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Introduction

Whereas heat transfer in solids happens only by conduction of which the origin comes
from vibrations of atoms constituting the matter, the motion which is authorized by the
fluid medium can improve significantly the heat exchange. The transport of heat by the
fluid flow is called convection and its efficiency versus the conduction depends greatly on
the fluid velocity but also on the thermal properties of the medium. Roughly speaking, we
can distinguish two kinds of heat convection according to the internal or external nature of
forces applied in order to produce the fluid flow. On the one hand, the origin of the motion
may be related to forces engendered inside the fluid itself. For example, this is the case of
body forces created by the gravity acceleration. This convection is called natural because it
occurs without the addition of any external mechanical device. On the other hand, we have
forced convection for which the fluid flows thanks to outer mechanisms which may produce
pressure drops, imposed velocities or flow rates, for instance. At last, if both internal and
external forces have approximately the same intensity, we talk about mixed convection.

From the industrial point of view, the natural convection is very interesting to heat or
cool systems by using the buoyancy forces induced by gravity, because the cost of this heat
transfer is completely free. Unfortunately, its energetic efficiency is sometimes insufficient
and mechanical devices (such as pumps, fans, · · · ) must be bought and installed to im-
prove heat exchanges. Obviously, the aim of industrialists is to take advantage of natural
convection as much as possible, and eventually to buy and install the cheapest equipments
which are necessary to achieve the expected heat transfer performances.

Heat transfers by natural, mixed or forced convections are widely studied for single
phase fluids with one component, only. However, numerous physical problems involve heat
transfer in mixtures of liquids, gases or solids. In particular case of immiscible fluid flows,
an interface appears between the different fluid media and this interface acts significantly
on flow dynamics and subsequently on heat transfer. The unbalance of the molecular van
der Waals forces on both sides of the interface creates a resulting force by unit length,
the surface tension. This surface tension produces pressure jumps which are proportional
to the local curvatures of the interface. Its numerical value depends on the nature of the
fluids in contact, but also on the local temperature. When the interface is non-isotherm, it
results a natural convective flow, the Marangoni convection, in which the fluid moves along
the interface, usually from hot to cold regions; by viscosity, the fluid in the core region is
dragged along.

To accurately take into account these new physical phenomena associated with the
occurrence of an interface, specific numerical method must be developed.

The aim of my research was twofold. To emphasize both aspects of my work, my report
is divided into two parts.

I first contributed to the study of natural and mixed convections of a single fluid flow-
ing through vertical heated channels. To this end, I developed a numerical scheme suitable
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for the simulation of laminar convection for small or large temperature differences. My
motivation concerning this subject relies on the delicate issue of choosing the boundary
conditions for open cavities, and this, despite the relative plenty of numerical works avail-
able in the scientific literature. Indeed for thermal natural and mixed convections, the
distribution of the total heat fluxes entering and exiting through open boundaries depends
on heat transferred at walls. Furthermore, the fluid flowing into this channel comes from
and emerges outside. It results a close coupling between the dynamic and thermodynamic
variables inside and outside the channel. Thus, the thermal and kinematic inlet/outlet
boundary conditions cannot be a priori prescribed without accounting for the surrounding
conditions.

In order to extend the study of natural and mixed convections to immiscible fluid flows,
I investigated, in a second step, the numerical methods devoted to the treatment of the
interface problems. Amongst the jungle of methods, the Level-Set method has retained my
attention. This approach seems quite easy to implement and allows treating very complex
configurations where the interfaces may break and merge. Whereas the Level-Set method
is theoretically well defined, its implementation demands a particular attention. And that
is the reason why numerous schemes have been developed to achieve a good accuracy. Since
each of these techniques is often considered by their authors as the more efficient, I decided
to perform my own tests to establish my own judgment.
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Part I

Numerical simulations of natural or
mixed convection in vertical channels
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Outlines

The first three chapters introduce the governing heat and fluid flow equations, their dis-
cretizations, to end by a validation step.

In chapter 1, continuity, momentum and energy equations are derived from three funda-
mental physical principles: the mass conservation, the Newton’s second law and the energy
conservation. Then, the low Mach number approximation is briefly presented. With this
approximation, the compressible governing equations are simplified by considering a small
value for the Mach number. It results a decoupling between the thermodynamical pressure,
which satisfies a gas law relation, and the dynamical pressure which only acts to ensure
the mass conservation during the fluid flow. When the variations of the thermodynamical
variables are small enough, the low Mach number approximation is reduced to the Boussi-
nesq approximation which consists in keeping all physical properties constant, except the
density in the buoyancy force.

Chapter 2 focuses on the discrete numerical scheme for the continuity, the momen-
tum and the energy equations. The backward second order Euler scheme is used for time
discretization and a finite volume method is applied to express the spatial derivatives on
control volumes. The pressure and velocity coupling is ensured by a fractional time stepping
algorithm. The mesh must fulfill some specific requirements about the locations of the ad-
jacent cell centers with respect to their common edge. The classical structured grids, made
of rectangles or parallelepipeds, and also unstructured triangular cells, provided that the
triangulation is of Delaunay type, satisfy these conditions. All variables are expressed on
the same set of cell centers; they are qualified as collocated. The spurious oscillations of the
pressure field arising from the collocated arrangement are suppressed by altering the pres-
sure equation. The discrete operators are mainly defined by a weak formulation with the
aim of mimicking at the discrete level the continuous kinetic energy balance and the con-
tinuous quadratic form of the temperature evolution. For fluid flowing into enclosures with
large temperature gaps (low Mach number approximation), the coupling between the ther-
modynamic pressure and the temperature is solved with an approximated Newton method.

Chapter 3 aims at presenting a validation of the numerical scheme on rectangular grids.
Firstly, comparisons with analytical solutions are proposed in order to check the spatial and
temporal orders of convergence of the numerical scheme. The isotherm decaying vortex of
the Taylor-Green problem is considered, and then the low Mach number scheme is tested.
To ascertain the convergence properties of the solutions with large temperature differences,
we chose continuous velocity, pressure and temperature fields satisfying the mass conser-
vation equation. Then, discrete source terms are defined and added to the momentum and
energy equations so that the numerical approximations converge towards their continuous
counterparts. Secondly, natural convection flows in differentially heated enclosures are cal-
culated. Both steady state solutions under low Mach number approximation and unsteady
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solution under Boussinesq approximation are compared with benchmark solutions.

The last three chapters provide applications of the numerical method described in this
report for fluid flowing through heated vertical channels.

In chapter 4, numerical simulations of mixed convection of air between vertical isother-
mal surfaces were conducted in order to determine the optimum spacing corresponding
to the peak heat flux transferred from an array of isothermal, parallel plates cooled by
mixed convection. Comparisons between approximate analytical solutions for natural and
forced convection are first discussed. From the computations carried out for aiding mixed
convection by assuming a pressure drop at the outlet section rather than a constant flow
rate, it is numerically predicted that the optimum spacing is smaller than those for pure
natural or pure forced convection. This spacing is determined according to the pressure
drop. As a sample, we considered an array of 10 cm-height, isothermal surfaces at temper-
ature Th = 340 K with air as the working fluid entering into the channels at T0 = 300 K.
The increases in heat flux corresponding to the optimal spacing are discussed for outlet
pressure drops ranging from −0.1 Pa to −1 Pa. Such a range covers the entire laminar
mixed convection regime for this specific application.

The aim of chapter 5 is at showing that to prescribe a flow rate at the inlet section
of a vertical channel with heated walls leads to surprising and counterintuitive physical
solutions, especially when the problem is modeled as elliptical. Such an approach can give
rise to the onset of recirculation cells in the entry region while the heat transfer is slightly
increased under the influence of the buoyancy force. We suggest an alternative model based
on more realistic boundary conditions based on a prescribed total pressure at the inlet and
a fixed pressure at the outlet sections. In this case, the pressure and buoyancy forces act
effectively in the same direction and, the concept of buoyancy aiding convection makes
sense. The numerical results emphasize the large differences between solutions based on
prescribed inlet velocity and those obtained with the present pressure-based boundary con-
ditions.

Chapter 6 reports numerical solutions on the influence of surface radiation on the lam-
inar air flow induced by natural convection in vertical, asymmetrically-heated channels.
Variable property effects are accounted for in a full-elliptic mathematical formulation. The
density variation is determined from the state equation for ideal gas. The experimental
design and data reported in Webb et Hill [161] are taken as the base cases for carrying out
the computations. The occurrence of flow reversals is first considered and revisited for pure
natural convection, and the Nusselt number correlations derived from the numerical results
are favorably compared with those reported in [161]. It is shown that the general effect of
surface radiation is to delete the onset of pocketlike recirculations at the top part of the
channel, to reduce the heated wall temperatures, and to increase the facing wall temper-
atures. Comparisons with usual methods used for decoupling the surface radiation effects
are discussed. In the range of parameters investigated, increases in differences between inlet
and maximum wall temperatures up to 200K are shown to have small influences on the
flow field and negligible effects on heat transfer performances.

6



Chapter 1

Governing flow equations

1.1 Generalities

Continuity, momentum and energy equations are mathematical statements of three
fundamental physical principles: mass conservation; Newton’s second law and energy con-
servation. They are widely used as mathematical models to describe physical phenomena
and valid only for continuous fluids. To explain clearly continuous fluids, it’s better to have
an overview about different categories of fluid flows.

The Knudsen number Kn, ratio of mean free path to the characteristic length scale,
is used as the parameter to distinguish the fluid regime [170] which is an average distance
covered by a moving particle between successive impacts.

– when Kn ≤ 0.001, the fluid flows in a continuous regime. The characteristic length
scale of fluid is much greater than the mean free path, the fluid flow is considered as
a continuous medium;

– when Kn > 10, the fluid flows in a free molecule regime. Molecules have a greater
chance to collide with walls than between themselves. Under this condition, the fluid
medium cannot be viewed as a continuous medium;

– when 0.001 < Kn ≤ 0.1, the fluids flows in a slip flow regime. Here, the fluid is
considered as continuous but a slippery effect at walls should be applied;

– when 0.1 < Kn < 10, the fluid flows in a transition regime. The fluid is in a state
between continuous and free molecule regimes.

Continuity, momentum and energy equations are appropriate for Kn ≤ 0.1, when the
characteristic length scale of fluid flow is much greater than the mean free path. Most
of common fluid flows satisfy this assumption. The problems in which we are interested
can also be attributed to the continuum regime. The purpose of this chapter is to derive
continuous equations from three fundamental physical principles.

In deriving continuous equations, two forms of these equations are introduced, the
conservative form and the convective form. In principle, both forms are equivalent. How-
ever, for Computational Fluid Dynamics (CFD), applying one form leads to success, while
another may result in unphysical oscillations in the numerical results, or even produce
a divergence of the solution provided by the numerical scheme. Therefore, for CFD, the
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different forms of equations are of great interests [2]. According to whether the governing
equations are established by considering a fixed control volume or a control volume which
moves with the fluid particles, we obtain the conservative or convective forms. The presen-
tation of governing equations is the subject of the section 1.2.

The low Mach number approximation proposed by Paolucci [125] is briefly presented in
section 1.3. This method is based on series expansion in Mach number for the velocity, the
pressure, the temperature and the density. The equations are then reduced by considering a
small value for the Mach number. It results in a decoupling between the thermodynamical
pressure, which satisfies a gas law relation, and the dynamical pressure which only acts to
ensure the mass conservation during the fluid flow. Thus, the sound waves are removed to
allow us to set the numerical time step, not on the acoustic time but on the characteristic
time of the fluid motion. When the thermodynamical variables are small enough, the
low Mach number approximation reduces into the Boussinesq approximation. This latter
approximation consists in keeping all physical properties constant, except the density in
the buoyancy force. The density may therefore be linearized as a function of temperature.

1.2 Fluid flow equations

1.2.1 Mass conservation

If we choose an infinitesimal fluid element which moves with the fluid flow, the mass δm
of this element is constant. It writes δm = ρδV , with δV the volume of the fluid element
and ρ its density. Since the mass is conserved, we can state that the time rate of mass
change for a fluid element is zero along the flow path:

D(δm)

Dt
= 0

where (D/Dt)(.) ≡ (∂/∂t + (~v · ∇))(.) is the particular derivative, with ~v the local flow
velocity. Substituting δm by its definition, we have

Dρ

Dt
+ ρ

[
1

δV

DδV

Dt

]
= 0

with
[

1
δV

DδV
Dt

]
the time rate of relative volume change which is equal to∇·~v. The continuity

equation in its non-conservative form then writes:
Dρ

Dt
+ ρ∇ · ~v = 0 (1.1)

To obtain the continuity equation in its conservative form, we have to consider a fixed
control volume. The sum over the control volume of the growth rate of the fluid density,
plus the net mass flow rate leaving the control volume is zero. Per unit volume, we then
have:

∂ρ

∂t
+∇ · (ρ~v) = 0 (1.2)

Let us note that equations (1.1) and (1.2) are obviously fully equivalent. For example,
starting from Eq. (1.2), we obtain

∂ρ

∂t
+ ~v · ∇ρ+ ρ∇ · ~v = 0(

∂ρ

∂t
+ ~v · ∇ρ

)
+ ρ∇ · ~v = 0

Dρ

Dt
+ ρ∇ · ~v = 0
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1.2.2 Momentum equation

The Newton’s second law provides the momentum equation for the fluid flow. Let
us consider a fixed control volume. The net increase in the fluid momentum (temporal
derivative plus the transport contribution through the control surface) is balanced by the
sum of surface (mechanical stress) and volume (weight) forces applied on the fluid control
volume [29]. The resulting differential expression writes:

∂ρ~v

∂t
+∇ · (ρ~v ⊗ ~v) = ∇ · σ + ρ~g

with ~g = −g~ez the gravitational acceleration vector and ~ez the unit vertical vector pointing
upward. The mechanical stress tensor σ is split into two terms. The first term represents
the thermodynamical pressure which appears in static problems whereas the second one
contains the viscous contributions coming from the fluid motion:

σ = −pδ + τ

with τ the molecular viscous shear stress tensor, p the thermodynamic pressure and δ is the
second order Kronecker tensor whose components δij are set to 1 if i = j and 0 otherwise.
We then find:

∂ρ~v

∂t
+∇ · (ρ~v ⊗ ~v) = −∇p+∇ · τ + ρ~g (1.3)

For Newtonian fluid flows, the viscous shear stress is proportional to the velocity gradients:

τ = µ(∇~v + (∇~v)t) + η(∇ · ~v)δ (1.4)

where µ is the dynamic viscosity and η is the volume viscosity. The bulk viscosity (2µ/3+η)
gives the difference between the “mechanical pressure”, defined as the mean mechanical
stress, and the thermodynamic pressure pth due to the rate of volume expansion ∇ · ~v,
namely,

pm ≡ −
1

3
δ : (−pδ + τ) = p−

(
2

3
µ+ η

)
∇ · ~v

and measures the dissipation of energy in the fluid upon expansion. If the fluid is incom-
pressible, ∇ ·~v = 0, then the mechanical and thermodynamic pressures are equivalent and
the former is known to an arbitrary constant; only the dynamical pressure ∇p enters the
momentum balance. When ∇ · ~v 6= 0, Stokes’ assumption states that the bulk viscosity is
zero and thus η = −2µ/3. In this work, this approximation is always assumed valid.

The non-conservative expression of Eq. (1.3) simply writes:

ρ
D~v

Dt
= −∇p+∇ · τ − ρg~ez (1.5)

1.2.3 Energy equations

1.2.3.1 First principle of thermodynamics

According to the first principle of thermodynamics, the total energy variation of a fluid
element per unit time (including the internal energy U and the kinetic energy K) is equal
to the power gained through heat Q̇ and mechanical works Ẇ along its path [29]:

D(U +K)

Dt
= Q̇+ Ẇ (1.6)
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Let us note û the internal energy per mass unit. If we divide the mechanical contribu-
tions into volume (weight) and surface (mechanical stress) forces and by introducing the
Fourier’s law to model the heat transfer by conduction, we obtain the differential relation

∂

∂t

(
ρû+

1

2
ρ~v2

)
+∇·

((
ρû+

1

2
ρ~v2

)
~v

)
≡ ρ D

Dt

(
û+

1

2
~v2

)
= ∇·(k∇T )+ρ~g ·~v+∇·(σ ·~v)

(1.7)
where k is the thermal conductivity, T the temperature

1.2.3.2 Internal energy equation

We get the kinetic energy equation by applying to each side of Eq. (1.3) the scalar
product by ~v:

∂

∂t

(
1

2
ρ~v2

)
+∇ ·

(
1

2
ρ~v2~v

)
= −~v · ∇p+ ~v · (∇ · τ) + ρ~g · ~v

By using (∇ · τ) · ~v = ∇ · (τ · ~v)− τ : ∇~v,

∂

∂t

(
1

2
ρ~v2

)
+∇ ·

(
1

2
ρ~v2~v

)
= −~v · ∇p+∇ · (τ · ~v)− τ : ∇~v + ρ~g · ~v (1.8)

Subtracting Eq. (1.8) from Eq. (1.7), we get:

∂ρû

∂t
+∇ · (ρû~v) = ∇ · (k∇T ) +∇ · (σ · ~v) + ~v · ∇p−∇ · (τ · ~v) + τ : ∇~v

By writing ∇ · (σ · ~v) = −p∇ · ~v − ~v · ∇p+∇ · (τ · ~v), we obtain

∂ρû

∂t
+∇ · (ρû~v) ≡ ρDû

Dt
= ∇ · (k∇T )− p∇ · ~v + τ : ∇~v (1.9)

1.2.3.3 Enthalpy equation

Starting from Eq. (1.9), the energy equation can also be written as:

∂(ρû+ p)

∂t
+∇ · ((ρû+ p)~v) = ∇ · (k∇T ) + τ : ∇~v +

Dp

Dt
(1.10)

with the relationship between the internal energy and enthalpy ĥ = û + p
ρ . The enthalpy

equation is then:

∂(ρĥ)

∂t
+∇ · (ρĥ~v) ≡ ρDĥ

Dt
= ∇ · (k∇T ) + τ : ∇~v +

Dp

Dt
(1.11)

From the derivative of enthalpy per mass unit ĥ(T, p)

Dĥ

Dt
=

(
∂ĥ

∂T

)
p

DT

Dt
+

(
∂ĥ

∂p

)
T

Dp

Dt
(1.12)

with
∂ĥ

∂T

∣∣∣∣∣
p

= cp (1.13)

∂ĥ

∂p

∣∣∣∣∣
T

=
1

ρ
(1− βT ) (1.14)
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and β = −1
ρ
∂ρ
∂T

∣∣∣
p
.

Therefore, we have reduced the enthalpy equation in an equation dealing with the
temperature variable:

cp
∂(ρT )

∂t
+ cp∇ · (ρT~v) ≡ ρcp

DT

Dt
= ∇ · (k∇T ) + τ : ∇~v + βT

Dp

Dt
(1.15)

1.2.4 Ideal gas properties

To express the relationships between macroscopic variables and movements of micro-
scopic molecules, we have to introduce an equation of state for the fluid. When the fluid
is a gas, the simplest equation of state is the ideal gas law. This hypothetical ideal gas
neglects both molecular size and intermolecular attractions. This assumption is most accu-
rate for monatomic gases even at high temperatures and low pressures [160]. Under these
conditions, most of gases can be treated as an ideal gas with negligible errors. With this
assumption, complicate gas properties can be greatly reduced.

1.2.4.1 Ideal gas law

At relatively high temperature and sufficiently low pressure, most substances behave as
a single-phase fluid, in which the interactions between its molecules are generally negligible.
The equation of state can be expressed as

p = ρrT (1.16)

where r stands for a constant for a given substance. Its value is defined by r = R/M with
R = 8.31 J · K−1 ·mol−1 the universal ideal gas constant and M the molecular mass of
the gas (kg ·mol−1). The ideal gas law can be rewritten using the volume per mass unit
v = 1/ρ:

pv = rT

1.2.4.2 Internal energy

For a real gas, according to [160], the internal energy per volume unit is:

dû = cvdT + (T
∂p

∂T

∣∣∣∣
v

− p)dv (1.17)

For the ideal gas, T ∂p
∂T

∣∣∣
v

= ρrT = p. We obtain the definition of internal energy for ideal
gas:

dû = cvdT (1.18)

where cv is constant.

1.2.4.3 Enthalpy

For a real gas, according to [160], the enthalpy per mass unit is:

dĥ = cpdT + (v − T ∂v

∂T

∣∣∣∣
P

)dp (1.19)

For the ideal gas, v − T ∂v
∂T

∣∣
P

= v − rT
p = 0, enthalpy at constant pressure is:

dĥ = cpdT (1.20)

where cp is constant.
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1.2.4.4 Thermodynamical coefficients

By using the ideal gas equation, thermodynamical coefficients can be determined.

β(T, p) = −1

ρ

∂ρ

∂T

∣∣∣∣
p

=
1

T
(1.21)

Starting from the enthalpy relation, we have

dĥ = cpdT

d(û+ pv) = cpdT

dû+ rdT = cpdT

Accounting to dû = cvdT , we then obtain cp−cv = r. By noticing γ = cp/cv, we obtain
the specific heat at constant pressure

cp(T, p) =
γr

γ − 1
(1.22)

For monatomic gas, cp = 5r/2, and for diatomic gas, cp = 7r/2.

1.3 Low Mach number approximation

1.3.1 From compressible to incompressible models

Equations described in Sec. 1.2 are general for Newtonian fluids. In the framework of
fluid mechanics, we usually distinguish compressible and incompressible fluid flows. For
compressible flows, the local pressure appears in the state equation to influence the mass
conservation by density; also the pressure contributes to the momentum balance, velocity,
density and it’s highly coupled. When variations of velocity caused by variations of density
are relatively small. Flows can be considered as incompressible flow and the density is often
assumed constant.

To distinguish regimes of compressible and incompressible flow, the Mach number (Ma)
is used as an independent dimensionless parameter which is defined through the ratio be-
tween the characteristic velocity uc and the sound speed c, Ma = uc/c (in ideal gas and
isentropic evolutions c2 = γp/ρ with γ = cp/cv). The threshold between both flow regimes
is usually set to Mac = 0.2. With Mach number less than this threshold, compressible
effects in the flow become negligible, and the density is uncorrelated to the local pressure
variations.

However for Ma < 0.2, there still exits situations in which the density cannot assume
to be constant. Such typical cases concern the convection in atmosphere which originates
in the sensitivity of the density with height, the circulation of the oceans driving by salin-
ity and temperature gradients and flows in fuel/air combustors open fires. One way to
solve these flows is to use a full compressible model, abiding by the limitations associ-
ated to the numerical scheme [128, 145]. Indeed, the acoustic wave cannot travel more
than one computational cell length in one time increment, the pressure forces cannot be
transmitted more than one cell each time step [125]. If a large time increment is chosen,
sound waves should travel more than one cell. It yields large pressure gradients which lead
to excessive cell compressions or expansions and considerable reversed pressure gradient
which try to reverse the previous excesses. The process repeats itself and oscillations are
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rapidly strengthened by superposition of waves, thus leading to a catastrophic numerical
instability. For low Mach number fluid flow, the acoustic wave contains very few energy in
comparison with the part transferred by the flow field. Therefore, the governing equations
for compressible flows can be simplified by removing the acoustic waves, which allows to
substantially relax the time step constraint associated with the compressible scheme.

A classic simplification of Navier-Stokes equations is due to Boussinesq [33]. Let’s as-
sume that density variations are induced by thermal gradients. Then, this approximation
mainly relies on a first-order series expansion of density as a function of temperature field,
only the leading contributions are conserved in the resulting equations. Other physical
properties being assumed constant. It consists in setting the density constant in the mass,
momentum and energy equations, except in the gravity term where the first-order term
which is originated the flow motion must be kept. It makes the mathematics and physics
simpler. A very strict limitation for this approximation is that the density variations must
remain small enough, viz for a relative temperature difference less than 10% [69]. Otherwise,
an intermediate model between the Boussinesq approximation and the full compressible
flow model must be employed. This consists in the low Mach number approximation which
is now presented.

1.3.2 Low Mach number Model

1.3.2.1 Equations

The low Mach number approximation relies on a decoupling between the acoustic speed
and the flow velocity. We consider an enclosed container and a fixed time interval, the
acoustic waves have ample time to reflect several times on walls before the gas travels a
small distance. Thus, the small fluctuating pressures equilibrate almost instantaneously in
comparison with the characteristic time of the fluid flow. And the same occurs for open
systems where the pressure equilibrium is quickly restored to the outer pressure. The low
Mach approximation is now described following the method presented by Paolucci [125].
Let T0, ρ0 and p0 be the scales for the temperature, the density and the pressure expressed
at the reference gravitational potential line. The velocity scale is based on the sound speed
c0 evaluated at T0, ρ0 and p0. The dynamic viscosity, the thermal conductivity, the specific
heats at constant pressure and volume are also normalized by their values at T0, p0 and
ρ0, namely µ0, k0, cp,0 and cv,0. Finally, the length and time scales are referenced by l
and l/U where l is a characteristic length and U is a representative fluid flow velocity.
Notice that p0 measures the thermodynamic pressure unlike to the quantity ρ0U

2 which
scales the dynamic pressure only. Adopting the above mentioned normalization leads to
the appearance of five independent dimensionless parameters corresponding to the Mach
number Ma, the Reynolds number Re, the Froude number Fr, the Péclet number Pe and
the ratio of specific heats γ:

Ma =
U

c0
, Re =

ρ0Ul

µ0
, F r =

U2

g0l
, Pe =

ρ0cp,0Ul

k0
, γ =

cp,0
cv,0

(1.23)

To prevent overloaded notations, the dimensionless variables are written as their dimen-
sional counterparts. Using the perfect gas law, the Navier-Stokes and energy equations
write:

∂ρ

∂t
+

1

Ma
∇ · (ρ~v) = 0 (1.24a)

∂ρ~v

∂t
+

1

Ma
∇ · (ρ~v ⊗ ~v) = − 1

γMa
∇p+

Ma

Fr
ρ~g +

1

Re
∇ · τ (1.24b)
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cp

(
∂ρT

∂t
+

1

Ma
∇ · (ρ~vT )

)
=
γ − 1

γ

(
∂p

∂t
+

1

Ma
~v · ∇p

)
+

1

Pe
∇ · (k∇T ) +

γ − 1

Re
τ : ∇~v

(1.24c)
with

τ = µ(∇~v + (∇~v)t)− 2

3
µ(∇ · ~v)δ

and
γ − 1

γ
=

p0

ρ0cp,0T0
, p = ρT

The velocity field is rescaled to reflect its true magnitude, and, with the thermodynamic
variables, is expanded in a small parameter Ma as follows:

~v = Ma[~v(0) +Ma2~v(1) + o(Ma2)], (1.25a)

T = T (0) +Ma2T (1) + o(Ma2), (1.25b)

p = p(0) +Ma2p(1) + o(Ma2), (1.25c)

ρ = ρ(0) +Ma2ρ(1) + o(Ma2), (1.25d)

Physical properties µ, λ, k and cp can be expanded in a similar way.
With the expansions above, we write down the O(1) and O(Ma2) conservation equa-

tions:

Mass
– O(1) :

∂ρ(0)

∂t
+∇ · (ρ(0)~v(0)) = 0 (1.26a)

– O(Ma2) :

∂ρ(1)

∂t
+∇ · (ρ(1)~v(0) + ρ(0)~v(1)) = 0 (1.26b)

Momentum
– O(1) :

0 = −1

γ
∇p(0) +

Ma2

Fr
ρ(0)~g (1.27a)

– O(Ma2) :

∂ρ(0)~v(0)

∂t
+∇ · (ρ(0)~v(0) ⊗ ~v(0)) = −1

γ
∇p(1) +

Ma2

Fr
ρ(1)~g +

1

Re
∇ · τ (0) (1.27b)

Energy
– O(1) :

c(0)
p

(
∂ρ(0)T (0)

∂t
+∇(ρ(0)~v(0)T (0))

)
=

γ − 1

γ

(
∂p(0)

∂t
+ ~v(0) · ∇p(0)

)
+

1

Pe
∇ · (k(0)∇T (0)) (1.28a)
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– O(Ma2) :

c(0)
p

(
∂ρ(1)T (0)

∂t
+∇ · (ρ(1)~v(0)T (0)) +

∂ρ(0)T (1)

∂t
+∇ · (ρ(0)~v(0)T (1))

)
+

c(1)
p

(
∂ρ(0)T (0)

∂t
+∇ · (ρ(0)~v(0)T (0))

)
+ c(0)

p ∇ · (ρ(0)~v(1)T (0)) =

γ − 1

γ

(
∂p(1)

∂t
+ ~v(0)∇p(1) + ~v(1)∇p(0)

)
+

1

Pe

(
∇ · (k(0)∇T (1)) +∇ · (k(1)∇T (0))

)
+

γ − 1

Re
τ

(0)
: ∇~v(0) (1.28b)

Perfect gas law
– O(1) :

p(0) = ρ(0)T (0) (1.29a)

– O(Ma2) :

p(1)

p(0)
=
ρ(1)

ρ(0)
+
T (1)

T (0)
(1.29b)

with
τ

(0)
= µ(0)

(
(∇~v(0) + (∇~v(0))t)− 2

3
(∇ · ~v(0))δ

)
These equations make sense ifMa2/Re << O(1) in Eqs. (1.27b) and (1.28b) andMa2/Fr =
O(1) in Eqs. (1.27a) and (1.27b). Approximating the kinematic viscosity by ν ≈ cΛ, with Λ
the mean free path of fluid, the first dimensional group is reduced toMa2/Re ≈Ma×Λ/l,
and thus it is very small, like it has been assumed. The second assumption deserves a closer
scrutiny. It requires gl/c2

0 = O(1) or g and/or l to be large as in the atmospheric or stel-
lar problems. In that case, to avoid acoustic waves, we require an additional assumption
ρ(0)(~x, t) = f(~v ·~g, t), viz the leading term in the density expansion only depends on direc-
tion collinear to the gravity acceleration. But in numerous problems, Fr & O(1) so that
the term Ma2/Fr × ρ(0)~g in Eq. (1.27a) is of order O(Ma2) and Ma2/Fr × ρ(1)~g in Eq.
(1.27b) becomes O(Ma4). With such an assumption, we have

∇p(0) = 0 (1.30)

The leading part of the pressure then depends on time only. Then, the motion-induced
spatial variations in pressure p(1) = O(ρU2) are extremely small and does not exceed the
total static variation p(0)(t).

After dropping the zero superscripts, neglecting the O(Ma2)-terms in the mass and
energy equations, reintroducing the different scales for the variables and expressing the
pressure as the sum of the thermodynamic pressure P̄ (t) and the dynamical pressure Π(~x, t)

p(~x, t) = P̄ (t) + Π(~x, t) (1.31)

the remaining leading order of the governing equations become:

Continuity equation
∂ρ

∂t
+∇ · (ρ~v) = 0 (1.32a)
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Momentum equations

∂ρ~v

∂t
+∇ · (ρ~v ⊗ ~v) = −∇(Π− ρ0~x · ~g) + (ρ− ρ0)~g +∇ · τ (1.32b)

Energy equation

cp

(
∂ρT

∂t
+∇ · (ρ~vT )

)
= βT

dP̄

dt
+∇ · (k∇T ) (1.32c)

State equation – the perfect gas law

P̄ (t) = ρ(~x, t)rT (~x, t) (1.32d)

1.3.2.2 Mass conservation in closed system

The splitting of the pressure into a thermodynamic part P̄ and a dynamic contribution
Π introduces a new unknown variable in the system. An extra equation is then needed to
determine the state pressure P̄ .

In an open system, P̄ equilibrates instantaneously with the ambient pressure. There-
fore, the pressure time derivative simply vanishes in Eq. (1.32c).

In an enclosure of volume Ω, we can establish another relationship from the mass and
energy conservation equations.

From the mass conservation equation The ideal gas law acts as a constraint enforced
by the thermodynamic pressure:

ρ =
P̄

rT

Let m0 =
∫

Ω
P̄ (~x,t0)
rT (~x,t0) d~x be the mass contained in the enclosure at time t = t0.

Without any sink or source of mass, we then have:∫
Ω
ρ(~x, t) d~x ≡

∫
Ω

P̄ (t)

rT (~x, t)
d~x = m0

We then deduce
P̄ (t) = m0

r∫
Ω

1

T (~x, t)
d~x

and the time derivative gives

dP̄

dt
= m0

r

∫
Ω

1

T 2

∂T

∂t
d~x(∫

Ω

1

T (~x, t)
d~x

)2 (1.33)

From the energy conservation equation Substituting ρT in (1.32c) by P̄ /r leads to

cp
r

(
dP̄

dt
+∇ · (P̄~v)

)
= βT

dP̄

dt
+∇ · (k∇T )

Taking into account that the thermodynamic pressure depends only on time, we get:

cp
r

(
dP̄

dt
+ P̄∇ · ~v

)
= βT

dP̄

dt
+∇ · (k∇T )
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The velocity divergence can then be express by

∇ · ~v =
r

P̄ cp

(
∇ · (k∇T ) +

(
βT − cp

r

) dP̄
dt

)
(1.34)

Integrating over the flow domain Ω and using impervious boundary conditions,
Eq.(1.34) becomes:

0 =

∫
Ω

r

P̄ cp
∇ · (k∇T ) d~x+

dP̄

dt

∫
Ω

r

P̄ cp

(
βT − cp

r

)
d~x

After simplification by P̄ and r, we have:

dP̄

dt
=

∫
Ω

1

cp
∇ · (k∇T ) d~x∫

Ω

1

cp

(cp
r
− βT

)
d~x

=

∫
Ω

(
∇ ·
(
k

cp
∇T
)
− (k∇T ) · ∇

(
1

cp

))
d~x∫

Ω

(
1

r
− βT

cp

)
d~x

=

∫
Ω

(
∇ ·
(
k

cp
∇T
)

+
1

c2
p

(k∇T ) · ∇cp
)
d~x∫

Ω

(
1

r
− βT

cp

)
d~x

Applying the divergence theorem, we obtain

dP̄

dt
=

∫
δΩ

k

cp
∇T · ~n d~x+

∫
Ω

1

c2
p

(k∇T ) · ∇cp d~x∫
Ω

(
1

r
− βT

cp

)
d~x

(1.35)

where δΩ and denotes ~n the boundary of the domain Ω and the unit normal vector
pointing outwards Ω. The rate of change of the thermodynamic pressure is affected
by heat transferred through the boundary of the domain, the heat capacity and its
gradient but also by the product βT .
For a perfect gas, β = 1/T and cp = γr/(γ − 1) then

dP̄

dt
= (γ − 1)

∫
δΩ
k∇T · ~n d~x

1.4 Boussinesq approximation

The Boussinesq approximation proposed by Oberbeck (1873) and Boussinesq (1903)
[33] considers a weak variation for the density while preserving the incompressible assump-
tion for the mass equation. This model can be viewed as a simplification of the low Mach
number approximation Eq. (1.32) when the relative variation of temperature is not too
large, namely smaller than 0.1 [69].

17



The physical properties are assumed constant and the thermodynamic variables are
expressed as small fluctuations about a stationary and uniform reference state:

ρ(~x, t) = ρ0 + ρ′(~x, t)

T (~x, t) = T0 + T ′(~x, t)

p(~x, t) = P̄0 + p′(~x, t)

Using the definition of the pressure Eq. (1.31), we identify P̄ (t) = P̄0 and Π(~x, t) = p′(~x, t).
Keeping the leading order only, this leads to:

∇ · ~v = 0 (1.36a)

∂ρ0~v

∂t
+∇ · (ρ0~v ⊗ ~v) = −∇(p′ − ρ0~x · ~g) + ρ′~g +∇ · τ (1.36b)

cp

(
∂ρ0T

∂t
+∇ · (ρ0~vT )

)
= ∇ · (k∇T ) (1.36c)

0 = ρ′rT0 + ρ0rT
′ (1.36d)

From Eq. (1.36d), we deduce the expression of the density fluctuation as a function of the
departure of the temperature with its reference value:

ρ′ = −ρ0
T ′

T0
= −ρ0

T − T0

T0

Introducing the isobaric volume expansion coefficient β = 1/ρ0× (∂ρ)/(∂T ))T0 = 1/T0, we
recover the usual density relation

ρ′ = −ρ0β(T − T0) (1.37)

It is worth to point out that the density fluctuation in Eq. (1.36b), and expressed by Eq.
(1.37), cannot be neglected for natural convection flows, otherwise no motion could occur.
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Chapter 2

Numerical scheme

2.1 Temporal discretization

2.1.1 Initial value problem

We consider the initial value problem

dφ(t)

dt
= f(t, φ(t)), φ(t = 0) = φ(0)

with φ0 the initial condition. By integrating the differential equation in time, from 0 to
T > 0, we obtain

φ(T )− φ(0) =

∫ T

0
f(t, φ(t)) dt (2.1)

The exact solution φ(t) being unknown, the right-hand side of this equation must be
approximated. The idea is firstly to split the time interval [0, T ] into small successive
intervals such that T =

∑n
m=0 ∆tm, ∆tm = tm+1 − tm with t0 = 0 and tn+1 = T . We also

assume the time steps ∆tm are of same order, ∆tn = O(∆t). Then, Eq. (2.1) reads:

φ(tn+1)− φ(0) =

n∑
m=0

∫ tm+1

tm

f(t, φ(t)) dt (2.2)

and subtracting φ(tn+1) to φ(tn) leads to:

φ(tn+1)− φ(tn) =

∫ tn+1

tn

f(t, φ(t)) dt (2.3)

The issue is now to express an approximation of the right-hand side of (2.3). The approx-
imation φ(ti) is now noted φ(i).

Different classical methods presented are based on Taylor expansions of the integrand
of Eq. (2.3).
Forward Euler The function f(t, φ(t)) is expressed starting from tn:

f(t, φ(t)) = f(tn, φ
(n)) + (t− tn)

(∂f(t, φ(t))

∂t
+
∂f(t, φ(t))

∂φ

dφ

dt

)
tn

+O((t− tn)2)

Substituting this expression in Eq. (2.3) leads to

φ(n+1) − φ(n) = f(tn, φ
(n))∆tn +

∆t2n
2

(∂f(t, φ(t))

∂t
+
∂f(t, φ(t))

∂φ

dφ

dt

)
tn

+O(∆tn)3

≈ f(tn, φ
(n))∆tn
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This method is referenced as an explicit Euler scheme because it only uses known
variables. This approximation introduces an error of order O(∆tn)2 respectively to
Eq. (2.3) and a cumulative error O(∆t) when starting from the initial condition (Eq.
(2.2)). This explicit Euler scheme is then first order accurate.

Backward Euler The function f(t, φ(t)) is expressed starting from tn+1:

f(t, φ(t)) = f(tn+1, φ
(n+1))+

(t− tn+1)
(∂f(t, φ(t))

∂t
+
∂f(t, φ(t))

∂φ

dφ

dt

)
tn+1

+O((t− tn+1)2)

Substituting this expression in Eq. (2.3) gives

φ(n+1) − φ(n) = f(tn+1, φ
(n+1))∆tn +

∆t2n
2

(∂f(t, φ(t))

∂t
+
∂f(t, φ(t))

∂φ

dφ

dt

)
tn+1

+O(∆tn)3

≈ f(tn+1, φ
(n+1))∆tn

This approach leads to an implicit Euler scheme because the right-hand side is un-
known at time t = t(n+1). The global accuracy of this scheme is first order.

Midpoint rule – Crank-Nicolson method The function f(t, φ(t)) is expressed start-
ing from tn+1/2 = (tn + tn+1)/2:

f(t, φ(t)) = f(tn+1/2, φ
(n+1/2))+

(t− tn+1/2)
(∂f(t, φ(t))

∂t
+
∂f(t, φ(t))

∂φ

dφ

dt

)
tn+1/2

+O((t− tn+1/2)2)

Integrating this relation between tn and tn+1 cancels the term involving the partial
derivatives. Eq. (2.3) writes:

φ(n+1) − φ(n) = f(tn+1/2, φ
(n+1/2))∆tn +O(∆tn)3

≈

(
f(tn, φ

(n)) + f(tn+1, φ
(n+1))

2
+O(∆tn)2

)
∆tn +O(∆tn)3

≈ f(tn, φ
(n)) + f(tn+1, φ

(n+1))

2
∆tn

This approximation is then third order accurate on one time step ∆tn, but simply of
second order when starting from initial condition (Eq. (2.2)).

Backward second order Euler scheme We suppose ∆tn = ∆tn−1 = ∆t. To improve
the order of accuracy of the backward Euler scheme, we consider the two following
expressions, φ(tn+1)− φ(tn) (Eq. (2.3))

φ(tn+1)− φ(tn) =

∫ tn+1

tn

f(t, φ(t)) dt

and φ(tn+1)− φ(tn−1)

φ(tn+1)− φ(tn−1) =

∫ tn+1

tn−1

f(t, φ(t)) dt

Using the backward Euler scheme, we obtain

φ(n+1) − φ(n) = f(tn+1, φ
(n+1))∆t+

∆t2

2

(∂f(t, φ(t))

∂t
+
∂f(t, φ(t))

∂φ

dφ

dt

)
tn+1

+O(∆t)3 (2.4)
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and

φ(n+1) − φ(n−1) = f(tn+1, φ
(n+1))(2∆t)+

(2∆t)2

2

(∂f(t, φ(t))

∂t
+
∂f(t, φ(t))

∂φ

dφ

dt

)
tn+1

+O(∆t)3 (2.5)

The term weighted by ∆t2 is eliminated by the linear combination 4× (Eq. (2.4))−
(Eq. (2.5)) to provide:

3φ(n+1) − 4φ(n) + φ(n−1) ≈ 2f(tn+1, φ
(n+1))∆t (2.6)

This local approximation is third order but it reduces to second order when we
consider the full time integration starting from t = 0. It must be noticed that similar
expressions can also be written if ∆tn 6= ∆tn−1.

The orders of accuracy of these methods make sense only if the schemes are stable during
the temporal iterations. Therefore, it may result restriction conditions on the time step
∆tn. It can be proved that whatever the time step is, if (∂f(t, φ))/(∂φ) < 0, the implicit
Euler and Crank-Nicolson schemes are unconditionally stable. The stability of the explicit
Euler method requires ∣∣∣∣∣1 + ∆tn

∂f(t, φ)

∂φ

∣∣∣∣
t=tn

∣∣∣∣∣ < 1

and thus an upper bound for the time step. If f(t, φ) represents a 1D-diffusion contribution
(f(t, φ) = (∂2φ)/(∂x2)) in an unbounded x-domain, (∂f(t, φ))/(∂φ) writes −k2 in the
Fourier space, with k ∈ R the wavenumber in x-direction. In this example, the implicit
Euler and Crank-Nicolson schemes are then unconditionally stable (energy norm) whereas
the wavenumber k is stable for the explicit Euler method only if ∆t < 2/k2. In physical
space, this inequality reduces to classical relation ∆x2/∆t < 1/2 with ∆x the smallest
admissible wave length corresponding, for example, to the smallest spatial grid size.

2.1.2 Governing fluid flow equations

The mass and momentum equations are expressed in their conservative form whereas
the energy equation is written in convective form. This latter choice is explained by the
following remarks. In the conservative form, the temperature equation exhibits the product
of the density by the temperature. But in the lowMach number approximation, this product
is equal to the thermodynamic pressure which does not depend any more on space. It results
a temperature equation of which the numerical solution proves to be unstable. Although
the convective form of the temperature equation is preferred, the convective fluxes remains
conservative at the numerical level (see Sec. 2.2.3.3).

The low Mach approximation (1.32) writes:

∂ρ

∂t
+∇ · (ρ~v) = 0 (2.7a)

∂ρ~v

∂t
+∇ · (ρ~v ⊗ ~v) = −∇Πg +∇ · τ + (ρ− ρ0)~g (2.7b)

with Πg = Π− ρ0~x · ~g the departure from the hydrostatic pressure

ρcp

(
∂T

∂t
+ (~v · ∇)T

)
=
dP̄

dt
+∇ · (k∇T ) (2.7c)

An extra equation is needed to compute the new variable P̄ (t).
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Low Mach number – Open system The thermodynamic pressure equilibrates instan-
taneously with the outer pressure P̄out. We then get

P̄ (t) = Pout,

(
and then

dP̄

dt
= 0

)
(2.7d)

with ρ = P̄out/(rT (~x, t)) the equation of state for the gas.
Low Mach number – Enclosure The thermodynamic pressure equilibrates instanta-

neously to satisfy the global mass conservation (Sec. (1.3.2.2)):

P̄ (t) =
m0∫

Ω

1

rT (~x, t)
d~x

(2.7e)

with ρ = P̄ (t)/(rT (~x, t)) the equation of state for the gas.
Boussinesq approximation The thermodynamic pressure is kept constant, then

dP̄

dt
= 0 (2.7f)

with ρ = ρ0 except in the gravity contribution (Eq. (2.7b)) where the density is a
linear function of the temperature.

We now focus on the low Mach number approximation for fluid flows inside closed
cavities. The set of equations (2.7a)-(2.7c), plus equation (2.7e), are discretized in time
with the second order backward Euler scheme:

3ρ(n+1) − 4ρ(n) + ρ(n−1)

2∆t
+∇ · (ρ(n+1)~v(n+1)) = 0 (2.8a)

3ρ(n+1)~v(n+1) − 4ρ(n)~v(n) + ρ(n−1)~v(n−1)

2∆t
+ (∇ · (ρ~v ⊗ ~v))(n+1)AB = − (∇Πg)

(n+1) +

∇ ·
(
µ(n+1)

(
∇~v(n+1) + (∇~v(n+1)AB )t − 2

3
∇ · ~v(n+1)ABδ

))
+ (ρ(n+1) − ρ0)~g (2.8b)

c(n+1)AB
p

(
ρ(n+1)AB

3T (n+1) − 4T (n) + T (n−1)

∆t
+ ((ρ~v · ∇)T )(n+1)AB

)
=

3P̄ (n+1) − 4P̄ (n) + P̄ (n−1)

∆t
+∇ · (k(n+1)AB∇T (n+1)) (2.8c)

P̄ (n+1) =
m0∫

Ω

1

rT (n+1)(~x)
d~x

(2.8d)

In this set of equations, all variables are evaluated at t = (n+ 1)∆t, but in different ways:
– the superscript (n+1) refers to implicit value;
– the superscript (n+1)AB indicates second order extrapolation using Adams-Bashforth

scheme: X(n+1)AB = 2X(n+1) −X(n).
The set of Eqs. (2.8) are solved iteratively as follows:

1. The energy equation (2.8c) is first considered, with P̄ (n+1) and T (n+1) unknown;
2. The temperature field being computed at time (n+1)∆t, the momentum (Eq. (2.8b))

and mass (Eq. (2.8a)) equations are solved using a time splitting method. Pressure
and velocity fields are updated at the new time step (n+ 1).
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2.1.3 Energy equation

For a low Mach number approximation of a fluid flowing in an enclosure, Tn+1 and
P̄n+1 are non-linearly coupled in Eqs. (2.8c) and (2.8d). Solutions are then obtained using
the Newton-Raphson method.

2.1.3.1 Newton-Raphson method – Principle

To find the root of a single algebraic equation f(x) = 0, we use Taylor series to linearize
this function with an estimated value xk:

f(x) ≈ f(xk) + f
′
(xk)(x− xk)

Setting the linearized function to zero provides a new estimate of the root:

xk+1 = xk −
f(xk)

f ′(xk)
(2.9)

Iterations are carried on till the error between xk and xk+1 is as small as desired. The
speed of convergence to the root x̄ is second order, namely there exists a finite positive
real β such that

lim
k→∞

|xk+1 − x̄|
|xk − x̄|2

= β

If the initial estimate x0 is close enough of the root, less than three iterations are usually
necessary to converge.

2.1.3.2 Newton-Raphson method – Application

We aim to solve the non-linear equation f(P̄ (n+1), T (n+1)(P̄ (n+1))) = 0 with

f(P̄ , T (P̄ )) = P̄ − m0∫
Ω

1

rT (~x)
d~x

with T (P̄ ) provided by Eq. (2.8c):(
3c

(n+1)AB
p ρ(n+1)AB

∆t
−∇ · (k(n+1)AB∇)

)
T =

3P̄ − 4P̄ (n) + P̄ (n−1)

∆t
+

c(n+1)AB
p

(
ρ(n+1)AB

4T (n) − T (n−1)

∆t
− ((ρ~v · ∇)T )(n+1)AB

)
(2.10)

The Newton-Raphson method requires the computation of the derivative of f with
respect to its variable P̄ (Eq. (2.9)). Because this expression is a bit difficult to establish,
we substitute its exact value by an approximation defined as follows:

df

dP̄
≈ f(P̄ + δP̄ , T (P̄ + δP̄ ))− f(P̄ , T (P̄ ))

δP̄

with δP̄ � P̄ .

The Newton-Raphson algorithm writes:
1. Set P̄0 = P̄ (n+1)AB an estimated value at the initial iteration,
2. for k ≥ 0, do
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(a) Compute the temperature field Tk,1(P̄k) using Eq. (2.10),
(b) Compute the temperature field Tk,2(P̄k + δP̄ ) using Eq. (2.10),
(c) Define P̄k+1 as follows:

P̄k+1 = P̄k − f(Pk, Tk,1)
δP̄

f(P̄ + δP̄ , Tk,2)− f(P̄ , Tk,1)

(d) if (P̄k+1 − P̄k)/Pk < 10−12, exit.
3. P̄ (n+1) = P̄k+1, stop.

Once again, notice that iterative procedure is useful for closed systems only. In the other
cases, the thermodynamic pressure is kept constant and then dP̄ /dt disappears. Therefore,
only one solving of Eq. (2.10) cleared of the pressure terms is needed.

2.1.4 Navier-Stokes equations – Fractional-time step method

For fluid flows governed by incompressible Navier-Stokes equations, the main numeri-
cal difficulty relies on the coupling between the pressure used in the momentum equation
and the mass equation. Indeed, whereas the spatio-temporal pressure evolution is directly
linked to local mass fluxes in compressible flows, this coupling disappears when Boussinesq
or low Mach number approximations are used. It results that the scaling of the pressure
in the momentum equation is no more based on the thermodynamic pressure (or static
pressure), but on the dynamic pressure. Another consequence is the local pressure must
adapt instantaneously in order to fulfill the mass constraint. The relaxation of this coupling
may lead to numerical instabilities.

The fractional-time step method is an efficient algorithm developed for incompress-
ible Navier-Stokes equations to maintain the coupling between the pressure and velocity
while the mass and the momentum equations are solved separately [89]. This method was
firstly proposed by Chorin [48] and Teman [154] independently. Based on these precursory
works, Kim and Moin [89] improved this method in conjunction with the approximate-
factorization technique [20] and with appropriate boundary conditions for the intermedi-
ate velocity field [100]. Despite the efficiency of this approach in terms of computational
time and memory storage, this method introduces a numerical boundary layer on both the
pressure field and the velocity field [162].

The energy equation being solved at first, the temperature field and the thermodynamic
pressure are evaluated at the new time (n+1)∆t. Consequently, the density ρ(n+1) and the
dynamical viscosity µ(n+1) become also known functions. For sake of simplicity, we gather
all known terms into a single vector noted ~f such that

~f =
4ρ(n)~v(n) − ρ(n−1)~v(n−1)

2∆t
− (∇ · (ρ~v ⊗ ~v))(n+1)AB +

∇ ·
(
µ(n+1)

(
(∇~v(n+1)AB )t − 2

3
∇ · ~v(n+1)ABδ

))
+ (ρ(n+1) − ρ0)~g (2.11)

The discrete Navier-Stokes equations (2.8b) and (2.8a) then writes:
3ρ(n+1)~v(n+1)

2∆t
−∇ ·

(
µ(n+1)∇~v(n+1)

)
= − (∇Πg)

(n+1) + ~f (2.12a)

3ρ(n+1) − 4ρ(n) + ρ(n−1)

2∆t
+∇ · (ρ(n+1)~v(n+1)) = 0 (2.12b)
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The method initially developed for constant density [89] is extended to low Mach number
approximation. It consists of three successive steps:

1. Find the intermediate velocity ~v(n+1)∗ solution of the momentum equation (2.12a),
provided the pressure at time (n+ 1)∆t is substituted by the pressure at t = n∆t:

3ρ(n+1)~v(n+1)∗

2∆t
−∇ ·

(
µ(n+1)∇~v(n+1)∗

)
= − (∇Πg)

(n) + ~f (2.13)

with the same boundary conditions as ~v(n+1),

2. Define the velocity at the new time step as the sum of the intermediate velocity and
the gradient of a scalar variable Φ(n+1):

~v(n+1) = ~v(n+1)∗ − 2∆t

3ρ(n+1)
∇Φ(n+1) (2.14)

such that the mass equation (2.12b) is satisfied:

3ρ(n+1) − 4ρ(n) + ρ(n−1)

2∆t
+∇ ·

(
ρ(n+1)~v(n+1)∗

)
=

2∆t

3
∇ · ∇Φ(n+1) (2.15)

This Poisson equation requires boundary conditions. Two cases have to be considered:
– The velocity normal to the boundary ~v ·~n is prescribed, as for example along solid

walls. Accounting for the boundary conditions on ~v∗ and the relation between the
new velocity and the intermediate velocity (Eq. (2.14)), we find

∇Φ(n+1) · ~n = 0

– The normal derivative of the normal component of the velocity ∇(~v · ~n) · ~n is
prescribed to h(~x, t), as for instance at open boundaries. In that specific case, the
pressure must also be known in order the solution exists. Let us note k(~x, t) the
pressure, then

Φ(n+1) = k(~x, t(n+1))−Π(n)

It is interesting to notice that the boundary condition associated to the normal
component to the boundary then becomes

∂(~v(n+1) · ~n)

∂~n
= h(~x, t(n+1))− 2∆t

3ρ(n+1)

∂

∂~n
(∇Φ(n+1) · ~n) (2.16)

Then in the general case, only the intermediate velocity satisfy the boundary condi-
tion when the pressure is prescribed. However, it is worth to notice that the bound-
ary condition ∇(~v(n+1) · ~n) · ~n = h(~x, t(n+1)) is recovered when ∆t → 0, and also
when the solution converge toward a stationary solution since Φ ≡ Π

(n+1)
g −Π

(n)
g →

0.

3. The velocity is updated using Eq. (2.14), and the new pressure writes

Π(n+1)
g = Π(n)

g + Φ(n+1) (2.17)

The pressure correction step (Eq. (2.17)) shows that Φ(n+1) = Π
(n+1)
g − Π

(n)
g ≡ O(∆t).

Thus, both the velocity decomposition (Eq. (2.14)) and the boundary conditions (Eq.
(2.16)) are consistent in time to second order.
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2.2 Spatial discretization

2.2.1 Discrete formulation of the equations

The partial differential equations are discretized in space using the finite volume method.
The principle of the finite volume method is now briefly described.

First, this consists in subdividing the physical domain into a finite number of con-
tiguous control volumes or cells. This subdivision may differ according to the variable
considered. The equations, expressed in their conservative form, are then integrated on the
whole geometry. Using the divergence (or Ostrogradsky) formula, volume integrals defined
on each cell are substituted by surface integrals. And one key point of the finite volume
method relies on the discrete approximation of the surface integrals. They must satisfy the
following conservation property: the sum of the discrete fluxes leaving two adjacent cells
through their common surface must be zero. To achieve the discrete scheme, the variables
are assumed constant on each control volume. Interpolation procedures are used to express
the variable on cell faces and algebraic relations are used to provide approximations of
spatial derivatives. It results a large linear (or non-linear) algebraic system at each time
step, coupling the variables on the different cells, which is solved numerically.

In our implementation of the finite volume scheme, we used only one set of control
volume. In that case, the scalar variables and the components of the velocity are approxi-
mated on the same representative point on the cell: this approach is known as a collocated
scheme. For convenience, this specific point is called center of the cell, even if it is not
necessary the centroid of the control volume. We denote by K any cell of the mesh and
~xK the coordinate of its center. To differentiate the continuous operators to their discrete
counterpart expressed on K, the subscript K is added.

Any continuous variable φ(~x) ∈ {u, v, w, p, T} expressed at the cell center ~xK , K ∈M,
is approximated by φK , viz φ(~xK) ≈ φK . The same is worth for the values evaluated on
the boundary of the domain σ ∈ εout: φ(~xσ) ≈ φσ. The discrete variables φK are unknown
whereas φσ are either known if Dirichlet boundary conditions are prescribed or can be
expressed as a function of the inner variables defined on cell centers.

2.2.1.1 Pressure oscillations and stabilization method

It is well known that the discretization spaces for the velocity components and the
pressure must differ to fulfill the Babuška-Brezzi inf-sup condition [14, 35]. But for collo-
cated variables, this condition is not satisfied and spurious oscillations may appear into the
numerical solution. To avoid such problems, the equation (2.15) dealing with the pressure
correction must be stabilized. Let us rewrite this equation in its discrete form:

3ρ
(n+1)
K − 4ρ

(n)
K + ρ

(n−1)
K

2∆t
+∇K ·

(
ρ(n+1)~v(n+1)∗

)
=

2∆t

3
∇K · ∇̃KΦ(n+1) (2.18)

where ∇̃K and ∇K · denote the discrete gradient used for the pressure variable and the
discrete divergence, both expressed on cell K.

To explain the appearance of oscillations, let us consider a one dimensional problem
gridded with a regular space step ∆x = xi+1 − xi and let us note Φi, the correction
pressure at the cell centroid xi. The divergence of a vector ~v = u~ex and the gradient on
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cell K =]xi −∆x/2;xi + ∆x/2[ simply write:∇K · ~v ≡
ui+1+ui

2 − ui+ui−1

2

∆x
=
ui+1 − ui−1

2∆x

∇̃KΦ ≡ Φi+1 − Φi−1

2∆x
~ex

Therefore the discrete Laplacian expressed on cell K =]xi −∆x/2;xi + ∆x/2[

∇K · ∇̃KΦ =
Φi+2−Φi

2∆x − Φi−Φi−2

2∆x

2∆x
=

Φi+2 − 2Φi + Φi−2

(2∆x)2

does not depend on neighboring cells ]xi−1−∆x/2;xi−1 + ∆x/2[ and ]xi+1−∆x/2;xi+1 +
∆x/2[. It results a decoupling of odd and even cell values, and a birth of spurious oscillations
which are organized into checkerboards for two-dimensional problems. One way to suppress
these non-physical oscillations is to substitute ∇K · ∇̃K by a true Laplacian operator build
on one grid size [131].

∇2
Kφ ≡ (∇ · ∇Φ)K =

Φi+1 − 2Φi + Φi−1

∆x2

This substitution introduces a residual contribution R ≡ (∇ · ∇Φ)K − ∇K · ∇̃KΦ which
is consistent to O(∆x2) for a regular mesh (or for a grid slightly non-uniform), and then
it tends to zero with the grid size. Mathematically, it consists in replacing the collocated
divergence and gradient operators by their staggered versions with the normal components
of vectors (velocity and pressure gradient) expressed on cell faces.

Finally, equation (2.18) is rewritten as follows:

3ρ
(n+1)
K − 4ρ

(n)
K + ρ

(n−1)
K

2∆t
+∇K ·

(
ρ(n+1)~v(n+1)∗

)
=

2∆t

3

(
∇ · ∇Φ(n+1)

)
K

(2.19)

2.2.1.2 Discrete equations

The discrete formulation of the energy equation (2.8c) (or Eq. (2.10)) and the discrete
Navier-Stokes equations expressed with the fractional-time step method (Eq. (2.13) for the
diffusion step and Eq. (2.15) for the pressure correction) write:

c(n+1)AB
pK

(
ρ

(n+1)AB
K

3T
(n+1)
K − 4T

(n)
K + T

(n−1)
K

∆t
+
((

(ρ~v) · ∇
)
T
)(n+1)AB

K

)
=

3P̄
(n+1)
K − 4P̄

(n)
K + P̄

(n−1)
K

∆t
+
(
∇ · (k(n+1)AB∇T (n+1))

)
K

(2.20)
3ρ

(n+1)
K ~v

(n+1)∗

K

2∆t
−
(
∇ ·
(
µ(n+1)∇~v(n+1)∗

))
K

= −
(
∇̃KΠg

)(n)
+ ~fK (2.21a)

3ρ
(n+1)
K − 4ρ

(n)
K + ρ

(n−1)
K

2∆t
+∇K ·

(
ρ(n+1)~v(n+1)∗

)
=

2∆t

3

(
∇ · ∇Φ(n+1)

)
K
(2.21b)

with

~fK =
4ρ

(n)
K ~v

(n)
K − ρ(n−1)

K ~v
(n−1)
K

2∆t
−
(
∇ ·
(
(ρ~v)⊗ ~v

))(n+1)AB

K
+

∇̂K ·
(
µ(n+1)

(
(∇K~v(n+1)AB )t − 2

3
∇K · ~v(n+1)ABδ

))
+ (ρ

(n+1)
K − ρ0K )~g (2.22)
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The updated velocity and pressure on cell K write:

~v
(n+1)
K = ~v

(n+1)∗

K − 2∆t

3ρ
(n+1)
K

∇̃KΦ(n+1) (2.23)

Πg
(n+1)
K = Πg

(n)
K + Φ

(n+1)
K (2.24)

2.2.2 Discretization space, notations and geometrical requirements

The discretization space is defined by D = (M, ε,P) withM the set of control volumes,
ε the set of faces bounding the control volumes and P the set of points coordinates where
the variables are approximated.

The set of faces ε is divided into two disjoint subsets εin and εout such that ε = εin∪εout.
The subset εin contains faces between adjacent control volumes whereas εout gathers faces
located on the boundary of the computational domain. The set of faces making up of the
control volume K ∈M is noted εK .
For each control volume K ∈M, we denote by

– mK its volume in 3D (or its area in 2D);
– ~xK ∈ P the coordinates of its cell center.

For a face σ ∈ ε, we define
– σ ∈ εK∩εL the common face in 3D (or edge in 2D) between adjacent cells K ∈M

and L ∈M;
– σ ∈ εK ∩ εout the common face in 3D (or edge in 2D) between the cell K ∈ M

and the boundary of the domain;
– ~xσ the centroid of σ;
– mσ the surface in 3D (or length in 2D) of σ;
– dKL the distance between ~xK and ~xL;
– dKσ the distance between ~xK and ~xσ;
– ~nKσ the unit normal vector to σ, pointing outside K.

We also define two algebraic quantities which correspond to the algebraic contributions
of the reduced distances between the cell centers ~xK and ~xL to the centroid ~xσ, in the
normal direction ~nKσ of the interface σ ∈ εK ∩ εL:

αK =
−−−→xσxL · ~nKσ

dKL
, (2.25a)

αL =
−−−→xKxσ · ~nKσ

dKL
. (2.25b)

The mesh must also fulfill some requirements:
1. The straight line joining the centers of two adjacent cellsK and Lmust be orthogonal

to the common face σ ∈ εK ∩ εL (−−−→xKxL ∧ ~nKσ = ~0);
2. The cell centers must satisfy the order relation: −−−→xKxL · ~nKσ > 0;
3. The straight line joining the centers of two adjacent cells K and L must intersect the

common face σ ∈ εK ∩ εL at its centroid ~xσ.
By taking the geometry requirements into account, the two coefficients αK and αL (Eqs.
(2.25)) satisfy the vectorial relations

αK~nKσ =
1

dKL

−−−→xσxL, (2.26a)

αL~nKσ =
1

dKL

−−−→xKxσ. (2.26b)
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with αK + αL = 1.
These conditions are verified for orthogonal structured grids which consist of rectan-

gles or parallelepipeds. For general two-dimensional problems, the domain can be covered
by unstructured control volumes triangle-shaped (Fig. 2.1). To fulfill the geometrical re-

��������

��������

��������

~xK

~xL

~nKσ

dKL

K

L

mσ

~xσ

Figure 2.1 – Control volume and notations

quirements given here above, the triangles must be Delaunay [54]. Delaunay triangulation
maximizes the minimum angle of all the angles of the triangles in the the mesh; this tends
to avoid skinny triangles. The center ~xK of the cell K is the circumcenter, point where
the perpendicular bisectors of the sides intersect. The triangle is Delaunay if no other
circumcenter is located inside the circumcircle of K.

2.2.3 Discrete operators

The discrete approximations of the continuous spatial operators are based on previous
works [46, 47, 155]. One key point of the spatial discretization is that the discrete veloc-
ity and pressure aim also to satisfy a discrete kinetic energy equation which mimics its
continuous counterpart; the same yields for the thermal equation. To achieve such a re-
quirement, weak formulations are often invoked, either explicitly or implicitly. The different
discretizations are reminded in the next subsections.

2.2.3.1 Diffusion contribution (∇ · (κ∇φ))K

The general expression of the discrete diffusion term can be given by (∇ · (κ∇φ))K . In
the momentum equation (2.21a), κ and φ stand for the dynamic viscosity µ and any of the
components of the velocity. Concerning the thermal equation (2.20), κ corresponds to the
thermal conductivity k and φ represents the temperature T . And finally, κ ≡ 1 and φ ≡ Φ
in the pressure correction equation (2.21b).

The discrete operator is defined in order to mimic the continuous divergence formula∫
K
∇ · (κ(~x)∇ φ(~x)) d~x =

∑
σ∈εK

∫
σ
κ(~x)∇φ(~x) · ~nKσ d~x

Using the consistent flux approximation on σ ∈ εK ∩ εL, the common face between cells
K and L, ∫

σ
κ(~x)∇φ(~x) · ~nKσ d~x ≈ κσ

mσ

dKL
(φL − φK)
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and approximating ∇ · (κ∇φ) by its mean value (∇ · (κ∇φ))K on cell K, we obtain:

mK (∇ · (κ∇φ))K =
∑

σ∈εK∩εL

κσ
mσ

dKL
(φL − φK) +

∑
σ∈εK∩εout

κσ
mσ

dKσ
(φσ − φK) (2.27)

We deduce the approximation of diffusion term on cell K:

(∇ · (κ∇φ))K =
1

mK

( ∑
σ∈εK∩εL

κσ
mσ

dKL
(φL − φK) +

∑
σ∈εK∩εout

κσ
mσ

dKσ
(φσ − φK)

)
(2.28)

The diffusion coefficient kσ on face σ is expressed using the harmonic mean. For general
grids, this writes

κσ =
1

αK
κK

+ αL
κL

This expression has the advantage of being exact when the diffusion coefficients κK and
κL are constant on cells K and L (basic assumption for the finite volume approximation).
If the face is located at mid-length of centers ~xK and ~xL (αK = αL = 1/2), we recover the
usual relation

κσ =
2κKκL
κK + κL

2.2.3.2 Divergence ∇K · ~w for the mass contribution

The discrete divergence operator appears in the pressure correction equation of the
fractional-time step method (2.21b) as ∇K · (ρ~v).

Let us note ~w(~x) a velocity vector. The divergence of the velocity ~w satisfied the
continuous relation: ∫

K
∇ · (~w(~x)) d~x =

∑
σ∈εK

∫
σ
~w(~x) · ~nKσ d~x (2.29)

Considering the common face σ between cells K and L, σ ∈ εK ∩ εL, the integral contri-
bution of the right-hand side of this equation is consistently approximated by∫

σ
~w(~x) · ~nK,σ d~x ≈ mσ (αK ~wK + αL ~wL) · ~nKσ

Let∇K · ~w be an approximation of the mean value of∇· ~w(~x) on cellK, then the continuous
relation is approximated by

mσ∇K · ~w =
∑

σ∈εK∩εL

mσ (αK ~wK + αL ~wL) · ~nKσ +
∑

σ∈εK∩εout
mσ ~wσ · ~nKσ

and then:

∇K · ~w =
1

mK

( ∑
σ∈εK∩εL

mσ (αK ~wK + αL ~wL) · ~nKσ +
∑

σ∈εK∩εout
mσ ~wσ · ~nKσ

)
(2.30)

2.2.3.3 Transport contributions
(
∇ · (φρ~v)

)
K
and

(
ρ~v · ∇φ

)
K

The differential operator involved in the conservative expression of the transport term
is the divergence. Similarly to the previous subsection dealing with the discrete operator
"∇K ·", the conservative form of the transport terms satisfies:∫

K
∇ · (φ(~x)ρ(~x)~v(~x)) d~x =

∑
σ∈εK

∫
σ
φ(~x)ρ(~x)~v(~x) · ~nKσ d~x (2.31)
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A first idea could consist in using "∇K ·" defined by (2.30), but the drawback of this
expression is that the convective and conservative expressions of the transport contribution
are not equivalent any more. To satisfy the continuous identity

∇ · (φρ~v) = ρ~v · ∇φ+ φ∇ · (ρ~v) (2.32)

another expression for the divergence must be considered.

To construct the discrete operator, we must first examine carefully the relation (2.32).
The last term∇·(ρ~v) is related to the mass equation which is handled by the fractional-time
step method (2.21b). From the numerical point of view, this writes in discrete form:

mK
3ρ

(n+1)
K − 4ρ

(n)
K + ρ

(n−1)
K

2∆t
+∑

σ∈εK∩εL

mσ

(
αKρK~v

(n+1)∗

K + αLρL~v
(n+1)∗

L

)
· ~nKσ +

∑
σ∈εK∩εout

mσρσ~v
(n+1)∗
σ · ~nKσ =

2∆t

3

( ∑
σ∈εK∩εL

mσ

dKL
(Φ

(n+1)
L − Φ

(n+1)
K ) +

∑
σ∈εK∩εout

mσ

dKσ
(Φ(n+1)

σ − Φ
(n+1)
K )

)
(2.33)

Let us define de mass flux
– ṁ

(n+1)
KL through the face σ ∈ εK ∩ εL

ṁ
(n+1)
KL ≡ mσ

(
αKρK~v

(n+1)∗

K + αLρL~v
(n+1)∗

L

)
· ~nKσ −

2∆t

3
mσ

(
Φ

(n+1)
L − Φ

(n+1)
K

dKL

)
(2.34)

– ṁ
(n+1)
Kσ through the face σ ∈ εK ∩ εout

ṁ
(n+1)
Kσ ≡ mσ

(
ρσ~v

(n+1)∗
σ

)
· ~nKσ −

2∆t

3
mσ

(
Φ

(n+1)
σ − Φ

(n+1)
K

dKσ

)
(2.35)

Using the new variables, relation (2.33) then is reduced to

mK
3ρ

(n+1)
K − 4ρ

(n)
K + ρ

(n−1)
K

2∆t
+

∑
σ∈εK∩εL

ṁ
(n+1)
KL +

∑
σ∈εK∩εout

ṁ
(n+1)
Kσ = 0 (2.36)

This equation is the true mass equation solved by the fractional-time step method. There-
fore, to mimic the continuous equality (2.32) at the discrete level, the discrete conservative
transport operator must be based on ṁKL and ṁKσ.

Assuming
(
∇ · (φρ~v)

)
K

is an approximation of the mean value of ∇ · (φ(~x)ρ(~x)~v(~x))
on cell K, the discrete counterpart of equality (2.31) writes

mK

(
∇ · (φρ~v)

)
K

=
∑

σ∈εK∩εL

ṁKL
φK + φL

2
+

∑
σ∈εK∩εout

ṁKσφσ

or (
∇ · (φρ~v)

)
K

=
1

mK

( ∑
σ∈εK∩εL

ṁKL
φK + φL

2
+

∑
σ∈εK∩εout

ṁKσφσ

)
(2.37)

with definitions (2.34) and (2.35).
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The discrete contribution for the convective transport term must satisfy the discrete
counterpart of relation (2.32) integrated on cell K:∫

K
ρ(~x)~v(~x) · ∇φ(~x) d~x =

∫
K
∇ · (φ(~x)ρ(~x)~v(~x)) d~x−

∫
K
φ(~x)∇ · (ρ(~x)~v(~x)) d~x (2.38)

Approximating ρ(~x)~v(~x) ·∇φ(~x) on cell K by the mean value
(
ρ~v ·∇φ

)
K
, using the discrete

conservative transport expression (2.37) and the mass flux balance on cell K (Eq. (2.36)),
we obtain

mK

(
ρ~v · ∇φ

)
K

=
∑

σ∈εK∩εL

ṁKL
φK + φL

2
+

∑
σ∈εK∩εout

ṁKσφσ−

φK

( ∑
σ∈εK∩εL

ṁKL +
∑

σ∈εK∩εout
ṁKσ

)
After some simplifications, we find:

(
ρ~v · ∇φ

)
K

=
1

mK

( ∑
σ∈εK∩εL

ṁKL
φL − φK

2
+

∑
σ∈εK∩εout

ṁKσ(φσ − φK)

)
(2.39)

Thus, both
(
∇· (φρ~v)

)
K

and
(
ρ~v ·∇φ

)
K

are conservative approximations of the transport
terms.

It is intersecting to notice that the conservative expression of the transport (2.37), and
consequently the convective form (2.39) also, are based on the centered approximation
of φ on cell face φσ = (φK + φL)/2, and not a more general linear interpolation φσ =
αKφK + αLφL. The reason of such a choice lies in the mean kinetic energy balance (and
mean quadratic balance of the temperature field) over the whole computational domain. In
that case and for an impervious domain, the discrete contribution of the transport terms
into the energy balances must be zero, as requested by the continuous equations. This
requirement may introduces a slight error in the transport terms of the momentum and
energy equations, but the convergence order is not affected provided that the grid size
evolves slowly. Obviously, if the face is located at mid-distance of the two adjacent centers,
the linear approximation and the centered approximation are identical (αK = αL = 1/2).
When the mesh size evolves quickly, the linear interpolation φσ = αKφK + αLφL may
be preferred to φσ = (φK + φL)/2 so as to improve the accuracy of the solution, but at
the cost of the energy balance. This change may also be applied to the convective form
of the transport term (2.39). This consistent interpolation method has been used for the
momentum equation in Sec. 3.2.

2.2.3.4 Pressure gradient ∇̃KΠ
(n)
g and ∇̃KΦ(n+1)

The discrete pressure gradient ∇̃KΠ
(n)
g and ∇̃KΦ(n+1) involved in the momentum equa-

tion (2.21a) and in the velocity correction (2.23) must satisfy at the discrete level the duality
between the pressure gradient and the velocity divergence. Let ~w be any test vector and
consider the integral of its product by the pressure gradient over the computation domain
Ω, then the weak form of the pressure gradient writes∫

Ω
~w · ∇p d~x =

∫
Ω
∇ · (p~w) d~x−

∫
Ω
p(∇ · ~w) d~x

=

∫
∂Ω
p~w · ~n d~x−

∫
Ω
p(∇ · ~w)d~x (2.40)
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We assume that "∇̃L" is the discrete approximation on cell L of the pressure gradient
"∇". Since the approximation of the velocity divergence is provided by Eq. (2.30) then the
discrete form of Eq. (2.40) writes

∑
L∈M

mL

(
~wL · (∇̃Lp)

)
=

(∑
L∈M

∑
σ∈εL∩εout

mσpσ ~wσ · ~nLσ

)
−(∑

L∈M
pL

( ∑
σ∈εL∩εM

mσ(αL ~wL + αM ~wM ) · ~nLσ +
∑

σ∈εL∩εout
mσ ~wσ · ~nLσ

))
(2.41)

By gathering the contributions on the boundary of the domain, we obtain

∑
L∈M

mL

(
~wL · (∇̃Lp)

)
=

(∑
L∈M

∑
σ∈εL∩εout

mσ(pσ − pL)~wσ · ~nLσ

)
−(∑

L∈M
pL

( ∑
σ∈εL∩εM

mσ(αL ~wL + αM ~wM ) · ~nLσ

))
(2.42)

For the finite volume scheme, the discrete test function is constant on each cell. To obtain
the ith component of the pressure gradient on cell K, ∇̃iKp ≡ ∇̃Kp · ~ei, the test function
~wL =

∑d
j=1w

j
L~ej , L ∈M, is chosen such that wjL = δK,Lδi,j , namely

– wiK = 1,
– wjK = 0, for all j 6= i,
– wjL = 0, for all j and for all L 6= K.

We then find:

mK∇̃iKp =

( ∑
σ∈εK∩εout

mσ(pσ − pK)wiσ~ei · ~nKσ

)
−(

pK

( ∑
σ∈εK∩εL

mσαKn
i
Kσ

)
+ pL

( ∑
σ∈εL∩εK

mσαKn
i
Lσ

))
(2.43)

with ~nLσ =
∑d

i=1 n
i
Lσ~ei. After some simplifications, we obtain

mK∇̃iKp =

( ∑
σ∈εK∩εout

mσ(pσ − pK)wiσn
i
Kσ

)
+

( ∑
σ∈εK∩εL

mσαK(pL − pK)niKσ

)
(2.44a)

This latter expression depends on the normal contribution to the interface of wiσ~ei, namely
wiσn

i
Kσ. The boundary conditions associated with the test function can be seen as a per-

turbation of the velocity boundary conditions:
– if ~vσ is prescribed, ~wσ = ~0. Since wiσ = 0 then Eq. (2.44a) writes

∇̃Kp ≡
d∑
i=1

(∇̃iKp)~ei =
1

mK

∑
σ∈εK∩εL

mσαK(pL − pK)~nKσ (2.44b)

– If we assume Newman boundary conditions for the normal velocity to face σ ∈
εK ∩ εout, ∇(~v · ~nKσ) · ~nKσ = f(~x), then the discrete test function satisfies the same
kind of relation, but with a homogeneous right-hand side: ∇(~w ·~nKσ) ·~nKσ = 0, that
is

~wσ · ~nKσ = ~wK · ~nKσ
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Since ~wK = δij~ej then wiσniKσ = niKσ and from Eq. (2.44a) we finally get

∇̃Kp ≡
d∑
i=1

(∇̃iKp)~ei =
1

mK

( ∑
σ∈εK∩εout

mσ(pσ − pK)~nKσ +
∑

σ∈εK∩εL

mσαK(pL − pK)~nKσ

)
(2.44c)

2.2.3.5 Discrete consistent gradient operator ∇Kφ

The gradient "∇̃K" presented in section 2.2.3.4 is not defined strongly, but weakly, that
is to say it satisfies the duality between the pressure gradient and the velocity divergence
(Eq. (2.40)). The definition of a consistent discrete gradient operator "∇K" is also essential
to express the full viscous tensor which will be presented in the next section.

To establish the discrete gradient on cell K, we start from the identity:∫
K
∇
(
~wK ·(~x−~xK)

)
d~x =

∑
σ∈εK∩εL

∫
σ

(
~wK ·(~x−~xK)

)
~nKσ d~x+

∑
σ∈εK∩εout

∫
σ

(
~wK ·(~x−~xK)

)
~nKσ d~x

with ~x =
∑3

i=1 x
i~ei and ~wK a vector constant on cell K. Calculations can be pursued to

give:

mK ~wK =
∑

σ∈εK∩εL

mσ

(
~wK · (~xσ − ~xK)

)
~nKσ +

∑
σ∈εK∩εout

mσ

(
~wK · (~xσ − ~xK)

)
~nKσ

Let ~wK ≡ ∇Kφ the discrete gradient of φ on cell K, then

mK∇Kφ =
∑

σ∈εK∩εL

mσ

(
∇Kφ·(~xσ−~xK)

)
~nKσ+

∑
σ∈εK∩εout

mσ

(
∇Kφ·(~xσ−~xK)

)
~nKσ (2.45)

Since ~xσ − ~xK and ~nKσ are collinear, we have(
∇Kφ · (~xσ − ~xK)

)
~nKσ = ∇Kφ · ~nKσ (~xσ − ~xK)

The normal gradients are approximated as follows:

∇Kφ · ~nKσ =
φL − φK
dKL

, σ ∈ εK ∩ εL

∇Kφ · ~nKσ =
φσ − φK
dKσ

, σ ∈ εK ∩ εout

Substituting in relation (2.45) we obtain the discrete gradient:

mK∇Kφ =
∑

σ∈εK∩εL

mσ
φL − φK
dKL

(~xσ − ~xK) +
∑

σ∈εK∩εout
mσ

φσ − φK
dKσ

(~xσ − ~xK)

or

∇Kφ =
1

mK

( ∑
σ∈εK∩εL

mσ
φL − φK
dKL

(~xσ − ~xK) +
∑

σ∈εK∩εout
mσ

φσ − φK
dKσ

(~xσ − ~xK)

)
(2.46)
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2.2.3.6 Viscous stress tensor contribution ∇̂K ·
(
µ(∇K~v)t − 2

3µ(∇K · ~v)δ
)

The full viscous stress τ ≡ µ
(
∇~v + (∇~v)t

)
− 2

3µ(∇·~v)δ tensor is divided into two parts.

The divergence of the first term, ∇ · (µ∇~v), was already discretized in section 2.2.3.1.
Its finite volume approximation on cell K writes

(
∇ · (µ∇~v)

)
K

(see Eq. (2.28)):

(∇ · (µ∇~v))K =
1

mK

( ∑
σ∈εK∩εL

µσ
mσ

dKL
(~vL − ~vK) +

∑
σ∈εK∩εout

µσ
mσ

dKσ
(~vσ − ~vK)

)

This expression differs substantially from ∇K · (∇K~v) with "∇K ·" and "∇K" expressed
by equations (2.30) and (2.46). Indeed, the discrete operator "∇K · (∇K)" may be not
invertible (or at least very badly conditioned) contrary to

(
∇·(µ∇~v)

)
K

defined here-above.

The divergence of the second part of the viscous stress tensor τ ′ ≡ µ(∇~v)t− 2
3µ(∇·~v)δ,

namely ∇·τ ′ is now detailed. In order the discrete solution satisfies a kinetic energy balance
similar to that of the continuous equations, "∇̂K ·" must differ from "∇K ·" (Eq. (2.30)).
As for the pressure gradient term, the discretisation of ∇ · τ ′ is defined by its weak form.
In a continuous formalism, we define a vectorial test function ~w(~x) such that∫

Ω
~w(~x) ·

(
∇ · τ ′

)
d~x =

∫
δΩ

(
~w(~x) · τ ′

)
· ~n d~x−

∫
Ω
∇~w(~x) : τ

′
d~x

We assume that "∇̂L·" is the discrete approximation on cell L of "∇·". The discrete version
of the preceding equation then writes:

∑
L∈M

mL ~wL ·
(
∇̂L·τ

′
)

=

(∑
L∈M

∑
σ∈εL∩εout

mσ

(
~wσ · τ

′
σ

)
· ~nLσ

)
−

(∑
L∈M

mL∇L ~w : τ
′
L

)

Substituting ∇L ~w by Eq. (2.46),

∑
L∈M

mL ~wL ·
(
∇̂L·τ

′
)

=

(∑
L∈M

∑
σ∈εL∩εout

mσ

(
~wσ · τ

′
σ

)
· ~nLσ

)
−(∑

L∈M

( ∑
σ∈εL∩εM

mσ
~wM − ~wL
dLM

⊗ (~xσ − ~xL) +
∑

σ∈εL∩εout
mσ

~wσ − ~wL
dLσ

⊗ (~xσ − ~xL)

)
: τ
′
L

)

and then collecting the boundary terms we get:∑
L∈M

mL ~wL ·
(
∇̂L·τ

′
)

=(∑
L∈M

∑
σ∈εL∩εout

mσ

((
~wσ · τ

′
σ

)
· ~nLσ −

(
~wσ − ~wL
dLσ

⊗ (~xσ − ~xL)

)
: τ
′
L

))
−(∑

L∈M

( ∑
σ∈εL∩εM

mσ
~wM − ~wL
dLM

⊗ (~xσ − ~xL)

)
: τ
′
L

)

Taking the notations (~xσ−~xL)/dLM = αM~nLσ with σ ∈ εL∩εM (Eq. (2.26a)) into account,
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and (~xσ − ~xL)/dLσ = ~nLσ, we find:∑
L∈M

mL ~wL ·
(
∇̂L·τ

′
)

=(∑
L∈M

∑
σ∈εL∩εout

mσ

((
~wσ · τ

′
σ

)
· ~nLσ − ((~wσ − ~wL)⊗ ~nLσ) : τ

′
L

))
−(∑

L∈M

( ∑
σ∈εL∩εM

mσαM (~wM − ~wL)⊗ ~nLσ

)
: τ
′
L

)
(2.47)

For the finite volume scheme, the discrete test function is constant on each cell. To find

the ith component of the divergence of the tensor τ ′ on cell K,
(
∇̂K ·τ

′
)i
≡
(
∇̂K ·τ

′
)
· ~ei,

the test function ~wL =
∑d

j=1w
j
L~ej , L ∈M, is chosen such that wjL = δK,Lδi,j , namely

– wiK = 1,
– wjK = 0, for all j 6= i,
– wjL = 0, for all j and for all L 6= K.

Equation (2.47) then writes

mK

(
∇̂K ·τ

′
)i

=( ∑
σ∈εK∩εout

mσ

((
wiσ~ei · τ

′
σ

)
· ~nKσ −

(
(wiσ − 1)~ei ⊗ ~nKσ

)
: τ
′
K

))
−( ∑

σ∈εK∩εL

(−mσαL~ei ⊗ ~nKσ) : τ
′
K −

( ∑
σ∈εK∩εL

mσαK~ei ⊗ ~nKσ

)
: τ
′
L

)

After some simplifications, we get

mK

(
∇̂K ·τ

′
)i

=( ∑
σ∈εK∩εout

mσ

(
wiσ

(
τ
′
σ · ~nKσ

)i
− (wiσ − 1)

(
~nKσ · τ

′
K

)i))
+( ∑

σ∈εK∩εL

(
mσ

(
αL

(
~nKσ · τ

′
K

)i
+ αK

(
~nKσ · τ

′
L

)i)))
(2.48a)

To simplify further, we need to introduce the boundary conditions for the discrete test
function ~w. The test function fulfills the homogeneous counterpart of the velocity boundary
conditions.

– If ~vσ is prescribed then ~wσ = ~0, and consequently wiσ = 0. Eq. (2.48a) then writes:

mK

(
∇̂K ·τ

′
)i

=

( ∑
σ∈εK∩εout

(
mσ

(
~nKσ · τ

′
K

)i))
+( ∑

σ∈εK∩εL

(
mσ

(
αL

(
~nKσ · τ

′
K

)i
+ αK

(
(~nKσ · τ

′
L

)i)))
(2.48b)

– If the normal derivative to σ ∈ εK ∩ εout of the ith velocity component ∂vi/∂~n is
prescribed then ∂wi/∂~n = 0. Since the discrete expression writes wiσ = wiK = 1, Eq.
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(2.48a) becomes:

mK

(
∇̂K ·τ

′
)i

=

( ∑
σ∈εK∩εout

(
mσ

(
τ
′
σ · ~nKσ

)i))
+( ∑

σ∈εK∩εL

(
mσ

(
αL

(
~nKσ · τ

′
K

)i
+ αK

(
(~nKσ · τ

′
L

)i)))
(2.48c)

To end this subsection, we have to define the discrete viscous tensor arising in Eqs.
(2.48), both on cell K and on the boundary σ ∈ εK ∩ εout.

The components of the tensor τ ′K writes:

τ
′
K
ij

= µK

(
∇iKv

j
K −

d∑
k=1

(
2

3
∇kKvkK

)
δij

)

where the expression "∇mK" of any discrete variable φ is deduced from Eq. (2.46) and is
expressed as follows

∇mKφ =
1

mK

( ∑
σ∈εK∩εL

mσ
φL − φK
dKL

(xmσ − xmK) +
∑

σ∈εK∩εout
mσ

φσ − φK
dKσ

(xmσ − xmK)

)

The approximation in Eq. (2.48c) of the tensor τ ′ at the face boundary σ ∈ εK ∩ εout is
a bit difficult in the framework of the finite volume method because this term is not define
on a control volume. On way to overcome this difficulty is to simply approximate the value
on the face σ ∈ εK ∩ εout by its value on the neighboring cell K: τ ′σ = τ

′
K .
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Chapter 3

Validation

This chapter aims to present a validation of the numerical scheme on rectangular grids.
This relies on two complementary approaches. First, comparisons with analytical solutions
are proposed. This enables to check the order of convergence of the scheme, both spatially
and temporally. Secondly, comparisons with benchmark solutions will be led.

3.1 Spatial and temporal convergence – Analytical tests

To measure the accuracy of the numerical scheme; we define the relative error based
on the discrete L2-norm:

e(f) =

√√√√√√√
∑

K∈M
mK(f

(n)
K − f(~xK , t(n)))

2

∑
K∈M

mKf(~xK , t(n))
2 , f ∈ {u, v, T, p}

with f (n)
K the discrete approximation of the exact solution f(~xK , t

(n)).

3.1.1 Incompressible flow – Taylor-Green problem

The dimensionless Taylor-Green problem consists in the time evolution of a vortex in
an incompressible fluid flow. In a square domain (x, y) ∈ [−π/2, π/2] × [−π/2, π/2], the
vortex solution writes:

u(x, y, t) = − cos(x) sin(y) exp(−2t/Re)

v(x, y, t) = sin(x) cos(y) exp(−2t/Re)

Πg(x, y, t) =
cos(2x) + sin(2y)

4
exp(−4t/Re)

with Re the Reynolds number.

The initial and boundary conditions for the discrete velocity components are set to
the exact values. The normal velocity being known at the boundary of the domain, no
boundary conditions are required for the pressure. The discrete pressure is initialized to
zero. Computations are carried out for a Reynolds number Re = 100, with uniform square
cells. Errors are presented for the horizontal component of the velocity and for the pressure.
The behavior of the vertical component of the velocity is similar to the horizontal one.
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3.1.1.1 Spatial convergence

The time step is chosen equal to ∆t = 0.001, a value small enough to keep the tempo-
ral error negligible with respect to the spatial one. The number of control volumes in each
direction ranges from 5 to 640 and consequently the mesh size h extend from π/640 to π/5.

Fig. 3.1(a) shows that the relative spatial error for the velocity converges with a second

(a) Velocity (b) Pressure

Figure 3.1 – Variations of relative spatial error as a function of the grid size h at different
time.

order accuracy from the moment that the mesh size is smaller than a threshold value hc.
This threshold value is about hc = π/160 for t = 0.01 and hc = π/20 for t = 1. And for the
largest integration time t = 100, the second order accuracy is recovered from the coarsest
grid. Since the initial condition is analytic, the accuracy decreases with time increase when
the mesh size is fixed. Thus for a very short time t = 0.01 and h > hc, the solution retains
values close to the exact initial value: the spatial error is then negligible and reducing the
mesh size does not modify substantially e(u). But beyond hc, the error of discretization
becomes dominant and finally control the convergence order of the numerical scheme.

Concerning the pressure (Fig. 3.1(b)), since its initialization is not set to the exact
value, the spacial error is always dominant: the spatial convergence is then always second
order, whatever the mesh size and time considered.

3.1.1.2 Temporal convergence

Figure 3.2 presents the variations of the temporal error as a function of four time steps,
∆t = 0.2, 0.1, 0.05 and 0.025. Computations have been carried out for three grids, 20×20,
40× 40 and 160× 160.

The convergence properties of the velocity (Fig. 3.2(a)) and of the pressure (Fig. 3.2(b))
indicate second order accuracies for large time steps. Indeed, if ∆t is too small, the error
remains governed by the spatial accuracy. As a result, the range for which the second order
is measured increases with the decrease in the mesh size. For the finest grid, both the
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(a) Velocity (b) Pressure

Figure 3.2 – Variation of the relative temporal error as a function of the time step ∆t for
different grid size h.

velocity and the pressure errors converge according to a straight line with a slope close to
2.

3.1.2 Low Mach number approximation

3.1.2.1 Convergence to a steady state

We consider the dimensional problem of air flowing in a 1m-square domain, (x, y) ∈
[0; 1] × [0; 1]m2. We assume no-slip boundary conditions and the following temperature
conditions:

T (0, y) = T (1, y) = 273 [K]

k
∂T

∂y

∣∣∣∣
x,0

= k
∂T

∂y

∣∣∣∣
x,1

= 0 [W/m2]

The density, temperature and thermodynamic pressure fulfill the ideal gas law relation ρ =
P̄ /(rT ). We assume a constant and uniform thermodynamic pressure P̄ = 101 325 [Pa]. To
highlight the sensitivity of the fluid flow with temperature dependent properties, arbitrary
relations have been used for the specific heat at constant pressure, the thermal conductivity
and the dynamic viscosity:

cp(T ) = 100− exp (T/200) [J/(kg ·K)],

µ(T ) = 100 + exp (T/100) [kg/(m · s)], (3.1)
k(T ) = 100 + exp (T/100) [W/(m ·K)]

The definition of an analytical vector field ~v, satisfying the mass conservation ∇·(ρ~v) =
0, relies on the vectorial identity ∇ · (∇∧ ~ϕ) ≡ 0, for all vectorial function ~ϕ(~x). Then, the
velocity field simply writes

~v =
1

ρ
(∇∧ ~ϕ)
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The chosen vectorial function ~ϕ(~x) writes:

~ϕ(x, y) = [4x(x− 1)]3 [4y(y − 1)]4 ~ez [kg/(m · s)] (3.2)

Then the velocity field

~v(x, y) =
1

ρ
∇∧

(
[4x(x− 1)]3 [4y(y − 1)]4 ~ez

)
[m/s]

is a solution of the steady state mass conservation equation and cancels at the boundaries.
The temperature and pressure fields are set to:

Πg(x, y) = 10000× cos(πx) cos(πy) [Pa] (3.3)
T (x, y) = 273× (1 + 0.5× sin(πx) cos(πy)) [K] (3.4)

With this choice of temperature field, the specific heat at constant pressure ranges over
[92; 98]J/(kg ·K). The magnitude of the thermal conductivity and dynamic viscosity lies
between 104 and 160 and the density ρ is bounded by 0.86 kg/m3 and 2.6 kg/m3.

Obviously, the temperature and the velocity field do not follow the energy and momen-
tum equations. To ensure that the discrete solution converges to our solution, we need to
introduce source terms. We define the residual to

– the momentum equation

~Residual, ~v(~x) = ∇Πg +∇ · (ρ~v ⊗ ~v)− (ρ− ρ0)~g −∇ · τ

– the temperature equation

Residual, T (~x) = cp∇ · (ρ~vT )−∇ · (k∇T )

These residuals expressed on cell K,
(
Residual, T

)
K

= Residual, T (~xK) and
(
~Residual, ~v

)
K

=

~Residual, ~v(~xK), are then added to the right-hand sides of Eq. (2.20) and Eq. (2.21a), re-
spectively.

Figure 3.3 shows the sensitivity of the spatial error to the uniform grid size h/[m] ∈
{1/10; 1/20; 1/40; 1/80; 1/160}, for the velocity components, the temperature and the pres-
sure. The relative errors between numerical and exact solutions decrease with h with a slope
of 2. The spatial accuracy of the low Mach number scheme is then second order.

3.1.2.2 Transient study – Temporal convergence

The definition of an analytical solution which would satisfy the unsteady mass conser-
vation is a bit delicate. To answer this issue, we assume an uniform density so that the
mass equation simplifies:

∂ρ

∂t
+ ρ∇ · ~v = 0

With this assumption, ∇ ·~v must not depend on spatial coordinates. To do this, we define
the velocity as follows:

~v(~x, t) = ∇∧ ~ϕ(~x) cos(ωt) +

 αx
βy
γz

 [m/s]
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(a) Velocity (b) Temperature

(c) Pressure

Figure 3.3 – Variations of relative spatial errors as a function of the grid size h

Substituting this expression into the mass equation leads to

dρ

dt
+ ρ(α+ β + γ) = 0

that is to say
ρ(t) = ρ0 exp (−(α+ β + γ)t) [kg/m3]

For the test problem, ~ϕ(x, y) and the density are defined by Eq. (3.2) and α = β =
γ = 0.05 with ρ0 = 1. The spatial variation of the pressure Πg(x, y, t) and the temperature
T (x, y, t) are given by relations (3.3) and (3.4):

Πg(x, y) = 10000× cos(πx) cos(πy)× cos(ωt) [Pa]

T (x, y) = 273× (1 + 0.5× sin(πx) cos(πy))× cos(ωt) [K]
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The physical properties are given by relations (3.1).
To converge toward the analytical solutions, we define the unsteady residuals for
– the momentum equation

~Residual, ~v(~x, t) = ∇Πg +∇ · (ρ~v ⊗ ~v)− (ρ− ρ0)~g −∇ · τ

– the temperature equation

Residual, T (~x, t) = cp∇ · (ρ~vT )−∇ · (k∇T )

These residuals expressed on cellK at time t = (n+1)∆t,
(
Residual, T

)(n+1)

K
= Residual, T (~xK , (n+

1)∆t) and
(
~Residual, ~v

)(n+1)

K
= ~Residual, ~v(~xK , (n+ 1)∆t), are then added to the right-hand

sides of Eq. (2.20) and Eq. (2.21a), respectively.

Comparisons are carried out at time t = 0.2 s and for a uniform grid with a mesh size
h = 1/40m. The selected time steps ∆t/[s] are 4 × 10−2, 2 × 10−2, 1 × 10−2, 5 × 10−3,
2.5× 10−3 and 1.25× 10−3. Figure 3.4 shows the relative departure between the numerical

(a) Velocity (b) Temperature

Figure 3.4 – Variation of the relative temporal error as a function of the time step step ∆t.

and analytical solutions as a function of the time step. The second order accuracy is,
by in large, recovered, except for the smallest time step where the spatial error becomes
dominant.

3.2 Natural convection flows in differentially heated enclo-
sures

This section deals with flows occurring in square (Fig. 3.5) or rectangular (Fig. 3.6)
cavities differentially heated along the vertical walls. By heat conduction the fluid is either
warmed up or cooled, and consequently, the local density of the fluid changes. Under unsta-
ble conditions, the light fluid rises up whereas the heavier one falls down, what generates
a natural global motion whose the generic name is natural convection.
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3.2.1 Low Mach number approximation – Steady state solutions

Since the precursory works of De Vahl Davis [53] in 1983, the thermally driven square
(or rectangular) cavity with two different temperatures applied on vertical walls (Fig. 3.5)
has been widely studied and becomes a reference problem for the numericist community

Th Tc

adiabatic

adiabatic

ḡ

Figure 3.5 – Differently heating cavity

dealing with natural convection problems. First studied for small temperature differences
with Boussinesq approximation (see for example [53, 73, 94–96, 126, 156]), this problem
has been recently reconsidered for large temperature gaps and low Mach number approxi-
mation model, with the setting up of benchmark solutions [97, 124].

We consider the test case proposed in [97, 124]. It consists of the natural convec-
tion of air in a L-length square differentially heated cavity with a vertical hot wall at
Th facing a vertical cold wall at Tc. We assume the equation of state of air follows the
ideal gas law (r = 287 J/(kg ·K). The dimensionless parameters are the Rayleigh number
Ra = gβ0∆TL3/(ν0α0) = 107, the Prandtl number Pr = ν(T )/α(T ) = 0.71, the relative
temperature difference εT = (Th − Tc)/T0 = 1.2 and the isentropic exponent γ = 1.4
where the index 0 corresponds to the initial conditions. The reduced dynamic viscosity
and thermal conductivity depend on temperature according to the same Sutherland law:

k(T )

k∗
=
µ(T )

µ∗
=

(
T

T ∗

) 3
2 T ∗ + S

T + S

with T ∗ = 273K, S = 110.5K, µ∗ = 1.68× 10−5 kg/(m · s) and k∗ = µ∗γ r/((γ − 1)Pr).
For fluids flowing in enclosures with large relative temperature gaps, the thermody-

namic initial conditions must be known. They are set to T (~x, t = 0) = T0 ≡ (Th + Tc)/2
and P̄ (t = 0) = P0 = 101325Pa (ρ(~x, t = 0) = ρ0 ≡ P0/(rT0)); the fluid is initially at rest.

No slip boundary conditions are set on the vertical isothermal and horizontal adiabatic
walls. The hot and cold temperatures are defined by Th = T0(1 + εT /2) and Tc = T0(1 −
εT /2). Results are essentially discussed in term of local and average Nusselt numbers
computed on vertical walls, x = 0 or x = 1:

Nu(x, y) =
k(T )

∣∣∂T
∂x

∣∣
k0

Th−Tc
L

Nu =
1

L

∫ L

0
Nu(x, y) dy

Some comparisons concerning the velocity are also proposed.
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Computations have been carried out with a time step controlled by the Courant-
Friedrichs-Lewy number (CFL number) set to 0.5. The solution is assumed steady if the
maximum of the relative increments between two successive time steps for the velocity
and temperature is smaller than 10−9. To take the boundary layers along the walls into
account, non-uniform grids were used, both in x- and y-directions. Faces of the control
volume K ≡ [x(i);x(i+ 1)]× [y(j); y(j + 1)] with 1 ≤ i ≤ Nx and 1 ≤ j ≤ Ny are defined
by

x(i)

L
=
i− 1

Nx
− ξx

2π
sin

(
2π(i− 1)

Nx

)
(3.5a)

y(j)

L
=
j − 1

Ny
− ξy

2π
sin

(
2π(j − 1)

Ny

)
(3.5b)

with ξx = ξy = 1 and Nx = Ny = 160.
Relative errors on local and average Nusselt numbers between our results and those

referenced in [97, 124] are presented in the table 3.1. The maximum error between us and

Vierendeels Dabbene Kloczko Heuveline Le Quéré our solution
[124] [124] [124] [124] [97]

N̄u0 0% 0.086% 0.38% 0.006% 0% 16.241
N̄u1 0% 0.32% 0.005% 0.10% 0% 16.241

Nu(0; 0.5) 0.022% 2.6% 0.091% - - 13.192
Nu(1; 0.5) 0.026% 1.6% 0.85% - - 15.508

maxy(Nu(0; y)) 0.062% 0.34% 1.3% 0.12% - 46.408
miny(Nu(0; y)) 0.21% 0.069% 0.89% 0.14% - 1.457
maxy(Nu(1; y)) 0.19% 1.99% 0.23% 0.51% - 34.337
miny(Nu(1; y)) 0.092% 0% 2.8% 0% - 1.088

P̄ /P0 0.037% 0.076% 0.076% 0.076% 0.036% 0.9223
Number of 2048× 2048 160× 160 100× 100 - 1024× 1024 160× 160

control volumes ≈ 4.2× 106 =2.56× 104 =104 4× 105 ≈ 1.05× 106 = 2.56× 104

Table 3.1 – Low Mach number approximation, Ra = 107, δT = 1.2 and Sutherland law.
Relative discrepancies of our results with respect to corresponding references.

Vierendeels is 0.21% for the minimum local Nusselt on the left wall. The three important
data, average Nusselt number on the left and right walls N̄u0, N̄u1 and the ratio between
the thermodynamic pressure and initial pressure, agrees well with the references. Table
3.2 lists the maximum dimensionless vertical and horizontal components of the velocity in

our results [155]
maxy u(x = 0.5; y)× L

α0
165.48 167.98

y 0.825 0.826
maxx v(x; y = 0.5)× L

α0
716.38 724.64

x 0.030 0.031
Mesh 160× 160 304× 304

Table 3.2 – Comparison of dimensionless velocity components in cross-sections for Ra =
107, δT = 1.2 and Sutherland law. The velocity scale is based on thermal diffusion.

the horizontal and vertical cross-section y = 0.5 and x = 0.5, as well as their locations.
Relative errors for maxy u(0.5; y) and maxx v(x; 0.5) are 1.49% and 1.14% respectively.
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3.2.2 Unsteady solution – Boussinesq approximation

This subsection aims to validate the numerical scheme once the natural convection flow
became unsteady and converges to an oscillatory solution. This transition depends sensi-
tively on the aspect ratio of the enclosure, on the Prandtl number of the fluid and on the
thermal boundary conditions [95]. For air fluid (Pr = 0.71) flowing in a cavity of height
eight times larger than its width (Fig. 3.6), three successive oscillatory modes are unstable

H

Insulated

Insulated x

y

W

Th Tc

~g

Insulated

1 2

Figure 3.6 – Differentially heated cavity, H/W = 8. Coordinates of two probes: (x1, y1) =
(0.1810W ; 7.3700W ) and (x1, y1) = (0.8190W ; 7.3700W ).

at Racrit1 ≈ 3.062 × 105, Racrit2 ≈ 3.112 × 105 and Racrit3 ≈ 3.339 × 105, provided that
the temperature difference remains small enough to adopt Boussinesq approximation [164].
The first and third unstable modes have skew-symmetric patterns whereas the second one
has the same symmetry as the steady basic flow. Theses perturbations travel around the
cavity in the direction of the primary flow and their maximum amplitudes are located close
to the side walls indicating a boundary layer type instability.

A comparison exercise has been carried out by Christon et al. [49] in 2002 to provide
reference data on time-dependent natural convection flows in enclosures. According to the
authors, identification of the “best” time-dependent solution was not clear cut, but they
finally considered the contribution by Xin et Le Quéré [164] as a “truth” solution.

Comparisons are then performed for natural convection of air (Pr = 0.71), at a su-
percritical Rayleigh number (Ra > Racrit3) equal to Ra = 3.4 × 105 in a 8:1 aspect ratio
cavity (see Fig. 3.6). Two probes are located at coordinates

~x1 = (x1, y1) = (0.1810W ; 7.3700W )

~x2 = (x2, y2) = (0.8190W ; 7.3700W )

where W denotes the width of the cavity. The fluid is initially at rest, at the average
temperature of the vertical walls. Once the transient flow is completed, the solution is
periodic (see Fig. 3.7). Then, average value φ̄ and oscillation magnitude φ′ are computed
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Figure 3.7 – Reduced temperature evolution θ = (T − (Th + Tc)/2)/(Th − Tc) at point 1
as a function of dimensionless time τ ≡ tα0/W

2.

using the following relations

φ̄ =
1

T

t+T∫
t

φ(t) dt (3.6a)

φ
′

= max
τ∈[t;t+T ]

φ(τ)− min
τ∈[t;t+T ]

φ(τ) (3.6b)

with φ(t) ∈ {u(~x1, t), θ(~x1, t),∆Πg12(t)} with ∆Πg12(t) ≡ Πg(~x1, t)−Πg(~x2, t).

We use the non-uniform grids defined by Eq. (3.5), and we fix the CFL number to 0.5.
Non-uniform grid spacings are used to accurately model the boundary layers along the solid
walls. By default, the expansion coefficients are set to ξx = 0.6834 and ξy = 0.3070. To avoid
interpolation procedure to compute the solution on point ~x1 (and by symmetry on point
~x2), these coefficients are slightly modified in order the nearest cell center of ~x1 coincides
exactly with ~x1. It results the following mesh coefficients (ξx, ξy) = (0.6699, 0.3052) for
(Nx, Ny) = (100, 260), (ξx, ξy) = (0.7033, 0.3175) for (Nx, Ny) = (133, 346), (ξx, ξy) =
(0.6883, 0.3124) for (Nx, Ny) = (200, 520) and (ξx, ξy) = (0.6945, 0.3051) for (Nx, Ny) =
(300, 780).

Starting from rest, the fluid is set in motion by natural convection and the flow con-
verges to periodic solution for a dimensionless time τ = t×α/W 2 ≈ 500 (Fig. 3.7). Results
calculated at point 1 are compared with those of Xin and Le Quéré (2002) [164]. Table 3.3
gathers the average values (Eq. (3.6a)) and the fluctuations (Eq. (3.6b)) for

– the horizontal component of the velocity rescaled by
√
gβ(Th − Tc)W , u(~x1);

– the reduced temperature, θ(~x1) = (T (~x1)− (Th + Tc)/2)/(Th − Tc);
– the difference of the dimensionless dynamic pressure between points ~x1 and ~x2,

∆Πg12 ;
– the local Nusselt number, Nu(~x1).

The results are in excellent agreement with those of the reference, except ∆Πg12 which
departs from 10% for the finest grid; reducing the CFL number does not modify significantly
∆Πg12 . A deeper insight of the different solutions given by [49] shows a large dispersion
of this average pressure difference. It can also be noticed that some of the participants
provide values close to ours.
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u(~x1) u
′
(~x1) θ(~x1) θ

′
(~x1) ∆Πg12

100× 260 0.054976 0.048864 0.265460 0.038310 0.001716
133× 346 0.05550 0.051096 0.265471 0.039973 0.001715
200× 520 0.055967 0.053211 0.26547 0.041541 0.002032
300× 780 0.056174 0.054074 0.265474 0.042160 0.002045

48× 180 [164] 0.056345 0.054768 0.265480 0.042690 0.001854
∆P ′1,2 Nu(~x1) Nu

′
(~x1) Period

100× 260 0.018294 4.57900 0.006368 3.4245
133× 346 0.019082 4.57890 0.006704 3.4193
200× 520 0.01982 4.57920 0.006883 3.4150
300× 780 0.020108 4.57941 0.007017 3.413

48× 180 [164] 0.020355 4.57946 0.007092 3.4115

Table 3.3 – Comparisons of solutions at the probe 1 in the case Ra = 3.4× 105, Pr = 0.71
et H/W = 8 (Fig. 3.6). The length and velocity are scaled by W , the width of the cavity,
and

√
gβ(Th − Tc)W . The pressure is made dimensionless with ρ0(α/W )2. The reduced

temperature writes θ = (T − (Th + Tc)/2)/(Th − Tc).
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Chapter 4

Optimal plate spacing for mixed
convection from an array of vertical
isothermal plates [150]

Nomenclature

a thermal diffusivity [m2 s−1]
A aspect ratio, A = H/D
Be pressure difference number, Be = ∆pH2/aoµ0

cp specific heat [J K−1 kg−1]
d deformation velocity tensor [s−1]
D plate spacing [m]
Dh hydraulic diameter, Dh = 2D [m]
Fr Froude number, Fr = w2

0/gDh

g gravitational acceleration [m s−2]
GrD Grashof number based on D, GrD = gβ0∆TD3/ν2

0)
Gv volumetric flow rate, Gv = w0Sc [m3s−1]
h heat transfer coefficient [W m−2K−1]
H channel height [m]
k thermal conductivity [W m−1 K−1]
L channel length in the direction perpendicular to Fig. 4.1 [m]
ṁ mass flow rate [kg s−1]
n number of channel
Nu2w mean Nusselt number based on the wall heat fluxes
Nuen mean Nusselt number based on the enthalpy flux
nx, nz numbers of grid points in x− and z−directions
p pressure [Pa]
pm sum of static and hydrostatic pressures [Pa]
ps pressure at the outlet section [Pa]
p∗ dimensionless pressure, P = p/(ρ0w

2
0)

Pr Prandtl number, Pr = ν0/a0

Q heat flux, [W ]
Qa, Qb analytical expressions for the heat flux, [W ]
Q2w convective heat flux along the two vertical channel walls (Eq. 4.13), [W ]
Qen enthalpy heat flux (Eq. 4.14), [W ]
Qcond axial difusion flux (Eq. 4.16), [W ]
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RaH Rayleigh number based on H, RaH = gβ∆TH3/a0ν0

Re Reynolds number based on Dh, Re = w0Dh/ν0

Ri Richardson number, Ri = Gr/Re2

Sc area of the channel cross section, Sc = DL [m2]
ST area of the overall heated surfaces, ST = 2n(HL) [m2]
t time [s]
T temperature [K]
u,w velocity components [m s−1]
vref reference velocity for natural convection, vref = ν0/Dh [m s−1]
Wm pumping power [W ]
x, z coordinates [m]
Greeks
α order of consistency of the numerical scheme
β thermal coefficient of volumetric expansion, β = 1/T0 [K−1]
∆T temperature difference, ∆T = (Th − T0) [K]
∆p pressure difference, ∆p = −1

2ρ0w
2 − ps [Pa]

η efficiency (Eq. 4.44)
ηb mixed convection group [26], (RaH/Be)

1/4

ν kinematic viscosity [m2 s−1]
ρ density [kg m−3]
θ dimensionless temperature ratio, θ = (T − T0)/∆T
τ dimensionless time, τ = w0t/(ReDh)

Subscripts
a, b analytical solutions
cond conduction
en enthalpy
h hot wall
H quantity based on channel height
nc natural convection
opt optimum
w wall
0 inlet section
2w two walls

Superscripts
− averaged quantity
∗ dimensionless quantity

4.1 Introduction

Mixed convection occurs when both natural convection and forced convection heat
transfer mechanisms interact. In vertical and inclined parallel-plate channels the bulk flow
can be either upward or downward. The thermal and/or solutal buoyancy forces may be
either assisting or opposing the forced flow according to the forced flow direction relative
to gravity, and depending on the thermal and/or solutal conditions at both walls. The
four important parameters are the channel aspect ratio, A = H/D, the Reynolds, Grashof
and Prandtl numbers, Re, Gr and Pr, respectively. The relative contributions of forced
and natural convection effects are often discussed in term of the Richardson number, Ri
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= Gr/Re2, or in term of RiRe= Gr/Re. It should be noted here that the choice of the
appropriate length scale for the buoyancy term (i.e. the length in the Grashof number) is
not obvious while it should be the hydraulic diameter for the Reynolds number.

In the last three decades, mixed convection through parallel-plate channels and in
ducts with various cross-sections has been extensively studied both for vertical and in-
clined configurations. However, reference results for mixed convection are relatively sparse
in comparison with those for forced or natural convection flows in ducts. That is due to
the large increase in the complexity and numbers of possible flow configurations occurring
in practical applications: cooling of electronic equipment, solar energy collectors, compact
heat exchangers and many others [17].

Most of the theoretical studies on laminar mixed convection in vertical, parallel-plate
channels were for thermal conditions of uniform wall heat fluxes or uniform wall tem-
peratures, the heating of the two walls being either identical or asymmetric. Analytical
methods for fully developed flows were first derived by Aung and Worku [11–13]. This
problem was revisited recently by Padet et al. [121–123] who determined relevant criteria
for the transitions from natural to mixed convection and from mixed to forced convection.
A combined perturbation and similarity approach was used by Yao [167] for solving the
governing equations in the entry region for conditions of constant wall temperature and
constant wall heat flux. Purely numerical solutions were obtained by Cheng et al. [44] who
suggested modifications to the parabolic model (based on negligible streamwise diffusion
terms in comparison with spanwise diffusion terms) and, a new algorithm for the analysis
of buoyancy-induced flow reversal within vertical channels was introduced. Numerical so-
lutions based on a fully elliptic formulation are only few. To our best knowledge, the first
numerical study on mixed convection based on the full elliptic formulation was carried out
by Jeng et al. [82] who showed the limitations of the parabolic model for low Reynolds
number flows. Recently, flow reversal and flow recirculations were anew considered in de-
tails by Yang et al. [166] and by Desrayaud and Lauriat [56]. Only few numerical studies
were conducted by using the elliptic formulation. The reason is that the writing of appro-
priate boundary conditions at the inlet and outlet sections is difficult to handle: it is the
mathematical backbone of such approaches. The main interest in considering an elliptic
formulation is that the axial conduction may be accounted for, which is of importance for
low mass flow rate.

In this work, we are considering only mixed convection with buoyancy and pressure
forces acting in the same direction: this case is generally termed as "assisting mixed con-
vection". The first question to be raised is: which force assists the other? Most papers
published in the current literature considers that natural convection assists forced convec-
tion, i.e. the flow rate is fixed and the effect of natural convection on the heat transfer
rate is examined. We are solving the problem from a different viewpoint: forced convection
generated by an additional pressure difference is aiding natural convection, as it is mostly
the case for the cooling of electronic equipments or in the case of severe nuclear accident.

Amongst the difficulties underlying a general description of thermal mixed convection
(the thermosolutal case [74, 92, 99] being out the scope of this work) are the occurrences of
flow reversal and flow recirculations, the origins of which are fully different although there
exists some confusion into the literature. On one hand, Aung and Worku [12] analytically
demonstrated that flow reversal is impossible in the case of fully developed flow for sym-
metrically heated channels at constant temperature. On the other hand, Desrayaud and
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Lauriat [56] showed numerically the occurrence of flow recirculations in the entrance region
for the constant temperature case at relatively low Reynolds number. Linear stability anal-
ysis of laminar mixed convection in a vertical channel with constant heat flux imposed on
the walls has been investigated by Chen and Chung [43]. They demonstrated that the fully
developed flow is highly unstable, the critical Grashof number being strongly dependent
on the Reynolds and Prandtl numbers. Non-linear local analysis [70] gave results in good
agreement with those of Chen and Chung [43].

Flow reversals in vertical parallel-plate channels and in circular pipe have been quite
extensively studied, both for developing and fully developed flows, experimentally as well
as theoretically. The experimental works performed by Morton et al. [115] and Ingham
et al. [81] for mixed-convection water flows in vertical pipes and relatively small Reynolds
numbers have clearly shown the occurrence of flow reversal. Less experiments were devoted
to parallel-plate channels. Flow reversal and its structure have been visualized by Gau and
coworkers [63, 64, 79] for both assisted and opposed convection. Its occurrence originates
from asymmetric heating conditions. Flow reversal can be easily predicted, just by using
the simplest one-dimensional form of the governing equations [12, 123].

Flow recirculations are caused by an imposed flow rate and are predicted in the entrance
section experimentally [27] as well as numerically when using an elliptical formulation [56].
The existence of a flow recirculation bubble is caused by increases in upstream velocities
close to the heated walls. This increases is due the decrease in density in conjunction with
the largest gravitational force that produces acceleration of the fluid in regions next to
the walls where maximums of axial velocities are observed. To satisfy mass conservation,
fluid is drawn downward from the centerline region when the flow rate is kept fixed, inde-
pendently of the magnitude of the buoyancy force. These recirculations are thus directly
linked to the inlet flow boundary conditions.

As depicted above, a general study of mixed convection is beyond the scope of this
paper. Therefore, we are just concentrating on the optimal spacing between isothermal
plates arranged in an array and cooled by mixed convection. The optimal spacing for the
cooling of an array of heated surfaces by natural or by forced convection is a problem that
has attracted many experimental and numerical studies since the famous work by Elenbass
[57]. This spacing corresponds to the peak heat flux that can be transferred by providing
the surface of n perfectly conducting fins.

When the parallel plates are cooled by natural convection, Bar-Cohen and Rohsenow
[18] have demonstrated that the optimum spacing can be determined through an analytic
optimization procedure based on maximizing the total heat transfer per unit volume. This
method permits to find optimum spacings for various thermal boundary conditions at the
walls. At the same time, Bejan [21], suggested that the optimal spacing can be determined
by the intersection of two asymptotic solutions varying as D−1 or D2 (the foundation of the
theory of the intersection of asymptotes, followed by the Constructal Theory [22, 24]). The
first solution is based on the assumption that the thicknesses of boundary layers growing
on vertical surfaces are much lower than D/2 at the exit section (z = H). On the other
hand, the second solution assumes that the temperature of the coolant is uniformly equal
to the temperature of the walls at the exit section. Later on, the optimum plate spacing
for natural convection between heated vertical parallel plates was numerically analysed by
Anand et al. [1] for channels subjected to uniform wall temperature and uniform heat flux
heating conditions. Boundary layers approximations were introduced and calculations were
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conducted for various asymmetric heating parameters.

For forced convection Bejan and Scuibba [25] determined an optimal spacing, intersec-
tion of two asymptotic solutions in D−2/3 when the distance between the walls is large
enough and in D2 when they are sufficiently close for the occurrence of a short thermal
entry length. The optimal spacing of a stack of isothermal parallel boards cooled by forced
convection was studied numerically and theoretically by Mereu et al. [110] according to the
flow generation: fixed pressure drop (∆p), mass flow rate (ṁ), or pumping power. For each
of these cases, the optimal spacing and maximum overall thermal conductance of the stack
were correlated in dimensionless form. It was shown that neither the constant ∆p model
nor the constant ṁ model is appropriate when the stack is cooled by a stream created by
a fan or a pump. Campo [38] complemented the study conducted by Bejan and Scubbia
[25] by proposing an order-of-magnitude analysis for channels with the plates heated with
uniform heat fluxes. To this end, he introduced a new characteristic plate temperature
based on the mean value of the axially variable temperature difference between plate and
free-stream temperatures.

In many applications, especially for electronic components, cooling is performed by
mixed convection in order to increase the efficiency of the fins while using low power fans.
Laminar mixed convection between a series of parallel plates with planar heat sources was
numerically investigated by Watson et al. [159] with conjugate conduction effects included.
A fully elliptic formulation and extensions above the plates were considered for various
plate-to-fluid conductivity ratios. The thermodynamic optimization of cooling techniques
for heat generating devices were examined in Bejan and Ledezma [23] and da Silva et Bejan
[52] by considering five models for applications above and below room temperature. They
showed, in particular, that the minimum fan power requirement for forced convection is
minimum when the heat transfer area is optimized according to the relation A = 2Af/St,
where St is the Stanton number and Af the flow cross-sectional area. For natural convec-
tion cooling, this optimization rule determines the maximum possible heat generation rate.

A single correlation for optimal spacing and maximal heat transfer rate density for
mixed convection as well as for natural and forced convection in stacks of isothermal paral-
lel plates was derived by Bello-Ochende and Bejan [26]. The starting point of the numerical
study was the expressions of the optimal spacings for pure natural convection (Bejan, [21])
and pure forced convection generated by a pressure difference (Bejan and Sciubba [18]).
Their results, extended to the Prandtl number range [0.001, 100] for natural and forced
convection, re-inforced the argument that the role of the pressure drop number (or Be-
jan number) in forced convection is analogous to that of the Rayleigh number in natural
convection. The authors claimed that the success of the universal correlation derived in
their study is due to the systematic manner it was developed. We will compare our results
against these correlations with air as working fluid in the Result section of the present
paper.

We present in this paper numerical results obtained when the pressure and buoyancy
forces act in the same direction. It is shown that an optimal spacing still exists for mixed
convection but its value depends strongly on the pressure difference between the inlet and
outlet sections.

The paper is organized as follows. In section 4.2, we present the problem formulation
both in dimensional form and in dimensionless form for the specific case of a vertical
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flat-plate channel subjected to uniform and equal wall temperatures. The heat transfer
characteristics are then discussed. Section 4.3 describes the numerical method used to solve
the conservation equations and to satisfy the overall mass conservation. In section 4.4,
results and discussion are presented successively for natural, forced and mixed convection.

4.2 Governing equations

We consider two-dimensional, incompressible and laminar buoyancy-assisting flows in-
side vertical parallel-plate channels, as shown in Fig. 4.1. The fluid enters the channel stack

Figure 4.1 – Schematic of the array of vertical isothermal plates and boundary conditions.

of height H at ambient temperature and traverses upward, being heated by the hot walls
at uniform temperature Th. The fully developed region may be eventually reached at the
outlet (z = H), after a development length mainly depending on the value of the plate
spacing for the problem under consideration. On account of the maximum temperature
difference invoked, it is assumed that all physical properties are constant except for the
density in the buoyancy force in the vertical direction (Boussinesq approximation). The
reference temperature has been taken as the inlet temperature, as in most of the solu-
tions reported in the current literature. However, this choice remains an open question, as
discussed by Barletta and Zanchini [19], especially for fully developed mixed-convection.
By assuming also that the inlet and outlet boundary conditions are the same for each of
the channels, we are thus considering the flow in only one channel (periodicity of the flow
in the horizontal direction). Owing to the stability results by Chen and Chung [43], the
governing equations are written in transient form in order to capture possible transitions
to unsteady flows. With the z-axis pointing upwards and the origin of coordinates placed
at the center of the inlet section, the conservation equations based on a fully elliptic model
are

∂u

∂x
+
∂w

∂z
= 0 (4.1)
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∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z
= − 1

ρ0

∂p

∂x
+ ν0

(
∂2u

∂x2
+
∂2u

∂z2

)
(4.2)

∂w

∂t
+ u

∂w

∂x
+ w

∂w

∂z
= − 1

ρ0

∂(p+ ρogz)

∂z
+ ν0

(
∂2w

∂x2
+
∂2w

∂z2

)
+ gβ0(T − T0) (4.3)

∂T

∂t
+ u

∂T

∂x
+ w

∂T

∂z
= a0

(
∂2T

∂x2
+
∂2T

∂z2

)
(4.4)

4.2.1 Boundary and initial conditions

The boundary conditions are written:

u = w = 0, T = Th at x = ±D/2 and for 0 < z < H

u = 0, ∂w
∂z = 0, p = −ρ0w

2/2, T = T0 for −D/2 < x < D/2 and at z = 0

u = 0, ∂w
∂z = 0, p+ ρ0gH = ps,

∂T
∂z = 0 for −D/2 < x < D/2 and at z = H

(4.5)
The initial condition is a fluid at rest at uniform temperature T0.

For natural convection ps = 0 while the buoyancy force is neglected in Eq. 4.3 (i. e.
gβ0(T − T0) = 0) for forced convection.

For forced and mixed convection, a fall in pressure is prescribed at the outlet section
(it could be as well an increase in pressure at the inlet section). Therefore, the prescribed
boundary conditions are inlet temperature and outlet pressure, zero z-derivative for the
vertical velocity component and zero horizontal velocity-component. It should be empha-
sized that these flow B.C. differ somehow from those used in most of previous works.

4.2.2 Dimensionless form

4.2.2.1 Natural convection

Three velocity scales vref are commonly used for natural convection: either vref =
ν0/D, or equivalently for gas flows vref = a0/D, or vref = (gβ∆TH/Pr)1/2 which appears
to be more appropriate for boundary layer type flows.

4.2.2.2 Forced or mixed convection

The velocity scale for forced convection with a prescribed volumetric flow rate is gener-
ally the inlet velocity, w0. With the present model, this velocity scale is not a priori known.
We set thus vref = w0 = (−ps/ρ0)1/2, the maximal possible mean velocity corresponding
to a non-viscous fluid.

As suggested in Jeng et al. [82], we introduce the following set of dimensionless quan-
tities:

x∗ =
x

Dh
, z∗ =

z

DhRe
, τ =

w0 t

DhRe
, u∗ =

uDh

ν0
, w∗ =

w

w0
, p∗ =

p

ρ0w2
0

, θ =
T − T0

Th − T0

(4.6)
whereDh = 2D denotes the hydraulic diameter of the channel. The dimensionless governing
equations are as follows
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∂u∗

∂x∗
+
∂w∗

∂z∗
= 0 (4.7)

∂u∗

∂τ
+ u∗

∂u∗

∂x∗
+ w∗

∂u∗

∂z∗
= −Re2∂p

∗
m

∂x∗
+
∂2u∗

∂x∗2
+

1

Re2

∂2u∗

∂z∗2
(4.8)

∂w∗

∂τ
+ u∗

∂w∗

∂x∗
+ w∗

∂w∗

∂z∗
= −∂p

∗
m

∂z∗
+
∂2w∗

∂x∗2
+

1

Re2

∂2w∗

∂z∗2
+

Gr

8Re
θ (4.9)

∂θ

∂τ
+ u∗

∂θ

∂x∗
+ w∗

∂θ

∂z∗
=

1

Pr

(
∂2θ

∂x∗2
+

1

Re2

∂2θ

∂z∗2

)
(4.10)

where

GrD =
gβ0D

3∆T

ν2
0

, P r =
ν0

a0
, Re =

w0Dh

ν0

The dimensionless expression p∗m, associated with the sum of static and hydrostatic pres-
sures, can be calculated by the following equation

p∗m = p∗ + (
Re

Fr
)z∗

where Fr =
w2

0
gDh

is the Froude number. If w0 → ∞, Re/Fr → 0, and the x∗-momentum
equation shows that p∗m becomes constant within a channel cross section. When Re >> 1,
the axial diffusion terms in the momentum and energy equations becomes negligibly small
in comparison with the transverse terms: a parabolic model is then relevant. For a fully
established regime (u∗ = 0, θ = 1), the only dimensionless parameter is thus Gr/Re (see
Aung and Worku [12, 13] or Padet et al. [122, 123]).

4.2.2.3 Boundary and initial conditions

u∗ = w∗ = 0, θ = 1 at x∗ = ±1/4 and for 0 < z∗ < A
Re

u∗ = 0, ∂w∗

∂z∗ = 0, p∗m = −w∗2/2, θ = 0 for − 1/4 < x∗ < 1/4 and at z∗ = 0

u∗ = 0, ∂w∗

∂z∗ = 0, p∗m = p∗s,
∂θ
∂z∗ = 0 for − 1/4 < x∗ < 1/4 and at z∗ = A

Re
(4.11)

where A = H/Dh is the height to spacing ratio of the channel.

u∗ = w∗ = 0, θ = 0 at τ = 0 ∀ x∗, z∗ (4.12)

The dimensionless forms of the governing equations and boundary conditions show that
the problem solution depends on five dimensionless parameters: A, Fr, Gr, Pr and Re.
The relative importance of the buoyancy force is characterized by the ratio Gr/8Re. For
pure natural convection, w0 may be changed into vref = ν0/Dh. Therefore, it is found that
Re = 1 and Re/Fr = gD2

h/(ν0/Dh).
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4.2.3 Heat transfer

The total heat transfer rate released by two walls of depth L and height H, denoted as
Q2w, is calculated as follows:

Q2w = 2Lk0

∫ H

0

∂T

∂x

∣∣∣∣
x=D/2

dz = 2h(LH)(Th − T0) (W ) (4.13)

where h is the mean heat transfer coefficient defined by right-hand side of equality (4.13).
For natural or mixed convection, a mean Nusselt number expressed byNu2w = Q2w/[2(LH)(k0∆T/D)]
may be introduced [18]. The enthalpy flux removed from the two heated surfaces by the
stream is

Qen = ρ0cpSc[(wT )H − (wT )0] (W ) (4.14)

where (wT )z is the cross-section averaged (wT ) over one channel of cross-section area
Sc = DL defined as

(wT )z =
1

D

∫ D/2

−D/2
w(x, z)T (x, z)dx (4.15)

By using again 2(LH)(k0∆T/D) as a reference heat flux, we can define a Nusselt number
Nuen = Qen/[2(LH)(k0∆T/D)].

It should be emphasized that Q2w is always greater than Qen because heat lost by
axial diffusion at the channel inlet is not included into the definition of Qen. When the
wall temperatures are kept fixed, Q2w and Qen merge provided that the Reynolds number
is large enough for assuming that axial diffusion is negligibly small compared with Q2w

and Qen, as shown by Eqs. 4.8-4.10. The difference Qcond = Q2w −Qen yields the effect of
axial diffusion which can be written according to Eq. 4.5 as

Qcond = k0L

∫ D/2

−D/2

∂T

∂z

∣∣∣∣
z=0

dx = 2k0L

∫ H

0

∂T

∂x

∣∣∣∣
x=D/2

dz−ρ0cpL

∫ D/2

−D/2
[w(x,H)T (x,H)−w(x, 0)T0]dx

(4.16)
For negligible axial heat diffusion, equation 4.16 reads:

2k0L

∫ H

0

∂T

∂x

∣∣∣∣
x=D/2

dz = 2h(HL)(Th − T0) = ρ0cpSc[(wT )H − (wT )0] (4.17)

Such an approximation is one of the foundations introduced for establishing the analytical
solutions reported in Ref. [18, 22, 25].

4.3 Numerical method and validation

4.3.1 Numerical scheme

The conservation equations were spatially discretized to second order by the finite vol-
ume method on a structured grid with variables co-localized at the center of the mesh.
Centered approximations were used for the transport terms. A second-order Euler scheme
was adopted for time derivatives at time t = (n+ 1)∆t, with an implicit treatment of the
diffusion terms and an Adams-Bashforth extrapolation procedure for the transport terms.
The velocity-pressure decoupling was handled by a projection method. The resolution of the
Poisson problem with an appropriate source term f , ∇·(∇Φ) = f , for calculating the pres-
sure correction Φ = Pn+1−Pn is known to produce checkerboard oscillations when ∇ · (.)
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and ∇(.) are the collocated divergence and gradient respectively. To stabilize the pressure
correction term, the Poisson equation has been substituted by ∇̃2Φ = f−(∇·(∇Φ̂)−∇̃2Φ̂)
where ∇̃2Φ denotes the 5-points diffusion operator classically used on staggered meshes
and Φ̂ is an explicit approximation for Φ at time t = (n+ 1)∆t.

The solutions of Helmholtz problems for the components of velocity, temperature field
and pressure correction, solution of the modified Poisson problem presented here-above,
were obtained by the Bi-Conjugate Gradient Stabilized (BCGS) method, preconditioned
by an incomplete LU decomposition. Owing to the axial symmetry of the flow, the problem
was solved on the half-width of the channel. The faces of the mesh xfi and zfk are defined
as follows:

xfi
D/2

=
i

nx
− cx

2π
sin

(
i

nx
π

)
, 0 ≤ i ≤ nx (4.18)

zfk
H

=
tanh

(
cz

(
k
nz
− 1
))

tanh(cz)
+ 1, 0 ≤ k ≤ nz (4.19)

The coefficients cx and cz define the mesh refinements in the entrance region and along
the isothermal wall. The time integration was performed with the Courant-Friedrich-Levy
number kept fixed to CFL = 0.5. The stationary solution is reached when En,n+1 < 10−4

with

En,n+1 = max
X∈{u,w,T}

(
‖X(n+1) −X(n)‖
‖X(n+1)‖∆t

)
(4.20)

where ||.||2 is the discrete L2-norm.

The asymptotic behavior of the numerical solution was investigated using a Richardson
extrapolation on two or three sets of three meshes defined by nx ∈ {10, 20, 40}, nx ∈
{20, 40, 80} and nx ∈ {40, 80, 160} with, in all cases, nz = 50nx. This method leads to the
extrapolated value of f which is written:

fextrap = fnx +
cnx

(nx)α
(4.21)

where cnx is a coefficient depending on nx and fnx is the numerical result on grid nx×nz.
For sufficiently fine meshes, the value of α must tend towards the order of consistency of
the numerical scheme (i.e. α = 2), fextrap must then become independent of the mesh. The
preliminary study carried out for validating the numerical procedure used the refinement
coefficients cx = 1 and cz = 1.5.

4.3.2 Heat flux convergence

For small spacings, the transport of enthalpy may be negligibly small compared to
thermal diffusion for natural convection or for forced convection when a small pressure
difference is applied. It may therefore be assumed that heat transfer reduces to pure heat
conduction in a rectangular (x × z)-domain with T (±D/2, z) = Tw(z) in 0 ≤ z ≤ H,
T (x, 0) = T0 at z = 0 in 0 < x < D/2 and, adiabatic conditions at z = H in 0 < x < D/2.
By using the method of separation of variables for solving the 2D-heat conduction equation
subjected to the above boundary conditions, the analytical solution writes :

T (x, z) = T0 + ∆T
∞∑
n=0

En

cosh(λn
D
2 )

cosh(λnx) sin(λnz) (4.22)
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where λn = (2n+ 1)π/(2H). The coefficients of the series are as follows

En =
2

H ∆T

∫ H

0
(Tw(z)− T0)sin(λnz)dz (4.23)

The conductive flux transfered from the side walls of depth L at x = ±D/2 writes:

Qcond = 2L

∫ H

0
k
∂T

∂x

∣∣∣∣
x=D/2

dz = 2Lk∆T
∞∑
n=0

En tanh(λn
D

2
) (4.24)

Owing to the adiabatic conditions at x = 0 and at z = H, the conductive heat flux at sur-
face z = 0 equals Qcond. It can be readily shown that the Qcond-expression for Tw(z) = Th,
i.e.

Qcond =
8Lk∆T

π

∞∑
n=0

1

2n+ 1
tanh

[
(2n+ 1)π

4

(
D

H

)]
(4.25)

is a non-convergent series. Therefore, the numerical scheme cannot converge, as it can be
seen from the results reported in Table 4.1 for D = 6 10−3m, H = 0.1 m, L = 1 m and

nx 10 20 40 80 160 α Extrap.
Qcond −6.78347 −7.73104 −8.66075 2.74585 10−2 53.5420

−7.73104 −8.66075 −9.58505 8.41087 10−3 −167.667
−8.66075 −9.58505 −10.50776 2.48607 10−3 −545.507

Table 4.1 – Pure conductive wall heat flux Qcond (W ) for D = 6 10−3m, H = 0.1 m,
L = 1 m and ∆T = 40 K according to the mesh refinement (nz = 50nx). Order α of
convergence of the numerical scheme and Richardson-extrapolated values.

∆T = 40K. Despite the use of quite fine meshes, the order of consistency is found very
different from α = 2 and the extrapolated values with the three sets of grids differ accord-
ingly. This behavior shows the non-convergence of the numerical scheme for the wall heat
fluxes. That is directly linked to the temperature discontinuity at (x, z) = (±D/2, 0) into
the continuous problem formulation. Such a non-convergent behavior obviously exists for
convective heat transfer but it is almost hidden when considering large enough flow rates
(or Re ) because axial diffusion becomes negligible.

For natural convection (Pr = 0.71, RaH = 3.76 × 106), the values of the average
velocity w, the enthalpy flux, Qen, and the convective flux, Q2w, reported in Table 4.2,
show that Richardson extrapolation indicates a very good convergence for w̄ and Qen
(w̄ = 0.14716m/s, Qen = 40.246W ). However, Q2w (and thus by conservation of fluxes,
Qcond = Q2w − Qen) gives no indication about spatial convergence. The question of ill-
formulated boundary conditions has been investigated by Sadat and Salagnac [137] : the
present discussion corroborates their very relevant study about the right methods for solv-
ing problems with singularities at the boundaries.

The conclusion is that the total heat transfer at the isothermal wall cannot be accu-
rately calculated, except if axial conduction (refer to Eq. 4.16) is negligibly small: in that
case Qen may be considered as a relevant approximation of Q2w.
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nx 10 20 40 80 α Extrap.
Q2w −43.4100 −44.2962 −45.2092 −4.29693 10−2 −14.0963
Q2w −44.2962 −45.2092 −46.1288 −1.04261 10−2 81.5836

Qen 40.3414 40.2699 40.2520 1.99095 40.2459
Qen 40.2699 40.2520 40.2477 2.07492 40.2464

w̄ 0.147638 0.147280 0.147190 1.99445 0.147160
w̄ 0.147280 0.147190 0.147168 2.01678 0.147160

Table 4.2 – Natural convection for D = 6 10−3m, H = 0.1 m, L = 1 m and ∆T = 40 K
(nz = 50nx). Convective flux at the isothermal wall, Q2w (W ), enthalpy flux, Qen (W ), and
average velocity, w̄ (m/s). Order α of convergence of the numerical scheme and Richardson-
extrapolated values.

Possible attempts for solving this problem are the use of channel extensions as it was
suggested in many previous numerical studies that we will briefly review in what follows
for closely related flow configurations.

Naylor et al. [116] solved the full elliptic forms of the governing equations for pure
natural convection using inlet flow boundary conditions based on the Jeffrey-Hamel flow in
order to represent more realistically the entrance flow. Their solutions validated the inlet
pressure approximation (p = −ρ0w

2/2) commonly used in parabolic formulations. Their
predictions of fluid separation at the channel inlet is not agreement with most of the elliptic
solutions published so far, and appear to be caused by the shape of the extension. The
optimization of plate separation of an open, vertical, parallel-plate channel that is cooled
by natural convection of air with the plates symmetrically heated by uniform heat flux has
been studied by Morrone et al. [114] by solving the full elliptic conservation equations in a
I-shaped computational domain. Correlations for the dimensionless flow rate and optimal
values of the spacing were derived and compared with the predictions of Bar-Cohen and
Rohsenow [18] and Anand et al. [1]. The deviations at small values of the Grashof number
were attributed to the importance of diffusive effects.

The problem of natural convection involving the buoyancy-driven interaction of the
fluid motion in a semi-confined space (including horizontal channels open at both ends)
with the flow in a large external space was extensively studied, both theoretically and nu-
merically. This problem was reconsidered in a recent paper by Boetcher and Sparrow [31].
One of the two goals of this paper was to examine the impact of the size of the extended
domain, boundary conditions on its surfaces, and the mesh density required to achieve
high accuracy. As in Desrayaud and Lauriat [55], it was shown that the opening boundary
condition must permit the fluid to enter and leave across a boundary in accordance with
the dynamics of the situation, unlike it was suggested in most of the previous numerical
studies. Khanafer and Vafai ([86]-[87]) showed that an accurate set of effective boundary
conditions at the aperture plane for two-dimensional open-ended structures can be ob-
tained from previous computations carried out when using an extended domain.

Natural convection of air in channel-chimney systems was studied experimentally [7],
and numerically by using the stream function-vorticity approach and the control volume
method by Manca et al. ([4, 5]) for vertical channels heated symmetrically at uniform heat
flux and with adiabatic extensions. Results obtained showed how and why the chimney
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effect worsens, and provide guidelines to determine if the channel-chimney system is in
critical condition related to flow reattachment or separation.

Closely related to what we are considering here is the paper by Bello-Ochende and Be-
jan [26]: the channel was fitted with upstream and downstream extensions whose lengths
were selected based on accuracy tests. For the downstream extension domain, free slip and
no penetration were specified at one side and zero stress at the other side in order to nullify
the chimney effect. From our point of view, this procedure leads to unrealistic outflow fields
for a periodic array of vertical channels.

Based on the work by Sadat and Salagnac [137], we are therefore suggesting an alter-
native approach to those based on channel extensions.

4.3.3 Regularization of thermal conditions at the inlet corner

Since the problem of convergence of the wall heat flux has been identified as linked to
the temperature discontinuity in (x, z) = (±D/2, 0), we have modified the temperature
profile along the walls using the relationship:

T (±D/2, z) = Tw(z) = T0 + (Th − T0) tanh(5000z) (4.26)

Therefore the sum of the following series

Qcond = 2L∆T

∞∑
n=0

En tanh(λnD) with En =
2

H

∫ H

0
tanh(5000z) sin(λnz)dz (4.27)

converges to Qcond = −5.0136 (W ) forD = 6 10−3m,H = 0.1m, L = 1 m and ∆T = 40K.
It should be noted that the relative temperature difference (Tw(z)−T0)/(Th−T0) increases
from 50% for z = 0.11mm to 99% for z = 0.53mm and up to 99.9% for z = 0.76mm. This
regularization is thus very steep, and we expect it has little effect on the average velocity,
and hence on the enthalpy heat flux.

Taking up the problem of heat conduction with the wall temperature corrected as
Tw(z), we see that the extrapolations (Tab. 4.3) give a value rounded to five significant

nx 10 20 40 80 160 α Extrap.
Qcond −4.87969 −4.97384 −5.00314 1.68449 −5.01636

−4.97384 −5.00314 −5.01110 1.87876 −5.01407
−5.00314 −5.01110 −5.01314 1.96323 −5.01385

Table 4.3 – Pure conductive wall heat flux Qcond (W ) for D = 6 10−3m, H = 0.1 m,
L = 1 m and ∆T = 40 K with a regularized temperature distribution (Eq. 4.26) according
to the mesh refinement (nz = 50nx). Order α of convergence of the numerical scheme and
Richardson-extrapolated values.

digits for the heat flux equal to Qcond = −5.0138 W . This regularization modifies very
slightly the convective transfer as shown in Fig. 4.2 in which are drawn the enthalpy flux
and convective flux on the isothermal wall for the problem of natural convection with or
without the regularized temperature. By comparing the values of the average velocity and
enthalpy flux with or without regularization we found that these values are identical to

63



N

Q
(W

)

10 20 30 40 50 60 70 80
40

  41

42

  43

44

  45

46

  47

x

Q

Q

Q

en

2w

2w ( T (z)=T )

w 0 ∆( T (z)=T + T tanh(5000z))

w h

Figure 4.2 – Natural convection: variations of heat flux versus the number of grid points
in the x-direction (nz = 50nx) for D = 6 mm, H = 0.1 m, L = 1 m, ∆T = 40 K. Q2w is
the wall heat flux for non-regularized wall temperature (Eq. 4.25) or for regularized wall
temperature (Eq. 4.27 ). Qen is the enthalpy flux (Eq. 4.14).

three significant digits : w̄ = 0.147 m/s and Qen = 40.2W .

In conclusion, the regularization method adopted allows to calculate the solution with
a very good accuracy and to study the axial conduction, dominant for low axial velocities
(or Pe� 1).

The study of the mesh convergence of numerical solutions was made in the case of
natural convection with a regularized temperature at the inlet corner. In addition to com-
putations carried out for D = 6mm, we also considered the two spacings D = 1mm and
D = 10mm which correspond to the smallest and largest value of D considered in this
study.

Once the reference solutions are established using the Richardson extrapolation method,
we sought the irregular coarsest mesh which provides accurate numerical solutions to 3
significant digits, for all considered plate spacings. The retained mesh is composed of
40×1000 control volumes covering a half-channel, the mesh being finer along the isothermal
wall and close to the entrance region by setting cx = 1.64 and cz = 1.82. The ratio between
the smallest and largest length of a rectangular control volume is, for each direction of
space, about 10. Rounded to 3 significant digits, we obtain for L = 1 m:
Q2w = 2.85W , Qen = 0.326W and w̄ = 6.89 · 10−3m/s for D = 1mm,
Q2w = 41.8W , Qen = 40.2W and w̄ = 0.147m/s for D = 6mm,
Q2w = 57.0W , Qen = 55.6W and w̄ = 0.172m/s for D = 10mm.

4.4 Results and discussions

Although the conservation equations were presented in their transient form, only the
steady-state solutions are discussed here. The height and depth of the isothermal plates
at Th = 340 K are set as H = 0.1 m and L = 1 m, and the thermophysical properties of
air evaluated at the inlet fluid temperature, T0 = 300 K, are set as: ρ0 = 1.176 kg.m−3,
µ0 = 1.85 10−5Pa.s, cp,0 = 1006 J.kg−1.K−1, k0 = 0.0261 W.m−1.K−1. The two main
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parameters of the problem are the plate spacing, D, and the outlet pressure, ps. The plate
spacing is varied from D = 10−3m to D = 10−2m (10 ≤ A ≤ 100, 5.29 ≤ GrD ≤ 5.29 103)
and, ps is varied from ps = −0.1 Pa to ps = −1 Pa.

4.4.1 Natural convection

For air flowing by natural convection in a channel of height H = 10 cm and subject
to a temperature difference ∆T = 40 K, the Rayleigh number based on H is RaH =
GrD PrA

3 = 3.76 × 106. Two mean Nusselt numbers may be deduced from the overall
heat fluxes defined by equations 4.13 and 4.14: Nu2w = 4.79DQ2w or Nuen = 4.79DQen.

The asymptotic heat transfer correlations reported in Bejan [22] for small or large
spacings may be combined for deriving a Nu-correlation valid whatever the spacing is [18].
However, these predictions assume that the axial heat conduction is negligibly small despite
that the temperature at the inlet section is kept fixed at the ambient temperature for all
flow rates. The assumption of constant inlet temperature is also used in the present study
(see Eq. 4.5). Nevertheless, the elliptic formulation allows comparisons between the total
heat transfer rate released by the two walls and the change in the enthalpy flux between the
inlet and outlet sections, denoted in dimensionless form as Nu2w and Nuen (Table 4.4).

D (mm) Nua Nuen Nu2w

1 0.0016 0.0016 0.014
3 0.125 0.120 0.151
5 0.782 0.711 0.751
7 1.638 1.591 1.642
9 2.280 2.338 2.402
10 2.563 2.658 2.729

Table 4.4 – Natural convection: comparisons between the mean Nusselt number defined by
Eq. 4.28 and the numerical values Nu2w and Nuen based on Eqs. 4.13 and 4.14.

In terms of the present dimensionless variables, the composite heat transfer correlation
given by Bar-Cohen and Rohsenow [18] for symmetric, isothermal plates may be written
as

Nua =
1

A

[
576A6

Ra2
H

+
2.873

Ra
1/2
H

]−1/2

(4.28)

The first term in Eq. 4.28 dominates for small spacings while the second term dominates for
large spacings since it is based on boundary-layer type correlations. Equation 4.28 allows
calculations of the wall heat fluxes provided that the axial thermal diffusion is negligibly
small (i.e. Q2w ≈ Qen) and, therefore, an approximate analytical expression for the mean
flow velocity, wa, is obtained as:

Q2w,a = ρcp,0(LD)wa∆T = (2LH)k0

(
∆T

D

)
Nua ⇒ wa = 2

(a0

D

)
A Nua (4.29)

It should be noted that Eq. 4.29 is valid if the outlet bulk temperature is equal, or very
close, to that of the walls since it is assumed that Tb(H) = Th when deriving this equation.

Table 4.4 shows that the agreement between Nua and Nuen is fairly good for all
spacings considered while large discrepancies between Nua and Nu2w are reported for
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D < 4 mm owing to the small flow rates. Figure 4.3 shows that the analytical and numerical

D (mm)

(c
m

/s
)

0 2 4 6 8 10
0

5

10

15

20

w

a

w
w

I

I
I

Figure 4.3 – Natural convection: comparison between the analytical (wa, Eq. 4.29) and
numerical (w) solutions of the mean flow velocity versus the plate spacing.

predictions for w are in good agreement up toD ≈ 7 mm. For larger spacings, the boundary
layer-type solution (Eq. 4.29) is inappropriate for predicting the flow rate because the
outlet velocity profiles calculated numerically are fully different from those for two separate
boundary layers : in that case, the temperature along the channel axis (i.e. T (0, z)) should
be equal to the inlet temperature. From Fig. 4.4 showing the temperature profile at the
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Figure 4.4 – Natural convection: temperature profile at the outlet section for various plate
spacings.

outlet section for various spacings, it can be deduced that the axial temperature at the
outlet section is much higher than the inlet temperature. On the other hand, the decreases
in the relative importance of axial conduction when increasing the spacing leads to smaller
differences between Nua and Nu2w (Table 4.4).

Optimal spacing : Dopt

The optimal spacing Dopt corresponds to the maximum heat flux that is possible to trans-
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fer between an ambient fluid flowing between 2n isothermal surfaces (n+1 plates) forming
a stack of n channels of total width W (Fig. 4.1). Such a spacing is just a compromise
between overall heat transfer area, St = 2n × H × L, and heat transfer in each of the n
channels, Q2w(D) or Qen(D). The optimal spacing for natural convection may be approx-
imately determined from the asymptotic analysis presented in Bejan [22] or by using the
Nu-correlation by Bar-Cohen and Rohsenow [18]. As a result, the ratio Qen(D)/D varies
between a value close to zero (corresponding to a very small plate-spacing such as w ≈ 0)
and the value for D = W , in between there exists an optimum spacing, D = Dopt, at which
Qen(D)/D reaches a maximum value.

Dopt can be estimated from the intersection of two curves corresponding to asymp-
totic solutions [22] or by using the correlation proposed in [18]. The solution given in
[22],[26] is Dopt

∼= 2.3 H × Ra−1/4
H , i.e. Dopt

∼= 5.22 mm for the configuration considered
here. The optimization procedure suggested by Bar-Cohen and Rohsenow [18] leads to
Dopt = 2.714 H ×Ra−1/4

H , i.e. Dopt = 6.16 mm.

Figure 4.5 shows the variation of Q/D (W/m) as a function of D, Qa/D and Qb/D
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Figure 4.5 – Natural convection: variations of the ratios Q/D with the plate spacing. Qa
and Qb are the asymptotic analytical solutions (Eq. 4.30), Q2w and Qen are given by
Eqs. 4.13 and 4.14, and Qcond by Eq. 4.27. The cross symbol is for Dopt and Qmax/Dopt

based on Eq. 4.32.

being calculated by using the following correlations [22]

Qa/D =
k0L∆T

12
RaH

D2

H3
= 0.327 109D2 and Qb/D =

2k0L∆T

D
0.517Ra

1/4
H =

47.54

D
(4.30)

In Fig. 4.5, Dopt corresponds to the maximum value of Q2w/D. Figure 4.5 shows that
Q2w/D and Qen/D differ significantly for D < 4 mm. The reason is that Qen/D systemat-
ically tends towards zero as D → 0 because w → 0. On the other hand, Q2w decreases less
quickly than D because the problem turns into a pure conductive heat transfer problem as
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depicted in section III. As a result Q2w/D increases sharply as D → 0 and tends towards
Qcond/D, the exact analytical solution for regularized hot-wall temperatures (Eq. 4.27).
The difference Q2w/D − Qen/D is thus the conductive heat flux lost by the fluid at the
inlet section, as given by Eq. 4.16. This result raises obviously the problem of the classical
choice of the temperature boundary condition at the inlet. Solving this question is out of
the scope of the present study.

It can also be seen in Fig. 4.5 that the numerical solution for Qen/D is in excellent
agreement with the asymptotic prediction for small spacings, i.e. for low fluid velocities
while it starts diverging from Qa/D when D ≥ 4 mm. For large spacings, the numerical
solution does not agree well with the asymptotic solution for boundary-layer type flows, as
discussed previously (Fig. 4.4): the Qb-solution (Eq. 4.30) is not an upper bound for the
heat flux. On the other hand, the agreement with the Bar-Cohen and Rohsenow correlation
[18] is much better, as displayed in Fig. 4.6. Qc/D is calculated as follows
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Figure 4.6 – Natural convection: variations of the ratios Q/D with the plate spacing. Qc
is the analytical solution (Eq. 4.31), Q2w and Qen are given by Eqs. 4.13 and 4.14.

Qc/D = (2LH)k0

(
∆T

D2

)
Nua ⇒ Qc/D = 2.09[4.068× 10−17D−5 + 1.481× 10−3D]−1/2

(4.31)
From the present numerical results, Dopt is found to be Dopt = 6.52 mm or Dopt =

6.62 mm by considering either the maximum in Qen/D or in Q2w/D. These values are in
good agreement with the maximum of Qc/D located at Dopt = 6.16 mm [18]. Figure 4.7
shows axial velocity profiles and temperature distributions at various height of the channel
for Dopt = 6.62 mm. In that case , Q2w = 48.5 W while Qb = 47.3 W (Eq. 4.30) and
Qc = 47.04 W (Eq. 4.31). The discrepancies are therefore very small. However, Figure 4.7
shows that the velocity and temperature profiles are far to be like those for a boundary
layer-type flow : they resemble more or less the profiles for an established channel flow.
Bello-Ochende and Bejan [26] suggested to take into account the Prandtl effect on Dopt

and maximum heat transfer density Qmax/D, obtained by substituting D by Dopt in Eq.
4.30, as

Dopt
∼= 0.0104A(Pr) H Ra

−1/4
H =⇒ Qmax/Dopt ≤ 0.028B(Pr)

(
k0∆T

H

)
Ra

1/2
H

(4.32)
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(a) axial velocity (b) temperature

Figure 4.7 – Natural convection: axial velocity and temperature profiles at various heights
for the optimal spacing, Dopt = 6.62 mm.

whereA(Pr) = [2630.52+(2.83Pr0.667)0.52]1/0.52 andB(Pr) = [15.5−0.51+(181Pr0.81)−0.51]−1/0.51.
These correlations are assumed valid in the range 105 ≤ RaH ≤ 107 and 10−3 ≤ Pr ≤ 102.
The result for Pr = 0.71 and RaH = 3.76 × 106 is reported on Fig. 4.5. As can be seen,
there is a large discrepancy with the present results, both on Dopt and Qmax/Dopt which
stands much below our predictions.

4.4.2 Forced convection

The asymptotic analysis presented in Bejan et Sciubba [25] leads to the following re-
sults:
- if the flow regime may be assumed dynamically and thermally established over the most
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part of the height of a vertical channel, the enthalpy flux may approximated as

Qa/D =
D2

12ν0

(
∆p

H

)
cp,0∆T (4.33)

- on the other hand, the boundary layer limit approximation leads to

Qb/D = 1.208k0∆T

(
(PrH∆p)1/3

ρ
1/3
0 ν

2/3
0 D2/3

)
(4.34)

Equation 4.34 is based on the Blasius solution for forced flows over a flat plate and by
assuming that the velocity along the channel axis, keeping a constant value, is created by
a pressure difference ∆p.

Based on these two limits, the optimum spacing results from the equality Qa = Qb. It
can be readily shown that [25][26]

Dopt,a
∼= 2.726H1/2

(
a0µ0

∆p

)1/4
∼= 2.726H Be−1/4 (4.35)

where Be = ∆pH2

aoµ0
is the pressure difference number or Bejan number. With the present

set of data, Dopt,a can be rewritten as Dopt,a
∼= 3.88 10−3∆p−1/4.

The order of magnitude of the maximum heat flux that corresponds to Dopt is obtained by
combining Eq. 4.33 and Eq. 4.35:

Qmax ∼= 0.62Dopt

(
ρ0∆p

Pr

)1/2

cp,0∆T = 0.62Be1/2Dopt

(
k0∆T

H

)
(W ) (4.36)

With the present set of data, Qmax can be rewritten as Qmax ∼= 124.4∆p1/4. Similarly to
what has been done for natural convection, equations 4.35 and 4.36 were reformulated in
[26] in order to correlate the Pr effect as

Dopt
∼= 0.0114A(Pr)H Be−1/4 and Qmax/Dopt

∼= 0.035B(Pr)

(
k0∆T

H

)
Be1/2 (4.37)

where A(Pr) and B(Pr) are the same as the ones for natural convection.

It should be noted that equations 4.35 and 4.36 cannot be directly applied if the fluid
flow is created by a pressure drop at the outlet section because the inlet pressure depends
on the inlet velocity through the Bernoulli relationship. On other hand, it is straightfor-
ward to calculate Dopt,a and Qopt,a if the inlet pressure is fixed while assuming ps = 0.With
the model used in the present study, the mass flow rate, ṁ = ρ0(DL)w, as well as the in-
let pressure, p(x, 0), result from solving the conservation equations (4.7)-(4.10) with the
boundary conditions given by Eq. (4.11). Therefore, we applied Eq. 4.33 to Eq. 4.37 through
calculations of the pressure difference as ∆p = p(0) − ps = −1

2ρw
2(0) − ps, where w de-

pends on ps and D. The mean velocity for Dopt and various ps is reported in Table 4.5. It
can be deduced that the Reynolds number based on the hydraulic diameter ranges within
171 ≤ Re ≤ 309 when 0. 1 Pa ≤ |ps| ≤ 1 Pa.

The ratios Q2w/D and Qen/D are shown in Fig. 4.8a and 4.8b for ps = −0.1 Pa and
ps = −1 Pa, the asymptotic solutions Qa/D and Qb/D being drawn in dashed lines. As
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ps (Pa) −0.1 −0.2 −0.4 −0.8 −1.0

wopt (m/s) 0.178 0.252 0.357 0.504 0.566

∆p = [p(0)− ps]opt (Pa) 0.081 0.161 0.323 0.646 0.807

Dopt,a (Eq. 4.35) 7.28 6.13 5.15 4.33 4.10
Dopt(present) 7.57 6.38 5.38 4.52 4.29

Qmax/Dopt (Eq. 4.36) 0.91 104 1.29 104 1.82 104 2.58 104 2.88 104

Q2w/Dopt (present) 0.70 104 0.99 104 1.39 104 1.97 104 2.21 104

Table 4.5 – Forced convection: comparisons between analytical solutions (Dopt,a and
Qmax/Dopt , Eq. 4.35 and 4.36 ) and numerical solutions: Dopt (mm) and Q2w/Dopt (W/m).
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Figure 4.8 – Forced convection: variations of the ratios Q/D with the plate spacing for
ps = −0.1 Pa and for ps = −1 Pa (Qa and Qb are the asymptotic analytical solutions,
Q2w, Qen are given by Eqs. 4.13 and 4.14, respectively). The cross symbols are for the
analytical solutions given by Eq. 4.37 [26] and Eq. 4.38 [110].

can be seen, the agreement between the numerical solution (maximum of Q2w/D) and
analytical solution (intersection of Qa/D and Qb/D) for Dopt is better than for natural
convection. On the other hand, the optimal plate-spacing calculated using Eq. 4.37 [26]
does not agree neither with our computations nor with Eq. 4.35.
Table 4.5 shows comparisons between the analytical (Eq. 4.35) and numerical values of
Dopt as a function of ps: the agreement is satisfactory. The analytical solution (Eq. 4.36)
slightly overestimates the peak in Q2w/Dopt as shown from comparisons between the last
two lines of Table 4.5. Therefore, that can be assumed as a rather good approximation of
the maximum of Q2w/D (within 20%) for the range of ps considered in the present study
(0.1 Pa ≤ |ps| ≤ 1 Pa).
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In Figs. 4.8a and 8b, the effect of axial conduction is exhibited through the discrep-
ancy between Q2w/D and Q2n/D. It is clearly shown that the effect of axial conduction
decreases either as |ps| or as D are increased. It may be also noted that the differences
between Q2w/D and Qen/D are less than for natural convection, except for small spacing
(D less than ≈ 2 mm) at which the flow rate is strongly reduced, whatever ps in the
range considered. Therefore, we plotted only the variations of Q2w/D as function of D for
various ps in Fig. 4.9. As expected, this figure shows that the heat flux increases sharply
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Figure 4.9 – Forced convection: variations of the ratio Q2w/D versus the plate spacing for
various ps.

when decreasing ps while Dopt decreases. The variations of the mean flow velocity versus
D for various ps reported in Fig. 4.10 explain the increase in heat flux and decrease in

D (mm)

(c
m

/s
)

0 2 4 6 8 10
0

20

40

60

80

100

w

p = 1 Pa

p = 0.4 Pa

p = 0.1 Pa
s

s

s

I

I

I

I

Figure 4.10 – Forced convection: variations of the mean flow velocity versus the plate
spacing for various ps.

axial conduction which may be considered negligible when PeD > 100, or D ≥ 9 mm,
≥ 5.5 mm and ≥ 4 mm for ps = −0.1 Pa, −0.4Pa and −1Pa, respectively.

Mereu et al. [110] investigated the optimal geometry of packages with fixed pumping
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power, i.e. when the flow is created by a fan or a pump. By denoting Wm = Gv|ps| the
pumping power for one channel (Gv = w(DoptL) being the volumetric flow rate), the
relations given in [110] for Dopt and Qmax can be rewritten as follows for negligible plate
thickness (e << D):

Dopt
∼= CW−1/5

m and Qmax/Dopt ≤ CC′
−1/3W2/5

m (4.38)

where C = 2.266/5Pr−60/135(µH)3/5/ρ2/5 and C′ = 0.65k0∆TPr17/27ρ2/3/µ.

Using the set of physical data fixed in the present study, we obtain C = 1.05 10−3 and
CC′−1/3 = 3.24 105. Therefore, comparisons between our predictions and those based on
Eq. 4.38 can be made. To this end, the results reported in Table 4.6 were correlated as

ps (Pa) −0.1 −0.2 −0.4 −0.8 −1.0

Dopt (mm) 7.57 6.38 5.38 4.52 4.29

Q2w/Dopt (W/m) 0.70 104 0.99 104 1.39 104 1.97 104 2.21 104

Gv = [w(DL)]opt (m3/s) 1.35 10−3 1.61 10−3 1.92 10−3 2.28 10−3 2.43 10−3

Wm (W ) 1.35 10−4 3.22 10−4 7.69 10−4 1.83 10−3 2.43 10−3

Table 4.6 – Forced convection: optimal plate-spacing, maximum heat flux, volumetric flow
rate and pumping power for various pressure drops at the outlet section.

Dopt = αWn1
m and Q2w/Dopt = βWn2

m . We found for Dopt: α = 1.31 10−3, n1 = −0.197,
and for Q2w/Dopt: β = 2.35 105, n2 = 0.394. The exponents are thus in excellent agreement
with those in Eq. 4.38 while the discrepancies on both coefficients are quite large but of
same order of magnitude. In conclusion, the overall discrepancies between our results and
those based on Eq. 4.38 can be estimated to be about 20%. The values corresponding to
the theoretical solution (Eq. 4.38) are reported in Fig. 4.8a and 4.8b for ps = −0.1 Pa and
ps = −1 Pa, respectively. In comparison with the numerical solution, Dopt is underesti-
mated while Q2w/Dopt is overestimated.

4.4.3 Mixed convection

Since comparisons between the results obtained for mixed convection with |ps| < 0.1 Pa
does not differ significantly from those for natural convection (Fig. 4.5), and since the re-
sults for forced convection with |ps| > 1 Pa show that natural convection has a weak effect,
we consider now the domain |ps| ∈ [0.1 Pa, 1 Pa] in which natural and forced convection
have comparable strengths.

It should be emphasized that the pressure boundary conditions used in the present
study lead automatically to an increase of the mass flow rate when considering mixed con-
vection instead of natural or forced convection. According to the usual terminology, we
are thus considering "aiding-buoyancy" flows only, for which any recirculating flow may
appear in the channel entrance region owing to the pressure boundary conditions applied.
As it is well established, reverse flows never occur for identical temperature of the channel
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walls.

Variations of Q2w/D as function of D for ps = −0.2 Pa and ps = −1 Pa are shown in
Figs. 4.11a and 4.11b. These figures indicate that :
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Figure 4.11 – Mixed convection : variations of the ratio Q2w/D versus the plate spacing
for forced and mixed convection.

- first, the effect of natural convection is significant for ps = −0.2 Pa since the differences
between Q2w,mixed/D and Q2w,forced/D are large. On the other hand, this difference is
rather small for ps = −1 Pa. Therefore, it is not relevant to perform computations for
ps < −1 Pa in the configuration studied.
- second, as expected Dopt is the smallest for mixed convection. However, the difference
between the values for forced and mixed convection decreases as |ps| is increased as can be
seen by comparing Tables 4.5 and 4.7.

ps (Pa) −0.1 −0.2 −0.4 −0.8 −1.0

Dopt 5.95 5.52 4.95 4.33 4.14

Q2w/Dopt 0.98 104 1.21 104 1.56 104 2.10 104 2.32 104

Table 4.7 – Mixed convection: effect of ps on Dopt (mm) and Q2w/Dopt (W/m).

A single correlation for natural, mixed and forced convection domains was developed
by Bello-Ochende and Bejan [26]. Its range of application is 10−3 ≤ Pr ≤ 102, 105 ≤
RaH ≤ 107 and 105 ≤ Be ≤ 107. It can be written as

Dopt = 1.76 10−4A(Pr)C(ηb)H Be−1/4 Qmax/Dopt = 0.0011B(Pr)E(ηb)

(
k0∆T

H

)
Be1/2

(4.39)
where A(Pr) and B(Pr) are as in Eq. 4.32 and ηb = (RaH/Be)

1/4. C(ηb) and E(ηb) are
given by

C(ηb) = [17.69−2.08 + (28.27/ηb)
−2.08]−1/2.08 E(ηb) = [5110.9 + (110.5η2

b )
0.9]1/0.9 (4.40)

For the set of physical data fixed in the present study, we obtain A(Pr) = 307.2, B(Pr) =
8.875, ηb = 44.03 Be−1/4 and Be ≈ 2.45 107∆p (∆p in Pa). From our computations,
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∆p = −1
2ρ0w

2
0− ps varies between 6.8 10−2 Pa and 7.96 10−1 Pa for Dopt when 0.1 Pa ≤

|ps| ≤ 1 Pa. We conclude that 1.67 106 ≤ Be ≤ 1.95 107 and, 0.663 ≤ ηb ≤ 1.226 in
that range of ps. Therefore, forced convection and natural convection are of same order of
magnitude in our domain of computations. Unfortunately, application of Eq. 4.39 leads to
completely different results from those reported in Table 4.7.

From Eq. 4.37 and Eq. 4.39 it is readily found that

Dopt,mixed/Dopt,forced = 0.0154C(ηb) with C(ηb) < 17.69 (4.41)

If natural and forced convection strengths are of same order (ηb = 1), Eq. 4.41 indicates
that Dopt,mixed ≈ 0.27Dopt,forced. Such a prediction does not agree with our results. For
example, the present computations carried out for ps = −0.1 Pa leads to ηb = 1.226. The
correlation given by Eq. 4.40 yields C(ηb) = 14.2 and, Dopt,mixed ≈ 0.22Dopt,forced while
we found (see Tables 4.5 and 4.7) Dopt,forced = 7.57 mm and Dopt,mixed = 5.95 mm, i.e.
Dopt,mixed = 0.79Dopt,forced.

Figure 4.12a presents the Dopt-variations versus |ps|, included is the natural convection
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Figure 4.12 – Mixed convection : variations of Dopt and Q2w/Dopt versus ps for forced and
mixed convection.

result corresponding to ps = 0. Figure 4.12a shows that Dopt decreases when |ps| increases
while Figure 4.12b shows that Q2w/Dopt increases with |ps|, the effect of buoyancy force
being rather small for ps = −0.1 Pa. Therefore, the last question to be considered is to
look for a true optimal spacing by taking into account not only the increase of thermal
efficiency but also the importance of mechanical load. To this end, it is convenient to make
a distinction between thermal and overall efficiencies.

Efficiency

• Thermal efficiency
The design problem considered is a volume of width W cooled with a stack of n parallel,
isothermal boards of thickness e, much smaller than the spacing D (Fig. 4.1). The total
heat flux QT removed from the entire stack of heated surfaces having a total heat transfer
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area ST = 2n(H × L) is :

QT = nQ2w =

(
W − e
D + e

)
Q2w (W/m2) (4.42)

The optimal spacing corresponds to the maximum of QT (or of (W/D)Q2w if the thickness
of the plates is such as e << D).

• Overall efficiency
For forced or mixed convection, the pumping power required to create a flow or to increase
the pure natural velocity can be deduced from a kinetic energy balance based on the con-
servation of mechanical energy.

The kinetic energy balance is obtained by multiplying the momentum equation by the
velocity and then by integrating over the whole fluid domain. By taking into account the
boundary conditions for pressure and velocity components used in the present work, the
kinetic energy balance reduces to:

|ps|Gv︸ ︷︷ ︸
(a)

=

∫ D/2

−D/2
ρ0
w3(x,H)

2
dx︸ ︷︷ ︸

(b)

+

∫ H

0

∫ D/2

−D/2

1

2
τ : d dxdz︸ ︷︷ ︸

(c)

−
∫ H

0

∫ D/2

−D/2
ρ0gβ(T (x, z)− T0)w(x, z) dxdz︸ ︷︷ ︸

(d)

(4.43)

where Gv = w(DL) is the volumetric flow rate, τ = 2µd is the viscous stress tensor and
d the deformation velocity tensor. The term (a) in Eq. (4.43) represents the mechanical
power supplied by a device to the fluid. In the case of fins, this device could be a fan,
for example. In the natural convection framework, (a) is zero and it becomes positive in
mixed convection. This power is balanced by two dissipation terms and one production
term. Contribution (b) represents the kinetic power lost by the fluid at the outlet section
and (c) denotes the power irreversibly lost by viscous friction. Note that (c) is negligibly
small in the energy equation, and has been neglected, whereas it must introduced in order
to properly balance the kinetic energy equation. The last contribution (d) corresponds to
the production term of energy which must be accounted for in natural or mixed convection,
when its contribution is significant. From a numerical point of view, the balance of kinetic
energy (Eq. 4.43) is satisfied within less than 1% for the meshes used in the present study.

Therefore, the pumping power Wm for the entire stack of n boards can be written as
Wm = n|ps|Gv = n|ps|w(DL). For a given value of ps, the effect of natural convection is
to increase the inlet velocity corresponding to forced convection (a result which cannot be
found by prescribing a pressure difference or an inlet velocity, as it has been assumed in
most of the studies on mixed convection). Consequently, the pumping power is necessarily
higher for mixed convection than for forced convection since w increases. However, the
total heat flux QT is also increased. Table 4.8 allows comparisons between the increases
in heat fluxes and in pumping powers for various pressure drops in the case D = 5 mm.
As can be seen, the increase in heat flux is more than four orders in magnitude larger
than the increase in Wm. The overall efficiency of a vertical stack of isothermal plates
(mixed convection) is thus automatically better than that for an horizontal stack (forced
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ps (Pa) −0.1 −0.2 −0.4 −0.6 −0.8 −1.0

Q2w,mixed −Q2w,forced (W ) 20.920 14.848 8.041 5.064 3.570 2.719

|ps|DL(wmixed − wforced) (10−4 W ) 0.483 0.778 1.116 1.308 1.439 1.540

Table 4.8 – Comparison between the increases in heat flux and in pumping power versus
the pressure drop (D = 5 mm, L = 1 m)

convection) provided that buoyancy assisted flows are considered.

When considering mixed convection, it can be expected that the increase in mechanical
power expense is compensated by a significant increase in heat transfer rate in comparison
with natural convection. The efficiency of the system may be thus evaluated as

η(ps) =
(noptQ2w)mixed − (noptQ2w)natural

|ps|L((nD)optw)mixed
(4.44)

where nopt, function of ps and H, is the number of channels for a stack of width W work-
ing in optimal conditions (nopt is the integer lying in the interval [(W−e)/(Dopt+e)±0.5]).

Let us consider a practical application by assuming that W = 100 mm and e = 1 mm
(air as the working fluid, ∆T = 40 K, channel height H = 0.1 m, unit spanwise depth L =
1 m ). For natural convection, it has been found that Dopt = 6.52 mm and Q2w = 46 W :
therefore, (noptQ2w)natural ≈ 600 W . For mixed convection, the values of Dopt are reported
in Table 4.7. Since Dopt decreases as |ps| increases, nopt is maximum for |ps| = 1 Pa. When
|ps| > 1 Pa, nopt should increase as ∆p

1/4
s according to Eq. 4.35 owing to the negligible

effect of natural convection. The augmentation with the pressure drop both in nopt and in
the heat flux transferred along each of the channel result in large increases in the overall
heat flux, QT . However, the pumping power augments more quickly than QT . As a result,
the efficiency as defined in Eq. 4.44 decreases. η(ps) is plotted in Fig. 4.13 versus ps by
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Figure 4.13 – Variations of overall efficiency η versus ps for mixed convection.

taking into account the various approximations introduced in its definition. The high value
of η(ps) (of the order of 105) exhibits a decrease as ≈ p

−2/3
s for the largest values of |ps|,

in rather good agreement with what could be easily found by using the analysis by Bejan
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and Scubbia [25].
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Chapter 5

On the modeling of aiding mixed
convection in vertical channels [149]

Nomenclature

a thermal diffusivity [m2 s−1]
A aspect ratio, A = H/D
cp specific heat [J K−1 kg−1]
cx, cz stretching parameters, Eq. 5.13
D plate spacing [m]
Dh hydraulic diameter, Dh = 2D [m]
g gravitational acceleration [m s−2]
GrH Grashof number based on H,

GrH = gβ0∆TH3/ν2
0

h heat transfer coefficient [W m−2K−1]
H channel height [m]
k thermal conductivity [W m−1 K−1]
L channel length in the spanwise direction [m]
ṁ mass flow rate [kg s−1]
nx, nz numbers of grid points in x− and z−directions
p pressure [Pa]
ps pressure at the outlet section [Pa]
Pr Prandtl number, Pr = ν0/a0

Q heat flux, [W ]
Qen enthalpy heat flux, [W ]
Q2w convective heat flux along the two channel walls, [W ]
Re Reynolds number based on Dh, Re = w0Dh/ν0

Ri Richardson number, Ri = Gr/Re2

Sc area of the channel cross section, Sc = DL [m2]
t time [s]
T temperature [K]
u,w velocity components [m s−1]
x, z coordinates [m]
Greeks
β coefficient of thermal expansion, β = 1/T0 [K−1]
∆T temperature difference, ∆T = (Th − T0) [K]
µ dynamic viscosity [Pa.s]
ν kinematic viscosity [m2 s−1]
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ρ density [kg m−3]
θ dimensionless temperature ratio, θ = (T − T0)/∆T
τ dimensionless time
Subscripts
a, b analytical solutions
h hot wall
H quantity based on channel height
nc natural convection
0 inlet section
Superscripts
− averaged quantity
∗ dimensionless quantity

5.1 Introduction

Mixed convection may be defined as heat transfer situations where both pressure and
buoyancy forces interact. In vertical channels, the bulk fluid flow can be either upward or
downward, and the solutal and thermal buoyancy forces may be either assisting or oppos-
ing the forced flow. As a result, several hundred of papers were published just for mixed
convection flows in vertical ducts of various shapes and thermal conditions, including two
phase flows with surface condensation or evaporation, and flows in porous filled ducts.
Most studies considered buoyancy assisted flow, i.e. upward flows with heating or down-
ward flows with cooling. Under these conditions, the axial velocities may increase near the
channel walls and decrease within the core region, with possible occurrence of a flow recir-
culation in the entry region for large effects of the buoyancy force [56, 74, 81, 92] (not to be
confused with flow reversal occurring close to the outlet section in asymmetrically heated
channels [11, 12, 44, 63, 64, 166]). In these cases, it is generally expected that heat transfer
for mixed convection is larger than for forced convection. This intuition is obviously well
physically based. However, numerical solutions may lead to opposite effects, not owing to
the numerical accuracy but because the boundary conditions are not well specified. This
paper is focused on this issue.

The extensive interest borne upon mixed convection in ducts stems from its wide range
of practical applications including the design of compact heat exchangers, cooling of elec-
tronic equipment and, solar energy collectors. Numerous theoretical and experimental in-
vestigations were reviewed in many textbooks, such as in Aung [9], Gebhart et al. [65] or
Bejan [22]. The present study is focused on mixed convection of air as the working fluid for
typical geometries used for active cooling from the back of vertical photovoltaic cell panels
operating at high fluxes.

This work considers the effect of thermal buoyancy force only (the effect of solutal
force being similar, provided it acts in the same direction as the thermal force), and in the
case of upward forced or natural flow direction (symmetrically heated vertical channel),
commonly termed as buoyancy aiding or assisting mixed convective flows.

Most of the analytical and numerical studies on mixed convection were based on ap-
proximate problem formulations in order to easily solve the governing equations thanks to
parabolized forms (or boundary-layer type equations for external flows with the streamwise
pressure gradient dropped out [42]) which allow not to prescribe boundary conditions at
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the outlet duct section. On the other hand, the increasingly use of commercial computa-
tional fluid dynamics packages during the last decade has led to solve the problem when
it is based on fully elliptic formulation, mostly by considering again prescribed inlet flow
rate and outlet free boundary conditions. However, despite the large number of papers
available in the current literature, the fundamental question of inlet/outlet flow conditions
seems not to have been properly addressed because it appears that mixed convection with
fixed inlet velocity (and thus Reynolds number) was very often considered as the relevant
formulation for solving mixed convection.

The aim of this paper is at showing that the use of prescribed inlet velocity condition
(constant flow rate whatever the importance of the buoyancy force) leads to completely
different solutions in comparison with those obtained using prescribed total pressure in-
let and pressure outlet conditions. For our viewpoint, such pressure boundary conditions
appear to provide more realistic physical behaviors in practical applications, as it will be
shown in what follows.

We are considering the practical case of air flowing in vertical flat-plate channels submit-
ted to uniform wall temperatures, and maximum temperature differences compatible with
the Boussinesq approximation. Although most of the results are presented in dimensional
form, we also analyze the relevance of scaling predictions based on dimensionless param-
eters. It should be added that the extension of the present work to weakly compressible
formulation (i.e. large temperature differences) is straightforward when using our in-house
computational code, but the results obtained have shown that the main conclusions drawn
in this paper remain unchanged.

5.2 Governing equations

We consider two-dimensional, incompressible and laminar buoyancy-assisting flows in-
side a vertical parallel-plate channel, as shown in Fig. 5.1. The fluid enters the channel

x

z

H

{
u = 0
T = T0


u = 0
∂w

∂z
= 0

∂T

∂z
= 0

D

Th, ~v = 0︸ ︷︷ ︸

Figure 5.1 – The physical model of mixed convection in a vertical channel. The full bound-
ary conditions are written in Eqs. (5.5-5.7) for the three cases investigated.

of height H at ambient temperature and traverses upward, being heated by the hot walls
at uniform temperature Th. The fully developed region may be eventually reached at the
outlet (z = H), after a development length depending on the value of the plate spac-
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ing as well as on importances of the pressure and buoyancy forces. On account of the
maximum temperature difference invoked, it is assumed that all physical properties are
constant except for the density in the buoyancy force in the vertical direction (Boussinesq
approximation). The reference temperature has been taken to be the inlet temperature,
T0, like in most of the solutions reported in the current literature. However, this choice
remains an open question, as discussed by Barletta et Zanchini [19], especially for fully
developed mixed-convection. Owing to the stability results by Chen et Chung [43], the
governing equations are written in transient form in order to capture possible transitions
to unsteady flows. With the z-axis pointing upwards and the origin of coordinates placed at
the center of the inlet section, the conservation equations based on a fully elliptic model are

∇.~v = 0 (5.1)

ρ0(
∂~v

∂t
+∇.(~v ⊗ ~v)) = −∇(p+ ρ0gz) + µ0∇2~v + ρ0gβ(T − T0)~ez (5.2)

∂T

∂t
+∇.(~vT ) = a0∇2T (5.3)

where ρ0, µ0 and a0 are the fluid density, dynamic viscosity and thermal diffusivity evalu-
ated at T0.

Boundary and initial conditions
The initial condition is a fluid at rest at uniform temperature T0.
The boundary conditions are written as follows:
• Along the vertical isothermal walls:

~v = 0, T = Th at x = ±D/2 and for 0 < z < H (5.4)

where D and H are the channel width and height, respectively.
• At the inlet (z = 0) and outlet (z = H) sections for −D/2 < x < D/2:

(a) natural convection

u = 0,
∂w

∂z
= 0, p = −ρ0

w2

2
, T = T0 at z = 0

u = 0,
∂w

∂z
= 0, p+ ρ0gH = 0,

∂T

∂z
= 0 at z = H

(5.5)

(b) forced or mixed convection

b1 : fixed flow rate (w0 prescribed)

u = 0, w = w0, T = T0 at z = 0

u = 0,
∂w

∂z
= 0, p+ ρ0gH = 0,

∂T

∂z
= 0 at z = H

(5.6)

b2 : fixed inlet total pressure and outlet pressure (ps)

u = 0,
∂w

∂z
= 0, p = −ρ0

w2

2
, T = T0 at z = 0

u = 0,
∂w

∂z
= 0, p+ ρ0gH = ps,

∂T

∂z
= 0 at z = H

(5.7)

With boundary conditions Eq. 5.7 applied to forced or mixed convection, a pressure
drop (ps < 0) is prescribed at the outlet section (it could be as well an increase in pressure
at the inlet section). Therefore, the boundary conditions are inlet temperature and outlet
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pressure, zero z-derivative for the vertical velocity component and zero horizontal velocity-
component. It should be emphasized that these flow B.C. differ somehow from those used
in most of previous works.

Let us emphasize that our results achieved using Eq. 5.6 or Eq. 5.7 are almost identical,
provided the average velocities w(0) are the same. The choice of the particular boundary
condition Eq. 5.6 may lead to wrong physical interpretations, because the imposed velocity
w0 is completely uncorrelated to the velocity induced by the natural convection flow. In
contrast, the use of Eq. 5.7 preserves the coherence of the fluid flow with respect to free
convection (Eq. 5.5) as it will be shown in what follows.

The governing equations are generally cast in dimensionless form by using either the
set of dimensionless variables X = x/Dh, Z = z/Dh, θ = (T − T0)/(Th − T0), U = u/w0,
W = w/w0 and P = p/ρ0w

2
0 or the set X, Z = z/(DhRe), θ, U = Dhu/(ν0), W and P

where Dh = 2D is the hydraulic diameter. It follows that the problem formulation depends
on four parameters: A = H/D, Re = w0Dh/ν0, Gr = gβ(Th − T0)D3

h/ν
2
0 = 8GrH/A

3

and Pr = ν0/a0, the channel aspect ratio, the Reynolds, Grashof and Prandtl numbers,
respectively. The relative strength of the buoyancy force is then characterized either by
the Richardson number, Ri = Gr/Re2, for the first set of dimensionless variables or by the
product Ri× Re = Gr/Re for the second set. Some controversy still exist about the best
pertinent parameter, e.g. Ri or Ri×Re.

Heat transfer

The total heat transfer rate released by two walls of depth L and height H, denoted as
Q2w, is calculated as follows:

Q2w = 2Lk0

∫ H

0

∂T

∂x

∣∣∣∣
x=D/2

dz = 2h(LH)(Th − T0) (W ) (5.8)

where L is the length of the channel in the y-direction, h is the mean heat transfer coef-
ficient defined by the right equality in Eq. 5.8. For natural or mixed convection, a mean
Nusselt number expressed by Nu2w = Q2w/[2(LH)(k0∆T/D)] may be introduced [18].

The enthalpy flux removed from the two heated surfaces by the stream is

Qen = ρ0cpSc[(wT )H − (wT )0] (W ) (5.9)

where (wT )z is the average of (wT ) over the channel cross-section of area Sc = DL. By
using again 2(LH)(k0∆T/D) as a reference heat flux, we can define a Nusselt number
Nuen = Qen/[2(LH)(k0∆T/D)].

It should be emphasized that Q2w is always greater than Qen because the heat losses by
axial diffusion through the channel inlet are not included into the definition of Qen. When
the wall temperatures are kept fixed, Q2w and Qen merge provided that the Reynolds
number is large enough in order that axial diffusion may be assumed negligibly small. The
difference Qcond = Q2w −Qen yields the effect of axial diffusion which can be written as

Qcond = k0

∫ D/2

−D/2

∂T

∂z

∣∣∣∣
z=0

dx

= 2k0

∫ H

0

∂T

∂x

∣∣∣∣
x=D/2

dz − ρ0cp

∫ D/2

−D/2
[w(x,H)T (x,H)− w(x, 0)T0]dx

(5.10)
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For negligible axial heat diffusion, equation (5.8) reads:

2k0L

∫ H

0

∂T

∂x

∣∣∣∣
x=D/2

dz = 2h(HL)(Th − T0) = ṁcp(Tb(H)− T0) (5.11)

where ṁ = ρ0w0(DL) and Tb(H) = (wT )H/w0 is the bulk temperature at the outlet
section. Such an approximation is one of the foundations introduced for establishing the
analytical solutions reported in Ref. [18, 22, 25].

5.3 Numerical method and validation

The mass, momentum and energy conservation equations were spatially discretized by
using the collocated finite volume method presented in [47, 155], applied here for structured
meshes. The key features of this method are:

– the normal fluxes to cell faces are defined by a consistent two-points approximation,
– the variables transported by the fluid flow are expressed on cell faces in a centered

manner, not by using a linear interpolation at the faces,
– the “pressure gradient” is defined by the dual expression of the velocity divergence

and therefore, it can be non-consistent with a gradient.
An implicit second-order Euler scheme was adopted for time derivatives at time t =
(n + 1)∆t, with an implicit treatment of the diffusion terms and an Adams-Bashforth
extrapolation procedure for the transport terms. A stabilization method is necessary to
prevent from the onset of checkerboard oscillations associated with collocated schemes.
This is performed through the velocity-pressure decoupling which is handled by a projec-
tion method [68].

Attention was also paid to the temperature discontinuities at the corner of the inlet
section (i.e. at x = ±D/2, z = 0). In the case of pure conduction, the analytical heat
fluxes along the vertical walls are indeed infinite. Therefore, the wall heat fluxes calculated
numerically, Q2w, cannot converge when refining the meshes (see [150] for details). To avoid
this problem, it is then necessary to smooth the thermal boundary conditions in order to
recover some regularity. To this end, we have substituted the uniform temperature imposed
at the walls by a temperature distribution which decreases abruptly towards T0 close to
z = 0. The steep function retained in this work writes:

Tp(z) = T0 + (Th − T0) tanh(Γ
z

H
) (5.12)

For example, by choosing Γ = 1000, the wall temperature Tp(z) for a channel height
H = 1 m varies from 0.5Th at z ' 0.55mm to 0.9Th at z ' 1.5mm and then becomes
larger than 0.99Th for z > 2.65mm. We checked that such a steep variation in Tp(z) does
change significantly the temperature field while it allow second order convergence of the
wall heat fluxes, Q2w.

The velocity components, the temperature field and the pressure correction were calcu-
lated by using the Bi-Conjugate Gradient Stabilized (BCGS) method, preconditioned by
an incomplete LU decomposition. Owing to the axial symmetry of the flow, the problem
was solved on the half-width of the channel. The faces of the mesh xfi and zfk are defined
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as follows:
xfi
D/2

=
i

nx
− cx

2π
sin

(
i

nx
π

)
, 0 ≤ i ≤ nx

zfk
H

=
tanh

(
cz

(
k
nz
− 1
))

tanh(cz)
+ 1, 0 ≤ k ≤ nz

(5.13)

The coefficients cx and cz define the mesh refinements in the entrance region and along the
isothermal wall. By choosing cx = 1 and cz = 1.82, the size ratios between the largest cell
and the smallest cell are equal to 3 and 10 in horizontal and vertical directions, respec-
tively. The time integration was performed with the Courant-Friedrich-Levy number kept
fixed to CFL = 0.5.

The asymptotic behavior of the numerical solution was investigated using a Richardson
extrapolation on one set of the three meshes defined by nx ∈ {10, 20, 40} with nz = 20nx.
This method leads to the extrapolated value of f which is written

fExtrap. = fnx +
cnx

(nx)s
(5.14)

where cnx is a coefficient depending on nx and fnx is the numerical result on grid nx×nz.
For sufficiently fine meshes, the value of s must tend towards the order of consistency of
the numerical scheme (i.e. s = 2), fExtrap. must then become independent of the mesh.
For natural convection flow, the mesh 20 × 400 defined for a half width of the channel
provides accurate results within 3 digits (Tab. 5.1). This grid size is then retained for all
computations.

nx 10 20 40 s fExtrap.

Q2w (W ) 130.39 130.31 130.30 2.66 130.30
Qen (W ) 130.32 130.22 130.20 2.01 130.19
wnc(m/s) 0.3840 0.3833 0.3831 2.01 0.3830

Table 5.1 – Convective heat flux, enthalpy heat flux and mean velocity according to the
mesh refinement (nz = 20nx), for D/2 = 1 cm and H = 1 m. Order s of the numerical
scheme and Richardson-extrapolated values (see Eq. 5.14).

5.4 Results

The influence of the dynamical boundary conditions at the inlet and outlet sections is
discussed by considering air entering at T0 = 300 K into a vertical channel with height
walls H = 1 m at uniform hot temperature Th = 320 K (or H = 1.5 m, just for al-
lowing comparisons with previously published works [56, 74]). The channel width was
D = 2 cm or D = 3 cm. With the air properties taken at T0 = 300 K (ρ0 = 1.176 kg.m−3,
µ0 = 1.85 10−5Pa.s, cp,0 = 1006 J.kg−1.K−1, k0 = 0.0261 W.m−1.K−1) the Grashof
number is then GrH = 2.64 109H3. Channel heights less than about two meters are thus
considered as maximum in order to keep a laminar flow.

For pure natural convection (Tab. 5.1), the computations yield an average velocity
wcn = 0.38 m/s and a pressure drop at the inlet section (Eq. 5.5) pcn,in = −0.087 Pa. The
heat flux transferred along one of the isothermal walls is Q1w = Q2w/2 = 65.2 W by unit
of depth length (direction perpendicular to the plane of Fig. 1). These values are the basis
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for the discussions of mixed convection results presented in what follows.

Before getting further into the result section, let us recall that flow solutions are similar
provided that the average velocities, imposed or resulting from computation, are identical.
However, when a constant flow rate is prescribed, counterintuitive results or surprising
phenomena may arise. Such situations, developed in details in Sec.5.4.1, are now briefly
exemplified. By using Eq. 5.6, astonishing flow recirculations are highlighted close to inlet
section. Their occurrences are simply due to the incompatibility between the imposed flow
rate and the necessity of feeding the dynamic boundary layers produced by the buoyancy
along the vertical heated walls. Similarly from a purely thermal viewpoint, it is also ex-
pected that the buoyant force increases the velocities in the boundary layers and then
improves the heat transfer at the solid walls. However this behavior is not observed when
the inlet velocity is prescribed.

The next two subsections are then devoted to the detailed analysis of the fluid flows
and heat transfers when using boundary conditions 5.6 and 5.7. For both sets of boundary
conditions, comparisons between natural, forced and mixed convection flows are performed.
These comparisons emphasize clearly that only the pressure boundary conditions make
sense.

5.4.1 Constant flow rate

We are first considering prescribed inlet velocity in the range 0.1 m/s ≤ w0 ≤ 1 m/s
in order to satisfy the assumption of laminar flow (Re = 2500 for w0 = 1 m/s). For pure
forced convection, it results that the difference in pressure between the inlet and outlet
sections is within ∆p = 0.061 Pa and ∆p = 0.96 Pa.

The ∆p-variations versus the inlet velocity are shown in Fig. 5.2 for forced convection
and for mixed convection. Since the outlet pressure has been fixed to ps = 0 (see Eq. 5.6),
that implies ∆p = p(0). For forced convection, the inlet pressure is always positive while
it is negative for mixed convection if the inlet velocity is smaller than the inlet velocity
corresponding to pure natural convection (wnc = 0.38 m/s). Therefore, the pressure and
buoyancy forces are opposite if w0 < wnc.

Let us now consider computations based on the dimensionless form of the governing
equations. In most of the papers dealing with aiding mixed convection, the Reynolds and
Grashof numbers were arbitrarily fixed: the relative importance of one convective mode
was discussed by considering only the value of Ri or Ri×Re with the same length scale for
Re and Gr. For the present computations (D = 2 cm), it is found that Ri = 2.62 10−2/w2

0

(w0 in m/s) and Ri × Re = 66.4/w0. Therefore, either the first or the second criterion
(e.g Ri > O(1) [22] or Ri × Re > O(103) [121]) leads to assume that natural convection
dominates for w0 less than about 0.15 m/s, a value smaller than wcn = 0.38 m/s. For the
practical case considered, the average velocity 0.15 m/s can only be reached for a negative
pressure gradient (Fig. 5.2), namely for a "forced convection" opposing to the natural con-
vection. Thus, concluding that natural convection is dominating has no physical meaning
since the pressure gradient plays a dominant part into the flow rate.

The streamlines plotted in Fig. 5.3 shows another view of the results linked to a fixed
flow rate smaller than the natural inlet flow rate. For this case, we consider a channel
height H = 1.5 m and a channel width D = 3 cm in order to check that the present results
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Figure 5.2 – Variations of the pressure difference between inlet and outlet sections according
to the prescribed inlet velocity for forced, mixed and natural convection.

(a) (b)

Figure 5.3 – Flow recirculation for mixed convection (a) prescribed inlet velocity , w0 =
0.05 m/s (b) overpressure at the outlet section ps = 1.4 Pa (D = 3 cm, H = 1.5m,
∆T = 20 K).

are in full agreement with those published in [56, 74, 92].

Figure 5.3 raises obviously the question of the origin of existence of flow recirculations
within the entry region for aiding mixed convection in vertical channels. As it is well estab-
lished nowadays, the separation bubble (the axis of which being the channel axis) cannot
be predicted when using parabolized formulations. On the other hand, elliptical models
may lead to such flow topologies provided that the inlet velocity is prescribed without any
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reference to the natural convection velocity. The case shown in Fig. 5.3 corresponds to a
clear recirculating flow, easily reproducible by using the simulation conditions reported in
the legend of this figure. The conclusion is that the flow field referenced as "buoyancy-
assisted mixed flow" is similar to the flow predicted for "opposing mixed convection" with
ps = 1.4 Pa (∆p < 0).

Figure 5.4 shows the variations of the vertical velocity component along the centerline
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Figure 5.4 – Vertical velocity variations along the channel axis for forced and mixed convec-
tion according to the prescribed inlet velocity. The natural convection curve is also shown
(D = 2 cm, H = 1 m, ∆T = 20 K).

(e.g. w(0, z)) for the three convective modes. For forced convection, w(0, z) is the maxi-
mum flow velocity at any z-section and it increases upstream until the flow regime is fully
established (before z = H if w0 < 0.2 m/s in the case considered). For mixed convection,
the buoyancy force produces maximum in velocities near the walls. Therefore, w(0, z) for
mixed convection is lower than for forced convection when the flow rate is prescribed, the
difference increasing upstream with w0. If w0 < wnc (wnc being the average velocity for
natural convection) the decrease in w(0, z) at the bottom of the channel indicates a pos-
sible onset of flow recirculation (see Fig. 5.3). For w0 = 0.1 m/s and 0.2 m/s, a stagnant
zone characterized by a decrease in the axial velocity spreads within the lower half-region.
This stagnation zone becomes more and more confined close to the channel inlet as the
difference between w0 and the natural convection velocity increases.

Figure 5.5 displays the variation in the total heat flux transferred at one of the channel
walls (Q1w = Q2w/2) as function of the inlet velocity, the horizontal dashed line being for
pure natural convection. As can be seen, mixed convection with a prescribed inlet velocity
lower than that for pure natural convection leads to a lower heat transfer rate. In addition,
the very small differences between the results for forced and mixed convection clearly show
that the buoyancy force does not assist significantly the pressure force. For the lowest inlet
velocity considered here (w0 = 0.1 m/s), the Péclet number is Pe ≈ 259. Therefore, axial
conduction is negligibly small (Qcond � Q2w, Eq. 5.8 and 5.10).
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Figure 5.5 – Total heat flux transferred at one of the hot walls for forced and mixed
convection according to the prescribed inlet velocity. The value for natural convection is
also shown (D = 2 cm, H = 1 m, ∆T = 20 K).

5.4.2 Pressure driven mixed convection

When a pressure drop is prescribed at the outlet section (ps < 0), with an inlet total
pressure fixed, the pressure and the velocity profile at the inlet as well as the flow rate are
not a priori known. Therefore, it is not possible to calculate the Reynolds and Richardson
numbers until the end of the computations. However, the flow rate is necessary greater than
that for pure natural convection. For the practical case investigated (H = 1 m, D = 2 cm,
∆T = 20 K), the maximum pressure (at the center of the inlet section) for natural con-
vection is p(0, 0) = −0.143 Pa. The inlet pressure for mixed convection should be lower
than this value since the flow rate is assumed to increase (p(0) ≈ −ρ0w

2/2).

Figure 5.6 shows the axial variation of pressure along the channel axis. For natural
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Figure 5.6 – Axial variation of pressure along the channel axis according to the outlet
pressure drop (D = 2 cm, H = 1 m, ∆T = 20 K). The arrows indicate the positions (in
m) of the pressure minimum.

convection the pressure minimum is at z = 0.24 m while it is located at the outlet section
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for forced convection. For mixed convection, the pressure curves exhibit a minimum, whose
location is indicated by an arrow in Fig. 5.6. Therefore, ∂p/∂z is zero at this z-coordinate
where the buoyancy force compensates viscosity and advection. When the pressure drop
at the outlet section exceeds 0.6 Pa, the pressure decreases monotonously from the inlet
to the outlet section, indicating the predominance of forced convection.

The average velocity is displayed in Fig 5.7 versus the outlet pressure drop. In contrast
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Figure 5.7 – Variations of the average velocity according to the pressure drop at the outlet
section for forced and mixed convection (D = 2 cm, H = 1 m, ∆T = 20 K).

to what has been found for prescribed inlet velocity, w for mixed convection is system-
atically greater than for forced convection: buoyancy force assists thus the pressure force
whatever ps < 0 and, we can effectively speak in terms of "buoyancy assisted mixed con-
vection". The results is obviously an increase in the heat flux transferred along the walls
as can be seen in Fig 5.8. The computations were not pursued for ps < −1.5 Pa owing
to the large values of the Reynolds number involved (Re = 2744 for ps = −1.5 Pa).
Figure 5.8 shows that natural convection dominates for the smallest values of −ps and
that forced convection dominates for the largest values of −ps. The comparison between
Fig. 5.5 (B.C. 5.6) and Fig. 5.8 (B.C. 5.7) clearly exhibits the large differences in the wall
heat flux according to the type of boundary conditions. It should be noted that the forced
convection curve does not tend to zero as ps → 0 because the problem turns then into a
pure conduction problem. From Eq. 5.10 it is found that Qcond = 4.8 W for ps = 0.

Let us now discuss the above results in terms of Ri or Ri × Re (Re and Gr being
both based on the same length scale, i.e Dh). When increasing the pressure drop, Ri and
Ri×Re decrease since the flow rate is increased. From ps = −0.1 Pa to ps = −1.5 Pa, Ri
decreases from 0.134 to 0.022 while Ri × Re decreases from about 151 to about 57. The
criterion for the transition from dominant forced convection to dominant natural convec-
tion being Ri > O(1) [22] or Ri × Re > O(103) [121], it could be assumed that natural
convection plays a negligible role for the results discussed herein. In fact, the heat flux at
one of the vertical walls is Q1w ≈ 65 W for pure natural convection. That substantially
differs from Q1w ≈ 75 W for mixed convection when ps = −0.2 Pa (Q1w ≈ 50 W for forced
convection). Therefore, any of these two criteria based on approximate analyses appears
to be relevant.
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The temperature distribution along the channel axis is plotted in Fig. 5.9 according
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Figure 5.9 – Variations of the temperature along the channel axis according to the pressure
drop at the outlet section for natural and mixed convection (D = 2 cm, H = 1 m,
∆T = 20 K).

to the pressure at the channel outlet section. Small increases in the axial temperature
indicate that the channel flow regime turns into a boundary layer type regime. Asymptotic
solutions for assisting mixed convection along a vertical isothermal plate may be thus
useful. The present results show that it is not the case, at least for laminar flows (i.e.
|ps| < 1.5 Pa). In addition, temperature as well as velocity profiles do not exhibit boundary
layer-type behavior. When ps is decreased from ps = 0 (pure natural convection) to ps =
−1.5 Pa (dominant forced convection), Figure 5.9 indicates a significant decrease in the
axial temperature which is closely linked to an increase in heat transfer at the walls. Since
the temperature increases up to the outlet section, an established velocity field cannot
be predicted, as shown in Fig. 5.10. This figure exhibits also that the dynamical entry
length augments with the Reynolds number. However, the usual criterion for defining
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the dynamical and thermal entry lengths for forced convection in a flat plate channel
(zd ≈ 4 10−4ReDh and zt/Dh ≈ 0.01ReDhPr, respectively) are not met for the largest
pressure drop considered.
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Chapter 6

Effect of surface radiation on natural
convective flows and onset of flow
reversal in asymmetrically heated
vertical channels [101]

Nomenclature

a thermal diffusivity [m2 s−1]
A aspect ratio, A = 2H/D
B radiosity [W m−2]
cp specific heat [J K−1 kg−1]
dψ width of the recirculation [m], Eqs. 6.36 and 6.37
D wall spacing [m]
g gravitational acceleration [m s−2]
G irradiation or incoming radiative heat flux density [W m−2]
Gr modified Grashof number based on qw, Gr = gβ0qwD

4/ν2
0k0

h heat transfer coefficient [W m−2K−1]
H half of the total channel height [m]
k thermal conductivity [W m−1 K−1]
K kernel function (Eq. 6.10)
Lp penetration length [m]
ṁ mass flow rate [kg m−1 s−1]
Ma molecular weight [kg kmol−1]
ṁin mass flow rate in the entrance section, Eq. 6.34
ṁout mass flow rate leaving the channel, Eq. 6.35
NR conduction-to-radiation parameter, NR = qw/σT

4
0

Nu mean Nusselt number
nx, nz numbers of grid points in x− and z−directions
p pressure [Pa]
pm sum of static and hydrostatic pressures [Pa]
ps pressure at the outlet section [Pa]
p∗ dimensionless pressure, P = p/(ρ0w

2
0)

Pr Prandtl number, Pr = ν0/a0

q heat flux density [W m−2]
R ideal gas constant
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Ra modified Rayleigh number based on qw, Ra = gβ0qwD
4/a0ν0k0

Ra∗ channel Rayleigh number, Ra∗ = Ra(D/H)
t time [s]
T temperature [K]
u,w velocity components [m s−1]
v velocity vector
x, z coordinates [m]
Greeks
α order of consistency of the numerical scheme
β thermal coefficient of volumetric expansion, β = 1/T0 [K−1]
∆T temperature difference [K]
ε emissivity
γ non-Boussinesq parameter, γ = ∆T/T0

µ dynamic viscosity [kgm−1 s−1]
ν kinematic viscosity, ν = µ/ρ [m2 s−1]
ρ density [kg m−3]
σ Stefan-Boltzmann constant, σ = 5.67 10−8 [W m−2K−4]
θ dimensionless temperature, θ = (k0(T − T0)/qwD

τ dimensionless time, τ = t(gβ0∆TD)1/2/D

Subscripts
H quantity based on channel height
c, i natural convection
max maximum
r radiative
w wall
0 inlet section
t total

Superscripts
− averaged quantity
∗ dimensionless quantity

6.1 Introduction

Natural convection in vertical parallel-plate channel is relevant to a wide range of ap-
plications such as the cooling of electronic equipments in which circuit cards containing
heat generating electronic devices are arrayed to form vertical channels, the design of so-
lar panels, energy efficient buildings, heat removal in nuclear technology, and a host of
others. The problem of natural convection in vertical channels has been the focus of ex-
tensive investigations since the pioneering work by Elenbass [57], resulting in numerous
theoretical, numerical and experimental works. However, the number of studies reported
on combined surface radiation and natural convection is very limited, despite radiative
exchanges amongst surface plays a significant role for most practical applications.

Developing and fully developed laminar free convection between vertical flat plates with
symmetric or asymmetric heating were reconsidered by Bodoia and Osterle [30], investi-
gated analytically and experimentally by Aung [8], and Aung et al. [10]. These studies were
the foundations for few others studies conducted later on. Amongst these, the experimental
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work by Wirtz and Stutzman [163] on developing natural convection of air flowing between
vertical parallel plates with uniform and symmetric heat fluxes is frequently quoted. An
up to date review on the formulas for the calculation of the heat transfer and flow rate
for two-dimensional natural convection between vertical plates having uniform wall tem-
perature or uniform heat flux boundary conditions was presented by Olsson [117]. The
recent experimental study conducted by Lu et al. [104] for channels with large aspect ratio
and narrow gap, and with air as the working fluid, adds Nusselt number correlations for
the case of symmetrical, uniformly heated vertical walls. Although high wall temperatures
were measured (up to ≈ 600K), the radiation effects may be considered as weak owing to
the symmetrical heating, small size of the apertures and large aspect ratios.

Recently, laminar natural convection of air in parallel-plate vertical microchannels was
investigated theoretically and numerically in the transient regime, with velocity slip and
temperature jump boundary conditions at the walls, by Buonomo and Manca [36, 37]. The
microchannels were asymmetrically or symmetrically heated at uniform heat flux, and the
boundary layer assumption was invoked for various values of the Knudsen number over the
range of the first-order model for the continuum slip flow regime. Results showed overshoots
in the transient maximum wall temperature. A composite correlation was proposed to
estimate average Nusselt numbers at steady state.

6.1.1 Flow reversals

The theory of flow reversal of fully developed, aiding mixed convection and numerical
solutions for developing flows were presented by Aung and Worku [11, 12]. Since these
early studies, many numerical works dealing with the buoyancy effect on the flow structure
and heat transfer have been performed (see for example [44, 45, 82, 166]) while a limited
number of experiments have been carried out.

The study of flow reversals in the case of pure natural convection in vertical channel
was considered in only few works.

An experimental study for natural convection in a vertical channel with the heated
wall maintained at uniform temperature and unheated facing wall was carried out with
water as the working fluid by Sparrow et al. [144]. For the first time, the formation of
pocket of recirculating flow at Rayleigh numbers exceeding a threshold value was revealed
by flow visualizations. It was found that the recirculation, fed by fluid drawn into the outlet
section of the channel adjacent to the adiabatic wall, has no effect on the heat transfer at
the heated wall. As in the work by Bar-Cohen and Rohsenow [18], a new dimensionless
group was introduced, the channel Rayleigh number Ra∗ = RaD(D/H), which has been
shown to be the most convenient group for correlating the Nusselt number results. Since
this pioneer work, the study of the flow reversals in natural convection has received only
limited attention. The most salient studies are those by Kihm et al. [88] who identified the
occurrence of the onset and penetration lengths of the flow reversal in natural convection of
air through vertical isothermal channel walls, and the recent experimental study by Ospir
et al. [120] on natural convection in an asymmetrically heated vertical plane channel with
water as the working fluid. Flow visualization techniques based on laser tomography were
used in [120] for investigating the flow structure in steady-state, boundary layer flow regime
as well as in the early stage following the beginning of the heating. From the experiments
carried out for several values of the modified Rayleigh number and channel aspect ratios,
very new insights on the the reversed flow structures were revealed.
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6.1.2 Coupled natural convection and radiation

The problem of combined radiation and natural convection was extensively studied,
specially for closed cavities. It can be classified into two categories: one only with wall
radiations, and the other with both wall and gas radiations. For cases including gas ra-
diation combined with natural convection heat transfer, which is always important for
combustion and engineering applications, numerous papers have been published. Yamada
et al. [165], Colomer et al. [51] and, more recently, Mondal and Li [113], who used an
improved lattice-Boltzmann method, presented relevant literature surveys on this subject.
The present study encompasses only combined surface radiation and natural convection
that arises when the working fluid is assumed transparent to infrared radiations.

6.1.2.1 Coupled natural convection and surface radiation in cavities

Numerical investigation of combined surface radiation and natural convection in a ver-
tical square, differentially heated cavity were reported by Balaji and Venkateshan [15].
They showed that radiation has a dual effect of contributing to the overall heat transfer as
well as decreasing the convective component. They underlined that simple formulae that
account for radiation in an additive way are not adequate. In a subsequent study, Balaji
and Venkateshan [16] proposed correlations for both convective and radiative heat trans-
fers for air as the working fluid. These correlations were found in fair agreement with the
results from an experimental study conducted by Ramesh and Venkateshan [130].

The impact of surface radiation on multiple solutions inside a square two-dimensional
cavity heated from below was studied numerically by Ridouane et al. [133]. The emissiv-
ities of the isothermal horizontal walls were different from those of the vertical adiabatic
walls and were set to ε = 0.05 or to ε = 0.85. Four combinations of wall emissivities were
considered. In comparison with pure natural convection, it was shown that the ranges of
the steady-state modes as well as the nature and magnitude of periodic solutions were
highly affected by surface radiation.

This problem was reconsidered more recently by Ashish Gad and Balaji [62] for air-
filled, rectangular cavities heated from below with surface radiation spanning six different
aspect ratios (from A = 1 to A = 10). The critical Rayleigh number for the onset of
convection was determined as function of two parameters: the emissivity of the adiabatic
sidewalls and the aspect ratio for a cold top wall at Tc = 303 K, the emissivity of the
horizontal walls being set to ε = 0.85. It was shown that the onset of Rayleigh-Bénard
convection is delayed with an increase in the emissivity of the sidewalls and, that the effect
of surface radiation diminishes with an increase in the aspect ratio.

Natural convection for air in an open-ended cavity heated from above was experimen-
tally studied by Manca and Nardini [106] in the case of high emissivity of the horizontal
walls. They observed that surface radiation caused a temperature increase in the unheated
lower plate, which could rise to secondary motions due to plumes inside the cavity. Corre-
lations for average Nusselt numbers and maximum wall temperatures were proposed.

Studies on combined natural convection and surface radiation from a heated body in-
side a cavity are more scarse (for an overview of recent references, see Bouali et al. [32],
Lauriat and Desrayaud [93], Mezrhab et al. [111]). In the paper by Mezrhab et al. [111], a
differentially-heated cavity of square cross-section containing a conducting, centered square
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body was numerically investigated. Amongst the conclusions drawn for this particular
configuration, the effect of the inner body on the flow field and heat transfer was shown
much important when surface radiation exchanges were taken into account. In the range of
Rayleigh number considered, it was also shown that radiation augments the fluid velocities
in comparison with those obtained for a cavity without an inner body. However, much of
these conclusions are specific to the geometrical case considered, as underlined in Sun et
al. [147].

6.1.2.2 Coupled natural convection and radiation in vertical parallel plate
channels

The interaction of surface radiation with developing laminar natural convection in
vertical parallel plate channels with asymmetric heating was numerically studied by Car-
penter et al. [39]. A parabolic formulation of the governing equations was employed and the
Boussinesq approximation invoked. They investigated the effects of the five dimensionless
parameters involved in the dimensionless formulation (heat flux ratio, Rayleigh number,
aspect ratio, emissivity, and radiation number), and showed that radiation significantly
alters the pure natural convection results by reducing the wall temperatures, especially the
maximum value.

The effect of surface radiation was reconsidered by Webb and Hill [161] in their paper
reporting on experiments designed to determine local and average heat transfer charac-
teristics for natural convection in a vertical parallel plate channel, one wall heated with
uniform heat flux and the other thermally insulated. Local temperatures along both walls
were collected for a wide range of heating rates and wall spacings corresponding to the
high channel Rayleigh number regime (i.e. 503 ≤ Ra∗ ≤ 1.75 · 107). Unheated entry and
exit lengths (H/2 = 7.62 cm) were added to the heated section (H = 15.2 cm) to mini-
mize radiation losses near the channel entrance and exit. The local radiative heat flux was
determined from the temperature data by solving the system of equations describing the
radiation exchanges for channel walls assumed gray and diffuse with an emissivity mea-
sured to ε = 0.1. The heating rate was then reduced by the calculated local radiation loss,
and the corrected heat transfer results were used in all correlations presented in the paper.
The results compared favorably with previous experimental data, and the importance of
corrections for radiation and conduction losses as well as the use of local thermophysical
properties in correlating the data were underlined.

The experimental design, wall spacings and heating rates described in [161] were nu-
merically simulated, as accurately as possible, in the preparation of the present paper.

Combined natural convection and thermal radiation in vertical parallel plate channels
was experimentally investigated by Manca and Naso [107]. The measurements showed that
the effect of surface radiation is more important for asymmetric heating than for symmetric
heating. In addition, it was emphasized that the flow patterns tend to those of symmetric
heating for high wall emissivities, and reduce the Rayleigh number corresponding to the
developing regime. Correlations between local Nusselt numbers at various emissivities have
also been proposed.

Laminar natural convection and surface radiation between vertical parallel plates, a
central, highly emissive (ε = 0.85) hot plate and two unheated polished plates (ε = 0.05),
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was investigated experimentally by Krishnan et al. [91] for various plate spacings. The
temperature measurements were introduced as boundary conditions into a numerical code
in order to obtain the convective heat transfer rates. This study brought out the significance
of radiation at room temperature. A correlation for the average convective wall heat transfer
was derived.

6.1.3 Channel extensions

Amongst the attempts for solving natural convection at low channel Rayleigh number,
is the use of channel extensions as it was suggested in many previous numerical studies
that we briefly review in what follows.

Naylor et al. [116] solved the full elliptic forms of the governing equations for pure
natural convection using inlet flow boundary conditions based on the Jeffrey-Hamel flow in
order to represent more realistically the entrance flow. Their solutions validated the inlet
pressure approximation (p = −ρ0w

2/2) commonly used in parabolic formulations. Their
predictions of fluid separation at the channel inlet is not in agreement with most of the el-
liptic solutions published so far, and appear to be caused by the shape of the extension. The
optimization of plate separation of an open, vertical, parallel-plate channel that is cooled
by natural convection of air with the plates symmetrically heated by uniform heat flux has
been studied by Morrone et al. [114] by solving the full elliptic conservation equations in a
I-shaped computational domain. Correlations for the dimensionless flow rate and optimal
values of the spacing were derived and compared with the predictions of Bar-Cohen and
Rohsenow [18] and Anand et al. [1].

Natural convection of air in channel-chimney systems was studied experimentally [7],
and numerically by using the stream function-vorticity approach and the control volume
method by Andreozzi et al. [3, 4] for vertical channels heated symmetrically at uniform
heat flux and with adiabatic extensions. Results obtained provide guidelines to determine
if the channel-chimney system is in critical condition related to flow reattachment or sep-
aration.

Closely related to these approaches is the paper by Bello-Ochende and Bejan [26]: the
channel was fitted with upstream and downstream extensions whose lengths were selected
based on accuracy tests. For the downstream extension domain, free slip and no pene-
tration were specified at one side and zero stress at the other side in order to nullify the
chimney effect. From our point of view, this procedure leads to unrealistic outflow fields
for a periodic array of vertical channels.

As shown in a recent paper by Sun et al. [150], the use of inlet channel extensions is not
required, even for rather low channel Rayleigh numbers, since a regularization procedure
allows to numerically solve the problem with a good accuracy. On the other hand, exten-
sions are required for the very low Rayleigh numbers at which backward thermal diffusion
dominates. Upper extensions lead obviously to other problems owing to superimposition
of chimney effects.

6.1.4 Aim of the present study

This paper reports a numerical study of a combined radiation and natural convection
problem between vertical plates with asymmetric heating. The present study differs from
the aforementioned ones in the following issues:
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-the problem formulation is based on a weakly compressible formulation in order to account
for unpredictable maximum temperature difference for uniformly heated walls. Experimen-
tal studies reveal indeed surface-to-ambient temperature difference up to about 500K ac-
cording to the heating rate and/or wall spacings when air is the working fluid [72, 104].
The dynamical inlet/outlet boundary conditions differ also,
-the flow reversal phenomenon for pure natural convection is revisited,
-the effects of surface radiation as well on the flow structure as on the heat transfer rate are
investigated and supported through comparisons with the experimental study by Webb et
Hill [161].

6.2 Problem statement

6.2.1 Dimensional form

The fluid flow and heat transfer are governed by the Navier-Stokes and energy equations
for a two-dimensional, laminar flow of a Newtonian fluid. The viscous dissipation term in
the energy equation is neglected and the fluid is assumed transparent to thermal radiation
leaving the channel walls. The energy equation is coupled with the equation dealing with ra-
diant interchanges amongst surfaces through the thermal boundary conditions. Since some
calculations were carried out for maximum temperature differences larger than that pos-
sible for an accurate use of the Boussinesq approximation for ideal gases (∆Tmax ≤ 0.1T0,
where T0 is a reference temperature), a weakly compressible formulation was employed by
assuming the pressure work in the energy equation as negligible and, by calculating the
density field from the state equation with a uniform thermodynamic pressure within the
channel.
The conservation equations are written as follows:

∂ρ

∂t
+∇ · (ρ~v) = 0 (6.1)

∂(ρ~v)

∂t
+∇· (ρ~v⊗~v) = −∇(p+ρ0gz) +∇·

[
µ

(
∇~v +∇t~v)− 2

3
∇ · ~v

)]
+ (ρ0−ρ)g~ez (6.2)

cp

(
∂(ρT )

∂t
+∇ · (ρ~vT )

)
= ∇ · (k∇T ) (6.3)

where ρ0 in the momentum equation is the density at a reference temperature, chosen as
the inlet fluid temperature and ~ez is the unit vector along the z-axis, pointing upward. All
thermophysical properties are considered as temperature dependent, i.e ρ(T ), µ(T ), cp(T )
and k(T ). For dry air, cp(T ), k(T ) and µ(T ) are calculated according to the polynomial
relationships given by Lide and Kehiaian [102], valid in the range [100K, 600K]. These
properties variations were used in [148] where the specific relationships employed herein
can be found.

The system of conservation equations is completed by the ideal gas law used for the cal-
culations of the density at any point M:

ρ(M, t) =
P̄0Ma

RT (M, t)
(6.4)

P̄0 is the uniform thermodynamic pressure, equal the average hydrostatic pressure in the
surroundings, P̄0 = P (0)− ρg H.
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6.2.1.1 Boundary conditions

– at the vertical walls:
– x = 0, 0 < z < H/2 and 3H/2 < z < 2H,

~v = 0, qr(z)− k
∂T

∂x
= 0 (6.5)

where qr is the net radiative heat flux density along the surface.

– x = 0 and H/2 < z < 3H/2,

~v = 0, qr(z)− k
∂T

∂x
= qw (6.6)

– x = D and 0 < z < 2H,

~v = 0, qr(z) + k
∂T

∂x
= 0 (6.7)

– at the inlet/outlet sections:
– 0 < x < D and z = 0 or z = 2H,

u = 0,
∂w

∂z
= 0,

{
if ~v · ~n < 0 (inlet condition), T = T0, pg = −ρw2

2

if ~v · ~n ≥ 0 (outlet condition), ∂T
∂z = 0, pg = 0

(6.8)

where pg = p + ρ0gz is the departure of the pressure from the hydrostatic pressure and
~n is the unit normal vector pointing outward the computational domain. The inlet/outlet
conditions (Eq. 6.8) for the velocity assume that the fluid enters or exits normally to the
inlet/outlet sections.
The pressure and temperature boundary conditions at the bottom and top sections depend
on whether the fluid enters or exits the channel:
? In the first case (~v · ~n < 0), the temperature equals the surroundings temperature and
the static and hydrostatic pressure drops equilibrate the increase in kinetic energy for non-
viscous fluids.
? In the second case (~v · ~n ≥ 0), the heat diffusion normal to the inlet/outlet section is
neglected and the fluid flow is assumed to behave as a jet with parallel streamlines. With
the jet approximation, the sum of the static and hydrostatic pressures is kept constant at
the outlet section and equal to its surrounding value which is arbitrary fixed to zero.

6.2.1.2 Radiative heat flux

The radiative exchanges amongst the surfaces were calculated by considering the chan-
nel as a two-dimensional enclosure consisting of four gray-diffuse, vertical surfaces (the
three parts of the left-hand side wall and the adiabatic right-hand side wall) and two hori-
zontal surfaces regarded as black radiators at an effective temperature T0. Since the vertical
walls have the same emissivity, ε, the temperature distributions are evaluated from

σT 4
i (ri) =

1− ε
ε

qw +Bi(ri) (6.9)

The position vector ri denotes the locations of elementary surfaces dSi on surface Si, and
Bi(ri) is the radiosity, which is the radiation heat flux density leaving surface Si. The heat
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fluxes are uniform along the vertical walls: qi = qw on the heated surface and qi = 0 on the
three adiabatic surfaces. The radiosity distributions along the vertical walls are defined as

Bi(ri) = qi(ri) +

6∑
j=1

∫
Sj

Bj(rj)K(ri, rj)dSj = qi(ri)−Gi(ri) (6.10)

The kernel function K reads K(ri, rj) = cos(θi)cos(θj)/πr
2
ij [112]. For plane or convex

surfaces, K(ri, ri) = 0. The term Gi(ri) is the radiative heat flux density incident on
surface Si. At the channel apertures, Bi(ri) = σT 4

0 .
The preceding set of equations may be combined to yield a system of integral equations
that relates temperatures and heat fluxes at the six surfaces. There follows

σT 4
i (ri)−

qi(ri)

εi
=

6∑
j=1

∫
Sj

σT 4
j (rj)K(ri, rj)dSj−

6∑
j=1

∫
Sj

1− εj
εj

qj(rj)K(ri, rj)dSj 1 ≤ i ≤ 6

(6.11)
The above system of six integral equations contains six unknown functions: the four distri-
butions of temperature along the vertical walls and the two heat flux distributions at the
channel apertures.

6.2.1.3 Wall heat fluxes and heat transfer coefficients

For an uniform heat flux density qw prescribed at the heated surface, the local convec-
tive, qc(z) and radiative, qr(z) fluxes must balance qw. Therefore

qw = qc(z) + qr(z) = k(z)
∂Tw(z)

∂x
~n · ~ex +B(z)−G(z) (6.12)

where G(z) is the local irradiation onto the heated surface (second right-hand side term
in Eq. 6.10). The local convective heat transfer coefficient is determined using the relation
(refer to [161]):

h(z) =
qw − qr(z)
Tw(z)− T0

(6.13)

while a local radiative heat transfer coefficient may be defined as

hr(z) =
qr(z)

Tw(z)− T0
(6.14)

The total heat transfer coefficient is thus ht(z) = h(z) + hr(z). Average heat transfer
coefficients over the heated surface (x = 0, H/2 ≤ z ≤ 3H/2) are calculated according to
the relations

hc,1 =
1

H

∫ 3H
2

H
2

h(z) dz and hr,1 =
1

H

∫ 3H
2

H
2

hr(z) dz (6.15)

and ht,1 = hc,1 + hr,1.
The heat flux conservation at the heated surface may also be stated as:

qw = qc + qr (6.16)

Average heat fluxes are calculated by averaging qc(z) and qr(z). This leads to

qc =
1

H

∫ 3H
2

H
2

k(z)
∂Tw(z)

∂x
~n · ~ex dz and qr =

1

H

∫ 3H
2

H
2

(B(z)−G(z)) dz (6.17)
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It should be noted that two different average heat transfer coefficients may be also deter-
mined using the two following relations (refer to Bianco et al. [28]):

hc,2 =
qc

Tw − T0

and hr,2 =
qr

Tw − T0

(6.18)

where Tw is the average temperature of the heated wall. The main advantage in using the
above definitions is that a heat transfer correlation yields automatically Tw when the input
is the wall heat flux.

As a result, if the wall temperatures are recorded from experiments, as in [91, 161], the
radiative and total heat transfer coefficient can be calculated accurately, and the convec-
tive heat transfer coefficient can be deduced by using either Eq. 6.15 or Eq. 6.18. However,
this convective heat transfer is meaningful in pure convection only if the surface radiation
exchanges modify slightly the temperature distribution along the heated wall. This point
will be examined in what follows.

6.2.2 Dimensionless form

The governing equations are cast in dimensionless form using the reference length scale
D, time scale D/(gβ0∆TD)0.5 where β0 = 1/T0, the velocity scale (gβ0∆TD)0.5, the dy-
namic pressure scale ρ0gβ0∆TD, the temperature difference scale ∆T = qwD/k0, and the
radiative heat flux scale σT 4

0 . Note that these scales are those often used when invoking
the Boussinesq approximation for boundary-layer type flows. The resulting set of governing
equations reads:

∂ρ∗

∂τ
+∇ · (ρ∗~v∗) = 0 (6.19)

∂(ρ∗~v∗)

∂τ
+∇·(ρ∗~v∗⊗~v∗) = −∇(p∗+

1

γ
z∗)+

√
Pr

Ra
∇·
[
µ∗
(
∇~v∗ +∇t~v∗)− 2

3
∇ · ~v∗

)]
+

1

γ
(1−ρ∗)~ez
(6.20)

c∗p

(
∂(ρ∗θ)

∂τ
+∇ · (ρ∗~v∗θ)

)
=

1√
RaPr

∇ · (k∗∇θ) (6.21)

ρ∗ =
1

(γθ + 1)
(6.22)

In the above equations, superscript ∗ indicates dimensionless dependent quantities and
dimensionless fluid properties with the reference properties being those at T0. The dimen-
sionless temperature difference is θ = (T − T0)/∆T . The three dimensionless parameters
are the Prandtl and Rayleigh numbers and, the non-Boussinesq parameter, γ = ∆T/T0,
that characterizes the departure from the Boussinesq approximation. The dimensionless
form of Eq. 6.11 writes

σT ∗
4

i (r∗i )−
q∗i (r

∗
i )

εi
=

6∑
j=1

∫
S∗j

σT ∗
4

j (r∗j )K(r∗i , r
∗
j )dS

∗
j−

6∑
j=1

∫
S∗j

1− εj
εj

q∗j (r
∗
j )K(r∗i , r

∗
j )dS

∗
j 1 ≤ i ≤ 6

(6.23)
where T ∗ = γθ + 1 and q∗r,i = qr,i/σT

4
0 .
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6.2.2.1 Dimensionless form of the boundary conditions

– at the vertical walls:
– x∗ = 0, 0 < z∗ < A/4 and 3A/4 < z∗ < A,

~v∗ = 0, q∗r (z
∗)−NR k

∗ ∂θ

∂x∗
= 0 (6.24)

– x∗ = 0 and A/4 < z∗ < 3A/4,

~v∗ = 0, q∗r (z
∗)−NR k

∗ ∂θ

∂x∗
= NR (6.25)

– x∗ = 1 and 0 < z∗ < A,

~v∗ = 0, q∗r (z
∗) +NR k

∗ ∂θ

∂x∗
= 0 (6.26)

– at the inlet/outlet sections:
– x∗ = 1 and 0 < z∗ < A,

u∗ = 0,
∂w∗

∂z∗
= 0,

{
if ~v∗ · ~n < 0 (inlet condition), θ = 0, p∗g = −w∗2

2

if ~v∗ · ~n ≥ 0 (outlet condition), ∂θ
∂z∗ = 0, p∗g = 0

(6.27)

The additional dimensionless parameters involved in the boundary conditions are the
channel aspect ratio, A = 2H/D, and NR = qw/σT

4
0 , usually called the conduction-to-

radiation parameter for the effects of surface radiation without linearization of the radiative
heat flux [112].
Finally, the above mathematical modeling shows that the problem of two-dimensional,
laminar natural convection of a gas through a channel subjected to a prescribed heat flux
at one section of the walls while the others are assumed adiabatic (or subjected to the
same heat flux density), involves six dimensionless parameters (not accounted for is the
reference temperature T0 introduced in the relations used for modeling the temperature
dependence of the thermophysical properties): A, Pr, Ra, γ, NR and ε. The last three
parameters account for variable properties and surface radiation effects.

Owing to this number of parameters, the derivation of a general Nusselt number correlation
appears to be rather cumbersome. Note that the number of parameters is still 6 even
if the maximum possible temperature difference is compatible with the validity of the
Boussinesq approximation. This approximation makes sense a priori only if the maximum
temperature difference is prescribed. A large class of practical applications, such as the
cooling of electronic or lighting equipments (HB-LED, for example) does not match this
requirement.

6.2.2.2 Correlations for average channel Nusselt numbers and maximum wall
temperature

For pure natural convection, the flow and heat transfer are governed by the height
to width ratio H/D, the Rayleigh number, the Prandtl number, and the non-Boussinesq
parameter. For an asymmetric heating the following Rayleigh numbers are used:

Ra =
gβ0qwD

4

a0ν0k0
and Ra∗ = Ra

(
D

H

)
the modified or channel Rayleigh number (6.28)

As in many of the previous studies [104, 105, 161], we did not use local Rayleigh numbers
in what follows for deriving Nusselt number or θmax correlations. Correlation equations
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were determined for the local Nusselt number at midheight of the heated plate, for average
Nusselt numbers based either on Eq. 6.15 or 6.18, and for maximal heated wall temperature:

Nu 1
2

=
qwD

2k0(T 1
2
− T0)

= a∗Ra∗
m

, Nu = b∗Ra∗
n

and θmax = c∗Ra∗
−p

(6.29)

with T 1
2
the average of the two wall temperature at z = H and θmax = k0(Tmax−T0)/qwD;

the definition of Nu 1
2
refers to [10, 161]. The convective, radiative and total average Nusselt

number are calculated according to the relations

Nuc,i =
h̄c,iD

k0
, Nur,i =

h̄r,iD

k0
, Nut,i = Nuc,i+Nur,i for i = 1, 2 (see Eqs. 6.15 and 6.18)

(6.30)
It should be noted that the fluid thermal conductivity is that at the inlet temperature
because, from a practical viewpoint, the only available data in the design of a uniformly
heated, flat plate channel are the wall heat flux, the inlet temperature and the dimensions
of the channel.

6.3 Numerical method

The equations for mass (Eq. 6.1), momentum (Eq. 6.2) and energy (Eq. 6.3) are dis-
cretized by a collocated finite volume scheme based on methods initially developed for
incompressible fluid flows on unstructured meshes and for fully coupled velocity-pressure
equations [47], and later on extended to the low Mach number approximation [155]. This
latter method has been adapted to a velocity-pressure decoupling scheme and applied here
for structured rectangular grids. Details on the numerical method can be found in chapter 2.

Some key points of the spatial discretization are briefly recalled. Variables are located
at the center of the rectangular cells. The thermal diffusion and the viscous part ∇· (µ∇~v)
are discretized with the classical 5 points-scheme with fluxes evaluated on cell faces with
a two-points approximation. In order to mimic as much as possible the kinetic energy
balance (and the quadratic form of the thermal balance), additional conditions must be
fulfilled. First, the discrete expression of the pressure gradient is the dual form of the
discrete divergence of the velocity. Then, the mass flow rate acting in the transport contri-
bution is the same as the one used in mass equation. Moreover, the convected quantities
(the velocity components and the temperature) are evaluated on cell faces with a centered
approximation, even if the mesh is irregular. Finally, the remaining viscous contributions
∇ ·

(
µ(∇~v)t − 2/3µ(∇ · ~v)I

)
, with I the unit tensor, are expressed with a weak formu-

lation. It is worth noticing that mimicking the energy balances is also a convenient way
to ensure some numerical stability of the numerical solutions provided the scheme is fully
implicit.

A second order implicit Euler scheme is used for diffusion, with Adams-Bashforth ex-
trapolations in time for convective and advective terms, and for the viscous part ∇ ·(
µ(∇~v)t − 2/3µ(∇ · ~v)I

)
. The velocity-pressure decoupling is provided by a projection

method [68]. The pressure correction Φn+1 = pn+1− pn is solution of the Poisson problem:

∇2Φn+1 = f (6.31)

where f is an appropriate source term and ∇2Φn+1 ≡ ∇ · (∇Φn+1), with ∇ · (.) and ∇(.)
the collocated divergence and gradient. The solution of such a problem is well known to
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produce unrealistic checkerboard oscillations in the solution. To prevent this, the collocated
Laplacian ∇2(.) in (Eq. 6.31) is substituted by the stable 5-points Laplacian ∇̃2(.) defined
on staggered grids:

∇̃2Φn+1 = f (6.32)

The view factors between the elements of the discretized wall surfaces and of the in-
let/outlet sections (facets) were calculated by Hottel’s crossed-string method. The coupling
between the discretized energy equation and radiosity equation was first handled by dis-
cretization of the integral term in Eq. 6.10 by using the 1-point Gauss method, leading to a
linear system of equations. Then, starting from the known wall temperatures at time tn, we
calculate the radiative heat fluxes on each facet. The radiative heat fluxes are then intro-
duced into the boundary conditions (Eq. 6.5-6.7) to get new temperatures at the time tn+1.

The resolution of the linear system of radiosity equations was performed by the Gauss
method with partial pivoting. Solutions of Helmholtz problems for both the components
of velocity and the temperature field, and the solution of the pressure correction equation
(Eq. 6.32) were obtained by the Bi-Conjugate Gradient Stabilized method, preconditioned
by an incomplete LU-decomposition. The time step value was controlled by fixing the upper
bound of the Courant-Friedrich-Levy number, for example CFL = 0.5. The stationary
solution was assumed reached when En,n+1 < 10−6 with

En,n+1 = max

(∥∥un+1 − un
∥∥

2

‖un+1‖2 ∆tn
,

∥∥wn+1 − wn
∥∥

2

‖wn+1‖2 ∆tn
,

∥∥T n+1 − T n
∥∥

2

‖T n+1‖2 ∆tn

)
(6.33)

where ‖.‖2 is the discrete norm L2 and ∆tn = tn+1 − tn.

Validation

A thorough check of the dependence of numerical solutions with the mesh size was
conducted for the natural convection case, with H = 15.2 cm and two plate spacings,
D = 7.1 cm and D = 1.71 cm (Tab. 6.1). The mesh consists of nx × nz cells uniformly

(a) D = 7.1 cm, qw = 300W/m2, Ra∗ = 1.52 · 107

nx × nz ṁin ṁout dψ(2H) dψ(3H/2) hc,1 hc,2
[g/(m · s)] [g/(m · s)] [cm] [cm] [W/(m2 ·K)] [W/(m2 ·K)]

80× 800 1.379 2.747 6.606 6.532 6.479 6.179
120× 1200 1.380 2.747 6.605 6.531 6.470 6.172
160× 1600 1.381 2.748 6.604 6.530 6.467 6.170

(b) D = 1.71 cm, qw = 300W/m2, Ra∗ = 1.24 · 104

nx × nz ṁin ṁout dψ(2H) dψ(3H/2) hc,1 hc,2
[g/(m · s)] [g/(m · s)] [cm] [cm] [W/(m2 ·K)] [W/(m2 ·K)]

40× 800 2.629 2.658 0.4652 0 7.292 6.751
80× 1600 2.633 2.658 0.4530 0 7.294 6.750
160× 3200 2.633 2.658 0.4523 0 7.294 6.750

Table 6.1 – Natural convection. Effect of the grid size for (a) D = 7.1 cm, (b) D = 1.71 cm
and qw = 300W/m2

distributed in the vertical direction. To accurately represent the dynamic and thermal
boundary layers, the grid was refined in the horizontal direction with a ratio between the
largest and smallest cells equal to 5. Table 6.1 provides:
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– the mass flow rates in the entrance section,

ṁin =

∫ D

0
ρ(x, 0)w(x, 0) dx, (6.34)

and leaving the channel (only the positive values of the vertical velocity are taken
into account)

ṁout =

∫ D

0
ρ(x, 2H)

w(x, 2H) + |w(x, 2H)|
2

dx, (6.35)

– the widths of the recirculation at the outlet of the channel (z = 2H) and in the
section of the outlet of the heated wall (z = 3H/2) are calculated from

dψ(2H) = D − x1 with ψ(x1, 2H) = ψw (6.36)

dψ(3H/2) = D − x2 with ψ(x2, 3H/2) = ψw (6.37)

with ψw the value of the stream function along the right plate, arbitrary set to zero,

– the two convective coefficients h̄c,1 and h̄c,2.
Some comparisons are also made with the results reported in [166] for mixed convection

of air (Pr = 0.71). In that configuration, the aspect ratio of the whole vertical channel is
A = 12, and flow reversal occurs for some set of Reynolds number, Re, and Richardson
number Ri = Gr/Re2. The entire left wall is subjected to a heat flux whereas the opposite
plate is thermally isolated. The solid boundaries are perfectly reflecting surfaces (ε = 0).
The inlet conditions (Eq. 6.8) at z = 0 are slightly modified in order to set a uniform
velocity profile at the lower section of the channel. Because the velocity is now imposed,
the pressure is set free in the lower section, such that ∂pg/∂~n = 0 (same condition implicitly
set on solid walls). Note that imposing a velocity profile or the coupled pressure/velocity
condition deduced from the Bernoulli relation (Eq. 6.8) in the entrance section of the
channel for mixed convection was discussed in Sun et al. [149]. The depth of flow reversal is
determined by the dimensionless length build on the hydraulic diameter of the channel and
defined by Z∗r = (H − zr)/(2D) where zr designates the ordinate satisfying the condition
∂w/∂x|x=D = 0. In this section, the computations are performed with a 32× 128 uniform
grid, the same mesh as in reference [166]. Table 6.2 shows a good agreement with a maximal
discrepancy of 5.3% for Re = 400 and Ri = 100.

(Re, Ri) (200, 100) (200, 400) (400, 100) (400, 400)

Z∗r , present results 3.71 4.44 2.34 3.53

Z∗r , [166] 3.8 4.5 2.47 3.6

Relative difference 2.4% 1.4% 5.3% 2.0%

Table 6.2 – Dimensionless length of the reversal flow Z∗r as a function of the Reynolds
number and Richardson number.

6.4 Results

6.4.1 Comparisons with the experimental results by Webb and Hill [161]

The experimental apparatus used by Webb and Hill [161] consisted in a vertical par-
allel plate channel of high 2H = 30.4 cm formed by two walls, one heated and the other
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Figure 6.1 – Geometry of the parallel-plate channel.

adiabatic (Fig. 6.1). The length of the heated section was H = 15.2 cm and unheated
H/2 = 7.6 cm entry and exit lengths were added to minimize radiation losses with the
cold ambient environment. The three wall spacings (D = 1.02 cm, 2.02 cm and 3.8 cm),
the three Ohmic dissipation fluxes at the heated wall (qw = 235W/m2, 300W/m2 and
375W/m2) considered in the present subsection are those used for preparing Fig. 6.2 and
Fig. 6.3 displayed in [161]. The data reported in these figures were digitalized and are
illustrated in the first two figures discussed below.
The first remark about the design of this experimental set-up, is that the upper extension
has a significant effect on the flow, as it was demonstrated in others experimental or nu-
merical works, [4, 7] for example.
The profiles of the temperature differences from the inlet temperature T0 along the heated
section are plotted in Fig. 6.2 for the three heating rates, a wall spacing of D = 2.02 cm
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Figure 6.2 – Variations of the heated wall temperature versus z/H for the three heat-
ing rates studied by Webb et Hill [161], D = 2.02 cm. Symbols are experimental data
from [161].
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and an emissivity of both vertical wall of ε = 0.1, as it was assumed by Webb et Hill [161].
These fluxes are not corrected for the conduction losses, estimated less than 1.8 percent of
the Ohmic heating [161]. Since the ambient air temperature was not specified in [161], an
inlet temperature of T0 = 290K was retained. Note that lower T0-values increase slightly
the radiative heat losses from the heating section. However, computations carried out with
T0 = 273K did not shown significant changes in the results reported in Fig. 6.2, owing to
the small view factors between the heated section and the fictitious black surfaces, formed
by the openings at the channel bottom and top provided that the channel aspect ratio
is large enough. When the wall heat flux increases, the temperature differences along the
walls increases, as expected. The maximum temperature is predicted at the top end of
the heated wall, and it is followed by an abrupt temperature decrease along the adiabatic
section. As can be seen, the temperature profile are similar to those reported in [161] while
the present numerical results show higher temperatures, all the more since the wall heat
flux is increased. These discrepancies are attributed to the conduction to the polystyrene
insulation and to the conduction in the aluminum foil used for covering the adiabatic top
section which acts as a fin. This point was mentioned in [161].
Figure 6.3 illustrates the ratio of radiative heat flux to the heat flux dissipated in the heated
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Figure 6.3 – Variations of the local radiative flux (ε = 0.1) to the imposed wall heat flux
for three wall spacings and qw = 300W/m2. Symbols are experimental data from [161].

section for qw = 300W/m2 and three plate spacings. The net radiative heat flux is posi-
tive (radiative heat losses) over the heated and adiabatic top sections of the left-hand side
(LHS) wall while is it negative along both the bottom adiabatic section of the LHS-wall,
and the facing unheated wall. The qr(z)/qw profiles are closely similar to those reported in
[161]. However, the discrepancies increase as the spacing increases. It should be noted that
the values provided in [161] were calculated from the temperature measurements (Fig. 6.2)
and, are therefore obviously smaller than those computed in the present study.

6.4.2 Pure natural convection

In order to show the importance of the effects on radiation, computations were firstly
carried out for pure natural convection for various spacings and wall heat fluxes. The height
of the one-sided heated vertical channel is the same as in the previous subsection [161]. The
thermophysical properties of air at T0 = 290K are as follows: ρ0 = 1.2174 kg/m3, µ0 =
1.8058 ·10−5 kg/(m ·s), β0 = 1/T0K

−1, cp0 = 1006.1 J/(kg ·K), k0 = 0.025505W/(m ·K).
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These properties were used for calculating the reference value of the channel Rayleigh num-
ber reported in subsequent Tables and Figures. Since the height of the heated section was
set to H = 0.152m, it follows that Ra∗ = 2.825 · 1010qwD

5. Note that all computations
were carried out for variable thermophysical properties based on the polynomial expres-
sions given in [102].

At section z = H/2 (inlet of the heated section), the vertical velocity turns from a
parabolic profile (developing flow) into an almost flat profile as the wall spacing increases,
while the flow rate increases first with D and then decreases to, apparently, reaches an
asymptotic value, as shown in Table 6.3.

D [cm] 1.02 1.23 1.40 1.71 2.02 2.30 3.80 7.10

Ra∗ 945 2.41 · 103 4.60 · 103 1.25 · 104 2.88 · 104 5.51 · 104 6.78 · 105 1.54 · 107

ṁin [g/(m · s)] 1.84 2.23 2.44 2.63 2.59 2.43 1.70 1.38
ṁout [g/(m · s)] 1.84 2.23 2.44 2.66 2.75 2.75 2.71 2.75

Table 6.3 – Mass flow rate as a function of the wall-spacing for qw = 300W/m2.

The vertical velocity and temperature profiles at the outlet of the heated section and
at the outlet of the channel are plotted in Fig. 6.4-6.6. As soon as the fluid enters the
heated section, the velocity profile for spacings larger than D = 2.02 cm exhibits a bound-
ary layer structure, well established at the outlet section of the heated wall, as shown in
Fig. 6.4(a), the maximum vertical velocity being almost independent of the spacing. On the
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Figure 6.4 – Pure convection. (a) Vertical velocity profiles and (b) temperature at the outlet
section of the heated part (z = 3H/2) according to the wall spacing, qw = 300W/m2.

other hand, negative velocities are seen for D ≥ 2.02 cm. That demonstrates the existence
of flow reversals whose extends increase with the spacing. This pocket of downflow and
recirculation was revealed experimentally for the first time by Sparrow et al. [144], with
water as the working fluid. The temperature profiles reported in Fig. 6.4(b) are typical of
a boundary layer flow along a single plate for D ≥ 1.4 cm.
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At the outlet channel section, the velocity profile (Fig. 6.5(a)) are not strongly modified,
except for the increase in the downflow velocities. The main changes in the flow variables
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Figure 6.5 – Pure convection. (a) Vertical velocity profiles and (b) temperature at the
outlet section of the channel (z = 2H) according to the wall spacing, qw = 300W/m2.

are seen from the temperature profiles (Fig. 6.5(b)) because the flow reversal induces an
abrupt transition to the surroundings temperature.
The distributions of the temperature differences from the inlet temperature T0 along the
two vertical walls are plotted in Fig. 6.6 for a heating rate of qw = 300 W/m2 and wall

 0

 10

 20

 30

 40

 50

 60

 0  0.5  1  1.5  2

T
w

(z
)-

T
0
  

[K
]

z/H

7.1 cm

3.8 cm

2.02 cm

1.02 cm

Figure 6.6 – Temperature distribution along the vertical channel walls according to the
wall spacing, qw = 300W/m2. The open circle symbols are for the adiabatic wall.

spacings ranging from D = 1.02 cm to D = 7.1 cm (i.e 945 ≤ Ra∗ ≤ 1.54 · 107 with the
thermophysical properties of air taken at T0 = 290K for evaluating Ra∗). When the wall
spacing augments, the temperatures of the heated wall increase and reach their maximum
values for D ≈ 2.3 cm, showing that the single-plate limit is approached. The bottom
adiabatic section is almost uniformly at T0 while the temperature of the top adiabatic
section decreases abruptly from a maximum value almost independent of D provided that
D ≥ 1 cm: Tmax ≈ 346K. This result indicates that the minimum heat transfer coefficient,
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hmin = qw/(Tmax − T0), does not depend on D. On the other hand, the average tempera-
ture of the heated section increases first with D and reaches then an almost constant value
for D ≥ 2.3 cm. Therefore, the mean heat transfer coefficient, calculated by using either
Eq. 6.15 or Eq. 6.18, decreases at first with the wall spacing. For 1.02 cm ≤ D ≤ 2.3 cm,
the adiabatic RHS-wall is heated by the flow of hot air at its upper part, and the decrease
in its temperature as D increases shows the transition to the asymptotic regime, for which
the RHS-wall is uniformly at T0.
Figure 6.7 shows the isotherms (left side) and streamlines (right side) for D = 2.02 cm

0

2

4

6

8

0

1

2

3

4

5

6

7

­2

­3

­1

(a) Streamlines

1

3

5

7

1

3

5

7

(b) Isotherms

Figure 6.7 – Pure natural convection. (a) Streamlines ψi/[g/(m · s)] = 0.25 × i and (b)
isotherms Ti/[K] = 290 + 5 × i for D = 2.02 cm (left) and D = 3.8 cm (right), qw =
300W/m2. The horizontal scales are enlarged by 50%.

(Ra∗ = 945) and D = 3.8 cm (Ra∗ = 6.78 · 105) in the case qw = 300W/m2. The dimen-
sional steamfunction ([kg/(m · s)]) for 2D and variable density flows is calculated from its
definition as

ρ u =
∂ψ

∂z
, ρw = −∂ψ

∂x
(6.38)

In what follows, the plots of the streamlines are for a streamfunction value at the RHS
wall arbitrarily set to zero. The dashed lines (negative ψ-values) are for the streamlines
into the pocket of flow recirculation. The streamlines show boundary layer development
along the heated wall and penetration of a downcoming flow along the RHS-wall. At the
stagnation point located very close to the RHS-wall, the downward flow starts to merge
into the flow coming from the inlet section. The formation of reversal flow results from air
drawn in through the channel exit due to insufficient incoming air through the inlet. The
size of the pocket-like streamlines increase with Ra∗ (or D) and the penetration depth of
the recirculating flow increases also. This result is in good agreement with the experimental
and numerical studies by Sparrow et al. [144] for a one-sided heated vertical channel and
by Kihm et al. [88] for isothermal vertical walls.
The recirculation pocket extends both downward and in width as D increases, as illustrated
in Fig. 6.7. The width dψ of the recirculation at the outlet of the heated section (dψ(3H/2)
at z = 3H/2, Eq. 6.37) and at the channel outlet (dψ(2H) at z = 2H, Eq. 6.36), and the
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penetration length Lp are provided in Fig. 6.8 versus the wall spacing. These quantities are
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width for ε = 0 and qw = 300W/m2

based on the location of the ψ = 0 value of the streamfunction: the width of the circulation
at any z-position is the distance between the ψ = 0 streamline and the RHS-wall, and the
penetration length is the distance from the outlet section at which the ψ = 0 streamline
separates from the RHS-wall (stagnation point). Figure 6.8(a) shows the increases in the
recirculation width versus the wall spacing at the two aforementioned channel sections.
It can be seen that the wall spacing for the onset of the recirculation appears to be very
close to D = 1.5 cm and that the recirculation width increases almost linearly with D
(or as Ra∗1/5), and that dψ(3H/2) ≈ dψ(2H) for D ≥ 4 cm. The penetration length (Fig.
6.8(b)) increases sharply with D just after the formation of a recirculating flow while a slow
augmentation of Lp is observed for D ≥ 4 cm. This behavior is in fairly good agreement
with that reported in Kihm et al. [88] for symmetrically isothermal walls and much smaller
modified-Rayleigh numbers.
The mass flow rate (ṁin, Eq. 6.34) through the inlet section is reported in Table 6.3 as a
function of the wall spacing. As can be seen, ṁin reaches a maximum for D ≈ 2 cm, and
decreases thereafter. An optimal plate spacing for natural convection between an array of
symmetrically heated plates was first demonstrated at the same time by Bar Cohen and
Rohsenow [18] and Bejan [21], and discussed in details in a recent paper by Sun et al. [150].
The present results show that such an optimum exists also for asymmetrically heated chan-
nels, but no attempt at correlating this spacing with Ra∗ was done for the specific case
considered, because it is clear that it depends also on the length of the adiabatic upper
section (chimney effect). However, the main difference with symmetric heating is that the
reduction in the mass flow rate at the inlet section occurs almost simultaneously with the
onset of a flow reversal at the top part of the channel. From the present computations for
qw = 300W/m2, it can be concluded that the optimal spacing is close to D = 0.75 cm if
it is based on the D-value at which the mean and maximum temperatures of the heated
section reach asymptotic values (T ≈ 333K, Tmax ≈ 347K).
From the values of the mass flow rate through the outlet section reported in Table 6.3, ṁout

(Eq. 6.35), it can be seen that ṁin = ṁout up to D = 1.4 cm. Since ṁout is the sum of ṁin

plus the upward recirculating flow, the difference ṁout − ṁin characterizes the onset and
intensity of the recirculation. From Table 6.3, it can be seen that ṁout is almost constant
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for D ≥ 2.02 cm while ṁin decreases (see also Fig. 6.13). The effect of the recirculation is
to concentrate the streamlines corresponding to the induced air flow at the entrance region
(ψ > 0) and to provide enough cold air, suck in through the outlet section, in order to feed
the boundary layer. Hence the rise in the boundary layer thickness as D increases is due
to the downcoming flow through the outlet section.
The present numerical results can be well fitted by the least square method with correla-
tion coefficients greater than r2 = 0.99. The correlations turned out to be:

Nuc,1 = 0.859Ra∗
0.183

, Nuc,2 = 0.763Ra∗
0.188

,

Nu 1
2

= 0.721Ra∗
0.189

, θmax = 1.86Ra∗
−0.201

(6.39)

The agreement between the above correlations and those reported from the experimen-
tal results by Webb and Hill [161] for the same configuration could considered as rather
good. Table 6.4 gives a more realistic view about the discrepancies between these corre-

Ra∗ = 103 Ra∗ = 1.5 · 107

Nuc = 0.82Ra∗
0.194 [161] 3.13 20.2

Nuc,1 = 0.859Ra∗
0.183

(present) 3.04 17.7

Nuc,2 = 0.763Ra∗
0.188

(present) 2.80 17.0

Nu 1
2

= 0.58Ra∗
0.206 [161] 2.41 17.4

Nu 1
2

= 0.721Ra∗
0.189

present 2.66 16.4

θmax = 1.735Ra∗
−0.220 [105] 0.380 0.0458

θmax = 1.86Ra∗
−0.201

(present) 0.464 0.0672

Table 6.4 – Comparisons between the present results with previous correlations [105, 161]
for the range of channel Rayleigh numbers considered (single-plate regime).

lations for the lowest and highest Rayleigh numbers corresponding to both works. Note
that the range of Ra∗ considered is within the so-called single-plate regime. The first re-
sult is that the discrepancies increase with Ra∗ from 2.9% to 13% for Nuc,1. The second
result clearly indicates that the definition of the average heat transfer coefficient following
Eq. 6.15 or Eq. 6.18 has a significant influence (up to 8% for Ra∗ = 103). This finding
was not mentioned previously. The differences between the experimentally [161] and nu-
merically determined midheight Nusselt numbers are within the range 6.1% to 11% for
103 ≤ Ra∗ ≤ 1.5 · 107. About the maximum heated wall temperature, the discrepancies
with the experimental results from Manca et al. [105] can be attributed to different chim-
ney effects in the two studies since the upper extension was larger than the channel width
in [105].

6.4.3 Effects of surface radiation on the flow field and heat transfer

From the above result discussion (subsection 6.4.1), it is clear that radiative exchanges
amongst surfaces have a significant effects on the flow field and heat transfer when the
facing plates are submitted to imposed heat fluxes. Figure 6.9 shows the effect of radiation
on the temperature distributions along the two vertical walls according to their emissivity,
assumed equal for both walls. The selected case is D = 3.8 cm and qw = 300W/m2, i.e.
the largest configuration experimentally studied in [161]. As can be seen, the temperature
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Figure 6.9 – Variation of the heated wall temperature with height according to the emis-
sivity of the vertical walls for D = 3.8 cm and qw = 300W/m2. The open circle symbols
are for the adiabatic wall.

of the heated surface decreases when the emissivity is increased, the opposite being pre-
dicted for the facing adiabatic surface whose temperature increases. Therefore, radiation
modifies the flow field, and hence the wall convective heat transfer. This point raises some
doubts about the interpretation of experimental results and derivation of Nusselt number
correlations when the effects of radiation are not properly evaluated. For example, if the
radiative exchanges amongst the surfaces can be calculated from the surface temperature
measurements, the convective heat flux profiles can be easily obtained (provided that the
conductive heat losses are accurately estimated). Nevertheless, the temperature distribu-
tion along the heated surface, used in the definition of the local heat transfer coefficient,
results from the coupling between radiation and convection. Therefore, the heat transfer
coefficient is overestimated for a surface cooled by radiation and underestimated if heated
by radiation.

The effect of radiation on the vertical velocity profiles at three channel cross sections are
seen in Figs. 6.10(a)-6.10(c). The increase in the velocities (and in flow rate because the
density variations from the channel inlet are very small) with emissivity at the inlet section
of the heated wall is clearly seen in Fig. 6.10(a). The reason is that the adiabatic RHS-wall
becomes thermally active as soon as its temperature raises significantly under the effect of
surface radiation. When the fluid proceeds upwards the boundary-layer like velocity profile
along the heated wall turns into a boundary layer profile of an asymmetrically heated chan-
nel, as seen in 6.10(b) and 6.10(c) for ε = 1. Furthermore, the flow reversal disappears for
a wall emissivity as small as ε = 0.1. The profiles of the temperature differences reported
in Figs. 6.10(d)-6.10(f) give another view of the decrease in the heated wall temperature,
and increases of the fluid and adiabatic wall temperatures.
The net radiative heat flux distribution along the LHS-heated wall and RHS-adiabatic wall
are drawn in Figs. 6.11(a) and 6.11(b) for ε = 0.1 and ε = 1, respectively (D = 2.02 cm,
qw = 300W/m2). Positive qr(z)-values are for radiative cooling and negative ones for ra-
diative heating. For both cases, the RHS-wall is heated by radiation over most of its surface
and the heating rate increases sharply with emissivity. The bottom adiabatic part of the
LHS-wall is heated by the radiation reflected by the RHS-wall, and cooled by radiation
exchanges with the cold inlet section, assumed to be a black surface at T0 = 290K. Since
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Figure 6.10 – Vertical velocity profiles (a) at the inlet of the heated wall section (z = H/2),
(b) at the outlet of the heated wall section (z = 3H/2), (c) at the outlet section of the
channel (z = 2H) and temperature gap profiles (d) at the inlet of the heated wall section
(z = H/2), (e) at the outlet of the heated wall section (z = 3H/2), (f) at the outlet section
of the channel (z = 2H) as a function of the emissivity of the vertical walls (D = 3.8 cm,
qw = 300W/m2).

the view factor between the inlet section and the bottom of the walls is rather small,
the adiabatic bottom of the heated wall is always heated by radiation. This result is just
specific to the small D-value considered. More significant is the relative magnitude of the
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Figure 6.11 – Distribution of the net radiative heat flux densities along (1) the heated wall
and (2) along the adiabatic wall, with (a) ε = 0.1 and (b) ε = 1, for D = 2.02 cm and
qw = 300W/m2.

radiative heat losses, qr, to the heating flux, qw, along the heated section. For ε = 0.1 (as
in the experiments by Webb et Hill [161]), the average radiative heat flux is qr = 23W/m2

(6% of qw) and reaches qr = 118W/m2 (more than 40% of qw) for ε = 1. As expected,
the peaks in qr(z) correspond to the maximum in wall temperature. The results are that,
both the average and maximum temperatures of the heated section decrease under the
effects of surface radiation. We will consider in what follows the effect of surface radiation
on the convective Nusselt number when introducing a decoupling between convective and
radiative modes, as it is usually done when maximum surface temperatures do not exceed
about 10% of the inlet gas temperature (in K).
Comparisons between the isothermal and streamline patterns shown in Fig. 6.7 for ε = 0
and those in Fig. 6.12 for D = 2.02 cm and 3.8 cm clearly exhibit the large changes in the
flow topology under the effects of surface radiation for ε = 0.1 and ε = 1. These patterns
demonstrate that radiation exchanges lead to a modification in the thermal conditions from
a one-wall heating to an asymmetric heating, with the disappearance of the flow reversal.
The insulated wall being heated by radiation, the downcoming flow from the outlet section
cannot persist as soon as the temperature of that wall exceeds just a little the surrounding
temperature. That happens at very low emissivity of the walls. When the radiative heating
of the insulated wall is large enough, a thermal boundary layer develops along the wall,
and starts at a lower z-elevation than at the heated wall. These observations may explain
why flow reversal are difficult to observe experimentally if the working fluid is a gas. On
the other hand, the recent experiments conducted by Ospir et al. [120] with water as the
working fluid and for the same boundary conditions as in the present study provide very
reliable pictures on the flow reversal.

The variation of the mass flow rate reported in Fig. 6.13 for qw = 300W/m2 indicates
continuous increases in ṁin with the wall spacing for ε = 0.1 and ε = 1 since any down-
coming air flow is predicted for both wall emissivities. On the other hand, the flow reversal
discussed previously for ε = 0 leads to a maximum in the flow rate at the inlet section
(see Table 6.3) while the outcoming flow rate at the outlet section ṁout (Eq. 6.35) is al-
most constant for D ≥ Dopt, as seen in Fig. 6.13. The influence of surface radiation on
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Figure 6.12 – Effect of surface radiation on streamlines ψi/[g/(m · s)] = 0.25× i (left) and
isotherms Ti/[K] = 290 + 5 × i (right) with qw = 300W/m2 and for (a) D = 2.02 cm,
ε = 0.1, (b) D = 2.02 cm, ε = 1, (c) D = 3.8 cm, ε = 0.1, (d) D = 3.8 cm, ε = 1. The
horizontal scales are enlarged by 50%.
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Figure 6.13 – Mass flow rate versus the wall spacing for three wall emissivities, qw =
300W/m2; ṁout = 0 for ε = 0.1 and ε = 1.

the mean and maximum temperature of the heated section is reported in Table 6.5 for
the minimum and maximum plate spacings considered in the present study. The overall
effect is a reduction in both T and Tmax as ε and D increase. Such a reduction is in part
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D = 1.02 cm D = 7.1 cm
(Ra∗ = 945) (Ra∗ = 1.54 · 107)

ε = 0 T 332.8 338.6
Tmax 347.7 347.7

ε = 0.1 T 331.2 334.4
Tmax 344.9 341.4

ε = 1 T 321.2 320.7
Tmax 331.7 323.5

Table 6.5 – Comparisons between the average and maximum heated wall temperatures for
qw = 300W/m2.

due to the radiative exchanges with the outlet section assumed as a black surface at T0.
That explains why the effect of radiation is more important as the modified Rayleigh is
increased. Here again, this result is specific to the cases considered because the variations
in Ra∗ are only due to changes in D while the channel height is kept constant. Hence, it
cannot be concluded that radiation effects increase with the Rayleigh number, as it has
been assumed in many papers.

Correlations

Owing to the present definition of the conduction-to-radiation parameter, the NR-range
is NR = 0.748 for an inlet air temperature T0 = 290K and qw = 300W/m2 . The radiative
Nusselt is therefore of the order of magnitude of the convective Nusselt number for black
surfaces. Note that the emissivity is not accounted for in the definition of NR: the influence
of surface radiation is thus much smaller for low surface emissivities than it seems, just by
considering only the NR value.
The convective and radiative Nusselt numbers defined by Eq. 6.29 are reported in Fig. 6.14.
In comparison with ε = 0, Nuc,2 is slightly modified for ε = 0.1 while its reduction is more
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Figure 6.14 – Radiative (Nur,2) and convective (Nuc,2) Nusselt numbers (eq. 6.30) vs the
channel Rayleigh number for two emissivities of the vertical walls.
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significant for ε = 1. In that case Nur,2 is of the order of Nuc,2. The combined radiation
convection effect produces a reduction in the maximum temperature of the heated wall,
all the more large since the plate spacing and the emissivity increase. For qw = 300W/m2

and ε = 1, that reduction lies between 16.0K for D = 1.02 cm and 24.2K for D = 7.1 cm.
The present computations lead to the following correlations

Nuc,2 = 0.753Ra∗
0.189

, Nur,2 = 0.0279Ra∗
0.248

for ε = 0.1 (6.40)

Nuc,2 = 0.759Ra∗
0.181

, Nur,2 = 0.253Ra∗
0.236

for ε = 1 (6.41)

θmax = 1.88Ra∗
−0.207

for ε = 0.1 , θmax = 1.60Ra∗
−0.226

for ε = 1 (6.42)

6.4.4 On the procedures used for the determination of the convective
heat transfer coefficient from temperature measurements

As discussed in the previous sections, surface radiation has a strong influence on the
flow field and makes difficult the observation of air flow reversals. Its effect on the total
heat transfer rate at the heated wall is also significant when mirror like wall surfaces are
not used in experimental set up. Since emissivities as low as ε = 0.05 are difficult to main-
tain due to oxidation produced by the air flow (except if the wall are covered with gold
films), most experiments conducted for different heat fluxes prescribed to the walls are
for non negligible combined effects of surface radiation and natural convection. The usual
ways employed to determine the convective heat transfer coefficient are first the evaluation
of the radiative heat flux from the temperature measurements along the walls. The con-
vective heat flux is then obtained, just by subtraction, i.e qcv(z) = qw − qr(z) (provided
that the conductive heat losses have been properly considered in the evaluation of qw (i.e.
qw = qOhmic − qconduction)).

Such a procedure has been followed, for example, by Webb and Hill [161] and more re-
cently by Krishnan et al. [91] who used a combined experimental and numerical approach.
Since we are modeling the full coupled heat transfer modes, it is easy to proceed exactly
as it was done by experimentalists.

As an example, the case D = 2.02 cm and qw = 300W/m2 is considered (note that the
effects of radiative exchanges with the cold inlet or outlet sections are rather weak in that
case). The coupled solutions are displayed in Fig. 6.12(a) (ε = 0.1) and in Fig. 6.12(b)
(ε = 1). The heat transfer results for the three approximate approaches are summarized in
Table 6.6. The corresponding streamlines and isotherms are displayed in Figs. 6.15 and 6.16
when the radiative heat fluxes or temperature distributions computed from the coupled
problem for ε = 0.1 and ε = 1, respectively, are used to generate the thermal boundary
conditions on the heated section: q′w, Tw(z) or T .

– qr is subtracted from qw (rows 2a and 3a in Table 6.6).
First, the average radiative flux at the heated section is calculated from the coupled
computations: qr = 19W/m2 for ε = 0.1 and qr = 108W/m2 for ε = 1.

Computations were carried out by setting ε = 0 and q′w = qw − qr. The plots of
the isotherms and streamlines reported in Figs. 6.15(a) and 6.16(a) exhibit large
differences both between the true flow fields (Figs. 6.12(a) and 6.12(b)) while it re-
sembles more or less those which are in the absence of surface radiation (i.e. for
qw = 300W/m2, row 1 in Table 6.6). Hence it could be assumed that this procedure
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B.C. type qw Ra∗ hcv,1 hcv,2 Tmax
[W/m2] [W/(m2 ·K)] [W/(m2 ·K)] [K]

1 ε = 0 qw (N.C.) 300 2.88 · 104 7.06 6.59 346.5

2 ε = 0.1 qw (Coupled) 300 2.88 · 104 7.05 6.56 342.5
2a ε = 0 q′w 281 2.69 · 104 6.98 6.52 343.5
2b − Tw(z) 282∗ 2.71 · 104 6.63 6.60 342.7

2c − Tw 268∗ 2.57 · 104 6.27 6.27 332.8

3 ε = 1 qw (Coupled) 300 2.88 · 104 6.67 6.20 327.2
3a ε = 0 q′w 192 1.85 · 104 6.47 6.11 329.3
3b − Tw(z) 194∗ 1.86 · 104 6.51 6.25 327.4

3c − Tw 186∗ 1.78 · 104 5.99 5.99 321.0

Table 6.6 – Comparisons between the different procedures used for the convective part
(D = 2.02 cm). N. C.: pure natural convection, Coupled: combined radiation and natural
convection, ∗ denotes an output from the temperature distribution, Ra∗ are based on the
average wall heat flux given in column 4.
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Figure 6.15 – Natural convection. Streamlines ψi/[g/(m·s)] = 0.5×i (left) and temperature
Ti/[K] = 290 + 5 × i (right) for (a) ε = 0, q′w = 280W/m2 and adiabatic surfaces, (b)
ε = 0, Tw(z) and average temperatures on other walls, (c) ε = 0, Tw = 332.8K and average
temperatures on other walls. The horizontal scales are enlarged by 50%.

leads to wrong calculations of the heat transfer rate. However, the overall convective
heat transfer is weakly altered by the presence of a flow reversal, as it was also noted
by Kihm et al. [88]. Comparisons between the hc,1, hc,2 and Tmax reported in rows 1,
2 and 2a for ε = 0.1 show that the differences in the maximum wall temperature are
within 1%. Therefore the procedure followed by Webb and Hill Webb et Hill [161]
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Figure 6.16 – Natural convection. Streamlines ψi/[g/(m · s)] = 0.5× i (left) and isotherms
Ti/[K] = 290+5×i (right) for (a) ε = 0, q′w = 192W/m2 and adiabatic surfaces, (b) ε = 0,
Tw(z) and average temperatures on other walls, (c) ε = 0, Tw = 320.92K and average
temperatures on other walls. The horizontal scales are enlarged by 50%.

may be considered accurate. Similar comparisons between rows 3 and 3a for ε = 1
show slightly larger differences, but less than 3%. On the other hand, comparisons
between rows 1, 3 and 3a demonstrate that a radiative heat flux correction is needed
for black surfaces, since the departures decrease from 6% (without correction) to 3%
(with correction).

– Temperatures at the heated section used as boundary conditions for the computa-
tions [91] (rows 2b-c and 3b-a in Table 6.6).
The temperature at the heated section is either the temperature distribution (Figs.
6.15(b) and 6.16(b)) or the average temperature (Figs. 6.15(c) and 6.16(c)) extracted
from the coupled problem. For the four cases considered, the average temperatures
of the adiabatic wall sections determined from the coupled problem are applied as
boundary conditions [91]: at the RHS-wall (T = 292.7K and T = 302.5K for ε = 0.1
and ε = 1, respectively), at the bottom extension of the LHS-wall (T = 290.4K and
T = 290.8K for ε = 0.1 and ε = 1, respectively), and at the top extension of the
LHS-wall (T = 319.0K and T = 309.0K for ε = 0.1 and ε = 1, respectively). Note
that the small increase in the average temperature of the RHS-wall for ε = 0.1 is
enough to almost suppress the flow reversal, and that the top extension is colder for
ε = 1 than for ε = 0.1.
The streamlines and isotherms displayed in Figs. 6.15(b)-(c) and Figs. 6.16(b)-(c)
show a better agreement with those reported in 6.12(a) and 6.12(b) than those ob-
tained by subtracting the average radiative flux. However, the average temperature
applied at the adiabatic wall may lead to the development of a thermal boundary
layer from its bottom (see the isotherms in Figs. 6.16(b)-(c)).
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The results reported in rows 2b and 2c of Table 6.6 show that the mean heat transfer
rate and maximum temperature do not differ much from the previous cases if the
temperature distribution (Tw(z)) applied at the heated section is that deduced from
the coupled formulation. On the other hand, the use of the average temperature
leads to significant differences, both in the convective coefficient and in the maximum
temperature. This result conflicts with the analysis reported in [91].

6.4.5 Non-Boussinesq effects

The influence of property variations on natural convection from a vertical isothermal,
heated surface was experimentally investigated by Clausing and Kempka [50]. By using
a cryogenic environment, the ratio of the absolute temperature of the wall to the am-
bient temperature of gaseous nitrogen was varied in the range 1 < Tw/T0 ≤ 2.6. The
experimental apparatus allowed to study parts of both laminar and turbulent regimes
(107 ≤ RaH ≤ 2 ·1010). It was shown that variable properties have virtually no influence in
the laminar regime while cause large increases in heat transfer rates in the turbulent regime.
Guo and Zhao [72] used laser speckle photographic techniques for studying laminar natural
convection between two isothermal vertical parallel plates in air. The surface-to-ambient
temperature difference varied from 15K to 530K, and the spacing of the 10 cm-high plates
was between 3mm and 20mm. The experiments showed that the effects of variable prop-
erties are much larger than on a single plate. The subsequent numerical study by Guo and
Wu [71] based on a parabolic formulation indicated strongest effects for small spacings and
large values of the non-Boussinesq parameter. From these two studies, it was also shown
that, unlike for the constant property case, the mass flow rate exhibits a nonmonotonic
change with a maximum whose amplitude depends both on the spacing and heating rate.
This question was numerically revisited by Zamora and Hernández [169] who used an el-
liptic formulation for an asymmetric heated channel with prescribed temperature at the
hot wall and unheated facing wall. They showed in particular that variable property effects
produce an important reduction of the recirculation region. It should be noted that exper-
iments and computations showing large variable property effects on the flow patterns were
carried out for very high temperature differences between the inlet and wall temperatures
(up to 7×T0). Hence, conclusions about large variable property effects must be cautiously
taken into consideration for practical applications dealing with cooling of electronic equip-
ments or non-concentrated solar collectors, for example.

In what follows, results obtained from the variable property formulation are compared
with those derived by invoking the Boussinesq approximation. One of the reasons is that
Webb et Hill [161] suggested that the use of local properties is more appropriate for cor-
relating local heat transfer data despite the maximum measured temperature differences
between the bottom and top ends of the heated section were much smaller than in the
work by Clausing and Kempka [50].

For the range of Ra∗ investigated, the influence of D (or A) was found negligible.
The reason is that the maximum wall temperature is almost insensitive to D provided
that D ≥ 1 cm, as shown in subsection 6.4.2. Therefore, we discuss only results obtained
for D = 2.02 cm. In order to focus on the influence of variable property effects, pure
natural convection is considered. The wall heat flux was varied from qw = 375W/m2 to
qw = 1400W/m2 (3.56 · 104 ≤ Ra∗ ≤ 1.33 · 105).The non-Boussinesq parameter was thus
in the range 1.02 ≤ γ ≤ 3.82, and the corresponding maximal wall temperature was found

122



in the range 358K ≤ Tmax ≤ 489K, i.e. ∆Tmax/T0 between 0.23 and 0.69, larger than the
usual 0.1-limit for the validity of the Boussinesq approximation. The dynamical viscosity
and thermal conductivity of mixtures of ideal polyatomic gases increase with temperature,
roughly as the absolute temperature to the power 0.6 to 1.0, while the density decreases as
T−1 (the pressure effects being negligibly small, see Eq. 6.4). Therefore, the opposite effects
on viscous drag and buoyancy may produce nonmonotonic and unpredictable variations of
the flow rate with increasing the maximum temperature difference.

Figure 6.17 shows that the non-Boussinesq effects have a weak influence on the flow

0

1

2

3

4

5

1

2

3

(a) qw = 375W/m2,
Boussinesq approxima-
tion

0

1

2

3

4

5

1

2

3

(b) qw = 375W/m2, low
Mach number approxima-
tion

­1

0

1

2

3

4

5

1

2

4

6

(c) qw = 1400W/m2,
Boussinesq approxima-
tion

­1

0

1

2

3

4

5

6

1

3

5

7

(d) qw = 1400W/m2, low
Mach number approxima-
tion

Figure 6.17 – Natural convection. Streamlines ψi/[g/(m · s)] = 0.5× i (left) and isotherms
Ti/[K] = 290+20×i (right) for (a) qw = 375W/m2 and the Boussinesq approximation, (b)
qw = 375W/m2 and the low Mach number approximation, (c) qw = 1400W/m2 and the
Boussinesq approximation, (d) qw = 1400W/m2 and the low Mach number approximation.
The horizontal scales are enlarged by 50%.

patterns near the heated wall for qw = 375W/m2, and that the flow rate at the inlet section
is slightly increased (about 9%) for qw = 1400W/m2 due to variable property effects. The
most salient result is about the reduction of the size of the recirculation region (width and
penetration length). This reduction and the increase in ṁin are linked, as discused pre-
viously (Figs. 6.8 and 6.13). Concerning the heat transfer results, it has been found that
the influence of variables properties is almost null for the smallest heat flux considered
(qw = 235W/m2) while the changes in average and maximum temperatures of the heated
section were about 1% for the highest qw-value (qw = 1400W/m2). Hence it can be con-
cluded that the Nusselt number correlations reported previously would have been identical
if the Bousinesq approximation has been invoked. As a result, taking variable properties
effects into consideration for natural convection of air is not required for maximum in-
crease in temperature less than about 200K. These trends are in general agreement with
the results discussed by Zamora et Hernández [169] for asymmetric isothermal channels.
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Chapter 7

Conclusions & Perspectives

7.1 Key points of this work

7.1.1 Numerical developments

An original scheme has been developed in the Finite Volume discretization framework
for low Mach number approximation and its simplification for small temperature gaps,
the Boussinesq approximation. The convergence properties of this numerical scheme were
carefully checked by performing comparisons with analytical and benchmark solutions. The
second order temporal and spatial convergences were retrieved.

7.1.2 Results

– Optimal plate spacing for mixed convection from an array of vertical isothermal
plates.
The purpose of this work was to numerically analyze the optimum spacing of a stack
of symmetrically isothermal plates cooled by natural, forced or mixed convection.
This idealized configuration has a number of applications in the convective cooling
of electronic equipments. The governing equations were solved in their full ellip-
tic form by assuming steady, laminar incompressible flows, constant thermophysical
properties, and by invoking the Boussinesq approximation for natural and mixed
convection. We implemented specific pressure boundary conditions in order to make
relevant comparisons between the results obtained for the three modes of convective
cooling, including very small flow rates. In these cases, it was demonstrated that
axial heat conduction plays a significant role and that an appropriate modeling of
the thermal boundary condition is required. The main concluding remarks are as
follows:

1. The present computations are in agreement with the optimal plate spacing pre-
dicted by using asymptotic analyses for natural convection [21],[18] and forced
convection [25].

2. The optimal plate spacing still exists for mixed convection : it is smaller than
for forced convection. The maximal heat flux is increased due to the combined
effects of pressure and buoyancy forces.

3. The heat flux transferred by mixed convection is considerably higher than that
by natural convection : for the specific case considered, a small pressure drop at
the outlet section (i.e. −1 Pa) is enough for increasing the heat flux by a factor
of three.
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– On the modeling of aiding mixed convection in vertical channels.
Mixed-convection for assisting flows occurring in isothermal flat-plate channels was
studied by solving numerically the system of conservation equations written in el-
liptical form. The computations were carried out by using a finite-volume method
implemented in an in-house code. The spatial order of convergence of the method and
the accuracy of the results have been checked thanks to the Richardson extrapolation
method and regularized inlet thermal conditions in order to properly solve cases of
low flow rates linked to small plate spacing and/or small temperature differences.

As an example, we have considered air at ambient temperature flowing in vertical
channels (height H = 1 m or H = 1.5 m, width D = 2 cm or D = 3 cm). For
a maximum temperature difference compatible with the Boussinesq approximation
(∆T = 20 K), leading to GrH = 2.65 109H3, the entire laminar mixed-convection
regime has been covered by changing either the inlet velocity or the outlet pressure
drop. ReDh was varied from ReDh ≈ 200 to ReDh ≈ 2800. Although most of the
results have been discussed in their dimensional forms, we have also analyzed the
reliability of scaling predictions based on dimensionless numbers.

The results for a prescribed inlet velocity w0 show that flow recirculations may ap-
pear in the entry region when the inlet velocity is lower than that for pure natural
convection. In that case, the pressure force opposes to the buoyancy force and the
problem is, in fact, similar to that of opposing natural convection with a downward
bulk flow. In addition, we have shown that to prescribe w0 yields no significant dif-
ference between the wall heat fluxes calculated either for forced convection or for
mixed convection.

The modeling of mixed convection based on a pressure drop at the outlet section
(ps < 0) and a total pressure at the inlet section leads to a completely different
analysis of the results, with a better accordance with the common physical sense.
When imposing an outlet pressure drop, natural convection assists effectively forced
convection and the flow rate as well as the wall heat.

– Effect of surface radiation on natural convective flows and onset of flow reversal in
asymmetrically heated vertical channels.
The combined effects of surface radiation and air natural convection in vertical,
asymmetrically heated plate channels have been numerically investigated thanks to
an improved mathematical formulation in which the temperature variations of all
thermophysical properties are accounted for. The present formulation does not im-
ply excessive increases in the computational costs. Extensive comparisons with the
experimental results by Webb et Hill [161] have been carried out and heat transfer
correlations for pure natural convection as well as for combined effects are provided.
The agreement with the experimental results is fairly good and the onset of flow re-
versal for pure natural convection has been revisited. The study leads to the following
conclusions:
– The onset of flow reversal is delayed upon the effect of surface radiation. Mirror

like wall surfaces are required to observe experimentally flow recirculations when
using air as the working fluid. The effect of the plate spacing on the formation
of a recirculating flow and on the mass flow rates through both inlet and outlet
sections has been analyzed in detail. The large feeding of the boundary layer along
the heated wall due the penetration of a downcoming flow along the opposite wall
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has been quantitatively explored.
– The radiation contribution is to increase the temperatures of the adiabatic wall

facing the heated section, leading to prevent the occurrence of down flow for wall
emissivity as small as ε = 0.1. Radiation enhances the cooling of the heated wall
and its contribution to the total heat transfer rate is significant. For black surface
at room temperatures, the heat transfer by radiation is of the order of that by
natural convection.

– Procedures generally used which consist in subtracting the radiative contribution
to the heat flux applied to the hot surface, qw, have been examined. If the radiative
heat flux distribution or the average radiative heat flux is subtracted from qw,
the coupled (i.e. ε 6= 0) and uncoupled (i.e. ε = 0) numerical solutions lead to
quite accurate predictions of the average convective heat transfer coefficient and
maximum wall temperature. However, a flow reversal is predicted in the uncoupled
solutions while it is not for the coupled solutions. If the measured temperature
distribution along the heated section is used as the thermal boundary condition
in a combined experimental and numerical approach, the heat transfer predictions
are also quite accurate. On the other hand, large discrepancies are found when
the average temperature of the heated section is employed as thermal boundary
condition.

– Since the maximum temperature of the heated wall is a priori unknown for pre-
scribed wall heat flux, a weakly compressible formulation for ideal gas has been
used in carrying out the computations. This point was raised in [161] since maxi-
mum wall temperatures 50K above the inlet temperature were measured. It could
be much greater for higher wall heat fluxes or smaller plate spacing. The compar-
isons between the usual Boussinesq formulation and fully variable fluid properties
(including density in the transport terms) showed that negligible influence of the
variable property effects for surface-to-ambient temperature difference up to 200K.

7.2 Works prospects

Since the natural and mixed convection flows studied in this work occur in rectan-
gular geometries, structured grids were found more suitable than triangular meshes. But
our scheme is also designed for triangle meshes, provided that the triangulation is Delau-
nay. Thus, a validation part should be added to ensure the numerical scheme is correctly
implemented and to check the convergence properties. The discrete scheme based on un-
structured control volumes cannot be directly used to three dimensional problems because
all required conditions on meshes are not fulfilled by tetrahedrons any more. Therefore,
modifications in some discrete operators must be done.

The main challenge in the study of natural and mixed convection flows in vertical
heated channels probably relies on the inlet/outlet boundary conditions again. Indeed,
fluid flows resulting from the boundary conditions presented in this work reflect well the
common physical sense, but only qualitative comparisons with well designed experiments
could definitively validate our approach, for example by comparing the velocity profile and
temperature distributions in different sections of the channel. However, I am aware that
such ideal experiments are probably hard to manage. One point which would worth to be
studied is the part played by the three dimensional effects on heat transfers and fluid flows,
for instance, in the simulation of natural convection produced by the cooling/heating of
systems equipped by horizontal fins. Finally, further numerical development on turbulence
model should be engaged to be able to simulate higher Rayleigh number values obtained
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by increasing temperature gaps or the height of the channels.

128



Part II

Comparisons of Level-Set numerical
schemes for the modeling of

immiscible incompressible fluid flows
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Outlines

Chapter 7 gives a brief review of the interface tracking methods by emphasizing their
advantages and drawbacks.

Chapter 8 is devoted to the Level Set method. In a first step, the mathematical model
of incompressible and immiscible fluid flows is presented. The level-set method is then in-
troduced through the transport equation of a continuous function and the part played by
the signed distance function is emphasized. A particular attention was paid to the spatial
and temporal accuracies of the discrete transport and signed distance equations. The prin-
ciples of the Essentially Non-Oscillatory (ENO) and Weighted Essentially Non-Oscillatory
(WENO) schemes are reminded and their related algorithms are given. In particular, the
fifth order WENO schemes are developed for regular and irregular grids. At last, two vari-
ants of the signed distance equation are presented to improve the mass conservation of
each fluid.

The purpose of chapter 9 is to study the accuracy of the different numerical schemes. We
first show that the Essentially Non-Oscillatory scheme in the transport equation has a
non-linear behavior, what gives rise to a deterioration of the expected convergence proper-
ties. According to previous works, this is due to the change of the stencil as a function of
time. In contrast, and by construction, the Weighted Essentially Non-Oscillatory schemes
does not suffer of such a problem. The second validation test concerns the signed distance
equation with or without the mass conservation improvements. This consists in initializing
the equation with an exact signed distance function slightly perturbed, and to measure the
departure between the exact function and the signed distance solution at the steady state.

One dimensional test for the transport equation and two dimensional test are used to
valid convergence properties of the ENO scheme and WENO scheme. Classical cases like
2D zalesak disc, stretching of a circular fluid element, traveling solitary wave, equilibrium
elliptic bubble are applied as validations.
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Chapter 1

Brief review of the interface tracking
methods

Natural and industrial examples of non-miscible two-phase flows are numerous. Amongst
them, we can mention bubbles rising during the water boiling, raindrops falling in the air,
water and steam circulating through a nuclear reactor, crystal growing from the molten
or liquid state and many others. These flows can take place in two non miscible liquids, a
liquid circulating and interacting with a solid phase, a liquid and a vapor, or a solid and
a vapor. Therefore, there appears a clear and discernible interface which must be deter-
mined. Unlike the single-phase flows or miscible fluid flows, the existence of an interface
acts significantly on flows and transfers. Therefore, the determination and the tracking of
the interface are essential tasks which require devoted methods.

Numerous methods have been developed over the last past decades. The first class is the
moving-grid approach based on Lagrange-type method [59] which is firstly introduced by
Hirt et al. [77]. It requires a buffer zone located near the interface which must be re-meshed
when grids are highly distorted by large deformations. The advantage of this technique is
to make the surface sharp in order to keep its position precise, and to allow mesh redis-
tribution or refinement in particular locations near the interface. Thus, the moving-grid
approach provides an accurate and efficient method for many problems concerning fluid
dynamics, hydraulic, combustion and heat transfer. But frequent reconstructions are se-
vere drawbacks for computational performances and data storage ability. Examples of this
method include the two-dimensional computational of the breakup of a drop by Oran et
Boris [118], the examination of the initial deformation of a buoyant bubble by Shopov et al.
[139], the simulation of the unsteady two-dimensional motion of several particles by Feng
et al. [58] and the axisymmetric computations of the collision of a single drop with a flat
surface by Fukai et al. [61].

The second class is the front-tracking method also named surface-maker methods by
Scardovelli et Zaleski [138]. The free surface is explicitly identified and tracked by means
of pre-defined makers or interface-fitted grid cells. Firstly proposed by Glimm et al. [67], in
the front-tracking method, a separate front marks the interface in fixed grids and is modi-
fied only near the front to follow the interface. Advantages of the use of the front-tracking
method are that it allows formation of very thin liquid bridges that do no break [138]; the
high degree of accuracy that may be achieved by representing the interface through high-
order interpolation polynomials because they track exactly the location of the interface
[138] and it can obtain the better solutions on coarser grids [66]. However, when there are
more than two phases, it may become difficult to handle the complexity of triple lines (lines
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in three-dimensional space where three phases meet) and other effects associated with the
presence of several phases [138]. And specialized boundary integral methods should be used
to the full Navier-Stokes equations. The front-tracking method was developed to combine
with the front capturing method by not treating the each phase separately. A single set
of governing equations for whole flow filed was solved [157]. The impressive application is
that Unverdi et Tryggvason [158] used it for a bubbly flow.

The oldest and still the most popular approach to compute multifluid and multiphase
flows is to capture the front directly on a regular, stationary grid. Among them, there exists
the maker-and-cell (MAC) method by Harlow et Welch [75] in which marker particles are
used to identify each fluid. The essence is the use of Lagrangian virtual particles, whose
coordinates are stored, and which move from a cell to the next according to the latest
computed velocity field. If a cell contains a particle it is deemed to contain fluid, thus pro-
viding flow visualization of the free surface. Compared with the front-tracking methods, it
is able to handle the complexity of triple lines and effects associated with more than two
phases but hard to avoid becoming distorted as time goes by [138].

The volume-of-fluid (VOF) method is developed by Hirt et Nichols [78], in which a
maker function is used to distinguish the fractions of two fluids in each cell. An advantage
of representing the free surface as a volume fraction is that we can write accurate algorithms
for advecting the volume fraction so that the mass is conserved, while still maintaining a
reasonably sharp representation of the free surface. On the other hand, a disadvantage
of the volume of fluid approach is the fact that it is difficult to accurately compute local
curvature from volume fractions [108].

A number of recent developments have been developed, including the use of "level set"
to mark the fluid interface. In the level set methods, the free surface is implicitly captured
by a contour of a certain scalar function. This was originally introduced by Osher et Sethian
[119]. The original notion of level set methods (LSM) is to define a smooth function φ(~x, t)
called level set function to represent the free surface. The level set is advected by the local
velocity field. The interface can be captured at any time by locating the zero level set,
which alleviates the burden of increasing grid resolution at the interface in many other
numerical approaches. Usually, φ is defined as a signed distance function to the interface.
This provides the great convenience of handling topological merging, breaking and even
self-intersecting of interfaces in a natural way by taking advantage of the smoothness of
the level set function. Information about the interface, such as orientation and curvature,
can be conveniently obtained by examining the zero level set so that surface tension can
be accurately estimated. Another advantage of LSM is that the extension from two to
three dimensions is straightforward. The level set method has the main disadvantage that
its approximation accumulates more numerical errors during time evolution than a front
tracking method or a volume of fluid method, particularly if the free surface experiences
rapid changes in curvature. The consequence is that mass is not fully conserved [108].
Applications of LSM concern incompressible fluid mechanics (Chang et al. [41], Foster
et Fedkiw [60], Iafrati et al. [80], Sussman et Smereka [152], Sussman et al. [153] for in-
stance), detonation shock of dynamics (Aslam et al. [6]), solidification (Kim et al. [90]),
crystal growth (Smereka [143]) and many others.
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Chapter 2

Level set method

2.1 Mathematical model of incompressible and non miscible
fluid flows

2.1.1 Navier-Stokes equations

We consider two incompressible fluids which are flowing in a domain Ω without mixing.
At any location of the fluid domain, only one phase is present. We classically denote the
density and the dynamic viscosity by ρ and µ respectively and we assume that the density
is constant in each phase. To distinguish the fluids, we introduce the subscripts g and l
which, for example, could correspond to a gas phase and a liquid phase. By definition, we
denote Ωg(t) and Ωl(t) the open domains containing the gas phase and the liquid phase.
The shapes of these regions depend on time.

The geometric loci separating these non-miscible fluids is called interface (or free sur-
face between a liquid and a gas) and is noted Γ(t). This interface is mathematically defined
by Γ(t) = Ω̄g ∩ Ω̄l where Ω̄g and Ω̄l stand for closed domains for the gas and the liquid,
respectively.

For a fluid at rest, the molecules are submitted to attractive and repulsive forces of
which the sum is, in mean, equal to zero in the bulk. But when the molecules are located
close to the interface, the resultant force cannot vanish and it results a surface tension
at the macroscopic level. This surface tension acts as a force by unit length and is noted
σ [N/m]. The Laplace-Young equation says that the jump in the normal component of the
stress σ = −pδ + 2µD at the interface between both fluids is balanced by surface tension:

(σl − σg) · ~n = σκ~n (2.1)

where D is the rate of deformation tensor, ~n is the unit normal vector to the interface, and
κ [m−1] is the local curvature of the interface Γ(t).

When the free surface is balanced by surface tension, the two-phase flow system can be
treated as a single-fluid flow system. A unified Navier-Stokes equation can be applied in
the whole computational domain Ω = Ωg ∪Ωl ∪ Γ. We embed Eq. (2.1) in the momentum
equation as a volume force by distributing the normal stress at the free surface using the
δ-Dirac distribution ∫

Ω
f(~x)δ(Γ) d~x = f(~xΓ) (2.2)
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with ~xΓ(t) the coordinates of the interface Γ(t). The incompressible Navier-Stokes equations
are reconstructed with variable density and viscosity, and using a volume force to represent
the surface tension effect [34]:

∇ · ~v = 0 (2.3a)

∂~v

∂t
+∇ · (~v ⊗ ~v) = −1

ρ
∇p+ ~g +

1

ρ
∇ · (µ∇~v) +

1

ρ
∇ · (µ∇~v)t − σκδ(Γ)~n

ρ
(2.3b)

with (µ, ρ) = (µg, ρg) in the gas phase and (µ, ρ) = (µl, ρl) in the liquid phase.

2.1.2 Interface and fluid properties

To solve Eqs. (2.3), we need locating the position of the interface Γ as a function of
time, and to determine its local characteristics, viz the curvature κ and the normal unit
vector ~n. Instead of performing a Lagrangian tracking of the interface, the interface is
solved implicitly by an Eulerian method. To this end, we introduce a regular function
φ(~x, t), called the level-set function. The free surface Γ(t) is identified by a zero level set
function φ(~x, t):

Γ(t) = {~x | φ(~x, t) = 0}

with φ < 0 in the gas region and φ > 0 in the liquid region. More specifically, the level set
function φ is initially assigned with the signed distance function,

φ(~x, t) =


−d(~x, t), ~x ∈ Ωg (gas phase)
0, ~x ∈ Γ (interface)
d(~x, t), x ∈ Ωl (liquid phase)

(2.4)

where d(~x, t) is the smallest distance to the interface at time t.

Thanks to the definition of the level set function, it is now easy to define the properties
of the fluid. To do this, we first define the Heaviside function H(φ) such that

H(φ) =

{
0, if φ < 0 (gas phase)
1, if φ > 0 (liquid phase) (2.5)

Then, the density and the dynamic viscosity of the fluid over the whole domain Ω write:

ρ(φ) = ρg + (ρl − ρg)H(φ) (2.6a)
µ(φ) = µg + (µl − µg)H(φ) (2.6b)

Assuming the level set function is regular enough, the unit normal ~n to the interface
writes:

~n =
∇φ
|∇φ|

∣∣∣∣
φ=0

(2.7)

and the local curvature κ(φ) gives

κ(φ) = ∇ · ~n = ∇ ·
(
∇φ
|∇φ|

)∣∣∣∣
φ=0

(2.8)

Finally, the Eulerian transport by the velocity ~u(~x, t) of the free surface Γ is expressed
by the following level set equation:

∂φ

∂t
+ ~u(~x, t) · ∇φ = 0
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with the following requirement

~u(~xΓ(t), t) = ~v(~xΓ(t), t)

where ~v(~xΓ(t), t) is the local velocity of the fluid at the interface. But for the purpose of
extending the knowledge of the velocity field apart from the interface and at any time, we
simply use the fluid velocity, solution of the Navier-Stokes equations (2.3), as a vector field
for the transport of the level set function:

∂φ

∂t
+ ~v(~x, t) · ∇φ = 0 (2.9)

2.1.3 Thickening of the interface

Sudden variations in the fluid properties at the interface, as for example between the
densities of gases ρg ≈ 1 kg/m3 and liquids ρl ≈ 103 kg/m3, may introduce numerical
instabilities. A way to overcome this problem is to smear out the discontinuities in a
transition zone of constant thickness 2ε [158] (Fig. 2.1). This is achieved by smearing out

Gas, φ < −ε
ρ = ρg

ρε = ρ(φ, |φ| < ε)

Interface, φ = 0

φ

ρ

Liquid, φ > ε
ρ = ρl

+ε

−ε

Figure 2.1 – Demonstration of density jump

the Heaviside function (2.5), Hε(φ), defined as follows:

Hε(φ) =


0, if φ < −ε
1
2

[
1 + φ

ε + 1
π sin(πφε )

]
, if |φ| ≤ ε

1, if φ > ε

(2.10)

where ε is an adjustable parameter. For example, Sussman et al. [153] suggested a value
of order of the grid size ∆x, ε = 1.5∆x. Taking the thickness of the interface into account,
the smeared-out density ρε(φ) and viscosity µε(φ) write:

ρε(φ) = ρg + (ρl − ρg)Hε(φ) (2.11a)
µε(φ) = µg + (µl − µg)Hε(φ) (2.11b)
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The Dirac distribution (2.2), allowing to transform the right-hand side of the Young-
Laplace’s surface equation (2.1) into a volume contribution (see Eq. (2.3b)), is also smeared
out. The δε(φ)-function is the derivative of the smooth Heaviside function (2.10):

δε(φ) = ∇φH(φ) =

{
0, if |φ| > ε
1
2ε

[
1 + cos(πφε )

]
, if |φ| ≤ ε (2.12)

Thus, the surface tension is spread over the transition zone by substitution in Eq. (2.3b)
σκδ(Γ)~n by

σκδε(φ)~n (2.13)

2.2 Reinitialization of level set function: Equation of the signed
distance

2.2.1 The transport equation and distance function

The level set function enables the tracking of the interface (Eq. (2.9)). But this is not its
unique use. It also allows the calculations of the regularized fluid properties, the curvature
κ and the unit normal vector ~n to the interface (Cf Eqs. (2.11), (2.8) and (2.7) respec-
tively). However, these calculations have sense only if the level set function is a signed
measure of the distance to the interface. Unfortunately, its transport by the fluid velocity
usually alters this essential property.

As an illustration, we consider a one-dimensional problem (see Fig. 2.2). At time t, the

φ

x

φ(t + δt)φ(t)

+ε

0

−ε

Figure 2.2 – Illustration of transport of the level set function on the distance function

gas is located at x < 1 whereas the liquid takes up the remaining space. The zero level set
is then located at x0(t) = 1 and, in accordance with Eq. (2.4), the level set function is equal
to the signed distance: its analytical expression writes φ(x, t) = x − 1 (black solid line in
Fig. 2.2). To avoid discontinuities, the interface is stretched out on the abscissa x such that
|φ(x)| < ε. It results a thickening of the interface over 2ε (blue segment in Fig. 2.2). Let us
now assume that the fluid velocity vx is fixed and equal to vx ≡ dx/dt = x. Then at time
t+δt, the level set defined for x(t) > 0 (x(t) < 0) is moved to the right (left) such that any
point x(t) of this level set is translated to the abscissa x(t+δt) = x(t) exp(δt) (inclined red
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line in Fig. 2.2). The new level set function writes φ(x, t+ δt) = x exp(−δt)− 1 and does
any more represent the distance function! As a consequence, the thickness of the interface
grew from 2ε (blue segment) to 2ε exp(δt) (red horizontal segment), but this evolution is
unfortunately not desired.

If the difference between the level set function and the signed distance is too large,
||∇φ| | will depart significantly from unit. The quantities ρ(φ) and µ(φ) will be greatly
distorted, especially in the case of large ratios of density or viscosity. In the same way,
the numerical approximations of the unit normal vector ~n (Eq. (2.7)) and of the deduced
interface curvature κ (Eq. (2.8)) will be inaccurate. Finally, the bad evaluation of the
surface tension source term Eq. (2.13) will deform substantially the free surface shape and
will make significant loss or gain of mass. So maintaining the level set function φ as close
as possible to the signed distance function is of great importance.

2.2.2 Signed distance equation

After computing the level set transport equation Eq. (2.9), a re-initialization procedure
concerning φ may be required to satisfy ‖∇φ‖ = 1. This is achieved by solving the distance
equation (Eq. (2.14) here-below) at the steady state, at least in the vicinity of the interface.
To distinguish the variable associated with the distance equation from the level set variable,
we define the signed distance function d(~x, τ), solution of a Hamilton-Jacobi equation:

∂d

∂τ
+ s(d0) (‖∇d‖ − 1) = 0

d(~x, 0) = d0(~x)
(2.14)

where τ is an artificial time introduced to converge to the steady state, s(d0) is the
smoothed sign function defined as in [127],

s(d0) =
d0√

d2
0 + (‖∇d0‖ ε)2

(2.15)

and d0(~x) is set such that it shares the same zero as the level set φ(~x, t). In practical
applications, this last condition is reduced to d0(~x) = φ(~x, t). The parameter ε has the
dimension of a length.

The Hamilton Jacobi equation (2.14) can be viewed as a transport equation with a
source term. To this end, let us define the velocity field ~w(~x, t) of unit modulus, with a
direction normal to iso-distance values, and pointing outward the zero distance function:

~w(~x, t) = s(d0)
∇d
‖∇d‖

(2.16)

Then the Hamilton-Jacobi equation (2.14) simply writes :

∂d

∂τ
+ ~w · ∇d = s(d0) (2.17)

To illustrate the reinitialization procedure, we are going to reconsider the example
presented in Sec. 2.2.1 to achieve ‖φnew(x, t + δt)‖ = 1 (see Fig. 2.3). We chose ε = 0 in
(2.15) and we are only interested in solutions for the liquid phase, namely for x ≥ x0(t+δt),
and the value of the zero level set is extended to abscissa corresponding to the gas phase.
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φ

x

φ(t)

+ε

0

−ε

φ(t + δt)φnew(t + δt)

Figure 2.3 – Illustration of reinitialization method

Therefore, we have s(d0) = 1 and ~w = +~ex. From both Eq. (2.17) and the preceding
remarks, we get:

∀x ≥ x0(t+ δt),
∂d

∂τ
+
∂d

∂x
= 1 (2.18a)

∀x ≤ x0(t+ δt), d(x, τ) = 0 (2.18b)

with the initial condition:

∀x ≥ x0(t+ δt), d(x, τ = 0) = d0(x) ≡ φ(x, t+ δt) (2.19)

where φ(x, t+δt) = x exp(−δt)−1 (red straight line in Fig. 2.3) and x0(t+δt) = exp(−δt)−1
the zero level set function at time t + δt. For x ≥ x0(t + δt), the solution gives d(x, τ) =
D(X) + x with X = x− τ . Using the initial condition (2.19) and Eq. (2.18b), the function
D(X) writes:

∀X ≥ x0(t+ δt), D(X) = d0(X)−X
∀X ≤ x0(t+ δt), D(X) = −x0(t+ δt)

since d0(x0(t+ δt)) = 0. For x ≥ x0(t+ δt), we then get

lim
τ→∞

d(x, τ) = lim
τ→∞

(D(x− τ) + x) = −x0(t+ δt) + x

The steady state solution is then assigned to the reinitialized level set function: φnew(~x, t+
δt) = x− x0(t+ δt) (green inclined line in Fig. 2.3). As shown in Fig. 2.3, the thickness of
the interface is now preserved between times t and t+ δt.

2.2.3 Signed distance equation – Improvement of the volume conserva-
tion

Mathematically, the resolution of the signed distance equation (2.14) does not move
the location of the interface because the smooth sign function (2.15) is then exactly zero
(provided that ε > 0). But due to numerical errors, it is hard to ensure it, and sometimes
the interface shifts and loses its shape because of accumulation of numerical errors. In this
document, two methods are used to improve the volume conservation.
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One approach is related to "the subcell fix" method [136]. When constructing high-
order schemes for the signed distance equation, we need to take several adjacent points
into account to construct the discretization form. The ideal of this method is introduce
explicitly the position of the interface of which the approximation is based on high order
polynomial interpolation.

The second method proposed by Sussman et Fatemi [151] modifies the right-hand side
of the signed distance equation (2.14) with the idea to improve the volume enclosed by the
zero level set during the reinitialization process. This new method is called the "constrained
distance function" method and writes [153]:

∂d

∂τ
+ s(d0) (‖∇d‖ − 1) = λδ(d)‖∇d‖ (2.20)

where λ is a parameter which will be discussed bellow.

The expression of the parameter λ is obtained as follows. Since the liquid phase is
defined by positive level set values, the fluid volume is preserved during time evolution if

∂

∂τ

∫
Ω
H(d(~x, τ)) d~x = 0

The left-hand side gives:

∂

∂τ

∫
Ω
H(d(~x, τ)) d~x =

∫
Ω
H ′(d)

∂d

∂τ
d~x

=

∫
Ω
H ′(d)

(
λδ(d)‖∇d‖ − s(d0) (‖∇d‖ − 1)

)
d~x

Since this expression cancels out, we get:

λ =

∫
Ω
H ′(d)

(
s(d0) (‖∇d‖ − 1)

)
d~x∫

Ω
H ′(d)δ(d)‖∇d‖ d~x

And after expressing the derivative of the Heaviside function, the parameter writes:

λ =

∫
Ω
δ(d)

(
s(d0) (‖∇d‖ − 1)

)
d~x∫

Ω
(δ(d))2‖∇d‖ d~x

From this expression, we can see that the constraint acts only on the interface where λ ≤ 0.
Far from the zero level set, Eq. (2.20) is reduced to Eq. (2.14).

2.3 A variable-density projection method

2.3.1 Continuous equations

The variable-density incompressible Navier-Stokes equations read:

∂~v

∂t
+∇ · (~v ⊗ ~v) = −1

ρ
∇Π + ~g +

1

ρ
∇ · (µ∇~v) +

1

ρ
∇ · (µ∇~v)t − σκδ~n

ρ

∇ · ~v = 0
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Using the abbreviate notations

L(~v) =
1

ρ(φ)
∇ · (µ(φ)∇~v) (2.21a)

S(~v) =
1

ρ(φ)

[
∇ · (µ(φ)∇~v)t − ρ(φ)∇(~v ⊗ ~v) + ρ(φ)~g − σκδ(φ)~n

]
(2.21b)

we simply get

∂~v

∂t
= − 1

ρ(φ)
∇Π + L(~v) + S(~v) (2.22a)

∇ · ~v = 0 (2.22b)

2.3.2 Discrete equations

The level set and the fluid flow equations are solved successively. First we evaluate
the new level set function from a known velocity field. Once φ is known, we calculate the
surface tension, the density and viscosity as well as the normal vector to the interface.
Then, the variable-density incompressible Navier-Stokes equations are solved.

The spatial and temporal discretizations are described in Chapter 2, page 19. For
the time discretization of the variable-density incompressible Navier-Stokes method, we
express the equations at time t = (n + 1)∆t by using the second order Euler approx-
imation (2.6). The term S(~v) in (2.21b) is evaluated at time t = (n + 1)∆t using an
Adams-Bashforth extrapolation X(n+1) = 2X(n) − X(n−1) for the non-linear and viscous
contributions, whereas the surface tension and weight contributions are already explicitly
known at time t = (n+ 1)∆t.

The spatial approximations rest on the finite volume scheme developed in Sec. 2.2, but
for structured grids only. This section only emphasizes the decoupling between the velocity
and pressure, because the projection step (the pressure Poisson equation) differs slightly
from the one phase fluid flow (see Sec. 2.1.4):

– Predictor or diffusion step:(
3

2∆t
− L

)
~v(n+1)∗ =

2

∆t
~v(n) − 1

2∆t
~v(n−1) + S(n+1)(~v)− 1

ρ(n+1)
∇Πn (2.23)

with ~v(n+1)∗ the intermediate velocity.
– Projection step, Poisson equation:

∇ ·
(

1

ρn+1
∇(Φ(n+1))

)
=

3

2∆t
∇ · ~v(n+1)∗

For the sake of stability (see Sec. 2.2.1.1, page 26), the approximation on cell K of
the left-hand side of this equation ∇K ·

(
1

ρn+1 ∇̃K(Φ(n+1))
)
is substituted by(

∇ ·
(

1

ρn+1
∇(Φ(n+1))

))
K

whose expression is detailed in Sec. 2.2.3.1.
– Correction step:

The new pressure field writes

Π(n+1) = Π(n) + Φ(n+1)
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The relationship between the intermediate velocity and the true velocity at time
t = (n+ 1)∆t is given by:

~v(n+1) − ~v(n+1)∗ = − 2∆t

3ρ(n+1)
∇Φ(n+1)

2.4 Discretization of transport equation

The spatial discretization of the transport term is based on a structured grid with faces
located at coordinates ~xi+1/2,j+1/2 = (xi+1/2, yj+1/2). By default, we assume a constant
grid cell size ∆x = xi+1/2 − xi−1/2 and ∆y = yj+1/2 − yj−1/2 as well as a constant time
step ∆t.

Using the mass conservation equation (2.22b), the transport equation (2.9) writes in
hyperbolic form as:

∂φ

∂t
+
∂f(φ)

∂x
+
∂g(φ)

∂y
= 0 (2.24)

with φ(~x, 0) = φ0(~x), f(φ) = φ~v · ~ex and g(φ) = φ~v · ~ey. Since the fluxes f(φ) and g(φ)
are linear, the numerical resolution of this hyperbolic equation can be done direction by
direction. From now on, we simply consider the one-dimension problem in x-direction:

∂φ

∂t
+
∂f(φ)

∂x
= 0 (2.25)

2.4.1 Time discretization

A third order TVD Runge-Kutta discretisation is used:

φ0 = φ(n)

φi =
i−1∑
k=0

[
αikφ

k − βik∆t
∂f(φk)

∂x

]
, i = 1, · · · , 3

φ(n+1) = φ3

with coefficients reported in Tab. 2.1.

αik k = 0 k = 1 k = 2

i = 1 1
i = 2 3/4 1/4
i = 3 1/3 0 2/3

βik k = 0 k = 1 k = 2

i = 1 1
i = 2 0 1/4
i = 3 0 0 2/3

Table 2.1 – Coefficients of the third-order TVD Runge-Kutta scheme

This scheme is stable under the Courant-Friedrichs-Lewy (CFL) condition:

∆t

∆x
≤ crλ0

where cr is CFL coefficient and λ0 is usually inversely proportional to max |f ′(φ)|. For the
above mentioned third order Runge-Kutta scheme, cr = 1.

The scheme is also said TVD (Total Variation Diminishing) since, provided that the
CFL condition is satisfied, we have

TV (φ(n+1)) ≤ TV (φ(n))

with TV (φ) =
∑

i |φi − φi−1|.
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2.4.2 Basic idea of the spatial discretization

The Finite Volume method is based on averaged values of φ(x) on control volume. To
emphasize this, we denote by φ̄i its average value on interval Ii = [xi−1/2, xi+1/2] and by
φi its approximation at point xi = (xi+1/2 + xi−1/2)/2. Thus we get

φ̄i =
1

∆xi

∫ xi+1/2

xi−1/2

φ(x)dx (2.27)

with ∆xi = xi+1/2 − xi−1/2.

We integrate Eq. (2.25) on Ii to get

dφ̄i(t)

dt
= − 1

∆xi

(
f(φxi+1/2

, t)− f(φxi−1/2
, t)
)

The fluxes f(φxi±1/2
, t) are undefined on cell faces. They have to be approximated, and we

note f̂i±1/2(t) ≈ f(φ̂i±1/2, t) this approximation. We then obtain

dφ̄i(t)

dt
= − 1

∆x
(f̂i+1/2 − f̂i−1/2) (2.28)

The problem is now to get a good approximation of φ(xi±1/2), from the average values φ̄i.
This is the aim of the ENO and WENO schemes.

2.4.3 Principle of reconstruction procedure for ENO andWENO schemes

The approximation of φi+1/2 (and φi−1/2) relies on either an Essentially Non-Oscillatory
(ENO) scheme or a Weighted Essentially Non-Oscillatory (WENO) scheme [140]. They
consist in searching different polynomial approximations of the primitive function of φ(x),
and then to calculate its derivative on cell face xi+1/2.

We note Q(x) a primitive function of φ(x), defined as

Q(x) =

∫ x

x−1/2

φ(ξ) dξ (2.29)

In the expression of any primitive, the lower limit x−1/2 is irrelevant and it can be replaced
by any other fixed point. We the have

Q(xi+1/2) =

∫ xi+1/2

x−1/2

φ(ξ) dξ =
i∑
l=0

∫ xl+1/2

xl−1/2

φ(ξ) dξ =
i∑
l=0

∆xiφ̄l

It results that the knowledge of cell averages φ̄l provides a reconstruction of a primitive
evaluated at the cell face xi+1/2, whatever the cell i considered. Thanks to reconstructions
Q(xi+1/2), we are able to approximate a primitive function Q(x) by interpolation polyno-
mials Pn(x) on Q(xi+1/2). Then, the derivate P ′n(x) provides good approximation of the
function φ(x), all the more accurate that the polynomial degree is high.

From now on, average values are written without extra notations: the bar over the level
set function is omitted.
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2.4.4 Essentially Non-Oscillatory (ENO) scheme

The main challenge of solving Hamilton-Jacobi type equation is that discontinuities in
derivatives are easily produced even with a smooth initial condition. Traditional low order
numerical methods, such as the first order Godunov or Roe schemes can resolve the dis-
continuities monotonically, without spurious numerical oscillations, but often at the cost of
too important diffusion. They also introduce relatively large numerical dissipation in the
smooth part of the solution. Hence, many grid points are required to compute complicated
smooth structures such as vortices or acoustic waves, especially for long time simulation
[140]. Specific numerical schemes, which satisfies monotonicity preserving, must be ap-
plied to get a unique viscosity solution, such as TVD (total variation diminishing) with
first-order accuracy, ENO (essentially non-oscillatory) or WENO (weighted ENO) with
high-order accuracy. For essentially non-oscillatory scheme, the basic idea is to choose the
local adaptive stencil to automatically achieve high order accuracy and the non-oscillatory
property near discontinuities.

The ENO scheme was originally developed by Harten and Osher [76] for the non-
oscillatory shock-capturing approximations of hyperbolic conservation laws, and then ex-
tended to Hamilton-Jacobi equations by Shu and Osher, motivated by the observation
of the close relationship between conservation laws and Hamilton-Jacobi equations ([141,
142]). The ENO scheme start from the first-order upwind scheme, also named the first-order
ENO scheme. Then local adaptive stencils are successively chosen to construct higher-order
ENO scheme.

2.4.4.1 Algorithm

The algorithm based on Sec. 2.4.3 to evaluate φi+1/2 with the ENO scheme writes:
1. Compute the divided difference table of φ, named H:

H[xi−1/2, xi+1/2] = φ[xi]

H[xi−1/2, xi+1/2, ....., xi+k+1/2] =
1

k + 1
φ[xi, ...., xi+k], k = 1, 2, ..., r

2. Upwinding building block: Let ui+1/2 ≡ ~v · ~ex the velocity on face xi+1/2 then{
If ui+1/2 ≥ 0, k

(1)
min = i

If ui+1/2 < 0, k
(1)
min = i+ 1

and Q(1)(x) = H[x
k
(1)
min−1/2

, x
k
(1)
min+1/2

](x− x
k
(1)
min−1/2

).

3. For l > 1,

a(l) = H[x
k
(l−1)
min −1/2

, ..., x
k
(l−1)
min +l−1/2

]

b(l) = H[x
k
(l−1)
min −1−1/2

, ..., x
k
(l−1)
min +l−1−1/2

]

then {
If |al| ≥ |bl|, c(l) = b(l), and k(l)

min = k
(l−1)
min − 1

If |al| < |bl|, c(l) = a(l), and k(l)
min = k

(l−1)
min

and form

Q(l)(x) = Q(l−1)(x) + c(l)

k
(l−1)
min +l−1∏
k=k

(l−1)
min

(x− xk−1/2)
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4. Qi+1/2(x) = Q(r+1)(x).
5. We then get

φ̂i+1/2 =
d

dx
Qi+1/2(x)|x=xi+1/2

2.4.4.2 Application to the third order ENO scheme

The convection term (2.24) in x-direction is discretized in cell [xi−1/2,j , xi+1/2,j ] ×
[yi,j−1/2, yi,j+1/2] as follows:

ui+1/2,jφ̂i+1/2,j − ui−1/2,jφ̂i−1/2,j

∆x

where the velocity component u ≡ ~v · ~ex is known at cell faces xi+1/2,j and the level
set function at the cell centers xi,j(the average value) only. For an uniform grid spacing,
φ̂i+1/2,j is approximated by the third order ENO scheme as follows.

– We denote

δφ−i = φi−1,j − φi,j , δφ0
i = φi+1,j − φi,j , δφ+

i = φi+2,j − φi+1,j

and

δ2φ−i = φi−2,j − 2φi−1,j + φi,j , δ2φ0
i = φi−1,j − 2φi,j + φi+1,j

δ2φ+
i = φi,j − 2φi+1,j + φi+2,j , δ2φ++

i = φi+1,j − 2φi+2,j + φi+3,j

– The first-order ENO scheme is reduced to

φ̂
(1)
i+1/2,j =

{
φi,j if ui+1/2,j ≥ 0

φi+1,j otherwise

the first-order upwind scheme.
– The second-order ENO scheme is formulated as

φ̂
(2)
i+1/2,j = φ̂

(1)
i+1/2,j+

1

2
max[sign(ui+1/2,j), 0]m(δφ−i , δφ

0
i )+

1

2
min[sign(ui+1/2,j), 0]m(δφ0

i , δφ
+
i )

with

m(a, b) =

{
a if |a| ≤ |b|
b otherwise

, sign(a) =


1 if a > 0
0 if a = 0
−1 if a < 0

– The third-order ENO is formulated as

φ̂
(3)
i+1/2,j = φ̂

(2)
i+1/2,j+

1

3
max[sign(ui+1/2,j), 0]

{
max[c−i , 0]m(δ2φ−i , δ

2φ0
i ) +

1

2
min[c−i , 0]m(δ2φ0

i , δ
2φ+

i )

}
+

1

3
min[sign(ui+1/2,j), 0]

{
1

2
max[c+

i , 0]m(δ2φ0
i , δ

2φ+
i ) + min[c+

i , 0]m(δ2φ+
i , δ

2φ++
i )

}
where

c−i = c(δφ−i , δφ
0
i ), c+

i = c(δφ0
i , δφ

+
i )

with

c(a, b) =

{
1 if |a| ≤ |b|
−1 otherwise
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2.4.5 Weighted Essentially Non-Oscillatory (WENO) scheme

The Weighted Essentially Non-Oscillatory (WENO) scheme was proposed in 1994 by
Liu et al. [103] for a third-order finite volume discretization. In 1996, third-order and fifth-
order finite difference WENO schemes in multi-space dimensions was constructed by Jiang
et Shu [84], with a general framework for the design of smoothness indicators and nonlinear
weights. Both ENO and WENO schemes rely on the idea of adaptive stencils to automat-
ically achieve high order accuracy and non-oscillatory property near discontinuities. The
advantage of the WENO scheme is its arbitrarily high order formal accuracy in smooth
regions while maintaining stable, non-oscillatory and sharp discontinuity transitions. Also
this scheme are suitable for problems containing both strong discontinuities and complex
smooth solution features [140].

The one-dimensional transport equation (2.28) writes

dφ̄i(t)

dt
= − 1

∆x
(f̂i+1/2 − f̂i−1/2) (2.30)

Let us consider one of the numerical fluxes f̂i±1/2, f̂i+1/2 for instance. This term is defined
as follows:

f̂i+1/2 = f̂(φ−i+1/2, φ
+
i+1/2) (2.31)

where φ±i+1/2 are computed from a WENO reconstruction procedure on different stencils.

The new numerical flux f̂(φ−, φ+) must be monotone and therefore it satisfies:
– f̂(φ−, φ+) is non-decreasing in its first argument φ− and non-increasing in its second

argument φ+;
– f̂(φ−, φ+) is consistent with the physical flux f(φ), i.e. f̂(φ, φ) = f(φ);
– f̂(φ−, φ+) is Lipschitz continuous with respect to both argument.

Amongst the monotone fluxes available in the literature, we use the Godunov flux (f̂(φ−, φ+) ≡
G(φ−, φ+)):

G(φ−i+1/2, φ
+
i+1/2) =


min

φ−
i+1/2

≤φ≤φ+
i+1/2

f(φ) if φ−i+1/2 ≤ φ
+
i+1/2

max
φ+
i+1/2

≤φ≤φ−
i+1/2

f(φ) if φ−i+1/2 > φ+
i+1/2

(2.32)

2.4.5.1 Basic idea of the WENO scheme

A– Local interpolation Let Φ1(x) be the polynomial of degree at most three which
interpolates the function Q(x) (Eq. (2.29)) at the four points xk+1/2, with k = i−3, · · · , i,
and let φ1(x) = dΦ1/dx its spatial derivative. The second order polynomial φ1(x) is unique
and it reconstructs φ(x) over the range S1 = {Ii−2, Ii−1, Ii}, where Ii designates the seg-
ment Ii = [xi−1/2, xi+1/2], in the sense that

1

xj+1/2 − xj−1/2

∫ xj+1/2

xj−1/2

φ1(x) dx = φ̄j , j = i− 2, · · · , i

This reconstruction also provides an approximation φ1(xi+1/2) of φ(x) at point xi+1/2. If
the function φ(x) is smooth over the stencil S1, we have φ1(xi+1/2)− φ(xi+1/2) = O(∆x3)
what indicates that this approximation is third order accurate at point xi+1/2.

Following the same reasoning, we get two additional reconstructions of φ(x) on the
stencils S2 = {Ii−1, Ii, Ii+1} and S3 = {Ii, Ii+1, Ii+2} which provide two new approxima-
tions φ2(xi+1/2) and φ3(xi+1/2) of φ(x) at point xi+1/2. If φ(x) is smooth enough over the
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stencil Sj , φj(xi+1/2)− φ(xi+1/2) = O(∆x3).

B– Global interpolation If we use the large stencil S(i) = {Ii−2, Ii−1, Ii, Ii+1, Ii+2}
which is the union of all three stencils S1, S2 and S3, then we would be able to obtain an
interpolation polynomial φ̃(x) of degree at most four, satisfying

1

xj+1/2 − xj−1/2

∫ xj+1/2

xj−1/2

φ̃(x) dx = φ̄j , j = i− 2, · · · , i+ 2

and providing an approximation φ̃(xi+1/2) with a fifth order accuracy: φ̃(xi+1/2)−φ(xi+1/2) =
O(∆x5) (provided that φ(x) is smooth enough on Si+1/2). The fifth order accurate approx-
imation φ̃(xi+1/2) can also be written as a linear convex combination of the three third
order approximations φj(xi+1/2) based on the smaller stencil Sj :

φ̃i+1/2 ≡ φ̃(xi+1/2) = γ1φ1(xi+1/2) + γ2φ2(xi+1/2) + γ3φ3(xi+1/2) (2.33)

where γ1, γ2, γ3, satisfying γ1 + γ2 + γ3 = 1, are usually referred to as the linear weights.

C– Linear convex combinaison and indicators The final WENO approximation
φ̂i+1/2 is another linear convex combination of the three third order approximations φ(j)

i+1/2

φ̂i+1/2 = ω1φ1(xi+1/2) + ω2φ2(xi+1/2) + ω3φ3(xi+1/2) (2.34)

where ωj are non-linear weights satisfying

ωj =
αj

α1 + α2 + α3
, j = 1, 2, 3 (2.35)

with ωj > 0 and ω1 +ω2 +ω3 = 1. The idea to determine the non-linear weights ωj is that
they must satisfy the following requirements:

– ωj ≈ γj if φ(x) is smooth in the big stencil S(i) = {Ii−2, Ii−1, Ii, Ii+1, Ii+2};
– ωj ≈ 0 if φ(x) has a discontinuity in the stencil Sj = {Ii+j−3, Ii+j−2, Ii+j−1}, j = 1

or 2 or 3, but it is smooth in at least one of the two other stencils.
To ensure this, the coefficient αj writes

αj =
γj

(ε+ βj)2
(2.36)

with ε is positive real number introduced to avoid the denominator becoming zero. As
suggested in [84], we chose ε = 10−6. The last coefficient βj is the indicator which measures
the smoothness of the polynomial φj(x) on stencil Sj :

βj =
k∑
l=1

(∆x)2l−1

∫ xi+1/2

xi−1/2

(
dl

dxl
φj(x)

)2

dx (2.37)

where k is the polynomial degree of pj , two in our case.
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2.4.5.2 Interpolation formula

The evaluation of fluxes f̂i+1/2 and f̂i−1/2 of Eq. (2.30) writes as follows:

f̂i+1/2 = G(φ−i+1/2, φ
+
i+1/2)

f̂i−1/2 = G(φ−i−1/2, φ
−
i−1/2)

with G(φ−, φ+) the monotone Godunov flux (2.32). The face values φ−i+1/2, φ
+
i+1/2, φ

−
i−1/2

and φ−i−1/2 are approximated with the WENO scheme on different stencils. The superscript
± indicates WENO reconstructions from stencils one point biased to the left (−) and one
point biased to the right (+) (see Tab. 2.2) Therefore, Eq. (2.34) gives

Stencil Ii−3 Ii−2 Ii−1 Ii Ii+1 Ii+2 Ii+3

φ−(xi−1/2) + + + + +
φ+(xi−1/2) + + + + +
φ−(xi+1/2) + + + + +
φ+(xi+1/2) + + + + +

Table 2.2 – Stencils for the reconstructions

φ−(xi−1/2) = ω
(i−1)−
1 φ1(xi−1/2) + ω

(i−1)−
2 φ2(xi−1/2) + ω

(i−1)−
3 φ3(xi−1/2),

on {Ii−3, Ii−2, Ii−1, Ii, Ii+1} (2.38a)

φ+(xi−1/2) = ω
(i)
0 φ0(xi−1/2) + ω

(i)
1 φ1(xi−1/2) + ω

(i)
2 φ2(xi−1/2),

on {Ii−2, Ii−1, Ii, Ii+1, Ii+2} (2.38b)

φ−(xi+1/2) = ω
(i)
0 φ0(xi+1/2) + ω

(i)
1 φ1(xi+1/2) + ω

(i)
2 φ2(xi+1/2),

on {Ii−2, Ii−1, Ii, Ii+1, Ii+2} (2.38c)

φ+(xi+1/2) = ω
(i+1)+
−1 φ−1(xi+1/2) + ω

(i+1)+
0 φ0(xi+1/2) + ω

(i+1)+
1 φ1(xi+1/2),

on {Ii−1, Ii, Ii+1, Ii+2, Ii+3} (2.38d)

A general formula is used for the second order interpolation polynomials,

φr(x) =

2∑
j=0

Brj(x)h3−r+jφ̄i−r+j , on stencil {Ii−r, Ii−r+1, Ii−r+2} (2.39)

where r = −1, · · · , 3 indicates the shift of the stencil and hm is the local grid size:

hm = ∆xi−3+m, m = 0, · · · , 6 (2.40)

The coefficient Brj(x) is written:

Brj(x) =

3∑
m=j+1

∑3
l=0,l 6=m Π3

q=0,q 6=m,l(x− xi−r+q+1/2)

Π3
l=0,l 6=m(xi−r+m+1/2 − xi−r+l+1/2)

, with
{
j = 0, · · · , 2
r = −1, · · · , 3 (2.41)
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We now can deduce approximations at faces xi+1/2, φr(xi+1/2), and xi−1/2, φr(xi−1/2):

φr(xi+1/2) =

2∑
j=0

b̂
(i)
r,jh3−r+jφ̄i−r+j , φr(xi−1/2) =

2∑
j=0

b
(i)
r,jh3−r+jφ̄i−r+j (2.42)

with b̂(i)r,j = Brj(xi+1/2), b(i)r,j = Brj(xi−1/2) and j = 0, · · · , 2. It is easy to prove that the
following equivalence yields

b̂
(i)
r,j ≡ b

(i−1)
r+1,j

A– Explicit formulations of coefficients b̂(i)r,j for irregular grids
b̂
(i)
2,2 =

1

h1 + h2 + h3
+

1

h2 + h3
+

1

h3

b̂
(i)
2,1 = b̂22 −

(h1 + h2 + h3)(h2 + h3)

(h1 + h2)h2h3

b̂
(i)
2,0 = b̂21 +

(h1 + h2 + h3)h3

h1h2(h2 + h3)

,


b̂
(i)
1,2 =

(h2 + h3)h3

(h2 + h3 + h4)(h3 + h4)h4

b̂
(i)
1,1 = b̂12 +

1

h2 + h3
+

1

h3
− 1

h4

b̂
(i)
1,0 = b̂11 −

(h2 + h3)h4

h2h3(h3 + h4)
b̂
(i)
0,2 = − h3h4

(h3 + h4 + h5)(h4 + h5)h5

b̂
(i)
0,1 = b̂02 +

h3(h4 + h5)

(h3 + h4)h4h5

b̂
(i)
0,0 = b̂01 +

1

h3
− 1

h4
− 1

h4 + h5

,



b̂
(i)
−1,2 =

h4(h4 + h5)

(h4 + h5 + h6)(h5 + h6)h6

b̂
(i)
−1,1 = b̂−12 −

h4(h4 + h5 + h6)

(h4 + h5)h5h6

b̂
(i)
−1,0 = b̂−11 +

(h4 + h5)(h4 + h5 + h6)

h4h5(h5 + h6)
(2.43)

To get b(i)r,j ≡ b̂
(i+1)
r−1,j , we have to select b̂(i)r−1,j and to substitute the all the subscript values

k of the grid spacings h by the value k − 1. For example we obtain:

b
(i)
3,2 ≡ b̂

(i+1)
2,2 =

1

h0 + h1 + h2
+

1

h1 + h2
+

1

h2

B– Explicit formulation for regular grids For uniform meshes, all hm are identical.
Expressions (2.43) are greatly simplified, and the different approximations on faces (Eq.
(2.42)) then write:

φ3(xi−1/2) = 11
6 φ̄i −

7
6 φ̄i+1 + 2

6 φ̄i+2

φ2(xi−1/2) = 2
6 φ̄i−1 + 5

6 φ̄i −
1
6 φ̄i+1

φ1(xi−1/2) = −1
6 φ̄i−2 + 5

6 φ̄i−1 + 2
6 φ̄i

φ0(xi−1/2) = 2
6 φ̄i−3 − 7

6 φ̄i−2 + 11
6 φ̄i−1

,


φ2(xi+1/2) = 11

6 φ̄i+1 − 7
6 φ̄i+2 + 2

6 φ̄i+3

φ1(xi+1/2) = 2
6 φ̄i + 5

6 φ̄i+1 − 1
6 φ̄i+2

φ0(xi+1/2) = −1
6 φ̄i−1 + 5

6 φ̄i + 2
6 φ̄i+1

φ−1(xi+1/2) = 2
6 φ̄i−2 − 7

6 φ̄i−1 + 11
6 φ̄i

2.4.5.3 Smoothness measure

The non-linear weights ω(i)
r , ω(i−1)−

r and ω
(i+1)+
r in Eqs. (2.38) are expressed as a

function of linear weights γ(i)
r , γ(i−1)−

r and γ
(i+1)+
r as well as a function of smoothness
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indicators β(i)
r , β(i−1)−

r and β(i+1)+
r as follows:

ω(i)
r =

α
(i)
r

α
(i)
0 + α

(i)
1 + α

(i)
2

, γ(i)
r =

γ
(i)
r(

ε+ β
(i)
r

)2 , r = 0, · · · , 2

ω(i−1)−
r =

α
(i−1)−
r

α
(i−1)−
1 + α

(i−1)−
2 + α

(i−1)−
3

, γ(i−1)−
r =

γ
(i−1)−
r(

ε+ β
(i−1)−
r

)2 , r = 1, · · · , 3

ω(i+1)+
r =

α
(i+1)+
r

α
(i+1)+
−1 + α

(i+1)+
0 + α

(i+1)+
1

, γ(i+1)+
r =

γ
(i+1)+
r(

ε+ β
(i+1)+
r

)2 , r = −1, · · · , 1

Larger is the smoothness indicator β(j)
r , less smooth is the function φr(x) in the stencil Ij .

In this section, we focus on the smoothness indicators β(i)
r , r = 0, · · · , 2, in Eqs. (2.38b)

and (2.38c) since the others can be deduced from these indicators. We choose a smoothness
indicator β(i)

r according to Jiang et Shu [84]:

β(i)
r =

2∑
l=1

(∆xi)
2l−1

∫ xi+1/2

xi−1/2

(
dl

dxl
φr(x)

)2

dx, r = 0, · · · , 2

The other indicators in Eqs. (2.38a) and (2.38d) are deduced from relations :

β(i−1)−
r ≡ β(i−1)

r−1 , and β(i+1)+
r ≡ β(i+1)

r+1

A– Smoothness indicators for φ+
i−1/2 and φ

−
i+1/2 with irregular grids Taking the

variable change Eq. (2.40) into account, the indicator β(i)
r simply writes

β(i)
r =

∫ xi+1/2

xi−1/2

h3

(
dφr
dx

)2

dx+

∫ xi+1/2

xi−1/2

h3
3

(
d2φr
dx2

)2

dx (2.44)

The two terms of the right-hand side of Eq. (2.44) are considered independently.
– The second integral in Eq. (2.44) is easily evaluated since the second derivative of
φr(x) is constant and φr(x) is defined by Eq. (2.39). We then have:

∫ xi+1/2

xi−1/2

(h3)3

(
d2φr
dx2

)2

dx = (h3)4

 2∑
j=0

B
′′
rjh3−r+jφ̄i−r+j

2

where B′′rj(x) is constant, B′′rj(x) ≡ B′′rj with

B
′′
r2 =

6

(h3−r + h4−r + h5−r)(h4−r + h5−r)h5−r
, r = 0, · · · , 2

B
′′
r1 = B

′′
r2 −

6

(h3−r + h4−r)h4−rh5−r
, r = 0, · · · , 3

B
′′
r0 = B

′′
r1 +

6

h3−rh4−r(h4−r + h5−r)
, r = 0, · · · , 2
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– The first right-hand side term in Eq. (2.44) involves the integration of a quadratic
function. This is performed with the Simpson’s quadrature:∫ xi+1/2

xi−1/2

h3(φ
′
(x))2dx =

(h3)2

6

((
dφr
dx

(xi−1/2)

)2

+ 4

(
dφr
dx

(xi)

)2

+

(
dφr
dx

(xi+1/2)

)2
)

Again, the derivative φ′(x) is obtained from Eq. (2.39):

dφr
dx

(x) =
2∑
j=0

B
′
rj(x)h3−r+jφ̄i−r+j

The expressions B′rj(xi−1/2), B′rj(xi) and B′rj(xi+1/2) are:

B
′
22(xi−1/2) =

2(h1 + 2h2)

(h1 + h2 + h3)(h2 + h3)h3

B
′
21(xi−1/2) = B

′
22(xi−1/2)− 2(h1 + 2h2 − h3)

(h1 + h2)h2h3

B
′
20(xi−1/2) = B

′
21(xi−1/2) +

2(h1 + h2 − h3)

h1h2(h2 + h3)

B
′
12(xi−1/2) =

2(h2 − h3)

(h2 + h3 + h4)(h3 + h4)h4

B
′
11(xi−1/2) = B

′
12(xi−1/2)− 2(h2 − h3 − h4)

(h2 + h3)h3h4

B
′
10(xi−1/2) = B

′
11(xi−1/2) +

2(h2 − 2h3 − h4)

h2h3(h3 + h4)

B
′
02(xi−1/2) = − 2(2h3 + h4)

(h3 + h4 + h5)(h4 + h5)h5

B
′
01(xi−1/2) = B

′
02(xi−1/2) +

2(2h3 + h4 + h5)

(h3 + h4)h4h5

B
′
00(xi−1/2) = B

′
01(xi−1/2)− 2(2h3 + 2h4 + h5)

h3h4(h4 + h5)

and

B
′
rj(xi) = B

′
rj(xi−1/2) +

1

2
h3B

′′
rj , j = 0, · · · , 2

B
′
rj(xi+1/2) = B

′
rj(xi−1/2) + h3B

′′
rj , j = 0, · · · , 2

B– Smoothness indicators for φ+
i−1/2 and φ−i+1/2 with regular grids For

the uniform meshes, we then get:

β
(i)
1 =

13

12
(φ̄i−2 − 2φ̄i−1 + φ̄i)

2 +
1

4
(φ̄i−2 − 4φ̄i−1 + 3φ̄i)

2

β
(i)
2 =

13

12
(φ̄i−1 − 2φ̄i + φ̄i+1)2 +

1

4
(φ̄i−1 − φ̄i+1)2

β
(i)
3 =

13

12
(φ̄i − 2φ̄i+1 + φ̄i+2)2 +

1

4
(3φ̄i − 4φ̄i+1 + φ̄i+2)2
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2.4.5.4 Computation of linear weights

Using relation (2.39) on the extended stencil {Ii−r, Ii−r+1, Ii−r+2, Ii−r+3, Ii−r+4}, we
can construct a fifth-order interpolation approximation φ̃r(x) such that

φ̃r(x) =

4∑
j=0

B̃rj(x)h3−r+jφ̄i−r+j

with

1

h3−r+j

∫ x3−r+j+1/2

x3−r+j−1/2

φ̃r(x) dx = φ̄3−r+j , r = 1, · · · , 3, and j = 0, · · · , 4

The functions B̃rj(x) are expressed similarly to Eq. (2.41):

B̃rj(x) =
5∑

m=j+1

∑5
l=0,l 6=m Π5

q=0,q 6=m,l(x− xi−r+q+1/2)

Π5
l=0,l 6=m(xi−r+m+1/2 − xi−r+l+1/2)

The convex linear combinations write:

φ̃3(xi−1/2) =

3∑
j=1

γ3−
j φj(xi−1/2)

φ̃2(xi−1/2) =
2∑
j=0

γ2+
j φj(xi−1/2), φ̃2(xi+1/2) =

2∑
j=0

γ2−
j φj(xi+1/2)

φ̃1(xi+1/2) =

1∑
j=−1

γ1+
j φj(xi+1/2)

A– Linear weight for irregular grids We get:

γ3−
3 =

h3(h3 + h4)

(h0 + h1 + h2 + h3)(h0 + h1 + h2 + h3 + h4)

γ3−
2 =

(h0 + h1 + h2)(h3 + h4)(h0 + 2h1 + 2h2 + 2h3 + h4)

(h0 + h1 + h2 + h3)(h1 + h2 + h3 + h4)(h0 + h1 + h2 + h3 + h4)

γ3−
1 =

(h1 + h2)(h0 + h1 + h2)

(h1 + h2 + h3 + h4)(h0 + h1 + h2 + h3 + h4)



γ2+
2 =

(h3 + h4)(h3 + h4 + h5)

(h1 + h2 + h3 + h4)(h1 + h2 + h3 + h4 + h5)

γ2+
1 =

(h1 + h2)(h3 + h4 + h5)(h1 + 2h2 + 2h3 + 2h4 + h5)

(h1 + h2 + h3 + h4)(h2 + h3 + h4 + h5)(h1 + h2 + h3 + h4 + h5)

γ2+
0 =

h2(h1 + h2)

(h2 + h3 + h4 + h5)(h1 + h2 + h3 + h4 + h5)



γ2−
2 =

h4(h4 + h5)

(h1 + h2 + h3 + h4)(h1 + h2 + h3 + h4 + h5)

γ2−
1 =

(h1 + h2 + h3)(h4 + h5)(h1 + 2h2 + 2h3 + 2h4 + h5)

(h1 + h2 + h3 + h4)(h2 + h3 + h4 + h5)(h1 + h2 + h3 + h4 + h5)

γ2−
0 =

(h2 + h3)(h1 + h2 + h3)

(h2 + h3 + h4 + h5)(h1 + h2 + h3 + h4 + h5)
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

γ1+
1 =

(h4 + h5)(h4 + h5 + h6)

(h2 + h3 + h4 + h5)(h2 + h3 + h4 + h5 + h6)

γ1+
0 =

(h2 + h3)(h4 + h5 + h6)(h2 + 2h3 + 2h4 + 2h5 + h6)

(h2 + h3 + h4 + h5)(h3 + h4 + h5 + h6)(h2 + h3 + h4 + h5 + h6)

γ1+
−1 =

h3(h2 + h3)

(h3 + h4 + h5 + h6)(h2 + h3 + h4 + h5 + h6)

B– Linear weight for regular grids

γ3−
3 =

1

10
, γ3−

2 =
6

10
, γ3−

1 =
3

10

γ2+
2 =

3

10
, γ2+

1 =
6

10
, γ2+

0 =
1

10

γ2−
2 =

1

10
, γ2−

1 =
6

10
, γ2−

0 =
3

10

γ1+
1 =

3

10
, γ1+

0 =
6

10
, γ1+
−1 =

1

10

2.5 Discretization of signed distance equation

The idea which governs the discretization of the signed distance function is very similar
to what was applied for the transport of the level set function. We use the third order TVD
Runge-Kutta discretization:

d0 = d(n) (2.45a)

di =
i−1∑
k=0

[
αikd

k − βik∆t f(dk)
]
, i = 1, · · · , 3 (2.45b)

d(n+1) = d3 (2.45c)

with f(dk) = s(d0)(‖∇dk‖ − 1) and coefficients αik and βik given in Tab. 2.1.

The spatial discretization cannot be achieved with a finite volume method; a finite
difference method is used instead. The issue is the computation the first order derivatives
∂d/∂x and ∂d/∂y at the cell center (xi, yj). This is performed with either second-order
ENO or fifth-order WENO reconstruction methods, both of these approaches being based
on the monotone Godunov flux.

The main reconstruction of the derivatives is succinctly explained. Let us consider the
derivative in x direction. Then, its average value is known at xi±1/2:

∂d

∂x
(xi±1/2, yj) ≡ d(1)±

x =
1

xi − xi±1

∫ xi

xi±1

∂d

∂x
dx =

di,j − di±1,j

xi − xi±1
(2.46)

Since the average values are known on cell faces, the ENO or WENO reconstructions
provide approximates at the cell center (xi, yj), ∂d∂x(xi, yj)

±. In the ENO algorithm for the
transport equation of the level set function (Sec. 2.4.4.1), the upwind approximation allows
to select one of the two approximations on each face. For the signed distance function, such
a choice is unclear. To overcome this difficulty, the monotone Godunov flux (2.32) is used.
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2.5.1 ENO scheme

The following second-order ENO scheme is applied for the signed distance function
d(x, y) (Eq. (2.14)) for a regular grid spacing ∆x and ∆y :

1. Approximations of x-derivatives (similar relations hold for y-derivatives)
(a) First-order approximations:

d(1)−
x =

di,j − di−1,j

∆x
, d(1)+

x =
di+1,j − di,j

∆x

(b) Second-order approximations:

d(2)−
x = d(1)−

x +
∆x−

2

δ2d−

δx2
, d(2)+

x = d(1)+
x − ∆x+

2

δ2d+

δx2

where

δ2d−

δx2
= minmod(d(1), d(2)),

δ2d+

δx2
= minmod(d(2), d(3))

minmod(a, b) =

{
sign(a) minmod(|a| , |b|) if a× b > 0
0 otherwise

and d(1), d(2) and d(3) are the central difference approximation of ∂2d/∂x2 on
stencils (xi−2,j , xi−1,j , xi,j), (xi−1,j , xi,j , xi+1,j), and (xi,j , xi+1,j , xi+2,j), respec-
tively:

d(l) =
di+l−1,j − 2di+l−2,j + di+l−3,j

(∆x)2
, l = 1, · · · , 3

2. Computation of ‖∇d‖.
Let

a = d(2)−
x , b = d(2)+

x

c = d(2)−
y , d = d(2)+

y

The computation of ‖∇d‖ is performed by Godunov’s method [153]:

‖∇d‖ =


D+ if s(d0) > 0
D− if s(d0) < 0
0 otherwise

(2.47)

with

D+ =
√

max(a2
+, b

2
−) + max(c2

+, d
2
−) D− =

√
max(a2

−, b
2
+) + max(c2

−, d
2
+)

where

a+ = max(a, 0), a− = min(a, 0)

b+ = max(b, 0), b− = min(b, 0)

c+ = max(c, 0), c− = min(c, 0)

d+ = max(d, 0), d− = min(d, 0)

Therefore, the function f(dk) in the Runge-Kutta method (2.45) writes

f(dk) ≡ s(d0)(‖∇dk‖−1) = max
[
s(d0), 0

]
(D+−1)+min

[
s(d0), 0

]
(D−−1) (2.48)
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2.5.2 WENO scheme

Like the ENO scheme, the reconstruction is based on average values (See Eq. (2.46)):

d̄
(1)
i+k+1 =

1

xi+k+1 − xi+k

∫ xi+k+1

xi+k

∂d

∂x
dx =

di+k+1,j − di+k,j
xi+k+1 − xi+k

where {xi+k, k = −3, ..., 2} stands for the left-biased stencil (Fig. 2.4(a)), and {xi+k, k =
−2, ..., 3} corresponds to the right-biased stencil (Fig. 2.4(b)). Using the grid spacing

i−2 i−1 i+1 i+2ii−3

d
(1)−
x,1

d
(1)−
x,2

d
(1)−
x,0

d̄
(1)
i−2 d̄

(1)
i−1 d̄

(1)
i d̄

(1)
i+1 d̄

(1)
i+2

d
(1)−
x

(a) Left biased stencil

i−2 i−1 i i+1 i+2 i+3

d
(1)+
x,1

d
(1)+
x,2

d
(1)+
x,0

d̄
(1)
i−1 d̄

(1)
i d̄

(1)
i+1 d̄

(1)
i+2 d̄

(1)
i+3

d
(1)+
x

(b) Right biased stencil

Figure 2.4 – Left and right biased stencils for the signed distance equation

hj ≡ xi−3+j − xi−4+j , j = 1, ..., 6

we get:

d̄
(1)
i+k+1 =

di+k+1,j − di+k,j
h4+k

The left- and right-biased approximations d(1)−
x and d(1)+

x of (∂d/∂x)(xi, yj) write:

d(1)±
x = ω±0 d

(1)±
x,0 (xi) + ω±1 d

(1)±
x,1 (xi) + ω±2 d

(1)±
x,2 (xi)

with d(1)±
x,j (xi), j = 0, · · · , 2, defined in Tab. 2.3. The coefficients ω±j , j = 0, · · · , 2, of the

linear convex combination are expressed as follows:

ω±j =
α±j

α±0 + α±1 + α±2
, j = 0, · · · , 2

with

α±j =
γ±j(

ε+ β±j

)2

and ε = 10−6, for instance. The linear weights γ±j , j = 0, · · · , 2, are reported in Tab. 2.5.
The smoothness indicators β±j are indicated in Tab. 2.4 for a regular grid size. For irregular
grids the indicators β±j , j = 0, · · · , 2 are computed according to the formula:

β−j =
(h3)2

6

[(
2∑

k=0

B
′−
jk (xi−1)h3−j+kd̄

(1)
i−j+k−1

)2

+

4

(
2∑

k=0

B
′−
jk (xi−1/2)h3−j+kd̄

(1)
i−j+k−1

)2

+

(
2∑

k=0

B
′−
jk (xi)h3−j+kd̄

(1)
i−j+k−1

)2 ]
+

(h3)4

(
2∑

k=0

B
′′−
jk h3−j+kd̄

(1)
i−j+k−1

)2
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and

β+
j =

(h4)2

6

[(
2∑

k=0

B
′+
jk (xi)h4−j+kd̄

(1)
i−j+k

)2

+

4

(
2∑

k=0

B
′+
jk (xi+1/2)h4−j+kd̄

(1)
i−j+k

)2

+

(
2∑

k=0

B
′+
jk (xi+1)h4−j+kd̄

(1)
i−j+k

)2 ]
+

(h4)4

(
2∑

k=0

B
′′+
jk h4−j+kd̄

(1)
i−j+k

)2

where coefficients B
′±
jk and B

′′±
jk are provided by Tab. 2.4.
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=
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−
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Non-uniform grid Uniform grid

d
(1)+
x γ+

2 =
(h3 + h4)(h3 + h4 + h5)

(h1 + h2 + h3 + h4)(h1 + h2 + h3 + h4 + h5)

3

10

γ+
1 =

(h1 + h2)(h3 + h4 + h5)(h1 + 2h2 + 2h3 + 2h4 + h5)

(h1 + h2 + h3 + h4)(h2 + h3 + h4 + h5)(h1 + h2 + h3 + h4 + h5)

6

10

γ+
0 =

h2(h1 + h2)

(h2 + h3 + h4 + h5)(h1 + h2 + h3 + h4 + h5)

1

10

d
(1)−
x γ−2 =

h3(h3 + h4)

(h0 + h1 + h2 + h3)(h0 + h1 + h2 + h3 + h4)

1

10

γ−1 =
(h0 + h1 + h2)(h3 + h4)(h0 + 2h1 + 2h2 + 2h3 + h4)

(h0 + h1 + h2 + h3)(h1 + h2 + h3 + h4)(h0 + h1 + h2 + h3 + h4)

6

10

γ−0 =
(h1 + h2)(h0 + h1 + h2)

(h1 + h2 + h3 + h4)(h0 + h1 + h2 + h3 + h4)

3

10
Table 2.5: Linear weights of the fifth-order WENO scheme for uniform and non-uniform
grids

2.6 Some improvements of the signed distance equation

Although the continuous signed distance equation does not move the zero level function
(the interface), this property is more or less lost at the discrete level. This issue is the
subject of the following subsections.

2.6.1 Constrained signed distance equation

As mentioned in Sec. 2.2.3, the right-hand side of the signed distance equation may be
modified in order the volume enclosed in the level-set function is better preserved. This is
performed by substituting the signed distance equation by the constraint signed distance
equation (2.20):

∂d

∂τ
+ s(d0) (‖∇d‖ − 1) = λδ(d)‖∇d‖

with

λ = −

∫
Ω
δ(d)

(
s(d0) (1− ‖∇d‖)

)
d~x∫

Ω
(δ(d))2‖∇d‖ d~x

From the numerical point of view, we follow the approach given by Sussman et Fatemi
[151]. We first solve the signed distance equation (see Sec. 2.5) on cell Ωi,j , of center
~xi,j = (xi, yj), what is written in an abridged version (first order time discretization):

d̃
(n+1)
i,j = d

(n)
i,j + ∆tLi,j(d

(0), d(n))

where Li,j(d(0), d(n)) stands for s(d(0)
i,j )

(
1− ‖∇i,jd(n)‖

)
. Then, the intermediate signed dis-

tance function d̃(n+1)
i,j is updated to get the constrained signed distance d(n+1):

d
(n+1)
i,j = d̃

(n+1)
i,j + ∆tλi,jδε(d

(0)
i,j )‖∇i,jd(0)‖
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The local coefficient λi,j writes:

λi,j =

−
∫

Ωi,j

δε(d
0
i,j)

d̃
(n+1)
i,j − d(0)

i,j

∆t∫
Ωi,j

[
δε(d

(0)
i,j )
]2
‖∇i,jd(0)‖

(2.49)

with δε(d) is a smoothed representation of the Dirac "function" (see Eq. (2.12)). The
numerical integrations on Ωi,j = [xi−1/2, xi+1/2] × [yj−1/2, yj+1/2] are performed using a
nine-points stencil: ∫

Ωi,j

g ≈ h2

24

16gi,j +

1∑
m,n=−1

(m,n)6=(0,0)

gi+m,j+n



This constraint signed distance method usually provides a better mass conservation
than its non-constraint counterpart. However, and as it will be shown later, it often results
a interface shape significantly distorted.

2.6.2 Subcell fix method

As noted here-above, the discrete signed distance equation may displace the interface
and thus damage the fluid volume conservation. Russo et Smereka [136] introduced the
so-called subcell fix method in order to limit the lose of accuracy of the zero-level set. The
main idea relies on the explicit accounting of an approximation of the interface location
for the calculation of the signed distance equation.

The use of the fifth-order ENO reconstruction leads to use five points for the av-
erage values d̄(1)

k on each stencil, and six points when considering the local values d(1)
k .

For example, the right-biased stencil for the average values concerns "faces" positions
(xi−3/2, xi−1/2, xi+1/2, xi+3/2, xi+5/2) whereas the corresponding local values are located
at cells center (xi−2, xi−1, xi, xi+1, xi+2, xi+3). If the interface passes through any of two
adjacent points among these six cell centers, its position xint is searched through a third-
order polynomial interpolation. Assuming xi < xint < xi+1, then the basic six-points
stencil becomes (xi−2, xi−1, xi, xint, xi+1, xi+2) and the corresponding distance values are
(di−2, di−1, di, 0, di+1, di+2). It is worth to notice that it is essential the scheme handles
irregular grids, since the interface location will always break the eventual regularity of the
basic mesh.

The approximation of the zero-level set abscissa xint rests on a third-order interpolation
method. The main issue is to choose the four points giving rise to a good approximation of
the interface. If the solution is locally smooth, any choice should give an equivalent result.
But the signed distance function has not necessarily continuous derivatives in the vicinity
of the interface. Therefore, it can result an erroneous evaluation of xint. We now discuss
how the four points are chosen.

Once the product between two adjacent level set values are negative, a zero-level set is
expected. Let us assume this occurs between xi and xi+1, for example. The linear approx-
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imation p1(x) simply writes:

p1(x) = d(xi) + d[xi, xi+1](x− xi)

where d[xi, xi+1] is the first divided difference of d between points xi and xi+1. Starting
from p1(x), the polynomial p3(x) is constructed recursively on points {xi−rn , · · · , xi−rn+n},
with 0 ≤ rn ≤ n − 1 and n the degree of the polynomial pn(x). The main question now
raised concerns the choice of the integer value rn (function of n), or in other words, do
we consider the left or right node of the current stencil as a new interpolation point? The
idea developed in our subcell fix method is to keep the point which provides the smallest
divided difference. Thus, starting from r1 = 0, by induction we get:

– do:
If |d[xi−rn−1, xi−rn , · · · , xi−rn+n]| < |d[xi−rn , xi−rn , · · · , xi−rn+n+1]| then rn+1 =
rn − 1, otherwise rn+1 = rn, and

pn+1(x) = pn(x) + d[xi−rn+1 , xi−rn , · · · , xi−rn+n]
n+1∏
k=1

(x− xi−rn)

Once the polynomial is determined, a Newton-Raphson method is used to achieve the
root xint lying between xi and xi+1 of the third-order polynomial p3(x):

1. The value x0
int is set such that p2(x0

int) = 0, with xi < x0
int < xi+1.

2. do for k ≥ 0,

δx = − p3(xkint)

dp3

dx
(xkint)

xk+1
int = xk+1

int + δx

if |δx|/|xi+1 − xi| < 10−6 or k > 3 stop
3. if k ≤ 3, xint = xk+1

int , otherwise xint = x0
int.

The rate of convergence of the Newton-Raphson method being second-order, a very accu-
rate solution is expected within at most 3 iterations, otherwise, the interface location is
kept to its initialization value.

2.7 Restriction on the discrete time step

Since, the source term S(~v) (Eq. (2.21b)) in Eq. (2.23) consists of explicit contributions
(convection, surface tension, gravity and the subsidiary viscous terms), the time step must
be restricted to enforce the stability of the numerical schemes. According to [34],

– the limit time step for the surface tension writes

∆tσ = min
Ωδ

√
(ρl + ρg)∆h3

4πσ

where ∆h = min(∆x,∆y) and Ωδ represents the transition zone where δ(φ) > 0.
– the limit time step for the convective terms must fulfill the Courant-Friedrichs-Lewy

(CFL) condition:

∆tu = min
Ω

C∆x

|u|+ |v|
where C = 0.5 and Ω represents the whole computational domain.
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– the limit time step associated with the gravity is expressed by

∆tg = min
Ω

√
∆y

g

– and limit time step based on the subsidiary viscous terms are

∆tµ = min
Ωδ

ρ∆h2

2µ

We then get the restriction on the time step for the overall scheme:

∆tn+1 = min(∆tu,∆tσ,∆tg,∆tµ)
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Chapter 3

Validation

This chapter presents numerical studies with the aim at validating the different numeri-
cal schemes and implementation choices described in the previous chapter. The Essentially
Non Oscillatory (ENO) and Weighted Essentially Non Oscillatory (WENO) discretizations
are first examined for the transport equations. Then, solutions of the signed distance equa-
tion are studied by comparing the results achieved using the basic method and its two
variants, namely the constraint and subcell fix methods. Afterwards, the coupling between
the transport equation and the signed distance equation is considered by studying, first
the classical Zalesak problem and then the stretching of a circular fluid element. At last,
this chapters ends with dealing immiscible fluid flows.

3.1 Definition and measure of errors

3.1.1 Relative volume conservation error

The relative error on the volume conservation, defined by Yue et al. [168], measures the
difference between volumes V delimited by the computed interface and the exact interface.
This is defined as follows:

L1(V ) =

∣∣∣∣∫
Ω
H(φexact) dΩ−

∫
Ω
H(φcomputed) dΩ

∣∣∣∣∫
Ω
H(φexact) dΩ

(3.1)

where Ω is the computational domain.

If necessary, continuous integrals are substituted by numerical quadratures. Usually,
the exact contribution in Eq. (3.1) is calculated exactly whereas the approximated mass is
numerically evaluated. This is performed by the following algorithm.
Let ~xK the coordinates of the cell center of any rectangular cell K and ~xK(i), i = 1, · · · , 4,
its four vertices.

– Set the variable Int to zero;
– For all control volumes K, do

– If the euclidean distance between xK and any vertex xK(i), i = 1, · · · , 4, is larger
than φK , the numerical interface cuts the cell K. Then, divide the cell K into tiny
pieces Kj , e.g. j = 1, · · · , 1000× 1000. For each sub-rectangle Kj , do
– Evaluate the numerical values φ onto newly created pieces Kj , namely φKj , by

using bi-quadratic interpolations based on cell K and its eight neighboring cells;
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– Use the one-point Gauss quadrature method on cell Kj to compute an approx-
imation Intj :∫

Kj

H(φcomputed) dΩ ≈ mKj × sign(max(φKj , 0)) ≡ Intj

with mKj the size of the tiny sub-cell Kj and sign(x) = 1 if x > 0, otherwise
sign(x) = 0

– Int← Int+ Intj ;
– End do;

– End do;
– Int provides an approximation of the requested integral.

It is worth noticing that the one-point Gauss method is only one order accurate because
the integrand is discontinuous.

3.1.2 Level Set error in L2-norm

The volume conservation error is not the only standard to measure the accuracy of
schemes. Indeed, this error can remain weak whereas the shape of the computed interface
may greatly differ from the expected one. So, in addition to the volume conservation error,
we monitor the relative error of the discrete level set function in L2-norm. This calculation
is performed on the sub-domain Ωtest which can correspond to the whole computation
domain or just a part of it centered around the interface. The discrete expression of the
Level Set error in L2-norm writes at time t(n):

L2(φ,Ωtest) =

√√√√√√√
∑

K∈M,~xK∈Ωtest

mK(φ
(n)
K − φ(~xK , t(n)))

2

∑
K∈M,~xK∈Ωtest

mKφ(~xK , t(n))
2 (3.2)

with φ(n)
K the discrete approximation of the exact solution φ(~xK , t

(n)).

3.1.3 Curvature error in L2-norm

In Sun et Tao [146], the accuracy of the scheme is evaluated by the measure of the
error on the interface curvature (see (2.8) page 136 for its mathematical definition).

Since this error is only applied for circular interfaces of radius R, the L2 discrete
curvature error computed on a sub-domain Ωtest centered on the interface is defined as:

L2(κ,Ωtest) =

√√√√√√√
∑

K∈M,~xK∈Ωtest

mK

(
κ

(n)
K ×R− 1

)2

∑
K∈M,~xK∈Ωtest

mK
(3.3)

with κ(n)
K the approximated curvature on cellK. Obviously, this error is expected to increase

when the sub-domain of calculation Ωtest get thicker.
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3.2 One dimensional test problem for transport equation

The discrete initial condition of the level-set φ on cell center ~xK is defined by computing
the mean value of the analytical initial condition on cell K

φK =
1

mK

∫
K
φ(x, t = 0) d~x

The numerical tests presented in this section consist of the transport at unit velocity
of different initial conditions. The level-set function φ(x, t) is then solution of Eq. (2.9),
with ~v(~x, t) ≡ ~ex. The computational domain length is fixed to 100 and the number of
regular control volumes ranges from 50 up to 12800. Therefore, the mesh size h extends
from 1/128 to 2. The time step is related to the Courant-Friedrichs-Lewy condition fixed
to CFL = 0.1.

3.2.1 Smooth initial conditions

The first study is devoted to periodic initial conditions:

φ(x, t = 0) = sin(4πx/100), 0 ≤ x ≤ 100 (3.4)

Figure 3.1 shows the L2(φ,Ω) error at time t = 10 s as the function of grid size h, for the

(a) ENO scheme (b) WENO scheme

Figure 3.1 – One dimensional test problem for transport equation. L2(φ,Ω) errors for ENO
and WENO schemes. Initial condition (3.4).

Essentially Non Oscillatory (ENO) and Weighted Essentially Non Oscillatory discretiza-
tions. As expected, the discrete approximations converge to the exact solution with third-
and fifth-order accuracies for ENO and WENO schemes.

Another simulation is performed using the ENO scheme, but with the new initial con-
dition

φ(x, t = 0) = sin4(πx/100), 0 ≤ x ≤ 100, (3.5)
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(a) Sensitivity to the grid size h (b) Sensitivity to the number of temporal iterations n

Figure 3.2 – One dimensional test problem for transport equation. L2(φ,Ω) errors for ENO
discretization. Initial condition (3.5).

Figure 3.2 presents the L2(φ,Ω) errors at three instants t = 0.2, t = 0.4 and t = 0.8,
and for different meshes. Figure 3.2(a) shows that solution converges at third-order on a
grid size interval all the more extended that the computational time is small. Afterwards,
the error begins to increase dramatically what indicates that the ENO scheme does not
converge to the exact solution for the finest grids. The break in the convergence behavior
appears, for the three integration times studied, for different grid sizes hl: roughly speak-
ing, hl = 1/32 for t = 0.2, hl = 1/16 for t = 0.4 and hl = 1/8 for t = 0.8. Accounting for
the value of the CFL number (CFL = 0.1), this correspond to the same number of total
temporal iterations (64 iterations). This result is illustrated in Fig. 3.2(b) which presents
the L2(φ,Ω) errors as a function of the number of time iterations n necessary to reach
time tmax = 0.2, 0.4 or 0.8. This number of time iterations n is related to the grid size h
by relation n = tmax/∆t = tmax/(CFL × h). Reducing the CFL number by an order of
magnitude does not lead to a significant improvement. In this example, the spatial ENO
discretization seems to become unstable with time iterations, and that independently from
the CFL number.

The two preceding numerical tests lead to either a convergence or a non-convergence of
the ENO scheme, depending on the initial condition. However, the initial condition (3.5)
can be rewritten as:

sin4
( πx

100

)
=

1

8

[
sin
(

4
πx

100
+
π

2

)
− 4 sin

(
2
πx

100
+
π

2

)
+ 3
]

(3.6)

In this expression, the first term of the right-hand side corresponds to the initial condition
(3.4) with a different phase. Moreover, we have verified (but not presented) that the ENO
scheme converges also when the initial condition is set to the second term of the right-
hand side of Eq. (3.6). Therefore, the sum of two initial conditions, satisfying for each of
them the third-order convergence properties, produces a solution whose convergence fails.
This result highlights the non-linear behavior of the Essentially Non Oscillatory scheme.
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The non-linear aspect comes from the choice of the computation stencil used by the ENO
method to reconstruct the level set function on cell faces. Indeed, Rogerson et Meiburg
[134] showed that the selected stencil may be unsuited, what produces temporal insta-
bilities. The Weighted Essentially Non Oscillatory (WENO) discretization scheme is less
subjected to such problem, since the stencil is fixed: only the weights of the interpolations
on sub-stencils evolve with the local smoothness of the solution. Figure 3.3 clearly con-

Figure 3.3 – One dimensional test problem for transport equation. L2(φ,Ω) errors for
WENO discretization. Initial condition (3.5) and t = 0.8.

firms that the WENO discretization scheme converges with a fifth-order accuracy, except
for smallest grid sizes where the order in slightly reduced, probably due to computation
accuracy.

3.2.2 Smooth solution on irregular grid

The next test case aims at validating the transport equation with WENO discretiza-
tion on an irregular grid. Boundary conditions are set to analytical solution. The initial
condition writes:

φ(x, t = 0) = arctan(0.2(x− 10)), 0 ≤ x ≤ 100, (3.7)

In Fig. 3.4 is drawn φ(x, t = 0), φ(x, t = 50) and the nodes location. The L2 error,
represented in Fig. 3.5 for regular and irregular grid size distribution, shows that the fifth-
order WENO scheme is well recovered.

3.2.3 Initial condition with discontinuous derivative

The purpose of this section is to study the transport of a continuous function char-
acterized by a local jump in derivatives, abusively called shock in this report. The initial
condition

φ(x, t = 0) = |x− 10|, 0 ≤ x ≤ 100
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Figure 3.4 – Initial condition (3.7), φ(x, t = 50) and nodes location for irregular grid.

Figure 3.5 – Initial condition (3.7), φ(x, t = 50) and nodes distribution for regular and
irregular grids.

is continuous but the derivatives are not defined at xs(t = 0) = 10. Figure 3.6 illustrates
the initial condition and φ(x, t = 50) for two grid sizes h = 2 and h = 1/8. The numerical
solution is clearly smoothed around xs(t = 50) = 60, and this regularization is all the
more pronounced since the grid is coarse. To evaluate the effect of shock on the numerical
solution, we have considered three sub-domains. One is centered on the shock location
xs and extends from xs − 6 to xs + 6, and the two others are located upstream ([0;xs −
6]) and downstream ([xs + 6; 100]). Table 3.1 collects the relative errors of the level set
function at t = 50 and local orders of convergence of the numerical methods. We see
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Figure 3.6 – Transport of the initial condition (3.2.3). Initial solution and φ(x, t = 50) for
two grid sizes h = 2 and h = 1/8. WENO scheme.

ENO scheme
Grid L2(φ, [xs + 6; 100]) L2(φ, [0;xs − 6]) L2(φ, [xs − 6;xs + 6])

error Order error Order error Order
50 3.5E-03 NA 2.3E-03 NA 2.0E-01 NA
100 3.2E-04 3.4 1.8E-04 3.7 9.7E-02 1.0
200 2.8E-06 6.9 3.1E-06 5.9 4.5E-02 1.1
400 6.9E-10 12 2.9E-09 10 2.1E-02 1.1
800 3.5E-13 11 1.7E-13 14 9.6E-03 1.1

WENO scheme
Grid L2(φ, [xs + 6; 100]) L2(φ, [0;xs − 6]) L2(φ, [xs − 6;xs + 6])

error Order error Order error Order
50 1.2E-03 NA 1.0E-03 NA 1.4E-01 NA
100 1.1E-04 3.4 1.7E-04 2.5 6.1E-02 1.2
200 2.6E-06 5.4 1.7E-05 3.3 2.7E-02 1.2
400 1.1E-08 7.8 2.5E-07 6.1 1.1E-02 1.2
800 8.6E-13 14 4.4E-10 9.2 4.9E-03 1.2

Table 3.1 – Relative errors (Eq. 3.2) of φ(x, t = 50) and local order of convergence as a
function of the grid size for the initial condition (3.2.3), xs = 60.

that the convergence orders of the numerical solution obtained with the ENO scheme in
the upstream and downstream sub-domains are at least 3, a value in accordance with the
expected order. For the WENO scheme, the order ranges from approximatively 3 to more
than 5. This result is in accordance with the theory [140] since the fifth-order accuracy is
obtained only for smooth solutions. If some discontinuity is located into one or two of the
WENO sub-stencils used for interpolations, the accuracy is reduced to third-order. Both
in Fig. 3.6 and in Tab. 3.1 for the WENO scheme, we observe that the errors are slightly
larger after the shock occurrence (x < xs) than before (x > xs) [140]. At last, nearby the
derivative discontinuity xs, the high-order ENO and WENO schemes fail to achieve the
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desired order of accuracy: the three sub-stencils of the WENO reconstruction contain the
discontinuity point. Therefore, the solution is only first order accurate.

3.3 Two dimensional test problem for signed distance equa-
tion

Mathematically, the resolution of the signed distance equation (2.14) (page 139) pre-
serves the zero-level curve with time. Indeed, this is essential not to move the interface
during the reinitialization of the level set function. However at the discrete level, this is
unfortunately not guaranteed because the initial signed distance function may be too flat or
too steep close to the zero-level curve. It then results an inaccurate evaluation of ‖∇d‖ and
perturbations of the interface location. This section aims at studiyng solutions obtained
with the ENO or WENO discretizations, but also to investigate the expected improvements
provided by of the constraint version (see Sec. 2.6.1 page 161) and the subcell fix method
(see Sec. 2.6.2 page 162).

Computations are carried out up to the steady state on regular grids. In order that
the temporal accuracy remains negligible compared to the spatial one, the CFL number
must be reduced with the decrease of the mesh size. With 252, 502, 1002 and 2002 cells, the
CFL number decreases from 0.125 to 0.0625, 0.03125 and 0.015625. The small parameter
ε in the sign function (2.15) is set to 2∆x.

The signed distance equation (2.14) is initialized by an analytic signed distance function
weakly disturbed and defined from a circle of radius 0.5 and located at the center of a square
box of side 2:

d0(x, y, τ = 0) =

 b+
ε

16π
sin

(
4πb sin(5θ)

δ

)
if|b| ≤ δ

b otherwise.

with b =
√

(x− 1)2 + (y − 1)2 − 0.5, θ = arctan((y − 1)/(x− 1)) and δ = 0.2 [83]. Figure
3.7(a) shows iso-levels of the signed distance which consist of concentric circles very few
disturbed. The draw of the local curvatures of the signed distance function d(~x, τ = 0),
κ(d(~x, τ)) = ∇ · (∇d/‖∇d‖) (see Eq. (2.8) page 136), is also presented in Fig. 3.7(b). It is
worth noticing that the expected curvature function at the steady state is:

κstationary(x, y) =
1√

(x− 1)2 + (y − 1)2

Numerous figures and tables illustrate the results. The drawings show the curvatures
of the steady state solutions obtained with the different schemes on a 100× 100 grid and
quantitative results are provided in tables as a function of the computation mesh. The in-
dicators are the relative volume accuracy (L1(V ), Eq. (3.1)) and the relative errors of the
signed distance (L2(d,Ωε) Eq. (3.2)) and curvature (L2(κ,Ωε) Eq. (3.3)), both computed
on the reduced domain Ωε = {(x, y)/ |

√
(x− 1)2 + (y − 1)2 − 0.5| ≤ 0.2}. The columns

labeled "Order" give the accuracy of the scheme between two successive errors.

Figure 3.8 presents the curvatures of signed distance functions at the steady state, using
the ENO discretization scheme. Two results are presented: on the left part of this figure,
the solution is achieved by the basic signed distance equation whereas on the right part, the
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(a) Signed distance (b) Curvature

Figure 3.7 – Signed distance equation. Iso-levels at τ = 0 and with 100× 100 cells

(a) Basic scheme (b) Constraint scheme

Figure 3.8 – Curvature of the signed distance function at the steady state using the ENO
discretization scheme

constraint version of this equation is applied. It clearly appears that the constraint signed
distance equation worsens the curvatures deeply in comparison with the basic method. This
observation is confirmed by considering the last two columns of Tab. 3.2. Whereas the cur-
vatures obtained by the basic signed distance equation converge with the grid refinement,
those computed with the constraint equation do not. Similar remarks may be done for the
distance field d. In contrast, the relative mass error L1(V ) is smaller when computations
are carried out with the constraint signed distance equation. This improvement is all the
more obvious that the mesh is coarse. At last, the third-order ENO scheme is recovered
for the basic scheme, except for the curvature variable. For the curvature, the accuracy is
at best second-order since its calculation requires discrete operators which are consistent
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Basic scheme
Grid CFL L1(V ) (Eq. 3.1) L2(d,Ωε) (Eq. 3.2) L2(κ,Ωε) (Eq. 3.3)

error Order error Order error Order
252 0.125 1.9E-02 NA 5.0E-02 NA 7.1E-02 NA
502 0.0625 3.7E-03 2.4 1.0E-02 2.3 2.8E-02 1.3
1002 0.03125 4.2E-04 3.1 1.4E-03 2.9 2.1E-02 0.45
2002 0.015625 3.5E-05 3.6 1.8E-04 2.9 7.0E-03 1.5

Constraint version
Grid CFL L1(V ) (Eq. 3.1) L2(d,Ωε) (Eq. 3.2) L2(κ,Ωε) (Eq. 3.3)

error Order error Order error Order
252 0.125 3.6E-04 NA 1.4E-02 NA 9.2E-02 NA
502 0.0625 9.7E-05 1.9 1.7E-02 -0.32 1.6E-01 -0.84
1002 0.03125 1.8E-05 2.4 1.8E-02 -0.0060 3.3E-01 -1.0
2002 0.015625 1.1E-05 0.76 1.4E-02 0.30 6.1E-01 -0.88

Table 3.2 – Convergence properties for the signed distance equation at the steady state
using the ENO discretization scheme.

at second-order only.
The same tests are performed for the WENO discretization scheme. Figure 3.9 clearly

shows that the constraint approach provides the worst curvatures and the subcell fix the
best ones. In this latter method, the exact zero-level curve is used instead of an interpola-
tion procedure. Interpolation of the interface leads to a small deterioration of results, but
they still remain the bests in comparison with the two other methods. Again, the graphic
results are confirmed by the quantitative data reported in Tab. 3.3. For the three indicators

Basic scheme
Grid CFL L1(V ) (Eq. 3.1) L2(d,Ωε) (Eq. 3.2) L2(κ,Ωε) (Eq. 3.3)

error Order error Order error Order
252 0.125 3.4E-03 NA 1.3E-02 NA 8.0E-02 NA
502 0.0625 8.2E-04 2.0 2.7E-03 2.2 4.5E-02 0.83
1002 0.03125 1.8E-05 5.5 1.1E-04 4.6 1.0E-02 2.1
2002 0.015625 2.8E-07 6.0 2.3E-06 5.6 8.1E-04 3.7

Constraint version
Grid CFL L1(V ) (Eq. 3.1) L2(d,Ωε) (Eq. 3.2) L2(κ,Ωε) (Eq. 3.3)

error Order error Order error Order
252 0.125 3.0E-04 NA 1.4E-02 NA 9.4E-02 NA
502 0.0625 1.6E-04 0.92 1.5E-02 -0.081 1.6E-01 -0.72
1002 0.03125 1.4E-05 3.5 2.1E-02 -0.53 4.2E-01 -1.4
2002 0.015625 1.2E-05 0.15 1.5E-02 0.51 7.2E-01 -0.78

Subcell fix method
Grid CFL L1(V ) (Eq. 3.1) L2(d,Ωε) (Eq. 3.2) L2(κ,Ωε) (Eq. 3.3)

error Order error Order error Order
252 0.125 1.1E-04 NA 1.4E-02 NA 3.6E-02 NA
502 0.0625 1.7E-06 6.0 5.1E-04 4.8 8.3E-03 2.1
1002 0.03125 4.3E-09 8.6 3.2E-06 7.3 1.9E-03 2.1
2002 0.015625 1.6E-08 -1.9 1.3E-09 11 4.9E-04 2.0

Table 3.3 – Convergence properties for distance equation
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(a) Basic scheme (b) Constraint scheme

(c) Subcell fix method

Figure 3.9 – Curvature of the signed distance function at the steady state using the WENO
discretization scheme.

recorded, the best results are given by the subcell fix method. It is interesting to remark
that solutions provided by the basic signed distance equation with WENO discretizations
are much accurate than those obtained with the ENO approach. But this remark does not
apply to the constraint method since errors are not significantly modified by changing the
spatial discretization.

3.4 Solid transport of a slotted disk: Zalesak’s problem

The Zalesak’s problem refers to a slotted disk rotating around a fixed center with a
steady angular velocity. The notched disk, of radius of 15 with a slot width 6, is initially
located at coordinates (50, 75) in a square (100 × 100) domain. The advection velocity is
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stationary and writes

u(x, y) =
π

314
(50− y)

v(x, y) =
π

314
(x− 50)

The initial level set function φ(x, y, t = 0) is set to the exact signed distance from the
slotted disk. The disk returns to its original position past a period of 200π(≈ 628) time
units. After one turn, the diffusion on the numerical scheme is evaluated by checking the
degree of distortion of the slotted disk. The volume conservation is also an important
indicator of the accuracy of the numerical method. The grid size is constant and ranges
from ∆x = 1 to ∆x = 1/3. The time step ∆t is equal to ∆x: the resulting maximum CFL
number is equal to 0.5. The small parameter ε involved in the sign function (2.15) of the
signed distance equation (2.14) is fixed to 2∆x.

3.4.1 Study without the distance equation

Since the transport velocity corresponds to a solid rotation, the reinitialization by
the signed distance equation turns out to be useless. In this section, we focus on spatial
discretizations by using second- and third-order ENO schemes and the fifth order WENO
scheme with ∆x = 1. Figure 3.10 shows that the slot is totally smeared-out at sharp corners

Figure 3.10 – Zalesak’s problem. Comparison of interfaces computed with second- and
third-order ENO schemes, and fifth-order WENO schemes when the notched disc rotates
without the reinitialization step. Grid size: ∆x = 1.

after one complete rotation. The circular boundary is also crushed slightly with the second-
order ENO discretization. The third-order ENO and fifth WENO schemes preserve better
the slot shape and circular boundary. However, the left part of the slot deviates from its
original position to a very small angle, slightly larger with the WENO scheme. Despite
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the diffusion which smooths the sharp angles, the WENO method provides the best form
even near the slot. This remark worths also when we calculate the volume conservation
of the notched disc after one turn. The relative error L1(V ) (Eq. (3.1)) is reduced from
13.34% to 2.93% and to 0.316% with the increase in the order of the spatial discretization.
We then conclude that the fifth-order Weighted Essentially Non-Oscillatory scheme is the
most accurate. This method is then retained for all further computations of the transport
equation.

3.4.2 Study the time step in the signed distance equation

We study the time step in the signed distance equation. Fig. 3.11 and fig. 3.12 show
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Figure 3.11 – Variation of L1(V ) with ∆τ with 100× 100 cells; the ENO scheme

variations of relative volume conservation error L1(V ) (Eq. (3.1) page 165) with the time
step ∆τ in the same grid size ∆x = 1. In different schemes for the signed distance function,
∆τ decreases from 1 to 0.0625; the number of iteration of the signed distance function
should increase proportionally from 4 to 64 in order to make sure that the signed distance
function propagates and smooths at last four cells in each side of interface.

Results demonstrate the small time step doesn’t make the mass conservation better
in the standard ENO scheme. The standard WENO scheme and the WENO scheme with
subcell fix method do not depend on the time step as soon as ∆τ ≤ ∆x/4. The schemes
with the volume constraint is still sensitive to ∆τ , even if ∆τ < ∆x/4. The best result
is given by the WENO subcell fix method since the mass error evolution keeps almost
constant and relatively small.

3.4.3 Reinitialization with the signed distance function

In this section, we study the spatial discretization of the signed distance equation (2.14)
and the eventual improvements brought by the constraint approach (Sec. 2.6.1 page 161)
and the subcell fix method (Sec. 2.6.2 page 162). In all cases the spatial discretization of the
transport equation is always based on the fifth-order WENO scheme. The signed distance
equation is invoked at the end of each transport iteration. The time step is ∆τ = 0.0625
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Figure 3.12 – Variations of L1(V ) with ∆τ with 100× 100 cells; WENO scheme

and the number of iterations is fixed to 64.

Figure 3.13 presents the notched disc after one rotation, for three grid sizes and the
third-order ENO discretization. For the coarsest grid, the constraint method improves sig-
nificantly the shape of the interface. In comparison with the pure transport problem of
Fig. 3.10, we observe that the shape of the notched disk gets worse by using the standard
signed distance equation: sharp corners are considerably smoothed and the depth of the
slot is reduced. For finer grids, the difference between the constraint and non-constraint
methods is reduced. Table 3.4 gathers the relative errors on volume conservation for the
basic and constraint signed distance methods, as well as referenced values by Sussman et
Fatemi [151]. Improvement in the mass conservation is obvious as soon as the constraint
approach is chosen. Comparison of our values with those by [151] shows some differences
which are probably explained by the spatial discretization of the transport equation. In-
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(a) ∆x = 1 (b) ∆x = 1/2

(c) ∆x = 1/3

Figure 3.13 – Zalesak problem. Comparison of interfaces computed with standard and
constrained signed distance equations for the third-order ENO discretization and different
grid sizes.

∆x Basic method (%) Constraint method (%)
1 2.5 5.3E-01

Ref[151] – 1.3
1/2 4.7E-01 8.9E-02

Ref[151] – 0.20
1/3 1.5E-01 6.2E-02

Ref[151] – 0.11

Table 3.4 – Zalesak problem. Relative volume conservation L1(V ) for the standard and
constraint signed distance methods with ENO discretization.

deed, we chose the fifth-order WENO scheme whereas the referenced work is based on a
third order ENO scheme only.
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Figure 3.14 illustrates the notched disc after one turn, for three grid sizes and the fifth-

(a) ∆x = 1 (b) ∆x = 1/2

(c) ∆x = 1/3

Figure 3.14 – Zalesak problem. Comparison of interfaces computed with standard and
constrained signed distance equations for the fifth-order WENO discretization and different
grid sizes.

order WENO discretization. The constraint method clearly reduces diffusion near the sharp
corners at the expense of spurious oscillations. These oscillations are more pronounced with
the fifth-order WENO scheme than with the third-order ENO discretization, since this
latter one is more diffusive. The subcell fix approach preserves better the deep of the slot
in comparison with the basic signed distance method, at least for the coarsest grid. Table
3.5, which collects the volume conservation errors for the different methods, clearly shows
that the improvement in the slot shape entails a deterioration of the volume measure.
Therefore considering the volume indicator, the standard signed distance method provides
the best results.

180



∆x Basic method (%) Constraint method (%) Subcell fix method(%)
1 2.1E-01 5.8E-01 1.7
1/2 8.2E-02 1.3E-01 2.9E-01
1/3 5.5E-03 6.7E-02 1.3E-01

Table 3.5 – Zalesak problem. Relative volume conservation L1(V ) for the standard, con-
straint and sub-cell fix signed distance methods with WENO discretization.

3.4.4 Partial conclusions

From the above analysis concerning the ENO/WENO discretization schemes and the
standard, constraint and subcell fix methods for the signed distance equation, we can
drawn some conclusions about the Zaleska problem. First, the constraint method reduces
the diffusion at sharp corners but produces spurious oscillations. For low order spatial
discretization, this approach improves the volume balance. The subcell fix approach may
lead to a better representation of the slotted disc for coarse grids but the accuracy on
the volume conservation is quite bad. Finally, the better compromise between the error
on volume conservation and the shape of the solution is probably to use the high-order
Weighted Essentially Non-Oscillatory (WENO) discretization method with the basic signed
distance equation.

3.5 Analytical stretching of a circular fluid element

The stretching of a circular fluid element is a classical test for validating the interface
tracking methods [132, 135, 168]. In a 100× 100 square domain, a circular fluid element of
center (50, 75) and radius of 15 is placed into a swirling shear flow field and then stretched
into a thin filament.

3.5.1 Steady flow field

The swirling shear flow field is steady and it is given by the stream function ϕ:

ϕ = −100

π
sin2

( πx
100

)
sin2

( πy
100

)
The solenoïdal velocity field then writes

u =
∂ϕ

∂y
= − sin2

( πx
100

)
sin
(πy

50

)
v = −∂ϕ

∂x
= sin2

( πy
100

)
sin
(πx

50

) (3.8)

Periodic conditions are assumed on boundaries. The WENO discretization schemes is ap-
plied for the transport equation. Computations are carried out without the reinitialization.

Figure 3.15 shows four snapshots of the fluid element computed on a 200× 200 regular
grid and with a time step ∆t = 0.25. The fluid interfaces are in quite good agreement
with previous studies [168]. Starting from a circle, the fluid element is stretched into a
convergent spiral. During the stretching process, a filament wraps inward its orbit and gets
thinner with time increasing. At the time t = 300, a significant breakup of the filaments
happens. During the stretching, one cell (t = 100 and t = 200) or less (t = 300) is contained
in the tail of the filament. This explains the break up of the filament at long times.
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Figure 3.15 – Stretching of a circular fluid element with velocity field (3.8).

3.5.2 Periodic flow field

To evaluate the errors of area preserving and the accuracy of interface advection and
deformation, the velocity field of Eq. (3.8) is multiplied by cos(πt/T ), so that the stretching
process is time-reversed [98, 168] after half period of time T/2. Since the third-order TVD
Runge-Kutta scheme is used for the advection equation of level set function, it is better
to impose the velocity field at the right time in each step. We list the three steps of TVD
Runge-kutta scheme:

φ(1) = φ(n) −∆t~vnR(φ(n))

φ(2) =
3

4
φ(n) +

1

4
φ(1) − ∆t

4
~vn+1R(φ(1)) = φ(n) − ∆t

2

~vnR(φ(n)) + ~vn+1R(φ(1))

2

φ(3) =
1

3
φ(n)+

2

3
φ(2)−2∆t

3
~vn+1/2R(φ(2)) = φ(n)−∆t

~vnR(φ(n)) + ~vn+1R(φ(1)) + 4~vn+1/2R(φ(2))

6

where R(φ) = ∇φ. In the first step, the velocity field at time n is used; in the second step,
we apply it at time n+ 1; in the third step, we take it at time n+ 1/2.

Fig. 3.16 shows stretching processes (0 < t < T/2) at different times for two periods,
T = 250 and T = 500, computed on a 200×200 regular grid and with a time step ∆t = 0.25.
Starting from circles at t = 0, the flow elements are stretched out by the swirling shear
flow during 0 < t < T/2. Compared with the stretching process in T = 250, the circle
is deformed seriously in the long period T = 500 and the tail of filament gets thinner. In
subsequent shrinking processing (during T/2 ≤ t < T ), following the same orbits, it will
reverse the direction and shrink back to its initial shape at t = T .

Fig.3.17 shows the mass evolutions with time. We take time steps ∆t = 0.5 and ∆t =
0.06225 for grids 100 × 100 and 800 × 800 respectively. The time step of signed distance
equation keeps ∆τ = 0.0625 and the number of iterations is fixed to 64.
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Figure 3.16 – Stretching process during 0 <= t <= T/2 with 100 × 100 cells; without
signed distance equation

The calculation without the signed distance equation generates the smallest mass error
but with the irregular lost and gains of mass during the evolution process. In contrast,
smooth curves of mass error are obtained with the redistance step. Among them, some
schemes with signed distance equation work well in one case but not in another. For exam-
ple, as shown in Fig. 3.17(a) and (c), the calculations performed by the volume constraint
approach have small mass error for the short period but not for the long period; the op-
posite behavior is observed with the ENO scheme.

This result is in accordance with the theory [140] since the fifth-order accuracy is
obtained only for smooth solutions. In this problem, since the circle is stretched more
seriously in the long period T = 500 as shown in Fig. 3.16(b), few cells are contained
between two zero level interfaces in the filament tail (for instance, only 1 or 2 cells with
100×100 cells and T = 500). Therefore, when constructing the high order schemes, we are
forced to select cells with discontinuous derivatives in φ. If some discontinuity is located
into one or two of the WENO sub-stencils used for interpolations, the accuracy is reduced
to third-order. But if this discontinuity occurs in all sub-stencils the accuracy tumbles
dramatically to first-order. For finer grids, more cells are located in filament tail. It results
a smooth solution and more accurate mass balance (Fig. 3.17(c) and (d)).

This can either explain why the standard third order ENO scheme does better in
the long period and the good performance of the calculation without the signed distance
equation since the discontinuous ‖∇d‖ is not used any more. Despite of this, the signed
distance function plays an important part in simulation of real fluid flows. Amongst schemes
for the signed distance equation, the WENO scheme with subcell fix method gives quite
good convergence properties. The above conclusions can also be verified by measurements
of time average relative volume conservation errors defined by

1

T

∫ T

0

∣∣∣∣∣∣∣∣
∫

Ω
H(φcomputed, t) dΩ−

∫
Ω
H(φexact) dΩ∫

Ω
H(φexact) dΩ

∣∣∣∣∣∣∣∣ dt
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Figure 3.17 – Mass evolutions over complete periods

and presented in Tab. 3.6 and Tab. 3.7, and by the curvature errors presented in Tab. 3.8

Grid w/o d (%) ENO scheme(%) WENO scheme(%)
volume volume subcell

standard constraint standard constraint fix
1002 1.12E+00 6.08E+00 1.10E+00 1.39E+00 1.10E+00 1.11E+00
2002 2.74E-01 1.26E-01 2.78E-01 2.52E-01 2.80E-01 2.37E-01
4002 4.17E-02 4.31E-02 4.69E-02 4.15E-02 4.74E-02 4.23E-02
8002 1.30E-02 1.31E-02 1.45E-02 1.30E-02 1.44E-02 1.31E-02

Table 3.6 – Time average relative volume conservation errors for different schemes with
the signed distance equation; T=250

and Tab. 3.9 where the negative aspects of the volume constraint method, deforming the
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Grid w/o d (%) ENO scheme(%) WENO scheme(%)
volume volume subcell

standard constraint standard constraint fix
1002 1.05E+00 4.55E-01 1.24E+00 1.38E+00 1.42E+00 1.31E+00
2002 1.71E-01 1.55E-01 1.70E-01 1.82E-01 1.80E-01 1.73E-01
4002 2.15E-02 2.15E-02 2.22E-02 2.14E-02 2.18E-02 2.14E-02
8002 6.49E-03 6.52E-03 6.53E-03 6.50E-03 6.57E-03 6.52E-03

Table 3.7 – Time average relative volume conservation errors for different schemes with
the signed distance equation; T=500

Grid w/o d (%) ENO scheme(%) WENO scheme(%)
volume volume subcell

standard constraint standard constraint fix
1002 4.3 59 57 43 70 38
2002 9.7E-01 27 30 19 61 15
4002 7.7E-02 13 23 9.2 77 9.3
8002 1.2E-02 6.8 21 11 93 5.1

Table 3.8 – Curvature error L2(κ,Ωε), |ε| < 2 for different schemes with the signed distance
equation at t=T; T=250

Grid w/o d(%) ENO scheme(%) WENO scheme(%)
volume volume subcell

standard constraint standard constraint fix
1002 25 197 233 236 244 232
2002 13 131 330 250 386 250
4002 2.2 79 173 252 246 146
8002 1.1E-01 42 105 602 185 105

Table 3.9 – Curvature error L2(κ,Ωε), |ε| < 2 for different schemes with the signed distance
equation at t=T; T=500

interface and ruining the smoothness of curvature of circle, are shown again.

3.6 Immiscible fluid flows

3.6.1 Traveling solitary wave

Propagating of a solitary wave is used to ascertain if our numerical scheme can predict
the viscous damping and run-up on a vertical wall of a traveling solitary wave in a enclosed
domain. As shown in Fig.3.18, the size of the enclosure is 20h width and 2h height. Half
of the domain is filled by still water. To generate a solitary wave, we release an additional
water volume, initially at rest, from the left vertical wall; its maximal amplitude is A0. The
wave then escapes from the influence of left wall and gradually becomes a solitary wave
before reaching the right wall with a maximal height Arun−up. The amplitude of the wave
at mid-distance x = 10h is noted Ac.

Making use of Laitone’s analytical approximation [129], the initially still water surface
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Figure 3.18 – Illustration of the formation and traveling of a solitary wave in an enclosure.

in hydrostatic balance can be predicted by

A(x, t = 0) = A0/ cosh2

(√
3A0

2
x

)
(3.9)

where A0 is the initial amplitude. The physical parameters are chosen so that the theo-
retically predicted wave speed is Cw =

√
gh = 1.0m/s and the Reynolds number gives

Re = Cw h/νw = 5× 104. For the simulation, the viscosity ratio νa/νw = 15, and the den-
sity ratio ρa/ρw = 1.2× 10−3 where subscripts a and w denote air and water, respectively.
Theoretically, after t′ = 6.0 s, the wave has escaped totally from the left wall and may be
regarded as a solitary wave. For studying the solitary wave, t′ = 6 s is set as initial time,
t = t′ − 6.

The regular grid used for simulations is 200× 120. We assume no-slip boundary condi-
tions for velocity and symmetry conditions for the level-set function at walls. The time step
is related to the CFL number, fixed to CFL = 0.1. The basic signed distance equation is
used with the WENO spatial discretization.

For A0 = 0.4h, the profiles of solitary waves from time t = 0 s until t = 14 s are demon-
strated in Fig. 3.19(a). The solitary wave propagates from the left to the right and at last
climbs at the right vertical wall. There exists a slight damping of the wave amplitude due
to the viscous effects. The wave speed measured from Fig. 3.19(a) is 1.03m/s between
t = 0 s and t = 10 s which is close to the theoretical value. Figure 3.19(b) shows a typical
velocity field at t = 4.0 s. A vortex centered at the wave top is observed.

To quantify the viscous damping characteristic of the wave, we compute three waves
with different initial amplitudes, and compare the results with those predicted by Mei
perturbation theory [109]

A−1/4
max (t) = A

−1/4
0 max + 0.08356

(
νw

C
1/2
w h3/2

)1/2
Cwt

h
(3.10)

where Amax(t) is the instantaneous amplitude of the solitary wave, and A0 max is the am-
plitude at the initial state, t = 0 s. Figure 3.20(a) shows the computation agrees better
with the perturbation theory all the more A0 max ≡ Amax(t = 0) is small. That is because
Eq. (3.19(b)) is valid only for A0 max ≤ 0.1.

Another point for comparison is the wave run-up (the highest point) at the right verti-
cal wall. To this end, we compute nine cases A0/h = 0.1, · · · , 0.9 and measure the run-ups
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Figure 3.19 – Solitary wave and velocity field in reduced coordinates.
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Figure 3.20 – Properties of the solitary wave. References: Mei [109], Chan et Street [40],
Yue et al. [168]

at the right wall boundary. The computational results are compared with the experimental
data by Chan et Street [40] and numerical data by Yue et al. [168] (Fig. 3.20(b)). In this
figure, the label Ac in the x-axis stands for the amplitude of the solitary wave at the middle
of the horizontal distance of the computational domain. Our results agree well with numer-
ical data by [168]. The agreement between computations and experiments is very good for
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Ac/h < 0.3. Beyond this value, the experimental data exhibit some scatter. Overall, these
results demonstrate that the Level-Set Method (LSM) can accurately predict the viscous
damping characteristic without introducing significant numerical damping effects.

To evaluate the volume (or mass) conservation of the liquid phase, we computed the
evolution of the relative volume variation (V (t)− V (t = 0))/∆V (Fig. 3.21), with ∆V the
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Figure 3.21 – Mass (volume) error during propagation.

additional volume corresponding to the initial wave (∆V = V (t = 0) − 20 × h2). As can
be seen, the relative error is at most of 1.4%.

3.6.2 Bubble problems

3.6.2.1 Equilibrium-elliptic bubble

The problem of equilibrium elliptic bubble is a simple but challenging problem to test
the accuracy of curvature and the smoothness of discontinuous physical quantities near
surfaces. In absence of gravitational force, the circle bubble will be static and keep its
original form by the force of surface tension. Physically, velocity fields do not exist if the
circle bubble does not move at all. Numerically, when the surface tension force becomes
the dominant force, the accuracy and the stability of surface tension force critically affect
the dynamics of fluid flow. The inaccuracy of surface tension force is one of the important
reasons leading to parasitic currents.

Consider a 0.04m square computational domain initially filled with water except a
circular air bubble of radius 0.01m centered in the middle of the domain (Fig. 3.22). The
properties of water are ρwater = 1000 kg/m3 and µwater = 1.137× 10−3 kg/ms and those of
air are ρair = 1.226 kg/m3 and µair = 1.78× 10−5 kg/ms. The coefficient of surface tension
is σ = 0.0728 kg/s2. The gravity g = 0. The CFL number is set to 0.1 and the WENO
discretization scheme is used for the transport and the signed distance equations in the
regular mesh.
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Figure 3.22 – Air bubble at t = 0.05 s

Grid ε L2(κ,Ωtest) (%) L2,exact(κ,Ωtest) (%) L1(V ) (%) vmax (m/s)
202 2∆x 27.9 28.4 0.69 0.196

402
2∆x 12.2 10.94 0.709 0.27
4∆x 24.6 24.4 0.237 0.13

802
2∆x 7.34 5.80 0.984 0.35
4∆x 11.7 11.5 0.083 0.14
8∆x 24.5 24.5 0.126 0.035

1602

2∆x 7.10 2.93 1.10 0.24
4∆x 5.92 5.85 0.074 0.14
8∆x 11.7 11.6 0.031 0.04
16∆x 24.4 24.4 0.048 0.009

3202

2∆x 6.03 1.59 0.92 0.21
4∆x 3.08 2.90 0.07 0.10
8∆x 5.81 5.80 0.01 0.04
16∆x 11.7 11.7 0.01 0.01
32∆x 24.3 24.3 0.009 0.002

Table 3.10 – Errors L2(κ,Ωtest) (Eq. 3.3 page 166) and L1(V ) (Eq. 3.1 page 165) and
maximal velocity vmax as a function of the grid size and the half-thickness of interface ε
(see Fig. 2.1 page 137) at t = 0.05s. The sub-domain Ωtest is defined such that |φ(~x)| < ε.
The column L2,exact(κ,Ωtest) is the numerical measure of the curvature at t = 0.

Table 3.10 shows the influences of the grid size and interface thickness on mass conser-
vation, interface curvature and maximum velocities at t = 0.05s.

First, the L2(κ,Ωtest) errors of different grids are compared with the a constant half-
thickness of transition zone ε. To do this, we have to multiply ε by two when the grid
becomes double. For example, we must compare the following lines: ε = 2∆x with grid
202, ε = 4∆x with grid 402, ε = 8∆x with grid 802, ε = 16∆x with grid 1602 and
ε = 32∆x with grid 3202. With this approach, Tab. 3.10 clearly indicates that the error
on the curvature does not change. But it is interesting to compare the values L2(κ,Ωtest)
to the smallest expected errors defined as the relative errors of the interface curvatures
without parasitic currents L2,exact(κ,Ωtest), that is at t = 0. Such comparison seems to
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prove that the curvatures are well preserved during time iterations. In contrast, the error
on the volume conservation is greatly improved with mesh refinement. This improvement
is due to the reduction in the maximal magnitude of the spurious velocities vmax which
occur in the thick interface.

For a fixed grid, the variation of L2(κ,Ωtest) errors depends on two parameters. On the
one hand, the decrease in the parasitic current magnitude leads to an improvement of the
interface shape and volume. On the other hand, the thickening of the interface region, mea-
sured by ε, worsens the value of the average curvature error since the reference curvature
is kept to exact bubble radius R (see Eq. (3.3), page 166). This antagonistic variation is
clearly shown for the finest mesh, 320×320. Indeed, L2(κ,Ωtest) decreases from ε = 2∆x to
ε = 4∆x, and then increases beyond ε = 4∆x. When we consider L2,exact(κ,Ωtest) errors,
spurious velocities do no exist. It results that the variation of the ’exact’ curvature error
is only sensitive to the interface thickening, and then L2,exact(κ,Ωtest) augments with ε.

The maximum value of velocity field vmax can be an estimation of parasitic currents
which correspond to the accuracy and stability of surface tension force (Tab. 3.10). The
maximum velocity converges, both for a fixed interface thickness (ε) with mesh refinement,
and for a fixed grid with increase in ε. In these two situations, the density, viscosity and
surface tension are smoothed by reducing their numerical gradients on cells located in the
transition zone |φ(~x)| < ε. It is worth noticing that the parasitic currents may be greatly
reduced by substituting the interface thickening by an alternative approach, called the
’Ghost method’: for a 40 × 40 grid, the maximum velocity falls from 0.27m/s to 0.1m/s
with such method [85].

The relative volume conservation error L1(V ) follows essentially the same behavior as
the maximum velocity vmax. However, for fixed grids and the largest interface thicknesses,
L1(V ) becomes almost constant because the calculation of the volume conservation is
affected by spatial accuracy.

3.6.2.2 Non-equilibrium elliptic bubble

An elliptic bubble with a long axis radius Rl = 0.01m and a short axis radius Rs =
0.005m is centered into a 0.05m square box [146]. The properties of water are ρwater =
1000 kg/m3 and µwater = 1.137× 10−3 kg/ms and those of air are ρair = 1.226 kg/m3 and
µair = 1.78× 10−5 kg/ms. The coefficient of surface tension is σ = 7.28× 10−2 kg/s2. The
gravitational force is disregarded.

The small time step ∆t = 10−4 is taken. The WENO discretization scheme is used
for the transport and the basic signed distance equations for regular meshes ranging from
80× 80 to 320× 320. The half interface thickness is set to ε = 2∆x.

The air bubble in a water box starts from a slightly stretched state in x-direction. When
we remove the tensile stress, the elliptic bubble begins to relax toward its equilibrium circle
state by oscillating with decreasing magnitude (Fig. 3.23). From t = 5 s, the surface tension
force is exactly balanced by the pressure drop on both sides of the bubble interface so that
the bubble is steady.

The evolution of the relative volume conservation error L1(V ) is presented in Fig. 3.24.
The volume of the bubble grows with time, and all the more that the mesh is coarse. For
example at time t = 5 s, the volume error augments from 8% to 21% when the mesh shrinks
from 320× 320 to 80× 80. That is related to the maximum velocity in the flow field which
increases from 0.017m/s to 0.037m/s, whereas a stationary state is expected.
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(a) t=0 s (b) t=0.02 s (c) t=0.3 s

(d) t=0.6 s (e) t=5 s

Figure 3.23 – Pressure fields of bubbles at different times with cells 320× 320
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Chapter 4

Conclusions & perspectives

4.1 Key points of this work

An interface tracking method was developed using the level-Set approach. A particular
care was taken to explain the principles of the level set method and the part played by
the signed distance function in the Navier-Stokes equations. High-order approximations
were retained to discretize temporal and spatial derivatives. The spatial discretizations,
based on essentially non oscillatory schemes, were presented in details. Modifications in
the signed distance equation were considered to improve the fluid mass conservation.

Validation steps and comparisons between the different versions of the level-set methods
were carried out. The Weighted Essentially Non-Oscillatory (WENO) scheme seems to
have a better convergence property in the transport equation than the Essentially Non-
Oscillatory (ENO) scheme, since ENO solutions may diverge with time increasing and grid
refinement. Final conclusion cannot be drawn on the real improvements of the numerical
solutions when one modifies the signed distance equation. However, some remarks can be
performed:

– It appears that the "volume constraint" method generally ameliorates the fluid mass
conservation, especially for coarse meshes, but always at the cost of deformation
of the zero level curve. Therefore, it results a deterioration of the curvature of the
interface when one applies too many iterations to solve the signed distance equation.

– The "subcell fix" method seems to be more efficient to preserve the curvature of the
interface.

4.2 Works prospects

One of the main issues of the Level-Set method is that mass conservations of each fluid
are not fully respected. As an example, this leads to difficulties when forces involved in the
physical problems evolve slowly. In that case, improvements in the numerical scheme must
be taken into account. One way to do this could be to suppress the spurious flows which
appear in the interface thickness by explicitly introducing into the discrete equations the
jumps of fluid properties and stresses across two immiscible fluids. Another improvement
in the mass conservation should be to refine the mesh locally around the interface. Physical
validations must also be added, for instance to study natural convection induced by surface
tension variations.
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Conclusions

The aim of my research is to develop and investigate the natural convection for immis-
cible fluid flows. To answer this purpose, I developed numerical models under low Mach
number and Boussinesq approximations. These schemes were then programmed and care-
fully validated. These tools allowed us to investigate natural and mixed convection flows
in vertical channel partially or fully heated at walls. Simultaneously, I worked on inter-
face tracking methods. After a bibliography study, I selected the level-Set method. An
important work was done to understand this method and to familiarize myself to the new
numerical schemes which are classically applied for discretizing the hyperbolic equations
of transport and signed distance. Then a validation step was conducted to compare the
convergence properties to the ones expected.
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defined such that |φ(~x)| < ε. The column L2,exact(κ,Ωtest) is the numerical
measure of the curvature at t = 0. . . . . . . . . . . . . . . . . . . . . . . . 189
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Numerical simulations of natural or mixed convection in vertical channels –
Comparisons of Level-Set numerical schemes for the modeling of immiscible
incompressible fluid flows

The aim of this research dissertation is at studying natural and mixed convections of fluid
flows, and to develop and validate numerical schemes for interface tracking in order to
treat incompressible and immiscible fluid flows, later. In a first step, an original numerical
method, based on Finite Volume discretizations, is developed for modeling low Mach num-
ber flows with large temperature gaps. Three physical applications on air flowing through
vertical heated parallel plates were investigated. We showed that the optimum spacing
corresponding to the peak heat flux transferred from an array of isothermal parallel plates
cooled by mixed convection is smaller than those for natural or forced convections when
the pressure drop at the outlet keeps constant. We also proved that mixed convection flows
resulting from an imposed flow rate may exhibit unexpected physical solutions; alternative
model based on prescribed total pressure at inlet and fixed pressure at outlet sections gives
more realistic results. For channels heated by heat flux on one wall only, surface radiation
tends to suppress the onset of recirculations at the outlet and to unify the walls tempera-
ture. In a second step, the mathematical model coupling the incompressible Navier-Stokes
equations and the Level-Set method for interface tracking is derived. Improvements in
fluid volume conservation by using high order discretization (ENO-WENO) schemes for
the transport equation and variants of the signed distance equation are discussed.

Keywords: Finite Volume method, natural convection, mixed convection, vertical chan-
nels, Level-Set method, ENO-WENO schemes

Simulations numériques de la convection naturelle ou mixte dans des canaux
verticaux – Comparaisons de schémas numériques Level-Set pour la modélisa-
tion d’écoulements de fluides immiscibles et incompressibles

Le but de ce mémoire de recherche est d’étudier les convections naturelle et mixte d’écou-
lements fluides, et de développer et valider des méthodes numériques pour le suivi d’in-
terfaces afin de traiter plus tard des écoulements incompressibles de fluides immiscibles.
Dans une première étape, une méthode numérique originale, basée sur des discretisations
Volumes Finis, est développée pour modéliser les écoulements à faible nombre de Mach
et grands écarts de température. Trois applications physiques, portant sur l’écoulement
d’air à travers des plaques verticales parallèles chauffées, sont étudiées. Nous avons montré
que l’espacement optimal, correspondant au pic de flux de chaleur transféré d’un réseau
de plaques parallèles isothermes refroidies par convection mixte, est plus faible que ceux
obtenus en convections naturelle ou forcée lorsque la chute de pression à la sortie est con-
stante. Nous avons également prouvé que les écoulements de convection mixte à débit
imposé peuvent présenter des solutions physiques inattendues ; un modèle alternatif basé
sur une pression totale imposée à l’entrée et une pression fixée à la sortie donne de meilleurs
résultats. Pour des canaux soumis un flux de chaleur sur une paroi seule, le rayonnement
de surface tend à supprimer l’apparition des recirculations à la sortie et à uniformiser les
températures des parois. Dans une seconde étape, le modèle mathématique couplant les
équations de Navier-Stokes incompressibles et la méthode Level-Set pour le suivi d’inter-
faces est développé. Des améliorations de la conservation du volume fluide par l’utilisation
de schémas de discrétisation d’ordres élevés (ENO-WENO) pour l’équation de transport
et des variantes de l’équation de la distance signée sont discutées.

Mots clefs : Méthodes de Volumes Finis, convection naturelle, convection mixte, canaux
verticaux, méthode Level-Set, schémas ENO-WENO.


