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Preface

This Ph.D. study was carried out at the Department of Mathematical Modelling,
Technical University of Denmark and at UNIeC, the Danish Computing Centre
for Research and Education. It has been jointly supported by UNIeC and the
Danish Natural Science Research Council (SNF) under the program Efficient Par-
allel Algorithms for Optimization and Simulation (EPOS).

The project was motivated by a desire in the department to generate knowledge
about wavelet theory, to develop and analyze parallel algorithms, and to investi-
gate wavelets’ applicability to numerical methods for solving partial differential
equations. Accordingly, the report falls into three parts:

Partl: Wavelets: Basic Theory and Algorithms.
Part I1: Fast Wavelet Transforms on Supercomputers.
Part 111: Waveletsand Partial Differential Equations.

Wavelet analysis is a young and rapidly expanding field in mathematics, and
there are already a number of excellent books on the subject. Important exam-
ples are [SN96, Dau92, HW96, Mey93, Str94]. However, it would be almost
impossible to give a comprehensive account of wavelets in a single Ph.D. study,
so we have limited ourselves to one particular wavelet family, namely the com-
pactly supported orthogonal wavelets. This family was first described by Ingrid
Daubechies [Dau88], and it is particularly attractive because there exist fast and
accurate algorithms for the associated transforms, the most prominent being the
pyramid algorithm which was developed by Stephane Mallat [Mal89].

Our focus is on algorithms and we provide Matlab programs where applicable.
This will be indicated by the margin symbol shown here. The Matlab package is
available on the World Wide Web at

http://www.imm.dtu.dk/ omni/wapa20.tgz

and its contents are listed in Appendix E.
We have tried our best to make this exposition as self-contained and acces-
sible as possible, and it is our sincere hope that the reader will find it a help for



iv Preface

understanding the underlying ideas and principles of wavelets as well as a useful
collection of recipes for applied wavelet analysis.

I would like to thank the following people for their involvement and contri-
butions to this study: My advisors at the Department of Mathematical Modelling,
Professor Vincent A. Barker, Professor Per Christian Hansen, and Professor Mads
Peter Sgrensen. In addition, Dr. Markus Hegland, Computer Sciences Laboratory,
RSISE, Australian National University, Professor Lionel Watkins, Department of
Physics, University of Auckland, Mette Olufsen, Math-Tech, Denmark, lestyn
Pierce, School of Electronic Engineering and Computer Systems, University of
Wales, and last but not least my family and friends.

Lyngby, March 1998

Ole Mgller Nielsen



Abstract

Waveletsin Scientific Computing

Wavelet analysis is a relatively new mathematical discipline which has generated
much interest in both theoretical and applied mathematics over the past decade.
Crucial to wavelets are their ability to analyze different parts of a function at dif-
ferent scales and the fact that they can represent polynomials up to a certain order
exactly. As a consequence, functions with fast oscillations, or even discontinu-
ities, in localized regions may be approximated well by a linear combination of
relatively few wavelets. In comparison, a Fourier expansion must use many basis
functions to approximate such a function well. These properties of wavelets have
lead to some very successful applications within the field of signal processing.
This dissertation revolves around the role of wavelets in scientific computing and
it falls into three parts:

Part | gives an exposition of the theory of orthogonal, compactly supported
wavelets in the context of multiresolution analysis. These wavelets are particularly
attractive because they lead to a stable and very efficient algorithm, namely the fast
wavelet transform (FWT). We give estimates for the approximation characteristics
of wavelets and demonstrate how and why the FWT can be used as a front-end for
efficient image compression schemes.

Part Il deals with vector-parallel implementations of several variants of the
Fast Wavelet Transform. We develop an efficient and scalable parallel algorithm
for the FWT and derive a model for its performance.

Part 111 is an investigation of the potential for using the special properties of
wavelets for solving partial differential equations numerically. Several approaches
are identified and two of them are described in detail. The algorithms developed
are applied to the nonlinear Schrddinger equation and Burgers’ equation. Numer-
ical results reveal that good performance can be achieved provided that problems
are large, solutions are highly localized, and numerical parameters are chosen ap-
propriately, depending on the problem in question.
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Waveletsi Scientific Computing

Waveletteori er en forholdsvis ny matematisk disciplin, som har vakt stor inter-
esse indenfor bade teoretisk og anvendt matematik i lgbet af det seneste arti. De
altafgerende egenskaber ved wavelets er at de kan analysere forskellige dele af en
funktion pa forskellige skalatrin, samt at de kan repraesentere polynomier ngjagtigt
op til en given grad. Dette farer til, at funktioner med hurtige oscillationer eller
singulariteter indenfor lokaliserede omrader kan approksimeres godt med en lin-
earkombination af forholdsvis fa wavelets. Til sammenligning skal man med-
tage mange led i en Fourierreekke for at opna en god tilnaermelse til den slags
funktioner. Disse egenskaber ved wavelets har med held veeret anvendt indenfor
signalbehandling. Denne afhandling omhandler wavelets rolle indenfor scientific
computing og den bestar af tre dele:

Del I giver en gennemgang af teorien for ortogonale, kompakt stgttede wavelets
med udgangspunkt i multiskala analyse. Sadanne wavelets er serligt attraktive,
fordi de giver anledning til en stabil og s&rdeles effektiv algoritme, kaldet den
hurtige wavelet transformation (FWT). Vi giver estimater for approksimations-
egenskaberne af wavelets og demonstrerer, hvordan og hvorfor FWT-algoritmen
kan bruges som farste led i en effektiv billedkomprimerings metode.

Del Il omhandler forskellige implementeringer af FWT algoritmen pa vektor-
computere og parallelle datamater. Vi udvikler en effektiv og skalerbar parallel
FWT algoritme og angiver en model for dens ydeevne.

Del 111 omfatter et studium af mulighederne for at bruge wavelets serlige
egenskaber til at lgse partielle differentialligninger numerisk. Flere forskellige
tilgange identificeres og to af dem beskrives detaljeret. De udviklede algoritmer
anvendes pa den ikke-lineare Schrodinger ligning og Burgers ligning. Numeriske
undersggelser viser, at algoritmerne kan vare effektive under forudseetning af
at problemerne er store, at lgsningerne er sterkt lokaliserede og at de forskel-
lige numeriske metode-parametre kan valges pa passende vis afhaengigt af det
pageeldende problem.
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Notation

Symbol Page Description

A B XY, Z Generic matrices

a, bz y, z Generic vectors

a, 110 @, = >, ara,—p

A(€) 25 A(E) =272 e

ay 16 Filter coefficient for ¢

B(¢) 20 B(§) =272 ek

B(D) 116  Bandwidth of matrix D

by, 16 Filter coefficient for v

c 49 Vector containing scaling function coefficients

C. 163  \ector containing scaling function coefficients with re-
spect to the function «

Cik 6 Scaling function coefficient

Ck 3 Coefficient in Fourier expansion

Cp 23 1/(PY J T P (y)] dy

Cy 62 Cy=maxyep,p-1 [P(y)

cct cpv, DC DD 122 Shift-circulant block matrices

e ed™ de dd 128  Vectors representing shift-circulant block matrices

D 16 Wavelet genus - number of filter coefficients

D;il) 216  Fourier differentiation matrix

D 113 Scaling function differentiation matrix

D(d) 119  Wavelet differentiation matrix

d 57 Vector containing wavelet coefficients

d, 166  \ector containing wavelet coefficients with respect to the
function u

dik 6 Wavelet coefficient

E 175 E =exp(4'L)

ej(x) 61 Pointwise approximation error

éj(x) 63 Pointwise (periodic) approximation error

frg,h,u,v 3 Generic functions

Fy 210  Fourier matrix

£(€) 25  Continuous Fourier transform (&) = [*_ f(x)e " da

IX



Notation

Symbol Page Description

H N 121  Wavelet transform of a circulant matrix
HY 136  Block matrix of H
I 17 Support of ¢; , and ;

Jo 6 Integer denoting coarsest approximation

J 6 Integer denoting finest approximation

L 146  Bandwidth (only in Chapter 8)

L 174  Length of period (only in Chapter 9)

b 136  Bandwidth of block H* (only in Chapter 8)
L 174  Linear differential operator

L 174  Matrix representation of £
M} 19  pth moment of ¢(x — k)

N 5 Length of a vector

N 47 Set of positive integers

Ny 27 Set of non-negative integers

N,(e) 65 Number of insignificant elements in wavelet expansion
Ny(e) 64  Number of significant elements in wavelet expansion

N 174  Matrix representation of nonlinearity
P 19 Number of vanishing moments P = D/2
P 85 Number of processors (only in Chapter 6)

Py f 15 Orthogonal projection of f onto V;

Pw, f 15 Orthogonal projection of f onto W;

Py f 41 Orthogonal projection of f onto V;
/

Py, 41 Orthogonal projection of f onto IV,

R 3 Set of real numbers

S; 58  S; = N/2¢, size of a subvector at depth

SP 88  SP = S;/P, size of a subvector at depth : on one of P
processors

T 49 Matrix mapping scaling function coefficients to function

values: f = Tc

uy 163  Approximation to the function «

% 11 jth approximation space, V; € L*(R)

V; 7 jth periodized approximation space, V; € L2([0,1])

W; 11 jth detail space, W, L V; and W, € L*(R)

W, 7 jth periodized detail space, W, L V;and W; € L%([0,1])
w? 58  Wavelet transform matrix: d = W'c

X 60  Wavelet transform of matrix X: X = WM X W~
X 69 Wavelet transformed and truncated matrix

@ 59  Wavelet transform of vector &: & = W'z

Z 11 Set of integers



Xi

Symbol Page  Description
o) 163 Constant in Helmolz equation
B2, B3 174 Dispersion constants
rf 108 Connection coefficient
! 109 Vector of connection coefficients
~ 174 Nonlinearity factor
Ok 14 Kronecker delta
ey 171 Threshold for vectors
EM 171 Threshold for matrices
€D 187 Special fixed threshold for differentiation matrix
Aa 212 Diagonal matrix
A A, Ay 15 Depth of wavelet decomposition
v 168 Diffusion constant
£ 23 Substitution for x or
25 Variable in Fourier transform
p 186 Advection constant
() 11,13 Basic scaling function
bjn() 13 Gin(r) = 212 a — k)
Pr(x) 13 b = dok()
o;x(r) 6,34 Periodized scaling function
() 13 Basic wavelet
vik(x) 13 bin(x) = 2P2¢(2Ve — k)
vi(x) 13 Vi = Yo x(2)
Dix(z) 6,34  Periodized wavelet
WN 210 wy = 2N



xii

Notation

Symbols parametrized by algorithms

Symbol Page Description

Fa(N) 59 Complexity of algorithm A

C 4 93 Communication time for algorithm 4

T4(N) 76 Execution time for Algorithm A

TE(N) 93 Execution time for Algorithm A on P processors
TY(N) 93  Sequential execution time for Algorithm A
EL(N) 94  Efficiency of Algorithm A on P processors
SE(N) 97 Speedup of Algorithm A on P processors

The symbol A is one the following algorithms:

Algorithm (A) Page Description

PWT
FWT
FWT2
MFWT
RFWT
CFWT
CIRPWT1
CIRPWT?2
CIRFWT
CIRMUL

53 Partial Wavelet Transform; one step of the FWT
53 Fast Wavelet Transform

60 2D FWT

79  Multiple 1D FWT

95 Replicated FWT algorithm

97 Communcation-efficient FWT algorithm

134  Circulant PWT (diagonal block)

134  Circulant PWT (off-diagonal blocks)

139  Circulant 2D FWT

158  Circulant matrix multiplication in a wavelet basis

M iscellaneous

Symbol Page Description
|l 63 Infinity norm for functions. ||u||_ = max, |u(z)]
]l 7o 165  Pointwise infinity norm for functions.
lull ., = max [u(k/2”)|

||ul| 173 Infinity norm for vectors. ||u|| = max; |ug]|
l], 11 2-norm for functions. ||u|, = ([ |u(z)|* dz)/?
][, 2 norm for vectors. ||u|, = (32, |uxl*)'/?
[x] 36  The smallest integer greater than =
|z 39  The largest integer smaller than =
] 205  Nearest integer towards zero

205  Modulus operator (n mod p)

212 The nth element in vector x
209  The m, nth element in matrix X
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Chapter 1

M otivation

This section gives an introduction to wavelets accessible to non-specialists and
serves at the same time as an introduction to key concepts and notation used
throughout this study.

The wavelets considered in this introduction are called periodized Daubechies
wavelets of genus four and they constitute a specific but representative example
of wavelets in general. For the notation to be consistent with the rest of this work,
we write our wavelets using the symbol ;ZN, the tilde signifying periodicity.

1.1 Fourier expansion

Many mathematical functions can be represented by a sum of fundamental or
simple functions denoted basis functions. Such representations are known as ex-
pansions or series, a well-known example being the Fourier expansion

o0

fla) = Z ez eR (1.1)

k=—c0

which is valid for any reasonably well-behaved function f with period 1. Here,
the basis functions are complex exponentials ¢2™** each representing a particular
frequency indexed by £. The Fourier expansion can be interpreted as follows: If f
is a periodic signal, such as a musical tone, then (1.1) gives a decomposition of f
as a superposition of harmonic modes with frequencies & (measured by cycles per
time unit). This is a good model for vibrations of a guitar string or an air column
in a wind instrument, hence the term “harmonic modes”.
The coefficients ¢, are given by the integral

1
cp = / f(x)e—i%rkx dr
0
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o5
o
70'50 < 1
Figure 1.1: The function f.
O.1 i
B
812 “256 o 256 512

Figure 1.2: Fourier coefficients of f.

Each coefficient ¢, can be conceived as the average harmonic content (over one
period) of f at frequency k. The coefficient ¢, is the average at frequency 0, which
is just the ordinary average of f. In electrical engineering this term is known as
the “DC” term. The computation of ¢, is called the decomposition of f and the
series on the right hand side of (1.1) is called the reconstruction of f.

In theory, the reconstruction of f is exact, but in practice this is rarely so.
Except in the occasional event where (1.1) can be evaluated analytically it must
be truncated in order to be computed numerically. Furthermore, one often wants
to save computational resources by discarding many of the smallest coefficients
c¢. These measures naturally introduce an approximation error.

To illustrate, consider the sawtooth function

T 0<ax<0.5
f(“')_{x—1 0.5 <a<l1
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0.6

x

Figure 1.3: A function f and a truncated Fourier expansion with only 17 terms

which is shown in Figure 1.1. The Fourier coefficients ¢; of the truncated expan-
sion

N/2

§ ck€227rkx

k=—N/241

are shown in Figure 1.2 for N = 1024.

If, for example, we retain only the 17 largest coefficients, we obtain the trun-
cated expansion shown in Figure 1.3. While this approximation reflects some of
the behavior of f, it does not do a good job for the discontinuity at + = 0.5. Itis
an interesting and well-known fact that such a discontinuity is perfectly resolved
by the series in (1.1), even though the individual terms themselves are continuous.
However, with only a finite number of terms this will not be the case. In addi-
tion, and this is very unfortunate, the approximation error is not restricted to the
discontinuity but spills into much of the surrounding area. This is known as the
Gibbs phenomenon.

The underlying reason for the poor approximation of the discontinuous func-
tion lies in the nature of complex exponentials, as they all cover the entire interval
and differ only with respect to frequency. While such functions are fine for rep-
resenting the behavior of a guitar string, they are not suitable for a discontinuous
function. Since each of the Fourier coefficient reflects the average content of a
certain frequency, it is impossible to see where a singularity is located by looking
only at individual coefficients. The information about position can be recovered
only by computing all of them.
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1.2 Wavelet expansion

The problem mentioned above is one way of motivating the use of wavelets. Like
the complex exponentials, wavelets can be used as basis functions for the expan-
sion of a function f. Unlike the complex exponentials, they are able to capture
the positional information about f as well as information about scale. The lat-
ter is essentially equivalent to frequency information. A wavelet expansion for a
1-periodic function f has the form

F@) = cnpbmnrl@)+ Y Y dipdis(z), v €R (1.2)
k=0 j=Jo k=0

where .J, is a non-negative integer. This expansion is similar to the Fourier expan-
sion (1.1): It is a linear combination of a set of basis functions, and the wavelet

coefficients are given by
1
Clok = / [(@) gy p() da
0

b = / F(2 )i () da

One immediate difference with respect to the Fourier expansion is the fact that
now we have two types of basis functions and that both are indexed by two inte-
gers. The ¢y, ; are called scaling functions and the 1 ;. are called wavelets. Both
have compact support such that

Gi(e) = Yip(z) =0 for «¢ [k s 3}

i

We call j the scale parameter because it scales the width of the support, and 4 the
shift parameter because it translates the support interval. There are generally no
explicit formulas for qb] % and ;/;] & but their function values are computable and so
are the above coefficients. The scaling function coefficient ¢;, , can be interpreted
as a local weighted average of f in the region where gBJmk is non-zero. On the
other hand, the wavelet coefficients d; ; represent the opposite property, namely
the details of f that are lost in the weighted average.

In practice, the wavelet expansion (like the Fourier expansion) must be trun-
cated at some finest scale which we denote ./ — 1: The truncated wavelet expansion
IS

2701 J—127-1

Y cnabnil@) + )Y digtir(e)

k=0 7=Jo k=0
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“P0 64 128 256 512 1024

Figure 1.4: Wavelet coefficients of f.

and the wavelet coefficients ordered as
Jo _ _ _
{fenatils, U, |

are shown in Figure 1.4. The wavelet expansion (1.2) can be understood as fol-
lows: The first sum is a coarse representation of f, where f has been replaced
by a linear combination of 27 translations of the scaling function gBJmo. This cor-
responds to a Fourier expansion where only low frequencies are retained. The
remaining terms are refinements. For each ; a layer represented by 27 translations
of the wavelet ¢; , is added to obtain a successively more detailed approximation
of f. Itis convenient to define the approximation spaces

Vi = span{oii}ilo
W; = span{t;.}is,

These spaces are related such that
‘N/J:‘N/JO @WJO OB Wi

The coarse approximation of f belongs to the space V/;, and the successive re-
finements are in the spaces Wj forj = Jo,Jo + 1,...,J — 1. Together, all of
these contributions constitute a refined approximation of f. Figure 1.5 shows the
scaling functions and wavelets corresponding to V,, W, and W.



oo

Motivation

Scaling functionsin Vz: ¢ (2), k = 0,1,2,3

~
7

Waveletsin Ws: ¢, (2), k = 0,1,2,3

Waveletsin Ws: ¢34 (2), k =0,1,...,7

=

|

[T

Figure 1.5: There are four scaling functions in V5 and four wavelets in 1, but eight
more localized wavelets in Ws.
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/ ~
/ VlO
V~V9
W8
) \7\/7
5 i,

\76

0 1

Figure 1.6: The top graph is the sum of its projections onto a coarse space Vs and a
sequence of finer spaces Wg—Ws.

Figure 1.6 shows the wavelet decomposition of f organized according to scale:
Each graph is a projection of f onto one of the approximation spaces mentioned
above. The bottom graph is the coarse approximation of f in V5. Those labeled
Wy to W, are successive refinements. Adding these projections yields the graph
labeled V.

Figure 1.4 and Figure 1.6 suggest that many of the wavelet coefficients are
zero. However, at all scales there are some non-zero coefficients, and they reveal
the position where f is discontinuous. If, as in the Fourier case, we retain only the
17 largest wavelet coefficients, we obtain the approximation shown in Figure 1.7.
Because of the way wavelets work, the approximation error is much smaller than
that of the truncated Fourier expansion and, very significantly, is highly localized
at the point of discontinuity.
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x

Figure 1.7: A function f and a truncated wavelet expansion with only 17 terms

1.21 Summary
There are three important facts to note about the wavelet approximation:

1. The good resolution of the discontinuity is a consequence of the large wavelet
coefficients appearing at the fine scales. The local high frequency content at
the discontinuity is captured much better than with the Fourier expansion.

2. The fact that the error is restricted to a small neighborhood of the discon-
tinuity is a result of the “locality” of wavelets. The behavior of f at one
location affects only the coefficients of wavelets close to that location.

3. Most of the linear part of f is represented exactly. In Figure 1.6 one can see
that the linear part of f is approximated exactly even in the coarsest approx-
imation space V; where only a few scaling functions are used. Therefore,
no wavelets are needed to add further details to these parts of f.

The observation made in 3 is a manifestation of a property called vanishing mo-
mentswhich means that the scaling functions can locally represent low order poly-
nomials exactly. This property is crucial to the success of wavelet approximations
and it is described in detail in Sections 2.1.5 and 2.1.6.

The Matlab function wavecompare conducts this comparison experiment and
the function basisdemo generates the basis functions shown in Figure 1.5.




Chapter 2

Multiresolution analysis

2.1 Waveletson thereal line

A natural framework for wavelet theory is multiresolution analysis (MRA) which
is @ mathematical construction that characterizes wavelets in a general way. MRA
yields fundamental insights into wavelet theory and leads to important algorithms
as well. The goal of MRA is to express an arbitrary function f € L*(R) at various
levels of detail. MRA is characterized by the following axioms:

{oyc---cviocWhcvic---CL*R) (a)

U vi=®) (b)
j=—oo 2.1)

{&(x — k) }rez is an orthonormal basis for Vi,  (c¢)
Fevi & [(2) €Vin (d)

This describes a sequence of nested approximation spaces V; in L*(R) such
that the closure of their union equals Z(R). Projections of a function f € L*(R)
onto V; are approximations to f which converge to f as j — oo. Furthermore, the
space V;, has an orthonormal basis consisting of integral translations of a certain
function ¢. Finally, the spaces are related by the requirement that a function f
moves from V; to V,, when rescaled by 2. From (2.1c) we have the normalization

(in the L?-norm)
0 1/2
ol = (/_ ()] d:z;) _1
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and it is also required that ¢ has unit area [JS94, p. 383], [Dau92, p. 175], i.e.
/ o(x)de =1 (2.2)

Remark 2.1 Afifth axiomis often added to (2.1), namely

N Vi = {0}

j=—00
However, thisis not necessary as it follows from the other four axiomsin (2.1)
[HWO6].

Remark 2.2 The nesting given in (2.1a) is also used by [SN96, HW96, JS94,
Sr94] and many others. However, some authors e.g. [Dau92, Bey93, BK97,
Kai94] use the reverse ordering of the subspaces, making

{0yc---cvicVvycV,yc - CL*R)

2.1.1 Thedetail spacesV;

Given the nested subspaces in (2.1), we define W, to be the orthogonal comple-
mentof V; in V44, 1.e. V; L W, and

Vin =V, & 0, (2.3)

Consider now two spaces Vj, and V;, where J > J,. Applying (2.3) recur-
sively we find that

J-1
Vi=Ve® (@ W]) (2.4)

Jj=Jo

Thus any function in V;; can be expressed as a linear combination of functions
inVj, and W;, 7 = Jo,JJo+1,...,J —1; hence it can be analyzed separately at
different scales. Multiresolution analysis has received its name from this separa-
tion of scales.

Continuing the decomposition in (2.4) for J, — —oc and J — oo yields in
the limits

DW= (R)

j=—c0

It follows that all 1V; are mutually orthogonal.
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Remark 2.3 W, can be chosen such that it is not orthogonal to V;. In that case
MRA will lead to the so-called bi-orthogonal wavelets[ JS94]. We will not address
this point further but only mention that bi-orthogonal wavelets are more flexible
than orthogonal wavelets. We refer to [ SN96] or [ Dau92] for details.

2.1.2 Basic scaling function and basic wavelet

Since the set {¢(x — k)}rez is an orthonormal basis for 14 by axiom (2.1c) it
follows by repeated application of axiom (2.1d) that

{0(2'2 — k) }rez (2.5)

is an orthogonal basis for V;. Note that (2.5) is the function ¢(2/z) translated by
k/27, i.e. it becomes narrower and translations get smaller as j grows. Since the
squared norm of one of these basis functions is

[ o=l =2 [l dy =2 ol = 2

o0 — 00

it follows that
{29112(27 2 — k) } rez is an orthonormal basis for V;

Similarly, it is shown in [Dau92, p. 135] that there exists a function «>(x) such
that

{21/20(27 & — k) }rez is an orthonormal basis for W,

We call ¢ the basic scaling function and /> the basic wavelet?. It is generally not
possible to express either of them explicitly, but, as we shall see, there are efficient
and elegant ways of working with them, regardless. It is convenient to introduce
the notations

Pislw) = 2P9(Ya—F) (2.6)
Yip(a) = 27(2x — k)

and

() = dox(w)
Ur(z) = or() @7)

LIn the literature ¢ is often referred to as the mother wavelet.
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We will use the long and short forms interchangeably depending on the given
context.

Since ¢, ;, € W; it follows immediately that ¢, ;. is orthogonal to ¢, ; because
oir € Vyand V; L W;. Also, because all W; are mutually orthogonal, it follows
that the wavelets are orthogonal across scales. Therefore, we have the orthogonal-
ity relations

/ Gip(x)dj(x)de = 6y (2.8)
/ Vip(x)pj(r)de = 60k (2.9)
[ butode = 0.z @10
where 1, 7, k,[ € Z and ¢, is the Kronecker delta defined as
P 0 k#1
Tl 1 k=1

2.1.3 Expansionsof afunctioninV/

A function f € V; can be expanded in various ways. For example, there is the
pure scaling function expansion

o0

flx) = Z endgi(x), x€R (2.11)

l=—0c0
where
Cjl = /_OO f($)¢J7[($) dr (212)

For any J, < .J there is also the wavelet expansion

o0

J—1
J) =" cnutaa(e)+ > D diu(x), veR (2.13)

[=—0 7=dJo l=—00

o0

where

Clod = /_ f(@)bg,(x) de

o0

by = / " fab(e) de (2.14)

o0
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Note that the choice .J, = J in (2.13) yields (2.11) as a special case. We define
A=J—Jy (2.15)

and denote A the depth of the wavelet expansion. From the orthonormality of
scaling functions and wavelets we find that

o0

00 00 J—1
115 = D Jeasl = D densl + D0 D ldil?

k=—co k=—0c0 7=Jo k=—

which is Parseval’s equation for wavelets.

Definition 2.1 Let Py, and Py, denote the operatorsthat project any f € L*(R)
orthogonally onto V; and WW;, respectively. Then

o0

(Pv,f)(x) = > cudila)

[=—0

(Pu, f)() = > dpial)

[=—0

where
- / F(2)biul) da
by = / J()s () da
and
J—-1
Py, f =Py, f+ > Puf
j=Jo

2.1.4 Dilation equation and wavelet equation

Since V5 C V4, any function in V4 can be expanded in terms of basis functions of
Vi. In particular, ¢(x) = ¢oo(x) € V5 SO

o0

P(x) = Z apprp(T) = V2 Z ard(2x — k)

k=—c0 k=—c0
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where
= [ d)ouata)da (2.16)

For compactly supported scaling functions only finitely many «; will be nonzero
and we have [Dau92, p. 194]

D-1

Glr) = V2 ard(2x — k) (2.17)

k=0

Equation (2.17) is fundamental for wavelet theory and it is known as the dilation
equation. D is an even positive integer called the wavelet genusand the numbers
ap, ai, ... ,ap_1 are called filter coefficients. The scaling function is uniquely
characterized (up to a constant) by these coefficients.

In analogy to (2.17) we can write a relation for the basic wavelet . Since
Y € Wy and Wy C V; we can expand ) as

(x) = \/52_: br (22 — k) (2.18)

where the filter coefficients are
b, = / ()1 k() da (2.19)

We call (2.18) the wavelet equation.

Although the filter coefficients «; and b, are formally defined by (2.16) and
(2.19), they are not normally computed that way because we do not know ¢ and
b explicitly. However, they can found indirectly from properties of ¢ and ¢, see
[SN96, p. 164-173] and [Dau92, p. 195] for details.

The Matlab function daubfilt (D) returns a vector containing the filter coef-
ficients ag, ay, ... ,ap_y.

It turns out that b, can be expressed in terms of «; as follows:

Theorem 2.1

b = (—D*ap_y_p, k=0,1,...,D—1
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Proof: It follows from (2.10) that [~ ¢(x)¢(x) dow = 0. Using (2.17) and (2.18)
we then have

/Oo a) () de = 2/ D ard(2e —k) > bio(2z — 1) da
—0o0 X k=0 =0
D-1D-1 o
= agb Py — k)oy — 1) dy
k=0 [=0 ' l/—oo
= 5k,l

This relation is fulfilled if either a;, = 0 or b, = 0 for all &, the trivial solutions,
or if by, = (—1)*a,,_x Where m is an odd integer provided that we set a,,_ = 0
form —k ¢ [0, D — 1]. Inthe latter case the terms a,b, will cancel with the terms
Ap—pbp—p fOrp=10,1,...,(m+1)/2 — 1. An obvious choiceism =D — 1. O

The Matlab function 1ow2hi computes {b;}2=" from {a;}L -},

One important consequence of (2.17) and (2.18) is that supp(¢) = supp(y) =
[0, D — 1] (see e.g. [Dau92, p. 176] or [SN96, p. 185]). It follows immediately
that

supp(;1) = supp(i1) = I, (2.20)
where
| 1+D—1
L= {2— 2—] (2.21)

Remark 2.4 The formulation of the dilation equation is not the same throughout
the literature. V\e have identified three versions:

L 6(x) = ¥y axd(2e — k)

2. 6(c) = V2L, (22 — k)
3 o(x) =2, arp(20 — k)
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The first is used by eg. [WA94, Sr94], the second by e.g. [Dau92, Bey93,
Kai94], and the third by e.g. [HW96, JS94]. We have chosen the second formu-
lation, partly because it comes directly from the MRA expansion of ¢ in terms of
¢1,, but also because it leads to orthonormality of the wavel et transform matrices,
see Section 3.3.2.

2.1.5 Filter coefficients

In this section we will use properties of ¢ and ¢’ to derive a number of relations
satisfied by the filter coefficients.

Orthonormality property

Using the dilation equation (2.17) we can transform the orthonormality of the
translates of ¢, (2.1c) into a condition on the filter coefficients a;. From (2.8) we
have the orthonormality property

o = [ oot —n)ds

= /00 (\/52_: ard(2x — k)) (\/52_: ap(2x — 2n — l)) dx

- ZZ“M o(y)oly +k —2n — 1) dy, y =2 —k

= Z Arpdl—2n, n € Z

k=k1(n)

where ki (n) = max(0,2n) and kz(n) = min(D — 1, D — 1 + 2n). Although
this holds for all n € Z, it will only yield D/2 distinct equations corresponding
ton =0,1,...,D/2 — 1 because the sum equals zero trivially for n > D/2 as
there is no overlap of the nonzero «;S. Hence we have

ka(n)
Y arthezn =60, n=0,1,...,D/2-1 (2.22)

k=k1(n)
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Similarly, it follows from Theorem 2.1 that

k2 (n)
> bibioze =0, n=0,1,...,D/2—1 (2.23)
k=k1(n)

Conservation of area

Recall that [~ ¢(x)dx = 1. Integration of both sides of (2.17) then gives

D-1

/_Zcb(x)dx:ﬂgak/_ng(zx—k)dx:TZ /OO ¢(y) dy

k=

or

i

ar =72 (2.24)

0

o
Il

The name “conservation of area” is suggested by Newland [New93, p. 308].

Property of vanishing moments

Another important property of the scaling function is its ability to represent poly-
nomials exactly up to some degree P — 1. More precisely, it is required that

=Y Mé(x—k), v€R, p=0,1,....P—1 (2.25)

k=—c0

where

M,f:/ Pole —k)de, keZ, p=0,1,...,P—1 (2.26)
We denote A1; the pth moment of ¢(« — k) and it can be computed by a procedure
which is described in Appendix A.

Equation (2.25) can be translated into a condition involving the wavelet by
taking the inner product with (). This yields

OO% d:z;_ZMp d(x — k)p(x)de =0
| [

k=—c0
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since ¢ and ¢ are orthonormal. Hence, we have the property of P vanishing
moments:

/ wPp(x)de =0, xz€R, p=0,1,..., P—1 (2.27)

o0

The property of vanishing moments can be expressed in terms of the filter
coefficients as follows. Substituting the wavelet equation (2.18) into (2.27) yields

0 = /_Z P (z) de

= bek/ 2P (20 — k) dx

/ (y+E)foy)dy, y=22—k
- QMZ Z() e [ sty
— ;ﬁz( )Mp ”Zbkk” (2.28)

where we have used (2.26) and the bmomlal formula

- 5 ()

n=0

For p = 0 relation (2.28) becomes Ek ~'b, = 0, and using induction on p we
obtain # moment conditions on the filter coefﬁments, namely
D-1

Zbkkp—z Drap_y_pk? =0, p=0,1,...,P—1

k=0

This expression can be simplified further by the change of variables | = D—1—k.
Then

D-1

0=> (=)’ a(D—1-1)

(=0
and using the binomial formula again, we arrive at

)

(—D)'a)l" =0, p=0,1,...,P—1 (2.29)

N
Il
=]
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Other properties

The conditions (2.22), (2.24) and (2.29) comprise a system of D /2 + 1 + P equa-
tions for the D filter coefficients a,, & = 0,1,...,D — 1. However, it turns out
that one of the conditions is redundant. For example (2.29) with p = 0 can be
obtained from the others, see [New93, p. 320]. This leaves a total of D/2 + P
equations for the D filter coefficients. Not surprisingly, it can be shown [Dau92,
p. 194] that the highest number of vanishing moments for this type of wavelet is

P=D/2

yielding a total of D equations that must be fulfilled.
This system can be used to determine filter coefficients for compactly sup-
ported wavelets or used to validate coefficients obtained otherwise.

The Matlab function £ilttest checks if a vector of filter coefficients fulfils
(2.22), (2.24) and (2.29) with P = D/2.

Finally we note two other properties of the filter coefficients.

Theorem 2.2
D/2-1 D/2-1 |
Z Aok = Z A2k+1 = —=
k=0 k=0 \/5

Proof: Adding (2.24) and (2.29) with p = 0 yields the first result. Subtracting
them yields the second. O

Theorem 2.3

D/2-1 D-2]-2

1
E E Aplpy20141 = =
(=0 n=0

[N]

Proof: Using (2.29) twice we write

0 = (i(—l)kak (z_:(—l)_lal> == z_: _(—l)k_lakal

k=0 (=0 k=0 [=0
D-1 D—1 k-1 D—-1 D-
2 k—1 -k
= E ap + (=) aga; + (—1) " ara
k=0 k=0 [=0 k=0 [=k+1
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Using (2.22) with » = 0 in the first sum and rearranging the other sums yields

D—-1D-1-p D—-1D-1-p
0 = 1—|—Z Z aH_pal—l— (—1)pakak+p
p=1 =0 p=1 k=0
D—-1D-1-p
= 142) ) (=DPauany,
p=1 n=0

All sums where p is even vanish by (2.22), so we are left with the “odd” terms
(p=20+1)

D/2—1 D—2i—2

0 = 1—|—2 Z (—1)2l+1 Z Ap 42041
=0

n=0
D/2-1D-2]-2

= 1-2 E E Aplp42141
(=0 n=0

from which the result follows. O

Equation (2.24) can now be derived directly from (2.22) and (2.29) and have
the following Corollary of Theorem 2.2.

Corollary 2.4

Proof: By a manipulation similar to that of Theorem 2.2 we write

D-1 D-1 D-1D-1

(Z) ()

k=0 =0 k=0 [=0
D/2-1D-2]-2

142 Z Z Ay 2141
(=0 n=0

= 2

I
2
Bl
2

where Theorem 2.2 was used for the last equation. Taking the square root on each
side yields the result. O
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2.1.6 Decay of wavelet coefficients

The P vanishing moments have an important consequence for the wavelet coef-
ficients d; ; (2.14): They decrease rapidly for a smooth function. Furthermore,
if a function has a discontinuity in one of its derivatives then the wavelet coeffi-
cients will decrease slowly only close to that discontinuity and maintain fast decay
where the function is smooth. This property makes wavelets particularly suitable
for representing piecewise smooth functions. The decay of wavelet coefficients is
expressed in the following theorem:

Theorem 2.5 Let P = D/2 be the number of vanishing moments for a wavelet

v;andlet f € CT(R). Then the wavelet coefficients given in (2.14) decay as
follows:

|dj | < Cp27/0F )?E%i‘ (€]

where C'p is a constant independent of j, k&, and f and 1, = supp{¢;r} =
/29, (k + D — 1)/27].

Proof: For z € I;; we write the Taylor expansion for f around = = /2.

(Zf (k/2') %) +f<P><§>(“'TfJ (230)

where ¢ € [k/27, 2].
Inserting (2.30) into (2.14) and restricting the integral to the support of ¢;

yields
by = / F(a i (e) da

Recall that ¢ depends on z, so f()(¢) is not constant and must remain under the
last integral sign.
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Consider the integrals where p = 0,1,..., P — 1. Using (2.21) and letting

y = 27z — k we obtain
(k+D—1)/2) ENP 4
/ (:1;— —) 2I2p(Y i — k) da
k20 2
D-1
,/2 i P o
22 [ (&) vy

] D-1
— 2—](p+1/2)/ yP1p(y) dy
0
=0, p=0,1,...,P—1

because of the P vanishing moments (2.27). Therefore, the wavelet coefficient is
determined from the remainder term alone. Hence,

1 ENT ,
il = | [ 10 (o= 5) Preee b
< L max‘f(P)(f)‘ x—ﬁ P2j/2¢(2j:1;—k) dx
~ P’ E€l;k I 2]
—iP/2) L e [P
= A f [ )] d
Defining
1 D-1 »
Cp = i " (y)| dy
we obtain the desired inequality. O

From Theorem 2.5 we see that if f behaves like a polynomial of degree less than
P in the interval /;, then f") = 0 and the corresponding wavelet coefficient
d; . is zero. If f(P) is different from zero, coefficients will decay exponentially
with respect to the scale parameter ;. If f has a discontinuity in a derivative
of order less than or equal to P, then Theorem 2.5 does not hold for wavelet
coefficients located at the discontinuity?. However, coefficients away from the
discontinuity are not affected. The coefficients in a wavelet expansion thus reflect
local properties of f and isolated discontinuities do not ruin the convergence away
from the discontinuities. This means that functions that are piecewise smooth have
many small wavelet coefficients in their expansions and may thus be represented

2There are D — 1 affected wavelet coefficients at each level
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well by relatively few wavelet coefficients. This is the principle behind wavelet
based data compression and one of the reasons why wavelets are so useful in
e.g. signal processing applications. We saw an example of this in Chapter 1 and
Section 4.4 gives another example. The consequences of Theorem 2.5 with respect
to approximation errors of wavelet expansions are treated in Chapter 4.

2.2 Wavelets and the Fourier transform

It is often useful to consider the behavior of the Fourier transform of a function
rather than the function itself. Also in case it gives rise to some intriguing relations
and insights about the basic scaling function and the basic wavelet.

We define the (continuous) Fourier transform as

e = [ o e
The requirement that ¢ has unit area (2.2) immediately translates into
H(0) = / dlx)de =1 (2.31)

Our point of departure for expressing ¢ at other values of ¢ is the dilation equation
(2.17). Taking the Fourier transform on both sides yields

D-1 -
M = VEY [ ote— b
k=0 e
D-1 - '
_ \@Z“k/ By EDI2 gy 19
k=0 -0
= o
_ —ike/2 / _ie/2)y
= age o(y)e dy
ﬂ; » (v)

— A (g) b (g) (2.32)

D-1
A8 = % D aeT™, (eER (2.33)
k=0

where

A(¢) is a 2m-periodic function with some interesting properties which can be
derived directly from the conditions on the filter coefficients established in Sec-
tion 2.1.
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Lemma 2.6 If ¢» has P vanishing moments then

A(0) —

dP

= A(E) Je=r = 0, p=0,1,...,P—1
ie (&) le= p

Proof: Let ¢ = 0in (2.33). Using (2.24) we find immediately

D-1
1 2
A(0) = —= ap = £ =1
V2 = V2
Now let ¢ = =. Then by (2.29)
P 1 D-1
_A Yy = — o k P —tkm
Ier (&) le= 7 k:o( k) axe
1 D-1
= (i Y (1)
\/5 k=0
= 07 p = 07 17 . 7P — 1

Putting p = 0 in Lemma 2.6 and using the 27 periodicity of A(¢) we obtain

Corollary 2.7

1 n even
Alnm) = { 0 nodd

Equation (2.32) can be repeated for &(5/2) yielding

wa-4(94(5(9

After N such steps we have
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It follows from (2.33) and (2.24) that |A(£)| < 1 so the product converges for

N — oo and we get the expression

Using (2.31) we arrive at the product formula
Jo =TI (L), ¢er
=] 1 SOE
]:

Lemma 2.8

A~

o(2mn) =bopn, n€Z

(2.34)

Proof: The case n = 0 follows from (2.31). Therefore, let n € Z \ {0} be
expressed in the form n = 2°K where i € Ny and K € Z with K odd, i.e.

(K')3 = 1. Then using (2.34) we get

b(2mn) = ﬁA(Q;T—]”>

= A(Zi[&’w)A(Zi_llx’w) AR

= 0

since A(K'm) = 0 by Corollary 2.7.

A consequence of Lemma 2.8 is the following basic property of ¢:

Theorem 2.9

3 Giole+n) =277 j<0, z€R

n=—0o0
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Proof: Let

Sil@) =Y diole +n)

n=—0o0

We observe that 5;(x) is a 1-periodic function. Hence it has the Fourier series
expansion

Six) = ) e 2 eR (2.35)

k=—c0

where the Fourier coefficients ¢, are defined by

1
cp = /Sj(x)e_iZWkgcdx
0

= 2| e Ay, y=wdn

n=—o0o =1

= [ bty

= 2 [ sty

— 9i/? /OO qb(z)e_i%m_]z Z_jdz, z = ij
z—f/%ggnkw), kel

We know from Lemma 2.8 that ¢(27k) = &y . Therefore, since j < 0 by as-
sumption,

o =272 (2mk270) = 277128, ,
so the Fourier series collapses into one term, namely the “DC” term ¢, 1.e.
Si(x)=¢cy = 2-i/2

from which the result follows. O
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Theorem 2.9 states that if 7 is a zero of the function A(¢) then the constant
function can be represented by a linear combination of the translates of ¢, (),
which again is equivalent to the zeroth vanishing moment condition (2.27). If the
number of vanishing moments P is greater than one, then a similar argument can
be used to show the following more general statement [SN96, p. 230]

Theorem 2.10 If w isazero of A(£) of multiplicity P, i.e. if

dP
d—pr(f)k:W: 0, pZO,l,,P—l
then:

1. The integral translates of ¢(x) can reproduce polynomials of degree less
than P.

2. Thewavelet ¢»(x) has P vanishing moments.
3. 6P (27n) =0forn e Z,n#0andp < P.
4. ) (0) =0 for p < P.
2.2.1 Thewavelet equation
In the beginning of this section we obtained a relation (2.32) for the scaling func-

tion in the frequency domain. Using (2.18) we can obtain an analogous expression
for ¢,

A D-1 > .
b(E) = V2 Z by, / 2z — k)e™ " dx
k=0 -

1 D-1 ' o '
- 5 3 bk / Bly)e 1D gy
k=0 -0
- ANVAS
= 2(3)3(5)
where

beike (2.36)
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Using Theorem 2.1 we can express B(¢) in terms of A(¢).

B(&) = —= ) (Dfappe™™

™

—UD=DE+T) A (€ 4 1)

This leads to the wavelet equation in the frequency domain.

A

O(€) = e PTIEIIA(E2 4 1) (£/2) (2.37)

An immediate consequence of (2.37) is the following lemma:

Lemma 2.11

A

Y(drn) =0, neZ

Proof: Letting ¢ = 4mn in (2.37) yields

p(drn) = e P=DCTAT A 1y + 1) (2mn)

which is equal to zero by Lemma 2.8 for n = 0. For n = 0 we have

~ -

$(0) = —A(r)
but this is also zero by Corollary 2.7.

2.2.2 Orthonormality in the frequency domain

The inner products of ¢ with its integral translates also have an interesting formu-
lation in the frequency domain. By Plancherel’s identity [HW96, p. 4] the inner
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product in the physical domain equals the inner product in the frequency domain
(except for a factor of 27). Hence

fi = /OO Ha)o(a — k) de
- = / HEHE)eek de

= %- Ho)| e de
_ ——/wr§3‘¢§+2mz e’k d¢ (2.38)
Define
=S \(g@mm)?, cER (2.39)

n=—0o0

Then we see from (2.38) that f;, is the &’th Fourier coefficient of F'(¢). Thus

— j?i fre™ e (2.40)

k=—c0

Since ¢ is orthogonal to its integral translations we know from (2.8) that
I k=0
ﬁ_{o k#0
hence (2.40) evaluates to
F(g)=1, ¢eR
Thus we have proved the following lemma.

Lemma 2.12 Thetranslates ¢(z — k), k € Z are orthonormal if and only if
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We can now translate the condition on £ into a condition on A(¢). From (2.32)
and (2.39) we have

o0

F28) = )

n=—0o0

= i ‘$(£+wn>\2 A +mn)?

n=—0o0

2

qg(Zf + 27n)

Splitting the sum into two sums according to whether » is even or odd and using
the periodicity of A(¢) yields

o0

F(26) = )

n=—0o0

He+2mn) 1A + 2o +

ﬁi\ﬁf+w+2mwﬂA@+w+2mm2

n=—0o0

= AOF X |3+ 2mm)| + 14+ mE Y |3+ 7+ 2em)|

n=—oo n=—oo

= AP F(&) + A€ +m) F(E+)

If F(£) = 1 then |A(€)]> 4+ |A(¢ + 7)|* = 1 and the converse is also true [SN96,
p. 205-206], [JS94, p. 386]. For this reason we have

Lemma 2.13

FE)=1 & JAOP+AE+mP =1

Finally, Lemma 2.12 and Lemma 2.13 yields the following theorem:

Theorem 2.14 Thetranslates ¢(x= — k), k € Z are orthonormal if and only if
AP + A +m)F =1

2.2.3 Overview of conditions

We summarize now various formulations of the orthonormality property, the prop-
erty of vanishing moments and the conservation of area.
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Orthonor mality property:

/_OO o(x)p(x — k) dae = do,
OoD—1

kcZ

g akagton = 00n, N EZL

k=0

AP +1AE+ ) =1,

Property of vanishing moments:

Forp=0,1,...,P—1and P = D/2 we have

/_Z blz)a? dr = 0
D-1

D (=1)fapk” =0

k=0
dp
d—gpA(f) l¢=n= 0
Conservation of area:
D-1
d(2) = V2 apd(2z — k),
k=0
-1
ar =2
k=0
A(0)=1

2.3 Periodized wavelets

So far our functions have been defined on the entire real line, e.g. f € L*(R).
There are applications, such as the processing of audio signals, where this is a
reasonable model because audio signals can be arbitrarily long and the total length
may be unknown until the moment when the audio signal stops. However, in most
practical applications such as image processing, data fitting, or problems involving
differential equations, the space domain is a finite interval. Many of these cases
can be dealt with by introducing periodized scaling functions and wavelets which

we define as follows:

EeER
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Definition 2.2 Let ¢ € L*(R) and ¢» € L*(R) be the basic scaling function and
the basic wavelet from a multiresolution analysis as defined in (2.1). For any
7,1 € Z we define the 1-periodic scaling function

e Z pialx +n) =21/? Z o2 (x+n)—1), r€R (241)
and the 1-periodic wavel et
e Z (x4 n) =272 Z W(2/(x+n)—1), R (242)

The 1 periodicity can be verified as follows

Gz +1) = Z dipx+n+1) = Z pia(x +m) = dji(x)

n=—0o0 m=—00

and similarly o, (z + 1) = ¢;,().

2.3.1 Someimportant special cases
1. ¢,,(x) is constant for j < 0. To see this note that (2.41) yields

o0

bula) = P13 $(2(a+n—270)

o0

= 27 3" 42(x+m)) = Gor), [€Z

m=—00

where m = n — 277/ is an integer because 2~ 71 is an integer. Hence, by
(2.41) and Theorem 2.9 we have ¢; o(x) = S.°0 ¢, o(x +n) = 279/2 50

n=—0o0

bi(x)=277 <0, 1€Z, xR (2.43)
Js

2. ¢ (x) = 0 for j < —1. To see this we note first that, by an analysis
similar to the above, ¢; () = v, 0(x) for j < 0 and ¢, 0(x) has a Fourier
expansion of the form (2.35). The same manipulations as in Theorem 2.9
yield the following Fourier coefficients for ; ():

o =272 (20k277), ke Z (2.44)
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From Lemma 2.11 we have that «’(47k) = 0, k € Z. Hence ¢, = 0 for
J < —1 which means that

dia(z) =0, j<-1, l€Z, 2€R (2.45)

When j = 0 in (2.44), one finds from (2.37) that ¢>(2xk) # 0 for k odd,
$0 o () is neither 0 nor another constant for such value of k. This is
as expected since the role of + ;() is to represent the details that are lost
when projecting a function from an approximation at level 1 to level 0.

3. ¢;u(x) and v;,(x) are periodic in the shift parameter & with period 2/ for
J > 0. We will show this only for ¢;; since the proof is the same for ¢, ;.
Letj >0,peZand0 <[ <2 —1;then

Giirp(z) = Z biiraip(x +m)

m=—00

o0

— 9il? Z ¢(2j(x+m)—l—2jp)

= 2/ Z b(2(x +m —p) —1)
— 9i/2 Z ;/)(Zj(x—l—n)—l)

= > Wule+n)

= Yj(r), R

Hence there are only 27 distinct periodized wavelets:

~ 27 -1 )
{@/J]‘J} 7> 0
(=0

4. Let 2’ > D — 1: Rewriting (2.42) as follows yields an alternative formula-
tion of the periodization process:

o0

@ZN)J‘J(‘%‘) = 2j/2 Z ¢(2j$ + an — l) = Z @/J]‘J_zjn(l') (2.46)

n=—0o0 n=—0o0
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Because ¢ is compactly supported, the supports of the terms in this sum
do not overlap provided that 27 is sufficiently large. Let .J, be the smallest
integer such that

20 >p—1 (2.47)
Then we see from (2.20) that for j > J, the width of 7;, is smaller than
1 and (2.46) implies that ¢;; does not wrap in such a way that it overlaps
itself. Consequently, the periodized scaling functions and wavelets can be
described for = € [0, 1] in terms of their non-periodic counterparts:

~ B @/)]'71(1'), T € []‘71 N [0, 1]
¢j,l($) - { 77/)]‘71(1' + 1), T € [0,1], xr € []‘71

The above results are summarized in the following theorem:

Theorem 2.15 Let the basic scaling function ¢ and wavelet v» have support
[0, D — 1], and let ¢, ; and ¢, ; be defined as in Definition 2.2. Then

o 1 <0, [€Z, zxe€R:

%j,l(w) = 2777
wii(x)

|
=
.
IA

|
—

e >0, z€R:
q%j,m]p(x) = é%j,l(w)
¢j,l+2ﬂp($) = ()

o > Jo>[logy(D—1)], ze€][0,1]:

< (e, v € Ly
Gjalw) = { Gl +1), =&l

and

s (e, v € Ly
i) = { (e + 1), x g Iy
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2.3.2 Periodized MRA in L*([0,1])

Many of the properties of the non-periodic scaling functions and wavelets carry
over to the periodized versions restricted to the interval [0, 1]. Wavelet orthonor-
mality, for example, is preserved for the scales ¢, j > 0:

/01 b p(2)(x) de = /01 i il + m)is () da

o

- Z/ Yig(y) iy —m) dy
i m+1 .

= Y [ bt dy

= /_OO i) ¥ia(y) dy

Using (2.46) for the second function and invoking the orthogonality relation for
non-periodic wavelets (2.9) gives

1 0 00 0
[ bs@itarde = 3 [ vt de =6 Y buian
0 n=—oo ¥ X n=—00
If: = j thend; ; = 1 and &, ,_,s,, contributes only when » = 0 and £ = [ because
k,l € [0,27 —1]. Hence,

1
[ sty de = 6 (2.48)
0
as desired. By a similar analysis one can establish the relations
1
/ Gjp(x)u(x)de = bpg, =0
0
1

[ dataidiaterde = 0. jzizo

0
The periodized wavelets and scaling functions restricted to [0, 1] generate a
multiresolution analysis of Z*([0, 1]) analogous to that of L*(R). The relevant
subspaces are given by

Definition 2.3
271

V, = span{ggj,l, :1:6[0,1]}

(=0

27 -1

W, = span{;ZN, :1:6[0,1]}

(=0



38 Multiresolution analysis

It turns out [Dau92, p. 305] that the V; are nested as in the non-periodic MRA,

VocVicVyc---C L*([0,1])

and that the |32, V; = L*([0,1]). In addition, the orthogonality relations imply
that

Vid Wi = Vi (2.49)

so we have the decomposition

£*([0,1]) = Vo & (é W]) (2.50)

From Theorem 2.15 and (2.50) we then see that the system

{1, {{%/;]k}i;l}::o} (2.51)

is an orthonormal basis for L2([0, 1]). This basis is canonical in the sense that the
space L?([0,1]) is fully decomposed as in (2.50); i.e. the orthogonal decomposi-
tion process cannot be continued further because, as stated in (2.45), W, = {0}
for ; < —1. Note that the scaling functions no longer appear explicitly in the
expansion since they have been replaced by the constant 1 according to (2.43).
Sometimes one wants to use the basis associated with the decomposition

Lz([ov 1]) = ‘N/Jo b (é WJ)

for some J, > 0. We recall that if J, > log,(D — 1) then the non-periodic
basis functions do not overlap. This property is exploited in the parallel algorithm
described in Chapter 6.

2.3.3 Expansionsof periodic functions
Let f € V; and let J, satisfy 0 < .J, < J. The decomposition

J-1
‘N/J = ‘N/JO D (@ W]>

Jj=Jo
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which is obtained from (2.49), leads to two expansions of f, namely the pure
periodic scaling function expansion

271
f(l‘) = Z CJJQBJJ(:ﬁ), T € [0, 1] (252)
=0
and the periodic wavelet expansion
270 -1 . J—127-1 .
fl) =" enubnil@)+ D> Y duti(x), xe0.1] (2.53)
(=0 7=Jo (=0

If Jo = 0 then (2.53) becomes

-
—

27—

f(:z;) = €0,0 + d]‘J@/NJ]‘J(J?) (2.54)

(=0

—_

Il
=]

J

corresponding to a truncation of the canonical basis (2.51).
Let now f be the periodic extension of f, i.e.

fla)=fla—|z]). 2z€R (2.55)
Then f is 1-periodic

fla+ )= fla+1—([e+1])) = fx = [¢]) = f(z), z€R

Because || is an integer, we have ¢(x — |]) = ¢(z) and ¢ (z — |z]) = ()
for z € R. Using (2.55) in (2.52) we obtain

271 271

fla)=fle=z)) = cnonlz—[]) =D endul(r), =R (256)

(=0 (=0

and by a similar argument

2701 J—127-1
Fo)=Y conibnil)+ > D didbu(z), z€R (2.57)
(=0 7=Jo (=0

The coefficients in (2.52) and (2.53) are defined by
1
i = [ F@loseyda
0
1
G = [ Sl
0
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but it turns out that they are, in fact, the same as those of the non-periodic expan-
sions. To see this we use the fact that f(x) = f(x), = € [0, 1] and write

djp = /Olf(f)lzj,z(x)dx
- i /Olf($)¢j,l($+n)dx

n=—0o0

S / "y = nsal) dy

n=—0o0

0 ntl
= > [ sy
= [ oty (256)
which is the coefficient in the non-periodic case. Similarly, we find that
1 N N oo
= [ F@dute)ds = [ fepta)da
0 —00

However, periodicity in f induces periodicity in the wavelet coefficients:

oy = [ F@srimfo)de

_ / 022 — p) — D da
= /_Oof(y+p)2j/2¢(2jy—l)dw

= dj, (2.59)
Similarly,
Cji+2p = Cji (2.60)

For simplicity we will drop the tilde and identify f with its periodic extension f
throughout this study. Finally, we define
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Definition 2.4 Let /;, and Py, denotetheoperatorsthat projectany f € L2([0,1])
orthogonally onto V; and W, respectively. Then

o0

(Po, )(x) = ) cjudiile)

[=—0

(Pa, )(x) = Y dybiulx)

[=—0

where

and

J-1

Py f=Py, [+ Z Py |

j=Jo






Chapter 3

Wavelet algorithms

3.1 Numerical evaluation of ¢ and

Generally, there are no explicit formulas for the basic functions ¢ and . Hence
most algorithms concerning scaling functions and wavelets are formulated in terms
of the filter coefficients. A good example is the task of computing the function
values of ¢ and «». Such an algorithm is useful when one wants to make plots of
scaling functions and wavelets or of linear combinations of such functions.

3.1.1 Computing ¢ at integers

The scaling function ¢ has support on the interval [0, D — 1], with ¢(0) = 0 and
¢(D—1) = 0 because it is continuous for D > 4 [Dau92, p. 232]. We will discard
(D — 1) in our computations, but, for reasons explained in the next section, we

keep ¢(0).
Putting « = 0,1,..., D — 2 in the dilation equation (2.17) yields a homoge-
neous linear system of equations, shown here for D = 6.

$(0) ao ¢
o(1) as ai ao
¢(2) :\/5 g a3z daAz a1 Gg
¢(3)
¢(4)

as a4 a3 a3
(

where we have defined the vector valued function

®(z)=[p(x), ¢+ 1),...,¢(x+D—2)]"

Consider then the eigenvalue problem for Ay,

(0)
(1)
(2) | = Ae®(0)  (3.)
(3)
(4)

U5 (4

Ae®(0) = AD(0) (3.2)

Equation (3.1) has a solution if A = 1 is among the eigenvalues of A,. Hence the
computational problem amounts to finding the eigensolutions of (3.2). It is shown



44 Wavelet algorithms

in [SN96, p. 199] that the eigenvalues of A, include
A=2" m=0,1,...,D/2—1

The present case (3.1) does, indeed, have an eigensolution corresponding to the
eigenvalue 1, and we use the result from Theorem 2.9 to fix the inherent multi-
plicative constant. Consequently, we choose the solution where

¢(k) =1

k=0

3.1.2 Computing ¢ at dyadic rationals.

Given ®(0) from (3.1) we can use (2.17) again to obtain ¢ at all midpoints between
integers in the interval, namely the vector ®(1/2). Substitutingz = 1,2,5, ...
into the dilation equation yields another matrix equation of the form (still shown

for D = 6):

[ d(3) [ a1 ao 11 200) ]
Qb(%) a3z az a1 Aao Qb(l)
) (%) = qb(g) V2| a5 as a3 ay a; »(2) | = A19(0)
Qb(%) as a4 ds #(3)
L o(3) | I as | L ¢(4) |

Equation (3.3) is an explicit formula, hence
¢(0) = AyP(0)
¢(1/2) = A;9(0)

This pattern continues to integers of the form & /4, where % is odd, and we get the
following system

* B(3) o

o ¢(3) v do

* qb(%) az ay  ag T A(LY) T

o o(3) R

* qb(le) :\/§ a4 az a a1 do qﬁ(%) (3.4)
o () T I T

. B o oy a ||

o qb(14—5) as ag as | T

* o) 4

Lo () | i @
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Equation (3.4) could be used as it is but we observe that if we split it in two
systems, one with the equations marked with * and one with the equations marked
with o, we can reuse the matrices A, and A ;. This pattern repeats itself as follows:

O(3) = Ag®(3)

©(3) = A0(3)

O(5) = Ac®(7) O(3) AL 0(5

() = Ag®(3) O(3) = A9(3)
D) = Ac®(5) O(55) = A0(3)
O(5) = Ac®(3) O(3p) = A®(3)
O(35) = Ac®(3) @(33) = A®(3)
O(75) = Ag®(3) O(5) = A9(3)

This is the reason why we keep ¢(0) in the initial eigenvalue problem (3.1): We
can use the same two matrices for all steps in the algorithm and we can continue
as follows until a desired resolution 27 is obtained:

forj=2,3,... ,q 4
for k=1,3,5,...,207 " —1

k k
(5 - el
k 1 k
‘%*5) - Aﬂ)(mﬁ)

3.1.3 Function values of the basic wavelet:

Function values of ¢> follows immediately from the computed values of ¢ by the
wavelet equation (2.18). However, function values of ¢ are only needed at even
numerators:

P /2) = VES bb(2m /2t — k)

The Matlab function cascade (D, ¢) computes ¢(x) and (z) at = = k/27,
k=0,1/2¢, ..., (D —1)/2.

Figure 3.1 shows ¢ and v for different values of D.
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Figure 3.1: Basic scaling functions and wavelets plotted for D = 4, 6, 10, 20, 40.
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3.2 Evaluation of scaling function expansions

3.2.1 Nonperiodic case

Let ¢ be the basic scaling function of genus D and assume that ¢ is known at the
dyadic rationals m /27, m = 0,1,...,(D — 1)2¢, for some chosen ¢ € N. We
want to compute the function

o0

fla)y =" ciudulz) (3.5)

[=—0
at the grid points
r=x,=k/2", k€EZ (3.6)

where » € IN corresponds to some chosen (dyadic) resolution of the real line.
Using (2.6) we find that

bia(kj2) = 2%

21(k/2") — 1)

= 2]‘%22?—% —1)
= 2PG((27FTk —271) /27)
= 22¢(m(k,1)/27) (3.7)
where
m(k, 1) = k277" — [21 (3.8)

Hence, m(k, [) serves as an index into the vector of pre-computed values of ¢. For
this to make sense m (%, [) must be an integer, which leads to the restriction

Jt+qg—r=>0 (3.9

Only D — 1 terms of (3.5) can be nonzero for any given x. From (3.7) we see
that these terms are determined by the condition

k.l
0 < m(k, | <D-1
29
Hence, the relevant values of [ are [ = ly(k), lo(k) + 1,... ,lo(k) + D — 2, where
lo(k) = [k27"| =D +1 (3.10)

The sum (3.5), for = given by (3.6), can therefore be written as

lo(k)+D—2
f <ﬁ> =217 N e (#) , keZ (3.11)

2z 1=lo (k)
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3.2.2 Periodiccase

We want to compute the function

27 -1

J) = eudilx), we[0,1] (3.12)

=0
fore =a, =k/2", k=0,1,...,2" — 1 where »r € N. Hence we have

3 = 3
f<2_,,> = lz:;cjl¢]l<2r>

27 -1

Zcflz@l(? —|—n>

neZ
27 -1

QJ/QZc ;Zcb( k1) +2]+qn>

neZ

with m(k,l) = k2/%9=" — (29 by the same manipulation as in (3.7). Now, as-
suming that ;j > .J, where .J, is given by (2.47) we have 22 > D — 1. Using
Lemma 3.1 (proved below), we obtain the expression

f<ﬁ>:21/2ic],,¢<m>, k=0,1,....20 =1 (3.13)

2r 29
(=0

Lemma 3.1 Let ¢ bea scaling function with support [0, D—1] andletm, n, j,q €
Z withg > 0and2’ > D — 1. Then

5 o(22) (%)

n=—0o0

Proof: Since 2/ > D — 1, only one term of the sum contributes to the result and
there exists a unique n = n* such that
m+ QI+ *
29
Then we know that m + 2/+9n* € [0,2/+7] but this interval is precisely the range
of the modulus operator defined in Appendix B, so

m —I‘ 2]+qn* = <m —I‘ 2j+qn>2j+q = <Tn>2j+q7 n & Z

€ [0,27]

from which the result follows. O
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3.2.3 DST and IDST - matrix formulation

Equation (3.13) is a linear mapping from 2/ scaling function coefficients to 2"
samples of f, so it has a matrix formulation. Let ¢; = [¢j0,¢j1,- -+ , i1 and
. =1F0), F(1/27), ..., f((2" — 1)/27)]F. We denote the mapping

f.=T.c (3.14)
When r = j then (3.14) becomes
fi=Tj;c, (3.15)

T; ; is a square matrix of order N = 27. In the case of (3.15) we will often drop
the subscripts and write simply

f="Tc (3.16)

This has the form (shown here for j = 3, D = 4)

f(O) ¢(0) ¢(2) ¢(1) €3,0
f(3) ¢(1)  (0) $(2) €31
f(%) ¢(2) ¢(1) ¢(0) €3,2
f(%) _ 2% ¢(2) ¢(1) ¢(0) C3,3
/3 $(2) (1) ¢(0) €34
I3 ¢(2) ¢(1) ¢(0) €35
f(%) ¢(2) ¢(1) ¢(0) €36
/(3) $(2) (1) ¢(0) e37

Note that only values of ¢ at the integers appear in 7. The matrix 7" is non-
singular and we can write

c=T'f (3.17)

We denote (3.17) the discrete scaling function transform (DST)! and (3.16) the
inver se discrete scaling function transform (IDST) .

The Matlab function dst (f, D) computes (3.17) and idst (¢, D) computes
(3.16).

1DST should not be confused with the discrete sine transform.
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We now consider the the computational problem of interpolating a function
f € C([0,1]) between samples at resolution . That is, we want to use the function
values f(k/2"),k =0,1,...,2" — 1 to compute approximations to f(k/2""), k =
0,1,...,2" —1 for some ' > r. There are two steps. The first is to solve the
system

Tr,rcr — .fr
for ¢,.. The second is to compute the vector f,, defined by
fo=T,c, (3.18)

Equation (3.18) is illustrated below for the case » = 3,1 = 4.

~
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Figure 3.2 show how scaling functions can interpolate between samples of a
sine function.

3.2.4 Periodicfunctionson theinterval [a, 0]

Consider the problem of expressing a periodic function f defined on the interval
[a,b], where a,b € R instead of the unit interval. This can be accomplished by
mapping the interval [«, b] linearly to the unit interval and then use the machinery
derived in Section 3.2.3.
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D =4, Error = 0.14381

0 1 2 3 4 5 6
D =6, Error = 0.04921
T T

0 1 2 3 4
D =8, Error = 0.012534
T T T

Figure 3.2: A sine function is sampled in 8 points (r = 3). Scaling functions of genus
D = 4,6, 8 are then used to interpolate in 128 points (r’ = 7).

We impose the resolution 2" on the interval [«, ], i.e.

b—a

27’

rp =k +a, k=0,1,....2" =1
The linear mapping of the interval « < a < b to the interval 0 < y <1 is given
by

r —a

=7 , a<x<b
—a

)
hence y. = k/2",k=0,1,...,2" — 1. Let

gy)=flz)=f((b—a)y ta), 0<y<1
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Then we have from (3.13)

glyn) = g(k/2") = 272 z_: ciid (%)

=0
and transforming back to the interval [a,b] yields f(xx) = ¢(yx). Thus we
have effectively obtained an expansion of f € [«, b[ in terms of scaling functions
“stretched” to fit this interval at its dyadic subdivisions.

3.3 Fast Wavdet Transforms

The orthogonality of scaling functions and wavelets together with the dyadic cou-
pling between MRA spaces lead to a relation between scaling function coefficients
and wavelet coefficients on different scales. This yields a fast and accurate algo-
rithm due to Mallat [Mal89] denoted the pyramid algorithm or the fast wavelet
transform (FWT). We use the latter name.

Let f € L*(R) and consider the projection

o0

(P, f)(x) = Y cudulz) (3.19)

[=—0

which is given in terms of scaling functions only. We know from Definition 2.1
that Py, f = Py,_, f + Pw,_, f so the projection also has a formulation in terms of
scaling functions and wavelets:

o0

(P, f)(x) = Y conidima(z) + > dimyibji(z)  (3.20)

l:—oo l:—OO

Our goal here is to derive a mapping between the sequence {¢;,;};cz and the se-
quences

{Cj—l,l}leza {dj—l,l}lez

The key to the derivations is the dilation equation (2.17) and the wavelet equa-
tion (2.18). Using (2.17) we derive the identity

Gjra(z) = 2UVPG(2 e 1)
D-1
= 27 apd(Pa - 20 — k)
D-1 =
= Z ardj2k(T) (3.21)

k=0
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and from (2.18) we have

i1l Z brdjai4n(2 (3.22)

Substituting the first identity into the def|n|t|on of ¢;; (2.12) we obtain

D-1

Cj-11 = /OO f(z) Z apdjziri(r) do

= Zak/ f ¢]21+k )

k=0
D—1

— ARCi 24k
k=0

and similarly for d;_, ;. Thus, we obtain the relations

D-1

G- = Zakcj,sz (3.23)
k=0
D-1

dig = Zbkcj‘,zwrk (3.24)
k=0

which define a linear mapping from the coefficients in (3.19) to the coefficients
in (3.20). We will refer to this as the partial wavelet transform (PWT) . To de-
compose the space V; further, one applies the mapping to the sequence {¢;_1, }icz
to obtain the new sequences {c¢;_s, }iez and {d;_2, }iez. This pattern can be fur-
ther repeated yielding the full FWT: Applying (3.23) and (3.24) recursively for
j=J,J—1,...,Jo + 1, starting with the initial sequence {cs;}icz, will then
produce the wavelet coefficients in the expansion given in (2.13). Note that once
the elements d;_, ; have been computed, they are not modified in subsequent steps.
This means that the FWT is very efficient in terms of computational work.

The inverse mapping can be derived in a similar fashion. Equating (3.19) with
(3.20) and using (3.21), (3.22) again we get

Y ciudia(e) = D cirabiialv) + D disiatiia()
l=—c0 n=—00 n=—00
— Z Ci—1,n Z Gkﬁby 2n—|—k Z d] 1,n Z bkﬁby 2n—|—k

o0

= Z Z [Ci—tnar + dj—1 nbg] & 2ntr(x)

k=0 n=—o0
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We now introduce the variable [ = 2n+k inthe last expression. Since k£ = [—2n
and k£ € [0, D — 1], we find for given [ the following bounds on r:

[H%w = (1) < n < ma(l) = H (3.25)
Hence
%] o0 n2(l)
Z cjidii(r) = Z Z (i1 nti—an + dj—1 nbi—20] §ju()
l=—0c0 l=—co n=n1 ()

and equating coefficients we obtain the reconstruction formula

712(1)
Gl = Z Cj—1,n0i-2n + dj—1,nbi-20 (3.26)

n=n1({)

We will call this the inver se partial wavelet transform (IPWT). Consequently,
the inverse fast wavelet transform (IFWT) is obtained by repeated application
0f(326)f0r] - J0—|—1,J0—|—2,... ,J.

3.3.1 PeriodicFWT

If the underlying function f is periodic we also have periodicity in the scaling
function and wavelet coefficients; ¢;; = ¢; 125, by (2.60) and d;; = d; ;145, by
(2.59). Hence, it is enough to consider 2/ coefficients of either type at level ;. The
periodic PWT is thus

D-1
cj—l,l = Zakcj7<21+k>2] (327)
k=0
D-1
dj—l,l = bkcj,(21+k)2j (3-28)
k=0
where
1=0,1,...,227' =1

Y

Hence the periodic FWT is obtained by repeated application of (3.27) and (3.28)
forj=JJ—1,...,Jo+1.

If we let J, = 0 then (3.27) and (3.28) can be applied until all coefficients
in the (canonical) expansion (2.54) have been computed. There is then only one
scaling function coefficient left, namely ¢y, (the “DC” term), the rest will be
wavelet coefficients. Figure 3.3 shows an example of the periodic FWT.
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C4.0
C41
C4.2
C4.3
C4q.4
C45
Ca6
Cq.7
C4.8
C4.9
€410
C4.11
C4,12
€413
C4,14
C4,15

C3.0
C31
C32

C33

€20
21
€22
€23

C1,0
€11

Cp,0
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Figure 3.3: The periodic FWT. The shaded elements d;; obtained at each level remain
the same at subsequent levels. Here the depth is taken to be as large as possible, i.e.

A=J=4.
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The reconstruction algorithm (IPWT) for the periodic problem is similar to the
non-periodic version:
712(1)
Gl = Z Cjm1,(n)yy—y Q-2 + dj1,(n),;_, bi—2n (3.29)
n=n1({)
with ny () and n (/) defined as in (3.25) and
[=0,1,...,2 —1
Hence the periodic IFWT is obtained by applying (3.29) for j = Jy + 1, Jo +
2,...,J. We restrict ourselves to algorithms for periodic problems throughout

this report. Hence we will consider only the periodic cases of FWT, PWT, IFWT,
and IPWT.

3.3.2 Matrix representation of the FWT

Let ¢; = [cjo.¢ts---»¢io1)" and similarly, d; = [djo,dj1,... . d;2_1]".
Since (3.27) and (3.28) are linear mappings from R? onto R¥~' the PWT can
be represented as

ci-1 = Ajc;
diy = Bjc;

where A; and B; are 2/~! by 27 matrices containing the filter coefficients. For
D =6andj = 4 we have

g a3 daz dz a4 0as
g a3 dz az G4 ds
g a3 dz daz a4 04s
g a3 daz dz a4 0as

A4: g a1 a9 a3 a4 dag
g a1 a9 a3 d4q4 Ay

a4 ds g a1 dz das

oy a3 d4q4 Ay g aq
and

bp by by by by bs

bp by by by by bs
bo b1 by b3 by bs

Bl bo bi by bs by bs

bo b1 by b3 by bs
bo b1 by b3 by b5
by b5 bo b1 by bs
by bs by bs bo b1
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These are shift-circulant matrices (see Definition 8.1). Moreover, the rows are or-
thonormal by equations (2.22) and (2.23): >, ax@kt2, = do,n aNd Y, bypbyia, =
do,n. Bj is similar, but with b;’s in place of a;’s; hence the rows of B; are also
orthonormal. Moreover, the inner product of any row in A ; with any row in B is
zero by Theorem 2.1, i.e. A;B! = 0.

We now combine A; and B; to obtain a 2’ x 2’ matrix

which represents the combined mapping
C]‘_l _ 4
{ d_, } = Q;c; (3.30)

Equation (3.30) is the matrix representation of a PWT step as defined by (3.27)
and (3.28). The matrix Q; is orthogonal since

T A]l T T [A]AT AjBT} {Ij 0]
Q,;Q; { B, | A Bl B AT BB 0 I,
Hence the mapping (3.30) is inverted by
¢;=Qf { i ] (331)

Equation (3.31) is the matrix representation of an IPWT step as defined in (3.29).
The FWT from level J to level J, = J — X can now be expressed as the
matrix-vector product

d=Woc (3.32)
where e = ¢,
CJ,

dj,
d= dJo-I—1

dj_q
and

WA - QJOQJO-H T QJ—IQJ'
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The matrix Q] of order 27, is given by

Q;

I

where I(; s denotes the k& x & identity matrix with & = k(j,J) = 27 — 27, It
follows that W* is orthogonal? and hence the IFWT is given by

c=(w"'d

3.3.3 A moregeneral FWT

Suppose that elements to be transformed may contain other prime factors than
2,i.e. N = K27, with /K € Z and (K); = 1. In this case, the FWT can
still be defined by mappings of the form (3.27) and (3.28) with a maximal depth
A =J,i.e. Jy = 0. It will be convenient to use a slightly different notation for the
algorithms in Chapters 5, 6, and 8. Hence, let S; = N/2¢ and

C;; = Cj-ik

dz = dJ_Z'7k
fori =0,1,... ,A—landk=0,1,...,5; — 1. We can now define the FWT as
follows:
Definition 3.1 Fast wavelet transform (FWT)
Let J, K € Nwith (K), = land N = K27, Let ® = {}}7- be given. The
FWT isthen computed by the recurrence formulas

D-1

C;‘I’l = Z alcél+2n>si
=0 (3.33)

D—-1
+1 E 7
dn - blc(l—|—2n>si
(=0

where: =0,1,... ,A—1,5 = N/2,andn = 0,1,..., S5, — 1.

2The orthonormality of W* is one motivation for the choice of dilation equations mentioned
in Remark 2.4.
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The relation between the scaling function coefficients and the underlying func-
tion is unimportant for the FWT algorithm per se: In numerical applications we
often need to apply the FWT to vectors of function values or even arbitrary vec-
tors. Hence let ¢ RY. Then the expression

& =W'a (3.34)
is defined by putting ¢ = «, performing ) steps of of (3.33), and letting
&= ({5, (S Y |

If \ is omitted in (3.34) it will assume its maximal value .J. Note that W* = T
for A = 0. The IFWT is written similarly as

x=(WHTi (3.35)

corresponding to the recurrence formula

712(1)
i i+1 i1
¢ = Z n)s,,, “=2n + d<”>si+1 bi—2n
n=n1({)

wherei = A —1,A—2,....1,0,5 = N/2,,1=0,1,...,S; — 1,and n, (/) and
ny(l) are defined as in (3.25).

The Matlab function fwt(x, D, A) computes (3.34) and i fwt (&, D, A) computes
(3.35).

3.3.4 Complexity of the FWT algorithm

One step of (3.33), the PWT, involves D.S; additions and D.S; multiplications. The
number of floating point operations is therefore

Fowr(5;) = 2DS; (3.36)

Let NV be the total number of elements to be transformed and assume that the
FWT is carried out to depth A. The FWT consists of A applications of the PWT to
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successively shorter vectors so the total work is
A—1
N
Frwr(N) = ZO: Fpwt <§>

A—1
N

1 — L
= 2DN—2%
1 —

2

1
= 4DN (1—27> < 4DN (3.37)

D is normally constant throughout wavelet analysis, so the complexity is O(V).

The IFWT has the same complexity as the FWT. For comparison we mention that
the complexity of the fast Fourier transform (FFT) is O(N log, N).

335 2DFWT

Using the definition of W+ from the previous section, we define the 2D FWT as

X = whx(whv)T (3.38)
where X, X € RV The parameters Ay; and Ay are the transform depths in the
first and second dimensions, respectively. Equation (3.38) can be expressed as M

1D wavelet transforms of the rows of X followed by N 1D wavelet transforms
of the columns of X (W )7 i,

X =whn (Wi xT)!

Therefore it is straightforward to compute the 2D FWT given the 1D FWT from
Definition 3.1. It follows that the inverse 2D FWT is defined as

X = (Wh)! xwis (3.39)

The Matlab function fwt2(X, D, Ay, Ay) computes (3.38) and ifwtz(X, D,
An, An) computes (3.39).

Using (3.37) we find the computational work of the 2D FWT as follows
Fewro(M,N) = M Fewr(N)+ N Fewr(M)

1 1
— apyun (2- - L SDMN  (3.40
B T 2w 2w ) S (340)

The computational work of the inverse 2D FWT is the same.



Chapter 4

Approximation properties

4.1 Accuracy of the multiresolution spaces

4.1.1 Approximation propertiesof V;

We will now discuss the pointwise approximation error introduced when f is ap-
proximated by an expansion in scaling functionsat level .J. Let J € Z, f € [*(R)
and assume that f is P times differentiable everywhere.

For an arbitrary, but fixed =, we define the pointwise error as

es(v) = flz) = (Pv,f)(z), zeR

where ( Py, f)(z) is the orthogonal projection of f onto the approximation space
V; as defined in Section 2.1.

Recall that Py, f has expansions in terms of scaling functions as well as in
terms of wavelets. The wavelet expansion for £, f is

o0

(Pv, /) (x) = Y capdunr(e) + i: > disin(x) (4.1)

k=—c0 7=Jo k=—c

o0

and by letting ./ — oo temporarily we get a wavelet expansion for f itself:

o0

Fl) =Y cnndnrl@)+ > > distisl(x) (4.2)

k=—c0 7=Jo k=—c

Then, subtracting (4.2) from (4.1) we obtain an expression for the error ¢ in terms
of the wavelets at scales ;7 > J:

() =Y disthiul) (4.3)

7=J k=—c0
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Define
Cyp = max [(2z — k)| = max_[(y)|

l’elj,k yE[O,D—l]

Hence max.cy, , [/;x(2)| = 2//2C,, and using Theorem 2.5, we find that
diathia(@)] < Cp27" max| (0] €,

Recall that

Ek+D—1
207 2 }
Hence, there are at most D — 1 intervals /; ; containing a given value of =. Thus
forany = only D — 1 terms in the inner summation in (4.3) are nonzero. Let /; be
the union of all these intervals, i.e.

Lxy= |J L.

{lxel;;}

supp(jx) = Lk = {

and let

P r) = Imax (P)
() = ma [10(0)

Then one finds a common bound for all terms in the inner sum:

D ldixia(x)] < CuCp27P (D = 1)l ()

k=—c0

The outer sum can now be evaluated using the fact that

M]JD(:L') > M§+1($) > M§+2($) >
and we establish the bound

les(@)| < CuCp(D = 1)pf(x) ) 2797
i=J
2—JP
1—2-F
Thus we see that that for an arbitrary but fixed « the approximation error will be
bounded as

= CyCp(D — )k (x)

les(x)| = 0(27"")

This is exponential decay with respect to the resolution .J. Furthermore, the
greater the number of vanishing moments P, the faster the decay.

Finally, note that each error term d; v, x(x) is zero for « ¢ I; ;. This means
that () depends only on f(y),y € [x,z + (D — 1)/27)]. This is what was also
observed in Chapter 1.
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4.1.2 Approximation propertiesof V;

We now consider the approximation error in the periodic case. Let f € L*([0, 1])
and assume that its periodic extension (2.55) is P times differentiable everywhere.
Furthermore, let ./ > .J, where .J, is given as in (2.47) and define the approxima-
tion error as

¢s(@) = fle) = (P, [)(x), @ €[0,1]

where ( Py f)(z) is the orthogonal projection of f onto the approximation space

V; as defined in Definition 2.4.
Using the periodic wavelet expansion (2.53) and proceeding as in the non-
periodic case we find that

oo 27-—1

eaw) =D Y dipthn(a) (4.4)

7=J k=0

Since the coefficients d; ; are the same as in the non-periodic case by (2.58),
Theorem (2.5) applies and we can repeat the analysis from Section 4.1.1 and,
indeed, we obtain that

les(x)] = 027""), =€ (0.1]
We will now consider the infinity norm of ¢; defined by
5] = max [és()

A similar analysis as before yields

oo 27-—1

leslle < DD x| max bin()
j=J k=0 7k
oo 27-—1
< .0 9i/29=i(P+3) (P)
S Ry el
- ,.C (P) 9—iP
W ngg[%?f]‘f (5)\2
7=J
2—JP

= C,C (P) Il
wCp max [F7(0)] =57

Hence

lesll., = 02~"")



64 Approximation properties

Finally, consider the 2-norm of ¢:

1 1 1
el = [ Srde < [ el de= el [ de =l
0 0 0

hence we have also in this case

les]l, = 0(2~"") (4.5)

4.2 Wavelet compression errors

In this Section we will see how well a function f € V; is approximated by a
wavelet expansion where small wavelet coefficients have been discarded. We will
restrict attention to the case of the interval [0, 1].

It was shown in Section 2.1.6 that the wavelet coefficients corresponding to a
region where f is smooth decay rapidly and are not affected by regions where f is
not so smooth. We now investigate the error committed when small wavelet coeffi-
cients are discarded. We will refer to those as the insignificant wavelet coefficients
while those remaining will be referred to as the significant wavelet coefficients.
These definitions are rendered quantitative in the following.

Let = be a given threshold for separating the insignificant wavelet coefficients
from the significant ones. We define an index set identifying the indices of the
significant wavelet coefficients at level ;:

Te={k:0<k<2 —1 A |d]>¢}

Hence the indices of the insignificant coefficients are given by
£ 0 £
Ry =Ty \ T;

With this notation we can write an e-truncated wavelet expansion for f as follows

270 -1 J—1
(Py,f)" (2) = > cnpdnrle)+ D> distis(z) (4.6)
k=0 g=Jo kET]E

Let N,(e) be the number of all significant wavelet coefficients, i.e.

J-1

Ni(e) = #15+2"

j=Jo

where # denotes the cardinality of 7. The last term corresponds to the scaling
function coefficients that must be present in the expansion because they provide
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the coarse approximation on which the wavelets build the fine structures. If we let
N = 27 be the dimension of the finest space V/; then we can define the symbol N,
to be the number of insignificant coefficients in the wavelet expansion, i.e.

N, () = N — Ny(¢)
We then define the error introduced by this truncation as

e5(x) = Py f—(Pyf)

J-1

= > > diir(a)

i=Jo kERS

with the number of terms being equal to N,.(¢). The 2-norm of é5(x) is then found
as

2

@I = |33 distbile)

7=Jo keR;

J-1
= > > |dl’

j=Jo kERS
e*N,(¢)

2

IA

so whenever the threshold is ¢ then
[€5(2)]l; < e/ Nu(e) (4.7)

For the infinity norm the situation is slightly different. For reasons that will
soon become clear we now redefine the index set as

Ts={k:0<k<2 —1 A |dy|>e/277}

and 1z = 77 \ T7. Note that we now modify the threshold according to the scale
at which the wavelet coefficient belongs. Applying the infinity norm to 5 with
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the new definition of 7 yields

J-1

le5(@)lle = Y D max(djptin(a)])

7=Jo keR;

J—1
= Oy Y > ldig| 2

7=Jo keR;

= CyeN,(¢)
so whenever the threshold is = then

l€5(2)]l. < CyeNi(e) (4.8)

The difference between (4.7) and (4.8) lies first and foremost in the fact that the
threshold is scaled in the latter case. This means that the threshold essentially de-
creases with increasing scale such that more wavelet coefficients will be included
at the finer scales. Hence N, () will tend to be smaller for the oc-norm than for
the 2-norm.

Remark 4.1 A heuristic way of estimating V; is given asfollows: Let f(x) bea
smooth function with one singularity located at « = ;. Then d;; > ¢ for those ;
and k& where =, € I, ;. Hence we have D — 1 significant coefficients at each level
yielding atotal of A(D — 1). Henceif f has ¢ singularities we can estimate N, to
be roughly proportional to

gA(D —1)

4.3 Scaling function coefficientsor function values?

It was mentioned in Section 3.3.3 that the fast wavelet transform can be applied
directly to sequences of function values instead of scaling function coefficients.
Since this is often done in practice (see, for example, [SN96, p. 232]), yet rarely
justified, we consider it here.

Suppose that f € L*(R) is approximately constant on the interval 7;; given
by (2.21), a condition that is satisfied if ./ is sufficiently large since the length of
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Iy is (D —1)/27. Then f(x) ~ f(I/27) for = € I;; and we find that

ey = 2712 f(z)p(27x — 1) de

Iy,
~ 272527y | (27w — 1) da
IJJD—I
= 2R [ ot dy
or
e 27 F(1)27)
In vector notation this becomes
e~ Z_J/zf
and from (3.32) follows
d=2"""W§ (4.9)

Hence, the elements in f = W f behave approximately like those in d (except
for the constant factor) when .J is sufficiently large.

4.4 A compression example

One of the most successful applications of the wavelet transform is image com-
pression. Much can be said about this important field, but an exhaustive account
would be far beyond the scope of this thesis. However, with the wavelet theory
developed thus far we can give a simple but instructive example of the principles
behind wavelet image compression. For details, we refer to [Chu97, SN96, HT 94,
VK95] among others.

Let X bean M x N matrix representation of a digital image. Each element
of X corresponds to one pixel with its value corresponding to the light intensity.
Figure 4.1 shows an example of a digital image encoded in X.

Applying the 2D FWT from (3.38) to X vyields

X =whwx (W'

which is shown in Figure 4.2 with D = 6. The upper left block is a smoothed
approximation of the original image. The other blocks represent details at various
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Figure4.1: Adigital image X. Here M = 256, N = 512,

Figure4.2: The wavelet spectrum X. Here \yy = Ay = 3and D = 6.
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Figure 4.3: Reconstructed image Y. Compression ratio 1 : 100.

scales and it can be seen that the significant elements are located where the orig-
inal image has edges. The large smooth areas are well represented by the coarse
approximation so no further details are needed there.

Assuming that the image is obtained as function values of some underlying
function which has some smooth regions we expect many of the elements in X
to be small. The simplest compression strategy is to discard small elements in X,
and for this purpose we define

X« trunc(X,e) = {[ X [X]mm

> e}

By inverse FWT one obtains the approximation
Y = (W) XTws

which is shown in Figure 4.3. The threshold = has been chosen such that only 1%
of the wavelet coefficients are retained in X . This gives the error

HY _ XHz

=6.15 x 1072
1 X1,

FErwr =

We point out that there is no norm that accurately reflects the way people perceive
the error introduced when compressing an image. The only reliable measure is the
subjective impression of the image quality [Str92, p. 364]. Attempts at “objective”
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Figure 4.4: Reconstructed image F7 X" F.

error measurement customarily make use of the peak signal-to-noise ratio (PSNR)
which is essentially based on the 2-norm [Chu97, p. 180], [JS94, p. 404].

In order to assess the merits of the procedure described above, we now repeat
it with the discrete Fourier transform (DFT): Using the Fourier matrix F' defined
in (C.3) in place of W we get

X = FyXF},

Retaining 1% of the elements in X as before and transforming back yields the
image shown in Figure 4.4. The discarded elements in this case correspond to
high frequencies so the compressed image becomes blurred. The corresponding
relative error is now

EDFT = 1.03 x 10_1

In practical applications one does not use the DFT on the entire image. Rather,
the DFT is applied to smaller blocks which are then compressed separately. How-
ever, this approach can lead to artefacts at the block boundaries which degrade
image quality. In any case, this example serves to illustrate why the wavelet trans-
formis an attractive alternative to the Fourier transform; edges and other localized
small scale features are added where needed, and omitted where they are not. This
is all a direct consequence of Theorem 2.5.

Finally, we mention that a practical image compression algorithm does much
more than merely throw away small coefficients. Typically, more elaborate trun-
cation (quantization) schemes are combined with entropy coding to minimize the
amount of data needed to represent the signal [Chu97, Str92, H*94].
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Chapter 5

Vectorization of the Fast Wavel et
Transform

Problems involving the FWT are typically large and wavelet transforms can be
time-consuming even though the algorithmic complexity is proportional to the
problem size. The use of high performance computers is one way of speeding up
the FWT.

In this chapter and the next we will describe our efforts to implement the 1D
and the 2D FWT on a selection of high-performance computers, especially the
Fujitsu VPP300. For simplicity we let X' = 1 (see Definition 3.1) throughout
these chapters.

The Fujitsu VPP300 is a vector-parallel computer. This means that it consists
of a number of vector processors connected in an efficient network. Good vec-
tor performance on the individual processors is therefore crucial to good parallel
performance. In this chapter we discuss the implementation and performance of
the FWT on one node of the VPP300. In Chapter 6 we discuss parallelization of
the FWT and report results of the parallel implementation on several nodes on the
VPP300. Some of the material presented here has also appeared in [NH95].

5.1 TheFujitsu VPP300

The vector units on the VPP300 run with a clock frequency of 142 MHz. They
can execute 8 multiplications and 8 additions per clock cycle, leading to a peak
performance of 2.272 Gflop/s per processor. The actual performance, however,
depends on many factors such as

1. vector length

2. memory stride
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3. arithmetic density
4. ratio of arithmetic operations to load/store operations
5. type of operations

A vector processor is designed to perform arithmetic operations on vectors of
numbers through hardware pipelining. There is an overhead involved with each
vector instruction, so good performance requires long vector lengths.

As with all modern computers, the memory speed of the VPP falls short of the
processor speed. To overcome this problem, memory is arranged in banks with
consecutive elements spread across the banks. Stride-one access then means that
the memory banks have time to recover between consecutive memory accesses So
that they are always ready to deliver a piece of data at the rate at which it is re-
quested. Furthermore, the VPP300 has a special instruction for this which is faster
than any non-uniform memory access. Finally, on computer architectures using
cache, stride-one means that all elements in a cache line will be used before it is
flushed. In either case, a stride different from one can lead to poor performance
because the processor has to wait until the data are ready.

Optimal performance on the VPP300 requires that 8 multiplications and 8
additions occur every clock cycle. Therefore, any loop containing only addition or
multiplication can never run faster than half the peak performance. Also, the use
of load and store pipes is crucial. The VPP300 has one load and one store pipe, so
addition of two vectors, say, can at best run at 1/4 of the peak performance because
two loads are needed at each iteration. Finally, the type of arithmetic operations
is crucial to the performance. For example, a division takes seven cycles on the
VPP. Taking all these issues into account, we see that good vector performance
requires operations of the form

forn=0:N—-1
[yl ax*[x], +0b

where « and b are scalars and « and y are vectors of length NV, with N being large.
For details see [Uni96, HJ88].

5.2 1D FWT

The basic operation in the 1D FWT can be written in the form

forn=0:5/2-1
[w], « [w], + @ * [T] 1420
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N F CPU time (1s) Mflop/s
1024 81840 676 121
2048 163760 844 194
4096 327600 1118 293
8192 655280 1790 366
16384 1310640 3260 402
32768 2621360 5650 464
65536 5242800 10180 515
131072 10485680 19311 543
262144 20971440 38130 550
524288 41942960 68646 611

Table 5.1: Timings of the FWT. D =20, N =27, J =10,11,...,19,and A = J.

as defined by the recurrence formulas (3.33). The arithmetic density as well as the
ratio of arithmetic operations to load/store operations are good. However, mem-
ory is accessed with stride-two because of the inherent double shift in the wavelet
transform, and indices must be wrapped because of periodicity. Therefore, opti-
mal performance is not expected for the 1D FWT.

Our implementation of the FWT on one node of the VPP300 yields the perfor-
mance shown in Table 5.1. We make the following observations from Table 5.1:
Firstly, the performance is far from optimal even for the largest value of N. Sec-
ondly, the performance improves only slowly as N increases. To understand the
latter property we conduct a performance analysis of one step (the PWT) of the
recurrence formulas (3.33). Since this is a simple operation on one vector, we
assume that the computation time in the vector processor follows the model

T=t,+t,F (5.1)

where F' is the number of floating point operations, 7' is the total execution time,
t, is the computation time for one floating point operation in the pipeline, and ¢,
is the startup time. The performance expressed in floating point operations per
second is then

F
= — 2
R=7 (5.2)
Letting /' go to infinity results in the theoretically optimal performance
F 1
R, = lim — = lim — (5.3)

Fooo Fooo b, + 1, F - t,
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Let o € [0, 1] be the fraction of R, which is achieved for a given problem
size F,. Then F, is found from (5.2) with R = aR..:

a F,
t,  ts+t,F,
which has the solution
oo b
l—at,

In particular, for o = 1/2 we find

ts

F1/2 = E

which is another characteristic performance parameter for the algorithm in ques-

tion. /7, can now be expressed in terms of /'y, as I, = I/, o/(1 — «). For ex-

ample, to reach 80 % of the maximum performance, a problem size of /" = 4,

is required, and /' = 9Fj, is needed to reach 90 %. The parameter /4, can

therefore be seen as a measure of how quickly the performance approaches E...

A large value of [/, means that the problem must be very large in order to get
good performance. Hence we wish £/, to be as small as possible.

In order to estimate the characteristic parameters £ ,, and K., we use mea-
surements of CPU time in the VPP300. Table 5.2 shows the timings of the se-
quence of steps needed to compute the full FWT with A = J = 19, N = 27,
and D = 20 (the last result in Table 5.1), i.e. the PWT applied succesively to
vectors of length S = N, N/2,... 2. Using these measurements we estimate the
parameters ¢, and ¢, (in the least squares sense) to be

ts="76ps and ¢, =0.00157 pus
Consequently

(Reo)pwr = 637 Mflop/s and
(Fy2)pwt = 48222 Operations (5.4)

It can be verified that the values predicted by the linear model correspond well
with those observed in Table 5.2. The execution time of the PWT thus follows the
model

Towt(S) = ts + t, Fpwr(5)
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S

F T(ps) R(Mflop/s)

524288
262144
131072
65536
32768
16384
8192
4096
2048
1024
512
256
128

64

32

16

8

4

2

Table 5.2: Timings of the PWT. D =20, N =27, J = 19,and A = J.

20971520 32974
10485760 16539
5242880 8283
2621440 4188
1310720 2142
655360 1120
327680 598
163840 344
81920 180
40960 130
20480 97
10240 85
5120 80
2560 50
1280 38

640 36

320 32

160 28

80 29

636
634
633
626
612
385
548
476
455
315
211
120
64
32
16
8

4
2
1

77

which can be used to predict the execution time of the FWT to depth Ay as follows

Tewt(N)

= jg: ts—Ftufkmn'<

Ay—1

=0

or, if Ay assumes its maximal value

")
:)

= ts v+t Z Fpwt (2—

TFWT(N) = ts 10g2 N + tuFFWT(N)

7

(5.5)

Figure 5.1 shows a plot of (5.5) together with the measurements from Table 5.1.
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Execution time, FWT

4k

.

2 o

w
[

2r o

0 .
0 1 2 3 4
FFWT x 10

Figure 5.1: The execution time for the FWT plotted as a function of floating point
operations. The circles are the measured times while the line is the result of the model.

We know from (3.37) that Frwr(N) < 4DN. Hence (log, N)/ Frwt(N) — 0
for N — oo, and we see that the asymptotic performance of the FWT is the same
as that of the PWT:

(Reo)rwt = (Roo Jpwr = 1

ty
However, the equation to be solved for (F,,)rwr is not linear. Let N, ,, be the
vector length corresponding to (Fys)rwr. Then (Fijo)ewr = Frwt(Nij2) =
4D(Nyj, — 1) by (3.37) and putting # = R../2 (corresponding to a = 0.5)
in (5.2) we get

(Reo )rWT _ (L1 2)rwr (Vi /2)
2 Tewt(Ni2)
1 (F1/2)FWT

2, tslogy Nijo + to(Fy2)rwr
L(Fijg)rwr = tslogy Ny
tU4D(N1/2 — 1) = ts 10g2 N1/2

For the values ¢, and ¢, obtained from timings of the PWT we find the estimate

(Fy2)ewt = (Fij2)pwr logy Nijp = 623420 operations

This agrees with the observed values in Table 5.1. It is seen, both from the obser-
vations and the model, that the value of (', ;»)pwr is very high compared to that
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of the PWT (5.4). The explanation for this is revealed by the analysis just carried
out: A new vector operation is started up for each PWT so the startup time ¢,
counts log, N times regardless of the vector length; no matter how long theinitial
vector length NV, the PWT will eventually be applied to short vectors.

Like the stride-two memory access, this property is inherent in the full 1D
FWT and we conclude that this computation is not particularly suitable for vec-
torization. However, if the depth Ay is taken to be smaller than .J then the ineffi-
ciency due to short vector lengths becomes less severe.

5.3 MultiplelD FWT

Consider a matrix X € R™V, We assume that X is stored by columns so that
consecutive elements in each column are located in consecutive positions in mem-
ory. Applying the 1D FWT to every column of X leads to inefficient data access
and large 7, as described in the previous section. By applying the FWT to the
rows of X instead, one can vectorize over the columns such that all elements will
be accessed with stride-one in vectors of length M. We will refer to this pro-
cedure as the multiple 1D FWT (MFWT). Applying the MFWT to a matrix X
corresponds to computing the expression

X (wrnT (5.6)

where W™ s defined as in (3.34). Since there are A rows, the number of floating
point operations needed are

Fypwt(M, N) =4ADMN (1 —1/2'V) (5.7)

The recurrence formulas now take the form

D-1

+1 7
cm,n - E : alcm,(l—l—?n)g@.

55 (5.8)
d?f:ﬂl? - Zblcfmv(”?@si
=0

where: = 0,1,... Ay —1,m=0,1,... , M—1,andn =0,1,...,54; — 1.
Timings for the MFWT with Ay = J = 10, N = 27, and D = 20, where only the
vectorized dimension M is varied, are shown in Table 5.3.

We will now derive a performance model for this case. Each step of the MFWT
applies a PWT of length S; to the M rows of X. Hence, by (3.36) the number of
flops are 2D S; M. Vectorization is achieved by putting m into the innermost loop
S0 computations on each column can be assumed to follow the linear model for
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M F T(ps) R(Mflop/s)
16 1309440 11240 120
32 2618880 10889 240
64 5237760 11133 474

128 10475520 11474 912

256 20951040 14941 1402
512 41902080 23594 1777
1024 83804160 43711 1919
2048 167608320 84994 1974

Table 5.3: Timings of the MFWT. Ay = J = 10, N = 2/, D = 20, and M =
16,32,...,2048.

vectorization (5.1). Hence the execution time for one step of the MFWT (5.8) is
Si(ts + 2D Mt,) and the execution time for the entire MFWT is

An—1 N
Tvrwt = ZO: ?(ts—l_QDMtv)
1
= 2N (1 — ZA—N> (ts +2DMt,) (5.9)
The performance is then given by
Fvewr  2DM

R — —
MV Tewr s 4+ 2D M,

and (R )mrwt = 1/t, as usual. However, we observe that the performance mea-
sure is independent of the depth Ax. The parameter A, /, is found by solving

1 2DM1/2

2, 1, +2DM, ot

which has the solution

Hence

1
(Fi2)mewr = 4DN (1 — —N> M,
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Using (5.9) and the measurements in Table 5.3 we get the new estimates
ts=3.73us and ¢, =0.000450 us

These estimates are different from those of the 1D case and reflect the fact that the
MFWT algorithm performs better on the VPP300. Consequently we now have

(Reo)vpwr = 2.222 Gflop/s and
(Fi2)mewr = 16959000 Operations

the latter corresponding to a vector length M, ,, = 208. These values are close to
being optimal on the VPP300 (recall that the peak performance per processor is
2.272 Gflop/s). Finally, since (F,)mrwr grows with N we note that the MFWT
is best for matrices with A > N.

54 2DFWT

Recall from Section 6.3 that the 2D wavelet transform is defined by the matrix
product

X = whu X (wv)T (5.10)

The expression X (W*~)T leads to vector operations on vectors of length
M and stride-one data access as described in Section 5.3. This is not the case
for the expression W X, because it consists of a collection of columnwise 1D
transforms which do not access the memory efficiently as described in Section 5.2.
However (5.10) can be rewritten as

X' = (xw ) (whan!

yielding the efficiency of the multiple 1D FWT at the cost of one transpose step.
We call this the split-transpose algorithm. It consists of the following three
stages:

Algorithm 5.1 split-transpose
1. Z = X(W¥)T
2. U=2"

3. X7 = Uwn)T
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M F T(ps) R(Mflop/s)
16 2538240 11903 213
32 5158400 12748 404
64 10398720 14305 726

128 20879360 17686 1180
256 41840640 27167 1540
512 83763200 47686 1756
1024 167608320 91751 1826

Table 5.4: Timings of 2D FWT (FWT2). Ay = J = 10, N = 27, D = 20, and
M =16,32,...,1024.

Transposition can be implemented efficiently on a vector processor by accessing
the matrix elements along the diagonals [Heg95], so the 2D FWT retains the good
vector performance of the MFWT. This is verified by the timings in Table 5.4.

Disregarding the time for the transposition step, a simple model for the 2D
FWT execution time is

Tewr2(M, N) = Tvrwr(M, N) + Tvewt(N, M) (5.11)

where Tyrwrt IS given by (5.9). Figure 5.2 shows predicted execution times versus
measured execution times, and it is seen that (5.11) predicts the performance of
the 2D FWT well.

The asymptotic performance ( R.. )rwr2 €an now be determined. Using (3.40),
(5.2), and (5.11) we get

po ADMN(2 — 1/2m — 1/2°)
PVT2 9N = 1/22%) (L, + 2DML,) + 2M (1 — 1/2°) (L, + 2DN,)

Assuming that Ay, = log, (M) and Ay = log, (V) (the maximal depths) and that
M and N are large, this yields the estimate

1
RFWTZ ~ Y E— (512)
4D]-|\_4Nt5 + t“

and letting M — oo we obtain
1

(Roo)rwm2(N) = /——
wy T h

(5.13)
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4 Execution time, FWT2

Tewr >
‘

Model
o O Measurements

s s
0 5 10 15

7
Fewr2 x 10

Figure 5.2: The measured times for the 2D FWT compared to the performance model
(5.11).

It is seen that if N goes to infinity as well, we obtain the usual expression (1/t,),
but for the present case, with N = 1024, we have from (5.12)
(Roo)FWTZ = 2.018 GﬂOp/S

which is only slightly less than (.. )mewr. Similarly, to find (£ /2 )rwr2 for the
problem at hand we use (5.12) and (5.13) to get the equation

2DN B 1
T Mipp+N
t5+4DNtv mt5+tv
From this we find
M, = L ~ 94
Y27 ADE, + 4, /N

corresponding to (£ /2)rwr2 = 1.5326 x 107. It is seen that this value is very
close to that of the MFWT despite the fact that the transposition step was included
in the measured execution times. However, the corresponding vector length A7, /,
is much smaller as can also be seen in Table 5.4. The reason for this is the fact
that where the MFWT suffers from short vector lengths when A is small, the 2D
FWT suffers only in stage 1 of the split-transpose algorithm (5.1). Stage 3 will
vectorize over N and yield good performance in this case. We see that the 2D
FWT performs very well indeed on the VPP300, even for rectangular matrices.



84 Vectorization of the Fast Wavelet Transform

5.5 Summary

The FWT has been implemented on the VPP 300. The one-dimensional version
has a relatively high value of N;,, and stride-two memory access so the perfor-
mance is not very good. The 2D FWT can be arranged so that these problems are
avoided, and a performance of more than 80% of the theoretical peak performance
is achieved even for relatively small problems. This is fortunate as the 2D FWT
is computationally more intensive than the 1D FWT and consequently, it justifies
better the use of a supercomputer.



Chapter 6

Parallelization of the Fast Wavel et
Transform

With a parallel architecture, the aim is to distribute the work among several pro-
cessors in order to compute the result faster or to be able to solve larger problems
than what is possible with just one processor. Let 7°( V) be the time it takes to
compute the FWT with a sequential algorithm on one processor. Ideally, the time
needed to compute the same task on P processors® is then 7°(N)/P. However,
there are a number of reasons why this ideal is rarely possible to meet:

1. There will normally be some computational overhead in the form of book-
keeping involved in the parallel algorithm. This adds to the execution time.

2. If r is the fraction of the program statements which is parallelizable then the
execution time on P processors is bounded from below by (1 — »)7T°(N) +
rT°(N)/P which is also larger than the ideal. This is known as Amdahl’s
law .

3. The processors might not be assigned the same amount of work. This means
that some processors will be idle while others are doing more than their
fair share of the work. In that case, the parallel execution time will be
determined by the processor which is the last to finish. This is known as the
problem of good load balancing.

4. Processors must communicate information and synchronize in order for the
arithmetic to be performed on the correct data and in the correct sequence.
This communication and synchronization will delay the computation de-
pending on the amount which is communicated and the frequency by which
it occurs.

YIn this chapter P stands for the number of processors and should not be confused with the
number of vanishing moments.
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p=20 p=1
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Table 6.1: Standard data layout results in poor load balancing. The shaded sub-vectors
are those parts which do not require further processing. Here P =2, N = 16,and A = 3.

In this chapter we will discuss different parallelization strategies for the FWTs
with special regard to the effects of load balancing, communication, and synchro-
nization. We will disregard the influence of the first two points since we assume
that the parallel overhead is small and that the FWT per se has no significant un-
parallelizable part. However, in applications using the FWT this problem may
become significant. Most of the material covered in this chapter has also appeared
in [NH97].

6.1 1D FWT

We will now address the problem of distributing the work needed to compute the
FWT (y = W) as defined in Definition 3.1 on P processors denoted by p =
0,1,..., P — 1. We assume that the processors are organized in a ring topology
such that (p — 1)p and (p + 1)p are the left and right neighbors of processor p,
respectively. Assume also, for simplicity, that /V is a multiple of P and that the
initial vector @ is distributed such that each processor receives the same number
of consecutive elements. This means that processor p holds the elements

{en}tn, nzp%, p%JrL s (p+1)%—1
A question that is crucial to the performance of a parallel FWT is how to chose
the optimal distribution of y and the intermediate vectors.
We consider first the data layout suggested by the sequential algorithm in Def-
inition 3.1. This is shown in Table 6.1. It is seen that distributing the results of
each transform step evenly across the processors results in a poor load balancing
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Table 6.2: Good load balancing is obtained by using a different data layout. The shaded
sub-vectors are those parts which do not require further processing. Again, we have P =
2, N =16,and A = 3.

because each step works with the lower half of the previous vector only. The pro-
cessors containing parts that are finished early are idle in the subsequent steps. In
addition, global communication is required in the first step because every proces-
sor must know the values on every other processor in order to compute its own
part of the wavelet transform. In subsequent steps this communication will take
place among the active processors only. This kind of layout was used in [DMC95]
where it was observed that optimal load balancing could not be achieved, and also
in [Lu93] where the global communication was treated by organizing the proces-
sors of a connection machine (CM-2) in a pyramid structure.

However, we can obtain perfect load balancing and avoid global communi-
cation by introducing another ordering of the intermediate and resulting vectors.
This is shown in Table 6.2. Processor p will now compute and store the elements
{ci+1}, and {dt'}, where

N N
pp2i+1’ pP2i+1
i = 0,1,...,A—1
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Let now S¥ = S;/P = N/(P2%). Then the recurrence formulas are almost
the same as (3.33):

D-1

+1 E 7
1% - alc(l—|—2n>si
(=0
D—-1
+1 E 7
dn - blc(l—|—2n>si
(=0

wherei = 0,1,... . A—1landn = pSE,,pSE, +1,... . (p+1)SE, — 1. The
difference lies in the periodic wrapping which is still global, i.e. elements from
processor 0 must be copied to processor P — 1. However, it turns out that this
IS just a special case of the general communication pattern for the algorithms, as
described in Section 6.1.1.

Note that the layout shown in Table 6.2 is a permutation of the layout shown in
Table 6.1 because each processor essentially performs a local wavelet transform
of its data. However, the ordering suggested by Table 6.1 and also by Figure 3.3
is by no means intrinsic to the FWT so this permutation is not a disadvantage at
all. Rather, one might argue as follows:

(6.2)

Local transforms reflect better the essence of the wavelet phi-
losophy because all scale information concerning a particular
position remains on the same processor.

This layout is even likely to increase performance for further processing steps
(such as compression) because it preserves locality of the data.

Note also that the local transforms in this example have reached their ultimate
form on each processor after only three steps and that it would not be feasible
to continue the recursion further (i.e. by letting A = 4 and splitting {c;, ¢} into
{cl di}) because then N/(P2") < 1, (6.1) no longer holds, and the resulting data
distribution would lead to load imbalance as with the algorithm mentioned above.
Thus, to maintain good load balancing we must have an upper bound on A:

A <log, (%)

In fact, this bound has to be even more restrictive in order to avoid excessive
communication. We will return to this in Section 6.1.1.
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S=n r+1)Z5 max(l + 2n) (r+2) 25
| | | |
I+ 2n:
i
n:
T T
P T (r+1) 25T

Figure6.1: Computations on processor p involve D — 2 elements from processor p + 1.
Here D = 6 and N/(P2') = 8. The lines of width D indicate the filters as they are
applied for different values of n.

6.1.1 Communication

We will now consider the amount of communication required for the parallel 1D
FWT. Consider the computations done by processor p on a row vector as indicated
in Figure 6.1. The quantities in (6.2) can be computed without any communication
provided that the index [ + 2n does not refer to elements on other processors, i.e.

N
[4+2n < (p+1)

- — 1
P2
[+1
A sufficient condition (independent of /) for this is
D

since [ € [0, D — 1]. We use this criterion to separate the local computations from
those that may require communication.

Forafixed n > (p + 1)N/(P2+') — D/2 computations are still local as long
as (6.3) is fulfilled, i.e. when

lg(p—l—l)%—Zn—l (6.5)

However, when [ becomes larger than this, the index [ + 2n will point to elements
residing on a processor located to the right of processor p. The largest value of
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[ + 2n (found from (6.2) and (6.1)) is

N
max(l 4+ 2n) = (p+ 1)ﬁ +D -3 (6.6)
The largest value of [ + 2n for which communication is not necessary is
N
1 - —1
P+ 1) o

Subtracting this quantity from (6.6) we find that exactly D — 2 elements must be
communicated to processor p at each step of the FWT as indicated in Figure 6.1.

A tighter bound on A

It is a condition for good performance that the communication pattern described
above takes place between nearest neighbors only. Therefore, we want to avoid
situations where processor p needs data from processors other than its right neigh-
bor (p 4+ 1)p so we impose the additional restriction

N
max([+2n) < (p+2)——=—1

P2
N N
N _ < S
(p+1)P22 +D-3 < (p+2)P22 1
N
D—-2 < . 7
< 3 (6.7)
Since we want (6.7) to hold forall s = 0,1,... , A — 1 we get
Do2s pp
from which we obtain the final bound on A:
2N
A <1 S .

For N = 256, D = 8, P = 16, for example, we find
A <5

The bound given in (6.8) is not as restrictive as it may seem: Firstly, for the ap-
plications where a parallel code is called for, one normally has NV > max(P, D),
secondly, in most practical wavelet applications one takes A to be a fixed small
number, say 4-5 [Str96], and thirdly, should the need arise for a large value of
A, one could use a sequential code for the last steps of the FWT as these will not
involve large amounts of data.
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6.2 MultiplelD FWT

The considerations from the previous section are still valid if we replace single
elements with columns. This is a parallel version of the MFWT described in
Section 5.3. Figure 6.2 shows the data layout of the parallel MFWT algorithm.

FWT direction
N

Memory
access

Figure 6.2: Multiple FWT. Data are distributed columnwise on the processors. The
FWT is organized rowwise in order to access data with stride one.

The amount of necessary communication is now M (D — 2) elements instead
of D — 2, the columns of X are distributed blockwise on the processors, and the
transformation of the rows of X involves the recursion formulas corresponding to
X W1, The recursion formulas take the same form as in Section 5.3. The only
difference from the sequential case is that » is now given as in (6.1).

We are now ready to give the algorithm for computing one step of the mul-
tiple 1D FWT. The full transform is obtained by repeating this step for : =
0,1,..., X — 1. The algorithm falls naturally into the following three phases:

1. Communication phase: DD — 2 columns are copied from the right neighbor
as these are sufficient to complete all subsequent computations locally. We
denote these columns by the block ¢! ., .

2. Fully local phase: The interior of each block is transformed, possibly over-
lapping the communication process.

3. Partially remote phase: When the communication has completed, the re-
maining elements are computed using ., pyy Whenever

[ +2n > N/(P2).
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Algorithm 6.1: MFWT, level i — i+ 1

i P2 )
p ="my processorid” € [0: P — 1]

I Communication phase
|

send ¢!, ;,_5 to processor (p — 1) p
receive ¢ .,,_, from processor (p + 1)r

I Fully local phase, cf. (6.4)
!
forn=0:57/2—-D/2

c?‘l’ll = IDZBI alcil—l—Zn ' min({ +2n) =0

A3t = S0 b, ' max(l 4 2n) = 57 — 1

end

I Partially remote phase

I communication must be finished at this point
|

forn=S"/2—-D/2+1:5F/2-1
|

I Local part, cf (6.5)
!

ci‘;l = Efzo_zn_l alcil—l—Zn I min(l + 2n) = SZP —D+2

= T e, | max(l+2n) = 57— 1

| Remote part, use ¢.,_,
!

i+1 _ yD-1 —; o P
Cn = 2ui=sF 20 UE, 119, 5P lmin(l + 2n) = 5

i+1 D-1 —; I P B
dit! = Elzsip_% blc:,l+2n—sf ' max({+2n)=S5"+D —3

end
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6.2.1 Performancemodel for the multiple 1D FWT

The purpose of this section is to focus on the impact of the proposed communi-
cation scheme on performance with particular regard to speedup and efficiency.
We will consider the theoretically best achievable performance of the multiple 1D
FWT algorithm. Recall that (5.6) can be computed using

1
floating point operations. We emphasize the dependency on N because it denotes
the dimension over which the problem is parallelized.
Let ¢, be the average time it takes to compute one floating point operation on
a given computer?. Hence, the time needed to compute (5.6) sequentially is

Tarwt(N) = Furwt(N )i (6.10)
and the theoretical sequential performance becomes

_ Furwt(N)
Tarwr(N)

In our proposed algorithm for computing (5.6) the amount of double precision
numbers that must be communicated between adjacent neighbors at each step of
the wavelet transform is M (D — 2) as described in Section 6.2. Let ¢; be the time
it takes to initiate the communication (latency) and ¢, the time it takes to send
one double precision number. Since there are A steps in the wavelet transform a
simple model for the total communication time is

Ryewr(N) (6.11)

CMFWT = )\(tl + M(D — Q)td) (612)

Note that Cwmrwr grows linearly with M but that it is independent of the number
of processors P as well as the size of the second dimension V!

Combining the expression for computation time and communication time we
obtain a model describing the total execution time on P processors (P > 1) as

T N
Tapwr(N) = 7MF\A]/3T( ) + Cmrwr (6.13)

2This model for sequential performance is simplified by disregarding effects arising from the
use of cache memory, pipelining or super scalar processors. Adverse effects resulting from sub-
optimal use of these features are assumed to be included in ¢; to give an average estimate of the
actual execution time. Thus, if we estimate ¢; from the sequential model (6.10), it will normally
be somewhat larger than the nominal value specified for a given computer. In case of the linear
model for vector performance (5.1) we get for example ¢y = ¢, /F + t,.
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and the performance of the parallel algorithm is

Furwt(N)
Taewr(N)

The expressions for performance in (6.11), (6.14), and (6.13) lead to a formula
for the speedup of the MFWT algorithm:

RﬁlFWT(N) = (6.14)

SP (N) — Tl\(;IFWT(N) — P
MEWT TI\I/TFWT(N) L+ PCMFWT/TI\(}IFWT(N)

The efficiency of the parallel implementation is defined as the speedup per pro-
cessor and we have

SI\IZFWT(N) _ 1

Eewr(N) = =
mrwt (V) P 1+ PCurwr/Tent(N)

(6.15)

It can be seen from (6.15) that for constant N, the efficiency will decrease when
the number of processors P is increased.

We will now investigate how the above algorithm scales with respect to the
number of processors when the amount of work per processor is held constant.
Thus let N; be the constant size of a problem on one processor. Then the to-
tal problem size becomes N = PN; and we find from (6.9) and (6.10) that
Taewt(PN1) = PToewr(N1) because the computational work of the FWT is
linear in N. This means in turn that the efficiency for the scaled problem takes the
form

1 1
Er PNy = =
mewt (P N1) _POMEWT 1+ Oviewt/ T (V1)
PTgrwt(N)

Since Efrwr(PNy) is independent of P the scaled efficiency is constant. Hence
the multiple 1D FWT algorithm is fully scalable.
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6.3 2D FWT

In this section we will consider two approaches to parallelize the split-transpose
algorithm for the 2D FWT as described in Section 5.4.

The first approach is similar to the way 2D FFTs can be parallelized [Heg96]
in that it uses the sequential multiple 1D FWT and a parallel transpose algorithm;
we denote it the replicated FWT. The second approach makes use of the parallel
multiple 1D FWT described in Section 6.2 to avoid the parallel transposition. We
denote this approach the communication-efficient FWT.

In both cases we assume that the transform depth is the same in each dimen-
sion, i.e. A = Ay = Ay. Then we get from (3.40) and (5.7) that the sequential
execution time for the 2D FWT is

TSWTz(N) = QTI\(;IFWT(N)' (6.16)

6.3.1 Replicated FWT

The most straightforward way of dividing the work involved in the 2D FWT al-
gorithm among a number of processors is to parallelize along the first dimension
in X, such that a sequence of 1D row transforms are executed independently on
each processor. This is illustrated in Figure 6.3. Since we replicate independent
row transforms on the processors we denote this approach the replicated FWT
(RFWT) algorithm. Here it is assumed that the matrix X is distributed such that

FWT direction FWT direction

Memory Memory
0 access 0 access
L . Transpose L

Figure 6.3: Replicated FWT. The shaded block moves from processor 1 to 0.

each processor receives the same number of consecutive rows of X. The first and
the last stages of Algorithm 5.1 are thus done without any communication. How-
ever, the intermediate stage, the transposition, causes a substantial communication
overhead. A further disadvantage of this approach is the fact that it reduces the
maximal vector length available for vectorization from M to M/P (and from N
to N/P). This is a problem for vector architectures such as the Fujitsu VPP300
as decribed in section 5.3.
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P1

p2

P3

P4

Figure 6.4: Communication of blocks, first block-diagonal shaded.

A similar approach was adopted in [LS95] where a 2D FWT was implemented
on the MasPar - a data parallel computer with 2048 processors. It was noted that
“the transpose operations dominate the computation time” and a speedup of no
more than 6 times relative to the best sequential program was achieved.

A suitable parallel transpose algorithm needed for the replicated FWT is one
that moves data in wrapped block diagonals as outlined in the next section.

Parallel transposition and data distribution

Assume that the rows of the matrix X are distributed over the processors, such
that each processor gets M /P consecutive rows, and that the transpose X' is
distributed such that each processor gets N/ P rows. Imagine that the part of
matrix X that resides on each processor is split columnwise into P blocks, as
suggested in Figure 6.4, then the blocks denoted by : are moved to processor :
during the transpose. In total each processor must send P — 1 blocks and each
block contains A/ P times N/ P elements of X. Hence, following the notation in
Section 6.2.1, we get the model for communication time of a parallel transposition

MN
Crewr = (P — 1) (t, + td> (6.17)

Note that Crewr grows linearly with M, N and P (for P large).

Performance model for thereplicated FWT

We are now ready to derive a performance model for the replicated FWT algo-
rithm. Using (6.16) and (6.17) we obtain the parallel execution time as

T2 N
Tarwr(N) = 7FW;§( ) + Crewt
and the theoretical speedup for the scaled problem N = PN; is
P

Skewr(PN) (6.18)

T 1+ Crewt/ T8uma(NY)
We will return to this expression in Section 6.3.3.
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6.3.2 Communication-efficient FWT

In this section we combine the multiple 1D FWT described in Section 6.2 and the
replicated FWT idea described in Section 6.3.1 to get a 2D FWT that combines
the best of both worlds. The first stage of Algorithm 5.1 is computed using the
parallel multiple 1D FWT as given in Algorithm 6.1, so consecutive columns of
X must be distributed to the processors. However, the last stage uses the layout
from the replicated FWT, i.e. consecutive rows are distributed to the processors.
This is illustrated in Figure 6.5.

FWT direction FWT direction

Memory Memory
access 0 access
. Transpose 1

No communication ! 2

3
M N

Figure 6.5: Communication-efficient FWT. Data in shaded block stay on processor 0.

The main benefit using this approach is that the transpose step is done with-
out any communication whatsoever. The only communication required is that of
the multiple 1D FWT, namely the transmission of M (D — 2) elements between
nearest neighbors, so most of the data stay on the same processor throughout the
computations. The result will therefore be permuted in the N-dimension as de-
scribed in Section 6.1 and ordered normally in the other dimension. We call this
algorithm the communication-efficient FWT (CFWT) .

The performance model for the communication-efficient FWT is a straightfor-
ward extension of the MFWT because the communication part is the same, so we
get the theoretical speedup

P

S&pwt(PNy) =
crurl780) 1+ Cmrwr/ Tewr2(N1)

(6.19)

where Cyrpwr and T38,1,( V1) are as given in (6.12) and (6.16) respectively.

6.3.3 Comparison of the 2D FWT algorithms

We can now compare the theoretical performance of the RFWT (6.18) and the
CFWT (6.19) with regard to their respective dependencies on P and N;.
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Scaled speedup
140 T T

120

100

Comm-effic.
- Replicated
Perfect

L L L L ! !
0 20 40 60 80 100 120 140

Figure 6.6. The theoretical scaled speedup of the replicated FWT algo-
rithm and the communication-efficient FWT shown together with the line of
perfect speedup. The predicted performances correspond to a problem with
M = 512, N = 128, D = 12. The characteristic parameters were measured
onanIBM SP2tobet; = 0.2pus, ¢ = 200 us, ty = 6 ns. The performance of
the communication-efficient FWT is much closer to the line of perfect speedup than the
performance of the replicated FWT, and the slope of the curve remains constant.

In case of the CFWT the ratio Cmewt/TowTo( V1) is constant with respect to
P whereas the corresponding ratio for the RFWT in (6.18) goes as O( P):

Crrwt (P—1)t; + %MNJCJ
Tewra(N1) SDMN,

= o(P)

This means that the efficiency of the RFWT will deteriorate as P grows while
it will stay constant for the CFWT. The corresponding speedups are shown in
Figure 6.6.

When P is fixed and the problem size N, grows, then Cvyiewr/ Tyt ( V1) goes
to zero, which means that the scaled efficiency of the CFWT will approach the
ideal value 1. For the RFWT the corresponding ratio approaches a positive con-
stant as NV; grows:

CrewT (P - 1)td
_— 5 —————for Ny =
Thwra(N1) 8D P? !
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P | N | Mflop/s | Efficiency (%) | Estim. eff.
0| 128 183
1] 128 176 96.18 97.61
2| 256 301 82.24 82.12
41 512 601 82.10 82.12
811024 | 1199 81.90 82.12
16 | 2048 | 2400 81.97 82.12
3214196 | 4796 81.90 82.12

Table 6.3: Communication-efficient FWT onthe SP2. N = PN;, N; = 128, M = 128,
D = 10. P = 0 signifies sequential performance. Estimated efficience is given as
SEewr(PN1) /P where SLer(PNy) is given as in (6.19).

This means that the scaled efficiency of the RFWT is bounded by a constant less
than one — no matter how large the problem size. The asymptotic scaled efficien-
cies of the two algorithms are summarized below

P — > Ny —
Replicated FWT: ! !
B B
Communication- 1 |
efficient FWT: 1+ —SMEWT
Tewr2(M1)

6.3.4 Numerical experiments

We have implemented the communication-efficient FWT on two different MIMD
computer architectures, namely the IBM SP2 and the Fujitsu VPP300. On the SP2
we used MPI for the parallelism whereas the proprietary VPP Fortran was used
on the VPP300.

The IBM SP2 is a parallel computer which is different from the VPP300. Each
node on the SP2 is essentially a workstation which does not achieve the perfor-
mance of a vector processor such as the VPP300. High performance on the SP2
must therefore be achieved through a higher degree of parallelism than on the
VPP300 and scalability to a high number of processors is more urgent in this
case. The measured performances on the IBM SP2 are shown in Table 6.3.
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Scaled speedup

Theoretical
* Measure: d

Figure 6.7: Scaled speedup, communication-efficient FWT (IBM SP2). These graphs
depict how the theoretical performance model does, in fact, give a realistic prediction of
the actual performance.

P | N | Mflop/s | Efficiency (%)
0] 512 1300

1] 512 1278 98.31
211024 | 2551 98.12
412048 | 50568 97.27
814096 | 10186 97.94

Table 6.4;: Communication-efficient FWT on the VPP300. N « P, M = 512, D = 10.
P = 0 signifies sequential performance.

It is seen that the performance scales well with the number of processors and,
furthermore, that it agrees with the predicted speedup as shown in Figure 6.7. The
parallel performance on the Fujitsu VP300 is shown in Table 6.4. We have not es-
timated the characteristic numbers ¢;,,, ¢, for this machine, but it is nevertheless
clear that the performance scales almost perfectly with the number of processors
also in this case.
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6.4 Summary

We have developed a new parallel algorithm for computing the 2D wavelet trans-
form, the communication-efficient FWT.

Our new approach avoids the use of a distributed matrix transpose and per-
forms significantly better than algorithms that require such a transpose. This is
due to the fact that the communication volume of a parallel transpose is larger
than necessary for computing the 2D FWT.

The communication-efficient FWT is optimal in the sense that
the scaled efficiency is independent of the number of proces-
sors and that it approaches 1 as the problem size is increased.

Implementations on the Fujitsu VPP300 and the IBM SP2 confirms the scalability
of the CFWT algorithm.
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Chapter 7

Wavelets and differentiation
matrices

7.1 Previouswavelet applicationsto PDEs

Even though the field of wavelet theory has had a great impact on other fields,
such as signal processing, it is not yet clear whether it will have a similar impact
on numerical methods for solving partial differential equations (PDEs).

In the early nineties people were very optimistic because it seemed that the
nice properties of wavelets would automatically lead to efficient solution meth-
ods for PDEs. The reason for this optimism was the fact that many nonlinear
PDEs have solutions containing local phenomena (e.g. formation of shocks) and
interactions between several scales (e.g. turbulence). Such solutions can often
be well represented in wavelet bases, as explained in the previous chapters. It
was therefore believed that efficient wavelet-based numerical schemes for solving
these PDEs would follow from wavelet compression properties [BMP90, LT90b,
LPT92, HPW94, GL94, CP96, PW96, F96, DKU96].

However, this early optimism remains to be honored. Wavelets have not had
the expected impact on differential equations, partly because the computational
work is not necessarily reduced by applying wavelet compression - even though
the solution is sparsely represented in a wavelet basis. In the following chapters
we will discuss some of the most promising approaches and shed some light on
the obstacles that must be overcome in order to obtain successful wavelet-based
PDE solvers.

Schematically, wavelet-based methods for PDEs can be separated into the fol-
lowing classes:
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Class 1. Methods based on scaling function expansions

The unknown solution is expanded in scaling functions at some chosen level .J
and is solved using a Galerkin approach. Because of their compact support, the
scaling functions can be regarded as alternatives to splines or the piecewise poly-
nomials used in finite element schemes. While this approach is important in its
own right, it cannot exploit wavelet compression. Hence methods in this category
are not adaptive [LT90a, QW93, WA94, LR94, Jam93, RE97]. However, this ap-
proach has many points of interest. Leland Jameson [Jam93] has shown that one
obtains a method which exhibits super convergence at the grid points, the order of
approximation being twice as large as that of the projection of the solution onto
the space spanned by scaling functions. Johan Waldén [Wal96] has shown that
the size of the differentiation filters grows faster than the optimal centered finite
difference method of the same order. In the limit, as the order goes to infinity, it
is shown that [ ¢'(x — k)é(x) do — (—1)*/k for D — oo. Finally, we mention
that Teresa Regifska and others [RE97, EBR97] use scaling functions to regular-
ize the solution of the sideways heat equation. This is an ill-posed problem in the
sense that the solution does not depend continuously on the initial condition. By
expanding the solution in scaling functions, high frequency components can be
filtered away and continuous dependence of the initial condition is restored.

Class 2. Methods based on wavelet expansions

The PDE is solved using a Galerkin approach as in the first class. In this case,
however, the unknown solution is expressed in terms of wavel ets instead of scaling
functions so wavelet compression can be applied; either to the solution [LT90b],
the differential operator [BCR91, Bey92, EOZ94, XS92], or both [CP96, BK97,
PW096]. Several differentapproaches have been considered for exploiting the spar-
sity of a wavelet representation. One is to perform all operations in the wavelet
domain [BN96, BMP90, Wal96]. The operators are sparse but the number of sig-
nificant coefficients in the solutions N,(¢) has to be very small compared to the
dimension of the problem N for the methods to be efficient. This is especially true
for non-linear operations. However, recent work by Beylkin and Keiser [BK97]
suggests that some nonlinearities may be efficiently treated in the wavelet domain.
In another approach linear operations such as differentiation are done in the
wavelet domain and nonlinear operations such as squaring in the physical domain.
This is by far the most common approach and it is used by [Kei95, CP96, FS97,
PW96, EOZ94, VP96] and the author. This approach involves a number of trans-
formations between the physical domain and the wavelet domain in each time
step, and this can introduce considerable overhead. Hence, the wavelet compres-
sion potential of the solution must be very large for this approach to be feasible.
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An interesting aspect of the wavelet approach is that certain operators repre-
sented with respect to a wavelet basis become sparser when raised to higher pow-
ers [EOZ94]. From this property one can obtain an efficient time-stepping scheme
for certain evolution equations. This method has been employed in [CP96, Dor95]
to solve the heat equation.

Finally, we mention that several papers have exploited the so-called Non-
standard or BCR form of the differential operator [BCR91, Bey92, Dor95, BK97].
This form is sparser than the standard form, but to apply the non-standard form of
the differential operator to a function one needs to know, at all scales, the scaling
function coefficients of the function as well as its wavelet coefficients. This repre-
sentation is redundant and, even though the function may be sparse in its wavelet
representation, the scaling function representation may not be sparse.

We will refer to methods from Class 1 and 2 as projection methods.

Class 3: Wavdletsand finitedifferences

In the third approach wavelets are used to derive adaptive finite difference meth-
ods. Instead of expanding the solution in terms of wavelets, the wavelet transform
is used to determine where the finite difference grid must be refined or coarsened
to optimally represent the solution. The computational overhead is low because
one works with point values in the physical representation. One approach was de-
veloped by Leland Jameson, [Jam94, Jam96] under the name Wavelet Optimized
Finite Difference Method (WOFD). Waldén describes a filter bank method in
[Wal96], Matts Holmstrom has introduced the Sparse Point Representation (SPR)
in [Hol97], and also [PK91] have used wavelets to localize where to apply grid
refinement.

Class 4: Other methods

There are a few approaches that use wavelets in ways that do not fit into any of the
previous classes. Examples are operator wavelets [JS93, EL], anti-derivatives of
wavelets [XS92], the method of travelling wavelets [PB91, WZ94], and wavelet-
preconditioning [Bey94].

Operator wavelets are wavelets that are (bi-)orthogonal with respect to an in-
ner product designed for the particular differential operator in question. This is
not a general method since it works only for certain operators. The use of anti-
derivatives of wavelets is similar to that of operator wavelets.

In the method of travelling wavelets, an initial condition is expanded using
only a few wavelets which are then propagated in time. A disadvantage of this
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method is that these few wavelets may be unable to express the solution after it
has been propagated for a time.

Finally, in [Bey94] it is shown that any finite difference matrix representa-
tion of periodized differential operators can be preconditioned so that the condi-
tion number is O(1). Furthermore, if the difference matrix is represented in a
wavelet basis (the standard form) then the preconditioner is a diagonal matrix.
Thus, wavelets play an auxiliary role in that they provide a means to reduce the
condition number of the operator.

In this chapter and Chapter 8 we describe the necessary background for methods
belonging to Class 1 and 2. In Chapter 9 we give some applications of these
methods to PDEs, and we also illustrate the WOFD method from Class 3. We will
not discuss further methods belonging to class 4.

7.2 Connection coefficients

A natural starting point for the projection methods is the topic of two-term con-
nection coefficients. The description adopted here is similar to the one described
in [LRT91] and [Bar96]. An alternative method is described in [Kun94]. We
define the connection coefficients as

e = [ APl e do, it e 2

where d; and d, are orders of differentiation. We will assume for now that these
derivatives are well-defined.
Using the change of variable z < (272 — [) one obtains

=2 [ @) e~k ) de = 2T

70m

where d = d; + d,. Repeated integration by parts yields the identity Iy =

(—1)"Ty 0 ., because the scaling functions have compact support. Hence

[t — (oo

70m 0,0,m—I1

Therefore it is sufficient to consider only one order of differentiation (<) and one
shift parameter (m — [) and we define

I = /_Oo ()N a)de, 1€Z (7.1)
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Consequently
Dii = (=127, (7.2)
and we note the property
It = (=114, nel2-D,D—2] (7.3)

which is obtained using the change of variable + < « — [ in (7.1) followed by
repeated integration by parts.

In the following we will restrict our attention to the problem of computing
(7.1). The supports of ¢ and ¢§d) overlap only for —(D —2) <! < D — 2 so there
are 2D — 3 nonzero connection coefficients to be determined. Let

= {5

and assume that ¢ € C4(R). Then taking the identity (3.21) with ; = 1 and
differentiating it d times leads to

D-1

D-1
o) =3 ard\ Yy n(e) = 2V2 Y ol (20) (7.4)
k=0

k=0

Substituting the dilation equation (2.17) and (7.4) into (7.1) yields

F;l = / [\/_Za,, ] [d\/_Zasqsz_s 2:1;] dx
D-1D-1
= 2d+lzza as/ or(22) ¢2l+s 2a) dx x < 2w
r=0 s=0
D-1D-1 o
= 9d @y / (T ¢2[—I—s x)dx R —
r=0 s=0 oo
D-1D-1 o
= 29 a, / o(x ¢2[—|—5 z)dx
r=0 s=0 o0
or
D-1D-1 1
ZZaaF21+5r:2dF7, le[2—D,D—2] (7.5)
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Let n = 2[4 s — r. We know that I'? is nonzero only forn € [2 — D, D — 2] and
that s = r + n — 2/ as well as » must be restricted to [0, D — 1]. This is fulfilled
for max(0,2l —n) <r < min(D —2,D —2+2]—n). Let p = 2/ — n and define

a, = Arly—p
r=ri(p)

where r1(p) = max(0,p) and ry(p) = min(D —1,D — 1 4 p) . Hence (7.5)
becomes

D-2 1
Z a2l—nrfi = Z_dr;lv le [2 - D7 D — 2]
n=2—D

The matrix-vector form of this relation is
(A-27"I)T"=0 (7.6)

where Aisa (2D — 3) x (2D — 3) matrix with the elements
[Alin = ao1—py, Lin€2—D,D —2]
We note the following properties of @:
e Because of the orthogonality property (2.22) we have

_ |1 forp=0
wTY 0 forp=42 +4,46...

e Also, @, = a_, So we need only compute @, for p > 0.

e Finally, a consequence of Theorem 2.3 is that
> o=t
p odd
Hence all columns add to one, which means that A has the left eigenvector
[1,1,...,1] corresponding to the eigenvalue 1, d = 0 in (7.6).
Consequently, A has the structure shown here for D = 6:

0 as
0 63 0 65
1 aq 0 as 0 as
0 aq 1 aq 0 as 0 as
0 as 0 a3 1 @ 0 @ 0
65 0 63 0 61 1 61 0
65 0 63 0 61 1
65 0 63 0
L as 0 .
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Equation (7.6) has a non-trivial solution if 2=¢ is an eigenvalue of A. Nu-
merical calculations for D = 4.6, ... ,30 indicate that 2= is an eigenvalue for
d=0,1,...,D — 1 and that the dimension of each corresponding eigenspace is
1. Hence one additional equation is needed to normalize the solution.

To this end we use the property of vanishing moments. Recall that P = D/2.
Assuming that ¢ < P we have from (2.25) that

= i Mzdﬁb(l’ — 1)

[=—0

Differentiating both sides of this relation d times yields

=S MO )

l=—0c0

Multiplying by ¢(x) and integrating we then obtain

o [ oty = iM [ o -

DR BRI AR
[=2-D e
Hence we get
D-2
MTY = d! (7.7)
[=2—-D

which closes the the system (7.6). The computation of the moments needed for
this equation is described in Appendix (A). T' is then found as follows: Let v* be
an eigenvector corresponding to the eigenvalue 2= in (7.6). Then 'Y = kov? for
some constant %, which is fixed according to (7.7).

The Matlab function conn (d, D) computes I'** for a given wavelet genus D.

Remark 7.1 Thereis one exception to the statement that 2-¢ is an eigenvalue of
Aford=0,1,...,D —1: Let D = 4. Thenthe eigenvalues of A are

1 1 1 1

o 1t 6.4765 x 1077, i 6.4765 x 1077, 5 1
Consequently £ is not an eigenvalue of A and connection coefficients for the com-
bination D = 4, d = 2 are not well defined.
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7.2.1 Differentiability

The question of differentiability of ¢ (and hence ) is nontrivial and not fully
understood [SN96, p. 199-200], see e.g. [Dau92, p. 215-249] and [SN96, p. 242—
245] for a discussion. However, some basic results are given in [Eir92] and stated
in Table 7.1. The space C*(R) denotes the space of functions having continuous

D|2 |4 10]12]14 1161820
al—10 111 ]2(2]2]2
3100 21233

Table 7.1: Regularity of scaling functions and wavelets, where ¢,v ¢ C*(R) and
¢, ¢ € HP(R).

derivatives of order < . The space /7°(R) is a Sobolev space defined as
HY(R)={f € L*(R): [ € L*(R), |d| <p}

see, e.g. [Fol95, p. 190]. This latter concept is a generalization of ordinary differ-
entiability, hence o < 3.

As we shall see numerical experiments reveal that the connection coefficients
work for higher orders of differentiation than those specified in Table 7.1. See
Section 7.4.

7.3 Differentiation matrix with respect to scaling func-
tions

Let f be a function in V; (N C%R), J € Ny The connection coefficients de-
scribed in the previous section can be used to evaluate the dth order derivative of
f in terms of its scaling function coefficients. Differentiating both sides of (2.11)
d times we obtain

o0

FO@)= 3" endlfl(x). reRr (7.8)
[=—0
F@ will in general not belong to V; so we project f(*) back onto V;

o0

(P, fD)(x)= > Slomm(z), z€R (7.9)

k=—cc
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where, according to (2.12),

&l = / FO(2)pp(z) da (7.10)
Substituting (7.8) into (7.10) we find

(d

§ = S e[ ontole) s

= Z Clntk 2‘]de§, —o0 < k < o

We used (7.2) for the second last equality. Since I is only nonzero for n ¢
[2— D, D — 2] we find that

D—-2
) = a2’ U ke (7.11)

n=2—D

Recall from (2.60) that if f is 1-periodic then
CJl = CJi4p27 lvp €Z
and

d d
057]1 = cf]7ll+p2J7 k7p < Z

Hence, it is sufficient to consider 27 coefficients of either type and (7.11) becomes

D-2
o oy, 2T, k=0,1,...,2" -1 (7.12)

n=2—D

This system of equations can be represented in matrix-vector form

) =DWe (7.13)
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where
[D(d)]kv<n+k>2J = 2JdFZ7 k= 07 17 ce 72J - 17
n=2-—D,3-D,...,D—2
d d d
and ¢(9) = [c%, 0571), . ,cf]’z)J_l].

We will refer to the matrix D'? as the differentiation matrix of order d. It
can be seen from (7.3) that D9 is symmetric for d even and skew-symmetric for
d odd. Furthermore, it follows that D@ is circulant as defined in Definition C.1
and that it has bandwidth 20D — 3. The differentiation matrix has the following
structure (shown for D =4 and .J = 3):

rd r¢ rd 0 0 0 (-1nr¢ (-1n9r¢

(—1)dr¢d rd r¢ rd 0 0 0 (-1)1¢

(-1)9rd  (-1)9r¢ rd ¢ rd 0 0 0

D@ — 93 0 (-1g (1) e r{ rg 0 0
N 0 0 (-1nr¢ (-1)r¢ rd ¢ rd 0

0 0 0 (-1)r¢ (-1)9r¢ rd r¢ rg

rd 0 0 0 (-1)r¢ (-1)9r¢ rd r¢

L ¢ rd 0 0 0 (-1nir¢ (-nr¢ rd

An important special case is d = 1, and we define

D =DW (7.14)

7.4 Differentiation matrix with respect to physical
space

We will restrict our attention to the periodic case. Recall from Section 3.2.3 that
f=Tc, c=T'f

where f are the grid values of a function f € V; defined on the unit interval. ¢ is
the vector of scaling function coefficients corresponding to f, and 7" is the matrix
defined in (3.16) which maps from the scaling function coefficients onto the grid
values. Similarly, the projection of f(9) onto V; satisfies

FO — el
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Then it follows from (7.13) that
A =rpIT-'f

We call D'¥ the differentiation matrix with respect to the coefficient space, by
virtue of (7.13), and T DT~ the differentiation matrix with respect to physical
space. The matrices 7" and D'¥) are both circulant with the same dimensions
(2D — 3) x (2D — 3), so they are diagonalized by the same matrix, namely the
Fourier matrix F'yp_5 defined in (C.3). Therefore, they commute, according to
Theorem C.5, and we find that

TDYT' = pUTT-!' = D@
and

f9=py (7.15)

Hence D' is the differentiation matrix with respect to both coefficient space and
physical space.
If f is an arbitrary 1-periodic function then (% will generally not be exact
due to approximation errors and we define
k
<d>} o [
{f k / <2J> ‘

Jameson [Jam93] establishes the following convergence result for the differentia-
tion matrix D)

E(d)(f, J)= max

k=0,1,...,27 -1

fecP®) = EWOfT)y<Cc2P (7.16)

where ' is a constant. Assume that similar results hold for higher orders of dif-
ferentiation, i.e.

EYD(f,Jy=0277F ReR, d>1 (7.17)

where R possibly depends on d and D. Taking the logarithm on both sides of
(7.17) yields

10%2(E(d)(f7 J)) = 10%2(02_JR) = log,(C) — JR
and we can find the convergence rate 2 from the differences

logy(EW(f,.7)) —logy(B(f, ]+ 1)) = R
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D\d|1 2 3 4 5 6 7 8 9 10 11 12
414 - 2 - = = = = — - = =
6|6 4 4 2 2 - - - — — — —
8|8 6 6 4 4 2 2 - - =

010 8 8 6 6 4 4 2 2 —
12112 10 10 8 8 6 6 4 4 2 2 -—

Table 7.2: Convergence rates R (rounded) for the differentiation matrix shown for
different values of D and orders of differentiation d. Here, f(z) = sin(47z), and
J = 3,4,...,8. Note that the case D = 4,d = 2 is not valid as mentioned in Re-
mark 7.1.

Numerical results are summarized in Table 7.2 and it is verified that (7.16) applies.
For higher orders of differentiation, there is still convergence, but with lower con-
vergence rates. We observe that R appears to be given by

R=D-2[d/2], d=0,1,....,D—1

Moreover, we observe that numerical differentiation is successfully carried out to
much higher orders than those suggested in Table 7.1.

The convergence rate R = D for d = 1 can be achieved also for higher orders
by redefining the differentiation process for d > 1. Let

T(d) _ Ddf

i.e. the dth derivative of f is approximated by repeated application of the first
order differentiation matrix. Define

FD] @ (K

{f L / <2J>‘

E(d)(f, J)= max

k=0,1,...,27 -1

Then
B9 <c27’F ReRr

with R = D. This is confirmed in Table 7.3.
Let B(D") denote the bandwidth of D*. We know from (7.13) that B(D) =
2D — 3, and the general formula turns out to be:

B(D?) = min(dB(D) —d +1, 27)
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D\d|1 2 3 4 5 6 7 8 9 10 11 12
414 4 4 4 4 4 4 4 4 4 4 4
6|6 6 6 6 6 6 6 6 6 6 6 6
/8 8 8 8 8 8 & & & 8 8 8

10(10 10 10 10 10 10 10 10 10 10 10 10
12112 12 12 12 12 12 12 12 12 12 12 12

Table 7.3: Convergence rates (rounded) for D shown for different values of D and
orders of differentiation d. Again, f(z) = sin(47z),and J = 3,4,...,8.

D\d|1 2 3 4 5 6 7 8 9 10 11 12
415 9 13 17 21 25 29 33 37 41 45 49
619 17 25 33 41 49 57 65 73 81 89 97

8113 25 37 49 61 73 85 97 109 121 133 145
10117 33 49 65 81 97 113 129 145 161 177 193
12121 41 61 81 101 121 141 161 181 201 221 241

Table 7.4: Bandwidths of D? shown for the values of d and D in Figure 7.3.

Hence the improved convergence for d > 1 comes at the cost of increased band-
width. Table 7.4 gives the bandwidths corresponding to the convergence rates
given in Table 7.3 assuming that ./ is sufficiently large.

The Matlab function diftest (1) computes the convergence rates for D(?
and D,

7.4.1 Differentiation matrix for functionswith period L
If the function to be differentiated is periodic with period Z,
f@)=[fz+ L), zeR

then we can map one period to the unit interval and apply the various transform
matrices there as described in Section 3.2.4. Thus, let y = «/ L and define

g(y) = f(Ly) = f(z)

2N
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Then ¢ is 1-periodic and we define the vector g = [go, g1, .- ,g27_1] DY
gr = (P g)(k/27), k=0,1,....27 -1
Let f = g. Then f approximates f(x) at = = k L/27. From (7.15) we have
g¥ = Dlig

Hence, by the chain rule

1
FO) = 229 ()
we have
o= Low — Lpag - Lpag (7.18)
- Ldg Tl 9= Ld )

The Matlab function difmatrix(d, N, L, D) computes the differentiation
matrix DY/ L for wavelet genus D and size N and period L.

7.5 Differentiation matrix with respect to wavelets

We will restrict our attention to the periodic case. Let f be a function in V.
Proceeding as in the previous section, we differentiate both sides of (2.53) d times
and obtain

2701 J—12-1
FO@) = D" enidi(@)+ 30> ddhl(a) (7.19)
(=0 7=Jo (=0

Projecting f(*) onto V; yields

2701 J-12/-1
(Pr f D)) =3 P dpala) + 30D d ()
(=0 7=Jo (=0
where
cf]d0)71 - / f(d)(l’)qgjml(l') dl’, [ = 07 17 s 72J0 —1

£ = [Tk, =ty
B [
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Recall that given the scaling function coefficients of f(*) on the finest level, the
FWT (3.33) can be used to obtain the wavelet coefficients above. Hence

dY = weld

where ¢ is defined as in Section 7.3 and d'* contains the coefficients in (7.20).
Using (7.13) and (3.35) we then obtain

dY =wDWe = wDWwWTd

or

d (7.21)

where we have defined

P — wpw? (7.22)

D( ) is the differentiation matrix with respect to the wavelet coefficients. We

observe that D(d) is obtained as a 2I5)(I§)WT of the differentiation matrix D%,
In contrast to D'?, the matrix D' is not circulant. Instead, it has a charac-
teristic finger band pattern as illustrated in Figure (7.1). As will be described in

Chapter 8, one can take advantage of this structure to compute D(d) efficiently.
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64t

)

. .
eccececcce
ececee

g
e

A . *
8 16 3 64

nz = 1360

Figure 7.1: Sparsity pattern of D'

whenD =4, L =1,J=6,A\=3,d=1. The
pattern is identical for d > 1.



Chapter 8

2D Fast Wavelet Transform of a
circulant matrix

In this chapter we will describe an algorithm for computing the 2D fast wavelet
transform (2D FWT) of a circulant N x N matrix A. The 2D FWT is defined in
(3.38) and circulant matrices are discussed in Appendix C.

Recall that the 2D FWT is a mapping A — H given as

H=wAW"

where W is defined as in (3.34). We will show that this can be done in O( ') steps
and that H can be represented using O(/N) elements in a suitable data structure.
Using this structure we describe an efficient algorithm for computing the matrix-
vector product

Hx

where @ is an arbitrary vector of length N. This algorithm also has complex-
ity O(N) and will be used in Chapter 9 in a wavelet method for solving PDEs
developed in 9.3.1.

This chapter is based on [Nie97] and the approach follows ideas proposed by
Philippe Charton [Cha96]. However, many of the details, the data structure and
the complexity analysis are, to our knowledge, presented here for the first time.

8.1 Thewavdet transform revisited

Let IV and A be integers of the form given in Definition 3.1 and let c' be a given
vector with elements [c{, ci, ... ,cy_,] and let d' be defined similarly.
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Recall that the 1D FWT is defined (and computed) by the recurrence formulas
from Definition 3.1:

D-1
+1 :
Cn - akc(k—I—Qm)si
k=0
D-1
i1 ;
dm - bkc(k—l—?m)g@.

ol

=0

fore =0,1,..., A =1, m = 0,1,...,S:4 — 1,and S; = N/2°. Figure 8.1
illustrates how a vector is transformed.

CS
C2
d3
Cl
d’ d’
CO _— _— _—
d' d' d'

Figure 8.1: The steps of a 1D wavelet transform for A = 3 and .J = 4.

The 2D FWT defined in (3.38) has also a recursive formulation. The 2D recur-
rence formulas are straightforward generalizations of the 1D formulas, and they
decompose a matrix analogously to the way the 1D recurrence formulas decom-
pose a vector.

The recursion is initialized by assigning a matrix (assumed to be square for
simplicity) A € R™" to the initial block* which we denote CC®°. This block
is then successively split into smaller blocks denoted CC*, DC*?, CD", and
DD% fori,j = 1,2,..., . The block dimensions are determined by the super-
scripts 7, 5: A block with indices 7, j has S; = N/2¢ rowsand S; = N/2/ columns,

1We point out that, throughout this chapter, we use two-character symbols for certain matrices
and block-matrices.
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The steps of the 2D wavelet transform for A = 3 are shown in Figure 8.2 with H
being the aggregation of all blocks after the final step shown in the upper right
corner in the figure. (Comparison with the 1D wavelet transform shown in Fig-
ure 8.1 can be helpful for understanding this scheme). Note that each step of the
transform produces blocks that have attained their final values, namely those of
the type DD*?, and subsequent steps work on blocks of the type CC“/, CD"™
and DC*’. The formulas for these three types of blocks are given below.

A H
CC33 CD33 CD32 CD31
DC33 DD33 DD32 DD31
pc|pp| DD DD*
CCoO
pctloo®?| DD DD"

cc* | CD* CD*
cc CD"

DcC* | DD* DD*
DcC" DD" DC* | DD"” DD"

Figure 8.2: The steps of a 2D wavelet transform for A = 3 and J = 4. The resulting
matrix H has the characteristic “arrow-shaped” block structure.
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Cci-l—l,i-l—l (:Di-l—l,i-l—l

C 7,0 -

Dci-l—l,i-l—l _DDH—LH—I

Figure 8.3: The transform of a square block on the diagonal yields four new square
blocks. This operation corresponds to the decompositions given in ( 8.1) to ( 8.4).

Blocks on thediagonal

Consider the square blocks CC*' in Figure 8.2. Each step of the 2D wavelet
transform splits such a block into four new blocks denoted CC**'+1 cp+ i+,
DC! and DD+, Figure 8.3 illustrates the decomposition of this type.
Let CC% = [CC*],,, . and similarly for CDf;j}l, DCt and DD The recur-

rence formulas for this decomposition are then given as follows:

D—-1D-1

COF = Y @kt CC Gy hams (8.1)
k=0 [=0
D—-1D-1

(DL = 3 Y i OO o, (8.2)
k=0 [=0
D—-1D-1

DC;;}{H—I = Z bra; C Z,z_|_2m (42n)s, (8.3)
k=0 [=0
D—-1D-1

DD;:’;’Z-I—I = b bl C le-|—2m <l+2n>si (84)
k=0 [=0

fort =0,1,... ,A—landm,n=0,1,...,54; — 1.
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DC"

DCH!

DD

Figure8.4: Transform of a block below the diagonal yields two new rectangular blocks.

This operation corresponds to the row transforms given in ( 8.5) and ( 8.6).

Blocks below the diagonal

Blocks of the type DC*’ (j > 1) are split in one direction only as indicated in
Figure 8.4. The recurrence formulas are the 1D formulas applied to each row of

the block DC*7:

DCT =
Doy =

fory=4041,... , A—1,m=0,1,...

, 9 —1L,andn =0,1,...

(8.5)

(8.6)

7Sj+1 — L.
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CD"’

CD'*"

DDt

Figure 8.5: Transform of a block above the diagonal yields two new rectangular blocks.
This operation corresponds to the column transforms given in ( 8.7) and ( 8.8).

Blocks abovethe diagonal

For blocks CD"/ with i > j we have a splitting as shown in Figure 8.5. The
recurrence formulas are the 1D formulas applied to each column of CD":

i+1,7
@/ D

i+1,7
DD

foror=y4,7+1,... , A—=1,m=0,1,...

D-1 N

ap CDZ(g-I-?m)si n (87)
k=0
D-1 '

b CD (8.8)
k=0

S — L,andn =0,1,...,5; — 1.
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8.2 2D wavelet transform of a circulant matrix

The 2D FWT of circulant matrices give rise to structured matrix blocks which we
will call shift-circulant matrices. We begin by giving the definition.
Let A be an M x M circulant matrix as defined in Definition C.1 and let

{a@m }tm=01... m—1 be the first column of A. Then
M —1

[Aln = @)y, myn=0,1,...

A shift-circulant matrix is a generalization of a circulant matrix which we define
as follows

Definition 8.1 (Shift-circulant matrix)

1. Let Abean M x N matrix where M > N with M divisible by N, and
let {a,, } =01, . m—1 bethefirst column of A. Then A is column-shift-
circulant if

Al = Qn—on)y, m=0,1,... M—1, n=0,1,... ,N—1
) < >M

whereo = M/N.

2. Let A bean M x N matrix where N > M with N divisible by M, and let
{an}n=0,1,.. n—1 bethefirst row of A. Then A isrow-shift-circulant if

[Alnn = Qneomyy, m=0,1,... M -1, n=01,... ,N—1
whereo = N/M.

The number o is a positive integer that denotes the amount by which columns or
rows are shifted.

A column-shift-circulant 4 x 2 matrix (o = 2) has the form

Qg
a1
a2
as

a2
as
Qg
a1

A row-shift-circulant 2 x 4 matrix (o = 2) has the form

o a1
Gty a3

Gty a3
o a1

Note that a circulant matrix is both column-shift-circulant and row-shift-circulant

with o = 1.



128 2D Fast Wavelet Transform of a circulant matrix

Let {a, }n=0.1... n—1 be the first column of a circulant matrix A. Using this
column vector as a point of departure we will now show how to compute a rep-
resentation of H using only one vector per block. Note that according to the
recurrence equations (8.1) to (8.8), the operations can be divided into 2D trans-
forms of blocks on the diagonal and 1D row or column transforms of off-diagonal
blocks. We will treat these cases separately.

8.2.1 Blockson thediagonal

Lemma8.1 Let CC'* bea S; x S; circulant matrix. Then CC™++!, CD™1+1,
DGt and DDt defined by (8.1) to (8.4), respectively, are circulant
matrices.

Proof: We will prove the lemma for CD**'**! only since the other cases are
completely analogous.
By assumption CC** is circulant, i.e.

i i
acy, = Clmnys,

where cc’ is the first column of CC**. Equation (8.2) then becomes

D-1D-1

i+1041 )
(Dn™ = Z Z aby cc; k+2m) s, —(1+2n)s,) s, (8.9)

k=0 [=0

Considering now the index of the typical term of (8.9) and using Lemma B.1
and B.2 derived in Appendix B we find that

((k+2m)s, — (I +2n)s,)s, = ((2(m —n))s, +k—1l)s,
= 2(m —n)s, 2+ k—1)s
= <2< n>5i+1 + k= l>51

m—
m—
This expression does not depend on the individual values of m and » but only on
their difference. Therefore, CD;!}**' depends only on (m — n)s,,, Which proves
that CD'*"** is circulant. Hence CD L+ = «d""*!  for some column vec-

<m_n>5i+1

tor ed' T, 0

Having established that CD"*"**" is circulant, we can now give a formula for
the vector ed't™**!. Putting » = 0 in equation (8.9) and using Lemma B.1 we



8.2 2D wavelet transform of a circulant matrix 129

obtain the first column of CD*1#+!:

D—-1D-1
i+1,0+1 i+104+1 7,7
o = CDIT = Y Y b ey ),
k=0 [=0
D—-1D-1
- abi Cc(2m+k s, (8.10)
k=0 [=0
where m = 0,1,...,5.41 — 1. A computationally more efficient expression for

«dT+1 can be derived by rearranging the terms in (8.10) so that we sum over
the differences in the indices. More precisely, we split the double sum into terms
where £ — [ > 0 and terms where & — [ < 0 and rearrange these separately. Thus
letp =k —[. Thetermsin (8.10) with £ — [ > 0 are

k k
Z akbl ccl(gm-l-k—l)s_ Z ClH_pbl CC<2m+p> (811)
=

\LJO 1 2 3 4 5
0 [0

110

2 12 1 0
31321 0
4143210
51543210

D-1 k N D—1 [D=1—p N
D) OLIETENIED 9l [ ST P R T

k=0 (=0 p=0 {=0

Similarly, we take the terms from (8.10) with k — [ < 0 andsetp ={ — k£ > 0:

D-1 D-1 D—1[D-1-p
7,0 - 7,0
g akbk+p Cc(Qm_msl - § akbk-l—p cc<2m—p>sl, (813)
k=0 [=k+1 p=1 k=0

Qo = Z apbyyp, p=0,1,...,D—1

k=0
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Combining (8.12) and (8.13) we can rewrite (8.10) as

Cdi—l—l,i—l—l —
qabcczm + Z {Qab zm —p)s ‘|‘ Gy, CC (2m+p> (8.14)

form=0,1,..., 5, —1. o
The vectors ec' T+ de' T+ and dd' Tt are computed similarly but with
the filters ¢%,, .., q;,, respectively. The formulas are

cci—l—l,i—l—l —

QaaCCQm + Z |:Qaa 2m -p)s —I_ Qaa (2m—|—p> :| (815)
Cki-l—l,i-l—l —

QbaCCQm —I_ Z |:q1)a 2m p -I' qab Z<22m+p>si:| (816)
Cui+1,i+1 —

beCCZm + Z {qbb 2m —p)s ‘|‘ qbb <2m+p> } (817)

It follows from (2.22) that

Qoy = Qo =
¢, =q, = 0, peven
¢.=q, = 0, peven, p>0

so the computational work in computing (8.14)—(8.17) is reduced accordingly.

8.2.2 Blocksbelow the diagonal

We now turn to the task of computing the lower off-diagonal blocks DC**! and
DD%*! j > idefined by (8.5) and (8.6), respectively. The operations differ from
those of the diagonal cases by being applied in one dimension only. Therefore
blocks tend to become more rectangular which means that they are not necessarily
circulant in the ordinary sense. However, as we shall see, the typical block is still
represented by a single vector, one which is shifted to match the rectangular shape.
The block is then a column-shift-circulant matrix in the sense of Definition 8.1.
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Lemma8.2 Let DC'/, j > i, beas; x S; column-shift-circulant matrix. Then
DC"*! and DD"'*! defined by (8.5) and (8.6), respectively, are column-shift-
circulant matrices.

Proof: We will give the proof for the case of DC* only. By assumption DC*
is column-shift-circulant, i.e.

DO = dl
?

(m—on)sg,

where dc' is the first column of DC*7 and ¢ = S,;/5; = 2/~%. Equation (8.5)
then becomes

D-1

DO = Za,pc (i42m)s

=
D—
— Z dcﬁi 2 (8.18)

We consider the index of the typical term of (8.18) and use Lemmas B.2 and B.1
in Appendix B to obtain the following:

(m—o(l+2n)s)s, = (m—(o(l+2n))ss,)s,
(m — (ol 4+ 20mn)s,)s,

= (m—ol—20n)s,

Therefore
D-1 N
DC;;(jgl = § aj akz]

m—ol— 2crn>s
(=0

(8.19)

Equation (8.19) establishes the existence of a vector, dc*' say, such that DC"+!
has the desired column-shift-circulant form

.. 1
DC%]-I—I Ckl J+

(m— 2071)51

form=0,1,...,5 —landn=0,1,...,5;4 — 1. O

We can now look for an explicit formula for the vector de' ™. Taking the first
column (n = 0) of DC'/H in (8.19) gives the result:

m— crl)s ’

D-1
At = DC;’;;;I — Z dc<f m=0,1,...,9 —1 (8.20)
(=0
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An analysis similar to the above establishes that DD is column-shift-
circulant with respect to the vector dd'”*' given by

OH%-H = DDZ;L],EJH Z bl OHJ = 07 17 s 7Si —1 (821)

mcrls7

Since the initial block DC"" is circulant according to Lemma 8.1, it is also
column-shift-circulant with o = S;/S; = 1 and we can use the column vector
dc"' as computed from (8.16) directly in (8.20) and (8.21) for the case : = ;.

8.2.3 Blocksabovethediagonal

The upper off-diagonal blocks CD*' and DD**' ;| > j, are computed accord-
ing to (8.7) and (8.8). The situation is completely analogous to (8.20) and (8.21)
but the blocks are now row-shift-circulant matrices represented by row vectors
cd ™7 and dd' T | respectively, as stated by Lemma 8.3.

Lemma8.3 Let CD™, i > j, bea S; x S; row-shift-circulant matrix. Then
CD't'7 and DD defined by (8.7) and (8.8), respectively, are row-shift-circulant
matrices.

Proof: We will give the proof for the case of CD*’ only. The proof is completely
similar to that of Lemma 8.2, but the assumption is now that CD" is row-shift-
circulant, i.e.
CDY = cdy
m,n (n crm)sj
where cd' is the first row of CD*’ and o = 5;/S; = 2=, Equation (8.7) then
becomes

D-1

D = N w D,

ol
o

)

a ed’’

(n—c{k+2m)s >S]

Il
EEM

= a ed’’

(n—ck— 2crm>sj

ol

=0
Therefore CD'*' has the desired row-shift-circulant form
i+1,7 i+1,7
CDTH, Cd(n 2crm>sj

form=0,1,... .54 —landn=0,1,...,5; — 1. O
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The formulas for the row vectors ed'*' and dd‘*' follow by taking the first
rows (m = 0) of CD7 and DD,/ respectively:

m,n !

(n— crk)s ’

D-1
it = O =N 4y edy? n=0,1,...,5-1 (8.22)
k=0

A = pDghl = }:bmﬁ]

n—ok)g

=015 -1 (8.23)

However, one minor issue remains to be dealt with before a viable algorithm
can be established: While the initial blocks CD"* defined according to (8.2) are
circulant and therefore also row-shift-circulant (with o = 1), they are represented
by column vectors when computed according to equation (8.14). However, (8.22)
and (8.23) work with a row vector ed"’. Therefore we must modify each ed" so
that it represents the first row of CD"" instead of the first column.

From Definition C.1 of a circulant matrix we have that
(DY =)

(m— n)s ’

n=0,1,...,5—1

where cd" is the first column of CD"'. Putting m = 0 then yields the first row:

(DG = e’y o n=0.1,....85i—1

To obtain a row representation for CD** we can therefore take the result from
equation (8.14) and convert it as follows

ad”t < od
n ( n>5i

Alternatively, we can modify equation (8.14) to produce the row vector directly:
Cdi-l—l,i-l—l —
D-1
q!lbcc 2n) —I_ {qab —2n—p)s —I_ qba ( 2n-|—p> (824)
p=1
forn=0,1,...,5:; — 1.
The equations for blocks above the diagonal ((8.22) and (8.23)) and equations

for blocks below the diagonal ((8.20) and (8.21)) can now be computed with the
same algorithm.
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8.24 Algorithm

We will now state an algorithm for the 2D wavelet transform of a circulant matrix
A. Let CIRPWT1 be a function that implements 2D decompositions of blocks on

2D Fast Wavelet Transform of a circulant matrix

the diagonal according to (8.15), (8.16), (8.17), and (8.24):

Moreover, let CIRPWT2 be a function that implements 1D decompositions of the
form described in equations (8.20) and (8.21). This function can also be used for

[cci+1,i+17cdi-|—1,i-|—17dci+1,i-|—17cui-|—1,i-|—1] — CIRPWTl(CCZJ)

computations of (8.22) and (8.23) as mentioned above.

With these functions the example shown in Figure 8.2 can be computed as follows:
Let cc”° be the column vector representing the initial circulant matrix CC%°.

Then

(et ddt] = CIRPWT2(dc™), j > i
led™7 ddit] = CIRPWT2(cd™), i > j

[ccl’l,cdl’l,dcl’l,dil’l]

[ccQ’Q,CdQ’Q,dCQ’Q,cHQ’Q]

7]
[dc273, CHQ,S]
[Cd372, CHB,Q]
[dcl 37 Ckll,S]
[Cd&l, CHB,I]

CIRPWT1(cc”?)

CIRPWTZ(cc"")
CIRPWT2(dc"")
CIRPWT2(cd"")
CIRPWT1(cc*?)
CIRPWT2(dc™?)
CIRPWT2(ed™?)
CIRPWT2(dc"?)
CIRPWT2(ed™")
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In general, the algorithm is

For:=0,1,... . A—1
[cci+1,¢+17cdi+1,z'+17dcz’+1,z’+17d1i+1,z'+1] _ CIRPWTI(CCZ',Z')
Fory=4,0—1,...,1
[dc”'t, dd”'t'] = CIRPWT2(dc’)
[ed*"7 dd't'7] = CIRPWT2(cd™)
end
end

This algorithm describes the process of computing the 2D wavelet transform
as described in the previous section. However, it does not distinguish among vec-
tors that should be kept in the final result and vectors that are merely intermediate
stages of the transform. The vectors dc’* and ed', for example, are part of the
final result for « = A only, so all other vectors can be discarded at some point.

In practice we prefer an algorithm that makes explicit use of a fixed storage
area and that does not store unnecessary information. Therefore, we will introduce
a modified notation that is suitable for such an algorithm and also convenient for
the matrix-vector multiplication which is described in Section 8.4.
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8.2.5 A datastructurefor the 2D wavelet transform

As described in Section 8.1 the result H of a 2D wavelet transform is a block
matrix with a characteristic block structure (see Figure 8.2). We now introduce a
new notation for these blocks as follows

ccH fori,j =0
” CDM\ it fori=0,1<j<A\
,J __ ) 9 = =
H™ = per-ia forl <i<\,j=0 (8.25)

DDA AL for] <5 < A

This is illustrated in Figure 8.6 for the case A = 3.

HOO HOI H02 H03
HIO Hll H12 H13
H20 H21 H22 H23
H30 H31 H32 H33

Figure 8.6: The new notation for the block structure of H (for A = 3) as defined by
(8.25). Compare with H in Figure 8.2.

We can now use indices ¢,; = 0,1,...,A to label the blocks of H in a
straightforward manner. It follows from this definition that each block H"’ is
an N* by N7 matrix with

N’“—{ N/22 = S\ fork =0

N/Q/\_k+1 = S/\—k-l—l for 1 < k < A (826)
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Note that N° = N'. Because all the bIocks H” are either circulant or shift-
circulant, we can represent them by vectors k"’ with

. H . fori>j
hi? = o - 27
" { Hy,, fori<j 8.27)

where m = 0,1,... ,max(N', N7) — 1. It follows from (8.26) that the length of
h*’ is

(8.28)

Nt fori>j
N7 fori<j

and the shift parameter o is now given according to Definition 8.1 as

[ NY/NI fori>j
~ | N//NY fori<

Equation (8.27) suggests a data structure consisting of the vector variables A’
which refer to the actual arrays representing the final stage of the wavelet trans-
form (e.g. dd’~T*=7t1). This structure can also be used to store the intermediate
vectors from the recursion if we allow the variables k"’ to assume different val-
ues (and different lengths) during the computation — for example by using pointer
variables. This is demonstrated in Figure 8.7.
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00 01

o5 | R ed? | hled!
hlo 2 12 32 13 31
dC?S CH?S heCH heCH

[~}
13
[V}
12

C11223 Ckl23 h2:2(H22 h2ZSCH21
h%. cco i) BZdd” hEdd"

=
=

Zed?|  hied

i

=
T

[N
N

hZ et h% cd"! ool he i h% dd*

Ride'| R dd" holnzdl®|  hZad

Figure 8.7: The use of (pointer) variables k' to implement the 2D wavelet transform of
a circulant matrix. Intermediate results are referenced by variables A before they attain
their final values. For example, consider the shaded parts: h?+ stores first ed''! which is
then split further into ed ! and dd**. Then dd*! is stored in h*> overwriting ed'!.
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From Figure 8.7 we arrive at the final formulation of the algorithm in Section 8.2.4.

Algorithm 8.1: Circulant 2D wavelet transform (CIRFWT)
R ec0
Forj=XXx—-1,....1
[R/ =17t R R RI] - CIRPWTL(h')
Fori=j53+1,74+2,... A
[R*"™1 h"] < CIRPWT2(h")
[h'~"' '] < CIRPWT2(h’")
end
end
where CIRPWT1 is derived from (8 15), (8.16), (8.17), and (8.24):

RimLi=l g0 pdi Z {qaa h]zjm o T ¢, h<2m-|—p> } (8.29)

)

-1
h‘Z)’L_Lj — QSbh‘Zi2m>N] —I_ |:qab h‘z ]2m p> —I_ Qba h‘z ]2m-|—p :| (8 30)

1

=
Il

I R N Z { P h]zfm e -|-qabh<2m+p> } (8.31)

i nghé’] + Z {%b hjzjm —p) ‘|‘qbb h?ZJTn-I—p) } (8.32)

where m = 0,1,... ,N7~' — 1. For: > j CIRPWT?2 is derived from (8.20) and
(8.21):

D—-1
W e Sk (8.33)
(=0
N D—-1
W e S b (8.34)

where m = 0,1,... ,N’~' — 1. Fori < j CIRPWT2 is

D—-1

B e Y ahi (8.35)
(=0
D—-1

(8.36)
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where m = 0,1,...,N=' — 1. Note that we use exactly the same code for
CIRPWT?2 by exchanging the indices ¢ and j in Algorithm 8.1. Our example now
takes the form

[h*%, B> h*? h*%] « CIRPWTL(h*?)

[R"Y RY2 R* R*?] ¢« CIRPWTL1(h*?)
[h*' h*?] « CIRPWT2(h*?)
[h'? h*°] < CIRPWT2(h*?)

(R0 R R R < CIRPWTL(h"')
[R*° h*'] < CIRPWT2(h*")
[h*? h'?] < CIRPWT2(h"?)
[R*° R*'] < CIRPWT2(h™')
[R°? h'’] < CIRPWT2(h"?)

8.2.6 Computational work

We will now derive an estimate of the complexity of Algorithm 8.1, but first we
need to establish the following lemma:

Lemma8.4
A—1
Nk = N
2
k=0
Proof: Using (8.26), we write
A—1 . N A—1 N
Z NT = 9N + OA—kt1
k=0 k=1
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Equations (8.29)—(8.32) each require (4(D — 1) +2) N/~ flops so the complexity
of CIRPWT1 is

Ferewr1(N) = (16(D — 1) + 8)N

with N = N7—1,
Equations (8.33)—(8.36) each require 2D N flops so the complexity of CIRPWT2
IS

Foirewr2(N) =4DN

with N = N7~Lor N = Ni—1L,
The total complexity of Algorithm 8.1 is thus

Ferpwt(N) = Z (FC'RPWTl(Nj_l) + Z Forewr2( N/71) + FCIRPWTZ(Ni_1)>

J=1

Hence

A A
Forewr(N) = > ((16(D — 1)+ 8N+ Y ADNT 4 4DNZ"1>

1=7+1

= 4D<(4+A—1)g+g>

where we have used Lemma 8.4 twice. Consequently, we obtain the following
bound for the complexity of Algorithm 8.1:

FCIRFWT(N) < 2DN(4 + )\) (837)
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8.2.7 Storage

In this section we will investigate the storage requirement for H as a function of
the transform depth A when the data structure proposed in Section 8.2.5 is used.

Lemma 8.5 The number of elements needed to represent the result of A steps of
the wavelet transform of a circulant V x N matrix as computed by Algorithm 8.1
is

A
k
SN(A):N<1+ZQA—_k>,A:o,1,...,AW (8.38)
k=1

Proof: We will prove (8.38) by induction:

Induction start: For A = 0 there is only one block, namely H®° which is rep-
resented by the vector h°° of length N. Thus, Sy(0) = N and (8.38) therefore
holds for A = 0.

Induction step: The induction hypothesis is

A—1
k
Sv(A—1)=N (1 +) W) (8.39)
k=1
Depth 2 Depth 3
00 o1 02 hOOhOI h02 h03
h’ h’ h’ thhll h12 h13
th h20h21
h20 h30h31

Figure 8.8: The differences between a wavelet transform of depth A — 1 and A (shown
for A = 3).

The storage differences between a wavelet transform of depth A — 1 and A lie in
the uppermost and leftmost blocks of the structure as indicated in Figure 8.8. The
rest are the same.
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Depth 2 Depth 3
Vector Length \ector Length
h% N/4 R N/8

hOl7 th7 hll N/8
’_LOI7 th N/4 h’027 h’127 h’207 h21 N/4
h027 h20 N/2 h037 h13, h307 h31 N/2

Table 8.1: The number of elements in the vectors shown in Figure 8.8 (A = 3).

Recall that each block is represented by a vector. We will subtract the number
of elements in the affected vectors at depth A — 1 from (8.39) and then add the
elements from vectors resulting from a transform to depth A. The vector lengths
for the example A = 3 are shown in Table 8.1
According to (8.26) — (8.28) the vector " at depth X — 1 has the length

N = N/2M 1 (8.40)

This is replaced by 4 new vectors (R, k', h'° h'') at depth X each having the
length V/2*. We write this number as

1 1 1
ANz =N <2H + 2H> (8.41)

The blocks above the diagonal that are replaced are those in the upper row.
They are represented by a vector of length N/2, a vector of length N/4 down to
a vector of length N/2*~1. The number of elements in vectors corresponding to
column blocks is the same. Hence the number of elements we must subtract from
(8.39) is

>

A-1 -1 A-1
N N N
2 Z 9k 2 Ak Z A—1—k (8.42)
k=1 1 k=1

The splitting of these off-diagonal blocks will create twice as many blocks so the
number of elements introduced will be

o
Il

A—1 A
Z N Z N
k=1 k=2

Now we subtract from (8.39) the total number of elements in the vectors that
are replaced ((8.40) and (8.42)) and add the number of elements introduced ((8.41)
and (8.43)), i.e.
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-1 A
N N 1 1 N
Snv(A) = Sv(A-1) - oA-1 Z OA—1—k +N (2/\—1 + 2/\—1> +2 Z A~k
k=1 k=2
A—1 A—1 A
k 1 1 1 1 1
= N1+ Z A—1-k  9A-1 Z oA—1-k | 9A-1 + oA—1 + QZ A—k)
k=1 k=1 k=2
-1 A
k—1 1 1
SR (50 3= ST o
k=1 k=2
A A
k—2 1 1
SR(E0 3 =SS ors
k=2 k=2
ok 1
= N 1"'2 oA~k + 2/\—1>
k=2
ok
- (1)
k=1
which is the desired formula. O

We consider now the sum in (8.38) and define

A
k
f(A):ZZA—_k, A=0,1,2,...

This is an arithmetic-geometric series which has the closed form [Spi93, p. 107]

ML= (1/2)") L= M1/ + (A = 1)(1/2)"
1—1/2 2(1 — 1/2)2
= 201 = (1/2)") = 2(1 = A(1/2)"" + (A = 1)(1/2)")
= 20 =2 —4XN(1/2)" F 221/ +2(1/2)°
= 22 —2+2(1/2)}

J)
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16

121

* * )
—_— 2r-2

>at

Figure 8.9: The function f () behaves asymptotically like 2\ — 2.

We observe that f(\) behaves asymptotically as 2\ — 2. Figure 8.9 shows a plot
of f(\) together with its asymptote.
The storage requirement can now be expressed as

Sn(A) = N1+ f(}))
= NCEA=1+2(1/2)Y), A=0,1,..., A\paw

and we have the bound

Sn(A) < 2AN, A>1 (8.44)
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8.3 2D wavelet transfor m of acirculant, banded ma-
trix

An important special case of a circulant matrix is when A is a banded circulant
matrix such as the differentiation matrix D given in (7.14). In this case each
column of A consists of a piece which is zero and a piece which is regarded as
non-zero. In certain columns the non-zero part is wrapped around. Consequently,
it is sufficient to store only the non-zero part of the first column along with an
index ¢ determining how it must be aligned in the first column relative to the full-
length vector. The length of the non-zero part is the bandwidth of A, and we will
denote it by Z in this chapter.

It turns out that each block of the 2D wavelet transform retains a banded struc-
ture, so the vector representing it need only include the non-zero part. Therefore
the storage requirements can be considerably less than that given by (8.38). An
example of this structure is given in Figure 8.10.

16

eooe
XYY Y}
eocooe
232 c0 00
X3
.

eeeccccccccsie
e0000000000000
e0000000000000

LTI
eosco0e

64t

nz = 1360

Figure 8.10: The structure of a wavelet transform of a 64 x 64 circulant banded matrix.
Here L = 3, D = 4 and A = 3. This is the same block structure as in Figure 8.6 and in
Figure 7.1.
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For each block, we know the non-zero values of the first column (or row inthe
case of blocks above the diagonal) represented by the vector v/ = [vy?, vy, ... 07’ )7,
the amount by which it is shifted (o) and how it is aligned with respect to the first
element of the block (4). The block H*', say, has the general structure

3,1
Uy
3,1
Us
31 3,1
4 Yo
3,1
Uy
3,1
Uy
3,1
Us
31 3,1
Uy Yy
3,1
3,1 vy
1—1—7 - 3,1 (845)
Uy
3,1
Us
31 3,1
Uy Yo
3,1
Uy
3,1
2
bl
Us
3,1 3,1
Yo Uy
o
1

In this example we have § = 3, N = 16, N! = 4, 0 = 4 (from Definition 8.1),
bandwidth L' = 5, and

m 0 otherwise

with

3,1 _ 131
Hm7n - h(m—4n>16
If the matrix is not banded we have the special case v/ = h' and § = 1 so (8.38)
applies exactly.

8.3.1 Calculation of bandwidths

Given the bandwidth 7. of the original matrix A it is possible to derive a formula
for the bandwidths of each block of the wavelet transform.

Let L/ be the bandwidth of block H" shown in Figure 8.6. We can then
use the recurrence formulas for the 2D wavelet transform to obtain the desired
formulas.
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Blocks on thediagonal

We start with the blocks on the diagonal given by equation (8.1) to (8.4) and
consider again only the ed block as the typical case. Let us recall (8.29):

D-1
—1,5—1 0 174 J:J J:3
hin ! < Qaath + Z |:qgg, h<2m_p>NJ + QSa h<2m+p>Nﬂ
p=1
form = 0,1,...,N/~' — 1. Assume that k' is banded, i.e. zero outside a

band of length L’ as shown in Figure 8.11. Then we can use the recurrence
formula to compute the bandwidth of R/~"“~'. Without loss of generality we
may assume that the nonzero part is wholly contained in the vector; i.e. there is
no wrap-around.

Figure 8.11: The band of A’ has length L7+ and starts at index 2.

Since h’7 is zero outside the interval starting at m, of length L7/, we see
that 42~ %=! will be zero only if 2m — p > my + L7 or 2m + p < m, for all
p € [0, D — 1]. This leads immediately to the inequalities

2m+ (D —1) < my
2m — (D —-1) > my + L7V
or
P4 D —1
mo> m1‘|-L2—|- or
ml—D—I—l
m —_—
2

The length of this interval is then the bandwidth of A7/~
my+ LY+ D -1 my—D+1
2 2

— %+D—1 (8.46)
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However, since the bandwidth is an integer the fraction must be rounded either
up or down if L7 is odd. Which of these operations to choose depends on 12, as
illustrated in Figure 8.12.

2m — 3 2m +1
3 l 2m2_m2— ll 2m2+mz—|—3
h SRR
IEEEEEEEEEEEEENEEEEEEEEEEEn
A | 0 |
1
| 2
3
| 4 |
5
B: 0
| 1 |
2
| 3 |
| 4 I

Figure 8.12: The computation in equation (8.14) can be viewed as a sliding filter of
length 21D — 1 applied to the band of A/, The numbers indicate offset with respect to
2m = (my — D + 1)/2. The resulting bandwidth depends on how the initial bandwidth
is aligned with this sliding filter. In this example L77 = 5, D = 4so L7=1~1 is either 5
(case B) or 6 (case A) depending on how the convolutions happen to align with the non-
zero block. Thus case A corresponds to rounding up and case B corresponds to rounding
down in ( 8.46).

We have chosen always to round upwards because it yields an upper bound for
the bandwidth. Thus the formula becomes

5J

i = [LTW D1 (8.47)

We observe that equation (8.47) has two fixed points, namely

2D -2

J=Li=1 _ pid —
L =L _{ 2D —1
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and it turns out that there is convergence to one of these values depending on
whether the initial L7 is smaller than 2D — 2 or larger than 2 — 1. However,
the important fact is that these fixed points are more related to the wavelet genus
D than to the original bandwidth L.

Blocks below and above the diagonal

The bandwidths of the blocks below the diagonal are found from recurrence for-
mulas of the form

D-1

ij—1 _ 2 : ]
hm - alh(m—crl>Ni

(=0

Again, we disregard wrapping and, proceeding as in the case of h'~"~! above,
we find that A%/~! is zero only if m — ol > m; + L% or m — ol < m, for all
[ € [0, D — 1]. This leads to the inequalities

m < my

m—o(D—-1) > my + LY
Consequently, the interval length for which 24/=1 £ 0 is
LY = g 4+ LY + o(D—1)—my
= LY 4o(D—1)

Performing similar computations for blocks above the diagonal yields the re-
sult

Li’j_l _ Lj—l,i _ Li,j T O'(D _ 1) (848)

Since ¢ is the ratio between N' and N7, equation (8.48) shows that the bandwidth
grows exponentially as the difference between : and j increases. Figures 8.13
and 8.14 show examples of the bandwidths for different transform levels.
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6|6 14
6|6 14
919 8
L =3

14 |14 3
8

3 3
8
3 3 3

Figure 8.13: The bandwidths for transform depths A = 0, 1, 2, 3. The initial bandwidth
is3 and D = 4. These bandwidths are upper bounds since actual bandwidths may be one

less than the predicted values as can be seen in Figure 8.10.
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616 9 15 26

15 26
9191 6 9 14
15151 9 6 8
26|26 14 8 3

Figure 8.14: The bandwidths for transform depth A = 4.
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8.4 Matrix-vector multiplication in a wavelet basis

We now turn to the problem of computing the matrix-vector producty = Hx
where z,y € R" and H is given as in (8.25). This system has the form shown
in Figure 8.15.

H T Y
00 ot 02 103 20 yo
o i 12 H3 21 yl
H20 H21 H22 H23 1’2 y2
30 J7EL 32 33 3 y3

Figure 8.15: The structure of y = Hx for A = 3.
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The vector y may be computed block-wise as follows
A ..
y'=> HVz i=01,...) (8.49)
7=0

where ) is the depth of the wavelet transform. The symbols =/, y*, and H"~
denote the different blocks of the «, y, and H as indicated in Figure 8.6. The
computation in (8.49) is thus broken down into the tasks of computing the prod-
ucts which we will denote by

Yyl = H" gl i, j=0,1,...,A—1 (8.50)

In the following we distinguish between blocks on or below the diagonal (z: > 7)
and blocks above the diagonal (: < 7).

8.4.1 Blockson or below the diagonal

Let v, 4 > 3, be the vector of length L representing the nonzero part of the
first column of H*, i.e.

htd = ”@iw—nm for (m + 0 —1)n: € [0, L7 — 1]
" 0 otherwise
and
B pid
Hmvn - h(m—crn>Ni

where m = 0,1,... , N, o = N'/N’, and § is the offset relative to the upper left
element (see (8.45)). From equation (8.50) we see that the typical element of
can be computed column wise as

NJI—1
2% - E 6] d
yT;L - HT;L,nxn
n=0
NJI—1
_ Y] J
= E h<m_m>mxn
n=0
NJI—1

= Y U sty T (8.51)

n=0

For each n this computation is only valid for those m € [0, N* — 1] where
UZ’] _is defined, namely where

m—crn—l—S—l)N,

0<(m—on+d—1) <L —1 (8.52)
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Let £ and [ be defined such that £ < m < [ whenever (8.52) is satisfied. Then we
can find & from the requirement

(k—on+d—1)yi = 0&
Eo= (on—346+1)n:
and the last row as { = (k + L — 1)y:. Letting

Y = W vt u)Y]
then we can write the computation (8.51) compactly as
y}g]l = y}g]l + :ch1 Uéﬂ:l‘d-p n=0,1,... ,Nj —1 (8.53)

When & > [ the band is wrapped and (8.53) must be modified accordingly.

If the vector = is a wavelet spectrum then many of its elements are normally
close to zero as described in Chapter 4. Therefore we will design the algorithm to
disregard computations involving elements in =/ where

J
‘xn‘ <e

The algorithm is given below

Algorithm 8.2: y'/ = H'"al i > j
Forn=0to N7 — 1
if |27 | > ¢ then
k= {(on—38+ 1)y
if £ < 'llthen' 4
Vi = i+ aho
else N N (wrap)
ya:]{ = yg:]l —I_ ?%Uzljyj—l:L—l ]
y;c7:]Ni—1 = y;g7:]Ni—1 + xnUZJ’:]Lw—lA
end
end
end

8.4.2 Blocksabovethediagonal

Let v/, i < j, be the vector of length L* representing the nonzero part of the
first row of H', i.e.
pidd — { Vinss—ty,, TOr{n+d—1ns €0, Lid —1]
" 0

) 8.54
otherwise ( )
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where

Hi = hy? (8.55)

(n—om) y;

with o = N7 /N'. An example (shown for H'?) is

[ wava  vavsvgur vg U9 100 vovr ]
VUL U2V U4 V5 V6 U7 vgvgv100
UoUL V2 V3 vqUsUe VU7 UgUg V100

VUL V2VZ  U4UsVeV7  UgUgv100
VoUIV2V3  V4UsVe V7  UgUg U100
VUIV2VZ  U4UsVeV7  UgUgV100
v100 VoV V2V3  V4UsUgUT  UVg
L VgVt ’Ug’Ug’Uloo VUL VU2Vs vqvs d

Here o = 4,6 = 3, N' =8, N? = 32, L'® = 12 (padded with one zero). The
superscripts ¢, j has been dropped in this example.

In order to be able to disregard small elements in x as in the previous section,
we would like to convert the row representation to a column oriented format. As
indicated in the example above, the block H' can be characterized completely
by & column vectors each with length L'/ /o together with some book-keeping
information. We will assume that L*~ is a multiple of &, possibly obtained through
padding with zeros as suggested in the example above.

Now we choose these vectors from the columns

LV —§ LY —§5—1,...,[" —§—o+1
which are the o last columns where the top row is non-zero: the shaded area in the

example above. Let these column vectors be denoted Z’j ford=0,1,... ,0—1.
From (8.54) and (8.55) we get

i (]
Zm,d - Hm,Lw—é—d

(L4 —§—d—om)
]

NI

= U(Livﬂ—S—d—Um+5—1>Nj
i
= Vi), (8.56)
form =0,1,... ,L"/oc —1andd = 0,1,... ,0 — 1. In the example above we
have
Zé’g = (o R Z:Z;IJ = Vg R Z:Z,72] = Vs R ZZ;Z’Z = Vg

U3 U2 0 Vo
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Equation (8.50) can then be computed columnwise using le instead of H'. The
typical element of ' is

NI-1
] § 2%} J
ym - Hm nxn
n=0
NI-1
_ E 6
- Zs,dxn
n=0

Let % and [ be defined such that & < m < [ whenever 0 < s < L/ /o — 1 and
let » be fixed. Our task is now to determine d, together with £ and /, such that
7% = Hy7,. Therefore we put s = 0 and look for &, d such that

Zoly = Hy, (8.57)

In other words: For n given, we want to know which vector to use and at which
row it must be aligned.

Next we insert the definitions (8.55) and (8.56) in (8.57) and use (8.54) to
obtain the equation

Uzijiyﬂ_d_1>Nj = h@f—mm = Uz;f_ak+5_1>m
which is fulfilled whenever
(L' —d =1y = (n—0ck+86—1)y <
(L —d—n+ck—E8)y = 0
Let L = L —n — §. Then we can write the requirement as
(L—d+ck)y, =0 (8.58)

Since we need % in the interval [0, N* — 1] we rewrite (8.58) using Lemma B.2:
0 = (L—d+ k)

= ((L—d+ak)/o)nijs

= (k+(L—d)/o)n:

from which we get
k= ((d—L)/o)x:

For this to be well-defined o must be a divisorin (d — L), i.e. (d — L), = 0 so we
must choose

d = (L),
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Expanding the expression for L we obtain the desired expressions

d = (LY —n—14), (8.59)
ko= ((d= LY +n+8)/o)n (8.60)

Finally, [ is obtained as
[={k+L"]oc—1)y (8.61)

Let 7., be defined by (8.56). Using (8.59), (8.60) and (8.61) we can formulate
the algorithm as

Algorithm 8.3: v/ = H'Vg/ i < j
Forn=0to N7 — 1
if |2,| > ¢ then
d= (LY —n—4),
k= {(d— L” +n+0)/o)Ni
l={k+L"]oc—1)ni
ifk<’llthen“ N
i = Y+ a2
else (wrap)
yg:]l = yg:]l + x{lzzljd Jo—U:L4 Jo—1,d
yi’fm_l = yz:]Ni—l + x%Z(ZJZJLw/a—l—Ld
end
end
end

8.4.3 Algorithm
The full algorithm for computing (8.49) is

Algorithm 8.4: Matrix-vector multiplication (CIRMUL)

y=20
Forj =0to A
For:=0to A
If i > j then
y' = y' + y'¥ computed with Algorithm 8.2
else

y' = y' + y*/ computed with Algorithm 8.3
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8.4.4 Computational work

We are now ready to look at the computational work required for the matrix-
vector multiplication y = Ha. We take (8.49) as the point of departure and start
by considering the typical block

Hm'wj

The length of 2’ is N’ so for blocks on and below the diagonal of H (i > j) in
Algorithm 8.2 there are L N7 multiplications and the same number of additions.
Hence the work is

2L5 NJ

floating point operations. For blocks above the diagonal (; > ) in Algorithm 8.3
there are N7 L/ /o = L/ N multiplications and additions, so the work here is

2L N

The total work can therefore be written as follows

A 1
ZQL”NJ—|—ZZZL”NJ—|—Z§:2L”NZ
=1 7=0 7=1 =0

where the first sum corresponds to blocks on the diagonal, the second to blocks
below the diagonal, and the third to blocks above the diagonal. Since L/ = L#*
we can swap the indices of the last double sum to find the identity

—_

]‘_

A Aoi—1
DN 2LWNT =N 2LV N

7j=1 z =1 7=0

I
=]

Hence we may write the total work of the matrix-vector multiplication with the
wavelet transform of a circulant matrix as

FormuL = 2 Z LY NT 44 Z Z LW N7 (8.62)

=1 7=0

We recall that

Tl N/2M I forl <5 <A
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and that L is given by the recurrence formulas

Li,j—l —

L/\-I—l,/\-l—l

[L77)2] + D —1

LW 4 279(D — 1)
L (the bandwidth of the original matrix A)

2D Fast Wavelet Transform of a circulant matrix

Tables 8.2, 8.3, and 8.4 show F¢irmuL evaluated for various values of L, D, A, and

N.

A=3.L=5
N |D=2 D=4 D=6 D=2
32 | 784 1472 1808 2064
64 | 1568 3072 4576 5792
128 | 3136 6144 9280 12288
256 | 6272 12288 18560 24576
512 | 12544 24576 37120 49152
1024 | 25088 49152 74240 98304
2048 | 50176 98304 148480 196608

Table 8.2: The number of floating point operations F'cijrmuL as a function of vV for

different values of D.

N =256,D =1

L=3 L=4 L=5 L=6

T W N — O >

1536 2048 2560 3072
5120 5120 6144 6144
8448 8448 9216 9216
11520 11520 12288 12288
14592 14592 15360 15360
17664 17664 18432 18432

Table 8.3: The number of floating point operations F'cjrmur shown for different values
of Aand L. Note that L = 2k and L = 2k + 1 (k € N) yield the same values for A > 0.
This is a direct consequence of the rounding done in (8.62).
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N =256,L =5
D=2 D=4 D=6 D=218
2560 2560 2560 2560
4096 6144 8192 10240
5120 9216 13312 17408
6272 12288 18560 24576
7360 15360 23680 31808
8416 18432 28736 38336

T W N = O >

Table 8.4: The number of floating point operations F'cjrmur shown for different values
of Aand D.

Table 8.2 shows that Ftrmur depends linearly on N. Moreover, Tables 8.3
and 8.4 show that the computational work grows with the bandwidth 7, the wavelet
genus D, and the transform depth A. Suppose that L is given. Then we see that
the matrix-vector multiplication is most efficient if we take no steps of the wavelet
transform (A = 0). Consequently, any work reduction must be sought in trunca-
tion of the vector «. This can be justified because  will often be a 1D wavelet
transform of the same depth () as the matrix H. Therefore, depending on A and
the underlying application, we expect many elements in « to be close to zero so
we may be able to discard them in order to reduce the computational work. Con-
sider Table 8.3. If we take N = 256, L. = 3, A = 4 as an example, the question
boils down to whether such a truncation of = can reduce 14592 operations to less
than the 1536 operations required for A = 0 (no transform). Assuming that the
work depends linearly on the number of non-zero elements in @, this means that «
must be reduced by a factor of 10 (at least) before any work reduction is obtained.

8.5 Summary

We have derived an algorithm for computing the 2D wavelet transform of a circu-
lant N x N matrix A in O(N) steps. More specifically we derived the bound

FCIRFWT(N) < 2DN(4 + )\)

The algorithm works with a data structure that requires no more than 2AN ele-
ments instead of V2. If A is also banded the storage requirements are reduced
further. Then we have shown how a banded matrix-vector multiplication using
the proposed storage scheme can be implemented and the complexity of this al-
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gorithm was analyzed. It was found that the work needed to compute the matrix-
vector multiplication is linear in N and grows with the bandwidth (), the wavelet
genus (D), and the depth of the wavelet transform A. On the other hand, the work
is reduced when small elements in « are discarded.



Chapter 9

Examples of wavelet-based PDE
solvers

We consider here the task of solving partial differential equations in one space
dimension using wavelets. We assume that the boundary conditions are periodic
and make use of the periodized wavelets described in Section 2.3 and the material
developed in Chapters 7 and 8. Sections 9.1 and 9.2 treat linear problems and
serve to set the stage for Sections 9.3 and 9.4 which deal with nonlinear problems.

We begin by considering a periodic boundary value problem because it is a
simple and illustrative example.

9.1 A periodic boundary value problem

Consider the 1D Helmholtz equation

—u"+aou = f(x)
W) = ulz+1) } r€R (9.1)

where o € R and f(z) = f(z + 1).
We look for 1-periodic solutions, so it suffices to consider «(x) on the interval
0<z<l.

9.1.1 Representation with respect to scaling functions
We begin the discretization of (9.1) by replacing « () with the approximation

271

us(x) = Z(Cu)lk@glk(x)a J € Ny (9.2)

k=0
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Following the approach that lead to (7.9) we find that

271

wi(z) =Y (D) sudsu() (9.3)
k=0

where (¢2),, is given as in (7.12), i.e.

(c)p = [DPe,]i = () ninany,, 27T, k=0,1,...,27 =1

with I'? defined in (7.1).
We can use the Galerkin method to determine the coefficients (¢, ). Multi-
plying (9.1) by ¢;,(«) and integrating over the unit interval yields the relation

- [ v [ sty = [ st

Using (9.2), (9.3), and the orthonormality of the periodized scaling functions
(2.48) we get

_(Cf))J,l +aley) g = (ef)gy, 1=0,1,... ,2‘] —1

where
(cr)a = /01 f(@)p(w) da (9.4)
In vector notation this becomes
—cf) + ac, = ¢y (9.9)
and using (7.13) we arrive at the linear system of equations
Ac, =cy (9.6)
where
A=-D% 4aI (9.7)

Alternatively, we can replace D'? by D?, where D is given in (7.14), and obtain
Ac, =cy (9.8)

where
A=—-D?+al (9.9

Equations (9.6) and (9.8) represent the scaling function discretizations of (9.1).
Hence this method belongs to Class 1 described in Section 7.1. We observe that
(9.6) has a unique solution if o does not belong to the set of eigenvalues of D®)
Similarly (9.8) has a unique solution if « does not belong to the set of eigenvalues
of D?.



9.1 A periodic boundary value problem 165

—log,(llu —uyll;..)
A=_-D® 4ol A=_D?+al

D= D=8|\D=4 D=6 D=8
1.99 3.40 1.80 3.05 4.18
4.81 8.15 5.71 8.60 11.42

8.57 13.87 9.65 14.46 19.21
12.51 19.81 | 13.63 20.43 27.16
16.50 25.79 | 17.63 26.42 35.15
20.50 31.79 | 21.63 32.42 4248
24.50 40.03 | 25.63 38.61 42.01
28.50 35.48 | 29.63  39.27 40.85

O 00 ~1I O U k= W |

Table 9.1: The error —log, (|| — w,l| ;.,) shown for different values of .7, D and the
choice of differentiation matrix. Convergence rates are seen from the differences between
successive measurements. The value D = 4 is omitted in the case of (9.7) because the
combination D = 4, d = 2 is invalid as described in Remark 7.1.

Accuracy

Let f(x) = (47? + ) sin(27x). The solution of (9.1) is then

u(x) = sin(2ma)

Define
lulloe = max Ju(z)] (9.10)
el = max  Ju(k/27)] (9.11)

k=0,1,...,27 -1

Table 9.1 shows how the error [|u — u,||; ., depends on ./, D, and the choice

of D® or D?. Until the onset of rounding errors, the convergence rates obtained
in Chapter 7 are recovered. More precisely,

Ju = wsll;., = O (277P~2)) inthe case of (9.7)
lu — gl ;. = O (2777) in the case of (9.9)

Table 9.2 shows how the error ||« — us||_ depends on J, D, and the choice of
D@ or D In this case, we find

Ju—uyll, = O (277P/2) inthe case of (9.7)
Ju—uyll, = O (27/P/?) inthe case of (9.9)
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—log, (Jlu — uyll..)
A= DO LI A= _D?tal

D=6 D=8|\D=4 D=6 D=8
1.15 2.18 0.99 1.68 2.10
3.36 5.84 2.41 3.78 5.69
6.45 9.61 4.16 6.61 9.54

9.53 13.51 6.08 9.58 13.49
12.56 17.49 8.06 12.57 17.48
15.56 21.48 | 10.06 15.57 21.48
18.57 25.48 | 12.06 18.57 25.48
21.57 29.45 | 14.06 21.57 29.48

O 00 =1 O U k= W DN

Table 9.2: The error —log,(||u — us]|.,) shown for different values of J, D and the
differentiation matrix. Convergence rates are seen from the differences between succes-
sive measurements. The value D = 4 is omitted in case of (9.7) because the combination
D =4,d=2isinvalid as described in Remark 7.1.

which agrees with the approximation properties described in (4.5).

The high convergence observed in Table 9.1 means that the solution wu(x) is
approximated to Dth order in the norm ||-||,.. even though the the subspace V;
can only represent exactly polynomials up to degree D/2 — 1, as explained in
Section 4.1. This phenomenon, known as super convergence, is also encountered
in the finite element method, [WM85, p. 106], [AB84, p. 231].

9.1.2 Representation with respect to wavelets

Taking (9.6) as point of departure and using the relations

d, = We,
d; = Wey
yields
AWld, =w'd,
Let

(2)

A=WAWT = W <—D<2> n aI> wT = DY yar
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where D(Q) is defined according to (7.22). Then

v

Ad, = d; (9.12)

which is the wavelet discretization of (9.1). This method belongs to Class 2 de-
scribed in Section 7.1. Hence, there is a potential for using wavelet compression
to reduce the computational complexity of solving (9.12).

9.1.3 Representation with respect to physical space
Multiplying (9.5) by T" and using (3.17) yields
—u? fau=f

where

271

f="Tcy={(Py,f) (2}, (9.13)

From the relation u(®) = D®w (7.15) we obtain the equation
Au=f (9.14)

where A is given by (9.7).
An important variant of (9.14) is obtained by redefining f as the vector

F={)h!

This produces a collocation scheme for the solution of (9.1).
Because this method is essentially based on scaling functions and does not use
wavelet compression it belongs to Class 1 described in Section 7.1.

9.1.4 Hybrid representation

We mention a second possibility for discretizing (9.1) using wavelets. Itis simple
and several authors follow this approach, e.g. [EOZ94, CP96, PW96]. This is
essentially a combination of the approaches that lead to (9.14) and (9.12), and we
proceed as follows: Multiplying (9.14) from the left by W and using the identity
WTW = I one obtains

WAW Wu =W Ff
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Defining the wavelet transformed vectors as

f = Wf and
u = Wu
then yields
Au=f (9.15)

where A is the same as in (9.12).

This approach bypasses the scaling coefficient representation and relies on the
fact that the FWT can be applied directly to function values of f. Indeed, using
this approach, the differentiation matrix A might as well be derived from finite
differences, finite elements or spectral methods.

From Section 4.3 we know that the elements in @ will behave similarly as the
true wavelet coefficients d,. Therefore, wavelet compression is as likely in this
case as with the pure wavelet representation (9.12). Hence this method belongs to
Class 2 described in Section 7.1.

9.2 Theheat equation

We consider now the periodic initial-value problem for the heat equation
Uy = Vg + f(x), >0
u(x,0) = hlx) reR
u(x,t) = wl@+1,t), t>0

(9.16)

where v is a positive constant, f(z) = f(z 4+ 1) and h(z) = h(z + 1). The
discretization strategies are time-dependent analogues of those in Section 9.1.

9.2.1 Representation with respect to scaling functions

We consider first the Galerkin method for (9.16) and proceed as in Section 9.1.1.
The time-dependent version of (9.2) is

271
wp(z,t) = > (e)skl(t)duu() (9.17)
k=0
After an analysis similar to that which lead to (9.5), we arrive at the Galerkin
discretization of (9.16):

d _ 2)
eull) = vD¥e(l)+¢; >0 (9.18)

c,(0) = ¢
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where ¢ is given by (9.4) and

(en)gk = / h(x)bsp(x)de, k=0,1,...,27 —1 (9.19)

9.2.2 Representation with respect to wavelets

Multiplying (9.18) from the left by W and inserting the identity W’ W = T
yields

d
T We(t) = vWDOWITWe, (1) + Wey, >0

From the identities

d.(1) = Wel)
ds(t) = Weyl(l)

D7 = wDpOw?
we then obtain
d o (2)
Ed“(t) =vD d,(t)+ds, >0 (9.20)
with the initial condition
du(O) = WCh

9.2.3 Representation with respect to physical space
Proceeding as above but this time multiplying (9.18) from the left by T yields

d
T Teu(t) = vI DT Te,(t)+Te;, >0

Using the relations

u(t) = Teu(t)

we find

—u(t) =vDPu(t)+ f, >0 (9.21)
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with the initial condition

271

w(0) = h = {(Py,h) (@)} _, (9.22)
Also in this case we can produce a collocation scheme by redefining

o= )y
h o= {h(z)}2 !

(=0

9.2.4 Hybrid representation
Multiplying (9.21) from the left with W and proceeding as in Section 9.1.4 yields

d g N
%MQ:VD@Mﬂ+f,t>O (9.23)
with the initial condition
w(0) = Wh

9.25 Timesteppingin thewavelet domain

A number of time-stepping schemes are available for the system (9.20). We con-
sider here the backward Euler method defined by

(du)nir — (d)
At

= D) + dy (9.24)

where (d,), = d,(nAt). This leads to the recursion

v -1

(d)sr = A ((du)w +Atdy), n=0,1,....01—1
(du)o = du.(0)

where n; € N and

(9.25)

A= ]'——sztij(%
The backward Euler time-stepping schemes for (9.18), (9.21), and (9.23) are com-
pletely analogous.

The matrix A has the characteristic “finger-band” pattern shown in Figure 7.1,
and it turns out that so does A~ for small A¢ when small entries are removed

[CP96]. Figure 9.1 shows an example of A~ where elements smaller than 10~
have been removed.
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512

1024
0

512 1024
nz = 125056

Figure9.1: A" where elements smaller than 10~ have been removed. D = 8, A = 3,
J=10,At =27 and v = 0.05/~.

Moreover, we can expect many elements in d, and d; to be small by virtue
of Theorem 2.5. Consequently, there is a potential for compression of both the
coefficient matrix as well as the solution vector. This is true for both (9.20) and
(9.23) but we give the algorithm for (9.20) only since the case (9.23) is completely
analogous.

Let trunc(d, =) be a function that returns only the significant elements in a
given vector d, i.e. let

trunc(d,e) = {d;x, |djx| > ¢}
Similarly, let
trunc(A,c) = {[Alnn, [[Almn] >}
Let ey be the compression threshold for the vector and =, be the compression
threshold for the matrix and define d° = trunc(d, =) and A™ = trunc(A, ep/).

Following ideas given in [CP96] we can now give a computational procedure
for computing (9.25) using wavelet compression.

Algorithm 9.1
1: (A_I)EM — trunc (WAT'WT 2y)
2 djcv — trunc (WCf,aSV)

3: (dy)y" <« trunc (Wep,ev)
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forn=0,1,... ,n; —1
4: (d)esr — (A7) ((dy)Z + ArdeY)

5: (du)%, < trunc ((du)ny1,ev)
end

6 (cu)m ¢+ WI(d,)w
(w)ir=v e T(ey)n,

A few comments are appropriate:

e Step 1: We have
Al =(waw") = (W AW = waAT W

Hence, step 1 can be done using the 2D FWT (3.38). However, since A is
circulant then A" is also circulant by Theorem C.6 and it can be computed

efficiently using the FFT as explained in Appendix C. Consequently, A”
can be computed and stored efficiently using Algorithm 8.1.

e Steps2, 3: ¢, ¢y are both computed according to (3.17), i.e. by the quadra-
ture formulas

Cf = T_lf
c, = T'h

where

fo= )iy
h = {h(e)}is

e Step 4: It is essential for the success of this algorithm that the computation
of the matrix-vector product fully exploits the compressed form of both
matrix and vectors. This can be done, for example, using Algorithm 8.4.
In [CP96, p. 7] fast multiplication is based on a general sparse format for
both matrix and vector.

e Steps 6,7: Finally, the computed vector of wavelet coefficients is trans-
formed back into the physical domain. We denote the computed solution
u; MV, because it depends on both thresholds.
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To test Algorithm 9.1 we have applied it to the problem

Uy = Vg +sin(2ra), >0
wW(2,0) = 0 } r€R (9.26)

The numerical parametersare J = 10, At = 1/2'°, n; = 2% (making 0 < ¢ < 1),
v =0.01/m, A = 3,and D = 8. The vector MV is the result of Algorithm 9.1
given the thresholds ¢, and ¢y. Hence, we define the relative compression error
as

Jusyeee — ey
n1 lloo

EEM,EV — ni 070
[/
where
lelloe = _ max,  |ul

v

Table 9.3 shows the percentage of significant elements in (A_I)EM and (d.);"
for various values of ¢y and <,,. Moreover, the relative error introduced by com-
pression F=M-=v s given for each case. It is seen that significant compression can

be achieved in both the matrix and the solution vector.

ey =0 % elem epy = 0| % elem
v —1
EM (A )EM JFlemev ey (du)}?l/ Femev

10~ 19.06 10~ 107t 195.02 10~
10-1° 16.56 10712 || 1071 1 49.12 10-1°
107? 14.08 107195 11 107? 37.79 107
1078 11.59 107? 1078 22.17 1078

1077 9.28 10775 | 1077 11.82 1077
107¢ 7.20 107¢ 107¢ 5.96 107¢
1075 5.18 10745 1 107° 4.20 1075

Table 9.3: Percentage of elements retained in (A_I)EM and (d,);" together with the
resulting compression error.
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9.3 Thenonlinear Schrodinger equation

We consider now the periodic initial-value problem for the nonlinear Schr ddinger
equation:

u(x,0) = hlx)
u(x,t) = wu(ae+ L,t), t>0

ui = Lu+iy|ulPu, t>0
t€R (9.27)

where h(x) = h(z + L) and

This equation describes the propagation of a pulse envelope in an optical fiber. 3,
is a dispersion parameter, « is a measure of intensity loss, and ~ is the magnitude
of the nonlinear term which counteracts dispersion for certain waveforms [Agr89,
FIAF78, LBA8L, PAP86]. Sometimes the term 13;22;, which represents third
order dispersion, is added to L.

Because of periodicity we can restrict the spatial domain of (9.27) to the inter-
val [-L/2,L/2[. Let N = 2/ and define a grid consisting of the points

{ 1
=|——=)L, [=01,...,N—-1
Ty (N 2) ) s Ly )

Define the vector w(¢) such that
ul(t):uj(xl,t), lZO,l,...,N—l

where w;(x,t) is an approximate solution of (9.27) of the form (9.17). Define
similarly the vectors u(?(¢) and £(¢) as

WD) = e t), 1=0,1,...,N—1
fl(t) == f(l’l,t), lZO,l,...,N—l

Hence the elements in w approximate function values of « in the interval [— L /2, L/2].
With regard to our using the interval [L/2, L/2[ instead of [0, 1] we mention that
the mappings T'c and W e are unchanged as described in Section 3.2.4 but the
differentiation matrix must be scaled according to (7.18). Hence, we arrive at the
following initial problem for « formulated with respect to physical space:

d
Jult) = Lu(t) + N(u(t) u(t), +>0 (9.28)

w(0) = h=[h(xo), h(x1),... hlen_1)]"
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where

i D®
L = —
252 73

N(u(t)) = ivdiag(ju(t)?, (=0,1,... N —1)

o
2

9.3.1 Wavelet split-step method

A well established time-stepping scheme for solving (9.27) in optics applications
is the split-step method which is also known as the beam propagation method.
Traditionally it is applied in conjunction with a spatial discretization scheme based
on a Fourier spectral method in which case it is known as the Fourier split-step
method, or split-step FFT, (See, for example, [Agr89, p. 44-48] or [New92, p.
413-423]). However, we will use split-stepping with the spatial discretization
described above and call it the wavelet split-step method. A similar approach
has been investigated in [GL94, PW96].

The split-step method derives from the fact that the solution of problem (9.28)
satisfies the identity

t+ AL
u(t + At) = exp (AtL + N(u(r1)) dT) u(t)
1
We now introduce the approximations
t+ AL At
N(u(r))dr ~ 7[N(u(t)) + N(u(t + At))]
1

and

exp (AtL + %[N(u(t)) + N(u(t+ At))]) ~

exp (%L) exp (%[N(u(t)) 4 N(u(t—l—At))]) exp (%L)

Using these we obtain the time-stepping procedure

At
w,y1 = Fexp (7[N(un) + N(unH)]) Fu,, n=0,1,... ,n —1

’ll,():h

(9.29)

where u,, = u(nAt), h is the vector defined in (9.28), and where

At
E =exp <7L>
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The vector w,,; appears also on the right-hand side of (9.29) so each time step
requires an iterative procedure. Ours is the following: For each n let

and iterate until convergence,
W = B exp (%[N(un) + N(u;‘ﬁl)o Eu,, q¢=0,1,...
Defining the function
linstep(v) = Ev
we have the following algorithm for (9.29):

Algorithm 9.2: Split-step method

wo b = {h(z) 15"

E +— exp (%L)

N < N(uy)

forn=0,1,... ,n;—1

v, « linstep(w,,)
5 Ny +— N,
| terate until convergence
; w11 < linstep (exp (L[ No + Ny]) v,,)

7: N+ N(tnq)

i

9.3.2 Matrix exponential of a circulant matrix

N (u,,) is a diagonal matrix for every value of n, so the exponentiation required in
step 6 of Algorithm 9.2 can be done cheaply. The matrix L, on the other hand, is
not diagonal but it is circulant. Hence, with regard to step 2, we need a procedure
for computing the matrix exponential

E=c4 (9.30)

where A is the circulant matrix
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Standard methods for computing (9.30) are mostly based on matrix multiplica-
tions [GL89] which have complexity O (N?). Hence the computation of (9.30)
can be very expensive.

However, by using the fact that A is circulant one can compute (9.30) in
O(N log, N) floating point operations. From Theorem C.4 we have the factor-
ization

A=FyAFy

where F'y is the Fourier matrix defined in (C.3), A, = diag(a), a = Fya, and
a is the first column in A. By a standard matrix identity

E = exp(A) = Fy' exp(FNAFY ) Fy = F' exp(A,)Fy

The matrix exp(A, ) is diagonal so we know from Theorem C.4 that E is circulant.
Hence we can write

E=F7'AFy

where A. = diag(é), € = F'ye, and e is the first column in E. Equating A. and
exp(A,) yields

é=[eh, et ... )T

Hence we have the following fast algorithm for computing (9.30):

Algorithm 9.3: Exponential of circulant matrix A

a « [A].a I Extract first column of A
a < Fpya 'FFT
e + fexp(ap) iy I Pointwise exponentiation
e « F3é LIFFT

[Elnn < €m-nyy, mn=0,1,...,N—1 !Assemble E

The matrices A and E need not be stored explicitly. Hence the first and the
last steps here can be omitted in practice. In step 2 of Algorithm 9.2, where we
use Algorithm 9.3, only e is computed. The computational complexity follows
from that of the FFT and its inverse.

In the problem at hand A = %L, where L is circulant and banded. It follows
from the definition of the matrix exponential

E =exp(A) = i A" k! (9.31)

k=0
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that E is dense. However, it turns out that many entries in E are very small and
that F assumes circulant band form if truncated with a small threshold. In [GL94,
PW96] E is approximated by truncating the series (9.31) to a few terms. This
also yields a circulant band form, but the process is less exact and not significantly
faster than the one presented here.

9.3.3 Compression

We can exploit the compression potential of wavelets by an appropriate imple-
mentation of linstep. Let

E=WEW" (9.32)
and
(E)™ = trunc(E, ¢ ;)
Then the product E'v that is computed by linstep can be formulated as
Ev=WTEWv=WTEd ~ WI(E) ™

where v°V = trunc(v, ey ). Hence we obtain the following version of linstep
which can be used in step 4 and 6 of Algorithm 9.2.

Algorithm 9.4: w « linstep(v)

v + Wo

(0)°V « trunc(v,ev)
a — (E)y (o)
u — W'ha

Since E is circulant, E can be computed efficiently using Algorithm 8.1.
Since E is dense E is dense too, but under truncation, even with very small
thresholds, it assumes the finger-band pattern associated with differential oper-
ators in wavelet bases. Figure 9.2 shows F truncated to machine precision for
A=0,1,2,3,4,5, the case A = 0 corresponding to F.
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Figure9.2: E™ for A = 0, 1,2, 3,4, 5 truncated to the precision ¢ 3y = 2.2204 x 1016,
The remaining parametersare D = 8, .J = 8, At = 1/2!°, [, = 60, 3, = —2,and o = 0.
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% elem. retained
0] 898 12.11
1114.84 17.97
2119.73  22.46
3124.90 27.34
4129.98 32.42
5134.79 37.13

Table 9.4: The percentage of elements retained in £~ and (E7)= for e, = 2.2204 x
1071, D =8, J =8 At = 1/2!° L = 60, 52 = —2, a = 0. It is seen that the
compression potential of £ is slightly lower than that of E.

Recall from Chapter 7 that the differentiation process has higher convergence
if D is replaced by D?, but that this comes at the cost of a larger bandwidth.
We want to compare these two choices with respect to compression potential. Let

i D? o
L = —3,— _
252 Lz 2
At
E" = exp (—L*>
9
E = wEwT?

The percentages of elements retained in E and E with truncation to machine
precision are shown in Table 9.4 for A = 0,1,2,3,4,5.

Figure 9.3 shows E™ for different choices of ), and Table 9.5 shows the
corresponding percentages of elements retained in £ and E . It is observed that
the compression potential of E* is slightly lower than that of E, so we will use
only E in the following.
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e =0.0001 e =1e-07
0 g N\N o M
22 \\ 32
64 64
128 128
256 256
0 32 64 128 256 0 32 64 128 256
nz = 4992 nz =11008
e =1le-10 e =le-13
0 M 0 M
32 32
64 64
128 128
256 256
0 32 64 128 256 0 32 64 128 256

nz = 13504 nz = 14976

Figure 9.3: E™ for =3y = 1074,1077,107°, 1013, The remaining parameters are
D=8J=8A=3At=1/2° L =60, 3, = —2,and o = 0.

% elem. retained
v e vk €M
cw | E <E )
1074 7.62 6.25
1077 [16.80 17.38

10719 120.61  21.39
10713 122.85  24.61

Table 9.5: The percentage of elements retained in E™ and (E)*™ for 5y =
107%,1077,10719 10713, The remaining parameters are D = 8, J = 8§, A = 3,
At = 1/21° I = 60, 5, = —2, and @ = 0. Hence, the first column corresponds to
the matrices shown in Figure 9.3.
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Thresholds % elem. retained
emM ey paosv BT gl CPU time (s)
0 0 2.23 x 107 | 100 100 963
10715 0 2.23 x 107% | 38 100 541
107" 10719 12.23 x 1076 4 100 333
1071 10712 [ 2.23 x 107 4 89 257
107" 1072 [ 2.24 x 1076 4 30 173
107 1077 | 6.62 x 107¢ 4 16 141
107 107% | 6.88 x 1077 4 10 126

Table 9.6: Error, compression and execution time data for a problem with known solu-
tion (compression of a,,, is given for n; = 2000).

The wavelet split-step method as defined by Algorithm 9.2 and the implemen-
tation of linstep given in Algorithm 9.4 has been implemented in Fortran 90 on
a CRAY C92A. Algorithm 9.3 was used for computing the matrix exponential
E = exp (2LL), Algorithm 8.1 was used for (9.32) using the data structure de-
scribed in Section 8.2.5, and Algorithm 8.4 was used for computing the product

(B (5)

Finally, the transforms Wo and W & were implemented using the FWT and the
IFWT defined in Section 3.3. Hence, the algorithm has the complexity O(V)
regarding both storage and floating point operations.

To test the performance of this algorithm, we have applied it to a case of
problem (9.27) with a known solution. The data are 3, = —2, a = 0, v = 2
and .(x) = e'"sech(z), which yield the solution u(x,¢) = e”sech(x — 2t). The
numerical data are L. = 60, J = 11 (making N = 2048), A = 3, n; = 2000, and
At = 0.001. The wavelets used were those of genus D = 8. Table 9.6 shows the
relative error, percentage of compression achieved in F and 4, , and measured
CPU time of n; time steps as functions of the threshold parameters =, and «y..
The relative error is defined here as

maXg—o.1,...,27-1 |[un1]k - u(:z;k, 1)|

maxg—o.1,...,27-1 |[un1]k|

JEMEv —

It is seen that wavelet compression in this case can yield a speedup of about seven
with a relative error of about 7 x 107>,
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% elem. retained
M E™ aly CPU time (s)
01 3.08 4497 49
11]3.13 25.20 76
2| 3.47 18.02 107
314.02 15.83 141
41 4.60 14.36 180
51 5.24 13.43 228
6| 5.90 13.18 287
7| 7.22 13.77 346

Table 9.7: Compression ratios of E and w,, (n1 = 2000) and execution time in (CPU
seconds) of the wavelet split-step algorithm for different values of \. Here 5y = 10~1°
and ey = 1077,

Table 9.7 shows how performance depends on the transform depth A. It is
seen that even though the compression potential of w,,, increases with A, it is
not enough to balance the increased work inherent in the matrix vector multi-
plications. This should be compared to Table 8.3 which indicates that the work
grows with X unless w,,, is compressed excessively. The gain from compression
is outweighed by the cost of the wavelet transform in Algorithm 9.4. and that of
computing Algorithm 8.4.

To illustrate a realistic application, we show in Figure 9.4 a computed “breather
solution” obtained from the data 5, = —2, o = 0, v = 2, h(x) = 2sech(z),
L =60, N = 2048, A = 3, At = 0.001 and D = 8. The figure gives only the
middle third of the x-interval.
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Figure 9.4: A “breather solution” of problem (9.27).
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9.3.4 FFT split-step method

To assess the performance of the wavelet split-step method we compare it to an
implementation of the FFT split-step method which is the de facto standard for
solving the nonlinear Schrodinger equation [New92].

The FFT split-step method exploits the fact that the Fourier differentiation
matrix D;il), given in Appendix D, is diagonal. Hence,

i DY«
Lr==30p =5t
is diagonal and
. At
E = exp(7LF) (9.33)

is also diagonal. The FFT split-step algorithm is therefore given by Algorithm 9.2
but with step 2 replaced by (9.33) and linstep(v) (used in steps 4 and 6) redefined
as

Algorithm 9.5 u « linstep(v)

v FN’U
u <« Fvo
U F]_Vlﬁ

The product E'¢ is computed in N operations so the complexity for large N
is dominated by that of the FFT and hence is O(N log, N). This should be com-
pared to the wavelet split-step method where the FWT as well as the matrix-vector
product has linear complexity, the latter, however, involving a large constant.

Replacing Algorithm 9.4 by Algorithm 9.5 renders Algorithm 9.2 the FFT
split-step method. The performance of the FFT split-step method with the same
parameters as in Table 9.6 yields an execution time of 12s with a relative error
of 2.23 x 107%. The FFT routine used for this purpose was a library routine
optimized for vectorization on the CRAY C92A. In contrast, the implementation
of Algorithm 8.4 did not vectorize well due to short vector lengths and inefficient
memory access. Table 9.8 shows how the execution time grows with N for the
FFT split-step method and the wavelet split-step method. In the wavelet case the
parametersare D = 8, A = 3, epy = 107!, and ey as given in the table.

9.4 Burgers eguation

We consider now Burgers’ equation which is frequently used to study adaptive
methods because it models formation of shocks. The periodic initial-value prob-
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CPU time (s)

N |FFT ey =102 ey =107"
128 1 35 32
256 2 47 39
512 4 64 55

1024 6 101 83
2048 11 173 141
4096 | 21 295 236
8192 | 42 534 436
16384 | 85 1043 865

Table 9.8: Execution time (CPU seconds) for the FFT split-step method and the wavelet
split-step method both applied to (9.27). The latter method is shown for two different
compression thresholds.

lem for a particular form of Burgers’ equation is

Uy = Vge — (U4 pluy, >0
u(x,0) = hlx) reR (9.34)
u(z,t) = wu(ae+1,1), t>0

where v is a positive constant, p € R and ~(x) = h(x + 1). Burgers’ equation
with p = 0 describes the evolution of « under nonlinear advection and linear
dissipation. A nonzero value of p adds linear advection to the system.

This problem is discretized in the same manner as (9.42), and we obtain the
system

where

L = vD% —pI
N(u(t)) = —diag(Du(t))

with D = D). This has the same form as (9.28) and an appropriate modification
of Algorithm 9.2 can be used to solve it.

The matrix-vector product «(!) = Dw can be computed analogously to the
computation of the matrix-vector multiplications in Algorithm 9.4. Hence we
have
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Algorithm 9.6: u!") «+ Du

u +— Wu
(w)V trunc( ev)
aly (D )D(ﬁ)
uV o~ wla®

where D = WDW?7 and
(D)*? = trunc(D, ¢p)

Unlike E, which is dense, the matrix D is a banded matrix (see Section 7.3) so D
will have the “finger band” structure without applying any compression. However,
the wavelet transform introduces rounding errors which we remove by choosing
ep to be a fixed small precision, namely ¢, = 10713, as this is sufficient to retain
the sparsity of D. Hence we use Algorithms 8.1 and 8.4 for computing D and the
product (D)2 (i)7v, respectively.

To test this procedure on (9.34) we have chosen the values » = 0.005, p = 0,
and i(x) = sin(2rx). The numerical data are J = 10, A = 3, eyy = 107,
gy = 1071° At = 0.005, n; = 100, and D = 8. The implementation was done
in Fortran 90 on a 200 MHz PC using the Linux operating system.

Figure 9.5 shows the evolution of u(x,¢) for 0 < ¢ < 0.5. Itis seen that a
large gradient forms at = = 0.5 whereas « is very smooth elsewhere. Hence we
expect a large wavelet compression potential.

Table 9.9 shows the influence on performance of the parameter y with &,
(and ¢p) fixed. It is seen that the execution time drops as fewer elements are re-
tained in «,,, . However, we observe that the split-step method ceases to converge
when the compression error becomes too large.

Table 9.10 shows the influence on performance of the transform depth A for
fixed values of ey and e,;. It is seen that the execution time is reduced by com-
pression as A grows from 0 to 4. For A > 4 the execution time increases because
the compression is not enough to balance the increased work inherent in the matrix
vector multiplications.

However, as the problem size grows, so does the compression potential. Ta-
ble 9.11 shows the best execution times and compression rations obtained for
different values of . It is seen that by adjusting the parameters A, ey and e,
one can obtain very large compression ratios and a CPU time which grows even
slower than . Consequently, we see that for this particular problem, wavelet
compression leads to a feasible solution method provided that the parameters V,
D, )\, ey, and e, are chosen appropriately.
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X

Figure 9.5: Solution of (9.34) shown for ¢ = 0,0.05,0.1,...,0.5. v = 0.002, p = 0,
u(z,0) = sin(27z).

9.5 Wavelet Optimized Finite Difference method

In this section we will outline a completely different approach to solving partial
differential equations with the aid of wavelets. This method is due to Leland
Jameson [Jam94, Jam96] and is called the Wavelet Optimized Finite Difference
Method (WOFD). It works by using wavelets to generate an irregular grid which
is then exploited for the finite difference method. Hence this method belongs to
Class 3 as described in Section 7.1.
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% elem. retained CPU time (s)

ey Relerr | E" D, & |Total WT Mult
1075 3.8 %1077 {15.63 2.60 99.22 | 115 18 91
10712 4.8 x 1077 [ 15.63 2.60 92.68 | 101 18 77
1071 2.7 %1077 [ 15.63 2.60 73.63| 89 18 66
10719 4.2 x107¢ | 15.63 2.60 71.83| 85 18 57
1072 4.6 x 107° | 15.63 2.60 65.82| 71 18 50

1078 No convergence

Table 9.9: Effect of the parameter i on performance. The remaining parameters are
A =3, ey = 10712, N = 2048, D = 8, At = 0.005, and n; = 100. Second
column shows the relative error at n = n4 in the infinity norm compared to a reference
solution computed using the FFT split-step method. Columns 3-5 show the percentage
of elements retained in £, D", and u,", respectively. Columns 68 show the total
execution time, the time spent in the wavelet transforms (FWT and IFWT), and the time
spent in computing the products using Algorithm 8.4.

9.5.1 Finitedifferenceson anirregular grid

We begin by defining a finite difference method for an irregular grid. Let v be a
twice differentiable 1-periodic function and let there be a set of grid points

O=ag <oy <9< <any_1 <1

which are not necessarily equidistant. A way to approximate derivatives of « is to
construct a Lagrangian interpolating polynomial through p points and differentiate
it. We consider only odd p > 3 because it makes the algorithm simpler. Let
w = (p — 1)/2 and define

aal Pyir(x)
k=i—w Wity
where,
14w
Poir(z) =[] (z =) (9.36)
l:l;—kw

Because of periodicity, all indices are assumed to be computed modulo N. It
follows that w;(z;) = u(«;) for: = 0,1,... , N — 1; i.e. uy interpolates « at the
grid points.
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% elem. retained CPU time (s)

Relerr | EY D7 4% |Total WT Mult

ni

A

0 1.8x1077[19.19 0.63 99.95| 89 0
1 1.8x107°|15.53 1.27 94.87| 64 10
2 1.2x107°|17.38 1.93 71.92| 74 16
3 4.6 x107°|15.63 2.60 65.82| 74 18
4 5.6 x107°|15.23 3.28 62.06| 75 18
5 5.6 x107° | 15.54 3.96 60.40 | 81 19
6 7.4x107°16.09 4.64 58.84| 85 19
7 3.6 x107°|16.71 5.32 53.76 | 88 19
8 2.2x107*|17.37 6.00 53.89 | 88 19

83
48
33
50
51
35
59
62
75

Table 9.10: sy = 1072, epp = 10712, N = 2048, D = 8, At = 0.005, n; = 100.

Columns 2-8 have the same meanings as those in Table 9.9.

Differentiation of (9.35) d times yields

i+w P(d) (:ﬁ)
(d) . w,i,k
uI (l‘) - k_z_: U(xk)Pw,i,k(wk)

(9.37)

Replacing = by z; in (9.37) yields a p-point difference approximation for «(?(z)
centered at z;. Let u = [u(xo),u(x1), ... ,u(xy_y)]. The derivatives «!¥(z) can

then be approximated at all of the grid points by

where the differentiation matrix D" is defined by

PY ()
DW= ok = (p—1)/2
D= 0w (1)

Regarding the first and second order derivatives we find that

d 14w 14w
PL(UlZ)k(w) = %szk(l') = Z H (x — am)
[=i—w m=i—w

=1— =
£k m#kl

(9.38)

(9.39)

(9.40)
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% elem. retained | CPU time (S)
N v ey Relerr |E" D" @' |FWT FFT
1024 107t 10-H 5x107° | 16 520 82 36 37

A
3
2048 1072 107" 3 5x107°| 13 2.60 65 | 65 78
3
3
6

4096 107% 107 5x1072| 9 1.30 54 | 127 176
8192 10~* 10°® 4x107%] 5 099 4 | 173 404
16384 107* 107° 8§x1072| 3 058 2 | 332 890

Table 9.11: Best execution times for the wavelet split-step method for different problem
sizes. The fixed parameters are D = 8, At = 0.005, and n; = 100. Column 1 shows
the problem size. Columns 2—4 show the parameters that were chosen to obtain good
performance for each N. Columns 5-8 have the same meanings as the corresponding
columns in Table 9.9. Column 90 shows the execution time using the wavelet split-step
method with the respective parameters and column 10 shows the execution time using the
FFT split-step method.

and

d2 14w 14w 14w

Pt(uzz)k(fl?):d 3 Poix( Z Z H (v —x, (9.41)

—w n=i—w

l;ék m;ﬁk [ n#klm
It will be recalled that for equidistant grids with step length % the error is described
by

udD () — u@(2)| = O(PY), d=1,2

provided that « is sufficiently smooth.

9.5.2 Thenonlinear Schrodinger equation revisited

Consider again the periodic initial-value problem for the nonlinear Schrodinger
equation

wp = LuA+iyul>u,t>0
) = h(x) reR (9.42)
u(x,t) = wlx+L,t), t>0
where
”? o«

l
E=yhpa Ty
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Proceeding as in Section 9.3, but now using the differentiation matrices de-
fined in (9.39) we obtain

Sty = Lu(t) + N(u(t) uft). >0 043
u(0) = hE[h(:z:o),h(xl),...,h(:z;N_l)]T
where
7 DZ(,Z) o
L

N(u(t)) = iydiag(jw(t)?,1=0,1,... N —1)

The split-step method could now be used for time stepping. However, this
involves truncation of matrices and since we no longer represent the solution in
the wavelet domain we do not seek adaptivity through these means. Instead we use
a standard finite-difference approach method such as the Crank-Nicolson method
[Smi85, p. 19]. Then (9.43) is approximated by

u(t +At) —u(t) Lu(t + At) + u(t)

At 2
N w(t+ At) + w(t)\ w(t + At) + u(t)
2 2
and we obtain the time-stepping procedure
PN 2 B B ey S |
2 2
Uy = h

where A=1 - 2L, B=1+ 4'L,and u, = u(nAt).
As with the split-step method, an iterative procedure is required. The compu-
tation of u,,,; can be handled by the steps

ufzo-g1 = Un
and iterate until convergence
Ault) = Bu, + (9.45)
(2) (2)
AtN(un+12+ uﬂ) ’U/n_|_12+ ’U/n7 q = 0717...

We have solved the system (9.45) in Matlab by LU-factorization of A and subse-
quent forward and backward substitutions in each iteration step.
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9.5.3 Grid generation using wavelets

The elements of () approximate the function values w(xy,t),k=0,1,... , N —
1. The success of an adaptive method relies on a procedure for determining a grid
which is dense where w is erratic and sparse where « is smooth.

Recall from Theorem 2.5 that the wavelet coefficients of « satisfy the inequal-

ity

1 |
ikl < 75Cp 27iP+3) fopx (9]
where P = D/2. Note that we have taken the interval length L into account.

The error at k/2/ depends on the size of the neighboring intervals, and a large
value of |d; ;| is an indication that the grid spacing 1/2’ is too coarse to resolve
u properly in the interval 7, ;. Hence when a large value of |d; ;| arises, we add
points with spacing 1/27+! about position & /2 to reduce the error locally. In
[Jam94] it is suggested that only a few points be added at location /27, However,
in the light of Theorem 2.5 we have found it reasonable to distribute points evenly
over the entire interval /;; because the large gradient can be located anywhere
within the support of the corresponding wavelet.

This can be realized in practice by introducing an equidistant grid at some
finest level J. If the solution vector « is defined for a coarser grid, it is then
interpolated to values on the fine grid. Then the vector of wavelet coefficients d is
computed as

d=WTu

The WOFD grid is generated by choosing those grid points which correspond to
large wavelet coefficients as described above. After the grid is generated, the finite
difference equations are constructed according to (9.44) and a number of time
steps are taken. Hence, we propose the following algorithm for grid generation:

Algorithm 9.7. Wavelet-based grid generation

Interpolate « from current coarse grid to fine equidistant grid at scale J.

Construct new coarse grid from this expanded w:
Initialize new grid (delete old points)
Compute wavelet coefficients d; ;. of v (u — ¢ — d).
Insert grid points where |d; ;| > ¢.
Construct matrices A and B and factorize A.

Perform several time steps on new grid.
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How many time steps to take between grid evaluations depends on the prob-
lem at hand: A rapidly changing solution will require frequent grid evaluations
whereas a slowly changing solution can use the same grid for many time steps.
We have had good results with the following heuristic: If the number of grid
points increases more than a given threshold from one grid to the next, then the
previous series of time steps is repeated on the new grid.

The initialization of Algorithm 9.7 is

up=h(z), (=0,1,...,27 -1

954 Reaults

Figure 9.6 shows the computed solution of (9.42) at ¢ = 0.5 together with the
grid generated by the WOFD method. The solution corresponds to the parameters
By =—2,y=2,a=0,L =064, and h(z) = 2sech(z). The numerical data are
J =10 (making N = 1024), A\ = J,e = 107*, p =5, At = 1/2'° n; = 512 and
the wavelets used are those of genus D = 8. Itis seen that the WOFD method has

NLS WOFD (t = 0.5)
12 ‘ : ‘

Solution
o o WOFD grid

| A

O 0O O OO O O COCCOCOTIIIITTITTHE EIMTIIIINIDO00000000 O O O O O

-40 -30 -20 -10 0 10 20 30 40
X

Figure 9.6: A WOFD solution of ( 9.42).

generated a grid which captures the behavior of the pulse, the grid density being
low where the solution is smooth and high where it is not.
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| Mflops CPU (s) E*(w) points

WOFD(e = 107%) | 102 97  ~ 107" ~130
WOFD(e = 0) 700 147 0 1024
FFT split-step 613 96 — 1024

Table 9.12: The performance of the WOFD method compared to that of the FFT split-
step. The test problem is (9.42) and the numerical data are D = 8, A = J = 10,
0<t<05p=5At=1/2%andes=10"%

Let w° be the result of Algorithm 9.7 using ¢ as threshold and define the compres-
sion error

EF = Huo —u’

o0

where the vector u° (¢ = 0) corresponds to the solution obtained using finite dif-
ferences on the finest grid. For comparison, we have also implemented the FFT 1
split-step method defined in Section 9.3.4 in Matlab. Table 9.12 shows the num-
ber of Mflops (measured in Matlab) needed for each method, the corresponding
execution time, and the compression error £° where applicable. It is seen that the
flop count is reduced significantly by the WOFD method but the CPU time is less
so. The latter behavior is probably due to inefficient memory references in the
updating of the finite difference matrices. However, this experiment suggests that
the WOFD method is potentially very efficient for this problem.

The Matlab functions nlswofd and nlsfft demonstrate the WOFD method
and the FFT split-step method, respectively.

9.5.5 Burgers equation revisited

We now illustrate the adaptivity of WOFD by considering a problem where a
gradient can grow and move with time. The problem concerns Burgers’ equation
as given in (9.34).

To test Algorithm 9.7 on (9.34) we have chosen the values v = 0.002, p = 0,
h(z) = sin(2mx). The numerical dataare J = 11, A = J, e = 107°, p = 3,
At = 1/2%, ny = 256 and D = 6. Figure 9.7 show the evolution of « together

1The FFT in Matlab does not precompute the exponentials. Hence it is not as efficient as a
library FFT.
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Burgers' equation (t = 0.0625) Burgers' equation (t = 0.25) Burgers' equation (t = 0.4375)

0.5 0.5 09 /\
u u
0.5} | —— Solution 0.5} | — Solution -05F| — Solution
o o WOFDgrid o o WOFDgrid o o WOFDgrid

-1 -1 -1 . . . .
0 02 04 0.6 08 1 0 02 04 0.6 08 1 0 02 04 0.6 08 1
X X X
Grid modifications Grid modifications Grid modifications
1 1 1
08 + + Ptsadded 08 + + Ptsadded 08 + + Ptsadded
© - Ptsremoved © - Ptsremoved © - Ptsremoved
0.6 0.6 0.6
- —- -
0.4 0.4 0.4
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o . . . . , o . . . . , o . . . . ,
0 0.2 04 0.6 0.8 1 0 0.2 04 0.6 0.8 1 0 0.2 04 0.6 0.8 1

Figure 9.7: Solution of (9.34) with v = 0.002 and p = 0 shown together with the
WOFD grid at times ¢ = 0.0625, 0.25,0.4375. The numerical dataare J = 11, A = J,
e=10"%p =3, At = 1/2° and D = 6. The lower graphs indicate points that have
been added (+) and points that have been removed (-) at time ¢.

with the WOFD grid for different values of t. It is seen that points concentrate
around the large gradient as it forms and that the grid becomes very sparse where
the solution is smooth. Table 9.13 shows the number of Mflops (measured in
Matlab) used fors = 0 and ¢ = 107°.

Finally, Figure 9.9 shows the solution to (9.34) at ¢t = 0.5 with the same
parameters as before except that we have now introduced linear advection cor-
responding to the parameter p = 0.02. It is seen that the WOFD method has
captured the shock also in this case.

| Mflops  CPU (s) E*(u) points
WOFD(e = 10 9) | 12 1.7 ~107 ~ 200
WOFD(z = 0) 46 2.9 0 2048

Table 9.13: The performance of the WOFD method. The test problem is (9.34) with
v = 0.002 and p = 0 and the numerical dataare D = 6, A = J = 11,0 < t < 0.5,
p=3,At=1/2° ande = 107,
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Burgers equation WOFD (t = 0.5)

-0.6 Solution
o o WOFD grid
_08 I I I I
0 0.2 04 0.6 0.8 1

Figure 9.8: Solution of (9.34) with » = 0.002 and p = 0 shown together with the
WOFD grid at ¢ = 0.5. The numerical dataare J = 11, A = J, ¢ = 1075, p = 3,
At =1/2° and D = 6.

The Matlab program burgerwofd demonstrates the WOFD method for burgers
equation.

The wavelet optimized finite difference method (WOFD) is a promising way
of solving partial differential equations with the aid of wavelets. However, the
method involves many heuristics and much remains to be investigated:

e We have found that the method is sensitive to the the choice of points placed
at location % /27. The optimal strategy still remains to be found.

e The reconstruction on the finest grid is presently done with cubic spline
interpolations. This is not necessarily the best approach, and other interpo-
lation schemes should be considered. Alternatively, if the wavelet transform
could be computed directly from function values on the irregular grid, the
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Burgers equation WOFD (t = 0.5)
08 T T T T

065

047

0.2

u OGOOOOO 000000000000000COOCHTTHIN IR OO000000000000CH

_02,
_0.4’
=067 | —  Solution
o o WOFD grid
_08 I I I I
0 0.2 04 0.6 0.8 1

Figure 9.9: Solution of (9.34) with v = 0.002 and p = 0.2 shown together with the
WOFD grid at ¢ = 0.5. The numerical dataare J = 11, A = J, e = 1075, p = 3,
At = 1/2°, and D = 6. The grid points cluster around gradient which has moved from
z=0.5t02~ 0.6.

reconstruction could be avoided altogether. Research towards this end is in
progress [Swe96].

e As mentioned earlier, the number of time steps between consecutive grid
evaluations should be determined adaptively based on the speed with which
the solution evolves. Also this point needs further investigation.



Chapter 10

Conclusion

In part 1 we exposed the theory for compactly supported orthogonal wavelets and
their periodized forms and gave estimates of their approximation characteristics.
Furthermore, we demonstrated that the fast wavelet transform is a viable alterna-
tive to the fast Fourier transform whenever one encounters transient phenomena
in functions or, as Gilbert Strang [SN96] puts it, wavelets are best for piecewise
smooth functions.

In part 2 we showed how one can implement the fast wavelet transform effi-
ciently on a vector computer as well as on parallel architectures. The reason why
the wavelet transform lends itself well to parallelization is a consequence of the
locality of wavelets. Hence, little communication is required. We observed very
good actual performance on the Fujitsu VPP300 as well as the IBM PS2 and it was
shown that our parallel algorithm is optimal in the sense that the scaled efficiency
isindependent of the number of processors and it approaches one as the problem
sizeisincreased.

In part 3 we developed several wavelet-based algorithms for solving partial
differential equations. We derived wavelet differentiation matrices and showed
how one can compute the wavelet transform of a circulant NV x N matrix A in
O(N) steps using storage bounded by 2A N elements. Further, it was shown that
if A is also banded, which is the case for a differentiation matrix, then the work
needed for computing a matrix-vector product in the wavelet domain is O(N).
Moreover, it was shown that the complexity grows with the transform depth .
However, the wavelet compression potential grows with A too. Consequently, the
feasibility of performing such a multiplication depends on whether the gain from
wavelet compression outweighs the increased cost of doing the multiplication in
the wavelet domain. This is the central question for wavelet-based solvers.
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Examples of the numerical solution of partial differential equations were given.
In particular, we developed a wavelet split-step method for the nonlinear Schro-
dinger equation as well as Burgers’ equation.

It was observed that the problem size as well as the compression potential must
be very large for this method to be competitive with traditional methods. Whereas
it is straightforward to obtain the wavelet expansion of a known function, it can
be exceedingly difficult to efficiently obtain the wavelet coefficients of a solution
to a partial differential equation. Similar conclusions were reached by [Wal96, p.
111-29, V-1], [FS97, Jam94, VP96, CP96, PW96].

Finally, we outlined a different approach called the wavelet optimized finite
difference method. This method uses the wavelet transform as a means for gen-
erating an adaptive grid for a traditional finite difference method, and the results
for the nonlinear Schrddinger equation and Burgers’ equation are promising. The
pertinent question is not whether an adaptive grid is better than a fixed grid, but
whether it can be generated better and more cheaply through other means than
wavelets. However, this example indicates that wavelets can play the role as a
powerful tool for dynamic analysis of the solution as it evolves.

In both cases we observed that the problem size has to be very large and the
solution must be extremely sparse in a wavelet basis before wavelet-based meth-
ods for solving partial differential equations have a chance to outperform classical
methods — and even then, the advantage relies on appropriate choices of several
critical parameters.

We conclude by pointing out what we see as the main obstacles for obtaining
truly feasible and competitive wavelet-based solvers for partial differential equa-
tions. Part of the problem is the fact that there is always a finest level or grid
inherent all wavelet approaches. Future research could be directed at methods for
avoiding the computations in the space of scaling function or on the finest grid.
This would for example require a wavelet transform of data that are not equally
spaced.

Another intrinsic problem is that compression errors tend to accumulate when
applied to an iterative process. This puts a severe restriction on the amount of ad-
missible compression. An error which is acceptable for a compressed signal may
be detrimental for a solution to a partial differential equation when accumulated.
Also, when errors are introduced, the solution may become less smooth which in
turn means that the subsequent wavelet compression potential drops.

Finally, many algebraic operations in the wavelet domain tend to require com-
plicated data structures [BK97, Hol97]. Such data structures may involve pointers
and other types of indirect addressing as well as short vectors. For this reason
implementations are unlikely to perform well on computer architectures such as
vector processors.
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Much research in this field is on its way and it is too early to say whether the
problems mentioned above will be solved. However, there is no doubt that wavelet
analysis has earned its place as an important alternative to Fourier analysis — only
the scope of applicability remains to be settled.






Appendix A

M oments of scaling functions

Consider the problem of computing the moments as given in (2.26):

o0

Mlp:/_ 2Po(e —l)de, lpel (A1)

By the normalization (2.2) we note first that
M)=1, lcZ (A.2)
Let [ = 0. The dilation equation (2.17) then yields

MP = /_Oo () dz

o0

D-1 o
= V2) ak/ 2P (2x — k) da
k=0 e

\/5 D-1 o
T ot . “k/ y oy — k) dy, y =2z
k=0 e

or

\/§ D-1

Mg = 505 > My (A.3)
k=0

To reduce the number of unknowns in (A.3) we will eliminate AZ; for & # 0.

Using the variable transformation y = = — [ in (A.1) and following a similar

approach as in the derivation on page 20 yields

My = / Ty 1Pély) dy

o0

= zp: (i) v /_Oo Yy oly)dy

n=0 0
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or

P
p —n T
M?P = Z <n> P~ M (A.4)
Substituting (A.4) into (A.3) we obtain
\/§ D-1 P p » .
Mg = op+1 Z @k Z <n> R My
k=0 =0

\/§p—1 p nD—l » \/§ D-1
S AL TSR AT 3

n=0 k=0 k=0
V2
Solving for M! yields
\/§ p—1 p . D—1 .
MP = =T > <n> My agk? (A.5)

n=0 k=0

Equation (A.5) can now be used to determine the pth moment of ¢(«), M for
any p > 0. For p = 0 use (A.2). The translated moments A4 are then obtained
from (A.4).



Appendix B

The modulus operator

Letn € Z then

n=pq+r (B.1)

where p, ¢, € Z. We denote ¢ the quotient of » divided by p and r the remainder
of that division. The ¢ and r are not uniquely determined from p and » but given
p, n we speak of the unique equivalence class consisting of all values of r fulfilling
fulfilling (B.1) with ¢ € Z.

However, one representative of this equivalence stands out. It is called the
principal remainder and it is defined as

n
r:nmodp:n—p{—}
P

where [-] denotes the nearest integer towards zero.

This is the way modulus is implemented in many programming languages
such as Matlab. While mathematically correct, it has the inherent inconvenience
that a negative r is chosen for n < 0. In many applications such as periodic
convolution we think of r as being the index of an array or a vector. Therefore,
we wish to choose a representative where r € [0, p — 1] for all n € Z. This can be
accomplished by defining

r= iy =n |2 ®.2)

where |n/p| denotes the nearest integer below n/p. We have introduced the no-
tation (n), in order to avoid confusion, and we note that

(n), = nmodp for n>0,p>1
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For practical purposes (n), should not be implemented as in (B.2); rather, it
should be written using the built-in modulus function modifying the result when-
ever needed.

The programming language Fortran 90 includes both definitions, so MOD (n, p)
is the ordinary modulus operator, where MODULO (n, p) implements (n), (see
[MR96, p 177]).

Definition B.1 Let n begivenasin (B.1). If r = 0, we say that p isadivisor inn
and write

pln

It follows that for all p, ¢, n,r € Z we have
pln—=r) and ¢|(n—r)
LemmaB.1 Letny,ny, g € Z. Then

(niEng), = (n1 £ (n2)g)g

(mina)y = (ni(n2)g)q

Proof: We write n, as in (B.1) and find

(n1£n9), = (£ (p2q+r2)),
= (n1 +ra),

= (m1 £ (n2)q)q

and

(ning)y = (ni(p2q+r2))q
nip2q + nira),
n1r2>

{
=
=
= (m(n2)q)q
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LemmaB.2 Letk,n,q € Z. Then

Proof: We write n as in (B.1). Then
ql(n—r)
forg,n,r € Z. When ¢ is a divisor in n — r then also
kq | k(n—r)
from which we get

kr = (kn)k,
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Appendix C

Circulant matricesand the DFT

We state some properties of circulant matrices and describe their relation to con-
volution and the discrete Fourier transform (DFT).

Definition C.1 (Circulant matrix) Let A bean N x N matrix and let a =
[ao,ay, ... ,an_1]T bethefirst columnof A. Then A iscirculant if

[A]m,n = Q(m—n)y, M,N = 0,1,... ,N—1

A circulant 4 x 4 matrix has the form

g as
a1 Qo
az ay
as Qg

a2
as
Qg
a1

a1
a2
as
Qg

Since all columns are shifted versions of a, it suffices to store the N elements of
a instead of the N? elements of A. Also, computational work can be saved using

the circulant structure.

Matrix vector multiplication with a circulant matrix is closely related to dis-
crete (cyclic) convolution which is defined as follows

Definition C.2 (Discrete convolution) Let = [zg,zy,... ,2x_1]7 and define

y and z similarly. Then

z=x*y

isthe (cyclic) convolution defined by

N-1

Zm = Z TnYm—n)y, M

n=0

=0,1,...,N—1 (C.1)
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The discrete Fourier transform (DFT) is closely related to convolution and circu-
lant matrices. We define it as follows:

Definition C.3 (Discrete Fourier transform) Let {;} 5" be a sequence of N
complex numbers. The sequence {3 }+-," defined by

where wy = ¢2"/V isthe discrete Fourier transform of {z;}7 ;"

There are a number of variants of the DFT in the literature, and no single defini-
tion has a clear advantage over the others. A particular variant should therefore be
chosen such that it suits the context best. The choice we have made here is mainly
motivated by the fact that it yields a simple form of the convolution theorem (The-

orem C.1).
Lete = [vg,21,... ,oy_1)t and & = [Z¢, 21,... ,2nx_1]T. Then the DFT can
be written in matrix-vector form as
x=Fyax (C.2)
where
[FN]k,l — w;fkl — e—i27rkl/N (C3)

isthe N x N Fourier matrix.
The inverse of F x satisfies the relation
1

Fy = WFN (C.4)

This is seen from the matrix product

n—m) | N m=mn
[F ]t [FN]kn ZwN —{ 0 m+#n

Consequently, z = F'y'a& and we have

Definition C.4 (Inverse discrete Fourier transform) Let {a;}7 ;" and {&; 17
be given asin Definition C.3. Then the inverse discrete Fourier transform (IDFT)
is defined as

Tl 1=0,1,... ,N—1 (C.5)



211

Both the DFT and the IDFT can be computed in O( N log, N) steps using the fast
Fourier transform algorithm (FFT).

The link between DFT and convolution is embodied in the convolution theo-
rem, which we state as follows:

Theorem C.1 (Convolution theorem)

z=x+xy << z=diag(2)y

Proof: We begin by writing the components of  and y in terms of those of & and
Y, l.e.

N-1
1 I kn
r, = — Tpw
N N
k=0
N-1 N-1
1 ~ k{m—n 1 ~ —kn km
Ym-r)y = 7§ ykw]V( = N (Irwoy" Jwy

N-1 1 N-1 1 N-1
pe _ - i,kwkn 4+ glw—lnwlm
—— g
N N N — N N

n=0 k=0
N—-1N-1 N-1
J— 1 o A lm n(k—l)
= m TEYiWn War
k=0 [=0 n=0
N-1
- L Erirwn”
N N
k=0

Hence z; = #y, fork = 0,1,... , N — 1 by the definition of the IDFT (C.5). O

Corollary C.2 The convolution operator is commutative
LY =Y+
Proof: Using Theorem C.1 we get

z+y = Fy'diag(2)y = Fy'diag(9)z = y + =
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Matrix multiplication with a circulant matrix is equivalent to a convolution:
Lemma C.3 Let A and a be defined as in Definition C.1 and = ¢ RY then

Ar =ax*xx

Proof:
N—-1 N—-1
[Aw]m = Z[A]m,nxn - Am—n)yLn
n=0 n=0
= [zx*xal, = [axx],, m=01, SN —1

a

We now use the convolution theorem to obtain an alternative and useful charac-
terization of circulant matrices.

Theorem C.4
Aiscirculant & A =Fy'A.Fy, A, =diag(a)
Proof:

= Let A bean N x N circulant matrix and let & and y be arbitrary vectors of
length V. Then, by Lemma C.3 and Theorem C.1

y = Az
= a*x
= F'diag(a)z
= F'diag(a)Fye
the factorization follows.

<: Let A = Fy'A,Fyand lete, = I., be the n’th unit vector of length .
The element [A],, . can then be extracted as follows

[A]m,n = [F]_\flAaFN]m,n

a(m—n>N

Hence A is circulant according to Definition C.1.
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Theorem C.5 Circulant matrices with the same dimensions commute.

Proof: Let A and B be circulant N x N matrices according to Definition C.1.
Then we have from Theorem C.4

AB = F'A,FNyF'AFy = Fy'A A Fy
Since A, and A, are diagonal, they commute and we find

AB = F}'A\A Fy = FYAFyF'AFy = BA

0
Theorem C.6

Aiscirculant < A~ 'iscirculant
with

A= FJA'Fy, A, =diag(a)
Proof: Using the factorization given in Theorem C.4 we find
A" = (FYAFN)' = FYA'Fy
0

Since A, is diagonal, A" is computed in N operations. Hence the computa-
tional complexity of computing A~ is dominated by that of the FFT which is
O(N log, N).
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Appendix D

Fourier differentiation matrix

Let f be a 1 periodic function which is d times differentiable and consider its

Fourier expansion

o0

§ ck€227rkav7 reR

k=—c0

where ¢;, = fol f(z)e= e 4z,
We approximate f by the truncated expansion

/(=)

N/2-1
In(x) = Z e reR
k=—N/2
Differentiating d times then yields
N/2-1
Wiay= 3 4™, veR
k=—N/2
where
cggd) = (i27k)cr, k= —g, —g +1,... ,g —1

Hence £\ (=) approximates f(9(z).
Let N=2/forJ e Nandz; = [/N,l = —N/2,—N/2 + 1,
Define the vectors f and ) as

N/2-1 N/2-1
k:—N/? k:—N/?
N/2-1 N/2-1
d d d) i27ka d
FO = [Py = 3 e = Y 0N
k:—N/? k:—N/?

(D.1)

CNJ2 1.

(D.2)

(D.3)
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for
l:—ﬁ,——ﬂ, ,5—1
2 2 2
Then
N/2-1 N N N
l_%/zflw—’” h=—Fmg 5 -]

We will now derive a matrix expression for computing £(* using the Fourier
matrix F' described in (C.3). The problem is that the Fourier matrix is defined
for vectors index by [ = 0,1,... , N — 1 whereas our vectors here are shifted by
N/2. Applying F' /N directly to the vector f yields

| N N/2—-1
~ fionyppwy™ = Z Frwkt _kN/z = (=%, k=0,1,...,N—1
1=0 1/— N/2 H’_/

:(—1)

The coefficients are N-periodic, ¢; = ¢y, SO We can extend the definition
of ¢!”) to the interval [0, N — 1] as follows:

(d) 27'['ka for kzO,l,,N/Z—l
¢ = (D.4)
2n(k — N)ep, for k= N/2,N/2+1,... ,N—1
Let
c = {alisy
RO {cu)}N‘l
k k=0
and define the Fourier differentiation matrix D" as the diagonal matrix
2k for k=0,1,... ,N/2—1
{D(;”} - / (D.5)
kok 2n(k—N) for k=N/2,N/2+1,... ,N—1

then (D.4) has the vector formulation
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Applying N F' to ¢! then yields

N-1 N-1

k(d) kI (d) kI —kN/2

(=)' wy = C WNWN

k=0 k=0
N-1

_ (d) k(I-N/2)

= Cp YN

k=0

Hence N and 1/N cancel out and we arrive at

f = Fy'DYFyf

The shift in (D.5) can for example be done in Matlab using FFTSHIFT or a

similar function. If the period is different from 1, say L, then D}il) must be scaled
as described in Section 7.4.1.
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Appendix E

List of Matlab programs

The following Matlab programs demonstrate selected algorithms and are available
on the World Wide Web at

http://www.imm.dtu.dk/ omni/wapa20.tgz

More documentation is found in the enclosed README file.

Function Page Description

wavecompare 10 Compares a wavelet approximation to a
Fourier approximation

basisdemo 10 Generates and displays periodic wavelets

daubfilt 16 Returns a vector containing the filter coeffi-
cients ag, ay, ... ,ap_y

low2hi 17 Computes {b; } - from {a;}2 -

filttest 21 Checks vector of filter coefficients

cascade 45  Computes function values for ¢(x) and ¢(z)

dst, idst 49 Computes the DST and its inverse
fwt, ifwt 59 Computes the FWT and its inverse
fwt2, ifwt2 60 Computes the 2D FWT and its inverse

conn 111  Computes I'** for a given wavelet genus D
diftest 117  Tests convergence rates for DY) and D
difmatrix 118  Computes the differentiation matrix D® /.4
nlsfft 195 Demonstrates the FFT split-step method for
the Nonlinear Schrodinger equation
nlswofd 195 Demonstrates the WOFD method for the

nonlinear Schrodinger equation
burgerwofd 197 Demonstrates the WOFD method for Burg-
ers’ equation

&N
5N
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parallelization of, 95
vector performance, 81
2D circulant wavelet transform
algorithm, 139
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storage requirement, 145

accuracy
of the multiresolution spaces, 61
of wavelet differentiation matrix,
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of wavelet-Galerkin method, 165
Amdahl’s law, 85
approximating scaling function coef-

ficients by scaled function val-
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approximation properties, 61-70
of V;, 63
of V;, 61
approximation spaces, 11-13, 38
arithmetic-geometric series, 144

banded circulant matrix, 146
bandwidth, 114, 116, 146
basic scaling function, 13
basic wavelet, 13

Burgers’ equation, 185, 195

calculation of bandwidths, 147
cascade algorithm, 43

CFWT, 97
circulant 2D wavelet transform
algorithm, 139
complexity of, 140
storage, 142
storage requirement, 145
circulant matrix, 209
and convolution, 212
and DFT, 212
commutation, 213
inverse, 213
wavelet transform of, 121, 127
CIRFWT, 139
CIRMUL, 158
column-shift-circulant matrix, 127
communication, 89
communication-efficient FWT, 95, 97
performance model for, 97
complexity
of 2D circulant wavelet transform,
140
of 2D FWT, 60
of FWT, 59
of matrix-vector multiplication in
the wavelet domain, 159
of wavelet split-step method, 182
compression, 64, 67-70
error, 69, 173
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of matrix, 171
of solution to Burgers’ equation,
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of solution to the nonlinear Schrodinger filter coefficients, 16

equation, 178
of vector, 171
connection coefficients, 108
conservation of area, 33
convolution, 209
convolution theorem, 211

data structure for 2D wavelet trans-
form, 136
depth, 15
DFT, 210
and circulant matrices, 212
differential equations
examples, 163-198
differentiation matrix, 114
convergence rate, 115, 165
Fourier, 215
with respect to physical space, 115
with respect to scaling functions,
114
with respect to wavelets, 119
WOFD, 190
dilation equation, 15, 16, 33
in frequency domain, 25
discrete Fourier transform, 210
DST, 49

evaluation of scaling function expan-
sions, 47

expansion
Fourier, 3
periodic scaling functions, 39
periodic wavelets, 39
scaling functions, 14, 47
wavelets, 6, 14

fast wavelet transform, 52—60
complexity of, 59
of circulant matrix, 127
of circulant, banded matrix, 146
FFT split-step method, 185

finite differences on an irregular grid,
189
Fourier differentiation matrix, 215, 216
Fourier expansion, 3
Fourier transform
continuous, 25
discrete, 210
inverse discrete, 210
Fujitsu VPP300, 73, 99
FWT, 52, 59, 121
complexity of, 59
Definition of, 58
Matrix formulation, 56
parallelization of, 86
periodic, 54
vector performance, 74

genus, 16
grid generation using wavelets, 193

heat equation, 168
hybrid representation, 170
with respect to physical space, 169
with respect to scaling functions,
168
with respect to wavelets, 169
Helmholz equation, 163
hybrid representation, 167
with respect to physical space, 167
with respect to scaling functions,
163
with respect to wavelets, 166

IBM SP2, 99
IDFT, 210
IDST, 49
IFWT, 54, 59
periodic, 56
L, 17
inverse discrete Fourier transform, 210
inverse fast wavelet transform, 54
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inverse partial wavelet transform, 54
IPWT, 54
periodic, 56

Kronecker delta, 14
A, 15

Mallat’s pyramid algorithm, see fast
wavelet transform
Matlab programs, 219
matrix
banded, 146
circulant, 209
column-shift-circulant, 127
row-shift-circulant, 127
matrix exponential of a circulant ma-
trix, 176
matrix-vector multiplication in a wavelet
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complexity, 159
MFWT, 79
parallel algorithm for, 91
parallelization of, 91
performance model for, 93
vectorization of, 79
modulus operator, 205
moments
of scaling functions, 203
vanishing, 19
motivation, 3
multiple 1D FWT, 79
multiresolution analysis, 11

nonlinear Schrodinger equation, 174,
191
numerical evaluation of ¢ and v, 43

orthogonality, 14, 33
in frequency domain, 30

parallel performance
of the 2D FWT, 96-100

of the MFWT, 93
parallel transposition and data distri-
bution, 96
parallelization, 85
of the 2D FWT, 95
of the FWT, 86
of the MFWT, 91
Parseval’s equation for wavelets, 15
partial differential equations, see dif-
ferential equations
partial wavelet transform, 53
PDEs, see differential equations
performance model
for the communication-efficient FWT,
97
for the MFWT, 93
for the replicated FWT, 96
periodic boundary value problem, 163
periodic functions
on the interval [«, b], 50
periodic FWT, 54
periodic IFWT, 56
periodic initial-value problem, 168, 174,
185
periodic IPWT, 56
periodic PWT, 54
periodic scaling function
expansion, 39
periodic wavelet
expansion, 39
periodized wavelets, 33
¢, 13
Projection
on V; and W}, 41
onV;and W;, 15
projection methods, 107
property of vanishing moments, 20
¥, 13
pth moment of ¢(x — k), 19
PWT, 53
periodic, 54
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pyramid algorithm, see fast wavelet
transform

replicated FWT, 95
performance model for, 96

RFWT, 95

row-shift-circulant matrix, 127

scale parameter, 6
scaling function, 13
expansion, 14, 47
evaluation of, 47
in frequency domain, 25
moments of, 203
periodized, 33
support of, 17
shift parameter, 6
shift-circulant matrices, 127
SP2, 99
split-step method, 175
FFT, 185
wavelet, 175
split-transpose algorithm, 81
storage of 2D circulant wavelet trans-
form, 142
storage requirement, 145
support, 17
survey of wavelet applications to PDEs,
105

time stepping in the wavelet domain,
170
two term connection coefficients, 108

Vi
approximation properties of, 61
definition of, 11

v
approximation properties of, 63
definition of, 38

vanishing moments, 19, 20, 33

vector performance

of the 2D FWT, 81

of the FWT, 74
vectorization

of the 2D FWT, 81

of the FWT, 73

of the MFWT, 79
VPP300, 99

W,
definition of, 12
Wy
definition of, 38
wavelet, 13
algorithms, 43-60
basic, 13
differentiation matrices, 105-119
expansion, 6, 14
genus, 16
in frequency domain, 25
periodized, 33
support of, 17
wavelet compression, see compression
wavelet differentiation matrix, 119
wavelet equation, 15, 16
in frequency domain, 29
wavelet optimized finite difference method,
188
wavelet split-step method, 175
complexity of, 182
wavelet transform, see fast wavelet trans-
form
wavelets
on the real line, 11
on the the unit interval, 33
WOFD, see wavelet optimized finite
difference method



