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Résume:
Le sol présente une variabilité spatiale des pédgsi physiques et mécaniques dont les
effets sur des structures légéres avec semeltagdd et sur les conduites enterrées ne sont
pas bien pris en compte dans leur dimensionnen@aite variabilité naturelle peut étre
trés importante dans le cas de ces ouvrages eandllit des tassements différentiels, dont
les conséquences peuvent étre dommageables :efisgans les murs, les poutres ou
encore des fuites dans les réseaux d’assainisselgentariabilité naturelle du sol et
I'incertitude liée a la connaissance imparfaite piegpriétés du sol et/ou du béton ou de
I'acier de la structure sont les principales saittimcertitude dans le choix des parametres
de calcul pour le dimensionnement de ces structiDasis cette these, une approche
analytique avec les méthodes probabilistes (FOSEQ@$SM) et le modéele de Winkler,
puis numérique avec le couplage de la méthode ldeseats finis avec des approches
géostatistigues ont été successivement menées rmodeéliser le comportement des
semelles filantes et des conduites enterrés lordesieincertitudes sur les propriétés
mécaniques du sol et de la structure sont priseepte dans leur dimensionnement. Il
apparait ainsi, 'importance du comportement langjital de ces ouvrages et du poids des
incertitudes dans leur dimensionnement.

Mots clés: incertitude, variabilité spatiale, module de réactdu sol, semelle filante,
conduite enterrée, interaction sol-structure, agpee analytique et numérique,
géostatistique.

Abstract:

Soil exhibits spatial heterogeneities resultingnfrahe history of its deposition and
aggregation processes that occur in different ghysand chemical environments. This
inherent or natural variability can be very impaoitan the case of the superficial
geotechnical works inducing differential settlensgenvhose consequences on structural
response can be harmful: local failures, crackmgpéams or walls, leakage in sewers.
Natural variability of soil and uncertainty relatedimperfect knowledge in soil properties
and/or of concrete or steel of the structure, lagemajor source of uncertainty in the choice
of the design parameters. In this thesis the prbbd methods in geotechnical
engineering, the analytical Winkler model and tbeping of the finite element method
with geostatistical approaches were successivedyl is model the behavior of shallow
foundations and buried pipe networks when soil stnaicture uncertainties are considered
in their design.

Keywords: uncertainty, spatial variability, subgrade reactimodulus, spread footing,
buried pipe, soil-structure interaction, analytiaatl numerical methods, geostatistic.
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Résume étendu en francais

Les propriétés physiques et mécaniques d’'un saeptént toutes des hétérogénéitées
spatiales dont l'origine vient de la complexité geecessus géologiques naturels mis en
jeu (érosion, transport, dépot, compaction, tramsédion physico-chimique...) qui ménent
a la constitution d’'un sol. A cette variabilité sdtache une incertitude sur chacun des
parametres usuellement utilisés pour quantifieraaabilité naturelle: moyenne, variance
et fonction de covariance dans le cas d’'une apprephtialisée de la variabilité naturelle.
Ces incertitudes existent également dans le casd&siaux de structure.

La variabilité naturelle des propriétés mécaniqies sols de fondations peut étre, dans
le cas des ouvrages geéotechniques superficielsqtedsdes semelles filantes pour les
batiments légers ou des conduites enterrées (em leéten acier) a faible profondeur, a
I'origine de tassements différentiels dont les éguences peuvent étre dommageables:
fissures dans les murs et les poutres ou fuitesldangéseaux d’assainissement.

Dans les calculs usuels de dimensionnement deuwseages géeotechniques superficiels,
le comportement n'est modélisé que dans une sedimite pour représenter le
comportement transversal de I'élément de struaiurehétérogénéité (variabilité spatiale)
et les incertitudes sur les paramétres de calcabnepas prises en compte.

L’objectif principal de cette thése est d’étudiean considérant le comportement
longitudinal des semelles filantes et des condwetgsrrées, I'influence des incertitudes
des parametres de calcul et de la variabilité aleatdes propriétés du sol sur le
dimensionnement de ces ouvrages. Le modeéle de @irklété choisi comme modéle
d'interaction sol-structure. Ce modele, d'un paiatvue pratique, est approprié pour le
dimensionnement des ouvrages géotechniques sugstfit a 'avantage de ne prendre en
compte qu'un seul parametre (coefficient de réactionsol k) pour caractériser les
réponses d’'un sol élastique et de la structure shasgement. Grace a sa simplicité, le
modele de Winkler a été largement utilisé pour wése de nombreux problémes
d'interaction sol-structure et a donné des résulttisfaisants pour de nombreux
problemes pratiques. Le coefficient de réaction st (k) n’est pas un paramétre
intrinséque du sol, il dépend de plusieurs parasdjparametres mécaniques du sol et de
la structure, paramétres géométriques de la ste)auii possedent chacun des incertitudes

propres et qui sont la source majeure des incaessur le coefficient de réaction.
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Les objectifs spécifiques de notre recherche snsliivants:

* Modélisation de l'interaction sol-structure dansdiaection longitudinale des
ouvrages superficiels en prenant en compte lestiaies sur les paramétres du
sol et de la structure afin de déterminer les iitceles sur le tassement
différentiel et le moment fléchissant. Cela nousnptra d’effectuer une
analyse de sensibilité, une analyse probabilistauret analyse globale de
I'incertitude,

 Etude de Tleffet de la variabilit¢ spatiale des porétés du sol sur le
comportement des ouvrages superficiels a partidalenées expérimentales
issues d’'un site d’étude,

* Application de la méthodologie aux ouvrages supiet.

Afin de répondre a ces objectifs, des méthodes pilidtas (First Order Second
Moment (FOSM) et Second Order Second Moment (SOSpliquées au modele de
Winkler et des approches numérique et géostatistipouplage de la méthode des
éléments finis avec l'approche géostatistique) ét# utilisées pour modéliser le
comportement longitudinal des semelles filanteslet conduites enterrées lorsque les
incertitudes sur les parametres mécaniques et géques sont prises en compte dans leur
dimensionnement.

Huit modéles semi-empiriques, qui donnent la vathurcoefficient de réaction du sol,
sont étudiés en prenant en compte les incertitsdesles parametres du sol et de la
structure. Les méthodes FOSM et SOSM sont utilssgzartir de ces modeles semi-
empiriques pour déterminer le coefficient de vasratdu module de réaction du sol. Les
résultats obtenus avec la méthode FOSM pour leslkmriilantes montrent I'effet majeur
des incertitudes du module d’Young du sol, de lgdar de la semelle filante et du
coefficient de Poisson du sol sur l'incertitudecdefficient de réaction du sol. Dans le cas
des conduites enterrées en acier et en béton lesnetaes les plus influents sur
I'incertitude du module de réaction du sol sontiedule d’Young du sol, le diamétre de la
conduite et le coefficient de Poisson du sol. Lisdtion de la méthode SOSM n’apportant
pas une preécision significative par rapport a lahoée FOSM, l'utilisation unique de cette
derniere apparait suffisante pour estimer de mansatisfaisante lincertitude sur le
coefficient de variation dks. Pour chacun des modéles semi-empiriques, degssipns
simplifiées peuvent étre proposées en prenant empteol® minimum de parameétres pour
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une détermination du coefficient de variationldeCes différentes expressions peuvent
permettre aux praticiens d’estimer simplement ptdement l'incertitude du module de
réaction du sol.

Dans I'approche analytique, l'incertitude Kg obtenue en utilisant les expressions
simplifiées, est introduite dans le modéle analgige Winkler (sans prendre en compte
les variabilités spatiales des parametres du matiéleraction sol-structure). L'influence
de l'incertitude deks sur le tassement différentiel et le moment flésdmms est etudiée a
partir de l'utilisation de la méthode FOSM sur ¢dusion analytique du modele de Winkler
selon différentes conditions limites.

Les résultats obtenus avec la méthode FOSM powseleslles filantes montrent que les
incertitudes du tassement différentiel et du monfithissant sont trés différentes en
fonction de la longueur de la semelle filante et denditions limites considérées. Pour le
tassement différentiel et le moment fléchissang tésultats obtenus concernant la
probabilité de I'état limite de service montreimfortance du choix du modéle semi-
empirique et des conditions limites. Lorsque le=ititudes sur les valeurs du coefficient
de réaction du sol sont importantes, la probabiddé&espondant a I'état limite de service
peut étre dépassée méme pour des sols possédanirks caractéristiques mécaniques.

Les résultats obtenus dans le cas des conduitesésg (en acier et en béton) montrent,
dans un premier temps, que les incertitudes duerneast différentiel et du moment
flechissant sont trés différentes en fonction detegueur de la zone de faibles propriétés
meécaniques du sol se situant en dessous de laitordterrée et de la valeur du module
d’Young du sol. Dans un deuxieme temps, les inceldis du tassement différentiel et du
moment fléchissant sont plus influencées par lliticele de la longueur de la zone de
faibles propriétés mécaniques du sol que par Ititade du module de réaction du sol.
Cela met en évidence que cette longueur de laderables propriétés mécaniques du sol
est aussi importante a caractériser que les ptéprgropres du sol lui-méme. Ceci montre
tout l'intérét de réaliser une bonne reconnaissameesol pour estimer au mieux la
longueur d’'une zone de faibles propriétés mécasiqlie sol présente sur un site de
construction.

Dans le cas ou le choix d'un modéle semi-empirigpproprié pour I'estimation de
I'incertitude surks est difficile, une approche globale de l'incerdi¢uest proposée. Cette

approche inclue les incertitudes de chaque mo@ee-empirique et peut étre utilisée pour
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vérifier si les valeurs maximales du tassementérgfitiel ou du moment fléchissant
excedent les valeurs de I'état limite de service.

Une comparaison de la méthode FOSM avec des siondad partir de la méthode de
Monte Carlo a été réalisée en vue de valider ladhatet FOSM pour ce genre d’analyse.
On montre que cette méthode est bien adaptéewald’ée ce type probleme et qu’elle
pallie certains des défauts de la méthode de MOath.

Dans 'approche analytique proposée, la variabdgatiale du module d’Young du sol
n'a pas été prise en compte. Afin de prendre enpt@rette variabilité, il est proposé de
coupler la méthode des éléments finis avec I'agprageostatistique. Cette application a
été réalisée a partir de mesures faites sur unréiékede 25000 mpour lequel nous
disposions de 12 forages pressiomeétriques (dorirfamaleurs de module pressiométrique)
et de 272 valeurs de résistivité électrique dulsed. 12 valeurs de module pressiométrique
n'étant pas suffisantes en nombre pour obtenir carte satisfaisante de ce paramétre,
I'utilisation de la méthode de cokrigeage colodles été employée afin d'utiliser les
informations géophysiques pour I'estimation du meddlu sol (une relation physique
existant entre résistivité et module du sol) s grille a maille 10*10 m2. Cette taille de
maille étant trop grande pour une modélisation ér@mfinis d’une structure comme une
fondation, des simulations conditionnelles ont éfi@ctuées afin d’obtenir n cartes de
module (pour un méme modele de structuration dpati@ec une maille de 0,5*0,5 m2. A
partir de ces réalisations, I'étude du comportentglentrois semelles filantes (longueur de
dix metres) et d’'une conduite enterrée (longueurcelet metres) localisées sur le site
d’étude a été conduite par la méthode des élénfamngsafin d’obtenir les tassements
différentiels et les moments fléchissants correspoted pour les n simulations
conditionnelles. Le post-traitement statistigue desultats permet d’obtenir des
probabilités d’occurrence et de prendre des dédsmumnt au dimensionnement des
structures.

Une comparaison des résultats obtenus par ces &ggrocimérique et géostatistique
avec I'approche analytique est ensuite réalisée. labntre I'influence importante de la
variabilité spatiale du module du sol sur l'incertie du tassement différentiel et du
moment fléchissant pour des semelles filantes®tdeduites enterrées.

L’ensemble des résultats montre que le comportenmmgitudinal des ouvrages

superficiels comme des semelles filantes et dedwitas enterrées nécessiterait d'étre pris
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Résumé étendu en francgais

en compte dans leur dimensionnement dés lors querdsence de zones de faibles
propriétés mécaniqgues ou une variabilité spatiake mepriétés mécaniques des sols de

fondations est supposée sur un site de construction
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Introduction

Soil exhibits spatial heterogeneities resultingnfréhe history of its deposition and
aggregation processes, which occur in differensyay and chemical environments. This
inherent or natural variability can be very impottan the case of superficial geotechnical
works inducing differential settlements, which chave harmful consequences on the
structure. For example in individual houses withtoarous spread footings, damage can
range from sticking doors and hairline plaster ksado complete destruction. In the case of
continuous buried steel or concrete pipes, suchseager networks or oil and gas
transmission networks, these differential settlesean induce cracking and consequently
liquid leakages which, in their turn, by modifyitlge characteristics of the surrounding
medium, can induce additional settlements. Moreowden there is a crack in a buried
waste water pipe, there is a tendency for the waitside the pipe (underground water) to
enter. This will then be added to waste water,gasing the cost of treatment processes.

In a conventional design, geotechnical systemsakvays designed on the basis of the
deterministic approaches and modeled in a crossoseto represent the transverse
behavior of the structural element (spread footiraggl buried pipes), where the
heterogeneity of soil in their longitudinal diremts is usually not considered. These effects
need to be taken into account and studied in dadperform an accurate analysis leading
to a correct design, which is the main topic o$ thork.

In this thesis we are interested in studying thituémce of soil heterogeneity and
uncertainties in structural parameters on the lodgial behavior of these superficial
geotechnical designs (continuous spread footingcamdinuous buried steel or concrete
pipes). We will go on to determine how uncertamtie the mechanical properties of soil
and structure are propagated on the uncertainfigbfferential settlement and bending
moment.

First, a constitutive model has to be chosen. fwestions need to be answered to
justify this choice, particularly for geomaterials:

1- When considering the particular class of engingeproblem under study, is the
model accurate enough in reproducing mechanica\net?

2- Using the available experimental data, is itgiae to carry out a satisfactory
calibration of the material parameters of the m@del
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To answer the first question a systematic studydifferent classes of engineering
problems would be required. It is not easy to Badh studies in the technical literature. In
recent years some analyses have been performedento assess the capability of many
classes of constitutive models to predict, for eplnexact ground movements around
excavations.

The second question is much more difficult. Expenial tests in situ or in a laboratory
are expensive; therefore, it is often difficultfiod the reliable measurements or test data
that would be used to carry out a proper identiidcaof the constitutive parameters using
the FEM and a massive soil model such as Mohr-Qollor Cam-Clay.

Because of these complex constitutive models arel diificulty of obtaining
experimental data, Winkler's analytical approachused to model the soil-structure
interaction, instead of modeling the subsoil in il complexity, which seems, from a
practical point of view, to be appropriate for sdpeal geotechnical designs. Thanks to its
simplicity and with the advantage of taking intocagnt only one parameter (the
coefficient of subgrade reaction) to characterizste soil and structure responses under
loading, the Winkler model has been extensivelyduse solve many soil-structure
interaction problems and has given satisfactorylt@dor many practical problems. The
soil reaction modulus is not an intrinsic parametesoil; it depends on the mechanical
parameters of soil and mechanical and geometraranpeters of the structure. All of these
parameters are uncertain and represent the majaresofiuncertainty in the output model.

The specific objectives of our research are as\il

- model the soil-structure interaction along the iamdjnal direction of the superficial
geotechnical systems by taking into account theedamties of soil and structure
parameters in order to estimate the uncertaintiffarential settlement and bending
moment,

- propose a simplified approach for uncertainty asialy

- understand the effects of inherent random soiligip@ariability on the behavior of

these geotechnical systems using data from a o@atrtiction site.

In order to satisfy these objectives, we use pribisib methods (FOSM, SOSM) with
Winkler's model and a numerical approach that cesiphe finite element method with
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geostatistical methods in order to model the lamiital behavior of continuous spread
footings and buried pipes when uncertainties oflaatcal and geometrical parameters are
taken into account in their design.

Chapter 1 presents the main concepts of uncesraiirii geotechnical designs. In order
to prevent any misunderstanding or confusion infotlewing parts of this thesis, the main
modeling method of spatial variability (basic randeariables, random field theory and
geostatistics) will be precisely defined to prepfanethe use of geostatistics in chapter 4.
The tools and techniques of probabilistic methogleduin geotechnical engineering for
propagating uncertainty will be introduced. We wnliroduce the soil-structure interaction
concept and the different analytical models th&eté& into account along with their
advantages and drawbacks. Finally, we will desctfiteesuperficial geotechnical systems
studied in this thesis.

In Chapter 2, the modulus of subgrade readtioand its uncertainty are explained in
detail. The chapter begins by explaining the moslutd soil reaction and suggested
expressions or semi-empirical models used to déterthis modulus as a function of the
studied applications. After explaining the natunel arigin of uncertainties, the first order
(FOSM) and the second order (SOSM) of the Tayloieseare developed in order to
estimate the influence of soil and structure patarmseon the coefficient of variation kf
Finally, we propose simplified equations that coteptne coefficients of variation &t in
the case of spread footings and buried pipes. Tsiegglified models will be used in the
following chapters.

In Chapter 3, we discuss the effect of the unagganf the subgrade reaction modulus
and the existence of a low stiffness zone on thewer of the superficial geotechnical
works. Reliability analyses for a continuous spréaating and a buried steel or concrete
pipe are presented in order to avoid exceedingéneiceability limit state. A simplified
uncertainty analysis is proposed. Finally, a conspar between FOSM and Monte Carlo
analysis results is performed to validate the dsbeoFOSM method.

Chapter 4 focuses on the application of this matlagy to a real construction site.
Settlements, bending moments and their uncertainiee obtained by geostatistical
approaches coupled with the finite element methaarder to perform a statistical analysis
that describes the behavior of superficial geote@dindesigns. Finally a comparison

between analytical and numerical results for thegperficial geotechnical systems is
3
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performed to show that the spatial variability ofl properties adds a significant part of
uncertainty in differential settlements and bendmngments. A general conclusion and

future research directions are provided in Chapter
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Chapter 1

1. Dealing with uncertainties in geotechnical designs

1.1. Uncertainties in geotechnical designs

Most of the parameters used in geotechnical amslysleysical and soil mechanical
properties, are uncertain. Therefore an essenitaidw aspect of geotechnical engineering
is to deal with uncertainty. In fact, the uncerti@is can usually be divided into two groups:
aleatory or active uncertainty and epistemic orspasuncertaintyLacasseand Nadim,
1996; Uzielli et al., 2008)Aleatory uncertainty mainly includes natural ahility of a
property (spatial and temporal variability). The thedge of experts cannot be expected to
reduce this uncertainty although their knowledgey ne useful in quantifying the
uncertainty. Thus, this type of uncertainty is somes referred to as irreducible
uncertainty. Epistemic uncertainty consists ofistigal uncertainty, model uncertainty and
measurement uncertainty (possible differences ltwihe measured and true, but
unknown, values of the relevant parameter), which all classified as a type of
uncertainty associated with limited, insufficiemtimprecise knowledge. This uncertainty
can, in theory, be reduced by obtaining additiomébrmation on the process to be
modeled on the measured variable or by increasiaghumber of data in order to reduce
the statistical uncertainty. Epistemic uncertaileyds to unawareness or ignorance of the
potential risks for the foreseen constructiffsoon and Kulhawy, 1999a, 1999b; Baecher
and Christian, 2003)

Engineering judgment and reliance on factors odtydiave been the conventional tools
for dealing with soil heterogeneity in geotechnigahctice and then the geotechnical
engineer tries to deal with the uncertainties by osimgy reasonably conservative
parameters for the deterministic stability evalortiGriffiths & Fenton, 2007) However
in this approaches, variability is not addresseglieily as in uncertainty-based
approaches.

Recent theoretical developments and advances irbapiiestic methods and
computational methods have improved uncertaintylyaisain geotechnical and related
fields. The characterization and reduction of utaieties is still an area where only few
researchers have worked until a few years ago, thargh as early as982 Einstein and

Baecheistated the following words of wisdom:
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In thinking about sources of uncertainty in engnag geology, one is left with the fact
that uncertainty is inevitable. One attempts touesl it as much as possible, but it must
ultimately be faced. It is a well recognized partii&f for the engineer. The question is not
whether to deal with uncertainty, but how?

Combining actual data, knowledge about the qualitythe data, knowledge on the
geology and, most importantly, engineering judgmeeip the engineer to evaluate the
uncertainty.

The geotechnical engineer processes testing dataokiain parameters for
characterization and design. In geotechnical wotkere are lack of information in
guantity and accuracy. Geomaterials, moreovernpaterally complex and variable at all
scales, ranging from the microstructure to regiosadle. This lack of uniformity and
information must be considered in parameterizing modeling. Furthermore the level of
explicitness with which this occurs depends up@nsitlected approach.

In the technical literature and geotechnical engjiimg is no exception- the terms
variability and uncertainty are often employed iob@ngeably. Variability is an
observable manifestation of heterogeneity of onemare physical parameters and/or
processes. Uncertainty pertains to the modelez sfdtnowledge and strategy, and reflects
the decision to recognize and address the obsevegibility in a qualitative or
quantitative manngiHuang and An-bin, 2008)

Deterministic methods lie at the basis of virtualyery technological science, and
geotechnical engineering doesn’t make exceptiorwdy¥er, the importance of explicitly
modeling and assessing the variability of geotemdinparameters (i.e. quantifying,
processing and reporting the associated uncerjaiistyincreasingly recognized in
geotechnical design and characterization. Mostut\riary design codes operate in an
uncertainty-based perspective, requiring expliciargification not only of most suitable
values (usually termed characteristic or nominiadik, also of the level of uncertainty and
confidence in the selection of such values.

The progressive shift towards an uncertainty-bgsgdpective may be motivated by the
fact that this may be more convenient in termsabéty, performance and costs. Providing
more complete and realistic information regarding level of risk associated with design
will be possible by the explicit parameterizatiohumcertainty. Addressing uncertainty

does not in itself increase the level of safety, dlows the engineer to rationally calibrate

8



Dealing with uncertainties in geotechnical designs

his decisions on desired or required reliabilityperformance level of geotechnical system.
Being able to select the performance level andaedwndesired conservatism, in turn, is
generally beneficial in the economic sense. Thalte®f uncertainty-based analyses can
be used confidently for engineering purpose onlgréceded, accompanied and followed
by geotechnical expertise and expert judgment.

The techniques commonly used to analyze geotedhdi&@®, and to estimate its
uncertainties, include traditional probabilistic armsatistical methods(Einstein and
Baecher, 1983; Emeriault et al., 2004; Dubost et2007; Villavicencio et al., 2011)
spatial statistical methods, such as that basecmiom field theoryVanmarcke, 1980,
1983) and geostatistic&hiles and Delfiner, 1999; Mendes and Lorandi,&0@arache
et al., 2009a, Bourges et al., 2018umerous finite element studies have been caoigd
in understanding the effect of uncertainty on theitity of geotechnical systems. For
examplefFenton et al. (2005) and Zevgolis and Bourdeaupanalyzed the reliability of
a retaining wallElachachi et al. (2004, 2011, 2012) and Buco et28l06, 2008a, 2008b)
studied soil-pipe interactionBark et al. (2005) and Srivastava et(2010)studied rock
and soil slope stability respectiveljiandou and Breysse (200€arried out reliability
analysis of a piled raftbubost et al. (2011analyzed soil-pile interaction. Foundation
settlements on spatially random soil have been etiudy Fentonand Griffiths (2002) and
Srivastava and Sivakumar Babu (20090te that in these numerical studies, mostly the
variability in the transverse direction of the stire elements is considered.

Analytical approaches can also be used to studegffieet of uncertainty on the stability
of geotechnical systengslouy et al., 2005; Deck and Singh, 2012)

This chapter provides general information to gqugrdind integrate the uncertainties
into the geotechnical designs concerning the modedif soil properties: basic random
variables, random field theory and geostatistits,host commonly probabilistic methods
in geotechnical engineering: Taylor series apprpoitdnte Carlo simulation and reliability
based design. Finally, soil-structure interactiod ahosen superficial geotechnical designs

are introduced.
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1.2. Modeling of soil properties

Soils are geological materials formed by weathepngcesses and, save for residual
soils, transported by physical means to their prekxations. They have been subject to
various stresses, pore fluids, and physical andnats changes. Thus, it is hardly
surprising that the physical properties of soilsyverom place to place within resulting
deposits. The scatter observed in soil data corars fbom this natural spatial variability
and from errors in testing. Each of these exhibitBstinct statistical signature, which can
be used to draw conclusions about the charactarsoil deposit and about the quality of
testing. In the following, we consider different apgches to modeling of soil properties:

basic random variables, random field theory and@gistical approaches.

1.2.1. Basic random variables

Here, we will introduce a tool that is useful farakuating the probability of an event:
the random variable. First, we will provide gramiiand numerical methods to represent
understand and quantify variability. Next, we witesent the random variable as a
theoretical tool for modeling variability. Finallgommon models for continuous random

variables are breifly introduced.

1.2.1.1.Graphical analysis of variability

Variability often leads to uncertainty. In the foNing, we will briefly present five
graphical methods for analyzing variability: histagns, frequency plots, frequency density
plots and cumulative frequency plots.

Histogram: A histogram is obtained by dividing ttata range into bins, and then
counting the number of values in each bin. Theolgistm conveys important information
about variability in the data set. It shows thegerof the data, the most frequently
occurring values, and the amount of scatter allwutrtiddle values in the set.

Frequency plot: The frequency of occurrence in dastogram interval is obtained by
dividing the number of occurrences by the total hanmof data points. A bar-chart plot of
the frequency of occurrence in each interval idedah frequency plot. Note that the
histogram and frequency plots have the same shapeanvey the same information. The
frequency plot is simply a normalized version o thistogram. Because it is hormalized,

the frequency plot is useful in comparing differdata sets.

10
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Frequency density plot: Another plot related to kiitogram is the frequency density
plot. The frequency density is obtained by dividthg interval frequencies by the interval
widths. A bar-chart plot of the frequency densgycalled the frequency density plot. The
objective in dividing the frequency by the interwaidth is to normalize the histogram,
further the area below the frequency density phbtdined by multiplying the bar heights
by their widths) is equal to 100%. This normaliaatiwill be useful in fitting theoretical
random variable models to the data.

Cumulative frequency plot: The cumulative frequemtgt is the final graphical tool
that we present for variability analysis. Cumulativequency is the frequency of data
points that have values less than or equal to pperubound of an interval in the frequency
plot. The cumulative frequency is obtained by sungnip (or accumulating) the interval
frequencies for all intervals below the upper boukglot of cumulative frequency versus

the upper bound is called the cumulative frequesiot;

1.2.1.2.Quantitative Analysis of Variability

In addition to graphical analyses, the variabiiitya data set can also be analyzed
quantitatively. The statistics of a data set (ddesown as the sample statistics where the
data set is the sample) provide quantitative measaf variability. Features of interest
include the central tendency of the data, dispersioscatter in the data, skewness and

kurtosis in the data and correlation or dependéeteeen data points.

e Central Tendency

The most common measure for the center of a dats $ke average value, which is

also called the sample mean. The sample nseabtained as follows (Equation 1-1):

n

Hx :ﬁ;)(i Equation 1-1
wherelly is the sample meagis each data value, ands the total number of data points.

« Dispersion or Scatter

The amount of scatter in a data set is most easgéligsured by the sample range. The
maximum value in the data set minus the minimunueras defined as sample range. A

11
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measure of dispersion around the mean value ofd#te set is defined as the sample
variance. The sample varianseobtained as follows (Equation 1-2):

o 1 Gy e
Ux_n——lz(xi :Ux) Equation 1-2

where Jf is the sample variance. The sample variance istbeage of the square of the

distance between individual data points and thepgammean. Its value will always be
greater than or equal to zero.

The square root of the sample variance is defiretha sample standard deviation
while the sample coefficient of variati€®€V is the standard deviation divided by the mean
value (Equation 1-3):

U Equation 1-3

Since the standard deviation has the same uniteeamean value, the coefficient of

variation is a dimensionless measure of dispersion.

+ Skewness and Kurtosis

Skewness is a measure of distributional asymmé&toypceptually, skewness describes
which side of a distribution has a longer tail. ldewness coefficient of zero means that the
data values are distributed symmetrically aboutrttean value (distribution is perfectly
Gaussian). A positive skewness coefficient indisateat the data are skewed about the
mean to the right (toward larger values) while gatize skewness coefficient indicates
that the data are skewed to the left (toward smadikies).

The term kurtosis refers to the degree to whicluecis peaked or flat. A Kurtosis
coefficient for the Gaussian distribution is equzathree.

Skewness and kurtosis will be used for the secoddrsecond moment (SOSM) in the

ensuing sections.

1.2.1.3.Theoretical random variable models
A random variable is a mathematical model to regwesa quantity that varies.

Specifically, a random variable model describespbssible values that the quantity can

12
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take on and the respective probabilities for edcthese values. Since the frequency plot
for a data set indicates the probability of différealues occurring, a random variable
model is just a mathematical representation ofitfigmation contained in a frequency
plot.

For two reasons a theoretical random variable inisdeeeded to describe a data set:
first, a data set is limited in size and second,mast engineering problems we are
interested in combinations of variable quantitiesr example, a pile foundation will
undergo large displacements if the applied loaceeds the pile capacity. We need to
consider variability both in the load and the catyat design this foundation. Random
variable models provide a mathematical framework i@rking with and combining
multiple quantities that vary.

Discrete and continuous models for random variahlesdiscussed in the following

sections.

+ Discrete random variables

Discrete random variables can only take on discreliges within the sample space. The
probability mass function (PMF) for a discrete ramdwariable X) is denoted by the

following mathematical form for notational conveme:

P[X - X] = Px (X) Equation 1-4

The cumulative distribution function (CDF) descshbthe probability that the random
variable takes on a value less than or equal tovengvalue. It is obtained as follows
(Equation 1-5):

FX(X)=P[XSX]= pr(xi) ,
all x <x Equation 1-5

The mean value is an important tool when working wignmdom variables. The
expectation of a quantity is the weighted averafy¢hat quantity, where the possible
values are weighted by their corresponding proliedsilof occurrence. For example, the
expected value of, denotecE[X], is given by the following (Equation 1-6):

13
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E[X]: Z)ﬁpx(xi)

allx Equation 1-6

Note that the mean of is equal to its expected value E[X]. The expesigide of any
function of X, denotedy(X), can be obtained similarly (Equation 1-7):

E[g(X)]= X a(x Jox (%)

all x Equation 1-7

Similarly, the variance is obtained as follows (Etjon 1-8):

0>2<:Z(Xi_ﬂx)2-px(xi) .
all ; Equation 1-8

whereoy is the standard deviation &f

+ Continuous random variables

Continuous random variables can take on any valtlenithe sample space. Total unit
weight is an example of a continuous random vagiaitlcan take on any value greater
than zero. The probability density function (PDIBy fa continuous random variable
describes its probability distribution.

While the PDF is similar to the PMF in the informoat that it conveys, there is
significant difference in these two functions. Forcontinuous random variable, there is
infinite number of possible values within the saengipace. Hence, unlike a discrete
random variable, it is not possible to define thebability of the event thaX is equal to a
given value x, since this probability is vanishingimall. Instead, we can define the
probability thatX is within a very small interval. This probability proportional to the
PDF.

The cumulative distribution function (CDF) for antmuous variable describes the
probability that the variable takes on a value ld&m or equal to a given value. It is

obtained as follows (Equation 1-9):

14
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Fy (%)= P[X = X] = j fx(€)d¢ Equation 1-9

Note that the CDF is the area under the PDF. Sime@robability of the sample space
is equal to 1.0, the area under the PDF must etjial Recall that the area under a
frequency density plot for a data set is also etpualO. Therefore, theoretical PDFs can be
fit to model a data set by overlaying a theoretRaF on top of a frequency density plot.

The expectation for a continuous random variabléeiined in the same way as for a
discrete random variable; it is a weighted averageyhich values are weighted by their
likelihood. However, since there are an infinitenier of possible values in the sample
space, the process of summing up values weightetthdiy likelihoods is an integration
(Equation 1-10):

E[X] - _J;XfX(X)dX Equation 1-10

Similarly, variance, skewness and kurtosis for atiooous random variable are found

as follows:

% = E[(X ~ Hx )2]: j (%=t )” £ (x)ax Equation 1-11
eo(x—,u )® . (x)dx

Skewness E[(X _S/JX )3] = —[o ’ . ’ Equation 1-12

Ox Ox

Kurtosis= E[(X _4'“><) =@ Equation 1-13
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1.2.1.4.Common models for continuous random variables

Different probability distribution models such asrmal, lognormal, beta, uniform,
triangular, exponential, Weibull and gamma havenbe®wlemented by different authors to
curve fit the results of field data. This impliést these distributions are probably site and
parameter specific and that there is no generitriliision pattern for soil properties.
Where observations are scarce or absent, parardettitbutions can be assumed from the
literature. Studies have estimated coefficientgasfation and probability density functions
of soil propertiegsLumb 1966; Chowdhury 1984; Harr 1987; Kulhawy letl&®91; Lacasse
and Nadim 1996)Based on several studies reported in the litezatnil properties can
follow different probability distribution function@PDF’s) for different types of soils and
sites. Furthermore in the reliability analysis, tin@ut soil parameters are modeled as
continuous random variables defined by their prdiiglilensity functions (PDFs) and the
parameters of distributions.

Care should be exercised, however, to ensureltbaninimum and maximum values of
the selected distribution are consistent with thgsmal limits of the parameter being
modeled. For example, shear strength parameterddshot take negative values. If the
selected distribution implies negative values, ttiendistribution is truncated at a practical
minimum threshold.

Jimenez et al. (2009ave investigated the effects of using differgpies of statistical
distributions (lognormal, gamma, and beta) to otter&ze the variability of Young's
modulus of soils in random finite element analysésshallow foundation settlement.
Results indicated the type of distribution consedefor characterization of the random
field of Young’s modulus could have a significamipact on computed settlement results.

Usually, in geotechnical practice, the input soirgmaeters are either modeled as
normally distributed or log-normally distributed ¢muous random variablésaecher and
Christian, 2003) The parameters of the normal and lognormal pndibaldlistribution
function (PDF) are directly related to the unbiasstimates of statistical moments i.e.
sample mean and variance of the measured dafBheste two distributions will be used in

this study. They are briefly discussed in thisdaling.
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* Normal Distribution

The normal distribution (also known as the Gaussiasiribution) is the classic bell-
shaped curve that arises frequently in data sdts. probability density function of a

normal random variable is defined by Equation 1-14:

ﬂ[x-ﬁfx]z

fX(X):aX—\l/ZTeZ 7 — 00 (X( +00 Equation 1-14

In which px is mean value aney is standard deviation. The normal distribution has
several interesting properties. First, it is a sytmal distribution (skewness is zero for a
normal distribution). Secondly, its tails decayan exponential manner. There is a 68%
chance that a normal variable will be within +1nstard deviation from the mean value, a
95% chance that it will be withipx £ 20x, and a 99.7% chance that it will be witlig +
3ox. Therefore, it is very unlikely (less than 1% ob@nto observe a value outside of 3
standard deviations from the mean value. The twaspater normal distribution has
theoretically a range fromeo- to +0. Since geotechnical parameters should not take
negative values, a normal distribution truncateldwezero is a more suitable assumption.
Finally, a linear function of a normally distribdteariable also has a normal distribution.
It can be shown that a linear combination of normaidom variables, have normal
distributions. If Y=aX+b and X has a normal distribution, thevi also has a normal

distribution with meamy = aux + b and standard deviatio® =aoy.

e Lognormal Distribution

The lognormal distribution has often been suggestdigu of the normal distribution,
which is in engineering science widely used for thescription of random material
parameters. Since the lognormal distribution rarggsveen zero and infinity, skewed to
the low range, and is therefore particularly suii@gparameters that cannot take negative
values (Limpert et al. 2001) The probability density function of a lognormandom
variable is defined by assuming the natural logaribf the random variable as normally
distributed (Equation 1-15):
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2
-1 mx—mnxj
1 ez [ Iinx

fylX)=———— x=0 i -
x( ) XUmx\/ZT Equation 1-15

Lognormal distribution has simple relationship witbrmal distribution(Fenton and
Griffiths 2003) Once the mean and standard deviation are expraaséeerms of the
dimensionless coefficient of variatiol©y), defined asCV=ox/px then the distribution

parametersy,x andanx can be obtained from the mean vaki@nd the variancer; as

(Equation 1-16):

The distribution parameteps,x and J,% x are respectively equivalent to the mean value

and variance of the logarithmised observations,ciwhare assumed to be normally
distributed.

The lognormal distribution has been widely employtedmodel variations of the
Young's modulus of soilsPaice et al. 1996\our et al. 2002Fenton et al. 2005)This
choice is motivated by the fact that the elastiadutos is a positive parameter, and the
lognormal distribution enables analyzing its lavgeability.

1.2.2. Random field theory and geostatistics

Generally, four mathematical techniques are usethadel the spatial variability of
geotechnical parameters. These are (i) regressialysas; (i) random field theory; (iii)
geostatistics; and (iv) fractal theory. Regressamalysis offers limited application to
spatial variability models; primarily because igleets the fact that soil properties exhibit
autocorrelation, that is, neighbouring samplesaaidi stronger correlation than distant
ones.Jaksa and Fenton (200demonstrated that fractal, or self-similar, bebaviis
exhibited by some soils, but is generally absennhost. As a result, soil profiles can be
well modelled stochastically using a finite-scaterelation structure, such as the Markov
correlation function, which is exponentially decayi with separation distance.
Consequently, random field theory and geostatisios most often applied to the

modelling of the spatial variability of soil profs. These approaches facilitate
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incorporation of measurement results obtained avishadl locations within the area of
interest and it is these that will apply in theganet study. These are each treated briefly

below.

1.2.2.1.Random field theory
Random field theory is an extension of time seapalysis(Vanmarke, 1983; Jaksa,

1995; Brockwell and Davis, 1987)n geotechnical engineering to study the spatial
variability of geomaterials, the time domain is es@d by the domain distance.

Random field theory is important for two reasdinst, it provides powerful statistical
results which can be used to draw inferences frild fobservations and plan spatial
sampling strategies; secondly, it provides a vehfol incorporating spatial variation in
engineering and reliability models. Random fieldattyeis part of the larger subject of
stochastic processes, of which we will only toudmall part. For more detailed treatment,
seeAdler (1981), Christakos (1992, 2000), Christakosl &lristopoulos (1998), Parzen
(1964), or Vanmarcke (1983)

Let X denotes a soil variable such as the soil strewgjtiin a soil volumeX exhibits
natural variability and therefore varies from pdimtpoint within the soil volumex is said
to form a random field over the soil volume. Theunal variability from point to point
within a soil volume is a result of the naturalrf@tion of soil in different depositional
environments. This variation can exist even in a@pidy homogeneous soil units.

The autocorrelation function fof is defined as the coefficient of correlation begwe
the values o in two points located a distanceapart within the soil volume (Equation
1-17)

ofr)= CoJX(9),X(s)]

Var[x] Equation 1-17

wheres and s’ are the location coordinates of the two poimts; |s - S| denotes the
distance between therﬁZO\{X(s),X(s')] the covariance between two points afmir[x]

variance of a soil variabl¥. The autocorrelation function reflects the conivégtin the
soil properties and tells something about how thréatian of X from point to point is. An

autocorrelation function typically decreases for@asing lag.
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A commonly applied model for the autocorrelation diion for soil properties is
quadratic exponential decay model (Equation 1-18):

2
—exp -1
plr)= ex{ RZJ Equation 1-18

in which R is a correlation length which expresses the schluctuation in the random

field X. Random fields of soil properties are usually afngpic. The vertical correlation

lengthRy is usually smaller than the horizontal correlatiengthRy (Det Norske Veritas

as, 2007)This difference reflects the geological procesbaslead to the formation of soil

deposits by sedimentary depositing and may amauas tnuch as an order of magnitude.
Let r have componentdx in the horizontal plane andiz in the vertical direction. For

the anisotropic case th&, # Ry, the quadratic exponential decay model can then be

expressed as (Equation 1-19):

plax,ay)=ex -[ﬁf _(QJZ

R, R, Equation 1-19

Example of quadratic exponential and exponentiadef®of autocorrelation function as
Is shown in Figure 1-1.

0.8 \

\
p(r) zj \

0.2 \--
\
0 0.5 1 1.5 2 2.5 3
r'R
Quadr. exponential Exponential

Figure 1-1: Example of autocorrelation function netelDet Norske Veritas as, 2007)
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The theoretical limit of the autocorrelation fumctias the lag approaches zero is unity
(p(r) — 1 forr — 0). However, when(r) is inferred from data, one may observe that
p(r)—Db forr -0 withO<b<1

The difference (1b) is known as nugget effect. The nugget effechimbst cases due
to measurement uncertainty, which by nature dodsembibit any spatial correlation
structure. By considering a nugget effect the gatcliexponential decay model becomes

changed to (Equation 1-20):

p(r)—b.exr{ ?} for r=0 Equation 1-20

1.2.2.2.Geostatistics

Geostatistics are proved to be reliable and wedlpteti methods when dealing with
gridding tasks and risk analysis in the geotechrecgineering(Marache et al., 2009a-
2009b) Compared to classical statistics, geostatistinathods take into account the
spatial variability of the target parameter, in @rdo provide realistic spatial estimates
together with a quantification of the associatedentainty. A lot of applications can be
found for liquefaction potential for examp{®awson and Baise, 2005; Lenz and Baise,
2007; Sitharam and Samui, 200Any geostatistical process begins with data quality
control and analysis, thus allowing an understandintpe data prior to any further step.
The variographic analysis is then performed in otdemeasure the spatial variability of
the data (continuous, discontinuous behaviouriostatity, non-stationarity...) leading to a
variogram computation. Afterwards, geostatisticaldelling such as kriging, cokriging
and simulation can be performed using this spaidbrmation (variogram). The
geostatistical methods are discussed in the fofigwections.

1.2.2.2.1. Variogram

In the geostatistical approach, such analysisadearto evaluate the dependence of a
variable in relation to itself and separated by atate distanceh. The magnitude of
dependence can be detected by means of correletiefficients and spatial covariance
that can be expressed by a function called varmogfi@he variogram is a basic graphic tool
to support geostatistical techniques which allowsangtative representation of the

variability of a regionalized phenomenon spati@tyiijbregts, 1975)
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Figure 1-2 shows a variogram with nugget effécd),(range @ and sill (Co+C). In
theory the variogram value at the origin (0O lag) i8dobe zero. If it is significantly
different from zero for lags very close to zercerththis variogram value is referred to as
the nugget. This value represents the variabiditdue to measurement errors or errors of
location of measures, either to the existence ofi@ostructure (small scale variability)
(Chiles and Delfiner, 1999)The range is a distance beyond which the varngra
essentially remains constant and reaches the dilevdresumably, autocorrelation is
essentially zero beyond the range. The sill is fts#eau the variogram reaches at the
range. If the variogram reaches a sill, the vaeablstationary (its mean and variance are
constant whatever the location in the space).dfvidwriogram keeps increasing, the variable
is non-stationary (the variable presents a treadjrfstance its mean varies regarding the

location in the space).

vt
[ ]
Sill
G+ 0 —
[ ] [ ]
()
®
[}
n «  Experimental points
Model
Nugget effect| .” /
Y I,'
G,
h 4 2 ~
- Distance (h)

Figure 1-2: Diagram of a stationary variogram

Assume two regionalized variableX, and Y, where X=Z(x) and Y=Z(x+h) with
reference to the same attribute that has been meehattwo different spatial positions:
represents a bidimensional position with componéxisy) andh is a distance lag that

separates the two spatial positions and expressedvactor (module and direction). The
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magnitude of dependence between the two regiomalizgiables,X and Y, can be
expressed by a variogram functigh) given by Equation 1-21:

A =2 E{lzx+h)-2(x] ?}= S var(z(x+)-2(x} Equation 1-21

The quantityy(h) is known as the semivariance: it is half the eigxcsquared
difference between two values. Variogram and cewvee functions are correlated through

the variance of field data?, in the form (Equation 1-22):

— 2
yh)=o*-C(h) Equation 1-22

It should be emphasized that the above variograch cavariance relations are only
valid for stationary random fields where both theam and standard deviation are
constants across the domain of interest.

Taking a sampl&(x) wherei=1, 2, ...,n; an experimental variogram is defined as half
the average squared difference between values ategdaby a given ladn as follows
(Equation 1-23):

ve(h)= L) Z:(:[ Z(x +h)-2z(x ) Equation 1-23

wherey(h) experimental variograni(h) number of pairs of measured values separated
from one another by vectofh), and Z(x%) and Z(x+h) are observed values of the
regionalised variable at different positiogsandx+h (i=1,..., n), also separated from one
another by vectorh).

Journel, 1977 (citing Bacconnet, 199%€commends a number of couples of points
more than 30 in mining practice. However, the aldé data in geotechnic generally do
not always satisfy this condition and a less nundferouples of points can be considered
(Bacconnet, 1991)Iit gives more weights to the calculated variognaomnts with many
pairs (N (h> 30), and less to others. If the number of parsary low (N (h) <10), it is
impossible to consider the point.

These recommendations lead to emphasize the inmgertaf the data structure. The

sampling distribution in plan can follow three segtaeof theoretical samplingacconnet,
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1991) Systematic sampling (Figure 1-3a) with a reguofa@sh is the only schema able to
provide a correct inference of the variogram. Sdcopattern is structured aleatory, in this
case the sample is supposed to randomly locatacc@ll of a regular mesh (Figure 1-3b).
The third pattern is pure aleatory, this case iy ¥eeoretical but can correspond to the
majority of the geotechnical investigations for whithe location of sample in fact is
guided by the geometry and nature of the probleirett (Figure 1-3c). In the same idea,

there is no guarantee that the data structuretjsc.

i
(]
1]
il
il
i
iy

a) Regular b) Structured aleatory c) Pure aleatory

Figure 1-3: Sample configurations

We can also calculate the variogram in certainifipatirections (Equation 1-24):

K)oy 3 (2l +0)-Z) e quation 1.24

whereN (h,#) = number of pairs separated lbin the directior?.

In practice it is generally a tolerance lvandé in order to have enough pairs for e&ch
and eacly. The first step in the geostatistical estimatioocpss is the building-up of the
experimental variogram. After building-up a numbéexperimental variograms, a global
mathematical model must be adjusted or fitted ideorto best represent the spatial
behavior of the variable being studied. It is intpat that such mathematical model could
express any prevalent tendency of the variogr@in relation to lag distande Once the
model adopted, any further calculations are dork thie values of the model and not with
the experimental values.

When the variogram is the same in all directiorisjsi said to be isotropic or

omnidirectional. When the variogram differs depegdon the direction, it is anisotropic;
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also range and sill are different. The variogra@ans lsave special forms. Significant spatial

variations of the random variable analysis are:

- Stepped variogram shows the existence of sevemattstes of different scales.
(Figure 1-4a)

- Periodic variogram can correspond to periodic Viamaof the variable. It is better
to verify the reality or at least physical likeliboof such phenomenon. The
presence of hole effect in a variogram shows adecyl for high values areas are

surrounded by low values areas, or vice versa (Eig4b).

y (h) Y (h)
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a) Stepped ggram b)Peliovariogarm
Figure 1-4: Different forms of variogranislagnan, 1982)

The experimental variograms must be representectdmyenient models (i.e. that
provide a positive variance of random variables). deological and geotechnical

engineering, the most common models are (FiguradebTable 1-1):

- Pure nugget

- Power model (special case: the linear model)
- Spherical model

- Gaussian model

- Exponential model

- Cubic model
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Figure 1-5: Commonly used semi-variogram modelb ®j set to zerqJaksa 1997)

Table 1-1: Commonly used mathematical functiorseafi-variogram modelgaksa 1997)

Model Mathematical functions
Pure nugget =G Co= nugget effect
3 h3
y(h)=C 52 2a3) T Co for hka, a=range
Spherical
v =C+G for h>a, GHC=sill
. -3h
Exponential y(R) =c( - e%) +C,
) _(V3nY
Gaussian YR = C(1—e < a > )+ Co
linear y(h) = ph +Co p=slope
Power y(h) = ph® + C, Owu<?2
W =c 7(E)Z_E(ﬁ)3+2(ﬁ)5_i(ﬁ)7 for h<a
Y a 4 \a 2\a 4\a
Cubic

The nugget model represents the discontinuity etigin due to small scale variation
and the pure nugget model would represent a pusgigom variable, with no spatial

correlation. The power model does not reach agfisiit and does not have a corresponding
covariance function.
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The spherical model actually reaches the spec#ikdalue at the specified range. The
exponential and Gaussian approach the sill asymptlyt with a representing the practical
range, the distance at which the semi-variancene=a@5% of the sill value.

The Gaussian model, with its parabolic behavidhatorigin, represents very smoothly
varying properties at small scales (However, usheg Gaussian model alone without a
nugget effect can lead to numerical instabilitieghe kriging process). The spherical and
exponential models exhibit linear behavior the iorigappropriate for representing
properties with a higher level of short-range Maitiy. Also we can combine several of
these models by simple summation.

In the fitting models, the first points of the vagram (smalh) are the values that have
the greatest impact in the geostatistical calouteti Whenh > (dnay/2) we ignore the

values of the variograntlgaxis the size of the study area).

1.2.2.2.2. Spatial estimation — kriging

One of the most important uses of regionalizedaddei theory is for local estimation by
the method known as kriging. The purpose of krigadgo known as Best Linear Unbiased
Estimator (BLUE), is to provide a best estimatesoil properties between known data.
Krige (1951, 1966)developed the method empirically for estimatingoants of gold in
bodies of rock from fragmentary information in ttmenes of South Africakolmogorov's
(1941) method of optimum interpolation is, however, thstfrecognizable formulation of
kriging. Kriging is a general term that embracegesal estimation procedur@srige et al.,
1989) What makes kriging unique and highly commendablapared with other methods
of estimation is that its estimates are unbiasednave minimum variances. In this sense it
is optimal. In fact kriging enables the interpadatierrors to be minimised if the variogram
model is of good quality.

Furthermore the estimation variances themselvebeastimated, and so the technique
can be used with known confidence. Kriging is asoexact interpolator, i.e. the kriged
value at a sampling point is the measured value thed the variance is zelaslett et al.
(1987) compared kriging with other techniques of interpiola and showed that kriging
was the only one that performed reliably in altamstances.

When the data have a known, constant, mean vataaghout the study area, we speak
of simple kriging, otherwise ordinary kriging. Asrasult, simple kriging can be less
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accurate than ordinary kriging, but it generallpguces a result that is "smoother" and
more aesthetically pleasing. Kriging is not an optsince data is not available over the
domain in question.

Supposing that the goal is to estimate the valuthefvariableZ at the pointx,, the
unknown value oZ(x) can be estimated from a linear combinatiom @bserved values
added to the parametgy(Journel, 1989as follows (Equation 1-25):

n
Zx, =% +;Ai xZ(x) Equation 1-25

Considering that the intended estimate should bé&asall as much as possible, which
meansElZX0 —ZXO]:O

Equation 1-26:

, it is then assumed that the two means must bal @ana so from

n n
E[ZXO] = EPO + 2 AXZ(x )} = U=l Y Axu Equation 1-26

i=1 i=1

The ordinary kriging does not require previous klealge of the mean. In this case, in
order to satisfy Equation 1-26 it is necessary. that

n
AH=0and ) A=1

i=1

Equation 1-27

Therefore, the ordinary kriging estimate is givgrBguation 1-28:

n n
%% :;Ai ><Z(xi) with ;‘Ai -1 Equation 1-28

_ Varlz, -Zy |=0 .
Journel (1989)demonstrated that error variance [ Xo Xol IS minimized to

obtain the weights; from Equation 1-29:

Zn‘/ij ><C(>g ,xj)—a:C(x,xo), to i=1,...n and Zn:)lj =1

=1 i Equation 1-29
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whereC(x, %) andC(x, %) are the covariance between poixtandx; and between points
X and xo respectively;a is the Lagrange coefficient that is needed to mise error
variance.

The theoretical development of geostatistical m#shis available from a number of
publications includingJournel and Huijbregts (1978), Journel (198and Isaaks and
Srivastava (1989)Largueche (2006%tudied estimating soil contamination with kriging
interpolation method and recommended advantagesdiaadvantages for kriging based on
personal experiences.

In practice, applications of geostatistic in gebtec remains, despite the available
softwares, complicated to use and often unempleyftsllack of sufficient data. It is most
often used in geostatistics for the establishméngemlogical and geotechnical models.

There are two scales:

- The model treats a large area, and then we findrgeapplications in risk analysis
or feasibility of the project. For example, the paijRIVIERA (Thierry et al., 2006)
proposing an underground model of the Bordeauxnudmmmunity with several
applications: geotechnical, treatment of waste maate archeology.

- The model is used to a particular site (or projet®n we find further geotechnical
applications, the estimations from the models @®dun dimensions of the work.
For example,Chiles and Blanchin, 199%@and EI Gonnouni et al., 200fused
geostatistics in tunnel projects, respectivelyttmanel under Manche and the Lyon
metro, see alsBlkadi and Huisman (2002) and Dubost et al. (2011)

Another part of the application is evaluation a ttefinition ofgeotechnical campaigns
(Bacconnet, 1991; Parsons and Frost, 2002; Khalfaod Mezghache, 2005There are
also examples of simple descriptions of the sitgabdity without precise presentation of
the study aimegAuvinet et al., 2005, Yoon et al., 2007)

1.2.2.2.3. Cokriging-collocated cokriging

The cokriging procedure is a natural extensionrigfikg when a multivariate variogram
or covariance model and multivariate data are akkel A variable of interest is cokriged
at a specific location from data about itself amdw auxiliary variables (or secondary
variables) in the neighborhood. The data set maycower all variables at all sample

locations. Depending on how the measurements oflifferent variables are scattered in
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space we distinguish between isotopic and heteimtdpta-sets. The measurements
available for different variableg(x) in a given domain may be located either at theesam
sample points or at different points for each \#eaas illustrated on Figure 1-6. The

following situations can be distinguished:

- entirely heterotopic data: the variables have bewasured on different sets of
sample points and have no sample locations in cammo

- partially heterotopic data: some variables shareessammple locations (Figure
1-6b),

- isotopy: data is available for each variable asathpling points (Figure 1-6a).

. primary data I:l secondary data

@

~ E
@ @]

o
® @

a) Isotopic datgsample sites are shared) b) Heterotopic datgsample sites may be different)

Figure 1-6: a) Isotopic and b) Partially heterotepiata,\Wackernagel (2006)

Cokriging in the heterotopic case is explainedha following. For cokriging in the

isotopic case, one can refenitackernagel (2006)
The ordinary cokriging estimator is a linear conaion of weightsw,, with data from

different variables located at sample points inrteghborhood of a poing. Each variable
is defined on a set of samples of (possibilityetiéint) sizen; and the estimator is defined
as (Equation 1-30)
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N
Zig (x0)=22vv'a Z(%g) Equation 1-30

i=la=1

where the indexo refers to a particular variable of the setNof/ariable. The number of
samplesn; depends upon the indexof the variables, so as include into the notatioa
possibility of heterotopic data.

In the framework of a joint intrinsic hypothesis wesh to estimate a particular variable of
a set ofN variables on the basis of an estimation error wklwould be nil on average. This
condition is satisfied by choosing weights whiclmsup to one for the variable of interest

and which have a zero sum for the auxiliary vagal{Equation 1-31).
LBy 1 if i=ig
;Wja =0 = {O otherwise Equation 1-31

Ordinary cokriging has no meaning when no datasglable for the variable of interest
in a given neighborhood. On the other hand, sirkglgng leans on the knowledge of the
means of the variables, so that an estimationvafrable can be calibrated without having
any data value for this variable in the cokrigingghborhood.

The simple cokriging estimator is made up of themef the variable of interesny plus

a linear combination of weights, with the residuals of the variables (Equation 1-32)

N
Z?o(xo):mioJfZZV\b(Zi(Xa)‘m) Equation 1-32
i=la=1

In cokriging problems with heterotopic data we dadistinguish between sparsely and
densely sampled auxiliary variables. In the secoaske, when an auxiliary variable is
available everywhere in the domain, particular tegin like collocated cokriging can be

of interest. This technique is explained in théofeing.
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1.2.2.2.4. Collocated cokriging

A particular heterotopic situation encountered iacgice is when we have a variable of
interest known at a few points and an auxiliaryiatde known everywhere in the domain
(or at least at all nodes of a given estimatiod gnd at the data locations of the variable of
interest). With plenty of data available for thexillary variable the question at hand is
how to choose a parsimonious neighbourhood.

Cokriging with many variables using all data eaginerates a very large linear system
to solve. This means that the choice of a subsdata around a given estimation location,
called a neighborhood, is a crucial step in cokggilt is of particular importance to know
when, due to the particular structure of a coregfiaation, the full cokriging with all data
is actually equivalent to a cokriging using a sulsselata, so that the neighborhood can be
reduced a priori and the cokriging system simgdifeezcordingly, thus reducing in the end
the numerical effort to a considerable extent. @omiag heterotopic data, we will focus
on a case that has attracted most attention rgcastlit is increasingly frequently
encountered in applications: the case of a dersmdary variable.

Figure 1-7 sketches three different neighborhoods fgiven central estimation location
(denoted by a star), primary data (denoted bydudlle) as well as three alternate subsets

of data from a secondary variable (denoted by sg)arhe neighborhood:

- (A) uses all data available for the secondary Wéeia

- (B) restricts the secondary information to the stilo$ locations where primary data
Is available as well as to the estimation location,

- (C) merely includes a sample value of the secondariable at the estimation

location.

Case (A) can be termed the full neighborhood, wbdse (C) was called a collocated
neighborhood byu et al., (1992hasthe secondary data is collocated with the estimation
location. Whereas case (B) was termed a multicatext neighborhood bghiles and
Delfiner (1999)as additionally the secondary data is also colkxtatith the primary data.

Using the full neighborhood (A) with secondary ddémse in space will easily lead to
linear dependencies for neighboring samples indblaiging system, causing it to be
singular. The size of the system can also be naaidgrichallengingVargas-Guzman and

Yeh (1999) suggest a way out of numerical difficulties by rete from a small
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neighborhood and progressively extending the neididod in the framework of what
they call a sequential cokriging.

OOO00an ® primary data
COOsO0O0O0
'DDDDDD * target point

A

DE]DEIEH:J L1 secondary data

BEEECEE

@000

®
K ®
B B C ®
) i)
_ )

Figure 1-7: Three possible neighborhoods with asgesecondary variable

With reference tXu et al., (1992)we call collocated simple cokriging a neighborhood
definition strategy in which the neighborhood oé @wxiliary variable $(%)) is arbitrarily
reduced to only one point: the estimation locatibime valueS(x%) is said to be collocated

with the target point aZ(x). The collocated simple cokriging estimator is (BEgqual-33):
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Z (x)=my + v (S(x0) = M)+ Y Wy (Z(xg )= My)

a=1

Equation 1-33

The collocated neighborhood used for simple cokggivould yield a trivial result if
applied in ordinary cokriging: because of the comst that the weights of the auxiliary
variable should sum up to zero, the weightis zero and the auxiliary variable does not
come into play.

An ordinary cokriging needs to use more data togrethth the values(x). If the values
S(x,) that are collocated with the sample points ofrtten variable are also included we
get a multicollocated neighborhood. The collocabedinary cokriging estimator is then
(Equation 1-34)

Z (%)= wo S(x0) + D (Wf Z(xg )+ W S(x,))

= Equation 1-34

One can start the study of non-stationary methoitls & multivariate method that is
applicable to auxiliary variables that are densimpled over the whole domain and
related to the principal variable. Such auxiliagyigbles can be incorporated into a kriging
system as external drift functions. More detailetbimation can be found elsewhere
(Wackernagel, 2006)

1.2.2.2.5. Simulation

Kriging estimates the average value of a paranveterminimal error at a point where
we did not measure. Generally, the geostatistmaallus to model a spatially continuous
field values with conserving the measured valugs &2 random function would simulate a
value at a known point. It can be useful to sinaldifferent regionalized fields that
represent several possible cases, but not bettektiging.

There are two kind of simulation: conditional anghrconditional simulations. In the
event that data is available at the site being kitad, conditional simulation should be
employed to ensure that the random field realizatimatch the data at the data locations

exactly. Furthermore all realizations pass throtighknown data but are random between
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the data sites. An unconditional simulation ignotieis additional information and will
lead to higher variability in the response quaiti

There are many simulation methods that can be gaupgo Gaussian methods (matrix
decomposition method, sequential methods, frequeacyoregressive, turning bands
method, etc.) and non-Gaussian (annealing simuakgtiosing methods in the probability
field, etc.).Chiles and Delfine(1999)gave a fairly complete description of these methods
Examples of the simulation algorithms used in pcacare the sequential Gaussian, the
sequential indicator simulation&)eutsch, 2002)and the local average subdivision
technique Fenton and Vanmarcke 1990)

The sequential Gaussian simulation (SGS) is thet mosimonly used technique,
especially in the field of petroleum engineeringheTbasic idea of this technique is
illustrated in Figure 1-8. Input random variablese dransformed into standardized
normally distributed random variables with zero meand unit variances for which
different variogram characteristics are assessaéwhul&ted values of a standardized
variable, Z, can be determined at any node of the simulatiod gccording to the

relationship (Equation 1-35):

Z4(%)=Z" (%) + R(x) Equation 1-35

whereZy(xo) is the simulated value of the varialdeat locationxy, Z*( Xo) is the krigged
estimate of the variablé at locationxy; andR(X) is a random residual.

The random residudk () follows a normal distribution with zero mean andasiance
equal to the krigging variand®eutsch, 2002)A different value ofR(x) is obtained in
each realization using Monte Carlo Simulation reasglin a variation of the simulated
value of the random variabl& () from one realization to another). A random path is
followed to assess the value of the standardizedoma variable at each node of the
numerical simulation grid. The simulated valuesasrthe analysis domain are then back
transformed to their original probability distrilban. By repeating the above procedure,
several realizations of soil spatial variation asrtie analysis domain can be obtained.

An example of simulations cited iyhiles & Delfiner (1999jand Marcotte (2003)is
the case a submarine cable which must be depoaitéde bottom and one seeks to
estimate the best lengthlfaro, 1979) The estimated length by kriging (104.2 km) isles
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than the real length (110 km). This is due to therage of the kriging estimation (Figure
1-9a). Diagrams b and c in Figure 1-9 show two edamof simulation, and diagrams d
for 1000 simulations. The estimated values by satnah are closer to the real length; but
some simulated points are locally far away fromlitgaThe 95% confidence interval
obtained for the simulations is [108.8, 113.5]. kKnging value which is small, because of
smoothing effect, is not in the confidence intervAhother application in the same
example is the search for possible natural slopesmated values by kriging are lower
than observed values. The simulations allow bettedeling of possible anomalies,
without being more accurate compare to the redilprdy using more simulation, it will
be accurate compare to the real profile.
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Transform input random variable into a standardizeanally distributed
(Gaussian) random variable of zero mean and urignee.

|

Assess variogram characteristics for the standaddiariable.

|

Implement Monte Carlo simulation to estimate a satad value of the
standardized variable at a certain node in thelaion grid.

|

Choose a random path through all nodes of the atioul grid

|

For each node, search for nearby simulated nodkasmthem to
estimate a new simulated value of the random viariab

|

Check that new simulated values of the random bbrisatisfy
variogram characteristics.

|

Back-transform all simulated values from its staddaed form to its original
probability distribution.

Figure 1-8: The basic idea of the sequential GaarssimulationElkateb et al., 2003)
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Figure 1-9: Cable length estimation by using coiodial simulationgMarcotte, 2003)

1.2.2.3.Concept of correlation length: different related agproaches
The autocorrelation function has been widely usmdirfvestigating spatial variability in
the context of geotechnical engineeriifitpecher and Christian, 2003; Jaksa et al., 1997;
Phoon and Kulhawy, 1999 a, b and Sivakumar et2806) For the spatial variability
modeling, a parameter i.e. an autocorrelation d¢gdy) is defined as the distance within
which the soil property exhibits relatively stroogrrelation. To obtain the numeric value
of autocorrelation distancevf, it is taken as the distance at which autocadtimia
coefficient p,=C(h)/C(0) decays tol/e, wheree is the base of natural logarithms. In a
physical sense, it is the same as the scale dudtion ¢), although the methodologies of
obtaining scale of fluctuationd and autocorrelation distance) are different
(Vanmarcke, 1977)In the other words, the scale of fluctuation tfes same meaning as
the autocorrelation distance but differs in numesatue. The scale of fluctuation estimates
the distance within which soil properties show tietdy strong correlation and data
become either above or below the mean value.

Vanmarcke(1977)described the random field theory. It defined tbales of fluctuation
(0), in order to describe a random field in termsficft and second-order moments. It

corresponds to the area under the autocorrelatioctibn, namely (Equation 1-36):

38



Dealing with uncertainties in geotechnical designs

o= J"Oh d(h) = ZIph d(h) Equation 1-36
bl 0

A large autocorrelation distance value implies thatsoil property is highly correlated
over a large spatial extent, resulting in a smaathation within the soil profile. On the
other hand, a small value indicates that the flaftm of the soil property is large.
Although an isotropic correlation structure is aftassumed in works reported in the
literature, correlations in the vertical directitend to have much shorter distances than
those in the horizontal direction due to the geiglaigsoil formation process for most
natural soil deposits. A ratio of about 1 to 10tfegse autocorrelation distances is common
(Baecher and Christian, 2003)

Given practical difficulties with the characterimast of spatial variability in real
applications, however, some authors perform seitgitanalyses to identify the most
unfavorable scale of fluctuatioiFenton and Griffiths, 2003which can then be
(conservatively) employed in subsequent analysis. eXtensive literature review was
conducted to estimate the typical scales of fluaima for a variety of common
geotechnical parameters. The results of this revaesv summarized in Table 1-2. Full
details are given elsewhetehoon et al. 1995)The scales of fluctuation are generally
calculated using the method of moments. Informatiorthe soil type and the direction of
fluctuation also are included in the table.

Table 1-3 shows the difference between the appesacfor two commonly
mathematical models (exponential and Gaussian rmpdéle note that autocorrelation
distance, fluctuation scale and practical rangey vadely from one approach to another
and these three terms have distinct significations.
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Table 1-2: Summary of scale of fluctuation of sg@etechnical propertie§>hoon et al. 1995)

No. of Scale of fluctuation (m)
Property? Soil type studies Range Mean
Vertical fluctuation
Su Clay 5 0.8-6.1 2.5
qg. Sand, clay 7 0.1-2.2 0.9
qT Clay 10 0.2-0.5 0.3
su(VST) Clay 6 2.0-6.2 3.8
N Sand 1 — 24
Wy Clay, loam 3 1.6-12.7 5.7
wp Clay, loam 2 1.6-8.7 5.2
Y Clay 1 — 1.6
Y Clay, loam 2 2.4-7.9 5.2
Horizontal fluctuation
q. Sand, clay 11 3.0-80.0 47.9
qT Clay 2 23.0-66.0 44.5
s.(VST) Clay 3 46.0-60.0 50.7
Wy Clay 1 — 170.0

a: § and {(VST), undrained shear strength from laboratorydesd vane shear tests, respectively;
effective unit weight.

Table 1-3: Significance of the correlation lengtitarding to the considered approaghaksa, 1995)
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b: correlation length a: practical rangeg: scale of fluctuation andy: autocorrelation distance
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1.3. Probabilistic methods in geotechnical engineeringof propagating uncertainty

The reluctance of practicing engineers to applybabilistic methods is attributed to
four factors. First, engineers’ training in statistand probability theory is often limited to
basic information during their early years of edigza Hence, they are less comfortable
dealing with probabilities than they are with detaristic factors of safety. Second, there
is a common misconception that probabilistic aredysequire significantly more data,
time, and effort than deterministic analyses. Thiely published studies illustrate the
implementation and benefits of probabilistic anatysLastly, acceptable probabilities of
unsatisfactory performance (or failure probabiligy ill-defined, and the link between a
probabilistic assessment and a conventional detéstii assessment is absent. This
creates difficulties in comprehending the resultsagfrobabilistic analysis. All of these
issues are addressed in detaitlrRamly, 2001

In the following, the probabilistic methods for pemgating uncertainties, most

commonly, used in geotechnical engineering arerdest

1.3.1. Taylor series approach

Model uncertainties can be quantified by standadadion (square root of variance)
around the mean of modeled outp(isvang et al., 1998)The Taylor series approach is
based on evaluating the derivatives of the outpattion with respect to the independent
input variables. The Taylor series formulae aranaef for a continuously differentiable
functionf (xX). The Taylor's formula for expansion of a functib(x) is given by Equation
1-37(Harr, 1987)

- - - e - (n=1)x -
100= 160+ 1000+ e+ L0004 Rn - Equation 1-37

where X is the mean of the input variable arid(x)is thenth derivative of the studied

function evaluated ax andRnis the remainder.

In many modeling applications a first order appneaiion of variance from the Taylor
series expansion is used to describe uncertainttyeirmodeled resu(iTiktak et al., 1999;
Graettinger and Dowding, 1999; Seefeld and Stodkw&B99)The first order
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approximation for the variance, FOSM method, is gibg the following equatiofHarr,
1987)Equation 1-38n the case of no correlation between parameters:

V[ f(x)| =[f'(§<)] 2v[x] Equation 1-38

where f'(?() is the first derivative of the studied functidﬁ[x] Is the variance of the input
variable andV[f(x)] is the variance of the studied function. The olgdirvariances for
each variable can be summedtagalculate the variance of function, which deeod all
the input variables. The variances of the inpuialdes are obtained from experimental
data or from expert judgment.

When the functiorf (x) is non-linear, the higher order terms of Tayloriese are
necessary to more accurately estimate the varialmcehis case, the second-order
approximation for variance, SOSM method, is given Equation 1-39(Harr, 1987,
Dettinger and Wilson, 1981)

V[f(X)]=[f'(;<)] 2V[X]+%[f"(?<)] 2v2[q[B2)-1+pa)v iy & fr(;()[fu(;()] Equation 1-39

wheref''(x) is the second derivative of functionf(x), A(1)andB(2) are the

coefficients of skewness and kurtosis, respectivdiyien the probability distribution is
symmetrical, the (1) = 0. LetA = f (2) -1then Equation 1-39 becomes:

V[ f(x) = [f'(?)] 2 V(x| +%[f"(;()] 2\/Z[X] A Equation 1-40

The parameter of depends on the probability distribution, for exdentie coefficient of
kurtosis for the normal distribution is equal toetaif3 (2) = 3), sol = 2.

1.3.2. Monte Carlo Simulation method

Sometimes the system being designed is too congdicgon-linearity) to allow the
calculation of the variance of the studied functiortunately there is a simple, albeit
computer intensive, solution; simulate realizatiohshe random field and analyze each to
produce realizations of the response. From a segspionse realizations, one can build up

a picture of the response distribution from whicbhability estimates can be derived. This
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is called Monte Carlo Simulation (MCS), referenee made toMadsen et al., 1986
Although various stochastic methods have been pexpan the literature, the only
currently available universal method for accuratitson of geotechnical problems is this
technique, mainly due to the large variability asttbng non-linearity of soil properties
(Popescu et al., 2005Moreover it involves strong non-linearities amadge variations of
non-Gaussian uncertain system parameters.

This method involves the generationmofandom numbers of input soil parameters with
given probabilistic characteristics. Thassample points for output response are used to
obtain required sample statistics, which is incoaped in probabilistic calculations. The
minimum value of numban depends on percentage (%), acceptable error iestiration
of sample mean and variance as well as confideve(Baecher and Christian, 2003)

In a Monte Carlo Simulation, a series of randoelds are generated in a manner
consistent with their probability distribution acdrrelation structure and the response is
calculated for each generated set. Various stalgbroperties evaluated after the process
of simulation, such as mean, variance, coefficiehtskewness, probability density
functions and cumulative probability distributiorunttions, can provide a broader
perspective and a more comprehensive descriptiangofen system.

In the last decade, a series of papers appeardiukititerature where the effect of
inherent random soil heterogeneity on the mechamehavior of various problems in
geomechanics was assessed quantitatively. The dwtgy used in essentially all these
studies were Monte Carlo Simulatigraice et al., 1998tudied settlements of foundations
on elastic soilGriffiths & Fenton, 200Gstudied slope stability;opescu et al., 1995-1997
andKoutsourelakis et al., 200studied seismically induced soil liquefactiotnbahar and
Popescu, 2000; Popescu et al., 2002; Fenton afffitiari2003andNobahar, 2003tudied
the bearing capacity of shallow foundations.

Furthermore studies applying Monte Carlo Simulatdso rarely addressed the spatial
variability of soil propertiesMajor et al., 1978; Tobutt, 1982; Nguyen and Chbwt,
1985) because of difficulties in generating random vsalire ways that preserved their

spatial correlations.

Monte Carlo simulation has its own limitations, ainican be summarized as follows:
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The need to define a reliable input reference ibigion, which requires a
considerable number of field data. In addition, ol#ersions of Monte Carlo
Simulation algorithms used to deal only with par&imeprobability distribution
functions, i.e., probability distributions that che defined through mathematical
relationships such as normal and lognormal distioibu Field data, however, do not
necessarily fit into any of these parametric disttions. This problem has been
overcome by recent versions of Monte Carlo Simoietj such as that of Deutsch
and Journel, 1998 that are capable of dealing withparametric distribution
functions directly inferred from field data.

Clustering of the simulation outcome into a limiteohe of the input probability
distribution, as the drawn samples are more likelybe in areas of higher
probability, as shown in Figure 1-10, This problerainly arises in cases where an
insufficient number of realizations (number of &gons in Monte Carlo algorithm)
are used in the simulation procé&slisade Corporation, 1996lhis may result in
sampling values of the random variable away fromtaile of the input probability
distribution, which can be on the unsafe (non-coreese) side. This problem,
however, can be overcome by using a number ofzaains large enough to
reproduce the input distribution.

Monte Carlo Simulation cycles influences the accyraf the results. These results
are more accurate when sufficient iterations andicsemt sample size are used.
Depending on the number of variables involved i@ simulation process, Monte
Carlo Simulation may require a significantly largeimber of iterations and
consequently a considerable computational effort.

1
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Figure 1-10: Clustering of the outcome of Monte I6&imulations resulting from an insufficient numbgé

realizations(modified from Palisade Corporation, 1996)
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Despite the fact that the mathematical formulaiwdrthe Monte Carlo Simulation is
relatively simple and the method has the capahilithandling practically every possible
case regardless of its complexity, this approachnud received overwhelming acceptance
due to the excessive computational effort requifeabadrakis et al., 199670 improve
the computational efficiency of the method, sevesampling techniques known as
variance reduction techniques have been developedier to improve the computational
efficiency of the method by reducing the statigteaor inherent in Monte Carlo methods
and keeping the sample size to the minimum posstblgetailed review can be found in
Baecher and Christian, 200Among them Latin hypercube sampling may be vieag@
stratified sampling scheme designed to ensure tiatupper or lower ends of the
distributions used in the analysis are well repmes Latin hypercube sampling is
considered to be more efficient than simple randampling, that is, it requires fewer
simulations to produce the same level of precisi@tin hypercube sampling is generally
recommended over simple random sampling when theemsadomplex or when time is
an issue.

The principal geotechnical applications are siigbstudies Cho, 2007and Low, 2008
for the slope stability; ow, 2005andFenton et al., 20Q9or the retaining wall stability),
analysis of foundation systemsli@gndou and Breyssg 2007 for the piled raft design;
Massih et al., 2009or rupture of soil under shallow foundations) asamime specific
applications are also found as the study of bumevorks(Elachachi et al., 2004In cited
examples were used FOSM or FORM methods, and eftenhed by comparison with the

results of calculations using the Monte Carlo Satioh method.

1.3.3. Reliability-Based Design

Reliability-based design approaches are becomingrmmmmin civil engineering. For
example, U.S. codes for concrete and steel degsigrradiability-based. In addition, a
reliability-based approach was adopted by the ErangCommunity in the new Eurocode
standards. These approaches are referred to bpaimes Load and Resistance Factor
Design (LRFD) in the U.S. and Limit State DesigisR) in Europe.

The objective of a reliability-based design appho& to assure satisfactory system
performance within the constraint of economy. Mdesigns are developed without the
benefit of complete information and under conditiofsincertainty. What maximum load
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will a structure experience over its lifetime? Heowull the strength of steel change as a
function of time due to corrosion? Because of theseertainties, there always exists a
chance or risk of failure. In most cases, it is pi@ctical or economical to eliminate this
risk. All design approaches implicitly balance sosind benefits; a reliability-based

approach attempts to achieve this balance in a systematic and rational manner.

1.3.3.1.Traditional Design Approach
Conceptually, most problems can be described mgef a loadS and a resistanc®.

The load represents the load applied to the sy$éem, an axial load on a column, the
volume of water entering a treatment facility, ptevhile the resistance represents the
capacity of the system (e.g., the axial capacitgabfimn, the capacity of a treatment plant,
etc). Traditional design approaches are deterninigfe account for uncertainties in the
load and resistance by requiring a resistance ithareater than the estimated load
(Equation 1-41):

Reqa2 kS Equation 1-41

whereFsis a factor of safety. The factor of safety typigabnges between 1.0 and 3.0;

however values as large as 10 or 100 may be ussame instances.

1.3.3.2.Decision making in geotechnical engineering-reliabty based approche

One of the major challenges that faces geotechminglneers is the need to make
decisions regarding the soil parameter to be usethgineering analysis. These decisions
have to be based on information that invariablydasrtain degree of uncertainty.

Consequently, the decision making process is cergidto be governed by two factors,
the uncertainty in the decision variables and tble level of the project. Several decision
making algorithms have been used throughout thtorigiof geotechnical engineering
practice, such as the worst case and quasi wosgt approaches and reliability-based
techniques, details of these algorithms will bedssed in the following paragraphs.

The worst case approach aims at achieving the atiesshfety of the project and relies
on the notion of maximum loss and maximum expebt&zards, often referred to as the

maxi-max criterion(Ang and Tang, 1984)For example, if the range of the measured
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friction angle of a sandy deposit at a certain sateges from 30—-40°, the design value will
be assessed as 30°. This approach is over-conseraad rarely used in practice. On the
other hand, the quasi worst case appraache-Cornell, 198Aries to apply some kind of
engineering judgment into the above approach teigeoan upper bound for the risk level.
Revisiting the above example, the sandy soil atsiteis classified (say medium dense
sand) and the minimum value associated with sua$sification (say 33°) will be used as
the design value. A common problem of the two apphes is that no information can be
obtained about the risk level associated with tesigh value; in fact design value is a
deterministic value.

The reliability-based approach relies on selectilggign parameters that satisfy a
desired degree of reliability or a certain prob&pibf failure is defined a probability of
safety of a system in a given environment and legdnditions. With a reliability-based
approach, we attempt to account explicitly for utaaties in the load and resistance. We
can calculate the probability that the load excebdsesistance as follow (Equation 1-42):

P(S>R)=P(R<S)=P(R-S<0)=P(X <0) Equation 1-42

Recall that one objective in developing theoretiGdom variable models was to
provide a mathematical framework for combining randariables. It can be shown that a
linear combination of normal random variables, sashX = R- S, whereR andS have
normal distributions, will also have a normal dsation. Further, the mean and standard
deviation forX are given as follows (Equation 1-43):

Ux =HR—Hs, Ox = \/U% +0% - 2PprsOR 05 Equation 1-43

in which prsis coefficient of correlation betwed® andS. Baecher and Christian, 2003
point out that this assumptioR @ndS have normal distributions) is rarely true, buisia
good approximation when the number of parameteishndepend ofR andSis more than
four.

These distributions can be characterized by th&amvaluegur (resistance) angs

(load) and by their standard deviatiasandos or their coefficients of variatiorCVg and
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CVs). If normal distributions oR andS are assumed, reliability indeg)(can be calculated
using Equation 1-448enjamin and Cornell, 1970; Melchers, 2002):

= Hx - KR Hs Equation 1-44
Ix \/J% +0% - 2prs.OR O

All the random variables can be regarded as indep#rabs this assumption simplifies
the computation and also gives conservative resultsnd Lumb, 1987)Then ifS andR
are statistically independent normal varieties @aun 1-45):
p=-HR_Es Equation 1-45

ok +08

The reliability index g) value depends on the probability density functiofsthe
resistanceR) and load §. By assuming thaR andS follow lognormal distributions, the
Hasofer and Lind, (1974yeliability index g is defined by the following expression
(Equation 1-46):

In[(%) .\/(1+cv§ )/(1+CVR%)} Equation 1-46

C Jnarovy.arovy]

whereCVs andC\Vi are, respectively, associated coefficients ofatemn ofSandR.

The reliability index g) reflects both the mechanics of the problem aedutincertainty
in the input variables, and it permits comparisohseliability among different structures
or modes of performance without having to calcuktsolute failure probability values.
Clear expositions of the underlying theory are fbun various publications including
Shinozuka, 1983; Ang and Tang, 1984; Madsen etl8B6; Melchers, 2002; and U.S.
Army Corps of Engineers, 1997.

The probability of failureéP; of the structure is then defined as follows (Equati-47):

P =¢(-5)=1-4(5) Equation 1-47

48



Dealing with uncertainties in geotechnical designs

in which ¢(- 8) is the standard normal cumulative distributiondiion (zero mean and

unit variance). This value can be obtained frobies of the standard cumulative normal
distribution function found in many textbooks ororn built-in functions in most
spreadsheets. Note that large valug lefad to small value d#;.

The complementary probabiliBs=1-P; is referred to as the reliability and is sometimes
also denoted the probability of survival. In additi the failure probability, the reliability,
and the reliability index are all suitable measwkthe structure safety with respect to the
considered failure mode.

Historical failure probabilities for civil engindeg facilities are between oo 107,
therefore, target failure probabilities for new ides are typically within this range
(Griffiths and Fenton, 2007Normally, a reliability index value in the rangé3.0-4.0 is
accepted for good performance of the syst@amecher and Christian, 2003; U.S. Army
Corps of Engineers, 1997Harr (1977) has written that, in classical geotechnical
problems, one often ha% > 10° (8 ~ 3). However,Zhang and Tang, 200dndPaikowsky
2002 proposed that redundant pile (stiff structurdevahg transfer of load) could be
accounted for by applying lowef values: i.e.f = 2.33 P; = 10%). Meanwhile,
recommended ha® = 10° (8 ~ 3) for non-redundant pile$aikowsky, 2002)The target
value of the reliability index$ to be reached in the Eurocode 1 is equal to 1Ir5he
serviceability limit state (SLS)Eurocode 1, 1991]The probability of the serviceability
limit state Ps.9 should be less than 0.067 to avoid exceed thecsability limit state.

In summary, a reliability-based design approachsisis of the following steps:

- Select a target probability of failur€:. This failure probability is established
considering costs, consequences of failure, engmgegudgment, politics and
experience.

- Calculate the required reliability indeg)(to achieve the target failure probability
(Equation 1-48)

B= _¢_1(Pf ) Equation 1-48

- Find the mean resistance required to achieve thettf)
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Note that this approach has been commonly useldpe stability analysis but there are
some softly differences between the two approaéredmbility index approach and soll
stability analysis approach)/Volff (1996), proposed soil design parameters to be
associated with a reliability indeg)(of 3 for routine slopes and 4 for critical slopegh

as dams. The reliability index can be obtained thinddquation 1-49:

_Mes-L Equation 1-49
OFs

B

wheremes is the mean factor of safetly;is a limit state value usually equal to 1; aRdis
the standard deviation of the factor of safety.

The FORM approximation (First Order Reliability Metd) (Hasofer and Lind, 1974$%
the improving form of the FOSM method, based oneangetrical interpretation of the
reliability index. In this approach, the performarfanction is transformed into a standard
Gaussian space. The reliability index is distandevéen the origin and the design point,

visually representing the intersection betweernutigafe and safe areas (Figure 1-11).
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Figure 1-11: FORM approximatiofLacasse and Nadim, 2007)

1.3.3.3.Advantages and limitations of a reliability-based @sign approach
There are several advantages in using a relialifised approach versus the traditional
approach Griffiths and Fenton, 2007)

- A factor of safety does not provide informationtbe level of safety in the design.
The same factor of safety may produce two desigashave different reliabilities.

A reliability-based approach allows us to quantifie reliability, and load and
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resistance factors are developed to achieve censitvels of reliability among
different designs.

- Factors of safety are based on experience withlairdesigns. What if we don’t
have experience (e.g., a new construction material new environment)? What if
our experience is not positive? A reliability-basgproach provides the ability to
develop new designs that achieve a specified iétiab

- Since a factor of safety has no real meaning imgeof reliability, it is difficult to
select an optimum factor of safety. By quantifynegjability, we can perform cost-

benefit analyses to balance construction costsiagtie risk of failure.

However, reliability-based approaches in their entrform (e.g., LRFD) do have
limitations. The code user does not have control ¢le target failure probability, and
cannot directly incorporate the uncertainties assed with their specific design. Further,
even a purely probabilistic approach cannot prepeotr engineering; it can only help to
make good engineering better.

1.4. Model of soil-structure interaction

Most of the civil engineering structures involverso type of structural element with
direct contact with ground. When the external fereet on these systems, neither the
structural displacements nor the ground displacesnané independent of each other. The
process in which the response of the soil influsnite motion of the structure and the
motion of the structure influences the responsehef soil is termed as soil-structure
interaction.

Different calculation methods can be used to stimty soil-structure interaction. For
example, the finite element method has been usedinmerous studieglachachi et al.
2004, 2011, 2012, Niandou and Breysse, 2007 and Bual. 2006, 2008 However, in
order to simplify the soil-structure interactiomadytical approaches can be ud@wbck
and Singh, 2010; Houy et al., 2005)

The search for a physically close and mathemayisathple model to represent the soil-
media in the soil-structure interaction problem st@wbasic classical approach, such as
Winklerian approach. At the foundation-supportingil sinterface, contact pressure
distribution is the important parameter. The vasiatof pressure distribution depends on
the foundation behavior (such as rigid or flexileo extreme situations) and nature of
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soil deposit (clay or sand etc.). Since the phiptgoof foundation design is to spread the
load of the structure on to the soil, ideal foummtatmodeling is that wherein the
distribution of contact pressuKgaylor, 1964)is simulated in a more realistic manner.
From this viewpoint, this fundamental approach Isasne characteristic limitations.
However, the mechanical behavior of subsoil appeabe utterly erratic and complex and
it seems to be impossible to establish any matheahdaw that would conform to actual
observation. In this context, simplicity of modehany a time, becomes a prime
consideration and it often yields reasonable resélttempts have been made to improve
upon this model by some suitable modifications itausate the behavior of soil more
closely from physical standpoint. In the recentrgea number of studies have been
conducted in the area of soil-structure interactimodeling the underlying soil in
numerous sophisticated ways. Details of these nragelare depicted in the following

section.

1.4.1. Analytical approaches to solving soil structure inéraction problems

1.4.2. Winkler's model

In the past, many researchers have worked on tistsecture interaction which is
referred to as beams and plates on elastic fowrdatMost of the previous work began
with the well known Winkler's model. This model adso frequently referred to as a one
parameter model, which was originally developed tloe analysis of railroad tracks
(Winkler, 1867) This model is expressed by the following form{#guation 1-50):

p(x) =kg .b.W(x) Equation 1-50

whereks is the coefficient of subgrade reaction (or comstd proportionality of Winkler
in [F/L%), w(x) vertical displacement (settlemen)width of the foundation anp(x) the
reactive pressure of the foundation. Figure 1-1@ashthe physical representation of the

Winkler foundation.
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Load Foundation

Springs Rigid layer

Figure 1-12: Winkler foundatiofDutta, 2000)

Winkler's idealization considers the soil as bemgystem of identical but mutually
independent, closely spaced, discrete, linearlstielaprings. The simplifying assumptions
which Winkler hypothesis is based on causes sorfiei@ecies(Terzaghi 1955, Stavridis
2000, Avramidis and Morfidis, 2006)0One of the most important deficiencies of the
Winkler model is that a displacement discontinuappears between the loaded and the
unloaded part of the foundation surface and thisehodnnot transmit the shear stresses
which are derived from the lack of spring couplitg.reality, the soil surface does not

show any discontinuity (Figure 1-13).

S —
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a

Figure 1-13: Deflections of elastic foundations andniform pressure: a) Winkler foundation;

b) Practical soil foundation.

The differential equation governing the deflectian(x), of a homogeneous elastic
bending beam with constant bending stiffness resinga Winkler foundation and
subjected to a transversal continuous lagg), can be written as Equation 1-B1etenyi,
1946)

d Equation 1-51
£ 1 92909 kb w0 = o) |
dx?
where Edl is the constant bending stiffness of the be&nand| are respectively the
Young's modulus of concrete and the moment of imest the cross section of the

foundation). Equation 1-51 is a continuous difféi@nequation whose general solution

53



Chapter 1

w(x) is the sum of the solutiomg(x) of its homogeneous part and of a particular sofuti
Wq(X). The solutionvg(x) has the following form (Equation 1-5@)etenyi, 1946)

Wo(x)=e px (Cq sinfx+ Cy cosfx) + e A (Cg sinfx+ C4 cospX) Equation 1-52

1
k.b (4

—|__s

where B8 LEC_I]

The expression of the particular solutiog(x) depends on the loag(x) type. For
example, if the load is constant, thegis constant too, and given lg(x)= g/(k.b). The
general solutionw(x) is completely defined once that the constabtgi=1 to 4) are
evaluated by imposing the natural and essentiahdbany conditions. When the deflection

w(x) is known, thebending momentM(x)) and the shear forc&/(x)) can be determined (

3
M (x) = -E| dZ‘)’(Vgx) V() =-Egl %).

Hence, several attempts have been made to devealdified models to make the model
more realistic by assuming some form of interacteonong the spring elements that

represent the soil continuum. These models areisked in below.

1.4.3. Filonenko-Borodich foundation

Filonenko-Borodich developed a model that improwgmbn the Winkler model by
connecting the top ends of the springs with a é&stic membrane subjected to a constant
tension T. Figure 1-14 shows the physical representationthis model (Filonenko-
Borodich, 1940) Thus, the response of the model is mathematiexipressed as follows
(Equation 1-53 and Equation 1-54):

f(xy)= k.b.w(x,y)-T.0%w(x,y) for redangularor circular foundation Equation 1-53

~ d?w(x) . . ,
p(x)=Kkg .b.WXx)-T 02 for strip foundation Equation 1-54
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2 2
where 02 is the Laplace operatorDEsa_2+a_2) and all other terms were previously
oxs oy

defined.
Hence, the interaction of the spring elements @ratterized by the intensity of the
tensionT in the membrane. An essentially same foundationlehoonsisting of heavy

liquid with surface tension is also suggested inliteeature(Schiel, 1942)

Stretched Membrane
with Tension T

T

Springs Rigid layer

Figure 1-14: Filonenko-Borodich foundatigierr, 1965)

1.4.4. Hetenyi’s foundation

In this model, the interaction among the discrefgings is accomplished by
incorporating an elastic beam or an elastic plateich undergoes flexural deformation
only, as shown in Figure 1-15. Thus the pressuffieat®n relationship becomes
(Equation 1-55):

_ 4
Axy)= k.b.w(xy)+D.0'W(xy) Equation 1-55

whereD is the flexural rigidity of the elastic plate and Ea—:+a—i+2%.
ox* oy ox“oy
Thus, it is seen that the flexural rigidity of endded beam or plate characterizes the
interaction between the spring elements of the Wéimkodel. Detailed descriptions of this
model as well as some numerical examples are &laiia the literaturéHetenyi, 1946-

1950)
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Beam or Plate with
flexural rigidity D
Springs
Rigid Layer

Figure 1-15: Hetenyi foundatiofWwinkler, 1867)

1.4.5. Pasternak foundation

In this model, existence of shear interaction amtrg spring elements is assumed
which is accomplished by connecting the ends ofsgirengs to a beam or plate that only
undergoes transverse shear deformation (Figure .1¥h@) load-deflection relationship is
obtained by considering the vertical equilibriumaoshear layer. The pressure-deflection

relationship is given by Equation 1-56:

fxy)= k .bw(xy)-G.0%(xy) Equation 1-56

whereG is the shear modulus of the shear layer. As ai@pe&se, if this modulugd) is
neglected, the mechanical modeling of the foundatcmmverges to the Winkler
formulation.

Thus the continuity in this model is characterizgdthe consideration of the shear
layer. A comparison of this model with that of Fiemko-Borodich implies their physical
equivalency T has been replaced Wy). A detailed formulation and the basis of the
development of the model have been discussed etseWhasternak, 1954 )Analytical
solutions for plates on Pasternak-type foundatmith a brief of the derivation of the

model have been reported in the literatiiterr, 1964; Wang et al., 20Q1)

Shear Layer with
Shear modulus G

Springs
Rigid Layer

Figure 1-16: Pasternak foundatidchiel, 1942)
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1.4.6. Kerr foundation

A shear layer is introduced in the Winkler foundatiand the spring constants above
and below this layer is assumed to be differemieaghis formulatior{Kerr, 1964) Figure
1-17 shows the physical representation of this meical model. The governing

differential equation for this model may be expeekas follows (Equation 1-57):

2 F(X, y)+ K .b.w(x,y)—G.DzW(X’Y)

[1+%j Hxy)=

L Equation 1-57

G
kb

wherek; is the spring constant of the first lay&s;is the spring constant of the second

layer; w(x) is the deflection of the first layer.

Foundation

First Layer Ki_ ~ Shear Layer with

. K Shear Modulus G

k; Rigid Laye
Second Layer EEEEEEEEEESSSEE "‘/_]g] e

Figure 1-17: Kerr foundatiofiGorbunov-Posadov, 1949)

1.4.7. Synthesis of different analytical approaches for sbstructure interaction
modeling

Using these analytical approaches, the soil is teddby a simple system called a
subgrade reaction model instead of attempting toeinthe subsoil in all its complexity,
I.e. its nonlinear, stress-dependent, anisotropicheterogeneous nature. In the majority of
proposed solutions, the foundation-supporting soitepresented using the well-known
Winkler hypothesis, which assumes the soil to be&lenap of continuously distributed,
non-connected discrete spring&inkler, 1867) Due to its simplicity, the Winkler model
has been extensively used to solve many soil-faimdanteraction problems and has
given satisfactory results for many practical peol. However, it is a rather crude

approximation of the discontinuous mechanical bedraeif ground material. This has
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given rise to the development of a variety of twoapaeter elastic foundation models, in
which the continuity, i.e. the coupling effect beem the discrete Winkler springs, is
introduced by assuming that the springs are corddny a shear layer membrane or beam
(Filonenko-Borodich, 1940; Pasternak, 195Fhe two-parameter models describe soil
behavior more accurately and yet remain simple gindor practical purposes. A third
category of mechanical models comprises the sedadliree-parameter modé€lglatheu
and Suarez, 1996; SAP2000; Biot, 193wWhich constitute a generalization of two-
parameter models. Their main advantage is thelityalbd take into account the desired
degree of continuity of the vertical displacemeotsthe soil surface at the boundaries
between its loaded and unloaded regigristheu and Suarez, 199@f particular interest
are the three-parameter models devised by ReiasideKerr. The former was the object of
a study by Horvath{Council on tall buildings and urban habitat, 1983wles, 1988;
Vallabhan and Das, 1991This established the superiority of Reissner'sdehaeven
though it requires more parameters.

Since the second and third foundation parameterslifficult to estimate, we chose to
use Winkler's analytical model which seems, frompractical point of view, to be
appropriate for superficial geotechnical desi¢asichachi et al., 2004\While Winkler’s
model is one of the simplest models for a matherahttlescription of soil-structure
interaction, it has the advantage of using only paemeter, the coefficient of subgrade
reaction, to characterize soil and structure resgonmder loading. Taking into account
fewer parameters brings less uncertainty to theemd@ne must choose between a very
accurate model with many parameters - and conségurany uncertainties in the model

- and a simple, less accurate model with fewerrpatars and lesser uncertainties.

1.5. Superficial geotechnical designs

As heterogeneity can be very important in the adssuperficial geotechnical designs,
we chose the two kind of the superficial geotecaintesigns, spread footings and and
buried pipe networks, to study in this work. In tbBowing, geometrical parameters of the
spread footings and the buried pipes and the hggalifor their loadings are presented.
Additionally, the different kind of joints for coeting the buried pipes to each other will

be discussed.
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1.5.1. Spread footings

Continuous spread footings consist of concret@stwith a rectangular cross section,
placed under masonry walls. In residential constwas with relatively lightly loaded
walls, the dimensions of the concrete strip arectlly 0.5 m in width ) and 0.3 m in
thickness lf), for a length I() ranging between 5 and 20 m (Figure 1-18). Theskivievel
of the footing must be located deeper than the mami frost penetration depth, to avoid
the occurrence of frost heave. In France, thid fdlepth D) lies typically between 0.6 and
1.2 m. Definitions of the differential settlememtdathe angular distortion for this kind of

foundation are shown in Figure 1-18.

a)

h Thickness
Frost Depth

Figure 1-18: a) Continuous wall footing charactéits and b) Definition of the angular distortigh

(As: differential settlement)
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1.5.2. Buried pipes

Buried pipelines are part of the so-called lifeinevhich play a vital role as
infrastructure components conveying and/or disthiguenergy, fluids, waste water, oil
products and gas in present-day’s world. The pigslin particular allow conveying water,
fossil liquid fuels and liquid gas over long distaac

The pipe materials are varied: masonry, plain orfoeced concrete, cast iron or steel,
PVC, etc(Balkaya et al., 2012aThe pipe diameted] varies in practice from 0.15 to 1.5

m for the non-visitable pipes and from 1.5 to 3an\isitables ones (Figure 1-19).

Soil

Pipeline length | d |

Figure 1-19: Buried pipe (e: thickness of the pipeexternal diameter of the pipe)

The sealing between pipes is ensured by joints magéstic, cement mortar or, more
frequently, elastomer or by welding. The rigidity these joints is as variable as
technologies and geometries employed: it can bg weak (flexible joints), high (quasi
rigid joints) or very high (rigid joints).

Concrete collainorme NF P 16-341, 199@nd Spigot and socket joints are two kinds
of flexible joints. Spigot and socket joint is alsommonly called the Rubber Ring Joint
(RRJ). RRJ provides the flexibility in concrete pipes. A certain degree of linear
deflection is allowed in this type of joint. For sédundation, these two kinds of joints are
recommended (Figure 1-20).
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Concrete collar joint

]
L
Useful length I—-/
a)
Rubber | - . \
Ring A LI
| —— :
'-..,:; - k}
|
b)

Figure 1-20: Two kinds of flexible joints a) Contereollar joint and b) Rubber Ring Joint

e: thickness of the pipe

A kind of quasi rigid joint before and after embeaugwith details is shown in Figure
1-21.

Before embedding

Male end of pipe

=

C e el @, Ca

—— Ring joint made of elastomer

After embedding

Joint outside  Reinforcement
Female end of pipe Male end of pipe

- Ring joint made of elastomer

Useful length
Figure 1-21: A kind of quasi rigid joint
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Butt joint with collar and rebated joint are twanlls of the rigid joints. Butt joint with
collar uses a precast or cast in-situ concreteictdl connect the pipes. This is a rigid joint
and no flexibility is provided (Figure 1-22a). Thjsint is not recommended for soft
foundation where deflection can occur. Rebatedt @ also known as the Ogee joint or
Flush joint. The internal rebated joint is used fgves of diameters 675 mm and above
while the external rebated joint is for pipes ardeters 600mm and below. Any deflection

or movement occurs after leakage (Figure 1-22b).

Butt joint with collar

Collar .,
S
. = - A

Cement

Maortar
| T T, |

A

(Note: Butt joint may also be used without collar)

a)
Rebated joint
Cement Mortar Cement Mortar
\ | ' i _ |
J . A 1 (T J) . *"’.','f-w]‘_-'.;.ln s u'y
7- L - il /e C A S Exe] - =@ g o 2
? e "o . h_' ll:_.,.‘-[., ST & h o ’ (. o '_1 (L i - b o ‘f
r- . - & A e - . o J . 3 = s 9 |
Internal Rebated Joint External Rebated Joint
b)

Figure 1-22: Two kinds of rigid joints a) Butt jaiwith collar and b) Rebated joint

Figure 1-23 shows embedded pipes with half thickregsthe location of joints and
pipes with the same thickness at the location afitgoi These kinds of joints can be
constructed as rigid or quasi rigid on a constarcsite(norme NF P 16-341, 1990)

. Useful length I l' e

— \ éd ]
T

o —

L |

a)
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Useful length

1|

L

b)

Figure 1-23: Two kinds of joints can be construcksdigid or quasi rigid on the construction sitg
Embedded pipes with half thickness at the locatignints b) Pipes with the same thickness at dication

of joints(norme NF P 16-341, 1990)

Continuous buried steel pipes (such as oil and tassmission pipelines) are
constructed in great lengths without joifiBalkaya et al., 2012b)Concrete buried pipes
with the quasi rigid joints and continuous buri¢ele$ pipes are chosen in this study with

the simplication of the same rigidity all along thipelines.

* The loading

In practice, it results from overhanging load, figiload (due for example to vehicles),
and hydrostatic pressure due to the water tabidosaling from weight of soil above pipe,
horizontal pressure of soil and also from the maémctions of the conveyed fluid (pipe

internal pressure) (Figure 1-24). In this study, wi# assume that the loading applied

consists of a uniform vertical action distributedljntensity q (kN/m).

Traffic load

A y y

A

A

A

y

A

Soil load above the pipe

Horizontal pressure of soil

LLLLL b b ba s,

fIffrrrereees

Figure 1-24: Schematic of the loads on a buriedepip
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1.6. Summary and conclusion

In this chapter, the main concepts of the uncer&snih geotechnical designs were
discussed. In order to prevent any misunderstanalirgpnfusion in the following parts of
this thesis, the main terms used in the modelingpdfproperties (basic random variables,
random field theory and geostatistics) were prégiskefined. Geostatistics, a very
practical and useful method that takes into accadbatspatial variability of soil, was
highlighted in detail and will be used later onff®ient available tools and techniques of
probabilistic methods in geotechnical engineering propagating uncertainty (such as
Taylor series approach, Monte Carlo Simulation methad Reliability-Based Design)
were introduced and will be used in the ensuing@es.

Next, the soil-structure interaction concept waglaxed and different available
analytical models for taking it into account wemtroduced. Their advantages and
drawbacks were briefly pointed out; the Winkler rebdias chosen to model soil-structure
interaction for the considered superficial geotécdindesigns in this study. Finally, the
superficial geotechnical systems used in this stuehe briefly described.
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Chapter 2

2. Modulus of subgrade reaction and its uncertainty

2.1. Introduction

Physical and mechanical properties of a soil haweesnatural variability which originates
in the complexity of the natural geological pro@sss(erosion, transport, deposition,
compaction, physico-chemical...) that caused the fawihation. An uncertainty on each
parameter is attached to this variability, commardgd to quantify the natural variability: the
mean, the variance and the covariance functioharcase of a spatial approach of the natural
variability (Marache et al. 2009, Cho & Park 2010, Denis e2@1.1)

Uncertainties which also exist in the case of treemals of a structure, are taken into
account by considering parameters of structurealestory variables. These variables are
modeled by probability distributions which can b®roduced in design calculation of
structures in order to obtain the uncertainty &itaicto this design.

In the case of the design of spread footings amedpipes, the analytical models with
one or two parameters are used to study of sait&tre interaction on elastic s@ilvinkler
1965, Pasternak 1954, Vlassov 196The common parameter for these models is the
modulus of soil reactiorky).

Eight semi-empirical models, the most commonly usespread footings and buried pipes
designs, are chosen to determine a value of theaddgeaction modulug&sf. This modulus
is not an intrinsic parameter of soil; it dependstbe mechanical parameters of soil and
mechanical and geometrical parameters of the sireict

The objective of this chapter is to estimate theadmlity of soil reaction modulus from the
uncertainties in soil and structure parameters.nThaylor series approach (FOSM (First
Order Second Moment) and SOSM (Second Order Seddodhent) methods) are
successively used on these non-linear semi-empiriodels to estimate the uncertaintykof
from the uncertainties on the soil and the strectparameters and to determine the most

influential parameters on this uncertainty.

2.2. Modulus of solil reaction and suggested expressions
Soil has very complex mechanical behavior, becadises nonlinear, stress- dependant,
anisotropic and heterogeneous nature. Hence, thstéamodeling the subsoil in all its

complexity, the subgrade is often replaced by amsimpler system called a subgrade
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reaction model. The value of subgrade modulus eanltained in the following alternative
approaches:

Plate load tegDutta and Roy 2002; Bowles 1998)
Consolidation testDutta and Roy 2002; Bowles 1998)
Triaxial test(Dutta and Roy 2002)

CBR test(Nascimento and Simoes 19%f)d

Semi-empirical and theoretical relations that amppsed by researchers.

Among these methods, Plate load test and semi-m@lpaind theoretical relations are
utilized more than the others. Plate load test édrect method to estimate the modulus of
subgrade reaction. There are numerous semi-empinmcalels, which can be used to
determine the coefficient of subgrade reactionumetion of Young's modulus, the Poisson
coefficient of the ground and the parameters ofdtnecture(Elachachi et al., 2004; Ziaie-
Moayed and Janbaz 2008ach of the authors wrote a different but suéaipression (some
of formulas are given in Table 2-1), this fact uridéng the uncertainty attached to the semi-
empirical model of reaction (the same questionseafor the rigidity of the soil behind a
flexible screen).

Biot (1937) and Vesic (1961gxpressions are defined for infinite beams restingan
elastic soil continuumBiot (1937)solved the problem for an infinite beam restingaoBD
elastic soil continuum. He found a correlation begw continuum elastic theory and Winkler
model, that the maximum moments in the beam arateduBiot expression in Table 2-1).
Vesic (1961)matched the maximum displacement of the beam ith bwdels and tried to
develop a value fdks with matching bending moments. He obtained thexeon forks to use
in the Winkler model (Vesic expression in Table)2-1
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Table 2-1:Common relations suggested fqr k

Authors Suggested expressions Application
0108 i i i i
4 Infinite beams resting on an elastic sqil
Biot, (1937) = 095 { Eb ] Es ) g
2
b El 1-v, continuum
1
kg = kSlB for clays
Terzaghi, (1955) 2 Rigid slab placed on a soil medium
b+1
ks =kg| — for sands
S sl( % j
1-v Beams and plates resting on elastic Half
Viassov, (1960, 1066)  ks=— S Ys) _ (H, P J
(I+vs)(1-2vs) 2b space
4 Infinite beams resting on an elastic sqil
Vesic, (1961) ke = 0-65'17 Eb” _Es . . 9
b El 1-v, continuum
Meyerhof & Baikie (1963, ks = E—52 Buried circular conduits
(1-vs®).b
Kloppel & Glock (1979) Kq =2—ES Buried circular conduits
(1+vg)b
Selvadurai (1985) Kg :Ei Buried circular conduits
b (1_ V52 )
Matsubarg2000) Ks =ﬂi } Buried pipelines for seismic design
logAd 2(1+vg) b
Ménard a Beams and plates resting on elastic Half
1_ b 2B, b : .
—=— At Ag— space, different types of foundation
(Cassan, 1978) ks 9Es 9a ks Bo
(EpmTt = .Eg4, Cassan, 1978

Es and vs: Young's soil modulus and Poisson's ratio of sailnon-dimensional parameter, b: width of the
foundation(external diameter in the case of buppgak), El: constant bending stiffness of the sttet(E and |
respectively Young's modulus of the structure &dreditoment of inertia of the cross section of thecstre),B:
reference width of the foundatiom; structural or rheological coefficient, dgr: Ménard's pressuremeter
modulus,i. and 4: form factors of the foundation geometiy,the ratio between the distance to the point at
which the displacement is regarded as null andréftBus of pipe, &: the coefficient of subgrade reaction for a

plate 1 ft wide.
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Terzaghi (1955made some recommendations abiquiior 1x1 ft rigid slab placed on a
soil medium (Terzaghi expression in Table 2-1).sTéguation is also relevant in analysis of
plate load test results by substituting width oadmg plate with 1ft, but some of the
researchers instead of using these equations ti@a lplad test suggest using of those modified
by Arnold (Al-sanad et al., 1993)

Vlassov (1960, 1966@xpression is introduced for beams and platesgeen elastic half
space(Elachachi et al., 2004put ambiguities of estimating (non-dimensional parameter)
make the problem more complé&xlachachi et al., 2004; Sadrekarimi and Akbar28d9)

Meyerhof (1963) Kloppel (1979)and Selvadurai(1985) expressions are proposed for
computing the coefficient of horizontal subgradacteon in buried circular conduit®keagu
and Abdel-Sayed 1984and are employed for evaluationkgfin few limited casesHlachachi
et al., 2004

One should note that the expression figmisubara (2000needs an additional parameter
A (4: the ratio between the distance to the point athvthe displacement is regarded as null
and the radius of pipe). The magnitude of this patar being non-defined, it is taken equal
to 10 in this study.

If the site reconnaissance allows to acquire tHerdetion modulusEpyt, We can use
Ménard expressiorC@ssan, 197&o determine the value &§.

The value ofEs can be obtained from in situ testing such aspthte load test (Swiss test
(V.S.S.), ASTM Standard Testestergaard tesfCassan, 197ASTM, 1994 Ziaie Moayed
and Naeini, 2006and fieldtest drilling, such as pressuremeter testing (wighg=o.Es,
with Epyt Ménard's pressuremeter modulus andstructural or rheological coefficient)
(Cassan, 1978

2.3. Nature and origin of uncertainties

As it was mentioned before (section 1.1) uncerli@gntan usually be divided into two
groups: aleatory or active uncertainty and episteori passive uncertaint{i.acasse and
Nadim, 1996; Uzielli et al., 20085o0ils are naturally variable because of the wesy tare
formed and the random continuous processes of tiveroement that alter them. The
uncertainty in the mechanical properties of sdidsandvs) is due to the natural variability

from point to point within a soil volume and frombloratory measurements. The uncertainty
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in a length of low stiffness zone of soil benedtl pipe ) comes from the natural spatial
variability of soil on a site. Those in the width),(height f) and Young's modulus of the
structure Ec) and external diameted)(might result in their construction.

One approach to estimating the soil parameterséiainties when sufficient data is not
available is to use estimates based on publishégesiawhich are most conveniently
expressed in terms of the coefficient of variatf@V). Values of the coefficient of variation
for a number of geotechnical engineering parametedsin situ tests (such as soil strength
properties, soil index parameters, field measuresnemtd laboratory tests) have been
compiled byHarr (1987) Kulhawy (1992) Lacasse and Nadim (1996, 199Phoon and
Kulhawy (1999a,band Duncan (200Q)However, few data exist in the literatures conoey
the value of the coefficient of variation for sailodulus.Phoon and Kulhawy (1999a)
determined the value @V of soil modulus in sand from the direct methodegpuremeter
test and the dilatometer test) that was in theeafdl5-70%. Th&V of soil modulus in silt
determined by standard penetration test below caastfound to be in the range of 40-60%
and theCV of soil modulus in clay was estimated to be highep to 85%) but from a
correlation between soil modulus and standard patn@t test valuesPhoon and Kulhawy,
1999a)

From these different analyse<C& of soil modulus between 5 and 50% is considered in
this study. The possible range@Y for the solil ¢s andL) and structure parametesdndE,)
are based on statistical analyses and expert judlysiece there are no data available in the
literatures concerning these parameters.

Concerning the uncertainties lofindh, we have studied a real experimental site located at
Pessac (France) in order to estimate these unugetaiThis is described in the following.

» Estimation of the uncertainties ofb and h for a spread footing for a real

individual house (experimental site of Pessac)

The objective is to estimate the uncertainties avidih and a height of a spread footing
for an individual house on the experimental sitePeksac for a preliminary evaluation of
these uncertainties. As can be seen from FigureaZhalf of the individual house rests on the
sandy soil and the other half rests on the claygly he four spread footings of this house
with the lengths of 6 m (foriLand Lg) and 10 m (for k. and L), width of 0.5 m and height of

0.3 m are also sketched in this figure. The spfeatings (L1) and (Ls) respectively rest on
71



Chapter 2

the sandy soil and clayey soil while the half of gpeead footings @) and (L) rest on the
clayey soil and the other half rest on the sandly so

Spread footing (L,)

Figure 2-1: Constructed individual house with toerf spread footings on the experimental site osRes

Different construction stages of these spread ifigstion the experimental site are shown in
Figure 2-2. Figure 2-3 illustrates the measured hgidind heights along the lengths of the
spread footings during their constructions. Thisife shows the natural spatial variability of

these parameters along the spread footings dur@gdonstruction on the experimental site.
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Figure 2-2: Different construction stages of theesul footings on the experimental site of Pessac

60 1
Width (b)
0] N /\/\/\/\,
40 1
£
X
30 A1 Height (h)
<
S G S
20 1
e=ms Spread footing (L1), height Spread footing (L2), height
10 - emmSpread footing (L3), height ess»Spread footing (L4), height
—— Spread footing (L1), width Spread footing (L2), width
0 —— Spread footing (L3), width —— Spread footing (L4), width
0 5 10 15 20 25 30 35
Length of a spread footing (m)

Figure 2-3: Measured widths and heights along regths of the spread footings during their congtanc
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For the calculation of the coefficient of variatooof b andh for each spread footing, we
have considered the meansaindh for each spread footing (Figure 2-4a) which areveoy
different between spread footings. Note that thedees are inferior to the expected values
respectively 0.5 m and 0.3 m.

Figure 2-4b and Figure 2-4c shows the standardatieus and the associated coefficient
of variations of these parameteits [) for these four spread footings. The value of the
standard deviation of the width for the spread ifgs L, is greater than the value of the

standard deviation dfs, showing the difficulty to respect the width ofranch in sandy soil.

60 -
50 - Width (b)
—
S
e
= 40 1
o
c
cs .
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u—
o ——
(%)) aEE—
c
g 20 1
= e |\[ean of h for the spread footing (L1} Mean of h for the spread footing (L2)
e=mm\ean of h for the spread footing (L3y===Mean of h for the spread footing (L4)
10 A1
—— Mean of b for the spread footing (L1) Mean of b for the spread footing (L2)
—— Mean of b for the spread footing (L3)—— Mean of b for the spread footing (L4)
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4 A === Standard deviation of h forthe spread footing (L1)
Standard deviation of h forthe spread footing (L2)
=== Standard deviation of h forthe spread footing (L:3)

3,5 1 === Standard deviation of h forthe spread footing
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—— Standard deviation of b forthe spread footing (L3)
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Figure 2-4: a)Mean values of width (b) and heidh&long each spread footing, b) Standard deviatiohthese
values for each spread footing and c) Associateffiment of variations of these values for eacreag
footing

The maximum of inter assdyV for the width and height are respectively 0.07d ar084.

The inter assay of the coefficient of variationgred width and height between the four spread
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footings are respectively equal to 2.7% and 5% shgwhe inter variability between these
spread footings. All these statistical resultsragzimed in Table 2-2.

Table 2-2: Intra and inter assay coefficient of iadility

Spread footing| L (M) b (m) h (m) op (M) on (M) CVy CVy
L, 6 4537 26.23 3.34 0.89 0.074 0.034
L, 10 46.52 25.05 1.47 1.89 0.031 0.073
L, 6 4735 23.85 1.67 1.29 0.035 0.054
L, 10 48.83 27.38 1.81 2.30 0.037 0.084
Lo+ L+ Lot Ly| 36 47.08 26.77 2.47 2.15 0.05 0.08
Ly Lals Lo f 47.01 25.85 1.26 1.27 0.027 0.049
(inter assay)

L: length of a spread footinE),: mean widthFl: mean heightgy andop, respectively standard deviations of b
and h, CV, and C\4 respectively coefficient of variation of b and h

Of course, these results are for the constructetvichahl house with only four spread
footings on the experimental site of Pessac, ey tlive a first estimation of the coefficient

of variations for these parameters in case of ampitojects.

A synthesis of the origin of the soil and the stumue parameters’ uncertainties is presented
in Table 2-3.

Table 2-3:0rigin of uncertainties in the soil and structurarpmeters and possible range of the coefficient of
variation for each parameter (in the case of spréaating and buried pipe)

Aleatory uncertainty Epistemic uncertainty Possible range of the coefficient
Parameter
Natural variability Measuremenincertainty ~ Constructionuncertainty of variation %
Es * * [5-50]
Vs * * [2-10]
L * [5-50]
b * [2-10]
h * [2-10]
d * [2-5]
Ec * (2-10]

Es Young's soil moduluss: Poisson's ratio of soil, L: length of low stifsgezone of soil beneath the pipe, b and
h are respectively width and height of the spreaatifig, d: external diameter of the pipe; Foung's modulus
of buried pipe or spread footing
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2.4. FOSM and SOSM methods

The calculation methods of variance used in thidystire based on the first order (FOSM)
and the second order (SOSM) of the Taylor serieth whe assumption thahe input
parameters act independently of each other.

Equation 1-38 and Equation 1-40, expressed in te@fwariance, are rewritten in terms of
the coefficient of variatiol©V (standard deviation divided by the mean), EquaZdnforthe
FOSM method and Equation 2-2 for the SOSM methodnzadeh et al., 201:1)

— 2
2 o[ 0f(x) X 2
CVi (%)= Z( ox m) -GV Equation 2-1
0 (of(x) x )
CVit (%) =Z( ox f?x)j CVZ+A, .CV Equation 2-2
with
" (1 0%8(x) (X))
A(i :Z(E ax|2 ' f(X)j /1 Equat|0n 2'3

where CV,, (x ) is the coefficient of variation of (x)for thei input variablegx), CV, the

coefficient of variation for the input variabig S the mean of the input variablésf(x) the
mean of the functiof(x) andn the number of variables.

The greatest advantage of the FOSM method is mgpl&ity; no higher moments or
distributional information on the system’s basiaiables are necessary. When applied to

engineering design problems, one issue can begabmnit:

- The relative non-accuracy of the first order Tayeries approximation for strong non-
linear problems. The SOSM method is often usediamtify the non-linear level of the

studied function.
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However, one of the strengthest of the FOSM methdtat, it allows the assessment of
the absolute contribution of the individual basariable uncertainties to the uncertainties of

the overall system (sensibility analysis).

2.5. Estimation of the influence of soil and structure arameters on the coefficient of
variation of ks

The influence of the variability of the soil paraers, the geometry and the mechanical
properties of the structure (spread footing andeoiupipe) on the reaction coefficiefkt) will
be successively studied for each semi-empiricalehading the FOSM and SOSM methods
(Equation 2-1 and Equation 2-2) in the followingll Aalculations are performed using
MAPLEO®O software.

2.5.1. Common semi-empirical models for calculating the mdulus of soil reaction for
spread footings

Four semi-empirical mode[8iot (1937), Vlassov (1960, 1966), Vegit961) and Ménard
(Cassan, 1978)rommonly used in the design of spread footings cansidered in this study
in order to obtain a value of the soil reaction modu These semi-empirical models are
represented in Table 2-4. The calculatiorkois a function of soil parameters (modulus of
the soil Es and Poisson's ratio of soil), the parameters related to the geometry of the
foundation (widthb and height) and a mechanical property of the foundation {tbeng's
modulus of the concretg;) (Table 2-4).
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Table 2-4: Semi-empirical models proposed for tloelutus of soil reaction (kfor spread footings

Author Semi-empirical model

o - 095(12ED R
Biot (1937) b | ER 1

__ E@d-v,)) Ay
*o(A+v))(1-2v) "2

3
Vesic (1961) k. = 0'65.1 12ED : E, 5
b Eh® 1-v,

1_b . 2B b
Ménard (Cassan, 1978) | |k "o “* 9gE 1 °B

0

Vlassov (1960, 1966)

Es andos Young's soil modulus and Poisson's ratio of sailpon-dimensional parameter, b, h ang width,
height and Young's modulus of the foundatignr&erence width of the foundatiosm, structural or rheological

coefficient, Eyr: Ménard's pressuremeter moduldsand/g: form factors of the foundation geometry

In order to compare these models between each, etkaiake the common dimensions of
a wall footing for a residential construction: widif 0.5 m, height of 0.3 m and length of 10
m. Young's modulus of the foundati&j is equal to 20 GPa and the paramgtet. In the
case of the pressuremetst0.5, thereference width of the foundatidBy) equal to 0.60 m
and the form factors of the foundation geomeétrgndly are alldetermined as a function of
the ratio between the length and the width of thentlation.

The coefficient of reaction for the modulbsbetween 1 and 30 MPa and Poisson's ratio of
0.3, presents values between 0.875 and 63 MNigure 2-5). Ménard’s model gives the
greatest values d§ and Vesic’'s model gives the lowest values; fordbasidered values in
this example, a factor of two exist between these models. The multitude of models
underlinesthe difficulty for the practitioner to choose a walof subgrade reaction modulus

for a given value oEs.
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Figure 2-5: Evolution of the coefficient of soilion (k) as a function of Young's soil modulug) ®r studied
semi-empirical models.

2.5.1.1.Estimation of the influence of soil and spread foadg parameters on the
coefficient of variation of ks (FOSM method)

Soil subgrade reaction coefficiefks) is afunction of the soil paramete(gs,vs) and the
spread footingb, h, E) (Table 2-4). The origin of uncertainties differs the function of
these parameters (Table 2-3).

Using the FOSM method, the coefficient of variatminks can be obtained, for the four
semi-empirical models, by a unigque expression inolydoefficients of variation of the soil
and the structure parameters with different weigktpuation 2-4). The values ¢f depend
on each semi-empirical model and give the absatotgribution of the individual basic
variable uncertainties to the uncertaintykof

_ 2 2 2 2 2) 05
CVkS —((/]ESCVES) +(/]bCVb) +(/7VSCVVS) +(/7hCVh) +(/]ECCVEC) j Equation 2.4

2.5.1.2. Estimation of the influence of the soil parameters
The relationship between the modulus of the d8§) &nd the reaction modulu&s) is

linear for the Ménard and Vlassov models, and mosar for the Vesic and Biot models
(Table 2-4). This leads to coefficienis=1 for the Ménard and Vlassov models ajac-1.1

for the Vesic and Biot models.
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The uncertainty of Poisson's ratio of soil is na@nerally taken into account and a
deterministic value, from expert judgment, is oftemsidered. However, the uncertainty of
this parameter cannot be neglected in the threestlmatth the presence of this parameter,
especially in the case of the Vlassov model; itgression for,s is given by the following
formula (Equation 2-5):

= ZVSZ(Z—VS) _
Vs (1_V32)(1_2Vs) Equation 2-5

For the interval between 0.15 and 0.35 for Poissmtio, the coefficieng,s varies from
0.12 to 1.5 (Figure 2-6).
In the case of the Vesic and Biot models we ohitansame expression for the coefficient

nvs (Equation 2-6):

s 1-p2 Equation 2-6

The coefficient;,s for the same interval 0.15 to 0.35 for Poissoa® rvaries from 0.05 to
0.28. For these two models, the influence of theedinty of Poisson's ratio is less important

than for Vlassov's model (Figure 2-6).
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1’2 . . . ‘
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Figure 2-6 : Evolution of coefficients as a function of the Poisson's ratio of sej) for studied semi-empirical
models (FOSM method)
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2.5.1.3.Estimation of the influence of the spread footing agrameters

The width of the spread footin@P) comes in four models, its heigfit) and Young's
modulus of concrete only in the Vesic and Biot nisdEor the parametgb), we obtain a
coefficients,= 0.75, 0.675 and 1 respectively for the Vesic,tBind Vlassov models. The
coefficients, for the Ménard model is a function laf

830v/b + 1401
415Jb + 1401 Equation 2-7

n, =05.
The influence of the variability of this parametar the variability ofks is more important
for the Vlassov model, then the Vesic and Biot, éindlly for the Ménard wherg,= 0.59 for
the foundation width equal to 0.5 m. When the fatimh width is between 1.5m and 3m (for
the Ménard model), its value becomes almost conhstad close to the value of the Biot

model (Figure 2-7).

1,05
L A A A A A A A A A AAAAAAAAALAAMAAMADLMAMAAMAALMAMAAALD
0,95 » Vlassov model
+ Vesic model
0,85 = Biot model

¢ Menard model

=
S 0TS P ¢ 0466606060664 06060600000000000000

0,65 °
P X B seoo o
[
o ®
0551 ¢ ®
0,45 T r T T T r )
0 0,5 1 1,5 2 25 3

b(m)

Figure 2-7: Evolution of coefficierffb as a function of the foundation width (b) for sealsemi-empirical
models (FOSM method)

Concerning the height of the foundati@ir), we obtain the coefficientg=0.25 and 0.324
respectively for the Vesic and Biot models. Thduehce of the variability of the parameter
(h) on the reaction coefficierfks) for the Biot model is more important than Vesinigdel
but remains two to three times smaller than thieiémice of the parameté).
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For Young's modulus of concrete, Vesic's and Biotiedels give a coefficienjg., also
very similar, it is possible to give an averageffioent #=0.1. The value ofCVg. depends
on the quality of concrete. Even for concretes Whiteir properties will be very different
from a spread footing to another spread foot@yg(=20%), uncertainty on the coefficient of
reaction due to this parameter remain low (2%).e Thncertainty of this parameter in the
estimation of the coefficient of variation kfcan be neglected.

The synthesis table (Table 2-5) shows all the icrlatobtained by the FOSM method and
gives, for the same value @fV,;, the most influential parameters on the estimatbthe

variability of k.

Table 2-5: Coefficient,; obtained for each parameter of semi-empirical ni®@EOSM method)

Semi-empirical models
nxi
Ménard Vlassov Vesic Biot
. 1 * %k 1 * %k 1083 EE 2 2 1_108 * kK
g
s
0.5 83OJ; +1401 1 0.75 0.6750
s 4153b +1401
kxk *® % * %
*%
2 2 2
v “(2-v 2 ,
7]"5 - 5 { s ) - -VS_ -, 21 P »
2y 5
(J—VS ){1—2»{5) 1_1;S~ ;_VSZ
N - * ok *k
m, 0.25 0.324
- - * *
?}Ec 0.0833 0.108

*: low influence, **: modeminfluence, ***: high influence

2.5.1.4.Quantification of non-linearities in the estimation of coefficient of variation ofkg
(SOSM method for spread footing)

Equation 2-3 allows us to obtain the coefficiéqtfor each parameter of semi-empirical
models using the SOSM method. All the obtained esgions are presented in Table 2-6.

The calculated coefficient values in this Table egithe importance of non-linearity
attached to each of the parameters.
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Table 2-6: Coefficiend,; obtainedfor each parameter of semi-empirical models (SOSithod).

The parameter of depends on the probability distribution

Semi-empirical models

Ménard Vlassoy Vesic Biot

Ag - - 0.002 A 0.0036 X

(1377800b + 5232735Vh + 5888403)% A
Ab 0.016. — A 0.431 2 0321 x
(415Vh + 1401)*

4 (1—2v +6v2)2v? 3 (1 +3v52)2vs“_ (1+:3v52)2v;.
Vs ) (1= v)?(1 = 2vg) (1 +v)* (1—v®)? 1-vH*

Ay, . - 0.0242 0.046 %

c - - 0.002A 0.0036 X

The values of the coefficients, A, , Aec for all these semi-empirical models and with
/=2 (for a preliminary evaluation, all random varedblare assumed to follow a normal
distribution) are between 4xf0and 92x10 showing insignificant effects on the second
order terms of Taylor series (Equation 2-2).

The coefficientA, for the Ménard model is a function bf(Table 2-6). Evolution of
coefficient A, as a function of the foundation width)( for studied semi-empirical models
using the SOSM method, is shown in Figure 2-8.rAthe case of calculation the coefficient
b, the value of the coefficier, is the greatest for the Vlassov model and the ssiaibr the
Ménard model. When the foundation width increabesvialue of Ménard model is close to

the value of the Biot model.
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1,81 A Vlassov model
1,6 1 < Vesic Model
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1,2 1
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<
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0,2
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Figure 2-8: Evolution of coefficient,Aas a function of the foundation width (b) for saesemi-empirical
models (SOSM method)
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Concerning the Poisson's ratio of soil, the coefitA s for these models is a function of
vs (Table 2-6). For the value of between 0.25 and 0.35, the coefficiégns for the Vlassov
model varies from 0.66 to 28.73 while for the Bemd Vesic models (with the same

expression) it varies only in a range from 0.010.@95 (Table 2-6, Figure 2-9).

30 1 - 0,1
4
25 A —
Vlassov model o, oo08 .5
) . . * 28]
S 201 # Vesic and Biot models . o
24 . £ 0,06 @©
° . o
\>./ 15 . ¢ A B
()
¢ o 4 0,04 =
< 10 * A %)
< >
< A <
.
o* A
* A - 0,02
5 ** A
T4 A
' R 4 AAA
A A
0 4 AAS T T 0
0,2 0,23 0,26 0,29 0,32 0,35

Vs

Figure 2-9: Evolution of coefficier,s as a function of the Poisson’s ratio of sei) for studied semi-empirical
models (SOSM method)

These coefficientsA,, Aec, As, An), Will be multiplied by coefficients of variatiobelow

10% with the power of four (Table 2-3, Equation 21Ren the second order terms calculated

4
by the SOSM method'%Xi 'CVXi, Equation 2-2) can be neglected. The FOSM metlhmtkas
sufficient to correctly estimate the coefficients \driation of ke The improvement in
accuracy is not always worth the extra computatiefi@rt, and these results confirm why

SOSM method has not often found wide use in geaieahapplications.
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2.5.1.5.Simplified formulas for the calculation of the coeficients of variation of ks in the
case of spread footing

The evolution ofCVys (Coefficient of Variation ofks obtained from Equation 2-4) as a
function of CVgs (Coefficient of Variation oEg) for these semi-empirical models is shown in
Figure 2-10. For this and as an example, diffepemameters have to be fixdak0.5 m,vs =
0.3 and the coefficients of variation for each pagter equal to 10%.

When CVgs is close to zero, the coefficient of variation kgfis greater for the Vlassov
model and then for Vesic’'s and Biot's models. Thoefticient of variation ofks varies
between 0.06 and 0.13 (Figure 2-10). Ménard’s maeddth only takes into account the
uncertainty of the parametdbsandEs gives, as expected, the lowest value of the coefft
of variation ofks whatever the value d&Ves For the value o€CVgs greater than 0.2 (Figure
2-10), we observe a linear behavior betw€&; andCVg,, which shows that the influence of
the variability of structure parameters and Poissoatio is less important when the
coefficient of variation ok is high. In this case, the coefficient of variatiof ks for the Biot
model is greater than those from other expressiamte the Vlassov model tends to the
Ménard model. Then the coefficient of variatiorkeis directly proportional to the coefficient

of variation ofEg, it can take a unique expression as (Equation 2-8)

CV, =ne CV, .
ke =778, Ve, Equation 2-8

wherernes=1 for the Ménard and Vlassov models apg=1.1 for the Vesic and Biot models.
The Equation 2-8, allows us to obtain a first eatenof the coefficient of variation &

when the coefficient of variation dEs is 2 to 3 times greater than the values of the

coefficients of variation of the parametérss andh.
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Figure 2-10: Evolution of C\ (Coefficient of Variation of), as a function of G (Coefficient of Variation of
Ey) for studied semi-empirical models (FOSM method)

The coefficienty, (Table 2-5) was simplified for the values of foatidn width p) and
the Poisson’s ratio of soibd) for these semi-empirical models (Table 2-7). Friaquation
2-4, simplified expressions are obtained for thkuesm ofb between 0.3 and 1.5 m for the
Ménard model (Equation 2-9) and the valuesobetween 0.25 and 0.35 for the Vlassov
(Equation 2-10), Vesic (Equation 2-11) and Biot{&tion 2-12) models:

Table 2-7: simplified coefficient; obtained for each parameter of semi-empirical ni@@OSM method)

Semi-empirical models
T'lxi ” . .
Ménard Vlassov Vesic | Biot
T]E\_ 1 skskok 1 shsksk 1033 skskok 1108 sk sk k|
(0.05b + 0.56) for b = [0.3m; 1.5m] *4
UM 1 w075 w0675
0.65 for b=[1.5m; 3m] #*
Tlv . (10.4v, — 2.22) for vy =[0.25 0.35] #++ 0.2 K 02
S
T|h - - 0.25 *H 0.324 =

*. low influence, **: moderate influence, ***: higinfluence
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CV, = [CVe, 2 + ((008b+ 056).CV,)?) O Equation 2-9
CV,, = (CVESZ +CV,” +((104v, - 222).CV,, 2) 05 Equation 2-10
CVi, =((1083.CVe, )? + (075.CV, 2 + (02.CV,, )+ (025.C%)?)®  Equation 2-11

CVy, = ((1.108.CVES )?+(0.675.CV, )* + (02.CV,_)*+(0.324.CV, )2) 05 Equation 2-12

The error between the coefficients of variatiorkgfrom the simplified models and those
from the full models is on average less than 2%mp8fication is acceptable and provides
simplified expressions when taking into account thsimum parameters for an easier
determination of the coefficient of variation oetboil reaction modulus in the case of spread

footing.

2.5.2. Common semi-empirical models for calculating the mdulus of soil reaction for
buried pipes

Six semi-empirical model&iot (1937), Vesic (1961), Meyerhof & Baikie (196Kloppel
& Glock (1979), Matsubara (2000) and Selvadurai Bl§&ommonly used in the design of
buried pipes, are considered in this study in ordeobtain a value of the soil reaction
modulus ks) (Table 2-8). The calculation &f is a function of soil parameters such as the soil
modulus Eg) and soil Poisson's ratios), the parameters related to the geometry of the pi
(external diameterdj and thicknessef) and a mechanical property of the pipe (the Yd&ing
modulus of the concret&() or steel Ep)) (Table 2-8).
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Table 2-8: Semi-empirical models proposed for tloglutus of soil reaction ¢kfor buried pipes

Authors Semi-empirical models
4 0.108
. 0.95 64.E,d E,
Biot (1937) ks = | 7 7 . 2
d \E.x(d? —(d-2¢)") I-v,
o E 0.083 .
Vesic (1961) k= 0'65. 4' ol 7 —
d \E.x(d®—(d-2e)?) 1-v?
ES
Meyerhof & Baikie (1963) k; = m
, __2E,
Kloppel & Glock (1979) X, (1+v jd
L2 E 1
Matsubara (2000) 5 logﬂ.Z(]-i-Vs ) d
065 E
Selvadurai (1985) k, :7'(1——1/52)

Es Young's soil modulus,: Poisson's ratio of soil, d: external diametertbé pipe, E Young's modulus of the
pipe, e: thickness of the pipe aaAdthe ratio between the distance to the point atctvhthe displacement is
regarded as null and the radius of pipe.

In order to compare these models with each othertake the common dimensions of a
buried pipe: external diameter of 1.5 m and thissnef 0.15 m. Young's modulus of the
concrete pipeH,) is equal to 20 GPa (Young’s modulus of the piped continuous buried
steel pipe is equal to 210 GPa), Poisson's ratibh®&nd the magnitude of parametdreing
non-defined, it was taken to be equal to 10. Theffaxent of reaction for the moduluss
between 1 and 30 MPa, presents values between @29348,3 MN.ii (Figure 2-11).
Matsubara’s model gives the greatest valuks@ind Vesic’'s model gives the lowest value of
ks. The value ofks for Kloppel's model is almost the average of tteues of these two
models. Biot's and Selvadurai’s models give alntbstsame value d§ and the value ofs
for the Meyerhof model is nearly twice that of tredue of the Vesic model for the considered
values in this example. The multitude of models rgivivery different results, it underlines
again the difficulty for the practitioner to choasealue of the subgrade reaction modulus for

a given value OEs.
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Figure 2-11: Evolution of the coefficient of salaction (k) as a function of Young's soil modulusg) &r
studied semi-empirical models.

2.5.2.1.Uncertainty estimation of the coefficient of subgrde reactionks (FOSM method)
for the buried pipe parameters

25.2.1.1. Effect of the soil parameters

Soil subgradereaction coefficientlk) is a function of the soil parametens;(vs) and
buried pipe parameterd,(E.). The unwanted variation of thickness in a pipeastaken into
account and the deterministic value equal to 0.1iS nonsidered for a pipe thickness. As it
was mentioned earlier in chapter 1 (section 1.&a2pncrete buried pipe with the quasi rigid
joints is considered in this study with the simation of the same rigidity all along the
pipeline.

The relationship between the soil modulks) @nd the reaction moduluks) is linear for
the Meyerhof, Kloppel, Matsubara and Selvadurai e®dand non-linear for Vesic and
Biot's models (Table 2-8). This leads to coeffiteene=1 for the Meyerhof, Kloppel,
Matsubara and Selvadurai models apgkl.1 for the Vesic and Biot models (The valuegf
obtains from Equation 2-4).

In the case of the Vesic, Biot, Meyerhof and Selwad models we obtain the same

expression for the coefficienis (Equation 2-13):
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2 Equation 2-13

For the interval between 0.15 and 0.35 for Poissmatio, the coefficient,s varies from
0.05 to 0.28 (Figure 2-12).
In the case of Matsubara and Kloppel’'s models wainlthe same expression for the

coefficients,s (Equation 2-14):

,7'/5 14 Ve Equation 2-14

<

For the same interval 0.15 to 0.35 for Poissottie,rthe coefficient;,s varies from 0.13 to
0.26 (Figure 2-12).
For these six models, the influence of the uncatyanf Poisson's ratio on the uncertainty

of ks remains less important than the uncertaintiof
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Figure 2-12: Evolution of coefficients as a function of the Poisson's ratio of soi) for studied semi-empirical
models (FOSM method)

2.5.2.1.2. Effect of the buried pipe parameters
The external diameter of the pigd) appears in each model and Young's modulus of

concrete only in Vesic and Biot's models. For tlaegmeterd, we obtain a coefficienjg=1
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for the Meyerhof, Kloppel, Matsubara and Selvadunaidels. The coefficienjq for Vesic
and Biot's models is a function of external diaméth and thicknesge) of the pipe fq = f

(@, &, d, € &, e). Evolution of coefficientq as a function of the external diameter of pipe
(d) for these semi-empirical models is shown in FegRrl3. The influence of the uncertainty
of this parameted on the uncertainty oks is more important for the Meyerhof, Kloppel,
Matsubara and Selvadurai modejg=l) than for Vesic and Biot's models (for example, if
€e=0.15m andd>1m, the value 0#4=0.93 for Vesic's and;4=0.91 for Biot's model). The

influence ofd is almost as important as thatkaf

1,05 1
1
0,95 1
©
=
0,9 -
——\Vesic model
0,85 1 —=—Biot model
—e— Meyerhof, Kloppel, Matsubara and Selvadurai models
0,8 T T T T T T 1
0,2 0,6 1 14 1,8 2,2 2,6 3

d(m)

Figure 2-13: Evolution of coefficient as a function of the external diameter of pipef@d)studied semi-
empirical models (FOSM method, €=0.15 m).

For Young's modulus of concrete, Vesic and Biotsdels give a coefficienjg. also very
similar; it is possible to give an average coeéiitizec= 0.1. As in the case of the spread
footings, the uncertainty of this parameter ing¢sémation of the coefficient of variation kf
can be neglected.

Table 2-9 shows all the relations obtained by t&&M method and gives, for the same value

of CV;, the most influential parameters on the estimadicthe uncertainty ofs.
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Table 2-9: Coefficien,; obtained for each parameter of semi-empirical to@OSM method)

n Semi-empirical models
X
Vesic Biot Meyerhof Kloppel Matsubara Selvadurai
7]E 1. 0833 1.108 1 1 1 1
|g etk L sk LS sekok ko
n y f(d’ d® d,e’ el e) | f(d’ d’d e’ e’e) 1 1 1 1
&k *kksk Kok *kkk kkk ko
, 2 E , 2 Hop 2 wx v % v y .2 ax
771/ 21 s 21 s 21/5 B 1 N ) ZLS
5 1-v 2 1oy ? 1oy ? I+v I+v 1-v 2
5 5 5 5 5
7 0.0833 0.108 - - -
EC * #
*: low influence, **: moderate influence, **high influence
. 0.5%107° " 10, 43 Hi 2 0,2 0., 3
Vesic: 17, = -X(0. 7659512690 % 10" xd” —0.1044524579% 10" x ed~ +0.6267481694 x 10" x e~d —0.1392866549x 10" x e’ )

4d” —6ed® +4e°d —e

5x107° > )
L % (0.2347023783x 10" xd” —0.3094282477 % 10" x ed” +0.1778686186 x 10" x e*d —0.3736293467 % 10 xe” )

Biot: )y =———————
T dd? —6ed? +4ed — &

2.5.2.2.Quantification of non-linearities in the estimation of coefficient of variation ofkg
(SOSM method for buried pipe)

The coefficientAy; for each parameter of semi-empirical models, uiegSOSM method,
is obtained from Equation 2-3. All the obtained megsions are shown in Table 2-10. As it
was mentioned earlier, the calculated coefficieriies in this Table give the importance of

non-linearity attached to each of the paramegiersnzadeh et al., 2013a)

Table 2-10: Coefficient fobtained for each parameter of semi-empirical ni@8OSM method)

A Semi-empirical models
Xi
Vesic Biot Meyerhof Kloppel Matsubara Selvadurai
AES 0.002 A 0.0036 A - - - -
A Ak B.% % 7y a n
A ﬂ.vf.(]+3vf)z l.vf.(]+3vf)z l.vf.(l+3vf)2 Av? _awv? ﬂ.vf.(]+3vf)2
v LV XTIV )
s ) (i) (i) e | el T

The parameter of depends on the probability distribution

0.2x 107" ; ) -
e ':,,x';J.f 77 x(0.6173022949% 10" xd® —0.3367250350x 10" x ed’ +0.8638152803% 10" x e’ d* —0.1304078356 % 10" x *d” +
(d” —3ed” +4ed —2¢" )
+0.1218223984% 10" x *d” —0.6559865819% 10" x &°d +0.1561908512x 10" x¢® )’

2 -8 2
P ”}; - ';“, T %(0.1773678527 x 10" x d® —0.9353569275x 10" xed” +02307485493x 10" x e’ d” —0.3357443184x10" xe*d” +
(d8” —3ea” +4e a—2e
+3046895160 % 10" x ¢’ d* —0.1600778545 % 10" x &’ d +0.3744064378 x 10" x ° )
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The values of the coefficie®es for the Vesic and Biot models are respectivelyaéda
4x10°% and 7.3x10 (assuming that=2 for a normal distribution) that can be insigraft
effects on the second order terms of Taylor s€Egsiation 2-2).

The coefficientAy for the Vesic and Biot models is a function ofezral diameterd) and
thickness €) of the pipe where for the Meyerhof, Kloppel, Mdiara and Selvadurai models
is equal to 2 (Table 2-10). Figure 2-14 shows evatuof coefficientAy as a function of the
external diameter of piped) for studied semi-empirical models. As in the ca§d~OSM
method for buried pipe, the influence of the urmiety of this parameteat on the uncertainty
of ks Is more important for the Meyerhof, Kloppel, Matatd and Selvadurai modelsy(=2)
than for Vesic and Biot’'s models (for exampleg=#D.15m andl >2.5 m, the value oAs=1.63
for Vesic's andA4=1.53 for Biot’s model).

2,2 1
2
1,8 -
©
<
1,6 -
—e—\Vesic model
1,44 —®-Biotmodel
—o—Meyerhof, Kloppel, Matsubara and Selvadurai models
1,2 T T T ]
0,5 1 1, 2,5 3

5
d(m)

Figure 2-14: Evolution of coefficientyAs a function of the external diameter of pipeféd)studied semi-
empirical models (SOSM methdd?2 and e=0.15 m)

Concerning the Poisson's ratio of soil, the cogffitA,s for these semi-empirical models is
a function ofvs (Table 2-10). For the value ef ranging from 0.15 to 0.35, the coefficieht
for the Vesic, Biot, Meyerhof, and Selvadurai mad@lith the same expressions) varies from
1.3x10° to 95x10° while for the Matsubara and Kloppel models (wlie same expressions)
it varies only in a range from 0.6xi0to 9x10® (Figure 2-15). The influence of the

uncertainty of the Poisson's ratio of soil fgr> 0.18 on the uncertainty & for the Vesic,
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Biot, Meyerhof, and Selvadurai models is more ingoarr than the Matsubara and Kloppel
models.

The obtained coefficients in Table 2-184( A, Will be multiplied by coefficients of
variation below 5% with the power of four (Table82Equation 2-2), then the second order
terms calculated by the SOSM method can be negdleéigain, the FOSM method alone is
sufficient to correctly estimate the coefficienfsvariation of subgrade reaction in case of

buried pipes.
0,1 1
® Matsubara and Kloppel models . ¢
0,081 * Vesic, Biot, Meyerhof and Selvadurai models . ¢
*
0,06 1 .
n *
< *
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0,04 1 o
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Figure 2-15: Evolution of coefficient Las a function of the Poisson’s ratio of sai) for studied semi-
empirical models (SOSM method, buried pipe2)

2.5.2.3.Simplified formulas for the calculation of the coeficients of variation of ks in the
case of buried pipe

The evolution ofCVs (Coefficient of Variation ofks obtained from Equation 2-4) as a
function of CVgs for these six semi-empirical models is presenteligure 2-16. For this and
as an example, different parameters have to bel:fixe= 0.3, e=0.15 mgd=1.5 m and the
coefficients of variation for each parameter eqad&%.
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97 v=0.3,d=1.5m, e=0.15 m and GACV,c=CVe=5% .
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Figure 2-16: Evolution of C\(Coefficient of Variation ofd) as a function of C\ (Coefficient of Variation of
E,) for studied semi-empirical models (FOSM methadafburied pipe)

WhenCVgsis less than 0.1, the value of the coefficientariation ofks is almost the same
for all the semi-empirical models. For a valueQ)g; greater than 0.1, we observe a linear
behavior betweerCV,s and CVgs, which shows that the influence of the uncertamtof
structure parametersl @nd E;) and Poisson's ratio are less important when dleficient of
variation ofEs is high. In this case, the coefficient of variatiohks for the Biot and Vesic
models is larger than those from other expressi@s. the contrary, Meyerhof's and
Selvadurai’s models give the lowest value of theffement of variation ofks. Accordingly,
the coefficient of variation oks is directly proportional to the coefficient of veation of Eg
and can take a unique expression as we obtain#tinase of the spread footing (Equation
2-8) whereyes=1 for the Meyerhof, Kloppel, Matsubara and Selvadunadels, andie=1.1
for the Vesic and Biot models.

Although the six semi-empirical models give sixfeliént values oks their associated
coefficients of variation ofs are close to each other (Figure 2-16).

The coefficientyy (Table 2-9) was simplified for the external diameiepipe () and the
Poisson’s ratio of soih{) for these semi-empirical models (Table 2-11).nkBquation 2-4,
simplified expressions are obtained for the vahfes between 1 and 3 m angdbetween 0.2
and 0.35 for the Vesic (Equation 2-15) and Biotu&pn 2-16) models and the valuesvof
between 0.2 and 0.35 for the Meyerhof and Selvaduaaels (Equation 2-17), Matsubara
and Kloppel models (Equation 2-18):
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Table 2-11: Simplified coefficien); obtained for each parameter of semi-empirical ne e
d=[1 m; 3 m],v<=[0.2; 0.35] (FOSM method)

n Semi-empirical models
-
! Vesic Biot Meyerhof Kloppel Matsubara Selvadurai
g 1.0833 1.108 1 1 1 1
s
nd 0.93% *koH 091 k| 1 ek 1 EELS 1 ko] 1 EE sy
?71/ (1.3vg — 0.19) == (1.3vy — 0.19) ¥ (1.3vs —0.19)  #+  (062v, — 0.045) =4  (0.62vy — 0.045) = (1.3v, — 0.19)
s

*: low influence, **; moderate influence, ***: higinfluence

CV,, =((1.083.CV, )? + (093.CV, )? + (130, - 019).CV, )%)*  Equation 2-15
CV, =((1108.CV, )2+ (091.CV, 2 + ((13v, - 019).CV,, )?)*® Equation 2-16
CV. = ( CVi.” +CV, + ((13v, - 019).CV,, )2) o Equation 2-17

CV = (chs2 +CV,* + (062, -0.045).CV), )2) 0° Equation 2-18

The error between the coefficients of variatiorkgfrom the simplified models and those

from the full models is on average less than 2%.

2.6. Summary and conclusions

In this chapter, the main concept of the modulusmf reaction and some of the most
important relationships for obtaining its value wentroduced in detail. We explained the
reasons and the methodology for obtaining the taicey on the soil reaction modulus. Soill
and its structural’s properties as well as therantainties were considered in order to reveal
their effects on the uncertainty of the coefficiehtoil reactionk;).

Eight semi-empirical models which give the coe#iu of subgrade reaction were studied
by considering the natural variability and measuweetuncertainty of soil properties and the

construction uncertainty of the structural elements
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The FOSM and SOSM methods were successively usétesa semi-empirical models to
determine the coefficient of variation of soil rean modulus and to evaluate the influence of
the soil and structure parameters. Results obtaiisetdy the FOSM method for the spread
footings show the major effects of the uncertagté soil modulus, Poisson’s ratio and the
width of the continuous wall footing on the uncertg of the coefficient of subgrade reaction.
For the latter, results in the case of buried pgiesvy the major effects of the uncertainties of
soil modulus, the external diameter of buried pgred Poisson's ratio of soil, on the
uncertainty of the coefficient of subgrade reactidfe showed that if the additional amount
of accuracy resulting from the SOSM method wagmsicant then the FOSM method alone
would be sufficient to correctly estimate the caadints of variation oks.

Finally, simplified expressions for each semi-engpirmodel were proposed, taking into
account the minimum parameters for determiningctiefficient of variation of soil reaction
modulus. For these semi-empirical models, the watid¢he coefficient of variation & were
very close if the coefficient of variation &f were 2 to 3 times greater than the coefficients of
variation of parametelts, v, h andd.

The expressions obtained for the spread footingt the buried pipes could then be
introduced in different analytical models such asnkMr's model with one parameter,
Vlassov & Pasternak models with two parameterstaadKerr model with three parameters
in order to determine the uncertaintylkgion the settlements and bending moments of spread
footings and buried pipes resting on an elastit gdiis will be discussed in detail in the

following chapter.
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3. Effect of uncertainty of the subgrade reaction modlus and a low stiffness zone on
the behavior of the superficial geotechnical works

3.1. Introduction

In this chapter obtained uncertainty kaf from the uncertainties on the soil and the
structure parameters for each semi-empirical masl@éhtroduced to the analytical solution
of a beam from Winkler hypothesis and with diffarboundary conditions. FOSM method
is used on this analytical solution in order toedetine the uncertainty on the differential
settlements, bending moments of the superficiateggmical designs respectively in the
specific case of continuous spread footing fordesiial construction and the buried pipes
(buried steel pipe and buried concrete pipe) resim@n elastic soil. The obtained results
then can be translated in terms of probabilityush raccording to the allowable thresholds
for the differential settlement and bending momardrder to assess the probability of the
design not reaching the required performance.

Finally, the calculation methodology, to obtain ttmmfidence bounds of the differential
settlement and the bending moment of the supdrfieiatechnical designs, for each semi-
empirical model, is presented. For the cases wierehoice of a suitable semi-empirical
model for the estimation of uncertainties (@non the differential settlement and on the
bending moment of a spread footing or buried pigehot straightforward, a global
uncertainty approach is proposed. This approadhdes the uncertainties from each semi-
empirical model and it can be used to verify if maxm values exceed the values for the

limit state designs.

3.2. Effect of uncertainty of ks on the behavior of a continuous spread footing

In this part, the longitudinal direction of a contous spread footing is considered, in
order to investigate the influence of longitudisall variability and structure uncertainty
on differential settlement and the bending momernthisf structural element, for the case
of residential constructions with relatively lightbaded walls.

Using the FOSM method applied on the deflection #gugEquation 1-51) and the
equation of bending moment allows us to study tifleence of the uncertainty & on the
uncertainty of the settlement and bending momenh wifferent boundary conditions.

Uncertainties on the differential settlement anddieg moment, which are function of the
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variation of k;, are translated in terms of coefficients of vaomt(Equation 3-1 and
Equation 3-2 respectively for the differential kattent and bending moment):

—\2
cV? :(a("") ﬁj CV?

ok, " w Equation 3-1

with CV,, the coefficient of variation of the maximum defiea, w is the maximum
deflection as a function d§, k_sthe mean ok, the value of the maximum deflection is

calculated for a given value ¢ and corresponding to an abscissaconsidered as
constant over the range of variationkaf The partial derivative ofv with respect tds is

calculated for this abscisga.

—\2
CVy = oMm) ks CV¢
ML ok, M) T

Equation 3-2
with CVy the coefficient of variation of the maximum bendmgment of the foundation,
M is the maximum bending moment as a functioksathe value of the maximum bending
moment is calculated for a given value kf and corresponding to an abscissa
considered as constant over the range of variatfdg. The partial derivative oM with
respect tds is calculated for this abscisga

It should be noted that the uncertainties of thenggtrical parameteits andh are only
taken into account in the estimation of the coedfit of variation oks. These uncertainties
are not considered in the calculation of the monwhinertia of the cross section of
continuous spread footing i Equation 1-51).

3.2.1. Hypotheses for the boundary conditions

Generally, the structure is designed to supportiocarmovements, but damage can
appear when a differential settlement occurs oroiigm or all of the structure. The
damages suffered by the foundations and after bywihlls that they support, have four

main source$Andrieux et al., 2011)

- Errors in the construction or design,

- Shrinkageswelling phenomenon,
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- Low stiffness zone of soft clayey soil / Rapid salatariation of soil.
- Soil spatial variability inside the same lithologli¢dormation.

We focus on this section on the low stiffness zofgese cases can be encountered
when the residential construction is built on swith different nature and mechanical
properties such as a sand and clay and when rgpaitiak variation of soil is detected
(Marache et al., 2009a, 2009b; Denis et al., 2011)

Four cases where an absolute settlement or aehtial settlement may appear can be
considered (Figure 3-1). Figure 3-1a shows twolfgdeaspread footings of the individual
houseoneresting on a clayey soil of low coefficient reaatimodulus Kc), the other on a
sandy soil with no settlement. The spread footasjing on a clayey soil can be modelled
by considering it as a beam resting on an elastiongth free ends as boundary conditions
(Wo(X)=0, Equation 1-52) with only an absolute settlenamt no bending moment. Figure
3-1b presents a foundation with the greatest le(gglread footing with length) resting
on lenses or a layer of clayey soil with reactioef@cientkc, while the orthogonal spread
footings of previous spread footing rest on a saswlyywith coefficientka largely bigger
thankc (ka >> Kc). In this case, the most part of the house restsand without settlement
and differential settlement appears only for theeag footing with length on clayey soil.
Figure 3-1c shows the case where half of the hoests on a clayey soil while the other
half rests on the sand. In this case (Figure 3+be),spread footing with length can be
modeled as resting on an elastic soil with a sinsplgport at one of its ends and the other
end being free as boundary conditions. In the taatonly one of the four corners of the
construction rests on clayey soil (Figure 3-1d), @@ consider that this case is like the
previous case (Figure 3-1c) but with a zone of Kiiffness k;) on a partL’ of the total
lengthL. Only three first cases are dealt within the pnesbapter.

The shrinkage of clayey soil beneath a foundatian be simulated, in an initial
approach, by taking into account a small valukoThe extreme case is when we observe
a loss of the contact between the base of footmtfyjthe ground, which can be modeled

with a value oks equal to zero.
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Sandy soil, ky
a Uniform loading
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L L g
Spring, k
Clayeyéoil, ke L HHEbe
Sandy soil, ky
b Uniform loading
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L , :> :> — Spring, k¢
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Figure 3-1: Different hypotheses for the boundapnditions: a) Two parallele spread footings of the
individual housepneresting on a clayey soil of low coefficient reantimodulus (K), the other on a sandy
soil with no settlement.b) A spread footing wita kangth L rests on lenses or a layer of clayelsgbile the
rest of the foundations remain on sand; c) halfhef house rests on lenses or a layer of clayeyessullthe
other half rests on the sand; d) one of the founets of the house rests on lenses or a layerajfey soil
and the rest of the house remains on a sandyabibf{these cases correspond to a rapid spatiaiateon of
soil, ky: coefficient of reaction for sandy soik:kcoefficient of reaction for clayey soily k> k).

3.2.2. Boundary conditions verification

We present in this section results from two différ@pproaches to verify the considered
boundary conditions for a spread footing in theesasf Figure 3-1b and Figure 3-1c: one
dimensional model (analytical model, 1D) using MAF. software and a two
dimensional model (2D) using the finite elementmoet (CASTEM®O software). It should
be noted that in our models, we considered the saahees of the subgrade reaction
modulus of the clayey soik{) or sandy soil k) at each given location along a spread

footing axis.
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Figure 3-2 shows schematically the finite elementetling of the four spread footings
(2D) in the case of Figure 3-1b. The computatiores @erformed with the CASTEM©

software(Verpaux et al., 1988)sing the Winkler model.

_/\/h.
<€

_/VH

Node —»

L(m)

Spring,kAé Spring,kcé ° ® Spread footing element

Figure 3-2: Finite element modelling of the fourespd footings in the case of Figure 3-1b with the
CASTEMO® softwaresing the Winkler model (two dimensional model, 2D)

Figure 3-3 and Figure 3-4 show, respectively,l@ians of the maximum differential

settlement and the maximum bending moment as aifunof the length of a spread
footing (L) resting on a clayey soil of low coefficient réaat modulus Kc) for different
ratios ofJ= ka/ kc. The obtained results are compared to that oreraat from analytical
model with simply supported at two ends (one direred model, 1D) using MAPLE©
software, Figure 3-1b). We observe that the higherratio ofJ and the length of the
spread footing, the higher the values of the marindifferential settlements and the
bending moments. For the very high value of coffitka (J= ka/ kc >200,kc=5 MN.m'
%), we obtained the same values for the maximunewifftial settlements and the bending
moments. Then this case (Figure 3-1b) can be madgleonsidering simply supported at
two ends for large ratio J. For lower values J,ntfaximum differential settlements and the
bending moments are overestimated compare to thbsened from the finite element

method.
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=== Spread footing with simply supported at two ends (1D)

Spread footing (CASTEM, 2D)
—M|-J=5 —HKJ=40

—A—J=10 @ J=200
—>=J=20 J=400
5 10 L (m) 15 20

Figure 3-3: Evolution of the maximum differenti@tttement 4) as a function of the length of a spread
footing (L) resting on a clayey soil of low codffitt reaction modulus gk for different ratios of J= } k¢
using the finite element method (CASTEM®O, 2D) adpare to that one with simply supported at twosend

(MAPLE®, 1D) in the case of Figure 3-1b-#56 MN.m?>).

=== Spread looting with simply supported at two ends (1D)

45
Spread footing (CASTEM, 2D)
g 40 —|-J=5 —H—J=40
: —A—J=10 —®-J=200
E - —*—]=20 J =400
-
E 30
25
20
15
10 + T T
5 10 15 20
L (m)

Figure 3-4: Evolution of the maximum bending mon{&fjtas a function of the length of a spread fogtin
(L) resting on a clayey soil of low coefficient cian modulus ) for different ratios of J= i kc using the
finite element method (CASTEM®, 2D) and comparéh&d one with simply supported at two ends (one
dimensional model (MAPLE®, 1D) in the case of F&8rlb (k=5 MN.m®).

Figure 3-5 depicts schematically the finite elemembdelling of the four spread

footings (2D) in the case of Figure 3-1c.
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q = 30 kN/m

ot o A

Node —»
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Spring,kAé Spring,kcé ° ® Spread footing element

Figure 3-5: Finite element modelling of the fourespd footings in the case of Figure 3-1c with the
CASTEM® softwaresing the Winkler model (two dimensional model, 2D)

Evolutions of the maximum differential settlementahe maximum bending moment
as a function of the length of a spread footingrésting on a clayey soil of low coefficient
reaction modulus for different ratios &fusing the finite element method (2D), are shown
in Figure 3-6 and Figure 3-7. As in the previousesahese values are always inferior to
those obtained from analytical model by consideting spread footing with a simple
support at one end (1D). Then this case (Figure)3:dn be modeled by considering
simply supported at one end for large values of J.

=%=Spread footing with a simply supported at one end (1D)

Spread footing (CASTEM, 2D)
—M-J=5 —X-J=40
A—J=10 @ J=200
—>—]=20 J=400
R m— "y
11 y e = N A
10 4 e - ) R
9 -\.\
8 —il— —m
5 10 L (m) 15 20

Figure 3-6: Evolution of the maximum differenti@tttement 4) as a function of the length of a spread
footing (L) resting on a clayey soil of low cod#fitt reaction modulus for different ratios of J&/ kc using
the finite element method (CASTEM®, 2D) and comparéhat one with simply supported at one end
(MAPLE®, 1D) in the case of Figure 3-1G:#56 MN.m°).
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10 =¢=Spread footing with a simply supported at one end (1D)
Spread footing (CASTEM, 2D)
5 —W-J=5 —H-J=40
—J=10 »-J=200
—>—]=20 J=400
0 T T Y
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Figure 3-7: Evolution of the maximum bending mon{&fjtas a function of the length of a spread fogtin
(L) for different ratios of J= }¢ ke using the finite element method (CASTEM®, 2D) @wdpare to that one
with simply supported at one end (one dimensiormleh(1D)) in the case of Figure 3-1¢:&6 MN.ni%).

If the hypotheses on the boundary conditions ampldied, they allow us to estimate a
maximum value of the deflection with a one-dimenaioanalytical modeling. Boundary
conditions for the spread footing with fixed end#wbending moments (torsional moment
for orthogonal foundations) lead to lower valuesleflection and bending moment.

The maximum deflection is considered as a diffeaésettlement in the following.

3.2.3. Influence of the uncertainty ofks on the uncertainty of differential settlement

The uncertainty on the maximum deflection of sprdadting or the maximum
differential settlement of the soi\) is directly related to the uncertainty of the fficeent
of subgrade reactiorC{/ks) and boundary conditions. According to the difféerboundary
conditions, considered in this study, and for aagrfootings{=0.5 m h=0.3 m Ec.= 20
GP4@) with different lengths subjected anuniform load equal to 30 kN per running meter,
we can calculate, from Equation 3-1, the ratio leevthe coefficient of variation of the
maximum differential settlementC{,) and the coefficient of variation of subgrade

reaction modulus@Vs).
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Figure 3-8 and Figure 3-9 show the evolution of thgo cv,/cy,_as function of the

subgrade reaction modulus of sdi)( respectively for the spread footing with simply
supported at two ends and one end. All the requksented in these two figures are
obtained from the Equation 3-3 that we can alsdewiti in the form of a differential
equation as:

—\2 2
a(A) ks - CVA — 2
ok, A) CVi, —a Equation 3-3

With a constant and where one of the solutions of thifemdintial equation is in the

following form:

p=2

k< Equation 3-4

with @ constant that it is determined by the boundary itmme of the Equation 3-3.

¢

Also, whena=1, we obtaid = L—, that means that th&differential settlemeritis

S

equivalent to an absolute settlement obtained Imgidering a foundation with free ends

(case (a) in Figure 3-CV, =CV, ). In the case of < 1, uncertainty on the differential

settlement is less, for the same valu&gpthan fora=1. Equation 3-4 shows in this case
that the differential settlement) as function oks decreases more slowly than in the case

of a=1. In the case af > 1, we obtain an inverse behavior.
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Figure 3-8: Influence of the uncertainty qfdn the uncertainty of the maximum differentiatlegtent for a
spread footing with different lengths with simplypported at two ends as boundary conditions ,(CV
coefficient of variation of the differential settient CVs,: coefficient of variation of
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Figure 3-9: Influence of the uncertainty qfdn the uncertainty of the maximum differentiatlegtent for a
spread footing with different lengths with simplypported at one end as boundary conditions.

Figure 3-8, in the case of a foundation with sup@artwo ends shows that for the
spread footing with lengths more than or equal tarR@nd whatever the value kf the
coefficient of variation of settlement is equal ttee coefficient of variation oks. The
influence of the support is negligible and the eatd the differential settlement is equal to
the value of the absolute settlement calculatetthencase of the spread footing with free
ends resting on an elastic soil. This is equah®owalue of the absolute settlement that it

would be calculated by considering only the transdehavior of the spread footing.
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For the spread footings of lengths less than 2@&venpbserve that the lesser the values
of ks and the length of the foundation, the lesser #iaevof the ratiorCV, / C\ks is. This
shows the influence of the support on the value of theffament of variation of
differential settlement. Nevertheless, whkn increases, whatever the length of the
foundation, it tends to approach the behavior oéagrfooting with lengths greater than or
equal to 20 m where the influence of the suppaneligible.

In the case of spread footing with simply suppodedne end (Figure 3-9) we obtain
the same behavior that we haviously for the spread footing with a length26f m, the
influence of the support is negligible on the vabfethe ratioCV, / C\s, Whatever the
value ofks, CVA=CVys This behavior is also observed for a spread rfigovith alength of
10 m when the value of the coefficidgts greater than 3 MN.th

For the length of spread footings less than 10 mpoWserve firstly an increase in the
value of the rati®CV, / CVis then beyond a certain valuelef(5 MN.m* for L=7.5 m, 28
MN.m™ for L=5 m) a decrease in the ra@y, / CVs until it tends to the value of 1.

In the case of a spread footing witheagth of 5 m, Figure 3-8 and Figure 3-9 show
very different results. For example, for the vatii&=10 MN.ni°, the ratioCV, / CVks is
equal to 0.5 in the case of support at two endgufEi 3-8) whilst it is equal to 1.15 in the
case of support at one end only (Figure 3-9).

These results show that for a length of spreadrfgdess than 10 m, the considered
hypothesis (simply supported at one or two ends)aaignificant influence on the value
of the coefficient of variation of differential sketment.

Whatever the value d; and the length of the foundation, we obtai@®d < CV for
spread footings with simply supported at two entidewvith simply supported at one end,
it wasCV,< 1.2C\s.

3.2.4. Influence of the uncertainty ofks on the uncertainty of the bending moment

The uncertainty on the maximum bending moment oéab footing (Equation 3-2) is
directly related to the uncertainty of the modubdighe subgrade reactio€Vks) and the
value of the maximum bending moment that dependfi®walue of the coefficient of the

subgrade reaction and boundary conditions.
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Figure 3-10 and Figure 3-11 present for differemgths of the spread footing which
are identical to those previously studied, the etioh of the ratio of the coefficient of
variation of the maximum bending moment over theffodent of variation of the
subgrade reaction modulus asfumction of ks, respectively, for the spread footing
supported at two ends and one end.

These figures show that for the spread footindp \ahgths more than or equal to 20 m,
whatever the value @, the value of the rati@Vy/ CVks tends to 0.5. This corresponds to
a shift of the position of the maximum bending mobttewards the supports. In this case,

the maximum bending moment is obtained from thie¥ahg formula:
ke2® Equation 3-5

whereg' is constant.

1y ——I=5m —=1L=75m ——IL=10m ——L=20m

g= 30 kN/m

Ih_IJISm
%%‘éa%%%%%%’""“ "

0 Y T ' T T .
0 10 20 30 40 50 60

k, (MN.m?)

Figure 3-10: Influence of the uncertainty Qfdn the uncertainty of the maximum elastic bendiognent for
a spread footing with different lengths wisimply supported at two ends as boundary conditi@, :
coefficient of variation of bending moment).
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Figure 3-11: Influence of the uncertainty Qfdn the uncertainty of the maximum elastic bendnagnent for
a spread footing with different lengths wighmply supported at one end as boundary conditions

Figure 3-10 shows, in the case of the foundatiah wilength of 5 m, an increase in the
value of the ratidCVy/ CVis until the value oks equal to 28 MN.i, then a decrease in
this ratio where for the very large valueSthe ks the ratioCVy / CVis tends to 0.5. This
value ofks, equal to 28 MN.M, corresponds to the value kf where the maximum
bending moment is no longer in the middle of thenfdation. When the position of the
maximum bending moment shifts towards the suppaeves,observe a decrease in the
uncertainty of the maximum bending moment.

We observe the same behavior for spread footings lemgths of 7.5 m and 10 m, but
when the foundations are long, the displacementhef maximum bending moment
towards the supports leads to the lower value oéspectively 6 and 2 MN.thfor the
lengths of 7.5 m and 10 m.

For spread footings with simply supported at one @ndgure 3-11) and with lengths
less than 20 m, we observe that the lesser thehlefghe foundation and the subgrade
reaction modulus, the lesser the ra@igy / CVs is. However, whatever the length of the
foundation, wherks increases, there is a tendency towards the behafvéospread footing
with a length more than or equal to 20 m. The lesse values ok, the longer the

foundation, and the higher this tendency is.
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As in the case of calculation the coefficient ofiaon of differential settlement, the
value of the coefficient of variation of the bendmgment is very different, for lengths of
spread footings less than 10 m, depending on theidered boundary conditions (Figure
3-10 and Figure 3-11). The coefficient of variatioihthe bending moment can be 10 to
50% greater in the case of support at two ends.

Whatever the value d§ and the length of the foundation we obtai®®d, < C\Vs for
spread footings with simply supported at two entidewith simply supported at one end,
it was CVy < 0.5C\,s. The considered hypothesis (simply supported atamd two ends)
has also a significant influence on the value ofdbefficient of variation of the bending
moment.

Hence, having evaluated the uncertainty of theetbfiitial settlement and the bending
moment, these obtained results will be translatedierms of probability of failure
according to the allowable thresholds for the défgial settlement and bending moment.
Thereaftemwe will obtain the confidence bounds for each sempirical model in order to

calculate a global uncertainty by the hypothesia lafg-normal distribution.

3.2.5. Reliability analysis for a continuous spread footig

In the probabilistic analysis, considering uncertaiin the input soil and structure
parameters, the response of the structure andsisssment of safety are provided in terms
of a safety indexs known as the reliability index or in terms of prbbay of failure. In
this study we will focus on the serviceability linstate (SLS).

From the design considerations, a spread footing fieesidential construction satisfies
the serviceability limit state (SLS) if the maximudifferential settlementA) and the
maximum bending momenM| are less or equal to the allowable differentettlsment
(Aar) and maximum elastic bending momeMg) respectively. That means the spread

footing does not lead to a violation of servicei@piimit state if,

44, or M <M, Equation 3-6

whereA and M are considered as random variableg, and M. are the deterministic

values.Ay is calculated from the angular distortion equallf@50 for the residential

114



Effects of uncertainties &€ and a low stiffness zone on the behavior of gdwtieal works

2
constructionBjerrum, 1963) The value oM is calculated from%ﬂe) whereg is the

maximum elastic stress of concrete. Considefirag Normal variable, the probability that
the computed maximum differential settlement is entltan the allowable differential

settlement of foundation can be stated as

P (424,)=1-¢B,)  with ﬂﬁz%

g Equation 3-7

where ¢ is the cumulative normal distributiop,, and o4 are the mean and standard

deviation of the maximum differential settlemenfadindation.

ConsideringM as Normal variable, the probability of service@pilimit state Ps 9 is
also computed for the case of maximum bending morfMhgreater than the maximum
elastic bending moment of the foundation that castated as

p(M2M,)=1-¢B,) with B, = e Hu |

Oy Equation 3-8
where uy andoy are the mean and standard deviation of the maximlastic bending
moment of the foundation.

The target value of the reliability indgxto be reached in the Eurocode 1 is equal to 1.5
for the SLS(Eurocode 1, 1991)The probability of failureK;) should be less than 0.067 to
avoid exceed the serviceability limit state.

The obtained results in the previous sections caw be translated in term of
probability of failure according to the allowablerésholds for differential settlement and
bending moment. We will consider only one lengthspfead footing (L= 7.5 m) in order
to illustrate this part. Poisson's ratio is fixad&8, the coefficients of variation ef, h and
b are 10% andEs equal to 15%. The geometry of the spread footimd) the load remain
unchanged. Maximum allowable differential settlem@yy) for the spread footing with
simply supported at two ends and one end for tlgulan distortion equal to 1/750 are

respectively 5 and 10 mm.
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The calculation methodology to estimate and comfegrobability of failure with the
probability of serviceability limit state for the animum differential settlement and the
maximum bending moment of a spread footing is priegkin Figure 3-12. This flowchart
is illustrated for a single value &. The same calculation is repeated in order toibie
probability of failure for different values &s. The deterministic values of the maximum
differential settlements and the maximum bendingneats for a single value &; are
obtained through the traditional use of the Winkbeodel for the four semi-emprical
models. For this purpose, the valuekgfor each semi-emprical model is introduced in the
Winkler model with different boundary conditions alemgths of spread footings (Figure
3-12). Through the uncertainty approach, the FOSkthod is applied on four semi-
empirical models to determine the coefficient ofiadon ofks for each model. Thereatfter,
the Winkler model with different boundary condit®oand lengths of spread footings is
used to model the behavior of spread footings construction site. The FOSM method is
applied again on the analytical equations of thigedigon and bending moment from the
Winkler model to determine the coefficient of véioa of differential settlement and the
bending moment for each model. Finally, by choosirajues of A, and M. and
considering the hypothesis on the distribution pholity for the differential settlement and
bending moment, these two approaches (the traditiapproach and the uncertainty
approach) are combined to calculate the probalofitiailure for each of the four models.
At the end, the obtained results from the probigbihif failure are compared with the
probability of serviceability limit state to tedie validity of design. If the probability of
failure is smaller than the probability of servibgigy limit state then the design is
acceptable. Otherwise, the design should be redeWee following results are obtained

using this methodology.
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Figure 3-12: Flow chart of the methodology to estienand compare the probability of failure with the
probability of serviceability limit state for a miaxum differential settlement and a maximum bending
moment of a spread footing, resting on an elagicfer a single value of £
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Figure 3-13 and Figure 3-14 show the results obthifor the probability of failure
versusks for the four semi empirical models, respectivety the spread footing with

simply supported at two ends and one end.

q= 30 kN/m

Ih_03m
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E.=20 GPa

%%%%%%%%%

CV(E)=15%, CV(v)=CV(h)=CV(b)=10%
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2 409 - —&— Biot model, CV(ks)= 0.183
ar —a— Vlassov model, CV(ks)= 0.201
20% o —e&— Vesic model, CV (ks)= 0.182
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Figure 3-13: Estimation of the probability of faiki (P;) as function of Efor a maximum differential
settlement of a spread footing with simply supmbeetwo ends as boundary conditions (for the feemi
empirical models).
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Figure 3-14: Estimation of the probability of faiki (P;) as function of Efor a maximum differential
settlement of a spread footing with simply suppbeée one end as boundary conditions (for the faamis
empirical models).
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If for the four semi-empirical models, the valuegtué coefficient of variation dfs are
close, the values OEs in order toP; > 0.067 are very different. Also, whatever the
considered boundary conditions (Figure 3-13 andirieéig-14) the value d&s will always
be greatest with the Vesic model, always lowesthwilie Ménard model and with
intermediate values with the models of Biot andsgta/. For the same semi-empirical
model to calculat&s, the value o&s in order toPs> 0.067 is almost twice greater with two
simply supported (Figure 3-13) than with one simpglypported (Figure 3-14). For
example, for the spread footing rests on elasticveith Es = 10 MPa, the probability of
failure is less than 0.067 for the four models a@itualateks in the case of simply supported
at one end, while for the same valuekgtthe probability of failure is largely greater than
Psisin the hypothesis of simply supported at two efiodshe models of Biot, Vlassov and
Vesic. This shows that considered hypothesis (sirappported at two ends and one end,
which depend on soil investigation) and the setesemi-empirical model have a great
importance on the conclusion about the reliabdialysis.

We will consider, by hypothesis, that the maximummdieg moment 1) is equal to
37.5 kN.m that it corresponds tawaequal to 5 MPa. Figure 3-15 and Figure 3-16 show
the results obtained for the probability of failume function ofEs, for the four semi-
empirical models, respectively for a spread footwnith simply supported at two ends and
one end. The interpretation of these results istidal to the analysis presented for the
Figure 3-13 and Figure 3-14 concerning the diffeagrsettlement but with values &
lower than in the case of differential settlementthe case presented in this section. These
results show again the importance of boundary ¢mmdi and the choice of semi-empirical
model.

119



Chapter 3

q= 30 kN/m

Ih_OSm
[05m

E=20 GPa

100% o

80% o

CV(E) =15%, CV(v))=CV(h)=CV(b)=10%
60% A &) v (h) (b)

—e— Menard model, CV(ks)= 0.161

P, (M > 37.5 kN.m)

40% o —s— Biot model, CV(ks)= 0.183
—&— Vlassov model, CV(ks)= 0.201
20% A —e— Vesic model, CV(ks)= 0.182
Pys=67%
0% r
0 2 4 6 8 10

E, (MPa)

Figure 3-15: Estimation of the probability of faiki (P) as function of Efor a maximum elastic bending
moment of a spread footing with simply supportedwat ends as boundary conditions (for the four semi
empirical models).
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Figure 3-16: Estimation of the probability of faiku (P;) as function of Efor a maximum elastic bending
moment of a spread footing with simply supporteara end as boundary conditions (for the four semi
empirical models).

In order to complete the previous analysis, we stady the influence of the value of
the coefficient of variation oks on the probability of failure in the case of ditfatial
settlement from the semi-empirical model of Ménard.

Figure 3-17 and Figure 3-18 show the obtained tesoi the probability of failure with
different values oCV,s, respectively in the hypothesis of simply suppibétwo and one
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end. If these results show, again the importarfeihce between the hypothesis the
simply supported at one and two ends, they alsw/ she expected, the importance of the
value of the coefficient of variation & and then the values of the coefficients of vaoiati
of Es andb in the case of the semi-empirical model of Mén&mk. example, in the case
shown in Figure 3-17, the soil of the foundationhs= 7 MPa, should have a coefficient
of variation ofks less than 5% in order to not exceed the valuespf=B.067; the soil of

the foundation withE<= 9 MPa, a coefficient of variation &f less than 30%.

Ménard model g= 30 KN/m
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80% 33333333335
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Figure 3-17: Probability of failure (] for a maximum differential settlement of a spréaating with simply
supported at two ends as boundary conditions fffedint values of C¥(Ménard’s model).
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Figure 3-18: Probability of failure (P for a maximum differential settlement of a spréaating with simply
supported at one end as boundary conditions fdexdiht values of CG¥(Ménard’s model)
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The same figures could, naturally, be obtained th@ three other semi-empirical
models, bending moment and for different foundagenmetries and loading)(in order
to obtain different charts to help a better desgnspread footing for the residential
construction when rapid spatial variation of sofi®perties are present on the construction
site.

All of the presented results for the reliabilityadysis are based on the hypothesis of a
normal distribution for the values of the maximunffadential settlement and the
maximum bending moment. The obtained results by Higgothesis of a log-normal
distribution for these values are nearly identitmlthose ones obtained for a normal
distribution and are presented in appendix 1.

3.2.6. Application to global uncertainty analysis (for a @ntinuous spread footing)

We propose in this part a basic uncertainty anglysised on the determination of
confidence bound. The calculation methodology, litaim the confidence bounds of the
differential settlement and the bending moment gpeead footing, resting on an elastic
soil, for each semi-empirical model, is presentedrigure 3-19. The deterministic values
of maximum differential settlement and the bendingment are obtained through the
traditional use of the Winkler model. For this pusppthe different values of subgrade
reaction modulus for each semi-empirical modeliam®duced in the Winkler model with
different boundary conditions and lengths of spreaadings (Figure 3-19). Through the
uncertainty approach, the FOSM method is appliedfoam semi-empirical models to
determine the coefficient of variation kffor each model. Thereafter, the Winkler model
with different boundary conditions and lengths pfead footings, is used to model the
behavior of spread footings on a construction Jitee FOSM method is applied again on
the analytical equations of the deflection and legndnoment from the Winkler model to
determine the coefficient of variation of differetsettiement and the bending moment for
each model. Finally, by considering the hypothesishe distribution probability for the
differential settlement and bending moment, these tpproaches (the traditional
approach and the uncertainty approach) are comhediculate the confidence intervals
for each of the four models. At the end, a glolmadartainty is proposed which corresponds
to the range between the maximum of the four uppends and the minimum of the four

lower bounds.
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Figure 3-19: Flow chart of the methodology to estiethe global uncertainties of the differentiattisenent

and bending moment of a spread footing, restingroelastic soil.
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To illustrate some steps of the methodology, FigB+20 presents for the Ménard
model, the evolutions of the maximum differentiattement (Figure 3-20a), the bending
moment (Figure 3-20c) and their standard deviat{®mgure 3-20b and Figure 3-20d) as
functions ofks and the length of the spread footing. All of thessults are obtained for the
following values: b=0.5 m, h=0.3 m, v=0.3, E=20 GPa, CVe=15% and
CW=CVy=CV,=10%.
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Figure 3-20: Evolutions of the maximum differentiattiement (a), bending moment (c) and associated
standard deviations (b and d) as function of tharld length of the spread footing for the valueb=dd.5 m,
h=0.3 m,v=0.3, E=20 GPa, C\{=15% and CY=CV,=CVvs=10% for the Ménard model.

Figure 3-20b and Figure 3-20d show that for a siealijth of the spread footing, the
maximum values of the standard deviations of tlierdintial settlement and the bending
moment do not correspond to the smallest valughefsubgrade reaction modulus (for
example for a length equal to 5 m, the valu&dbr the maximum value of these standard
deviations is equal to 8 MN.): However, increasing the spread footing lengtdseto
the maximum of these standard deviations in acomelavith very low values dis (for

example for a length of 20 m the value kgffor the maximum value of these standard
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deviations is equal to 0.1 MN.f)- Thus, the confidence bound which depends on the
standard deviation is a complex functiorkgandL.

In order to illustrate the complete use of this meblogy, we take as aaxample a
residential construction where one of its spreaatifigs of 10 m is built on weak soil
(Figure 3-1b) with a Young's modulugEs of 6 MPa (soft clay) estimated from a
geotechnical investigation. From published valuesthe literatures, the coefficient of
variation of Es is estimated to 15%. The soil parameters, the nmécdlaproperty and
geometrical dimensions of this spread footing demniical to those previously studied in
Figure 3-20. For this case, the deterministic v@lakthe subgrade reaction modulus, the
differential settlement and the bending moment aléained for each semi-empirical
model. Thereafter, using the methodology explaip@yiously and assuming a lognormal
distribution (which is a fairly common assumptida) the subgrade reaction modulus, the
differential settlement and the bending moment, ¥sftfidence bounds are obtained for
each semi-empirical model. The results for thisliappon case are presented in Figure
3-21. As expected the deterministic valuekofA, M and their confidence intervals are
different for each semi-empirical model (Figure &2Figure 3-21b and Figure 3-21c).
The value oks and its associated confidence interval are thedsigfor the Ménard model
and the smallest for the Vesic model. In the cdsthe Biot and Vlassov models, we
obtain almost the same value and confidence int¢Rigure 3-21a). Figure 3-21b and
Figure 3-21c show that the deterministic values @mafidence bounds of the differential
settlement and the bending moment arenttost important for the Vesic model and the
least important for the Ménard model and are alnttestsame for the Biot and Vlassov
models.

In the case where choosing a suitable semi-empinuadel is difficult, a global
uncertainty is introduced. This includes the uraiaties from each semi-empirical model
and corresponds to the range between the maximutheofour upper bounds and the
minimum of the four lower bounds. The global unamties forA, M and for the case
under consideration, amespectively [3.84; 15.54] (mm), [15.12; 31.80] (kN (Figure
3-21b and Figure 3-21c).

Angular distortions, which correspond to the rdtgweem\ andxmaxp) (S€€ Section 3.2
), can be obtained from the deterministic valueshef maximum differential settlements

for these semi-empirical models. For these modeisept for the Vesic model with an
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angular distortion of 1/445, the angular distorticar® smaller than the limit angular
distortion defined for a residential constructidd760 (Bjerrum, 1963). However, the
angular distortions obtained from the global uraaty of the maximum differential
settlements range from 1/1300 to 1/300 showing passible to exceed the limit angular
distortion. Maximum bending moment values deducesinf the global uncertainties
(Figure 3-21c) are less than the value of the mamnplastic bending moment equal to
56.25 MN.m that it corresponds t@aequal to 5 MPa (0.25tf.ce).

Finally, the flow chart of Figure 3-22 illustratéise methodology in the considered
application case with all results.

The same results could naturally be carried outdifferent foundation geometries,
boundary conditions, and loading) (in order to obtain different charts to help atéet
design of continuous spread footing for a residtmdnstruction when zones of weak soil

are present on the construction site.
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Figure 3-21: Global uncertainties for the a) Subdeareaction modulusgskb) Maximum differential
settlemeniA and c)Maximum bending moment M by consideringh @onfidence bound for each semi-
empirical model with log-normal distribution.
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Figure 3-22: Results of the methodology applied spread footing with length of 10 m.

In the following, the same work is done for a bdn@pe resting on elastic soil.



Effects of uncertainties &€ and a low stiffness zone on the behavior of gdwtieal works

3.3. Effect of uncertainty of ks and a low stiffness zone of soil on the behaviorf a
buried pipe

3.3.1. Hypotheses for the boundary conditions

The failure of buried pipes from differential settients is one of the most common
causes of structural failure, and a design anabfs@ild therefore be carried out for an
evaluation of permissible differential settlemeni$ie differential settlements can be
encountered when the buried pipe is installed oih with different lithologies and
mechanical properties such as clayey zones of liffness compared to sand. For this low
stiffness zone, the values Bf are between 0.4 MPa and 6 Mfzssan, 1978For these
values ofE,, the correspondence valueskgf(coefficient of reaction for clayey soil) can be
calculated from the semi-empirical models. In thsecof the Matsubara model with the
Poisson’s ratio of 0.3 and external pipe diamefet.6 m, the values dfc are between
0.64 MN.ni® and 9.7 MN.r.

Different cases where an absolute settlement dfexaehtial settlement may appear can
be considered (Figure 3-23). Figure 3-23a presarigried pipe resting on a sandy soil
with a reaction coefficierka. This case can be modeled by considering a pigel@sam
resting on an elastic soilvf(x) =0, Equation 1-52) with only an absolute settlenamd no
bending moment. Figure 3-23b shows a part of thgtke of the pipe resting on a low
stiffness zone of clay with reaction coefficidat while the remaining length of the pipe
rests on a sandy soil with coefficidatmuch larger thake. In this case, the pipe affected
by a low stiffness zone of lengthcan be modeled by considering a beam with fixetsen
as boundary conditions. In the case that the |lagps of the pipe rests on a low stiffness
zone (Figure 3-23c) we can consider that this taBke the previous case but with a very
large length_, where the influence of one of the fixed ends bee®insignificant.

Note that when there are manholes at both endsbafiad pipe, it can be modeled by
considering a beam with fixed ends as boundaryitiond. In the following, we focus on
the behavior of the buried pipe in the case ofRigeire 3-23b and where it is assumed that

the settlement of the pipe occurs only into the zufrlew coefficient of reaction.
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Figure 3-23: Different hypotheses for the boundapyditions: a) Buried pipe resting on a sandy suaith
only an absolute settlement and no bending monignf part of the length of the pipe resting on low
stiffness zone of clay (L), while the remaininggténof the pipe rests on a sandy soil. ¢) The lstrgart of
the pipe rests on a low stiffness zone (lengthihgoeery large). (L: is a part of the pipe lengtfiexted by a
low stiffness zone akcoefficient of reaction for sandy soilg:kcoefficient of reaction for clayey soilg k<

Ke).

3.3.2. Boundary conditions verification

We present in this section results from two differ@pproaches to verify the considered
boundary conditions for a buried pipe in the casEigure 3-23b: one dimensional models
using MAPLE® software (analytical model) and a tenelement method (CASTEM®©
software). It should be noted that in our models, s@nsidered the same values of the
subgrade reaction modulus of the clayey d@j) 6r sandy soilK,) at each given location

along a buried pipe axis.
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Figure 3-24 shows schematically the finite elenmantlelling of a buried pipe (1D) in
the case of Figure 3-23b. The computations are dotethe CASTEM®© software using
the Winkler model.

q =100 kN/m

Spring,k, é Spring,kcé ° ® Buried pipe element

Figure 3-24: Finite element modelling of a burieidgin the case of Figure 3-23b with the CASTEM®
softwareusing the Winkler model (one dimensional model, 1D)

Figure 3-25 and Figure 3-26 show, respectively)ugians of the maximum differential
settlement and the maximum bending moment as difunef the length of a low stiffness
zone beneath the buried pidg for different ratios ofl= ka/ ke using the finite element
method (1D) and compare to that one with fixed dadalytical model, 1D). These figures
show that for the very high value of coefficidat (J= ko/ ke >400, ke=5 MN.m?), the
values of the maximum differential settlements #mel bending moments are almost the
same as those of with fixed ends. Then in this,cidmepipe affected by a low stiffness
zone of lengthL can be modeled by considering a beam with fixeds easl boundary

conditions.
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Figure 3-25: Evolution of the maximum differentsdttiementA) as a function of the length of a low
stiffness zone beneath the buried pipe (L) foredfit ratios of J= k/ ke using the finite element method
(CASTEM®, 1D) and compare to that one with fixedssfMAPLE®©, 1D) in the case of Figure 3-23b<k
MN.m?).
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Figure 3-26: Evolution of the maximum bending mankt) as a function of the length of a low stiffees
zone beneath the buried pipe (L) for differentaatof J= l§/ ke using the finite element method (CASTEM®O,
1D) and compare to that one with fixed ends (MAPLED) in the case of Figure 3-23b-85 MN.m").
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If the hypotheses on the boundary conditions ampldied, they allow us to estimate a
maximum value of the deflection with a one-dimenaloanalytical modeling, which
depends on only two parameters, the coefficienteattion and the length of the low

stiffness zone.

3.3.3. Estimation of the uncertainty of the differential sttlement and bending
moment

Using the FOSM method applied on the deflection #gngEquation 1-51) and on the
equation of the bending moment allows us to stidyinfluence of the uncertainties laf
and L on the uncertainties of the differential settlemand the bending moment. The
uncertainties of the differential settlement and bleeding moment can be decomposed
into two parts, one part is a function of the utmety ofks and the other part is a function
of the uncertainty of the length of thew stiffness zone. These uncertainties, translated
terms of the coefficients of variation, are obtdirieom the following equations (Equation
3-9 and Equation 3-10 respectively for the coedfits of variation of the differential
settlementCV,) and the bending momer€Yy) (Imanzadeh et al., 2013b)

CViy =CVji, +CV{,

Equation 3-9
CV2 =CV3, +CV? :
M M /K M/L Equation 3-10
where
—\2
a(w) k 2
cv2, =| =~ .= ¢V ion 3-
wks (aks WJ Ks Equation 3-11
—\2
dlw) L
CVioy :(%-V—VJ CV? Equation 3-12
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—\2
oM) k
CViik, :( (gk )ﬁs] CV? Equation 3-13
S
—\2
oM) L
CVir /1 :(% Vj CV Equation 3-14

where in Equation 3-11CV,xsis the coefficient of variation of the maximum aefiion

with respect tdks, CVis the coefficient of variation dfs, w is the maximum deflection as
function ofks, E the mean ok, the value of the maximum deflection is calculafieda

given value oks corresponding to an abscissaconsidered as constant over the range of
variation ofks. The partial derivative ofv with respect tdks is then calculated for this
abscissax,. Equation 3-12 is defined in the same manner agtian 3-11 except the
parameters and the partial derivative are witheesfoL.

For Equation 3-13CVuks is the coefficient of variation of the maximum bemy
moment of the pipe with respectkg M is the maximum bending moment as a function of
ks, the value of the maximum bending moment for a&givalue oks corresponding to an
abscissay considered as constant over the range of variatid@ The partial derivative
of M with respect tds is calculated for this abscissa Again, Equation 3-14 has the same

definition but in term of..

3.3.3.1.Influence of the uncertainties of k¢ and the low stiffness zone on the
uncertainty of the differential settlement

Four variables have an influence on the uncertagmythe maximum deflection of
buried pipe or the maximum differential settlemenit the soil (Equation 3-9): the
uncertainty of the coefficient of subgrade reac(iOhis), the uncertainty of the coefficient
of low stiffness zone lengttCV,), the value of the coefficient of subgrade reactod the
part of the pipe affected by a low stiffness zondeafythL. The maximum deflection is
then considered as a differential settlenreims the following According to the boundary
conditions considered in this study and for theidzupipes é=0.15m d=1.5m, E;=20

GPa) with different lengths of low stiffness zones mdbedto anuniform load equato
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100 kN per running meter of pipe, we can calculétan the Equation 3-11, the ratio
between the coefficient of variation of the maximdifferential settlement with respect to
ks (CVaxs) and the coefficient of variation of the subgragaation modulugC\Vis).

Figure 3-27 depicts the evolution of the rafi¥,xs /CVks as a function of the subgrade
reaction modulus, for different low stiffness zdeagths. For a low stiffness zone length
greater than or equal to 50 m and for any valugsofhe coefficient of variation of the
settlement respect tq is close to the coefficient of variation kf (Figure 3-27). For this
length the influence of the supports is negligéohel the value of the differential settlement
is close to the value of the absolute settlemeoutzied in the case of the buried pipe with
free ends resting on an elastic soil. This is @ maximum value of the differential
settlement that it would be calculated by considgthe third case in Figure 3-23. For the
same mentioned length and if the valu€dks is greater than 10% we obtadV,x=CVis
~ CVes At the opposite, the uncertainty on the maximuifiekéntial settlement is
insignificant CVaxks~ 0) for a low stiffness zone length inferior or afjto 5 m.

1,2 L ——1=m ——1=10m ——1=15m q= 100 kN/m

LT
—8—1=20m ——1=30m ——-1=50m m
\-/ e=0.15m
33353333

fe—— L(m) —]

k, MN.m)

Figure 3-27: Influence of the uncertainty Qfdn the uncertainty of the maximum differentiatleetent for
the different low stiffness zone lengths (L) {fsVcoefficient of variation of the differential detnent with
respect to k CV,s coefficient of variation of

For the low stiffness zone lengths between 5 m&hah, we observe that the lower the
values ofks and the low stiffness zone lengths, the lowervidaes of the rati@€Vaks/CVks
are. This shows the influence of the fixed endshenvalue of the coefficient of variation

of differential settlement. Nevertheless, whenwvakie ofks increases, whatever the length
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of the low stiffness zone, the ratio tends to apphoto the behavior of the low stiffness
zone lengths greater than or equal to 50 m. FosetHengths, the uncertainty of the
differential settlement with respect t@ is almost always less than or equal to the
uncertainty of the subgrade reaction modulCig,(ks< CVks).

The ratio between the coefficient of variation bé tmaximum differential settlement
with respect td_ (CV,,) and the coefficient of variation of the lengthtbé low stiffness
zone(C\W) can be calculated from Equation 3-12. Figure 328ws that the uncertainty
of the differential settlement respectligs the most important for a low stiffness zonesles
than or equal to 5m compare to the uncertaintyhefather lengths of low stiffness zones.
For this length of 5 m and whatever the valuegpfthe ratioCV,, /CV_ is close to the
value of 4 showing the significant effect of boundeonditions compared to the effect of
Winkler's springs. The value of 4 corresponds te gower ofL in the equation of the
deflection in the case of a beam with two fixed £mdth uniform loading. For the low
stiffness zone greater than or equal to 50 m andrfg value oks (except fork=0 MN.m

%), the value of2V, is close to zero.

q= 100 kN/m
57 —©—1=5m —4—1=10m —+—I=15m H”mgﬂm
—0—1=20m —&—1=30m | 1=50m

4 - X - - - Y
O EEEEE00000E. OOCooaCoCCEEE0E88888068858585A5)

= 3 1
>
&
=~ 2 4
=
<
>
Q11
0
0 10 20 30 40 50 60
ks(MN.m'3)

Figure 3-28: Influence of the uncertainty of L d¢re tuncertainty of the maximum differential settletrfer
the different low stiffness zone lengths (L) {C\coefficient of variation of the differential detnhent with
respect to L, CV coefficient of variation of L).

In the case of low stiffness zones between 5 m5éngh the effect of Winkler’'s springs
becomes significant and we observe that the lohervalues oks and the low stiffness

zone lengths, the greater the values of the 1@ifg, /CV, are. Forks values inferior or
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equal to 15 MN.i, the value ofCV,,. is between one and four tim&/ for lengths
between 5 m and 20 m. For lengths between 20 n8@nd, the previous remark is valid

only for very small values d&.

3.3.3.2.Influence of the uncertainties of k¢ and the low stiffness zone on the
uncertainty of the bending moment

The uncertainty on the maximum bending moment afeblupipes (Equation 3-10)
depends on the same four variables as for the tamagr on the maximal differential
settlement.

Figure 3-29 shows for the different low stiffnessne lengths (identical to those
previously studied for the differential settlemetite evolution of the rati€Vyyks /CVks
(Equation 3-13) as a function of the coefficidgt In the case of a low stiffness zone
greater or equal to 50 m and whatever the value,dhe value of the rati€Vyyks/CVks
tends to 0.5. For a low stiffness zone less thamgorl to 5 m and for any value lef the
value of CVysis close to zero. For lengths between 5 m and S@enobtainCVyxs< 0.5
CVWs showing that the uncertainty of the bending momtit respect td is less than half

of the uncertainty of the subgrade reaction modulus

1 —©—L=5m —€—L=10m —+—L=15m
—&-1=20m —&— [=30m —#—L=50m

q= 100 kKN/m

RRARARARRRRNN

0 10 20 30 40 50 60
K, (MN.m>)

Figure 3-29: Influence of the uncertainty afda the uncertainty of the maximum bending moranthe
different low stiffness zone lengths (L) {(fxY¥ coefficient of variation of the bending momenthwespect to

Ks)-
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Figure 3-30 depicts, for the different low stiffsesone lengths, the evolution of the
ratio of the coefficient of variation of the maximumending moment with respect Lo
over the coefficient of variation of the low stifsge zone length (Equation 3-14) as a
function of the coefficient oks. As in the case of the calculation of the coedinti of
variation of differential settlement with respect It, the value of the coefficient of
variation of bending moment with respeclLtcs also very different for the different values
of low stiffness zone lengths. This uncertaintythe most important for a low stiffness
zone inferior or equal to 5 m where the value @f thtioCVy, /CV_ is nearly equal to 2
whatever the value dfs. In fact, the value of 2 corresponds to the powafeL in the
equation of the bending moment in the case of anbgdh two fixed ends with uniform
loading. This shows, as we mentioned earlier fer ldgngth of 5 m in Figure 3-28, the
insignificant effect of Winkler’'s springs comparexdthe boundary conditions.

In the case of a low stiffness zone ranging from &® 50 m and for any value kf, the
value of CVy,_ is always less than twice the value@¥_ and tends to zero for a large

value ofks (Figure 3-30).

—©—1=5m —4—1=10m ——I=15m
—8—-1=20m —&—1.=30m —&— [ =50m

-

q= 100 kN/m

0 10 20 30 40 50 60
k,(MN.m*)

Figure 3-30: Influence of the uncertainty of L & tuncertainty of the maximum bending moment for th
different low stiffness zone lengths §;Vcoefficient of variation of the bending momenthwespect to L).

For a low stiffness zone length between 5 m anth2ihd for a value d&s inferior to 5

MN.m3, we observed that 05/ < CVi. < 2CV,. For lengths ranging from 20 m to 50
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m the uncertainty o€V, becomes insignificant except if a void is presamder the pipe
(ks = 0 MN.m?%), in this case the value 6V, is twice the value of V..

These results show that, for valuekginferior to 10 MN.n* and for small values df,
the major effect of the uncertainty &f (compared to the uncertainty &) on the
uncertainty of the differential settlement and tiending momentQGV,, > CVxs and
CVu > CVuis for CWe=CV)0). The only way to reduce the uncertainty of thigedential
settlement and the bending moment is then to redlieevalue of the coefficient of
variation of the length of the low stiffness zomdich requires a soil reconnaissance able
to detect and precisely locate these zones aldngied pipe.

We have done the same work for a continuous bustedl pipe with an external
diameter of 1.5 m, a thickness of 0.02 m, Young&laoius of a pipe equal to 210 GPa and
the other required parameters are identical toetlppsviously studied here. The results are
nearly identical to those obtained for a concreteebupipe. These results are presented in
appendix 1.

3.3.4. Total uncertainties contributions of the maximum dfferential settlement and
the maximum bending moment with respect to the unc&inties of soil
reaction modulus and a low stiffness zone

The total uncertainties contributions of the maximdifierential settlement and the
maximum bending moment are decomposed into coniigitfrom the uncertainties of
soil reaction modulusk{ and a low stiffness zon&)((Equation 3-9 and Equation 3-10).
These total uncertainties contributions can be iobta through Equation 3-15 and
Equation 3-16 respectively for the maximum différ@nsettlement and the maximum

bending moment.

CVii . CVZ.
cv:  cvZ Equation 3-15

CViln,  CViti _
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CV42/ ks CVI\%IKS . . ..
where >~ and >— are respectively the total uncertainties contidng of the
CV; CVy

maximum differential settlement and the maximumdaegg moment respect tks. The

_ CVZ, CViin . .
ratios > and o2 are defined in the same manner as the lattersratioept these
ya) M

ratios are with respect ta

In the following, this contribution of uncertainty explained for different lengths of low
stiffness zones for the values @V, and CV_ respectively equal 20% and 10%.
Additionally, this contribution of uncertainty isistussed for the six semi-empirical

models and for a low stiffness zone lengh of 15 m.

3.3.4.1.Total uncertainty contribution of the maximum differential settlement with
respect to the uncertainties of soil reaction moduk and a low stiffness zone

Figure 3-31 shows, using Equation 3-15, the totatertainty contribution of the
maximum differential settlement with respectktoandL (respectively Figure 3-31a and
Figure 3-31b) for different lengths of low stiffreegones. As it shown from Figure 3-31a,
for a low stiffness zone length greater than or Etgqu&0 m and for any value &f, the
total uncertainty contribution of the maximum driatial settlement with respect kgis
equal to 100% his illustrates that the total uncertainty contributioh the maximum
differential settlement with respect kois equal to 0%On the contrary, this uncertainty

contribution with respect t& is insignificant for a low stiffness zone lengtifarior or
CVii, .
equal to 10 m (for example:CT:O for L=5 m). For the low stiffness zone lengths
A
between 10 m and 50 m, we observe that the lowevdhes ofks and the low stiffness

CV7
zone lengths, the lower the values of the ratéev‘% are. Nevertheless, when the value of

4

ks increases, whatever the length of the low stinesne, this ratio tends to approach to
the behavior of the low stiffness zone lengths tgretnan or equal to 50 m. For the total
uncertainty contribution of the maximum differehtttlement with respect to (Figure
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3-31b) we obtain, as expected, an inverse behaoampare to this total uncertainty

contribution with respect tk; (Figure 3-31a).
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5 60% -
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O 40% A
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056 A —A-L=30m —WL=50m
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100% - . OPOP0S 88 89R000000000000050060000000660060066060
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Figure 3-31: Total uncertainty contribution of theaximum differential settlement with respedttand L
(respectively figures a and b) for different lergtif low stiffness zones.

For example, Figure 3-32 shows the total uncestaguntribution of the maximum
differential settlement with respect tQ and L (respectively Figure 3-32a and Figure
3-32b) for the six semi-empirical models and fdowa stiffness zone lengh of 15 m. As
can be seen from Figure 3-32a, for small valueksahferior to 8 MPa for all of these
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semi-empirical model except for the Matsubara matthel total uncertainty contribution of
the maximum differential settlement with respeckdes almost insignificant. Beyond this

2
Alkg

C
value ofEs (Es > 8 MPa) Matsubara’s model gives the greatest vafuitbe ratioW

4

and Vesic's model gives the lowest value of thiBoraThe value of this ratio for the

Kloppel model is almost the average of the valdab® Matsubara and Meyerhof models.
The value of this ratio for the Meyerhof model isarig¢ the mean of the values of the
Kloppel and Biot models. Biot's and Selvadurai’sdats give nearly the same value of

this ratio for the considered values in this exampl

100 %

= 100 KN/m
—4— Vesic model Biot model k
AARRARANARRARA
—&— Meyerhof model ~ —— Kloppel model r\
80% E:=20 GPa @
—@— Matsubara model —3%— Selvadurai model u
e=0.15m
33333333
- 04 & e A T
o ? Je— L=15m —p]
~
I‘Iﬁ
B 40%
20%
e %
0% =
0 10 20 30 40 50 60
E,(MPa)
a)
100% 1 e by
A 2
q= 100 kN/m
AR AR AR
80% A
e=0.15 m
n? 60% A
- e T Ty T e
% Je— L=15m —p]
o
> 40% 1
o
—&— Vesic model Biotmodel
20% A —A—Meyerhof model  —¢— Kloppel model
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0%
0 10 20 30 40 50 60
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Figure 3-32: Total uncertainty contribution of theaximum differential settlement with respedttand L
(respectively figures a and b) for the six semi-eicgd models and for a low stiffness zone lengh®m
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For the total uncertainty contribution of the mawmn differential settlement respectlto
(Figure 3-32b) and for the considered parameterhigrexample, we obtain an inverse

behavior compare to those obtained with respeki {@igure 3-32a).

3.3.4.2.Total uncertainty contribution of the maximum bending moment with respect
to the uncertainties of soil reaction modulus and &ow stiffness zone

Figure 3-33 shows, using Equation 3-16, the totateutainty contribution of the
maximum bending moment with respectkia@andL (respectively Figure 3-33a and Figure
3-33b) for different lengths of low stiffness zonégure 3-33a shows for a low stiffness
zone length greater than or equal to 50 m and whate value ok, the total uncertainty
contribution of the maximum bending moment withpesst toks is equal to 100%. This
shows the total uncertainty contribution of the maxm bending moment with respect to
L is equal to 0% On the contrary, this uncertainty contribution witkspect toks is

insignificant for a low stiffness zone length inéeror equal to 5 m (for example:

CVi

2
M

=0 for L=5 m).
For the low stiffness zone lengths between 30 ml&nch and for the small valueslqf

CV3
inferior to 20 MN.m?® the values of the ratie#’zksincrease rapidly. For the low stiffness
M

zone lengths between 10 m and 5 m the values ®fakio increase slowly. Nevertheless,
when the value oks increases, whatever the length of the low stif$nesne, this ratio
tends to approach to the behavior of the low st#féneone lengths greater than or equal to
50 m. For the total uncertainty contribution of theximum bending moment with respect
to L (Figure 3-33b) we obtain, as expected, an inveedgaVior compare to the total

uncertainty contribution with respectko(Figure 3-33a).
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Figure 3-33: Total uncertainty contribution of theaximum bending moment with respectstarid L

(respectively figures a and b) for different lergytf low stiffness zones

Finally, as in the case of maximum differentialtleetent, Figure 3-34 illustrates the

total uncertainty contribution of the maximum bermgimoment with respect tq andL

(respectively Figure 3-34a and Figure 3-34b) for glxesemi-empirical models and for a

low stiffness zone lengh of 15 m.

CVv
As shown in Figure 3-34a, for the valuedgk 10 MPa the values of the ratiec\h;%

2

M

increases very rapidly for the Matsubara and Klbppedels. This shows the importance
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of the uncertainty oks on the total uncertainty contribution for these tmodels. On the
contrary it is very slowly in the case of the Vesiodel compare to the five other models.

Nevertheless, when the valuekfincreases, this ratio tends to a value of 100@stiating
(cvﬁ,L
Vi

the uncertainty of on the total uncertainty contribution is insigo#nt =0).

For the total uncertainty contribution of the nmaxim bending moment with respect to
L (Figure 3-34b) an inverse behavior is obtained cmpto the total uncertainty

contribution with respect tk; (Figure 3-34a).
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Figure 3-34: Total uncertainty contribution of theaximum bending moment with respectstarid L
(respectively figures a and b) for the six semi-eicgd models and for a low stiffness zone lengh®m
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Results presented in this section show the majotribotion of a small length of low
stiffness zone in the uncertainty of the differahsettlement and bending moment. The
choice of semi-empirical model appears importamsuRs of the different contributions
can be very different between these six semi-egglimodels.

These previous results then can be translateanmstef probability of failure according
to the allowable thresholds for the differentiditisgnent and bending moment of a buried
pipeline. Thereafter, the confidence bounds fohesami-empirical model are obtained in

order to calculate a global uncertainty by the higpsis of a lognormal distribution.

3.3.5. Reliability analysis for a buried concrete pipe

The obtained results in the previous sections caw be translated in term of
probability of failure according to the allowablerésholds for differential settlement and
bending moment by the hypothesis of normal distiitou We will consider only one
length of buried pipe (L=30 m) in order to illudeahis part. Poisson's ratio is fixed at 0.3,
the same coefficients of variation efandd equal to 5% and the coefficients of variation
of Es andL respectivelyequal to 15% and 10%. The geometry of the buripeé pnd the
load remain unchanged. Maximum allowable differnsiettlementAy,) for the buried
pipe for a value of angular distortion of 1/50@¢ial to 30 mm.

Figure 3-35 shows the results obtained for the glodiby of failure as function ok for
the six semi empirical models for a buried pipe36f m. If for the six semi-empirical
models, the values of the coefficient of variatadrks are close to each other, the values of
Es in order toP; > 0.067 are very different. Also, the valueEfwill always be greatest
with the Vesic model, always lowest with the Matgabanodel and with intermediate
values with the models of Kloppel, Meyerhof, Selwad and Biot. For example, the soil
modulus withEs=7MPa for the Vesic model does not exceed the vaflire s=0.067 while
this value ofEs for the Matsubara model is equal to 1.5 MPa irepoitd not exceed the

value of the probability of SLS.
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Figure 3-35:Estimation of the probability of failure {Pas function of Efor the maximum differential
settlement of a buried pipe (for the six semi-ermgimodels).

We will consider, by hypothesis, that the maximummdieg moment 1) is equal to
2880 kN.m that it corresponds tosa equal to 10 MPao{: maximum elastic stress of
concrete). Figure 3-36 shows the results obtainedhie probability of failure as function
of Eg, for the six semi-empirical models. The interptieta of these results is identical to
the analysis presented for Figure 3-35 concernirgg differential settlement but with
values ofEg greater than in the case of differential settletm@mthe case presented in this

section. These results show again the importantieeathoice of a semi-empirical model.
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Figure 3-36:Estimation of the probability of failure {Pas function of Efor the maximum elastic bending
moment of a buried pipe (for the six semi-empirmnadels and for a maximum elastic stress of coacret
equal to 10 MPa).
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The probability of failure for the maximum bendimgoment M) of 1440 kN.m
(corresponds to & equal to 5 MPa) is presented in appendix 1.

In order to complete the previous analysis, we stady the influence of the values of
the coefficient of variation oks and L on the probability of failure in the case of
differential settlement and the semi-empirical maxé/esic.

Figure 3-37 and Figure 3-38 show the obtained tedol the probability of failure
respectively for the different values Gl andCV,.. Figure 3-37 depicts nearly the same
values of the probability of failure for the difart values ofCVis illustrating the
unimportance of the value of the coefficient ofigaon ofks. On thecontrary, Figure 3-38
shows the importance of the value of the coeffic@nvariation ofL in the case of the
semi-imprical model of Vesic. For example, in tlese shown in Figure 3-38, the soil of
the foundation witlEs= 7 MPa, should have a coefficient of variatiorLdéss than 5% in
order to not exceed the value af &0.067; the soil of the foundation with= 9 MPa, a

coefficient of variation of. less than 30%.

q= 100 kN/m
rYYVYVYVYYY AA
100% -
=0.15
80% A e
g j— L=30m —p]
s 60% 1  CVge= 15%, CVo=CV=5%, CVy=10%
o
Al —— CV(ks)=5%
<] -
- 40% CV(ks)=10%
=™
—h— CV(ks)=20%
20% - (e
Ps1.5=6.7 % —%— CV(ks)=30%
0% T T T '-‘M
0 2 4 6 S 10 12
E.(MPa)

Figure 3-37: Comparing the probability of failur@ for the maximum differential settlement of a bdri
pipe for different values of GMVesic’'s model)
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Figure 3-38: Comparing the probability of failur@ for the maximum differential settlement of a bdri
pipe for different values of G\(Vesic's model)

Figure 3-39 show the obtained results for the pooitya of failure for the different
values ofCVis andCV,.. The probability of failure for the differentiaélement is almost
close to those obtained from Figure 3-38 showirgjrathe importance of the value ©¥,

compare taCVs.
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Figure 3-39: Comparing the probability of failur@ for the maximum differential settlement of a bdri
pipe for different values of GQMandCV,_ (Vesic’s model)
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The same figures could be obtained for the five rosi@eni-empirical models, bending
moment and for different buried pipes geometries Bradling ) in order to obtain
different charts to help a better design of bunmpe when the soil modulus and the
geometrical dimensions of pipe are uncertain andreviveak soil zones are present on the
construction site.

All of the presented results in this section foe tieliability analysis are based on the
hypothesis of a normal distribution for the valaudgshe maximum differential settlement
and the maximum elastic bending moment. The obdaiesults by the hypothesis of a log-
normal distribution for these values are almoshimal to those ones obtained for a
normal distribution as presented in appendix 1.

3.3.6. Application to global uncertainty analysis (for a kuried concrete pipe)

In this section, for each semi-empirical model, use the presented methodology
(Figure 3-19) for the calculation of the confidertminds of the differential settlement and
the bending moment of a buried pipe resting onlastie soil and in the presence of a low
stiffness zone in order to verify that values ohiti states design are not included into
confidence bounds.

Firstly, the deterministic values of the maximurffatential settlement and the bending
moment are obtained through the traditional usthefWinkler model. For this purpose,
starting from values OEs, vs, d, Ec, we obtain from each semi-empirical model different
values of the subgrade reaction modulus whichrareduced in the Winkler model for a
given length of low stiffness zone. In a secong stierough the uncertainty approach, the
FOSM method is applied on the six semi-empiricaldet® knowing the coefficient of
variation of each parametdt( E., v, d) to determine the coefficient of variation laffor
each model. Thereafter, the FOSM method is appglgain on the analytical equations of
the deflection and the bending moment (for a gi@an) to determine the coefficient of
variation of differential settlement and the bemdmoment for each model. Finally, by
considering the hypothesis on the distribution pholity for the differential settlement and
bending moment, both approaches (traditional ambraand uncertainty approach) are
combined to calculate the confidence intervalsefach of the six models. At the end, a
global uncertainty is proposed which correspondthéorange between the maximum of
the six upper bounds and the minimum of the sixelobounds.
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In order to illustrate the complete use of this moeiblogy, we take as an example a

continuous buried steel or concrete pipe restingahin the presence of a low stiffness
zone of 30 m (Figure 3-23b) with a Young’s modu(&s) of 2 MPa (very soft clay)
estimated from a geotechnical investigation. Thefmdent of variation ofEs andL are
estimated to 15% and 10% from published valuehénliteratures and expert judgment
respectively. The soil parameters, the mechanicglgrty and the geometrical dimensions
of this buried pipe are identical to those previpustudied in this paper. For this
consideredtase, the deterministic values of the subgraddiogamodulus, the differential
settlement and the bending moment are obtaine@doh semi-empirical model (Figure
2-11 and Equation 1-51). Thereafter, using the oudlogy explained previously and
assuming a lognormal distribution (which is a facbmmon assumption) for the subgrade
reaction modulus, the differential settlement am@ tbending moment, their 95%
confidence bounds are obtained for each semi-ecapimnodel. The results for the
application case are presented in Figure 3-40 xfs@ed the deterministic valueskgfA,
M and then their confidence intervals are diffefenteach semi-empirical model (Figure
3-40a, Figure 3-40b and Figure 3-40c). The valu&ksofnd its associated confidence
interval are the highest for the Matsubara model e smallest for the Vesic model
(Figure 3-40a). Figure 3-40b and Figure 3-40c shbat the deterministic values and
confidence bounds of the differential settlement #mel bending moment are the most
important for the Vesic model and the least impdrfar the Matsubara model.

In the case wherein choosing a suitable semi-eagpirnodel is difficult, a global
uncertainty is introduced. This includes the uraiaties from each semi-empirical model
and corresponds to the range between the maximutheokix upper bounds and the
minimum of the six lower bounds. The global undettas forA andM for the case under
consideration areespectively [13.93; 78.13] (mm) and [2.190; 6.4Q¥N.m) (Figure
3-40b and Figure 3-40c).

The counter slope for the buried pipe, which cqoesl to the ratio betweef and
Xmaxp) (S€e section 3.2), can be obtained from the daétestic values of the maximum
differential settlements for these semi-empiricaldels. This slope should be compared to
the serviceability limit state, corresponding teadue of counter slope of 1/250 (it is taken
as an average limit value), which can prevent trenal flow of fluids. For the six models

the deterministic values of counter slopes are lemahan the limit value of 1/250.
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However, the values of counter slopes obtained fibe global uncertainty of the
maximum differential settlements ranging from 1/1@00L/190 showing it is possible to
exceed the limit counter slope. By consideringrtieximum elastic stress of concretg) (
equal to 20 MPa, for the bending moment, the maximatnes deduced from the global
uncertainties (Figure 3-40c) are less than the evalti the maximum plastic bending
moment equal to 6.75 MN.m.

The same results could naturally be carried outdftierent buried pipes geometrjes
boundary conditions and loading) (in order to obtain different charts to help atéet
design of buried pipes, like sewer networkgen weak soil zones are present on a

construction site.
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Figure 3-40: Global uncertainties for the a) Subgrade reactiomdulus k b) Maximum differential
settlementA and c¢) Maximum bending moment M by considering @8¥fidence bound for each semi-
empirical model with log-normal distribution £ MPa, E=20 GPa, ,vs=0.3, d=1.5 m, e=0.15 m, L=30
m, g= 100 kN/m, CM=15%, C\{=10%, C\j= CV,s= CVe=5%).
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Results of the application to global uncertaintylgsia for a continuous buried steel

pipe are presented in appendix 1.

3.4. Comparison of FOSM and Monte Carlo analysis results

The Monte Carlo Method is widely used in stochastadeling. It is a versatile method
which, in principle, can always be applied. It asts of performing a large number of
deterministic calculations for random realizatiamighe problem and a statistical analysis
of results. The computational effort may becomeehugpwever, before results converge,
and the number of realizations necessary is atdmgiapproximately known in advance.

It is common to use the Monte Carlo method to yesther approximate solutions, like
FOSM and FORM. For exampl&ilva et al. (2008used these two previous methods
(FOSM and Monte Carlo simulation) for a reliabiligwaluation of reinforced concrete
pipes in crack opening limit state. Quantificatiminuncertainty in groundwater modeling
and uncertainty analysis of Lake Erie Net Basin $appusing these methods, were
respectively studied biyunstmann et al. (200&8ndBruxer (2011)

In the following the results of the Monte Carlohamue are compared to those from
the FOSM method for the superficial geotechnicaigles (continuous spread footings and
buried pipes). The comparisons, for simplicity,|wlib for a length of spread footing and
for a low stiffness zone of soil beneath the bupgee with a lognormal distribution for
each of the soil and structure parameters.

The evolutions oCV,s as a function o€Vgs for the four semi-empirical models in the
case of spread footing, using the Monte Carlo aggroare shown in Figure 3-41.This
figure is for the values d&s equal to 5 MPa (Figure 3-41a) and 25 MPa (Figudd.l3) for
the generation of 1000 values of this parameters Tigure was obtained by assuming the
values ofvs, b, h and E to have a log-normal distribution respectivelyhwibean values of
0.3, 0.5 m, 0.3 m and 20 GPa, the coefficients asfation for each parameter equal to
10%, from the generation of 1000 values of thesampaters. Statistical analysis of Monte
Carlo results is performed to obtain one value€Cvfs for one value ofCVes As can be
seen, the results of the Monte Carlo (Figure 3a#i) FOSM (Figure 2-10) methods are as
expected nearly identical for all semi-empirical ralsd

Figure 3-42 presents for a buried pipe and fornvilees ofEs equal to 5 MPa (Figure
3-42a) and 25 MPa (Figure 3-42b), using the MordddCapproach, the evolutions ©¥4s
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as a function ofCVgs for six semi-empirical models. The valuesEfequal to 20 GPa,
coefficients of variation for each parametdy s andE;) equal to 5%, and other required
parameters are identical to those previously studie Figure 2-16. This figure was
obtained from the generation of 1000 values of &od buried pipe parameters and for one
value of coefficient of variation dEs which give, after a statistical analysis, one eatu
CVks As expected, there is a little difference in thsults between Monte Carlo (Figure
3-42) and FOSM (Figure 2-16) approaches.

0.6 7 E-5MPa, E,=20 GPa, b=0.5 m, v,=0.3, h=0.3 m

0,5 - CVp=CV=CV,;=CVg=10%

0,4 1
=
5 0.3 Vesic model
0,2 ——Biot model
—&— Vlassov model
0.1 —8—Ménard model
0 005 o1 o015 02 025 03 035 04 045 05
CVy,
a)
0.6 7 E=25MPa, E.=20 GPa, b=0.5 m, v,=0.3, h=0.3 m
0,5 1 CVp=CV,=CV=CVg=10%
0,4 A
P
5 0,3 Vesic model
0,2 —- Biot model
—&— Vlassov model
0,1 —@— Ménard model
o 005 o001 015 02 025 03 035 04 045 05
CVEs
b)

Figure 3-41: Evolution of C\ (Coefficient of Variation ofkas a function of CM (Coefficient of Variation
of E) for the values of fequal to 5 and 25 MPa (Figure 3-41a and FigureI®yfor studied semi-empirical
models (Monte Carlo method for a spread footing).
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a)

b)
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——= Biot model
o —&— Meyerhof model
/‘. —— Selvadurai model
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4 —&— Meyerhof model
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] / ‘/ —&— Matsubara Model
& Kloppel model
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Figure 3-42: Evolution of C¥ (Coefficient of Variation ofqkas a function of C) (Coefficient of Variation
of E) for the values of fequal to 5 and 25 MPa (Figure 3-42a and FigureZbyfor studied semi-empirical
models (Monte Carlo method for a buried pipe).

FOSM method has several advantages over Monte @etlood, which can be resumed

as follows:

its analytical relationship,
much less time consuming,
no distributional information on the system’s basciables and

determination of the important parameters betweeahias.
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In contrast to FOSM method, Monte Carlo approacextsemely time consuming and
requires a lot of computer memory.

Figure 3-43 presents for a spread footing consitlar this chapter (section 3.2.1) and
for the length of 5 m, using the Monte Carlo andSiMDapproaches, the evolutions of a
coefficient of variation of the maximum differertisettiement with respect tQ (CVaks,
Figure 3-43) as function of soil reaction moduld$is figure is obtained from the
generation of 150 values of the involved parameteis for 40 simulations of coefficient
of variation of the maximum differential settlemefte value ofCVs equal to 15% and

other required parameters are identical to thoseigusly studied in Figure 3-41.

q=30 kN/m

Ec=20GPa

3333333332

0,2 1
CVkE,:lS%'
0,15 -
é\j
5 0,1
® FOSM method
0,05 + .o ® Monte Carlo method
0 r T L L] T T 1
0 10 20 30 40 50 60
k, (MN.m3)

Figure 3-43: Comparison of the results of Monte I6aimulation with those from FOSM method for the
coefficient of variation of the maximum differehtattiement with respect tQ(ICV xs)

Figure 3-44 is obtained in the same way and withsree required parameters as the
previous one (Figure 3-43) for the coefficient ddriation of the maximum bending
moment in the case of a spread footing with singulpported at two ends as boundary

conditions.
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Figure 3-44: Comparison of the results of Monte I6aimulation with those from FOSM method for the
coefficient of variation of the maximum bending rantiwith respect tosKCVys)

These figures (Figure 3-43 and Figure 3-44) allb tomparison of the results of
Monte Carlo simulation with those from FOSM methdtle values ofCV,xs, andCVis
with associated uncertainty bounds from Monte Canhoulation are satisfactorily similar
to those from FOSM method.

Figure 3-45 depicts for a buried pipe considerethis chapter (section 3.3.1) and for a
length of low stiffness zone 15 m beneath the lbupge, using the Monte Carlo and
FOSM methods, the evolutions of a coefficient ofiatton of the differential settlement
with respect tdks (CVaxks Figure 3-45a), with respect to(CVa,, Figure 3-45b) and with
respect tks andL (CVa, Figure 3-45c¢) as function of soil reaction modulAs in the case
of a spread footing, this figure comes from theegation of 150 values of the involved
parameters and from 40 simulations of coefficiédntariation of the maximum differential
settlement. The values QiVks andCV, are respectively equal to 15% and 10% and other
required parameters are identical to those prelya@igdied in Figure 3-42.

Figure 3-46 is obtained in the same way and withghme required parameters as in
Figure 3-45 for the coefficient of variation of theaximum bending moment.

Figure 3-45 and Figure 3-46 show again the valtidéseocoefficients of variation of the

maximum differential settlements and the bendingmmiats with their associated
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uncertainty bounds obtained by the Monte Carlo oektitt well with the results obtained
by the FOSM method and this method nearly repratitioe FOSM result.

Monte Carlo techniques are suited for these analigse imply a huge computational
effort. An alternative and computationally efficieapproach, however, is the FOSM
method which directly propagates parameter uncgytanto the result.

Overall, as the above results show, use of the &l&@drlo approach to determine
uncertainties in the maximum differential settlemseand the bending moments of the
spread footings and the buried pipes is likely wessary, given that the results from the
FOSM and Monte Carlo methods are nearly identitiaik is to be expected given the low

non-linearity of the different models but shoulddemonstrated.
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Figure 3-45: Comparison of the results of Monte I@asimulation with those from FOSM method for the
coefficient of variation of the maximum differeh8attlement a) with respect to(CV,xs) b) with respect
to L (CVay) and c) with respect ta,and L CV,) as a function of soil reaction modulus for aiedrpipe.
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Figure 3-46: Comparison of the results of Monte IGasimulation with those from FOSM method for the
coefficient of variation of the maximum bending rantra) with respect to,KCVywe b) with respect to L
(CVw) and c) with respect ta,land L (CV) as a function of soil reaction modulus for aibd pipe.
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3.5. Summary and conclusions

In this chapter, the soil and structural properéied their uncertainties were considered
in order to reveal their effects on the longitudlinahavior of continuous spread footings
and buried pipelines resting on elastic soil.

We then studied the incorporation of the unceryaoftmodulus of subgrade reaction
(k9 in an analytical model, its influence on the elifintial settlement and bending moment
of a shallow foundation and the buried pipelinethmlongitudinal direction.

The FOSM method was used again on the analytidatiao of a beam on an elastic
foundation from Winkler’s hypothesis, with diffetdmoundary conditions.

Results from the FOSM method, for the spread fgstishow that the uncertainties of
the differential settlementC{,) and the bending momenCVy) are very different
depending on the length of the spread footing &edbbundary conditions considered in
order to model a zone of weak soil at the constincsite. For any value d& and the
foundation length we showed that, for the spreairigs with simply supported at two
ends,CV, < CVis andCVy < CVis For spread footings which are simply supportedre
end, we showed th&V,< 1.2C\s andCVy < 0.5CV,s For the differential settlement or
bending moment, the obtained results concerningibleability of the serviceability limit
state Ps 9 show the importance of the choice of the semiiaogd model and the
boundary conditions. For the semi-empirical modwel the boundary conditions selected,
when the uncertainty on the valuelgfis high, the probability of the serviceability iim
state can be exceeded even if the soil has gooban®al properties.

Results in the case of buried pipes show two thifige uncertainties of the differential
settlement and the bending moment are very diftaslepending on the length of the low
stiffness zone beneath the buried pipe and itsevafs. Additionally, these uncertainties
are more influenced by the length of the low s&ffa zone than the value of the subgrade
reaction modulus. From a practical point of vierstindicates that an accurate knowledge
of soil is more important in determining low stiéss zone lengths than soil properties in
case of soil reconnaissance for buried pipes.

In cases where choosing a suitable semi-empiricatlein for the estimation of
uncertainty orks - and therefore on the differential settlement redbending moment of a
spread footing or buried pipe - is difficult, weopose a global uncertainty approach. This

approach includes the uncertainties from each sempirical model and can be used to
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verify whether the maximum values exceed the seabdity values for the ultimate limit
state.

The FOSM method proved simpler to apply than thentdoCarlo method which
requires greater computational resources. This lietexpected given the low non-linearity
of the model. However, the Monte Carlo method &silele, due to the simplicity of the
model and currently available computer software.

Finally, the results obtained here showed that, nwilee soil modulus and the
geometrical dimensions of structure are uncertad where a low stiffness zone or
shrinkage of clayey soil is present, the longitublbehavior of continuous spread footings
or buried pipes should also be considered in thesign.
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Chapter 4

4. Soil spatial variability on a construction site

4.1. Introduction

In this chapter the geological conditions of a Eddaonstruction site and available data
from the geotechnical and geophysical investigati@re presented. Thereafter the
appropriated geostatistical methods are used toowepthe quality of geotechnical data
and bring more information to the soil spatial abiiity on the construction site. It is
shown how the combination of the geotechnical aampbysical information can improve
thanks to collocated cokriging, the knowledge ofchamnical characteristics on the
construction site. In a last stage, it is focusedh® spatial modelling of the Young’s soil
modulus. The conditional simulation method enalitesbtain the spatial probability of
occurrence of a given soil modulus value. Couplé@t wther information, the analysis of
these statistical and geostatistical models ma&ssilple to develop decision support tools
and to describe the behavior of the superficialtggmical designs (continuous spread
footings and buried pipes) when they are constduaia different locations on the

construction site.

4.2. Presentation of the studied site and available data

The study site has a surface area of 25080mview of its large area, it was decided
to implement a preliminary VLF-R type of geophys$isarvey campaign in order to
qualify the homogeneity of the site, and ascertdiose zones most suitable for

construction, before proceeding with borehole amdguremeter soundings.

4.2.1. Geological settings

The study site is located to the south of the eaftfPessac in France; Pessac is about 5
km west of Bordeaux.

From a geological point of view, Pessac is locaethe boundary between the large
Landes moorland area (Landes sandy deposits) taweéke and the alluvial terraces of the
Garonne to the east (Figure 4-1a). The study stenigs to the alluvial terraces of the
Garonne, which is characterized by clayey-sandy-guliaternary deposits (Figure 4-1a and
b). More precisely, the study site rests on arvaluterrace dating to the lower Pleistocene

(Dubreuilh, 1976) covering more than 20% of the town surface afédés formation, a
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witness to the ancient alluvial water tables créataring the interglacial periods of the
Pleistocene, is characterized by soils with higty dontent with a blue-gray to dark gray
appearance. The clay content can reach 80%, withingral distribution comprising
mainly kaolinite, illite and interstratifie@ubreuilh, 1976) Its thickness varies between 4
m and 12 m.

The engineering properties of alluvium deposity/\aver a wide range. In area such as
Pessac, dominated by sluggish streams, very thigksits of clayey silt occur, giving rise
to lack of bearing strength for large load. In tb&se, pilings are extensively used for
multi-story buildings. Engineering problems assterawith clayey soil are due to their
low shear strength, which make them very hazarfmushallow foundations. Clayey soils
are also hazardous due to expansion and contraatimympanying soil moisture changes.
They cause damage when they shrink upon dryinghemvwthey expand upon wetting and
the resulting soil movements can disrupt housesrlyrbailt houses with inadequate
shallow foundations develop damage ranging frorokstg doors and hairline plaster
cracks to complete destruction. Moreover, alludaposits are often heterogeneous and
vary both vertically and horizontally over shorstdinces

Numerous residential constructions, recent and wlth no previous history of even
minimal differential movements, have developed faiimh problems over a very short
period of time, due to changes in moisture contleming extended periods of drought, as
were experienced in this region between 1989 arh,2P008 and 2010. Many of these
homes are resting on this alluvial terrace, eveunigh it is classed as being a formation of
moderate swelling and shrinkage potential (Figur2).4The corresponding maps are
currently being updated.
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Figure 4-1:a) Geological cross section from Bordean Atlantic Ocean and b) Geological map of the
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Figure 4-2: Localization of the studied area, ariskage-swelling clay hazard m@penis et al., 2011)
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4.2.2. Geophysical investigations

The reconnaissance of a site of large surface us®@ an R (Resistivity) mode VLF
(Very Low Frequency) technique can provide an ggeng alternative to conventional
methods such as the direct current electrical me{Bachson et al., 1997; Oskooi and
Pedersen, 2005Although the latter reveals important informatertaining to the nature
and distribution of surface soils and subsilsies, 1996; Denis et al., 200#)ey suffer
from the drawback of requiring a considerable amafntime for their implementation
with such surfaces. The VLF method makes use of gbeer of radio frequency
transmitters, which operate at frequencies rangetgeen 15 and 25 kHz. The transmitted
waves, of high power, induce electric currentshi@ most conductive parts of the ground,
which in turn generate a secondary magnetic fighickwv can be detected at the surface
through measurements of deviations to the norref.fiThe depth to which investigations
can be made depends on the frequency of the tretesmsed and the ground resistivity
(Spies, 1989)In the case of soils with a resistivity betweearfél 50Q.m, the maximum
studied depth is estimated to lie between 8 anch20he presence of clayey soils of lower
resistivity can lead to more shallow study depthsthe present study, in which the aim
was rather to reveal the presence of clayey soléctware thus conductive, with
thicknesses of at least 6 m, the inherent limitawbrthis chosen technique was not a
serious limitation.

The measurement points are distributed over uniforofiles with mean spacing of 10
m between measurement points. The profiles araadign the east-west direction, over a
length of approximately 190 m. The full reconnamsacampaign included a total of 272

soil resistivity measurement points (Figure 4-3).
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Figure 4-3: Localization of the VLF point measurense wells and pressuremeter tests in the studied a

The frequency of the transmitted electromagneticesavas 16 kHz. In view of the fact
that we had no complementary data concerning thistnaty of the deeper layers, we
made the assumption of a single layer of terrams Tiypothesis is all the more justified
since the resistivity of the upper layer is low,réi®/ reducing the depth of analysis.

A geostatistical approach was used to identifyitinerent variability of the resistivity
of soil (kriging estimation) using ISATISO softwark should be noted that in this study,
we calculate the semi-variogram but the term vadogis used in place of semi-
variogram. The first step was to compute the expental variogram map of the resistivity
of sail in various directions. The next step idita model to the experimental variogram
in both directions of anisotropy, if such anisofr@xists.

During the variographical analysis, it is importéamicheck for the presence of potential
directions of anisotropy if the target variable gaets a more continuous behavior in a
given direction than in another one. For this psgdirectional variograms are computed.
When for the same variable, variograralues for two perpendicular directions require
different sills or ranges then anisotropy is pres&dhen data are densely sampled, a
variogram map can be obtained by automaticallyutalimg directional variograms in
every direction.
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Firstly the variogram map of the soil resistivityeauds to be produced with soil
resistivity measurement points, allowing variogreatues to be determined for all lags in
all directions. This process thus enables the twacimal directions of anisotropy to be
defined, if such anisotropy exists. Each cell @ mhap, in a given direction, corresponds to
the variogram value for a lag (distance between pemts) which can vary from 0 m
(centre of the map) up to a value of 90 m (Figudadnd b) with a step of 10 m.

From this map, the variograms in the two main dioes of anisotropy are computed.
The resulting directions (N50 and N140) are neatgntical over the distance [0, 50 m].
Anisotropy is present beyond this interval. In tbase, with increasing the distance, the
difference between the variograms of these twoctliors increases. In the following, the
interpolations will be done using a circular neigtitsmd of radius 50 m, so the variogram
of the soil resistivity is omnidirectional up toigtdistance. This distance is one quarter of

the study area.
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Figure 4-4: a) Variographical map of the soil retbigty (up to a value of 90 m) and b) Experimental
variograms in the two main directions of anisotropy

The experimental variogram is not sufficient fogeostatistical estimation because the
variogram used in estimation must satisfy some ematttical constraints. For this reason
an analytical mathematical function is fitted ol #xperimental variogram: the variogram

model.
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Variographical analysis result of the resistivifysoil dataset is shown in Figure 4-5,
which presents an omnidirectional experimental oggam (black line), showing a sill
equal to 85 (Ohm. r)associated with a range equal to 37 m. Beyond 5@ mon-
stationary behavior can be observed. If we wantedake all these observations into
account in the variogram model, it would be neagssa sum a stationary and a non
stationary basic model. However, as explained presly and considering that the length
of the continuous wall footing and low stiffnesses of soil beneath the buried pipes are
small compared to 37 m, the model is only an exptalecomponent with a range of 37 m
(Equation 4-1), which represents the isotropic ogram for the data-set, which is also
represented by a red line in Figure 4-5.

wh) = 85{1—exp{_3—?;hﬂ . hilag(m) Equation 4-1
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Figure 4-5: Experimental (black line) and modellgeld line) isotropic variograms of the soil resisty

The quality of this model is quantified by crosdidation (Figure 4-6), which is
achieved by iteratively eliminating each data pdrom the data-set and comparing the
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estimated value at this point using the model whik real value. Figure 4-6a shows the
spatial distribution of the soil resistivity valuéghe coefficient of correlation between the
estimated (z*) and measured (z) valigesqual to 0.89 (Figure 4-6b). This value of

coefficient is acceptable but it was reduced bypgresence of two non-robust data in the
soil resistivity values (shown by a green poinFigure 4-6). These points correspond to
the outlier values which can not be well predictsdthe model.The standardized error
((z*-z)/s*) has a mean close to zero and it is lyeancorrelated with the estimated values
(Figure 4-6¢ and Figure 4-6d), then data are uebiashese different criteria allow us to

validate the quality of variogram model fitted betexperimental variogram.
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The ground resistivity map resulting from krigingth the previous variogram model
and a circular neighborhood equal to 50 m is shiowkiigure 4-7a. This estimation is done
over a regular grid with a mesh of 10 m x 10 m. Téwastivity ranges from a clayey pole
with values between 4 and IDm to a clayey-sandy pole with resistivity valuesaier
than 50Q.m. The spatial resistivity distribution (Figure74) illustrates the heterogeneity
of the surface layer formations on this site, onrtbgh part of which, over a distance of 30
m, one can observe a change from sandy-clayeytsaiay. The zones with the lowest
resistivity are found mainly in the eastern and teses parts and appear to outline a
corridor of more resistant soil, which could copasd to the filling of a north-south
aligned paleochannel.

Figure 4-7b shows the map of the kriging standadadion of the resistivity. The value
of the standard deviation is between 0.1 and.® except for the zones with the high
values of the standard deviation of resistivityt@@en 6 and 8.62.m). These high values
are found mainly in the southern and western gagtawuse of very small number of soll
resistivity experimental values in these parts.
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Figure 4-7: Analysis for soil resistivity data ajffing estimate for electrical resistivity from VLR (16
kHz) measurements b) Associated kriging standavéhtien of soil resistivity

4.2.3. Geotechnical investigations

The reconnaissance soundings (6 auger boreholes depth of 8 m) and twelve
pressuremeter tests (depth of boreholes rangingeleet 8 and 12 m) enabled the surface
formations detected using the VLF-R technique tocbefirmed. Boreholes T1 and T2
(Figure 4-3) drilled in the zones, with resistiggiranging between 0 and @m and 10—
20 Q.m respectively, revealed clayey soils down to ptld@f 8 m, which was confirmed
by laboratory tests carried out on these soilswoich the plasticity index ranged between
30% and 40%. Borehole T3 (zone with resistivitietween 20 and 3@.m) revealed
sandy clay between the depths of 1.20 and 8 m, eslseborehole T5 (zone with
resistivities between 30 and £0m) revealed sandy clay containing gravel bedszbaoes
having a higher resistivity, boreholes T4 (40-&0m) and T6 (resistivity>502.m)
revealed the presence of clayey sand and a gralasly

The pressuremeter soundings made to a maximum daeépt2 m, including a test
measurement every meter, confirmed the sandy-clelyasacter of the soil with, for some
soundings, the presence of sand, which occurs asdded lenses rather than continuous
seams or layers at depths greater than 7 m. Incéise of shallow foundations for
individual houses, the slice of ground beneathftli@dation, affected by the loading, can
be estimated to have a thickness of approximatety(€assan, 1978For the full set of

12 pressuremeter soundings, and for a slice of gréemwhich measurements were taken
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at depths ranging between 1 and 7 m (i.e. 6 preskonit and deformation modulus
measurements per sounding), the 72 values of peedisnit and deformation modulus
were respectively comprised between 0.3 and 1.3,MRd 3 and 7 MPa. The average
values found for the pressure limit and the defaimnamodulus for each sounding are
provided in Table 4-1. The ratio between the meafordhation modulus and the mean
pressure limit ranged between 5 and 8.1, thus coinfg the sandy—clayey character of the

soils encounterefCassan, 1978)

Table 4-1: Average values for the deformation moslihy+ and pressure limit P

FP1 FP2 FP3 FP4 FP5 FP6 FP7 FP8 FP9 FP10 FP1l FP12

Ev(MPa, 3.71 3.21 51 35t 441 6.5 3.8t 43t 4.4€ 3.5& 3.6t 4.19
Pwm(MPa, 0.7 064 0. O0E 081 108 0.6¢ 087 0.8t 0.7 0.4t 0.7
Em/Pm 506 50z 6.3¢ 7.1 544 6.1¢ 56z 5.0: 50¢ 511 811 7

4.3. Geostatistical modeling of Young’s soil modulus

The aim here is to model the spatial distribution ggfotechnical parameters. To
illustrate the methodology, we have chosen to famughe Young's soil modulus. This
modulus can be assessed from pressuremeter modsilng,common relatiorEpyr=o.Es.
As it was mentioned earlier (see section 1.2.2.2ptaof geostatistical methods are
available to perform such a model (kriging, cokrimgsimulations methods with many
variants) using only one parameter or auxiliaryapagters togRaspa et al., 2008This is
described in the ensuing sections and the mostopppte method will be chosen to

localize sensitive zones during the decision stddbe superficial geotechnical projects.

4.3.1. Young’s soil modulus modeling using kriging

To model Young’s soil modulus, a first option is to use Young's soil modulus wmo
at the boreholes location and interpolate betwberbbreholes by means of kriging. The
experimental variogram resulting from the twelvéuezof soil modulus is shown in Figure
4-8. Because of the poor number of data, the exyatial variogram is very erratic and it
is not possible to fit a good variogram model to ¢lxperimental variogram. So we have

decided to use the kriging with linear model tofpen the estimation. Figure 4-9 shows,
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using this method, the maps of soil modulus wihagsociated standard deviation. The soil
modulus ranges from a clay soil with values betw&&nand 9 MPa to a clayey-sandy soil
with values between 9 and 14 MPa (Figure 4-9a).tli@nsouth part of which, over a
distance of 50 m, one can observe a change frogeylaoil to sandy-clayey soil. The
zones with the lowest soil modulus are found mainlthe northeastern and western parts
(Figure 4-9a). The map of the kriging standard aeen of soil modulus is shown in
Figure 4-9b. The value of the standard deviatiobasveen 0.1 and 3.4 MPa. The high
values of the standard deviation of soil modulus (& 3.4 MPa) are mostly found in the
northern, western and southern parts because ihe®@ measured deformation modulus
(Epm) in these parts.

Partly due to the low number of boreholes (twelveasured deformation modulus,
EpwvT), these outcomes are really smooth and do not gmetogically consistent (Figure
4-9). More dense information can be integrated rideo to improve the estimation of
Young's soil modulus using a multivariate geostetsd estimation called collocated

cokriging which is explained below.

”

Variogram: Young’s soil modulus (MPa)
[Ah]

| |
0O 10 20 30 40 50 &0 70 80 90

|:| 1 | | |

Distance (m)

Figure 4-8: Experimental variogram of the twelvéues of Young's soil modulus
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4.3.2. Maps of Young'’s soil modulus using collocated cokging

When several correlated variables are availablapliivariate geostatistical estimation
called cokriging can be performed: the use of ameséveral) correlated variable(s) allows
improving the estimation of the main property.

A particular heterotopic situation encountered iacgice is when we have a variable of
interest known in few points and an auxiliary vahkeknown everywhere in the domain (or
at least at all nodes of a given estimation grid ahthe data locations of the variable of
interest). In this case, an extension of cokrigtaied collocated cokriging is particularly
appropriate. In this method, the auxiliary varialsléncorporated at each target location. It
allows bringing more information to the estimati@u the estimate is expected to have a
better consistencyChiles and Delfiner 1999)This multivariate technique require the
computation and fitting of a variogram model thahtains simple variograms for each
variable and a cross variogram measuring the $gatieelation between the variables.

Attempts to relate geotechnical properties to ggsighl data are uncommon and the
literature contains some contradictioizaga et al. (1999show that the resistivity is
weakly correlated with geotechnical data from tHT §Standard Penetration Test) and
that there is no relationship between SPT blow toWwh and the chargeability from
induced polarization metho@.osenza et al. (2006ptained the same result in a case study
with a dynamic cone penetration test, an in sitaevehear test and a geophysical survey
(Electrical Resistivity Tomography). No clear réatship between the cone resistance and
the inverted resistivity values was observed. On dtteer hand,Endres and Clement
(1998) revealed relationships between the soil types oetexd from the mechanical
properties measured by CPT (Cone Penetration Tasi), the electrical properties
(resistivity and dielectric permittivity) of a siteith lithologies ranging from clayey silt to
coarse sand units. The authors suggest that tletagonships may provide a petro-
physical basis for the combination of informationrided from CPT and electrical
methods. Denis et al., (2011)tried to show relationship between the geoteclhnica
parameterEpyt and soil resistivity derived from geophysical istigation (VLF-R).
Monnet et al. (20088howed relationship betwe&pyr and soil resistivity derived from a
direct electrical method (electrical panel).

The data-set in this study is constituted of a $etvof pressuremeter boreholes with the

deformation modulu&pyr values (12 data of interest) and a lot of soilstesty values
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(272 auxiliary datajDenis et al., 2011)n a clayey-sandy soil with no important change i
water content, more the sand is, more the defoomatiodulus and resistivity are. Thus it
is assumed that deformation modulus is indirectikdd to soil resistivity derived from
geophysical method$/onnet et al., 2008, Denis et al., 201Npte that for a same clayey-
sandy soil a less the water content is, more thera@tion and resistivity are. In these two
cases, it will be relevant to use the dense seiktigity information as auxiliary variable
for a better estimation of Young’s soil modulusc@located cokriging of the deformation
modulus integrating the soil resistivity is partely appropriate to bring more
information to the estimation of the deformation miog.

For a collocated cokriging, the influence of sabkistivity information will be more
important if the correlation between both variabiledigh. A linear relationship with a
correlation of 0.6 was obtained between the deftamamodulus and resistivity values
(Figure 4-10). This correlation value was influethd®y the data from two boreholes (FP2
and FP6).

y =0,0629x + 2,5202 * IP6
R=0,6

Epyr (MPa)
v

10 15 20 25 30 35 40 45
Resistivity (Ohm.m)

Figure 4-10: Modulus Ry derived from pressuremeter tests, versus redigtigderived from VLF-R.

For the collocated cokriging a bivariate variogramodel is required. Nevertheless,
because the small number of soil modulus values, liivariate model is tedious to
establish. For this reason, a bundled versionettilocated cokriging will be used which
takes into account only the spatial correlationthed auxiliary variable (soil resistivity,
Figure 4-5). The bivariate model is deduced frons thmodel and the coefficient of
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correlation and variance ratio between both vaesbAs previously, the interpolations will
be done using a circular neighborhood of radius 50 m

The collocated cokriging of soil moduluss with its associated kriging standard
deviation are displayed in Figure 4-11. The zon#k the lowest soil modulus values are
found mainly in the western parts, and appear ttineua corridor of high soil modulus
values aligned south to north (Figure 4-11a). Ahas been mentioned before, the
collocated cokriging brings more information to tretimation of the deformation modulus
than the use of the kriging alone. For exampleh lzoines of high values of soil resistivity
found in northern part at {130, 140} and southeartmt {70, 40} appear, whereas no
measured deformation modulus are present at theisésp Using collocated cokriging
gives the possibility to estimate value of deforigratmodulus at these points with more
precision than from kriging of Young’s soil modul(iSgure 4-9a and Figure 4-11a). This
map presents more variability than the kriging ofi@s added variability comes from the
soil resistivity integrated at the target locatittmough the collocated cokriging process
(Figure 4-7a)

The map of the cokriging standard deviationEgf(Figure 4-11b) is compared to that
one from kriging (Figure 4-9b). This shows that tise of collocated cokriging decreases
the uncertainty in the interpolation.
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Figure 4-11: a) Map of soil modulus using soil siiity as auxiliary variable b) Associated cokrigi
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4.3.3. Young’s soil modulus modeling using simulation

In order to choose the most appropriate methaost, dind foremost we must think to the
final aim: we want to obtain a model which could bsed as a decision support
framework. So it is important to be able to evauatgeotechnical parameter value at a
location, but we also want to localize zones witbmpgeotechnical characteristics in order
to assess risks, for instance due to excessiversetits.

In a first approach, estimation methods have bealized (see sections 4.3.1 and 4.3.2).

However, these methods are not the most approgaate/o main reasons:

- Estimation methods give a smoothed image of thityethus underestimates the
proportion of extreme values. In our case, extréomevalues are very important to
define zones with poor geotechnical parametersxample,

- We want to obtain results in terms of probabilifyozcurrence of a geotechnical
parameter value, which is very important for theufatuse of the model at the
design stage of the superficial geotechnical desWye do not want a model with a
parameter value which could be considered as tka&ctévalue at a given location.
Thus, results in terms of probability are more espntative of the real state of

knowledge and best fitted to engineering purposes.

In order to satisfy these two remarks, we have @hds use the conditional simulation
method. This estimation is done over a regular gith a mesh of 0.5x0.5 f1to obtain
more values oEs beneath a structure to introduce in the finitengst methods. This
method better describes natural variability whiglaitenuated when using only estimation
methods. Starting from estimation results on a D0wd mesh and computing new results
on a 0.5x0.5 mmesh is authorized by the application of the thremendicular theorem
(Chiles and Delfiner, 1999Finally, it provides results in terms of prob#lilby post-
processing simulations.

For this, the raw data must be transformed witla@amorphosis in order to achieve a
normal statistical distribution to avoid biasesimulation results and the variogram model
is also transformed into this new space. Valuessamnellated in this space, in accordance
with the variogram model, and are then back transéd into the raw data space.

Modeling the anamorphosis function includes thofaing points(Dowd, 2003)
- minimal differences between basic statistics of aan back-transformed variable,
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- the mean of the transformed variable is 0 andarsance is equal to 1 as close as
possible,

- the average of differences between raw and badsftvemed values is 0 and
variance minimal,

- the shapes of the experimental histograms of rawbacl-transformed variables is
the same and

- correlation between raw and back-transformed vhasails maximal positive.

Variographical map of the Young’s soil modulus lre tGaussian space up to a distance
of 70 m with a step of 10 m is illustrated in Figu¥-12a. This variographical map shows
an omnidirectional behavior. The Young's soil madutiata-set have been computed from
a collocated cokriging of the deformation moduludegrating the soil resistivity.
Variographical analysis of the Young’s soil moduldagta-set in the Gaussian space is
shown in Figure 4-12b which presents an omnidioecti experimental variogram (black
line) in the Gaussian space with a first rangec(orelation length) equal to 42.7 m. As in
the case of the variographical analysis of the sesistivity (Figure 4-5) an isotropic
variogram model (red line) in the Gaussian space \Wed to this experimental
variogram. This model is only a spherical componeitlh range and sill equal to 42.7 m
and 0.58 (MP&)respectively (Equation 4-2).
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Figure 4-12: a) Variographical map of the Youngtl modulus in the Gaussian space (up to a vafuiéo
m) and b) Experimental (black line) and modelledd(rine) isotropic variograms of the Young’'s soil
modulus in the Gaussian space

185



Chapter 4

3
y(h)= 058 §(LJ—1(L} for h< 427 m
2\ 427) 2\ 427

Equation 4-2
y(h) = 058(MPa)? forh>427m

The conditional simulation procedure can then bdopmed for a series of 1000
simulations using a moving neighborhood (circul@&ighborhood of radius 50 m) in
accordance with variogram model. Two simulationultssare shown in Figure 4-13. Zones
of low or high values of soil modulus are locatedthe same area than previously.
However, one can see that the simulation increfisesspatial variability of the soil

modulus.
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Figure 4-13: Example of spatial distribution of tfeung’s soil modulus on the construction sitetfay
simulations

Young’s soil modulus along a profile length of @Ofor the first 250 simulations is

shown in Figure 4-14 to illustrate the variatiorsofl modulus along this profile.

186



Soil spatial variability on a construction site

11 4

=
o
1

Young's soilmodulus (MPa)

Profile length (m)

Figure 4-14: Young's soil modulus along a profigmgith of 10 m for the first 250 simulations

It should be noted that in the probabilistic an@lys the ensuing sections, the number
of simulations influences the accuracy of the rssubince the increase in number of
simulations also increases the computational eff@atcompromise between accuracy and
computational time is achieved by estimating theamef Young’s soil modulus in Figure
4-15 for several numbers of simulations. In thisrapph, simulations are carried out for a
large numbers till there is no significant changethe mean values of the Young's soil
modulus. From Figure 4-15 it can be noted that betw700 and 1000 simulations the
variations of the mean is almost negligible anchit be expected that a further increase in
the number of simulations will not significantly fedt the accuracy of the results.
Therefore, in the present analysis, 1000 simulataesrun for estimating the probability
of soil modulus for different threshold values, ttatistical parameters of the maximum
differential settlement and the maximum bending raotior the spatial variablility of soil
profile.

From 1000 simulation results, a local histograntha Young’s soil modulus can be
built; an example is shown in Figure 4-16 for tloenp {18, 67} which is located inside a
zone with lowsoil modulus values. As it shown from this figui®%, 50% and 90% of

the soil modulus values are respectively infer$173, 6.02 and 6.44 MPa.
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Map of the soil modulus obtained from the mean @ maps resulting from 1000
simulations is shown in Figure 4-17. As expectéuls figure is quite identical to the

cokriging result (Figure 4-11a).
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Figure 4-17: Map of the soil modulus obtained friva mean of the maps resulting from 1000 simulation

After a series of 1000 simulations, these resutsle translated in terms of probability,
by post-processing the simulation results to ob2&imap of probabilities, which is useful
in terms of support decision framework. As an tilagon, Figure 4-18 shows the
probability of soil modulus for the different thhedd values ofEs in order to show the
location of areas with a high probability to enctmunlow soil modulus values. For
instance, a zone with a high probability of a seddulus smaller than 7 MPa is located on
the northern and west southern parts of the costgdru site (Figure 4-18b). A high
probability of a soil modulus less than 12 MPa barfound in all parts of the construction
site except small southern part of site (Figure8d)l The area of zones where the
probability to obtain a soil modulus lower thanr8ldl0 MPa are respectively larger than
50% and 85% of the total area (Figure 4-18c andrEig-18e).
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Figure 4-18: Probability of soil modulus for diffemt threshold values of;ih order to show the location of
areas with a high probability to encounter low smibdulus values

A flowchart is provided in Figure 4-19 which illuates how the methods used in this
chapter are linked one to each other. Furthermibadlpws us to see the overall procedure
of probabilistic and geostatistics methods integtainto a finite element method. The
following results for the superficial geotechnickdsigns are obtained by using this flow

chart.
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Geostatistical approaches

4
Multivariate data set |
Primary data: geotechnical data (soil moaulus E,) Auxiliary data: geophysical data (soil resistivity)
—— 'u' j, —
Bivariate variogram model
Gamzpasinecollocedookiisins sl Costh sz 00
» 3

Transforming the values of E;, obtained from the collocated-cokriging, in a Gaussian space

W

Variogram model in the Gaussian space

Simulation

Obtaining maps of E, (mesh size: 0.5%0.5 m?)
Back transforming all simulated values of E; from the Gaussian space to raw space

4

Geostatistical approaches (using ISATIS©) integrated in the finite element method (using CASTEM®©)

4

Calculating &; for a semi-empirical model using the associated relationship

Soil-structure interaction model (Winkler’s model) with hypothesis on the boundary conditions |

Obtaining the absolute settlement, differential settlement and bending moment at each node for each simulation

Statistical analysis

Figure 4-19: Flow chart of the methods used in tfiapter to illustrate the overall procedure of the
probabilistic and geostatistics methods integrated a finite element method

4.4. Taking into account of the spatial variability of il in the superficial geotechnical

designs
In our analytical approach it is not possible tosider the soil characteristics as

different at each given location along the spremdifg and buried pipe axes (see sections
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3.2 and 3.3.2). It could be very interesting toetakto account the correlation length of
soils parameters along the pipe axis or spreadnipdd characterize spatial variability of
soil. Such an approach could be performed withcthepling of the finite element method
with geostatistical methods, what is describedtli@r superficial geotechnical designs in
the ensuing sections.

Some authoréfor example Elachachi et al. 2004, Niandou et24l09)have shown that
the influence of the spatial variability of soilgperties is the most important on the
settlement and the bending moment when the spatalelation length of soil is
approximately equal to the length of the structdias is not the case in this study where
the considered lengths of the structures (10 mtHerspread footing and 50 m for the
buried pipe) are rather favorable compared to theetation length identical with
geophysics (37 m).

In the following, the spatial variability of Yourg'soil modulus is only taken into
account and the spatial variability of soil paraengetys. Poisson's ratio of soil,: length of
low stiffness zone of soil beneath the pipe) andcstire parameterd @ndh respectively
width and height of the spread footingj, external diameter of the pip&: Young's

modulus of the buried pipe or the spread footing)ret considered in the computations.

4.4.1. Taking into consideration of the spatial variability of soil modulus in the
spread footing design (one dimensional model, 1D)

For taking into account of the spatial variabily soil modulus, we consider three
different locations of a spread footing with a lén@f 10 m on the construction site
(Figure 4-20). The soil parameters, the load, tleehanical property and the geometrical
dimensions of this spread footing are identicathose previously studied in previous
chapters (chapter 2 and 3). For each location &agbfooting, the values of Young’s soil
modulus are obtained at each node from the 100@laimns results using ISATISO
software. From these values B the different values of subgrade reaction modédus
each semi-empirical model are obtained using mlahip from Table 2-4. These values of
subgrade reaction modulus are introduced in thetefimlement method using one
dimensional model to obtain the maximum differdnsattlements and the maximum

bending moments for each semi-empirical model elh éacation. These computations are
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performed with the CASTEM® softwar@erpaux et al. 1988ysing the Winkler model.
Finite element modeling of a spread footing of 1(has twenty elements with 21 nodes
with free ends as boundary conditions (Figure 4-21)
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Figure 4-20: Three different locations o$@read footing with a length of 10 m on the cangton site

g = 30 kN/m
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Figure 4-21: Finite element modelling of a spreadting of 10 m with free ends as boundary condstjone
dimensional model, 1D)
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These results can be then statistically analyaeoetter understand the behavior of a
spread footing in the presence of spatial varigbitin the construction site. This is
described in the following.

For a preliminary evaluation, Figure 4-22 depitis data distribution for the 20000 soil
modulus values for the three different locationg @pread footing in the case of the study
site. For the soil modulus probability between 58d 85%, the intervals of soil modulus
values for the locations (1), (2) and (3) are respely [5.41, 8.26], [5.86, 8.06] and [6.43,
11.29] MPa. The values of soil modulus in the lmoet (1) and (2) are nearly close
together while the values of soil modulus in thealions (3) are greater and wider
compared to the latter.

l -
=
2
g
& 0.8 -
=
£
S 0,6 -
.-E s ocation (1)
E e ]_ocation (2)
o 0.4 .
2 Location (3)
=
=
£ 0,2 1
=
&}

5 6 7 8 9 10 11 12

E, (MPa)

Figure 4-22: Cumulative distribution function ofilsmodulus for the three different locations ofpaesad
footing in the case of the study site

To illustrate finite element results and the influe of geostatistical simulations, Figure
4-23a and Figure 4-23b respectively show the dedion and the bending moment along
a spread footing length of 10 m for the first theamulations in the case of Vesic model

for the location 3.
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Spread footing length (m)
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Figure 4-23: a) Deformation and b) Bending momaonnhg a spread footing length of 10 m for the first
three simulations in the case of Vesic model

Figure 4-24a and Figure 4-24b respectively depiet deformation and the bending
moment along a spread footing length of 10 m fer finst simulation and for the four
semi-empirical models for the location 3. Ménandiedel gives the lowest values of the
maximum deformation and the maximum bending monagwt Vesic’'s model gives the

greatest values. Biot’s and Vlassov’'s models giygr@ximately the same values.
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Figure 4-24: a) Deformation and b) Bending momdohg a spread footing length of 10 m for the first
simulation and for the four semi-empirical models

In order to describe the behavior of a spread mgotor these three different locations,
the results obtained for the maximum differentieitlisment and the maximum bending
moment are shown in the form of cumulative distiifu function for the four studied

semi-empirical models (Figure 4-25, and Figure $%-26
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Cumulative distribution function

Cumulative distribution function

Cumulative distribution function
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Figure 4-25: Cumulative distribution function oktimaximum differential settlement for the threéediit

locations, in the case of the study site for ther &emi-empirical models
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Figure 4-26: Cumulative distribution function oktimaximum bending moment for the three different
locations, in the case of the study site for ther &emi-empirical models
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For the probability of the maximum differential tbetnent between 5% and 95%, the
intervals of the maximum differential settlements the locations (1), (2) and (3) are
respectively [0, 3], [0, 2] and [0, 4] mm (Figure28). For these locations, Vesic's model
gives the greatest values of the maximum diffeeérgettlements and Ménard’s model
gives the lowest values. Biot’s and Vlassov's medgle almost the same value of the
maximum differential settlements.

For instance, in the case of location (1), the pbiliies to obtain a maximum
differential settlement lower than 1 mm for the MhaBiot, Vlassov and Vesic models
are respectively 31%, 46%, 55% and 92%. The lattdre case of location (2) for the four
semi-empirical models is almost 100%. Finally floe tast location, these probabilities for
the Ménard, Biot, Vlassov and Vesic models are gesypely 6%, 13%, 17% and 70%
(Figure 4-25) showing that the rangekf(larger for the location (3)) as important as the
presence of low values & (location (1)). All in all, the obtained resuftsovide insight
regarding the stochastic analysis in the field obtgehnical engineering and show the
importance of the spatial variability of soil modslin the outcomes of a probabilistic
assessment.

Similar observations can be made with regard todis&ributions of the maximum
bending moment (Figure 4-26) showing again the m@pee of the spatial variability of
soil parameters on the longitudinal behavior opread footing.

For completing this section, the cumulative distiidmu functions of the maximum
differential settlement and the maximum bending rmomfor the two extreme semi-
empirical models (Ménard’s and Vesic’s models) &rdthe three different locations are
shown in Figure 4-27 and Figure 4-28 in order lostrate the importance of the semi-
empirical model choice whatever the location.

As shown in Figure 4-28a, we obtain almost the samlees of the cumulative
distribution function for the different location fothe Ménard model. The same
interpretation is also true for the Vesic modelg(FFe 4-28b). However, for probabilities
between 5% and 95%, the interval of the maximundim®moment values for the Vesic
model is greater and wider than the Ménard model.

Finally, the results obtained here show, whatelwerdcation of a spread footing on the
construction site and whatever the considered senpirical model, the probability of

having the critical values of the maximum diffeiahtsettlement and the maximum
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bending moment remains low. Of course, this comafugs limited to a considered spread
footing on the construction site in this section.

Ménard model

® Location(1)

Cumulative distribution function

= Location(2)
Location (3)
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5 0,2 Location(3)
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Figure 4-27: Cumulative distribution function ofettmaximum differential settlement for the threéedkint
locations, in the case of the study site for the éxtreme semi-empirical models: a) Ménard’'s meahel b)
Vesic’'s model
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Figure 4-28: Cumulative distribution function ofetrmaximum bending moment for the three different
locations, in the case of the study site for the éxtreme semi-empirical models: a) Ménard’'s meahel b)
Vesic’'s model

4.4.1.1.Comparison between analytical and numerical result§for a spread footing)

The objective is to compare the results obtainethbyprevious numerical method with
those obtained by the analytical method presemiechapter three in order to show the
influence of the spatial variability on the resulfge cannot compare directly the obtained
results here (from the probabilistic and geostiaismethods integrated into a finite
element method using CASTEM® software) to thoselltiegy from analytical methods

(Figure 3-1b, ¢ and d), since there are not griggtifcant difference between the soil
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reaction modulus values in the case of the stuttyfer a length of 10 m (Figure 4-8).
Obtained results here, can only be compared teetfrom analytical methods in the case 1
(Figure 3-1a) where we have a spread footing rgstiith free ends on an elastic soil with
only an absolute settlement and no bending monierhe following, this comparisors
performed for a spread footing of 10 m at loca(i®n

Starting from the numerical method (ISATIS© and JABIO softwares) and

considering the 1000 simulations of twenty valukethe soil reaction modulus beneath the

spread footing, we obtain the meaE[Zl]), variance (/ar[ZIJ) and then the coefficient of

variation (CV [ZJ) of the absolute settlement for each semi-empinadel (Table 4-2).

In the analytical method, the spatial variabilitf Woung’s soil modulus is not
considered and the mean of this modulus is coreidas constant beneath a spread
footing. The coefficient of variation of the abs@settlement can be obtained from the
analytical method from theory or calculated fromsthd 000 simulations as explained in

the following:

- Analytical method from theory: for each simulatiwa obtain from twenty values of

Young'’s soil modulus under the spread footing theanEs, and from the 1000

simulations mean E[ESJ), variance \(/ar[EJ) and then the coefficient of variation (

CV|E.]) respectively equal to 8.136 MPa, 0.0353 (MPajd 0.0231. The

coefficient of variation oks (CVks) can be calculated for each semi-empirical model
from Equation 2-8 QVks7esCVes, the values of yes, depends on each semi-
empirical model, are reported in Table 2-5). Caltoh of the coefficient of
variation of settlement for these four semi empirimodels is very straightforward:
CV4[A]= CVis as we showed in chapter three in the case 1 igura). Values are
also reported in the Table 4-2.

- Analytical method from 1000 simulations: the med&sa@l modulus is obtained for
each simulation as previously. From this value, desociated value ¢ and the
associated absolute settlement for each simulaiwh for each semi-empirical
model are calculated. Then the me&pA{), variance Yar[A]) and coefficient of
variation of the absolute settleme@MJA]) are obtained from 1000 simulations and

for each semi-empirical model. These values arerteghan the Table 4-2.
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As can be seen from the Table 4-2, the valuesetdefficient of variations obtained
from these two analytical methods are nearly sarhese two analytical methods give the
same results as one would expect.

The difference betweeE[ZIJ andVar[ZIJ from the numerical simulation arigA] and
Var[A] from the analytical analysis is due to the influe€ the intrinsic spatial variability

of Es along the spread footing. Then, it can be writtegu@tion 4-3):

Ela|=E[a]+E4], Varla|=vala]+Vad4)] Equation 4-3
where 4: settlement from the total spatial variability, settlement from the analytical
method Es is constant) and\,: settlement from the intrinsic spatial variabiliffs is

variable) as shown in Figure 4-29:

Table 4-2: Comparison of the maximum settlemetwden analytical and numerical methods for a spread
footing of 10 m at location (3).

Statistical parameters Ménard Vesic Biot Vlassov Considered methods
E[4] (mm) 3.960 8.119 6.073 6.178
— Numerical methods
Var{AJ (mm)* 0.0193 0.1012 0.0580 0.0492 (ISATIS© and
— CASTEM®)
CV[A] 0.0351 0.0392 0.0396 0.0360
v, 4] 0.0231 0.0254 0.0254 0.0231 Analytical method

(obtained from theory)

V[a . . . 02
cv|4] 0.0230 0.0249 0.0255 0.0230 Analytical method
E[4] (mm 3.513 7.131 5.320 5.481 (obtained from
4] mem) 1000 simulations)
Var|A](mm)* 0.0065 0.0314 0.0184 0.0159
E[A - Contribution to the
)é[A 88.7% 87.8% 87.6% 88.7% estimated settlement
Var(a - " Contribution to the
%L?F[A] 33.7% 3% 31.7% 32.3% variability of settlement

ElZI] ,Var{Zl],CVlZl] are respectively the mean, variance and coefficieh variation of the absolute

settlement from numerical methods, {{2\]: coefficient of variation of the absolute settiemh using
analytical method (obtained from theory) A[ Var[A] and CV[A]: are respectively the mean, variance and
coefficient of variation of the absolute settlemasing analytical method (obtained from 1000 sirtiatss).

A settlement from the total spatial variabilit; settlement from the analytical method i&Econstant)
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I

Spread footing A

A=A+A, x

Figure 4-29: Schematical definition d: the settlement from the total spatial variability settlement from
the analytical method anti,: settlement from the intrinsic spatial variability

The results of the comparison of the settlementvéen analytical and numerical
methods for a spread footing of 10 m at locatidnsad (2) can be found in appendix 2.

For the different location, it can be calculated tiontribution of the absolute settlement
A to the total settlementl and the contribution of the variance of the absokettlement

to the total variance respectively from ratiE[sd]/ E[Z] andVar[A]/Var[Zl]_

In the case of location 3, the contribution of thlesolute settlement to the total
settlement is about 88% and the contribution ofheance of the absolute settlement to
the total variance is close to 32%. The latter @abows the great influence (68%) of the

spatial variability of Es along the spread footing (intrinsic spatial vati&i in the

variance of4. This influence is reported, on average, on théeseéint with a contribution
of the intrinsic spatial variability on the totatdement of 12%.

Location 2, where variability d&s is the lowest compared to others locations, gives
very low contribution of the intrinsic spatial vability on the settlement (3%). The
contribution of the variance of the intrinsic spatrariability on the variance of the
settlement remains important (52%). Location 1, nehbe variability ofs is greater than
for location 2, shows a very important influencelad# intrinsic spatial variability on the
variance of the total settlement (85%).

Note that for all locations under study, all cdmitions are almost the same, whatever
the semi-empirical model considered kar

All these results show the influence of the spatdiability of Es along the spread
footing in the case of a spread footing with freeleeven when the correlation length is
greater than the length of the spread footing.
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4.4.2. Taking into consideration of the spatial variability of soil modulus in the
buried pipe design

For taking into account of the spatial variabildfysoil modulus, we consider a buried
concrete pipe of 100 m with manholes at both emdthe construction site (Figure 4-30).
The soil parameters, the load, the mechanical pippé&d the geometrical dimensions of
this buried concrete pipe are identical to thosevipusly studied in previous chapters
(chapter 2 and 3). The values of Young's soil madwdre obtained at each node from the
1000 simulations results using ISATIS© softwareorirthese values s, the different
values of subgrade reaction modulus for each sempirecal model are obtained using
relationship from Table 2-8. These values of sutbgnaaction modulus are introduced in
the finite element method using one dimensional ehtwlobtain the maximum differential
settlements and the maximum bending moments fdn sami-empirical model. These
computations are performed with the CASTEM® sofevasing the Winkler model. Finite
element modeling of a buried pipe of 100 m has @@éents with 201 nodes with fixed
ends as boundary conditions (Figure 4-31).
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Figure 4-30: Location of a buried concrete pipehwdt length of 100 m on the construction site
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Figure 4-31: Finite element modelling of a burieggof 100 m with fixed ends as boundary condifioms
dimensional model, 1D)

As in the case of a spread footing, the obtainedlte can be then statistically analyzed

to better understand the behavior of a

buried @tacpipe in the presence of spatial

variability on the construction site. In the follog, this statistical analysis is performed

for the two extreme semi-empirical models (Veseral Matsubara’s models) since these

two models include the values of tkeandCVs for the other semi-empirical models (Biot,
Meyerhof, Kloppel and Selvadurai, Figure 2-11 aiglFe 2-16).

For a preliminary evaluation, Young’'s soil modulang a buried pipe of 100 m

(Figure 4-30) for the first 100 simulations is shoin Figure 4-32 to show the variation of

soil modulus beneath the buried pipe.
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Figure 4-33 shows the data distribution for the G soil modulus values for the
location of a buried pipe in the case of the stadg. For the soil modulus probability
between 5% and 95%, the interval of soil modulusies for this location is [6.4, 10.3]
MPa (Figure 4-33b).
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Figure 4-33:a) Histogram and b)Cumulative distrilaut function of soil modulus for the location ofrieal
pipe (Figure 4-30) in the case of the study site
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Some preliminary calculated results obtained usthg finite element method
(CASTEMO) for this location are shown in Figure 4-8nd Figure 4-35. Figure 4-34a and
Figure 4-34b respectively show the deformatimm the bending moment along a buried

pipe with a length of 100 m for the first three slations in the case of Vesic model.

Buried pipe length (m)
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0 . . . . ,
5 r
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Figure 4-34: a)Deformation and b) Bending momedang a buried pipe of 100 m for the first three
simulations in the case of Vesic model

Figure 4-35a and Figure 4-35b respectively show dermation and the bending
moment along a buried pipe for the first simulatod for the two extreme semi-empirical
models. As expected, the Vesic model gives the tgremalues of the maximum

deformation and the maximum bending moment thatMaisubara model.
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Figure 4-35: a) Deformation and b) Bending momednhg a buried pipe of 100 m for the first simulatio
and for the two extreme semi-empirical models

In order to explain the behavior of a buried cotem@pe for this location, the results
obtained for the maximum differential settlemend dhe maximum bending moment are

transformed in the form of cumulative distributitumction for these two semi-empirical

models (Figure 4-36 and Figure 4-37).

For the probability of the maximum differential tbenent between 5% and 95%, the
intervals of the maximum differential settlements the Matsubara and Vesic models are
respectively [6, 6.7] and [30, 32.5] mm (Figure €)-3As can be seen, there is a large
difference between the values of these two intervar example, the probability to obtain
a maximum differential settlement lower than 6.7 femthe Matsubara model is equal to
95% while this probability for the Vesic model afwd a maximum differential settlement

less than 29.5 mm is equal to 0%, illustrating itn@ortance of the choice of a semi-
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empirical model and the importance of the spateaiability of soil parameters on the
longitudinal behavior of a buried pipe.
Similar interpretation can be made with regardhe distributions of the maximum

bending moment (Figure 4-37).
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Figure 4-36: Cumulative distribution function ofettmaximum differential settlement for a buriedepgs
100 m in the case of the study site for the tweeme semi-empirical models: a) Matsubara model bjy/e
model
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Matsubara model (buried pipe)

o o
o o]
)

Cumulative distribution function
o
S

0 - T T T
1180 1212 1244 1276 1309
Maximum bending moment (KN.m)
a)
11 ° @0
Vesic model (buried pipe)
c 0,8 b
i)
©
c
2
g 061
5
2
o
© 0’4 -
[
2
IS
g
3 0,2 1
0 - T !
2630 2720 2810 2900
Maximum bending moment (kN.m)
b)

Figure 4-37: Cumulative distribution function oftimaximum bending moment for a buried pipe of 100 m
the case of the study site for the two extreme-sempirical models: a) Matsubara model b)Vesic model

It can be noted that this site does not presené arnweak soil Es < 2 MPa). The
maximum calculated counter slope, for the Vesic ehad about 1/1000 and the maximum
bending moment is far lower than the elastic maximhending moment. The probability

of failure, for this buried pipe, is then very lamm this site.
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4.4.2.1.Comparison between analytical and numerical resultgfor a buried pipe)

In this section we compare the results obtainethbyprevious numerical method with
those obtained by the analytical method presemtexhapter three in the case of a buried
pipe of 100 m in order to show the influence of Hpatial variability on the maximum
settlement and the maximum bending moment. As & stewn in chapter three for a low
stiffness zone length greater than 50 m (Figure )3t28 uncertainty oCV_ is equal to
zero then we take into account only the uncertaoftis (CVio). In the following, this
comparisonis performed for the buried concrete pipe at thesmered location on the
construction site (Figure 4-30).

Starting from the numerical method (ISATIS© and JA&BIO© softwares) and

considering the 1000 simulations of 200 valueshef $oil reaction modulus beneath the

buried pipe, we obtain the mealE[Zl]), variance (/ar[ZlJ) and then the coefficient of

variation (CV[ZJ) of the maximum total settlement for the Matsuband Vesic models
(Table 4-3).

As it was previously mentioned, in the analyticaéthod, the spatial variability of
Young’s soil modulus is not considered and the mafathis modulus is considered as
constant beneath a buried pipe. The coefficientvafiation of the maximum total
settlement can be obtained from the analytical ntefrem theory or calculated from these

1000 simulations as explained in the following:

- Analytical method from theory: for each simulatioe obtain from 200 values of

Young's soil modulus under the buried pipe the mé&gnand from the 1000

simulations mean ElESJ), variance (/arlEJ) and then the coefficient of variation (

CV|E.|) respectively equal to 7.544 MPa, 0.0053 (MPahd 0.0096. The

coefficient of variation oks (CVis can be calculated for each semi-empirical model
from Equation 2-8 QVks7esCVes, the values of yes, depends on each semi-
empirical model, are reported in Table 2-9). Catioh of the coefficient of
variation of settlement for these two semi empirioadels is very straightforward:
CW4[A] = CVs as we showed in chapter three (Figure 3-27). \sadue also reported
in the Table 4-3.
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- Analytical method from 1000 simulations: the med&sa@l modulus is obtained for
each simulation as previously. From this value, dbsociated value ¢§ and the
associated maximum settlement for each simulatiwh far each semi-emprical
model are calculated. Then the me&fA{), variance Yar[A]) and coefficient of
variation of the absolute settleme@MJA]) are obtained from 1000 simulations and

for each semi-empirical model. These values arertegan the Table 4-3.

As can be seen from the Table 4-3, the valueh@tbefficient of variations obtained

from these two analytical methods are almost samdeaa expected give the same results.

Table 4-3: Comparison of the maximum settlementdser analytical and numerical methods for a buried
pipe of 100 m at considered location on the comsiton site.

Statistical parameters Matsubara Vesic Considered mthods
EIZJ (mm) 6.366 31.128 Numerical methods
Var IZIJ (mmy 0.0272 05797 (ISATIS®© and CASTEMO)
CV |4 0.0259 0.0245
Analytical method
cvr[4] 0.0096 0.0106 ,yt
(obtained from theory)
cv[4] 0.0096 0.0104 Analytical method
E[A] (mm) 5 489 26.673 (obtained from 1000 simulations)
Var4] (mm)y 0.0028 0.0776
E[A . 86.20% 85.7% Contribution to the estimated
E[A] e 70 settlement
Var{A = 10.3% 13.4% Contribution to the variability of
Val{A] 27 0 settlement

A: Maximum settlement from the total spatial varlapi A: Maximum settlement from the analytical
method (Eis constant)

The difference betweeE[Z] and Var[Z] from the numerical simulation ar€]A] and

Var[A] from the analytical analysis is due to the influsio€ the intrinsic spatial variability
of Es along the buried pipe.

For this location, it can be calculated the conitifn of the maximum settlementto
the maximum total settlemem and the contribution of the variance of the maximu

settlement to the total variance respectively fratios E[]/ E|4| andvar[4]/var|4|
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The contribution of the maximum settlement to theximum total settlement is about
86% and the contribution of the variance of the imamn settlement to the total variance

is close to 12%. The latter value shows the gmeaiance (88%) of the spatial variability

of Es along the buried pipe (intrinsic spatial variapiliin the variance ofd. This
influence is reported, on average, on the maximattiesnent with a contribution of the
intrinsic spatial variability on the maximum totattlement of 14%.

With the same methodology as in the case of maxireettlement, comparison of the
maximum bending moment between analytical and nalemethods for the considered

buried pipe is presented in Table 4-4.

Table 4-4: Comparison of the maximum bending moinetieen analytical and numerical methods for a
buried pipe of 100 m at considered location ondbestruction site.

Statistical parameters Matsubara Vesic Considered mthods
E[M] (kN.m) 1260.97 2803.72 Numerical methods
Var lml (kN.m)z 38417 1071.62 (ISATIS© and CASTEMO)
cv M| 0.0155 0.0117
Cvr[M] 0.0048 0.0053 Analytical method
' ' (obtained from theory)
cv[M] 0.0048 0.0052 Analytical method
E[M ] ( kN.m) 1036.24 2284.26 (obtained from 1000 simulations)
Var[M ] ( kN.my 24.97 142.38
E[M - Contribution to the estimated
}/E[M] 82 .2% 81.5% bending moment
VarM - Contribution to the variability of
K/ar[M] 6.5% 13.3% bending moment

E[MJ ,Var[ﬁJ,CVlﬁJ are respectively the mean, variance and coefficahvariation of the maximum

bending moment from numerical methods;[®¥: coefficient of variation of the maximum bendimoment
using analytical method (obtained from theory), E[War[M] and CV[M]: are respectively the mean,
variance and coefficient of variation of the maximbending moment using analytical method (obtained
from 1000 simulations).

Again, the difference betweeE[M] and Var[ﬁ] from the numerical simulation and

E[M] andVar[M] from the analytical analysis is due to the influe€ the intrinsic spatial
variability of Es along the buried pipe.
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For this location, it can be calculated the conttitm of the maximum bending moment
M to the maximum total bending momekt and the contribution of the variance of the
maximum bending moment to the total variance resgy from ratios E[M]/ Elﬁj and
Var[M]/Var|m|

The contribution of the maximum bending moment he tmaximum total bending
moment is about 82% and the contribution of thelavene of the maximum bending

moment to the total variance is close to 10%. Tdteéed value shows again the great

influence (90%) of the spatial variability & along the buried pipe (intrinsic spatial

variability) in the variance oM . This influence is reported, on average, on the mari
bending moment with a contribution of the intrinsigatial variability on the maximum
total bending moment of 18%.

As in the case of continuous spread footing, ihmn that the spatial variability of soil
properties adds a significant part of uncertaintythe differential settlement and the

bending moment.

4.5. Summary and conclusions

In this chapter the geological conditions of a Eddaonstruction site and available data
from the geotechnical and geophysical investigatiavere presented. Appropriate
geostatistical methods were used to improve thditguaf geotechnical data and bring
more information to the soil spatial variability the construction site. We showed how to
improve one's knowledge of the mechanical chanaties at the construction site by using
a combination of geotechnical and geophysical midion and employing collocated co-
kriging. This information was then coupled with iaite element method (CASTEM®©
software) to take into account the influence ofgpatial variability of soil modulus on the
maximum differential settlements and the maximumdiey moments for the considered
superficial geotechnical designs (continuous spréamting and buried pipe) at the
construction site. The analysis of these statistanad geostatistical results makes it
possible to develop decision support tools and &crifge the longitudinal behavior of
superficial geotechnical designs when they are téacaat different positions on the
construction site. A comparison of analytical andnetcal results shows the importance

of the influence of the spatial variability of solodulus and the importance of the choice
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of the semi-empirical model on the behavior of éheaperficial geotechnical designs. It
also shows that the uncertainty on differentiatlsetent and bending moment is always
more important when the spatial variability of qmibperties is considered.

Finally, the results obtained here show, for camdurs spread footings (for residential
houses) and buried pipes, that the longitudinabbiein of the structure is as important as
the transverse behavior. Specific consideratiorasiired to adapt the design of individual

houses and buried pipes to a construction site &ko# properties are characterized by
spatial variability.
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Chapter 5

5. General conclusion and future research directions

5.1. General summary and conclusions

In geotechnical designs, the soil beneath structxieibits spatial heterogeneities
resulting from the history of its deposition andgeagation processes, which occur in
different physical and chemical environments. Tihiserent or natural variability can be
very important in the behavior of the superficiabgechnical systems inducing differential
settlements, whose consequences on structural respman be harmful: local failures,
cracking in beams or walls, leakage in sewers. Ureertainty can also exist in structure
mechanical and geometrical parameters.

The main objective of this thesis was to take ounsideration:

- uncertainty in the mechanical properties of soil,
- spatial variability in the mechanical propertiessoil,
- uncertainty in structure mechanical properties,

- uncertainty in structure geometrical parameters

in order to estimate the uncertainty in differeihgattlement and bending moment of two
superficial geotechnical works: continuous spreadtifig and buried concrete or steel
pipe.

Arriving at a realistic model, for example usikgphr-Coulombor Cam-Clay models, is
complicated in foundation analysis by the extreniiéicdlty of acquiring the exact
property parameters of soifthus, we chose to use Winkler's analytical approaith only
one parameter (subgrade soil reaction modulus) adeithe soil-structure interaction
instead of modeling the subsoil in all its complgxwhich seems, from a practical point of
view, to be appropriate for superficial geotechhassigns.

Eight semi-empirical models which give the coe#idi of subgrade reaction were
studied by considering soil and structure uncetitgsn The FOSM and SOSM methods
were used on these semi-empirical models to deterthie coefficient of variation of soil
reaction modulus. Results obtained using the FOS#had for the spread footings show
the major effects of the uncertainties of soil modulPoisson’s ratio and the width of the
continuous spread footing on the uncertainty of dbefficient of subgrade reaction. For
the latter, results for the buried pipes show trgomeffects of the uncertainties of soil
modulus, the external diameter of buried concretst@el pipe and Poisson's ratio of soil
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on the uncertainty of the coefficient of subgraeaction k). We showed that if the

additional amount of accuracy resulting from theSBOmethod was insignificant then the
FOSM method alone would be sufficient to correetfyimate the coefficients of variation
of Ks.

We proposed, for each model semi-empirical, singalifexpressions that take into
account the minimum parameters for determining a¢befficient of variation of soil-
reaction modulus. These different relationships govéhe practitioner a quick estimate of
the uncertainty of the soil-reaction modulus.

We then studied the incorporation of uncertaintkdh the Winkler analytical model,
using simplified expressions and the influence luk tuncertainty on the differential
settlement and bending moment in the longitudinadadion of spread footings and buried
pipelines. The FOSM method was used again on thbtaral solution of a beam on an
elastic foundation from Winkler's hypothesis andhndifferent boundary conditions.

Results from the FOSM method, for a spread footsmgw that the uncertainties of the
differential settlementGV,) and the bending momer€Vy) are very different depending
on the length of a spread footing and the boundanglitions considered in order model a
zone of weak soil at the construction site. Whatefoe the differential settlement or
bending moment, the obtained results concerningtbleability of the serviceability limit
state Ps. 9 show the importance of the choice of semi-emairmnodel and the boundary
conditions. For the semi-empirical model and thanatary conditions selected, when the
uncertainty on the value &f is high, the probability of the serviceability linstate can be
exceeded even if the soil has good mechanical prepe

Results in the case of buried pipes show two thifige uncertainties of the differential
settlement and the bending moment are very diftalepending on the length of the low
stiffness zone beneath the buried pipe and itsevafs. Additionally, these uncertainties
are more influenced by the length of the low s&ffs zone than the value of the subgrade
reaction modulus. From a practical point of vielstindicates that an accurate knowledge
of soil is more important in determining low stiéfss zone lengths than properties of soil
in case of soil reconnaissance for buried pipes.

In the case where the choice of a suitable semirerapmodel for the estimation of the
uncertainty orks is not straightforward, a global uncertainty appto# proposed. This

approach includes the uncertainties from each sempirical model and can be used to
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verify whether the maximum values exceed the seabdity values for the ultimate limit
state.

A comparison between the FOSM and Monte Carlo amahgsults was performed and
the results were similafhis is to be expected given the low non-lineasityhe model.

In our analytical approach it was not possible ¢msider the soil characteristics as
different at each given location along the spresudifg and buried pipe axes. We coupled
the finite element method (CASTEM®© software) witkogtatistical methods (ISATIS©),
in order to take into account the correlation léngt soils parameters along the pipe axis
and spread footing to characterize the spatiahbdity of soil.

It was shown, using data from a real constructibe, $iow the combination of the
geotechnical and geophysical information can imprbyeusing collocated cokriging
knowledge of the mechanical characteristics ofsitee The analysis of these statistical and
geostatistical results makes it possible to descthe behavior of the superficial
geotechnical designs when they are constructedifteresht locations at the construction
site. A comparison between analytical and numereslilts shows the importance of the
influence of the spatial variability of soil modulaad the importance of the choice of the
semi-empirical model on the behavior of these digalr geotechnical systems. It also
shows that the uncertainty on differential settlatrend bending moment is always more
important where the spatial variability of soil pesfies are considered.

Finally, the results obtained here show, in theeaafscontinuous spread footings for
residential houses and buried pipes, the importafdbe longitudinal behavior of these
structures and the significance of uncertainty hairt design. Specific consideration is
required to adapt the design of individual houses luried pipes to a construction site

whose soil properties are characterized by spadiahbility.

5.2. Future research directions
Based on the work performed in this research, eleviing directions for future work

can be proposed:

a) The same work can now be studied with differentydital models taking into account

more parameters such as Vlassov & Pasternak medtistwo parameters, or Kerr’s

model with three parameters, in order to compaee uhcertainties on the differential
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settlement and the bending moment from these madils those obtained from the
Winkler model in this study.

b) Development of the analytical model can be perfarie@nsidering three different zones
of soil beneath the considered superficial geoteahrsystems. Furthermore, this would
help us to choose suitable boundary conditionstifi@se geotechnical systems in our
analytical computations since the boundary conditibmave a strong influence on the

uncertainty of differential settlement and bendimgment.

c) Shrinkage-swelling phenomena in clay soils haver thagins in the mineralogical

composition and texture of the soil. These prediBgp factors, associated with strong
climatic variations and a succession of intensely periods in particular, have been
responsible for numerous natural disasters in §o@rgeotechnical systems in France. It
would be interesting to take into consideration sthephenomena with associated

uncertaintiegor their design

d) We can study, at a real construction site, thecefd joints in a buried concrete pipe
along a low stiffness zone length, and comparedhelts with those obtained in this thesis

which did not consider joints.

e) In this thesis, the uncertainties of the geomaltiparameters, the width and the height of
spread footing and the external diameter of bupipe are only taken into account in the
estimate of the coefficient of variation of the gtdde reaction modulus. These
uncertainties were not considered in the calculatibthe moment of inertia of the cross

section of these structures. It would be intergstim also consider the uncertainties of
these parameters in the calculation of the momieniedtia in the deformation equation for

these structures.

f) In this study,only the uncertainty of Young’s soil modulus was congdein a
geostatitical approach coupled with a finite elememe¢thod. The uncertainties of
geometrical parameters of spread footings and déysipes can also be considered in a
geostatistical approach in order to propose a cetapteliability analysis for these
structures.

j) We can take into account the uncertainty relatettheospatial variation of the load for

the buried pipes.
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h) We can extend the study of the effects of the uacdres of soil and structure
parameters on the differential settlements and kbeding moments for superficial

geotechnical systems in two or three dimensions.
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Appendix 1

1. Reliability analysis for a continuous spread foiing by the hypothesis of a log-

normal distribution

q=30 kN/m

Ih=0.3 m

100% - E=20 GPa [

80% I "””””””’I’J’;’i’s”; ”””””” i
E 60% - CV(E)=15%, CV(v)=CV(h)=CV(b)=10%
Vo) —e&— Ménard model, CV(ks)= 0.161
Al
N 40% - —&— Biot model, CV(ks)= 0.183
A —a&— Vlassov model, CV(ks)= 0.201

20% - .

Py = 6.7% —®— Vesic model, CV(ks)= 0.182
0% r
0 5 10 15 20

E, (MPa)

Fig. 1: Estimation of the probability of failure {Pas function of Efor a maximum differential settlement of
a spread footing with simply supported at two emadsboundary conditions (for the four semi-
empirical models).

q=30 kN/m

Ih_OSm
yryreesydE i

100,0% o

80,0% 1

60,0% 1 CV(E)=15%, CV(v)=CV(h)= CV(b)=10%

—&— Ménard model, CV(ks)=0.161

P; (A= 10 mm)

40,0% 1 —&— Biot model, CV(ks)=0.183
—&— Vlassov model, CV(ks)=0.201
20,0% - _
Py s=6.7% —&— Vesic model, CV(ks)=0.182
0,0% T -
0 2 4 6 8 10

E, (MPa)

Fig. 2: Estimation of the probability of failure {Pas function of Efor a maximum differential settlement of
a spread footing with simply supported at one esdbaundary conditions (for the four semi-
empirical models).
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100 %

P, (M > 37.5 kN.m)

80%

60 %

40 %

20%

0%

q= 30 KN/m

Ih—OSm
\ jOSm

E.=20 GPa

%%%%%%%%%

CV(E,)=15%, CV(v)=CV(h)=CV(b)=10%
—&— Ménard model, CV(ks)= 0.161
—&— Biot model, CV(ks)= 0.183

—a&— Vlassov model, CV(ks)= 0.201

Pgs=67% —@— Vesic model, CV(ks)= 0.182

0 2 4 6 8 10

E, (MPa)

Fig. 3: Estimation of the probability of failure {Pas function of Efor a maximum elastic bending moment
of a spread footing with simply supported at twalsmas boundary conditions (for the four semi-
empirical models).

P, (M>37.5 kN.m)

100 %
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a ‘ [05m
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—=&— Ménard model, CV(ks)=0.161

—8— Biot model, CV(ks)=0.183

—&— Vlassov model, CV(ks)=0.201

—&@— Vesic model, CV(ks)=0.182

0 2 4 6 8 10
E, (MPa)

Fig. 4: Estimation of the probability of failure {Pas function of Efor a maximum elastic bending moment
of a spread footing with simply supported at oné @s boundary conditions (for the four semi-
empirical models).
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Ménard model g= 30 KN/m

Ih=0.3m
%%%%%%%%%%ﬁj

—— CV(ks)=5%

—8— CV(ks)=10%
—a— CV(ks)=20%
—o— CV(ks)=30%

0 2 4 6 8 10 12
E, (MPa)

Fig. 5: Probability of failure (R) for a maximum differential settlement of a spréaating with simply
supported at two ends as boundary conditions fifedint values of G¥(Ménard’'s model).

P (A > 10 mm)

Ménard Model g= 30 kN/m
100,0% Ih=0.3 m
E=20 GPa ¥ s
80,0% o
1 Nz 131111111

60,0% - —— L=7.5m —
—o— CV(ks)=3%

40’0% —8— CV(ks)=10%
—a— CV(ks)=20%

20,0% —e— CV(ks)=30%

Pgs=6.7%
0,0% Y Mm
0 2 4 6 8 10

E, (MPa)

Fig. 6: Probability of failure (B) for a maximum differential settlement of a spréaating with simply
supported at one end as boundary conditions fdediht values of G¥(Ménard’'s model)
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2.Buried pipes (continuous buried steel pipes and bugd concrete pipes)

2.1. Estimation of the uncertainty of the differental settlement and bending moment

(for a continuous buried steel pipe)

q=100 kN/m

12 —6—[=5m —4—1=10m ——1=15m —&—[=20m —&—[=30m —#—1=50m

e=0.02 m

0,8 1

CVans/CVys

k, (MN.m?)

Fig. 7: Influence of the uncertainty of kn the uncertainty of the maximum differentiatleatent for the
different low stiffness zone lengths (L) (& coefficient of variation of the differential sefthent

with respect to &k CVis coefficient of variation of

=100 kN/m

—o—=m—4—]=10m —+—L=15m —@—L=20m ——[=30m 8 1=50m

e=0.02 m

CV,./CV,,

0 10 20 30 40 50 60
k, (MN.m?)

Fig. 8: Influence of the uncertainty of L on the uncertaiof the maximum differential settlement for the
different low stiffness zone lengths (L) (&Vcoefficient of variation of the differential dethent

with respect to L, C¥ coefficient of variation of L).
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q=100 kN/m

19—©-L=5m —€—L=10m —+—L=15m —@—L=20m —&—L=30m —#—L=50m

jJ¢e—— L(m) —p]

k,(MN.m*?)

Fig. 9: Influence of the uncertainty of &n the uncertainty of the maximum bending monwerthé different
low stiffness zone lengths (L) (@) coefficient of variation of the bending momenthwiespect to

Ks)-

=

=100 KN/
—-0—1=5m ——1=10m ——1=15m —@—L=20m —k—1=30 m —8—1=50m 4 n

._.
n

CVy /CV,

0,5 1

0 10 20 30 40 50 60
k, (MN.m)

Fig. 10: Influence of the uncertainty of L on the uncertaiot the maximum bending moment for the different
low stiffness zone lengths (\V coefficient of variation of the bending momerttwespect to L).
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2.2. Reliability analysis for a buried concrete pip by the hypothesis of a log-normal

distribution

CVgs=15%, CV=CV4=5%, CV =10%

100% —e— Vesic model, CV(ks)=0.1693
q= 100 kN/m
Biot model, CV(ks)=0.1726
80% AR ARAAAA
—#&— Meyerhof model, CV(ks)=0.1584
E 60% —»%— Kloppel model, CV(ks)=0.1583
% —=&— Matsubara model, CV(ks)=0.1583 e=0.15m
Al
o 40% —%— Selvadurai model,CV(ks)=0.1584 ~ S L L LS
\: |q— L=30m —pj
-
20%
¢ Pg1s=6.7 %
0% N— R
0 2 4 6 8 10

E, (MPa)

Fig. 11: Estimation of the probability of failure {Pas function of Efor a maximum differential settlement of
a buried pipe (for the six semi-empirical models).

CVie= 15%, CV=CV4=5%, CV.=10%

[y

—&— Vesic model, CV(ks)=0.1693

Biot model, CV(ks)=0.1726 q= 100 KN/m

E 80% —&— Meyerhof model, CV(ks)=0.1584 NAARAANARRAR
E 60% —— Kloppel model, CV(ks)=0.1583
§ —&— Matsubara model, CV(ks)=0.1583 \_/ 015 m
%I 40 % —¥— Selvadurai model, CV(ks)=0.1584
= je— L=30m —p]
20% Ps1.5=6.7 %
065 A ——— e
0 2 4 6 8 10 12

E, (MPa)

Fig. 12: Estimation of the probability of failure {Pas function of Efor a maximum elastic bending moment
of a buried pipe (for the six semi-empirical modatsl for a maximum elastic stress of concrete equal
to 10 MPa).
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(V= 15%, CV,,=CV4=5%, CV;=10%

100% —&— Vesic model, CV(ks)=0.1693
Biot model, CV(ks)=0.1726
= 80% - —a&— Meyerhof model, CV(ks)=0.1584
E —%— Kloppel model, CV(ks)=0.1583
=] e Re=0.15
I 60% —=&— Matsubara model, CV(ks)=0.1583 e m
y—
%I —¥— Selvadurai model, CV(ks)=0.1584
= 40% A
S
o
20% A
PSLS=6-7 %
0% AN S ———

0 4 8 12 16 20 24 28 32 36 40
Es (MPa)

Fig. 13: Estimation of the probability of failure {Pas function of Efor a maximum elastic bending moment
of a buried pipe (for the six semi-empirical modatsl for a maximum elastic stress of concrete equal

to 5 MPa).
g= 100 KN/m
100% A
80%
)
E 60%
K CVis=15%,CVx=CV=5%, CV1.=10%
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4 40%
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20% - (e
Ps1.5=6.7 % —»— CV(ks)=30%
0% r r — A ey
0 2 4 6 8 10 12
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Fig. 14: Probability of failure (B) for a maximum differential settlement of a bunmyge for different values
of C\fs (Vesic’'s model)
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g= 100 kKN/m
NAARAARARARA
100% A
80% -
—~ Je— L=30m —p]
g 60% - CViy=15%, CV=CVy=5%, CV\;=0.1693
ﬁ —— CV(L)=5%
a 40% - CV(L)=10%
ar —A— CV(L)=20%
20% A Pyrs=6.7 % —%— CV(L)=30%
0% T T T v‘.!-'l'-- .%_
0 2 4 6 8 10 12

E (MPa)

Fig. 15: Probability of failure (R) for a maximum differential settlement of a bunpe for different values
of C\[_ (Vesic’'s model)

q= 100 kN/m

100% -

80% -
_ Je— L=30m —p]
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0% . . Phoee, . a0
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Fig. 16: Probability of failure (B) for a maximum differential settlement of a bunmge for different values
of C\jsandCV, (Vesic's model)
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2.3. Application to global uncertainty analysis (fora continuous buried steel pipe)

4 4
e =
=
g 3. =
z 5
= g
-~ 2 =
=< 2
=
1 1 E I ]
0 T T T T T ]
Biot Vesic Meyerhof Kloppel Matsubara  Selvadurai
Semi-empirical models
a)
60 =
=
g
0 g
= o
E l 2
=) =
< 2
20 =
L I g
0 T T T T T
Biot Vesic Meyerhof Kloppel Matsubara Selvadurai
Semi-empirical models
b)
8 -
iy
5
‘:2
6 1 3
—
g g
Zz =
c ¢ S
E o
2 4
0
Biot Vesic Meyerhof Kloppel Matsubara Selvadurai
Semi-empirical models
c)

Fig. 17: Global uncertainties for the a) Subgrade reactiondulus k b) Maximum differential
settlementA and ¢) Maximum bending moment M by considering @®¥fidence bound for each
semi-empirical model with log-normal distributiofks$2 MPa, E=210 GPa,v=0.3, d=1.5 m,

€=0.02 m, L=30 m, g= 100 kN/m, €¥15%, C{=10%, C\l= CV,&= CVg=5%).
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Table 1: Comparison of the settlement between #éinalyand numerical methods for a spread footind ©f
m at location (1)

Statistical parameters Ménard Vesic Biot Vlassov Considered methods
£[2] (mm) 4566 9.446 7.104 7.116
— Numerical methods
Varl4| (mm)? 0.060 0.304 0.180 0.148 (ISATIS© and
— CASTEM®©)
cvia) 0.0536 0.0584 0.0597 0.0540
Analytical method
-
Cvy[4] 0.0228 0.0251 0.0251 0.0228 (obtained from theory)
Ccvia .022 .02 02 .02
[ ] 0.0229 0.0247 0.0254 0.0229 Analytical method
E[4] (mm) 4209 8.667 6.499 6.567 (obtained from
1000 simulations)
Var[A](mm)? 0.009 0.046 0.027 0.023
El4]/ X : Contribution to the
){T[A] 922% o1.7% 91.5% 92:3% estimated settlement
Var[A . , Contribution to the
%ar[ﬁ] 15% 15.1% 15% 15.5% variability of settlement

ElZ] ,Var{ZI],CVlZI] are respectively the mean, variance and coefficieh variation of the absolute

settlement from numerical methods, {A]: coefficient of variation of the absolute settiemh using
analytical method (obtained from theory) A[ Var[A] and CV[A]: are respectively the mean, variance and
coefficient of variation of the absolute settlemarging analytical method (obtained from 1000

simulations).The mean, variance and coefficientaofation of E for the location (1) are respectiveElE_SJ

=6.791 MPa, VarlE_SJ=0.024 (MPay and CV[E_SJ:O.OZZS. A: setlement from the total spatial
variability, A: settlement from the analytical method i&Econstant).

Table 2: Comparison of the settlement between &éinalyand numerical methods for a spread footing 0f
m at location (2)

Statistical parameters | Ménard Vesic Biot Vlassov Considered methods
E[2] (mm) 4280 8.800 6.609 6.667
— Numerical methods
Var[4| (mmy? 0.0195 0.092 0.056 0.046 (ISATIS® and
= CASTEM®@)
cvl4l 0.0326 0.0344 0.0357 0.0322
. Analytical method
Cvy [A] 0.0231 0.0254 0.0254 0.0231 (obtained from theory)
cvia 0234 .0253 .02 0234
[ ] 0.0 0.025 00260 00 Analytical method
El4 4.160 8.558 6.415 6.490 (obtained from
L) 1000 simulations)
Var[4](mm)? 0.0095 0.047 0.028 0.023
E [A - Contribution to the
){T[A] 97.2% 97.3% 97.1% 97.3% estimated settlement
Vm‘[A . Contribution to the
Var[A] 48.7% S1.1% 0% 0% variability of settlement

The mean, variance and coefficient of variatiofegfor the location (2) are respectiveIE{E_SJ:G.S?Z MPa,

VarlEg|=0.0253 (MPa§ and CV|Eg| =0.0231
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