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Résumé: 

Le sol présente une variabilité spatiale des propriétés physiques et mécaniques dont les 

effets sur des structures légères avec semelles filantes et sur les conduites enterrées ne sont 

pas bien pris en compte dans leur dimensionnement. Cette variabilité naturelle peut être 

très importante dans le cas de ces ouvrages car elle induit des tassements différentiels, dont 

les conséquences peuvent être dommageables : fissures dans les murs, les poutres ou 

encore des fuites dans les réseaux d’assainissement. La variabilité naturelle du sol et 

l'incertitude liée à la connaissance imparfaite des propriétés du sol et/ou du béton ou de 

l'acier de la structure sont les principales sources d'incertitude dans le choix des paramètres 

de calcul pour le dimensionnement de ces structures. Dans cette thèse, une approche 

analytique avec les méthodes probabilistes (FOSM et SOSM) et le modèle de Winkler, 

puis numérique avec le couplage de la méthode des éléments finis avec des approches 

géostatistiques ont été successivement menées pour modéliser le comportement des 

semelles filantes et des conduites enterrés lorsque les incertitudes sur les propriétés 

mécaniques du sol et de la structure sont prises en compte dans leur dimensionnement. Il 

apparait ainsi, l’importance du comportement longitudinal de ces ouvrages et du poids des 

incertitudes dans leur dimensionnement. 

Mots clés: incertitude, variabilité spatiale, module de réaction du sol, semelle filante, 

conduite enterrée, interaction sol-structure, approches analytique et numérique, 

géostatistique.  

 

 

Abstract: 

Soil exhibits spatial heterogeneities resulting from the history of its deposition and 

aggregation processes that occur in different physical and chemical environments. This 

inherent or natural variability can be very important in the case of the superficial 

geotechnical works inducing differential settlements, whose consequences on structural 

response can be harmful: local failures, cracking in beams or walls, leakage in sewers. 

Natural variability of soil and uncertainty related to imperfect knowledge in soil properties 

and/or of concrete or steel of the structure, are the major source of uncertainty in the choice 

of the design parameters. In this thesis the probabilistic methods in geotechnical 

engineering, the analytical Winkler model and the coupling of the finite element method 

with geostatistical approaches were successively used to model the behavior of shallow 

foundations and buried pipe networks when soil and structure uncertainties are considered 

in their design. 

Keywords: uncertainty, spatial variability, subgrade reaction modulus, spread footing, 

buried pipe, soil-structure interaction, analytical and numerical methods, geostatistic. 
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Résumé étendu en français 
Les propriétés physiques et mécaniques d’un sol présentent toutes des hétérogénéités 

spatiales dont l’origine vient de la complexité des processus géologiques naturels mis en 

jeu (érosion, transport, dépôt, compaction, transformation physico-chimique…) qui mènent 

à la constitution d’un sol. A cette variabilité se rattache une incertitude sur chacun des 

paramètres usuellement utilisés pour quantifier la variabilité naturelle: moyenne, variance 

et fonction de covariance dans le cas d’une approche spatialisée de la variabilité naturelle. 

Ces incertitudes existent également dans le cas des matériaux de structure. 

La variabilité naturelle des propriétés mécaniques des sols de fondations peut être, dans 

le cas des ouvrages géotechniques superficiels tels que des semelles filantes pour les 

bâtiments légers ou des conduites enterrées (en béton et en acier) à faible profondeur, à 

l’origine de tassements différentiels dont les conséquences peuvent être dommageables: 

fissures dans les murs et les poutres ou fuites dans les réseaux d’assainissement. 

Dans les calculs usuels de dimensionnement de ces ouvrages géotechniques superficiels, 

le comportement n’est modélisé que dans une section droite pour représenter le 

comportement transversal de l’élément de structure où l’hétérogénéité (variabilité spatiale) 

et les incertitudes sur les paramètres de calcul ne sont pas prises en compte.  

L’objectif principal de cette thèse est d’étudier, en considérant le comportement 

longitudinal des semelles filantes et des conduites enterrées, l’influence des incertitudes 

des paramètres de calcul et de la variabilité spatiale des propriétés du sol sur le 

dimensionnement de ces ouvrages. Le modèle de Winkler a été choisi comme modèle 

d'interaction sol-structure. Ce modèle, d'un point de vue pratique, est approprié pour le 

dimensionnement des ouvrages géotechniques superficiels. Il a l'avantage de ne prendre en 

compte qu'un seul paramètre (coefficient de réaction du sol ks) pour caractériser les 

réponses d’un sol élastique et de la structure sous chargement. Grâce à sa simplicité, le 

modèle de Winkler a été largement utilisé pour résoudre de nombreux problèmes 

d'interaction sol-structure et a donné des résultats satisfaisants pour de nombreux 

problèmes pratiques. Le coefficient de réaction du sol (ks) n’est pas un paramètre 

intrinsèque du sol, il dépend de plusieurs paramètres (paramètres mécaniques du sol et de 

la structure, paramètres géométriques de la structure) qui possèdent chacun des incertitudes 

propres et qui sont la source majeure des incertitudes sur le coefficient de réaction.  
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Les objectifs spécifiques de notre recherche sont les suivants: 

•  Modélisation de l’interaction sol-structure dans la direction longitudinale des 

ouvrages superficiels en prenant en compte les incertitudes sur les paramètres du 

sol et de la structure afin de déterminer les incertitudes sur le tassement 

différentiel et le moment fléchissant. Cela nous permettra d’effectuer une 

analyse de sensibilité, une analyse probabiliste et une analyse globale de 

l’incertitude, 

•  Etude de l’effet de la variabilité spatiale des propriétés du sol sur le 

comportement des ouvrages superficiels à partir de données expérimentales 

issues d’un site d’étude,  

•  Application de la méthodologie aux ouvrages superficiels. 

Afin de répondre à ces objectifs, des méthodes probabilistes (First Order Second 

Moment (FOSM) et Second Order Second Moment (SOSM)) appliquées au modèle de 

Winkler et des approches numérique et géostatistique (couplage de la méthode des 

éléments finis avec l’approche géostatistique) ont été utilisées pour modéliser le 

comportement longitudinal des semelles filantes et des conduites enterrées lorsque les 

incertitudes sur les paramètres mécaniques et géométriques sont prises en compte dans leur 

dimensionnement. 

Huit modèles semi-empiriques, qui donnent la valeur du coefficient de réaction du sol, 

sont étudiés en prenant en compte les incertitudes sur les paramètres du sol et de la 

structure. Les méthodes FOSM et SOSM sont utilisés à partir de ces modèles semi-

empiriques pour déterminer le coefficient de variation du module de réaction du sol. Les 

résultats obtenus avec la méthode FOSM pour les semelles filantes montrent l'effet majeur 

des incertitudes du module d’Young du sol, de la largeur de la semelle filante et du 

coefficient de Poisson du sol sur l'incertitude du coefficient de réaction du sol. Dans le cas 

des conduites enterrées en acier et en béton les paramètres les plus influents sur 

l’incertitude du module de réaction du sol sont le module d’Young du sol, le diamètre de la 

conduite et le coefficient de Poisson du sol. L’utilisation de la méthode SOSM n’apportant 

pas une précision significative par rapport à la méthode FOSM, l’utilisation unique de cette 

dernière apparaît suffisante pour estimer de manière satisfaisante l’incertitude sur le 

coefficient de variation de ks. Pour chacun des modèles semi-empiriques, des expressions 

simplifiées peuvent être proposées en prenant en compte le minimum de paramètres pour 
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une détermination du coefficient de variation de ks. Ces différentes expressions peuvent 

permettre aux praticiens d’estimer simplement et rapidement l'incertitude du module de 

réaction du sol. 

Dans l’approche analytique, l'incertitude de ks, obtenue en utilisant les expressions 

simplifiées, est introduite dans le modèle analytique de Winkler (sans prendre en compte 

les variabilités spatiales des paramètres du modèle d’interaction sol-structure). L’influence 

de l’incertitude de ks sur le tassement différentiel et le moment fléchissant est étudiée à 

partir de l’utilisation de la méthode FOSM sur la solution analytique du modèle de Winkler 

selon différentes conditions limites. 

Les résultats obtenus avec la méthode FOSM pour les semelles filantes montrent que les 

incertitudes du tassement différentiel et du moment fléchissant sont très différentes en 

fonction de la longueur de la semelle filante et des conditions limites considérées. Pour le 

tassement différentiel et le moment fléchissant, les résultats obtenus concernant la 

probabilité de l'état limite de service montrent l'importance du choix du modèle semi-

empirique et des conditions limites. Lorsque les incertitudes sur les valeurs du coefficient 

de réaction du sol sont importantes, la probabilité correspondant à l'état limite de service 

peut être dépassée même pour des sols possédant de bonnes caractéristiques mécaniques.  

Les résultats obtenus dans le cas des conduites enterrées (en acier et en béton) montrent, 

dans un premier temps, que les incertitudes du tassement différentiel et du moment 

fléchissant sont très différentes en fonction de la longueur de la zone de faibles propriétés 

mécaniques du sol se situant en dessous de la conduite enterrée et de la valeur du module 

d’Young du sol. Dans un deuxième temps, les incertitudes du tassement différentiel et du 

moment fléchissant sont plus influencées par l’incertitude de la longueur de la zone de 

faibles propriétés mécaniques du sol que par l’incertitude du module de réaction du sol. 

Cela met en évidence que cette longueur de la zone de faibles propriétés mécaniques du sol 

est aussi importante à caractériser que les propriétés propres du sol lui-même. Ceci montre 

tout l’intérêt de réaliser une bonne reconnaissance de sol pour estimer au mieux la 

longueur d’une zone de faibles propriétés mécaniques du sol présente sur un site de 

construction. 

Dans le cas où le choix d'un modèle semi-empirique approprié pour l'estimation de 

l'incertitude sur ks est difficile, une approche globale de l’incertitude est proposée. Cette 

approche inclue les incertitudes de chaque modèle semi-empirique et peut être utilisée pour 
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vérifier si les valeurs maximales du tassement différentiel ou du moment fléchissant 

excèdent les valeurs de l'état limite de service. 

Une comparaison de la méthode FOSM avec des simulations à partir de la méthode de 

Monte Carlo a été réalisée en vue de valider la méthode FOSM pour ce genre d’analyse. 

On montre que cette méthode est bien adaptée à l’étude de ce type problème et qu’elle 

pallie certains des  défauts de la méthode de Monte Carlo. 

Dans l’approche analytique proposée, la variabilité spatiale du module d’Young du sol 

n’a pas été prise en compte. Afin de prendre en compte cette variabilité, il est proposé de 

coupler la méthode des éléments finis avec l’approche géostatistique. Cette application a 

été réalisée à partir de mesures faites sur un site réel de 25000 m2 pour lequel nous 

disposions de 12 forages pressiométriques (donnant 12 valeurs de module pressiométrique) 

et de 272 valeurs de résistivité électrique du sol. Les 12 valeurs de module pressiométrique 

n’étant pas suffisantes en nombre pour obtenir une carte satisfaisante de ce paramètre, 

l’utilisation de la méthode de cokrigeage colocalisé a été employée afin d’utiliser les 

informations géophysiques pour l’estimation du module du sol (une relation physique 

existant entre résistivité et module du sol) sur une grille à maille 10*10 m². Cette taille de 

maille étant trop grande pour une modélisation éléments finis d’une structure comme une 

fondation, des simulations conditionnelles ont été effectuées afin d’obtenir n cartes de 

module (pour un même modèle de structuration spatiale) avec une maille de 0,5*0,5 m². A 

partir de ces réalisations, l’étude du comportement de trois semelles filantes (longueur de 

dix mètres) et d’une conduite enterrée (longueur de cent mètres) localisées sur le site 

d’étude a été conduite par la méthode des éléments finis afin d’obtenir les tassements 

différentiels et les moments fléchissants correspondants pour les n simulations 

conditionnelles. Le post-traitement statistique des résultats permet d’obtenir des 

probabilités d’occurrence et de prendre des décisions quant au dimensionnement des 

structures. 

Une comparaison des résultats obtenus par ces approches numérique et géostatistique 

avec l’approche analytique est ensuite réalisée. Elle montre l’influence importante de la 

variabilité spatiale du module du sol sur l’incertitude du tassement différentiel et du 

moment fléchissant pour des semelles filantes et des conduites enterrées.  

L’ensemble des résultats montre que le comportement longitudinal des ouvrages 

superficiels comme des semelles filantes et des conduites enterrées nécessiterait d’être pris 
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en compte dans leur dimensionnement dès lors que la présence de zones de faibles 

propriétés mécaniques ou une variabilité spatiale des propriétés mécaniques des sols de 

fondations est supposée sur un site de construction. 
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Introduction 

Soil exhibits spatial heterogeneities resulting from the history of its deposition and 

aggregation processes, which occur in different physical and chemical environments. This 

inherent or natural variability can be very important in the case of superficial geotechnical 

works inducing differential settlements, which can have harmful consequences on the 

structure. For example in individual houses with continuous spread footings, damage can 

range from sticking doors and hairline plaster cracks to complete destruction. In the case of 

continuous buried steel or concrete pipes, such as sewer networks or oil and gas 

transmission networks, these differential settlements can induce cracking and consequently 

liquid leakages which, in their turn, by modifying the characteristics of the surrounding 

medium, can induce additional settlements. Moreover, when there is a crack in a buried 

waste water pipe, there is a tendency for the water outside the pipe (underground water) to 

enter. This will then be added to waste water, increasing the cost of treatment processes.  

In a conventional design, geotechnical systems are always designed on the basis of the 

deterministic approaches and modeled in a cross section to represent the transverse 

behavior of the structural element (spread footings and buried pipes), where the 

heterogeneity of soil in their longitudinal directions is usually not considered. These effects 

need to be taken into account and studied in order to perform an accurate analysis leading 

to a correct design, which is the main topic of this work.      

In this thesis we are interested in studying the influence of soil heterogeneity and 

uncertainties in structural parameters on the longitudinal behavior of these superficial 

geotechnical designs (continuous spread footing and continuous buried steel or concrete 

pipes). We will go on to determine how uncertainties in the mechanical properties of soil 

and structure are propagated on the uncertainties of differential settlement and bending 

moment.  

 First, a constitutive model has to be chosen. Two questions need to be answered to 

justify this choice, particularly for geomaterials: 

1- When considering the particular class of engineering problem under study, is the 

model accurate enough in reproducing mechanical behavior? 

2- Using the available experimental data, is it possible to carry out a satisfactory 

calibration of the material parameters of the model? 
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To answer the first question a systematic study of different classes of engineering 

problems would be required. It is not easy to find such studies in the technical literature. In 

recent years some analyses have been performed in order to assess the capability of many 

classes of constitutive models to predict, for example, exact ground movements around 

excavations. 

The second question is much more difficult. Experimental tests in situ or in a laboratory 

are expensive; therefore, it is often difficult to find the reliable measurements or test data 

that would be used to carry out a proper identification of the constitutive parameters using 

the FEM and a massive soil model such as Mohr-Coulomb or Cam-Clay. 

Because of these complex constitutive models and the difficulty of obtaining 

experimental data, Winkler’s analytical approach is used to model the soil-structure 

interaction, instead of modeling the subsoil in all its complexity, which seems, from a 

practical point of view, to be appropriate for superficial geotechnical designs. Thanks to its 

simplicity and with the advantage of taking into account only one parameter (the 

coefficient of subgrade reaction) to characterize elastic soil and structure responses under 

loading, the Winkler model has been extensively used to solve many soil-structure 

interaction problems and has given satisfactory results for many practical problems. The 

soil reaction modulus is not an intrinsic parameter of soil; it depends on the mechanical 

parameters of soil and mechanical and geometrical parameters of the structure. All of these 

parameters are uncertain and represent the major source of uncertainty in the output model.   

The specific objectives of our research are as follows: 

- model the soil-structure interaction along the longitudinal direction of the superficial 

geotechnical systems by taking into account the uncertainties of soil and structure 

parameters in order to estimate the uncertainty in differential settlement and bending 

moment,   

- propose a simplified approach for uncertainty analysis,  

- understand the effects of inherent random soil spatial variability on the behavior of 

these geotechnical systems using data from a real construction site. 

 

In order to satisfy these objectives, we use probabilistic methods (FOSM, SOSM) with 

Winkler's model and a numerical approach that couples the finite element method with 
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geostatistical methods in order to model the longitudinal behavior of continuous spread 

footings and buried pipes when uncertainties of mechanical and geometrical parameters are 

taken into account in their design. 

Chapter 1 presents the main concepts of uncertainties in geotechnical designs. In order 

to prevent any misunderstanding or confusion in the following parts of this thesis, the main 

modeling method of spatial variability (basic random variables, random field theory and 

geostatistics) will be precisely defined to prepare for the use of geostatistics in chapter 4. 

The tools and techniques of probabilistic methods used in geotechnical engineering for 

propagating uncertainty will be introduced. We will introduce the soil-structure interaction 

concept and the different analytical models that take it into account along with their 

advantages and drawbacks. Finally, we will describe the superficial geotechnical systems 

studied in this thesis. 

 In Chapter 2, the modulus of subgrade reaction ks and its uncertainty are explained in 

detail. The chapter begins by explaining the modulus of soil reaction and suggested 

expressions or semi-empirical models used to determine this modulus as a function of the 

studied applications. After explaining the nature and origin of uncertainties, the first order 

(FOSM) and the second order (SOSM) of the Taylor series are developed in order to 

estimate the influence of soil and structure parameters on the coefficient of variation of ks. 

Finally, we propose simplified equations that compute the coefficients of variation of ks in 

the case of spread footings and buried pipes. These simplified models will be used in the 

following chapters.   

In Chapter 3, we discuss the effect of the uncertainty of the subgrade reaction modulus 

and the existence of a low stiffness zone on the behavior of the superficial geotechnical 

works. Reliability analyses for a continuous spread footing and a buried steel or concrete 

pipe are presented in order to avoid exceeding the serviceability limit state. A simplified 

uncertainty analysis is proposed. Finally, a comparison between FOSM and Monte Carlo 

analysis results is performed to validate the use of the FOSM method.  

Chapter 4 focuses on the application of this methodology to a real construction site. 

Settlements, bending moments and their uncertainties are obtained by geostatistical 

approaches coupled with the finite element method in order to perform a statistical analysis 

that describes the behavior of superficial geotechnical designs. Finally a comparison 

between analytical and numerical results for these superficial geotechnical systems is 
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performed to show that the spatial variability of soil properties adds a significant part of 

uncertainty in differential settlements and bending moments. A general conclusion and 

future research directions are provided in Chapter 5. 
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1. Dealing with uncertainties in geotechnical designs 

1.1. Uncertainties in geotechnical designs 

Most of the parameters used in geotechnical analyses, physical and soil mechanical 

properties, are uncertain. Therefore an essential but new aspect of geotechnical engineering 

is to deal with uncertainty. In fact, the uncertainties can usually be divided into two groups: 

aleatory or active uncertainty and epistemic or passive uncertainty (Lacasse and Nadim, 

1996; Uzielli et al., 2008). Aleatory uncertainty mainly includes natural variability of a 

property (spatial and temporal variability).The knowledge of experts cannot be expected to 

reduce this uncertainty although their knowledge may be useful in quantifying the 

uncertainty. Thus, this type of uncertainty is sometimes referred to as irreducible 

uncertainty. Epistemic uncertainty consists of statistical uncertainty, model uncertainty and 

measurement uncertainty (possible differences between the measured and true, but 

unknown, values of the relevant parameter), which are all classified as a type of 

uncertainty associated with limited, insufficient or imprecise knowledge. This uncertainty 

can, in theory, be reduced by obtaining additional information on the process to be 

modeled on the measured variable or by increasing the number of data in order to reduce 

the statistical uncertainty. Epistemic uncertainty leads to unawareness or ignorance of the 

potential risks for the foreseen constructions (Phoon and Kulhawy, 1999a, 1999b; Baecher 

and Christian, 2003). 

Engineering judgment and reliance on factors of safety have been the conventional tools 

for dealing with soil heterogeneity in geotechnical practice and then the geotechnical 

engineer tries to deal with the uncertainties by choosing reasonably conservative 

parameters for the deterministic stability evaluation (Griffiths & Fenton, 2007). However 

in this approaches, variability is not addressed explicitly as in uncertainty-based 

approaches. 

Recent theoretical developments and advances in probabilistic methods and 

computational methods have improved uncertainty analysis in geotechnical and related 

fields. The characterization and reduction of uncertainties is still an area where only few 

researchers have worked until a few years ago, even though as early as 1982 Einstein and 

Baecher stated the following words of wisdom: 
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In thinking about sources of uncertainty in engineering geology, one is left with the fact 

that uncertainty is inevitable. One attempts to reduce it as much as possible, but it must 

ultimately be faced. It is a well recognized part of life for the engineer. The question is not 

whether to deal with uncertainty, but how? 

Combining actual data, knowledge about the quality of the data, knowledge on the 

geology and, most importantly, engineering judgment help the engineer to evaluate the 

uncertainty.  

The geotechnical engineer processes testing data to obtain parameters for 

characterization and design.  In geotechnical works, there are lack of information in 

quantity and accuracy.  Geomaterials, moreover, are naturally complex and variable at all 

scales, ranging from the microstructure to regional scale. This lack of uniformity and 

information must be considered in parameterizing and modeling. Furthermore the level of 

explicitness with which this occurs depends upon the selected approach.  

In the technical literature and geotechnical engineering is no exception- the terms 

variability and uncertainty are often employed interchangeably. Variability is an 

observable manifestation of heterogeneity of one or more physical parameters and/or 

processes. Uncertainty pertains to the modeler state of knowledge and strategy, and reflects 

the decision to recognize and address the observed variability in a qualitative or 

quantitative manner (Huang and An-bin, 2008). 

Deterministic methods lie at the basis of virtually every technological science, and 

geotechnical engineering doesn’t make exception. However, the importance of explicitly 

modeling and assessing the variability of geotechnical parameters (i.e. quantifying, 

processing and reporting the associated uncertainty) is increasingly recognized in 

geotechnical design and characterization. Most evolutionary design codes operate in an 

uncertainty-based perspective, requiring explicit quantification not only of most suitable 

values (usually termed characteristic or nominal), but also of the level of uncertainty and 

confidence in the selection of such values. 

The progressive shift towards an uncertainty-based perspective may be motivated by the 

fact that this may be more convenient in terms of safety, performance and costs. Providing 

more complete and realistic information regarding the level of risk associated with design 

will be possible by the explicit parameterization of uncertainty. Addressing uncertainty 

does not in itself increase the level of safety, but allows the engineer to rationally calibrate 
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his decisions on desired or required reliability or performance level of geotechnical system. 

Being able to select the performance level and reduce undesired conservatism, in turn, is 

generally beneficial in the economic sense. The results of uncertainty-based analyses can 

be used confidently for engineering purpose only if preceded, accompanied and followed 

by geotechnical expertise and expert judgment. 

The techniques commonly used to analyze geotechnical data, and to estimate its 

uncertainties, include traditional probabilistic and statistical methods (Einstein and 

Baecher, 1983; Emeriault et al., 2004; Dubost et al., 2007; Villavicencio et al., 2011), 

spatial statistical methods, such as that based on random field theory (Vanmarcke, 1980, 

1983), and geostatistics (Chilès and Delfiner, 1999; Mendes and Lorandi, 2008; Marache 

et al., 2009a, Bourges et al., 2012). Numerous finite element studies have been carried out 

in understanding the effect of uncertainty on the stability of geotechnical systems. For 

example, Fenton et al. (2005) and Zevgolis and Bourdeau (2010) analyzed the reliability of 

a retaining wall, Elachachi et al. (2004, 2011, 2012) and Buco et al. (2006, 2008a, 2008b) 

studied soil–pipe interactions. Park et al. (2005) and Srivastava et al. (2010) studied rock 

and soil slope stability respectively. Niandou and Breysse (2007) carried out reliability 

analysis of a piled raft. Dubost et al. (2011) analyzed soil-pile interaction. Foundation 

settlements on spatially random soil have been studied by Fenton and Griffiths (2002) and 

Srivastava and Sivakumar Babu (2009). Note that in these numerical studies, mostly the 

variability in the transverse direction of the structure elements is considered.  

Analytical approaches can also be used to study the effect of uncertainty on the stability 

of geotechnical systems (Houy et al., 2005; Deck and Singh, 2012).  

This chapter provides general information to quantify and integrate the uncertainties 

into the geotechnical designs concerning the modeling of soil properties: basic random 

variables, random field theory and geostatistics, the most commonly probabilistic methods 

in geotechnical engineering: Taylor series approach, Monte Carlo simulation and reliability 

based design. Finally, soil-structure interaction and chosen superficial geotechnical designs 

are introduced.   

  



Chapter 1 

 

10 

 

1.2. Modeling of soil properties         

Soils are geological materials formed by weathering processes and, save for residual 

soils, transported by physical means to their present locations. They have been subject to 

various stresses, pore fluids, and physical and chemical changes. Thus, it is hardly 

surprising that the physical properties of soils vary from place to place within resulting 

deposits. The scatter observed in soil data comes both from this natural spatial variability 

and from errors in testing. Each of these exhibits a distinct statistical signature, which can 

be used to draw conclusions about the character of a soil deposit and about the quality of 

testing. In the following, we consider different approaches to modeling of soil properties: 

basic random variables, random field theory and geostatistical approaches. 

1.2.1. Basic random variables 

Here, we will introduce a tool that is useful for evaluating the probability of an event: 

the random variable. First, we will provide graphical and numerical methods to represent 

understand and quantify variability. Next, we will present the random variable as a 

theoretical tool for modeling variability. Finally, common models for continuous random 

variables are breifly introduced.  

1.2.1.1. Graphical analysis of variability  

Variability often leads to uncertainty. In the following, we will briefly present five 

graphical methods for analyzing variability: histograms, frequency plots, frequency density 

plots and cumulative frequency plots.  

Histogram: A histogram is obtained by dividing the data range into bins, and then 

counting the number of values in each bin. The histogram conveys important information 

about variability in the data set. It shows the range of the data, the most frequently 

occurring values, and the amount of scatter about the middle values in the set. 

Frequency plot: The frequency of occurrence in each histogram interval is obtained by 

dividing the number of occurrences by the total number of data points. A bar-chart plot of 

the frequency of occurrence in each interval is called a frequency plot. Note that the 

histogram and frequency plots have the same shape and convey the same information. The 

frequency plot is simply a normalized version of the histogram. Because it is normalized, 

the frequency plot is useful in comparing different data sets. 
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Frequency density plot: Another plot related to the histogram is the frequency density 

plot. The frequency density is obtained by dividing the interval frequencies by the interval 

widths. A bar-chart plot of the frequency density is called the frequency density plot. The 

objective in dividing the frequency by the interval width is to normalize the histogram, 

further the area below the frequency density plot (obtained by multiplying the bar heights 

by their widths) is equal to 100%. This normalization will be useful in fitting theoretical 

random variable models to the data. 

Cumulative frequency plot: The cumulative frequency plot is the final graphical tool 

that we present for variability analysis. Cumulative frequency is the frequency of data 

points that have values less than or equal to the upper bound of an interval in the frequency 

plot. The cumulative frequency is obtained by summing up (or accumulating) the interval 

frequencies for all intervals below the upper bound. A plot of cumulative frequency versus 

the upper bound is called the cumulative frequency plot.  

1.2.1.2. Quantitative Analysis of Variability 

In addition to graphical analyses, the variability in a data set can also be analyzed 

quantitatively. The statistics of a data set (also known as the sample statistics where the 

data set is the sample) provide quantitative measures of variability. Features of interest 

include the central tendency of the data, dispersion or scatter in the data, skewness and 

kurtosis in the data and correlation or dependence between data points. 

•  Central Tendency 

The most common measure for the center of a data set is the average value, which is 

also called the sample mean. The sample mean is obtained as follows (Equation 1-1): 

�
=

=
n

1i
ix x

n

1µ  
Equation 1-1 

where µx is the sample mean xi is each data value, and n is the total number of data points. 

 

•  Dispersion or Scatter���

The amount of scatter in a data set is most easily measured by the sample range. The 

maximum value in the data set minus the minimum value is defined as sample range. A 



Chapter 1 

 

12 

 

measure of dispersion around the mean value of the data set is defined as the sample 

variance. The sample variance is obtained as follows (Equation 1-2): 

( )�
=

−
−

=
n

1i

2
xi

2
x x

1n

1 µσ  
Equation 1-2 

where 2
xσ   is the sample variance. The sample variance is the average of the square of the 

distance between individual data points and the sample mean. Its value will always be 

greater than or equal to zero. 

The square root of the sample variance is defined as the sample standard deviation �x         

,while the sample coefficient of variation CV is the standard deviation divided by the mean 

value (Equation 1-3): 

x

xCV
µ
σ=  

Equation 1-3 

Since the standard deviation has the same units as the mean value, the coefficient of 

variation is a dimensionless measure of dispersion. 

•  Skewness and Kurtosis  

Skewness is a measure of distributional asymmetry. Conceptually, skewness describes 

which side of a distribution has a longer tail. A skewness coefficient of zero means that the 

data values are distributed symmetrically about the mean value (distribution is perfectly 

Gaussian). A positive skewness coefficient indicates that the data are skewed about the 

mean to the right (toward larger values) while a negative skewness coefficient indicates 

that the data are skewed to the left (toward smaller values). 

The term kurtosis refers to the degree to which a curve is peaked or flat. A Kurtosis 

coefficient for the Gaussian distribution is equal to three. 

Skewness and kurtosis will be used for the second order second moment (SOSM) in the 

ensuing sections.  

1.2.1.3. Theoretical random variable models 

A random variable is a mathematical model to represent a quantity that varies. 

Specifically, a random variable model describes the possible values that the quantity can 
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take on and the respective probabilities for each of these values. Since the frequency plot 

for a data set indicates the probability of different values occurring, a random variable 

model is just a mathematical representation of the information contained in a frequency 

plot. 

 For two reasons a theoretical random variable model is needed to describe a data set: 

first, a data set is limited in size and second, in most engineering problems we are 

interested in combinations of variable quantities. For example, a pile foundation will 

undergo large displacements if the applied load exceeds the pile capacity. We need to 

consider variability both in the load and the capacity to design this foundation. Random 

variable models provide a mathematical framework for working with and combining 

multiple quantities that vary.  

Discrete and continuous models for random variables are discussed in the following 

sections.  

•  Discrete random variables 

Discrete random variables can only take on discrete values within the sample space. The 

probability mass function (PMF) for a discrete random variable (X) is denoted by the 

following mathematical form for notational convenience: 

[ ] ( )xpxXP X==  Equation 1-4 

The cumulative distribution function (CDF) describes the probability that the random 

variable takes on a value less than or equal to a given value. It is obtained as follows 

(Equation 1-5):  

 

( ) [ ] ( )�
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iXX

i

xpxXPxF  
Equation 1-5 

The mean value is an important tool when working with random variables. The 

expectation of a quantity is the weighted average of that quantity, where the possible 

values are weighted by their corresponding probabilities of occurrence. For example, the 

expected value of X, denoted E[X] , is given by the following (Equation 1-6): 
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ixall

iXi xpxXE  
Equation 1-6 

Note that the mean of X is equal to its expected value E[X]. The expected value of any 

function of X, denoted g(X), can be obtained similarly (Equation 1-7): 

( )[ ] ( ) ( )iX
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i xpxgXgE
i

�=  
Equation 1-7 

Similarly, the variance is obtained as follows (Equation 1-8):  

( ) ( )iX
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X xp.x

i

� −= µσ  
Equation 1-8 

where �X  is the standard deviation of X.  

 

•  Continuous random variables 

Continuous random variables can take on any value within the sample space. Total unit 

weight is an example of a continuous random variable; it can take on any value greater 

than zero. The probability density function (PDF) for a continuous random variable 

describes its probability distribution. 

While the PDF is similar to the PMF in the information that it conveys, there is 

significant difference in these two functions. For a continuous random variable, there is 

infinite number of possible values within the sample space. Hence, unlike a discrete 

random variable, it is not possible to define the probability of the event that X is equal to a 

given value x, since this probability is vanishingly small. Instead, we can define the 

probability that X is within a very small interval. This probability is proportional to the 

PDF. 

The cumulative distribution function (CDF) for a continuous variable describes the 

probability that the variable takes on a value less than or equal to a given value. It is 

obtained as follows (Equation 1-9):  
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=≤=  Equation 1-9 

Note that the CDF is the area under the PDF. Since the probability of the sample space 

is equal to 1.0, the area under the PDF must equal 1.0. Recall that the area under a 

frequency density plot for a data set is also equal to 1.0. Therefore, theoretical PDFs can be 

fit to model a data set by overlaying a theoretical PDF on top of a frequency density plot. 

The expectation for a continuous random variable is defined in the same way as for a 

discrete random variable; it is a weighted average, in which values are weighted by their 

likelihood. However, since there are an infinite number of possible values in the sample 

space, the process of summing up values weighted by their likelihoods is an integration 

(Equation 1-10):  

[ ] ( )dxxfxXE X�
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=  Equation 1-10 

Similarly, variance, skewness and kurtosis for a continuous random variable are found 

as follows: 
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1.2.1.4. Common models for continuous random variables 

Different probability distribution models such as normal, lognormal, beta, uniform, 

triangular, exponential, Weibull and gamma have been implemented by different authors to 

curve fit the results of field data. This implies that these distributions are probably site and 

parameter specific and that there is no generic distribution pattern for soil properties. 

Where observations are scarce or absent, parametric distributions can be assumed from the 

literature. Studies have estimated coefficients of variation and probability density functions 

of soil properties (Lumb 1966; Chowdhury 1984; Harr 1987; Kulhawy et al. 1991; Lacasse 

and Nadim 1996). Based on several studies reported in the literature, soil properties can 

follow different probability distribution functions (PDF’s) for different types of soils and 

sites. Furthermore in the reliability analysis, the input soil parameters are modeled as 

continuous random variables defined by their probability density functions (PDFs) and the 

parameters of distributions. 

Care should be exercised, however, to ensure that the minimum and maximum values of 

the selected distribution are consistent with the physical limits of the parameter being 

modeled. For example, shear strength parameters should not take negative values. If the 

selected distribution implies negative values, then the distribution is truncated at a practical 

minimum threshold.  

Jimenez et al. (2009) have investigated the effects of using different types of statistical 

distributions (lognormal, gamma, and beta) to characterize the variability of Young’s 

modulus of soils in random finite element analyses of shallow foundation settlement. 

Results indicated the type of distribution considered for characterization of the random 

field of Young’s modulus could have a significant impact on computed settlement results. 

Usually, in geotechnical practice, the input soil parameters are either modeled as 

normally distributed or log-normally distributed continuous random variables (Baecher and 

Christian, 2003). The parameters of the normal and lognormal probability distribution 

function (PDF) are directly related to the unbiased estimates of statistical moments i.e. 

sample mean and variance of the measured data set. These two distributions will be used in 

this study. They are briefly discussed in this following. 
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•  Normal Distribution 

The normal distribution (also known as the Gaussian distribution) is the classic bell-

shaped curve that arises frequently in data sets. The probability density function of a 

normal random variable is defined by Equation 1-14:  

( ) ∞+��∞−=
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X
X

σ
µ

πσ
 Equation 1-14 

In which µX is mean value and �X is standard deviation. The normal distribution has 

several interesting properties. First, it is a symmetrical distribution (skewness is zero for a 

normal distribution). Secondly, its tails decay in an exponential manner. There is a 68% 

chance that a normal variable will be within ±1 standard deviation from the mean value, a 

95% chance that it will be within µX  ± 2�X�, and a 99.7% chance that it will be within µX  ± 

3�X. Therefore, it is very unlikely (less than 1% chance) to observe a value outside of 3 

standard deviations from the mean value. The two-parameter normal distribution has 

theoretically a range from -� to +�. Since geotechnical parameters should not take 

negative values, a normal distribution truncated below zero is a more suitable assumption. 

Finally, a linear function of a normally distributed variable also has a normal distribution. 

It can be shown that a linear combination of normal random variables, have normal 

distributions. If Y=aX+b and X has a normal distribution, then Y also has a normal 

distribution with mean µY = aµX + b�and standard deviation �Y =a��� 
•  Lognormal Distribution 

The lognormal distribution has often been suggested in lieu of the normal distribution, 

which is in engineering science widely used for the description of random material 

parameters. Since the lognormal distribution ranges between zero and infinity, skewed to 

the low range, and is therefore particularly suited to parameters that cannot take negative 

values (Limpert et al. 2001). The probability density function of a lognormal random 

variable is defined by assuming the natural logarithm of the random variable as normally 

distributed (Equation 1-15): 
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Lognormal distribution has simple relationship with normal distribution (Fenton and 

Griffiths 2003). Once the mean and standard deviation are expressed in terms of the 

dimensionless coefficient of variation (CV), defined as CV=�X/µX then the distribution 

parameters µlnX and �lnX can be obtained from the mean value X and the variance 2
Xσ  as 

(Equation 1-16): 

{ } 2
XlnXXln

2
XXln 5.0ln,CV1ln σµµσ −=+=  Equation 1-16 

The distribution parameters µlnX  and 2
Xlnσ  are respectively equivalent to the mean value 

and variance of the logarithmised observations, which are assumed to be normally 

distributed.  

The lognormal distribution has been widely employed to model variations of the 

Young’s modulus of soils (Paice et al. 1996; Nour et al. 2002; Fenton et al. 2005). This 

choice is motivated by the fact that the elastic modulus is a positive parameter, and the 

lognormal distribution enables analyzing its large variability. 

1.2.2. Random field theory and geostatistics 

Generally, four mathematical techniques are used to model the spatial variability of 

geotechnical parameters. These are (i) regression analysis; (ii) random field theory; (iii) 

geostatistics; and (iv) fractal theory. Regression analysis offers limited application to 

spatial variability models; primarily because it neglects the fact that soil properties exhibit 

autocorrelation, that is, neighbouring samples indicate stronger correlation than distant 

ones. Jaksa and Fenton (2002) demonstrated that fractal, or self-similar, behaviour is 

exhibited by some soils, but is generally absent in most. As a result, soil profiles can be 

well modelled stochastically using a finite-scale correlation structure, such as the Markov 

correlation function, which is exponentially decaying with separation distance. 

Consequently, random field theory and geostatistics are most often applied to the 

modelling of the spatial variability of soil profiles. These approaches facilitate 
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incorporation of measurement results obtained at individual locations within the area of 

interest and it is these that will apply in the present study. These are each treated briefly 

below.  

1.2.2.1. Random field theory   

Random field theory is an extension of time series analysis (Vanmarke, 1983; Jaksa, 

1995; Brockwell and Davis, 1987). In geotechnical engineering to study the spatial 

variability of geomaterials, the time domain is replaced by the domain distance. 

 Random field theory is important for two reasons: first, it provides powerful statistical 

results which can be used to draw inferences from field observations and plan spatial 

sampling strategies; secondly, it provides a vehicle for incorporating spatial variation in 

engineering and reliability models. Random field theory is part of the larger subject of 

stochastic processes, of which we will only touch a small part. For more detailed treatment, 

see Adler (1981), Christakos (1992, 2000), Christakos and Hristopoulos (1998), Parzen 

(1964), or Vanmarcke (1983). 

Let X denotes a soil variable such as the soil strength within a soil volume. X exhibits 

natural variability and therefore varies from point to point within the soil volume. X is said 

to form a random field over the soil volume. The natural variability from point to point 

within a soil volume is a result of the natural formation of soil in different depositional 

environments. This variation can exist even in apparently homogeneous soil units. 

The autocorrelation function for X is defined as the coefficient of correlation between 

the values of X in two points located a distance r apart within the soil volume (Equation 

1-17) 

( ) ( ) ( )[ ]
[ ]XVar

sX,sXCov
r

′
=ρ  

Equation 1-17 

where s and s� are the location coordinates of the two points, r = |s - s�| denotes the 

distance between them, ( ) ( )[ ]sX,sXCov ′  the covariance between two points and [ ]XVar

variance of a soil variable X. The autocorrelation function reflects the connectivity in the 

soil properties and tells something about how the variation of X from point to point is. An 

autocorrelation function typically decreases for increasing lag r. 
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A commonly applied model for the autocorrelation function for soil properties is 

quadratic exponential decay model (Equation 1-18): 

( ) ��
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exprρ  

Equation 1-18 

in which R is a correlation length which expresses the scale of fluctuation in the random 

field X. Random fields of soil properties are usually anisotropic. The vertical correlation 

length RV is usually smaller than the horizontal correlation length RH (Det Norske Veritas 

as, 2007). This difference reflects the geological processes that lead to the formation of soil 

deposits by sedimentary depositing and may amount to as much as an order of magnitude. 

Let r have components �x in the horizontal plane and �z in the vertical direction. For 

the anisotropic case that RV � RH, the quadratic exponential decay model can then be 

expressed as (Equation 1-19):  
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Equation 1-19 

Example of quadratic exponential and exponential models of autocorrelation function as 

is shown in Figure 1-1. 

 

Figure 1-1: Example of autocorrelation function models (Det Norske Veritas as, 2007) 
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The theoretical limit of the autocorrelation function as the lag r approaches zero is unity 

(�(r) � 1 for r � 0). However, when �(r) is inferred from data, one may observe that         

� (r) � b  for r � 0  with 0 < b < 1    

The difference (1−b) is known as nugget effect. The nugget effect is in most cases due 

to measurement uncertainty, which by nature does not exhibit any spatial correlation 

structure. By considering a nugget effect the quadratic exponential decay model becomes 

changed to (Equation 1-20):  
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Equation 1-20 

1.2.2.2. Geostatistics  

Geostatistics are proved to be reliable and well adapted methods when dealing with 

gridding tasks and risk analysis in the geotechnical engineering (Marache et al., 2009a-

2009b). Compared to classical statistics, geostatistical methods take into account the 

spatial variability of the target parameter, in order to provide realistic spatial estimates 

together with a quantification of the associated uncertainty. A lot of applications can be 

found for liquefaction potential for example (Dawson and Baise, 2005; Lenz and Baise, 

2007; Sitharam and Samui, 2007). Any geostatistical process begins with data quality 

control and analysis, thus allowing an understanding of the data prior to any further step. 

The variographic analysis is then performed in order to measure the spatial variability of 

the data (continuous, discontinuous behaviour, stationarity, non-stationarity…) leading to a 

variogram computation. Afterwards, geostatistical modelling such as kriging, cokriging 

and simulation can be performed using this spatial information (variogram). The 

geostatistical methods are discussed in the following sections. 

1.2.2.2.1. Variogram 

 In the geostatistical approach, such analysis is made to evaluate the dependence of a 

variable in relation to itself and separated by a vector distance h. The magnitude of 

dependence can be detected by means of correlation coefficients and spatial covariance 

that can be expressed by a function called variogram. The variogram is a basic graphic tool 

to support geostatistical techniques which allows quantitative representation of the 

variability of a regionalized phenomenon spatially (Huijbregts, 1975). 
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Figure 1-2 shows a variogram with nugget effect (C0), range (a) and sill (C0+C). In 

theory the variogram value at the origin (0 lag) should be zero. If it is significantly 

different from zero for lags very close to zero, then this variogram value is referred to as 

the nugget. This value represents the variability is due to measurement errors or errors of 

location of measures, either to the existence of a microstructure (small scale variability) 

(Chilès and Delfiner, 1999). The range is a distance beyond which the variogram 

essentially remains constant and reaches the sill value. Presumably, autocorrelation is 

essentially zero beyond the range. The sill is the plateau the variogram reaches at the 

range. If the variogram reaches a sill, the variable is stationary (its mean and variance are 

constant whatever the location in the space). If the variogram keeps increasing, the variable 

is non-stationary (the variable presents a trend, for instance its mean varies regarding the 

location in the space). 

 

 
Figure 1-2: Diagram of a stationary variogram 

 

Assume two regionalized variables, X and Y, where X=Z(x) and Y=Z(x+h) with 

reference to the same attribute that has been measured at two different spatial positions: x 

represents a bidimensional position with components (xi, yi) and h is a distance lag that 

separates the two spatial positions and expressed as a vector (module and direction). The 
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magnitude of dependence between the two regionalized variables, X and Y, can be 

expressed by a variogram function �(h) given by Equation 1-21: 
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The quantity �(h) is known as the semivariance: it is half the expected squared 

difference between two values. Variogram and covariance functions are correlated through 

the variance of field data, �2, in the form (Equation 1-22): 

( ) ( )hCh 2 −=σγ  Equation 1-22 

It should be emphasized that the above variogram and covariance relations are only 

valid for stationary random fields where both the mean and standard deviation are 

constants across the domain of interest. 

Taking a sample Z(xi) where i=1, 2, ..., n; an experimental variogram is defined as half 

the average squared difference between values separated by a given lag h as follows 

(Equation 1-23): 
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Equation 1-23 

where �e(h) experimental variogram, N(h) number of pairs of measured values separated 

from one another by vector (h), and Z(xi) and Z(xi+h) are observed values of the 

regionalised variable at different positions xi and xi+h (i=1,..., n), also separated from one 

another by vector (h).  

Journel, 1977 (citing Bacconnet, 1991) recommends a number of couples of points 

more than 30 in mining practice. However, the available data in geotechnic generally do 

not always satisfy this condition and a less number of couples of points can be considered 

(Bacconnet, 1991). It gives more weights to the calculated variogram points with many 

pairs (N (h)> 30), and less to others. If the number of pairs is very low (N (h) <10), it is 

impossible to consider the point. 

These recommendations lead to emphasize the importance of the data structure. The 

sampling distribution in plan can follow three schema of theoretical sampling (Bacconnet, 
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1991). Systematic sampling (Figure 1-3a) with a regular mesh is the only schema able to 

provide a correct inference of the variogram. Second pattern is structured aleatory, in this 

case the sample is supposed to randomly located in a cell of a regular mesh (Figure 1-3b). 

The third pattern is pure aleatory, this case is very theoretical but can correspond to the 

majority of the geotechnical investigations for which the location of sample in fact is 

guided by the geometry and nature of the problem to treat (Figure 1-3c). In the same idea, 

there is no guarantee that the data structure is isotropic. 

 

 
                    a) Regular                                  b) Structured aleatory                              c) Pure aleatory   

Figure 1-3: Sample configurations 

 

We can also calculate the variogram in certain specific directions (Equation 1-24): 
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Equation 1-24 

where N (h, �) = number of pairs separated by h in the direction �. 

In practice it is generally a tolerance on h and � in order to have enough pairs for each h 

and each �. The first step in the geostatistical estimation process is the building-up of the 

experimental variogram. After building-up a number of experimental variograms, a global 

mathematical model must be adjusted or fitted in order to best represent the spatial 

behavior of the variable being studied. It is important that such mathematical model could 

express any prevalent tendency of the variogram �(h) in relation to lag distance h. Once the 

model adopted, any further calculations are done with the values of the model and not with 

the experimental values. 

When the variogram is the same in all directions, it is said to be isotropic or 

omnidirectional. When the variogram differs depending on the direction, it is anisotropic; 
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also range and sill are different. The variograms can have special forms. Significant spatial 

variations of the random variable analysis are: 

- Stepped variogram shows the existence of several structures of different scales. 

(Figure 1-4a) 

- Periodic variogram can correspond to periodic variation of the variable. It is better 

to verify the reality or at least physical likelihood of such phenomenon. The 

presence of hole effect in a variogram shows a tendency for high values areas are 

surrounded by low values areas, or vice versa (Figure 1-4b). 

 
                                    a) Stepped variogram                                       b)Periodic variogarm 

Figure 1-4: Different forms of variograms (Magnan, 1982) 

 

The experimental variograms must be represented by convenient models (i.e. that 

provide a positive variance of random variables). In geological and geotechnical 

engineering, the most common models are (Figure 1-5 and Table 1-1):  

- Pure  nugget 

- Power model (special case: the linear model) 

- Spherical model 

- Gaussian model  

- Exponential model 

- Cubic model 
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 Figure 1-5: Commonly used semi-variogram models with C0 set to zero (Jaksa 1997) 

 

Table 1-1: Commonly used mathematical functions of semi-variogram models (Jaksa 1997) 

      Model                            Mathematical functions 

Pure  nugget 	(h)= C0 
C0= nugget effect 

      Spherical 

���� 	 A BC�DE F ��
DE�� � A�             for  h A a,   a=range 

���� 	 A � A� 
         for  h B a,  C0+C=sill 

      Exponential ���� 	 A�� F ����� � � A�  

      Gaussian ���� 	 A�� F ��B���� �
�

� � A� 
 

      linear ���� 	 �� � A�                   p=slope 

      Power ���� 	 ��� � A�                   0 < C < 2 

      Cubic 

���� 	 A ����E 
! F C"

# ��E 
� � �

D�
�
E 

$ F C
#�

�
E 

%&         for  h A a 

���� 	 A � A�          for  h B a 

 

The nugget model represents the discontinuity at the origin due to small scale variation 

and the pure nugget model would represent a purely random variable, with no spatial 

correlation. The power model does not reach a finite sill and does not have a corresponding 

covariance function. 
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The spherical model actually reaches the specified sill value at the specified range. The 

exponential and Gaussian approach the sill asymptotically, with a representing the practical 

range, the distance at which the semi-variance reaches 95% of the sill value.   

The Gaussian model, with its parabolic behavior at the origin, represents very smoothly 

varying properties at small scales (However, using the Gaussian model alone without a 

nugget effect can lead to numerical instabilities in the kriging process). The spherical and 

exponential models exhibit linear behavior the origin, appropriate for representing 

properties with a higher level of short-range variability. Also we can combine several of 

these models by simple summation. 

In the fitting models, the first points of the variogram (small h) are the values that have 

the greatest impact in the geostatistical calculations. When h � (dmax/2) we ignore the 

values of the variogram (dmax is the size of the study area). 

1.2.2.2.2. Spatial estimation – kriging 

One of the most important uses of regionalized variable theory is for local estimation by 

the method known as kriging. The purpose of kriging, also known as Best Linear Unbiased 

Estimator (BLUE), is to provide a best estimate of soil properties between known data. 

Krige (1951, 1966) developed the method empirically for estimating amounts of gold in 

bodies of rock from fragmentary information in the mines of South Africa. Kolmogorov's 

(1941) method of optimum interpolation is, however, the first recognizable formulation of 

kriging. Kriging is a general term that embraces several estimation procedures (Krige et al., 

1989). What makes kriging unique and highly commendable compared with other methods 

of estimation is that its estimates are unbiased and have minimum variances. In this sense it 

is optimal. In fact kriging enables the interpolation errors to be minimised if the variogram 

model is of good quality. 

Furthermore the estimation variances themselves can be estimated, and so the technique 

can be used with known confidence. Kriging is also an exact interpolator, i.e. the kriged 

value at a sampling point is the measured value there and the variance is zero. Laslett et al. 

(1987) compared kriging with other techniques of interpolation and showed that kriging 

was the only one that performed reliably in all circumstances.  

When the data have a known, constant, mean value throughout the study area, we speak 

of simple kriging, otherwise ordinary kriging. As a result, simple kriging can be less 
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accurate than ordinary kriging, but it generally produces a result that is "smoother" and 

more aesthetically pleasing. Kriging is not an option since data is not available over the 

domain in question.  

Supposing that the goal is to estimate the value of the variable Z at the point x0, the 

unknown value of Z(x0) can be estimated from a linear combination of n observed values 

added to the parameter �0 (Journel, 1989) as follows (Equation 1-25): 
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Considering that the intended estimate should be unbiased as much as possible, which 

means 
[ ] 0ZZE *

XX 00
=−

, it is then assumed that the two means must be equal and so from 

Equation 1-26: 
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The ordinary kriging does not require previous knowledge of the mean 	. In this case, in 

order to satisfy Equation 1-26 it is necessary that: 
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Therefore, the ordinary kriging estimate is given by Equation 1-28: 
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Journel (1989) demonstrated that error variance 
[ ] 0ZZVar *

XX 00
=−

 is minimized to 

obtain the weights �j from Equation 1-29: 

( ) ( ) ��
==

===−×
n

1j
j

n

1j
0ijij 1andn,...,1ito,x,xCx,xC λαλ  

Equation 1-29 
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where C(xi, xj) and C(xi, x0) are the covariance between points xi and xj and between points 

xi and x0 respectively; A is the Lagrange coefficient that is needed to minimise error 

variance. 

The theoretical development of geostatistical methods is available from a number of 

publications including Journel and Huijbregts (1978), Journel (1989), and Isaaks and 

Srivastava (1989). Largueche (2006) studied estimating soil contamination with kriging 

interpolation method and recommended advantages and disadvantages for kriging based on 

personal experiences. 

In practice, applications of geostatistic in geotechnic remains, despite the available 

softwares, complicated to use and often unemployable for lack of sufficient data. It is most 

often used in geostatistics for the establishment of geological and geotechnical models. 

There are two scales: 

- The model treats a large area, and then we find general applications in risk analysis 

or feasibility of the project. For example, the project RIVIERA (Thierry et al., 2006) 

proposing an underground model of the Bordeaux urban community with several 

applications: geotechnical, treatment of waste water and archeology. 

- The model is used to a particular site (or project), then we find further geotechnical 

applications, the estimations from the models are used in dimensions of the work. 

For example, Chilès and Blanchin, 1995 and El Gonnouni et al., 2005 used 

geostatistics in tunnel projects, respectively the tunnel under Manche and the Lyon 

metro, see also Elkadi and Huisman (2002) and Dubost et al. (2011). 

Another part of the application is evaluation or the definition of geotechnical campaigns 

(Bacconnet, 1991; Parsons and Frost, 2002; Khalfaoui and Mezghache, 2005). There are 

also examples of simple descriptions of the site variability without precise presentation of 

the study aimes (Auvinet et al., 2005, Yoon et al., 2007).  

1.2.2.2.3. Cokriging-collocated cokriging 

The cokriging procedure is a natural extension of kriging when a multivariate variogram 

or covariance model and multivariate data are available. A variable of interest is cokriged 

at a specific location from data about itself and about auxiliary variables (or secondary 

variables) in the neighborhood. The data set may not cover all variables at all sample 

locations. Depending on how the measurements of the different variables are scattered in 
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space we distinguish between isotopic and heterotopic data-sets. The measurements 

available for different variables Zi(x) in a given domain may be located either at the same 

sample points or at different points for each variable as illustrated on Figure 1-6. The 

following situations can be distinguished: 

- entirely heterotopic data: the variables have been measured on different sets of 

sample points and have no sample locations in common, 

- partially heterotopic data: some variables share some sample locations (Figure 

1-6b), 

- isotopy: data is available for each variable at all sampling points (Figure 1-6a). 

 

 
a) Isotopic data (sample sites are shared)                      b) Heterotopic data (sample sites may be different)  

Figure 1-6: a) Isotopic and b) Partially heterotopic data, Wackernagel (2006)  

 

Cokriging in the heterotopic case is explained in the following. For cokriging in the 

isotopic case, one can refer to Wackernagel (2006).    

The ordinary cokriging estimator is a linear combination of weights iwα with data from 

different variables located at sample points in the neighborhood of a point x0. Each variable 

is defined on a set of samples of (possibility different) size ni and the estimator is defined 

as (Equation 1-30)    
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where the index i0 refers to a particular variable of the set of N variable. The number of 

samples ni depends upon the index i of the variables, so as include into the notation the 

possibility of heterotopic data. 

In the framework of a joint intrinsic hypothesis we wish to estimate a particular variable of 

a set of N variables on the basis of an estimation error which should be nil on average. This 

condition is satisfied by choosing weights which sum up to one for the variable of interest 

and which have a zero sum for the auxiliary variables (Equation 1-31).  
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Ordinary cokriging has no meaning when no data is available for the variable of interest 

in a given neighborhood. On the other hand, simple kriging leans on the knowledge of the 

means of the variables, so that an estimation of a variable can be calibrated without having 

any data value for this variable in the cokriging neighborhood. 

The simple cokriging estimator is made up of the mean of the variable of interest (mi) plus 

a linear combination of weights iwα with the residuals of the variables (Equation 1-32): 
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Equation 1-32 

In cokriging problems with heterotopic data we can distinguish between sparsely and 

densely sampled auxiliary variables. In the second case, when an auxiliary variable is 

available everywhere in the domain, particular technique like collocated cokriging can be 

of interest. This technique is explained in the following. 
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1.2.2.2.4. Collocated cokriging      

A particular heterotopic situation encountered in practice is when we have a variable of 

interest known at a few points and an auxiliary variable known everywhere in the domain 

(or at least at all nodes of a given estimation grid and at the data locations of the variable of 

interest). With plenty of data available for the auxillary variable the question at hand is 

how to choose a parsimonious neighbourhood. 

Cokriging with many variables using all data easily generates a very large linear system 

to solve. This means that the choice of a subset of data around a given estimation location, 

called a neighborhood, is a crucial step in cokriging. It is of particular importance to know 

when, due to the particular structure of a coregionalization, the full cokriging with all data 

is actually equivalent to a cokriging using a subset of data, so that the neighborhood can be 

reduced a priori and the cokriging system simplified accordingly, thus reducing in the end 

the numerical effort to a considerable extent. Concerning heterotopic data, we will focus 

on a case that has attracted most attention recently as it is increasingly frequently 

encountered in applications: the case of a dense secondary variable.         

Figure 1-7 sketches three different neighborhoods for a given central estimation location 

(denoted by a star), primary data (denoted by full circle) as well as three alternate subsets 

of data from a secondary variable (denoted by squares). The neighborhood: 

- (A) uses all data available for the secondary variable, 

- (B) restricts the secondary information to the subset of locations where primary data 

is available as well as to the estimation location, 

- (C) merely includes a sample value of the secondary variable at the estimation 

location.  

Case (A) can be termed the full neighborhood, while case (C) was called a collocated 

neighborhood by Xu et al., (1992) as the secondary data is collocated with the estimation 

location. Whereas case (B) was termed a multicollocated neighborhood by Chilès and 

Delfiner (1999) as additionally the secondary data is also collocated with the primary data. 

Using the full neighborhood (A) with secondary data dense in space will easily lead to 

linear dependencies for neighboring samples in the cokriging system, causing it to be 

singular. The size of the system can also be numerically challenging. Vargas-Guzman and 

Yeh (1999) suggest a way out of numerical difficulties by starting from a small 
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neighborhood and progressively extending the neighborhood in the framework of what 

they call a sequential cokriging.        

 

 

 

 

Figure 1-7: Three possible neighborhoods with a dense secondary variable 

 

With reference to Xu et al., (1992), we call collocated simple cokriging a neighborhood 

definition strategy in which the neighborhood of the auxiliary variable (S(x0)) is arbitrarily 

reduced to only one point: the estimation location. The value S(x0) is said to be collocated 

with the target point of Z(x). The collocated simple cokriging estimator is (Equation 1-33):  
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The collocated neighborhood used for simple cokriging would yield a trivial result if 

applied in ordinary cokriging: because of the constraint that the weights of the auxiliary 

variable should sum up to zero, the weight w0 is zero and the auxiliary variable does not 

come into play. 

An ordinary cokriging needs to use more data together with the value S(x0). If the values 

S(xA) that are collocated with the sample points of the main variable are also included we 

get a multicollocated neighborhood. The collocated ordinary cokriging estimator is then 

(Equation 1-34)  
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Equation 1-34 

One can start the study of non-stationary methods with a multivariate method that is 

applicable to auxiliary variables that are densily sampled over the whole domain and 

related to the principal variable. Such auxiliary variables can be incorporated into a kriging 

system as external drift functions. More detailed information can be found elsewhere 

(Wackernagel, 2006).  

 

1.2.2.2.5. Simulation 

Kriging estimates the average value of a parameter with minimal error at a point where 

we did not measure. Generally, the geostatistic allows us to model a spatially continuous 

field values with conserving the measured values, then a random function would simulate a 

value at a known point. It can be useful to simulate different regionalized fields that 

represent several possible cases, but not better than kriging. 

There are two kind of simulation: conditional and non-conditional simulations. In the 

event that data is available at the site being simulated, conditional simulation should be 

employed to ensure that the random field realizations match the data at the data locations 

exactly. Furthermore all realizations pass through the known data but are random between 
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the data sites. An unconditional simulation ignores this additional information and will 

lead to higher variability in the response quantities. 

There are many simulation methods that can be grouped into Gaussian methods (matrix 

decomposition method, sequential methods, frequency, autoregressive, turning bands 

method, etc.) and non-Gaussian (annealing simulations, using methods in the probability 

field, etc.). Chilès and Delfiner (1999) gave a fairly complete description of these methods. 

Examples of the simulation algorithms used in practice are the sequential Gaussian, the 

sequential indicator simulations (Deutsch, 2002) and the local average subdivision 

technique (Fenton and Vanmarcke 1990). 

The sequential Gaussian simulation (SGS) is the most commonly used technique, 

especially in the field of petroleum engineering. The basic idea of this technique is 

illustrated in Figure 1-8. Input random variables are transformed into standardized 

normally distributed random variables with zero means and unit variances for which 

different variogram characteristics are assessed. Simulated values of a standardized 

variable, Z, can be determined at any node of the simulation grid according to the 

relationship (Equation 1-35): 

( ) ( ) ( )00
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0s xRxZxZ +=  Equation 1-35 

where Zs(x0) is the simulated value of the variable Z at location x0, Z*( x0) is the krigged 

estimate of the variable Z at location x0; and R(x0) is a random residual. 

The random residual R(x0) follows a normal distribution with zero mean and a variance 

equal to the krigging variance (Deutsch, 2002). A different value of R(x0) is obtained in 

each realization using Monte Carlo Simulation resulting in a variation of the simulated 

value of the random variable (Z(x0) from one realization to another). A random path is 

followed to assess the value of the standardized random variable at each node of the 

numerical simulation grid. The simulated values across the analysis domain are then back 

transformed to their original probability distribution. By repeating the above procedure, 

several realizations of soil spatial variation across the analysis domain can be obtained. 

An example of simulations cited by Chilès & Delfiner (1999) and Marcotte (2003) is 

the case a submarine cable which must be deposited at the bottom and one seeks to 

estimate the best length (Alfaro, 1979). The estimated length by kriging (104.2 km) is less 



Chapter 1 

 

36 

 

than the real length (110 km). This is due to the average of the kriging estimation (Figure 

1-9a). Diagrams b and c in Figure 1-9 show two examples of simulation, and diagrams d 

for 1000 simulations. The estimated values by simulation are closer to the real length; but 

some simulated points are locally far away from reality. The 95% confidence interval 

obtained for the simulations is [108.8, 113.5]. The kriging value which is small, because of 

smoothing effect, is not in the confidence interval. Another application in the same 

example is the search for possible natural slopes. Estimated values by kriging are lower 

than observed values. The simulations allow better modeling of possible anomalies, 

without being more accurate compare to the real profile. By using more simulation, it will 

be accurate compare to the real profile. 
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Figure 1-8: The basic idea of the sequential Gaussian simulation (Elkateb et al., 2003) 

Transform input random variable into a standardized normally distributed 
(Gaussian) random variable of zero mean and unit variance. 

Assess variogram characteristics for the standardized variable. 

Implement Monte Carlo simulation to estimate a simulated value of the 
standardized variable at a certain node in the simulation grid. 

Choose a random path through all nodes of the simulation grid. 

For each node, search for nearby simulated nodes and use them to 
estimate a new simulated value of the random variable. 

Check that new simulated values of the random variable satisfy 
variogram characteristics. 

Back-transform all simulated values from its standardized form to its original 
probability distribution.   
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Figure 1-9: Cable length estimation by using conditional simulations (Marcotte, 2003) 

 

1.2.2.3. Concept of correlation length: different related approaches 

The autocorrelation function has been widely used for investigating spatial variability in 

the context of geotechnical engineering (Baecher and Christian, 2003; Jaksa et al., 1997; 

Phoon and Kulhawy, 1999 a, b and Sivakumar et al., 2006). For the spatial variability 

modeling, a parameter i.e. an autocorrelation distance (B0) is defined as the distance within 

which the soil property exhibits relatively strong correlation. To obtain the numeric value 

of autocorrelation distance (B0), it is taken as the distance at which autocorrelation 

coefficient �h=C(h)/C(0) decays to 1/e, where e is the base of natural logarithms. In a 

physical sense, it is the same as the scale of fluctuation (C), although the methodologies of 

obtaining scale of fluctuation (C) and autocorrelation distance (B0) are different 

(Vanmarcke, 1977). In the other words, the scale of fluctuation has the same meaning as 

the autocorrelation distance but differs in numeric value. The scale of fluctuation estimates 

the distance within which soil properties show relatively strong correlation and data 

become either above or below the mean value. 

Vanmarcke (1977) described the random field theory. It defined the scale of fluctuation 

(C), in order to describe a random field in terms of first and second-order moments. It 

corresponds to the area under the autocorrelation function, namely (Equation 1-36): 
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Equation 1-36 

A large autocorrelation distance value implies that the soil property is highly correlated 

over a large spatial extent, resulting in a smooth variation within the soil profile. On the 

other hand, a small value indicates that the fluctuation of the soil property is large. 

Although an isotropic correlation structure is often assumed in works reported in the 

literature, correlations in the vertical direction tend to have much shorter distances than 

those in the horizontal direction due to the geological soil formation process for most 

natural soil deposits. A ratio of about 1 to 10 for these autocorrelation distances is common 

(Baecher and Christian, 2003). 

Given practical difficulties with the characterization of spatial variability in real 

applications, however, some authors perform sensitivity analyses to identify the most 

unfavorable scale of fluctuation (Fenton and Griffiths, 2003) which can then be 

(conservatively) employed in subsequent analysis. An extensive literature review was 

conducted to estimate the typical scales of fluctuations for a variety of common 

geotechnical parameters. The results of this review are summarized in Table 1-2. Full 

details are given elsewhere (Phoon et al. 1995). The scales of fluctuation are generally 

calculated using the method of moments. Information on the soil type and the direction of 

fluctuation also are included in the table. 

Table 1-3 shows the difference between the approaches for two commonly 

mathematical models (exponential and Gaussian models). We note that autocorrelation 

distance, fluctuation scale and practical range, vary widely from one approach to another 

and these three terms have distinct significations.  
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Table 1-2: Summary of scale of fluctuation of some geotechnical properties (Phoon et al. 1995). 

 

a: Su and Su(VST), undrained shear strength from laboratory tests and vane shear tests, respectively; �', 
effective unit weight. 

 

 

Table 1-3: Significance of the correlation length according to the considered approach (Jaksa, 1995) 

b: correlation length, a: practical range, C: scale of fluctuation and  B0: autocorrelation distance 
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1.3. Probabilistic methods in geotechnical engineering for propagating uncertainty 

The reluctance of practicing engineers to apply probabilistic methods is attributed to 

four factors. First, engineers’ training in statistics and probability theory is often limited to 

basic information during their early years of education. Hence, they are less comfortable 

dealing with probabilities than they are with deterministic factors of safety. Second, there 

is a common misconception that probabilistic analyses require significantly more data, 

time, and effort than deterministic analyses. Third, few published studies illustrate the 

implementation and benefits of probabilistic analyses. Lastly, acceptable probabilities of 

unsatisfactory performance (or failure probability) are ill-defined, and the link between a 

probabilistic assessment and a conventional deterministic assessment is absent. This 

creates difficulties in comprehending the results of a probabilistic analysis. All of these 

issues are addressed in detail in El-Ramly, 2001.  

In the following, the probabilistic methods for propagating uncertainties, most 

commonly, used in geotechnical engineering are described. 

1.3.1. Taylor series approach  

Model uncertainties can be quantified by standard deviation (square root of variance) 

around the mean of modeled outputs (Hwang et al., 1998). The Taylor series approach is 

based on evaluating the derivatives of the output function with respect to the independent 

input variables. The Taylor series formulae are defined for a continuously differentiable 

function f (x). The Taylor’s formula for expansion of a function f (x) is given by Equation 

1-37 (Harr, 1987):  
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++−

′′
+−′+= −
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Equation 1-37 

where x  is the mean of the input variable and )x(f n is the nth derivative of the studied 

function evaluated at x  and Rn is the remainder. 

In many modeling applications a first order approximation of variance from the Taylor 

series expansion is used to describe uncertainty in the modeled result (Tiktak et al., 1999; 

Graettinger and Dowding, 1999; Seefeld and Stockwell, 1999).The first order 
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approximation for the variance, FOSM method, is given by the following equation (Harr, 

1987) Equation 1-38 in the case of no correlation between parameters:  

[ ] [ ] [ ]xV
2

)x(f)x(fV ′=  Equation 1-38 

where )x(f ′ is the first derivative of the studied function, [ ]xV  is the variance of the input 

variable and [ ])x(fV �is the variance of the studied function. The obtained variances for 

each variable can be summed up to calculate the variance of function, which depends on all 

the input variables. The variances of the input variables are obtained from experimental 

data or from expert judgment. 

When the function )x(f  is non-linear, the higher order terms of Taylor series are 

necessary to more accurately estimate the variance. In this case, the second-order 

approximation for variance, SOSM method, is given by Equation 1-39 (Harr, 1987, 

Dettinger and Wilson, 1981): 

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ])x(f)x(fx5.1V)1(1)2(x2V
2

)x(f
4

1
xV

2
)x(f)x(fV ′′′+−′′+′= ββ

 
Equation 1-39 

where )x(f ′′ �is the second derivative of function )x(f , )1(β and )2(β �are the 

coefficients of skewness and kurtosis, respectively. When the probability distribution is 

symmetrical, then D (1) = 0. Let � = D (2) -1 then Equation 1-39 becomes: 
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2

)x(f
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)x(f)x(fV ′′+′=

 
Equation 1-40 

The parameter of � depends on the probability distribution, for example the coefficient of 

kurtosis for the normal distribution is equal to three (� (2) = 3), so � = 2.  

1.3.2. Monte Carlo Simulation method 

Sometimes the system being designed is too complicated (non-linearity) to allow the 

calculation of the variance of the studied function. Fortunately there is a simple, albeit 

computer intensive, solution; simulate realizations of the random field and analyze each to 

produce realizations of the response. From a set of response realizations, one can build up 

a picture of the response distribution from which probability estimates can be derived. This 
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is called Monte Carlo Simulation (MCS), reference is made to Madsen et al., 1986.  

Although various stochastic methods have been proposed in the literature, the only 

currently available universal method for accurate solution of geotechnical problems is this 

technique, mainly due to the large variability and strong non-linearity of soil properties 

(Popescu et al., 2005). Moreover it involves strong non-linearities and large variations of 

non-Gaussian uncertain system parameters.  

This method involves the generation of n random numbers of input soil parameters with 

given probabilistic characteristics. These n sample points for output response are used to 

obtain required sample statistics, which is incorporated in probabilistic calculations. The 

minimum value of number n depends on percentage (%), acceptable error in the estimation 

of sample mean and variance as well as confidence level (Baecher and Christian, 2003). 

 In a Monte Carlo Simulation, a series of random fields are generated in a manner 

consistent with their probability distribution and correlation structure and the response is 

calculated for each generated set. Various statistical properties evaluated after the process 

of simulation, such as mean, variance, coefficient of skewness, probability density 

functions and cumulative probability distribution functions, can provide a broader 

perspective and a more comprehensive description of a given system. 

 In the last decade, a series of papers appeared in the literature where the effect of 

inherent random soil heterogeneity on the mechanical behavior of various problems in 

geomechanics was assessed quantitatively. The methodology used in essentially all these 

studies were Monte Carlo Simulation. Paice et al., 1996 studied settlements of foundations 

on elastic soil, Griffiths & Fenton, 2000 studied slope stability, Popescu et al., 1995-1997 

and Koutsourelakis et al., 2002 studied seismically induced soil liquefaction. Nobahar and 

Popescu, 2000; Popescu et al., 2002; Fenton and Griffiths, 2003 and Nobahar, 2003 studied 

the bearing capacity of shallow foundations. 

Furthermore studies applying Monte Carlo Simulation also rarely addressed the spatial 

variability of soil properties (Major et al., 1978; Tobutt, 1982; Nguyen and Chowdhury, 

1985) because of difficulties in generating random values in ways that preserved their 

spatial correlations.  

Monte Carlo simulation has its own limitations, which can be summarized as follows:  
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- The need to define a reliable input reference distribution, which requires a 

considerable number of field data. In addition, older versions of Monte Carlo 

Simulation algorithms used to deal only with parametric probability distribution 

functions, i.e., probability distributions that can be defined through mathematical 

relationships such as normal and lognormal distribution. Field data, however, do not 

necessarily fit into any of these parametric distributions. This problem has been 

overcome by recent versions of Monte Carlo Simulations, such as that of Deutsch 

and Journel, 1998 that are capable of dealing with nonparametric distribution 

functions directly inferred from field data. 

- Clustering of the simulation outcome into a limited zone of the input probability 

distribution, as the drawn samples are more likely to be in areas of higher 

probability, as shown in Figure 1-10, This problem mainly arises in cases where an 

insufficient number of realizations (number of iterations in Monte Carlo algorithm) 

are used in the simulation process (Palisade Corporation, 1996). This may result in 

sampling values of the random variable away from the tails of the input probability 

distribution, which can be on the unsafe (non-conservative) side. This problem, 

however, can be overcome by using a number of realizations large enough to 

reproduce the input distribution. 

- Monte Carlo Simulation cycles influences the accuracy of the results. These results 

are more accurate when sufficient iterations and sufficient sample size are used. 

Depending on the number of variables involved in the simulation process, Monte 

Carlo Simulation may require a significantly large number of iterations and 

consequently a considerable computational effort.  

 
Figure 1-10: Clustering of the outcome of Monte Carlo Simulations resulting from an insufficient number of 

realizations (modified from Palisade Corporation, 1996) 
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Despite the fact that the mathematical formulation of the Monte Carlo Simulation is 

relatively simple and the method has the capability of handling practically every possible 

case regardless of its complexity, this approach has not received overwhelming acceptance 

due to the excessive computational effort required (Papadrakis et al., 1996). To improve 

the computational efficiency of the method, several sampling techniques known as 

variance reduction techniques have been developed in order to improve the computational 

efficiency of the method by reducing the statistical error inherent in Monte Carlo methods 

and keeping the sample size to the minimum possible. A detailed review can be found in 

Baecher and Christian, 2003. Among them Latin hypercube sampling may be viewed as a 

stratified sampling scheme designed to ensure that the upper or lower ends of the 

distributions used in the analysis are well represented. Latin hypercube sampling is 

considered to be more efficient than simple random sampling, that is, it requires fewer 

simulations to produce the same level of precision. Latin hypercube sampling is generally 

recommended over simple random sampling when the model is complex or when time is 

an issue. 

 The principal geotechnical applications are stability studies (Cho, 2007 and Low, 2008  

for the slope stability; Low, 2005 and Fenton et al., 2005, for the retaining wall stability), 

analysis of foundation systems (Niandou and Breysse , 2007 for the piled raft design; 

Massih et al., 2008 for rupture of soil under shallow foundations) and some specific 

applications are also found as the study of buried networks (Elachachi et al., 2004). In cited 

examples were used FOSM or FORM methods, and often enriched by comparison with the 

results of calculations using the Monte Carlo Simulation method.  

1.3.3. Reliability-Based Design 

Reliability-based design approaches are becoming common in civil engineering. For 

example, U.S. codes for concrete and steel design are reliability-based. In addition, a 

reliability-based approach was adopted by the European Community in the new Eurocode 

standards. These approaches are referred to by the names Load and Resistance Factor 

Design (LRFD) in the U.S. and Limit State Design (LSD) in Europe.  

The objective of a reliability-based design approach is to assure satisfactory system 

performance within the constraint of economy. Most designs are developed without the 

benefit of complete information and under conditions of uncertainty. What maximum load 
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will a structure experience over its lifetime? How will the strength of steel change as a 

function of time due to corrosion? Because of these uncertainties, there always exists a 

chance or risk of failure. In most cases, it is not practical or economical to eliminate this 

risk. All design approaches implicitly balance costs and benefits; a reliability-based 

approach attempts to achieve this balance in a more systematic and rational manner. 

1.3.3.1. Traditional Design Approach 

Conceptually, most problems can be described in terms of a load, S and a resistance, R. 

The load represents the load applied to the system (e.g., an axial load on a column, the 

volume of water entering a treatment facility, etc.), while the resistance represents the 

capacity of the system (e.g., the axial capacity of column, the capacity of a treatment plant, 

etc). Traditional design approaches are deterministic. We account for uncertainties in the 

load and resistance by requiring a resistance that is greater than the estimated load 

(Equation 1-41): 

S.FR sreqd ≥  
Equation 1-41 

where Fs is a factor of safety. The factor of safety typically ranges between 1.0 and 3.0; 

however values as large as 10 or 100 may be used in some instances. 

 

1.3.3.2. Decision making in geotechnical engineering-reliability based approche 

One of the major challenges that faces geotechnical engineers is the need to make 

decisions regarding the soil parameter to be used in engineering analysis. These decisions 

have to be based on information that invariably has a certain degree of uncertainty. 

Consequently, the decision making process is considered to be governed by two factors, 

the uncertainty in the decision variables and the risk level of the project. Several decision 

making algorithms have been used throughout the history of geotechnical engineering 

practice, such as the worst case and quasi worst case approaches and reliability-based 

techniques, details of these algorithms will be discussed in the following paragraphs. 

The worst case approach aims at achieving the absolute safety of the project and relies 

on the notion of maximum loss and maximum expected hazards, often referred to as the 

maxi-max criterion (Ang and Tang, 1984). For example, if the range of the measured 
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friction angle of a sandy deposit at a certain site ranges from 30–40°, the design value will 

be assessed as 30°. This approach is over-conservative and rarely used in practice. On the 

other hand, the quasi worst case approach (Pate-Cornell, 1987) tries to apply some kind of 

engineering judgment into the above approach to provide an upper bound for the risk level. 

Revisiting the above example, the sandy soil at the site is classified (say medium dense 

sand) and the minimum value associated with such classification (say 33°) will be used as 

the design value. A common problem of the two approaches is that no information can be 

obtained about the risk level associated with the design value; in fact design value is a 

deterministic value. 

The reliability-based approach relies on selecting design parameters that satisfy a 

desired degree of reliability or a certain probability of failure is defined a probability of 

safety of a system in a given environment and loading conditions. With a reliability-based 

approach, we attempt to account explicitly for uncertainties in the load and resistance. We 

can calculate the probability that the load exceeds the resistance as follow (Equation 1-42): 

)0X(P)0SR(P)SR(P)RS(P ≤=≤−=≤=>  
Equation 1-42 

Recall that one objective in developing theoretical random variable models was to 

provide a mathematical framework for combining random variables. It can be shown that a 

linear combination of normal random variables, such as SRX −= , where R and S have 

normal distributions, will also have a normal distribution. Further, the mean and standard 

deviation for X are given as follows (Equation 1-43): 

SRRS
2
S

2
RXSRX ..2, σσρσσσµµµ −+=−=  Equation 1-43 

in which �RS is coefficient of correlation between R and S. Baecher and Christian, 2003 

point out that this assumption (R and S have normal distributions) is rarely true, but it is a 

good approximation when the number of parameters which depend on R and S is more than 

four. 

These distributions can be characterized by their mean values µR (resistance) and µS 
(load) and by their standard deviations �R and �S or their coefficients of variation (CVR and 
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CVS). If normal distributions of R and S are assumed, reliability index (D) can be calculated 

using Equation 1-44 (Benjamin and Cornell, 1970; Melchers, 2002):  

SRRS
2
S

2
R

SR

X

X

..2 σσρσσ

µµ
σ
µβ

−+

−
==  Equation 1-44 

All the random variables can be regarded as independent as this assumption simplifies 

the computation and also gives conservative results (Li and Lumb, 1987). Then if S  and R 

are statistically independent normal varieties (Equation 1-45): 
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=  Equation 1-45 

The reliability index (D) value depends on the probability density functions of the 

resistance (R) and load (S). By assuming that R and S follow lognormal distributions, the 

Hasofer and Lind, (1974) reliability index D is defined by the following expression 

(Equation 1-46): 
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where CVS and CVR are, respectively, associated coefficients of variation of S and R.  

 The reliability index (D) reflects both the mechanics of the problem and the uncertainty 

in the input variables, and it permits comparisons of reliability among different structures 

or modes of performance without having to calculate absolute failure probability values. 

Clear expositions of the underlying theory are found in various publications including 

Shinozuka, 1983; Ang and Tang, 1984; Madsen et al., 1986; Melchers, 2002; and U.S. 

Army Corps of Engineers, 1997. 

The probability of failure Pf  of the structure is then defined as follows (Equation 1-47): 

( ) ( )βϕβϕ −=−= 1Pf
 

Equation 1-47 
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in which ( )βϕ −  is the standard normal cumulative distribution function (zero mean and 

unit variance).  This value can be obtained from tables of the standard cumulative normal 

distribution function found in many textbooks or from built-in functions in most 

spreadsheets. Note that large value of D lead to small value of Pf. 

The complementary probability PS =1-Pf is referred to as the reliability and is sometimes 

also denoted the probability of survival. In addition, the failure probability, the reliability, 

and the reliability index are all suitable measures of the structure safety with respect to the 

considered failure mode. 

Historical failure probabilities for civil engineering facilities are between 10-3 to 10-4, 

therefore, target failure probabilities for new designs are typically within this range 

(Griffiths and Fenton, 2007). Normally, a reliability index value in the range of 3.0–4.0 is 

accepted for good performance of the system (Baecher and Christian, 2003;  U.S. Army 

Corps of Engineers, 1997). Harr (1977), has written that, in classical geotechnical 

problems, one often has Pf > 10-3 (D D 3). However, Zhang and Tang, 2001 and Paikowsky 

2002, proposed that redundant pile (stiff structures allowing transfer of load) could be 

accounted for by applying lower D values: i.e. D = 2.33 (Pf D 10-2). Meanwhile, 

recommended has Pf = 10-3 (D D 3) for non-redundant piles (Paikowsky, 2002). The target 

value of the reliability index D to be reached in the Eurocode 1 is equal to 1.5 for the 

serviceability limit state (SLS) [Eurocode 1, 1991]. The probability of the serviceability 

limit state (PSLS) should be less than 0.067 to avoid exceed the serviceability limit state. 

In summary, a reliability-based design approach consists of the following steps: 

- Select a target probability of failure, Pf. This failure probability is established 

considering costs, consequences of failure, engineering judgment, politics and 

experience.  

-  Calculate the required reliability index (D) to achieve the target failure probability 

(Equation 1-48)  

( )f
1 P−−= ϕβ  Equation 1-48 

- Find the mean resistance required to achieve the target (D) 
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Note that this approach has been commonly used in slope stability analysis but there are 

some softly differences between the two approaches (reliability index approach and soil 

stability analysis approach). Wolff (1996), proposed soil design parameters to be 

associated with a reliability index (D) of 3 for routine slopes and 4 for critical slopes such 

as dams. The reliability index can be obtained through Equation 1-49: 

FS

FS Lm

σ
β −

=
 

Equation 1-49 

where mFS is the mean factor of safety; L is a limit state value usually equal to 1; and �FS is 

the standard deviation of the factor of safety. 

The FORM approximation (First Order Reliability Method) (Hasofer and Lind, 1974) is 

the improving form of the FOSM method, based on a geometrical interpretation of the 

reliability index. In this approach, the performance function is transformed into a standard 

Gaussian space. The reliability index is distance between the origin and the design point, 

visually representing the intersection between the unsafe and safe areas (Figure 1-11). 

 

 

 
Figure 1-11: FORM approximation (Lacasse and Nadim, 2007) 

 

1.3.3.3. Advantages and limitations of a reliability-based design approach  

There are several advantages in using a reliability-based approach versus the traditional 

approach (Griffiths and Fenton, 2007): 

- A factor of safety does not provide information on the level of safety in the design. 

The same factor of safety may produce two designs that have different reliabilities. 

A reliability-based approach allows us to quantify the reliability, and load and 
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resistance factors are developed to achieve consistent levels of reliability among 

different designs. 

- Factors of safety are based on experience with similar designs. What if we don’t 

have experience (e.g., a new construction material or a new environment)? What if 

our experience is not positive? A reliability-based approach provides the ability to 

develop new designs that achieve a specified reliability. 

- Since a factor of safety has no real meaning in terms of reliability, it is difficult to 

select an optimum factor of safety. By quantifying reliability, we can perform cost-

benefit analyses to balance construction costs against the risk of failure.  

However, reliability-based approaches in their current form (e.g., LRFD) do have 

limitations. The code user does not have control over the target failure probability, and 

cannot directly incorporate the uncertainties associated with their specific design. Further, 

even a purely probabilistic approach cannot prevent poor engineering; it can only help to 

make good engineering better. 

1.4. Model of soil-structure interaction 

Most of the civil engineering structures involve some type of structural element with 

direct contact with ground. When the external forces act on these systems, neither the 

structural displacements nor the ground displacements, are independent of each other. The 

process in which the response of the soil influences the motion of the structure and the 

motion of the structure influences the response of the soil is termed as soil-structure 

interaction. 

Different calculation methods can be used to study the soil-structure interaction. For 

example, the finite element method has been used in numerous studies (Elachachi et al. 

2004, 2011, 2012, Niandou and Breysse, 2007 and Buco et al. 2006, 2008). However, in 

order to simplify the soil-structure interaction, analytical approaches can be used (Deck 

and Singh, 2010; Houy et al., 2005).  

The search for a physically close and mathematically simple model to represent the soil-

media in the soil-structure interaction problem shows a basic classical approach, such as 

Winklerian approach. At the foundation-supporting soil interface, contact pressure 

distribution is the important parameter. The variation of pressure distribution depends on 

the foundation behavior (such as rigid or flexible: two extreme situations) and nature of 
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soil deposit (clay or sand etc.). Since the philosophy of foundation design is to spread the 

load of the structure on to the soil, ideal foundation modeling is that wherein the 

distribution of contact pressure (Taylor, 1964) is simulated in a more realistic manner. 

From this viewpoint, this fundamental approach has some characteristic limitations. 

However, the mechanical behavior of subsoil appears to be utterly erratic and complex and 

it seems to be impossible to establish any mathematical law that would conform to actual 

observation. In this context, simplicity of model, many a time, becomes a prime 

consideration and it often yields reasonable results. Attempts have been made to improve 

upon this model by some suitable modifications to simulate the behavior of soil more 

closely from physical standpoint. In the recent years, a number of studies have been 

conducted in the area of soil-structure interaction modeling the underlying soil in 

numerous sophisticated ways. Details of these modelings are depicted in the following 

section. 

1.4.1. Analytical approaches to solving soil structure interaction problems 

1.4.2. Winkler’s model 

In the past, many researchers have worked on the soil-structure interaction which is 

referred to as beams and plates on elastic foundations. Most of the previous work began 

with the well known Winkler’s model. This model is also frequently referred to as a one 

parameter model, which was originally developed for the analysis of railroad tracks 

(Winkler, 1867). This model is expressed by the following formula (Equation 1-50): 

)x(w.b.sk)x(p =  
Equation 1-50 

where ks is the coefficient of subgrade reaction (or constant of proportionality of Winkler 

in [F/L3]), w(x) vertical displacement (settlement), b width of the foundation and p(x) the 

reactive pressure of the foundation. Figure 1-12 shows the physical representation of the 

Winkler foundation.  
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Figure 1-12: Winkler foundation (Dutta, 2000) 

Winkler’s idealization considers the soil as being a system of identical but mutually 

independent, closely spaced, discrete, linearly elastic springs. The simplifying assumptions 

which Winkler hypothesis is based on causes some deficiencies (Terzaghi 1955, Stavridis 

2000, Avramidis and Morfidis, 2006). One of the most important deficiencies of the 

Winkler model is that a displacement discontinuity appears between the loaded and the 

unloaded part of the foundation surface and this model cannot transmit the shear stresses 

which are derived from the lack of spring coupling. In reality, the soil surface does not 

show any discontinuity (Figure 1-13). 

 

 

Figure 1-13: Deflections of elastic foundations under uniform pressure: a) Winkler foundation;   

b) Practical soil foundation. 

 

The differential equation governing the deflection, w(x), of a homogeneous elastic 

bending beam with constant bending stiffness resting on a Winkler foundation and 

subjected to a transversal continuous load, q(x), can be written as Equation 1-51 (Hetenyi, 

1946): 

)x(q)x(w.b.sk
4dx

)x(w4d
I.cE =+

 Equation 1-51 

where EcI is the constant bending stiffness of the beam (Ec and I are respectively the 

Young's modulus of concrete and the moment of inertia of the cross section of the 

foundation). Equation 1-51 is a continuous differential equation whose general solution 

a b
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w(x) is the sum of the solution w0(x) of its homogeneous part and of a particular solution 

wq(x). The solution w0(x) has the following form (Equation 1-52) (Hetenyi, 1946): 

)xcos4Cxsin3C(xe)xcos2Cxsin1C(xe)x(0w ββββββ +−++=
 Equation 1-52 

where 
4

1

I.cE4

b.sk

B
B

C

D

E
E

F

�
=β . 

The expression of the particular solution wq(x) depends on the load q(x) type. For 

example, if the load is constant, then wq is constant too, and given by wq(x)= q/(ks.b). The 

general solution w(x) is completely defined once that the constants Ci (i=1 to 4) are 

evaluated by imposing the natural and essential boundary conditions. When the deflection 

w(x) is known, the bending moment (M(x)) and the shear force (V(x)) can be determined (

( ) ( )
2

2

c
dx

xwd
IExM −= ,

3

3

c
dx

)x(wd
IE)x(V −= ).           

Hence, several attempts have been made to develop modified models to make the model 

more realistic by assuming some form of interaction among the spring elements that 

represent the soil continuum. These models are discussed in below. 

1.4.3. Filonenko-Borodich foundation 

Filonenko-Borodich developed a model that improved upon the Winkler model by 

connecting the top ends of the springs with a thin elastic membrane subjected to a constant 

tension T. Figure 1-14 shows the physical representation of this model (Filonenko-

Borodich, 1940). Thus, the response of the model is mathematically expressed as follows 

(Equation 1-53 and Equation 1-54): 

( ) ( ) ( ) foundationcircularorgulartanrecfory,xw.Ty,xw.b.ky,xp 2
s ∇−=   Equation 1-53 

foundationstripfor
dx

)x(wd
T)x(w.b.sk)x(p

2

2
−=  Equation 1-54 
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where 2∇  is the Laplace operator (
2

2

2

2
2

yx ∂
∂+

∂
∂≡∇ ) and all other terms were previously 

defined. 

Hence, the interaction of the spring elements is characterized by the intensity of the 

tension T in the membrane. An essentially same foundation model consisting of heavy 

liquid with surface tension is also suggested in the literature (Schiel, 1942). 

 

 

Figure 1-14: Filonenko-Borodich foundation (Kerr, 1965) 

 

1.4.4. Hetenyi’s foundation 

In this model, the interaction among the discrete springs is accomplished by 

incorporating an elastic beam or an elastic plate, which undergoes flexural deformation 

only, as shown in Figure 1-15. Thus the pressure–deflection relationship becomes 

(Equation 1-55): 

 

( ) ( ) ( )y,xw.Dy,xw.b.ky,xp 4
s ∇+=  Equation 1-55 

where D is the flexural rigidity of the elastic plate and 
22

4

4

4

4

4
4

yx
2

yx ∂∂
∂+

∂
∂+

∂
∂≡∇ .  

Thus, it is seen that the flexural rigidity of embedded beam or plate characterizes the 

interaction between the spring elements of the Winkler model. Detailed descriptions of this 

model as well as some numerical examples are available in the literature (Hetenyi, 1946-

1950). 
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Figure 1-15: Hetenyi foundation (Winkler, 1867) 

 

1.4.5. Pasternak foundation 

In this model, existence of shear interaction among the spring elements is assumed 

which is accomplished by connecting the ends of the springs to a beam or plate that only 

undergoes transverse shear deformation (Figure 1-16). The load-deflection relationship is 

obtained by considering the vertical equilibrium of a shear layer. The pressure-deflection 

relationship is given by Equation 1-56:  

 

( ) ( ) ( )y,xw.Gy,xw.b.ky,xp 2
s ∇−=  Equation 1-56 

where G is the shear modulus of the shear layer. As a special case, if this modulus (G) is 

neglected, the mechanical modeling of the foundation converges to the Winkler 

formulation. 

Thus the continuity in this model is characterized by the consideration of the shear 

layer. A comparison of this model with that of Filonenko-Borodich implies their physical 

equivalency (T has been replaced by G). A detailed formulation and the basis of the 

development of the model have been discussed elsewhere (Pasternak, 1954). Analytical 

solutions for plates on Pasternak-type foundations with a brief of the derivation of the 

model have been reported in the literature (Kerr, 1964; Wang et al., 2001). 

 
Figure 1-16: Pasternak foundation (Schiel, 1942)  
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1.4.6. Kerr foundation 

A shear layer is introduced in the Winkler foundation and the spring constants above 

and below this layer is assumed to be different as per this formulation (Kerr, 1964). Figure 

1-17 shows the physical representation of this mechanical model. The governing 

differential equation for this model may be expressed as follows (Equation 1-57): 

 

( ) ( ) ( ) ( )y,xw.Gy,xw.b.ky,xp.
b.k

G
y,xp.

k

k
1 2

2
2

11

2 ∇−+∇=��
�

�
��
�

	
+  

Equation 1-57 

where k1 is the spring constant of the first layer; k2 is the spring constant of the second 

layer; w(x) is the deflection of the first layer. 

 

 
Figure 1-17: Kerr foundation (Gorbunov-Posadov, 1949) 

 

1.4.7. Synthesis of different analytical approaches for soil-structure interaction 
modeling 

Using these analytical approaches, the soil is modeled by a simple system called a 

subgrade reaction model instead of attempting to model the subsoil in all its complexity, 

i.e. its nonlinear, stress-dependent, anisotropic and heterogeneous nature. In the majority of 

proposed solutions, the foundation-supporting soil is represented using the well-known 

Winkler hypothesis, which assumes the soil to be made up of continuously distributed, 

non-connected discrete springs (Winkler, 1867). Due to its simplicity, the Winkler model 

has been extensively used to solve many soil-foundation interaction problems and has 

given satisfactory results for many practical problems. However, it is a rather crude 

approximation of the discontinuous mechanical behavior of ground material. This has 
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given rise to the development of a variety of two-parameter elastic foundation models, in 

which the continuity, i.e. the coupling effect between the discrete Winkler springs, is 

introduced by assuming that the springs are connected by a shear layer membrane or beam  

(Filonenko-Borodich, 1940; Pasternak, 1954). The two-parameter models describe soil 

behavior more accurately and yet remain simple enough for practical purposes. A third 

category of mechanical models comprises the so-called three-parameter models (Matheu 

and Suarez, 1996; SAP2000; Biot, 1937), which constitute a generalization of two-

parameter models. Their main advantage is their ability to take into account the desired 

degree of continuity of the vertical displacements of the soil surface at the boundaries 

between its loaded and unloaded regions (Matheu and Suarez, 1996). Of particular interest 

are the three-parameter models devised by Reissner and Kerr. The former was the object of 

a study by Horvath (Council on tall buildings and urban habitat, 1993; Bowles, 1988; 

Vallabhan and Das, 1991). This established the superiority of Reissner's model even 

though it requires more parameters. 

Since the second and third foundation parameters are difficult to estimate, we chose to 

use Winkler’s analytical model which seems, from a practical point of view, to be 

appropriate for superficial geotechnical designs (Elachachi et al., 2004). While Winkler’s 

model is one of the simplest models for a mathematical description of soil-structure 

interaction, it has the advantage of using only one parameter, the coefficient of subgrade 

reaction, to characterize soil and structure responses under loading. Taking into account 

fewer parameters brings less uncertainty to the model. One must choose between a very 

accurate model with many parameters - and consequently many uncertainties in the model 

- and a simple, less accurate model with fewer parameters and lesser uncertainties. 

1.5. Superficial geotechnical designs 

As heterogeneity can be very important in the case of superficial geotechnical designs, 

we chose the two kind of the superficial geotechnical designs, spread footings and and 

buried pipe networks, to study in this work. In the following, geometrical parameters of the 

spread footings and the buried pipes and the hypothesis for their loadings are presented. 

Additionally, the different kind of joints for connecting the buried pipes to each other will 

be discussed.      
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1.5.1. Spread footings  

Continuous spread footings consist of concrete strips with a rectangular cross section, 

placed under masonry walls. In residential constructions with relatively lightly loaded 

walls, the dimensions of the concrete strip are typically 0.5 m in width (b) and 0.3 m in 

thickness (h), for a length (L) ranging between 5 and 20 m (Figure 1-18). The lowest level 

of the footing must be located deeper than the maximum frost penetration depth, to avoid 

the occurrence of frost heave. In France, this frost depth (D) lies typically between 0.6 and 

1.2 m. Definitions of the differential settlement and the angular distortion for this kind of 

foundation are shown in Figure 1-18. 

 

 
 

 

 

 

Figure 1-18: a) Continuous wall footing characteristics and b) Definition of the angular distortion D 

 (Es: differential settlement) 
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1.5.2. Buried pipes 

Buried pipelines are part of the so-called lifelines which play a vital role as 

infrastructure components conveying and/or distributing energy, fluids, waste water, oil 

products and gas in present-day’s world. The pipelines in particular allow conveying water, 

fossil liquid fuels and liquid gas over long distances. 

The pipe materials are varied: masonry, plain or reinforced concrete, cast iron or steel, 

PVC, etc (Balkaya et al., 2012a). The pipe diameter (d) varies in practice from 0.15 to 1.5 

m for the non-visitable pipes and from 1.5 to 3 m for visitables ones (Figure 1-19).  

 

  
Figure 1-19: Buried pipe (e: thickness of the pipe, d: external diameter of the pipe) 

  

 

The sealing between pipes is ensured by joints made of plastic, cement mortar or, more 

frequently, elastomer or by welding. The rigidity of these joints is as variable as 

technologies and geometries employed: it can be very weak (flexible joints), high (quasi 

rigid joints) or very high (rigid joints). 

Concrete collar (norme NF P 16-341, 1990) and Spigot and socket joints are two kinds 

of flexible joints. Spigot and socket joint is also commonly called the Rubber Ring Joint 

(RRJ). RRJ provides the flexibility in concrete pipelines. A certain degree of linear 

deflection is allowed in this type of joint. For soft foundation, these two kinds of joints are 

recommended (Figure 1-20). 
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a) 

 

 

b) 

Figure 1-20: Two kinds of flexible joints a) Concrete collar joint and b) Rubber Ring Joint 

e: thickness of the pipe 

 

A kind of quasi rigid joint before and after embedding with details is shown in Figure 

1-21. 

  

 
Figure 1-21: A kind of quasi rigid joint 
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Butt joint with collar and rebated joint are two kinds of the rigid joints. Butt joint with 

collar uses a precast or cast in-situ concrete collar to connect the pipes. This is a rigid joint 

and no flexibility is provided (Figure 1-22a). This joint is not recommended for soft 

foundation where deflection can occur.  Rebated joint is also known as the Ogee joint or 

Flush joint. The internal rebated joint is used for pipes of diameters 675 mm and above 

while the external rebated joint is for pipes of diameters 600mm and below. Any deflection 

or movement occurs after leakage (Figure 1-22b). 

 

 
a) 

 
b) 

Figure 1-22: Two kinds of rigid joints a) Butt joint with collar and b) Rebated joint  

 

Figure 1-23 shows embedded pipes with half thickness at the location of joints and 

pipes with the same thickness at the location of joints. These kinds of joints can be 

constructed as rigid or quasi rigid on a construction site (norme NF P 16-341, 1990). 

 

 
a) 
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    b) 
Figure 1-23: Two kinds of joints can be constructed as rigid or quasi rigid on the construction site  a) 

Embedded pipes with half thickness at the location of joints b) Pipes with the same thickness at the location 
of joints (norme NF P 16-341, 1990) 

 

Continuous buried steel pipes (such as oil and gas transmission pipelines) are 

constructed in great lengths without joints (Balkaya et al., 2012b). Concrete buried pipes 

with the quasi rigid joints and continuous buried steel pipes are chosen in this study with 

the simplication of the same rigidity all along the pipelines.  

•  The loading 

In practice, it results from overhanging load, living load (due for example to vehicles), 

and hydrostatic pressure due to the water table, soil loading from weight of soil above pipe, 

horizontal pressure of soil and also from the internal actions of the conveyed fluid (pipe 

internal pressure) (Figure 1-24). In this study, we will assume that the loading applied 

consists of a uniform vertical action distributed, of intensity q (kN/m).  

 
Figure 1-24: Schematic of the loads on a buried pipe 
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1.6. Summary and conclusion  

In this chapter, the main concepts of the uncertainties in geotechnical designs were 

discussed. In order to prevent any misunderstanding or confusion in the following parts of 

this thesis, the main terms used in the modeling of soil properties (basic random variables, 

random field theory and geostatistics) were precisely defined. Geostatistics, a very 

practical and useful method that takes into account the spatial variability of soil, was 

highlighted in detail and will be used later on. Different available tools and techniques of 

probabilistic methods in geotechnical engineering for propagating uncertainty (such as 

Taylor series approach, Monte Carlo Simulation method and Reliability-Based Design) 

were introduced and will be used in the ensuing sections.  

Next, the soil-structure interaction concept was explained and different available 

analytical models for taking it into account were introduced. Their advantages and 

drawbacks were briefly pointed out; the Winkler model was chosen to model soil-structure 

interaction for the considered superficial geotechnical designs in this study. Finally, the 

superficial geotechnical systems used in this study were briefly described. 
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2. Modulus of subgrade reaction and its uncertainty 

2.1. Introduction  

Physical and mechanical properties of a soil have some natural variability which originates 

in the complexity of the natural geological processes (erosion, transport, deposition, 

compaction, physico-chemical…) that caused the soil formation. An uncertainty on each 

parameter is attached to this variability, commonly used to quantify the natural variability: the 

mean, the variance and the covariance function in the case of a spatial approach of the natural 

variability (Marache et al. 2009, Cho & Park 2010, Denis et al. 2011). 

Uncertainties which also exist in the case of the materials of a structure, are taken into 

account by considering parameters of structures as aleatory variables. These variables are 

modeled by probability distributions which can be introduced in design calculation of 

structures in order to obtain the uncertainty attached to this design. 

In the case of the design of spread footings and buried pipes, the analytical models with 

one or two parameters are used to study of soil-structure interaction on elastic soil (Winkler 

1965, Pasternak 1954, Vlassov 1960). The common parameter for these models is the 

modulus of soil reaction (ks).  

Eight semi-empirical models, the most commonly used in spread footings and buried pipes 

designs, are chosen to determine a value of the subgrade reaction modulus (ks). This modulus 

is not an intrinsic parameter of soil; it depends on the mechanical parameters of soil and 

mechanical and geometrical parameters of the structure. 

The objective of this chapter is to estimate the variability of soil reaction modulus from the 

uncertainties in soil and structure parameters. Then Taylor series approach (FOSM (First 

Order Second Moment) and SOSM (Second Order Second Moment) methods) are 

successively used on these non-linear semi-empirical models to estimate the uncertainty of ks 

from the uncertainties on the soil and the structure parameters and to determine the most 

influential parameters on this uncertainty.  

 

2.2. Modulus of soil reaction and suggested expressions  

Soil has very complex mechanical behavior, because of its nonlinear, stress- dependant, 

anisotropic and heterogeneous nature. Hence, instead of modeling the subsoil in all its 

complexity, the subgrade is often replaced by a much simpler system called a subgrade 
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reaction model. The value of subgrade modulus can be obtained in the following alternative 

approaches: 

-  Plate load test (Dutta and Roy 2002; Bowles 1998), 

-  Consolidation test (Dutta and Roy 2002; Bowles 1998),   

- Triaxial test (Dutta and Roy 2002),   

- CBR test (Nascimento and Simoes 1957) and  

- Semi-empirical and theoretical relations that are proposed by researchers.  

Among these methods, Plate load test and semi-empirical and theoretical relations are 

utilized more than the others. Plate load test is a direct method to estimate the modulus of 

subgrade reaction. There are numerous semi-empirical models, which can be used to 

determine the coefficient of subgrade reaction as function of Young’s modulus, the Poisson 

coefficient of the ground and the parameters of the structure (Elachachi et al., 2004; Ziaie-

Moayed and Janbaz 2009). Each of the authors wrote a different but suitable expression (some 

of formulas are given in Table 2-1), this fact underlining the uncertainty attached to the semi-

empirical model of reaction (the same questions arise for the rigidity of the soil behind a 

flexible screen). 

Biot (1937) and Vesic (1961) expressions are defined for infinite beams resting on an 

elastic soil continuum. Biot (1937) solved the problem for an infinite beam resting on a 3D 

elastic soil continuum. He found a correlation between continuum elastic theory and Winkler 

model, that the maximum moments in the beam are equated (Biot expression in Table 2-1). 

Vesic (1961) matched the maximum displacement of the beam in both models and tried to 

develop a value for ks with matching bending moments. He obtained the equation for ks to use 

in the Winkler model (Vesic expression in Table 2-1).  
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Table 2-1: Common relations suggested for ks  

Es and Fs: Young's soil modulus and Poisson's ratio of soil, 	: non-dimensional parameter, b: width of the 

foundation(external diameter in the case of buried pipe), EI: constant bending stiffness of the structure (E and I 

respectively Young's modulus of the structure and the moment of inertia of the cross section of the structure),B0: 

reference width of the foundation, A: structural or rheological coefficient, EPMT: Ménard's pressuremeter 

modulus, �c and �d: form factors of the foundation geometry, �: the ratio between the distance to the point at 

which the displacement is regarded as null and the radius of pipe, ks1: the coefficient of subgrade reaction for a 

plate 1 ft wide. 
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Terzaghi (1955) made some recommendations about ks for 1×1 ft rigid slab placed on a 

soil medium (Terzaghi expression in Table 2-1). This equation is also relevant in analysis of 

plate load test results by substituting width of loading plate with 1ft, but some of the 

researchers instead of using these equations in plate load test suggest using of those modified 

by Arnold (Al-sanad et al., 1993). 

Vlassov (1960, 1966) expression is introduced for beams and plates resting on elastic half 

space (Elachachi et al., 2004), but ambiguities of estimating 	 (non-dimensional parameter) 

make the problem more complex (Elachachi et al., 2004; Sadrekarimi and Akbarzad, 2009). 

Meyerhof (1963), Kloppel (1979) and Selvadurai (1985) expressions are proposed for 

computing the coefficient of horizontal subgrade reaction in buried circular conduits (Okeagu 

and Abdel-Sayed 1984) and are employed for evaluation of ks in few limited cases (Elachachi 

et al., 2004).  

One should note that the expression from Matsubara (2000) needs an additional parameter 

� (�: the ratio between the distance to the point at which the displacement is regarded as null 

and the radius of pipe). The magnitude of this parameter being non-defined, it is taken equal 

to 10 in this study. 

If the site reconnaissance allows to acquire the deformation modulus EPMT, we can use 

Ménard expression (Cassan, 1978) to determine the value of ks. 

The value of Es can be obtained from in situ testing such as, the plate load test (Swiss test 

(V.S.S.), ASTM Standard Test, Westergaard test) (Cassan, 1978; ASTM, 1994; Ziaie Moayed 

and Naeini, 2006) and field-test drilling, such as pressuremeter testing (where EPMT=A.Es, 

with EPMT Ménard's pressuremeter modulus and A structural or rheological coefficient) 

(Cassan, 1978).   

 

2.3. Nature and origin of uncertainties 

As it was mentioned before (section 1.1) uncertainties can usually be divided into two 

groups: aleatory or active uncertainty and epistemic or passive uncertainty (Lacasse and 

Nadim, 1996; Uzielli et al., 2008). Soils are naturally variable because of the way they are 

formed and the random continuous processes of the environment that alter them. The 

uncertainty in the mechanical properties of soils (Es and Bs) is due to the natural variability 

from point to point within a soil volume and from laboratory measurements. The uncertainty 
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in a length of low stiffness zone of soil beneath the pipe (L) comes from the natural spatial 

variability of soil on a site. Those in the width (b), height (h) and Young's modulus of the 

structure (Ec) and external diameter (d) might result in their construction. 

One approach to estimating the soil parameters’ uncertainties when sufficient data is not 

available is to use estimates based on published values, which are most conveniently 

expressed in terms of the coefficient of variation (CV). Values of the coefficient of variation 

for a number of geotechnical engineering parameters and in situ tests (such as soil strength 

properties, soil index parameters, field measurements and laboratory tests) have been 

compiled by Harr (1987), Kulhawy (1992),  Lacasse and Nadim (1996, 1997), Phoon and 

Kulhawy (1999a,b) and  Duncan (2000). However, few data exist in the literatures concerning 

the value of the coefficient of variation for soil modulus. Phoon and Kulhawy (1999a) 

determined the value of CV of soil modulus in sand from the direct methods (pressuremeter 

test and the dilatometer test) that was in the range of 15-70%. The CV of soil modulus in silt 

determined by standard penetration test below count was found to be in the range of 40-60% 

and the CV of soil modulus in clay was estimated to be highest (up to 85%) but from a 

correlation between soil modulus and standard penetration test values (Phoon and Kulhawy, 

1999a).  

From these different analyses a CV of soil modulus between 5 and 50% is considered in 

this study. The possible range of CV for the soil (Bs and L) and structure parameters (d and Ec) 

are based on statistical analyses and expert judgment, since there are no data available in the 

literatures concerning these parameters.  

Concerning the uncertainties of b and h, we have studied a real experimental site located at 

Pessac (France) in order to estimate these uncertainties. This is described in the following. 

 

•  Estimation of the uncertainties of b and h for a spread footing for a real  

individual house (experimental site of Pessac)  

The objective is to estimate the uncertainties on a width and a height of a spread footing 

for an individual house on the experimental site of Pessac for a preliminary evaluation of 

these uncertainties. As can be seen from Figure 2-1, a half of the individual house rests on the 

sandy soil and the other half rests on the clayey soil. The four spread footings of this house 

with the lengths of 6 m (for L1 and L3) and 10 m (for L2 and L4), width of 0.5 m and height of 

0.3 m are also sketched in this figure. The spread footings (L1) and (L3) respectively rest on 
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the sandy soil and clayey soil while the half of the spread footings (L2) and (L4) rest on the 

clayey soil and the other half rest on the sandy soil. 

 

 
Figure 2-1: Constructed individual house with the four spread footings on the experimental site of Pessac 

 

Different construction stages of these spread footings on the experimental site are shown in 

Figure 2-2. Figure 2-3 illustrates the measured widths and heights along the lengths of the 

spread footings during their constructions. This figure shows the natural spatial variability of 

these parameters along the spread footings during their construction on the experimental site. 
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Figure 2-2: Different construction stages of the spread footings on the experimental site of Pessac 

 

 

Figure 2-3: Measured widths and heights along the lengths of the spread footings during their construction  
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For the calculation of the coefficient of variations of b and h for each spread footing, we 

have considered the means of b and h for each spread footing (Figure 2-4a) which are not very 

different between spread footings. Note that these values are inferior to the expected values 

respectively 0.5 m and 0.3 m.    

Figure 2-4b and Figure 2-4c shows the standard deviations and the associated coefficient 

of variations of these parameters (b, h) for these four spread footings. The value of the 

standard deviation of the width for the spread footings L1 is greater than the value of the 

standard deviation of L3, showing the difficulty to respect the width of a trench in sandy soil.      
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            b) 

 

 

             c) 

Figure 2-4: a)Mean values of width (b) and height (h) along each spread footing, b) Standard deviations of these 
values for each spread footing and c) Associated coefficient of variations of these values for each spread 

footing 

 

The maximum of inter assay CV for the width and height are respectively 0.074 and 0.084. 
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footings are respectively equal to 2.7% and 5% showing the inter variability between these 

spread footings. All these statistical results are resumed in Table 2-2.  

Table 2-2: Intra and inter assay coefficient of variability 

Spread footing L (m) b (m) h(m) �b (m) �h (m) CVb CVh 

L1 6 45.37 26.23 3.34 0.89 0.074 0.034 

L2 10 46.52 25.95 1.47 1.89 0.031 0.073 

L3 6 47.35 23.85 1.67 1.29 0.035 0.054 

L4 10 48.83 27.38 1.81 2.30 0.037 0.084 

L1+ L2+ L3+ L4 36 47.08 26.77 2.47 2.15 0.05 0.08 

L1, L2, L3, L4 

(inter assay) - 47.01 25.85 1.26 1.27 0.027 0.049 

L: length of a spread footing,b : mean width,h : mean height, �b and �h respectively standard deviations of b 

and h, CVb and CVh respectively coefficient of variation of b and h  

 

Of course, these results are for the constructed individual house with only four spread 

footings on the experimental site of Pessac, but they give a first estimation of the coefficient 

of variations for these parameters in case of similar projects. 

A synthesis of the origin of the soil and the structure parameters’ uncertainties is presented 

in Table 2-3.  

Table 2-3: Origin of uncertainties in the soil and structure parameters and possible range of the coefficient of 
variation for each parameter (in the case of spread footing and buried pipe) 

Es: Young's soil modulus, Bs: Poisson's ratio of soil, L: length of low stiffness zone of soil beneath the pipe, b and 

h are respectively width and height of the spread footing, d: external diameter of the pipe, Ec: Young's modulus 

of buried pipe or spread footing 

Parameter 
   Aleatory uncertainty       Epistemic uncertainty Possible range of the coefficient 

of variation %  Natural variability Measurement uncertainty Construction uncertainty 

Es * *  [5-50] 

�s * *  [2-10] 

L *   [5-50] 

b   * [2-10] 

h   * [2-10] 

d   * [2-5] 

EC   * [2-10] 
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2.4. FOSM and SOSM methods 

The calculation methods of variance used in this study are based on the first order (FOSM) 

and the second order (SOSM) of the Taylor series with the assumption that the input 

parameters act independently of each other. 

Equation 1-38 and Equation 1-40, expressed in terms of variance, are rewritten in terms of 

the coefficient of variation CV (standard deviation divided by the mean), Equation 2-1 for the 

FOSM method and Equation 2-2 for the SOSM method (Imanzadeh et al., 2011): 
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where )x(CV if(x)  is the coefficient of variation of )x(f for the i input variables (xi), ixCV the 

coefficient of variation for the input variable i, ix the mean of the input variables i, )x(f  the 

mean of the function f(x) and n the number of variables. 

The greatest advantage of the FOSM method is its simplicity; no higher moments or 

distributional information on the system’s basic variables are necessary. When applied to 

engineering design problems, one issue can be pointed out:  

- The relative non-accuracy of the first order Taylor series approximation for strong non-

linear problems. The SOSM method is often used to quantify the non-linear level of the 

studied function.  



Chapter 2 

 

78 

 

However, one of the strengthest of the FOSM method is that, it allows the assessment of 

the absolute contribution of the individual basic variable uncertainties to the uncertainties of 

the overall system (sensibility analysis).  

 

2.5. Estimation of the influence of soil and structure parameters on the coefficient of 
variation of ks 

The influence of the variability of the soil parameters, the geometry and the mechanical 

properties of the structure (spread footing and buried pipe) on the reaction coefficient (ks) will 

be successively studied for each semi-empirical model using the FOSM and SOSM methods 

(Equation 2-1 and Equation 2-2) in the following. All calculations are performed using 

MAPLE© software. 

 

2.5.1. Common semi-empirical models for calculating the modulus of soil reaction for 
spread footings  

Four semi-empirical models (Biot (1937), Vlassov (1960, 1966), Vesic (1961) and Ménard 

(Cassan, 1978)), commonly used in the design of spread footings, are considered in this study 

in order to obtain a value of the soil reaction modulus. These semi-empirical models are 

represented in Table 2-4.  The calculation of ks is a function of soil parameters (modulus of 

the soil Es and Poisson's ratio of soil Bs), the parameters related to the geometry of the 

foundation (width b and height h) and a mechanical property of the foundation (the Young's 

modulus of the concrete Ec) (Table 2-4).  
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Table 2-4: Semi-empirical models proposed for the modulus of soil reaction (ks) for spread footings  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Es and Fs: Young's soil modulus and Poisson's ratio of soil, 	: non-dimensional parameter, b, h and Ec: width, 

height and Young's modulus of the foundation, B0: reference width of the foundation, A: structural or rheological 

coefficient, EPMT: Ménard's pressuremeter modulus, �c and �d: form factors of the foundation geometry 

 

In order to compare these models between each other, we take the common dimensions of 

a wall footing for a residential construction: width of 0.5 m, height of 0.3 m and  length of 10 

m. Young's modulus of the foundation Ec is equal to 20 GPa and the parameter µ=1. In the 

case of the pressuremeter A=0.5, the reference width of the foundation (B0) equal to 0.60 m 

and the form factors of the foundation geometry �c and �d are all determined as a function of 

the ratio between the length and the width of the foundation. 

The coefficient of reaction for the modulus Es between 1 and 30 MPa and Poisson's ratio of 

0.3, presents values between 0.875 and 63 MN.m-3 (Figure 2-5). Ménard’s model gives the 

greatest values of ks and Vesic’s model gives the lowest values; for the considered values in 

this example, a factor of two exist between these two models. The multitude of models 

underlines the difficulty for the practitioner to choose a value of subgrade reaction modulus 

for a given value of Es. 
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Figure 2-5: Evolution of the coefficient of soil reaction (ks) as a function of Young's soil modulus (Es) for studied 
semi-empirical models. 

 

 

2.5.1.1. Estimation of the influence of soil and spread footing parameters on the 
coefficient of variation of ks (FOSM method) 

 Soil subgrade reaction coefficient (ks) is a function of the soil parameters (Es,Bs) and the 

spread footing (b, h, Ec) (Table 2-4). The origin of uncertainties differs in the function of 

these parameters (Table 2-3).  

Using the FOSM method, the coefficient of variation of ks can be obtained, for the four 

semi-empirical models, by a unique expression including coefficients of variation of the soil 

and the structure parameters with different weights (Equation 2-4). The values of �xi depend 

on each semi-empirical model and give the absolute contribution of the individual basic 

variable uncertainties to the uncertainty of ks.  

5.02)
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Equation 2-4 

2.5.1.2. Estimation of the influence of the soil parameters 

The relationship between the modulus of the soil (Es) and the reaction modulus (ks) is 

linear for the Ménard and Vlassov models, and non-linear for the Vesic and Biot models 

(Table 2-4). This leads to coefficients �Es=1 for the Ménard and Vlassov models and �Es=1.1 

for the Vesic and Biot models. 
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The uncertainty of Poisson's ratio of soil is not generally taken into account and a 

deterministic value, from expert judgment, is often considered. However, the uncertainty of 

this parameter cannot be neglected in the three models with the presence of this parameter, 

especially in the case of the Vlassov model; its expression for �Bs is given by the following 

formula (Equation 2-5): 

)s21)(2
s1(

)s2(2
s2

s νν

νν
νη

−−

−
=  

Equation 2-5 

For the interval between 0.15 and 0.35 for Poisson's ratio, the coefficient �Bs varies from 

0.12 to 1.5 (Figure 2-6).  

In the case of the Vesic and Biot models we obtain the same expression for the coefficient 

�Bs (Equation 2-6):  

2
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2
s2

s ν

ν
νη

−
=  

Equation 2-6 

The coefficient �Bs for the same interval 0.15 to 0.35 for Poisson's ratio varies from 0.05 to 

0.28. For these two models, the influence of the uncertainty of Poisson's ratio is less important 

than for Vlassov’s model (Figure 2-6).  

    

 
Figure 2-6 : Evolution of coefficient �Bs as a function of the Poisson's ratio of soil (Bs) for studied semi-empirical 

models (FOSM method) 
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2.5.1.3. Estimation of the influence of the spread footing parameters 

The width of the spread footing (b) comes in four models, its height (h) and Young's 

modulus of concrete only in the Vesic and Biot models. For the parameter (b), we obtain a 

coefficient �b= 0.75, 0.675 and 1 respectively for the Vesic, Biot and Vlassov models. The 

coefficient �b for the Ménard model is a function of b: 

1401b415

1401b830
.5.0b +

+=η  
Equation 2-7 

The influence of the variability of this parameter on the variability of ks is more important 

for the Vlassov model, then the Vesic and Biot, and finally for the Ménard where �b=  0.59 for 

the foundation width equal to 0.5 m. When the foundation width is between 1.5m and 3m (for 

the Ménard model), its value becomes almost constant and close to the value of the Biot 

model (Figure 2-7). 

 

 

Figure 2-7: Evolution of coefficient bη as a function of the foundation width (b) for studied semi-empirical 
models (FOSM method) 

 

Concerning the height of the foundation (h), we obtain the coefficients �h=0.25 and 0.324 

respectively for the Vesic and Biot models. The influence of the variability of the parameter 

(h) on the reaction coefficient (ks) for the Biot model is more important than Vesic’s model 

but remains two to three times smaller than the influence of the parameter (b).  
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For Young's modulus of concrete, Vesic’s and Biot’s models give a coefficient �Ec, also 

very similar, it is possible to give an average coefficient �Ec=0.1. The value of CVEc depends 

on the quality of concrete. Even for concretes which their properties will be very different 

from a spread footing to another spread footing (CVEc=20%), uncertainty on the coefficient of 

reaction due to this parameter remain low (2%).  The uncertainty of this parameter in the 

estimation of the coefficient of variation of ks can be neglected. 

The synthesis table (Table 2-5) shows all the relations obtained by the FOSM method and 

gives, for the same value of CVxi, the most influential parameters on the estimation of the 

variability of ks. 

 

Table 2-5: Coefficient �xi obtained for each parameter of semi-empirical models (FOSM method) 

 

                      *: low influence, **: moderate influence, ***: high influence 

 

2.5.1.4. Quantification of non-linearities in the estimation of coefficient of variation of ks 
(SOSM method for spread footing) 

Equation 2-3 allows us to obtain the coefficient Axi for each parameter of semi-empirical 

models using the SOSM method. All the obtained expressions are presented in Table 2-6.  

The calculated coefficient values in this Table give the importance of non-linearity 

attached to each of the parameters.  
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Table 2-6: Coefficient Axi obtained for each parameter of semi-empirical models (SOSM method). 

 The parameter of � depends on the probability distribution 

�

 

The values of the coefficients AEs, Ah , AEc for all these semi-empirical models and with 

�=2 (for a preliminary evaluation, all random variables are assumed to follow a normal 

distribution) are between 4×10-3 and 92×10-3 showing insignificant effects on the second 

order terms of Taylor series (Equation 2-2). 

 The coefficient Ab for the Ménard model is a function of b (Table 2-6). Evolution of 

coefficient Ab as a function of the foundation width (b), for studied semi-empirical models 

using the SOSM method, is shown in Figure 2-8. As in the case of calculation the coefficient 

�b, the value of the coefficient Ab is the greatest for the Vlassov model and the smallest for the 

Ménard model. When the foundation width increases the value of Ménard model is close to 

the value of the Biot model. 

 

 
Figure 2-8: Evolution of coefficient Ab as a function of the foundation width (b) for studied semi-empirical 

models (SOSM method) 
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Concerning the Poisson's ratio of soil, the coefficient ABs for these models is a function of 

Bs (Table 2-6). For the value of Bs between 0.25 and 0.35, the coefficient ABs for the Vlassov 

model varies from 0.66 to 28.73 while for the Biot and Vesic models (with the same 

expression) it varies only in a range from 0.014 to 0.095 (Table 2-6, Figure 2-9 ).  

 

 

 
Figure 2-9: Evolution of coefficient A�s as a function of the Poisson’s ratio of soil (Bs) for studied semi-empirical 

models (SOSM method) 

 

These coefficients (Ah, AEc, ABs, Ab), will be multiplied by coefficients of variation below 

10% with the power of four (Table 2-3, Equation 2-2), then the second order terms calculated 

by the SOSM method (
4
xixi CV.A , Equation 2-2) can be neglected. The FOSM method alone is 

sufficient to correctly estimate the coefficients of variation of ks. The improvement in 

accuracy is not always worth the extra computational effort, and these results confirm why 

SOSM method has not often found wide use in geotechnical applications. 
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2.5.1.5. Simplified formulas for the calculation of the coefficients of variation of ks in the 
case of spread footing   

The evolution of CVks (Coefficient of Variation of ks obtained from Equation 2-4) as a 

function of CVEs (Coefficient of Variation of Es) for these semi-empirical models is shown in 

Figure 2-10. For this and as an example, different parameters have to be fixed: b=0.5 m, Bs = 

0.3 and the coefficients of variation for each parameter equal to 10%. 

When CVEs is close to zero, the coefficient of variation of ks is greater for the Vlassov 

model and then for Vesic’s and Biot’s models. The coefficient of variation of ks varies 

between 0.06 and 0.13 (Figure 2-10). Ménard’s model which only takes into account the 

uncertainty of the parameters b and Es gives, as expected, the lowest value of the coefficient 

of variation of ks whatever the value of CVEs. For the value of CVEs greater than 0.2 (Figure 

2-10), we observe a linear behavior between CVks and CVEs, which shows that the influence of 

the variability of structure parameters and Poisson's ratio is less important when the 

coefficient of variation of Es is high. In this case, the coefficient of variation of ks for the Biot 

model is greater than those from other expressions while the Vlassov model tends to the 

Ménard model. Then the coefficient of variation of ks is directly proportional to the coefficient 

of variation of Es, it can take a unique expression as (Equation 2-8): 

sss EEk CVCV η=  
Equation 2-8 

where �Es=1 for the Ménard and Vlassov models and �Es=1.1 for the Vesic and Biot models.  

The Equation 2-8, allows us to obtain a first estimate of the coefficient of variation of ks 

when the coefficient of variation of Es is 2 to 3 times greater than the values of the 

coefficients of variation of the parameters b, Bs and h. 
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Figure 2-10: Evolution of CVks (Coefficient of Variation of ks ), as a function of CVEs (Coefficient of Variation of 

Es) for studied semi-empirical models (FOSM method) 

 

The coefficient �xi (Table 2-5) was simplified for the values of foundation width (b) and 

the Poisson’s ratio of soil (Bs) for these semi-empirical models (Table 2-7). From Equation 

2-4, simplified expressions are obtained for the values of b between 0.3 and 1.5 m for the 

Ménard model (Equation 2-9) and the values of Bs between 0.25 and 0.35 for the Vlassov 

(Equation 2-10), Vesic (Equation 2-11) and Biot (Equation 2-12) models: 

 

Table 2-7: simplified coefficient �xi obtained for each parameter of semi-empirical models (FOSM method) 

 

*: low influence, **: moderate influence, ***: high influence 

 

0

0,1

0,2

0,3

0,4

0,5

0,6

0 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45 0,5

C
V

ks

CVEs

b=0.5 m   �s=0.3  CVb=CV�s=CVh=CVEc= 10%

Vesic model

Biot model

Vlassov model

Ménard model



Chapter 2 

 

88 

 

( ) 5.02
b

2
Ek )CV.)56.0b05.0((CVCV

ss
++=  Equation 2-9 

( ) 5.02
s

2
b

2
Ek )CV.)22.24.10((CVCVCV

sss νν −++=  Equation 2-10 

( ) 5.02
h

22
b

2
Ek )CV.25.0()CV.2.0()CV.75.0()CV.083.1(CV

sss
+++= ν  Equation 2-11 

( ) 5.02
h

22
b

2
Ek )CV.324.0()CV.2.0()CV.675.0()CV.108.1(CV

sss
+++= ν  Equation 2-12 

The error between the coefficients of variation of ks from the simplified models and those 

from the full models is on average less than 2%. Simplification is acceptable and provides 

simplified expressions when taking into account the minimum parameters for an easier 

determination of the coefficient of variation of the soil reaction modulus in the case of spread 

footing. 

 

2.5.2. Common semi-empirical models for calculating the modulus of soil reaction for 
buried pipes  

Six semi-empirical models (Biot (1937), Vesic (1961), Meyerhof & Baikie (1963), Kloppel 

& Glock (1979), Matsubara (2000) and Selvadurai (1985)), commonly used in the design of 

buried pipes, are considered in this study in order to obtain a value of the soil reaction 

modulus (ks) (Table 2-8). The calculation of ks is a function of soil parameters such as the soil 

modulus (Es) and soil Poisson's ratio (Bs), the parameters related to the geometry of the pipe 

(external diameter (d) and thickness (e)) and a mechanical property of the pipe (the Young's 

modulus of the concrete (Ec) or steel (EP)) (Table 2-8). 
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Table 2-8: Semi-empirical models proposed for the modulus of soil reaction (ks) for buried pipes 

 
Es: Young's soil modulus, Bs: Poisson's ratio of soil, d: external diameter of the pipe, Ec: Young's modulus of the 
pipe, e: thickness of the pipe and �: the ratio between the distance to the point at which the displacement is 
regarded as null and the radius of pipe. 

 

In order to compare these models with each other, we take the common dimensions of a 

buried pipe: external diameter of 1.5 m and thickness of 0.15 m. Young's modulus of the  

concrete pipe (Ec) is equal to 20 GPa (Young’s modulus of the pipe for a continuous buried 

steel pipe is equal to 210 GPa), Poisson's ratio of 0.3 and the magnitude of parameter � being 

non-defined, it was taken to be equal to 10. The coefficient of reaction for the modulus Es 

between 1 and 30 MPa, presents values between 0.293 and 48,3 MN.m-3 (Figure 2-11). 

Matsubara’s model gives the greatest value of ks and Vesic’s model gives the lowest value of 

ks. The value of ks for Kloppel’s model is almost the average of the values of these two 

models. Biot’s and Selvadurai’s models give almost the same value of ks and the value of ks 

for the Meyerhof model is nearly twice that of the value of the Vesic model for the considered 

values in this example. The multitude of models giving very different results, it underlines 

again the difficulty for the practitioner to choose a value of the subgrade reaction modulus for 

a given value of Es. 
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Figure 2-11: Evolution of the coefficient of soil reaction (ks) as a function of Young's soil modulus (Es) for 
studied semi-empirical models. 

 

 

2.5.2.1. Uncertainty estimation of the coefficient of subgrade reaction ks (FOSM method) 
for the buried pipe parameters  

2.5.2.1.1. Effect of the soil parameters  

Soil subgrade reaction coefficient (ks) is a function of the soil parameters (Es, Bs) and 

buried pipe parameters (d, Ec). The unwanted variation of thickness in a pipe is not taken into 

account and the deterministic value equal to 0.15 m is considered for a pipe thickness. As it 

was mentioned earlier in chapter 1 (section 1.5.2), a concrete buried pipe with the quasi rigid 

joints is considered in this study with the simplication of the same rigidity all along the 

pipeline.  

The relationship between the soil modulus (Es) and the reaction modulus (ks) is linear for 

the Meyerhof, Kloppel, Matsubara and Selvadurai models, and non-linear for Vesic and 

Biot’s models (Table 2-8). This leads to coefficients �Es=1 for the Meyerhof, Kloppel, 

Matsubara and Selvadurai models and �Es=1.1 for the Vesic and Biot models (The value of �xi 

obtains from Equation 2-4).  

In the case of the Vesic, Biot, Meyerhof and Selvadurai models we obtain the same 

expression for the coefficient �Bs (Equation 2-13): 
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For the interval between 0.15 and 0.35 for Poisson's ratio, the coefficient �Bs varies from 

0.05 to 0.28 (Figure 2-12).  

In the case of Matsubara and Kloppel’s models we obtain the same expression for the 

coefficient �Bs (Equation 2-14):  
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=  

Equation 2-14 

For the same interval 0.15 to 0.35 for Poisson's ratio, the coefficient �Bs varies from 0.13 to 

0.26 (Figure 2-12). 

For these six models, the influence of the uncertainty of Poisson's ratio on the uncertainty 

of ks remains less important than the uncertainty of Es. 

 

 
Figure 2-12: Evolution of coefficient �Bs as a function of the Poisson's ratio of soil (Bs) for studied semi-empirical 

models (FOSM method) 

 

2.5.2.1.2. Effect of the buried pipe parameters 

The external diameter of the pipe (d) appears in each model and Young's modulus of 
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for the Meyerhof, Kloppel, Matsubara and Selvadurai models. The coefficient �d for Vesic 

and Biot’s models is a function of external diameter (d) and thickness (e) of the pipe (�d = f 

(d3, d2, d, e3, e2, e)). Evolution of coefficient �d as a function of the external diameter of pipe 

(d) for these semi-empirical models is shown in Figure 2-13. The influence of the uncertainty 

of this parameter d on the uncertainty of ks is more important for the Meyerhof, Kloppel, 

Matsubara and Selvadurai models (�d=1) than for Vesic and Biot’s models (for example, if 

e=0.15m and d>1m, the value of �d=0.93 for Vesic’s and �d=0.91 for Biot’s model). The 

influence of d is almost as important as that of Es. 

 

 
Figure 2-13: Evolution of coefficient �d as a function of the external diameter of pipe (d) for studied semi-

empirical models (FOSM method, e=0.15 m). 

 

For Young's modulus of concrete, Vesic and Biot’s models give a coefficient �Ec also very 

similar; it is possible to give an average coefficient �Ec= 0.1. As in the case of the spread 

footings, the uncertainty of this parameter in the estimation of the coefficient of variation of ks 

can be neglected. 

Table 2-9 shows all the relations obtained by the FOSM method and gives, for the same value 

of CVxi, the most influential parameters on the estimation of the uncertainty of ks. 
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Table 2-9: Coefficient �xi obtained for each parameter of semi-empirical models (FOSM method) 

 
      *: low influence, **: moderate influence, ***: high influence 

 

 

2.5.2.2. Quantification of non-linearities in the estimation of coefficient of variation of ks 
(SOSM method for buried pipe) 

The coefficient Axi for each parameter of semi-empirical models, using the SOSM method, 

is obtained from Equation 2-3. All the obtained expressions are shown in Table 2-10. As it 

was mentioned earlier, the calculated coefficient values in this Table give the importance of 

non-linearity attached to each of the parameters (Imanzadeh et al., 2013a).  

 

Table 2-10: Coefficient Axi obtained for each parameter of semi-empirical models (SOSM method)  

 

The parameter of � depends on the probability distribution 
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The values of the coefficient AEs for the Vesic and Biot models are respectively equal to 

4×10-3 and 7.3×10-3 (assuming that �=2 for a normal distribution) that can be  insignificant 

effects on the second order terms of Taylor series (Equation 2-2). 

The coefficient  Ad  for the Vesic and Biot models is a function of external diameter (d) and 

thickness (e) of the pipe where for the Meyerhof, Kloppel, Matsubara and Selvadurai models 

is equal to 2 (Table 2-10). Figure 2-14 shows evolution of coefficient Ad as a function of the 

external diameter of pipe (d) for studied semi-empirical models. As in the case of FOSM 

method for buried pipe, the influence of the uncertainty of this parameter d on the uncertainty 

of ks is more important for the Meyerhof, Kloppel, Matsubara and Selvadurai models (Ad =2) 

than for Vesic and Biot’s models (for example, if e=0.15m and d >2.5 m, the value of Ad=1.63 

for Vesic’s and Ad=1.53 for Biot’s model).  

 

 

Figure 2-14: Evolution of coefficient Ad as a function of the external diameter of pipe (d) for studied semi-
empirical models (SOSM method, �=2 and e=0.15 m) 

 

Concerning the Poisson's ratio of soil, the coefficient ABs for these semi-empirical models is 

a function of Bs (Table 2-10). For the value of Bs ranging from 0.15 to 0.35, the coefficient ABs 

for the Vesic, Biot, Meyerhof, and Selvadurai models (with the same expressions) varies from 

1.3×10-3 to 95×10-3 while for the Matsubara and Kloppel models (with the same expressions) 

it varies only in a range from 0.6×10-3 to 9×10-3 (Figure 2-15). The influence of the 

uncertainty of the Poisson's ratio of soil for Bs B 0.18 on the uncertainty of ks for the Vesic, 
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Biot, Meyerhof, and Selvadurai models is more important than the Matsubara and Kloppel 

models.  

The obtained coefficients in Table 2-10 (Ad, ABs), will be multiplied by coefficients of 

variation below 5% with the power of four (Table 2-3, Equation 2-2), then the second order 

terms calculated by the SOSM method can be neglected. Again, the FOSM method alone is 

sufficient to correctly estimate the coefficients of variation of subgrade reaction in case of 

buried pipes. 

 

 

Figure 2-15: Evolution of coefficient ABs as a function of the Poisson’s ratio of soil (Bs) for studied semi-
empirical models (SOSM method, buried pipe, �=2) 

 

2.5.2.3. Simplified formulas for the calculation of the coefficients of variation of ks in the 
case of buried pipe 

The evolution of CVks (Coefficient of Variation of ks obtained from Equation 2-4) as a 

function of CVEs for these six semi-empirical models is presented in Figure 2-16. For this and 

as an example, different parameters have to be fixed: Bs = 0.3, e=0.15 m, d=1.5 m and the 

coefficients of variation for each parameter equal to 5%. 
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Figure 2-16: Evolution of CVks�(Coefficient of Variation of ks ) as a function of CVEs (Coefficient of Variation of 

Es) for studied semi-empirical models (FOSM method for a buried pipe) 

 

When CVEs is less than 0.1, the value of the coefficient of variation of ks is almost the same 

for all the semi-empirical models. For a value of CVEs greater than 0.1, we observe a linear 

behavior between CVks and CVEs, which shows that the influence of the uncertainties of 

structure parameters (d and Ec) and Poisson's ratio are less important when the coefficient of 

variation of Es is high. In this case, the coefficient of variation of ks for the Biot and Vesic 

models is larger than those from other expressions. On the contrary, Meyerhof’s and 

Selvadurai’s models give the lowest value of the coefficient of variation of ks. Accordingly, 

the coefficient of variation of ks is directly proportional to the coefficient of variation of Es 

and can take a unique expression as we obtained in the case of the spread footing (Equation 

2-8) where �Es=1 for the Meyerhof, Kloppel, Matsubara and Selvadurai models, and �Es=1.1 

for the Vesic and Biot models. 

Although the six semi-empirical models give six different values of ks, their associated 

coefficients of variation of ks are close to each other (Figure 2-16). 

 The coefficient �xi (Table 2-9) was simplified for the external diameter of pipe (d) and the 

Poisson’s ratio of soil (Bs) for these semi-empirical models (Table 2-11). From Equation 2-4, 

simplified expressions are obtained for the values of d between 1 and 3 m and Bs between 0.2 

and 0.35 for the Vesic (Equation 2-15) and Biot (Equation 2-16) models and the values of Bs 

between 0.2 and 0.35 for the Meyerhof and Selvadurai models (Equation 2-17), Matsubara 

and Kloppel models (Equation 2-18):  
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Table 2-11: Simplified coefficient �xi obtained for each parameter of semi-empirical models for 

 d=[1 m; 3 m], Bs=[0.2; 0.35] (FOSM method) 

 
*: low influence, **: moderate influence, ***: high influence 
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The error between the coefficients of variation of ks from the simplified models and those 

from the full models is on average less than 2%. 

 

2.6. Summary and conclusions 

In this chapter, the main concept of the modulus of soil reaction and some of the most 

important relationships for obtaining its value were introduced in detail. We explained the 

reasons and the methodology for obtaining the uncertainty on the soil reaction modulus. Soil 

and its structural’s properties as well as their uncertainties were considered in order to reveal 

their effects on the uncertainty of the coefficient of soil reaction (ks).   

Eight semi-empirical models which give the coefficient of subgrade reaction were studied 

by considering the natural variability and measurement uncertainty of soil properties and the 

construction uncertainty of the structural elements. 
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The FOSM and SOSM methods were successively used on these semi-empirical models to 

determine the coefficient of variation of soil reaction modulus and to evaluate the influence of 

the soil and structure parameters. Results obtained using the FOSM method for the spread 

footings show the major effects of the uncertainties of soil modulus, Poisson’s ratio and the 

width of the continuous wall footing on the uncertainty of the coefficient of subgrade reaction. 

For the latter, results in the case of buried pipes show the major effects of the uncertainties of 

soil modulus, the external diameter of buried pipe and Poisson's ratio of soil, on the 

uncertainty of the coefficient of subgrade reaction. We showed that if the additional amount 

of accuracy resulting from the SOSM method was insignificant then the FOSM method alone 

would be sufficient to correctly estimate the coefficients of variation of ks. 

Finally, simplified expressions for each semi-empirical model were proposed, taking into 

account the minimum parameters for determining the coefficient of variation of soil reaction 

modulus. For these semi-empirical models, the values of the coefficient of variation of ks were 

very close if the coefficient of variation of Es were 2 to 3 times greater than the coefficients of 

variation of parameters b, Bs, h and d. 

The expressions obtained for the spread footings and the buried pipes could then be 

introduced in different analytical models such as Winkler’s model with one parameter, 

Vlassov & Pasternak models with two parameters and the Kerr model with three parameters 

in order to determine the uncertainty of ks on the settlements and bending moments of spread 

footings and buried pipes resting on an elastic soil. This will be discussed in detail in the 

following chapter.  
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3. Effect of uncertainty of the subgrade reaction modulus and a low stiffness zone on 
the behavior of the superficial geotechnical works 

3.1. Introduction 

In this chapter obtained uncertainty of ks from the uncertainties on the soil and the 

structure parameters for each semi-empirical model, is introduced to the analytical solution 

of a beam from Winkler hypothesis and with different boundary conditions. FOSM method 

is used on this analytical solution in order to determine the uncertainty on the differential 

settlements, bending moments of the superficial geotechnical designs respectively in the 

specific case of continuous spread footing for residential construction and the buried pipes 

(buried steel pipe and buried concrete pipe) resting on an elastic soil. The obtained results 

then can be translated in terms of probability of ruin according to the allowable thresholds 

for the differential settlement and bending moment in order to assess the probability of the 

design not reaching the required performance. 

Finally, the calculation methodology, to obtain the confidence bounds of the differential 

settlement and the bending moment of the superficial geotechnical designs, for each semi-

empirical model, is presented.  For the cases where the choice of a suitable semi-empirical 

model for the estimation of uncertainties (on ks, on the differential settlement and on the 

bending moment of a spread footing or buried pipe) is not straightforward, a global 

uncertainty approach is proposed. This approach includes the uncertainties from each semi-

empirical model and it can be used to verify if maximum values exceed the values for the 

limit state designs. 

 

3.2. Effect of uncertainty of ks on the behavior of a continuous spread footing 

In this part, the longitudinal direction of a continuous spread footing is considered, in 

order to investigate the influence of longitudinal soil variability and structure uncertainty 

on differential settlement and the bending moment of this structural element, for the case 

of residential constructions with relatively lightly loaded walls. 

Using the FOSM method applied on the deflection equation (Equation 1-51) and the 

equation of bending moment allows us to study the influence of the uncertainty of ks on the 

uncertainty of the settlement and bending moment with different boundary conditions. 

Uncertainties on the differential settlement and bending moment, which are function of the 
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variation of ks, are translated in terms of coefficients of variation (Equation 3-1 and 

Equation 3-2 respectively for the differential settlement and bending moment): 
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with CVw the coefficient of variation of the maximum deflection, w is the maximum 

deflection as a function of ks, sk the mean of ks, the value of the maximum deflection is 

calculated for a given value of ks and corresponding to an abscissa xw considered as 

constant over the range of variation of ks. The partial derivative of w with respect to ks is 

calculated for this abscissa xw. 
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with CVM  the coefficient of variation of the maximum bending moment of the foundation, 

M is the maximum bending moment as a function of ks, the value of the maximum bending 

moment is calculated for a given value of ks and corresponding to an abscissa xM 

considered as constant over the range of variation of ks. The partial derivative of M with 

respect to ks is calculated for this abscissa xM. 

It should be noted that the uncertainties of the geometrical parameters b and h are only 

taken into account in the estimation of the coefficient of variation of ks. These uncertainties 

are not considered in the calculation of the moment of inertia of the cross section of 

continuous spread footing (I in Equation 1-51).  

 

3.2.1. Hypotheses for the boundary conditions 

Generally, the structure is designed to support vertical movements, but damage can 

appear when a differential settlement occurs on a portion or all of the structure. The 

damages suffered by the foundations and after by the walls that they support, have four 

main sources (Andrieux et al., 2011): 

- Errors in the construction or design, 

- Shrinkage-swelling phenomenon, 
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- Low stiffness zone of soft clayey soil / Rapid spatial variation of soil. 

- Soil spatial variability inside the same lithological formation.   

We focus on this section on the low stiffness zone. These cases can be encountered 

when the residential construction is built on soil with different nature and mechanical 

properties such as a sand and clay and when rapid spatial variation of soil is detected 

(Marache et al., 2009a, 2009b; Denis et al., 2011).        

Four cases where an absolute settlement or a differential settlement may appear can be 

considered (Figure 3-1). Figure 3-1a shows two parallele spread footings of the individual 

house, one resting on a clayey soil of low coefficient reaction modulus (kC), the other on a 

sandy soil with no settlement. The spread footing resting on a clayey soil can be modelled 

by considering it as a beam resting on an elastic soil with free ends as boundary conditions 

(w0(x)=0, Equation 1-52) with only an absolute settlement and no bending moment. Figure 

3-1b presents a foundation with the greatest length (spread footing with length L) resting 

on lenses or a layer of clayey soil with reaction coefficient kC, while the orthogonal spread 

footings of previous spread footing rest on a sandy soil with coefficient kA largely bigger 

than kC (kA >> kC). In this case, the most part of the house rests on sand without settlement 

and differential settlement appears only for the spread footing with length L on clayey soil. 

Figure 3-1c shows the case where half of the house rests on a clayey soil while the other 

half rests on the sand. In this case (Figure 3-1c), the spread footing with length L can be 

modeled as resting on an elastic soil with a simple support at one of its ends and the other 

end being free as boundary conditions. In the case that only one of the four corners of the 

construction rests on clayey soil (Figure 3-1d), we can consider that this case is like the 

previous case (Figure 3-1c) but with a zone of low stiffness (kc) on a part L� of the total 

length L. Only three first cases are dealt within the present chapter.  

The shrinkage of clayey soil beneath a foundation can be simulated, in an initial 

approach, by taking into account a small value of ks. The extreme case is when we observe 

a loss of the contact between the base of footing and the ground, which can be modeled 

with a value of ks equal to zero.  
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Figure 3-1: Different hypotheses for the boundary conditions: a) Two parallele spread footings of the 
individual house, one resting on a clayey soil of low coefficient reaction modulus (kC), the other on a sandy 
soil with no settlement.b) A spread footing with the length L rests on lenses or a layer of clayey soil while the 
rest of the foundations remain on sand; c) half of the house rests on lenses or a layer of clayey soil and the 
other half rests on the sand; d) one of the four corners of the house rests on lenses or a layer of clayey soil 
and the rest of the house remains on a sandy soil.(all of these cases correspond to a rapid spatial variation of 
soil, kA: coefficient of reaction for sandy soil, kC: coefficient of reaction for clayey soil; kA >> kC). 

 

3.2.2. Boundary conditions verification 

We present in this section results from two different approaches to verify the considered 

boundary conditions for a spread footing in the cases of Figure 3-1b and Figure 3-1c: one 

dimensional model (analytical model, 1D) using MAPLE© software and a two 

dimensional model (2D) using the finite element method (CASTEM© software). It should 

be noted that in our models, we considered the same values of the subgrade reaction 

modulus of the clayey soil (kC) or sandy soil (kA) at each given location along a spread 

footing axis.  
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Figure 3-2 shows schematically the finite element modelling of the four spread footings 

(2D) in the case of Figure 3-1b. The computations are performed with the CASTEM© 

software (Verpaux et al., 1988) using the Winkler model.     

 

 
Figure 3-2: Finite element modelling of the four spread footings in the case of Figure 3-1b with the 

CASTEM© software using the Winkler model (two dimensional model, 2D) 

 

  Figure 3-3 and Figure 3-4 show, respectively, evolutions of the maximum differential 

settlement and the maximum bending moment as a function of the length of a spread 

footing (L) resting on a clayey soil of low coefficient reaction modulus (kC) for different 

ratios of J= kA/ kC. The obtained results are compared to that one obtained from analytical 

model with simply supported at two ends (one dimensional model, 1D) using MAPLE© 

software, Figure 3-1b). We observe that the higher the ratio of J and the length of the 

spread footing, the higher the values of the maximum differential settlements and the 

bending moments. For the very high value of coefficient kA (J= kA/ kC B200, kC=5 MN.m-

3), we obtained the same values for the maximum differential settlements and the bending 

moments. Then this case (Figure 3-1b) can be modeled by considering simply supported at 

two ends for large ratio J. For lower values J, the maximum differential settlements and the 

bending moments are overestimated compare to those obtained from the finite element 

method. 
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Figure 3-3: Evolution of the maximum differential settlement (E) as a function of the length of a spread 
footing (L) resting on a clayey soil of low coefficient reaction modulus (kC) for different ratios of J= kA/ kC 
using the finite element method (CASTEM©, 2D) and compare to that one with simply supported at two ends 
(MAPLE©, 1D) in the case of Figure 3-1b (kC=5 MN.m-3). 

 

 

 
Figure 3-4: Evolution of the maximum bending moment (M) as a function of the length of a spread footing 
(L) resting on a clayey soil of low coefficient reaction modulus (kC) for different ratios of J= kA/ kC using the 
finite element method (CASTEM©, 2D) and compare to that one with simply supported at two ends (one 
dimensional model (MAPLE©, 1D) in the case of Figure 3-1b (kC=5 MN.m-3). 

 

Figure 3-5 depicts schematically the finite element modelling of the four spread 

footings (2D) in the case of Figure 3-1c.     
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Figure 3-5: Finite element modelling of the four spread footings in the case of Figure 3-1c with the 

CASTEM© software using the Winkler model (two dimensional model, 2D)  

 

Evolutions of the maximum differential settlement and the maximum bending moment 

as a function of the length of a spread footing (L) resting on a clayey soil of low coefficient 

reaction modulus for different ratios of J, using the finite element method (2D), are shown 

in Figure 3-6 and Figure 3-7. As in the previous case, these values are always inferior to 

those obtained from analytical model by considering the spread footing with a simple 

support at one end (1D). Then this case (Figure 3-1c) can be modeled by considering 

simply supported at one end for large values of J.  

 

 
Figure 3-6: Evolution of the maximum differential settlement (E) as a function of the length of a spread 
footing (L) resting on a clayey soil of low coefficient reaction modulus for different ratios of J= kA/ kC using 
the finite element method (CASTEM©, 2D) and compare to that one with simply supported at one end 
(MAPLE©, 1D) in the case of Figure 3-1c (kC=5 MN.m-3). 
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Figure 3-7: Evolution of the maximum bending moment (M) as a function of the length of a spread footing 
(L) for different ratios of J= kA/ kC using the finite element method (CASTEM©, 2D) and compare to that one 
with simply supported at one end (one dimensional model (1D)) in the case of Figure 3-1c (kC=5 MN.m-3). 

 

If the hypotheses on the boundary conditions are simplified, they allow us to estimate a 

maximum value of the deflection with a one-dimensional analytical modeling. Boundary 

conditions for the spread footing with fixed ends with bending moments (torsional moment 

for orthogonal foundations) lead to lower values of deflection and bending moment.  

The maximum deflection is considered as a differential settlement E in the following. 

 

3.2.3. Influence of the uncertainty of ks on the uncertainty of differential settlement 

The uncertainty on the maximum deflection of spread footing or the maximum 

differential settlement of the soil (E) is directly related to the uncertainty of the coefficient 

of subgrade reaction (CVks) and boundary conditions. According to the different boundary 

conditions, considered in this study, and for a spread footings (b=0.5 m, h=0.3 m, Ec= 20 

GPa) with different lengths subjected to an uniform load equal to 30 kN per running meter, 

we can calculate, from Equation 3-1, the ratio between the coefficient of variation of the 

maximum differential settlement (CVE) and the coefficient of variation of subgrade 

reaction modulus (CVks).  
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Figure 3-8 and Figure 3-9 show the evolution of the ratio 
skCVCV∆ as function of the 

subgrade reaction modulus of soil (ks), respectively for the spread footing with simply 

supported at two ends and one end. All the results presented in these two figures are 

obtained from the Equation 3-3 that we can also write it in the form of a differential 

equation as: 
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 Equation 3-3 

With C constant and where one of the solutions of this differential equation is in the 

following form:  

a
sk

ϕ∆ =  
Equation 3-4 

with ϕ  constant that it is determined by the boundary conditions of the Equation 3-3. 

Also, when C=1, we obtain =∆
sk

ϕ
, that means that the Edifferential settlementE is 

equivalent to an absolute settlement obtained by considering a foundation with free ends 

(case (a) in Figure 3-1,
skCVCV =∆ ). In the case of C < 1, uncertainty on the differential 

settlement is less, for the same value of ks, than for C=1. Equation 3-4 shows in this case 

that the differential settlement (�) as function of ks decreases more slowly than in the case 

of C=1. In the case of C > 1, we obtain an inverse behavior. 
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Figure 3-8: Influence of the uncertainty of ks on the uncertainty of the maximum differential settlement for a 
spread footing with different lengths with simply supported at two ends as boundary conditions (CVE : 
coefficient of variation of the differential settlement CVks,: coefficient of variation of ks) 

 

 

 
Figure 3-9: Influence of the uncertainty of ks on the uncertainty of the maximum differential settlement for a 
spread footing with different lengths with simply supported at one end as boundary conditions. 

 

Figure 3-8, in the case of a foundation with support at two ends shows that for the 

spread footing with lengths more than or equal to 20 m and whatever the value of ks, the 

coefficient of variation of settlement is equal to the coefficient of variation of ks. The 

influence of the support is negligible and the value of the differential settlement is equal to 

the value of the absolute settlement calculated in the case of the spread footing with free 

ends resting on an elastic soil. This is equal to the value of the absolute settlement that it 

would be calculated by considering only the transverse behavior of the spread footing. 
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For the spread footings of lengths less than 20 m, we observe that the lesser the values 

of ks and the length of the foundation, the lesser the value of the ration CVE � CVks is. This 

shows the influence of the support on the value of the coefficient of variation of 

differential settlement. Nevertheless, when ks increases, whatever the length of the 

foundation, it tends to approach the behavior of spread footing with lengths greater than or 

equal to 20 m where the influence of the support is negligible. 

In the case of spread footing with simply supported at one end (Figure 3-9) we obtain 

the same behavior that we had previously for the spread footing with a length of 20 m, the 

influence of the support is negligible on the value of the ratio CVE � CVks, whatever the 

value of ks, CVE=CVks. This behavior is also observed for a spread footing with a length of 

10 m when the value of the coefficient ks is greater than 3 MN.m-3. 

For the length of spread footings less than 10 m, we observe firstly an increase in the 

value of the ratio CVE � CVks then beyond a certain value of ks (5 MN.m-3 for L=7.5 m, 28 

MN.m-3 for L=5 m) a decrease in the ratio CVE � CVks until it tends to the value of 1. 

In the case of a spread footing with a length of 5 m, Figure 3-8 and Figure 3-9 show 

very different results. For example, for the value of ks=10 MN.m-3, the ratio CVE � CVks is 

equal to 0.5 in the case of support at two ends (Figure 3-8) whilst it is equal to 1.15 in the 

case of support at one end only (Figure 3-9).  

These results show that for a length of spread footing less than 10 m, the considered 

hypothesis (simply supported at one or two ends) has a significant influence on the value 

of the coefficient of variation of differential settlement. 

Whatever the value of ks and the length of the foundation, we obtained CVE� CVks for 

spread footings with simply supported at two ends while with simply supported at one end, 

it was CVE� 1.2CVks. 

 

3.2.4. Influence of the uncertainty of ks on the uncertainty of the bending moment 

The uncertainty on the maximum bending moment of spread footing (Equation 3-2) is 

directly related to the uncertainty of the modulus of the subgrade reaction (CVks) and the 

value of the maximum bending moment that depends on the value of the coefficient of the 

subgrade reaction and boundary conditions. 
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Figure 3-10 and Figure 3-11 present for different lengths of the spread footing which 

are identical to those previously studied, the evolution of the ratio of the coefficient of 

variation of the maximum bending moment over the coefficient of variation of the 

subgrade reaction modulus as a function of ks, respectively, for the spread footing 

supported at two ends and one end. 

 These figures show that for the spread footing with lengths more than or equal to 20 m, 

whatever the value of ks, the value of the ratio CVM � CVks tends to 0.5. This corresponds to 

a shift of the position of the maximum bending moment towards the supports. In this case, 

the maximum bending moment is obtained from the following formula: 

5.0
sk

M
ϕ ′

=  
Equation 3-5 

whereϕ ′ is constant. 

 

 

 
Figure 3-10: Influence of the uncertainty of ks on the uncertainty of the maximum elastic bending moment for 
a spread footing with different lengths with simply supported at two ends as boundary conditions (CVM : 
coefficient of variation of bending moment). 
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Figure 3-11: Influence of the uncertainty of ks on the uncertainty of the maximum elastic bending moment for 
a spread footing with different lengths with simply supported at one end as boundary conditions. 

  

Figure 3-10 shows, in the case of the foundation with a length of 5 m, an increase in the 

value of the ratio CVM � CVks until the value of ks equal to 28 MN.m-3, then a decrease in 

this ratio where for the very large values () the ks the ratio CVM � CVks tends to 0.5. This 

value of ks, equal to 28 MN.m-3, corresponds to the value of ks where the maximum 

bending moment is no longer in the middle of the foundation. When the position of the 

maximum bending moment shifts towards the supports, we observe a decrease in the 

uncertainty of the maximum bending moment. 

We observe the same behavior for spread footings with lengths of 7.5 m and 10 m, but 

when the foundations are long, the displacement of the maximum bending moment 

towards the supports leads to the lower values of ks respectively 6 and 2 MN.m-3 for the 

lengths of 7.5 m and 10 m. 

For spread footings with simply supported at one end (Figure 3-11) and with lengths 

less than 20 m, we observe that the lesser the length of the foundation and the subgrade 

reaction modulus, the lesser the ratio CVM � CVks is. However, whatever the length of the 

foundation, when ks increases, there is a tendency towards the behavior of a spread footing 

with a length more than or equal to 20 m. The lesser the values of ks, the longer the 

foundation, and the higher this tendency is. 
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As in the case of calculation the coefficient of variation of differential settlement, the 

value of the coefficient of variation of the bending moment is very different, for lengths of 

spread footings less than 10 m, depending on the considered boundary conditions (Figure 

3-10 and Figure 3-11). The coefficient of variation of the bending moment can be 10 to 

50% greater in the case of support at two ends. 

Whatever the value of ks and the length of the foundation we obtained CVM � CVks for 

spread footings with simply supported at two ends while with simply supported at one end, 

it was CVM � 0.5CVks. The considered hypothesis (simply supported at one and two ends) 

has also a significant influence on the value of the coefficient of variation of the bending 

moment. 

Hence, having evaluated the uncertainty of the differential settlement and the bending 

moment, these obtained results will be translated in terms of probability of failure 

according to the allowable thresholds for the differential settlement and bending moment. 

Thereafter we will obtain the confidence bounds for each semi-empirical model in order to 

calculate a global uncertainty by the hypothesis of a log-normal distribution.  

 

3.2.5. Reliability analysis for a continuous spread footing 

In the probabilistic analysis, considering uncertainty in the input soil and structure 

parameters, the response of the structure and the assessment of safety are provided in terms 

of a safety index D known as the reliability index or in terms of probability of failure. In 

this study we will focus on the serviceability limit state (SLS). 

From the design considerations, a spread footing for a residential construction satisfies 

the serviceability limit state (SLS) if the maximum differential settlement (E) and the 

maximum bending moment (M) are less or equal to the allowable differential settlement 

(Eall) and maximum elastic bending moment (Me) respectively. That means the spread 

footing does not lead to a violation of serviceability limit state if,  

 eall MMor ≤≤ ∆∆  
Equation 3-6 

where E and M are considered as random variables. Eall and Me are the deterministic 

values. Eall is calculated from the angular distortion equal to 1/750 for the residential 
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construction (Bjerrum, 1963). The value of Me is calculated from (
e

.
6

bh2

σ ) where �e is the 

maximum elastic stress of concrete. Considering E as Normal variable, the probability that 

the computed maximum differential settlement is more than the allowable differential 

settlement of foundation can be stated as 

( ) ( )
∆

∆
∆∆ σ

µ∆ββφ∆∆ −=−=≥ all
allf with1P  

Equation 3-7 

where φ is the cumulative normal distribution, µE and �E are the mean and standard 

deviation of the maximum differential settlement of foundation. 

Considering M as Normal variable, the probability of serviceability limit state (PSLS) is 

also computed for the case of maximum bending moment (M) greater than the maximum 

elastic bending moment of the foundation that can be stated as   

 ( ) ( )
M

Me
MMef

M
with1MMP

σ
µββφ −

=−=≥  
Equation 3-8 

where µM and �M are the mean and standard deviation of the maximum elastic bending 

moment of the foundation. 

The target value of the reliability index D to be reached in the Eurocode 1 is equal to 1.5 

for the SLS (Eurocode 1, 1991). The probability of failure (Pf) should be less than 0.067 to 

avoid exceed the serviceability limit state. 

The obtained results in the previous sections can now be translated in term of 

probability of failure according to the allowable thresholds for differential settlement and 

bending moment. We will consider only one length of spread footing (L= 7.5 m) in order 

to illustrate this part. Poisson's ratio is fixed at 0.3, the coefficients of variation of Bs, h and 

b are 10% and Es equal to 15%. The geometry of the spread footing and the load remain 

unchanged. Maximum allowable differential settlement (Eall) for the spread footing with 

simply supported at two ends and one end for the angular distortion equal to 1/750 are 

respectively 5 and 10 mm. 
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The calculation methodology to estimate and compare the probability of failure with the 

probability of serviceability limit state for the maximum differential settlement and the 

maximum bending moment of a spread footing is presented in Figure 3-12. This flowchart 

is illustrated for a single value of Es. The same calculation is repeated in order to obtain the 

probability of failure for different values of Es. The deterministic values of the maximum 

differential settlements and the maximum bending moments for a single value of Es are 

obtained through the traditional use of the Winkler model for the four semi-emprical 

models. For this purpose, the value of ks for each semi-emprical model is introduced in the 

Winkler model with different boundary conditions and lengths of spread footings (Figure 

3-12). Through the uncertainty approach, the FOSM method is applied on four semi-

empirical models to determine the coefficient of variation of ks for each model. Thereafter, 

the Winkler model with different boundary conditions and lengths of spread footings is 

used to model the behavior of spread footings on a construction site. The FOSM method is 

applied again on the analytical equations of the deflection and bending moment from the 

Winkler model to determine the coefficient of variation of differential settlement and the 

bending moment for each model. Finally, by choosing values of Eall and Me and 

considering the hypothesis on the distribution probability for the differential settlement and 

bending moment, these two approaches (the traditional approach and the uncertainty 

approach) are combined to calculate the probability of failure for each of the four models. 

At the end, the obtained results from the probability of failure are compared with the 

probability of serviceability limit state to test the validity of design. If the probability of 

failure is smaller than the probability of serviceability limit state then the design is 

acceptable. Otherwise, the design should be reviewed. The following results are obtained 

using this methodology.  
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Figure 3-12: Flow chart of the methodology to estimate and compare the probability of failure with the 
probability of serviceability limit state for a maximum differential settlement and a maximum bending 
moment of a spread footing, resting on an elastic soil for a single value of Es      
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Figure 3-13 and Figure 3-14 show the results obtained for the probability of failure 

versus Es for the four semi empirical models, respectively for the spread footing with 

simply supported at two ends and one end. 

 

 
Figure 3-13: Estimation of the probability of failure (Pf) as function of Es for a maximum differential 
settlement of a spread footing with simply supported at two ends as boundary conditions (for the four semi 
empirical models). 

 

 

Figure 3-14: Estimation of the probability of failure (Pf) as function of Es for a maximum differential 
settlement of a spread footing with simply supported at one end as boundary conditions (for the four semi 
empirical models). 
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If for the four semi-empirical models, the values of the coefficient of variation of ks are 

close, the values of Es in order to Pf B 0.067 are very different. Also, whatever the 

considered boundary conditions (Figure 3-13 and Figure 3-14) the value of Es will always 

be greatest with the Vesic model, always lowest with the Ménard model and with 

intermediate values with the models of Biot and Vlassov. For the same semi-empirical 

model to calculate ks, the value of Es in order to Pf B 0.067 is almost twice greater with two 

simply supported (Figure 3-13) than with one simply supported (Figure 3-14). For 

example, for the spread footing rests on elastic soil with Es = 10 MPa, the probability of 

failure is less than 0.067 for the four models of calculate ks in the case of simply supported 

at one end, while for the same value of Es the probability of failure is largely greater than 

PSLS in the hypothesis of simply supported at two ends for the models of Biot, Vlassov and 

Vesic. This shows that considered hypothesis (simply supported at two ends and one end, 

which depend on soil investigation) and the selected semi-empirical model have a great 

importance on the conclusion about the reliability analysis.  

We will consider, by hypothesis, that the maximum bending moment (M) is equal to 

37.5 kN.m that it corresponds to a �e equal to 5 MPa. Figure 3-15 and Figure 3-16 show 

the results obtained for the probability of failure as function of Es, for the four semi-

empirical models, respectively for a spread footing with simply supported at two ends and 

one end. The interpretation of these results is identical to the analysis presented for the 

Figure 3-13 and Figure 3-14 concerning the differential settlement but with values of Es 

lower than in the case of differential settlements in the case presented in this section. These 

results show again the importance of boundary conditions and the choice of semi-empirical 

model.  
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Figure 3-15: Estimation of the probability of failure (Pf) as function of Es for a maximum elastic bending 
moment of a spread footing with simply supported at two ends as boundary conditions (for the four semi 
empirical models). 

 

 
Figure 3-16: Estimation of the probability of failure (Pf) as function of Es for a maximum elastic bending 
moment of a spread footing with simply supported at one end as boundary conditions (for the four semi 
empirical models). 

 

In order to complete the previous analysis, we can study the influence of the value of 

the coefficient of variation of ks on the probability of failure in the case of differential 

settlement from the semi-empirical model of Ménard. 

Figure 3-17 and Figure 3-18 show the obtained results for the probability of failure with 

different values of CVks, respectively in the hypothesis of simply supported at two and one 
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end. If these results show, again the important difference between the hypothesis the 

simply supported at one and two ends, they also show, as expected, the importance of the 

value of the coefficient of variation of ks and then the values of the coefficients of variation 

of Es and b in the case of the semi-empirical model of Ménard. For example, in the case 

shown in Figure 3-17, the soil of the foundation with Es= 7 MPa, should have a coefficient 

of variation of ks less than 5% in order to not exceed the value of PSLS=0.067; the soil of 

the foundation with Es= 9 MPa, a coefficient of variation of ks less than 30%.  

 

 
Figure 3-17: Probability of failure (Pf) for a maximum differential settlement of a spread footing with simply 
supported at two ends as boundary conditions for different values of CVks (Ménard’s model). 

 

 
Figure 3-18: Probability of failure (Pf) for a maximum differential settlement of a spread footing with simply 
supported at one end as boundary conditions for different values of CVks (Ménard’s model) 
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The same figures could, naturally, be obtained for the three other semi-empirical 

models, bending moment and for different foundation geometries and loading (q) in order 

to obtain different charts to help a better design of spread footing for the residential 

construction when rapid spatial variation of soil’s properties are present on the construction 

site. 

All of the presented results for the reliability analysis are based on the hypothesis of a 

normal distribution for the values of the maximum differential settlement and the 

maximum bending moment. The obtained results by the hypothesis of a log-normal 

distribution for these values are nearly identical to those ones obtained for a normal 

distribution and are presented in appendix 1.    

3.2.6. Application to global uncertainty analysis (for a continuous spread footing) 

We propose in this part a basic uncertainty analysis based on the determination of 

confidence bound. The calculation methodology, to obtain the confidence bounds of the 

differential settlement and the bending moment of a spread footing, resting on an elastic 

soil, for each semi-empirical model, is presented in Figure 3-19. The deterministic values 

of maximum differential settlement and the bending moment are obtained through the 

traditional use of the Winkler model. For this purpose, the different values of subgrade 

reaction modulus for each semi-empirical model are introduced in the Winkler model with 

different boundary conditions and lengths of spread footings (Figure 3-19). Through the 

uncertainty approach, the FOSM method is applied on four semi-empirical models to 

determine the coefficient of variation of ks for each model. Thereafter, the Winkler model 

with different boundary conditions and lengths of spread footings, is used to model the 

behavior of spread footings on a construction site. The FOSM method is applied again on 

the analytical equations of the deflection and bending moment from the Winkler model to 

determine the coefficient of variation of differential settlement and the bending moment for 

each model. Finally, by considering the hypothesis on the distribution probability for the 

differential settlement and bending moment, these two approaches (the traditional 

approach and the uncertainty approach) are combined to calculate the confidence intervals 

for each of the four models. At the end, a global uncertainty is proposed which corresponds 

to the range between the maximum of the four upper bounds and the minimum of the four 

lower bounds. 



Effects of uncertainties of ks and a low stiffness zone on the behavior of geotechnical works 

 

123 

 

 

Figure 3-19: Flow chart of the methodology to estimate the global uncertainties of the differential settlement 
and bending moment of a spread footing, resting on an elastic soil. 
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To illustrate some steps of the methodology, Figure 3-20 presents for the Ménard 

model, the evolutions of the maximum differential settlement (Figure 3-20a), the bending 

moment (Figure 3-20c) and their standard deviations (Figure 3-20b and Figure 3-20d) as 

functions of ks and the length of the spread footing. All of these results are obtained for the 

following values: b=0.5 m, h=0.3 m, Bs=0.3, Ec=20 GPa, CVEs=15% and 

CVb=CVh=CVBs=10%.  

 

 
Figure 3-20: Evolutions of the maximum differential settlement (a), bending moment (c) and associated 
standard deviations (b and d) as function of the ks and length of the spread footing for the values of b=0.5 m, 
h=0.3 m, Bs=0.3, Ec=20 GPa, CVEs=15% and CVb=CVh=CVBs=10% for the Ménard model. 

 

Figure 3-20b and Figure 3-20d show that for a small length of the spread footing, the 

maximum values of the standard deviations of the differential settlement and the bending 

moment do not correspond to the smallest values of the subgrade reaction modulus (for 

example for a length equal to 5 m, the value of ks for the maximum value of these standard 

deviations is equal to 8 MN.m-3). However, increasing the spread footing length leads to 

the maximum of these standard deviations in accordance with very low values of ks (for 

example for a length of 20 m the value of ks for the maximum value of these standard 
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deviations is equal to 0.1 MN.m-3). Thus, the confidence bound which depends on the 

standard deviation is a complex function of ks and L.  

In order to illustrate the complete use of this methodology, we take as an example a 

residential construction where one of its spread footings of 10 m is built on weak soil 

(Figure 3-1b) with a Young’s modulus Es of 6 MPa (soft clay) estimated from a 

geotechnical investigation. From published values in the literatures, the coefficient of 

variation of Es is estimated to 15%. The soil parameters, the mechanical property and 

geometrical dimensions of this spread footing are identical to those previously studied in 

Figure 3-20. For this case, the deterministic values of the subgrade reaction modulus, the 

differential settlement and the bending moment are obtained for each semi-empirical 

model. Thereafter, using the methodology explained previously and assuming a lognormal 

distribution (which is a fairly common assumption) for the subgrade reaction modulus, the 

differential settlement and the bending moment, 95% confidence bounds are obtained for 

each semi-empirical model. The results for this application case are presented in Figure 

3-21. As expected the deterministic values of ks, E, M and their confidence intervals are 

different for each semi-empirical model (Figure 3-21a, Figure 3-21b and Figure 3-21c). 

The value of ks and its associated confidence interval are the highest for the Ménard model 

and the smallest for the Vesic model. In the case of the Biot and Vlassov models, we 

obtain almost the same value and confidence interval (Figure 3-21a). Figure 3-21b and 

Figure 3-21c show that the deterministic values and confidence bounds of the differential 

settlement and the bending moment are the most important for the Vesic model and the 

least important for the Ménard model and are almost the same for the Biot and Vlassov 

models. 

In the case where choosing a suitable semi-empirical model is difficult, a global 

uncertainty is introduced. This includes the uncertainties from each semi-empirical model 

and corresponds to the range between the maximum of the four upper bounds and the 

minimum of the four lower bounds. The global uncertainties for E, M and for the case 

under consideration, are respectively [3.84; 15.54] (mm), [15.12; 31.80] (kN.m) (Figure 

3-21b and Figure 3-21c). 

Angular distortions, which correspond to the ratio between E and xmax(E) (see section 3.2 

), can be obtained from the deterministic values of the maximum differential settlements 

for these semi-empirical models. For these models, except for the Vesic model with an 
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angular distortion of 1/445, the angular distortions are smaller than the limit angular 

distortion defined for a residential construction (1/750 (Bjerrum, 1963)). However, the 

angular distortions obtained from the global uncertainty of the maximum differential 

settlements range from 1/1300 to 1/300 showing it is possible to exceed the limit angular 

distortion. Maximum bending moment values deduced from the global uncertainties 

(Figure 3-21c) are less than the value of the maximum plastic bending moment equal to 

56.25 MN.m that it corresponds to a �e equal to 5 MPa (0.25b.h2.�e). 

Finally, the flow chart of Figure 3-22 illustrates the methodology in the considered 

application case with all results.  

The same results could naturally be carried out for different foundation geometries, 

boundary conditions, and loading (q) in order to obtain different charts to help a better 

design of continuous spread footing for a residential construction when zones of weak soil 

are present on the construction site. 
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Figure 3-21: Global uncertainties for the a) Subgrade reaction modulus ks, b) Maximum differential 
settlement E  and  c)Maximum bending moment M by considering 95% confidence bound for each semi-
empirical model with log-normal distribution. 
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Figure 3-22: Results of the methodology applied to a spread footing with length of 10 m. 

 

In the following, the same work is done for a buried pipe resting on elastic soil.   
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3.3. Effect of uncertainty of ks and a low stiffness zone of soil on the behavior of a 
buried pipe 

 

3.3.1. Hypotheses for the boundary conditions 

The failure of buried pipes from differential settlements is one of the most common 

causes of structural failure, and a design analysis should therefore be carried out for an 

evaluation of permissible differential settlements. The differential settlements can be 

encountered when the buried pipe is installed on soil with different lithologies and 

mechanical properties such as clayey zones of low stiffness compared to sand. For this low 

stiffness zone, the values of Es are between 0.4 MPa and 6 MPa (Cassan, 1978). For these 

values of Es, the correspondence values of kC (coefficient of reaction for clayey soil) can be 

calculated from the semi-empirical models. In the case of the Matsubara model with the 

Poisson’s ratio of 0.3 and external pipe diameter of 1.5 m, the values of kC are between 

0.64 MN.m-3 and 9.7 MN.m-3.  

Different cases where an absolute settlement or a differential settlement may appear can 

be considered (Figure 3-23). Figure 3-23a presents a buried pipe resting on a sandy soil 

with a reaction coefficient kA. This case can be modeled by considering a pipe as a beam 

resting on an elastic soil (w0(x) =0, Equation 1-52) with only an absolute settlement and no 

bending moment. Figure 3-23b shows a part of the length of the pipe resting on a low 

stiffness zone of clay with reaction coefficient kC, while the remaining length of the pipe 

rests on a sandy soil with coefficient kA much larger than kC. In this case, the pipe affected 

by a low stiffness zone of length L can be modeled by considering a beam with fixed ends 

as boundary conditions. In the case that the largest part of the pipe rests on a low stiffness 

zone (Figure 3-23c) we can consider that this case is like the previous case but with a very 

large length L, where the influence of one of the fixed ends becomes insignificant. 

Note that when there are manholes at both ends of a buried pipe, it can be modeled by 

considering a beam with fixed ends as boundary conditions. In the following, we focus on 

the behavior of the buried pipe in the case of the Figure 3-23b and where it is assumed that 

the settlement of the pipe occurs only into the zone of low coefficient of reaction. 
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Figure 3-23: Different hypotheses for the boundary conditions: a) Buried pipe resting on a sandy soil with 
only an absolute settlement and no bending moment. b) A part of the length of the pipe resting on low 
stiffness zone of clay (L), while the remaining length of the pipe rests on a sandy soil. c) The largest part of 
the pipe rests on a low stiffness zone (length L being very large). (L: is a part of the pipe length affected by a 
low stiffness zone, kA: coefficient of reaction for sandy soil, kC: coefficient of reaction for clayey soil; kC << 
kA). 

 

3.3.2. Boundary conditions verification 

We present in this section results from two different approaches to verify the considered 

boundary conditions for a buried pipe in the case of Figure 3-23b: one dimensional models 

using MAPLE© software (analytical model) and a finite element method (CASTEM© 

software). It should be noted that in our models, we considered the same values of the 

subgrade reaction modulus of the clayey soil (kC) or sandy soil (kA) at each given location 

along a buried pipe axis. 
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Figure 3-24 shows schematically the finite element modelling of a buried pipe (1D) in 

the case of Figure 3-23b. The computations are done with the CASTEM© software using 

the Winkler model.   

 

 
Figure 3-24: Finite element modelling of a buried pipe in the case of Figure 3-23b with the CASTEM© 

software using the Winkler model (one dimensional model, 1D) 

 

Figure 3-25 and Figure 3-26 show, respectively, evolutions of the maximum differential 

settlement and the maximum bending moment as a function of the length of a low stiffness 

zone beneath the buried pipe (L) for different ratios of J= kA/ kC using the finite element 

method (1D) and compare to that one with fixed ends (analytical model, 1D). These figures 

show that for the very high value of coefficient kA (J= kA/ kC B400, kC=5 MN.m-3), the 

values of the maximum differential settlements and the bending moments are almost the 

same as those of with fixed ends. Then in this case, the pipe affected by a low stiffness 

zone of length L can be modeled by considering a beam with fixed ends as boundary 

conditions.  
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 Figure 3-25: Evolution of the maximum differential settlement (E) as a function of the length of a low 
stiffness zone beneath the buried pipe (L) for different ratios of J= kA/ kC using the finite element method 
(CASTEM©, 1D) and compare to that one with fixed ends (MAPLE©, 1D) in the case of Figure 3-23b (kC=5 
MN.m-3).   

 

 
Figure 3-26: Evolution of the maximum bending moment (M) as a function of the length of a low stiffness 
zone beneath the buried pipe (L) for different ratios of J= kA/ kC using the finite element method (CASTEM©, 
1D) and compare to that one with fixed ends (MAPLE©, 1D) in the case of Figure 3-23b (kC=5 MN.m-3).   
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If the hypotheses on the boundary conditions are simplified, they allow us to estimate a 

maximum value of the deflection with a one-dimensional analytical modeling, which 

depends on only two parameters, the coefficient of reaction and the length of the low 

stiffness zone.  

 

3.3.3. Estimation of the uncertainty of the differential settlement and bending 
moment 

Using the FOSM method applied on the deflection equation (Equation 1-51) and on the 

equation of the bending moment allows us to study the influence of the uncertainties of ks 

and L on the uncertainties of the differential settlement and the bending moment. The 

uncertainties of the differential settlement and the bending moment can be decomposed 

into two parts, one part is a function of the uncertainty of ks and the other part is a function 

of the uncertainty of the length of the low stiffness zone. These uncertainties, translated in 

terms of the coefficients of variation, are obtained from the following equations (Equation 

3-9 and Equation 3-10 respectively for the coefficients of variation of the differential 

settlement (CVw) and the bending moment (CVM) (Imanzadeh et al., 2013b) :  
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where in Equation 3-11, CVw/ks is the coefficient of variation of the maximum deflection 

with respect to ks, CVks the coefficient of variation of ks, w is the maximum deflection as 

function of ks, sk  the mean of ks, the value of the maximum deflection is calculated for a 

given value of ks corresponding to an abscissa xw considered as constant over the range of 

variation of ks. The partial derivative of w with respect to ks is then calculated for this 

abscissa xw. Equation 3-12 is defined in the same manner as Equation 3-11 except the 

parameters and the partial derivative are with respect to L. 

For Equation 3-13, CVM/ks is the coefficient of variation of the maximum bending 

moment of the pipe with respect to ks, M is the maximum bending moment as a function of 

ks, the value of the maximum bending moment for a given value of ks corresponding to an 

abscissa xM considered as constant over the range of variation of ks. The partial derivative 

of M with respect to ks is calculated for this abscissa xM. Again, Equation 3-14 has the same 

definition but in term of L.  

 

3.3.3.1. Influence of the uncertainties of ks and the low stiffness zone on the 
uncertainty of the differential settlement 

Four variables have an influence on the uncertainty on the maximum deflection of 

buried pipe or the maximum differential settlement of the soil (Equation 3-9): the 

uncertainty of the coefficient of subgrade reaction (CVks), the uncertainty of the coefficient 

of low stiffness zone length (CVL), the value of the coefficient of subgrade reaction and the 

part of the pipe affected by a low stiffness zone of length L. The maximum deflection is 

then considered as a differential settlement E in the following. According to the boundary 

conditions considered in this study and for the buried pipes (e=0.15m, d=1.5m, Ec=20 

GPa) with different lengths of low stiffness zones subjected to an uniform load equal to 
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100 kN per running meter of pipe, we can calculate, from the Equation 3-11, the ratio 

between the coefficient of variation of the maximum differential settlement with respect to 

ks (CVE/ks) and the coefficient of variation of the subgrade reaction modulus (CVks). 

Figure 3-27 depicts the evolution of the ratio CVE/ks /CVks as a function of the subgrade 

reaction modulus, for different low stiffness zone lengths. For a low stiffness zone length 

greater than or equal to 50 m and for any value of ks, the coefficient of variation of the 

settlement respect to ks is close to the coefficient of variation of ks (Figure 3-27). For this 

length the influence of the supports is negligible and the value of the differential settlement 

is close to the value of the absolute settlement calculated in the case of the buried pipe with 

free ends resting on an elastic soil. This is also the maximum value of the differential 

settlement that it would be calculated by considering the third case in Figure 3-23. For the 

same mentioned length and if the value of CVEs is greater than 10% we obtain CVE/ks=CVks 

� CVEs. At the opposite, the uncertainty on the maximum differential settlement is 

insignificant (CVE/ks D 0) for a low stiffness zone length inferior or equal to 5 m. 

 

 
Figure 3-27: Influence of the uncertainty of ks on the uncertainty of the maximum differential settlement for 
the different low stiffness zone lengths (L) (CVE/ks: coefficient of variation of the differential settlement with 
respect to ks: CVks: coefficient of variation of ks). 

 

For the low stiffness zone lengths between 5 m and 50 m, we observe that the lower the 

values of ks and the low stiffness zone lengths, the lower the values of the ratio CVE/ks /CVks 

are. This shows the influence of the fixed ends on the value of the coefficient of variation 

of differential settlement. Nevertheless, when the value of ks increases, whatever the length 
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of the low stiffness zone, the ratio tends to approach to the behavior of the low stiffness 

zone lengths greater than or equal to 50 m. For these lengths, the uncertainty of the 

differential settlement with respect to ks is almost always less than or equal to the 

uncertainty of the subgrade reaction modulus (CVE/ks� CVks). 

The ratio between the coefficient of variation of the maximum differential settlement 

with respect to L (CVE/L) and the coefficient of variation of the length of the low stiffness 

zone (CVL) can be calculated from Equation 3-12. Figure 3-28 shows that the uncertainty 

of the differential settlement respect to L is the most important for a low stiffness zone less 

than or equal to 5m compare to the uncertainty of the other lengths of low stiffness zones. 

For this length of 5 m and whatever the value of ks, the ratio CVE/L /CVL is close to the 

value of 4 showing the significant effect of boundary conditions compared to the effect of 

Winkler’s springs. The value of 4 corresponds to the power of L in the equation of the 

deflection in the case of a beam with two fixed ends with uniform loading. For the low 

stiffness zone greater than or equal to 50 m and for any value of ks (except for ks=0 MN.m-

3), the value of CVE/L is close to zero. 

 

 
Figure 3-28: Influence of the uncertainty of L on the uncertainty of the maximum differential settlement for 
the different low stiffness zone lengths (L) (CVE/L: coefficient of variation of the differential settlement with 
respect to L, CVL: coefficient of variation of L). 

 

In the case of low stiffness zones between 5 m and 50 m the effect of Winkler’s springs 

becomes significant and we observe that the lower the values of ks and the low stiffness 

zone lengths, the greater the values of the ratio CVE/L /CVL are. For ks values inferior or 
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equal to 15 MN.m-3, the value of CVE/L is between one and four times CVL for lengths 

between 5 m and 20 m. For lengths between 20 m and 30 m, the previous remark is valid 

only for very small values of ks.   

 

3.3.3.2. Influence of the uncertainties of ks and the low stiffness zone on the 
uncertainty of the bending moment 

The uncertainty on the maximum bending moment of buried pipes (Equation 3-10) 

depends on the same four variables as for the uncertainty on the maximal differential 

settlement. 

Figure 3-29 shows for the different low stiffness zone lengths (identical to those 

previously studied for the differential settlement) the evolution of the ratio CVM/ks /CVks 

(Equation 3-13) as a function of the coefficient ks. In the case of a low stiffness zone 

greater or equal to 50 m and whatever the value of ks, the value of the ratio CVM/ks /CVks 

tends to 0.5. For a low stiffness zone less than or equal to 5 m and for any value of ks, the 

value of CVM/ks is close to zero. For lengths between 5 m and 50 m we obtain CVM/ks < 0.5 

CVks showing that the uncertainty of the bending moment with respect to ks is less than half 

of the uncertainty of the subgrade reaction modulus. 

 

 
Figure 3-29: Influence of the uncertainty of ks on the uncertainty of the maximum bending moment for the 
different low stiffness zone lengths (L) (CVM/ks: coefficient of variation of the bending moment with respect to 
ks). 
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Figure 3-30 depicts, for the different low stiffness zone lengths, the evolution of the 

ratio of the coefficient of variation of the maximum bending moment with respect to L 

over the coefficient of variation of the low stiffness zone length (Equation 3-14) as a 

function of the coefficient of ks. As in the case of the calculation of the coefficient of 

variation of differential settlement with respect to L, the value of the coefficient of 

variation of bending moment with respect to L is also very different for the different values 

of low stiffness zone lengths. This uncertainty is the most important for a low stiffness 

zone inferior or equal to 5 m where the value of the ratio CVM/L /CVL is nearly equal to 2 

whatever the value of ks. In fact, the value of 2 corresponds to the power of L in the 

equation of the bending moment in the case of a beam with two fixed ends with uniform 

loading. This shows, as we mentioned earlier for the length of 5 m in Figure 3-28, the 

insignificant effect of Winkler’s springs compared to the boundary conditions. 

In the case of a low stiffness zone ranging from 5 m to 50 m and for any value of ks, the 

value of CVM/L is always less than twice the value of CVL and tends to zero for a large 

value of ks (Figure 3-30). 

 

 
Figure 3-30: Influence of the uncertainty of L on the uncertainty of the maximum bending moment for the 
different low stiffness zone lengths (CVM/L: coefficient of variation of the bending moment with respect to L). 

 

For a low stiffness zone length between 5 m and 20 m and for a value of ks inferior to 5 

MN.m-3,  we observed that 0.5CVL <  CVM/L < 2CVL. For lengths ranging from 20 m to 50 
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m the uncertainty of CVM/L becomes insignificant except if a void is present under the pipe 

(ks = 0 MN.m-3), in this case the value of CVM/L is twice the value of CVL.     

These results show that, for values of ks inferior to 10 MN.m-3 and for small values of L, 

the major effect of the uncertainty of L (compared to the uncertainty of ks) on the 

uncertainty of the differential settlement and the bending moment (CVE/L > CVE/ks and 

CVM/L > CVM/ks for CVks=CVL). The only way to reduce the uncertainty of the differential 

settlement and the bending moment is then to reduce the value of the coefficient of 

variation of the length of the low stiffness zone, which requires a soil reconnaissance able 

to detect and precisely locate these zones along a buried pipe. 

We have done the same work for a continuous buried steel pipe with an external 

diameter of 1.5 m, a thickness of 0.02 m, Young’s modulus of a pipe equal to 210 GPa and 

the other required parameters are identical to those previously studied here. The results are 

nearly identical to those obtained for a concrete buried pipe. These results are presented in 

appendix 1. 

3.3.4. Total uncertainties contributions of the maximum differential settlement and 
the maximum bending moment with respect to the uncertainties of soil 
reaction modulus and a low stiffness zone 

The total uncertainties contributions of the maximum differential settlement and the 

maximum bending moment are decomposed into contributions from the uncertainties of 

soil reaction modulus (ks) and a low stiffness zone (L) (Equation 3-9 and Equation 3-10). 

These total uncertainties contributions can be obtained through Equation 3-15 and 

Equation 3-16 respectively for the maximum differential settlement and the maximum 

bending moment. 
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where 
2

2

CV

CV sk/

∆

∆
 and 2

M

2

CV

CV sk/M

 are respectively the total uncertainties contributions of the 

maximum differential settlement and the maximum bending moment respect to ks. The 

ratios 
2

2

CV

CV L/

∆

∆
 and 

2

2

M

L/M

CV

CV
 are defined in the same manner as the latter ratios except these 

ratios are with respect to L.  

In the following, this contribution of uncertainty is explained for different lengths of low 

stiffness zones for the values of CVks and CVL respectively equal 20% and 10%. 

Additionally, this contribution of uncertainty is discussed for the six semi-empirical 

models and for a low stiffness zone lengh of 15 m.  

 

3.3.4.1. Total uncertainty contribution of the maximum differential settlement with 
respect to the uncertainties of soil reaction modulus and a low stiffness zone 

 Figure 3-31 shows, using Equation 3-15, the total uncertainty contribution of the 

maximum differential settlement with respect to ks and L (respectively Figure 3-31a and 

Figure 3-31b) for different lengths of low stiffness zones. As it shown from Figure 3-31a, 

for a low stiffness zone length greater than or equal to 50 m and for any value of ks, the 

total uncertainty contribution of the maximum differential settlement with respect to ks is 

equal to 100%.This illustrates that the total uncertainty contribution of the maximum 

differential settlement with respect to L is equal to 0%. On the contrary, this uncertainty 

contribution with respect to ks is insignificant for a low stiffness zone length inferior or 

equal to 10 m (for example: 0
CV

CV
2

2
sk/

≈
∆

∆
 for L=5 m). For the low stiffness zone lengths 

between 10 m and 50 m, we observe that the lower the values of ks and the low stiffness 

zone lengths, the lower the values of the ratio 
2

2

CV

CV sk/

∆

∆
are. Nevertheless, when the value of 

ks increases, whatever the length of the low stiffness zone, this ratio tends to approach to 

the behavior of the low stiffness zone lengths greater than or equal to 50 m. For the total 

uncertainty contribution of the maximum differential settlement with respect to L (Figure 



Effects of uncertainties of ks and a low stiffness zone on the behavior of geotechnical works 

 

141 

 

3-31b) we obtain, as expected, an inverse behavior compare to this total uncertainty 

contribution with respect to ks (Figure 3-31a). 

 

  a) 

 

 

b) 

Figure 3-31: Total uncertainty contribution of the maximum differential settlement with respect to ks and L 
(respectively figures a and b) for different lengths of low stiffness zones.  

  

For example, Figure 3-32 shows the total uncertainty contribution of the maximum 

differential settlement with respect to ks and L (respectively Figure 3-32a and Figure 

3-32b) for the six semi-empirical models and for a low stiffness zone lengh of 15 m. As 

can be seen from Figure 3-32a, for small values of Es inferior to 8 MPa for all of these 
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semi-empirical model except for the Matsubara model, the total uncertainty contribution of 

the maximum differential settlement with respect to ks is almost insignificant. Beyond this 

value of Es (Es B 8 MPa) Matsubara’s model gives the greatest value of the ratio 
2

2

CV

CV sk/

∆

∆
 

and Vesic’s model gives the lowest value of this ratio. The value of this ratio for the 

Kloppel model is almost the average of the values of the Matsubara and Meyerhof models. 

The value of this ratio for the Meyerhof model is nearly the mean of the values of the 

Kloppel and Biot models. Biot’s and Selvadurai’s models give nearly the same value of 

this ratio for the considered values in this example.  

  

 
a) 
 

 
b) 

Figure 3-32: Total uncertainty contribution of the maximum differential settlement with respect to ks and L 
(respectively figures a and b) for the six semi-empirical models and for a low stiffness zone lengh of 15 m  
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For the total uncertainty contribution of the maximum differential settlement respect to L 

(Figure 3-32b) and for the considered parameters in this example, we obtain an inverse 

behavior compare to those obtained with respect to ks (Figure 3-32a). 

3.3.4.2. Total uncertainty contribution of the maximum bending moment with respect 
to the uncertainties of soil reaction modulus and a low stiffness zone 

Figure 3-33 shows, using Equation 3-16, the total uncertainty contribution of the 

maximum bending moment with respect to ks and L (respectively Figure 3-33a and Figure 

3-33b) for different lengths of low stiffness zones. Figure 3-33a shows for a low stiffness 

zone length greater than or equal to 50 m and whatever a value of ks, the total uncertainty 

contribution of the maximum bending moment with respect to ks is equal to 100%. This 

shows the total uncertainty contribution of the maximum bending moment with respect to 

L is equal to 0%. On the contrary, this uncertainty contribution with respect to ks is 

insignificant for a low stiffness zone length inferior or equal to 5 m (for example: 

0
CV

CV
2

M

2
sk/M

≈  for L=5 m). 

For the low stiffness zone lengths between 30 m and 15 m and for the small values of ks 

inferior to 20 MN.m-3 the values of the ratio 2
M

2

CV

CV sk/M

increase rapidly. For the low stiffness 

zone lengths between 10 m and 5 m the values of this ratio increase slowly. Nevertheless, 

when the value of ks increases, whatever the length of the low stiffness zone, this ratio 

tends to approach to the behavior of the low stiffness zone lengths greater than or equal to 

50 m. For the total uncertainty contribution of the maximum bending moment with respect 

to L (Figure 3-33b) we obtain, as expected, an inverse behavior compare to the total 

uncertainty contribution with respect to ks (Figure 3-33a). 
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a) 
 
 

 
b) 

Figure 3-33: Total uncertainty contribution of the maximum bending moment with respect to ks and L 
(respectively figures a and b) for different lengths of low stiffness zones 

 

Finally, as in the case of maximum differential settlement, Figure 3-34 illustrates the 

total uncertainty contribution of the maximum bending moment with respect to ks and L 

(respectively Figure 3-34a and Figure 3-34b) for the six semi-empirical models and for a 

low stiffness zone lengh of 15 m. 

As shown in Figure 3-34a, for the values of Es A 10 MPa the values of the ratio 
2

M

2

CV

CV sk/M

 

increases very rapidly for the Matsubara and Kloppel models. This shows the importance 
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of the uncertainty of ks on the total uncertainty contribution for these two models. On the 

contrary it is very slowly in the case of the Vesic model compare to the five other models. 

Nevertheless, when the value of Es increases, this ratio tends to a value of 100% illustrating 

the uncertainty of L on the total uncertainty contribution is insignificant ( 0
CV

CV
2

2

M

L/M
≈ ). 

 For the total uncertainty contribution of the maximum bending moment with respect to 

L (Figure 3-34b) an inverse behavior is obtained compare to the total uncertainty 

contribution with respect to ks (Figure 3-34a). 

 

 
a) 
 

 
b) 

Figure 3-34: Total uncertainty contribution of the maximum bending moment with respect to ks and L 
(respectively figures a and b) for the six semi-empirical models and for a low stiffness zone lengh of 15 m 
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Results presented in this section show the major contribution of a small length of low 

stiffness zone in the uncertainty of the differential settlement and bending moment. The 

choice of semi-empirical model appears important. Results of the different contributions 

can be very different between these six semi-empirical models.          

These previous results then can be translated in terms of probability of failure according 

to the allowable thresholds for the differential settlement and bending moment of a buried 

pipeline. Thereafter, the confidence bounds for each semi-empirical model are obtained in 

order to calculate a global uncertainty by the hypothesis of a lognormal distribution. 

3.3.5.   Reliability analysis for a buried concrete pipe 

The obtained results in the previous sections can now be translated in term of 

probability of failure according to the allowable thresholds for differential settlement and 

bending moment by the hypothesis of normal distribution. We will consider only one 

length of buried pipe (L=30 m) in order to illustrate this part. Poisson's ratio is fixed at 0.3, 

the same coefficients of variation of Bs and d equal to 5% and the coefficients of variation 

of Es and L respectively equal to 15% and 10%. The geometry of the buried pipe and the 

load remain unchanged. Maximum allowable differential settlement (Eall) for the buried 

pipe for a value of angular distortion of 1/500 is equal to 30 mm. 

Figure 3-35 shows the results obtained for the probability of failure as function of Es for 

the six semi empirical models for a buried pipe of 30 m. If for the six semi-empirical 

models, the values of the coefficient of variation of ks are close to each other, the values of 

Es in order to Pf B 0.067 are very different. Also, the value of Es will always be greatest 

with the Vesic model, always lowest with the Matsubara model and with intermediate 

values with the models of Kloppel, Meyerhof, Selvadurai and Biot. For example, the soil 

modulus with Es=7MPa for the Vesic model does not exceed the value of PSLS=0.067 while 

this value of Es for the Matsubara model is equal to 1.5 MPa in order to not exceed the 

value of the probability of SLS.   
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Figure 3-35: Estimation of the probability of failure (Pf) as function of Es for the maximum differential 
settlement of a buried pipe (for the six semi-empirical models).  

 

 

We will consider, by hypothesis, that the maximum bending moment (M) is equal to 

2880 kN.m that it corresponds to a �e equal to 10 MPa (�e: maximum elastic stress of 

concrete). Figure 3-36 shows the results obtained for the probability of failure as function 

of Es, for the six semi-empirical models. The interpretation of these results is identical to 

the analysis presented for Figure 3-35 concerning the differential settlement but with 

values of Es greater than in the case of differential settlements in the case presented in this 

section. These results show again the importance of the choice of a semi-empirical model.  

 

 
Figure 3-36: Estimation of the probability of failure (Pf) as function of Es for the maximum elastic bending 
moment of a buried pipe (for the six semi-empirical models and for a maximum elastic stress of concrete 
equal to 10 MPa).  
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The probability of failure for the maximum bending moment (M) of 1440 kN.m 

(corresponds to a �e equal to 5 MPa) is presented in appendix 1.  

In order to complete the previous analysis, we can study the influence of the values of 

the coefficient of variation of ks and L on the probability of failure in the case of 

differential settlement and the semi-empirical model of Vesic. 

Figure 3-37 and Figure 3-38 show the obtained results for the probability of failure 

respectively for the different values of CVks and CVL. Figure 3-37 depicts nearly the same 

values of the probability of failure for the different values of CVks illustrating the 

unimportance of the value of the coefficient of variation of ks. On the contrary, Figure 3-38 

shows the importance of the value of the coefficient of variation of L in the case of the 

semi-imprical model of Vesic. For example, in the case shown in Figure 3-38, the soil of 

the foundation with Es= 7 MPa, should have a coefficient of variation of L less than 5% in 

order to not exceed the value of PSLS=0.067; the soil of the foundation with Es= 9 MPa, a 

coefficient of variation of L less than 30%. 

 

 
Figure 3-37: Comparing the probability of failure (Pf) for the maximum differential settlement of a buried 

pipe for different values of CVks (Vesic’s model) 
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Figure 3-38: Comparing the probability of failure (Pf) for the maximum differential settlement of a buried 
pipe for different values of CVL (Vesic’s model)  

 

Figure 3-39 show the obtained results for the probability of failure for the different 

values of CVks and CVL. The probability of failure for the differential settlement is almost 

close to those obtained from Figure 3-38 showing again the importance of the value of CVL 

compare to CVks.   

 

Figure 3-39: Comparing the probability of failure (Pf) for the maximum differential settlement of a buried 
pipe for different values of CVks and CVL (Vesic’s model) 
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The same figures could be obtained for the five other semi-empirical models, bending 

moment and for different buried pipes geometries and loading (q) in order to obtain 

different charts to help a better design of buried pipe when the soil modulus and the 

geometrical dimensions of pipe are uncertain and where weak soil zones are present on the 

construction site. 

All of the presented results in this section for the reliability analysis are based on the 

hypothesis of a normal distribution for the values of the maximum differential settlement 

and the maximum elastic bending moment. The obtained results by the hypothesis of a log-

normal distribution for these values are almost identical to those ones obtained for a 

normal distribution as presented in appendix 1. 

3.3.6. Application to global uncertainty analysis (for a buried concrete pipe) 

In this section, for each semi-empirical model, we use the presented methodology 

(Figure 3-19) for the calculation of the confidence bounds of the differential settlement and 

the bending moment of a buried pipe resting on an elastic soil and in the presence of a low 

stiffness zone in order to verify that values of limit states design are not included into 

confidence bounds.   

Firstly, the deterministic values of the maximum differential settlement and the bending 

moment are obtained through the traditional use of the Winkler model. For this purpose, 

starting from values of Es, Bs, d, Ec, we obtain from each semi-empirical model different 

values of the subgrade reaction modulus which are introduced in the Winkler model for a 

given length of low stiffness zone. In a second step, through the uncertainty approach, the 

FOSM method is applied on the six semi-empirical models knowing the coefficient of 

variation of each parameter (Es, Ec, Bs, d) to determine the coefficient of variation of ks for 

each model. Thereafter, the FOSM method is applied again on the analytical equations of 

the deflection and the bending moment (for a given CVL) to determine the coefficient of 

variation of differential settlement and the bending moment for each model. Finally, by 

considering the hypothesis on the distribution probability for the differential settlement and 

bending moment, both approaches (traditional approach and uncertainty approach) are 

combined to calculate the confidence intervals for each of the six models. At the end, a 

global uncertainty is proposed which corresponds to the range between the maximum of 

the six upper bounds and the minimum of the six lower bounds.  
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In order to illustrate the complete use of this methodology, we take as an example a 

continuous buried steel or concrete pipe resting on soil in the presence of a low stiffness 

zone of 30 m (Figure 3-23b) with a Young’s modulus (Es) of 2 MPa (very soft clay) 

estimated from a geotechnical investigation. The coefficient of variation of Es and L are 

estimated to 15% and 10% from published values in the literatures and expert judgment 

respectively. The soil parameters, the mechanical property and the geometrical dimensions 

of this buried pipe are identical to those previously studied in this paper. For this 

considered case, the deterministic values of the subgrade reaction modulus, the differential 

settlement and the bending moment are obtained for each semi-empirical model (Figure 

2-11 and Equation 1-51). Thereafter, using the methodology explained previously and 

assuming a lognormal distribution (which is a fairly common assumption) for the subgrade 

reaction modulus, the differential settlement and the bending moment, their 95% 

confidence bounds are obtained for each semi-empirical model. The results for the 

application case are presented in Figure 3-40. As expected the deterministic values of ks, E, 

M and then their confidence intervals are different for each semi-empirical model (Figure 

3-40a, Figure 3-40b and Figure 3-40c). The value of ks and its associated confidence 

interval are the highest for the Matsubara model and the smallest for the Vesic model 

(Figure 3-40a). Figure 3-40b and Figure 3-40c show that the deterministic values and 

confidence bounds of the differential settlement and the bending moment are the most 

important for the Vesic model and the least important for the Matsubara model. 

In the case wherein choosing a suitable semi-empirical model is difficult, a global 

uncertainty is introduced. This includes the uncertainties from each semi-empirical model 

and corresponds to the range between the maximum of the six upper bounds and the 

minimum of the six lower bounds. The global uncertainties for E and M for the case under 

consideration are respectively [13.93; 78.13] (mm) and [2.190; 6.401] (MN.m) (Figure 

3-40b and Figure 3-40c). 

The counter slope for the buried pipe, which correspond to the ratio between � and 

xmax(E) (see section 3.2), can be obtained from the deterministic values of the maximum 

differential settlements for these semi-empirical models. This slope should be compared to 

the serviceability limit state, corresponding to a value of counter slope of 1/250 (it is taken 

as an average limit value), which can prevent the normal flow of fluids. For the six models 

the deterministic values of counter slopes are smaller than the limit value of 1/250. 
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However, the values of counter slopes obtained from the global uncertainty of the 

maximum differential settlements ranging from 1/1000 to 1/190 showing it is possible to 

exceed the limit counter slope. By considering the maximum elastic stress of concrete (�e) 

equal to 20 MPa, for the bending moment, the maximum values deduced from the global 

uncertainties (Figure 3-40c) are less than the value of the maximum plastic bending 

moment equal to 6.75 MN.m. 

The same results could naturally be carried out for different buried pipes geometries, 

boundary conditions and loading (q) in order to obtain different charts to help a better 

design of buried pipes, like sewer networks, when weak soil zones are present on a 

construction site.  



Effects of uncertainties of ks and a low stiffness zone on the behavior of geotechnical works 

 

153 

 

 
Figure 3-40: Global uncertainties for the a) Subgrade reaction modulus ks, b) Maximum differential 
settlement E and c) Maximum bending moment M by considering 95% confidence bound for each semi-
empirical model with log-normal distribution (Es=2 MPa,  Ec=20 GPa, , Bs=0.3, d=1.5 m, e=0.15 m, L=30 
m, q= 100 kN/m, CVEs=15%, CVL=10%, CVd= CVBs= CVEc=5%). 
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Results of the application to global uncertainty analysis for a continuous buried steel 

pipe are presented in appendix 1.  

3.4. Comparison of FOSM and Monte Carlo analysis results 

The Monte Carlo Method is widely used in stochastic modeling. It is a versatile method 

which, in principle, can always be applied. It consists of performing a large number of 

deterministic calculations for random realizations of the problem and a statistical analysis 

of results. The computational effort may become huge, however, before results converge, 

and the number of realizations necessary is at best only approximately known in advance. 

It is common to use the Monte Carlo method to verify other approximate solutions, like 

FOSM and FORM. For example, Silva et al. (2008) used these two previous methods 

(FOSM and Monte Carlo simulation) for a reliability evaluation of reinforced concrete 

pipes in crack opening limit state. Quantification of uncertainty in groundwater modeling 

and uncertainty analysis of Lake Erie Net Basin Supplies, using these methods, were 

respectively studied by Kunstmann et al. (2002) and Bruxer (2011).  

In the following the results of the Monte Carlo technique are compared to those from 

the FOSM method for the superficial geotechnical designs (continuous spread footings and 

buried pipes). The comparisons, for simplicity, will do for a length of spread footing and 

for a low stiffness zone of soil beneath the buried pipe with a lognormal distribution for 

each of the soil and structure parameters.  

 The evolutions of CVks as a function of CVEs for the four semi-empirical models in the 

case of spread footing, using the Monte Carlo approach are shown in Figure 3-41.This 

figure is for the values of Es equal to 5 MPa (Figure 3-41a) and 25 MPa (Figure 3-41b) for 

the generation of 1000 values of this parameter. This figure was obtained by assuming the 

values of Bs, b, h and Ec to have a log-normal distribution respectively with mean values of 

0.3, 0.5 m, 0.3 m and 20 GPa, the coefficients of variation for each parameter equal to 

10%, from the generation of 1000 values of these parameters. Statistical analysis of Monte 

Carlo results is performed to obtain one value of CVks for one value of CVEs. As can be 

seen, the results of the Monte Carlo (Figure 3-41) and FOSM (Figure 2-10) methods are as 

expected nearly identical for all semi-empirical models. 

Figure 3-42 presents for a buried pipe and for the values of Es equal to 5 MPa (Figure 

3-42a) and 25 MPa (Figure 3-42b), using the Monte Carlo approach, the evolutions of CVks 
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as a function of CVEs for six semi-empirical models. The values of Ec equal to 20 GPa, 

coefficients of variation for each parameter (d, Bs and Ec) equal to 5%, and other required 

parameters are identical to those previously studied in Figure 2-16. This figure was 

obtained from the generation of 1000 values of soil and buried pipe parameters and for one 

value of coefficient of variation of Es which give, after a statistical analysis, one value of 

CVks. As expected, there is a little difference in the results between Monte Carlo (Figure 

3-42) and FOSM (Figure 2-16) approaches. 

 

 
Figure 3-41: Evolution of CVks (Coefficient of Variation of ks) as a function of CVEs (Coefficient of Variation 
of Es) for the values of Es equal to 5 and 25 MPa (Figure 3-41a and Figure 3-41b) for studied semi-empirical 
models (Monte Carlo method for a spread footing). 
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Figure 3-42: Evolution of CVks (Coefficient of Variation of ks) as a function of CVEs (Coefficient of Variation 
of Es) for the values of Es equal to 5 and 25 MPa (Figure 3-42a and Figure 3-42b) for studied semi-empirical 
models (Monte Carlo method for a buried pipe). 

 

FOSM method has several advantages over Monte Carlo method, which can be resumed 

as follows: 

•  its analytical relationship,  

•  much less time consuming, 

•  no distributional information on the system’s basic variables and 

•  determination of the important parameters between variables. 
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In contrast to FOSM method, Monte Carlo approach is extremely time consuming and 

requires a lot of computer memory. 

 Figure 3-43 presents for a spread footing considered in this chapter (section 3.2.1) and 

for the length of 5 m, using the Monte Carlo and FOSM approaches, the evolutions of a 

coefficient of variation of the maximum differential settlement with respect to ks (CVE/ks, 

Figure 3-43) as function of soil reaction modulus. This figure is obtained from the 

generation of 150 values of the involved parameters and for 40 simulations of coefficient 

of variation of the maximum differential settlement. The value of CVks equal to 15% and 

other required parameters are identical to those previously studied in Figure 3-41. 

 

 
Figure 3-43: Comparison of the results of Monte Carlo simulation with those from FOSM method for the 
coefficient of variation of the maximum differential settlement with respect to ks (CV�/ks)  

 

Figure 3-44 is obtained in the same way and with the same required parameters as the 

previous one (Figure 3-43) for the coefficient of variation of the maximum bending 

moment in the case of a spread footing with simply supported at two ends as boundary 

conditions. 
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Figure 3-44: Comparison of the results of Monte Carlo simulation with those from FOSM method for the 
coefficient of variation of the maximum bending moment with respect to ks (CVM/ks)   

 

These figures (Figure 3-43 and Figure 3-44) allow the comparison of the results of 

Monte Carlo simulation with those from FOSM method. The values of CVE/ks, and CVM/ks 

with associated uncertainty bounds from Monte Carlo simulation are satisfactorily similar 

to those from FOSM method. 

Figure 3-45 depicts for a buried pipe considered in this chapter (section 3.3.1) and for a 

length of low stiffness zone 15 m beneath the buried pipe, using the Monte Carlo and 

FOSM methods, the evolutions of a coefficient of variation of the differential settlement 

with respect to ks (CVE/ks, Figure 3-45a), with respect to L (CVE/L, Figure 3-45b) and with 

respect to ks and L (CVE, Figure 3-45c) as function of soil reaction modulus. As in the case 

of a spread footing, this figure comes from the generation of 150 values of the involved 

parameters and from 40 simulations of coefficient of variation of the maximum differential 

settlement. The values of CVks and CVL are respectively equal to 15% and 10% and other 

required parameters are identical to those previously studied in Figure 3-42. 

Figure 3-46 is obtained in the same way and with the same required parameters as in 

Figure 3-45 for the coefficient of variation of the maximum bending moment.  

Figure 3-45 and Figure 3-46 show again the values of the coefficients of variation of the 

maximum differential settlements and the bending moments with their associated 
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uncertainty bounds obtained by the Monte Carlo method fit well with the results obtained 

by the FOSM method and this method nearly reproduced the FOSM result.  

Monte Carlo techniques are suited for these analyses but imply a huge computational 

effort. An alternative and computationally efficient approach, however, is the FOSM 

method which directly propagates parameter uncertainty into the result.  

Overall, as the above results show, use of the Monte Carlo approach to determine 

uncertainties in the maximum differential settlements and the bending moments of the 

spread footings and the buried pipes is likely unnecessary, given that the results from the 

FOSM and Monte Carlo methods are nearly identical. This is to be expected given the low 

non-linearity of the different models but should be demonstrated.  
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Figure 3-45: Comparison of the results of Monte Carlo simulation with those from FOSM method for the 
coefficient of variation of  the maximum differential settlement a) with respect to ks (CV�/ks)  b) with respect 
to L (CV�/L)  and c) with respect to ks and L (CV�) as a  function of soil reaction modulus for a buried pipe. 
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Figure 3-46: Comparison of the results of Monte Carlo simulation with those from FOSM method for the 
coefficient of variation of the maximum bending moment a) with respect to ks (CVM/ks)  b) with respect to L 
(CVM/L) and  c) with respect to ks and L (CVM) as a  function of soil reaction modulus  for a buried pipe. 
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3.5. Summary and conclusions 

In this chapter, the soil and structural properties and their uncertainties were considered 

in order to reveal their effects on the longitudinal behavior of continuous spread footings 

and buried pipelines resting on elastic soil. 

We then studied the incorporation of the uncertainty of modulus of subgrade reaction 

(ks) in an analytical model, its influence on the differential settlement and bending moment 

of a shallow foundation and the buried pipelines in the longitudinal direction.  

The FOSM method was used again on the analytical solution of a beam on an elastic 

foundation from Winkler’s hypothesis, with different boundary conditions. 

Results from the FOSM method, for the spread footings, show that the uncertainties of 

the differential settlement (CVE) and the bending moment (CVM) are very different 

depending on the length of the spread footing and the boundary conditions considered in 

order to model a zone of weak soil at the construction site. For any value of ks and the 

foundation length we showed that, for the spread footings with simply supported at two 

ends, CVE� CVks and CVM � CVks. For spread footings which are simply supported at one 

end, we showed that CVE� 1.2CVks and CVM � 0.5CVks. For the differential settlement or 

bending moment, the obtained results concerning the probability of the serviceability limit 

state (PSLS) show the importance of the choice of the semi-empirical model and the 

boundary conditions. For the semi-empirical model and the boundary conditions selected, 

when the uncertainty on the value of ks is high, the probability of the serviceability limit 

state can be exceeded even if the soil has good mechanical properties.  

Results in the case of buried pipes show two things. The uncertainties of the differential 

settlement and the bending moment are very different depending on the length of the low 

stiffness zone beneath the buried pipe and its value of Es. Additionally, these uncertainties 

are more influenced by the length of the low stiffness zone than the value of the subgrade 

reaction modulus. From a practical point of view, this indicates that an accurate knowledge 

of soil is more important in determining low stiffness zone lengths than soil properties in 

case of soil reconnaissance for buried pipes. 

In cases where choosing a suitable semi-empirical model for the estimation of 

uncertainty on ks - and therefore on the differential settlement and the bending moment of a 

spread footing or buried pipe - is difficult, we propose a global uncertainty approach. This 

approach includes the uncertainties from each semi-empirical model and can be used to 
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verify whether the maximum values exceed the serviceability values for the ultimate limit 

state. 

The FOSM method proved simpler to apply than the Monte Carlo method which 

requires greater computational resources. This is to be expected given the low non-linearity 

of the model. However, the Monte Carlo method is feasible, due to the simplicity of the 

model and currently available computer software.  

Finally, the results obtained here showed that, when the soil modulus and the 

geometrical dimensions of structure are uncertain and where a low stiffness zone or 

shrinkage of clayey soil is present, the longitudinal behavior of continuous spread footings 

or buried pipes should also be considered in their design. 
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4. Soil spatial variability on a construction site  

4.1. Introduction 

In this chapter the geological conditions of a studied construction site and available data 

from the geotechnical and geophysical investigations are presented. Thereafter the 

appropriated geostatistical methods are used to improve the quality of geotechnical data 

and bring more information to the soil spatial variability on the construction site. It is 

shown how the combination of the geotechnical and geophysical information can improve 

thanks to collocated cokriging, the knowledge of mechanical characteristics on the 

construction site. In a last stage, it is focused on the spatial modelling of the Young’s soil 

modulus. The conditional simulation method enables to obtain the spatial probability of 

occurrence of a given soil modulus value. Coupled with other information, the analysis of 

these statistical and geostatistical models makes possible to develop decision support tools 

and to describe the behavior of the superficial geotechnical designs (continuous spread 

footings and buried pipes) when they are constructed on different locations on the 

construction site. 

  

4.2. Presentation of the studied site and available data 

The study site has a surface area of 25000 m2. In view of its large area, it was decided 

to implement a preliminary VLF-R type of geophysical survey campaign in order to 

qualify the homogeneity of the site, and ascertain those zones most suitable for 

construction, before proceeding with borehole and pressuremeter soundings. 

4.2.1.  Geological settings 

The study site is located to the south of the city of Pessac in France; Pessac is about 5 

km west of Bordeaux. 

From a geological point of view, Pessac is located at the boundary between the large 

Landes moorland area (Landes sandy deposits) to the west, and the alluvial terraces of the 

Garonne to the east (Figure 4-1a). The study site belongs to the alluvial terraces of the 

Garonne, which is characterized by clayey-sandy plio-quaternary deposits (Figure 4-1a and 

b). More precisely, the study site rests on an alluvial terrace dating to the lower Pleistocene 

(Dubreuilh, 1976), covering more than 20% of the town surface area. This formation, a 
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witness to the ancient alluvial water tables created during the interglacial periods of the 

Pleistocene, is characterized by soils with high clay content with a blue-gray to dark gray 

appearance. The clay content can reach 80%, with a mineral distribution comprising 

mainly kaolinite, illite and interstratified (Dubreuilh, 1976). Its thickness varies between 4 

m and 12 m. 

 The engineering properties of alluvium deposits vary over a wide range. In area such as 

Pessac, dominated by sluggish streams, very thick deposits of clayey silt occur, giving rise 

to lack of bearing strength for large load. In this case, pilings are extensively used for 

multi-story buildings. Engineering problems associated with clayey soil are due to their 

low shear strength, which make them very hazardous for shallow foundations. Clayey soils 

are also hazardous due to expansion and contraction accompanying soil moisture changes. 

They cause damage when they shrink upon drying or when they expand upon wetting and 

the resulting soil movements can disrupt houses. Poorly-built houses with inadequate 

shallow foundations develop damage ranging from sticking doors and hairline plaster 

cracks to complete destruction. Moreover, alluvial deposits are often heterogeneous and 

vary both vertically and horizontally over short distances. 

Numerous residential constructions, recent and old, with no previous history of even 

minimal differential movements, have developed foundation problems over a very short 

period of time, due to changes in moisture content during extended periods of drought, as 

were experienced in this region between 1989 and 2005, 2008 and 2010. Many of these 

homes are resting on this alluvial terrace, even though it is classed as being a formation of 

moderate swelling and shrinkage potential (Figure 4-2). The corresponding maps are 

currently being updated. 

 

 

 



Soil spatial variability on a construction site 

169 

 

 

a) 

 

b) 

Figure 4-1:a) Geological cross section from Bordeaux to Atlantic Ocean and b) Geological map of the 
Pessac area (Marache et al., 2009b) 

 

Figure 4-2: Localization of the studied area, and shrinkage-swelling clay hazard map (Denis et al., 2011)  
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4.2.2. Geophysical investigations 

The reconnaissance of a site of large surface area using an R (Resistivity) mode VLF 

(Very Low Frequency) technique can provide an interesting alternative to conventional 

methods such as the direct current electrical method (Benson et al., 1997; Oskooi and 

Pedersen, 2005). Although the latter reveals important information pertaining to the nature 

and distribution of surface soils and subsoils (Spies, 1996; Denis et al., 2002), they suffer 

from the drawback of requiring a considerable amount of time for their implementation 

with such surfaces. The VLF method makes use of the power of radio frequency 

transmitters, which operate at frequencies ranging between 15 and 25 kHz. The transmitted 

waves, of high power, induce electric currents in the most conductive parts of the ground, 

which in turn generate a secondary magnetic field which can be detected at the surface 

through measurements of deviations to the normal field. The depth to which investigations 

can be made depends on the frequency of the transmitter used and the ground resistivity 

(Spies, 1989). In the case of soils with a resistivity between 8 and 50 F.m, the maximum 

studied depth is estimated to lie between 8 and 20 m. The presence of clayey soils of lower 

resistivity can lead to more shallow study depths. In the present study, in which the aim 

was rather to reveal the presence of clayey soils which are thus conductive, with 

thicknesses of at least 6 m, the inherent limitation of this chosen technique was not a 

serious limitation. 

The measurement points are distributed over uniform profiles with mean spacing of 10 

m between measurement points. The profiles are aligned in the east-west direction, over a 

length of approximately 190 m. The full reconnaissance campaign included a total of 272 

soil resistivity measurement points (Figure 4-3).  
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Figure 4-3: Localization of the VLF point measurements, wells and pressuremeter tests in the studied area 

  

The frequency of the transmitted electromagnetic waves was 16 kHz. In view of the fact 

that we had no complementary data concerning the resistivity of the deeper layers, we 

made the assumption of a single layer of terrain. This hypothesis is all the more justified 

since the resistivity of the upper layer is low, thereby reducing the depth of analysis.  

A geostatistical approach was used to identify the inherent variability of the resistivity 

of soil (kriging estimation) using ISATIS© software. It should be noted that in this study, 

we calculate the semi-variogram but the term variogram is used in place of semi-

variogram. The first step was to compute the experimental variogram map of the resistivity 

of soil in various directions. The next step is to fit a model to the experimental variogram 

in both directions of anisotropy, if such anisotropy exists.  

During the variographical analysis, it is important to check for the presence of potential 

directions of anisotropy if the target variable presents a more continuous behavior in a 

given direction than in another one. For this purpose directional variograms are computed. 

When for the same variable, variogram values for two perpendicular directions require 

different sills or ranges then anisotropy is present. When data are densely sampled, a 

variogram map can be obtained by automatically calculating directional variograms in 

every direction. 
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Firstly the variogram map of the soil resistivity needs to be produced with soil 

resistivity measurement points, allowing variogram values to be determined for all lags in 

all directions. This process thus enables the two principal directions of anisotropy to be 

defined, if such anisotropy exists. Each cell of the map, in a given direction, corresponds to 

the variogram value for a lag (distance between two points) which can vary from 0 m 

(centre of the map) up to a value of 90 m (Figure 4-4a and b) with a step of 10 m.  

From this map, the variograms in the two main directions of anisotropy are computed. 

The resulting directions (N50 and N140) are nearly identical over the distance [0, 50 m]. 

Anisotropy is present beyond this interval. In this case, with increasing the distance, the 

difference between the variograms of these two directions increases. In the following, the 

interpolations will be done using a circular neighborhood of radius 50 m, so the variogram 

of the soil resistivity is omnidirectional up to this distance. This distance is one quarter of 

the study area.   

 

 

 
                                a)                                                                                                             b) 

Figure 4-4: a) Variographical map of the soil resistivity (up to a value of 90 m) and b) Experimental 
variograms in the two main directions of anisotropy       

 

The experimental variogram is not sufficient for a geostatistical estimation because the 

variogram used in estimation must satisfy some mathematical constraints. For this reason 

an analytical mathematical function is fitted on the experimental variogram: the variogram 

model.  
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Variographical analysis result of the resistivity of soil dataset is shown in Figure 4-5, 

which presents an omnidirectional experimental variogram (black line), showing a sill 

equal to 85 (Ohm. m)2 associated with a range equal to 37 m. Beyond 50 m, a non-

stationary behavior can be observed. If we wanted to take all these observations into 

account in the variogram model, it would be necessary to sum a stationary and a non 

stationary basic model. However, as explained previously and considering that the length 

of the continuous wall footing and low stiffness zones of soil beneath the buried pipes are 

small compared to 37 m, the model is only an exponential component with a range of 37 m 

(Equation 4-1), which represents the isotropic variogram for the data-set, which is also 

represented by a red line in Figure 4-5.  
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Figure 4-5: Experimental (black line) and modelled (red line) isotropic variograms of the soil resistivity  

 

The quality of this model is quantified by cross-validation (Figure 4-6), which is 

achieved by iteratively eliminating each data point from the data-set and comparing the 
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estimated value at this point using the model with the real value. Figure 4-6a shows the 

spatial distribution of the soil resistivity values. The coefficient of correlation between the 

estimated (z*) and measured (z) values *+� ,-./0� 1(� 2�34� �Figure 4-6b). This value of 

coefficient is acceptable but it was reduced by the presence of two non-robust data in the 

soil resistivity values (shown by a green point in Figure 4-6). These points correspond to 

the outlier values which can not be well predicted by the model.The standardized error 

((z*-z)/s*) has a mean close to zero and it is nearly uncorrelated with the estimated values 

(Figure 4-6c and Figure 4-6d), then data are unbiased. These different criteria allow us to 

validate the quality of variogram model fitted to the experimental variogram. 

  

 
Figure 4-6: Cross-validation 
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 The ground resistivity map resulting from kriging with the previous variogram model 

and a circular neighborhood equal to 50 m is shown in Figure 4-7a. This estimation is done 

over a regular grid with a mesh of 10 m × 10 m. The resistivity ranges from a clayey pole 

with values between 4 and 10 F.m to a clayey-sandy pole with resistivity values greater 

than 50 F.m. The spatial resistivity distribution (Figure 4-7a) illustrates the heterogeneity 

of the surface layer formations on this site, on the north part of which, over a distance of 30 

m, one can observe a change from sandy-clayey soil to clay. The zones with the lowest 

resistivity are found mainly in the eastern and western parts and appear to outline a 

corridor of more resistant soil, which could correspond to the filling of a north-south 

aligned paleochannel. 

Figure 4-7b shows the map of the kriging standard deviation of the resistivity. The value 

of the standard deviation is between 0.1 and 6 F.m except for the zones with the high 

values of the standard deviation of resistivity (between 6 and 8.6 F.m). These high values 

are found mainly in the southern and western parts because of very small number of soil 

resistivity experimental values in these parts. 

 

a)  



Chapter 4 

 

176 

 

b)  

Figure 4-7: Analysis for soil resistivity data  a)Kriging estimate for electrical resistivity from VLF-R (16 
kHz) measurements b) Associated kriging standard deviation of soil resistivity 

4.2.3. Geotechnical investigations 

The reconnaissance soundings (6 auger boreholes to a depth of 8 m) and twelve 

pressuremeter tests (depth of boreholes ranging between 8 and 12 m) enabled the surface 

formations detected using the VLF-R technique to be confirmed. Boreholes T1 and T2 

(Figure 4-3) drilled in the zones, with resistivities ranging between 0 and 10 F.m and 10–

20 F.m respectively, revealed clayey soils down to a depth of 8 m, which was confirmed 

by laboratory tests carried out on these soils, for which the plasticity index ranged between 

30% and 40%. Borehole T3 (zone with resistivities between 20 and 30 F.m) revealed 

sandy clay between the depths of 1.20 and 8 m, whereas borehole T5 (zone with 

resistivities between 30 and 40 F.m) revealed sandy clay containing gravel beds. For zones 

having a higher resistivity, boreholes T4 (40–50 F.m) and T6 (resistivity>50 F.m) 

revealed the presence of clayey sand and a gravely clay. 

The pressuremeter soundings made to a maximum depth of 12 m, including a test 

measurement every meter, confirmed the sandy-clayey character of the soil with, for some 

soundings, the presence of sand, which occurs as embedded lenses rather than continuous 

seams or layers at depths greater than 7 m. In the case of shallow foundations for 

individual houses, the slice of ground beneath the foundation, affected by the loading, can 

be estimated to have a thickness of approximately 6 m (Cassan, 1978). For the full set of 

12 pressuremeter soundings, and for a slice of ground for which measurements were taken 
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at depths ranging between 1 and 7 m (i.e. 6 pressure limit and deformation modulus 

measurements per sounding), the 72 values of pressure limit and deformation modulus 

were respectively comprised between 0.3 and 1.3 MPa, and 3 and 7 MPa. The average 

values found for the pressure limit and the deformation modulus for each sounding are 

provided in Table 4-1. The ratio between the mean deformation modulus and the mean 

pressure limit ranged between 5 and 8.1, thus confirming the sandy–clayey character of the 

soils encountered (Cassan, 1978).   

 

Table 4-1: Average values for the deformation modulus EPMT and pressure limit PL   

 

4.3. Geostatistical modeling of Young’s soil modulus  

The aim here is to model the spatial distribution of geotechnical parameters. To 

illustrate the methodology, we have chosen to focus on the Young’s soil modulus. This 

modulus can be assessed from pressuremeter modulus, using common relation: EPMT=A.Es. 

As it was mentioned earlier (see section 1.2.2.2) a lot of geostatistical methods are 

available to perform such a model (kriging, cokring or simulations methods with many 

variants) using only one parameter or auxiliary parameters too (Raspa et al., 2008). This is 

described in the ensuing sections and the most appropriate method will be chosen to 

localize sensitive zones during the decision stage of the superficial geotechnical projects. 

4.3.1. Young’s soil modulus modeling using kriging 

To model Young’s soil modulus Es, a first option is to use Young’s soil modulus known 

at the boreholes location and interpolate between the boreholes by means of kriging. The 

experimental variogram resulting from the twelve value of soil modulus is shown in Figure 

4-8. Because of the poor number of data, the experimental variogram is very erratic and it 

is not possible to fit a good variogram model to the experimental variogram. So we have 

decided to use the kriging with linear model to perform the estimation. Figure 4-9 shows, 

 FP1 FP2 FP3 FP4 FP5 FP6 FP7 FP8 FP9 FP10 FP11 FP12 

EM (MPa) 3.71 3.21 5.1 3.55 4.41 6.5 3.88 4.38 4.46 3.58 3.65 4.19 

PLM (MPa) 0.73 0.64 0.8 0.5 0.81 1.05 0.69 0.87 0.88 0.7 0.45 0.7 

EM/PLM 5.08 5.02 6.38 7.1 5.44 6.19 5.62 5.03 5.06 5.11 8.11 7 
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using this method, the maps of soil modulus with its associated standard deviation. The soil 

modulus ranges from a clay soil with values between 5.5 and 9 MPa to a clayey-sandy soil 

with values between 9 and 14 MPa (Figure 4-9a). On the south part of which, over a 

distance of 50 m, one can observe a change from clayey soil to sandy-clayey soil. The 

zones with the lowest soil modulus are found mainly in the northeastern and western parts 

(Figure 4-9a). The map of the kriging standard deviation of soil modulus is shown in 

Figure 4-9b. The value of the standard deviation is between 0.1 and 3.4 MPa. The high 

values of the standard deviation of soil modulus (2.6 to 3.4 MPa) are mostly found in the 

northern, western and southern parts because there is no measured deformation modulus 

(EPMT) in these parts.    

Partly due to the low number of boreholes (twelve measured deformation modulus, 

EPMT), these outcomes are really smooth and do not seem geologically consistent (Figure 

4-9). More dense information can be integrated in order to improve the estimation of 

Young’s soil modulus using a multivariate geostatistical estimation called collocated 

cokriging which is explained below.   

 

 
Figure 4-8: Experimental variogram of the twelve values of Young’s soil modulus 
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a) 

 

b) 

Figure 4-9: a)Kriging estimate for soil modulus with data points displayed (+)  b) Associated kriging 
standard deviation of soil modulus   
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4.3.2. Maps of Young’s soil modulus using collocated cokriging  

When several correlated variables are available, a multivariate geostatistical estimation 

called cokriging can be performed: the use of one (or several) correlated variable(s) allows 

improving the estimation of the main property. 

A particular heterotopic situation encountered in practice is when we have a variable of 

interest known in few points and an auxiliary variable known everywhere in the domain (or 

at least at all nodes of a given estimation grid and at the data locations of the variable of 

interest). In this case, an extension of cokriging called collocated cokriging is particularly 

appropriate. In this method, the auxiliary variable is incorporated at each target location. It 

allows bringing more information to the estimation. So the estimate is expected to have a 

better consistency (Chilès and Delfiner 1999). This multivariate technique require the 

computation and fitting of a variogram model that contains simple variograms for each 

variable and a cross variogram measuring the spatial correlation between the variables. 

Attempts to relate geotechnical properties to geophysical data are uncommon and the 

literature contains some contradictions. Braga et al. (1999) show that the resistivity is 

weakly correlated with geotechnical data from the SPT (Standard Penetration Test) and 

that there is no relationship between SPT blow counts N and the chargeability from 

induced polarization method. Cosenza et al. (2006) obtained the same result in a case study 

with a dynamic cone penetration test, an in situ vane shear test and a geophysical survey 

(Electrical Resistivity Tomography). No clear relationship between the cone resistance and 

the inverted resistivity values was observed. On the other hand, Endres and Clement 

(1998) revealed relationships between the soil types determined from the mechanical 

properties measured by CPT (Cone Penetration Test), and the electrical properties 

(resistivity and dielectric permittivity) of a site with lithologies ranging from clayey silt to 

coarse sand units. The authors suggest that these relationships may provide a petro-

physical basis for the combination of information derived from CPT and electrical 

methods. Denis et al., (2011) tried to show relationship between the geotechnical 

parameter EPMT and soil resistivity derived from geophysical investigation (VLF-R). 

Monnet et al. (2008) showed relationship between EPMT and soil resistivity derived from a 

direct electrical method (electrical panel). 

The data-set in this study is constituted of a few set of pressuremeter boreholes with the 

deformation modulus EPMT values (12 data of interest) and a lot of soil resistivity values 
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(272 auxiliary data) (Denis et al., 2011). In a clayey-sandy soil with no important change in 

water content, more the sand is, more the deformation modulus and resistivity are. Thus it 

is assumed that deformation modulus is indirectly linked to soil resistivity derived from 

geophysical methods (Monnet et al., 2008, Denis et al., 2011). Note that for a same clayey-

sandy soil a less the water content is, more the deformation and resistivity are. In these two 

cases, it will be relevant to use the dense soil resistivity information as auxiliary variable 

for a better estimation of Young’s soil modulus. A collocated cokriging of the deformation 

modulus integrating the soil resistivity is particularly appropriate to bring more 

information to the estimation of the deformation modulus. 

For a collocated cokriging, the influence of soil resistivity information will be more 

important if the correlation between both variables is high. A linear relationship with a 

correlation of 0.6 was obtained between the deformation modulus and resistivity values 

(Figure 4-10). This correlation value was influenced by the data from two boreholes (FP2 

and FP6).  

 

 
Figure 4-10: Modulus EPMT derived from pressuremeter tests, versus resistivity, derived from VLF-R.   

 

For the collocated cokriging a bivariate variogram model is required. Nevertheless, 

because the small number of soil modulus values, this bivariate model is tedious to 

establish. For this reason, a bundled version of the collocated cokriging will be used which 

takes into account only the spatial correlation of the auxiliary variable (soil resistivity, 

Figure 4-5). The bivariate model is deduced from this model and the coefficient of 
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correlation and variance ratio between both variables. As previously, the interpolations will 

be done using a circular neighborhood of radius 50 m. 

The collocated cokriging of soil modulus Es with its associated kriging standard 

deviation are displayed in Figure 4-11. The zones with the lowest soil modulus values are 

found mainly in the western parts, and appear to outline a corridor of high soil modulus 

values aligned south to north (Figure 4-11a). As it has been mentioned before, the 

collocated cokriging brings more information to the estimation of the deformation modulus 

than the use of the kriging alone. For example, both zones of high values of soil resistivity 

found in northern part at {130, 140} and southern part at {70, 40} appear, whereas no 

measured deformation modulus are present at these points. Using collocated cokriging 

gives the possibility to estimate value of deformation modulus at these points with more 

precision than from kriging of Young’s soil modulus (Figure 4-9a and Figure 4-11a). This 

map presents more variability than the kriging one. This added variability comes from the 

soil resistivity integrated at the target location through the collocated cokriging process 

(Figure 4-7a)  

The map of the cokriging standard deviation of Es (Figure 4-11b) is compared to that 

one from kriging (Figure 4-9b). This shows that the use of collocated cokriging decreases 

the uncertainty in the interpolation. 
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a)  

 

b)  

Figure 4-11: a) Map of soil modulus using soil resistivity as auxiliary variable b) Associated cokriging 
standard deviation  
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4.3.3. Young’s soil modulus modeling using simulation 

In order to choose the most appropriate method, first and foremost we must think to the 

final aim: we want to obtain a model which could be used as a decision support 

framework. So it is important to be able to evaluate a geotechnical parameter value at a 

location, but we also want to localize zones with poor geotechnical characteristics in order 

to assess risks, for instance due to excessive settlements. 

In a first approach, estimation methods have been realized (see sections 4.3.1 and 4.3.2). 

However, these methods are not the most appropriate for two main reasons: 

- Estimation methods give a smoothed image of the reality, thus underestimates the 

proportion of extreme values. In our case, extreme low values are very important to 

define zones with poor geotechnical parameters for example, 

- We want to obtain results in terms of probability of occurrence of a geotechnical 

parameter value, which is very important for the future use of the model at the 

design stage of the superficial geotechnical designs.We do not want a model with a 

parameter value which could be considered as the “exact” value at a given location. 

Thus, results in terms of probability are more representative of the real state of 

knowledge and best fitted to engineering purposes. 

In order to satisfy these two remarks, we have chosen to use the conditional simulation 

method. This estimation is done over a regular grid with a mesh of 0.5×0.5 m2 to obtain 

more values of Es beneath a structure to introduce in the finite element methods. This 

method better describes natural variability which is attenuated when using only estimation 

methods. Starting from estimation results on a 10×10 m2 mesh and computing new results 

on a 0.5×0.5 m2 mesh is authorized by the application of the three perpendicular theorem 

(Chilès and Delfiner, 1999). Finally, it provides results in terms of probability by post-

processing simulations. 

For this, the raw data must be transformed with an anamorphosis in order to achieve a 

normal statistical distribution to avoid biases in simulation results and the variogram model 

is also transformed into this new space. Values are simulated in this space, in accordance 

with the variogram model, and are then back transformed into the raw data space.  

Modeling the anamorphosis function includes the following points (Dowd, 2003): 

- minimal differences between basic statistics of raw and back-transformed variable, 
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- the mean of the transformed variable is 0 and its variance is equal to 1 as close as 

possible, 

- the average of differences between raw and back-transformed values is 0 and 

variance minimal, 

- the shapes of the experimental histograms of raw and back-transformed variables is 

the same and 

- correlation between raw and back-transformed variables is maximal positive. 

Variographical map of the Young’s soil modulus in the Gaussian space up to a distance 

of 70 m with a step of 10 m is illustrated in Figure 4-12a. This variographical map shows 

an omnidirectional behavior. The Young’s soil modulus data-set have been computed from 

a collocated cokriging of the deformation modulus integrating the soil resistivity. 

Variographical analysis of the Young’s soil modulus data-set in the Gaussian space is 

shown in Figure 4-12b which presents an omnidirectional experimental variogram (black 

line) in the Gaussian space with a first range (or correlation length) equal to 42.7 m. As in 

the case of the variographical analysis of the soil resistivity (Figure 4-5) an isotropic 

variogram model (red line) in the Gaussian space was fitted to this experimental 

variogram. This model is only a spherical component with range and sill equal to 42.7 m 

and 0.58 (MPa)2 respectively (Equation 4-2). 

a)                                                                                          b) 

 Figure 4-12: a) Variographical map of the Young’s soil modulus in the Gaussian space (up to a value of 70 
m) and b) Experimental (black line) and modelled (red line) isotropic variograms of the Young’s soil 
modulus in the Gaussian space       
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The conditional simulation procedure can then be performed for a series of 1000 

simulations using a moving neighborhood (circular neighborhood of radius 50 m) in 

accordance with variogram model. Two simulation results are shown in Figure 4-13. Zones 

of low or high values of soil modulus are located in the same area than previously. 

However, one can see that the simulation increases the spatial variability of the soil 

modulus. 

 

 
Figure 4-13: Example of spatial distribution of the Young’s soil modulus on the construction site for two 

simulations  

 

 Young’s soil modulus along a profile length of 10 m for the first 250 simulations is 

shown in Figure 4-14 to illustrate the variation of soil modulus along this profile.  

   



Soil spatial variability on a construction site 

187 

 

  

Figure 4-14: Young’s soil modulus along a profile length of 10 m for the first 250 simulations  

 

It should be noted that in the probabilistic analysis in the ensuing sections, the number 

of simulations influences the accuracy of the results. Since the increase in number of 

simulations also increases the computational efforts, a compromise between accuracy and 

computational time is achieved by estimating the mean of Young’s soil modulus in Figure 

4-15 for several numbers of simulations. In this approach, simulations are carried out for a 

large numbers till there is no significant change in the mean values of the Young’s soil 

modulus. From Figure 4-15 it can be noted that between 700 and 1000 simulations the 

variations of the mean is almost negligible and it can be expected that a further increase in 

the number of simulations will not significantly affect the accuracy of the results. 

Therefore, in the present analysis, 1000 simulations are run for estimating the probability 

of soil modulus for different threshold values, the statistical parameters of the maximum 

differential settlement and the maximum bending moment for the spatial variablility of soil 

profile. 

 From 1000 simulation results, a local histogram of the Young’s soil modulus can be 

built; an example is shown in Figure 4-16 for the point {18, 67} which is located inside a 

zone with low soil modulus values. As it shown from this figure, 10%, 50% and 90% of 

the soil modulus values are respectively inferior to 5.73, 6.02 and 6.44 MPa.   
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Figure 4-15: Convergence of the mean of Young’s soil modulus versus the number of simulations  

 

 

 
Figure 4-16: Local histogram of the Young’s soil modulus at (X=18 m, Y=67 m), on the zone with low soil 

modulus values for 1000 simulations of soil modulus maps in the Gaussian space 
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Map of the soil modulus obtained from the mean of the maps resulting from 1000 

simulations is shown in Figure 4-17. As expected, this figure is quite identical to the 

cokriging result (Figure 4-11a). 

 

 
Figure 4-17: Map of the soil modulus obtained from the mean of the maps resulting from 1000 simulations 

 

After a series of 1000 simulations, these results can be translated in terms of probability, 

by post-processing the simulation results to obtain 2D map of probabilities, which is useful 

in terms of support decision framework. As an illustration, Figure 4-18 shows the 

probability of soil modulus for the different threshold values of Es in order to show the 

location of areas with a high probability to encounter low soil modulus values. For 

instance, a zone with a high probability of a soil modulus smaller than 7 MPa is located on 

the northern and west southern parts of the construction site (Figure 4-18b). A high 

probability of a soil modulus less than 12 MPa can be found in all parts of the construction 

site except small southern part of site (Figure 4-18g). The area of zones where the 

probability to obtain a soil modulus lower than 8 and 10 MPa are respectively larger than 

50% and 85% of the total area (Figure 4-18c and Figure 4-18e). 
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        a)                                                                                  b) 

     

        c)                                                                                  d) 

 

     

         e)                                                                                  f) 
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                                                      g) 

Figure 4-18: Probability of soil modulus for different threshold values of Es in order to show the location of 
areas with a high probability to encounter low soil modulus values  

 

A flowchart is provided in Figure 4-19 which illustrates how the methods used in this 

chapter are linked one to each other. Furthermore, it allows us to see the overall procedure 

of probabilistic and geostatistics methods integrated into a finite element method. The 

following results for the superficial geotechnical designs are obtained by using this flow 

chart.    
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Figure 4-19: Flow chart of the methods used in this chapter to illustrate the overall procedure of the 

probabilistic and geostatistics methods integrated into a finite element method 

 

4.4. Taking into account of the spatial variability of soil in the superficial geotechnical 
designs 

In our analytical approach it is not possible to consider the soil characteristics as 

different at each given location along the spread footing and buried pipe axes (see sections 
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3.2 and 3.3.2). It could be very interesting to take into account the correlation length of 

soils parameters along the pipe axis or spread footing to characterize spatial variability of 

soil. Such an approach could be performed with the coupling of the finite element method 

with geostatistical methods, what is described for the superficial geotechnical designs in 

the ensuing sections.  

Some authors (for example Elachachi et al. 2004, Niandou et al., 2009) have shown that 

the influence of the spatial variability of soil properties is the most important on the 

settlement and the bending moment when the spatial correlation length of soil is 

approximately equal to the length of the structure. This is not the case in this study where 

the considered lengths of the structures (10 m for the spread footing and 50 m for the 

buried pipe) are rather favorable compared to the correlation length identical with 

geophysics (37 m).  

In the following, the spatial variability of Young’s soil modulus is only taken into 

account and the spatial variability of soil parameters (Bs: Poisson's ratio of soil, L: length of 

low stiffness zone of soil beneath the pipe) and structure parameters (b and h respectively 

width and height of the spread footing, d: external diameter of the pipe, Ec: Young's 

modulus of the buried pipe or the spread footing) are not considered in the computations.   

 

4.4.1. Taking into consideration of the spatial variability of soil modulus in the 
spread footing design (one dimensional model, 1D) 

For taking into account of the spatial variability of soil modulus, we consider three 

different locations of a spread footing with a length of 10 m on the construction site 

(Figure 4-20). The soil parameters, the load, the mechanical property and the geometrical 

dimensions of this spread footing are identical to those previously studied in previous 

chapters (chapter 2 and 3). For each location of spread footing, the values of Young’s soil 

modulus are obtained at each node from the 1000 simulations results using ISATIS© 

software. From these values of Es, the different values of subgrade reaction modulus for 

each semi-empirical model are obtained using relationship from Table 2-4. These values of 

subgrade reaction modulus are introduced in the finite element method using one 

dimensional model to obtain the maximum differential settlements and the maximum 

bending moments for each semi-empirical model at each location. These computations are 
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performed with the CASTEM© software (Verpaux et al. 1988) using the Winkler model. 

Finite element modeling of a spread footing of 10 m has twenty elements with 21 nodes 

with free ends as boundary conditions (Figure 4-21). 

 

 

 
        Figure 4-20: Three different locations of a spread footing with a length of 10 m on the construction site 

 

 
Figure 4-21: Finite element modelling of a spread footing of 10 m with free ends as boundary conditions(one 

dimensional model, 1D) 
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 These results can be then statistically analyzed to better understand the behavior of a 

spread footing in the presence of spatial variability on the construction site. This is 

described in the following.  

For a preliminary evaluation, Figure 4-22 depicts the data distribution for the 20000 soil 

modulus values for the three different locations of a spread footing in the case of the study 

site. For the soil modulus probability between 5% and 95%, the intervals of soil modulus 

values for the locations (1), (2) and (3) are respectively [5.41, 8.26], [5.86, 8.06] and [6.43, 

11.29] MPa. The values of soil modulus in the locations (1) and (2) are nearly close 

together while the values of soil modulus in the locations (3) are greater and wider 

compared to the latter.  

 

 

 
Figure 4-22: Cumulative distribution function of soil modulus for the three different locations of a spread 

footing in the case of the study site 

 

To illustrate finite element results and the influence of geostatistical simulations, Figure 

4-23a and Figure 4-23b respectively show the deformation and the bending moment along 

a spread footing length of 10 m for the first three simulations in the case of Vesic model 

for the location 3.  
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                      a) 

 

                      b) 

Figure 4-23: a) Deformation and  b) Bending moment along a spread footing length of 10 m for the first 
three simulations in the case of Vesic model  

 

Figure 4-24a and Figure 4-24b respectively depict the deformation and the bending 

moment along a spread footing length of 10 m for the first simulation and for the four 

semi-empirical models for the location 3. Ménard’s model gives the lowest values of the 

maximum deformation and the maximum bending moment and Vesic’s model gives the 

greatest values. Biot’s and Vlassov’s models give approximately the same values.   
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                               a) 

 

                             a) 

Figure 4-24: a) Deformation and b) Bending moment along a spread footing length of 10 m for the first 
simulation and for the four semi-empirical models  

 

In order to describe the behavior of a spread footing for these three different locations, 

the results obtained for the maximum differential settlement and the maximum bending 

moment are shown in the form of cumulative distribution function for the four studied 

semi-empirical models (Figure 4-25, and Figure 4-26). 
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Figure 4-25: Cumulative distribution function of the maximum differential settlement for the three different 

locations, in the case of the study site for the four semi-empirical models  
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Figure 4-26: Cumulative distribution function of the maximum bending moment for the three different 
locations, in the case of the study site for the four semi-empirical models 
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For the probability of the maximum differential settlement between 5% and 95%, the 

intervals of the maximum differential settlements for the locations (1), (2) and (3) are 

respectively [0, 3], [0, 2] and [0, 4] mm (Figure 4-25). For these locations, Vesic’s model 

gives the greatest values of the maximum differential settlements and Ménard’s model 

gives the lowest values. Biot’s and Vlassov’s models give almost the same value of the 

maximum differential settlements.  

For instance, in the case of location (1), the probabilities to obtain a maximum 

differential settlement lower than 1 mm for the Ménard, Biot, Vlassov and Vesic models 

are respectively 31%, 46%, 55% and 92%. The latter in the case of location (2) for the four 

semi-empirical models is almost 100%. Finally for the last location, these probabilities for 

the Ménard, Biot, Vlassov and Vesic models are respectively 6%, 13%, 17% and 70% 

(Figure 4-25) showing that the range of Es (larger for the location (3)) as important as the 

presence of low values of Es (location (1)).  All in all, the obtained results provide insight 

regarding the stochastic analysis in the field of geotechnical engineering and show the 

importance of the spatial variability of soil modulus in the outcomes of a probabilistic 

assessment. 

Similar observations can be made with regard to the distributions of the maximum 

bending moment (Figure 4-26) showing again the importance of the spatial variability of 

soil parameters on the longitudinal behavior of a spread footing. 

For completing this section, the cumulative distribution functions of the maximum 

differential settlement and the maximum bending moment for the two extreme semi-

empirical models (Ménard’s and Vesic’s models) and for the three different locations are 

shown in Figure 4-27 and Figure 4-28 in order to illustrate the importance of the semi-

empirical model choice whatever the location.  

As shown in Figure 4-28a, we obtain almost the same values of the cumulative 

distribution function for the different location for the Ménard model. The same 

interpretation is also true for the Vesic model (Figure 4-28b). However, for probabilities 

between 5% and 95%, the interval of the maximum bending moment values for the Vesic 

model is greater and wider than the Ménard model.     

Finally, the results obtained here show, whatever the location of a spread footing on the 

construction site and whatever the considered semi-empirical model, the probability of 

having the critical values of the maximum differential settlement and the maximum 
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bending moment remains low. Of course, this conclusion is limited to a considered spread 

footing on the construction site in this section. 

 

 

 
                       a) 

 

 
                    b) 

Figure 4-27: Cumulative distribution function of the maximum differential settlement for the three different 
locations, in the case of the study site for the two extreme semi-empirical models: a) Ménard’s model and b) 
Vesic’s model     
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                               a) 

  
                           b) 

Figure 4-28: Cumulative distribution function of the maximum bending moment for the three different 
locations, in the case of the study site for the two extreme semi-empirical models: a) Ménard’s model and b) 
Vesic’s model   

 

4.4.1.1. Comparison between analytical and numerical results (for a spread footing) 

The objective is to compare the results obtained by the previous numerical method with 

those obtained by the analytical method presented in chapter three in order to show the 

influence of the spatial variability on the results. We cannot compare directly the obtained 

results here (from the probabilistic and geostatistics methods integrated into a finite 

element method using CASTEM© software) to those resulting from analytical methods 

(Figure 3-1b, c and d), since there are not great significant difference between the soil 
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reaction modulus values in the case of the study site for a length of 10 m (Figure 4-8). 

Obtained results here, can only be compared to those from analytical methods in the case 1 

(Figure 3-1a) where we have a spread footing resting with free ends on an elastic soil with 

only an absolute settlement and no bending moment. In the following, this comparison is 

performed for a spread footing of 10 m at location (3).  

Starting from the numerical method (ISATIS© and CASTEM© softwares) and 

considering the 1000 simulations of twenty values of the soil reaction modulus beneath the 

spread footing, we obtain the mean ([ ]∆E ), variance ( [ ]∆Var ) and then the coefficient of 

variation ( [ ]∆CV ) of the absolute settlement for each semi-empirical model (Table 4-2).  

In the analytical method, the spatial variability of Young’s soil modulus is not 

considered and the mean of this modulus is considered as constant beneath a spread 

footing. The coefficient of variation of the absolute settlement can be obtained from the 

analytical method from theory or calculated from these 1000 simulations as explained in 

the following:  

- Analytical method from theory: for each simulation we obtain from twenty values of 

Young’s soil modulus under the spread footing the mean Es, and from the 1000 

simulations mean ([ ]sEE ), variance ( [ ]sEVar ) and then the coefficient of variation (

[ ]sECV ) respectively equal to 8.136 MPa, 0.0353 (MPa)2 and 0.0231. The 

coefficient of variation of ks (CVks) can be calculated for each semi-empirical model 

from Equation 2-8 (CVks=�Es.CVEs, the values of �Es, depends on each semi-

empirical model, are reported in Table 2-5). Calculation of the coefficient of 

variation of settlement for these four semi empirical models is very straightforward: 

CVT[E] = CVks as we showed in chapter three in the case 1 (Figure 3-1a). Values are 

also reported in the Table 4-2.  

- Analytical method from 1000 simulations: the mean of soil modulus is obtained for 

each simulation as previously. From this value, the associated value of ks and the 

associated absolute settlement for each simulation and for each semi-empirical 

model are calculated. Then the mean (E[E]) , variance (Var[E])  and coefficient of 

variation of the absolute settlement (CV[E]) are obtained from 1000 simulations and 

for each semi-empirical model. These values are reported in the Table 4-2.  
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As can be seen from the Table 4-2, the values of the coefficient of variations obtained 

from these two analytical methods are nearly same. These two analytical methods give the 

same results as one would expect.  

  The difference between [ ]∆E  and [ ]∆Var   from the numerical simulation and E[E] and 

Var[E] from the analytical analysis is due to the influence of the intrinsic spatial variability 

of Es along the spread footing. Then, it can be written (Equation 4-3): 

[ ] [ ] [ ] [ ] [ ] [ ]uu VarVarVar,EEE ∆∆∆∆∆∆ +=+=  Equation 4-3 

where ∆ : settlement from the total spatial variability, �: settlement from the analytical 

method (Es is constant) and Eu: settlement from the intrinsic spatial variability (Es is 

variable) as shown in Figure 4-29:  

 

 Table 4-2: Comparison of the maximum settlement between analytical and numerical methods for a spread 
footing of 10 m at location (3). 

 

[ ] [ ] [ ]∆∆∆ CV,Var,E  are respectively the mean, variance and coefficient of variation of the absolute 

settlement from numerical methods, CVT[E]: coefficient of variation of the absolute settlement using 
analytical method (obtained from theory), E[E], Var[E] and CV[E]: are respectively the mean, variance and 
coefficient of variation of the absolute settlement using analytical method (obtained from 1000 simulations). 

∆ : settlement from the total spatial variability, �: settlement from the analytical method (Es is constant)  
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Figure 4-29: Schematical definition of ∆ : the settlement from the total spatial variability, �: settlement from 
the analytical method and �u: settlement from the intrinsic spatial variability  

 

The results of the comparison of the settlement between analytical and numerical 

methods for a spread footing of 10 m at locations (1) and (2) can be found in appendix 2. 

For the different location, it can be calculated the contribution of the absolute settlement 

E to the total settlement ∆  and the contribution of the variance of the absolute settlement 

to the total variance respectively from ratios [ ] [ ]∆∆ EE  and [ ] [ ]∆∆ VarVar . 

In the case of location 3, the contribution of the absolute settlement to the total 

settlement is about 88% and the contribution of the variance of the absolute settlement to 

the total variance is close to 32%. The latter value shows the great influence (68%) of the 

spatial variability of Es along the spread footing (intrinsic spatial variability) in the 

variance of ∆ . This influence is reported, on average, on the settlement with a contribution 

of the intrinsic spatial variability on the total settlement of 12%. 

Location 2, where variability of Es is the lowest compared to others locations, gives a 

very low contribution of the intrinsic spatial variability on the settlement (3%). The 

contribution of the variance of the intrinsic spatial variability on the variance of the 

settlement remains important (52%). Location 1, where the variability of Es is greater than 

for location 2, shows a very important influence of the intrinsic spatial variability on the 

variance of the total settlement (85%). 

Note that for all locations under study, all contributions are almost the same, whatever 

the semi-empirical model considered for ks.  

All these results show the influence of the spatial variability of Es along the spread 

footing in the case of a spread footing with free ends even when the correlation length is 

greater than the length of the spread footing.  
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4.4.2. Taking into consideration of the spatial variability of soil modulus in the 
buried pipe design 

For taking into account of the spatial variability of soil modulus, we consider a buried 

concrete pipe of 100 m with manholes at both ends on the construction site (Figure 4-30). 

The soil parameters, the load, the mechanical property and the geometrical dimensions of 

this buried concrete pipe are identical to those previously studied in previous chapters 

(chapter 2 and 3). The values of Young’s soil modulus are obtained at each node from the 

1000 simulations results using ISATIS© software. From these values of Es, the different 

values of subgrade reaction modulus for each semi-empirical model are obtained using 

relationship from Table 2-8. These values of subgrade reaction modulus are introduced in 

the finite element method using one dimensional model to obtain the maximum differential 

settlements and the maximum bending moments for each semi-empirical model. These 

computations are performed with the CASTEM© software using the Winkler model. Finite 

element modeling of a buried pipe of 100 m has 200 elements with 201 nodes with fixed 

ends as boundary conditions (Figure 4-31). 

 

 
Figure 4-30: Location of a buried concrete pipe with a length of 100 m on the construction site  
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Figure 4-31: Finite element modelling of a buried pipe of 100 m with fixed ends as boundary conditions(one 
dimensional model, 1D)  

   

As in the case of a spread footing, the obtained results can be then statistically analyzed 

to better understand the behavior of a buried concrete pipe in the presence of spatial 

variability on the construction site. In the following, this statistical analysis is performed 

for the two extreme semi-empirical models (Vesic’s and Matsubara’s models) since these 

two models include the values of the ks and CVks for the other semi-empirical models (Biot, 

Meyerhof, Kloppel and Selvadurai, Figure 2-11 and Figure 2-16). 

For a preliminary evaluation, Young’s soil modulus along a buried pipe of 100 m 

(Figure 4-30) for the first 100 simulations is shown in Figure 4-32 to show the variation of 

soil modulus beneath the buried pipe.  

 
Figure 4-32: Young’s soil modulus along a buried pipe of 100 m (Figure 4-30) for the first 100 simulations  
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Figure 4-33 shows the data distribution for the 200000 soil modulus values for the 

location of a buried pipe in the case of the study site. For the soil modulus probability 

between 5% and 95%, the interval of soil modulus values for this location is [6.4, 10.3] 

MPa (Figure 4-33b). 

 

 

             a) 

 

             b) 

Figure 4-33:a) Histogram and b)Cumulative distribution function of soil modulus for the location of buried 
pipe (Figure 4-30) in the case of the study site 
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Some preliminary calculated results obtained using the finite element method 

(CASTEM©) for this location are shown in Figure 4-34 and Figure 4-35. Figure 4-34a and 

Figure 4-34b respectively show the deformation�and the bending moment along a buried 

pipe with a length of 100 m for the first three simulations in the case of Vesic model.  

 

 

               a) 

 

             b) 

Figure 4-34: a)Deformation and  b) Bending moment along a buried pipe of 100 m for the first three 
simulations in the case of Vesic model 

Figure 4-35a and Figure 4-35b respectively show the deformation and the bending 

moment along a buried pipe for the first simulation and for the two extreme semi-empirical 

models. As expected, the Vesic model gives the greater values of the maximum 

deformation and the maximum bending moment than the Matsubara model.  
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               a) 

 
              b) 

Figure 4-35: a) Deformation and b) Bending moment along a buried pipe of 100 m for the first simulation 
and for the two extreme semi-empirical models 

 

In order to explain the behavior of a buried concrete pipe for this location, the results 

obtained for the maximum differential settlement and the maximum bending moment are 

transformed in the form of cumulative distribution function for these two semi-empirical 

models (Figure 4-36 and Figure 4-37). 

For the probability of the maximum differential settlement between 5% and 95%, the 

intervals of the maximum differential settlements for the Matsubara and Vesic models are 

respectively [6, 6.7] and [30, 32.5] mm (Figure 4-36). As can be seen, there is a large 

difference between the values of these two intervals. For example, the probability to obtain 

a maximum differential settlement lower than 6.7 mm for the Matsubara model is equal to 

95% while this probability for the Vesic model and for a maximum differential settlement 

less than 29.5 mm is equal to 0%, illustrating the importance of the choice of a semi-

0

5

10

15

20

25

30

35

0 20 40 60 80 100

D
ef

o
rm

at
io

n 
(m

m
) 

Buried pipe length (m)

First simulation (CASTEM©)

Vesic model

Matsubara model

-1000

-500

0

500

1000

1500

2000

2500

3000

0 20 40 60 80 100

B
e

nd
in

g
 m

o
m

e
nt

 (k
N

. m
)

Buried pipe length (m)

First simulation (CASTEM©)

Vesic model

Matsubara model



Soil spatial variability on a construction site 

211 

 

empirical model and the importance of the spatial variability of soil parameters on the 

longitudinal behavior of a buried pipe.  

Similar interpretation can be made with regard to the distributions of the maximum 

bending moment (Figure 4-37).   

 

 

                      a) 

 

                      b) 

Figure 4-36: Cumulative distribution function of the maximum differential settlement  for a buried pipe of 
100 m in the case of the study site for the two extreme semi-empirical models: a) Matsubara model b)Vesic 
model 
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               a) 

 

               b) 

Figure 4-37: Cumulative distribution function of the maximum bending moment for a buried pipe of 100 m in 
the case of the study site for the two extreme semi-empirical models: a) Matsubara model b)Vesic model 
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4.4.2.1. Comparison between analytical and numerical results (for a buried pipe)  

In this section we compare the results obtained by the previous numerical method with 

those obtained by the analytical method presented in chapter three in the case of a buried 

pipe of 100 m in order to show the influence of the spatial variability on the maximum 

settlement and the maximum bending moment. As it was shown in chapter three for a low 

stiffness zone length greater than 50 m (Figure 3-28) the uncertainty of CVL is equal to 

zero then we take into account only the uncertainty of ks (CVks). In the following, this 

comparison is performed for the buried concrete pipe at the considered location on the 

construction site (Figure 4-30). 

Starting from the numerical method (ISATIS© and CASTEM© softwares) and 

considering the 1000 simulations of 200 values of the soil reaction modulus beneath the 

buried pipe, we obtain the mean ([ ]∆E ), variance ( [ ]∆Var ) and then the coefficient of 

variation ( [ ]∆CV ) of the maximum total settlement for the Matsubara and Vesic models 

(Table 4-3). 

As it was previously mentioned, in the analytical method, the spatial variability of 

Young’s soil modulus is not considered and the mean of this modulus is considered as 

constant beneath a buried pipe. The coefficient of variation of the maximum total 

settlement can be obtained from the analytical method from theory or calculated from these 

1000 simulations as explained in the following:  

- Analytical method from theory: for each simulation we obtain from 200 values of 

Young’s soil modulus under the buried pipe the mean Es, and from the 1000 

simulations mean ([ ]sEE ), variance ( [ ]sEVar ) and then the coefficient of variation (

[ ]sECV ) respectively equal to 7.544 MPa, 0.0053 (MPa)2 and 0.0096. The 

coefficient of variation of ks (CVks) can be calculated for each semi-empirical model 

from Equation 2-8 (CVks=�Es.CVEs, the values of �Es, depends on each semi-

empirical model, are reported in Table 2-9). Calculation of the coefficient of 

variation of settlement for these two semi empirical models is very straightforward: 

CVT[E] = CVks as we showed in chapter three (Figure 3-27). Values are also reported 

in the Table 4-3. 
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- Analytical method from 1000 simulations: the mean of soil modulus is obtained for 

each simulation as previously. From this value, the associated value of ks and the 

associated maximum settlement for each simulation and for each semi-emprical 

model are calculated. Then the mean (E[E]) , variance (Var[E])  and coefficient of 

variation of the absolute settlement (CV[E]) are obtained from 1000 simulations and 

for each semi-empirical model. These values are reported in the Table 4-3.  

 As can be seen from the Table 4-3, the values of the coefficient of variations obtained 

from these two analytical methods are almost same and as expected give the same results. 

Table 4-3: Comparison of the maximum settlement between analytical and numerical methods for a buried 
pipe of 100 m at considered location on the construction site. 

Statistical parameters Matsubara Vesic Considered methods 

[ ]∆E  (mm) 6.366 31.128 Numerical methods 
(ISATIS© and CASTEM©) 

 
 [ ]∆Var  (mm)2 0.0272 0.5797 

[ ]∆CV   0.0259 0.0245 

 [ ]∆TCV  0.0096 0.0106 
Analytical method 

             (obtained from theory) 

 [ ]∆CV  0.0096 0.0104 Analytical method 
(obtained from 1000 simulations) 

  
[ ]∆E (mm) 5.489 26.673 

[ ]∆Var (mm)2 0.0028 0.0776 

[ ] [ ]∆
∆

E
E  86.2% 85.7% 

Contribution to the estimated 
settlement 

[ ] [ ]∆
∆

Var
Var  10.3% 13.4% 

Contribution to the variability of 
settlement 

∆ : Maximum settlement from the total spatial variability, �: Maximum settlement from the analytical 
method (Es is constant)  

 

The difference between [ ]∆E  and [ ]∆Var   from the numerical simulation and E[E] and 

Var[E] from the analytical analysis is due to the influence of the intrinsic spatial variability 

of Es along the buried pipe.  

For this location, it can be calculated the contribution of the maximum settlement E to 

the maximum total settlement ∆  and the contribution of the variance of the maximum 

settlement to the total variance respectively from ratios [ ] [ ]∆∆ EE  and [ ] [ ]∆∆ VarVar . 
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The contribution of the maximum settlement to the maximum total settlement is about 

86% and the contribution of the variance of the maximum settlement to the total variance 

is close to 12%. The latter value shows the great influence (88%) of the spatial variability 

of Es along the buried pipe (intrinsic spatial variability) in the variance of ∆ . This 

influence is reported, on average, on the maximum settlement with a contribution of the 

intrinsic spatial variability on the maximum total settlement of 14%. 

With the same methodology as in the case of maximum settlement, comparison of the 

maximum bending moment between analytical and numerical methods for the considered 

buried pipe is presented in Table 4-4. 

 

Table 4-4: Comparison of the maximum bending moment between analytical and numerical methods for a 
buried pipe of 100 m at considered location on the construction site. 

Statistical parameters Matsubara Vesic Considered methods 

[ ]ME  (kN.m) 1260.97 2803.72 Numerical methods 
(ISATIS© and CASTEM©) 

 
 [ ]MVar  (kN.m)2 384.17 1071.62 

[ ]MCV   0.0155 0.0117 

 [ ]MCVT  0.0048 0.0053 
Analytical method 

             (obtained from theory) 

 [ ]MCV  0.0048 0.0052 Analytical method 
(obtained from 1000 simulations) 

  
[ ]ME ( kN.m) 1036.24 2284.26 

[ ]MVar ( kN.m)2 24.97 142.38 

[ ] [ ]ME
ME  82 .2% 81.5% 

Contribution to the estimated 
bending moment 

[ ]MVar
VarM  6.5% 13.3% 

Contribution to the variability of 
bending moment 

[ ] [ ] [ ]MCV,MVar,ME  are respectively the mean, variance and coefficient of variation of the maximum 

bending moment from numerical methods, CVT[M]: coefficient of variation of the maximum bending moment 
using analytical method (obtained from theory), E[M], Var[M] and CV[M]: are respectively the mean, 
variance and coefficient of variation of the maximum bending moment using analytical method (obtained 
from 1000 simulations).  

 

Again, the difference between [ ]ME  and [ ]MVar  from the numerical simulation and 

E[M] and Var[M] from the analytical analysis is due to the influence of the intrinsic spatial 

variability of Es along the buried pipe.  
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For this location, it can be calculated the contribution of the maximum bending moment 

M to the maximum total bending moment M  and the contribution of the variance of the 

maximum bending moment to the total variance respectively from ratios [ ] [ ]MEME and 

[ ] [ ]MVarMVar . 

The contribution of the maximum bending moment to the maximum total bending 

moment is about 82% and the contribution of the variance of the maximum bending 

moment to the total variance is close to 10%. The latter value shows again the great 

influence (90%) of the spatial variability of Es along the buried pipe (intrinsic spatial 

variability) in the variance of M . This influence is reported, on average, on the maximum 

bending moment with a contribution of the intrinsic spatial variability on the maximum 

total bending moment of 18%. 

As in the case of continuous spread footing, it is shown that the spatial variability of soil 

properties adds a significant part of uncertainty in the differential settlement and the 

bending moment.   

 

4.5. Summary and conclusions 

In this chapter the geological conditions of a studied construction site and available data 

from the geotechnical and geophysical investigations were presented. Appropriate 

geostatistical methods were used to improve the quality of geotechnical data and bring 

more information to the soil spatial variability at the construction site. We showed how to 

improve one's knowledge of the mechanical characteristics at the construction site by using 

a combination of geotechnical and geophysical information and employing collocated co-

kriging. This information was then coupled with a finite element method (CASTEM© 

software) to take into account the influence of the spatial variability of soil modulus on the 

maximum differential settlements and the maximum bending moments for the considered 

superficial geotechnical designs (continuous spread footing and buried pipe) at the 

construction site. The analysis of these statistical and geostatistical results makes it 

possible to develop decision support tools and to describe the longitudinal behavior of 

superficial geotechnical designs when they are located at different positions on the 

construction site. A comparison of analytical and numerical results shows the importance 

of the influence of the spatial variability of soil modulus and the importance of the choice 
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of the semi-empirical model on the behavior of these superficial geotechnical designs. It 

also shows that the uncertainty on differential settlement and bending moment is always 

more important when the spatial variability of soil properties is considered. 

Finally, the results obtained here show, for continuous spread footings (for residential 

houses) and buried pipes, that the longitudinal behavior of the structure is as important as 

the transverse behavior. Specific consideration is required to adapt the design of individual 

houses and buried pipes to a construction site whose soil properties are characterized by 

spatial variability.  
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5.  General conclusion and future research directions 

5.1. General summary and conclusions 

In geotechnical designs, the soil beneath structure exhibits spatial heterogeneities 

resulting from the history of its deposition and aggregation processes, which occur in 

different physical and chemical environments. This inherent or natural variability can be 

very important in the behavior of the superficial geotechnical systems inducing differential 

settlements, whose consequences on structural response can be harmful: local failures, 

cracking in beams or walls, leakage in sewers. The uncertainty can also exist in structure 

mechanical and geometrical parameters.   

The main objective of this thesis was to take into consideration: 

- uncertainty in the mechanical properties of soil, 

- spatial variability in the mechanical properties of soil, 

- uncertainty in structure mechanical properties, 

- uncertainty in structure geometrical parameters 

in order to estimate the uncertainty in differential settlement and bending moment of two 

superficial geotechnical works: continuous spread footing and buried concrete or steel 

pipe. 

Arriving at a realistic model, for example using Mohr-Coulomb or Cam-Clay models, is 

complicated in foundation analysis by the extreme difficulty of acquiring the exact 

property parameters of soil. Thus, we chose to use Winkler’s analytical approach with only 

one parameter (subgrade soil reaction modulus) to model the soil-structure interaction 

instead of modeling the subsoil in all its complexity, which seems, from a practical point of 

view, to be appropriate for superficial geotechnical designs.  

Eight semi-empirical models which give the coefficient of subgrade reaction were 

studied by considering soil and structure uncertainties. The FOSM and SOSM methods 

were used on these semi-empirical models to determine the coefficient of variation of soil 

reaction modulus. Results obtained using the FOSM method for the spread footings show 

the major effects of the uncertainties of soil modulus, Poisson’s ratio and the width of the 

continuous spread footing on the uncertainty of the coefficient of subgrade reaction. For 

the latter, results for the buried pipes show the major effects of the uncertainties of soil 

modulus, the external diameter of buried concrete or steel pipe and Poisson's ratio of soil 
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on the uncertainty of the coefficient of subgrade reaction (ks). We showed that if the 

additional amount of accuracy resulting from the SOSM method was insignificant then the 

FOSM method alone would be sufficient to correctly estimate the coefficients of variation 

of ks. 

We proposed, for each model semi-empirical, simplified expressions that take into 

account the minimum parameters for determining the coefficient of variation of soil-

reaction modulus. These different relationships give to the practitioner a quick estimate of 

the uncertainty of the soil-reaction modulus.  

We then studied the incorporation of uncertainty of ks in the Winkler analytical model, 

using simplified expressions and the influence of this uncertainty on the differential 

settlement and bending moment in the longitudinal direction of spread footings and buried 

pipelines. The FOSM method was used again on the analytical solution of a beam on an 

elastic foundation from Winkler’s hypothesis and with different boundary conditions.   

Results from the FOSM method, for a spread footing, show that the uncertainties of the 

differential settlement (CVE) and the bending moment (CVM) are very different depending 

on the length of a spread footing and the boundary conditions considered in order model a 

zone of weak soil at the construction site. Whatever for the differential settlement or 

bending moment, the obtained results concerning the probability of the serviceability limit 

state (PSLS) show the importance of the choice of semi-empirical model and the boundary 

conditions. For the semi-empirical model and the boundary conditions selected, when the 

uncertainty on the value of ks is high, the probability of the serviceability limit state can be 

exceeded even if the soil has good mechanical properties.  

Results in the case of buried pipes show two things. The uncertainties of the differential 

settlement and the bending moment are very different depending on the length of the low 

stiffness zone beneath the buried pipe and its value of Es. Additionally, these uncertainties 

are more influenced by the length of the low stiffness zone than the value of the subgrade 

reaction modulus. From a practical point of view, this indicates that an accurate knowledge 

of soil is more important in determining low stiffness zone lengths than properties of soil 

in case of soil reconnaissance for buried pipes. 

In the case where the choice of a suitable semi-empirical model for the estimation of the 

uncertainty on ks is not straightforward, a global uncertainty approach is proposed. This 

approach includes the uncertainties from each semi-empirical model and can be used to 
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verify whether the maximum values exceed the serviceability values for the ultimate limit 

state. 

A comparison between the FOSM and Monte Carlo analysis results was performed and 

the results were similar. This is to be expected given the low non-linearity of the model.  

In our analytical approach it was not possible to consider the soil characteristics as 

different at each given location along the spread footing and buried pipe axes. We coupled 

the finite element method (CASTEM© software) with geostatistical methods (ISATIS©), 

in order to take into account the correlation length of soils parameters along the pipe axis 

and spread footing to characterize the spatial variability of soil.  

It was shown, using data from a real construction site, how the combination of the 

geotechnical and geophysical information can improve by using collocated cokriging 

knowledge of the mechanical characteristics of the site. The analysis of these statistical and 

geostatistical results makes it possible to describe the behavior of the superficial 

geotechnical designs when they are constructed on different locations at the construction 

site. A comparison between analytical and numerical results shows the importance of the 

influence of the spatial variability of soil modulus and the importance of the choice of the  

semi-empirical model on the behavior of these superficial geotechnical systems. It also 

shows that the uncertainty on differential settlement and bending moment is always more 

important where the spatial variability of soil properties are considered. 

Finally, the results obtained here show, in the case of continuous spread footings for 

residential houses and buried pipes, the importance of the longitudinal behavior of these 

structures and the significance of uncertainty in their design. Specific consideration is 

required to adapt the design of individual houses and buried pipes to a construction site 

whose soil properties are characterized by spatial variability.  

 

5.2. Future research directions 

Based on the work performed in this research, the following directions for future work 

can be proposed:  

a) The same work can now be studied with different analytical models taking into account 

more parameters such as Vlassov & Pasternak models with two parameters, or Kerr’s 

model with three parameters, in order to compare the uncertainties on the differential 



Chapter 5 

 

224 

 

settlement and the bending moment from these models with those obtained from the 

Winkler model in this study. 

b) Development of the analytical model can be performed considering three different zones 

of soil beneath the considered superficial geotechnical systems. Furthermore, this would 

help us to choose suitable boundary conditions for these geotechnical systems in our 

analytical computations since the boundary conditions have a strong influence on the 

uncertainty of differential settlement and bending moment.  

c) Shrinkage-swelling phenomena in clay soils have their origins in the mineralogical 

composition and texture of the soil. These predisposing factors, associated with strong 

climatic variations and a succession of intensely dry periods in particular, have been 

responsible for numerous natural disasters in superficial geotechnical systems in France. It 

would be interesting to take into consideration these phenomena with associated 

uncertainties for their design. 

d) We can study, at a real construction site, the effect of joints in a buried concrete pipe 

along a low stiffness zone length, and compare the results with those obtained in this thesis 

which did not consider joints. 

e) In this thesis, the uncertainties of the geometrical parameters, the width and the height of 

spread footing and the external diameter of buried pipe are only taken into account in the 

estimate of the coefficient of variation of the subgrade reaction modulus. These 

uncertainties were not considered in the calculation of the moment of inertia of the cross 

section of these structures. It would be interesting to also consider the uncertainties of 

these parameters in the calculation of the moment of inertia in the deformation equation for 

these structures. 

f) In this study, only the uncertainty of Young’s soil modulus was considered in a 

geostatitical approach coupled with a finite element method. The uncertainties of 

geometrical parameters of spread footings and buried pipes can also be considered in a 

geostatistical approach in order to propose a complete reliability analysis for these 

structures. 

j) We can take into account the uncertainty related to the spatial variation of the load for 

the buried pipes. 
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h) We can extend the study of the effects of the uncertainties of soil and structure 

parameters on the differential settlements and the bending moments for superficial 

geotechnical systems in two or three dimensions.   
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Appendix 1 

1. Reliability analysis for a continuous spread footing by the hypothesis of a log-

normal distribution 

 

 

Fig. 1: Estimation of the probability of failure (Pf) as function of Es for a maximum differential settlement of 
a spread footing with simply supported at two ends as boundary conditions (for the four semi- 
empirical models). 

 

 

Fig. 2: Estimation of the probability of failure (Pf) as function of Es for a maximum differential settlement of 
a spread footing with simply supported at one end as boundary conditions (for the four semi- 
empirical models). 
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Fig. 3: Estimation of the probability of failure (Pf) as function of Es for a maximum elastic bending moment 
of a spread footing with simply supported at two ends as boundary conditions (for the four semi- 
empirical models). 

 

 

 

 

 

 

Fig. 4: Estimation of the probability of failure (Pf) as function of Es for a maximum elastic bending moment 
of a spread footing with simply supported at one end as boundary conditions (for the four semi- 
empirical models). 
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Fig. 5: Probability of failure (Pf) for a maximum differential settlement of a spread footing with simply 
supported at two ends as boundary conditions for different values of CVks (Ménard’s model). 

 

 

 

 

 

 

 

Fig. 6: Probability of failure (Pf) for a maximum differential settlement of a spread footing with simply 
supported at one end as boundary conditions for different values of CVks (Ménard’s model) 
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2. Buried pipes (continuous buried steel pipes and buried concrete pipes) 

2.1. Estimation of the uncertainty of the differential settlement and bending moment 

(for a continuous buried steel pipe) 

 
 

 

Fig. 7: Influence of the uncertainty of ks on the uncertainty of the maximum differential settlement for the 
different low stiffness zone lengths (L) (CVE/ks: coefficient of variation of the differential settlement 
with respect to ks, CVks: coefficient of variation of ks). 

 

 

 

Fig. 8: Influence of the uncertainty of L on the uncertainty of the maximum differential settlement for the 
different low stiffness zone lengths (L) (CVE/L: coefficient of variation of the differential settlement 
with respect to L, CVL: coefficient of variation of L). 
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Fig. 9: Influence of the uncertainty of ks on the uncertainty of the maximum bending moment for the different 
low stiffness zone lengths (L) (CVM/ks: coefficient of variation of the bending moment with respect to 
ks). 

 

 

 

 

 

Fig. 10: Influence of the uncertainty of L on the uncertainty of the maximum bending moment for the different 
low stiffness zone lengths (CVM/L: coefficient of variation of the bending moment with respect to L). 
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2.2. Reliability analysis for a buried concrete pipe by the hypothesis of a log-normal 

distribution  

 

 

 

Fig. 11: Estimation of the probability of failure (Pf) as function of Es for a maximum differential settlement of 
a buried pipe (for the six semi-empirical models). 

 

 

 

 

 

 

Fig. 12: Estimation of the probability of failure (Pf) as function of Es for a maximum elastic bending moment 
of a buried pipe (for the six semi-empirical models and for a maximum elastic stress of concrete equal 
to 10 MPa). 
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Fig. 13: Estimation of the probability of failure (Pf) as function of Es for a maximum elastic bending moment 
of a buried pipe (for the six semi-empirical models and for a maximum elastic stress of concrete equal 
to 5 MPa). 

 

 

 

 

 

Fig. 14: Probability of failure (Pf) for a maximum differential settlement of a buried pipe for different values 
of CVks (Vesic’s model) 
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Fig. 15: Probability of failure (Pf) for a maximum differential settlement of a buried pipe for different values 
of CVL (Vesic’s model) 

 

 

 

 

 

 

Fig. 16: Probability of failure (Pf) for a maximum differential settlement of a buried pipe for different values 
of CVks and CVL (Vesic’s model) 
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2.3. Application to global uncertainty analysis (for a continuous buried steel pipe) 

 

 

Fig. 17: Global uncertainties for the a) Subgrade reaction modulus ks, b) Maximum differential 
settlement E and c) Maximum bending moment M by considering 95% confidence bound for each 
semi-empirical model with log-normal distribution (Es=2 MPa,  Ep=210 GPa, Bs=0.3, d=1.5 m, 
e=0.02 m, L=30 m, q= 100 kN/m, CVEs=15%, CVL=10%, CVd= CVBs= CVEp=5%). 
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Appendix 2 
Table 1: Comparison of the settlement between analytical and numerical methods for a spread footing of 10 

m at location (1) 

 

[ ] [ ] [ ]∆∆∆ CV,Var,E  are respectively the mean, variance and coefficient of variation of the absolute 

settlement from numerical methods, CVT[E]: coefficient of variation of the absolute settlement using 
analytical method (obtained from theory), E[E], Var[E] and CV[E]: are respectively the mean, variance and 
coefficient of variation of the absolute settlement using analytical method (obtained from 1000 

simulations).The mean, variance and coefficient of variation of Es for the location (1) are respectively[ ]sEE

=6.791 MPa, [ ]sEVar =0.024 (MPa)2 and [ ]sECV =0.0228. ∆ : settlement from the total spatial 

variability, �: settlement from the analytical method (Es is constant).  

 

Table 2: Comparison of the settlement between analytical and numerical methods for a spread footing of 10 
m at location (2) 

 

The mean, variance and coefficient of variation of Es for the location (2) are respectively[ ]sEE =6.872 MPa, 

[ ]sEVar =0.0253 (MPa)2  and [ ]sECV  =0.0231 


