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Résumé

Introduction

L’effet Casimir est une force attractive apparaissant entre deux objets neutres et réfléchissants,
placés dans le vide. Cet effet a été découvert par Hendrik Casimir en 1948 à la suite de travaux
sur les colloïdes et la force de van der Waals. Le vide quantique est le siège de fluctuations du
champ électromagnétique, associées à une énergie ~ω

2 pour le mode de fréquence ω. Lorsque l’on
considère le vide quantique entre deux objets réfléchissant, des effets de résonance apparaissent, et
la distribution en fréquence des fluctuations est modifiée. La pression radiative associée au champ
électromagnétique est donc différente à l’intérieur et à l’extérieur de la cavité, et il en résulte une
force attractive entre les deux objets. Pour deux miroirs plans, infinis, parallèles, et parfaitement
réfléchissants à température nulle, Casimir donne l’expression de cette force par unité de surface
en fonction de la distance L entre les deux miroirs :

F

A
= − ~cπ2

240L4
. (0.1)

Si les premiers travaux expérimentaux n’ont pas réussi à confirmer cet effet de manière précise,
à cause de nombreuses difficultés techniques, une seconde série d’expériences beaucoup plus
performantes a vu le jour à la fin des années 90, avec notamment les travaux de Lamoreaux en 1997
et 2011 utilisant un pendule de torsion, ceux de Mohideen en 1998 utilisant un microscope à force
atomique, et ceux de Decca en 2003 utilisant un micro-résonnateur. Toutes ces expériences sont
réalisées dans la géométrie d’une sphère face à plan, de manière à éviter le problème du maintient
du parallélisme entre deux plaques planes.

De nombreux travaux théoriques ont vu le jour, afin de modifier le résultat original (0.1) calculé
par Casimir dans une configuration très idéalisée, par la prise en compte de conditions plus réalistes.
La réflexion imparfaite des miroirs est incorporée dans les calculs théoriques dès 1956 grâce à
Lifshitz et l’utilisation de la fonction diélectrique ε(ω) pour décrire la conductivité des matériaux.
L’effet de la température non-nulle est également prise en compte quelques années plus tard, en
ajoutant aux fluctuations du vide les fluctuations thermiques, exprimées grâce à la formule de
Planck :

~ω −→ ~ω
(

1

2
+ nω

)
avec nω =

1

e
~ω
kBT − 1

. (0.2)

Enfin la géométrie sphère-plan des expériences est habituellement traitée grâce à l’approximation de
proximité (PFA). Le domaine de validité de cette approximation est la limite des courtes distances,
qui est réaliste au vue des paramètres utilisés dans les expériences, cependant l’erreur de cette
approximation n’est pas maîtrisée. De plus, cette méthode utilise l’évaluation de l’effet Casimir
dans la géométrie plan-plan afin d’introduire les effets de la température et de la conductivité finie,
ce qui empêche de voir de possible couplages entre ces effets et ceux de la géométrie.

Cette thèse présente une évaluation de l’effet Casimir dans la géométrie sphère-plan, basée sur la
méthode de diffusion, avec un traitement multipolaire permettant d’obtenir des résultats très précis,
et dont l’erreur est maîtrisable. Les descriptions de la réflexion imparfaite et de la température
non-nulle sont directement incorporées dans l’évaluation faite pour la géométrie correcte. Les
résultats numériques et analytiques permettent d’estimer l’erreur faite par l’approximation PFA,
d’observer des couplages entre les effets de température, de conductivité finie, de dissipation, et
de géométrie. Les travaux réalisés lors de cette thèse permettent donc à la fois une meilleure
compréhension des résultats expérimentaux, mais aussi une étude, plus théorique, de la riche
dépendance de l’effet Casimir à la géométrie.
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1. Rappels sur la méthode de diffusion pour l’effet Casimir et exemple de la
géométrie plan-plan

Dans cette première partie nous introduisons la méthode de diffusion, qui permet d’exprimer
l’effet Casimir en fonction des opérateurs de réflexion sur les objets, et rappelons comment cette
méthode permet la prise en compte de propriétés optiques réalistes pour les matériaux et de la
température arbitraire. La géométrie plan-plan est montré comme exemple d’application de cette
méthode, et les principaux résultats obtenus dans cette configuration sont rappelés. Enfin, la
méthode d’approximation de proximité (PFA), communément utilisée pour calculer l’effet Casimir
dans la géométrie sphère-plan, est rappelée.

La méthode de diffusion

La formule de diffusion est une méthode générale pour évaluer l’interaction Casimir entre deux
objets séparables par un plan. Elle utilise la théorie de l’optique des réseaux pour exprimer l’effet
Casimir en fonction des propriétés diffusives des objets. Son expression, donnée en Eq.(0.3), utilise
les opérateurs de réflexion Ri sur l’objet i, évalués à la fréquence imaginaire ω = ıξ:

E = ~
∫ ∞

0

dξ

2π
ln detD(ıξ) avec D = I −R1T1←2R2T2←1 , (0.3)

où les opérateurs de translation T permettent d’exprimer les opérateurs de réflexion dans le repère
associé à chaque objet.

La formule (0.3) prend une forme particulièrement simple dans le cas de deux miroirs plans infinis
parallèles, séparés d’une distance L dans la direction z. Les opérateurs ont alors une expression
très simple lorsqu’on les exprime dans la base des modes plans de fréquence ω, notés | k, p, φ〉,
où k = (kx, ky) est la partie transversale du vecteur d’onde, p = TE,TM est la polarisation, et
φ = ± est le sens de propagation, permettant de déterminer la partie longitudinale du vecteur
d’onde kz = φ

√
ω2

c2
− k2. Après le passage aux fréquences imaginaires ω = ıξ, l’opérateur D a

pour éléments:

D(ıξ) | k, p,+〉 = (1− ρp(ξ,k)) | k, p,+〉 avec ρp(ξ,k) = r(1)
p (ξ,k)r(2)

p (ξ,k)e−2κL

D(ıξ) | k, p,−〉 =| k, p,−〉 (0.4)

où rTE, rTM sont les coefficients de Fresnel pour chaque miroir plan, et κ =
√

ξ2

c2
+ k2. En insérant

ces éléments dans la formule de diffusion (0.3), et en utilisant la condition des miroirs parfaitement
réfléchissants rTE = rTM = 1, on retrouve l’expression originale (0.1) calculée par Casimir.

Prise-en-compte des propriétés optiques des matériaux

La méthode de diffusion permet de décrire les propriétés optiques des objets par l’intermédiaire de
l’opérateur de réflexion, et en particulier de prendre en compte la conductivité finie des matériaux.
L’imperfection de la réflexion peut par exemple être décrite pour les métaux par les modèles de
plasma et de Drude pour la fonction diélectrique ε(ω), ce dernier modèle se différenciant par l’ajout
de la description de la dissipation dans les métaux:

εplas(ω) = 1− ω2
P

ω2
εDrud(ω) = 1− ω2

P

ω (ω + ıγ)
. (0.5)

Ces deux fonctions diélectriques sont illustrés par le graphique de gauche de la figure 1, où l’on
peut voir que ces modèles permettent de recréer la transparence des métaux à haute fréquence.
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Figure 1: (gauche) Fonction diélectrique ε(ξ) pour les modèles de plasma de et Drude en fonction de
la fréquence imaginaire ıξ. (droite) Facteur de correction ηPE = Emetal

Eperf pour la conductivité
finie avec les modèles de plasma et de Drude, en fonction de la distance L entre les deux
plans.

Ces deux modèles diffèrent uniquement pour les basses fréquences, où la divergence est en ξ−2

pour le modèle plasma et en ξ−1 pour le modèle de Drude.
Dans le cas particulier de la géométrie plan-plan, la méthode de diffusion offre un cadre permettant

de prendre en compte facilement la fonction diélectrique ε(ıξ) modélisant la réponse optique des
matériaux, par l’intermédiaire des coefficients de Fresnel rTE, rTM. Le changement de l’énergie
et de la force de Casimir par rapport au cas des miroirs parfait peut alors être exprimé par les
facteurs correctif ηPE = Emetal

Eperf et ηPF = Fmetal

Fperf , qui ont pour expressions :

ηPE =
Emetal

Eperf
= −180L3

cπ4

∫ ∞
0

dξ

∫ ∞
ξ/c

κdκ ln [(1− ρTE(ξ, κ))(1− ρTM(ξ, κ))]

ηPF =
Fmetal

F perf
=

120L4

cπ4

∫ ∞
0

dξ

∫ ∞
ξ/c

κ2dκ

[
ρTE(ξ, κ)

1− ρTE(ξ, κ)
+

ρTM(ξ, κ)

1− ρTM(ξ, κ)

]
. (0.6)

L’évaluation numérique de ces expressions est présentée en fonction de la distance L séparant
les deux miroirs par le graphique de droite de la figure 1, où l’on peut observer que la réflexion
imparfaite diminue l’effet Casimir pour les distances courtes, mais n’a aucune influence à longue
distance (L & 1 µm). Les facteurs ηPE et ηPF deviennent proportionnels à L à courte distance, un
régime asymptotique qui peut être quantifié analytiquement :

ηPE =
3α

2

L

λP
et ηPF = α

L

λP
avec α =

30√
2π2

∞∑
n=1

1

n3

(4n− 3)!!

(4n− 2)!!
' 1.1933 (0.7)

où λP est la longueur d’onde plasma, associée à la fréquence plasma par la relation λP = 2πc
ωP

.

La méthode de diffusion à température non-nulle

La formule de diffusion (0.3) peut être modifiée afin de prendre en compte les fluctuations thermiques
en plus des fluctuations du vide, apparaissant dès que la température est non-nulle. L’énergie de
chaque mode du vide ~ω

2 est donc transformée selon (0.2), utilisant le nombre moyen de photons
thermiques nω donné par la formule de Planck. Lorsque cette modification est introduite dans la
formule de diffusion (0.3), qui donne maintenant l’énergie libre de Casimir F , on peut montrer
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mathématiquement que l’intégrale sur les fréquences est remplacée par une somme discrète sur les
fréquences (ξn)n∈N dites de Matsubara:

F = kBT

′∑
n

ln detD(ıξn) avec ξn = nωT = n
2πkBT

~
(0.8)

où l’apostrophe sur le symbole
∑

indique une somme sur N avec un facteur 1
2 pour le terme 0.

Pour des températures basses, les fréquences de Matsubara se rapprochent et la somme discrète
tend vers l’intégrale de l’expression (0.3). Pour des températures hautes, seule la fréquence nulle
intervient dans cette somme.

Dans l’exemple de la géométrie plan-plan, cette modification entraîne une modification de
l’énergie libre de Casimir, qui peut être mesurée à l’aide du facteur correctif thermique ηTF = F(T )

F(0) .
Pour les miroirs parfaits, ce facteur est une fonction croissante de la distance et de la température,
toujours supérieur à 1, comme illustré par le trait noir dans le graphique gauche de la figure 2.
L’entropie de Casimir est alors une quantité toujours positive.

Lorsque les effets de la température et de la réflexion imparfaite sont pris en compte simultané-
ment, il apparaît une différence fondamentale entre les résultats obtenus à partir des modèles de
plasma et de Drude. Pour le premier, les effets des deux corrections sont très légèrement corrélées,
et la correction totale est proche du produit des deux corrections considérées séparément, comme
illustré par le trait bleu dans le graphique gauche de la figure 2. Pour le modèle dissipatif de Drude
en revanche, de fortes corrélations apparaissent entre les effets thermiques et de conductivité finie,
comme illustré par le trait rouge dans le même graphique. Ces corrélations entraînent l’apparition
de valeurs négatives pour l’entropie de Casimir aux distances intermédiaires, et aux grandes
distances un facteur 2 de réduction de l’effet Casimir par rapport aux métaux sans dissipation.

0.01 0.1 1 10 1000.25

0.5

1

2

4

L ( m)
 

 
η  (plasma)
η  (Drude)
ηT (perfect)
ηE

P (plasma)
ηE

P (Drude)

Figure 2: (gauche) Facteurs de correction de conductivité ηPE à température nulle (tirets), de
température ηTE (trait continu noir) et prenant en compte les deux effets simultanément,
pour le modèle plasma (trait continu bleu) et la modèle de Drude (trait continu rouge).
(droite) Schéma reprenant la processus d’intégration des contributions à la force de
Casimir fait par l’approximation de proximité (PFA).
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L’approximation de proximité (PFA)

Afin de comparer les résultats des expériences, réalisées dans la configuration sphère-plan, aux
prédictions théoriques, l’approximation de proximité est communément utilisée. Celle-ci repose sur
l’hypothèse que la sphère est "proche" du plan ; en notant R le rayon de la sphère et L la distance
entre le plan et la partie de la sphère la plus proche du plan, le domaine de validité de cette
approximation s’écrit (L� R). Son principe est illustré par le schéma de droite de la figure 2 :
la sphère est découpé en parties infinitésimales de surface d2σ, pour lesquelles on considère que
la force d’interaction est la même que pour la partie d’un plan infini situé à la même distance z.
En intégrant sur la sphère toutes ces contributions on obtient la force totale FPFA (ou de manière
similaire le gradient de la force GPFA) :

FPFA(L,R) = 2πR
EPP(L)

A
GPFA(L,R) = 2πR

FPP(L)

A
(0.9)

exprimé grâce à l’énergie par unité de surface EPP
A entre deux plans, évaluée à la distance L.

Le premier inconvénient de cette approximation est que son erreur n’est pas maîtrisée lorsque l’on
s’éloigne de son domaine limite de validité (L� R). On considère habituellement que cette erreur
est linéaire en L

R , le rapport d’aspect, et l’on cherchera donc à caractériser le coefficient linéaire βE
de la correction géométrique pour l’énergie, en l’exprimant sous la forme d’un développement de
Taylor en L

R :

ρE =
E

EPFA
= 1 + βE

L

R
+ γE

(
L

R

)2

+ · · · . (0.10)

Un raisonnement similaire permet de définir les coefficients linéaires βF , βG pour le facteur correctif
de la force F , et du gradient de la force G. Le second handicap de cette approximation est
qu’elle introduit les propriétés optiques des matériaux et la température par l’intermédiaire du
terme calculé dans la géométrie plan-plan, et donc de manière découplée par rapport aux effets
géométriques. Toute corrélation entre les effets de la géométrie et ceux de la température ou de la
conductivité finie est donc impossible à observer avec cette approximation.

2. Application de la méthode de diffusion au cas de la géométrie sphère-plan

Dans cette partie nous décrivons comment le formule de diffusion précédemment introduite peut
être appliquée à la géométrie sphère-plan à l’aide de l’utilisation conjointe des bases des ondes
planes et sphériques, débouchant sur un développement multipolaire. Nous évoquons ensuite la
mise-en-œuvre numérique pour l’évaluation de l’effet Casimir grâce aux expressions obtenues.

Calcul des opérateurs de réflexion

La formule de diffusion est ici appliquée à la géométrie d’une sphère de rayon R placée à une
distance L d’un plan, (L = 0) indiquant le contact entre les deux objets. L’opérateur de réflexion
sur le plan RP s’exprime aisément dans la base des ondes planes de fréquence imaginaire ıξ
introduite plus haut, à l’aide des coefficients de Fresnel rp(ξ,k) :

RP | k, p,−〉 = rp(ξ,k) | k, p,+〉 RP | k, p,+〉 = 0 . (0.11)

L’opérateur de réflexion sur la sphèreRS est quant à lui mieux exprimé à l’aide des ondes sphériques
| `,m, P 〉, où ` et m sont les indices azimutal et magnétique, et P = E,M la polarisation. Afin
d’exprimer l’opérateur D pour calculer son déterminant, il est également nécessaire de disposer de
transformations entre la base des ondes planes et celle des ondes sphériques. Le schéma présenté
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en figure 3 illustre le cheminement du calcul pour l’aller-retour dans la cavité : on considère une
onde sphérique | `2,m2, P2〉 s’éloignant de la sphère, que l’on transforme en ondes planes | k, p,−〉
descendant vers le plan. L’expression (0.11) est alors utilisée pour la réflexion sur le plan, puis la
réflexion sur la sphère de l’onde plane sortante | k, p,+〉 est écrite grâce aux coefficients de Mie
sous la forme d’ondes sphériques | `1,m1, P1〉.

Figure 3: Schéma de l’utilisation conjointe des bases d’ondes planes et sphériques afin d’exprimer
la formule de diffusion dans la géométrie sphère-plan. La réflexion sur le plan, ainsi que
les deux translations utilisent les ondes planes, la réflexion sur la sphère est décomposée
en ondes sphériques.

Quand toutes ces étapes sont écrites, et que leurs expressions sont regroupées, on peut les
simplifier jusqu’à obtenir l’expression finale :

E =
~c
πR

∫ ∞
0

dξ̃

′∑
m

ln det
[
I −N (m)(ξ̃)

]
F = 2kBT

′∑
n

′∑
m

ln det
[
I −N (m)(ξ̃n)

]
(0.12)

où les ξ̃n = n2πR
λT

sont les fréquences réduites de Matsubara, et l’opérateur réel N s’écrit :

N (m)(ξ̃) =


N (m)
EE (ξ̃) N (m)

EM (ξ̃)

N (m)
ME(ξ̃) N (m)

MM (ξ̃)

 (0.13)

avec les quatre blocs correspondant aux différentes polarisations P1 et P2, et contenant les
coefficients de Mie a` et b` :(

N (m)
EE (ξ̃)

)
`1,`2

=
√

(2`1+1)π
`2(`2+1) a`1(iξ̃)

(
A

(m)
`1,`2,TE(ξ̃) +B

(m)
`1,`2,TM(ξ̃)

)
(
N (m)
EM (ξ̃)

)
`1,`2

=
√

(2`1+1)π
`2(`2+1) a`1(iξ̃)

(
C

(m)
`1,`2,TE(ξ̃) +D

(m)
`1,`2,TM(ξ̃)

)
(
N (m)
ME(ξ̃)

)
`1,`2

=
√

(2`1+1)π
`2(`2+1) b`1(iξ̃)

(
C

(m)
`1,`2,TM(ξ̃) +D

(m)
`1,`2,TE(ξ̃)

)
(
N (m)
MM (ξ̃)

)
`1,`2

=
√

(2`1+1)π
`2(`2+1) b`1(iξ̃)

(
A

(m)
`1,`2,TM(ξ̃) +B

(m)
`1,`2,TE(ξ̃)

)
. (0.14)
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Les blocks A,B,C,D contenus dans ces expressions s’écrivent, pour m ≥ 0 :

A
(m)
`1,`2,p

= m(−1)`2
∫ ∞

1

d cos θ

s(θ)
d`1,sm [sum] Y s

`2m(θ) rp(ıξ, k) e−2ξ̂L cos θ

B
(m)
`1,`2,p

= (−1)`2+1

∫ ∞
1

d cos θ d`1,sm [dif] ∂θY s
`2m(θ) rp(ıξ, k) e−2ξ̂L cos θ

C
(m)
`1,`2,p

= (−1)`2
∫ ∞

1
d cos θ d`1,sm [sum] ∂θY

s
`2m(θ) rp(ıξ, k) e−2ξ̂L cos θ

D
(m)
`1,`2,p

= m(−1)`2+1

∫ ∞
1

d cos θ

s(θ)
d`1,sm [dif] Y s

`2m(θ) rp(ıξ, k) e−2ξ̂L cos θ (0.15)

où l’on a utilisé une forme modifiée des harmoniques sphériques Y`m, ainsi que deux combinaisons
de rotations finies :

d`,sm [sum] = d`,sm,1(θ) + (−1)`+md`,sm,1(π − θ)
d`,sm [dif] = d`,sm,1(θ)− (−1)`+md`,sm,1(π − θ) . (0.16)

Mise-en-œuvre numérique

L’opérateur D ayant une dimension infinie, due à l’infinité de couples d’indices possibles pour
` et m, l’évaluation numérique nécessite une troncation préalable des indices de cet opérateur.
Ceci est possible dans la base des ondes sphériques, en introduisant une coupure `max pour ces
deux indices. Cette troncation ne modifie le résultat de l’évaluation du déterminant que pour de
petites valeurs du rapport d’aspect L

R , pour lesquels de nombreux multipoles contribuent à l’effet
Casimir. Ceci est illustré par le graphique de gauche de la figure 4, où la convergence du résultat
est obtenu pour une troncation d’autant plus élevée que L

R est petit. Ainsi, plus on repousse la
troncation numérique `max à des grandes valeurs, plus il est possible d’atteindre de petites valeurs
du rapport d’aspect L

R . Lors de nos calculs numériques, nous avons pu réaliser des évaluations
avec `max = 520, permettant d’obtenir des résultats précis pour L

R & 0.01.
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Figure 4: (gauche) Energie de Casimir normalisée par l’estimation de PFA ρE = E
EPFA

dans la
géométrie sphère-plan, en fonction de la troncation `max, pour différentes valeurs du
rapport d’aspect L

R . (droite) Magnitude, en puissances de 10, des éléments de la matrice
N (1). Le cas étudié est ξ̃ = 0.1, `max = 30, LR = 1.

La problématique de la stabilité numérique est cruciale avec une telle méthode, à cause de
l’utilisation des fréquences imaginaires, qui transforment une fonction oscillante en une exponentielle
dans l’expression (0.15). Cela entraîne l’apparition de nombres très grands et très petits dans la
matrice N , comme illustré dans le graphique de droite de la figure 4. Il y a donc le risque d’obtenir
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des nombres extérieurs au domaine représentable numériquement, ce qui est peut être évité en
utilisant des représentations plus riches pour les nombres flottants, de type double (64 bits) ou
quadruple (128 bits). D’autre part, ces nombres rendent la matrice très mal conditionnée, ce qui
peut également être la source d’instabilité numériques. Ce problème peut être traité en appliquant
des procédures de régularisation à la matrice, qui laissent son déterminant inchangé.

3. Résultats analytiques

Dans cette partie, on étudie deux régimes limites dans lesquels l’expression de la formule de diffusion
obtenue dans la partie précédente peut être traitée analytiquement. Ces résultats analytiques
seront utiles à la fois pour vérifier les évaluations numériques, mais aussi pour mieux comprendre
les résultats obtenus.

Limite basse fréquence

On considère dans un premier temps la limite basse-fréquence (ξ̃ → 0) pour l’opérateur D(ıξ). Cette
limite est utile pour la détermination de la contribution de la première fréquence de Matsubara
dans l’expression (0.12) donnant l’énergie libre de Casimir. Elle permet en outre d’obtenir la limite
haute-température (T →∞) de l’énergie libre, qui s’écrit :

FHT =
kBT

2
Φ(0) où Φ(ıξ) = ln detD(ıξ) . (0.17)

L’étude de la limite basse-fréquence pour les coefficients de Mie et de Fresnel mettent en évidence
une différence fondamentale entre les cas des miroirs parfaits, décrits par le modèle de plasma, et
par le modèle de Drude. Après un calcul asymptotique permettant d’extraire les termes dominants
de la limite étudiée, on obtient les résultats suivants pour les miroirs parfaits et ceux décrits par le
modèle de Drude :

Φperf(0) = 2

′∑
m

[
ln det

(
D(m)
a,TM(L̃)

)
+ ln det

(
D(m)
b,TE(L̃)

)]
ΦDrud(0) = 2

′∑
m

ln det
(
D(m)
a,TM(L̃)

)
(0.18)

où l’on utilise les matrices D(m)
a,TM et D(m)

b,TE qui ne dépendant que de L̃ = L
R + 1 :

D(m)
a,TM(L̃) = δ`1,`2 −

1(
2L̃
)`1+`2+1

(`1 + `2)!√
(`1 −m)!

√
(`1 +m)!

√
(`2 −m)!

√
(`2 +m)!

D(m)
b,TE(L̃) = δ`1,`2 −

1(
2L̃
)`1+`2+1

`1
`1 + 1

(`1 + `2)!√
(`1 −m)!

√
(`1 +m)!

√
(`2 −m)!

√
(`2 +m)!

. (0.19)

Pour le modèle de plasma, à cause de la limite à basse fréquence du coefficient de Fresnel rTE,
l’expression analytique est plus compliquée et contient encore une intégrale sur la variable cos θ.

Limite grande distance

On considère ensuite la limite grande distance (L� R), pour laquelle il est possible de montrer
que l’on peut tronquer le développement multipolaire à `max = 1 sans modifier le résultats de la
formule de diffusion. En outre, à grande distance la réflexion simple dans la cavité donne une
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contribution beaucoup plus grande que les réflexion multiples, on peut donc remplacer ln detD
par −TrN , l’intégrant pour la formule de diffusion devient alors :

Φ(ıξ) = 2

′∑
m

ln detD(m)
(
ξ̃
)

' −
(
N (0)
EE(ξ̃)

)
(1,1)
−
(
N (0)
MM (ξ̃)

)
(1,1)
− 2

(
N (1)
EE(ξ̃)

)
(1,1)
− 2

(
N (1)
MM (ξ̃)

)
(1,1)

. (0.20)

Le régime grande distance permet donc une approximation dipolaire avec réflexion simple du
développement multipolaire mulitdiffusif. En explicitant chaque terme dans les matrices N , et en
observant que (L� R) entraîne ξ̃ � 1 dans les coefficients de Mie, on obtient finalement, selon le
modèle utilisé pour décrire les miroirs :

Φperf
LD (ξ̃) = −3

4

1

L̃3

(
1 + 2ξ̃L̃+ 2

(
ξ̃L̃
)2
)
e−2ξ̃L̃

Φplas
LD (ξ̃) =

(
1 +

1

α2
− cothα

α

)
Φperf

LD (ξ̃)

ΦDrud
LD (ξ̃) =

2

3
Φperf

LD (ξ̃) (0.21)

où α = 2π R
λP

, et l’on a fait l’hypothèse supplémentaire que (R 6� λP ) pour le modèle de plasma, et

les deux hypothèses
(
L� λ2P

λγ

)
et
(
L� R2λγ

λ2P

)
pour le modèle de Drude. Ces résultats montrent

que la limite asymptotique à grande distance a la même forme, et donc les mêmes propriétés, pour
les trois modèles de miroirs, moyennant une multiplication par un facteur 2

3 pour le modèle de
Drude, et par f(α) = 1 + 1

α2 − cothα
α pour le modèle plasma, fonction croissante de α prenant des

valeurs entre 2
3 et 1, comme illustré par le graphique de gauche de la figure 5.
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Figure 5: (gauche) Fonction f(α) = 1 + 1
α2 − cothα

α . (droite) Facteur correctif thermique ϑF pour
l’énergie libre de Casimir, en fonction de ν = 2π LλT .

À température nulle l’intégration de Φ(ξ̃) donné par les équations 0.21 donne l’énergie de Casimir
ELD, tandis qu’à température non-nulle, une somme sur les fréquences de Matsubara permet
d’obtenir l’énergie libre FLD. Dans le cas des miroirs parfaits, on obtient alors :

Eperf
LD = −9~cR3

16πL4

Fperf
LD = − 3~cR3

4λTL3
φ

(
2πL
λT

)
avec φ(ν) =

ν sinh ν + cosh ν
(
ν2 + sinh2 ν

)
2 sinh3 ν

. (0.22)
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On retrouve alors bien Fperf
LD (T = 0) = Eperf

LD , et le changement en l’énergie dû à la température
peut être mesuré grâce au facteur correctif thermique ϑF = F(T )

F(0) , qui est présenté dans le graphique
de droite de la figure 5. On observe en particulier que ce ratio passe par un minimum inférieur à
1 pour des distances intermédiaires, ce qui implique pour certaines valeurs des paramètres une
contribution répulsive des photons thermiques à la force de Casimir, ainsi que des valeurs négatives
pour l’entropie de Casimir.

4. Résultats à température nulle

Miroirs parfaits

Nous étudions d’abord le cas le plus simple où la température est nulle et les miroirs parfaitement
réfléchissants. L’effet Casimir ne dépend alors que du rayon R de la sphère et de la distance L
entre le plan et le sommet de la sphère le plus proche du plan, et peut donc s’écrire comme une
fonction du rapport d’aspect L

R . Nous vérifions dans un premier temps que les quantités calculées
par la méthode PFA sont obtenues à la limite des petits rapports d’aspect, tandis que dans l’autre
limite, les résultats convergent vers la formule analytique calculée plus haut. Ceci est illustré par
le graphique de gauche de la figure 6, et l’on voit que pour des valeurs intermédiaires de L

R , un
traitement multipolaire complet est nécessaire.
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Figure 6: (gauche) Énergie de Casimir à température nulle pour des miroirs parfaits, en fonction
de la distance L. Les résultats numériques obtenus avec notre méthode sont présentés
en noir, l’approximation PFA est présentée en tirets bleus, et la formule analytique à
grande distance est présentée en tirets rouges. Le rayon de la sphère est R = 100 µm.
(droite) Méthode d’extrapolation du ratio ρE aux courtes distances. Les carrées rouges
représentent les données calculées numériquement, les cercles bleus indiquent les points
utilisés pour la détermination du fit polynomial, et ce dernier est présenté en noir.

Dans un second temps, nous utilisons ces résultats pour estimer l’erreur de l’approximation PFA,
à l’aide du ratio ρE = E

EPFA
de l’énergie de Casimir E obtenue numériquement, normalisée par la

quantité correspondante calculée avec l’approximation PFA. Les résultats obtenus pour les plus
petites valeurs de L

R ≥ 0.01 sont ensuite extrapolées à la limite des courtes distances à 1 grâce à
un fit polynomial, comme illustré dans le graphique de droite dans la figure 6. La pente du fit
polynomial à l’origine est le terme linéaire βE du développement de Taylor pour ρE aux petites
distances décrit dans l’équation (0.10). Nous obtenons alors la valeur βE = −1.47, correspondant
à βG = βE

3 = −0.49 pour le gradient de la force de Casimir, ce qui semble être en contradiction
avec la borne |βG| < 0.4 obtenue par des travaux expérimentaux.
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Miroirs métalliques

Sont ensuite étudiés les miroirs métalliques à température nulle, à l’aide des modèles de plasma et
de Drude. Afin de mesurer l’effet de la réflexion imparfaite sur l’effet Casimir, on utilise le facteur
de correction ηPE = Emetal

Eperf . Dans la géométrie plan-plan, et pour les deux modèles métalliques,
celui-ci est croissant avec la distance, et tend vers 1 à la limite des grandes distances, comme
illustré par le graphique de droite dans la figure 1. Les résultats dans la géométrie sphère-plan
sont qualitativement différents, comme illustré par la figure 7. Pour le modèle plasma (graphique
de gauche), la limite du facteur de correction ηPE aux grandes distances est proche de 1 pour les
grandes sphères, mais diminue progressivement jusqu’à 2

3 pour des sphères plus petites. Cette
observation est en accord avec la fonction f(α) calculée analytiquement dans la partie précédente.
Pour le modèle de Drude, le facteur de correction ηPE n’est plus monotone, et présente un maximum
avant de tendre vers la valeur 2

3 , quelque soit la valeur du rayon. Ce résultat est lui aussi en accord
avec les calculs analytiques aux grandes distances. Ces différences du comportement du facteur
ηPE quand la géométrie change sont la signature de l’existence de corrélations entre les effets de la
géométrie et de la réflexion imparfaite sur l’effet Casimir.
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Figure 7: Facteur correctif ηPE pour la réflexion imparfaite en fonction de la distance L pour
plusieurs tailles de sphères, avec l’utilisation d’un modèle plasma à gauche, et d’un
modèle de Drude à droite.

Ces corrélations ont une influence sur la précision de l’approximation PFA, comme illustré par
le graphique de gauche de la figure 8, représentant le ratio ρE pour plusieurs tailles de sphères,
quand le modèle de Drude est utilisé. Pour l’énergie de Casimir E, ce facteur est plus petit que
pour des miroirs parfaits, et l’erreur de l’approximation PFA est donc augmentée par la prise en
compte de la conductivité finie des métaux. Pour le gradient de la force G en revanche, le ratio
ρG n’a plus la même forme et une inflexion apparaît aux courtes distances, ce qui a pour effet de
diminuer considérablement la valeur absolue de la pente initiale (βG ' −0.2) par rapport au cas
des miroirs parfaits. Cette inflexion est illustrée sur le graphique de droite de la figure 8, et permet
de résoudre le désaccord entre la borne expérimentale et la valeur obtenue précédemment pour des
miroirs parfaits.

5. Résultats à température non-nulle

Miroirs parfaits

On introduit ensuite l’effet de la température non-nulle grâce à la formule de Matsubara. On
considère dans un premier temps le cas des miroirs parfaits uniquement, afin de simplifier l’étude
de l’influence thermique sur l’effet Casimir. Cette influence est mesurée par le facteur de correction
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Figure 8: (gauche) Ratio ρE = E
EPFA

pour différentes tailles de sphères, en fonction du rapport
d’aspect L

R . Les matériaux sont décrits par le modèle de Drude, le résultat obtenu avec
des miroirs parfaits est présenté en tirets noirs. (droite) Ratio ρG = G

GPFA
en fonction

du rapport d’aspect L
R , et son extrapolation polynomiale aux courtes distances. Les

courbes rouges représentent le cas des miroirs parfaits, les courbes vertes celui d’un
miroir métallique.

thermique ϑF = F (T )
F (0) qui compare la force à température T à celle à température nulle. Dans la

géométrie plan-plan, ce facteur est croissant avec la distance, tendant vers l’unité à courte distance,
et divergent en L pour les grandes distances. Les résultats obtenus dans la géométrie sphère-plan,
présentés dans le graphique de gauche de la figure 9, sont qualitativement différents : le facteur
correctif ϑF est toujours inférieur à celui obtenu par l’approximation PFA, dépend du rayon de la
sphère R, et pour des petites sphères il présente même un minimum inférieur à 1. Cette dernière
observation est confirmée par le calcul analytique à grande distance (R� L), qui permet d’obtenir
le même comportement, comme illustré par le graphique de droite dans la figure 5.
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Figure 9: (gauche) Facteur de correction thermique ϑF pour la force de Casimir en fonction de la
distance L. Le résultat PFA est indiqué en tirets, la formule analytique pour les grandes
distances est représentée par la ligne avec points, le résultat exact est présenté pour
plusieurs tailles de rayon par des traits pleins de différentes couleurs. (droite) Entropie
de l’interaction de Casimir en fonction de la température, normalisée par l’entropie à
température infinie.

Les photons thermiques ont alors une contribution répulsive à la force de Casimir, ce qui constitue
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une observation inédite dans le cas des miroirs parfaits, et est la signature d’une corrélation non-
triviale entre les effets de la température et de la géométrie. Ce phénomène peut être également
mis en évidence avec l’étude de l’entropie d’interaction de Casimir S = −∂F

∂T , qui peut prendre des
valeurs négatives pour des températures suffisamment basses, comme illustré dans le graphique
de droite de la figure 9. Dans la géométrie plan-plan, ces valeurs négatives pour l’entropie
n’apparaissent qu’avec l’utilisation d’un modèle de Drude pour la description des miroirs, ce qui
a donné lieu à des discussions sur la validité de ce modèle. Avec la géométrie sphère-plan, nous
montrons que l’apparition de valeurs négatives pour l’entropie est également possible avec des
miroirs parfaits, où ils sont un effet de la géométrie et non de la dissipation.
Ces corrélations entre les effets de la température et de la géométrie ont une influence sur

la précision de l’approximation PFA. En effet, comme illustré par le graphique de gauche de la
figure 10, le ratio ρE dépend du régime thermique, qui est caractérisé par le paramètre αT = 2πL

λT
.

Les petites valeurs de αT correspondent à la limite basse température, les grandes valeurs à la
limite haute-température. Les valeurs de ρF décroissent avec la température, ce qui signifie que
l’erreur de l’approximation PFA est aggravée lorsque la température augmente. Cette aggravation
sature dans le régime des hautes températures, lorsque αT & 5. Cette dépendance du ratio ρF au
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Figure 10: (gauche) Ratio ρF = F
FPFA

en fonction du rapport d’aspect L
R . Les différentes valeur

de αT = 2π L
λT

représentent différent régimes thermiques. (droite) Ratio ρF = F
FPFA

en
fonction du rapport d’aspect L

R , pour différentes valeurs du rayon R de la sphère.

régime thermique empêche d’avoir une détermination simple du terme linéaire β de la correction
à courtes distances. En effet, comme illustré par le graphique de droite de la figure 10, pour un
rayon R fixé de la sphère, lorsque le rapport d’aspect diminue, la distance diminue, et le régime
thermique change pour se rapprocher du régime des basses températures.

Miroirs métalliques

On étudie ensuite l’effet Casimir pour des miroirs métalliques à température non-nulle. On regarde
tout d’abord l’effet de la température sur l’énergie libre, à l’aide du facteur de correction thermique
ϑF = F(T )

F(0) , pour des miroirs parfaits et décrits par un modèle de Drude. L’étude de ce paramètre,
présentée sur le graphique de gauche de la figure 11 pour une sphère de rayon R = 1 µm en fonction
de la distance L, montre que ces deux modèles de miroirs, parfait et imparfaits, donnent des
résultats très différents. Ceci est la signature de couplages apparaissant entre les effets thermiques
et de conductivité finie. En comparaison avec le cas plan-plan, donné ici en tirets par l’intermédiaire
du résultat de l’approximation PFA, les courbes correspondant aux miroirs parfaits et imparfaits
sont plus proches, ceci étant particulièrement visible aux distances courtes.
Un autre angle de vue est d’étudier l’effet de la réflexion imparfaite sur les miroirs, grâce au
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Figure 11: (gauche) Facteur correctif thermique ϑF en fonction de la distance L, pour les résultats
de l’approximation PFA (tirets) et de notre calcul numérique (traits pleins). Le cas
des miroirs décrits par un modèle de réflecteurs parfaits est présenté en noir, celui des
miroirs décrits par un modèle de Drude en vert. Le rayon de la sphère est R = 1µm, la
température ambiante est T = 300 K. (droite) Facteur correctif ηPF pour les effets de
conductivité finie en fonction de la distance L, pour les résultats de l’approximation
PFA (tirets) et de notre calcul numérique (traits pleins). Le cas à température nulle est
présenté en bleu, le cas à température ambiante en rouge. Le rayon de la sphère est
R = 1µm, la température ambiante est T = 300 K.

facteur correctif de conductivité ηPF (T ) = FDrud(T )
Fperf(T )

, à température nulle et ambiante. L’étude de ce
paramètre, présentée sur le graphique de droite de la figure 11 pour une sphère de rayon R = 1 µm
en fonction de la distance L, montre que ces deux courbes, à températures nulle et ambiante,
sont différentes, comme c’était le cas pour la géométrie plan-plan, rappelée par l’intermédiaire du
résultat PFA en tirets. Ceci est à nouveau la signature de couplages entre les effets thermiques
et de conductivité finie. Dans la géométrie sphère-plan, la limite à grande distance du facteur
ηPF (T ) est la même

(
2
3

)
pour les deux températures, alors qu’elles diffèrent dans la configuration

plan-plan, avec les valeurs 1 à température nulle et 1
2 à température ambiante.

Cette différence à grande distance a un effet sur la comparaison de la force de Casimir obtenue
pour un modèle de plasma sans dissipation, et de celle pour un modèle de Drude dissipatif. À
température ambiante, le rapport de ces deux quantités dans la géométrie plane-plan tend vers la
valeur 2 à la limite des grandes distances, ce qui a donné lieu à d’importantes discussions au cours
des dix dernières années. Nous montrons que dans la géométrie sphère-plan, ce rapport tend vers
une valeur proche de 3

2 pour des grandes sphères, et peut être encore plus faible pour des sphères
de tailles intermédiaires et plus petites. Cette différence est illustrée pour différentes tailles de
sphères par la figure 12.

Conclusion

Dans cette thèse nous avons étudié l’interaction de Casimir entre une sphère et un plan infini,
pour une température arbitraire et avec une description optique des miroirs permettant de rendre
compte de la conductivité finie des matériaux. L’évaluation de l’effet Casimir, nécessaire à cette
étude, a été réalisé grâce à la formule de diffusion, basée sur la théorie des réseaux optiques,
adaptée à la configuration sphère-plan. Cette adaptation prend la forme d’un développement
multipolaire, en utilisant les ondes électromagnétiques sphériques pour décrire la réflexion sur la
sphère. Numériquement, ce développement doit être tronqué à un valeur maximale `max, ce qui
rend cette méthode particulièrement bien adaptée aux valeurs intermédiaires et grandes du rapport
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Figure 12: Rapport de la force de Casimir calculée avec un modèle plasma non-dissipatif pour
les deux miroirs, par la force calculée avec un modèle de Drude dissipatif, en fonction
de la distance L. Le résultat de l’approximation PFA est indépendant du rayon R
et est présenté en tirets. Le résultat de nos évaluations numériques est présenté sous
différentes couleurs selon la valeur du rayon de la sphère.

d’aspect (LR & 1). Grâce à des efforts numériques, nous somme néanmoins arrivés à atteindre
des rapports d’aspect de 0.01 en repoussant la troncation jusqu’à `max = 520. Ces évaluations
permettent d’estimer l’erreur commise par les méthodes d’approximation, comme par exemple
l’approximation de proximité (PFA), mais aussi de sonder la dépendance de l’effet Casimir à la
géométrie dans des conditions variées de température et de nature des matériaux.
À température nulle, nous mesurons l’erreur commise par l’approximation de proximité dans

le cas des miroirs parfaits et obtenons des résultats différents de ceux calculés avec un champ
scalaire, ce qui montre l’importance d’un traitement électromagnétique dans cette géométrie où les
polarisations sont couplées. Pour des miroirs métalliques nous observons des corrélations entre les
effets de la géométrie et de la conductivité finie, qui modifient considérablement l’erreur commise
par l’approximation de proximité. Il en résulte une modification du terme linéaire de la correction
géométrique pour le gradient de la force βG, qui redevient en accord avec la borne expérimentale.

Pour un plan et une sphère parfaitement réfléchissants à température ambiante, nous observons
de fortes corrélations entre les effets de la géométrie et de la température, pouvant changer
qualitativement la dépendance de l’effet Casimir à la température. En effet, pour de petites sphères,
nous montrons pour certaines distances une contribution répulsive des photons thermiques à la
force de Casimir, ainsi que des valeurs négatives de l’entropie. Ces résultats sont corroborés par
un calcul analytique dans le régime des grandes distances (R� L), et montrent que les valeurs
négatives de l’entropie ne sont pas seulement causées par la dissipation, mais peuvent également
apparaître comme effets de la géométrie.
Dans le cas des miroirs métalliques à température ambiante, de nombreuses corrélations appa-

raissent entre les effets de la géométrie, de la température et de la conductivité finie. Une des
conséquences est le changement du ratio Fplas

FDrud dans la limite des grandes distances par rapport à
la configuration plan-plan, qui passe de 2 à une valeur dépendante de R comprise entre 1 et 2

3 .
Cette étude montre qu’un traitement électromagnétique complet, incluant de manière directe

et simultanée la géométrie exacte, la température et la description des miroirs, est nécessaire
pour obtenir une prédiction théorique fiable de l’effet Casimir entre une sphère et un plan. Cette
configuration constitue en effet un bon exemple de situation où des changements importants de la
dépendance de l’effet Casimir aux conditions physiques apparaissent à cause de la géométrie.
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Introduction

The classical vacuum

In the history of sciences, the concept of vacuum has often been a matter of debate [1, 2], mainly
because of its philosophical, religious, and metaphysical implications. Already in the beginning of
the 5th century BCE, the atomists Leucippus and Democritus hold that everything is composed by
atoms, and that between them lies the vacuum (or nothingness), in which movement takes place
[3, 4]. In the same century, Parmenides defines the vacuum as a lack of being. Using an ontological
argument, he shows that vacuum cannot exist [5, 6]. Plato adds to this idea that, as all physical
things are instantiations of an ideal in the sensible world, the existence of vacuum would need an
ideal form of vacuum, which he cannot conceive as reasonable. As for him, Aristotle considers the
vacuum as impossible to be created, arguing that nothing cannot be obtained from something.

In medieval Europe the concept of vacuum itself was considered as heretic, as it implies the
absence of God [7]. In the beginning of the 17th century, Galileo nevertheless introduced the vacuum
in its mechanical laws, as the limit of a non-frictious medium, when studying the acceleration
of falling objects [8]. Descartes [9, II; 16] in 1644 rejects the theory of vacuum: as he refuses
the distinction between object and space, and states that the existence of the object implies the
existence of space, he deduces the impossibility of vacuum. The same year Toricelli [10] remarked
that mercury only goes up by 760 mm when pumped in a tube, a phenomenon that Pascal [11, 12]
explained a few years later by the existence of an atmospheric pressure. Against the common idea
that "matter hates vacuum", he shows that vacuum appears in the upper space of the tube when
the liquid is pumped.
In 1801, while Newtonian physics had successfully described light as tiny particles moving in

vacuum for years, the appearance of interference effects in Young’s diffraction experiment [13]
gives evidence of the wave nature of light, already predicted by Hooke [14] and Huygens [15] in
the 17th century, and foreseen by Euler [16] in the 18th century. Sound is a vibration of the air,
and light propagates in the vacuum, the scientist therefore assume that light must have a proper
vibrating media, which they call the luminiferous aether [17].

In 1887, the Michelson-Morley experiment [18, 19] aiming at measuring the speed of the aether
with respect to the earth turned out to be inconclusive. The solution came from Einstein special
relativity [20], which disproves the existence of an aether. The light is then described as a wave of
the electromagnetic field (E,B), travelling in vacuum at an equal velocity c for any direction, and
in any unaccelerated frame, following the Maxwell equations [21]. Finally, the classical vacuum can
be defined as space when all matter has been removed and when the electromagnetic field is zero:

Classical vacuum: E = B = 0 .

The quantum vacuum

The advent of Quantum Theory has deeply changed our understanding of many basic physical
concepts such as light, matter, and movement. One example of a new idea brought by Quantum
Theory is the Heisenberg uncertainty2 principle [22], stating the impossibility of measuring the
position x and the momentum px of a particle with an unlimited accuracy:

∆x ·∆px ≥
~
2

where ∆x and ∆px are the indetermination of x and px, respectively, and ~ is the reduced Planck’s
constant. For the simple case of a harmonic oscillator model, such as a mass attached to a spring,

2The Heisenberg principle can also be called the indeterminacy principle. In [22], Heisenberg used the word Unbes-
timmtheit, which has then been translated to uncertainty in [23], wrongfully according to many epistemologists
[24, 25].
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this leads to the impossibility for the objet to stand still in a lower position with no oscillations.
The configuration with the minimum of movement is then a tiny rocking, associated to a non-zero
energy E0 > 0.

In Quantum Field Theory, each mode of frequency ω of the electromagnetic field can be described
as a harmonic oscillators [26, 27, 28]. The Heisenberg uncertainty principle can then be applied,
and yields that the electromagnetic field must undergo unavoidable fluctuations around zero, and
that the electromagnetic energy cannot decrease below a zero-point energy E0 = ~ω

2 . In opposition
to the classic vacuum, the electromagnetic fields are not zero anymore, but rather fluctuate around
0:

Quantum vacuum: E = B = 0 but E2,B2 > 0

where E is the average of E over time. Quantum Theory has changed dramatically our conception
of vacuum, as an active and dynamic media, undergoing fluctuations of the electromagnetic field
and creation of particle pairs. The discontinuity between matter (or light) and vacuum has been
removed, and philosophically speaking, the concept of vacuum now lies much closer to the being
than to the nothingness.

The Casimir effect

The van der Waals force [29] describes the interaction between neutral atoms or molecules, and
plays a crucial role in colloid chemistry, nanotechnologies and surface science. An important
contribution to this interaction is done by the London dispersion forces [30, 31, 32, 33], arising
from quantum induced instantaneous polarization multipoles in molecules.
Studying the stability of colloids, Verwey and Overbeek observed [34] that the van der Waals-

London interaction seems to decrease at long range more rapidly than the L−6 predicted power-law.
Overbeek pointed out that forces need time to propagate, while van der Waals-London forces
were derived by considering instantaneous interactions. In 1946 Casimir and Polder manage to
include the effects of retardation [35], which becomes non-negligible for large distances and change
the power-law in the distance from L−6 to L−7. In their work they also include the situation of
an atom facing a perfectly reflecting surface, taken "as a preliminary exercice" [36], bearing the
famous Casimir-Polder potential:

ECP = − 3~cα
8πL4

where α is the atomic polarizability. The obtained formula are simple and elegant and Casimir was
sure that there should be an elegant way to derive them. Advised by Bohr [36], Casimir interpreted
the retarded van der Waals-London interaction as an effect of the quantum vacuum zero-point
energy [37]. He also realised in 1948 that his founding could be applied to the case of two perfectly
reflecting parallel mirrors [38], and obtained the energy per unit area:

ECas

A
= − ~cπ2

720L3
,

giving birth to the famous Casimir effect, an observable manifestation of quantum vacuum fluctua-
tions in the macroscopic world [39]. In this formula, the mixture of Maxwell’s electromagnetism
and Quantum Theory in the Casimir effect is clearly illustrated by the two terms c and ~.

Applications

The Casimir force is the most accessible experimental effect of vacuum fluctuations in the macro-
scopic world. As the non-zero vacuum energy is known to raise serious difficulties at the interface
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of quantum theory and gravitational effects, it is worth investigating the Casimir effect with the
greatest care and highest accuracy, in order to test the predictions of Quantum Field Theory
[40, 41, 42, 43, 44, 45, 46, 47, 48, 49] and its connection with the problem of zero-point energy
[50, 44, 51, 52].
Moreover, in various accurate force measurements in the nanometer to micrometer range, the

Casimir effect becomes the dominant force and a precise knowledge of its magnitude is often a key
point. The most obvious case are the tests of Newtonian gravity [53, 54, 55, 56, 57, 58, 59, 60, 61, 62],
and the search for new weak forces predicted in theoretical unification models in the nanometric
to millimetric range [63, 64, 65, 66, 67, 68, 69, 70]. Assuming a corrective term to the Newtonian
gravity in the Yukawa form:

U(L) = G
m1m2

L

(
1 + αe−

L
λ

)
,

those studies aim at giving constraints on the possible range λ and relative amplitude α.
Various other experiments have their results "contaminated" by the Casimir effect. For molecular

interferometry [71, 72, 73, 74, 75, 76], because of the increased size and the reduced speed of the
molecules, the Casimir attraction to the grating deviates the molecules when it passes through
the grating, leading to an effective smaller slit width. In some cases, the Casimir interaction is
too strong [77, 78] and has to be avoided, for instance with the use of light gratings [79]. In
Section 12 (p.158) we will mention the study the intriguing phenomenon of small heating of
ultracold neutrons (UCNs) in traps [80, 81, 82], for which an accurate knowledge of the quantum
states of nanospheres interacting with surfaces is needed. As we will see, this has to be done
through a careful treatment of the Casimir potential undergone by the nanospheres.

Finally, because the Casimir and van der Waals forces are dominant at the scale of the micrometer
and below, they enter various important domains such as atomic and molecular physics, condensed
matter and surface physics, chemical and biological physics, and micro and nanotechnologies [83].
For the latter they are important in the architecture of micro and nano-oscillators (NEMS and
MEMS), not only to avoid stiction [84, 85, 86, 87], but also to be used as an actuator [49, chap.8].

Experimental works

The first experiment to measure qualitatively the Casimir force is performed in 1958 by Sparnaay
[88], using a spring balance to measure the force between two flat neutral metallic plates. The
measurements were carried out for distances between 0.5 and 2 µm, and the poor experimental
accuracy led the author to the conclusion that "the observed attractions do not contradict Casimir’s
theoretical prediction".
A major difficulty in the former experiment being to keep a good parallelism between the two

plates, a first unambiguous measurement of the Casimir force could only be achieved twenty years
later by van Blockland and Overbeek [89], by using a lens and a flat plate covered with chromium
layers. The measurements were carried out for distances between 132 to 760 nm and led to an
agreement with the theory that can be estimated around 25% [55]. Other early experimental efforts
have measured the Casimir force in those years, such as [90, 91, 92, 93], the reader is referred to
detailed and systematic reviews that may be found in [94, 40, 95, 41, 42, 55].
In the past years, a series of new measurements with improved accuracy have been possible

thanks to new techniques. In 1997 Lamoreaux measured the Casimir force between a metallized
sphere and a flat metallic plate, using a torsion pendulum [96, 97, 98, 99, 100] for distances between
0.6 and 6 µm with an agreement to theory that can be evaluated to 10% for the shortest distances
[55]. For the largest distances, the weak magnitude of the force prevented the observation of
temperature corrections.
A second precise measurement of the Casimir effect has been done in 1998 by Mohideen

[101, 102, 103]. The experimental setup, presented in the left part of Fig. 13, consists on a
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metallized sphere attached to the cantilever of an atomic force microscope (AFM), brought close
to a metallic plate. The Casimir attraction between the sphere and the flat plate yields a bent of
the cantilever, which is measured by the deflection of a laser beam on the top of the cantilever.
The distance range, from 0.1 to 0.9 µm, is smaller than in the previous experiment, enabling an
experimental accuracy at the level of 1%.
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Figure 13: (left) Sketch of Mohideen’s experiment. (right) Sketch of Decca’s experiment.

In 2001 Capasso and his group measured the Casimir force gradient using a microelectromechan-
ical system (MEMS) [85, 104] for distances between 0.1 and 1 µm. The presence of a polystyrene
sphere with metallic coating close to a polysilicon plate, also with metallic coating, changes its
oscillation frequency in agreement with the prediction from the Casimir effect.

With a similar technique, presented in the right part of Fig. 13, Decca carried out in 2003 one of
the most precise experiment on the Casimir effect [105, 46, 106, 107, 60, 108], for distances between
0.2 and 2 µm. The experimental accuracy, below the percent level for small distances, enable to
observe a discrepancy with the theory that the author attribute to a poor characterisation of the
optical properties of the chosen materials. Moreover, the experimental data surprisingly seem to
favour a description of metals by the loss-less plasma model, with respect to a description with
the dissipative Drude model [107, 109]: the experimental points are closer to theoretical curves
derived with the plasma model (see Fig. 14), and no thermal effect is observed at short distances
as it should with the Drude model.
Very recently, Lamoreaux conducted another experiment [110, 111] with a torsion pendulum

attached to a very large spherical lens, in order to measure the Casimir force for larger distances
from 0.7 to 7 µm. The conclusions are opposite to the ones in [107], as the author reported that
"the experimental results are in excellent agreement with the Casimir force calculated using the
Drude model" and that "plasma model result is excluded in the measured separation range".
Moreover, thermal effect in the Casimir force is clearly observed, thanks to the larger distance
range.

With this review of experiments dedicated to the Casimir effect, we observe that the sphere-plane
geometry is the configuration of the most precise measurements, and therefore the important
one in the prospect of gravity tests. Some other configurations have been studied, such as non-
parallel cylinders [112], corrugated plates [113, 114], or even the original Casimir configuration
of two flat plates [115, 116, 117], for which an experimental accuracy of the order of 15% could
be achieved for distances between 0.5 and 3 µm. This remark stresses the importance of the
theoretical investigation of the sphere-plane configuration for accurate comparison between theory
and experiments.
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FIG. 1: Experimental data for the Casimir pressure as a function of separation z. Absolute errors

are shown by black crosses in different separation regions (a–f). The light- and dark-gray bands

represent the theoretical predictions of the impedance and Drude model approaches, respectively.

The vertical width of the bands is equal to the theoretical error, and all crosses are shown in true

scale.

10

Figure 14: Comparison in [107] of the experimental data with theoretical predictions emerging from
both the plasma model and the Drude model. The theoretical curve from the Drude
model (upper grey line) is outside the experimental errors bars, while the theoretical
curve from the plasma model is always within them.

Theoretical works

The original derivation of Casimir presented previously is done for the ideal situation of two
perfectly reflecting infinite plates at zero temperature. In order to obtain reliable theoretical
predictions to be compared with Casimir force measurements discussed above, one must then take
into account realistic experimental conditions of various kinds.

The first imperfection in the experiments is the finite conductivity of the metallic plates used for
the measurements, leading to an imperfect reflection. In 1956 Lifshitz [118, 119, 120] developed a
theory of the Casimir effect for materials whose optical properties are described by a frequency-
dependent permittivity ε(ω). For metals, this function can be found by fitting the optical data,
obtained experimentally, with a plasma or a Drude model:

εplas(ω) = 1− ω2
P

ω2
εDrud(ω) = 1− ω2

P

ω(ω + ıγ)

where ωP is the plasma frequency, accounting for high-frequency transparency, and γ is the
relaxation frequency, accounting for dissipation in the metal. The plasma model is obtained when
the dissipation is set to zero (γ → 0), and the Drude model is considered as more realistic, as it meets
the important property of finite static conductivity σ0 =

ω2
P
γ , and yields better fits of tabulated

optical data [121, 122]. This improvement of the theory revealed itself crucial when comparing
theory and experiments [94, 96, 101, 103, 112, 117, 105, 107, 123, 124, 125, 126, 127, 128, 129].

Another correction to the Casimir effect comes to the effect of thermal fluctuations, as experiments
are performed at room temperature. The contribution of thermal fluctuations can be taken into
account [130, 131, 132, 133] by changing the zero-point energy as:

E0(T ) = ~ω
(

1

2
+ nω

)
nω =

1

e
~ω
kBT − 1

where the mean number of photons nω is given by the Planck’s law [134, 135, 136], and kB is
the Boltzmann’s constant. Boström and Sernelius [137] were the first to notice in 2000 that a
small but non-zero value of γ on the dielectric function ε(ω) of the material has a significant effect
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on the Casimir energy evaluated at ambient temperature between two plates: the ratio between
the predictions with perfect and imperfect reflectors reaches a factor 2 in the long-distance limit,
because of the vanishing contribution of TE-polarized modes at zero frequency for dissipative
metals. This remark, together with the fact that the Drude model leads to negative values of the
Casimir entropy [138, 139, 140], led to a series of studies about the thermal effect on the Casimir
force [141, 142, 143, 144, 145].
Finally, while the Casimir original formula describes the Casimir interaction of two infinite

plates, most of the experiments described previously involve the geometry of a sphere in front
of a plane. The proximity force approximation (PFA) [146, 147, 148] is commonly used to
estimate the Casimir force in the sphere-plane geometry, and amounts to averaging the force
calculated in the simpler plane-plane configuration over the distribution of local inter-plate
distances. Its most common form reads: FPFA(L,R) = 2πR × EPP(L). This approximation is
valid [149, 150, 151, 152] when the distance between the surfaces is much smaller than the sphere
radius (L� R), but it is not expected to reproduce the complex dependance of the Casimir effect
on geometry [153, 154, 155]. Moreover, PFA gives no information about its accuracy for a given
non-zero aspect ratio L

R > 0. Numerous theoretical efforts have then been pushed beyond-PFA
[149, 156, 157, 158, 159, 151, 160, 161, 162, 163, 164, 165, 166, 167, 168] in order to try to assess
this accuracy. These works will be reviewed in Section 9 (p.137).
In the past years, a great variety of numerical techniques have been developed [49, chap. 6] in

order to evaluate the Casimir effect for various and complex configurations. Among them, let us
mention:

• Worldline numerics [156, 169, 170, 157, 158, 171, 159, 172, 173, 174, 175] obtained by a
Monte-Carlo simulation of path-integrals.

• The scattering approach [47] [49, chap.4] and equivalent T-matrix formulations [166, 176]
(for a complete review see [177]), which derives the Casimir interaction from the scattering
operators of the objects in vaccum, and has been used in the plane-plane configuration to
study the roughness [178, 179], the lateral Casimir force [180, 181, 182] and torque [183], or
with corrugated plates [184, 185, 186, 187], to compare with experiments.

• And more recently, adaptations of classical methods for electromagnetism calculations to the
Casimir problem [188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202,
203, 204, 205, 206].

Outline

This manuscript presents a theoretical investigation of the Casimir effect between a sphere
and a plane, using the scattering approach. This geometry is the one of the most accurate
experimental measurements, and a realistic theoretical evaluation – at non-zero temperature and
which takes into account the finite conductivity of the objects – is an important step in the theory-
experiments comparison topic. The aim of this study is also to investigate the rich dependence
of the Casimir effect with the geometry: compared to the original plan-plane geometry, the
sphere-plane configuration is a simple situation with finite size, curvature, non-specular scattering,
and coupling of polarizations. All this features have an impact on the Casimir effect and its
dependence to the thermal fluctuations and the finite conductivity, which will be explored.
In part I, we will recall the scattering approach in its most general form, and explicit its

connection to the Casimir effect through the radiation pressure. The modelling of the imperfect
refection of the objects and the inclusion of thermal fluctuations are also discussed. Finally, we will
recall the main results obtained when applying it to the situation of two planes, and in particular
the correlations appearing between the effects of temperature and of finite conductivity.
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The scattering formula in the sphere-plane configuration is derived in part II, and the method to
get all the quantities involved in the expression is given. The numerical difficulties when evaluating
the Casimir energy are treated, and the choice of numerical methods are discussed and tested.
An analytical expansion is performed in part III, in order to express the Casimir interaction

without any numerical evaluation for some limiting cases. The high-temperature regime is first
tackled, with the help of a low-frequency expansion of the scattering formula. The long-distance
regime is then analyzed, and found to exhibit an unexpected dependance of the Casimir effect on
temperature.
The results of numerical evaluations for the general situation are given in part IV and V,

organised by steps of more and more complex and realistic situations. Part IV is dedicated to
the zero temperature case, and investigate the dependance of Casimir effect with the geometry,
first for perfect reflectors, then with metallic mirrors for which the interplay between the effects of
finite conductivity and geometry are studied. Information on the beyond-PFA correction and in
the dependance of the energy with respect to the distance L and the radius R of the sphere are
also given. The zero-temperature study closes with the application of dielectric nanospheres, in
the prospect of studying their interaction with ultracold neutrons. In part V we switch to the
non-zero temperature case, for perfect mirrors first, in order to study the effect of temperature on
the Casimir effect and its correlations with the sphere-plane geometry. The complete picture with
the inclusion of temperature, finite conductivity and dissipation in the material is finally presented,
with a systematic study of the different correlations and its implication for theory-experiments
comparison. A high-temperature numerical study closes the manuscript.
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Part I.
Reminder on the use of the
scattering formalism for Casimir
computations, and example of the
plane-plane geometry

Table of Contents

1. The Scattering formula 27
1.1. The planar electromagnetic modes . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.2. The cavity operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
1.3. The Casimir energy from the radiation pressure . . . . . . . . . . . . . . . . . . . 34
1.4. The example of the plane-plane geometry . . . . . . . . . . . . . . . . . . . . . . 35

2. Optical properties of materials 39
2.1. The dielectric function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.2. The plasma model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.3. The Drude model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.4. Dielectrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.5. The example of the plane-plane geometry . . . . . . . . . . . . . . . . . . . . . . 42

3. The scattering formula at non-zero temperature 46
3.1. The Matsubara sum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.2. The example of the plane-plane geometry . . . . . . . . . . . . . . . . . . . . . . 49

4. The proximity force approximation (PFA) 55
4.1. The PFA formula in the sphere-plane geometry . . . . . . . . . . . . . . . . . . . 55
4.2. The primo-potential D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.3. Beyond the PFA method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

This first part is an introduction on the scattering approach for Casimir computations, which
relates the Casimir energy to the scattering properties of the objects lying in vacuum. This method
allow for a realistic description, with the inclusion of temperature and of finite conductivity in the
materials. The scope of this introduction is not specific to the sphere-plane configuration and is
rather general to the situation of any pair of facing objects. The plane-plane configuration is used
as a simple example along this part, while the application to the sphere-plane geometry will be
treated more specifically in the next part.
The scattering formalism for the Casimir energy is introduced in Section 1 and an idea of

its derivation is given through the radiation pressure. To do so, we will first introduce the
electromagnetic modes of vacuum and the scattering operators in the cavity. At the end of this
first section, we show how this formalism recovers the famous Casimir’s expression [38] between
two perfectly reflecting parallel mirrors at zero temperature.
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The inclusion of a realistic description for the optical properties of the scatterers, with the help
of a frequency dependent dielectric function ε(ω), is discussed in Section 2. For metallic materials,
we present two models: the plasma one, which accounts for high-frequency transparency, and the
Drude one, which additionally takes into account dissipation in the material. The case of dielectric
materials is also treated. The effect of the finite conductivity on the Casimir effect is illustrated by
a reminder of the results obtained in the plane-plane geometry [207, 208].
The inclusion of a non-zero temperature T in the scattering formula is treated in Section 3.

Here we assume thermal equilibrium in the system, the temperature must then be uniformly
the same for the two objects and the vacuum. The Matsubara formula is derived from the
zero-temeprature scattering formula in the mathematical context of distribution theory. Again, the
influence of temperature in the Casimir effect is illustrated by the plane-plane configuration, where
the correlations between the effects of temperature and of finite conductivity are investigated.

Finally, in Section 4, we describe how the results obtained in the plane-plane configuration can
be used to calculate the Casimir energy in the sphere-plane geometry, through the Proximity-Force
Approximation (PFA). We will comment on the drawbacks of this method, its accuracy, and the
way to measure it.
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1 The Scattering formula

We are interested in the study of the Casimir interaction between two stationary objects, labelled
1 and 2, lying in vacuum, at thermal equilibrium. The two objects are not touching each other,
and can be separated by a plane between them. The optical properties of object i is contained in
the reflection operator Ri that expresses the scattered electromagnetic wave | out〉 corresponding
to an incoming wave | in〉:

| out〉 = Ri | in〉 . (1.1)

The reflection operator Ri for the object i is written with respect to a reference point Mi, that is
assumed to lie inside or at the border of object i. We define T the translation operator from one
reference point to the other. For practical purpose the direction of the translation will be taken as
the z-axis of Cartesian coordinates. As the objects are assumed to be separated, the translation
will always be over a distance L > 0. We restrict the relative displacement of the objects to the
z-direction, and therefore the Casimir force F to its component in the z-direction, as an effect of
the change of the Casimir free-energy F when L varies.

Figure 15: Scheme of the studied situation. The two objects have the reference point M1 and
M2 inside or at their border. This two points are separated by a distance L in the
z-direction.

In this section, we first introduce the electromagnetic planar modes which form a complete
set of solutions to the Maxwell equations in vacuum, then use the anticommutators of those
modes to express the radiation pressure exerted inside and outside the cavity formed by the two
objects. This aims at giving an idea of the origin of the scattering formula, however not a proper
mathematical derivation. For a full study of the scattering theory, the reader might refer to [47].
The scattering formalism is then rewritten in imaginary frequencies for practical purpose, and the
complete derivation is carried out with the example of the plane-plane geometry3.

1.1 The planar electromagnetic modes

In order to specify the vector space for the incoming and outgoing waves appearing in eq. (1.1) as
well as for the reflection operator, we introduce in this section the electromagnetic planar modes,
which are a complete set of solutions to the Maxwell equations for the fields (E,B) in vacuum.

1.1.1 The Maxwell equations in vacuum in reciprocal space

In ordinary space (the one where we live) the position vector r has components (x, y, z) in Cartesian
coordinates and (r, θ, ϕ) in spherical coordinates, r being the radius, θ the polar angle (origin on
the z-axis), and ϕ the azimuthal angle (origin along the x-axis). The unit vectors are written as
(x̂, ŷ, ẑ) in Cartesian coordinates and (r̂, θ̂, ϕ̂) in spherical coordinates. We then define the reciprocal
space, where the wavevector K lies and has components (kx, ky, kz) in Cartesian coordinates and

3The scattering formula and its application to the plane-plane geometry is specially and greatly described in
[207, 208], therefore a lot of notations and derivations are inspired by these works.
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1 THE SCATTERING FORMULA

(K, θK , ϕK) in spherical coordinates, with the same convention for the radius and angles. The unit
vectors are written as (K̂, θ̂K , ϕ̂K) in spherical coordinates. We use non-bold version of vectors for
their modulus, and hatted version to represent the unit vector in the same direction: K = |K| and
K̂ = K

K .
The two spaces are connected through the spatial Fourier transform4, which transforms an

integrable function A, whose argument lies in the ordinary space, to an integrable function A,
acting on the reciprocal space:

A(K) =

∫
R3

d3r e−ıK·rA(r) (1.2)

A(r) =
1

(2π)3

∫
R3

d3K eıK·rA(K) (1.3)

where A can be a scalar function, as well as a vector function. The Maxwell equations in vacuum
for the electromagnetic field read in ordinary space:

∇ ·E(r, t) = 0 ∇ ·B(r, t) = 0

∇×E(r, t) = −∂B(r, t)

∂t
∇×B(r, t) =

1

c2

∂E(r, t)

∂t
(1.4)

where E and B are the electric and magnetic fields, respectively, and c is the speed of light.
Defining E(K, t) and B(K, t) the results of their spatial Fourier transformations (1.2), the Maxwell
equations in vacuum write in reciprocal space:

ıK · E(K, t) = 0 ıK · B(K, t) = 0

ıK× E(K, t) = −∂B(K, t)

∂t
ıK× B(K, t) =

1

c2

∂E(K, t)

∂t
(1.5)

where the first line shows that the electromagnetic field is purely transverse in the reciprocal space,
which means that the two vector fields E(K, t) and B(K, t) are in the plane perpendicular to K.
Moreover, we remark that it yields K× (K× E) = −E , and similarly for B. Then the second line
of Eq.(1.5) , eliminating either of the fields, shows that both E and B fulfill the wave equation in
reciprocal space:(

∂2

∂t2
+ c2K2

)
E(K, t) = 0

(
∂2

∂t2
+ c2K2

)
B(K, t) = 0 (1.6)

which are six independent scalar wave equations, and the system can even be reduced to only
four independent scalar wave equations if we decompose the fields in the spherical coordinates
E = (EK , EθK , EϕK ), as their radial component EK must be zero:(

∂2

∂t2
+ c2K2

)
f(K, t) = 0 (1.7)

where f = EθK ,BθK , EϕK or EϕK . When looking for a solution of the form f(K, t) = g(K)h(t), the
scalar wave equation (1.7) yields that h(t) = e±ıωt, with ω = cK ≥ 0 the frequency5 and the scalar
solutions have the general form:

f(K, t) = g+(K)eıωt + g−(K)e−ıωt . (1.8)

The reality of the electromagnetic fields (E,B) implies that E(−K, t) = (E(K, t))∗ and B(−K, t) =
(B(K, t))∗, which yields that in (1.8) the functions g+(K) and g−(K) are the complex conjugate

4Here we choose the convention of the non-unitary Fourier transform for an angular frequency ω.
5Strictly speaking, ω is an angular frequency, in rad · s−1, but it will be referred to as a frequency thereafter.
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1.1 The planar electromagnetic modes

of each other. From now on, we will only consider the second term g(K)e−ıωt in Eq.(1.8), keeping
in mind that the complex conjugate (also called negative frequency component) must be added
at the end to obtain the correct solution. The four components of the electromagnetic field in
reciprocal space are:

EθK (K, t) = gEθK (K)e−ıωt + C.C. EϕK (K, t) = gEϕK (K)e−ıωt + C.C.

BθK (K, t) = gBθK (K)e−ıωt + C.C. BϕK (K, t) = gBϕK (K)e−ıωt + C.C. (1.9)

Coming back to the Maxwell equations in reciprocal space (1.5), with the time-dependance e−ıωt

the second line now implies that K × E = ωB and K × B = − ω
c2
E . The two fields are thus

orthogonal, with the triplet (K, E ,B) having a right-handed orientation, and the field transverse
components obey the relations BϕK = EθK/c and BθK = −EϕK/c. It is then possible to express
B from E , and we are left in the end with only two scalar functions to be chosen instead of four,
which we call the TE and TM polarizations:

E(K, t) =


0

EθK (K, t)

EϕK (K, t)

 =


0

gTM(K)

gTE(K)

 e−ıωt + C.C.

B(K, t) =


0

BθK (K, t)

BϕK (K, t)

 =


0

−gTE(K)

gTM(K)

 e−ıωt

c
+ C.C. .

We associate to the TE and TM polarizations the unit electric vectors ε̂ for E and the unit magnetic
vectors β̂ for B:

ε̂K,TE = ϕ̂K β̂K,TE = −ε̂TM = −θ̂K
ε̂K,TM = ε̂TE × K̂ = θ̂K β̂K,TM = ε̂TE = ϕ̂K . (1.10)

such that the fields E and B could be written in a unified manner:

E(K, t) = (gTE(K)ε̂K,TE + gTM(K)ε̂K,TM) e−ıωt + C.C.

B(K, t) =
(
gTE(K)β̂K,TE + gTM(K)β̂K,TM

) e−ıωt
c

+ C.C. (1.11)

where the two functions gTE, gTM can be freely chosen.

1.1.2 Description of the planar electromagnetic modes

The planar modes are here chosen as a basis for the electromagnetic solutions for their relative
simplicity and illustrative virtue, and will be well adapted for the plane-plane geometry. This is
however not the only possibility, and for the sphere-plane configuration we will see that the basis
of spherical vector waves will be better adapted.

To get the planar electromagnetic modes, we just have to take as a basis of the set of all possible
functions gTE, gTM a delta function δK0(K) = (2π)3δ3(K0 −K) for one of them (polarization p).
The planar modes | K0, p〉 are then labelled by their wavevector K0 ∈ R3 and their polarization
p ∈ {TE,TM}. They are associated with a frequency ω = cK0, c being the speed of light in
vacuum. Their representation in the reciprocal space is, for example for the electric field:

E(K, t) = 〈K | K0, p〉 = (2π)3δ3(K−K0)ε̂K0,p + C.C. . (1.12)
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1 THE SCATTERING FORMULA

In the ordinary space, using the inverse Fourier transformation (1.3), the corresponding electric
field takes the form of a propagative wave:

E(r, t) = 〈r | K0, p〉 = eı(K0·r−ωt)ε̂K0,p + C.C. . (1.13)

For simplicity, we will callm a planar mode, withm = (K, p). We accordingly define the coefficients
em that refers to the two functions (gTE, gTM) of K, with:

em =

√
2ε0

~ω
gp(K) , m = (K, p)

where ε0 is the vacuum permittivity, ~ the reduced Planck constant (or Dirac constant), ω = cK
the frequency of the mode, and the square root factor is introduced in order for the coefficients em
to have simple commutation rules in quantum theory. Finally the planar electromagnetic modes
are the set of | K, p〉, and the general form of the solution can be decomposed into these modes as:

E(r, t) =
1√
ε0

∑
m∈{|K,p〉}

√
~ω
2
ε̂m

(
eme

−ı(ωt−K·r) + (em)† eı(ωt−K·r)
)

B(r, t) =
1

c
√
ε0

∑
m∈{|K,p〉}

√
~ω
2
β̂m

(
eme

−ı(ωt−K·r) + (em)† eı(ωt−K·r)
)

(1.14)

where ε̂m (resp. β̂m) are the unit electric (resp. magnetic) vectors defined in Eq.(1.10) for the mode
m =| K, p〉, and the coefficients em, e

†
m correspond to positive and negative frequency components

for the mode m. In quantum field theory [209], those operators become operators of creation and
annihilation and obey canonical commutation relations:[

em′ , e
†
m

]
= δmm′ = (2π)3δ(3)(K−K′)δpp′

[em′ , em] =
[
e†m′ , e

†
m

]
= 0 . (1.15)

1.1.3 Including evanescent planar waves

Because the z-direction has a special role in the description, we will separate the 3-dimensional
wavevector K = (kx, ky, kz) in a 2-dimensional transverse part k = (kx, ky) and a longitudinal
part kz, such as K = k + kzẑ. The three Cartesians components of the wavevector K can then be
written from its associated frequency ω = cK and orientation (θK , ϕK):

k =
ω

c
sin θK kz =

ω

c
cos θK

kx = k cosϕK ky = k sinϕK . (1.16)

We remark that a physical solution in vacuum only contains modes with real wavevectors
(kx, ky, kz ∈ R), in order to avoid diverging quantities at large |x|,|y| or |z|. Nevertheless, in the
situation where scattering objects are placed in the vacuum, we must consider also the case of
a complex longitudinal component kz ∈ C for the field around the objects, as evanescent waves
can exist around the two objects. The transverse components kx and ky have to remain real, as
there is still the possibility of a diverging field on the sides of the objects. From ω2

c2
= k2

z + k2, we
deduce that k2

z has to be real, and kz is either real or purely imaginary.
To include evanescent waves in the z-direction (k2

z < 0), we change the labeling of the modes,
using the relation ω2

c2
= K2 = k2

z + k2 to replace the wavevector K by the frequency ω and the
transverse wavevector k. The set of all modes including evanescent ones is covered with ω ∈ R+,
k ∈ R2. The longitudinal part is then obtained as a solution to k2

z = ω2

c2
−k2

x−k2
y . When the latter

is positive, kz is real and the wave is propagative, when it is negative, kz is purely imaginary6 and
6Here we take the convention that

√
z =

√
|z|eıarg(z)/2, with arg(z) ∈]− π, π], giving for example

√
−1 = +ı.
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1.1 The planar electromagnetic modes

the wave is evanescent. The longitudinal component kz of the wave vector for propagative and
evanescent waves are then obtained as:

[propagative] kz = φ

√
ω2

c2
− k2 , φ = ±1

[evanescent] kz = ıφ

√
k2 − ω2

c2
, φ = ±1 (1.17)

where (φ = 1) corresponds to a wave with upward propagation (z-positive direction) and (φ = −1)

to a wave with downward propagation (z-negative direction) for the first case ω2

c2
≥ k2. This

notation will turn out to be very practical in the scattering formalism, as it will enable one to
distinguish between incoming and outgoing waves for every object. We have a bijection between
the two representations and K can be equivalently replaced by (ω,k, φ). The new set of modes is
then | ω,k, p, φ〉, with ω ∈ R+ the frequency, k ∈ R2 the transverse wavevector, p ∈ {TE,TM}
the polarization, and φ = ±1 the longitudinal direction.

1.1.4 Summing over the planar modes

When considering the total Casimir effect, we will study independently the contribution of the
modes of frequency ω, then gather everything in a summation. The sum over all modes can thus
be firstly done for the frequency: ∑

m∈{|ω,k,p,φ〉}

=

∫ ∞
0

dω

2π

∑
k,p,φ

ω

c2kz
(1.18)

where the Jacobian ω
c2kz

comes from the change of variable kz → ω. The summation on the
right hand of Eq.(1.18) is a non-trivial procedure, as its labels are not discrete variables, and an
integration

∫
d2k for example would yield a change in the dimensionality. Following [47], it can be

done by considering virtual quantization boxes along x and y of size Lx, Ly and surface A = LxLy.
The transverse wavevector then take discrete values (kx = 2πnx

Lx
, ky =

2πny
Ly

). When the size of the
box becomes infinite (the continuum limit), the discrete sum becomes:∑

k

=
∑
nx∈Z

∑
ny∈Z

−→ A

∫ +∞

−∞

dkx
2π

∫ +∞

−∞

dky
2π

. (1.19)

Doing so, we get for the remaining summation in expression (1.18) over all modes of frequency ω
an adimensional quantity: ∑

k,p,φ

= A
∑
φ

∑
p

∫ +∞

−∞

dkx
2π

∫ +∞

−∞

dky
2π

(1.20)

and finally the summation over all modes can be written as:∑
m∈{|ω,k,p,φ〉}

= A
∑
φ

∑
p

∫ ∞
0

dω

2π

∫
d2k

(2π)2

ω

c2kz
(1.21)

where A = LxLy is the surface of the quantization box. The presence of this factor means that
this summation is well-adapted to the situation of two infinite objects, such as two planes or two
corrugated planes, as the Casimir quantity per unit area will emerge after division by the factor
A. For finite-size objects however, the choice of planar waves does not seem to be suitable. In
the sphere-plane geometry, we will choose the spherical vector wave, which are labelled with a
frequency and discrete quantum numbers (`,m). The factor A will then disappear and extensive
Casimir quantities will be computed.
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1 THE SCATTERING FORMULA

1.2 The cavity operator

The two objects form a cavity, or ’quasi-cavity’, as an electromagnetic wave can be successively
scattered by the two objects, and resonances can emerge. To characterize them, we define the
round-trip operatorM:

M = R1T1←2R2T2←1 (1.22)

that describes the transformation for an incoming wave after a single round-trip between the two
objects inside the cavity (open loop). The operatorM contains the two operators R1 and R2,
which describe the reflection on each object, and the translation operators T1←2 and T2←1, to
account for the change of phase when changing the reference point from one object to the other.

OBJECT 1 OBJECT 2

Figure 16: Translations T2←1 (top) and T1←2 (bottom) between the reference points for the two
reflections (R1 and R2).

The two reference points are separated by a distance L along the z-axis (object one on the left,
two on the right), and the chosen basis for the electromagnetic fields is the set of the planar waves
| ω,k, p, φ〉, the translation operators are thus diagonal with elements:

T2←1 = eıkzL T1←2 = e−ıkzL . (1.23)

Before the reflection on object 2, we will only consider modes with (φ = 1) for T2←1, as they are
the only one to hit object 2. Likewise, after the reflection on object 2, we will only consider modes
with (φ = −1) for T1←2, as they are headed to object 1. With this restriction, we can write in a
unified manner the diagonal elements of the translation operators as they will appear in (1.22) for
a mode | ω,k, p,+〉 before applying the operatorM:

T2←1 | ω,k, p,+〉 = e
iL

√
ω2

c2
−k2 | ω,k, p,+〉 = eikzL | ω,k, p,+〉

T1←2 | ω,k, p,−〉 = e
iL

√
ω2

c2
−k2 | ω,k, p,−〉 = eikzL | ω,k, p,−〉 (1.24)

if we redefine kz as
√

ω2

c2
− k2 during the whole roundtrip in the cavity. The complete scattering

process inside the cavity is made of all multiples ofM and is obtained by the infinite series:

∞∑
k=1

Mk =M
∞∑
k=0

Mk =M (I −M)−1 (1.25)

which builds the closed-loop operator, in opposition to the open-loop operatorM.
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1.2 The cavity operator

The studies [208, 47] of the specular scattering in a Fabry-Perot cavity exhibit a scalar cavity
function gm that is the ratio of the commutators of the intracavity fields with those of the input
and output external fields:[

em′ , e
†
m

]
ext

= δmm′
[
em′ , e

†
m

]
cav

= gmδmm′

gm = 1 + fm + f∗m fm =
r1r2e

2ikzL

1− r1r2e2ikzL (1.26)

where r1 and r2 are the reflection amplitudes of objects 1 and 2 inside the cavity for the mode m,
L is the distance between the two reference points used to express the former amplitudes, and
kz is defined as

√
ω2

c2
− k2 like in the unified expression for the translation operators (1.24). This

cavity function gm gives the ratio between the energy inside the cavity and the energy outside the
cavity for each mode m =| ω,k, p, φ〉, and can be decomposed with the function fm, which can be
seen as the scalar counterpart of the infinite series (1.25).
We then introduce the generalization of the cavity function gm to the cavity operator G for all

modes:

G = I +M (I −M)−1 +
[
M (I −M)−1

]†
= I +

∞∑
k=1

Mk +

∞∑
k=1

(
M†

)k
(1.27)

which can also be understood as the addition of all terms in the total scattering: zero scattering,
loops in one direction, loops in the other direction.
Because the configuration is time-invariant, the frequency ω will be preserved through the

scattering process on an object or inside the cavity, and we can therefore define all the previous
operators for a given ω. The vector space in which the operatorsM(ω) and G(ω) act will then be
the set of all planar modes (| k, p, φ〉)ω for a fixed frequency ω. We define for the latter operators
the adimensional trace over this vector space Trω, following the summation presented in Eq.(1.20):

TrωG(ω) =
∑
k,p,φ

[G(ω)](kpφ,kpφ)

= A
∑
φ

∑
p

∫
d2k

(2π)2
[G(ω)](kpφ,kpφ) . (1.28)

The cavity operator will be useful to compare the canonical commutation relations inside and
outside the cavity, and obtain Casimir quantities. Outside the cavity, the vacuum state has the
following anticommutators at zero temperature:〈

em′ · e†m
〉

ext
=

1

2

(
em′e

†
m + e†mem′

)
=

1

2
δmm′

〈em′ · em〉ext =
〈
e†m′ · e†m

〉
ext

= 0 (1.29)

where the dot symbolizes the symmetrized product. Inside the cavity, the anticommutators are
the same, but multiplied by the diagonal elements of the cavity operator:〈

em′ · e†m
〉

cav
= G(m′,m)

〈
em′ · e†m

〉
ext

=
1

2
G(m,m)δmm′

〈em′ · em〉cav =
〈
e†m′ · e†m

〉
cav

= 0 . (1.30)
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1 THE SCATTERING FORMULA

1.3 The Casimir energy from the radiation pressure

The z-component of the radiation pressure exerted by the fields on one object is determined by
the component Tzz of the Maxwell stress tensor:

Tzz(r, t) =
1

2µ0c

(
E2
x + E2

y − E2
z + c2B2

x + c2B2
y − c2B2

z

)
. (1.31)

Averaging Tzz with the expressions (1.14) for the fields and (1.29) for the anticommutators outside
the cavity leads to:

〈Tzz(r, t)〉ext =
∑
m

~ω
2

cos2 θ

=
∑
m

~k2
zc

2

2ω

=

∫ ∞
0

dω

2π

∑
k,p,φ

~kz
2

(1.32)

using (1.18) for the sum over the modes m. The same derivation can be done for the field inside
the cavity for which the diagonal elements of the cavity operator G must be taken into account
through the anticommutators (1.30):

〈Tzz(r, t)〉cav =

∫ ∞
0

dω

2π

∑
k,p,φ

~kz
2

[G(ω)](kpφ,kpφ) . (1.33)

The force exerted on one object is the difference of inside and outside radiation pressures. In
order to have F < 0 for an attractive force and F > 0 for a repulsive force between the two objects,
we define the force as follows:

F = Finside − Foutside

= 〈Tzz(r, t)〉cav − 〈Tzz(r, t)〉ext
=

∫ ∞
0

dω

2π

∑
k,p,φ

~kz
(

[G(ω)](kpφ,kpφ) − 1
)

=

∫ ∞
0

dω

2π
Trω ~kz

[
M(ω) (I −M(ω))−1 +M†(ω)

(
I −M†(ω)

)−1
]
.

As the distance L between the two objects only appears inM through eıkzL in the two translations
operators T , as seen in Eq.(1.24), we have:

− ∂

∂L
[
ln(I −M(ω))− ln(I −M†(ω))

]
= 2ıkz

[
M(ω) (I −M(ω))−1 +M†(ω)

(
I −M†(ω)

)−1
]

then, by identification with F = −∂E
∂L , we get the energy:

E =~
∫ ∞

0

dω

2π
Trω

[
1

2ı
ln(I −M(ω))− 1

2ı
ln(I −M†(ω))

]
=~
∫ ∞

0

dω

2π

[(
− ı

2

)
Trω ln (D(ω)) + C.C.

]
=~
∫ ∞

0

dω

2π

[(
− ı

2

)
ln detω (D(ω)) + C.C.

]
(1.34)
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1.4 The example of the plane-plane geometry

with D(ω) = I −M(ω) the scattering operator of the cavity that contains all the information of
the geometric configuration and the optical properties of the objects. In some sense, D can be
interpreted as applying to a wave a measure of the difference between doing a round trip in the
cavity and not doing it. The resulting energy E can then be understood as the energy contained
in the electromagnetic modes when the two objects are placed in the vacuum, minus the energy
contained in the electromagnetic modes when the objects are not here. Doing this difference, we
take away the infiniteness of the quantity

∑
m

~ω
2 which can be theoretically problematic and needs

renormalization procedures.
The final expression (1.34) is the scattering formula at real frequencies. It can be transform by

a Wick rotation to an integration over complex frequencies (ω = ıξ):

E = ~
∫ ∞

0

dξ

2π
Tr ln (D(iξ)) = ~

∫ ∞
0

dξ

2π
ln detD(iξ) (1.35)

where we dropped the index ω in the notation for the trace, as it is valid with other basis for the
electromagnetic modes, but keeping in mind that this trace must be adimensional.

Moreover, the procedure of the Wick rotation for the frequency has the advantage of expressing
propagative and evanescent wave in the same manner, as the longitudinal wavevector is transformed
into:

[propagative] kz = φ

√
ω2

c2
− k2 = φ

√
−ξ

2

c2
− k2 = ıφ

√
ξ2

c2
+ k2 = ıφκ

[evanescent] kz = ıφ

√
k2 − ω2

c2
= ıφ

√
k2 +

ξ2

c2
= ıφκ (1.36)

with κ =
√
k2 + ξ2

c2
> 0 the Wick rotated counterpart of the longitudinal component kz of the

wavevector. Then the reflection operators (R1,R2) inM(iξ) have to be evaluated at imaginary
frequencies, and the translation operators common expression (1.24) becomes:

T2←1 | ıξ,k, p,+〉 = eıL
√
− ξ2
c2
−k2 | ıξ,k, p,+〉 = e−κL | ıξ,k, p,+〉

T1←2 | ıξ,k, p,−〉 = eıL
√
− ξ2
c2
−k2 | ıξ,k, p,−〉 = e−κL | ıξ,k, p,−〉 . (1.37)

From this exponential decrease with respect to the Wick-rotated longitudinal component of
wavevector κ, we know that the integrand function in the scattering formula (1.35) at imaginary
frequencies is quickly decreasing for high frequencies. Indeed, as κ2 = ξ2

c2
+ k2, κ > ξ

c , and the
translation operators bring a factor:

e−2κL ≤ e− ξLc , (1.38)

meaning that all frequencies ξ � c
L will give a negligible contribution to the Casimir effect in the

ξ-integration.

1.4 The example of the plane-plane geometry

As an illustrative example, we apply the scattering formalism (1.35) introduced above in the
simple situation where the two objects are parallel planes, the first with its surface at (z = 0), the
second at (z = L), as presented in Fig. 17. The two planes are assumed to be infinite in the x
and y-directions, and to be thick enough to be considered as a bulk. For a more complete study
of this situation the reader is reported to [207] which focus on this plane-plane geometry. The
translational invariance in the x and y-directions makes the planar modes | ω,k, p, φ〉 introduced
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1 THE SCATTERING FORMULA

Figure 17: Schema of the plane-plane configuration. The two planes are infinite in the x and
y-directions, and are separated by a distance L in the z-direction.

in Section 1.1 very well suited to express the scattering. We recall that ω ∈ R+ is the frequency
of the mode, k = (kx, ky) ∈ R2 the transverse component of the wavevector K, p ∈ {TE,TM} the
polarization, and φ = ±1 chooses between the two possibilities for the longitudinal part of the
wavevector kz = φ

√
ω2

c2
− k2.

When switching to imaginary frequencies ω = ıξ, the longitudinal wavevector becomes kz = ıφκ,

with κ =
√

ξ2

c2
+ k2 ∈ R+. The optical response of the planes is described through the Fresnel

coefficients, which will be derived at imaginary frequencies in Section 5.2.1 (p.70) and read for
the two transverse polarizations:

rTE(ξ, κ) =
cκ−

√
ξ2(ε(ıξ)− 1) + c2κ2

cκ+
√
ξ2(ε(ıξ)− 1) + c2κ2

rTM(ξ, κ) =
cκε(ıξ)−

√
ξ2(ε(ıξ)− 1) + c2κ2

cκε(ıξ) +
√
ξ2(ε(ıξ)− 1) + c2κ2

(1.39)

where ε(ıξ) is the dielectric function of the material, which enables to describe the optical
properties of the material and will be discussed more thoughfully in Section 2. A perfectly
reflecting material has an infinite dielectric function and its Fresnel coefficients go the limits
(rTE → −1) and (rTM → 1), an imperfect mirror always has rTE, rTM ∈ [−1, 1].

The point of reference for the first plate will be the origin (0, 0, 0) while the reference point for
the second plate will be (L, 0, 0). The reflection operators R1,R2 on the planar surfaces for planar
modes introduced in a previous section, are given by Fresnel coefficients:

R1(ıξ) | k, p,+〉 = 0 R2(ıξ) | k, p,+〉 = r(2)
p (ξ, κ) | k, p,−〉

R1(ıξ) | k, p,−〉 = r(1)
p (ξ, κ) | k, p,+〉 R2(ıξ) | k, p,−〉 = 0 (1.40)

and the translation operators T1←2, T2←1 give:

T1←2(ıξ) | k, p,+〉 = eκL | k, p,+〉 T2←1(ıξ) | k, p,+〉 = e−κL | k, p,+〉
T1←2(ıξ) | k, p,−〉 = e−κL | k, p,−〉 T2←1(ıξ) | k, p,−〉 = eκL | k, p,−〉 . (1.41)

Using the two last sets of equations, we can obtain the image of a wave | k, p, φ〉 of frequency ω by

36



1.4 The example of the plane-plane geometry

the round-trip operator defined by Eq.(1.22):

M(ıξ) | k, p,−〉 = R1(ıξ)T1←2(ıξ)R2(ıξ)T2←1(ıξ) | k, p,−〉 = 0

M(ıξ) | k, p,+〉 = R1(ıξ)T1←2(ıξ)R2(ıξ)T2←1(ıξ) | k, p,+〉
= e−κL R1(ıξ)T1←2(ıξ)R2(ıξ) | k, p,+〉
= e−κLr(2)

p (ξ, κ) R1(ıξ)T1←2(ıξ) | k, p,−〉
= e−κLr(2)

p (ξ, κ)e−κL R1(ıξ) | k, p,−〉
= e−κLr(2)

p (ξ, κ)e−κLr(1)
p (ξ,k) | k, p,+〉

= ρp(ξ,k) | k, p,+〉 with ρp(ξ,k) = r(1)
p (ξ, κ)r(2)

p (ξ, κ)e−2κL

where we see that only the block for φ = φ′ = 1 has non-zero entries. Moreover, the operator
M(ıξ) is diagonal in the basis of planar electromagnetic modes, which comes from the fact that
planar reflection is specular. It would not be the case for general non-specular reflections, andM
can contain non-diagonal elements that couple the different modes in the cavity. It follows that in
this simple case the determinant of the cavity operator D(ıξ) = I −M(ıξ) reduces to a product of
the diagonal elements for (φ = 1):

detD(ıξ) =
∏
k,p

(1− ρp(ξ,k)) (1.42)

so that, when taking the logarithm, the integrand for the Casimir energy is:

ln detD(ıξ) = ln
∏
k,p

(1− ρp(ξ,k)) =
∑
k,p

ln(1− ρp(ξ,k))

= A
∑
p

∫
d2k

(2π)2
ln(1− ρp(ξ,k))

= A

∫ ∞
0

kdk

2π

∫ 2π

0

dθK
2π

∑
p

ln(1− ρp(ξ,k))

= A

∫ ∞
ξ/c

κdκ

2π
ln [(1− ρTE(ξ, κ))(1− ρTM(ξ, κ))] . (1.43)

Finally the Casimir energy per unit area is given by a double integral:

E/A =
~

2π

∫ ∞
0

dξ

2π

∫ ∞
ξ/c

κdκ ln [(1− ρTE(ξ, κ))(1− ρTM(ξ, κ))] . (1.44)

As the distance between the two objects L only appears in the translation operator as e−κL,
remarking that:

∂

∂Lρp(ξ, κ) = −2κρp(ξ, κ)

∂

∂L ln (1− ρp(ξ, κ)) =
2κρp(ξ, κ)

1− ρp(ξ, κ)

it is easy in to obtain a similar expression for the Casimir force per unit area from (1.44):

F/A = −∂E/A
∂L = − ~

2π

∫ ∞
0

dξ

2π

∫ ∞
ξ/c

2κ2dκ

[
ρTE(ξ, κ)

1− ρTE(ξ, κ)
+

ρTM(ξ, κ)

1− ρTM(ξ, κ)

]
. (1.45)
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1 THE SCATTERING FORMULA

In the case of perfect mirrors, the Fresnel coefficients are rTE = −1, rTM = 1, and the Casimir
energy per unit area becomes:

E/A =
~

2π

∫ ∞
0

dξ

2π

∫ ∞
ξ/c

κdκ ln
[
(1− e−2κL)2

]
=

~
π

∫ ∞
0

dξ

2π

∫ ∞
ξ/c

κdκ ln
[
1− e−2κL]

=
~
π

∫ ∞
0

κdκ

∫ cκ

0

dξ

2π
ln
[
1− e−2κL]

=
~c

2π2

∫ ∞
0

κ2dκ ln
[
1− e−2κL]

=
~c

16π2L3

∫ ∞
0

dt t2 ln
(
1− e−t

)
=

~c
16π2L3

(−2ζ(4))

= − ~cπ2

720L3
(1.46)

which reproduces the original result derived by Casimir in [38]. Taking the derivative with respect
to the distance L, we get the Casimir force per unit area for perfect mirrors:

F/A = = − ~cπ2

240L4
(1.47)
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2 Optical properties of materials

In order to write the reflection operators R on the objects, defined in Eq.(1.1), one needs a realistic
description of the optical response of materials. In particular in the experimental situations, objects
are usually made of metallic or dielectric materials, and an accurate modeling of the material often
turns out to be crucial [94, 96, 101, 103, 112, 117, 105, 107, 123, 124, 125, 126, 127, 128, 129].
Moreover, as discussed in the introduction, the model used for metallic reflectors has been a matter
of debate in the past years, as some experimental work seem to be in better agreement with the
lossless plasma model than with the dissipative Drude model [107, 109].
In this section, we first introduce the frequency-dependant relative permittivity ε(ω) of the

material, also called dielectric function, which will be used to account for imperfect reflection on
the objects. Then several models for metals and for dielectrics will be presented, along with their
corresponding dielectric function.

2.1 The dielectric function

In this section we will present models for a linear, time-invariant, homogeneous and isotropic
dielectric medium. We start from the general Maxwell equations:

∇×E = −∂B
∂t

∇×H = j +
∂D

∂t
∇ ·D = ρ ∇ ·B = 0

with E and B the electric and magnetic fields, D = ε0E + P the electric displacement field, and
H = B

µ0
+ M the magnetizing field. P and M are respectively the polarization and magnetization

density fields, j and ρ represent the free current and charge densities, also called jf and ρf in the
literature, that don’t take into account bound current and charge.

The assumption of linear, time-invariant, homogeneous and isotropic dielectric medium leads to
P = ε0χE and M = 0, where the electric susceptibility of the material χ is a homogeneous and
real function. It yields that the electric displacement field linearly depends on the electric field:
D = ε0(1 + χ)E and that the magnetizing field linearly depends on the magnetic field: H = B

µ0
.

Thus, replacing D and H by the latter expressions, the Maxwell equations can be written the
same way as in vacuum, with the replacement ε0 → ε0(1 + χ) = ε:

∇×E = −∂B
∂t

∇×B = µ0

(
j + ε

∂E

∂t

)
∇ ·E =

ρ

ε
∇ ·B = 0 .

The relative permittivity εr = ε
ε0

= 1 + χ, also called dielectric function, will be first derived from
a simple physical model for the medium, then the general results of electromagnetism in optical
media can be used to study physical properties of the dielectric medium. From now on, ε will be
used to represent the relative permittivity εr, for simplicity.

2.2 The plasma model

The plasma model is the simplest way to take into account the high-frequency transparency, which
is a common properties of metals. The fact that they are poor reflectors at high frequencies can be
understood from the point of view of the electrons inside the material: when an incoming wave
hits the material, the electrons move due to the electromagnetic field, and this movement creates
the reflected wave. When the frequency increases, their inertia is too large for them to follow
the incoming wave and they do not move fast enough, resulting in a deterioration in the energy
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2 OPTICAL PROPERTIES OF MATERIALS

of the outgoing reflected wave. The presented model will give the opportunity to represent this
phenomena with a very simple modeling of the electron’s movement.

The plasma model consists in assuming the valence electrons to have their mutual electrostatic
influences neglected. The only remaining force acting on them is the effect of external field (in the
present case, the incident electromagnetic wave), as the influence of the crystal lattice made of
positive ions does not need to be explicitly taken into account: Bloch’s Theorem describes the
movement of an unbound electron in a periodic potential to be quite similar to a free electron in
vacuum, except for the electron mass me becoming an effective mass m∗e. The movement of the
electron and the positive ions is then steered by the following equation:

m∗ev̇e = −eE m∗i v̇i = eE (2.1)

where m∗e (resp. m∗i ) is the effective mass of the electron (resp. of the positive ion), and (−e) is
the charge of the electron. Using time-Fourier transformation, this equation can be rewritten as:

ve = −ı e

m∗eω
E vi = ı

e

m∗iω
E

where ω is the frequency of the incoming wave, generating the movement of the electrons. The
total current j comes from both movements:

j = neve(−e) + nivie = ı
ne2

ω

(
1

m∗e
+

1

m∗i

)
E

where ne (resp. ni) is the number of electrons (resp. positive ions) per unit volume. This expression
can be simplified, observing that m∗e � m∗i (or equivalently assuming the ions to be static) to:

j = ı
ne2

ωm∗e
E = ıε0

ω2
P

ω
E (2.2)

defining the plasma frequency ωP =
√

ne2

ε0m∗e
, associated to a plasma wavelength λP = 2πc

ωP
.

Incorporating (2.2) in Maxwell equation in reciprocal space[209], it yields the following identity for
the transverse part of the magnetic field:

k×
(
k× B̂⊥

)
= µ0ε0

(
ω2
P − ω2

)
B̂⊥ (2.3)

which gives k2 = ω2n2

c2
with the media index n =

√
ε0

(
1− ω2

P
ω2

)
. ε = n2 is the permittivity, and

finally the dielectric function for the plasma model is:

εplas(ω) = 1− ω2
P

ω2
. (2.4)

For an imaginary frequency ω = iξ, it becomes a positive function:

εplas(ıξ) = 1 +
ω2
P

ξ2
(2.5)

which is presented in Fig. 18 with a blue curve on a log-log scale. At the limit of very low
frequencies, the dielectric function diverges and the material becomes perfectly reflecting. The
slope is 2, as εplas diverges with ξ−2. On the contrary at high frequencies it goes to one, which is
the dielectric function of vacuum, and the material does not reflect anything.
It is important to notice that this description of the electron’s movement is valid for a bulk

material. For finite-size object, and particularly for very small sphere in our case, it would be
necessary to take into account the confinement effect for conduction electrons [210, 211]. For that
reason, in the following we will restrict the application of the plasma and Drude models to bulk
materials, and in the case of spheres, to radii large enough (R & λP ).
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2.3 The Drude model

2.3 The Drude model

The Drude model is an extension of the formerly introduced plasma model, which accounts for
dissipation in the metal. Indeed the relation (2.2) between the flux and the electric field yield a
conductivity σ(ω) = ıε0

ω2
P
ω which becomes infinite when the frequency ω goes to zero. Metals are

however known to have a finite DC-conductivity, and thus the plasma dielectric function (2.4,2.5)
is not a correct description of the optical response for low frequencies.

To account for dissipation we add to the equation of motion for the electron (2.1) a friction term:

m∗ev̇e = −eE−m∗eγve

where γ > 0 is called the relaxation frequency. The equation (2.2) then becomes j = ı ne2

ωm∗e+im∗eγ
E

and for the same reason as above, one finds k2 = ω2n2

c2
with the media index n =

√
ε0

(
1− ω2

P
ω(ω+ıγ)

)
.

It results in a dielectric function for the Drude model:

εDrud(ω) = 1− ω2
P

ω(ω + ıγ)
(2.6)

which becomes at imaginary frequency ω = iξ a real-valued function:

εDrud(ıξ) = 1 +
ω2
P

ξ(ξ + γ)
. (2.7)

This function is presented in Fig. 18 with a red curve on a log-log scale. For high and intermediate
frequencies, the dielectric function εDrud for the Drude model is similar to εplas from the plasma
model (blue curve). At the limit of very low frequencies, the dielectric function diverges and the
material becomes perfectly reflecting, but the slope is now 1, as εDrud diverges with ξ−1.
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Figure 18: Dielectric function ε(iξ) as a function of the imaginary frequency ξ for the plasma (blue
curve) or Drude model (red curve). The parameters are those for gold (λP = 136 nm ;
δ = 0.0033).

With the Drude model, the conductivity σ(ω) = ıε0
ω2
P

ω+ıγ yields at the limit of zero frequency a
finite DC-conductivity. The plasma dielectric function (2.5) is recovered from the Drude one (2.7)
in the limit γ → 0. But, as it will be discussed later on, this does not imply that there must be a
continuity in the Casimir effect from the Drude to the plasma model in this limit [140].
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2 OPTICAL PROPERTIES OF MATERIALS

Au Cu Al

λP 136 nm 136 nm 107 nm

δ = γ
ωP

0.0038 0.0033 0.0044

Table 1: Values of the parameters for plasma and Drude models for some metals

In Table 1 are presented parameters of the plasma and Drude models for some metals. It is
also possible to improve plasma and Drude models for the permittivity with additional oscillators
[107] in order to better describe the interband transitions:

ε(ıξ) = 1 +
ω2
P

ξ(ξ + γ)
+

J∑
j=1

fj
ω2
j + ξ2 + gjξ

(2.8)

but this sophistication will not be studied here, as we will focus on the qualitative influence of
finite conductivity and dissipation in the Casimir effect.

2.4 Dielectrics

Dielectric materials, like silica or diamond, are not very good reflectors at low frequencies. Unlike
metals, their relative permittivity goes to a constant εdiel(0) when ω → 0, and a different model
for the dielectric function is thus needed. A pragmatic approach for such a dielectric function is
the Sellmeier model [212]:

εdiel(ω) = 1 +
∑
i

Biω
2
i

ω2
i − ω2

(2.9)

where the (ωi)i are the resonance frequencies, associated with coefficient Bi. From the (ωi)i we
can define corresponding lengthscales λi = 2πc

ωi
. At imaginary frequencies, the dielectric function

becomes:

εdiel(ıξ) = 1 +
∑
i

Biω
2
i

ω2
i + ω2

(2.10)

which is presented in Fig. 19 for various dielectric materials. Like for metals, the dielectric function
εdiel enables to model the high-frequency transparency of the materials, as it goes to unity at the
limit (ξ →∞). For lower frequencies however, it converges to a constant value εdiel(0) = 1 +

∑
iBi.

At intermediate frequencies, the dielectric function undergoes plateaus if there is enough space
between the oscillators frequencies.

For simplicity, only a few oscillators are kept in the Sellmeier equation, and we give the example
of two-oscillators parameters values for diamond, silica and bromobenzene in Table 2.

2.5 The example of the plane-plane geometry

The reflection operator RP for a plane is diagonal in the basis of planar modes introduced in
Section 1.1, with its elements being the Fresnel coefficients, whose expression at imaginary
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Figure 19: Dielectric function ε(iξ) as a function of the imaginary frequency for some materials
using a Sellmeier model. Upper red dashed curve represents diamond, lower blue dashed
curve bromobenzene, and solid black curve is for silica. The value of the parameters for
the Sellmeier equation (2.10) are given in Table 2.

diamond Silica Bromobenzene

λ1(µm) 0.106 0.093 0.147

B1 4.3356 1.098 1.335

λ2(µm) 0.175 21.726 3.444

B2 0.3306 0.829 2.967

Table 2: Values of the parameters for Sellmeier models for some dielectrics. Data for diamond are
derived from [213], for Silica from [214], and for Bromobenzene from [215].

frequencies is, for the two polarizations:

rTE(ξ, κ) = −
√
ξ2(ε(ıξ)− 1) + c2κ2 − cκ√
ξ2(ε(ıξ)− 1) + c2κ2 + cκ

rTM(ξ, κ) = −
√
ξ2(ε(ıξ)− 1) + c2κ2 − cκε(ıξ)√
ξ2(ε(ıξ)− 1) + c2κ2 + cκε(ıξ)

(2.11)

The dielectric function is incorporated in the scattering formula (1.44) for the Casimir energy
per unit area through those Fresnel coefficients. A finite value of this dielectric function will give
rTE, rTM ∈ [−1, 1], but a perfectly reflecting material, for which ε(ıξ) = +∞ at all frequencies, has
the Fresnel coefficients:

rperf
TE (ξ, κ) = lim

ε→+∞
−
√
ξ2(ε(ıξ)− 1) + c2κ2 − cκ√
ξ2(ε(ıξ)− 1) + c2κ2 + cκ

= −1

rperf
TM (ξ, κ) = lim

ε→+∞
−
√
ξ2(ε(ıξ)− 1) + c2κ2 − cκε(ıξ)√
ξ2(ε(ıξ)− 1) + c2κ2 + cκε(ıξ)

= 1 (2.12)
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2 OPTICAL PROPERTIES OF MATERIALS

To study the effect of the model for the reflection on the objects, we introduce the finite
conductivity correction factor ηPE for the Casimir energy, as the energy with imperfect reflectors
normalized by the one for perfect mirrors, and a similar factor ηPF for the Casimir force. From the
expressions (1.44,1.45) (p.37) obtained from the scattering formula, we get the following expressions
for the two factors:

ηPE =
E

Eperf
= −180L3

cπ4

∫ ∞
0

dξ

∫ ∞
ξ/c

κdκ ln [(1− ρTE(ξ, κ))(1− ρTM(ξ, κ))]

ηPF =
F

Fperf
=

120L4

cπ4

∫ ∞
0

dξ

∫ ∞
ξ/c

κ2dκ

[
ρTE(ξ, κ)

1− ρTE(ξ, κ)
+

ρTM(ξ, κ)

1− ρTM(ξ, κ)

]
. (2.13)

The results of numerical evaluation for the correction factor ηPE for the Casimir energy are presented
in Fig. 20 for plasma and Drude models with parameters for gold, and in Fig. 21 for various
dielectrics using Sellmeier equation (2.10) for their dielectric function.
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Figure 20: Finite conductivity correction factor ηPE in the plane-plane geometry. The lossless
plasma model is presented by a blue curve, the dissipative Drude model by a red curve.
The values of the parameters are those of gold in Table 1.

The curves for plasma (blue solid curve) and Drude model (red solid curve) are very close, their
relative difference is always smaller than 0.02 for the values of the parameters here considered, and
vanishes at the limits of short and large separation. This will no longer be the case for non-zero
temperature, as we will see in the next section. For both plasma and Drude model, at the limit of
large distances we get ηPE → 1, meaning that imperfect reflection does not have influence in this
regime. This can be understood by the fact that at large separation (L � λP ), only frequencies
lower than the plasma frequency ωP contribute to the Casimir energy, and both metallic models
represent very good reflectors for low frequencies. At short separations, the conductivity correction
factor ηPE decreases below one and becomes linear in L, meaning that imperfect reflection reduces
the magnitude of the Casimir energy. The highly-imperfect reflection regime (L � λP ) gives
[216, 217] the following asymptotic result:

ηPE =
3α

2

L
λP

and ηPF = α
L
λP

with α =
30√
2π2

∞∑
n=1

1

n3

(4n− 3)!!

(4n− 2)!!
' 1.1933 (2.14)

which shows that the imperfect reflection, at the limit of short distances, changes the power law
from the perfect mirrors expression, replacing a L by a λP and changing the coefficient by a factor
α ' 1.1933.
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2.5 The example of the plane-plane geometry

For dielectric materials, the shape of the conductivity correction factor ηPE depends on the
oscillators frequencies. For diamond (upper red dashed curve) and bromobenzene (intermediate
blue dashed curve) the function is quite monotonic, but for silica (lower black solid curve), the
curve undergoes a plateau, just as does its dielectric function presented in Fig. 19.
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Figure 21: Finite conductivity correction factor ηPE in the plane-plane geometry. Upper red dashed
curve represents diamond, lower blue dashed curve bromobenzene, and solid black curve
is for silica. The value of the parameters for the Sellmeier model are given in Table 2.

At the limit of large separation, unlike for metals, the conductivity correction factor ηPE does not
go to unity and is much smaller, as the materials are not very good reflectors at small frequencies.
In this regime then, imperfect reflection still has an influence for dielectric materials. At the
limit of small separations, like for metals a linear regime appears, which can also be computed
analytically [218].
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3 The scattering formula at non-zero temperature

At zero temperature, the Casimir effect is due to the quantum fluctuations of the vacuum only,
and thus to its zero-point energy E0 = ~ω

2 per frequency mode. When the temperature is non-zero,
the contribution of the thermal fluctuations of the electromagnetic field have to be added, and the
energy of the vacuum follows Planck’s law [136]:

E =

(
1

2
+ nω

)
~ω with nω =

1

e
~ω
kBT − 1

=
1

e
2π ω

ωT − 1

where nω is the mean number of photons per frequency mode, and ωT = 2πkBT
~ is called the

thermal frequency. The associated thermal wavelength is λT = 2πc
ωT

= ~c
kBT
' 7.6µm at ambiant

temperature. In the latter expression of the vacuum energy, one clearly separates the vacuum
energy between the contribution of "virtual photons" accounting for the quantum fluctuations of
vacuum, and of "thermal photons" accounting for the classical thermal fluctuations.

As discussed in the introduction, the inclusion of temperature in the Casimir effect has been
the subject of many theoretical works, among which we may cite the famous prediction of a ratio
2 appearing between the results of dissipative and non-dissipative metals at the limit of large
distances when the temperature is non-zero [137]. The thermal effects in the Casimir force are
also important in the discussion of the experimental measurements, as they are not observed in
[107, 109] as they should if one uses the Drude model for the mirrors, but they are in a recent
experiment [110, 111] performed at larger distances.
In [165], it is shown that the change from zero temperature to non-zero temperature can be

mastered by introducing the multiplicative factor 1 + 2n̄ω = coth(π ω
ωT

) in the trace over modes,
and yields the following change in the scattering formula for the Casimir free energy:

F =
~

2π

∫ ∞
0

dω

[(
− ı

2

)
coth

(
π
ω

ωT

)
Tr ln (D(ω)) + C.C.

]
. (3.1)

In [219], the rotation to imaginary frequencies is done from (3.1) with the thermal factor and
yields:

F =
~

2π

∑
n∈Z

∫ ∞
0

dξ cos

(
2πn

ξ

ωT

)
ln detD(ıξ) . (3.2)

Expression (3.2) for the Casimir free-energy at ambient temperature seems more complex to
handle than the corresponding expression (1.35) at zero-temperature, as it involves both a sum and
an integral. Nevertheless, as will be discussed in Section 3.1, it can be reduced to a discrete sum
over the Matsubara frequencies only. With this simplification, we will then recall in Section 3.2
some results in the plane-plane configuration, particularly on the correlations between the effects
of finite conductivity and temperature.

3.1 The Matsubara sum

The quantity F has the generic form :

Q =
~

2π

∑
n∈Z

∫ ∞
0

dx cos(nαx)Φ(x) (3.3)

with Φ(x) = ln detD(ıx) and α =
2π

ωT

where α > 0 at T > 0. As this quantity uses both infinite series and integrals over R, it is of great
interest to manipulate it as a precise mathematical object. In the following is explained how the
distribution theory offers a framework that allows to simplify the expressions for the case T 6= 0.
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3.1 The Matsubara sum

Definition 1 Schwarz Space S(R)

The Schwarz Space is the set of all infinitely differentiable functions, whose derivatives are
continuous and decrease faster than any polynomial at infinity. They are also called "rapidly
decreasing functions". Formally this set is defined as :

S(R) =
{
φ ∈ C∞(R)

∣∣∣ |x|jφ(k)(x) −→ 0 when |x| → +∞ ∀j, k ∈ N
}
.

As κ2 = ξ̂2 + k2 for planar modes, all elements of matrixM contain a factor e−2κL < e−2L
c
ξ

from the translation operators, which is exponentially decreasing for ξ → +∞, as seen in Eq.(1.38).
The integrand Φ(ξ) = ln detD(ıξ) ' ln (1− TrM(ıξ)) ' −TrM(ıξ) for ξ → +∞, and thus lies in
the Schwarz space for the variable ξ.

Definition 2 The space of tempered distributions S ′(R)

S ′(R) is the dual of the Schwarz space, thus the set of continuous linear form acting on S(R).
As a result, T is a tempered distribution if only ∃K ∈ N, C ∈ R, such that :

∀φ ∈ S(R), |< T, φ >| ≤ C sup
0≤j,k≤K

sup
x∈R

(
|x|j |φ(k)(x)|

)
.

Prop. 1 Any bounded function on R defines a tempered distribution.

This mathematical frame allows to use the Fourier Transform (FT) on both spaces.

Definition 3 Fourier transform in S(R)
We define the FT of φ ∈ S(R) in angular-frequency domain by:

φ̂(k) =
1√
2π

∫
R

dx e−ikxφ(x) .

With this convention, the FT is almost an involution:

φ(x) =
1√
2π

∫
R

dk eikxφ̂(k) .

Prop. 2 The Fourier Transform is a continuous linear application from S(R) to itself.

Definition 4 Fourier transform of a tempered distribution
If T ∈ S ′(R), one can define T̂ ∈ S ′(R) as :

< T̂ , φ >=< T, φ̂ > ∀φ ∈ S(R) .

Prop. 3 The Fourier Transform is a continuous linear application from S ′(R) to itself.

Within this formalism, one can write :

Q =
~

2π
lim

N→+∞
QN

QN =
~

2π

N∑
n=−N

∫ ∞
0

dx cos(nαx)Φ(x) =
~

2π

∫ ∞
0

dx

[
N∑

n=−N
cos(nαx)

]
Φ(x)

=
~

4π

∫
R

dx

[
N∑

n=−N
cos(nαx)

]
Φ(x) =

~
4π

< SN ,Φ >

with SN (x) =
∑N

n=−N cos(nαx) =
∑N

n=−N e
inαx a bounded function, thus defining a tempered

distribution thanks to Prop. 1, and Φ extended on R by parity (Φ(x) = Φ(−x) for x < 0).
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3 THE SCATTERING FORMULA AT NON-ZERO TEMPERATURE

Lemma 1 ∀α > 0, ∀φ ∈ S(R), ∀x ∈ R,
∑
n∈Z

φ(x+ nα) =

√
2π

α

∑
m∈Z

φ̂
(

2π
m

α

)
eı2π

mx
α

(For proof, see Appendix A.1 p.212)

Lemma 2 The Dirac comb T =
√

2π
∑

n∈Z δ(x−nα) is in S ′(R) and its inverse Fourier transform
is TF−1(T ) = 2π

α

∑
n∈Z δ

(
x− n2π

α

)
.

(For proof, see Appendix A.2 p.212)

Prop. 4 • SN −→ TF−1(T ).

• The computation of the quantity Q reduces to : Q =
~
α

′∑
n

Φ

(
n

2π

α

)
, where the primed sum

represents a sum over N with a coefficient 1
2 for the zeroth term.

(For proof, see Appendix A.3 p.213)
The scattering formula for the Casimir free-energy, with Φ(x) = ln detD(ıx) and α = 2π

ωT
=

λT
c = ~

kBT
, then takes the form of a discrete sum over the Matsubara frequencies (ξn)n∈N = nωT :

F = kBT

′∑
n

ln detD(ıξn) . (3.4)

The scattering formula (3.4) at non-zero temperatures replaces a continuous integration over
all frequencies to a discrete sum over regularly spaced frequencies ξn = nωT . This change goes
with a multiplication by 2πkBT

~ = ωT , which is the spacing between the Matsubara frequencies. It
follow that the non-zero formula (3.4) can be interpreted as an approximated evaluation of the
integral involved in the zero-temperature formula (1.35) with a rectangle rule, involving rectangles
of width ωT , centered at the Matsubara frequencies (nωT ). This interpretation is illustrated in
Fig. 22 where the rectangles are drawn for the first Matsubara frequencies, the first one being
twice narrower.

When the temperature goes to 0, the width of the rectangles goes to zero and the discrete sum
goes to the continuous integral. From this point of view, the scattering formula (3.4) containing
the thermal fluctuations is both simpler and more general as it contains the zero-temperature
formula as a limiting case. This regime can be characterized with the distance L between the
two objects: because of the exponential decrease at high frequencies e−2 ξL

c , only frequencies with
ξ . c

L give an important contribution to the Casimir effect. In order to have N � 1 Matsubara
frequencies inside the interval [0, cL ], the N th Matsubara term must be ξN = NωT ∼ c

L . It follows
that the distance must verify L � λT

2π in order to have a dense quadrature of the interval [0, cL ]
which makes the discrete sum tending to the continuous integral and yields the low-temperature
regime:

[L � λT ] F −→ E =
~

2π

∫ ∞
0

dξ Φ(ξ) , with Φ(ξ) = ln detD(ıξ) . (3.5)

As the frequency-step between the Matsubara frequencies is proportional to the temperature T ,
we can expect in the limit of very large temperatures from the observation of Fig. 22 this spacing
to be large enough so that only the zeroth term in (3.4) has a non-negligible contribution to the
Matsubara sum. Indeed, as the integrand exponentially decreases for large frequencies ξ � c

L , as
seen in Eq.(1.38), the second Matsubara frequency ξ1 = ωT gives a negligible contribution as soon
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3.2 The example of the plane-plane geometry
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Figure 22: Comparison of the summation over frequencies ξ for the scattering formula at zero
and non-zero temperature. The blue curves represents the integrand Φ(ξ). The zero
temperature scattering formula (1.35) is obtained through continuous integration over
all frequencies. The non-zero temperature scattering formula (3.4) involves a discrete
sum of the integrand function, evaluated on a discrete set of frequencies nωT .

as ωT � c
L . With ωT = 2πc

λT
, the high-temperature regime can be written as (L � λT

2π ), or more
simply (L � λT ), and in this limit the scattering formula (3.4) takes the simpler form:

[L � λT ] F −→ FHT =
kBT

2
Φ(0) , with Φ(0) = ln detD(0) . (3.6)

that only involves the scattering operator D at zero frequency. This high-temperature (HT) limit is
proportional to the temperature T and does not involves the number ~ anymore. As a consequence
the Casimir effect only comes from classical thermal fluctuations in this limit.

3.2 The example of the plane-plane geometry

3.2.1 Expressions for the thermal Casimir effect and high-temperature regimes

To include the thermal fluctuations in the simple geometry of two planes, we extract the integrands
ΦE and ΦF from the zero-temperature expression (1.44) for the Casimir energy and force per unit
area:

ΦE(ξ) =

∫ ∞
ξ/c

κdκ

2π
ln [(1− ρTE(ξ, κ))(1− ρTM(ξ, κ))]

ΦF (ξ) = −
∫ ∞
ξ/c

2κ2dκ

2π

[
ρTE(ξ, κ)

1− ρTE(ξ, κ)
+

ρTM(ξ, κ)

1− ρTM(ξ, κ)

]
(3.7)

then the Casimir free-energy F and force F at non-zero temperature is given by:

F/A = kBT

′∑
n

∫ ∞
ξn/c

κdκ

2π
ln [(1− ρTE(ξn, κ))(1− ρTM(ξn, κ))]

F/A = −kBT
′∑
n

∫ ∞
ξn/c

2κ2dκ

2π

[
ρTE(ξn, κ)

1− ρTE(ξn, κ)
+

ρTM(ξn, κ)

1− ρTM(ξn, κ)

]
. (3.8)
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The high-temperature regime (L � λT ) can be analytically computed for perfect mirrors, as
their Fresnel coefficients (2.12) are ±1, and their open-loop functions ρp then reduce to e−2κL:

FHT
perf/A =

kBT

2

∫ ∞
0

κdκ

2π
ln
[
(1− e−2κL)(1− e−2κL)

]
=

kBT

8πL2

∫ ∞
0

tdt ln(1− e−t)

= −ζ(3)kBT

8πL2
(3.9)

where ζ is Riemann’s zeta function (ζ(3) ' 1.202057). For planar mirrors described by the Drude
model (resp. dielectrics), we will see in Section 7.2 (p.111) that the zero-frequency limits of
the Fresnel coefficients are 0 for TE modes and 1 (resp. ε(0)−1

ε(0)+1) for TM modes. With a similar
derivation, we deduce the high-temperature regime (L � λT ) for the Casimir free-energy between
two planes with Drude model for metals, or for dielectrics:

FHT
Drud/A = −ζ(3)kBT

16πL2
FHT

diel/A = −ζ(3)kBT

16πL2

ε(0)

ε(0) + 1
(3.10)

where we remark that the result for Drude metals is half the expression (3.9) derived for perfect
mirrors. This can be understood from the fact that both polarization TE and TM have the same
role for perfect mirrors, and at the limit of low-frequencies one is turned off for Drude metals.

For plasma model, the situation is a bit more complex, however, as will be derived in Section 7.2
(p.111), we can show that in the limiting case where (L � λP ), the plasma case recovers the
Fresnel coefficients of perfect mirrors, which gives a high-temperature regime similar to (3.9),
whereas in the opposite case where (L � λP ), the Fresnel coefficients of the Drude model at low
frequency are recovered, leading to a high-temperature regime similar to the left part of (3.10). As
a consequence, the ratio of the high-temperature long-distance (L � λT , λP ) limits of the Casimir
free-energies obtained when using the lossless plasma and dissipative Drude models goes to 2, in
agreement with [137].

The high-temperature regime of the Casimir free-energy of two planes with the plasma model is
not universal, unlike with the Drude model, as it depends on the parameter λP of the material.
This feature is important, and will be discussed also in the sphere-plane configuration. We remark
that in common situation (usual materials and ambient temperature) we have (λT & λP ), and
the high-temperature regime (L � λT ) entails the first condition (L � λP ). It means that the
Drude high-temperature regime is usually different from the plasma one. Moreover, the fact that
Drude result at high-temperatures does not depend on the material parameters (λP , δ) means that
it does no tend to recover the plasma result when we take δ → 0 at the end. Consequently, this is
a case where the limits L → ∞ and δ → 0 do not commute.

3.2.2 Observation of thermal effects

To study the influence of non-zero temperature on the Casimir effect, we introduce the thermal
correction factor ηTF = F(T )

F(0) for the free-energy as the Casimir free-energy at temperature T ,
normalized by the energy at zero temperature. A similar factor can be defined for the force
and reads ηTF = F (T )

F (0) . In Fig. 23 we present the result of numerical evaluations for the thermal
correction factor ηTF for the free-energy, as a function of the distance. This is done for perfect
mirrors, but also for metallic mirrors modelled by the plasma and Drude models.
For small distances we observe that ηTF ' 1 in all cases, meaning that temperature does not

have influence in this regime. For large distances, for perfect mirrors and plasma model the factor
increases and becomes linear in L, meaning that thermal photons have an attractive contribution
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Figure 23: Thermal correction factor ηTF = F(T )
F(0) for the Casimir free-energy between two planes as

a function of the distance L, with a log-log scale. The optical properties of the materials
are described either by perfect mirrors (black dots), plasma (thin blue line), or Drude
(lower red dashed curve) models. The two first curves are almost superimposed. The
temperature is T = 300 K, which corresponds to a thermal length λT = 7.6 µm. The
chosen parameters for the metal are those of gold (λP = 136 nm ; δ = 0.004).

to the Casimir energy. This is consistent with the high-temperature (L � λT ) regime for ηTF ,
derived from expressions at zero (1.46) and high (3.9) temperatures for perfect mirrors:

ηTF =
Fperf(T →∞)

Fperf(0)
=

90ζ(3)L
π3λT

. (3.11)

For materials described by the Drude model however, the factor first decreases to a minimum below
unity at intermediate distances, meaning that the thermal contribution to the Casimir free-energy
is repulsive. The curve increases to a high-temperature regime for large distance, with a constant
gap that reproduces the factor 1

2 observed in the high-temperature regimes (3.9) and (3.10).

3.2.3 Correlations between the effects of imperfect reflection and temperature

We define the total correction factor ηTPF as the ratio of the free-energy at ambient temperature
with plasma or Drude model for the reflection, and the energy at zero temperature with perfect
mirrors:

ηTPF =
F(T )

Fperf(0)
= −360L3

λTπ3

′∑
n

∫ ∞
ξn/c

κdκ ln [(1− ρTE(ξn, κ))(1− ρTM(ξn, κ))] (3.12)

The numerical evaluations for this total correction factor are presented for plasma (resp. Drude)
model in Fig. 24 with a thick blue (resp. red) curve with respect to the distance L. The simple
thermal correction ηTF for perfect mirrors and the simple finite-conductivity correction ηPF at zero
temperature are presented for reference with a thin black line and thin dashed curves, respectively.

At small distances, for both model, only the imperfect reflection has an influence and the curve
for ηTPF joins the one for ηPF . At large distances for the plasma model, only temperature has an
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Figure 24: Total correction factor ηTPF for the Casimir free-energy between two planes. The thick
blue (resp. red) curve is obtained when using the plasma (resp. Drude) model for the
description of optical properties of the materials. As a reminder, the simple thermal
correction ηTF for perfect mirrors is drawn with a thin black curve, and the simple
finite-conductivity correction ηPF is represented with dashed curves. The temperature is
T = 300 K, which corresponds to a thermal length λT = 7.6 µm. The chosen parameters
for the metal are those of gold (λP = 136 nm ; δ = 0.004).
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effect on the correction, and the curve catches up with the one for ηTF . For Drude model at large
distances however, the high-temperature regime is obtained with a different multiplicative factor,
as discussed in the previous section.
If the effects of temperature and finite conductivity were uncoupled, the thermal correction

factor would not depend on the model of reflection and the finite conductivity correction factor
would not depend on the temperature. The total correction factor ηTPF would then reduce to the
product of the two simple correction factors ηPF and ηTF . Thus the observations, first that the
curves are different in Fig 23 for plasma and Drude models, but also that ηTPF 6= (ηPFη

T
F ) for Drude

in Fig. 24, are clear signature of the existence of correlations between the effects of temperature
and imperfect reflection. To measure how they interact with each other, we follow Eq.(4-24) in
[207] and define the correlation number δTPF for the Casimir free-energy F , which must be zero
when the two effects are uncoupled:

δTPF =
ηTPF
ηTFη

P
F
− 1 =

FDrud(T )Fperf(0)

Fperf(T )FDrud(0)
− 1 (3.13)

=
ηTF [Drud]

ηTF [perf]
− 1 (3.14)

=
ηPF (T )

ηPF (0)
− 1 (3.15)

The two last reformulations show that this correlation number can also be seen as the relative
difference between the thermal correction factors with Drude and perfect mirrors thanks to
Eq.(3.14), or from Eq.(3.15) as the relative difference between the finite conductivity correction
factors at zero and ambient temperature. This parameter is presented in Fig. 25 with respect to
the distance L, for both plasma and Drude models with blue and red curves, respectively.
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Figure 25: Correlation number δTPF for the Casimir free-energy between the effects of finite conduc-
tivity and temperature, in the plane-plane configuration. The temperature is T = 300
K, which corresponds to a thermal length λT = 7.6µm. The chosen parameters for the
metal are those of gold (λP = 136 nm ; δ = 0.004).

For materials described by the lossless plasma model, the correlation number δTPF remains small
with a maximum value of 1.05e− 2 at intermediate distances, and vanishes in both short and large
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separation limits. The shape of this curve and its dependance upon the scaling parameter λP
λT

has
been studied in [207]. For the Drude model, the correlation is much more important, and does not
vanish in the limit of large distances but rather goes to the value 1

2 .
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4 The proximity force approximation (PFA)

We now consider a sphere of radius R, made of a material with a dielectric function ε(iξ), in front
of an infinite plane of the same material. The surface-surface distance between the two objects
will be noted L and the center-to-plate distance will be L = L+R. The derivatives with respect
to L and L are thus equivalent. We define the aspect ratio L

R , which will play a central role in
this geometry. To produce theoretical predictions for the Casimir effect, the Proximity Force
Approximation (PFA) has been commonly used [146, 147, 148] to handle that geometry. Its domain
of validity is when the sphere is very close to the plane (L� R), and allows to derive simply the
Casimir effect from the quantity computed in the plane-plane geometry, as in the previous sections.
We will first introduce the general idea of this approximation method and derive it in the

sphere-plane geometry in Section 4.1. Then, we will introduce in Section 4.2 what we call the
primo-potential D, a quantity that will enable us to compute the Casimir energy from the PFA
method. Finally, we will discuss the numerous limitations of this approximation, and how we can
assess its accuracy in Section 4.3.

4.1 The PFA formula in the sphere-plane geometry

The Proximity Force Approximation relies on the assumption that when the sphere comes close to
the surface of the plane (L� R), the main contribution to the Casimir interaction comes from
the cap of the sphere facing the plane.

The surface Σ of the half-sphere closer to the plane
is then decomposed in infinitesimal elements d2σ,
which are considered to only interact with their
corresponding infinitesimal element at the plane’s
surface, as if they were both part of two infinite
parallel plates:

FPFA =

∫∫
Σ

FPP(z)

A
d2σ . (4.1)

d2σ = R2 sin θdθdϕ is the infinitesimal surface ele-
ment in spherical coordinates, z = L+R(1−cos θ)
is the local distance between the two facing in-
finitesimal surfaces, and FPP/A is the Casimir
free-energy per unit area in the plane-plane ge-
ometry given by Eq.(3.8).

As z only depends on θ, the integral can be simplified to a sum over z:

FPFA = 2πR

∫ π/2

0

FPP(z(θ))

A
R sin θdθ

= 2πR

∫ L+R

L

FPP(z)

A
dz .

Taking the derivative of it, and multiplying by (−1), one obtains the force:

FPFA(L,R) = −2πR

(FPP(L+R)

A
− FPP(L)

A

)
' 2πR

FPP(L)

A
(4.2)

when for a sufficiently fast decreasing amplitude of the free-energy with respect to the distance,
we can neglect FPP(L+R)

A with respect to FPP(L)
A . The same procedure can be followed to get
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4 THE PROXIMITY FORCE APPROXIMATION (PFA)

the approximated force gradient GPFA = −∂FPFA
∂L in the sphere-plane configuration from the

plane-plane force per unit area:

GPFA(L,R) = 2πR
FPP(L)

A
(4.3)

The general method of splitting the sphere’s surface in small parts, consider the Casimir interac-
tion for each one with the plane, and then integrate over the whole sphere surface, as illustrated in
Eq.(4.1), can be done in several ways, depending on the choice of the corresponding infinitesimal
surfaces, and on the way one computes the Casimir interaction between the two infinitesimal
surfaces. Alternative formulations of this general method are described in Appendix B.1 (p.219),
but we will keep the usual formulation here derived, leading to the simplest and most commonly
used expressions (4.2, 4.3).

4.2 The primo-potential D

For the special case of perfectly reflecting materials at zero temperature, we obtain from the
explicit expressions (1.46) and (1.47) in the plane-plane configuration, the PFA results for the
force and the force gradient:

FPFA(L,R) = −~cπ3R

360L3
GPFA(L,R) = −~cπ3R

120L4
. (4.4)

It is then simple to integrate this expression for the force and obtain the PFA result for the energy:

EPFA(L,R) = −~cπ3R

720L2
. (4.5)

In order to obtain a similar result in the general case, a first possibility is to compute the force
with (4.2) and then integrate it numerically over the distance L, as done analytically to obtain
(4.5). For convenience, we introduce here a second possibility, in order to compute directly the
Casimir free-energy. Observing the expressions (4.2) and (4.3), we can deduce that for this we
need a function whose derivative would be the free-energy in the plane-plane configuration.

Definition 5 (primo-potential D) The primo-potential D(L, T ) is a function such as

−∂D
∂L

= F(L, T )

Once this function is known, the free energy FPFA from the PFA method simply writes:

FPFA(L,R) = 2πR
DPP(L)

A
(4.6)

where DPP/A denotes the Casimir primo-potential per unit area in the plane-plane configuration.
For perfect mirrors at zero temperature, it is easily obtained by integrating the expression (1.46)
for the energy in this configuration:

DPP(L)/A = − ~cπ2

1440L2
EPFA(L,R) = −~cπ3R

720L2
. (4.7)

which is of course consistent with expression (4.5). In the general case, the expression of DPP/A
can be obtained from the expressions (1.44) and (3.8) for the energy and free-energy, thanks to the
properties of the polylogarithm.
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4.3 Beyond the PFA method

First let us remark that the function of ρp(ξ, κ) to be integrated in (1.44) and (3.8) to get the
energy and the force are polylogarithms of indices 0 and 1, respectively:

Li0(ρ) =
ρ

1− ρ Li1(ρ) = − ln(1− ρ) . (4.8)

The polylogarithms of nearby order are related by derivation through ρ∂Lin(ρ)
∂ρ = Lin−1(ρ). It

follows that each time we take the derivative of Li(ρ) with respect to L, the index is decreased by
1 and a factor (−2κ) appears:

∂ρ

∂L = −2κρ

∂Lin(ρ)

∂L =
∂Lin(ρ)

∂ρ

∂ρ

∂L = (−2κ)Lin−1(ρ)

At zero temperature, the primo-potential, energy and force can be thus written in a similar manner
as the following functions of polylogarithms:

DPP(L)/A = − ~
8π2

∫ ∞
0

dξ

∫ ∞
ξ/c

dκ [Li2(ρTE(ξ, κ) + Li2(ρTM(ξ, κ)] (4.9)

EPP(L)/A = − ~
4π2

∫ ∞
0

dξ

∫ ∞
ξ/c

κdκ [Li1(ρTE(ξ, κ) + Li1(ρTM(ξ, κ)] (4.10)

FPP(L)/A = − ~
2π2

∫ ∞
0

dξ

∫ ∞
ξ/c

κ2dκ [Li0(ρTE(ξ, κ) + Li0(ρTM(ξ, κ)] . (4.11)

where L is the distance between the two planes’ surfaces. At non-zero temperature, these functions
become:

DPP(L, T )/A = −kBT
4π

′∑
n

∫ ∞
ξn/c

dκ [Li2(ρTE(ξn, κ) + Li2(ρTM(ξn, κ)] (4.12)

FPP(L, T )/A = −kBT
2π

′∑
n

∫ ∞
ξn/c

κdκ [Li1(ρTE(ξn, κ) + Li1(ρTM(ξn, κ)] (4.13)

FPP(L, T )/A = −kBT
π

′∑
n

∫ ∞
ξn/c

κ2dκ [Li0(ρTE(ξn, κ) + Li0(ρTM(ξn, κ)] . (4.14)

We will use those expressions later on, in order to obtain the Casimir energy and free-energy from
PFA.

4.3 Beyond the PFA method

4.3.1 Limitations of the PFA method

A major drawback of the PFA method is that the error is not mastered. While the approximation
should be reasonably valid at the limit of small aspect ratios L

R → 0, although not proven in the
general case, there is no self-contained information on how well is reproduces the exact quantity at
a non-zero value of L

R . A first utility of an exact result for the plane-sphere configuration would
then be to assess quantitatively this error.

To do so, for instance for the Casimir energy E in the sphere-plane configuration, we write the
ratio ρE of the two results, exact and PFA, and assume a Taylor expansion for small values of the
aspect ratio L

R :

ρE =
E

EPFA
= 1 + βE

L

R
+ γE

(
L

R

)2

+ .... (4.15)
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where the zeroth order term must be 1, to be consistent with the fact a sphere with an infinite radius
is a plane. It would be very useful to have an estimate for the coefficients βE and its successors,
in order to assess the error made by PFA for small values of the aspect ratio L

R encountered in
experiments. An analogous expansion can be performed for the force F or the force gradient G,
implying coefficients βF , βG for first order corrections, and γF , γG for second order terms.

The error made by PFA is of course dependent on the PFA formulation one chooses, and from
the example of an alternative formulation of the plane-based PFA discussed in Appendix B.1.1
(p.220), we see that, in the case of perfect mirrors at zero temperature, for a βE obtained with
EPFA, β

(2)
E = βE − 1 will be obtained for E(2)

PFA. The same remark holds for the force and the force
gradient, with β(2)

F = βF − 1
2 and β(2)

G = βG − 1
3 . In the discussion of the error made by PFA, we

will restrict ourselves to the usual PFA formula (4.2), and thus to the usual coefficients such as
those appearing in Eq.(4.15).
A second problem with the PFA method is that it reduces the physics in the sphere-plane

geometry to the one of the plane-plane geometry, while both geometries are conceptually different:

• The sphere has a finite size, defined by its radius R, a feature that is absent with the two
infinite planes. The PFA formula might thus miss finite-size effects such as resonances inside
the sphere or along its surface.

• The sphere brings in the cavity a surface with curvature, which changes drastically the way
waves are scattered. Indeed, considering each infinitesimal part of the sphere as a some
straight plate parallel to the plane, a lot of field will be resonant while they should be
scattered around with a curved and convex surface. As we will see, this is the main reason
why PFA methods usually overestimate the magnitude of the Casimir effect.

• In a plane-plane cavity, the different polarizations TE and TM are uncoupled and can be
considered separately. This is still the case in the cylinder-plane geometry, as this uncoupling
emerges as soon as there is a direction in which the geometry is invariant. With a sphere
this translational symmetry disappears, and the two polarizations are coupled.

Finally, in the PFA formula (4.2), all effects of temperature and finite conductivity are given
by terms calculated in the plane-plane geometry, hiding thus any correlation due to the different
geometry. In other words, the coefficient βE in (4.15) could be modified by the introduction
of finite conductivity, temperature, roughness, or any other refinement of the model. An exact
computation of the plane-sphere geometry is thus the only way to study those possible correlations.

4.3.2 Beyond-PFA corrections coefficients

If we assume a Taylor expansion at small LR of the ratios ρE , ρF , ρG for the Casimir energy, force and
force gradient, such as (4.15), we can give some relationships between the constitutive coefficients
β, γ for the three quantities. A simple derivation with respect to the distance L of the supposed
expansion of the Casimir energy:

E = EPFA

[
1 + βE

L

R
+ γE

(
L

R

)2

+O
((

L

R

)3
)]

F = FPFA

[
1 + βE

L

R

(
1− EPFA

LFPFA

)
+ γE

(
L

R

)2(
1− 2

EPFA

LFPFA

)
+O

((
L

R

)3
)]

which makes the important parameter νE = LFPFA
EPFA

= −∂ ln|EPFA|
∂ lnL appear. A similar derivation

can be done for the quantities F and G, and give the same relations, with the parameter νF =
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LGPFA
FPFA

= −∂ ln|FPFA|
∂ lnL . We thus obtain the following relations between the beyond-PFA coefficients:

βF =
νE − 1

νE
βE γF =

νE − 2

νE
γE (4.16)

βG =
νF − 1

νF
βF γG =

νF − 2

νF
γF . (4.17)

The parameters νE , νF make particularly sense for functions that depend on L as a power law: if
EPFA = − a

Lα with α > 0, FPFA = − aα
Lα+1 and we obtain νE = α, νF = α+ 1. Therefore, we can

give examples of the relations (4.16) in some particular cases:

• For perfect mirrors at zero temperature νE = 2 and νF = 3, which yield:

βF =
1

2
βE γF = 0 (4.18)

βG =
2

3
βF γG =

1

3
γF = 0 . (4.19)

• For perfect or Drude-modeled mirrors at infinite temperature νE = 1 and νF = 2, which
yield:

βF = 0 γF = −γE (4.20)

βG =
1

2
βF = 0 γG = 0 . (4.21)

• For plasma-modeled mirrors at zero temperature νE = 1 and νF = 2, which yield the same
relations.
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Method for the Casimir effect in the
sphere-plane geometry
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After the general introduction of the scattering approach in the last part, we here focus on its
application to the sphere-plane configuration. The only difference with respect to the plane-plane
case is the appearance of the reflection operator on the sphere, but the loss of the two longitudinal
symmetries will have a great impact on the derivation of the scattering operator. In the sphere-plane
geometry this operator is no more diagonal in the basis of planar electromagnetic modes, and the
coupling of waves with different wavevectors and polarizations has to be taken into account.
In Section 5 we derive an expression for the scattering operator D, with the help of spherical

electromagnetic modes to express the reflection on the sphere, and planar electromagnetic modes
for the rest of the scattering process. The quantities involved in the expression for D are then
discussed and simplified to prepare for numerical evaluations. Section 5.4 contains the final
expressions that will be used in the continuation of the study.

The method for the numerical evaluation is described in details in Section 6, where all steps are
discussed, from the computation of special functions to the integration methods and the stability
issue.
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5 The scattering formula in the sphere-plane geometry

In this section we apply the scattering formula, introduced in Section 1 (p.27), in the configuration
of a sphere and an infinite plane. The sphere has a radius R and its closest point to the plane lies
at a distance L to the plane. To express later on its scattering operator, the origin of the reference
frame of the sphere is its center, while for the plane it is on the surface, the distance between the
two reference points is then the center-to-plate distance L = L+R.

Figure 26: Scheme of the sphere-plane configuration. The plane is infinite in the x and y-directions,
and lies in the (z ≤ 0)-region. The sphere has a radius R and its center is located at
(0, 0,L), with L = L+R.

The motivation for this configuration is double: as discussed in the introduction, the sphere-plane
geometry is the configuration employed in the most precise experiments. Moreover, compared to the
situation of two planes, it enables to study the dependance of the Casimir on nontrivial geometrical
effects, as it introduces curvature, finite-size object, non-specular reflection, and coupling between
the polarizations.
The scattering formula, introduced in Eq.(1.35) (p.35) at zero temperature, and in Eq.(3.4)

(p.48) at non-zero temperature, expresses the Casimir energy from the scattering operator D at
imaginary frequency ω = ıξ. We recall here its expressions for the Casimir energy E at (T = 0)
and the free-energy F at (T > 0):

E =
~

2π

∫ ∞
0

dξ ln detD(ıξ) F = kBT

′∑
n

ln detD(ıξn) (5.1)

Here we aim at giving an explicit expression for the scattering operator D(ıξ) in this sphere-plane
geometry, that we will use in the future to compute the energy E and free-energy F from Eq.(5.1).
The numerical evaluation will be tackled in a separate forthcoming section.

In Section 5.1 we introduce the basis of spherical vector waves and express the elements of D
for the present geometry in this basis. It involves various new quantities, because of the curvature
introduced by the sphere, which are discussed in Section 5.2 then simplified in Section 5.3 to
be prepared for future numerical evaluations and analytical derivations. Finally, we conclude in
Section 5.4 by summing up all the formulas that will be used to compute the Casimir interaction.
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5.1 Derivation of the scattering operator D(ıξ)

5.1 Derivation of the scattering operator D(ıξ)
The physical configuration is assumed to be time-invariant, the frequency of an incoming wave
is then preserved during any scattering process, and the scattering operator D is block-diagonal
with respect to the variable ω. We can thus study independently the extracted block D(ω) for the
scattering of waves with frequency ω. This frequency-dependant scattering operator is defined
from the round-trip operatorM(ω):

D(ω) = I −M(ω) M(ω) = RS(ω)TS←P(ω)RP(ω)TP←S(ω) (5.2)

where RS(ω) (resp. RP(ω)) is the reflection operator on the sphere (resp. on the plane) for waves
with frequency ω, and T (ω) are the translation operators from one object to the other. The
obtained expressions for the elements ofM(ω) will then be transformed to imaginary frequencies
with the substitution ω = ıξ, in order to obtain the scattering operator D(ıξ).

The planar modes for the electromagnetic field, introduced in Section 1.1 (p.27), are well
adapted to express the reflection on the plane and the translation operators, as we have seen in
Section 1.4 (p.35), with the example of the plane-plane geometry, that these operators were
diagonal in this basis. For the operator describing the reflection on the sphere however, it is not true
anymore, as the reflection is non-specular on this object, and the set of spherical electromagnetic
modes will be more adapted to the geometry.
In this section, we will first introduce the planar and spherical electromagnetic modes, then

we will express the reflection operators with the adapted basis for incoming and outgoing waves.
The round-trip operator M(ω) will be constructed at real frequencies with the appropriate
transformation of basis, and finally the expressions will be transformed for imaginary frequencies.

5.1.1 Planar and spherical wave basis

In Section 1.1.1 (p.27) we have shown from the Maxwell equations in reciprocal space that the
Fourier transform of the electromagnetic field can be written as:

E(K, t) = (gTE(K)ε̂K,TE + gTM(K)ε̂K,TM) e−ıωt + C.C.

B(K, t) =
(
gTE(K)β̂K,TE + gTM(K)β̂K,TM

) e−ıωt
c

+ C.C.

where ε̂ (resp. β̂) are the unit electric (resp. magnetic) vector defined in Eq.(1.10) (p.29), and the
transverse electric and magnetic scalar functions gTE(K), gTM(K) can be freely chosen.

The planar electromagnetic modes | K0, p〉 have be obtained in Section 1.1.2 (p.29) by taking
delta functions for gTM and gTE as a basis for the set of all vacuum solutions:

〈K | K0, p〉 = (2π)3δ(K−K0)ε̂p with K0 ∈ R3, p ∈ {TE,TM} . (5.3)

We recall that for practical reasons, as introduced in Section 1.1.3 (p.30), we label the planar
modes of wavevector K = (kx, ky, kz) and polarization p with the labels | ω,k, p, φ〉, where ω = cK
is the frequency, k = (kx, ky) the transverse part of the total wavevector K, p ∈ {TE,TM} the
polarization, and φ = ±1 the direction of propagation, with (φ = 1) for upwards propagation and
(φ = −1) for downward propagation. The remaining lateral component kz of the wavevector K

can then be obtained through: kz = φ
√

ω2

c2
− k2, which enables to account for evanescent waves in

the z-direction when ω2 < c2k2.
The planar modes have revealed themselves well adapted to study the Casimir effect in the

plane-plane geometry. This comes mainly from the fact that this geometry is translational-invariant
in the two transverse directions x and y. Replacing one of the planes with a sphere, we loose the
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5 THE SCATTERING FORMULA IN THE SPHERE-PLANE GEOMETRY

two translation symmetries, but we still have a rotational symmetry around the z-axis. This is the
motivation to take for the functions gTM and gTE a basis made of eigenvectors for the operators
J2 and Jz, J = L + S being the total angular momentum operator, L and S the orbital and spin
angular momentum operators, respectively. This choice leads to the spherical electromagnetic
modes.

They can be constructed [209, chap. B1.3] from the scalar eigenstates of the operators L2 and Lz,
which are the spherical harmonics Y`,m(K̂) that we will present in more detail in Section 5.2.3.
Here the indices ` and m are such that `(` + 1) and m correspond to the eigenvalues of J2/~2

and Jz/~, respectively. Then we can look for solutions in the form (VY`,m) (K̂) to be eigenvectors
of J2 and Jz, where V(K̂) is an orbital vector field acting on the spherical harmonics (and any
scalar function defined on the unit sphere). The case V(K̂) = K̂ gives for example the longitudinal
eigenvectors of J2 and Jz. For the electromagnetic modes, which must be transverse, two solutions
are V = ∇K̂ and V = K̂×∇K̂, with ∇K̂ the orbital part of the gradient ∇K in reciprocal space
for spherical coordinates (K, θK , ϕK):

∇K = K̂
∂

∂K
+ θ̂K

1

K

∂

∂θK
+ ϕ̂K

1

K sin θK

∂

∂ϕK
= K̂

∂

∂K
+

1

K
∇K̂

With those solutions for V we obtain the two transverse fields Z,X:

Z`,m(K̂) =
∇K̂Y`,m(K̂)√

`(`+ 1)

X`,m(K̂) =

(
K̂×∇K̂

)
Y`,m(K̂)√

`(`+ 1)
(5.4)

which we will refer to as electric (E) and magnetic (M) multipole, respectively. Those two
polarizations will be accounted for with the variable P ∈ {E,M}. Let us remark that the spherical
harmonics with ` = 0 must be removed, since ∇K̂Y0,0 = 0. The modes in Eq.(5.4) are thus defined
for ` ≥ 1, and the coefficient

√
`(`+ 1) accounting for the normalization7 is never zero.

As these spherical modes are only a basis for the dependance on K̂ (orientation on the unit
sphere), we take delta functions for the dependance on the radial part K = ω

c and obtain the
electromagnetic spherical modes | ω, `,m, P 〉, which representation in reciprocal space is:

〈K | ω, `,m,E〉 = −ı(2π)2 δ(K − ω/c)
ω/c

∇K̂Y`,m(K̂)√
`(`+ 1)

(5.5)

= −K̂× 〈K | ω, `,m,M〉

〈K | ω, `,m,M〉 = −ı(2π)2 δ(K − ω/c)
ω/c

(
K̂×∇K̂

)
Y`,m(K̂)√

`(`+ 1)
(5.6)

= K̂× 〈K | ω, `,m,E〉 .

The summation over all the spherical modes (5.5) is discrete, except for the frequency ω:

∑
m∈{|ω,`,m,P 〉}

=

∫ ∞
0

dω

2π

∑
`,m,P

(5.7)

7With the present convention for the spherical harmonics, we have the normalization over the unit sphere:∫
d2K̂ Z∗`,m(K̂) · Z`′ ,m′ (K̂) = δ`,`′ δm,m′ .
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5.1 Derivation of the scattering operator D(ıξ)

and thus yields an adimensional trace over all modes | `,m, P 〉 of frequency ω:

∑
`,m,P

= Trω =
∑

P∈{E,M}

∞∑
`=1

∑̀
m=−`

. (5.8)

We remark that, unlike for the planar basis, the ω-trace for spherical modes is naturally adimensional
and thus leads to an extensive quantity. The scattering formula then does not give an energy per
unit area any more, but rather the energy itself. This is consistent with the fact that the present
geometry does not have a translational invariance, and then defining a quantity per unit area does
not have any physical sense.
It will be useful in the writing of the round-trip operatorM(ω) in the next section to have at

our disposal the decomposition of those multipoles onto planar modes | k, p,−〉 going downward.
They give the following coefficients, for a similar frequency ω on both sides:

〈k,TE,− | `,m,E〉 =
2πm

√
ω/c

k
√
−kz

Y`,m(K̂)√
`(`+ 1)

〈k,TE,− | `,m,M〉 =− 2πı√
−kzω/c

∂θKY`,m(K̂)√
`(`+ 1)

〈k,TM,− | `,m,E〉 =〈k,TE,− | `,m,M〉
〈k,TM,− | `,m,M〉 =− 〈k,TE,− | `,m,E〉 (5.9)

where kz = −
√

ω2

c2
− k2, and the normalization constants are such that 〈`1,m1, P1 | `2,m2, P2〉 =

δ`1`2δm1m2δP1P2 when inserting the representation:

Id =
∑

p∈{TE,TM}

∑
φ=±1

∫
R2

d2k

(2π)2
| k, p, φ〉〈k, p, φ | . (5.10)

5.1.2 The round-trip operator M(ω)

The physical nature of the action of the round-trip operatorM = RSTS←PRPTP←S on an incoming
wave of frequency ω can be understood by reading its constituents from right to left: the wave is
first translated from the reference frame of the sphere to the one of the plane, then its reflection
on the plane is taken, it is translated back to the reference frame of the sphere and finally it
is reflected on the sphere. As we have chosen to use an adimensional trace (5.8) (p.65) for the
operator, we will take the components of the round-trip operator on the basis of the spherical
modes | `,m, P 〉 of frequency ω:

M1;2(ω) = 〈`1,m1, P1 | RSTS←PRPTP←S | `2,m2, P2〉 .

Because of the axial symmetry of the geometry around the z-axis, the z-component of the angular
momentum Jz is conserved, and m, like the frequency ω, is conserved through the scattering
process. The operatorM(ω) is then diagonal with m, as elements with (m1 6= m2) are zero. We
can thus reduce the study of theM(ω) components to the diagonal blocks for m, keeping in mind
that |m| ≤ min(`1, `2):

M(m)
1;2 (ω) = 〈`1,m, P1 | RSTS←PRPTP←S | `2,m, P2〉 . (5.11)

The planar modes | k, p, φ〉 are better adapted than the spherical ones to express the reflection
on the plane and the translations, as seen in Section 1.4 (p.35) with the example of the plane-
plane geometry. To take advantage of this fact, we insert the representation (5.10) (p.65) on the
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immediate left of the ket | `2,m, P 〉 in the expression (5.11):

M(m)
1;2 (ω) =

∑
p,φ

∫
R2

d2k

(2π)2
〈`1,m, P1 | RSTS←PRPTP←S | k, p, φ〉〈k, p, φ | `2,m, P2〉 . (5.12)

where the infinitesimal transverse vector is d2k = dkxdky = kdkdϕK .
The translation operators are diagonal in the plane wave basis and their coefficients are in the

sphere-plane case:

TP←S | k, p, φ〉 = e−ıkzL | k, p, φ〉
TS←P | k, p, φ〉 = eıkzL | k, p, φ〉 . (5.13)

The reflection on the plane RP is also diagonal for the variables k and p, as the reflection is
specular, but not for φ, the z-direction of the wave. The plane being here below the sphere, it only
reflects downward incoming planar waves (φ = −1) into upward outgoing planar waves (φ = 1),
and its coefficients read:

RP | k, p,+〉 = 0

RP | k, p,−〉 = rp(ω,k) | k, p,+〉 (5.14)

where rp(ω,k) are the scalar Fresnel coefficients that will be discussed in more details in Sec-
tion 5.2.1. We remark that because of the first line in Eq.(5.14), we can reduce the sum over φ in
the expression (5.12) to the only value φ = −1 and make the following transformations:

TS←PRPTP←S | k, p,−〉 = e
ıL

√
ω2

c2
−k2TS←PRP | k, p,−〉

= e
ıL

√
ω2

c2
−k2

rp(ω,k)TS←P | k, p,+〉

= e
2ıL

√
ω2

c2
−k2

rp(ω,k) | k, p,+〉

using kz = φ
√

ω2

c2
− k2. The expression (5.12) for the coefficients of the round-trip operator then

simplifies to:

M(m)
1;2 (ω) =

∑
p=TE,TM

∫
R2

d2k

(2π)2
〈`1,m, P1 | RS | k, p,+〉rp(ω,k)e

2ıL
√
ω2

c2
−k2〈k, p,− | `2,m, P2〉

=
∑

p=TE,TM

∫ ∞
0

kdk

2π
〈`1,m, P1 | RS | k, p,+〉rp(ω,k)e

2ıL
√
ω2

c2
−k2〈k, p,− | `2,m, P2〉

(5.15)

by simple integration over the azimuthal angle ϕK , because of the axial symmetry. The quantities
that depend on ϕK , such as the spherical harmonics in Eq.(5.9) (p.65) for instance, will be taken
at ϕK = 0 for simplicity. In the latter expression, we observe that the round-trip operatorM(ω)
is simply expressed as a sum over planar polarizations and an integration over the norm of the
transverse vector k of an integrand function made of three parts. The first on the right is a
transformation from spherical waves to downward going planar waves, and is given in Eq.(5.9)
(p.65). The second, in the middle, is just a scalar coefficient accounting for the two translations and
the planar reflection. The last one remains to be computed and describes with outgoing spherical
waves how an incoming planar wave reflects on the sphere.
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5.1 Derivation of the scattering operator D(ıξ)

The term 〈`1,m, P1 | RS | k, p,+〉 can be derived using the Mie coefficients a`(ω) and b`(ω),
that describe the scattering on the sphere for a planar wave with k = 0. Finally, the reflection on
the sphere can be written with the following coefficients, for (ϕK = 0):

〈`,m,E | RS | k,TE,+〉 =

√
π(2`+ 1)

kzω/c
a`

(
ωR

c

)[
d`m,1(θ) + d`m,−1(θ)

]
〈`,m,M | RS | k,TE,+〉 = ı

√
π(2`+ 1)

kzω/c
b`

(
ωR

c

)[
d`m,1(θ)− d`m,−1(θ)

]
〈`,m,E | RS | k,TM,+〉 = ı

√
π(2`+ 1)

kzω/c
a`

(
ωR

c

)[
d`m,1(θ)− d`m,−1(θ)

]
〈`,m,M | RS | k,TM,+〉 = −

√
π(2`+ 1)

kzω/c
b`

(
ωR

c

)[
d`m,1(θ) + d`m,−1(θ)

]
(5.16)

where kz =
√

ω2

c2
− k2, a`

(
ωR
c

)
and b`

(
ωR
c

)
are the Mie coefficients and d`m,1(θ) are the finite

rotations. The two latter quantities will be studied in more details in Section 5.2.2 (p.70) and
Section 5.2.4 (p.73).
In conclusion, the Fig. 27 illustrates the chosen method to describe the round-trip inside the

cavity:

[1] A spherical wave | `2,m2, P2〉 is first decomposed into planar waves going downward | k, p,−〉.
It results in a coefficient 〈k, p,− | `2,m, P2〉 appearing in Eq.(5.15).

[2] The translation over a distance L in the direction of negative z is applied to all waves | k, p,−〉,to
change the reference frame from the one of the sphere (its center) to the one of the plane (the
(z = 0) upper surface).

[3] The downward propagating waves are reflected on the plane, resulting in corresponding upward
outgoing waves | k, p,+〉, with the same transverse part of the wavevector k = (kx, ky) and
polarization p, as the reflection is specular, multiplied by the Fresnel coefficient rp(ω,k).

[4] The translation over a distance L in the direction of positive z is then applied to all waves
| k, p,+〉, to come back to the reference frame of the sphere.

[5] The planar waves | k, p,+〉 hit the sphere, and their reflections are decomposed into spherical
modes. It results in a coefficient 〈`1,m, P1 | RS | k, p,+〉 appearing in Eq.(5.15).

5.1.3 Wick rotation to imaginary frequencies

When the scattering formula is rotated to the axis of imaginary frequencies ω = ıξ, ξ ∈ R, the
longitudinal wavevector kz must also be imaginary from k2

z = ω2

c2
− k2 = −ξ̂2 − k2. We thus define

κ =
√

ω2

c2
+ k2 ∈ R, such that kz = ıφκ, as described in Eq.(1.36) (p.35). Meanwhile, the polar

angle θK becomes imaginary, as it relates the frequency ω to the transverse and longitudinal part
of the wavevector. Defining ξ̂ = ξ

c , for the frequency to have the dimension of a wavevector, the
equations at real frequency (1.16) (p.30) here become:

cos θK =
kz
ω/c

= φ
κ

ξ̂
, κ =

√
ξ̂2 + k2 (5.17)

sin θK =
k

ω/c
= −ık

ξ̂
∈ =− (5.18)
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Figure 27: Schema of the wave basis used to express the scattering formula in the sphere-plane
geometry. The reflection on the plane and the two translations are expressed with
planar waves, the reflection on the sphere is expressed with spherical waves.

the second line shows that θK is now also purely imaginary, and can be written θK = ıυ, with
υ ≤ 0. Keeping this remark in mind, we will transform slightly the θ-notation, dropping the index
K for implicit reference to the reciprocal space, and defining the two angles θ± in terms of the
cosine, to include the information on the value of φ:

cos θ± = ±κ
ξ̂

= ±
√

1 +
k2

ξ̂2
= ± cosh υ = − cos θ∓ . (5.19)

The sinus is not altered by the change of notation: sin θ+ = sin θ−. We recall that cos θ+ ≥ 1 and
cos θ− ≤ −1.

The transformation from real to imaginary frequencies of the expression (5.15) for the elements
of the round-trip operatorM(ω) is then straightforward:

M(m)
1;2 (ıξ) =

∑
p=TE,TM

∫ ∞
0

kdk

2π
〈`1,m, P1 | RS | k, p,+〉rp(ıξ,k)e−2κL〈k, p,− | `2,m, P2〉 (5.20)

where, in the term 〈`1,m, P1 | RS | k, p,+〉 expressed in Eqs.(5.16), the Mie coefficients are now
expressed for imaginary frequency

(
a`

(
ı ξRc

)
, b`

(
ı ξRc

))
, and the product kzω = −φκξ = −κξ

here (only planar waves with φ = 1 are here considered). In the second term 〈k, p,− | `2,m, P2〉
of conversion from one basis to the other, described in Eqs.(5.9) (p.65), there is no frequency
dependance, except for the normalization coefficients which contain −kzω = φκξ = −κξ, and
ω
−kz = −φ ξκ = ξ

κ in this case.

5.1.4 Summary of the results

The expressions of the Casimir energy and free-energy in the scattering formula (5.1) both involve
the logarithm of the determinant of the scattering operator D(ıξ) at imaginary frequencies. Let us

68



5.1 Derivation of the scattering operator D(ıξ)

first remark that in the sphere-plane geometry, the fact that this operator is block-diagonal with
the parameter m, when expressed on the spherical modes basis, implies that the determinant can
be separated into a discrete sum:

ln detD(ıξ) = ln
∏
m∈Z

detD(m)(ıξ) =
∑
m∈Z

ln detD(m)(ıξ)

where D(m)(ıξ) denotes the extracted diagonal block from D(ıξ) with m1 = m2 = m. Hence, each
block D(m)(ıξ) (corresponding to a given subspace m) yields an independent contribution to the
Casimir energy, and the scattering formula (5.1) can be written as:

E =
∑
m∈Z

~
2π

∫ ∞
0

dξ ln det
(
I −M(m)(ıξ)

)

F = kBT
∑
m∈Z

′∑
n

ln det
(
I −M(m)(ıξ)

)
(5.21)

where the prime denotes the sum for n ∈ N with a coefficient 1
2 for the (n = 0)-term. When

expressing the operatorM(m)(ıξ) on the spherical modes | `,m, P 〉, we can organize the operator
with blocks corresponding to the input and output polarizations P1, P2:

M(m)(ıξ) =


M(m)

EE (ıξ) M(m)
EM (ıξ)

M(m)
ME(ıξ) M(m)

MM (ıξ)

 . (5.22)

Its elements (`1, `2) are then obtained from Eq.(5.20), with the inclusion of expressions (5.16) and
(5.9), transformed to imaginary frequencies:(

M(m)
EE (ξ)

)
`1,`2

=
√

(2`1+1)π
`2(`2+1) a`1(ıξ̂R)

(
A

(m)
`1,`2,TE +B

(m)
`1,`2,TM

)
(5.23)(

M(m)
EM (ξ)

)
`1,`2

= ı
√

(2`1+1)π
`2(`2+1) a`1(ıξ̂R)

(
C

(m)
`1,`2,TE +D

(m)
`1,`2,TM

)
(5.24)(

M(m)
ME(ξ)

)
`1,`2

= −ı
√

(2`1+1)π
`2(`2+1) b`1(ıξ̂R)

(
C

(m)
`1,`2,TM +D

(m)
`1,`2,TE

)
(5.25)(

M(m)
MM (ξ)

)
`1,`2

=
√

(2`1+1)π
`2(`2+1) b`1(ıξ̂R)

(
A

(m)
`1,`2,TM +B

(m)
`1,`2,TE

)
(5.26)

where ξ̂ = ξ
c and the terms A(m), B(m), C(m), and D(m) do neither depend on the radius R nor on

the optical properties of the sphere. These terms write:

A
(m)
`1,`2,p

= −ım
∫ ∞

0

dk

κ
[d`1m,1(θ+) + d`1m,−1(θ+)] Y`2m(θ−) rp(ıξ, k) e−2κL

B
(m)
`1,`2,p

= −1

ξ̂

∫ ∞
0

kdk

κ
[d`1m,1(θ+)− d`1m,−1(θ+)] ∂θY`2m(θ−) rp(ıξ, k) e−2κL

C
(m)
`1,`2,p

=
1

ξ̂

∫ ∞
0

kdk

κ
[d`1m,1(θ+) + d`1m,−1(θ+)] ∂θY`2m(θ−) rp(ıξ, k) e−2κL

D
(m)
`1,`2,p

= ım

∫ ∞
0

dk

κ
[d`1m,1(θ+)− d`1m,−1(θ+)] Y`2m(θ−) rp(ıξ, k) e−2κL (5.27)

where the angles θ± are defined through their cosine in Eq.(5.19) and the spherical harmonics are
evaluated at ϕK = 0. By using the two successive changes of variable (k → κ → cos θ+) in the
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integral, with kdk = κdκ = κξ̂d cos θ+, they can be written without any reference to k nor to κ:

A
(m)
`1,`2,p

= −m
∫ ∞

1

d cos θ+

sin θ
[d`1m,1(θ+) + d`1m,−1(θ+)] Y`2m(θ−) rp(ıξ, k) e−2ξ̂L cos θ+

B
(m)
`1,`2,p

= −
∫ ∞

1
d cos θ+ [d`1m,1(θ+)− d`1m,−1(θ+)] ∂θY`2m(θ−) rp(ıξ, k) e−2ξ̂L cos θ+

C
(m)
`1,`2,p

=

∫ ∞
1

d cos θ+ [d`1m,1(θ+) + d`1m,−1(θ+)] ∂θY`2m(θ−) rp(ıξ, k) e−2ξ̂L cos θ+

D
(m)
`1,`2,p

= m

∫ ∞
1

d cos θ+

sin θ
[d`1m,1(θ+)− d`1m,−1(θ+)] Y`2m(θ−) rp(ıξ, k) e−2ξ̂L cos θ+ . (5.28)

5.2 Explicit form of the various involved quantities

5.2.1 Fresnel coefficients

When considering an interface between two media (labelled 1 and 2), with refractive indices n1

and n2, the Fresnel coefficients give the reflection amplitudes for a TE or TM-polarized planar
electromagnetic wave coming across the interface from media 1:

rTE =
n1 cos θ1 − n2 cos θ2

n1 cos θ1 + n2 cos θ2
rTM =

n2 cos θ1 − n1 cos θ2

n2 cos θ1 + n1 cos θ2
(5.29)

where θ1 and θ2 are angle made by the wavevector with the normal direction of the interface, in
each media. For a plane in vacuum, whose normal is along the z-axis, made of a material with
dielectric function ε(ω) as introduced in Section 2.1 (p.39), the Fresnel coefficients (5.29) become,
for an incident planar mode | K, p〉:

rTE =
1−

√
1 + ε(ω)−1

cos2 θK

1 +
√

1 + ε(ω)−1
cos2 θK

rTM =
1 + (ε(ω)− 1)−

√
1 + ε(ω)−1

cos2 θK

1 + (ε(ω)− 1) +
√

1 + ε(ω)−1
cos2 θK

(5.30)

where cos θK = kz
ω/c . When switching to imaginary frequencies ω = ıξ, they simply transform into:

rTE =
1−

√
1 + ε(ıξ)−1

cos2 θ+

1 +
√

1 + ε(ıξ)−1
cos2 θ+

rTM =
1 + (ε(ıξ)− 1)−

√
1 + ε(ıξ)−1

cos2 θ+

1 + (ε(ıξ)− 1) +
√

1 + ε(ıξ)−1
cos2 θ+

(5.31)

where cos2 θ+ is now equal to κ2

ξ̂2
, with ξ̂ = ξ

c . For perfectly reflecting mirrors, the dielectric
function is infinite at all frequencies and when taking the (ε→ +∞)-limit in the expressions (5.30)
or (5.31), we obtain that rTE → −1 and rTM → +1.

At imaginary frequencies, it is easy to see the sign of the Fresnel coefficients for general materials,
since the dielectric function is real with ε(ıξ) ≥ 1. For transverse electric modes, we easily see
that −1 ≤ rTE ≤ 0 because the numerator is negative, for transverse magnetic modes, we have
0 ≤ rTM ≤ 1, as cos θ+ ≥ 1 enables us to write:

1 + (ε(ıξ)− 1) ≥ 1 +
ε(ıξ)− 1

cos2 θ
≥

√
1 +

ε(ıξ)− 1

cos2 θ

5.2.2 Mie coefficients

The Mie coefficients [220, chap.4] of order ` of a sphere of radius R in vacuum, the material of
which is homogeneous and isotropic with a relative permittivity εS , a relative permeability µS and
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5.2 Explicit form of the various involved quantities

a refractive index nS =
√
εSµS read:

a`(x) =
n2
Ss

(a)
` (x)− µSs(b)

` (x)

n2
Ss

(c)
` (x)− µSs(d)

` (x)
b`(x) =

µSs
(a)
` (x)− s(b)

` (x)

µSs
(c)
` (x)− s(d)

` (x)

s
(a)
` (x) = j`(nSx)[xj`(x)]′ s

(b)
` (x) = j`(x)[nSxj`(nSx)]′

s
(c)
` (x) = j`(nSx)[xh`(x)]′ s

(d)
` (x) = h`(x)[nSxj`(nSx)]′ (5.32)

where x = ωR
c is the size parameter, j`(x) and h`(x) = j`(x) + iy`(x) are the spherical Bessel and

Hankel functions of the first kind, and the prime indicates a differentiation with respect to the
argument used in the brackets. The special case of a sphere with µS = 1 will be the one of interest
for the materials studied in the following. The derivatives in the expressions can be removed by
using the downward derivative formula:

z
′
`(x) = z`−1(x)− `+ 1

x
z`(x) (5.33)

which is valid for z = y, h. The coefficients can now be described by spherical Bessel and Hankel
functions with coefficients ` and (`− 1):

s
(a)
` (x) = j`(nSx)[xj`−1(x)− `j`(x)] s

(b)
` (x) = j`(x)[nSxj`−1(nSx)− `j`(nSx)]

s
(c)
` (x) = j`(nSx)[xh`−1(x)− `h`(x)] s

(d)
` (x) = h`(x)[nSxj`−1(nSx)− `j`(nSx)] . (5.34)

The Mie coefficients can also be written in term of the Bessel and Hankel function of the first kind
J,H with half-integer order (`+ 1/2) from the relation to spherical Bessel and Hankel functions
j, h:

j`(x) =

√
π

2x
J`+1/2(x) h`(x) =

√
π

2x
H`+1/2(x) . (5.35)

After a simplification by π
2x
√
nS

, the coefficients then become:

s
(a)
` (x) = J`+1/2(nSx)[xJ`−1/2(x)− `J`+1/2(x)]

s
(b)
` (x) = J`+1/2(x)[nSxJ`−1/2(nSx)− `J`+1/2(nSx)]

s
(c)
` (x) = J`+1/2(nSx)[xH`−1/2(x)− `H`+1/2(x)]

s
(d)
` (x) = H`+1/2(x)[nSxJ`−1/2(nSx)− `J`+1/2(nSx)] . (5.36)

Finally, to prepare the Wick rotation to imaginary frequencies ω = ıξ, it is of great use to express
the Mie coefficients for an imaginary argument, with the help of the modified Bessel functions of
the first and second kind, noted I and K, respectively. They are related to the Bessel and Hankel
functions by:

Iν(x) = ı−νJν(ıx) Kν(x) =
π

2
ıν+1Hν(ıx) . (5.37)

After a few manipulations, this leads to the following expression for the Mie coefficients as functions
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5 THE SCATTERING FORMULA IN THE SPHERE-PLANE GEOMETRY

of an imaginary size parameter (ıx):

a`(ıx) = (−1)`+1π

2

n2
Ss

(a)
` (x)− µSs(b)

` (x)

n2
Ss

(c)
` (x)− µSs(d)

` (x)

b`(ıx) = (−1)`+1π

2

µSs
(a)
` (x)− s(b)

` (x)

µSs
(c)
` (x)− s(d)

` (x)

s
(a)
` (x) = I`+1/2(nSx)[xI`−1/2(x)− `I`+1/2(x)]

s
(b)
` (x) = I`+1/2(x)[nSxI`−1/2(nSx)− `I`+1/2(nSx)]

s
(c)
` (x) = I`+1/2(nSx)[−xK`−1/2(x)− `K`+1/2(x)]

s
(d)
` (x) = K`+1/2(x)[nSxI`−1/2(nSx)− `I`+1/2(nSx)] . (5.38)

In the special case of a perfectly reflecting sphere, the latter expressions can be simplified by
taking the (εS → +∞)-limit together with µS = 1. To do so, we need the asymptotic expansions
for the modified Bessel functions:

Iα(nSx) ' enSx√
2πnSx

when nS → +∞ (5.39)

from which it follows that a` and b` are described by only one dominant term in the numerator
and denominator:

n2
Ss

(a)
` (x)− s(b)

` (x) ' n2
Ss

(a)
` (x)

n2
Ss

(c)
` (x)− s(d)

` (x) ' n2
Ss

(c)
` (x)

s
(a)
` (x)− s(b)

` (x) ' −s(b)
` (x)

s
(c)
` (x)− s(d)

` (x) ' −s(d)
` (x)

and the Mie coefficients finally take the simpler form:

a`(ıx) = (−1)`+1π

2

`I`+1/2(x)− xI`−1/2(x)

`K`+1/2(x) + xK`−1/2(x)

b`(ıx) = (−1)`+1π

2

I`+1/2(x)

K`+1/2(x)
. (5.40)

5.2.3 Spherical harmonics

The expressions (5.27) for the blocks involved in the scattering formula contain spherical harmonics
and their θ − derivatives, evaluated at ϕ = 0. In this subsection we derive a recurrence relation
for those quantities, in the prospect of numerical evaluation. We restrict ourselves to the cases
where m ≥ 0, the negative m will be obtained through symmetry at the end of the subsection.

Definition 6 Spherical harmonics Y`,m(θ, φ)

The spherical harmonics (Y`,m(θ, φ)) are the angular portion of an orthogonal set of solutions to
Laplace’s equation (∆f = 0) represented in a system of spherical coordinates. Those corresponding
to m ∈ N can be written in terms of associated Legendre functions :

Y`,m(θ, φ) =

√
2`+ 1

4π

√
(`−m)!

(`+m)!
Pm` (cos θ)eimφ (5.41)
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5.2 Explicit form of the various involved quantities

From the properties of the associated Legendre polynomials, one can derive a recurrence law for
the spherical harmonics which will be useful in order to construct them explicitly:

m = 0


Y1,0(θ) =

√
3

4π cos θ (` = 1)

Y2,0(θ) =
√

5
16π (3 cos2 θ − 1) (` = 2)

Y`,0(θ) =
√

4`2−1
` cos θ Y`−1,0(θ)− `−1

`

√
2`+1
2`−3 Yl−2,0 ∀` ≥ 3

m > 0



Ym,m(θ) = (−1)m
√

2m+1
4π(2m)!(2m− 1)!! (1− cos2 θ)m/2 (` = m)

Ym+1,m(θ) =
√

2m+ 3 cos θ Ym,m(θ) (` = m+ 1)

Y`,m(θ) =
√

2`+1
`2−m2

(√
2`− 1 cos θ Y`−1,m(θ)

−
√

(`−1)2−m2

2`−3 Y`−2,m(θ)

)
∀` ≥ m+ 2

Then, to construct the θ-derivative of spherical harmonics, we will use the following relation for
the derivative of associated Legendre functions :

x2dP
m
` (x)

dx
= `xPm` (x)− (`+m)Pm`−1(x) (5.42)

We still need the expression for the first term, which will be easily computed analytically. Using
the latter equation to compute the θ-derivative of spherical harmonics after the first term, we find :

m = 0

 ∂θY1,0(θ) = −
√

3
4π sin θ (` = 1)

∂θY`,0(θ) = `
sin θ

(
cos θ Y`,0(θ)−

√
2`+1
2`−1 Y`−1,0

)
∀` ≥ 2

m > 0



∂θYm,m(θ) = (−1)m
√

2m+1
4π(2m)!(2m− 1)!! m

× sin θ cos θ(1− cos2 θ)m/2−1 (` = m)

∂θY`,m(θ) = 1
sin θ

(
` cos θ Y`,m(θ)

−
√
`2 −m2

√
2`+1
2`−1 Y`−1,m

)
∀` ≥ m+ 1

Finally, the terms with m < 0 can be obtained from the relations:

Y ∗`,m(θ, ϕ) = (−1)mY`,−m(θ, ϕ) ∂θY
∗
`,m(θ, ϕ) = (−1)m∂θY`,−m(θ, ϕ) (5.43)

which mean, when ϕ = 0, that they acquire a phase (−1)m when we apply the change (m→ −m).

5.2.4 Finite rotations

To adapt the theory of Mie scattering to our case in Section 5.1.2, we had to rotate the reference
frame of the planar waves coming into the sphere, bringing in coefficients d`m,±1(θ), called finite
rotations, in the expression of the scattering formula. This subsection introduces the physical
meaning of these terms, and give recurrence relations for them, in the prospect of their numerical
evaluation. Like in the previous subsection, we restrict ourselves to the case when m ≥ 0, and will
obtain the remaining coefficient for negative m by symmetry at the end of the subsection.

Definition 7 Jacobi polynomials P
(α,β)
n (x)
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5 THE SCATTERING FORMULA IN THE SPHERE-PLANE GEOMETRY

The Jacobi polynomials P (α,β)
n (x) form a class of orthogonal polynomials and are solutions of

the equations :

(1− x2)y′′ + (β − α− (α+ β + 2)x) y′ + n(n+ α+ β + 1)y = 0 (5.44)

As a class of orthogonal polynomials, they obey a second-order recurrence relation

P
(α,β)
n+1 (x) = (anx+ bn)P (α,β)

n (x) + cnP
(α,β)
n−1 (x)

with coefficients : 

an =
(2n+ 1 + α+ β)(2n+ 2 + α+ β)

2(n+ 1)(n+ 1 + α+ β)

bn =
(α2 − β2)(2n+ 1 + α+ β)

2(n+ 1)(2n+ α+ β)(n+ 1 + α+ β)

cn =
(n+ α)(n+ β)(2n+ 2 + α+ β)

(n+ 1)(2n+ α+ β)(n+ 1 + α+ β)

(5.45)

Definition 8 Wigner D-functions D`
m,m′(α, β, γ)

The functions D`
m,m′(α, β, γ) can be seen as matrix elements of the rotation operator D̂(α, β, γ)

in R3, with the | `m〉 representation basis. The three angles are the Euler angles which characterize
the rotation D̂(α, β, γ).

〈`m | D̂(α, β, γ) | `′m′〉 = δ`,`′D
`
m,m′(α, β, γ) (5.46)

Definition 9 Finite rotations d`m,m′(β)

As the first and last Euler angles (α and γ) are related to rotations around the last axis, they
are each represented by a simple exponential in the | `m〉 representation basis. Wigner D-function
D`
m,m′(α, β, γ) can then be written as :

D`
m,m′(α, β, γ) = e−imαd`m,m′(β)e−imγ (5.47)

Among many other forms, the functions d`m,m′(β) can be expressed in terms of the Jacobi
polynomials[221, chap.4.3.4]:

d`m,m′(β) = ξm,m′

[
s!(s+ µ+ ν)!

(s+ µ)!(s+ ν)!

] 1
2
(

sin
β

2

)µ(
cos

β

2

)ν
P (µ,ν)
s (cosβ) (5.48)

where µ, ν and s are related to m, m′ and s by :

µ = |m−m′|
ν = |m+m′|
s = `− µ+ν

2

ξm,m′ =

 1 if m ≤ m′

(−1)m−m
′ if m > m′

(5.49)
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5.3 Transformation to real and simpler quantities

The next step is to use the recurrence relations for the Jacobi polynomials to construct the finite
rotations d`m,1(θ). The cases where m′ = −1 or where the angle is (π − θ) will be deduce easily
from this construction.
After a few computations, we get the following recurrence relation for the finite rotations:

m = 0


d1

0,1(θ) = sin θ√
2

(` = 1)

d2
0,1(θ) =

√
3
2 cos θ sin θ (` = 2)

d`0,1(θ) = 1√
`2−1

[
(2`− 1) cos θ d`−1

0,1 (θ)−
√
`(`− 2) d`−2

0,1 (θ)
]

∀` ≥ 3

m > 0



dmm,1(θ) =
√

(2m)!
(m−1)!(m+1)!

1+cos θ
2

(− sin θ
2

)m−1
(` = m)

dm+1
m,1 (θ) =

√
(2m+1)!
m!(m+2)! ((m+ 1) cos θ − 1) 1+cos θ

2

(− sin θ
2

)m−1
(` = m+ 1)

d`m,1(θ) = 1√
`2−1

√
`2−m2

[
(2`− 1)(` cos θ − m

`−1) d`−1
m,1(θ)

− `
`−1

√
(`− 1)2 −m2

√
(`− 1)2 − 1 d`−2

m,1(θ)
]

∀` ≥ m+ 2

The terms d`m,−1(θ) remain to be computed. Using (5.48), one can show that d`m,−1(θ) =

(−1)`+md`m,1(π − θ), then with the replacement cos θ → (− cos θ) in all previous recurrence
relations, we obtain the intended quantities.
Now, for cases where m < 0, we can show from the expressions (5.49) of the dependence

with respect to the coefficients m and m′, that when m > 0 and m′ = ±1, the case for ξm,m′ is
always changed when the signs of m and m′ are switched at the same time, and d`−m,−m′(β) =

(−1)m−m
′
d`m,m′(β). It follows that the sum or difference of finite rotations appearing in the

scattering formula change as:[
d`−m,1(θ) + d`−m,−1(θ)

]
= (−1)m+1

[
d`m,1(θ) + d`m,−1(θ)

]
[
d`−m,1(θ)− d`−m,−1(θ)

]
= (−1)m

[
d`m,1(θ)− d`m,−1(θ)

]
. (5.50)

5.3 Transformation to real and simpler quantities

5.3.1 Negative values of m

Here we study specifically the case of negative values for m, the index of a spherical mode that
corresponds to an eigenvalue m~ for Jz, the z-component of the total angular momentum operator
J. From expressions (5.27) of the four blocks involved in the scattering matrix, together with
the transformation rules (5.43,5.50) when the sign of m changes, we deduce that blocks C and D
acquire a phase (−1) when we make the change m→ −m, while blocks A and B do not change.
For the writing of the scattering matrix with four blocks corresponding of the polarizations in the
spherical modes, given by Eq.(5.22), it follows that:

M(−m)(ıξ) =


M(m)

EE (ıξ) −M(m)
EM (ıξ)

−M(m)
ME(ıξ) M(m)

MM (ıξ)

 .

Prop. 5 When the block-operator

 A B

C D

is made of square-blocks of the same size, and A is

invertible, the determinant does not change when applying the changes B → αB and C → 1
αC,

with α ∈ C∗.
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5 THE SCATTERING FORMULA IN THE SPHERE-PLANE GEOMETRY

(For proof see Appendix A.4 p.214)
In our case, Prop.5 with α = −1 gives detD(m)(ξ) = detD(m)(ξ). Finally, the integrand Φ(ξ)

in the scattering formula can be written with positive values of m only:

Φ(ξ) = ln detD(ıξ) =
∑
m∈Z

ln detD(m)(ıξ) = 2

′∑
m

ln detD(m)(ıξ) . (5.51)

5.3.2 Real quantities for the spherical harmonics

Expressions for the finite rotations and the spherical harmonics often contain sin θ terms, and for
numerical purpose one wants to keep real quantities as long as possible. To that purpose we will
replace the sine in the expression by its rotated number on the positive real axis:

s(θ) = ı sin θ =
k

ξ̂
=
√

cos2 θ − 1 ≥ 0 . (5.52)

A quantity X will be noted Xs after n replacements sin θ → s(θ), and some (−i)n corrective
multiplicative terms will appear to maintain the correct expression.

For Y s
`,m with m ≥ 1 and ` ≥ m, a corrective term (−i)m is necessary. This is consistent with the

case m = 0 where no change is applied. The new real expressions are then given by the modified
recurrence relations:

m = 0


Y s

1,0(θ) = Y1,0(θ) =
√

3
4π cos θ (` = 1)

Y s
2,0(θ) = Y2,0(θ) =

√
5

16π (3 cos2 θ − 1) (` = 2)

Y s
`,0(θ) = Y`,0(θ) =

√
4`2−1
` cos θ Y s

`−1,0(θ)− `−1
`

√
2`+1
2`−3 Y

s
`−2,0 ∀` ≥ 3

m > 0



Y s
m,m(θ) = 1

(−i)m Ym,m(θ)

= (−1)m
√

2m+1
4π(2m)!(2m− 1)!! (s(θ))m (` = m)

Y s
m+1,m(θ) = 1

(−i)m Ym+1,m(θ)

=
√

2m+ 3 cos θY s
m,m(θ) (` = m+ 1)

Y s
`,m(θ) = 1

(−i)m Y`,m(θ)

=
√

2`+1
`2−m2

(√
2`− 1 cos θ Y s

`−1,m(θ)

−
√

(`−1)2−m2

2`−3 Y s
`−2,m(θ)

)
∀` ≥ m+ 2 .

Concerning the θ-derivative, the transformation depends on the value of m. For m = 0, there is
one term sin θ for ` = 1, and for ` > 1, as Y`,0 does not have sin θ terms, ∂θY`,0 have ’−1’ sin θ
terms. To have a `-independent corrective term, the definition of the first term can be transformed
into ∂θY1,0(θ) = +

√
3

4πs(θ), so that a global corrective term (−i)−1 is necessary.

m = 0


∂θY

s
1,0(θ) = −1

(−i) ∂θY1,0(θ) =
√

3
4πs(θ) (` = 1)

∂θY
s
`,0(θ) = 1

(−i)−1 ∂θY`,0(θ)

= `
s(θ)

(
cos θ Y s

`,0(θ)−
√

2`+1
2`−1 Y

s
`−1,0

)
∀` ≥ 2 .
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5.3 Transformation to real and simpler quantities

For m > 0, the ` = m term has 1+(m−2) = m−1 times the sin θ term, and so does the expression
for ` > m. Thus a corrective term (−i)m−1 is necessary, which is again consistent with the case
m = 0, and the new expressions are:

m > 0



∂θY
s
m,m(θ) = 1

(−i)m−1 ∂θYm,m(θ)

= (−1)m
√

2m+1
4π(2m)!(2m− 1)!! m (s(θ))m−1 cos θ (` = m)

∂θY
s
`,m(θ) = 1

(−i)m−1 ∂θY`,m(θ)

= 1
s(θ)

(
` cos θ Y s

`,m(θ)−
√
`2 −m2

√
2`+1
2`−1 Y

s
`−1,m

)
∀` ≥ m+ 1

The Table 3 sums up the management of the corrective terms, valid for any m ≥ 0 and any ` ≥ m,
that have to be added as a premultiplicative factor with the real expressions here presented.

function Y`,m ∂θY`,m

corrective term (−i)m (−i)m−1

Table 3: Corrective terms appearing for the spherical harmonics when sin θ is changed to the
real-valued function s(θ).

Moreover, spherical harmonics and their derivative only appear in the elements (5.27) of the
scattering formula through the variable (π − θ). It is thus interesting to have some information on
their parity with respect to cos θ. From simple recurrence it can be shown that:

Y s
`,m(π − θ) = (−1)m+`Y s

`,m(θ) . (5.53)

For the θ-derivative of the spherical harmonics, the result is deduces as:

∂θY
s
`,m(π − θ) = (−1)m+`+1∂θY

s
`,m(θ) . (5.54)

5.3.3 Real quantities for the finite rotations

The same transformation can be applied to the finite rotations. For m = 0, a (−i) correction factor
comes out, and for the m > 0 case, a (−i)m−1 correction factor comes out. To get a factor that
does not depend on m, we change the sign in the m = 0 case, so that a factor (−i)−1 comes out.
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5 THE SCATTERING FORMULA IN THE SPHERE-PLANE GEOMETRY

The new expressions are :

m = 0



d1,s
0,1(θ) = 1

(−ı)−1 d
1
0,1(θ) = − s(θ)√

2
(` = 1)

d2,s
0,1(θ) = 1

(−ı)−1 d
2
0,1(θ) = −

√
3
2 cos θs(θ) (` = 2)

d`,s0,1(θ) = 1
(−ı)−1 d

`
0,1(θ)

= 1√
`2−1

[
(2`− 1) cos θ d`−1,s

0,1 (θ)−
√
`(`− 2) d`−2,s

0,1 (θ)
]

∀` ≥ 3

m > 0



dm,sm,1(θ) = 1
(−ı)m−1 d

m
m,1(θ) =

√
(2m)!

(m−1)!(m+1)!
1+cos θ

2

(
−s(θ)

2

)m−1
(` = m)

dm+1,s
m,1 (θ) = 1

(−ı)m−1 d
m+1
m,1 (θ)

=
√

(2m+1)!
m!(m+2)! ((m+ 1) cos θ − 1) 1+cos θ

2

(
−s(θ)

2

)m−1
(` = m+ 1)

d`,sm,1(θ) = 1
(−ı)m−1 d

`
m,1(θ)

= 1√
`2−1

√
`2−m2

[
(2`− 1)(l cos θ − m

`−1) d`−1,s
m,1 (θ)

− `
`−1

√
(`− 1)2 −m2

√
(`− 1)2 − 1 d`−2,s

m,1 (θ)
]

∀` ≥ m+ 2 .

The terms d`m,−1(θ) change exactly the same way, as they are equal to (−1)`+md`m,1(π−θ). Table 4
sums up the management of the corrective terms valid for any m ≥ 0 and any ` ≥ m, that have to
be added as a premultiplicative factor with the new expressions.

function d`m,1(θ) d`m,−1(θ)

corrective term (−i)m−1 (−i)m−1

Table 4: Corrective terms appearing for the finite rotations when sin θ is changed to the real-valued
function s(θ).

5.4 Conclusion

Taking into account the transformations presented in the two previous sections, and replacing sin θ
by −ıs(θ), the A,B,C,D blocks of Eqs.(5.28) now write for m ≥ 0:

A
(m)
`1,`2,p

= m(−1)`2
∫ ∞

1

d cos θ

s(θ)
d`1,sm [sum] Y s

`2m(θ) rp(ıξ, k) e−2ξ̂L cos θ

B
(m)
`1,`2,p

= (−1)`2+1

∫ ∞
1

d cos θ d`1,sm [dif] ∂θY s
`2m(θ) rp(ıξ, k) e−2ξ̂L cos θ

C
(m)
`1,`2,p

= (−1)`2
∫ ∞

1
d cos θ d`1,sm [sum] ∂θY

s
`2m(θ) rp(ıξ, k) e−2ξ̂L cos θ

D
(m)
`1,`2,p

= m(−1)`2+1

∫ ∞
1

d cos θ

s(θ)
d`1,sm [dif] Y s

`2m(θ) rp(ıξ, k) e−2ξ̂L cos θ (5.55)

where we have defined the two combinations:

d`,sm [sum] = d`,sm,1(θ) + (−1)`+md`,sm,1(π − θ)
d`,sm [dif] = d`,sm,1(θ)− (−1)`+md`,sm,1(π − θ) . (5.56)
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5.4 Conclusion

We observe in Eqs.(5.55) that the A,B,C,D blocks only contain real quantities, which yields that
the off-diagonal blocks (5.24) and (5.25) of the operatorM(m) are purely imaginary. We therefore
introduce the real-valued operator N (m)(ıξ), better suited for numerics:

N (m)(ξ) =


M(m)

EE (ξ) −ıM(m)
EM (ξ)

ıM(m)
ME(ξ) M(m)

MM (ξ)

 . (5.57)

From Prop.5 with α = −ı, we get detD(m)(ıξ) = det
(
I −M(m)(ıξ)

)
= det

(
I −N (m)(ıξ)

)
.

Finally, defining the reduced frequency ξ̃ = R
c ξ, where R is the sphere’s radius, and the reduced

length of the cavity L̃ = L
R = 1 + L

R , the Casimir energy E and the Casimir free-energy F can be
expressed as:

E =
~c
πR

∫ ∞
0

dξ̃

′∑
m

ln det
[
I −N (m)(ξ̃)

]
F = 2kBT

′∑
n

′∑
m

ln det
[
I −N (m)(ξ̃n)

]
(5.58)

where the Matsubara reduced frequencies are the ξ̃n = n2πR
λT

and the real-valued operator N writes:

N (m)(ξ̃) =


N (m)
EE (ξ̃) N (m)

EM (ξ̃)

N (m)
ME(ξ̃) N (m)

MM (ξ̃)

 , with the four blocks: (5.59)

(
N (m)
EE (ξ̃)

)
`1,`2

=
√

(2`1+1)π
`2(`2+1) a`1(iξ̃)

(
A

(m)
`1,`2,TE(ξ̃) +B

(m)
`1,`2,TM(ξ̃)

)
(
N (m)
EM (ξ̃)

)
`1,`2

=
√

(2`1+1)π
`2(`2+1) a`1(iξ̃)

(
C

(m)
`1,`2,TE(ξ̃) +D

(m)
`1,`2,TM(ξ̃)

)
(
N (m)
ME(ξ̃)

)
`1,`2

=
√

(2`1+1)π
`2(`2+1) b`1(iξ̃)

(
C

(m)
`1,`2,TM(ξ̃) +D

(m)
`1,`2,TE(ξ̃)

)
(
N (m)
MM (ξ̃)

)
`1,`2

=
√

(2`1+1)π
`2(`2+1) b`1(iξ̃)

(
A

(m)
`1,`2,TM(ξ̃) +B

(m)
`1,`2,TE(ξ̃)

)
. (5.60)

For perfect mirrors, for which rTE = −1 and rTM = 1, the formula can be simplified, joining
the (A,B) or (C,D) terms in (5.60). To that purpose, we will use the following relation between
spherical harmonics and finite rotation, and its transformed form for the real valued terms:

m

sin θ
Y`,m(θ, 0) + ∂θY`,m(θ, 0) = −

√
`(`+ 1)(2`+ 1)

4π
d`m,1(θ) (5.61)

m

s(θ)
Y s
`,m(θ, 0) + ∂θY

s
`,m(θ, 0) = −

√
`(`+ 1)(2`+ 1)

4π
d`,sm,1(θ) . (5.62)
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Inserting this relation, we obtain with the help of (5.53-5.54):(
N (m)
EE (ξ̃)

)
`1,`2

=
(−1)`2+1

2

√
(2`1 + 1)(2`2 + 1)a`1(iξ̃)

∫ ∞
1

d cos θ ∆
(+)
m,`1,`2

(θ) e−2ξ̃L̃ cos θ

(
N (m)
EM (ξ̃)

)
`1,`2

=
(−1)`2+1

2

√
(2`1 + 1)(2`2 + 1)a`1(iξ̃)

∫ ∞
1

d cos θ ∆
(−)
m,`1,`2

(θ) e−2ξ̃L̃ cos θ

(
N (m)
ME(ξ̃)

)
`1,`2

=
(−1)`2

2

√
(2`1 + 1)(2`2 + 1)b`1(iξ̃)

∫ ∞
1

d cos θ ∆
(−)
m,`1,`2

(θ) e−2ξ̃L̃ cos θ

(
N (m)
MM (ξ̃)

)
`1,`2

=
(−1)`2

2

√
(2`1 + 1)(2`2 + 1)b`1(iξ̃)

∫ ∞
1

d cos θ ∆
(+)
m,`1,`2

(θ) e−2ξ̃L̃ cos θ (5.63)

with

∆
(±)
m,`1,`2

(θ) = d`1,sm,1(θ)d`2,sm,1(θ)± (−1)`1+`2d`1,sm,1(π − θ)d`2,sm,1(π − θ) . (5.64)

For (m = 0), as d`,s0,1(π − θ) = (−1)`−1d`,s0,1(θ), it simplifies to:

∆
(+)
0,`1,`2

(θ) = 2d`1,s0,1 (θ)d`2,s0,1 (θ)

∆
(−)
0,`1,`2

(θ) = 0 . (5.65)
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6 Numerical issues

In section we present some of the most important numerical issues encountered when evaluating
the Casimir energy from expressions of previous Section 5.4 (78). They will be presented in
order of importance, and do not reflect the chronology of programming. That will allow to present
numerical tests in the first parts assuming other issues are taken care of.

6.1 From operators to matrices: the truncation to `max

The first issue one can think of when planning to numerically evaluate the Casimir effect from
expressions in the previous section is that the scattering operator D(ıξ) acts on the infinite-
dimensional vector space Eω of electromagnetic fields in vacuum with frequency ω. However
discrete, the basis of spherical modes | m, `, P 〉 is an infinite set, with ` ∈ N∗ and m ∈ Z the
quantum numbers (|m| ≤ `), and P ∈ {E,M} the polarization. We thus need to truncate the
dimension of the operator D(ıξ) by considering its restriction to a finite-dimensional subspace of
Eω.

6.1.1 The impact parameter

We introduce here a qualitative argument for the truncation in the quantum number `, which
will be confirmed by forthcoming numerical evaluations. The localization principle [222] connects
a given angular momentum ` to an impact parameter b = c`

ξ . Then the spherical modes with
` � ξ̃

(
= ξRc

)
have b = `R

ξ̃
� R, and thus correspond to rays that do not hit the sphere. They

will therefore have a negligible role in the Casimir effect. Moreover, only frequencies ξ̃ . R
L have a

significant contribution in the integration (or discrete sum) over ξ̃, because translation operators
bring a factor e−2ξ̃L̃ at imaginary frequencies. As a consequence, modes with `� R

L will have an
impact parameter b = `R

ξ̃
& `L� R and will be negligible for the Casimir effect.

We will then truncate the dimension of D(ıξ) by setting a maximum value `max for the orbital
index `, that scales as R

L but is ξ̃-independant:

` ≤ `max = α
R

L
. (6.1)

From |m| ≤ `, the angular momentum m will accordingly be limited to a finite number of values
from −`max to +`max. As we will only consider non-negative values of m, thanks to symmetry, the
built subspace of Eω will have the dimension:

D(`max) =

(
`max∑
m=0

#`(m)

)
=

(
`max +

`max∑
m=1

(`max −m+ 1)

)

=
1

2
(`max)2 +

3

2
`max .

6.1.2 Numerical tests

We here show the results of some numerical tests that we run in order to check that this truncation
is realistic and that the results indeed converge with `max to a fixed result for any situation. We
will then aim at observing the required `max to obtain a given accuracy, for various values of the
ratio L

R . We will finally give a prescription as a rounded value for α, depending on the accuracy
one aims at, to chose a truncation `max = αRL .
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Figure 28: Casimir energy normalized by its PFA estimation ρE = E/EPFA in the sphere-plane
configuration, with respect to the truncation `max, for different values of the aspect
ratio L

R = 0.05, 0.1, 0.2.

In Fig. 28 we first observe how the convergence with `max is modified when L
R changes. The

different curves present the ratio ρE = E/EPFA of the computed Casimir energy at zero temperature
E from (5.58), normalized by the PFA result EPFA, as functions of `max used to compute E, for
various values of the aspect ratio L

R . We see that for L
R = 0.2 (line with circles), the result E has

roughly converged already at `max ' 20. When going to a twice smaller ratio L
R = 0.1 (line with

squares), the convergence with respect to `max is twice slower and happens roughly at `max = 40.
Again, if the ratio is reduced to 0.05 (line with triangles), the convergence occurs for `max around
80. The proportionality of `max and R

L is here illustrated, and it seems reasonable to choose the
truncation with `max = αRL , α > 0. Similar observations hold for the Casimir free-energy, force,
and force gradient, but are not presented here.
We now study quantitatively the proportionality relation between R

L and the number `max

necessary to obtain a given accuracy. To do so, we first observe that the convergence is exponential
in `max, a feature that is illustrated in Fig. 29.

In this graph, we present as a function of `max the relative difference ∆ between the free-energy,
computed with `max, and the same term, computed with a higher value `ref

max. ∆ is plotted with
a curve for each value of the ratio L

R . When `max is sufficiently smaller than `ref
max, this relative

difference can be considered as the relative distance to the exact result:

∆ =

∣∣∣∣F(`max)−F(`ref
max)

F(`ref
max)

∣∣∣∣ ' ∣∣∣∣F(`max)−F(∞)

F(∞)

∣∣∣∣ .
The points in Fig. 29 align on a straight line in this domain, which indicates that the relative
error made by the truncation (` < `max) follows an exponential law:

∆ = ea`max+b , a, b ∈ R, a < 0 .

From a linear fit of the curves in the logarithmic plot, we have extracted the coefficients a and b
for each value of the ratio L

R . With those values, we have then extrapolated the curves for any
values of `max, and inverted the previous relation to get the required `max for a given accuracy ∆
for a given value of L

R . The results of this study are summed up in Table 5. From each column,
representing a sought-after accuracy ∆, we average the coefficient α = `max

L
R to give a ’rule of

thumb’ prescription.
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Figure 29: Convergence of the Casimir free-energy F with respect to `max. We plot, as a function
of `max, the relative difference ∆ between the `max-truncated quantities and a much
more accurate reference value (computed with `ref

max = 20 for L
R = 1, 40 for L

R = 0.5, 100
for L

R = 0.2, 200 for L
R = 0.1, and 400 for L

R = 0.05). This numerical test has been done
with a perfect sphere of radius R = 100 µm and a thermal wavelength λT =7.6 µm,
corresponding to ambient temperature.
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∆ = 10−2 ∆ = 10−3 ∆ = 10−4 ∆ = 10−5 ∆ = 10−6 ∆ = 10−7

L
R = 1 4 6 7 9 11 12
L
R = 0.5 6 9 12 15 18 21
L
R = 0.2 13 20 26 32 39 45
L
R = 0.1 25 37 49 61 73 85
L
R = 0.05 47 71 95 118 142 165
L
R = 0.02 115 173 230 288 346 404
L
R = 0.01 225 340 454 569 683 798
L
R = 0.005 397 584 771 958 1146 1333

coefficient α 3 4 5 6 7 8

Table 5: Necessary `max to obtain an accuracy ∆ in the truncation when computing the Casimir
free-energy, at a given value of the aspect ratio L

R . The numbers are computed from linear
fitting of the previous convergence curves. The last line indicates a ’rule of thumb’ to
roughly choose a coefficient α for `max = αRL .

6.1.3 Remarks on the prospect of theory-experiments comparison

This truncation is a fundamental element in the process of computation, as it transforms an exact,
yet unworkable expression into an approximate, finite-dimensional one with matrices that are
possible to handle with numerical codes. This prerequisite to the numerical evaluation yields
that for a given choice of `max, the computation will only be accurate for not-too-small values of
the ratio L

R . This feature shows that the multiple scattering method we presented is naturally
well-suited for situations when the sphere is not too large compared to the surface-to-surface
distance L. However, thanks to the power of numerical computations, it will be possible to apply
our method also quite far in the opposite domain where L becomes smaller than R. If one is
interested in investigating this opposite domain in depth, with very small values of L

R , the bigger
`max the computation can handle, the more performing the code. We have developed a numerical
code that is able to handle a truncation as far as `max = 520 for any temperature, allowing to
handle a minimum L

R between 0.005 and 0.02, depending on the required numerical accuracy.
In Casimir experiments L is always much smaller than R to get a measurable signal, because of

the weakness of the force. Indeed, to have a stronger interaction, the two possible solutions are to
increase the area by choosing a larger sphere or to increase the interaction strength by reducing
the distance. Both solutions lead to a smaller aspect ratio L

R .
In static measurements presented in [223], the spherical lens has a radius of curvature of 15.6

cm and is placed at distances from the plane that range from 0.7 to 7 µm. The corresponding
ratios L

R lie in [4.5× 10−6, 4.5× 10−5] which is well below the numbers presented in this section.
It thus seems unreasonable to try and use this method to get direct theoretical predictions to be
compared to experimental results in this case.
However, in dynamic measurements performed by [224], smaller spheres are considered, with

various radii from 10 to 150 µm. The distance ranges from 160 nm to 1 µm, which means that the
aspect ratio is of the order of [10−3, 10−1], in reach of our calculation.
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6.2 Differentiations with respect to L and T

6.2 Differentiations with respect to L and T

The scattering formula described in Section 5.4 is valid to compute the Casimir energy, but the
force F = −∂F

∂L and force gradient G = −∂F
∂L are also of great interest, in order to compare to both

the results obtained within the PFA method and the experimental results. They can be obtained
through differentiation of the expression with respect to L or L. For thermodynamic studies, it can
be also interesting to compute the entropy S = −∂F

∂T , which can be obtained through differentiation
with respect to the temperature T . In this section, we present how the differentiations can be done
numerically at a final stage, or analytically at a deeper stage.

6.2.1 Numerical differentiation

With a numerical method, the quantity Q to differentiate with respect to x ∈ {L, T} is computed
for several values x around x0. Those values are used to numerically approximate the first and/or
second order derivatives with respect to x. We present here two of the methods that can be used
with for instance with finite differences (h small):

2nd order scheme :

(three-point stencil)


∂Q
∂x = −f(x−h)+f(x+h)

2h +O(h2)

∂2Q
∂x2

= f(x−h)−2f(x)+f(x+h)
h2

+O(h2)
(6.2)

4th order scheme :

(five-point stencil)


∂Q
∂x = f(x−2h)−8f(x−h)+8f(x+h)−f(x+2h)

12h +O(h4)

∂2Q
∂x2

= −f(x−2h)+16f(x−h)−30f(x)+16f(x+h)−f(x+2h)
12h2

+O(h4)
(6.3)

Although simple and easy, numerical differentiation can give unstable results, especially for the
second derivative, as it is very sensitive to small changes in the function to differentiate. We will
thus prefer to use an analytical differentiation.

6.2.2 Analytical differentiation (method 1)

For the two analytical methods of differentiation, the idea is to write an explicit formula for F ,
G or S by taking analytically the derivative of the expression for F . If we take the non-zero
temperature case for example, we see immediatly that these quantities are obtained from the
derivatives of ln detD(m):

F = 2kBT

′∑
n

′∑
m

ln detD(m)(ξ̃n)

F = −2kBT

′∑
n

′∑
m

∂ ln detD(m)

∂L (ξ̃n)

G = 2kBT

′∑
n

′∑
m

∂2 ln detD(m)

∂L2
(ξ̃n)

S = −2kB

′∑
n

′∑
m

ln detD(m)(ξ̃n)− 2kB

∞∑
n=1

′∑
m

ξ̃n
∂ ln detD(m)

∂ξ̃
(ξ̃n)

where for the last term in the expression of the entropy, we transformed the T -derivative to a
frequency derivative:

∂

∂T
ln detD(m)(ξ̃n) =

∂ξ̃n
∂T

∂

∂ξ̃n
ln detD(m)(ξ̃n) =

ξ̃n
T

∂ ln detD(m)

∂ξ̃
(ξ̃n)
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We first present a general method to compute ∂
∂x (ln detC) and ∂2

∂x2
(ln detC), where the (Ci,j)

coefficients depend on x. For the logarithm to be well-defined, we make the assumption that C is
invertible.

Prop. 6 For C an invertible matrix,

• its derivative with respect to the (i, j)-coefficient reads:

∂

∂Ci,j
ln detC =

(
C−1

)
j,i

• The derivative of the inverse is:
(
C−1

)′
= −C−1C

′
C−1.

• Finally the derivatives of ln detC are:

∂

∂x
(ln detC) = Tr

(
C
′
C−1

)
= Tr

(
C−1C

′
)

∂2

∂x2
(ln detC) = Tr

(
C
′′
C−1 − C ′C−1C

′
C−1

)
(For proof, see Appendix A.5 p.214)

This analytical method is simple, but needs the computation of the inverse matrix D−1. The
inversion process is not only computationally expensive, but as the matrix D will turn out to be
very badly conditioned, it will be also very unstable.

6.2.3 Analytical differentiation (method 2)

We therefore propose an alternative method to compute ∂
∂x (ln detC) and ∂2

∂x2
(ln detC) that does

not involve any inversion of matrix. We start from the simple expressions for the derivative of a
logarithm:

∂

∂x
(ln detC) =

(detC)′

detC

∂2

∂x2
(ln detC) =

(detC)′′

detC
−
[

(detC)′

detC

]2

To perform this second analytical differentiation method, we will need to compute three terms :
detC, (detC)′ and(detC)′′. Writing the matrix as a set of columns, we can use the nature of the
determinant to obtain the following expressions:

detC = det (C1|C2| · · · |Cn) (6.4)

(detC)′ =
n∑
i=1

det
(
C1| · · · |Ci−1|C ′i|Ci+1| · · · |Cn

)
=

n∑
i=1

detC,i (6.5)

(detC)′′ =

n∑
i=1

det
(
C1| · · · |Ci−1|C ′′i |Ci+1| · · · |Cn

)
+

n∑
i=1

∑
j 6=i

(
C1| · · · |Ci−1|C ′i|Ci+1| · · · |Cj−1|C ′j |Cj+1| · · · |Cn

)
=

n∑
i=1

detC,ii +

n∑
i=1

∑
j 6=i

detC,ij (6.6)
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6.3 Integration/sum over ξ̃

There we only need the matrices C, C,i and C,ij , ∀i, j ∈ [1, n]. Using the canonical basis of matrices
(Ei0,j0)(i,j) = δi,i0δj,j0 , we build those matrices from C, C ′ and C ′′ :

C,i = C + (C ′ − C)× Eii
C,ii = C + (C ′′ − C)× Eii
C,ij = C + (C ′ − C)× (Eii + Ejj)

Finally, back to our case, we only need the terms D(m), D(m) ′ and D(m) ′′ , which are matrices
made of the derivatives for each component of the matrix D(m). To obtain the Casimir force
F and force gradient G, the only dependancy upon L on the matrix D(m) appears through the
term e−2ξ̃L̃ cos θ coming from the translations. Then differentiating turns out to be equivalent to
multiplying by the term −2ξ̃ cos(θ)

R in each component of the matrix. For the Casimir entropy S,
the situation is quite more complex, as the reduced frequency ξ̃ not only enters the translations
with e−2ξ̃L̃ cos θ but also the Fresnel and Mie reflection coefficients.

The case of perfect mirrors is however easier to handle, as the Fresnel coefficients are constant,
and one only needs expressions for the derivative of the Mie coefficients (5.40) with respect to their
parameter ξ̃. They read, for perfect mirrors:

a
′
`(x) = (−1)`

π

2

(x2 + `(`+ 1))
(
I`−1/2(x)K`+1/2(x) + I`+1/2(x)K`−1/2(x)

)(
`K`+1/2(x) + xK`−1/2(x)

)2 (6.7)

b
′
`(x) = (−1)`+1π

2

I`−1/2(x)K`+1/2(x) + I`+1/2(x)K`−1/2(x)(
K`+1/2(x)

)2 (6.8)

This second analytical method is more stable when used in the numerical evaluations of the force,
force gradient or entropy. The major drawback is the numerical cost, as the expression (6.5) for
the first-order derivative involves the evaluation of n determinants, and (6.6) for the second-order
derivative involves the evaluation of n2 determinants, where n is the number of columns in the
matrix D(m) and the order of complexity will then increase.

6.3 Integration/sum over ξ̃

The Casimir free-energy at zero and non-zero temperatures can be written with the help of the
integrand function Φ:

E =
~c

2πR

∫ ∞
0

dξ̃ Φ(ξ̃) , Φ(ξ̃) = 2

′∑
m

ln detD(m)(ξ̃)

F =
~c

2πR

′∑
n

2πR

λT
Φ(ξ̃n) , with ξ̃n = n

2πR

λT

Both expressions have to be adapted for the numerical computation: E involves an integration of
Φ(ξ̃) that needs to be carried out numerically, and F contains an infinite sum that needs to be
truncated for a numerical evaluation. In this section we describe the choices we have made for
methods and cut-offs in the numerical implementation.

6.3.1 Shape of the function to be integrated/summed

Thanks to the use of imaginary frequencies, the integrand functions Φ(ξ̃) = 2
∑′

m ln detD(m)(ξ̃)
are smooth and well-behaved. At low frequencies they converge to a finite negative value, and
exponentially decrease to zero for large frequencies.
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• At low frequency the behaviour differs with the model for the materials. We define the order
of low-frequency convergence as the integer n such that:

Φ(ξ̃)− Φ(0)

Φ(0)
= O

(
ξ̃n
)

For perfect mirrors and plasma model, n = 2, whereas with the Drude model there is a linear
convergence (n = 1). It can be explained by the low-frequency expansions of the Fresnel
coefficients (7.18-7.19) (p.112 and p.113). It follows that the integrand Φ converges at much
lower frequencies when using the Drude model, than with the plasma or perfectly reflecting
models, as illustrated in Fig. 30.
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Figure 30: Integrand for the energy Φ(ξ̃) = 2
∑′

m ln detD(m)(ξ̃) for L = R = 1 µm. The case of
perfect mirrors is illustrated by a thin dotted-line, the plasma model by a dashed-line
and the Drude model by a solid line.

When the reduced frequency ξ̃ decreases below unity, the integrand function Φ reaches
quickly a minimum for perfect and plasma models. For Drude, the integrand is similar to
the one from plasma model for not-too-small frequencies, as ξ � γ yields that the dielectric
function (2.7) (p.41) does not see the effects of dissipation. For lower frequencies ξ . γ
however, dissipation plays a role and the integrand departs from the one of plasma, to reach
a different value, lower in magnitude.

• At high frequencies, because of the e−2L̃ξ̃ cos θ term present in each element of the matrix from
the two translations, Φ decreases exponentially. More precisely, because of the high-frequency
expansions of the modified Bessel functions:

Iα(x) ∼ ex√
2πx

Kα(x) ∼
√

π

2x
e−x (6.9)

one can show that the Mie coefficients a`(ξ̃) and b`(ξ̃) diverge like e2ξ̃ at high frequencies.
Thus the exponential decrease is better described by the function e−2ξ̃(L̃ cos θ−1). It means
that a cut-off ξ̃max for the integration or the summation over Matsubara frequencies will be
mainly determined by the value of (L̃ cos θ−1). From the exponential decrease e−2ξ̃(L̃ cos θ−1),
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Figure 31: High-frequency decrease of the integrand for the energy Φ(ξ̃) = 2
∑′

m ln detD(m)(ξ̃),
with different values of L

R . The boxes indicate the value of Φ for a cut-off ξ̃max = 9RL .

we can see that at high frequencies, only terms with cos θ ' 1 have an important contribution.
Then the important parameter for the cut-off will be L̃ − 1 = L

R − 1 = L
R .

In Fig. 31, we observe the high-frequency exponential decrease of Φ(ξ̃) for increasing values
of this parameter L

R , from right to left. When the aspect ratio L
R doubles, the cut-off ξ̃max

necessary to reach a given small value is divided by 2. In the numerics, we will thus use
ξ̃max = K R

L , with K ∈ R a constant parameter to be determined upon desired accuracy.

• Another factor of high-frequency decrease comes from the optical properties of the material:
for example a metal is a very bad reflector for high-frequencies, where ε ' 1, which yields
a very small contribution to the Casimir effect. As the dielectric functions ε for a plasma
or a Drude model, with the same plasma frequency ωP , become equal for high frequencies
ξ � γ, we can limit this study for metals to the plasma case. We observe that ε − 1 � 1
when ξ � ωP , or equivalently ξ̃ � 2πR

λP
. It means that a second cut-off can be chosen such

that ξ̃max = K ′ 2πRλP . The case of dielectric materials is quite similar, with ε− 1� 1 when
ξ � ω1, or equivalently ξ̃ � 2πR

λ1
.

Although the introduction of this second cut-off is not necessary with the Matsubara
summation, it can be important when computing the continuous integral for the Casimir
energy at zero temperature: if this cut-off were not introduced, the range of frequencies
where the integrand takes noticeable values would not be correctly predicted and it could
result in a poor numerical accuracy.

6.3.2 Method for integration

For the numerical evaluation of the Casimir energy at zero temperature, we need to perform a
numerical integration of the continuous function Φ(ξ̃) on a segment [0, ξ̃max]. There is a great
variety of methods to numerically implement this computation, the simplest being the rectangle rule

89



6 NUMERICAL ISSUES

where the segment [0, ξ̃max] is broken up in N equal sub-intervals, and the function is interpolated
as a constant number in each sub-interval. The integral is then the sum of each sub-integral that
is carried out analytically:∫ b

a
f(x)dx =

∫ aN

a0

f(x)dx =
N−1∑
i=0

∫ ai+1

ai

f(x)dx

'
n−1∑
i=0

∫ ai+1

ai

f

(
ai + ai+1

2

)
dx =

n−1∑
i=0

(ai+1 − ai)f
(
ai + ai+1

2

)

' b− a
N

n−1∑
i=0

f

(
ai + ai+1

2

)
and the result converges to the exact result when N → ∞. There exist more elaborate ways
to interpolate the function in each sub-interval, for example with a first order polynomial(

x−ai
ai+1−ai f(ai+1) + ai+1−x

ai+1−ai f(ai)
)
, leading to the trapezoidal rule:

∫ b

a
f(x)dx ' b− a

N

(
f(a) + f(b)

2
+
n−1∑
i=1

f(ai)

)
or with a second order polynomial, leading to the Simpson’s rule:∫ b

a
f(x)dx ' b− a

3N

(
f(a) + f(b)

2
+

n−1∑
i=1

f(ai) + 2

N−1∑
i=0

f

(
ai + ai+1

2

))
Another possible sophistication in the integration is to have an iterative process to split again and
again the sub-intervals where the integration is not accurate enough. This is done by the Gauss-
Kronrod quadrature algorithm which is used by most of modern integration libraries. However,
because in our case the integrand is numerically unstable for low frequencies, as will be discussed
in Section 6.6 (p.101), we want to control and restrict the values ξ̃ at which Φ is evaluated.
Furthermore, the function is well-behaved on [0, ξ̃max] and a simple rectangle rule, however not
optimal, is safer. The accuracy will then only be influenced by the step ∆ξ̃ = ξ̃max

N , where N is the
number of sub-intervals. Of course, the smaller the step, the better the accuracy.

6.3.3 Numerical tests

Two parameters remain to be chosen to reach the wanted accuracy: K for the cut-off ξ̃max, and
∆ξ̃ for the division of the interval [0, ξ̃max]. We give in Table 6 the relative difference between
the numerically computed integral for a given constant step and a chosen cut-off, and a reference
integral, computed with a very small step and a very large cut-off, assumed to be much more
accurate. The first line indicates the choice of the step ∆ξ̃, the first column the choice of the
cut-off ξ̃max.

In the second line, representing a cut-off at 5RL , the relative difference quickly saturates for a

decreasing step around 1e-4, meaning that
∫∞

0 Φ(ξ̃)dξ̃ and
∫ ξ̃max

0 Φ(ξ̃)dξ̃ also have this relative
difference. To get a more accurate result, refining the step will not work, the only solution is to
increase the cut-off.
In the fourth column, representing a step of 0.1RL , the relative difference also saturates when

increasing ξ̃max, meaning that the error in the integration is dominated by the lack of interpolation
points. The only solution to improve the numerical accuracy is there to reduce the step.
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step ∆ξ̃ 0.5RL 0.2RL 0.1RL 0.05RL 0.02RL 0.01RL 0.005RL

ξ̃max = 5RL 1.7e-3 7.3e-5 8.2e-5 8.7e-5 8.8e-5 8.8e-5 8.7e-5

ξ̃max = 10RL 1.8e-3 8.5e-5 5.8e-6 3.6e-7 5.4e-9 3.5e-9 4.1 e-9

ξ̃max = 20RL 1.8e-3 8.5e-5 5.8e-6 3.7e-7 9.5e-9 5.9e-10 3.7 e-11

Table 6: Accuracy of the numerical integration over ξ̃ as the relative difference between the result
computed with a rectangle rule of constant step ∆ξ̃ and high-frequency cut-off ξ̃max, and
a reference value, assumed to be much more accurate. The columns represent a choice of
∆ξ̃, the rows a choice of ξ̃max. The green boxes indicate the deduced prescriptions of this
test with respect to a 10−4, 10−6, or 10−8 intended numerical accuracy. The integrand
has been evaluated for L

R = 1, `max = 10 and the objects are perfect reflectors.

Finally, if we aim at an accuracy of 10−4 in the relative difference with the exact integral,
useful for qualitative observations and tests, a good choice will be

(
ξ̃max = 5RL ,∆ξ̃ = 0.2RL

)
, which

represents 25 points of evaluation for the function Φ, and the smallest evaluated frequency will be
0.1RL .

If we aim at an accuracy of 10−6 in the relative difference with the exact integral, a good choice
will be

(
ξ̃max = 10RL ,∆ξ̃ = 0.05RL

)
, which represents 200 points of evaluation for the function Φ,

and the smallest evaluated frequency will be 0.025RL . We will use this criteria in the continuation
of the manuscript for the integration over ξ̃. The cut-off ξ̃max = 10RL will also be chosen when
doing the Matsubara sum to get the Casimir free-energy at non-zero temperatures.
If we aim at a very high numerical accuracy, such as 10−8 in the relative difference with the

exact integral, a good choice will be
(
ξ̃max = 10RL ,∆ξ̃ = 0.02RL

)
, which represents 500 points of

evaluation for the function Φ, and the smallest evaluated frequency will be 0.01RL .

6.4 Integration over cos θ

Each element of the scattering operator D(ıξ) given by Eqs.(5.55) contains an integral over cos θ, in
order to take into account all possible transverse component of the wavevector. Generally, because
of the complexity of the function to be integrated, this integral will be carried out numerically.
However, in the special case of perfectly reflecting mirrors, it is possible to have an analytical
form of the integral. While this method is not applicable in the general case, it will be helpful for
testing the numerical integration methods, as it gives for some cases the exact result.
In this section, we first present the analytical integration method valid for perfect mirrors, we

then come to the numerical integration, first with an analysis of the shape of the functions of cos θ,
then with the description of the chosen numerical method, and finally with numerical tests to
check that the obtained results are sufficiently accurate.

6.4.1 Analytical integration for perfect mirrors

In the case of perfect mirrors, the function to integrate over cos θ is given in Eq.(5.63) as an
exponential term e−2ξ̃L̃ cos θ multiplied by ∆

(±)
m,`1,`2

(θ), which is a polynomial in cos θ. It is then
possible to integrate analytically this function, thanks to the following property:

Prop. 7 The function f(x) = PN (x)e−γx, with PN =
∑N

i=0 aix
i, has for primitive the functions

F (x) = QN (x)e−γx + c , with c ∈ R and QN =
∑N

i=0 bix
i , the coefficients being defined with the
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lowering recurrence relations:

bN = −aN
γ

bi = −ai
γ

+
(i+ 1)bi+1

γ
, ∀i ∈ [[ 0, N − 1 ]] (6.10)

Then, if γ > 0, I =
∫∞

1 f(x)dx = −QN (1)e−γ = e−γ
∑N

i=0 bi .

For numerical purpose, the polynomials will be described by a vector, the elements of which are
the polynomial’s coefficients:

PN =
N∑
i=0

aix
i → P =


a0

a1

...

aN

 ∈ R
N+1

Let us give four more technical properties of this vectorial representation, that will turn out to be
useful in the future computations:

Prop. 8 For a given polynomial PN of degree N , the polynomial QN (that allows to obtain the
primitive of f(x) = PN (x)e−γx as in the previous property) has a related vector Q that can be
obtained by solving the system :

AQ = P with A =



−γ 1 0 · 0

0 −γ 2
. . .

...
...

. . . . . . . . . 0
...

. . . −γ N

0 · · · · · · 0 −γ


Prop. 9 The multiplication by x of the polynomial PN has for vectorial equivalent8 the multiplica-
tion by a matrix Kup:

[x→ xPN (x)] = Kup × PN with Kup =



0 · · · · · · · · · 0

1 0
...

0 1
. . .

...
...

. . . . . . . . .
...

0 · · · 0 1 0



8Assuming the vector has a sufficient size, that is to say, greater than N + 2.
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Prop. 10 Changing x to (−x) inside the polynomial PN has for vectorial equivalent the multipli-
cation by a matrix Π:

[x→ PN (−x)] = Π× PN with Π =



1 0 · · · · · · 0

0 −1 0
...

... 0 1
. . .

...
...

. . . . . . 0

0 · · · · · · 0 (−1)N


Prop. 11 The product of two polynomials PN1 =

N1∑
i=0

aix
i and QN2 =

N2∑
i=0

bix
i is the polynomial

RN =
N∑
i=0

cix
i such that:



N = N1 +N2

ck =

min(N1,k)∑
i=max(0,k−N2)

aibk−i , ∀k ∈ [[ 0, N ]]

To use this formalism in our computation, the polynomial PN of the integrand function, or
equivalently, its related vector, remains to be computed.

We start with the case (m = 0), where the polynomial ∆
(±)
0,`1,`2

(θ) is given by (5.65). The task is
then to express the finite rotation terms as polynomials. Following Section 5.3.3, we construct
the vectors D`1

0 ∈ R`1 in the following way:

D1
0 = − 1√

2


1

0
...

0

 ∈ R
`1 ; D2

0 = −
√

3

2



0

1

0
...

0


∈ R`1

D`
0 =

2`− 1√
`2 − 1

Kup ×D`−1
0 −

√
`(`− 2)√
`2 − 1

D`−2
0 ∈ R`1 , ∀` ∈ [[ 3, `1 ]]

The sequence ends up with the vector D`1
0 related to the polynomial of degree (`1 − 1) such that

d`1,s0,1 (θ) = s(θ)D`1
0 (cos θ). Doing the same for the second term with `2, one gets the product

P = d`10,1(θ)d`20,1(θ) = (cos2 θ− 1)×D`1
0 ×D`2

0 which is a polynomial of degree (`1 + `2) representing
the integrand, that can be computed from Prop. 11 and Prop. 9. The last step is to compute
Q = A−1P and then sum over its coefficients. Finally, one gets the result of the analytical
integration over cos θ as:∫ ∞

1
d cos θ ∆

(+)
0,`1,`2

(θ) e−2ξ̃L̃ cos θ = −2Q(1)e−2ξ̃L̃∫ ∞
1

d cos θ ∆
(−)
0,`1,`2

(θ) e−2ξ̃L̃ cos θ = 0 (6.11)
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Now, for the case (m > 0), the polynomial ∆
(±)
m,`1,`2

(θ) is given by (5.64). The situation is quite
similar, the only difference being the presence of terms like d`m,1(π − θ) which are represented by
Π×D`

m, as described in Prop. 10. Following the definitions of Section 5.3.3, we construct the
vector D`1

m as:

Dm
m =−

(−1

2

)m√ (2m)!

(m− 1)!(m+ 1)!



1

1

0
...

0


∈ R`1−m+2

Dm+1
m =

√
2m+ 1

m(m+ 2)
((m+ 1)Kup − Id)×Dm

m ∈ R`1−m+2

D`
m =

1√
(`2 − 1)(`2 −m2)

[
(2`+ 1)

(
`Kup −

m

`− 1
Id

)
×D`−1

m

− `

`− 1

√
(`− 1)2 −m2

√
(`− 1)2 − 1D`−2

m

]
, ∀` ∈ [[m+ 2, `1 ]]

It ends up with the vector D`1
m related to the polynomial such that d`1,sm,1(θ) = (s(θ))m−1×D`1

m(cos θ).
The polynomial to integrate is now

P (±) = (cos2 θ − 1)m−1 ×
[
D`1
m ×D`2

m ± (−1)`1+`2(Π×D`1
m)× (Π×D`2

m)
]

which is of degree (`1 −m+ 1) + (`2 −m+ 1) + 2(m− 1) = `1 + `2. The last step is to compute
Q(±) = A−1P (±) and then sum over its coefficients. Finally, one gets the result of the analytical
integration over cos θ as:∫ ∞

1
d cos θ ∆

(±)
m,`1,`2

(θ) e−2ξ̃L̃ cos θ = −Q(±)(1)e−2ξ̃L̃ (6.12)

The use of vectors to represent the polynomials is of great interest in this case, as it simplifies the
computation of the analytical integration by means of matrix-vector products. The computation
of the L̃-derivative of matrix elements can be done in the same way, with P replaced by P ′ =
(−2ξ̃ cos θ)× P of degree (`1 + `2 + 1) for the first derivative, and P ′′ = (4ξ̃2 cos2 θ)× P of degree
(`1 + `2 + 2) for the second derivative.

This method is only valid for perfect mirrors, as the Fresnel coefficients are no more polynomials
for the common models of dielectrics and metals. But in this case it allows to check if the
numerical scheme for cos θ-integration is valid, by comparing the results obtained numerically in
the perfectly-reflecting case to the analytical ones.

6.4.2 Shape of the function to be numerically integrated

In order to choose a method to implement the integrations over cos θ in (5.55), we first study
the shape of the four integrands fA, fB, fC , fD. All of those cos θ-functions are dependent on the
parameters (m, `1, `2, ξ̃, L̃) and of the material optical properties. We will only consider the set of
fA(cos θ), the integrands of the elements of the block matrix A, as they are quite similar to each
other from a numerical point of view:

fA(cos θ) =
d`1,sm [sum] Y s

`1,m
(cos θ)

√
cos2 θ − 1

rp(ξ̃, cos θ) e−2L̃ξ̃ cos θ (6.13)
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The exponential e−2L̃ξ̃ cos θ coming from the translation operators will obviously have a dominant
role, as it yields a strong decrease for large values of cos θ. As a consequence the integration
scheme will be very dependant on the value of (ξ̃L̃). In Fig. 32 we observe the shape of fA for
fixed values of (m, `1, `2) when (L̃ξ̃) changes.

100 101 102 103 10410−300

10−200

10−100

100
| f A(c

os
θ)

 |

 

 

10
1
0.1

Figure 32: Absolute value of fA(cos θ) in logarithmic scale, for fixed (m = 1, `1 = 2, `2 = 3) and
various values of (L̃ξ̃) = 10, 1, 0.1. The Fresnel coefficients are taken as unity rp = 1.

As expected, the curves have noticeable values for small cos θ, then decrease strongly exponentially
for large values of cos θ, especially when (L̃ξ̃) increases. Evaluating the integrand fA for too-high
values could then cause numerical instability, as fA(cos θ) can quickly reach numbers lower than
the smallest numerically representable number (typically 10−300 for a 64-bit double precision float
number). A cut-off cmax for the integration domain of cos θ must then be carefully chosen, and
should be inversely proportional to (L̃ξ̃).

The other functions of cos θ in fA are polynomials in cos θ for the finite rotations and spherical
harmonics, and bounded to [−1, 1] for the Fresnel coefficients. The order of the polynomials
will depend on the matrix’s indices (`1, `2) and the block index m. In Fig. 33 we study the
dependance on the three numbers (`1, `2 and m) by showing the absolute value of the integrand
function |fA(cos θ)| for a fixed (L̃ξ̃) = 0.1 and various set of indices (m, `1, `2).
The first observation from Fig. 33 is a relatively weak dependency on m for the shape of the

integrand when the indices of the matrix are fixed: the three upper curves, solid red, red circles
and solid purple, are evaluated with `1 = `2 = 20. Although they correspond to different values of
m ∈ {1, 10, 20}, they have almost the same shape. Accordingly, we will not consider the variations
of m in the integration method and keep the example of m = 0 or 1.

Second, for a fixed m = 1, we observe that the shape of the curve depends on the sum (`1 + `2):
the black dashed curve, for which `1 + `2 = 2 is much lower than the two blue curves, for which
`1 + `2 = 21, which lie again lower than the three red curves, for which `1 + `2 = 40. The greater
the sum of the matrix indices, the greater the maximum value of the integrand. However, the
exponential decrease is not affected by the changes in `1 and `2, as the integrand reaches for large
values of cos θ similarly negligible values with respect to its maximum. It will be an important
feature when looking for a possible cut-off for large values of cos θ, as the parameter (`1 + `2) will
be replaced by 2`max.
The red and blue curves exhibit a power law in cos θ before the maximum of fA is reached, as

the curves are straight lines in the logarithmic plot. This can be explained by the fact that the
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Figure 33: Absolute value of fA(cos θ) in logarithmic scale, for fixed (L̃ξ̃) = 0.1 and various values
of (m = 1, `1 = 2, `2 = 3). The two red and the purple curves on the top are for
`1 = `2 = 20 and m varies. The blue curves on the middle show what happens when
the values of `1 and `2 are switched. The black dashed curve on bottom, together with
the two former sets, show the (`1 + `2)-dependency at fixed m. The Fresnel coefficients
are taken as unity rp = 1.

dominant term in the finite rotations d`,sm and in the spherical harmonics Y s
`,m is proportional to

(cos θ)` when cos θ becomes large, as will be derived in Section 7.3 (p.113).
From all previous remarks, we deduce a simple model for the integrand function that reproduces

its shape for any set of parameters:

f0(cos θ) = (cos θ)`1+`2 e−2L̃ξ̃ cos θ (6.14)

This ’chameleon’ function f0 is first growing like (cos θ)`1+`2 for small values of cos θ, then reaches a

maximum value of ‖f0‖∞ =
(
`1+`2
2ξ̃L̃

)`1+`2
e−(`1+`2) at c0 = `1+`2

2ξ̃L̃ , and finally decreases exponentially.
In Fig. 34 we test the model f0 by comparing it with actual integrand functions fA for different
values of `1 and `2. The first top graph is for ξ̃ = 1, the two lower graphs are for ξ̃ = 0.1 (left) and
ξ̃ = 10 (right).

On the upper graph of Fig. 34, we observe that f0 seems to reproduce quite well the shape of
the integrand fA. It works even better for smaller values of ξ̃, as seen in the left-bottom graph.
For larger frequencies however, some differences appear, especially for small values of cos θ. In
all cases, the ’chameleon’ function f0 effectively predicts the position of the maximum and the
exponential decrease. This is a very important feature because when we will compute the integral
of fA, the most important contribution will come from values of cos θ close to c0. The chameleon
function f0 has thus the utility to give us information on the range of cos θ where the function to
be integrated take noticeable values. Furthermore, it seems that cmax = Kc0, with K = 10 and c0

computed for `1 = `2 = `max could be a good choice for the upper-limit of the integration. Indeed,
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Figure 34: Absolute value of fA (black) and f0(blue) in logarithmic scale for m = 1 and various
values of `1 and `2. For the upper graph ξ̃ = 1, then for the lower graphs ξ̃ = 0.1 and
ξ̃ = 10, respectively. The position c0 of the expected maximum for `1 = `2 = `max is
indicated in the cos θ-axis. The model used for the Fresnel coefficients is the plasma
model with L = R = λP .
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the ratio between the integrand evaluated at (Kc0) and c0 is:

f0(Kc0)

f0(c0)
= K2`maxe−2(K−1)`max

which is of the order of 10−6 with K = 10, in the worst case when `max = 1, and becomes already
as small as 10−12 when `max = 2. For large values of the indices, the ratio remains in a numerically
representable range, as it is ∼ 10−175 when `max = 30.

Another advantage of f0 is that it is possible to compute analytically its integral from Prop. 7,
which gives: ∫ ∞

1
(cos θ)`1+`2e−2L̃ξ̃ cos θd cos θ =

(
`1+`2∑
i=0

(`1 + `2)!

(`1 + `2 − i)!
1

(2L̃ξ̃)i

)
e−2L̃ξ̃

2L̃ξ̃
This result will be helpful in the test of numerical methods to integrate fA, as we can firstly test
them on f0 by comparing the numerical result to the exact analytical one.

6.4.3 Method of integration

There exists a great variety of numerical methods for computing the integral of a function, the
most efficient ones being usually based on a Gaussian quadrature or adaptations, such as the
Gauss-Kronrod algorithm. However, as we have gathered here a lot of information about the
functions fA that we want to integrate over cos θ, we can choose a less-general method that would
be better adapted to our case. Indeed we know that the important contributions to the integral
will come from values of cos θ around c0, a strongly varying parameter, that we have learned to
predict. The integration will then greatly benefit from any kind of tightening of quadrature points
around this value.

We have chosen to use a change of variable such that a constant-step quadrature of ]− 1, 1[ for
a variable u transforms onto a quadrature of ]1,+∞[ for cos θ, with a tuneable condensation of
points around c0:

cos θ = 1 + (c0 − 1)

(
1 + u

1− u

)α
with u ∈]− 1, 1[ , α > 0 (6.15)

u =

(
cos θ−1
c0−1

)1/α
− 1(

cos θ−1
c0−1

)1/α
+ 1

with cos θ ∈]1,+∞[ , α > 0 (6.16)

with the Jacobian: d cos θ = 2α(c0 − 1)
(1 + u)α−1

(1− u)α+1
du

With this change of variable, (u→ −1+) corresponds to the (cos θ → 1+)-limit, while (u→ +1−)
corresponds to the (cos θ → +∞)-limit. The cut-off umax for the variable u will be computed from
the cut-off cmax for the variable cos θ, using Eq.(6.16). The middle point (u = 0) coincides with
cos θ = c0. The real quantity α is a tuneable parameter for the change of variable. To better
understand its role, let us consider a regular quadrature with a fixed step h of the domain for u,
so that the smallest (resp. largest) value of u is −1 + h

2 (resp. 1− h
2 ). With h� 1, the smallest

and largest elements for cos θ will be, using (6.15):

cmin = 1 + (c0 − 1)

(
h/2

2− h/2

)α
' 1 + (c0 − 1)

(
h

4

)α
cmax = 1 + (c0 − 1)

(
2− h/2
h/2

)α
' 1 + (c0 − 1)

(
4

h

)α
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As h
4 � 1, a large value of α will spread values of cos θ between a cmin very close to 1 and a very

large cmax, while a small value of α will gather the points and make the quadrature in cos θ denser
around c0. The limiting case of α = 0 brings all quadrature points together on c0.
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Figure 35: Quadrature points for cos θ with the presented tuneable method. The line is the
’chameleon function’ f0, the dots are the points where the evaluation occurs for computing
the integral. For illustrative purpose, we have set h = 0.02 and α = 2. The other
parameters are ξ̃ = 0.01, `1 = `2 = 30, L̃ = 2.

This special treatment of values close to c0 from this method is illustrated in Fig. 35 where the
quadrature points for cos θ are presented with dots. The parameter α, and the step h of quadrature
for the variable u, remain to be adequately chosen by numerical tests. We will also check that our
prescribed factor K = 10 is a good choice for the cut-off cmax.

6.4.4 Numerical tests

For the ’chameleon function’, it is easy to test an integration method since we have an analytical
expression for the exact result. After some preliminary trials, we came to the conclusion that[
h = 0.01, α = 4,K = 10, c0 = `max/(ξ̃L̃)

]
would make a good candidate if one aims at a numerical

accuracy of 10−6. To make sure that this is still a good choice for the actual functions to integrate,
such as fA, we test it by comparing the result with a five times smaller step h′ = 0.002. With this
refinement, the quadrature in cos θ is denser and wider and the result of the numerical integration
is more accurate. If there is only a negligible change our method will be numerically stable. We
measure the relative difference between the integrals resulting from the candidate quadrature and
the refined one for different values of the matrix indices `1 and `2, and for low, medium and high
frequencies ξ̃. The results of the numerical tests are presented in Table 7.

The obtained relative changes are always below 10−8, which confirms that the candidate for the
set of parameters works well with the realistic functions we want to integrate in our computations.
It is also a confirmation that we are allowed to take a (`1, `2)-independent c0, which will speed up
the numerics, as a simple quadrature will be used to compute all the matrix elements9.
We also studied the influence of the factor K for the cut-off, by changing it to K ′ = 5 and

9It will even allow to directly integrate the matrix itself, seen as a function of cos θ.
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various (ξ̃, `1, `2) ξ̃ = 0.01 ξ̃ = 1 ξ̃ = 100

`1 = 1, `2 = 1 1e-9 1 e-9 7 e-9

`1 = 10, `2 = 20 2e-13 6e-15 5e-9

`1 = 30, `2 = 30 1e-9 1 e-9 7 e-9

Table 7: Accuracy of the numerical integration of fA over cos θ, as the relative difference between the
result computed with

[
h = 0.01, α = 4,K = 10, c0 = `max/(ξ̃L̃)

]
, and a refined quadrature.

The columns represent the tests for different values of the frequency ξ̃. The lines represent
the tests for different values of the matrix indices `1 and `2. The integrand has been
evaluated for L

R = 1, `max = 30,m = 1 and the Fresnel coefficients are unity.

K ′ = 20. The relative difference is always of the order of 10−12 or smaller, meaning that we can
switch to K = 5 for the cut-off if needed, as it will be more stable for high values of `max. Finally,
we make a last restriction (c0 ≥ 2) to avoid too small values at large (L̃ξ̃).

6.5 Modified Bessel functions

The modified Bessel functions of the first and second kind I and K can be defined by recurrence
for half-integer indices:

I1/2(x) =

√
2

πx
sinhx ; I3/2(x) =

√
2

πx

(
coshx− sinhx

x

)
I`+1/2(x) = −2`− 1

x
I`−1/2(x) + I`−3/2 (∀` ≥ 2) (6.17)

K1/2(x) =

√
π

2x
e−x ; K3/2(x) =

√
π

2x

(
1 +

1

x

)
e−x

K`+1/2(x) =
2`− 1

x
K`−1/2(x) +K`−3/2 (∀` ≥ 2) (6.18)

Numerically, the construction by recurrence behaves well for the K’s, but is highly unstable for the
I’s. This is due to the fact that the recurrence relation (6.17) contains a difference between very
close numbers, then some numerical error propagate and invalidate the result, sometimes in less
than 10 steps. An alternative iterative process of construction well-suited for numerics is described
in [225]. It results on computing for a given x > 0 at step ` the number K`+3/2(x) from (6.18),
and then use it together with

(
I`−1/2(x),K`+1/2(x)

)
obtained at the previous step, to construct

I`+1/2(x). For that final computation we will use a property of the Wronskian:

W = Iν(x)K
′
ν(x)−Kν(x)I

′
ν(x)

= − (Iν(x)Kν+1(x) +Kν(x)Iν+1(x))

= −1

x

It enables to express Iν(x) by a downward recurrence, by writing Iν(x) = [x (Kν+1(x) + fν(x)Kν(x))]−1

with fν(x) = Iν+1(x)
Iν(x) , this ratio remaining to be computed. It can be shown [226] that it is success-
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fully expressed as the following continued fraction:

fν(x) =
Iν+1(x)

Iν(x)
=

1
2(ν+1)
x + 1

2(ν+2)
x

+···

. (6.19)

By using the standard notation for a finite part of a continued fractions (here truncated at N = 4):

[a1, a2, , a3, a4] = a1 +
1

a2 + 1
a3+ 1

a4

,

we express the continued fraction (6.19) as a limit of its increasing finite parts: fν(x) =

limN→∞ f
N
ν (x), where

(
fNν (x)

)−1
= [a1, . . . , aN ], with an = 2(ν+n)

x . In the numerical compu-
tation, N will be increased until some given accuracy is obtained in the convergence.

If one chooses to compute directly (6.19), each increment for fNν (x) would require a computation
from the starting point of the finite continued fraction. We here present a better adapted
formulation, derived in [227].

Prop. 12

[a1, . . . , aN ] =
[a1]× [a2, a1]× · · · × [aN , . . . , a2, a1]

[a2]× [a3, a2]× · · · × [aN , . . . , a3, a2]

(For proof, see Appendix A.6 p.216)
With this useful property, fNν (x) is updated at each step by the simple operation:

(
fNν (x)

)−1
=
p1(N)

p2(N)

(
fN−1
ν (x)

)−1

p1(N) = [aN , . . . , a1] = aN +
1

p1(N − 1)

p2(N) = [aN , . . . , a2] = aN +
1

p2(N − 1)

until sufficient convergence is reached.

6.6 Numerical stability

A critical issue in the numerical evaluation of the Casimir effect with the formerly presented
method is the numerical stability. Indeed the translation operators and the Mie coefficients, when
evaluated at imaginary frequencies, yield very large and very small quantities depending on the
indices `1, `2. It results in a scattering operator N (m) whose elements can differ by many orders
of magnitude. Such a dispersal in the elements magnitudes will result in a badly-conditionned
matrix, responsible for numerical instabilities, but also in the risk of obtaining non-computable
numbers. Indeed numerical codes work with a finite range of representable numbers, whose width
depends on the allocated memory for each number ("precision").
In Fig. 36 we illustrate this statement with a practical case, with L

R = 1 and m = 1. The
magnitude of the matrix elements are encoded with colours, on a logarithmic scale. A quantity
r in the color bars corresponds to an element with an absolute value of 10r. The four graphs
are obtained with different values of the reduced frequency ξ̃ and cut-off `max, to observe the
dependence of the magnitudes in the matrix with respect to these two parameters.
The decomposition of the matrices N (m) in four blocks corresponding to the polarizations

P = E,M is visible in Fig. 36. For each block, while the elements around the diagonal are stable,
the off-diagonal elements have very different magnitudes: when the line index `1 is large and
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Figure 36: Magnitude of the elements of N (1), for different cases. The upper graphs are for ξ̃ = 1,
with `max = 30 (left) and 50 (right). The lower graphs are for `max = 30, with ξ̃ = 0.1
(left) and 10 (right). The colours are given in logarithmic scale, with the numbers r in
the colour bars representing an element of magnitude 10r. The aspect ratio is L

R = 1.
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the column index `2 is small the magnitude of the matrix element can become very small, and
oppositely when `2 is large and `1 small the magnitude can become very large.
The comparison of the two upper graphs in Fig. 36 show that the dispersal of the elements

magnitudes is more pronounced for larger values of `, when the cut-off `max is increased. This
shows that the the stability of the numbers involved in the numerical evaluation will become an
issue when smaller aspect ratio L

R , and thus larger values of `max, will be sought.
The comparison of the two lower graphs in Fig. 36 show that a small reduced frequency makes

the dispersal worse, while large values of ξ̃ tend to stabilise the elements. This entails that a great
care must be taken in the integration process over the frequencies, in order to avoid evaluations of
the matrix N at too-small values of ξ̃.

Before computing the determinant of such a badly-conditionned matrix, a simple extern regular-
ization can be applied to each polarization block in order to reduce the dispersal of the elements
magnitude. It consists of multiplying the columns and dividing the lines by the same quantity, a
process which let the determinant of the matrix unchanged. We take for example a bock-matrix of
size n, which corner elements are called A,B,C,D, with A and D the corners along the diagonal,
and B and C the off-diagonal corners, B being an elements with a large magnitude and C with a
small magnitude. Defining the small positive quantity K:

A · · · B
...

. . .
...

C · · · D

 −→ K =

∣∣∣∣AB
∣∣∣∣ 1
n−1

,

we multiply the column of index j by Kj−1 and the line of index i by K1−i. The resulting block
matrix will have the same determinant, the same elements A and D, and its off-diagonal corner
elements will verify |B′| = |A| and |C ′| =

∣∣BC
A

∣∣, which will be much more regular than C. In
practice this process is very efficient, as can be understood from the observation in Fig. 36 that
the magnitudes are regularly spread through the block-matrices.

For the numerical evaluation of the matrix determinant at small values of the reduced frequency
ξ̃, apart from the first Matsubara term, an intern regularization can be done with the help of the
low-frequency expansions that will be analytically derived in Section 7.6. This process consists of
guessing what the magnitude of the element will be, in terms of the reduced frequency ξ̃ and the
indices `1, `2, and normalize the computed elements by its approximated value. In Eq.(7.30) (p.117),
we see that the dominant cause for the dispersal of the elements magnitude in the low-frequency
limit is the term:

K(`1, `2, ξ̃) =
(2`2 + 1)!!

(2`1 + 1)!!
ξ̃`1−`2

which is antisymmetric in (`1, `2) for the product. The intern regularization process will then
consists of computing each element of the matrix normalized by K(`1, `2, ξ̃). Once the matrix N
is produced, an extern regularization can also be applied.
In order to reach high cut-offs `max, an alternative solution to delay the stability issue is to

use a number representation which allows for wider values. For example the range of computable
numbers with double precision floating-point format (64 bits) is [2.2× 10−308, 1.8× 10308], while
for quadruple precision floating-point format (128 bits) it stretches to [3.4× 10−4932, 1.2× 104932],
which makes room for large and small values, and delays the appearance of stability issues. This
improvement in the stability however have drawbacks in term of computation time and access to
standard functions and methods.
In the numerical evaluations presented in this manuscript, we have used quadruple precision

number, together with the two mentioned regularization processes, allowing for stable results up
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to `max = 520 in the general case. The instabilities are unavoidably caused by the Wick rotation
to imaginary frequencies, but the situation remains easier to handle than with real frequencies, for
which the integration of an oscillating function of ξ̃ is numerically very challenging.

6.7 Computation of the zero-frequency term

The zero-frequency term of the integrand Φ(ξ̃) = ln detD
(
ξ̃
)
, which will be derived analytically

in Section 7.6 (p.117), is for example for the Drude model:

det
(
I −M(m)

)
' det

(
I −

√
π(2`1 + 1)

`2(`2 + 1)
a`1B

(m)
`1,`2,TM

)

= det

δ`1,`2 − 1(
2L̃
)`1+`2+1

(`1 + `2)!√
(`1 −m)!

√
(`1 +m)!

√
(`2 −m)!

√
(`2 +m)!

 .

Its numerical evaluation can be problematic, as it contains factorial terms like (`1 + `2)! that
can become very large, all the more that this simpler zero-frequency form for the matrix allows
to employ a larger cut-off `max. As an example, 171! cannot be computed with usual double
precision floating-point format (64 bits) and 1800! is also too big a number for quadruple precision
floating-point format (128 bits).
To avoid the occurrence of such non-computable numbers, each side of the fraction has to be

balanced out with the other side. A possibility is to compute the matrix elements line by line (from
top to bottom), and then for each line (from the left to the right), each element being updated
with eq. (6.20) from its left-neighbour, except the first element of the row, which is updated from
the upper line with eq. (6.21).

M(m)
`1,`2

=M(m)
`1,`2−1 ×

`1 + `2

2L̃
√
`22 −m2

(6.20)

M(m)
`1,`2

=M(m)
`1−1,`2

× `1 + `2

2L̃
√
`21 −m2

(6.21)

For the other block matrix appearing in the case of perfect mirrors, the situation is similar, except
that the update (6.21) contains an additional multiplicative term `21

`21−1
. For the case of dielectrics,

it is also quite similar.
With this balanced construction of the matrices M(m), we observe from our numerical tests

that numerical stability does not seem to be an issue anymore, and the numerical evaluation of
the first Matsubara term can be performed with high values for the cut-off `max. In Fig. 37 we
present a numerical test on the convergence of the Casimir free-energy in the high-temperature
limit with respect to `max. This convergence is exponentially decreasing with `max, and thus never
saturates. Numerical evaluations up to `max = 5000 have been performed for the study of the
high-temperature regime, but higher values are manageable, in exchange for longer computation
time.
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Figure 37: Convergence of the Casimir free-energy FHT in the high-temperature limit, with respect
to `max. The aspect ratio is L

R = 0.002. We plot, as a function of `max, the relative
difference ∆ between the `max-truncated quantities and a much more accurate reference
value (computed with `ref

max = 3800).
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Analytical limits

Table of Contents

7. Low-frequency limit 108
7.1. Mie coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
7.2. Fresnel coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
7.3. Spherical harmonics and finite rotations . . . . . . . . . . . . . . . . . . . . . . . 113
7.4. Integration over cos θ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
7.5. Determinant of the scattering matrix . . . . . . . . . . . . . . . . . . . . . . . . . 115
7.6. Conclusion: the first Matsubara term and the high-temperature limit . . . . . . . 117

8. Long-distance limit 124
8.1. The dipolar-simple scattering approximation . . . . . . . . . . . . . . . . . . . . 124
8.2. Perfect mirrors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
8.3. Metallic scatterers modelled with the plasma model . . . . . . . . . . . . . . . . 131
8.4. Metallic scatterers modelled with the Drude model . . . . . . . . . . . . . . . . . 132
8.5. Dielectric scatterers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

Before starting any numerical evaluation of the Casimir effect in the sphere-plane geometry,
we present in this part some analytic derivations that can be done from the scattering formula
presented in Section 5.4 (p.78) for some limiting regimes. The motivation for this study is first
to extract from the complex scattering expression as much physical information as possible, in
particular in the qualitative comparison between the results obtained from plasma, Drude, dielectric
and perfect mirrors models. The possession of such explicit analytic expansions can also be used
to test the numerical evaluations.
In Section 7 we investigate the low-frequency expansion of the scattering operator D. In this

regime we obtain very simple forms for its determinant, which will be useful to compute the first
Matsubara term in the non-zero temperature evaluations of the Casimir effect. This expansion
will also give an insight on the high-temperature regime for the Casimir effect, which turns out to
be very dependent on the description of the materials optical properties.

The long-distance regime, where the distance L becomes much larger than the sphere radius R,
is investigated in Section 8. The analytical expansions obtained in this regime will be particularly
useful to study the temperature dependance of the Casimir effect in the sphere-plane geometry: if
the curvature has a non-trivial interplay with thermal effects, those correlations should be enhanced
in this regime.

This part only contains analytical expansions and their derivation. Their physical interpretation
and their comparison to numerical evaluations will be discussed in Parts IV and V.
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7 LOW-FREQUENCY LIMIT

7 Low-frequency limit

In this section, we study the (ξ̃ → 0)-limit of the integrand function Φ(m)(ξ̃) = ln detD(m)(ξ̃)
appearing in the scattering formula (5.58) (p.79) in the sphere-plane configuration. The expressions
that we will derive in this limit will be useful first of all for the numerics, because this low-frequency
limit is numerically unstable, as explained in Section 6.6 (p.101). Moreover, having an analytical
expression for the integrand at the first Matsubara frequency Φ(0) is also interesting to have
information on the Casimir interaction in the limit of high-temperature (L � λT

2π ), as the Matsubara
sum then reduces to its first term in Eq.(3.6) (p.49).

In this regime we know from the shape of the functions of cos θ studied in Section 6.4.2 (p.94)
that main contributions to the integral over cos θ will come from large values of cos θ, proportionally
to ξ̃−1, because of the translation e−2ξ̃L̃ cos θ term.

We will here begin by deriving the low-frequency limit (or large cos θ limit) for various quantities
involved in the scattering operator D(m), then do the integration over cos θ for each term of this
operator, and finally simplify the expression of its determinant.

7.1 Mie coefficients

Let us first recall that for a non-magnetic sphere of radius R and relative permittivity ε = n2, the
Mie coefficients of order ` and parameter ξ̃ = Rξ

c , introduced in Section 5.2.2 (p.70), write:

a`(ξ̃) = (−1)`+1π

2

n2s
(a)
` (ξ̃)− s(b)

` (ξ̃)

n2s
(c)
` (ξ̃)− s(d)

` (ξ̃)
b`(ξ̃) = (−1)`+1π

2

s
(a)
` (ξ̃)− s(b)

` (ξ̃)

s
(c)
` (ξ̃)− s(d)

` (ξ̃)
(7.1)

with

s
(a)
` (ξ̃) = I`+1/2(nξ̃)

[
`I`+1/2(ξ̃)− ξ̃I`−1/2(ξ̃)

]
s

(b)
` (ξ̃) = I`+1/2(ξ̃)

[
`I`+1/2(nξ̃)− nξ̃I`−1/2(nξ̃)

]
s

(c)
` (ξ̃) = I`+1/2(nξ̃)

[
`K`+1/2(ξ̃) + ξ̃K`−1/2(ξ̃)

]
s

(d)
` (ξ̃) = K`+1/2(ξ̃)

[
`I`+1/2(nξ̃)− nξ̃I`−1/2(nξ̃)

]
. (7.2)

In the case of perfect mirrors, they simplify to:

a`(ξ̃) = (−1)`+1π

2

`I`+1/2(ξ̃)− ξ̃I`−1/2(ξ̃)

`K`+1/2(ξ̃) + ξ̃K`−1/2(ξ̃)
b`(ξ̃) = (−1)`+1π

2

I`+1/2(ξ̃)

K`+1/2(ξ̃)
. (7.3)

We are interested in the low-frequency limit, thus we will use the following expansion of the
modified Bessel functions for small values of the parameter (x� 1):

I`+1/2(x) '
√

2

π

x`+1/2

(2`+ 1)!!
+

√
1

2π

x`+5/2

(2`+ 3)!!
+ · · · (7.4)

K`+1/2(x) '
√
π

2

(2`− 1)!!

x`+1/2
+ · · · (7.5)

We consider various materials for the sphere, as their dielectric functions ε(ξ̃) will lead to different
low-frequency behaviour of the Mie coefficients.
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7.1 Mie coefficients

7.1.1 Perfect mirrors

Inserting the first order expansions (7.4-7.5) in (7.3), we get the following low-frequency asymptotic
expressions for the Mie coefficients:

a` '
`+ 1

`

(−1)`ξ̃(2`+1)

(2`+ 1)!!(2`− 1)!!
b` '

(−1)(`+1)ξ̃(2`+1)

(2`+ 1)!!(2`− 1)!!
. (7.6)

The Mie coefficients become very small at the limit of low-frequencies, as illustrated by the term
ξ̃(2`+1). Physically, this low-frequency extinction of the Mie coefficients can be understood with
the impact parameter b = R`

ξ̃
introduced in Section 6.1.1 (p.81): when ξ̃ goes to 0, b becomes

much larger than the sphere radius, and correspond to rays that do not hit the sphere.
We observe furthermore that this decrease is even more pronounced when the order ` is increased.

For perfect mirrors, the two coefficients a` and b` have the same power law in ξ̃ in this limit, but
not the same coefficient, as a` ' − `+1

` b`.

7.1.2 Dielectrics

Dielectrics have a relative permittivity function ε(ξ̃) with a finite (ξ̃ → 0)-limit ε(0). In this case,
when using the low-parameter asymptotic expressions (7.4-7.5) in (7.2), we obtain:

s
(a)
` (ξ̃) ' − 2

π

`+ 1

(2`+ 1)!!(2`+ 1)!!
n
`+1/2
0 ξ̃2`+1

s
(b)
` (ξ̃) ' − 2

π

`+ 1

(2`+ 1)!!(2`+ 1)!!
n
`+1/2
0 ξ̃2`+1

s
(c)
` (ξ̃) ' `

2`+ 1
n
`+1/2
0

s
(d)
` (ξ̃) ' − `+ 1

2`+ 1
n
`+1/2
0 (7.7)

with n0 =
√
ε(0) ∈ R. Those expansions are sufficient to compute a`(ξ̃), but for b`(ξ̃) we need to

go one order further and use the second term in (7.4) as s(a)
` (ξ̃) and s(b)

` (ξ̃) have the same dominant
term. Then the difference in the numerator for b`(ξ̃) is:

s
(a)
` (ξ̃)− s(b)

` (ξ̃) ' 2

π

(n2 − 1)n`+1/2ξ̃2`+3

(2`+ 1)!!(2`+ 3)!!

and the low-frequency asymptotic expressions for the Mie coefficients finally read:

a`(ξ̃) ' (−1)`
`+ 1

`

ε(0)− 1

ε(0) + `+1
`

ξ̃(2`+1)

(2`+ 1)!!(2`− 1)!!

b`(ξ̃) ' (−1)(`+1) (ε(0)− 1)
ξ̃(2`+3)

(2`+ 3)!!(2`+ 1)!!
. (7.8)

Unlike perfect mirrors, we observe that for dielectrics the two coefficients a` and b` do not have
the same power law decrease at low-frequency, yielding b` = O

(
ξ̃2
)
× a` in this limit for any value

of the index `. It follows that we will in this case only consider the first Mie coefficient a` when
taking the low-frequency expansion of the expressions.

109
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7.1.3 Drude model for dissipative metals

Introducing α = 2π R
λP

and δ = λP
λγ

, the relative permittivity ε(ξ̃) for the Drude model can be
written as:

ε(ξ̃) = 1 +
1

ξ̃
α

(
ξ̃
α + δ

) . (7.9)

When the reduced frequency ξ̃ goes to zero, the dielectric function (7.9) diverges to +∞ like α
δξ̃
.

This means that the refractive index n ∼
√

α
δξ̃

goes to +∞ like ξ̃−1/2 and that nξ̃ ∼
√

αξ̃
δ goes to

0 like ξ̃1/2. The low-frequency limit in (7.2) then evaluates to:

s
(a)
` (ξ̃) ' − 2

π

`+ 1

(2`+ 1)!!(2`+ 1)!!

(√
α

δ

)`+1/2

ξ̃3`/2+3/4

s
(b)
` (ξ̃) ' − 2

π

`+ 1

(2`+ 1)!!(2`+ 1)!!

(√
α

δ

)`+1/2

ξ̃3`/2+3/4

s
(c)
` (ξ̃) ' `

2`+ 1

(√
α

δ

)`+1/2

ξ̃−`/2−1/4

s
(d)
` (ξ̃) ' − `+ 1

2`+ 1

(√
α

δ

)`+1/2

ξ̃−`/2−1/4 . (7.10)

Like in the previous case of dielectrics, those expansions are sufficient to compute a`(ξ̃), but for
b`(ξ̃) we need to go one order further and use the second term in (7.4), as s(a)

` (ξ̃) and s(b)
` (ξ̃) have

the same dominant term. Then the difference in the numerator for b`(ξ̃) read:

s
(a)
` (ξ̃)− s(b)

` (ξ̃) ' 2

π

(√
α

δ

)`+5/2
ξ̃3`/2+7/4

(2`+ 1)!!(2`+ 3)!!

and the low-frequency asymptotic expressions for the Mie coefficients finally are:

a` ' (−1)`
`+ 1

`

ξ̃(2`+1)

(2`+ 1)!!(2`− 1)!!

b` ' (−1)(`+1) α

δ

ξ̃(2`+2)

(2`+ 3)!!(2`+ 1)!!
. (7.11)

Again, the two coefficients do not have the same power law in ξ̃ for their low-frequency decrease,
with this time b` = O

(
ξ̃
)
× a`. The first coefficient a` is the same as the one obtained with

perfect mirrors. We remark that the analytical limit for the second coefficient b` contains the term
α
δ =

2πRλγ
λ2P

, but not for the first term a`. We will discuss more this result in the next paragraph
when comparing it to the case of plasma model.

7.1.4 Plasma model for loss-less metals

Introducing α = 2π R
λP

, the relative permittivity ε(ξ̃) for the plasma model can be written as:

ε(ξ̃) = 1 +
α2

ξ̃2
. (7.12)
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7.2 Fresnel coefficients

When the reduced frequency ξ̃ goes to zero, the dielectric function (7.12) diverges to +∞ like α2

ξ̃2
,

meaning that n ∼ α
ξ̃
goes to +∞ like ξ̃−1, and more importantly, that nξ̃ ∼ α remains finite. Thus

the (ξ̃ → 0)-limit in (7.2) is here:

s
(a)
` (ξ̃) ' −

√
2

π

[
(`+ 1)I`+1/2(α)

]
(2`+ 1)!!

ξ̃`+1/2

s
(b)
` (ξ̃) '

√
2

π

[
`I`+1/2(α)− αI`−1/2(α)

]
(2`+ 1)!!

ξ̃`+1/2

s
(c)
` (ξ̃) '

√
π

2

[
`I`+1/2(α)

]
(2`− 1)!! ξ̃−`−1/2

s
(d)
` (ξ̃) '

√
π

2

[
`I`+1/2(α)− αI`−1/2(α)

]
(2`− 1)!! ξ̃−`−1/2 . (7.13)

Those first-order expansions are sufficient to compute the low-frequency asymptotic expression for
the Mie coefficients:

a` ' (−1)`
`+ 1

`

ξ̃(2`+1)

(2`+ 1)!!(2`− 1)!!

b` ' (−1)(`+1) ξ̃(2`+1)

(2`+ 1)!!(2`− 1)!!

(
1− 2`+ 1

α

I`+1/2(α)

I`−1/2(α)

)
. (7.14)

Like in the case of perfect mirrors, the two Mie coefficients a` and b` have the same power-law decay
ξ̃(2`+1) at low frequencies. The first one is again the same as with perfect mirrors or Drude model,
but the second is an intermediate case between the two former situations: when the parameter α
is large (R� λP ),

(
1− 2`+1

α

I`+1/2(α)

I`−1/2(α)

)
→ 1 and the perfect reflector case is recovered. When α is

very small (R� λP ),
(

1− 2`+1
α

I`+1/2(α)

I`−1/2(α)

)
→ 0 and b` = o

(
ξ̃2`+1

)
, as in the Drude model10.

The plasma model then leads to a situation where both electric and magnetic multipoles
contributions are important, like for a perfectly reflecting sphere. The Drude model leads to a
qualitatively different situation at the limit of low-frequencies, as magnetic multipoles contributions
are negligible with respect to the electric ones with the same order `.

We remark that taking the limit of vanishing dissipation (δ → 0) in the expression (7.11) of the
b` coefficients is not appropriate to recover the loss-less plasma case. It follows that the limits
(δ → 0) and (ξ̃ → 0) do not commute, and one must be very careful when working with those two
limits at the same time.

7.2 Fresnel coefficients

The Fresnel coefficients, described in Section 5.2.1 (p.70), are functions of cos θ, and the reduced
frequency ξ̃ through the relative permittivity ε(ξ̃). They can be written at imaginary frequencies
as:

rTE =
1−

√
1 + (ε−1)

cos2 θ

1 +
√

1 + (ε−1)
cos2 θ

rTM =
1 + (ε− 1)−

√
1 + (ε−1)

cos2 θ

1 + (ε− 1) +
√

1 + (ε−1)
cos2 θ

. (7.15)

10A low-α expansion of the factor
(
1− 2`+1

α

I`+1/2(α)

I`−1/2(α)

)
gives α2

(2`+1)(2`+3)
+ o
(
α2
)
and leads to the Drude expression

for b` in (7.11) with α2ξ̃2`+1 replacing α
δ
ξ̃2`+2. We recall that this case is only mentioned as a remark, as the

plasma model does not offer a proper description of spheres with R � λP , for which confinement has to be
taken into account.
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We recall that with this convention of signs, rTE ∈ [−1, 0] and rTM ∈ [0, 1]. When studying
the low-frequency expansion of the Fresnel coefficients, we will take into account the fact that
cos θ becomes very large (like ξ̃−1). For metals, the dielectric function ε also diverges at the
low-frequency, and there will be a competition between the two terms.

7.2.1 Perfect mirrors

The relative permittivity for the perfect mirrors model is intrinsically infinite. Then the Fresnel
coefficients are in this case obtained as the (ε→ +∞)-limit of expressions (7.15), and turn out to
be frequency-independant:

rTE = −1 rTM = 1 . (7.16)

In this case, the electric and magnetic polarizations have the same contribution, except for the
sign, and the Fresnel coefficients have a non-vanishing limit for low frequencies.

7.2.2 Dielectrics

Dielectrics have a dielectric function ε(ξ̃) with a finite limit at low frequencies ε(0) ≥ 1. It follows
that the cos θ is the only diverging quantity, and ε−1

cos2 θ
= O

(
ξ̃2
)
. The low-frequency limit for the

Fresnel coefficients then read:

rTE = O
(
ξ̃2
)

rTM =
ε(0)− 1

ε(0) + 1
(7.17)

with the refractive index at zero frequency n0 =
√
ε(0). We observe in this case that the

contribution of the electric polarization is negligible compared to the magnetic one. Moreover, the
amplitude for the latter is, as expected, determined by the value n0: the higher n0, the greater the
reflection.

7.2.3 Drude model

Introducing α = 2π R
λP

and δ = λP
λγ

, the relative permittivity for the Drude model writes ε− 1 =

α2

ξ̃2+δαξ̃
= O(ξ̃−1) at low frequencies. As cos θ = O(ξ̃−1), the ratio ε−1

cos2 θ
∼ α

δξ̃ cos2 θ
= O

(
ξ̃
)
,

appearing in both coefficients, diverges at the limit (ξ̃ → 0). It yields the following asymptotic
forms for the low-frequency Fresnel coefficients:

rTE = O
(
ξ̃
)

rTM = 1 +O
(
ξ̃
)
. (7.18)

We observe in this case the extinction of the reflection for transverse electric modes at the limit of
zero frequency, a feature that is not observed with perfect mirrors. This extinction is responsible for
the ratio 2 between the Casimir free-energies obtained from perfect and Drude models, appearing
in the plane-plane geometry for large distances, as illustrated in Fig. 23 (p.51). The reflection
coefficient for transverse magnetic modes rTM converges to the value 1, as in the perfectly reflecting
case.

7.2.4 Plasma model

Introducing α = 2π R
λP

, the relative permittivity for the plasma model writes ε− 1 = α2

ξ̃2
. Then at

low frequencies, ε−1
cos2 θ

=
(

α
ξ̃ cos θ

)2
= O(1) remains finite. The asymptotic form of the low-frequency
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Fresnel coefficients still depends on the value of α in this case:

rTE =
1−

√
1 +

(
α

ξ̃ cos θ

)2

1 +

√
1 +

(
α

ξ̃ cos θ

)2
rTM = 1 +O

(
ξ̃2
)
. (7.19)

As ξ̃ cos θ scales as R
L , the important parameter in the rTE coefficient is α

ξ̃ cos θ
∝ 2πL

λP
. When

L � λP , rTE → −1, and one recovers the perfect reflector result. When L � λP , rTE → 0, and
the Drude model result is recovered. The plasma model is again at low frequency an intermediate
case between the perfectly reflecting and Drude models, as with the Mie coefficients. It is again
impossible to obtain the asymptotic expressions (7.19) of the Fresnel coefficients for plasma model
from the one of Drude model (7.18) by simply taking the limit δ → 0.

Except for dielectrics, the coefficient for transverse magnetic modes is always 1 at zero frequency,
but the one for transverse electric modes depends on the model. In this sense, the rTM coefficients
is similar to the Mie coefficient a`, while rTE is the planar equivalent of b` for a sphere.

7.3 Spherical harmonics and finite rotations

For large values of cos θ, we have s(θ) =
√

cos2 θ − 1 ' cos θ. For the spherical harmonics, we can
derive from Section 5.3.2 (p.76), and specially from the first terms in the recurrence relations,
the (cos θ → +∞)-expansion of the transformed spherical harmonics Y s

`,m and their θ-derivatives
∂θY

s
`,m:

Y s
`,m '

(−1)m
√

(2`− 1)!!
√

(2`+ 1)!!

2
√
π
√

(`−m)!
√

(`+m)!
(cos θ)` (7.20)

∂θY
s
`,m '

(−1)m`
√

(2`− 1)!!
√

(2`+ 1)!!

2
√
π
√

(`−m)!
√

(`+m)!
(cos θ)` . (7.21)

This result can be proven by direct recurrence from the definition of Section 5.3.2 (p.76).
For finite rotations, following Section 5.3.3 (p.77), we get the following asymptotic expansions

at the (cos θ → +∞)-limit:

d`,sm,1 ' (−1)m+1

√
`

`+ 1

(2`− 1)!!√
(`−m)!

√
(`+m)!

(cos θ)` . (7.22)

Again, this leading order term can be derived by simple recurrence from the definition of Sec-
tion 5.3.3 (p.77). This is however not sufficient for our purpose here: indeed, expressions for the
scattering matrix do not contain a simple finite rotation, but rather a combination of d`,sm,1(θ) and
d`,sm,1(π − θ).

As the factor (cos θ)` in (7.22) is in reality s(θ)(cos θ)`−1 for m = 0, and (s(θ))m−1(cos θ)`−m+1

for m ≥ 1, the dominant term of d`,sm,1(π − θ) will be (−1)`−m+1 times the one for d`,sm,1(θ). For
d`,sm [dif] = d`,sm,1(θ) − (−1)`+md`,sm,1(π − θ), the two dominant terms add up. But for d`,sm [sum] =

d`,sm,1(θ) + (−1)`+md`,sm,1(π − θ), they cancel out.
Instead of going to the next order, we have chosen to derive a direct construction rule for the

leading oder of d`,sm [sum]. First, for m = 0, by simple recurrence with the definition of d`,s0,1(θ), we
can show that it is an even function with respect to cos θ for odd `, and an odd function for even `.
Thus d`,s0 [sum] is simply zero for all `:

d`,s0 [sum] = d`,s0,1(θ) + (−1)`+0(−1)`+1d`,s0,1(θ) = 0 ∀` ≥ 1. (7.23)
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Then, for m ≥ 1, when inserting the definition of d`,s0,1(θ) in d`,sm [sum], we get:

dm,sm [sum] =

√
(2m)!

(m− 1)!(m+ 1)!

(−s(θ)
2

)m−1

dm+1,s
m [sum] =

√
(2m+ 1)!

m!(m+ 2)!

(−s(θ)
2

)m−1

m cos θ

d`,sm [sum] =
1√

`2 − 1
√
`2 −m2

[
`(2`− 1) cos θd`−1,s

m [sum]− m(2`− 1)

`− 1
d`−1,s
m [dif]

]
+

√
(`− 1)2 − 1

√
(`− 1)2 −m2

√
`2 − 1

√
`2 −m2

[ −`
`− 1

d`−2,s
m [sum]

]
(7.24)

And from that coupled recurrence relations we can extract the asymptotic expansions for the
combinations of the finite rotations, which are summed up in the following property:

Prop. 13 d`,sm [sum] and d`,sm [dif] have the following asymptotic expansions:

d`,sm [sum] ' K(`,m)
m

`
(s(θ))m−1 (cos θ)`−m ' m

`
K(`,m)(cos θ)`−1

d`,sm [dif] ' K(`,m) (s(θ))m−1 (cos θ)`−m+1 ' K(`,m)(cos θ)`

with K(`,m) = (−1)m+1

√
`

`+ 1

2(2`− 1)!!√
(`−m)!

√
(`+m)!

(For proof, see Appendix A.7 p.216)
The former remarks are important, as we observe that d`,sm [sum] looses an order in cos θ compared

to d`,sm [dif], and it will enable to discard some terms when comparing the contributions of all parts
of the scattering matrix.

7.4 Integration over cos θ

The next step in order to compute the leading terms of the elements of the scattering operator is
the integration over cos θ for the four blocks elements A,B,C,D given in Eq.(5.55) (p.78). From
the results (7.20,7.21) and Prop.13 in the previous section, we can predict that the power in cos θ
in the integrands as the following:

A
(m)
`1,`2,p

' KA(`1, `2,m)

∫ ∞
1

d cos θ (cos θ)`1+`2−2 rp(θ) e
−2ξ̃L̃ cos θ

B
(m)
`1,`2,p

' KB(`1, `2,m)

∫ ∞
1

d cos θ (cos θ)`1+`2 rp(θ) e
−2ξ̃L̃ cos θ

C
(m)
`1,`2,p

' KC(`1, `2,m)

∫ ∞
1

d cos θ (cos θ)`1+`2−1 rp(θ) e
−2ξ̃L̃ cos θ

D
(m)
`1,`2,p

' KD(`1, `2,m)

∫ ∞
1

d cos θ (cos θ)`1+`2−1 rp(θ) e
−2ξ̃L̃ cos θ (7.25)

where we have merged the cos θ-independent part of the integrand outside the integration with the
introduction of the K(`1, `2,m) terms. The first observation is that the blocks B(m) are going to
play a dominant role in the future expansion, as they exhibit a higher exponent in cos θ .
In the following we restrict ourselves to the case where the low-frequency limit of the Fresnel

coefficient does not depend on the lateral vector component11. We are left with the following
11This is always the case, except for plasma model with TE-polarization
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integration, reformulated with the help of the change of variable
[
t = 2ξ̃L̃ cos θ

]
:

∫ ∞
1

d cos θ (cos θ)Ne−2ξ̃L̃ cos θ =

∫ ∞
2ξ̃L̃

dt

2ξ̃L̃

(
t

2ξ̃L̃

)N
e−t

' 1(
2ξ̃L̃

)N+1

∫ ∞
0

dt tNe−t

' N !(
2ξ̃L̃

)N+1
.

The leading terms of the elements in the scattering operator then become:

A
(m)
`1,`2,p

' KA(`1, `2,m)(`1 + `2 − 2)!(
2ξ̃L̃

)`1+`2−1
rp

B
(m)
`1,`2,p

' KB(`1, `2,m)(`1 + `2)!(
2ξ̃L̃

)`1+`2+1
rp

C
(m)
`1,`2,p

' KC(`1, `2,m)(`1 + `2 − 1)!(
2ξ̃L̃

)`1+`2
rp

D
(m)
`1,`2,p

' KD(`1, `2,m)(`1 + `2 − 1)!(
2ξ̃L̃

)`1+`2
rp (7.26)

where the dominant role of the blocks B(m) at low-frequency becomes all the more significant.

7.5 Determinant of the scattering matrix

Using the Fresnel and Mie coefficients asymptotic expressions found in the previous sections and
the expressions (7.26) of the integrated blocks, the dominant power laws in ξ̃ for the elements of
the operator N (m) at low frequencies are presented in Table 8, depending on the model used for
the optical response of the materials. After dividing all lines `1 by ξ̃`1 and multiplying all columns
`2 by ξ̃`2 , which leaves the determinant of D(m) = I −N (m) unchanged, the dominant powers of ξ̃
at low frequencies for the scattering operator do not depend anymore on the indices `1 and `2, but
only on the block. The order of the dominant terms in the blocks of the transformed operator are
presented in Table 9.
For perfect mirrors and plasma model, we see that the determinant of the scattering operator

only involves the diagonal blocks:

det
(
D(m)

)
' det

(
I −

√
π(2`1 + 1)

`2(`2 + 1)
a`1B

(m)
`1,`2,TM

)
det

(
I −

√
π(2`1 + 1)

`2(`2 + 1)
b`1B

(m)
`1,`2,TE

)
(7.27)

while for the Drude model and dielectrics it only involves the first block:

det
(
D(m)

)
' det

(
I −

√
π(2`1 + 1)

`2(`2 + 1)
a`1B

(m)
`1,`2,TM

)
. (7.28)
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perfect plasma Drude dielectric

N (m)(E,E)`1,`2

∼ a`1
(
A

(m)
`1,`2,TE +B

(m)
`1,`2,TM

) `1 − `2 `1 − `2 `1 − `2 `1 − `2

N (m)(E,M)`1,`2

∼ a`1
(
C

(m)
`1,`2,TE +D

(m)
`1,`2,TM

) `1 − `2 + 1 `1 − `2 + 1 `1 − `2 + 1 `1 − `2 + 1

N (m)(M,E)`1,`2

∼ b`1
(
C

(m)
`1,`2,TM +D

(m)
`1,`2,TE

) `1 − `2 + 1 `1 − `2 + 1 `1 − `2 + 2 `1 − `2 + 3

N (m)(M,M)`1,`2

∼ b`1
(
A

(m)
`1,`2,TM +B

(m)
`1,`2,TE

) `1 − `2 `1 − `2 `1 − `2 + 2 `1 − `2 + 4

Table 8: Dominant power exponent in ξ̃ for the elements of the operator N (m) when ξ̃ goes to zero.

perfect plasma Drude dielectric

D(m)(E,E) = I −N (m)(E,E) O(1) O(1) O(1) O(1)

D(m)(E,M) = −N (m)(E,M) O(ξ̃) O(ξ̃) O(ξ̃) O(ξ̃)

D(m)(M,E) = −N (m)(M,E) O(ξ̃) O(ξ̃) O(ξ̃2) O(ξ̃3)

D(m)(M,M) = I −N (m)(M,M) O(1) O(1) 1 +O(ξ̃2) 1 +O(ξ̃4)

Table 9: Dominant power exponent in ξ̃ for the elements of the operator D(m) when ξ̃ goes to zero,
after a balancing transformation.
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7.6 Conclusion: the first Matsubara term and the high-temperature limit

We conclude on this low-frequency limit derivation with explicit expressions for the first Matsubara
term Φ(ξ̃0) = 2

∑′

m ln detD(m)(0). This term appears in the scattering formula as a contribution to
the Casimir free-energy at non-zero temperature, and is directly connected to the high-temperature
limit through:

FHT =
κBT

2
Φ(0) = kBT

′∑
m

ln detD(m)(0) .

Those explicit expressions will be of great interest, not only for the numerical evaluations of
Casimir effect at non-zero and high temperatures, but also for analytical derivations, such as the
long-distance regime studied in the next section. Moreover, the comparison between the different
models of reflection give a physical insight of what happens in terms of scattering at very low
frequencies in this geometry.
From Eqs.(7.27,7.28), we see that we only need to consider the two terms:√

π(2`1 + 1)

`2(`2 + 1)
a`1B

(m)
`1,`2,TM '

√
π(2`1 + 1)

`2(`2 + 1)

KB(`1, `2,m)(`1 + `2)!(
2ξ̃L̃

)`1+`2+1
a`1rTM

√
π(2`1 + 1)

`2(`2 + 1)
b`1B

(m)
`1,`2,TE '

√
π(2`1 + 1)

`2(`2 + 1)

KB(`1, `2,m)(`1 + `2)!(
2ξ̃L̃

)`1+`2+1
b`1rTE

where we can give an explicit expression for the coefficient KB(`1, `2,m) by:√
π(2`1 + 1)

`2(`2 + 1)
KB(`1, `2,m) =

(−1)`2

√
`1(2`1 + 1)

`2(2`2 + 1)

`2√
`1 + 1

√
`2 + 1

(2`2 + 1)!!(2`1 − 1)!!√
(`1 −m)!

√
(`1 +m)!

√
(`2 −m)!

√
(`2 +m)!

. (7.29)

The first term of Eq.(7.27) can then be simplified into the following determinant:

det

(
I −

√
π(2`1 + 1)

`2(`2 + 1)
a`1B

(m)
`1,`2,TM

)

= det

δ`1,`2 − (−ξ̃)`1−`2(
2L̃
)`1+`2+1

√
`2(`1 + 1)(2`1 + 1)

`1(`2 + 1)(2`2 + 1)

(2`2 + 1)!!

(2`1 + 1)!!

× (`1 + `2)!√
(`1 −m)!

√
(`1 +m)!

√
(`2 −m)!

√
(`2 +m)!



= det

δ`1,`2 − 1(
2L̃
)`1+`2+1

(`1 + `2)!√
(`1 −m)!

√
(`1 +m)!

√
(`2 −m)!

√
(`2 +m)!


= det

(
D(m)
a,TM(L̃)

)
, (7.30)
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where the lines `1 have been divided by (−ξ̃)
`1

(2`1+1)!!

√
(`1+1)(2`1+1)

`1
and the columns `2 have been

multiplied by (−ξ̃)
`2

(2`2+1)!!

√
(`2+1)(2`2+1)

`2
, leaving the determinant unchanged. The operator D(m)

a,TM(L̃)

is infinite-dimensional, but can be truncated to a maximum value `max for the indices `1 and `2. If
one chooses the minimum number `max = 1, as in the long-distance limit (L̃ � 1) studied in the
next section, the determinants of the obtained 1-dimensional matrices for the only possible values
m ∈ {0, 1} simplify to:

det
`max=1

(
D(0)
a,TM(L̃)

)
' 1− 1

4L̃3
det

`max=1

(
D(1)
a,TM(L̃)

)
' 1− 1

8L̃3
. (7.31)

The second term can be simplified in a similar way:

det

(
I −

√
π(2`1 + 1)

`2(`2 + 1)
b`1B

(m)
`1,`2,TE

)

= det

δ`1,`2 − (−ξ̃)`1−`2(
2L̃
)`1+`2+1

√
`2(`1 + 1)(2`1 + 1)

`1(`2 + 1)(2`2 + 1)

(2`2 + 1)!!

(2`1 + 1)!!

× `1
`1 + 1

(`1 + `2)!√
(`1 −m)!

√
(`1 +m)!

√
(`2 −m)!

√
(`2 +m)!



= det

δ`1,`2 − 1(
2L̃
)`1+`2+1

`1
`1 + 1

(`1 + `2)!√
(`1 −m)!

√
(`1 +m)!

√
(`2 −m)!

√
(`2 +m)!


= det

(
D(m)
b,TE(L̃)

)
(7.32)

which is very similar to expression (7.30), except for a factor `1
`1+1 . Again, with a truncation to

`max = 1, the determinants of the obtained 1-dimensional matrices for the only possible value for
m simplify to:

det
`max=1

(
D(0)
a,TM(L̃)

)
' 1− 1

8L̃3
det

`max=1

(
D(1)
a,TM(L̃)

)
' 1− 1

16L̃3
(7.33)

where the factor 2 with respect to Eq.(7.31) appear, because of the `1
`1+1 term.

7.6.1 Perfect mirrors

From Eq.(7.27), the determinants of the scattering operators D(m) for perfect mirrors at the limit
of low frequencies are given by:

det
(
D(m)

)
' det

(
I −

√
π(2`1 + 1)

`2(`2 + 1)
a`1B

(m)
`1,`2,TM

)
det

(
I −

√
π(2`1 + 1)

`2(`2 + 1)
b`1B

(m)
`1,`2,TE

)

which is just the product of the two derived expressions (7.30) and (7.32). Then the first Matsubara
term and the high-temperature limit (HT) of the Casimir free-energy write as a sum of the two
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contributions:

Φperf(0) = 2

′∑
m

ln detD(m) ' 2

′∑
m

[
ln det

(
D(m)
a,TM(L̃)

)
+ ln det

(
D(m)
b,TE(L̃)

)]
Fperf

HT =
kBT

2
Φ(0) ' kBT

′∑
m

[
ln det

(
D(m)
a,TM(L̃)

)
+ ln det

(
D(m)
b,TE(L̃)

)]
. (7.34)

If we additionally take the long-distance limit (LD) in the former expression, assuming L̃ � 1, we
can truncate the operators to the maximum value `max for the indices `1 and `2. Using truncated
expressions (7.31) and (7.33), we obtain the long-distance limit of the first Matsubara term Φperf

LD (0),
and the high-temperature, long-distance limit of the Casimir free-energy Fperf

HT,LD in the sphere-plane
configuration:

Φperf
LD (0) = 2

[
1

2
ln det
`max=1

(
D(0)
a,TM(L̃)

)
+ ln det

`max=1

(
D(1)
a,TM(L̃)

)
+

1

2
ln det
`max=1

(
D(0)
b,TE(L̃)

)
+ ln det

`max=1

(
D(1)
b,TE(L̃)

)]
= −3R3

4L3

Fperf
HT,LD = −3kBTR

3

8L3
. (7.35)

7.6.2 Drude model

For Drude model, because of the extinction of the coefficients rTE and b` at low frequencies, the
diagonal blocks N (m)(M,M) give a negligible contribution, as seen on the lower row of Tables 8
and 9. The determinants of the scattering operators D(m) then only involve one term:

det
(
D(m)

)
' det

(
I −

√
π(2`1 + 1)

`2(`2 + 1)
a`1B

(m)
`1,`2,TM

)

which is the first term (7.30) in the perfect mirrors case. It follows that the first Matsubara term
and the high temperature limit of the Casimir free-energy for Drude model write as:

ΦDrud(0) = 2

′∑
m

ln detD(m) ' 2

′∑
m

ln det
(
D(m)
a,TM(L̃)

)
FDrud

HT =
kBT

2
Φ(0) ' kBT

′∑
m

ln det
(
D(m)
a,TM(L̃)

)
. (7.36)

Interestingly enough, the obtained low-frequency expansion (7.36) is independent of the material
properties, such as its plasma wavelength and dissipation rate, that describe the optical response
of the objects. It only contains the geometric parameter L̃ = 1 + L

R and the multipolar indices
(`1, `2,m).

If we additionally take the long-distance limit (LD) in the former expression, assuming L̃ � 1,
we can truncate the operators to the maximum value `max for the indices `1 and `2. Using the
truncated expression (7.31), we obtain the long-distance limit of the first Matsubara term ΦDrud

LD (0),
and the high-temperature, long-distance limit of the Casimir free-energy FDrud

HT,LD in the sphere-plane
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configuration:

ΦDrud
LD (0) = 2

[
1

2
ln det
`max=1

(
D(0)
a,TM(L̃)

)
+ ln det

`max=1

(
D(1)
a,TM(L̃)

)]
= − R3

2L3

FDrud
HT,LD = −kBTR

3

4L3
(7.37)

which is 2
3 times the perfect mirrors result (7.35). While in the plane-plane the reduction factor of

the high-temperature limit with respect to the perfect case is a constant factor 2, in the considered
situation of a sphere and a plane it does not stand anymore. For large distance, the factor is 3

2 ,
and for intermediate distance L̃ 6� 1, the situation is more complex.

7.6.3 Plasma model

In the case of the loss-less plasma model for metals, the determinants of the scattering operators
D(m) at the limit of low frequencies are given by:

det
(
D(m)

)
' det

(
I −

√
π(2`1 + 1)

`2(`2 + 1)
a`1B

(m)
`1,`2,TM

)
det

(
I −

√
π(2`1 + 1)

`2(`2 + 1)
b`1B

(m)
`1,`2,TE

)
.

Because the coefficients a` and rTM have the same low-frequency expansion as for the perfect
mirrors and Drude model, the first term read det

(
D(m)
a,TM(L̃)

)
, like in those cited cases. However, for

the second term still contains an integration, because of the Fresnel coefficients, and an additional
factor from the expression (7.14) of the b` coefficient:

det

(
I −

√
π(2`1 + 1)

`2(`2 + 1)
b`1B

(m)
`1,`2,TE

)
=

det

δ`1,`2 − 1(
2L̃
)`1+`2+1

`1
`1 + 1

1√
(`1 −m)!

√
(`1 +m)!

√
(`2 −m)!

√
(`2 +m)!

×
(

1− 2`1 + 1

α

I`1+1/2(α)

I`1−1/2(α)

)∫ ∞
0

dt t`1+`2

√
1 + (2αL̃/t)2 − 1√
1 + (2αL̃/t)2 + 1

e−t

 , (7.38)

using the change of variable
[
t = 2L̃ξ̃ cos θ

]
and α = 2πR

λP
, which does not seem to be manageable

analytically.
When (R � λP ), as L̃ > 1 and t 6� 1 because of the exponential, the integral reduces to

(`1 + `2)!, and
(

1− 2`1+1
α

I`1+1/2(α)

I`1−1/2(α)

)
→ 1, as discussed after Eq.(7.14). It yields that for the first

Matsubara term of the plasma model in the (R� λP )-limit, we fully recover the perfect reflectors
expressions (7.34).

On the contrary, when (R� λP ), the factor
(

1− 2`1+1
α

I`1+1/2(α)

I`1−1/2(α)

)
vanishes, the contribution of

the second term (7.38) thus becomes negligible, and the Drude expressions (7.36) are recovered.
Some explicit results can be obtained in the large-distance limit (LD) when L̃ � 1, as the

integral in Eq.(7.38) simplifies into (`1 + `2)!. Then, truncating to a maximum value `max = 1 for
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the indices `1 and `2, the expression (7.38) becomes, for m ∈ {0, 1}:

det
`max=1

(
I −

√
π(2`1 + 1)

`2(`2 + 1)
b`1B

(0)
`1,`2,TE

)
= 1−

(
1−

3I3/2(α)

αI1/2(α)

)
1

8L̃3

det
`max=1

(
I −

√
π(2`1 + 1)

`2(`2 + 1)
b`1B

(1)
`1,`2,TE

)
= 1−

(
1−

3I3/2(α)

αI1/2(α)

)
1

16L̃3

which, together with the results for the first term (7.31), gives the long-distance limit of the first
Matsubara term Φplas

LD (0), and the corresponding long-distance (LD) and high-temperature (HT)
limit for the Casimir free-energy Fplas

HT,LD in the sphere-plane configuration:

Φplas
LD = 2

[
1

2
ln det
`max=1

(
D(0)
a,TM(L̃)

)
+ ln det

`max=1

(
D(1)
a,TM(L̃)

)
+

1

2
ln

(
1−

(
1−

3I3/2(α)

αI1/2(α)

)
1

8L̃3

)
+ ln

(
1−

(
1−

3I3/2(α)

αI1/2(α)

)
1

16L̃3

)]
= 2

[
−1

4

R3

L3
−
(

1−
3I3/2(α)

αI1/2(α)

)
1

8

R3

L3

]
= −3R3

4L3

(
1− cothα

α
+

1

α2

)
Fplas

HT,LD = −3kBTR
3

8L3

(
1− cothα

α
+

1

α2

)
(7.39)

where we used explicit expressions (8.4) (p.126) for the modified Bessel functions I3/2 and I1/2.
We remark that this result depends on the parameter α = 2π R

λP
, and thus on the material optical

properties.

7.6.4 Dielectrics

The determinants of the scattering operators D(m) for dielectrics, like the ones for Drude model,
only involve one term with a` and rTM at the low-frequency limit, because the other coefficients
become relatively small. The expression of this term is however different, because of the forms
(7.8) and (7.17), obtained for the Mie coefficient a` and the Fresnel coefficient rTM, respectively:

det
(
D(m)

)
' det

(
I −

√
π(2`1 + 1)

`2(`2 + 1)
a`1B

(m)
`1,`2,TM

)

= det

δ`1,`2 − 1(
2L̃
)`1+`2+1

(ε(0)− 1)2

(ε(0) + 1)
(
ε(0) + `1+1

`1

)

× (`1 + `2)!√
(`1 −m)!

√
(`1 +m)!

√
(`2 −m)!

√
(`2 +m)!


= det

(
D(m)

diel (L̃, ε(0))
)
. (7.40)
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It follows that the first Matsubara term and the high temperature limit of the Casimir free-energy
for Drude model write as:

Φ(0) = 2

′∑
m

ln detD(m) ' 2

′∑
m

ln det
(
D(m)

diel (L̃, ε(0))
)

Fdiel
HT =

kBT

2
Φ(0) ' kBT

′∑
m

ln det
(
D(m)

diel (L̃, ε(0))
)
. (7.41)

Surprisingly, when we take the high-reflectivity limit (ε(0)→∞) with a dielectric material, the
Drude result is recovered, as Eq.(7.40) then recovers the expression in (7.30), but not the perfect
mirrors one. It means that low-frequency and high-reflectivity limits do not commute for dielectrics.

If we additionally take the long-distance limit (LD) in the former expression, assuming L̃ � 1, we
can truncate the operators to the maximum value `max for the indices `1 and `2. Using a truncated
expression of (7.40), we obtain the long-distance limit of the first Matsubara term Φdiel

LD (0), and
the corresponding long-distance (LD) and high-temperature (HT) limit for the Casimir free-energy
Fdiel

HT,LD in the sphere-plane configuration:

Φdiel
LD (0) = 2

[
1

2
ln det
`max=1

(
D(0)

diel(L̃)
)

+ ln det
`max=1

(
D(1)

diel(L̃)
)]

= − R3

2L3

(ε(0)− 1)2

(ε(0) + 1)(ε(0) + 2)

Fdiel
HT,LD = −kBTR

3

4L3

(ε(0)− 1)2

(ε(0) + 1)(ε(0) + 2)
(7.42)

which is the same as for Drude mirrors, except for the ε(0)-dependent last factor.

7.6.5 Remarks

The former results have been obtained in the situation where the sphere and the plane were made
of the same material. It is also possible to obtain similar result for an hybrid situation, say with
a dielectric sphere and a Drude-modelled plane for example. The results are not presented here
because of the numerous possible combinations.

We checked the previously derived formulas for the (ξ̃ → 0)-limit of the integrand function Φ(ξ̃)
through comparison with numerical evaluations for decreasing values of the reduced frequency ξ̃. In
Fig. 38 is plotted the relative difference for the determinant as a function of the reduced frequency
ξ̃. Clearly the numerical results for decreasing frequency converge into the analytical result, until
the unavoidable round-off error (here around 10−16 for floats with double representation).

We then checked the fact that for Drude materials, the low-frequency limit of the integrand does
not depend on the material properties by studying the low-frequency convergence in numerical
evaluations to the analytic formula (7.36), for different set of parameters (λP , δ). In Fig. 39, we
illustrate this test by taking λ1

R = δ = 1. As expected, for the two sets of parameters describing
the material’s optical properties, the corresponding integrands functions both converge to the
analytical limit.
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Figure 38: Relative difference between the numerical evaluations and the (ξ̃ = 0)-analytical limit
(7.34), as a function of the reduced frequency ξ̃, in the case of perfectly reflecting mirrors.
Here the aspect ratio is L

R = 1, and the truncation is done at `max = 20.
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Figure 39: Relative difference between the numerical evaluations and the (ξ̃ = 0)-analytical limit
(7.36), as a function of the reduced frequency ξ̃, in the case of mirrors described by the
Drude model. Here the aspect ratio is L

R = 1, and the truncation is done at `max = 20.
The first set of parameter for the material are the usual ones for a micrometer gold
sphere (λPR = 0.1, δ = 4e− 3), the second set is taken arbitrarily to unity.
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8 LONG-DISTANCE LIMIT

8 Long-distance limit

In this section we study the Casimir effect in the plane-sphere geometry when the distance between
the sphere and the plane is very large, compared to the radius of the sphere. This region of
high values for the aspect ratio (LR � 1) can be understood as the small-sphere limit, or as the
large-distance limit. We have chosen to refer to the latter appellation, and in this section we will
write it indistinctly (L � R) or (L� R).

As discussed in Section 6.1.1 (p.81), a spherical mode with index ` � ξ̃ has an impact
parameter b = `R

ξ̃
� R, and corresponds to a ray that does not hit the sphere. It enabled us

to establish a proportionality between the truncation in the index `max we had to choose to get
sufficiently accurate results, with the inverse aspect ratio: the lower the aspect ratio L

R , the slower
the convergence of the truncated result to `max, as illustrated in Fig. 28 (p.82). Similarly, in the
long-distance limit L

R � 1, the convergence is very fast, and one only needs to consider modes
with ` = 1 to get the complete result. In this section, we will thus truncate all the operators to
`max = 1, which enables to obtain simple analytical formulas.
A first interest of analytical formulas in the long-distance regime will be to check the results

obtained from general numerical evaluation. The Proximity Force Approximation being a way to
check the results for small values of L

R , we will thereby be able to check both opposite regimes for
the aspect ratio. Besides, this formulas will be helpful to better understand the physical effects
that could appear because of the finite size of the sphere: with a very small sphere, those effects
should be enhanced and more universal. That will turn out to be especially the case with the
introduction of a non-zero temperature and of dissipation in the materials.
The section on the long-distance limit is organised as follows: in Section 8.1 we introduce

the dipolar-simple scattering approximation, which is valid in the (L � R)-limit, and apply it to
the scattering formula. The simple case of perfect mirrors is first studied in Section 8.2 for all
temperatures, then the expressions are adapted in Section 8.3 for loss-less metals described by
the plasma model and in Section 8.4 for dissipative metals described by the Drude model. The
case of dielectrics is lastly treated in Section 8.5.

8.1 The dipolar-simple scattering approximation

In general, because of the presence of the term e−2L̃ξ̃ cos θ < e−2L̃ξ̃ in each element of the scattering
matrix (5.60) (p.79), coming from the translations operators, all reduced frequencies such that
L̃ξ̃ � 1 will give a negligible contribution. The main contribution to the Casimir energy then
comes from reduced frequencies ξ̃ 6� R

L , which will be noted ξ̃ . R
L from now on.

In the particular case of the here studied long-distance limit, RL � 1 yields only frequencies such
that ξ̃ � 1 play an important role in the Casimir effect. We will thus make the hypothesis ξ̃ � 1
in this section. Nevertheless, the situation is slightly different from the low frequency expansion
studied in Section 7: indeed, the term (L̃ξ̃) was zero when the strict (ξ̃ → 0)-limit was considered,
whereas we have (L̃ξ̃) . 1 here. Another difference is that generally cos θ � 1 does not hold
anymore here, except when the first Matsubara term is considered. In this case one must first take
the strict (ξ̃ → 0)-limit from Section 7.6 (p.117), then extract a long-distance expansion.

In Section 7.1 (p.108), we have seen that the Mie coefficients of order ` scale as ξ̃2`+1 or even
higher orders for small values of the reduced frequency. It follows that the elements of matrices N
are very small, and the dominant elements are for `1 = `2 = 1, which corroborates the hypothesis
`max = 1. Using the development for the determinant around the identity matrix:

det(I + aX) = 1 + Tr(X)a+O
(
a2
)

(8.1)

where a is a real scalar with a � 1, we can write for a block of the scattering operator that
detD(m) ' 1 − TrM(m) = 1 − TrN (m). Then TrN (m) is dominated by the (`1 = `2 = 1)-terms,
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8.1 The dipolar-simple scattering approximation

which only arise for m = 0,±1. The integrand φ for the scattering formula then takes a simpler
form:

Φ(ξ̃) = 2

′∑
m

ln detD(m)
(
ξ̃
)
' 2

′∑
m

ln
(

1− Tr
[
M(m)

(
ξ̃
)])
' −2

′∑
m

Tr
[
M(m)

(
ξ̃
)]

' −
(
N (0)
EE(ξ̃)

)
(1,1)
−
(
N (0)
MM (ξ̃)

)
(1,1)
− 2

(
N (1)
EE(ξ̃)

)
(1,1)
− 2

(
N (1)
MM (ξ̃)

)
(1,1)

. (8.2)

This approximation can be understood as a double simplification in the scattering process: first
we discarded multiple scattering when we simplified ln det(I −N ) = Tr ln(I −N ) to Tr(−N ), as
it is equivalent to the simplification ln(I −N ) = −∑k≥1N k/k = −N by keeping only the first
term. Second we reduced the scattering on the sphere to a dipole approximation by only keeping
terms with ` = 1. Those two simplifications are physically reasonable in the (L � R)-regime,
as a smaller sphere yields a less-stable pseudo-cavity for the propagating fields, and its reflective
properties are close to the ones of a dipole. From the expression (5.60) (p.79) of the operator N ,
the four terms of Eq.(8.2) read:(

N (0)
EE(ξ̃)

)
1,1

=

√
3π

2
a1(ξ̃)B

(0)
1,1,TM(ξ̃)(

N (0)
MM (ξ̃)

)
1,1

=

√
3π

2
b1(ξ̃)B

(0)
1,1,TE(ξ̃)(

N (1)
EE(ξ̃)

)
1,1

=

√
3π

2
a1(ξ̃)

[
A

(1)
1,1,TE(ξ̃) +B

(1)
1,1,TM(ξ̃)

]
(
N (1)
MM (ξ̃)

)
1,1

=

√
3π

2
b1(ξ̃)

[
A

(1)
1,1,TM(ξ̃) +B

(1)
1,1,TE(ξ̃)

]
.

Those expressions only contain three A and B blocks, defined in Eqs.(5.55) (p.78). We recall their
expression for those involved:

B
(0)
1,1,p(ξ̃) =

∫ ∞
1

d cos θ d1,s
0 [dif] ∂θY s

1,0(θ) rp(ξ̃, θ) e
−2ξ̃L̃ cos θ

A
(1)
1,1,p(ξ̃) = −

∫ ∞
1

d cos θ

s(θ)
d1,s

1 [sum] Y s
1,1(θ) rp(ξ̃, θ) e

−2ξ̃L̃ cos θ

B
(1)
1,1,p(ξ̃) =

∫ ∞
1

d cos θ d1,s
1 [dif] ∂θY s

1,1(θ) rp(ξ̃, θ) e
−2ξ̃L̃ cos θ .

The finite rotation and spherical harmonics terms for ` = 1 read:

d1,s
0 [dif] = −

√
2s(θ) ∂θY

s
1,0(θ) =

√
3

4π
s(θ)

d1,s
1 [sum] = 1 Y s

1,1(θ) = −
√

3

8π
s(θ)

d1,s
1 [dif] = cos θ ∂θY

s
1,1(θ) = −

√
3

8π
cos θ .

and by incorporating those expressions in the A and B blocks, we obtain from Eq.(8.2) the
integrand ΦLD for the Casimir energy E and free-energy F :

ΦLD(ξ̃) =
3

2

∫ ∞
1

d cos θe−2ξ̃L̃ cos θ

×
[
a1(ξ̃)

(
rTM(2 cos2 θ − 1)− rTE

)
+ b1(ξ̃)

(
rTE(2 cos2 θ − 1)− rTM

)]
. (8.3)
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8 LONG-DISTANCE LIMIT

For the latter, we can obtain the explicit expression for ` = 1 without use of special functions,
thanks to the functions:

I1/2(x) =

√
2

πx
sinhx K1/2(x) =

√
π

2x
e−x

I3/2(x) =

√
2

πx

(
coshx− sinhx

x

)
K3/2(x) =

√
π

2x

(
1 +

1

x

)
e−x . (8.4)

Incorporating these functions in their expression (5.38) (p.72), we obtain the explicit forms:

a1(ξ̃) =
sinh(nξ̃) cosh(ξ̃)

(
ξ̃ + n2(ξ̃3 − ξ̃)

)
+ sinh(ξ̃) cosh(nξ̃)

(
nξ̃ − n3(ξ̃ + ξ̃3)

)
cosh(nξ̃)

(
n3(ξ̃ + ξ̃2 + ξ̃3)− n(ξ̃ + ξ̃2)

) · · ·

· · ·
+ sinh(nξ̃) sinh(ξ̃)

(
n2 − 1

)
+ cosh(nξ̃) cosh(ξ̃)

(
ξ̃2(n2 − n)

)
+ sinh(nξ̃)

(
1 + ξ̃ + n2(−1− ξ̃ + ξ̃3)

) eξ̃

b1(ξ̃) =
n2ξ̃ sinh(nξ̃) cosh(ξ̃)− nξ̃ sinh(ξ̃) cosh(nξ̃)− (n2 − 1) sinh(nξ̃) sinh(ξ̃)

nξ̃ cosh(nξ̃) + sinh(nξ̃)
(
n2(1 + ξ̃)− 1

) eξ̃ (8.5)

and for perfect mirrors, they simplify to:

a1(ξ̃) =
ξ̃ cosh(ξ̃)− sinh(ξ̃)− ξ̃2 sinh(ξ̃)

1 + ξ̃ + ξ̃2
eξ̃ b1(ξ̃) =

ξ̃ cosh(ξ̃)− sinh(ξ̃)

1 + ξ̃
eξ̃ . (8.6)

The general formula (8.3) is valid for any materials, as soon as the sphere is far from the plane,
and can be used to obtain the Casimir energy and free-energy. For specific materials, it is possible
to go further in the analytical derivation, by specifying the Fresnel and Mie coefficients. This
dependance on the material properties is visible in Eq.(8.5), where for taking the low-ξ̃ expansion
one needs to specify the dependance of the refractive index n with respect to ξ̃.
We begin with the simple case of perfect mirrors, in order to obtain from (8.3) explicit and

simple expressions for the Casimir energy E and free-energy F in the long-distance limit. Then
the cases of metals with plasma or Drude models, and of dielectrics, will be discussed from the
results with perfect mirrors.

8.2 Perfect mirrors

For perfectly reflecting mirrors, the Fresnel coefficients are simply rTE = −1, rTM = 1, as discussed
in Section 5.2.1 (p.70), and the Mie coefficients are given by (8.6). We can now use the fact that
ξ̃ � 1 to obtain the expansions:

a1(ξ̃) = −2

3
ξ̃3 +

1

5
ξ̃5 − 4

9
ξ̃6 +

1

7
ξ̃7 +O

(
ξ̃8
)

b1(ξ̃) =
1

3
ξ̃3 +

1

5
ξ̃5 − 1

9
ξ̃6 +

1

7
ξ̃7 +O

(
ξ̃8
)

(8.7)

where we give a few orders for illustrative purpose, but only keep the dominant term in ξ̃3.
Incorporating those in Eq.(8.3) for a small but non-zero reduced frequency ξ̃, we get the integrand:

Φperf
LD (ξ̃) = −3ξ̃3

∫ ∞
1

d cos θ cos2 θ e−2ξ̃L̃ cos θ

= −3

4

1

L̃3

(
1 + 2ξ̃L̃+ 2

(
ξ̃L̃
)2
)
e−2ξ̃L̃ (8.8)
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8.2 Perfect mirrors

The first Matsubara term ξ̃0 = 0 is obtained by first taking the (ξ̃ → 0)-limit of the general
integrand Φ, then using the long-distance limit, as described in Eqs.(7.35) (p.119) and we recall its
expression in the case of perfect mirrors:

Φperf
LD (0) = −3R3

4L3
. (8.9)

We remark that this corresponds to the (ξ̃ → 0)-limit of (8.8). This result was not obvious and is
equivalent to say that the two limits ξ̃ → 0 and LR →∞ do commute. In the following, we will
then use the expression (8.8) for the intergand over the whole range of frequencies ξ̃ ≤ 0, including
the zero frequency.

• In the case of low temperatures (L� λT ), the Matsubara sum converges to the continuous
integral of the (T = 0)-case. We can then use the integral (a > 0):∫ ∞

0
dx
(
1 + 2ax+ 2a2x2

)
e−2ax =

3

2a

with a = L̃ = L
R , to finally obtain the long-distance expansion of the Casimir energy:

Eperf
LD =

~c
2πR

∫ ∞
0

dξ̃Φperf
LD (ξ̃) = −9~cR3

16πL4
; (R� L� λT ) (8.10)

which is in agreement with [228, eq.(12)].

• In the high-temperature limit (L� λT ), where only the first Matsubara frequency ξ̃0 is kept
in the Matsubara sum, we already derived the result (7.35) (p.119) in the previous section,
which we rewrite as:

Fperf
LD,HT = −3kBTR

3

8L3
= − 3~cR3

8λTL3
; (R, λT � L) (8.11)

This last result is more realistic in the long-distance regime, as for a fixed temperature, we
always get to the (L � λT )-regime when increasing the distance. It is not always possible,
in contrast, to have in practice an intermediate regime of distances (R� L� λT ) when R
and λT differ by only a few orders of magnitude.

We remark that the high-temperature free-energy (8.11) is linear with T and does not contain
anymore ~. This feature is always fulfilled in the high-temperature regime, regardless of the
aspect ratio L

R , thanks to the reduction of the Matsubara sum for the scattering formula to
kBT

2 Φ(0). Physically, this is due to the fact that in the high-temperature regime thermal
fluctuations dominate the quantum ones, the Casimir is then a purely classical effect, and as
thermal fluctuations are proportional to the temperature, so is the Casimir effect.

An other observation is that we lose an order in L in the decaying of the free-energy: while
the (T = 0)-expression in (8.10) had a L−4-decay at large separation, the high-temperature
limit has a L−3-decay. The introduction of the thermal length λT enables the expression to
keep the dimension of an energy.

• For the non-zero temperature case, using the Matsubara summation (3.4) (p.48) for the
long-distance expansion of the integrand (8.8), we obtain the following series:

Fperf
LD = −3kBTR

3

4L3

′∑
n

(
1 + 2(ξ̃nL̃) + 2(ξ̃nL̃)2

)
e−2ξ̃nL̃
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8 LONG-DISTANCE LIMIT

with ξ̃nL̃ = n2πL
λT

= nν. The parameter ν measures the influence of temperature on the
Casimir effect: for very low values (ν � 1) the discrete sum converges to the integral and
the Casimir free-energy to the (T = 0)-energy, while for large values (ν � 1) we enter the
high-temperature regime studied above.

Prop. 14

φ(ν) =

′∑
n

(
1 + 2νn+ 2ν2n2

)
e−2νn

=
1 + e−2ν(−1 + 4ν + 4ν2) + e−4ν(−1− 4ν + 4ν2) + e−6ν

2(1− e−2ν)3
(8.12)

=
ν sinh ν + cosh ν

(
ν2 + sinh2 ν

)
2 sinh3 ν

(8.13)

(For proof, see Appendix A.8 p.217)

Then the long-distance expansion of the Casimir free-energy Fperf
LD for perfect mirrors, valid

for any temperature T , reads:

Fperf
LD = − 3~cR3

4λTL3
φ

(
2πL
λT

)
; (L � R) (8.14)

where ν = 2πL
λT

, and φ(ν) can be expressed by (8.12) or (8.13). We remark that this result is
very general, because it contains the low-temperature result (8.10) and the high-temperature
result (8.11), as limiting cases:

φ(ν) ∼ 3

2ν
when ν � 1 φ(ν) ∼ 1

2
when ν � 1

At low temperatures, with a low-ξ̃ expansion of the function φ, we can go further in the
low-temperature expansion of the free-energy:

φ(ν) =
3

2
ν−1 − 1

90
ν3 +

2

315
ν5 − 1

630
ν7 +O

(
ν9
)

Fperf
LD = −9~cR3

16πL4

(
2

3
νφ(ν)

)
= −9~cR3

16πL4

[
1− 1

135

(
2πL
λT

)4

+
4

945

(
2πL
λT

)6

− 1

945

(
2πL
λT

)8

+O
(( L

λT

)10
)]
(8.15)

where the leading order expansion gives back (8.10). The following order terms allow to
write the difference between the free-energy and the (T = 0)-energy for low temperatures:

Fperf
LD − E

perf
LD =

~cπ3R3

45λ4
T

[
1− 144π2L2

21λ2
T

+
144π4L4

21λ4
T

+O
(( L

λT

)6
)]

. (8.16)

The first term in this expansion is in agreement with [229, eq.(83)].

By taking the derivative of all former expressions for the Casimir free-energy with respect to the
distance L or temperature T , it is possible to obtain similar results for the Casimir force F , force
gradient G, and entropy S, summed up in Table 10. Let us observe that the first correction in
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8.2 Perfect mirrors

T T = 0 high temperature

F − 3~cR3

4λTL3
φ (ν) −9~cR3

16πL4
− 3~cR3

8λTL3

F − 3~cR3

4λTL4

(
3φ(ν)− νφ′(ν)

)
−9~cR3

4πL5
− 9~cR3

8λTL4

G − 3~cR3

4λTL5

(
12φ(ν)− 6νφ′(ν) + ν2φ′′(ν)

)
−45~cR3

4πL6
− 9~cR3

2λTL5

S 3kBR
3

4L3

(
φ(ν) + νφ′(ν)

)
0

3kBR
3

8L3

Table 10: Summary of long-distance expansions for the Casimir quantities with perfect mirrors.

(8.15) is L-independent, and will not appear in F , nor in G. The derivatives of φ have the explicit
expressions:

φ′(ν) = −4ν2
(
e−2ν + 4e−4ν + e−6ν

)
(1− e−2ν)4

(8.17)

φ′′(ν) = −8ν
(
e−2ν(−1 + ν) + e−4ν(−3 + 11ν) + e−6ν(3 + 11ν) + e−8ν(1 + ν)

)
(1− e−2ν)5

(8.18)

with the asymptotic expansions:

φ′(ν) ∼ − 3

2ν2
when ν � 1 φ′(ν) ∼ −4νe−2ν when ν � 1

φ′′(ν) ∼ 3

ν3
when ν � 1 φ′′(ν) ∼ −8ν2e−2ν when ν � 1

For future analysis, we define the thermal factor ϑX = X(T )
X(0) to measure the effect of temperature

on the Casimir interaction. Their long-distance limit for X = F , F,G is then, from Table 10:

ϑF =
2

3
νφ(ν)

ϑF =
ν

2
φ(ν)− ν2

6
φ′(ν)

ϑG =
2ν

5
φ(ν)− ν2

5
φ′(ν) +

ν3

30
φ′′(ν) . (8.19)

We can also define a thermal factor for the entropy, but with respect to the high-temperature case
which is non-zero:

ϑS =
S(T )

S(T →∞)
= 2

(
φ(ν) + νφ′(ν)

)
(8.20)

Those four thermal factors are presented in Fig. 40, as functions of the thermal parameter
ν = 2π LλT . We observe that all curves have a non-monotonic behaviour: they decrease to a
minimum before being increasing again for large values of ν. The positions and values of the
minima are given in Table 11. The ϑG-curve has a specificity: it first slightly increases for very
small values of ν, to reach a maximum before going down to its minimum value.

By analysing the low-ν expansions of φ and its derivatives, we can obtain the low-temperature
expansions for the thermal factors:

ϑF = 1− 1

135
ν4 +

4

945
ν6 − 1

945
ν8 +O

(
ν10
)

ϑF = 1− 2

945
ν6 +

1

945
ν8 +O

(
ν10
)

ϑG = 1 +
2

4725
ν6 − 1

1975
ν8 +O

(
ν10
)

ϑS = − 4

45
ν3 +

8

105
ν5 − 8

315
ν7 +O

(
ν9
)

(8.21)
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Figure 40: Thermal factors ϑF , ϑF , ϑG, and ϑS as functions of ν = 2πL
λT

.

ϑF ϑF ϑG ϑS

νmin 1.49 2.53 3.42 1.07

ϑ(νmin) 0.9919 0.9694 0.9445 -0.0339

Table 11: Minimum position and value for the thermal factors ϑF , ϑF , ϑG, and ϑS .
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8.3 Metallic scatterers modelled with the plasma model

and so can we for the high-temperature expansions:

ϑF '
ν

3
ϑF '

ν

4
ϑG '

ν

5
ϑS ' 1 (8.22)

8.3 Metallic scatterers modelled with the plasma model

We now consider the case of metallic mirrors, modelled by a loss-less plasma model. This description
is fully contained in the dielectric function, introduced in Section 2.2 (p.39):

εplas(ξ̃) = 1 +
α2

ξ̃2
with α = 2π

R

λP

and here we aim at expressing the integrand in (8.3) more simply, and derive the corresponding
Casimir free-energy. We have observed in Section 7 that the parameters n =

√
ε and nξ̃ played a

significant role when taking asymptotic expressions for low frequencies, and could lead to different
expansions for the Fresnel and Mie coefficients.
Here we will only consider situations where R 6� λP (or equivalently R & λP ), as the plasma

(and Drude) model are bad description of the movement of electrons for R� λP , a situation where
they should rather be confined in the sphere, as discussed in the end of Section 2.2 (p.39). This
restriction also writes α 6� 1, and together with the long distance limit L � R, it yields (L � λP ).
We first consider non-zero frequencies, the first Matsubara term will be derived from Section

7.6 (p.117) separately, as in the previous case of perfect mirrors. From the fact that the main
contribution to the energy for the integrand comes from frequencies scaling as ξ̃ . R

L , we have
α = 2πR

λP
= 2πL

λP
R
L � R

L thus α� ξ̃. It entails that the dielectric function ε takes very large values,
and that the second important parameter (nξ̃) is finite:

εplas − 1 =
α2

ξ̃2
� 1 nξ̃ =

√
εplasξ̃ ' α .

As cos θ 6� 1 (see discussion at the beginning of Section 8 p.124) , ε
plas−1
cos2 θ

� 1 and the Fresnel
coefficients are the same as in the perfect reflectors case: rTE = −1 and rTM = 1. The Mie
coefficients are described by (8.5) (p.126), and in order to get properly their expansion for small ξ̃,
we replace the terms nξ̃ by α that remain finite, and replace n by α

ξ̃
. When doing so, we obtain

the following expansion:

a1(ξ̃) = −2

3
ξ̃3 +

α(α2 − 5) cosh(α) + (5 + 4α2) sinh(α)

5α2(α cosh(α)− sinh(α))
ξ̃5 − 4

9
ξ̃6 +O

(
ξ̃7
)

b1(ξ̃) =

(
1

3
+

1

α2
− cothα

α

)
ξ̃3 +

α(5 + 2α2)− 5(2α2 − 3) coth(α) + 15α coth(α)2

10α3
ξ̃5

−
(

1

3
+

1

α2
− cothα

α

)2

ξ̃6 +O
(
ξ̃7
)

(8.23)

Incorporating the leading order, proportional to ξ̃3, together with the former Fresnel coefficients,
in Eq.(8.3), we get the long-distance expansion of the integrand Φplas

LD (ξ̃) for non-zero frequencies:

Φplas
LD (ξ̃) = −3ξ̃3

(
1 +

1

α2
− cothα

α

)∫ ∞
1

d cos θ cos2 θ e−2ξ̃L̃ cos θ

= −3

4

1

L̃3

(
1 +

1

α2
− cothα

α

)(
1 + 2ξ̃L̃+ 2

(
ξ̃L̃
)2
)
e−2ξ̃L̃ (8.24)

which is the same as (8.8) multiplied by the function f(α) = 1 + 1
α2 − cothα

α .
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8 LONG-DISTANCE LIMIT

The first Matsubara term (ξ̃ = 0) has been derived in Eq.(7.39), and read:

Φplas
LD (0) = −3

4

R3

L3
f(α) (8.25)

which is again the same as the perfect mirrors result (8.9), multiplied by the factor f(α). Moreover,
it can also be obtained by taking the continuous (ξ̃ → 0)-limit in the non-zero frequency expression
(8.24), which validity can be extended for any ξ̃ ≥ 0.

It follows that all results previously derived for the perfect mirrors can be adapted to the plasma
case with a multiplication by f(α) = 1 + 1

α2 − cothα
α . This factor that compares the radius R of

the sphere with the plasma length λP is presented in Fig. 41 as a function of α. The function
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Figure 41: Function f(α) =
Fplas

LD

Fperf
LD

= 1 + 1
α2 − cothα

α as a function of α = 2π R
λP

, valid for any

temperatures at the large-distance limit (L � R).

f appears to be a monotonically increasing function, from 2
3 to 1. For a large highly-reflecting

sphere (λP � R), α� 1 and we find f(α) ' 1, meaning that the perfect mirrors case is strictly
recovered. In the plane-plane case, this recovery happens when (λP � L) only. The additional
condition (λP � R) in the sphere-plane configuration is therefore a new result. Here we observe a
very important feature of the plane-sphere geometry that comes from the finite size of the sphere:
the perfectly reflecting limit for the Casimir effect is obtained when λP is small not only compared
to L, to get perfect reflection on the plane, but also compared to R, to obtain perfect reflection on
the sphere. The ratio f(α) comes from the form of the magnetic Mie coefficient b1 and will reveal
very fundamental for this geometry.

For a small poorly-reflecting sphere12 (R � λP ), α � 1 and the function f decreases to a
minimum value 2

3 for α→ 0.

8.4 Metallic scatterers modelled with the Drude model

We now consider the Drude model that includes dissipation in the description of the materials.
The dielectric function εDrud(ξ̃), introduced in Section 2.3 (p.41), is such that

εDrud − 1 =
1

(ξ̃/α)2 + δξ̃/α
, with α =

2πR

λP
and δ =

λP
λγ

.

12Let us repeat that this case is however out of scope for metallic spheres, as the confinement of electrons inside the
sphere is not modelled correctly by the permittivity function.
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8.4 Metallic scatterers modelled with the Drude model

Again, we will restrict ourselves to the situation where R 6� λP for the optical properties of the
metal to be well described by a Drude model, yielding together with (L � R) that (L � λP ).
We first consider the special case

(
L � R,

λ2P
λγ
,
R2λγ
λ2P

)
by making two additional long-distance

assumptions:

(HYP1) : L � λ2
P

λγ
(HYP2) : L � R2λγ

λ2
P

(8.26)

and from (HYP2), together with R 6� λP , we get (L � λγ). It is reasonable to do such assumptions,
as we are interested in the long-distance regime, and we can take L as large as we want. The first
assumption (HYP1) L � (δλP ) is easily checked for usual metals, as δ = λP

λγ
is generally small

(see Table 1 p.42). But the second (HYP2) L �
(
R R
λP

1
δ

)
is more restrictive, as R

λP
& 1 and 1

δ is
large.

We first only consider non-zero frequencies, the first Matsubara term ξ̃0 = 0 will be derived from
Section 7.6 (p.117) later on. The denominator in ε− 1 contains the terms ξ̃

α = λP ξ̃
2πR .

λP
2πL � 1,

and δξ̃
α =

λ2P
2πRλγ

ξ̃ . λ2P
2πλγL � 1 from (HYP1). Finally ε− 1� 1, and the Fresnel coefficients are

again rTE = −1 and rTM = 1, like in the case of perfect mirrors.
We now study the parameter:

nξ̃ =
√
εDrud ξ̃ '

√
εDrud − 1 ξ̃ =

ξ̃√(
ξ̃
α

)2
+ δ ξ̃α

=
α√

1 + αδ
ξ̃

'

√
αξ̃

δ

where the last expression comes from the fact that using (L � λγ), we have in the denominator
αδ
ξ̃

= 2πR
λγ

1
ξ̃
& 2πL

λγ
� 1. Then, using (HYP2), we can write αξ̃

δ =
2πRλγ
λ2p

ξ̃ . 2πR2λγ
λ2PL

� 1, and

finally nξ̃ � 1. From the Mie coefficients in Eq.(8.5) (p.126), we take an expansion for small ξ̃, by

replacing
(
nξ̃ →

√
αξ̃
δ

)
and

(
n→

√
α
δξ̃

)
. Doing so, we get the following expansions:

a1(ξ̃) = −2

3
ξ̃3 + 2

δ

α
ξ̃4 +

(
2

5
− 4

(
δ

α

)2
)
ξ̃5 +O

(
ξ̃6
)

b1(ξ̃) =
1

45

α

δ
ξ̃4 +

(
− 2

945

(α
δ

)2
− 1

45

)
ξ̃5 +

(
1

4725

(α
δ

)3
+

1
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α

δ

)
ξ̃6 +O

(
ξ̃7
)

(8.27)

where we clearly see that we need δξ̃
α � 1 thanks to (HYP1) for a1, and αξ̃

δ � 1 thanks to (HYP2)
for b1 to consider these expressions as expansions.
In the following we will only keep the dominant term for the a1-coefficient, and consider the

dominant term of the b1-coefficient to be negligible because αξ̃
δ � 1. Incorporating the dominant

term of the a1-coefficient with the Fresnel coefficients in Eq.(8.3) (p.125), we get the long-distance
expansion of the integrand ΦDrud

LD (ξ̃) for non-zero frequencies::

ΦDrud
LD (ξ̃) = −2ξ̃3

∫ ∞
1

d cos θ cos2 θ e−2ξ̃L̃ cos θ

= −1

2

1

L̃3

(
1 + 2ξ̃L̃+ 2

(
ξ̃L̃
)2
)
e−2ξ̃L̃ (8.28)

which is the same as the perfect mirrors result (8.8) (p.126), multiplied by the factor 2
3 . The

first-Matsubara term has been obtained in Eq.(7.37) (p.120) and read:

ΦDrud
LD (0) = − R3

2L3
(8.29)
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8 LONG-DISTANCE LIMIT

which is again the same as the perfect mirrors result (8.9) (p.127), multiplied by the factor 2
3 . This

result can also be obtained as the (ξ̃ → 0)-limit of the integrand (8.28), which is thus valid for any
frequency ξ̃ ≥ 0.

From Eq.(8.28) it follows that all results previously derived for the perfect mirrors can be adapted
to the Drude case through a multiplication by 2

3 . We observe that this result does not depend13

on the ratio R
λP

, unlike the plasma case. The long-distance behaviour is here more universal with
the inclusion of dissipation, than for the lossless model.
If we now consider a more general situation where we remove the former assumptions (HYP1)

and (HYP2), the situation becomes more complicated, as we cannot say anymore (in the general
case) that (εDrud − 1) is a big number. It is then not possible to derive a simple expression for
the integrand Φ(ξ̃) as in the previous case, a simple example being the expansion of the Fresnel
coefficients. It is however still possible to use the zero-frequency limit (8.29), because it does not
contain any dependance neither on λP nor on λγ , to get the high-temperature limit (L� λT ) for
the free-energy, as derived in Eq.(7.37) (p.120):

FDrud
LD,HT = − ~cR3

4λTL3
; (L � λT , R) . (8.30)

8.5 Dielectric scatterers

We now consider the Casimir effect between two dielectric materials, whose dielectric function
εdiel(ıξ) remains finite at any frequency ξ̃ ≥ 0 and converges to a finite value ε(0) in the (ξ̃ → 0)-
limit. The dielectric function is thus never a big number, and εdiel − 1 6� 1. While it is possible to
expand the Mie coefficients with a finite value for n, it is not for the Fresnel coefficients. It is then
not possible to get simple expressions for the long-distance regime, except for the first Matsubara
term, which has been derived in Eq.(7.42) (p.122) and leads to the high-temperature free-energy:

Fdiel
HT,LD = − ~cR3

4λTL3

(ε(0)− 1)2

(ε(0) + 1)(ε(0) + 2)
. (8.31)

13Apart from the initial assumption that R 6� λP .
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Part IV.
Results at zero temperature
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The quantum fluctuations of the vacuum, responsible for the Casimir effect, can be separated in
two parts: the zero-point energy fluctuations, and the thermal ones. The zero temperature case is
then an idealization of the situation, that allows to study the purely quantum part of the Casimir
effect, by considering only the contribution of quantum fluctuations.
Although not realistic for objects separated by a distance L & 1µm, for which the thermal

contribution to the Casimir free-energy is important, this removal is less determinant for the case
where the objects are only separated by a few hundreds of nanometers or less. This is especially
true for materials modeled by perfectly reflecting mirrors or non-dissipative metals. For dissipative
metals on the other hand, an ambiant temperature of 300K can already have an influence on the
Casimir effect for L & 100 nm, as seen in Fig. 23 (p.51).
This zero-temperature case is a first step in the complete treatment, and will allow a simpler

and clearer study of the influence of geometry and finite conductivity in the material on the
Casimir effect. We will thus observe carefully how the exact treatment of the geometry compares
to approximations, for various materials. This section is organised as follows: we first recall in
Section 9 some of the previous works done to measure the deviation of the results obtained
through the Proximity Force Approximation (PFA) from the exact quantities. We then study
quickly in Section 10 the simple case where the sphere and the plane are perfectly reflecting all
frequencies. The case of metallic reflectors is then treated in Section 11, with a special care given
on the correlations between the effects of finite conductivity and geometry. Finally, in Section 12,
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8 LONG-DISTANCE LIMIT

we compare the exact results with approximations methods based on the Casimir-Polder potential,
with the example of a metallic plate and a dielectric sphere.
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9 Beyond-PFA computations in the literature

The Proximity Force Approximation (PFA), introduced in Section 4 (p.55), has been used for
years to obtain theoretical predictions for the Casimir force in the sphere-plane configuration,
mostly in its simplest form FPFA(L,R) = 2πREPP(L)/A, where R is the radius of the sphere, L
the distance between the surfaces of the two objects, and EPP/A the Casimir energy per unit area
for two planes separated by a distance L. The approximation has been shown to be exact [149] in
the no-curvature limit

(
L
R → 0

)
, for perfect reflectors at zero temperature.

However, the two configurations differ in some fundamental properties: first the sphere is an
object with a finite size, and creates with the plane a finite cavity. This is different from the
plane-plane configuration, for which one must consider quantities per unit area, as the two objects
are infinite in the x and y-directions. This finite size can also create resonance effects inside the
sphere for some value of the frequency if the reflection is imperfect. Second the surface of the
sphere is curved, which induces a dispersion in the scattering of light and affects resonance effects
for surface waves. Finally when replacing a plane by a sphere we lose the translational invariances,
and the two polarizations of the electromagnetic modes become coupled to each other in the
scattering process. We may thus expect some coupling effects that are present neither with the
plane-plane configuration, nor with the cylinder-plane configuration.
Moreover, the Proximity Force Approximation has for major drawback that it is difficult to

estimate the difference between the approximated result and the exact one for small values of
L
R . Unlike methods such as perturbation approximations or finite elements methods, one cannot
say from the principles of the method if the error made by the approximation is linear

(
O
(
L
R

))
,

quadratic or else; and even less what the coefficient of such an order would be.
We introduce in Section 9.1 the linear correction coefficient β, and present some of the

works done in the past to try and estimate β in the sphere-plane configuration with beyond-PFA
techniques, first by considering separately the two electromagnetic polarizations, which we will call
a scalar approach in Section 9.2, then with an electromagnetic treatment in Section 9.3. We
conclude in Section 9.4 by mentioning an experimental work devoted to estimate this coefficient
β.

9.1 Ways to measure the accuracy of PFA

For the last ten years, great effort has been put to try to master the error made by the Proximity
Force Approximation with the help of ’beyond-PFA’ methods. Their goal is to estimate how results
obtained from PFA differ from exact ones when the curvature parameter L

R increases from 0, and
their conclusions can be expressed in two ways: the first is a prescription of a maximum value(
L
R

)
max

if one aims at a precision of 1% or 0.1%, the second possibility, more universal, is to write
the Casimir energy E normalized by the PFA result EPFA as a first order Taylor expansion in L

R
for small values of this parameter, as presented in Section 4.3.2 (p.58):

ρE =
E

EPFA
= 1 + βE

L

R
+O

((
L

R

)2
)

(9.1)

where βE is the first order coefficient of the beyond-PFA correction for the Casimir energy. In the
linear regime, where one assumes the former first order expansion correct, those two indicators are
related by: ∆E = |βE |

(
L
R

)
max

, where ∆E = |ρE − 1| is the accuracy (or relative difference) limit
one fixes.
Similar tools to measure the accuracy of PFA can be developed for the force F (resp. for the

force gradient G), and the Taylor expansion of ρF (resp. ρG) has a first order coefficient βF (resp.
βG). The coefficients β are related through the energy and its derivatives in the plane-plane case,
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9 BEYOND-PFA COMPUTATIONS IN THE LITERATURE

as derived in Section 4.3.2 (p.58), and for perfect mirrors at zero temperature their relations
take the simpler form:

βF = βE

(
1− DPP

LEPP

)
=

1

2
βE for perfect mirrors at T = 0 (9.2)

βG = βF

(
1− EPP

LFPP

)
=

2

3
βF for perfect mirrors at T = 0 . (9.3)

9.2 Scalar results for perfect mirrors

In the geometry of an infinite cylinder of radius R0, parallel to an infinite plane and at a
surface-surface distance L, the electromagnetic field can be decomposed in two uncoupled scalar
fields, obeying Dirichlet or Neumann boundary conditions on the objects’ surfaces, thanks to the
translational invariance. An analytic expansion for the energy per unit length when the cylinder is
close to the plane is derived in [230] using a path integral approach and gives:

Ecyl

u.l.
= − ~cπ2

√
R0

960
√

2L5/2

[
1 +

(
7

36
− 20

3π2

)
L

R0
+O

((
L

R0

)2
)]

(9.4)

where the term outside the brackets is the PFA result, and βcyl
E =

(
7
36 − 20

3π2

)
' −0.481.

Several studies have been aiming at getting the same kind of result in the sphere-plane geometry,
and were thus in the beginning only devoted to the study of a scalar field. A first quantitative
beyond-PFA analysis that studied the effect of curvature is contained in the results of the analytical
study [149], where a semiclassical expression for the Casimir energy between two very close spheres
(L� R1, R2) is derived. The sphere-plane case is obtained when taking one of the radii infinite,
which transforms [149, Eq.(3.20)] into the following expression:

E[149] = − ~c
8πL

∞∑
n=1

1

n2 sinh2(nα)
with α =

√
1 +

L

R
−
√
L

R
. (9.5)

Keeping only the first order term in the expansion of the denominator n2 sinh2(nα) for small
values of L

R , one gets n4 L
R , which, after summation over n, gives the PFA result EPFA = −~cπ3R

720L2 .
A next-to-leading order expansion of the denominator gives n4 L

R

(
1 + (n2 − 1) L

3R

)
, and yields a

beyond-PFA parameter14:

E[149]

EPFA
'

R
L ζ(4)− 1

3ζ(2) + 1
3ζ(4)

R
L ζ(4)

= 1 +

(
1

3
− 5

π2

)
L

R
(9.6)

where ζ(s) =
∑∞

n=1 n
−s is the Riemann zeta function, and β[149]

E =
(

1
3 − 5

π2

)
' −0.173.

A first numerical approach is [156], where worldline numerics are used with fluctuating scalar
fields obeying Dirichlet boundary conditions, in order to observe the effect of curvature, and to
assess the range of validity of the PFA results. The conclusion is that for L

R & 0.2, "curvature
effects are not properly taken into account", and a prescription for a maximal curvature parameter(
L
R

)
max

= 0.02 is given, if one aims at an accuracy at the percent level. The authors also pose the
problem of the incorrect power laws in L and R in the PFA result: the two possible forms, R

L2

for a ’plane-based’ PFA and R2

L3 for a ’sphere-based’ PFA, both differ from the form R3

L4 predicted
at large separations [232]. Those two formulations for the Proximity Force Approximation are
presented in Appendix B.1(p.219).
14This derivation is not in the cited article, but appears in [231], and the result is given in order to compare the

first-order correction beyond PFA with other techniques.
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9.2 Scalar results for perfect mirrors

A more detailed analysis of the beyond-PFA effects on the sphere-plane geometry with Dirichlet
boundary conditions is done with the same technique in [157, 158]. The 1%-accuracy prescription
on
(
L
R

)
max

becomes 0.00755 and the 0.1%-accuracy prescription on
(
L
R

)
max

is 7.3 10−4. The
authors fit their numerical data in the short-distance regime to get a beyond-PFA parameter that
is centered around the curve:

E[157]

EPFA
= 1 + 0.35

L

R
− 1.92

(
L

R

)2

. (9.7)

The first order correction coefficient is obtained through forcing the fit to be linear, and the authors
obtain the value

β
[157]
E = 0.33± 0.06 . (9.8)

It is somewhat surprising that this result is positive, as we expect PFA to overestimate the Casimir
effect from a physical point of view. This mainly comes from the fact that only Dirichlet boundary
conditions are considered, as we will see in the rest of this section. The authors already emphasized
that "Casimir energies for the Dirichlet scalar should generally not be taken as an estimate for those
for the electromagnetic (EM) field", the latter being useful for the comparison with experimental
results.
An approach to the Casimir effect based on classical ray optics is presented in [151, 160, 161],

where the sphere-plane configuration with Dirichlet boundary conditions is considered. Paths with
up to four reflections are included, and results of the precedent numerical studies [156, 157, 158]
are recovered [151] up to L

R . 0.1 at the percent level. After some refinements in the method, it
turned out that the agreement was better in [160] for the long-distance regime, as they differ from
results of [157, 158] by no more than 30% at L

R = 5. The authors estimate the accuracy of the
usual PFA by the beyond-PFA parameter for the Casimir energy and force:

E[160]

EPFA
= 1 + 0.05

L

R
+O

((
L

R

)2
)

(9.9)

F[161]

FPFA
= 1− 0.1

L

R
+O

((
L

R

)2
)

(9.10)

with a very small and positive first order correction coefficient for the energy β[160]
E = 0.05, and

quite surprisingly given Eq.(9.2), a negative first order correction for the force β[161]
F = −0.1.

An analytic computation of the scalar Casimir energy [162], based on a semiclassical approxima-
tion, studies the two-sphere system. The sphere-plane case is contained in the results, and give the
beyond-PFA ratio:

E[162]

EPFA
= 1 +

(
1

3
− 5

π2

)
L

R
+O

((
L

R

)2
)

(9.11)

where the negative first order correction coefficient obtained in (9.6) is recovered: β
[162]
E =(

1
3 − 5

π2

)
' −0.173.

The result (9.11) is also found in [163] using a path integral approach, where the calculations
for Dirichlet and for Neumann boundary conditions are performed separately. It follows that the
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beyond-PFA first order correction is a sum of two terms:

EDirichlet
[163]

EPFA
=

1

2

[
1 +

1

3

L

R
+O

((
L

R

)2
)]

β
[163],Dirichlet
E ' 0.333 (9.12)

ENeumann
[163]

EPFA
=

1

2

[
1 +

(
1

3
− 10

π2

)
L

R
+O

((
L

R

)2
)]

β
[163],Neumann
E ' −0.680 (9.13)

Esca
[163]

EPFA
= 1 +

(
1

3
− 5

π2

)
L

R
+O

((
L

R

)2
)

β
[163]
E ' −0.173 . (9.14)

The first part (9.12) explains the positive value of the coefficient (9.8) obtained from worldline
numerics in [157, 158] with Dirichlet boundary conditions.
An alternative numerical approach is proposed in [167], based on a multipole expansion of

fluctuating charges, where the interaction only depends on the scattering matrix of two compact
objects15. From the multipolar nature of the method, numerical results are only accurate for values
of L

R above a minimum, which value depends on the number of included multipole orders `max.
For the region L

R → 0, the ratio E
EPFA

is extrapolated to the value 1 by a second order polynomial
fit. The latter contains the beyond-PFA informations. Among the various studied configurations
the Dirichlet and Neumann boundary conditions give the following beyond-PFA parameters:

EDirichlet
[167]

EPFA
= 1 + 0.33

L

R
+O

((
L

R

)2
)

(9.15)

ENeumann
[167]

EPFA
= 1− 2.43

L

R
+O

((
L

R

)2
)
. (9.16)

While the Dirichlet case (9.15) corresponds well to both the results (9.8) and (9.12), the Neumann
case do not match the analytic result (9.13).

Thanks to the works presented in this section, the scalar case is well known and explained with
the help of very different techniques. However, unlike the plane-cylinder case, the geometry does
not include any translational invariance, and thus uncoupling the two electromagnetic modes of
different polarizations possibly induces different results. In order to assess the accuracy of PFA for
experimental data analysis, a vectorial electromagnetic treatment is then necessary.

9.3 Electromagnetic results for perfect mirrors

A first numerical treatment of the sphere-plane geometry with electromagnetic field fluctuations
(EM) is carried out in [167] with a multipole expansion. Numerical evaluations performed in
[176] with a truncation to `max = 29 in the multipolar modes are accurate for L

R & 0.07 and are
extrapolated for smaller values with a quadratic fit for smaller values, making the connection to the
PFA result at L

R → 0. The slope of the fit at the origin then gives the parameter β[167]
E = −1.42,

which is very different from results obtained with scalar fluctuating fields.
Quite shortly after that the numerical study [233], also using a multipolar approach but with a

different derivation, obtained similar results, with β[233]
E ' −1.4. These two numerical works have

shown the necessity of a full vectorial treatment of the vacuum fluctuations.
An analytical study [164] generalized the work of [163] to vectorial fields with the same technique,

and obtained additional logarithmic terms in the beyond-PFA factor before the second order

15This paper also treats the electromagnetic case, we here only refer to the computations for a scalar field.
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9.4 Experimental prescription on β and conclusion

correction:

ρE = 1 +

(
α+ β ln

L

R
+ γ

(
ln
L

R

)2
)
L

R
+O

((
L

R

)2
)

(9.17)

with α = −5.2, β = −0.0044 and γ = 8.5 10−6. Actually, the parameter α is the dominant one
in (9.17) for usual configurations, as α 6� −β lnx when x . 10−500 and α 6� −γ(lnx)2 when
x . 10−340. We will thus use βE = −5.2 to compare with other studies. This result is very different
from the numerical ones [167, 233], and [176] proposes that this discrepancy could come from the
range of validity for the analytic computation that might be restricted to much smaller values of
L
R than usual. We also remark that this analytic derivation would yield a range of parameter for
very small distances L

R ≤ 4.03 10−246 where PFA overestimates the Casimir energy (ρE > 1).

9.4 Experimental prescription on β and conclusion

While theoretical works were focussed on measuring the error of PFA results, experimental data
show no contradiction with them. A group of experimentalists designed a set of measurement[224]
dedicated to determine an exclusion domain for β. They measured the Casimir force gradient with
a gold plane and a gold sphere for different radii, and extract from the data a prescription on βG.
The result of their study is that

β
[224]
G < 0.4 (9.18)

which is in contradiction with all theoretical results for perfect mirrors with vectorial fields, as
[167] and [233] predict βG ' 0.47, and [164] predicts βG ' 1.73 in the range of parameters used in
experiments.

From the analysis of some of the beyond-PFA studies devoted to the estimation of the first order
correction coefficient β, we first conclude that it is necessary to consider the two electromagnetic
polarizations together, as their coupling in the sphere-plane configuration has an effect on the
Casimir effect such that scalar computations differ from electromagnetic ones. The seeming
disagreement between the experimental prescription (9.18) and the numerical results obtained with
perfectly reflecting conductors encourages one to investigate a more realistic description of the
material, as finite conductivity plays a role in the considered distances. This motivates an analysis
of the beyond-PFA effects from a multipole expansion, with a full electromagnetic treatment, for
metallic reflectors. In the rest of the section, we will first develop the study with perfect reflectors
to introduce the different parameters, and then come to the case of metallic reflectors.
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10 RESULTS FOR PERFECT MIRRORS

10 Results for perfect mirrors

In this section we first consider the case where the plane and the sphere are modelled by perfect
mirrors, at zero temperature. The description of the scattering is then purely geometrical, and
only depends on the aspect ratio L

R , where L is the distance of closest separation between the two
bodies and R is the radius of the sphere. We also define the center-to-plate distance L = L+R
which is the distance between the reference points of each object.

Figure 42: Schema of the sphere-plane configuration. The plane is infinite in the x and y-directions,
and lies in the (z ≤ 0)-region. The sphere has a radius R and its center is located at
(0, 0,L), with L = L+R.

Here we present and analyse the results of numerical evaluations for the Casimir effect in this
configuration, using the scattering formula described in Section 5.4(p.78):

E =
~c

2πR

∫ ∞
0

dξ̃ ln detD(ξ̃) . (10.1)

To perform those numerical evaluations, we used the numerical methods developed in Sec-
tion 6(p.81) with a sufficient number of modes `max in order to get an accuracy of the order of
10−4.

In this section we first check the numerical results with the two analytical expressions valid
in the opposing limits of short and large distances, then we study the dependance of the energy
with respect to the geometrical parameters L and R, and finally we estimate the beyond-PFA
corrections at short distances.

10.1 Behaviour of numerical results at short and large separation

In Section 8.2 (p.126), we have derived a long-distance expression for the Casimir force at zero
temperature, valid when L � R. Moreover, the regime of validity of PFA is the short-distance
regime (L� R), we can thus compare the numerical results we obtain for the two opposite extreme
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range of the aspect ratio L
R :

(L� R) : E = −9~cR3

16πL4
(10.2)

(L� R) : E = −~cπ3R

720L2
. (10.3)

This comparison is shown in Fig. 43, where in the left graph, we observe that the numerical
results converge well to the two limiting cases, and in the right graph that the ratio of the exact
result to one of the approximation goes to unity when the corresponding limit is approached. The
scattering approach thus allow to numerically evaluate the Casimir effect between a sphere and a
plane for intermediate geometries, where the aspect ratio L

R is neither small nor large.
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Figure 43: (left) Absolute value of the Casimir energy at T = 0 for perfect mirrors, with respect
to distance L in micrometers (logarithmic scale). The plain black line is the exact
result, computed for `max = 100, the blue dotted-dashed curves is the large-separation
asymptotic result expressed in Eq.(10.2), and the red dashed curve is the PFA result
expressed in Eq.(10.3). The sphere radius is R = 100µm. (right) Ratio of the exact
energy to its approximations, with respect to the ratio L

R (linear scale). The plain
black line is for a short-distance approximation with PFA, the red dashed curve is for a
large-distance approximation.

10.2 Power laws

We observe that the two opposite regimes (10.2,10.3) for the aspect ratio exhibit a different power
law in L and R. In this subsection we study how this change occurs in the intermediate regime.
We define ν and µ to be the logarithmic derivatives for the energy:

ν(L,R) = −∂ ln |E|
∂ lnL

µ(L,R) =
∂ ln |E|
∂ lnR

(10.4)

where the minus sign in the definition of ν is introduced in order to have positive quantities.
If the energy obeys a simple power law in L and R, those numbers are constant. For example
the large-distance expression (10.3) gives (ν = 4;µ = 3) and the PFA formula (10.2) at short
separations gives (ν = 2;µ = 1). For a more general dependance on L and R, the parameters
ν(L,R) and µ(L,R) thus express a ’local power-law’ in 1

L and R for the energy E.
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10 RESULTS FOR PERFECT MIRRORS

In Fig. 44, we present how ν changes from 2 to 4, while µ changes from 1 to 3 when the aspect
ratio L

R varies from zero to infinity. As the problem only involves two lengthscales, L and R, the
parameters ν and µ only depend on their ratio L

R . Therefore, the obtained curve is the same for
any value of R, which has been numerically checked.
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Figure 44: Parameters ν(L,R) (dotted thin line) and µ(L,R) (wide line), as defined in (10.4),
with respect to the aspect ratio L

R (logarithmic scale). Each dot represent a numerical
evaluation. The radius has been chosen as R = 100µm, but any value of R would give
the same curves.

We observe that the two curves for ν and µ in Fig. 44 have the same shape, with a vertical
decay of 1. This can be explained from the fact that the scattering process is purely geometric and
can be described by the aspect ratio L

R only. From the scattering formula (10.1), we can write the
Casimir energy as E = φ(L/R)

R < 0, then the logarithmic derivatives are:

ν = −∂ ln(−E)

∂ lnL
= − L

(−E)

∂(−E)

∂L
= − LR

φ(L/R)

φ′(L/R)

R2
= −L

R

φ′

φ

µ =
∂ ln(−E)

∂ lnR
=

R

(−E)

∂(−E)

∂R
=

R2

φ(L/R)

∂

∂R

(
φ(L/R)

R

)
=

R2

φ(L/R)

(
−φ(L/R)

R2
− Lφ′(L/R)

R3

)
= −L

R

φ′

φ
− 1

and the relation ν = µ+ 1 between the two curves in Fig. 44 is checked.
It is possible to construct a simple function that reproduces the same changes in the power-laws

for L and R in the extreme regimes of their ratio L
R :

f(L,R) = a
R

L2
(
1 + bLR

)2 , a, b ∈ R .

If we additionally require that the same coefficients as in Eqs.(10.2,10.3) are to be obtained by f
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in the two limiting regimes of L
R , it fixes the values of a and b and the function becomes:

f(L,R) = −~cπ3

720

R

L2
(

1 + π2

9
√

5
L
R

)2 . (10.5)

10.3 Beyond-PFA corrections

We now study how our numerical results compare to the PFA quantities in the limit of short
distances. To that purpose we will use the beyond-PFA ratio ρE , introduced in Eq.(9.1) (p.137),
which takes the ratio of the numerical evaluation for the Casimir energy E and the corresponding
PFA quantity EPFA. As EPFA scales as R

L2 , and E can be written as 1
Rφ(L/R), their ratio only

depends on L and R through the aspect ratio L
R . It means that in the case of perfect mirrors, ρE

is a universal function of L
R and does not depend on the particular value of each one, because it is

scale invariant.
In Fig. 45 we show the beyond-PFA ratio ρE for small but reachable values of LR . The obtained

results superimpose on those of [233], as the method is the same, but while `max was 27 in this
study, here we are able to take into account as much as `max = 520 modes, allowing us to compute
up to a precision of 10−4 numerical results for L

R ≥ 0.01. For the energy E, as well as for the force
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Figure 45: Ratio of the exact Casimir energy over the PFA result ρE = E
EPFA

with respect to the
size ratio L

R (linear scale). The dots represent numerical evaluations. The first dot is
placed at L

R = 0.01.

F and force gradient G, we always observe ρ < 1, which means that PFA always overestimates the
Casimir interaction. The ratio seems to go nicely to 1 at the proximity limit L

R → 0. The obtained
value of ρE for small values of the aspect ratio L

R are presented in Table 12.
To extract informations on the accuracy of PFA from those numerical results, we extrapolate

the beyond-PFA function ρE with a quadratic fit of the numerical data that fulfill the condition
ρE(L = 0) = 1. Fig. 46 illustrates this procedure: we fit with a second-order polynomial the
data points in the range L

R ∈ [0.01, 0.05], pointed out with blue circles, together with an additional
point

(
L
R = 0; ρE = 1

)
. The obtained best quadratic fit, represented by a thick curve, is then used

to extrapolate the function ρE to the proximity limit L
R → 0.
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10 RESULTS FOR PERFECT MIRRORS

L
R 0.01 0.02 0.05 0.1 0.2 0.5 1

ρE
(
L
R

)
0.9845 0.9719 0.9371 0.8865 0.8033 0.6234 0.4387

Table 12: Values of the beyond-PFA correction factor ρE = E
EPFA

.
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Figure 46: Beyond-PFA ratio ρE = E
EPFA

for the Casimir energy, with respect to the aspect ratio L
R

(linear scale). From the set of data points (red squares), we select the ones with a small
value of L

R and add the point
(
L
R = 0; ρE = 1

)
(blue circles) for fit. The best quadratic

fit is y = 1− 1.47x+ 4.6x2. This result is independent of the sphere radius R.
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10.3 Beyond-PFA corrections

With this method we obtain a beyond-PFA first order coefficient βE = −1.47, which is compatible
with other similar studies [167, 233]. When compared to analytical results obtained for both scalar
or vector fields, the obtained number is very different, as seen on Fig. 47.
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Figure 47: Comparison of several beyond-PFA factors ρE = E
EPFA

with respect to the size ratio
L
R (linear scale). The line with dots is our numerical result, each dot corresponding
to a numerical evaluation. The first dot is placed at L

R = 0.01. The thin dashed-line
presents the result of analytic scalar derivations, such as [163]. The thick dashed-line
the result of electromagnetic analytical derivation [164].

The linear factor β[163]
E = −0.173, commonly obtained for a scalar decomposition of the

electromagnetic field, is presented with a thin dashed-line, and is more than 8 times smaller
than our βE . The linear factor β[164]

E = −5.2, effective part of the analytical computation for
electromagnetic field, corresponds to the thick dashed-line, and is more than 3 times larger than
our βE .
We recall that the experimental work [224] prescripts that |βG| should be lower than 0.4, as

discussed in Section 9.4. Our result βE ' −1.47, for the energy yields the following first order
beyond-PFA correction coefficients for the Casimir force and force gradient:

βE ' −1.47 ; βF =
1

2
βE ' −0.74 ; βG =

1

3
βE ' −0.49 (10.6)

thanks to the relations (4.18) (p.59) between the β coefficients for perfect mirrors at zero tempera-
ture. In conclusion our result, like the ones from the studies [167, 233], seems to be in disagreement
with the experimental prescription. As experimental works have been performed with metallic
reflectors, the situation in each side is not the same, and this could be the reason for this seeming
disagreement. It motivated to carry out a similar study with a more realistic description of the
material optical properties. This study is presented in the next section.
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11 RESULTS FOR METALLIC MIRRORS

11 Results for metallic mirrors

We will now study the same situation as in the previous section, but we will introduce a more
accurate description of the optical response for metallic materials. Indeed, an ideal mirror reflects
perfectly incoming electromagnetic waves at all frequencies, a feature that is modeled by taking
the dielectric function of the material to be infinite for all frequencies. Metals are however poor
reflectors for the high-frequency part of the incoming wave, and become fully transparent in the
high-frequency limit. This behavior can be modelled by a dielectric function which obeys the
plasma model, introduced in Section 2.2 (p.39) and recalled below. As metals have a finite DC
conductivity, dissipation inside the materials should be accounted for and the dielectric function
can be improved by using the Drude model, introduced in Section 2.3 (p.41) and recalled below:

εplas(iξ) = 1 +
ω2
P

ξ2
εDrud(iξ) = 1 +

ω2
P

ξ (ξ + γ)
. (11.1)

From the study of the plane-plane configuration, we would expect the introduction of high-
frequency transparency to have only an influence on frequencies ξ & ωP , or equivalently on
distances L . λP , as ξ . c

L (see for example the correction factor ηPE in Fig. 20 p.44). As we will
see in the remainders of this section, this is not true anymore for the sphere-plane configuration,
as the long-distance limit for the energy also depends on the ratio R

λP
. This coupling between the

effects of geometry and finite conductivity will be studied in a detailed manner. Concerning the
accuracy of PFA results, we will show that this more realistic description of the materials solves
the seeming discrepancy between the theoretical and experimental values of the linear correction
factor β.
In this section, we first study the effect of finite conductivity and dissipation with the finite

conductivity factor ηP , and its dependance on the sphere radius R. We then describe the
dependance of the Casimir effect with the two parameters L and R in this situation and the
correlations between the effects of finite conductivity and geometry. Finally, we tackle in the end
of this section the question of the beyond-PFA correction at short distances.

11.1 Observation of the effect of imperfect reflection

To study how the inclusion of a more realistic optical response for the materials affect the Casimir
effect, we define the finite conductivity correction factor ηP :

ηPE =
Eplas

Eperf
(11.2)

where Eperf denotes the Casimir energy with perfect mirrors and Eplas the energy with mirrors
described by a plasma model, which can be replaced by EDrud if the mirrors are described by a
Drude model. An analogous factor can be defined for the change in the Casimir force (ηPF ), or the
Casimir force gradient (ηPG).

This finite conductivity correction factor is illustrated for the plane-plane geometry in Fig. 20
(p.44), where one can see that for both models, plasma and Drude, ηPE is a monotonically growing
function with the distance L, tending to unity at the limit of large distances. Let us recall that
the explanation of this behavior was that at large distances, only low frequencies ξ . c

L contribute
to the Casimir effect, at which the metallic mirrors perfectly reflect the field (dielectric function
ε(iξ) going to infinity when ξ → 0). For smaller distances, higher frequencies ξ & ωP also play a
role, and for those, the dielectric function is finite, revealing the imperfect reflection on metals.
From the analytical study at the limit of large distances (L � R) conducted in Section 8

(p.124), this correction factor should no longer tend to unity when L → ∞ in the sphere-plane
geometry: indeed we found in Section 8.3 (p.131), for the plasma model with the additional
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11.1 Observation of the effect of imperfect reflection

hypothesis (R 6� λP ), that this ratio should rather tend to a value in
[

2
3 , 1
]
, determined by the

value of α = 2πR
λP

through the function f :

f (α) = 1 +
1

α2
− cothα

α
,

a function that is illustrated in Fig. 41 (p.132). For very small values of α, the function f tends to
2
3 , while for very large values of α, it goes to unity. For the Drude model, we found in Section 8.4
(p.132) that the finite conductivity correction factor ηPE should always go to 2

3 at the limit of large
distances, for any value of the radius R.
To study this qualitative change of dependance in the optical properties of the materials, we

plot in Fig. 48 the finite conductivity correction factor ηPE for the Casimir energy with respect to
the distance L, for various values of the sphere radius (R = 0.1, 1, 10 µm). The plasma model for
lossless metals is used in the left graph, the Drude model, which includes dissipation in the material,
is used in the right graph. The chosen values of the parameters for those models correspond to
gold (λP = 136 nm; δ = λP

λγ
= 0.004).
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Figure 48: Finite conductivity correction factors for the Casimir energy ηPE = Eplas

Eperf (left) and
EDrud

Eperf (right), with respect to the distance L, for the plasma model (left) and the Drude
model (right). Green dotted lines represent the case of a small sphere, the dashed blue
curves an intermediate sphere, and the red solid curve a large sphere. The PFA results
are plotted with a thin black line. The plasma wavelength is λP = 136 nm, and the
dissipation ratio δ = λP

λγ
is 0.004. (left) The long-distance limit of the correction factor

for the three radii with plasma model are 0.83, 0.98 and 0.998, respectively. (right) The
long-distance limit of the correction factors for the three radii with Drude model is 2

3
within the numerical error.

When the plasma model is used to described the optical properties of the objects, we observe
in the left graph of Fig. 48 that the finite conductivity correction factor ηPE increases with the
distance L, to reach at L ∼ 10 µm a limit, which is around 0.83 for the small sphere case (0.1 µm
radius), 0.98 for the medium sphere case (1 µm radius), and 0.998 for the large sphere case (10
µm radius). Those values are in perfect agreement with the corresponding values of the function
f . We deduce from this study that the case of perfectly reflecting mirrors is recovered from the
plasma model in the sphere-plane geometry when λP is small compared to both L and R.

When the Drude model is used to described the optical properties of the objects, we observe in
the right graph of Fig. 48 that the finite conductivity correction factor ηPE first increases with the
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distance L, to reach a maximum smaller than 1, then decreases and tends to the value 2
3 . The

bigger the radius, the larger is the distance needed to converge to this value.
The observations for the two models are very different from what happens in the plane-plane

configuration: for plasma model the long-distance limit for ηPE is below 1, except for very large
spheres (R & 10 µm), and for Drude it is always 2

3 . We here observe the appearance of a coupling
between the effects of geometry and finite conductivity, which could not have been predicted from
PFA comptutations.
Those observations are entirely consistent with the analytical large-distance limit derived in

Section 8.4 (p.132). First they corroborate the unexpected result that the value of this correction
at the large-distance limit is independent of the materials parameters, as long as the dissipation is
non-zero. Second, we observe in the right graph of Fig. 48 that when the radius is increased by a
factor 10, the large-distance limit is delayed by a factor of the order of 100. This is consistent with
the condition (HYP2)

(
L � R2λγ

λ2P

)
, formulated in the large distance expansion in Section 8.4

(p.132). The other condition (HYP1)
(
L � λ2P

λγ

)
is always fulfilled in the computed range of

distances, as δ = λP
λγ

is small. We deduce from this study that the case of perfectly reflecting
mirrors can never be recovered from the Drude model in the sphere-plane geometry at the limit of
large distances, as soon as the dissipation is non-zero. In other words, for dissipative media, the
limits (λP → 0) and (L→ +∞) do not commute.

11.2 Power laws

Like in the former section where perfect mirrors were considered, we can study the change in the
power laws thanks to the logarithmic slopes ν and µ, defined in (10.4). The former is the local
power law in the inverse distance 1

L , while the latter is the local power law in the sphere radius R.
In the plane-plane geometry, high-frequency transparency of the metals leads to a change of

the dependance with respect to the distance L in the short-distance regime: while for a large
distance (L � λP ), the imperfect reflection does not play a role, at short distances (L � λP )
the finite conductivity correction factor ηPE is proportional to L

λP
, and the logarithmic slope ν is

thus decreased by one. For the Casimir-Polder energy between a plate and an atom, the same
behavior appears, changing the 1

L4 -law into a 1
L3 -law at short distances, also called the van der

Waals regime.
We expect a similar decrease in the power-law of 1

L for the Casimir energy in the sphere-plane
geometry, which we present for the plasma model in the left graph of Fig. 49, with respect to the
aspect ratio L

R for different values of the sphere radii R = 0.1, 1, 10 µm.
The perfectly reflecting case is recalled by a solid black curve, and shifts from ν = 4 at high

values of the aspect ratio (L� R) to ν = 2 for small values (L� R). When taking into account
the imperfect reflection, the shift is as expected increased by one for small distances and the
logarithmic slope ν tends to the value 1 at very short distances (L � λP , R). This result is
in agreement with the PFA result obtained from a derivation in the plane-plane geometry (see
discussion on Eq.(2.14) p.44), in the plasmon limit (PL) when (L� λP ):

EPL
PFA = −~cπ3αR

240λPL
with α ' 1.1933 .

The curves for the plasma model depart from the one for perfect reflectors at L . 1 µm, as
it occurs at L

R . 10 for the green dotted-line (R = 0.1 µm), at L
R . 1 for the blue dashed-line

(R = 1 µm), and at L
R . 0.1 for the red solid line (R = 10 µm). This is consistent with the curve

for the finite conductivity correction factor ηPE presented in Fig. 48, which also deviates from its
long-distance limit around L . 1 µm.
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Figure 49: Logarithmic slopes ν = −∂ ln |E|
∂ lnL and µ = ∂ ln |E|

∂ lnR with respect to the aspect ratio L
R . The

black solid curves are obtained for perfect mirrors and are independent of the sphere
radius R. (left) The mirrors are described by a plasma model, the green dotted line
represents the case of a small sphere, the dashed blue curves an intermediate sphere,
and the red solid curve a large sphere. (right) The sphere radius is R = 0.1 µm, the blue
curve represents the plasma model and the red curve the Drude model. The plasma
wavelength is λP = 136 nm, the dissipation ratio is δ = λP

λγ
= 0.004.

The dependance of the Casimir energy on the radius R is presented in the right graph of Fig. 49,
again with respect to the aspect ratio L

R but for a sphere size of R = 0.1 µm with different models
for the mirrors. The perfectly reflecting case, independent of R, is recalled with a solid black
curve, and goes from a volumetric dependance at large separations (µ = 3 at L� R) to a linear
dependance at short separations (µ = 1 at L� R).

The plasma case, illustrated with a blue curve, also increases monotonously with the distance,
but converges to a value µ∞ > 3 at large distances. This over-volumetric dependance can be
understood with the previous study of the finite conductivity correction factor ηPE presented in
Fig. 48: when R increases, the long-distance limit of ηPE increases (up to 1), and thus |Eplas| with
plasma mirrors increases more than |Eperf | with perfect reflectors. It yields a higher power-law
with respect to R, and finally explains the obtained value µ∞ ' 3.148 at the limit of large distances
for R = 0.1 µm. This feature progressively disappears when the sphere radius is increased to a few
microns, as the long distance limit of the finite conductivity correction factor ηPE saturates at 1 in
the limit (R� λP ). We find µ∞ = 3.021 for R = 1 µm, and µ∞ = 3.002 for R = 10 µm.

For dissipative metals, described with a Drude model, the same over-dependance of µ in R is
observed, up to L ∼ R2λγ

λ2P
, which for gold means L

R ∼ 1000R, with R in µm. In the limit of large
distance, µ then decreases again to the perfect reflectors value µ∞ = 3, as illustrated with the red
curve in the right graph of Fig. 49, which departs from the blue curve representing plasma model
for L

R & 100. This is again explained by the study of the finite conductivity correction factor ηPE
presented in Fig. 48: for Drude metals, the R-independent long-distance limit of ηPE is 3

2 , thus
|EDrud| and |Eperf | have the same dependance on R at large distances. This decrease back to
µ∞ = 3 happens for a larger distance when the radius increases, for the same reason as for the
delay in the convergence of ηPE , connected to (HYP2) and discussed in the previous section.

151



11 RESULTS FOR METALLIC MIRRORS

11.3 Correlations between the effects of finite conductivity and geometry

We call two influences A and B ’uncorrelated’ (or ’uncoupled’) when the correction factor ηAB,
that take into account both A and B at the same time, is equal to the product of ηA and ηB,
the correction factors that only take into account A or B. With this convention, we define the
correlation number δAB, which is zero when the influences of A and B are uncorrelated:

δAB =
ηAB

ηAηB
− 1 . (11.3)

If δAB 6= 0, it means that it is not allowed to consider separately the influences of the two effects
A and B. This generalises the tool introduced in [207, Eq.(4-24)], used in Eq.(3.13) (p.53) to
study the correlations between the effect of temperature and finite conductivity in the plane-plane
configuration.

Here we consider the sphere-plane geometry with metallic materials at zero temperature, there
is then two different effects that modify the Casimir force from the perfect mirrors with PFA result
FPFA = −~cπ3R

360L3 : the geometry (G) and the finite conductivity (P). The correction factor for the
latter is just the finite conductivity one ηP defined in Section 11.1, but within the PFA. The
correction factor for the geometry is the factor ρ defined in Eq.(9.1) (p.137) for perfect mirrors.
Finally, we sum up the different correction factors for the Casimir force involved in the study of
the G-P correlations:

ηGF =
F perf

F perf
PFA

; ηPF =
F plas

PFA

F perf
PFA

; ηGPF =
F plas

F perf
PFA

(11.4)

δGPF =
F plasF perf

PFA

F perfF plas
PFA

− 1 =
ηP

ηPPFA

− 1 =
ρplas

ρperf
− 1 . (11.5)

From Fig. 48 (p.149), we see that generally ηP 6= ηPPFA, especially with small spheres, for which
the finite conductivity correction factor is not going to unity at the limit of large distances. This
is a clear sign of correlation between the effect of curvature and imperfect reflection. In Fig. 50
we present the three force corrections factors introduced in (11.4) for a nanosphere of radius
R = 100 nm, with respect to the distance L.
The geometry correction factor ηGF (upper solid green curve) is important for large distances

(L & R) and is always smaller than one, meaning that PFA results overestimate the Casimir force.
It goes to unity for short distances. On the contrary, the finite conductivity correction factor
ηPF (upper solid red curve) is important for short distances (L . λP ) and goes to unity for large
distances. The product of the two simple corrections ηPF η

G
F (lower dashed purple curve) is then a

combination of those two corrective curves.
The total correction factor ηGPF (lower solid purple curve) departs from this product in the

intermediate regime and takes on lower values in general. It shows that the two corrections are
correlated and that the correlation number δGPF is generally negative. More surprisingly, it is also
non-zero in the large-distance regime, where the finite-conductivity should not have any more effect.
This observation is consistent with the large-distance limit lower than unity obtained for the finite
conductivity correction factor ηP with a small sphere radius in Fig. 48 (p.149), as δGP = ηP

ηPPFA

− 1.
For larger spheres, the domains (L & R) and (L . λP ) where the two corrections have a large

effect do not have a large overlap anymore, and we expect less correlations in this case. In the large
distance limit for the plasma model, it is indeed the case, as ηP ' ηPPFA when (L� R, λP ). For
the Drude model however, the correlations remain non-zero at large separations, even with large
spheres, as ηP always converges to the value 2

3 . This feature is illustrated by Fig. 51, where the
correlation number δGP is plotted for various size of the sphere radius R. As the finite conductivity
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Figure 50: Force correction factors, with respect to the distance, for the imperfect reflection (ηPF ,
upper solid red curve), for the geometry (ηGF , upper solid green curve), and for both
(ηPGF , lower solid purple curve). The product of the two single corrections is presented
in a dashed purple curve for comparison. The sphere radius is R = 0.1 µm, the plasma
wavelength is λP = 136 nm.

correction factor for PFA goes to unity at large separation, the correlation number always tends
here to:

lim
L→∞

δGP = lim
L→∞

(
ηP (L)

ηPPFA(L)
− 1

)
=

2/3

1
− 1 = −1

3
. (11.6)

11.4 Influence of conductivity on the beyond-PFA corrections

Until now we merely focussed on the intermediate and large values of the aspect ratio L
R , but on

this section we rather focus on the short-separation regime to study the beyond-PFA corrections
in the presence of metallic mirrors. For perfect mirrors, we have estimated in Eq.(10.6) the
first-order coefficient of the beyond-PFA correction to be βE ' −1.47 for the energy, which yields
an equivalent coefficient βG ' −0.49. The latter number is in a seeming contradiction with the
experimental prescription |βG| < 0.4 discussed in Section 9.4 (p.141). We here explain how the
contradiction is solved by the introduction of finite conductivity in the description of the materials.
This specific point has been the subject of a published article [234].

Eq.(11.5) of the correlation number shows that the beyond-PFA is not the same for perfect
reflectors (ρperf) and mirrors described by a metallic model (ρDrud) when the effects of geometry
and finite conductivity are coupled. Writing that ρDrud = ηP

ηPPFA

ρperf , one can see how the change in
this geometry correction is directly connected with the previous section on the finite conductivity
correction. In most of the studied cases, we observed that for the Casimir energy ηP

ηPPFA

≤ 1, or in

other words a negative correlation number δGPE ≤ 0. We thus expect to have a lower beyond-PFA
correction ρDrud

E ≤ ρperf
E than with perfect mirrors for the Casimir energy.
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Figure 51: Correlation number for the Casimir energy δGPE between the effects of geometry and
finite conductivity for the Drude model. Green curve represents the case of a small
sphere, blue curve an intermediate sphere, and the red and black curves larger spheres.
All curves converge to the value −1

3 at the limit of large distances. The parameters for
the Drude model are those of gold (λP = 136 nm; δ = 0.004).

In Fig. 52 we confirm this conjecture by plotting the beyond-PFA correction factor ρDrud
E for

the Casimir energy, using the Drude model to describe the reflection on each object. The same
factor for perfect mirrors ρperf

E is recalled with a dashed-line. For small spheres, we observe indeed
that ρDrud

E ≤ ρperf
E , while for larger spheres the function for perfect mirrors is recovered in the

range of distances considered. However, because of the long-distance limit −1
3 of the correlation

number derived in Eq.(11.6), we know that for larger distances we should obtain at some point a
separation, as ρDrud

E

ρperfE

−→ 2
3 .

The fact that ρDrud
E ≤ ρperf

E means that the description of the imperfect reflection on the objects
with the Drude model makes the error of PFA worse than in the case of perfect mirrors, and lead
to a first order corrective coefficient βDrud

E ≤ βperf
E ' −1.47 larger in magnitude. The coefficient

βperf
G ' −0.49 for the force gradient with perfect mirrors is too large in magnitude to enter

the experimental prescription |βG| < 0.4, and the former remark seems to make the excess in
magnitude even worse. This is actually the opposite, and this comes from the relations between the
β coefficients for the Casimir energy E, force F and force gradient G, derived in Section 4.3.2
(p.58), and which can be written as:

βG =
(νE − 1)(νF − 1)

νEνF
× βE = fβ(L)βE

γG =
(νE − 2)(νF − 2)

νEνF
× γE = fγ(L)γE (11.7)

where νE(L) = −∂ ln |EPFA|
∂ lnL

=
LFPFA

EPFA
=
LEPP(L)

DPP(L)

and νF (L) = −∂ ln |FPFA|
∂ lnL

=
LGPFA

FPFA
=
LFPP(L)

EPP(L)
.
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Figure 52: Beyond-PFA correction factor for the Casimir energy ρE = E
EPFA

between a metallic
sphere and a metallic plane, modelled with the Drude model. Green curve represents
the case of a small sphere, blue curve an intermediate sphere, and the red and black
curves larger spheres. The R-independent factor ρperf

E for perfect mirrors is drawn with
a dashed-curve. The parameters for the Drude model are those of gold (λP = 136 nm;
δ = 0.004).

From the study in the plane-plane configuration with metallic mirrors discussed in Section 2.5
(p.42), we know that νE ∈ ]1, 2[ and νF ∈ ]2, 3[, where the minimum values are obtained when
L � λP and the maximum values when L � λP . For perfect mirrors at zero temperature, we
always have νE = 2 and νF = 3. The two functions fβ and fγ are plotted in Fig 53 as functions
of the distance L.
The first function fβ, represented by a black dashed-line, takes values in

]
0, 1

3

[
, and is always

smaller than fβ(L� λP ). It yields that the coefficient βDrud
G = fβ(L)×βDrud

E for mirrors described
by the Drude model can be significantly diminished with respect to the one for perfect mirrors. It
thus makes room for the possibility of a βG within the experimental bound.

The second function fγ is always negative, meaning that the coefficients γE and γG do not have
the same sign when considering the Drude model. From the convexity of ρE , visible on Fig. 52,
we assume that the second order coefficient γE for the beyond-PFA correction ρDrud

E of the Casimir
energy is positive. It yields that γG < 0 and the correction ρGDrud for the force gradient should
be a concave function for small values of the aspect ratio L

R .
We present in Fig. 54 the results of numerical evaluations of the Casimir force gradient G for

small values of the aspect ratio, and their extrapolation to even smaller values with the help of a
polynomial fit. The chosen model is the loss-less plasma one, but the dissipative Drude model
gives similar results for the considered sphere radius and distance range.

For intermediate aspect ratios (L ∼ R), we observe in the right part of the curve that ρplas < ρperf ,
which means that the error made by PFA is increased when accounting for imperfect reflection in
the optical response of the mirrors. But for smaller distances, the two curves cross each other, and
the beyond-PFA correction for plasma ρplas is greater than the one for perfect reflectors ρperf . This
yields that for small aspect ratios, the correlation number δTGG for the force gradient is positive,
and that the error of PFA is decreased when accounting for imperfect reflection in the mirrors
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Figure 53: Functions fβ (left) and fγ (right) as functions of the distance L. The former increases

from 0 to 1
3 , the latter is 0 at the two extremities, and undergoes a minimum −0.0538

at L ' 32.5 nm. The parameters for the Drude model are λP = 136 nm and δ = 0.004.
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Figure 54: Beyond-PFA correction factor for the Casimir force gradient ρG = G
GPFA

and its extrap-
olation to smaller values of the aspect ratio L

R . Red elements correspond to perfect
reflectors, while green to mirrors described by the plasma model. Crosses are the
numerically obtained data for the force gradient G, normalized by the PFA result GPFA.
The drop-ff on the left side is due to the numerical `max cut-off. Circles are the trustable
data points used to compute the extrapolation fit. The red dashed-line and solid green
curve are the extrapolation fit, for perfect and plasma models, respectively. The sphere
radius is R = 0.1 µm, the plasma wavelength is λP = 136 nm.
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optical response.
As the curve is approaching to unity at the limit of infinite radius (LR → 0), this cross-over yields

a bending of the curve ρplas
(
L
R

)
for small aspect ratios, which becomes as expected a concave

function in this region. This last feature has an influence on the linear correction βG extracted from
the initial slope of the fitting polynomial. For perfect reflectors in Eq.(10.6) (p.147), this slope was
βperf
G ' −0.49. It clearly becomes much smaller in magnitude for mirrors described by the plasma

model. For the nanospheres (R = 100 nm) here considered, we find βG ' −0.2. This implies that
the result of this extrapolation on the beyond-PFA correction is no more in contradiction with the
experimental bound (|βG| < 0.4) stated in [224] and discussed in Section 9.4 (p.141).
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12 Results for dielectric nanospheres

In this section we will apply our findings to the particular situation of the long-range interaction
between a dielectric nanosphere and a metallic surface. This study is motivated by the intriguing
phenomenon of small heating of ultra-cold neutrons (UCNs) in traps [80, 81, 82]. This thermal shift
could be explained by the interaction between UCNs and nanospheres levitated in the quantum
states created by their interaction with surfaces [235]. In order to characterize this phenomenon
and compute the properties of the quantum states, one needs a detailed and careful treatment of
the interaction potential. We will see along this discussion that for this configuration the commonly
used Casimir-Polder formula (12.1), even improved by integration techniques, is not sufficient to
this purpose. The results presented in this section have been the object of a published article [235].
The Casimir-Polder interaction [236] describes the change of energy experienced by an atom

close to a reflecting surface. The origin of the effect is quite similar to the Casimir energy of two
plates, except that the cavity, formed by the atom and the plane, is open. While for very small
distances the dominant force is an electrostatic attraction between the atomic dipole and its image
[40], for larger distances the effect of retardation becomes important and has to be included.

For an atom with a polarizability α(iξ), in front of a plane whose Fresnel reflection coefficients
are rTE, rTM, the Casimir-Polder interaction energy at zero-temperature can be written as [237,
40, 238, 239, 240]:

ECP = ~
∫ ∞

0

dξ

2π

α(iξ)

4πε0

∫ ∞
0

kdk

κ

[
ξ2

c2
|rTE|+

(
κ2 + k2

)
|rTM|

]
e−2κL (12.1)

The Casimir-Polder formula is founded on a point-like description of the atom, as its size is
neglected and never appears in the description. The idea is appealing and in principle reasonable
for ’small’ objects, but the meaning of this restriction remains to be defined.
The scattering formula does not assume an object as point-like but instead takes into account

the full optical response of an object to compute the interaction with a surface. We will see that in
the situation of a nanosphere in front of a plane, the scattering formula turns out to be equivalent
to the Casimir-Polder formula when the radius R of the nanosphere is small compared to all other
length scales. Our method behaves specifically well when the object is small compared to the
distance, a limiting case similar to the point-like approximation, because only a few multipoles
must be taken into account, but is however not restricted to this situation. We will thus be able to
test the limits of applicability of the Casimir-Polder formula to small objects.
This section is organised as follows: we first show in Section 12.1 that the Casimir-Polder

expression is recovered from the scattering formula in the limit of a punctual sphere, and study the
long and short distance regimes of the Casimir-Polder formula. Then we study in Section 12.2
the complete multipolar expression E that we obtain from the scattering formalism. Finally we
compare in Section 12.3 the results from the scattering formalism and from Casimir-Polder
formula, and its improvement through an averaging over the sphere’s volume.

12.1 The Casimir-Polder formula for a dielectric nanosphere

In this section, we consider the scattering formula for the Casimir energy at the limit of a punctual
sphere (R� L), which is equivalent to the long-distance limit studied in Section 8 (p.124). We
show that the Casimir-Polder expressions are recovered for very small spheres, as expected.
For that derivation, we will make the additional hypothesis that the material for the sphere is

not a perfect reflector, and that its permittivity εS(iξ) remains finite at all frequencies. In doing so,
we will remove the unphysical possibility of a non-vanishing magnetic response for the point-like
sphere, which will become clearer during the derivation. We also keep the same description of the
dielectric function εS(iξ) for small values of R, which would not have been possible for metallic
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12.1 The Casimir-Polder formula for a dielectric nanosphere

nanospheres, because of the confinement effect for conduction electrons [210, 211]. The material
for the planar surface is not yet specified, and its optical properties are contained in the specular
Fresnel coefficients rTE, rTM.

12.1.1 The scattering formula at the limit of a punctual sphere

We start from the scattering formula in the sphere-plane configuration, explicitly given in Section
5.4 (p.78):

E =
~c
2π

∫ ∞
0

dξ̂ ln detD(ξ̂)

with ξ̂ = ξ
c = ξ̃

R . In Section 8.1 (p.124), we explained that in the long distance limit (L� R),
this formula could be simplified by a dipolar-simple scattering approximation. It resulted in a
simpler expression for the integrand function:

ΦLD(ξ̂) =
3

2

∫ ∞
1

d cos θe−2ξ̂L cos θ

×
[
a1(Rξ̂)

(
rTM(2 cos2 θ − 1)− rTE

)
+ b1(Rξ̂)

(
rTE(2 cos2 θ − 1)− rTM

)]
(12.2)

where a1(Rξ̂) and b1(Rξ̂) are the Mie coefficients for the reflection on the sphere with ` = 1, and
rTE and rTM the Fresnel coefficients for the reflection on the plane. With a finite εS(iξ), the Mie
coefficients have the following expansion for small values of the parameter (Rξ̂):

a1(Rξ̂) = −2

3

εS − 1

εS + 2

(
Rξ̂
)3

+
2

5

(εS − 2)(εS − 1)

(εS + 2)2

(
Rξ̂
)5

− 4

9

(
εS − 1

εS + 2

)2 (
Rξ̂
)6

+O
((

Rξ̂
)7
)

b1(Rξ̂) =
εS − 1

45

(
Rξ̂
)5
− (εS − 1)(2εS − 5)

945

(
Rξ̂
)7

+
ε2
S(εS − 1)

4725

(
Rξ̂
)9

+O
((

Rξ̂
)10
)

(12.3)

where the dependence of εS on the imaginary frequency ıξ is implicit.
Because of the term e−2ξ̂L cos θ in Eq.(12.2) in the integrand, ξ̂ . 1

L and Rξ̂ = ξ̃ . R
L � 1 (as

discussed previously in the beginning of Section 8.1, p.124). Then the coefficient b1 will give a
negligible contribution compared to the coefficient a1. This would not be the case with a perfectly

reflecting sphere, whose low-frequency Mie coefficients (7.6) (p.109) are a1 ' −2
3

(
Rξ̂
)3

for the

electric and b1 ' 1
3

(
Rξ̂
)3

for the magnetic dipole. The additional hypothesis we made about
the finite conductivity is then equivalent to keeping only the electric dipole, and discarding the
magnetic one.
The integrand function (12.2) then simplifies to:

ΦLD(ξ̂) =
3

2

∫ ∞
0

d cos θe−2ξ̂L cos θa1(Rξ̂)
[
rTM(2 cos2 θ − 1)− rTE

]
= −εS − 1

εS + 2
R3

∫ ∞
ξ̂

dκ e−2κL
[
rTM(2κ2 − ξ̂2)− ξ̂2rTE

]
= −εS − 1

εS + 2
R3

∫ ∞
0

kdk

κ
e−2κL

[
rTM(k2 + κ2)− ξ̂2rTE

]
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Using L = L+R ' L, to replace L by L in the translation operators e−2κL, we finally obtain an
energy ECP, whose expression is similar to the Casimir-Polder formula (12.1), with an electric
polarizability16 αS(iξ) for the sphere obeying a Clausius-Mosotti relation:

ECP = −~
∫ ∞

0

dξ

2π

αS
4πε0

∫ ∞
0

kdk

κ

(
ξ̂2|rTE|+

(
k2 + κ2

)
|rTM|

)
e−2κL (12.4)

with
αS

4πε0
=
εS(iξ)− 1

εS(iξ) + 2
R3 .

Here we have used the fact that rTE (iξ) < 0 and rTM (iξ) > 0 with our convention for the sign of
the Fresnel coefficients. We repeat at this point that the energy ECP in the formula (12.4) has
been obtained from the scattering formula for E after two simplifications corresponding to the
perturbative approximation and electric dipolar approximation. We will see in the next sections
that it contains in particular the limits of non-retarded van der Waals and retarded Casimir-Polder
expressions [239, 240], as does the Casimir-Polder interaction between atoms [236]. The energy ECP

always scales as R3, that is also the volume of the sphere. This result means that the nanosphere
behaves as a big atom with a polarizability αS proportional to its volume at the limit R� L. As
we will see in the next sections, this simple behavior does not remain true for arbitrary values of
the radius R, outside the range of validity of the electric dipolar-simple scattering approximation.
This is already visible from the ratio of the two energies E and ECP presented in Fig. 55. While
at the limit of large distances (L� R), ECP efficiently predicts the correct quantity for the energy,
E and ECP depart from each other when the distance decreases, as soon as L . 100R.
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0.6

0.8

1

L (nm)

E 
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Figure 55: Ratios of the exact energy E to its Casimir-Polder-like expression ECP obtained from
electric dipolar-simple scattering approximation. The sphere radius is R = 1 nm.

We now study how the formula for the Casimir-Polder energy (12.4) behaves in the limiting
cases of small and large distances. At short separations we expect to recover the non retarded
Van der Walls expression, while at large separations the retarded Casimir-Polder one should be
obtained. First we need to characterize the sense of ’short’ and ’large’ distances, with lengthscales
characterizing the optical response of the materials. Then the expression (12.4) for the energy will
be derived in each limiting case. We emphasis that the expression (12.4) has been derived from
16In SI units.
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12.1 The Casimir-Polder formula for a dielectric nanosphere

the scattering with the assumption (R� L), which is then implicit in every additional limiting
case studied.

12.1.2 Description of the materials properties

We first specify the materials for the two objects for illustrative purpose, and choose the case of
interest for UCN studies [235], namely a diamond nanosphere above a copper plane. We model
the optical response of copper by a plasma model:

εP (iξ) = 1 +
ω2
P

ξ2
(12.5)

where ω2
P is the squared plasma frequency, proportional to the density of conduction electrons

in the metal. For explicit calculations, we will use the relation ωP = 2πc/λP with the plasma
wavelength λP = 136nm. We do not choose a Drude model for practical purpose in the derivations.
It would be possible to include dissipation in the metal through a damping rate γ, however this
parameter would be small compared to ωP for a good metal such as copper, and its influence
would also be small at the not too large distances considered in the present study (see [140] for
more details and references).
The dielectric function of diamond is described by a Sellmeier model:

εS(iξ) = 1 +
∑
i

Biω
2
i

ω2
i + ξ2

(12.6)

for which a sufficient description is obtained with a single component. We use B1 = 4.91 and
ω1 = 2πc/λ1 with the wavelength λ1 = 106nm. The damping is disregarded here since it does not
play any significant role.

For copper, εP (iξ) is very large for ξ much smaller than ωP , which means that the metal tends
to become a very good reflector. For diamond, εS(iξ) tends to its static value εS(0) = 1 +B1 for ξ
much smaller than ω1. For larger frequencies in contrast, the dielectric properties become poorer
for diamond as well as copper. As ωP and ω1 have similar values, we thus expect a transition to
take place between van der Waals and Casimir-Polder regimes [236] when the distance between two
objects is of the order of λP or λ1. The two presented models (12.5-12.6) could easily be improved
by taking into account dissipation and interband transitions for copper, and multiple components
and damping in the Sellmeier model for diamond, but are here simplified for illustrative purpose.

12.1.3 Long distance regime (L� λ1, λP )

The long-distance regime will be determined by the contribution of low frequencies to the Casimir
effect, and the optical properties of the two objects specified in the previous will take a simpler
form. For the dielectric nanosphere modeled by a Sellmeier equation (12.6), the condition L� λ1

allows to write that ξ . c
L � 2πc

λ1
= ω1 and finally the dielectric constant simplifies to its static

value εS(ξ) ' εS(0) = 1 +B1. For the metallic plane, the condition L� λP allows to write that
ξ
ωP
. λP

2πL � 1, and the Fresnel coefficients go to unity: rTE = −1, rTM = 1. For practical purpose
we introduce the dimensionless parameters:

κ̄ = κL ; ξ̄ =
ξL

c
; k̄ = kL

α0 =
εS(0)− 1

εS(0) + 2
=

αS(0)

4πε0R3
=

B1

B1 + 3
.
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With those low-frequency simplifications on the optical properties, the Casimir energy ECP can be
computed analytically:

ECP ' −
~c

2πL4

∫ ∞
0

dξ̄ α0R
3

∫ ∞
0

k̄dk̄

κ̄

(
ξ̄2 + k̄2 + κ̄2

)
e−2κ̄

= −~cα0R
3

2πL4

∫ ∞
0

dξ̄

∫ ∞
ξ̄

dκ̄ 2κ̄2e−2κ̄

= −~cα0R
3

πL4

∫ ∞
0

dξ̄ I2(ξ̄)

= −~cα0R
3

4πL4

∫ ∞
0

dξ̄ e−2ξ̄
(
1 + 2ξ̄ + 2ξ̄2

)
= −3~cα0R

3

8πL4
(R, λ1, λP � L) (12.7)

E4 = − c4

L4

(
4

3
πR3

)
with c4 =

9~cα0

32π2

and an energy with a L−4 power law is obtained, similarly to a retarded Casimir-Polder expression.
This long-distance limit of ECP will be noted E4 from now on.

12.1.4 Short distance regime (L� λP )

In the short-distance regime, we reverse the condition to L � λP , and we do not need any
assumption on λ1. This limit is usually referred to as the plasmon limit in many situations, and
yields simplifications in the Fresnel coefficients. Let us first observe that κ̄ ∼ 1 with the following
re-orderings of the Casimir-Polder formula (12.4) for a dielectric nanosphere:

ECP = −~cR3

2πL4

∫ ∞
0

dξ̄

(
εS(ξ̄)− 1

εS(ξ̄) + 2

)∫ ∞
ξ̄

dκ̄
(
ξ̄2|rTE|+ (k̄2 + κ̄2)|rTM|

)
e−2κ̄

= −~cR3

2πL4

∫ ∞
0

dκ̄ e−2κ̄

∫ κ̄

0
dξ̄

(
εS(ξ̄)− 1

εS(ξ̄) + 2

)(
ξ̄2|rTE|+ (k̄2 + κ̄2)|rTM|

)
= −~cR3

2πL4

∫ ∞
0

dκ̄ φ(κ̄) .

For κ̄ � 1, φ(κ̄) is small because of the term e−2κ̄. For κ̄ � 1, φ(κ̄) is small because the
integration domain for ξ̄ becomes very small. Therefore, the former integral only contains
noticeable contribution from values κ̄ ∼ 1.
Let us now study the Fresnel coefficients in the plasmon limit (L � λP ). We first define the

parameter x from the permittivity εP (ıξ) for the plane (12.5):

x =
ξ̄

κ̄

√
εP − 1 =

2πL

κ̄λP

where λP
2πL � 1 in the plasmon limit, leading to x � 1. The Fresnel coefficients can be easily

studied by using their expression depending on the parameter x:

rTE =
1−
√

1 + x2

1 +
√

1 + x2
rTM =

1 +
(
κ̄
ξ̄

)2
x2 −

√
1 + x2

1 +
(
κ̄
ξ̄

)2
x2 +

√
1 + x2

.
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In the present case, with x � 1, we conclude that the first coefficient is negligible: rTE =
−x2

4 +O
(
x4
)
and that the only contribution in the integral over κ̄ are for κ̄� ξ̄, which allow rTM

to have noticeable values. In this case the second reflection coefficient takes a Lorentzian form:

rTM =

(
κ̄
ξ̄

)2
x2 +O (x)

2 +
(
κ̄
ξ̄

)2
x2 +O (x2)

' 1

1 +
(

ξ̄
KP

)2 with KP =
2πL√
2λP

.

Then the reduced polarizability αS(ξ̄) for the sphere can also be written in a Lorentzian form:

εS(ξ̄)− 1

εS(ξ̄) + 2
=

α0

1 + (1− α0)
(
ξ
ω1

)2 =
α0

1 +
(

ξ̄
KS

)2 with KS =
2πL

λ1
√

1− α0

and the computation of the Casimir energy can then be carried out as an integration of a product
of two Lorentzian forms:

ECP ' −
~cR3

2πL4

∫ ∞
0

dξ̄

(
εS(ξ̄)− 1

εS(ξ̄) + 2

)∫ ∞
ξ̄

dκ̄ (k̄2 + κ̄2)rTM(ξ̄, κ̄)e−2κ̄

= −~cR3

πL4

∫ ∞
0

dξ̄

1 +
(

ξ̄
KP

)2

(
εS(ξ̄)− 1

εS(ξ̄) + 2

)∫ ∞
0

dk̄ k̄2e−2k̄

= −~cR3

4πL4

∫ ∞
0

dξ̄

1 +
(

ξ̄
KP

)2

α0

1 +
(

ξ̄
KS

)2

= −~cR3α0

8L4

KPKS

KP +KS

= − ~cπα0R
3

4
(√

2λP + λ1
√

1− α0

)
L3

(R� L� λP ) (12.8)

E3 = − c3

L3

(
4

3
πR3

)
with c3 =

3~cα0

16
(√

2λP + λ1
√

1− α0

) .
An energy with a L−3 power law is obtained, similar to a non-retarded van der Waals expression.
It shows that the power-law in L changes from L−4 to L−3 just because of the imperfect reflection
on the plane, leading to the plasmon limit for short distances L� λP .

This last result is a first clue that using a point-like picture for the nanosphere, underlying the
Casimir-Polder formula, can lead to difficulties. For instance, if one wants to solve the Schrödinger
equation for the wave function of a small object close to the surface, the problem becomes singular
at the origin when the potential behaves like L−n, with n ≥ 2 [241]. The short-distance limit E3

thus shows that the Casimir-Polder formula cannot lead to a well-posed mathematical problem,
and that it is necessary to consider another approach, which would take into account the finite
size of the nanosphere. In the next section, we show how using the complete multipolar expression
from the scattering formalism allows to solve this kind of problem.

12.2 The complete multipolar expression E

We now consider the complete multipolar and multiscattering expression for the Casimir energy
E when we remove the small sphere hypothesis (R � L). This term is given by the complete
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scattering formula. We first consider the large and short separation limits, then we analyse the
dependance on the parameters L and R to observe the differences with the dipolar-simple scattering
Casimir-Polder quantity ECP.
For the large distance limit of the expression E, the condition (L � λP , λ1, R) is recovered,

and the retarded Casimir-Polder result E4 of Eq.(12.7) is obtained. This is illustrated by the
convergence to unity of the ratio E

ECP
in Fig. 55 (p.160), and is connected to the fact that the

limits of small sphere and large distance are compatible.

12.2.1 The short distance limit

The short distance limit however writes (L � λP , λ1, R), and the relation between L and R is
inverted with respect to E3 presented in Eq.(12.8), which may change the resulting expansion
of the energy. In this limit, the proximity force approximation is valid and allows to derive an
asymptotic expression for the energy Eplas

PFA = 2πRDplas
PP from the primo-potential Dplas

PP in the
plane-plane configuration, introduced in Section 4.2 (p.56).
The plasmon limit L � λP has been studied in the case of two plates of the same material

modelled by the plasma model in [121, 133] for the Casimir force F , whose results are discussed in
Section 2.5 (p.42) and lead to a finite conductivity correction factor ηPF ' α L

λP
, with a constant

α ' 1.1933. In the limit of short distances, the power of 1
L in the Casimir force thus loses one order.

Below we present the corresponding result for the plane-plane energy Eplas
PP and primo-potential

Dplas
PP , obtained through consecutive integrations of F plas

PP , and the finally resulting PFA energy in
the sphere-plane case:

F plas
PP = ηPFF

perf
PP ' − ~cπ2αA

240λPL3
ηPF ' α

L

λP

Eplas
PP ' −

~cπ2αA

480λPL2
ηPE '

3α

2

L

λP

Dplas
PP ' −

~cπ2αA

480λPL
ηPD ' 3α

L

λP

Eplas
PFA = 2πR

Dplas
PP

A
' −~cπ3αR

240λPL
(12.9)

with α =
30√
2π2

∞∑
n=1

1

n3

(4n− 3)!!

(4n− 2)!!
' 1.1933 .

A similar conductivity reduction factor ηPF has been derived [218] for the case of a plasma plate in
front of a Sellmeier plate, and yields:

ηPF =
15

2π7/2

∞∑
n=1

(
B1
B1+2

)n
n3

n−1∑
k=0

Γ(n+ k)Γ(n− k − 1/2)

Γ(n)Γ(n− k)Γ(k + 1)

(
(−1)nΩ2k+1

p Ω∗2n1 + (−1)kΩ2n
p Ω∗2k+1

1

(Ω2
P − Ω∗21 )n+k

)

= α∗
L

λ∗
(12.10)

with ΩP = 2πL
λP

, Ω∗1 =
√
B1 + 22πL

λ1
, and λ∗

α∗ = 108.51 nm for the present values of the parameters.
From the power law for ΩP and Ω∗1 in (12.10), we see that the conductivity reduction factor takes
the usual form α∗ Lλ∗ , where λ

∗ is a combination of λP , λ1 and B1, and α∗ is a complicated, yet
numerically computable, number that depends only on B1. Finally, thanks to a procedure similar
to the one presented in (12.9), we get EPFA, which is the short distance limit of the complete
multipolar Casimir energy E:

EPFA = −~cπ3α∗R

240λ∗L
(L� λP , λ1, R) . (12.11)
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This result is very different from E3 obtained in Eq.(12.8) for the short-distance limit of the
Casimir-Polder limit, the clearer sign being the observation that E3 ∝ R3

L3 , and EPFA ∝ R
L . This

change comes from the integration of all multipoles in the description of the scattering, and can be
illustrated from the oversimplified following derivation, inspired by the low-frequency expansion of
the Mie coefficients a` ∼ ξ̃2`+1 ∝

(
R
L

)2`+1:

∞∑
`=1

(
R

L

)2`+1

=
R3

L3︸︷︷︸
dipolar

+
R5

L5︸︷︷︸
quadrupolar

+ · · · = R3

L3

1

1 +
(
R
L

)2 =
R3

L(L2 +R2)

which becomes R3

L3 when L� R, as in E3, and R
L when L� R, as in EPFA.

The ill-behaved Schrödinger problem caused by the L−3 dependance in E3 for the commonly
used Casimir-Polder formula is then solved for the present case of a nanosphere by taking into
account its finite size through a full multipolar and multiscattering treatment of the cavity. The
exact solution E for a finite value of R predicts a smoother power law L−1 in the vicinity of the
surface and thus leads to a regular solution for the Shrödinger equation [235]. This plays a crucial
role in the determination of the quantum states obtained by solving the Schrödinger equation
for the wave function of the nanosphere in this potential, in the study of the interaction between
UCNs and nanospheres, but could also for possible other applications [242].

12.2.2 Power laws in L and R for the Casimir energy

To study the dependence for the Casimir energy on the surface-surface distance L and on the
radius of the sphere R, we will use as previously the logarithmic slopes (log-log derivatives) of the
absolute value of the energy |E| = −E:

ν = −∂ ln |E|
∂ lnL

=
LF

E
µ =

∂ ln |E|
∂ lnR

where F = −∂E
∂L is the Casimir force derived from an energy E.

The parameter µ is always 3 for the perturbative electric dipolar approximation ECP in (12.4), as
it is equivalent to a Casimir-Polder formula with a Clausius-Mosotti relation for the polarizability
of the sphere. On the contrary, ν should shift from 4 at long distance to 3 at short distance for
ECP, as expected from the asymptotic forms of the retarded Casimir-Polder energy E4 and the
non-retarded van der Waals energy E3 obtained in Eqs. (12.7) and (12.8), respectively.

The complete expression of the Casimir energy E between the plane and the nanosphere, coming
from the scattering formula, takes into account the size of the nanosphere with the inclusion of
higher multipoles in its optical response, and higher order reflections inside the cavity. While the
large distance behavior should be the same as ECP, the short distance behavior is now given by
the PFA result (12.11), and differs significantly from the computation with a point-like sphere
(12.8), as it has the power law parameters (ν = 1;µ = 1), compared to (ν = 3;µ = 3) for E3 under
the same conditions.
We see on the left graph of Fig. 56 that ν tends to the expected value 4 at large distances.

At small distances in contrast, the van der Waals value ν = 3 obtained in (12.8) is never a good
approximation, which can be understood by inspecting the conditions (R� L� λP ) for E3 to be
valid. For any finite value of the radius R, we have indeed to cross the conditions L ∼ R when the
distance is decreased far below λP and (12.8) can no longer be valid after this crossing.

The right graph of Fig. 56 shows that µ approaches the value 3 at the limit of large distances,
but departs from it everywhere else, anew indicating that (12.8) is not a good approximation.

The difference in the observations of the local power laws ν and µ, outside the range of validity
of the long distance regime, seems to be caused by the lack of acknowledgement of the nanosphere’s
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Figure 56: (left)Logarithmic slope ν as a function of the distance L. The solid curves represent
the complete formula for E with different values for the radius R. The dashed curve
represents the atomic limit, that is a nanosphere with R→ 0. (right) Logarithmic slope
µ for variation with the radius R, as a function of the distance L. The solid curves
represent the nanosphere case with different values for the radius R. The atom surface
interaction corresponds in comparison to a constant µ = 3.

size. In the next section, we present an attempt to include the size R in the geometry within a
Casimir-Polder approach.

12.3 Averaging Casimir-Polder over the sphere’s volume

12.3.1 Applying Hamaker method to the Casimir-Polder expressions

We now give an improved version of the formula for a point-like sphere (12.4) which explains some
of the features of the exact energy E. As ECP has been demonstrated above in the limit of a
punctual sphere R → 0, we may improve it for a finite size of the sphere through an averaging
summation over the volume of the sphere, called Hamaker method. This procedure is described in
Appendix B.2.5 (p.227), and for the general Casimir-Polder formula (12.4) and it yields:

ECP =

∫
sphere

ECP(x)dV , with ECP =
ECP
4
3πR

3

= π

∫ L+2R

L
ECP(z)

(
−z2 + 2z(L+R)− L(L+ 2R)

)
dz . (12.12)

The latter integration has to be numerically computed in the general case. The derivation for
the simpler formula obtained at the short and large distance limits (12.7) and (12.8) can be done
analytically (see Appendix B.2.5 (p.227) for details):

E3 = −πc3

(
2R (L+R)

L (L+ 2R)
− ln

L+ 2R

L

)
(12.13)

E4 = − 4πc4R
3

3L2 (L+ 2R)2 .
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The long and short distance expansions of this formulas give:

[L� R]


E4 ' −4c4π

3

R3

L4

E3 ' −4c3π

3

R3

L3

[L� R]


E4 ' −c4π

3

R

L2

E3 ' −c3π
R

L

and the same power laws as the complete expression E are recovered for E4 at large distance, and
for E3 at short distances. This is a first clue that the averaged general Casimir-Polder energy ECP

should be better than ECP to describe the finite size of the nanosphere in the short separation
regime.
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Figure 57: (left) Logarithmic slope ν as a function of the distance L. The dashed curve represents
the Casimir-Polder energy ECP, and the blue circles its averaged quantity ECP. The
solid red (resp. green) line is for the averaged retarded Casimir-Polder (resp. non-
retarded van der Waals) quantity E4 (resp. E3). The solid black line is the exact energy
E. (right) Logarithmic slope µ as a function of the distance L (same conventions as in
left figure). The sphere radius is R = 1 nm.

In Fig. 57 we illustrate our findings by plotting the logarithmic slopes (ν, µ), that represent the
local power laws in 1/L and R, for E and ECP. We observe that the two latter quantities are very
similar over a great range of distances. The parameters (ν, µ) are also given for ECP, E3 and E4

for illustrative purpose.

12.3.2 Comparison of the various obtained quantities ECP, ECP, E3, E4 and E

In order to assess the quality of the estimations (12.12) and (12.13), we now plot on Fig.58
the ratios E/E4, E/E3 and E/ECP. The ratio E/ECP, already studied in Fig. 55 (p.160) is
reminded.

As expected, we find that E4 tends to reproduce the result E of the full numerical computation
at large distances. We also see that E3 obeys the same power law than E at small distances (ratio
tending to a constant value), but fails to predict the correct magnitude (the limit of the ratio
is not 1). If one writes the short distance limits respective to ECP and E as E3 = −c3π

R
L and

EPFA = −c′3πRL , a close inspection of the coefficients shows that:

c3

c
′
3

=
45α0λ

∗

π2
(√

2λP + λ1
√

1− α0

)
α∗
' 0.84 for the present values of the parameters.
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Figure 58: Ratios of the exact energy E to the various approximations from Casimir-Polder formula.
The black dashed curve uses the original small sphere regime ECP, the solid black curve
its averaged quantity ECP, and the solid green (resp. red) curve is the averaged short
(resp. large) distance regime E3 (resp. E4). The sphere radius is R =10 nm.

This difference is due to the fact that E3 in (12.13) has been obtained through an integration over
the sphere of the van der Waals energies, whereas EPFA in (12.11) has been calculated by taking
into account the multiple interferences occurring in the Fabry-Perot cavity [216]. This explains the
behavior seen on the short distance region of Fig.58.

Finally, the averaged Casimir-Polder expression ECP in (12.12), while it contains the right power
laws in L and R in the limiting cases of short and large distances, remains incapable of predicting
the sphere-plane Casimir energy when L . 100R, mainly for the reason invoked above. In this
regime, neither the Casimir-Polder formula, nor an averaged version, are good approximations to
compute the Casimir effect, and a complete multipolar and multiscattering approach is necessary.
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Part V.
Results at non-zero temperature
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We now include the effect of the temperature in the Casimir effect, by replacing the integral in
the scattering formula to a discrete sum over the Matsubara frequencies, obtaining the Matsubara
formula derived in Section 5.4 (p.78):

F = 2kBT

′∑
n

′∑
m

ln det
[
I −N (m)(ξ̃n)

]
ξ̃n = n

2πR

λT
,

where λT = ~c
kBT

is the thermal length (λT = 7.6 µm for ambient temperature T = 300 K). Doing
so, we add the classical thermal fluctuations of the electromagnetic field to the purely quantum
ones, and obtain the Casimir free-energy F = E − TS, where E is the Casimir energy at zero
temperature, T is the temperature of the two objects and of the vacuum, and S is the Casimir
entropy.
In order to study the different thermal regimes, we introduce the parameter αT = 2π L

λT
. The

low and high temperature regimes, respectively, are derived in Eqs.(3.5,3.6) (p.48) and lead to the
two opposite regimes:

(L� λT ) F = kBT

′∑
n

ln detD(ξ̃n) ' ~c
2πR

∫ ∞
0

dξ̃ ln detD(ξ̃) = E

(L� λT ) F = kBT

′∑
n

ln detD(ξ̃n) ' kBT

2
ln detD(0) = FHT .
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The inclusion of temperature in the scattering approach will enable us to study the dependence of
the Casimir effect on the temperature in the sphere-plane configuration. For the closed cavity of two
parallel planes, studied in Section 3.2 (p.49), the Casimir free-energy increases monotonically in
magnitude with the temperature for perfectly reflecting mirrors. For metallic mirrors, a qualitative
difference appears whether dissipation is included or not: while the result obtained when using the
lossless plasma model is quite similar to those of the perfect mirrors model, the Casimir free-energy
with mirrors described by the Drude model depends non-monotonically on the temperature, which
yields negative values for the Casimir entropy. This is illustrated by the thermal correction factors
plotted in Fig. 23 (p.51). In the high-temperature regime, this difference takes the form of a
factor 2 betweeen the two results [137], which generated a series of studies about the thermal effect
on the Casimir force [141, 142, 143, 144, 145].
For the sphere-plane configuration, we expect to observe differences with the former situation,

due to the change of geometry. Indeed, geothermal effects [159, 172, 173] have been observed for
the Casimir effect between perpendicular or inclined plates, as interplays between the effects of
geometry and temperature. Moreover, the sphere-plane configuration is an open geometry, and
should therefore be more sensitive to the spectral reweighting in the Casimir effect caused by
the inclusion of temperature [174]. This promising investigation has led very recently to studies
[243, 173, 175, 229, 228] dedicated to this configuration.
In Section 13, we will first consider the materials to be perfect reflectors, in order to focus

on the influence of the temperature on the Casimir effect between a sphere and a plane. Indeed
this new situation involves an increasing number of lengthscales, and as we will see in Section
14, the imperfect reflection and the dissipation on the materials have some interplay with the
thermal effects, and make the analysis even more complicated. We conclude with a study of the
high-temperature regimes in Section 15 for different materials, using the analytical expansions
obtained in Section 7.6 (p.117).
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13 Perfect mirrors at ambient temperature

In this section, we only consider the mirrors to be perfect reflectors at all frequencies, in order to
focus on the influence of thermal effects on the Casimir interaction between a sphere and a plane.
When this dependence is studied within PFA methods, the thermal effects are incorporated in
the model through the Casimir interaction calculated between two planes. Thus the influence of
the temperature T is decoupled from the geometric nature of the sphere, which makes the PFA
method not suitable to describe the geometry-temperature interplays [174].

We will first observe in Section 13.1 how the temperature affects the Casimir free-energy F for
various values of the distance L and the radius R. This dependance on the different lengthscales
will be studied more quantitatively through the local power laws in Section 13.2. The non-trivial
interplay between geometry and thermal effects is investigated and characterized in Section 13.3,
as well as its consequences on the Casimir entropy in Section 13.4. Finally, the question of the
accuracy of results obtained from PFA at short distances will be addressed in Section 13.5.

13.1 Observation of the thermal effects

To study the influence of the temperature, we define the thermal increase factor ϑF for the Casimir
free-energy obtained from the scattering formula:

ϑF =
F(T )

F(0)
ϑPFA
F =

FPFA(T )

FPFA(0)
=
DPP(T )

DPP(0)
(13.1)

which measures the increase of free energy when the thermal fluctuations (also called "thermal
photons") are added to the quantum vacuum fluctuations. The same factor for quantities computed
with PFA is denoted ϑPFA

F . It simplifies to the thermal increase factor for the primo-potential DPP

in the plane-plane case. In particular, ϑPFA
F does not depend on the sphere radius R within PFA

computations.
The numerical results for the thermal increase factor ϑF are presented in Fig. 59, as a function

of the temperature, for different values of the sphere’s radius R = 0.1, 1 and 10 µm. For the sake
of comparison, the R-independent factor ϑPFA

F obtained from PFA results is presented by a thin
solid black curve. The upper graph is for a distance L = 1µm, at which the thermal effects are
beginning to be noticeable for an ambient temperature T = 300 K in the plane-plane configuration.
The two lower graphs are plotted for distances of 500 nm (left) and 2 µm (right), respectively. The
vertical axis in the graphs has been zoomed to better observe the shape of the curves.

Obviously the factor ϑ computed in the sphere-plane configuration differs largely from the one
computed within PFA and strongly depends on the radius of the sphere R. In the plane-plane
configuration, the thermal factor ϑPFA, presented by a thin solid black curve in Fig. 59, is
a monotonically growing function from 1 at low temperatures to a high-temperature diverging
quantity, proportional to T (see Section 3.2 (p.49) for more details on the plane-plane configuration
with temperature). It follows that ϑPFA is always larger than one and the relative increase exceeds
the percent already at T = 50 K for L = 1 µm. In the sphere-plane configuration, small spheres
seem to be far less sensitive to the temperature than large ones, and undergo a delay in the thermal
increase from low to high temperatures. This is especially visible in the short-range case (lower left
graph on Fig. 59), where the ratio ϑ for a 0.1 µm radius sphere remains equal to 1 at much larger
temperature than for larger sphere radii. This R-dependance is missed by the PFA computations,
as it decouples the effects curvature from those of temperature.
Physically, the temperature dependance of the Casimir energy can be understood by recalling

the thermal wavelength λT = ~c
kBT

associated with thermal fluctuations, equal to 7.6 µm at ambient
temperature. For two planes, as well as for any cavity, temperature does not have an influence
when the mirrors separation is too small, because even the fundamental mode λT

2 does not fit
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Figure 59: Thermal increase factor ϑF for the Casimir free-energy with respect to the temperature,
by increments of 10 K. The leftmost (coldest) point is for T = 10 K. Red solid curves
represent the case of a large sphere, the dashed blue curves an intermediate sphere, and
the green dotted lines a small sphere. The R-independent PFA factor ϑPFA

F is presented
by a thin solid black curve for the sake of comparison. The distance is L = 1 µm in
the upper graph, L = 0.5 µm in the lower left graph, and L = 2 µm in the lower right
graph.
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inside the cavity. This low-temperature regime is then associated with the condition (L � λT )
and is illustrated by the fact that ϑ goes to 1 when the temperature goes to 0, as the thermal
wavelength λT is inversely proportional to the temperature T .

For a sphere in front of a plane, the finite size of the sphere gives a second possible cause for
thermal-insentivity: from the localisation principle, rays with a wavelength much bigger than the
sphere radius are less sensitive to the presence of the sphere. As the thermal fluctuations are
related to modes with typical wavelength of the order of λT , small sphere will not see them, and
a second low-temperature regime appears with the condition (R � λT ). Then the smaller the
sphere, the higher temperature necessary to begin to see the thermal effects, as clearly observed
from the lower left graph of Fig. 59: at a distance L = 0.5 µm, the factor ϑ remains longer on a
value close to 1 for small spheres when the temperature is increased.

A much more surprising observation is that the thermal factor ϑ can in some cases become lower
than 1, meaning a decrease in the Casimir free-energy when the temperature is increased from
T = 0 K to a given T > 0. In other terms, under certain conditions the thermal photons may
have a repulsive contribution to the Casimir effect. In the three graphs of Fig. 59 this is always
observed for small spheres (R = 0.1 µm), for which the thermal factor ϑ is first decreasing at low
temperatures, before reaching a minimum at around αT = 2πL

λT
' 1.3, and finally increases for

high temperatures. For bigger spheres, this seems to happen only when the distance L is large
enough, as the red curve in lower right graph of Fig. 59 decreases to a minimum before reaching
the increase of the high-temperature regime.
This decrease in the free-energy with temperature was highly unexpected, as it does neither

occur in the plane-plane configuration with perfect mirrors, nor in the PFA computations for
the sphere-plane configuration. However one finds the same phenomenon when using considering
dissipative metals such as gold modelled by a Drude model for the dielectric function. It will be
studied more thoroughly in Section 13.3, as a signature of a non-trivial interplay between the
effects of temperature and geometry in the Casimir effect.

13.2 Power laws

In the ideal case of perfectly reflecting mirrors at non-zero temperature T , only three length scales
are involved in the problem: the distance L between the surfaces of the two objects, the sphere
radius R, and the thermal wavelength λT = ~c

kBT
. It follows that the Casimir effect only depends

on the two ratios
(
L
R ,

L
λT

)
, and therefore we can distinguish between four different asymptotic

regimes. For each one we have an simple analytical expression of the Casimir free-energy, either
from the proximity force approximation (PFA) when L� R, or from the long-distance limit (LD)
computed in Section 8.2 when L� R. These expressions are summed up in Table 13.

L
R � 1 L

R � 1

L
λT
� 1 FT=0

PFA = −~cπ3R
720L2 FT=0

LD = − 9~cR3

16πL4

L
λT
� 1 FT→∞PFA = − ζ(3)~cR

4λTL
FT→∞LD = − 3~cR3

8λTL3

Table 13: Four asymptotic regimes for the Casimir free-energy between two perfectly reflecting
mirrors at temperature T .

From those explicit expressions, we observe that the Casimir free-energy undergoes a rich variety
of changes in the power law with respect to the distance L and the radius R. To describe them,
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13 PERFECT MIRRORS AT AMBIENT TEMPERATURE

we define, as previously, two parameters (ν, µ) describing the local power-law in 1
L and R:

ν = −∂ ln |F|
∂ lnL

=
LF

F µ =
∂ ln |F|
∂R

where F = −∂F
∂L is the Casimir force. When the distance L increases from zero (L � R, λT )

to infinity (L � R, λT ) for fixed R and λT , the parameter ν changes from a 2 to 3, and the
proportionality with respect to the sphere radius (F ∝ R) becomes a proportionality with respect
to the sphere volume (F ∝ R3). Moreover, the shift of the local power-law ν for 1

L from 2 to 3 can
undergo an intermediate regime that can be up to 4 if the regime (R� L� λT ) exists (upper
right box), or down to 1 if the regime (λT � L� R) exists (lower left box).
In Fig. 60, we present how ν, the local power law in 1

L , changes from 2 to 3 with respect to
the aspect ratio L

R . The different curves represent various values of the sphere radius, at ambient
temperature. The low-temperature νLT and high-temperature νHT cases are given in blue solid
line and black dashed-curve, respectively.
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T0 ; R = 0.1 µm

T0 ; R = 1 µm
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T0 ; R = 100 µm

T " #

Figure 60: Logarithmic slope ν as a function of the aspect ratio L
R . The blue solid line (resp. black

dashed-line) represents the low-temperature (resp. high-temperature) regime, while
green, yellow, red and purple curves are for ambient temperature with increasing radii
of the sphere (0.1 µm, 1 µm, 10 µm and 100 µm). Ambient temperature is T0 = 300 K.

We observe that the curves for ambient temperature T0 shift from the low-temperature curve νLT

to the high-temperature curve νHT when the distance increases. For a large sphere, as illustrated
by the purple curve for R = 100 µm, the parameter ν quickly recovers νHT, and goes from 2 to 3
with an intermediate minimum tending to 1. For small spheres, the low-temperature curve νLT is
followed for larger distance, and ν can have an intermediate maximum up to 4, as illustrated by
the green curve for R = 100 nm. This was expected, as for a given aspect ratio L

R and temperature
T , the low and high temperature regimes, characterized by low and high ratios L

λT
, thus by small

and large distances L, are equivalent to large and small radii R, respectively.
We now present the local power law in the sphere radius R in Fig. 61. Again, different curves

are for various radii of the sphere, at ambient temperature, while blue solid line and black dashed-
curve are for zero and infinite temperatures, respectively. The two thermal limiting cases have
a logarithmic slope µ for the variable R that goes from 1 to 3 when the distance increase, but
the two do not superimpose. A possible interpretation is that the way the aspect ratio L

R , and
thus the geometry, influence the dimensionality of the free-energy F with respect to the radius
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Figure 61: Logarithmic slope µ as a function of the aspect ratio L
R . Blue (resp. black) curve

represents the low-temperature (resp. high-temperature) regime, red and green curves
are for ambient temperature with radii of the sphere of 1 µm and 10 µm. Ambient
temperature is T0 = 300 K.

of the sphere R is not the same, depending on the temperature. The free-energy goes from the
low-T regime at short separation to the high-T regime at large separation, for the same reason as
explained in the study of ν.

We finally remark that the high-temperature regime for the free-energy, given in Section 7.6 as
the zero-frequency limit of the integrand Φ(0), only depends on L̃, thus on the aspect ratio L

R . It
yields that ν = µ in this regime, meaning that the black solid curves on Figs. 60-61 are exactly
the same.

13.3 Correlations between curvature and thermal effects

In Section 13.1, we observed that the thermal increase factor depends on the sphere radius R,
which is a clear sign of a correlation between the effects of curvature and temperature. We now
study more specifically this interplay, and its unexpected role on the thermal correction factor
ϑ. The consequence on other parameters, such as the entropy S or the accuracy of PFA, will be
discussed separately in Sections 13.4-13.5.

We keep the same definition of the correlation number as in Section 11.3 (p.152), and in this
case the correlation number for the effects of temperature (T) and geometry (G) reads:

δTGF =
ηTGF
ηTFη

G
F
− 1 =

F(T )
FPFA(0)

FPFA(T )
FPFA(0)

F(0)
FPFA(0)

− 1 =
F(T )FPFA(0)

F(0)FPFA(T )
− 1 (13.2)

where the geometry correction factor ηGF = ρF = F
FPFA

is taken at (T = 0), and the thermal

correction factor ηTF = ϑPFA
F = FPFA(T )

FPFA(0) is the one from a PFA computation.
Until now, we only considered correlations of effects with opposite domain of applicability:

• In the plane-plane case, studied in Section 3.2.3, the imperfect reflection on the materials
had an impact only for small distances (L . λP ), whereas temperature had noticeable
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13 PERFECT MIRRORS AT AMBIENT TEMPERATURE

influence only for large distances (L & λT ). It followed that the correlations were only
observed in a limited intermediate regime λT . L . λP .

• In the sphere-plane case at zero temperature, studied in Section 11, we observed correlations
between the effects of geometry and metallic response of materials. The effect of curvature
were only important at large distance (L & R), while the imperfect reflection again only
had an influence for short distance (L . λP ). Nevertheless, influence of the correlation was
observable even for large distance.

In the present case, temperature and geometry have an effect for the same regime of long distance,
(L & λT ) for the former, and (L & R) for the latter. One can thus expect a much more significant
and profound correlation.

In Fig. 62 we present the three terms involved in the definition (13.2) of the correlation number
δTGF , for the Casimir force. If the effect of temperature and geometry were uncorrelated, the total
correction factor for the force ηTGF would be equal to the product of the two simple correction
factors ηTF and ηGF . We will see that this is generally not the case, apart from short-distance limit.
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Figure 62: Force correction factor, with respect to the distance, for the temperature (ηTF , upper
solid black curve), for the geometry (ηGF , lower solid green curve), and for both (ηTGF ,
solid brown curve). The product of the two single corrections is presented in a dashed
brown curve for comparison. The left graph is for a sphere radius R = 1 µm, the right
graph is for a sphere radius R = 10 µm. The temperature is constant at 300K, yielding
a thermal wavelength λT = 7.6 µm.

As expected, the thermal correction factor ηTF = ϑPFA
F , presented by the solid black curve in

Fig. 62, is going to 1 for small distances, where the thermal photons do not contribute to the
force, and increases linearly with L for large distances, where classical thermal fluctuations have a
predominant part in the Casimir effect over the purely quantum ones. The curvature correction
factor ηGF is, as presented in Section 10.3 (p.145), lower than 1 for large distances, and goes to
unity when the sphere approaches the plane.

When the two effects are taken into account, we observe that the result is not the same, depend-
ing on whether they are incorporated simultaneously or that the corrections are just multiplied
together. This is illustrated in both graphs of Fig. 62, where the solid and dashed brown curves do
not superimpose, apart from the short-distance limit. This is a clear sign of a non-trivial interplay
between the effects of curvature and of temperature in the Casimir effect for the sphere-plane
configuration. The complete correction (solid brown curve) is always smaller than the product of
the two single corrections (dashed brown curve), which yields that δTG ≤ 0 is always fulfilled, the
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13.3 Correlations between curvature and thermal effects

equality being approached in the limit of short-distances.

Eq.(13.2) can also be expressed in two different points of view, one being a ratio of thermal
increase factors, the other being a ratio of correction factors of PFA:

δTG + 1 =
ϑ

ϑPFA
=
ρ(T )

ρ(0)
≤ 1 (13.3)

We first study the correlations in terms of the thermal increase factor ϑ, the second viewpoint will
be used to measure the accuracy of PFA results in Section 13.5. From the previous remark that
δTG ≤ 0 is always fulfilled, we deduce that we should observe ϑ ≤ ϑPFA. In other words, we expect
the PFA result to always overestimate the thermal correction factor for the Casimir free-energy.
This is indeed the case, as illustrated in Fig. 63, were the factor for the Casimir free-energy

ϑF is presented with respect to the distance L, for various sizes of the sphere, at fixed ambient
temperature (T = 300K). We plot the PFA thermal increase factor ϑPFA

F , independent of the
sphere radius, with a dashed curve. The long-distance expansion for ϑF , given by Eq.(8.19) (129),
in which L has been replaced by L to get a R-independent quantity, is represented by a dotted
line. Finally the exact quantities are presented by solid curves, each colour being associated to a
given value of the sphere radius R, within the range [0.1 µm, 50 µm].
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Figure 63: Thermal increase factor for the Casimir free-energy ϑF with respect to the distance L in
µm. The temperature is fixed to T = 300K and is associated to a thermal wavelength
λT = 7.6 µm. The solid curves represent the exact quantities, computed from the
scattering formula with `max = 250 for leftmost points at L

R = 0.02. The upper dashed
curve is the PFA thermal correction ϑPFA

F , and the lower dotted-line is the analytic
formula derived in the long-distance regime in Section 8.2. The only difference between
the two graphs is the scale, the left one being focussed on large distance, and the right
one being a zoom to smaller distances.

Curves for large values of R come closer to the PFA result, which can be seen as a (R→∞)-limit
case for given L and λT . Inversely, curves for small values of R tend to recover the long-distance
regime, which can be seen as a (R→ 0)-limit case for given L and λT .

In the left graph of Fig. 63, we focus on large distances to observe the increase of the Casimir free-
energy due to the contribution of the classical thermal fluctuations. We notice that ϑPFA increases
faster and for shorter distances than the exact quantities, which corroborates the observations
made in Fig. 59 (p.172): the smaller the sphere, the higher the temperature at which the increase
gets in. This progression undergoes a saturation effect, limited by the curve obtained at the limit
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13 PERFECT MIRRORS AT AMBIENT TEMPERATURE

of large distances (L� R). For even larger distances, as R is fixed for each solid curve, this limit
will be reached and every solid curve will collapse to the long-distance dotted-line.

In the right graph of Fig. 63, we focus on small distances to observe the unexpected local
decrease of free energy that appears when accounting for the contribution of classical thermal
fluctuations. At ambient temperature, this phenomena is found for R . 1 µm and is more
pronounced, in terms of magnitude and distance range, when the sphere radius is smaller. This
progression again saturates to the limiting curve of the long-distance case ϑLD

F . The local decrease
is of less than one percent, and is centered at a distance between 1 and 2 µm.

This behavior is more pronounced when switching to the study of the force instead of the
free-energy, as the minimum value of the thermal increase factor ϑF , presented in the long-distance
regime in Table 11 (p.130), is expected to be lower than for the free-energy. We plot on the left
graph of Fig. 64 this factor ϑLD

F for the force with respect to the surface-surface distance L. We
observe a local decrease for R . 2 µm in the case of the Casimir force, with up to 3% of magnitude,
on a wider range in L than the free-energy, centered at a distance between 2 and 3 µm.
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Figure 64: Thermal increase factor for the Casimir force ϑF with respect to the surface-surface
distance L (left graph) and the plate-to-center distance L = L + R (right graph).
The temperature is fixed to T = 300K and is associated to a thermal wavelength
λT = 7.6 µm. The solid curves represent the exact quantities, computed within the
scattering formalism with `max = 85 for the leftmost points at L

R = 0.05. The upper
dashed curve is the PFA thermal correction ϑPFA

F , and the lower dotted-line is the
analytic formula derived in the long-distance regime in Section 8.2 (p.126).

Curves for small values of the sphere radii seem to be similar to the long-distance curve, but
shifted by a distance R to the left. This would mean that for small radii, L is not the right
parameter for the description of the distance, and that the center-to-plate distance L = L + R
should be rather chosen. This is confirmed by the right graph of Fig. 64, where the thermal
increase factor for the force ϑF is presented with respect to the parameter L: for sphere radii
smaller than 1 µm, the curve for the exact result superimpose the long-distance regime.

This non-monotonic behavior of the thermal increase factor was highly unexpected, and represents
a non-trivial consequence of the correlation between the effects of geometry and temperature in
the Casimir effect. If one separates the total Casimir force at ambient temperature in two parts,
one being the contribution of (quantum) vacuum fluctuations, the other of (classical) thermal
fluctuations, ϑ < 1 means that the second term does not have the same sign as the first one. In
other words, the contribution of thermal photons to the Casimir force is repulsive.
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13.4 Casimir entropy

13.4 Casimir entropy

The non-monotonic behavior of the free-energy with respect to the temperature, presented in the
last section, is a feature that does not arise for simpler geometries such as the plane-plane cavity.
To study more specifically this non-trivial dependence on the temperature, we focus in this section
on the Casimir entropy S derived from the free-energy F . As the classical high-temperature regime
yields a Casimir free energy proportional to the temperature T (see Eq.(3.6) p.49), the entropy for
a given system goes to a constant value when T goes to infinity, and we can define a normalized
entropy with this constant value, in the same way as in Section 8.2 (p.126):

S = −∂F
∂T

ϑS =
S(T )

S(T →∞)
(13.4)

In Fig. 65, we present this normalized Casimir entropy ϑS with respect to the temperature T ,
for different values of the sphere radius, at fixed surface-to-surface distance L = 1 µm. The long-
distance analytical expansion derived by Eq.(8.19) (129) is also presented, and can be understood
as the limit R→ 0 for a fixed L.
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Figure 65: Casimir entropy normalized by its high-temperature limit ϑS = S(T )
S(∞) with respect to the

temperature. The red solid curves represent the case of a large (10 µm radius) sphere,
the dashed blue curves an intermediate (1 µm radius) sphere, and the green dotted
lines a small (0.1 µm radius) sphere. The black dotted-lines represent the analytic
formula derived in the long-distance limit. The surface-to-surface distance L is 1 µm.
The only difference between the two graphs is the scale, the left one being focussed on
high temperatures, and the right one being a zoom on lower temperatures.

The left graph focuses on the high temperature regime, which is reached the sooner the larger
the sphere. This statement is in agreement with a previous discussion on the fact that spheres will
make the thermal effect appear for higher temperatures, especially when they are small.
The right graph presents the non-monotonic nature of the entropy for small values of the

temperature. It shows that, for any size of the sphere, when the temperature increases from zero,
the entropy first decreases to a minimum before increasing to reach its constant value at high
temperatures, as it does for the long-distance regime. This minimum is more pronounced in depth
and width when the radius of the sphere is smaller, with a saturation effect when the curve reaches
the long-distance limit, equivalent to a (R→ 0)-limit when L is fixed.

We now study the Casimir entropy as a function of the distance L for a fixed ambient temperature
(T = 300K). Fig. 66 shows the Casimir entropy S, divided by R3 in order to compare the curves
with different radii. In the left graph the entropy is plotted with respect to the surface-to-surface
distance L, in the right graph with respect to the center-to-surface distance L.
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Figure 66: Normalized Casimir entropy S
kBR3 with respect to the surface-to-surface distance L (left

graph) or the center-to-surface distance L (right graph). The colors are the same as for
Fig. 64. The temperature is T = 300K.

The left graph of Fig. 66 presents the same feature as previously, that is to say the possibility
of a negative entropy for some range of values of the parameters. But at ambient temperature,
this negative entropy only appears for small enough spheres (R . 1µm), even at small separations,
which is different from the situation of a fixed distance presented in Fig. 65, where negative
entropies always occur for any radius of the sphere at low enough temperature.

The right graph of Fig. 66 shows the Casimir entropy at ambient temperature with respect to
the center-to-plate distance L = L+R. It illustrates the fact that the analytical expansion of the
Casimir entropy derived in the long-distance limit is recovered for aspect ratios L

R & 4.
The study of the Casimir entropy in the sphere-plane configuration for perfect mirrors shows

that this interaction entropy can take negative values in some cases. While in the plane-plane
configuration the appearance of negative values for the entropy was related to the dissipation in
the materials, it is here clearly related to the geometry, as this feature is particularly visible when
using small spheres, for which curvature is more pronounced. This result is not in contradiction
with basic thermodynamic principles [140, 244] as the Casimir energy is an interaction energy and
can thus be understood as a difference of energies.

13.5 Comparison with PFA at short distance

From Eq. (13.3) (p.177), one sees that the previously discussed negative correlation number δTGF ≤ 0
implies that ρF(T ) < ρF(T = 0). Hence the overestimation made by PFA on results for the
magnitude of Casimir effect is even more pronounced when the temperature is non-zero. In this
section we study the effect of temperature on the accuracy of the PFA results with the help of the
parameter ρF = F

FPFA
.

In the large distance limit studied in Section 8.2 (p.126), the importance of the influence of
temperature for the Casimir effect was found to be mainly dependent on the dimensionless quantity
2πL
λT

. For small distances (L� R) however, we find that the important parameter for the thermal
effect is αT = 2πL

λT
.

We illustrate this statement in Fig. 67, where we draw the ratio ρF of the exact Casimir
free-energy F divided by the free-energy calculated within PFA, FPFA, with respect to the aspect
ratio L

R . The different curves show how ρF gradually shifts from the low-temperature to the
high-temperature regime when the thermal index αT increases.
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Figure 67: Correction factor for the effects of curvature ρ = F
FPFA

with respect to the aspect ratio
L
R . Each curve represents a constant value of αT = 2πL

λT
, from the lower value 0.1 at the

top to the higher value 10 at the bottom. Curves for αT = 5, 10 are superimposed. The
leftmost point is for L

R = 0.02, computed with `max = 250.

As expected all curves go to unity when L
R → 0, meaning that the PFA result is correct at the

limit of a very large sphere, even when the temperature is non-zero. We also observe that for
αT & 2 the curves for ρ(L/R) collapse into a high-temperature regime, which is equivalent to
distances L & 2.5 µm at ambient temperature T = 300 K. Similarly, a low-temperature regime
is obtained for αT . 0.2, which is equivalent to the distance range L . 0.25 µm at ambient
temperature. In between, the curves shift from the latter to the former in an intermediate thermal
regime for αT ∈ [0.2, 2], centered around L ∼ 1 µm.
The fact that ρF(T ) takes on lower values than ρF(0) means that the error made by PFA is

increased by the inclusion of thermal effects in the model. The proximity force approximation not
only overestimates the magnitude of the Casimir energy or force, but it also overestimates the
thermal contribution to it. This additional error of PFA is again due to the correlations between
the effects of geometry and temperature. As a consequence, the linear first-order beyond-PFA
correction term βF will be greater in magnitude as soon as the temperature plays a role.

To give an example of the change, we present in Fig. 68 a polynomial fitting of the data points
to smaller values of the aspect ratio L

R , for a small and a large value of αT . For the low-temperature
regime with αT = 0.1, the first order correction coefficient βF ' −1.5 is close to the value obtained
at zero temperature, whereas for the high-temperature regime for αT = 10, a quadratic fit gives
βF ' −6.5, which is four times bigger.

The situation is even more complicated for the more realistic situation where the radius R and
the temperature T are fixed, and only the distance L can vary. Indeed, curves for a given value
of R, as presented in Fig. 69 for the Casimir force, go from a high-temperature regime at large
values of the aspect ratio L

R to a low-temperature regime at small values of LR , because the distance
L has to decrease when R is fixed, and so does the parameter αT at fixed temperature. The change
of regime is centered around L ∼ 1− 2µm, which corresponds to a different value of L

R , depending
on the sphere radius.

This behavior shows that because of the interplay between the thermal effects and the curvature,
a beyond-PFA function ρ(L/R) is not sufficient to measure the accuracy of PFA, as this would
depend greatly on the relative value of R and T when they are fixed. The beyond-PFA function is
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Figure 68: Extrapolation to short distances of the correction factor ρ = F
FPFA

thanks to a best
quadratic fit (with an additional point ρ(0) = 1). The upper blue curve represents the
low-temperature regime (αT = 0.1), the lower red curve represents the high-temperature
regime (αT = 10). The polynomial fit is y = 1− 1.52x+ 3.53x2 in the low-temperature
regime, and y = 1− 6.53x+ 49.6x2 for the high-temperature regime. The leftmost point
is for L

R = 0.02, computed with `max = 250.
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Figure 69: Correction factor for the effects of curvature ρF = F
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with respect to the aspect ratio
L
R . Each curve represents a sphere radius R. The temperature is fixed at 300K. The
leftmost point is for L

R = 0.05, computed with `max = 85.
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13.5 Comparison with PFA at short distance

rather dependent of two ratios of lengthscales, and thus we should write ρ
(
L
R ,

L
λT

)
for the present

purpose. Fig. 67 encourages to choose a fixed temperature and distance, and to vary only the
radius of the sphere. Unfortunately this procedure is not realistic for an experiment. However, it
can give good hints on the magnitude of the first order correction β, depending on the thermal
regime.
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14 METALLIC MIRRORS AT AMBIENT TEMPERATURE

14 Metallic mirrors at ambient temperature

In this section, as in the previous one, we study the Casimir interaction between a sphere and a
plane at ambient temperature, but now we introduce additionally a more accurate description of
the optical response for real materials, accounting for imperfect reflection. To do so, we use again
dielectric functions for the materials that is the lossless plasma model, or the dissipative Drude
model, the expressions of which are recalled in Eq.(11.1) (p.148).

Let us recall some observations from Section 11 (p.148) for the zero-temperature case. Although
every material is a poor reflector at high frequencies, which correspond to short separations, the
effect of imperfect reflection can also have an influence for long distances, as it is coupled to
the effect of curvature. An example of such an influence is the finite conductivity correction
factor ηPE , studied in Section 11.1 (p.148), which does not go to unity at the limit of large
distances when considering a small sphere (R 6� λP ). We expect to see a similar behavior in
the thermal case, especially as an increasing temperature yields an increasing importance of the
zero-frequency contribution, studied analytically in Section 7 (p.108), which is very dependent
on optical properties of the material.

We first study in Section 14.1 how the inclusion of the thermal fluctuations affects the Casimir
effect between a metallic sphere and a metallic plane, via the thermal increase factor ϑ and
the Casimir entropy, and compare these results with those obtained for perfect reflectors in the
previous section. We then change the point of view and consider in Section 14.2 the effects of
the introduction of a metallic response of materials for the Casimir effect at zero and ambient
temperatures. The various couplings between the effects of temperature, curvature, imperfect
reflection and dissipation are studied in details in in Section 14.3, and finally a most-realistic
beyond-PFA correction is analyzed in Section 14.4. In Section 14.5 we try and characterize the
different regimes in terms of power laws for the most realistic configuration of dissipative metals at
ambient temperature.

14.1 Influence of temperature for metallic materials

In the case of perfect reflectors studied in Section 13 (p.171), we found correlations between the
thermal and curvature effects, leading to an overestimation of the thermal increase factor made by
PFA. The results obtained from the scattering formula even showed that the magnitude of the
Casimir free-energy at ambient temperature could be lower than the one for zero temperature,
especially when considering relatively small spheres. This was illustrated in Fig. 63 (p.177), where
the thermal increase factor ϑF is lower than 1 for spheres of radius R . 1 µm. We have related
this feature to the appearance of negative values for the entropy for some range of the temperature
T and distance L.

With a dissipative metal, whose optical properties can be described by a Drude model, negative
entropies can already arise in the plane-plane geometry [140]. Thus there exists a range of distances
where ϑF < 1 for quantities calculated within PFA in the sphere-plane geometry. In Fig. 70, the
thermal increase factor within PFA ϑPFA is presented by a dashed curve, the different exactly
calculated increase factors for various sizes of the sphere by solid lines.

Naturally, the thermal increase factor ϑPFA obtained within PFA is radius-independent. It first
decreases with increasing L at short separations, reaches a minimum of 0.74 at L ' 2 µm, and
increases again when entering a high-temperature regime linear in T . The thermal increase factor
obtained from the scattering formalism ϑ has the same global shape, but depends on the sphere
radius R. For a large radius of 5 µm (blue curve) the ratio is close to the one obtained from PFA,
which is expected since for a fixed value of L, the aspect ratio L

R is then small. For smaller spheres,
the minimum moves to larger distances and decreases in depth.
The first general observation that the thermal increase factor ϑF depends on the radius R
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Figure 70: Thermal increase factor ϑF for the Casimir force ϑF with respect to the distance L in
µm. The temperature is fixed to T = 300K and is associated to a thermal wavelength
λT = 7.6 µm. The solid curves represent the exact quantities, computed within the
scattering formalism with a sufficient number `max of modes to get result far more
accurate than the curves’ width. The lower dashed curve is the PFA thermal correction
ϑPFA.

of the sphere means that, like for perfect conductors, there is a correlation between the effects
of curvature and temperature when metals are considered. However, in contrast to the perfect
reflectors calculations, for which PFA always overestimates the thermal correction factor, this
correlation has here an opposite effect for small distances, as the PFA underestimates the thermal
factor. Thus the contribution of the thermal photons to the Casimir force is indeed repulsive for
small distances, but less than what was to be expected from PFA predictions. For larger distances,
PFA overestimates the thermal correction factor, but the overestimation remains smaller than for
perfect mirrors.

In Fig. 71, we compare more specifically the obtained thermal increase factors for the Casimir
free-energy ϑDrud

F for metals described by a Drude model (red), with the ones for perfect reflectors
ϑperf
F (black), for a limited set of sphere radii (R = 0.1, 1, 10 µm), and with the R-independent

PFA computations.
Clearly the thermal correction is greater for perfect mirrors than for metallic ones, for each

sphere radius and independently of whether calculated within PFA or exactly via scattering theory.
Together with the previous statement that PFA overestimates the thermal factor for perfect
reflectors, underestimates it for Drude mirrors at short distances, and overestimates it less than for

perfect mirrors at large distances, we deduce that the relative difference
∣∣∣∣ ϑperfF
ϑDrud
F
− 1

∣∣∣∣ between the

thermal increase factors obtained for perfect and Drude mirrors is smaller when calculated with
exact quantities than within PFA computations. This result is corroborated by Fig. 71, where
the difference between dashed lines corresponding to PFA calculations is always larger than the
difference between solid lines corresponding to the results obtained with the scattering approach.

14.2 Influence of imperfect reflection at ambient temperature

The effect of imperfect reflection on the Casimir effect between a sphere and a plane has been
discussed at zero temperature in Section 11.1 (p.148), where we observed a non-trivial dependance
on the radius of the sphere. Unlike in the plane-plane geometry, the finite conductivity correction
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Figure 71: Thermal increase factor ϑF for the Casimir free-energy F with respect to the distance
L in µm. The radii of the sphere are 0.1 µm (upper left graph), 1 µm (upper right
graph), 10 µm (lower left graph), and 100 µm (lower right graph). The temperature
is fixed to T = 300 K and is associated to a thermal wavelength λT = 7.6 µm. The
black curves are for perfect reflectors, the green for mirrors described by the Drude
model. The dashed-curves have been obtained within PFA, the solid lines represents
exact calculations, performed with `max = 500 for the leftmost points at L

R = 0.01.
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14.2 Influence of imperfect reflection at ambient temperature

factor ηPE = EDrud

Eperf , which measures the decrease in the Casimir energy due to the introduction
of imperfect reflection, is not going to unity at the limit of large distances, but rather to 2

3 for
mirrors described by a Drude model.
At ambient temperature the finite conductivity correction factor ηP is going to 1

2 at large
distances in the plane-plane geometry, as the TE polarization vanishes for dissipative metals
in this limit. In the sphere-plane geometry however, the situation is more complicated since
different polarizations are coupled to each other, and not equivalent. We thus expect, as for the
zero-temperature case, that ηP behaves differently than predicted by PFA.
In Fig. 72 we present the finite conductivity correction factor for the Casimir free-energy ηPF

for various sizes of the sphere (R = 0.1, 1, 10 or 100 µm) with respect to the distance L. The PFA
results, coming from the study of the plane-plane geometry are presented by dashed lines, while
solid curves correspond to exact results in the sphere-plane geometry. The results for T = 0K are
recalled in blue, the new quantities for ambient temperature (T = 300K) are plotted in red.
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Figure 72: Finite conductivity correction for the Casimir free-energy ηPF = FDrud

Fperf as a function of
the distance L, for the Drude model. The sphere radii is 0.1 µm (upper left graph),
1 µm (upper right graph), 10 µm (lower left graph), and 100 µm (lower right graph).
Blue curves represent zero temperature, red curves ambient temperature (T = 300 K).
Solid lines are used for exact quantities, computed from the scattering formula with
`max = 500 for the leftmost points at L

R = 0.01, dashed curves are for PFA quantities.
The plasma wavelength is λP = 136 nm, the dissipation ratio δ = λP

λγ
is 0.004.

For the four sphere radii, we observe that the finite conductivity correction factor ηPF changes
with temperature, and like in PFA computations, that it is always lowered by the introduction
of the temperature. In other terms, we always have ηPF (T )

ηPF (T=0)
≤ 1, which is consistent with the
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14 METALLIC MIRRORS AT AMBIENT TEMPERATURE

statement of the previous section that ϑDrud
F
ϑperfF

≤ 1, as:

ηPF (T )

ηPF (T = 0)
=
FDrud(T )Fperf(0)

Fperf(T )FDrud(0)
=
ϑDrud
F

ϑperf
F

.

This gives informations on the sign of the correlation number δTPF ≤ 0 for the effects of temperature
and finite conductivity, and will be studied in more detail in Section 14.3.

When calculated within scattering theory the finite conductivity correction ηPF at zero temperature
turns out to be smaller than when calculated within PFA, while it is larger than its PFA counterpart
at ambient temperature, except for R = 0.1 µm and distances L . 1 µm. As a consequence, the
difference between the finite conductivity factors at zero and ambient temperatures is smaller than
expected from PFA predictions.
At large distances the predictions of the scattering theory become qualitatively different from

PFA predictions. As explained in Section 3.2.3 (p.51), in the long-distance limit for the plane-
plane geometry, the finite conductivity correction factor is 1 at zero temperature and 1

2 at ambient
temperature, which means that the dissipation at large distances plays a qualitatively different
role for vacuum and for thermal fluctuations. This ratio of 1

2 between the two limits has recently
given rise to a controversy [137, 245, 246, 247, 248, 249, 250, 251, 252, 141] on the validity of the
theory and the description of dissipation. Here, we show that in the sphere-plane geometry, both
finite conductivity correction factors ηPF (T ) and ηPF (0) tend to the same large-distance limit of 2

3
when calculated within the scattering formalism.

14.3 Study of various interplays

The most realistic configuration studied in this manuscript, a sphere and a plane made of dissipative
metals at ambient temperature, involves no less than five independent lengthscales: the distance
L, the sphere radius R, the thermal wavelength λT , the plasma wavelength λP related to high-
frequency transparency, and λγ related to dissipation in the material. A great variety of behaviors
emerge in this rich landscape when these lengthscales are changed.

In order to see the dependance on the different parameters, we separate the influence of different
effects, such as the temperature (T), the finite conductivity (P), the geometry (G) and the
dissipation in the materials. In this section we study the interplays between those effects, first by
couples of the three former, then separately for the dissipation.

14.3.1 Interplays between the effects of temperature and finite conductivity (TP)

For the effects of temperature and finite conductivity, the correlation number δTPF for the Casimir
free-energy can be written as:

δTPF =
ηTPF
ηTFη

P
F
− 1 =

FDrud(T )Fperf(0)

Fperf(T )FDrud(0)
− 1 =

ϑDrud
F

ϑperf
F
− 1 (14.1)

=
ηPF (T )

ηPF (T = 0)
− 1 . (14.2)

The study of this correlation number in PFA computations can be performed by considering the
plane-plane geometry, as in [207] and the results of which are recalled in Section 3.2.3 (p.51).
Whereas at zero temperature the finite conductivity has only an effect for short distances, the
combination with thermal effects does make an important change at large distances, as seen in
the dashed-curves in Fig. 72 in the previous section. Indeed, the thermal increase factor ϑPFA is
twice smaller for Drude mirrors than for perfect mirrors at the limit of large distances, yielding a
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14.3 Study of various interplays

limiting value −1
2 for δTPF in this limit, as illustrated by Fig. 25 (p.53). For short distances, the

temperature does not play a role anymore, and the correlation number should vanish. In between,
it is possible to infer from the curves in Fig. 24 (p.52) that δTPF is always negative for Drude
model, whereas it is always positive for plasma model (Fig.4.4 in [207]).

For the sphere-plane geometry, the difference between the thermal increase factors ϑ calculated
with the Drude model and the one for perfect mirrors, observed in Fig. 71 (p.186) can provide a
first guess on the correlation number, thanks to the relation (14.1). The very existence of a nonzero
difference is a clear sign of the appearance of correlations between the effects of temperature and
finite conductivity in the sphere-plane geometry. Moreover this correlation number δTPF should
always be negative, as in the observed range of parameters the curves for perfect reflectors in
Fig. 71 (p.186) lie above those for Drude mirrors.
From the alternative expression (14.2) of the correlation number, the comparison of the finite

conductivity correction factors ηP at zero and ambient temperature give an equivalent insight on
δTPF . From Fig. 72 (p.187), we also come to the conclusion that the correlation number should be
negative, as we observe ηP (T ) ≤ ηP (0) for any case.
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Figure 73: Correlation number δTPF quantifying the correlations between imperfect reflection (with
Drude model) and temperature, as defined in Eqs.(14.1-14.2), with respect to the
distance L. The dashed-line represents the PFA computation, the solid lines are results
of the exact calculations with different colors for different radii, computed from the
scattering formula with `max = 500 for the leftmost points at L

R = 0.01. The plasma
wavelength is λP = 136 nm, the dissipation ratio δ = λP

λγ
is 0.004.

In Fig. 73, we show the numerical evaluations of the correlation number δTPF as a function of
the distance L. The PFA computation for the free-energy FPFA are presented by a dashed-line
and is independent on the sphere radius R, since it is related to the primo-potential DPP in the
plane-plane geometry. The correlation number is negative as expected, going to 0 at short distances,
and to −1

2 at large distances.
Within the scattering formalism, δTPF is also negative, but shows a rich dependance on the sphere

radius with a rather complex non-monotonicity. At the limit of large distances there are no more
correlations between the effects of temperature and finite conductivity, as δTPF tends to vanish.
This long-distance disappearance of the correlations is confirmed by expression (14.2) and the
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14 METALLIC MIRRORS AT AMBIENT TEMPERATURE

observation that both ηPF (T ) and ηPF (0) tend to the value 2
3 at the limit of large distances in the

sphere-plane geometry, as seen on Fig. 72 (p.187).

14.3.2 Interplays between the effects of temperature and geometry (TG)

Both thermal and geometrical effects have a growing influence in the large-distance regime. Thus
their combination should not yield any change for short separations, whereas at larger distance it
is reasonable to expect a strong coupling between them. The correlation number for the Casimir
free-energy between the effects of temperature (T) and geometry (G) writes:

δTGF =
ηTGF
ηTFη

G
F
− 1 =

F(T )FPFA(0)

F(0)FPFA(T )
− 1 =

ϑF

ϑPFA
F
− 1 (14.3)

=
ρF (T )

ρF (T = 0)
− 1 (14.4)

and can be defined within any model for the mirrors material properties.
Perfectly reflecting mirrors have been studied in Section 13.3 (p.175) and a negative correla-

tion number has been found, yielding non-trivial interplay between the effects of curvature and
temperature. Indeed in Fig. 62 (p.176) we observed that we always have ηTGF ≤ ηTFηGF for perfect
mirrors, where the equality is recovered at the limit of short separations.

In the study of the influence of temperature for Drude metals conducted in Section 14.1 (p.184),
we found that for short distances the thermal correction factor was larger than expected from
PFA (ϑ ≥ ϑPFA), whereas for large distances the opposite occurs. These two different regimes,
associated with the expression (14.3) for δTG, mean that the correlation number for Drude metals
should change sign from positive to negative when the distance L increases.
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Figure 74: Correlation number δTGF between the effects of temperature (T) and geometry (G), as
defined in Eqs.(14.3-14.4), with respect to the distance L. Dashed-lines are for perfect
mirrors, solid curves for Drude mirrors. The sphere radii R are 0.1 µm (green), 1 µm
(blue), and 10 µm (red). The quantities from scattering formula are calculated with
`max = 500 for the leftmost points at L

R = 0.01. The plasma wavelength is λP = 136

nm, the dissipation ratio δ = λP
λγ

is 0.004, and the temperature is T = 300 K.

We present in Fig. 74 the numerical results for the correlation number δTGF with perfect mirrors
(dashed lines) and metallic mirrors described by the Drude model (solid curves), for different sizes
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of the sphere, as a function of the distance L. As expected, δTGF is always negative for perfect
mirrors, and decreases from 0 to a R-independent large-distance limit. For Drude mirrors we
observe the expected change in sign, as δTGF is positive at short distances and negative for large
distances. The correlation number first raises to a maximum that is larger for small spheres, then
decreases to a minimum, with a change of sign that occurs around L ∼ 1 µm, before increasing
again to a R-independent large-distance limit.

The large-distance limit of the correlation number can be computed analytically from the thermal
correction factors ϑ and ϑPFA. Within the PFA computation, we start from the high-temperature
thermal correction for the Casimir free-energy in the plane-plane geometry, given by Eq.3.11 (p.51)
for perfect mirrors, which is twice the result for mirrors modelled by the Drude model. They
translate into the equivalent thermal correction factors for the free-energy within PFA:

ϑperf
PFA (L→∞) =

180ζ(3)L

π3λT
ϑDrud

PFA (L→∞) =
90ζ(3)L

π3λT
. (14.5)

The exact thermal correction factors can be extracted from the analytical large-distance results
obtained in Section 8 (p.124). In particular, we found that for large distances the zero-temperature
and high-temperature limits for the Casimir free-energy with Drude mirrors both correspond to 2

3
times the respective limit with perfect mirrors. Using Eq.(8.22) (p.131), it follows that:

ϑperf (L→∞) = ϑDrud (L→∞) =
2πL

3λT
. (14.6)

Finally, by taking the ratio of (14.6) with (14.5), we obtain the correlation numbers for the
free-energy δTGF for perfect and Drude mirrors at the limit of large separations:

[perfect mirrors] δTGF (L→∞) =
π4

270ζ(3)
− 1 ' −0.69987 (14.7)

[Drude mirrors] δTGF (L→∞) =
π4

135ζ(3)
− 1 ' −0.3997 (14.8)

which are in agreement with the convergences observed in Fig. 74.
From the alternative expression (14.4) for the correlation number with beyond-PFA correction

factors, we deduce that the change in the sign of δTGF for mirrors described by the Drude model
can be associated with a crossing of the two functions ρDrud

F (T ) and ρDrud
F (0): for large distances,

we should have ρDrud
F (T ) < ρDrud

F (0), as with perfect mirrors, but for smaller distances L . 1 µm
we expect the opposite relation, especially for small spheres. This will be studied thoroughly in
Section 14.4.

14.3.3 Interplays between the effects of geometry and finite conductivity (GP)

The correlation between the effects of curvature and finite conductivity has already been studied
for the zero temperature case in Section 11.3 (p.152). Here we extend the former study to the
case of ambient temperature, and recall the expressions for the correlation number between those
two effects:

δGPF =
ηGPF
ηGFη

P
F
− 1 =

FDrudFperf
PFA

FDrud
PFA Fperf

− 1 =
ρDrud
F

ρperf
F
− 1 (14.9)

=
ηPF

ηPF ,PFA

− 1 . (14.10)

In the case of zero temperature, we observed in Fig. 72 (p.187) that the finite conductivity
correction factor obeys ηPF ≤ ηPF ,PFA (dashed blue lines above solid blue curves). Expression (14.10)
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yields δGPF ≤ 0 at zero temperature for the Casimir energy. For the force, Fig. 50 (p.153) shows
that generally ηGPF ≤ ηPF η

G
F , which means that the correlation number δGPF is negative for the

Casimir force as well. For short distances however, small positive values can appear for small
spheres.
For the Casimir force gradient G, we will re-inspect Fig. 54 (p.156). The fact that the two

beyond-PFA correction curves ρ for perfect and plasma mirrors cross each other is equivalent to a
change of sign for δGPG , thanks to the relation (14.9). For small distances, the correlation number
for the Casimir force gradient should be positive, then it should be negative. In any case, the
observation that for large distance the correlation number does not vanish is non-trivial, as finite
conductivity effects should be mainly located at short distances.

For non-zero temperatures, we already observed in Fig. 72 (p.187) that the finite conductivity
correction factors generally obey ηPF ≥ ηPF ,PFA (dashed red lines below solid red curves), except at
short separations for the smallest sphere considered. From expression (14.10) follows then that at
non-zero temperature, the correlation number δGPF for the Casimir free-energy is positive. The
negative values at very short distances may be considered as an exception, as for such distances
(L� λT ) thermal fluctuations do not enter the Casimir cavity anymore, and the zero-temperature
case is recovered.
After these preliminary remarks we now present in Fig. 75 the results of the full numerical

evaluations for the correlation number δGPF at both T = 0 K (dashed curves) and ambient
temperature T = 300 K (solid lines), with respect to the distance L. Green, blue and red curves
represent respectively results for spheres with a radius of 0.1 µm, 1 µm, and 10 µm.
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Figure 75: Correlation number δGPF between the effects of geometry (G) and finite conductivity
(P), as defined in Eqs. (14.9-14.10), with respect to the distance L. Dashed-lines are for
zero temperature, solid curves for ambient temperature (T = 300K). The sphere radii
R are 0.1 µm (green), 1 µm (blue), and 10 µm (red). The quantities from scattering
formula are calculated with `max = 500 for the leftmost points at L

R = 0.01. The plasma
wavelength is λP = 136 nm, the dissipation ratio δ = λP

λγ
is 0.004.

For zero temperature we observe, as expected, negative values for the correlation number δGPF
which is a monotonically decreasing function of L, going from zero at short distances to 1

3 at
the limit of large separations. For large spheres (R & 1 µm) the decrease below 0 only happens
for sufficiently large distances and has a simple form. For nanospheres, the decrease starts at
shorter distances, and the shape is more complex, with several inflections. This is due to the fact
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that for nanospheres R ∼ λP , meaning that the ranges of distance where the curvature and finite
conductivity effects play a role intersect, giving rise to a higher correlation.
For ambient temperature the situation is more complex. At the limit of large separations the

curves for any radius tend to a finite positive value 1
3 . Hence the correlation number is positive for

large enough separations. At shorter distance, the correlation number goes to zero, but can take
negative values by undergoing a minimum. This phenomena is particularly visible for nanospheres
(green solid curve).

At the limit of large distances, we can use analytical solutions to confirm the numerical results.
From Section 3.2.3 (p.51) we remark that the finite conductivity correction factor ηPPFA for PFA
computations with Drude model, derived from the plane-plane configuration, goes to unity at zero
temperature, and to the ratio 1

2 at non-zero temperature. From Section 8.4 (p.132), we know that
at the limit of large distances, the same ratio for the exact quantities in the sphere-plane geometry
is going to 2

3 , for zero or non-zero temperatures. These limits are summed up in Fig. 72 (p.187),
and from the expression (14.10), we get the following large-distance limits for the correlation
number:

[T = 0K] δGPF (L→∞) =
2/3

1
− 1 = −1

3
(14.11)

[T = 300K] δGPF (L→∞) =
2/3

1/2
− 1 =

1

3
(14.12)

which are in agreement with the numerical results.
From expression (14.9), it is possible to infer the relative behavior of the beyond-PFA correction

factors ρF for perfect and Drude mirrors, with respect to the distance. When the temperature is
zero or only plays a negligible role, the correlation number for the Casimir free-energy is negative
and the beyond-PFA correction factor ρDrud

F will be smaller than ρperf
F . However, with increasing

distance L, when thermal fluctuations become important, the curve for ρDrud
F will cross the one for

ρDrud
F and go above it.
Those statements are valid only for the Casimir free-energy, and could be different for the Casimir

force or force gradient, as illustrated in the beginning of this section for the PFA quantities.

14.3.4 Effect of dissipation

In Fig. 76, we isolate the effects of the dissipation on the Casimir force by plotting the ratio
between the thermal Casimir force values F plas calculated with the plasma model and FDrud

obained with the Drude model, with respect to the distance L, and for various sphere radii. The
PFA computation is given by dashed-line for reference and as usually, does not depend on the
radius R.

The ratio Fplas

FDrud , which measures the gain in the Casimir force when the dissipation is switched
off, is always smaller than what was expected from PFA computations. It increases with L when
R is fixed, but decreases with R at a given distance. The fact that this ratio depends on R is
a clear signature of the interplay between geometry, temperature and dissipation. Our analysis
shows that the Casimir force values obtained with and without dissipation are closer to each other
than expected from PFA. This is particularly true at large distance, as the studied ratio Fplas

FDrud

goes to the value 2 for PFA, as in the plane-plane configuration, but goes to f
(
λP
R

)
∈
[
1, 3

2

]
for

the exact result in the sphere-plane geometry.

14.4 Beyond-PFA corrections

The Proximity Force Approximation, introduced in Section 4.1 (p.55), relies on the assumption
that the sphere is large compared to the closest distance between the two surfaces, and therefore
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Figure 76: Ratio between thermal Casimir force values calculated with the plasma and the Drude
models, with respect to the distance L for different sphere radii. The solid curves from
bottom to top correspond to increasing values of sphere radii. The PFA prediction
corresponds to the dashed curve. The plasma wavelength is λP = 136 nm, the dissipation
ratio δ = λP

λγ
is 0.004.

should be applicable and give accurate results in the limit of small aspect ratios L
R � 1. Until

now it has been the only method used to obtained theoretical predictions to be compared with
the experimental results. As the error made by this approximation is not mastered, it is of great
interest to try and assess the accuracy of such an approximation. First beyond-PFA studies
([167, 233] and earlier works mentioned in Section 9 (p.137)) have been devoted to evaluate the
correction factor ρE = E

EPFA
, and its linear coefficient for small values of L

R in the case of perfect
mirrors at zero temperature. As seen in Sections 11.4 (p.153) for metals at zero temperature,
and in 13.5 (p.180) for perfect mirrors at non-zero temperature, the beyond-PFA correction factor
is greatly affected by the effects of temperature or by the introduction of finite conductivity in
the description of the optical response of the materials. In the former sections we have described
numerous and various correlations arising between the effects of curvature, temperature, and finite
conductivity, with different behaviors in separate distance regimes. Hence the factor ρF will be
even more affected by the complex interplay between all those influences, and should be written as
ρF

(
L
R ,

L
λT
, L
λP
, Lλγ

)
.

In this section we try to characterize the evolution of the beyond-PFA correction factor for the
Casimir free-energy ρF = F

FPFA
with Drude metals at ambient temperature when the radius of the

sphere R and the distance L evolve. We first focus on the effect of finite conductivity at ambient
temperature, with the perfect mirrors case studied in Section 13.5 (p.180) as a reference. We
will then change the point of view and focalize on the thermal effects for Drude metals, with the
zero-temperature case discussed in Section 11.4 (p.153) as reference.

14.4.1 Influence of finite conductivity on the beyond-PFA corrections at ambient
temperature

In Section 14.3.3 (p.191), we predicted two different regimes for the comparison of ρDrud
F and

ρperf
F at ambient temperature: when L is small, so that the thermal effects are not predominant,
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14.4 Beyond-PFA corrections

we recover a zero-temperature situation where ρDrud
F ≤ ρperf

F . When the distance increases, the
thermal fluctuations play an increasing role, and a second regime appears, where the relation gets
reversed to ρDrud

F ≥ ρperf
F .

Those predictions are corroborated by the exact numerical evaluations, which are presented in
Fig. 77, for the beyond-PFA correction factor for the free-energy ρF at ambient temperature (T =
300K) with respect to the distance L, for four different sizes of the sphere (R = 0.1, 1, 10, 100 µm).
The results with perfect reflectors (black dashed-line) and dissipative metals, described by a Drude
model (green solid line), are compared.
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Figure 77: Beyond-PFA correction factor for the Casimir free-energy ρF = F
FPFA with respect to

the aspect ratio L
R , at ambient temperature (T = 300 K). The sphere radii are 0.1 µm

(upper left graph), 1 µm (upper right graph), 10 µm (lower left graph), and 100 µm
(lower right graph). Black dashed-lines represent perfect mirrors, green solid curves are
the results of computations with the Drude model. The plasma wavelength is λP = 136
nm, the dissipation ratio δ = λP

λγ
is 0.004.

The upper left graph (R = 0.1 µm) contains the smallest distances considered, from L = 10 nm
to 50 nm. In this case the separation is so short that temperature does not play a role, and ρDrud

F
lies below ρperf

F , as expected. For a micrometer radius sphere (upper right graph), the distance
varies from 20 nm to 500 nm. Temperature begins to play a role in the Casimir effect for Drude
materials, and a crossing between the two curves occurs. For larger distances (L ≥ 0.5 µm) in the
two lower graphs (R = 1, 10µm), we obtain the predicted thermal regime with ρDrud

F ≥ ρperf
F .
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14 METALLIC MIRRORS AT AMBIENT TEMPERATURE

14.4.2 Influence of temperature on the beyond-PFA corrections for Drude mirrors

In the case of perfect mirrors illustrated in Fig. 67 (p.181), we observed that the relation
ρperf
F (T ) ≤ ρperf

F (T = 0) is always fulfilled. It is related to the fact that PFA always overestimates
the magnitude of the Casimir energy at zero temperature, and always overestimates the contribution
of thermal photons to the Casimir free-energy between perfect mirrors. When the temperature
increases, the curves for ρperf

F (T ) as a function of the aspect ratio L
R decrease, until they reach a

saturated high-temperature regime.
In Section 14.3.2 (p.190), we predicted two different regimes for the comparison of ρDrud

F (T )
and ρDrud

F (T = 0) for Drude metals: when the separation is small (L . 1 µm), we should obtain
ρDrud
F (T ) ≥ ρDrud

F (T = 0). When the distance increases, the finite conductivity has less influence
as this distance range is dominated by the low frequency behaviour, and a second regime appears,
where the relation gets reversed to the perfect reflecting result: ρDrud

F (T ) ≤ ρDrud
F (T = 0).

Again, these predictions are confirmed by the numerical evaluations presented in Fig. 78 for the
beyond-PFA correction factor for the free-energy ρF , using Drude model to describe the optical
properties of the materials, with respect to the distance L, for four different sizes of the sphere
(R = 0.1, 1, 10, 100 µm). The results at zero temperature (blue curve), at ambient temperature
(red curve) and at the limit of infinite temperature (purple dotted-line), are compared. The last
curve comes from the analytical expansion at the low-frequency limit, obtained in Section 7.6
(p.117), and is R-independent.

Like in the previous section, we analyze Fig. 78 with an increasing distance, beginning from the
upper left graph where R = 0.1 µm and finishing with the lower right graph for R = 100 µm. At
very short distances (upper left graph), the temperature only has a very small influence, thus the
curve for the beyond-PFA factor at ambient temperature is close to the one for zero temperature.
However, the former lies already slightly above the latter. For distances between 20 and 500 nm
(upper right graph), the relation ρDrud

F (T ) ≥ ρDrud
F (T = 0) predicted for the short-distance regime

is also clearly fulfilled (red curve above blue one). When the distance reaches the micrometer (lower
left graph), the two curves cross each other, and the second regime (ρDrud

F (T ) ≤ ρDrud
F (T = 0))

is entered. For larger distances (lower right graph, L ≥ 2 µm), the thermal fluctuations play a
dominant role and the high-temperature limit (purple dotted-line) is progressively reached.

In any studied range of parameters for the distance L and the radius R, we always observe with
Drude model that the beyond-PFA factor for the free-energy is greater or equal to the one for very
high-temperatures. Moreover, for sufficiently long distances L & 2 µm at ambient temperature,
the two curves superimpose. As a consequence, this high-temperature limit, easier to compute,
can give a good hint of the beyond-PFA correction factor for sufficiently large separations, and can
give a maximum of the error made by PFA at shorter distances. This high-temperature limit will
be studied in more details in Section 15 both for perfect and Drude mirrors.

14.5 Power laws

For completeness, we give in Fig. 79 the logarithmic slopes ν that describe the dependance of
the Casimir free-energy on the parameters L for the complete treatment with Drude model for
the mirrors, at ambient temperature. The curves are quite similar to the one for perfect mirrors
obtained in Fig 60 (p.174) at large distances, but the parameter ν goes to 1 at short separations,
as expected because of the finite conductivity. This curves illustrate the statement that the Casimir
free-energy depends on the radius of the sphere in a non-trivial way.
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Figure 78: Beyond-PFA correction factor for the Casimir free-energy with mirrors described by
the Drude model ρDrud

F = FDrud

FDrud
PFA

with respect to the aspect ratio L
R . The sphere radii

are 0.1 µm (upper left graph), 1 µm (upper right graph), 10 µm (lower left graph), and
100 µm (lower right graph). Blue curves represent zero temperature, red curves ambient
temperature (T = 300 K) and purple dotted-lines are the high-temperature limit. The
plasma wavelength is λP = 136nm, the dissipation ratio δ = λP

λγ
is 0.004.
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Figure 79: Logarithmic slope ν as a function of the distance L. The green curve represents the case
of a small sphere, the blue curves an intermediate sphere, and red and purple curves
the case of larger spheres. Ambient temperature is T = 300K. The plasma wavelength
is λP = 136 nm, the dissipation ratio δ = λP

λγ
is 0.004.
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15 High-temperature regime

In this section we investigate the high-temperature limit (L� λT ) of the Casimir free-energy FHT

in the sphere-plane geometry. As discussed in Eq.(3.6) (p.49), in this limit the scattering formula
reduces to a function of the scattering operator at zero frequency:

FHT =
kBT

2
ln detD(0) .

Explicit expressions for the high-temperature have been analytically derived in Section 7 (p.108),
for perfect mirrors, metallic mirrors described by the Drude model, and dielectrics. Those
expressions are functions of the aspect ratio L

R , and neither depend on the sphere radius R, nor on
the parameters for the description of the reflection, except for the zero-frequency permittivity ε(0)
in the case of dielectric mirrors.
Moreover, these high-temperature expansions are easily computable, as they only involve the

computation of a determinant whose elements are made of factorials, and their evaluation can be
stabilised by a method given in Section 6.7 (p.104). It follows that the numerical evaluation in
this limit is manageable with the inclusion of more spherical modes than for the general free-energy
F , allowing for smaller aspect ratios L

R . In the present section we present numerical results for a
cut-off `max up to 5000, allowing to compute the high-temperature limit of the Casimir free-energy
for aspect ratios L

R ≥ 0.001, but higher values seem to be computable as well.
The first motivation for this study is theoretical, as zero-frequency limit is fundamentally

connected to the geometry, because low-frequency modes are spread over the whole system. In this
limit we should then see features specific to the sphere-plane geometry. Second, we have observed
in Section 14.4.2 (p.196) that the error made by PFA in the high-temperature limit acts as an
upper bound for the usual Casimir free-energy between mirrors modelled by the Drude model for
any temperature. As the numerical calculations can be pushed much farther than in the usual
case, we can gain information on the magnitude of beyond-PFA corrections for very small values
of the aspect ratio L

R .
We first consider the idealistic case of perfect mirrors in Section 15.1 before moving on to

more realistic description of the material, with dissipative metals described by the Drude model in
Section 15.2. We conclude with the comparison of perfectly reflecting mirrors and metals with
Drude model in Section 15.3.

15.1 Perfect mirrors

For two perfectly reflecting planes the high-temperature limit of the Casimir free-energy is given
by Eq.(3.11) (p.51) and corresponds to the following expression for the high-temperature limit of
the Casimir free-energy in the sphere-plane configuration within PFA:

Fperf
PFA(T →∞) = −ζ(3)kBTR

4L
(15.1)

We now compare this result with the high-temperature limit from the scattering formalism
Fperf = kBT

2 Φperf(0) given by Eq.(7.34) (p.119). Although not explicit, this analytical limit only
involves the computation of a determinant from a relatively simple matrix, and the numerics can
be brought further than for the usual case.
In the left graph of Fig. 80 we present the results of numerical evaluations for the high-

temperature limit of the Casimir free-energy, normalized by the PFA result (15.1), to get the
parameter ρperf

F . The smallest aspect ratio L
R = 0.001 is computed with `max = 5000.

The function ρperf
F (L/R) built from numerical evaluations at high temperature is always smaller

than 1, like the cases of zero or finite temperature. It goes to unity at very small separations, as
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Figure 80: (left) High temperature limit for the Casimir free-energy with perfect mirrors, given by
Eq.(7.34) (p.119), divided by the PFA result (15.1). The leftmost point is for an aspect
ratio of LR = 0.001, computed with `max = 5000. (right) Attempt to fit the data for ρperf

F
with a quadratic fit. The best quadratic fit is the polynomial y = 367x2− 10.5x+ 0.998.

expected, then decreases when the aspect ratio L
R increases. When trying to fit those data in order

to extrapolate the function to smaller values of the aspect ratio, one meets some difficulties, as
second, third or fourth order polynomials fail at representing correctly the shape of the curve in
the range of computed data. This is illustrated in the right graph of Fig. 80, where an attempt
is made to fit the data for L

R ∈ [0.001, 0.009] with a quadratic fit. The data points then oscillate
vertically around the best fitting quadratic polynomial y = 367x2 − 10.5x+ 0.998, meaning that
the nature of the curve is somewhat different from a polynomial.
We therefore propose a particular form of fitting functions, containing logarithmic terms,

inspired by works done analytically for the sphere-plane geometry at zero temperature with an
electromagnetic field [164], or with scalar fields in the cylinder-plane geometry [253]. To do so, we
choose forms like in [164] by multiplying the linear correction term with a polynomial of logarithms.
Hence we look for fitting functions of the form:

f(x) = 1 + x
(
a+ b lnx+ c (lnx)2 + . . .

)
+ o (x) . (15.2)

From this form, it is possible to construct a function g(lnx) better adapted for the fitting process,
as it is a polynomial function:

g(y) =
f(x)− 1

x
= a+ by + cy2 + · · · with y = lnx .

The quantity ρ(L/R)−1
L/R , extracted from the numerically computed values of ρ, is presented in

Fig. 81 with respect to ln L
R for the case of perfect mirrors at high-temperatures, and looks much

like a parabola.
This quantity turns out to be very well fitted with a second order polynomial whose coefficients

(a, b, c) depend on the data points one chooses to fit. If one fits the data for L
R ∈ [0.001, 0.1], the best

quadratic fit is g1(y) = −0.932 + 0.471y− 0.197y2. For a more restricted range of LR ∈ [0.001, 0.01],
the best quadratic fit is g2(y) = −1.22 + 0.362y − 0.207y2. For instance with the former choice
g1, the final fitting function f1(x) that represents the best extrapolation to smaller values of the
aspect ratio L

R will be:

f1

(
L

R

)
= 1 +

L

R

[
−0.932 + 0.471 ln

(
L

R

)
− 0.197

(
ln

(
L

R

))2
]

(15.3)
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Figure 81: Function g(L/R) =
ρperfF (L/R)−1

L/R with respect to ln(L/R), with ρperf
F = Fperf

Fperf
PFA

numerically

computed in the high-temperature limit for perfect mirrors. The best quadratic fit
is g(y) = −0.932 + 0.471y − 0.197y2. The leftmost point corresponds to L

R = 0.001,
computed with `max = 5000, the rightmost point to L

R = 0.1.

The important coefficient for the extrapolation to smaller values of the aspect ratio is the third
one, called c in Eq. (15.2), as it is contained in the leading term x (lnx)2 of f(x) when x→ 0.
Fortunately this coefficient does not depend much on the choice of the data points for the fit
(c1 ' c2) and is close to the value −0.2. We remark that the coefficient c is strictly negative,
entailing that for high-temperature limit the curve is going down vertically at the origin, unlike the
result of the zero-temperature derivation made in [164], where the curve was first going up because
of a leading term in x (lnx)2 with a positive coefficient c = 8.5× 10−6. This also explains why the
polynomial fit in Fig. 80 was systematically hitting a value smaller than unity at the limit L

R → 0.
In Fig. 82 we show that a nice fit is now obtained for the function f1(x) = 1 + xg1(y) over a

wide range of values for the aspect ratio L
R . The agreement is much better than with polynomial

fitting functions. The change of the form of the curve has a great influence on the accuracy of PFA
results at very small separation, as presented in Table 14. Formally, the first order correction
factor βF = ρ

′
(0) is infinite. For computed data, for L

R ∈ [0.001, 0.1], it remains of the order of
magnitude of what was obtained with a polynomial fit without logarithms. For even smaller values
of the aspect ratio, the slope diverges to −∞.

L
R 10−1 10−2 10−3 10−4 10−5 10−6

ρ
(
L
R

)
0.69 0.93 0.986 0.998 0.9997 0.99996

ρ
′ (L

R

)
-1.68 -5 -10.4 -17.9 -27.5 -39.2

Table 14: Value of the fit for the beyond-PFA correction factor ρ and its slope, in the high-
temperature limit for perfect mirrors, with respect to the aspect ratio L

R .

In conclusion, the beyond-PFA study of the Casimir effect for perfect mirrors at the limit of
high temperatures shows a situation where a Taylor expansion of the function ρ

(
L
R

)
at small
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Figure 82: Comparison for the function ρperf
F in the high-temperature limit between the numerically

computed data points (black crosses) and the constructed fitting function (solid blue
curve) f1

(
L
R

)
= 1 + L

R

(
−0.932 + 0.471 ln

(
L
R

)
− 0.197

(
ln
(
L
R

))2).
values of L

R seems not to be valid anymore. This observation is in agreement with the analytical
study [164], carried out at zero temperature. However, we emphasize that the perfect reflector
model is not realistic for the optical response of real materials, especially when one considers the
short-distance regime. In the next section, we follow the same path using a realistic model of
reflection for dissipative metals.

15.2 Drude model for metallic mirrors

For a dissipative metal using the Drude model for the dielectric function, the high-temperature
regime in the plane-plane geometry is divided by 2 with respect to the perfectly reflecting case.
This means that the PFA result is in this case half of (15.1) and reads:

FDrud
PFA (T →∞) = −ζ(3)kBTR

8L
(15.4)

Let us now compare this PFA result with the corresponding high-temperature limit from the
scattering formalism FDrud = kBT

2 ΦDrud(0) given by Eq.(7.36) (p.119), as in the previous section
for perfectly reflecting mirrors. In the left graph of Fig. 84 we present the results of numerical
evaluations for the high-temperature limit of the Casimir free-energy, normalized by the PFA
result (15.4), to get the parameter ρDrud

F . The smallest aspect ratio L
R = 0.001 is computed with

`max = 5000.
In the case of reflectors described by the Drude model, the curve ρDrud

F
(
L
R

)
in the high-

temperature limit is again decreasing when the aspect ratio increases, with values reaching 1 when
the distance goes to 0. The shape of the curve is however somewhat different, as it is more straight
and less incurved that the one presented for perfect mirrors in the left graph of Fig. 80.
Unlike the perfectly reflecting case studied in the previous section, polynomial functions fit

well the data, and it does not seem necessary to assume more complex forms to fit them better.
Furthermore, the introduction of a function containing logarithms such as presented in (15.2) is
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Figure 83: (left) High temperature limit for the Casimir free-energy with mirrors described by the
Drude model, given by Eq.(7.36), divided by the PFA result (15.4). The leftmost point
is for an aspect ratio of L

R = 0.001, computed with `max = 5000. (right) Attempt to
fit the data for ρDrud

F with a quadratic fit. The best quadratic fit is the polynomial
y = 51.2x2 − 3.5x+ 1.

even less efficient, as the function g(L/R) derived from the data points does not look like a simple
polynomial.
In conclusion, this study shows that the accuracy of PFA with Drude-modeled mirrors in the

high-temperature limit can be assessed with the help of the beyond-PFA first order correction
term βHT,Drud

F ' −3.5. This result is also useful for the general case of a finite temperature T ,
as the high-temperature regime give a upper limit on the magnitude of the error made by PFA
calculations, and we here deduce that:∣∣∣∣βDrud

F

(
L

λT
,
L

λP
,
L

λγ

)∣∣∣∣ ≤ ∣∣∣βHT,Drud
F

∣∣∣ ' 3.5 .

Consequences of these results for the comparison with theory of Casimir measurements will be
discussed in the conclusion.

15.3 Ratio of perfect mirrors result over Drude metals result

It the plane-plane geometry, it has been shown that the high-temperature limit of the Casimir
free-energy, or equivalently the zero frequency contribution to the finite temperature free-energy,
is twice bigger for a perfect mirror than for a dissipative metal, such as described by the Drude
model. The same variation of 2 of the high-temperature limit of the Casimir free-energy between
perfect and Drude mirrors should be found in the sphere-plane geometry when computed within
PFA, and it must thus be verified also by the exact result at the short-distance limit (L� R).
In the large distance regime (L� R) however, this high-temperature ratio has been shown to

be 3
2 in Section 8.4 (p.132). It is then worth studying how this ratio varies from one value to the

other when the aspect ratio L
R changes. This shift of the ratio from 2 to 3

2 is presented in Fig. 84.

The left graph shows the ratio of the zero-frequency limits for the integrand Φ
(
ξ̃
)
of perfectly

reflecting and Drude-modeled mirrors, for a range of aspect ratios L
R that runs from 0.001 to 100

with a logarithmic scale. As expected, the ratio 2 is approached in the short-distance limit, and
the long-distance limit goes to 3

2 . The shift is progressive and monotonic, centered at L ∼ 0.1R.
While the value 3

2 is already approached (1.501) for L & 10R, the leftmost computed point at
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Figure 84: Ratio of the first Matsubara term Φ(0) for perfect mirrors and dissipative metals
described by a Drude model, with respect to the aspect ratio L

R . The left graph uses a
logarithmic scale for the abscissa, showing the complete shift of the ratio from 2 to 3

2 ,
while the right graph uses a linear scale to focus on short-distance regime.

L = 0.001R lies still outside (1.98) the value expected from the plane-plane case. It means that
the intermediate region exists even for a sphere very close to the plane.

The right graph focusses on the short-separation domain, with a linear scale on the aspect ratio
L
R . We observe that the ratio of the high-temperature limits is far from its short-distance limit,
even for L

R < 0.1. However, the curve is reaching 2 when the aspect ratio decreases in a regular
manner, quite suitable to build an extrapolation function for smaller values of L

R .
Like in the discussion of the beyond-PFA correction for perfect mirrors in the high-temperature

limit in Section 15.1 (p.199), it does not seem efficient to attempt to fit the obtained data for
small values of L

R with a polynomial function. Again, we can use functions containing logarithmic
terms as in Eq.(15.2 (p.200). If one fits the data for L

R ∈ [0.001, 0.1], the best quadratic fit is
g1(x) = −1.46 − 0.539 lnx − 0.462(lnx)2. For a more restricted range of L

R ∈ [0.001, 0.01], the
best quadratic fit is g2(x) = −1.51− 0.566 lnx− 0.465(lnx)2. For this last choice, the final fitting
function that represents the best extrapolation to smaller values of the aspect ratio L

R is:

f

(
L

R

)
= 2− L

R

[
1.51 + 0.566 ln

(
L

R

)
+ 0.465

(
ln

(
L

R

))2
]
. (15.5)

The important coefficient for the extrapolation to smaller values of the aspect ratio is the third
one, called c in Eq.(15.2, as it is contained in the leading term x (lnx)2 of f(x) when x→ 0. This
coefficient does not depend much on the choice of the data points for the fit (c1 ' c2) and is close
to the value −0.46.
The presence of logarithms in the fitting function for the ratio between the high temperature

limits for perfect mirrors and metals modelled by the Drude model comes directly from the shape
of the curve ρperf

F , which already contained logarithmic terms. The infinite slope at the short
distance limit, yields that the ratio 2, between an ideal description for reflection and a realistic one
for metals at high-temperature, must be used with great care. As discussed above, an aspect ratio
of L

R = 0.001 changes already this ratio by one percent.
The shift from 2 to 3

2 of ratio between the two opposite limits in the aspect ratio L
R can be

described from the point of view of the term `1
`1+1 , which is present in the expression (7.32) (p.118)

for the operator D(m)
b,TE(L̃), and not in the expression (7.30) (p.117) for the operator D(m)

a,TM(L̃).
Let us recall that the zero-frequency limit of the integrand Φ(ξ̃) involves the determinant of two
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15.3 Ratio of perfect mirrors result over Drude metals result

matrices in the perfectly reflecting case, and only one in the case of the Drude model:

Fperf
HT = kBT

′∑
m

[
ln detD(m)

a,TM(L̃) + ln detD(m)
b,TE(L̃)

]
(15.6)

FDrud
HT = kBT

′∑
m

ln detD(m)
a,TM(L̃) . (15.7)

For the long-distance limit (L� R), one only keeps the (` = 1)-terms, the other being negligeable.
In this case, the factor is `1

`1+1 = 1
2 . As the terms in the operators D(m)

a,TM and D(m)
b,TE are small, one

has: ln detD(m)
b,TE = 1

2 ln detD(m)
a,TM and thus Fperf

HT is 3
2 times bigger than FDrud

HT .
In contrast, when L

R decreases, modes with more and more values of ` contribute to the Casimir
energy. The contribution of modes ` with ` 6� 1 becomes negligible when L

R goes to 0, and for
large values `1 � 1, the factor `1

`1+1 goes to unity. Then the operators D(m)
a,TM and D(m)

b,TE tend to be
the same, and Fperf

HT is asymptotically twice larger than FDrud
HT .
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Conclusion and outlook
As discussed in the introduction, the recent improvements of the accuracy in the Casimir force
measurements open up the possibility of a precise comparison with theoretical predictions. These
recent experiments use the configuration of a sphere in front of a plane to elude the difficulty of
maintaining two plates parallel during the measurements. The theoretical predictions used for
this comparison are usually evaluated with the help of the Proximity-Force Approximation (PFA),
and have led to controversies on the model of reflection for metals, and on the thermal effects.
A reliable study of this sphere-plane geometry was thus a first necessity to dismiss a possible
unsuitability of PFA method in this case, and to assess the accuracy of this approximation in the
experimental range of the parameters.

The interest of the investigation of the sphere-plane geometry is also theoretical, for the reason
that we will now explain. The Casimir effect has a fundamental spectral character, that is
highlighted by the scattering formula:

E =
~

2π

∫ ∞
0

dξ ln detD(ıξ)

where D is an operator containing all information on the geometry and on the materials optical
properties. As a consequence, the Casimir effect has been shown to depend in a non-trivial way on
the geometry, as evoked in the introduction. One of the most fascinating and promising field of
manifestation for this rich dependence on the geometry are the nanostructured materials, such
as gratings [184, 185, 186, 187]. In this prospect, the sphere-plane configuration offers a simple
situation where the effects of finite size, curvature, non-specular scattering and coupling of the
electromagnetic polarizations can be investigated.

In this manuscript we explored the Casimir interaction between a sphere and an infinite plane,
with the inclusion of temperature and of realistic optical model for the materials. The evaluation
of the Casimir interactions, necessary for this study, could be achieved with the general scattering
approach, which connects the Casimir effect to the scattering operators of the objets.
In this particular configuration, the bases of planar and spherical electromagnetic modes are

well-adapted to express the scattering process. The use of those two sets of modes requires
transformation operations between them, which can be expressed from simple quantities, easy to
compute numerically. Although the multipolar nature of the scattering method is better adapted
to intermediate and large values of the aspect ratio L

R , the numerical code can be pushed to include
a large number of spherical modes, which allows for computations of the Casimir free-energy in
configurations with L

R as small17 as 0.01.
While the PFA quantities give the dominant term to the Casimir interaction at the short-distance

limit (L� R), it is possible to derive analytically the dominant term in the long-distance limit
(L� R) from the scattering formula. The numerical evaluation with several multipoles is necessary
to describe accurately the intermediate region (L ∼ R), and the two limiting cases are recovered.
The long-distance analytical expressions exhibit a clear dependance on the model of reflection
for the materials, which shows that the perfect mirrors results are not in general recovered from
results with metals in the long-distance limit, a feature that was not generated by the specular
plane-plane cavity.

At zero temperature, we observed correlations between the effect of geometry and finite conduc-
tivity. This interplay implies that the first order coefficient β of the beyond-PFA correction factor
17To have a more pictoral idea of this number in our scale, this aspect ratio is equivalently obtained with a football

sitting 1 mm away from a table.
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ρ is considerably modified when using metallic models of reflection for the objects, with respect
to the perfectly reflecting model. As a consequence, the seeming contradiction between former
theoretical evaluations of this parameter β and the experimental prescription is no more present
when accounting for finite conductivity in the material. Another consequence of this interplay is
the long-distance limit of the finite conductivity correction factor ηP for metals, which does not go
to 1 like in the plane-plane configuration, but rather to the value 2

3 for mirrors modelled by the
dissipative Drude model, and to a value between 2

3 and 1 for mirrors described with the lossless
plasma model.

For perfectly reflecting sphere and plane at non-zero temperatures, the Casimir free-energy has a
rich dependence on the temperature, due to a non-trivial interplay between the effects of geometry
and temperature. It results in a delayed increase of the free-energy when the temperature increases
with respect to the plane-plane configuration. For small spheres it even leads to a decrease of the
free-energy for small temperatures, which yields a repulsive contribution of the thermal photons
to the Casimir force, a decrease of the total Casimir attractive force, and negative values for the
Casimir entropy. Those findings are corroborated by the analytical expressions derived in the
long-distance regime, and are not related to the dissipation in the materials, but rather to geometry
itself.
The study of the complete picture, at ambient temperature with the sphere and the plane

described as imperfect reflectors, presents a rich landscape of parameters and has been systematically
investigated. The temperature dependance of the Casimir effect is modified by the different models
for the materials, and similarly, the effects of finite conductivity on the Casimir interaction are
different when the temperature is included in the model. We investigated in detail this rich
interplay between the effects of finite conductivity, geometry and temperature. The inclusion of
dissipation in the material is also a source of correlations, which gives as in the zero-temperature
case a result qualitatively different from the parallel-plate geometry in the long-distance regime.
As a consequence, the quantities derived with the lossless plasma and full Drude models are closer
to each other than in the parallel-plate geometry, with the long-distance ratio of 2 reduced to at
most 3

2 .
The high-temperature regime is obtained, through the Matsubara formula, with the low-frequency

limit of the scattering formula. The analytically obtained leading order has a simpler expression,
which allows for numerical evaluations with a much higher number of modes included. We presented
results for aspect ratios L

R as low as 0.001, computed with `max = 5000, which enable to see
that the beyond-PFA factor for perfect mirrors is in this case better fitted with the inclusion of
logarithms in the fit than with simple polynomials, unlike for mirrors modelled by the Drude
model. The high-temperature finite conductivity reduction factor for Drude model shifts from 2 at
small separations, like in the PFA quantities, to 3

2 for large distances.

Concerning the comparison between the experimental data and the theoretical predictions, the
present study confirmed the validity of the Proximity-Force Approximation (PFA) when used in the
limiting case of very small values of the aspect ratio L

R . The accuracy of this approximation for a
finite value of the aspect ratio remains however a delicate question: as the effects of geometry have
an interplay with those of temperature and finite conductivity, this accuracy is very dependant on
the relative values of the physical parameters.

The high-temperature regime nevertheless enables us to get an upper bound for the error made
by PFA on the Casimir free-energy with mirrors modelled by the Drude model, as illustrated by
Fig. 78 (p.197). The study of this high-temperature regime, carried out in Section 15.2 (p.202)
to very small values of the aspect ratio L

R , resulted in an estimated coefficient
∣∣∣βHT,Drud
F

∣∣∣ ' 3.5 for
the first order correction beyond-PFA. This value thus represents an upper bound for the general
coefficient βDrud

F .
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The transformation from the coefficient βF for the free-energy to the one for the force gradient
βG is again dependant on the relative values of the physical parameters, as shown in the zero-
temperature case in Section 11.4 (p.153). In this case, it is possible to give an upper-bound on
the coefficient βDrud

G , as the parameters νE and νF introduced in Eq.(4.16) (p.59) are smaller than
2 and 3, respectively. It follows that the ratio of the two β coefficients is bounded fβ(L) = βG

βF
≤ 1

3 ,

and we can give the large upper bound
∣∣∣βHT,Drud
G

∣∣∣ . 1.2.
In the future, an improvement in the comparison between theory and experiments is possible in

two directions. The first possibility is a better understanding and a recognition in the theoretical
model of other realistic conditions that enters the discussion of the measurements. In this prospect
the effects of roughness on the surface [254, 178, 179, 255, 256, 257] and of electrostatic potential
patches [258, 259, 260, 261, 262, 110, 263] seem crucial for current experiments and remain to be
investigated in details. The other possibility would be to carry out a study similar to the one
presented in this manuscript, with a complete treatment of the geometry for the very small values
of the aspect ratio met in the experiments.

On the theoretical side, the present study has shown that a complete electromagnetic treatment
of the Casimir effect, together with simultaneous considerations of exact geometry, temperature
and realistic conditions for the materials, is necessary to obtain a trustful insight into the Casimir
interaction on the sphere-plane geometry. This is due to the fact that the effects of geometry,
temperature and finite conductivity interact in a non-trivial way, even leading to qualitative
differences in many cases. The sphere-plane configuration is thus a good example where fundamental
changes of the dependance of the Casimir interaction on physical conditions occur because of the
geometry.
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A PROOFS OF LEMMAS, PROPERTIES AND THEOREMS

A Proofs of lemmas, properties and theorems

A.1 Lemma 1 (p.48)

∀α > 0, ∀φ ∈ S(R),∀x ∈ R,
∑
n∈Z

φ(x+ nα) =

√
2π

α

∑
m∈Z

φ̂
(

2π
m

α

)
eı2π

mx
α

Proof :

For a φ ∈ S(R), let ΣN (x) =
∑N

n=−N φ(x − nα). As φ(x)(1 + x2) is C∞ and goes to 0

when x → ∞, it is bounded. Thus ∃C > 0 such that ∀x ∈ R, |φ(x)| ≤ C
1+x2

. It follows that
|ΣN (x)| ≤ C∑N

n=−N
1

1+(x−nα)2
is normally convergent over any compact set, such as [−α, α], to

the function Σ(x) =
∑

n∈Z φ(x− nα). As the ΣN are continuous and normally convergent, Σ is
continuous over [−α, α].
Moreover, by its definition, Σ is an α-periodic function, it is thus continuous over R. As

φ′ ∈ S(R), the same procedure applies to Σ
′
N (x) =

∑N
n=−N φ

′(x− nα) and Σ is then continuously
differentiable. From Dirichlet’s theorem, the Fourier series of Σ then converges uniformly to Σ(x)
at any point x.
The discrete Fourier-decomposition of Σ is:

Σ(x) =
∑
m∈Z

cm(Σ)eı2π
mx
α with cm(Σ) =

1

α

∫ α

0
Σ(x)e−ı2π

mx
α dx

=
1

α

∑
n∈Z

∫ α

0
φ(x− nα)e−ı2π

mx
α dx

where the infinite sum and the integral can be exchanged thanks to normal convergence of the
functions ΣN over the compact interval [0, α]. Then the derivation of Fourier coefficients gives,
after the change of variable [y = x− nα]:

cm(Σ) =
1

α

∑
n∈Z

∫ (−n+1)α

−nα
φ(y)e−ı2π

my
α eı2πmndy

=

√
2π

α
φ̂
(

2π
m

α

)
Finally, we can rewrite Σ as:

Σ(x) =

√
2π

α

∑
m∈Z

φ̂
(

2π
m

α

)
eı2π

mx
α .

�

A.2 Lemma 2 (p.48)

The Dirac comb T =
√

2π
∑

n∈Z δ(x − nα) is in S ′(R) and its inverse Fourier transform is
TF−1(T ) = 2π

α

∑
n∈Z δ

(
x− n2π

α

)
.

Proof :

212



A.3 Property 4 (p.48)

Let us first show that T is a tempered distribution:

∀φ ∈ S(R), | < T, φ > | =
√

2π

∣∣∣∣∣∑
n∈Z

φ(nα)

∣∣∣∣∣
≤
√

2π
∑
n∈Z
|φ(nα)|

(
1 + (nα)2

) 1

1 + (nα)2

≤ C sup
x∈R

[
|φ(x)|

(
1 + x2

)]
with C =

√
2π
∑
n∈Z

1

1 + (nα)2
.

We now compute its inverse Fourier transform:

< T, φ > =
√

2π
∑
n∈Z

φ(nα)

=
√

2πΣ(0)

=
2π

α

∑
m∈Z

φ̂
(

2π
m

α

)
from lemma 1 (p.48)

=

〈
2π

α

∑
m∈Z

δ
(
x− 2π

m

α

)
, φ̂

〉

which is the inverse Fourier-transform.
�

A.3 Property 4 (p.48)

• SN −→ TF−1(T ).

• The computation of the quantity Q reduces to : Q =
~
α

′∑
n

Φ

(
n

2π

α

)
, where the primed

sum represents a sum over N with a coefficient 1
2 for the zeroth term.

Proof :

Let us first compute the Fourier transform of SN =
∑N

n=−N cos(nαx) :

< ŜN , φ > = < SN , φ̂ >

=

∫
R

dk

(
N∑

n=−N
cos(nαk)

)
φ̂(k) =

∫
R

dk

(
N∑

n=−N
einαk

)
φ̂(k)

=
N∑

n=−N

∫
R

dk einαkφ̂(k) =
√

2π
N∑

n=−N
φ(nα)

= < TN , φ > with TN (x) =
√

2π
N∑

n=−N
δ (x− nα) .
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A PROOFS OF LEMMAS, PROPERTIES AND THEOREMS

Then, on the opposite direction :

< T̂N , φ > = < TN , φ̂ >

=
√

2π
N∑

n=−N
φ̂(nα) =

N∑
n=−N

∫
R

dx e−inαxφ(x)

=

∫
R

dx

(
N∑

n=−N
e−inαx

)
φ(x) =

∫
R

dx

(
N∑

n=−N
cos(nαx)

)
φ(x)

= < SN , φ >

such that SN and TN are the Fourier transformation of each other : ŜN = TN and T̂N = SN .
As TN represents a finite Dirac comb with N peaks, the series (TN ) converges to the infinite
Dirac comb T : for a given φ ∈ S(R), as φ is "rapidly decreasing", the series

∑N
n=−N φ(nα)

converges to
∑

n∈Z φ(nα). Thus TN −→ T in S ′(R), and by continuity of the Fourier transform,
SN = TF−1(TN ) −→ TF−1(T ) derived in Lemma 2 (p.48). Finally,

QN =
~

4π
< SN , φ > −→ Q =

~
4π

< TF−1(T ), φ >=
~

2α

∑
n∈Z

Φ

(
n

2π

α

)

Q =
~
α

′∑
n

Φ

(
n

2π

α

)
.

�

A.4 Property 5 (p.75)

When the block-operator

 A B

C D

is made of square-blocks of the same size, and A is invertible,

the determinant does not change when applying the changes B → αB and C → 1
αC, with α ∈ C∗.

Proof :

∣∣∣∣∣∣ A B

C D

∣∣∣∣∣∣ =

∣∣∣∣∣∣ A B

C D

∣∣∣∣∣∣×
∣∣∣∣∣∣ I −A−1B

0 I

∣∣∣∣∣∣ =

∣∣∣∣∣∣
 A B

C D

×
 I −A−1B

0 I

∣∣∣∣∣∣
=

∣∣∣∣∣∣ A 0

C D − CA−1B

∣∣∣∣∣∣ = |A| ×
∣∣D − CA−1B

∣∣
∣∣∣∣∣∣ A αB

α−1C D

∣∣∣∣∣∣ = |A| ×
∣∣D − (α−1C)A−1(αB)

∣∣ = |A| ×
∣∣D − CA−1B

∣∣

�

A.5 Property 6 (p.86)

For C an invertible matrix,
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A.5 Property 6 (p.86)

• its derivative with respect to the (i, j)-coefficient reads:

∂

∂Ci,j
ln detC =

(
C−1

)
j,i

• The derivative of the inverse is:
(
C−1

)′
= −C−1C

′
C−1.

• Finally the derivatives of ln detC are:
∂

∂x
(ln detC) = Tr

(
C
′
C−1

)
= Tr

(
C−1C

′
)

∂2

∂x2
(ln detC) = Tr

(
C
′′
C−1 − C ′C−1C

′
C−1

)
Proof :

• by developing the determinant along the ith row, one gets: detC =
∑n

j=1Ci,j (com(C))i,j ,
where none of the comatrices (com(C))i,j , (1 ≤ j ≤ n) contain the elements Ci,j , (1 ≤ j ≤ n).
Then ∂ detC

∂Ci,j
= (com(C))i,j , and finally one gets:

∂

∂Ci,j
ln detC =

1

detC

∂ detC

∂Ci,j

=
1

detC
(com(C))i,j

=
(
C−1

)
j,i

• by taking the derivative of the identity Id = C−1C, one gets:

0 =
∑
k

(
C−1

)′
i,k
Ck,j +

∑
k

(
C−1

)
i,k

(
C
′
)
k,j

=
[(
C−1

)′
C
]
i,j

+
[
C−1C

′
]
i,j

0 =
(
C−1

)′
C + C−1C

′

=
(
C−1

)′
+ C−1C

′
C−1

• from the two former properties, one has:
∂

∂x
(ln detC) =

∑
i,j

∂Ci,j
∂x

∂

∂Ci,j
ln detC

=
∑
i,j

(
C
′
)
i,j

(
C−1

)
j,i

= Tr
(
C
′
C−1

)
= Tr

(
C−1C

′
)

∂2

∂x2
(ln detC) =

∂

∂x
Tr
(
C
′
C−1

)
= Tr

[(
C
′
C−1

)′]
= Tr

[
C
′′
C−1 + C

′ (
C−1

)′]
= Tr

[
C
′′
C−1 − C ′C−1C

′
C−1

]
�
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A PROOFS OF LEMMAS, PROPERTIES AND THEOREMS

A.6 Property 12 (p.101)

[a1, . . . , aN ] =
[a1]× [a2, a1]× · · · × [aN , . . . , a2, a1]

[a2]× [a3, a2]× · · · × [aN , . . . , a3, a2]

Proof :
To prove this property, we begin with a lemma, which gives the numerator and denominator of

a finite continued fraction independently.

Lemma 3 f(n) = [a1, a2, . . . , an] = hn
kn
, where the terms hn and kn can be constructed by recur-

rence:

h0 = 1 ; h−1 = 0 k0 = 0 ; h−1 = 1 (A.1)
(n ≥ 1) hn = anhn−1 + hn−2 (n ≥ 1) kn = ankn−1 + kn−2 (A.2)

Proof :
For n = 1, 2, the statement f(n) = hn

kn
is easily checked. Then, for n ≥ 3, we have:

f(n) = [a1, . . . , an−1, an] =

[
a1, . . . ,

(
an−1 +

1

an

)]

=

(
an−1 + 1

an

)
hn−2 + hn−3(

an−1 + 1
an

)
kn−2 + kn−3

by recurrence hypothesis

=

hn−2

an
+ hn−1

kn−2

an
+ kn−1

=
anhn−1 + hn−2

ankn−1 + kn−2
=
hn
kn

.

�
Let us now define, for any n ≥ 1, f(n) = [a1, . . . , an], p1(n) = [an, . . . , a2, a1] and p2(n) =

[an, . . . , a3, a2] (for convention, we define p2(1) = 1). Thanks to the previous Lemma 3, it only
remains to show by recurrence that:

hn = p1(1)× p1(2)× · · · p1(n) kn = p2(1)× p2(2)× · · · p1(n) (A.3)

For (n = 1, 2), the property (A.3) is easily checked. Then for n ≥ 3:

hn = an (p1(1)× p1(2)× · · · p1(n− 1)) + (p1(1)× p1(2)× · · · p1(n− 2))

= (p1(1)× p1(2)× · · · p1(n− 2))× (anp1(n− 1) + 1)

= (p1(1)× p1(2)× · · · p1(n− 1))×
(
an +

1

p1(n− 1)

)
= p1(1)× p1(2)× · · · p1(n− 1)× p1(n)

and the same proof holds for kn with the terms p2.
�

A.7 Property 13 (p.114)

d`,sm [sum] and d`,sm [dif] have the following asymptotic expansions:

d`,sm [sum] ' K(`,m)
m

`
(s(θ))m−1 (cos θ)`−m ' m

`
K(`,m)(cos θ)`−1

d`,sm [dif] ' K(`,m) (s(θ))m−1 (cos θ)`−m+1 ' K(`,m)(cos θ)`

with K(`,m) = (−1)m+1

√
`

`+ 1

2(2`− 1)!!√
(`−m)!

√
(`+m)!

216



A.8 Property 14 (p.128)

Proof :

For d`,sm [dif] it is direct, from Eq.(7.22) (p.113). For d`,sm [dif], it is checked for m = 0, thanks to
Eq.(7.23). We prove the former expressions by recurrence for m ≥ 1, with the help of Eq.(7.24)
(p.114):

` = m K(m,m) = (−1)m+1

√
m

m+ 1

2(2m− 1)!!√
(2m)!

=

√
(2m)!

(m+ 1)!(m− 1)!

(−1

2

)m−1

which is the coefficient of (s(θ))m−1 of dm,sm [sum] in Eq.(7.24) (p.114).

` = m+ 1
mK(m+ 1,m)

m+ 1
=
m(−1)m+1

m+ 1

√
m+ 1

m+ 2

2(2m+ 1)!!√
(2m+ 1)!

=

√
(2m+ 1)!

(m+ 2)!m!
m

(−1

2

)m−1

which is the coefficient of (s(θ))m−1 cos θ of dm+1,s
m [sum] in Eq.(7.24) (p.114).

` ≥ m+ 2 d`,sm [sum] ' (cos θ)`−1m(2`− 1)√
`2 − 1

√
`2 −m2

K(`− 1,m) + o
(

(cos θ)`−1
)

from last part of Eq.(7.24) (p.114), using the recurrence hypothesis
on steps (`− 1) and (`− 2).

Then
m(2`− 1)√

`2 − 1
√
`2 −m2

K(`− 1,m) =
m

`
K(`,m)

�

A.8 Property 14 (p.128)

φ(ν) =

′∑
n

(
1 + 2νn+ 2ν2n2

)
e−2νn =

ν sinh ν + cosh ν
(
ν2 + sinh2 ν

)
2 sinh3 ν

Proof :

We first study the un-primed sum, to consider the three terms separately:

S(ν) =
∑
n∈N

(
1 + 2νn+ 2ν2n2

)
e−2νn = S1(ν) + S2(ν) + S3(ν)

S1(ν) =
∑
n∈N

e−2νn =
1

1− e−2ν

S2(ν) =
∑
n∈N

2νne−2νn = −ν ∂
∂ν

(∑
n∈N

e−2νn

)
=

2νe−2ν

(1− e−2ν)2

S3(ν) =
∑
n∈N

2ν2n2e−2νn = −ν
2

2

∂

∂ν

(
1

ν

∑
n∈N

2νne−2νn

)

=
νe−2ν

(1− e−2ν)2
− ν

2

∂

∂ν

(
2νe−2ν

(1− e−2ν)2

)
=

2ν2e−2ν

(1− e−2ν)2
+

4ν2e−4ν

(1− e−2ν)3
.
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We then gather the three results:

S(ν) =
1

1− e−2ν
+

(2ν + 2ν2)e−2ν

(1− e−2ν)2
+

4ν2e−4ν

(1− e−2ν)3

=
1 + e−2ν(−2 + 2ν + 2ν2) + e−4ν(1− 2ν + 2ν2)

(1− e−2ν)3
,

to finally come back to the primed sum φ(ν):

φ(ν) =

′∑
n

(
1 + 2νn+ 2ν2n2

)
e−2νn = S − 1

2

=
1 + e−2ν(−1 + 4ν + 4ν2) + e−4ν(−1− 4ν + 4ν2) + e−6ν

2(1− e−2ν)3

=
ν sinh ν + cosh ν

(
ν2 + sinh2 ν

)
2 sinh3 ν

�
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B Approximations methods for the sphere-plane geometry

In this section we present a few existing methods to approximate the Casimir effect between a
sphere and a plane. Proximity Force Approximation (PFA) method, which splits the surface of the
sphere to sum the contribution of each small part, is first considered in its diverse formulations in
Section B.1. Then the Hamaker method, which splits the sphere volume into very small spheres
before summing the contribution of each one, is derived in Section B.2.5. Finally, a Pair-Wise
Summation (PWS) process is performed in Section B.2 for both the sphere and the plane.

B.1 PFA methods

The Proximity-Force Approximation is introduced in Section 4.1, and consists in splitting the
sphere’s surface into infinitesimal parts d2σ, computing independently their Casimir interaction
δ2E with the facing plane, and then integrating all these contributions. If the first and last steps
are unequivocal, the way to treat the casimir interaction for an infinitesimal surface in front of the
plane is however ambiguous.
The usual PFA formulation, also called "leading order PFA", leads to the expression FPFA =

2πR×EPP/A, where R is the sphere radius and EPP/A the energy per unit area in the plane-plane
geometry. This expression is obtained by considering a planar infinitesimal surface d2σ facing the
plane, and its corresponding small surface on the plane directly below. This results in a so-called
’plane-based’ formulation, and is illustrated in the left of Fig. 85.

PFA ambiguity

“plate-based PFA”

PFA ambiguity

“sphere-based PFA”Figure 85: Choice of the pair of corresponding infinitesimal surfaces on the two objects, with a
plane-based PFA (left) and sphere-based PFA (right). Courtesy of Holger Gies.

We could also have kept the infinitesimal surface on the sphere fixed, and have chosen a
corresponding surface on the plane facing it on the sides. This would have resulted in a so-called
’sphere-based’ formulation, and is illustrated in the right of Fig. 85. Plane-based and sphere-based
PFAs have been used in the past years to compare with results obtained by different techniques
[156, 151, 160, 162, 175].
A third possibility would be to consider the interaction of an infinitesimal part of the sphere’s

surface d2σ with the whole infinite plane, without any change in the orientation of the surface, as
this configuration has been studied in [264]. This possibility will however not be discussed here.

We here derive the Casimir energy separately for the plane-based and sphere-based formulations,
and then compare the obtained beyond-PFA corrections in the simple case of perfect reflectors at
zero temperature.
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B.1.1 Plane-based PFA

We consider a sphere of radius R at a distance L above a plane located at (z = 0). Let us first split
the sphere in upper and lower halves. We will only consider the interaction of the plane with the
lower half (z ≤ L), where L = L+R is the distance between the plane’s surface and the sphere’s
center. The half-sphere is decomposed into infinitesimal surfaces d2σ = R2 sin θdθdϕ.

For plane-based formulations of PFA, we will now consider this surface to be parallel to the
plane. This can be achieved in two ways, schematically represented in Fig. 86: in method 1
(left graph) we simply consider it to be parallel, without any change in the area, as in a rotation
(d2σ(1) = d2σ). In method 2 (right graph) we project it to be parallel, yielding a multiplication by
a projection factor cos θ for the area (d2σ(2) = cos θd2σ). In both cases the local distance for the
infinitesimal surface is z = L+R(1− cos θ).

Figure 86: Two different methods to choose the corresponding surface of an infinitesimal surface
on the sphere, to be parallel to the plane. The sphere is decomposed into infinitesimal
surfaces d2σ. In the first case, each part has an equal radial width of Rdθ, whereas in
the second, the part at latitude θ has a width of R cos θdθ, that vanishes when θ = π

2 .

With Fig. 86, we clearly illustrate the motivation for the second formulation: the lack of
projection factor in the expression of the infinitesimal surface for method 1 artificially increases
the surface of interaction on the sphere, as different infinitesimal cavities overlap, and should lead
to an overestimation of the Casimir interaction.

When integrating over the sphere the small contribution of each infinitesimal surface, using the
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presented formulation, we get for the first method:

E
(1)
PFA =

∫∫
Σ

EPP(z)

A
d2σ(1)

=

∫ 2π

0
dϕ

∫ π/2

0
dθR2 sin θ

EPP(z)

A

= 2πR2

∫ π/2

0
sin θdθ

EPP(z)

A
with z = L+R(1− cos θ)

= 2πR

∫ L+R

L

EPP(z)

A
dz as dz = R sin θdθ

= 2πR

(
DPP(L)

A
− DPP(L+R)

A

)
= EPFA

(
1− DPP(L+R)

DPP(L)

)
. (B.1)

EPFA is the usual PFA formula, and neglects the second term. For the second method, the
derivation is a bit more complex:

E
(2)
PFA =

∫∫
Σ

EPP(z)

A
d2σ(2)

= 2πR2

∫ π/2

0
sin θ cos θdθ

EPP(z)

A

= 2π

∫ L+R

L
(L+R− z)EPP(z)

A
dz as cos θ = 1− z − L

R

and the calculation can be brought one step further, with the introduction of a primitive function
CPP(z), such that −∂CPP

∂L = DPP. We get after integration by part for the second term:

E
(2)
PFA = 2π(L+R)

(
DPP(L)

A
− DPP(L+R)

A

)
+ 2π

[
z
DPP(z)

A

]L+R

L

+ 2π

[
CPP(z)

A

]L+R

L

= 2πR
DPP(L)

A
− 2π

(
CPP(L)

A
− CPP(L+R)

A

)
. (B.2)

For the simple case of perfect mirrors at zero temperature the Casimir function DPP(L)/A has
the explicit expression (4.7), and then the two PFA formulations become:

E
(1)
PFA = −~cπ3R

720L2

(
1− L2

(L+R)2

)
= EPFA

(
1 + 2L/R

1 + 2L/R+ L2/R2

)
(B.3)

E
(2)
PFA = −~cπ3R

720L2
+

~cπ3

720L

(
1− L

L+R

)
= EPFA

(
1

1 + L/R

)
. (B.4)

The latter corresponds to the expressions found in [160, Eq.(2.16)] and [162, Eq.(A3)]. For very
short separations (L� R), when using Taylor expansions of the factors appearing in Eqs.(B.3,B.4)
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we obtain:

E
(1)
PFA

EPFA
= 1−

(
L

R

)2

+ o

((
L

R

)2
)

(B.5)

E
(2)
PFA

EPFA
= 1− L

R
+

(
L

R

)2

+ o

((
L

R

)2
)

(B.6)

and we observe that if the first formulation is similar to the usual PFA at first order, it is no more
the case for the second formulation.

This last result can be reformulated with the help of the coefficients for the successive orders of
the beyond-PFA correction (βE , γE , ...) defined for the usual PFA formula as the coefficients of a
hypothetical Taylor expansion of the ratio ρE between the exact result and the PFA-approximated
quantity:

ρE =
E

EPFA
= 1 + βE

L

R
+ γE

(
L

R

)2

+ o

((
L

R

)2
)
.

For the two methods here introduced, we can deduce from the expressions derived in Eqs.(B.5,B.6)
the change induced in those beyond-PFA coefficients:

ρ
(1)
E =

E

E
(1)
PFA

=
E

EPFA

EPFA

E
(1)
PFA

= 1 + βE
L

R
+ (γE + 1)

(
L

R

)2

+ o

((
L

R

)2
)

(B.7)

ρ
(2)
E = 1 + (βE + 1)

L

R
+ (γE + βE)

(
L

R

)2

+ o

((
L

R

)2
)
. (B.8)

For the first expression (B.7), only the second order coefficient change (γ(1)
E = γE + 1), the

distinction with the usual and simpler formula is then not important if one is only interested in the
first order coefficient βE in the beyond-PFA correction. For the second formulation (B.8) however,
this coefficient of beyond-PFA linear correction changes significantly, as β(2)

E = βE + 1.
We found in Section 10.3 (p.145) that in the situation of perfect reflectors at zero temperature

βE can be estimated to lie around the value −1.4. The second formulation of the plane-based PFA
then yields a better approximation of the exact result, as β(2)

E ' −0.4. This comes from the fact
that the avoided overlaps in the considered infinitesimal cavities, as illustrated by Fig. 86, reduce
the overestimation of the Casimir effect for PFA methods.

B.1.2 Sphere-based PFA

We now consider a second possibility for the choice of corresponding surfaces in the computation
of PFA, illustrated by the right graph in Fig. 85. When integrating over the sphere the small
contribution of each infinitesimal surface, using the presented formulation, we get for the first
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method:

Es-b
PFA =

∫∫
Σ

EPP(z)

A
d2σ

=

∫ 2π

0
dϕ

∫ π/2

0
dθR2 sin θ

EPP(z)

A

= 2πR2

∫ π/2

0
sin θdθ

EPP(z)

A
with z =

L+R(1− cos θ)

cos θ

= 2πR2(L+R)

∫ ∞
L

dz

(z +R)2

EPP(z)

A
as dz =

(L+R) sin θdθ

cos2 θ
. (B.9)

In the simple case of perfectly reflecting mirrors at zero temperature, using the Casimir energy
per unit area in the plane-plane configuration EPP(z)

A = − ~cπ2

720z3
, the integration is computable and

leads to the following expression for the Casimir energy within sphere-based PFA:

Es-b
PFA = −~cπ3R2(L+R)

360

∫ ∞
L

dz

z3(z +R)2

= −~cπ3R2(L+R)

360

∫ ∞
L

dz

(
3

R4z
− 2

R3z2
+

1

R2z3
− 3

R4(z +R)
− 1

R3(z +R)2

)
= −~cπ3R

720L2

[
6
L2

R2

(
1 +

L

R

)
ln

(
1 +

R

L

)
+ 1− 3

L

R
− 6

L2

R2

]
(B.10)

which corresponds to the expressions found in [160, Eq.(2.17)] and [162, Eq.(A2)].
In the short distance limit (L � R), a first order expansion of (B.10) gives Esphere-based

PFA =
EPFA

(
1− 3LR + o

(
L
R

))
, and with a derivation similar to the one in Eq.(B.7), we obtain the

coefficient βs-b
E = βE + 3 ' +1.6 for the first order beyond-PFA correction. The sign is reversed

with respect to the same quantity for the plane-based PFA, which means that in this case PFA
underestimates the Casimir effect. Moreover, remarking that

∣∣βs-b
E

∣∣ ∼ |βE |, we deduce that
the error of PFA can be substantially decreased by taking the average of the usual expression
EPFA = 2πRDPP(L)

A and the sphere-based expression (B.10).
These findings are confirmed by the numerical evaluations of the beyond-PFA correction factor

ρE presented in Fig. 87, where ρE < 1 for the usual plane-based PFA, and ρE > 1 for the sphere-
based PFA. The averaging is done both with arithmetic and harmonic means of the plane-based
and sphere-based PFA quantities:

ρarithm
E =

2E

Eplane-based
PFA + Esphere-based

PFA

ρharm
E =

ρplane-based
E + ρsphere-based

E

2
.

Both remain relatively close to the exact result when the distance between the plane and the
sphere increases, and the harmonic mean seems to be favored. For an aspect ratio L

R = 0.1, the
obtained correction factor is 0.986 for the arithmetic mean and 0.9986 for the harmonic one. We
here come to the same observation as in [156, Fig.8], which found an "accidental" but interesting
agreement of the harmonic mean with numerical results beyond the domain of validity of PFA.

B.2 PWS methods

The Pairwise Summation Method (PWS) consists in considering the interaction of two objects
as the sum of the interactions between all pairs of atoms, formed by taking one atom in each
object. This method is commonly used in electrostatics, but its application to Casimir interaction
is questionable. Here we derive the Casimir energy between a plane and a sphere within PWS
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Figure 87: Beyond-PFA correction factor ρE = E
EPFA

for perfect mirrors at zero temperature,
with respect to the aspect ratio L

R . The blue curve correspond to the usual PFA
expression EPFA = 2πRDPP(L)

A , the red curve to a sphere-based PFA expression (B.10).
The arithmetic mean of the plane-based and sphere-based PFAs is presented by the
dashed-curve, while the dotted-line represents the harmonic mean.

calculations. The two objects are described by an atomic density n and a polarizability α for the
atoms.
We start from the Casimir-Polder formula giving the interaction energy between two atoms A

and B, with polarizabilities α(ω), at distance R:

Uaa(R) = −~c
π

∫ ∞
0

du u4αA(icu)αB(icu)

(4πε0)2

e−2uR

R2

(
1 +

2

uR
+

5

(uR)2
+

6

(uR)3
+

3

(uR)4

)
(B.11)

where the integral is written over imaginary frequencies ω = icu. We will then integrate over one
slab to get the slab-atom configuration. A second integration will finally be performed with either
a slab or a sphere for the second object. The latter case yield the sphere-plane Casimir energy
within PWS method.

B.2.1 The slab-atom configuration

In this section, the object A is a slab of thickness eA and atomic density nA at a distance h along
the z-axis from the atom B.

We compute the PWS interaction between the slab and the atom by summing the Casimir-Polder
interactions (eq. B.11) between each atom A of the slab and the atom B:

UPWS
as (h, eA) =

∫ h+eA

h
dz

∫ ∞
0

dr 2πrnAUaa(R) (B.12)

with r =
√
x2 + y2 =

√
z2 −R2. The integration over u is inverted with those of r and z. The

integration over r is transformed into an integration over R:

UPWS
as (h, eA) = −2~cnA

∫ ∞
0

du u4αA(icu)αB(icu)

(4πε0)2

∫ h+eA

h
dz I(z) , (B.13)
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with

I(z) =

∫ ∞
z

dR

R
e−2uR

(
1 +

2

uR
+

5

(uR)2
+

6

(uR)3
+

3

(uR)4

)
=

∫ ∞
2uz

dt e−t
(

1

t
+

4

t2
+

20

t3
+

48

t4
+

48

t5

)
(B.14)

= −
∫ ∞

2uz
dt d(t) = e(2uz)− e(∞), (B.15)

where e(t) denotes the primitive of function d(t). The explicit expressions of the successive primitive
functions will be given in the end of the section in Eqs.(B.19). As e(∞) = 0, the energy (B.13)
becomes:

UPWS
as (h, eA) = −~cnA

∫ ∞
0

du u3αA(icu)αB(icu)

(4πε0)2

∫ 2u(h+eA)

2uh
dt e(t) . (B.16)

Defining f(t) the primitive of function e(t), we obtain:

UPWS
as (h, eA) = −~cnA

∫ ∞
0

du u3αA(icu)αB(icu)

(4πε0)2
[f (2u(h+ eA))− f (2uh)] . (B.17)

B.2.2 The slab-slab configuration

In this section, objects A and B are slabs, of densities nA and nB, and of thicknesses eA and eB.
h is the separation between the two objects.

We compute the interaction between the two slabs by summing the slab-atom result (B.17) for
each atom of the slab B. As the result is infinite, because both objects are infinite, we compute
the energy per unit area:

UPWS
ss (h, eA, eB) =

∫ h+eB

h
dz nBU

PWS
as (z, eA)

= −~cnAnB
∫ ∞

0
du u3αA(icu)αB(icu)

(4πε0)2

∫ h+eB

h
dz [f (2u(z + eA))− f (2uz)]

= −~c
2
nAnB

∫ ∞
0

du u2αA(icu)αB(icu)

(4πε0)2

∫ 2u(h+eB)

2uh
dt [f (2ueA + t))− f (t)] .

Defining g(t) the primitive of function f(t), we obtain:

UPWS
ss (h, eA, eB) = −~c

2
nAnB

∫ ∞
0

du u2αA(icu)αB(icu)

(4πε0)2

× [g (2u(h+ eA + eB))− g (2u(h+ eA))− g (2u(h+ eB)) + g (2uh)] . (B.18)

B.2.3 The slab-sphere configuration

In this section, object A is again a slab of thickness eA and density nA, while object B is now a
sphere of radius R and density nB. L is the surface-surface distance of the two objects, while L
will be the center-to-plate distance (L = L+R).

We compute the interaction between the two objects by summing the slab-atom result (B.17)
for each atom of the sphere B which lies at a distance (L+ r) from the slab, with r ∈ [−R,R]:
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UPWS
PS =

∫ R

−R
dr
(
π(R2 − r2)nB

)
UPWS
as (L+ r, eA)

= −~cπnAnB
∫ ∞

0
du u3αA(icu)αB(icu)

(4πε0)2

∫ R

−R
dr
(
R2 − r2

)
× [f (2u(L+ r + eA))− f (2u(L+ r))]

= −~cπ
8
nAnB

∫ ∞
0

du
αA(icu)αB(icu)

(4πε0)2

∫ 2uR

−2uR
dt
(
4u2R2 − t2

)
× [f (2u(L+ eA) + t)− f (2uL+ t)] .

Then, splitting the term (4u2R2 − t2) in two parts, we need to derive:

A1(u) = 4u2R2

∫ 2uR

−2uR
dt (f (2u(L+ eA) + t)− f (2uL+ t))

= 4u2R2 [g (2u(L+ eA) + t)− g (2uL+ t)]2uR−2uR

= 4u2R2 [g(2u(L+ eA +R))− g(2u(L+ eA −R))− g(2u(L+R)) + g(2u(L −R))]

and

A2(u) = −
∫ 2uR

−2uR
dt t2 (f (2u(L+ eA) + t)− f (2uL+ t))

= −
[
t2 (g (2u(L+ eA) + t)− g (2uL+ t))

]2uR
−2uR

+2

∫ 2uR

−2uR
dt t (g (2u(L+ eA) + t)− g (2uL+ t))

= −A1(u) + 2 [t (h (2u(L+ eA) + t)− h (2uL+ t))]2uR−2uR

−2

∫ 2uR

−2uR
dt (h (2u(L+ eA) + t)− h (2uL+ t))

= −A1(u)

+4uR [h (2u(L+ eA +R)) + h (2u(L+ eA −R))− h (2u(L+R))− h (2u(L −R))]

−2 [i (2u(L+ eA +R))− i (2u(L+ eA −R))− i (2u(L+R)) + i (2u(L −R))]

with h(t) the primitive of g(t), and i(t) the primitive of h(t). Finally, the energy reads:

UPWS
PS = −~cπ

4
nAnB

∫ ∞
0

du
αA(icu)αB(icu)

(4πε0)2
×

(2uR [h (2u(L+ eA +R)) + h (2u(L+ eA −R))− h (2u(L+R))− h (2u(L −R))]

− [i (2u(L+ eA +R))− i (2u(L+ eA −R))− i (2u(L+R)) + i (2u(L −R))]) .
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B.2.4 Expressions for the successive primitive functions

The successive primitive functions involved in this section are:

d(t) = −e−t
(

1

t
+

4

t2
+

20

t3
+

48

t4
+

48

t5

)
e(t) = Γ(0, t) + 4e−t

(
1

t2
+

3

t3
+

3

t4

)
f(t) = tΓ(0, t)− e−t

(
1 +

4

t2
+

4

t3

)
g(t) =

(
t2

2
− 2

)
Γ(0, t) + e−t

(
− t

2
+

1

2
+

2

t
+

2

t2

)
h(t) =

(
t3

6
− 2t

)
Γ(0, t) + e−t

(
− t

2

6
+
t

6
+

5

3
− 2

t

)
i(t) =

(
t4

24
− t2 + 2

)
Γ(0, t) + e−t

(
− t

3

24
+
t2

24
+

11t

12
− 3

4

)
(B.19)

B.2.5 Hamaker method

The principle of the Hamaker method [265] is to decompose the sphere into a continuous set of
small particles, which have the same optical response as very small spheres, with an infinitesimal
radius δR. The volumetric energy between the plane and an infinitesimally small sphere is then
integrated over the sphere of radius R.

We start from an integral expression of the Casimir-Polder energy for a point scatterer located
at a distance L above a plane mirror:

ECP = −~c
∫ ∞

0

dξ̂

2π

α(ξ̂)

4πε0

∫ ∞
0

k

κ
dk

(
(κ2 + k2) |rTM|+ ξ̂2 |rTE|

)
e−2κL

where α
(
ξ̂
)
is the polarizability of the point scatterer in SI units, spherical symmetry assumed,

and
∣∣∣r (ξ̂, k)∣∣∣ the absolute values of the reflection amplitudes. In the following we will use a

polarizability described by the simple Clausius-Mosotti relation α = 4πε0
ε−1
ε+2(δR)3, with ε(iξ)

being the frequency-dependant permittivity of the sphere’s material. It allows to make this
expression equivalent to the result of the point-like sphere limit (δR � L) from the scattering
formula, described in Section 12.1 (p.158).

Thanks to the volumetric nature of the polarizability within the Clausius-Mosotti relation, the
Casimir energy can be expressed per unit volume of the point-like sphere:

ECP =
E1

4
3π(δR)3

=
3~c
8π2

∫ ∞
0

dξ̂
ε(iξ)− 1

ε(iξ) + 2

∫ ∞
0

k

κ
dk

(
(κ2 + k2) |rTM|+ ξ̂2 |rTE|

)
e−2κL . (B.20)

In Sections 12.1.3 (p.161) and 12.1.4 (p.162) we observed that in some regimes, this Casimir
energy could be written as the volume of the sphere times a power law in L. This allows us now to
write the volumetric energy (B.20) in the simpler form:

En =
En

4
3π(δR)3

= − cn
Ln

, n ∈ {3, 4} .
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The energy for the ’big’ sphere of radius R is then obtained by an integration over its volume of
(B.20). For the general case, one obtains the averaged energy:

ECP =

∫
sphere

E1(x)dV

= π

∫ L+2R

L
dz E1(z)

(
−z2 + 2z(L+R)− L(L+ 2R)

)
.

The derivation can be done analytically for the simpler forms En and reads:

En =

∫
sphere

En
4
3πR

3
dV

= −cn
∫
sphere

dV

Ln

= −cnπ [−L(L+ 2R)Jn + 2(L+R)Jn−1 − Jn−2]

with the integrals Jn =
∫ L+2R
L

dx
xn for 1 ≤ n ≤ 4:

J1 =

∫ L+2R

L

dx

x
= ln

(
L+ 2R

L

)
J2 =

∫ L+2R

L

dx

x2
=

2R

L(L+ 2R)

J3 =

∫ L+2R

L

dx

x3
=

2R(L+R)

L2(L+ 2R)2

J4 =

∫ L+2R

L

dx

x4
=

2R(3L2 + 6LR+ 4R2)

3L3(L+ 2R)3
.

Finally the large and short distance Casimir energies, averaged on the volume of the sphere, read

E4 = − 4c4πR
3

3L2(L+ 2R)2

E3 = −c3π

[
2R(L+R)

L(L+ 2R)
− ln

(
L+ 2R

L

)]
.

228



Casimir Interaction between Plane and Spherical Metallic Surfaces

Antoine Canaguier-Durand,1 Paulo A. Maia Neto,2 Ines Cavero-Pelaez,1 Astrid Lambrecht,1 and Serge Reynaud1
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We give an exact series expansion of the Casimir force between plane and spherical metallic surfaces in

the nontrivial situation where the sphere radius R, the plane-sphere distance L and the plasma wavelength

�P have arbitrary relative values. We then present numerical evaluation of this expansion for not too small

values of L=R. For metallic nanospheres where R, L and �P have comparable values, we interpret our

results in terms of a correlation between the effects of geometry beyond the proximity force approxima-

tion and of finite reflectivity due to material properties. We also discuss the interest of our results for the

current Casimir experiments which are performed with spheres of large radius R � L.

DOI: 10.1103/PhysRevLett.102.230404 PACS numbers: 03.70.+k, 12.20.Ds, 42.50.�p, 85.85.+j

The Casimir force is a striking macroscopic effect of
quantum vacuum fluctuations which has been seen in a
number of dedicated experiments in the last decade (see for
example [1,2] and references therein). One aim of the
Casimir force experiments is to investigate the presence
of hypothetical weak forces predicted by unification mod-
els through a careful comparison of the measurements with
quantum electrodynamics predictions. This aim can only
be reached if theoretical computations are able to take into
account a realistic and reliable modeling of the experimen-
tal conditions. Among the effects to be taken into account
are the material properties and the surface geometry. Note
that these effects are also able to produce phenomena of
interest in nanosystems [3,4].

A number of Casimir measurements have been per-
formed with gold-covered plane and spherical surfaces
separated by distances L of the order of the plasma wave-
length (�P ’ 136 nm for gold), making material properties
important in their analysis [5]. As those measurements use
spheres with a radius R � L, they are commonly analyzed
through the proximity force approximation (PFA) [6],
which amounts to a trivial integration over the sphere-plate
distances. An exception is the Purdue experiment dedi-
cated to the investigation of the accuracy of PFA in the
sphere-plate geometry [7], the result of which will be given
as a precise statement below.

In the present Letter, we give for the first time an exact
series expansion of the Casimir force between a plane and
a sphere in an electromagnetic vacuum, taking into account
the material properties via the plasma model (see Fig. 1).
We present numerical evaluation of this expansion which
are limited to not too small values of L=R, because of the
multipolar nature of the series. We show below that these
new results lead to a striking correlation between the
effects of geometry and imperfect reflection when eval-
uated for nanospheres, with R, L, and �P having compa-
rable values. In the end of this Letter, we also discuss the
interest of these results for the Casimir experiments per-
formed with large spheres R � L [7].

Our starting point is a general scattering formula for the
Casimir energy [8]. Using suitable plane-wave and multi-
pole bases, we deduce the Casimir energy EPS between a
plane and a spherical metallic surface in an electromag-
netic vacuum. The multipole series expansion is written in
terms of Fresnel reflection amplitudes for the plate andMie
coefficients for the sphere, and it is valid for arbitrary
relative values of the sphere radius R, the sphere-plate
distance L and the plasma wavelength �P. For the sake
of comparison with experiments, we assume �P ’ 136 nm
for both, the sphere and the plate. We occasionally also
consider the limit �P ! 0, where the formula reduces to
the case of perfect reflectors in an electromagnetic vacuum,
for which results were obtained recently [9–11].
In the following, we discuss the force F PS �

�@EPS=@L as well as the force gradient GPS �
�@F PS=@L which was measured in the experiment [7].
Wewrite the results deduced from the scattering formula as
products of PFA estimates by beyond-PFA correction fac-
tors �F and �G:

F PS � �FF PFA
PS ; F PFA

PS � �E

@c�3R

360L3

GPS � �GGPFA
PS ; GPFA

PS � �F

@c�3R

120L4
:

(1)

FIG. 1 (color online). The geometry of a sphere of radius R
and a flat plate at a distance L (center-to-plate distance L �
Lþ R); both mirrors are covered with a metal characterized by a
plasma wavelength �P.
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The PFA estimates F PFA
PS and GPFA

PS are proportional, re-

spectively, to the energy and force calculated between two
planes. They are written as products of ideal Casimir
expressions and factors �E and �F accounting for the
effect of imperfect reflection [5].

The beyond-PFA correction factors �F and �G appear-
ing in (1) are the important quantities for what follows. For
experiments performed with large spheres of radius R �
L, the deviation from PFA is small (�F ’ 1). Even in this
limit, it remains important to specify the accuracy of PFA
in order to master the quality of theory-experiment com-
parison [10]. This can be done by introducing a Taylor
expansion of the correction factors at small values of L=R

�F;G � 1þ �F;G

L

R
þO

�
L2

R2

�
: (2)

The only experimental result available on this topic [7]
may be stated as a bound on the �G factor, namely j�Gj<
0:4. On the theoretical side, analytical as well as numerical
calculations of this slope have been obtained for scalar
field models [12–16]. For the situation met in experiments,
with a plane and a sphere in an electromagnetic vacuum, an
estimation technique has recently been proposed where the
slope is deduced from a polynomial fit of the numerical
values obtained at intermediate values of L=R [9,10]. The
slope obtained in this manner is much larger (�8 times
larger) than expected from scalar field models [10]. As a
consequence, the value of �G falls out of the bound of [7],
in contrast with the scalar prediction which lies within the
bound. More precise statements on this point will be given
below.

On the other hand all these results correspond to perfect
reflection, whereas the experiment [7] was performed with
gold-covered surfaces. The apparent contradiction noticed
in the preceding paragraph may thus be cured if the value
of �G differs for metallic and perfect mirrors, that is also if
the effects of geometry and finite reflectivity are correlated.
We show in the sequel of this Letter that this is indeed the
case.

We start from the formula for the Casimir energy EPS

between two scatterers in vacuum [8]

EPS ¼ @

Z 1

0

d�

2�
logdetð1�MÞ

M � RSe
�KLRPe

�KL:
(3)

In the geometry depicted on Fig. 1 with a sphere of radius
R, a plate, and a sphere-plate separation L along the z axis
(center-to-plate distance L � Lþ R), RS and RP repre-
sent the reflection operators for the spherical and the plane
scatterers, respectively. They are evaluated with reference
points placed at the sphere center and at its projection on

the plane, respectively. The operator e�KL describes the
one-way propagation between these two reference points.
� is the imaginary field frequency integrated over the upper
imaginary axis.

In order to evaluate explicitly this expression, we use
two mode decompositions. The first one is a plane-wave
basis jk; �; pi� with k the transverse wave vector parallel

to the xy plane, p ¼ TE, TM the polarization, and� ¼ �1
for rightward or leftward propagation directions. It is
well adapted to the description of free propagation and

reflection on the plane: the propagation operator e�KL is

diagonal with matrix elements e�KL such that K ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2=c2 þ k2

p
(k � jkj) while reflection on the plane pre-

serves all plane-wave quantum numbers but �. The non-
zero elements of RP are the standard Fresnel reflection
amplitudes rp. Given values of kðk; ’Þ and� ¼ �1 define

a direction in reciprocal space corresponding to the azimu-
thal angle ’ and a complex angle �� such that sin�� ¼
�i ck� and cos�� ¼ � cK

� .

The second basis, which is adapted to the spherical
symmetry of RS, is a multipole basis j‘mPi�, with ‘ð‘þ
1Þ and m the angular momentum eigenvalues (‘ ¼
1; 2; . . . , m ¼ �‘; . . . ; ‘) and P ¼ E, M for the electric
and magnetic multipoles. By rotational symmetry around
the z axis, M commutes with Jz. Hence it is block diago-

nal, with each block MðmÞ corresponding to a common

value of m and yielding a contribution EðmÞ
PS to the Casimir

energy EPS (opposite values �m provide identical contri-

butions). The contribution EðmÞ
PS is written as in (3) withM

replaced by the block matrix

M ðmÞ ¼ MðmÞðE; EÞ MðmÞðE;MÞ
MðmÞðM;EÞ MðmÞðM;MÞ

� �
: (4)

Each block in this matrix is the sum of TE and TM

contributions MðmÞðP1; P2Þ ¼
P

pM
ðmÞ
p ðP1; P2Þ. The diago-

nal blocks are written as

MðmÞ
TE ðE; EÞ‘1;‘2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð2‘1 þ 1Þ
‘2ð‘2 þ 1Þ

s
AðmÞ
‘1;‘2;TE

a‘1ði�Þ

MðmÞ
TMðE; EÞ‘1;‘2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð2‘1 þ 1Þ
‘2ð‘2 þ 1Þ

s
BðmÞ
‘1;‘2;TM

a‘1ði�Þ

MðmÞ
TMðM;MÞ‘1;‘2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð2‘1 þ 1Þ
‘2ð‘2 þ 1Þ

s
AðmÞ
‘1;‘2;TM

b‘1ði�Þ

MðmÞ
TE ðM;MÞ‘1;‘2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð2‘1 þ 1Þ
‘2ð‘2 þ 1Þ

s
BðmÞ
‘1;‘2;TE

b‘1ði�Þ;

(5)

a‘ði�Þ and b‘ði�Þ are the Mie coefficients [17] for electric
and magnetic multipoles. A and B are matrices which do
not depend on the radius nor on the refractive index of the
sphere and are written in terms of the spherical harmonics
Y‘;mð�;’ ¼ 0Þ and the finite rotation matrix elements

d‘m;m0 ð�Þ ¼ h‘;mje�i�Jy j‘;m0i [18]
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AðmÞ
‘1;‘2;p

¼ �im
Z 1

0

dk

K
ðd‘1m;1ð�þÞ þ d‘1m;�1ð�þÞÞ

� Y‘2mð��ÞrpðkÞe�2KL

BðmÞ
‘1;‘2;p

¼ � c

�

Z 1

0

kdk

K
ðd‘1m;1ð�þÞ � d‘1m;�1ð�þÞÞ

� @�Y‘2mð��ÞrpðkÞe�2KL:

(6)

Similar expressions are found for the nondiagonal blocks,
with the matrices A and B replaced, respectively, by

CðmÞ
‘1;‘2;p

¼ c

�

Z 1

0

kdk

K
ðd‘1m;1ð�þÞ þ d‘1m;�1ð�þÞÞ

� @�Y‘2mð��ÞrpðkÞe�2KL

DðmÞ
‘1;‘2;p

¼ im
Z 1

0

dk

K
ðd‘1m;1ð�þÞ � d‘1m;�1ð�þÞÞ

� Y‘2mð��ÞrpðkÞe�2KL:

(7)

In order to go further, we assume the materials to have a
dielectric response described by the plasma model 	ði�Þ ¼
1þ!2

P=�
2, with !P the plasma frequency and �P ¼

2�c=!P the plasma wavelength. Although the formalism
easily allows for different values of �P for both surfaces,
we take a common value as in the recent experiment [7].
We calculate the Casimir energy EPS and deduce the force
F PS and gradient GPS, both quantities being functions of
the 3 length scales R, L, and �P. The case of perfect
reflection [10] can be recovered as the limit �P � R, L
(see [19] for the opposite non-retarded limit). A large
distance limit may also be taken as �P, R � L. Its result
reduces to the Rayleigh expression [20] in the case (R �
�P) or to 3=2 of it [9,10] in the case (�P � R).

As already discussed, the PFA expression is also con-
tained in our general result, and it is recovered asymptoti-
cally for R � L. In the following, we discuss the results of
numerical computations of the ratios �F;G defined in (1)

which measure the deviation from PFA. For dimensionality
reasons �F;G are functions of two dimensionless parame-

ters built upon L, R, and �P (�E;F are functions of L=�P

only [5]) and they approach unity at the PFA limit L=R �
1. Their numerical computation is done after truncating the
vector space at some maximum value ‘max of the orbital
number ‘. As a consequence of the ‘‘localization princi-
ple’’ [21], the results are accurate only for R=L smaller
than some value which increases with ‘max. At the moment,
our numerical calculations are limited to ‘max ¼ 24, allow-
ing us to obtain accurate results down to L=R ’ 0:2 but not
in close vicinity of the PFA limit.

This method gives new and interesting results, in par-
ticular, for nanospheres having a radius R with the same
order of magnitude as the plasma wavelength �P. In this
case, we can perform accurate calculations for L having a
comparable magnitude, and thus explore the rich func-
tional dependence of �F;G versus two dimensionless pa-

rameters built up on L, R, and �P. Figure 2 shows the
results obtained for �F and �G with metallic and perfect

mirrors. Clearly the deviation from the PFA calculated for
metallic mirrors differs markedly from that already known
for perfect mirrors. For small values of L=R the violation
of PFA for the Casimir force and gradient turns out to be
less pronounced for metallic mirrors than for perfect mir-
rors, while for large values of L=R it is more pronounced.
However, at values L=R ’ 0:2we find a clear correlation

between geometry and finite reflectivity effects, therefore
making measurements with nanospheres at small plate-
sphere separations particularly interesting. This nontrivial
interplay becomes evident when a polynomial fit of the
numerical values of �F;G is used for inferring the behavior

at small values of L=R [9,10]. In Fig. 3 we plot the quartic
polynomial fits of the function �G for the two cases of
gold-covered and perfect mirrors. The curves were ob-
tained by finding the best fit of the numerically computed
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FIG. 2 (color online). Top graph: variation of �F as a function
of L=R, for a nanosphere of radius R ¼ 100 nm; the solid green
line corresponds to gold-covered plates (�P ¼ 136 nm) and the
dashed red line to perfect reflectors. Bottom graph: variation of
�G as a function of L=R, with the same conventions as in the top
graph. The decreases at low values of L=R represent a numerical
inaccuracy due to the limited value of ‘max ¼ 24.
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FIG. 3 (color online). Quartic polynomial fit of the function
�GðL=RÞ, for a nanosphere of radius R ¼ 100 nm; the solid
green line corresponds to gold-covered plates and the dashed red
line to perfect reflectors. The crosses represent numerically
evaluated points and the circles indicate those points which are
used for the fit.
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values of �G (crosses on Fig. 3) in the window 0:4<
L=R < 0:8 (circled crosses on Fig. 3) in the set of quartic
polynomials (Taylor expansion defined as in (2) and trun-
cated at fourth order). The left-hand bound of the window
is fixed by the requirement of using only points accurately
calculated with ‘max ¼ 24 while the right-hand bound is
determined by the truncation at fourth order of the Taylor
expansion. The best fits correspond to the following poly-
nomials for gold-covered (GM) and perfect (PM) mirrors,
respectively, (x � L=R)

GM : 1� 0:207x� 0:530x2 þ 0:645x3 � 0:249x4

PM: 1� 0:483xþ 0:297x2 � 0:221x3 þ 0:080x4:
(8)

The two fits are clearly different and this, in particular, is
the case for the values obtained for the slope at L=R ¼ 0.
The slope (�G ��0:21) obtained for gold mirrors differs
by more than a factor 2 from the one (�G ��0:48)
obtained for perfect mirrors. This is related to the bending
of the curve for gold mirrors at small L=R, which describes
the effect of imperfect reflection in the beyond-PFA factor
�G and has to be contrasted with the unbent curve for
perfect mirrors. For the same reason, we observe that the
slope obtained for gold mirrors is less stable under the
variation of the conditions of the best-fit procedure than
that for perfect mirrors. To appreciate the meaning of the
bending let us recall that the slope obtained for perfect
mirrors in an electromagnetic vacuum is �8 times larger
than expected from scalar computations [15,16] and one
cannot but notice that it lies outside the bound j�Gj< 0:4
of [7]. In contrast, the slope obtained for metallic mirrors
lies within the bound. Let us emphasize that there is no
contradiction between the results presented here (obtained
for nanospheres with R ¼ 100 nm) and the experiments
(performed with spheres having R> a few tenths of 
m).

For spheres with large radii (L=R > 0:2) the beyond-
PFA factors �F;G have the same values for gold-covered

and perfect mirrors, because the value of L is much larger
than �P. If we extracted a slope from these results, we
would obtain a value close to that of perfect mirrors, thus
lying outside the bound of [7]. However, the arguments
discussed before show that one should refrain from doing
so. Indeed, a bending of the curve has to be expected in this
case too, for values of L becoming comparable to �P and
thus much smaller than R. In contrast, this bending has no
reason to appear for perfect mirrors since there is no length
scale like �P in this case. If the bending is similar for large
and small spheres, it may turn out that the slope for gold-
covered mirrors meets the bound [7] while that for perfect
mirrors does not.

To sum up our results, we have written a new and exact
expansion for the Casimir force between plane and spheri-
cal metallic surfaces in an electromagnetic vacuum. The
results go beyond the proximity force approximation, and
show a clear correlation between the plane-sphere geome-
try and the material properties of the metallic surfaces.
They constitute a new step in the direction of accurate

comparisons between Casimir experiments and QED theo-
retical predictions. More work is needed to obtain exact
results for the Casimir force between a metallic sphere and
plate in the so far experimentally explored parameter re-
gion of L=R ’ 0:01, using, for example, different ap-
proaches based on semiclassical methods. Our results
also indicate a complementary way to observe deviations
from PFA and the interplay between geometrical and re-
flectivity effects in new experiments performed with
nanospheres.
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The thermal Casimir force between two metallic plates is known to depend on the description of

material properties. For large separations the dissipative Drude model leads to a force a factor of 2 smaller

than the lossless plasma model. Here we show that the plane-sphere geometry, in which current

experiments are performed, decreases this ratio to a factor of 3=2, as revealed by exact numerical and

large-distance analytical calculations. For perfect reflectors, we find a repulsive contribution of thermal

photons to the force and negative entropy values at intermediate distances.
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Interest in the Casimir force, arising due to the confine-
ment of the vacuum fluctuations of electromagnetic fields
between two reflecting bodies, has been continuously
growing during the last decade and the motivation for
measuring it precisely has led to a number of original
experiments using various modern technologies [1–7].
The Casimir force depends on a number of factors, includ-
ing the bodies’ material properties [8,9], their surface state
[10–12] and shape. Current experiments are performed
using a spherical and a plane surface. The force in this
plane-sphere geometry is usually calculated within the
proximity force approximation (PFA) [13] which averages
the force calculated in the plane-plane geometry over the
local intersurface distances. Only recently have studies
been devoted to Casimir force evaluations going beyond
the domain of validity of PFA [14–19].

The influence of temperature on the Casimir effect has
given rise to intense discussions over the last decade
[20,21], in particular, because the force exhibits an unex-
pectedly strong correlation with the detailed description of
optical properties of the metallic surfaces used in the
experiments. The dielectric function of metals is often
modeled by the plasma model where the plasma frequency
!P, depending on the density of conduction electrons, acts
as a cutoff frequency above which the reflectivity goes to
zero. In the Drude model which also accounts for the
relaxation of conduction electrons, the dielectric function

at imaginary frequencies ! ¼ i� is given by "ði�Þ ¼ 1þ
!2

P

�ð�þ�Þ , with the relaxation frequency � related to the

reduced dc conductivity �0 ¼ !2
P

� (see [22]). The plasma

model permittivity is obtained from the Drude model one
in the limit � ! 0, while the perfect reflector’s infinite
permittivity is recovered with the further limit !P ! 1.

While the dissipative Drude model seems a more appro-
priate description of metallic mirrors, it turns out that
recent force measurements are in better agreement with
the predictions of the lossless plasma model [1]. In addi-
tion, the Casimir force between two plates at large sepa-
rations turns out to be a factor of 2 smaller when calculated

with the Drude model compared to the one obtained with
the plasma or the perfect reflector model. This significant
difference is attributed to the vanishing contribution of TE
modes at zero frequency for dissipative mirrors entailing
that for the Casimir force, contrary to the dielectric func-
tion, there is no continuity from the Drude to the plasma
model at the limit of a vanishing relaxation [22]. In contrast
to the other two models, the Drude model also leads to
negative Casimir entropy values between two plates [23].
In the present Letter, we treat plane and spherical me-

tallic surfaces coupled to electromagnetic vacuum and
thermal fields with material properties described by either
the perfect reflector, plasma, or Drude models, and show
that the above mentioned features are considerably altered
in this situation. First, the factor of 2 between the long
distance forces in Drude and plasma models is reduced to a
factor of 3=2 decreasing even more below this value when
small spheres are considered. Second, negative entropies
are found also for the perfect reflector model, in which case
they can only be related to the plane-sphere geometry and
not to dissipation. Finally, PFA underestimates the Casimir
force within the Drude model for short distances, while it
overestimates it at all distances for the perfect reflector and
plasma model.
We consider a large parameter space generated by the

five length scales involved in the problem: the surface
separation L, the sphere radius R, the thermal wavelength
�T ¼ @c=kBT at temperature T, the plasma wavelength
�P ¼ 2�c=!P, and the wavelength associated with relaxa-
tion frequency �� ¼ 2�c=�. The general scattering for-

mula [24] for the Casimir free energy F between a plane
and a sphere is given by

F ¼ kBT
X0

n

logdetð1�Mð�nÞÞ; �n ¼ 2�nkBT

@

Mð�nÞ � RSð�nÞe�Kð�nÞLRPð�nÞe�Kð�nÞL: (1)

According to (1), the operator M contains the reflection
operators RS and RP of the sphere and the plane, respec-
tively, the latter being evaluated with reference points
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placed at the sphere center and at its projection on the

plane, as well as the translation operators e�Kð�nÞL de-
scribing one-way propagation between the reference points
on a distance L ¼ Lþ R; the primed sum is a sum over
the Matsubara frequencies �n (n � 0) with the n ¼ 0 term
counted for a half.

The upper expression is conveniently written through a
decomposition on suitable plane-wave and multipole
bases. The resulting elements of the matrix RP are pro-
portional to the Fresnel reflection coefficients rp with p ¼
TE and TM for the two electromagnetic polarizations,
while those of RS are proportional to the Mie coefficients
a‘, b‘ [25] for electric and magnetic multipoles at order
‘ ¼ 1; 2; . . . ; respectively. Because of rotational symmetry
around the z axis, each eigenvalue of the angular momen-
tum m gives a separate contribution to the Casimir free

energy F ðmÞ, obtained through the same formula as (1),

with M reduced to the block matrix MðmÞ collecting the
couplings for a fixed value of m. The numerical computa-
tions presented below are done after truncating the vector
space at some maximum value ‘max of the orbital number
‘. The results are thus accurate only for R=L smaller than
some value which increases with ‘max, typically R=L < 10
for our ‘max ¼ 34, remaining a factor of 10 below current
experimental values R=L > 102.

The results of the numerical computations are shown on
Fig. 1 for perfect reflectors. We have calculated the
Casimir force Fperf between the plane and the sphere at
ambient temperature and then plotted the ratio #perf of this
force to its value at zero temperature:

FperfðL; TÞ � �@F perf

@L
; #perf � FperfðL; TÞ

FperfðL; 0Þ : (2)

The various solid curves are drawn for different radii R of
the sphere as a function of the distance L, with increasing
values of R from bottom to top; the upper dashed curve on

Fig. 1 represents the quantity #
perf
PFA as it would be obtained

from (2) by using PFA ; the lower dotted curve is an
analytical asymptotic expression discussed below.
Figure 2 shows the variation of the ratio#Drud, defined as

in (2) for the Drude model with �P ¼ 136 nm, ��=�P ¼
250, and �T ¼ 7:6 �m. The dashed curve on Fig. 2 rep-
resents #Drud

PFA as obtained for the Drude model by using
PFA. We do not plot the variation of #plas, defined as in (2)
for the plasma model, since it is as expected quite close to
the one shown on Fig. 1 for perfect mirrors.
In most cases, the ratio #, starting from unity at small

distances, decreases below unity when the distance in-
creases, then reaches a minimum before increasing at
very large distances. While such behavior was already
observed for dissipative Drude mirrors in the plane-plane
geometry [21,23] (the dashed PFA curve on Fig. 2 is also
below unity for L & 4 �m), or in the atom-surface con-
figuration out of equilibrium [26], our computations show
quite unexpectedly that in the sphere-plane geometry such
a behavior takes place even for the perfect reflector and
plasma models at thermodynamical equilibrium. Hence,
for all three models the contribution of the thermal photons
to the Casimir force can be repulsive, which suggests that
the entropy could be negative for some values of the
parameters (see below).
A second important feature comes out in a striking

manner from the comparison of Figs. 1 and 2: the PFA
always overestimates the effect of temperature on the force
between mirrors described by a perfect reflector or plasma
model; in contrast, it underestimates the temperature effect
for the Drude model at small distances, while it overesti-
mates it at large distances. The overestimation is, however,
smaller than for perfect mirrors. As a consequence, for
small separations the Drude and plasma models lead to
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FIG. 1 (color online). Thermal Casimir force at T ¼ 300 K
computed between perfectly reflecting sphere and plane, divided
by the zero temperature force. Solid lines from bottom to top
correspond to increasing values of sphere radii. The upper
dashed curve represents the PFA expression while the lower
dotted curve is the analytical asymptotic expression in the L �
R limit.
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FIG. 2 (color online). Same plot as in Fig. 1 for the Casimir
force at T ¼ 300 K computed with the Drude model, divided by
its value at zero temperature. The dashed curve correspond to the
PFA expression.
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Casimir force values much closer than predicted by PFA.
These results clearly demonstrate the strong correlation
between the effects of plane-sphere geometry, temperature
and dissipation.

In the following we will corroborate the previous nu-
merical results by presenting analytical calculations of the
thermal Casimir energy in the limit of large distances
(L � R). Since the number of modes ‘max needed to get
an accurate result decreases when L=R increases, we may
take ‘max ¼ 1 in this limit. Another consequence of this

limit is that the reduced frequency ~� � �R=c is very small,
since the characteristic frequencies, which give the main
contribution to the Casimir force, scale as �� c=L.

For perfect reflectors, where �P ¼ 0, the dielectric func-
tion " is infinite at all frequencies and we obtain the
following low-frequency expansions for the Mie coeffi-
cients a1 and b1 describing the scattering on the sphere:

a
perf
1 ¼ � 2~�3

3
; b

perf
1 ¼

~�3

3
: (3)

The other steps in the calculation of the Casimir force may
then be done analytically and the sum over all Matsubara
frequencies may be given in a closed form. One obtains in
this manner the following approximation of the Casimir
free energy:

F perf ¼ � 3@cR3

4�TL
3
�ð�Þ; � � 2�L

�T

;

�ð�Þ � � sinh�þ cosh�ð�2 þ sinh2�Þ
2sinh3�

; L � R:

(4)

The fact that the upper expression is a relevant approxi-
mation is shown on Fig. 1: the lower dotted curve, repre-
senting the value of the ratio #perf deduced as in (2)
through a derivation of expression (4), is close to curves
computed for small radii R � L. Using (4), it is straight-
forward to derive an analytical expression of the entropy
S � �@F =@T:

Sperf ¼ 3kBR
3

4L3
ð�ð�Þ þ ��0ð�ÞÞ; L � R; (5)

which gives negative values for � & 1:5, that is L &
1:8 �m at T ¼ 300 K.

In addition, we can derive from (4) low- and high-
temperature expressions for the free energy:

F perf ’ � 9@cR3

16�L4

�
1� �4

135
þ 4�6

945

�
; �T � L � R;

F perf ’ � 3@cR3

8�TL
3
; L � �T; R: (6)

Equation (6) is the large-distance high-temperature limit
which can be generalized to metallic scatterers described
by either the plasma or the Drude model. Starting with the
lossless plasma model (� ¼ 0) we obtain for L � �P

Fresnel coefficients with unit modulus rTE � �1, rTM �
1, while the low-frequency expansion of the Mie coeffi-
cients [27], and the resulting free energy, are read, intro-
ducing the parameter 	 � 2�R

�P
:

a
plas
1 ’ � 2~�3

3
; b

plas
1 ’

�
1

3
þ 1

	2
� coth	

	

�
~�3;

F plas ’ � 3@cR3

8�TL
3

�
1þ 1

	2
� coth	

	

�
; L � �T; R:

(7)

The result for perfect reflection is reproduced by (7) when
both L, R � �P.
For the dissipative Drude model (� � 0), the low-

frequency limit of the two Fresnel coefficients have the
well-known form rTE ! 0, rTM � 1. The low-frequency
expansion of the Mie coefficients and the ensuing free
energy are read

aDrud1 ’ � 2~�3

3
þ c~�4

�0R
; bDrud1 ’ �0R~�4

45c
;

F Drud ’ � @cR3

4�TL
3
; L � �T; R:

(8)

The long distance free energy for the Drude model
amounts to 2

3 of the value for perfect mirrors whereas this

ratio is 1
2 in the plane-plane geometry. The latter result is

explained by the fact that the TE reflection coefficient
vanishes at zero frequency so that only the TM modes
contribute [20,21]. The change of the ratio 1

2 to 2
3 in the

plane-sphere geometry has to be attributed to the redistrib-
ution of the TE and TM contributions into electric and
magnetic spherical eigenmodes.
Formally the results for the Drude model (8) can be

obtained from the plasma model results (7) by taking the
limit R � �P. In this limit, however, we should take into
account the effect of quantum confinement in the small
sphere, which is out of the scope of the present Letter. Two
further features in (8) must be emphasized. First, the
coefficient b1 is vanishingly small in the Drude model
but not in the plasma model; the latter can thus not be
obtained by turning the relaxation frequency � to zero (or
�0 to 1). In addition, the free energy for the Drude model
is independent of the values of �P and �, whereas the one
for the plasma model depends on �P.
On Fig. 3, we illustrate the comparison of the two

models by plotting the ratio of the thermal Casimir forces
Fplas calculated with the plasma model and FDrud obtained
with the Drude model. Again, the plots correspond to �P ¼
136 nm and ��=�P ¼ 250. The results of our calculations

are shown by the solid curves with the sphere radius
increasing from bottom to top as in Fig. 1. The ratio
Fplas=FDrud varies in the plane-sphere geometry as a func-
tion of the sphere radius, which clearly demonstrates the
strong interplay between the effects of temperature, dis-
sipation and geometry. For large spheres (R � �P), the
ratio converges at long distances to the value 3=2which has
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been obtained analytically in the preceding paragraphs,
whereas it remains smaller for small spheres (down to
1.2 for R� 100 nm). The dashed curve gives the variation
of the same ratio as calculated within the PFAwhich leads
to a factor of 2 in the limits of large distances or high
temperatures. We emphasize that the factor of 2 deduced
within PFA is never approached at the large-distance limit
within the calculations performed in the plane-sphere
geometry.

To summarize we have computed exact results for the
Casimir free energy and force at nonzero temperature in
the plane-sphere geometry. We have given plain evidence
for a strong correlation between the effects of geometry,
temperature, and dissipation based on the perfect reflector,
plasma, and Drude model to describe material properties.
The correlation becomes clearly visible in the relative
approaching of the Casimir force values computed with
the Drude and plasma model, the appearance of negative
entropies evidently not related to the presence of dissipa-
tion and the fact that PFA underestimates the Casimir force
for the Drude model at short distances while it overesti-
mates it for the plasma model. If the latter feature were
conserved for the experimental parameter region R=L
(>102), the actual values of the Casimir force calculated
within plasma and Drude model could turn out to be closer
than what PFA suggests, eventually diminishing the dis-
crepancy between experimental results and predictions of
the thermal Casimir force using the Drude model. Settling
this question is an open and highly topical program in
Casimir physics.
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FIG. 3 (color online). Ratio of thermal Casimir force at T ¼
300 K calculated with the plasma model and the Drude model,
as a function of surface separation L for different radii of the
sphere. The solid curves from bottom to top correspond to
increasing values of sphere radii. The dashed curve is the PFA
prediction.
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We compute the Casimir interaction between a plane and a sphere, the configuration employed in the most
precise experiments. The scattering formula is developed by taking a suitably chosen plane-wave and multipole
basis and is valid for arbitrary values of the sphere radius, interplate distance, temperature, and arbitrary dielectric
functions for both sphere and plate. Our analytical and numerical results for metallic surfaces show a nontrivial
interplay between the effects of curvature, temperature, finite conductivity, and dissipation.
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I. INTRODUCTION

Measuring the Casimir force [1,2] has been the aim of an
increasing number of experiments in the past few years [3–17].
The comparison of these measurements with predictions from
quantum electrodynamics theory have been applied to put
constraints on hypothetical new forces predicted by unification
models [18,19]. Accurate theoretical computations, which
account for a modeling of experimental conditions, are sorely
needed for all comparisons to be reliable [20,21].

The Casimir force is indeed very sensitive to experimental
conditions. The effect of finite conductivity [22] plays an es-
sential role in the accurate determination of the force, while the
contribution of thermal fluctuations gives rise to a remarkable
interplay with the latter effect [23–28]. In the calculations
performed for the geometry of two parallel plates, the Casimir
force computed within the dissipative Drude model turns out
to be a factor of 2 smaller than the result obtained within
the lossless plasma model. As a consequence, the plasma
theory of the Casimir effect cannot be obtained from the
Drude one by taking the corresponding relaxation constant to
zero. The current experimental results [11] do not explore the
region where the calculations for lossy and lossless models
give large differences, but their precision is sufficient to favor
the plasma over the Drude theory, in spite of the dissipative
nature of the metallic plates used in the experiments.

Now, the most precise experiments are performed with a
spherical metallic surface in front of a plane surface. The force
is usually derived from the force evaluated in the parallel-plate
geometry with subsequent averaging over the local separation
distances. This proximity force approximation (PFA) [29]
is expected to provide an accurate description in the limit
of large sphere radii (see Refs. [30,31] for derivations with
perfect mirrors at zero temperature). Even if spheres used
in the experiments are much larger than the typical distance
between them, it remains necessary to master the beyond-PFA
geometry correction [32] even for large spheres in order to
match the experimental accuracy level.

There is no reason why the thermal finite conductivity and
beyond-PFA corrections could be expected to be indepen-
dent. Therefore, an accurate description of the experimental
conditions has to take these effects into account simultane-
ously within a single theoretical model. In this paper, we

develop the beyond-PFA scattering approach [20] for the
plane-sphere geometry at finite temperature, with material
properties described by either the perfect reflector, the plasma,
or the Drude models. We show that the interplay between
temperature and material properties is drastically affected
when the parallel-plate configuration is replaced by the plane-
sphere geometry. The results obtained from the Drude and
plasma models are generally closer to each other than in the
parallel-plate geometry. In particular, the factor of 2 between
the two models reached at the limit of long distances between
parallel plates is reduced to 3/2 for a plate and a sphere,
and even less if small spheres are considered. Finally, we
find that PFA underestimates the thermal contribution to the
Casimir force for the Drude model at short distances, whereas
it overestimates it at all distances for the perfect reflector and
plasma models.

We start from the scattering theory of Casimir interaction
[20], which allows one to consider nontrivial geometries at
finite temperatures together with a realistic description of the
material properties. The Casimir free energy is written in terms
of general reflection operators, which describe nonspecular
diffraction by the material surfaces. The resulting formula
provides a compact way of taking the multiple scatterings
between the interacting bodies into account [33]. In the par-
ticular case of parallel-plane surfaces, the reflection operators
are diagonal in the plane-wave basis, so that the Casimir free
energy is given in terms of specular reflection coefficients [34].
In the plane-sphere geometry, scattering on the sphere is easily
made explicit in the multipole spherical-wave basis [35] (see
also Ref. [36] for a treatment of nonretarded interactions).
It is also essential to combine the multipole basis with the
plane-wave basis [37] well adapted to the treatment of nonideal
reflection by metals. By judiciously employing the two bases at
appropriate steps of the derivation, the scattering formalism,
thus, allows to analyze the interplay between geometry and
finite conductivity at zero [38] and nonzero temperatures [39].

Let us note that, in recent years, several papers have
been devoted to the study of the Casimir effect in nonplanar
geometries. In addition to the already cited papers, let us
refer to the following applications of the scattering approach
[40–47] or of alternative methods [48–55]. The first application
of the scattering approach to nontrivial geometries and
nonideal reflectors can be found in Refs. [56–58]. An historical
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FIG. 1. Sphere of radius R and a flat plate at a distance L, with
center-to-plate distance L ≡ L + R.

overview of the various forms of the multiple-scattering
method can be found in Ref. [59]. In this paper, we analyze, in a
detailed manner, the full interplay between finite conductivity,
finite temperature, and plane-sphere geometry, which was only
briefly discussed in Ref. [39].

This paper is organized as follows: Our main goals and
basic notations are presented in Sec. II. In Sec. III, we develop
the scattering approach for the plane-sphere geometry and
derive the formal results used in Secs. IV (perfect reflectors)
and V (plasma and Drude models). Concluding remarks are
presented in Sec. VI.

II. DEFINITIONS AND GENERAL OUTLOOK

We consider the Casimir interaction between a metallic
sphere of radius R and a metallic plate at a distance of closest
approach L at an arbitrary temperature T , as shown in Fig. 1.
The center-to-plate distance is

L = L + R.

Experimental results for the Casimir force in the plane-sphere
geometry are usually compared with PFA-based theoretical
models [29]. The spherical surface is assumed to be nearly
flat over a scale of the order of L, and then the total Casimir
energy is obtained by adding the contributions corresponding
to different local interplate distances over the sphere surface.
Although the Casimir energy is not additive, PFA is usually
expected to provide an accurate description when R � L. The
resulting Casimir force F PFA is

F PFA = 2πR
FPP

A
. (1)

FPP is the Casimir free energy for two parallel plates of area
A. Thus, PFA neglects diffraction due to the sphere curvature
and provides a direct connection to the parallel-plate geometry.
The resulting force is proportional to the Casimir free energy
per unit area calculated for this much simpler geometry.

In this paper, we develop an exact theoretical model that
takes diffraction fully into account. We first compute the
Casimir free energy F(L,T ) for the plane-sphere geometry
from the scattering formula [20] (Sec. III) and then derive the
force F and the entropy S from

F = −∂F
∂L

, S = −∂F
∂T

. (2)

The latter is at the core of the ongoing debate about a
possible violation of the third law of thermodynamics in the
dissipative Drude model [25,27]. Negative Casimir entropy
values found for parallel plates have been explained in terms
of the coupling to a heat bath associated with dissipation [28].
However, here, we find negative entropies even for the perfect
reflector model, which shows that geometry itself plays a
nontrivial thermodynamical role, provided that beyond-PFA
diffraction effects are taken into account.

To quantify the deviation from PFA, we define the quantity:

ρF = F

F PFA
. (3)

The ratio,

ϑ = F (L,T )

F (L,0)
(4)

represents the temperature correction at a given separation
distance and for a given model. In Secs. IV and V, we calculate
ρF and ϑ for the perfect reflector, plasma, and Drude models
for metallic surfaces.

The Drude dielectric function,

ε(iξ ) = 1 + ω2
P

ξ (ξ + γ )
, (5)

at imaginary frequencies ω = iξ , contains two frequency
scales: the plasma frequency ωP and the relaxation frequency
γ . The plasma dielectric function is obtained from Eq. (5)
in the lossless limit γ → 0. Note, however, that there is no
continuity in the Casimir force from the Drude to the plasma
model in this limit [28]. By taking the further limit ωP → ∞
from the plasma model, we recover the perfect reflector limit
(to be discussed in Sec. IV), which corresponds to an infinite
dielectric function at all frequencies.

In Sec. V, we provide a detailed comparison between
plasma and Drude models for the Casimir effect. Since the
dc conductivity σ0 = ω2

P /γ diverges in the limit γ → 0, the
Drude model is expected, in principle, to provide a more
realistic description of normal (i.e., nonsuperconducting)
metals. However, experimental data are surprisingly in better
agreement with the plasma model when PFA is employed
to analyze the plane-sphere geometry [11]. Here, we show
that the results from the two models are actually closer than
predicted by PFA-based theories, which might help to solve
this paradox. We consider a rich parameter space containing
five different length scales: In addition to the geometrical
scales L and R, our problem contains the thermal wavelength
(kB is the Boltzmann constant),

λT = h̄c

kBT
,

the plasma wavelength λP = 2πc/ωP , and the wavelength
that corresponds to the relaxation frequency λγ = 2πc/γ .
Different orderings of these length scales can, in principle,
be considered, which lead to various regimes associated with
nontrivial interplays between temperature, geometry, finite
conductivity, and dissipation. Most experiments are performed
with gold at room temperature, hence, the numerical results
presented in Secs. III, IV and V correspond to λT = 7.6 µm,
λP = 136 nm (plasma and Drude), and λγ /λP = 250 (Drude).
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III. SCATTERING APPROACH IN THE
PLANE-SPHERE GEOMETRY

In this section, we apply the scattering approach to the
plane-sphere geometry (see Fig. 1) at finite temperature. The
Casimir free energy is written as a sum over the Matsubara
frequencies ξn (n � 0) [20]:

F = kBT
∑

n

′
ln det[1 − M(ξn)], ξn = 2πnkBT

h̄
,

(6)
M(ξ ) ≡ RS(ξ )e−K(ξ )LRP (ξ )e−K(ξ )L,

where the primed sum means that the n = 0 term is counted
for a half. The reflection operators of the sphere RS(ξ ) and the
plate RP (ξ ) are evaluated with reference points at the sphere
center and at its projection on the plane, respectively. The
operator e−K(ξ )L accounts for one-way propagation along the z

axis between these points, separated by the length L. Thus, the
operator M(ξ ) represents one round-trip propagation inside
the open cavity formed by the two surfaces.

The plane-wave basis |k,±,p〉ξ [k = wave-vector compo-
nent parallel to the xy plane, p = TE,TM for polarization
and +(−) for upward (downward) propagation direction] is
well adapted to the description of the propagation operator
e−K(ξ )L, which is diagonal in this basis with matrix ele-
ments e−κL, where κ =

√
ξ 2/c2 + k2 represents the wave-

vector z component associated with the imaginary frequency
ξ . Reflection on the plane also preserves all plane-wave
quantum numbers but the propagation direction, and the
nonzero elements of RP (ξ ) are given by the standard Fresnel
specular reflection amplitudes rp(k,ξ ) for a homogenous
medium.

On the other hand, the multipole basis |�mP 〉ξ , with
�(� + 1) and m, which denote the usual angular mo-
mentum eigenvalues (with � = 1,2, . . . ,m = −�, . . . ,�) and
P = E,M , which represent electric and magnetic multipoles,
is well adapted to the spherical symmetry of RS(ξ ). By
rotational symmetry around the z axis, M(ξ ) commutes with
the angular momentum operator Jz. Hence, M(ξ ) is block
diagonal, and each block M(m)(ξ ) (which corresponds to a
given subspace m) yields an independent contribution to the
Casimir energy. We find its matrix elements in the multipole
basis after introducing the spectral resolution of the identity
operator in the plane-wave basis:

M(m)(ξ )1,2 =
∫

d2k
(2π )2

∑
p=TE,TM

〈�1mP1|RS(ξ )|k,+,p〉

× rp(k,ξ )e−2κL 〈k,−,p|�2mP2〉. (7)

This expression has a simple interpretation when read from
right to left: A multipole wave |�2mP2〉 is first decomposed into
plane waves (coefficients 〈k,−,p|�2mP2〉), which propagate
toward the plane (factor e−κL). After reflection by the plane
[specular amplitude rp(k,ξ )], the plane-wave components
propagate back to the sphere (second factor e−κL) and are
finally scattered into a new multipole wave |�1mP1〉.

The matrix elements ofRS in Eq. (7) represent the multipole
components of the field scattered by the sphere for a given
incident plane wave. In Mie scattering calculations, one usually
assumes that the incident plane wave propagates along the z

direction [60]. Here, this is no longer possible, since we have
to consider field modes that propagate simultaneously along
all possible directions. It is then useful to reformulate [61] the
Mie scattering expressions in terms of the matrix elements of
finite rotation [62],

d�
m,m′ (θ ) = 〈�m|e−iθJy |�m′〉,

with m′ = ±1 accounting for the photon spin.
The resulting expressions for 〈�1mP1|RS(ξ )|k,+,p〉 (see

the Appendix), are proportional to the Mie coefficients a�(iξ )
and b�(iξ ) [60], which represent the scattering amplitudes
for electric and magnetic multipole waves. At the imaginary
frequency axis, they are written in terms of the modified Bessel
functions [63] evaluated at the size parameter,

ξ̃ = ξR

c
,

as follows:

a�(iξ̃ ) = π

2

n2s
(a)
� − s

(b)
�

n2s
(c)
� − s

(d)
�

, (8)

b�(iξ̃ ) = π

2

s
(a)
� − s

(b)
�

s
(c)
� − s

(d)
�

, (9)

s
(a)
� = I�+1/2(nξ̃ )[I�+1/2(ξ̃ ) − ξ̃ I�−1/2(ξ̃ )],

s
(b)
� = I�+1/2(ξ̃ )[I�+1/2(nξ̃ ) − nξ̃I�−1/2(nξ̃ )],

s
(c)
� = I�+1/2(nξ̃ )[K�+1/2(ξ̃ ) + ξ̃K�−1/2(ξ̃ )],

s
(d)
� = K�+1/2(ξ̃ )[I�+1/2(nξ̃ ) − nξ̃I�−1/2(nξ̃ )],

with n = √
ε representing the sphere refractive index.

In the Appendix, we also derive the change-of-basis matrix
elements 〈k,−,p|�2mP2〉. They yield, when replaced into
Eq. (7), explicit expressions for the matrix elements of the
round-trip operator M(m)(ξ ), which we organize as a block
matrix:

M(m)(ξ ) =
[ M(m)(E,E) M(m)(E,M)

M(m)(M,E) M(m)(M,M)

]
. (10)

Each block is the sum of TE and TM contributions:
M(m)(P1,P2) = ∑

p M(m)
p (P1,P2). For the diagonal blocks,

we find

M(m)
TE (E,E)�1,�2 =

√
(2�1 + 1)π

�2(�2 + 1)
A

(m)
�1,�2,TEa�1 (iξ ), (11)

M(m)
TM(E,E)�1,�2 =

√
(2�1 + 1)π

�2(�2 + 1)
B

(m)
�1,�2,TMa�1 (iξ ), (12)

M(m)
TM(M,M)�1,�2 =

√
(2�1 + 1)π

�2(�2 + 1)
A

(m)
�1,�2,TMb�1 (iξ ), (13)

M(m)
TE (M,M)�1,�2 =

√
(2�1 + 1)π

�2(�2 + 1)
B

(m)
�1,�2,TEb�1 (iξ ). (14)

The matrices A(m) and B(m) neither depend on the radius R

nor on the refractive index of the sphere (spherical harmonics
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Y�m(θ,ϕ) [62] calculated at the azimuthal angle ϕ = 0):

A
(m)
�1,�2,p

= −im

∫ ∞

0

dk

κ

[
d

�1
m,1(θ (+)) + d

�1
m,−1(θ (+))

]
×Y�2m(θ−) rp(k) exp (−2κL), (15)

B
(m)
�1,�2,p

= − c

ξ

∫ ∞

0
dk

k

κ

[
d

�1
m,1(θ (+)) − d

�1
m,−1(θ (+))

]
× ∂θY�2m(θ−) rp(k) exp (−2κL), (16)

sin θ± = −i
ck

ξ
, cos θ± = ±cκ

ξ
, κ ≡

√
ξ 2/c2 + k2.

(17)

Similar expressions are found for the nondiagonal
blocks:

M(m)
TE (E,M)�1,�2 = i

√
(2�1 + 1)π

�2(�2 + 1)
C

(m)
�1,�2,TEa�1 (iξ ),

M(m)
TM(E,M)�1,�2 = i

√
(2�1 + 1)π

�2(�2 + 1)
D

(m)
�1,�2,TMa�1 (iξ ),

M(m)
TM(M,E)�1,�2 = −i

√
(2�1 + 1)π

�2(�2 + 1)
C

(m)
�1,�2,TMb�1 (iξ ),

M(m)
TE (M,E)�1,�2 = −i

√
(2�1 + 1)π

�2(�2 + 1)
D

(m)
�1,�2,TEb�1 (iξ ).

C(m) and D(m) are also written in terms of spherical harmonics
and rotation matrices:

C
(m)
�1,�2,p

= c

ξ

∫ ∞

0
dk

k

κ

[
d

�1
m,1(θ (+)) + d

�1
m,−1(θ (+))

]
× ∂θY�2m(θ−) rp(k) exp (−2κL), (18)

D
(m)
�1,�2,p

= im

∫ ∞

0

dk

κ

[
d

�1
m,1(θ (+)) − d

�1
m,−1(θ (+))

]
×Y�2m(θ−) rp(k) exp (−2κL). (19)

By inspection of Eqs. (15) and (16), it is easy to show
that the diagonal blocks are invariant when we replace m →
−m, whereas the nondiagonal blocks given by Eqs. (18) and
(19) change sign. Thus, the matrix M(0) is block diagonal
and det [1 − M(m)(ξn)] does not depend on the sign of m, by
allowing us to write the Casimir free energy as a double primed
sum (with only nonnegative values of m):

F = 2kBT
∑

n

′ ∑
m

′
ln det [1 − M(m)(ξn)]. (20)

The zero-temperature limit can also be obtained from Eq. (20)
by changing the sum over Matsubara frequencies by an integral
over ξ :

kBT
∑

n

′ → h̄

∫ ∞

0

dξ

2π
(T → 0). (21)

A. Numerical considerations

When evaluating the free energy from Eq. (20), one needs
to truncate the vector space at some maximum value �max

of angular momentum. From the localization principle [64],

1 2 3 4 5
0  

5

10

15

20

25

30

L [µm]

A
bs

ol
ut

e 
va

lu
e 

of
 th

e
C

as
im

ir 
fo

rc
e 

[fN
]

 

 

FIG. 2. Casimir force as a function of distance L at T = 300 K for
a sphere radius R = 10 µm, computed for perfect reflectors (dashed)
or gold surfaces described by the Drude model (solid). The dotted
line represents the PFA result for perfect reflectors.

the value of �max required for a given accuracy level is
expected to scale with the size parameter ξ̃ , which captures the
dependence ofM(m) on the sphere radius according to Eqs. (8)
and (9). Characteristic frequencies give the main contribution
to the Casimir energy scale as ξ ∼ c/L. As a consequence,
the required �max should scale as R/L for intermediate and
short separation distances. This is verified by the numerical
evaluations discussed in the following. They are limited to
�max = 85 at the moment (�max = 45 for Drude model), by
allowing us to calculate for R/L < 20 (R/L < 10 for Drude
model), not far from the experimental range [32] R/L >∼ 102,
which would require a larger �max.

Apart from this restriction, we are able to calculate the
exact Casimir free energy and force for parameters closely
mimicking the experimental conditions. As a first example,
in Fig. 2, we plot the Casimir force as a function of L for a
sphere of radius R = 10 µm at room temperature. The dashed
and solid lines correspond to the perfect reflector model (to
be discussed in detail in Sec. IV) and to the Drude model
(Sec. V), respectively. We also show the PFA result for perfect
reflectors (dotted line). The interplay between the effects of
temperature, geometry, finite conductivity, and dissipation
is better understood when considering the ratios defined in
Sec. II, which are analyzed in detail in Secs. IV and V. At the
limit of large separation distances, simple analytical results
can be derived, as discussed later.

B. Large-distance limit

When R 
 L, the characteristic size parameters scale as
ξ̃ ∼ R/L 
 1 and the Mie coefficients a�(iξ ) ∼ ξ̃ 2�+1, with
the magnetic coefficients b�(iξ ) of the same order or smaller
than a�(iξ ) depending on the material properties of the sphere.
The resulting matrix elements M(m)(P,P ′)�1,�2 are very small,
and the dominant contribution comes from � = 1 (m = 0,1),
which corresponds to the dipole contributions:

ln det (1 − M(m)) ≈ −
∑

P=E,M

M(m)(P,P )1,1. (22)

The explicit expressions for the electric dipole ma-
trix elements are obtained from Eqs. (11), (12), (15)
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and (16):

M(0)(E,E)1,1 = − 3a1(iξ )

2(ξ/c)3

∫ ∞

0
dk

k3

κ
rTMe−2κL, (23)

M(1)(E,E)1,1 = 3a1(iξ )

4(ξ/c)3

∫ ∞

0
dk

(
kξ 2

c2κ
rTE − kκ rTM

)
e−2κL.

(24)

The magnetic dipole elements are obtained from Eqs. (23)
and (24) by replacing a1(iξ ) → b1(iξ ) and by interchanging
rTM ↔ rTE. When the refractive index is finite, its contribution
is negligible, and then the dominant contribution is the electric
dipole one (Rayleigh scattering). To proceed further, we need
to specify the material properties for the sphere and the plane
and the corresponding Mie and Fresnel coefficients that appear
in Eqs. (23) and (24). In Secs. IV and V, we consider perfect
reflectors, plasma, and Drude metals.

IV. PERFECT REFLECTORS

Within the perfect reflector model for metals, the dielectric
permittivity is taken to be infinite at all frequencies. This
simple albeit unphysical model for metals provides an accurate
description at large separations in the ideal zero-temperature
case. At finite temperatures, however, it is still unclear
if the perfect reflector model reproduces the correct long-
distance regime for real metals. In fact, for parallel plates,
it predicts a force twice as large as the value obtained within
the dissipative Drude model for metals in the long-distance
limit, while we would, in principle, expect the two results to
agree in this limit.

It is, thus, extremely important to compare the results
obtained from the different models for the plane-sphere
geometry. In this section, we start with the perfect reflector
model, with Fresnel reflection coefficients r

perf
TE = −r

perf
TM =

−1. The Mie coefficients are obtained by taking n � 1 and
nξ̃ � 1 in Eqs. (8) and (9):

a
perf
� (iξ ) = π

2
(−)�+1 �I�+1/2(ξ̃ ) − ξ̃ I�−1/2(ξ̃ )

�K�+1/2(ξ̃ ) + ξ̃K�−1/2(ξ̃ )
, (25)

b
perf
� (iξ ) = π

2
(−)�+1 I�+1/2(ξ̃ )

K�+1/2(ξ̃ )
. (26)

The Fresnel and Mie coefficients written previously can also
be obtained from the plasma model expressions (discussed in
Sec. V) by taking the limit λP → 0.

A. Large-distance limit for perfect reflectors

For ξ̃ 
 1, we may take the power expansion of Eqs. (25)
and (26):

a
perf
1 (iξ̃ ) = − 2

3 ξ̃ 3 + O(ξ̃ )5, b
perf
1 (iξ̃ ) = 1

3 ξ̃ 3 + O(ξ̃ )5.

(27)

Note that b1, which represents the magnetic dipole contribu-
tion, is of the same order of the electric dipole coefficient a1

for ξ̃ 
 1. This property holds whenever nξ̃ � 1, which is
also the case for the plasma model at low frequencies when
λP 
 R. On the other hand, for any finite-dielectric constant,
the magnetic dipole is always of the order of the electric

quadrupole and, thus, much smaller than the electric dipole
contribution in the low-frequency limit. We find this so-called
Rayleigh scattering regime when discussing the long-distance
limit within the Drude model in Sec. V.

We insert Eq. (27) and the values for the Fresnel coefficients
into Eqs. (20)–(24) and write the resulting expression for the
free energy in terms of the thermal wavelength λT :

Fperf = −3R3

4L3

h̄c

λT

∑
n

′
(1 + 2νn + 2ν2n2)e−2νn, (28)

ν = 2πL
λT

. (29)

The evaluation of the sum over Matsubara frequencies in
Eq. (28) is straightforward:

Fperf = − 3h̄cR3

4λTL3
φ(ν), L � R,

(30)

φ(ν) ≡ ν sinh ν + cosh ν(ν2 + sinh2 ν)

2 sinh3 ν
.

The low-temperature approximation is derived by expanding
φ(ν) in powers of ν:

Fperf ≈ − 9h̄cR3

16πL4

(
1 − ν4

135
+ 4ν6

945

)
, λT � L � R.

(31)

Note that the zero-temperature limit contained in the preceding
expression can also be obtained by replacing the sum over n

in Eq. (28) by an integral over ξ as in Eq. (21).
The first finite-temperature correction in Eq. (31) does not

depend on L so that the temperature correction to the Casimir
force comes from the next-to-leading-order term, proportional
to (kBT )6. It is a repulsive contribution from thermal photons
that makes the net force slightly less attractive. We discuss
this point further in the context of the numerical evaluations
presented as follows. We can compute the high-temperature
limit by taking ν → ∞ in Eq. (30) or by considering the n = 0
Matsubara frequency contribution in Eq. (28):

Fperf ≈ − 3h̄cR3

8λTL3
, L � λT ,R. (32)

It is also interesting to compute the Casimir entropy from
Eq. (30):

Sperf = 3kBR3

4L3
[φ(ν) + νφ′(ν)], L � R. (33)

Remarkably, this expression yields Sperf < 0 for ν <∼ 1.5, that
is L <∼ 1.8 µm at T = 300 K. In the parallel-plate geometry,
negative entropies have been found for the dissipative Drude
model only [65]. Here, we also find negative entropies for
perfect reflectors over a wide separation distance range, as
discussed in the following.

B. Numerical results

In Fig. 3(a), we plot the ratio ϑperf [see Eq. (4)], by
quantifying the thermal correction to the Casimir force, for
different sphere radii as a function of the separation distance
L. We also show the results obtained by using the PFA
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FIG. 3. (Color online) Thermal Casimir force at T = 300 K
computed between perfectly reflecting sphere and plane, divided by
the zero-temperature force, as function of (a) surface distance L and
(b) distance-to-center L. Solid lines from bottom to top correspond to
increasing values of sphere radii. The upper dashed curve represents
the PFA result, while the lower dotted line corresponds to the
analytical large-distance expression.

formula Eq. (1) (dashed line) and by deriving the analytical
long-distance expression Eq. (30) with respect to L after
replacing L ≈ L (dotted line). As expected, the agreement
with the analytical formula is better than if we keep the variable
L in Eq. (30), as shown in Fig. 3(b), where we plot ϑperf as a
function of L.

At very short distances L 
 λT , we recover, as expected,
the zero-temperature result (ϑ = 1). As the distance increases,
we find, in most cases, that ϑ decreases below one, reaches
a radius-dependent minimum, and then increases again at
long distances. As long as R is not too large, the thermal
photons provide a repulsive contribution (thus, decreasing the
magnitude of the overall attractive force) over a distance range
that becomes wider as R decreases. This range corresponds to
L <∼ λT /π when R 
 L, as obtained from Eq. (30).

The reduction of the Casimir force is consistent with
the negative Casimir entropies found from Eq. (33) in the
limit R 
 L. We plot S as a function of L [Fig. 4(a)] or
L [Fig. 4(b)] for different sphere radii. Figure 4(b) shows
that Eq. (33) provides an accurate description for L/R > 4.
Negative entropies are found for R as large as 1 µm.
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FIG. 4. (Color online) Casimir entropy at T = 300 K computed
for perfectly reflecting sphere and plane, as a function of (a)
surface separation distance L and (b) center-to-plate distance L. The
conventions are the same as in Fig. 3.

An additional relevant property can be inferred from Fig. 3:
The PFA always overestimates the thermal correction for
perfect reflectors, where the overestimation is smaller for
larger radii (at a given separation distance L) as expected.

In Fig. 5, we plot the beyond-PFA correction ρ at room
temperature as a function of L/R, for different values of R.
At zero temperature, the different curves shown in this figure
would collapse into a single one [35,37]. For a given ratio
L/R, the thermal reduction effect already apparent in Fig. 3
is larger for larger radii. The fact that ρF depends on R for a
given L/R is again a clear signature of the interplay between
thermal and geometry effects, which can damage the precision
of PFA. In Sec. V, we discuss how this interplay is modified
when finite conductivity and dissipation are included in the
model.

V. PLASMA AND DRUDE METALS

The plasma model provides the simplest way to take the
finite conductivity of metals into account. The Drude model
is a more accurate description of nonsuperconducting metals,
since it also includes the relaxation of conduction electrons
and the associated finite dc conductivity. In this section, we
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FIG. 5. (Color online) Beyond-PFA correction factor computed
for perfectly reflecting sphere and plane at ambient temperature (solid
lines) and for asymptotic cases (dashed and dotted lines), as a function
of surface separation L.

take the dielectric constant ε given by Eq. (5) (with γ = 0 in
the plasma model) and derive analytical and numerical results
for the Casimir free energy and force.

A. Large distance high-temperature limit

When L � R, we take the low-frequency expansion of the
Mie coefficients and find, for the plasma model [66],

a
plas
1 
 −2ξ̃ 3

3
, b

plas
1 


(
1

3
+ 1

α2
− coth α

α

)
ξ̃ 3, (34)

α = 2πR

λP

. (35)

Here, we also assume that L � λT (high-temperature
limit), so that we take only the first Matsubara frequency
ξ0 = 0 when computing the Casimir free energy from Eq. (20).
With the additional hypothesis that L � λP , the Fresnel
coefficients are given by rTE ≈ −rTM ≈ −1, and then we find,
from plugging Eq. (34) into Eqs. (22)–(24):

Fplas ≈ − 3h̄cR3

8λTL3

(
1 + 1

α2
− coth α

α

)
, L � λT ,λP ,R.

(36)

This result reproduces, as a particular case, the perfectly
reflecting limit given by Eq. (32) when λP 
 R.

For the Drude model, the TE Fresnel reflection coefficient
has the well-known low-frequency limit rTE → 0, whereas
the TM coefficient behaves as in the plasma model: rTM ≈ 1.
The low-frequency expansion of the Mie coefficients are also
quite different from the plasma case. For the electric dipole
coefficient, we find

aDrud
1 ≈ −2ξ̃ 3

3
+ cξ̃ 4

σ0R
. (37)

As discussed in Sec. IV, the magnetic dipole b1 is always
much smaller than the electric dipole a1 for any finite value of
ε in the limit ξ̃ → 0. For any nonzero value of the relaxation
frequency γ in Eq. (5), the zero-frequency limit of ε is finite.
In contrast with the perfect-reflector and plasma cases, the
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FIG. 6. (Color online) High-temperature Casimir free energy as a
function of L/R calculated with the Drude model. The results neither
depend separately on L and R nor depend on the material parameters
λP and λγ .

magnetic dipole contribution is then negligible,

bDrud
1 ≈ σ0Rξ̃ 4

45c

 aDrud

1 (38)

for any finite value of the Drude dc conductivity σ0 = ω2
P /γ .

The Drude sphere at low frequencies, thus, behaves as
an inducible electric dipole for any finite value of σ0, by
corresponding to the Rayleigh scattering limit.

The resulting high-temperature large-distance limit for the
free energy reads

FDrud ≈ − h̄cR3

4λTL3
, L � λT ,R. (39)

Remarkably, this result does not depend on the length scales
λP and λγ , which characterize the material response, whereas
the corresponding plasma result Eq. (36) clearly depends
on λP . One can show that this is always the case in the
high-temperature limit λT 
 L, with FDrud converging to the
universal function of L/R shown in Fig. 6, which is determined
by the contribution of higher multipoles � � �max ∼ R/L.

The expression Eq. (39) corresponds to 2
3 of the value for

perfect reflectors Eq. (32), to be compared with the ratio
1
2 found in the parallel-plane geometry [23], which results
from the fact that the Fresnel coefficient rTE vanishes at the
zero-frequency limit. Here, the TE and TM contributions are
redistributed into electric and magnetic multipole spherical
modes, thus, to explain the change from 1

2 to 2
3 . In fact, for

perfect reflectors, the magnetic dipole contribution propor-
tional to b1 is one-third of the total free energy Eq. (32), as can
be surmised from Eq. (27), which shows that |b1| = |a1|/2.
Since this contribution is negligible in the Drude model, the
free energy is reduced by the factor 2

3 .

B. Numerical results

An important consequence of the discussion presented
previously is that results from Drude and perfect reflector as
well as plasma models are closer in the plane-sphere geometry
than in the parallel-plane geometry. We have computed the
Casimir force numerically for arbitrary (not too small) values
of the surface distance L. For the plasma model, the thermal
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FIG. 7. (Color online) Thermal Casimir force correction com-
puted with the Drude model. The conventions are the same as in
Fig. 3.

correction ϑplas (not shown) is found to be close to the values
for perfect reflectors shown in Fig. 3. On the other hand,
the variation of ϑDrud calculated within the Drude model is
remarkably different, as shown in Fig. 7.

In contrast with the perfect reflectors and plasma model
calculations, for which PFA always overestimates the thermal
correction, PFA underestimates the thermal correction at
short distances for the Drude model, while it overestimates
it at long distances. The overestimation is, however, clearly
smaller than for perfect reflectors. Since PFA results for
plasma metals are above the values calculated for Drude
metals, the exact beyond-PFA Casimir force values at short
distances for Drude and plasma models turn out to be much
closer than predicted by the PFA-based theoretical models
used in the analysis of experimental data.

In order to highlight this striking feature, in Fig. 8, we
plot the ratio between the thermal Casimir force values F plas

calculated with the plasma model and F Drud obtained with
the Drude model, as a function of the distance L, and for
different values of the sphere radius R, which increase from
bottom to top. The fact that F plas/F Drud depends on R is a
clear signature of the interplay between geometry, temperature,
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FIG. 8. (Color online) Ratio between thermal Casimir force
values calculated with the plasma and the Drude models, as a function
of surface separation L for different sphere radii. The solid curves
from bottom to top correspond to increasing values of sphere radii.
The PFA prediction corresponds to the dashed curve.

and dissipation. We also show the ratio computed within PFA
(dashed line), which approaches 2 at large distances, since the
PFA result is proportional to the energy for parallel planes.
On the other hand, the exact ratio approaches 3/2 for large
radii R � λP and, more generally, a value between 1 and 3/2
obtained from Eqs. (36) and (39):

F plas

F Drud
≈ 3

2

(
1 + 1

α2
− coth α

α

)
, L � λT ,λP ,R.

The factor 2 predicted by PFA in the large-distance limit is
never approached by our exact results.

VI. CONCLUSION

In this paper, we have used the scattering approach to
compute the Casimir free energy and force in the plane-sphere
geometry, by taking into account both the nonzero-temperature
and the metallic nature of reflectors.

For the simpler case of perfect metals at intermediate dis-
tances, we observe, from numerical computations, a strong cor-
relation between thermal and geometry effects, and negative
entropy values for small spheres, which are clearly not related
to dissipation but rather to geometry itself. For small spheres,
thermal photons provide a repulsive contribution, thus, di-
minishing the total attractive Casimir force. Those results are
endorsed by analytical derivations in the long-distance regime.

For the case of Drude metals, evidence of correlations
between temperature and dissipation, qualitatively different
from those in the parallel-plate geometry, is given. As a
consequence, the results for the lossless plasma and full Drude
models are closer to each other than in the parallel-plate
geometry, with the long-distance ratio of 2 reduced to, at
most, 3/2. If these results also hold in the experimental
range R/L > 102, it might diminish the discrepancy between
experimental results and predictions of the thermal Casimir
force by using the Drude model.
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APPENDIX: MATRIX ELEMENTS OF THE ROUND-TRIP
OPERATOR M(m)

In this appendix, we derive explicit expressions for the
matrix elements M(m)(ξ )1,2 given by Eq. (7). The different
coefficients that appear in this equation are first calculated
for real frequencies ω. Given values of ω and k(k,ϕ) define
two directions in the three-dimensional reciprocal space
corresponding to the azimuth angle ϕ and the inclination angle
θ given by:

sin θ± = ck

ω
, cos θ± = ±ckz

ω
, kz ≡

√
ω2/c2 − k2.

(A1)
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We first consider the matrix elements that implement
the change from the multipole to the plane-wave basis.
The free-space magnetic multipole fields have the Fourier
representation [67] [K = KK̂(θ,ϕ) with K̂(θ,ϕ) representing
a three-dimensional unit vector]

I(M)
ω�m(K) = (2π )2 δ(K − ω/c)

ω/c

LK̂Y�m(K̂)√
�(� + 1)

, (A2)

LK̂ ≡ i

[
θ̂

sin θ
∂ϕ − ϕ̂k∂θ

]
. (A3)

The electric multipole fields are, in turn, given by
I(E)
K0�m

(K) = −K̂ × I(M)
ω�m(K).

In order to specify the plane-wave basis, we take the usual
TE and TM polarizations adapted to treat the reflection by the
plane at z = 0:

ε̂TE = ẑ × k̂ = ϕ̂, (A4)

ε̂TM = ε̂TE × K̂ = θ̂ . (A5)

The matrix element 〈k,−,p|�,m,P 〉 is then obtained from
the scalar product ε̂p · I(P )

ω�m(K(−)) with K(−) = (ω/c)K̂(θ−,ϕ)
after multiplication by the square root of the Jacobian
dkz/d(ω/c) = ω/(ckz):

〈k,−,TE|�mE〉 = 2πm
√

ω/c

k
√

kz

Y�m(θ−,ϕ)√
�(� + 1)

, (A6)

〈k,−,TE|�mM〉 = − 2πi√
kzω/c

∂θY�m(θ−,ϕ)√
�(� + 1)

, (A7)

〈k,−,TM|�mE〉 = 〈k,−,TE|�mM〉, (A8)

〈k,−,TM|�mM〉 = −〈k,−,TE|�mE〉. (A9)

We now derive the Mie scattering matrix elements
〈�mP |RS(ξ )|k,+,p〉. We write the electric field in terms of
the Debye potentials (scalar fields that satisfy the Helmholtz
equation) �(E)(r) and �(M)(r) for the electric and magnetic
multipole components. In order to have the Debye potentials
for a TE-polarized plane wave that propagates along an
arbitrary direction K̂(θ,ϕ) (amplitude E0), we take a rotation
with Euler angles α = ϕ,β = θ,γ = 0. In terms of the
coordinates x ′,y ′,z′ that correspond to the rotated axis, the
Debye potentials have the usual form [60] that corresponds to
a plane wave that propagates along the z′ axis linearly polarized
along the y ′ axis. To write in terms of the original coordinates,
we use the matrix elements of finite rotations and find (j�(Kr)
are the spherical Bessel functions [63]):

�E
K,TE(r,�,�) = E0

2K

∞∑
�,m

i�

√
4π (2� + 1)

�(� + 1)
j�(Kr)

× e−imϕ
[
d�

m,1(θ ) + d�
m,−1(θ )

]
Y�m(�,�),

(A10)

�M
K,TE(r,�,�) = E0

2iK

∞∑
�,m

i�

√
4π (2� + 1)

�(� + 1)
j�(Kr)

× e−imϕ
[
d�

m,1(θ ) − d�
m,−1(θ )

]
Y�m(�,�).

(A11)

We use the same method to derive the Debye potentials
for TM incident polarization: Either we take the polarization

along the x ′ direction (instead of the y ′ direction as done in
the derivation for TE polarization), or we take the third Euler
angle to be γ = −π/2 so that the rotated Oy ′ axis coincides
with ε̂TM instead of ε̂TE. This allows the introduction
of an additional phase e∓iγ = ±i. Hence, the potentials
�

E,M
K,TM(r,�,�) are obtained from Eqs. (A10) and (A11) by

replacing d�
m,±1(θ ) → (±i)d�

m,±1(θ ).
Since the scattered field propagates outward from the

sphere, the corresponding potentials are written in terms of
the spherical Hankel functions h

(1)
� (Kr) [63]. The Debye po-

tentials for the scattered field are then obtained by considering
the boundary conditions at the surface of the sphere. In the
resulting expression, each partial-wave term is multiplied by
the corresponding Mie coefficient a� (electric multipoles) or
b� (magnetic multipoles) [61]. As expected from spherical
symmetry, the Mie coefficients neither depend on m nor on
the direction of incidence. They are written in terms of the
Riccati-Bessel functions ψ�(β) = βj�(β), ζ�(β) = βh

(1)
� (β)

evaluated at the size parameter β = ωR/c and at nβ [60]:

a�(ω) = nψ�(nβ)ψ ′
�(β) − ψ�(β)ψ ′

�(nβ)

nψ�(nβ)ζ ′
�(β) − ζ�(β)ψ ′

�(nβ),
(A12)

b�(ω) = ψ�(nβ)ψ ′
�(β) − nψ�(β)ψ ′

�(nβ)

ψ�(nβ)ζ ′
�(β) − nζ�(β)ψ ′

�(nβ)
. (A13)

From the Debye potentials for the scattered field, we find
the explicit multipole expansion for the scattered electric field
(in position representation) 〈r|RS |K,p〉, with p = TE,TM
representing the incident polarization, which can also be cast
into the formal decomposition,

〈r|RS |K,p〉 =
∑
�mP

∫ ∞

0

dω

2πc
〈r|ω�mP 〉〈ω�mP |RS |K,p〉,

(A14)

where the vector fields 〈r|ω�mP 〉 are the inverse Fourier
transforms of Iω�mP (K) [see Eq. (A2)]. Since the scattering
does not change the frequency, the matrix elements of RS

have the general form (K = k + kzẑ, kz > 0),

〈ω�mP |RS |K,p〉 = 2πδ(K − ω/c)

√
ckz

ω
〈�mP |RS |k,+ ,p〉,

(A15)

with the square root of the Jacobian dkz/d(ω/c) once more
providing the connection to our plane-wave basis |k,±,p〉ω
associated with a given frequency ω.

By comparing the explicit expressions for 〈r|RS |K,p〉 with
the formal decomposition Eq. (A14) and by taking Eq. (A15)
into account, we find

〈�mE|RS |k,+,TE〉 =
√

π (2� + 1)

kzω/c
a�(ω)

× e−imϕ
[
d�

m,1(θ+) + d�
m,−1(θ+)

]
,

(A16)

〈�mM|RS |k,+,TE〉 = i

√
π (2� + 1)

kzω/c
b�(ω)

× e−imϕ
[
d�

m,1(θ+) − d�
m,−1(θ+)

]
.

(A17)
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For TM polarization, the matrix elements are ob-
tained from Eqs. (A16) and (A17) by substituting
d�

m,±1(θ ) → (±i)d�
m,±1(θ ).

The Casimir free energy may be written as an integral
over the positive frequency semiaxis (which includes the
evanescent sector 0 � ω < ck). By using analyticity properties
of the reflection operators for plane and sphere over the upper
complex frequency plane, we transform the integral over real

positive frequencies into an integral over complex frequencies
ω = iξ + η, with ξ running from +∞ to 0 and η → 0+ by
keeping the Matsubara poles iξn outside the closed contour of
integration employed in connection with Cauchy theorem [20].
The resulting expression is given by Eq. (6), with the matrix el-
ements M(m)(ξ )1,2 obtained by taking ω → iξ and kz → iκ in
Eqs. (A6)–(A9) and (A16)–(A17) and by plugging the results
into Eq. (7). The final explicit expressions are given in Sec. III.
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Erratum: Thermal Casimir effect for Drude metals in the plane-sphere geometry
[Phys. Rev. A 82, 012511 (2010)]

Antoine Canaguier-Durand, Paulo A. Maia Neto, Astrid Lambrecht, and Serge Reynaud
(Received 8 March 2011; published 16 March 2011)

DOI: 10.1103/PhysRevA.83.039905 PACS number(s): 31.30.jh, 03.70.+k, 05.70.−a, 78.20.Ci, 99.10.Cd

There were misprints in Eqs. (8) and (9) of our article,
which may make the derivations difficult to follow. These
typographical errors however do not affect any other formula
in the rest of the paper. All results of the paper are unchanged.

The corrected equations are

a�(iξ̃ ) = π

2
(−)�+1 n2s

(a)
� − s

(b)
�

n2s
(c)
� − s

(d)
�

, (8)

b�(iξ̃ ) = π

2
(−)�+1 s

(a)
� − s

(b)
�

s
(c)
� − s

(d)
�

, (9)

s
(a)
� = I�+1/2(nξ̃ )

(
�I�+1/2(ξ̃ ) − ξ̃ I�−1/2(ξ̃ )

)
,

s
(b)
� = I�+1/2(ξ̃ )

(
�I�+1/2(nξ̃ ) − nξ̃I�−1/2(nξ̃ )

)
,

s
(c)
� = I�+1/2(nξ̃ )

(
�K�+1/2(ξ̃ ) + ξ̃K�−1/2(ξ̃ )

)
,

s
(d)
� = K�+1/2(ξ̃ )

(
�I�+1/2(nξ̃ ) − nξ̃I�−1/2(nξ̃ )

)
.
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We study the Casimir interaction between a dielectric nanosphere and a metallic plane, using the multiple
scattering theory. Exact results are obtained with the dielectric described by a Sellmeier model and the metal by
a Drude model. Asymptotic forms are discussed for small spheres and large or small distances. The well-known
Casimir-Polder formula is recovered at the limit of vanishingly small spheres, while an expression that behaves
better at small distances is found for any finite value of the radius. The exact results are of particular interest for
the study of quantum states of nanospheres in the vicinity of surfaces.
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I. INTRODUCTION

The Casimir effect, due to the scattering of quantum
fluctuations of the electromagnetic vacuum [1], is the dominant
interaction between neutral bodies at distances that are large
compared to atomic scales [2,3] (see [4] and references
therein). For this reason, it has a strong impact in various
important domains such as atomic and molecular physics,
condensed matter and surface physics, chemical and biological
physics, and micro- and nanotechnology [5].

In this paper, we consider the case of dielectric nanospheres
in the vicinity of a metallic surface. This study is part of
a discussion of the intriguing phenomenon of small heating
of ultracold neutrons (UCNs) in traps [6–8], which could be
explained by the interaction between UCNs and nanospheres
levitated in the quantum states created by the interaction
of nanospheres with surfaces [9]. In order to characterize
this phenomenon and compute the properties of the quantum
states, one needs to have a detailed and careful treatment of
the interaction potential. In particular, as shown below, the
commonly used Casimir-Polder formula [10] is not sufficient
for this purpose.

We first recall how the scattering formula [11] can be
applied to the study of a sphere of radius R at a distance
L of closest approach to the plane. We then give numerical
evaluations and graphical plots of the interaction energy.
The Casimir-Polder formula is recovered when the radius of
the nanosphere is smaller than all other length scales. The
short- and long-distance limits are then found to show subtle
interplays with the limit of small radius.

Important consequences of these results are obtained for
the behavior of the interaction at small distances. While the
Casimir-Polder energy scales as L−3 at small values of L, the
full expression is found to behave better for any finite value of
R, which leads to a regular solution for the quantum states.

II. SCATTERING FORMALISM

In this paper, we do not consider the effect of thermal
fluctuations on the interaction. (They are expected to be small
at the not-so-large separations considered here.) We thus start

from the scattering formula for the Casimir energy at zero
temperature [11]:

E = h̄

∫ ∞

0

dξ

2π
ln detD , D = (I − M) ,

(1)
M = RSe

−KLRP e−KL , L = L + R.

The Casimir energy is written in terms of reflection operators
RS and RP , which describe the diffraction by the sphere and
the plate. These operators are evaluated with reference points
at the sphere center and at its projection on the plane, respec-
tively. The operator e−KL accounts for one-way propagation
along the distance L = L + R separating these two points.
The operator M thus represents one round-trip propagation
inside the cavity formed by the two surfaces. All quantities are
written at imaginary frequencies ω = iξ after a Wick rotation.

The scattering formula (1) provides a compact way of
taking the multiple scatterings between the interacting bodies
into account. It can be considered as a generalization of the
Dzyaloshinskii-Lifshitz-Pitaevskii formula [12] to arbitrary
scattering properties of the two bodies. It can be applied in
various geometries and has in particular been recently used
for calculating the Casimir interaction between a metallic
sphere and a metallic plane [13–16] (see also [17,18]). In
the following, we use the same techniques and notations as
in [15,16] and apply them to the case of a dielectric nanosphere
above a metallic plane.

The reflection on the plane is conveniently written by
using a plane-wave basis |k, ± ,p〉 where k is the wave-
vector component parallel to the plane xy of the metallic
surface, p = TE,TM is the polarization, and +/− denotes the
upward/downward propagation direction. This basis is well
adapted to the description of the propagation operator e−KL,

since K is thus diagonal with elements κ =
√

ξ 2/c2 + k2

representing the (Wick-rotated) wave-vector z component
for the imaginary frequency ξ . The reflection operator RP

preserves all plane-wave quantum numbers but the propagation
direction, and its elements are given by the standard Fresnel
specular reflection amplitudes for a homogenous medium.

Then the reflection on the sphere is more easily written
by using the multipole basis |�mP 〉, where �(� + 1) and
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m denote the angular momentum eigenvalues (with � =
1,2, . . .; m = −�, . . . ,�) and P = E,M, representing electric
and magnetic multipoles. The reflection operator RS has its
elements given by the standard Mie scattering amplitudes.
Thanks to rotational symmetry, the operator M commutes
with the angular momentum operator Jz. Hence, M is block
diagonal, and each block M(m) (corresponding to a given
subspace m) yields an independent contribution to the Casimir
energy:

E = h̄

π

∫ ∞

0
dξ

′∑
m

ln det(I − M(m)),

(2)

M(m) =
(
M(m)

EE M(m)
EM

M(m)
ME M(m)

MM

)
,

The primed sum is a sum over positive integers with the term
m = 0 counted for its half. We have organizedM(m) in terms of
block matrices built up on electric and magnetic contributions.
The corresponding matrix elements are given and discussed
in [16].

We now apply these formulas to the case of a dielectric
nanosphere above a metallic plane. In particular, the plots
shown below are calculated for the case of interest for UCN
studies [9], namely a diamond nanosphere above a copper
plane. We model copper dielectric response with a Drude
model:

ε(iξ ) = 1 + ω2
P

ξ (ξ + γ )
. (3)

This is written at imaginary frequencies ω = iξ , where ω2
P is

the squared plasma frequency proportional to the density of
conduction electrons in the metal, and γ is the damping rate
which measures the relaxation of these electrons. For explicit
calculations and plots, we use the relations ωP = 2πc/λP

with the plasma wavelength λP = 136 nm and γ = 0.0033ωP .
Because γ is small when compared to ωP for a good metal such
as copper, its influence is small at the not-too-large distances
considered in the present study (see [19] for more details and
references). The diamond dielectric response is described by
a Sellmeier model:

ε(iξ ) = 1 +
∑

i

Biω
2
i

ω2
i + ξ 2

. (4)

For diamond, a good enough description is obtained with a
single component in this formula with B1 = 4.91 and ω1 =
2πc/λ1 with the wavelength λ1 = 106 nm. The damping is
disregarded here because it does not play any significant role.

The two permittivities are shown in Fig. 1, where the dashed
curve is for diamond, and the solid (red) curve is for copper. For
copper, ε(iξ ) is very large for ξ much smaller than ωP , which
means that the metal tends to become a very good reflector.
For diamond, ε(iξ ) tends to its static value ε(0) = 1 + B1 for
ξ much smaller than ω1. For larger frequencies, in contrast,
the dielectric properties become poorer for diamond as well
as copper. Because ωP and ω1 have similar values, we thus
expect a transition to take place between van der Waals and
Casimir-Polder regimes [10] when the distance between two
objects is of the order of λP or λ1. The simple models (3)
and (4) are sufficient for the purpose of the present work.
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FIG. 1. (Color online) Relative permittivity ε(iξ ) for copper
[Drude model, solid (red) line] and diamond (Sellmeier model, dashed
line).

They could easily be improved to take into account interband
transitions for copper, multiple components, and damping in
the Sellmeier model for diamond.

III. NUMERICAL EVALUATIONS

For evaluating the determinant in Eqs. (1) and (2), one needs
to truncate the vector space at some maximum value �max of
angular momentum [13–16]. A qualitative understanding of
the associated effects may be obtained from the localization
principle [20]: the value of �max required for a given accu-
racy level is expected to scale with the size parameter ξ̂R

(where ξ̂ = ξ/c), which captures the dependence of scattering
amplitudes on the sphere radius. Meanwhile, the frequencies
giving the main contribution to the Casimir energy scale as
ξ̂ ∼ 1/L. As a consequence, the required �max scales as R/L

for intermediate and short separation distances. In this paper,
we are interested in nanospheres R � 20 nm so that calculating
with �max = 100 is sufficient for good accuracy for the results
discussed below.

The numerical results are shown in Fig. 2 for different
values of R (2, 5, 10, and 20 nm). We plot the absolute value
|E| of the Casimir energy (E � 0), with respect to the distance
L, from 1 to 500 nm. We see that two regimes appear, which
are reminiscent of a nonretarded van der Waals regime at short
distances [21], and a retarded Casimir-Polder regime at large
distances [10], with different dependences upon the distance L

(see the slopes of the curves) and the radius R (see the vertical
spacing between the curves). Our results do not coincide with
these well-known limits because they take into account higher-
order multipole contributions to the scattering upon the sphere
[22]. Of course, the Casimir-Polder expression is recovered
for small values of the radius, as shown in Sec. IV.

IV. LIMIT OF SMALL NANOSPHERES

In this section, we consider the limit of a punctual sphere
when the radius R is smaller than any other length scale.
(In loose terms, we take the limit R → 0.) We show that
the Casimir-Polder expressions are recovered, as expected.
As the derivations presented here are applied to dielectric
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FIG. 2. (Color online) Absolute value |E| of the Casimir energy
E (measured in eV) with respect to the distance L for nanospheres of
radii R = 2, 5, 10, and 20 nm. Logarithmic scales are used on both
axes.

nanospheres, we use the fact that the permittivity for the
nanosphere remains finite at all frequencies. We also keep
the same description of the dielectric response for the small
values of the radius considered here. Note that for metallic
nanospheres, in contrast, it would be necessary to take
into account the confinement effect for conduction electrons
[23,24].

We start from the formulas (1) and (2) giving the Casimir
energy for a sphere of radius R at a distance L of closest
approach to a plane. Reflection on the plane is described by
Fresnel amplitudes rTE and rTM while scattering on the sphere
is described by Mie amplitudes a� and b� (defined as in [25]).
The following expressions, valid at low values of the parameter
Rξ̂ , are sufficient for calculating the energy at the limit R → 0:

a� � (−1)�
� + 1

�ε + � + 1

(ε − 1) (Rξ̂ )2�+1

(2� + 1)!!(2� − 1)!!
,

(5)

b� � (−1)(�+1) (ε − 1) (Rξ̂ )2�+3

(2� + 3)!!(2� + 1)!!
.

Because the dimensionless number Rξ̂ is much smaller than
unity (for Lξ̂ ∼ 1; see the discussion in the previous section)
and ε remains finite at all frequencies, it follows that all these
amplitudes are small and, simultaneously, that the amplitude
a1 dominates all other Mie amplitudes.

The calculation of the energy is therefore much simpler
than in the general case. As a first simplification, one may
indeed replace the nonlinear expression (2) by a linearized
one (perturbative approximation),

E = − h̄

π

∫ ∞

0
dξ

′∑
m

trM(m). (6)

Then, one may keep only the contributions to this sum
that are proportional to the amplitude a1 (electric dipolar
approximation),

E1 � − h̄

π

∫ ∞

0
dξ

(
1

2
M(0)

EE + M(1)
EE

)
,

M(0)
EE = −3

2

a1

ξ̂ 3

∫ ∞

0

k3 dk

κ
rTMe−2κL, (7)

M(1)
EE = 3

4

a1

ξ̂ 3

∫ ∞

0

k dk

κ
(ξ̂ 2rTE − κ2rTM)e−2κL.

We also rewrite a1 in terms of a dynamical electric polariz-
ability α(ξ ) defined for the small nanosphere (where αR3 is a
reduced polarizability having the dimension of a volume; the
SI polarizability is ε0αR3):

a1 = −2

3
αR3ξ̂ 3, α = ε − 1

ε + 2
. (8)

Collecting the results, we finally recover the full Casimir-
Polder formula [10] as written in [26,27],

E1 � −h̄cR3

2π

∫ ∞

0
dξ̂α(ξ̂ )

(9)

×
∫ ∞

0

k dk

κ
(ξ̂ 2|rTE| + (k2 + κ2)|rTM|)e−2κL.

We have used the fact that rTE (iξ ) < 0 and rTM (iξ ) > 0.
We repeat at this point that formula (9) has been obtained

after two simplifications corresponding to the perturbative
approximation and electric dipolar approximation. As the
Casimir-Polder interaction between atoms [10], it contains in
particular the limits of nonretarded van der Waals and retarded
Casimir-Polder expressions [26,27]. In both cases, the energy
scales as R3, which is also the volume of the sphere. This result
means that the nanosphere behaves at the limit R → 0 as a big
atom with an electric polarizability αR3. As we see in Sec. V,
this simple behavior does not remain true for arbitrary values
of the radius R.

V. ASYMPTOTIC BEHAVIOR AT SHORT AND LONG
DISTANCES

In this section, we discuss the asymptotic behaviors of
the Casimir energy E at short and long distances. As a first
step toward this aim, we write a Casimir-Polder formula ECP

deduced from E1 in the limit L � λP ,λ1, where copper may
be considered perfectly reflecting and diamond as having a
constant electric polarizability:

ECP = −4πc4R
3

3L4
, c4 = 9h̄cα0

32π2
, α0 = ε(0) − 1

ε(0) + 2
. (10)

We proceed similarly with the van der Waals prediction EvdW

deduced from E1 for L � λP ,λ1:

EvdW = −4πc3R
3

3L3
, c3 = 3h̄cα0

16(
√

2λP + √
1 − α0λ1)

. (11)

The values ECP and EvdW are equal at a crossing length

L∗ = c4

c3
= 3(

√
2λP + √

1 − α0λ1)

2π2
, (12)

which is approximately 39 nm with the values corresponding
to copper and diamond.

As expected from already-presented qualitative arguments,
the exact Casimir expression E [given by Eq. (1)] is well
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approximated by ECP when R is the smallest length scale and
L the largest one:

E � ECP , R � L∗ � L. (13)

Meanwhile, the exact Casimir expression E is well approxi-
mated by EvdW when R is the smallest length scale and L is
smaller than L∗:

E � EvdW , R � L � L∗. (14)

Of course, there exist a variety of behaviors when the two latter
conditions are not met.

In order to explore this variety, we plot in Fig. 3 the
logarithmic slope (log-log-derivative) of the energy |E| versus
distance L,

ν = −∂ ln |E|
∂ ln L

= LF (L)

E(L)
, F (L) = −∂E

∂L
. (15)

The parameter ν would be a constant if the energy |E| obeyed
a power-law dependence 1/Lν (for example, ν = 4 for ECP or
ν = 3 for EvdW). In the general case, ν depends on L and can
thus be understood as describing a “local” power law in the
vicinity of L.

We see in Fig. 3 that ν tends to the expected value of 4
at large distances. At small distances, in contrast, the van der
Waals value ν = 3 is never a good approximation, which can
be understood by inspecting the conditions for (14) to be true.
For any finite value of the radius R, we have indeed to cross the
conditions L ∼ R when the distance is decreased, and Eq. (14)
can no longer be valid after this crossing.

Another facet of the same problem becomes apparent when
we look at the dependence of E versus R. We plot in Fig. 4 a
logarithmic slope µ calculated as in (15),

µ = ∂ ln |E|
∂ ln R

. (16)

The parameter µ would be a constant if |E| obeyed a simple
power-law dependence Rµ. In particular, the volumetric value
µ = 3 is obtained for both ECP and EvdW. We see in Fig. 4
that µ approaches this value at the limit of large distances but
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FIG. 3. (Color online) Logarithmic slope ν as a function of the
distance L. Solid curves represent the nanosphere case with different
values for the radius R, and the dashed curve represents the atomic
limit, that is, a nanosphere with R → 0.

departs from it everywhere else, indicating anew that EvdW is
not a good approximation.

We now give an improved version of the van der Waals
formula (11) which explains some of the features of the exact
energy E. As EvdW has been demonstrated above in the limit
of a punctual sphere R → 0, we may improve it for a finite size
of the sphere through a pairwise summation over the volume.
We thus obtain the Hamaker expression [28]

EvdW � −πc3

(
2R (L + R)

L (L + 2R)
− ln

L + 2R

L

)
,

(17)

ECP � − 4πc4R
3

3L2 (L + 2R)2 .

For completeness, we did proceed similarly with the Casimir-
Polder formula ECP.

These results allow one to understand the behaviors
apparent in Figs. 3 and 4. Let us again consider that we start
from small nanospheres R � L∗ at large distances L � L∗.
Using the expression ECP, one obtains ν = 4 and µ = 3. When
the distance L is decreased, we cross two transitions L ∼ L∗
and L ∼ R and end up with the formula EvdW, for which we
get ν = 1 and µ = 1. This line of reasoning reproduces the
global variations seen in Figs. 3 and 4.

In order to assess the quality of the estimations (17), we now
plot in Fig. 5 the ratios E/ECP and E/EvdW. As expected,
we find that ECP tends to reproduce the result E of the full
numerical computation at large distances. We also see that
EvdW obeys the same power law as E at small distances (ratio
tending to a constant value) but fails to predict the correct
magnitude (the limit of the ratio is not 1). This feature can be
understood through a close inspection of the case where L is
the smallest of all length scales.

When L � R, we can use the proximity force approxi-
mation and express the plane-sphere result in terms of the
plane-plane one [29]. We are thus left with the evaluation of
the Casimir effect between copper and diamond plane plates.
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FIG. 4. (Color online) Logarithmic slope µ for variation with the
radius R, as a function of the distance L. Solid curves represent the
nanosphere case with different values for the radius R; in comparison,
the atom case is a constant µ = 3.
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FIG. 5. (Color online) Ratios of the exact energy E to the
expressions ECP [solid (blue) curve] and EvdW [dashed (green) curve].
The two curves are calculated for R = 10 nm.

Because L � L∗, it is then possible to use the method designed
in [30] to find

EPFA � −πc′
3
R

L
, L � R ,L∗. (18)

This expression shows the same functional dependencies as
the Hamaker expression EvdW ∼ −πc3R/L while giving a
different proportionality constant. This difference is due to the
fact that (17) has been obtained through a pairwise integration
of van der Waals forces, whereas (18) has been calculated by
taking into account the multiple interferences occurring in the
Fabry-Perot cavity [30]. The numerical values thus obtained
(c′

3 = 0.84 c3 with the numbers corresponding to diamond and
copper) explain the behavior seen in Fig. 5.

VI. CONCLUSIONS

In this paper, we have presented an exact calculation of
the Casimir interaction between a dielectric nanosphere and
a metallic plane, using the multiple scattering formalism as
developed recently for the plane-sphere geometry [13–16].
In order to qualitatively discuss the results obtained in this

manner, we have also investigated the limits of a punctual
sphere as well as the asymptotic behaviors at short and long
distances.

This study has important applications for discussing the
intriguing phenomenon of heating of ultracold neutrons in
traps [6–8]. This heating could be explained by the interaction
between UCNs and nanospheres levitated in the quantum
states created by their interaction with surfaces [9]. In
order to quantitatively characterize this phenomenon, detailed
knowledge of the interaction potential is required. In particular,
the small-distance behavior of the Casimir energy plays a
crucial role in the determination of the quantum states obtained
by solving the Schrödinger equation for the wave function of
the nanosphere in this potential.

The commonly used Casimir-Polder formula, which also
corresponds to the limit of our calculations for a vanishingly
small radius R, leads to significant difficulties since it predicts
a power law |E| ∝ R3/L3 in the vicinity of the surface and
thus leads to an ill-behaved Schrödinger problem. The exact
solution presented in this paper for a finite value of the radius R

predicts a smoother power law |E| ∝ R/L in the vicinity of the
surface and thus leads to a regular solution for the Schrödinger
equation [9].

The plate roughness has been disregarded here and it
is treated in a phenomenological manner in [9]. It would
be interesting to analyze its effect by using techniques
already developed for treating the scattering on rough
surfaces [31–33].

It would also be worth investigating the same problem for
the interaction between an atom and a plane. In analogy with
the discussion of the present paper, taking into account the
higher-order multipoles and multiple interferences could lead
to an expression of the energy more regular than with the
commonly used electric dipole approximation.
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Résumé

Nous évaluons l’interaction de Casimir entre un miroir plan et un miroir sphérique, à température
arbitraire, en tenant compte de la réflexion imparfaite. Cela nous permet d’étudier la riche
dépendance à la géométrie de l’effet Casimir, et d’estimer l’erreur faite par l’approximation de
proximité (PFA), communément utilisée pour cette configuration sphère-plan qui est celle des
expériences.

Pour cette évaluation nous appliquons la méthode de diffusion, basée sur la théorie des réseaux
optiques, à la géométrie sphère-plan. La température est prise en compte par la formule de
Matsubara. La réflexion sur le plan est exprimée à l’aide d’ondes planes, celle sur la sphère à l’aide
d’ondes sphériques, entraînant un développement multipolaire. Les indices (`,m) de ces dernières
sont tronqués à une valeur maximale pour l’évaluation numérique.
Nous étudions d’abord le cas de la température nulle. Les résultats numériques permettent de

caractériser l’erreur des différentes méthodes d’approximation, en fonction du modèle utilisé pour
les miroirs, et de mettre en évidence des corrélations entre les effets de géométrie et de conductivité
finie.
Nous analysons ensuite la dépendance de l’effet Casimir à la température. Pour des miroirs

parfaits, nous observons des corrélations entre les effets thermiques et géométriques pouvant
entraîner une contribution répulsive des photons thermiques à la force de Casimir. Ce phénomène
peut être associé à l’apparition de valeurs négatives pour l’entropie. Enfin, pour des miroirs
métalliques à température ambiante nous observons une grande variété de corrélations entre les
effets de la géométrie, de la température et de la dissipation dans les métaux.

Mots clés : effet Casimir, fluctuations du vide et thermiques, développement multipolaire,
géométrie sphère-plan, approximation de proximité, dépendance géométrique de l’effet Casimir.

Abstract

We evaluate the Casimir interaction between a sphere and a plane, at arbitrary temperature,
accounting for imperfect reflection. This enables us to study the rich dependance of the Casimir
effect on the geometry, and to estimate the error made by the proximity approximation (PFA)
commonly used in this sphere-plane configuration, which is the one of the experiments.

For this evaluation we apply the scattering method, based on the theory of optical networks, to
the sphere-plane geometry. The temperature is taken care of through the Matsubara formula. We
use planar waves to express the reflection on the plane, and spherical waves for the reflection on
the sphere, which leads to a multipolar expansion. The indices (`,m) for the spherical waves are
truncated to maximum value for the sake of numerical evaluation.

We first study the zero temperature case. We use the numerical results to characterise the error
made the various approximation methods, depending on the model used to describe the mirrors,
and to reveal correlations between the effects of geometry and of finite conductivity.

We then analyse the dependence of the Casimir effect on the temperature. For perfect mirrors,
we observe correlations between the thermal geometrical effects, that can yield to a repulsive
contribution of the thermal photons to the Casimir force. This feature can be associated to the
appearance of negative values for the entropy. Finally, we evaluate the Casimir effect for metallic
mirrors at ambient temperature. We observe strong correlations between the effects of geometry,
temperature, and dissipation in the metals.

Keywords: Casimir effect, quantum vacuum and thermal fluctuations, multipolar expansion,
sphere-plane geometry, proximity approximation, dependance of the Casimir effect on the geometry.
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