Méthode de type Galerkin discontinu en maillages multi-éléments pour la résolution numérique des équations de Maxwell instationnaires

Clément Durochat

Équipe-projet NACHOS, INRIA Sophia Antipolis - Méditerranée, France

Soutenance de thèse, 30 Janvier 2013
Directeur : Stéphane Lanteri
Étude soutenue par la Région Île-de-France dans le cadre du projet MIEL3D-MESHER du cluster Systematic Paris-Région

Outline

(1) MAXWELL AND ELECTROMAGNETICS
(2) $\mathrm{DGTD}^{-} \mathrm{P}_{p} \mathbb{Q}_{k}$ METHOD
(3) MATHEMATICAL ANALYSIS

4 2D Numerical Results

5 3D Implementation

6 Conclusion and Perspectives

Outline

1 Maxwell and electromagnetics

- Maxwell equations
- Computational electromagnetics
(2) DGTD- $\mathbb{P}_{p} \mathbb{Q}_{k}$ METHOD

3 Mathematical analysis
4. 2 D Numerical results
(5) 3D Implementation
6) Conclusion and perspectives

- Mathematical model to describe the propagation of electromagnetic waves
- Synthesis of existing experimental laws \Longrightarrow unification and improvement by James Clerk Maxwell :

$$
\begin{cases}\partial_{t} \mathbf{B}+\operatorname{curl}(\mathbf{E}) & =0: \text { Maxwell-Faraday equations } \\ \partial_{t} \mathbf{D}-\operatorname{curl}(\mathbf{H})+\mathbf{j} & =0: \text { Maxwell-Ampère equations } \\ \operatorname{div}(\mathbf{D}) & =\rho: \text { Maxwell-Gauss equation } \\ \operatorname{div}(\mathbf{B}) & =0: \text { Magnetic flux equation }\end{cases}
$$

James Clerk Maxwell (13 June 1831 - 5 November 1879)

- We consider linear, isotropic and non-dispersive media
- Mathematical model to describe the propagation of electromagnetic waves
- Synthesis of existing experimental laws \Longrightarrow unification and improvement by James Clerk Maxwell :

$$
\begin{cases}\partial_{t} \mathbf{B}+\operatorname{curl}(\mathbf{E}) & =0: \text { Maxwell-Faraday equations } \\ \partial_{t} \mathbf{D}-\operatorname{curl}(\mathbf{H})+\mathbf{j} & =0: \text { Maxwell-Ampère equations } \\ \operatorname{div}(\mathbf{D}) & =\rho: \text { Maxwell-Gauss equation } \\ \operatorname{div}(\mathbf{B}) & =0: \text { Magnetic flux equation }\end{cases}
$$

James Clerk Maxwell (13 June 1831 - 5 November 1879)

- We consider linear, isotropic and non-dispersive media
Ω, bounded polyhedral domain of \mathbb{R}^{3}, boundary $\Gamma=\Gamma^{a} \cup \Gamma^{m}$; the system of Maxwell equations in three space dimensions is given by :

$$
\left\{\begin{array}{l}
\varepsilon \partial_{t} \mathbf{E}-\operatorname{curl}(\mathbf{H})=-\sigma \mathbf{E}-\mathbf{j}_{\mathrm{s}} \\
\mu \partial_{t} \mathbf{H}+\operatorname{curl}(\mathbf{E})=0
\end{array}\right.
$$

where :

- $\mathbf{E} \equiv\left(E_{1}(\mathbf{x}, t), E_{2}(\mathbf{x}, t), E_{3}(\mathbf{x}, t)\right)^{\mathrm{T}} \& \mathbf{H} \equiv\left(H_{1}(\mathbf{x}, t), H_{2}(\mathbf{x}, t), H_{3}(\mathbf{x}, t)\right)^{\mathrm{T}}$ are the electric field and the magnetic field
- $\varepsilon \equiv \varepsilon(\mathbf{x}), \mu \equiv \mu(\mathbf{x})$, are the electric permittivity and the magnetic permeability, respectively
- $\sigma \equiv \sigma(\mathbf{x}), \mathbf{j}_{\mathrm{s}} \equiv \mathrm{j}_{\mathrm{s}}(\mathbf{x}, t)$, are the electric conductivity and a current source, respectively
- Metallic boundary condition on $\Gamma^{m}: \mathbf{n} \times \mathbf{E}=0$ (\mathbf{n} outwards normal to Γ) Silver-Müller boundary condition on $\Gamma^{a}: \mathbf{n} \times \mathbf{E}-\sqrt{\frac{\mu}{\varepsilon}} \mathbf{n} \times(\mathbf{H} \times \mathbf{n})=0$
Ω, bounded polyhedral domain of \mathbb{R}^{3}, boundary $\Gamma=\Gamma^{a} \cup \Gamma^{m}$; the system of Maxwell equations in three space dimensions is given by :

$$
\left\{\begin{aligned}
\varepsilon \partial_{t} \mathbf{E}-\operatorname{curl}(\mathbf{H}) & =-\sigma \mathbf{E}-\mathbf{j}_{\mathrm{s}}, \\
\mu \partial_{t} \mathbf{H}+\operatorname{curl}(\mathbf{E}) & =0,
\end{aligned}\right.
$$

where :

- $\mathbf{E} \equiv\left(E_{1}(\mathbf{x}, t), E_{2}(\mathbf{x}, t), E_{3}(\mathbf{x}, t)\right)^{\mathrm{T}} \& \mathbf{H} \equiv\left(H_{1}(\mathbf{x}, t), H_{2}(\mathbf{x}, t), H_{3}(\mathbf{x}, t)\right)^{\mathrm{T}}$ are the electric field and the magnetic field
- $\varepsilon \equiv \varepsilon(\mathbf{x}), \mu \equiv \mu(\mathbf{x})$, are the electric permittivity and the magnetic permeability, respectively
- $\sigma \equiv \sigma(\mathbf{x}), \mathrm{j}_{\mathrm{s}} \equiv \mathrm{j}_{\mathrm{s}}(\mathrm{x}, t)$, are the electric conductivity and a current source, respectively
- Metallic boundary condition on $\Gamma^{m}: \mathbf{n} \times \mathbf{E}=0$ (\mathbf{n} outwards normal to Γ)

Silver-Müller boundary condition on $\Gamma^{a}: \mathbf{n} \times \mathbf{E}-\sqrt{\frac{\mu}{\varepsilon}} \mathbf{n} \times(\mathbf{H} \times \mathbf{n})=0$

- Finite Difference Time-Domain method (FDTD)
[1] K. S. Yee. Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media. IEEE Trans. on. Antennas and Propag., vol. 14, pp. 302-307, 1966.
[2] A. Taflove and S. C. Hagness. Computational electrodynamics : the finite-difference time-domain method - 3rd ed. Artech House Publishers, 2005.
- Finite Element Time-Domain method (FETD)
[3] J.-C. Nedelec. Mixed finite elements in \mathbb{R}^{3}. Numer. Math., vol. 35, pp. 315-341, 1980.
[4] S. Pernet, X. Ferrieres and G. Cohen. High spatial order finite element method to solve Maxwell's equations in time domain IEEE Trans. on Antennas and Propag., vol. 53, no. 9, pp. 2889-2899, 2006.
- Finite Volume Time-Domain method (FVTD)
[5] S. Piperno, M. Remaki and L. Fezoui. A nondiffusive finite volume scheme for the three-dimensional Maxwell's equations on unstructured meshes. SIAM J. Numer. Anal., vol. 39, no. 6, pp. 2089-2108, 2002.
- Discontinuous Galerkin Time-Domain method (DGTD, "GD" in french)
[6] F. Bourdel, P.A. Mazet and P. Helluy. Resolution of the non-stationary or harmonic Maxwell equations by a discontinuous finite element method. Application to an E.M.I. (electromagnetic impulse) case In proc. of 10th Inter. Conf. on Comp. Meth. in Appl. Sc. and Eng., pp. 1-18, 1992.
[7] J. S. Hesthaven and T. Warburton. Nodal high-order methods on unstructured grids. I. Time-domain solution of Maxwell's equations. J. Comput. Phys., vol. 181, no. 1, pp. 186-221, 2002.
[8] B. Cockburn, F. Li and C.-W. Shu. Locally divergence-free discontinuous Galerkin methods for the Maxwell equations. J. Comput. Phys., vol. 194, pp. 588-610, 2004.
[9] G. Cohen, X. Ferrieres and S. Pernet. A spatial high order hexahedral discontinuous Galerkin method to solve Maxwell's equations in time-domains. J. Comput. Phys., vol. 217, no. 2, pp. 340-363, 2006.

Outline

(1) MAXWELL AND ELECTROMAGNETICS
(2 DGTD-P ${ }_{p} \mathbb{Q}_{k}$ METHOD

- Hybrid methods and objective
- Spatial discretization
- Time discretization
(3) MATHEMATICAL ANALYSIS

4. 2 D Numerical Results
5) 3D IMPLEMENTATION
(6) CONCLUSION AND PERSPECTIVES

- FDTD with FVTD, or with FETD, or with DGTD
[10] X. Ferrieres, J.-P. Parmantier, S. Bertuol and A. R. Ruddle. Application of a hybrid finite difference/finite volume method to solve an automotive EMC problem. IEEE Trans. on Eletromag. Compatibility, vol. 46, no. 4, pp. 624-634, 2004.
[11] L. Beilina and M. J. Grote. Adaptive hybrid finite element/difference method for Maxwell's equations. STWMS J. Pure Appl. Math., vol. 1, no. 2, pp. 176-197, 2010.
[12] S. G. Garcia, M. F. Pantoja, C. M. de Jong van Coevorden, A. R. Bretones and R. G. Martin. A new hybrid DGTD/FDTD method in 2-D. IEEE Microw. Wireless Compon. Lett., vol. 18, no. 12, pp. 764-766, 2008.
- Spectral FETD with DGTD
[13] R.W. Davies, K. Morgan and O. Hassan. A high order hybrid finite element method applied to the solution of electromagnetic wave scattering problems in the time domain Comput. Mech., vol. 44, pp. 321-331, 2009.
- 2D DGTD on hybrid meshes for seismic waves
[14] V. Hermann, M. Käser and C. E. Castro. Non-conforming hybrid meshes for efficient 2-D wave propagation using the Discontinuous Galerkin Method. Geophys. J. Int., vol. 184, pp. 746-758, 2010.

Objective : Formulate, validate, and study a DGTD- $_{p} \mathrm{Q}_{k}$ method to solve Maxwell equations :

- mesh objects with complex geometry by tetrahedra (triangles in 2D) for high precision
- mesh the surrounding space by square elements (large size) for simplicity and speed

- Pseudo-conservative form $\left(\mathbf{W}=(\mathbf{E}, \mathbf{H})^{\mathrm{T}} \in \mathbb{R}^{6}\right): Q\left(\partial_{t} \mathbf{W}\right)+\nabla \cdot F(\mathbf{W})=\mathbf{J}$
- Ω is discretized by $\mathscr{C}_{h}=\bigcup^{N} c_{i}=\mathscr{T}_{h} \bigcup \mathscr{Q}_{h}$, where c_{i} are tetrahedra $\left(\in \mathscr{T}_{h}\right)$ $i=1$ or hexahedra $\left(\in \mathscr{Q}_{h}\right)$ in 3D (triangles or quadrangles in 2D)
- For theoretical aspects we consider $\mathrm{J} \equiv 0$ and only metallic boundaries
- We denote by $\vec{\psi}=\left(\psi_{1}, \psi_{2}, \psi_{3}, \psi_{4}, \psi_{5}, \psi_{6}\right)^{\mathrm{T}} \in \mathbb{R}^{6}$ a vector test function. By dot multiplying (Euclidean, designated by $\langle.,$.$\rangle) the pseudo-conservative$ form with ψ and integrating on c_{i}, we have a first weak form

$$
\left\langle Q\left(\partial_{t} \mathbf{W}\right), \vec{\psi}\right\rangle d x+\int_{c_{i}}\langle\nabla \cdot F(\mathbf{W}), \vec{\psi}\rangle d x=0
$$

- $\mathbb{P}_{p}\left[c_{i}\right]$: space of polynomial functions with degree at most p on $c_{i} \in \mathscr{T}_{h}$ (form of polynomials \mathbb{P}_{1} in $2 \mathrm{D}: \beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}$), with local basis
$\dot{\phi}_{i}=\left(\varphi_{i 1}, \varphi_{i 2}, \ldots, \varphi_{i d_{i}}\right)$
- $\mathbb{Q}_{k}\left[c_{i}\right]$: space of polynomial functions with degree at most k with respect to each variable separately on $c_{i} \in \mathscr{Q}_{h}$ (form of polynomials \mathbb{Q}_{1} in 2D : $\left.\gamma_{0}+\gamma_{1} x_{1}+\gamma_{2} x_{2}+\gamma_{3} x_{1} x_{2}\right)$, with local basis $\theta_{i}=\left(\vartheta_{i 1}, \vartheta_{i 2}, \ldots, \vartheta_{i b_{i}}\right)$
- Pseudo-conservative form $\left(\mathbf{W}=(\mathbf{E}, \mathbf{H})^{\mathrm{T}} \in \mathbb{R}^{6}\right): Q\left(\partial_{t} \mathbf{W}\right)+\nabla \cdot F(\mathbf{W})=\mathbf{J}$
- Ω is discretized by $\mathscr{C}_{h}=\bigcup^{N} c_{i}=\mathscr{T}_{h} \bigcup \mathscr{Q}_{h}$, where c_{i} are tetrahedra $\left(\in \mathscr{T}_{h}\right)$ or hexahedra ($\in \mathscr{Q}_{h}$) in 3D (triangles or quadrangles in 2D)
- For theoretical aspects we consider $\mathbf{J} \equiv 0$ and only metallic boundaries
- We denote by $\vec{\psi}=\left(\psi_{1}, \psi_{2}, \psi_{3}, \psi_{4}, \psi_{5}, \psi_{6}\right)^{\mathrm{T}} \in \mathbb{R}^{6}$ a vector test function. By dot multiplying (Euclidean, designated by $\langle., ~\rangle$.$) the pseudo-conservative$ form with $\vec{\psi}$ and integrating on c_{i}, we have a first weak form :

$$
\int_{c_{i}}\left\langle Q\left(\partial_{t} \mathbf{W}\right), \vec{\psi}\right\rangle d x+\int_{c_{i}}\langle\nabla \cdot F(\mathbf{W}), \vec{\psi}\rangle d x=0
$$

- $\mathbb{P}_{p}\left[c_{i}\right]$: space of polynomial functions with degree at most p on $c_{i} \in \mathscr{T}_{h}$ (form of polynomials \mathbb{P}_{1} in $2 \mathrm{D}: \beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}$), with local basis $\phi_{i}=\left(\varphi_{i 1}, \varphi_{i 2}, \ldots, \varphi_{i d_{i}}\right)$
- $\mathbb{Q}_{k}\left[c_{i}\right]$: space of polynomial functions with degree at most k with respect to each variable separately on $c_{i} \in \mathscr{Q}_{h}$ (form of polynomials \mathbb{Q}_{1} in 2D $\left.\gamma_{0}+\gamma_{1} x_{1}+\gamma_{2} x_{2}+\gamma_{3} x_{1} x_{2}\right)$, with local basis $\theta_{i}=\left(\vartheta_{i 1}, \vartheta_{i 2}, \ldots, \vartheta_{i b_{i}}\right)$
- Pseudo-conservative form $\left(\mathbf{W}=(\mathbf{E}, \mathbf{H})^{\mathrm{T}} \in \mathbb{R}^{6}\right): Q\left(\partial_{t} \mathbf{W}\right)+\nabla \cdot F(\mathbf{W})=\mathbf{J}$
- Ω is discretized by $\mathscr{C}_{h}=\bigcup_{i=1}^{N} c_{i}=\mathscr{T}_{h} \bigcup \mathscr{Q}_{h}$, where c_{i} are tetrahedra $\left(\in \mathscr{T}_{h}\right)$ or hexahedra $\left(\in \mathscr{Q}_{h}\right)$ in 3D (triangles or quadrangles in 2D)
- For theoretical aspects we consider $\mathbf{J} \equiv 0$ and only metallic boundaries
- We denote by $\vec{\psi}=\left(\psi_{1}, \psi_{2}, \psi_{3}, \psi_{4}, \psi_{5}, \psi_{6}\right)^{\mathrm{T}} \in \mathbb{R}^{6}$ a vector test function. By dot multiplying (Euclidean, designated by $\langle.,$.$\rangle) the pseudo-conservative$ form with $\vec{\psi}$ and integrating on c_{i}, we have a first weak form :

$$
\int_{c_{i}}\left\langle Q\left(\partial_{t} \mathbf{W}\right), \vec{\psi}\right\rangle d \mathbf{x}+\int_{c_{i}}\langle\nabla \cdot F(\mathbf{W}), \vec{\psi}\rangle d \mathbf{x}=0
$$

- $\mathbb{P}_{p}\left[c_{i}\right]$: space of polynomial functions with degree at most p on $c_{i} \in \mathscr{T}_{h}$ (form of polynomials \mathbb{P}_{1} in 2D: $\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}$), with local basis $\phi_{i}=\left(\varphi_{i 1}, \varphi_{i 2}, \ldots, \varphi_{i d_{i}}\right)$
- $\mathbb{Q}_{k}\left[c_{i}\right]$: space of polynomial functions with degree at most k with respect to each variable separately on $c_{i} \in \mathscr{Q}_{h}$ (form of polynomials \mathbb{Q}_{1} in 2D : $\left.\gamma_{0}+\gamma_{1} x_{1}+\gamma_{2} x_{2}+\gamma_{3} x_{1} x_{2}\right)$, with local basis $\theta_{i}=\left(\vartheta_{i 1}, \vartheta_{i 2}, \ldots, \vartheta_{i b_{i}}\right)$

Authorized

Avoided

- The discrete solution vector \mathbf{W}_{h} is searched for in the approximation space V_{h}^{6} defined by :

$$
v_{h}=\left\{\begin{array}{l|l}
v_{h} \in L^{2}(\Omega) & \forall c_{i} \in \mathscr{T}_{h}, v_{h \mid c_{i}} \in \mathbb{P}_{p}\left[c_{i}\right] \\
\forall c_{i} \in \mathscr{Q}_{h}, v_{h \mid c_{i}} \in \mathbb{Q}_{k}\left[c_{i}\right]
\end{array}\right\}
$$

- W_{i} defines the restriction of the approximate solution to the cell $c_{i}\left(\left.W_{h}\right|_{c_{i}}\right)$ and local degrees of freedom denoted by $\mathbf{W}_{i l} \in \mathbb{R}^{6}$

$$
\begin{aligned}
& c_{i} \in \mathscr{T}_{h} \Longrightarrow \mathbf{W}_{i} \in \mathbb{P}_{p}\left[c_{i}\right]: W_{i}(\mathrm{x})=\sum_{l=1}^{d_{i}} W_{i l} \varphi_{i l}(\mathrm{x}) \in \mathbb{R}^{6} \\
& c_{i} \in \mathscr{Q}_{h} \Longrightarrow W_{i} \in \mathbb{Q}_{k}\left[c_{i}\right]: W_{i}(\mathrm{x})=\sum_{l=1}^{b_{i}} W_{i l l} \vartheta_{i l}(\mathrm{x}) \in \mathbb{R}^{6}
\end{aligned}
$$

- We use integration by parts on the first weak form and we inject \mathbf{W}_{h}
- The local representation of \mathbf{W}_{h} does not provide any form of continuity from one element to another. We use a centered numerical flux on $a_{i j}=c_{i} \cap c_{j}:$

$$
\left.\mathbf{W}_{h}\right|_{a_{i j}}=\frac{\left.\mathbf{W}_{i}\right|_{a_{j i}}+\left.\mathbf{W}_{j}\right|_{a_{i j}}}{2}
$$

If $a_{i j}$ on the metallic boundary: $\left(\mathbf{E}_{j}, \mathbf{H}_{j}\right)^{\mathrm{T}}=\left(-\mathbf{E}_{i}, \mathbf{H}_{i}\right)^{\mathrm{T}}$

- The discrete solution vector \mathbf{W}_{h} is searched for in the approximation space V_{h}^{6} defined by :

$$
v_{h}=\left\{\begin{array}{l|l}
v_{h} \in L^{2}(\Omega) & \begin{array}{l}
\forall c_{i} \in \mathscr{T}_{h}, v_{h \mid c_{i}} \in \mathbb{P}_{p}\left[c_{i}\right] \\
\forall c_{i} \in \mathscr{Q}_{h}, v_{h \mid c_{i}} \in \mathbb{Q}_{k}\left[c_{i}\right]
\end{array}
\end{array}\right\}
$$

- \mathbf{W}_{i} defines the restriction of the approximate solution to the cell $c_{i}\left(\mathbf{W}_{h| |_{i}}\right)$ and local degrees of freedom denoted by $\mathbf{W}_{i /} \in \mathbb{R}^{6}$:

$$
\begin{aligned}
& c_{i} \in \mathscr{T}_{h} \Longrightarrow \mathbf{W}_{i} \in \mathbb{P}_{p}\left[c_{i}\right]: \mathbf{W}_{i}(\mathbf{x})=\sum_{l=1}^{d_{i}} \mathbf{W}_{i l} \varphi_{i l}(\mathbf{x}) \in \mathbb{R}^{6} \\
& c_{i} \in \mathscr{Q}_{h} \Longrightarrow \mathbf{W}_{i} \in \mathbb{Q}_{k}\left[c_{i}\right]: \mathbf{W}_{i}(\mathbf{x})=\sum_{l=1}^{b_{i}} \mathbf{W}_{i l} \vartheta_{i l}(\mathbf{x}) \in \mathbb{R}^{6}
\end{aligned}
$$

- We use integration by parts on the first weak form and we inject \mathbf{W}_{h}
- The local representation of W_{h} does not provide any form of continuity from one element to another. We use a centered numerical flux on $a_{i j}=c_{i} \cap c_{j}$:

$$
\left.W_{h}\right|_{a_{j i}}=\frac{W_{\left.i\right|_{a_{j}}}+W_{\left.j\right|_{a_{i j}}}}{2}
$$

If $a_{i j}$ on the metallic boundary: $\left(\mathbf{E}_{j}, \mathbf{H}_{j}\right)^{\mathrm{T}}=\left(-\mathbf{E}_{i}, \mathbf{H}_{i}\right)^{\mathrm{T}}$

- The discrete solution vector \mathbf{W}_{h} is searched for in the approximation space V_{h}^{6} defined by :

$$
v_{h}=\left\{\begin{array}{l|l}
v_{h} \in L^{2}(\Omega) & \forall c_{i} \in \mathscr{T}_{h}, v_{h \mid c_{i}} \in \mathbb{P}_{p}\left[c_{i}\right] \\
\forall c_{i} \in \mathscr{Q}_{h}, v_{h \mid c_{i}} \in \mathbb{Q}_{k}\left[c_{i}\right]
\end{array}\right\}
$$

- \mathbf{W}_{i} defines the restriction of the approximate solution to the cell $c_{i}\left(\mathbf{W}_{h| |_{i}}\right)$ and local degrees of freedom denoted by $\mathbf{W}_{i /} \in \mathbb{R}^{6}$:

$$
\begin{aligned}
& c_{i} \in \mathscr{T}_{h} \Longrightarrow \mathbf{W}_{i} \in \mathbb{P}_{p}\left[c_{i}\right]: \mathbf{W}_{i}(\mathbf{x})=\sum_{l=1}^{d_{i}} \mathbf{W}_{i l} \varphi_{i l}(\mathbf{x}) \in \mathbb{R}^{6} \\
& c_{i} \in \mathscr{Q}_{h} \Longrightarrow \mathbf{W}_{i} \in \mathbb{Q}_{k}\left[c_{i}\right]: \mathbf{W}_{i}(\mathbf{x})=\sum_{l=1}^{b_{i}} \mathbf{W}_{i l} \vartheta_{i l}(\mathbf{x}) \in \mathbb{R}^{6}
\end{aligned}
$$

- We use integration by parts on the first weak form and we inject \mathbf{W}_{h}
- The local representation of \mathbf{W}_{h} does not provide any form of continuity from one element to another. We use a centered numerical flux on $a_{i j}=c_{i} \cap c_{j}:$

$$
\left.\mathbf{W}_{h}\right|_{a_{i j}}=\frac{\left.\mathbf{W}_{i}\right|_{a_{j i}}+\left.\mathbf{W}_{j}\right|_{a_{i j}}}{2}
$$

If $a_{i j}$ on the metallic boundary : $\left(\mathbf{E}_{j}, \mathbf{H}_{j}\right)^{\mathrm{T}}=\left(-\mathbf{E}_{i}, \mathbf{H}_{i}\right)^{\mathrm{T}}$

Case (A) :

c_{i} is a tetrahedron. $a_{i j}$ face of c_{i}, is either on boundary, or common to another tetrahedron, or to a hexahedron (hybrid)

$6 d_{i}$ semi-discretized equations system

with

- $\bar{E}_{i}=\left(\mathrm{E}_{i 1}, \mathrm{E}_{i 2}, \cdots, \mathrm{E}_{i d_{i}}\right)^{\mathrm{T}}$ and $\bar{H}_{i}=\left(\mathrm{H}_{i 1}, \mathrm{H}_{i 2}, \cdots, \mathrm{H}_{i d_{i}}\right)^{\mathrm{T}} \in \mathbb{R}^{3 d_{i}}$
- $\widetilde{E}_{j}=\left(\mathbf{E}_{j 1}, \mathbf{E}_{j 2}, \cdots, \mathbf{E}_{j b_{j}}\right)^{\mathrm{T}}$ and $\widetilde{H}_{j}=\left(\mathbf{H}_{j 1}, \mathbf{H}_{j 2}, \cdots, \boldsymbol{H}_{j b_{j}}\right)^{\mathrm{T}} \in \mathbb{R}^{3 b_{j}}$
- $\mathcal{X}_{\varepsilon, i}$ and $\mathcal{X}_{\mu, i}$ are mass matrices, $\mathcal{X}_{i}^{\chi_{k}}$ gradient matrix, $\mathcal{X}_{i j}$ surface matrix \Longrightarrow All have a $3 d_{i} \times 3 d_{i}$ size, except $\mathcal{A}_{i j}$, whose size is $3 d_{i} \times 3 b_{j}$

Case (A) :

c_{i} is a tetrahedron. $a_{i j}$ face of c_{i}, is either on boundary, or common to another tetrahedron, or to a hexahedron (hybrid)
6d d_{i} semi-discretized equations system :

$$
\begin{aligned}
& 2 \mathcal{X}_{\varepsilon, i} \frac{d \overline{\mathbf{E}}_{i}}{d t}+\sum_{k=1}^{3} \mathcal{X}_{i}^{x_{k}} \overline{\mathbf{H}}_{i}+\sum_{a_{i j} \in \mathscr{T}_{d}^{j}} \mathcal{X}_{i j} \overline{\mathbf{H}}_{j}+\sum_{a_{i j} \in \mathscr{T}_{m}^{i}} \mathcal{X}_{i m} \overline{\mathbf{H}}_{i}+\sum_{a_{i j} \in \mathscr{H}_{d}^{j}} \mathcal{A}_{i j} \widetilde{\mathbf{H}}_{j}=0, \\
& 2 \mathcal{X}_{\mu, i} \frac{d \overline{\mathbf{H}}_{i}}{d t}-\sum_{k=1}^{3} \mathcal{X}_{i}^{x_{k}} \mathbf{E}_{i}-\sum_{a_{i j} \in \mathscr{T}_{d}^{j}} \mathcal{X}_{i j} \overline{\mathbf{E}}_{j}+\sum_{a_{j j} \in \mathscr{F}_{m}^{j}} \mathcal{X}_{i m} \overline{\mathbf{E}}_{i}-\sum_{a_{j j} \in \mathscr{H}_{d}^{j}} \mathcal{A}_{i j} \widetilde{\mathbf{E}}_{j}=0,
\end{aligned}
$$

with :

- $\overline{\mathbf{E}}_{i}=\left(\mathbf{E}_{i 1}, \mathbf{E}_{i 2}, \cdots, \mathbf{E}_{i d_{i}}\right)^{\mathrm{T}}$ and $\overline{\mathbf{H}}_{i}=\left(\mathbf{H}_{i 1}, \mathbf{H}_{i 2}, \cdots, \mathbf{H}_{i d_{i}}\right)^{\mathrm{T}} \in \mathbb{R}^{3 d_{i}}$
- $\widetilde{\mathbf{E}}_{j}=\left(\mathbf{E}_{j 1}, \mathbf{E}_{j 2}, \cdots, \mathbf{E}_{j b_{j}}\right)^{\mathrm{T}}$ and $\widetilde{\mathbf{H}}_{j}=\left(\mathbf{H}_{j 1}, \mathbf{H}_{j 2}, \cdots, \mathbf{H}_{j b_{j}}\right)^{\mathrm{T}} \in \mathbb{R}^{3 b_{j}}$
- $\mathcal{X}_{\varepsilon, i}$ and $\mathcal{X}_{\mu, i}$ are mass matrices, $\mathcal{X}_{i}^{\chi_{k}}$ gradient matrix, $\mathcal{X}_{i j}$ surface matrix \Longrightarrow All have a $3 d_{i} \times 3 d_{i}$ size, except $\mathcal{A}_{i j}$, whose size is $3 d_{i} \times 3 b_{j}$

Case (B) :

c_{i} is an hexahedron. $a_{i j}$ face of c_{i}, is either on boundary, or common to another hexahedron, or to a tetrahedron (hybrid)
$6 \mathrm{~b}_{\mathrm{i}}$ semi-discretized equations system :

$$
\left\{\begin{array}{l}
2 \mathcal{W}_{e, i} \frac{d \widetilde{\mathbf{E}}_{i}}{d t}+\sum_{k=1}^{3} \mathcal{W}_{i}^{x_{k}} \widetilde{\mathbf{H}}_{i}+\sum_{a_{j i} \in \mathcal{Q}_{d}^{j}} \mathcal{W}_{i j} \widetilde{\mathbf{H}}_{j}+\sum_{a_{j} \in \mathscr{Q}_{m}^{i}} \mathcal{W}_{i m} \widetilde{\mathbf{H}}_{i}+\sum_{a_{i j} \in \mathscr{H}_{d}^{j}} \mathcal{B}_{i j} \bar{H}_{j}=0, \\
2 \mathcal{W}_{\mu, i} \frac{d \widetilde{\mathbf{H}}_{i}}{d t}-\sum_{k=1}^{3} \mathcal{W}_{i}^{x_{k}} \widetilde{\mathbf{E}}_{i}-\sum_{a_{i j} \in \mathscr{Q}_{d}^{i}} \mathcal{W}_{i j} \widetilde{\mathbf{E}}_{j}+\sum_{a_{j i} \in \mathscr{Q}_{m}^{i}} \mathcal{W}_{i m} \widetilde{\mathbf{E}}_{i}-\sum_{a_{j j} \in \mathscr{H}_{d}^{j}} \mathcal{B}_{i j} \bar{E}_{j}=0,
\end{array}\right.
$$

with :

- $\widetilde{\mathbf{E}}_{i}=\left(\mathbf{E}_{i 1}, \mathbf{E}_{i 2}, \cdots, \mathbf{E}_{i b_{i}}\right)^{\mathrm{T}}$ and $\widetilde{\mathbf{H}}_{i}=\left(\mathbf{H}_{i 1}, \mathbf{H}_{i 2}, \cdots, \mathbf{H}_{i b_{i}}\right)^{\mathrm{T}} \in \mathbb{R}^{3 b_{i}}$
- $\overline{\mathbf{E}}_{j}=\left(\mathbf{E}_{j 1}, \mathbf{E}_{j 2}, \cdots, \mathbf{E}_{j d_{j}}\right)^{\mathrm{T}}$ and $\overline{\mathbf{H}}_{j}=\left(\mathbf{H}_{j 1}, \mathbf{H}_{j 2}, \cdots, \mathbf{H}_{j d_{j}}\right)^{\mathrm{T}} \in \mathbb{R}^{3 d_{j}}$
- $\mathcal{W}_{\varepsilon, i}$ and $\mathcal{W}_{\mu, i}$ are mass matrices, $\mathcal{W}_{i}^{\alpha_{k}}$ gradient matrix, $\mathcal{W}_{i j}$ surface matrix \Longrightarrow All have a $3 b_{i} \times 3 b_{i}$ size, except $\mathcal{B}_{i j}$, whose size is $3 b_{i} \times 3 d_{j}$

Second order Leap-Frog scheme

$$
\left\{\begin{array}{l}
\overline{\mathbf{H}}_{i}^{n+\frac{1}{2}}=\overline{\mathbf{H}}_{i}^{n-\frac{1}{2}}+\Delta t \bar{v}_{\tau_{i}}\left(G_{e l}\left(\mathbf{E}_{h}^{n}\right)\right), \\
\overline{\mathbf{E}}_{i}^{n+1}=\overline{\mathbf{E}}_{i}^{n}+\Delta t \bar{v}_{\tau_{i}}\left(G_{m a g}\left(\mathbf{H}_{h}^{n+\frac{1}{2}}\right)\right)
\end{array}\right.
$$

[15] H. Fans.
High-order Leap-Frog based discontinuous Galerkin method for the time-domain Maxwell equations on non-conforming simplicial meshes. Numer. Math. Theor. Meth. Appl., vol. 2, no. 3, pp. 275-300, 2009.

Second order Leap-Frog scheme

$$
\left\{\begin{array}{l}
\overline{\mathbf{H}}_{i}^{n+\frac{1}{2}}=\overline{\mathbf{H}}_{i}^{n-\frac{1}{2}}+\Delta t \bar{v}_{\tau_{i}}\left(G_{e l}\left(\mathbf{E}_{h}^{n}\right)\right) \\
\overline{\mathbf{E}}_{i}^{n+1}=\overline{\mathbf{E}}_{i}^{n}+\Delta t \bar{v}_{\tau_{i}}\left(G_{m a g}\left(\mathbf{H}_{h}^{n+\frac{1}{2}}\right)\right)
\end{array}\right.
$$

Fourth order Leap-Frog scheme [15]

$$
\left\{\begin{array}{l}
\overline{\mathbf{H}}_{i}^{n+\frac{1}{2}}=\overline{\mathbf{H}}_{i}^{n-\frac{1}{2}}+\Delta t \bar{v}_{\tau_{i}}\left(G_{e l}\left(\mathbf{E}_{h}^{n}\right)\right)+\frac{\Delta t^{3}}{24} \bar{v}_{\tau_{i}}\left(G_{e l} \circ G_{m a g} \circ G_{e l}\left(\mathbf{E}_{h}^{n}\right)\right), \\
\overline{\mathbf{E}}_{i}^{n+1}=\overline{\mathbf{E}}_{i}^{n}+\Delta t \bar{v}_{\tau_{i}}\left(G_{m a g}\left(\mathbf{H}_{h}^{n+\frac{1}{2}}\right)\right)+\frac{\Delta t^{3}}{24} \bar{v}_{\tau_{i}}\left(G_{m a g} \circ G_{e l} \circ G_{m a g}\left(\mathbf{H}_{h}^{n+\frac{1}{2}}\right)\right)
\end{array}\right.
$$

[15] H. Fans.
High-order Leap-Frog based discontinuous Galerkin method for the time-domain Maxwell equations on non-conforming simplicial meshes.
Numer. Math. Theor. Meth. Appl., vol. 2, no. 3, pp. 275-300, 2009.

Outline

(1) MAXWELL AND ELECTROMAGNETICS
(2) $\mathrm{DGTD}-\mathbb{P}_{p} \mathbb{Q}_{k}$ METHOD
(3) Mathematical analysis

- Stability analysis
- A priori convergence analysis

4) 2D Numerical results
(5) 3D Implementation
5) Conclusion and perspectives

- We define a discrete energy \mathfrak{E}^{n}
- We assume that this is an energy and we check that it is exactly conserved, i.e. $\Delta \mathfrak{E}=\mathfrak{E}^{n+1}-\mathfrak{E}^{n}=0$
- We make hypotheses for fields to prove that \mathscr{E}^{n} is a positive definite quadratic form under a CFL condition :

$$
\begin{aligned}
& \forall X \in\left(\mathbb{P}_{p}\left[c_{i}\right]\right)^{3},\left\|\operatorname { c u r } \left|(X) \|_{c_{i}} \leq\left(\alpha_{i}^{T} p_{i}\|X\|_{c_{i}}\right) /\left|c_{i}\right|,\right.\right. \\
& \forall X \in\left(\mathbb{P}_{p}\left[c_{i}\right]\right)^{3}, \quad\|\mathrm{X}\|_{a_{j j}}^{2} \leq\left(\beta_{i j}^{T}\left\|\mathbf{n}_{j j}\right\|\|\mathrm{X}\|_{c_{i}}^{2}\right) /\left|c_{i}\right|
\end{aligned}
$$

where α_{i}^{τ} and $\beta_{i j}^{\tau}\left(j \in\left\{j \mid c_{i} \cap c_{j} \neq \varnothing\right\}\right)$ defining the constant parameters

- We also admit similar hypothesis $\forall \mathrm{X} \in\left(\mathbb{Q}_{k}\left[c_{i}\right]\right)^{3}$ with constants α_{i}^{q} and β_{j}^{q}
- $\|\cdot\|_{c_{i}}$ and $\|\cdot\|_{a j j}$ are L^{2}-norm. $\left\|\mathbf{n}_{i j}\right\|=\int_{a i j} 1 d \sigma$ with $\mathbf{n}_{i j}$ non-unitary normal to $a_{i j}$ oriented from c_{i} towards $c_{j} . \quad\left|c_{i}\right|=\int_{c_{i}} 1 d \mathrm{x}$ and $p_{i}=\sum_{j \in \mathcal{V}_{i}}\left\|\mathbf{n}_{i j}\right\|$
- We define a discrete energy \mathbb{E}^{n}
- We assume that this is an energy and we check that it is exactly conserved, i.e. $\Delta \mathfrak{E}=\mathfrak{E}^{n+1}-\mathfrak{E}^{n}=0$
- We make hypotheses for fields to prove that $\mathfrak{E}{ }^{n}$ is a positive definite quadratic form under a CFL condition :

$$
\begin{aligned}
& \forall \mathbf{X} \in\left(\mathbb{P}_{p}\left[c_{i}\right]\right)^{3}, \quad\|\operatorname{curl}(\mathbf{X})\|_{c_{i}} \leq\left(\alpha_{i}^{\tau} p_{i}\|\mathbf{X}\|_{c_{i}}\right) /\left|c_{i}\right|, \\
& \forall \mathbf{X} \in\left(\mathbb{P}_{p}\left[c_{i}\right]\right)^{3}, \quad\|\mathbf{X}\|_{a_{i j}}^{2} \leq\left(\beta_{i j}^{\tau}\left\|\mathbf{n}_{i j}\right\|\|\mathbf{X}\|_{c_{i}}^{2}\right) /\left|c_{i}\right|
\end{aligned}
$$

where α_{i}^{τ} and $\beta_{i j}^{\tau}\left(j \in\left\{j \mid c_{i} \cap c_{j} \neq \varnothing\right\}\right)$ defining the constant parameters

- We also admit similar hypothesis $\forall \mathbf{X} \in\left(\mathbb{Q}_{k}\left[c_{i}\right]\right)^{3}$ with constants α_{i}^{q} and $\beta_{i j}^{q}$
- $\|\cdot\|_{c_{i}}$ and $\|\cdot\|_{a_{j j}}$ are L^{2}-norm. $\left\|\mathbf{n}_{i j}\right\|=\int_{a_{i j}} 1 d \sigma$ with $\mathbf{n}_{i j}$ non-unitary normal to $a_{i j}$ oriented from c_{i} towards c_{j}. $\left|c_{i}\right|=\int_{c_{i}} 1 d \mathrm{x}$ and $p_{i}=\sum_{j \in \mathcal{V}_{i}}\left\|\mathbf{n}_{i j}\right\|$
- For the DGTD- P_{p} method, the sufficient condition on Δt_{τ} is [16] :

$$
\forall i, \forall j \in \mathcal{V}_{i}: \quad \Delta t_{\tau}\left[2 \alpha_{i}^{\tau}+\beta_{i j}^{\tau} \max \left(\sqrt{\frac{\varepsilon_{i}}{\varepsilon_{j}}}, \sqrt{\frac{\mu_{i}}{\mu_{j}}}\right)\right]<\frac{4\left|c_{i}\right| \sqrt{\varepsilon_{i} \mu_{i}}}{p_{i}}
$$

- For DGTD- Q_{k} method, the sufficient condition on Δt_{q} is :

$$
\forall i, \forall j \in \mathcal{V}_{i}: \quad \Delta t_{q}\left[2 \alpha_{i}^{q}+\beta_{i j}^{q} \max \left(\sqrt{\frac{\varepsilon_{i}}{\varepsilon_{j}}}, \sqrt{\frac{\mu_{i}}{\mu_{j}}}\right)\right]<\frac{4\left|c_{i}\right| \sqrt{\varepsilon_{i} \mu_{i}}}{p_{i}}
$$

Finally, denoting Δt the global time step for the hybrid method, we have shown that the sufficient stability condition is defined by

\square
Under this condition and hypothesis, \mathfrak{E}^{n} is a positive definite quadratic form
[16] L. Fezoui, S. Lanteri, S. Lohrengel, and S. Piperno.
Convergence and stability of a discontinuous Galerkin time-domain method for the heterogeneous Maxwell equations on unstructured meshes.
ESAIM : Math. Model. and Numer. Anal. 39, no. 6, pp. 1149-1176, 2005.

- For the DGTD- \mathbb{P}_{p} method, the sufficient condition on Δt_{τ} is [16] :

$$
\forall i, \forall j \in \mathcal{V}_{i}: \quad \Delta t_{\tau}\left[2 \alpha_{i}^{\tau}+\beta_{i j}^{\tau} \max \left(\sqrt{\frac{\varepsilon_{i}}{\varepsilon_{j}}}, \sqrt{\frac{\mu_{i}}{\mu_{j}}}\right)\right]<\frac{4\left|c_{i}\right| \sqrt{\varepsilon_{i} \mu_{i}}}{p_{i}}
$$

- For DGTD- Q_{k} method, the sufficient condition on Δt_{q} is :

$$
\forall i, \forall j \in \mathcal{V}_{i}: \quad \Delta t_{q}\left[2 \alpha_{i}^{q}+\beta_{i j}^{q} \max \left(\sqrt{\frac{\varepsilon_{i}}{\varepsilon_{j}}}, \sqrt{\frac{\mu_{i}}{\mu_{j}}}\right)\right]<\frac{4\left|c_{i}\right| \sqrt{\varepsilon_{i} \mu_{i}}}{p_{i}}
$$

Finally, denoting Δt the global time step for the hybrid method, we have shown that the sufficient stability condition is defined by :

$$
\Delta t=\min \left(\Delta t_{\tau}, \Delta t_{q}\right)
$$

Under this condition and hypothesis, $\mathfrak{E} n$ is a positive definite quadratic form
[16] L. Fezoui, S. Lanteri, S. Lohrengel, and S. Piperno.
Convergence and stability of a discontinuous Galerkin time-domain method for the heterogeneous Maxwell equations on unstructured meshes.
ESAIM : Math. Model. and Numer. Anal. 39, no. 6, pp. 1149-1176, 2005.

- Scalar weak formulations per element for the two cases
- Summing up weak formulations on each c_{i}, the discrete solution $W_{h}=\left(E_{h}, H_{h}\right)^{\mathrm{T}} \in \mathcal{C}^{1}\left(\left[0, t_{f}\right] ; V_{h}^{6}\right)$ satisfies

$$
m\left(\partial_{t} \mathbf{W}_{h}, \mathbf{T}^{\prime}\right)+a\left(\mathbf{W}_{h}, \mathbf{T}^{\prime}\right)+b\left(\mathbf{W}_{h}, \mathbf{T}^{\prime}\right)=0, \quad \forall \mathbf{T}^{\prime} \in V_{h}^{6}
$$

where :

with
e $\mathbf{T}=(\mathbf{U}, \mathbf{V})^{\mathrm{T}}, \mathrm{T}^{\prime}=\left(\mathbf{U}^{\prime}, \mathbf{V}^{\prime}\right)^{\mathrm{T}}$

- $\left[\mathbf{U}_{h} \rrbracket_{i j}=\left(\left.\mathbf{U}_{j}\right|_{a_{i j}}-\left.\mathbf{U}_{i}\right|_{a_{i j}}\right) \times \breve{\mathbf{n}}_{i j}, \quad\left\{\mathbf{U}_{h}\right\}_{i j}=\left(\left.\mathbf{U}_{i}\right|_{a_{i j}}+\left.\mathbf{U}_{j}\right|_{a_{i j}}\right) / 2\right.$
- \mathscr{F}_{d} set of internal faces, \mathscr{F}_{m} set of metallic boundary faces
- Scalar weak formulations per element for the two cases
- Summing up weak formulations on each c_{i}, the discrete solution $\mathbf{W}_{h}=\left(\mathbf{E}_{h}, \mathbf{H}_{h}\right)^{\mathrm{T}} \in \mathcal{C}^{1}\left(\left[0, t_{f}\right] ; V_{h}^{6}\right)$ satisfies :
where :

$$
m\left(\partial_{t} \mathbf{W}_{h}, \mathbf{T}^{\prime}\right)+a\left(\mathbf{W}_{h}, \mathbf{T}^{\prime}\right)+b\left(\mathbf{W}_{h}, \mathbf{T}^{\prime}\right)=0, \quad \forall \mathbf{T}^{\prime} \in V_{h}^{6}
$$

$$
\left\{\begin{aligned}
m\left(\mathbf{T}, \mathbf{T}^{\prime}\right)= & 2 \int_{\Omega}\left\langle Q \mathbf{T}, \mathbf{T}^{\prime}\right\rangle d \mathbf{x} \\
a\left(\mathbf{T}, \mathbf{T}^{\prime}\right)= & \int_{\Omega}\left(\left\langle\sum_{k=1}^{3} \partial_{x_{k}}^{h} \mathcal{O}^{k} \mathbf{T}, \mathbf{T}^{\prime}\right\rangle-\sum_{k=1}^{3}\left\langle\partial_{x_{k}}^{h} \mathbf{T}^{\prime}, \mathcal{O}^{k} \mathbf{T}\right\rangle\right) d \mathbf{x} \\
b\left(\mathbf{T}, \mathbf{T}^{\prime}\right)= & \int_{\mathscr{F}_{d}}\left(\left\langle\{\mathbf{V}\}, \llbracket \mathbf{U}^{\prime} \rrbracket\right\rangle-\left\langle\{\mathbf{U}\}, \llbracket \mathbf{V}^{\prime} \rrbracket\right\rangle-\right. \\
& \left.\left\langle\left\{\mathbf{V}^{\prime}\right\}, \llbracket \mathbf{U} \rrbracket\right\rangle+\left\langle\left\{\mathbf{U}^{\prime}\right\}, \llbracket \mathbf{V} \rrbracket\right\rangle\right) d \sigma+ \\
& \int_{\mathscr{F}_{m}}\left(\left\langle\mathbf{U}, \breve{\mathbf{n}} \times \mathbf{V}^{\prime}\right\rangle+\left\langle\mathbf{V}, \breve{\mathbf{n}} \times \mathbf{U}^{\prime}\right\rangle\right) d \sigma
\end{aligned}\right.
$$

with :

- $\mathbf{T}=(\mathbf{U}, \mathbf{V})^{\mathrm{T}}, \mathbf{T}^{\prime}=\left(\mathbf{U}^{\prime}, \mathbf{V}^{\prime}\right)^{\mathrm{T}}$
- $\left[\mathbf{U}_{h}\right]_{i j}=\left(\left.\mathbf{U}_{j}\right|_{a_{i j}}-\mathbf{U}_{\left.i\right|_{a_{i j}}}\right) \times \check{\mathbf{n}}_{j j}, \quad\left\{\mathbf{U}_{h}\right\}_{i j}=\left(\left.\mathbf{U}_{i}\right|_{a_{j j}}+\mathbf{U}_{\left.j\right|_{a_{j j}}}\right) / 2$
- \mathscr{F}_{d} set of internal faces, \mathscr{F}_{m} set of metallic boundary faces
- Let the exact solution $\mathbf{W} \in \mathcal{C}^{1}\left(\left[0, t_{f}\right],\left(L^{2}(\Omega)\right)^{6}\right) \cap \mathcal{C}^{0}\left(\left[0, t_{f}\right],(H(\operatorname{curl}, \Omega))^{6}\right)$. Using the continuity of the tangential traces of \mathbf{E} and \mathbf{H} across $a_{i j} \in \mathscr{F}_{d}$, and the metallic boundary condition $\mathbf{E} \times \check{\mathbf{n}}=0$ on $a_{i j} \in \mathscr{F}_{m}$, we prove :

$$
m\left(\partial_{t} \mathbf{W}, \mathbf{T}^{\prime}\right)+a\left(\mathbf{W}, \mathbf{T}^{\prime}\right)+b\left(\mathbf{W}, \mathbf{T}^{\prime}\right)=0, \quad \forall \mathbf{T}^{\prime} \in V_{h}^{6}
$$

- We also make several assumptions and that $\mathbf{W} \in \mathcal{C}^{0}\left(\left[0, t_{f}\right] ;\left(P H^{s+1}(\Omega)\right)^{6}\right)$ for $s \leq 0$ with t_{f} the final time and
- Let $h_{\tau}=\max _{\tau_{i} \in \mathscr{\mathscr { T }}_{h}}\left(h_{\tau_{i}}\right), h_{q}=\max _{q_{i} \in \mathcal{Q}_{h}}\left(h_{q_{i}}\right)$ and

$$
\xi_{h}=\max \left\{h_{T}^{\min \{s, p\}}, h_{q}^{\min \{s, k\}}\right\}
$$

- Then there is a constant $C>0$ independent of h such that :

$$
\left.\max _{t \in\left[0, t_{t}\right]}\left(\left\|P_{h}(\mathbb{W}(t))-\mathbf{W}_{h}(t)\right\|_{0, \Omega}\right) \leq C \xi_{h} t_{f}\|\mathbf{W}\|_{C^{0}\left(\left[0, t_{]}\right], P H\right.} P^{s+1}(\Omega)\right)
$$

- Let the exact solution $\mathbf{W} \in \mathcal{C}^{1}\left(\left[0, t_{f}\right],\left(L^{2}(\Omega)\right)^{6}\right) \cap \mathcal{C}^{0}\left(\left[0, t_{f}\right],(H(\operatorname{curl}, \Omega))^{6}\right)$. Using the continuity of the tangential traces of \mathbf{E} and \mathbf{H} across $a_{i j} \in \mathscr{F}_{d}$, and the metallic boundary condition $\mathbf{E} \times \breve{\mathbf{n}}=0$ on $a_{i j} \in \mathscr{F}_{m}$, we prove :

$$
m\left(\partial_{t} \mathbf{W}, \mathbf{T}^{\prime}\right)+a\left(\mathbf{W}, \mathbf{T}^{\prime}\right)+b\left(\mathbf{W}, \mathbf{T}^{\prime}\right)=0, \quad \forall \mathbf{T}^{\prime} \in V_{h}^{6}
$$

- We also make several assumptions and that $\mathbf{W} \in \mathcal{C}^{0}\left(\left[0, t_{f}\right] ;\left(P H^{s+1}(\Omega)\right)^{6}\right)$ for $s \leq 0$ with t_{f} the final time and :

$$
P H^{s+1}(\Omega)=\left\{v \mid \forall j, v_{\mid \Omega_{j}} \in H^{s+1}\left(\Omega_{j}\right)\right\}
$$

- Let $h_{\tau}=\max _{\tau_{i} \in \mathscr{\mathscr { S }}_{h}}\left(h_{\tau_{i}}\right), h_{q}=\max _{q_{i} \in \mathcal{Q}_{h}}\left(h_{q_{i}}\right)$ and :

$$
\xi_{h}=\max \left\{h_{\tau}^{\min \{s, p\}}, h_{q}^{\min \{s, k\}}\right\}
$$

- Then there is a constant $C>0$ independent of h such that

$$
\max _{t \in\left[0, t_{f}\right]}\left(\left\|P_{h}(\mathbf{W}(t))-\mathbf{W}_{h}(t)\right\|_{0, \Omega}\right) \leq C \xi_{h} t_{f}\|\mathbf{W}\|_{C^{0}\left(\left[0, t_{f}\right], P H H^{s+1}(\Omega)\right)}
$$

- Let the exact solution $\mathbf{W} \in \mathcal{C}^{1}\left(\left[0, t_{f}\right],\left(L^{2}(\Omega)\right)^{6}\right) \cap \mathcal{C}^{0}\left(\left[0, t_{f}\right],(H(\operatorname{curl}, \Omega))^{6}\right)$. Using the continuity of the tangential traces of \mathbf{E} and \mathbf{H} across $a_{i j} \in \mathscr{F}_{d}$, and the metallic boundary condition $\mathbf{E} \times \breve{\mathbf{n}}=0$ on $a_{i j} \in \mathscr{F}_{m}$, we prove :

$$
m\left(\partial_{t} \mathbf{W}, \mathbf{T}^{\prime}\right)+a\left(\mathbf{W}, \mathbf{T}^{\prime}\right)+b\left(\mathbf{W}, \mathbf{T}^{\prime}\right)=0, \quad \forall \mathbf{T}^{\prime} \in V_{h}^{6}
$$

- We also make several assumptions and that $\mathbf{W} \in \mathcal{C}^{0}\left(\left[0, t_{f}\right] ;\left(P H^{s+1}(\Omega)\right)^{6}\right)$ for $s \leq 0$ with t_{f} the final time and :

$$
P H^{s+1}(\Omega)=\left\{v \mid \forall j, v_{\mid \Omega_{j}} \in H^{s+1}\left(\Omega_{j}\right)\right\}
$$

- Let $h_{\tau}=\max _{\tau_{i} \in \mathscr{T}_{h}}\left(h_{\tau_{i}}\right), h_{q}=\max _{q_{i} \in \mathcal{Q}_{h}}\left(h_{q_{i}}\right)$ and :

$$
\xi_{h}=\max \left\{h_{\tau}^{\min \{s, p\}}, h_{q}^{\min \{s, k\}}\right\}
$$

- Then there is a constant $C>0$ independent of h such that :

$$
\max _{t \in\left[0, t_{f}\right]}\left(\left\|P_{h}(\mathbf{W}(t))-\mathbf{W}_{h}(t)\right\|_{0, \Omega}\right) \leq C \xi_{h} t_{f}\|\mathbf{W}\|_{\mathcal{C}^{0}\left(\left[0, t_{f}\right], P H^{s+1}(\Omega)\right)}
$$

- For the semi-discretized problem, the error $\mathbf{w}=\mathbf{W}-\mathbf{W}_{h}$ satisfies the estimate :

$$
\|\mathbf{w}\|_{\mathcal{C}^{0}\left(\left[0, t_{f}\right], L^{2}(\Omega)\right)} \leq C \xi_{h} t_{f}\|\mathbf{W}\|_{\mathcal{C}^{0}\left(\left[0, t_{f}\right], P H^{s+1}(\Omega)\right)}
$$

- The fully discretized scheme may be seen as the discretization in time of a system of ODE. Since the Leap-Frog scheme is second-order (fourth-order, respectively) accurate, we found the consistency error altogether of order $\mathcal{O}\left(\Delta t^{2}\right)$ (of order $\mathcal{O}\left(\Delta t^{4}\right)$, respectively).
o Finally, together with the stability result we thus get an error of order (if the exact solution is regular enough) for the LF2 scheme :

$$
\mathcal{O}\left(\Delta t^{2}\right)+\mathcal{O}\left(\xi_{h}\right)
$$

- And for the LF4 scheme :

$$
\mathcal{O}\left(\Delta t^{4}\right)+\mathcal{O}\left(\xi_{h}\right)
$$

- For the semi-discretized problem, the error $\mathbf{w}=\mathbf{W}-\mathbf{W}_{h}$ satisfies the estimate :

$$
\|\mathbf{w}\|_{\mathcal{C}^{0}\left(\left[0, t_{f}\right], L^{2}(\Omega)\right)} \leq C \xi_{h} t_{f}\|\mathbf{W}\|_{\mathcal{C}^{0}\left(\left[0, t_{f}\right], P H^{s+1}(\Omega)\right)}
$$

- The fully discretized scheme may be seen as the discretization in time of a system of ODE. Since the Leap-Frog scheme is second-order (fourth-order, respectively) accurate, we found the consistency error altogether of order $\mathcal{O}\left(\Delta t^{2}\right)$ (of order $\mathcal{O}\left(\Delta t^{4}\right)$, respectively).
- Finally, together with the stability result we thus get an error of order (if the exact solution is regular enough) for the LF2 scheme :

```
O(\Deltat 2})+O(\mp@subsup{\xi}{h}{}
```

- And for the LF4 scheme

$$
\mathcal{O}\left(\Delta t^{4}\right)+\mathcal{O}\left(\xi_{h}\right)
$$

- For the semi-discretized problem, the error $\mathbf{w}=\mathbf{W}-\mathbf{W}_{h}$ satisfies the estimate :

$$
\|\mathbf{w}\|_{\mathcal{C}^{0}\left(\left[0, t_{f}\right], L^{2}(\Omega)\right)} \leq C \xi_{h} t_{f}\|\mathbf{W}\|_{\mathcal{C}^{0}\left(\left[0, t_{f}\right], P H^{s+1}(\Omega)\right)}
$$

- The fully discretized scheme may be seen as the discretization in time of a system of ODE. Since the Leap-Frog scheme is second-order (fourth-order, respectively) accurate, we found the consistency error altogether of order $\mathcal{O}\left(\Delta t^{2}\right)$ (of order $\mathcal{O}\left(\Delta t^{4}\right)$, respectively).
- Finally, together with the stability result we thus get an error of order (if the exact solution is regular enough) for the LF2 scheme :

$$
\mathcal{O}\left(\Delta t^{2}\right)+\mathcal{O}\left(\xi_{h}\right)
$$

- And for the LF4 scheme :

$$
\mathcal{O}\left(\Delta t^{4}\right)+\mathcal{O}\left(\xi_{h}\right)
$$

Outline

(1) MAXwELL AND ELECTROMAGNETICS
(2) $\mathrm{DGTD}-\mathbb{P}_{p} \mathbb{Q}_{k}$ METHOD

3 Mathematical analysis

4 2D Numerical Results

- Eigenmode in a unitary PEC square cavity
- Scattering of a plane wave by an airfoil profile
- Scattering of a plane wave by a dielectric disk

5) 3D IMPLEMENTATION

6 CONCLUSION AND PERSPECTIVES

- 2D transverse magnetic waves $\left(\mathrm{TM}_{z}\right): \mathbf{H} \equiv\left(H_{x}, H_{y}, 0\right)^{\mathrm{T}}$ et $\mathbf{E} \equiv\left(0,0, E_{z}\right)^{\mathrm{T}}$
- 2D Maxwell's equations are given by :

$$
\left\{\begin{array}{l}
\varepsilon \partial_{t} E_{z}-\partial_{x_{1}} H_{y}+\partial_{x_{2}} H_{x}=0, \\
\mu \partial_{t} H_{x}+\partial_{x_{2}} E_{z}=0 \\
\mu \partial_{t} H_{y}-\partial_{x_{1}} E_{z}=0
\end{array}\right.
$$

- Classical Lagrange nodal basis functions
- Numerical Gauss-Legendre cubature formulas only for integrals in non-conforming matrices
- Each time step used in the DGTD- $\mathbb{P}_{p} Q_{k}$ (for all the test problems) is the minimum between the limit time step for DGTD- \mathbb{P}_{p} and the one for DGTD- $Q_{k} \Longrightarrow$ numerical validation of the stability analysis
- 2D transverse magnetic waves $\left(\mathrm{TM}_{z}\right): \mathbf{H} \equiv\left(H_{x}, H_{y}, 0\right)^{\mathrm{T}}$ et $\mathbf{E} \equiv\left(0,0, E_{z}\right)^{\mathrm{T}}$
- 2D Maxwell's equations are given by :

$$
\left\{\begin{array}{l}
\varepsilon \partial_{t} E_{z}-\partial_{x_{1}} H_{y}+\partial_{x_{2}} H_{x}=0, \\
\mu \partial_{t} H_{x}+\partial_{x_{2}} E_{z}=0 \\
\mu \partial_{t} H_{y}-\partial_{x_{1}} E_{z}=0
\end{array}\right.
$$

- Classical Lagrange nodal basis functions
- Numerical Gauss-Legendre cubature formulas only for integrals in non-conforming matrices
- Each time step used in the $\mathrm{DGTD}^{-\mathbb{P}_{p}} \mathbb{Q}_{k}$ (for all the test problems) is the minimum between the limit time step for DGTD- \mathbb{P}_{p} and the one for DGTD- $Q_{k} \Longrightarrow$ numerical validation of the stability analysis
- We compute the evolution of the $(1,1)$ mode in a PEC square cavity
- $\Omega=[0,1] \times[0,1]$
- Metallic boundary condition
- The exact solution is :

$$
\left\{\begin{array}{l}
H_{x}\left(x_{1}, x_{2}, t\right)=-\frac{\pi}{\omega} \sin \left(\pi x_{1}\right) \cos \left(\pi x_{2}\right) \sin (\omega t), \\
H_{y}\left(x_{1}, x_{2}, t\right)=\frac{\pi}{\omega} \cos \left(\pi x_{1}\right) \sin \left(\pi x_{2}\right) \sin (\omega t), \\
E_{z}\left(x_{1}, x_{2}, t\right)=\sin \left(\pi x_{1}\right) \sin \left(\pi x_{2}\right) \cos (\omega t),
\end{array}\right.
$$

where $\omega=2 \pi f$, with f the frequency equal to $f=212 \mathrm{MHz}$

Eigenmode in a unitary PEC square cavity

Numerical h-wise convergence for the second-order Leap-Frog scheme :

- Numerical validation of convergence in h. Stable method.
- Convergence order limited by LF2.

Numerical h-wise convergence for the fourth-order Leap-Frog scheme :

- Numerical validation of convergence in h. Stable method.
- LF4 more efficient and more accurate than LF2 for this test problem.

$$
\begin{aligned}
& \text { \# Triangles : } 3778 \\
& \text { \# Quadrangles : } 0
\end{aligned}
$$

Interpolation order	CPU time	\# dof	Max L^{2}-error
DGTD- $_{1}$	71.4 s	11334	3.91×10^{-2}
DGTD-P $_{2}$	322.8 s	22668	3.18×10^{-4}
DGTD-P $_{3}$	918.7 s	37780	1.33×10^{-4}
DGTD- $_{4}$	2574.9 s	56670	5.90×10^{-5}
DGTD- $_{1} Q_{3}$	16.2 s	3200	5.68×10^{-3}
DGTD-P $_{2} Q_{3}$	64.6 s	5888	5.84×10^{-4}
DGTD-P $_{3} Q_{4}$	187.5 s	9760	2.45×10^{-4}
DGTD-P $_{4} Q_{4}$	492.2 s	14240	1.09×10^{-4}

Comparison		CPU time $_{(a)}$	May 1^{2}-arrores
Method (a)	Method (b)	CPU time ${ }_{(b)}$	Max L^{2} - $\operatorname{error}(\mathrm{b})$
DGTD-P ${ }_{1}$	DGTD- $\mathrm{P}_{1} \mathrm{Q}_{3}$	4.41	6.88
DGTD- \mathbb{P}_{1}	DGTD- $\mathrm{P}_{2} \mathrm{Q}_{3}$	1.10	66.95
DGTD-P ${ }_{2}$	DGTD-P ${ }_{3} \mathrm{Q}_{4}$	1.72	1.30
DGTD-P ${ }_{3}$	DGTD-P $\mathrm{P}_{4} \mathrm{Q}_{4}$	1.87	1.22
DGTD-P ${ }_{4}$	DGTD- $\mathbb{P}_{4} \mathrm{Q}_{4}$	5.23	0.54

Interpolation order	CPU time	\# dof	Max L^{2}-error
DGTD- $_{1}$	71.4 s	11334	3.91×10^{-2}
DGTD-P $_{2}$	322.8 s	22668	3.18×10^{-4}
DGTD-P $_{3}$	918.7 s	37780	1.33×10^{-4}
DGTD-P $_{4}$	2574.9 s	56670	5.90×10^{-5}
DGTD-P $_{1} Q_{3}$	16.2 s	3200	5.68×10^{-3}
DGTD-P $_{2} Q_{3}$	64.6 s	5888	5.84×10^{-4}
DGTD-P $_{3} Q_{4}$	187.5 s	9760	2.45×10^{-4}
DGTD-P $_{4} Q_{4}$	492.2 s	14240	1.09×10^{-4}

Comparison		$\frac{\mathrm{CPU}_{\operatorname{time}_{(a)}}^{\text {CPU } \operatorname{time}_{(b)}}}{\text { (a) }}$	$\frac{\operatorname{Max}^{2} L^{2}-\operatorname{error}_{(a)}}{\operatorname{Max}^{2}-\operatorname{error}_{(b)}}$
Method (a)	Method (b)		
DGTD-P ${ }_{1}$	DGTD- $\mathbb{P}_{1} \mathrm{Q}_{3}$	4.41	6.88
DGTD-P ${ }_{1}$	DGTD- $\mathbb{P}_{2} \mathrm{Q}_{3}$	1.10	66.95
DGTD-P ${ }_{2}$	DGTD- $\mathrm{P}_{3} \mathrm{Q}_{4}$	1.72	1.30
DGTD-P ${ }_{3}$	DGTD- $\mathbb{P}_{4} \mathrm{Q}_{4}$	1.87	1.22
DGTD-P ${ }_{4}$	DGTD- $\mathbb{P}_{4} \mathrm{Q}_{4}$	5.23	0.54

Scattering of a plane wave by an airfoil profile

Scattering of a plane wave by an airfoil profile

- Computational domain $\Omega=[-1,2] \times[-1,1]$ delimited by a rectangle with the Silver-Müller absorbing boundary condition. LF2 for the other tests
- The incident field is given by :

$$
\left\{\begin{array}{l}
E_{z}^{\text {inc }}\left(x_{1}, x_{2}, t\right)=\cos \left(\omega t-k x_{1}\right), \\
H_{x}^{\text {inc }}\left(x_{1}, x_{2}, t\right)=0, \\
H_{y}^{\text {inc }}\left(x_{1}, x_{2}, t\right)=(-k / \omega) \cos \left(\omega t-k x_{1}\right),
\end{array}\right.
$$

with the wave vector $\mathbf{k}=(k, 0)^{\mathrm{T}}$ where $k=\omega / c$ (c the speed of light in vacuum) and $\omega=2 \pi f$ where $f=600 \mathrm{MHz}$ denotes the frequency

Comparison		$\frac{\mathrm{CPU}_{\text {time }}^{(a)}}{\mathrm{CPU} \text { time }_{(a)}}$	$\frac{\# \operatorname{dof}_{(a)}}{\# \operatorname{dof}}(b)$
Method (a)	Method (b)		
DGTD-1P ${ }_{4}$	DGTD- $\mathbb{P}_{2} \mathrm{Q}_{4}$	7.90	1.71
DGTD-P ${ }_{4}$	DGTD- $\mathrm{P}_{3} \mathrm{Q}_{4}$	2.75	1.05

- Computational domain $\Omega=[-1,2] \times[-1,1]$ delimited by a rectangle with the Silver-Müller absorbing boundary condition. LF2 for the other tests
- The incident field is given by :

$$
\left\{\begin{array}{l}
E_{z}^{\text {inc }}\left(x_{1}, x_{2}, t\right)=\cos \left(\omega t-k x_{1}\right), \\
H_{x}^{\text {inc }}\left(x_{1}, x_{2}, t\right)=0, \\
H_{y}^{\text {inc }}\left(x_{1}, x_{2}, t\right)=(-k / \omega) \cos \left(\omega t-k x_{1}\right),
\end{array}\right.
$$

with the wave vector $\mathbf{k}=(k, 0)^{\mathrm{T}}$ where $k=\omega / c$ (c the speed of light in vacuum) and $\omega=2 \pi f$ where $f=600 \mathrm{MHz}$ denotes the frequency

Interpolation order	CPU time	\# dof
\mathbb{P}_{4}	1201.9 s	126660
$\mathbb{P}_{2} \mathbb{Q}_{4}$	152.2 s	73804
$\mathbb{P}_{3} \mathbb{Q}_{4}$	437.7 s	120140

Comparison		CPU time $_{(a)}$	\# dof ${ }_{(a)}$
Method (a)	Method (b)	$\overline{\text { CPU } \text { time }_{(b)}}$	$\# d o f_{(b)}$
DGTD-P ${ }_{4}$	DGTD- $\mathrm{P}_{2} \mathrm{Q}_{4}$	7.90	1.71
DGTD-P ${ }_{4}$	DGTD-P $\mathrm{P}_{3} \mathrm{Q}_{4}$	2.75	1.05

Time evolution of E_{z} component at points $(-0.1 ; 0.0)$ and $(1.6 ;-0.6)$:

Contour lines of discrete Fourier transform of E_{z} and H_{y} components for DGTD-P 4 :

Contour lines of discrete Fourier transform of E_{z} and H_{y} components for DGTD- $\mathbb{P}_{2} \mathbb{Q}_{4}$:

Contour lines of discrete Fourier transform of E_{z} and H_{y} components for DGTD- $\mathbb{P}_{3} \mathbb{Q}_{4}$:

\# Triangles : 22216
 \# Quadrangles
 0

- $\Omega=[-0.045,0.045] \times[-0.045,0.045]$, Silver-Müller boundary condition
- Heterogeneous media. Radius of the disk : 0.002 m . Outside the disk : $\varepsilon_{1}=\mu_{1}=1$. Inside the disk : $\varepsilon_{2}=7$ and $\mu_{2}=1$. Frequency $f=30 \mathrm{GHz}$.
- E_{z} component of the exact solution :

$$
E_{\mathrm{z}}(r, \theta, t)=e^{\mathrm{i} \omega t} \begin{cases}\sum_{n=-\infty}^{\infty} C_{n}^{\mathrm{tot}} J_{n}\left(\kappa_{2} r\right) e^{\mathrm{i} n \theta}, & r \leq R, \\ \sum_{n=-\infty}^{\infty}\left(\mathrm{i}^{-n} J_{n}\left(\kappa_{1} r\right)+C_{n}^{\text {scat }} H_{n}^{(2)}\left(\kappa_{1} r\right)\right) e^{\mathrm{i} n \theta}, & r>R,\end{cases}
$$

where $\kappa_{1}=\omega \sqrt{\varepsilon_{1} \mu_{1}}, \kappa_{2}=\omega \sqrt{\varepsilon_{2} \mu_{2}},(r, \theta)$ the polar coordinates, J_{n} the Bessel functions of the first kind, $H_{n}^{(2)}$ Hankel functions of the second type. $C_{n}^{\text {tot }}$ and $C_{n}^{\text {scat }}$ are the expansion coefficients for the total filed interior to the disk, and for the scattered field. Reminder : $E_{z}(r, \theta, t)=E_{z}\left(x_{1}, x_{2}, t\right)$.

Interpolation order	CPU time	\# dof	Fourier L^{2}-error
DGTD- \mathbb{P}_{2}	391.1 s	133296	2.40×10^{-2}
DGTD- \mathbb{P}_{3}	1351.0 s	222160	6.21×10^{-3}
DGTD- $\mathbb{P}_{2} Q_{2}$	165.6 s	63504	1.86×10^{-2}
DGTD- $\mathbb{P}_{3} Q_{2}$	458.7 s	92016	4.88×10^{-3}

- $\Omega=[-0.045,0.045] \times[-0.045,0.045]$, Silver-Müller boundary condition
- Heterogeneous media. Radius of the disk : 0.002 m . Outside the disk : $\varepsilon_{1}=\mu_{1}=1$. Inside the disk : $\varepsilon_{2}=7$ and $\mu_{2}=1$. Frequency $f=30 \mathrm{GHz}$.
- E_{z} component of the exact solution :

$$
E_{z}(r, \theta, t)=e^{\mathrm{i} \omega t} \begin{cases}\sum_{n=-\infty}^{\infty} C_{n}^{\mathrm{tot}} J_{n}\left(\kappa_{2} r\right) e^{\mathrm{i} n \theta}, & r \leq R \\ \sum_{n=-\infty}^{\infty}\left(\mathrm{i}^{-n} J_{n}\left(\kappa_{1} r\right)+C_{n}^{\mathrm{scat}} H_{n}^{(2)}\left(\kappa_{1} r\right)\right) e^{\mathrm{i} n \theta}, & r>R\end{cases}
$$

where $\kappa_{1}=\omega \sqrt{\varepsilon_{1} \mu_{1}}, \kappa_{2}=\omega \sqrt{\varepsilon_{2} \mu_{2}},(r, \theta)$ the polar coordinates, J_{n} the Bessel functions of the first kind, $H_{n}^{(2)}$ Hankel functions of the second type. $C_{n}^{\text {tot }}$ and $C_{n}^{\text {scat }}$ are the expansion coefficients for the total filed interior to the disk, and for the scattered field. Reminder : $E_{z}(r, \theta, t)=E_{z}\left(x_{1}, x_{2}, t\right)$.

Interpolation order	CPU time	\# dof	Fourier L^{2}-error
DGTD- \mathbb{P}_{2}	391.1 s	133296	2.40×10^{-2}
DGTD- \mathbb{P}_{3}	1351.0 s	222160	6.21×10^{-3}
DGTD- $\mathbb{P}_{2} Q_{2}$	165.6 s	63504	1.86×10^{-2}
DGTD- $\mathbb{P}_{3} Q_{2}$	458.7 s	92016	4.88×10^{-3}

- $\Omega=[-0.045,0.045] \times[-0.045,0.045]$, Silver-Müller boundary condition
- Heterogeneous media. Radius of the disk : 0.002 m . Outside the disk : $\varepsilon_{1}=\mu_{1}=1$. Inside the disk : $\varepsilon_{2}=7$ and $\mu_{2}=1$. Frequency $f=30 \mathrm{GHz}$.
- E_{z} component of the exact solution :

$$
E_{\mathbf{z}}(r, \theta, t)=e^{\mathrm{i} \omega t}\left\{\begin{array}{lr}
\sum_{n=-\infty}^{\infty} C_{n}^{\mathrm{tot}} J_{n}\left(\kappa_{2} r\right) e^{\mathrm{i} n \theta}, & r \leq R, \\
\sum_{n=-\infty}^{\infty}\left(\mathrm{i}^{-n} J_{n}\left(\kappa_{1} r\right)+C_{n}^{\text {scat }} H_{n}^{(2)}\left(\kappa_{1} r\right)\right) e^{\mathrm{i} n \theta}, & r>R,
\end{array}\right.
$$

where $\kappa_{1}=\omega \sqrt{\varepsilon_{1} \mu_{1}}, \kappa_{2}=\omega \sqrt{\varepsilon_{2} \mu_{2}},(r, \theta)$ the polar coordinates, J_{n} the Bessel functions of the first kind, $H_{n}^{(2)}$ Hankel functions of the second type. $C_{n}^{\text {tot }}$ and $C_{n}^{\text {scat }}$ are the expansion coefficients for the total filed interior to the disk, and for the scattered field. Reminder : $E_{z}(r, \theta, t)=E_{z}\left(x_{1}, x_{2}, t\right)$.

Interpolation order	CPU time	\# dof	Fourier L^{2}-error
DGTD- P_{2}	391.1 s	133296	2.40×10^{-2}
DGTD- $_{3}$	1351.0 s	222160	6.21×10^{-3}
DGTD-P $_{2} Q_{2}$	165.6 s	63504	1.86×10^{-2}
DGTD- $_{3} Q_{2}$	458.7 s	92016	4.88×10^{-3}

1D distribution of discrete Fourier transform of H_{y} component along $x_{2}=0.0$:

Contour lines of discrete Fourier transform of E_{z} component for the exact solution :

Contour lines of discrete Fourier transform of E_{z} component for the DGTD- $\mathbb{P}_{3} Q_{2}$ method :

Outline

(1) MAXWELL AND ELECTROMAGNETICS
(2) $\mathrm{DGTD}-\mathrm{P}_{p} \mathbb{Q}_{k}$ METHOD

3 Mathematical analysis

4 2D Numerical results

5 3D IMPLEMENTATION

- Eigenmode in a unitary PEC cubic cavity
- Propagation in a heterogeneous human head model

6 CONCLUSION AND PERSPECTIVES

- Evolution of the ($1,1,1$) mode in a PEC cubic cavity, $\Omega=[0,1]^{3}$
- Metallic boundary condition, $f=260 \mathrm{MHz}$
- The exact solution is $(\omega=2 \pi f)$:

$$
\left\{\begin{array}{l}
H_{x}\left(x_{1}, x_{2}, t\right)=-(\pi / \omega) \sin \left(\pi x_{1}\right) \cos \left(\pi x_{2}\right) \cos \left(\pi x_{3}\right) \sin (\omega t), \\
H_{y}\left(x_{1}, x_{2}, t\right)=(2 \pi / \omega) \cos \left(\pi x_{1}\right) \sin \left(\pi x_{2}\right) \cos \left(\pi x_{3}\right) \sin (\omega t), \\
H_{z}\left(x_{1}, x_{2}, t\right)=-(\pi / \omega) \cos \left(\pi x_{1}\right) \cos \left(\pi x_{2}\right) \sin \left(\pi x_{3}\right) \sin (\omega t), \\
E_{x}\left(x_{1}, x_{2}, t\right)=-\cos \left(\pi x_{1}\right) \sin \left(\pi x_{2}\right) \sin \left(\pi x_{3}\right) \sin (\omega t), \\
E_{y}\left(x_{1}, x_{2}, t\right)=0, \\
E_{z}\left(x_{1}, x_{2}, t\right)=\sin \left(\pi x_{1}\right) \sin \left(\pi x_{2}\right) \cos \left(\pi x_{3}\right) \cos (\omega t) .
\end{array}\right.
$$

Numerical h-wise convergence for the DGTD- $\mathbb{P}_{p} \mathbb{Q}_{k}$ method :

- Numerical validation of convergence in h. Stable method.
- Right orders of convergence.

\# Tetrahedra : 196608
\# Hexahedra : 0

\# Tetrahedra : 24576
\# Hexahedra : 448

Interpolation order	CPU time	\# dof	Max L^{2}-error
DGTD- $_{1}$	$26 \min 9 \mathrm{~s}$	786432	8.37×10^{-3}
DGTD- $_{2}$	$150 \min 56 \mathrm{~s}$	1966080	5.50×10^{-4}
DGTD- $\mathbb{P}_{1} \mathbb{Q}_{1}$	$3 \min 33 \mathrm{~s}$	101888	2.19×10^{-1}
DGTD- $_{1} Q_{2}$	$4 \min 37 \mathrm{~s}$	110400	4.23×10^{-3}
DGTD- $_{2} Q_{1}$	$20 \min 23 \mathrm{~s}$	249344	2.30×10^{-1}
DGTD- $_{2} Q_{2}$	$22 \min 55 \mathrm{~s}$	257856	1.92×10^{-3}

Comparison		CPU time ${ }_{(2)}$	Max L^{2}-error(a)
Method (a)	Method (b)	$\overline{\mathrm{CPU}}$ time $_{(b)}$	Max L^{2}-error ${ }^{\text {(b) }}$
DGTD-P ${ }_{1}$	DGTD- $\mathbb{P}_{1} \mathrm{Q}_{2}$	5.66	1.98
DGTD- P_{1}	DGTD- $\mathrm{P}_{2} \mathrm{Q}_{2}$	1.14	4.36
DGTD-P ${ }_{2}$	DGTD- $\mathrm{P}_{2} \mathrm{Q}_{2}$	6.59	0.29

Interpolation order	CPU time	\# dof	Max L^{2}-error
DGTD- $_{1}$	$26 \min 9 \mathrm{~s}$	786432	8.37×10^{-3}
DGTD- $_{2}$	$150 \min 56 \mathrm{~s}$	1966080	5.50×10^{-4}
DGTD- $\mathbb{P}_{1} \mathbb{Q}_{1}$	$3 \min 33 \mathrm{~s}$	101888	2.19×10^{-1}
DGTD- $_{1} Q_{2}$	$4 \min 37 \mathrm{~s}$	110400	4.23×10^{-3}
DGTD-P $_{2} Q_{1}$	$20 \min 23 \mathrm{~s}$	249344	2.30×10^{-1}
DGTD- $_{2} Q_{2}$	$22 \min 55 \mathrm{~s}$	257856	1.92×10^{-3}

Comparison		CPU time ${ }_{(a)}$	Max L^{2} - error $_{(a)}$
Method (a)	Method (b)	$\overline{\mathrm{CPU}}$ time $_{(b)}$	Max L2-error ${ }^{(b)}$
DGTD-P ${ }_{1}$	DGTD- $\mathbb{P}_{1} \mathrm{Q}_{2}$	5.66	1.98
DGTD-P $_{1}$	DGTD- $\mathrm{P}_{2} \mathrm{Q}_{2}$	1.14	4.36
DGTD-P ${ }_{2}$	DGTD- $\mathbb{P}_{2} \mathrm{Q}_{2}$	6.59	0.29

Propagation medium	ε_{r}	σ
Air (or vacuum)	1.00	0
Skin	43.85	1.23
Skull	15.56	0.43
Cerebrospinal fluid	67.20	2.92
Brain	43.55	1.15

4

Propagation medium	ε_{r}	σ
Air (or vacuum)	1.00	0
Skin	43.85	1.23
Skull	15.56	0.43
Cerebrospinal fluid	67.20	2.92
Brain	43.55	1.15

\# Tetrahedra : 361848
\# Hexahedra : 0

$$
\begin{array}{lcc}
\text { \# Tetrahedra } & : & 288604 \\
\text { \# Hexahedra } & : & 8532
\end{array}
$$

- Spherical computational domain for the tetrahedral mesh : $R=0.3 \mathrm{~m}$
- Cubic computational domain for the hybrid mesh : $[-0.3,0.3]^{3}$
- Silver-Müller absorbing boundary condition
- Propagation of a wave emitted by a dipole type source, localized near to the right ear of the head. A current source term is imposed to the equation for the E_{z} component :

$$
j_{s}^{z}(\mathrm{x}, t)=z_{0} \delta\left(\mathrm{x}-\mathrm{x}^{\mathrm{cs}}\right) f(t),
$$

where z_{0} is the wave impedance of the vacuum, δ is the zero-centered Dirac delta function, x^{cs} is the position of the source and the temporal signal $f(t)$ is a sinusoidal function. Finally, the frequency $f=1.8 \mathrm{GHz}$

Interpolation order	CPU time	\# dof
DGTD- \mathbb{P}_{2}	4 h 55 min	3618480
DGTD- $\mathbb{P}_{1} \mathrm{Q}_{2}$	0 h 38 min	1384780
DGTD- $\mathbb{P}_{2} \mathrm{Q}_{2}$	3 h 0 min	3116404

- Spherical computational domain for the tetrahedral mesh : $R=0.3 \mathrm{~m}$
- Cubic computational domain for the hybrid mesh : $[-0.3,0.3]^{3}$
- Silver-Müller absorbing boundary condition
- Propagation of a wave emitted by a dipole type source, localized near to the right ear of the head. A current source term is imposed to the equation for the E_{z} component :

$$
j_{\mathrm{s}}^{z}(\mathbf{x}, t)=z_{0} \delta\left(\mathbf{x}-\mathbf{x}^{\mathrm{cs}}\right) \mathrm{f}(t),
$$

where z_{0} is the wave impedance of the vacuum, δ is the zero-centered Dirac delta function, x^{cs} is the position of the source and the temporal signal $f(t)$ is a sinusoidal function. Finally, the frequency $f=1.8 \mathrm{GHz}$

Interpolation order	CPU time	\# dof
DGTD- \mathbb{P}_{2}	4 h 55 min	3618480
DGTD- $\mathrm{P}_{1} \mathrm{Q}_{2}$	0 h 38 min	1384780
DGTD- $\mathbb{P}_{2} \mathrm{Q}_{2}$	3 h 0 min	3116404

- Spherical computational domain for the tetrahedral mesh : $R=0.3 \mathrm{~m}$
- Cubic computational domain for the hybrid mesh : $[-0.3,0.3]^{3}$
- Silver-Müller absorbing boundary condition
- Propagation of a wave emitted by a dipole type source, localized near to the right ear of the head. A current source term is imposed to the equation for the E_{z} component :

$$
j_{s}^{z}(\mathbf{x}, t)=z_{0} \delta\left(\mathbf{x}-\mathbf{x}^{c s}\right) f(t),
$$

where z_{0} is the wave impedance of the vacuum, δ is the zero-centered Dirac delta function, x^{cs} is the position of the source and the temporal signal $f(t)$ is a sinusoidal function. Finally, the frequency $f=1.8 \mathrm{GHz}$

Interpolation order	CPU time	\# dof
DGTD- $_{2}$	4 h 55 min	3618480
DGTD-P $_{1} \mathrm{Q}_{2}$	0 h 38 min	1384780
DGTD- $_{2} \mathbb{Q}_{2}$	3 h 0 min	3116404

Time evolution of H_{y} component at two points exterior to the head :

Time evolution of H_{y} component at two points interior to the head :

Contour lines of $\sqrt{E_{x, \text { four }}^{2}+E_{y, \text { four }}^{2}+E_{z, \text { four }}^{2}}$ for the DGTD- \mathbb{P}_{2} method :

Contour lines of $\sqrt{E_{x, \text { four }}^{2}+E_{y, \text { four }}^{2}+E_{z, \text { four }}^{2}}$ for the DGTD- $\mathbb{P}_{2} Q_{2}$ method:

Contour lines of $\sqrt{E_{x, \text { four }}^{2}+E_{y, \text { four }}^{2}+E_{z, \text { four }}^{2}}$ for the DGTD- $\mathbb{P}_{1} Q_{2}$ method :

Outline

1) MAXwELL AND ELECTROMAGNETICS
2) $\mathrm{DGTD}-\mathrm{P}_{p} \mathrm{Q}_{k}$ METHOD

3 Mathematical analysis

4 2D NUMERICAL RESULTS

5 3D IMPLEMENTATION

6 Conclusion and Perspectives

- Summarization :
- Formulation of the $\operatorname{DGTD}-\mathbb{P}_{p} \mathbb{Q}_{k}$ method on hybrid and non-conforming meshes
- Validation, and consistency between the mathematical and numerical results
- First ideas of efficiency improvements in 2D
- Confirmation in 3D
- Future work
- Higher interpolation order and LF4 scheme for 3D numerical experiments, and parallel computing \Longrightarrow Raphaël Léger postdoc
- Using others basis function (orthogonal basis for Q_{k} on hexahedra)
- Local explicit, or hybrid implicit/explicit time-stepping strategy \Longrightarrow Ludovic Moya PhD thesis
[17] L. MoyA. Temporal convergence of a locally implicit discontinuous Galerkin method for Maxwell's equations. M2AN, vol. 46, no. 5, pp. 1225-1246, 2012.
- Dispersive media \Longrightarrow Jonathan Viquerat PhD thesis, and Claire Scheid
[18] S. Lanteri and C. Schidi. Convergence of a Discontinuous Galerkin scheme for the mixed time domain Maxwell's equations in dispersive media. IMA Journal of Numerical Analysis, 2012.
- Summarization :
- Formulation of the $\operatorname{DGTD}-\mathbb{P}_{p} \mathbb{Q}_{k}$ method on hybrid and non-conforming meshes
- Validation, and consistency between the mathematical and numerical results
- First ideas of efficiency improvements in 2D
- Confirmation in 3D
- Future work :
- Higher interpolation order and LF4 scheme for 3D numerical experiments, and parallel computing \Longrightarrow Raphaël Léger postdoc
- Using others basis function (orthogonal basis for \mathbb{Q}_{k} on hexahedra)
- Local explicit, or hybrid implicit/explicit time-stepping strategy \Longrightarrow Ludovic Moya PhD thesis
[17] L. Moya. Temporal convergence of a locally implicit discontinuous Galerkin method for Maxwell's equations. M2AN, vol. 46, no. 5, pp. 1225-1246, 2012.
- Dispersive media \Longrightarrow Jonathan Viquerat PhD thesis, and Claire Scheid [18] S. Lanteri and C. Scheid. Convergence of a Discontinuous Galerkin scheme for the mixed time domain Maxwell's equations in dispersive media. IMA Journal of Numerical Analysis, 2012.
- Summarization :
- Formulation of the $\operatorname{DGTD}-\mathbb{P}_{p} \mathbb{Q}_{k}$ method on hybrid and non-conforming meshes
- Validation, and consistency between the mathematical and numerical results
- First ideas of efficiency improvements in 2D
- Confirmation in 3D
- Future work :
- Higher interpolation order and LF4 scheme for 3D numerical experiments, and parallel computing \Longrightarrow Raphaël Léger postdoc
- Using others basis function (orthogonal basis for \mathbb{Q}_{k} on hexahedra)
- Local explicit, or hybrid implicit/explicit time-stepping strategy \Longrightarrow Ludovic Moya PhD thesis
[17] L. MoyA. Temporal convergence of a locally implicit discontinuous Galerkin method for Maxwell's equations. M2AN, vol. 46, no. 5, pp. 1225-1246, 2012.
- Dispersive media \Longrightarrow Jonathan Viquerat PhD thesis, and Claire Scheid [18] S. Lanteri and C. Scheid. Convergence of a Discontinuous Galerkin scheme for the mixed time domain Maxwell's equations in dispersive media. IMA Journal of Numerical Analysis, 2012.

