
HAL Id: tel-00805599
https://theses.hal.science/tel-00805599v2

Submitted on 15 Feb 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Vérification relationnelle pour des programmes avec des
données entières

Filip Konecny

To cite this version:
Filip Konecny. Vérification relationnelle pour des programmes avec des données entières. Autre
[cs.OH]. Université de Grenoble; Masarykova univerzita (Brno, République tchèque), 2012. Français.
�NNT : 2012GRENM058�. �tel-00805599v2�

https://theses.hal.science/tel-00805599v2
https://hal.archives-ouvertes.fr

THÈSE
Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ DE GRENOBLE
préparée dans le cadre d’une cotutelle entre l’Université de
Grenoble et Vysoké učení technické v Brně

Spécialité : Mathematiques, Sciences et Technologie de
l'Information, Informatique

Arrêté ministériel : le 6 janvier 2005 - 7 août 2006

Présentée par

« Filip KONEČNÝ »

Thèse dirigée par « Tomáš VOJNAR » et « Yassine LAKHNECH »
codirigée par « Radu IOSIF »

préparée au sein de Laboratoire VERIMAG

dans l'École Doctorale Mathematiques, Sciences et
Technologie de l'Information, Informatique

Vérification relationnelle pour des
programmes avec des données
entières

Thèse soutenue publiquement le « 29/10/2012 »,
devant le jury composé de :

professeur Ahmed BOUAJJANI
Rapporteur

professeur Petr JANČAR
Rapporteur

professeur Parosh ABDULLA
Membre

professeur Mojmír KŘETÍNSKÝ
Membre

professeur agrégé David MONNIAUX
Membre

professeur Milan ČESKA
Président

Université Joseph Fourier / Université Pierre Mendès France /
Université Stendhal / Université de Savoie / Grenoble INP

Relational Verification of Programs
with Integer Data

Filip Konečný

October 29, 2012

Abstract

This work presents novel methods for verification of reachability and termination prop-
erties of programs that manipulate unbounded integer data. Most of these methods are
based on acceleration techniques which compute transitive closures of program loops.
We first present an algorithm that accelerates several classes of integer relations and

show that the new method performs up to four orders of magnitude better than the
previous ones. On the theoretical side, our framework provides a common solution to
the acceleration problem by proving that the considered classes of relations are periodic.
Subsequently, we introduce a semi-algorithmic reachability analysis technique that

tracks relations between variables of integer programs and applies the proposed accel-
eration algorithm to compute summaries of procedures in a modular way. Next, we
present an alternative approach to reachability analysis that integrates predicate ab-
straction with our acceleration techniques to increase the likelihood of convergence of
the algorithm. We evaluate these algorithms and show that they can handle a number
of complex integer programs where previous approaches failed.
Finally, we study the termination problem for several classes of program loops and

show that it is decidable. Moreover, for some of these classes, we design a polynomial
time algorithm that computes the exact set of program configurations from which non-
terminating runs exist. We further integrate this algorithm into a semi-algorithmic
method that analyzes termination of integer programs, and show that the resulting
technique can verify termination properties of several non-trivial integer programs.

Keywords

programs with integers, counter automata, reachability analysis, termination analysis,
acceleration, transitive closures, procedure summaries, recurrent sets, termination pre-
conditions

i

Abstrakt

Tato práce představuje nové metody pro verifikaci programů pracuj́ıćıch s neomezenými
celoč́ıslenými proměnnými, konkrétně metody pro analýzu dosažitelnosti a konečnosti.
Většina těchto metod je založena na akceleračńıch technikách, které poč́ıtaj́ı tranzitivńı
uzávěry cykl̊u programu.
V práci je nejprve představen algoritmus pro akceleraci několika tř́ıd celoč́ıselných

relaćı. Tento algoritmus je až o čtyři řády rychleǰśı než existuj́ıćı techniky. Z teoretického
hlediska práce dokazuje, že uvažované tř́ıdy relaćı jsou periodické a poskytuje tud́ıž
jednotné řešeńı prolému akcelerace.
Práce dále představuje semi-algoritmus pro analýzu dosažitelnosti celoč́ıselných pro-

gramů, který sleduje relace mezi proměnnými programu a aplikuje akceleračńı techniky
za účelem modulárńıho výpočtu souhrn̊u procedur. Dále je v práci navržen alternativńı
algoritmus pro analýzu dosažitelnosti, který integruje predikátovou abstrakci s acceleraćı
s ćılem zvýšit pravděpodobnost konvergence výpočtu. Provedené experimenty ukazuj́ı, že
oba algoritmy lze úspěšně aplikovat k verifikaci programů, na kterých předchoźı metody
selhávaly.
Práce se rovněž zabývá problémem konečnosti běhu programů a dokazuje, že tento

problém je rozhodnutelný pro několik tř́ıd celoč́ıselných relaćı. Pro některé z těchto tř́ıd
relaćı je v práci navržen algoritmus, který v polynomiálńım čase vypoč́ıtá množinu všech
konfiguraćı programu, z nichž existuje nekonečný běh. Tento algoritmus je integrován
do metody, která analyzuje konečnost běh̊u celoč́ıselných programů. Efektivnost této
metody je demonstrována na několika netriviálńıch celoč́ıselných programech.

Kĺıčová slova

programy s celoč́ıselnými daty, č́ıtačové automaty, analýza dosažitelnosti, analýza
konečnosti, akcelerace, tranzitivńı uzávěry, souhrny procedur, rekurentńı množiny, vs-
tupńı podmı́nky pro konečnost

ii

Résumé

Les travaux présentés dans cette thèse sont lies aux problèmes de vérification de l’attei-
gnabilité et de la terminaison de programmes qui manipulent des données entières non-
bornées. On décrit une nouvelle méthode de vérification basée sur une technique d’accé-
lération de boucle, qui calcule, de manière exacte, la clôture transitive d’une relation
arithmétique.
D’abord, on introduit un algorithme d’accélération de boucle qui peut calculer, en

quelques secondes, des clôtures transitives pour des relations de l’ordre d’une centaine de
variables. Ensuite, on présente une méthode d’analyse de l’atteignabilité, qui manipule
des relations entre les variables entières d’un programme, et applique l’accélération pour
le calcul des relations entrée-sortie des procédures, de façon modulaire.
Une approche alternative pour l’analyse de l’atteignabilité, présentée également dans

cette thèse, intègre l’accélération avec l’abstraction par prédicats, afin de traiter le
problème de divergence de cette dernière. Ces deux méthodes ont été évaluées de manière
pratique, sur un nombre important d’exemples, qui étaient, jusqu’a présent, hors de la
portée des outils d’analyse existants.
Dernièrement, on a étudié le problème de la terminaison pour certaines classes de

boucles de programme, et on a montré la décidabilité pour les relations étudiées. Pour
ces classes de relations arithmétiques, on présente un algorithme qui s’exécute en temps
au plus polynomial, et qui calcule l’ensemble d’états qui peuvent générer une exécution
infinie. Ensuite on a intégré cet algorithme dans une méthode d’analyse de la terminaison
pour des programmes qui manipulent des données entières.

Mots clés

programmes entiers, automates a compteurs, analyse d’atteignabilite, analyse de termi-
naison, accélération, clôture transitive, sommaire de procédure, ensembles récurrents,
preconditions de terminaison

iii

Acknowledgements

I would like to thank everyone who contributed to the successful completion of this work.
First and foremost, I would like to thank my supervisors Tomáš Vojnar and Radu Iosif
for their guidance, cooperation, invaluable suggestions and support they offered during
the research. Next, I would also like to thank my research partners Marius Bozga,
Peter Habermehl, Hossein Hojjat, and Viktor Kuncak for great cooperation on our joint
publications. Finally, I would like to thank my family for their continual moral support.

The work presented in this thesis was supported by the Czech Science Foundation (projects
P103/10/0306, 102/09/H042, 201/09/P531), the Czech Ministry of Education (project
COST OC10009, Czech-French Barrande project MEB021023, the long-term institu-
tional project MSM0021630528), the European Science Foundation (ESF COST action
IC0901), the EU/Czech IT4Innovations Centre of Excellence (project ED1.1.00/02.0070),
the French National Research Agency (project ANR-09-SEGI-016 VERIDYC), and the
Brno University of Technology (projects FIT-S-10-1, FIT-S-11-1, FIT-S-12-1).

iv

Contents

1 Introduction 1
1.1 State of the Art . 2
1.2 Goals of the Thesis . 5
1.3 An Overview of the Contributions . 5
1.4 Thesis Roadmap . 7

2 Background 8
2.1 Basic Notions . 8
2.2 Programs with Integer Data . 10

2.2.1 Syntax . 10
2.2.2 Semantics . 11
2.2.3 Reachability and Termination Problems 14

2.3 Difference Bounds Relations . 15
2.3.1 Difference Bounds Constraints . 15
2.3.2 Difference Bounds Relations and Their Powers 17
2.3.3 Zigzag Automata . 19

2.4 Octagonal Relations . 24
2.4.1 Octagonal Constraints . 24
2.4.2 Octagonal Relations and Their Powers 26

2.5 Finite Monoid Affine Relations . 28

3 Computing Transitive Closures of Periodic Relations 30
3.1 Periodic Sequences . 30
3.2 Periodic Relations . 31
3.3 Transitive Closure Algorithm . 34

4 Periodicity of Integer Relations 40
4.1 Periodicity of Matrices . 41
4.2 Difference Bounds Relations . 45

4.2.1 Proving Periodicity . 46
4.2.2 Checking ∗-consistency and Periodicity 48

4.3 Octagonal Relations . 55
4.3.1 Proving Periodicity . 56
4.3.2 Checking ∗-consistency and Periodicity 58

4.4 Finite Monoid Affine Relations . 63

v

5 Complexity of the Transitive Closure Algorithm 66
5.1 Difference Bounds Relations . 67

5.1.1 Bounding the Prefix . 67
5.1.2 Bounding the Period . 68

5.2 Octagonal Relations . 88
5.3 Finite Monoid Affine Relations . 90

6 Computing Termination Pre-conditions of Integer Relations 92
6.1 Preconditions for Non-termination . 94
6.2 Octagonal Relations . 96

6.2.1 Computing WNT in Polynomial Time 97
6.2.2 On the Existence of Linear Ranking Functions 102

6.3 Linear Affine Relations . 107
6.3.1 Polynomially Bounded Affine Relations 108

7 Verification of Programs with Integer Data 112
7.1 Modular Reachability Analysis . 113

7.1.1 Motivating Example . 114
7.1.2 Computing Program Summaries 116
7.1.3 Computing Transitive Closures of Disjunctive Relations 117

7.2 Modular Termination Analysis . 121
7.2.1 Transition Invariants and Non-termination Sets 122
7.2.2 Computing Termination Sets of Non-recursive Programs 124
7.2.3 Flat Integer Programs . 125

7.3 Predicate Abstraction with Acceleration 126
7.3.1 Abstract Reachability Tree . 128
7.3.2 Interpolation-Based Abstraction Refinement 129
7.3.3 Computing Accelerated Interpolants 131
7.3.4 Counterexample-Guided Accelerated Abstraction Refinement . . . 136

8 Experiments 137
8.1 Transitive Closure Computation . 137
8.2 Reachability Analysis . 138
8.3 Termination Analysis . 142

9 Conclusions 144
9.1 Summary . 144
9.2 Published Results . 144
9.3 Future Work . 145

vi

1 Introduction

Formal verification is the task of analyzing correctness of a computer system with respect
to a given specification. A majority of formal verification methods is sound, meaning
that when a method finds no counterexample to the specification, then the inspected
system is guaranteed to be correct. This is in contrast with traditional testing since the
fact that no error manifests in a given set of test cases does not imply correctness of the
system under inspection. Therefore, formal verification can be seen as a technique that is
complementary to traditional testing. The experience of the computer systems industry
in the last two decades shows that both techniques are needed to ensure reliability of
computer systems. This need arises from increasing complexity and pervasiveness of
computer systems. Indeed, more and more sophisticated software systems of growing
sizes run on an increasingly complex hardware. Moreover, many computer systems are
safety-critical since they operate aircraft, medical devices, nuclear systems, etc., and
their malfunction may have serious consequences. Both hardware manufacturers and
software developers aim to deliver reliable systems. Hence the growing need for more
sophisticated formal verification methods that can cope with the increasing complexity
of computer systems.
Model checking [CE82, QS82] is one of the main branches of formal verification. It is

an approach of automated checking whether a model of a computer system (where the
model can sometimes be identical to the system) satisfies a certain correctness specifi-
cation by systematically exploring the state space of the system being verified. Model
checking can be usually fully automated and moreover, in cases when a model violates
a given specification, a model checking method can provide a counter-example which
demonstrates the cause of the violation. Traditionally, model checking has been applied
to systems with a finite state space, especially in hardware. A major success has been
achieved when explicit representation of states has been replaced with a symbolic one
[BCM+92]. This is because a symbolic state represents a potentially large set of concrete
states which can then be manipulated simultaneously. More recently, model checking
has been extended to deal with infinite state spaces which arise, e.g., in software that
manipulates dynamic data structures or integers. In certain cases, infinite state veri-
fication can be reduced to finite state verification by applying e.g. cut-off techniques
[BHV03]. When such reduction is not possible, a model checking method needs to use
a symbolic representation for possibly infinite sets of states that need to be explored.
Many such representations have been proposed including those based on various kinds
of automata and logics [BHV04, BHRV06]. Since an automaton recognizes a potentially
infinite set of traces and a logical formula may have a potentially infinite set of models,
they can be used to encode potentially infinite sets of states.

1

In our work, we address model checking of sequential non-recursive programs with
unbounded integer data (also known as counter automata, counter systems, or counter
machines). The interest for integer programs comes from the fact that they can en-
code various classes of systems with unbounded (or very large) data domains, such as
hardware circuits, cache memories, or software systems with variables of non-primitive
types, such as integer arrays, pointers and/or recursive data structures. This comes
with no surprise since, in theory, any Turing-complete class of systems can be simulated
by integer programs, as shown by Minsky [Min67]. For practical purposes, however,
a number of recent works have revealed cost-effective reductions of verification problems
for several classes of complex systems to decision problems phrased in terms of integer
programs. Examples of such systems that can be effectively verified by means of in-
teger programs, include: specifications of hardware components [SV07], programs with
singly-linked lists [BBH+06, FLS07, BI07, BIP08], trees [HIRV07], and integer arrays
[HIV08b, HIV08a, BHI+09]. Hence the growing interest for analysis tools working on
integer programs.
Our work contributes to the field of model checking of programs with integer data by

developing methods for reachability and termination analysis. Given an integer program,
a set of initial states, and a set of error states, the reachability problem asks whether
the program has a computation starting in a state from the initial set which leads to
a state from the error set. The termination problem asks whether each computation of
a program that starts in a state from the initial set eventually halts. A slightly more
general problem is the conditional termination problem which asks to compute the set
of initial program states from which every computation halts.

1.1 State of the Art

Since the result of Minsky [Min67], proving Turing-completeness of 2-counter machines
with increment, decrement and zero test, research on analysis and verification of inte-
ger programs has been pursued in two orthogonal directions. The first one is defining
subclasses of systems for which various decision problems, such as reachability or termi-
nation, are found to be decidable. Based on these results, model checking algorithms that
perform precise analysis have been proposed. The second direction is concerned with
finding sound (but not necessarily complete) answers to decision problems in a cost-
effective way, by abstracting the system under inspection.

Decidable Classes of Integer Programs

Examples of classes of integer programs where the reachability problem is decidable in-
clude reversal-bounded counter machines [Iba78], Petri nets and vector addition systems
[Reu90], or flat counter automata [CJ98, LS05]. These classes pose certain restrictions on
the syntax of transition labels (vector addition systems, flat counter automata), control
structure (flat counter automata), or semantics (reversal-bounded counter machines) of
integer programs. Often, decidability of various problems is proved by defining the set
of reachable states in a decidable logic, such as Presburger arithmetic [Pre29].

2

The termination problem was studied for Petri nets where it was shown undecidable
when strong fairness is considered [Car87] and decidable for weak fairness assumptions
[Jan90]. A direct consequence of a result on the liveness problem from [DIP01] is that the
termination problem is decidable for reversal-bounded counter automata. Concerning
flat counter automata, the decidability status of the termination problem remains open.

Precise Model Checking Methods

A closely related line of work consists in attempts to apply model checking techniques
to the verification of integer programs. To solve the reachability problem, one typically
proceeds by computing the set of states that are reachable from the initial set I via
the transition relation R of the inspected system, and checking the emptiness of the
intersection with the set of error states. The set of reachable states can be defined as
the post-image of the initial set I via the transitive closure R∗ of the transition relation
R, formally as R∗(I). The computation of R∗(I) is usually done by computing succes-
sive under-approximations of the set of reachable states. Consider a naive technique
that computes the set of reachable states S by first initializing S0 with I (S0 ← I) and
then iteratively computing Si+1 ← Si ∪ R(Si), where R(Si) denotes the post-image of
Si via the transition relation R. The computation terminates if Sk = Sk+1 for some
k ≥ 0. Termination is guaranteed only if the set of reachable states is finite. There-
fore, early methods for verification of infinite state systems like FIFO-channel systems
[BH99, BG99] attempted to increase the likelihood of convergence of the computation by
applying acceleration techniques. Essentially, given a loop L of a system and a reachabil-
ity set Si computed so far, an acceleration technique aims to compute effects of executing
the loop L arbitrarily many times, formally, to compute Si+1 ← Si ∪ L

+(Si) where L
+

denotes the transitive closure of L. As a result, Si+1 may potentially contain infinitely
more states than Si.
To this end, it is important to know for which classes of arithmetic relations it is pos-

sible to compute the transitive closure precisely. To the best of our knowledge, the three
main classes of integer relations for which transitive closures can be computed effectively
and precisely are: (1) difference bounds constraints [CJ98, BIL09], (2) octagons [BGI09],
and (3) finite monoid affine transformations [Boi99, FL02]. For these three classes, the
transitive closures can be moreover defined in Presburger arithmetic.
The model checking methods from [Boi99, FL02] are based on computation of tran-

sitive closures of finite monoid affine relations. For certain restricted classes of systems,
one can prove termination of the method from [FL02] as reported in [BFLS05]. These
classes are typically equivalent, from a semantical point of view, to flat systems. A sys-
tem is flat if it has no nested loops and, moreover, each loop in the system can be
accelerated. Another model checking method from [AAB00] is based on an extrapola-
tion heuristics that guesses an effect of iterating a loop infinitely many times and then
checks whether this guess is correct.
The above methods lack modularity, which is one of the keys to scalability. Since

larger programs are usually organized in many small functions, a modular verification
approach aims at running an analysis per function (in isolation), computing a function

3

summary which is a relation between the input and output valuations of its parameters,
and combining the results in a final verification condition.
On what concerns the existing acceleration algorithms for difference bounds and octag-

onal relations, they suffer from poor scalability in the number of variables. As reported
in [BGI09], these methods can only handle difference bounds relations with no more
than 10 variables and octagonal relations with no more than 5 variables.

Methods Based on Abstractions

Another, orthogonal, direction of work is concerned with finding sound (but not neces-
sarily complete) answers to decision problems in a cost-effective way. Such approaches,
based on the theory of abstract interpretation [CC77], use abstract domains (such as,
e.g., polyhedra [CH78], octagons [Min06], etc.) and compute fixed points of the transfer
functions, which are over-approximations of the sets of reachable states. A drawback of
the methods based solely on abstract interpretation is the inability to deal with spurious
counterexamples (false positives), i.e., errors caused by the use of a too coarse abstract
domain. To ensure termination of state space exploration, abstract interpretation ap-
plies widening. In contrast to acceleration, the widening can be seen as an operator that
computes the set of reachable states Si+1 as an extrapolation of Si and R(Si) such that
Si+1 ⊇ Si ∪R(Si).
The method of predicate abstraction [GS97] combines ideas from abstract interpreta-

tion and model checking in order to compute program invariants in a goal-driven fashion.
The underlying idea is to verify a program by reasoning about its abstraction that is
easier to analyze, and is defined with respect to a set of predicates [GS97]. The set
of predicates is refined, by adding new predicates, to achieve the precision needed to
prove the absence or the presence of errors [BMMR01]. This technique is also known as
Counter Example-based Abstraction Refinement (CEGAR) [CGJ+03]. Typically, predi-
cate abstraction computes an over-approximation of the transition system generated by
a program and verifies whether an error state is reachable in the abstract system. If no
error occurs in the abstract system, the algorithm reports that the original system is safe.
Otherwise, if a path to an error state (counterexample) has been found in the abstract
system, the corresponding concrete path is checked. If this latter path corresponds to
a real execution of the system, then a real error has been found. Otherwise, the coun-
terexample is spurious, the abstraction is refined in order to exclude the counterexample,
and the procedure continues.
A key difficulty in this approach is to automatically find, during the refinement phase,

predicates that make the abstraction sufficiently precise [BPR02]. A breakthrough tech-
nique is to generate predicates based on Craig interpolants [Cra57] derived from the
proof of infeasibility of a spurious trace [HJMM04]. Adding the interpolant to the
set of predicates prevents the spurious trace from reappearing in the refined abstract
model. Cutting edge CEGAR tools, such as, e.g., ARMC [PR07], BLAST [HJMS03] or
CPAchecker [BK11], are empirically successful on a variety of domains and are quite ef-
fective in finding bugs and certifying correctness of real-life systems (device drivers, web
servers, subsystems of operating system kernels). However, abstraction refinement using

4

interpolants suffers from unpredictability of interpolants computed by provers, which
can cause the verification process to diverge and never discover a sufficient set of pred-
icates (even in cases such predicates exist). The failure of such a refinement approach
manifests in a sequence of predicates that rule out longer and longer counterexamples,
but still fails to discover more general inductive invariants that would rule out multiple
spurious counterexamples during the refinement step.

1.2 Goals of the Thesis

The purpose of this thesis is to develop efficient methods for reachability and termi-
nation analysis of programs with integer data. This involves a design of more efficient
algorithms for computing transitive closures of classes of relations that can be expressed
in decidable logical fragments such as Presburger arithmetic. As discussed previously,
the known classes satisfying this criterion are difference bounds, octagonal, and finite
monoid affine relations. Another goal is to develop modular methods for reachability
analysis of non-recursive integer programs that are based on acceleration algorithms.
Further, we aim to resolve the decidability status of the (conditional) termination prob-
lem for difference bounds, octagonal, and finite monoid affine relations and to develop
techniques for termination analysis of programs with integer data. Last but not least,
we aim to find solutions to the divergence problem in predicate abstraction.

1.3 An Overview of the Contributions

This section outlines the main contributions of this thesis.

Precise Acceleration of Integer Relations

We consider the acceleration problem and inspect the classes of difference bounds, oc-
tagonal, and finite monoid affine relations, for which the transitive closure is known to
be Presburger definable and effectively computable [CJ98, BGI09, Boi99]. We present
a general theoretical framework for computing transitive closures of certain relations,
called periodic. We define a notion of periodicity on classes of relations that can be
naturally represented as matrices and show that the sequence of powers {Rk}∞k=0 can
be finitely represented for periodic relations. We study the three classes of arithmetic
relations mentioned previously and show that they are periodic. On the theoretical side,
this provides a unifying view and shorter proofs to the fact that the transitive closures
for these classes are Presburger definable and that they can be effectively computed.
We prove that our algorithm computing transitive closures of periodic relations runs in
EXPTIME for all three classes. On the practical side, despite its asymptotic complexity,
the algorithm computes the transitive closure of difference bounds and octagonal rela-
tions up to four orders of magnitude faster than the methods from [BIL09, BGI09] and
also scales much better in the number of variables.

5

Techniques to Compute Weakest (Non-)termination Sets

We study the conditional termination problem, which is that of defining the set of initial
states from which a given program terminates, for difference bounds, octagonal, and
finite monoid affine relations. We define the dual set called weakest non-termination set
of initial states from which a non-terminating execution exists, as the greatest fixpoint of
the pre-image of the transition relation. Next, we show that this set can be defined as the
limit of the Kleene sequence for the above classes of relations. This allows to effectively
compute and represent the weakest non-termination set in Presburger arithmetic. Since
Presburger arithmetic is decidable, the termination problem is thus decidable too, for all
three classes. For difference bounds and octagonal relations, we next present a PTIME
algorithm that computes the weakest non-termination set. Moreover, we investigate
the existence of linear ranking functions and prove that for each well-founded difference
bounds or octagonal relations, there exists an effectively computable witness relation,
i.e., a well-founded relation which has equal weakest non-termination set and which has
a linear ranking function. We also study the class of linear affine relations and give a
method of under-approximating the termination precondition for a non-trivial subclass
of affine relations, called polynomially bounded affine relations.

Reachability Analysis for Integer Programs

We give a semi-algorithmic method for reachability analysis of non-recursive integer
programs which tracks relations instead of sets of reachable states, computes procedure
summaries and is therefore modular. The algorithm builds the summary relation of
a procedure incrementally, by eliminating control states and composing incoming with
outgoing relations. The main difficulty here is the elimination of states with several self-
loops. We address this issue by first computing the transitive closures of the self-loops
individually, and then exploring all interleavings between them until no new relations are
produced. Interleaving of transitive closures instead of self-loops themselves increases
the likelihood of termination. We implemented these techniques in the Flata tool which
successfully verifies many non-trivial integer programs and outperforms other tools for
model checking integer programs on many of the considered benchmarks.

Termination Analysis of Integer Programs

We present a semi-algorithmic method computing termination preconditions for non-
recursive integer programs, which rests on computation of a transition invariant of
a program and on the algorithm computing the weakest non-termination sets mentioned
previously. Further, we show that this method is guaranteed to compute the weakest
non-termination set for flat integer programs, which renders the termination problem
decidable for this class of programs. We have implemented this technique and have
verified (non-)termination of several benchmarks.

6

Coping with the Divergence Problem in Predicate Abstraction

We address the divergence problem that appears in predicate abstraction and observe
that this problem can be alleviated by applying acceleration. We present Counter-
example-Guided Accelerated Abstraction Refinement (CEGAAR), an interpolation-based
predicate abstraction algorithm that applies acceleration algorithms for particular classes
of loops to rule out an infinite family of counterexamples during the abstraction refine-
ment phase. An essential ingredient of this approach are interpolants that not only
rule out one spurious path, but are also inductive with respect to loops along this path
and which hence rule out potentially infinitely many spurious paths. We observe that
inductive interpolants can be computed from classical Craig interpolants and transitive
closures of loops. We present an implementation of CEGAAR that verifies integer tran-
sition systems and show that the resulting implementation robustly handles a number of
difficult transition systems that cannot be handled using interpolation-based predicate
abstraction or acceleration alone.

1.4 Thesis Roadmap

Chapter 2 presents notation and basic definitions used in the rest of the thesis. Chapters
3, 4, and 5 present our results concerning the acceleration problem. Chapter 3 describes
the general framework for computation of transitive closures of periodic relations which is
then instantiated in Chapter 4 for difference bounds, octagonal, and finite monoid affine
relations. The complexity of the transitive closure algorithm is studied in Chapter 5.
Next, Chapter 6 presents a solution of the conditional termination problem for difference
bounds, octagonal, and finite monoid affine relations. Chapter 7 builds upon the results
of Chapters 3–6 and presents methods contributing to the analysis of programs with
integer data: a modular reachability analysis algorithm based on procedure summaries,
a conditional termination analysis method based on transition invariants, and finally,
a method that integrates predicate abstraction and acceleration. All experiments that
we performed are described in Chapter 8. Finally, Chapter 9 summarizes the obtained
results, gives an overview of publications, and outlines possible future work.

7

2 Background

This chapter presents notions that will be used throughout this thesis. Section 2.1
gives basic notions on relations, formulae, and graphs. Next, Section 2.2 defines the
syntax and the semantics of programs with integer data and then defines the reachability
and conditional termination problems. Finally, Sections 2.3, 2.4, and 2.5 present basic
definitions and several known results results on the three classes of relations we study in
this thesis: difference bounds, octagonal, and finite monoid affine relations, respectively.

2.1 Basic Notions

Integer Sets

We denote by Z, N and N+ the sets of integers, positive (including zero) and strictly pos-
itive integers, respectively. We denote by Z∞ and Z−∞ the sets Z∪{∞} and Z∪{−∞},
respectively. In the rest of this paper we will fix the set of variables x = {x1, x2, . . . , xN},
for some N > 0. The set of primed variables is x′ = {x′1, x

′
2, . . . , x

′
N}. These variables

are assumed to be ranging over Z, unless otherwise specified. For a set S ∈ Z of integers,
we denote by maxS the largest integer m ∈ S, if one exists and by minS the smallest
integer m ∈ S, if one exists. By supS we denote the smallest value m ∈ Z∞ such that
s ≤ m, for all s ∈ S. By inf S we denote the largest value m ∈ Z−∞ such that s ≥ m,
for all s ∈ S.

Presburger Arithmetic

A linear term t over a set of variables in x is a linear combination of the form a0 +∑n
i=1 aixi, where a0, a1, . . . , an ∈ Z. An atomic proposition is a predicate of the form

either t ≤ 0, or t ≡c 0, where t is a linear term, c ∈ N+ is a strictly positive integer, and
≡c is the equivalence relation modulo c. Given an integer c ∈ N+ and a linear term t, we
write c | t to denote the predicate t ≡c 0. Presburger arithmetic is the first-order logic
over atomic propositions of the form either t ≤ 0 or t ≡c 0. Presburger arithmetic has
quantifier elimination and is decidable [Pre29]. For simplicity we consider only formulas
in Presburger arithmetic in this thesis.

Arithmetic Formulae

Let ϕ be an arithmetic formula. By AP (ϕ), we denote the set of atomic propositions
in ϕ. By FV (ϕ), we denote the set of free variables in ϕ, i.e. variables not bound
by a quantifier. By writing ϕ(x), we intend that FV (ϕ) ⊆ x. We write ⊥ and ⊤ for
the boolean constants false and true. We use the symbols ⇒ and ⇔ to denote logical

8

implication and equivalence, respectively. By |= ϕ we denote the fact that ϕ is valid,
i.e. logically equivalent to ⊤. For a formula ϕ(x), we denote by ϕ[t1/x1, . . . , tN/xN]
(or equivalently, by ϕ[ti/xi]

N
i=1) the formula obtained from ϕ by syntactically replacing

each free occurrence of xi with the term ti, 1 ≤ i ≤ N . For a formula ϕ(x) and
a valuation ν : x → Z, we denote by ν |= ϕ(x) the fact that the formula obtained by
replacing each free occurrence of x ∈ x with ν(x) is valid, formally |= ϕ(x)[ν(x)/x]x∈x.
A formula ϕ(x) is said to be consistent if there exists a valuation ν : x → Z such
that ν |= ϕ(x). By [[ϕ]], we denote the set of all valuations satisfying ϕ(x), formally
[[ϕ]] = {ν : x→ Z | ν |= ϕ(x)}.

Integer Relations

Let R1, R2 ⊆ ZN×ZN be integer relations. Relational composition is defined as R1◦R2 =
{(s, s′) ∈ ZN×ZN | ∃s′′ ∈ ZN . (s, s′′) ∈ R1 ∧ (s′′, s′) ∈ R2}. For any relation R ⊆
ZN×ZN , we consider R0 to be the identity relation I = {(s, s) | s ∈ ZN} and we define
Ri+1 = Ri ◦R, for all i ≥ 0. We say that Ri is the i-th power of R. With these notations,
R+ =

⋃∞
i=1R

i denotes the transitive closure of R, and R∗ = R+∪I denotes the reflexive
and transitive closure of R. The inverse of R is defined as R−1 = {(s′, s) | (s, s′) ∈ R}.
Further, we define R−m = (Rm)−1 for each m ≥ 1. For any relation R ∈ ZN×ZN and
set S ⊆ ZN , we define the post-image of S via R as R(S) = {s′ | ∃s ∈ S ∧ (s, s′) ∈ R}.
Then, the pre-image of S via R is defined as R−1(S). The pre-image function of R,
denoted as preR : ZN → ZN maps each set S ⊆ ZN to R−1(S). It is easy to show that
premR = preRm for all m ≥ 0 and that premR (Z

N) = R−m(ZN) for all m ≥ 0. We say that
a relation R ⊆ ZN×ZN is deterministic if and only if (s, s′) ∈ R ∧ (s, s′′) ∈ R⇒ s′ = s′′

for all s, s′, s′′ ∈ ZN .
An integer set S ⊆ ZN is typically defined by an arithmetic formula S(x). Similarly,

an integer relation R ⊆ ZN×ZN is typically defined by an arithmetic formula R(x,x′).
Intuitively, x represent input variables and x′ represents output variables. Note that
for each m ≥ 0, premR (Z

N) can be defined by ∃x′.Rm(x,x′). For a relation R(x,x′) and
valuations ν, ν ′ : x→ Z, we denote by ν, ν ′ |= R(x,x′) the fact that the formula obtained
by replacing each occurrence of x ∈ x with ν(x) and each occurrence of x′ ∈ x′ with
ν ′(x) is logically valid, formally |= R(x,x′)[ν(x)/x, ν ′(x)/x′]x∈x.
A relation R ⊆ ZN ×ZN defined by R(x,x′) is consistent if and only if there exist

valuations ν, ν ′ : x→ Z such that ν, ν ′ |= R(x,x′). Clearly, R(x,x′) is consistent if and
only if R 6= ∅. R(x,x′) is said to be ∗-consistent if and only if Rm(x,x′) is consistent
for all m ≥ 0. R(x,x′) is said to be well-founded if and only if there exists no infinite
sequence of valuations {νi : x→ Z}i≥0 such that (νi, νi+1) |= R(x,x′) for all i ≥ 0. When
R represents the transition relation of a program, we sometimes say that valuations ν, ν ′

are program states. We sometimes use the same symbols to denote a relation and its
defining formula or a set and its defining formula.

For a set of N -tuples S ⊆ ZN and a relation R ⊆ ZN×ZN , let post(S,R)
def
= R(S)

denote the strongest postcondition of S via R, and wpre(S,R) = {s ∈ ZN | ∀s′ . (s, s′) ∈
R ⇒ v ∈ S} denote the weakest precondition of S with respect to R. We use post and
wpre for sets and relations, as well as for logical formulae defining them.

9

If ν : x → Z is a valuation, we write ν(x) to denote the N -tuple (ν(x1), . . . , ν(xN)).
Thus, if ν, ν ′ : x→ Z are valuations and R ⊆ ZN×ZN is a relation defined by R(x,x′),
then ν, ν ′ |= R(x,x′) if and only if (ν(x), ν ′(x)) ∈ R. We denote by −→y = (y1, . . . , yk) a
k-tuple of variables. We denote by |−→y | = k the length of −→y . If x is a set of variables,
we write −→y ⊆ x if all elements of −→y are in x. If −→y = (y1, . . . , yk),

−→y ⊆ x is an ordered
sequence of variables and ν : x → Z is a valuation, we denote by ν(−→y) the k-tuple of
integers (ν(y1), . . . , ν(yk)).

Weighted Digraphs

Let G = 〈V,E,w〉 be a weighted digraph, where V is a set of vertices, E ⊆ V ×V is a set of
edges, and w : E → Z is a weight function. When G is clear from the context, we denote
by u

n
−→ v the fact that (u, v) ∈ E and w(〈u, v〉) = n. Let µ(G) = max{|n| | u

n
−→ v in G}

denote the maximum absolute value of all weights in G.

A path in G is a sequence π : v0
w1−→ v1

w2−→ v2 . . . vp−1
wp
−−→ vp where vi−1

wi−→ vi is

an edge in E with weight wi, for each 1 ≤ i ≤ p. For a path π of the above form,
we denote the length of π by |π| = p, and the weight of π by w(π) =

∑p
i=1wi. The

average weight of π is defined as w(π) = w(π)
|π| . A path is elementary if all vertices, except

for the first and the last one, are pairwise distinct. A cycle is a path where the first
and the last vertex are equal. By πi...j , where 0 ≤ i < j ≤ p, we denote the subpath

vi
wi+1
−−−→ vi+1

wi+2
−−−→ . . .

wj
−→ vj .

If W ⊆ V is a set of vertices from G, the subgraph induced by W , denoted G[W], is
defined by the restriction of E and w to the vertices in W . A subgraph G[W] is strongly
connected if there exists a path between any two distinct vertices u, v ∈ W . G[W] is
a strongly connected component if it is a maximal strongly connected subgraph of G.

2.2 Programs with Integer Data

2.2.1 Syntax

We define integer programs as collections of procedures. We abstract from specific
programming language constructs and assume that each procedure is a control flow
graph whose edges are labeled by Presburger arithmetic relations. In addition, certain
edges correspond to calls between procedures, and the parameters and results are passed
on by values. Formally, an integer program is a tuple P = 〈xg, {P1, . . . , Pn}, Pm〉 where
xg are global variables, P1, . . . , Pn are procedures, Pm is the main procedure, for some
m = 1, . . . , n, and each procedure is a tuple Pi = 〈xi,

−→x in
i ,
−→x out
i , Qi, q0,i, qf,i, qe,i,∆i〉,

where:

• xi are the local variables of Pi. We require that xi ∩ xg = ∅ and that xi ∩ xj = ∅
for all indices i 6= j, i.e. the global variables are the only variables shared by any
two procedures.

10

• −→x in
i ⊆ xi and

−→x out
i ⊆ xi are the input and output variables of Pi. Intuitively,

input variables are used to pass the arguments, and output variables are used to
retrieve the resulting values from a procedure.

• Qi are the control states of Pi. We require that the sets of control states are
pairwise disjoint, i.e. Qi ∩Qj = ∅, for all i 6= j.

• ∆i is a set of transition rules of the form, either:

1. q
R(xi ∪xg ,x′

i ∪x′
g)

−−−−−−−−−−−→ q′ is an internal transition, where q, q′ ∈ Qi are the source

and destination state, and R(xi ∪ xg,x
′
i ∪ x′

g) is a Presburger arithmetic
relation

2. q
−→z ′=callj(

−→
t)

−−−−−−−−→ q′ is a call transition, where q, q′ ∈ Qi are the source and

destination control states, respectively, j = 1 . . . n is the index of the callee
procedure,

−→
t is a sequence of linear terms over xg∪xi, called parameters, and

−→z ⊆ xg ∪ xi is a sequence of variables, called return variables. We require

that |
−→
t | = |−→x in

j | and |
−→z | = |−→x out

j |, i.e. the numbers of parameters and
return variables of the call transition match the numbers of input and output
variables of the callee, respectively.

• q0,i, qf,i, qe,i ∈ Qi are the initial, final and error control states of Pi. We require
that these states are pairwise disjoint, that q0,i has no incoming transition rules,
and that qf,i and qe,i have no outgoing transition rules.

For a program P = 〈P1, . . . , Pn〉 the call graph of P, denoted CG(P) = 〈P, →֒〉, is
a graph whose vertices are procedures, and edges Pi →֒ Pj represent calls of Pi to Pj .
The program P is said to be recursive if and only if CG(P) has cycles. In this thesis,
we proceed under the assumption that the considered program is not recursive.

2.2.2 Semantics

A configuration of a procedure Pi = 〈xi,
−→x in
i ,
−→x out
i , Qi, q0,i, qf,i, qe,i,∆i〉 is a pair 〈q, ν〉,

where q ∈ Qi is a control state and ν : xi ∪xg → Z is a valuation of the variables visible
in Pi. For each procedure Pi, we define the set of valuations of variables visible in Pi as
Vi = Zxi∪xg . Next, we define predicates MatchCall and MatchCallRet which are
later used to define compatibility of valuations at call (return) sites with initial (final)
valuations of called procedures.

MatchCall(q
−→z ′=callj(

−→
t)

−−−−−−−−→ q′ ∈ ∆i, ν ∈ Vi, ν1 ∈ Vj)
def
≡

∧{ ν(x) = ν1(x) for all x ∈ xg (values of global variables match)

ν((
−→
t)k) = ν1((

−→x in
i)k) for all 1 ≤ k ≤ |

−→
t | (input values match)

11

MatchCallRet(q
−→z ′=callj(

−→
t)

−−−−−−−−→ q′ ∈ ∆i, ν, ν
′ ∈ Vi, ν1, ν2 ∈ Vj)

def
≡

∧





MatchCall(q
−→z ′=callj(

−→
t)

−−−−−−−−→ q′, ν, ν1)

ν ′(x) = ν2(x) for all x ∈ xg (values of global variables match)
ν ′((−→z)k) = ν2((

−→x out
i)k) for all 1 ≤ k ≤ |

−→z | (output values match)
ν(x) = ν ′(x) for all x ∈ xi \

−→z (frame rule)

Informally, MatchCall evaluates to true if a valuation ν at a call site of a procedure
Pi is compatible with a valuation ν1 of a called procedure Pj . MatchCallRet more-
over requires that a valuation ν ′ at a return site of a procedure Pi is compatible with
a valuation ν2 of a called procedure Pj and that the frame rule is respected.

Program Summaries

For each procedure Pi = 〈xi,
−→x in
i ,
−→x out
i , Qi, q0,i, qf,i, qe,i,∆i〉, we define the set of sum-

maries compatible with Pi as Si = {Si : Qi × Qi → Vi × Vi}. Intuitively, a summary
Si of a procedure Pi maps each pair of control states (q, q′) ∈ Qi × Qi to a relation
Si(q, q

′) ∈ Vi × Vi between valuations in q and q′ that are feasible by an execution of
Pi that starts in q and ends in q′. For a program P = 〈xg, {P1, . . . , Pn}, Pm〉, the set of
summaries compatible with P is defined as S = S1 × . . .× Sn.
Given two configurations 〈q, ν〉 and 〈q′, ν ′〉 of a procedure Pi, the configuration 〈q

′, ν ′〉
is said to be an immediate successor of 〈q, ν〉, with respect to a program summary
S = (S1, . . . , Sn) ∈ S, if and only if either:

• q
R
−→ q′ ∈ ∆i and ν, ν

′ |= R (internal action)

• q
−→z =callj(

−→
t)

−−−−−−−−→ q′ ∈ ∆i and MatchCallRet(q
−→z =callj(

−→
t)

−−−−−−−−→ q′, ν, ν ′, ν1, ν2) for some

(ν1, ν2) ∈ Sj(q0,j , qf,j) (successful call)

• q′ = qe,i, q
−→z =callj(

−→
t)

−−−−−−−−→ q′′ ∈ ∆i andMatchCallRet(q
−→z =callj(

−→
t)

−−−−−−−−→ q′′, ν, ν ′, ν1, ν2)

for some q′′ ∈ Qi and for some (ν1, ν2) ∈ Sj(q0,j , qe,j) (erroneous call)

A finite run of length k of a procedure Pi from q to q′, under a program summary S ∈ S,
is a finite sequence 〈q0, ν0〉 −→ 〈q1, ν1〉 −→ . . . −→ 〈qk, νk〉, such that q = q0, q

′ = qk, and

〈qi+1, νi+1〉 is an immediate successor of 〈qi, νi〉 with respect to S, for all 0 ≤ i < k. An
infinite run of a procedure Pi, from a control state q, under a program summary S ∈ S,
is an infinite sequence 〈q0, ν0〉 −→ 〈q1, ν1〉 −→ . . . such that q = q0 and 〈qi+1, νi+1〉 is an

immediate successor of 〈qi, νi〉 with respect to S, for all i ≥ 0.
The summary of a procedure Pi under a program summary S ∈ S is a mapping

[[Pi]]S ∈ Si defined for each q, q′ ∈ Qi as

[[Pi]]S(q, q
′)
def
= {(ν, ν ′) | (q, ν)−→ . . .−→(q′, ν ′) is a finite run of Pi of length k≥1 under S}

12

The summary of a program P, denoted by [[P]], is defined as the least fixpoint of the
function

S → S
S ∈ S 7→ ([[P1]]S , . . . , [[Pn]]S)

We denote the components of the program summary [[P]] as [[P]] = ([[P1]], . . . , [[Pn]]). Intu-
itively, [[Pi]] represents the reachability relation between two arbitrary control states of Pi
in a finite and non-zero number of steps. Analogically, we define [[P]]∗ = ([[P1]]

∗, . . . , [[Pn]]
∗)

to represent the reachability relation in arbitrary finite number of steps, including zero,
by referring to

[[Pi]]
∗
S(q, q

′)
def
= {(ν, ν ′) | (q, ν)−→ . . .−→(q′, ν ′) is a finite run of Pi of length k≥0 under S}

Further, we write [[P]]f = ([[P1]]
f , . . . , [[Pn]]

f), where [[Pi]]
f def

= [[Pi]](q0,i, qf,i), to denote
only the summaries from the initial to the final control state. Further, we define the
final state summary as [[P]]f∃ = ([[P1]]

f
∃, . . . , [[Pn]]

f
∃) where

[[Pi]]
f
∃

def
= ∃(xi ∪ x′

i) \ (
−→x in
i ∪
−→x ′
i
out

) . [[Pi]]
f

Intuitively, [[P]]f∃ is computed from [[P]]f by eliminating variables that are not in the sig-
nature of Pi. Similarly, we define [[P]]e = ([[P1]]

e, . . . , [[Pn]]
e) and the error state summary

[[P]]e∃ = ([[P1]]
e
∃, . . . , [[Pn]]

e
∃), where [[Pi]]

e def= [[Pi]](q0,i, qe,i) and

[[Pi]]
e
∃

def
= ∃(xi ∪ x′

i) \ (
−→x in
i ∪
−→x ′
i
out

) . [[Pi]]
e

Weakest (Non-)Termination Sets

We proceed with a definition of the weakest non-termination set for non-recursive pro-
grams. The non-termination set of a procedure Pi with respect to a non-termination
valuation N = (N1, . . . ,Nn) ∈ V1× . . .×Vn is denoted as [[Pi]]

nt
N and is defined as follows.

For each valuation ν ∈ Vi, ν ∈ [[Pi]]
nt
N if and only if either

1. there exists an infinite run in Pi under [[P]] that starts in 〈q0,i, ν〉

2. there exists a finite run of length k ≥ 0 in Pi under [[P]] that starts in 〈q0,i, ν〉,
ends in 〈q′, ν ′〉 for some q′ ∈ Qi, ν

′ ∈ Vi and moreover, there exists a transition

q′
−→z =callj(

−→
t)

−−−−−−−−→ q′′ ∈ ∆i and a valuation ν ′′ ∈ Nj such that

MatchCall(q′
−→z =callj(

−→
t)

−−−−−−−−→ q′′, ν ′, ν ′′)⇔ ⊤

Intuitively, the first point above captures all initial configurations from which there
exists an infinite run in Pi on which some control state of Pi appears infinitely often.
The second point captures all initial configurations from which there exists a run which

13

enters one of the called procedures Pj and moreover, Pj is entered in a configuration
from which a non-terminating run, captured by the non-termination valuation N , exists.
Since each non-terminating run in a non-recursive program must loop infinitely in

one of the procedures, the weakest non-termination set of a non-recursive program P,
denoted as [[P]]nt, can be defined as the least fixpoint of the following function, where
V = V1 × . . .× Vn

V → V

N ∈ V 7→ ([[P1]]
nt
N , . . . , [[Pn]]

nt
N)

Notice that since P is non-recursive, the fixpoint is reached after at most n steps. After
the first step, Ni contains exactly the valuations from which a run that loops infinitely
in Pi exists (this corresponds to the point 1 above). In at most n−1 following iterations,
the fixpoint is reached by propagating the sets Ni, computed in the first step, to the
calling procedures (this corresponds to the point 2 above).
We denote the components of [[P]]nt as [[P]]nt = ([[P1]]

nt, . . . , [[Pn]]
nt). Finally, we define

[[P]]nt∃ = ([[P1]]
nt
∃ , . . . , [[Pn]]

nt
∃), where

[[Pi]]
nt
∃

def
= ∃(xi \

−→x in
i) . [[Pi]]

nt

Intuitively, [[Pi]]
nt
∃ is obtained from [[Pi]]

nt by eliminating variables that are not in the
signature of Pi.
Finally, we define the weakest termination set [[P]]t, a dual of [[P]]nt, as [[P]]t =

([[P1]]
t, . . . , [[Pn]]

t), where [[Pi]]
t = Vi \ [[Pi]]

nt. Similarly, [[P]]t∃ is defined as [[P]]t∃ =

([[P1]]
t
∃, . . . , [[Pn]]

t
∃), where [[Pi]]

t
∃
def
= V ini \ [[Pi]]

nt
∃ and V ini = Z

−→x in
i ∪xg .

2.2.3 Reachability and Termination Problems

Reachability Problem

Informally, the reachability problem asks whether a program has a run that starts in
the initial control state and ends in the error control state. If no such run exists, the
program is said to be safe. The reachability problem can be defined by referring to the
summary semantics defined in Section 2.2.1.

Definition 2.1 Let P = 〈xg, {P1, . . . , Pn}, Pm〉 be a program and [[P]] = ([[P1]], . . . , [[Pn]])
be its summary. P is said to be safe if and only if [[Pm]]

e
∃ = ∅. The reachability problem

asks whether P is safe.

Termination Problem

Informally, the termination problem asks whether a given program stops for every pos-
sible input configuration. The problem of determining the set of configurations from
which a program terminates on all paths is called the conditional termination problem.
This set is called the weakest termination set. We next formalize these problems for
non-recursive programs.

14

Definition 2.2 Let P = 〈xg, {P1, . . . , Pn}, Pm〉 be a non-recursive program and let
[[P]]t = ([[P1]]

t, . . . , [[Pn]]
t) be its weakest termination set. The conditional termination

problem asks to compute [[Pm]]
t
∃. Program P is terminating if and only if [[Pm]]

t
∃ = V ini .

The termination problem asks whether P is terminating.

Since [[Pi]]
t
∃
def
= V ini \ [[Pi]]

nt
∃ , it follows that a program P is terminating if and only if

[[Pm]]
nt
∃ = ∅.

2.3 Difference Bounds Relations

Difference bounds constraints are known as zones in the context of timed automata
verification [AD91] and abstract interpretation [Min06]. They are defined syntactically
as conjunctions of atomic propositions of the form x−y ≤ c, where x and y are variables
and c is an integer constant. Difference bounds constraints can be represented as matrices
and graphs. Moreover, their canonical form, useful for efficient inclusion checks, can be
computed by the classical Floyd-Warshall algorithm. We report on these results in
Section 2.3.1.
Difference bounds relations are defined as difference bounds constraints where vari-

ables can be also primed (e.g. x − x′ ≤ 0). Intuitively, primed variables denote future
values of variables and unprimed variables denote current values of variables. Difference
bounds relations have been studied by Comon and Jurski who showed, in [CJ98], that
their transitive closure is Presburger definable. Their proof was subsequently simplified
in [BIL09], using the notion of zigzag automata. Intuitively, zigzag automaton corre-
sponding to a difference bounds relation R is a finite weighted automaton that encodes
m-th power of R by minimal runs of length m + 2. As we show in Chapter 4, zigzag
automata can be also used in proving periodicity of difference bounds relations, which
allows to compute R+ efficiently, using the algorithm presented in Chapter 3. Fur-
thermore, they also play a crucial role in Chapter 6 in designing a PTIME algorithm
computing the weakest termination sets and in proving existence of linear ranking func-
tions for difference bounds and octagonal relations. We give definitions of difference
bounds relations and zigzag automata in Section 2.3.2 and Section 2.3.3, respectively.
In the rest of this section, let x = {x1, x2, ..., xN} be a set of variables ranging over Z.

2.3.1 Difference Bounds Constraints

The following definition formalizes the notion of a difference bounds constraint.

Definition 2.3 A formula φ(x) is a difference bounds constraint if it is equivalent to
a finite conjunction of atomic propositions of the form xi−xj ≤ aij , 1 ≤ i, j ≤ N, i 6= j,
where aij ∈ Z.

For instance, x− y = 5 is a difference bounds constraint, as it is equivalent to x− y ≤
5 ∧ y − x ≤ −5. In practice, difference bounds constraints are represented either as
matrices or as graphs:

15

Definition 2.4 Let x = {x1, x2, ..., xN} be a set of variables ranging over Z and φ(x)
be a difference bounds constraint. Then a difference bounds matrix (DBM) representing
φ is an N ×N matrix Mφ such that:

(Mφ)i,j =

{
αi,j if (xi − xj ≤ αi,j) ∈ AP (φ)

∞ otherwise

Definition 2.5 Let x = {x1, x2, ..., xN} be a set of variables ranging over Z and φ(x)
be a difference bounds constraint. Then φ can be represented as a weighted graph Gφ =

(x,→), where each vertex corresponds to a variable, and there is an edge xi
aij
−−→ xj in

Gφ if and only if there exists a constraint xi − xj ≤ aij in φ. This graph is also called
a constraint graph.

Clearly, Mφ is the incidence matrix of Gφ. If M ∈ ZN×N
∞ is a DBM, the corresponding

difference bounds constraint is defined as ΦM ⇔
∧
Mij<∞ xi − xj ≤ Mij . We denote by

||φ|| =
∑

(xi−xj≤aij)∈AP (φ) |aij | the sum of absolute values of all coefficients of φ. The

restriction of a DBM Mφ to variables z ⊆ x, denoted as (Mφ)↓z, is a matrix obtained
by erasing the rows and columns of Mφ which encode constraints that involve variables
z \ x. For two difference bounds matrices M1,M2, we write M1 = M2 if and only if
(M1)ij = (M2)ij for all 1 ≤ i, j ≤ N and M1 ≤M2 if and only if (M1)ij ≤ (M2)ij for all
1 ≤ i, j ≤ N .
A DBM M is said to be consistent if and only if its corresponding constraint φM is

consistent. The following proposition relates the consistency of φ to the existence of an
elementary negative weight cycle of Gφ.

Proposition 2.6 Let φ be a difference bounds constraint and Gφ be the constraint graph
of φ. Then, the following statements are equivalent:

• φ is consistent

• Gφ contains an elementary negative weight cycle

Proof: See e.g. [CSRL01], §25.5. ✷

The next definition gives a canonical form for consistent DBMs.

Definition 2.7 A consistent DBMM ∈ ZN×N
∞ is said to be closed if and only ifMii = 0

and Mij ≤Mik +Mkj, for all 1 ≤ i, j, k ≤ N .

Given a consistent DBM M ∈ ZN×ZN , we denote the (unique) closed DBM by M∗.
It is well-known that, if M is consistent, then M∗ is unique, and can be computed from
M in time O(N3), by the classical Floyd-Warshall algorithm [CSRL01]. Consistency of
M can be checked by the Floyd-Warshall algorithm too. By Proposition 2.6, it amounts
to checking whether M∗

ii < 0 for some 1 ≤ i ≤ N . The closed form is needed to check
the equivalence and entailment of two difference bounds constraints.

16

Proposition 2.8 ([Min06]) Let φ1 and φ2 be consistent difference bounds constraints.
Then,

• φ1 ⇔ φ2 if and only if M∗
φ1

=M∗
φ2
,

• φ1 ⇒ φ2 if and only if M∗
φ1
≤M∗

φ2
.

The following proposition shows that given a difference bounds constraint φ(x), the
formula ∃xk.φ is a difference bounds constraint as well, and its closed DBM is effectively
computable from M∗

φ.

Proposition 2.9 Let φ(x), x = {x1, . . . , xN}, be a consistent difference bounds con-
straint. Further, let 1 ≤ k ≤ N and M ′ be the restriction of M∗

φ to x \ {xk}. Then,
M ′ is closed and Φ(M ′) ⇔ ∃xk.φ(x). Moreover, the constraint graph G′ corresponding
to Φ(M ′) is obtained by erasing the vertex xk together with the incident arcs from the
graph GΦ(M∗

φ)
.

Proof: We use the following notation: for a N ×N DBM M we denote by γ(M) = {v ∈
ZN | vi − vj ≤ mi,j , 1 ≤ i, j ≤ N} the set of concretizations of M . Notice that a DBM
M is consistent if and only if γ(M) 6= ∅.
Clearly, M ′ is the incidence matrix of G′. Without loss of generality, we assume that

k = N . It is sufficient to show that:

γ(M ′) = {(v1, v2, . . . , vN−1) | (v1, v2, . . . , vN−1, v) ∈ γ(M
∗
φ) for some v ∈ Z}

The “⊇” direction is obvious, sinceM ′ is the restriction ofM∗
φ to {x1, x2, . . . , xN−1}. For

the “⊆” direction, we must show that there exists v ∈ Z such that vi− v ≤ (M∗
φ)i,N and

v−vj ≤ (M∗
φ)N,j , for all 1 ≤ i, j ≤ N . But this amounts to vi− (M∗

φ)i,N ≤ (M∗
φ)N,j+vj ,

for all 1 ≤ i, j ≤ N . Since (v1, v2, . . . , vN−1) ∈ γ(M ′) we have vi − vj ≤ (M∗
φ)i,j , for

all 1 ≤ i, j ≤ n. Since M∗
φ is closed, (M∗

φ)i,j ≤ (M∗
φ)i,N + (M∗

φ)N,j , which leads to the

conclusion. DBM M ′ is closed as a direct consequence of the fact that M∗
φ is closed. ✷

2.3.2 Difference Bounds Relations and Their Powers

We first define difference bounds relations.

Definition 2.10 Let x = {x1, . . . , xN} be a set of variables. A relation R ∈ ZN×ZN is
a difference bounds relation if it can be defined by a difference bounds constraint R(x,x′).

The class of relations defined by difference bounds constraints over the variables x∪x′

is denoted Rdb in the following. A consequence of Proposition 2.9 is that Rdb is closed
under composition.

Proposition 2.11 Rdb is closed under intersection and composition.

17

x2 x′

2

x1 x′

11

−1

−2

2

(a) GR









x1 x2 x′1 x′2
x1 0 ∞ 1 −1
x2 ∞ 0 −2 2
x′1 ∞ ∞ 0 ∞
x′2 ∞ ∞ ∞ 0









(b) M∗
R

x0
2 x1

2 x2
2

. . . xm−1
2

xm
2

x0
1 x1

1 x2
1

. . . xm−1
1

xm
11

−1

−2

2

1

−1

−2

2

1

−1

−2

2

(c) Gm
R

Figure 2.1: Graph and matrix representation of a relation. Graph unfolding.

Proof: Let R1(x,x
′), R2(x,x

′) be difference bounds constraints defining difference
bounds relations. By Definition 2.3, the conjunction R1(x,x

′) ∧ R2(x,x
′) is a differ-

ence bounds constraint too. The composition of relations R1 ◦ R2 can be defined as
∃x′′ . (R1(x,x

′′) ∧ R2(x
′′,x′)) which is again a difference bounds constraint, by Defini-

tion 2.3 and Proposition 2.9. ✷

Example 2.12 Let R(x1, x2, x
′
1, x

′
2) ⇔ x1 − x

′
1 ≤ 1 ∧ x1 − x

′
2 ≤ −1 ∧ x2 − x

′
1 ≤ −2 ∧

x2 − x
′
2 ≤ 2 be a difference bounds relation. Figure 2.1a shows the graph representation

GR and Figure 2.1b the closed DBM representation of R. ✷

Given a difference bounds relation R(x,x′), we define the m-times concatenation of
GR with itself.

Definition 2.13 Let R(x,x′), x = {x1, . . . , xN}, be a difference bounds relation and GR
be its constraint graph. The m-times unfolding of GR is defined as GmR = (

⋃N
k=0 x

(k),→),

where x(k) = {x
(k)
i | 0 ≤ i ≤ N} and for all 0 ≤ k < N ,

• (x
(k)
i

c
−→ x

(k)
j) ∈→ if and only if (xi − xj ≤ c) ∈ AP (φ)

• (x
(k)
i

c
−→ x

(k+1)
j) ∈→ if and only if (xi − x′j ≤ c) ∈ AP (φ)

• (x
(k+1)
i

c
−→ x

(k)
j) ∈→ if and only if (x′i − xj ≤ c) ∈ AP (φ)

• (x
(k+1)
i

c
−→ x

(k+1)
j) ∈→ if and only if (x′i − x

′
j ≤ c) ∈ AP (φ)

Each constraint in Rm corresponds to a path between extremal points in GmR . Notice
that, since Rdb is closed under relational composition, then Rm ∈ Rdb for any m > 0.
Then we have:

Rm ⇔
∧

1≤i,j≤N xi − xj ≤ min{x0i −→ x0j} ∧ x′i − x
′
j ≤ min{xmi −→ xmj } ∧

xi − x
′
j ≤ min{x0i −→ xmj } ∧ x′i − xj ≤ min{xmi −→ x0j}

where min{xpi −→ xqj} is the minimal weight between all paths among the extremal

vertices xpi and xqj in G
m
R , for p, q ∈ {0,m}.

18

Example 2.14 Figure 2.1c depicts the m-times unfolding of GR for the relation R ⇔
x1 − x′1 ≤ 1 ∧ x1 − x′2 ≤ −1 ∧ x2 − x

′
1 ≤ −2 ∧ x2 − x

′
2 ≤ 2. ✷

The set of paths between any two extremal points in GmR can be seen as words over
the finite alphabet of subgraphs of GmR that are accepted by a finite weighted automaton
called zigzag automaton [BIL09]. In the following section, we give the definition of these
automata.

2.3.3 Zigzag Automata

This section defines zigzag automata, which can seen as recognizers of powers of dif-
ference bounds relations. Intuitively, a zigzag automaton corresponding to a difference
bounds relation R is a finite weighted automaton that encodes m-th power of R by
minimal runs of length m+ 2.

Alphabet and Words

Without losing generality, in the following we work with a simplified (yet equivalent)
form of difference bounds relations: all constraints of the form x − y ≤ α are replaced
by x− t′ ≤ α ∧ t′ − y ≤ 0, and all constraints of the form x′ − y′ ≤ α are replaced by
x′ − t ≤ α ∧ t − y′ ≤ 0, by introducing fresh variables t 6∈ x. In other words, we can
assume that the constraint graph GR corresponding to R is bipartite, i.e. it does only
contain edges from x to x′ and vice versa.
A path π in GmR between, say, x0 and ym, with x, y ∈ x is represented by a word

w = w1 . . . wm of length m, as follows: the wi symbol represents simultaneously all edges
of π that involve only nodes from xi−1 ∪ xi, 1 ≤ i ≤ m. Since we assumed that GmR is
bipartite, it is easy to see that, for a path from x0 to ym, coded by a word w, the number
of times the wi symbol is traversed by the path is odd, whereas for a path from x0 to
y0, or from xm to ym, this number is even. Hence the names of even and odd automata.
Given a difference bounds relation R, the even alphabet of R, denoted as ΣeR, is the

set of all graphs satisfying the following conditions, for each G ∈ ΣeR:

1. the set of nodes of G is x ∪ x′

2. for any x, y ∈ x ∪ x′, there is an edge labeled with α ∈ Z from x to y, only if the
constraint x− y ≤ α occurs in φ

3. the in-degree and out-degree of each node are at most one

4. the number of edges from x to x′ equals the number of edges from x′ to x

Notice that the number of edges in all symbols of ΣeR is even.
The odd alphabet of R, denoted by ΣoR, is defined in the same way, with the exception

of the last condition, which becomes:

4. the difference between the number of edges from x to x′ and the number of edges
from x′ to x is either 1 or −1

19

m − 2

0 1 m − 2 m − 1 m

x0
i

x0
j

xm
i

xm
j

(a)

2

.

n m − n

x0
i

xm
j

0 1 3 m − 1 m2

. . .

(b)

Figure 2.2: Runs of Even and Odd Automata

Notice that the number of edges in all symbols of ΣoR is odd.
Let ΣR = ΣeR ∪ ΣoR ∪ {ǫ} be the alphabet of the zigzag automaton for R, where ǫ is

a special symbol of weight 0. The weight of any symbol G ∈ ΣeR ∪Σ
o
R, denoted ω(G), is

the sum of the weights that occur on its edges. For a word w = w1w2 . . . wn ∈ Σ∗
R, we

define its weight as ω(w) =
∑n

i=1 ω(wi).

Construction of Zigzag Automata

We are now ready for the definition of automata recognizing words that represent encod-
ings of paths from GmR . The even automaton recognizes paths that start and end on the
same side of GmR i.e., either paths from x0i to x

0
j , or from xmi to xmj , for some 1 ≤ i, j ≤ N ,

respectively. We call the automata recognizing paths from x0i to x0j forward even au-
tomata, and the ones recognizing paths from xmi to xmj backward even automata (Figure
2.2 (a)). The odd automata recognize paths from one side of GmR to another. The au-
tomata recognizing paths from x0i to xmj are called forward odd automata, whereas the

ones recognizing paths from xmi to x0j are called backward odd automata (Figure 2.2
(b)).
The even and odd automata share the same alphabet and transition table, while the

differences are in the sets of initial and final states. The common transition table is
defined as TR = 〈Q,∆, w〉, where Q is the set of control states defined as:

Q = Qg ∪
⋃

1≤i,j≤N (Q
ef
ij ∪Q

eb
ij ∪Q

of
ij ∪Q

ob
ij) where

Qg = {l, r, lr, rl,⊥}N

Qefij = {Iefij , F
ef} Qebij = {Ieb, F ebij }

Qofij = {Iofi , F ofj } Qobij = {Iobi , F
ob
j }

20

The {l, r, lr, rl,⊥} components of states in Qg capture the direction of incoming and
outgoing edges (l for a path traversing from right to left, r for a path traversing from
left to right, lr for a right incoming and right outgoing path, rl for a left incoming and
left outgoing path, and ⊥ when there are no incoming nor outgoing edges from that
node.). Given 1 ≤ i, j ≤ N , the sets Qefij , Q

eb
ij , Q

of
ij , Q

ob
ij contain the initial and the final

state in even forward (ef), even backward (eb), odd forward (of), and odd backward
(ob) zigzag automaton corresponding to i, j, respectively. The four automata recognize

paths from x
(0)
i to x

(0)
j (ef), from x

(0)
i to x

(0)
j (eb), from x

(0)
i to x

(m)
j (of), and from x

(m)
i

to x
(0)
j (ob) in GmR , respectively.

The set of transitions ∆ is defined as:

∆ = ∆g ∪∆l
⋃

1≤i,j≤N
(∆ef

ij ∪∆eb
ij ∪∆of

ij ∪∆ob
ij)

There is a transition
〈q1 . . . qN 〉

G
−→ 〈q′1, . . . , q

′
N 〉

in ∆g if and only if the following conditions hold, for all 1 ≤ i ≤ N :

• qi = l iff G has one edge whose destination is xi, and no other edge involving xi.

• q′i = l iff G has one edge whose source is x′i, and no other edge involving x′i.

• qi = r iff G has one edge whose source is xi, and no other edge involving xi.

• q′i = r iff G has one edge whose destination is x′i, and no other edge involving x′i.

• qi = lr iff G has exactly two edges involving xi, one having xi as source, and
another as destination.

• q′i = rl iff G has exactly two edges involving x′i, one having x′i as source, and
another as destination.

• q′i ∈ {lr,⊥} iff G has no edge involving x′i.

• qi ∈ {rl,⊥} iff G has no edge involving xi.

Some even paths in GmR may be of length strictly less than m. Since we want to
recognize these path by runs of length m+2, we need several zero weight self-loop
transitions:

∆l = {F
ef ǫ
−→ F ef , Ieb

ǫ
−→ Ieb}

Finally, we define for each q ≤ i, j ≤ N and each of the four zigzag automata
(ef, eb, of, ob), the set of transitions that are incident with an initial or a final control
state of the respective automaton:

∆ef
ij =




{Iefij

ǫ
−→ q | qi = r, qj = l and qh ∈ {lr,⊥}, 1 ≤ h ≤ N , h 6∈ {i, j}} if i 6= j

{Iefij
ǫ
−→ q | qi = qj = lr and qh ∈ {lr,⊥}, 1 ≤ h ≤ N , h 6= i} if i = j

⋃
{q

ǫ
−→ F ef | q ∈ {rl,⊥}N}

21

∆eb
ij =




{q

ǫ
−→ F ebij | qi = l, qj = r and qh ∈ {lr,⊥}, 1 ≤ h ≤ N , h 6∈ {i, j}} if i 6= j

{q
ǫ
−→ F ebij | qi = qj = lr and qh ∈ {lr,⊥}, 1 ≤ h ≤ N , h 6= i} if i = j

⋃
{Ieb

ǫ
−→ q | q ∈ {rl,⊥}N}

∆of
ij = {Iofi

ǫ
−→ q | qi = r and qh ∈ {lr,⊥}, 1 ≤ h ≤ N , h 6= i}

⋃
{q

ǫ
−→ F ofj | qj = r and qh ∈ {rl,⊥}, 1 ≤ h ≤ N , h 6= j}

∆ob
ij = {Iobi

ǫ
−→ q | qi = l and qh ∈ {lr,⊥}, 1 ≤ h ≤ N , h 6= i}

⋃
{q

ǫ
−→ F obj | qj = l and qh ∈ {rl,⊥}, 1 ≤ h ≤ N , h 6= j}

The weight function w maps each transition q
a
−→ q′ ∈ ∆, q, q′ ∈ Q, a ∈ ΣR to w(a).

Finally, for each 1 ≤ i, j ≤ N , we define four zigzag automata

Aefij = 〈Q,∆, w, Iefi,j , F
ef 〉

Aebij = 〈Q,∆, w, Ieb, F ebi,j〉

Aofij = 〈Q,∆, w, Iofi , F ofj 〉

Aobij = 〈Q,∆, w, Iobi , F
ob
j 〉

Notice that these automata share the same states and transitions, and the number of
states is at most 5N + 2N2 + 4N + 2, where N is the number of variables in x.

Language of Zigzag Automata

Recall that GmR denotes the constraint graph corresponding to Rm, obtained by con-
catenating the constraint graph of R to itself m > 0 times. We say that a path in GmR
stretches between k and l, for some k ≤ l, if the path contains at least one node from
xi, for each k ≤ i ≤ l and contains no node from xi, for each i such that i < k or i > l.
Intuitively, all paths from x0i to x0j in GmR are recognized by the automaton Aefij , paths

from xmi to xmj by Aebij (Figure 2.2 (a)), paths from x0i to xmj by Aofij , and paths from

xmi to x0j by Aobij (Figure 2.2 (b)). The following lemma makes the relationship between
between paths in GmR and runs in zigzag automata of length m+ 2 precise.

Lemma 2.15 ([BIL09]) Suppose that GmR does not have cycles of negative weight, for
some m > 0. Then, for any 1 ≤ i, j ≤ N , i 6= j, the following hold:

1. Aefij has an accepting run of length m+ 2 if and only if there exists a path in GmR ,

from x0i to x0j , that stretches between 0 and n, for some 0 ≤ n ≤ m. Moreover, the

minimal weight among all paths from x0i to x0j in GmR , stretching from 0 to n, for

some 0 ≤ n ≤ m, equals the minimal weight among all accepting runs of Aefij of
length m+ 2.

22

x2 x′

2

x1 x′

11

−1

−2

2 r
lr

r
⊥

lr
r

⊥
r

Iof1

F of1

Iof2

F of2

ǫ

ǫ

ǫ

ǫ

ǫ

ǫ

(a) GR (b) TR

Figure 2.3: Zigzag automaton

2. Aebij has an accepting run of length m+ 2 if and only if there exists a path in GmR ,
from xmi to xmj , that stretches between n and m, for some 0 ≤ n ≤ m. Moreover,
the minimal weight among all paths from xmi to xmj in GmR , stretching from n to m,

for some 0 ≤ n ≤ m, equals the minimal weight among all accepting runs of Aebij ,
of length m+ 2.

3. Aofij has an accepting run of length m+ 2 if and only if there exists a path in GmR ,

from x0i to xmj . Moreover, the minimal weight among all paths from x0i to xmj in
GmR equals the minimal weight among all accepting runs of length m+ 2.

4. Aobij has an accepting run of length m+ 2 if and only if there exists a path in GmR ,

from xmi to x0j . Moreover, the minimal weight among all paths from xmi to x0j in
GmR equals the minimal weight among all accepting runs of length m+ 2.

Proof: See [BIL09], Lemmas 4.3, 4.4, 4.6 and 4.7. ✷

Example 2.16 Let us show the construction of the zigzag automaton for the relation
R⇔ x1 − x

′
1 ≤ 1 ∧ x1 − x

′
2 ≤ −1 ∧ x2 − x

′
1 ≤ −2 ∧ x2 − x

′
2 ≤ 2. Figures 2.2(a) and (b)

depict GR and M∗
R. Notice that there are only forward odd paths, i.e. paths from x0 to

xm in GmR for any m ≥ 1. The transition table TR = 〈Q,∆, w〉 of the zigzag automaton is
depicted in Figure 2.3 (isolated states, such as (r, l), have been removed). For instance,

the automaton Aefxy = 〈TR, I
of
x , F ofx 〉 recognizes a run of length m+2 with weight w if

and only if there is a path from x0 to xm in GmR of length m and with weight w. There
are four such paths in G3R and the Figure 2.4 shows the corresponding runs of the zigzag
automaton. The second and the third runs have minimal weight. ✷

23

1 1 1
Iof1

r
⊥

r
⊥

r
⊥

r
⊥ F of1

ǫ ǫ

1 -1
-2 Iof1

r
⊥

r
⊥

⊥
r

r
⊥ F of1

ǫ ǫ

-1
-2

1
Iof1

r
⊥

⊥
r

r
⊥

r
⊥ F of1

ǫ ǫ

-1
2 -2 Iof1

r
⊥

⊥
r

⊥
r

r
⊥ F of1

ǫ ǫ

Figure 2.4: Runs

2.4 Octagonal Relations

Octagonal constraints (also known as Unit Two Variables Per Inequality or UTVPI, for
short) appear in the context of abstract interpretation where they have been extensively
studied as an abstract domain [Min06]. They are defined syntactically as a conjunctions
of atomic propositions of the form ±x±y ≤ c, where x and y are variables and c is an inte-
ger constant. Thus, they can be seen as a generalization of difference bounds constraints.
We adopt the classical representation of octagonal constraints (or octagons, for short)
φ(x1, . . . , xN) as difference bounds constraints φ(y1, . . . , y2N), where y2i−1 stands for +xi
and y2i stands for −xi with an implicit condition y2i−1 = −y2i, for each 1 ≤ i ≤ N . With
this convention, [BHZ08] provides an algorithm for computing the canonical form of an
octagon, by first computing the canonical form of the corresponding difference bounds
constraint and subsequently tightening the difference bounds constraints yi−yj ≤ c. We
present these results in Section 2.4.1.
Octagonal relations are defined as octagonal constraints where variables can be also

primed. Octagonal relations were studied in [BGI09] where it was shown that the tran-
sitive closure is Presburger definable. The core result of [BGI09] is that the canonical
form of the m-th power of an octagonal relation R can be computed directly from the
m-th power of a difference bounds relation that represents R. We present these results
in Section 2.4.2.

2.4.1 Octagonal Constraints

Let x = {x1, x2, ..., xN} be a set of variables ranging over Z. The class of integer
octagonal constraints is defined as follows:

Definition 2.17 A formula φ(x) is an octagonal constraint if it is equivalent to a finite
conjunction of terms of the form xi − xj ≤ aij, xi + xj ≤ bij or −xi − xj ≤ cij where
aij , bij , cij ∈ Z, for all 1 ≤ i, j ≤ N .

We represent octagons as difference bounds constraints over the dual set of variables
y = {y1, y2, . . . , y2N}, with the convention that y2i−1 stands for xi and y2i for −xi,

24

respectively. For example, the octagonal constraint x1+x2 = 3 is represented as y1−y4 ≤
3∧ y2− y3 ≤ −3. In order to handle the y variables in the following, we define ı̄ = i− 1,
if i is even, and ı̄ = i+ 1 if i is odd. Obviously, we have ¯̄ı = i, for all i ∈ Z, i ≥ 0. We
denote by φ(y) the difference bounds constraint over y that represents φ(x) and which
is defined as follows:

Definition 2.18 Given an octagonal constraint φ(x), x = {x1, . . . , xN}, its difference
bounds representation φ(y), y = {y1, . . . , y2N} is a conjunction of the following difference
bounds constraints where 1 ≤ i 6= j ≤ N , c ∈ Z.

(xi − xj ≤ c) ∈ AP (φ) ⇔ (y2i−1 − y2j−1 ≤ c), (y2j − y2i ≤ c) ∈ AP (φ)
(−xi + xj ≤ c) ∈ AP (φ) ⇔ (y2j−1 − y2i−1 ≤ c), (y2i − y2j ≤ c) ∈ AP (φ)
(−xi − xj ≤ c) ∈ AP (φ) ⇔ (y2i − y2j−1 ≤ c), (y2j − y2i−1 ≤ c) ∈ AP (φ)
(xi + xj ≤ c) ∈ AP (φ) ⇔ (y2i−1 − y2j ≤ c), (y2j−1 − y2i ≤ c) ∈ AP (φ)
(2xi ≤ c) ∈ AP (φ) ⇔ (y2i−1 − y2i ≤ c) ∈ AP (φ)
(−2xi ≤ c) ∈ AP (φ) ⇔ (y2i − y2i−1 ≤ c) ∈ AP (φ)

The following equivalence relates φ and φ :

φ(x)⇔ (∃y2, y4, . . . , y2N . φ ∧
N∧

i=1

y2i−1 = −y2i)[xi/y2i−1]
N
i=1 (2.1)

An octagonal constraint φ is equivalently represented by the DBM Mφ ∈ Z2N×2N
∞ ,

corresponding to φ. We sometimes write Mφ instead of Mφ. We say that a DBM

M ∈ Z2N×2N
∞ is coherent iff Mij = M̄̄ı for all 1 ≤ i, j ≤ 2N . This property is needed

since e.g. an atomic proposition xi − xj ≤ aij , 1 ≤ i, j ≤ N , can be represented as
both y2i−1 − y2j−1 ≤ aij and y2j − y2i ≤ aij . Dually, a coherent DBM M ∈ Z2N×2N

∞

corresponds to the octagonal constraint:

ΩM ⇔
∧

1≤i,j≤N

(xi − xj ≤M2i−1,2j−1 ∧ xi + xj ≤M2i−1,2j ∧ −xi − xj ≤M2i,2j−1) (2.2)

A coherent DBM M is said to be octagonal-consistent if and only if ΩM is consistent.
Similar to the case of difference bounds constraints, for an octagonal constraint φ, we

define ||φ|| as ||φ||
def
= ||φ||, where ||φ|| is the maximal absolute value of all coefficients of φ

defined in Section 2.3.

Definition 2.19 An octagonal-consistent coherent DBM M ∈ Z2N×2N
∞ is said to be

tightly closed if and only if the following hold, for all 1 ≤ i, j, k ≤ 2N :

1. Mii = 0 3. Mij ≤Mik +Mkj

2. Mīı is even 4. Mij ≤ ⌊
Miı̄
2 ⌋+ ⌊

M̄j

2 ⌋

25

Given an octagonal-consistent coherent DBM M ∈ Z2N×Z2N , we denote the (unique)
tightly closed DBM by M t . The following theorem from [BHZ08] provides an effective
way of testing octagonal-consistency and computing the tight closure of a coherent DBM.
Moreover, it shows that the tight closure of a given DBM is unique and can also be
computed in time O(N3).

Theorem 2.20 [BHZ08] Let M ∈ Z2N×2N
∞ be a coherent DBM. Then M is octagonal-

consistent if and only if M is consistent and ⌊
M∗

iı̄
2 ⌋ + ⌊

M∗
ı̄i
2 ⌋ ≥ 0, for all 1 ≤ i ≤ 2N .

Moreover, if M is octagonal-consistent, the tight closure of M is the DBM M t ∈ Z2N×2N
∞

defined as:

M t
ij = min

{
M∗
ij ,

⌊
M∗
īı

2

⌋
+

⌊
M∗
̄j

2

⌋}

for all 1 ≤ i, j ≤ 2N where M∗ ∈ Z2N×2N
∞ is the closure of M .

The tight closure of DBMs is needed for checking equivalence and entailment between
octagonal constraints.

Proposition 2.21 ([Min06]) Let φ1 and φ2 be octagonal-consistent octagonal con-
straints. Then,

• φ1 ⇔ φ2 if and only if M t
φ1

=M t
φ2
,

• φ1 ⇒ φ2 if and only if M t
φ1
≤M t

φ2
.

It has been shown in [BGI09] that octagonal constraints are closed under existential
quantification.

Proposition 2.22 Let φ(x), x = {x1, . . . , xN}, be an octagonal-consistent octagonal
constraint. Further, let 1 ≤ k ≤ 2N and M ′ be the restriction of M t

φ
to y \ {y2k−1, y2k}.

Then, M ′ is tightly closed, and Ω(M ′)⇔ ∃xk.φ(x).

Proof: See [BGI09], Theorem 2. ✷

2.4.2 Octagonal Relations and Their Powers

Definition 2.23 Let x = {x1, . . . , xN} be a set of variables. A relation R ∈ ZN×ZN is
an octagonal relation if it can be defined by an octagonal constraint R(x,x′).

The class of relations defined by octagonal constraints is denoted by Roct in the fol-
lowing.

Example 2.24 Consider the octagonal relation R(x1, x2, x
′
1, x

′
2) ⇔ x1 + x2 ≤ 5 ∧ x′1 −

x1 ≤ −2∧x
′
2−x2 ≤ −3∧x

′
2−x

′
1 ≤ 1. Its difference bounds representation is R(y,y′)⇔

y1 − y4 ≤ 5 ∧ y3 − y2 ≤ 5 ∧ y′1 − y1 ≤ −2 ∧ y2 − y
′
2 ≤ −2 ∧ y

′
3 − y3 ≤ −3 ∧ y4 − y

′
4 ≤

−3 ∧ y′3 − y
′
1 ≤ 1 ∧ y′2 − y

′
4 ≤ 1, where y = {y1, . . . , y4}. Figure 2.5a shows the graph

26

y′

2
y2 y4 y′

4

y′

1
y1 y3 y′

3−2

−2

−3

−3

1

1

1
0

5 5




y1 y2 y3 y4 y′1 y′2 y′3 y′4
y1 0 ∞ ∞ 5 ∞ ∞ ∞ 2
y2 ∞ 0 ∞ ∞ ∞ −2 ∞ −1
y3 ∞ 5 0 ∞ ∞ 3 ∞ 4
y4 ∞ ∞ ∞ 0 ∞ ∞ ∞ −3
y′1 −2 ∞ ∞ 3 0 ∞ ∞ 0
y′2 ∞ ∞ ∞ ∞ ∞ 0 ∞ 1
y′3 −1 2 −3 4 1 0 0 0
y′4 ∞ ∞ ∞ ∞ ∞ ∞ ∞ 0




GR M t
R

Figure 2.5: Graph and matrix representation of a relation.

representation GR. Note that the implicit constraint y′3−y
′
4 ≤ 1 (represented by a dashed

edge in Figure 2.5a) is not tight. The tightening step replaces the bound 1 (crossed in
Figure 2.5a) with 0. Figure 2.5b shows the tightly closed DBM representation of R,
denoted M t

R. ✷

A consequence of Proposition 2.22 is that Roct is closed under composition.

Proposition 2.25 Roct is closed under intersection and composition.

Proof: Let R1(x,x
′), R2(x,x

′) be octagonal constraints defining octagonal relations.
By Definition 2.17, R1(x,x

′)∧R2(x,x
′) is an octagonal constraints to. The composition

of relations R1 ◦ R2 can be defined as ∃x′′ . (R1(x,x
′′) ∧ R2(x

′′,x′)) which is again an
octagonal constraint, by Definition 2.17 and Proposition 2.22. ✷

We rely in the following chapters on the main result of [BGI09], which establishes the
following relation betweenM t

Rm (the tightly closed octagonal DBM corresponding to the
m-th iteration of R) and M∗

R
m (the closed DBM corresponding to the m-th iteration of

the difference bounds relation R), for all m ≥ 0:

Theorem 2.26 [BGI09] Let R(x,x′), x = {x1, . . . , xN}, be a ∗-consistent octagonal
relation. Then, M t

Rm =M t
R

m for all m ≥ 0. Consequently,

(M t
Rm)ij = min

{
(M∗

R
m)ij ,

⌊
(M∗

R
m)iı̄

2

⌋
+

⌊
(M∗

R
m)̄j

2

⌋}

for all 1 ≤ i, j ≤ 4N .

This relation is in fact a generalization of the tight closure definition from Theorem 2.20,
from m = 1 to any m ≥ 0.

27

2.5 Finite Monoid Affine Relations

Sections 2.3 and 2.4 presented two classes of non-deterministic relations. In this section,
we present linear affine relations which are a general model of deterministic transition
relations. Linear affine relations are relations of the form x′ = A× x+ b ∧ φ(x), where
x′ = A×x+b is an affine transformation and φ(x) is a Presburger guard. We present two
subclasses of linear affine relations, called finite monoid affine relations and polynomially
bounded affine relations.
The class of finite monoid affine relations was the first class of integer relations for

which the transitive closure has been shown to be Presburger definable by Boigelot
[Boi99]. Informally, an affine relation is a finite monoid relation if the set of powers of
its transformation matrix is finite. Originally, Boigelot characterized this class by two
decidable conditions in [Boi99] (we report on these conditions in Lemma 2.28). Later,
Finkel and Leroux noticed in [FL02] that Boigelot’s conditions correspond to the finite
monoid property, which is also known to be decidable [MS77].
The second subclass of polynomially bounded relations is defined by dropping one

of the Boigelot’s conditions and by requiring that the guard of a relation is linear. We
study this subclass in Chapter 6 which presents a method for computation of termination
preconditions for this class.

Definition 2.27 Let x = 〈x1, . . . , xN 〉 be a vector of variables ranging over Z. A rela-
tion R ∈ ZN × ZN is an affine relation if it can be defined by a formula R(x,x′) of the
form

R(x,x′) ⇔ x′ = A× x+ b ∧ φ(x) (2.3)

where A ∈ ZN×N , b ∈ ZN , and φ is a Presburger formula over unprimed variables only,
called the guard. The formula x′ = A×x+b, defining a linear transformation, is called
the update.

The affine transformation is said to have the finite monoid property [Boi99, FL02] if
the monoid of powers of A, denoted as 〈MA,×〉, where MA = {Ai | i ≥ 0}, is finite.
In this case, we also say that A has the finite monoid property. Here A0 = IN and
Ai = A×Ai−1, for i > 0. Intuitively, the finite monoid property is equivalent to the fact
that A has finitely many powers (considering the standard integer multiplication). A
linear affine relation has the finite monoid property if and only if the matrix A defining
the update has the finite monoid property.
It has been shown in [FL02] that finite monoid property can be equivalently charac-

terized by a pair of conditions. Before presenting this characterization, we recall several
notions of linear algebra.
If A ∈ Zn×n is a square matrix, and v ∈ Zn is a column vector of integer constants,

then any complex number λ ∈ C such that Av = λv, for some complex vector v ∈ Cn,
is called an eigenvalue of A. The vector v in this case is called an eigenvector of
A. It is known that the eigenvalues of A are the roots of the characteristic polynomial
PA(x) = det(A−xIn) = 0, which is an effectively computable univariate polynomial. The
minimal polynomial of A is the polynomial µA of lowest degree such that µA(A) = 0. By

28

the Cayley-Hamilton Theorem, the minimal polynomial always divides the characteristic
polynomial, i.e. the roots of the former are root of the latter.
If λ1, . . . , λm are the eigenvalues of A, then λp1, . . . , λ

p
m are the eigenvalues of Ap, for

all integers p > 0. A matrix is said to be diagonalizable if and only if there exists
a non-singular matrix U ∈ CN×N and a diagonal matrix with the eigenvalues λ1, . . . , λm
occurring on the main diagonal, such that A = U × D × U−1. This is the case if and
only if µA has only roots of multiplicity one (see e.g. Thm 8.47 in [Boi99]).
A complex number r is said to be a root of the unity if rd = 1 for some integer d > 0.

The cyclotomic polynomial Fd(x) is the product of all monomials (x−ω), where ωd = 1,
and ωe 6= 1, for all 0 < e < d. It is known that a polynomial has only roots which are
roots of unity if and only if it is a product of cyclotomic polynomials.
With these notions, the finite monoid property is defined by the following equivalent

conditions.

Theorem 2.28 [Thm 8.42 and 8.44 in [Boi99] and Prop 2 in [FL02]] a relation R ≡
Ax + b, where A ∈ ZN×N and b ∈ ZN has the finite monoid condition if and only if
there exists p > 0 such that the following hold:

1. every eigenvalue of Ap belongs to the set {0, 1},

2. the minimal polynomial µAp(x) of Ap belongs to the set {0, x, x− 1, x(x− 1)} (or,
equivalently, Ap is diagonalizable).

Both conditions in Theorem are decidable [Boi99, MS77].

In Chapter 6, we study another subclass of affine relations with linear guards and
transformation matrix whose eigenvalues are either zero or roots of the unity.

Definition 2.29 If x = 〈x1, . . . , xN 〉 is a vector of variables ranging over Z, a polyno-
mially bounded affine relation is a relation of the form

R(x,x′) ⇔ x′ = A× x+ b ∧ Cx ≥ d (2.4)

where A ∈ Zn×n, C ∈ Zp×n are matrices, and b ∈ Zn, d ∈ Zp are column vectors of
integer constants and moreover, all eigenvalues of A are either zero or roots of the unity.

Note that if A is a finite monoid matrix, then all eigenvalues of A are either zero
or roots of the unity. Thus, the condition on A is weaker for polynomially bounded
affine relations. However, since the guard of finite monoid relations is more general
(Presburger), the two classes are incomparable.

29

3 Computing Transitive Closures of
Periodic Relations

In this chapter, we present a general framework for computing closed forms and transitive
closures of certain relations, called periodic. The closed form of a relation R(x,x′)
is a relation R̂(k,x,x′) where substituting the parameter k with an integer m gives
a relation equivalent to Rm for each m ≥ 0. Once the closed form is computed, the
transitive closure of R can be defined as ∃k ≥ 1 . R̂(k,x,x′).
We define a notion of periodicity on classes of relations that can be naturally repre-

sented as matrices. In general, an infinite sequence of integers is said to be periodic if
the elements of the sequence situated at equal distance one from another differ by the
same quantity (while admitting some non-periodic initial prefix of finite length in the
sequence). This definition is generalized to matrices of integers, entry-wise. Assuming
that each finite power Rk of a relation R is represented by a matrix Mk, R is said to be
periodic if the infinite sequence {Mk}

∞
k=0 of matrix representations of powers of R is pe-

riodic. Periodicity guarantees that this sequence has an infinite subsequence which can
be captured by an existentially quantified formula. This formula consequently represents
infinitely many powers of the relation. Then, the remaining powers can be computed by
composing the existentially quantified formula with certain powers of the relation.
For instance, consider the relation R defined as x′ = y + 1 ∧ y′ = x. This rela-

tion is periodic, and its odd powers R1, R3, R5, . . . can be represented by the formula
∃ℓ ≥ 0 . (x′ = y + ℓ+ 1 ∧ y′ = x+ ℓ). Even powers R2, R4, R6, . . . can then be repre-
sented by composing this formula with R.
We show that the closed form of a periodic relation can be defined, once the period and

the prefix of the relation are known. We present a generic algorithm that finds a period
and a prefix of periodic relations and computes their closed form and transitive closure.

Roadmap. We define the basic notions in Section 3.1. Next, Section 3.2 presents
a theoretical framework in which the closed form of periodic relations can be computed.
Finally, we present a generic algorithm that finds the period and the prefix of periodic
relations and computes their transitive closure in Section 3.3.

3.1 Periodic Sequences

We first define the notion of periodic sequences.

Definition 3.1 Given an infinite sequence {sk}
∞
k=0 ∈ Z∞, we say that it is periodic

if and only if there exist integers b ≥ 0, c > 0 and λ0, . . . , λc−1 ∈ Z∞ such that

30

sb+(k+1)c+i = λi + sb+kc+i, for all k ≥ 0 and i = 0, 1, . . . , c − 1 The smallest values
b ∈ N, c ∈ N+ for which the above holds are called the prefix and the period of {sk}

∞
k=0.

The values λ0, λ1, . . . , λc−1 ∈ Z∞ are called the rates of {sk}
∞
k=0.

Example 3.2 The sequence {σk}
∞
k=0 where σ0 = σ1 = 10, σk = 5ℓ+ 3 for each k = 2ℓ,

ℓ ≥ 1, and σk = 3ℓ + 1 for each k = 2ℓ + 1, ℓ ≥ 1, is periodic with prefix b = 2, period
c = 2 and rates λ0 = 5, λ1 = 3. The sequence {τk}

∞
k=0 where σk = 7ℓ + 1 for each

k = 3ℓ, ℓ ≥ 0, σk = ℓ2 for each k = 3ℓ+1, ℓ ≥ 0, and σk = ℓ3 for each k = 3ℓ+2, ℓ ≥ 0
is not periodic. ✷

The notion of periodic sequences extends to sequences of matrices:

Definition 3.3 A sequence of matrices {Ak}
∞
k=0 ∈ Zm×m

∞ is said to be periodic if, for
all 1 ≤ i, j ≤ m, the sequence {(Ak)ij}

∞
k=0 is periodic.

The following lemma gives an alternative characterization of periodic sequences of ma-
trices:

Lemma 3.4 An infinite sequence of matrices {Ak}
∞
k=1 ∈ Zm×m

∞ is periodic if and only
if there exist integers b ≥ 0, c > 0 and Λ0, . . . ,Λc−1 ∈ Zm×m

∞ such that Ab+(k+1)c+i =
Λi +Ab+kc+i, for all k ≥ 0 and i = 0, 1, . . . , c− 1

Proof: According to the definition, {Ak}
∞
k=1 is periodic if and only if, for each 1 ≤

i, j ≤ m there exist bij ≥ 0, cij > 0 and λijl ∈ Z∞ such that (Abij+(k+1)cij+l)ij =

λijl +(Abij+kcij+l)ij for all k ≥ 0, l = 0, 1, . . . , cij−1. Let c be the least common multiple

of all cij , b be the maximum of all bij and let Λt, t = 0, 1, . . . , c−1 be the matrix defined
as:

(Λt)ij =
(
λij(b−bij+t) mod cij

)
·
c

cij

The condition Ab+(k+1)c+i = Λi+Ab+kc+i is verified for all k ≥ 0 and i = 0, 1, . . . , c− 1,
with the above definitions. ✷

3.2 Periodic Relations

Let x = {x1, . . . , xN} be a set of variables. In this section, we consider that R is a class
of first-order arithmetic formulae with free variables in x ∪ x′. These formulae denote
integer relations R ⊆ ZN × ZN . We recall the definition of a ∗-consistent relation and
next define the notion of a periodic relation.

Definition 3.5 A relation R is ∗-consistent if and only if Rn is consistent for all n ≥ 0.

Definition 3.6 A relation R ∈ R is said to be periodic if and only if, either (1) it is
not ∗-consistent, or (2) it is ∗-consistent and there exist two functions:

31

• σ : R → (Zm×m
∞)⊥ mapping each consistent relation from R into a matrix, and

each inconsistent relation into ⊥

• ρ : Zm×m
∞ → R mapping each matrix into a relation from R, such that ρ(σ(R))⇔

R, for each consistent relation R ∈ R

such that the infinite sequence of matrices {σ(Ri)}∞i=0 ∈ Zm×m
∞ is periodic.

If each relation R ∈ R is periodic, then the class of relations R is called periodic as
well. The following lemma gives an alternative characterization of ∗-consistent periodic
relations.

Lemma 3.7 A ∗-consistent relation R is periodic if and only if there exist integers
b ≥ 0, c > 0, m > 0 and a matrices Λ0, . . . ,Λc−1 ∈ Zm×m

∞ such that

Rnc+b+i ⇔ ρ(n · Λi + σ(Rb+i))

for all n ≥ 0 and for all 0 ≤ i < c.

Proof: By induction on n ≥ 0, we prove that σ(Rnc+b+i) = n ·Λ+ σ(Rb+i), for all n ≥ 0
and for all 0 ≤ i < c. The base case trivially holds. For the induction step, observe that

σ(Rb+i+(n+1)c) = Λi + σ(Rb+i+nc) = Λ + n · Λ + σ(Rb+i) = (n+ 1) · Λi + σ(Rb).

The first equality is by Lemma 3.4, the second is by the induction hypothesis. ✷

Next, we define prefix, period and rates of periodic relations.

Definition 3.8 If R is a ∗-consistent and periodic relation, we call prefix, period and
rates of R the minimal integers b ≥ 0, c > 0 and matrices Λ0 . . . ,Λc−1 ∈ Zm×m

∞ satisfying
the condition of Lemma 3.7. If R is not ∗-consistent, we define its prefix and period as
b = inf{n ≥ 0 | Rn is inconsistent } and c = 1.

If k is a variable not in x ∪ x′, let R[k] be the class of first-order arithmetic formulae
with free variables from the set x ∪ x′ ∪ {k}. The variable k is called a parameter, and
these formulae are called parametric relations, in the following. The following definition
emphasizes the role of parametric relations.

Definition 3.9 Let R(x,x′) ∈ R be a relation. The closed form of R is the formula
R̂(k,x,x′) ∈ R[k] such that R̂(k,x,x′)[n/k]⇔ Rn(x,x′), for all n ≥ 0.

It follows immediately from the above definition that the closed form of a relation is
unique, up to equivalence. Defining the transitive closure of a relation is closely related
to defining its closed form, since R+(x,x′)⇔ ∃k > 0 . R̂(k,x,x′), for all R ∈ R.
The algorithm presented in this section computes the transitive closure of a periodic

relation R by computing the closed form of a subsequence {σ(Rb+nc)}n≥0 for some
b ≥ 0, c > 0 (not necessarily the prefix and the period of R).

32

Definition 3.10 Given a relation R(x,x′) and integers b ≥ 0, c > 0, the closed form of
the the infinite sequence {Rb+nc}n≥0 is a formula R̂b,c(ℓ,x,x

′) such that R̂b,c(ℓ,x,x
′)[n/ℓ]

⇔ Rb+nc for all n ≥ 0.

Once the closed form R̂b,c(ℓ,x,x
′) is computed for some b ≥ 0, c > 0, both the transitive

closure and the closed form of R can be defined as shown by the following lemma.

Lemma 3.11 Let R be a relation, b > 0, c > 0 be arbitrary integers and R̂b,c(ℓ,x,x
′)

be the closed form of the infinite sequence {Rb+nc}n≥0. Then, the transitive closure and
the closed form of R can be defined as:

R+ ⇔
(b−1∨

i=1

Ri
)
∨ ∃ℓ ≥ 0 . R̂b,c(ℓ,x,x

′) ◦
(c−1∨

j=0

Rj
)

R̂(k,x,x′)⇔
(b−1∨

i=1

(k = i) ∧Ri
)
∨ ∃ℓ ≥ 0 . R̂b,c(ℓ,x,x

′) ◦
(c−1∨

j=0

(k = b+ ℓc+ j) ∧Rj
)

Proof: Let R̂b,c(ℓ,x,x
′) be the closed form of {Rb+nc}n≥0 for some integers b > 0, c > 0.

Observe that

R+ ⇔
∨∞
i=1R

i ⇔
(∨b−1

i=1 R
i
)
∨
(∨∞

n=0R
nc+b

)
◦
(∨c−1

j=0R
j
)

⇔
(∨b−1

i=1 R
i
)
∨ ∃ℓ ≥ 0 . R̂b,c(ℓ,x,x

′) ◦
(∨c−1

j=0R
j
)

The last equivalence above follows from Definition 3.10. In a similar way, we infer that
the closed form of a relation R can be defined as

R̂(k,x,x′)⇔
(b−1∨

i=1

(k = i) ∧Ri
)
∨ ∃ℓ ≥ 0 . R̂b,c(ℓ,x,x

′) ◦
(c−1∨

j=0

(k = b+ ℓc+ j) ∧Rj
)
,

which completes the proof. ✷

Next, consider a function π : Z[k]m×m
∞ → R[k] mapping matrices of linear terms of

the form α · k + β, with integer coefficients, into parametric relations R(k,x,x′), such
that

π(M)[n/k]⇔ ρ(M [n]), for all n ∈ Z

for all M ∈ Z[k]m×m
∞ . In other words, π is the parametric counterpart of the ρ function

from Definition 3.6. Concrete examples of parametric matrix-relations mappings will be
given in Sections 4.2, 4.3, and 4.4.
We next show that the transitive closure and the closed form of a periodic relation R

with prefix b, period c, and rates Λ0, . . . ,Λc−1 can be defined in first order arithmetic.
If R is not ∗-consistent, then clearly R+ ⇔

∨b−1
i=1 R

i and R̂(k,x,x′)⇔
∨b−1
i=1(k = i∧Ri).

If R is ∗-consistent, then by Lemma 3.7, Rnc+b ⇔ ρ(n ·Λ0+σ(R
b)). Then, we apply the

following proposition which shows that the closed form of the sequence {Rb+nc}n≥0 can

be defined as R̂b,c(ℓ,x,x
′)⇔ π(ℓ · Λ0 + σ(Rb)).

33

Proposition 3.12 Let R be a relation, b > 0, c > 0 be arbitrary integers, and Λ ∈ Zm×m
∞

be a matrix such that, for all n ≥ 0:

1. ρ(n · Λ + σ(Rb)) 6⇔ ⊥, and

2. Rnc+b ⇔ ρ(n · Λ0 + σ(Rb)).

Then, R is ∗-consistent and R̂b,c(k,x,x
′)⇔ π(k · Λ + σ(Rb)).

Proof: Clearly, if both conditions hold, it follows that R is ∗-consistent. The mapping
π : Z[k]m×m

∞ → R[k] satisfies the following equivalence for all M ∈ Z[k]m×m
∞ and for all

n ∈ Z

π(M)[n/k]⇔ ρ(M [n])

Thus, letting M = k · Λ + σ(Rb), it follows that if the two conditions hold, then

π(M)[n/k]⇔ ρ(M [n])⇔ Rb+nc.

Hence, π(M) = π(k · Λ + σ(Rb)) is the closed form of of the sequence {Rb+nc}n≥0, by
Definition 3.10. ✷

Having computed R̂b,c(ℓ,x,x
′), we can finally apply Lemma 3.11 to define the transitive

closure and the closed form of R.

3.3 Transitive Closure Algorithm

The result of this section is a generic algorithm that computes the transitive closure
of a given periodic relation (Algorithm 1). The algorithm needs to be instantiated for
a specific class R of periodic relations by providing the corresponding mappings σ, ρ
(Definition 3.6) and π (the parametric counterpart of ρ) as discussed in the previous.
This algorithm can be easily adapted to compute the closed form of a relation, instead
of its transitive closure, as we show in the end of this section. Next, in Chapter 4 we
show how this algorithm can be used with three classes of relations: difference bounds,
octagons, and finite monoid affine transformations.
The main idea of the algorithm is to discover integers b ≥ 0 and c > 0 such that the

sequence {σ(Rb+nc)}n≥0 is periodic. Provided that relation R is periodic, the enumera-
tion on lines 2,4,16 is guaranteed to eventually find a pair (b, c) for which the algorithm
terminates at line 7 or 12, as we later prove in Theorem 3.16. For each prefix-period
candidate (b, c), we consider the first three powers supposed to be equidistant, namely
Rb, Rb+c and Rb+2c, and we check that all three are consistent (lines 5-6). If at least
one is inconsistent, the relation is not ∗-consistent, and the transitive closure is the dis-
junction of all powers up to the first one which is inconsistent (line 7). Otherwise, if
Rb, Rb+c and Rb+2c are consistent, the algorithm attempts to compute the first rate of
the sequence (line 8), by comparing the matrices σ(Rb), σ(Rb+c) and σ(Rb+2c). If the
distance Λ between σ(Rb+c) and σ(Rb) equals the one between σ(Rb+2c) and σ(Rb+c),
then Λ is a potential candidate for the rate of the sequence {σ(Rb + nc)}n≥0.

34

Algorithm 1 Transitive Closures of Periodic Relations

input a periodic relation R
output The transitive closure of R

1: function TransitiveClosure(R)
2: let P ← R and b← 1 and bjump = 1
3: while true do
4: for all c = 1, 2, . . . , b do
5: for all ℓ = 0, 1, 2 do
6: if Rb+ℓc ⇔ ⊥ then
7: return R+ ⇔ P ∨

(∨b+ℓc−1
i=b+1 Ri

)

8: if ∃Λ . σ(Rb) + Λ = σ(Rb+c) ∧ σ(Rb+c) + Λ = σ(Rb+2c) then
9: K ← maxConsistent(R, b,Λ)

10: L← maxPeriodic(R, b,Λ, c,K)
11: if L =∞ then
12: return P ∨ ∃k ≥ 0 . π(k · Λ + σ(Rb)) ◦

(∨c−1
j=0R

j
)

13: bjump ← max{bjump, b+ c · (L+ 1)}

14: bnext ← max{b+ 1, bjump}

15: P ← P ∨
∨bnext−1
i=b Ri

16: b← bnext
17: function maxConsistent(R,b,Λ)
18: return sup{n ∈ N | ρ(n · Λ + σ(Rb)) 6⇔ ⊥}

19: function maxPeriodic(R, b, Λ, c, K)
20: return sup{n ≤ K | ∀0 ≤ ℓ < n . ρ(ℓ ·Λ+ σ(Rb)) ◦Rc ⇔ ρ((ℓ+ 1) ·Λ+ σ(Rb))}

Next, we validate the choices of b, c and Λ by checking on lines 9-11 whether (i)
the sequence of relations {ρ(n · Λ + σ(Rb))}∞n=0 is ∗-consistent, and (ii) that it follows
the pattern of a periodic sequence. Since, by the definition of MaxPeriodic, either
L = K = ∞, or else L < K, the following Lemma 3.13 ensures that if the test on line
11 succeeds for the chosen b, c and Λ, then π(k · Λ + σ(Rb)) is the closed form of the
sequence {σ(Rb+nc)}n≥0 and consequently, the transitive closure can be defined using
Lemma 3.11 (line 12).

Lemma 3.13 Let R be a periodic relation, let b > 0, c > 0 be integers such that Rb 6⇔ ⊥,
and Λ ∈ Zm×m

∞ be a matrix such that, for all n ≥ 0:

1. ρ(n · Λ + σ(Rb)) 6⇔ ⊥, and

2. ρ((n+ 1) · Λ + σ(Rb))⇔ ρ(n · Λ + σ(Rb)) ◦Rc.

Then, R is ∗-consistent and R̂b,c(k,x,x
′)⇔ π(k · Λ + σ(Rb)).

Proof: It is sufficient to prove that

Rb+nc ⇔ ρ(n · Λ + σ(Rb)) for all n ≥ 0.

35

For, if the above is true, the statement of this lemma follows from Proposition 3.12.
The base case n = 0 follows from Definition 3.6 and the fact that Rb is consistent. The
induction step is as follows:

✷

R(n+1)c+b ⇔ Rnc+b ◦Rc

⇔ ρ(n · Λ + σ(Rb)) ◦Rc (by the induction hypothesis)
⇔ ρ((n+ 1) · Λ + σ(Rb))

Suppose now that the test on line 11 fails, i.e. the sequence of relations {ρ(n · Λ +
σ(Rb))}∞n=0 is either not ∗-consistent or it is not periodic. In this case we could start
looking for a new prefix, period and rate, by incrementing b, setting c to one, and
continuing to look for another candidate rate Λ, which satisfies the test at line 8. This
could be achieved by skipping line 13. However, for relations with very long prefixes,
this would be quite ineffective, as shown by the following example.

Example 3.14 Consider, for instance, the relation:

R ≡ x′ = x+ 1 ∧ 0 ≤ x ≤ 109

The relation Ri is consistent for all 1 ≤ i ≤ 109 and becomes inconsistent for i = 109+1.
Without line 13, Algorithm 1 would need at least ⌈10

9

3 ⌉ iterations of the main loop in
order to discover the inconsistency (line 6).

Notice that MaxPeriodic returns the span of the interval in which the relation is
periodic with the current rate. The algorithm optimizes the search by storing the upper
bound of the periodic interval in bjump. If the sequence is periodic for none of c = 1, . . . , b,
line 16 updates b with the upper bound of the periodic interval in case such interval was
detected, or otherwise, it increments b by one as in the unoptimized case.

Example 3.15 (contd.) For the relation in the previous example, the prefix 109 is
discovered after the first iteration, since the call to MaxPeriodic with b = c = 1
returns L = 109. The inconsistency of the sequence {Ri}∞i=1 is discovered at the second
iteration of the main loop (line 6).

For efficiency reasons, the algorithm maintains (and updates) a prefix relation P with
the following invariant property:

P ⇔
b∨

i=0

Ri (3.1)

By updating P at line 15, we compute part of the prefix up to the next candidate for b.
Finally, we prove the correctness of Algorithm 1 and give bounds on the number of

iterations of the main loop of Algorithm 1 and on the sizes of integers b, c considered
during any iteration of the main loop, in terms of the prefix and the period of the input
relation.

36

Theorem 3.16 If R is a periodic relation with prefix B and period C, then Algorithm 1
eventually terminates after at most (B+C)2+C iterations of the main loop at lines 4-13
and returns the transitive closure of R. Moreover, c ≤ B+C and b ≤ B+C+3C2+3BC
for each prefix b and period c considered by the algorithm.

Proof: Let us first prove that (3.1) holds whenever the control is at one of the lines 3-13.
Initially P ⇔ R and b = 1, so (3.1) holds trivially. If (3.1) holds before executing line
15, then it will also hold after executing lines 15-16, by the definition of MaxPeriodic.
Let bi (ci, respectively), i ≥ 1 be the value of b (c, respectively) during the i-th

iteration of the main loop at line 5. We next make several observations.

Observation 1: By definition of B and C, if bi ≥ B and ci = kC for some k ≥ 1, then
the algorithm returns at line 12.

Observation 2: The prefix increases with each iteration of the outer loop (line 16).
Observation 3: For each considered prefix b, the algorithm consecutively tests periods

in the range 1, . . . , b.

By observation 1, proving termination of Algorithm 1 amounts to showing that bi ≥ B
and ci = kC for some i, k ≥ 1. We next prove that the algorithm terminates in at most
(B+C)2+C iterations of the main loop and that ci ≤ B+C and bi ≤ B+C+3C2+3BC
for each i ≥ 1.
First suppose that R is not ∗-consistent and hence, RB ⇔ ⊥ and RB−1 6⇔ ⊥, by

definition of B. The algorithm eventually reaches line 7, since b increases with each
iteration of the outer loop, by observation 2. If the test at line 8 succeeds during i-th
iteration, then definition of MaxConsistent procedure guarantees that bi+ ciKi < B.
Since Li ≤ Ki by definition of MaxPeriodic procedure, if follows that bi + ciLi < B.
Consequently bi+1 ≤ B + C. If bi+1 ≥ B, the algorithm terminates in the (i + 1)-th
iteration at line 7. The algorithm thus terminates after at most (B − 1)2 + 1 iterations
of the main loop. Clearly, bi ≤ B + C for each i ≥ 1 and since ci ≤ bi, it follows that
ci ≤ B + C too.
Next, suppose that R is ∗-consistent. Let us first consider the unoptimized algorithm

without line 13. Then, b is incremented by one in each iteration of the outer loop at
line 16. Consequently, the algorithm returns at line 12 when bi = B + C and ci = C at
the latest, by observation 3. Clearly, the algorithm terminates after at most (B + C)2

iterations of the main loop and in each iteration, ci ≤ bi ≤ B + C.
Next, let us consider a ∗-consistent relation and the optimized algorithm with line 13.

If the algorithm returns for some bi ≤ B+C, the bounds follow easily. Suppose that the
algorithm has not returned for some bi ≤ B +C and let i ≥ 1 be the unique index such
that bi ≤ B+C and bi+1 > B+C. Clearly, ci = bi and ci+1 = 1, by observation 3. Notice
that if bi+1 = bi + 1, then bi = B + C and therefore, the algorithm terminates at line
12 for prefix-period candidate (B + C,C) at the latest. Thus, if the algorithm does not
terminate for a prefix candidate in the range 1..(B+C), it cannot be that bi+1 = bi+1.
Consequently, bi+1 > bi + 1 and hence, bi+1 = bjump for some bjump > bi + 1. Since
bjump > bi + 1, a periodic interval 〈bi, . . . , bi + Lci〉 of the sequence {σ(Rm)}m≥0 must

37

have been detected for some 2 ≤ L < ∞ by the MaxPeriodic procedure and thus,
bi+1 = bjump = bi + (L + 1)ci. We now demonstrate that bi+1 ≤ B + C + 3C2 + 3BC.
By contradiction, suppose that bi+1 > B + C + 3C2 + 3BC. We define (see Figure 3.1
for illustration):

Q = lcm(C, ci) d = ⌈B+C−bi
Q ⌉ · Qci e = bi + cid j = (e−B) mod C

bi e e+Q e+ 2QB + C bi+1
≤ Q

kQ, k ≥ 1 Q Q

≥ 3Q

.
.

Λ Λ

Λj Λj

d-times

Figure 3.1: Bounding the prefix bi+1

It follows that e−bi = kQ for some k ≥ 1 and e−(B+C) ≤ Q. Since ci ≤ bi ≤ B+C, it
follows that Q ≤ C(B+C) = C2+BC. Since we assume that bi+1 > B+C+3C2+3BC,
it follows that bi+1 − (B + C) ≥ 3Q and therefore bi+1 − e ≥ 2Q. Let Λ0, . . . ,ΛC−1

be the rates of the sequence {σ(Rm)}m≥0 corresponding to B and C and Λ be the rate
considered by the algorithm in the i-th iteration. Let denoteMm = σ(Rm) for all m ≥ 0.
By periodicity of the sequence {σ(Rm)}m≥0, it follows that Me +

Q
CΛj = Me+Q. Recall

that bi+1 ≥ e+2Q and that e− bi is a multiple of ci. It follows that Me+
Q
ci
Λ =Me+Q.

More generally, Me+ℓci+Q =Me+ℓci +
Q
ci
Λ for all 0 ≤ ℓ < Q

ci
. Combining this observation

with the fact that {Mm}m≥0 is periodic with respect to B,C, it follows that

Me+ℓci+kQ = Me+ℓci + kQciλ, and

Me+(ℓ+1)ci+kQ = Me+(ℓ+1)ci + kQciλ

for all k ≥ 0, ℓ ≥ 0. Consequently,

Me+(ℓ+1)ci+kQ −Me+ℓci+kQ = Me+(ℓ+1)ci −Me+ℓci

for all k ≥ 0, ℓ ≥ 0. In other words, Me+kci = Me + kλ for all k ≥ 0. Combining it
with Mbi+kci = Mbi + kλ for all 0 ≤ k ≤ d, where bi + dci = e, we finally infer that
Mbi+kci = Mbi + kλ for all k ≥ 0. This however implies that Li = ∞, contradiction.
Thus, ci ≤ bi ≤ B + C + 3C2 + 3BC in each iteration of the main loop. Notice that if
bi ≤ B + C and bi+1 > B + C, it takes at most C more iterations to return at line 12.
Hence, the main loop is iterated at most (B + C)2 + C times in total.
Combining the bounds inferred in the above three cases, we obtain the bounds stated

in this theorem. We finally prove if the algorithm terminates, the returned relation is
indeed the transitive closure.

38

Algorithm 2 Closed Form of Periodic Relations

input a periodic relation R
output The closed form of R

1: function ClosedForm(R)
2: let P ← R and b← 1 and bjump = 1
3: while true do
4: for all c = 1, 2, . . . , b do
5: for all ℓ = 0, 1, 2 do
6: if Rb+ℓc ⇔ ⊥ then
7: return R̂(k,x,x′)⇔

∨b+ic−1
j=1 (k = j) ∧Rj

8: if ∃Λ . σ(Rb) + Λ = σ(Rb+c) ∧ σ(Rb+c) + Λ = σ(Rb+2c) then
9: K ← maxConsistent(R, b,Λ)

10: L← maxPeriodic(R, b,Λ, c,K)
11: if L =∞ then

12: return R̂(k,x,x′)⇔

(∨b+c−1
i=1 (k = i) ∧Ri

)
∨ ∃ℓ ≥ 1 .

π(ℓ · Λ + σ(Rb)) ◦
(∨c−1

j=0(k = b+ ℓc+ j) ∧Rj
)

13: bjump ← max{bjump, b+ c · (L+ 1)}

14: bnext ← max{b+ 1, bjump}

15: P ← P ∨
∨bnext−1
i=b (k = i ∧Ri)

16: b← bnext
17: function maxConsistent(R,b,Λ)
18: return sup{n ∈ N | ρ(n · Λ + σ(Rb)) 6⇔ ⊥}

19: function maxPeriodic(R, b, Λ, c, K)
20: return sup{n ≤ K | ∀0 ≤ ℓ < n . ρ(ℓ ·Λ+ σ(Rb)) ◦Rc ⇔ ρ((ℓ+ 1) ·Λ+ σ(Rb))}

• R is not ∗-consistent, then here exists an integer K > 0 such that RK ⇔ ⊥. Then
the algorithm will return at line 7, with the correct result:

P ∨
b+ℓc−1∨

i=b+1

Ri ⇔
b∨

i=1

Ri ∨
b+ℓc−1∨

i=b+1

Ri ⇔
b+ℓc−1∨

i=1

Ri

• R is ∗-consistent, then by previous arguments, the algorithm reaches the line 12
after at most (B + C)2 + C iterations of the main loop and returns the result:

P ∨ ∃k ≥ 0 . π(k · Λ + σ(Rb)) ◦
(∨c−1

j=0R
j
)

⇔
(∨b

i=1R
i
)
∨
(
∃k ≥ 0 . π(k · Λ + σ(Rb)) ◦

(∨c−1
j=0R

j
))

which is indeed the transitive closure of R, by Lemma 3.13 and Lemma 3.11. ✷

Algorithm 2 is a straightforward adaptation of Algorithm 1 that computes the closed
form of a relation instead of its transitive closure, by modifying lines 7,12, and 15. Later,
we use Algorithm 2 to compute transitive closures of finite monoid affine relations in
Section 4.4 and to prove decidability of the termination problem in Chapter 6.

39

4 Periodicity of Integer Relations

This chapter is dedicated to instantiations of Algorithm 1 from Chapter 3 to three classes
of arithmetic relations for which the transitive closure is known to be definable in Pres-
burger arithmetic: difference bounds relations, octagonal relations, and finite monoid
affine transformations. To compute the transitive closure of these relations using Algo-
rithm 1, one first needs to prove that the three classes are periodic, otherwise termination
of Algorithm 1 is not guaranteed. Our proofs rely mostly on a fact that any matrix is
periodic when its powers are computed in the tropical semiring (Z∞,min,+,∞, 0). The
intuition behind periodicity of difference bounds relations is that the k-th power of a re-
lation from this class can be encoded by minimal runs of length k in zigzag automata
which in turn can be computed as the k-th tropical power of the incidence matrix of the
automaton. Thus, periodicity of the sequence of tropical powers of the incidence matrix
entails periodicity of a difference bounds relation. Periodicity of the three classes thus
provides common grounds to the acceleration problem and also gives shorter proofs for
the fact that the transitive closures of these three classes are definable in Presburger
arithmetic.
The efficiency of Algorithm 1 depends on two factors. Given a relation with prefix b

and period c, Theorem 3.16 proves that Algorithm 1 makes O((b+ c)2) iterations of the
main loop. Thus, the prefix b and the period c are important complexity parameters, and
we give asymptotic bounds for them in Chapter 5. For difference bounds and octagonal
relations, these bounds are closely related to bounds on the prefix and the period of the
incidence matrix of zigzag automata. This chapter therefore gives an alternative proof
to the fact that each matrix is periodic in the tropical semiring which moreover gives
asymptotic bounds.
Another important efficiency factor is the complexity of the procedures MaxCon-

sistent and MaxPeriodic, which are called by Algorithm 1 to detect the maximal
interval that is periodic with respect to the current prefix and period candidates. In
general, for all three classes of relations we consider, these procedures can be imple-
mented using Presburger arithmetic queries. However, in practice, one would like to
avoid as much as possible using Presburger solvers, due to reasons of high complexity of
decision procedures for Presburger arithmetic. In this chapter, we give direct decision
methods which avoid calls to external Presburger or SMT solvers completely and which
are of polynomial time complexity in the size of the prefix, period, ||R||, and N , where
||R|| denotes the sum of absolute values of the coefficients of a relation R and N denotes
the number of variables used to define a given relation R.

40

Related Work. Acceleration of affine relations has been considered primarily in the
works of Annichini et al. [AAB00], Boigelot [Boi99], and Finkel and Leroux [FL02].
Finite monoid affine relations have been first studied by Boigelot [Boi99] who shows
that the finite monoid property is decidable and that the transitive closure is Presburger
definable in this case. On what concerns non-deterministic transition relations, the
transitive closure of a difference bounds constraint was first shown to be Presburger
definable by Comon and Jurski [CJ98]. Their proof was subsequently simplified and
extended to parametric difference bounds constraints in [BIL09]. It was shown in [BGI09]
that also octagonal relations can be accelerated precisely, and that the transitive closure
is also Presburger definable. The proofs of periodicity from this chapter are based on
some of the previous results from [BIL09, BGI09]. For difference bounds constraints,
we simplify the proof from [BIL09] by applying a result from tropical semiring theory
[Sch00] on periodicity of matrices in the tropical semiring. We also give an alternative
proof of matrix periodicity that moreover establishes bounds on the size of the prefix
and the period of a matrix.

Roadmap. In Section 4.1, we prove that every matrix is periodic in the tropical semiring
and establish asymptotic bounds on the size of its prefix and period. Next, Sections
4.2, 4.3, and 4.4 study the classes of difference bounds, octagonal, and finite monoid
affine relations, respectively. In each of these sections, we prove that the respective
class is periodic, present implementations of the MaxConsistent and MaxPeriodic
procedures, and study their complexity. We defer all experiments with Algorithm 1 to
Chapter 8.

4.1 Periodicity of Matrices

In this section, we prove that each matrix is periodic when its powers are computed in
the tropical semiring which is defined as follows.
An idempotent semiring is a set (S,+, ·,0,1) equipped with two operations, the ad-

dition + and the multiplication ·, such that (S,+,0) is an idempotent (i.e., p + p = p
for all p ∈ S) commutative monoid with neutral element 0 and (S, ·,1) is a monoid with
neutral element 1. Moreover, multiplication distributes both left and right over addition
and 0 · r = r · 0 = 0, for all r ∈ S. The tropical semiring1 is an idempotent semiring
(Z∞,min,+,∞, 0) [Sch00] with the extended arithmetic operations x +∞ = ∞, and
min(x,∞) = x, for all x ∈ Z, where min(x, y) denotes the minimum between the values
x and y.
If S is a set, let Sm×m denote the set of square matrices of size m, with entries in S.

For two matrices A,B ∈ Zm×m
∞ , we define the sum (A+B)ij = Aij +Bij . The classical

product is defined for A,B ∈ Zm×m as (A×B)ij =
∑m

k=1(aik · bkj). The tropical product
is defined for A,B ∈ Zm×m

∞ as (A ⊠ B)ij = minmk=1(aik + bkj). Let Im ∈ Zm×m be the
identity matrix, i.e. Iii = 1 and Iij = 0, for all 1 ≤ i, j ≤ m, i 6= j, and Im ∈ Zm×m

∞ be

1Actually, the dual structure (Z−∞,max,+,−∞, 0) is also known as the tropical semiring in the liter-
ature.

41

the tropical identity matrix, i.e. Iii = 0 and Iij = ∞, for all 1 ≤ i, j ≤ m, i 6= j. Then

we define A0 = I, A⊠
0
= I and Ak = Ak−1 ×A, A⊠

k
= A⊠

k−1
⊠A, for all k > 0.

With these notions, a periodic matrix can be defined as follows.

Definition 4.1 A matrix A ∈ Zm×m
∞ is called periodic if the sequence of tropical powers

{A⊠
k
}∞k=1 is periodic.

Intuitively, ifA is the incidence matrix of a weighted digraph, then the sequence {A⊠
k
}∞k=1

of tropical powers of A gives the minimal weight paths of lengths k = 1, 2, . . . between
any two vertices of the graph. It has been proved in [Sch00] that every matrix A ∈ Zm×m

∞

is periodic. We define the prefix (period) of a matrix A as the prefix (period) of the

sequence {A⊠
k
}∞k=1. We will often refer to periodicity (or prefix, period) of graphs, by

which we mean periodicity (or prefix, period, respectively) of the corresponding incidence
matrix.
We have argued that the complexity of the transitive closure algorithm depends on

the size of the prefix and the period of the input relations, which will be later (in Section
4.2) shown to be bounded by the size of the prefix and the period of a certain kind of
graphs, for difference bounds and octagonal relations. The result of [Sch00] is however
not suitable to establish bounds on the prefix and period of a graph. In this section, we
therefore give an alternative proof of periodicity of matrices that moreover establishes
bounds on sizes of their prefix and period.
Recall from Section 2.1 that given a path π, we denote by w(π) its weight and that

w(π) denotes its average weight. If λ1, . . . , λk are pairwise distinct elementary cycles,
the expression θ = σ1 · λ

∗
1 · σ2 . . . σk · λ

∗
k · σk+1 is called a path scheme of size k. A path

scheme θ = σ1.λ
∗
1.σ2 such that |σ1.σ2| ≤ |V |

4 is called basic. A path scheme encodes
the infinite set of paths [[θ]] = {σ1 · λ

n1
1 · σ2 . . . σk · λ

nk

k · σk+1 | n1, . . . , nk ∈ N}. Given
a weighted digraph G = 〈V,E,w〉, we denote by MG its incidence matrix.
The first observation is that, for every minimal weight path in a weighted graph, there

is an equivalent path following a path scheme whose size is bounded by the square of
the size of the graph.

Proposition 4.2 Let G = 〈V,E,w〉 be a weighted digraph and ρ be a minimal weight
path in G. Then there exists a path scheme θ = σ1 · λ

∗
1 · . . . · σk · λ

∗
k · σk+1 in G, such

that σ1, . . . , σk+1 are acyclic and k ≤ ||V ||2, and a path ρ′ ∈ [[θ]] starting and ending in
the same vertices as ρ, such that |ρ| = |ρ′| and w(ρ) = w(ρ′).

Proof: For each vertex v ∈ V , we partition the set of elementary cycles that start and
end in v, according to their length. The representative of each equivalence class is chosen
to be a cycle of minimal weight in the class. Since the length of each elementary cycle
is at most ||V ||, there are at most ||V ||2 such equivalence classes.
Let ρ be any path of minimal weight in G. First, notice that ρ can be factorized as:

ρ = σ1 · λ1 · . . . · σk · λk · σk+1

where σ1, . . . , σk+1 are elementary acyclic paths, and λ1, . . . , λk are elementary cycles.
This factorization can be achieved by a traversal of ρ while collecting the vertices along

42

the way in a bag. The first vertex which is already in the bag marks the first elementary
cycle. Then we empty the bag and continue until the entire path is traversed.
Next, we repeat the following two steps until nothing changes:

1. For all i = 1, . . . , k − 1 move all cycles λj , j > i, starting and ending with the
same vertex as λi, next to λi, in the ascending order of their lengths. The result
is a path ρ′ of the same length and weight as ρ.

2. Factorize any remaining non-elementary acyclic path σi · σi+1 · . . . · σi+j as in the
previous.

The loop above is shown to terminate, since the sum of the lengths of the remaining
acyclic paths decreases with every iteration. The result is a path of the same length and
weight as ρ, which starts and ends in the same vertices as ρ, in which all elementary
cycles of the same length are grouped together. Since w(ρ) is minimal for |ρ|, same
holds for ρ′, and moreover, all elementary cycles can be replaced by their equivalence
class representatives, without changing neither the length, nor the weight of the path.
The result is a path which belongs to a scheme with at most ||V ||2 cycles. ✷

Second, for every minimal weight path in the graph, there exists an equivalent path
which follows a basic path scheme.

Lemma 4.3 Let G = 〈V,E,w〉 be a weighted digraph and ρ be a minimal weight path.
Then there exists a path ρ′, starting and ending in the same vertices as ρ, such that
w(ρ) = w(ρ′) and |ρ| = |ρ′|, and a basic path scheme θ = σ · λ∗ · σ′ such that ρ′ ∈ [[θ]].

Proof: By Proposition 4.2, for any path ρ in G there exists a path scheme θ = σ1 ·
λ∗1 · σ2 . . . σk · λ

∗
k · σk+1, such that σ1, . . . , σk+1 are acyclic and k ≤ ||V ||2, and a path ρ′,

starting and ending in the same vertices as ρ, of the same weight and length as ρ, such
that ρ′ = σ1 ·λ

n1
1 ·σ2 . . . σk ·λ

nk

k ·σk+1 for some n1, . . . , nk ≥ 0. Suppose that λi is a cycle

with minimal average weight among all cycles in the scheme, i.e. w(λi)
|λi|
≤

w(λj)
|λj |

, for all

1 ≤ j ≤ k. For each nj there exist pj ≥ 0 and 0 ≤ qj < |λi|, such that nj = pj · |λi|+ qj .
Let ρ′ be the path:

σ1 · λ
q1
1 · σ2 . . . σi−1 · λ

ni+
∑i−1

j=1 pj ·|λj |+
∑k

j=i+1 pj ·|λj |

i · σi+1 · . . . σk · λ
qk
k · σk+1

It is easy to check that |ρ′| = |ρ| and w(ρ′) ≤ w(ρ).
Clearly ρ′ follows the path scheme ρ1 · λ∗i · ρ2, where ρ1 = σ1 · λ

q1
1 · σ2 . . . σi−1 and

ρ2 = σi+1 · . . . σk · λ
qk
k · σk+1. Since λ1, . . . , λk are elementary paths, all their lengths are

strictly smaller than ||V ||. Since qj < |λi| ≤ ||V ||, and k ≤ ||V ||
2, by Proposition 4.2, we

have that |ρ1 · ρ2| < ||V ||
4. Thus, ρ1 · λ

∗
i · ρ2 is basic. ✷

The following lemma shows that, for a sufficiently long minimal weight path, there
exists an equivalent path which follows a basic path scheme and moreover, this path
scheme is followed by infinitely many minimal paths. Recall that µ(G) = max{|n| | u

n
−→

v in G} denotes the maximum absolute value of all weights in G.

43

Lemma 4.4 Let G = 〈V,E,w〉 be a weighted digraph, and u, v ∈ V be two vertices.
Then for every minimal weight path ρ form u to v, such that |ρ| ≥ µ(G) · ||V ||6, there
exists a path ρ′ from u to v, such that w(ρ) = w(ρ′) and |ρ| = |ρ′|, and a basic path
scheme θ = σ · λ∗ · σ′, such that ρ′ = σ · λb · σ′, for some b ≥ 0. Moreover, there exists
c | lcm(1,...,||V ||−1)

|λ| such that σ · λb+kc · σ′ is a minimal weight path from u to v, for all
k ≥ 0.

Proof: By Lemma 4.3, every minimal weight path from u to v follows a basic path
scheme. Let L > 0 be an integer, and let σi · λ

∗
i · σ

′
i and σj · λ

∗
j · σ

′
j be two possible path

schemes such that ρi = σi · λ
bi
i · σ

′
i, ρj = σj · λ

bj
j · σ

′
j are two paths of length L, for some

bi, bj ≥ 0. We assume without loss of generality that λi has smaller average weight, i.e.
w(λi) < w(λj). We first prove that, if L ≥ µ(G) · ||V ||6, then w(ρi) ≤ w(ρj). We have:

bi =
L−|σi·σ′

i|
|λi|

,

bj =
L−|σj ·σ′

j |

|λj |
,

and
w(ρi) = w(σi · σ

′
i) +

L−|σi·σ′
i|

|λi|
w(λi),

w(ρj) = w(σj · σ
′
j) +

L−|σj ·σ′
j |

|λj |
w(λj).

Then w(ρi) ≤ w(ρj) if and only if

L ≥
|λi||λj |(w(σi · σ

′
i)− w(σj · σ

′
j)) + |λi||σj · σ

′
j |w(λj)− |λj ||σi · σ

′
i|w(λi)

w(λj)|λi| − w(λi)|λj |
.

Since λi has a strictly smaller average weight than λj , we have that w(λj)|λi|−w(λi)|λj | >
0, and, since w(λi), w(λj), |λi|, |λj | ∈ Z, we have w(λj)|λi| − w(λi)|λj | ≥ 1. By Lemma
4.3, we have |σi · σ

′
i|, |σj · σ

′
j | ≤ ||V ||

4, and w(σi · σ
′
i) − w(σj · σ

′
j) ≤ µ(G) · ||V ||4. We

compute:

L ≥ µ(G) · ||V ||6

≥ |λi||λj |(w(σi · σ
′
i)− w(σj · σ

′
j)) + |λi||σj · σ

′
j |w(λj)− |λj ||σi · σ

′
i|w(λi)

≥
|λi||λj |(w(σi·σ′

i)−w(σj ·σ
′
j))+|λi||σj ·σ′

j |w(λj)−|λj ||σi·σ′
i|w(λi)

w(λj)|λi|−w(λi)|λj |

Since the choice of ρi and ρj was arbitrary, for each L ≥ µ(G) · ||V ||6, the path scheme
with minimal average weight cycle is chosen by the minimal weight path of length L.
Second, we show that this happens periodically. For two paths ρi = σi · λ

bi
i · σ

′
i and

ρj = σj ·λ
bj
j ·σ

′
j of equal lengths, as before, let cij = lcm(|λi|, |λj |), ci =

cij
|λi|

and cj =
cij
|λj |

.

We have that |λkcii | = |λ
kcj
j | = kcij , for all k ≥ 0. Moreover, since w(λi) < w(λj), we

have that w(λkcii) < w(λ
kcj
j). It follows that

w(σi · λ
bi+kci
i · σ′i) ≤ w(σj · λ

bj+kcj
j · σ′j)

44

for all k ≥ 0. Finally, since |λi|, |λj | < ||V ||, we have that cij | lcm(1, . . . , ||V || − 1) and

thus ci |
lcm(1,...,||V ||−1)

|λi|
. Since the choice of i does not change this fact, it is enough to

take c = lcm(1,...,||V ||−1)
|λ| and b = bi to obtain that σi ·λ

b+kc
i ·σ′i has minimal weight among

all paths from u to v of the same length, for all k ≥ 0. ✷

The following lemma is essential to prove an upper bound on the period of weighed
digraphs.

Lemma 4.5 For each n ≥ 1, lcm(1, . . . , n) is bounded by 2O(n).

Proof: We know that lcm(1, . . . , n) =
∏
p≤n p

⌊logp(n)⌋ where the product is taken only

over primes p. Obviously, for every prime p we have that p⌊logp(n)⌋ ≤ plogp(n) = n. Hence,
lcm(1, . . . , n) ≤

∏
p≤n n = nπ(n), where π(n) denotes the prime-counting function (which

gives the number of primes less than or equal to n, for every natural number n). Using

the prime number theorem which states that limn→∞
π(n)

n/ln(n) = 1 we can effectively

bound π(n). That is, for any ǫ > 0, there exists nǫ such that π(n)
n/ln(n) ≤ (1 + ǫ) for all

n ≥ nǫ . Consequently, nπ(n) ≤ n(1+ǫ)n/ln(n) = e(1+ǫ)n = 2log2(e)(1+ǫ)n = 2O(n) for all
n ≥ nǫ, and completes the proof. ✷

The following theorem gives asymptotic bounds on the size of the prefix and the period
of a weighted digraph G = 〈V,E,w〉, in terms of µ(G) and ||V ||.

Theorem 4.6 Let G = 〈V,E,w〉 be a digraph, and MG ∈ Z
||V ||×||V ||
∞ be its incidence

matrix. Then, the sequence {M⊠
i

G }i≥0 is periodic. Moreover, its prefix b is bounded by
µ(G) · O(||V ||6), and its period divides lcm(1, . . . , ||V || − 1) and is bounded by 2O(||V ||).

Proof: A direct consequence of Lemma 4.4 is that each minimal weight path ρ in G of
length at least µ(G) · ||V ||6 must be of the form ρ = σ · λb · σ′, and moreover, for some

c | lcm(1,...,||V ||−1)
|λ| , we have that σ · λb+kc · σ′ is a minimal weight path, for all k ≥ 0.

Hence, for each 1 ≤ i, j ≤ ||V ||, the sequence {(M⊠
k

G)ij}
∞
k=0 is periodic with prefix at

most µ(G) · ||V ||6 and period which divides lcm(1, . . . , ||V ||−1). The prefix b ofMG is the
maximum of all prefixes, and the period c is the least common multiple of the periods
of the sequences {(M⊠

i

G)ij}
∞
k=0, respectively. Hence b is bounded by µ(G) · O(||V ||6) and

c divides lcm(1, . . . , ||V ||− 1). By Lemma 4.5, lcm(1, . . . , ||V ||− 1) is bounded by 2O(||V ||).
Since c divides lcm(1, . . . , ||V || − 1), the same bound for c follows immediately. ✷

4.2 Difference Bounds Relations

Recall from Section 2.3 that a difference bounds relation R ⊆ ZN × ZN can be equiva-
lently represented as a difference bounds matrix (DBM)MR. Similarly, for each DBMM
there is a corresponding difference bounds relation ΦM . Furthermore, difference bounds
relations can be represented canonically by DBMs M∗

R.

45

The first step to proving that the classRdb is periodic is defining the mappings between
relations and matrices (Definition 3.6). Given a consistent difference bounds relation
R ∈ Rdb, we define σ(R) = M∗

R ∈ Z2N×2N
∞ to be the closed characteristic DBM of R.

Dually, for any DBM M ∈ Z2N×2N
∞ , let ρ(M) = ΦM ∈ Rdb be the difference bounds

relation corresponding to M . We clearly have ρ(σ(R))⇔ R, for all consistent relations
R, as required by Definition 3.6.
In order to define a function π : Z[k]m×m

∞ → R[k] mapping matrices of linear terms
of the form α · k + β, with integer coefficients, into parametric relations R(k,x,x′), we
define the class of parametric difference bounds relations.

Definition 4.7 A formula φ(x, k) is a parametric difference bounds constraint if it is
equivalent to a finite conjunction of atomic propositions of the form xi − xj ≤ tij, for
some 1 ≤ i, j ≤ N , i 6= j, where tij are univariate linear terms in k.

The class of parametric difference bounds relations with parameter k is denoted as
Rdb[k]. Similar to the non-parametric case (Definition 2.3), a parametric difference
bounds constraint φ(k) can be represented by a matrix Mφ[k] ∈ Z[k]N×N

∞ of univariate
linear terms, where (Mφ[k])ij = tij if xi−xj ≤ tij occurs in φ, and∞ otherwise. Dually,
a matrix M [k] of linear terms corresponds to the formula ΦM (k)⇔

∧
M [k]ij 6=∞ xi−xj ≤

M [k]ij . With these considerations, we define π(M [k]) = ΦM (k) to be the parametric
counterpart of the ρ function from Definition 3.6. Clearly, for each matrixM ∈ Z[k]m×m

∞ ,
the mapping π satisfies the required property that π(M)[n/k]⇔ ρ(M [n]) for all n ∈ Z.

4.2.1 Proving Periodicity

In this section, we prove that all relations defined using difference bounds constraints
are periodic in the sense of Definition 3.6. A direct consequence is that these relations
are also periodic, which ensures the termination of Algorithm 1 on the Rdb class.
Let R ∈ Rdb be an arbitrary difference bounds relation for the rest of this section. If

R is not ∗-consistent, then by Definition 3.6, R is periodic. We consider from now on
that R is ∗-consistent and prove that the sequence {σ(Ri)}∞i=0 is periodic in this case.
We have σ(Ri) =M∗

Ri for any i ≥ 0.
The proof idea is that the entries of the sequence {M∗

Ri}
∞
i=0 represent minimal weight

paths in the graph corresponding to the i-times “unfolding” of R, for any i ≥ 0. These
paths form a regular language recognized by a finite weighted automaton. Consequently,
the minimal weights for i = 0, 1, 2, . . . are entries in the sequence of tropical powers of the
incidence matrix of this automaton. But then they form periodic sequences, according
to Theorem 4.6.
For all 1 ≤ i, j ≤ N , we obtain the following equalities:

[σ(Rm)]i,j = min{x0i −→ x0j}

[σ(Rm)]i+N,j+N = min{xmi −→ xmj }

[σ(Rm)]i,j+N = min{x0i −→ xmj }

[σ(Rm)]i+N,j = min{xmi −→ x0j}

(1)

46

Recall the definition of the zigzag automata from Section 2.3.3 that recognize paths
within constraint graphs. In the following, we view these automata as reasoning tools,
needed to prove the periodicity of the difference bounds constraints. Recall that TR =
〈Q,∆, w〉 is the common transition table of all zigzag automata for R ∈ Rdb. Let

MR ∈ Z
||Q||×||Q||
∞ be the incidence matrix of TR, where ||Q|| is the number of control states

in TR. Without loss of generality, we assume that states in Q are both reachable and
co-reachable2. For each pair of variables xi, xj , there are eight indices, denoted as Iefi,j ,

F ef , Ieb, F ebi,j , I
of
i , F ofj , Iobi , F obj ∈ {1, . . . , ||Q||} corresponding to the initial and final

states of the four zigzag automata, respectively. According to Lemma 2.15, the minimal
weight path of length m+ 2 from Iefi,j to F ef matches the minimal weight path between

the extremal points x0i and x0j of GmR . Similarly for paths from Ieb to F ebi,j , from Iofi to

F ofj , and from Iobi to F obj . However the weights of the paths in the zigzag automata are
captured by the tropical powers ofMR, as follows:

min{x0i −→ x0j} =
[
MR

⊠
m+2]

Iefi,j ,F
ef

min{xmi −→ xmj } =
[
MR

⊠
m+2]

Ieb,F eb
i,j

min{x0i −→ xmj } =
[
MR

⊠
m+2]

Iofi ,F of
j

min{xmi −→ x0j} =
[
MR

⊠
m+2]

Iobi ,F ob
j

(2)

By Theorem 4.6, the tropical powers of MR form a periodic sequence, therefore the
sequence {MR

⊠
m+2
}m≥0 is periodic. By equating the equivalences (1) and (2) from the

previous, we obtain that the sequence {σ(Rm)}m≥0 is periodic as well. The following
theorem summarizes the above arguments.

Theorem 4.8 The class of difference bounds relations is periodic.

Moreover, since MRm is a projection ofM⊠
m+2

R for all m ≥ 0 if R is ∗-consistent, the
prefix of a ∗-consistent relation R is bounded by the prefix of TR. Similar claim can be
made for the period of R.

Proposition 4.9 Let TR = (Q,∆, w) be the common transition table of zigzag automata
defined for a ∗-consistent difference bounds relation R. Then, the size of the prefix of R
is bounded by the size of the prefix of TR and the period of R divides the period of TR.

Proof: The proof of Lemma 3.4 shows that if bij (cij) is the prefix (period) of the
sequence {(M⊠

m

R)ij}m≥0 for all 1 ≤ i, j ≤ ||Q||, then the sequence {M⊠
m

R }m≥0 has the
prefix defined as b = maxij{bij} and the period defined as c = lcmij{cij}. Since R is

∗-consistent, MRm is a projection ofM⊠
m+2

R for all m ≥ 0. Then the bounds stated in
this proposition follow from the definition of b and c. ✷

2A state is said to be reachable if there exists a path from an initial state to it, and co-reachable if there
exists a path from it to a final state.

47

In conclusion, Algorithm 1 will terminate on difference bounds relations. Moreover,
the result is formula definable in Presburger arithmetic. In particular, this also simplifies
the proof that transitive closures of difference bounds relations are Presburger definable,
from [BIL09]. The following result is needed in the following section to design a cost-
effective implementation of Algorithm 1.

Corollary 4.10 If R ∈ Rdb be a difference bounds relation, the rate Λ of the periodic
sequence {σ(Ri)}∞i=0 is a closed DBM.

Proof: Since σ(Rm) = M∗
Rm for all m ≥ 0, σ(Rm) is closed and thus we have for all

1 ≤ i, j, k ≤ 2N and m ≥ 0:

[
σ(Rm)

]
i,j
≤
[
σ(Rm)

]
i,k

+
[
σ(Rm)

]
k,j

Since {σ(Rm)}∞m=0 is periodic, there exists b ≥ 0, c > 0 and Λ ∈ Z2N×2N
∞ such that:

σ(Rb+nc) = σ(Rb) + n · Λ

for all n ≥ 0. Consequently, we have, for all 1 ≤ i, j, k ≤ 2N and all n ≥ 0:

[
σ(Rb)

]
i,j

+ n · Λij ≤
[
σ(Rb)

]
i,k

+
[
σ(Rb)

]
k,j

+ n · (Λik + Λkj)

We obtain:

n · (Λij − Λik − Λkj) ≤
[
σ(Rb)

]
i,k

+
[
σ(Rb)

]
k,j
−
[
σ(Rb)

]
i,j
, ∀n ≥ 0

Suppose that Λ is not closed i.e., there exist 1 ≤ i, j, k ≤ 2N such that Λij > Λik +Λkj ,
we get a contradiction with the above. ✷

4.2.2 Checking ∗-consistency and Periodicity

In this section, we describe cost-effective ways to implement the MaxConsistent and
MaxPeriodic procedures from Algorithm 1 for difference bounds relations.
First, we need to introduce several technical notions. A univariate linear term is

a term of the form α · k + β, where α, β ∈ Z are integer constants. Let Z[k] denote
the set of all univariate linear terms with variable k. For two sets S, T ⊆ Z[k], we
define S ⊕ T = {(α1 + α2) · k + β1 + β2 | α1 · k + β1 ∈ S, α2 · k + β2 ∈ T}. For
two linear terms t1 = α1 · k + β1 and t2 = α2 · k + β2, we define the partial order
on terms t1 � t2 ⇔ α1 ≤ α2 ∧ β1 ≤ β2. We denote the strict inequality on terms
by t1 ≺ t2 ⇔ t1 � t2 ∧ t2 6� t1. For a finite set of linear terms S, we denote by
MinTerms(S) = {t ∈ S | ∀s ∈ S . s 6≺ t} the set of minimal terms in S, with respect
to this order. For a set of integer constants {a1, . . . , an}, we denote by MaxMin{ai}

n
i=1

the positive value max{ai}
n
i=1 −min{ai}

n
i=1.

48

Proposition 4.11 Let S = {αi · k + βi}
m
i=1 be a set of univariate linear terms. Then

||MinTerms(S)|| ≤ min(MaxMin{αj}
m
j=1,MaxMin{βj}

m
j=1)

Proof: A term α · k + β corresponds to the point (α, β) in the 2-dimensional space. All
terms from S are points in the rectangle defined by the bottom left corner (min{αj}mj=1,
min{βj}

m
j=1) and the upper right corner (max{αj}

m
j=1,max{βj}

m
j=1). Since all terms in

MinTerms(S) are incomparable w.r.t. �, there can be at most min(max{αj}
m
j=1 −

min{αj}
m
j=1,max{βj}

m
j=1 −min{βj}

m
j=1) such terms. Hence the result. ✷

Given a linear term t = α · k+β, we denote by t(n) the value α ·n+β, for any n ∈ N.
The set of valuations of a term t, with respect to the threshold ℓ is [[t]]≥ℓ = {t(n) | n ≥ ℓ}.
These notations are naturally lifted to sets of terms, i.e. T (n) = {t(n) | t ∈ T}. and
[[T]]≥ℓ =

⋃
t∈T [[t]]≥ℓ.

Unlike DBMs with constant entries, parametric DBMs do not have a closed form, since
in general, the minimum of two univariate linear terms cannot be defined again as a linear
term. A way around this problem is using matrices of sets of univariate linear terms,
with the convention that a set T = {t1(k), . . . , tn(k)} of univariate linear terms denotes
the function k 7→ min{t1, . . . , tn}, and min(∅) = ∞. The Floyd-Warshall algorithm
for computing closed forms of DBMs with constant entries can be easily adapted to
parametric DBMs.

Algorithm 3 Closure Algorithm for Parametric DBMs

1: procedure ParametricFW(M)
2: for all i = 0, . . . ,m− 1 do
3: for all j = 0, . . . ,m− 1 do
4: if M [i][j] =∞ then
5: M[i][i]← ∅
6: else
7: M[i][j]← {M [i][j]}

8: for all k = 0, . . . ,m− 1 do
9: for all i = 0, . . . ,m− 1 do

10: for all j = 0, . . . ,m− 1 do
11: T0 ←M[i][j]
12: T1 ←M[i][k]
13: T2 ←M[k][j]
14: M[i][j]← MinTerms (T0 ∪ (T1 ⊕ T2))

15: returnM[i][j]

16: procedure MinTerms(S)
17: return {t ∈ S | ∀s ∈ S . s 6≺ t}

Algorithm 3 takes as input a matrix of univariate linear terms, and produces a matrix
of sets of such terms (each set of terms T is interpreted as min(T)). Lines 2-7 initialize the

49

output matrix with sets of terms. Lines 8-14 correspond to the classical Floyd-Warshall
iteration.

Proposition 4.12 LetM ∈ Zm×m
∞ [k] be a parametric DBM, such thatMij = αij ·k+βij,

for all 1 ≤ i, j ≤ m. Then, Algorithm 3 runs in at most O(µ3 ·m6) time where

µ = min(max
1≤i,j≤m

{|αij |}, max
1≤i,j≤m

{|βij |})

Moreover, we have ||Mij || ≤ 2m · µ.

Proof: Each term α · k+ β ∈M[i][j] is a sum of at most m terms αij · k+ βij . We have:

−m ·max1≤i,j≤m{|αij |} ≤ α ≤ m ·max1≤i,j≤m{|αij |}, and
−m ·max1≤i,j≤m{|βij |} ≤ β ≤ m ·max1≤i,j≤m{|βij |}.

By an argument similar to the one used in Proposition 4.11, we have that ||M[i][j]|| ≤
2m ·µ, where µ is defined as µ = min(max1≤i,j≤m{|αij |},max1≤i,j≤m{|βij |}). Therefore,
each call to MinTerms takes at most O(m3 ·µ3) time. Since the classical Floyd-Warshall
algorithm (i.e. Algorithm 3 in which we consider that MinTerms needs constant time)
runs in time O(m3), we obtain the result. ✷

MaxConsistent. Given a difference bounds relation R, integers b ≥ 0, c > 0 such that
Rb+2c is consistent, and a matrix Λ ∈ Z2N×2N

∞ , let us denote MR,b,Λ = k · Λ + σ(Rb) ∈
Z[k]2N×2N

∞ . With this notation, we have:

MaxConsistent(R, b,Λ) = sup{n ∈ N | MR,b,Λ[n] is consistent}.

Since Rb+2c is consistent, it follows that MaxConsistent(R, b,Λ) > 2 and hence, we
can define MaxConsistent(R, b,Λ) equivalently as

MaxConsistent(R, b,Λ) = inf{n ∈ N | MR,b,Λ[n] is inconsistent} − 1.

In analogy to the non-parametric case, the inconsistency of a parametric difference
bounds constraint amounts to the existence of a strictly negative elementary cycle in
the constraint graph corresponding to MR,b,Λ[n] for some valuation n ∈ N of k. The
MaxConsistent procedure can be implemented as follows. Let

M = ParametricFW(MR,b,Λ)

as returned by Algorithm 3. ClearlyMR,b,Λ[n] is inconsistent if and only if min(Mii[n]) <
0 for some i = 1, . . . , 2N . The minimal value of n for which this is the case is K ′ =
min{Γ(Mii)}

2N
i=1, where Γ is a constant defined in the following lemma. Then, MaxPe-

riodic returns integer K defined as K = K ′ − 1.

50

Lemma 4.13 Let T = {αi · k + βi}
m
i=1 be a set of univariate linear terms and ℓ ∈ N be

a constant. Then minn≥ℓ T (n) < 0 if and only if there exists 1 ≤ i ≤ m such that either
αi < 0, or αi ·ℓ+βi < 0. Moreover the smallest value n such that minn≥ℓ{αi ·n+βi}

m
i=1 <

0 is Γ(T) = minmj=1 γj where:

γj =





max(ℓ, ⌊−
βj
αj
⌋+ 1) if αj < 0

ℓ if αj ≥ 0 ∧ αj · ℓ+ βj < 0
∞ otherwise

Proof: minn≥ℓ T (n) < 0 iff there exists 1 ≤ i ≤ m such that αi · n+ βi < 0. Let us fix i
for the rest of the proof. There are three cases:

• if αi < 0 we have n ≥ ⌊− bi
αi
⌋+ 1, hence n ≥ γi = max(ℓ, ⌊− bi

αi
⌋+ 1).

• if αi ≥ 0 and αi · ℓ+ βi ≥ 0, we have αi · n+ βi ≥ 0, for all n ≥ ℓ, contradiction.

• else, we have αi ≥ 0 and αi · ℓ+ βi < 0, in which case we have n ≥ γi = ℓ.

✷

Proposition 4.14 For a difference bounds relation R, integers b ≥ 0, c > 0 such that
Rb is consistent and a matrix Λ ∈ Z2N×2N

∞ , MaxConsistent(R, b,Λ) runs in time at
most O((b+ c)3 · ||R||3 ·N9).

Proof: ComputingM requires one application of Algorithm 3. By Proposition 4.12, the
call to Algorithm 3 requires time at most O(µ3 ·N6), where:

µ = min(max
1≤i,j≤2N

{|Λij |}, max
1≤i,j≤2N

{|(σ(Rb))ij |})

Since the constraint graph GbR has (b+1) ·N nodes, any minimal path between extremes
may not exceed weight (b+1) ·N · ||R||. This is because Rb is consistent, i.e. there are no
negative cycles in GbR, and a path going through a positive cycle is not minimal. Since the
rate Λ is computed as Λ = σ(Rb+c)−σ(Rb), we similarly infer that Λij ≤ (b+c+1)·N ·||R||
for all 1 ≤ i, j ≤ 2N . Hence µ ≤ (b+ c+ 1) ·N · ||R||, which gives the result. ✷

MaxPeriodic. Given a difference bounds relation R, integers K ∈ N∞, b ≥ 0 and c > 0,
such that Rb is consistent, and a matrix Λ ∈ Z2N×2N

∞ , the procedure

MaxPeriodic(R, b,Λ, c,K)

returns the maximal integer3 0 ≤ n ≤ K such that:

∀0 ≤ ℓ < n . ρ(ℓ · Λ + σ(Rb)) ◦Rc ⇔ ρ((ℓ+ 1) · Λ + σ(Rb))

3The successful test at line 8 of Algorithm 1 implies that n ≥ 2.

51

or ∞, if K = ∞ and the above equivalence holds for all ℓ. The left-hand side of the
equivalence can be encoded by a matrix of terms of the form min{ti}mi=1, where ti are
univariate linear terms, and can be computed by Algorithm 3. The DBM corresponding
to the right-hand side is shown to be closed for all valuations of k, which means that the
relation on the right-hand side of the equivalence can be defined simply by a parametric
DBM, instead of a matrix of min-terms, which is the case for the left-hand side.

Lemma 4.15 Let R ∈ Rdb be a difference bounds relation, and Λ be the rate of the
periodic sequence {σ(Ri)}∞i=0. Then, for all b ≥ 0 and n > 0, the DBM n · Λ + σ(Rb) is
closed.

Proof: A direct consequence of the fact that σ(Rb) is closed by definition, and that Λ is
also closed, by Corollary 4.10. ✷

We need thus to check equivalence (for all k ≥ 0) between a matrix of minima of
sets of linear terms in k and a parametric DBM. By Proposition 2.8, equivalence of two
difference bounds constraints amounts to the equality of their closed DBMs. In order to
find the maximal interval 0, . . . , n in which min{αi · k + βi}

m
i=1 = α0 · k + β0 holds, for

all k = 0, . . . , n, we apply the following lemma to each entry in the left and right-hand
side of the above equivalence, and return the minimal value among all entries, for which
the equivalence holds, incremented by one4.

Lemma 4.16 Let T = {αi·k+βi}mi=1 be a set of univariate linear terms, t0 = α0·k+β0 ∈
Z[k] be a term, and ℓ ∈ N be a constant. Then there exists an integer κ > ℓ + 1 such
that minT (n) = t0(n), for all ℓ ≤ n ≤ κ, if and only if the following hold:

1.
∨m
i=1(αi = α0 ∧ βi = β0) ∧

∧m
i=1

∧2
j=0[α0 · (ℓ+ j) + β0 ≤ αi · (ℓ+ j) + βi]

2. κ ≤ min{⌊ βi−β0α0−αi
⌋ | 1 ≤ i ≤ m, α0 6= αi, ⌊

βi−β0
α0−αi

⌋ > ℓ+ 1}

Proof: We assume without loss of generality that m ≥ 2 and that all terms αi ·k+βi, i =
1, . . . ,m are distinct.
”⇒” If minT (n) = t0(n), for all ℓ ≤ n ≤ κ and κ > ℓ+1, then clearly

∧m
i=1

∧2
j=0[α0 ·(ℓ+

j)+β0 ≤ αi · (ℓ+ j)+βi], i.e. the second conjunct of the first point is valid. To show the
validity of the first conjunct of the first point, suppose without loss of generality that:

t0(ℓ) = t1(ℓ) ≤ t2(ℓ)
t0(ℓ+ 1) = t2(ℓ+ 1) ≤ t1(ℓ+ 1)
t0(ℓ+ 2) < t1(ℓ+ 2)
t0(ℓ+ 2) < t2(ℓ+ 2)

The choice of t1 and t2 is not important. We obtain a contradiction in the following
way:

ℓ = β1−β0
α0−α1

≥ β2−β0
α0−α2

ℓ+ 1 = β2−β0
α0−α2

≥ β1−β0
α0−α1

4Since ∀0 ≤ ℓ ≤ κ . φ if and only if ∀0 ≤ ℓ < κ+ 1 . φ.

52

To show the second point, assume by contradiction that κ > ⌊ βi−β0α0−αi
⌋ > ℓ+1 for some

i = 1, . . . ,m, such that the term αi · k+βi is distinct from α0 · k+β0. Since, by the first
point, we have β0 ≤ βi, and

βi−β0
α0−αi

> 0, then α0 > αi. It follows that α0 · κ > αi · κ+ βi,
which contradicts the fact that t0 is minimal in the interval ℓ, . . . , κ.
”⇐” By the first point, t0(n) = ti(n), for all n, and minT (n) = t0(n), for n = ℓ, ℓ+1, ℓ+2.
To prove that minT (n) = t0(n) for all ℓ ≤ n ≤ κ, assume by contradiction, that
minT (p) = ti(p) < t0(p) for some p = ℓ, . . . , κ and some i = 1, . . . ,m, such that ti is
distinct from t0. But then we have (αi − α0) · p < β0 − βi ≤ 0. The last inequality
is due to the first point. Since p > 0, we have that αi < α0, hence κ ≥ p > ⌊ βi−β0α0−αi

⌋,
contradiction. ✷

Proposition 4.17 For a difference bounds relation R, and integers b ≥ 0, c > 0 such
that Rb+c is consistent and a matrix Λ ∈ Z2N×2N

∞ , MaxPeriodic runs in time at most
O((b+ c)3 · ||R||3 ·N9).

Proof: We apply Algorithm 3 to compose the parametric DBM k ·Λ+σ(Rb) with σ(Rc),
which requires time O(µ3 ·N6), cf. Proposition 4.12. By an argument similar to the one
used in the proof of Proposition 4.14, we obtain µ ≤ (b+ c+ 1) ·N · ||R||. The result of
MaxPeriodic is the κ bound from Lemma 4.16, which can be established during the
computation of the min-sets using Algorithm 3. Hence the result follows. ✷

Finally, we prove the asymptotic complexity on the running of Algorithm 1 for a dif-
ference bounds relation R in terms of its prefix, period, the number of variables used to
define R, and the sum of absolute values of coefficients of R.

Theorem 4.18 Let R be a difference bounds relation with prefix B and period C. Then,
Algorithm 1 computes the transitive closure of R in at most O((B+C)8 · ||R||3 ·N9) time.

Proof: By Theorem 3.16, Algorithm 1 takes at most O((B + C)2) iterations of the
main loop and in each iteration and moreover, the algorithm considers a prefix and
period candidates b and c such that both b and c are bounded by O((B + C)2). By
Proposition 4.14, ProcedureMaxConsistent runs in time at most O((b+c)3 ·||R||3 ·N9).
Combining this bound with the bound on b and c, if follows that MaxConsistent runs
in time at most O((B +C)6 · ||R||3 ·N9). We obtain the same bound on running time of
MaxPeriodic, by Proposition 4.17. The test on line 8 can be performed in O(N2) time,
by Proposition 2.8. The greatest power of a relation that is computed by the algorithm is
Rb+2c. Since the composition of difference bounds relations can be computed in O(N3)
time, if follows that these computations are performed in O((B+C)·N3) time. Since the
algorithm takes at most O((B + C)2) iterations, we finally infer that the total running
time of Algorithm 1 is bounded by O((B + C)8 · ||R||3 ·N9). ✷

53

MRb =MRc =




0 ∞ −3 0
∞ 0 −1 −3
∞ ∞ 0 ∞
∞ ∞ ∞ 0


MRb+c =




0 ∞ −6 3
∞ 0 −4 −6
∞ ∞ 0 ∞
∞ ∞ ∞ 0


Λ =




0 ∞ −3 −3
∞ 0 −3 −3
∞ ∞ 0 ∞
∞ ∞ ∞ 0




Figure 4.1: Candidate rate Λ for (b, c) = (2, 2).




0 ∞ (−3− 3k) −3k
∞ 0 (−1− 3k) (−3− 3k)
∞ ∞ 0 ∞
∞ ∞ ∞ 0




(a) k · Λ +MRb

x2 x′

2

x1 x′

1
−3−3k

−3k

−1−3k

−3−3k

(b) Gσ(k·Λ+M
Rb)

x2 x′

2

1x x′

1
−3

0

−1

−3

(c) GRc

Figure 4.2: Left-hand side of the MaxPeriodic equivalence test

Running Example. We demonstrate the main steps of Algorithm 1 applied to the
difference bounds relation R⇔ x1−x

′
1 ≤ 1∧x1−x

′
2 ≤ −1∧x2−x

′
1 ≤ −2∧x2−x

′
2 ≤ 2.

The first valid guess for (b, c) = (2, 2), for which the test on line 9 succeeds, leads to
the candidate rate Λ (Figure 4.1). The MaxConsistent procedure first computes the
parametric DBM corresponding to ρ(k · Λ + σ(Rb)), shown in Figure 4.2a. The DBM
is already closed and thus, application of Algorithm 1 doesn’t change its entries. Next,
Lemma 4.13 is applied to compute the value K =∞ that MaxConsistent returns.
The MaxPeriodic procedure checks that

ρ(k · Λ + σ(Rb)) ◦Rc ⇔ ρ((k + 1) · Λ + σ(Rb))

for all k ≥ 0. The parametric DBM ρ((k + 1) · Λ + σ(Rb)) representing the right-hand
side of the equivalence is shown in Figure 4.3. The left-hand side is equivalent to the
composition of σ(k · Λ + MRb) (Figures 4.2a and 4.2b) with Rc (Figure 4.2c). This
amounts to the computation of shortest paths between extremal vertices of the graph
in Figure 4.4 which results in a graph identical to the one in Figure 4.3. Since this
graph represents the right-hand side, the above equivalence holds for all k ≥ 0 and thus,
MaxPeriodic returns L =∞.




0 ∞ (−6− 3k) (−3− 3k)
∞ 0 (−4− 3k) (−6− 3k)
∞ ∞ 0 ∞
∞ ∞ ∞ 0




(a) (k + 1) · Λ +MRb

x2 x′

2

x1 x′

1
−6−3k

−3−3k

−4−3k

−6−3k

(b) Gσ((k+1)·Λ+M
Rb)

Figure 4.3: Right-hand side of the MaxPeriodic equivalence test

54

x2 x′′

2 x′

2

x1 x′′

1 x′

1
−3−3k

−3k

−1−3k

−3−3k

−3

0

−1

−3

Figure 4.4: Computing parametric composition σ(k · Λ +MRb) ◦Rc.

Then, a test on line 12 succeeds and Algorithm 1 returns the transitive closure:

R+ ⇔
b−1∨

i=1

Ri ∨ ∃k ≥ 0 .
c−1∨

i=0

π(k · Λ + σ(R2)) ◦Ri

⇔ (x1−x
′
1≤1 ∧ x1−x

′
2≤−1 ∧ x2−x

′
1≤−2 ∧ x2−x

′
2≤−2) ∨ ∃k ≥ 0 .

(x1−x
′
1≤−3k−3 ∧ x1−x

′
2≤−3k ∧ x2−x

′
1≤−3k−1 ∧ x2−x

′
2≤−3k−3) ∨

(x1−x
′
1≤−3k−2 ∧ x1−x

′
2≤−3k−4 ∧ x2−x

′
1≤−3k−5 ∧ x2−x

′
2≤−3k−2)

After the elimination of the existential quantifier, we obtain:

R+ ⇔ (x1−x
′
1≤1 ∧ x1−x

′
2≤−1 ∧ x2−x

′
1≤−2 ∧ x2−x

′
2≤−2) ∨

(x1−x
′
1≤−3 ∧ x1−x

′
2≤0 ∧ x2−x

′
1≤−1 ∧ x2−x

′
2≤−3) ∨

(x1−x
′
1≤−2 ∧ x1−x

′
2≤−4 ∧ x2−x

′
1≤−5 ∧ x2−x

′
2≤−2)

4.3 Octagonal Relations

Recall from Section 2.4 that an octagonal relation R ⊆ ZN × ZN defined by a formula
R(x,x′) can be represented as a difference bounds relation R(y,y′) defined over the dual
set of variables with the convention that y2i−1 stands for xi and y2i for −xi. Then, an
octagonal relation R can be represented by a difference bounds matrixMR. Similarly, for
each DBM M , there is a corresponding octagonal relation ΩM . Furthermore, octagonal
relations can be represented canonically by DBMs M t

R
.

We start by defining the mappings between octagonal relations and their matrix en-
codings required by Definition 3.6. Given a consistent octagonal relation R(x,x′) let
σ(R) = M t

R
. Dually, for any coherent DBM M ∈ Z4N×4N

∞ , let ρ(M) = ΩM . Clearly,
ρ(σ(R)) ⇔ R, as required by Definition 3.6. In order to define the mapping π, we first
define the class of parametric octagonal relations.

Definition 4.19 A formula φ(x, k) is a parametric octagonal constraint if it is equiva-
lent to a finite conjunction of terms of the form xi−xj ≤ uij, xi+xj ≤ vij or xi+xj ≥ tij,
where uij , vij and tij are univariate linear terms in k, for all 1 ≤ i, j ≤ N .

A parametric octagon φ(x, k) is represented by a matrixMφ[k] ∈ Z[k]2N×2N
∞ of univari-

ate linear terms. Vice versa, a matrixM [k] ∈ Z[k]2N×2N
∞ encodes a parametric octagonal

relation, denoted as ΩM (k). With these considerations, we define π(M [k]) = ΩM (k) to
be the parametric counterpart of the ρ function from Definition 3.6.

55

4.3.1 Proving Periodicity

In order to prove that the class Roct of octagonal relations is periodic, we need to prove
that the sequence {σ(Rm)}∞m=0 is periodic, for an arbitrary relation R ∈ Roct. It is
sufficient to consider only the case where R is ∗-consistent i.e., σ(Rm) = M t

Rm , for all

m ≥ 0. We rely in the following on Theorem 2.26 which gives a method to computeM t
Rm ,

the tightly closed DBM representation of Rm, fromM∗
R

m , the closed DBM representation

of R
m
.

We have previously shown, in Section 4.2, that difference bounds relations are periodic.
In particular, this means that the sequence {M∗

R
m}∞m=0, corresponding to the iteration

of the difference bounds relation R, is periodic. To prove that the sequence {M t
Rm}

∞
m=0

is also periodic, it is sufficient to show that (i) the minimum and (ii) the sum of two
periodic sequences are periodic, and also that (iii) the integer half of a periodic sequence
is also periodic.

Lemma 4.20 Let {sm}
∞
m=0 and {tm}

∞
m=0 be two periodic sequences. Then the sequences

{min(sm, tm)}
∞
m=0, {sm+tm}

∞
m=0 and

{⌊
sm
2

⌋}∞
m=0

are periodic as well. Let bs (cs) be the
prefix (period) of {sm}

∞
m=0, let bt (ct) be the prefix (period) of {tm}

∞
m=0, and let define

b = max(bs, bt), c = lcm(cs, ct), and bm = b+maxc−1
i=0 Kic, where

Ki =





⌈ sb+i−tb+i

λ
(t)
i −λ

(s)
i

⌉
if λ

(s)
i < λ

(t)
i and tb+i < sb+i

⌈ tb+i−sb+i

λ
(s)
i −λ

(t)
i

⌉
if λ

(t)
i < λ

(s)
i and sb+i < tb+i

0 otherwise

for each i = 0, . . . , c − 1 and where λ
(s)
0 , ..., λ

(s)
c−1 (λ

(t)
0 , ..., λ

(t)
c−1) are rates of {sm}

∞
m=0

({tm}
∞
m=0) with respect to the common prefix b and period c. Then, the prefix and the

period of the above sequences are:

prefix period

{sm + tm}∞m=0 b c{⌊
sm
2

⌋}∞
m=0

b 2c

{min(sm, tm)}
∞
m=0 bm c

Proof: We can show that the sum sequence {sm+tm}
∞
m=0 is periodic as well, with prefix

b, period c and rates λ
(s)
0 +λ

(t)
0 , ..., λ

(s)
c−1+λ

(t)
c−1. In fact, for every k ≥ 0 and i = 0, ..., c−1

we have successively:

(s+ t)b+(k+1)c+i = sb+(k+1)c+i + tb+(k+1)c+i (4.3)

= λ
(s)
i + sb+kc+i + λ

(t)
i + tb+kc+i (4.4)

= λ
(s)
i + λ

(t)
i + sb+kc+i + tb+kc+i (4.5)

= (λ
(s)
i + λ

(t)
i) + (s+ t)b+kc+i (4.6)

56

For the min sequence {min(sm, tm)}
∞
m=0, it can be shown that, for each i = 0, ..., c− 1

precisely one of the following assertions hold:

1. (λ
(s)
i <λ

(t)
i or λ

(s)
i =λ

(t)
i and sb+i<tb+i) and ∀k ≥ 0. sb+Kic+kc+i ≤ tb+Kic+kc+i

2. (λ
(t)
i <λ

(s)
i or λ

(s)
i =λ

(t)
i and tb+i<sb+i) and ∀k ≥ 0. tb+Kic+kc+i ≤ sb+Kic+kc+i

Intuitively, starting from the position b+Kic, on every period c, the minimum amongst
the two sequences is always defined by the same sequence i.e., the one having the minimal
rate on index i, or if the rates are equal, the one having the smaller starting value.
We can show now that the min sequence {min(sm, tm)}

∞
m=0 is periodic starting at

bm = b + maxc−1
i=0 Kic, with period c and rates min(λ

(s)
0 , λ

(t)
0), ...,min(λ

(s)
c−1, λ

(t)
c−1). That

is, we have successively, for every k ≥ 0 and i = 0, ..., c− 1, and whenever i satisfies the
condition (1) above (the case when i satisfies the condition (2) being similar):

min(sbm+(k+1)c+i, tbm+(k+1)c+i) = sbm+(k+1)c+i

= λ
(s)
i + sbm+kc+i

= min(λ
(s)
i , λ

(t)
i) + min(sbm+kc+i, tbm+kc+i)

For the sequence
{⌊

sm
2

⌋}∞
m=0

, assume that the sequence {sm}
∞
m=0 is periodic with

prefix b, period c and rates λ0, ..., λc−1. It can be easily shown that the sequence ⌊ sm2 ⌋
is periodic as well with prefix b, period 2c, and rates λ0, ..., λc−1, λ0, ..., λc−1.
We have successively for any k ≥ 0, and for any i = 0, ..., c− 1:

⌊sb+(k+1)2c+i

2

⌋
=

⌊
2λi + sb+k·2c+i

2

⌋
= λi +

⌊sb+k·2c+i
2

⌋

Similarly, for any k ≥ 0 and for any i = 0, ..., c− 1, we have:

⌊s(b+k+1)2c+c+i

2

⌋
=

⌊
2λi + sb+k·2c+c+i

2

⌋
= λi +

⌊sb+k·2c+c+i
2

⌋

✷

The theorem below is an immediate consequence of Theorem 2.26 and Lemma 4.20.

Theorem 4.21 The class of octagonal relations is periodic.

Corollary 4.22 If R ∈ Roct is an octagonal relation, the rate Λ of the periodic sequence
{σ(Ri)}∞i=0 is tightly closed.

Proof: On one hand, σ(Ri) = M t
Ri is tightly closed, by definition. By Theorem 4.21,

there exist b ≥ 0, c > 0 and Λ ∈ Z4N×4N
∞ , for all n ≥ 0:

σ(Rnc+b) = n · Λ + σ(Rb)

57

The first two points of Definition 2.19 are immediate. The closure (point 3 of Definition
2.19) is by Corollary 4.10. We are left with proving the last point, namely that for all
1 ≤ i, j ≤ 4N :

Λij ≤ ⌊
Λīı
2
⌋+ ⌊

Λ̄j
2
⌋ (4.7)

Since σ(Rnc+b) is tightly closed, for all n ≥ 0, we have, for all 1 ≤ i, j ≤ 4N :

n · Λij + σ(Rb)ij ≤ ⌊
n·Λiı̄+σ(R

b)iı̄
2 ⌋+ ⌊

n·Λ̄j+σ(R
b)̄j

2 ⌋

≤ n · (⌊Λiı̄
2 ⌋+ ⌊

Λ̄j

2 ⌋) + ⌊
σ(Rb)iı̄

2 ⌋+ ⌊
σ(Rb)̄j

2 ⌋+ 2

The last inequality holds because, for all x, y ∈ Z and n ≥ 0:

• ⌊x+y2 ⌋ ≤ ⌊
x
2 ⌋+ ⌊

y
2⌋+ 1,

• ⌊n·x2 ⌋ = n · ⌊x2 ⌋ if x is even,

and Λīı and Λ̄j are both even. We calculate:

n · (Λij − ⌊
Λīı
2
⌋ − ⌊

Λ̄j
2
⌋) ≤ ⌊

σ(Rb)īı
2
⌋+ ⌊

σ(Rb)̄j
2
⌋ − σ(Rb)ij + 2, ∀n ≥ 0

Then the condition (4.7) follows. ✷

4.3.2 Checking ∗-consistency and Periodicity

Similar to the case of difference bounds relations, in this section we give efficient ways
to implement the MaxConsistent and MaxPeriodic procedures from Algorithm 1.
In the rest of this section, a univariate linear half-term is a term of the form ⌊α·k+β2 ⌋,
where the mapping x 7→ ⌊x2 ⌋ denotes the integer division by two.
Unlike the case of octagonal constraints with constants coefficients, the matrices rep-

resenting parametric octagons do not have a tightly closed canonical form. To overcome
this problem, one can use Algorithm 3 and Theorem 2.20 to define the tight closure of
a parametric octagonal matrix as a matrix whose entries are either ∞ or terms of the
form min{ti(k)}

m
i=1, where ti(k) are either univariate linear terms or sums of half-terms.

MaxConsistent. Given an octagonal relation R, integers b ≥ 0, c > 0 such that Rb+2c is
consistent, and a matrix Λ ∈ Z4N×4N

∞ , let us denoteMR,b,Λ = k ·Λ+σ(Rb) ∈ Z[k]4N×4N
∞ .

Similarly as in the difference bounds case, we have:

MaxConsistent(R, b,Λ) = sup{n ∈ N | MR,b,Λ[n] is octagonal-consistent}
= inf{n ∈ N | MR,b,Λ[n] is octagonal-inconsistent} − 1

According to Theorem 2.20, MR,b,Λ[n] is octagonal-inconsistent for some valuation

n ∈ N of k, if either (i)M [n]R,b,Λ is inconsistent, or (ii) ⌊
(M [n]∗R,b,Λ)iı̄

2 ⌋+⌊
(M [n]∗R,b,Λ)ı̄i

2 ⌋ < 0,
for some 1 ≤ i ≤ 4N .

58

Let M = ParametricFW(MR,b,Λ), as returned by Algorithm 3. Checking for the
case (i) can be done in a similar way as for difference bounds constraints (Section 4.2).
The condition of case (ii) is equivalent to the following:

min [[{⌊
t

2
⌋+ ⌊

u

2
⌋ | t ∈Mīı, u ∈Mı̄i]]≥0 < 0, for some 1 ≤ i ≤ 4N (4.8)

The following lemma shows that a set of sums of univariate half-terms is semantically
equivalent to the union of two sets of univariate linear terms.

Lemma 4.23 Let T = {ti +
∑mi

j=1⌊
uij
2 ⌋}

n
i=1, where ti = αi · k+ βi, uij = γij · k+ δij are

univariate linear terms. Then there exist two sets L,U of univariate linear terms such
that for all k ≥ 0:

min{L(k)} = min{T (2k)}
min{U(k)} = min{T (2k + 1)}

Moreover ||L|| ≤ ||T || and ||U|| ≤ ||T ||.

Proof: For a univariate linear term γ · k + δ ∈ Z[k], we have:

[[⌊
γ · k + δ

2
⌋]]≥0 = [[γ · k + ⌊

δ

2
⌋]]≥0 ∪ [[γ · k + ⌊

γ + δ

2
⌋]]≥0.

Let
L = {(2αi +

∑mi
j=1 γij) · k + βi +

∑mi
j=1⌊

δij
2 ⌋}

n
i=1, and

U = {(2αi +
∑mi

j=1 γij) · k + αi + βi +
∑mi

j=1⌊
γij+δij

2 ⌋}ni=1.

Clearly [[T]]≥0 = [[L]]≥0∪[[U]]≥0, min{L(k)} = min{T (2k)}, and min{U(k)} = min{T (2k+
1)} for all k ≥ 0. It is easy to see that ||L|| ≤ ||T || and ||U|| ≤ ||T ||. ✷

Let us denote Ti = {⌊
t
2⌋+ ⌊

u
2 ⌋ | t ∈ Mīı, u ∈ Mı̄i}. Then, the condition (4.8) can be

rewritten as
min [[Ti]]≥0 < 0, for some 1 ≤ i ≤ 4N .

By Lemma 4.23, for each i = 1, . . . , 4N there exist sets of univariate linear terms Li
and Ui such that min{Li(k)} = min{Ti(2k)} and min{Ui(k)} = min{Ti(2k + 1)} for all
k ≥ 0. Therefore, for all 1 ≤ i ≤ 4N , we have

(min [[Ti]]≥0 < 0)⇔ (min [[Li]]≥0 < 0) ∨ (min [[Ui]]≥0 < 0).

With these considerations, the MaxConsistent procedure can be implemented as
follows. We define

Kdb = min{Γ(Mii)}4Ni=1,
KL = min{Γ(Li)}

4N
i=1,

KU = min{Γ(Ui)}
4N
i=1

where given a set of univariate linear terms T , Γ(T) is a constant defined in the Lemma
4.13. Note that Kdb is the minimal integer n ∈ N such that M [n]R,b,Λ is inconsistent.
By Lemma 4.23, min{2 ·KL, 2 ·KU − 1} is the minimal integer for which (4.8) holds, or

59

equivalently, the minimal integer n ∈ N such that ⌊
(M [n]∗R,b,Λ)iı̄

2 ⌋+ ⌊
(M [n]∗R,b,Λ)ı̄i

2 ⌋ < 0, for
some 1 ≤ i ≤ 4N . Consequently, the MaxConsistent procedure returns:

MaxConsistent(R, b,Λ) = min{Kdb, 2 ·KL, 2 ·KU − 1} − 1.

Proposition 4.24 For an octagonal relation R, an integer b ≥ 0 such that Rb is con-
sistent and a matrix Λ ∈ Z4N×4N

∞ , MaxConsistent runs in time at most O((b + c)3 ·
||R||3 ·N9).

Proof: Computing M requires one application of Algorithm 3. By Proposition 4.12,
the call to Algorithm 3 requires time at most O(µ3 ·N6), where:

µ = min(max
1≤i,j≤2N

{|Λij |}, max
1≤i,j≤2N

{|(σ(Rb))ij |})

Moreover, the size ofMij is bounded by 8N · µ, by Proposition 4.12. By an argument
similar to the one in the proof of Proposition 4.12, one infers that µ ≤ (b+c+1)·2N ·||R||.
Consequently, M takes at most O((b + c)3 · ||R||3 · N9) time and ||Mij || is bounded by
O((b+ c) · ||R|| ·N2).
Hence, computing Li and Ui can be done in time at most O(N2 · (b + c) · ||R||). By

Lemma 4.23, ||Li|| ≤ ||Mij ||, and ||Ui|| ≤ ||Mij || and consequently, Kdb,KL, an KL can be
computed in O((b + c) · ||R|| ·N3) time for each 1 ≤ i ≤ 4N . Hence, MaxConsistent
procedure runs in time at most O((b+ c)3 · ||R||3 ·N9). ✷

MaxPeriodic. Given an octagonal relation R, two integers b ≥ 0 and c > 0, such
that Rb is consistent, a constant K ∈ N∞, and a matrix Λ ∈ Z4N×4N

∞ , the procedure
MaxPeriodic(R, b,Λ, c,K) returns the maximal positive integer n ≤ K such that the
equivalence ρ(ℓ · Λ + σ(Rb)) ◦Rc ⇔ ρ((ℓ+ 1) · Λ + σ(Rb)) holds for all 0 ≤ ℓ < n, or ∞
if the above holds for all positive ℓ.
The left-hand side of the equivalence can be encoded by a matrix M1 of terms of the

form min{ti}mi=1, where ti are either univariate linear terms or sums of univariate half-
terms, and can be computed by Algorithm 3. We show that the DBM M2 that encodes
the right-hand side relation is tightly closed, for all valuation of k, meaning that the
right-hand side can be simply represented by a parametric DBM, under the octagonal
interpretation.

Lemma 4.25 Let R ∈ Roct be an octagonal relation, and Λ be the rate of the periodic
sequence {σ(Ri)}∞i=0. Then, for all b, n ≥ 0, the DBM (n+1) ·Λ+σ(Rb) is tightly closed.

Proof: As a direct consequence of the fact that σ(Rb) is tightly closed, by definition, and
that Λ is tightly closed, by Corollary 4.22. ✷

Two octagonal relations are equivalent whenever their tightly closed DBM encodings
are equal (Proposition 2.21). Hence we need to check for equality (inside some interval)
between min-sets of univariate linear terms and sums of half-terms (the left-hand side

60

matrix M1) and univariate linear terms (the right-hand side matrix M2). Here again
Lemma 4.23 comes to rescue. We compute M1 using Algorithm 3 and Theorem 2.26.
Using Lemma 4.23, we split M1 to M1,L and M1,U , where M1,L,M1,U are matrices with
sets of univariate terms as entries such that min{(M1,L)ij(k)} = min{Mij(2k)} and
min{(M1,U)ij(k)} = min{Mij(2k+1)} for all k ≥ 0. Similarly, we split M2 to M2,L and
M2,U . Then, we apply Lemma 4.16 to compute the upper bound PL (PU) of the interval
in which M1,L and M2,L (M1,U and M2,U) are equal. Finally, the upper bound of the
interval in which M1 and M2 are equal is computed as min{2 · PL, 2 · PU − 1}+ 1.

Proposition 4.26 For a difference bounds relation R, and integers b ≥ 0, c > 0 such
that Rb+c is consistent and a matrix Λ ∈ Z2N×2N

∞ , MaxPeriodic runs in time at most
O((b+ c)3 · ||R||3 ·N9).

Proof: By an argument similar to the one used in the proof of Proposition 4.24, Algorithm
3 computes the matrixM of sets representing the parametric composition of k ·Λ+σ(Rb)
with σ(Rc) in time O((b+c)3 ·||R||3 ·N9). Moreover the size of each entryMij is bounded
by O((b+ c) · ||R|| ·N2). Computing the minimal bound from Lemma 4.16 requires then
O((b+ c) · ||R|| ·N4) time. Hence the result. ✷

Finally, we prove the asymptotic complexity on the running of Algorithm 1 for an
octagonal relation R in terms of its prefix, period, the number of variables used to define
R, and the sum of absolute values of coefficients of R.

Theorem 4.27 Let R be an octagonal relation with prefix B and period C. Then,
Algorithm 1 computes the transitive closure of R in at most O((B+C)8 · ||R||3 ·N9) time.

Proof: The bounds on the running time of procedures MaxConsistent (Propositions
4.24) and MaxPeriodic (Proposition 4.26) for octagonal relations are same as for dif-
ference bounds relations (Propositions 4.14 and 4.17, respectively). Similarly, relational
composition of octagons has the same asymptotic bound O(N3) as difference bounds
constraints. Hence, we obtain the same bound as in Theorem 4.18. ✷

Running Example Consider the octagonal relation R(x1, x2, x
′
1, x

′
2) ⇔ x1 + x2 ≤

5 ∧ x′1 − x1 ≤ −2 ∧ x
′
2 − x2 ≤ −3 ∧ x

′
2 − x

′
1 ≤ 1. The check at line 9 of Algorithm

1 succeeds for (b, c) = (1, 1). In order to compute MaxPeriodic, one needs to compose
parametric difference bound matrices, similarly as in the case of difference bound rela-
tions. Moreover, the tightening step must be performed. Figure 4.5 shows the parametric
matrix M representing the left-hand side of the equivalence checked by MaxPeriodic.
The matrix is closed, but not tightly closed. We illustrate the tightening for the con-
straint y′′3 − y

′
4, which depends on constraints y′′3 − y

′′
4 and y′′4 − y

′′
4 and is thus computed

as

min{−6k − 3, ⌊
−6k

2
⌋+ ⌊

−6k − 6

2
⌋}

61




y1 y2 y3 y4 y′′1 y′′2 y′′3 y′′4 y′1 y′2 y′3 y′4
y1 0 ∞ ∞ 5 ∞ ∞ ∞ −3k+2 ∞ ∞ ∞ −3k−1
y2 ∞ 0 ∞ ∞ ∞ −2k−2 ∞ −3k−1 ∞ −2k−4 ∞ −3k−4
y3 ∞ 5 0 ∞ ∞ −2k+3 ∞ −3k+4 ∞ −2k+1 ∞ −3k+1
y4 ∞ ∞ ∞ 0 ∞ ∞ ∞ −3k−3 ∞ ∞ ∞ −3k−6
y′′1 −2k−2 ∞ ∞ −2k+3 0 ∞ ∞ −5k ∞ ∞ ∞ −5k−3
y′′2 ∞ ∞ ∞ ∞ ∞ 0 ∞ 1 ∞ −2 ∞ −2
y′′3 −3k−1 −3k+2 −3k−3 −3k+4 1 −5k 0 −6k ∞ −5k−2 ∞ −6k−3
y′′4 ∞ ∞ ∞ ∞ ∞ ∞ ∞ 0 ∞ ∞ ∞ −3
y′1 −2k−4 ∞ ∞ −2k+1 −2 ∞ ∞ −5k−2 0 ∞ ∞ −5k−5
y′2 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 0 ∞ 1
y′3 −3k−4 −3k−1 −3k−6 −3k+1 −2 −5k−3 −3 −6k−3 1 −5k−5 0 −6k−6
y′4 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 0




Figure 4.5: Left-hand side before tightening

By Lemma 4.23, we obtain

[[− 6k − 3]]≥0 = L1 ∪ U1 = [[− 12k − 3]]≥0 ∪ [[− 12k − 9]]≥0

[[⌊−6k
2 ⌋]]≥0 = L2 ∪ U2 = [[− 6k]]≥0 ∪ [[− 6k − 3]]≥0

[[⌊−6k−6
2 ⌋]]≥0 = L3 ∪ U3 = [[− 6k − 3]]≥0 ∪ [[− 6k − 6]]≥0

The tightening step splits M into ML and MU . In ML, the tightened constraint y′′3 − y
′
4

is computed as

min{−12k − 3, (−6k) + (−6k − 3)} = −12k − 3

and similarly in MU , the tightened constraint y′′3 − y
′
4 is computed as

min{−12k − 9, (−6k − 3) + (−6k − 6)} = −12k − 9

Further checks are similar as in the difference bounds case. Then, Algorithm 1 returns
the following result:

R+ ⇔
b−1∨

i=1

Ri ∨ ∃k ≥ 0 .
c−1∨

i=0

π(k · Λ + σ(R)) ◦Ri

⇔ ∃k ≥ 0 . x′2≤−3k ∧ x
′
1−x1≤−2k−2 ∧ x

′
2−x

′
1≤1 ∧ x′2−x1≤−3k−1 ∧

x′2−x2≤−3k−3 ∧ x1+x2≤5 ∧ x1+x
′
2≤−3k+2 ∧

x′1+x2≤−2k+3 ∧ x′1+x
′
2≤−5k ∧ x

′
2+x2≤−3k+4

After quantifier elimination, we obtain:

R+ ⇔ x′2≤0 ∧ x′1−x1≤−2 ∧ x
′
2−x1≤−1 ∧ x

′
2−x

′
1≤1 ∧

x′2−x2≤−3 ∧ x1+x2≤5 ∧ x1+x
′
2≤2 ∧

x′1+x2≤3 ∧ x′1+x
′
2≤0 ∧ x2+x

′
2≤4

✷

62

4.4 Finite Monoid Affine Relations

Recall from Section 2.5 that an affine relation R ∈ ZN × ZN is defined by a linear
arithmetic constraint of the form x′ = Ax + b, where A ∈ ZN×N is a square matrix,
and b ∈ ZN is a column vector. The relation is said to have the finite monoid property
if the set {A0, A1, . . .} of matrix powers of A is finite.
It is easy to see that A is finite monoid if and only if there exists p ≥ 0 and l > 0

such that Ap = Ap+l, i.e. MA = {A0, . . . , Ap, . . . , Ap+l−1}. If A has the finite monoid
property, it can be shown that the transitive closure of T can be defined in Presburger
arithmetic [Boi99, FL02]. We achieve the same result below, by showing that the update
of a finite monoid affine relations is a periodic relation. As a consequence, the closed
form of the update can be computed by Algorithm 1. Since the update relation is ∗-
consistent and deterministic, the transitive closure can be computed by applying the
following lemma.

Lemma 4.28 Let R(x,x′) ∈ R be a ∗-consistent deterministic relation and ϕ(x) be
a guard. Then the transitive closure of the relation R ∧ ϕ can be defined as:

(R ∧ ϕ)+(x,x′)⇔ ∃k > 0 . R̂(k,x,x′) ∧ ∀0 ≤ ℓ < k ∃y . R̂(ℓ,x,y) ∧ ϕ(y)

where R̂ defines the closed form of R.

Proof: “⇒” Let v,v′ be a pair of valuations of x and x′, respectively, such that v,v′ |=
(R∧ϕ)+. Then there exists n > 0 such that v,v′ |= (R∧ϕ)n. Consequently, there exists
a sequence of valuations v = v0,v1, . . . ,vn = v′ such that vi,vi+1 |= R∧ϕ. By Definition
3.9, we have that |= R̂(n,v0,vn) and |= R̂(i,v0,vi) ∧ ϕ(vi), for all i = 0, . . . , n− 1.
”⇐” Let v and v′ be two valuations such that |= R̂(n,v,v′) for some n > 0 and for all
i = 0, . . . , n − 1 we have |= R̂(i,v,vi) and |= ϕ(vi), for some valuation vi of x. Since
R̂(n)⇔ Rn, by Definition 3.9, there exists a sequence of valuations v = v′

0,v
′
1, . . . ,v

′
n =

v′ such that v′
i,v

′
i+1 |= R. By the fact that R was assumed to be deterministic, we have

vi = v′
i for all i = 0, . . . , n − 1, hence v′

i |= ϕ, for all i = 0, . . . , n − 1. Clearly then
v,v′ |= (R ∧ ϕ)+. ✷

To compute the transitive closure of an affine relation, it is enough to compute the
closed form of its update. This can be computed by Algorithm 1 whenever the update
relation is shown to be periodic. In the following, we show that this is indeed the case,
when A has the finite monoid property. For simplicity reasons, we will work with the
equivalent homogenous form of (2.3)

Th ⇔ x′
h = Ah × xh ∧ φh(xh) where Ah ⇔

(
A b

0 . . . 0 1

)

where xh = 〈x1, . . . xN , xN+1〉 with xN+1 6∈ x being a fresh variable and φh(xh) ⇔
φ(x) ∧ xN+1 = 1. The encoding of an affine update Tu ⇔ x′

h = Ah × xh is defined

as σ(Tu) = Ah ∈ Z
(N+1)×(N+1)
∞ . Dually, for some M ∈ Z[k]

(N+1)×(N+1)
∞ , we define

π(M) ⇔ x′
h = M × xh. With these definitions, we have σ(T ku) = Ah

k, for all k > 0.
The next lemma proves that the class of finite monoid affine updates is periodic.

63

Lemma 4.29 Let A ∈ ZN×N be a finite monoid matrix, b ∈ ZN be a vector, and let
write the finite monoid generated by A asMA = {A0, . . . , Ap, . . . , Ap+l−1}, where p ≥ 0,
l > 0, and Ap = Ap+l. Then, the sequence {Ah

k}∞k=0 is periodic with prefix p and period
l.

Proof: Let A ∈ ZN×N be a matrix, b ∈ ZN be a vector, and

Ah ⇔

(
A b

0 . . . 0 1

)

Then we have, for all k ≥ 0:

(Ah)
k =

(
Ak

∑k−1
i=0 A

i × b

0 . . . 0 1

)

For i = N + 1, 1 ≤ j ≤ N + 1, {(Ah
k)ij}

∞
k=0 is trivially periodic. For 1 ≤ i, j ≤ N ,

{(Ah
k)ij}

∞
k=0 is periodic due to the fact that A is finite monoid. It remains to be proven

that, for all 1 ≤ j ≤ N , the sequence {(
∑k−1

i=0 A
i × b)j}

∞
k=0 is periodic. Without loss

of generality, assume that the monoid of A isMA = {A0, A1, . . . , Ap, . . . Ap+l−1}, where
Ap = Ap+l. Then, for k ≥ p, we have:

∑k−1
i=0 A

i =
∑p−1

i=0 A
i + ⌊k−p+1

l ⌋ ·
∑p+l−1

i=p Ai +
∑p+((k−p+1) mod l)

i=p Ai.

Hence the sequence {
∑k−1

i=0 A
i}∞k=0 is periodic with prefix p, period l, and rates

Λj =
∑p+l−1

i=p Ai

for all j = 0, 1, . . . , l− 1. Consequently, Ah is periodic with the same prefix and period.
✷

As a direct consequence, we have the following theorem.

Theorem 4.30 The class of finite monoid affine updates is periodic. Moreover, the
transitive closures of finite monoid affine relations with Presburger definable guards are
effectively Presburger definable.

The implementation of the procedures MaxConsistent and MaxPeriodic for finite
monoid affine relations is rather simple. Since we run Algorithm 1 for ∗-consistent
updates of the form x′

h = Ah × xh only, MaxConsistent needs to return always
∞. The MaxPeriodic test can be implemented as an equivalence check between two
homogeneous linear systems with univariate linear coefficients. More precisely, given
a homogeneous transformation x′ = A × x, with A ∈ Z(N+1)×(N+1) and a matrix Λ ∈
Z(N+1)×(N+1), we are looking for valuations of k that satisfy the following equality

(Ab + k · Λ)×Ac = Ab + (k + 1) · Λ (4.9)

64

Both (Ab+ k ·Λ)×Ac and Ab+ (k+1) ·Λ are matrices where each entry is a univariate
linear term. The test on line 9 of the Algorithm 1 guarantees that the above equality
holds for at least k=0 and k=1. Clearly, if t1(0) = t2(0) and t1(1) = t2(1) for two
univariate linear terms t1, t2, then t1(k) = t2(k) for all k ≥ 0. Hence, the MaxPeriodic
returns always L =∞. We summarize these observations in the following proposition

Proposition 4.31 Given a finite monoid matrix A ∈ ZN×N , integers b ≥ 0, c > 0,
and a matrix Λ ∈ Z(N+1)×(N+1) such that Ab+ch = Abh + Λ and Ab+1c

h = Ab+ch + Λ, the
procedures MaxConsistent and MaxPeriodic run in constant time.

Finally, we prove the asymptotic complexity on the running of Algorithm 1 for a finite
monoid affine relation R in terms of its prefix, period, and the number of variables used
to define R.

Theorem 4.32 Let R be a finite monoid affine relation with prefix B and period C.
Then, Algorithm 1 computes the transitive closure of R in at most O((B + C)2 · N3)
time.

Proof: Let R be a finite monoid affine relation and let Ru be the update of R. If
follows from Lemma 4.29 that asymptotic bound on the time needed to compute the
transitive closure of R and Ru are same. Thus, we consider only an update relation in

a homogenous form encoded as a matrix Ah ∈ Z
(N+1)×(N+1)
∞ .

By Theorem 3.16, Algorithm 1 takes at most O((B + C)2) iterations of the main
loop and in each iteration and moreover, the algorithm considers a prefix and period
candidates b and c such that both b and c are bounded by O((B+C)2). By Proposition
4.31, procedures MaxConsistent and MaxConsistent run in constant time. The
test on line 8 amounts to equality of two matrices and can be thus performed in O(N2)
time. The greatest power of a relation that is computed by the algorithm is Rb+2c.
Since the composition of an update in a homogenous form with itself amounts to matrix
multiplication, if follows that these computations are performed in O((B+C) ·N3) time.
Hence, the total bound on the running time of Algorithm 1 is O((B + C)2 ·N3). ✷

65

5 Complexity of the Transitive Closure
Algorithm

This chapter is concerned with the worst-case complexity of the transitive closure al-
gorithm from Chapter 3 (Algorithm 1) when applied to difference bounds, octagonal,
and finite monoid affine relations. For a periodic relation R ⊆ ZN ×ZN with prefix
b ≥ 0 and period c > 0, the asymptotic bound on the running time of Algorithm 1 is
O((b + c)8 · ||R||3 · N9) if R is a difference bounds or an octagonal relation (by Theo-
rem 4.18 and 4.27), where ||R|| denotes the sum of absolute values of the coefficients of
R. The asymptotic bound is O((b + c)2 ·N3) if R is a finite monoid affine relation (by
Theorem 4.32).
The main issue, dealt with in this chapter, is thus the evaluation of the upper bounds

of the prefix b and period c for each of these classes of relations. We prove that for
difference bounds relations, b is asymptotically bounded by ||R|| ·2O(N) and c is bounded
by 2O(N). For octagonal relations, the bound on the period is same as for difference
bounds relations and the prefix is bounded by ||R||2 · 2O(N). For finite monoid affine
relations, b + c is the size of the monoid, which in turn is proved to be bounded by
2O(N log10 11). Columns 2 and 3 in Table 5.1 summarize these results. Combining the
bounds on the size of the prefix and the period with the bounds given by Theorem 4.18,
4.27, and 4.32, we obtain asymptotic bounds on the running time of Algorithm 1 in
terms of N and ||R|| (the last column in Table 5.1).

Table 5.1: Transitive Closure Complexities for Periodic Relations

Class Prefix Period Transitive Closure

difference bounds ||R|| · 2O(N) 2O(N) ||R||8 · 2O(N)

octagonal ||R||2 · 2O(N) 2O(N) ||R||16 · 2O(N)

finite monoid affine 2O(N log10 11) 2O(N log10 11) 2O(N log10 11)

In all cases, Algorithm 1 runs in EXPTIME in the number of variables, and PTIME
in the sum of absolute values of the coefficients of R or, equivalently, in EXPTIME in
the size of the binary representation of R.

66

5.1 Difference Bounds Relations

Any difference bounds relation R ∈ Rdb is periodic, by Theorem 4.8. This result extends
to the octagonal class Roct, by Theorem 4.21. The periodicity of difference bounds rela-
tions is a consequence of the fact that the sequence of tropical matrix powers {M⊠

i

R }i≥0

whereMR is the incidence matrix of the common transition table TR = (Q,∆, w) of the
zigzag automata defined for R (see Section 2.3.3), is periodic by Theorem 4.6. Since each
power of R is encoded by a matrix which is a projection of a tropical power ofMR, the
prefix of R is not greater than the prefix of {M⊠

i

R }i≥0, while the period of R is a divisor

of the period of {M⊠
i

R }i≥0. In this section, we prove a ||R|| · 2O(N) upper bound for the
prefix and a 2O(N) upper bound for the period ofMR. By the previous arguments, these
bounds are also bounds for the prefix and the period of R, respectively.
In the rest of this section, let x = {x1, . . . , xN} be a set of variables, R(x,x′) be

a difference bounds relation, and TR = (Q,∆, w) be the common transition table of
zigzag automata defined for R.

5.1.1 Bounding the Prefix

We start by instantiating Lemma 4.4 for the common transition table TR = (Q,∆, w) of
zigzag automata defined for R.

Corollary 5.1 Let TR = (Q,∆, w) be the common transition table of zigzag automata
defined for a difference bounds relation R, and u, v ∈ Q be two control states. Then for
every minimal weight path ρ form u to v, such that |ρ| ≥ ||R|| · ||Q||6, there exists a path ρ′

from u to v, such that w(ρ) = w(ρ′) and |ρ| = |ρ′|, and a basic path scheme θ = σ ·λ∗ ·σ′,

such that ρ′ = σ · λb · σ′, for some b ≥ 0. Moreover, there exists c | lcm(1,...,||Q||−1)
|λ| such

that σ · λb+kc · σ′ is a minimal weight path from u to v, for all k ≥ 0.

Proof: We obtain the statement of the corollary by instantiating Lemma 4.4 with
TR = (Q,∆, w), in which case µ(TR) ≤ ||R||. ✷

Similarly, we instantiate Theorem 4.6.

Corollary 5.2 Let TR = (Q,∆, w) be the common transition table of zigzag automata
defined for a difference bounds relation R, and let MR be its incidence matrix. Then,
the sequence {M⊠

i

R }i≥0 is periodic. Moreover, its prefix b is bounded by ||R|| · 2O(N), and

its period divides lcm(1, . . . , 5N) and is bounded by 22
O(N)

.

Proof: We obtain the statement of the corollary by instantiating Theorem 4.6 with
TR = (Q,∆, w), in which case µ(TR) ≤ ||R|| and ||Q|| = 5N . ✷

A direct consequence of Corollary 5.2 is that the prefix of a difference bounds relation
R is bounded by ||R|| · 2O(N).

Corollary 5.3 Let x = {x1, . . . , xN} be a set of variables. Given a difference bounds
relation R(x,x′), its prefix is bounded by ||R|| · 2O(N).

67

Proof: We distinguish two cases. First, if R is ∗-consistent, then the bound ||R|| · 2O(N)

on the prefix of TR = (Q,∆, w) that follows from Corollary 5.2 is also the bound on the
prefix of R, by Proposition 4.9.
If R is not ∗-consistent, there exists a power ℓ > 0 such that Rℓ ⇔ ⊥. Consequently,
there exists a minimal weight path ρ of length ℓ in the even zigzag automaton for R,
recognizing a negative cycle. By Lemma 4.3, there exists an equivalent path ρ′ of the form
σ · λk · σ′, where |σ · σ′| < 54N and |λ| < 5N , for some k ≥ 0. We have ℓ = |σ · σ′|+ k|λ|.
The prefix of R is the minimal length ℓ such that w(ρ) = w(ρ′) < 0. If w(σ · σ′) < 0,
then this length is |σσ′| < 54N . Otherwise, if w(σ · σ′) ≥ 0, we have w(λ) < 0, or else ρ′

could not encode a negative cycle, independently of how large it is. Then w(ρ′) < 0 if

and only if k > w(σ·σ′)
−w(λ) Since −w(λ) > 0 and w(λ) ∈ Z, we have −w(λ) ≥ 1. A sufficient

condition is that k > ||R|| · 54N > w(σ · σ′), hence ℓ = |ρ′| > 54N + ||R|| · 55N , i.e. the
prefix of a ∗-inconsistent relation R is also asymptotically bounded by ||R|| · 2O(N). ✷

Similarly, a direct consequence of Corollary 5.2 is the bound on the period which is
double exponential in N . In the next section, we prove that this bound can be improved
to 2O(N).

Corollary 5.4 Let x = {x1, . . . , xN} be a set of variables. Given a difference bounds

relation R(x,x′), its period is bounded by 22
O(N)

.

Proof: The period of ∗-inconsistent relation R is 1, by Definition 3.8, which is clearly
bounded by 22

O(N)
.

Let TR = (Q,∆, w) be the common transition table of zigzag automata of a ∗-

consistent R. By Corollary 5.2, the period c of TR is bounded by 22
O(N)

. Since each
elementMRi , i ≥ 0, of the sequence {MRn}n≥0 of powers of R is obtained as a projection

ofM⊠
i

R , it follows that the period of R divides the period of TR. Thus, the period of R

is bounded by 22
O(N)

too. ✷

5.1.2 Bounding the Period

In this section, we refine Corollary 5.4 and show that the period of difference bounds
relations is bounded by a single exponential. We start by defining several key notions
and giving a high level idea of the proof.

Key Notions and a Proof Idea

Given a difference bounds relation R(x,x′), x = {x1, . . . , xN} and the unfolded graph GωR,
we define the composition, power, relative length, and relative average weight operators
on paths in GωR.

Definition 5.5 Let R(x,x′), x = {x1, . . . , xN}, be a difference bounds relation and let

ρ : x
(l0)
i0
−→ x

(l1)
i1
−→ . . . −→ x

(lm)
im

ρ′ : x
(k0)
j0
−→ x

(k1)
j1
−→ . . . −→ x

(kn)
jn

68

m,n ≥ 1, be two paths in GωR. The relative path length operator is defined as ||ρ|| =

|lm − l0|. If ||ρ|| > 0, we define the relative average weight operator w(ρ) = w(ρ)
||ρ|| . If

im = j0, we define ρ.ρ′, the composition of ρ with ρ′, as

ρ.ρ′ = x
(l0)
i0
−→ x

(l1)
i1
−→ . . . −→ x

(lm)
im
−→ x

(k1−d)
j1

−→ . . . −→ x
(kn−d)
jn

where d = k0 − lm. Further, if i0 = im, we define ρk, k ≥ 1, the k-th power of ρ as
k-times composition of ρ with itself.

x4

x3

x2

x1

x(0) x(1)

x4

x3

x2

x1

x(0) x(1) x(2)

x4

x3

x2

x1

x(0) x(1) x(2) x(3) x(4)

(a) Edges (b) Repeating path ρ (c) ρ2

Figure 5.1: Illustration of repeating path.

Example 5.6 Consider the edges in Figure 5.1(a) and build paths ρ1 : x
(0)
4 −→ x

(1)
3 −→

x
(0)
2 −→ x

(1)
1 and ρ2 : x

(0)
1 −→ x

(1)
4 . Their concatenation ρ1.ρ2 results in a path ρ : x

(0)
4 −→

x
(1)
3 −→ x

(0)
2 −→ x

(1)
1 −→ x

(2)
4 depicted in Figure 5.1(b). Note that ||ρ|| = 2. The second

power of ρ, denoted ρ2, is depicted in Figure 5.1(c).

Next, we define several notions characterizing the structure of paths in GωR.

Definition 5.7 Let R(x,x′), x = {x1, . . . , xN}, be a difference bounds relation and let

ρ = x
(l0)
i0

❀ x
(lm)
im

be a path in GωR. We say that ρ is forward (fw) if and only if lm > l0.
We say that ρ is backward (bw) if and only if lm < l0. We say that ρ is repeating if and
only if i0 = im. We say that ρ is essential if and only if for all 1 ≤ j < k ≤ m, ij = ik
only if j = 0 and k = m. Path ρ is said to be a cycle if and only i0 = im and l0 = lm.
We say that ρ is cyclic if and only if ρ has a subpath that is a cycle. A path is acyclic
if and only if it is not cyclic.

Intuitively, repeating path can composed with itself arbitrary many times. Note that
the length of an essential path ρ is at most N , |ρ| ≤ N . Consequently, its relative length

is at most N too, ||ρ|| ≤ N . Next, we define GfR, the folded graph of R. Intuitively, GfR
projects all edges onto unprimed variables x.

Definition 5.8 Let R(x,x′), x = {x1, . . . , xN}, be a difference bounds relation and let

GR be its graph representation. The folded graph of GR is defined as GfR = (x, E), where

xi −→ xj is an edge in E if and only if xi
c
−→ xj, x

′
i
c
−→ x′j, xi

c
−→ x′j, or x

′
i
c
−→ xj is an edge

of GR. We write xi ∼ xj if and only if xi and xj belong to the same strongly connected

component of GfR. Clearly, ∼ is an equivalence relation.

69

Note that folded graphs are not weighted. Figure 5.2(b) depicts the folded graph GfR of
GR from Figure 5.2(a). The folded graph in Figure 5.2(b) has two strongly connected
components {x1} and {x2, x3}.

x′3

x′2

x′1

x3

x2

x1
−1

0

0
−1

0

0 x3

x2

x1

⊥
r
l

⊥
r
⊥

⊥
⊥
r

λ1 λ2

x3

x2

x1

x(0) x(1) x(2)

0 −1

(a) GR (b) GfR (c) TR with a simple cycle λ2 (d) The label of λ2

Figure 5.2: Folded graph. Zigzag automaton with a simple cycle.

Then, we observe that each cycle λ in TR = (Q,∆, w) (a zigzag cycle, for short)
encodes a set of forward ∗-acyclic and backward ∗-acyclic paths.

Definition 5.9 A repeating path ρ is ∗-acyclic if and only if ρk is acyclic for all k ≥ 1.

Intuitively, a ∗-acyclic path can be composed with itself arbitrary many times without
producing cyclic subpaths. For instance, the path ρ depicted in Figure 5.1(b) is ∗-acyclic.
Note that each essential repeating path is ∗-acyclic.
Further, we study the structure of path schemes σ.λ∗.σ′ from Lemma 5.1 and prove

that one can without loss of generality assume that λ is simple.

Definition 5.10 A cycle λ in the transition table of a zigzag automaton TR = (Q,∆, w)
is simple if and only if it encodes at most one ∗-acyclic path per equivalence class of ∼
relation. A basic path scheme θ = σ.λ∗.σ′ is simple if and only if λ is simple.

Figure 5.2(c) illustrates a part of the transition table of the zigzag automaton corre-
sponding to the relation in Figure 5.2(a). The cycle λ1 depicted in Figure 5.2(c) is not

simple, since it encodes two ∗-acyclic paths x
(0)
2

0
−→ x

(1)
2 and x

(0)
3

0
−→ x

(1)
3 from the same

strongly connected component {x2, x3}. On the other hand, λ2 is simple, since it encodes

only one ∗-acyclic path x
(0)
2

0
−→ x

(1)
3

−1
−−→ x

(2)
2 depicted in Figure 5.2(d).

Next, we prove that we can make the statement of Lemma 5.1 even more accurate and
consider, without loss of generality, only path schemes with cycles whose length divides
lcm(1, . . . , N). Let µj be a ∗-acyclic path of the form µj : xij ❀ xij encoded in a simple
zigzag cycle λ, where xij ∈ zj for some equivalence class zj ∈ x/∼. We first observe that
there exists an essential ∗-acyclic path µj of the form νj : xkj ❀ xkj , where xkj ∈ zj
as well. Supposing that λ encodes m ∗-acyclic paths, the intuition is to build a cycle

λ′ as follows: letting L = lcm{||ν1||, . . . , ||νm||}, the cycle λ′ will encode paths ν
dj
j , where

dj = L
||νj ||

. Then, since |λ′| = L and ||νj || ≤ N , it follows that the length of λ′ divides

lcm{1, . . . , N}.
Since µj and νj belong to the same equivalence class zj , by the above observations, it

follows that there exist essential paths ξj : xij ❀ xkj and ζ : xkj ❀ xij . These paths can

70

be used to connect µj with νj and vice versa. The notion of a connecting path captures
this idea:

Definition 5.11 A forward repeating path τ : xi ❀ xi is called a connecting path if it
is of the form

τ = µr . ξ . νs . ζ . µt

where

• µ : xi ❀ xi, ν : xk ❀ xk are forward ∗-acyclic paths, and

• ξ : xi ❀ xk, ζ : xk ❀ xi are essential paths.

Note that in a connecting path τ , the repeating paths µ and ν are allowed to be raised
to a positive powers r, s, t. Figure 5.3 illustrates a connecting path.

. . .

.

. . .
µ µξ

ν ν

ζ

Figure 5.3: Connecting path τ .

In order to ensure correctness of the construction, we also need to build two zigzag
paths π1 and π2 that will connect λ with λ′ and vice versa, respectively. In other words,
we need to ensure that λ.π1.λ

′.π2.λ will form a valid zigzag path. To this end, we
build connecting paths τ1, . . . , τm. Here we encounter a problem of synchronizing the
positions at which νj appears for the first time in τj . This problem is due to the fact
that the relative length of ξj may be arbitrary – we only know that its relative length
is bounded by N , since ξj is essential. Lemma 5.26 proves that this problem can be
overcome. Finally, we prove in Lemma 5.29 the desired claim that we can, without loss
of generality, assume path schemes σ.λ∗.σ′ where |λ| divides lcm(1, . . . , N).
Then, we can refine Corollary 5.4 and establish the upper bound of 2O(n) on the period

for zigzag automata. SinceM∗
Rm , the encoding of the m-th power of R, is a projection of

M⊠
m

R , the bound on the period of the sequence {M⊠
m

R }m≥0 is a valid bound on the period
of the sequence {M∗

Rm}m≥0 and consequently, it is a bound on the period of a difference
bounds relation R (Theorem 5.31). In Theorem 5.32, we show that this result extends
rather easily to the period of octagonal relations. Moreover, Theorem 5.32 shows how
the bound of ||R||2 · 2O(N) on the prefix of and octagonal relation can be inferred.

Repeating Paths – Decomposition and Optimality

Repeating essential paths can be seen as building blocks of each repeating path, as the
following proposition states. Note that each essential repeating path is either forward,
backward or an elementary cycle.

71

Proposition 5.12 Each repeating path ρ can be decomposed into a set of essential re-
peating paths F(ρ) such that

w(ρ) =
∑

µ∈F✄(ρ)w(µ) +
∑

µ∈F✁(ρ)w(µ) +
∑

µ∈F◦(ρ)
w(µ)

where F✄(ρ),F✁(ρ),F◦(ρ) ⊆ F(ρ) are the maximal subset of forward, backward, and
cyclic paths, respectively. Moreover,

||ρ|| =
∑

µ∈F✄(ρ) ||µ|| −
∑

µ∈F✁(ρ) ||µ|| if ρ is forward,

||ρ|| =
∑

µ∈F✁(ρ) ||µ|| −
∑

µ∈F✄(ρ) ||µ|| if ρ is backward,

||ρ|| =
∑

µ∈F✁(ρ) ||µ|| =
∑

µ∈F✄(ρ) ||µ|| = 0 if ρ is a cycle.

Proof: Let ρ be arbitrary path and denote ρ0 = ρ. For each i ≥ 0, we define ρi+1

inductively as follows. Let µi be an arbitrary essential repeating subpath of ρi, i.e.
ρi = θi.µi.θ

′
i for some θi, θ

′
i. Then, construct ρi+1 by erasing µi from ρi, i.e. ρi+1 = θi.θ

′
i.

Clearly, this decomposition terminates since ρk+1 is empty for some k ≥ 0. Then,
F(ρ) = {µ0, . . . , µk}. Next, let us define Di ∈ Z, i = k + 1, . . . , 0 inductively as follows:
Dk+1 = 0 and for each i = k, . . . , 0, define

Di = Di+1 + ||µi|| if µi is forward,
Di = Di+1 − ||µi|| if µi is backward,
Di = Di+1 if µi is an elementary cycle.

Clearly, for each 1 ≤ i ≤ k,

||ρi|| = Di iff ρi is forward iff Di > 0,
||ρi|| = −Di iff ρi is backward iff Di < 0,
||ρi|| = 0 iff ρi is a cycle iff Di = 0.

Recall that ρ = ρ0. Thus, if ρ if forward, then ||ρ|| =
∑

µ∈F✄(ρ) ||µ|| −
∑

µ∈F✁(ρ) ||µ|| and
if ρ is backward, then ||ρ|| =

∑
µ∈F✁(ρ) ||µ|| −

∑
µ∈F✄(ρ) ||µ||. Clearly, if ρ is a cycle, then

||ρ|| =
∑

µ∈F✁(ρ) ||µ|| =
∑

µ∈F✄(ρ) ||µ|| = 0. ✷

x7
x6
x5
x4
x3
x2
x1

x(0)x(1)x(2)x(3)x(4)x(5)x(6)

x7
x6
x5
x4
x3
x2
x1

x(0)x(1)x(2)x(3)x(4)

x7
x6
x5
x4
x3
x2
x1

x(0)x(1)x(2)x(3)x(4)

x7
x6
x5
x4
x3
x2
x1

x(0)x(1)x(2)

(a) ρ0 and its subpath µ0 (b) ρ1, µ1 (c) ρ2, µ2 (d) ρ3, µ3

Figure 5.4: Decomposition of a repeating path to essential repeating paths.

Example 5.13 Consider a path ρ depicted in Figure 5.4(a). Figures 5.4(a-d) illus-
trate a decomposition of ρ into essential repeating paths. Essential subpaths F(ρ) =
{µ0, . . . , µ3} selected during the decomposition are dotted.

72

We next show that the average weight of a repeating path ρ is equal to the average
weight of an arbitrary power of ρ.

Proposition 5.14 Let ρ be a repeating path and let d ≥ 1. Then, w(ρd) = w(ρ).

Proof: Observe that w(ρd) = d·w(ρ)
d·||ρ|| = w(ρ)

||ρ|| = w(ρ). ✷

Next, we introduce a notion of optimal path.

Definition 5.15 Let z ∈ x/∼ be an equivalence class of ∼ and let Sz
✄

(Sz
✁
) be the set

of all forward (backward) repeating paths in GR of the form xi ❀ xi, for some xi ∈ z.
A path ρ ∈ Sz

✄
is ✄-optimal if and only if w(ρ) ≤ w(ρ) for all ρ′ ∈ Sz

✄
. Similarly, a path

ρ ∈ Sz
✁

is ✁-optimal if and only if w(ρ) ≤ w(ρ) for all ρ′ ∈ Sz
✁
.

We next show that the average weight of optimal paths are determined by average
weights of critical essential repeating paths. Thus, we first characterize these paths.
For each equivalence class z ∈ x/∼, we define the set of essential repeating forward
paths P✄(z), minimal average weight of these paths C✄(z), and a subset of fw-critical
paths P c

✄
(z) as follows. Note that we allow a path to cross nodes x(ℓ), where ℓ < 0, for

notational convenience.

P✄(z) = {ρ : x
(ℓ)
i ❀ x

(ℓ′)
i | ℓ′ > ℓ, ρ is an essential, repeating path in GmR ,m ≥ 0}

C✄(z) = min{||ρ|| | ρ ∈ P✄(z)}
P c
✄
(z) = {ρ ∈ P✄(z) | ||ρ|| = C✄(z)}

Similarly, we define P✁(z), C✁(z), P
c
✁
(z) for backward paths.

The following lemma gives a precise characterization of optimal paths, based on prop-
erties of critical paths defined above.

Lemma 5.16 Let z ⊆ x be an equivalence class of ∼ and let ρ : x ❀ x, x ∈ z, be
a repeating path in GR.

1. If ρ is forward, then w(ρ) ≥ C✄(z). Moreover, ρ is ✄-optimal if and only if
w(ρ) = C✄(z) if and only if

a) w(µ) = C✄(z) for each forward path µ ∈ F(ρ),

b) w(µ) = −C✄(z) for each backward path µ ∈ F(ρ),

c) w(µ) = 0 for each cycle µ ∈ F(ρ).

Moreover, if F(ρ) contains a backward path and w(ρ) = C✄(z), then C✄(z) =
−C✁(z).

2. If ρ is backward, then w(ρ) ≥ C✁(z). Moreover, ρ is ✁-optimal if and only if
w(ρ) = C✁(z) if and only if

a) w(µ) = −C✁(z) for each forward path µ ∈ F(ρ),

b) w(µ) = C✁(z) for each backward path µ ∈ F(ρ),

c) w(µ) = 0 for each cycle µ ∈ F(ρ).

73

Moreover, if F(ρ) contains a forward path and w(ρ) = C✁(z), then C✁(z) =
−C✄(z).

3. If ρ is a cycle, then w(ρ) ≥ 0. Moreover, w(ρ) = 0 if and only if

a) w(µ) = C✄(z) = −C✁(z) for each forward path µ ∈ F(ρ),

b) w(µ) = C✁(z) = −C✄(z) for each backward path µ ∈ F(ρ),

c) w(µ) = 0 for each cycle µ ∈ F(ρ).

Proof: We give the proof for the case when ρ is forward. Proofs for other cases are
similar.
Let S✄, S✁, S◦ ⊆ F(ρ) be the sets of all forward paths, backward paths, and cycles in
F(ρ), respectively. Clearly, w(µ) ≥ C✄(z) for each µ ∈ S✄. As a corollary of Lemma
5.23, C✁(z)+C✄(z) ≥ 0 and thus, w(µ) ≥ C✁(z) ≥ −C✄(z) for each µ ∈ S✁. Since R is
∗-consistent, then w(ν) ≥ 0 for each µ ∈ S◦. Thus, for each µ ∈ S✄, there exists dµ ≥ 0
such that w(µ) = C✄(z) + dµ. Similarly, for each µ ∈ S✁, there exists dµ ≥ 0 such that
w(µ) = −C✄(z) + dµ. Let us define:

w(S✄) =
∑

µ∈S✄

w(ν) w(S✁) =
∑

µ∈S✁

w(ν) w(S◦) =
∑

µ∈S◦

w(µ)

We derive:

w(S✄) =
∑

µ∈S✄
w(ν) =

∑
µ∈S✄

w(µ)||µ|| =
∑

µ∈S✄
(C✄(z) + dµ)||µ||

= C✄(z)
∑

µ∈S✄
||µ||+

∑
µ∈S✄

dµ||µ||

w(S✁) =
∑

µ∈S✁
w(ν) =

∑
µ∈S✁

w(µ)||µ|| =
∑

µ∈S✁
(−C✄(z) + dµ)||µ||

= −C✄(z)
∑

µ∈S✄
||µ||+

∑
µ∈S✄

dµ||µ||

Observe that:

w(S✄) + w(S✁) = C✄(z)
(∑

µ∈S✄
||µ|| −

∑
µ∈S✁

||µ||
)
+
∑

µ∈S✄∪S✁
dµ||µ||

= C✄(z)||ρ||+
∑

µ∈S✄∪S✁
dµ||µ||

The last equality holds since ||ρ|| =
∑

µ∈S✄
||µ|| −

∑
µ∈S✁

||µ||. Since w(ρ) = w(S✄) +
w(S✁) + w(S◦), we infer that

w(ρ) = w(S✄) + w(S✁) + w(S◦)
= C✄(z)||ρ||+

∑
µ∈S✄

dµ||µ||+
∑

µ∈S✁
dµ||µ||+

∑
µ∈S◦

w(µ)

Consequently,

w(ρ) = C✄(z) +

∑

µ∈S✄
dµ||µ||+

∑

µ∈S✁
dµ||µ||+

∑

µ∈S◦
w(µ)

||ρ|| .

Since the fraction in the above equation is non-negative, then w(ρ) ≥ C✄(z). Moreover,
w(ρ) = C✄(z) if and only if dν = 0 for each ν ∈ S✄, dν = 0 for each ν ∈ S✁, and
w(ν) = 0 for each ν ∈ S◦ if and only if w(ν) = C✄(z) for each ν ∈ S✄, w(ν) = −C✄(z)
for each ν ∈ S✁, and w(ν) = 0 for each ν ∈ S◦.

74

Suppose that F✁(ρ) 6= ∅ and w(ρ) = C✄(z). Recall that w(µ) ≥ C✁(z) ≥ −C✄(z)
for each µ ∈ S✁. By the above arguments, w(µ) = −C✄(z). Thus, −C✄(z) ≥ C✁(z) ≥
−C✄(z) and consequently, C✁(z) = −C✄(z). ✷

The following technical proposition is later used for proving properties of connecting
paths.

Proposition 5.17 Let z ⊆ x be an equivalence class of ∼ and let ρ : xi ❀ xi, xi ∈ z, be
an optimal forward repeating path in GR. Then, there exist an optimal essential forward
path ρ′ : xj ❀ xj and essential paths ξ : xi ❀ xj, ζ : xj ❀ xi such that

• w(ξ.ζ) = C✄(z) if ξ.ζ is forward,

• w(ξ.ζ) = −C✄(z) if ξ.ζ is backward,

• w(ξ.ζ) = 0 if ξ.ζ forms a cycle.

Moreover, ρ′ ∈ F(ρ) and F(ξ.ζ) ⊆ F(ρ).

Proof: Let ρ0, . . . , ρk and µ0, . . . , µk ⊆ F(ρ) be paths constructed in a decomposition
of ρ into essential repeating paths as in the proof of Proposition 5.12. Clearly, there
exists 0 ≤ m ≤ k such that µm : xj ❀ xj is forward. Let θ, θ′ be paths such that
ρm = θ.µm.θ

′. Let us decompose θ by erasing its essential repeating subpaths, obtaining
θ0, . . . , θℓ. Similarly, we decompose θ′ and obtain θ′0, . . . , θ

′
ℓ′ . Note that we can without

loss of generality assume that ρm+n = θn.θ
′ for all 0 ≤ n ≤ ℓ and that ρm+ℓ+n = θℓ.θ

′
n

for all 0 ≤ n ≤ ℓ′. Let ξ = θℓ, ζ = θ′ℓ′ . Since ρ is fw-optimal, then clearly F(ξ.ζ) =
F(θℓ.θ

′
ℓ′) ⊆ F(ρ). Applying Lemma 5.16, we get the remaining properties of θℓ.θ

′
ℓ′ stated

in this proposition. ✷

Anatomy of Zigzag Cycles

We now inspect the structure of cycles in zigzag automata. In particular, we show
that each ∗-acyclic path encoded in a zigzag cycle is a concatenation of several zigzag-
segments:

Definition 5.18 Let λ = q0
G1−−→ q1

G2−−→ . . .
Gp
−−→ qp, where q0 = qp, be a zigzag cycle of

length |λ| = p, where G1, . . . , Gp are subgraphs of GR that label edges appearing in λ.
Let G be a subgraph of GpR constructed as G = G1.G2 . . . Gp. Each path θ in G that is
maximal in its length is called a zigzag-segment.

75

x9
x8
x7
x6
x5
x4
x3
x2
x1

x(−2)x(−1)x(0) x(1) x(2) x(3) x(4)

Θρ,−1 Θρ,0 Θρ,1

ν1

ν2

ν3

ν4

ν5

x1
x2
x3
x4
x5
x6
x7
x8
x9

q1 q2 q1

r
⊥
⊥
r
r
rl
l
l
⊥

⊥
r
r
⊥
r
l
l
⊥
lr

r
⊥
⊥
r
r
rl
l
l
⊥

(a) path ρ (b) zigzag cycle λρ

Figure 5.5: Segmentation of a repeating path to zigzag-segments (a) and construction of
a corresponding zigzag cycle (b).

Given a zigzag cycle λ of length |λ| = p, we write its segments as paths of the form

x
(0)
i ❀ x

(p)
j , x

(p)
i ❀ x

(0)
j , x

(0)
i ❀ x

(0)
j , or x

(p)
i ❀ x

(p)
j .

Example 5.19 Consider a zigzag cycle λρ depicted in Figure 5.5(b). λρ has five zigzag-
segments:

ν1 : x
(0)
1 −→ x

(1)
2 −→ x

(2)
5 ν2 : x

(0)
5 −→ x

(1)
5 −→ x

(2)
6 −→ x

(1)
6 −→ x

(0)
7

ν3 : x
(2)
7 −→ x

(1)
7 −→ x

(0)
8 ν4 : x

(2)
8 −→ x

(1)
9 −→ x

(2)
4 ν5 : x

(0)
4 −→ x

(1)
3 −→ x

(2)
1

✷

Each zigzag cycle λ, |λ| = p, encodes a set of forward ∗-acyclic paths of the form x
(0)
i ❀

x
(p)
i and a set of backward ∗-acyclic paths of the form x

(p)
i ❀ x

(0)
i . For simplicity, let

us first examine cycles which encode one forward ∗-acyclic path ρ : x
(ℓ0)
i0
−→ . . . −→ x

(ℓm)
im

,

i0 = im, p = ℓm − ℓ0, and no backward path. We will describe how λρ, a unique zigzag
cycle that encodes ρ, can be built. We first define:

Lρ = |min{ℓk − ℓ0 | 0 ≤ k ≤ m}| Lρ =
⌈
Lρ

||ρ||

⌉

Rρ = |max{ℓk − ℓ0 | 0 ≤ k ≤ m}| Rρ =
⌈
Rρ

||ρ||

⌉

Intuitively, Lρ (Rρ) is the left (right) extent of ρ relative to x
(ℓ0)
i0

.

Example 5.20 (ctd.) Given a path ρ : x
(0)
1 ❀ x

(2)
1 depicted in Figure 5.5(a), we com-

pute:
Lρ = |min{−1, . . . , 3}| = 1 Lρ = ⌈

1
2⌉ = 1

Rρ = |max{−1, . . . , 3}| = 3 Rρ = ⌈
3
2⌉ = 2

✷

76

Next, let decompose ρ into zigzag segments in the following manner. For each −Lρ ≤
j < Rρ, we define Θρ,j , the set of maximal (in their length) subpath of ρ which cross
only variables

{x(k) | j · ||ρ|| ≤ k ≤ (j + 1) · ||ρ||}.

Then, λρ consists of zigzag-segments
⋃Rρ−1

k=−Lρ
Θρ,k. Similar definitions can be made for

backward paths. This construction can be generalized for zigzag cycles encoding a set
of forward and backward paths.

Example 5.21 (ctd.) Given a path ρ : x
(0)
1 ❀ x

(2)
1 depicted in Figure 5.5(a), we com-

puted Lρ = 1, Lρ = 1, Rρ = 3, Rρ = 2. Then, Θρ,−1 is a set of maximal subpaths of ρ
crossing only x(−2) ∪x(−1) ∪x(0), thus Θρ,−1 = {ν4}. Similarly, Θρ,0 is a set of maximal
subpaths of ρ crossing only x(0) ∪ x(1) ∪ x(2), thus Θρ,0 = {ν1, ν3, ν5}. Finally, Θρ,1 is
a set of maximal subpaths of ρ crossing only x(2)∪x(3)∪x(4), thus Θρ,1 = {ν2}. Clearly,
the zigzag cycle in Figure 5.5(b) encodes segments Θρ,−1 ∪Θρ,0 ∪Θρ,1. ✷

The following proposition states that the average weight of a cycle λ in zigzag automaton
is the sum of average weight of ∗-acyclic paths that are encoded in the label of λ.

Proposition 5.22 Let λ be a zigzag cycle that encodes ∗-acyclic paths ρ1, . . . , ρn. Then
w(λ) = w(ρ1) + · · ·+ w(ρn).

Proof: Since |λ| = ||ρ1|| = · · · = ||ρn||, we infer:

w(λ) = w(ρ1)+···+w(ρn)
|λ| =

∑n
i=1

w(ρi)
|λ| =

∑n
i=1

w(ρi)
||ρi||

=
∑n

i=1w(ρi)

✷

Basic Path Schemes with Simple Zigzag Cycles

This section refines the statement of Lemma 5.1 by proving that the cycle λ from each
basic path scheme can be assumed to be simple, without loss of generality. The next
lemma proves that the sum of average weights of a forward repeating and a backward
repeating path in GmR , m ≥ 1, from the same equivalence class of the ∼ relation is
non-negative, whenever R is ∗-consistent.

Lemma 5.23 Let R be a ∗-consistent difference bounds relation and let ρi = xi ❀ xi
be a forward repeating and ρj = xj ❀ xj be a backward repeating path in GR such that
xi ∼ xj. Then, w(ρi) + w(ρj) ≥ 0.

Proof: Suppose that w(ρi) + w(ρj) < 0. Let us define:

p = lcm(||ρi||, ||ρj ||), di =
p

||ρi||
, dj =

p

||ρj ||
, γi = (ρi)

di , γj = (ρj)
dj .

77

By Proposition 5.14, w(ρi) = w(γi) and w(ρj) = w(γj). Thus, w(γi) + w(γj) < 0.
Furthermore, since ||γi|| = ||γj || = p, then p ·w(γi) + p ·w(γj) = w(γi) +w(γj) < 0. Since
xi ∼ xj , there exist essential paths

θij = x
(0)
i ❀ x

(q)
j and θji = x

(0)
j ❀ x

(r)
i

where 0 ≤ ||Q||, |r| < N . Let n ≥ 0 be a parameter. We build (refer to Figure 5.6)

ξ = γni .θij .γ
2n
j .θji

x
(0)
i x

(np)
i

x
(np+q)
jx

(−np+q)
i

x
(−np+q+r)
i γni

θij

γ2nj

θji

Figure 5.6: Building ξ

Clearly, ξ is of the form ξ : x
(0)
i ❀ x

(−np+q+r)
i . By choosing n > ⌈ q+rp ⌉, we make sure

that −np+ r + s < 0. We repeat the path p-times and obtain ξp : x
(0)
i ❀ x

(p(−np+q+r))
i .

Since |γi| = p and p divides p(−np+ q+ r), we build ζ = γ
(np−r−s)
i which is of the form

ζ : x
(p(−np+q+r))
i ❀ x

(0)
i . Clearly, ξp.ζ forms a cycle with weight

np · w(γi) + p · w(θij) + 2np · w(γj) + p · w(θji) + (np− q − r) · w(γi)

which simplifies to

2np · (w(γi) + w(γj))− (q + r) · w(γi) + p · (w(θij) + w(θji)).

Since we assumed that w(γi) + w(γj) < 0, by choosing a sufficiently large n, we obtain
a negative cycle in GωR. Thus, R is not ∗-consistent, contradiction. ✷

We continue with a technical lemma.

Lemma 5.24 Let G = 〈V,E,w〉 be a weighted digraph, and u, v ∈ V be two vertices.
Let θ1 = σ1.λ

∗
1.σ

′
1 be a basic path scheme and ρ1 = σ1.λ

b1
1 .σ

′
1, b1 ≥ 0 be a minimal path

from u to v such that |ρ1| ≥ ||V ||
4. Further, let θ2 = σ2λ

∗
2.σ

′
2 be a path scheme (not

necessarily basic), and ρ′1 = σ1.λ
b′1
1 .σ

′
1 and ρ′2 = σ2λ

b′2
2 .σ

′
2, where b

′
1 > b1 and b′2 ≥ 0, be

paths from u to v, and let L > 0 be integer such that

|ρ1|+ L = |ρ′1| = |ρ
′
2|,

|λ1| and |λ2| divide L,
w(λ1) = w(λ2),
w(ρ′1) = w(ρ′2).

Then, there exists a basic path scheme θ3 = σ3.λ
∗
2.σ

′
3 and a path ρ3 = σ3.λ

b3
2 .σ

′
3, b3 ≥ 0

from u to v such that w(ρ3) = w(ρ1) and |ρ3| = |ρ1|.

78

Proof: We can use the same techniques as in the proofs of Lemma 4.3 and 4.4 and
for a given path ρ′2, we construct a basic path scheme θ3 = σ3.λ

∗
2.σ

′
3 and a path ρ′3 =

σ3.λ
b′3
2 .σ

′
3, b

′
3 ≥ 0 from u to v such that |ρ′3| = |ρ

′
2| and w(ρ

′
3) ≤ w(ρ′2). Thus, w(ρ′2) =

w(ρ′3) +D for some D ≥ 0. Observe that

|σ3.σ
′
3| ≤ ||V ||

4 ≤ |ρ1|.

By requirements of the lemma and by construction of ρ′3, |ρ1| + L = |ρ′1| = |ρ
′
2| = |ρ

′
3|.

Since |λ2| divides L, there exists a path ρ3 = σ3.λ
b3
2 .σ

′
3, where b3 ≥ 0, such that |ρ3| =

|ρ1|. Furthermore,
w(ρ1) = w(ρ′1)− w(λ1) · L, and
w(ρ3) = w(ρ′3)− w(λ2) · L.

The lemma requires that w(ρ′1) = w(ρ′2). Combining it with w(ρ′2) = w(ρ′3) + D, we
obtain that w(ρ′1) = w(ρ′3) +D. The lemma also requires that w(λ2) = w(λ1). Thus,

w(ρ′1)− w(λ1) · L = w(ρ′3)− w(λ2) · L+D

and consequently, w(ρ1) = w(ρ3) + D. Clearly, D > 0 would contradict that ρ1 is
minimal, thus we conclude that D = 0 and thus w(ρ1) = w(ρ3). ✷

We finally prove the existence of a basic path scheme where the cycle λ is simple.

Lemma 5.25 Let TR = (Q,∆, w) be the common transition table of zigzag automata
defined for a difference bounds relation R(x,x′), and u, v ∈ Q be two control states.
Then for every minimal weight path ρ form u to v, such that |ρ| ≥ ||R|| · ||Q||6, there
exists a path ρ′ from u to v, such that w(ρ) = w(ρ′) and |ρ| = |ρ′|, and a basic path
scheme θ = σ · λ∗ · σ′, such that λ is simple, ρ′ = σ · λb · σ′, for some b ≥ 0. Moreover,
there exists c | lcm(1,...,||Q||−1)

|λ| such that σ · λb+kc · σ′ is a minimal weight path from u to
v, for all k ≥ 0.

Proof: By Lemma 5.1, there exists a basic path scheme θ1 = σ1λ
∗
1σ

′
1 and a path

ρ1 = σ1λ
b1
1 σ

′
1, b1 ≥ 0 from u to v that have all the properties of this lemma except that λ1

might not be simple. First, we build a path scheme θ2 = σ2λ
∗
2σ

′
2 which might not be basic,

but where λ2 is simple, w(λ2) = w(λ1), |λ2| = |λ1|, and w(σ1.λ
b1+q+k
1) = w(σ2.λ

k
2.σ

′
2)

for some q > 0 and for all k ≥ 0. In other words, if θ1 is followed by a minimal path of
length L ≥ |σ2.σ

′
2|, then θ2 is followed by a minimal path of length L too.

Let z1, . . . , zm be equivalence classes of ∼. Let q be a control state of the zigzag
automaton such that λ1 is a cycle that starts and ends in q. Let L,R ⊂ {1, . . . , N}
be the set of l-indices and r-indices of q, respectively, and partition them according
to equivalence classes z1, . . . , zm, thus obtaining L1, . . . , Lm and R1, . . . , Rm. For each
1 ≤ i ≤ m, let ρi,1, . . . , ρi,mi denote the set of repeating paths encoded in λ1 that cross
variables in zi. Finally, let Θ

′ denote the paths in σ′1 that connect r-indices with l-indices
and Θ denote the paths in σ1 that connect l-indices with r-indices. Let Θ(i) ⊆ Θ and

Θ′(i) ⊆ Θ′ be paths that cross only variables in zi. We define p = max
{
⌈ |σ1||λ1|
⌉, ⌈

|σ′
1|

|λ1|
⌉
}
.

Let ρi,1 ≺ · · · ≺ ρi,mi be the order in which subpaths ρi,1, . . . , ρi,mi are visited in the

79

path encoded in σ1.λ1.σ
′
1. Then, by construction of zigzag automata, ρi,j is forward if

and only if ρi,j+1 is backward. Figures 5.7(a) and (b) illustrate these definitions.

σ1 λ1 σ′1

Q1

Q2

θ1

θ3

θ5

θ2
θ4

ρ1,1
ρ1,2
ρ1,3

ρ2,1
ρ2,2
ρ2,3

θ0

θ6

Θ′ = {θ1, θ3, θ5}
Θ′(1) = {θ1}
Θ′(2) = {θ5}

Θ = {θ2, θ4}
Θ(1) = {θ2}
Θ(2) = {θ4}

ρ1,1 ≺ ρ1,2 ≺ ρ1,3
ρ2,1 ≺ ρ2,2 ≺ ρ2,3

(a) (b)

γ1 ν1 λ2 ν ′1 γ′1

Q1

Q2

σ2 σ′2

ρ1,3

ρ2,3

ρ1,3

ρ2,3

ρ1,3

ρ2,3

ρ1,3

ρ2,3

ρ1,3

ρ2,3

θ1

θ3

θ5

θ2
θ4

ρ1,3

ρ2,3

θ0

θ6

(c)

Figure 5.7: Illustration of a construction of a path scheme with simple cycle.

Given an equivalence class zi, 1 ≤ i ≤ m, we first give a construction ensuring that
there is at most one repeating path in λ2 that crosses variables in zi.
We next build γ, ν, λ2, ν

′, γ′, which are initialized as follows: γ = σ1, ν = (λ1)
p,

λ2 = λ1, ν
′ = (λ1)

p, γ′ = σ′1. Further, we erase all paths from ν, λ2, ν
′ that cross some

variable in zi. We finish construction of γ, ν, λ2, ν
′, γ′ for one of the following cases (note

that cases 1 and 2 (3 and 4) are symmetrical):

1. ρi,1 is fw and mi is even. Erase Θ(i) from γ′ and add it to ν.

2. ρi,1 is bw and mi is even. Erase Θ′(i) from γ and add it to ν ′.

3. ρi,1 is fw and mi is odd. Do the actions for Case 1. Further, add ρi,mi to λ2 and
add (ρi,mi)

p to both ν and ν ′.

4. ρi,1 is bw and mi is odd. Do the actions for Case 2. Further, add ρi,mi to λ2
and add (ρi,mi)

p to both ν and ν ′.

The construction is finished by building σ2 = γ.λb11 ν and σ′2 = ν ′.γ′. Figure 5.7(c)
illustrates the construction: Case 3 applies for the equivalence class z1, while the Case
4 applies for z2.

80

We prove several properties on weights of σ2, λ2, σ
′
2 for case 3 (proofs for cases 1, 2,

and 4 are similar). Let us define

W =
∑

θ∈Θ(i)

w(θ) V =
∑

1≤j<mi

w(ρi,j)

Following equalities follow from the construction:

|σ2.σ
′
2| − |σ1.σ

′
1| = |λ

b1
1 |+ |ν|+ |ν

′| = |λ1| · (b1 + 2p)

w(γ) = w(σ1)
w(ν) = p · (w(λ1)− V) +W

w(ν ′) = p · (w(λ1)− V)
w(γ′) = w(σ′1)−W

Then,

w(σ2.σ
′
2) = w(γ.λb11 .ν.ν

′.γ′) = w(σ1) + (b1 + 2p) · w(λ1) + w(σ′1)− 2pV ,

w(σ1.λ
b1+2p
1 .σ′1) = w(σ1) + (b1 + 2p) · w(λ1) + w(σ′1).

For Case 3, mi is odd. Since ρi,j is fw and ρi,j+1 is bw for odd j < mi, by Lemma 5.23,
w(ρj)+w(ρj+1) ≥ 0 and thus V ≥ 0. By construction, w(λ2) = w(λ1)−V . Since V > 0

would imply that w(λ2) < w(λ1) and thus, that σ1.λ
b1+k
1 .σ′1 is not minimal for all k ≥ 0,

we infer that V = 0 and therefore, w(λ2) = w(λ1) and

w(σ2.σ
′
2) = w(σ1.λ

b1+2p
1 .σ′1).

Note that the above construction of σ2, λ2, and σ
′
2 can be easily extended to deal with

all equivalence classes of ∼ at once. Then, λ2 is simple and the above equality still hold.
Note that if the construction steps for Case 3 or Case 4 generate a path (encoded in ν
or ν ′) with cycles, we erase all the cycles. Their weights must be non-negative, since we
consider ∗-consistent relations. They also cannot be strictly positive since then σ1.λ1.σ

′
1

would not be minimal for all k ≥ b1 + 2p, contradiction. Thus erasing them changes
weight of neither σ2 nor σ′2 and hence the above equality still hold. Let us define b′2 = 0,

b′1 = b1 + 2p, ρ′2 = σ2.λ
b′2
2 σ

′
2, ρ

′
1 = σ1.λ

b′1
1 σ

′
1 and observe that

L = |ρ′2| − |ρ1| = (|σ2.σ
′
2| − |σ1.σ

′
1|) + |λ

b′2
2 | − |λ

b1
1 |

= |λ1| · (b1 + 2p) + 0− |λ1| · b1
= |λ1| · (b1 + 2p− b1) = |λ1| · 2p

and thus, |λ1| = |λ2| divides L. Next, we apply Lemma 5.24 which guarantees existence
of a path scheme θ3 = σ3.λ

∗
2.σ

′
3 and a path ρ3 = σ3.λ

b3
2 .σ

′
3, for some b3 ≥ 0, such that

w(ρ3) = w(ρ1) and |ρ3| = |ρ1|. The existence of c | lcm 1,...,||V ||
|λ2|

such that σ3.λ
b3+kc
2 .σ′3

is minimal for all k ≥ 0 follows from the proof of Lemma 5.1, since we can choose
πi.λ

∗
i .π

′
i = θ3. ✷

81

Basic Path Schemes with Cycles Bounded by lcm(1, . . . , N)

This section refines the statement of Lemma 5.1 by proving that the length of the cycle λ
from each basic path scheme divides lcm(1, . . . , N). This fact is essential in proving the
single exponential bound on the period of octagonal relations. We begin with a lemma
that is later used to deal with the problem of synchronization of connecting paths which

was discussed earlier. Recall that for a path ρ : x
(ℓ0)
i0
−→ . . . −→ x

(ℓm)
im

in GωR such that

i0 = im and ℓm 6= ℓ0, we defined its left (right) extent relative to x
(ℓ0)
i0

as

Lρ = |min{ℓk − ℓ0 | 0 ≤ k ≤ m}| Lρ =
⌈
Lρ

||ρ||

⌉

Rρ = |max{ℓk − ℓ0 | 0 ≤ k ≤ m}| Rρ =
⌈
Rρ

||ρ||

⌉

Lemma 5.26 Let τ ′ = µr.ξ.νs.ζ.µt be a connecting path such that

r = r1 + r2 s = s1 + · · ·+ s5 t = t1 + t2, where

s1 ≥ Lν +Rµ +N + 1
s5 ≥ Rν + Lµ +N + 1

t1 ≥ Lµ +Rν +N + 1
r2 ≥ Rµ + Lν +N + 1

s2 ≥ Rν − 1

s4 ≥ Lν
s3 ≥ 2N

t2 ≥ 1 +Rν
r1 ≥ 1 + Lν

Let τ be a path built by erasing all cycles from τ ′ and let

• λµ be a zigzag cycle that encodes µ,

• λν be a zigzag cycle that encodes ν,

• λτ be a zigzag cycle that encodes τ .

Then, λτ can be written as λτ = λµ.π1.λ
′
ν
s3−2N .π2.λµ where π1, π2 are some zigzag paths,

|λν | = |λ
′
ν |, w(λν) = w(λ′ν), and |λµ.π1| = ||µ

r1+r2 ||+ ||νs1+s2 ||+N .

Proof: Let us denote the subpaths of τ ′ as

α1 α2 α3 α4 α5 α6 α7 α8 α9 α10 α11

q q q q q q q q q q q

τ ′ = µr1 . µr2 . ξ . νs1 . νs2 . νs3 . νs4 . νs5 . ζ . µt1 . µt2

First, we show that the constraint on s1 ensures that subpaths α1.α2.α3 and α5 do not
share a node. Let M1 = ||α1.α2|| and observe that

vars(α1.α2) ⊆

M1+Rµ⋃

k=−Lµ

x(k), vars(α3) ⊆
M1+N⋃

k=M1−N

x(k).

82

The property on vars(α1.α2) holds since Lρk ≤ Lρ and Rρk ≤ Rρ for each path ρ and
k ≥ 1. The property on vars(α3) follows from the fact that ξ is essential. Hence,

vars(α1.α2.α3) ⊆

M1+max(Rµ,N)⋃

k=min(−Lµ,−N)

x(k) ⊆

M1+Rµ+N⋃

k=min(−Lµ,−N)

x(k).

Similarly, letting M2 =M1 + ||α3.α4||, we observe that

vars(α5) ⊆

M2+||α5||+Rν⋃

k=M2−Lν

x(k).

We can now infer a condition that guarantees that subpaths α1.α2.α3 and α5 do not
share a node:

M1 +Rµ +N < M2 − Lν
Rµ +N < ||α3.α4|| − Lν
||α4|| > Lν +Rµ +N − ||α3||
||α4|| ≥ Lν +Rµ +N + 1 (sufficient, since ||α3|| ≥ 0)
s1 = Lν +Rµ +N + 1 (sufficient, since ||α4|| = ||ν|| · s1)

Similarly, one infers constraints on s5, t1, and r2. These constrains guarantee that all
sharings of nodes (in other words, cycles) may occur only in α2, α4, α8, or α10 and thus,
that no cycle appears in α5.α6.α7, α1 and α11.
Next, we prove an auxiliary statement that λτ can be written as λτ = λµ.π1.λ

s3
2 .π2.λµ

where π1, π2 are some zigzag paths, and |λµ.π1| = ||µ
r1+r2 .ξνs1+s2 ||. Figures 5.8 and 5.9

illustrate the proof.
α1 . . . α4 α5 α6 α7 α8 . . . α11

γ0 γs2
γs2+j−Rν+1

γs2+j
γs2+j+Lν

γs2+s3γS−1

Hj

.

Figure 5.8: λs3ν as a subpath of λτ .

x7
x6
x5
x4
x3
x2
x1 x1

x2
x3
x4
x5
x6
x7

r
r
r
rl
l
l
lr

r
r
r
rl
l
l
lr x7

x6
x5
x4
x3
x2
x1

(a) path ν (b) zigzag cycle λν (c) Hj , γs2+j−1, γs2+j , γs2+j+1

Figure 5.9: Obtaining λν by iterating ν. Lν = 1, Rν = 2.

83

Let G0G1 . . . G|λτ |−1 be the labeling of λτ and let α5.α6.α7 = γ0.γ1 . . . γS−1, where
S = s2 + s3 + s4 and ν = γ0 = γ1 = · · · = γS−1. For each 0 ≤ j < s3, define
Kj = ||α1 . . . α5.ν

j ||, Hj = GKj+1 . . . GKj+||ν|| and observe that for each −Rν < k ≤ Lν ,

γs2+j+k contributes1 to Hj with Θν,k. Thus, Hj consists of zigzag-segments

Rν⋃

j=−Lν+1

Θν,j

which are clearly zigzag-segments of λν . Thus, Hj is the labeling of λν for each 0 ≤ j < s3
and consequently, λτ can be decomposed into σ1.λ

s3
ν .σ2 for some paths σ1, σ2. Moreover,

since K0 = ||α1 . . . α5|| = ||µ
r1+r2 .ξνs1+s2 ||, then

|σ1| = K0 = ||µ
r1+r2 .ξνs1+s2 ||.

By a similar argument, one can show that λτ can be decomposed into λµ.σ3.λµ for some
path σ3, by viewing the path τ ′ = α1 . . . α11 shifted as α6 . . . α11α1 . . . α5. Combining
decompositions σ1.λ

s3
ν .σ2 and λτ = λµ.σ3.λµ, we obtain the required decomposition

λτ = λµ.π1.λ
s3
2 .π2.λµ for some π1, π2, where

|λµ.π1| = |σ1| = ||µ
r1+r2 .ξνs1+s2 ||.

Finally, we prove that λτ can be written as λτ = λµ.π1.λ
′
ν
s3−2N .π2.λµ where π1, π2 are

some zigzag paths, |λν | = |λ
′
ν |, w(λν) = w(λ′ν), and |λµ.π1| = ||µ

r1+r2 || + ||νs1+s2 || + N .
Let us define

D0 = ||µ
r1+r2 ||+ ||νs1+s2 ||, D1 = ||µ

r1+r2 .ξ.νs1+s2 ||, D2 = ||µ
r1+r2 ||+ ||νs1+s2 ||+N .

Since ξ is essential, D2 ≥ D1 and D0 − N ≤ D1 ≤ D0 + N . Thus, by noticing that
D2 = D0 + N , we infer that 0 ≤ D2 − D1 ≤ 2N . Clearly, there exists 0 ≤ d < ||ν||
and k ≥ 0 such that D2 + d = D1 + k||ν||. Thus, k = ⌈D2−D1

||ν|| ⌉. Combining this with
0 ≤ D2 −D1 ≤ 2N , we establish a bound k ≤ 2N .
Next, observe that a decomposition of λτ into λµ.π3.λ

s3−k
ν .π4.λµ, where |λµ.π3| =

D2+ d = D1+ k||ν||, is possible by a similar argument as previously. The only difference
is that j ranges over k ≤ j < s3 instead of 0 ≤ j < s3. Thus, we need to guarantee that
s3 − k ≥ 0. This can be achieved by requiring that s3 ≥ 2N , since the maximal value of
k is k = 2N . This gives the stricter condition on s3 in this lemma that guarantees the
decomposition into λµ.π3.λ

s3−2N
ν .π4.λµ, where |λµ.π3| = D2 + d = D1 + k||ν||.

Let G1 . . . Gn be the labeling of λν . The decomposition in the previous paragraph
implies that the label of (λτ)D2+d...|λτ |−1 has a prefix (G1 . . . Gn)

s3−2N . Further, the
label of (λτ)D1...|λτ |−1 has a prefix (G1 . . . Gn)

s3 . Since D2 + d − D1 = k||ν||, it follows

that the label of (λτ)D1...D2−1 is (G1 . . . Gn)
k. Furthermore, we infer that the label of

(λτ)D2...|λτ |−1 has a prefix (Gd+1 . . . GnG1 . . . Gd)
s3−2N . Since G1 . . . Gn is the labeling

of the cycle λν : q
G1...Gd−−−−−→ q′

Gd+1...Gn
−−−−−−→ q, there clearly exists a cycle λ′2 : q′

Gd+1...Gn
−−−−−−→

1Hence the bounds on s2 and s4: s2 ≥ Rν − 1, s4 ≥ Lν .

84

q
G1...Gd−−−−−→ q′. Thus, λ can be decomposed into λτ = σ1.(λ

′
ν)
s3−2N .σ2, where |σ1| = D2 =

||µr1+r2 ||+ ||µs1+s2 ||+N . Clearly, |λν | = |λ
′
ν | and w(λν) = w(λ′ν). ✷

Informally, the following technical proposition states that the relative lengths of two
repeating paths can be synchronized by iterating each repeating path with itself several
times.

Proposition 5.27 Let γ1, γ2 be repeating paths and let c1, c2 ≥ 1. Then, there exists

c′1 = c1 · k1, c
′
2 = c2 · k2 for some k1, k2 ≥ 1 such that ||γ

c′1
1 || = ||γ

c′2
2 ||.

Proof: Let L = lcm(c1 · ||γ1||, c2 · ||γ2||), c
′
1 =

L
||γ1||

, c′2 =
L

||γ2||
. Since c1 · ||γ1|| divides L, then

c1 divides L
||γ1||

too and thus, there exists k1 ≥ 1 such that c1 · k = c′1. Similarly, there

exists k2 ≥ 1 such that c2 · k = c′2. Further, ||γ
c′1
1 || = ||γ

c′2
2 || = L, since ||γ

c′1
1 || = ||γ1|| · c

′
1 =

||γ1|| ·
L

||γ1||
= L and similarly, ||γ

c′2
2 || = L. ✷

We finally prove that we can, without loss of generality, consider basic path schemes
with cycles that are simple and moreover, the length of which divides lcm(1, . . . , N). For
the proof of the lemma, we need the notion of optimal cycle.

Definition 5.28 a simple cycle λ is optimal if and only if each forward path encoded
in λ is fw-optimal and each backward path encoded in λ is bw-optimal.

Lemma 5.29 Let TR = (Q,∆, w) be the common transition table of zigzag automata
defined for a difference bounds relation R(x,x′), and u, v ∈ Q be two control states.
Then for every minimal weight path ρ form u to v, such that |ρ| ≥ ||R|| · ||V ||6, there
exists a path ρ′ from u to v, such that w(ρ) = w(ρ′) and |ρ| = |ρ′|, and a basic path
scheme θ = σ ·λ∗ ·σ′, such that λ is simple and |λ| divides lcm(1, . . . , N), ρ′ = σ ·λb ·σ′,

for some b ≥ 0. Moreover, there exists c | lcm(1,...,N)
|λ| such that σ · λb+kc · σ′ is a minimal

weight path from u to v, for all k ≥ 0.

Proof: By Lemma 5.25, there exists a basic path scheme θ1 = σ1.λ
∗
1.σ

′
1 where λ1

is simple and a path ρ1 = σ1.λ
b1
1 .σ

′
1, for some b1 ≥ 0, such that w(ρ1) = w(ρ) and

|ρ1| = |ρ|. In this proof, we assume that λ1 encodes two forward paths µ1, µ2 and no
backward path. The extension to arbitrary number of forward and backward paths is
straightforward. Let µj be of the form µj : xij ❀ xij for each j ∈ {1, 2}. and let us
denote the equivalence class of xij as zj = [xij]∼.
Case 1: λ1 is optimal. By Proposition 5.17, given µj , there exists νj ∈ P

c
✄
(zj) of the

form νj : xkj ❀ xkj and two essential paths ξj : xij ❀ xkj and ζj : xkj ❀ xij . For each
j ∈ {1, 2}, we build a connecting path τ ′j as follows:

α1 α2 α3 α4 α5 α6 α7 α8 α9 α10 α11

q q q q q q q q q q q

τ ′1 = µr11 . µr21 . ξ1 . νs11 . νs21 . νs31 . νs41 . νs51 . ζ1 . µt11 . µt2

τ ′2 = µt32 . µt42 . ξ2 . νw1
2 . νw2

2 . νw3
2 . νw4

2 . νw5
2 . ζ2 . µt12 . µt2

q q q q q q q q q q q

β1 β2 β3 β4 β5 β6 β7 β8 β9 β10 β11

85

In addition to the conditions of Lemma 5.26, we require that |αk| = |βk| for all k ∈
{1, 2, 4, 5}. These additional constraints can be satisfied too, by Proposition 5.27.
Clearly, the new coefficients still satisfy the conditions in Lemma 5.26. Finally, we
define s3 = 2N + L

||ν1||
, w3 = 2N + L

||ν2||
, where L = lcm(||ν1||, ||ν2||).

By Lemma 5.26, there exists a zigzag cycles λτ1 and λτ2 that encode τ1 and τ2 that
were obtained by erasing all cycles in τ ′1 and τ

′
2, respectively, and that can be decomposed

into
λτ1 = λµ1 .π1.λ

′
ν1
s3−2N .π2.λµ1

λτ2 = λµ2 .π3.λ
′
ν2
w3−2N .π4.λµ2

where
|λ′νj | = |λνj | and w(λ

′
νj) = w(λνj) and

||λµ1 .π1|| = ||α1.α2||+ ||α4.α5||+N and ||β1.β2||+ ||β4.β5||+N = ||λµ2 .π3||

Since |αk| = |βk| for all k ∈ {1, 2, 4, 5}, we infer that ||λµ1 .π1|| = ||λµ2 .π3||.

λµ1 π1 λν1 π2 λµ1

λµ2
π3 λν2

π4 λµ2

||α1.α2||

||β1.β2||

N ||α4.α5||

||β4.β5||

lcm(||ν1||,

||ν2||)

. . .

.

. . .
µ1 µ1ξ1 ζ1

. . .

.

. . .
µ2 µ2ξ2 ζ2

Figure 5.10: Synchronization of connecting paths τ1 and τ2.

Note that |λτ1 | = |λτ2 | is not true in general. For this reason, we need to make an
extra step. Let M = lcm(|λτ1 |, |λτ2 |), m1 = M

|λτ1 |
, m2 = M

|λτ2 |
. Since |λm1

τ1 | = |λ
m2
τ2 |, and

since the paths in λτ1 and λτ2 use disjoint variables, we can build a cycle λ by gluing
λm1
τ1 with λm2

τ2 and obtain λ = λ1.π
′
1.λ

′
2.π

′
2.λ1, where

λ1 =

[
λµ1
λµ2

]
π′1 =

[
π1
π3

]
λ′2 =

[
λ′ν1

s3−2N

λ′ν2
w3−2N

]
π′2 =

[
π2.λµ1 .(λτ1)

m1−1

π4.λµ2 .(λτ2)
m2−1

]

Note that the construction of λ′2 is correct since

|λ′ν1
s3−2N | = |λs3−2N

ν1 | = ||ν1||(s3 − 2N) = ||ν1||
(

L
||ν1||

+ 2N − 2N
)
= lcm(||ν1||, ||ν2||)

and similarly, |λ′ν2
w3−2N | = lcm(||ν1||, ||ν2||). Thus, |λ

′
2| = lcm(||ν1||, ||ν2||). Note that λ1 is

optimal by assumption. Further, λ2 encodes paths ν
s3
1 and νw3

2 which are optimal, by the

86

fact that ν1, ν2 are optimal and by Proposition 5.14. Thus, λ2 is optimal by construction.
Since ||ν1||, ||ν1|| ≤ N , then |λ2| divides lcm(1, . . . , N). By Proposition 5.17, νj ∈ F(µj)
and F(ξj .ζj) ⊆ F(µj). Thus, F(τj) ⊆ F(µj). Since τj is forward, then w(τj) = C✄(zj),
by Lemma 5.16. Consequently, τj is optimal. By Lemma 5.26, λτj encodes τ ′j that was
obtained from τ ′j by erasing all its cycles. These cycles are non-negative, since R is
∗-consistent. Next suppose that at least one is strictly positive. Then,

w(τj) < w(τ ′j) = w(µj) = w(νj) = C✄(zj).

However, by Lemma 5.16, w(τj) ≥ C✄(zj), contradiction. Thus, w(τj) = C✄(zj) too.
Consequently, λ1, λ2, λ are optimal too, by Definition 5.28. By Proposition 5.22,

w(λ1) = w(λ2) = w(λ) = C✄(z1) + C✄(z2).

We next construct a path scheme θ2 = σ2.λ
′
2
∗.σ′2, where

σ2 = σ1.λ
b1
1 .λ1.π

′
1 σ′2 = λ′2.π

′
2.λ1.λ

(|λ1|·|λ′2|−1).σ′1

Next, letting b′2 = |λ1|, we construct ρ′2 = σ2.λ
′
2
b′2 .σ′2. Recalling that ρ1 = σ1.λ

b1
1 .σ

′
1, we

compute

D = |ρ′2| − |ρ1| = |λ1.π
′
1.λ

′
2.π

′
2.λ1.λ

|λ1|·|λ′2|−1|+ |λ′2
|λ1||

= |λ|λ1|·|λ
′
2||+ |λ1| · |λ

′
2|

= |λ1| · |λ
′
2| · (|λ|+ 1)

Letting b′1 = b1 +
D
|λ1|

+ |λ′2|, we construct ρ′1 = σ1.λ
b′1
1 .σ

′
1. Clearly, |ρ′1| = |ρ

′
2|. We infer

that
w(ρ′2)− w(ρ1) = |λ1| · |λ′2| · |λ| · w(λ) + |λ1| · |λ2| · w(λ2)

= D · (C✄(z1) + C✄(z2))

w(ρ′1)− w(ρ1) = |λ1| · (
D
|λ1|

+ |λ′2|) · w(λ1)

= D · (C✄(z1) + C✄(z2))

and thus, w(ρ′2) = w(ρ′1). Clearly, |λ1| and |λ
′
2| divides D. We apply Lemma 5.24 which

guarantees existence of a path scheme θ3 = σ3.λ
′
2
∗.σ′3 and a path ρ3 = σ3.λ

′
2
b3 .σ′3, for

some b3 ≥ 0, such that w(ρ3) = w(ρ) and |ρ3| = |ρ|. Thus, the lemma holds for θ = θ3
and ρ′ = ρ3.
Case 2: λ1 is not optimal. Since µ1 ∈ P✄(z1), then P c

✄
(z1) 6= ∅. Let choose

ν1 ∈ P c
✄
(z1) and assume its form is µ1 : xk1 ❀ xk1 . Further, let ξ1 : xi1 ❀ xk1 ,

ζ1 : xk1 ❀ xi1 be arbitrary essential paths. Similarly for µ2, we construct ν2, ξ2, ζ2.
We construct λ, θ2, ρ

′
1, ρ

′
2 and compute D in the same way as in Case 1. Clearly, λ′2 is

optimal, λ1 is not optimal and thus w(λ1) > w(λ′2) = C✄(z1) + C✄(z2). Since |λ1| and
|λ′2| divide |ρ

′
2| − |ρ1|, then σ1.λ

b1+ck
1 .σ′2 is not minimal for some k ≥ 0. Contradiction

with our assumption on θ1 = σ1.λ
∗
1.σ

′
1.

We have proved that Case 2 is not possible, and that for Case 1, there exists a path ρ3 =
σ3.λ

′
2
b3 .σ′3 where w(ρ3) = w(ρ), |ρ3| = |ρ|, λ

′
2 is optimal and |λ′2| divides lcm(1, . . . , N).

Let us denote ρ′ = ρ3, σ = σ3, σ
′ = σ′3, λ = λ′2, b = b3. It remains to prove that there

exists c | lcm(1,...,N)
|λ′2|

such that σ.λb+kc.σ′ is a minimal path from u to v for all k ≥ 0. The

87

proof is almost identical to that of Lemma 4.4. The only difference is that we can now
consider only basic path schemes σ.λ∗.σ′ where λ is simple and |λ| divides lcm(1, . . . , N).
Thus, the proof can use lcm(1, . . . , N) instead of lcm(1, . . . , ||V || − 1) everywhere. This
in turn implies the existence of c | lcm(1, . . . , N) such that w(σi.λ

kc.σ′i) is minimal for
all k ≥ 0. ✷

The single exponential bound on the period of difference bounds relations follows
easily from Lemma 5.29.

Corollary 5.30 Let x = {x1, . . . , xN} be a set of variables. Given a difference bounds
relation R(x,x′), the period of R(x,x′) is bounded by 2O(N).

Proof: Let TR = (Q,∆, w) be the common transition table of zigzag automata defined
for a difference bounds relation R(x,x′) and let c be the period of TR. By Lemma 5.29,
c | lcm(1, . . . , N). Applying Lemma 4.5, it follows that c is bounded by 2O(N). ✷

We finally summarize the complexity results on difference bounds relations.

Theorem 5.31 Let x = {x1, . . . , xN} be a set of variables. Given a difference bounds
relation R(x,x′), its period is bounded by 2O(N) and its prefix is bounded by ||R|| · 2O(N).

Proof: Follows from Corollary 5.3 and Corollary 5.30. ✷

5.2 Octagonal Relations

LetR(x,x′) be an octagonal relation andR(y,y′) be its difference bounds representation.
Using the results on bounds on the prefix (Corollary 5.3) and the period (Corollary 5.30)
of R(y,y′), we infer, using Lemma 4.20, the bounds on the prefix and period of the
relations R(x,x′) itself.

Theorem 5.32 Let x = {x1, . . . , xN} be a set of variables. Given a relation R(x,x′) ∈
Roct, its period is bounded by 2O(N) and its prefix is bounded by ||R||2 · 2O(N).

Proof: Let R(y,y′) be the difference bounds representation of R(x,x′) and let GR =
〈Q,∆, w〉 be the zigzag automaton of R(y,y′). It follows immediately from Lemma 5.29
that GR has prefix b = µ(GR) · ||Q||

6 = ||R|| · 512N and period c = lcm(1, . . . , 2N). Conse-
quently, the prefix and period of {M∗

R
m}m≥0 and of R are b and c as well, respectively.

The prefix and the period of R are defined as the prefix and period of the sequence
{σ(Rm)}m≥0, by Definition 3.6. By definition of σ for octagonal relations given in Section
4.3, {σ(Rm)}m≥0 = {M

t
Rm}m≥0. By Theorem 2.26, M t

Rm =M t
R

m for all m ≥ 0 and

(M t
Rm)ij = min

{
(M∗

R
m)ij ,

⌊
(M∗

R
m)iı̄

2

⌋
+

⌊
(M∗

R
m)̄j

2

⌋}

for all m ≥ 0 and for all 1 ≤ i, j ≤ 4N .

88

We next prove the asymptotic bound on period of R. If R is ∗-consistent, its period
is twice the period of R, by Lemma 4.20. Thus the period of R is bounded by c =
2 · lcm(1, . . . , 2N) and consequently, it is asymptotically bounded by 2O(N), by Lemma
4.5. If R is not ∗-consistent, its period is 1 and the same asymptotic bound applies.
Next, we prove the asymptotic bound on the prefix of a ∗-consistent octagonal relation

R. Let us define:

{sm}m≥0 =
{
(M∗

R
k)i,j

}
m≥0

{tm}m≥0 =
{⌊ (M∗

R
k)i,̄i

2

⌋
+
⌊ (M∗

R
k)j̄,j

2

⌋}
m≥0

By Lemma 4.20, the periodic sequence {tm}m≥0 has prefix b and period c′ = 2c. The
sequence {sm}m≥0 has prefix b and period c, but we can without loss of generality assume
that its period is c′ = 2c. By Lemma 4.20, the sequence {min(sm, tm)}m≥0 has period c
and prefix defined as b′ = b+maxc−1

i=0 Kic
′ where

Ki =
⌈ sb+i−tb+i

λ
(t)
i −λ

(s)
i

⌉
if λ

(s)
i < λ

(t)
i and tb+i < sb+i,

Ki =
⌈ tb+i−sb+i

λ
(s)
i −λ

(t)
i

⌉
if λ

(t)
i < λ

(s)
i and sb+i < tb+i,

Ki = 0 otherwise.

Observe that
sb ≥ −b · ||R||,
tb ≤ max{(M∗

R
b)i,̄i, (M

∗

R
b)j̄,j} ≤ b · ||R||.

Thus, if λ
(s)
i > λ

(t)
i and tb+i > sb+i, then

Ki =
⌈ tb+i−sb+i

λ
(s)
i −λ

(t)
i

⌉
≤ tb+i − sb+i ≤ 2 · b · ||R||.

Similarly, we infer that Ki ≤ 2 · b · ||R|| if λ
(s)
i < λ

(t)
i and tb+i < sb+i. Hence, b′ =

b+2 · b · ||R|| · c′ is the prefix of {min(sm, tm)}m≥0 and thus of R. The asymptotic bound
||R||2 · 2O(N) on b′ follows.
Finally, we prove the asymptotic bound on the prefix of R that is not ∗-consistent. Let

b and c be the prefix and period of {M∗
R

m}m≥0 as inferred previously. By Theorem 2.20,

either M∗

R
ℓ is inconsistent or

⌊ (M∗

R
ℓ)i,̄i

2

⌋
+
⌊ (M∗

R
ℓ)ī,i

2

⌋
< 0 for some ℓ ≥ 0, 1 ≤ i ≤ 4N . For

the former case, ℓ (and thus the prefix of R) is bounded by ||R|| ·2O(N), by Corollary 5.3.
Now consider the latter case. Let us denote

{sm}m≥0 =
{⌊ (M∗

R
m)i,̄i
2

⌋
+
⌊ (M∗

R
m)ī,i
2

⌋}
m≥0

and let ℓ ≥ 0 and 1 ≤ i ≤ 4N be such that sℓ < 0. If ℓ ≤ b, we immediately get the
required asymptotic bound. If ℓ > b, then by Lemma 5.29, there exist path schemes in
the zigzag automaton σ1.λ

∗
1.σ

′
1 and σ2.λ

∗
2.σ

′
2 such that (M∗

R
ℓ)i,̄i = w(σ1.λ

b1
1 .σ

′
1) for some

b1 ≥ 0 and (M∗

R
ℓ)̄i,i = w(σ2.λ

b2
2 .σ

′
2) for some b2 ≥ 0 and moreover, letting c1 = c

|λ1|

and c2 = c
|λ2|

, the paths σ1.λ
b1+kc1
1 .σ′1 and σ2.λ

b2+kc2
2 .σ′2 are minimal for all k ≥ 0. By

89

Lemma 4.20, the sequence {sm}m≥0 has prefix b and period 2c. Moreover, its rate is
w(λc11) + w(λc22). Clearly, w(λc11) + w(λc22) < 0, since otherwise sℓ < 0 would not be
possible. Observe that

sb ≤ max
{
(M∗

R
b)i,̄i, (M

∗

R
b)̄i,i

}
≤ b · ||R||.

Then,

ℓ ≤ b · ||R||+

⌈
b·||R||

−
(
w(λ

c1
1)+w(λ

c2
2)
)
⌉
· c ≤ b · ||R|| · c.

Thus, ℓ and consequently the prefix of R are asymptotically bounded by ||R||2 · 2O(n). ✷

5.3 Finite Monoid Affine Relations

An affine relation R ∈ ZN × ZN is defined by a linear arithmetic constraint of the form
x′ = Ax + b where A ∈ ZN×N is a square matrix, and b ∈ ZN is a column vector.
The relation is said to have the finite monoid property if the set {A0, A1, . . .} of matrix
powers of A is finite. The cardinality of this set of called the monoid size of R, and
denoted by [R]. Finite monoid affine relations are periodic, and the prefix b and period
c of a relation R are such that b + c = [R]. In this section, we show that the monoid

size of a finite monoid relation is bounded by 2O(N log10 11), in other words, it is simply
exponential in the number of variables. The developments in this section are closely
related to decidability of the finite monoid property as mentioned in Theorem 2.28.
If R has the finite monoid property, then [R] is the smallest integer p from the above

theorem. This is because, due to the two conditions of Theorem 2.28, for every k > 0,
we have that Akp = Ap. Moreover, if p is the minimal integer satisfying these conditions,
all powers A0, A1, . . . , Ap−1 are pairwise distinct.
In the rest of this section, we give an upper bound for the smallest integer p that

satisfies the conditions of Theorem 2.28. Notice first that every eigenvalue of Ap is of
the form λp where λ is an eigenvalue of A. Since, by the first condition, λp is either
zero or one, the only non-zero roots of the characteristic polynomial of A must be
roots of the unity. But then PA(x) is a product of xk, for some k < N , and several
cyclotomic polynomials, call them Fi1 , . . . , Fim . Clearly, the degrees of these polynomials
are smaller than the degree of PA, which, in turn, is smaller or equal to N . Let i0 =
lcm(i1, . . . , im). Then every root λ of PA has the property λi0 = 1, i.e. the first condition
from Theorem 2.28 is met for p = iℓ0, for any integer ℓ > 0. Moreover, this condition
does not hold for any 0 < q < i0, or i

ℓ
0 < q < iℓ+1

0 , for all ℓ > 0. But then the second
condition of Theorem 2.28, if it holds for some p which is a multiple of i0, it must hold
also for p = i0.
The only remaining question is how big i1, . . . , im are. The idea is that we do not

need to consider cyclotomic polynomials of degree higher than the degree of PA, which
is turn is at most N . A tight bound on the degree of a cyclotomic polynomial is given
by the following theorem:

90

Theorem 5.33 For every two integers n > 0 and d ≥ 0, such that n > 210
(
d
48

)log10 11,
the degree of Fn(x) is higher than d.

Proof: See Theorem 8.46 in [Boi99]. ✷

Since, by Theorem 5.33, we have 0 < i1, . . . , im < 210
(
N
48

)log10 11, it follows by Lemma
4.5 that lcm(i1, . . . , im), and implicitly, the minimal integer p satisfying Theorem 2.28,

is bounded by 2O(N log10 11). This gives the bound on the size of the monoid for R, which
in turn equals the sum b + c between the prefix and the period of R. In conclusion,
Algorithm 1 runs in time at most 2O(N log10 11).

91

6 Computing Termination Pre-conditions of
Integer Relations

In this chapter, we address the problem of conditional termination, which is that of
defining the weakest termination set—the set of initial configurations from which a given
program terminates. First, we define its dual, the weakest non-termination set—the set
of initial configurations from which a non-terminating execution exists—as the greatest
fixpoint of the pre-image of the transition relation. This definition enables the represen-
tation of this set whenever (1) the closed form of the relation of the loop is definable in
a logic that has quantifier elimination and (2) the greatest fixpoint of the pre-image of
the relation can be computed as the infimum of the Kleene sequence. We show that these
conditions are met for three classes of relations: difference bounds, octagonal, and finite
monoid affine relations, and that the weakest non-termination set of relations from these
classes is an effectively computable Presburger formula. This entails the decidability of
the termination problem for these classes. The Presburger formula defining the weakest
non-termination set is defined using the closed form of a relation. This induces a method
for computation of the weakest non-termination set which inherits the asymptotic com-
plexity of the algorithm computing the closed form, which we proved to be EXPTIME
in Chapter 5.
We study the classes of difference bounds and octagonal relations further and observe

that the representation of powers of a relation by zigzag automata provides a better
argument to decide termination of these classes. More precisely, we notice that well-
foundedness of a difference bounds or an octagonal relation manifests in the existence
of a negative cycle in the corresponding zigzag automaton, which makes the limit of
the Kleene sequence empty. These observations lead to a PTIME algorithm computing
the weakest non-termination sets for difference bounds and octagonal relations that
avoids the closed form computations and complex quantifier eliminations. Further, the
structure of the negative cycle in a zigzag automaton can be used to prove a result on
existence of linear ranking functions. We show that we can construct a witness relation
R′ for each difference bounds or octagonal relation R such that R and R′ have equal sets
of infinite runs and, moreover, that R′ has a linear ranking function if it is well-founded.
Finally, we study the class of linear affine relations and give a method of under-

approximating the termination precondition for a non-trivial subclass of polynomially
bounded affine relations.

Related Work. The literature on program termination is vast. Most work focuses
however on universal termination, such as the techniques for synthesizing linear ranking
functions of Sohn and Van Gelder [SVG91] or Podelski and Rybalchenko [PR04a], and

92

the more sophisticated method of Bradley, Manna and Sipma [BMS05], which synthe-
sizes lexicographic polynomial ranking functions, suitable when dealing with disjunctive
loops. However, not every terminating program (loop) has a linear (polynomial) ranking
function. In this chapter, we show that for an entire class of non-deterministic linear
relations, defined using octagons, termination is always witnessed by a computable oc-
tagonal relation that has a linear ranking function.
Another line of work considers the decidability of termination for simple (conjunctive)

linear loops. Initially, Tiwari [Tiw04] showed decidability of termination for affine linear
loops interpreted over reals, while Braverman [Bra06] refined this result by showing
decidability over rationals and over integers, for homogeneous relations of the form C1x >
0 ∧ C2x ≥ 0 ∧ x′ = Ax. The non-homogeneous integer case seems to be much more
difficult as it is closely related to the open Skolem’s Problem [HHHK05]: given a linear
recurrence {ui}i≥0, determine whether ui = 0 for some i ≥ 0.
To our knowledge, the first work on proving non-termination of simple loops is re-

ported in [GHM+08]. The notion of recurrent sets occurs in this work, however, without
the connection with fixpoint theory, which is introduced in the present work. Finding
recurrent sets in [GHM+08] is complete with respect to a predefined set of templates,
typically linear systems of rational inequalities.
The work which is closest to ours is probably that of Cook et al. [CGLA+08]. In

that paper, the authors develop an algorithm for deriving termination preconditions
by first guessing a ranking function candidate (typically the linear term from the loop
condition) and then inferring a supporting assertion which guarantees that the candidate
function decreases with each iteration. The step of finding a supporting assertion requires
a fixpoint iteration in order to find an invariant condition. Unlike our work, the authors of
[CGLA+08] do not address issues related to completeness: the method is not guaranteed
to find the weakest precondition for termination, even in cases when this set can be
computed. On the other hand, it is applicable to a large range of programs extracted
from real-life software. To compare our method with theirs, we tried the examples
available in [CGLA+08]. For those which are polynomially bounded affine relations, we
used our under-approximation method and have computed termination preconditions,
which turn out to be slightly more general than the ones reported in [CGLA+08].

Roadmap. Section 6.1 gives the fixpoint characterization of the weakest non-termination
set and states conditions under which this set can be computed as the limit of the Kleene
sequence. Sections 6.2 and 6.3 prove that these conditions are met for octagonal rela-
tions (and implicitly for difference bounds relations) and for finite monoid affine rela-
tions, respectively. Section 6.2.1 presents a PTIME algorithm computing the weakest
non-termination set for octagonal relations (and implicitly for difference bounds rela-
tions). Section 6.3.1 presents a method that computes termination preconditions for
polynomially bounded affine relations. We defer all experiments with our methods for
termination analysis to Chapter 8.

93

6.1 Preconditions for Non-termination

We first recall the notions of ∗-consistent and well-founded relations.

Definition 6.1 A relation R ⊆ ZN×ZN defined by R(x,x′) is said to be ∗-consistent if
and only if, for any m > 0, there exists a sequence of valuations {νi ∈ Zx}mi=0, such that
νi, νi+1 |= R(x,x′), for all i = 0, . . . ,m−1. R(x,x′) is said to be well-founded if and only
if there is no infinite sequence of valuations {νi : Z

x}i≥0, such that νi, νi+1 |= R(x,x′),
for all i ≥ 0.

Notice that if a relation is not ∗-consistent, then it is also well-founded. However the dual
is not true. For instance, the relation R = {(n, n− 1) | n > 0} is both ∗-consistent and
well-founded. Also notice that a relation R is ∗-consistent if and only if Ri is consistent
for all i ≥ 0.

Definition 6.2 A set S ⊆ ZN is said to be a non-termination precondition for R(x,x′)
if, for each s ∈ S there exists an infinite sequence of valuations {νi : Z

x}i≥0 such that
s = ν0(x) and νi, νi+1 |= R(x,x′), for all i ≥ 0.

If S0, S1, . . . are all non-termination preconditions forR, then the (possibly infinite) union⋃
i=0,1,... Si is a non-termination precondition for R as well. The set wnt(R) =

⋃
{S ∈

ZN | S is a non-termination precondition for R} is called the weakest non-termination
precondition for R. A relation R is well-founded if and only if wnt(R) = ∅. A set S such
that S ∩ wnt(R) = ∅ is called a termination precondition.

Definition 6.3 A set S ⊆ ZN is said to be recurrent for a relation R ∈ ZN ×ZN if and
only if S ⊆ preR(S).

Notice that if S is a recurrent set for a relation R, then for each s ∈ S there exists
s′ ∈ S such that (s, s′) ∈ R.

Proposition 6.4 Let S0, S1, . . . ∈ ZN be a (possibly infinite) sequence of sets, all of
which are recurrent for a relation R ∈ ZN×ZN . Then their union

⋃
i=0,1,... Si is recurrent

for R as well.

Proof: For each i we have Si ⊆ preR(Si) ⊆ preR(
⋃
j=0,1,... Sj). The last inclusion is by

the monotonicity of preR. Hence
⋃
j=0,1,... Sj ⊆ preR(

⋃
j=0,1,... Sj). ✷

The set wrs(R) =
⋃
{S ∈ ZN | S is a recurrent set for R} is called the weakest re-

current set for R. By Proposition 6.4, wrs(R) is recurrent for R. The following lemma
shows that in fact, this is exactly the set of valuations from which an infinite iteration
is also possible.

Lemma 6.5 Given a relation R ∈ ZN × ZN , the weakest recurrent set for R equals its
weakest non-termination precondition.

94

Proof: “wrs(R) ⊆ wnt(R)” Let s0 ∈ wrs(R) be a valuation. Then there exists s1 ∈
wrs(R) such that (s0, s1) ∈ R. Applying this argument infinitely many times, one can
construct an infinite sequence s0, s1, s2, . . . such that (si, si+1) ∈ R, for all i ≥ 0. Hence
s0 ∈ wnt(R).
“wnt(R) ⊆ wrs(R)” Let s0 ∈ wnt(R) be a valuation and let s0, s1, s2, . . . be arbitrary

infinite sequence such that (si, si+1) ∈ R, for all i ≥ 0. Clearly, s1 ∈ wnt(R) too.
Consequently, s0 ∈ preR(wnt(R)) for each state s0 ∈ wnt(R) and hence, wnt(R) ⊆
preR(wnt(R)). Thus, wnt(R) is a recurrent set and hence wnt(R) ⊆ wrs(R). ✷

Next we define the weakest recurrent set as the greatest fixpoint of the transition
relation’s pre-image.

Lemma 6.6 Given a relation R ∈ ZN × ZN , the weakest recurrent set for R is the
greatest fixpoint of the function X 7→ preR(X).

Proof: By the Knaster-Tarski Fixpoint Theorem, gfp(preR) =
⋃
{S | S ⊆ preR(S)} =

wrs(R). ✷

The following two lemmas give conditions under which wrs(R) can be computed as
the infimum of the Kleene sequence {premR (Z

N)}m≥0.

Lemma 6.7 Let R(x,x′) be a relation and n2 > n1 ≥ 0 such that pren1
R (ZN) =

pren2
R (ZN). Then, wrs(R) =

⋂
m≥0 pre

m
R (Z

N) = pren1
R (ZN) = pren2

R (ZN).

Proof: First observe that wrs(R) = wnt(R) ⊆
⋂
m≥0 pre

m
R (Z

N), by Lemma 6.5 and by

the fact that wnt(R) ⊆ premR (Z
N) for each m ≥ 0. Second, observe that prenR(Z

N) =
pren1

R (ZN) for all n ≥ n1, by the hypothesis of the lemma and by monotonicity of preR.
Hence,

⋂
m≥0 pre

m
R (Z

N) =
⋂

0≤m≤n1
premR (Z

N) = pren1
R (ZN) = pren2

R (ZN) is the greatest
fixpoint of preR and it is thus equal to wrs(R), by Lemma 6.6. ✷

Lemma 6.8 Let R ∈ ZN × ZN be a relation such that either

1. preR is ∩-continuous, or

2. pren2
R (ZN) = pren1

R (ZN) for some n2 > n1 ≥ 0, or

3.
⋂
m≥0 pre

m
R (Z

N) = ∅.

Then, wrs(R) =
⋂
m≥0 pre

m
R (Z

N).

Proof: If the condition 1 holds, one can apply the Kleene Fixpoint Theorem and
conclude that wrs(R) = gfp(preR) =

⋂
m≥0 pre

m
R (Z

N). If the condition 2 holds, one can
apply Lemma 6.7 and conclude that the lemma holds. For the condition 3 holds, observe
that wnt(R) ⊆ premR (Z

N) for each m ≥ 0. Consequently,

wrs(R) = wnt(R) ⊆
⋂
m≥0 pre

m
R (Z

N) = ∅

Hence, wrs(R) =
⋂
m≥0 pre

m
R (Z

N) = ∅ and the lemma holds. ✷

95

The Lemma 6.8 suggests a method for computing weakest recurrent sets of relations
that satisfy one of the conditions stated in the lemma. In subsequent sections, we show
that Lemma 6.8 is applicable for both octagonal and finite-monoid affine relations. Thus,
wrs(R) = gfp(preR) =

⋂
m>0 pre

m
R (Z

N) =
⋂
m>0 preRm(ZN) for these classes. In Chapter

3, we showed that the closed form R̂(x,x′, k) is definable for these classes. Using the
closed form R̂(x,x′, k) of R, one can now define wrs(R) as a Presburger formula:

wrs(R) ≡ ∀k ≥ 0 ∃x′ . R̂(k,x,x′) (6.1)

Because Presburger arithmetic has quantifier elimination, wrs(R) can be defined in
Presburger arithmetic too. Decidability of Presburger arithmetic entails decidability of
the termination problem for octagonal and finite-monoid affine relations.

Example. Consider an octagonal relation R(x, x′) ≡ x ≥ 0 ∧ x′ = x − 1. The closed
form of R(x, x′) is R̂(x,x′, k) ≡ x ≥ k − 1 ∧ x′ = x − k. Quantifier elimination yields
wrs(R) ≡ ∀k > 0 ∃x′ . x ≥ k − 1 ∧ x′ = x − k ≡ ∀k ≥ 0 . x ≥ k − 1 ≡ false. Hence the
relation R is well-founded. ✷

6.2 Octagonal Relations

For a set v of variables, let U(v) = {±v1 ± v2 | v1, v2 ∈ v} denote the set of octagonal
terms over v. As a first remark, by the periodicity of the sequence {M t

Ri}i≥0, proved in
Chapter 4.3, the closed form of the subsequence {Rb+cℓ}ℓ≥0 (of {Ri}i≥0) can be defined
as:

R̂b,c(ℓ,x,x
′) ≡

∧

u∈U(x∪x′)

u ≤ auℓ+ du (6.2)

where au = (Λ0)ij , du = (M t
Rb)ij for all octagonal terms u = yi − yj . This is indeed the

case, since the matrix sequence {M t
Rb+cℓ}ℓ≥0 is periodic i.e., M t

Rb+cℓ =M t
Rb + ℓΛ0, for all

ℓ ≥ 0. Moreover, it follows that the parametric DBM encoding of R̂b,c(ℓ,x,x
′) is tightly

closed.

Lemma 6.9 Let R be a ∗-consistent octagonal relation with prefix b, period c and let
R̂b,c(ℓ,x,x

′) be the closed form of {Rb+cℓ}ℓ≥0 as defined in (6.2). Then, wrs(R) =⋂
k≥0 pre

k
R(Z

N). Moreover, wrs(R) = ∅ if there exists u∈U(x) s.t. au< 0. Otherwise,

wrs(R)=R−b(ZN).

Proof: Notice that the function preR is monotonic and thus, prek1R (Zn) ⊇ prek2R (Zn), for

k1 ≤ k2. Consequently, we have that
⋂
k>0 pre

k
R(Z

N) =
⋂
ℓ≥0 pre

b+cℓ
R (ZN). The latter

set can now be defined using the closed form of the subsequence (6.2) i.e.,

⋂

k>0

prekR(Z
N) ≡ ∀ℓ ≥ 0 ∃x′ . R̂b,c(ℓ,x,x

′)

96

Since the parametric DBM encoding of R̂b,c(ℓ,x,x
′) is tightly closed, if follows that the

existential quantifier ∃x′ can be eliminated by simply deleting all atomic propositions
involving primed variables from (6.2). Thus, we obtain:

⋂
k>0 pre

k
R(Z

N) ≡ ∀ℓ ≥ 0
∧
u∈U(x) u ≤ auℓ+ du

≡
∧
u∈U(x) u ≤ inf {auℓ+ du | ℓ ≥ 0}

where, for a set S ⊆ Z, inf S denotes the minimal element of S, if one exists, or −∞,
otherwise. We have

inf {auℓ+ du | ℓ ≥ 0} =

{
−∞ if au < 0,
du otherwise.

Hence
⋂
k>0 pre

k
R(Z

N) is the empty set, if au < 0 for some u ∈ U(x). In this case,
condition 3 of Lemma 6.8 holds. Otherwise, we obtain

⋂
k>0 pre

k
R(Z

N) ≡
∧
u∈U(x) u ≤

du. However, this is exactly the set prebR(Z
N), by (6.2). In this case, condition 2 of

Lemma 6.8 holds. Thus, we can apply Lemma 6.8 in both cases and conclude that
wrs(R) =

⋂
k>0 pre

k
R(Z

N). To summarize, wrs(R) = ∅ if au < 0 for some u ∈ U(x).
Otherwise, wrs(R) = R−b(ZN). ✷

An immediate consequence is that the termination problem is decidable and that the
weakest termination set is an effectively computable Presburger formula.

Theorem 6.10 The termination problem is decidable for octagonal relations. Moreover,
the weakest non-termination set of an octagonal relation is an effectively computable
octagonal constraint.

Proof: By Lemma 6.9, the weakest non-termination set of an octagonal relation is either
empty or R−b(ZN). Moreover, Lemma 6.9 gives means to compute this set. Thus, the
termination problem can be decided by checking whether wrs(R) = ∅. ✷

Lemma 6.9 can be used to compute wrs(R) for an octagonal relation R. First we need
to check the ∗-consistency of R, using the method reported in Chapter 4.3. Second, we
compute the closed form (6.2) and check for the existence of a term u ∈ U(x) such that
au < 0, in which case wrs(R) = ∅ and R is well-founded. Finally, if this is not the case,
then we compute wrs(R) = R−b(ZN). On the complexity side, the computation of the
closed form has asymptotic time complexity of ||R||2 ·2O(N), as proved in Chapter 5. The
rest of the computation is linear in the size of the closed form. Thus, the method runs
in ||R||2 · 2O(N) asymptotic time.

6.2.1 Computing WNT in Polynomial Time

Lemma 6.9 can be used to build an EXPTIME algorithm for computation of the weak-
est non-termination precondition, as discussed in the previous section. In this section,
we give a different termination argument which leads to an efficient polynomial time
algorithm that computes the weakest non-termination precondition.

97

Lemma 6.9 proves that the weakest recurrent set of an octagon is the limit of the
sequence {R−k(ZN)}k≥0. Note that R−k(ZN) is represented as (M t

R
k)↓y, a projection

of M t

R
k onto unprimed variables. By Theorem 2.26, (M t

R
k)↓y is computed by tightening

(M∗

R
k)↓y. Recall that entries of (M∗

R
k)↓y can be encoded as weights of minimal runs of

length k + 2 in the even forward zigzag automaton Aef
R

defined in Section 2.3.3. The
later developments of this section depend on this encoding and we thus recall it in the
following example.

Example. Consider the set of variables x = {x1, . . . ,x4} and a difference bounds rela-
tion R(x,x′) ≡ x2 −x

′
1 ≤ −1 ∧ x3 −x

′
2 ≤ 0 ∧ x1 −x

′
3 ≤ 0 ∧ x′4 −x4 ≤ 0 ∧ x′3 −x4 ≤ 0.

Graph representation GR of the relation R(x,x′) is depicted in Figure 6.1 (a). Figure
6.1 (b) shows GR8 , the 8-times unfolding of GR. The transition table that is common to

all even forward zigzag automata is given in Figure 6.1 (c). An example of a run of AefR
recognizing a path of constraints in G8R is given in Figure 6.1 (d). The word accepted by

π is a subgraph of G8R shown in Figure 6.1 (b). The cycle λ :q1
G1−−→q2

G2−−→q3
G3−−→q1 is taken

twice in this run. The weights of the symbols on the run are w(G1)=w(G2)=w(G4)=0
and w(G3)=−1. ✷

The following proposition relates values of entries in (M∗

R
k)↓y to weights of runs of

length k + 2 in even forward zigzag automata.

Proposition 6.11 Let R(x′,x′), x = {x1, . . . , xN}, be a ∗-consistent octagonal relation,
R(y,y′), y = {y1, . . . , y2N}, be a difference bounds representation of R(x′,x′), and let

Aef
R

be the even forward zigzag automaton corresponding to R(y,y′). Then, the following
assertions are equivalent for all 1 ≤ i, j ≤ 2N and all m ≥ 0,

1. there exists an acyclic path ρ from y
(0)
i to y

(0)
j in Gm

R

2. there exists a run π in Aef
R

of length m+ 2 such that w(π) = w(ρ) and π is of the
form

π = (Iefi,j −→ q)
︸ ︷︷ ︸

σ1

. (q −→ . . . −→ q′)
︸ ︷︷ ︸

σ2

. (q′ −→ F ef)
︸ ︷︷ ︸

σ3

. (F ef −→ F ef)n

︸ ︷︷ ︸
σ4

.

where q, q′ ∈ {l, r, lr, rl,⊥}2N are control states, n ≥ 0, w(π) = w(σ2), and w(σ1) =
w(σ3) = w(σ4) = 0.

and moreover, (M∗
R

m)i,j ≤ w(π) for each path π of the above form. Moreover, there
exists a path π of the above form such that w(π) = (M∗

R
m)i,j.

Proof: Follows from construction of Aef
R

and the fact that (M∗
R

m)i,j is the weight of the

minimal weight path from y
(0)
i to y

(0)
j in Gm

R
. ✷

The following lemma gives several equivalent conditions for checking that an octag-
onal relation is well-founded. They will later be used to design an efficient polynomial

98

x′4

x′3

x′2

x′1

x4

x3

x2

x1
−1

0

0

0

0

x4

x3

x2

x1
x(0) x(1) x(2) x(3) x(4) x(5) x(6) x(7) x(8)

x4

x3

x2

x1
−1

0

0

0

0

−1

0

0

0

0

−1

0

0

0

0

−1

0

0

0

0

−1

0

0

0

0

−1

0

0

0

0

−1

0

0

0

0

−1

0

0

0

0

(a) GR (b) G8R

q1

q2q3 q4

⊥
r
⊥
l

r
⊥
⊥
l

⊥
⊥
r
l

⊥
⊥
rl
⊥

Ief2,4
Ief1,4

Ief3,4 F ef

ǫ

ǫ

ǫ ǫ

ǫ

(c) Aef – transition table for forward even zigzag automata

λ λ

Ief2,4 F ef

q1 q2 q3 q1 q2 q3 q1 q2 q4

G3 G1 G2 G3 G1 G2 G3 G4

⊥
r

⊥

l

r

⊥

⊥

l

⊥

⊥
r

l

⊥
r

⊥

l

r

⊥

⊥

l

⊥

⊥
r

l

⊥
r

⊥

l

r

⊥

⊥

l

⊥

⊥

rl

⊥

(d) a run in zigzag automaton over a path in G8R.

Figure 6.1: (a) GR – graph representation of R(x,x′). (b) G8R – 8-times unfolding of GR.
(c) Common transition table of even forward zigzag automata. (d) a run of the zigzag

automaton over a path in G8R. Indices of the initial control state Ief2,4 indicate that the

run encodes a path from x
(0)
2 to x

(0)
4 .

time algorithm that computes the weakest recurrent set of an octagon. The conditions
also provide basis for the proof of existence of linear ranking functions for well-founded
octagonal relations.

Lemma 6.12 Let R(x,x′), x = {x1, . . . , xN}, be a ∗-consistent octagonal relation with
prefix b and R(y,y′), y = {y1, . . . , y2N}, be the difference bounds encoding of R(x,x′).
Then, the following statements are equivalent.

1. R is well-founded

2. R−n1(ZN) 6= R−n2(ZN) for some n2 > n1 ≥ b

99

3. R−n1(ZN) 6= R−n2(ZN) for some n2 > n1 ≥ 52N

4. there exists a path σ.λ.σ′ in Aef
R

of the form σ : Iefi,j ❀ q, λ : q ❀ q, σ′ : q ❀ F ef

for some 1 ≤ i, j ≤ 2N and a control state q such that w(λ) < 0.

5. R is well-founded

Proof: (1⇒ 2) For a proof by contraposition, suppose that R−n1(ZN) = R−n2(ZN) for

all n2 > n1 ≥ 0. Then, wrs(R) = R−b(ZN) 6= ∅. The equality follows from Lemma 6.7,
the inequality is due to ∗-consistency of R. Thus, wrs(R) 6= ∅ and R is not well-founded,
contradiction.

(1⇒ 3) Similar to (1⇒ 2).

(2⇒ 1) For a proof by contraposition, suppose that R is not well-founded. By Lemma
6.9, wrs(R) = R−b(ZN). Since wrs(R) is a fixpoint, then clearly wrs(R) = R−b(ZN) =
R−n(ZN) for all n ≥ b. Consequently, R−n1(ZN) = wrs(R) = R−n2(ZN) for all n2 >
n1 ≥ b.

(3 ⇒ 4) Let n2 > n1 ≥ 52N such that R−n1(ZN) 6= R−n2(ZN). Then, R
−n1(Z2N) 6=

R
−n2(Z2N) too by contraposition: For all m ≥ 0, the tightly closed difference bounds

encoding of R−m(ZN) is (M t
R

m)↓y, a restriction of M t
R

m to the entries corresponding

to unprimed variables. If R
−n1(Z2N) = R

−n2(Z2N), then (M∗
R

n1)↓y = (M∗
R

n2)↓y, by

Proposition 2.8. This implies that (M t
R

n1)↓y = (M t
R

n2)↓y, by Theorem 2.26. Conse-

quently, R−n1(ZN) = R−n2(ZN) by Proposition 2.21.

Since R
−n1 6= R

−n2 , then (M∗
R

n1)i,j > (M∗
R

n2)i,j for some 1 ≤ i 6= j ≤ 2N . By

Proposition 6.11, there exists a path π in ZR from Iefi,j to F
ef such that w(π) = (M∗

R
n1)i,j .

Moreover π has length n1+2 and can be written as π = σ1.σ2.σ3.σ4 where w(π) = w(π2)

and w(σ1) = w(σ3) = w(σ4) = 0. Similarly, where is a path π′ from Iefi,j to F ef of
length n2 + 2 such that w(π′) = (M∗

R
n2)i,j . π

′ = σ′1.σ
′
2.σ

′
3.σ

′
4 where w(π′) = w(π′2) and

w(σ′1) = w(σ′3) = w(σ′4) = 0.
We prove that |σ′2| > n1 by contradiction. Suppose that |σ′2| ≤ n1 and denote n = |σ′2|.

The path θ = σ′1.σ
′
2.σ

′
3 has length n+ 2 and thus (M∗

R
n)i,j ≤ w(θ), by Proposition 6.11.

We obtain that (M∗
R

n)i,j ≤ w(π′) = (M∗
R

n2)i,j , by the fact that w(θ) = w(σ′2) = w(π′)
and by Proposition 6.11. Since n ≤ n1 < n2, we infer that (M∗

R
n)i,j = (M∗

R
n1)i,j =

(M∗
R

n2)i,j , by monotonicity of preR. Contradiction with (M∗
R

n1)i,j > (M∗
R

n2)i,j .

Since |σ′2| > n1 ≥ 52N , there are cycles (at least one) in σ′2. Observe that:

• None of these cycles can be positive, since positive weight would imply that π′ is
not a minimal run of length n2, which contradicts the assumption.

• Not all these cycles are zero-weight, which can be demonstrated by contradiction.
Suppose all cycles are zero-weight, erase all of them from σ′2 and denote the result-
ing path ρ2 and its length n = |ρ2| ≤ 52N . Next, build θ = σ′1.ρ2.σ

′
3. We infer that

(M∗
R

n)i,j ≤ w(π
′) = (M∗

R
n2)i,j , since w(θ) = w(ρ2) = w(σ′2) = w(π′) and by Propo-

sition 6.11. Since n ≤ n1 < n2, we infer that (M∗
R

n)i,j = (M∗
R

n1)i,j = (M∗
R

n2)i,j ,
by monotonicity of preR. Contradiction with (M∗

R
n1)i,j > (M∗

R
n2)i,j .

100

The above proves that there exists at least one negative-weight cycle in σ′2. Consequently,
π′ can be split into π′ = σ.λ.σ′ where λ is a negative weight cycle.

(4 ⇒ 5) By Proposition 6.11, the length of σ.σ′ is |σ.σ′| = m + 2, m ≥ 0 and

σ.σ′ starts in Iefi,j and ends in F ef for some 1 ≤ i, j ≤ 2N . Let p = |λ|. Clearly,

(M∗

R
m+kp)i,j ≤ w(σ.λk.σ′) for all k ≥ 0, by Proposition 6.11. The infinite sequence

{w(σ.λk.σ′)}k≥0 is strictly decreasing and thus inf{w(σ.λk.σ′)}k≥0 = −∞. Conse-
quently inf{(M∗

R
m+kp)i,j}k≥0 = −∞ too. By monotonicity of pre,

inf{(M∗
R

m)i,j}m≥0 = inf{(M∗

R
m+kp)i,j}k≥0.

Thus, inf{(M∗
R

m)i,j}m≥0 = −∞. Consequently, wrs(R) =
⋂
m≥0R

−m
(ZN) = ∅ and R

is well-founded.

(5⇒ 1) If R is well-founded, then
⋂
m≥0R

−m
(ZN) = ∅. Thus, there exist 1 ≤ i, j ≤ N

such that inf{(M∗
R

m)i,j}m≥0 = −∞. Since (M t
R

m)i,j ≤ (M∗
R

m)i,j for all m ≥ 0, by

Theorem 2.26, we infer that inf{(M t
R

m)i,j}m≥0 = −∞ too. Hence,
⋂
m≥0R

−m(ZN) = ∅
and R is well-founded. ✷

The computation of the weakest non-termination set based on Lemma 6.9 requires
computation of the closed form R̂(k,x,x′) which has ||R||2 · 2O(n) worst case time com-
plexity, as proved in Chapter 5. As we next show, it turns out that Lemma 6.12 provides
a better argument for computation of the weakest recurrent set that avoids computa-
tion of the closed form. Algorithm 4 computes the weakest recurrent set for arbitrary
octagonal relation in PTIME as proved by Theorem 6.13.

Algorithm 4 Weakest Non-termination Set for Octagons

input An octagonal relation R ⊆ ZN×ZN

output The weakest non-termination set of R

1: function WNT(R)
2: V ← R
3: for all i ∈ 1, 2, . . . 5N do
4: V ← V ◦ V
5: W ← V ◦R
6: if V −1(ZN) =W−1(ZN) then return V −1(ZN)
7: else return ∅

Theorem 6.13 Given an octagonal relation R ⊆ ZN×ZN , the Algorithm 4 computes
wrs(R) in O(N4) time.

Proof: Note that for all k1 ≥ 1, k2 = 2⌈log2 k1⌉, Rk2 can be computed in ⌈log2 k1⌉ time
by iterating the assignment R ← R ◦ R. Observe that 5N ≥ log2(5

2N) = 2 · log2 5 · n
for all n ≥ 1. Thus, 25N ≥ 52N for all n ≥ 1. Notice that after executing the line 5,
V ≡ Rn1 , W ≡ Rn2 , where n1 = 25N and n2 = 25N + 1. Clearly, n2 > n1 ≥ 52N .

101

Consider the case when R is ∗-consistent. If the test on line 6 succeeds, then V −1 =
R−n1 = wrs(R) by Lemma 6.7 and the algorithm returns correct result. If the test
fails, then R−n1(ZN) 6= R−n2(ZN) and consequently, wrs(R) = ∅ by Lemma 6.12 (the
direction 3⇒ 1) and the algorithm returns correct result. Next, consider the case when
R is not ∗-consistent. If the test on line 6 succeeds, then V −1(ZN) = R−n1(ZN) = wrs(R)
by Lemma 6.7 and the algorithm returns correct result. If the test fails, the algorithm
returns ∅ which is correct, since wrs(R) = ∅ for each relation that is not ∗-consistent.
On the complexity side, since both octagonal composition (lines 4 and 5) can be

computed in O(N3) time, inclusion (line 6) in O(N2) time, and pre-image (line 6) is
computed as a matrix projection in O(N2) time, the algorithm runs in O(N4) time. ✷

6.2.2 On the Existence of Linear Ranking Functions

A ranking function for a given relation R constitutes a proof of the fact that R is
well-founded. We distinguish here two cases. If R is not ∗-consistent, then the well-
foundedness of R is witnessed simply by an integer constant i > 0 such that Ri = ∅.
Otherwise, if R is ∗-consistent, we need a better argument for well-foundedness. In
this section, we show that for any ∗-consistent well-founded octagonal relation R(x,x′),
x = {x1, . . . , xN}, with prefix b, the (strengthened) relation defined by (∃x′.RB) ∧ R,
where B = min{b, 52N} is well-founded and has a linear ranking function even when R
alone does not have one.

Definition 6.14 Given a relation defined by R(x,x′), a linear ranking function for R
is a term f(x) =

∑n
i=1 aixi such that for all valuations ν, ν ′ : x→ Z:

1. f is decreasing: if ν, ν ′ |= R(x,x′), then f(ν) > f(ν ′),

2. f is bounded: if ν, ν ′ |= R(x,x′), then f(ν) > h and f(ν ′) > h for some h ∈ Z.

The main result of this section is the following:

Theorem 6.15 Let R(x,x′) be a ∗-consistent octagonal relation, with prefix b ≥ 0.
Then, letting B = min{b, 52N}, R is well-founded if and only if the relation defined by
(∃x′.RB) ∧R is well founded if and only if (∃x′.RB) ∧R has a linear ranking function.

The first part of the theorem is proved by the following lemma:

Lemma 6.16 Let R(x,x′) be a relation, and m > 0 be an integer. Then wrs(R) = ∅ if
and only if wrs(Rm) = ∅, where Rm is the relation defined by (∃x′.Rm) ∧R.

Proof: “⇒” By the fact that R ⇐ (∃x′.Rm) ∧ R and the monotonicity of wrs. “⇐”
We prove the dual. Assume that wrs(R) 6= ∅ i.e., there exists an infinite sequence of
valuations σ = {ν : x → Z}i≥0 such that (νi(x), νi+1(x)) ∈ R, for all i ≥ 0. Then all
νi(x) belong to the set defined by ∃x′.Rm, hence σ is an infinite sequence for the relation
defined by (∃x′.Rm) ∧R as well. ✷

102

It remains to prove that the witness relation defined by (∃x′.RB) ∧ R has a linear
ranking function, provided that it is well-founded. The proof is organized as follows. We
first prove the existence of such function for difference bounds relations. By Lemma 6.12,
if the difference bounds relation R is well-founded, then the zigzag automaton ZR must
have a cycle of negative weight. Lemma 6.17 and 6.19 use the structure of this cycle,
representing several of the constraints in R, to show the existence of the linear ranking
function for the witness relation (∃x′.RB)∧R. Second, using the result of Lemma 6.12 on
equivalence of well-foundedness of an octagon R and its difference bounds representation
R, we prove the existence of linear ranking function for octagons in Lemma 6.22.

Linear Ranking Function for Difference Bounds Relation

We first prove the existence of a linear decreasing function, based on the existence of
a negative weight cycle in the zigzag automaton.

Lemma 6.17 Let R(x,x′), x = {x1, . . . , xN} be a ∗-consistent and well-founded differ-
ence bounds relation with prefix b ≥ 0. Then, there exists a linear function f(x) such that
for all valuations ν : x→ Z, ν ′ : x′ → Z satisfying ν, ν ′ |= R(x,x′), we have f(s) > f(s′).

Proof: By Lemma 6.12, there exists a path σ.λ.σ′ in ZR of the form σ : Iefi,j ❀ q,

λ : q1 ❀ q1, σ
′ : q1 ❀ F ef for some 1 ≤ i, j ≤ 2N and a control state q such that

w(λ) < 0. Let denote the length of λ by p and let write λ as λ = q1
G1−−→ q2 . . . qp

Gp
−−→ q1.

Let Gj = (x ∪ x′, Ej) for all 1 ≤ j ≤ p.
Consider the following sum of all constraints represented by edges appearing in the

zigzag cycle (note that the sum of weights of these edges equals w(λ)):

∑
1≤j≤p


 ∑

(xi−→x′j)∈Ej

(xi − x
′
j) +

∑
(x′i−→xj)∈Ej

(x′i − xj)


 ≤ w(λ) (6.3)

The left-hand side of (6.3) can be written equivalently as

∑
1≤j≤p




∑
1≤i≤n,
(qj)i=r

(xi −x
′
i) +

∑
1≤i≤n,
(qj)i=l

(−xi +x
′
i) +

∑
1≤i≤n,
(qj)i=lr

(−xi +xi) +
∑

1≤i≤n,
(qj)i=rl

(−x′i +x
′
i)


 (6.4)

and thus, after simplifications (−xi +xi = 0,−x′i +x
′
i = 0), (6.3) can be written equiva-

lently as

∑
1≤j≤p




∑
1≤i≤n,
(qj)i=r

(xi − x
′
i) +

∑
1≤i≤n,
(qj)i=l

(−xi + x′i)


 ≤ w(λ) (6.5)

Let f denote the negated sum of all unprimed terms in (6.4) and f ′ denote the sum of
all primed terms in (6.4). Then, clearly f ′ = f [x′/x]. Thus, (6.5) can be written as

f ′ − f ≤ w(λ) (6.6)

103

Notice that since w(λ) < 0, we establish that f ′ − f < 0 hence f is strictly decreasing.
Formally f(s) > f ′(s) for all valuations s, s′ such that s, s′ |= R(x,x′). Since (∃x′.RB)∧
R⇒ R, then clearly f(ν) > f(ν ′) for all valuations ν, ν ′ such that ν, ν ′ |= (∃x′.RB)∧R.
✷

Example (ctd.). We illustrate the construction of linear decreasing function. R is
well-founded and by Lemma 6.12, there exists a path depicted in Figure 6.1 (d) where
w(λ) < 0. We follow the construction from Lemma 6.17 and sum the edges in λ. We
obtain x1−x

′
3+x3−x

′
2+x2−x

′
1+x

′
4−x4+x

′
4−x4+x

′
4−x4 ≤ −1, which simplifies to

x1 + x2 + x3 − 3x4 − (x′1 + x′2 + x′3 − 3x4) ≤ −1. Letting f(x) = −(x1 + x2 + x3 − 3x4),
we have that f(x) > f(x′). ✷

The next auxiliary lemma proves that if the difference xi − xj is bounded in Rk for
some k ≥ 1, it is bounded in RB too.

Lemma 6.18 Let R(x,x′), x = {x1, . . . , xN} be a ∗-consistent difference bounds rela-
tion with prefix b ≥ 0 and period c > 0. Then, for any 1 ≤ i, j ≤ N and k ≥ 0, we have
(M∗

Rk)i,j <∞→ (M∗
RB)i,j <∞, where B = min{b, 5N}.

Proof: (Case 0 ≤ k ≤ B) By monotonicity of preR, (M
∗
Rk)i,j ≥ (M∗

RB)i,j . Thus if
(M∗

Rk)i,j <∞, then clearly (M∗
RB)i,j <∞.

(Case k > b) Let p = ⌈k−bc ⌉, and k
′ = b+pc. Note that Rk

′
= R̂b,c(x,x

′, ℓ)[p/ℓ], where

R̂b,c(x,x
′, ℓ)[p/ℓ] is the closed form of {Rb+ci}i≥0. Since k′ ≥ k, by the same argument

as for case (1 ≤ k ≤ b), (M∗
Rk′)i,j < ∞. Since k′ = b + pc, then xi − xj ≤ aℓ + d,

where a, d ∈ Z, is one of its conjuncts. By definition of R̂b,c(x,x
′, ℓ)[p/ℓ], we have

(M∗
Rb)i,j = a · 0 + d = d <∞.

(Case k > 5N) By Proposition 6.11, there exists a path π = σ1.σ2.σ3.σ4 in ZR of length
k + 2 such that w(π) = (M∗

Rk)i,j . Let σ′2 be a path obtained by erasing all cycles from
σ2 and let construct π′ = σ1.σ

′
2.σ3. Let h = |σ′2|. Consequently, (M

∗
Rh)i,j ≤ w(π′) <∞.

Since h ≤ 5N , then ∞ > (M∗
Rh)i,j ≥ (M∗

R5N
)i,j by monotonicity of preR. ✷

Last, we prove that the function f of Lemma 6.17 is bounded, concluding that it is
indeed a ranking function. Since each run in the zigzag automaton recognizes a path
from some xi to some xj , a run that repeats a cycle can be decomposed into a prefix,
the cycle itself and a suffix. The recognized path may traverse the cycle several times,
however each exit point from the cycle must match a subsequent entry point. These
paths from the exit to the corresponding entries give us the necessary lower bound. In
fact, these paths appear already on graphs GRi for i≥B, where b is the prefix of R and
B = min{b, 5N}. Hence the need for a strengthened witness (∃x′.RB)∧R, as R alone is
not enough for proving boundedness of f .

Lemma 6.19 Let R(x,x′), x = {x1, . . . , xN} be a ∗-consistent and well-founded dif-
ference bounds relation with prefix b ≥ 0. Then, letting B = min{b, 5N}, there exists
a linear ranking function for (∃x′.RB) ∧R.

104

λ

q1 q2 q3 q1 q4

G1 G2 G3 G4

r

⊥

⊥

l

⊥

⊥
r

l

⊥
r

⊥

l

r

⊥

⊥

l

⊥

⊥

rl

⊥

−1

0

0

0

0

0

0

0

Figure 6.2: Constructing the ranking function.

Proof: Let f be a linear decreasing function from Lemma 6.17. Let λ : q1
G1−−→

q2 . . . qp
Gp
−−→ q1 be the negative cycle used to construct f , and λF be the suffix from

Lemma 6.17. By construction of the zigzag automaton, for any 1 ≤ j ≤ p,

|{i | (qj)i = r}| = |{i | (qj)i = l}|

It follows from (6.5) that each (qj)i = r contributes to f with a term −xi and that each
(qj)i = l contributes to f with a term +xi and that each (qj)i 6∈ {r, l} doesn’t contribute
at all. We now demonstrate that for each 1 ≤ j ≤ p, there exists a bijective matching
βj : {i | (qj)i = r} → {i | (qj)i = l} such that for any 1 ≤ i1 ≤ n s.t. βj(i1) = i2, the
difference xi2 − xi1 is bounded in (∃x′.RB)∧R, formally (∃x′.RB)∧R⇒ (xi2 −xi1 ≥ h)
for some h ∈ Z.
Let j ∈ {1, . . . , p}. By construction of the zigzag automaton, the concatenated graph

GjGj+1 . . . GpλF connects each (qj)i1 s.t. (qj)i1 = r with a unique (qj)i2 s.t. (qj)i2 = l.

This induces the required bijection βj . Since GjGj+1 . . . GpλF is a subgraph of G
p+|λF |
R , it

follows that there is a path x
(0)
i1

❀ x
(0)
i2

in G
p+|λF |
R , in other words, Rp+|λF | ⇒ xi1−xi2 ≤ h

for some h ∈ Z. By Lemma 6.18, RB ⇒ xi1 − xi2 ≤ h′ for some h′ ∈ Z too. Clearly,
(∃x′.RB) ∧ R ⇒ xi1 − xi2 ≤ h′ too. Since xi1 − xi2 ≤ h′ if and only if xi2 − xi1 ≥ −h

′,
we obtain the required property.
Now since f =

∑
1≤j≤p

∑
1≤i1,i2≤n
βj(i1)=i2

(xi2 − xi1) and since we proved that each of the

differences xi2 − xi1 in the sum is bounded in (∃x′.RB)∧R, it follows that f is bounded
in (∃x′.RB) ∧R too, formally (∃x′.RB) ∧R⇒ (f ≥ h) for some h ∈ Z.
By Lemma 6.17, f is decreasing for R. Thus, f is decreasing fora stronger relation

(∃x′.RB)∧R too, since (∃x′.RB)∧R⇒ R. Thus, f is both decreasing and bounded for
(∃x′.RB) ∧R and is a ranking function for (∃x′.RB) ∧R. ✷

Example (ctd.). We illustrate the boundedness of f=−(x1+x2+x3−3x4) (see Figure

6.2). First, compute B = min{b, 5N} = min{3, 54} = 3. Since there is a path x
(6)
2 ❀x

(6)
4

in G3G4 (and hence in G2R), then R
2 ⇒ (x2 −x4≤−1), and by Lemma 6.18, we obtain

105

RB ⇒ (x2 −x4≤−1). Similarly, since there is a path x
(5)
3 ❀x

(5)
4 in G2G3G4 (and hence

in G3R), we obtain RB ⇒ (x3 −x4 ≤ −1). Similarly, since there is a path x
(4)
1 ❀ x

(4)
4

in G1G2G3G4 (and hence in G4R), we obtain RB ⇒ (x1 −x4≤−1). Summing up these
inequalities, we obtain that f(x)=−(x1 +x2 +x3 −3x4) ≥ 3 and, thus (∃x′.RB) ∧R⇒
(f ≥ 3).
As an experiment, we have tried the RankFinder [PR04a] tool (complete for linear

ranking functions), which failed to discover a ranking function on this example. This
comes with no surprise, since no linear decreasing function that is bounded after the
first iteration exists. However, RankFinder finds a ranking function for the witness
relation (∃x′.RB) ∧R instead. ✷

Linear Ranking Function for Octagonal Relation

In the rest of this section, let us fix the sets of variable x = {x1, . . . , xN} and y =
{y1, . . . , y2N} for some N ≥ 1. We first prove two technical propositions.

Proposition 6.20 Let R(x,x′) be an octagon, R(y,y′) be its difference bounds encod-

ing and let f(y) be a linear ranking function for R(y,y′). Then, the function f
def
=

f [xi/y2i−1,−xi/y2i]
N
i=1, is a linear ranking function for R(x,x′).

Proof: If f is decreasing, then f(v) > f(v′) for each (v,v′) |= R(y,y′), and thus clearly,
for all valuations (v,v′) |= R(y,y′) of the form

v = (v1,−v1, . . . , vN ,−vN), v′ = (v′1,−v
′
1, . . . , v

′
N ,−v

′
N).

Recall that by Equation (2.1),

φ(x)⇔ (∃y2, y4, . . . , y2N . φ ∧
N∧

i=1

y2i−1 = −y2i)[xi/y2i−1]
N
i=1

for each octagonal constraint φ. Defining f
def
= f [xi/y2i−1,−xi/y2i]

N
i=1, it follows by the

above observations that f(v) > f(v′) for each (v,v′) |= R(x,x′). Hence, f is decreasing
too. Similarly, we can prove that f is bounded as well. Since f is clearly linear by
definition, it follows that it is a linear ranking function for R(x,x′). ✷

Proposition 6.21 Let R(x,x′) be an octagon, R(y,y′) be its difference bounds en-
coding and let f(y) be a linear ranking function for (∃y′.R

m
) ∧ R, m ≥ 0. Then,

f
def
= f [xi/y2i−1,−xi/y2i]

n
i=1 is a linear ranking function for (∃x′.Rm) ∧R.

Proof: Let α be a function which syntactically transforms a given octagonal rela-
tion R(x,x′) to its difference bounds representation R(y,y′) induced by Definition
2.18. Let γ be the inverse of α that syntactically transforms R(y,y′) to R(x,x′) as
R(x,x′) = R(y,y′)[xi/y2i−1,−xi/y2i]

N
i=1. Clearly, R ≡ γ(α(R)) for each relation and

106

both α and γ distribute over conjunction. Furthermore, Rm ⇒ γ(α(R)m) by Theorem
2.26. Consequently, (∃x′.Rm)⇒ γ(∃y′.α(R)m).
By the hypothesis, f(y) is a linear ranking function for a difference bounds relation

S(y,y′) defined as S(y,y′) ≡ (∃y′.α(R)m) ∧ α(R). Let define S(x,x′) ≡ γ(S). By
Proposition 6.20, f is a linear ranking function for S. Since S(x,x′) ≡ γ(∃y′.α(R)m)∧R
and by earlier arguments, (∃x′.Rm) ⇒ γ(∃y′.α(R)m), we infer that (∃x′.Rm) ∧ R ⇒ S.
Consequently, since f is a linear ranking function for S, it is a linear ranking function
for (∃x′.Rm) ∧R too. ✷

Finally, we show that for each ∗-consistent and well-founded octagonal relation, the
corresponding witness relation has a linear ranking function.

Lemma 6.22 Let R(x,x′) be a ∗-consistent and well-founded octagonal relation with
prefix b. Then, letting B = min{b, 52N}, there exists a linear ranking function for
(∃x′.RB) ∧R.

Proof: By Lemma 6.12, R(y,y′) is well-founded too and moreover, R(y,y′) is ∗-
consistent by Theorem 2.20. Let b be the prefix of R and define B = min{b, 52N}. By

Lemma 6.19, there exists a linear ranking function f for (∃x′.R
B
) ∧ R. By Proposition

6.21, the function f
def
= f [xi/y2i−1,−xi/y2i]

N
i=1 is a linear ranking function for (∃x′.RB)∧

R. To see that f is a linear ranking function for (∃x′.RB) ∧ R too, consider arbitrary
term yi − yj considered in the proof of Lemma 6.19. If b ≥ b, then the boundedness
argument (yi − yj is bounded in Rb) follows by monotonicity of preR and is similar to
the first case of the proof of Proposition 6.18. If b < b, one can use a similar argument
as in the second case of the proof of Lemma 6.18 and show, using the closed form of R
instead of R, that yi − yj is bounded in Rb too. ✷

6.3 Linear Affine Relations

In this section, we prove that the weakest recurrent set of linear affine relations can be
computed as the limit of the Kleene sequence. We further show that this set can be
defined in Presburger arithmetic for a subclass of relations with finite monoid property.
Next, we relax the finite monoid condition and describe a method for generating sufficient
termination conditions, i.e. sets S ∈ Zn such that S ∩ wrs(R) = ∅, for the class for
polynomially bounded affine relations.
We first prove that preR is ∩-continuous for deterministic relations.

Lemma 6.23 Let R(x,x′) be a deterministic relation. Then, preR is ∩-continuous.

Proof: Let I = {1, . . . , d}, d ∈ N ∪ {∞}, and {Si ∈ ZN}i∈I be a potentially infinite
collection of sets. We prove that

preR(
⋂
i∈I Si) =

⋂
i∈I preR(Si).

107

“⇒” By monotonicity of preR, we have preR(
⋂
i∈I Si) ⊆ preR(Si) for all i ∈ I and hence,

preR(
⋂
i∈I Si) ⊆

⋂
i∈I preR(Si). “⇐” Let v ∈

⋂
i∈I preR(Si). Then, there exists vi ∈ Si

such that (v, vi) ∈ R for all i ∈ I. Since R is deterministic, then v1 = vi for all i ∈ I and
hence v1 ∈

⋂
i∈I Si. Consequently, v ∈ preR(

⋂
i∈I Si). ✷

Since linear affine relations are deterministic, the weakest recurrent set of arbitrary
linear affine relation R can be computed as the limit of the Kleene sequence wrs(R) =⋂
m≥0 pre

m
R (Z

N), by Lemma 6.23 and Lemma 6.8. As discussed in the end of Section
6.1, the weakest recurrent set can be defined using the closed form of R:

wrs(R) ≡ ∀k ≥ 0 . ∃x′ . R̂(x,x′, k)

Writing R as Ru(x,x
′) ∧ φ(x) where Ru(x,x

′) is a deterministic update and φ(x) is
a Presburger guard, we can write the closed form of R, by Lemma 4.28, as

R̂(k,x,x′)⇔ R̂u(k,x,x
′) ∧ ∀0 ≤ ℓ < k ∃y . R̂u(ℓ,x,y) ∧ ϕ(y)

Then, the definition of the weakest recurrent set of a linear affine relation is (after the
elimination of the trailing existential quantifier and renaming ℓ with k and y with x′):

wrs(R)(x) ≡ ∀k ≥ 0 . ∃x′ . R̂u(k,x,x
′) ∧ ϕ(x′) (6.7)

The main difficulty with the form (6.7) comes from the fact that the powers of a matrix
A cannot usually be defined in a known decidable theory of arithmetic.
In Section 4.4, we proved that R̂u(k,x,x

′) is Presburger definable for linear affine
relations with finite monoid property. It follows immediately from equation 6.7 that
wrs(R) is Presburger definable and thus, that termination problem is decidable for finite
monoid affine relations. We summarize these observations in the following theorem.

Theorem 6.24 The termination problem is decidable for finite monoid affine relations.
Moreover, the weakest termination set of a finite monoid affine relation is an effectively
computable Presburger formula.

6.3.1 Polynomially Bounded Affine Relations

The closed form of polynomially bounded affine relations cannot be defined in Presburger
arithmetic any longer, thus we renounce defining wrs(R) precisely, and content ourselves
with the discovery of sufficient conditions for termination. Basically, given a linear affine
relation R, we aim at finding a disjunction φ(x) of linear constraints on x, such that
φ∧wrs(R) is inconsistent without explicitly computing wrs(R). For this, we use several
existing results from linear algebra (see, e.g., [Eve03]). In the following, it is convenient
to work with the equivalent homogeneous form:

R(x,x′) ≡ Chxh ≥ 0 ∧ x′
h = Ahxh

Ah =

(
a b
0 1

)
Ch =

(
C −d

)
xh =

(
x

xN+1

) (8)

108

The weakest recurrent set of R can be then defined as:

wrs(R) ≡ ∃xN+1 . ∀k ≥ 0 . ChA
k
hxh ≥ 0 ∧ xN+1 = 1 (6.9)

Definition 6.25 A function f : N→ C is said to be a C-finite recurrence if and only if:

f(m+ d) = ad−1f(m+ d− 1) + . . .+ a1f(m+ 1) + a0f(n), ∀m ≥ 0

for some d ∈ N and a0, a1, . . . , ad−1 ∈ C, with ad−1 6= 0. The polynomial xd−ad−1x
d−1−

. . . a1x− a0 is called the characteristic polynomial of f .

A C-finite recurrence always admits a closed form.

Theorem 6.26 ([Eve03]) The closed form of a C-finite recurrence is:

f(m) = p1(m)λm1 + . . .+ ps(m)λms

where λ1, . . . , λs ∈ C are non-zero distinct roots of the characteristic polynomial of f ,
and p1, . . . , ps ∈ C[m] are polynomials of degree less than the multiplicities of λ1, . . . , λs,
respectively.

Next, we define the closed form for the sequence of powers of A.

Corollary 6.27 Given a square matrix A ∈ ZN×N , we have:

(Am)i,j = p1,i,j(m)λm1 + . . .+ ps,i,j(m)λms

where λ1, . . . , λs ∈ C are non-zero distinct eigenvalues of A, and p1,i,j , . . . , ps,i,j ∈ C[m]
are polynomials of degree less than the multiplicities of λ1, . . . , λs, respectively.

Proof: If det(A− xIn) = xd − ad−1x
d−1 − . . .− a1x− a0 is the characteristic polynomial

of A, then we have
Ad − ad−1A

d−1 − . . .− a1A− a0 = 0

by the Cayley-Hamilton Theorem. If we define fi,j(m) = (Am)i,j , then we have

Am+d = ad−1A
m+d−1 + . . .+ a1A

m+1 + a0A
m

fi,j(m+ d) = ad−1fi,j(m+ d− 1) + . . .+ a1fi,j(m+ 1) + a0fi,j(m)

By Theorem 6.26, we have that

(Am)i,j = p1,i,j(m)λm1 + . . .+ ps,i,j(m)λms

for some polynomials p1,i,j , . . . , ps,i,j ∈ C[m] of degrees less than the multiplicities of
λ1, . . . , λs, respectively. ✷

Lemma 6.28 Given a square matrix A ∈ ZN×N , whose non-zero eigenvalues are all
roots of the unity. Then (Am)i,j ∈ Q[m], for all 1 ≤ i, j ≤ N , are effectively computable
polynomials with rational coefficients.

109

Proof: Assume from now on that all non-zero eigenvalues λ1, . . . , λs of A are such that
λd11 = . . . = λdss = 1, for some integers d1, . . . , ds > 0. The method given in [Boi99] for
testing the finite monoid condition for A gives also bounds for d1, . . . , ds. Then we have
λL1 = . . . λLs = 1, where L = lcm(d1, . . . , ds). As d1, . . . , ds are effectively bounded, so
is L. By Corollary 6.27, we have that, if m is a multiple of L, then (Am)i,j = pi,j(m)
for some effectively computable polynomial pi,j ∈ C[m] i.e., for m multiple of L, Am

is polynomially definable. But since pi,j(m) assumes real values in an infinity of points
m = kL, k > 0, it must be that its coefficients are all real numbers, i.e. pi,j ∈ R[m].
Moreover, these coefficients are the solutions of the integer system:





pi,j(L) = (AL)i,j
. . .

pi,j((d+ 1)L) = (A(d+1)L)i,j

Clearly, since A ∈ ZN×N , Ap ∈ ZN×N , for any p ≥ 0. Hence pi,j ∈ Q[m]. ✷

We turn now back to the problem of defining wrs(R) for linear affine relations R of the
form (6.9). First notice that, if all non-zero eigenvalues of A are roots of the unity, then
the same holds for Ah (8). By Lemma 6.28, one can find rational polynomials pi,j(k)
defining (Akh)i,j , for all 1 ≤ i, j ≤ N . The condition (6.9) resumes to a conjunction of
the form:

wrs(R)(x) ≡
n∧

i=1

∀k ≥ 0 . Pi(k,x) ≥ 0 (6.10)

where each Pi = ai,d(x) · k
d + . . . + ai,1(x) · k + ai,0(x) is a polynomial in k whose

coefficients are the linear combinations ai,d ∈ Q[x]. We are looking after a sufficient
condition for termination, which is, in this case, any set of valuations of x that would
invalidate (6.10). The following proposition gives sufficient invalidating clauses for each
conjunct above. By taking the disjunction of all these clauses we obtain a sufficient
termination condition for R.

Lemma 6.29 Given a polynomial P (k,x) = ad(x) · k
d + . . . + a1(x) · k + a0(x), there

exists n > 0 such that P (n,x) < 0 if, for some i = 0, 1, . . . , d, we have ad−i(x) < 0 and
ad(x) = ad−1(x) = . . . = ad−i+1(x) = 0.

Proof: Assuming the condition ad−i(x) < 0 and ad(x) = ad−1(x) = . . . = ad−i+1(x) = 0,
for some 0 ≤ i ≤ d, we have P (k,x) = ad−i(x) · k

d + . . . + a1(x) · k + a0(x). Since the
dominant coefficient ad−i(x) is negative, the polynomial will assume only negative values,
from some point on. ✷

110

Example. Consider the following program [CGLA+08], and its linear transformation
matrix A.

while (x ≥ 0)
x′ = x+ y
y′ = y + z

A =




1 1 0
0 1 1
0 0 1




Ak =




1 k k(k−1)
2

0 1 k
0 0 1




The characteristic polynomial of A is det(A−λI3) = (1−λ)3, hence the only eigenvalue

is 1, with multiplicity 3. Then we compute Ak (see above), and x′ = x+ k · y + k(k−1)
2 z

gives the value of x after k iterations of the loop. Hence the (precise) non-termination
condition is: ∀k ≥ 0 . z2 · k

2 + (y − z
2) · k + x ≥ 0. A sufficient condition for termination

is: (z < 0) ∨ (z = 0 ∧ y < 0) ∨ (z = 0 ∧ y = 0 ∧ x < 0) ✷

We can generalize this method further to the case where all eigenvalues of A are of the
form q ·r, with q ∈ R and r ∈ C being a root of the unity. The main reason for not using
this condition from the beginning is that we are, to this point, unaware of its decidability
status. With this condition instead, it is sufficient to consider only the eigenvalues with
the maximal absolute value, and the polynomials obtained as sums of the polynomial
coefficients of these eigenvalues. The result of Lemma 6.28 and the sufficient condition
of Lemma 6.29 carry over when using these polynomials instead.

111

7 Verification of Programs with Integer
Data

In this chapter, we show how the techniques developed in the preceding chapters, which
deal with several restricted classes of program loops, can be used in verification of larger
programs. We presents several algorithms for reachability and termination analysis of
non-recursive programs with integer data. Sections 7.1 and 7.2 present techniques for
modular reachability and termination analysis, respectively, while Section 7.3 presents
an enhancement of a non-modular reachability analysis algorithm based on predicate
abstraction.
The reachability analysis method described in Section 7.1 computes procedure sum-

maries by tracking relations and computing loop accelerations, using acceleration tech-
niques from Chapter 3 and Chapter 4. Since the considered programs are non-recursive,
we can order the procedures topologically with respect to the call graph of a program.
Then, summaries of procedures without call transitions can be computed first. Sub-
sequently, the remaining procedures can be analyzed in the given topological order by
plugging the computed summaries at the call sites. Finally, we check whether the error
summary of the main procedure is empty.
The termination analysis method described in Section 7.2 computes over-approxima-

tions of non-termination sets of procedures. Since we consider non-recursive programs,
there cannot be an infinite sequence of procedure calls that never return, and hence, each
non-terminating run must loop infinitely in one of the procedures. By first computing
a transition invariant of each procedure, one can then compute an over-approximation of
the set of initial configurations from which a run that loops infinitely in that procedure
exists. Next, these sets can be propagated to the main procedure by computing their
pre-image via summaries of procedures. We show that such sets can be computed by
combining techniques from Chapter 6, which compute the weakest non-termination sets
for certain classes of loops, with the reachability analysis techniques from Section 7.1.
Finally, Section 7.3 shows how transitive closure computation can help predicate ab-

straction to deal with the divergence problem by computing inductive interpolants that
rule potentially infinite number of spurious counterexamples in one refinement step. The
underlying idea is that by accelerating dynamically detected looping patterns in spurious
traces, we can analyze multiple concrete traces at once. We further prove that inductive
interpolants that rule out multiple traces can be computed directly from classical Craig
interpolants and transitive closures of loops.
A discussion of the related work can be found in the respective sections. We defer all

experiments with our reachability and termination analysis techniques to Chapter 8.

112

7.1 Modular Reachability Analysis

This section describes a reachability analysis techniques that tracks relations of the pro-
cedures of non-recursive integer programs in order to construct a procedure summary
([[P]]f∃, [[P]]

e
∃) defined in Section 2.2. A key to computing a procedure summary is ac-

celeration of disjunctive loops, for which we design a semi-algorithm that attempts to
compute effects of all possible interleavings of the disjuncts. Computed summaries can
be plugged in at calling procedures, which can be analyzed subsequently. This process
continues until the main procedure is analyzed. Then, presence of an erroneous execu-
tion is checked. We start by illustrating the approach on an example in Section 7.1.1.
Then, Section 7.1.2 presents an algorithm that computes procedure summaries, and
Section 7.1.3 presents a semi-algorithm that computes transitive closures of disjunctive
loops.

Related Work. Reachability analysis techniques that compute the set of reachable
states precisely [Boi99, FL02, AAB00] or using abstractions, such as abstract interpre-
tation and predicate abstraction methods, have been overviewed in Section 1.1. The
precise reachability methods from [Boi99, FL02, AAB00] lack modularity. Similarly,
the goal-driven search performed in predicate abstraction-based analyzers is not easily
amenable to cope with modular verification since the reason for spuriously reaching an
error state might reside in the overapproximation of the behavior of a function call.
Since the error location is typically not part of that function, it is usually hard to trace
the relation between the cause and effect in order to refine the abstraction in the right
way. A method that attempts to apply predicate abstraction to programs composed of
(possibly recursive) functions is the method of nested interpolants [HHP10]. However,
this method lacks modularity as it represents the entire programs by nested word au-
tomata [AM06], i.e., computation models which are equivalent to the visible pushdown
automata [AM04].
Our work focuses on modular program verification by attempting to compute function

summaries, without regard to the calling context. On one side, unlike the techniques
based on abstract interpretation, we aim at computing precise summary relations that
should not require refinement. On the other side, our method, although modular, is
computationally more expensive than the error-driven search of predicate abstraction,
mostly due to the lack of abstraction (and refinement) in our method. A combination of
these two (apparently antithetical) approaches to program verification seems to be the
key to a wider application of program verification in real-life software development. In
Section 7.3, we present a method that combines predicate abstraction based verification
with a precise reachability analysis technique (acceleration). There, we also discuss
methods based on abstractions in more detail. The idea of using relations as a domain
of program analysis has been also exploited in [PR05], although with the goal of proving
program termination rather than safety, which is the aim of this section.

113

7.1.1 Motivating Example

We give an example of an integer program for which we prove safety (unreachability of
the error state) by computing the relation between the values of its variables at the initial
and final control locations. Consider the program in Figure 7.1a and the control flow
graph of the fun function in Figure 7.1b and 7.1c. The function defined in Figure 7.1a

int fun(int x, int m) {

l0: int y = x, n = 2*m-x;

l1 : while (x < n) {

l2 : if (x < m) {

l3 : x ++;

l4 : y ++;

} else {

l5 : x ++;

l6 : y --;

}

}

l7 : return y;

}

void main() {

l8: for (int i = 0; i < 100; i ++)

l9: assert(fun(i,100-i) == i);

}

l0

l1

l2

l7

l3

l4

l5

l6

y’=x

n’=2m-x

x < n

x >= n

x < m

x’=x+1

y’=y+1

x >= m

x’=x+1

y’=y-1

(b)

l8 l9 l′9 err
i’=0

r’=fun(i,100-i)

r=i,i<100,

i’=i+1
r!=i

(a) (c)

Figure 7.1: Example of an integer program and its control flow graph

takes two integer parameters and returns an integer result. The goal of the analysis is to
prove that the assertion at line 9 holds whenever the control reaches it. A non-modular
method will typically iterate the loop at lines 8 and 9 and analyze the behavior of the
fun function for each different valuation of the formal parameters x and m. Our method
will instead first infer the error summary relation for the function and then will use this
relation in proving all assertions correct at once.
This method is similar to the classical conversion of finite automata into regular ex-

pressions. We proceed by eliminating the control states from the control flow graph of the
fun function (Figure 7.1b) and recording the result of these eliminations on the remain-
ing edges. We start by first eliminating the states without self-loops. Each elimination
requires composing all incoming with all outgoing edge relations—the edges labeled by
inconsistent relations are not added. First, we eliminate l3 and l4, in Figure 7.2a followed
by l5 and l6, in Figure 7.2b. Next, we eliminate l2, which causes l1 to have two self-loops,
labeled by the relations R1 ⇔ x < n ∧ x < m ∧ x′ = x + 1 ∧ y′ = y + 1 (the left loop
in Figure 7.2c) and R2 ⇔ x < n ∧ x ≥ m ∧ x′ = x + 1 ∧ y′ = y − 1 (the right loop in
Figure 7.2c).
At this point, we need to eliminate a control location (l1) with two self-loops. This

step requires the computation of the transitive closure of the disjunctive relation cor-

114

l0

l1

l2

l7

l5

l6

y’=x

n’=2m-x

x < n

x >= n

x < m
x’=x+1
y’=y+1

x >= m

x’=x+1

y’=y-1

l0

l1

l2

l7
y’=x

n’=2m-x

x < n

x >= n

x < m
x’=x+1
y’=y+1

x >= m
x’=x+1
y’=y-1

(a) (b)
l0

l1

l7
y’=x

n’=2m-x

x >= n

x < n
x < m
x’=x+1
y’=y+1

x < n
x >= m
x’=x+1
y’=y-1

I

R+
1

R+
2

R+
1

◦R+
2

R+
1

R+
2

R+
2

(c) (d)

R+
1 ≡ m′ = m ∧ n′ = n ∧ x′ > x ∧ x′−x = y′−y ∧ x′ ≤ m ∧ x′ ≤ n

R+
2 ≡ m′ = m ∧ n′ = n ∧ x ≥ m ∧ x′ > x ∧ x′−x = y−y′ ∧ x′ ≤ n

R+
1 ◦R+

2 ≡ m′ = m ∧ n′ = n ∧ x′ ≤ n ∧ x′ ≤ 2n+y−x−y′ ∧ x′−x ≥ y′−y+2∧
x′−x ≥ y−y′ + 2 ∧ x′+x ≤ y−y′+2m ∧ x′+x ≥ y−y′+2m ∧ 2|(x′−x+y′+y)

(e)

l0 l′1 l′′1 l7

y’=x

n’=2m-x x >= n

I

R+
1

R+
2

R+
1

◦R+
2

l0 l7

x ≥ m ∧ y′ = x′ = x ∧ m′ = m

x < m ∧ y′ = x∧

x′ = n′ = 2m − x ∧ m′ = m

(f) (g)

l8 l9 l′9 err
i’=0

r’=i

r=i,i<100,

i’=i+1
r!=i

l8 l9
i’=0 i<100

i’=i+1

(h) (i)

Figure 7.2: Deciding Safety by Elimination of Control Locations

responding to iterating these loops in any possible order. In general, this computation
is not bound to yield a result that can be expressed in linear arithmetic (or, for that
matter, in any decidable subfragment of first-order arithmetic). Hence, our method has
the form of a semi-algorithm.
We first compute transitive closures of the conjunctive relations R+

1 and R+
2 (Fig-

ure 7.2e). Then we systematically explore all possible interleavings of R+
1 and R+

2 by
building a tree (breadth-first) whose edges are labeled with the transitive closures of R+

1

and R+
2 , and each node corresponds to the composition of the transitive closures on the

path from the root (labeled with the identity relation I) to the node. Before expanding
the tree, the algorithm checks whether the new relation is either (i) inconsistent or (ii) in-
cluded in the union of the relations labeling the existing nodes. If this test succeeds,
the algorithm backtracks, otherwise it adds the new node to the tree. If the transitive
closure (R1∨R2)

+ is equivalent to a finite number of interleavings, this construction will
terminate, otherwise not. For this example, in Figure 7.2d, the tree construction ends

115

after three iterations with the result (R1 ∨R2)
+ = R+

1 ∨R
+
2 ∨R

+
1 ◦R

+
2 , see Figure 7.2e.

This is because the composition R+
2 ◦ R

+
1 is inconsistent. Next, the location l1 is split

into l′1 and l′′1 (this time, both locations have no self-loops), and there are four edges
between l′1 and l′′1 labeled with I, R+

1 , R
+
2 and R+

1 ◦ R
+
2 , see Figure 7.2f. We further

eliminate the locations l′1 and l′′1 , see Figure 7.2g. Finally, we eliminate variables not
appearing in the signature of the function and obtain the error summary relation of the
fun function: (x ≥ m ∧ y′ = x) ∨ (x < m ∧ y′ = x) ≡ (y′ = x).
This relation is now used to check the validity of the assertion at line 9, in Figure 7.1a.

Since the call to fun on line 9 can be replaced by the summary relation computed
above, we can represent the main function by a control flow graph and apply the state
elimination method in order to establish that the error state (corresponding to a violation
of the assertion) is unreachable. First, we substitute the call arguments and return values
to the error summary function, see Figure 7.2h. Then we eliminate control state l′9. Since

the composition of the transitions l9
r′=i
−−→ l′9 and l′9

r 6=i
−−→ err is unsatisfiable, the error

state is unreachable (Figure 7.2i). We can now conclude that the program is safe with
respect to the assertion at line 9.

7.1.2 Computing Program Summaries

Since we consider programs that are not recursive, the call graph of P, CG(P) is a dag,
and therefore one can choose a topological ordering of the procedures 〈Pi1 , . . . , Pin〉 such
that for all 1 ≤ k < ℓ ≤ n, there is no path from Pik to Piℓ in CG(P).
The Algorithm 5 computes Presburger formulae defining the summaries of the pro-

cedures in the given topological order, starting with the procedures that do not have
calls to other procedures. Since the program is not recursive, the fixpoint [[P]] is reached
in at most n steps because each procedure needs to be evaluated only once. Once the
summary of a procedure is computed, it is used to replace the call transitions involving
that procedure in every procedure which is higher in the topological order w.r.t. CG(P)
(function ProcSummary, lines 3 and 4). Additionally, the algorithm checks for error
traces by also computing the error summary of each procedure and checking the result-
ing formula for satisfiability. The problem is thus reduced to computing the summary
of a procedure without call transitions.
Algorithm 6 implements the function ProcSummaryNoCalls, used to generate the

(error) summary of a procedure without call transitions. The idea of this algorithm is
to eliminate control states which are neither initial, error, or final, while introducing
new transitions labeled with compositions of relations between the remaining states. We
iterate the following until no more states can be eliminated: For each control state with
(possibly zero) self-loops labeled with relations R1, . . . , Rk, we compute the transitive
closure T = (R1 ∨ . . . ∨ Rk)

∗. By convention, if k = 0, then T is the identity relation.

Then we compose the relation of each incoming transition q1
R
−→ q with T and with the

relation of each outgoing transition q
Q
−→ q2 and replace the pair of incoming and outgoing

transitions with the transition q1
P◦T◦Q
−−−−→ q2, which avoids q. Finally, we eliminate q and

116

all transitions involving it from the procedure. For an example of a run of this algorithm,
the reader may refer to Figure 7.2 (a), (b), (c), (f), and (g).
The termination of Algorithm 6 is clearly determined by the termination of the tran-

sitive closure computation function DisjTransitiveClosure since at each iteration of
the main loop, the boolean variable changed is set to true only if at least one control
state is eliminated. Since the set of control states is finite, this implies the termination of
the main loop provided that the semi-algorithm DisjTransitiveClosure terminates.

7.1.3 Computing Transitive Closures of Disjunctive Relations

In this section, we present a semi-algorithm computing transitive closures of disjunctive
relations. Given a (possibly empty) set of Presburger definable relations {R1, . . . , Rk},
Algorithm 7, if it terminates, returns the reflexive and transitive closure of the disjunctive
relation R = R1 ∨ . . .∨Rk. We assume in the following that the transitive closure R+

i of
each relation in the set is Presburger definable. The algorithm enumerates all unrollings
of the relations R1, . . . , Rk and computes increasingly larger underapproximations of R+.
If two successive such underapproximations are equivalent, the algorithm terminates and

Algorithm 5 Program Summary Algorithm

input a program P = 〈xg, {Pi1 , . . . , Pin}, Pm〉 ordered w.r.t. CG(P)

output a summary ([[P]]f∃, [[P]]
e
∃) of the program

1: function ProgramSummary(P = 〈xg, {Pi1 , . . . , Pin}, Pm〉)

2: ([[P]]f∃, [[P]]
e
∃)← (〈∅, . . . , ∅〉, 〈∅, . . . , ∅〉)

3: for k = 1, . . . , n do
4: ([[Pik]]

f
∃, [[Pik]]

e
∃)← ProcSummary(Pik , [[P]]

f
∃, [[P]]

e
∃)

5: if V e
m is satisfiable then

6: report “program is unsafe”

input a procedure P =〈x,−→x in,−→x out, Q, q0, qf , qe,∆〉, and

a program summary ([[P]]f∃, [[P]]
e
∃)

output a summary of P w.r.t. (Vf ,Ve)

1: function ProcSummary(P , (Vf ,Ve))

2: for each q
−→z ′=callj(

−→
t)

−−−−−−−−→ q′ ∈ ∆ do

3: Rf ← PlugSummary(i, j, [[Pi]]
f
∃,
−→
t ,−→z ′)

4: Re ← PlugSummary(i, j, [[Pi]]
e
∃,
−→
t ,−→z ′)

5: ∆←
(
∆ \ {q

−→z ′=callj(
−→
t)

−−−−−−−−→ q′}
)
∪ {q

Rf
−−→ q′, q

Re−−→ qe}

6: return ProcSummaryNoCalls (P)

1: function PlugSummary(i, j, R,
−→
t ,−→z ′)

2: return R
[
(
−→
t)k/(

−→x in
i)k

]
k=1..|

−→
t |

[
(−→z)′k/(

−→x out
i)′k

]
k=1..|−→z |

∧ Id(xi\
−→x out

i)

117

Algorithm 6 Procedure Summary Algorithm

input a procedure P = 〈x,−→x in,−→x out, Q, q0, qf , qe,∆〉 without call transitions

output The summary relations ([[P]]f∃, [[P]]
e
∃)

1: function ProcSummaryNoCalls(P)
2: changed ← true
3: while changed do
4: changed ← false

5: for each q ∈ Q \ {q0, qf , qe} with self-loops q
R1−−→ q, . . . , q

Rk−−→ q do

6: T ← DisjTransitiveClosure(R1, . . . , Rk)

7: for each q1
P
−→ q and q

Q
−→ q2 such that q1 6= q, q2 6= q do

8: if ∀q1
R′

−→ q2 ∈ ∆ . P ◦ T ◦Q 6⇒ R′ then

9: ∆← ∆ ∪ {q1
P◦T◦Q
−−−−→ q2}

10: changed ← true

11: Q← Q \ {q}

12: ∆← ∆ \
(
{q

R1−−→ q, . . . , q
Rk−−→ q} ∪ {q′

R′

−→ q, q
R′′

−−→ q′′ | q′, q′′ ∈ Q}
)

13: return
(
Project(

∨
{R | q0

R
−→ qf}), Project(

∨
{R | qi

R
−→ qe})

)

1: function Project(R)
2: return ∃(xi ∪ x′

i) \ (
−→x in
i ∪
−→x ′
i
out

) . R

returns the precise transitive closure.
Algorithm 7 builds breadth-first a tree structure in which each edge corresponds to

a relation Ri, and each node corresponds to the composition of the transitive closures
of all relations along the path from the root to itself. The algorithm backtracks either
when the composition becomes unsatisfiable, or when it is included in the union of the
relations corresponding to the nodes which have been already constructed (i.e. if the test
on line 7 fails). As an optimization, if a node N is obtained from its parent by composing
it with the transitive closure R+

i , it is not necessary to add the child corresponding to
Ri to N since this child would be automatically subsumed by N (line 9). The result of
the algorithm is the disjunction of all relations corresponding to nodes in the tree (line
11). For an example of a terminating execution of this algorithm, the reader may refer
to Figure 7.2 (d) and (e).

Lemma 7.1 Let S = {R1, . . . , Rk} be the input to the Algorithm 7. If the algorithm
terminates, then the output is (R1 ∨ . . . ∨Rk)

∗.

Proof: The reflexive and transitive closure of a relation R = R1 ∨ . . .∨Rk is the limit of
the increasing sequence defined by S0 = Id, and Si+1 = Si ∨ Si ◦ R, i.e. R

∗ =
⋃∞
i=0 Si.

Let T0, T1, T2 . . . be the sequence of trees, as generated by the algorithm. Clearly, T0 ⊆
T1 ⊆ T2 ⊆ We will show that, (1) for each i ≥ 0, there exists j ≥ 0, such that

118

Algorithm 7 Reflexive and Transitive Closure of Disjunctive Relations

input a set of relations S = {R1, . . . , Rk}
output The reflexive and transitive closure (R1 ∨ . . . ∨Rk)

∗

Queue, Tree← ∅

1: function DisjTransitiveClosure(S)
2: if S = ∅ then
3: return Id
4: Queue.add(Id,⊥)
5: while !Queue.empty() do
6: 〈N,P 〉 ← Queue.remove()
7: if N is satisfiable and N 6⇒

∨
Tree then

8: Tree← Tree ∪ {N}
9: for each R ∈ S such that R 6= P do

10: Queue.add(N ◦R+, R)

11: return
∨
Tree

Si ⇒
∨
Tj , and that (2)

∨
Tj ⇒ R∗ for all j ≥ 0. If the algorithm terminates, the

sequence Tj has a maximal element TJ , and since for all i ≥ 0, Si ⇒
∨
TJ , we have that

R∗ ⇒
∨
TJ , and therefore

∨
TJ = R∗.

To show (1), let us consider the disjunction Si for some i ≥ 0, and let R = Ri1 ◦. . .◦Rit
be some maximal satisfiable sequence of compositions in Si. Let ik1 , . . . , iks be the
subsequence of i1, . . . , it obtained by replacing each maximal subsequence ij = ij+1 = . . .
by ij . Since R is satisfiable, then the path R+

ik1
◦ . . . ◦ R+

iks
is also satisfiable. As a first

remark, every prefix R+
ik1
◦ . . . ◦ R+

ikj
, j ≤ s is satisfiable. Let us consider the maximal

prefix R+
ik1
◦ . . . ◦R+

ikj
which is represented by a node in some tree T0, T1, . . ., and let Tℓ

be the first tree in which this path appears. If j = s, then the path appears explicitly in
the tree, hence R ⇒

∨
TjR . Otherwise, if j < s, the path R+

ik1
◦ . . . ◦ R+

ikj
◦ R+

ikj+1
fails

the test on line 7, hence it is subsumed by Tℓ, i.e. R
+
ik1
◦ . . . ◦ R+

ikj
◦ R+

ikj+1
⇒
∨
Tℓ. If

j + 1 = s, we choose Tℓ. Otherwise, repeat for all h = j + 2, . . . , s:

• For all maximal paths P in Tℓ, if P ◦ Rikj+1
◦ . . . ◦ Rikh 6⇒ Tℓ, then add this path

to Tℓ. The resulting tree will eventually be generated by the algorithm as Tm for
some m > ℓ, and let the new Tℓ be Tm.

When the iteration ends, we let TR = Tℓ, and we have R ⇒
∨
Tℓ. Since the number of

maximal satisfiable sequences in Si is finite, we can choose the largest such tree TjR and
obtain that Si ⇒

∨
TjR . To prove (2), observe that each path R+

j1
◦ R+

j2
◦ . . . ◦ R+

jk
in

some Tj implies R∗, hence
∨
Tj ⇒ R∗. ✷

As previously mentioned, Algorithm 5 computing a program summary terminates
for non-recursive programs provided that each call to the DisjTransitiveClosure
function terminates. In general, this is, however, not true due to the undecidability of
the safety problem for integer programs [Min67].

119

Under- and Overapproximations of Transitive Closures

Termination of the disjunctive closure algorithm can be imposed in two ways, depending
on the goal of the analysis. If the goal is proving correctness of the system, i.e. unreach-
ability of the error states, one may resort to overapproximation of the disjunctive loop
relations R1 ∨ . . . ∨ Rk by a single, weaker, relation R♯ (i.e. R1 ∨ . . . ∨ Rk ⇒ R♯) such
that T ♯ = R♯

∗
is effectively Presburger definable. For instance, if each Ri is a convex

polyhedron, one can use Integer Linear Programming [Sch86] to compute the integer
octagonal hull R♯. If using T ♯ to eliminate the state q in Algorithm 6 suffices to prove
unreachability of error states in the program, then this constitutes a valid correctness
proof, since every trace of the original program is a trace of the abstract program.
Then, Algorithm 7 can be modified into Algorithm 8, which guarantees termination.

The crux of Algorithm 8 is that the expansion of a tree node situated at a depth beyond
a certain threshold is done by composition with R♯

+
(line 14), instead of R+

i for some
i = 1, . . . , k as in the case of nodes below the threshold (line 11). Since R1∨. . .∨Rk ⇒ R♯,
then for any sequence i1, . . . , im ∈ {1, . . . , k}, the relation R+

i1
◦ . . . ◦ R+

im
is subsumed

by R♯
+
. This prevents future descendants of nodes above the threshold to be added to

the queue (the test on line 7 will fail for them), causing termination of the main loop.
The returned value in this case is an overapproximation of the reflexive and transitive
closure (R1 ∨ . . . ∨Rk)

∗.

Algorithm 8 Abstract Reflexive and Transitive Closure of Disjunctive Relations

input a set of relations S = {R1, . . . , Rk}
output a relation R such that (R1 ∨ . . . ∨Rk)

∗ ⇒ R
Queue, Tree← ∅

1: function AbsTransitiveClosure(S)
2: if S = ∅ then
3: return Id
4: Queue.add(Id,⊥, 0)
5: while !Queue.empty() do
6: 〈N,P, depth〉 ← Queue.remove()
7: if N is satisfiable and N 6⇒

∨
Tree then

8: Tree← Tree ∪ {N}
9: if depth ≤ Threshold then

10: for each R ∈ S such that R 6= P do
11: Queue.add(N ◦R+, R, depth+ 1)

12: else
13: R♯ ← AbstractDisjRelation(S)

14: Queue.add(N ◦R♯
+
, R, depth+ 1)

15: return
∨
Tree

On the other hand, if the goal of the analysis is to find errors in the program, the
disjunctive closure algorithm can be stopped after a given number of steps, the result

120

being an underapproximation of the transitive closure, i.e. a relation T ♭ ⇒ (R1 ∨ . . . ∨
Rk)

∗. Even if they cannot be used to certify correctness of systems, underapproximations
play an important role in finding errors within complex systems since every error trace
found using underapproximations is a valid error trace of the program.
A direct consequence of the proof of Lemma 7.1 is that the disjunction of the nodes in

each tree built by the DisjTransitiveClosure function is an underapproximation of
the transitive closure. Thus the algorithm can be stopped if, e.g., the number of nodes
reaches a predefined threshold, and the result will be a relation stronger than (R1∨ . . .∨
Rk)

∗. This relation can be used in Algorithm 6 to underapproximate the summary of
a procedure and thus the summary of a program. If insufficient, the underapproximation
can be improved by letting the DisjTransitiveClosure algorithm run longer.

7.2 Modular Termination Analysis

This section presents a method that computes (an over-approximation of) the weakest
non-termination set [[Pm]]

nt of the main procedure Pm of a non-recursive program P =
〈xg, {P1, . . . , Pn}, Pm〉. Its negation is thus a termination precondition of the program.
The method can be summarized as follows. For simplicity, suppose first that R is

the (disjunctive) transition relation of a procedure without call transitions and that R
encodes the program counter. Our method first computes (1) a transition invariant, i.e.

a relation R#
1 ∨ . . .∨R

#
m which over-approximates the transitive closure of R restricted to

reachable states, and (2) a reachability relation, i.e., a relation which over-approximates

(R+∧ Init). Next, we compute the weakest non-termination set WNT(R#
i) of each dis-

junct R#
i , by applying methods from Chapter 6. We prove that computing the pre-image

of WNT(R#
1)∨. . .∨WNT(R#

m) via the reachability relation gives an over-approximation
of the weakest non-termination set of the procedure. We apply Algorithm 4 to compute
the weakest non-termination sets WNT(R#

i). A transition invariant and a reachability
relation can be computed by a slight adaptation of the techniques described in Sec-
tion 7.1.
Next, we show that the above approach can be generalized to non-recursive programs

with multiple procedures. Since each infinite run of non-recursive program loops in-
finitely in one of its procedures, one can compute over-approximations of non-termination
sets for each procedures by applying ideas from the previous paragraph, and then prop-
agate these sets to the main procedure by computing their pre-image via summaries of
procedures.
The results of this section can be seen as a generalization of a result by Podelski

and Rybalchenko [PR04b] who proved that disjunctive well-foundedness of a transition
invariant of a program P entails termination of that program. We extend their result to
computation of over-approximations of non-termination sets.

121

7.2.1 Transition Invariants and Non-termination Sets

In this section, we present a method that computes, for a given procedure Pi of a non-
recursive program, (an over-approximation of) the set of initial configurations from which
runs that loop infinitely in Pi exist. Recall from Section 2.2.2 that Vi = {ν : xi ∪ xg →
Z} denotes the set of valuations of variables visible in procedure Pi, that Si = {Si :
Qi × Qi → Vi × Vi} denotes the set of summaries compatible with Pi, that [[P]] =
([[P1]], . . . , [[Pn]]) ∈ S1 × . . . × Sn denotes the reachability summary in k ≥ 1 steps, and
that [[P]]∗ = ([[P1]]

∗, . . . , [[Pn]]
∗)) ∈ S1 × . . . × Sn denotes the reachability summary in

k ≥ 0 steps. Then, the set of valuations in a control state q ∈ Qi of a procedure Pi that
are reachable from the initial control state q0,i can be defined as the post-image of Vi
via [[Pi]]

∗(q0,i, q), formally
(
[[Pi]]

∗(q0,i, q)
)
(Vi). With this notation, the precise transition

invariant [[P]]TInv of a program P is defined as

[[P]]TInv = ([[P1]]
TInv, . . . , [[Pn]]

TInv)

where for each procedure Pi and each q, q′ ∈ Qi,

[[Pi]]
TInv(q, q′)

def
= [[Pi]](q, q

′) ∧
(
[[Pi]]

∗(q0,i, q)
)
(Vi).

Intuitively, the precise transition invariant is obtained by restricting [[P]] to the set
of reachable configurations. Note that consequently, the set of (infinite) runs in Pi
under [[P]] is equal to the set of (infinite) runs in Pi under [[P]]TInv. We say that T =
(T1, . . . , Tn) ∈ S1×. . .×Sn is a transition invariant if and only if [[Pi]]

TInv(q, q′)⇒ Ti(q, q
′)

for each procedure Pi and for all q, q′ ∈ Qi. Thus, a transition invariant is an over-
approximation of the precise transition invariant.
It has been shown in [PR04b] that a precise transition invariant of a procedure P

without call transitions is disjunctively well-founded (meaning that each disjunct of the
precise transition invariant is well-founded) if and only if P terminates from each initial
configuration. The following lemma generalizes this statement to computation of (an
over-approximation of) the weakest non-termination set.

Lemma 7.2 Let P be a non-recursive program, let T = (T1, . . . , Tn) ∈ S1 × . . .× Sn be
a transition invariant of P, A = (A1, . . . ,An) ∈ S1× . . .×Sn be an over-approximation
of [[P]]∗ and let Pi = 〈xi,

−→x in
i ,
−→x out
i , Q, q0,i, qf,i, qe,i,∆i〉 be one of its procedures. Let

Bi ⊆ Vi be a set of valuations defined as ν ∈ B if and only if there exists an infinite
run in Pi under [[P]]TInv that starts in 〈q0,i, ν〉. Further, for each q ∈ Qi, let there be
relations Rq,k, 1 ≤ k ≤ pq, for some pq ≥ 1, such that

Ti(q, q)⇔

pq⋃

k=1

Rq,k,

and define

Ni
def
=
⋃

q∈Q

(
(
Ai(q0,i, q)

)−1

(pq⋃

k=1

wnt(Rq,k)

))
.

Then, Bi ⊆ Ni. Moreover, if Ti = [[Pi]]
TInv and Ai = [[Pi]]

∗, then Bi = Ni.

122

Proof: First suppose that both Ti and Ai are precise, i.e. that Ti = [[Pi]]
TInv and

Ai = [[Pi]]
∗.

“ ⇒ “ Let ρ1 = 〈q0,i, ν0〉〈q1, ν1〉〈q2, ν2〉 . . . be an infinite run of Pi under [[P]]TInv.
Clearly, there exist infinitely many integers 1 ≤ ℓ1 < ℓ2 < ℓ3 < . . . such that q =
qℓ1 = qℓ2 = qℓ3 = . . . for some q ∈ Qi. We construct a infinite meta-run ρ2 =
〈q0,i, ν0〉〈q, νℓ1〉〈q, νℓ2〉 It follows from definition of [[P]]TInv that

(νℓj , νℓj+1) ∈ [[Pi]]
TInv(q, q) = [[Ti]]

TInv(q, q)

for all j ≥ 1. We next rename valuations in ρ2 to obtain ρ2 = 〈q0,i, µ0〉〈q, µ1〉〈q, µ2〉

Let us assume that [[P]]TInv(q, q)⇔
∨p
k=1Rk for some p ≥ 1. By definition of [[P]]TInv,

it follows that for each ℓ > k ≥ 1, there exists 1 ≤ j ≤ p such that (µk, µℓ) ∈ Rj .
Consequently, we can construct a function f : {(k, ℓ) | ℓ > k ≥ 1} → {R1, . . . , Rp} such
that (µk, µℓ) ∈ f(k, ℓ) for all ℓ > k ≥ 1.
Let ∼ be the kernel of f and thus, (k, ℓ) ∼ (k′, ℓ′) if and only if f(k, ℓ) = f(k′, ℓ′).

Clearly, ∼ is an equivalence relation with finite index, since the range of f is finite.
Consequently, by Ramsey theorem [Ram30], there exists an infinite sequence of integers
1 ≤ k1 < k2 < k3 < . . . and an equivalence class [(m,n)]∼ for some m,n such that
(ki, ki+1) ∼ (m,n) for all i ≥ 1. Thus, there exists 1 ≤ j ≤ p such that f(ki, ki+1) = Rj
for all i ≥ 1. Consequently, µk1µk2 . . . is an infinite run of Rj and hence, µk1 ∈ wnt(Rj).
Since (µ0, µk1) ∈ [[Pi]]

∗(q0,i, q) = [[Ai]]
∗(q0,i, q), by definition of [[Pi]]

∗, if follows that

ν0 = µ0 ∈ ([[Pi]]
∗(q0,i, q))

−1 (
wnt(Rj)

)
⊆
(
[[Pi]]

∗(q0,i, q)
)−1

(
p⋃

k=1

wnt(Rk)

)
⊆ Ni

Thus, Bi ⊆ Ni.
“ ⇐ “ Clearly, if both Ti and Ai are precise, then

⋃pq
k=1wnt(Rq,k) is the set of ini-

tial valuations of non-terminating runs that start in q ∈ Qi, by definition of [[Pi]]
TInv.

Consequently,
(
Ai(q0,i, q)

)−1 (⋃pq
k=1wnt(Rq,k)

)
is the set of valuations in q0,i from which

a non-terminating run that loops infinitely at q exists. Consequently,

Ni
def
=
⋃

q∈Q

(
(
Ai(q0,i, q)

)−1

(pq⋃

k=1

wnt(Rq,k)

))

is the set of valuations in q0,i from which a non-terminating run that loops in some
q ∈ Qi and thus, Ni ⊆ Bi.
Next, observe that if Ti ⊇ [[Pi]]

TInv and Ai ⊇ [[Pi]]
∗, the “ ⇒ “ direction of the above

proof still holds. Consequently, the lemma holds. ✷

123

7.2.2 Computing Termination Sets of Non-recursive Programs

In the rest of this section, we aim to compute over-approximations Ni of the weakest
non-termination sets [[Pi]]

nt
∃ , formally Ni ⊇ [[Pi]]

nt
∃ , and then use the complement of Nm as

an under-approximation of the weakest termination set [[Pm]]
t, formally ¬ Nm ⊆ [[Pm]]

t.
Recall from Section 7.1.2 that for each valuation ν ∈ Vi, ν ∈ [[Pi]]

nt
N if and only if either

1. there exists an infinite run in Pi under [[P]] that starts in 〈q0,i, ν〉, or

2. there exists a finite run of length k ≥ 0 in Pi under [[P]] that starts in 〈q0,i, ν〉,
ends in 〈q′, ν ′〉 for some q′ ∈ Qi, ν

′ ∈ Vi, and moreover, there exists a transition

q′
−→z =callj(

−→
t)

−−−−−−−−→ q′′ ∈ ∆i and a valuation ν ′′ ∈ Nj such that

MatchCall(q′
−→z =callj(

−→
t)

−−−−−−−−→ q′′, ν ′, ν ′′)⇔ ⊤.

Note that if an over-approximation of [[P]] is used instead of [[P]] in the above definition,
one defines an over-approximation of [[Pi]]

nt
N .

To address the point 1 for a given procedure Pi, we first compute (an over-approxima-
tion of) a transition invariant of Pi. To this end, we adapt the procedure summary
algorithm from Section 7.1. Intuitively, a transition invariant T can be computed by

Algorithm 9 Over-approximating the Weakest Non-termination Set of a Procedure

input a procedure Pi = 〈xi,
−→x in
i ,
−→x out
i , Qi, q0,i, qf,i, qe,i,∆i〉, a transition invariant

T = (T1, . . . , Tn) of P and an over-approximation A = (A1, . . . ,An) of [[P]]
∗

output An over-approximation of [[P]]nt∃
1: function ProcedureNT(Pi = 〈xi,

−→x in
i ,
−→x out
i , Qi, q0,i, qf,i, qe,i,∆i〉, T , A)

2: W ← ∅
3: for each q ∈ Qi do
4: let Ti(q, q)⇔

(
R1 ∨ · · · ∨Rp

)
for some R1, . . . , Rp, p ≥ 1

5: V ←
∨p
j=1WNT(Rj)

6: for each q
−→z ′=callj(

−→
t)

−−−−−−−−→ q′ ∈ ∆i do

7: V ← V ∨ PlugWNT (i, j,
−→
t)

8: Reach← Ai(q0,i, q)
9: W ←W ∨Reach−1(V)

10: return ProjectNT(W)

1: function PlugNT(i, j,
−→
t)

2: return Nj
[
(
−→
t)k/(

−→x in
i)k

]
k=1..|

−→
t |

1: function ProjectNT(R)
2: return ∃(xi \

−→x in
i) . R

124

marking all control states as both initial and final. Then, we can apply Lemma 7.2 to
compute the set of valuations for which the point 1 holds. Algorithm 9 achieves this
by executing lines 4–5 and 8–9 for each control state q ∈ Q. Line 5 computes the set
of valuation in a control state q ∈ Qi from which a run that loops infinitely at q exists
and line 9 next propagates this set to the initial control state. Note that we can apply
Algorithm 4 from Section 6.2.1 to compute the weakest non-termination set WNT(Rj).
Finally, Algorithm 9 eliminates variables not included in the signature of Pi and returns
(line 10).
To address the point 2 above for a procedure Pi, over-approximations of the weak-

est non-termination sets must be computed first for the called procedures. Since the
programs we consider are not recursive, it follows from the discussion in Section 2.2.2
that we can apply an approach similar to the one in Section 7.1.2 and compute over-
approximations Ni of [[Pi]]

nt
∃ following a topological ordering with respect to CG(P).

Thus, Ni is computed first for procedures that do not call other procedures and it is
then propagated to the calling sites, as the point 2 above requires. Algorithm 9 achieves
this propagation by executing lines 6-9 for each control state q ∈ Q. Line 7 propagates
over-approximations of non-termination sets from the called procedure to the calling site
and line 9 next propagates this set further to the initial control state.
Algorithm 10 computes an under-approximation of [[Pm]]

t
∃. It first calls the compu-

tation of over-approximations of [[Pi]]
nt
∃ for procedures Pi in the given topological order

with respect to CG(P)(lines 3-4. Finally, it computes a termination precondition by
negating the computed over-approximation of [[Pm]]

nt (line 5).

Algorithm 10 Termination Precondition for a Program

input input a program P = 〈xg, {Pi1 , . . . , Pin}, Pm〉 ordered w.r.t. CG(P)
output An under-approximation of the weakest termination set [[Pm]]

t
∃ of Pm

1: function TerminationPrecondition(P = 〈xg, {Pi1 , . . . , Pin}, Pm〉)
2: (N1, . . . ,Nn)← (∅, . . . , ∅)
3: for k = 1, . . . , n do
4: Nik ← ProcedureNT(Pik)

5: return ¬ Nm

7.2.3 Flat Integer Programs

In this section, we study flat integer programs and show that their weakest termination
set is Presburger definable. This immediately entails decidability of the termination
problem, by decidability of Presburger arithmetic.
A flat integer program is a single-procedure non-recursive program where

1. each control state belongs to at most one cycle in the control flow graph (CFG)

2. for each cycle q1
R1−−→ q2

R2−−→ . . .
Rn−−→ q1 in the CFG, the relation (R1 ◦ . . . ◦ Rn) is

either a difference bounds, octagonal, or finite monoid affine relation

125

Let P be a flat integer program. It is known that the reachability problem for flat
integer programs is decidable [CJ98, LS05]. Consequently, [[P]]∗ can be computed by
Algorithm 6. Consider Algorithm 11 that uses an auxiliary procedure LoopLabel(P, q)
which returns the composition of relations that label the unique cycle on which the
control state q appears or empty relation if there is no such cycle. Let q ∈ Q and let
Lq = LoopLabel(P, q). Then,

WNT(Lq) = WNT(L+
q) = WNT([[P]]TInv(q, q)).

First equality obviously holds for arbitrary relation. The second equality holds for flat
programs, since each control states belongs to at most one cycle in the control flow
graph. Moreover, Lq is a periodic relation and therefore, the weakest non-termination
set WNT(Lq) is Presburger definable, as proved in Chapter 6. Thus, given a flat integer
program P , line 4 in Algorithm 11 is equivalent to line 5 of Algorithm 9. Consequently,
since flat programs have no call transitions, Algorithm 11 correctly returns a Presburger
formula defining [[P]]nt. The following theorem summarizes these observations.

Theorem 7.3 The weakest (non-)termination set of flat integer programs is effectively
computable and Presburger definable. Consequently, the termination problem is decidable
for flat integer programs.

Algorithm 11 Weakest Non-termination Set for Flat Integer Programs

input a flat integer program P = 〈x, Q, q0, qf , qe,∆〉 and the program summary [[P]]∗

output [[P]]nt, the weakest non-termination set of P

1: function ProgramSummary(P = 〈x, Q, qinit, qfinal, qerr,∆〉, [[P]]
∗)

2: V ← ∅
3: for each q ∈ Q do
4: A←WNT(LoopLabel(P, q))
5: B ← [[P]]∗(qi, q)
6: V ← V ∪B−1(A)

7: return V

7.3 Predicate Abstraction with Acceleration

This section presents Counterexample-Guided Accelerated Abstraction Refinement (CE-
GAAR), a new reachability analysis algorithm. CEGAAR combines interpolation-based
predicate discovery in counterexample-guided predicate abstraction with acceleration
technique for computing the transitive closure of loops. CEGAAR applies acceleration
to dynamically discovered looping patterns in the unfolding of the transition system and
combines overapproximation with underapproximation. It constructs inductive invari-
ants that rule out an infinite family of spurious counterexamples, alleviating the problem
of divergence in predicate abstraction without loosing its adaptive nature. We present

126

theoretical and experimental justification for the effectiveness of CEGAAR, showing that
inductive interpolants can be computed from classical Craig interpolants and transitive
closures of loops. Throughout this section, we assume a single-procedure integer pro-
gram without call transitions P = 〈x, Q, qinit, qerr,∆〉 which can be obtained from a
non-recursive procedural program by procedure inlining.

Related Work. Predicate abstraction has proved to be a rich and fruitful direction in
automated verification of detailed properties of infinite-state systems [GS97, HJMM04].
The pioneering work in [BL99] is, to the best of our knowledge, the first to propose a
solution to the divergence problem in predicate abstraction. More recently, sufficient
conditions to enforce convergence of refinement in predicate abstraction are given in
[BPR02], but it remains difficult to enforce them in practice. A promising direction
for ensuring completeness with respect to a language of invariants is parameterizing the
syntactic complexity of predicates discovered by an interpolating split prover [JM06].
Because it has the flavor of invariant enumeration, the feasibility of this approach in
practice remains to be further understood.
To alleviate relatively weak guarantees of refinement in predicate abstraction in prac-

tice, researchers introduced path invariants [BHMR07] that rule out a family of coun-
terexamples at once using constraint-based analysis. Our CEGAAR approach is similar
in the spirit, but uses acceleration [BIK10, FL02, Boi99] instead of constraint-based
analysis, and therefore has complementary strengths. Acceleration naturally generates
precise disjunctive invariants, needed in many practical examples, while constraint-based
invariant generation [BHMR07] resorts to an ad-hoc unfolding of the path program to
generate disjunctive invariants. Acceleration can also infer expressive predicates, in par-
ticular modulo constraints, which are relevant for purposes such as proving memory
address alignment.
The idea of generalizing spurious error traces was introduced also in [HHP09] by ex-

tending an infeasible trace, labeled with interpolants, into a finite interpolant automaton.
The method of [HHP09] exploits the fact that some interpolants obtained from the in-
feasibility proof happen to be inductive w.r.t. loops in the program. In our case, given
a spurious trace that iterates through a program loop, we compute the needed inductive
interpolants, combining interpolation with acceleration. The method that is probably
closest to CEGAAR is proposed in [CFLZ08]. In that work, the authors define inductive
interpolants and prove the existence of effectively computable inductive interpolants for
a class of affine loops, called poly-bounded. The approach is, however, limited to pro-
grams with one poly-bounded affine loop, for which initial and error states are specified.
We only consider loops that are more restricted than the poly-bounded ones, namely
loops for which transitive closures are Presburger definable. On the other hand, our
method is more general in that it does not restrict the number of loops occurring in
the path program and benefits from regarding both interpolation and transitive closure
computation as black boxes. The ability to compute closed forms of certain loops is also
exploited in algebraic approaches [BHHK10]. These approaches can also naturally be
generalized to perform useful over-approximation [AAGP11] and under-approximation.

127

Roadmap. In Section 7.3.1, we define the notion of an abstract reachability tree (ART)
that represents an abstraction of an integer program and define the notion of a spurious
trace in an ART. Next, in Section 7.3.2, we overview the technique of interpolation-based
refinement which rules out a spurious trace and define the notion of a trace scheme, a
generalization of a trace, and a notion of inductive interpolant that rules out a po-
tentially infinite number of traces. Section 7.3.3 describes how to compute inductive
interpolants, and Section 7.3.4 presents how this computation is incorporated in the
CEGAAR algorithm.

7.3.1 Abstract Reachability Tree

Let P = 〈x, Q, qinit, qerr,∆〉 be a single-procedure integer program without call tran-

sitions. A path in P is a sequence θ : q1
R1−−→ q2

R2−−→ q3 . . . qn−1
Rn−1
−−−→ qn where

q1, q2, . . . , qn ∈ Q and qi
Ri−→ qi+1 is an edge in ∆ for each i = 1, . . . , n − 1. We de-

note the relation R1 ◦R2 ◦ . . . ◦Rn−1 by ρ(θ) and assume that the set of free variables of
ρ(θ) is x ∪ x′. The path θ is said to be a cycle if q1 = qn, and a trace if q1 = qinit. The
path θ is said to be feasible if and only if there exist valuations ν1, . . . , νn : x→ Z such
that νi, νi+1 |= Ri for all i = 1, . . . , n− 1.
Given a set of predicates P, an abstract reachability tree represents an abstraction of

an integer program with respect to P.

Definition 7.4 Given a program P = 〈x, Q, qinit, qerr,∆〉, and a (possibly infinite) set
of predicates P such that ⊤,⊥ ∈ P, an abstract reachability tree (ART) for P is a tuple
T = 〈S, π, r, e〉 where S ⊆ Q× 2P\{⊥} is a set of nodes (notice that for no node 〈q,Φ〉 in
T we may have ⊥ ∈ Φ), π : Q→ 2P is a mapping associating control states with sets of
predicates, i = qinit × {⊤} is the root node, e ⊆ S × S is a tree-structured edge relation:

• all nodes in S are reachable from the root r,

• for all n,m, p ∈ S, e(n, p) ∧ e(m, p)⇒ n = m,

• e(〈q1,Φ1〉, 〈q2,Φ2〉) ⇒ q1
R
−→ q2 and Φ2 = {P ∈ π(q2) | post(

∧
Φ1, R)→ P}.

We say that an ART node 〈q1,Φ1〉 is subsumed by another node 〈q2,Φ2〉 if and only if
q1 = q2 and

∧
Φ1 →

∧
Φ2. It is usually considered that no node in an ART is subsumed

by another node, from the same ART.
It can be easily checked that each path σ : r = 〈q1,Φ1〉, 〈q2,Φ2〉, . . . , 〈qk,Φk〉, starting

from the root in T , can be mapped into a trace θ : q1
R1−−→ q2 . . . qk−1

Rk−1
−−−→ qk of P such

that post(⊤, ρ(θ))→
∧
Φk. We say that θ is a concretization of σ or that σ concretizes

to θ. A path in an ART is said to be spurious if none of its concretizations is feasible.

128

7.3.2 Interpolation-Based Abstraction Refinement

By refinement, we understand the process of enriching the predicate mapping π of an
ART T = 〈S, π, r, e〉 with new predicates. The goal of refinement is to prevent spurious
counterexamples (paths to an error state) from appearing in the ART. To this end, an
effective technique used in many predicate abstraction tools is that of interpolation.
Given an unsatisfiable conjunction A ∧ B, an interpolant I is a formula using the

common variables of A and B such that A → I is valid and I ∧ B is unsatisfiable.
Intuitively, I is the explanation behind the unsatisfiability of A∧B. Below, we introduce
a slightly more general definition of a trace interpolant.

Definition 7.5 ([JM06]) Let P = 〈x, Q, qinit, qerr,∆〉 be a program and

θ : q1
R1−−→ q2

R2−−→ q3 . . . qn−1
Rn−1
−−−→ qn

be an infeasible trace of P . An interpolant for θ is a sequence of predicates 〈I1, I2, . . . , In〉
with free variables in x such that: I1 = ⊤, In = ⊥, and for all i = 1, . . . , n − 1,
post(Ii, Ri)→ Ii+1.

Interpolants exist for many theories, including all theories with quantifier elimination,
and thus for Presburger arithmetic. Moreover, a trace is infeasible if and only if it has an
interpolant [EKS08]. Including any interpolant of an infeasible trace into the predicate
mapping of an ART suffices to eliminate any abstraction of the trace from the ART.
We can thus refine the ART and exclude an infeasible trace by including the interpolant
that proves the infeasibility of the trace, as proved by the following lemma.

Lemma 7.6 Let P = 〈x, Q, qinit, qerr,∆〉 be a program and θ : q1
R1−−→ q2 . . . qn−1

Rn−1
−−−→

qn be an infeasible trace of P . If T = 〈S, π, r, e〉 is an ART for G such that there exists
an interpolant 〈Ii ∈ π(qi)〉

n
i=1 for θ, then no path in T concretizes to θ.

Proof: By contradiction, suppose that there exists a path

σ : 〈q1,Φ1〉, 〈q2,Φ2〉, . . . , 〈qn,Φn〉

in T that concretizes to θ. We show by induction on i that Ii ∈ Φi for all i = 1, . . . , n.
By the definition of T , I1 = ⊤ ∈ Φ1. For the induction step, assume that Ii−1 ∈ Φi−1, for
some i > 1. By the definition of T , we have Φi = {P ∈ π(qi) | post(

∧
Φi−1, Ri) → P}.

Since post(Ii−1, Ri) → Ii, by Definition 7.5 and Ii−1 ∈ Φi−1, we have
∧
Φi−1 → Ii−1,

and by monotonicity of the post operator, post(
∧
Φi−1, Ri) → Ii. But Ii ∈ π(qi) which

implies Ii ∈ Φi, by the definition of T . Consequently, In = ⊥ ∈ Φn, which is in
contradiction with the fact that no node in T may contain ⊥ in its second component.
✷

Note that the refinement technique using Definition 7.5 only guarantees that one
spurious counterexample is eliminated from the ART with each refinement step. This

129

fact hinders the efficiency of predicate abstraction tools, which must rely on the ability
of theorem provers to produce interpolants that are general enough to eliminate more
than one spurious counterexample at the time. The following definition generalizes the
notion of a trace.

Definition 7.7 ([CFLZ08], Def. 2.4) Given a program P , a trace scheme in P is a
sequence of the form:

ξ : q0
Q1
−−→

L1
y
q1

Q2
−−→ . . .

Qn−1
−−−→

Ln−1
y
qn−1

Qn
−−→

Ln
y
qn

Qn+1
−−−→ qn+1 (7.1)

where q0 = qinit and:

• Qi = ρ(θi) for some paths θi of P , from qi−1 to qi,

• Li =
∨ki
j=1 ρ(λij) for some cycles λij of P , from qi to qi.

Intuitively, a trace scheme represents an infinite regular set of traces in P . The trace
scheme is said to be feasible if and only if at least one trace of P of the form

θ1;λ1i1 . . . λ1ij1 ; θ2; . . . ; θn;λnin . . . λnijn ; θn+1

is feasible.
The trace scheme is said to be bounded if ki = 1, for all i = 1, 2, . . . , n. A bounded1

trace scheme is a regular language of traces, of the form θ1 · λ∗1 · . . . · θn · λ
∗
n · θn+1, where

θi are paths, and λi are cycles of P . The following is a stronger notion of an interpolant,
which ensures generality with respect to an infinite family of counterexamples.

Definition 7.8 ([CFLZ08], Def. 2.5) Let P = 〈x, Q, qinit, qerr,∆〉 be a program and
ξ be an infeasible trace scheme of the form (7.1). An interpolant for ξ is a sequence of
predicates 〈I0, I1, I2, . . . , In, In+1〉, with free variables in x, such that:

1. I0 = ⊤ and In+1 = ⊥,

2. post(Ii, Qi+1)→ Ii+1, for all i = 0, 1, . . . , n,

3. post(Ii, Li)→ Ii, for all i = 1, 2, . . . , n.

The main difference with Definition 7.5 is the third requirement, namely that each
interpolant predicate (except for the first and the last one) must be inductive with respect
to the corresponding loop relation. It is easy to see that each of the two sequences

〈⊤, post(⊤, Q1 ◦ L
∗
1), . . . , post(⊤, Q1 ◦ L

∗
1 ◦Q2 ◦ . . . Qn ◦ L

∗
n)〉 (7.2)

〈wpre(⊥, Q1 ◦ L
∗
1 ◦Q2 ◦ . . . Qn ◦ L

∗
n), . . . , wpre(⊥, Qn ◦ L

∗
n), ⊥〉 (7.3)

are interpolants for ξ provided that ξ is infeasible (Lemma 2.6 in [CFLZ08]). Just as for
finite trace interpolants, the existence of an inductive interpolant suffices to prove the
infeasibility of the entire trace scheme.

1This term is used in analogy with the notion of bounded languages [GS64].

130

Lemma 7.9 Let P = 〈x, Q, qinit, qerr,∆〉 be a program and ξ be an infeasible trace
scheme of P of the form (7.1). If T = 〈S, π, r, e〉 is an ART for P such that there exists
an interpolant 〈Ii ∈ π(qi)〉

n+1
i=0 for ξ, then no path in T concretizes to a trace in ξ.

Proof: By contradiction, suppose that there exists a path σ:

〈q0,Φ0〉, 〈q11,Φ11〉, . . . , 〈q1i1 ,Φ1i1〉, . . . , 〈qn1,Φn1〉, . . . , 〈qnin ,Φnin〉, 〈qn+1,Φn+1〉〉

in T which concretizes to a trace in ξ. In analogy with the proof of Lemma 7.6, one
shows that:

• I0 ∈ Φ0,

• Ik ∈ Φkj , for all k = 1, . . . , n and j = 1, . . . , ik,

• In+1 ∈ Φn+1.

The third condition of Definition 7.8 is needed for the proof of the second point above.
Since In+1 = ⊥, this contradicts the fact that no node in T may contain ⊥ in its second
component. ✷

7.3.3 Computing Accelerated Interpolants

This section describes a method of refining an ART by excluding an infinite family
of infeasible traces at once. Our method combines interpolation with acceleration in
a way which is oblivious of the particular method used to compute interpolants. For
instance, it is possible to combine proof-based [McM05] or constraint-based [RSS07]
interpolation with acceleration, whenever computing the precise transitive closure of
a loop is possible. In cases when the precise computation fails, we may resort to both
over- and under-approximation of the transitive closure. In both cases, the accelerated
interpolants are at least as general (and many times more general) than the classical
interpolants extracted from a finite counterexample trace.
Given an infeasible error trace θ, we fold it into a trace scheme ξ. In this section, we

describe approaches to abstraction refinement based on type of the trace scheme. The
distinguishing factor is whether ξ is bounded and whether cycles in ξ can be accelerated.
In Section 7.3.4, we show how these refinement techniques are integrated in the CEGAAR
algorithm.

Precise Acceleration of Bounded Trace Schemes

We consider first the case of bounded trace schemes of the form (7.1) where the control
states q1, . . . , qn belong to some cycles labeled with relations L1, . . . , Ln such that L∗

i

is Presburger definable. As discussed in Chapter 3, this requires that each Li is either
a difference bounds, octagonal, or finite monoid affine relation. Then, one can use
acceleration algorithms from Chapter 3 or from [Boi99, FL02]. Under this restriction,

131

any infeasible bounded trace scheme has an effectively computable interpolant of one of
the forms (7.2), or (7.3).
However, there are two problems with applying definitions (7.2) and (7.3) in order

to obtain interpolants of trace schemes. On one hand, relational composition typically
requires expensive quantifier eliminations. The standard proof-based interpolation tech-
niques (e.g. [McM05]) overcome this problem by extracting the interpolants directly
from the proof of infeasibility of the trace. Alternatively, constraint-based interpolation
[RSS07] reduces the interpolant computation to a linear programming problem, which
can be solved by efficient algorithms [Sch86]. Both methods apply, however, only to
finite traces and not to infinite sets of traces defined as trace schemes. Another, more
important, problem is related to the sizes of the interpolant predicates from (7.2), (7.3)
compared to the sizes of interpolant predicates obtained by proof-theoretic methods (e.g.
[KLR10]), as the following example shows.

Example. Let R(x, y, x′, y′) : x′ = x + 1 ∧ y′ = y + 1 and φ(x, y, . . .), ψ(x, y, . . .) be
some complex Presburger arithmetic formulae. The trace scheme

q0
z=0∧z′=z∧φ
−−−−−−−−→

z′ = z + 2 ∧R
y
q1

z=5∧ψ
−−−−→ q2 (7.4)

is infeasible because z remains even, so it cannot become equal 5. One simple interpolant
for this trace scheme has, at program point, q1 the formula z%2 = 0. On the other hand,
the strongest interpolant has (z = 0 ∧ z′ = x ∧ φ) ◦ (z′ = z + 2 ∧ R)∗ at q1, which is
typically a much larger formula because of the complex formula φ. Note, however, that
φ and R do not mention z, so they are irrelevant. ✷

To construct useful interpolants instead of the strongest or the weakest ones, we
therefore proceed as follows. Let ξ be a bounded trace scheme of the form (7.1). For each

control loop qi
Ri−→ qi of ξ, we define the corresponding meta-transition q′i

R∗
i−−→ q′′i labeled

with the reflexive and transitive closure of Ri. Intuitively, firing the meta-transition has
the same effect as iterating the loop an arbitrary number of times. We first replace each
loop of ξ by the corresponding meta-transition. The result is the meta-trace:

ξ : q0
Q1
−−→ q′1

L∗
1−→ q′′1

Q2
−−→ q′2 . . . q′′n−1

Qn
−−→ q′n

L∗
n−−→ q′′n

Qn+1
−−−→ qn+1 (7.5)

Since we supposed that ξ is an infeasible trace scheme, the (equivalent) finite meta-trace
ξ is infeasible as well, and it has an interpolant Iξ = 〈⊤, I ′1, I

′′
1 , I

′
2, I

′′
2 , . . . , I

′
n, I

′′
n,⊥〉 in

the sense of Definition 7.5. This interpolant is not an interpolant of the trace scheme ξ
in the sense of Definition 7.8. In particular, none of I ′i, I

′′
i is guaranteed to be inductive

with respect to the loop relations Li. To define compact inductive interpolants based on
Iξ and the transitive closures L∗

i , we consider the following sequences:

Ipostξ = 〈⊤, post(I ′1, L
∗
1), post(I

′
2, L

∗
2), . . . , post(I

′
n, L

∗
n),⊥〉 and

Iwpreξ = 〈⊤, wpre(I ′′1 , L
∗
1), wpre(I

′′
2 , L

∗
2), . . . , wpre(I

′′
n, L

∗
n),⊥〉.

The following lemma proves the correctness of this approach.

132

Lemma 7.10 Let P = 〈x, Q, qinit, qerr,∆〉 be a program and ξ be an infeasible trace
scheme of the form (7.1). Then Ipostξ and Iwpreξ are interpolants for ξ, and moreover

Iwpreξi
→ Ipostξi

for all i = 1, 2, . . . , n.

Proof: To prove that Ipostξ is an interpolant for ξ, we show the three points of Defini-

tion 7.8. The first point holds by the construction of Ipostξ . For the second point, we
have:

post(I ′i, L
∗
i) → I ′′i since Iξ is an interpolant for ξ,

post(post(I ′i, L
∗
i), Qi+1) → post(I ′′i , Qi+1) since post is monotone,

post(Ipostξi
, Qi+1) → I ′i+1 since Iξ is an interpolant for ξ.

We must show next that I ′i+1 → I
post
ξi+1

. For this, we compute:

post(I ′i+1, L
∗
i+1) = ∃z . I ′i+1(z) ∧ L

∗
i+1(z,x)

= ∃z . I ′i+1(z) ∧
∨∞
k=0 L

k
i+1(z,x)

=
∨∞
k=0 ∃z . I

′
i+1(z) ∧ L

k
i+1(z,x)

= ∃z . I ′i+1(z) ∧ ǫ ∨
∨∞
k=1 ∃z . I

′
i+1(z) ∧ L

k
i+1(z,x)

We have that ∃z . I ′i+1(z) ∧ ǫ is equivalent to I ′i+1, which concludes the second point.
For the third point, we compute:

post(Ipostξi
, Li) = ∃z . post(I ′i, L

∗
i)(z) ∧ Li(z,x)

= ∃z∃t . I ′i(t) ∧ L
∗
i (t, z) ∧ Li(z,x)

= ∃t . I ′i(t) ∧ L
+
i (t,x)

→ ∃t . I ′i(t) ∧ L
∗
i (t,x)

= post(I ′i, L
∗
i) = I

post
ξi

The proof for the Iwpreξ interpolant is symmetric, using the fact that post and wpre form
a Galois connection. Finally, we have wpre(I ′′i , L

∗
i) → I ′i → post(I ′i, L

∗
i), which proves

the last statement. ✷

Notice that computing Ipostξ and Iwpreξ requires n relational compositions, which is,
in principle, just as expensive as computing directly one of the extremal interpolants
(7.2), (7.3). However, by re-using the meta-trace interpolants, one potentially avoids
the worst-case combinatorial explosion in the size of the formulae, which occurs when
using (7.2), (7.3) directly.

Example. Let us consider again the trace scheme (7.4). The corresponding unfeasible
finite trace ξ is:

q0
z=0∧z′=z∧φ
−−−−−−−−→ q′1

∃k≥0 . z′=z+2k ∧ x′=x+k ∧ y′=y+k
−−−−−−−−−−−−−−−−−−−−−−−−→ q′′1

z=5∧ψ
−−−−→ q2

A possible interpolant for this trace is 〈⊤, z = 0, ∃k ≥ 0 . z = 2k,⊥〉. An inductive
interpolant for the trace scheme, derived from it, is Ipostξ = 〈⊤, post(z = 0, ∃k ≥ 0.z′ =
z + 2k ∧ x′ = x+ k ∧ y′ = y + k),⊥〉 = 〈⊤, z%2 = 0, ⊥〉. ✷

133

Bounded Overapproximations of Trace Schemes

Consider a trace scheme (7.1), not necessarily bounded, where the transitive closures
of the relations Li labeling the loops are not computable by any available acceleration
method from Chapter 3 or from [Boi99, FL02]. One alternative is to find abstractions L♯i
of the loop relations, i.e. relations L♯i ← Li, for which transitive closures are computable.
If the new abstract trace remains infeasible, it is possible to compute an interpolant for it,
which is an interpolant for the original trace scheme. However, replacing the relations
Li with their abstractions L♯i may turn an infeasible trace scheme into a feasible one
where the traces introduced by abstraction are spurious. In this case, we give up the
overapproximation and turn to the underapproximation technique described in the next
section.
The overapproximation method computes an interpolant for a trace scheme ξ of the

form (7.1) under the assumption that the abstract trace scheme:

ξ♯ : q0
Q1
−−→

L
♯
1

y
q1

Q2
−−→ . . .

Qn−1
−−−→

L
♯
n−1
y
qn−1

Qn
−−→

L
♯
n
y
qn

Qn+1
−−−→ qn+1 (7.6)

is infeasible. In this case, one can effectively compute the interpolants Ipost
ξ♯

and Iwpre
ξ♯

since the transitive closures of the abstract relations labeling the loops are computable
by acceleration. The following lemma proves that, under certain conditions, computing
an interpolant for the abstraction of a trace scheme is sound.

Lemma 7.11 Let P be a program and ξ be a trace scheme (7.1) such that the abstract
trace scheme ξ♯ (7.6) is infeasible. Then the interpolants Ipost

ξ♯
and Iwpre

ξ♯
for ξ♯ are also

interpolants for ξ.

Proof: We show that Ipost
ξ♯

meets the three conditions of Definition 7.8. The first
condition is trivially true, while the proof of the second condition is essentially the same
as in the proof of Lemma 7.10. For the third point, since Li → L♯i , we have:

post(Ipost
ξ♯

, Li) = post(post(I ′i, L
♯
i

∗
), Li)

→ post(post(I ′i, L
♯
i

∗
), L♯i)

= post(I ′i, L
♯
i

+
)→ Ipost

ξ♯

The proof for Iwpre
ξ♯

is symmetrical. ✷

To compute abstractions of relations that are guaranteed to have Presburger-definable
transitive closures, we can use octagonal relations (Definition 2.17) and compute the
integer octagonal hull of a relation L. This is the strongest conjunction L♯ =

∧
{u ≤

c | u ∈ U(x ∪ x′), L → u ≤ c} In practice, if for instance, L is a union of convex
polyhedra, one can use integer linear programming [Sch86] to compute L♯ efficiently.

134

Bounded Underapproximations of Trace Schemes

Let ξ be a trace scheme of the form (7.1), where each relation Li labeling a loop is a
disjunction Li1 ∨ . . . ∨ Liki of relations for which the transitive closures are effectively
computable and Presburger definable. A bounded underapproximation scheme of a trace

scheme ξ is obtained by replacing each loop qi
Li−→ qi in ξ by a bounded trace scheme ξ♭

of the form
Li1
y

q1i
ǫ
−→

Li2
y

q2i
ǫ
−→ . . .

Liki
y

qkii

where ǫ denotes the identity relation. Let us denote2 the result of this replacement by
ξ♭. It is manifest that the set of traces ξ♭ is included in ξ.
Since we assumed that the reflexive and transitive closures L∗

ij are effectively com-

putable and Presburger definable, the feasibility of ξ♭ is a decidable problem. If ξ♭ is
found to be feasible, this points to a real error trace in the system. On the other hand, if
ξ♭ is found to be infeasible, let Iξ♭ = 〈⊤, I

1
1 , . . . , I

k1
1 , . . . , I1n, . . . , I

kn
n ,⊥〉 be an interpolant

for ξ♭. A refinement scheme using this interpolant associates the predicates {I1i , . . . , I
ki
i }

with the control state qi from the original program. As the following lemma shows, this
guarantees that any trace that follows the pattern of ξ♭ is excluded from the ART, en-
suring that a refinement of the ART using a suitable underapproximation (that includes
a spurious counterexample) is guaranteed to make progress.

Lemma 7.12 Let P = 〈x, Q, qinit, qerr,∆〉 be a program, ξ be an infeasible trace scheme
of P (7.1) and ξ♭ a bounded underapproximation of ξ. If T = 〈S, π, r, e〉 is an ART for
P , such that {I1i , . . . , I

ki
i } ⊆ π(qi), then no path in T concretizes to a trace in ξ♭.

Proof: By contradiction, suppose that there exists a path in T which concretizes to a
trace in ξ♭, and let

〈qi,Φ
1
i1〉, . . . , 〈qi,Φ

1
iℓi,1
〉

︸ ︷︷ ︸
Li1
y

qi

, . . . , 〈qi,Φ
ki
i1〉, . . . , 〈qi,Φ

ki
iℓi,ki
〉

︸ ︷︷ ︸
Liki
y

qi

be the fragment of the path which corresponds to the unfolding of the sub-trace

Li1
y
qi

ǫ
−→

Li2
y
qi

ǫ
−→ . . .

Liki
y
qi .

One can show, along the lines of the proof of Lemma 7.10, that Iji ∈ Φjiℓ for all j =
1, . . . , ki and ℓ = 1, . . . , ℓi,j . In this way, we obtain that the last set Φ contains ⊥, which
contradicts the definition of the ART. ✷

2The choice of the name depends on the ordering of particular paths Li1, Li2, . . . , Liki
, however we

shall denote any such choice in the same way, in order to keep the notation simple.

135

Notice that a refinement scheme based on underapproximation guarantees the exclu-
sion of those traces from the chosen underapproximation trace scheme, and not of all
traces from the original trace scheme. Since a trace scheme is typically obtained from
a finite counterexample, an underapproximation-based refinement still guarantees that
the particular counterexample is excluded from further searches. In other words, using
underapproximation is still better than the classical refinement method since it can po-
tentially exclude an entire family of counterexamples (including the one generating the
underapproximation) at once.

7.3.4 Counterexample-Guided Accelerated Abstraction Refinement

Finally, we describe the core of the Counterexample-Guided Accelerated Abstraction
Refinement (CEGAAR) algorithm. The method starts by initializing the set of pred-
icates with P = {⊤,⊥}. Then, it iteratively applies the following steps. The ART is
constructed on-the-fly, according to a certain exploration strategy. When an abstract
error state is reached, the corresponding abstract trace θ that leads from the root of the
ART to the abstract error state is folded into a trace scheme ξ. We distinguish several
cases:

1. If ξ is bounded, we construct a corresponding meta-trace ξ. If ξ is feasible, a real er-
ror has been found and the algorithm terminates. Otherwise, inductive interpolants
are computed using Lemma 7.10 and refine the abstraction using Lemma 7.6. Then,
CEGAAR continues with a next iteration.

2. If ξ is not bounded, we compute a bounded abstract trace scheme ξ♯. If the meta-
trace corresponding to ξ♯ is not feasible, ξ♯ is spurious by Lemma 7.11. Then,
inductive interpolants are computed by applying Lemma 7.10. These interpolants
are used to refine the abstraction using Lemma 7.6, and CEGAAR continues with
a next iteration.

3. Else, if the overapproximation ξ♯ from Case 2 was found to be feasible, it could
be the case that the abstraction of the scheme introduced a spurious error trace.
In this case, we compute a bounded underapproximation ξ♭ of the trace scheme ξ
and apply the same reasoning as in Case 1.

136

8 Experiments

In this chapter, we report on experiments we have performed in order to evaluate the
methods presented in the preceding chapters. First, in Section 8.1, we report on ex-
periments that evaluate the transitive closure algorithm presented in Chapter 3 and
Chapter 4 and show that in some cases, we can achieve a speed-up of four orders of
magnitude when compared with older algorithms for difference bounds and octagonal
relations.
In Section 8.2, we evaluate the reachability analysis techniques from Chapter 7 on

a number of benchmarks we collected. We observe that the reachability method from Sec-
tion 7.1 computing precise procedure summaries outperforms earlier approaches based
on acceleration. Further, we evaluate the method from Section 7.3 that combines
interpolation-based predicate abstraction with acceleration and observe that the com-
bined approach successfully verifies many models that can be handled by neither interpo-
lation-based predicate abstraction nor the summary and acceleration-based method.
Finally, in Section 8.3, we evaluate the termination analysis techniques from Chapter 6

and Section 7.2 and shows that they can be applied to verify (non-)termination of several
benchmarks.

8.1 Transitive Closure Computation

We have implemented Algorithm 1 for difference bounds and octagonal relations within
the FLATA toolset [HIG+12]. We compared the performance of this algorithm with
existing transitive closure computation methods for difference bounds [BIL09] and oc-
tagonal relations [BGI09].
Table 8.1 shows the results of the comparison between the older algorithms described

in [BIL09, BGI09] (denoted as old) and Algorithm 1 for difference bounds relations
d1,...,6 and octagonal relations o1,...,6. The tests have been performed on both compact
(minimum number of constraints) and canonical (i.e. closed, for difference bounds and
tightly closed, for octagons) relations. The speedup column gives the ratio between the
old and new execution times. The experiments were performed on a 2.53GHz machine
with 4GB of memory.
As shown in Table 8.1, the maximum observed speedup is almost 105 for difference

bounds (d4 in canonical form) and of the order of four for octagons. For the relations d5
(canonical form), d6 and o6 the computation using older methods took longer than 106

msec. It is also worth noticing that the highest execution time with the new method
was of 2.5 msec.
Table 8.2 compares FLATA with the FAST tool [BLP06] on counter systems with one

self loop labeled with a randomly generated deterministic difference bounds relation. We

137

Table 8.1: A comparison with older algorithms on difference bounds and octagons. Times
are in milliseconds.

Relation new
compact canonical
old speedup old speedup

d0 (x− x′ = −1) ∧ (x = y′) 0.18 0.70 3.90 38.77 215.39
d1 (x− x′ = −1) ∧ (x′ = y′) 0.18 18.18 101.00 38.77 215.39
d2 (x− x′ = −1) ∧ (x = y′) ∧ (x− z′ ≤ 5) ∧ (z = z′) 1.20 26.50 22.10 33431.20 27859.30
d3 (x− x′ = −1) ∧ (x = y′) ∧ (x− z ≤ 5) ∧ (z = z′) 0.60 32.70 54.50 33505.50 55841.70
d4 (x− x′ = −1) ∧ (x = y) ∧ (x− z ≤ 5) ∧ (z = z′) 0.50 702.30 1404.60 48913.80 97827.60
d5 (a = c) ∧ (b = a′) ∧ (b = b′) ∧ (c = c′) 1.80 5556.60 3087.00 > 106 ∞

d6

(a− b′ ≤ −1) ∧ (a− e′ ≤ −2) ∧ (b− a′ ≤ −2)

5.6 > 106 ∞ > 106 ∞

∧(b− c′ ≤ −1) ∧ (c− b′ ≤ −2) ∧ (c− d′ ≤ −1)
∧(d− c′ ≤ −2) ∧ (d− e′ ≤ −1 ∧ e− a′ ≤ −1)
∧(e− d′ ≤ −2) ∧ (a′ − b ≤ 4) ∧ (a′ − c ≤ 3)
∧(b′−c ≤ 4 ∧ b′−d ≤ 3) ∧ (c′−d ≤ 4) ∧ (c′−e ≤ 3)
∧(d′−a ≤ 3 ∧ d′−e ≤ 4) ∧ (e′−a ≤ 4) ∧ (e′−b ≤ 3)

o1 (x+ x′ = 1) 0.21 0.91 4.33 0.91 4.33
o2 (x+ y′ ≤ −1) ∧ (−y − x′ ≤ −2) 0.29 0.85 2.93 0.84 2.90
o3 (x ≤ x′) ∧ (x+ y′ ≤ −1) ∧ (−y − x′ ≤ −2) 0.32 0.93 2.91 0.94 2.94
o4 (x+ y ≤ 5) ∧ (−x+ x′ ≤ −2) ∧ (−y + y′ ≤ −3) 0.21 3.67 17.48 13.52 64.38
o5 (x+ y ≤ 1) ∧ (−x ≤ 0) ∧ (−y ≤ 0) 1.20 20050.90 16709.10 > 106 ∞

o6

(x ≥ 0) ∧ (y ≥ 0) ∧ (x′ ≥ 0) ∧ (y′ ≥ 0)
2.5 > 106 ∞ > 106 ∞∧(x+ y ≤ 1) ∧ (x′ + y′ ≤ 1) ∧ (x− 1 ≤ x′)

∧(x′ ≤ x+ 1) ∧ (y − 1 ≤ y′) ∧ (y′ ≤ y + 1)

Table 8.2: Comparison with FAST (MONA plugin) on deterministic difference bounds.
Times are in seconds. ET : timeout 30 s, EB: BDD too large, EM : out of memory.

vars
FLATA FAST

done av. ET done av. ET EM EB

10 50 1.5 0 49 0.6 0 0 1
15 50 1.6 0 31 10.5 17 0 2
20 50 1.6 0 4 3.4 9 8 29
25 50 1.6 0 2 4.2 2 10 36
50 50 1.6 0 0 - 0 0 50
100 49 7.7 1 0 - 0 0 50

vars
FLATA FAST

done av. ET done av. ET EM EB

10 50 1.5 0 22 6.9 23 1 4
15 50 1.5 0 1 20.6 4 3 42
20 50 1.6 0 0 - 1 0 49
25 43 1.7 7 0 - 0 0 50
50 50 2.3 0 0 - 0 0 50
100 42 5.5 8 0 - 0 0 50

(a) – matrix density 3% (b) – matrix density 10%

generated 50 such relations for each size N = 10, 15, 20, 25, 50, 100. Notice that FAST
usually runs out of memory for more than 25 variables, whereas FLATA can handle 100
variables in reasonable time (less than 8 seconds on average).

8.2 Reachability Analysis

We have implemented the reachability analysis based on acceleration and procedure
summaries, described in Section 7.1, in the Flata verifier [HIG+12]. We use algorithms
that are specific to subclasses of integer relations (e.g. difference bounds or octagonal
relations) for operations such as composition, satisfiability, and transitive closure. We re-
sort to an external SMT solver Yices [DdM] only for checking satisfiability of polyhedra
and modulo relations.
The CEGAAR algorithm, described in Section 7.3, was implemented by building on

138

(1) the Flata verifier1 [HIG+12] that computes accelerations and (2) on the predicate
abstraction engine Eldarica2 [HIG+12] which uses the Princess interpolating theorem
prover [BKRW10, Rüm08] to generate interpolants.
Table 8.3 compares the performance of the Flata, Eldarica, Eldarica with static

acceleration, and Eldarica with dynamic acceleration (CEGAAR) on a number of

benchmarks (the platform used for experiments is Intel R© Core
TM

2 Duo CPU P8700,
2.53GHz with 4GB of RAM). Static acceleration [CFLZ08] is a lightweight acceleration
technique generalizing large block encoding (LBE) [BCG+09] with transitive closures.
It simplifies the control flow graph prior to predicate abstraction.
The benchmarks are all in the Numerical Transition Systems format3 (NTS). We

have considered six sets of examples, extracted automatically from different sources:
(a) C programs with arrays provided as examples of divergence in predicate abstraction
[JM06], (b) verification conditions for programs with arrays, expressed in the SIL logic of
[BHI+09] and translated to NTS, (c) small C programs with challenging loops, (d) NTS
extracted from programs with singly-linked lists by the L2CA tool [BBH+06], (e) C
programs with asynchronous procedure calls translated into NTS using the approach of
[GM12] (the examples with extension .optim are obtained via an optimized translation
method [Gan12]), and (f) models extracted from VHDL models of circuits following the
method of [SV07]. Table 8.3 also reports on the size of NTS models, some of which have
multiple procedures: ||x||, ||Q||, and ||T || denote the total number of variables, the total
number of control states, and the total number of transitions of all procedures of the
respective model.
Moreover, we have made a comparison with several other reachability analysis tools

based on different verification methodologies. The Fast verifier [BLP06] is based on
acceleration of loops labeled with finite monoid affine relations. We have run Fast with
several available plugins for solving Presburger queries: MONA [KM] (finite automata),
Prestaf [Cou] (shared automata), and Omega [PRK+] (quantifier elimination). Table 8.3
reports on PresTaf which outperformed other plugins. The Armc tool [PR07] uses
predicate abstraction and interpolation-based abstraction refinement. The Aspic tool
[Gon] uses widening-based abstract interpretation.
Next, we briefly describe some of the benchmarks we considered and then comment

on the results of our experiments.

Benchmarks

One of the set of models we considered—denoted (f) in Table 8.3—is taken from [SV07]
where an approach for verification of generic VHDL circuit designs based on transla-
tion to counter automata is presented. Traditional verification techniques for hardware
systems usually assume that the state space of these systems is finite. The approach
presented in [SV07] aims at verification of parameterized VHDL components with in-
finite state space. The translation to counter automata described in [SV07] maps bit

1http://www-verimag.imag.fr/FLATA.html
2http://lara.epfl.ch/w/eldarica
3http://richmodels.epfl.ch/ntscomp_ntslib

139

Table 8.3: A comparison of reachability analysis tools. The letter after the model name distin-

guishes Correct models from models with a reachable Error state. Items with “-”, “d”, and “x”

signify timeout of 300s, “don’t know” answer, and an unsupported class of models, respectively.

Model
Size Time [s] Time [s]

||x|| ||Q|| ||T || Flata Eldarica
Eldarica-Accel

Fast Armc Aspic
Static

Dynamic
(Cegaar)

(a) Examples from [JM06]
anubhav (C) 29 20 25 0.8 3.0 4.0 3.1 49.2 2.6 0.2
copy1 (E) 39 21 24 2.0 7.2 5.8 5.9 14.5 44.0 d
cousot (C) 29 31 34 0.6 - 6.2 5.9 35.1 4.0 0.2
loop1 (E) 34 21 24 1.7 7.1 5.2 5.4 11.6 36.1 d
loop (E) 34 21 24 1.8 5.9 4.8 5.4 17.3 36.1 d
scan (E) 32 25 29 3.3 - 5.1 5.0 9.0 - d
string concat1 (E) 40 43 56 5.3 - 10.1 7.3 - - d
string concat (E) 34 39 52 4.9 - 7.0 7.5 - - d
string copy (E) 37 30 36 4.6 - 6.3 5.7 35.6 - d
substring1 (E) 45 49 61 0.6 9.4 18.2 8.3 - 0.8 d
substring (E) 33 33 41 2.1 3.3 6.3 3.5 - 0.4 d
(b) Verification conditions for array programs [BHI+09]
rotation vc.1 (C) 11 13 55 0.6 2.0 9.5 2.0 x 0.6 x
rotation vc.2 (C) 11 20 93 1.6 2.2 18.5 2.2 x 0.7 x
rotation vc.1 (E) 11 13 56 1.1 1.3 10.2 1.3 x 0.3 x
split vc.1 (C) 14 32 183 3.9 3.7 91.1 3.6 x 3.8 x
split vc.2 (C) 14 29 146 3.0 2.3 74.1 2.2 x 1.1 x
split vc.1 (E) 14 38 276 28.5 2.3 185.6 2.4 x 1.7 x
(c) Examples from [Mon12]
boustrophedon (C) 25 22 27 - - - 14.4 - - d
gopan (C) 25 26 28 0.4 - - 6.4 0.6 - d
halbwachs (C) 29 32 38 - - 7.3 7.0 - - d
rate limiter (C) 35 25 27 31.7 6.1 8.1 5.5 x 8.1 x
(d) Examples from L2CA [BBH+06]
bubblesort (E) 12 674 791 14.9 9.9 9.5 9.3 - 0.9 d
insdel (E) 7 28 31 0.1 1.3 2.5 1.4 1.2 0.1 d
insertsort (E) 13 130 169 2.0 4.2 5.0 4.0 - 0.3 d
listcounter (C) 4 31 35 0.3 - 1.9 3.7 14.2 2.3 0.1
listcounter (E) 6 31 34 0.3 1.4 1.6 1.4 - 0.1 d
listreversal (C) 7 97 107 4.5 3.0 6.0 3.3 - 47.9 0.1
listreversal (E) 10 99 107 0.8 2.7 8.1 2.8 - 0.3 d
mergesort (E) 11 544 606 1.2 7.7 21.3 7.4 - 0.7 d
selectionsort (E) 15 401 459 1.5 8.1 13.7 7.7 - 0.5 d
(e) Examples from [GM12]
h1 (E) 28 40 50 - 5.1 5.6 5.1 x 17.7 x
h1.optim (E) 19 38 39 0.8 2.9 5.5 2.9 x 0.7 x
h1h2 (E) 29 41 52 - 9.4 10.1 12.2 x 57.0 x
h1h2.optim (E) 20 39 41 1.1 3.3 4.4 3.4 x 3.4 x
simple (E) 28 40 50 - 6.4 7.0 8.4 x 17.2 x
simple.optim (E) 19 38 39 0.8 3.0 5.1 2.9 x 0.7 x
test0 (C) 28 41 52 - 23.0 23.4 29.2 x 58.9 x
test0.optim (C) 19 39 40 0.3 3.2 5.4 3.2 x 4.3 x
test0 (E) 27 39 48 - 5.4 5.9 5.7 x 17.4 x
test0.optim (E) 19 37 38 0.6 3.0 5.8 2.9 x 0.6 x
test1.optim (C) 24 58 62 0.9 4.7 5.9 7.8 x 23.1 x
test1.optim (E) 24 56 60 1.5 4.4 5.9 4.7 x 10.8 x
test2 1.optim (E) 22 50 55 1.6 5.2 5.5 5.6 x 6.0 x
test2 2.optim (E) 22 51 56 2.9 4.6 5.9 4.6 x 5.9 x
test2.optim (C) 37 55 78 6.4 27.2 30.1 30.0 x 93.5 x
wrpc.manual (C) 5 9 13 0.6 1.2 1.4 1.2 x 47.1 x
wrpc (E) 54 60 89 - 7.9 8.4 8.2 x 0.3 x
wrpc.optim (E) 34 49 55 - 5.1 8.5 5.2 x 1.4 x
(f) VHDL models from [SV07]
counter (C) 2 6 13 0.1 1.6 1.6 1.6 0.8 0.2 0.1
register (C) 2 10 49 0.2 1.1 1.1 1.1 0.5 0.2 0.1
synlifo (C) 3 43 1006 16.6 22.1 21.4 22.0 171.8 52.8 2.6

140

variables to control locations and integer variables to counters. Various safety properties
are encoded as bit variables whose values are equivalent to propositional logic formulae
representing the bad (unsafe) states. For instance, the SynLifo is a synchronous LIFO
component with push and pop operations, which implements signals empty and full.
The property checks if these signals are set correctly for a LIFO container of arbitrary
size.
Another set of examples—denoted (b) in Table 8.3—are counter automata generated

from programs with singly-linked lists, using the approach described in [BBH+06]. The
main idea is that the set of heaps generated by a program with a finite number of local
variables can be represented by a finite number of shape graphs, and the (unbounded)
lengths of various list segments can be tracked by counters. The result of the translation
of a program with lists is a counter automaton whose transition semantics is in bisimu-
lation with the original program. For all singly-linked list programs, we check that there
are no null pointer dereferences. For instance, the ListReversal is a textbook program
that returns a list containing the same elements as the input list in the reversed order.
The reversal is done in place by changing the links between the cells instead of creating
a copy of the input list. Here, we also check that the lengths of the input list equals the
length of the output list.
A next set of counter automata models—denoted (d) in Table 8.3—are obtained

from the decision procedure of the array logic SIL (Singly Indexed Logic), described in
[HIV08a]. The decidability of the satisfiability problem for SIL encodes the set of models
of a formula as the union of sets of traces of a set of flat counter automata with difference
bounds constraints, whose emptiness is known to be decidable, e.g., [CJ98, FL02]. Since
Flata is guaranteed to terminate on flat models with periodic relations on loops, we
can use it as a solver for the SIL logic. We report on two SIL formulae which arise as
verification conditions for loop invariants of array manipulating programs. The array
rotation program rotates an array by one element to the left, and the array split program
splits an array to negative and non-negative parts.
The (f) benchmarks in Table 8.3 were generated from C programs with asynchronous

procedure calls. For instance, wrpc is a simplified asynchronous implementation of
windowed RPC, in which a client makes n asynchronous procedure calls in all, of which
at most w ≤ n are pending at any time.
The (a) models include several tricky numerical puzzles as well well as programs that

manipulate C strings, e.g. programs creating copies or concatenations of strings. The
translation scheme [GI12] generates models that detect out-of-bound errors.

Experimental Results

First, consider the tools Flata and Fast which are both based on precise reachability
methods that use acceleration. Table 8.3 shows that Flata significantly outperforms
Fast on a vast majority of benchmarks. Note that we could not make a comparison
for (b) and (e) benchmarks since the Fast tool does not support transitions with non-
deterministic updates like x′ ≥ 2. The Aspic tool manifests strengths and weaknesses of
abstract interpretation: correctness of models can be usually verified quickly, however,

141

absence of abstraction refinement often leads to “don’t know” answers for models which
have an error trace.
Eldarica and Armc are tools based on interpolation-based predicate abstraction

and it turns out that they successfully verify almost same models (the sole exception
being cousot and listcounter models). Comparing Flata with Eldarica (or with
Armc), one can observe that the tools behave in a complementary way. In some cases
(examples (a)), the predicate abstraction method fails due to an unbounded number of
loop unrollings required by refinement. In these cases, acceleration was capable to find
the needed invariant rather quickly. On the other hand (examples (e)), the acceleration
approach was unsuccessful in reducing loops with linear but non-octagonal relations. In
these cases, the predicate abstraction found the needed Presburger invariants for proving
correctness and error traces for the erroneous examples.
Last, we report on our reachability analysis technique that combines predicate abstrac-

tion and acceleration: static acceleration described earlier in this section and dynamic
acceleration (CEGAAR) described in Section 7.3. The results on this set of benchmarks
suggest that we have arrived at a fully automated verifier that is robust in verifying
automatically generated integer programs with a variety of looping control structure
patterns. An important question we explored is the importance of dynamic application
of acceleration as well as of overapproximation and underapproximation. In some cases,
such as mergesort from the (d) benchmarks and split vc.1 from (b) benchmarks, the
acceleration overhead does not pay off. The problem is that static acceleration tries to
accelerate every loop in the CFG rather than accelerating the loops occurring on spuri-
ous paths leading to error. Acceleration of inessential loops generates large formulas as
the result of combining loops and composition of paths during large block encoding. The
CEGAAR algorithm is the only approach that could handle all of our benchmarks. There
are cases in which the Flata tool outperforms CEGAAR such as test2.optim from (e)
benchmarks. We attribute this deficiency to the nature of predicate abstraction, which
tries to discover the required predicates by several steps of refinement. In the verification
of benchmarks using CEGAAR, acceleration was exact 11 times in total. In 30 cases, the
over-approximation of the loops was successful. In 15 cases, over-approximation failed,
and so the tool resorted to under-approximation. This suggests that all techniques that
we presented are essential to obtain an effective verifier.

8.3 Termination Analysis

We first report on our method from Section 6.3. We have compared (Table 8.4) our
method for termination of linear affine loops with polynomially bounded examples given
in [CGLA+08] and found the same termination preconditions as they do, with one ex-
ception, in which we can prove universal termination in integer input values (row 2 of
Table 8.4).
We next report on our method from Section 7.2 that computes transition invariants

and then applies Algorithm 4 from Section 6.2 to compute termination preconditions.
We have considered those benchmarks from Section 8.2 that were obtained by trans-

142

Table 8.4: Termination preconditions for several program fragments from [CGLA+08]

Program Cook et al. [CGLA+08] Linear Affine Loops

if (lvar ≥ 0)
while (lvar < 230)

lvar = lvar << 1;
lvar > 0 ∨ lvar < 0 ∨ lvar ≥ 230 ¬(lvar=0)∨lvar≥230

while (x ≥ N)
x = -2*x + 10; x > 5 ∨ x+ y ≥ 0 x 6= 10

3 ⇔ true

//@ requires n > 200
x = 0;
while (1)

if (x < n) { x=x+y;
if (x ≥ 200) break; }

y > 0 y>0

lations that preserve termination properties, namely anubhav and cousot from the
(a) example set and then all (c), (d), and (f) examples. We have managed to compute
termination sets shown in Table 8.5.

Table 8.5: Termination Sets for Integer Programs.

Model
Size

Time [s] Termination Set
||x|| ||Q|| ||T ||

(a) Examples from [JM06]
anubhav (C) 29 20 25 3.2 i ≥ 0
cousot (C) 29 31 34 4.0 ⊥

(d) Examples from L2CA [BBH+06]
listcounter (C) 4 31 35 1.2 ⊤
listreversal (C) 7 97 107 32.6 ⊤
(f) VHDL models from [SV07]
counter (C) 2 6 13 0.8 ⊥
register (C) 2 10 49 1.4 ⊥
synlifo (C) 3 43 1006 1016.4 ⊥

First, by computing octagonal abstractions of disjuncts of a transition invariant, we
have verified universal termination of the ListCounter and ListReversal programs.
Next, we have verified the Counter and SynLifo programs by computing the precise
transition invariant and then the weakest non-termination set, which was empty in both
cases. Thus, these models have infinite runs for any input values, which is to be ex-
pected as they encode the behavior of synchronous reactive circuits. Similarly, we have
computed the preconditions for two numerical programs anubhav and cousot.

143

9 Conclusions

9.1 Summary

We have presented several methods that solve various problems related to formal ver-
ification of programs that manipulate integer data. Most of the techniques are built
upon a novel algorithm computing transitive closures of difference bounds, octagonal,
and finite monoid affine relations, which are shown to be periodic. We have proved that
this algorithm runs in EXPTIME in the size of the binary representation of the input
relation. Moreover, the experimental evidence for difference bounds and octagonal rela-
tions shows that the algorithm scales well in the number of variables and is up to four
orders of magnitude faster than previous algorithms.
Next, we have studied the conditional termination problem for the classes of periodic

relations and showed that the weakest non-termination set is Presburger definable for
relations from these classes. As a consequence, the weakest non-termination set is Pres-
burger definable for flat counter automata. Moreover, we have proved that the weakest
non-termination set of octagonal (difference bounds) relations is an octagon (difference
bounds constraint) itself and, moreover, that it can be computed in polynomial time.
We have presented a semi-algorithmic method for reachability analysis of non-recursive

integer programs that is based on computation of procedure summaries and is therefore
modular. It uses the transitive closure algorithm as one of its main components. The
algorithm computing the summary relation can be adapted to compute transition invari-
ants which are known to be crucial in proving program termination. We show that transi-
tion invariants can be used, in combination with algorithms computing non-termination
sets, to compute termination preconditions for integer programs.
Further, we have addressed the divergence problem of the predicate abstraction and

showed that it can be alleviated by incorporating acceleration into the abstraction-
refinement framework in order to generate interpolants that are inductive and rule out
potentially infinite sets of spurious counterexamples. Last but not least, we have per-
formed experiments with a number of benchmarks and showed that for many of them,
our methods outperform other existing approaches to verification of integer programs.

9.2 Published Results

The transitive closure algorithm studied in Chapter 3 and Chapter 4 is an optimized
version of an algorithm that we originally published in [BIK10]. Chapter 6 extends the
results we published in [BIK12] with a PTIME algorithm for the weakest non-termination
preconditions of octagonal relations. Section 7.3 presents a predicate abstraction-based

144

method that we published in [HIK+12]. In [HIG+12], we presented the Flata tool which
implements most of the techniques described in this thesis. Last but not least, a work
on verification of programs manipulating integer arrays, not presented in this thesis, has
been published in [BHI+09].

9.3 Future Work

The asymptotic bound on the running time of the acceleration algorithm presented in this
thesis has been shown to be in EXPTIME. A natural question that arises is whether the
acceleration problem can be proved to be NP or PSPACE complete. Another question
is whether the search for the correct prefix and period of a relation, performed in the
transitive closure algorithm, cannot be optimized more than how it is currently achieved
by the MaxConsistent and MaxPeriodic procedures. For instance, if the size of the
prefix and the period could be efficiently computed (or at least approximated) directly
from the input relations, the search could be significantly improved for relations which
have very high prefix or period. Furthermore, direct computability of the size of the
prefix and period would render the procedures MaxConsistent and MaxPeriodic
superfluous, which would further reduce the complexity of the algorithm.
On what concerns our study of the termination problem for difference bounds and

octagonal relations, a direction that is worth pursuing is to study whether the linear
ranking functions, for which we proved existence, can be efficiently computed. We have
shown that a linear ranking function can be directly constructed from negative cycles in
zigzag automata. The problem we encounter here is that the size of zigzag automata is
exponential. The question therefore is whether the construction of the zigzag automaton
can be bypassed.
More broadly, a possible future research could explore whether the methods presented

in this thesis can be extended to larger classes of programs, for instance by allowing
recursion and parallelism. A related line of study is whether the (accelerated) predicate
abstraction can be extended to handle recursive programs, for instance by making it
reason about trace summaries instead of the set of reachable states.

145

Bibliography

[AAB00] A. Annichini, E. Asarin, and A. Bouajjani. Symbolic techniques for para-
metric reasoning about counter and clock systems. In Proc. of CAV, volume
1855 of LNCS, pages 419–434, Berlin, Heidelberg, 2000. Springer Verlag.

[AAGP11] E. Albert, P. Arenas, S. Genaim, and G. Puebla. Closed-form upper bounds
in static cost analysis. Journal of Automated Reasoning, 46(2), 2011.

[AD91] R. Alur and D. L. Dill. The theory of timed automata. In proc. of REX
Workshop, volume 600 of LNCS, pages 45–73, Berlin, Heidelberg, 1991.
Springer Verlag.

[AM04] R. Alur and P. Madhusudan. Visibly pushdown languages. In Proc. of
STOC, pages 202–211, New York, NY, USA, 2004. ACM.

[AM06] R. Alur and P. Madhusudan. Adding nesting structure to words. In Proc.
of DLT, pages 1–13, Berlin, Heidelberg, 2006. Springer-Verlag.

[BBH+06] A. Bouajjani, M. Bozga, P. Habermehl, R. Iosif, P. Moro, and T. Vojnar.
Programs with lists are counter automata. In Proc. of CAV, volume 4144
of LNCS, pages 517–531, Berlin, Heidelberg, 2006. Springer Verlag.

[BCG+09] D. Beyer, A. Cimatti, A. Griggio, M. E. Keremoglu, and R. Sebastiani.
Software model checking via large-block encoding. In Proc. of FMCAD,
pages 25–32. IEEE, 2009.

[BCM+92] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang.
Symbolic model checking: 1020 states and beyond. Information and Com-
putation, 98(2):142–170, 1992.

[BFLS05] S. Bardin, A. Finkel, J. Leroux, and P. Schnoebelen. Flat acceleration in
symbolic model checking. In Proc. of ATVA, volume 3707 of LNCS, pages
474–488, Berlin, Heidelberg, 2005. Springer Verlag.

[BG99] B. Boigelot and P. Godefroid. Symbolic verification of communication pro-
tocols with infinite state spaces using qdds. Formal Methods in System
Design, 14(3):237–255, 1999.

[BGI09] M. Bozga, C. Gı̂rlea, and R. Iosif. Iterating octagons. In Proc. of TACAS,
volume 5505 of LNCS, pages 337–351, Berlin, Heidelberg, 2009. Springer
Verlag.

146

[BH99] A. Bouajjani and P. Habermehl. Symbolic reachability analysis of fifo-
channel systems with nonregular sets of configurations. Theoretical Com-
puter Science, 221(1-2):211–250, 1999.

[BHHK10] R. Blanc, T. A. Henzinger, T. Hottelier, and L. Kovács. ABC: Algebraic
bound computation for loops. In Proc. of LPAR, volume 6355 of LNCS,
pages 103–118, Berlin, Heidelberg, 2010. Springer Verlag.

[BHI+09] M. Bozga, P. Habermehl, R. Iosif, F. Konečný, and T. Vojnar. Automatic
verification of integer array programs. In Proc. of CAV, volume 5643 of
LNCS, pages 157–172, Berlin, Heidelberg, 2009. Springer Verlag.

[BHMR07] D. Beyer, T. A. Henzinger, R. Majumdar, and A. Rybalchenko. Path in-
variants. In Proc. of PLDI, pages 300–309, New York, NY, USA, 2007.
ACM.

[BHRV06] A. Bouajjani, P. Habermehl, A. Rogalewicz, and T. Vojnar. Abstract reg-
ular tree model checking of complex dynamic data structures. In Proc. of
SAS, volume 4134 of LNCS, pages 52–70, Berlin, Heidelberg, 2006. Springer
Verlag.

[BHV03] A. Bouajjani, P. Habermehl, and T. Vojnar. Verification of parametric
concurrent systems with prioritized fifo resource management. In Proc. of
CONCUR, volume 2761 of LNCS, pages 174–190, Berlin, Heidelberg, 2003.
Springer Verlag.

[BHV04] A. Bouajjani, P. Habermehl, and T. Vojnar. Abstract regular model check-
ing. In Proc. of CAV, volume 3114 of LNCS, pages 372–386, Berlin, Hei-
delberg, 2004. Springer Verlag.

[BHZ08] R. Bagnara, P. M. Hill, and E. Zaffanella. An improved tight closure algo-
rithm for integer octagonal constraints. In Proc. of VMCAI, volume 4905
of LNCS, pages 8–21, Berlin, Heidelberg, 2008. Springer Verlag.

[BI07] M. Bozga and R. Iosif. On flat programs with lists. In Proc. of VMCAI,
volume 4349 of LNCS, pages 122–136, Berlin, Heidelberg, 2007. Springer
Verlag.

[BIK10] M. Bozga, R. Iosif, and F. Konečný. Fast acceleration of ultimately periodic
relations. In Proc. of CAV, volume 6174 of LNCS, pages 227–242, Berlin,
Heidelberg, 2010. Springer Verlag.

[BIK12] M. Bozga, R. Iosif, and F. Konečný. Deciding conditional termination. In
Proc. of TACAS, volume 7214 of LNCS, pages 252–266, Berlin, Heidelberg,
2012. Springer Verlag.

[BIL09] M. Bozga, R. Iosif, and Y. Lakhnech. Flat parametric counter automata.
Fundamenta Informaticae, 91(2):275–303, 2009.

147

[BIP08] M. Bozga, R. Iosif, and S. Perarnau. Quantitative separation logic and
programs with lists. In Proc. of IJCAR, volume 5195 of LNCS, pages 34–
49, Berlin, Heidelberg, 2008. Springer Verlag.

[BK11] D. Beyer and M. E. Keremoglu. CPAchecker: A tool for configurable soft-
ware verification. In Proc. of CAV, volume 6806 of LNCS, pages 184–190,
Berlin, Heidelberg, 2011. Springer Verlag.

[BKRW10] A. Brillout, D. Kroening, P. Rümmer, and T. Wahl. An interpolating se-
quent calculus for quantifier-free Presburger arithmetic. In Proc. of IJCAR,
volume 6173 of LNCS, pages 384–399, Berlin, Heidelberg, 2010. Springer
Verlag.

[BL99] S. Bensalem and Y. Lakhnech. Automatic generation of invariants. Formal
Methods in System Design, 15(1):75–92, July 1999.

[BLP06] S. Bardin, J. Leroux, and G. Point. Fast extended release. In Proc. of
CAV, volume 4144 of LNCS, pages 63–66, Berlin, Heidelberg, 2006. Springer
Verlag.

[BMMR01] T. Ball, R. Majumdar, T. Millstein, and Sriram K. Rajamani. Automatic
predicate abstraction of C programs. In Proc. of PLDI, pages 203–213, New
York, NY, USA, 2001. ACM.

[BMS05] A. R. Bradley, Z. Manna, and H. B. Sipma. Linear ranking with reachability.
In Proc. of CAV, volume 3576 of LNCS, pages 491–504, Berlin, Heidelberg,
2005. Springer Verlag.

[Boi99] B. Boigelot. Symbolic Methods for Exploring Infinite State Spaces. PhD
Thesis. Université de Liège, 1999.

[BPR02] T. Ball, A. Podelski, and S. K. Rajamani. Relative completeness of abstrac-
tion refinement for software model checking. In Proc. of TACAS, volume
2280 of LNCS, pages 158–172, Berlin, Heidelberg, 2002. Springer Verlag.

[Bra06] M. Braverman. Termination of integer linear programs. In Proc. of CAV,
volume 4144 of LNCS, pages 372–385, Berlin, Heidelberg, 2006. Springer
Verlag.

[Car87] H. Carstensen. Decidability questions for fairness in Petri nets. In Proc.
of STACS, volume 247 of LNCS, pages 396–407, Berlin, Heidelberg, 1987.
Springer Verlag.

[CC77] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model
for static analysis of programs by construction or approximation of fix-
points. In Proc. of POPL, pages 238–252, New York, NY, USA, 1977.
ACM.

148

[CE82] E.M. Clarke and E.A. Emerson. Design and synthesis of synchronization
skeletons using branching-time temporal logic. In Proc. of Logic of Pro-
grams, volume 131 of LNCS, pages 52–71, Berlin, Heidelberg, 1982. Springer
Verlag.

[CFLZ08] N. Caniart, E. Fleury, J. Leroux, and M. Zeitoun. Accelerating
interpolation-based model-checking. In Proc. of TACAS, volume 4963 of
LNCS, pages 428–442, Berlin, Heidelberg, 2008. Springer Verlag.

[CGJ+03] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-
guided abstraction refinement for symbolic model checking. Journal of the
ACM, 50(5):752–794, 2003.

[CGLA+08] B. Cook, S. Gulwani, T. Lev-Ami, A. Rybalchenko, and M. Sagiv. Proving
conditional termination. In Proc. of CAV, volume 5123 of LNCS, pages
328–340, Berlin, Heidelberg, 2008. Springer Verlag.

[CH78] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints
among variables of a program. In Conference Record of the Fifth Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, pages 84–97, Tucson, Arizona, 1978. ACM Press, New York, NY.

[CJ98] H. Comon and Y. Jurski. Multiple counters automata, safety analysis and
presburger arithmetic. In Proc. of CAV, volume 1427 of LNCS, pages 268–
279, Berlin, Heidelberg, 1998. Springer Verlag.

[Cou] J.M. Couvreur. PresTAF. http://altarica.labri.fr/forge/projects/
3/wiki/PresTAF.

[Cra57] W. Craig. Linear reasoning. A new form of the Herbrand-Gentzen theorem.
The Journal of Symbolic Logic, 22(3):250–268, September 1957.

[CSRL01] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson. Introduction to
Algorithms. McGraw-Hill Higher Education, 2nd edition, 2001.

[DdM] B. Dutertre and L. de Moura. The YICES SMT Solver. http://yices.

csl.sri.com/.

[DIP01] Z. Dang, O. H. Ibarra, and P. S. Pietro. Liveness verification of reversal-
bounded multicounter machines with a free counter. In FSTTCS, pages
132–143, 2001.

[EKS08] J. Esparza, S. Kiefer, and S. Schwoon. Abstraction refinement with Craig
interpolation and symbolic pushdown systems. JSAT, 5(1-4):27–56, 2008.

[Eve03] G. Everest. Recurrence sequences. American Mathematical Soc., 2003.

149

[FL02] A. Finkel and J. Leroux. How to compose presburger-accelerations: Ap-
plications to broadcast protocols. In Proc. of FST TCS, volume 2556 of
LNCS, pages 145–156, Berlin, Heidelberg, 2002. Springer Verlag.

[FLS07] A. Finkel, E. Lozes, and A. Sangnier. Towards model-checking programs
with lists. In Proc. of ILC, volume 5489 of LNCS, pages 56–86, Berlin,
Heidelberg, 2007. Springer Verlag.

[Gan12] P. Ganty. Personal communication, 2012.

[GHM+08] A. Gupta, T. A. Henzinger, R. Majumdar, A. Rybalchenko, and R. Xu.
Proving non-termination. In Proc. of POPL, pages 147–158, New York,
NY, USA, 2008. ACM.

[GI12] F. Garnier and R. Iosif. Personal communication, 2012.

[GM12] P. Ganty and R. Majumdar. Algorithmic verification of asynchronous pro-
grams. ACM Trans. Program. Lang. Syst., 34(1):6:1–6:48, 2012.

[Gon] L. Gonnord. ASPIC. http://laure.gonnord.org/pro/aspic/aspic.

html.

[GS64] S. Ginsburg and E. H. Spanier. Bounded Algol-like languages. Trans. of
the AMS, 113(2):333–368, 1964.

[GS97] S. Graf and H. Säıdi. Construction of abstract state graphs with PVS. In
Proc. of CAV, volume 1254 of LNCS, pages 72–83, Berlin, Heidelberg, 1997.
Springer Verlag.

[HHHK05] V. Halava, T. Harju, M. Hirvensalo, and J. Karhumaki. Skolem’s problem
– on the border between decidability and undecidability, 2005.

[HHP09] M. Heizmann, J. Hoenicke, and A. Podelski. Refinement of trace abstrac-
tion. In Proc. of SAS, volume 5673 of LNCS, pages 69–85, Berlin, Heidel-
berg, 2009. Springer Verlag.

[HHP10] M. Heizmann, J. Hoenicke, and A. Podelski. Nested interpolants. In Proc.
of POPL, pages 471–482, New York, NY, USA, 2010. ACM.

[HIG+12] H. Hojjat, R. Iosif, F. Garnier, F. Konečný, V. Kuncak, and P. Rümmer. A
verification toolkit for numerical transition systems. In Proc. of FM, 2012.
To appear.

[HIK+12] H. Hojjat, R. Iosif, F. Konečný, V. Kuncak, and P. Rümmer. Accelerating
interpolants. In Proc. of ATVA, 2012. To appear.

[HIRV07] P. Habermehl, R. Iosif, A. Rogalewicz, and T. Vojnar. Proving termination
of tree manipulating programs. In Proc. of ATVA, volume 4762 of LNCS,
pages 145–161, Berlin, Heidelberg, 2007. Springer Verlag.

150

[HIV08a] P. Habermehl, Radu I., and T. Vojnar. A logic of singly indexed arrays. In
Proc. of LPAR, volume 5330 of LNCS, pages 558–573, Berlin, Heidelberg,
2008. Springer Verlag.

[HIV08b] P. Habermehl, R. Iosif, and T. Vojnar. What else is decidable about integer
arrays? In Proc. of FoSSaCS, volume 4962 of LNCS, pages 474–489, Berlin,
Heidelberg, 2008. Springer Verlag.

[HJMM04] T. A. Henzinger, R. Jhala, R. Majumdar, and K. L. McMillan. Abstractions
from proofs. In Proc. of POPL, pages 232–244, New York, NY, USA, 2004.
ACM.

[HJMS03] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Software verifica-
tion with BLAST. In Proc. of SPIN, volume 2648 of LNCS, pages 235–239,
Berlin, Heidelberg, 2003. Springer Verlag.

[Iba78] O. H. Ibarra. Reversal-bounded multicounter machines and their decision
problems. Journal of the ACM, 25(1):116–133, January 1978.

[Jan90] P. Jančar. Decidability of a temporal logic problem for Petri nets. Theo-
retical Computer Science, 74(1):71–93, 1990.

[JM06] R. Jhala and K. L. McMillan. A practical and complete approach to predi-
cate refinement. In Proc. of TACAS, volume 3920 of LNCS, pages 459–473,
Berlin, Heidelberg, 2006. Springer Verlag.

[KLR10] D. Kroening, J. Leroux, and P. Rümmer. Interpolating quantifier-free Pres-
burger arithmetic. In Proc. of LPAR, volume 6397 of LNCS, pages 489–503,
Berlin, Heidelberg, 2010. Springer Verlag.

[KM] Nils Klarlund and Anders Møller. MONA. http://www.brics.dk/mona/.

[LS05] J. Leroux and G. Sutre. Flat counter automata almost everywhere! In
Proc. of ATVA, volume 3707 of LNCS, pages 489–503, Berlin, Heidelberg,
2005. Springer Verlag.

[McM05] K. L. McMillan. An interpolating theorem prover. Theoretical Computer
Science, 345(1):101–121, 2005.

[Min67] M. Minsky. Computation: Finite and Infinite Machines. Prentice-Hall,
1967.

[Min06] A. Miné. The octagon abstract domain. Higher-Order and Symbolic Com-
putation, 19(1):31–100, 2006.

[Mon12] D. Monniaux. Personal Communication, 2012.

[MS77] A. Mandel and I. Simon. On finite semigroups of matrices. Theoretical
Computer Science, 5(2):101–111, 1977.

151

[PR04a] A. Podelski and A. Rybalchenko. A complete method for the synthesis of
linear ranking functions. In Proc. of VMCAI, volume 2937 of LNCS, pages
465–486, Berlin, Heidelberg, 2004. Springer Verlag.

[PR04b] A. Podelski and A. Rybalchenko. Transition invariants. In LICS’04, pages
32–41, 2004.

[PR05] A. Podelski and A. Rybalchenko. Transition predicate abstraction and fair
termination. In Proc. of POPL, pages 132–144, New York, NY, USA, 2005.
ACM.

[PR07] A. Podelski and A. Rybalchenko. ARMC: The logical choice for software
model checking with abstraction refinement. In Proc. of PADL, volume
4354 of LNCS, pages 245–259. Springer Verlag, Berlin, Heidelberg, 2007.

[Pre29] M. Presburger. Über die Vollständigkeit eines gewissen Systems der Arith-
metik ganzer Zahlen, in welchem die Addition als einzige Operation hervor-
tritt. Comptes rendus du I Congrés des Pays Slaves, page 92–101, 1929.

[PRK+] W. Pugh, E. Rosser, W. Kelly, D. Wonnacott, and T. Shpeisman. Omega.
http://www.cs.umd.edu/projects/omega/.

[QS82] J.-P. Queille and J. Sifakis. Specification and verification of concurrent sys-
tems in cesar. In Proc. of the 5th Colloquium on International Symposium
on Programming, volume 137 of LNCS, pages 337–351, Berlin, Heidelberg,
1982. Springer Verlag.

[Ram30] F. P. Ramsey. On a problem of formal logic. Proc. of the London Mathe-
matical Society, 30:264–285, 1930.

[Reu90] C. Reutenauer. The mathematics of Petri nets. Prentice-Hall, Inc., Upper
Saddle River, NJ, USA, 1990.

[RSS07] A. Rybalchenko and V. Sofronie-Stokkermans. Constraint solving for inter-
polation. In Proc. of VMCAI, volume 4349 of LNCS, pages 346–362, Berlin,
Heidelberg, 2007. Springer Verlag.

[Rüm08] P. Rümmer. A constraint sequent calculus for first-order logic with linear
integer arithmetic. In Proc. of LPAR, volume 5330 of LNCS, pages 274–289,
Berlin, Heidelberg, 2008. Springer Verlag.

[Sch86] A. Schrijver. Theory of Linear and Integer Programming. Wiley, 1986.

[Sch00] B. De Schutter. On the ultimate behavior of the sequence of consecutive
powers of a matrix in the max-plus algebra. Linear Algebra and its Appli-
cations, 307:103–117, 2000.

152

[SV07] A. Smrcka and T. Vojnar. Verifying parametrised hardware designs via
counter automata. In Proc. of HVC, volume 4899 of LNCS, pages 51–68,
Berlin, Heidelberg, 2007. Springer Verlag.

[SVG91] K. Sohn and A. Van Gelder. Termination detection in logic programs using
argument sizes. In Proc. of PODS, pages 216–226, New York, NY, USA,
1991. ACM.

[Tiw04] A. Tiwari. Termination of linear programs. In Proc. of CAV, volume 3114
of LNCS, pages 70–82, Berlin, Heidelberg, 2004. Springer Verlag.

153

