verification is elementary from Equation (4.3) but let us give details anyway. Let (si) be an
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extended composition of s of length n with si ∈ {0, 1} for all i and assume that the monomial

M(si) := Xαs1
1 Xαs2

2 · · ·Xαsn
n occurs in ST (χN0f

(P0)
nαs ) with a non-zero coefficient. We have

(1.13) s1 + s2 + . . .+ si >
s

n
i

for all i < n. Define for each subindex j ≤ s the index ij to be equal to inf{i : s1+s2+. . .+si =
j}. With this choice for ij we have M(si) = Xα

i1
Xα

i2
· · ·Xα

is
. Equation (1.13) forces i1 = 1

and for all j ≤ s − 1 that ij+1 − 1 is equal to the supremum sup{i : s1 + s2 + . . . + si = j}.
Consequently j > s

n(ij+1 − 1) for all j ≤ s − 1. By replacing j by j − 1 in this last formula

we obtain for all j with 2 ≤ j ≤ s the inequality

ij < 1 + (j − 1)
n

s
.

In the inverse direction, starting from this inequality for all j together with the condition

“i1 = 1” we may go back to the inequalities in Equation (1.13). This proves the claim.

Example. We have

Tr(χG
c fnα1,1) = 1

Tr(χG
c fnα2,1) = 1 + qα + q2α + . . .+ qα(⌊

n
2
⌋−1).

2. Discrete automorphic representations and compact traces

We introduce two classes of semi-stable representations, the Speh representations and the

rigid representations which are certain products of Speh representations. Then we deduce from

the Moeglin-Waldspurger classification the possible components at p of discrete automorphic

representations in the semi-stable case.

Let x, y be integers such that n = xy. We define the representation Speh(x, y) of G to

be the unique irreducible quotient of the representation | det | y−1
2 StGx × | det |

y−3
2 StGx × · · · ×

| det |− y−1
2 StGx where the product means unitary parabolic induction from the standard para-

bolic subgroup of Gn with y blocks and each block of size x. A semi-stable Speh representation

of G is, by definition, a representation isomorphic to Speh(x, y) for some x, y with n = xy.

We emphasize that we did not introduce all Speh representations, we have introduced only

the ones which are semi-stable.

A smooth representation πp ofG is called semi-stable rigid representation if it is isomorphic

to a representation of the following form. Consider the following list of data

• k ∈ {1, 2, . . . , n};
• for each a ∈ {1, 2, . . . , k} an unitary unramified character εa : G→ C×;

• for each a ∈ {1, 2, . . . , k} a real number ea in the open (real) interval (−1
2 ,

1
2);

• positive integers y, x1, x2, . . . , xk such that n
y =

∑k
a=1 xa,
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then we form the representation

IndGP

k⊗

a=1

Speh(xa, y)(εa| · |ea),

where P = MN ⊂ G is the parabolic subgroup corresponding to the composition (yxa) of n

and where the tensor product is taken along the blocks of M =
∏k

a=1Gyxa . We remark that

these representations are irreducible.

Theorem 2.1 (Moeglin-Waldspurger). Let F be a number field and let v be a finite place

of F . Let πv be the local factor at v of a discrete (unitary) automorphic representation π of

GLn(AF ). Assume that πv is semi-stable. Then πv is a semi-stable rigid representation.

Remark. Let πv be a semi-stable component of a discrete automorphic representation, as

considered in the Theorem 2.1. Then using the definition of rigid representation we associate,

among other data, to πv the real numbers ea in the open interval (−1
2 ,

1
2) (see above). The

Ramanujan conjecture predicts that the numbers ea are 0. This conjecture is proved in the

restricted setting of Section §3 where we work with automorphic representations occurring in

the cohomology of certain Shimura varieties. Therefore the numbers ea, which a priori could

be there, will not play a role for us.

Proof of Theorem 2.1. By the classification of the discrete spectrum of GLn(AF ) in

[80] there exist

• a decomposition n = xy, x, y ∈ Z≥1;

• a cuspidal automorphic representation ω of GLx(AF );

• a character ε : GLn(AF )→ C×,

such that after twisting by ε, the representation π is the irreducible quotient J of the induced

representation I which is equal to Ind
GLn(AF )
Px(AF )

(
ω| · | y−1

2 , . . . , ω| · | 1−y
2

)
. In this formula the

induction is unitary and Px = MxNx ⊂ GLn is the standard parabolic subgroup of GLn

with y-blocks, each one of size x × x. By applying the local component functor [86, prop

2.4.1] to the surjection I ։ J we obtain a surjection Iv ։ Jv. The component at v of Iv is

simply Ind
GLn(Fv)
Px(Fv)

(
ωv| · |

y−1
2 , . . . , ωv| · |

1−y
2

)
. The representation ωv is a factor of a cuspidal

automorphic representation of GLx(AF ) and therefore generic 2.

From this point onwards we work locally at v only, so we drop the GLn(Fv)-notation and

write simply Gn. By the Zelevinsky classification of p-adic representations [105] any generic

representation is of the form σ1| det |e1 × σ2| det |e2 × · · · × σk| det |ek where the σa are square

integrable representations and the ea ∈ R lie in the open interval (−1
2 ,

1
2). The σa are equal to

the unique irreducible subquotient of a representation of the form ρ×ρ| det |2×· · ·×ρ| det |k−1

where ρ is cuspidal and where the central character of ρ| det | k−1
2 is unitary. We assumed that

2. This follows from the results in [93], combined with the method in [48], see the discussion on the end

of page 172 and beginning of page 173 in the introduction to [93].
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πv is semi-stable. Therefore ρ is semi-stable and cuspidal, and therefore a one-dimensional

unramified character. This implies that σa is equal to StGna
(εa) for some na ∈ Z≥0 and

some unramified unitary character εa of Gna . Thus σa is equal to StGn1
(ε1)| det |e1 × · · · ×

StGnk
(εk)| det |ek . For the representation Iv we obtain

Iv = ωv| det |
y−1
2 × · · · × ωv| det |

1−y
2

= (σ1| det |e1 × · · ·σr| det |er) | det |
y−1
2 × · · · × (σ1| det |e1 × · · ·σr| det |er) | det |

1−y
2

=
k∏

a=1

(
σa| det |ea+

y−1
2 × · · · × σa| det |ea+

1−y
2

)
.

For each a, the representation σa| det |ea+
y−1
2 × · · · × σa| det |ea+

1−y
2 has

Speh(xa, y)(εa| det |ea) as (unique) irreducible quotient. Thus we obtain a surjection

Iv ։
∏k

a=1 Speh(xa, y)(εa| det |ea). The representations Speh(xa, y)(εa) are unitary and be-

cause |ea| is strictly smaller than 1
2 it is impossible to have a couple of indices (a, b) such that

the representation Speh(xa, y)(εa| det |ea) is a twist of Speh(xb, y)(εb| det |eb) with | det |. By

the Zelevinsky segment classification it follows that the product
∏k

a=1 Speh(xa, y)(εa| det |ea)
is irreducible. By uniqueness of the Langlands quotient the representation Jv is isomorphic

to the product
∏k

a=1 Speh(xa, y)(εa| det |ea), as required. �

Proposition 2.2. Let π be a semi-stable rigid representation of G = GLn(F ) where F

is a finite extension of Qp. Let f be a homogeneous function in H0(G) of degree s coprime

to n, then the compact trace Tr(χG
c f, π) vanishes unless π is the trivial representation or the

Steinberg representation.

Proof. Assume that Tr(χG
c f, π) is non-zero. By Proposition 1.5 the compact trace of

χG
c f

(P ) against the representation
⊗k

i=1 Speh(xi, y)(εa| · |ea) is non zero. The truncated con-

stant term χG
c f

(P ) vanishes if the parabolic subgroup P ⊂ G is proper (Lemma 1.14). There-

fore π is a Speh-representation; say x and y are its parameters. The character formula of

Tadic [99, p. 342] expresses π as an alternating sum of induced representations:

| det |x+y
2 u(Stx, y) =

∑

w∈S′
y

ε(w)

y∏

i=1

δ[i, x+ w(i)− 1] ∈ R

(for notations see [loc. cit ]). The compact trace on all these induced representations van-

ish unless they are induced from the parabolic subgroup P = G. This is true only if the

representation δ[i, x + w(i) − 1] is the unit element in R for all indices except one, i.e. if

(x + w(i) − 1) − i + 1 = 0. After simplifying we find that w(i) = i − x for all indices i

except one. Make the assumption that y > 1. Then clearly, if x > 1, the number i − x is

non-positive for the indices i = 1 and i = 2. It then follows that w(i) is non-positive for

i = 1 or i = 2. However, that is impossible because w is a permutation of the index set
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{1, 2, . . . , y}. The conclusion is that either y = 1 or x = 1. But then π is the Steinberg or the

trivial representation. �

3. The basic stratum of some Shimura varieties associated to division algebras

In this section we establish the main result of this chapter.

3.1. Notations and assumptions. As explained in the introduction, we place ourselves

in a restricted version of the setting of Kottwitz in the article [58]. We start by copying some

of the notations from that article. Let D be a division algebra over Q equipped with an

anti-involution ∗. Let Q be the algebraic closure of Q inside C. Write F for the center of

D and we embed F into Q. We assume that F is a CM field and we assume that ∗ induces
the complex conjugation on F . We write F+ for the totally real subfield of F and we assume

that F decomposes into a compositum KF+ where K/Q is quadratic imaginary. Let n be the

positive integer such that n2 is the dimension of D over F . Let G be the Q-group such that for

each commutative Q-algebra R the set G(R) is equal to the set of elements x ∈ D⊗Q R with

xx∗ ∈ R×. The mapping c : G→ Gm,Q defined by x 7→ xx∗ is called the factor of similitudes.

Let h0 be an algebra morphism h0 : C → DR such that h0(z)
∗ = h0(z) for all z ∈ C. We

assume that the involution x 7→ h0(i)
−1x∗h0(i) is positive. We restrict h0 to C× to obtain a

morphism h from Deligne’s torus ResC/RGm,C to GR; we let X be the G(R) conjugacy class

of 3 h−1. Let µ ∈ X∗(G) be the restriction of h ⊗ C : C× × C× → G(C) to the factor C× of

C××C× indexed by the identity isomorphism C
∼→ C. We write E ⊂ Q for the reflex field of

this Shimura datum (see below for a description of E). We obtain varieties ShK defined over

the field E and these varieties represent corresponding moduli problems of Abelian varieties

of PEL-type as defined in [59].

Let p be a prime number where the group GQp is unramified over Qp, and the conditions of

[59, §5] are satisfied so that the moduli problem and the variety ShK extend to be defined over

the ring OE ⊗Zp [loc. cit.]. We assume that the prime p splits in the field K. Let K ⊂ G(Af)

be a compact open subgroup, of the form K = KpK
p, with Kp ⊂ G(Qp) hyperspecial (coming

from the choice of a lattice and extra data, see [loc. cit., §5]). Furthermore, we assume that

Kp ⊂ G(Ap
f ) is small enough such that ShK/OE⊗Zp is smooth [loc. cit, §5]. Fix an embedding

νp : E → Qp. The embedding νp induces an E-prime p lying above p. We write Fq for the

residue field of E at the prime p.

Let ξ be an irreducible algebraic representation over Q of GQ and let L be the local system

corresponding to ξ ⊗ C on the variety SK,OEp
. Let g be the Lie algebra of G(R) and let K∞

be the stabilizer subgroup in G(R) of the morphism h. Let f∞ be a function at infinity whose

stable orbital integrals are prescribed by the identities of Kottwitz in [57]; it can be taken

3. The reason for this sign is that the formula conjectured by Kottwitz in the article [58] turned out to be

slightly mistaken. When Kottwitz proved his conjecture in [59] he found that a different sign should be used.

However he did not change the sign in the conclusion of his theorem, rather he introduced it at the beginning

by replacing h by h−1. We follow the conventions of Kottwitz because we refer to both articles constantly.
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to be (essentially) an Euler-Poincaré function [58, Lemma 3.2] (cf. [27]). The function has

the following property: Let π∞ be an (g,K∞)-module occurring as the component at infinity

of an automorphic representation π of G. Then the trace of f∞ against π∞ is equal to the

Euler-Poincaré characteristic
∑∞

i=0N∞(−1)i dimHi(g,K∞;π∞ ⊗ ξ), where N∞ is a certain

explicit constant (cf. [58, p. 657, Lemma 3.2]). Let ℓ be an auxiliary prime number (different

from p) and Qℓ an algebraic closure of Qℓ together with an embedding Q ⊂ Qℓ. We write L
for the ℓ-adic local system on ShK,OEp

associated to the representation ξ ⊗Qℓ of GQℓ
.

Because p splits in the extension K/Q, the group GQp splits into a direct product of

general linear groups:

(3.1) GQp
∼= Gm,Qp ×

∏

℘|p
ResF+

℘ /Qp
GLn,F+

℘
,

where the product ranges over the set of F+-places above p. Observe that we wrote ‘∼=’ and

not ‘=’. The choice of an isomorphism amounts to the choice of, for each F+-place ℘ of an

F -place ℘′ above ℘. Recall that we have embedded K into C and that F = K⊗F+. Therefore,

we have in fact for each ℘ such an ℘′. We fix for the rest of this chapter in Equation 3.1

the isomorphism corresponding to this choice of F -primes above the F+-primes above p. We

write TQp ⊂ GQp for the diagonal torus. Observe that the group GQp has an obvious model

over Zp; we will write GZp for this model, and we assume Kp = GZp(Zp).

The field E is included in the field F . We copy Kottwitz’s description of the reflex field

E (cf. [58, p. 655]). Consider the subgroup consisting of the elements g ∈ G whose factor

of similitudes is equal to 1. This subgroup is obtained by Weil restriction of scalars from an

unitary group U defined over the field F+. Let v : F+ → R be an embedding and let v1, v2

be the two embeddings of F into C that extend v. We associate a number nv1 to v1 and

a number nv2 to v2 such that the group U(R, v) is isomorphic to the standard real unitary

group U(nv1 , nv2). The group Aut(C/Q) acts on the set of Z-valued functions on Hom(F,C)

by translations. The reflex field E is the fixed field of the stabilizer subgroup in Aut(C/Q) of

the function v 7→ nv.

We write V (F+) := Hom(F+,Q). We identify V (F+) with Hom(F+,Qp) via the em-

bedding νp, and also with Hom(F+,R) via the inclusion F+ ⊂ R. In particular V (F+) is a

Gal(Qp/Qp)-set and a Gal(C/R)-set. For every F+-prime ℘ above p we write V (℘) for the

Galois orbit in V (F+) corresponding to ℘.

We have embedded the field K into C, and thus each Gal(C/R)-orbit in V (F+) contains

a distinguished point, i.e. for each each embedding v : F+ → C we have a distinguished

extension v1 : F → C. We write sv for the number nv1 . We define s℘ :=
∑

v∈V (℘) sv. We

define Unr+p to be the set of F+-places ℘ above p such that s℘ = 0, and Ram+
p to be the set

of F+-places above p such that s℘ > 0. We work under one additional technical assumption:

We assume that for every ℘ ∈ Ram+
p the number s℘ is coprime with n.



42 2. THE COHOMOLOGY OF THE BASIC STRATUM I

3.2. Isocrystals and the basic stratum. Write AK for the universal Abelian variety

over ShK and λ, i, η for its additional PEL type structures [59, §6]. Let L be the completion

of the maximal unramified extension of Qp contained in Qp. Then Ep,α is a subfield of L. Let

α > 0 be a positive integer, write Ep,α ⊂ Qℓ for the unramified extension of degree α of Ep,

and write Fqα for the residue field of Ep,α. We write σ for the automorphism of L acting by

x 7→ xp on the residue field of L. We write V for the Dopp-module with space D where an

element d ∈ Dopp acts on the left through multiplication on the right on the space D.

Let x ∈ ShK(Fqα) be a point. The rational Dieudonné module D(AK,x)Q is an (Ep,α/Qp)-

isocrystal. The couple (λ, i) induces via the functor D(�)Q additional structures on this

isocrystal. There exists an isomorphism ϕ : V ⊗ Ep,α
∼→ D(AK,x)Q of skew-Hermitian B-

modules [59, p. 430], and via this isomorphism we can send the crystalline Frobenius on

D(AK,x)Q to a σ-linear operator on V ⊗ Ep,α. This operator on V ⊗ Ep,α may be written

in the form δ · (idV ⊗σ) where δ ∈ G(Ep,α) is independent of ϕ up to σ-conjugacy. We also

have the L-isocrystal D(AK,x ⊗ Fq)Q = D(AK,x)L inducing in the same manner an element

of G(L), well defined up to σ-conjugacy. Let B(GQp) be the set of all σ-conjugacy classes

in G(L) from [55]. This set classifies the L isocrystals with additional GQp-structure up to

isomorphism.

In the articles [88] and [60] there is introduced the subset B(GQp , µQp
) ⊂ B(GQp) of µQp

-

admissible isocrystals. The point is that if an isocrystal arises from some element x ∈ ShK(Fq)

then this isocrystal is always µQp
-admissible. The set B(GQp) can be described explicitly as

follows. We have GQp = Gm,Qp × ResF+
Qp

/Qp
GLn,F+

Qp
inducing the decomposition

B(GQp) = B(Gm)×
∏

℘|p
B(ResF+

℘ /Qp
GLn,F+

℘
).

Write µ℘ for the component at ℘ of the cocharacter µ. Fix one ℘|p. There is the Shapiro

bijection [60, Eq. 6.5.3]

B(ResF+
℘ /Qp

GLn,F+
℘
, µ℘) = B(GLn,F+

℘
, µ′℘)

where the right hand side is the set of σ[F
+
℘ :Qp]-conjugacy classes in GLn(L) and µ

′
℘ is defined

by

µ′℘
def
=

∑

v∈V (℘)

(1, 1, . . . , 1︸ ︷︷ ︸
sv

, 0, 0, . . . , 0︸ ︷︷ ︸
n−sv

) ∈ Zn.

There is an unique element b ∈ B(GQp) with the property that, for each ℘, the corresponding

isocrystal b′℘ in B(GLn,F+
℘
, µ′℘) has precisely one slope (i.e. b is basic). This slope must then

be
s℘
n because the end point of the Hodge polygon of µ′℘ is (n, s℘). The component of b at

the factor of similitude is the σ-conjugacy class equal to the set of elements x ∈ L× whose

valuation is equal to 1.

Lemma 3.1. We have (n, s℘) = 1 if and only if the isocrystal V℘ is simple.
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Proof. We have V℘ = V m
λ where Vλ is the simple object of slope λ =

s℘
n . In case s℘ and

n are coprime this simple object is of height n; otherwise its height is strictly less than n, and

it occurs with positive multiplicity. �

The isocrystal b introduced above characterises the basic stratum B ⊂ ShK,Fq as the

reduced subscheme such that for all points x ∈ B(Fq) the isocrystal associated to the Abelian

variety AK,x is equal to b. The variety B is projective, but in general not smooth 4.

The Hecke correspondences on ShK may be restricted to the subvariety ι : B →֒ ShK,Fq .

The algebra H(G(Af)) and the Galois group Gal(Fq/Fq) act on the cohomology spaces

Hi
ét(BFq

, ι∗L), and these actions cummute with each other.

3.3. The function of Kottwitz. Let α be a positive integer. Let Ep,α/Ep be an un-

ramified extension of degree α. We write φα for the characteristic function of the double coset

G(OEp,α)µ(p
−1)G(OEp,α) in G(Ep,α). The function fα is by definition obtained from φα via

base change from G(Ep,α) to G(Qp). We call the functions fα the functions of Kottwitz ; these

functions play a fundamental role in the point-counting formula of Kottwitz for the number

of points of the variety ShK over finite fields. In this section we give an explicit description

of these functions fα of Kottwitz.

Definition 3.2. Let ℘ be an F+-place above p. We write Vα(℘) for the set of

Gal(Qp/Ep,α)-orbits in the set V (℘), and Vα(F
+) for the set of Gal(Qp/Ep,α) orbits in the

set V (F+). If v ∈ Vα(F
+) is such an orbit, then this orbit corresponds to a certain finite

unramified extension Ep,α[v] of Ep,α. Let αv be the degree over Qp of the field Ep,α[v], we

then have Ep,α[v] = Ep,αv .

Remark. Let v be an element of Vα(℘), then the number sv is independent of the choice

of representative v ∈ v.

Remark. Observe that if F+ is Galois over Q, then all the Galois orbits in V (F+) have

the same length.

Proposition 3.3. The function fα is given by

fα = 1q−αZ×
p
⊗
⊗

℘|p

∏

v∈Vα(℘)

f
GLn(F

+
℘ )

nαvsv ∈ H0(G(Qp)),

where the product is the convolution product.

Proof. We have the Gal(Qp/Qp)-set V (F+) = Hom(F+,Qp). This Galois set is un-

ramified and we have the Frobenius σ acts on V (F+). The Galois set V (F+) decomposes:

V (F+) =
∐

℘|p V (℘), where V (℘) := Hom(F+
℘ ,Qp). We have

F+ ⊗ Ep,α =
∏

℘|p
(Ep,αv)

#Vα(℘).

4. The only cases where we know it is smooth is when it is a finite variety.
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Because p splits in K we have K ⊂ Qp ⊂ Ep,α and therefore

(3.2) G(Ep,α) = E×
p,α ×

∏

℘|p

∏

v∈Vα(℘)

GLn(Ep,αv).

Recall that, by the definition of the reflex field, if two elements v, v′ ∈ V (F+) lie in the same

σ[Ep:Qp]-orbit, then sv = sv′ . Thus, with respect to the decomposition in Equation (3.2) we

may write

φα = 1p−1OEp,α
⊗
⊗

℘|p

⊗

v∈Vα(℘)

1GLn(OEp,αv
) · µv(p−1) · 1GLn(OEp,αv

) ∈ H0(G(Ep,α)),

where µv is the cocharacter (µsv)
[Ep,αv :Ep,α] ∈ X∗(ResEp,αv/Ep,α

Gn
m) = Zn·[Ep,αv :Ep,α].

The explicit description of fα now follows by applying the base change morphism from

the spherical Hecke algebra of the group G(Ep,α) to the spherical Hecke algebra of the group

G(Qp) = Qp
× ×∏℘|pGLn(F

+
℘ ). This completes the proof. �

3.4. An automorphic description of the basic stratum. Let ι be the inclusion

B →֒ ShK,Fq . For each positive integer α and each f∞p ∈ H(G(Ap
f )) we define the constant

TB(f
p, α)

def
=

∞∑

i=0

(−1)iTr(f∞p × Φα
p ,H

i
ét(BFq

, ι∗L)).

We write f for the function f∞pfαf∞ in the Hecke algebra of G and similarly for χ
G(Qp)
c f

even though the truncation occurs only at p.

We first give an automorphic expression for the trace TB(f
p, α) for all sufficiently large

integers α.

Proposition 3.4. There exists an integer α0 depending on the function fp such that

TB(f
p, α) equals Tr(χ

G(Qp)
c f,A(G)) for all α ≥ α0.

Proof. The main theorem of the article [59] gives an equation of the form

(3.3)

|Ker1(Q, G)|·
∑

x′∈FixΦα
p ×f∞p (Fq)

Tr(Φα
p×f∞p,Lx) =

∑

(γ0;γ,δ)

c(γ0; γ, δ)Oγ(f
∞p)TOδ(φα) Tr ξC(γ0),

the notations are from [loc. cit ], see especially §19. (In the above formula the point x

associated to an x′ ∈ FixBΦα
p×f∞p is the image of x′ in B via the canonical map FixBΦα

p×f∞p →
B.) We restrict this formula to the basic stratum B by considering on the right hand side

only basic Kottwitz triples. In this context basic means that the stable conjugacy class γ0 in

(γ0; γ, δ) is compact at p, or, equivalently that the isocrystal corresponding to δ is the basic

isocrystal in B(GQp , µ). The elements x′ ∈ FixΦα
p×f∞p(Fq) in the sum in the left hand side of

the Equation then have to be restricted to range over the set of fix points FixBΦα
p×f∞p of the

correspondence Φα
p × f∞p acting on the variety B. Everything else remains unchanged. This
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follows from the arguments of Kottwitz given for the above equation (see [loc. cit, §19], cf.
Scholze [92, Prop. 6.6]).

From Fujiwara’s trace formula [40, thm 5.4.5] we obtain

TB(f
p, α) =

∑

x′∈FixB
Φα
p ×f∞p(Fq)

Tr(Φα
p × f∞p, ι∗Lx)

for α large enough; say that this formula is true for all α ≥ α0. Note that in Fujiwara’s

statement the integer α0 depends on the correspondence and the sheaf L.
We recall the definition of the normN of (certain) σ-conjugacy classes (cf. [4] [53, p. 799]).

To any element δ ∈ G(Fα) we associate the element N(δ) := δσ(δ) · · ·σα−1(δ) ∈ G(Fα). For

any element δ ∈ G(Fα), defined up to σ-conjugacy, with semi-simple norm N(δ) one proves

(see [loc. cit.]) that N(δ) actually comes from a conjugacy class N (δ) in the group G(F ).

The element δ ∈ G(Ep,α) is called σ-compact if its norm N (g) is a compact conjugacy

class in G(Qp). Let χ
G(Qp)
c be the characteristic function on G(Qp) of the subset of compact

elements (cf. §1.2). We let χ
G(Ep,α)
σc be the characteristic function on G(Ep,α) of the set of

σ-compact elements. Consequently TB(f
∞p, α) is equal to

∑

(γ0;γ,δ)

c(γ0; γ, δ)Oγ(f
∞p)TOδ(χ

G(Ep,α)
σc φα) Tr ξC(γ0)

where (γ0; γ, δ) ranges over all Kottwitz triples. Kottwitz has pseudo-stabilized this formula:

τ(G)
∑

(γ0;γ,δ)

∑

κ∈K(I0/Q)

〈α(γ0; γ, δ),s〉e(γ, δ)Oγ(f
∞p)TOδ(χ

G(Ep,α)
σc φα) Tr ξC(γ0)·

·Vol(AG(R)
0\I(∞)(R))−1,(3.4)

see [57, Eq. (7.5)]. By the base change fundamental Lemma (see [22] and [56]) the functions

φα and fα have matching stable orbital integrals (the functions are associated). By construc-

tion of the function χ
G(Ep,α)
σc this is then also the case for the truncated functions χ

G(Ep,α)
σc φα

and χ
G(Qp)
c fα. The group G arises from a division algebra and therefore the group K(Gγ0/Q) is

trivial for any (semisimple) element γ ∈ G(Q) [58, Lemma 2]. Let γ∞ be a semisimple element

of G(R). Then the stable orbital integral SOγ∞(f∞) vanishes unless γ∞ is elliptic, in which

case it is equal to Vol(AG(R)0\I(R))−1e(I), where I denotes the inner form of the centralizer

of γ∞ in G that is anisotropic modulo the split center AG of G [58, Lemma 3.1]. Consequently

Equation (3.4) is equal to the stable formula τ(G)
∑

γ0
SOγ0(f

∞p(χ
G(Qp)
c fα)f∞).

By the argument at [58, Lemma 4.1] the above stable formula is the geometric side of

the trace formula for the group G and the function χ
G(Qp)
c f ; therefore it is equal to the trace

of χ
G(Qp)
c f on the space of automorphic forms A(G) on G. We have obtained that TB(f

p, α)

equals Tr(χ
G(Qp)
c f,A(G)) for all α ≥ α0. �
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Definition 3.5. We call a smooth representation πp of G(Qp) of Steinberg type if the

following two conditions hold: (1) For all F+-places ℘ above p we have

π℘ =




StGLn(F

+
℘ ) ⊗ φ℘ ℘ ∈ Ram+

p

Generic unramified ℘ ∈ Unr+p

where φ℘ is an unramified character. (2) The factor of similitudes Qp
× of G(Qp) acts through

an unramified character on the space of πp.

Lemma 3.6. Let π be an automorphic representation of G. Then π is one-dimensional if

the component π℘ is one-dimensional for some F+-place ℘ above p.

Proof. Assume π℘ is one-dimensional. By twisting π with a character we may assume

that π℘ is the trivial representation. Let H ⊂ G(Af) be a compact open subgroup such

that πH 6= 0. We embed π in the space of automorphic forms on G. Then elements of π

are complex valued functions on G(A). The group U ⊂ G is the unitary group of elements

whose factor of similitude is trivial, and this group U arises by restriction of scalars from

a unitary group U ′ over F+. Let SU be the derived group of U ′. Then SU is a simply

connected algebraic group over F+. We may restrict the automorphic representation π of G

to obtain a representation of the group SU(AF+) (which is reducible in general). Let h ∈ π
be an element, then h is a complex valued function on G(AF+) invariant under the groups

SU(F+), H and also under the group SU(F+
℘ ) because π℘ is the trivial representation. By

strong approximation for the group SU we see that SU(AF+) acts trivially on h ∈ πH . Thus

SU(AF+) acts trivially on the space π. Therefore π is an Abelian automorphic representation

of G and thus one-dimensional. �

Proposition 3.7. For all α ≥ α0 the trace TB(f
p, α) is equal to

(3.5)
∑

π⊂A(G)
dim(π)=1,πp=Unr

Tr(χ
G(Qp)
c f, π) +

∑

π⊂A(G)
πp= St. type

Tr(χ
G(Qp)
c f, π),

where both sums range over the irreducible subspaces of A(G).

Proof. Fix throughout this proof an automorphic representation π ⊂ A(G) of G such

that Tr(χ
G(Qp)
c f, π) 6= 0. We base change π to an automorphic representation BC(π) of the

algebraic group K× × D×. Here we are using that D is a division algebra and therefore

the second condition in Theorem A.3.1(b) of the Clozel-Labesse appendix in [65] is satisfied

(cf. [45, §VI.2] and [96]). In turn we use the Jacquet-Langlands correspondence [101] (cf. [45,

§VI.1] and [6]) to send BC(π) to an automorphic representation Π := JL(BC(π)) of the Q-

group G+ = ResK/QGm × ResF,QGLn,F .

The transferred representation Π is discrete and θ-stable, meaning that Π is isomorphic

to the representation Πθ obtained from Π by precomposition G+(A)→ G+(A)→ EndC(Π)
×

with θ. Because Π is a subspace of the space of automorphic forms A(G+) it comes with a
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natural intertwining operator Aθ : Π
∼→ Πθ induced from the action of θ on A(G+) (here we

are using that multiplicity one is true for the discrete spectrum of G+). The group G+(Qp)

is isomorphic to G(Qp)×G(Qp) and the representation Πp is isomorphic to πp⊗πp. We have

Tr(χ
G(Qp)
c fα, πp) 6= 0. Therefore πp is semi-stable by Corollary 1.4. For each F+-prime ℘

the component π℘ is equal to a component Π℘′ for some (any) F -place ℘′ above ℘. As the

representation Π is a discrete automorphic representation of the group G+(A) the component

π℘ = Π℘′ is a semi-stable rigid representation by the Moeglin-Waldspurger theorem (Theorem

2.1).

We prove a lemma before finishing the proof of Proposition 3.7.

Lemma 3.8. Assume that π is infinite dimensional and that Tr(χ
G(Qp)
c fα, π) 6= 0. Then

the transferred representation Π is cuspidal.

Proof. We use the divisibility conditions on n and s℘ to see that Π is cuspidal: Because

of these conditions, the Proposition 2.2 implies that the component π℘ of π at the prime ℘ is an

unramified twist of either the trivial representation or of the Steinberg representation if ℘ lies

in the set Ram+
p , i.e. if the basic isocrystal is not étale at ℘. The trivial representation is not

possible by the Lemma 3.6 and the assumption that π is infinite dimensional. There is at least

one ℘ such that b℘ is not étale (thus Ram+
p 6= 0), and therefore the discrete representation Π is

an unramified twist of the Steinberg representation at some finite F+-place. By the Moeglin-

Waldspurger classification of the discrete spectrum, the G+(A)-representation Π must be

cuspidal. �

Continuation of the proof of Proposition 3.7. If the prime ℘ ∈ Unr+p is such that the basic

isocrystal at ℘ is étale at ℘ then the function χ
GLn(F

+
℘ )

c f℘ is simply the unit of the spherical

Hecke algebra, hence unramified, and therefore π℘ is an unramified representation; because

π℘ occurs in a cuspidal automorphic representation of G+(A) the representation π℘ is fur-

thermore generic by the result of Shalika [93]. By Lemmas 3.6 and 3.8 there are the following

possibilities for π. Either π is one-dimensional and the component πp is unramified, or π

is infinite dimensional, and the component πp is of Steinberg type. We have proved that

TB(f
p, α) is equal to

(3.6)
∑

π⊂A(G)
dim(π)=1

Tr(χ
G(Qp)
c f, π) +

∑

π⊂A(G)
πp= St. type

Tr(χ
G(Qp)
c f, π),

where both sums range over the irreducible subspaces of A(G). �

The main theorem is now essentially established, we only need to expand the above sums

slightly further using the calculations that we did in the first two sections.

We define a number ζπp ∈ C for the two types of representations at p that occur in

Equation (3.5): those of Steinberg type and the one-dimensional, unramified representations.
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Definition 3.9. Assume that πp = 1(φp) is unramified and one-dimensional. We define

(3.7) ζπp

def
= φc(q)

∏

℘∈Ram+
p

φ℘(q
s℘) ∈ C×,

where φc is the character by which the factor of similitude acts on the space of πp. Assume

that πp is of Steinberg type. Then for all ℘ ∈ Ram+
p we have π℘ ∼= StGLn(F

+
℘ )(φ℘) for some

unramified character φ℘ of F+×
℘ . Let φc be the character by which the factor of similitude of

G(Qp) acts on the space of πp. We define ζπp again by Equation (3.7).

Definition 3.10. Let π be a ξ-cohomological automorphic representation of G. The

center Z of G contains the torus Gm. We may precompose the central character ωπ of π with

the inclusion A× ⊂ Z(A) to obtain a character A× → C×. Let w ∈ Z be the unique integer

such that the composition

(3.8) A× −→ C× |·|−→ R×
>0

is the character || · ||w/2.

Lemma 3.11. Let π be a ξ-cohomological automorphic representation of G which is either

unramified and one-dimensional, or of Steinberg type at p. Then ζπ is a Weil-q-number of

weight w/n.

Proof. Let φ℘ be the character of GLn(F
+
℘ ) as defined in Equation 3.9. Let ωπ be the

central character of π. Then ωπ,℘ = φn℘ for all ℘ ∈ Ram+
p , and at the factor of similitude of

G(Qp) we have ωπ,c = φnc . Thus, the number ζπp is an n-th root of the number

(3.9) ηπp := ωc(q)
∏

℘∈Ram+
p

ωπ,℘(q
s℘) ∈ C×.

Thus, to prove that ζπ is Weil-q-number, it suffices to prove that ηπp is a Weil-q-number.

The central character ωπ is a Grössencharakter of the center Z ⊂ G. The center Z of G is

the set of elements z ∈ F× ⊂ D× such that the norm of z down to F+× lies in the subset

Q× ⊂ F+×. Because π is ξC cohomological we have ωπ,∞ = ξ−1
C |Z(R). Let UZ ⊂ Z be

the subtorus consisting of elements in F× whose norm to F+× is equal to 1. We have an

exact sequence µ2 ֌ UZ × Gm,Q ։ Z of algebraic groups over Q, where the injection is the

embedding on the diagonal and the surjection is the multiplication map ϕ : (u, x) 7→ ux. We

may restrict the character ωπ of Z(A) to the group UZ(A)×A× and we obtain in this manner

a character ωπ,1 of UZ(A) and a character ωπ,2 of A×.

The component at p of the mapping ϕ : UZ(A)× A× → Z(A) is the identity mapping

UZ(Qp)×Qp
× = F+×

Qp
×Qp

× −→ F+×
Qp
×Qp

× = Z(Qp).
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LetK1×K2 ⊂ U(A)×A× be a compact open subgroup such that ωπ,1 isK1-spherical and such

that ωπ,2 is K2-spherical. The group U(Q)K1\U(A) is compact and therefore the product
∏

℘∈Ram+
p

ωπ,℘(q
s℘) ∈ C×,

(cf. Equation (3.9)) is a Weil-q-number of weight 0. The group Q×K2\A× is non-compact

and thus ωπ,c(q) is a Weil-q-number whose weight is w, where w is defined in Definition 3.10.

This completes the proof. �

Definition 3.12. We write P (qα) for the trace Tr(χ
G(Qp)
c fα,1).

In general P (qα) is not a polynomial in qα, it depends on α in the following manner. The

explicit description of the function fα from Proposition 3.3 shows

(3.10) P (qα) =
∏

℘∈Ram+
p

Tr


χGLn(F

+
℘ )

c

∏

v∈V (℘)

f
GLn(F

+
℘ )

nαvsv ,1


 .

The traces in the product in Equation (3.10) are computed in Subsection 1.6 (see Proposition

1.15).

Remark. In general the function P (qα) is not a polynomial in qα. The number c℘,α

depends on the class of α in the group Z/MZ, whereM is large such that the algebra F+⊗Ep,M

is isomorphic to a product of copies of Ep,M . For the α that range over the elements of a

fixed class c ∈ Z/MZ there exists a polynomial Polc ∈ C[X] such that P (qα) = Polc|X=qα .

Theorem 3.13. The trace of the correspondence fp × Φα
p acting on the alternating sum

of the cohomology spaces
∑∞

i=0(−1)iHi
ét(BFq

, ι∗L) is equal to

(3.11)

|Ker1(Q, G)|P (qα)




∑

π⊂A(G)
dim(π)=1,πp=unr

ζαπ · Tr(fp, πp) + (−1)(n−1)·#Ram+
p

∑

π⊂A(G)
πp= St. type

ζαπ · Tr(fp, πp)


 .

for all positive integers α.

Proof. Assume that α ≥ α0. In Proposition 3.7 we established that

TB(f
p, α) =

∑

π⊂A(G)
dim(π)=1,πp=Unr

Tr(χ
G(Qp)
c f, π) +

∑

π⊂A(G)
πp= St. type

Tr(χ
G(Qp)
c f, π).

Let π be an automorphic representations contributing to one of the above two sums. We have

Tr(χ
G(Qp)
c f, π) = Tr(χ

G(Qp)
c fα, πp) Tr(f

p, πp).

For πp there are two possibilities: (1) πp is one-dimensional, (2) πp is of Steinberg type. In

the first case we have

Tr(χ
G(Qp)
c fα, πp) = ζαπ · P (qα).
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In the second case we have

Tr(χ
G(Qp)
c fα, πp) = ζαπ ·

∏

℘|p
Tr(χ

GLn(F
+
℘ )

c f℘, StGLn(F
+
℘ )).

By Proposition 1.15 we have Tr(χ
GLn(F

+
℘ )

c f℘, StGLn(F
+
℘ )) = (−1)n−1Tr(χ

GLn(F
+
℘ )

c f℘,1) and

therefore

Tr(χ
G(Qp)
c fα, πp) = ζαπ · (−1)(n−1)·#Ram+

p · P (qα).
Thus Equation (3.11) is true for all α ≥ α0; observe that it must then be true for all α > 0.

This completes the proof. �

4. Applications

In this section we deduce two applications from our main theorem. We first deduce an

expression for the zeta function of the basic stratum in terms of the cohomology of a complex

Shimura variety. In the second application we deduce an explicit formula for the dimension

of the variety B/Fq.

4.1. The number of points in B. Let Ip ⊂ Kp be the standard Iwahori subgroup

at p. We use Theorem 3.13 to deduce a formula for the zeta function of B in terms of the

cohomology of the complex variety ShKpIp(C).

Corollary 4.1. We have

#B(Fqα) = |Ker1(Q, G)|N∞P (q
α) ·


∑

1(φp)

∞∑

i=0

(−1)iζαπ dimHi(ShKpIp(C),L)[1(φp)]

+ (−1)(n−1)#Ram+
p

∑

πp St. type

∞∑

i=0

(−1)iζαπ dimHi(ShKpIp(C),L)[π
Ip
p ]


(4.1)

for all positive integers α. The numbers ζπ are roots of unity whose order is bounded by

n ·#(Z(Q)\Z(Af)/(K ∩ Z(Af))).

Proof. Take f∞p = 1Kp and ξC the trivial representation of GC. By the Grothendieck-

Lefschetz trace formula, the Theorem 3.13 provides an expression for the cardinal #B(Fqα)

for all positive integers α:

#B(Fqα) =P (q
α)




∑

π⊂A(G)
dim(π)=1,π∞=1

ζαφ · dim (πp)K
p


+

+ (−1)(n−1)#Ram+
p P (qα)




∑

π⊂A(G)
πp= St. type

ζαπ · ep(π∞) dim
(
πpf
)Kp


 ,(4.2)
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where ep(π∞) is the Euler-Poincaré characteristic
∑∞

i=0(−1)i dimHi(g,K∞;π∞). The repre-

sentation ξ at infinity is trivial; therefore the component at infinity of the central character of

any automorphic representation contributing to the sums in Equation (4.2) is trivial as well.

Thus the numbers ζαπ ∈ C× are roots of unity. The first part of the statement now follows

from the formula of Matsushima [10, Thm. VII.3.2]. The bound on the order of the roots of

unity ζπ follows from the proof of Lemma 3.11. �

Remark. Note that #B(Fqα) is (for sufficiently divisible α) a sum of powers of qα.

This suggests that B may have a decomposition in affine cells as in the case of signatures

(n− 1, 1); (n, 0), . . . (n, 0).

4.2. A dimension formula. In this subsection we show that the dimension of the variety

B/Fq can be deduced from Corollary 4.1. The strategy is to look for the highest order terms

in the combinatorial polynomials that describe the compact traces on the representations that

occur in the alternating sum of the cohomology of B.

Proposition 4.2. The dimension of the variety B/Fq is equal to

∑

℘∈Ram+
p


 ∑

v∈V (℘)

sv(1− sv)
2

+

s℘−1∑

j=0

⌈j n
s℘
⌉


 .

Proof. The Galois group Gal(Fq/Fq) acts through a finite cyclic group on the set of

geometric components of the variety B/Fq. In particular the α-th power of the Frobenius

does not permute these components if α is sufficiently divisible, say divisible by M ∈ Z

suffices. Assume from now on that M divides α. Then each irreducible component of the

variety BFqα
is a geometric component. Pick a component of maximal dimension and inside it

a dense open affine subset. By Noether’s normalization Lemma this affine subset is finite over

an affine space Ad
Fqα

where d is the dimension of B. Thus the number of Fqα-points in B is a

certain constant times qαd plus lower order terms. From Equation (4.1) we obtain a formula

of the form #B(Fqα) = P (qα) · C where C is a complicated constant equal to a difference of

dimensions of cohomology spaces.

There are two ways to see that the constant C is non-zero. First Fargues established

in his thesis [39] that the basic stratum is non-empty, and thus the constant C is non-

zero. Second, we sketch an argument for non-emptiness of B using Theorem 3.13. Use an

existence theorem of automorphic representations (for example [20]) to find after shrinking

the group K at least one automorphic representation π of G contributing to the sums in

Theorem 3.13. By base change and Jacquet-Langlands we can send any such automorphic

representation to an automorphic representation of the general linear group (plus similitude

factor). By strong multiplicity one for GLn the contributing automorphic representations

of G are determined up to isomorphism by the set of local components outside any given

finite set of places. Therefore we can find a Hecke operator fp acting by 1 on πp and by 0
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on all other automorphic representations contributing to Equation (4.2) (which are finite in

number). The trace of the correspondence fp × Φrα
p acting on the cohomology of the variety

B is then certainly non-zero. In particular the variety has non-trivial cohomology and must

be non-empty. Therefore the constant C is non-zero.

For the determination of the dimension we forget about the constant C. By increasing M

(and thus α) if necessary we may (and do) assume that the Ep,α-algebra F
+ ⊗ Ep,α is split.

Then, by Proposition 3.3 we have

fα = 1q−αZ×
p
⊗
⊗

℘|p

∏

v∈V (℘)

f
GLn(F

+
℘ )

nαsv ∈ H0(G(Qp)).

We make the formulas for the compact trace of fα on the trivial representation and on

the Steinberg representation explicit. Fix a ℘ and write f℘ for the component of the function

fα at the prime ℘. Write z := #V (℘). The Satake transform ST (χ̂N0f
(P0)
℘ ) is equal to the

polynomial

(4.3) qα
∑z

v=1
sv(n−sv)

2

∑

(t1i),(t2i),...,(tzi)

X
α(t11+t21+...+tz1)
1 X

α(t12+t22+...+tz2)
2 · · ·Xα(t1n+t2n+...+tzn)

n

in the ring C[X±1
1 , X±1

2 , . . . , X±1
n ]. In the above sum, for an index v given, the symbol

(tvi) ranges over the extended compositions of the number sv of length n with the following

properties:

(C1) for each index i we have tvi ∈ {0, 1};
(C1) define for each i the number ti to be the sum t1i + t2i + . . .+ tzi, then we have

(4.4) t1 + t2 + · · ·+ ti >
s℘
n
i,

for every index i ∈ {1, 2, . . . , n− 1}.
The highest order term of the polynomial P (qrα) corresponds to extended composition

(ti) of s defined by the equalities

t1 + t2 + t3 + . . .+ ti =
⌊
i
s℘
n

⌋
+ 1

for all i < n. This extended composition gives the monomial

qα
∑

v∈V (℘)
sv(n−sv)

2 Xα
1X

α
⌈ n
s℘

⌉X
α
⌈2 n

s℘
⌉ · · ·Xα

⌈(s℘−1) n
s℘

⌉

of the truncated Satake function ST (χ̂N0f
(P0)
℘ ) ∈ C[X∗(T℘)]. We evaluate this monomial at

the Hecke matrix of the T℘-representation δ
1/2
P0

to obtain

q
α

(

∑

v∈V (℘)
sv(n−sv)

2
+
∑s℘−1

j=0

2⌈j n
s℘

⌉+1−n

2

)

∈ C[qα].
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By summing over all ℘ ∈ Ram+
p we see that the dimension of the variety B is equal to

∑

℘∈Ram+
p


 ∑

v∈V (℘)

sv(1− sv)
2

+

s℘−1∑

j=0

⌈j n
s℘
⌉


 .

This completes the proof. �





CHAPTER 3

The cohomology of the basic stratum II

We remove an hypothesis from the main Theorem of the previous chapter. In the pre-

vious chapter we proved a relation between the ℓ-adic cohomology of the basic stratum of

some simple Shimura varieties and the cohomology of the complex Shimura variety. These

simple Shimura varieties are those of Kottwitz considered in his Inventiones article [58] on the

construction of Galois representation. The varieties are associated to certain division algebras

over Q with involution of the second kind; we call such varieties Kottwitz varieties. We proved

the main theorem of the previous chapter assuming (essentially) that the Newton polygon

associated to the basic stratum has no integral point other than the begin point and the end

point. In this chapter we solve the resulting combinatorial problems when one removes this

simplifying condition from the theorem in case the prime p of reduction is split in the center

of the division algebra defining the Kottwitz variety.

A consequence of our final result is an explicit expression for the zeta function of the

basic stratum of Kottwitz’s varieties at split primes of good reduction. The expressions are in

terms of: (1) Automorphic forms on the group G of the Shimura datum, (2) The determinant

of the factor at p of their associated Galois representations, and (3) Polynomials in qα of

combinatorial nature, associated to certain non-crossing lattice paths in the plane Q2.

As an application we deduce a formula for the dimension of the basic stratum. Our

formula agrees with the conjecture from [61] (cf. [87, Conj. 7.5], [17]) for the dimension of

the Newton strata, specialized to the cases considered in this chapter.

1. Notations

Let p be a prime number and let F be a non-Archimedean local field with residue charac-

teristic equal to p. Let ̟F ∈ OF be a prime element, and define q := #(OF /̟F ). We write

Gn for the topological group GLn(F ), and we write H(G) for the Hecke algebra of locally

compact constantly supported functions on G. We often drop the index n from the notation

if confusion is not possible. We call a parabolic subgroup P of G standard if it is upper

triangular, and we write P = MN for its standard Levi decomposition. We write K for the

hyperspecial group GLn(OF ) and H0(G) for the Hecke algebra of G with respect to K. The

group P0 ⊂ G is the standard Borel subgroup of G, T is the diagonal torus of G, and N0 is

the group of upper triangular unipotent matrices in G.

55



56 3. THE COHOMOLOGY OF THE BASIC STRATUM II

We write Ĝ, T̂ , M̂ , . . . for the corresponding complex dual groups, Ĝ = GLn(C), T̂ =

(C×)n, and so on. If π is an unramified representation of some Levi subgroup M of G then

we write ϕM,π ∈ M̂ for the Hecke matrix of this representation.

Let n be a positive integer. A partition of n is a finite, non-ordered list of non-negative

numbers whose sum is equal to n. A composition of n is a finite, ordered list of positive

numbers whose sum is equal to n. Recall that the compositions of n correspond to the

standard parabolic subgroups of G.

We write A for the ring C[X±1
1 , X±1

2 , . . . , X±1
n ]Sn . The Satake transform S provides an

isomorphism from H0(G) onto the ring A.

Let n and α be positive integers, and let s be a non-negative integer with s ≤ n. We call

the number s the signature, and we call the number α the degree. The function fnαs ∈ H0(G)

is the spherical function whose Satake transform is

qαs(n−s)/2
∑

ν∈Sn·µs

[ν]α = qαs(n−s)/2
∑

I⊂{1,...,n},#I=s

∏

i∈I
Xα

i ∈ A.(1.1)

We put fnαs = 0 when n, α, s ∈ Z≥0 are such that n < s. We will call fnαs a simple Kottwitz

function. The composite Kottwitz functions fnασ are obtained from partitions σ of s as follows.

Let σ = (σ1, σ2, . . . , σr) be a partition of s. Then we write fnασ ∈ H0(G) for the convolution

product fnασ1 ∗ fnασ2 ∗ · · · ∗ fnασr ∈ H0(G).

We write χG
c for the characteristic function on G of the subset of compact elements. Let π

be a smooth G-representation of finite length and f a locally constant, compactly supported

function on G. Then we write Tr(χG
c f, π) for the compact trace [22] of f against π.

Let m,m′ ∈ Z≥1. If π (resp. π′) is a smooth admissible representation of Gm (resp.

Gm′), then we write π × π′ for the Gm+m′-representation parabolically induced (unitary

induction) from the representation π ⊗ π′ of the standard Levi subgroup consisting of two

blocks, one of size m, and the other one of size m′. The tensor product π ⊗ π′ in the above

formula is taken along the blocks of this Levi subgroup. We write R for the direct sum⊕
n∈Z≥0

Groth(Gn) with the convention that G0 is the trivial group. The group G0 has

one unique irreducible representation σ0 (the space C, with trivial action). The operation

“direct sum of representations” together with the product “×” turns the vector space R into

a commutative C-algebra with σ0 as unit element. We call it the ring of Zelevinsky.

The ring of Zelevinsky has an involution ι, called the Zelevinsky involution. Aubert

[5] gave a refined definition of this involution, making sense for all reductive groups. The

involution is defined by Xι :=
∑

P=MN εP Ind
G
P (XN (δ

−1/2
P )) for all X ∈ R. With ‘involution’

we mean that ι is an automorphism of the complex algebra R and it is of order two: ι2 = IdR.

We write ν for the absolute value morphism from GL1(F ) = F× to C×. By a segment

S = 〈x, y〉 we mean a set of numbers {x, x + 1, . . . , y} where x, y ∈ Q and where we need to

explain the conventions in case y ≤ x. In case y is strictly smaller than x− 1, then 〈x, y〉 = ∅;
in case x is equal to y, then the segment 〈x, y〉 = {x} has one element. We have one unusual
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convention: For y = x − 1 we define the segment 〈x, y〉 to be the set {⋆} of one element

containing a distinguishing symbol “⋆”. The length ℓ(S) of a segment S = 〈x, y〉 is defined to

be y − x+ 1. Thus the segment {⋆} has length 0, the segment {x} has length 1, the segment

{x, x+ 1} has length 2, etc. We put ℓ〈x, y〉 = −1 in case y < x− 1.

For any segment 〈x, y〉 with y ≥ x we write ∆〈x, y〉 for the unique irreducible quotient of

the induced representation νx×νx+1×· · ·×νy. We define ∆{⋆} to be σ0 (the one-dimensional

representation of the trivial group GL0(F )), and we define ∆〈x, y〉 to be 0 in case y < x− 1.

For any segment S of non-negative length the object ∆S is a representation of the group

GLn(F ), where n is the length of S.

For the standard properties of segments we refer to Zelevinsky’s work [105] (cf. [90]),

but note that our conventions are slightly different, because we allow rational numbers in the

segments and we have the segment {⋆}. We mention that this difference is there only for

notational purposes, and that it does not change the mathematics.

For any finite ordered list of segments S1, S2, . . . , St we have the product representation

π := (∆S1) × (∆S2) × · · · × (∆St). Observe that, due to our conventions, in case Sa = {⋆}
for some a, then ∆Sa is the unit in R, and

(1.2) π = (∆S1)× (∆S2)× · · · × (̂∆Sa)× · · · × (∆St) ∈ R,

where the hat means that we leave the corresponding factor out of the product. In case Sb = ∅
for some index b, then we have π = 0 in R.

In the combinatorial part of this chapter the representations of interest are the Speh

representations. We recall their definition here. Let t, h be positive integers such that n = th.

We define Speh(h, t) to be the (unique) irreducible quotient of the representation StGh
ν
t−1
2 ×

· · · × StGh
ν
1−t
2 . This representation has t segments, Sa = 〈xa, ya〉, a = 1, . . . , t, where

xa =
t− h
2
− (a− 1) and ya =

t+ h

2
− a.

Observe that, for each index a, we have ℓSa = h. Furthermore, for each index a < t, we have

xa+1 = xa − 1 and ya+1 = ya − 1.

If P = MN ⊂ G is a standard parabolic subgroup of G, then we have the spherical

functions χN , χ̂N in H0(M) associated to the acute and obtuse Weyl chambers. We refer

to Equations (2.1.1) and (2.1.2) for the precise definition and explicit description of these

functions.

2. Computation of some compact traces

In this section we compute the compact traces Tr(χG
c fnαs, π) of the simple Kottwitz

functions f on a certain class of representations π. This class will be sufficiently large to

contain all smooth representations that occur in the cohomology of (basic) strata of unitary

Shimura varieties at primes of good reduction.
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We will follow the following strategy to compute Tr(χG
c fnαs, π). A semistable representa-

tion π of G is called standard if it is isomorphic to a product of essentially square integrable

representations. The computation of the compact trace Tr(χG
c fnαs, π) on a square-integrable

representation is easy, and using van Dijk’s formula adapted for compact traces Proposi-

tion 2.1.5, we easily deduce formulas for compact traces on the standard representations. Any

semistable irreducible representation π may be 1 (uniquely) written as a sum π =
∑

I cI ·I ∈ R
where I ranges over the standard representations, and the coefficients cI ∈ C are 0 for nearly

all I. We have

Tr(χG
c f, π) =

∑

I

cI Tr(χ
G
c f, I).

Thus, there are two steps to compute Tr(χG
c f, π): (Prob1) Know the coefficients cI and

(Prob2) Make the sum
∑

I cI Tr(χ
G
c f, I). The first problem (Prob1) is related to the Kazhdan-

Lustzig conjecture 2. The “Kazhdan-Lustzig Theorem” of Beilinson-Bernstein [8] (and [50])

interprets the multiplicity of any given irreducible representation π in the representation

I. The Kazhdan-Lustzig Theorem interprets this multiplicity as the dimension of certain

intersection cohomology spaces, and also as the value at q = 1 of certain Kazhdan-Lustzig

polynomials.

For the irreducible representations π contributing to the cohomology of Newton strata of

unitary Shimura varieties we will not have to deal with problem (Prob1). The Theorem of

Moeglin-Waldspurger [80] (cf. (Theorem 2.2.1)) for the discrete spectrum of the general linear

group implies that these representations must be of a very particular kind (rigid represen-

tations). Any rigid representation is a product of unramified twists of Speh representations

in R, and therefore we restrict our attention to these Speh representations only. Tadic has

solved the first problem (Prob1) for the Speh representations. The coefficients cI turn out to

be −1, 0 or 1 for these representations (precise statement in Theorem 2.1). Therefore, we are

mostly concerned with the second problem (Prob2).

2.1. Tadic’s determinantal formula. We recall an important character formula of

Tadic for the Speh representations. This formula is a crucial ingredient for our computations.

Let S1 = 〈x1, y1〉, S2 = 〈x2, y2〉, . . . , St = 〈xt, yt〉 be an ordered list of segments defining

a representation of the group G = GLn(F ). Let St be the symmetric group on {1, 2, . . . , t}.
For any w ∈ St we define the number nwa to be ya − xw(a) + 1. We have

(2.1)
k∑

a=1

nwa =

(
k∑

a=1

ya

)
−
(

k∑

a=1

xw(a)

)
+ k =

(
k∑

a=1

ya

)
−
(

k∑

a=1

xa

)
+ k =

k∑

a=1

na = n.

The numbers nwa need not be positive. We define S′
t ⊂ St to be subset consisting of those

permutations w ∈ St such that the numbers nwa are positive or 0. If the permutation w lies

1. Zelevinsky proved in [105] that the standard representations form a basis of R as complex vector space.

2. This conjecture is a Theorem, see [19, Thm. 8.6.23]
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in the subset S′
t ⊂ St, then (nwa ) is a composition of n. Assuming that w ∈ S′

t we will write

Pw =MwNw for the parabolic subgroup of G corresponding to the composition (nwa ).

Let w ∈ S′
t. We define the segments Sw

1 := 〈xw(1), y1〉, Sw
2 := 〈xw(2), y2〉, . . . , Sw

t :=

〈xw(t), yt〉. We have ℓ(Sw
a ) = nwa . We let ∆w be the representation of Mw defined by (∆Sw

1 )⊗
· · ·⊗(∆Sw

t ), where the tensor product is taken along the blocks ofMw. The representation Iw

is defined to be the product ∆Sw
1 ×∆Sw

2 ×· · ·∆Sw
t , i.e. it is the (unitary) parabolic induction

IndGPw
∆w of ∆w to G. In case w ∈ St\S′

t we define both ∆w and Iw to be 0.

Remark. It is possible that Sw
a = {⋆} for some permutation w. In that case the rep-

resentation ∆Sw
a is the unit element σ0 of R, and thus can be left out of the product that

defined Iw (cf. Equation (1.2)).

In these notations we have the following theorem:

Theorem 2.1 (Tadic). Let π be a Speh representation of G and let S1 = 〈x1, y1〉, S2 =

〈x2, y2〉, . . . St = 〈xt, yt〉 be its segments. The representation π satisfies Tadic’s determinantal

formula

π =
∑

w∈St

sign(w)Iw.

Proof. This Theorem was frst proved by Tadic in [99] for Speh representations with a

difficult argument. Chenevier and Renard simplified the proof and observed that the above

expression is a determinant of a matrix with coefficients in Zelevinsky’s ringR. Also Badulescu
gave a simpler proof of Theorem 2.1 in the note [7] using the Moeglin-Waldspurger algorithm

[79]. Recently Lapid and Minguez [71, Thm. 1] extended the formula to the larger class of

ladder representations. �

Remark. Our formulation of Theorem 2.1 is weaker than the theorem proved by the

above authors, because we consider only semistable Speh representations. (They have a

similar statement also for the non semistable Speh/ladder representations.)

By the definition of the subset S′
t ⊂ St we have for all w ∈ St that Iw 6= 0 if and only

if w ∈ S′
t, and thus we may as well index over the elements w ∈ S′

t in the sum in the above

Theorem. In the cases where the inclusion S′
t ⊂ St is strict, the subset S′

t is practically

never a subgroup of St, it will neither be closed under composition nor contain inverses of

elements.

2.2. Lattice paths and the Steinberg representation. In this section we will express

the compact trace of the functions fnαs on the Steinberg representation in terms of certain

lattice paths in Q2.

We fix throughout this section a positive integer α, called the degree. This integer will

play only a minor role in the computations of this section as it affects only the weights of the

paths. The degree will become more important later.
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Let A+ be the polynomial ring C[qa|a ∈ Q] of rational, formal powers of the variable q.

Equivalently, A+ is the complex group ring C[Q+] of the additive group Q+ underlying Q.

A path L in Q2 is a sequence of points ~v0, ~v1, ~v2, . . . , ~vr such that ~vi+1 − ~vi = (1, 0) (east),

or ~vi+1 − ~vi = (1, 1) (north-east). The starting point of L is ~v0 and the end point is ~vr;

the number r is the length. An eastward step (1, 0) has weight 1 and a north-eastward step

(a, b) → (a + 1, b + 1) has weight q−α·a ∈ A+. The weight of the path L is defined to be the

product in A+ of the weights of its steps.

Remark. We allow paths of length zero; such a path consists of one point ~v0 and no

steps. The weight of a path of length 0 is equal to 1. The paths of length 0 correspond to

compact traces on the special segments {⋆} introduced earlier.

Let L be a path in Q2. Connect the starting point ~v0 of L with its end point ~vr via a

straight line ℓ. Then L is called a Dyck path if all of its points ~va lie on or below the line ℓ

in the plane Q2. The Dyck path is called strict if none of its points ~va other than the initial

and end point, lies on the line ℓ.

Let ~x, ~y be two points in Q2. Then we write Dycks(~x, ~y) ∈ A+ for the sum of the weights

of all the strict Dyck paths that go from the point ~x to the point ~y. We call the polynomial

Dycks(~x, ~y) the strict Dyck polynomial. There are also non-strict Dyck polynomials Dyck(x, y)

but we are not concerned with those in this subsection; they are important for the computation

of compact traces on the trivial representation.

Let f ∈ H0(G) be a function. We abuse notation and write χ̂NS(f) for the T -Satake

transform of the function χ̂Nf
(P0). This truncation χ̂Nf of an element f ∈ A is best under-

stood graphically.

We first extend the notion of a path slightly to the concept of a graph. A graph in Q2

is a sequence of points ~v0, ~v1, . . . , ~vr with ~vi+1 − ~vi = (1, e), where e is an integer. Thus the

paths are those graphs with e ∈ {0, 1} for each of its steps. We define the weight of a step

(a, b) → (a + 1, b + e) to be q−α·e·a ∈ A+, and the weight of a graph is the product of the

weights of its steps.

To a monomial X = Xe1
1 X

e2
2 · · ·Xen

n ∈ C[X±1
1 , X±1

2 , . . . , X±1
n ], with ei ∈ Z and

∑n
i=1 ei =

s we associate the graph GX with points

(2.2) ~v0 := ℓ(1−n
2 ), ~vi := ~v0 + (i, en + en−1 + . . .+ en+1−i) ∈ Q2,

for i = 1, . . . , n. If x ∈ Q, then we write ℓ(x) for the point (x, snx) on the line ℓ. Because the

sum
∑n

i=1 ei is equal to s, the end point of the graph is

ℓ(1−n
2 ) + (n, s) = ℓ(n−1

2 + 1) ∈ Q2.
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We have χ̂N0X = X if and only if 3

(2.3) e1 + e2 + . . .+ ei >
s
n i,

for all indices i < n (and if χ̂N0X 6= X, then χ̂N0M = 0). The condition in Equation (2.3)

is true if and only if the graph defined in Equation (2.2) lies strictly below the straight line

ℓ ⊂ Q2 of slope s
n going through the origin. Furthermore, the evaluation of X at the point

(2.4)

(
q
1−n
2 , q

3−n
2 , . . . , q

n−1
2

)
∈ T̂ ,

equals the weight of the graph GX .

Remark. The reader might find it strange that in Equation (2.2) we let the graphs go in

the inverse direction. Why did we make this convention? We made this convention because

we want graphs that stay below the line ℓ. If we draw the graphs using the ‘natural’ formula,

then we get a graph above the line ℓ going from right to left. So why not consider only graphs

that stay above ℓ? Of course this is equivalent, but later, when we compute the graph for the

trivial representation, we get get graphs whose ‘natural’ formula stays below ℓ and goes from

left to right. Thus, either way, we have to invert directions.

Lemma 2.2. Consider the representation π = 1T (δ
1/2
P0

) of the group T . Let f be a function

in the spherical Hecke algebra of T . Then the trace of f against π is equal to the evaluation

of S(f) ∈ A at the point (
q
1−n
2 , q

3−n
2 , . . . , q

n−1
2

)
∈ T̂ ,

Proof. The character δ
1/2
P0

on T is equal to

T ∋ (t1, t2, . . . , tn) 7−→ |t1|
n−1
2 |t2|

n−3
2 · · · |tn|

n−1
2 ∈ C×.

To any (rational) cocharacter ν ∈ X∗(T ) we may associate the composition (δ
1/2
P0
◦ ν) : F× →

T → C×. We evaluate this composition at the prime element ̟F ∈ F×. Thus we have an

element of the set

(2.5) Hom(X∗(T ),C
×) = Hom(X∗(T̂ ),C×) = X∗(T̂ )⊗Z C× = T̂ (C),

where the last isomorphism is given by

X∗(T̂ )⊗Z C× ∋ ν ⊗ z 7−→ ν(z) ∈ T̂ (C).

We have T = (F×)n and thus we have the standard basis ei on X∗(T ). This corresponds to

the standard basis ei on X∗(T̂ ) via the first two equalities in Equation (2.5). If we take ν = ei

3. This is true because the fundamental weights ̟G
αi

of the general linear group are of the form H1 +

· · · + Hi −
i
n
(H1 + H2 + . . . + Hn) on a0. The statement follows also directly from the conclusion made at

Equation (2.1.10).
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in (δ
1/2
P0
◦ ν)(̟F ) then we get

(δ
1/2
P0
◦ ei)(̟F ) = |̟F |

n−1
2 −i+1 = q

1−n
2 +i−1.

This completes the verification. �

Let ℓ ⊂ Q2 be the line of slope s
n through 0 ∈ Q2 that we introduced earlier. We write

ℓ(x) for the point (x, snx) on ℓ if x ∈ Q.

Lemma 2.3. The compact trace Tr(χG
c fnαs, StG) on the Steinberg representation is equal

to the polynomial (−1)n−1qs(n−s)/2 ·Dycks(ℓ(
1−n
2 ), ℓ(n−1

2 + 1)) ∈ A+.

Proof. The proof is a translation of a result that we obtained in Chapter 2:

(2.6) Tr(χG
c f, StG) = (−1)n−1Tr

(
χ̂N0fnαs,1T (δ

1/2
P0

)
)
,

(see Proposition 2.1.13). NB: We wrote δ
1/2
P0

and not δ
−1/2
P0

; the additional sign is there because

the Jacquet module at P0 of the Steinberg representation StG is 1T (δP0).

In case f = fnαs then every monomial X occurring in S(f) is multiplicity free 4, and

therefore the graph GX is in fact a path. The above construction X 7→ GX provides a bijection

between the monomials that occur in S(f) and the possible paths that go from the point ~v0

to the point ~vr. Finally χ̂N0X 6= 0 if and only if the corresponding path is a Dyck path (see

Equation (2.3)). This completes the proof. �

Compact traces are compatible with twists:

Lemma 2.4. Let χ be an unramified character of F×, π a smooth irreducible G representa-

tion, and fnασ ∈ H0(G) a function of Kottwitz. Then Tr(χG
c fnασ, π⊗χ) = χ(̟αs

F )·Tr(χG
c f, π).

Proof. Lemma 2.1.8. �

Lemma 2.5. Assume that π is an essentially square integrable representation of the form

∆S, where S = 〈x, y〉 is a segment of length n. Then

Tr(χG
c f,∆〈x, y〉) = (−1)n−1 · q

s(n−s)
2 ·Dycks(ℓ(x), ℓ(y + 1)).

Proof. The representation (∆S) ⊗ ν−x+
1−n
2 is the Steinberg representation, and so

Lemma 2.3 applies to it. The result then follows from Lemma 2.4. �

4. Multiplicity free in the sense that no variable Xi occurs with exponent ei > 1 in X.
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2.3. Lattice t-paths and standard representations. We describe the compact traces

on the standard representations of G using “t-paths”.

Let t be a positive integer. Let ~x = (~xa) and ~y = (~ya) be two ordered lists of points

in Q2, both of length t. A t-path from ~x to ~y is the datum consisting of, for each index

a ∈ {1, 2, . . . , t}, a path La from the point ~xa to the point ~ya. A t-path (La) is called a Dyck

t-path if all the paths La are Dyck paths. The Dyck path (La) is called strict if, for each

index a, no point ~vi of La other than ~v0 and ~vr lies on the line ℓ. The weight weight(La)

of a t-path (La) is the product of the weights of the paths La, where a ranges over the set

{1, 2, . . . , t}. We extend the definition of the strict Dyck polynomial Dycks(~x, ~y) ∈ A+ also

to t-paths: The polynomial Dycks(~x, ~y) ∈ A+ is by definition the sum of the weights of the

strict Dyck t-paths from the points (~xa) to the points (~ya). We have

(2.7) Dycks(~x, ~y) =
t∏

a=1

Dycks(~xa, ~ya) ∈ A+.

Lemma 2.6. Let S1 = 〈x1, y1〉, S2 = 〈x2, y2〉, . . . , St = 〈xt, yt〉 be a list of segments and let

I be the representation (∆S1) × (∆S2) × · · · × (∆St). Then the compact trace Tr(χG
c fnαs, I)

is equal to (−1)n−tDycks(~x, ~y), where for the indices a = 1, . . . , t we have ~xa := ℓ(xa) and

~ya := ℓ(ya + 1).

Remark. The sign (−1)n−t is equal to εM∩P0 , where M is the standard Levi subgroup

of G corresponding to the composition
∑t

a=1 ℓ(na) of n.

Proof. Let P be the parabolic subgroup of G corresponding to the composition n =∑t
a=1 ℓ(Sa) of n. Let χG

M be the characteristic function on M of the subset of elements

m ∈ M such that 〈̟G
α , HM (m)〉 = 0 for all α ∈ ∆P . By the integration formula of van Dijk

for compact traces Proposition 2.1.5 we have

Tr(χG
c f, I) = Tr

(
χG
c f

(P )
nαs, (∆S1)× (∆S2)× · · · × (∆St)

)

= Tr
(
χM
c χ

G
Mf

(P )
nαs, (∆S1)× (∆S2)× · · · × (∆St)

)
.(2.8)

We proved in Proposition 2.1.10 that the function χG
c f

(P )
nαs is equal to

(2.9) qαC(na,sa)fnαs1 ⊗ fnαs2 ⊗ · · · ⊗ fnαst ,
where sa := na

n s, and

C(na, sa) :=
s(n− s)

2
−

t∑

a=1

sa(na − sa)
2

.

The constant term in Equation (2.9) vanishes in case one of the numbers sa is non-integral. We

have (χG
c f

(P )
nαs)(P0∩M) = χG

Mf
(P0)
nαs . Consequently, one may rewrite the trace in Equation (2.8)

to the product

qαC(na,s)
t∏

a=1

Tr(χGna
c fnaαsa ,∆Sa),
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By Lemma 2.5 we obtain

qαC(na,s)
t∏

a=1

(−1)na−1q
na(na−sa)

2 αDycks(ℓ(xa), ℓ(ya + 1)).

Note that the condition that sa is integral precisely corresponds to the condition that the

vertical distance between the point ~ya and the point ~xa has to be integral before paths can

exist. Therefore the expression in this last Equation simplifies to the one stated in the Lemma

and the proof is complete. �

2.4. Non-crossing paths. We express the compact traces on Speh representations in

terms of non-crossing lattice paths.

We call a t-path (La) crossing if there exists a couple of indices a, b with a 6= b such that

the path La has a point ~v ∈ Q2 in common with the path Lb. There is an important condition:

• The point ~v of crossing must appear in the list of points ~va,i that define La and it

must also occur in the list of points ~vb,i that define Lb.

(Because we work with rational coordinates, the point of intersection could be a point lying

halfway a step of a path (for example). We are ruling out such possibilities.)

Figure 1. An example of a 3-path corresponding to the representation π of

GL54(F ) defined by the segments 〈3, 20〉, 〈2, 19〉 and 〈1, 18〉. We take s = 27

and we take the permutation w = (13) ∈ S′
3. The 3 dots on the lower left

hand corner are the points ~x1, ~x2 and ~x3 in Q2 respectively; the points ~y1, ~y2

and ~y3 are in the upper right corner. Observe that this 3-path is non-strict.

We write Dyck+s (~x, ~y) for the sum of the weights of the non-crossing strict Dyck t-

paths. Let π be the Speh representation of G associated to the Zelevinsky segments

〈x1, y1〉, 〈x2, y2〉, . . . , 〈xt, yt〉 with x1 > x2 > . . . > xt and y1 > y2 > . . . > yt. We define

the points ~xa := ℓ(xa) ∈ Q2 and ~ya := ℓ(ya + 1) ∈ Q2, for a = 1, 2, . . . , t. The group St acts

on the free Q2-module Q2t = (Q2)t by sending the a-th standard basis vector ea ∈ (Q2)t to

the basis vector ew(a) ∈ (Q2)t. Thus if we have the vector ~x ∈ Q2t, then we get the new vector

~xw whose a-th coordinate ~xwa ∈ Q2t is equal to w(a)-th coordinate of the vector ~x.

Remark. The difference s
n · (ya + 1)− s

n · xa need not be integral. In that case there do

not exist paths from the point ~xwa ∈ Q2 to ~ya ∈ Q2.
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Let π be a Speh representation of type (h, t). The points ~xa ∈ Q2 and ~ya ∈ Q2 lie on

the line ℓ ⊂ Q2, and the point ~xa lies on the left of the point ~ya with horizontal distance

ya + 1 − xa = ℓ(Sa) = h. The two lists of points may overlap: There could exist couples

of indices (a, b) such that ~xa = ~yb. All points ~xa and ~yb are distinct if we have h ≥ t (cf.

Figure 1).

Assume h ≥ t. Then, because all the points ~xa, ~yb are distinct, there is no permutation

w ∈ St such that one of the segments Sw
a = 〈xw(a), ya〉 is empty or equal to {⋆} for some

index a. In particular we have S′
t = St.

Definition 2.7. To any point ~v ∈ Q2 we associate the invariant ρ(~v) := p2(~v) ∈ Q/Z

where p2 : Q2 → Q is projection on the second coordinate.

Remark. The horizontal distance between the point ~xb and the point ~ya is integral for

all indices. Therefore the invariant of the first coordinate is not of interest. However, the

vertical distance is the number swa = s
nn

w
a ∈ Q, which certainly need not be integral.

Using this invariant we define a particular permutation w0 ∈ St:

Definition 2.8. Assume h ≥ t and assume that for each invariant ρ ∈ Q/Z the number

of indices a such that the point ~xa has invariant ρ is equal to the number of indices a such

that the point ~ya has invariant ρ. The element w0 ∈ St is the unique permutation such that

for all indices a, b we have

(2.10)(
a < b and ρ(~xa) = ρ(~xb)

)
=⇒

(
w−1
0 (a) > w−1

0 (b) and ρ(~ya) = ρ(~yb) = ρ(~xa)

)
.

Remark. Observe that the permutation w0 depends on the integer s because the heights

of the points ~xa, ~ya, and therefore also their invariants depend on s.

Remark. If our assumption on the invariants ρ(~xa) and ρ(~ya) in Definition 2.8 is not

satisfied, then the permutation w0 cannot exist because it has to induce bijections between

sets of different cardinality.

One could also define the permutation w0 ∈ St inductively: First the index w−1
0 (t) ∈

{1, 2, 3, . . . , t} is the minimal index b such that the points ~xt and ~yb have the same invariant.

Next, the index w−1
0 (t−1) ∈ {1, 2, 3, . . . , t} is the minimal index b, different from w−1

0 (t), such

that ~xa and ~yb have the same invariant. And so on: w−1
0 (t− i) ∈ {1, 2, 3, . . . , t} is the minimal

index b different from the previously chosen indices w−1
0 (t), w−1

0 (t − 1), . . . , w−1
0 (t − i + 1),

such that the points ~yb and ~xt−i have the same invariant.

Lemma 2.9. Let π be a Speh representation with parameters h, t with h ≥ t. Let d be

the greatest common divisor of n and s and write m for the quotient n
d . Define the points

~xa := ℓ(xa) and ~ya := ℓ(ya + 1). Let d be the greatest common divisor of n and s, and write

m for the number n
d ∈ Z. The following two statements are equivalent:
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(i) for each invariant ρ ∈ Q/Z the number of indices a such that the point ~xa has

invariant ρ is equal to the number of indices a such that the point ~ya has invariant

ρ;

(ii) m divides t or m divides h.

Remark. The number m is the order of the element s
n in the torsion group Q/Z.

Proof. We first claim that “m|t⇒ (i)”. We have

(2.11) ρ(~xa+1) = ρ(~xa)− s
n ∈ Q/Z

and the same relation for the points ~ya. Therefore, if m divides t, then the possible classes

of the points ~xa are equally distributed over the subset s
nZ/Z ⊂ Q/Z, and every invariant

occurs precisely t
m times. The same statement also holds for the points ~ya, and in particular

(i) is true. This proves the claim.

We now claim that “m|h ⇒ (i)”. Assume m|h. Then the invariants of ~xa and ~ya are the

same for all indices a. Thus (i) is true.

We prove that“(m6 | t and m6 |h)⇒ ((i) is false)”. Assumem6 | t andm6 |h. We first reduce

to the case where t < m. Assume t ≥ m. Consider the elements

(2.12) ρ(~x1), ρ(~x2), . . . , ρ(~xm), and ρ(~y1), ρ(~y2), . . . , ρ(~ym) ∈ Q/Z.

By Equation (2.11) every possible class in s
nZ/Z occurs precisely once in both lists. Thus, the

truth value of (i) is not affected if we remove the elements ~x1, ~x2, . . . , ~xm and ~y1, ~y2, . . . , ~ym

from the respective lists. Renumber the indices and repeat this argument until t < m. Because

we assumed that t did not divide m there remains a positive number of elements in the list

~xa and ~ya. We renumber so that the indices range from 1 to t. Then we have reduced to the

case where 1 ≤ t < m.

Now look at the two lists ρ(~x1), ρ(~x2), . . . , ρ(~xt) and ρ(~y1), ρ(~y2), . . . , ρ(~yt). In both lists

every class in Q/Z occurs at most once. We assumed that m does not divide h, and therefore

ρ(~x1) 6= ρ(~y1). If there does not exist an index b such that ρ(~x1) = ρ(~yb), then (i) is false and

we are done. Thus assume ρ(~x1) = ρ(~yb) for some 1 < b ≤ t. By Equation (2.11) we then

have ρ(~yb−1) = ρ(~yb) +
s
n = ρ(~x1) +

s
n . The invariant ξ := ρ(~x1) +

s
n ∈ Q/Z does not occur in

the list ρ(~x1), ρ(~x2), . . . , ρ(~xt). Thus, we have found an invariant, namely ξ, occurring once

in the list of invariants of the elements ~ya and does not occur in the list of invariants of the

elements ~xa. This contradicts (i) and completes the proof. �

Theorem 2.10. Let π be a Speh representation with parameters h, t with h ≥ t. Let d

be the greatest common divisor of n and s and write m for the quotient n
d . Define the points

~xa := ℓ(xa) and ~ya := ℓ(ya + 1). The compact trace Tr(χG
c fnαs, π) on π is non-zero if and

only if m divides t or m divides h, and if the compact trace is non-zero, then it is equal to

(−1)n−tsign(w0)q
s(n−s)

2 αDyck+s (~x
w0 , ~y), where the permutation w0 ∈ St depends on s and is

defined in Definition 2.8.
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Remark. Perhaps one could extend this Theorem to obtain formulas for compact traces

on Ladder representations as considered by Minguez and Lapid in [71].

Proof of Theorem 2.10. For a technical reason we assume that 0 < s < n. In case

s = 0 we have fnαs = 1GLn(OF ). All the elements in GLn(OF ) are compact and therefore

χG
c fnα0 = fnα0. The compact trace becomes the usual trace and the theorem is easy. A

similar argument applies in case s = n. Thus we may indeed assume 0 < s < n.

By Theorem 2.1 the compact trace Tr(χG
c f, π) is equal to the combinatorial sum∑

w∈St
sign(w) Tr(χG

c f, Iw) for any Hecke operator f ∈ H(G). We apply it to the Kottwitz

functions f = fnαs. We have S′
t = St because h ≥ t. Let w ∈ St. Recall that van Dijk’s

formula is also true for truncated traces Proposition 2.1.5, and thus for any w ∈ S′
t the trace

Tr(χG
c f, Iw) equals Tr(χ

G
c f

(Pw),∆w). Thus we have the formula

(2.13) Tr(χG
c f, π) =

∑

w∈St

sign(w) · Tr(χG
c f

(Pw),∆w).

By Lemma 2.6 we get for f = fnαs,

(2.14) Tr(χG
c f, π) = q

s(n−s)
2 α

∑

w∈St

sign(w) · εP0∩Mw ·Dycks(~x
w, ~y).

We apply a standard combinatorial argument 5. Put the lexicographical order < on Q2:

∀~u,~v ∈ Q2 : (~u < ~v)⇐⇒ (~u1 < ~v1 or (~u1 = ~v1 and ~u2 < ~v2)).

Let (La) be a strict Dyck t-path from the points ~xw to the points ~y, and assume that (La)

has at least one point of crossing. Let ~v ∈ Q2 be the point chosen among the points of

crossing which is minimal for the lexicographical order on Q2. Let (a, b) a couple of different

indices, minimal for the lexicographical order on the set of all such couples, such that ~v lies

on the path La and also on the path Lb. We define a new path L′
a, defined by following

the steps of Lb until the point ~v and then following the steps of the path La. We define L′
b

by following La until the point ~v and then continuing the path Lb. For the indices c with

c 6= a, b we define L′
c := Lc. Observe that (L′

a) is a t-path from the points ~x(ab)w to the

points ~y. Furthermore, it is a Dyck path (with respect to this new configuration of points),

and we have weight(La) = weight(L′
a) because the weight is the product of the weights of

the steps, and only the order of the steps has changed in the construction (La) 7→ (L′
a). The

construction is self-inverse: If we apply the construction to the path (L′
a) then we re-obtain

(La). Both paths (La) and (L′
a) occur in the sum of Equation (2.14). The sign εP0∩Mw is

equal to (−1)n−1(−1)t−1(−1)#{c∈{1,2,...,t} | ~xw(c)=~yc}. By the assumption that h ≥ t, the points
in the list ~x are all different to the points in the list ~y, and therefore the sign εP0∩Mw equals

5. The Lindström-Gessel-Viennot Lemma. The argument appears in many (almost) equivalent forms in the

literature. We learned and essentially copied it from Stanley’s book [97, Thm 2.7.1]. Note however that, strictly

speaking, the Theorem 2.7.1 there does not apply as stated at this point in our argument. In the paragraph

that follows we show that Stanley’s argument may be adapted so that it does apply to our situation.
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(−1)n−t (and does not depend on the permutation w). The sign of the permutation w is

opposite to the sign of (ab)w. Consequently, the contributions of the paths (La) and (L′
a) to

Equation (2.14) cancel, and only the non-crossing paths remain in the sum. We find

(2.15) Tr(χG
c f, π) = (−1)n−tq

s(n−s)
2

∑

w∈St

sign(w) ·Dyck+s (~x
w, ~y).

We need a second notion of crossing paths, called topological intersection. Here we mean

that, when the t-path L is drawn in the plane Q2 there is a point ~x ∈ Q2 lying on two paths

La, Lb occurring in L. Because we allow rational coordinates, topological intersection is not

the same as intersection: It is easy to give an example of a 2-path, which, when drawn in

the plane Q2 has one topological intersection point ~x ∈ Q2 but the point ~x does not occur

in the lists of points ~v1,0, ~v1,1, . . . , ~v1,r1 , ~v2,0, ~v2,1, . . . , ~v2,r2 defining the 2-path. Such paths

are considered non-crossing under our definition, even though they may have topological

intersection points 6.

We claim that there is at most one permutation w ∈ St such that the polynomial

Dyck+(~xw, ~y) is non-zero, and that this permutation is the one we defined in Definition 2.8.

Let S′′
t be the set of all permutations such that Dyck+(~xw, ~y) 6= 0, and assume that S′′

t

contains an element w ∈ S′′
t . We first make the following observation:

(Obs) To any point ~v ∈ Q2 we associated the invariant ρ(~v) := p2(~v) ∈ Q/Z. The horizontal

distance between the point ~xw(a) and the point ~ya is the number nwa . The vertical

distance is the number swa = s
nn

w
a ∈ Q. Because w ∈ S′′

t there exists a path from

the point ~xw(a) to the point ~ya. Consequently swa is integral. This implies that

ρ(~xw(a)) = ρ(~ya) for all indices a and in particular the invariant of the point ~xw(a) is

independent of w ∈ S′′
t .

We show inductively that w is uniquely determined. We start with showing that the index

w−1(t) ∈ {1, 2, . . . , t} is determined. We claim that w−1(t) ∈ {1, 2, . . . , t} is the minimal

index such that the point ~yw−1(t) has the same invariant as ~xt. To see that this claim is true,

suppose for a contradiction that it is false, i.e. assume the index w−1(t) is not minimal. Then

there is an index b strictly smaller than w−1(t) such that ~yb has the same invariant as ~xt.

By the observation (Obs) there exists an index a 6= t such that ~xa has the same invariant as

~xt and such that ~xa is connected to ~yb. Draw a picture (see Figure 2) to see that the paths

La and Lt must intersect topologically. But, by construction, the invariants of ~xa and ~xt are

the same. Therefore, any topological intersection point of the paths La and Lt is a point of

crossing. Thus, the paths La and Lb are crossing. This is a contradiction, and therefore the

claim is true. Thus the value w−1(t) is determined.

We now look at the index t− 1. The point ~xt−1 is connected to the point ~yw−1(t−1). We

claim that w−1(t − 1) ∈ {1, 2, . . . , t} is the minimal index, different from w−1(t), such that

6. If one uses the wrong, topological notion of intersection, then the proof breaks at 8 lines below Equa-

tion (2.14): The constructed ‘path’ (L′
c) is not a path.
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Figure 2. The leftmost point ~xt is connected to the third point ~yw−1(t),

and the second point ~xa is connected to the last point ~yb. Any 2-path staying

below the line ℓ must self-intersect topologically.

~yw−1(t−1) has the same invariant as ~xt−1. The proof of this claim is the same as the one

we explained for the index t. We may repeat the same argument for the remaining indices

t − 2, t − 3, etc. Consequently w is uniquely determined by its properties, and equal to the

permutation w0 defined in Definition 2.8.

We proved that if the set S′′
t is non-empty, then it contains precisely one element, and

this element is equal to w0. Therefore, if the compact trace does not vanish, then m must

divide t or m divides h by Lemma 2.9. Inversely, assume that m divides t or m divides h.

The permutation w0 ∈ St exists by Lemma 2.9. We claim that Dyck+s (~x
w0 , ~y) 6= 0, so that

w0 ∈ S′′
t . To prove this, it suffices to construct one non-crossing t-path from the points ~xw0 to

the points ~y. This is easy (see Figure 3): Let a be an index, and write nw0
a for the horizontal

distance between ~xw0
a and ~ya and sw0

a for the vertical distance. The path La from ~xw0
a to ~ya

is defined to be the path taking nw0
a − sw0

a horizontal eastward steps, and then sw0
a diagonal

northeastward steps. Then (La) is a strict non-crossing t-path and therefore Dyck+s (~x
w0 , ~y)

is non-zero. This completes the proof. �

3. A dual formula

The argument for Theorem 2.10 extends to the case where h ≤ t. This computation more

complicated, because the permutation w ∈ St that contributes to Equation (2.15) is no longer

unique and the signs εP0∩Mw in Equation (2.14) depend on the contributing permutations w

(these signs are independent of w only in case h ≥ t). We don’t reproduce the computation

here, because there is a more elegant approach using the duality of Zelevinsky.

The Zelevinsky dual of a Speh representation with parameters (h, t) is a Speh represen-

tation with the role of the parameters inversed, thus of type (t, h). Furthermore, taking the

Zelevinsky dual of the formula of Tadic yields a new character formula, now in terms of duals
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Figure 3. An example of a non-crossing 4-path (La) in case s
n = 1

2 ∈ Q/Z

and t = 4. For each a, the path La first takes nw0
a − sw0

a horizontal steps and

then sw0
a vertical steps. Note that paths with the same invariant do not inter-

sect.

of standard representations. Of course, the Zelevinsky dual of a standard representation is not

standard, rather it is an unramified twist of products in R of one dimensional representations.

Therefore, we compute first the compact trace on the one dimensional representations, then

use van Dijk’s theorem, Proposition 2.1.5, to obtain formulas for products in R of one dimen-

sional representations, and finally use the dual of Tadic’s formula to compute the compact

traces on Speh representations with h ≤ t (opposite inequality to Theorem 2.10). We will

then have computed the formula for all Speh representations. This approach seems longer

but that is not true: The individual steps we take also appear in an equivalent form in our

original computation.

3.1. The trivial representation. We compute the compact traces of spherical Hecke

operators acting on the trivial representation of G. We recall some definitions on roots and

convexes from [73, §1] and [68, Chap. 1].

Let P be a standard parabolic subgroup of G. Let AP be the center of P . We write

εP = (−1)dim(AP /AG). We define aP := X∗(AP )⊗ R. If P ⊂ P ′ then we have AP ′ ⊂ AP and

thus an induced map aP ′ → aP . We write T = AP0 . We define aP
′

P to be the quotient of aP

by aP ′ . We write a0 = aP0 and aG0 = aGP0
.

We write ∆ for the set of simple roots of T occurring in the Lie algebra of N0. For each

root α in ∆ we have a coroot α∨ in aG0 . We write ∆P ⊂ ∆ for the subset of α ∈ ∆ acting non-

trivially on AP . For α ∈ ∆P ⊂ ∆ we send the coroot α∨ ∈ aG0 to the space aGP via the canonical

surjection aG0 ։ aGP . The set of these restricted coroots α∨|aGP with α ranging over ∆P form

a basis of the vector space aGP . By definition the set of fundamental weights {̟G
α ∈ aG∗

P | α ∈
∆P } is the basis of aG∗

P = Hom(aGP ,R) dual to the basis {α∨
aGP
} of coroots. Recall that we have

the acute and obtuse Weyl chambers of G. The acute chamber aG+
P is the set of x ∈ aGP such

that 〈α, x〉 > 0 for all roots α ∈ ∆P . The obtuse chamber +aGP is the set of x ∈ aGP such that

we have the inequality 〈̟G
α , x〉 > 0 for all fundamental weights ̟G

α , associated to α ∈ ∆P .

We need another chamber, defined by ≤aGP =
{
x ∈ aGP | ∀α ∈ ∆P 〈̟G

α , x〉 ≤ 0
}
. We call this

chamber the closed opposite obtuse Weyl chamber. Let ≤τ̂GP be the characteristic function on
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aP of this chamber. Let HM : M → aP be the Harish-Chandra mapping, normalized such

that |χ(m)|p = q−〈χ,HM (m)〉 for all rational characters χ of M . We define the function ξGc on

M0 = T to be the composition ≤τ̂GP0
◦ (aP0 ։ aGP0

) ◦HM0 .

If f ∈ H0(G) is a function whose Satake transform is the function h ∈ A, then we often

abuse notation, and write ξGc h for the Satake transform of the function ξGc f
(P0), and similarly

for the functions χNf and χ̂Nf if f ∈ H0(M).

The following Proposition and proof are valid for any split reductive group G over a

non-Archimedean local field.

Proposition 3.1. Let f be a function in the Hecke algebra H0(G). The compact trace

Tr(χG
c f,1G) is equal to Tr

(
ξGc f

(P0),1T (δ
−1/2
P0

)
)
.

Proof. For comfort we prove the proposition under the additional assumption that G is

its own derived group. We have

Tr(χ
G(Qp)
c f,1) =

∑

P=MN

εP Tr(χ̂Nf
(P ),1(δ

−1/2
P )).

Recall that we have the notation ϕM,ρ ∈ M̂ for the Hecke matrix of a representation ρ of M .

The Hecke matrix ϕ
M,δ

−1/2
P

is conjugate in M̂ to the Hecke matrix ϕ
T,δ

−1/2
P δ

−1/2
P0∩M

= δ
T,δ

−1/2
P0

∈

T̂ ⊂ M̂ . Recall that the Satake transform is defined by the composition of the morphism

f 7→ f (P0) with the obvious isomorphism H0(T ) ∼= C[X∗(T )] (the Satake transformation for

T ). Therefore

Tr(χ̂Nf
(P ),1(δ

−1/2
P )) = S(χ̂Nf

(P0))(ϕ
T,δ

−1/2
P0

).

Using linearity of the Satake transform we obtain

Tr(χ
G(Qp)
c f,1) = S

( ∑

P=MN

εP χ̂Nf
(P0)

)
(ϕ

T,δ
−1/2
P0

).

Thus we have to compute the function
∑

P=MN εP χ̂N on the group T . By definition we have

χ̂N = τ̂GP ◦HM .

Let WM be the rational Weyl group of T in M . Let t ∈ T . Then

HM (t) =
1

#WM

∑

w∈WM

wHT (t).

Thus χ̂N (t) = 1 if and only if

∀α ∈ ∆P :
∑

w∈WM

〈̟G
α , wHT (t)〉 > 0.

We have for all α ∈ ∆P the inequality 〈̟G
α , HT (t)〉 > 0 if and only if we have 〈̟G

α , wHT (t)〉 >
0 for all w ∈WM . Therefore, we have on the group T

χ̂N = τ̂GP ◦HT .
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Thus
∑

P=MN

εP χ̂N =

( ∑

P=MN

εP τ̂
G
P

)
◦HT .

By inclusion-exclusion we have ∑

P=MN

εP τ̂
G
P = ≤τ̂GP .

This proves the proposition in case G = Gder. It is easy to deduce the statement from the

case G = Gder. �

Remark. Consider the space I of locally constant functions from G/P0 to C, and equip

I with the G-action through right translations. Then, with an argument similar to the one

above, one may compute the compact traces on the irreducible subquotients V of C. Recall

from Borel and Wallach [10] that these representations are all mutually non-isomorphic and

occur with multiplicity one in I. Borel and Wallach describe the representations V precisely;

they are indexed by the standard parabolic subgroups of G.

3.2. The dual formula. In this subsection we prove the dual version of Theorem 2.10.

Lemma 3.2. Let T1 = 〈u1, v1〉, T2 = 〈u2, v2〉, . . . , Th = 〈uh, vh〉 be a list of segments and

consider the representation J := (∆T1)
ι× (∆T2)

ι×· · ·× (∆Th)
ι. Then Tr(χG

c fnαs, π) is equal

to qs(n−s)/2Dyck(~u,~v), where ~ua = ℓ(ua) and ~va = ℓ(va + 1) for a = 1, 2, . . . , t.

Remark. Recall that for the compact trace on the Steinberg representation,

Tr(χG
c fnαs, StG) we had the sign εP0 multiplied with a strict Dyck polynomial. In case n

and s are coprime, then any Dyck polynomial from the point ℓ(1−n
2 ) to the point ℓ(n−1

2 + 1)

is strict; consequently the trace on Steinberg and trivial representation differ only by the sign

εP0 .

Proof. The proof is the same as the proof for Lemma 2.3, replacing the result in Equa-

tion (2.6) with the result from Proposition 3.1. However, we repeat the argument for verifi-

cation purposes (one has to be careful with the signs).

Assume first that h = 1 and that π is the trivial representation of G. In the previous

subsection we proved that

Tr
(
χG
c fnαs, π

)
= Tr

(
ξGc f

(P0)
nαs ,1T (δ

−1/2
P0

)
)
.

To a monomial X = Xe1
1 X

e2
2 · · ·Xen

n ∈ C[X±1
1 , X±1

2 , . . . X±1
n ] with ei ∈ Z and

∑n
i=1 ei = s we

associate the graph GX with points

(3.1) ~v0 := ℓ(1−n
2 ), ~vi := ~v0 + (i, e1 + e2 + . . .+ ei) ∈ Q2,

for i = 1, 2, . . . , n. We have ξGc X = X if and only if

(3.2) e1 + e2 + · · ·+ ei ≤ s
n i,
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for all indices i < n, and ξGc X = 0 otherwise. The evaluation of X at the point

(3.3)

(
q
n−1
2 , q

n−3
2 , . . . , q

1−n
2

)

equals the weight 7 of the graph GX .

The trace of fnαs against the representation 1T (δ
−1/2
P0

) is equal to the evaluation of fnαs

at the point in Equation (3.3) (use Lemma 2.2 but notice that the signs are different). The

monomialsX occurring S(fnαs) yield paths from the point ℓ(1−n
2 ) ∈ Q2 to the point ℓ(n−1

2 +1).

The condition in Equation (3.2) is true if and only if the graph GX lies (non-strictly) below

the line ℓ. Therefore we have

Tr(χG
c fnαs,1G) = q

s(n−s)
2 Dyck(ℓ(1−n

2 ), ℓ(n−1
2 + 1)).

By twisting with the character ν−x+
1−n
2 as we did in Lemma 2.5 we find

Tr
(
χG
c f, (∆〈u, v〉)ι

)
= q

s(n−s)
2 Dyck(ℓ(x), ℓ(y + 1)),

for all segments 〈u, v〉. Finally the argument in Lemma 2.6 may be repeated to find the

compact traces on duals of standard representations as stated in the Lemma. �

Theorem 3.3. Let π be a Speh representation with parameters h, t with h ≤ t. Let d be

the greatest common divisor of n and s and write m for the quotient n
d . Let Ta = 〈ua, va〉

be the segments of πι. Define the points ~ua := ℓ(ua) and ~va := ℓ(va + 1). The compact trace

Tr(χG
c fnαs, π) is non-zero if and only if m divides h or m divides t. Assume that the compact

trace is non-zero, then it is equal to sign(w0)q
s(n−s)

2 αDyck+(~uw0 , ~v), where the permutation

w0 ∈ Sh is defined in Definition 2.8.

Proof. Let πι be the representation dual to the representation π. After dualizing the

formula of Tadic for πι we obtain an expression of the form

(3.4) π =
∑

w∈Sh

sign(w)Iιw.

The involution ι on R commutes with products. Therefore, if T1, . . . , Th are the Zelevinsky

segments of the dual representation πι, then Iιw is equal to (∆T1)
ι × (∆T2)

ι × · · · (∆Tk)ι. By
Lemma 3.2 we obtain

Tr(χG
c fnαs, I

ι
w) = qs(n−s)/2Dyck(~uw, ~y).

A crucial remark is that the points ~u and ~v are all different because we assume that h ≤ t.

Therefore one may repeat the argument in the proof of Theorem 2.10 using the dual formula

in Equation (3.4); one only has to interchange t with h and every occurrence of the word

“strict Dyck t-path” with “Dyck h-path”, as the paths that describe the compact traces on

(products in R of) trivial representations are not necessary strict. �

7. Equation (3.3) differs from Equation (2.4) by a sign in the exponents. However, observe also that the

graph in Equation (3.1) is traced in the direction opposite to the graph in Equation (2.2).
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4. Return to Shimura varieties

In Chapter 2 we proved a formula for the basic stratum of certain Shimura varieties

associated to unitary groups, subject to a technical condition on the Newton polygon of the

basic stratum (that it has no non-trivial integral points). In the previous sections we have

completely resolved the combinatorial issues that arise if you remove this condition in case

p is totally split in the center of the division algebra. We may now essentially repeat the

argument from Chapter 2 to obtain the description of the cohomology if there is no condition

on the Newton polygon of the basic stratum. A large part of the argument remains the same,

that part will only be sketched and we refer to Chapter 2 for the details.

4.1. Notations and assumptions. Let ShK/OE⊗Z(p) be a Kottwitz variety [58]. Here

we have fixed the following long list of notations and assumptions:

(1) Let D be a division algebra over Q;

(2) F is the center of D, assume F is a CM field of the form F = KF+ ⊂ Q, where F+

is totally real, and K/Q is quadratic imaginary;

(3) ∗ is an anti-involution on D inducing complex conjugation on F ;

(4) n ∈ Z≥0 is such that dimF (D) = n2;

(5) G is the Q-group with G(R) =
{
x ∈ D×

R |g∗g ∈ R×} for every commutative Q-algebra

R;

(6) h is an algebra morphism h : C→ DR such that h(z)∗ = h(z) for all z ∈ C;

(7) the involution x 7→ h(i)−1x∗h(i) on DR is positive;

(8) X is the G(R) conjugacy class of the restriction of h to C× ⊂ C;

(9) µ ∈ X∗(G) is the restriction of h⊗C : C××C× → G(C) to the factor C× of C××C×

indexed by the identity isomorphism C
∼→ C;

(10) E ⊂ Q is the reflex field of this Shimura datum (G,X, h−1);

(11) ξ is an (any) irreducible algebraic representation over Q of GQ;

(12) Let f∞ be a function at infinity having its stable orbital integrals prescribed by the

identities of Kottwitz in [57]; it can be taken to be (essentially) an Euler-poincaré

function [58, Lemma 3.2] (cf. [27]). The function has the following property: Let

π∞ be an (g,K∞)-module occurring as the component at infinity of an automorphic

representation π of G. Then the trace of f∞ against π∞ is equal to the Euler-Poincaré

characteristic
∑∞

i=0N∞(−1)i dimHi(g,K∞;π∞ ⊗ ξ), where N∞ is a certain explicit

constant (cf. [58, p. 657, Lemma 3.2]).

(13) p is a prime number where ShK has good reduction [59, § 5], and we assume that p

is split in K/Q;
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(14) K ⊂ G(Af) is a compact open subgroup, small enough that ShK/OE ⊗Zp is smooth

and such that K decomposes as KpKp where Kp is a compact open subgroup of

G(Ap
f ) and Kp is a hyperspecial compact open subgroup of G(Qp).

(15) νp : Q→ Qp is a fixed embedding, ν∞ : Q→ C is another fixed embedding, the fields

F, F+, E,K are all embedded into C;

(16) p is the E-prime induced by νp;

(17) Fq is the residue field of E at the prime p and Fq is the residue field of Q at νp; for

every positive integer α, Ep,α ⊂ Qp is the unramified extension of Ep of degree α;

Fqα is the residue field of Ep,α;

(18) ι : B →֒ ShK,Fq is the basic stratum [87] (cf. [39,59,60,88]);

(19) χG
c is the characteristic function on G(Qp) of the subset of compact elements (cf.

[22]);

(20) ℓ is a prime number and Qℓ an algebraic closure of Qℓ together with an embedding

Q ⊂ Qℓ;

(21) L is the ℓ-adic local system on ShK/OE⊗Z(p) associated to the representation ξ⊗Qℓ

of GQℓ
[59, p. 393];

(22) U ⊂ G is the subgroup of elements with trivial factor of similitudes;

(23) for each infinite F+-place v, the number sv is the unique integer 0 ≤ sv ≤ 1
2n such

that U(R) ∼=
∏

v U(sv, n− sv);
(24) the embedding Q ⊂ Qp induces an action of the group Gal(Qp/Qp) on the set

of infinite F+-places. For each Gal(Qp/Qp)-orbit ℘ we define the number s℘ :=∑
v∈℘ sv, and we write σ℘ for the partition (sv)v∈℘ of the number s℘;

(25) the function fα is the function of Kottwitz [57] associated to µ (cf. Proposition 2.3.3).

Remark. The second condition (2) is particular for our arguments, and does not occur

in [58].

4.2. The main argument. We compute the factors Tr(χ
G(Qp)
c fα, πp) occurring in The-

orem 4.3 below. We need to introduce two classes of representations:

Definition 4.1. Consider the general linear group Gn over a non-Archimedean local field.

Then a representation π of Gn is called a (semistable) rigid representation if it is equal to a

product of the form
k∏

a=1

Speh(xa, y)(εa) ∈ R,

where y is a divisor of n and (xa) is a composition of n
y , and εa are unramified unitary

characters.
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Definition 4.2. A representation π of the group G(Qp) = Qp
××∏℘|pGLn(F

+
℘ ) is called

a rigid representation if for each F+-place ℘ above p the component π℘ is a (semistable) rigid

representation of GLn(F
+
℘ ) in the previous sense:

π℘ =
k∏

a=1

Speh(x℘,a, y℘)(ε℘,a) ∈ R,

where two additional conditions hold: (1) y℘ = y℘′ for all ℘, ℘′|p, and (2) the factor of

similitudes Qp
× of G(Qp) acts through an unramified character on the space of π. We write

y := y℘ and call the set of data (x℘,a, ε℘,a, y) the parameters of π.

Remark. Recall that we work in the semistable setting, both notions of rigid represen-

tations that we introduced above in the semistable setting also have a natural variant in the

non-semistable case.

Theorem 4.3. Let α be a positive integer. Assume the conditions (1)-(25) from §5.1.
Then

(4.1)
∞∑

i=0

(−1)iTr(f∞p × Φα
p ,H

i
ét(BFq

, ι∗L)) =
∑

π⊂A(G)
πp rigid

Tr(χG
c fα, πp) · Tr(fp, πp).

Remark. Using recent results obtained with Lapid (see Appendix B) it is possible to

extend the above theorem to the other Newton strata. However the result will be combina-

torially complicated. We hope to include this result soon.

Proof of Theorem 4.3. Write T (fp, α) for the left hand side of Equation (4.1). By

Proposition 3.4 of Chapter 2 we have

(4.2) T (fp, α) = Tr(χG
c f∞fαf

p,A(G)),
for all sufficiently large integers α. To simplify notations, we write f := f∞fαfp.

Let π ⊂ A(G) be an automorphic representation of G contributing to the trace

Tr(χG
c f,A(G)). During the proof of Proposition 2.3.4 of the previous chapter we explained

that π may be base changed to an automorphic representation BC(π) of the algebraic

group K× × D×, and that, in turn, BC(π) may be send to an automorphic representation

Π := JL(BC(π)) of the Q-group G+ = K× ×GLn(F ).

The representation Π is a discrete automorphic representation of the group G+(A), and Π

is semistable at p. The classification of Moeglin-Waldspurger implies that π℘ is the irreducible

quotient of the induced representation

Ind
GLn(AF )
P (AF )

(
ω| · |

y−1
2 , . . . , ω| · |

1−y
2

)
,

where P ⊂ GLn is the homogeneous standard parabolic subgroup having y blocks, and each

block is of size n/y; the inducing representation ω is a cuspidal automorphic representation

of GLn/y(AF ).
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The representation Π comes from an automorphic representation of the group G via

Jacquet Langlands and base change. Therefore, Π is cohomological and conjugate self dual.

These properties descend, up to twist by a character, to the representation ω. The Ramanujan

conjecture is proved to be true for the representation ω by the articles [14,25,95]. Thus the

components ωv of ω are tempered representations. Note that, of course, the components Πv

are not tempered if Π is not cuspidal.

An easy computation shows that π℘ is a rigid representation for all F+-places ℘ dividing

p (Theorem 2.2.1). This means that there exists a positive divisor y of n, a composition
n
y =

∑k
a=1 xa, and unramified unitary characters εa such that

(4.3) π℘ ∼= Ind
GLn(F

+
℘ )

P (F+
℘ )

r⊗

a=1

Speh(xa, y)(εa),

where P ⊂ GLn is the standard parabolic subgroup corresponding to the composition (xay)

of n, and the tensor product is along the blocks of the standard Levi factor M of P . In

Equation (4.3) the number y is of global nature and does not depend on ℘. The other data,

k, (xa) and εa do depend on the place ℘. �

We work under the condition that p is split in the center F of the algebra D. Because the

prime p is completely split in the extension F/Q we have by Proposition 2.3.3 that

fα = 1q−α ⊗
⊗

v∈Hom(F+,R)

f
GLn(Qp)
nαsv ∈ H0(G(Qp)),

where the numbers sv are the signatures of the unitary group (cf. subsection 1). We compute

Tr(χ
G(Qp)
c fα, πp) =

=
∏

v∈Hom(F+,R)

Tr

(
χ
GLn(Qp)
c fnαsv , Ind

GLn(Qp)
P (Qp)

r⊗

a=1

Speh(xv, y)(εv,a)

)

=


 ∏

v∈Hom(F+,R)

r∏

a=1

εv,a(q
−sv

y·xa

n α)


 ·

·
∏

v∈Hom(F+,R)

Tr

(
χ
GLn(Qp)
c fnαsv , Ind

GLn(Qp)
P (Qp)

r⊗

a=1

Speh(xv,a, y)

)
.

Write ζαπ ∈ C for the product
∏

v

∏
a εa(q

−sv
y·xa

n α). The polynomial

(4.4) Tr

(
χ
GLn(F

+
℘ )

c fnασ℘ , Ind
GLn(F

+
℘ )

P (F+
℘ )

r⊗

a=1

Speh(xa, y)

)
∈ C[qα],

is computed in Theorems 2.10 and 3.3 to be a polynomial defined by the weights of certain

non-intersecting lattice paths. In particular the trace in Equation (4.4) vanishes unless the



78 3. THE COHOMOLOGY OF THE BASIC STRATUM II

number

(4.5) mv,a :=
y · x℘,a

gcd
(
y · x℘,a, y·x℘,a

n s℘
) =

y · x℘,a
gcd(n, s℘)

is an integer, and divides either x℘,a or y. We make the assumption that the compact trace

Tr(χG
c fα, πp) is non-zero and therefore these divisibility relations are satisfied.

The number ζαπ ∈ C is determined by the central character ωπ : Z(A) → C× of the

automorphic representation π via the Equation:

(4.6) ωπ(x)
αs/n = εs(q

α) ·
∏

℘|p

r∏

a=1

ε℘,a

(
q−s℘

y·xa

n α
)
= ζαπ ,

where εs is the contribution of the factor of similitudes, and x ∈ Z(A) is the following element

of the center Z of G:

x := (1)× [q, (q℘)℘] ∈ Z(Ap)×
[
Qp

× × F+×
Qp

]
= Z(A).

The divisibility relations in Equation (4.5) assure that taking the rational power s/n of ωπ(x)

on the left hand side makes sense.

Remark. The number ζπ is a Weil-q-number of weight determined by the local system

L, cf. Equation (2.3.10).

Definition 4.4. We call a rigid representation πp ofG(Qp) of B-type if for all ℘, gcd(n, s℘)

divides the product y ·x℘,a. Furthermore, for each F+-prime ℘ and each index a, the number

m℘,a divides either y or x℘,a.

We have proved that only the B-type representations contribute to the (alternating sum

of the cohomology spaces) of B. Let πp be a B-type representation of G(Qp). Then we write

Pol(π)
def
= Tr

(
χ
G(Qp)
c fα, πp

)
∈ C[qα].

We computed this polynomial in the first 4 sections of this chapter. Explicitely, it is the

product over all ℘, over all indices a of the polynomial

(4.7) ε · q
s℘(n−s℘)

2 α ·Dyck+(~xw0 , ~y),

where the lists of points ~x, ~y ∈ Q2 are defined by:

(1) If xa ≤ y, then ~x, ~y are of length xa, and for each b we have

~xb := ℓ

(
xa − y

2

)
, and ~yb := ℓ

(
xa + y

2

)
,

(2) if xa ≥ y, then ~x, ~y are of length y, and for each b we have

~xb := ℓ

(
y − xa

2

)
, and ~yb := ℓ

(
xa + y

2

)
,
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where ℓ ⊂ Q2 is the line of slope
s℘
n going through the origin. The notation does not show,

but the points ~x, ~y and the permutation w0 depend on ℘. The symbol w0 is a permutation

in the group Smin(xa,y) and is determined by Definition 2.8. The symbol ε in Equation (4.7)

is a sign and is equal to

(4.8) ν · sign(w0),

where the sign ν is equal to (−1)n−xa if xa ≤ n and it is equal to 1 otherwise.

4.3. Application: A dimension formula. In Chapter 2 we explained that For-

mula (4.1) gives a formula for the number of points in B if one takes fp = 1Kp and L
equal to the trivial local system. Using this simplified formula we proved in Proposition.2.4.2

a dimension formula for the basic stratum. We now extend this result to the Shimura varieties

satisfying conditions (1)-(25) from the first subsection, with p completely split in F+.

Take fp = 1Kp and L in Theorem 4.3 so that the right hand side of Equation (4.1) counts

the number of points in B over finite fields. We computed the class of representations at p

contributing to this formula. Each representation πp at p contributes with a certain function

P (qα) to the zeta function of B. We call the order of πp the order of the function P (qα) (as

function in qα).

Proposition 4.5. The trivial representation πp = 1 contributes with the largest order to

the right hand side of Equation (4.1).

Remark. In the statement of the proposition, we mean ‘largest order’ in the non-strict

sense. In general there are multiple representations contributing to the formula with the same

order.

The order of the trivial representation is easily computed, it is equal to:

(4.9)
∑

℘|p


∑

v∈℘

sv(1− sv)
2

+

s℘−1∑

j=0

⌈j n
s℘
⌉


 ,

(cf. Equation (2.4.4))

Proof of Proposition 4.5. Let πp be a unitary rigid representation. Pick one ℘|p.
The component π℘ is a rigid representation of G℘ := GLn(F

+
℘ ).

Assume first that π℘ is a Speh representation. We assume that h ≤ t, so we will work

in the dual setting. Treatment of the non-dual case is essentially the same (see Eq. (4.25) at

the end of this argument below). Let T1 = 〈u1, v1〉, T2 = 〈u2, v2〉, . . ., Th = 〈uh, vh〉 be the

segments of the Zelevinsky dual πι℘ of π℘. By Tadic’s formula the compact trace Tr(χ
G℘
c f℘, π℘)

is an alternating sum of compact traces Tr(χ
G℘
c f℘, I

ι
w) on Zelevinsky duals of certain standard

representations Iw. The traces Tr(χ
G℘
c f℘, I

ι
w) can be described using graphs as we explained

in the first section. The intuition is that the closer the graph is to the line ℓ, the larger its
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weight is, and we claim that the largest weight is attained by trivial representation. More

precisely, we claim that for all f ∈ H0(G℘) and for all permutations w ∈ Sh we have

(4.10) Ord(Tr(χ
G℘
c f, Iιw)) ≤ Ord(Tr(χ

G℘
c f,1G℘)),

where with Ord(h) ∈ Q of an element h ∈ A+ we mean the largest element x ∈ Q such that

qx occurs as a monomial in the expression of h with non-zero coefficient. By Proposition 3.1

and Dijk’s integration formula for compact traces we have

Tr(χ
G℘
c f, Iιw) = q

s(n−s)
2 ·

∑

X, ξ
G℘
c χ

G℘
Mw

X 6=0

cX · GX(~uw, ~v) ∈ A+,

where X ranges over the monomials X ∈ A of the Satake transform S(f) of f , cX ∈ C is

their coefficient and where we should explain the notation GX(~uw, ~v). The symbol ~u denotes

the list of points ~ua := ℓ(ua) ∈ Q2 for a = 1, . . . h and the list of points ~v is defined by

~va := ℓ(va + 1) ∈ Q2. The symbol GX is the graph of the monomial X as defined in the first

section. Recall however that GX is only well-defined up to the definition of its starting point.

The representation Iιw is obtained by induction from a one dimensional representation of a

standard Levi subgroup Mw of G℘. Let (n
w
a ) be the corresponding composition of n, and let

kw be the length of this composition. We cut the graph GX into kw pieces, the first piece

contains the first nw1 steps of GX , the second piece contains the next block of nw2 steps of GX
and so on. Thus instead of one graph GX we now have kw graphs, GwX,1,GwX,2, . . . ,GwX,kw

, all

well defined up to their starting points. We let the starting point of the graph GwX,1 be ~uw1 ,

the starting point of the graph GwX,2 is by definition ~uw2 , and so on. Then GwX,1, GwX,2, . . . are

well defined graphs in Q2, and due to our definition of starting points, we have

(4.11)

kw∏

a=1

weight(GwX,a) = Tr
(
X, (Iιw)N0(δ

−1/2
P0

)
)
∈ A+.

The condition ξ
G℘
c χ

G℘

Mw
X 6= 0 on X means precisely that the graphs GwX,a have endpoint equal

to ~va and that these graphs do not cross, but may touch, the line ℓ.

Starting from the monomial X we can also defined a second graph HX , such that

weight(HX) = Tr
(
X,1(δ

−1/2
P0

)
)
∈ A+.

This graph has starting point ~x = ℓ(1−n
2 ) and end point ~y = ℓ(n−1

2 + 1); the steps of HX are

defined by Formula (2.2).

We now claim that

(4.12)

h∏

a=1

weight(GwX,a) ≤ weight(HX) ∈ A+,

for the obvious meaning of ‘≤’.
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Before we prove the claim, let us first show a simple fact of graphs. Let G be any graph

in Q2. Then we have, for any point (a, b) ∈ Q2 that

(4.13) Ord(G + (x, y)) = Ord(G)− x ·Height(G),

where the height of G, Height(G), is the vertical distance between the initial point of G and

its end point. This formula is easily seen to be true: The order Ord(G) is equal to the sum

of −a · e over all diagonal steps (a, b) → (a + 1, b+ e) occurring in the graph G. Adding the

point (x, y) to G amounts to changing −a · e to −(a+ x)e in the definition of the order of G.
Thus the order of G is shifted by the sum, over all diagonal steps (a, b) → (a + 1, b + e), of

the value −xe. This gives the formula in Equation (4.13).

We now return to the graphs GX andHX introduced earlier. We cutHX into h consecutive

graphs. The first graph HX,1 consists of the first nw1 steps of HX , the second graph HX,2

consists of the second block of nw2 steps of HX , and so on. The graphs GX,a have the same

shape as the graphs HX,a, but they are shifted (the graphs are constructed starting from the

same monomial X). Therefore we have the relations:

(4.14) (∀a) : HX,a = GX,a − ℓ(uw(a)) + ℓ(1−n
2 + nw1 + . . . nwa−1),

(we subtract the initial point of GX,a, and then add the initial point of HX,a); in the above

formula we have the convention that

nw1 + nw2 + . . .+ nwa−1 = 0,

in case a = 1. Note also that

Ord(HX) =
h∑

a=1

Ord(HX,a),

and similarly for GX . By Equations (4.13) and (4.14) we have

Ord(HX,a) = Ord(GX,a)− uw(a) · swa + (1−n
2 + nw1 + . . .+ nwa−1) · swa ,

where swa := nwa · sn = Height(GX,a) = Height(HX,a). Thus we have to compute the following

expression

(4.15) C(w) =
s

n

h∑

a=1

(
1− n
2

+ nw1 + nw2 + . . .+ nwa−1 − uw(a)

)
nwa .

To show that Equation (4.12) is true, we show that C(w) ≤ 0 for all permutations w.

To prove that C(w) ≤ 0, we may ignore the factor s
n in the above expression. We prove

in two steps that C(w) ≤ 0 for all w. We first determine the permutation w such that the

value C(w) is maximal (Step 1). Then we compute for this particular permutation the value

C(w), and observe that it is non-positive (Step 2).



82 3. THE COHOMOLOGY OF THE BASIC STRATUM II

We begin with Step 1. We want to determine w such that C(w) is maximal. Let us first

simplify the expression somewhat. The expression C(w) is maximal for w if and only if

(4.16)
h∑

a=1

(
nw1 + nw2 + . . .+ nwa−1 − uw(a)

)
nwa ,

is maximal. To derive (4.16) we used 8, that the sum
∑t

a=1
n−1
2 nwa equals n1−n

2 and therefore

this sum does not depend on w. (Similar arguments will appear also below.) We have

(4.17) nwa =

(
t+ h

2
− a
)
−
(
h− t
2
− (w(a)− 1)

)
+ 1 = t− a+ w(a).

and

(4.18) uw(a) =
t− h
2
− (w(a)− 1).

We plug Equations (4.17) and (4.18) into Equation (4.16) to get

h∑

a=1

(
(t− 1 + w(1)) + . . .+ (t− (a− 1) + w(a− 1))− t− h

2
+ (w(a)− 1)

)
nwa

As before, this expression is maximal for w, if and only if the expression

(4.19)
h∑

a=1

(w(1)− 1 + w(2)− 2 + . . .+ w(a− 1)− (a− 1) + w(a)) (t− a+ w(a))

is maximal. Equation (4.19) is maximal for w if and only if the expression

(4.20)

h∑

a=1

(w(1)− 1 + w(2)− 2 + . . .+ w(a− 1)− (a− 1) + w(a)) (w(a)− a)

is maximal. We may rewrite (4.20) to

h∑

a=1

(w(1) + w(2) + . . .+ w(a))a−
h∑

a=1

(1 + 2 + . . .+ (a− 1))w(a)(4.21)

We rearrange the first sum as follows. Count for each index a the coefficient of w(a) to get

h∑

a=1

(w(1) + w(2) + . . .+ w(a))a =
h∑

a=1

ρ(h+ 1− a)w(a),

where

ρ(a) := 1 + 2 + 3 + . . .+ a = 1
2a(a+ 1).

Thus (4.21) equals
h∑

a=1

(ρ(t+ 1− a)− ρ(a− 1))w(a)

8. See Equation (2.1), but note that by duality the roles of h and t are switched.
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The function ν(a) defined by ν(a) = ρ(h+1−a)−ρ(a−1), is strictly decreasing in a because

ν(a+ 1)− ν(a) = −(h+ 1).

We are looking for w such that
h∑

a=1

ν(a) · w(a)

is maximal, with ν(a) a strictly decreasing function for a ∈ {1, 2, . . . , h}. This maximum is

attained by the permutation w defined by a 7→ h+ 1− a. This completes Step 1.

We now do Step 2. Thus we have w(a) = h + 1 − a for all indices a ∈ {1, 2, . . . , h}. We

compute the sum

(4.22) C(w) =
h∑

a=1

(
1− n
2

+ nw1 + nw2 + . . .+ nwa−1 − uw(a)

)
nwa .

We have

nwa = ya − uw(a) + 1 =

(
h+ t

2
− a
)
−
(
h− t
2
− (w(a)− 1)

)
+ 1

= t− a+ w(a) = t− a+ (h+ 1)− a = t+ h+ 1− 2a,(4.23)

and we have

(4.24) uw(a) =
t− h
2
− (w(a)− 1) =

t− h
2
− (h− a).

Note also that,

n =

h∑

a=1

nwa =

h∑

a=1

t+ h+ 1− 2a.

(cf. Equation (2.1)). Thus, Equation (4.22) becomes

h∑

a=1

(
1− n
2

+

(
a−1∑

b=1

t+ h+ 1− 2b

)
−
(
t− h
2
− (h− a)

))
· (t+ h+ 1− 2a)

An easy (but somewhat lengthy) computation shows that this last formula simplifies to

n(h − t). By assumption we have h ≤ t. We conclude that the value in Equation (4.22)

is non-positive, which is what we wanted to show. We have now established the claim in

Equation (4.12).

With the same proof, but using the non-dual instead, one can show that

(4.25) Ord(Tr(χ
G℘
c f, Iw)) ≤ Ord(Tr(χ

G℘
c f, StG℘)),

is true for all representation Iw occurring in Tadic’s formula for Speh representations π with

h ≥ t. Because
Ord(Tr(χ

G℘
c f, StG℘)) ≤ Ord(Tr(χ

G℘
c f,1G℘)),
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the inequality of Equation (4.10) is true for all Speh representations. We leave it to the reader

to deduce that Equation (4.10) also holds for products of Speh representations, and also for

the rigid representations of G℘ (with the characters εa trivial).

We return to the group G(Qp) and the full representation πp. The compact trace

Tr(χ
G(Qp)
c fα, πp) is the product of the traces on the components,

Tr(χ
G(Qp)
c fα, πp) = TrQp

×(fs, πs) ·
∏

℘|p
Tr(χ

G℘
c f℘, π℘),

(the first term in the product is the contribution of the factor of similitudes). We proved that

all the terms of this product are bounded by the trace on the trivial representation. This is

then also true for the entire product. �

We now deduce a formula for the dimension.

Theorem 4.6. The dimension of the basic stratum B is equal to

∑

℘|p


∑

v∈℘

sv(1− sv)
2

+

s℘−1∑

j=0

⌈j n
s℘
⌉


 .

Proof. Apply Proposition 4.5 and Theorem 4.3 to find

dim(B) ≤
∑

℘|p


∑

v∈℘

sv(1− sv)
2

+

s℘−1∑

j=0

⌈j n
s℘
⌉


 .

We now prove the opposite inequality. We return to the final formula we found in Theorem 4.3:

(4.26)
∞∑

i=0

(−1)iTr(f∞p × Φα
p ,H

i
ét(BFq

, ι∗L)) =
∑

π⊂A(G)
πp rigid

Tr(χG
c fα, πp) · Tr(fp, πp).

We take in this formula fp and L of the following form. Let p1 be a prime number with

– p1 is different from ℓ, p;

– the group G splits over Qp1 ;

– the group K splits into a product Kp1K
p1 of a hyperspecial group at p1 and a compact

open subgroup Kp1 ⊂ G(Ap1
f ) outside p1.

We take

– fpp1 = 1Kpp1 ;

– fp1 is an arbitrary Kp1-spherical function;

– L = Qℓ (the trivial local system).

There exist only a finite number of representations πp1 contributing to Equation (4.26), and

one of these representations is the trivial representation. Thus we may find a spherical Hecke

operator fp1 ∈ H(G(Qp1)) such that

Tr(fp1 , πp1) =




1 πp1

∼= 1G(Qp1 )

0 otherwise,
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for all representations πp1 occurring in Equation (4.26). We consider the Hecke operator

fp := 1Kpp1 ⊗ fp1 in Equation (4.26). By construction, any automorphic representation

π ⊂ A(G) contributing to Equation (4.26) has πp1
∼= 1G(Qp1 )

. By a strong approximation

argument, the representation π is one dimensional 9, and in particular Abelian. Consequently,

at the prime p 6= p1, the representation πp is a twist of 1G(Qp) by an unramified character χp.

Because the representation ξ at infinity is trivial, the character χp is of finite order. Therefore

there exists an integer r > 0 such that, whenever r divides α, we have

Tr(χ
G(Qp)
c fα, πp) = Tr(χ

G(Qp)
c fα,1),

for all representations πp contributing to Equation (4.26). From now on we consider only α

such that r|α. The right hand side of Equation (4.26) simplifies to

C · Tr(χG(Qp)
c fα,1),

where C is some non-zero constant. Thus for our choice of f∞p the trace

(4.27)
∞∑

i=0

(−1)iTr(f∞p × Φα
p ,H

i
ét(BFq

,Qℓ))

grows with the order of the trivial representation. View
∑∞

i=0(−1)iHi
ét(BFq

,Qℓ) as a virtual

representation of the group (Φr
p)

Z, and write it as a linear combination of the characters of this

group. The character of highest order occurring in this expression determines the dimension

of the variety B. By the conclusion in Equation (4.27) there occurs a character whose order

is at least Ord(Tr(χ
G(Qp)
c fα,1)). This means that

dim(B) ≥
∑

℘|p


∑

v∈℘

sv(1− sv)
2

+

s℘−1∑

j=0

⌈j n
s℘
⌉


 .

This completes the proof of the Theorem. �

Remark. The above formula confirms the conjecture for the dimension of the basic stra-

tum specialized to the cases we consider. See for example [61].

4.4. Application: Vanishing of the cohomology. In Chapter 2 we assumed that

the signatures s℘ are coprime to the number n. Under these conditions the cohomology of

the basic stratum is very simple: Locally at the prime p, only the trivial representation and

(essentially) the Steinberg representation contribute to Expression (4.1). In fact this is true

in a larger class of cases:

Corollary 4.7. Assume there is one F+-place ℘ above p such that s℘ is coprime to n.

Then only the Steinberg representation and the trivial representation contribute to the formula

in Equation (4.1).

9. See for example Lemma 3.6 in Chapter 2, although this result is of course well known.
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Proof. This follows directly form the definition of rigid representation of the group

G(Qp). �

Remark. In Chapter 2 we assumed that, for all ℘, the number s℘ is coprime to n or s℘

is equal to 0 or n. Only under this larger assumption the compact trace on the Steinberg

representation coincides with the compact trace on the trivial representation (up to sign),

just as in Chapter 2. In the above Corollary this need not be the case.

4.5. Application: Euler-Poincaré characteristics. Finally we have a remark on the

Euler-Poincaré characteristic of the variety B. The evaluation at q = 1 of our formula gives

the expression of the Euler-Poincaré characteristic. Thus to compute the Euler-Poincaré

characteristic we get the combinatorial problem to compute, apart from dimensions of spaces

of automorphic forms, the number of non-intersecting Dyck paths. This problem has been

considered in an equivalent forms in the literature; a good starting point are the books of

Stanley [97] and the references therein.

5. Examples

We end this chapter with some examples. Let us first explain why we need the condition

that p splits completely in the center of D.

5.1. Products of simple Kottwitz functions. To study the reduction modulo p of

unitary Shimura varieties, the simple Kottwitz functions fnαs as we defined them in Equa-

tion (1.1) are not enough. These functions count only points of unitary Shimura varieties

if the group G of the Shimura datum is of the following kind. Consider a unitary Shimura

variety associated to a division algebra D as in the previous section. Let U in G be the

subgroup of elements whose factor of similitudes is equal to one. Then U is a unitary group

and U(R) is isomorphic to a product of standard unitary groups U(pτ , qτ ) with τ ranging

over the infinite places of the maximal totally real subfield F+ of the center F of D. The

function fnαs counts points on the reduction of ShK modulo p if we have pτ = 0 or qτ = 0

for all F+-places τ , but with one F+-place excluded. For the excluded F+-place τ0 we must

have pτ0 = s or pτ0 = n − s. For unitary Shimura varieties with several non-zero signatures

at infinity, one will need to consider products of the functions fnαs for several different values

of s.

Remark. Compact traces do not commute with products of Hecke operators.

Example. Let us assume that there are two infinite F+-places τ0, τ1 with pτ0 = pτ1 = 1

and that pτ = 0 for all other τ . Choose embeddings C ⊃ Q ⊂ Qp, so the group

Gal(Qp/Qp) acts on the set of infinite places of F+. Assume the places τ0 and τ1 lie in

the same Gal(Qp/Qp)-orbit and assume α is sufficiently divisible such that the Ep,α-algebra

F+ ⊗ Ep,α is split. Then the function counting points in the set #ShK(Fqα) is (essen-

tially) the convolution product f = fnα1 ∗ fnα1 ∈ H0(GLn(F )), where F is some finite
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extension of Qp. An easy computation shows that f = 2qαfnα2 + fn(2α)1, and therefore

Tr(χG
c f,1G) = 2(q + q1 + . . . + qα⌊

n
2
⌋) + 1. Consequently the number of points in the ba-

sic stratum over the field Fqα is the product of the above polynomial times a cohomological

expression depending only on the class of the degree α in the group Z/hZ, where h is re-

lated to the class number of the cocenter of G (Corollary 2.4.1). In particular the variety is of

dimension ⌊n2 ⌋ in this case. If we assume instead that τ0 and τ1 lied in a different Gal(Qp/Qp)-

orbit, then the basic stratum of ShK is a finite variety. Whether or not τ0 and τ1 lie in the

same Gal(Qp/Qp)-orbit is a condition on how the prime p decomposes as a product of prime

ideals in the ring of integers OF+ of F+. Thus, roughly speaking, the form of the function

α 7→ Tr(χ
G(Qp)
c f,1G(Qp)) depends only on two pieces of information: (1) The signatures of

the unitary group at infinity, and (2) how the prime p decomposes in F+.

5.2. Two different prime factors. Assume F+ is of degree 2 over Q and n is a product

of two primes x, y with x < y. Let U ⊂ G be the subgroup of elements whose factor of

similitudes is trivial. We assume U(R) is isomorphic to U(x, n−x)(R)×U(y, n− y)(R). The
reflex field E of the Shimura datum coincides with the field F .

There are two cases to consider, either the prime p where we reduce ShK splits in F+ or p is

inert (but unramified). Assume that p splits, then G(Qp) = Qp
××GLn(Qp)×GLn(Qp). Recall

that we picked an embedding νp : Q → Qp. Therefore the factors of the product GLn(Qp) ×
GLn(Qp) are ordered: the embbeding νp identifies the two F

+-places τ1, τ2 at infinity with the

two F+-places ℘1, ℘2 above p. Via the isomorphism U(R) ∼= U(x, n− x)(R)×U(y, n− y)(R)
we associate to τ1, τ2 (and thus to ℘1, ℘2) a signature equal to x or y. Assume that ℘1 (and

τ1) correspond to x and ℘2 (and τ2) correspond to y. Similarly, the first factor of the group

GLn(Qp)×GLn(Qp) corresponds to ℘1 and the second factor corresponds to ℘2.

The B-type representations of G(Qp) are the representations contributing to the coho-

mology of the basic stratum. Ignoring the factor of similitudes, the B-type representations of

G(Qp)/Qp
× = GLn(Qp)×GLn(Qp) are:

(5.1) Speh(x, y)(ε)⊗
k∏

a=1

Speh(xa, y)(εa),

(5.2)

k∏

a=1

Speh(ya, x)(εa)⊗ Speh(x, y)(ε),

(5.3) StG(ε)⊗ StG(ε
′),

(5.4) 1G(ε)⊗ 1G(ε
′),

where, in these equations the number k can, a priori, be any positive number. In Equa-

tion (5.1), the symbol (xa) ranges over the compositions of the prime x and in Equation (5.2),
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the symbol (ya) ranges over the compositions of the prime y. The symbols ε, ε′, εa denote

arbitrary, unrelated, unramified unitary characters.

5.3. Some explicit polynomials. We specialize our first example further, and assume

that x = 2 and y = 3, so U(R) ∼= U(2, 4)(R) × U(3, 3)(R). We write down the polynomials

Tr(χG
c fα, πp) ∈ A+ for the representations that occur. The unramified characters ε, εa, ε

′ and

the factor of similitudes have no influence on the form of the polynomials, so we leave them

out.

The computation of the compact traces on the representations πp = Speh(3, 2) and πp =

Speh(2, 3) is done in the Figures 4 and 5. Recall that the computuation on Speh(3, 2) is

done via the segments of its dual representation Speh(2, 3). The Zelevinsky segments of the

representation Speh(2, 3) are
{
−1

2 ,
1
2 ,

3
2

}
and

{
−3

2 ,−1
2 ,

1
2

}
. To compute the compact traces

we consider the line ℓ in Q2 of slope s
n and consider the weights of non-crossing lattice paths.

In our case there are two possible slopes, slope 1
2 and slope 1

3 ; these yield several different

polynomials.

Figure 4. The compact trace on the representation Speh(3, 2) with respect to

the function f6α3. We have s
n = 1

2 , and ~x1 = ℓ(−1
2), ~x2 = ℓ(−3

2), ~y1 = ℓ(32 +1)

and ~y2 = ℓ(12 +1). The permutation w0 is equal to (12). We see that there are

two Dyck 2-paths going from the points ~xw0 to the points ~y, and one of those

paths is non-strict because it touches the line ℓ. Therefore Dyck+s (~x
w0 , ~y) =

q−1/2α−1/2α−3/2α = q−5/2α and Dyck+(~xw0 , ~y) = q−5/2α+q−3/2α. We conclude:

Tr(χ
G(Qp)
c f6α3, Speh(3, 2)) = (−1)n−tsign(w0)q

s(n−s)
2 αq−5/2α = −q2α.

In the illustrations we found that

Tr(χ
G(Qp)
c f6α3, Speh(3, 2)) = −q−2α

Tr(χ
G(Qp)
c f6α2, Speh(3, 2)) = −q3α.

Using the duality and the computation in the figures, we find that

Tr(χ
G(Qp)
c f6α3, Speh(2, 3)) = q2α + q3α

Tr(χ
G(Qp)
c f6α2, Speh(2, 3)) = q2α.
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Figure 5. The compact trace on the representation πp = Speh(3, 2) with

respect to the function f6α2. We have s
n = 1

3 , and ~x1 = ℓ(−1
2), ~x2 = ℓ(−3

2),

~y1 = ℓ(32+1) and ~y2 = ℓ(12+1). The permutation w0 is the trivial permutation.

There is one Dyck 2-path going from the points ~xw0 to the points ~y and this 2-

path is strict. Therefore Dyck+s (~x
w0 , ~y) = Dyck+(~xw0 , ~y) = q−1/2α−3/2α = q−α.

We conclude: Tr(χ
G(Qp)
c f6α2, Speh(3, 2)) = (−1)n−tsign(w0)q

s(n−s)
2 = −q3α.

By drawing the picture, we see in a similar manner to the illustrations that

(5.5) Tr(χG4
c f4α2, Speh(2, 2)) = q3α.

and

Tr(χG6
c f6α2,1G6) = 1 + qα + q2α

Tr(χG6
c f6α2, StG6) = −(qα + q2α)

Tr(χG6
c f6α3,1G6) = 1 + qα + 2q2α + q3α

Tr(χG6
c f6α3, StG6) = −(1 + qα).(5.6)

The representations at p occurring in the alternating sum of the cohomology of the basic

stratum are (up to twists):

Speh(2, 3)⊗ Speh(2, 3), Speh(2, 3)⊗ (1G3 × 1G3);

Speh(3, 2)⊗ Speh(3, 2), (Speh(2, 2)× 1G2)⊗ Speh(3, 2) (1G2 × Speh(2, 2))⊗ Speh(3, 2),

(1G2 × 1G2 × 1G2)⊗ Speh(3, 2);

StG6 ⊗ StG6 ;

1G6 ⊗ 1G6 .

Let us ignore the factor of similitudes of the group G(Qp). On the group GL2(Qp) ×
GL2(Qp) the function of Kottwitz is equal to f6α2 ⊗ f6α3 ∈ H0(GLn(Qp)) ⊗ H0(GLn(Qp)).

With the formulas we gave above the compact traces on the representations in this list are

now all explicit.





CHAPTER 4

Non-emptiness of the Newton strata

Recently Wedhorn and Viehmann [104] have proved through geometric means that, for

a Shimura variety of PEL type of type (A) or (C), the Newton strata at a prime of good

reduction are non-empty. We reprove this result using automorphic forms and the trace

formula in case the group is of type (A). At the time of writing this chapter we learned that

Sug Woo Shin also found a proof of this theorem with yet another method.

Let us explain our method of proof. The formula of Kottwitz for the number of points

on a Shimura variety modulo p can be restricted to count the number of points in any given

Newton stratum. Thus, it suffices that this restriction be non-zero. Kottwitz rewrites the

formula in terms of stable orbital integrals on certain endoscopic groups of G. This stable

expression coincides with the geometric side of the stable trace formula. The geometric side

equals the spectral side, so we get a sum over the endoscopic groups of G of certain truncated,

transferred Hecke operators acting on automorphic representations of these endoscopic groups.

(The truncation is defined by the element of B(GQp , µ).) A general objective is to try and

work out this expression; one will then get a description (of the alternating sum) of the

cohomology of the Newton strata. Here we have aimed at a simpler goal: We do not describe

the cohomology of the Newton stratum defined by b ∈ B(GQp , µ), we only show that the

cohomology does not vanish, so that the corresponding Newton stratum must be non-empty.

We pick one very particular Hecke operator fp and carry out the computation sketched

above only for this particular Hecke operator. We choose our Hecke operator with care, so

that all the proper endoscopy vanishes and that in the end, after applying a simple version of

the trace formula, we arrive at a sum of certain b-truncated traces on cuspidal automorphic

representations of the quasi-split inner form G∗ of the group G (Equation (7.11)):

(0.7)
∑

Π

m(Π) · Tr((fp)G∗(Ap
f ),Πp) Tr(χ

G(Qp)
b fα,Πp).

We choose the function fp so that, based on general conjectures, we expect that there is

precisely one automorphic representation Π0 contributing to this sum (for α sufficiently di-

visible). Therefore no cancellations occur and the sum is non-zero. We do not prove these

general conjectures. However, we show that there is at least one contributing representation

Π0, and that for any other hypothetical Π contributing to Equation (0.7), the quotient

(0.8)
m(Π) · Tr((fp)G∗(Ap

f ),Πp) Tr(χ
G(Qp)
b fα,Πp)

m(Π0) · Tr((fp)G∗(Ap
f ),Πp

0) Tr(χ
G(Qp)
b fα,Π0,p)

,

91
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is a positive real number (here α is sufficiently divisible). Then, the sum in Equation (0.7)

is non-zero. Thus the formula of Kottwitz does not vanish as well, and this means that the

corresponding Newton stratum is nonempty.

An important step in the argument is showing that the representation Π0 exists. In partic-

ular we have to find a local representation Π0,p at p such that we have Tr(χ
G(Qp)
b fα,Π0,p) 6= 0.

In the first section we find a set of such representations Π0 with positive Plancherel measure.

General theory of automorphic forms then assures the existence of a global automorphic

representation Π0 lying in our Plancherel set.

1. Isocrystals

We start this preliminary section with some notations. Let p be a prime number and

let F be a finite extension of Qp. Let OF be the ring of integers of F , let ̟F ∈ OF be a

prime element. We write Fq for the residue field of OF , and the number q is by definition its

cardinality. We fix an algebraic closure Qp of F , and we let Fα be the unramified extension of

F of degree α in Qp. Let G be a smooth reductive group over OF (then GF is an unramified

group [100]). We fix a minimal parabolic subgroup P0 of G, and we standardize the parabolic

subgroups of G with respect to P0. We write T ⊂ P0 for the Levi component of P0 and N0 for

the unipotent part, so that we have P0 = TN0. We call a parabolic subgroup P of G standard

if it contains P0, and we write P =MN for its standard Levi decomposition. We write K for

the hyperspecial subgroup G(OF ) ⊂ G(F ). Let H(G) be the Hecke algebra of locally constant

compactly supported complex valued functions on G(F ), where the product on this algebra

is the one defined by the convolution integral with respect to the Haar measure giving the

group K measure 1. We write H0(G) for the spherical Hecke algebra of G with respect to K.

We write ρ for the half sum of the positive roots of G.

We write Z ⊂ G for the center of G, and we write A ⊂ Z for the split center. Similarly

ZM (resp. ZP ) is the center of the Levi-subgroup M (resp. parabolic subgroup P ); and

we write AM (resp. AP ) for the split center of M . We write A0 for AP0 ⊂ T . We write

a0 := X∗(A0)⊗ R, and C0 for the closed, positive chamber in a0:

C0 := {x ∈ a0 | for all roots α in ∆(A0,Lie(N0)): 〈x, α〉 ≥ 0} .

Let B(G) be the set of σ-conjugacy classes in G(L), where L is the completion of the

maximal unramified extension of F and σ is the arithmetic Frobenius of L over F . Let

µ ∈ X∗(T ) be a G-dominant minuscule cocharacter. Recall that Kottwitz has defined the

subset B(G,µ) ⊂ B(G) of µ-admissible isocrystals [60,88].

Let D be the protorus over F with character group given by X∗(D) = Q and trivial

Galois action. For any b ∈ G(L) we have an unique morphism νb : DL → GL characterized by

the following property: For every algebraic representation (ρ, V ) of G on a finite dimensional

vector space V the composition ρ◦νb determines the slope filtration on (V⊗L, ρ(b)(1⊗σL)) [55,
§4]. Replacing b by a σ-conjugate amounts to conjugating νb with some G(L)-conjugate.
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Moreover, one can replace b so that νb has image inside the torus A0,L, so that νb defines an

element of a0 [60, p. 267] [88, 1.7]. Write νb for the unique element of C0 whose orbit under

the Weyl group meets νb. The morphism νb is called the slope morphism and the mapping

B(G)→ C0, b 7→ νb is called the Newton map. Note that the mapping b 7→ νb is not injective

in general (it is injective in case G = GLn(F )).

Recall that we fixed an embedding F ⊂ Qp. For each finite subextension F ′ ⊂ Qp of

F we have the unique mapping HT : T (F ′) → X∗(T )R such that q
−〈χ,H(t)〉
F ′ = |χ(t)| for all

t ∈ T (F ′), where qF ′ is the cardinal of the residue field of F ′, and the norm is normalized

so that |p| equals q−e
F ′ where e is the ramification index of F ′/F . By taking the union over

all F ′ we get a mapping HT : T (Qp) → X∗(T )R. Consider the composition HA defined by

T (Qp) → X∗(T )R → X∗(A)R = a0. Let G(Qp)ss ⊂ G(Qp) be the subset of semisimple

elements. If g ∈ G(Qp)ss, then we may conjugate g to an element g′ of T (Qp) and then

consider HA(g
′) ∈ a0. This element of a0 is only defined up to conjugacy, but we can take

a representative in the, closed positive Weyl chamber H(g) ∈ C+
0 which is well-defined.

Thus we have a map Φ: G(Qp)ss → C0 defined on the semisimple elements. We extend the

definition of Φ to G(Qp) by defining Φ(g) := Φ(gss), where gss is the semisimple part of the

element g ∈ G(Qp). We restrict to G(F ) ⊂ G(Qp) to obtain the mapping Φ: G → C0. In

Proposition 1.1 we establish a relation between the map Φ and the Newton polygon mapping

of isocrystals.

We recall the definition of the normN of (certain) σ-conjugacy classes (cf. [4] [53, p. 799]).

To any element δ ∈ G(Fα) we associate the element N(δ) := δσ(δ) · · ·σα−1(δ) ∈ G(Fα). For

any element δ ∈ G(Fα), defined up to σ-conjugacy, with semi-simple norm N(δ) one proves

(see [loc. cit.]) that N(δ) actually comes from a conjugacy class N (δ) in the group G(F ).

Proposition 1.1. Let α be a positive integer and let δ ∈ G(Fα) be an element of semi-

simple norm, defined up to σ-conjugacy. Let γ ∈ G(F ) be an element in the conjugacy class

N (δ), and let b be the isocrystal with additional G-structure defined by δ. Then νb = α·Φ(γ) ∈
C0.

Proof. We first prove the case where G is the general linear group. If G = GLn,F , then

an isocrystal “with additional G-structure” is simply an isocrystal, i.e. a pair (V,Φ) where V

is an n-dimensional L vector space and Φ is a σ-linear bijection from V onto V . Because b

is induced by some δ ∈ G(Fα), we may find a Fα-vector space V ′ together with a σ-linear

bijection Φ′ : V ′ → V ′ such that (V,Φ) is obtained from (V,Φ) by extending the scalars

V = V ′⊗Fα L and Φ(v′⊗ l) := Φ′(v′)⊗ σ(l). Then (V ′,Φ′) is an Fα-space in the terminology

of Demazure [35], and a theorem of Manin gives the relation νb = α · Φ(γ) (cf. [35, p. 90]).
Drop the assumption that G = GLn. Pick a representation ρ : G → GLV of G in some

finite dimensional Qp-vector space V . Then, by the statement for GLn, we see that α ·
ΦGLn(ρ(γ)) determines the slope filtration on the space (V ⊗ L, ρ(b)(1⊗ σL)). Thus ρ ◦ νb =
α · ΦGLn(ρ(γ)) for all ρ, and then the equality is also true for the group G. �
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Figure 1. The dark line is an example of the Newton polygon of an isocrystal

b with additional U∗
10-structure. The horizontal line from (0, 0) to (10, 0) is the

Newton polygon of the basic isocrystal. The vertical dotted line indicates the

mirror symmetry of the Newton polygons of the G-isocrystals.

We now study the set B(G) where G is an unramified unitary group over F splitting over

the extension F2/F . The absolute root system of G is isomorphic to the usual root system in

Rn of type A (cf. Bourbaki [11, chap. 6]), and the non-trivial element of the group Gal(F2/F )

acts on Rn via the operator θ defined by (x1, x2, . . . , xn) 7−→ (−xn,−xn−1, . . . ,−x1). The

space a0 is the subspace of θ invariant elements in Rn, thus it is equal to the set of (xi) ∈ Rn

with xi = −xn+1−i for all indices i. The dimension of this space is equal to ⌊n/2⌋.
Whenever b ∈ B(G) is an isocrystal with G-structure, we have its slope morphism νb ∈ C0.

We may view the slope morphism νb as an θ-invariant element of Rn. This way we get the

slopes λ1, λ2, . . . , λn of b. These slopes are just the coordinates of the vector νb ∈ Rn. We

order them so that λ1 ≤ λ2 ≤ · · · ≤ λn. These slopes satisfy the property λi = −λn+1−i. We

associate to these slopes the Newton polygon Gb of b. The Newton polygon is by definition

the continuous piecewise linear function from the real interval [0, n] to R with the property

that the only points where it is possibly not differentiable are the integral points [0, n]∩Z; the
value of Gb at these points is defined by: Gb(0) := 0 and Gb(i) := λ1 + λ2 + . . .+ λi. Observe

that, due to the θ-invariance, we have Gb(n) = λ1 + . . . + λn = 0. Furthermore the graph

(or polygon) Gb is symmetric around the vertical line that goes through the point (n2 , 0). In

Figure 1 we show a typical unitary Newton polygon. In particular negative slopes may occur,

which does not happen for the group GLn(F ) nor for the group Gsp2g(F ).
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Let us now determine what the Hodge polygons looks like. The minuscule cocharacter µ

is defined over F , and is given by

µ = (0, 0, . . . , 0︸ ︷︷ ︸
n−s

, 1, 1, . . . , 1︸ ︷︷ ︸
s

) ∈ Zn ⊂ Rn,

for some integer s with 0 ≤ s ≤ n. To define the set B(G,µ) Kottwitz [60, §6] takes the

average of µ under the Galois action to get

µ := 1
2(µ+ θ(µ)) = (−1

2 ,−1
2 , . . . ,−1

2︸ ︷︷ ︸
s′

, 0, 0, . . . , 0︸ ︷︷ ︸
n−2s′

, 12 ,
1
2 , . . . ,

1
2︸ ︷︷ ︸

s′

) ∈ a0 ⊂ Rn,

where s′ := min(s, n − s). To this element µ ∈ Rn we may associate in the same manner a

graph Gµ as in Figure 1. Then b ∈ B(G) lies in B(G,µ) if and only if the end point of Gb is

(n, 0) and if Gb lies above 1 the graph Gµ.

2. PEL datum

LetG/Q be a unitary group of similitudes arising from a PEL type Shimura datum [59, §5].
We recall briefly the definition of G from [loc. cit.]. Let B/Q be a finite dimensional simple

algebra and write F for its center, and assume that F is a CM field. Let ∗ be a positive

involution on B over Q inducing on F the complex conjugation. Write F+ ⊂ F for the

fixed field of ∗ on F . Let V be a nonzero finitely generated left B-module. Let (·, ·) be a

non-degenerate Q-valued alternating form on V such that (bv, w) = (v, b∗w) for all v, w ∈ V
and all b ∈ B. Then G/Q is the algebraic group with for all commutative Q-algebras R:

(2.1) G(R) =
{
g ∈ EndB(V )×|∃c(g) ∈ R× : (g·, g·) = c(g)(·, ·) on V

}
.

Let G1 ⊂ G be the kernel of the similitudes ratio. Then G1 is obtained by restriction of

scalars of a unitary group G0 defined over the totally real field F+ (following the notations

of [loc. cit.]. The group G1,Qp is isomorphic to a product of groups

(2.2) G1,Qp
∼=
∏

℘|p
G1,℘,

where ℘ ranges over the F+-places above p, and where the group G1,℘ is either the restriction

of scalars to Qp of GLn,F+
℘
or of an unramified unitary group over F+

℘ . We will study the group

G1,Qp factor by factor. Thus, in this chapter we will need to work not only with unramified

unitary groups, but with the slightly more general class of groups of the form ResF ′
℘/F℘

U ,

where F ′
℘/F℘ is some unramified extension and U is an unramified unitary group over F ′

℘.

The study of isocrystals over these groups reduces quickly to the study of isocrystals over the

group U (which we did above), by the Shapiro bijection (cf. [60, 6.5.3]):

(2.3) B(ResF ′
℘/F℘

U) = BF ′
℘
(U),

1. Lies above in the non-strict sense, the two graphs may touch, or even be the same (the ordinary case).
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where we have added the subscript “F ′
℘” in the right hand side to indicate that there we

work with σ′-conjugacy classes, where σ′ is the arithmetic Frobenius of Qp over F ′
℘. Under

the Shapiro bijection the subset B(ResF ′
℘/F℘

U, µ℘) corresponds to the subset BF ′
℘
(U, µ′℘) of

BF ′
℘
(U), where µ′℘ is defined by

µ′℘
def
=

∑

v∈V (℘)

(1, 1, . . . , 1︸ ︷︷ ︸
sv

, 0, 0, . . . , 0︸ ︷︷ ︸
n−sv

) ∈ Zn.

Thus, the combinatorics for isocrystals with ResF ′/FU -structure is almost the same as the

combinatorics for the case F ′ = F ; only the Hodge polygons are slightly more complicated.

We recall briefly how the functions of Kottwitz φα and fα are constructed [59, §5] [57,
p. 173]. Let E be the reflex field, let p be a prime number where the Shimura variety has

good reduction in the sense of [59, §6]. In particular the field E is unramified at p; let p be an

E-prime above p. Write Ep for the completion of E at p, fix an embedding Ep ⊂ Qp and let

for each positive integer α, the field Ep,α ⊂ Qp be the unramified extension of Ep of degree α.

In the PEL datum there is fixed a ∗-morphism h : C→ End(B)oppR . This morphism induces a

morphism of algebraic groups from Deligne’s torus ResC/RGm to the group GR. Tensor this

morphism with C to get a morphism from Gm×Gm to GC and then restrict to the factor Gm

of the product Gm ×Gm corresponding to the identity R-isomorphism C→ C. This way we

obtain a cocharacter µ ∈ X∗(G). We quote from Kottwitz’s article at Ann Arbor, p. 173: The

G(C) conjugacy class of µ gives a G(Qp) conjugacy class of morphisms fixed by the Galois

group Gal(Qp/Ep,α). Let Sα be a maximal Ep,α-split torus in the group G over the ring of

integers OEp,α . Using Lemma (1.1.3) of [54] we choose µ so that it factors through Sα. Then

φα = φG,µ,α is the characteristic function of the double coset G(Op,α)µ(p
−1)G(Op,α). The

function fα = fG,µ,α is by definition the base change [4,77] of φα from the group G(Ep,α) to

the group G(Qp).

3. Truncated traces

We revert to the general notations of the beginning of the first section, thus G is a

connected unramified reductive group over a local field. In this section we introduce the

concept of truncated traces of smooth representations with respect to elements of the set

B(G), i.e. the isocrystals with additional G-structure. We will then compute these truncated

traces on the Steinberg representation and on the trivial representation.

Using the mapping Φ from the previous section we define the truncated traces with respect

to an arbitrary element b ∈ B(G):

Definition 3.1. Let ν ∈ C0. We define:

(3.1) ΩG
ν

def
= {g ∈ G | ∃λ ∈ R>0 : Φ(g) = λ · ν ∈ C0}.

We let χG
ν be the characteristic function on of the subset ΩG

ν of G. Let b ∈ B(G) be an

isocrystal with additional G-structure. Then we will write χG
b := χG

νb
and ΩG

b := ΩG
νb
.
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Remark. The Newton mapping B(G) ∋ b 7→ νb ∈ C0 is injective for a simply connected,

connected quasi-split reductive group over a non-Archimedean local field [60, §6].

Let P =MN be a standard parabolic subgroup of G and let AP be the split center of P ,

we write εP = (−1)dim(AP /AG). To the parabolic subgroup P we associate the subset ∆P ⊂ ∆

consisting of those roots acting non trivially on AP . Define aP to be X∗(AP )R and define aGP
to be the quotient of aP by aG, and define a+P by

a+P := {x ∈ aP | for all roots α in ∆P : 〈x, α〉 > 0}.
We recall the definition of the obtuse and acute Weyl-chambers [68,102]. Let P be a standard

parabolic subgroup of G. We write a0 = aP0 and aG0 = aGP0
. For each root α in ∆ we have

a coroot α∨ in aG0 . For α ∈ ∆P ⊂ ∆ we send the coroot α∨ ∈ aG0 to the space aGP via

the canonical surjection aG0 ։ aGP . The set of these restricted coroots α∨|aGP with α ranging

over ∆P form a basis of the vector space aGP . By definition the set of fundamental weights

{̟α ∈ aG∗
P | α ∈ ∆P } is the basis of aG∗

P = Hom(aGP ,R) dual to the basis {α∨
aGP
} of coroots.

We let τGP be the characteristic function on the space aGP of the acute Weyl chamber,

(3.2) aG+
P =

{
x ∈ aGP | ∀α ∈ ∆P 〈α, x〉 > 0

}
.

We let τ̂GP be the characteristic function on aGP of the obtuse Weyl chamber,

(3.3) +aGP =
{
x ∈ aGP | ∀α ∈ ∆P 〈̟G

α , x〉 > 0
}
.

We define the function χN to be the composition τGP ◦ (aP ։ aGP ) ◦ HM , and we define the

function χ̂N to be the composition τ̂GP ◦ (aP ։ aGP ) ◦ HM . The functions χN and χ̂N are

locally constant and KM -invariant, where KM =M(OF ).

Let b ∈ B(G) be an isocrystal with additional G structure and let νb ∈ C0 be its slope

morphism. For any standard parabolic subgroup P ⊂ G we have the subset a+P ⊂ C0. Let

Pb be the standard parabolic subgroup of G such that νb ∈ a+Pb
. We call the group Pb the

subgroup of G contracted by the isocrystal b ∈ B(G). These groups are precisely the parabolic

subgroups appearing in the Kottwitz decomposition of the set B(G) (see [60, 5.1.1]). We write

Pb =MbNb for the standard decomposition of Pb.

We write π0P for the projection from the space a0 onto aP , it sends an element X ∈ a0

to its average under the action of the Weyl group.

We introduce a certain characteristic function on G associated to the isocrystal b ∈ B(G):

Definition 3.2. Let Pb =MbNb be the standard parabolic subgroup of G contracted by

b. We define ηb to be the characteristic function on G of the set of elements g ∈ G such that

there exists a λ ∈ R×
>0 such that π0P (Φ(g)) = λ · νb ∈ a+P .

Remark. If the isocrystal b is basic, then we have P = G, and the element νb ∈ C0 is

central. Therefore the function ηb is spherical.

In case the isocrystal b ∈ b(G) is basic then χG
b coincides with ηbχ

G
c :
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Lemma 3.3. Let b ∈ B(G) be a basic isocrystal. Then we have χG
b = ηbχ

G
c .

Proof. Let g ∈ G, and consider Φ(g) ∈ C0. Then g is compact if and only if it contracts

G as parabolic subgroup (which means that Φ(g) lies in aG ⊂ C+
0 ). Assume g is compact.

Then χG
b (g) = 1 if and only if the slope morphism νb of b lies in aG, i.e. if and only if

the centralizer of the slope morphism of b is equal to G. But that means that b is basic.

Conversely, assume b is basic. Then its slope morphism is central, thus χG
c (g) = 1 if and only

if g contracts G, i.e. g is compact. Furthermore we have ηb(g) = 1 because Φ(g) equals νb up

to a positive scalar. This completes the proof. �

We call the collection of subsets ΩG
b for b ∈ B(G) the Newton polygon stratification of

the group G. For our proofs we will also need to study another stratification, called the

Casselman stratification of G:

Definition 3.4. Let Q be a standard parabolic subgroup of G. We define ΩG
Q ⊂ G to

be the subset of elements g ∈ G contracting [22, §1] a parabolic subgroup conjugate to Q.

Write χG
Q for the characteristic function on G of the subset ΩG

Q ⊂ G. These sets ΩG
Q form the

Casselman stratification of G.

For truncated traces with respect to the Casselman stratification we have:

Proposition 3.5. Let Q = LU be a standard parabolic subgroup of G. Let f ∈
H(G) be a locally constant function with compact support. Then we have Tr(χG

Qf, π) =

Tr(χUχ
L
c f

(Q)
, πU (δ

−1/2
Q )).

Proof. By the Proposition [22, prop 1.1] on compact traces, for all functions f on G, the

full trace Tr(f, π) is equal to the sum of compact traces
∑

TrM (χM
c f

(P )
, πN (δ

−1/2
P )), where

the sum ranges over the standard parabolic subgroups P = MN of G. Consider only those

functions of the form χG
Qf ∈ H(G). Then we obtain that the trace Tr(χG

Qf, π) is equal to

the sum
∑

TrM (χM
c χ

G
Qf

(P )
, πN (δ

−1/2
P )) where P = MN ranges over the standard parabolic

subgroups of G. Observe that χM
c χ

G
Q = 0 if P 6= Q. Therefore only the term corresponding

to P = Q remains in the sum. This completes the proof. �

Let us now explain the relation between the Casselman stratification and the Newton

stratification. The following Proposition gives the relation between the Casselman stratifica-

tion of G and the Newton stratification:

Proposition 3.6. For all b ∈ B(G) we have ΩG
b ⊂ ΩG

Pb
.

Proof. Assume that g ∈ ΩG
b . Then Φ(g) = λνb ∈ a0. Let P be the standard parabolic

subgroup of G conjugate to the parabolic subgroup of G contracted by g. Then νb = λΦ(g) ∈
a+P . Then, by definition, P is the parabolic subgroup contracted by b. This completes the

proof. �
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Example. The inclusion ΩG
b ⊂ ΩG

Pb
is strict in general. Consider for example the case

G = GLn,Qp to see that it is non-strict only in particular cases, such as when n = 2. In the

particular case of the Shimura varieties of Harris-Taylor [45], the Casselman stratification

also separates the isocrystals.

We will now compute the truncated trace on the Steinberg representation.

Definition 3.7. Let ξStb be the characteristic function on T defined by ξStb :=

χ̂N0∩Mb
χNb

ηb, where with the notation χ̂N0∩Mb
we mean the characteristic function on the

Levi subgroupMb ⊂ G, corresponding to the obtuse chamber relative to the minimal parabolic

subgroup of Mb.

Proposition 3.8. Let f ∈ H0(G) be a spherical Hecke operator. Then we have

(3.4) Tr(χG
b f, StG) = εP0∩Mb

TrT (ξ
St
b f

(P0),1(δ
−1/2
Pb

δ
1/2
P0∩Mb

)).

Proof. Write P = MN for the parabolic subgroup contracted by the isocrystal b. We

compute:

Tr(χG
b f, StG) = TrM (χG

b χNf
(P ), (StG)N (δ

−1/2
P )),(3.5)

(Proposition 3.5). Let bM ∈ B(M) be a G-regular basic element such that its image

in B(G) is equal to b [55, prop. 6.3]. By [loc. cit.] the set of all such bM are G-

conjugate. As functions on M we have χG
b χN = χM

bM
χN . Therefore we may simplify

Equation (3.5) to TrM (χM
bM
χNf

(P ), (StG)N (δ
−1/2
P )). By Lemma 3.3 the latter trace equals

TrM (χM
c ηbχNf

(P ), (StG)N (δ
−1/2
P )). In Chapter 2 we computed the compact traces on the

Steinberg representation for all spherical Hecke operators. By Proposition 2 1.13 we get

Tr(χG
b f, StG) = εP0∩M Tr(χ̂N0∩MηbχNf

(P0),1(δ
−1/2
P δ

1/2
P0∩M )).(3.6)

This completes the proof. �

In the same way one may compute the truncated traces on the trivial representation.

We have to introduce two more notations. Let χ̂≤
N0∩Mb

be the characteristic function on Mb

corresponding to the negative closed obtuse chamber in aP . Then we define:

Definition 3.9. Let b ∈ B(G) be an isocrystal. We define ξ1b := χ̂≤
N0∩Mb

χNb
ηb.

Proposition 3.10. We have Tr(χG
b f,1) = TrT (ξ

1

b f
(P0),1(δ

−1/2
P0

)).

Proof. The proof of Proposition 3.8 may be repeated without change up to Equa-

tion (3.6). Replace the result in that last Equation with the result from Proposition 3.1

from [64]. This Proposition gives the compact trace on the trivial representation for any

Hecke operator (and any unramified group). �

Remark. With a method similar to the above one may compute the truncated traces

on the irreducible subquotients of the G-representation on the space C∞(G/P0) of locally

constant functions on G/P0.
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4. The class of R(b)-representations

For the global applications to Shimura varieties we find a class representations R1(b)

of positive Plancherel density on which the truncated trace of the Kottwitz functions are

non-zero. In fact we take for most of the isocrystals b ∈ B(G,µ) simply the Steinberg

representation at p, but there are some exceptions where the truncated trace on the Steinberg

representation vanishes; in those cases we take a different representation.

Let G be a connected, reductive unramified group over Qp, let P0 be a Borel subgroup of

G. Let T be the Levi-component of P0. Then T is a maximal torus in G, and let W be the

absolute Weyl group of T in G. Let µ ∈ X∗(T ) be a minuscule cocharacter.

We write in this section E for an arbitrary, finite unramified extension of Qp. In later

sections, the field E that we consider here will be the completion of the reflex field at a prime

of good reduction. We fix an embedding of E into Qp, and for each positive integer α we

write Eα ⊂ Qp for the unramified extension of degree α of E.

Definition 4.1. (cf. [54]). Let α be a positive integer, and Eα the unramified extension

of E of degree α contained in Qp. We write Wα for the subgroup W (G(Eα), T (Eα)) of W .

Write Sα for a maximal Eα-split subtorus of GEα . We define φG,µ,α ∈ H0(G(Eα)) to be the

spherical function whose Satake transform is equal to

(4.1) p−α〈ρG,µ〉 ∑

w∈Wα/stabWα (µ)

[w(µ)] ∈ C[X∗(Sα)]
Wα ,

where stabWα(µ) ⊂ Wα is the stabilizer of µ in the group Wα. We define fG,µ,α to be the

function obtained from φG,µ,α via base change from the group G(Eα) to the group G(F+).

We call fG,µ,α the function of Kottwitz.

Remark. Kottwitz proves in [54] that the definition of the Kottwitz functions fG,µ,α and

φG,µ,α coincide with the definition that we gave at the end of section 2.

Remark. We note that the notation for the functions fG,µ,α and φG,µ,α is slightly abusive,

as they also depend on the field E. Because confusion will not be possible, we have decided

to drop the field E from the notations.

Proposition 4.2. Let P =MN be a standard parabolic subgroup of G. We have

f
(P )
G,µ,α = q−α〈ρG−ρM ,µ〉 ∑

w∈Wα/stabWα (µ)WM,α

fM,w(µ),α ∈ H0(M),

where stabWα(µ)WM,α ⊂Wα is the subgroup of Wα generated by the group WM,α of the Weyl

group of T (Eα) in M(Eα) and the stabilizer subgroup of µ in Wα.

Proof. Compute the Satake transform of both sides to see that they are equal. �

The integer α will later be the degree of the finite field over which we will count points

in the Newton stratum. In this chapter we only want to show that the Newton-strata are
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non-empty. Therefore, we will take α large so that the combinatorial problems simplify (large

in the divisible sense).

We make the function of Kottwitz explicit in case G is either the restriction of scalars of

a general linear group over F+ or the restriction of scalars of an unramified unitary group

over F+. From this point onwards we assume that we are in one of the following two cases:

(4.2) G =




ResF+/Qp

(GLn,F+) (linear type)

ResF+/Qp
(U) (unitary type)

where F+/Qp is a finite unramified extension, and where U/F+ is an unramified unitary

group, outer form of GLn,F+ . These groups G occur as the components in the product

decomposition in Equation (2.2). We assume that the cocharacter µ ∈ X∗(T ) arises from a

PEL-type datum, as we have explained in the discussion below Equation (2.1).

We begin with the linear case. We have a cocharacter µ ∈ X∗(T ) (see below Equa-

tion (2.2)). Thus, for each Qp-embedding v of F+ into Qp we get a cocharacter µv of the

form

(1, 1, . . . , 1︸ ︷︷ ︸
sv

, 0, 0, . . . , 0︸ ︷︷ ︸
n−sv

) ∈ Zn.

To each such integer sv we associate the spherical function fnαsv on GLn(F
+) whose Satake

transform is defined by

(4.3) S(fnαsv) = q
s(n−s)

2
α

∑

i1<i2<...<isv

Xα
i1X

α
i2 · · ·Xα

isv
∈ C[X±1

1 , . . . , X±1
n ].

We write Vα for the set of Gal(Qp/Eα)-orbits in the set Hom(F+,Qp). If v ∈ Vα is such an

orbit, then this orbit corresponds to a certain finite unramified extension Eα[v] of Eα. Let αv

be the degree over Qp of the field Eα[v], we then have Eα[v] = Eαv . The function fα is given

by

(4.4) fα =
∏

v∈Vα

fGLn(F+)
nαvsv ∈ H0(G(Qp)),

where the product is the convolution product (cf. Proposition 2.3.3).

Let us now assume that we are in the unitary case (cf. Equation (4.2)). We will make

the function fG,µ,α explicit only in case α is even. To obtain the function of Kottwitz on G,

we have to apply base change from G(Eα) to G(Qp). Assume that α is even. Let Qp2 be

the quadratic unramified extension of Qp contained in Qp. The base change factors over the

composition of base changes G(Eα)  G(Qp2)  G(Qp). The base change of φα to G(Qp2)

is a function of the form fG+,µ,(α/2) on the group G+ = ResQp2/Qp
(GQp2

). Explicitly, the last
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quadratic base change G(Qp2) G(Qp) is given by:

Ψ: C[X±1
1 , . . . , X±1

n ]Sn −→ C[X±1
1 , . . . , X±1

n ]Sm⋊(Z/2Z)m ,

Xi 7−→





Xi 1 ≤ i ≤ ⌊n/2⌋,
1 i = ⌊n2 + 1⌋, and n is odd,

X−1
n+1−i n+ 1− ⌊n/2⌋ ≤ i ≤ n,

(4.5)

where m := ⌊n2 ⌋ (cf. [77]). Thus we get fG,µ,α = ΨfG+,µ,(α/2).

Lemma 4.3. Let G be an algebraic group over Qp defined as in Equation (4.2). Let π be a

generic unramified representation of G, and f = fG,µ,α a function of Kottwitz, and b ∈ B(G)

an isocrystal. Let α ∈ Z>0 be an integer, sufficiently divisible such that Wα is the absolute

the Weyl group of T in G. Then, the truncated trace Tr(χG
b fG,µ,α, π) is non-zero if and only

if there exists some w ∈Wα and some λ ∈ R×
>0 such that w(µ) = λνb ∈ aG0 .

Remark. In case G is the general linear group, then there exists a pair w ∈ W,λ ∈ R×
>0

such that w(µ) = λνb if and only if the slopes λi of b all lie in the set {0, 1}.

Proof. We have π = IndGT (ρ), where ρ is some smooth character of the torus T . By van

Dijk’s formula for truncated traces (Proposition 2.1.1) we have Tr(χG
b f, π) = Tr(χG

b f
(P0), ρ).

The truncation operation h 7→ χG
b h on H0(T ), corresponds via the Satake transform to an

operation on C[X∗(T )] sending certain monomials [M ] ∈ C[X∗(T )] associated to elements

M ∈ X∗(T ) to zero, and leaves certain other monomials invariant. Thus to compute the trace

Tr(χG
b f

(P0), ρ) one takes the set of monomials [w(µ)], w ∈W occurring in f (P0), and removes

some of them (maybe all), and then evaluate those that are left at the Hecke matrix of ρ. The

lemma now follows from the observation that χG
b S−1

T [w(µ)] 6= 0 if and only if w(µ) = λνb for

some positive scalar λ ∈ R×
>0. This completes the proof. �

We have to distinguish further between (essentially) two cases at p. The case the group is

the general linear group, and the case where the group is the unramified unitary group. We

begin with the general linear group.

Proposition 4.4. Let G be an algebraic group over Qp defined as in Equation (4.2), and

assume it is of linear type, so G(Qp) = GLn(F
+). Let b ∈ B(G,µ) be a µ-admissible isocrystal

having the property that the number of slopes equal to 0 is at most 1, and the number of slopes

equal to 1 is also at most 1. Let χ be an unramified character of GLn(F
+). Then, for α

sufficiently divisible, we have Tr(χG
b fG,µ,α, StG(χ)) 6= 0.

Remark. In the proof of the Proposition we use the divisibility of α at two places. First,

it simplifies the function of Kottwitz (cf. Equation (4.4)). Second, we want α sufficiently

divisible so that the Weyl group W (T (Eα), G(Eα)) relative to the field Eα is the full Weyl

group.
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Remark. In case the isocrystal b has two or more slopes with value 0 (or 1), then the

truncated trace of the Kottwitz function on the Steinberg representation vanishes.

Proof. By Proposition 3.8 we have to show that the function ξStb f
(P0)
G,µ,α does not vanish.

Recall that the function fG,µ,α is obtained from a function φα through base change from the

group GLn(F
+⊗Eα). Let us first assume that the Eα-algebra F

+⊗Eα is a field. In that case

we have that fG,µ,α = fnαs in the notations from Chapter 2, i.e. S(fG,µ,α) is (up to scalar) an

elementary symmetric function in the Satake algebra,

(4.6) S(fG,µ,α) = q
sv(n−sv)

2
α

∑

i1<i2<...<is

Xdα
i1 X

dα
i2 · · ·Xα

is ∈ C[X±1
1 , . . . , X±1

n ].

We have to show that under the truncation operation h 7→ ξStb h on H(T ) at least one of the

monomials remains in Equation (4.6). Observe that the scalars in front of the monomials in

Equation (4.6) all have the same sign, and that to get the truncated trace on the Steinberg

representation we evaluate these monomials at a certain, nonzero point. Thus, the only

problem is to see that there is at least one monomial X occurring in S(fG,µ,α) and surviving

the truncation X 7→ ξStb X. At this point it will be useful to give a graphical interpretation of

this truncation process.

A remark on the notation: With ξStb X for X a monomial in the Satake algebra of T ,

we mean the element ST (ξStb S−1
T (X)) of the Satake algebra of T . Below we will use similar

conventions for the truncations χNX, χ̂N0∩Mb
X and ηbX.

A graph in Z2 is a sequence of points ~v0, ~v1, . . . , ~vr with ~vi+1 − ~vi = (1, e), where e is

an integer. To a monomial X = Xe1
1 X

e2
2 · · ·Xen

n ∈ C[X±1
1 , X±1

2 , . . . , X±1
n ], with ei ∈ Z and∑n

i=1 ei = s we associate the graph GX with points

(4.7) ~v0 := (0, 0), ~vi := ~v0 + (i, en + en−1 + . . .+ en+1−i) ∈ Z2,

for i = 1, . . . , n. Because the sum
∑n

i=1 ei is equal to s, we see that the end point of the graph

is (n, s). The function fGαµ is (up to scalar) the elementary symmetric function of degree s

in n variables, thus its monomials correspond precisely to the set of graphs that start at the

point (0, 0), have end point (n, s) and satisfy ~vi+1 − ~vi ∈ {(1, 0), (1, 1)} for all i.
To the slopes λ1 ≤ λ2 ≤ · · · ≤ λn of the isocrystal b we associate the graph Gb with points

(4.8) ~v0 := (0, 0), ~vi := ~v0 + (i, λ1 + λ2 + . . .+ λi) ∈ Z2,

for i = 1, . . . , n. (Remark: To obtain the usual convex picture of the Newton polygon we had

to invert the order of the vector e1, . . . , en in Equation (4.7). Without the inversion we would

be considering concave polygons.)

We may now explain the truncation X 7→ ξStb X in terms of graphs. We have ξStb X = X

or ξStb X = 0. We claim that we have ξStb X = X if the following conditions hold:

(C1) We have Gb(n) = λGX(n) for some positive scalar λ ∈ R>0;

(C2) For every break point x ∈ Z2 of Gb the point x also lies on the graph λGX ;
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(C3) Outside the set of breakpoints of Gb, the graph λGX lies strictly below the graph Gb.
Thus, in short: GX lies below Gb and the set of contact points between the two graphs is

precisely the begin point, end point and the set of break points of Gb. See also Chapter 3 this

construction in an analogous context.

Remark. In the claim above we say “if” and not “if and only if”. The conditions (C1),

(C2) and (C3) are stronger than the condition ξStb X = X. In Lemmas 4.5, 4.6 and 4.7 below

we give conditions (C1’), (C2’) and (C3’) which, when taken together, are equivalent to

“ξStb X = X”. However (C1, C2, C3) is not equivalent to (C1’, C2’, C3’). If one would one

replace condition (C3’) with the stronger condition

(C3”) We have Gx = λGb for some λ ∈ R>0,

then we have (C1,C2,C3)⇐⇒ (C1’,C2’,C3”).

Because the above fact is crucial for the argument, let us prove the claim with complete

details. Let X = (e1, e2, . . . , en) ∈ Zn = X∗(A0). We want to express the condition ξStb X = X

in terms of GX . The Satake transform for the maximal torus T = (ResF+/Qp
Gm)

n is simply

H0(T )
∼−→ C[X±1

1 , X±1
2 , . . . , X±1

n ],

1(p−e1O×

F+ )×(p−e2O×

F+ )×···×(p−enO×

F+ ) 7−→ Xe1Xe2 · · ·Xen .(4.9)

We have ξStb = χ̂N0∩Mb
χNb

ηb. Let (na) be the composition of n corresponding to the standard

parabolic subgroup Pb of G. Let g = (g1, . . . , gn) ∈ T such that χNb
(g) = 1. Explicitly, this

means that

(4.10) |g1g2 · · · gn1 |1/n1 < |gn1+1gn1+2 · · · gn1+n2 |1/n2 < . . . < |gnk−1
gnk−1+1 · · · gn|1/nk ,

(cf. Equation (2.1.11)). In terms of the graph GX of X this means the following. We have

X ∈ a0 and we have the projection π0,Pb
(X) of X in aPb

(obtained by taking the average under

the action of the Weyl group of Mb). We write GX for the graph of π0,Pb
(X) ∈ aPb

⊂ a0. This

graph GX is obtained from the graph GX as follows. Consider the list of points

(4.11)

p0 := (0, 0), p1 := (n1,GX(n1)), p2 := (n1 + n2,GX(n1 + n2)), . . . pk := (n,GX(n)).

Connect, using a straight line, the point p0 with p1, and with another straight line, the point

p1 with p2, etc, to obtain the graph GX from GX . From Equations (4.9) and (4.10) we get:

Lemma 4.5. For a monomial X we have χNb
X = X if and only if the following condition

is true:

(C1’) The graph GX is convex.

(Remark: We have χNb
X = 0 if condition (C1’) is not satisfied. This remark also applies

to Lemmas 4.6 and 4.7.)
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Before discussing the function χ̂N0∩Mb
, let us first discuss in detail the maximal case,

i.e. the function χ̂N0 for the group G (cf. Proposition 2.1.11). We have a0 = Rn, write

H1, . . . , Hn for the basis of a∗0 dual to the standard basis of Rn. Write αi for root Hi −Hi+1

in a∗0. We have

(4.12) ̟G
αi

=

(
H1 +H2 + . . .+Hi −

i

n
(H1 +H2 + . . .+Hn)

)
∈ aG∗

0 .

Thus, for a monomial X = Xe1
1 X

e2
2 · · ·Xen

n the condition 〈̟G
αi
, X〉 > 0 corresponds to

(4.13) e1 + e2 + . . .+ ei >
i

n
(e1 + e2 + . . .+ en)

Thus we obtain

(4.14) GX(n+ 1− i) > i

n
s,

where s is the degree of X, i.e. s =
∑n

i=1 ei. Demanding that 〈̟G
α , X〉 is positive for all roots

α of G, is demanding that the graph GX lies strictly below the straight line connecting the

point (0, 0) with the point (n,GX(n)). (We get ‘below’ and not ‘above’ due to the inversion

“ei 7→ en+1−i” in Equation (4.7).)

We now turn to the function χ̂N0∩Mb
. The groupMb decomposes into a product of general

linear groups, say it corresponds to the composition (na) of the integer n. Thus, the condition

∀α ∈ ∆Mb : 〈̟Mb
α , X〉 > 0,

is the condition in Equation (4.13) but, then for each of the blocks of Mb individually. The

conclusion is :

Lemma 4.6. For any monomial X we have χ̂N0∩Xb
·X = X if and only if the following

condition is true:

(C2’) The graph GX lies below GX and the two graphs touch precisely at the points pi.

The condition “ηbX = X” means π0,Pb
(Φ(g)) equals λνb for all g lying in the support

of the function S−1
T (X) on the group T . By the explicit formula for the Satake transform

(Equation (4.9)), the condition is equivalent to the existence of a permutation w ∈ Sn such

that the vector
ew(1) + ew(2) + · · ·︸ ︷︷ ︸

n1

, ew(n1+1) + ew(n1+2) + · · ·︸ ︷︷ ︸
n2

, . . . , ew(n1+n2+...+nk−1+1) + · · ·︸ ︷︷ ︸
nk


 ∈ aPb

,

is a positive scalar multiple of the vector νb. Using earlier notations we get:

Lemma 4.7. For any monomial X we have ηbX = X if and only if the following condition

is true:

(C3’) There exists an element w ∈ Sn such that Gw(X) = λGb for some λ ∈ R>0.
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Figure 2. The dark line is an example of the Newton polygon of an

isocrystal b with additional GL12(F
+)-structure whose slope morphism is

(15 ,
1
5 ,

1
5 ,

1
5 ,

1
5 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

2
3 ,

2
3 ,

2
3). The thin line is a ξStb -admissible path. For

this Newton polygon there exist precisely two admissible paths. In general

one takes the ‘ordinary’ path starting with horizontal steps within the blocks

where the Newton polygon is of constant slope, and ending with diagonal steps.

To prove the claim we show that the group of conditions (C1), (C2) and (C3) implies

the group of conditions (C1’), (C2’) and (C3’).

Thus, assume the conditions (C1), (C2) and (C3) are true for the monomial X. The

parabolic subgroup Pb is contracted by the isocrystal b. Thus the set of breakpoints of the

polygon Gb is equal to the set

q0 = (0, 0), q1 = (n1,Gb(n1)), q2 = (n1 + n2,Gb(n1 + n2)) . . . qk = (n,Gb(n)).

By condition (C1) there is a λ ∈ R>0 such that Gb(n) = λGX(n). By conditions (C2) and

(C3) the set {q0, . . . , qn} is then precisely the set of points where the graph λGX touches the

graph Gb. Taking averages, we get the relation Gb = λGX . We have Gb = Gb (because Pb is

associated to b), and therefore Gb = λGX . Thus condition (C3’) is true for w = Id ∈ Sn.

The condition (C2’) is now implied by (C2) and (C3). Finally we prove condition (C1’).

We have λGX = Gb, and the graph Gb is convex. Thus GX is convex. The three conditions

(C1’), (C2’) and (C3’) are now verified, and therefore the claim is true.

The monomials M occurring in S(fG,µ,α) corresponds to the set of graphs from (0, 0) to

(n, s) whose steps consist of diagonal, north-eastward steps, or horizontal, eastward steps.

Thus, it suffices to show that there exists a graph satisfying the conditions (C1), (C2) and

(C3) above. This is indeed possible under the condition on the slopes of λi of b (see Figure

2 for the explanation). This completes the proof in case F+ ⊗ Eα is a field.

We now drop the assumption that the algebra F+⊗Eα is a field. By Proposition 2.3.3 there

exists a sufficiently large integerM ≥ 1 such that for all degrees α divisible byM , the function

fGµα is (up to a scalar) a convolution product of the form
∏r

i=1 fnαsi , where r = [F+ : Qp]

and (si) is a certain given composition of an integer s of length r. Any monomial occurring

in S(fnαs) also occurs in the product
∏r

i=1 S(fnαsi) with a positive coefficient. Thus we may

write
∏r

i=1 fnαsi = fnαs +R ∈ H(G) for some function R ∈ H(G), whose Satake transform is



4. THE CLASS OF R(b)-REPRESENTATIONS 107

a linear combination of monomials, with all coefficients positive. Consequently, to check that

the truncated trace of
∏r

i=1 fnαsi on the Steinberg representation is non-zero, it suffices to

check that the truncated trace of fnαs on Steinberg is non-zero. This completes the proof. �

Proposition 4.8. Let G be an algebraic group over Qp defined as in Equation (4.2),

and assume it is of linear type. Let b ∈ B(G,µ) be a µ-admissible isocrystal. Let m0 be the

number of indices i such that λi = 0, and let m1 be the number of indices i such that λi = 1.

Write m := n −m0 −m1. Let πm0 (resp. πm1) be any generic unramified representation of

GLm0(F
+) (resp. GLm1(F

+)), and χ an unramified character of GLm(F+). Let P be the

standard parabolic subgroup of G with 3 blocks, the first of size m1, the second of size m and

the last one of size m3. Then for α sufficiently divisible we have

Tr
(
χG
b fG,µ,α, Ind

G
P

(
πm1 ⊗ StGLm(F+)(χ)⊗ πm0

))
6= 0.

Remark. We have abused language slightly saying that P has 3 blocks. We could have

m, m0 or m1 equal to 0, in which case P has less than 3 blocks. If one of the numbers

m,m0 or m1 is 0, then one simply removes the corresponding factor from tensor product

πm1 ⊗ StGLm(F+)(χ) ⊗ πm0 , and one induces from a parabolic subgroup with two blocks (or

one block).

Proof of Proposition 4.8. By van Dijk’s formula for truncated traces (Proposi-

tion 2.1.5), we get a trace on M :

(4.15) Tr
(
χG
b f

(P )
G,µ,α, πm1 ⊗ StGLm(F+) ⊗ πm0

)
.

By Proposition 4.2 we have

f
(P )
G,µ,α = q−α〈ρG−ρM ,µ〉 ∑

w∈Wα)/stabWα)(µ)WM,α

fM,w(µ),α ∈ H0(M).(4.16)

The intersection ΩG
νb
∩M is equal to a union

⋃
ΩM
w(νb)

with w ranging over the permutations

w ∈ W such that w(νb) is M -positive. Consequently, if we plug Equation (4.16) into Equa-

tion (4.15), then we get a large sum, call it (⋆), of traces of functions fM,w(µ),α against a

representation of the form πm1 ⊗ StGLm(F+) ⊗ πm0 . All the signs are the same in this large

sum (⋆), therefore it suffices that there is at least one non-zero term. Take bM ∈ B(M) the

isocrystal whose slope morphism is λ1 ≤ λ2 ≤ · · · ≤ λn in theM -positive chamber of a0. Then

bM has only slopes 0 on the first block of M and only slopes 1 on the third block, and all its

slopes 6= 0, 1 are in the second block. The trace Tr(χM
bM
fM,µ,α, πm1⊗StGLm(F+)⊗πm0) occurs

as a term in the expression (⋆). By Lemma 4.3 and Proposition 4.4 this term is non-zero.

This completes the proof. �

We now establish the cases where the group is an unramified unitary group over F+

(unitary type, cf. Equation (4.2)).
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Lemma 4.9. Let G be an algebraic group over Qp defined as in Equation (4.2), and assume

it is of unitary type. Let b ∈ B(G,µ) be an µ-admissible isocrystal whose slope morphism

νb ∈ a0 has no coordinate equal to 0 and no coordinate equal to 1. Then, for α sufficiently

divisible, the trace Tr(χG
b fG,µ,α, StG(Qp)) is non-zero.

Proof. We use the explicit description fG,µ,α = ΨfG+,µ,(α/2) of the Kottwitz function

that we gave in Equation (4.5). Assume the algebra F+⊗Eα is a field; then the base change

mapping from G(F+
α )→ G(F2) is given by Xi 7→ X

α/2
i on the Satake algebras. Over F+

α , the

Weyl groupWα is equal to Sn with its natural action on Rn. The formula for the base change

mapping Ψ from Equation (4.5) also makes sense over the Satake algebras of the maximal

split tori, i.e. we have a map Ψ from the algebra C[X±1
1 , . . . , X±1

n ] to C[X±1
1 , . . . , X±1

n ]. The

monomials occurring in fG,µ,α are those monomials of the form Ψ[w(µ)] where w is some

element of Sn. The Weyl group translates [w(µ)] of [µ] correspond to all paths from (0, 0)

to (n, s), and the monomials of the form Ψ[w(µ)] = [w(µ)] + [θ(wµ)] correspond to all paths

from (0, 0) to (n, 0) staying below the horizontal line with equation y = s, and above the

horizontal line with equation y = −s. The truncation χG(Qp)
b Ψ[w(µ)] is non-zero if the path G

of Ψ[w(µ)] lies below Gb and the set of contact points between the two graphs is precisely the

initial point, end point and the set of break points of Gb. This is the same condition as had for

the general linear group (see above Equation (4.9)) because the root systems are the same.

Such graphs exist in case b has no slopes equal to −1, 0 or 1 (draw a picture). Consequently

χ
G(Qp)
b fG,µ,α 6= 0, and then also Tr(χ

G(Qp)
b fG,µ,α, StG) 6= 0 by Proposition 3.8.

Forget the assumption that F+ ⊗Eα is a field. We proceed just as we did for the general

linear group (cf. Lemma 4.4), we write fG,µ,α = A+ R, where R is a function whose Satake

transform is a linear combination of monomials in the Satake algebra with all coefficients

positive, and A is a function for which we already know that its truncated trace on the

Steinberg representation does not vanish. This completes the proof. �

Proposition 4.10. Let G be an algebraic group over Qp defined as in Equation (4.2), and

assume it is of unitary type. Let b ∈ B(G,µ) be an isocrystal with slopes λ1 ≤ λ2 ≤ · · · ≤ λn

(cf. the discussion below Proposition 1.1). Let n = m1 +m2 +m3 be the composition of n

such that the first block of m1 slopes λi satisfy λi = −1, the second block of slopes λi satisfy

−1 < λi < 1 and is of size m2, the third block of slopes λi satisfy λi = 1 and is of size m3. We

have m1 = m3. Let P = MN be the standard parabolic subgroup of G corresponding to this

composition of n, thus M is a product of two groups, M =M1×M2, where M1 = GLm1(F
+)

is a general linear group and M2 is an unramified unitary group. For α sufficiently divisible

the trace Tr(χ
G(F+)
b fG,µ,α, •) against the representation Ind

G(F+)
P (F+)

(πm1 ⊗ Stm2(χ)) is non-zero

if πm1 is an unramified generic representation and χ an unramified character of GLm2(F
+).

Remark. The groupM1 could be trivial. This happens in case −1 < λ < 1 for all indices

i. When M1 is trivial, the considered representation is simply an unramified twist of the

Steinberg representation.
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Proof. The proof is the same as the proof in case of the general linear group (cf. Propo-

sition 4.8): one easily reduces the statement to Lemma 4.9. �

Let now G/Q be an unitary group of similitudes arising from a Shimura datum of PEL-

type (cf. Equation (2.1)), and let G1 ⊂ G be the kernel of the factor of similitudes. The group

G1 is defined over a totally real field F+, and defined with respect to a quadratic extension

F of F+, which is a CM field. Let A0 ⊂ G be a maximally split torus, then we may write

A0 = Gm × A′
0 (not a direct product), where A′

0 ⊂ G1 be the maximally split torus of G1

defined by G1 ∩ A0. At p we have a decomposition of F+ ⊗ Qp into a product of fields F+
℘ ,

where ℘ ranges over the primes above p. Let p be a prime number where G is unramified.

The group G1,Qp is of the form G1,Qp
∼=
∏

℘ResF+
℘ /Qp

G1,℘, where the group G1,℘ is either an

unramified unitary group over F+
℘ , or the general linear group. In the first case we call the

F+-prime ℘ unitary and in the second case we call the prime linear.

Consider an isocrystal b ∈ B(G). To b we may associate its slope morphism νb ∈ a0.

Let A′
0,℘ ⊂ G1,℘ be the ℘-th component of A′

0; it is a split maximal torus in G1,℘, and write

a0(℘) := X∗(A′
0,℘). The space a0 decomposes along the split center and the F+-primes ℘

above p: a0 = R ×∏℘ a0(℘). Thus we can speak for each ℘ of the ℘-component νb,℘ of νb.

In case ℘ is linear, the Proposition 4.8 gives us a class of representations π′℘ of G1,℘(Qp) such

that the b℘-truncated trace on π′℘ does not vanish. In case ℘ is unitary, we get such a class

π′℘ from Proposition 4.10. Let π′ be the representation of G1(Qp) obtained from the factors

π℘ by taking the tensor product.

Definition 4.11. We write R1(b) for the just constructed class of G1(Qp)-representations

π′.

Remark. The set of representations R1(b) has positive Plancherel measure in the set of

G1(Qp) representations, and the b-truncated trace of the Kottwitz function on these repre-

sentations does not vanish by construction.

We now extend the class R1(b) to a class of G(Qp)-representations, as follows:

Definition 4.12. Let π ∈ R1(b). Then π is an H(Qp)-representation; let ωπ be its central

character, thus ωπ is a character of Z1(Qp). Assume χ is a character of Z(Qp) extending ωπ.

Then we may extend the representation π to a representation πχ of the group H(Qp)Z(Qp).

We define R1(b)
′ to be the set of H(Qp)Z(Qp)-representations of the form πχ. Not all the

inductions Ind
G(Qp)
H(Qp)

(πχ) have to be irreducible, we ignore the reducible ones. We define R(b)

to be the set of representations Π isomorphic to an irreducible induction Ind
G(Qp)
H(Qp)Z(Qp)

(πχ)

with πχ ∈ R1(b)
′.

The required non-vanishing property of the representations in Rb will be shown in the

next section.



110 4. NON-EMPTINESS OF THE NEWTON STRATA

5. Local extension

We need to extend from G1(Qp) to the group G(Qp). Let Z be the center of the group

G. Consider the morphism of algebraic groups ψ : G1,Qp × ZQp ։ GQp ; the group Ker(ψ) is

the center Z1 of the group G1, so

(5.1) Ker(ψ) =
∏

℘




Gm ℘ is linear

U∗
1 ℘ is unitary,

where U∗
1 is the unramified non-split form of Gm over F+

℘ . Over Q, Z is defined by

Z(Q) = {x ∈ F×|NF/F+(x) ∈ Q×}. Using Equation (5.1), the long exact sequence for

Galois cohomology and Shapiro’s lemma, the group G(Qp)/G1(Qp)Z(Qp) maps injectively

into the group (Z/2Z)t, where t is the number of unitary places of F+ above p.

Write µ′ ∈ X∗(T ) for the cocharacter of the maximal torus (T ∩ G1) ∩ Z of G1 × Z

obtained from µ via restriction. Let fG1×Z,µ′,α be the corresponding function of Kottwitz on

the group G1(Qp) × Z(Qp). Furthermore we write χG1×Z
b for the characteristic function on

G1(Qp)×Z(Qp) of elements (g, z) such that we have χ
G(Qp)
b (gz) = 1. We prove the following

statement:

Proposition 5.1. Fix a representation π0 of G1(Qp). Let Π be a smooth irreducible

representation of G(Qp) containing the representation π0 of G1(Qp) upon restriction to

G1(Qp) × Z(Qp). Assume the central character of Π is of finite order. Then, for all suf-

ficiently divisible α, we have

Tr(χ
G(Qp)
b fG,µ,α,Π) = t(Π)Tr(χG1×Z

b fG1×Z,µ,α, π0)

where t(Π) is a positive real number.

Before proving Proposition 5.1 we first establish some technical results. We fix smooth

models of G,G1, Z, etc. over Zp (and use the same letter for them). We have the exact

sequence Z1 ֌ Z × G1 ։ G, so the cokernel of Z(Qp)G1(Qp) in G(Qp) is a subgroup of

H1(Qp, Z1) ∼= (Z/2Z)t, where t is the number of unitary places.

Lemma 5.2. The mapping G1(Zp)× Z(Zp)→ G(Zp) is surjective.

Proof. We have an exact sequence Z1֌ G1×Z ։ G of algebraic groups over Spec(Zp).

Thus we get Z1(Fp) ֌ G1(Fp) × Z(Fp) → G(Fp) → H1(Fp, Z1). The group Z1 is a torus

and therefore connected. By Lang’s theorem we obtain H1(Fp, Z1) = 1. Thus the mapping

G1(Fp) × Z(Fp) → G(Fp) is surjective. By Hensel’s lemma the mapping G1(Zp) × Z(Zp) →
G(Zp) is then also surjective. �

Lemma 5.3. The function of Kottwitz fG,µ,α has support on the subset Z(Qp)G1(Qp) ⊂
G(Qp).
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Proof. Define χ on G(Qp) to be the characteristic function of the subset Z(Qp)G1(Qp) ⊂
G(Qp). The mapping Z × G1 → G is surjective on Zp-points, and therefore χ is spherical.

The functions χfGG,µ,α and fG,µ,α are then both spherical functions and to show that they are

equal it suffice to show that their Satake transforms agree (the Satake transform is injective).

We have S(χfG,µ,α) = χ|A(Qp)S(fG,µ,α), where A is a maximal split torus of G, χ|A(Qp) is

the characteristic function of the subset Z(Qp)G1(Qp) ∩ A(Qp) ⊂ A(Qp). Observe that, in

fact, Z(Qp)G1(Qp) ∩ A(Qp) = A(Qp). This implies χ|A(Qp)S(fG,µ,α) = S(fG,µ,α), and shows

that χfG,µ,α and fG,µ,α have the same Satake transform. This completes the proof of the

lemma. �

We now turn to the proof of Proposition 5.1.

Proof of Proposition 5.1. By Clifford theory [103, thm 2.40] the representation Π

restricted to G1(Qp)Z(Qp) is a finite direct sum of irreducible representations πi, where πi

satisfies πi(g) = π0(xigx
−1
i ) for some xi not depending on g. We clarify that in this finite direct

sum multiplicities may occur. As characters on G1(Qp)Z(Qp) we may write θΠ =
∑t

i=1 θπiωi,

where θπi is the Harish-Chandra character of πi, viewed as a G1(Qp)-representation, and ωi

is the central character of πi. Using Lemma 5.3 we may now compute:

Tr(χ
G(Qp)
b fG,µ,α,Π) =

∫

Z(Qp)G1(Qp)
χ
G(Qp)
b fG,µ,αθΠdg

=
t∑

i=1

∫

Z(Qp)G1(Qp)
χ
G(Qp)
b fG,µ,αθπiωidg

=
t∑

i=1

∫

Z(Qp)G1(Qp)
χ
G(Qp)
b f

x−1
i

G,µ,αθπ0ω0dg,(5.2)

where f
x−1
i

G,µ,α is the conjugate of fG,µ,α by x−1
i . Note, however, that the function of Kottwitz

is stable under the action of the Weyl group of G. Therefore f
x−1
i

G,µ,α = fG,µ,α. We get the

expression:

t

∫

Z(Qp)G1(Qp)
χ
G(Qp)
b fG,µ,αθπ0ω0dg.

On the other hand we have

0 6= Tr(χZ×G1
b fZ×G1,µ′,α, π0) =

∫

Z(Qp)×G1(Qp)
χZ×G1
b fZ×G1,µ′,α[θπ0 × ω0]dg.

We compute the right hand side:
∫

Z(Qp)×G1(Qp)

Z1(Qp)

∫

Z1(Qp)
(χZ×G1

b fZ×G1,µ′,α[θπ0 × ω0)](zz1, hz1)dz1
d(z, h)

dz1

=

∫
Z(Qp)×G1(Qp)

Z1(Qp)

χZ×G1
b

∫

Z1(Qp)
fZ×G1,µ′,α(zz1, hz1)dz1(θπ0ω0)(z, h)

d(z, h)

dz1
.

(5.3)
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We claim that

(5.4)

∫

Z1(Qp)
fZ×G1,µ′,α(zz1, hz1)dz1 = fG,µ,α(z, h).

The map Z ×G1 → G is surjective on Zp-points, and therefore the function
∫

Z1

fZ×G1,µ′,α(zz1, hz1)dz1

is G(Zp)-spherical. Therefore, to show that Equation (5.4) is true, it suffices to show that the

Satake transforms of these functions agree.

We compute the Satake transform of the left hand side:

δ−1
P0

∫

N0(Qp)

∫

Z1(Qp)
fZ×G1,µ′,α(zz1n0, hz1n0)dz1dn0

= δ−1
P0

∫

Z1(Qp)

∫

N0(Qp)
fZ×G1,µ′,α(zz1n0, hz1n0)dn0dz1

=

∫

Z1(Qp)
δ−1
P0

∫

N0(Qp)
fZ×G1,µ′,α(zz1n0, hz1n0)dn0dz1

=

∫

Z1(Qp)

(
fZ×G1,µ′,α

)(P0) (zz1, hz1)dz1

By Definition 4.1 the last expression is equal to f
(P0)
G,µ,α(z, h). This proves Equation (5.4). We

may continue with Equation (5.3) to obtain
∫

Z(Qp)×G1(Qp)

Z1(Qp)

χZ×G1
b fG,µ,αθπ0ω0

d(z, h)

dz1
.

Now ω0 is of finite order by assumption, and the function fGµα restricted to Qp
× ∼= A(Qp) ⊂

Z(Qp) is the characteristic function of p−αZ×
p . For α sufficiently divisible this is then, up

to normalization of Haar measures, just the trace Tr(χZ×G1
b fZ×G1,µ′,α, π0). This proves that

Tr(χG
b fG,µ,α,Π) and Tr(χZ×G1

b fZ×G1,µ′,α, π0) differ by a positive, non-zero, scalar. The proof

of the theorem is now complete. �

6. Global extension

In this section we prove a technical proposition concerning the restriction of automorphic

representations of G to the subgroup G1 ⊂ G (the kernel of the factor of similitudes). Recall

that we have the surjection G1 × Z ։ G.

Proposition 6.1. Let Π be a cuspidal automorphic representation of G(A), then its

restriction to the group G1(A) × Z(A) contains a cuspidal automorphic representation of

G1(A)× Z(A).

Remark. The proof we give here is copied from Clozel’s article [23, p. 137]; cf. Labesse-

Schwermer [67, p. 391].
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Proof of Proposition 6.1. Let A ⊂ Z be the split center. Define G1 to be the

subset G1 := A(A)G(Q)G1(A) ⊂ G(A). Then G1 is a subgroup because G(Q) normalizes

G1(A). Furthermore the subgroup G1 is closed in G(A), and we have [A(A)G1(A)] ∩G(Q) =

A(Q)G1(Q) ⊂ G(A) (cf. Clozel [Lemme 5.8, loc. cit.]). Let χ be the central character of Π;

and let ε be the restriction of χ to G1(A)×A(A). Let ρ0 be the representation of G1(A) on the

space L2
0(G1(Q)\G1(A), ε) of cuspidal functions transforming under G1(A) via ε. We extend

the representation ρ0 to a representation of G1 by defining: ρ1(zγx)f(y) = χ(z)f(γ−1yγx),

for z ∈ A(A), γ ∈ G(Q), x ∈ G1(A), y ∈ G1(A). We do not copy the verification that this

representation is well-defined [loc. cit, 5.16]. Define the representation ρ = Ind
G(A)
G1

(ρ1) of

G(A). A computation shows that ρ is isomorphic to the representation of G(A) on the space

L2
0(G(Q)\G(A), χ) of functions on G(Q)\G(A) transforming via χ under the action of A(A).

Consequently, if Π occurs in the representation Ind
G(A)
G1

(ρ1), then its restriction to G1 will

contain irreducible G1-subrepresentations of ρ1. �

7. The isolation argument

Let ShK be a Shimura variety of PEL-type of type (A), and let G be the corresponding

unitary group of similitudes over Q (cf. Equation (2.1)). We write E for the reflex field and

we let p be a prime of good reduction 2. Let b ∈ B(GQp , µ) be an admissible isocrystal. Let p

be a prime of the reflex field E above p. Let Fq be the residue field of E at p. Let ShbK,p be

the corresponding Newton stratum of ShK,p, a locally closed subvariety of ShK,℘ over Fq [88].

Let α be a positive integer. We fix an embedding Ep ⊂ Qp and we write Ep,α for the

extension of the field Ep of degree α inside Qp.

Theorem 7.1 (Wedhorn-Viehmann). The variety ShbK,p is not empty.

Remark. In the statement of the above theorem we have not been precise about the form

of the compact open subgroup K ⊂ G(Af). Note however that for any pair (K,K ′) of compact

open subgroups, hyperspecial at p, we have the finite étale morphisms ShK ← ShK∩K′ → ShK′

respecting the Newton stratification modulo p. Therefore, showing the Newton stratum is

non-empty for one K is equivalent to showing it is non-empty for all K.

Proof. Fix a sufficiently divisible and even integer α such that the conclusion of Propo-

sition 5.1 is true. We start with the formula of Kottwitz. We write φα for the function φG,µ,α

from the previous section 3 on G(Ep,α). Similarly fα := fG,µ,α. We pick a prime ℓ 6= p and fix

an isomorphism Qℓ
∼= C (and suppress it from all notations). Let ξ be an irreducible complex

(algebraic) representation of G, and write L for the corresponding ℓ-adic local system on the

2. Here ‘good reduction’ is in the sense of Kottwitz [59, §6]; in particular K decomposes into a product

K = KpK
p with Kp ⊂ G(Qp) hyperspecial.

3. Where the notation Eα from that section should be replaced with Ep,α, and similarly F+ of that section

should be replaced by the algebra F+ ⊗Qp =
∏

℘ F+
℘ , where ℘ ranges over the places above p.
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Shimura tower. Then the Kottwitz formula states:

(7.1) ∑

x′∈Fixb
fp×Φα

p
(Fq)

Tr(fp×Φα
p , ι

∗(L)x) = |Ker1(Q, G)|
∑

(γ0;γ,δ)

c(γ0; γ, δ)Oγ(f
∞p)TOδ(φα) Tr ξC(γ0),

where Fixb
fp×Φα

p (Fq)
is the set of fixed points of the Hecke correspondence fp × Φα

p acting

on ShbK,Fq
, and where the sum ranges of the Kottwitz triples (γ0; γ, δ) with the additional

condition that the isocrystal defined by δ is equal to b. In Equation (7.1) the map ι is the

embedding of ShbK,Fq
into ShK,Fq .

We may rewrite the right hand side of Equation (7.1) as

(7.2) |Ker1(Q, G)|
∑

(γ0;γ,δ)

c(γ0; γ, δ) ·Oγ(f
∞p)TOδ(χ

G(Ep,α)
σb φα) Tr ξC(γ0),

where now the sum ranges over all Kottwitz triples and where χ
G(Ep,α)
σb is the character-

istic function on G(Ep,α) such for each element δ ∈ G(Ep,α) we have χ
G(Ep,α)
σb (δ) = 1

if and only if the conjugacy class γ = N (δ) satisfies Φ(γ) = λν for some positive

real number λ ∈ R×
>0. Assume the triple (γ0; γ, δ) is such that the corresponding term

c(γ0; γ, δ)Oγ(f
∞p)TOδ(χ

G(Ep,α)
σb φα) Tr ξC(γ0) is non-zero. Then, by the proof of Kottwitz

[57], we know that the triple (γ0; γ, δ) arises from some virtual Abelian variety with ad-

ditional PEL-type structures. In particular the isocrystal defined by δ lies in the subset

B(GQp , µ) ⊂ B(GQp). Thus its end point is determined. We have γ = N (δ) and Φ(γ) = λνb

for some λ (Proposition 1.1). Therefore the isocrystal defined by δ must be equal to b. Thus

the above sum precisely counts Abelian varieties with additional PEL type structures over

Fqα such that their isocrystal equals b.

We show that the sum in Equation (7.2) is non-zero. Let E be the (finite) set of endoscopic
groups H associated to G and unramified at all places where the data (G,K) are unramified.

By the stabilization argument of Kottwitz [58], the expression in Equation (7.2) is equal to

the stable sum

(7.3)
∑

E
ι(G,H) · ST∗

e((χ
G
b fα)

H),

where (χG
b fα)

H are the transferred functions, whose existence is guaranteed by the funda-

mental lemma, the ∗ in ST∗
e means that one only considers stable conjugacy classes satisfying

a certain regularity condition (which is empty in case H is a maximal endoscopic group),

and finally ι(G,H) is a constant depending on the endoscopic group (cf. [loc. cit.] for the

definition).

We consider only functions such that the transfer (χG
b fα)

H vanishes for proper endoscopic

groups, and therefore we may ignore the regularity condition 4. Thus, Equation (7.3) simplifies

4. In fact, due to the form of the function f∞ we have ST∗
e = STe, see [81, thm 6.2.1] or [25, (2.5)].
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for such functions and gives the equation:

(7.4)
∑

x′∈Fixb
fp×Φα

p
(Fq)

Tr(fp × Φα
p , ι

∗(L)x) =
∑

E
ι(G,H)STe((χ

G
b fα)

H).

Visibly, if we show that the left hand side of Equation (7.4) is non-zero for some Hecke

operator fp, then the variety ShbK,Fq
is non-empty. We will show that the right hand side of

Kottwitz’s formula does not vanish for some choice of Kp and some choice of fp.

We write G∗
0, G

∗
1, G

∗ for the quasi-split inner forms of G0, G1, and G respectively (we

remind the reader that G0 is defined over F+ and that G1 = ResF+/QG0). The group G∗ is

the maximal endoscopic group of G. Let {x1, x2, . . . , xd} be the set of prime numbers such

that the group GQxi
is ramified. For v a prime number with v /∈ {x1, x2, . . . , xd} the local

group GQv is quasi-split, and therefore we may (and do) identify it with the group G∗
Qv

.

Below we will transfer functions from the group G(A) to the group G∗(A); at the places v

with v /∈ {x1, x2, . . . , xd,∞} we have G(Qv) = G∗(Qv) and using this identification we may

(and do) take (hv)
G∗(Qv) = hv for any hv ∈ H(G(Qv)).

To help the reader understand what we do below at the places xi (and why we do this),

let us interrupt this proof with a general remark on the fundamental lemma. It is important

to realise that if v = xi is one of the bad places, then the fundamental lemma guarantees

the existence of the transferred function hv  (hv)
G∗(Qv); however, in its current state, the

fundamental lemma does not give an explicit description of a transferred function (hv)
G∗(Qv).

The fundamental lemma only gives explicit transfer in case the group is unramified and the

level is hyperspecial. In our case the transferred function (hv)
G∗(Qv) is not explicit, and this

could introduce signs and cancellations that we cannot control. This makes it hard to show

that expressions such as the one in Equation (7.10) do not vanish. In the argument below

we solve the issue by taking hv to be a pseudocoefficient of the Steinberg representation.

For these functions an explicit transfer is known (the transfer is again a pseudocoefficient of

the Steinberg representation) and therefore we will be able to control the signs and avoid

cancellations. This ends the remark, let us now continue with the proof.

We are going to construct an automorphic representation Π0 of G∗ with particularly nice

properties. From this point onward we take ξ to be a fixed, sufficiently regular complex

representation (in the sense of [28, Hyp. (1.2.3)]). We also assume that ξ defines a coefficient

system of weight 0 (cf. [25]), and even better that ξ is trivial on the center of G∗. Fix

three additional, different, prime numbers p1, p2, p3 ( 6= p) such that the group GQpi
is split

for i = 1, 2, 3. Let Π0,p1 be a cuspidal representation of the group G(Qp1) = G∗(Qp1). Let

A(R)+ be the topological neutral component of the set of real points of the split center A of

G. We apply a theorem of Clozel and Shin [20,94] to find an automorphic representation

Π0 ⊂ L2
0(G

∗(Q)A(R)+\G∗(A)) of G∗(A) with:

(1) Π0,∞ is in the discrete series and is ξ-cohomological;

(2) Π0,p lies in the class R(b) (cf. Definition 4.12);
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(3) Π0,p1 lies in the inertial orbit 5 I(Π0,p1) of Π0,p1 at p1;

(4) Π0,p2 is isomorphic to the Steinberg representation (up to an unramified twist of

finite order);

(5) Π0,xi is isomorphic to an unramified twist (of finite order) of the Steinberg represen-

tation of G(Qxi) (for i = 1, 2, . . . , d);

(6) Π0,v is unramified for all primes v /∈ {p, p1, p2, p3, x1, x2, . . . , xd};
(7) The central character of Π0 has finite order.

Because the component at p1 of Π0 is cuspidal, the representation Π0 is a cuspidal automorphic

representation. The point (7) is possible because of the condition on the weight of ξ.

We now choose the group K ⊂ G(Af), and we will also choose a compact open group K∗

in G∗(Af). Write S = {p, p1, p2, p3}. Write S′ = {p, p1, p2, p3, x1, x2, . . . , xd} for the union of

S with the set of all places where the group G is ramified.

The compact open group K ⊂ G(Af) is a (any) group with the following properties:

(1) K is a product
∏

vKv ⊂ G(Af) of compact open groups;

(2) for all v /∈ S′ the group Kv is hyperspecial;

(3) Kp is hyperspecial;

(4) Kp3 is sufficiently small so that ShK is smooth and (Π0,p3)
Kp3 6= 0;

(5) Kxi is sufficiently small so that the function fxi is Kxi-spherical;

(6) for all v /∈ {x1, x2, . . . , xd} the space (Π0,v)
Kv is non-zero.

The group K∗ ⊂ G∗(Af) is a (any) group with the following properties:

(1) K∗ is a product
∏

vK
∗
v ⊂ G∗(Af) of compact open groups;

(2) for any prime v /∈ {x1, . . . , xd} we have K∗
v = Kv ⊂ G(Qv) = G∗(Qv);

(3) for all i ∈ {1, 2, . . . , d} we have (Π0,xi)
Kxi 6= 0;

We now choose the Hecke function f ∈ H(G(Af)). Consider the function fp∞ ∈ H(G(Af)) of

the form

(7.5) fp∞ := fp1 ⊗ fp2 ⊗ fp3 ⊗ fx1 ⊗ fx2 ⊗ · · · ⊗ fxd
⊗ fS′

,

where

– fp1 is a pseudo-coefficient on G(Qp1) of the representation Πp1 ;

– fp2 is a pseudo-coefficient of the Steinberg representation of G(Qp2);

– fp3 = 1Kp3
;

– fxi is (essentially) a pseudo-coefficient of the Steinberg representation of G(Qxi) for

i = 1, 2, . . . , d (see below for the precise statement and the construction);

5. For the definition of inertial orbit, see [89, V.2.7].
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– Before we define the function fS
′
we explain a fact: There are only finitely many cuspidal

automorphic representations Π ⊂ L2
0(G

∗(Q)A(R)+\G∗(A)) of G∗ whose component at

infinity is equal to Π∞ and have invariant vectors under the group K. In particular also

the set of their possible outside S′-components ΠS′
is finite. Therefore, we may find a

function fS
′ ∈ H(G∗(AS′

f )) = H(G(AS′

f )) whose trace on ΠS′
is equal to 1 if ΠS′ ∼= ΠS′

0

and whose trace equals 0 otherwise for all Π with Π∞ = Π0,∞ and ΠK 6= 0. We fix fS
′

to be a function having this property.

We need to comment on the pseudo-coefficients fxi . In the literature these coefficients

are usually only constructed for groups under conditions on the center [26, §3.4], such as the

group be semi-simple, or with anisotropic center. We have neither of these conditions. Let

x = xi be one of the bad places and write H for the derived group of G, we write Z for the

center of G. We write H∗ for the derived group of G∗ (then H∗ is the quasi-split inner form

of H). The center Z of G is canonically isomorphic with the center of G∗ (and the same is

true for the centers of H and H∗). Let k be any smooth function on the group H(Qx). Let

Ox ⊂ Z(Qx) be the maximal compact open subgroup of the center Z(Qx) of G(Qx). We now

define a function k̃ on the group G(Qx). Consider first the following function on the group

H(Qx)× Z(Qx):

(7.6) (g, z) 7−→
∫

(H∩Z)(Qx)
(k × 1Ox)(gt, zt)dt,

where dt is an invariant measure on the finite group (H ∩ Z)(Qx). The function in Equa-

tion (7.6) is (H ∩ Z)(Qx)-invariant, and thus defines a function on the subgroup

H(Qx)× Z(Qx)

(H ∩ Z)(Qx)
⊂ G(Qx).

We extend this function by 0 to obtain the function k̃ on the group G(Qx).

Let H∗ be the quasi-split inner form of H; then H∗ is also the derived group of G∗. By

the fundamental lemma we may transfer smooth functions on the group G(Qx) to functions

on the group G∗(Qx), and similarly functions from the group H(Qx) to functions on the

group H∗(Qx). The formula in Equation (7.6) makes sense if we replace H by its quasi-

split inner form; thus we also have a construction k 7→ k̃ for smooth functions on H∗(Qx).

The construction in Equation (7.6) is compatible with transfer of functions, i.e. the function

(k̃)G
∗(Qx) on G∗(Qx) has the same stable orbital integrals as the function ˜(kH∗(Qx)

)
for all

k ∈ H(H(Qx)).

We now take the function k on H(Qx) to be a certain sign ε times a pseudocoefficient of

the Steinberg representation, which exists because the center of H is anisotropic. (We choose

the sign ε later). Define fx := k̃. In case the group has anisotropic center, the transfer of a

pseudocoefficient of the Steinberg representation is again a pseudocoefficient of the Steinberg

representation. Thus we may (and do) take the transferred function (fx)
G∗(Qx) to be the one

obtained from a pseudocoefficient via the construction in Equation (7.6).
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We show that the function (fx)
G∗(Qx) is (essentially) a pseudocoefficient of the Steinberg

representation. Let us first make this statement precise. Let χ be a character of the group

G(Qx). The character χ induces a character χ of the cocenter C(Qx) of the group G(Qx).

We call the character χ unramified if χ is trivial on the maximal compact open subgroup KC

of C(Qx). We claim that the sign ε can be chosen so that the function (fx)
G∗(Qx) has the

following two properties:

– For every unramified character χ of G(Qx):

(7.7) Tr(fG
∗(Qx), StG∗(Qx)(χ)) 6= 0.

– For every smooth irreducible representation Πx occurring as the x-component of a

cuspidal automorphic representation Π of G∗ we have

(7.8) Tr(fG
∗(Qx),Πx) ∈ R≥0.

We first verify Equation (7.8). Let Πx be a smooth irreducible representation of the group

G∗(Qx), let θΠx be its character. We assume that Πx is the x-component of a cuspidal auto-

morphic representation Π of the group G∗. Let π1, . . . , πd be the irreducible H∗(Qx)Z(Qx)-

subrepresentations of Πx, and let θ1, . . . , θd be their characters. We have θΠx =
∑d

i=1 θi.

Then (modulo a positive constant depending on dt):

(7.9)

Tr(fG
∗(Qx),Πx) =

∫

H∗(Qx)Z(Qx)
fG

∗(Qx)(g)
d∑

i=1

θi(g)dg =
d∑

i=1

∫

H∗(Qx)Z(Qx)
fG

∗(Qx)(g)θi(g)dg.

By the definition of the function fG
∗(Qx) from Equation (7.6) the summand on the right

hand side equals, up to some positive constant, the trace of the pseudocoefficient of the

Steinberg representation on the group H(Qx) against πi. Such a trace is non-zero only if

πi is isomorphic to one of the representations VP defined by Borel-Wallach [10, 6.2.14]. We

show that πi must be the Steinberg representation. The representation Πx occurs as the

component at x of a cuspidal automorphic representation. Therefore Πx is unitary. Thus

the representation πi is unitary as well. By [6.4, loc. cit.] the only representations VP

which are unitary, are the Steinberg representation and the trivial representation. Let us

exclude the trivial representation. By Clifford theory, all the representations occurring in

Πx are conjugate under elements of the group G(Qx). Consequently, if one of the occurring

representations is finite dimensional, then they are all finite dimensional. This means that

Πx is finite dimensional and thus the representation Π is finite dimensional. Thus πi cannot

be trivial. Therefore we can pick the sign ε such that Equation (7.8) is true.

We now verify Equation (7.7). By construction the function fG
∗(Qx) is supported on the

inverse image of KC in G. Because χ is unramified it is constant on the support of fG
∗(Qx).

Therefore we have Tr(f
G∗(Qx)
x , StG∗(Qx)(χ)) = Tr(f

G∗(Qx)
x , StG∗(Qx)). We verify that the trace

Tr(fG
∗(Qx), StG∗(Qx)) is non-zero. Let P0,x be a Borel subgroup of G∗

Qx
and let P ′

0,x be the

pull back of P0,x to H∗
Qx

. Let I be the space of locally constant complex valued functions
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on G∗(Qx)/P0,x(Qx) and I ′ be the same space, but then for the group H∗(Qx). We extend

any function h ∈ I ′ by 0 and this gives us the composition of maps I ′֌ I ։ StG∗(Qx). This

composition is trivial on the subspaces C∞(H∗(Qx)/P (Qx)) ⊂ I ′ for any proper parabolic

subgroup P of H∗ containing P ∗
0,x. We obtain an H∗(Qx)-injection StH∗(Qx) ֌ StG∗(Qx). It

follows from Equation (7.9) that Tr(fG
∗(Qx), StG∗(Qx)) 6= 0.

We have now completed the definition of the components fxi , thus also the definition of

the Hecke operator fp∞ is complete (see Equation (7.5)). We emphasize that at the primes

v /∈ {x1, x2, . . . , xd} we take (fv)
G∗(Qv) = fv (we have G∗(Qv) = G(Qv)) and at the primes

v ∈ {x1, x2, . . . , xd} we control the traces of the transferred function (fv)
G∗(Qv) against smooth

representations via the conclusion in Equation (7.7).

Due to the cuspidal component fp1 of fp, the trace formula simplifies. Because fp2 is

stabilizing (Labesse [65]), the contribution of the proper endoscopic groups are zero, and the

right hand side of Equation (7.4) becomes a sum of the form

(7.10)
∑

Π

m(Π)Tr((f∞f
p)G

∗(Ap)(χ
G(Qp)
b fα),Π),

where Π ranges over cuspidal automorphic representations of G∗(A), and m(Π) is the mul-

tiplicity of Π in the discrete spectrum of G∗(A) with trivial central character on A(R)+ (A

is both the split center of the group G as well as the split center of the group G∗). Here we

are applying the simple trace formula of Arthur [3, Cor. 23.6] (cf. proof of [2, thm 7.1]),

the correcting term in Arthur’s formula vanishes due to the pseudocoefficients in the Hecke

operator. The sum in Equation (7.10) expands to the sum

(7.11)
∑

m(Π)Tr(fG
∗(R)

∞ ,Π∞) Tr(χ
G(Qp)
b fG,µ,α,Πp) dim

(
(Πp3)

Kp3
) d∏

i=1

Tr(f
G∗(Qxi )
xi ,Πxi),

where Π ranges over the irreducible subspaces of L2
0(A(R)

+G∗(Q)\G∗(A)) such that

– ΠS′ ∼= ΠS′

0 ;

– Πp1 lies in the inertial orbit I(Πp1) of the representation Πp1 ;

– Πp2 is, up to unramified twist, isomorphic to the Steinberg representation of G(Qp2);

– Πxi is such that Tr(fxi ,Πxi) 6= 0.

By Proposition 6.1 we may find a cuspidal automorphic representation π0 of G∗
1(A) contained

in Π0. Let now Π be an automorphic representation of G∗(A) contributing to Equation (7.11).

Thus the representation ΠS′
is isomorphic to the representation ΠS′

0 . Let π be a cuspidal

automorphic subrepresentation of Res[G∗
1×Z](A)(Π) (Proposition 6.1). Enlarge S′ to a larger

finite set S′′ so that the representations π and Π are unramified for all places outside the set

S′′. At the unramified places v /∈ S′′ the representation Res[G∗
1×Z](Qv)(Π0,v) contains exactly

one unramified representation: π0,v. Therefore we have (π)S
′′ ∼= (π0)

S′′
.

We now apply base change. The representation π has the following properties:

(1) π is cuspidal;
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(2) π∞ is in the discrete series;

(3) πp1 is cuspidal;

(4) πp2 is an unramified twist of the Steinberg representation.

Consider the group G∗+
0 := ResF/F+(G∗

0,F ). Let AF+ := A⊗Q F
+ and AF := A⊗Q F . Then

G∗+
0 (AF+) = G∗

0(AF ). Because of the above properties (1), . . . , (4), we may base change

π to an automorphic representation BC(π) of G∗+
0 (AF+). Here we are using Corollary 5.3

from Labesse [66] to see that π has a weak base change, and then the improvement of the

statement at Theorem 5.9 of [loc. cit.], stating that 6, at the places where the unitary group

is quasi-split (so in particular at p) the (local) base change of the representation πp is the

representation BC(π)p. By the same argument the base change BC(π0) exists as well. By

strong multiplicity one for the group G∗+
0 we have BC(π℘) ∼= BC(π0,℘) for all F+-places ℘

above p.

We give the final argument when F/F+ is inert at the F+-place ℘|p, the case of the

general linear groups being easier.

The representation π℘ is of the form Ind
G1(F

+
℘ )

P (F+
℘ )

(ρ℘) because πp lies in the set R1(b). In this

induction the parabolic subgroup P has Levi component M with M(Qp) =M℘,1×M℘,2 with

M℘,1 a general linear group and M℘,2 is a unitary group. The representation ρ℘ decomposes

into ρ℘ ∼= ρ℘,1 ⊗ ρ℘,2, where ρ℘,1 is a generic unramified representation of M℘,1 and ρ℘,2 is

an unramified twist of the Steinberg representation of M℘,2. The base change is compatible

with parabolic induction, the base change of a generic unramified representation is again

unramified [77] and the base change of a twist of the Steinberg representation is again a

twist of the Steinberg representation [78]. Thus the representation BC(π℘) ∼= BC(π0,℘) is an

induction from a representation of the form

(
χ1, χ2, . . . , χa℘ , StGLb(F

+
℘ ), χ

−1
a℘ , χ

−1
a℘−1, . . . , χ

−1
1

)

where a℘ = Rank(M℘,1) and b℘ = n− a℘. Consequently, we have the character relations

(7.12) Θπ0,℘ ◦ N = Θπ℘ ◦ N ,

where N is the norm mapping from G∗+
0 (F+

℘ ) to G∗
0(F

+
℘ ). The norm mapping N from θ-

conjugacy classes in G∗+
0 (F+

℘ ) to G∗
0(F

+
℘ ) is surjective for the semi-simple conjugacy classes

[91, Prop. 3.11(b)]. Thus the characters Θπ℘ and Θπ0,℘ coincide on G0(F
+
℘ ). By Proposi-

tion 5.1 there is a positive constant CΠ ∈ R>0 such that (for α sufficiently divisible)

(7.13) Tr(χ
G(Qp)
b fα,Πp) = CΠTr(χ

G(Qp)
b fα,Π0,p).

6. Labesse assumes that the extension F+/Q is of degree at least 2. We we do not have this assumption.

Labesse only needs his assumption to apply the simple trace formula. For our representation π Labesse’s

assumption is redundant, because we have an auxiliary place (v = p1) where the representation π is cuspidal.
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Remark: To find Equation (7.13) we applied Proposition (5.1) two times: first to compare

Tr(χ
G(Qp)
b fα,Πp) with Tr(χG1×Z

b fG1×Z
α , πp), and then to compare Tr(χ

G(Qp)
b fα,Π0,p) with

Tr(χG1×Z
b fG×Z1

α , π0,p).

We may now complete the proof. We return to Equation (7.11):

∑
m(Π)Tr(fG

∗(R)
∞ ,Π∞) Tr(χ

G(Qp)
b fα,Πp) dim

(
(Πp3)

Kp3
) d∏

i=1

Tr(fG
∗(Qxi ),Πxi),(7.14)

where Π ranges over the irreducible subspaces of L2
0(A(R)

+G∗(Q)\G∗(A)) satisfying the con-

ditions listed below Equation (7.11). The following 6 facts have been established:

(1) The sum in Equation (7.14) is non-empty because Π0 occurs in it (by the Proposi-

tions 4.8 and 4.10, and the Equations (7.7), (7.8), the term corresponding to Π0 in

the Sum (7.14) is non-zero).

(2) The multiplicity m(Π) is a positive real number.

(3) For any Π in Equation (7.14) with Π 6∼= Π0 we must have Tr(f
G∗(R)
∞ ,Π∞) =

Tr(f
G∗(R)
∞ ,Π0,∞) (here we use that ξ is sufficiently regular).

(4) By Equation (7.13) the trace Tr(χ
G(Qp)
b fα,Πp) equals Tr(χ

G(Qp)
b fα,Π0,p) up to the

positive number CΠ.

(5) The dimensions dim
(
(Πp3)

Kp3

)
and dim

(
(Π0,p3)

Kp3

)
differ by a positive real number.

(6) The product
∏d

i=1Tr(f
G∗(Qxi ),Πx) is a non-negative real number for all automorphic

representations Π contributing to Equation (7.14).

(facts (2) and (5) are trivial). From facts (1), (2), . . . , (6) we conclude that Equation (7.14)

must be non-zero. This completes the proof. �





CHAPTER 5

Equidistribution

Let S be an unitary Shimura variety of PEL type and consider a prime p where S has

good reduction. The Newton stratification of S modulo p is a canonical decomposition of

SFq into an union of locally closed subvarieties. These subvarieties are stable under the

Hecke correspondences. We consider the supersingular stratum B of SFq and work under

the condition that B is a finite variety and that the Shimura variety is a variety of Kottwitz

(as in Chapter 2). The set of geometric points B(Fq) is then a finite set, equipped with an

action of the Hecke correspondences and the Frobenius element. We study the orbits of points

x ∈ B(Fq) under sequences of Hecke operators. We give an explicit description of these Hecke

orbits and show, under mild conditions (§7), that the Hecke operators act inside the Hecke

orbits with equidistribution. See Theorem 3.1 for the precise statement.

We would like to mention the work of Menares [75]. We learned the idea of equidistribution

in supersingular Hecke orbits from his article. He proved that the Hecke operators Tm for the

group GL2(Q) act with equidistribution on the supersingular stratum of the modular curve

X0(p).

1. Some simple Shimura varieties

Consider the class of Shimura varieties of Kottwitz [58]. Such varieties are associated to a

division algebra D whose center is a CM field F . We will embed the field F into the complex

numbers, and we assume that F splits into a compositum F = KF+ of a quadratic imaginary

number field K ⊂ C and a totally real number field F+.

For any commutative Q-algebra R, the group G(R) is by definition the group of elements

g ∈ D ⊗Q R such that xx∗ ∈ R×. If K ⊂ G(Af) is a compact open subgroup, sufficiently

small, then we have a variety ShK defined over the reflex field E. Let p be an E-prime where

the variety ShK has good reduction in the sense defined by Kottwitz [59]. In particular ShK

extends to a smooth and proper scheme defined over OEp
. We write Fq for the residue field

of E at p. Let p be the rational prime number under p. We fix an embedding νp : E → Qp

which is compatible with p.

We will always work under the assumption that the prime number p is split in the field

K. Let B be the supersingular locus of ShK,Fq [87]. We assume that B is a finite variety.

In fact, among the set of all Kottwitz varieties, this rarely happens. However, the class of

varieties for which B is 0-dimensional is still quite interesting; for example it contains all the

varieties considered by Harris and Taylor to prove the local Langlands conjecture [45].

123
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To simplify the exposition, we also assume that the image of the group K in the cocenter

of the group G is maximal.

The condition that B is finite is a condition on the signatures of the unitary group at

infinity, and the decomposition of the prime number p in the field F+. More explicitly, let

U ⊂ G be the subgroup of elements with trivial factor of similitude. Then U(R) is isomorphic

to a product of real, standard unitary groups U(sv, n − sv), where v ranges over the infinite

F+-places. We may, and do, assume that sv ≤ 1
2n. The field F

+ is embedded into Q ⊂ C and

also in Qp, and therefore the group Gal(Qp/Qp) acts on the set of infinite F+-places. In case

sv > 1 for some v, then certainly B is infinite. Assume that sv ≤ 1 for all v. Then the variety

B is finite if and only if sv = 1 for at most one infinite F+-place in each Gal(Qp/Qp)-orbit of

infinite F+-places. For the proof of this statement, see § 3.4.3.
Let A be the free complex vector space on the set B(Fq). The Hecke algebraH(G(Af)//K)

acts on the variety B through correspondences and on the vector space A via endomorphisms.

Let f∞ be a function at infinity whose stable orbital integrals are prescribed by the identities of

Kottwitz in [57]; it can be taken to be (essentially) an Euler-Poincaré function [58, Lemma 3.2]

(cf. [27]). The function has the following property: Let π∞ be an (g,K∞)-module occurring

as the component at infinity of an automorphic representation π of G. Then the trace of f∞
against π∞ is equal to the Euler-Poincaré characteristic

∑∞
i=0N∞(−1)i dimHi(g,K∞;π∞⊗ξ),

where N∞ is a certain explicit constant (cf. [58, p. 657, Lemma 3.2]).

By the main result of Chapter 2 we have for every Hecke operator fp ∈ H(G(Ap
f )//K)

that

(1.1) Tr(fp ⊗ 1Kp , A) = ε
∑

π⊂A(G),πp Steinberg type

Tr(f∞f, π
p) +

∑

π⊂A(G), dim(π)=1

Tr(f∞f, π
p),

where the sign ε is equal to (−1)t(n−1) with t the number of infinite F+-places v such that

pv = 1. We recall the definition of “Steinberg type”:

Definition 1.1. A smooth representation πp of G(Qp) is of Steinberg type if the following

two conditions hold: (1) For all F+-places ℘ above p we have

π℘ =




StGLn(F

+
℘ ) ⊗ φ℘ s℘ = 1

Generic unramified s℘ = 0,

where φ℘ is an unramified character. (2) The factor of similitude Qp
× of G(Qp) acts through

an unramified character on the space of πp.

We use the result in Equation (1.1) to deduce an equidistribution statement of Hecke

operators acting on the basic stratum B(Fq).
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2. Hecke operators

In this section we define a sequence of Hecke operators Tr,m ∈ H(G(Af)). Consider the

Q-group G+ := ResK/QGK with G+(Q) = K× ×D×. Let S be a finite set of finite, rational

primes, such that:

(1) for all primes ℓ that do not lie in S, the group G+(Qℓ) is a product of general linear

groups over finite, unramified extensions of Qℓ;

(2) K splits into a product K = KSK
S , where KS is a subgroup of G(Af,S) and K

S is

a subgroup of G(AS
f );

(3) The prime p lies in S;

(4) The group KS is obtained by taking the ẐS-points of a smooth model G of G+ over

the ring Z[ℓ−1|ℓ ∈ S].
Let G+ be the Q-group K× × GLn(F ). Then G+ is an inner form of G+, and we have

G+(Qℓ) ∼= G+(Qℓ) for all primes ℓ not in S. The group G+ has an obvious model over Z, and

thus we have the hyperspecial subgroup G+(Ẑ) ⊂ G+(Af). Let m and r be integers, where

we have 0 ≤ r ≤ n (no condition on m). Then, by definition, the operator T+
r,m is defined to

be the characteristic function:

(2.1) T+
r,m := char


G+(Ẑ) · (1)× diag(m,m, . . . ,m︸ ︷︷ ︸

r

, 1, 1, . . . 1) ·G+(Ẑ)


 ∈ H(G+(Af)),

where we should clarify the notation. We have G+(Ẑ) = Ô×
K × GLn(ÔF ), where Ô×

K is the

factor of similitude. With (1)×diag(. . .), we mean an element of G+(Ẑ) that has trivial factor

of similitude, and diag(. . .) describes a diagonal matrix in the general linear group over ÔF .

Because the group G+(AS
f ) is isomorphic to G+(AS

f ), the operator T
+S
r,m =

⊗
ℓ/∈S T

(ℓ)
r,m lives

also in the algebra H(G+(AS
f )). We have the base change morphism

BC: H(G+(A
S
f )//G+(Ẑ

S)) −→ H(G(AS
f )//K

S).

We define the operator TS
r,m to be BC(T+S

r,m), and we define

(2.2) Tr,m := 1KS ⊗ TS
r,m ∈ C∞

c (G(Af)//K).

We define the Hecke algebra T ⊂ C∞
c (G(Af)) to be the complex algebra generated by the

operators Tr,m. The operators Tr,m commute with each other, and satisfy no other algebraic

relation. Thus the algebra T is isomorphic to the polynomial ring C[Tr,m|r,m] on a count-

able, infinite number of variables. The module A is semi-simple as H(G(Ap
f ))-module (thus

also as T -module) because we know from our formula in Equation (1.1) that all irreducible

subquotients occurring in A occur in the discrete spectrum of G.

Using K we define the degree of the operator Tr,m via the integral

(2.3) deg(Tr,m) :=

∫

G(Af)
Tr,m(g) dµ(g),
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where the Haar measure µ on G(Af) is normalized so that it gives K measure 1.

3. Hecke orbits

The Hecke algebra T does not act transitively on the supersingular stratum; there are

two innocent obstructions: (1) an obstruction from the cocenter of the group G, and (2) the

Hasse invariant Ker1(G,Q), which need not be trivial. In this section we will define certain

‘candidate’ orbits of T acting on B. Our main Theorem will state that T acts transitively

and with equidistribution on these orbits.

Note that obstructions (1) and (2) are what one expects: For the first one (1): If the

image of K ⊂ G(Af) in the cocenter C(Af) is not sufficiently large (and this will always be the

case for many C, due to the presence of Abelian class groups), then the double coset space

(3.1) G(Q)\(X ×G(Af)/K),

is not connected, and a point in one connected component will be sent by a Hecke operator to

another connected component only if this operator is non-trivial on the cocenter. However,

our operators in T all act trivially.

The second condition (2) is there because ShK(C) is not equal to the double coset space

in Equation (3.1), rather it is a disjoint union

(3.2) ShK(C) =
∐

Ker1(G:Q)

G(Q)\(X ×G(Af)/K),

of copies of this double coset space, indexed by the group Ker1(G : Q) (this group depends

only on the cocenter of G, and is trivial in case n is even, see [59, p. 393]). The Hecke

correspondences act on the right hand side via their natural action on the double coset spaces.

Thus, clearly, over C, all points in a Hecke orbit will have the same invariant in Ker1(G : Q).

Let d : G ։ C be the cocenter of the group. We have the morphism h from Deligne’s

torus S := ResC/RGm to GR. By composing this morphism with the natural morphism

we obtain a morphism h′ : S → CR. The couple (C, {h′}) is a zero dimensional Shimura

datum. Deligne [29] has proved that Sh(C, {h′}) parametrizes the connected components of

the original variety, i.e. the natural morphism

(3.3) π0(G(Q)\(X ×G(Af)/K)) −→ C(Q)\({h} × C(Af)/d(K)),

is an isomorphism. Via this mapping, the action of the Hecke operator f ∈ H(G(Af)) on the

left hand side coincides with the action of the operator Ψ(f) in H(C(Af)) on the right hand

side. Here the map Ψ: H(G(Af))→ H(C(Af)) is characterized by

∀c ∈ C(Af) ∀f ∈ H(G(Af)) :

[Ψf ] (c) =





∫
Gder(Af)

f(gh)dµ(h) if c = g ∈ Im(G(Af)→ C(Af))

0 otherwise,
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where the Haar measure on Gder(Af) is the one which gives the group K ∩ Gder(Af) volume

1. Let E be the reflex field of the datum (G,X). Deligne proved that the mapping in

Equation (3.3) is Aut(C/E)-equivariant. Thus the map in Equation (3.3) descents to an

isomorphism of E-schemes π0(Sh(G : K))
∼→ Sh(C : d(K)). The variety ShK is an union of

#Ker1(G,Q) copies of the variety Sh(G : K) [59, §6]. We obtain an E-isomorphism

(3.4) π0(ShK)
∼−→

∐

Ker1(G,Q)

Sh(C : d(K)).

Both sides are finite étale E-schemes and the Gal(Q/E)-action is unramified at p. Locally at

the prime p we have a natural model of ShK over the ring of integers OEp
, and we construct

a model of the right hand side in the straightforward manner: Take the global sections A of

the scheme
∐

Ker1(G,Q) Sh(C : d(K))Ep
. Then A is a Qp-algebra; let A

◦ ⊂ A be the integral

closure of Zp in A. Then Spec(A◦) is our integral model. We write Y = Spec(A◦) and view it

as a as scheme over OE,p. We reduce the map in Equation (3.4) modulo p and compose with

B ⊂ ShK,p ։ π0(ShK,p) to obtain the map

(3.5) ψ : B −→ Y

For each point y ∈ Y we have the fibre By of ψ above y. Define Ay to be the free complex

vector space on the set By(Fq). Then A is the direct sum of the Ay with y ranging over the

set Y (Fq). For each y ∈ Y we have the map (of vector spaces):

(3.6) Ψy : Ay −→ C,
∑

x∈By(Fq)

ax · [x] 7−→
∑

x∈By(Fq)

ax.

Write Ey =
∑

x∈By(Fq)
[x] ∈ Ay. Define the endomorphism

Avgy : Ay −→ Ay, v 7→ Ψy(v)

#By(Fq)
· Ey.

The fibres By(Fq) are all of the same cardinality #C(Ẑ)/d(K). Take the direct sum of Avgv
over all y ∈ Y to obtain an endomorphism

(3.7) Avg: A −→ A

which takes the ‘average’ of an element v ∈ A along the fibres of the mapping ψ : B → Y .

We will prove that any element v ∈ A will converge to its average under the action of the

sequence of Hecke operators Tr,m ∈ T .
The complex vector space A is finite dimensional and therefore carries a norm |·|, uniquely

defined up to equivalence of norms. Using this norm we may give the statement of the main

Theorem:

Theorem 3.1. Let v ∈ A be an element. Then there exists a constant C ∈ R>0 such that

for any ε > 0 there exist an index M , such that for all square free integers m > M and all r
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with 1 ≤ r ≤ n− 1 we have
∣∣∣∣
Tr,m(v)

deg(Tr,m)
−Avg(v)

∣∣∣∣ ≤ Cm
ε−[F :Q]

r(n−r)
2 .

Remark. With the same method of proof we obtain equidistribution results also for other

sequences of Hecke operators. For example, fix an operator T ∈ T and consider the sequence

of its powers for the convolution product {TN}N∈Z≥1
. Of course, the rate of convergence will

depend on the sequence of operators you choose.

Remark. Perhaps one could relax the condition that m be square free somewhat. One

will then have to deal with some combinatorial issues related to the Satake transform. The

condition becomes relevant at Equation 4.4 of the proof; the resulting combinatorial problem

is discussed (for example) in the article [41].

In sections 4–5 we prove Theorem 3.1.

4. A vanishing statement

Observe that to the character formula for A in Equation (1.1) expresses A as a sum of

Hecke modules of the form (πpf )
Kp

. We define A0 ⊂ A to be the T -submodule generated by

modules (πpf )
Kp

for π an infinite dimensional automorphic representation of G(A).

The following Proposition proves the essential part of Theorem 3.1.

Proposition 4.1. Let v ∈ A0, then there exists a constant C ∈ R>0 such that for all

integers r with 0 ≤ r ≤ n and all square free integers m coprime to S we have
∣∣∣∣
Tr,m(v)

deg(Tr,m)

∣∣∣∣ ≤ C
(
n

r

)cF (m)

m−[F :Q]
r(n−r)

2 .

Notation. Let m be a positive integer, unramified in F . We wrote cF (m) for the number

of OF -prime ideals λ containing the number m.

Proof. By our Theorem in Equation (1.1) it suffices to prove that the limit

limm→∞
Tr,m(v)

deg(Tr,m) vanishes 1 for each vector v ∈ πKf in each automorphic representation π

contributing to the character formula of A0. Let π be one of these cuspidal automorphic

representations. We may use base change to send π to an automorphic representation BC(π)

of the algebraic group K× × D× (see [4]), and we may send the automorphic represen-

tation BC(π) to an automorphic representation Π := JL(BC(π)) of the algebraic group

G+ := K× × GLn(F ) (see [101] and [6]). This automorphic representation is discrete. At p

we have G+(Qp) ∼= G(Qp)×G(Qp) and Πp is isomorphic to πp⊗πp. The representation πp is

essentially square integrable because it is an unramified twist of the Steinberg representation,

1. Here, and hereafter, when we say “limit” or “vanishes”, we mean that this limit does so with the correct

rate of convergence stated in the Proposition.
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and therefore Πp also has this property. The representation Π is then forced to be cuspidal

by the classification of Moeglin-Waldspurger of the discrete spectrum [80].

Because Π is cuspidal the Ramanujan conjecture applies to it. This conjecture is true for

Π because Π is obtained by base change and Jacquet-Langlands from an automorphic repre-

sentation π of an unitary group (of similitudes). Thus Π is conjugate self-dual. Furthermore,

Π is cohomological because π has the property that Tr(f∞, π∞) 6= 0. For such representations

Π the conjecture is proved to be true in the articles [14,25,95]. Thus the components Πλ are

tempered GLn(Fλ)-representations for all primes λ of F .

The non-trivial element θ of the group Gal(K/Q) acts on the groupG+, and, ‘par transport

du structure’, θ acts on the space of automorphic forms A(G+) on G+. The transferred

representation Π is θ-stable. On the one hand the two isomorphic representations Π and

Πθ both occur as subspaces in A(G+), and on the other hand we have (strong) multiplicity

one for the group G+. Therefore Π and Πθ are the same subspace and we have a natural

isomorphism Aθ : Π
∼→ Πθ induced by θ acting on the space A(G+).

We must show that the limit limm→∞ Tr,m(v)/ deg(Tr,m) vanishes for all vectors v ∈
πKf . Let v be one such vector, and assume that v 6= 0. We have π ∼= πS ⊗ πS and we

may assume that v is an elementary tensor v = vS ⊗ vS , with vS ∈ πS and vS ∈ πS . To

prove that the limit limm→∞ Tr,m(v)/ deg(Tr,m) vanishes it suffices to prove that the limit

limm→∞ Tr,m(vS)/ deg(Tr,m) vanishes. The space πS,K
S
is one-dimensional and vS is a basis

of this space. Therefore Tr(TS
r,m, π

S) is the scalar λ such that TS
r,m(v) = λv. Up to possibly

a sign we have λ = Tr(T+S
r,m,Π

S), and thus

(4.1) ∀r,m :

∣∣∣∣
Tr,m(vS)

deg(Tr,m)

∣∣∣∣ ≤ C
∣∣∣∣∣
Tr(T+S

r,m,Π
S)

deg(Tr,m)

∣∣∣∣∣ ,

for some constant C which does not depend on r,m.

To bound the right hand side of Equation (4.1) we will focus first on the degree deg(Tr,m),

and we will compare it with the classical notion of degree deg(T+
r,m) for the Hecke operators on

the general linear group. It suffices to do this comparison up to a constant independent of r,m.

The function Tr,m onG(Af) is the transfer of the function T
+
r,m onG+(Af) via the functorialities

G G+  G+ (base change and Jacquet-Langlands respectively). The transfer of the trivial

representation along these functorialities is the again the trivial representation. Thus, up to

a constant C not depending on r,m, we have

(4.2) deg(Tr,m) = C

∫

G+(AS
f )
T+
r,m(g) dµ(g),

which is (up to a constant) the volume of the subset

(4.3) G+(Ẑ) · (1)× diag(m,m, . . . ,m, 1, 1, . . . 1) ·G+(Ẑ) ⊂ G+(Af),

In turn this volume is the number of right G+(Ẑ)-cosets of the subset in Equation (4.3), and

this gives back the classical notion of “degree”.
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Let ℓ be a prime divisor of m. Because m is square free, the prime ℓ divides m precisely

once, and the ℓ-th part of the function T+
r,m equals

(4.4) char
(
G+(Zℓ) · (1)× diag(ℓ, ℓ, . . . , ℓ, 1, 1, . . . , 1) ·G+(Zℓ)

)
∈ H(G(Qℓ)).

The element (1) × diag(ℓ, ℓ, . . . , ℓ, 1, 1, . . . , 1) ∈ G+(Qℓ) is the evaluation at ℓ of a miniscule

cocharacter µr ∈ X∗(G+). The field F is unramified above ℓ, and therefore ℓ is a prime

element of the local field Fλ for every F -place λ dividing ℓ. Because µr is miniscule there is

a simple formula for the Satake transform of T
+(ℓ)
r,m (cf. [54]):

(4.5) S(T+(ℓ)
r,m ) = 1⊗

⊗

λ|ℓ
q

r(n−r)
2

λ

∑

1≤i1<i2<···<ir≤n

Xi1Xi2 · · ·Xir ,

in the algebra

(4.6) C[X∗(TQℓ
)] = C[Z]⊗

⊗

λ|ℓ
C[X±1

1 , X±1
2 , . . . , X±1

n ],

where TQℓ
⊂ G+

Qℓ
is the diagonal torus. We specify that the big tensor product in these

Equations ranges over all the F -places λ lying above ℓ, and for such an F -place λ, we write

qλ for the cardinality of the residue field at λ.

The degree deg(Tr,m) is the evaluation of the polynomial S(T (ℓ)
r,m) at the Hecke matrix of

the trivial representation ϕTriv, and is therefore made completely explicit at this point. We

may now estimate |S(T (ℓ)
r,m)(ϕTriv)|. If we evaluate the symmetric polynomial

∑

1≤i1<i2<···<ir≤n

Xi1Xi2 · · ·Xir ,

at the Hecke matrix of the trivial representation of GLn(Fλ), then the largest monomial which

appears is

q
n−1
2 +

n−3
2 +...+

n−2r+1
2

λ = q
r(n−r)

2
λ .

Thus we have the following lower bound:

|S(T+(ℓ)
r,m )(ϕTriv)| ≥

∏

λ|ℓ
q
r(n−r)

2
λ = ℓ[F :Q]

r(n−r)
2 .

The representation Πℓ is tempered, and therefore the absolute values of the eigenvalues of its

Hecke matrix are all equal to 1. Thus

|S(T+(ℓ)
r,m )(ϕΠℓ

)| ≤
∏

λ|ℓ

(
n

r

)
=

(
n

r

)cF (ℓ)

.

We now return to the estimation started in Equation (4.1). We have
∣∣∣∣∣
Tr(T+

r,m,S ,ΠS)

deg(Tr,m)

∣∣∣∣∣ ≤ C
∏

ℓ|m

∣∣∣∣∣
S(T (ℓ)

r,m)(ϕΠℓ
)

S(T (ℓ)
r,m)(ϕTriv)

∣∣∣∣∣ ≤ C
(
n

r

)cF (m)

m−[F :Q]
r(n−r)

2 ,

where C is a certain constant not depending on r and m. This completes the proof. �
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To turn the convergence rate of the above Proposition 4.1 to the convergence rate of the

Theorem 3.1 we weaken our result slightly using Stirling’s formula.

Lemma 4.2. For any ε > 0 there exists an integer M > 0 such that for all square free

m > M we have
(
n
r

)cF (m) ≤ mε

Remark. We prove this for F = Q; we leave it to the reader to reduce to this case, or to

extend the argument below.

Proof of Lemma 4.2. We have (cQ(m))! ≤ m. Write m = Γ(x) for some x ∈ R≥0

where Γ is the usual Gamma function. Then cQ(m) ≤ x and from Stirling’s formula we get

cQ(m)

log(m)
∼ cQ(m)

log (
√
2πxe−xxx)

≤ 1

log(x)− 1 + log(
√
2πx)

x

.

The right hand side converges to 0 for x→∞. Thus we may find (for any ε > 0) an M such

that exp(cQ(m)) ≤ mε for all m > M . This completes the proof. �

5. Completion of the proof

The proof of the main theorem is now not more than a formality. Recall that in Equa-

tion (3.6) we constructed, for each point y ∈ Y (Fq), a mapping Ψy : Ay ։ C. We may take the

sum over all y and obtain in this way an equivariant surjection from A onto the free complex

vector space AAb on the set Y (Fq). Then AAb accounts precisely for the contribution of the

one dimensional representations
⊕

π⊂A(G),dim(π)=1,π∞=1

πKf ,

to the automorphic character formula for A (cf. Equation (1.1)). We have an exact sequence

A0 ֌ A ։ AAb of Hecke modules, and the ‘average’ mapping Avg: AAb → A from Equa-

tion (3.7) splits this sequence. For v = v0+vAb ∈ A0⊕AAb we have vAb = Avg(v) on the one

hand, and on the other hand the sequence
Tr,m(v)

deg(Tr,m) converges to vAb with the correct rate of

convergence by Proposition 4.1 (and Lemma 4.2). This completes the proof. �

6. Towards the general case of unitary Shimura varieties

In this section we sketch how to extend result of our article [63] to a larger class of Shimura

varieties which may have endoscopy and be non-compact, but satisfy a simplifying condition

on the basic isocrystal.

The discussion in this section is still incomplete, because there are corrective terms in the

trace formula which need to be estimated. We have not yet done this estimation.

We will consider a Shimura variety of PEL-type, of type A, as considered by Kottwitz

in [59]. Thus we assume fixed a PEL-datum consisting of
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(A1) A simple algebra 2 Y over a CM field F ;

(A2) A positive involution on the algebra Y which induces complex conjugation on F ;

(A3) A Hermitian Y -module (V, 〈·, ·〉), where 〈·, ·〉 is symplectic;

(A4) h : C→ EndY (V )R is a morphism of R-algebras such that h(z) = h(z)∗ for all z ∈ C.

Let (G,X) be the Shimura datum associated to (A1), (A2), (A3) and the morphism

h−1. We assume that there is a quadratic imaginary extension K of Q and a totally real

extension F+ of Q such that F = KF+. Then the group GK is isomorphic to a product of

(Weil-restriction of scalars of) general linear groups. We let p be a prime of good reduction in

the sense of Kottwitz [59, §5] and we assume that p splits in K/Q. We write E for the reflex

field of the Shimura datum. Furthermore we let K ⊂ G(Af) be a compact open subgroup of

the form K = KpK
p, with Kp hyperspecial and Kp sufficiently small so that the PEL-type

moduli problem of level K is defined over OE ⊗ Z(p) and the variety ShK is smooth and

quasi-projective.

Pick an E-prime p above p and let B be the basic stratum of the variety ShK,Fq , where

Fq is the residue field of OE at p. We pick an embedding of Q → Qp which extends the

embedding of E into Qp defined by p. We fix once and for all an embedding of F into C, and

Q will always mean the algebraic closure of Q in C. The field Fq is the residue field of Qp and

the field Fq is the residue field of E at p.

Because we have the embeddings F ⊂ Q ⊂ Qp, the Galois group Gal(Qp/Qp) acts on

the set of infinite F+-places V (F+) and we may identify any ℘|p with a Galois orbit V (℘)

of infinite places. Let U ⊂ G be the subgroup of elements with trivial factor of similitude.

Then U(R) is a product of standard real groups: U(R) =
∏

v∈V (F+) U(sv, n− sv) for certain
numbers sv. We assume that sv ≤ 1

2n so that these numbers are well defined. The additional

technical condition that we make is the following:

Hypothesis 6.1. There exists an F+-prime ℘ such that the number s℘ is coprime to n.

Let α be a integer. Consider the function f = f∞fαfp in the Hecke algebra of G, where f∞
is a Clozel-Delorme function for the trivial complex representation of GC and fp ∈ H(G(Ap

f ))

is any Kp-spherical Hecke operator. Let ℓ be a prime number different from p and fix an

isomorphism Qℓ
∼= C of abstract fields. Without further mention, we will use this isomorphism

to turn the complex valued function fp∞ into a function which is Qℓ-valued in the cases where

this is necessary. Write ι for the inclusion B →֒ ShK,Fq . Recall that the article [59] gives the

result:

(6.1) ∑

x′∈FixΦα
p ×f∞p (Fq)

Tr(Φα
p × f∞p, ι∗(Qℓ)x) = | ker1(Q, G)|

∑

(γ0;γ,δ)

c(γ0; γ, δ)Oγ(f
∞p)TOδ(φα),

2. The notation Y is nonstandard and questionable; we use it because the usual notation B conflicts with

our notation for the basic stratum.
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where the notations are from [§19, loc. cit ]. We restrict this formula to the basic stratum B

by considering on the right hand side only basic Kottwitz triples. The equation then becomes
∑

x′∈FixB
Φα
p ×f∞p (Fq)

Tr(Φα
p × f∞p, ι∗(Qℓ)x) =

= | ker1(Q, G)|
∑

(γ0;γ,δ)

c(γ0; γ, δ)Oγ(f
∞p)TOδ(χ

G(Ep,α)
σc φα),(6.2)

where Ep,α is the unramified extension of degree α of Ep (in Qp). The function χ
G(Ep,α)
σc is the

characteristic function of the subset of σ-compact elements in G(Ep,α), and FixBΦα
p×f∞p is the

fibre product FixΦα
p×f∞p ×∆ B, where ∆ is the diagonal variety in ShK,Fq × ShK,Fq . By the

stabilization argument of Kottwitz in [57] the right hand side of Equation (6.2) simplifies to

(6.3)
∑

E
ι(G,H) · ST∗

e(χ
G(Qp)
c fH),

where E is the set of isomorphism classes of elliptic endoscopic triples of G, and ST∗
e is

a sum of stable integral orbitals on the elliptic (G,H)-regular elements in H(Q) [57]. If

H is the maximal endoscopic group, then this regularity condition is empty, and we have

ST∗
e(χ

G(Qp)
c f) = STe(χ

G(Qp)
c f). We also mention that the notation χ

G(Qp)
c fH is slightly

abusive, because fH is a global function, while χ
G(Qp)
c is a function at p. When we write

the product χ
G(Qp)
c f we actually mean the function fp ⊗ (χ

G(Qp)
c fα), so the truncation only

occurs at p.

Lemma 6.2. Let P ⊂ G(Qp) be a proper standard parabolic subgroup of G(Qp). Then the

truncated constant term χ
G(Qp)
c f

(P )
α vanishes.

Proof. Let P be a parabolic subgroup of G(Qp). We have f
(P )
α = 1q−α ⊗⊗℘|p

∏
f
(P℘)
nαs ,

where P℘ is the ℘-th component of P . If P is proper, then P℘ is proper as well. Pick some

℘|p such that s℘ is coprime to n (Hypothesis 6.1). We look at the ℘-th component f℘α of the

function fα ∈ H0(G(Qp)) via the isomorphism H0(G(Qp)) ∼= H0(Qp
×)⊗⊗℘|pH0(GLn(F

+
℘ )).

In the notation of [63], we have f℘α = fnαvsv [Prop. 3.3, loc. cit.]. By the explicit description

in [Lem. 1.9, loc. cit.] of the truncated constants terms of fnαvsv we see that these constant

terms vanish for the proper parabolic subgroups in case s is coprime to n. �

Proposition 6.3. For any proper endoscopic group H of G we have (χ
G(Qp)
c f)Hα = 0.

Proof. The transfer f  fH from the function on G(A) to the endoscopic group H(A)

factors through the transfer from G to its quasi-split inner form G∗. At p, the group G(Qp)

is quasi split and therefore G(Qp) = G∗(Qp) and we take the transfer from functions on

G(Qp) to functions on G∗(Qp) to be trivial. Thus we must transfer the function χ
G(Qp)
c fα

on G∗(Qp) to H(Qp). We first consider the function fα ∈ H0(G
∗(Qp)) (H0 denotes the

spherical Hecke algebra). In section 3.4, case 2 on page 1668 of [95], Sug Woo Shin describes

explicitly the transfer for quasi-split similitudes unitary groups. He starts by describing
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the endoscopic groups, and explains that any H can be identified with a group of the form

G(GU∗(n1)×GU∗(n2)) with n = n1+n2 (there are some conditions on the possible partitions

n = n1 + n2 here, but they are of no importance to us). In particular we assume H is the

Levi-component of a maximal standard parabolic subgroup PH of G∗. By the second last

displayed formula on page 1668 of [loc. cit ] the transfer of fα to a function on H(Qp) is given

by f
(PH(Qp))
α · χ+

̟,u, where χ
+
̟,u is some function which we will not need to specify for our

argument. The transfer of a conjugacy class in H(Qp) to a conjugacy class in G∗(Qp) is the

obvious construction (i.e. induced from the inclusion H(Qp) ⊂ G∗(Qp)). Consequently the

function

(6.4)
(
χ
G(Qp)
c |H(Qp)

)
f
(PH(Qp))
α χ+

̟,u ∈ H(H(Qp)),

is a transfer of the function χ
G(Qp)
c fα to H(Qp). Therefore the transfer vanishes by Lemma

6.2. �

A function h is called cuspidal if for every non-elliptic semi-simple conjugacy class γ the

orbital integral Oγ(h) vanishes.

Lemma 6.4. The truncated function χ
G(Qp)
c fα is cuspidal.

Proof. Any non-elliptic conjugacy class of G(Qp) is conjugated to an element of M for

some proper standard Levi-subgroup M of G(Qp). Let P be the corresponding standard

parabolic subgroup of G. Then the orbital integral Oγ(χ
G(Qp)
c f) is the product of a certain

Jacobean factor with the M -orbital integral of γ of the function χ
G(Qp)
c f (P ) = 0 (Proposi-

tion 6.3). Thus the function is cuspidal. �

We are thus left with the term StG∗((χ
G(Qp)
c f)G

∗
) in Equation (6.3), which can be treated

by base change as in [28, §4.3]. The final result is, as above, that the dominant term is given

by the trivial representation (or Abelian characters).



APPENDIX A

Existence of cuspidal representations of p-adic reductive

groups

We prove the following Theorem:

Theorem 0.5. Let G be a connected reductive group over F . Then G(F ) has a cuspidal

complex representation.

This theorem is “folklore”, but we have not found a proof for it in the literature. After

some reduction steps the proof consists of finding certain characters in general position of

elliptic maximal tori of G. In case the cardinal of the residue field of F is “large with respect

to G”, then there are quick arguments to show that characters in general position exist; see

for example [15, lemma 8.4.2]. It is the small groups over small fields and big Weyl groups

that might cause problems, and in this chapter we show that such problems do not occur.

This appendix is independent of the rest of this thesis.

1. Reduction to a problem of classical finite groups of Lie type

Let P ⊂ G(F ) be a maximal proper parahoric subgroup with associated reductive quo-

tient M over k. We claim that M(k) has an irreducible cuspidal representation σ. When

σ is proved to exist, then we may construct a cuspidal representation of G as follows,

see [83], [82] and [83]. Inflate σ to obtain a P -representation. We may compactly induce

the P -representation σ to a representation of G(F ). This G(F )-representation need not be

irreducible, but its irreducible subquotients are all cuspidal. Therefore Theorem 0.5 reduces

to the next proposition.

Proposition 1.1. Let G be a connected reductive group over the finite field k. The group

G(k) has a cuspidal complex representation.

Proof. We will first reduce to G simple and adjoint. Consider the morphism G(k) →
Gad(k). If π is a irreducible representation of Gad(k), then, when restricted to a representation

of G(k) it will decompose as a finite direct sum π =
⊕

i πi of irreducible representations.

Recall that π is cuspidal if and only if H0(N(k), V ) = 0 for all rational parabolic subgroups

P ⊂ G with Levi decomposition P = MN . The map G → Gad is an isomorphism on its

image when restricted to N . For any parabolic subgroup P = MN ⊂ Gad the inverse image

of P in G is a parabolic subgroup with the same unipotent part. Thus, if π is cuspidal

135
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as Gad(k)-representation, then the πi are cuspidal representations of G(k). Therefore, we

may assume that G is adjoint. But then G is a product of k-simple adjoint groups. If the

theorem is true for all the factors, then the theorem is true for G. So we may assume that

G = Resk′/kG
′ where G′ is (absolutely) simple and defined over some finite extension k′ of

k. We have G(k) = G′(k′), and under this equality cuspidal representations correspond to

cuspidal representations. Therefore, we may assume that G is simple and adjoint.

The simple reductive groups G over k are classified by their root system. We will dis-

tinguish cases between the possible root systems. Let us first assume that the root system

of G is exceptional, i.e. of the form 3D4, E6,
2E6, E7, E8, F4,

2F4, G2 or 2G2. In Carter’s

book [15, §13.9] one finds for each exceptional group the complete list of its unipotent ir-

reducible complex trace characters. He also mentions for each group how many of these

characters are cuspidal. As it turns out, in each of the exceptional cases, this number is > 0

and so in particular all the exceptional groups have a cuspidal representation. Some of the

classical groups do not have cuspidal unipotent characters. So unfortunately for those groups

we cannot find a cuspidal representation in Carter’s list.

It remains to verify Proposition 1.1 for the simple adjoint groups G/k which are classical.

Thus if G is split, then it is of type An, Bn, Cn or Dn, and if it is non-split, then it is of type
2An or 2Dn. To do this we will use Deligne-Lusztig theory in Section 2 to reduce the problem

to finding characters in general position. In section 3 we will then verify that all split groups

have such a character. In sections 4 and 5 we will then find characters in general position for

the remaining non-split root systems. The proof of Proposition 1.1 will then be complete. �

2. Characters in general position

Let G/k be a reductive group with connected center. We will apply results of Deligne-

Lusztig [33]. Pick ℓ a prime number different from p. Suppose that we are given the following

data: T ⊂ G a maximal torus and θ : T (k) → Q
×
ℓ a rational character. Then, to this data

Deligne and Lusztig associate a virtual character Rθ
T of G(k) with Qℓ-coefficients [33, p. 114].

Let σ(G) be the k-rank of G and let σ(T ) be the k-rank of T . Proposition [33, Prop.

7.4] states that the character (−1)σ(G)−σ(T )Rθ
T comes from an actual irreducible G(k)-

representation πθT if the character θ is in general position, ie if the rational Weyl group of

T acts freely on it. Theorem [33, thm 8.3] states that if, additionally, T is elliptic, then

πθT is cuspidal. Assume for the moment that we have such a pair (T, θ). Pick an isomor-

phism ι : Qℓ
∼→ C; then the G(k)-representation πθT ⊗ι C is complex cuspidal and irreducible.

Therefore, the proof of Proposition 1.1 is reduced to Proposition 3.2, Proposition 4.1 and

Proposition 5.1.

3. The split classical groups

Before continuing with the proof, we recall some generalities. Let G/k be a reductive

group. Let (T0, B0) be a pair consisting of a maximal torus and a Borel subgroup which
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contains T0, both defined over k. Let W0/k be the Weyl group of T0 ⊂ G. The Frobenius

Frobq = (x 7→ xq) ∈ Gal(k/k) acts on the root datum of G by a diagram automorphism. By

abuse of notation this diagram automorphism is also denoted Frobq.

We carry out the following construction. Let χ : T0,k → Gm,k be a character. Restrict

to T0(k) to get a morphism T0(k) →֒ T0(k) → k
×
. From this construction we obtain a map

X∗(T0)→ Hom(T0(k), k
×
), and this map fits in the exact sequence

(3.1) 0 −→ X∗(T0)
Φ−1−→ X∗(T0) −→ Hom(T0(k), k

×
) −→ 0,

of Z[W0(k)]-modules (see [33, §5]). Here Φ is the relative q-Frobenius of T0,k over k, i.e. given

by f ⊗ λ 7→ f q ⊗ λ on the global sections OT0(T0)⊗k k of T0,k. Recall that we write Frobq for

the Frobenius f ⊗ λ 7→ f ⊗ λq on OT0(T0)⊗k k.

Definition 3.1. Two elements w,w′ in W0(k) are Frobenius conjugate, or Frobq-

conjugate, if there exists an x ∈W0(k) such that w′ = xwFrobq(x)
−1.

The G(k)-conjugacy classes of rational maximal tori in Gk are parametrized by the Frobe-

nius conjugacy classes of W0(k) in the following manner. Let N0 be the normalizer of T0 in

G. We have a surjection from G(k) to the set of maximal tori in Gk by sending g ∈ G(k) to
the torus gT0 := gT0g

−1. The torus gT0 ⊂ Gk is rational (i.e. Gal(k/k)-stable) if and only if

g−1Frobq(g) ∈ N0(k).

Assume that we have two elements g, g′ ∈ G(k) such that the tori gT0,
g′T0 in Gk are

rational. Then, g−1Frobq(g) and g′−1Frobq(g
′) lie in N0(k) so we map them to elements of

the Weyl group W0(k) via the canonical surjection π : N0(k) → W0(k). The torus gT0 ⊂ Gk

is equal to the torus g′T0 ⊂ Gk if and only if

π(g−1Frobq(g)) ≡ π(g′−1Frobq(g
′)) ∈W0(k)/Frobenius conjugacy,

(for the proof of this fact, see [36, III.3.23]). This completes the description how Frobenius

conjugacy classes in W0(k) parametrize G(k)-conjugacy classes of maximal tori in Gk.

Notation. We will write T0(w) for the torus gT0.

Proposition 3.2. Let G/k be a classical simple adjoint group. Then G has an anisotropic

maximal torus T ⊂ G together with a character θ : T (k)→ C× in general position.

Proof. To prove this proposition we will translate it to an explicit combinatorial problem

on Dynkin diagrams. We will then use the classification of such diagrams and calculate to

obtain the desired result.

Let (T0, B0) be a pair consisting of a split maximal torus and a Borel subgroup which

contains T0, both defined over k. Let w ∈W0(k) be a Coxeter element and let T = T0(w) ⊂ G
be the maximal torus corresponding to the Frobenius conjugacy class w ⊂ W0(k) generated

by w.
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Pick g ∈ G(k) such that g−1Frobq(g) ∈ N0(k) and π(g−1Frobq(g)) = w ∈ W0(k). The

conjugation-by-g-map Gk → Gk induces an isomorphism from T0,k to gT0,k = Tk, and in turn

an isomorphism X∗(T )
∼→ X∗(T0). Under this isomorphism, the Frobenius Frobq on X∗(T )

corresponds to the automorphism wFrobq on X∗(T0), and similarly Φ on X∗(T ) corresponds

to wΦ on X∗(T0).

To see that the torus T0(w) is anisotropic it suffices to prove that X∗(T0(w))Frobq = 0.

We will verify this in each individual case below.

The rational Weyl group WT (k) of the torus T is equal to the set of those elements

w ∈ WT (k) in the absolute Weyl group whose action on the characters X∗(T ) is equivariant

for the Frobenius Frobq. Therefore, under the bijection WT (k)
∼→W0(k), the image of WT (k)

in W0(k) is equal to the set of all t ∈ W0(k) such that t(wFrobq) = (wFrobq)t. Because T0

is split, the automorphism Frobq acts trivially on X∗(T0). Therefore, the image of WT (k)

in W0(k) is the centralizer of w ∈ W0(k). Because w is a Coxeter element this centralizer is

equal to the subgroup generated by w ∈W0(k).

Choose an embedding of groups ι : k
× →֒ C×. Then, using ι, we may identify

Hom(T (k), k
×
) with Hom(T (k),C×). The set Hom(T (k),C×) is the set of characters of T (k).

We are interested in the subset of Hom(T (k),C×) consisting of those characters which are in

general position. Under the bijection X∗(T0)
(wΦ−1)X∗(T0)

∼→ Hom(T (k),C×) the action of the group

WT (k) on the right corresponds to the action of the subgroup 〈w〉 ⊂W0(k) on the set on the

left. The problem of finding an elliptic torus together with a character in general position is

thus translated into a problem of the root system of (G,B0, T0): Pick any Coxeter element

w in the Weyl group of the root system, and find an element v in X∗(T0)
(wΦ−1)X∗(T0)

which is such

that wrv 6= v for all r = 1 . . . h, where h = #〈w〉 is the Coxeter number of G.

Before starting the computations, let us make the following 3 remarks to clarify. First,

the relative q-Frobenius Φ acts on X∗(T0) by χ 7→ χq (T0 is split). And second, because the

group G is adjoint, the root lattice of G is equal to the weight lattice X∗(T0). Finally, the

facts on Dynkin diagrams that we state below come from Bourbaki [11, chap 6, §4 – §13].

• G is split of type Bn with n ∈ Z≥2. The root system of G may be described as follows.

Let V = Rn with its canonical basis e1, . . . , en and the standard inner product. Define

α1 = e1 − e2, α2 = e2 − e3, . . . , αn−1 = en−1 − en, αn = en. The elements α1, . . . , αn ∈ Zn are

the simple roots, and the root lattice is equal to Zn ⊂ Rn. The element w = wα1wα2 · · ·wαn

is a Coxeter element of the Weyl group; it acts on Rn by (x1, . . . , xn) 7→ (−xn, x1, . . . , xn−1).

It is clear that there are no elements in the root lattice invariant under the action of wFrobq.

This implies that T0(w) is anisotropic.

We claim that the element e1 ∈ Zn reduces to an element of Zn/(wΦ − 1)Zn in general

position. The order of w is equal to 2n, so #stab〈w〉(v) divides 2n. Therefore, it suffices to

check that for all r ∈ {1, . . . , n} we have wr(e1)− e1 /∈ (wΦ− 1)Zn.
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We distinguish cases. Assume first r = n. Then wr acts on V by v 7→ −v. We have

wn(e1)−e1 = (−2, 0, . . . , 0). Assume that we have an x = (x1, . . . , xn) ∈ Zn with (wΦ−1)x =

(−2, 0, 0, . . . , 0). Then
(3.2) − qxn − x1 = −2, qx1 − x2 = 0, qx2 − x3 = 0, . . . , qxn−1 − xn = 0.

From this we get xn = qn−1x1, and −2 = −qnx1 − x1 = −(1 + qn)x1 which is not possible.

So we have dealt with the case r = n.

Now assume that r ∈ {1, . . . , n− 1}. Then wr(e1)− e1 = er+1− e1. Assume that we have

an x = (x1, . . . , xn) ∈ Zn such that

(3.3) − qxn − x1 = −1, qxr − xr+1 = 1, and qxi−1 − xi = 0 (∀i /∈ {1, r + 1}).
We find

xn = qn−r−1xr+1 = qn−r−1(qxr − 1) = qn−rxr − qn−r−1 = qn−1x1 − qn−r−1,

and x1 − 1 = −qxn = −q(qn−1x1 − qn−r−1), which implies

x1 =
qn−r + 1

qn + 1
,

but |qn−r − 1|∞ < |qn + 1|∞, so x1 is not integral: contradiction. This completes the proof

that e1 ∈ X(T ) is a character in general position in case G is of type Bn.

• G is split of type Cn with n ∈ Z≥2. The root system of G may be described as follows.

Let V = Rn with its canonical basis e1, . . . , en and the standard inner product. Define

α1 = e1 − e2, α2 = e2 − e3, . . . , αn−1 = en−1 − en, αn = 2en. The elements α1, . . . , αn ∈ Zn

are the simple roots, and the root lattice Λ is equal to the set of (x1, . . . , xn) ∈ Zn ⊂ Rn

with
∑n

i=1 xi ≡ 0 mod 2. The element w = wα1wα2 · · ·wαn is a Coxeter element of the Weyl

group; it acts on Rn by (x1, . . . , xn) 7→ (−xn, x1, . . . , xn−1). It is clear that there are no

elements in the root lattice invariant under the action of wFrobq. This implies that T0(w) is

anisotropic.

We claim that the element 2e1 ∈ Λ reduces to an element of Λ/(wΦ − 1)Λ in general

position. It suffices to verify that wr(2e1) − 2e1 /∈ (wΦ − 1)Λ for all r ∈ {1, . . . , n}. Let

x = (x1, . . . , xn) ∈ Rn be the vector satisfying the equations in Equation 3.3. Then the vector

x′ := 2x satisfies wr(2e1)− 2e1 = (wΦ− 1)x′. Therefore,

x′1 = 2 · q
n−r + 1

qn + 1
.

For q 6= 2 we have 2|qn−r + 1|∞ < |qn + 1|∞, and for q = 2 the numerator and denominator

are coprime. Therefore x1 is not integral.

• G is split of type An with n ∈ Z≥1. Consider inside Rn+1 the hyperplane V with equation∑n+1
i=1 ξi = 0. Define α1 = e1 − e2, α2 = e2 − e3, . . . , αn = en − en+1 (simple roots), Λ =

Zn+1 ∩ V (root lattice), and w = wα1wα2 · · ·wαn (Coxeter element). The element w acts on

V ⊂ Rn+1 by rotation of the coordinates: (x1, x2, . . . , xn, xn+1) 7→ (xn+1, x1, x2, . . . , xn). We
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have (wΦ−1)(x1, . . . , xn+1) = (qxn+1−x1, qx1−x2, qx2−x3, . . . , qxn−xn+1). It is clear that

there are no elements in the root lattice invariant under the action of wFrobq. This implies

that T0(w) is anisotropic.

We claim that the element v := e1 − en+1 ∈ Λ reduces to an element of Λ/(wΦ − 1)Λ

which is in general position. The order of w equals n + 1. Let r ∈ {1, . . . , n}. Suppose for

a contradiction that wr(v) − v = (er+1 − er) − (e1 − en+1) ∈ (wΦ − 1)Λ. Then we have an

element (x1, . . . , xn+1) ∈ Λ such that

qxn+1 − x1 = −1, qxr−1 − xr = −1, qxr − xr+1 = 1, qxn − xn+1 = 1,

qxi−1 − xi = 0 (∀i /∈ {r + 1, r, 1, n+ 1}).

By substitution we deduce from this qn+1xn+1 = xn+1 − qn − qn+1−r + qn−r + 1. But,

qn+1 − 1 > qn + qn−r+1 − qn−r − 1, so xn+1 cannot be integral: contradiction.

• G is split of type Dn with n ∈ Z≥4. Define α1 = e1−e2, α2 = e2−e3, . . ., αn−1 = en−1−en,
αn = en−1 + en (simple roots), Λ the set of (x1, . . . , xn) ∈ Zn such that

∑n
i=1 xi ≡ 0 mod 2

(root lattice).

Unfortunately the above procedure to produce anisotropic tori and characters in general

position does not work for this group G for the following reason. Let w = wα1 · · ·wαn be the

Coxeter element of the Weyl group which is the product of the reflections in the simple roots.

Then w acts on V by

(x1, x2, . . . , xn) 7→ (−xn, x1, . . . , xn−2,−xn−1).

This implies that the vector (2, . . . , 2,−2) ∈ Λ is stable under the action of Frobenius and

thus the corresponding torus is not anisotropic.

Let W0 be the Weyl group of the system Dn. We have a split exact sequence

(3.4) 1 −→ {−1}ndet=1 −→W0 −→ Sn −→ 1,

where Sn acts on Zn via the natural action and an ε = (εi) ∈ {−1}ndet=1 acts on a vector

ei ∈ Zn of the standard basis by εei = εiei.

Write n = m + 1. Let w = (123 . . .m) ∈ Sn. Write tk ∈ {−1}n for the element with −1
on the k-th coordinate, and with 1 on all other coordinates. Define w′ = tntmw ∈ W0. We

consider the maximal torus T in G of type w′. The action of Frobq on the character group of

this torus is given by

Zn ∋ (x1, . . . , xm, xn) 7→ (xm, x1, . . . ,−xm−1,−xn).

We see that there are no non-zero vectors in Zn which are invariant under this action. There-

fore the torus T is anisotropic.

The rational Weyl group of T is the set of s ∈W0 which commute with w′. Let us compute

this group. Write ϕ : W0 ։ Sn the natural surjection (see Equation 3.4). Let s ∈ WT (k),
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then w = ϕ(w′) = ϕ(sws−1). Therefore ϕ(s) commutes with w. This implies that ϕ(s) is a

power of w. Write s = εwk for some ν ∈ {−1}ndet=1. We have

stns
−1 = tn, stms

−1 = twk(m), and sws−1εwkww−kε = εwε.

Therefore

s(w′)s−1 = s(tntmw)s
−1 = tntwk(m)εwε,

which is equivalent to

(εw(i)εi) = twk(m)tm.

A priori there are 4 solutions ε ∈ {−1}n of this equation. When we add the condition

det(ε) = 1, then precisely 2 of those solutions remain.

Let ε ∈ {−1}ndet=1 be such that (εw(i)εi) = tw(m)tm. We have an exact sequence

1 −→ {1, ν} −→WT (k) −→ 〈εw〉 −→ 1,

where ν ∈ {−1}ndet=1 is given by νi = −1 for i ≤ m and νn = (−1)m.

We claim that v = 2em ∈ Λ reduces to an element of Λ/(w′Φ − 1)Λ in general position.

Assume that

(w′Φ− 1)(x1, . . . , xm, xn) = (qxm − x1, qx1 − x2, . . . ,−qxm−1 − xm,−qxn − xn).

We ignore the last coordinate, and only work with the vector (x1, . . . , xm). By substitution

we deduce that qmxm = −2− xm ± 2qm−r. This implies

(3.5) xm = 2
qm−r ± 1

qm + 1
.

For (q, r) 6= (2, 1) we have |qm + 1|∞ > 2|qm−r ± 1|∞, and for (q, r) = (2, 1) the numerator

and denominator have a gcd which divides 3, so then qm + 1 = 3 and we must have m = 1,

but we assumed m ≥ 2. Therefore xm is not integral. �

4. The unitary groups

Proposition 4.1. Let n ≥ 3. The simple adjoint group over k with root system 2An−1

has an anisotropic maximal torus T together with a character T (k)→ C× in general position.

Proof. Let E ⊂ k be the quadratic extension of k, and let σ : E
∼→ E be the unique

non-trivial k-automorphism of E. The unitary group Un over k is the group of matrices

g ∈ ResE/kGLn,E such that σ(g)tg = 1. The adjoint group Un,ad of Un is the group PUn and

this group has root system 2An−1.

We will distinguish cases between n odd and n even. Assume first that n is odd. Let T0

be the torus (U1)
n embedded diagonally in Un. Then Frobq acts on X∗(T0) by x 7→ −x. We

have X∗(T0) = Zn and under this equality, the Weyl group WT0(k) is identified with Sn. Let
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w = (123 . . . n) ∈ Sn = WT0(k) and let T be the torus T0(w). The relative Frobenius Φ acts

on X∗(T ) = Zn by

(4.1) (x1, . . . , xn) 7→ (−xn,−x1, . . . ,−xn−1).

We claim that the torus T is anisotropic over k. To see this, let x = (x1, . . . , xn) ∈ Zn

be wFrobq-invariant. Then (x1, . . . , xn) = (−xn,−x1, . . . ,−xn−1), it follows x1 = (−1)nx1,
and because n is odd, this implies x1 = 0. The same argument applies to the other xi, and

therefore x = 0. We proved X∗(T )Frobq = 0, and thus T is anisotropic.

The center of Un is equal to U1 embedded diagonally. Let Tad be the image of the torus T

in the adjoint group of Un. Then Λ = X∗(Tad) is the subset of Zn consisting of those vectors

x ∈ Zn such that
∑n

i=1 xi = 0. The Weyl group is Sn and it acts on Λ via the restriction

of the natural action Sn 	 Zn to Λ. The rational Weyl group WTad
(k) ⊂ Sn is the set of

elements w commuting with Frobq. The rational Weyl group is equal to 〈w〉 ⊂ Sn because

all elements of the Weyl group commute with −1.
To find an element in general position we must find a vector v ∈ Λ which is such that

wr(v)− v /∈ (Φ− 1)Λ for all r = 1 . . . n− 1. We claim that v = e1 − en ∈ Λ is such a vector.

Assume for a contradiction that (wΦ− 1)x = wrv − v for some x ∈ Λ. Then

(−qxn − x1,−qx1 − x2, . . . ,−qxn−1 − xn) = (er+1 − er)− (e1 − en).

By substitution we deduce from this (−q)nxn = xn − (−q)n−1 − (−q)n−r + (−q)n−1−r + 1,

and thus

xn = −(−q)n−1 + (−q)n−r − (−q)n−1−r − 1

(−q)n − 1
∈ Z.

We show that this is not possible. We will distinguish cases. Assume first that the pair (q, r)

is such that the inequality |(−q)r + (−q) + 1| < qr+1 − 2 holds. We may then estimate

|(−q)n−1 + (−q)n−r − (−q)n−1−r − 1|∞ = |(−q)n−1−r((−q)r + (−q)− 1)− 1|
≤ qn−1−r · |(−q)r + (−q)− 1|+ 1

< qn − 2qn−1−r + 1 ≤ qn − 1 ≤ |(−q)n − 1|∞.

This proves that xn cannot be integral.

Let us determine the pairs (q, r) for which the above inequality is not true. We have

|(−q)r + (−q) + 1| ≤ qr + q + 1. The inequality qr + q + 1 < qr+1 − 2 does not hold for

(q, r) ∈ {(2, 1), (2, 2), (3, 1)}. To see that it holds in all other cases, observe first that if the

inequality holds for (q, r) then it holds also for (q, r+1). By direct verification we see that it

holds for (2, 3), (3, 2), and for (q, 1) in case q > 3.

For (q, r) ∈ {(2, 2), (3, 1)} we have the inequality |(−q)r+(−q)+1| < qr+1−2, so the above
proof also applies to these cases. In case (q, r) = (2, 1), then we obtain x1 = −1 + (−2)n−2

(−2)n−1 ,

which is not integral. This completes the proof for n odd.

Now assume that n is even. Write n = m+1, so that m is odd. Let T0 ⊂ Un be the torus

(U1)
n embedded on the diagonal of Un. Let w = (123 . . .m) ∈ Sn = WT0(k), and consider
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the torus T := T0(w). We have X∗(T ) = Zn on which the Frobenius acts by −w. The

rational Weyl group WT (k) ⊂ Sn is the set of s ∈ Sn which commute with −w. Therefore

WT (k) = 〈w〉, and in particular WT (k) ⊂ Sm. Let Tad be the image of the torus T in the

adjoint group of Un. The lattice X∗(Tad) = Λ ⊂ Zn is the set of vectors (x1, . . . , xn) with∑n
i=1 xi = 0. The tori T and Tad are anisotropic. Write T = Tm × U1, where the torus Tm

is the maximal torus in the group Um that we considered in the odd case. The rational Weyl

group WT (k) preserves this decomposition of T . We have the map X∗(Tm,ad) → X∗(Tad),

(x1, . . . , xm) 7→ (x1, . . . , xm, 0). This map is Sm-equivariant, and it induces a map

X∗(Tm,ad)

(wΦ− 1)X∗(Tm,ad)
֌

X∗(Tad)
(wΦ− 1)X∗(Tad)

,

which is w-equivariant. Therefore characters in general position are send to characters in

general position. By the argument above we know that Tm has characters in general position,

so this completes the proof for n even. �

5. The non-split orthogonal groups

Proposition 5.1. Let n ∈ Z≥4. The simple adjoint group G over k with root system
2Dn−1 has a maximal torus T ⊂ G with a character T (k)→ C× in general position.

Proof. Let J be the 2n × 2n-matrix consisting of the blocks ( 1
1 ) on the diagonal, and

all other entries 0. The group O2n over k is the set of matrices g ∈ GL2n,k which are such

that gtJg = J . The group SO2n is the group of matrices g ∈ O2n such that det(g) = 1.

The non-split form SO′
2n over k is obtained from SO2n by twisting the action of Frobq with

the matrix s ∈ GL2n consisting of the blocks ( 1 1 ) on the diagonal, except for the last block

on the diagonal which is ( 1
1 ). This corresponds to replacing the matrix J with the matrix

sJs−1 = sJs in the definition of the orthogonal group.

In characteristic p 6= 2, the group SO2n (resp. SO2n) is connected and has root system

Dn−1 (resp. 2Dn−1). For p = 2 it is the connected component of identity, SO◦
2n (resp. SO′◦

2n),

that has root system Dn−1 (resp. 2Dn−1).

The torus (SO◦
2)

n on the diagonal in SO◦
2n is a maximal torus, and the torus T0 =

(SO◦
2)

n−1 ×U1 is a maximal torus of SO′◦
2n. We have X∗(T0) = Zn and Frobq acts on X∗(T0)

by (x1, . . . , xn) 7→ (x1, . . . , xn−1,−xn). Let W0 be the absolute Weyl group of T0. We have a

split exact sequence

(5.1) 1 −→ {−1}ndet=1 −→W0 −→ Sn −→ 1,

where Sn acts on Zn by permuting the standard basis vectors, and where an ε = (εi) ∈
{−1}ndet=1 acts on a vector ei ∈ Zn of the standard basis by εei = εiei.

Let w ∈ Sn ⊂ W0 be the n-cycle (123 . . . n) and consider the torus T := T0(w). Then

X∗(T )
∼→ Zn via which the action Frobq 	 X

∗(T ) corresponds to the action of wFrobq on Zn.
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We verify that this torus is anisotropic. Let x = (x1, . . . , xn) ∈ X∗(T0)wFrobq . Then

(x1, . . . , xn) = wFrobq(x1, . . . , xn) = (−xn, x1, . . . , xn−1),

which implies x = 0. Therefore T is anisotropic.

The rational Weyl group WT (k) ⊂W0 is the set of s ∈W0 which commute with wFrobq.

Let us determine this group. Write ϕ for the map W0 ։ Sn (see Equation 5.1), and write

tj ∈ {−1}n for the element with−1 on the j-th coordinate, and with 1 on all other coordinates.

Then Frobq = tn.

If s ∈ Wt(k), then s(wtn)s
−1 = wtn. We apply ϕ to this equality to obtain w = ϕ(w) =

ϕ(sws−1), and thus ϕ(s) ∈ Sn commutes with w. This implies that ϕ(s) is a power of w.

Write s = εwk where ε ∈ {−1}ndet=1. We have

stns
−1 = εwk(tn)w

−kε = tk,

and

sws−1 = εwkww−kε = εwε.

Therefore,

wtn = s(wtn)s
−1 = εwε · tk.

This is equivalent to,

εw−1εw = tktn.

Write ε = (εi) ∈ {−1}ndet=1. Then we have,

(5.2) εw−1εw = (εi) · (εw(i)) = (εiεi+1) = tktn.

We will now distinguish cases between n is odd and n is even. Assume first that n is odd.

Return to Equation 5.2, we have (εiεi+1) = tktn. After the choice of εn, the εi for i < n

are uniquely determined by this equation. If ε is one of the solutions, then −ε is the other

solution. We have det(−ε) = (−1)n det(ε) = − det(ε). Therefore, precisely one of the two

solutions has determinant 1. We conclude that the rational Weyl group WT (k) is equal to

〈εw〉, where ε ∈ {−1}ndet=1 is the unique element such that (εiεi+1) = t1tn.

Let SO◦
2n,ad be the adjoint group of SO◦

2n and let Tad be the image of the torus T in

SO◦
2n,ad. Then X∗(Tad) ⊂ X∗(T ) = Zn is the sublattice of elements (x1, . . . , xn) ∈ Zn such

that
∑n

i=1 xi = 0.

We claim that the element v = 2en ∈ Λ reduces to an element v ∈ Λ/(wΦ−1)Λ in general

position. We have (εw)r2en = ±2en−r, for all r = 1, . . . , n− 1. We left the sign unspecified,

but we mention that it depends on r.

Suppose that there exists an x = (x1, . . . , xn) ∈ Λ such that

(wΦ− 1)(x1, . . . , xn) = (−qxn, qx1, . . . , qxn−1)− (x1, . . . , xn) = 2en ± 2er.

This implies −qnxn = −2qn−r ± 2 + xn, and thus

xn = 2
qn−r ± 1

qn + 1
.



5. THE NON-SPLIT ORTHOGONAL GROUPS 145

We have already verified in Equation 3.5 that xn cannot be integral. This completes the proof

for n odd.

Assume now that n is even. We have −1 ∈ {−1}ndet=1 in case n is even. In Equation

5.2 we found that (εiεi+1) = tktn. We obtain from this, εi = ε1 for i ≤ k and εi = −ε1 for

i > k. Therefore det(ε) = (−1)k, independently of ε1. Therefore, ε ∈ {−1}ndet=1 only if k

is even, and if this is the case, then the equation (εiεi+1) = tktn has exactly 2 solutions for

ε ∈ {−1}ndet=1.

We conclude that #WT (k) = n, but the group is not cyclic: Pick an ε ∈ {−1}ndet=1, such

that (εiεi+1) = t2tn holds. Then the rational Weyl group WT (k) is equal to {−1} × 〈εw2〉.
We have

∀ν1 ∈ {−1}∃ν2 ∈ {−1} : ν1(εw
2)r(2en) = ν22e2r.

We show that 2en ± 2en−2r /∈ (wΦ − 1)Λ for all r =
{
1, . . . , n2

}
, and all signs, so that the

element 2en ∈ Λ/(wΦ− 1)Λ is in general position. Assume for a contradiction that x ∈ Λ is

such that

(wΦ− 1)(x1, . . . , xn) = 2en ± 2e2r.

Then we may proceed as in Equation 3.5 to find that xn is not integral.

All possible cases are now verified and the proof of Theorem 0.5 is completed. �





APPENDIX B

Jacquet modules (joint with Erez Lapid)

Let F be a non-Archimedean local field with residue characteristic p and consider the

locally compact, totally disconnected group Gn := GLn(F ). Let P =M⋉N be the standard,

block upper triangular, parabolic subgroup of type (n1, n2, . . . , nk) with the standard Levi

decomposition. Thus M ≃ ∏k
i=1Gni . The normalized Jacquet functor JP is a functor from

the category of smooth admissible complex representations of Gn to those of M . It is defined

as the space of coinvariants for the action of the unipotent group N on π, twisted by a certain

normalizing character. More precisely,

JP (π) := πN [δ
−1/2
P ], where δP (m) := |det(Ad(m)|Lie(N))| ,m ∈M.

In general, it is a difficult problem to compute JP (π), or even its semisimplification, for an

arbitrary irreducible π. In this appendix we will give an explicit formula for JP (π) for a certain

class of irreducible representations, namely the ladder representations introduced in [71]. The

case where P is the minimal parabolic subgroup for which JP (π) 6= 0 was considered in [ibid.].

Here we will extend it to any P .

The class of ladder representations contains the class of Speh representations. The main

result of [71] is to extend the determinantal formula of Tadić for Speh representations [99] (cf.

also [18]) to ladder representations (see (1.2) below). Speh representations are important in

the representation theory of the general linear group, because they form the building blocks for

the unitary dual of Gn. More precisely, it was shown by Tadić that any irreducible unitary

representation is isomorphic to the parabolic induction of Speh representations twisted by

certain (explicit, but not necessarily unitary) characters [98]. In particular, this is the case

for the local components of representations occurring in the discrete automorphic spectrum

of Gn over a global field.

We prove that the Jacquet module of a ladder representation is semisimple, multiplicity

free, and that its irreducible constituents are themselves tensor products of ladder represen-

tations. In contrast, the class of Speh representations is not stable under taking the Jacquet

module. In other words, (non Speh) ladder representations are encountered in the Jacquet

module of Speh representations. Hence, ladder representations are important for global ap-

plications.

Our result has an application to Shimura varieties. In Chapters 2 and 3 we computed

the Hasse-Weil zeta function of the basic stratum of certain simple Shimura varieties at split

147



148 B. JACQUET MODULES (JOINT WITH EREZ LAPID)

primes of good reduction following the method of Langlands and Kottwitz [59]. Apart from

the basic stratum, these varieties admit additional Newton strata (cf. [87]). In order to

compute the zeta function of a given stratum S one may proceed as in [63] provided that one

knows the Jacquet modules of the representations occurring in the cohomology of S. These

representations turn out to be (essentially) Speh representations, and hence the problem

reduces to the one considered in this appendix. Details will be given elsewhere.

1. The Jacquet modules of a Ladder representation

We first introduce some more notation. We write R =
⊕

n∈Z≥0
Groth(Gn) where

Groth(Gn) is the Grothendieck group of the category Rep(Gn) of smooth complex repre-

sentations of Gn of finite length. The group R has a structure of a graded ring (introduced

by Zelevinsky in [105]) with multiplication given by

π1 × π2 := Ind
Gn1+n2
Pn1,n2

(π1 ⊗ π2) ∈ Rep(Gn1+n2),

(normalized induction) for π1 ∈ Rep(Gn1), π2 ∈ Rep(Gn2), n1, n2 ∈ Z≥0 where Pn1,n2 is

the standard parabolic subgroup of Gn1+n2 of type (n1, n2). The unit element of R is the

one-dimensional representation of G0.

Fix an integer d > 0 and a cuspidal representation ρ of Gd. For our purposes, a segment

[a, b] is a set of integers of the form {a, a + 1, . . . , b} with b ≥ a. For any segment [a, b]

the representation ρ[|det ·|a] × · · · × ρ[|det ·|b] admits a unique irreducible quotient δ([a, b]),

the so-called generalized Steinberg representation. A ladder is a finite sequence of segments

[a1, b1], . . . , [at, bt] such that a1 > a2 > · · · > at and b1 > b2 > · · · > bt. Given a ladder of

segments, we may form the representation δ([a1, b1]) × · · · × δ([at, bt]). This representation

admits a unique irreducible quotient, LQ(δ([a1, b1])× · · · × δ([at, bt])) which is the Langlands

quotient in the case at hand. The representations which arise in this manner are by definition

the ladder representations. The subclass of Speh representations (up to twists) is obtained by

taking ai+1 = ai − 1 and bi+1 = bi − 1 for all i = 1, . . . , t− 1.

The ring R is actually a bi-algebra (and in fact has an additional structure of a Hopf-

algebra) with respect to the comultiplication ∆: R → R⊗R defined by π 7→∑n
i=0 JPi,n−i(π),

π ∈ Rep(Gn). In particular we have

(1.1) ∆(δ([a, b])) =
∑

c

δ([c+ 1, b])⊗ δ([a, c]),

where we have used the convention that δ([a, b]) = 0 if b < a− 1 and δ([a, a− 1]) = 1 ∈ R.

Theorem 1.1. Suppose that a1 > · · · > at and b1 > · · · > bt. Then

∆(LQ(δ([a1, b1]), . . . , δ([at, bt]))) =
∑

c1>···>ct∈Z
LQ(δ([c1 + 1, b1]), . . . , δ([ct + 1, bt]))⊗ LQ(δ([a1, c1]), . . . , δ([at, ct])).
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Remark. Note the similarity between this formula and the formula

∆(δ([a1, b1])× · · · × δ([at, bt])) =
∑

c1,...,ct∈Z
δ([c1 + 1, b1])× · · · × δ([ct + 1, bt])⊗ δ([a1, c1])× · · · × δ([at, ct]).

Let us now prove Theorem 1.1. By the determinantal formula of Tadić [71] we have

(1.2) LQ(δ([a1, b1]), . . . , δ([at, bt])) = det(δ([ai, bj ]))i,j=1,...,t.

Therefore,

∆(LQ(δ([a1, b1]), . . . , δ([at, bt]))) = det(∆(δ([ai, bj ])))i,j=1,...,t.

By (1.1) and using the multi-linearity of the determinant we get

∑

c1,...,ct∈Z
det(δ([cj + 1, bj ])⊗ δ([ai, cj ])) =

∑

c1,...,ct∈Z

( t∏

j=1

δ([cj + 1, bj ])
)
⊗ det(δ([ai, cj ])).

Write St for the symmetric group on the set {1, 2, . . . , t}. Observe that if cj = ck for some

j 6= k then det(δ([ai, cj ])) = 0 since two columns in the matrix are identical. Therefore, only

distinct c1, . . . , ct contribute to the right hand side of the above equation, and we can write

the sum as

∑

c1>···>ct∈Z

∑

s∈St

( t∏

j=1

δ([cs(j) + 1, bj ])
)
⊗ det(δ([ai, cs(j)]))

=
∑

c1>···>ct∈Z

∑

s∈St

sgn s
( t∏

j=1

δ([cs(j) + 1, bj ])
)
⊗ det(δ([ai, cj ]))

=
∑

c1>···>ct∈Z
det(δ([ci + 1, bj ]))⊗ det(δ([ai, cj ])).

Applying (1.2) once more, we obtain Theorem 1.1.

Corollary 1.2. Suppose that a1 > · · · > at and b1 > · · · > bt. Then the Jacquet module

of LQ(δ([a1, b1]), . . . , δ([at, bt])) with respect to the parabolic subgroup of type (n1, . . . , nk) is

(1.3)
⊕

f

LQ(f−1(1))⊗ · · · ⊗ LQ(f−1(k))

where the sum is over all k-colorings f : ∪ti=1([ai, bi]× {i})→ {1, . . . , k} such that

(1) j 7→ f(j, i) is (weakly) monotone decreasing for all i = 1, . . . , t,

(2) nl = d ·
∣∣f−1(l)

∣∣ for all l = 1, . . . , k,

(3) for any l = 1, . . . , k and i = 1, . . . , t, let mi,l = min{j ∈ [ai, bi+1] : f(j, i) ≤ l} (with
f(bi+1, i) = −∞) and ni,l = max{j ∈ [ai−1, bi] : f(j, i) ≥ l} (with f(ai−1, i) =∞).

Then mi,l > mi+1,l and ni,l > ni+1,l for all i = 1, . . . , t− 1, l = 1, . . . , k.
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Figure 1. An example of a 4-coloring of 3 segments satisfying the conditions above.

The corollary extends the result of [71] (i.e., the case n1 = · · · = nt = d). Up to

semisimplification, the corollary follows from Theorem 1.1 by induction on k. To show that

the Jacquet module is semisimple it suffices to note that the summands in (1.3) have distinct

supercuspidal supports. This follows from the fact that given b1 > · · · > bt and a multiset

A of integers, there is at most one sequence a1 > · · · > at such that ai ≤ bi + 1 for all i

and A = ∪[ai, bi]. We apply this inductively on l to show that mi,l and ni,l, i = 1, . . . , t are

determined by the supercuspidal support.
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[15] R. W. Carter – Finite groups of Lie type, Pure and Applied Mathematics (New York), John Wiley &

Sons Inc., New York, 1985, Conjugacy classes and complex characters, A Wiley-Interscience Publication.

[16] W. Casselman –“The unramified principal series of p-adic groups. I. The spherical function”, Compositio

Math. 40 (1980), no. 3, p. 387–406.

151



152 BIBLIOGRAPHY

[17] C.-L. Chai – “Newton polygons as lattice points”, Amer. J. Math. 122 (2000), no. 5, p. 967–990.

[18] G. Chenevier & D. Renard – “Characters of Speh representations and Lewis Caroll identity”, Repre-

sent. Theory 12 (2008), p. 447–452.

[19] N. Chriss & V. Ginzburg – Representation theory and complex geometry, Modern Birkhäuser Classics,
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adiques”, Pacific J. Math. 233 (2007), no. 1, p. 159–204.

[79] C. Mœglin & J.-L. Waldspurger –“Sur l’involution de Zelevinski”, J. Reine Angew. Math. 372 (1986),

p. 136–177.

http://www.ma.huji.ac.il/~erezla/publications.html


BIBLIOGRAPHY 155

[80] , “Le spectre résiduel de GL(n)”, Ann. Sci. École Norm. Sup. (4) 22 (1989), no. 4, p. 605–674.
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