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Chapter 1

Introduction

Cloud service providers, social networks and data-management companies are
witnessing a tremendous increase in the amount of data they receive every day.
Recent studies [VOE11, GCM+08a] report that the size of data produced and
stored has been increasing exponentially the last 5 years, as shown in Figure 1.1,
and projecting this growth rate to the year 2020, they expect the size of our
“digital world” to reach 35 ZBs, or 35 trillion GBs, by that time. For compar-
ison, back in 2009, our whole digital ecosystem contained only 0.8 ZBs of data,
which roughly corresponds to 1/44th of the volume expected in 2020, as shown
in Figure 1.2.

The main reasons for this fast increase in data production can be traced back
to (i) the expansion of the geographical limits of the Internet, as now users with
a smartphone can connect to it from almost anywhere, and (ii) to two major
changes in the way users interact with it. Focusing on these two changes, the
first has to do with the fact that the user nowadays is placed in the centre of the
content creation process. In the early years of the Internet, content production
and publication was the privilege of a small number of individuals or companies.
In fact, in the classic paper describing PageRank [BP98], S. Brin and L. Page,
report that in 1994, one of the first web search engines, the World Wide Web
Worm (WWWW) had an index of only 110, 000 web pages and web accessible
documents. This was due to (i) the costs involved in accessing the internet and
hosting one’s content, and (ii) the technical knowledge required for doing so.
Nowadays, both of the above barriers have been removed. The cost of having a
good internet connection is no longer an issue in most of the developed countries.
In addition, services like Facebook, YouTube, Flickr, Twitter and many others
allow the user to publish anything, at any time for free and with almost no
technical prerequisites. The impact of this revolution can only be compared
to the impact that the invention of typography had on the publishing process
back in the mid-15th century. The second change that had a severe impact on
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Figure 1.1: Data Growth Rate Figure 1.2: Data Size in 2020

the increase of produced data, has to do with the dramatic increase in devices
located at the periphery of the network that produce data and have access to the
internet. These include embedded sensors, smart-phones, and tablet computers.

All this data creates new opportunities to expand human knowledge in fields
like human genetics, healthcare, city planning and human behavior and improve
offered services like search, recommendation, and many others. It is not by acci-
dent that many academics but also public media refer to our era as the “Big Data”
era. But these huge opportunities allowed by this unprecedented abundance of
data come with the requirement for better data management systems that, on one
hand, can safely accommodate this huge and constantly increasing volume of data
and, on the other, serve them in a timely and useful manner so that applications
can benefit from processing them. Failing to achieve either one of the above goals
can drastically limit the potentials offered by “Big Data”. Failing to protect data
from dangers like hardware failures and natural disasters can lead to their loss or
corruption. In addition, failing to keep up with the pace at which their volume
increases, will inevitably lead to the deletion of data due to lack of storage space,
which, in turn, may lead to “loss of memory” with important consequences [eco].
To illustrate the later one, a simple search for events like national elections in
countries even as recent as five years ago, would reveal that many of the links that
pointed to articles on the event are now dead and the corresponding article has
been removed. The above phenomenon may lead to loss of human memory or,
even worse, controlled writing of history, as only the information that “survived”
will be available to the historians of the future. Finally, not being able to serve
content in a timely and useful way, can (i) discourage users from using services,
thus stopping providing data leading to service deterioration for services like rec-
ommendation and (ii) lead to severe system malfunctions, in case of time-critical
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applications. To this end, a lot of effort from both the academia and the industry
is being invested in “taming” this “Big Data” and the challenges that arise in
both storing this content, as well as serving it.

This document focuses on the above two challenges that come with “Big
Data”. In our study, we focus on (i) backup storage as a means to safeguard data
against a number of factors that may render them unavailable and (ii) on data
placement on geographically distributed storage systems, with the goal that the
latencies perceived from the end-user are minimized and the network and storage
resources are efficiently utilized. As we will see in the following paragraphs, the
requirement for safe storage, combined with the volume of “Big Data”, makes the
design of storage and backup systems able to accommodate them, a constantly
challenging research problem. In addition, the never satisfied demand of users
for better quality of the offered services, makes serving content an everyday en-
gineering feat. Throughout our study, data are placed in the centre of our design
choices as we try to leverage content properties for both placement and efficient
storage.

1.1 Archival Storage and Data Deduplication

In a perfect world we would never have to worry about computers failing, nor
would we have to worry about natural disasters. Unfortunately, we do not live in
a perfect world, and when it comes to magnetic disks, which is the main means
used to store all new information produced [LV03], hardware failures seem to be
more frequent than one can imagine. To this end, and to protect data against
the above dangers, individuals as well as organizations rely on frequent backups
for safeguarding their data.

To illustrate the importance of backups, in this paragraph we provide statistics
about “disk mortality” in order to show that disk failures are not as uncommon
as one may think. In 2007, researchers from Google conducted a study on a
large-scale deployment of PATA and SATA drives [PWB07]. These are the types
of drives that home users buy for personal use and, apparently, the ones Google
uses in its data centers. One of the main findings of this study was that magnetic
disks fail more often than expected. According to their study, there is a non-
negligible phenomenon of “infant mortality”, where disks fail in the first three
months of their lifetime and after that around 8% of the disks fail after 2 years
of use and this percentage increases for 3 year old drives. Figure 1.3 presents the
results from [PWB07]. The same study shows that apart from the very young
and the very old drives, the level of utilization does not affect significantly the
probability of a disk to break down. This implies that both home users and bigger
organizations, that are expected to stress more their infrastructure, face an equal



8 Introduction

danger of loosing their data. In another study of the same year [SG07], the
authors do not limit their sample to PATA and SATA but they also include SCSI
and FC interfaces that have much higher MTTFs, i.e. Mean-Time-To-Failure.
Again, one of the main findings is that in the field, annual disk replacement rates
typically exceed 1%. In fact, 2 − 4% is a common case and this percentage can
reach up to 13%, as the authors of [SG07] observed on some systems. In this
context, regular backups are required to guarantee data recoverability.

some-
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Figure 2: Annualized failure rates broken down by age groups
Figure 1.3: Annualized failure rates broken down by age groups

In this document we focus on large-scale backup system deployments that
target either big organizations with PBs of data to back up or organizations that
offer backup as a service, thus expect big volumes of data to be stored in their
systems.

Traditional backup systems tend to combine data in huge tarballs and store
them on tape-based systems. The reason for using tape is mainly related to their
cost efficiency, compared to disk-based ones. Table 1.11 shows the costs related
to the acquisition and operation of each type of system for a 5 year period. In the
table, the operational costs contain the fees for the guarantee and the expected
energy expenses throughout a 5 year usage. As we can see, tape-based systems
are close to 4 times less expensive than disk-based ones.

Although the investment required for a tape-based system is smaller, this
comes at the cost of reduced throughput. The reason is that tape is charac-
terized by sequential access to data. While tape can provide a very high data

1Source: www.backupworks.com
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Tape Disk
Acquisition cost 407, 000$ 1, 620, 000$
Operational cost 205, 000$ 573, 000$
Total cost 612, 000$ 2, 193, 000$

Table 1.1: Cost comparison of Disk versus Tape based backup systems.

transfer rate for streaming long contiguous sequences of data, it takes 10s of sec-
onds to reposition the tape head to an arbitrarily chosen place on the tape. This
implies that random reads or writes are too expensive for this means of storage.
In contrast, hard disks can perform the equivalent action in 10s of milliseconds,
or 3 orders of magnitude faster, and can be thought of as offering random access
to data. The importance of throughput in backup systems becomes more pro-
nounced as the volume of data to be backed up increases and the time window
available to perform the back up, termed backup window, decreases. This can
be the case for data centers that receive big volumes of data by the minute and
have to back them up, or medium to big size organizations that want to backup
a day’s or a week’s work. In these cases, the system has to be fast enough to
ensure the secure data storage while respecting the agreed time constraints.

!"#$%

!"#&%

Figure 1.4: Deduplication Example

In this context, data deduplication provides an interesting alternative that can
make disk-based backup solutions financially viable, even for small to medium
sized organizations. Deduplication stands for the simple idea of replacing du-
plicate regions of data with references to already stored ones, thus reducing the
space required to store a given workload. Figure 1.4 illustrates the process of
storing a file in a deduplication system with an example. In the figure, file1
is split into chunks of consecutive bytes and its chunks are stored in the system,
while file2 is about to be stored. After splitting file2 in chunks, the system
detects that the two files share the orange (first) and the green (fourth) chunks.
In this case, instead of storing all the chunks belonging to file2, it only stores
the unique ones and replaces the duplicate ones with references to the already
stored orange and green chunks, that initially belonged only to file1.
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Data deduplication can be seen as the waste management of the backup pro-
cess. Most types of data tend to have whole regions of repeated bytes, and
deduplication provides a way to get rid of this redundancy in order to reduce the
space required to store them. It is not difficult to imagine that for an institution,
backing up all its machines will result in keeping many copies of the operating
systems that the company runs. Or in the case of e-mails, let’s imagine that the
human resources department sends to all personnel the new safety regulations as
a PDF attachment. This would result in multiple copies of the attachment, when
backing up the mail servers of the company. This phenomenon is even more
pronounced in backup systems, where the workloads are, in most cases, updated
versions of the same data. This implies that apart from the regions that were
modified, the remaining data tend to be the same as in the previous version of
the workload, thus leaving space for deduplication to reduce both the storage and
the network needs of the backup process.

To further back up our claim that redundancy is ubiquitous in backup work-
loads, in [WDQ+12] the authors conduct a study of real backup workloads from
EMC, the biggest company in data deduplication backup systems according
to [pbb]. Their results show that, in their settings, deduplication rates range
from 2.2 to 14, meaning that a given workload can reduce its space requirements
up to 14 times by applying deduplication. In addition, the same company reports
that if deduplication is combined with classic compression, the space needed for
the backup of a given workload can be reduced up to 30 times [DDL+11]. To
illustrate the importance of deduplication in the industry of backup services and
also to illustrate the turn of clients’ interest towards disk-based backup solutions,
in [pbb], IDC reports that the worldwide market of data deduplication backup
service experienced a growth of 43.4% in the year 2011 and the total revenue is
estimated to 2.4 billion dollars.

Given the importance of backup systems and the potentials that deduplica-
tion has to offer in this context, in this document we focus on how to efficiently
integrate deduplication in cluster-based storage systems. In Chapter 2, we discuss
in details the challenges related to designing such systems, the tradeoffs involved
and the solutions proposed so far, before presenting Produck, a cluster-based
deduplication solution that combines novel contributions with state-of-the-art
mechanisms to provide a more resource-friendly and efficient deduplication pro-
cess.

1.2 Content Distribution

Safeguarding the content guarantees its integrity against dangers that threaten
to corrupt it. But content is useful as long as it can be used by end-users, re-
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searchers and organizations in order to extract “value” from it. This “value” can
be new knowledge, as is the case for scientific applications, or user entertainment
and service improvement, which is the case for social networks, video streaming,
recommendation and many others. To this end, simply guaranteeing content in-
tegrity and (eventual) accessibility, is not enough. Access to the available content
should be feasible in a timely manner.

Guaranteeing good service quality, both in terms of user-perceived latency
and actual content quality to an increasing number of users all around the world
is an open research problem for both academics and, of course, the industry. In
addition, the huge and constantly increasing volume of data makes the problem
even harder.

In this document we focus on User-Generated Content hosting sites, and more
specifically YouTube, and we are investigating strategies to efficiently place videos
on servers all around the world, in a way that will help the site to scale while
providing good quality of service. We focus on YouTube for two main reasons.
The first has to do with its magnitude. YouTube is the biggest user-generated
short video sharing site in the world with 60 hours of video uploaded per minute
and 4 billion videos watched per day. More statistics on YouTube can be found
in Table 1.22. In addition, traffic related to such services is expected to increase
rapidly in the next few years. In fact, according to analysts [cis12], global internet
video traffic is expected to be 55 percent of all consumer Internet traffic in 2016,
up from 51 percent in 2011. And this estimation does not include video exchanged
through peer-to-peer (P2P) file sharing. In addition, according to the same study,
video-on-demand traffic will triple by 2016. The second reason, has to do with
YouTube’s “social” nature. The reason why we are interested in this type of
workloads is that in recent years, online “social” networks have become one of
the main information dissemination channels, influencing national election results,
consumer behavior and, at the end, real social interactions. In addition, their
success has led to many services integrating “social” aspects and we believe that
this trend will continue for the following years. To this end, we believe that
studying how to optimize infrastructure for this type of services is of utmost
importance. YouTube, in this context, shares many characteristics with many
of the most popular social networks, especially as far as content organization is
concerned. To this end, we believe that focusing on YouTube is useful by itself but
the conclusions can also be applied, to a certain extent, to other social networks.

The huge success of sites like YouTube creates huge resource needs in order
for them to scale and be able to serve a constantly increasing and more and more
demanding audience, spread all around the globe. To face this huge needs in
storage and bandwidth, most UGC sharing sites (and not only) either maintain

2Source: http://www.youtube.com/t/press statistics
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60 hours of video uploaded per minute, 1 hour per second.
More than 4 billion videos watched per day.
More than 800 millions users per month.

More than 3 billion hours of video watched per month.
In 2011, YouTube had more than 1000 billion views.

Table 1.2: YouTube Statistics.

their own distributed infrastructure with servers all around the world, or em-
ploy Content Delivery Networks (CDNs) to offload some of the traffic from their
servers and some of the costs related to infrastructure maintenance. CDNs are
big distributed systems with servers deployed all around the world whose goal
is to serve content to end-users on behalf of their clients with high availability
and high performance. To do this, most of the CDNs deploy their servers within
the data centers of different ISPs and the main question that they try to answer
when storing an item is how to place it close to the users that are most likely
to request it in the future. Accurately answering this question, allows CDNs to
serve content with low latency and with minimal resource demands.

The goal of our study is to store videos on servers close to the users that are
likely to request them in the future. This would allow the system to provide good
service quality with minimal resource requirements. The principal property we
leverage throughout our study is that items in YouTube’s collection, but also in
general for UGC sharing sites, are no longer independent the one from the other.
By the time an item is uploaded to these sites, it becomes part of their content
graph. This content graph may have different semantics, depending on the site
in question but they all share some common characteristics. In Facebook users
“befriend” other users, in Twitter they “follow” other users while in YouTube,
a video is “related” to a number of other videos. Given the above relations,
in YouTube the content graph consists of the videos as nodes and two videos
being connected by an edge if they are considered as “related” by YouTube’s
recommendation mechanism. In Chapter 3, we verify previous findings that the
position of an item in the content graph influences how users interact with it
and we take this observation one step further by showing that it also influences
the origins of the requests for a given video. Given this finding, we propose a
proactive video placement mechanism that manages to place videos on servers
located close to their future viewers.

1.3 Contributions

In Chapter 2 we focus on cluster-based deduplication systems. We start by pre-
senting the state-of-the-art in duplicate detection techniques before focusing on
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their application on storage systems. In addition to this, we also present a dis-
cussion on the challenges that system designers have to face when designing such
systems. After this, we move on to describe Produck, a cluster-based deduplica-
tion solution that combines state-of-the-art techniques with novel ideas to provide
good deduplication with minimal resource needs. In Produck we introduce a new
set-intersection estimation mechanism that allows the system to efficiently detect
duplicate regions of data with minimal overhead in terms of memory, network
and computation. This set-intersection estimation technique, although it has
been proposed in the field of the information retrieval, it is for the first time
used in the context of storage systems. In addition, and to guarantee that load
is equally spread among the nodes in the system, we introduce a novel, more
deduplication-friendly load balancing mechanism that permits the system to be
load balanced while keeping the deduplication efficiency high.

Chapter 3 focuses on content distribution. In this chapter we initially present
the state-of-the-art in Content Delivery Networks and content placement tech-
niques before diving into the specifics of user-generated content and how its struc-
ture can be leveraged to come up with novel placement strategies. In this context,
we start by verifying results of previous studies that show that beyond traditional
forms of locality that account for each content item independently, viewing pat-
terns observed in UGC sharing sites are significantly influenced by the fact that
content in these sites is no longer independent but is organized in a content
graph [KZGZ11, ZKG10]. Pushing this finding one step further, we show that
the position of a video in YouTube’s content graph, plays an important role on
where its future requests will come from. Leveraging this, we initially propose a
mechanism that allows the system to predict where a video’s future requests will
come from and based on this mechanism, we propose a novel content placement
mechanism that successfully manages to proactively place content close to where
it is most likely to be requested. In addition, our mechanism makes minimal
assumptions about the underlying infrastructure as it only assumes the existence
of a distributed network of servers that host and serve content and an entity
that forms the content graph, i.e. periodically runs YouTube’s recommendation
mechanism.

Finally, Chapter 4 summarizes the contributions of the above two chapters
and presents some of the open problems related to them.
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Chapter 2

Probabilistic Deduplication for
Cluster-Based Storage Systems

The need to backup huge quantities of data has led to the development of a num-
ber of distributed storage systems that leverage deduplication to reduce their
network and storage space requirements. These systems aim to reproduce the
operation of centralized, single-node backup systems in a cluster environment.
At one extreme, stateful solutions rely on state stored for each node in the sys-
tem to maximize deduplication. However the cost of these strategies in terms
of computation and memory resources makes them unsuitable for large-scale de-
ployments. At the other extreme, stateless strategies store data blocks based only
on their content, without taking into account previous placement decisions, thus
reducing the cost but also the effectiveness of deduplication.

In this chapter, we present, Produck, a stateful, yet lightweight cluster-based
backup system that provides deduplication rates close to those of a single-node
system at a very low computational cost and with minimal memory overhead. In
doing so, we provide two main contributions: a lightweight probabilistic node-
assignment mechanism and a new bucket-based load-balancing strategy. The
former allows Produck to quickly identify the nodes that can provide the highest
deduplication rates for a given data block. The latter efficiently spreads the load
uniformly among the nodes. In our experiments, we compare Produck against
state-of-the-art alternatives over a publicly available dataset consisting of 16 full
Wikipedia backups, as well as over a private one consisting of images of the envi-
ronments available for deployment on the Grid5000 experimental platform. Our
results show that, on average, Produck provides (i) up to 18% better deduplication
compared to a stateless minhash-based technique, and (ii) an 18-fold reduction
in computational cost with respect to a stateful Bloom-filter-based solution.
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2.1 Introduction

Cloud providers, social networks, data-management companies and on-line backup
services are witnessing a tremendous increase in the amount of data they receive
every day. This phenomenon implies huge storage needs that increase exponen-
tially [GCM+08b] as more users join and already existing ones become more
engaged in the offered services. For such companies, the data they store consti-
tutes part of their business and potential data disruption could lead to decreased
revenues due to loss of credibility or service deterioration. To minimize this dan-
ger and also for legal requirements [DDL+11], data centers need to periodically
backup full copies of their data for periods of up to several years and have them
available for retrieval upon request.

As mentioned in Chapter 1, until recently, most backup systems combined files
into huge tarballs and stored them on tape in an effort to minimize costs [DDL+11].
However, the decrease in the cost of magnetic disks combined with techniques like
deduplication that can make more efficient use of storage space have made disk-
based backup solutions more popular. Deduplication identifies identical chunks
of data and replaces them with references to a previously stored copy of the
chunk [MB11], thereby reducing the required storage space. Using deduplication,
single-node commercial backup systems are now capable of storing petabytes of
data to disk [GE11]. Yet, the backup needs of modern data centers are already
surpassing this limit [GCM+08b], and the amount of data to backup is bound
to increase even further as more and more companies outsource much of their
infrastructure to the cloud.

An appealing approach to address these increasing requirements is the de-
sign of cluster-based backup platforms. Cluster-based systems permit the ca-
pacity of the system to scale by adding more nodes, instead of replacing the
whole system with a more powerful one. In addition, existing infrastructure
can be used and expanded, when needed, using (almost) commodity hardware.
Integrating deduplication into cluster-based solutions, however, is a challenging
task [DDL+11, DGH+09, BELL09]. In a single-node system, the main difficulty
is to identify at which granularity duplicate data regions should be detected (i.e.
chunk size) so that deduplication is maximized while throughput stays high. In
these systems, as we will see in Section 2.2, the main concern is how to structure
the chunk index so that the disk is visited as few times as possible during the
duplicate detection process, a problem termed the “disk bottleneck problem”. A
cluster, however, introduces a new challenge: assigning each chunk to a cluster
node while (i) maximizing deduplication, and (ii) balancing the storage load on
the available nodes. As we will see in Section 2.2, these two goal are at odds: the
requirement for a load balanced system often leads to placing a given group of
chunks on a different node than the one with whom it shares most of its chunks.
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The solutions that researchers have proposed in the field of cluster-based dedupli-
cation systems can be broadly categorized into two categories. So-called stateless
solutions [DDL+11, BELL09] assign data to nodes based only on properties of
the contents of the data being stored. This, in many cases, provides a some-
what natural form of load balancing, due to its randomized nature, but it yields
suboptimal deduplication performance as new assignment decisions do not take
into account previous ones. At the other extreme, stateful approaches maintain
information about the current state of each node in the system (i.e. what each
node stores) in order to assign identical data blocks to the same node. This
yields much better deduplication, but with two main drawbacks. First, stateful
techniques require more complex load-balancing strategies to avoid storing ev-
erything on the same node. Second, existing solutions require significantly more
computing and memory resources to index all the stored information. This leads
deployed systems, such as [DDL+11] to operate according to a stateless model,
at least until a practical stateful system becomes available.

In this document, we attempt to satisfy this need by proposing Produck, a
lightweight cluster-based backup system that aims to make stateful deduplication
usable in practice. Produck achieves deduplication rates that are close to those
of a single-node system, where there is no requirement for load balancing, by
combining state-of-the-art techniques with novel contributions. First, similar
to [DDL+11], Produck addresses the tradeoff between small and large chunk sizes
with a two-level chunking algorithm. It routes and stores data based on relatively
large superchunks, composed of a number of smaller chunks that constitute the
minimum information units for deduplication. Second, it incorporates two novel
contributions that enable it (i) to achieve stateful superchunk assignments with
minimal CPU and memory requirements, and (ii) to balance the load on cluster
nodes without hampering deduplication performance.

The first of these contributions is a probabilistic similarity metric that makes
it possible to identify the cluster node that currently stores the highest number
of chunks out of those that appear in a given superchunk. This metric is based
on a probabilistic technique for computing set intersection that originates from
the field of information retrieval [MBN+06], and which, to our knowledge, has
never been used in the context of storage systems. The second novel contribu-
tion of Produck is a deduplication-friendly bucket-based load-balancing strategy.
Specifically, Produck uses fixed-size buckets to measure the deviation of a node’s
disk usage from the average. This facilitates the aggregation of similar super-
chunks, i.e. superchunks with many common chunks, on the same nodes even in
the initial phases of a backup process, ultimately yielding better deduplication.

Produck can be deployed as a stand-alone system, but it can also be used as
a middleware platform to integrate existing high-throughput single-node dedu-
plication solutions. This allows users to easily integrate new techniques, leverage
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Figure 2.1: Storage Deduplication Workflow.

existing research results and encourages Produck’s adoption in a wide range of
backup services. In this chapter, we focus on the evaluation of Produck as a
stand-alone system. We thus leave a study of its integration with existing plat-
forms as future work.

2.2 Related work

In this section we present the existing work in the context of duplicate detection.
We start by presenting the mechanisms used to efficiently detect identical regions
of data, before diving into the application of duplicate detection and elimination
in the context of storage systems. Figure 2.1 presents the workflow for the dedu-
plication process, that can also serve as a roadmap for this section. Although
the figure focuses on backup systems, which are the main focus of the chapter,
the first two steps are the same for every system that uses duplicate detection
to achieve its purpose. Before being deduplicated, data that are about to be
stored, are initially split into chunks, which constitute the basic duplicate detec-
tion unit. After chunking, duplicate chunks are replaced by references to already
existing ones. This is done during the duplicate detection process. Finally, the
deduplicated data are stored in the system.

This section starts by presenting the different chunking algorithms that have
been deployed so far, along with the advantages and the disadvantages of each of
them. After chunking, we move on the application of deduplication in archival
storage systems and we present the state-of-the-art in single-node and cluster-
based systems. For each one of these types, we present the goals, the challenges
to be faced, and the solutions that researchers have given to these challenges.

2.2.1 Duplicate Detection

Duplicate detection has been applied in many fields ranging from file systems [MCM01,
UAA+10] and fast data transfers [PAK07] to copy-detection mechanisms [BDGM95].
As a consequence, multiple algorithms have been proposed to detect redundancy
in large sequences of raw bytes, depending on the requirements of each specific
application.
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Figure 2.2: Content-Based Chunking Principles.

In the general methodology, a given workload is, at first, split into sequences
of consecutive bytes that from now on we will call chunks. Chunks constitute
the basic similarity unit, as unique chunks are stored only once and duplicates
are replaced by references to already existing ones. To compare chunk contents
efficiently, a collision resistant hash function, such as SHA-1, is applied on the
contents of each chunk and its output is used as the chunk’s signature or finger-
print. In the remaining of this chapter, the two terms, signature and fingerprint,
will be used interchangeably. To see if two chunks are identical, it is sufficient to
compare their signatures. Comparing the contents of two chunks based on their
SHA-1 hash value is a lot more efficient than comparing the chunks byte by byte,
as chunk sizes range from 4 to 64KB while the SHA-1 signature of a chunk ac-
counts for only 20-bytes. In addition, relying on only the signatures to compare
chunk contents can be considered safe, as the probability of two non-identical
chunks having the same fingerprint is many orders of magnitude lower than that
of a hardware error [QD02].

Initial solutions for duplicate detection included whole-file chunking [ABC+02]
and fixed-size chunking [RCP08] algorithms. In the former, deduplication is per-
formed on a file granularity while in the latter, files are split into chunks of fixed
size. These solutions, in many cases, failed to accurately detect duplicate data
regions. In the whole-file case, a small modification in the content of a file, even
at the end of it, would change its signature, as this consists of the hash value of its
contents, thus leading to consider the two versions of the file as totally different.
While in the fixed-size chunking techniques, an insertion of even one byte would
shift all the boundaries of the chunks following the region of the modification,
resulting on all signatures being changed, thus not detecting the similarity of two
files even if they share most of their contents.

To fight the drawbacks of the above solutions, in [MCM01] the authors intro-
duce Content-Based Chunking (CBC). In this work, the authors use deduplication
in the context of network file systems and they introduce CBC to reduce network
traffic by detecting chunks of data that are already present on the client. In Pro-
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Figure 2.3: Chunks of a file after various modifications. Gray regions are the
modifications while the vertical lines are the chunk boundaries.

duck, we use CBC to detect duplicates and Section 2.3.2 provides a more in-depth
description of the implementation of the algorithm. Figure 2.2 presents the ba-
sic principles of CBC, so that the reader can compare it to previously described
chunking algorithms. CBC uses Rabin fingerprinting over a sliding window to
declare chunk boundaries. A minimum and maximum chunk size are provided as
parameters along with parameter r, the size of the sliding window and the step
size, as shown in the figure. A chunk boundary is declared when the lower order
bits of the Rabin hash of the bytes in the sliding window, f , match a certain
pattern (mod r = 0). Declaring boundaries based on byte patterns helps the
algorithm be immune to small modifications.

To illustrate the resistance of CBC to small modifications, Figure 2.3 presents
how chunks are affected by different edits of a given file. In Figure 2.3, a. shows
the chunks of the file before the modifications. As we can see chunks do not
have the same size as boundaries depend on data properties. In the case of b.
some bytes are added in the middle of ch4. The result is that the modification is
absorbed by ch4, creating ch7. In this case chunk boundaries are not affected and
the same holds for their signatures, apart from ch7. In c., a modification in the file
eliminates the boundary of ch3. The result is that ch3 and ch7 are combined in
ch8 and, again, the signatures of the chunks not touched by the change, stay the
same. Finally, in d., a modification introduces a new chunk boundary resulting
in ch6 being split into ch9 and ch10.

Many studies [KDLT04, MB11, PP04] compare the above file-chunking strate-
gies and the main finding is that CBC outperforms its counterparts in duplicate
detection.

In CBC, one of the most important parameters is the chunk size used, as this
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determines the granularity of the deduplicate detection process. Although in CBC
the chunk size is not fixed, the system designer can define the average size of the
chunks, by carefully choosing the values of the minimum and maximum chunk size
and r. The size of chunks used affects both deduplication efficiency and system
performance. On the one hand, smaller chunks lead to better deduplication as
identical sequences of data are detected at a finer granularity. On the other,
with smaller chunks, there are more hashes to be processed, which can reduce
performance. At a minimum, more chunks mean more comparisons to determine
duplicates, but they are also likely to mean more on-disk index lookups, if the
index of already stored chunks cannot fit in memory. In addition, when it comes
to metadata maintenance, more chunks mean more metadata to be stored and
kept up-to-date. Finally, if metadata have to be sent through the network during
the deduplication process, as in the case of backup systems, network traffic can
also become an issue.

To this end, much effort has been invested in determining the right chunk
size for a given workload. More specifically, the goal is to detect the maximum
chunk size that will give good deduplication results while minimizing the size of
the metadata and the computation involved in the deduplication process.

In [TPAK10], the authors propose the use of a compact, multi-resolution
fingerprinting methodology that tries to estimate similarity between data items
at different chunk sizes. According to this, a file is chunked based on CBC using
different chunk sizes (resolutions) and the final signature of the file is composed of
a mix of samples of signatures taken from these different resolutions. To determine
which chunk signatures to include in the final one content-based sampling is used,
i.e. sampling is based on bit patterns of the hashes. The main contribution of
this study is the computation of bounds on the number of samples that have
to be included in the fingerprint to achieve a required level of accuracy in the
estimation.

In [KUD10], the authors study the same problem in the context of deduplicat-
ing streams of data. The solution they propose is based on the observation that
during repeated backups, long regions of data may be duplicates, and even when
changed, the changes may be localized to a relatively small edit region. Based on
this assumption, they focus on detecting “change regions”, which stand for non-
duplicate series of bytes between big duplicate chunks. To do this, they propose
to initially chunk files using a big chunk size and when one of them is detected
as non-duplicate while there are duplicates before and after that, then this chunk
is further split in smaller chunks and re-deduplicated. In addition to this split-
apart approach, the authors also propose a chunk amalgamation algorithm where
files are initially split in small chunks, and series of consecutive duplicate small
chunks are combined into bigger ones. The goal of this algorithm is to reduce the
size of the metadata that have to be indexed by the deduplication server and the
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number of hashes to be processed during deduplication.
As mentioned earlier, many studies compared the different chunking strategies

presented above and the main conclusion is that content-based chunking outper-
forms its counterparts in terms of achieved deduplication. This is the reason
that, as we will see in the paragraphs that follow, most of the systems that use
deduplication as a means to reduce data volume, use CBC. The same holds for
Produck. As far as the choice of the chunk size is concerned, the techniques to
detect the best chunk size for a given workload are complementary to our work
and they can be easily integrated.

2.2.2 Single-node Deduplication Systems

As illustrated in Figure 2.1, after the chunking stage comes the duplicate detection
one, where the signatures of the new chunks are compared against the ones of
the chunks already encountered by the system. The goal of this process is to
detect duplicates, i.e. chunks with identical content. As explained in the previous
paragraph, signature comparison can be considered sufficient and there is no need
to compare chunk contents byte by byte. To make duplicate detection efficient,
the signatures of already stored chunks are kept in an index, that, from now on,
we will call chunk index.

In this paragraph we are interested in single-node backup systems that use
deduplication to reduce the storage space required to back up a given workload.
Cluster-based storage systems, which also constitute the main focus of the chap-
ter, are presented in the next paragraph of the section. The goals of a single-node
system can be summarized in the following three:

1. good deduplication,

2. good throughput, and

3. support of large disk capacities.

Good deduplication stands for the requirement that the duplicates have to be
detected and eliminated as much as possible. In the ideal case, there should be
no duplicate chunks among the data written to disk after the duplicate detection
process. The reason why this is not always possible can be found in the remaining
two requirements, good throughput and support of big disk capacities.

Focusing on throughput, we are interested in the speed at which the system
is able to receive a given workload, replace duplicate chunks with references to
already stored ones, and store the unique ones on disk. In this process, duplicate
detection can easily become the bottleneck if the chunk index is not efficiently
structured and organized, as we will see in the paragraphs that follow.
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In small, single-node deployments, to make the duplicate detection process
fast and accurate, it is sufficient to keep the chunk index in main memory. This
can be feasible due to the small disk capacity supported by the system, that
implies a relatively small number of unique chunks. Having the whole chunk
index in main memory allows the system to accurately detect duplicates without
touching the disk during the duplicate detection process, thus providing good
performance.

Unfortunately, in larger deployments, where big volumes of unique chunks
are expected to be stored, it is a matter of time till the chunk index grows
beyond the size of the available main memory, and starts spilling to disk. In
this context, the main challenge is to organize the index in a way that minimizes
disk accesses during the duplicate detection process. The reason behind this is
that, given the relatively small chunk size, which in the state-of-the-art systems
ranges from 4 to 64 KBs, the chunk index can easily account for gigabytes of
data and a given workload that needs to be stored can have chunks in the order
of millions. If for each newly arriving chunk the system had to search the whole
index that is partially stored on disk to decide if it is a duplicate, this would incur
a severe performance penalty that could make the whole system impractical. This
problem is often termed in the bibliography as the “disk bottleneck problem” and
constitutes one of the main design issues in single-node deduplication systems.

To minimize the impact of the “disk bottleneck problem”, almost all proposed
solution leverage a property inherent to backup workloads that in the literature
is termed “data locality” or “chunk locality”. This property stands for the fact
that in consecutive backups of a given workload, if chunks A, B and C appear
close to each other, then the next time chunk A is encountered, there is a high
probability that chunks B and C will also appear later on. In other words, “data
locality” implies that the probability of a chunk being a duplicate increases if its
preceding chunk is one. In addition, this property is also present in backups of
different files. For example, when backing up all the machines in an institution,
several copies of the same OS would be stored if no mechanism is in place to
prevent it.

Leveraging “data locality”, single-node deduplication systems [DSL10, BELL09,
LEB+09, XJFH11, GE11] organize the chunk index in two tiers, with one resid-
ing in main memory and the other being stored on disk. Series of consecutive
chunks are organized by the storage nodes into segments (or blocks or containers)
and only a compact representation of the chunks in a given segment is kept in
memory. The full chunk index of a given segment is stored on disk. Often, the
part of the segment kept in memory consists of a sample of the signatures of the
chunks belonging to the segment. When a new group of chunks has to be stored,
the in-memory index is searched and for each fingerprint match, the full index
of the corresponding segment is fetched from disk and cached for further dedu-
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plication. Given the “data locality” property, it is expected that a small number
of segments will have to be fetched to deduplicate large groups of chunks, thus
limiting the number of disk accesses required. The information in the in-memory
tier serves as a hook to decide which parts of the on-disk index will be cached in
memory. Another thing that we have to note, is that now, a segment becomes
the basic I/O unit for reading and writing to disk. This is a design choice made
to further improve performance, as magnetic disks are more efficient at reading
and writing relatively big blocks of data.

In Extreme Binning [BELL09] the authors focus on workloads that consist
of individual files with no locality among consecutive files in a given window of
time. In these settings, each segment corresponds to a file and for each one, a
representative fingerprint, the hash of the contents of the file and a pointer to
the disk location where its full chunk index is stored, is kept in memory. As a
representative fingerprint, the authors use the minimum hash value (minHash) or
minimum fingerprint of the chunks belonging to the file. When a new file arrives,
its minHash is compared against the minHashes of the files stored in the system.
If no match is found, an entry is added to the in-memory index and the full index
of the chunks in the new segment is stored on disk. If the minHash matches the
one of an already existing file, then the file is deduplicated against the existing
one. This methodology guarantees that the disk is accessed only once per file
stored in the system.

In Sparse Indexing [LEB+09], the authors focus on traditional workloads
where chunk locality is relatively strong. In this work, segments are created in
a content-based way, as in CBC, by observing bit patterns at the level of chunk
fingerprints. This means that a chunk is declared to be a segment boundary if
the lower order bits of its fingerprint match a certain pattern. This results in
segments of variable size. After segmentation the chunks of each segment are
sampled, again, in a content-based way, and the resulting subset is kept in mem-
ory as the signature of the segment while a full index of the chunks in the segment
is kept on disk. To further reduce disk accesses, each incoming group of chunks
is deduplicated against a limited number of the most similar already stored ones.
Similarity between the new group of chunks to be stored and a given segment is
measured by the number of fingerprints they share in their signatures. Only the
full indices of the “winning” segments are fetched from disk. This technique is
shown by the authors to result in small deduplication losses.

SiLo [XJFH11] operates in the same way as [LEB+09], with the difference
that segments are further grouped into in blocks, to further mine data locality.

In ChunkStash [DSL10], the authors propose the use of flash memory instead
of magnetic disk to store the full chunk index. To minimize false flash accesses,
ChunkStash keeps in main memory a compact index of the location of each chunk
on the flash disk. When a new chunk arrives, its is checked against this compact
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index and if there is a match, then the pointer to the flash memory is followed
for further investigation. When the pointer to flash is followed, the full segment
that this chunk belongs to is fetched and cached. The above structure along with
careful engineering allows ChunkStash to report speed-ups of up to 60x compared
to traditional disk-based solutions.

Finally, in [GE11] the authors argue that the costs related to acquisition,
maintenance and energy consumption of cluster-based deduplication solutions,
make them unattractive to small and medium-sized companies. As a result, they
focus on increasing the capacity that a single-node deduplication system can sus-
tain. To reduce the memory needs of the chunk index, they use sampling and
they propose a progressive sampling rate technique that uses the whole memory
space and increases the sampling rate (decreases the number of chunks included)
as more data are added to the system. Index sampling is performed in a content-
based way–a given fingerprint is included in the the index if its r least significant
bits are 0 (e.g. for a sampling rate of 1/8, r is set to 3). This allows them
to downsample the index without having to recheck the full index. In addition,
they introduce the problem of reference management. This refers to the prob-
lem of efficiently and safely updating the indexing structures (both in-memory
and on-disk) in the face of data deletions. This problem is more pronounced in
deduplication systems than in general storage systems as, here, a chunk may be
referenced by multiple files. This means that even if a file is deleted, its chunks
cannot be directly deleted, as this could corrupt other files as well. To tackle this,
they introduce a technique called grouped mark-and-sweep. In grouped mark-
and-sweep, additional data structures are maintained that group files together
and permit to monitor changes happening on a groups-of-files granularity thus
resulting in touching only the metadata of chunks that were actually affected by
the deletions, and not having to scan the whole index during the mark-and-sweep
process.

As shown in this paragraph, much effort has been invested during recent
years to improve single-node deduplication systems in order to provide good and
fast deduplication while supporting large disk capacities. Most of the recent
solutions leverage “data locality” to minimize disk accesses during the duplicate
detection process but they differ on how they structure their index. Some of
them assume the use of new hardware, as in the case of ChunkStash, while others
do not. In addition, in all solutions, apart from ChunkStash, in order to provide
good throughput they sacrifice some of the deduplication efficiency of the system.
In these solutions, chunks are grouped in segments and each new segment is
deduplicated against other segments that contain chunks that are already stored
in the system. The decision of which segments to fetch from disk to deduplicate a
new one that arrives to be stored, is based on a compact segment descriptor, which
is often a sample of the signatures of the chunks in the segment. This organization
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Figure 2.4: Tension between Load Balancing and Deduplication : at the beginning
a file wants to be stored, who shares 60% of its content with the chunks stored on
node A. If it were to optimize for deduplication, the new file should go on node
A, while optimizing for load balancing would imply sending the chunk to node B.

may lead to some duplicate chunks not being discovered thus leading to reduced
deduplication efficiency. All the above work on single-node deduplication systems
is complementary to our work as Produck is agnostic to the architecture of the
single-node systems used as storage nodes.

2.2.3 Cluster-based Deduplication Systems

Although single-node systems perform well and manage to efficiently decrease the
storage needs for backing up a workload by up to 30 times [DDL+11], the explosive
increase in the data created and stored has led researchers and companies to turn
to multi-node solutions that are able to scale by adding more hardware instead
of having to replace the whole system with a more powerful one.

For the system to scale it has to be able to make maximum use of the resources
that more nodes have to offer. To achieve this, the system has to be able to equally
spread the load among the available nodes. In other case, some nodes will end up
overloaded and unable to perform at the expected level, while others would stay
idle, thus resulting in lost investment. From the above discussion, it becomes
clear that a multi-node system should be able to provide the same properties as
single-node systems, while keeping the system load balanced.

Figure 2.4 presents the tension between data deduplication and load balancing
with an example. In the figure, we assume a system with two storage nodes, A
and B, and a central coordinator node that decides on which storage node to store
each group of chunks. Consider a newly arriving group of chunks F (red) arrives
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to be stored. As we can see from the first figure, F shares 60% of its content
with node A and 0% with node B which is empty. In this scenario, if it were to
optimize for deduplication, the new chunks (F) should end up on node A while
if it were to keep the system load balanced, F should be sent to node B which is
empty. In general, one can see that for data deduplication the ideal case would
be to store all data on the same node, while load balancing tries to equally spread
them among the nodes available to the system.

Solutions proposed so far in multi-node or cluster-based deduplication systems
can be broadly classified in two categories. On the one hand, there are stateless
solutions where assignment decisions are taken based on the contents of the chunk
itself and no information about previous assignment decisions is stored. On the
other, there are stateful solutions that keep information about previous chunk
assignment decisions (i.e. which node stores which chunk), and new assignment
decisions take into account this knowledge. A comparison between the two would
reveal that stateless solutions are a lot more resource friendly than stateful ones,
as there is no need for storing metadata about previous assignment decisions,
but they provide worse deduplication than stateful ones who sacrifice resources
to achieve more accurate chunk placement.

We start our description of the state-of-the-art on cluster-based deduplica-
tion solution by presenting HYDRAstor [DGH+09] and HydraFS [UAA+10], a
filesystem based on HYDRAstor. HYDRAstor, is a deduplication storage system
built on top of a Distributed Hash Table (DHT). Here, the fingerprint space is
partitioned evenly across storage nodes using consistent hashing and each chunk
is routed to a node based on the hash of its contents. This results in duplicate
chunks being routed to the same node. Chunk assignment decisions in HYDRAs-
tor are made on a per chunk granularity. This led the authors to use relatively big
chunks (64KB) in order to provide good throughput. Although big chunks allow
HYDRAstor to provide good throughput, this comes at the cost of reduced dedu-
plication efficiency as the bigger the chunk, the lower the granularity at which
duplicates are detected. For load balancing, HYDRAstor relies on the uniform
distribution of the size of the chunks along with the fact that due to its routing
scheme (the same as in DHTs), nodes are expected to receive approximately the
same number of chunks. HYDRAstor assigns chunks to nodes based solely on
the content of the chunk itself thus lending itself to the stateless deduplication
solutions.

Although HYDRAstor is completely distributed, as it is built on top of a
DHT and there is no central coordinator, other solutions, including Produck,
prefer a more centralized approach where a node is used as a coordinator and the
remaining nodes in the cluster constitute the storage nodes.

Two system architectures that prefer this more centralized approach are the
ones presented in [DDL+11]. There the authors show the routing method pro-
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posed by HYDRAstor is suboptimal when it comes to backing up big collections of
files. Instead, and to further mine data locality, they organize chunks into super-
chunks, which are groups of consecutive chunks, and they route chunks belonging
to the same superchunk on the same node. This makes it possible to improve
performance, as assignment decisions are taken on a per-superchunk instead of
a per-chunk basis, while using small chunks (4KB), thus having the benefit of
being able to detect duplicates at a finer granularity than HYDRAstor. The
two strategies proposed in this work differ on the way assignment decisions are
taken. One of them routes superchunk according to the stateful model while the
other according to the stateless. In the remainder of the section we present these
two strategies in detail as these are the two strategies that we compare Produck
against.

We start by presenting the stateful strategy presented in [DDL+11], which
from now on will be refered to as BloomFilter. According to the BloomFilter
strategy, the Coordinator maintains a bloom filter for each storage node as an
index of the node’s contents. It then uses these bloom filters to assign each su-
perchunk to the node that already stores most of the chunks it contains. To
compute the overlap between a node’s contents and the chunks in a new super-
chunk, the Coordinator checks the fingerprints of the chunks in the superchunk
against the node’s bloom filter. To improve performance during the bootstrap
phase, the Coordinator ignores overlap values that are below a dynamically com-
puted threshold. Moreover, to balance the load in the system, it considers a node
eligible to store a superchunk only if its load does not exceed the average load
of the system by more than 5%. In [DDL+11] the authors observe that keeping
in the bloom filter all chunks stored on a given node and chicking all the chunks
in a given superchunk against it (i) uses a lot of memory and (ii) makes the du-
plicate detection process too slow. To this end, they propose a variation where
chunks in a superchunk are sampled in a content-based way as described earlier
and only 1/8th of them is kept in the bloom filter. This allows them to reduce the
memory needs for the bloom filter and speeds up duplicate detection. We com-
pare against both variations of BloomFilter in Section 2.6 of this chapter. This
strategy is stateful since the Coordinator keeps track of what each StorageNode
stores and when deciding where to store a new superchunk, it takes into account
the location of existing ones.

The second strategy presented in [DDL+11] is MinHash. MinHash selects
the minimum hash (minhash) of the chunks in a superchunk as the superchunk’s
signature. This strategy uses the additional abstraction of bins and instead of
assigning superchunks to nodes, it allocates superchunks to bins, which it then
assigns to nodes. This abstraction is used by the authors to keep the system
load balanced. Typically #bins ≫ #nodes. When assigning a superchunk to a
bin, MinHash applies the modulo(number of bins) operator to the superchunk’s
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minhash value in order to get the index of the destination bin. Although at
first this strategy seems to be load balanced as bins are expected to be assigned
the same number of superchunks on average, this turns out to be false as some
nodes end up being overloaded. To keep the system load balanced, when a node
becomes overloaded, i.e. when its load exceeds the average by more than 5%,
MinHash reassigns bins to nodes (reshuffling) so that no node is overloaded. This
implies that although MinHash is a stateless strategy, this is not completely true
as the Coordinator has to keep track of which chunks are assigned to which bin
in order to do the reassignment. If not, then the Coordinator is in no position
to judge which combination of bins leads to a balanced system. Although this is
true, reassigning bins to nodes rarely happens, as pointed out by the authors, so
we still consider this strategy as stateless.

A comparison between the two categories of architectures, stateful and state-
less, reveals that stateful strategies manage to have better deduplication at the
cost of using a lot more resources in terms of memory and computation, while the
stateless ones sacrifice deduplication to be more resource friendly . This is also
the reason why in their production system, the authors of [DDL+11] use the state-
less strategy. These strategies are good examples of cluster-based deduplication
solutions and we compare against them in Section 2.6.

2.3 PRODUCK Principles

After presenting the state-of-the-art in cluster-based deduplication solutions, here
we focus on the contributions of this chapter, and we present Produck, the system
we designed for cluster-based deduplication solutions. We start by analyzing the
main features in the design of Produck. We present its architecture, we provide
the required background on Content-Based Chunking in detail, and finally, we
introduce Produck’s two main contributions: its chunk-assignment protocol, and
its load-balancing strategy.

2.3.1 Architecture

Produck’s architecture, depicted in Figure 1, is the same as most cluster-based
deduplication systems and consists of three main entities: a Client application
that may run on the machine of the user that wants to backup her data or on a
machine under the control of the backup service provider, a Coordinator node,
and a set of StorageNodes. The last two entities, are under the control of the
service provider.
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Figure 2.5: System Architecture

Client

The Client constitutes Produck’s frontend, and thus provides the entry point
through which Produck’s users can interact with the backup system. The Client
offers facilities to manage stored data, such as listing the contents of a backup.
In the following, however, we concentrate on its two fundamental tasks: storing
and retrieving a file. When storing a file, the Client is responsible for translating
it into a set of chunks that it will then deliver to the StorageNodes. When
retrieving a file, the Client is responsible for i) obtaining the chunks that belong
to the file from the StorageNodes and ii) recomposing them into the original file.
We describe the details of the chunking process in Section 2.3.2.

Coordinator

The Coordinator node is responsible for managing the requests of Clients. When
storing a file, the Coordinator is responsible for (i) determining which Storage-
Node should store each chunk, and (ii) putting Clients in contact with the ap-
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propriate StorageNode which will store the data. When it comes to retrieving a
file, the Coordinator is the first node to be contacted by a Client and will then
redirect the request to the appropriate StorageNode, as we will see in the para-
graphs that follow. After this step, the Clients communicate directly with the
StorageNodes for both operations, i.e. storing and retrieving content. From the
above description, one can understand that the role of the Coordinator is crucial
for the overall performance of the system, as it is the node responsible for achiev-
ing both deduplication and keeping the system load balanced. In Sections 2.3.3
and 2.3.4, we present how the Coordinator implements our novel chunk assign-
ment and load balancing strategies. In the current version of Produck, there
is only one Coordinator for the entire system. Federating multiple Coordinator
nodes for higher throughput or fault-tolerance can be achieved through standard
techniques.

StorageNode

StorageNodes perform a key role in our backup system by providing storage
space according to the assignment decisions made by the Coordinator. As shown
in Figure 1, however, StorageNodes also carry out an additional task, that of
acting as responsible nodes, i.e. providing directory services for Clients that need
to retrieve the chunks of a file that are stored on multiple StorageNodes. The
Coordinator randomly selects a responsible node for each file among the Stor-
ageNodes. This offloads the Coordinator from the management of read requests
and file metadata. We describe the details of the interactions between Clients,
the Coordinator, and StorageNodes in Section 2.4.

2.3.2 Chunking

As outlined in Section 2.1, a deduplication system operates by splitting files into
chunks and identifying identical chunks within one and across multiple backup
operations. A key performance tradeoff is associated with the size of a chunk
(Section 2.2). As in a single-node system, smaller chunks make duplicate detec-
tion more efficient as they search at a finer granularity, but result in a greater
overhead for storing the associated indexing and metadata information. In addi-
tion, smaller chunks can also limit the achievable throughput in the case that all
system operations are performed at a chunk granularity. Disks are more efficient
when accessing continuous data, while the use of very small chunks results in less
efficient random-access patterns.

Similar to [DDL+11], Produck addresses this tradeoff by using a two-level
chunking algorithm. Specifically, it uses relatively small chunks as deduplication
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units (1KB). However, it groups contiguous chunks into large superchunks when
storing data onto storage nodes. This makes it possible to optimize data transfer
by dealing with large amounts of contiguous data, while retaining the dedupli-
cation advantage associated with small data chunks. The chunking algorithm is
executed at the Client as soon as the user requests the backup of a file. In the
following paragraph, we describe its details by explaining how it creates chunks
and superchunks.

2.3.2.1 Content-based chunking

The most intuitive way to split a file into chunks is to use fixed-size chunks starting
from the beginning of the file. However, as described in Section 2.2, this approach
suffers from a fundamental drawback when new data is added or removed from
the beginning or in the middle of a file. The contents of the chunks that follow
the location of the change are shifted, and the boundaries of the corresponding
chunks change. This results in all chunks following the “change region” to be
considered new, even if they are essentially the same. This is a major issue
in a deduplication backup system that aims to identify duplicate chunks across
multiple versions of the same files or across different files.

To address this issue, Produck uses, like most production deduplication sys-
tems, content-based chunking (CBC). Instead of using fixed chunk sizes, Produck
determines chunk boundaries based on the data contained in the chunks, as shown
in Figure 2.2. Specifically, it defines a minimum and a maximum chunk size, along
with a step size, lmin, lmax and lstp, and defines chunk boundaries as sequences
of w bytes that (i) cause the chunk size to remain within lmin and lmax, and (ii)
satisfy a condition on their hash values. Let W be a window of w bytes, let f be
its fingerprint consisting of the Rabin hash value of its contents, and let D and r
be two integer values. Then, W is selected as a chunk boundary if its fingerprint
satisfies Equation (2.1).

f mod D = r (2.1)

If a chunk has no window that satisfies Equation( 2.1) while maintaining the size
within the limits, then it is truncated at the maximum allowed size. After a chunk
boundary is declared, its signature is computed. This signature consists of the
output of a cryptographically secure (collision resistant) hash function, such as
SHA-1, and serves at comparing chunks and detecting if two chunks are identical,
as we will see below. The values of lmin, and lmax, in combination with D, r, and
w control the average chunk size, which in our case is 1KB.

From a practical perspective, the chunk-creation process is run by the Produck
Client. When it needs to store a new file, the Client iterates through its contents
as follows. First, it initializes a new chunk and inserts the first lmin bytes of the
file in it. Then it computes the fingerprint f of the last w bytes it added. If the
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fingerprint satisfies Equation (2.1), then it closes the chunk and it iterates the
process by initializing a new chunk with the next(non-overlapping) lmin bytes from
the file. If, instead, the equation is not satisfied, i.e. f mod D 6= r, the Client
continues filling the current chunk by adding lstp bytes at a time, recomputing
the fingerprint of its last w bytes, and reevaluating the equation. Here we have
to note that the new last w bytes of the chunk may have an overlap with the
previous chunk suffix, depending on the relation of the lstp and w. In our case, we
set lstp to 1. The Client continues doing so until either the equation is satisfied,
or the chunk has reached the maximum prescribed size, lmax, at which point it
stores the chunk and repeats the process by creating a new one. For each one of
the created chunks, its signature is computes and stored.

Using this content-based process, the Client splits a file in chunks in a way
that allows it to absorb changes in their content, without rendering duplicate
detection impossible, as explained in Section 2.2 and shown in Figure 2.3.

2.3.2.2 Super-chunk formation

After splitting the file in chunks and computing their fingerprints, the Client
is also responsible for grouping chunks into superchunks, which constitute the
basic routing/storage unit, as in [DDL+11]. Similar to chunks, superchunks are
constructed using a content-based approach. However, instead of checking the
fingerprint of a window of w bytes, as in the case of chunk formation, the Client
identifies the boundary of a superchunk at the level of chunks. To this end, a
minimum and a maximum superchunk size is given as system parameters and to
determine if a chunk is a superchunk boundary, its fingerprint is checked against
a criterion similar to Equation (2.1). Specifically, when the Client detects the
end of a new chunk, c, as part of the chunking process described above, it first
adds the newly created chunk c to the current superchunk. Then it computes
c’s fingerprint, f , by hashing c’s content. If the number of chunks in the current
superchunk is within the minimum and maximum superchunk sizes and f satisfies
Equation (2.1), the Client sets the end to the current superchunk and starts a new
one, otherwise it continues adding chunks to the current one, until the maximum
allowed size is reached or a content-based boundary is found. In our case, we use
an average superchunk size of 15MB or 15∗1024 chunks. We examine the impact
of varying the superchunk size in Section 2.6.2.

2.3.3 Chunk Assignment

The key operation in a cluster-based storage system is the assignment of data to
StorageNodes so as to maximize deduplication. In Produck, data are assigned
to StorageNodes at the granularity of superchunks, as superchunk is out basic
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routing unit. This assignment is carried out by the Coordinator through a novel
chunk-assignment protocol that employs a stateful approach to aggregate, on the
same node, superchunks that share a large number of chunks.

Our protocol relies on the following key observation to reduce the computa-
tional and memory requirements of stateful deduplication. To choose the Storage-
Node offering the highest deduplication rate for a given superchunk, the Coordina-
tor does not need to know exactly which chunks are stored on each StorageNode,
but only the size of the overlap between the chunks on each StorageNode and
those in the superchunk to be stored. Our novel protocol computes this overlap
by relying on PCSA [FM85, DF03], a probabilistic method for computing the
cardinality of a multiset, i.e. the number of distinct items (chunks in our case) it
contains. To the best of our knowledge, Produck is the first application of PCSA
in the context of backup systems.

In the following, we present the basic principles of PCSA in Section 2.3.3.1 and
present its application to set intersection in Section 2.3.3.2. Finally we describe
how we exploit it for chunk assignment in the context of Produck.

2.3.3.1 Probabilistic counting
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Figure 2.6: PCSA multi-set cardinality estimation.

Let S be a multiset of chunks, for example a superchunk or a set of superchunks
stored by a StorageNode. Let h : S → [0, 2L) be a hash function that outputs
values that are uniformly spread over its target set. Also, let bit(y, k) denote
the k-th bit in y’s binary representation, with bit 0 being the least significant.
PCSA defines a function ρ : [0, 2L) → [0, L) identifying the position of the least
significant 1-bit in y, with position 0 corresponding to the least significant bit.
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ρ(y) =

{
min
k≥0

bit(y, k) 6= 0 for y > 0

L for y = 0
(2.2)

Given a multiset S, PCSA associates it with a bitmap, a vector of L bits
initialized as 0’s. Then, it iterates through all the elements in the multiset, d ∈ S
and computes p = ρ(h(d)), i.e. the position of the least significant 1-bit in the
hash value of d, and records this position by setting the corresponding bit in the
bitmap, bitmap[p], to 1. Since the hash function distributes its values uniformly
in [0, 2L), bitmap[0] will be set to 1 approximately half of the times, bitmap[1]
will be set 1/4 of the times, bitmap[2] will be set 1/8 of the times, and so on. This
leads to the probability of setting the bit at position k shown in Equation (1).

P (p(h(d)) = k) = 2−k−1 (2.3)

Because of this, PCSA uses the position, l, of the leftmost zero in the bitmap
vector counting from the left as an estimation of log2(φ|S|), where φ = 0.77351 [FM85].
This makes it possible to estimate the cardinality of S as 2l/φ. Figure 2.6 exem-
plifies the process. The least significant 1-bit for the left item is at position 3 and
causes bitmap[3] to be set. The one for the right item is instead at position 0
and it causes bitmap[0] to be set. Given these values, the position of the leftmost
zero in the bitmap vector is then l = 1, which leads to a cardinality estimation
of 2.58 = 21/0.77351.

Clearly the probabilistic nature of PCSA implies the presence of an estimation
error. To reduce it, the authors of [FM85] propose the use of m bitmap vectors,
instead of a single one. Specifically, let r = (h(d) mod m); the improvement
consists in using the value of h(d)/m to update the rth vector as described above.
Averaging the positions of the leftmost 0s (counting from the left) from all the
m bitmap vectors provides an estimate of log2(φ|S|) with less than a 2% error
when using m = 8192. We therefore use m = 8192 in our implementation. Even
with this improvement, it is important to observe that the estimation error tends
to be larger for very small multisets. This fact must be taken into account when
selecting the size of Produck’s superchunks, as discussed in Section 2.6.2.

2.3.3.2 Probabilistic multiset intersection

Although PCSA was designed to estimate the cardinality of a multiset, it is easy
to see that the bitmap vector of the union of two multisets, A and B, can be
computed by simply applying the bitwise OR operator on the two corresponding
bitmap vectors, bitmap[A] and bitmap[B].
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bitmap[A ∪ B] = bitmap[A] | bitmap[B] (2.4)

The above algorithm gives us an estimation of the cardinality of the union of
the two sets. Leveraging this observation, the authors of [MBN+06] propose the
evaluation of the cardinality of the intersection of two multisets by expressing it
as follows.

|A ∩ B| = |A|+ |B| − |A ∪ B| (2.5)

Equation(3) makes it possible to approximate |A ∩ B| simply by estimating
the three cardinalities on its the right-hand side, which can be estimated with
PCSA and Equation(2).

2.3.3.3 Maintaining chunk information

In the context of Produck, we have two types of multisets. The first are the
superchunks created by Clients as described in Section 2.3.2. These are multisets
because each superchunk can contain repeated chunks of data. The second con-
sists instead of the sets of chunks stored by each StorageNode. Again, these are
multisets because each StorageNode stores multiple superchunks, which in turn
may contain multiple identical chunks (although stored once). In fact, this is the
goal of the data assignment process – to assign identical chunks to the same node.

The Client is responsible for creating bitmap vectors for the superchunks it
creates. Specifically, when a Client wishes to store a file on the backup system, it
first splits it into chunks and superchunks as described in Section 2.3.2. For each
created superchunk, it computes an array of 8192 bitmap vectors, as described
above, and sends it to the Coordinator as a request to store the corresponding
superchunk. The total size of these vectors is 64KB. The value of 8192 for the
number of vectors was chosen as it provides a good tradeoff between the estima-
tion error and the time complexity of PCSA, as we will show in Section 2.6. In
addition, this allows the Coordinator to efficiently assign superchunks to nodes by
only storing 64KB per storage node, thus leading to minimal space requirements.

The Coordinator instead is responsible for creating, and maintaining bitmap
vectors for the second type of multisets, as a result of its assignment decisions.
Specifically, the Coordinator maintains a storage bitmap vector, bitmapS, for
each storage node in the system. Each such vector is initialized to a sequence of
0’s and is updated by combining it with the bitmap vectors of stored superchunks
according to Equation (2). After each assignment decision, the Coordinator up-
dates the bitmapS of the storage node that is to store the new superchunk by
applying the bitwise OR operator on the node’s bitmapS and the superchunk’s
bitmap vectors.
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In the case of data deletion, the bitmapS vectors describing node content
have also to be updated to reflect the new state of the node. Our method for
computing the bitmap vector of the union of a set does not allow us to undo it
on-the-fly, thus we rely on offline mechanisms to update the vectors of the nodes
and reclaim the freed space. We expect this process to run twice per day as this
is also the case for production systems, according to [GE11]. In our experiments,
recomputing the bitmap vectors of all the superchunks in the Wikipedia dataset
(520GB) takes less than 7 minutes, thus making it fast enough to avoid imposing
performance problems.

2.3.3.4 Choosing the best StorageNode

When a Client wishes to store a superchunk, sc, on the backup system, it com-
putes its corresponding bitmap vector and sends it to the Coordinator, along
with the associated superchunk identifier. The Coordinator then uses the above
technique to identify the StorageNode that is most suited to storing the received
superchunk. Once it has selected the StorageNode that will store superchunk
sc, the Coordinator informs the Client and updates the StorageNode’s bitmapS

vector, by combining it with the one corresponding to sc and using Equation (2).

In order to select the best StorageNode for each superchunk, sc, the Coor-
dinator estimates, for each StorageNode n, the cardinality of the intersection
between the chunks stored by n and the content of sc. This is easily achieved by
applying Equations (2) and (3) to the corresponding bitmap and bitmapS vectors
and yields a measure of the overlap between the received superchunk and each
StorageNode.

In addition to the overlap between a node’s content and a superchunk, and
to minimize the effect of estimation errors, we leverage data locality properties
observed in backup workloads. Specifically, instead of selecting the StorageNode
with the highest overlap value, the Coordinator ranks the top k StorageNodes
according to their overlaps. If the node that stored the previous superchunk in
the file is among these k and his difference from the first node is less than 10%,
then the Coordinator selects this node for the current superchunk, otherwise it
selects the top node. We tested several values of k, and k = 3 provided a good
compromise between locality and overlap. Finally, if no StorageNode is found
to have an overlap with a given superchunk or all nodes with an overlap are
overloaded, the Coordinator selects a StorageNode at random among the non-
overloaded ones.
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2.3.4 Load Balancing

As mentioned in Section 2.1, the main challenge when designing cluster-based
deduplication systems is the reconciliation of the conflicting requirements for
good deduplication while keeping the system load-balanced. In the previous para-
graphs, we described how Produck manages to detect the node which shares the
most chunks with a new-coming superchunk. In this paragraph we focus on the
second goal of the chunk assignment process, which is to keep the system load-
balanced.

Produck achieves load balancing through a novel bucket-based mechanism
that is specifically designed to operate with our similarity-based chunk-assignment
strategy. A simple approach to load balancing could, for example, constrain the
selection of the most suitable StorageNode to the nodes that have a storage load
that does not exceed the average load of the system by more than a fixed percent-
age, e.g. 5%. This mechanism, which is used for example in [DDL+11], however,
is too aggressive when used with our chunk assignment strategy, as shown in
Section 2.6.3.

Our novel bucket-based load-balancing strategy, instead, operates by splitting
the storage space of each node into fixed-size buckets. At initialization time, the
Coordinator grants each StorageNode permission to use one of its buckets. When
a StorageNode fills the latest bucket it was granted, the Coordinator grants it a
new bucket only if after doing so, the node’s used storage space would not exceed
the number of buckets allocated to the least loaded node by more than a given
threshold. The impact of the maximum number of buckets that the most loaded
node is allowed to differ from the least loaded one is further studied in Section 2.6.
In the same section, we show that this strategy gives better results in terms of
deduplication while guaranteeing an equal distribution of storage load among the
nodes in the system.

2.4 PRODUCK Operation

To provide a clearer picture of the behavior of Produck, we now detail the oper-
ations carried out when storing and when retrieving a file.

2.4.1 Backing Up a File

The storage of a file starts with a request that a user or an application issues to
the Produck Client. The Client first splits the file into chunks and superchunks
as described above. Then, it starts the actual backup operation by interacting
with the Coordinator and StorageNodes. The details of the process are depicted
in Figure 2.7a.
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Figure 2.7: Messages exchanged during storing and retrieving a file in Produck.

When the Client has created the superchunks, it sends a PutFileReq message
to the Coordinator. The PutFileReq contains the file’s identifier (fileId), the
number of superchunks in the file, their checksums, and the size of the file in bytes.
The fileId is the SHA1 hash of the file content and is used in the retrieval process as
a file-integrity check. Upon reception of the PutFileReq, the Coordinator chooses
a StorageNode uniformly at random and delegates the responsibility for the file
to it. This guarantees that all nodes will be responsible for approximately the
same number of files. After selecting a responsible StorageNode, the Coordinator
replies to the Client with the identifier of this node. In addition, it informs the
responsible node about its selection and sends it all the information received by
the Client in a FileAssignmentMsg.

The responsible node keeps track of which StorageNode stores each of the
superchunks in the file. This allows the Coordinator to maintain state only on
a per-file, or even on a per-backup instead of on a per-superchunk granularity.
Furthermore, it contributes to responsiveness and scalability of the system, as
the small size of this information allows the Coordinator to keep most or even all
of the responsible node index in memory.

After the PutFileReq, the Client sends a PutSuperChReq request to the Co-
ordinator for each of the superchunks in the file. This message contains the
identifier of the superchunk and its bitmap. This is sufficient for the Coordinator
to pick the best candidate among the StorageNodes as described in Section 2.3.3.
After picking the right StorageNode, the Coordinator replies to the Client with a
PutSuperChResp informing it of which node will store the superchunk. The client
reacts by sending the actual data to the selected StorageNode in a SuperChunk
message. When the transmission of the superchunk is over, the StorageNode that
received it sends a SuperChunkAck message to the node responsible for the file.
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The SuperChunkAck contains the checksum of the data in the superchunk and
the corresponding identifier. This enables the responsible node to record which
StorageNode stored which superchunk, and allows it to check the integrity of the
data received by the StorageNode. If something went wrong, the responsible node
requests the Client to resend the data to the StorageNode.

The above process is repeated for all the superchunks in the file. When the
responsible node has received acknowledgements for all the superchunks, it sends
an EOF message to the Coordinator, which then forwards it to the Client.

Here we have to note that, although, in the current version of Produck the
operations of chunking and storing a file are executed the one after the other, the
two operations could be pipelined and the Client could send a storage request as
soon as a superchunk is ready to be stored.

2.4.2 Recovering a File

The process of reading a file is also initiated by a user request to the client.
As depicted in Figure 2.7b, the client reacts to this request by contacting the
Coordinator with a GetFileReq message, specifying the identifier of the file to
retrieve. The Coordinator looks up the responsible node for the file and forwards
the GetFileReq message to it. The responsible node replies to the client by
providing the identifier, checksum, and StorageNode for each superchunk in the
file in a GetFileResp message. The client downloads each superchunk from the
corresponding StorageNode and uses the checksums received from the responsible
node to verify their integrity.

2.5 Experimental Methodology

In this section we present our experimental set-up: the datasets we used, the com-
petitors we compared Produck against, and the metrics we used. Since we focus
on evaluating deduplication efficiency and load balancing with respect to storage,
we evaluate Produck through simulations to avoid any networking side-effects.
Yet, we built our simulator so that the transition to a real implementation only
consists in changing its communication primitives from in-memory transactions
to network messages.

2.5.1 Datasets

We evaluate Produck and its competitors using two real-world workloads. The
first is publicly available for download1 and consists of 16 full snapshots of the

1http://dumps.wikimedia.org/enwiki/
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English version of Wikipedia. The oldest dates back to March 2011, while the
newest was taken in May 2012. This dataset contains full versions of all articles
in Wikipedia and accounts for more than 520GB of data. The second dataset
contains images of the environments available for deployment on the servers of the
Grid5000 experimental platform2 and accounts for 142GB. These workloads con-
tain both text(Wikipedia) and binary data(Images), thus covering many common
cases. Table 2.1 presents more details concerning the above described datasets. In
particular, the Deduplication Factor is the ratio of the original size of each dataset
divided by its size after being deduplicated based on our chunking mechanism.

Dataset
Size
(GB)

Deduplication
Factor

Data Format

Wikipedia 522 1.96 HTML

Images 142 4.27 OS images

Table 2.1: Dataset Description

2.5.2 Competitors

Before evaluating the specific aspects of Produck, we compare it against the two
state-of-the-art cluster-based deduplication storage systems presented in [DDL+11]
and described in Section 2.2 of this document. These are the BloomFilter state-
ful strategy and the MinHash stateless one. To remind the reader of the basic
principles of each one of these two strategies, we recall that in BloomFilter the
Coordinator keeps a bloom filter as the chunk index of each StorageNode in order
to assign superchunks to nodes, while in MinHash, the minimum hash value, i.e.
the minimum signature, of the chunks in a given superchunk is selected as the
superchunk’s signature and the modulo(number of bins) operator is applied on
it to select the bin to store it. Bins are an abstraction used for load balancing
and are assigned to nodes initially at random, and when a node becomes over-
loaded, they are reshuffled and reassigned to nodes. In both strategies, a node is
considered overloaded if its load exceeds the average load in the system by 5%.

In all our experiments, we set the superchunk size for the two strategies men-
tioned above to 1MB. This value is quoted in [DDL+11] as the one giving the best
results. We confirmed this by running MinHash on our datasets. In addition, we
set the number of bins for MinHash to 100.

2https://www.grid5000.fr/
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2.5.3 Evaluation Metrics

We evaluate Produck along the same metrics as the ones used in [DDL+11],
namely Total Deduplication (TD) representing deduplication efficiency, Data
Skew (DS) capturing load imbalance and Effective Deduplication (ED) account-
ing for both the deduplication factor and load balance. In addition, we also
measure the Assignment Time (AT) to capture the computational cost incurred
by each of the assignment strategies: Produck, BloomFilter and MinHash. We
now detail each of these metrics.

• Total Deduplication (TD): TD is computed as the ratio between the orig-
inal size of the dataset and its size after being deduplicated, as shown in
Equaltion 2.6. The result is then normalized by the total deduplication
achieved on a single-node cluster. This metric measures how efficiently a
system is at detecting and, thus, eliminating redundancy (i.e. duplicate
chunks) present in the workload. The normalization step makes it easier to
compare a cluster-based system with the performance of the optimal case
of a single-node system with no load-balancing constraints.

Total Deduplication (TD) =
Original Size

Deduplicated Size
(2.6)

• Data Skew (DS): DS is the ratio of the occupied storage space on the most
loaded node to the average load in the system. This is shown in Equa-
tion 2.7. DS captures the efficiency of a system in spreading the load equally
among the available nodes. A high value of DS means that a node is over-
loaded and can result in duplicate data being sent to sub-optimal (in terms
of deduplication) nodes. To understand this, one has to remember that the
Coordinator will not consider an overloaded node eligible for storing a new
superchunk, even though it may already store most of the superchunk’s con-
tents. Instead of the overloaded node, the Coordinator will select another
node, resulting in sub-optimal deduplication.

Data Skew (DS) =
Max Node Load

Avg. Node Load
(2.7)

• Effective Deduplication (ED): ED is defined as Total Deduplication (TD)
divided by Data Skew (DS) and normalized by the TD achieved by a single
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node system. This metric encompasses both deduplication effectiveness and
storage (im)balance. The intuition behind it, is that the performance of the
whole cluster degrades if one node is overloaded. The reason for the nor-
malization is the same as in the case of Total Deduplication. Equation 2.8
presents the formula to compute the metric.

Effective Deduplication (ED) =
Total Deduplication (TD)

Data Skew (DS)
(2.8)

• Assignment Time (AT): Finally, the Assignment time, measured in seconds,
measures the time it takes for each strategy to assign all the dataset to the
available nodes. This metric provides an estimation of the computational
cost of each strategy and can be viewed as an upper bound on the system’s
throughput as data cannot be stored before being assigned to a node.

Assignment T ime (AT ) = seconds needed to assign all data to nodes
(2.9)

2.6 Experimental Results

In this section, we provide a thorough evaluation of Produck. In Section 2.6.1
we present the results of the comparison of Produck against the two alternative
cluster-based deduplication strategies presented in Section 2.5.2. We then dive
into the specifics of Produck in Section 2.6.2 and study how different values of
its configuration parameters affect its performance. Finally, Section 2.6.3 shows
the contribution of our bucket-based load-balancing mechanism to the overall
performance of Produck and presents how load balancing is preserved as more
data is added to the system.

2.6.1 Produck against Competitors

We first compare Produck against the BloomFilter (stateful) and the MinHash
(stateless) approaches across different cluster sizes. For all approaches, we use
a chunk size of 1KB. However, for the sake of fairness, we set the other pa-
rameters to values that have been identified as optimal for each approach. The
optimal superchunk size for MinHash and BloomFilter was identified by their
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Figure 2.8: Effective Deduplication (ED) for all datasets for Produck, Bloom-

Filter and MinHash as a function of the cluster size.
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Figure 2.9: Assignement Time (AT) in seconds for all datasets for Produck,
BloomFilter and MinHash as a function of the cluster size.

authors [DDL+11] as 1MB. This is confirmed by our own experiments. With 64
nodes, MinHash yields ED values of 0.49 and 0.26 for Wikipedia, and 0.27 and
0.13 for Images for superchunk sizes of 10MB and 100MB respectively, against
values of 0.55 and 0.40 with a superchunk size of 1MB. For Produck, we set the
superchunk size to 15MB, the size of each bucket used for load balancing to 5
superchunks and the maximum allowed difference between the nodes to 1 bukcet.
The reasoning behind these default values along with a sensitivity analysis of the
impact of different superchunk sizes on Produck’s performance are presented in
Section 2.6.2.

We are firstly interested in studying how each strategy manages the tension
between the level of deduplication it achieves and the requirement for a load-
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Figure 2.10: Effective Deduplication (ED) for both datasets for different super-
chunk and cluster sizes.

balanced system. For this purpose, we choose to present in Figure 2.8 the Effec-
tive Deduplication (ED) of each system, as this metric combines deduplication
effectiveness and load balancing. We observe from Figure 2.8 that Produck out-
performs MinHash across both datasets for big clusters and that the difference
increases as the cluster-size grows. In fact, focusing on 32- and 64-node clus-
ters, which constitute the most difficult cases, as the more the nodes the more
pronounced the deduplication/load balancing tension, we can see that Produck
improves ED by 7% and 16% for the Wikipedia dataset and 16% and 21% for the
Images one when compared to MinHash. In addition, for the Wikipedia dataset,
which has the largest size after deduplication, we see that Produck scales better
than MinHash as the cluster grows while for Images the two curves present similar
behavior.

Although Produck is outperformed by the BloomFilter strategy, its ED is at
most 23% and 22% lower, respectively in the Wikpedia and Images datasets.
The better ED of BloomFilter is expected since this strategy sacrifices memory
and computational resources to achieve almost accurate knowledge of a node’s
content at all times. This allows BloomFilter to leverage deduplication while
ensuring that the load remains balanced. Yet, this also causes its cost to be sig-
nificantly higher than that of Produck as shown in Figure 2.9. The plot presents
the Assignment Time (AT) metric, i.e. the time needed by each strategy to as-
sign all the data in a given dataset to the available storage nodes. This metric,
apart from being an illustration of computational cost, also serves as an upper
bound on the throughput of each storage system. Figure 2.9 clearly indicates
that the computational cost of BloomFilter is much higher than those of both
Produck and MinHash. In addition, and more importantly, the computational
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Produck MinHash BloomFilter

ED DS TD AT ED DS TD AT ED DS TD AT
ED
(1/8)

AT
(1/8)

Wikipedia

1 1.00 1.00 1.00 - 1.00 1.00 1.00 - 1.00 1.00 1.00 - 1.00 -
2 0.79 1.00 0.79 1795 0.80 1.00 0.80 1959 0.80 1.00 0.80 3655 0.79 2177
4 0.69 1.00 0.69 1916 0.70 1.00 0.70 2035 0.78 1.00 0.79 5108 0.66 2484
8 0.64 1.00 0.64 2015 0.63 1.01 0.64 2135 0.84 1.01 0.86 8294 0.59 2962
16 0.62 1.00 0.62 2170 0.60 1.01 0.61 2146 0.83 1.02 0.87 14344 0.56 3819
32 0.62 1.00 0.62 2466 0.58 1.03 0.59 2171 0.83 1.05 0.87 27292 0.64 5304
64 0.64 1.01 0.65 3541 0.55 1.05 0.58 2548 0.84 1.05 0.88 56237 0.79 9302

Images

1 1.00 1.00 1.00 - 1.00 1.00 1.00 - 1.00 1.00 1.00 - 1.00 -
2 0.76 1.00 0.76 426 0.79 1.00 0.79 472 0.82 1.00 0.82 889 0.74 529
4 0.62 1.00 0.62 457 0.65 1.00 0.65 500 0.72 1.05 0.76 1370 0.56 642
8 0.56 1.01 0.57 470 0.55 1.02 0.56 506 0.70 1.05 0.73 2216 0.44 799
16 0.55 1.01 0.55 503 0.49 1.03 0.50 521 0.67 1.05 0.70 3989 0.47 1049
32 0.51 1.02 0.52 582 0.44 1.05 0.46 531 0.65 1.05 0.68 7616 0.54 1530
64 0.48 1.01 0.48 762 0.40 1.08 0.44 610 0.62 1.05 0.65 15555 0.57 2763

Table 2.2: Effective Deduplication (ED), Data Skiew (DS) , Total Deduplication (TD) and Assignment Time (AT) as
functions of the cluster size. The last two columns of the table are for the case where sampling (1 over 8) is applied
to the superchunks to reduce the number of comparisons and the size of the bloom filter.
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Figure 2.11: Effective Deduplication (ED) for both datasets for different bucket
and cluster sizes.

cost of BloomFilter increases too fast as the cluster grows, something that can
easily result in scalability problems. For a 32-node cluster, BloomFilter is more
than 11 times slower than Produck for Wikipedia and more than 13 times for Im-
ages while for a 64-node one, these values become 16 and 21 respectively. More
importantly, the memory overhead induced by the maintenance of the Bloom fil-
ters remains far from negligible. To achieve a 1% rate of false positives, a Bloom
filter requires 9.6 bits per element. Given a chunk size of 1KB and for a storage
node with a capacity of 140TB of unique data, as the ones mentioned in the
commercial version of [DDL+11], the Bloom filter can reach the size of 168GB.
3 And this is just for 1 storage node. The amount of memory required by the
Coordinator should be multiplied by the number of storage nodes in the system.
These drawbacks were also observed by the authors of [DDL+11] who addressed
this issue by sampling the chunks in a superchunk at a frequency of 1 over 8. We
applied the same strategy and present the corresponding results for ED and AT
in the last two columns of Table 2.2, along with those for all the other metrics
and strategies.

Table 2.2 shows the results of all the metrics, including Data Skew (DS) and
Total Deduplication (TD) for all the considered approaches. From the table,
it is clear that Produck consistently improves TD with respect to the MinHash
approach for large clusters, while ensuring that the load remains equally spread
among nodes. In fact, DS does not surpass 1.02, which corresponds to the most
loaded node being only 2% more loaded than the average. More importantly, the
fact that BloomFilter provides a better deduplication factor comes at the price

3This is due to the fact that 140GB can store up to 140·2
10

·2
10

·2
10

1
≈ 150 · 109 unique chunks

which should be multiplied by the 9, 6bits to find the size of the BloomFilter.



48 Probabilistic Deduplication for Cluster-Based Storage Systems

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  1.5  2  2.5  3  3.5  4  4.5  5

E
ff

e
c
ti
v
e
 D

e
d
u
p
lic

a
ti
o
n
 (

E
D

)

Maximum Allowed Bucket Difference

2 nodes
4 nodes
8 nodes

16 nodes
32 nodes
64 nodes

(a) Wikipedia

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  1.5  2  2.5  3  3.5  4  4.5  5

E
ff

e
c
ti
v
e
 D

e
d
u
p
lic

a
ti
o
n
 (

E
D

)

Maximum Allowed Bucket Difference

2 nodes
4 nodes
8 nodes

16 nodes
32 nodes
64 nodes

(b) Images

Figure 2.12: Effective Deduplication (ED) for both datasets for different values of
maximum allowed bucket difference between the most and the least loaded nodes
and across different cluster sizes.

of high computational and memory cost.
In addition, in Table 2.2 we present the results of BloomFilter, after applying

the sampling strategy proposed in [DDL+11]. After the sampling, we see that its
ED drops significantly in both datasets and across most cluster sizes, becoming
lower than that of Produck in most of the cases. At the same time, its Assignment
Time remains 3 to 4 times larger than that of Produck. In addition, although
sampling reduces the sizes of the Bloom filters by 8 times, the total amount of
memory required for storing the Bloom filters on the Coordinator remains large:
64× 21GB for a system of 64 storage nodes of 140TB each.

2.6.2 Produck Sensitivity Analysis

In this section, we study the impact of various configuration parameters on the
performance of Produck. This contributes to (i) illustrating the tradeoffs in
cluster-based deduplication, and (ii) revealing the reasoning behind the default
values we selected for our system. The parameters we are interested in are (i)
the size of the superchunk, (ii) the size of the buckets used for load balancing,
and (iii) the maximum allowed difference in the number of used storage buckets
between the most and the least loaded node.

The results of this analysis are presented in Figures 2.10, 2.11, and 2.12 across
different cluster sizes. This provides an idea of the evolution of the system as the
cluster grows. In the plots, the size of the superchunk is measured in groups of
1024 consecutive chunks, which correspond to MBs as the average chunk size is of
1KB. The default superchunk size is 15MB. The bucket size is instead expressed in
number of superchunks, with a default value of 5. Finally, the maximum allowed



Experimental Results 49

bucket difference is expressed in number of buckets, and has a default value of 1.
In each experiment, we vary one of the above three parameters while keeping the
other two constant at their respective default values.

2.6.2.1 Superchunk size

Figure 2.10 shows how the values of ED are affected by the size of superchunks
for various cluster sizes. In each of the datasets, performance is best for a specific
superchunk size. In the case of Wikipedia the best ED is achieved with a size of
around 50MB, while for Images the maximum is around 10MB. The difference
between the optimal values of the two datasets reflects their different properties.
As a general rule, smaller superchunks are better for workloads characterized by
larger deduplication factors. This is because smaller superchunks improve the
ability to detect redundancy and thus provide a greater advantage for workloads
characterized by the presence of a large number of duplicates. Nonetheless, even
in the case of Images, too small superchunk sizes prove to be disadvantageous.
The reason lies in the estimation error inherent in PCSA. As observed in Sec-
tion 2.3.3, the estimation error is larger when the multisets (superchunks) being
considered are small. The choice of the best superchunks size therefore requires
a balance between these two aspects. In the current version of Produck, we
use a default value of 15MB. This value not only provides good results on the
considered datasets, but it is also close to the optimal value for Images, which,
according to the study in [WDQ+12], is a good example of real workloads. We
are investigating the possibility of dynamically determining the best superchunk
size for the workload being considered.

Figure 2.10 also shows another interesting fact. In the case of Images, ED
tends to drop as the cluster size grows. This negative impact of the cluster size on
ED is expected. The bigger the cluster the more the load-balancing mechanism
will spread the data among the cluster nodes. Yet, this is at odds with the
effort of the deduplication mechanism that wants data to be concentrated on as
few nodes as possible so that more duplicates end up on the same server. The
figure also shows that the impact of the cluster size is much less significant for
the Wikipedia dataset. Again, this is because the larger number of duplicates in
Images make it more important to keep data clustered.

2.6.2.2 Bucket size

Figures 2.11 analyze the values of ED for increasing bucket sizes. A first conclu-
sion we can draw from the graphs is that ED either stabilizes or drops for bucket
sizes greater than 10 superchunks. In the case of the Wikipedia dataset, where
duplicates are scarce, all bucket sizes perform almost the same and, once again,
the cluster size does not have a big impact on ED beyond a size of 2 nodes (ED
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Figure 2.13: Effective Deduplication (ED) for both datasets for two load balancing
strategies (i) our bucket-based one, here called BucketLB, and (ii) the one from
[DDL+11], namely ThresholdLB, where the storage load of a node is not allowed
to deviate by more than 5% from the average load in the system.

varies from 0.69 to 0.61). For the Images dataset, where deduplication has more
potential for space reduction, smaller bucket sizes have better performance. More
precisely, a bucket size of 5 seems to be the optimal value for most cluster sizes.
This may seem counter intuitive as bigger bucket sizes mean fewer interventions
of the load-balancing mechanism, and thus more deduplication. However, a closer
look at the results of the experiments reveals that, in most cases, although the
achieved deduplication drops slightly with increasing bucket sizes, the drop in
ED is mostly due to an increase in the load imbalance (DS) among the nodes.
This, in turn, leads to more non-optimal node assignments because of the effort
to spread the load equally, ultimately causing a small drop in deduplication.

Based on this analysis, we set Produck’s default bucket size to 5 superchunks.
This keeps the system load balanced even for small datasets like Images on big
clusters (for Images on a 64 node cluster, the value of DS is 1.01) while giving
good deduplication results. For larger datasets, equal load distribution is also
guaranteed as the maximum deviation of a node from the average load in the
system is bounded. We further examine the efficiency of Produck’s load-balancing
strategy in Section 2.6.3.

2.6.2.3 Maximum allowed bucket difference

Finally, Figure 2.12 presents the performance of Produck for different levels of
allowed load imbalance among StorageNodes. The plot shows that increasing
the maximum allowed load imbalance does not have a significant impact for the
Wikipedia dataset. The same also holds for Images, although here, the impact
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is a bit more pronounced. This is rather expected as in Images there are more
duplicates. For very small cluster sizes, the maximum allowed bucket difference
does not significantly affect the achieved ED. When the cluster grows, a maximum
allowed difference of 1 bucket gives the best results.

2.6.3 Load Balancing and Evolution with Time

The whole design of Produck was driven by the tension between the requirement
for efficient deduplication and the one for a load-balanced system. We now study
the impact of our novel load-balancing strategy on the performance of Produck.
To this end, we compare our bucket-based mechanism (BucketLB) to the one used
by the BloomFilter strategy in [DDL+11], here termed ThresholdLB. In Thresh-
oldLB, the storage load of a node is not allowed to deviate by more than 5% from
the average load in the system. We ran Produck using both load balancing strate-
gies for different cluster sizes. Figure 2.13 presents the Effective Deduplication
(ED) and Table 2.3 presents the Total Deduplication (TD) and Data Skew (DS)
achieved in both datasets. In terms of ED, BucketLB outperforms ThresholdLB
across all cluster sizes and datasets. In fact, on a 64-node cluster, BucketLB
achieves 4.2% and 10.3% better ED, respectively, on Wikipedia and Images. From
Table 2.3, we can see that for small cluster sizes, both strategies achieve the same
total deduplication, but ThresholdLB pays a higher price in terms of load imbal-
ance, as its DS is constantly higher than that of BucketLB. As the cluster grows
and the intervention of the load-balancing mechanism is more pronounced, we see
that BucketLB also enables Produck to achieve better deduplication especially
in workloads with more duplicates. Ultimately, this allows Produck to achieve
the same or better deduplication while keeping the system more load balanced.
In addition, its benefits are more pronounced as the cluster grows. This leads to
the conclusion that BucketLB provides Produck with better scalability, a highly
desired property as deduplication clusters are expected to grow constantly due
to the fast pace at which digital data is produced [GCM+08b].

We also examine how our load-balancing mechanism behaves as more data is
added to the system. We focus on the Wikipedia dataset, which is the largest one
after deduplication, and we store the snapshots in the order they were taken while
recording system statistics after each snapshot is stored. We do so in order to
make our results as close to a real deployment as possible. The same conclusions
hold for the other dataset. The results for Data Skew in 32- and 64-node clusters
are presented in Figure 2.14. We focus on big clusters for two reasons. First,
backup clusters are expected to grow constantly, as mentioned earlier. Second, the
effect of the load-balancing mechanism on deduplication is more pronounced on
large clusters as data is more scattered across nodes. Figure 2.14 shows that our
bucket-based load-balancing policy manages to guarantee an equally distributed
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nodes
Wikipedia Images

Bucket Threshold Bucket Threshold
TD DS TD DS TD DS TD DS

1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2 0.79 1.00 0.8 1.05 0.76 1.00 0.77 1.05
4 0.69 1.00 0.69 1.05 0.62 1.00 0.62 1.05
8 0.64 1.00 0.64 1.05 0.56 1.01 0.56 1.05
16 0.62 1.00 0.62 1.05 0.55 1.01 0.52 1.05
32 0.62 1.00 0.62 1.05 0.51 1.02 0.48 1.06
64 0.65 1.01 0.64 1.05 0.48 1.01 0.41 1.06

Table 2.3: Total Deduplication (TD), and Data Skiew (DS) for both datasets and
for both load balancing strategies, BucketLB and ThresholdLB, as a function of
the cluster size.

storage load even from the first few GBs stored in the system. In a 64-node
cluster, after only the first snapshot has been stored (29GBs), the most loaded
node does not store more than 10% more data than the average load in the system
(DS=1.1). In addition, the load imbalance drops fast and after 6 snapshots, DS
does not surpass the value of 1.03. The drop in the load imbalance is expected
as nodes are allowed to deviate by one bucket at most and buckets are of fixed
size. As more data is added to the system, and the average load increases, the
size of a bucket becomes smaller as a percentage of the increasing average load,
thus causing a continuous decrease in DS. The good performance of Produck in
terms of load balancing allows it to avoid periodic rebalancing operations as is
instead done in MinHash [DDL+11].

Finally, although we considered nodes equipped with disks of equal size, this
does not limit the applicability of Produck and its load-balancing strategy. In the
case of nodes with different disk sizes, each node can be assigned a weight equal
to the ratio of its disk size to the maximum disk size in the system. This allows
our load-balancing mechanism to load each node proportionally to its capacity.

2.7 Conclusion

In this work, we presented Produck, a stateful yet lightweight deduplication so-
lution for cluster-based storage systems. We compared our solution to state-of-
the-art stateful and stateless techniques over two real-world workloads of close to
700GB in total and we showed that Produck achieves an 18% average improve-
ment in deduplication with respect to existing stateless solutions while reducing
the superchunk-assignment time by up to 18 times, when compared to stateful
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Figure 2.14: Evolution of the Data Skew (DS) for the Wikipedia dataset as data
is stored at their chronological order.

ones. In addition, this is achieved with minimal computational and memory costs.
Specifically, the memory overhead is limited to an indexing structure of 64KB per
storage node. Our findings demonstrate that stateful solutions can actually be
used in practice.

Apart from the above conclusions, our study has two main contributions. The
first is the introduction and evaluation of a compact indexing data structure in
the context of data deduplication. This structure allows the Coordinator to ac-
curately detect the overlap between the contents stored by a node and those of
a superchunk, with minimal memory requirements (64KB) and minimal compu-
tational cost. The second contribution is a novel, bucket-based load-balancing
mechanism. This mechanism manages to maintain the system load balanced
while not sacrificing duplicate detection and without requiring any additional
rearrangement of data to nodes, which could result in huge amounts of traffic.
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Chapter 3

Content and Geographical
Locality in User-Generated
Content Sharing Systems

User Generated Content (UGC), such as YouTube videos, accounts for a sub-
stantial fraction of the Internet traffic and according to analysts this is bound
to increase. To optimize their performance and minimize their operational costs,
UGC sharing sites invest a lot of effort in placing content close to their users that
request it. To do this, they usually rely on both proactive and reactive approaches
that exploit spatial and temporal locality in access patterns. Alternative types of
locality are also relevant and hardly ever considered together. In this chapter, we
show on a large (more than 650,000 videos) YouTube dataset that content locality
(induced by the related videos feature) and geographic locality (i.e. the fact that
two videos have most of their views originating from the same countries), are in
fact correlated. More specifically, we show how the geographic view distribution
of a video can be inferred to a large extent from that of its related videos. We
leverage these findings to propose a UGC storage system that proactively places
videos close to their expected, future requests.

3.1 Introduction

Over the last few years, users have become the most prolific content generators
on the Web, prompting the phenomenal success of user-generated content (UGC)
sharing sites such as YouTube [CKR+07, GALM07]. This rapid growth combined
with the never fulfilled user demand for better quality, makes serving UGC to an
increasing number of users all around the world a daily engineering feat [SSF08].
To this end, UGC sharing sites rely, in most cases, on Content Delivery Networks
(CDNs) to place content close to consumers, in order to be able to guarantee good
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quality of service while minimizing their operational costs. To achieve this goal,
CDNs employ both proactive approaches that rely on a priori knowledge (e.g.,
it is likely that a French-speaking video will be accessed mostly from French-
speaking countries) and reactive ones where aggressive replication is performed
whenever a new request arrives for a given video. In addition, in the reactive
approaches we could also add the ones where the recent history of a given video
is analysed to predict its future requests [HWLR08, CLYL08, YLZ+10].

Interestingly, beyond traditional forms of locality that account for each con-
tent item independently, recent studies have shown that UGC viewing patterns
are significantly influenced by the fact that content in these sites is no longer
independent but is organized in a content graph. In YouTube, this content graph
is embodied by the lists of “related videos” present on each video’s page, and its
influence on the viewing behavior of users has been clearly documented [KZGZ11,
ZKG10].

In this chapter we study the geographic viewing patterns of UGC and how
they are affected by the content graph. Our analysis on a novel YouTube dataset
shows that (i) related videos tend to have correlated geographic viewing patterns,
with most of their views coming from the same countries, and (ii) popular videos
tend to have their views more uniformly spread across more countries than less
popular ones. The latter category accounts for the vast majority of YouTube’s
content and have their views coming from a small number of countries. Although
this category contains less popular videos, in our analysis we show that its view
share is far from negligible, thus accounting for an important percentage of the
consumed bandwidth.

Building on these insights, we propose DTube, a system that accurately pre-
dicts the origins of a video’s future views by looking at its position in the content
graph and proactively places its replicas close to its expected consumers. Al-
though the impact of content locality, i.e. proximity in the content graph, on a
video’s views and geographically concentrated viewing patterns have been studied
independently [SMMC11, ZKG10, BSW12], to the best of our knowledge, this is
the first work that considers both aspects to optimize the placement of UGC.

3.2 Related work

To explain the challenges faced by User-Generated Content (UGC) sharing sites
when it comes to serving the content they host, we start by presenting the ad-
vances done in the architecture of Content Delivery Networks, whose goal is to
serve content from a server close to the origin of the request, before passing to con-
tent placement strategies that leverage content characteristics to make efficient
use of the available resources.
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Figure 3.1: Illustration of Akamai DNS translation.

3.2.1 Content Delivery

The traffic directed to sites like YouTube is already huge, as presented in the intro-
duction of this document, and is bound to increase, according to analysts [cis12].
This implies that even if an organization manages to satisfy its current needs,
there is no guarantee that it will be able to keep up with the increasing request
volume in the future, thus making the danger of “death by success” a constant
menace. To face these constantly increasing needs and offload some of the re-
lated costs, organizations employ Content Delivery Networks (CDNs) to help
them satisfy this increasing demand.

A content delivery network (CDN) is a large distributed system that consists
of servers deployed in multiple data centers all around the world. The goal of a
CDN is to serve content to end-users with high availability and high performance
and alleviate some of the burden that the servers of the CDN’s clients have. A
CDN operator gets paid by content providers for delivering their content to their
audience. In turn, a CDN pays ISPs, carriers, and network operators for hosting
its servers in their data centers.

When a site hires a CDN to serve its content (partially or entirely), the net-
work of servers owned by the CDN operator becomes responsible for redirecting
incoming requests to its servers that hold the requested content based on load
balancing and network path criteria. To do this, a CDN uses a hierarchy of DNS
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servers and by performing DNS redirection, it manages to translate a web client’s
request for content in a CDN customer’s domain into the IP address of a nearby
CDN server, called edge server. To gain an intuition on how DNS translation
works, we present a simple scenario where a client launches a request for a site
that happens to be a client of a CDN. First, the end user requests a domain
name translation to fetch content from the original site. The customers DNS
server uses a canonical name (CNAME) for the items that are to be served by the
CDN. This CNAME serves as an alias that contains a domain name in the net-
work owned by the CDN and enables a DNS server to redirect lookups to the
CDN domain [SCKB06]. After this initial translation, it is the responsibility of
the hierarchy of DNS servers owned by the CDN to respond to the DNS name-
translation request. The goal of this redirection process is to locate the n (in the
case of Akamai n = 2) edge servers that are not overloaded and are connected to
the request issuing client through a good quality network path, so that a good
quality of service is guaranteed for the end-user.

Figure 3.1 presents the above process using the PCWorld.com site as an ex-
ample. We assume that the images of the site are served by Akamai. After the
client issues a request for an object in the images.pcworld.com, the local DNS
server (LDNS) is contacted for the IP address of the domain (1). The LDNS then
returns the address for the domain (2) and when the pcworld.com name server
is contacted for a name translation, it begins the DNS redirection by returning a
CNAME entry for images.pcworld.com, that is served by Akamai. In the figure,
the value of the CNAME entry in this case is images.pcworld.com.edgesuite.net;
edgesuite.net is a domain owned by Akamai. The LDNS performs another a
name translation, this time on the edgesuite.net domain. Following this, two
more DNS redirections are subsequently performed. At first the LDNS is di-
rected to akamai.net domain (3), which begins the process of finding a nearby
edge server by forwarding the request to a high-level Akamai DNS server (4).
After this, the high-level Akamai DNS server forwards the request to a low-level
one (5) that, generally, is closer to the LDNS than the high-level one. Then, the
low-level Akamai DNS server returns the IP addresses of two edge servers that it
expects to offer high performance to the web client (6).

3.2.1.1 Peer-assisted CDNs

Although CDNs perform well, not all organizations can afford hiring them. In ad-
dition, CDNs themselves have to face the same scalability challenges, as more and
more traffic is redirected to their servers. A natural way to face these challenges
is to take advantage of the user resources residing at the end of the network. This
can permit services to scale as these resources are close to the users and their
number reflects the number of users enjoying the service at any given time. To
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do this, researchers and organizations started investigating the potential bene-
fits from a pass from the hierarchical tree-like structure proposed by the original
CDN design to the P2P paradigm.

To this end, peer-assisted CDNs have received a great deal of attention in
the last years [HWLR08, CLYL08, YLZ+10] with both hybrid and entirely P2P
solutions being proposed. In this chapter, we focus on video-on-demand services
and in the remaining of this paragraph we present the work related to these
services.

In [HWLR08], the authors study the potential benefits of leveraging the user
resources on Internet video-on-demand (VoD) and software update distribution.
To this end, they envision a hybrid architecture, where CDN owned servers co-
operate with user provided resources, i.e. end-user machines, during the content
serving process to guarantee better quality of service. The authors initially study
the infrastructure of two major CDNs, Akamai and Limelight, and they use trace-
driven simulations to evaluate the impact of augmenting their infrastructure with
P2P facilities. Their evaluation shows that for a VoD service, even if users con-
tribute to the serving of a video only during the period that they are watching it,
can cut by more than 2/3 the bandwidth needs for the CDN and when it comes
to software updates, the reduction reaches up to 95%.

In LiveSky [YLZ+10] the authors focus on IPTV and they propose a hybrid
architecture to support this type of services. IPTV is a more synchronous service
than video-on-demand, as users are watching (almost) the same part of the stream
at any given time. This imposes stricter time constraints but guarantees that
some peers are available throughout the broadcast. The architecture that the
authors propose can be seen as an augmented tree-like structure where the servers
owned by the service provider are organized in a tree and the users that are
connected to the same edge-server can communicate among them to exchange
parts of the stream, thus offloading some of the burden of the edge server. In
Livesky, clients switch between CDN and P2P delivery depending on the number
of the available peers, the CDN servers’ available bandwidth and peer churn. i.e.
peers changing their state from offline to online and vice versa.

In [HFC+08] the authors propose an architecture for video-on-demand services
that is based entirely on the P2P paradigm. Users participating in the service
are contributing a limited volume of storage (1GB) and part of their available
upload bandwidth and the system takes care of the putting in contact nodes that
request a given film with users that store it. To accomplish this, their system
leverages all three types of protocols available in the P2P literature, i.e. trackers
(also known as super nodes), DHTs [SMK+01, RD01, ZHS+04, RFH+01] and
gossip protocols [EGH+03, EGKM04, GKM03]. These methods provide different
levels of availability, freshness and robustness while each one of them requires
different amount of metadata to be stored by each participating peer. Trackers



60Content and Geographical Locality in User-Generated Content Sharing Systems

are used to keep track of which peers hold (parts of) a given movie. A peer stores
locally a copy of a given video as soon as it watches it. As soon as a peer selects
a movie, it contacts the tracker that it is assigned to, in order to locate a node
that stores the movie. After this, the new peer becomes member of the swarm of
peers watching the requested video and the remaining peers become its neighbors.
Discovering which one of the neighbors stores a given part of the film, is done
through a gossip protocol. This limits the amount of data the tracker would have
to store in the case that it was responsible for saying which peer stores which
part. In addition, and from a fault tolerance point of view, this cuts down on
the reliance on the tracker, and makes the system more robust. Finally, DHT is
implemented by the trackers to assign videos to them and by peers, as well, to
provide a non-deterministic paths to the trackers.

In [CLYL08], Chen et al. propose a staged approach for placing and popu-
lating servers in hybrid CDN/P2P networks to minimize the operational costs
related to streaming media in local P2P communities. In other words, the main
problem that the authors try to solve is how to move CDN owned resources from
one user swarm to another so that the quality of the stream arriving to the end
users is guaranteed to be of good quality throughout the duration of the stream.

In all the above solutions, the main goal is to leverage the stability of the
CDN owned servers and the fact that user machines, although unstable, reside
close to the users, in order to provide good quality of service. This model was
disrupted with the coming of the home gateways as a replacement for the classic
modem. Home gateways are devices with computational and storage capabili-
ties, that reside at the edge of the network and are responsible for connecting
a collocated set of machines to the Internet. Measurements on the availability
of these machines like [VLM+09] have shown that they are almost constantly
online, with an availability close to 98%. This change inspired researchers and
organizations to study the potentials of using home gateways as edge servers for
multiple services, including video-on-demand.

In [VLM+09] the authors propose a distributed computing platform composed
of home gateways. In this study, the authors focus on the energy savings incurred
by not using servers located in remote (from users) data centers but devices at the
edge of the network for providing video-on-demand services. Given this, [HCD09]
proposes a decentralized video storage and delivery service that uses home gate-
ways for both storing and serving content. Finally, in [MVCG11], the authors
focus on UGC sharing sites and show the feasibility of building a system like
YouTube, using residential gateways. The motivation the authors provide for de-
centralizing such services can be found in the fact that this would permit users to
have better control over the content they want to share with the world. Focusing
on gateways, they argue that given their high availability and their current pro-
cessing capabilities, they are good candidates to be used as home servers where
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users can upload their content and make it available to their “friends”.
Although the above systems leverage advances in technology to optimize serv-

ing the content to end-users, none of them has explored what properties of the
content itself can be leveraged to further optimize content distribution. In fact, all
of them assume that content moves according to user requests (reactively) while
none of them investigates how different placement strategies could contribute to
the goal of good quality of service while making efficient resource utilization.

3.2.1.2 Content Agnostic Placement

Focusing on the content placement problem on a geographically distributed sys-
tem, Kangasharju et al. [KRT07] investigate optimal placement strategies in P2P
content networks to maximize availability in content communities. To do this,
they develop an analytical optimization theory for benchmarking the performance
of replication/replacement algorithms and they propose a content management al-
gorithm, the Top-K Most Frequently Requested algorithm. Through their frame-
work, they show that in most cases this algorithm converges to an optimal replica
profile. Tan et al. [TM10] investigate the same problem for video-on-demand, but
optimize for the total upload bandwidth needed.

The above solutions consider requests as entities by themselves and the chan-
nels through which an item can become popular are not taken into account. In
fact, most of the above solutions consider that there is a central catalog that the
user visits and can select the movie that she wants to watch. In [SMMC11], the
authors make the case that nowadays, the diffusion of multimedia content offered
by sites like YouTube is more and more done through channels offered by other
online social networks such as Twitter and Facebook. Based on this assumption,
they investigate the possibility of monitoring these alternative channels to en-
hance the quality of the service provided by CDNs. To this end, they track social
cascades happening on Twitter, i.e. consecutive “retweets” among “followers”
of a message, and concerning YouTube videos and they show that they tend to
be confined to a geographically limited region. Thus, a CDN could improve its
cache hit rates by tracking the propagation of these cascades and caching content
accordingly.

3.2.1.3 Content Aware Placement

Although the above strategies take into account past user behavior to predict
the possible origins of future video requests, an aspect that they tend to ne-
glect even though it is crucial in user behavior in these sites, is the fact that
in social-networks content is no longer independent. Users “follow”(Twitter)
or “befriend”(Facebook) certain other users while videos are considered as “re-
lated”(YouTube) to other videos. This creates inter-dependencies between con-
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Figure 3.2: Content Graph in UGC networks.

tent items that, from now on, become part of a content graph where adjacent
items are considered as “related”. Figure 3.21 shows a part of the content graph
of Twitter. The fact that these relations affect how users interact with content
and how this can be leveraged by distributed systems to efficiently place con-
tent is the main focus of this chapter and in the remainder of this paragraph we
present some of the work already done towards this direction.

Volley [ADJ+10] focused on sites like Live Mesh and Live Messenger and aims
at exploiting content interconnections to place the data on data centers that are
close to users that are like to request them. The target is to decrease the perceived
latency. In this work the authors assume that only one copy is stored for each
content item as data durability is not considered.

NetTube [CL09] is a peer-assisted video-on-demand system that leverages the
correlated viewing patterns of users of services like YouTube and aims at reducing
the start-up delays observed in previous systems that organized viewer of a given
video in “swarms” through “social”-aware pre-fetching. In more detail, swarms
consist of users watching the same video and a user joins a swarm when watching
a video for the first time. To locate each of its consecutive choices, the user
explores the Friend-of-a-Friend network to look it up and in the case that there is
no hit, then the request is directed to the service provider’s servers. In addition,
and to smooth the playback, the user pre-fetches the prefixes (10 first seconds)
of the 3 top related videos of the video she is currently watching. As one can see

1Source: http://www.touchgraph.com/news
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from the above description, in NetTube the content graph is exploited implicitly
during the placement process as content is replicated on nodes that request it.
The only explicit exloitation of the content graph is during the pre-fetching phase,
where related videos are pre-fetched to smooth the playback.

Finally, in SPAR [PES+10] the authors propose a novel online graph partition-
ing and replication algorithm that aims to provide better scalability properties
to existing social networks. According to their scheme, is a social partitioning
and replication system that achieves one-hop replication of user profiles in social
networks: data of all the friends of a user are replicated on the same server as her
own data thus enableing efficient decoupling and scaling of online social networks.
At the core of SPAR lies an on-line greedy data placement algorithm coping with
dynamic additions and removals of nodes, edges and servers.

3.2.2 Youtube and User Behavior

In this paragraph we focus on user behavior in UGC sharing sites and we focus on
YouTube. The popularity of YouTube attracted the interest of many researcher,
that have generated numerous studies on user behavior and video characteristics.

Cha et al. propose to use a video’s history to predict its future demand [CKR+07].
In their work, among other useful results, the authors conclude that a video’s early
days can reveal a lot about its future popularity.

Zhou et al. also study a video’s popularity evolution but this time from
the standpoint of its position in the content graph. In this work, the authors
show that there is a strong correlation between the view count of a video and the
average view count of its top referrer videos. This implies that a video has a higher
chance to become popular when it is placed on the related video recommendation
lists of popular videos. In addition, they also find that the click through rate from
a video to its related videos is high and the position of a video in a related video
list plays a critical role in the click through rate. This is the work on which we
based our user behavior model when evaluating DTube’s performance.

Finally, in [BSW12], Brodersen et al. analyze the geographical distribution of
videos’ views in YouTube. Their main results are i) that most of the videos exhibit
a high concentration of their views in a small number of regions aorund the world,
ii) the impact of viral spreading on a video’s popularity is not trivial, in fact they
show that there is a threshold of 20% in how many views a video receives through
“social” sources, below which these views help the video widen geographically its
audience and above which, these views lead to further view concentration, and
iii) a video’s popularity expands geographically and then withdraws back to the
main region of focus.
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Figure 3.3: Geographic distribution of the origin of views for a sample YouTube
video.

3.3 Locality in UGC

Given the above discussion, in this paragraph we move on to investigate the
relation between the position of a video in YouTube’s content graph and the
distribution of the origins of its views around the world. Using a YouTube dataset
we crawled in March 2011, in Section 3.3.2 we start by showing that for the vast
majority of videos in YouTube, a small number of countries is responsible for
most of their views. Trying to leverage this for the efficient content placement, in
Section 3.3.3 we show that there is a strong correlation between the geographic
distribution of a video’s views and that of its related videos, and we leverage
this finding to propose a simple yet efficient mechanism to predict the geographic
distribution of a video’s future views.

3.3.1 Dataset Description

For our study we crawled our own dataset from YouTube, during the first three
weeks of March 2011, using snowball (BFS) approach. As a seed for our crawl,
we used an initial set consisting of the 10 most popular videos for 25 different
countries. This information is publicly available through the API provided by
YouTube. For each video, we collected three attributes:

i its list of related videos as provided by YouTube,

ii its total number of views, and
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iii its View Source Vector (VSV).

The VSV of a video represents how many views this video received from
each country in the world. For most of the videos, the VSV is available, on
the statistics page, as a colour map (Figure 3.3) generated by a specific URL
(charts.apis.google.com) containing (country, percentage of views) couples
encoded according to Google’s Simple Encoding Format. In our experiments,
we extracted the actual VSVs from these URLs. Table 3.1 shows the distribution
of the views (top 8 countries) at the granularity of a country, over the whole
dataset. The original dataset contained 1, 063, 844 videos in total. From these,
we removed the videos with no VSV, and filtered out non-crawled videos from
the related video lists. This left us with 689, 265 videos, each having 8 related
videos on average, for a maximum of 25 related videos allowed in YouTube.2

Country US CA GB BR JP DE PL AU

Prop. of views (%) 6.6 3.1 3.0 3.0 2.6 2.5 2.2 2.2

Table 3.1: Geographic distribution of views at the granularity of a country (top
8 countries).

In the following, we use the view-per-country information contained in the
VSVs to analyze the geographic distribution of views in our dataset. The goal of
our analysis is three-fold. At first we want to study for each video, the geographic
distribution of its views. After that we investigate the relation between the way
content is organized in UGC hosting sites and their viewing patterns and, finally,
we explore the feasibility of a proactive placement mechanism that places videos
in countries where they are most likely to be viewed.

Category # views % of videos % of total views

C1 [0, 104] 42.0 0.49
C2 (104, 105] 33.5 5.10
C3 (105, 106] 19.7 25.18
C4 (106, 107] 4.4 45.02
C5 (107, 108] 0.3 21.10
C6 (108,∞) 0.04 3.10

Table 3.2: Popularity categories and statistics

2Because the geographic information in our dataset is given at the granularity of a country,
we conduct our analysis at the same granularity.
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3.3.2 Popularity vs. Geographic View Distribution

We first investigate the link between a video’s overall popularity and the geo-
graphic distribution of its views. To this end, we partition our dataset into six
categories based on a video’s number of views. The distribution of videos shown
on Table 3.2 confirms earlier analysis [BSW12, CKR+07], highlighting a long-tail
distribution of views. Very popular videos (categories C5 and C6) represent less
than 1% of videos while accounting for almost 25% of all views. Because of the
long tail, the bandwidth cost of “unpopular” videos is however far from being
negligible: The 3 least popular categories (C1, C2, C3, or 95.2% of all videos) still
represent more than 30% of the total incoming requests.
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Figure 3.4: Geographic cumulative distribution of views for various popularity
categories

To analyse the geographic distribution of views for each category, we compute
the average geographic spread of video views as follows. For a given video, we sort
the countries in its VSV in decreasing order according to the proportion of views
originating from each country. We then compute the cumulative distribution of
views of each video and plot the average over each popularity category. Figure 3.4
presents the results of the above study. A point (n,m) on the graph means that
the n top countries for videos in this category account for m% of the total number
of views of the category.

Figure 3.4 shows that the views of niche videos (category C1, less than 10, 000
views) are geographically highly concentrated: 80% of all views for videos in C1
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Figure 3.5: Geographic cumulative distribution of views for various popularity
categories

come from less than 15 countries. This phenomenon fades out as the popularity
of videos increases, to reach an almost uniform global distribution for extremely
popular videos (category C6).

Yet, this concentration effect remains relatively strong for all videos up to
100M views (categories C1–C5, 96.9% of all views). This implies that a content
distribution system could benefit significantly from a proactive placement mech-
anism that accurately predicts a small number of countries in the first ranks of
a video’s VSV, and places its replicas accordingly. For instance, for videos in C3

(between 100, 000 and 1M views, 25.18% of all views), proactively placing video
replicas in (or close to) the top 25 countries would cover up to 80% of all views.

To further illustrate the potential gains a system may have by placing correctly
a video in a small number of countries, in Figure 3.5 we rank the countries in a
video’s VSV in decreasing order, and we plot the percentage of videos (y axis)
that has up to x countries responsible for more than 2%, 5% and 10% of its
worldwide views. In this experiment we do not take into account the video’s
popularity, as we want to show the importance of a prediction mechanism from a
video’s perspective. From this graph, we can clearly see that most of the videos
have a small number of countries responsible for the vast majority of their views.

We further study the geographic spread of the origins of the views by taking
into account the distances between the main sources of views. The motivation
behind this experiment is that it is easier to serve a video with low latency, with
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a single replica, for users in France and in Switzerland than for users in the UK
and in India. For each video, we compute the average of the pairwise distance
between the main sources of views (i.e., the top country covering 80% of the
views), weighted by the proportion of views each country is responsible for. For
instance, for a video viewed 1, 000 times, whose three main sources are US (500
views), UK (200 views), and Japan (100 views), our metric is:

(0.5 + 0.2)d(us, uk) + (0.2 + 0.1)d(uk, jp) + (0.1 + 0.5)d(jp, us)

(0.5 + 0.2) + (0.2 + 0.1) + (0.1 + 0.5)
,

In our dataset, we observed this average distance to be 26% less for unpopular
videos (∼5, 200 km) than for popular ones (∼7, 000 km).

3.3.3 Geographic vs. Content Locality

To explore how the top n countries of a video might be predicted, we now turn to
the relation between content locality and geographic locality. For each video, we
compute the Spearman correlation coefficient between its sorted VSV, i.e., the
list of all countries sorted by decreasing number of views, and that of each of its
related videos. The Spearman coefficient is defined in Equation 4 and captures
the correlation between the rank of countries in two sorted VSVs, taking into
account the permutations of ranks. The closer the absolute value of the coefficient
to 1, the more correlated the lists. The results of this experiment are plotted in
Figure 2 as a function of the rank in the list of related videos. In our dataset, this
correlation ranges from 0.64 to 0.68 which is relatively high. This means that a
video’s VSV can be inferred with high accuracy from that of its related videos.
In addition, from Figure 2 we can see that the smaller the rank of a video in the
related videos list, the higher the correlation of its VSV with the one of the video
pointing to it (for the video at rank 1 we have a correlation of 0.68). This implies
that the first related videos are the best candidates for VSV predictors.

ρ =

∑
i
(xi − x̄)(yi − ȳ)√∑

i
(xi − x̄)2

∑
i
(yi − ȳ)2

(3.1)

In order to see if the above finding can be translated into an efficient mecha-
nism for proactively placing video replicas close to where their future requests are
most likely to come from, we conduct the following experiment. For a given video
V and its first related Rel(V )[1], we compute for a given number m of replicas,
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Figure 3.6: Spearman correlation coefficient between a video’s geographic distri-
bution of views and that of its related videos, as a function of their rank in the
list of related videos

the percentage of views covered by placing them on the first m countries of the
VSV of Rel(V )[1], normalized by the percentage of views covered by placing the
replicas on the first m countries of the actual VSV of V . The later corresponds
to an ideal case where the placement mechanism knows in advance where the
views will come from. The results are presented in Figure 3.7, and, as we can
see, even for a small number of replicas, this simple prediction mechanism can
accurately follow the actual geographic distribution of the views of a given video.
For instance, 85% of the views covered by the first 5 countries of V ’s VSV are
covered by the first 5 countries of Rel(V )[1]’s VSV.

In summary, unpopular videos, which represent a large proportion of the
YouTube video collection, have (i) most of their views originating from a few
countries which (ii) spread in a limited region, thus foreseeing a great poten-
tial for geographic locality-aware data placement. Furthermore, the geographic
distribution of views of a video is strongly correlated with that of its related
videos. This implies that the geographic distribution of views of a video can be
predicted, but most importantly, it makes the case for a placement mechanism
in which videos close in the content graph are stored geographically close to one
another.
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Figure 3.7: Views covered by placing replicas of a video V in top-countries of the
VSV of V ’s first related video, normalized by the number of views covered when
using V ’s actual VSV.

3.4 DTube

Building on the insight from the previous section, we propose DTube, a proactive
content placement mechanism that places videos close to their future requests,
extracting a video’s geographical viewing patterns from the content graph. The
purpose of the system is to accurately predict where a video’s views will come
from, just by looking at its position in the content-graph. In addition, and to
further improve the accuracy of our placement mechanism, DTube places videos
based on a package-based replication scheme that reflects locality in the content
graph, as we will see in the following sections. Reactive strategies that create
video replicas upon incoming requests, could be deployed on-top of DTube to
further enhance its performance.

3.4.1 System model

We consider a User Generated Content sharing system that uses geographically
distributed nodes as its storage/serving infrastructure. Our findings hold for both
residential gateways [HCD09, MVCG11], peer-assisted CDN systems [HWLR08]
and data centers distributed around the world.

DTube assumes the existence of a catalogue service that holds, for each video,
the location of its replicas, its current View Source Vector and its meta-data
including the list of its related videos. This service is used to retrieve up-to-
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Figure 3.8: Overview of DTube’s placement strategy.

date meta-data and statistics about videos. We further assume the existence of
a recommendation algorithm [RRSB] that dynamically computes videos’ lists of
related videos and updates the catalogue accordingly.

3.4.2 Video placement

At a high level, DTube’s video placement mechanism seeks to solve a relaxed
partitioning problem that aims at placing related videos close to each other and
close to where they will be consumed. Its design is guided by the observation that
related videos are likely to share similar access patterns (Section 3.3). Exploit-
ing this observation allows us to proactively place new videos accurately, while
ensuring both geographic and content locality.

The key steps of DTube’s placement mechanism are depicted in Figure 3.8,
and we will present each one of them in detail in the remainder of this section.
When a new video V is uploaded to the system (a), YouTube’s recommendation
mechanism computes its “Related Videos” list, thus making it part of the content



72Content and Geographical Locality in User-Generated Content Sharing Systems

graph (c). DTube then estimates V ’s main future view sources, V̂SV(V ) (d) which
is later used to place replicas of V on the storage infrastructure. This step takes
as input V ’s “Related Videos” list and outputs its predicted View Source Vector,
V̂SV(V ) (Step 1). After this step, DTube constructs V ’s packages (e), which
contain (i) the video itself, and (ii) copies of its related videos (Step 2). Details

on how V̂SV(V ) is computed and why packages are used, are presented in the
paragraphs that follow. Finally, in Step 3, DTube locates optimal storage nodes
for V ’s packages in the top countries of the predicted VSV (d), according to
criteria that we detail below (f).

3.4.2.1 Step 1: View source prediction

When a new video V is uploaded on DTube, the recommendation mechanism of
the catalog service computes its list of Related Videos. This results in V becoming
a node in the (directed) content graph of the system (c in Figure 3.8), with edges
pointing from V to each one of its related videos. We denote by Rel(V ) the list of
related videos of V and by Rel(V )[i], the video V ′ in the i-th position in Rel(V ).

After this step, DTube leverages the findings of Section 3.3, and tries to predict
the origins of V ’s future requests, by only looking at its position on the graph (d).

To compute V̂SV(V ), DTube obtains from the catalog service (b in the figure)
the V SV of its top-related video, i.e. Rel(V )[1], as shown by Equation 3.2. The
reason for this is illustrated by Figure 2 and is that the higher the rank of a video
in V ’s “Related Videos” list, the higher the correlation between its V SV and the
one of V . This is a simple strategy but as we show in Section 3.5 performs well.
Other more complex strategies could also be applied.

V̂SV(V ) = VSV(Rel(V )[1]) (3.2)

3.4.2.2 Step 2: Package Creation

In Step 2, DTube uses the previously computed V̂SV(V ) to place ℜ replicas of
V on nodes in the system. ℜ is a system parameter called replication factor
and corresponds to the the minimum number of replicas a video must have to
guarantee its durability, i.e. not being lost due in case of storage node failure.
The ℜ replicas of V are not stored alone however: each of them attracts a replica
of each video related to V (Rel(V )) (e on the figure). We call this bundle of
|Rel(V )| + 1 videos, containing V and its related videos, a package. V is the
primary replica of the package while the other videos are the package’s secondary
replicas.

This package mechanism creates a first coupling between graph locality and
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storage locality, leading related videos to be stored on the same node. Thanks to
this package mechanism, most videos also receive more than ℜ replicas: they get
their ℜ primary replicas, plus a number of secondary replicas each time they
appear in another video’s related list. The net result is a coupling between
a video’s number of replicas (primary and secondary) and its in-degree in the
content graph. The above is a desirable property as Zhou et al. in [ZKG10] show
that there is a strong correlation between the view count of a video and the view
counts of its top referrer videos (i.e. its in-degree). This ensures that videos that
are more likely to be watched, also get more replicas. Given this, we can see that
creating videos for a replica proportionally to its in-degree could further help at
balancing the request load that each node has to serve. A popular video will have
more replicas thus leading to more nodes being able to serve requests for it.

3.4.2.3 Step 3: Storage node selection

Having the V̂SV(V ) and the packages of V , the final decision to be made is on
which node to place these packages. Each package of a video V is placed on a
node in each of the ℜ first countries of V̂SV(V ) (d) as most views are expected to
come from these countries. To minimize transfer and storage costs, only replicas
of the videos that do not exist in the country are transferred. In addition, to
evenly balance the storage load among the nodes in the system, for a node to be
eligible to store a new package, the number of videos it already stores must be
lower than the average storage load over all nodes. The average load in the system
can be computed with a standard averaging gossip protocol. Finally, copies of
the package are transferred (i) to the selected nodes (g).

3.5 Evaluation

In this section, we evaluate through simulations the performance of DTube with
respect to the geographic distance between users that request a video and the
storage nodes serving it. In addition, we compare it against a system that employs
reactive caching on top of persistent storage.

3.5.1 Evaluation Setup

We distribute the storage nodes in countries according to the proportion of views
originating from this country, as observed in our dataset (see Table 3.1). We
set the number of storage nodes to 10, 000 and we consider the videos from our
dataset, with the corresponding popularity and the content-graph induced by the
related video feature.
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We generate synthetic view traffic based on individual users’ behavior, using
the model proposed in [ZKG10], with the popularity values from our dataset: We
consider a number of users (50, 000 in our experiments), distributed across all
countries for which we have information in our dataset. Users are distrbuted in
the same way as storage nodes, according to the geographic distribution of views
observed in our dataset (see Table 3.1). The number of videos a user watches
during a session is picked at random, with an average value of 10. The first
video V a user watches is selected from the whole set of videos according to
the probability of this video being watched in her country, i.e. the number of
views for V originating from her country divided by the total number of views
originating from her country (for all videos). Each subsequent video she watches
is selected among the related videos of the previously watched video, excluding
already viewed ones. The probability of a video being picked is set to be inversely
proportional to the video’s rank in V ’s list of related videos, following a Zipf
distribution.

3.5.2 DTube and Alternatives

We compare DTube against standard caching. For DTube, we use the placement
algorithm as described in Section 3.4. In addition, we implement and evalu-
ate several variations of DTube to identify the performance gains conveyed by
the different mechanisms involved, namely without the use of packages (Partial
DTube) and using the actual VSV of the video (Ideal DTube) instead of that
of its first related video. Ideal DTube can be thought of as an upper bound on
DTube’s performance and reflects how the efficiency of the VSV prediction mech-
anism (evaluated in Section 3.3) translates in practice with respect to the viewer
experience. In our experiments, videos are served from the node closest to the
user.

As for caching, we consider a storage infrastructure composed of persistent
storage nodes (e.g., YouTube servers) and CDN caching nodes (e.g., Akamai
servers). The persistent storage nodes hold a complete copy of the YouTube
dataset, thus ensuring durability. Videos are only served by CDN nodes, the
caches of which are populated in a reactive fashion, based on the users’ view
traffic: Consider a user located in a given country who requests a given video. If
the video is stored on a CDN node in this country, it is served from this node
to the user. If not, the video is first fetched from a persistent node to a random
CDN node (with free storage space) in the country and then served. If none of
the CDN nodes in the country has sufficient free storage space to store the video,
we apply LRU cache replacement: the least recently used video is replaced by
the new entry.
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3.5.3 Evaluation Results

We evaluate and compare the performance of all placement strategies with respect
to the geographic distance between the user and the node serving the video.
More specifically, we look at (i) the out-country hit-rate, that is the proportion
of requests that are served from a storage node (i.e., a gateway or a CDN node)
located in a different country than the user, and (ii) the distance between the user
and the storage node when the video is served from a different country. We assume
that networking infrastructure is usually well integrated in each country, thus in-
country hits are likely to encounter better network quality and that geographic
distance is a good indicator for transfer latency.
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Figure 3.9: Proportion of out-country requests with DTube and caching.

In order for DTube and caching to be comparable, we use the same storage
space in both. More specifically, for a given replication factor ℜ, we first run
simulations with DTube. Because it makes use of packages, the average number
of replicas R per video is larger than ℜ. We therefore run simulations with
caching, for a system composed of ℜ persistent storage nodes and CDN nodes with
a storage space of (R − ℜ) × (total number of videos)/(number of CDN nodes),
which corresponds to the same total storage space as for DTube. We evaluate
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our metrics at steady state, i.e., when all the caches of all CDN nodes are full.

Fig. 3.9 depicts the out-country hit-rate for the different versions of DTube
and caching. It can be observed that for larger values of the average number of
replicas per videos, DTube outperforms the caching-based solution. For instance,
for an average number of 30 replicas per video, DTube decreases the proportion of
out-country request from 0.25 to 0.21, that is a 16% improvement. By comparing
DTube to Ideal DTube and Partial DTube, we observe that (i) the use of packages
accounts for a significant part of DTube’s performance, (ii) the estimation of a
video’s VSV from that of its related videos (i.e., based on the content graph)
incurs only a little decrease in performance compared to an omniscient solution in
which the actual VSV is known in advance. This illustrates the synergy between
our geographic prediction and the use of packages.Similar results can be observed
in Fig. 3.10, which depicts the average distance between the user and the storage
node serving the video for out-country requests. For instance, with an average of
30 replicas per videos, DTube reduces the average distance by 29%. Note that
the distance remains relatively high as the distance to the closest country can
be large, e.g., ∼ 2000km between the US and Canada which are the two main
sources of views.
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3.6 Conclusion

In this chapter we have highlighted the correlation between content locality and
geographic locality in User Generated Content (UGC). More precisely, we have
shown using a large YouTube dataset that related videos present similar geo-
graphic viewing patterns and that, except for extremely popular videos, video
views are concentrated in a limited number of countries.

This coupling between content and geographic locality in UGC system has
led us to propose DTube, a decentralized storage infrastructure which proactively
places content close to their future requests leveraging on the videos’ positions in
the content graph.
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Chapter 4

Conclusion and Perspectives

This chapter concludes this document by giving a summary of the previous chap-
ters and potential directions for future work.

4.1 Summary

In this thesis, we tried to tackle some of the challenges that come with the pos-
sibly unlimited opportunities of the “Big Data” era. Our main objective was
to optimize the storage infrastructure so that it can safely store the constantly
increasing volume of data while guaranteeing timely access to them. To this
end, the second chapter focuses on scalable archive storage systems that are able
to accommodate huge volumes of data while making efficient utilization of the
available resources, while in the third chapter we deal with content placement
strategies on geographically distributed systems, so that user perceived latency,
when fetching the content, is minimized.

Data Deduplication

To protect their data from hardware failures and natural disasters, organiza-
tions but also individuals rely on frequent data backups. Trying to keep up with
the rapid growth in the volume of produced data, new generation backup systems
face huge scalability challenges. Trying to answer these challenges by simply buy-
ing more hardware would imply huge operational costs. To this end, we focus on
cluster-based backup systems that apply data deduplication to reduce the storage
and network resources needed to back up a given workload. Data deduplication
stands for the idea of replacing duplicate regions of data with references to their
already stored “identical twins”. This technique, although simple, is reported to
reduce dramatically the storage needs in production backup systems (up to 30x
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when combined with classic compression) but integrating it efficiently in stor-
age systems presents a number of design challenges. To answer these challenges,
we propose Produck, a cluster-based deduplication system that combines state-of-
the-art techniques with novel contributions in order to provide good deduplication
at high throughput and minimal resource requirements while keeping the storage
load equally spread among the nodes in the system. Our two contributions are
(i) a novel set-intersection mechanism that is for the first time used in the con-
text of storage systems and (ii) a novel bucket-based storage quota management
algorithm that manages to keep the system load balanced with minimal interven-
tion in the deduplication process. Our experiments show that, Produck provides
better deduplication than other resource-friendly solutions (stateless strategies)
while using a lot less resources and being a lot faster than solutions that choose to
sacrifice resources to achieve better deduplication (stateful strategies). This work
highlights the benefits of deduplication for backup systems but also the questions
that a system designer has to answer when designing such systems.

Content Placement

For a geographically distributed content delivery system to scale while providing
good quality of service, one of the main questions it has to answer is how to effi-
ciently place content on its servers so that the user perceived latency is minimized.
The goal in most cases is to place content on servers close to where requests are
expected to come from. In the third chapter we focus on User-Generated Con-
tent (UGC) sharing sites and we leverage content organization properties that
are inherent in these sites, to propose a novel content placement strategy that
manages to achieve the above objective. The main feature that we leverage is
that items in the collections of these sites are no longer independent, as in the
case of previous sites, but are organized in a graph that in the literature is termed
as content graph. The content graph of each site reflects the relations between
the items for the site and although there may be semantic differences from one
site to another, they all share many common characteristics. This allows us to
believe that although we use YouTube as our usecase, many of our findings can
be generalized for other sites as well. For our study, we use a large (650, 000
videos) dataset that we crawled from YouTube to study properties of its content
graph. We initially verify previous results that the organization of content in
the content graph has an important impact on how users interact with it and we
take this finding one step further by showing that the position of a video in the
content graph influences the geographic distribution of its views. In more detail,
we show (i) that less popular videos tend to have most of their views coming
from a small number of countries while more popular ones tend to have their
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views more uniformly spread all around the world and (ii) that “related videos”
tend to have highly correlated viewing patterns, i.e. they tend to have most of
their views coming from the same countries. Leveraging the later, we propose a
simple yet efficient prediction mechanism that allows us to know in advance the
main sources (geographic regions) of views for a given video, and based on this
knowledge we select on the servers of which country to place the video’s replicas.
Our experimental evaluation shows that leveraging the content graph for content
placement allows a system to place replicas of videos closer to the origins of their
requests, compared to classic reactive content placement techniques that tend to
aggressively replicate content on servers located in a given region as soon as a
request for it comes.

4.2 Open Problems

In this thesis we focus on improving the performance of storage systems in the
“Big Data” era and we propose two systems that leverage content properties to
do so. Although these systems manage to face some of the challenges, there is a
number of open questions that have to be addressed. In this section, we present
some of these questions that we consider crucial for both backup and content
delivery systems.

Fault Tolerance in Archival Storage Systems

In Chapter 2 we show that data deduplication provides a way to drastically
reduce the storage space needed to back up a given workload. This enables
the reduction of the costs related to the construction and maintenance of disk-
based backup systems, thus making them financially viable even for small to
medium sized organizations that can now change from tape-based solutions with
low throughput, to disk-based ones.

Although deduplication reduces the storage needs of a given workload, another
requirement that a backup system has to satisfy is fault-tolerance. Fault-tolerance
means that data integrity must be guaranteed against any danger that threatens
it. Given that with deduplication, magnetic disk is used as the main means of
storage, disk-based backup systems face the same fault-tolerance challenges as the
users whose data the system stores. In addition, given that with deduplication
a chunk of data may belong to multiple files, this implies that a single disk
failure may corrupt multiple files. Backing up the backup system on tape, would
eliminate the benefits of disk-based storage, as far as throughput is concerned, as
the final system throughput would be dictated by its bottleneck, thus the tape.
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To guarantee fault tolerance and high throughput, redundancy has to be added
in the system. Redundancy stands for the fact that multiple copies of the data
are kept, so that if one is lost, data can be recovered from the remaining ones.
Adding redundancy to a system that tries to eliminate it in order to reduce
a workload’s storage needs, seems contradicting. But, as explained, the roles
of the two mechanisms, i.e. deduplication and replication, are complementary.
Reconciling these two goals in order to provide a backup system with the same
or even better fault tolerance properties as a tape-based one but with better
throughput and better storage utilization, implies the study and comparison of
many different design options that may or may not fit in such a system.

Consistency in Geographically Distributed Storage Systems

In Chapter 3 we focused on content placement in User Generated Content (UGC)
sharing sites, so that the geographic distance between the user that requested the
content and the server that actually serves it, is minimized. Guaranteeing timely
access to the content is of critical importance for the success of UGC sharing
sites. But, this is not the only requirement.

One of the open questions that is especially interesting in the context of in-
terconnected content, is consistency. As explained in Chapter 3, content in UGC
sharing sites is organized in a content graph. This implies that items on these
sites are no longer independent and, in the context of consistency, modifications
on one can have an impact on its adjacent ones in the graph. Given that the
content of these sites is stored in data centers all around the world, maintaining
replicas consistent is a challenging problem that becomes even more challenging
as modifications on one item (e.g. a user’s timeline in Twitter), imply modifica-
tions on other items (his “followers”’ timeline in the above example). As we can
see, given the content graph structure, updates now trigger a chain reaction that
affects part of the graph.

In these settings, innovative content placement techniques that collocate re-
lated content can facilitate the process and novel data-types and consistency
protocols can be applied to guarantee the convergence of the state of the replicas
while maintaining the required invariants.
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Résumé en français

Introduction

Les fournisseurs de services de cloud computing, réseaux sociaux et entreprises
de gestion des données ont assisté à une augmentation considérable du volume de
données qu’ils reçoivent chaque jour. Des études récentes [VOE11, GCM+08a] ont
montré que la taille des données produites et stockées a augmenté de façon expo-
nentielle ces 5 dernières années et qu’en extrapolant son taux de croissance pour
l’année 2020, on peut s’attendre à ce que la taille de notre “monde numérique”
atteigne 35 ZB ou 35 trillions GB. Pour comparaison, en 2009, l’ensemble de notre
écosystème numérique contenait seulement 0, 8 ZB de données, ce qui correspond
à peu près à 2.3% du volume prévu pour 2020.

Cette augmentation rapide de la production de données est principalement
due à (i) l’extension des limites géographiques de l’Internet : les utilisateurs avec
un smartphone peuvent par exemple s’y connecter de presque n’importe où, et (ii)
à des changements majeurs dans la façon dont les utilisateurs interagissent avec
l’Internet. Premièrement, l’utilisateur est aujourd’hui placé au centre du proces-
sus de création de contenu. Dans les premières années de l’Internet, la production
et la publication de contenu étaient le privilège d’un petit nombre d’individus ou
d’entreprises. En effet, dans l’article original de PageRank [BP98], S. Brin et L.
Page, mentionnent qu’ en 1994, l’un des premiers moteurs de recherche du Web,
le World Wide Web Worm (WWWW), contenait seulement 110000 pages et doc-
uments Web. Cela était dû (i) aux coûts liés à l’accès Internet et l’hébergement
de contenu et (ii) aux connaissances techniques nécessaires pour le faire. De nos
jours, ces deux obstacles ont été supprimés. Le coût d’une connexion Internet
haut-débit a été grandement diminué dans la plupart de pays développés. En
outre, les services tels que Facebook, YouTube, Flickr, Twitter et bien d’autres
permettent à l’utilisateur de publier tout, à tout moment, gratuitement et ce,
sans aucun pré-requis technique. L’impact de cette révolution peut être comparé
à l’impact que l’invention de la typographie a eu sur le processus de publication
au milieu du 15e siècle. Le second changement ayant eu un important impact
sur l’augmentation des données produites, provient de l’augmentation spectacu-
laire des appareils situées à la périphérie du réseau qui produisent des données
et ont accès à l’Internet. Il s’agit notamment de capteurs embarqués, téléphones
intelligents et les tablettes électroniques.

Toutes ces données créent des nouvelles opportunités pour étendre la con-
naissance humaine dans des domaines comme la génétique, la santé, l’urbanisme
et le comportement humain et permettent d’améliorer les services offerts comme
la recherche, la recommandation, et bien d’autres. Ce n’est pas par accident
que plusieurs universitaires mais aussi les médias publics se référent à notre



époque comme l’ époque “Big Data”. Mais ces énormes opportunités permises par
cette abondance de données ne peuvent être éxploitées que grâce à de meilleurs
systèmes de gestion de données. D’une part, ces derniers doivent accueillir en
toute sécurité ce volume énorme et sans cesse croissant de données et, d’autre
part, être capable de les restituer rapidement afin que les applications puissent
bénéficier de leur traitement. L’incapacité à atteindre l’un des objectifs ci-dessus
peut limiter drastiquement les possibilités offertes par les “Big Data”. La pro-
tection des données contre les dangers tels que les pannes du matérielle et les
catastrophes naturelles est essentielle, afin déviter à leur perte ou leur corrup-
tion. En outre, l’incapacité à suivre leur rythme d’ augmentation, conduirait
inévitablement à la suppression des données en raison du manque d’espace de
stockage, ce qui, à son tour, peut conduire à une “perte de mémoire” avec des
conséquences importantes. Par exemple, une simple recherche sur des événements
comme les élections nationales qui ont eu lieu il y a cinq ans, révélerait que la
plupart des liens qui pointaient vers des articles sur l’événement sont maintenant
morts et l’article correspondant a été supprimé. Des phénomènes comme cela peu-
vent conduire à une perte de mémoire humaine ou, pire encore, l’écriture contrôlée
de l’histoire, que seules les informations qui ont “survécu” seront disponible pour
les historiens de l’avenir. Enfin, ne pas être capable de servir le contenu d’une
manière rapide et utile, peut (i) décourager les utilisateurs d’utiliser les services,
stoppant ainsi la fourniture de données menant à la détérioration de service et
(ii) conduire à des dysfonctionnements graves du système, en cas d’applications
à temps critique. À cette fin, beaucoup d’efforts à la fois du milieu universitaire
et l’industrie sont investis afin d’“apprivoiser” ces “Big Data”.

Ce document se concentre sur ces deux défis relatifs aux “Big Data”. Dans
notre étude, nous nous concentrons sur le stockage de sauvegarde (i) comme un
moyen de protéger les données contre un certain nombre de facteurs qui peuvent
les rendre indisponibles et (ii) sur le placement des données sur des systèmes
de stockage répartis géographiquement, afin que les temps de latence perçue par
l’utilisateur soient minimisés tout en utilisant les ressources de stockage et du
réseau efficacement. Tout au long de notre étude, les données sont placées au
centre de nos choix de conception dont nous essayons de tirer parti des propriétés
de contenu à la fois pour le placement et le stockage efficace.

Probabilistic Deduplication for Cluster-Based Storage Sys-
tems

En se concentrant sur le premier objectif, qui est le système de sauvegarde pour l’
époque de “Big Data” , nous proposons Produck, une solution de stockage à base
de cluster qui applique la déduplication pour réduire les besoins en bande passante
et en espace de stockage. La Déduplication peut être considérée comme un type



de compression, puisque son objectif est d’éliminer la redondance inter-fichiers,
inhérente aux données stockées dans le but de réduire leur volume.

Dans les systèmes de déduplication, les données sont divisées en chunks de
tailles variables et chaque chunk n’est stocké qu’une seule et unique fois. Quand
un nouveau fichier arrive et contient un chunk qui se trouve être identique à
un autre déjà stocké dans le système, ce chunk est remplacé par une référence
vers celui déjà enregistré. Pour comparer le contenu de deux chunks, on calcule
pour chacun son empreinte par application d’une fonction de cryptographie de
hachage sur son contenu. Pour déclarer que deux chunks sont identiques, au lieu
de comparer leur contenu octet par octet, leurs empreintes sont comparées et si
elles sont égales, leur contenu est considéré comme identique.

Definition du problème Dans un système de déduplication à base de clus-
ter, le challenge principal est de maintenir le taux de déduplication élevé tout
en maintenant la charge de stockage répartie également entre les noeuds du
système. La raison pour laquelle cela constitue un challenge est que, d’une part,
la déduplication essaie de clusteriser les données du cluster autant que possible,
de sorte que tous les chunks en double se retrouvent sur le même noeud, tandis
que la repartition de la charge du stockage vise à diviser la charge également
entre les noeuds disponibles. Les solutions proposées peuvent être divisées en
deux catégories, les stateful et les stateless. À un extrême, les solutions stateful
s’appuyent sur l’état stocké pour chaque noeud dans le système afin de maximiser
la déduplication. Cependant, le coût de ces stratégies en termes de ressources de
calcul et de mémoire, rend leur déploiement à grande échelle difficile ou même
irrealisable. À l’autre extrême, les stratégies stateless stockent les données basées
uniquement sur leur contenu, sans qu’il soit tenu compte des décisions de place-
ment précédentes, ce qui permet de réduire le coût mais aussi l’efficacité de la
déduplication.

Contributions Dans cette thèse, nous proposons Produck, une strategie de
sauvegarde stateful et légère qui offre de meilleurs taux de déduplication comparé
aux stratégies stateless de l’état de l’art, tout en restant proche des performance
des solutions stateful. En outre, la performance de Produck est obtenue à un
coût très faible en termes de calcul et de mémoire supplémentaire, par rapport
aux stratégies stateful, conduisant au stockage de données plus efficace. Pour
cela, nous proposons deux contributions principales: un mécanisme probabiliste
et léger qui permet à Produck de choisir le meilleur noeud pour stocker un chunk
et une strategie de repartition de la charge de stockage, innovante. La première
permet à Produck d’identifier rapidement les noeuds qui peuvent fournir les plus
forts taux de déduplication pour un chunk et la deuxième garantit la repartition
de la charge de façon uniforme entre les noeuds du système.

Architecture L’architecture de Produck est identique à celle de l’état de l’art
des systèmes de déduplication en cluster et se compose du Client, du Coordinator



et des StorageNodes. Les utilisateurs interagissent avec Produck via le Client qui
est responsable de la division du fichier en chunks quand un fichier doit être
stocké et reconstruit le fichier à partir de ses chunks quand le fichier doit être
récupéré. En outre, et afin d’améliorer la performance du système, le Client
organise les chunks en superchunks, qui sont des groupes de chunks consécutifs.
Les chunks appartenant au même superchunk sont stockés ensemble sur le même
StorageNode. Le Coordinator est l’entité qui décide qui parmi les StorageNodes
va stocker chaque superchunk, selon des critères de déduplication et de répartition
de charge. Enfin, les StorageNodes sont responsables du stockage des données.
L’architecture est représentée sur la figure 1.

!""#$%&'("#)

*%+,-.$) /,01"&0%2+,)

!"#$% &'(#)%

3("#'4,)5"$,0)

*
%+
,
-
.$
)

*+,-.+&/$% &'(#$%

*+,-.+&/0% &'(#1%

2%

*+,-.+&/3% &'(#)%

*%+,-.$)

*+,-.+&/$% *+,-.+&/0%

2%

*+,-.+&/$%

4*56758(9:%#&(8(9;% 4*56758(9:%#&(8(9;% 4*56758(9:%#&(8(9;%

<#*=7>,5'7% <#*=7>,5'7% <#*=7>,5'7%

(656% (656% (656%

!+%,&()

?#*,'&*>@"#%3'(#%

Figure 1: Architecture du Système

Dans cette thèse, nous nous concentrons sur le rôle du Coordinator, qui est
chargé de gérer au mieux le compromis entre la déduplication et la repartition
uniforme de la charge. À cette fin, nous proposons (i) un mécanisme resource-
friendly pour la détection des duplicats qui parvient à détecter avec précision
l’intersection entre les chunks inclus dans un superchunk et ceux stockés sur
un StorageNode, et (ii) un nouveau mécanisme de repartition de la charge qui
maintient la charge équitablement répartis entre les noeuds du système tout en
conservant le taux de déduplication élevé.



Détection de Duplicats

Notre algorithme de détection de duplicats est basé sur l’observation que pour
choisir le meilleur StorageNode pour un superchunk donné, le Coordinator n’a
pas besoin de savoir exactement quels chunks sont stockés sur chaque Storage-
Node. Une estimation de l’intersection entre les chunks dans le superchunk et
ceux stockés sur le StorageNode suffit pour sélectionner le meilleur (en termes
d’efficacité de déduplication) StorageNode. Notre nouveau protocole calcule cette
intersection en s’appuyant sur PCSA [FM85, DF03], une méthode probabiliste
pour calculer la cardinalité d’un multiset, c’est à dire le nombre d’éléments dis-
tincts (chunks dans notre cas) qu’il contient.

Pour créer le descripteur d’un multiset en utilisant PCSA, nous devons d’abord
d’appliquer une fonction de hachage sur les éléments que le multiset contient.
Cette étape permet de rendre aléatoire les données d’entrée. Par la suite, pour
chaque élément dans le multiset, on enregistre dans un vecteur bitmap la position
du bit le moins significatif qui est mis à 1. L’intuition derrière PCSA est que,
puisque la fonction de hachage distribue ses valeurs de manière uniforme, la po-
sition 0 du bitmap sera mis à 1 environ la moitié du temps, la position 1 sera mis
en 1 1/4 de temps, et ainsi de suite. Cela conduit à la probabilité que la position
k du bitmap est mis à 1 selon l’ équation (1). Pour réduire l’erreur d’estimation,
au lieu de garder un bitmap par multiset, nous en gardons plusieurs (8192 dans
notre cas). D’après l’équation (1) nous pouvons voir que le bitmap nous donne
une estimation du logarithme de la cardinalité du multiset initiale.

P (p(h(d)) = k) = 2−k−1 (1)

Bien que PCSA ait été conçu pour estimer la cardinalité d’un multiset, il est
facile de voir que le descripteur PCSA de l’union de deux multisets, A et B,
peut être calculée en appliquant simplement l’opérateur OR sur les deux vecteurs
bitmap correspondants, bitmap[A] et bitmap[B].

bitmap[A ∪ B] = bitmap[A] | bitmap[B] (2)

L’algorithme ci-dessus nous donne une estimation de la cardinalité de l’union
des deux ensembles. Fort de cette observation, les auteurs de [MBN+06] pro-
posent l’évaluation de la cardinalité de l’intersection de deux multi-ensembles en
exprimant comme suit.

|A ∩ B| = |A|+ |B| − |A ∪ B| (3)

D’après l’équation(3), il est possible d’approximer |A ∩ B| simplement en
estimant les trois cardinalités des trois termes à droite de l’équation, qui peuvent
être estimés avec le PCSA et l’équation(2).



Répartition de la Charge

Pour maintenir la charge système équilibrée, nous introduisons une nouvelle
bucket-based stratégie de repartition de la charge de stockage. Selon cette stratégie,
l’espace de stockage de chaque noeud est divisé en buckets de taille fixe. Au
moment de l’initialisation, le Coordinator accorde à chacun de StorageNodes la
permission d’utiliser un seul de ses buckets. Quand un StorageNode remplit le
dernier bucket qui lui a été accordé, le Coordinator lui en accorde un nouveau
seulement dans le cas où le nombre de buckets qui lui ont déjà été accordés ne
dépasse pas (de plus d’un seuil donné) le nombre de buckets alloués au noeud le
moins chargé.

Résultats

Pour évaluer la performance de Produck par rapport à l’état de l’art des systèmes
de deduplication en clusters, nous le comparons avec les deux solutions présentées
dans [DDL+11]. Dans ce travail, les auteurs proposent une stratégie stateless
qu’on appelle MinHash qui attribue les superchunks au StorageNodes en appli-
quant l’operateur mod (no de noeuds) sur l’empreinte minimum des chunks dans
le superchunk et une stateful, qu’on appelle BloomFilter, où le Coordinator main-
tient une BloomFilter pour chaque StorageNode afin de détecter le noeud avec
l’overlap le plus grand avec les chunks dans le superchunk. Les deux stratégies
fixent un seuil de 5% de la charge moyenne dans le système, au-dessus de laquelle
un noeud est considéré comme surchargé, et n’a donc pas le droit de stocker de
nouvelles données.

Dans nos expériences, nous montrons que Produck fournit en moyenne (i)
jusqu’à 18% de déduplication en plus par rapport à MinHash (stateless), et (ii)
une réduction de 18 fois en coût de calcul par rapport à BloomFilter. En outre,
Produck ne stocke pas plus que 64Ko pour l’état de chaque noeud de stockage
tandis que l’espace de stockage nécessaire pour BloomFilter est proportionnel à
la capacité des StorageNodes.

Content and Geographical Locality in User-Generated Con-
tent Sharing Systems

Passant au deuxième objectif, qui est de servir le contenu rapidement afin que
les applications puissent les consomer efficacement, nous proposons DTube, une
stratégie de placement de contenu qui vise à le placer près du lieu où il sera
consommé. Dans cette étude, nous nous concentrons sur le contenu généré par
l’utilisateur (UGC), tels que des vidéos YouTube, car il représente une fraction
importante du trafic Internet et selon les analystes cette fraction va augmenter.



Pour optimiser leur performance et réduire leurs coûts d’exploitation, les sites
de partage de UGC utilisent des systèmes distribués à grande échelle avec des
serveurs déployés dans le monde entier dans le but de placer leur contenu proche
des utilisateurs qui vont le consomer. Pour sélectionner les meilleurs noeuds, ils
s’appuient généralement sur des approches proactives et réactives qui exploitent
la localité spatiale et temporelle des modèles d’accès.

Au-delà des formes traditionnelles de localité qui compte pour chaque élément
de contenu indépendamment, des études récentes ont montré que les habitudes
de consommation de contenu sur ces sites sont nettement influencés par le fait
que le contenu de ces sites n’est plus indépendant, mais est organisé dans un
“content graph”. Dans YouTube, le “content graph” est incarné par les listes des
“Related Videos” présentes sur la page de chaque vidéo, et son influence sur le
comportement des utilisateurs a été clairement documentée [KZGZ11, ZKG10].

En etudiant plus en profondeur la corrélation entre la localité de contenu
(i.e. le fait que deux vidéos soient proches dans le “content graph”) et localité
géographique (le fait que les deux vidéos ont la plupart de leurs requêtes provenant
des mêmes pays), nous montrons sur un grand ensemble de vidéos YouTube (plus
de 650.000) qu’ils sont en fait liés. Pour le montrer, pour chaque vidéo, nous avons
recueilli son VSV, qui est un vecteur avec les vues de la vidéo en provenance de
chaque pays, et nous avons calculé le coefficient de corrélation de Spearman entre
son VSV trié, classé par nombre décroissant de views, et celui de chacune de
ses vidéos associées. Le coefficient de Spearman est défini dans l’équation 4 et
capture la corrélation entre le rang du pays en deux VSV triés, en tenant compte
des permutations de rangs. Plus la valeur absolue du coefficient se rapproche
de 1, plus grande est la corrélation entre les deux listes. Les résultats de cette
expérience sont présentés à la figure 2 en fonction du rang des vidéos associées
dans la list de “Related Videos”. Dans notre base de données, cette corrélation
varie de 0, 64 à 0, 68 ce qui est relativement élevé. Cela signifie que le VSV d’une
vidéo peut être déduit avec une grande précision de celui de ses vidéos associées.

ρ =

∑
i
(xi − x̄)(yi − ȳ)√∑

i
(xi − x̄)2

∑
i
(yi − ȳ)2

(4)

En outre, partir de la figure 2, nous pouvons voir que plus le rang d’une vidéo
dans la liste “Related Videos” est petit, plus la corrélation de son VSV avec celui
de la vidéo pointant vers elle sera grande (pour la vidéo au rang 1, nous avons
une corrélation de 0, 68). Cela implique que le VSV de la première vidéo reliée
à chaque vidéo V peut être un bon indicateur des origines des vues de V pour
l’avenir. Nous nous appuyons sur ces résultats pour proposer une stratégie de
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Figure 2: Spearman correlation coefficient between a video’s geographic distribu-
tion of views and that of its related videos, as a function of their rank in the list
of related videos

placement pour les sites de partage de contenu UGC, appelé DTube, qui place de
façon proactive les vidéos proches de leurs vues futures.

Selon DTube, les répliques d’une vidéo V sont placées sur des noeuds dans les
pays qui sont parmi les sources principales de vues de la première vidéo associée a
V . En outre, afin de continuer à exploiter la localité du contenu, chaque réplique
d’une vidéo V attire au même noeud une réplique de chacune des vidéos dans sa
liste de “Related Videos”.

Résultats

Nous avons évalué la performance de DTube par des simulations par rapport à la
distance géographique entre les utilisateurs qui sollicitent une vidéo et les noeuds
de stockage qui le servent. En outre, nous le comparons avec un système qui
utilise la mise en cache réactive au-dessus du stockage persistant. Pour que les
deux systèmes soient comparables, nous supposons que les deux utilisent la même
quantité d’espace de stockage. Le comportement de l’utilisateur est simul selon
le modè [ZKG10].

Nos résultats montrent que, pour un petit nombre de répliques par vidéo,
la mise en cache est plus performante que DTube mais cela s’inverse dès que le
nombre de répliques par vidéo dépasse 5. Par exemple, pour un nombre moyen de
30 répliques par vidéo, DTube diminue de 16% les demandes qui sont desservies
par un noeud dans un autre pays que celui des demandes. Des résultats similaires



sont également valables pour la distance moyenne entre l’utilisateur et le noeud de
stockage desservant la vidéo pour les demandes hors du pays. Avec une moyenne
de 30 répliques par vidéo, DTube réduit la distance moyenne de 29%.

Perspectives

Dans cette thèse, nous nous concentrons sur l’amélioration de la performance
des systèmes de stockage pour lépoque des “Big Data” et nous proposons deux
systèmes qui exploitent des propriétés du contenu des donnes. Bien que ces
systèmes réussissent à faire face à certains défis, il reste un certain nombre de
questions ouvertes qui doivent être pris en compte. Dans cette section, nous
présentons certaines de ces questions que nous considérons comme essentielles
pour la sauvegarde et les systèmes de distribution de contenu.

Tolérance aux fautes dans les systèmes d’archives

Bien que la déduplication permette de réduire les besoins de stockage d’une charge
de travail donnée, une autre exigence qu’un système de sauvegarde doit satisfaire
est la tolérance aux pannes. La tolérance aux pannes signifie que l’intégrité des
données doit être garantie contre tout danger qui la menace. Le fait que dans
les systèmes de déduplication, le disque magnétique soit utilisé comme principal
moyen de stockage, signifie qu’il faille faire face aux pannes que ces derniers
peuvent encourir. En outre, à cause de la déduplication, un chunk de données
peut appartenir à plusieurs fichiers, ce qui implique qu’une panne de disque peut
corrompre plusieurs fichiers en même temps.

Cohérence dans les systèmes de stockage géographiquement distribués

Une des questions ouvertes qui est particulièrement intéressante dans le con-
texte du contenu interconnecté, est la cohérence des données. Le contenu des
sites de partage de UGC est organisé dans un “content graph”. Cela implique
que les éléments de ces sites ne sont plus indépendants et, dans le contexte de
la cohérence, les modifications sur un élement peuvent avoir un impact sur ses
éléments adjacents dans le graphe. Étant donné que le contenu de ces sites
est stocké dans des data-centers repartis partout dans le monde, conserver des
réplicas cohérents devient un problème difficile et interesant.





Abstract

Cloud service providers, social networks and data-management companies are
witnessing a tremendous increase in the amount of data they receive every day.
All this data creates new opportunities to expand human knowledge in fields
like healthcare and human behavior and improve offered services like search,
recommendation, and many others. It is not by accident that many academics
but also public media refer to our era as the “Big Data” era. But these huge
opportunities come with the requirement for better data management systems
that, on one hand, can safely accommodate this huge and constantly increasing
volume of data and, on the other, serve them in a timely and useful manner
so that applications can benefit from processing them. This document focuses
on the above two challenges that come with “Big Data”. In more detail, we
study (i) backup storage systems as a means to safeguard data against a number
of factors that may render them unavailable and (ii) data placement strategies
on geographically distributed storage systems, with the goal to reduce the user
perceived latencies and the network and storage resources are efficiently utilized.
Throughout our study, data are placed in the centre of our design choices as we
try to leverage content properties for both placement and efficient storage.

Résumé

Les fournisseurs de services de cloud computing, les réseaux sociaux et les
entreprises de gestion des données ont assisté à une augmentation considérable
du volume de données qu’ils reçoivent chaque jour. Toutes ces données créent
des nouvelles opportunités pour étendre la connaissance humaine dans des do-
maines comme la santé, l’urbanisme et le comportement humain et permettent
d’améliorer les services offerts comme la recherche, la recommandation, et bien
d’autres. Ce n’est pas par accident que plusieurs universitaires mais aussi les
médias publics se référent à notre époque comme l’ époque “Big Data”. Mais
ces énormes opportunités ne peuvent être éxploitées que grâce à de meilleurs
systèmes de gestion de données. D’une part, ces derniers doivent accueillir en
toute sécurité ce volume énorme de données et, d’autre part, être capable de les
restituer rapidement afin que les applications puissent bénéficier de leur traite-
ment. Ce document se concentre sur ces deux défis relatifs aux “Big Data”. Dans
notre étude, nous nous concentrons sur le stockage de sauvegarde (i) comme un
moyen de protéger les données contre un certain nombre de facteurs qui peuvent
les rendre indisponibles et (ii) sur le placement des données sur des systèmes
de stockage répartis géographiquement, afin que les temps de latence perçue par
l’utilisateur soient minimisés tout en utilisant les ressources de stockage et du
réseau efficacement. Tout au long de notre étude, les données sont placées au
centre de nos choix de conception dont nous essayons de tirer parti des propriétés
de contenu à la fois pour le placement et le stockage efficace.


