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Chapter 1

Overview of my research works

Foreword

This document is a long abstract of my research work, concerning graph theory and algorithms on graph. It
summarizes some results, gives ideas of the proof for some of them and presents the context of the different
topics together with some interesting open questions connected to them. This is an overview of ten selected
papers which have been published in international journals or are submitted and which are included in the
annex. This document is organized as follow: the first part precises the notations used in the rest of the
paper; the second part deals with some problems on cycles in digraphs, a topic I am working on for almost 10
years; the third part is an overview of two graph coloring problems and one problem on structures in colored
graphs; finally the fourth part focus on some results in algorithmic graph theory, mainly in parametrized
complexity. I mainly worked in this last field with A. Perez who I co-supervised with C. Paul during his
PhD Thesis.
To conclude, I would like to mention that this work is the result of different collaborations and each result is
then a collective work, with me as common link. Doing research in graph theory is for me a great pleasure,
and a job, and meeting people from various place to work with them is an also great pleasure. I would like
to thank them for the nice moments we spent working together: J. Bang-Jensen, E. Birmelé, F.V. Fomin,
S. Gaspers, F. Havet, C. Lepelletier, N. Lichiardopol, C. Paul, A. Perez, S. Saurabh, J.-S. Sereni and S.
Thomassé.

1.1 Introduction

Almost all the definitions given below are standard and can be found in classical books on Graph Theory
(see [47], [30] or [8]) or Parametrized Complexity Theory (see [55], [63] or [105]). We give them to precise
the notations used in this document.

1.1.1 Basic definitions on graphs

Graphs

For a set X, we denote by [X]2 the set of 2-element subsets of X. A graph G is a pair (V (G), E(G)) consisting
of a finite set V (G), called the vertex set of G, and a set E(G), subset of [V (G)]2, called the edge set of G.
Classically, the cardinality of V (G) and E(G) are respectively denoted by n(G) and m(G). For notational
simplicity, we write uv an unordered pair {u, v} of E(G). Two vertices x and y which belong to an edge e
are adjacent, and x and y are the ends of e. Furthermore, we say that e is incident to x and y.
The set of vertices which are adjacent to a specified vertex x is the neighborhood of x and is denoted by
NG(x). So, we call a neighbor of x a vertex which is adjacent to it. The degree of a vertex x, denoted by
dG(x), is the cardinality of its neighborhood. Finally, when two adjacent vertices x and y have the same
neighborhood in V \ {x, y}, we say that x and y are true twins. When no confusion can occur, we will forget
the reference to the background graph in all the previous notations.

5



6 CHAPTER 1. OVERVIEW OF MY RESEARCH WORKS

A graph H = (V (H), E(H)) is a subgraph of a graph G = (V (G), E(G)) if we have V (H) ⊆ V (G) and
E(H) ⊆ V (G). If H is a subgraph of G with V (H) = V (G), we say that H is a spanning (or covering)
subgraph of G. And, if H is a subgraph of G with E(H) = E(G) ∩ [V (H)]2, we say that H is an induced
subgraph of G. For X a subset of the vertex set of G, the induced subgraph of G on X, denoted by G[X],
is the induced subgraph of G which has X as vertex set. We denote also by G \ X the induced subgraph
of G on V (G) \X. And, if F is a subset of the edge-set of G, we denote by G− F the subgraph of G with
vertex set V (G) and edge set E(G) \ F . Finally, we say that two graphs G and H are isomorphic if there
exists a bijection f from V (G) to V (H) such that for every vertices x and y of G, xy ∈ E(G) if, and only
if, f(x)f(y) ∈ E(H). And, an homomorphism from G to H is a mapping f from V (G) to V (H) such that
if xy is an edge of G, then f(x)f(y) is an edge of H.

In Section 1.4.2, we will deal with multi-graphs (i.e. graphs with a multiset for edge set), but anywhere
else in this document, the considered graphs are simple.

Some special graphs

The following definitions deal with some remarkable subgraphs. The complete graph on n vertices, denoted
by Kn is the graph on vertex set V (Kn) = {v1, . . . , vn}, and with edge set [V (Kn)]2, meaning that Kn

contains all the possible edges on its vertex set. A clique of a graph G is a subset of its vertex set which
induces on G a graph isomorphic to a complete graph. Similarly, the empty graph on n vertices (which
is not totally empty) is the graph on n vertices and with an empty edge set. An independent set of a
graph G is a subset of its vertex set which induces on G a graph isomorphic to an empty graph. The path
graph on k vertices, denoted by Pk is the graph on vertex set V (Pk) = {v1, . . . , vk}, and with edge set
{vivi+1 : i = 1, . . . , k − 1}. The vertices v1 and vk are called the ends of Pk. A path of a graph G is a
subgraph of G which is isomorphic to a path graph. Finally, the cycle graph on k vertices, denoted by Ck is
the graph on vertex set {v1, . . . , vk}, and with edge set {vivi+1 : i = 1, . . . , k − 1} ∪ {v1vk}. A cycle of a
graph G is a subgraph of G which is isomorphic to a cycle graph. Sometimes, we will use the term k-cycle
to precise that the considered cycle has k vertices. A hamiltonian graph is a graph which admits a spanning
cycle, an acyclic graph is a graph which contains no cycle, and a chordal graph is a graph with no induced
cycle of size more than three. Finally, a matching in a graph is a set of pairwise disjoint edges of this graph.

Now, through these structures, we define some properties of graphs. First, a graph is connected if for
every pair of vertices x and y of G, there exists a path in G with ends x and y. A tree is a connected graph
without cycle. It is well known that a graph is connected if, and only if, it contains a spanning tree. A
graph is bipartite if its vertex set admits a partition into two independent sets. The complete bipartite Kp,q

is the graph on vertex set {v1, . . . , vp, w1, . . . , wq}, and with edge set {viwj : i = 1, . . . , p and j = 1, . . . , q}.
Finally, we say that a graph G is planar if there exists a plane representation of G, i.e. a drawing of G in
the plane such that its edges intersect only at their ends.

1.1.2 Directed graphs

A directed graph (or digraph) D is a pair (V (D), E(D)) consisting of a finite set V (D), also named the vertex
set of D, and a subset A(D) of V (D)× V (D), named the arc set of D. For simplicity, we also denote by xy
an arc (x, y) of D, but this time the order in the notation matters. We say that x is the tail of the arc xy and
y its head. We obtain then a different notion of neighborhood than in the non-oriented case. For a vertex x
of D, the out-neighborhood (resp. in-neighborhood) of x, denoted by N+

D (x) (resp. N−
D (X)) is the set of all

vertices y in V − x such that xy (resp. yx) is an arc of A(D). The out-degree (resp. in-degree) of a vertex
x, denoted by d+D(x) (resp. d−D(x)) is the cardinality of its out-neighborhood (resp. in-neighborhood). The
notions of sub-digraph, induced and spanning sub-digraph, homomorphism and isomorphism for digraphs
are similar to those from graphs. For digraphs, paths and cycles are always directed. Namely, the (directed)
path on k vertices has vertex set {v1, . . . , vk}, and arc set {vivi+1 : i = 1, . . . , k − 1}. The vertex v1 is the
beginning of the path and vk is its end. Similarly, the (directed) cycle (or circuit) on k vertices has vertex set
{v1, . . . , vk}, and arc set {vivi+1 : i = 1, . . . , k−1}∪{vkv1}. An acyclic digraph is a digraph which contains
no (directed) cycle. A digraph D = (V,A) is strongly connected (or just strong) if there exists a path from
x to y in D for every choice of distinct vertices x and y of D. A feedback-vertex-set (resp. feedback-arc-set)
is a set X of vertices (resp. arcs) of D such that D \X (resp. D−X) is acyclic. The underlying graph of a
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digraph D, denoted by UG(D), is the (non-oriented) graph obtained from D by suppressing the orientation
of each arc and deleting multiple edges.
To conclude on directed graph, a tournament is an orientation of a complete graph, that is a digraph D such
that for every pair {x, y} of distinct vertices of D either xy ∈ A(D) or yx ∈ A(D), but not both. Finally, the
complete digraph, denoted by K⋆

n, is the digraph on n vertices containing all the possible arcs, i.e. obtained
from the complete graph by replacing each edge by a directed cycle of size two.

1.1.3 Some graphs invariants

The independence number of a graph (or a digraph) G is the size of a largest independent set of G. We
denote it by α(G).

A vertex-cut in a graph G is a subset X of vertices of G such that G \X is not connected. A graph G
is k-vertex-connected if all its vertex-cut have size at least k, and the minimal size of one of its vertex-cut
is the vertex-connectivity of G and it is denoted by κ(G). This definition extends to edge-cut, which is a
subset F of the edge-set of G such that G − F is not connected. The edge-connectivity, defined similarly
than the vertex-connectivity, of a graph G is denoted by λ(G). These definitions extend also to digraphs,
where the notion of strong connectivity stands for connectivity. Remark that, given any two vertices x and
y in a graph, if there exists p paths from x to y in G, vertex-disjoint except in their ends, x and y, it is not
possible to find a vertex-cut of G with size less than p that separate x from y. In fact, Menger’s Theorem
states that this fact characterizes the vertex-connectivity of a graph.

Theorem 1 (’Menger’s Theorem’, K. Menger, 1927, [103]). Let G be graph. The vertex-connectivity of G is
p if, and only if, for every pair of vertices x and y of G, there exists p paths from x to y in G, vertex-disjoint
except in their ends.

This theorem also holds for edge-connectivity and oriented case (where the paths are oriented paths).
Finally, we define the general notion of proper coloring of a graph. A k-coloring of a graph G is a mapping

c from V (G) to the set {1, . . . , k} such that if xy is an edge of G, then the values c(x) and c(y) are distinct.
Equivalently, a k-coloring of G is a vertex-partition of G into k independent sets. The chromatic number of
G, denoted by χ(G) is the minimum number k such that G admits a k-coloring. Coloring edges of graph leads
to similar definitions. A k-edge-coloring of G is a mapping c′ from E(G) to the set {1, . . . , k} such that if two
edges e and f have a common extremity, then the values c′(e) and c′(f) are distinct. Equivalently, a k-edge-
coloring of G is an edge-partition of G into k matchings. Similarly to the vertex case, the edge-chromatic
number of G, denoted by χ′(G) is the minimum number k such that G admits a k-edge-coloring.

1.1.4 Algorithmic basics

We refer to [45] for general definition on polynomially solvable problems and NP-complete problems. For
what we need, we focus on algorithms on graphs only, and will give the definition of FPT algorithms in this
context.
When a problem turns out to be NP-complete, a lot of algorithmic tools have been developed to find a
acceptable solution to it, for instance, approximation algorithms, randomized algorithms, exact algorithms
with exponential time... An FPT algorithm can be viewed as a member of this late class. The principle
of such an algorithm is to contained the exponential explosion to a special parameter. Namely, a problem
parameterized by some integer k (i.e. its input is a graph G and an integer k) is said to be fixed-parameter
tractable (FPT for short) whenever it can be solved in time f(k) · nc for some constant c > 0. As one
of the most powerful technique to design fixed-parameter algorithms, kernelization algorithms have been
extensively studied in the last decade (see [26] for a survey). A kernelization algorithm is a polynomial-time
algorithm (called a series of reduction rules) that given an instance (G, k) of a parameterized problem P
computes an instance (G′, k′) of P such that (i) (G, k) is a Yes-instance if and only if (G′, k′) is a Yes-
instance and (ii) |G′| ≤ h(k) for some computable function h() and k′ ≤ k. The instance (G′, k′) is called a
kernel of P . Kernelization can be viewed as a sort of pre-processing algorithm that reduces the size of any
instance. We say that (G′, k′) is a polynomial kernel if the function h() is a polynomial. It is well-known
that a parameterized problem is FPT if and only if it has a kernelization algorithm [105]. But the proof
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of this equivalence provides standard kernels of super-polynomial size (in the size of f(k), precisely). So,
to design efficient fixed-parameter algorithms, a kernel of small size - polynomial (or even linear) in k -
is highly desirable. However, recent results give evidence that not every parameterized problem admits a
polynomial kernel, unless something very unlikely happens in the polynomial hierarchy, see [27]. On the
positive side, notable kernelization results include a 2k kernel for Vertex Cover [46], a 4k2 kernel for
Feedback-Vertex-Set [126] and a 2k kernel for Cluster Editing [41].

1.2 Problems on circuits in digraphs

In this section, we are concerned with digraphs and every concept discussed deals with directed graphs. We
are interested in finding cycles in strongly connected digraphs. As trees is a cornerstone for connectivity in
graphs, cycles have this central place for strong digraph. Cycles are the simplest oriented structure in which
starting from any vertex it is possible to reach any other vertex.
In a strong digraph, every arc is contained in a cycle and so, there exists a family of cycles which union is the
whole digraph. Problems considered here deal with finding a family of cycles in a strong digraph D which
satisfies certain properties. For instance, if we want a minimum (in cardinality) family of cycles which union
spans D, we obtain a covering problem (Section 1.2.1). One of the tools for this problem is cyclic orders for
strong digraphs, which we develop with S. Thomassé (Section 1.2.2). Another important class of problems,
the packing problems, deals with finding a maximum family of disjoint cycles in a digraph (Section 1.2.3).
Some results which appear in the two first sections were already mentioned in my PhD Thesis. I decide to
present them because they have led to some tools and problems on which I am still working.

1.2.1 Covering by directed cycles1

Let D = (V,E) be a strong digraph. We are mainly concerned here in finding a family F of cycles of D
which union covers all the vertices of D. The most natural problem in this context is to ask for a family F
with minimal cardinality. For long, this problem is known to be easy on tournaments, as stated by a result
of P. Camion.

Theorem 2 (’Camion’s Theorem’, P. Camion, 1959, [35]). Every strongly connected tournament is hamil-
tonian.

For general digraphs, there is no hope to have such an exact value or even a polynomial time process to
compute the minimum number of cycles needed in F . Indeed, as this problem contains the hamiltonian
cycle problem for digraphs, it turns out to be NP-complete, and so we ask for upper bounds on the
cardinality of F .
Let us mention the closely related problem consisting in finding a family of paths, instead of cycles, which
union covers all the vertices of a digraph. A well-known bound on the cardinality of such a family is given
by a Theorem of T. Gallai and A. Milgram, which provides not only a covering by paths, but a partition of
the digraph into paths.

Theorem 3 (’paths partition’, T. Gallai and A. Milgram, 1960, [67]). Every digraph D admits a vertex-
partition into at most α(D) paths.

Thank to the above result on paths and Camion’s theorem on tournament, T. Gallai conjectured in 1964
that the independence number could also be an upper bound for the minimum number of cycles which cover
the vertices of a digraph [65]. During my PhD thesis, with S. Thomassé, we proved this conjecture and
obtained the following.2

Theorem 4 (S. Bessy, S. Thomassé, 2003, [22]). Every strong digraph D contains a family of at most α(D)
cycles which union covers the vertices of D.

In 1995, Gallai’s conjecture was refined by A. Bondy [29] (stating explicitly a remark of C.C. Chen and

1This subsection and the next one are linked with the paper: S. Bessy and S. Thomassé, Spanning a strong digraph with
alpha cyles: a conjecture of gallai. Combinatorica, 27(6):659–667, 2007, annexed p.34.

2I highlight the results appearing in the papers which form my habilitation.
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P. Manalastas [40]) who asked for some control on the cycles. More precisely: a strong digraph D = (V,E)
is a k-handle if k = |E| − |V | + 1 (a 0-handle is simply a single vertex). A handle is a directed path
H := x1, . . . , xl in which we allow x1 = xl. The vertices x1 and xl are the extremities of the handle H,
and its other vertices are its internal vertices. For a subdigraph H of D, an H-handle is a handle of D
with its extremities in V (H) and its internal vertices disjoint from H. Finally, a handle basis of D (or ear
decomposition, see [8]) is a sequence H0, H1, . . . , Hk of handles of D such that H0 is a single vertex, Hi is a
(∪{Hj : j < i})-handle for all i = 1, . . . , k and D = ∪{Hi : i = 0, . . . , k}. Clearly, a digraph has a handle
basis H0, . . . , Hk if and only if D is a k-handle. In this context the conjecture of A. Bondy is the following.

Conjecture 5 (’Bondy’s Conjecture’, A. Bondy, 1995, [29]). The vertices of every strong digraph D can be
covered by the disjoint union of some ki-handles, where ki > 0 for all i, and the sum of the ki being at most
α(D).

As it is possible to cover every k-handle by k cycles, Bondy’s conjecture is stronger than the result of
Theorem 4. For k = 1, Bondy’s conjecture is true by Camion’s Theorem. Furthermore, for k = 2, it has
been solved by C.C. Chen and P. Manalastas [40], and by S. Thomassé for k = 3 [125]. The techniques
used in the proof of Theorem 4 seem to be useless to tackle Bondy’s Conjecture. However, using a different
approach, with S. Thomassé, we obtained a result closely related to this conjecture.

Theorem 6 (S. Bessy, S. Thomassé, 2003, [21]). Every strong digraph D is spanned by a k-handle, with
k ≤ 2α(D) − 1.

In other words, every strong digraph D admits a spanning strong subdigraph with at most n+2α(D)−2
arcs. The problem of finding such a subdigraph with a minimum number of arcs is a classical problem
in graph theory, named the MSSS problem (for minimal strong spanning subdigraph). This problem is
also NP-complete (it also contains the hamiltonian cycle problem) and the best known approximation
algorithm, found by A. Vetta in 2001 [131], achieves a 3

2 factor of approximation. A nice question is to look
at what happens on some particular classes of digraphs, and particularly the following one.

Problem 7. Is there an approximation algorithm for the MSSS problem with a better factor than 3
2?

What about if we restrict the instances to the class of planar strong digraph?

1.2.2 Cyclic order of strong digraphs

In this section is presented a tool that we developed in order to prove Theorem 4. The notion of cyclic order
allows, in some sense, cyclic statements of classical results on paths a digraphs.

Let D be a strong digraph on vertex set V . If E = v1, . . . , vn is an enumeration of V , for any k ∈
{2, . . . , n}, the enumeration vk, . . . , vn, v1, . . . vk−1 is obtained by rolling E. Two enumerations of V are
equivalent if we can pass from one to the other by a sequence of the following operations: rolling and
exchanging two consecutive but not adjacent vertices. The classes of this equivalence relation are called the
cyclic orders of D. Roughly speaking, a cyclic order is a class of enumerations of the vertices on a circle,
where one stay in the class while switching consecutive vertices which are not joined by an arc. We fix an
enumeration E = v1, . . . , vn of V , the following definitions are understood with respect to E. An arc vivj of
D is a forward arc if i < j, otherwise it is a backward arc. With respect to E, the index of a cycle C of D
is the number of backward arcs containing in C, we denote it by iE(C). This corresponds to the winding
number of the cycle. Observe that iE(C) = iE′(C) if E and E′ are equivalent. Consequently, the index of
a cycle is invariant in a given cyclic order O and we denote it by iO(C). A circuit is simple if it has index
one. A cyclic order O is coherent if every arc of D is contained in a simple circuit.
The following lemma states the existence of coherent cyclic orders. It is proved by considering a cyclic order
which minimizes the sum of the cyclic indices of all the cycles of D.

Lemma 8 (D.E. Knuth, 1974, [91] / S. Bessy, S. Thomassé, 2007, [22]). Every strong digraph has a coherent
cyclic order.

As mentioned by A. Bondy in [30], this result was found originally by D.E. Knuth in 1974 [91] (we ignored
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it when we settled Lemma 8), in a different context, and no link with Gallai’s conjecture have been done.

Now, we describe two min-max relations in context cyclic orders. As previously said, cyclic orders can be
understood as a cyclic version of classical theorems on paths in digraphs. First, we give a cyclic version of
Gallai-Milgram’s paths partition Theorem. Given O a cyclic order of a strong digraph D, we denote by α(O)
the size of a maximum cyclic independent set of O, that is an independent set of D which is consecutive in
an enumeration of O. The following theorem provides a family of cycles which cover all the vertices of the
considered digraph D.

Theorem 9 (S. Bessy, S. Thomassé, 2007, [22]). Let D be a strong digraph with a coherent cyclic order O.
The minimal

∑

C∈R iO(C), where R is a spanning set of cycles of D is equal to α(O).

The proof uses a very basic algorithmic process. Let us briefly explain it. We start by computing greedily
a cyclic independent set X of O and consider an enumeration E of O where X stands at the beginning of
E. Then, in a digraph build from the transitive closure of the acyclic digraph formed by the forward arcs
of E, we apply Dilworth’s Theorem [48] (a classical version of Gallai-Milgram’s Theorem for orders). So,
either we find a larger cyclic independent set than X, and we go on the process, or we find a set of |X| paths
covering this digraph, and we stop and show that these paths can be turned into cycles covering D.
Remark that, as α(O) is the size of an independent set of D, we find a set of at most α(D) cycles which
covers the vertices of D. This gives a proof of Gallai’s Conjecture. However, we have no control on the
number of arcs involved in this covering and then no bound on the sum of the k-handles needed to cover D,
as asked by Bondy’s Conjecture. On the other hand, in the proof of Theorem 9, as previously explained, we
obtained a family F of k cycles, with k ≤ α(D), and a set X of k vertices such that the union of the cycles
of F minus X forms an acyclic digraph D′. In D′, the cycles of F become paths. So, the main challenge to
attempt resolving Bondy’s Conjecture could be the following.

Problem 10. Is it possible to ’uncross’ the k paths in D′ in order to reduce their length and, then, the
total number of arcs involved in the covering?

The second min-max theorem which we found in the field of cyclic order can be viewed as a cyclic version
of the Gallai-Roy’s Theorem.

Theorem 11 (’The Gallai-Roy Theorem’, T. Gallai, 1966, [66] and B. Roy, 1967, [114]). Every digraph D
contains a directed path on χ(D) vertices.

The cyclic version is the following. Given an enumeration E = v1, . . . , vn of the vertices of a digraph
D, a coloring of E into r colors is a partition of V into r sets V1, · · · , Vr such that for every j, Vj are an
independent set of D and Vj are consecutive on E (i.e. there exist integers i0 = 0 < i1 < · · · < ir = n such
that Vj = {vij−1+1, · · · , vij} for all j ∈ {1, . . . , r}). The chromatic number of E is the minimum value r for
which there exists a r-coloring of E. For a cyclic order O of D, the cyclic chromatic number of O, denoted
by χ(O) is the minimum value of the chromatic number of an enumeration belonging to O. Finally, for a
cycle C of D and a cyclic order O of D, the cyclic length of C is the value |C|/iO(C). We have the following
min-max relation.

Theorem 12 (S. Bessy, S. Thomassé, 2007, [22]). Let O be a coherent cyclic order of a strong digraph D.
The maximal ⌊lO(C)⌋, where C is a circuit of D is equal to χ(O).

There even exists a fractional version of this theorem (see [22]). It is similar (but oriented) to the classical
result on the circular chromatic number for non-oriented graphs (see the survey of X. Zhu [137], for instance).
As a corollary of Theorem 12, we obtain a classical theorem of A. Bondy.

Theorem 13 (A. Bondy, 1976, [28]). Every strong digraph D contains a cycles on at least χ(D) vertices.

To conclude this section, remark that we established some results on cyclic orders using graph theoretical
tools. However, there exists proofs of these results (and even others) obtained by techniques from linear
programming or polyhedral combinatorial optimization (see the work of P. Charbit and A. Sebö [37] and
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A. Sebö [117]). In particular, using these techniques, A. Sebö gave in [117] a cyclic version of Menger’s
Theorem (we missed it...). Let O be a cyclic order of a strong digraph D. A cyclic feedback-vertex-set of O
is a set U of vertices of D such that for every cycle C of D, we have |V (C)∩U | ≥ iO(C). A. Sebö establishes
the following.

Theorem 14 (A. Sebö, 2007, [117]). Let O be a cyclic order of a strong digraph D. The minimum cardinality
of a cyclic feedback-vertex-set is equal to the maximum of

∑

C∈R iO(C), where R is a set of vertex-disjoint
cycles of D.

A. Sebö gives also in [117] an ’arc version’ of this result and weighted analogous of these two statements.
Obviously, we can wonder if there exists other theorems on paths which can be turn into a cyclic form.

Problem 15. Is there other results on paths in digraphs which admits a cyclic equivalent?

1.2.3 Packing of directed cycles3

In this section, we are concerned about a converse problem (in a certain way) of the previous one. Given a
digraph D, we denote by ν0(D) (resp. ν1(D)) the maximum number of vertex-disjoint (resp. arc-disjoint)
circuits in D. The problems dealing with circuits packing in digraphs consist in computing, or finding bounds
on ν0 and ν1.
In addition, we define τ0(D) (resp. τ1(D)) to be the minimum size of a feedback-vertex-set of D (resp.
feedback-arc-set of D). It is clear that τ0 (resp. τ1) is a natural lower bound of for the packing number ν0
(resp. ν1). The converse is not true, but it is possible to bound above ν0 (resp. ν1) by a function of τ0 (resp.
τ1). This statement was conjectured in 1973 by D.H Younger [136], and the first case of this conjecture ’is
τ0 bounded when ν0 = 1?’, was solved by W. McCuaig.

Theorem 16 (W. McCuaig, 1991, [102]). If D is a digraph with no two vertex-disjoint cycles, then there
exists a set X of at most 3 vertices such that D \X is acyclic.

In fact, some years later, in 1996, Younger’s Conjecture was settled by B. Reed, N. Robertson, P.D. Sey-
mour and R. Thomas who proved the following.

Theorem 17 (’Younger’s Conjecture’, B. Reed, N. Robertson, P.D. Seymour and R. Thomas, 1996, [112]).
There exist functions f0, f1 : N → N such that for every digraph D we have τ0(D) ≤ f0(ν0(D)) and τ1(D) ≤
f1(ν1(D)).

More precisely, to prove Theorem 16, W. McCuaig gave a complete characterization of digraphs with no
two disjoint cycles. To prove Theorem 17, the authors used Ramsey Theory, leading to exponential functions
for f0 and f1. We can ask if there is possible other ways to prove these two theorems. In particular, as cyclic
orders have strong link with cycles in digraphs, they could be useful for that.

Problem 18. Is it possible to prove Theorem 16 or Theorem 17 using cyclic orders of digraphs, and then,
obtaining simpler proofs or better bounds on f0 and f1?

For the end of this subsection, we focus on different lower bounds for the maximum number of vertex-
disjoint cycles in a digraph (i.e. ν0). By Theorem 17, we know that if τ0 is large enough, then ν0 will be large
also. There is no hope to easily obtain an exact value for τ0, as it is known for long that computing τ0 is an
NP-hard problem (it has been proved by R.M. Karp in 1972 [85]). However, there is a natural and tractable
lower bound for τ0. For a digraph D, the minimum out-degree (resp. minimum in-degree) of D, denoted by
δ+(D) (resp. δ−(D)), is the minimum value over the out-degrees (resp. in-degrees) of the vertices of D. As
there exists a set X of τ0(D) vertices of D such that D \ X is acyclic, there is a vertex x with out-degree
0 in D \X and thus, we have δ+(D) ≤ d+(x) ≤ τ0(D). So, using Theorem 17, we know that if δ+ is large
enough, ν0 will be also large. This corollary of Theorem 17, was, in fact, directly proved by C. Thomassen in
1983 [127]. With J.C. Bermond, they raised a conjecture on the minimum value of δ+ which insures ν0 ≥ k.

3This subsection is linked with the papers: S. Bessy, N. Lichiardopol, and J.S. Sereni, Two proofs of the bermond-thomassen
conjecture for tournaments with bounded minimum in-degree. Discrete Mathematics, 310:557–560, 2010, annexed p.40 and
J. Bang-Jensen, S. Bessy, and S. Thomassé, Disjoint 3-cycles in tournaments: a proof of the bermond-thomassen conjecture for
tournaments, submitted, 2011, annexed p.48.
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Conjecture 19 (’The Bermond Thomassen Conjecture’, J.C. Bermond and C. Thomassen, 1981, [13]). If
δ+(D) ≥ 2k − 1 then ν0(D) ≥ k, what means that D contains at least k vertex-disjoint cycles.

Remark that the complete digraph (with all the possible arcs) is a sharp example for this statement. The
conjecture is trivial for k = 1 and it has been verified for general digraphs when k = 2 by C. Thomassen [127]
and k = 3 by N. Lichiardopol, A. Pór and J.-S. Sereni [96]. Furthermore, N. Alon proved in 1996 that there
exists a linear function of k that insure ν0 ≥ k. Namely, using some probabilistic arguments, he proves the
following.

Theorem 20 (N. Alon, 1996, [3]). If δ+(D) ≥ 64k then ν0(D) ≥ k.

The status of the Bermond Thomassen Conjecture was even not known on tournaments. I have worked on
this specific problem. In this case, as any cycle in tournament always contains a 3-cycle, we focus on disjoint
3-cycles. First, in 2005, with N. Lichiardopol and J.S. Sereni, we proved that the Bermond Thomassen
Conjecture is true for regular tournaments. More precisely, we obtained the following result.

Theorem 21 (S. Bessy, N. Lichiardopol and J.S. Sereni, 2005, [18]). If T is a tournament with δ+(T ) ≥ 2k−1
and δ−(T ) ≥ 2k − 1 then, ν0(T ) ≥ k.

More precisely, we proved that, given a collection F of t < k disjoint 3-cycles of T , it is always possible
to find a 3-cycle C of F such that T [(V (T ) \ V (F)) ∪ V (C)] contains two disjoint 3-cycles. Then, removing
C from F and adding these two 3-cycles, we obtain a collection of t+1 disjoint 3-cycles of T . Unfortunately,
this scheme of proof does not work if we remove the condition δ−(T ) ≥ 2k − 1. However, some years later,
in 2010, during a second attempt with J. Bang-Jensen and S. Thomassé, we finally proved the Bermond
Thomassen Conjecture for tournaments.

Theorem 22 (J. Bang-Jensen, S. Bessy and S. Thomassé, 2010, [7]). Every tournament T with δ+(T ) ≥ 2k−1
has k disjoint cycles each of which have length 3.

Here, the proof is also based on the possibility to extend a family of disjoint 3-cycles. More precisely,
given a collection F of t < k disjoint 3-cycles of T , we proved that is always possible to find a larger family
of disjoint 3-cycles intersecting V (T ) \V (F) on a most four vertices. This method is similar to the one used
in the proof of Theorem 21, but it allows more recombination possibilities on the 3-cycles when enlarging F .

As previously mentioned, Bermond Thomassen Conjecture is sharp on complete digraphs. But for large
k, we did not find any sharp example of this statement for tournaments, and then without 2-cycles. Indeed,
such examples do not exist for tournament as we have shown by improving Theorem 22 for tournaments
with large minimum out-degree. Roughly speaking, a tournament T with δ+(T ) > 3

2k and k large enough
contains k disjoint cycles of length 3. More precisely, we proved the following.

Theorem 23 (J. Bang-Jensen, S. Bessy and S. Thomassé, 2010, [7]). For every value α > 3
2 , there exists a

constant kα, such that for every k ≥ kα, every tournament T with δ+(T ) ≥ αk has k disjoint 3-cycles.

This statement is optimal for the value 3
2 , as shown by the family of regular tournament, i.e. tournament T

that verify d+(x) = d−(x) for every vertices of T . However, we do not know what happens for tournaments
with δ+ = 3

2k, but we conjecture that they also contain k disjoint 3-cycles. As when we forbid small
cycles (of length 2) we can asymptotically improve the statement of the Bermond Thomassen Conjecture on
tournaments and we conjecture that this could be also true for general digraphs.

Conjecture 24 (J. Bang-Jensen, S. Bessy and S. Thomassé, 2010, [7]). If a digraph D has no cycles of
length less than g and minimum out-degree at least k, with k large enough, then D contains at least g+1

g · k
disjoint cycles.

To conclude this subsection, I just would like to mention two nice conjectures dealing with feedback-arc-
set in digraphs. As previously mentioned, we know that τ1 is NP-hard to compute for digraph, and even for
tournaments [9]. However there is a class of digraphs where τ1 is not hard to compute. Indeed, for planar
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digraph, C.L. Lucchesi proved in 1976 [98] that is possible to compute a feedback-arc-set on a planar digraph
in polynomial time. Furthermore, always for planar digraphs, the Lucchesi-Younger Theorem [99] asserts
that τ1 = ν1. But even in the planar case, much remains unknown on feedback arc set, as shown by these
two long-standing conjectures.

Conjecture 25 ((weak form) D.R. Woodall, 1978, [134]). Every planar strong digraph with no 2-cycles
admits three disjoint feedback-arc-sets.

Conjecture 26 (V. Neumann-Lara, 1982, [104]). Every planar digraph D with no 2-cycles has a feedback-
arc-set which forms a bipartite subdigraph of D.

1.3 Coloring and partitioning problems

During my research works, I also focused on some graph coloring problems or problems in colored graphs.
These topics are structural and can be viewed as partitioning questions, as those from Section 1.2. However,
they do not present such a unity and come from really different fields. The two first subsections deal with
some questions arising in a modeling context. In Subsection 1.3.1, we use an arc-coloring model to obtain
results on a function theory problem, and Subsection 1.3.2 deals with questions from a classical application
of graph coloring theory: optimization in optical communication networks. Finally, in Subsection 1.3.3, we
are interested in a problem from a slightly different context. Given a graph and a coloring of this graph, we
look for a subgraph having some structural properties (e.g. a path, a cycle...) and some properties according
to the coloring (e.g. monochromatic, bi-chromatic...).

1.3.1 Arc-coloring in digraphs4

Related to a function theory problem, with É. Birmelé and F. Havet, we have studied an extension of graph
coloring to digraphs. The problem was initially proposed by A. El Sahili [58] and comes from a question
arising in function theory. Namely, let f and g be two maps from a finite set A into a set B. Suppose that
f and g are nowhere coinciding, that is for all a ∈ A, f(a) 6= g(a). A subset A′ of A is (f, g)-independent if
f(A′) ∩ g(A′) = ∅. We are interested in finding the minimum number of (f, g)-independent subsets needed
to partition A in the case where every element of B has a bounded number of antecedents by the functions
f and g. As shown by El-Sahili [59], this can be translated into an arc-coloring problem.

We focus on a special type of arc-coloring for digraphs, introduced by S. Poljak and V. Rödl in 1981 [108].
Other classical arc-colorings exist, see [72] for instance, but this one model the previous problem. So, here,
an arc-coloring of a digraph D is an application c from the arc-set A(D) into a set of colors S such that if
the tail of an arc e is the head of an arc e′ then c(e) 6= c(e′). In other words, the arcs from a same color class
form a bipartite graph and are oriented from a part of the bipartition to the other one. The arc-chromatic
number of D, denoted by χa(D), is the minimum number of colors used by an arc-coloring of D. Another
way to define the notion of arc-coloring is the following: in an arc-coloring of D, for any arc xy, the set of
colors appearing on the arcs with tail x must not be a subset of the set of colors appearing on the arcs with
tail y (as it contains the color of xy). We denote by Hk the complementary of the hypercube of dimension k,
i.e. Hk is the digraph with vertex set all the subsets of {1, . . . , k} and with arc set {XY : X * Y }. With the
previous remark, a digraph D has an arc-coloring with k colors if, and only if, it admits an homomorphism
to Hk (then, if an arc xy of D is mapped to an arc XY of Hk, we color xy with an integer of X \ Y ). Using
this and Sperner’s Lemma [123] to find a homomorphism into a complete subdigraph of Hk, S. Poljack and
V. Rödl obtained the following theorem.

Theorem 27 (S. Poljak and V. Rödl, 1981, [108]). For every digraph D, we have log(χ(D)) ≤ χa(D) ≤
θ(χ(D)), where θ(k) = min{s :

(
s

⌊s/2⌋

)
≥ k}.

Now, we come back to the function theory problem and the model proposed by A. El-Sahili in [59]. Let
Df,g be the digraph defined by: V (Df,g) = B and (b, b′) ∈ E(Df,g) if there exists an element a in A such that

4This subsection is linked with the paper: S. Bessy, E. Birmelé, and F. Havet, Arc-chromatic number of digraphs in which
every vertex has bounded outdegree or bounded indegree, Journal of Graph Theory, 53(4):315–332, 2006, annexed p.64.



14 CHAPTER 1. OVERVIEW OF MY RESEARCH WORKS

g(a) = b and f(a) = b′. Then, a (f, g)-independent subset of A corresponds to a set of arcs of Df,g which
do not form paths of length more than one or cycles. And so, the minimum number of (f, g)-independent
subsets needed to partition A, denoted by φ(f, g) is exactly the arc-chromatic number of Df,g. Furthermore,
we want to take into consideration in the model the number of antecedents by f and g for the elements of
B. Precisely, let Φ(k) (resp. Φ∨(k, l)) be the maximum value of φ(f, g) for two nowhere coinciding maps f
and g from A into B such that for every z in B, |g−1(z)| ≤ k (resp. either |g−1(z)| ≤ k or |f−1(z)| ≤ l). The
condition f−1(z) (resp. g−1(z)) has at most k elements means that each vertex has in-degree (resp. out-
degree) at most k in Df,g. To turn these notions into digraphs context, A. El-Sahili [59] defines a k-digraph
to be a digraph in which every vertex has out-degree at most k. Similarly, a (k ∨ l)-digraph is a digraph in
which every vertex has either out-degree at most k or in-degree at most l. Hence, Φ(k) (resp. Φ∨(k, l)) is
the maximum value of χa(D) for D a k-digraph (resp. a (k ∨ l)-digraph).

So, motivated by the previous interpretation in function theory and by the corresponding coloring prob-
lem, we studied the behavior of the functions Φ and Φ∨. The first results on these functions was given by
A. El-Sahili, who proved the following.

Theorem 28 (A. El-Sahili, 2003, [59]). We have Φ∨(k, k) ≤ 2k + 1.

Using Theorem 27, we improved this bound to the following.

Theorem 29 (S. Bessy, É. Birmelé and F. Havet, 2006, [14]). We have Φ(k) ≤ θ(2k) if k ≥ 2, and
Φ∨(k, l) ≤ θ(2k + 2l) if k + l ≥ 3.

As asymptotically the function θ is equivalent to the function log, we obtain quite better bounds than
those from Theorem 28. Furthermore, we get examples proving that, up to constant multiplicative factor,
the bounds given by Theorem 29 are optimal.
We have completed our work by finding some properties on the behavior of the functions Φ and Φ∨.

Theorem 30 (S. Bessy, E. Birmelé and F. Havet, 2006, [14]). For every k ≥ 1, we have Φ(k) ≤ Φ∨(k, 0) ≤
· · · ≤ Φ∨(k, k) ≤ Φ(k) + 2 and Φ∨(k, 1) ≤ Φ(k) + 1.

Moreover, we conjectured that the first inequality is not optimal, and that Φ∨ is closer to Φ.

Conjecture 31 (S. Bessy, E. Birmelé and F. Havet, 2006, [14]). For every k ≥ 1, we have Φ∨(k, 1) = Φ(k)
and Φ∨(k, k) ≤ Φ(k) + 1.

Finally, we checked our conjecture for small values of k by computing exact values of Φ∨(k, l) and Φ(k)
for k ≤ 3 and l ≤ 3. In particular, as a remarkable result we obtain the following.

Theorem 32 (S. Bessy, E. Birmelé and F. Havet, 2006, [14]). We have Φ∨(2, 2) = 4, that is, every digraph
with the property that d+(x) ≤ 2 or d−(x) ≤ 2 for each of its vertex x admits an arc-coloring with at most
four colors.

This statement was settled by using more sharpened homomorphisms from (2 ∨ 2)-digraph into H4 than
the usual mapping to a maximum complete subdigraph of H4 (given by Sperner’s Lemma [123]).

1.3.2 WDM5

This subsection presents another application of graph coloring, in the domain of network optimization and
design. I worked in that field while I was in postdoc in 2004 in the Mascotte Team at Sophia Antipolis,
a research team led by J.C. Bermond and working on algorithms, discrete mathematics and combinatorial
optimization with motivations coming from communication networks. During this year, with C. Lepelletier,
a Master’s degree student, we were interested in a problem arising in the design of optical networks. This

5This subsection is linked with the paper: S. Bessy and C. Lepelletier, Optical index of fault tolerant routings in wdm
networks, Networks, 56(2):95–102, 2010, annexed p.81.
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topic has been of growing interest over the two last decades, using tools from graph theory and design theory
(for instance, see [11], [75] or [10] for a background review of optical networks). The model considered
here is valid for the so-called wavelength division multiplexing (or WDM) optical network. Such a network is
modeled by a symmetric directed graph with arcs representing the fiber-optic links. A request in the network
is an ordered pair of graph nodes, representing a possible communication in the network. A set of different
requests is an instance in the network. For each request of the instance, we have to select a routing directed
path to satisfy it, and the set of all selected paths forms a routing set according to the instance. To make
the communications possible, a wavelength is allocated to each routing path, such that two paths sharing an
arc do not carry the same wavelength; otherwise the corresponding communications could interfere. Given a
routing set related to the wavelength assignment, we can define two classical invariants. The arc-forwarding
index of the routing set is the maximum number of paths sharing the same arc. In the network, there is
a general bound on the number of wavelengths which can transit at the same time in a fiber-optic link,
corresponding to the admissible maximal arc-forwarding index. The other invariant, called the optical index
of the routing set, is the minimum number of wavelengths to assign to the routing paths in order to ensure
that there is no interference in the network. The main challenge is to provide, for a given instance, a routing
set which minimizes the arc-forwarding index or the optical index, or both if possible.

Our work is a contribution to a variant of this problem, introduced by J. Maňuch and L. Stacho [101], in
which we focus on possible breakdowns of nodes in the network. Precisely, for a given fixed integer f , we have
to provide, for every request, not just one directed path to satisfy it, but rather a set of f + 1 directed paths
with the same starting and ending nodes (corresponding to the request) and which are pairwise internally
disjoint. In this routing, if f nodes break down, every request between the remaining nodes could still be
satisfied by a previously selected routing path which contains no failed component. Such a routing set of
directed paths is called an f -fault tolerant routing or an f -tolerant routing.
Considering the problematics developed in [101], we focused on the very special cases of complete symmetric
directed graphs and complete balanced bipartite symmetric directed graphs. Moreover, we only studied the
case of all-to-all communication, i.e., where the instance of the problem is the set of all ordered pairs of
nodes of the network. So, in a all-to-all context, for a digraph D and a fixed positive integer f , an f -tolerant
routing in D is a set of paths R = {Pi(u, v) : u, v ∈ V, u 6= v, i = 0, . . . , f} where, for each pair of distinct
vertices u, v ∈ V (D), the paths P0(u, v), . . . , Pf (u, v) are internally vertex disjoint. Note that such a set of
paths exists if and only if the connectivity of the directed graph is large enough (at least f + 1), which will
be the case in complete and complete bipartite networks for suitable f .

The basic parameters for WDM optical networks, the arc-forwarding index and the optical index, are
generalized in f -tolerant routings. The load of an arc in R is the number of directed paths of R containing
it. By extension, the maximum load over all the arcs of D is the load of the routing, which is also called
the arc-forwarding index of R and is denoted by π(R). Finally, the optical index of R, denoted w(R), is
the minimum number of wavelengths to assign to paths of R so that no two paths sharing an arc receive
the same wavelength. In other words, w(R) is exactly the chromatic number of the graph with vertex set R
and where two paths of R are linked if they share the same arc of D (known as the path graph of R). The
goal, in that context, is to minimize π(R) and w(R). So the f -tolerant arc-forwarding index of D and the
f -tolerant optical index of D are respectively defined by:

πf (D) = min
R

π(R)

wf (D) = min
R

w(R)

where the minima span all the possible routing sets R. A routing set achieving one of the bounds is said to
be optimal for the arc-forwarding index or optimal for the optical index, respectively.

For a routing set R, all paths sharing the same arc must receive different wavelengths in the computation
of w(R). In particular, we have π(R) ≤ w(R). By considering a routing set which is optimal for the optical
index, we obtain πf (D) ≤ wf (D). The equality was conjectured by J. Maňuch and L. Stacho [101].

Conjecture 33 (J. Maňuch, L. Stacho, 2003, [101]). Let D be a symmetric directed k-vertex-connected
graph. For any f , 0 ≤ f < k, we have πf (D) = wf (D).



16 CHAPTER 1. OVERVIEW OF MY RESEARCH WORKS

For f = 0 (without tolerating any faults), the conjecture was previously raised by B. Beauquier et al. [10]
and plays a central role in the field of WDM networks.

Recall that we denote by K⋆
n the complete symmetric directed graph on n vertices. In addition, the

complete balanced bipartite symmetric digraph K⋆
n,n is the directed graph on vertex set X ∪ Y with X =

{x1, . . . , xn} and Y = {y1, . . . , yn} and arc set {xy, yx : x ∈ X, y ∈ Y }. Thus, we have considered the problem
of computing exactly wf (K⋆

n) and wf (K⋆
n,n). It is easy to provide a lower bound for the arc-forwarding index

of K⋆
n. Indeed, any two vertices x and y of K⋆

n have to be linked in an f -tolerant routing by f + 1 internally
disjoint paths. If one of these paths has length one (the arc xy), all the others have length at least two, and
at least 2f +1 arcs are needed to ensure f -tolerant communication from x to y. So, by an average argument,
one arc of K⋆

n must have load at least 2f + 1, providing πf (K⋆
n) ≥ 2f + 1. Similarly, we obtain an easy lower

bound on πf (K⋆
n,n). In the case of K⋆

n, in 2005, A. Gupta, J. Maňuch and L. Stacho proved in [75] that this
lower bound gives exactly the value of the arc-forwarding index. Indeed, they construct f -tolerant routings
through families of independent idempotent Latin squares which are optimal for the arc-forwarding index.

Theorem 34 (A. Gupta, J. Maňuch, L.Stacho, 2005, [75]). For every f with 0 ≤ f ≤ n − 2, we have
πf (K⋆

n) = 2f + 1.

They also partially bound the optical index of their f -tolerant routings, proving that wf (K⋆
n) ≤ 3f + 1

for some values of f . This result was improved in 2006 by J.H. Dinitz, A.C.H. Ling and D.R. Stinson [49],
who gave a better multiplicative factor for some infinite sets of values of n and the optimal index up to
an additive constant for another infinite set of values of n. We have improved these results and fixed this
computation by showing that every f -tolerant routing set of K⋆

n which is optimal for the arc-forwarding
index is also optimal for the optical index. We thus prove Conjecture 33 for the complete digraphs.

Theorem 35 (S. Bessy, C. Lepelletier, 2007, [17]). For every f , 0 ≤ f ≤ n − 2, and every f -tolerant
routing set R of K⋆

n with π(R) = πf (K⋆
n) = 2f + 1, we have w(R) = 2f + 1. In particular, we have

wf (K⋆
n) = πf (K⋆

n) = 2f + 1.

We obtained this result using an edge coloring model. We define a graph with vertex set the arcs of
K⋆

n and where to arcs of K⋆
n are linked by an edge if they belong to a same path of the considered routing.

Theorem 35 is then simply obtained by applying Vizing’s Theorem [132] to this special graph.
A remaining important issue concerning f -tolerant routings for K⋆

n is the design of the routings.

Problem 36. Is there a simple way (without using idempotent Latin square, for instance) to design in K⋆
n

optimal f -tolerant routings for the arc-forwarding index?

Moreover, we have computed the exact optical index of K⋆
n,n and thus proved Conjecture 33 also for this

family of graphs. This improves the result of A. Gupta, J. Maňuch and L. Stacho [75], where the upper
bound given on the optical index of K⋆

n,n is 20% higher than the conjectured optimal value. For that, we
described a family of routings and shown that they are all optimal for the arc-forwarding index and the
optical index.

Theorem 37 (S. Bessy, C. Lepelletier, 2007, [17]). For any n ≥ 1 and any f with 0 ≤ f ≤ n − 1, we have
wf (K⋆

n,n) = πf (K⋆
n,n).

1.3.3 Substructures in colored graphs6

The problem studied in this section is not exactly a coloring problem, but concerns the existence of some
structure in a colored graph. This problematic covers a broad range of problems, and with S. Thomassé, we
focused on a conjecture of J. Lehel on the partition of a bi-colored complete graph into two monochromatic
cycles. To be precise, we say that a colored graph has a partition into p monochromatic cycles (or paths) if

6This subsection is linked with the paper: S. Bessy and S. Thomassé, Partitionning a graph into a cycle and an anticycle, a
proof of lehel’s conjecture, Journal of Combinatorial Theory, Serie B, 100(2):176–180, 2010, annexed p.105.
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it admits a vertex-partition into p subgraphs every one of which admits a spanning monochromatic cycle (or
path).
Many questions deal with the existence of monochromatic paths and cycles in edge-colored complete graphs.
For instance, in 1991, P. Erdős, A. Gyárfás and L. Pyber studied in [60] the minimal number of monochro-
matic cycles needed to partition the vertex set of the complete graph with edges colored with k colors.
In 2006, A. Gyárfás, M. Ruszinkó, G.N. Sárközy and E. Szemerédi [77] proved that O(k log k) such cycles
suffice to partition the vertices. One case which received a particular attention was the case k = 2, where
we would like to cover a complete graph which edges are colored blue and red by two monochromatic cycles.
A conjecture of Lehel, first cited in [6], asserts that a blue and a red cycle partition the vertices, where
empty set, singletons and edges are allowed as cycles. This statement was proved for sufficiently large n by
T.  Luczak, V. Rödl and E. Szemerédi [128], and more recently by P. Allen [2] with a better bound. Their
proofs respectively use the Szemerédi Regularity Lemma and Ramsey’s Theory to find useful partition of the
vertex set of the colored complete graph. With S. Thomassé, we obtained a general proof of this statement.

Theorem 38 (S. Bessy, S. Thomassé, 2010, [23]). Every complete graph with red and blue edges has a vertex
partition into a red cycle and a blue cycle.

Our proof is based on induction, using as starting point the proof of A. Gyárfás of the existence of one
red cycle and one blue cycle covering the vertices and intersecting on at most one vertex (see [76]). For
this, he considered a longest path consisting of a red path followed by a blue path. The nice fact is that
such a path P is hamiltonian. Indeed, if a vertex v is not covered, it must be joined in blue to the origin
a of P and in red to the end b of P . But then, one can cover the vertices of P and v using the edge ab.
Consequently, there exists a hamiltonian cycle consisting of two monochromatic paths. Hence, there exists a
monochromatic cycle C, of size at least two, and a monochromatic path P with different colors partitioning
the vertex set. The induction in our proof of Theorem 38 runs on the size of C: at each step, either we can
find the two desired cycles, or we increase the length of C.

There exist many other interesting questions dealing with substructures in colored graphs. I list below
some of them, which are either generalizations of Lehel’s Conjecture, or famous questions raised in that field.
The first natural extension to this problem is to increase the number of colors of the background structure. It
was considered by P. Erdős, A. Gyárfás and L. Pyber in their seminal paper, where there raised the following
conjecture, still open for k ≥ 3.

Conjecture 39 (P. Erdős, A. Gyárfás and L. Pyber, 1991, [60]). For every coloring of the edges of the
complete graph Kn with k colors, there exists a partition of the vertex set of Kn into r monochromatic
cycles.

Nothing is said on requirement for cycles with different colors. Maybe, some connectivity conditions
could be asked for each graph induced by the edges with same color. In particular, the following question is
interesting.

Problem 40. Let be a coloring of the edges of the complete graph Kn with 3 colors such that each graph
induced by the edges with the same color has vertex-connectivity at least 2. Is it possible to partition the
vertex set of Kn into three monochromatic cycles, one of each color?

Another kind of questions arises when we change the background graph. For instance, partitioning the
complete balanced bipartite graph Kn,n with colored edges has been studied by P. Haxell [79]. She proved
that for every k, there exists an integer ck such that, for every coloring of the edges of Kn,n with k colors,
their exists a partition of the vertex set of Kn,n into ck monochromatic cycles. In the paper [79], there is
no precise mention to the case k = 2. The bound computed on ck gives c2 ≥ 64, but we can conjecture that
the real value of c2 is really less than 64.

Problem 41. If n is large enough, for every coloring of the edges of Kn,n with 2 colors, does there exist a
partition of the vertex set of Kn,n into two monochromatic cycles?

Remark that for n = 3, it is possible to color the edges of K3,3 with two colors such that each color class
induced a forest of K3,3. Then, in this case, there is no hope to have a partition of the vertex set of K3,3
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into two monochromatic cycles. That is why we ask for n to be large enough, to have enough space in the
edge set to form cycles.

A third generalization of Lehel’s Conjecture could be obtained in considering objects of higher dimensions.
On a ground set V of n points, we color into two colors, say red and blue, all the d-subsets of V . We call a
d-dimensional cycle the set of all the facets (faces of dimension d) of a polytope (a bounded intersection of
half planes) of the d + 1-dimensional space which vertices are seen as elements of V . The natural extension
to Lehel’s question is the following.

Conjecture 42 (S. Bessy, S. Thomassé, 2007). For every coloring of the d-subsets of a n-set V , there exists
a partition of V into 2 parts, each of them being covered by a monochromatic d-dimensional cycle, one red
and one blue.

For d = 2, we obtain the statement of Lehel’s Conjecture, which is then true. However, for d = 3, the
question remains open, and we obtained the following short statement.

Conjecture 43 (S. Bessy, S. Thomassé, 2007). For every coloring of the triples of a n-set V , there exists a
partition of V into 2 planar triangulations, one red and one blue.

Finally, the last kind of problems I am interested in that field concerns digraphs. If we want a direct
translation of Lehel’s problem on the complete digraph, we need to ensure that the considered colorings do
not induce big acyclic part in each color. For instance, if we consider an enumeration of the vertices of the
complete digraph and color all forward arcs in blue and all backward arcs in red, there is no hope to find
a vertex partition into two monochromatic directed cycles. To raise a possible conjecture, we ask that for
each color, the digraph induced by the arcs of this color must be strongly connected.

Conjecture 44 (S. Bessy, S. Thomassé, 2007). For every coloring of the arcs of the complete digraph K⋆
n

into two colors such that each color induces a strongly connected digraph, there exists a vertex partition of
K⋆

n into two directed cycles, one of each color.

Remark that there exists an oriented version of the starting point of the proof of Theorem 38: the exis-
tence of a hamiltonian cycle consisting of two monochromatic paths in every edge colored complete graph.
Indeed, in 1973, H. Raynaud [111] proved that every arc coloring of the complete digraph contains a hamil-
tonian (oriented) cycle consisting of two monochromatic (oriented) paths. This should be worth to exploit
this result in order to tackle Conjecture 44.

To conclude, let us mention a long standing open problem, initially stated by P. Erdős (cited in [116])
and concerning arc-colored tournaments. This problem is not related to monochromatic cycles but it is
quite natural in that field and deals with unavoidable structures in colored directed graphs. In a colored
digraph D, a set of vertices S is a set of monochromatic sources if from every vertex x of D, there exists a
monochromatic path from a vertex of S to x. This problem first appeared in print in a paper of B. Sands,
N. Sauer, and R. Woodrow [116], where they proved that every tournament with arcs colored with two colors
has a vertex which is a monochromatic source.

Problem 45 (P. Erdős, 1982). For every k, is there an integer f(k) such that every tournament with arcs
colored with k colors has set of monochromatic sources with cardinality at most f(k).

So, according to this formalism, B. Sands, N. Sauer, and R. Woodrow proved that f(2) = 1. However,
for k ≥ 3, the value f(k) is not known and even not known to exist. More precisely, for k = 3 the last
authors conjectured the following

Problem 46 (B. Sands, N. Sauer, and R. Woodrow, 1982, [116]). We have f(3) = 3, that is, every
tournament with arcs colored with 3 colors has set of monochromatic sources with cardinality at most 3.

1.4 Algorithmic problems on graphs

This last section deals with some algorithmic problems on graphs and exact solutions for these problems.
The first subsection is an overview of the work I have done with A. Perez (and other co-authors) while he
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prepared his PhD Thesis which I co-supervised with C. Paul. We looked at some parameterized problems
and presented kernelization algorithms for these problems. The second subsection presents a join work with
F. Havet on a problem consisting in counting the number of edge-colorings of a regular graph. We gave upper
bound for this number and yielded to exponential algorithms, with lowest as possible exponential basis, to
enumerate all this colorings.

1.4.1 Kernelization for some editing problems

With A. Perez, we worked on some modification problems for graphs and digraphs. Given a class Π of
graphs (or digraphs), generally defined by some properties or a set of forbidden induced subgraphs, the
generic modification problem is the following.

Parameterized Π-modification Problem
Input: A graph (or a directed graph) G = (V,E) .
Parameter: An integer k > 0.
Question: Is there a subset F ⊆ V × V with |F | 6 k such that the graph G + F = (V,E △ F ) belongs

to the class Π?

Graph modification problems cover a broad range of NP-Complete problems and have been extensively
studied in the literature [100, 119, 120]. Well-known examples include the Vertex Cover [46], Feedback-
Vertex-Set [126], or Cluster Editing [41] problems. These problems find applications in various do-
mains, such as computational biology [83, 120], image processing [119] or relational databases [124]. Precisely,
for a given graph G = (V,E), in a completion problem, the set F of modified edges is constrained to be dis-
joint from E, whereas in an edge deletion problem F has to be a subset of E. If no restriction applies to F ,
then we obtain an edition problem. Though most of the edge-modification problems turn out to be NP-hard
problems, in some cases, efficient algorithms can be obtained to solve the natural parameterized version of
some of them. The goal is to obtained a classification in the context of parameterized complexity (polynomial
kernel, FPT without polynomial kernel or not FPT, for instance) of the Parameterized Π-modification
Problems according to the class Π. Very few general results are known in this problematic. For instance,
a graph modification problem is FPT whenever Π can be characterized by a finite set of forbidden induced
subgraphs [34]. But, even in this simple case, the existence of a polynomial kernel is not ensure. We will dis-
cuss later this question more precisely, but it motivated our work on graph modification problems. Thus, in
order to find polynomial kernel for some Parameterized Π-modification Problems, we focused on very
structured class of graphs Π (classes having a tree-like decomposition and tournaments). More precisely, we
found three polynomial kernelizations: for the 3-leaf power editing problem (join work with C. Paul
and A. Perez), for the proper interval completion problem (join work with A. Perez) and for the
feedback-arc-set in tournament problem (join work with F.V. Fomin, S. Gaspers, C. Paul, A. Perez,
S. Saurabh and S. Thomassé). We used a very similar approach for the two first problems, which are closed.
For the third problem, which is on tournaments, the techniques are quite different but the general scheme
of the algorithm design is also similar.
Very classically, given a Parameterized Π-modification Problem, the general process used to find a
small kernel is the following. For an instance (G, k) of this problem, we apply on G a set of rules to obtain a
graph G′ equivalent to G, and we show that if G is a positive instance of the considered problem, then, the
size of G′ is bounded by a polynomial in k. Some of the rules we used are quite generic. I list them bellow.

• If a connected component of G is already a graph belonging to Π, then we can remove it, under the
condition that Π is closed under disjoint union. Provided that the class Π has a polynomial algorithm
of recognition, this rule can be applied in polynomial time.

• If G has a big set of vertices which have the same behavior, then we can edit this set in a same
way. Precisely, we proved in [19] the following. If Π is closed under true twin addition and induced
subgraphs then, from every set T of true twins in G with |T | > k, we can remove |T |− (k+1) arbitrary
vertices from T . Moreover, this rule can be applied in polynomial time using a modular decomposition
algorithm or more easily, partition refinement (see [78] for example).
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• If G has an edge or a non-edge e contained in more than k obstructions of the class Π, which are
elsewhere disjoint, then we can edit e and reduce the parameter consequently. Classically, this rule is
call a sunflower rule, and is usually applied for the finite obstructions of the class Π. Thus, it can be
computed in polynomial time.

After that, we tried to generalize the first of these rules by reducing parts of the graph G which are already
’clean’, but not necessarily form a connected component. We call such a part of G, a branch of G. The exact
definition has to be adapted for each singular case, but broadly speaking, a subgraph H of G is a branch
if H belongs to Π and has some special properties of adjacency with the remaining of G. The ’branches
rule’ consists then in localizing big branches in the graph and reducing them (’cutting the branches’). It is
possible if we can show that for the considered Parameterized Π-modification Problem, the relevant
information contained in a branch lie in its border. This ’concept’ of branch is a natural idea, and as been
used before for kernelization algorithms (see [83], for instance). Finally, we have to prove that if G is a
positive instance of the problem, then, after applying these rules, the size of the obtained graph G′ will be
small, i.e. polynomial in k. This will be possible, as if G is a positive instance, up to few edges, it looks like
a graph of Π, and then has big parts, branches, behaving like subgraphs of a graph of Π, and will be reduced
by the ’branches rule’.

A polynomial kernel for the 3-leaf power editing problem7

In this subsection, I present a joint work with C. Paul and A. Perez, which consists in finding a polynomial
kernel for a Parameterized Π-modification Problem, where Π is the class of 3-leaf powers, graphs aris-
ing from a phylogenetic reconstruction context [86, 87, 106]. Briefly these graphs come from the following
problem. We want to extract, from a threshold graph G on a set S of species, a tree T , whose leaf set is S and
such that the distance between two species is at most p in T if, and only if, they are adjacent in G (p being
the value used to extract G from dissimilarity information). If such a tree T exists, then G is a p-leaf power
and T is its p-leaf root. Here, we are dealing with 3-leaf power which have several nice characterizations
(see [32] and [52]). The critical graph of a graph G is obtained by contracting all the set of pairwise true
twins of the graphs G. Then, a graph is a 3-leaf power if its critical graph is a tree. Equivalently, 3-leaf
powers are the chordal graphs without induced bull (a 3-cycle with two pending vertices), dart (build from
a path of length 2 and an isolated vertex, both dominated by a fifth vertex) and gem (a path of length three
with a dominating vertex).
Following theoretical motivations, we looked for a polynomial kernel for the 3-leaf power editing prob-
lem, answering to an open question of M. Dom, J. Guo, F. Hüffner and R. Niedermeier [53, 51].

Concerning algorithmic on p-leaf power, the following is known. For p 6 5, the p-leaf power recognition is
polynomial time solvable [33, 36], whereas the question is still open for p strictly larger than 5. Parameterized
p-leaf power edge modification problems have been studied so far for p 6 4. The edition problem for p = 2
is known as the classical Cluster Editing problem for which the kernel size bound has been successively
improved in a series of papers [62, 71, 109, 74], culminating in 2010 [41] with a kernel with 2k vertices.
For larger values of p, the edition problem is known as the closest p-leaf power problem. For p = 3
and 4, the closest p-leaf power problem is known to be FPT [52, 51], while its fixed-parameterized
tractability is still open for larger values of p. However, the existence of a polynomial kernel for p > 2
remained an open question [50, 53]. Moreover, though the completion and edge-deletion problems also are
FPT for p 6 4 [51, 53], no polynomial kernel was known for p 6= 2 [74]. In this context, we focused on the
case p = 3 and obtained the following.

Theorem 47 (S. Bessy, C. Paul, A. Perez, 2010, [19]). The closest 3-leaf power, the 3-leaf power
completion and the 3-leaf power edge-deletion admit a kernel with O(k3) vertices.

To obtain this kernel, we followed the general scheme explained previously. In this context, for an instance
graph G, a branch of G is a subgraph which forms a sub-tree of the critical graph of G containing at most

7This subsection is linked with the paper: S. Bessy, C. Paul, and A. Perez, Polynomial kernels for 3-leaf power graph
modification problems, Discrete Applied Mathematics, 158(16):1732–1744, 2010, annexed p.110.
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two vertices with neighbors outside of this sub-tree in the critical graph of G. Then, the analysis of the rules
yielded to the desired kernel.

A polynomial kernel for the proper interval completion problem8

In this second subsection, I present a join work with A. Perez, related to a Parameterized Π-modification
Problem, where the allowed modifications are only edge completions and the class Π is the class of proper
interval graphs, which are the intersection graphs of finite sets of unit length intervals on a line. Thus, we
studied the proper interval completion problem and found a kernelization algorithm for this problem.
The class of proper interval graphs is a well-studied class of graphs, and several characterizations are known
to exist. In particular, there exists an set of forbidden induced subgraphs that characterizes proper interval
graphs [133]: all the k-cycles with k ≥ 4, the claw, which the complete bipartite graph K1,3, the net, a
3-cycle with three pending vertices, and the 3-sun, which is the complementary of the net. The proper
interval graphs are also characterized by having an umbrella ordering [97]. An umbrella ordering of a graph
G is an ordering v1, . . . , vn of its vertices such that for every edge vivj of G with i < j, the set {vi, . . . , vj} is
a clique of G (it corresponds to the order of the first extremity of each interval in an interval representation
of G).
Interval completion problems find applications in molecular biology and genomic research [80, 83], and in
particular in physical mapping of DNA. This motivation was cited in the first papers dealing with proper
interval completion problem (see [83] for instance). This problem is known to be NP-Complete for a
long time [70], but fixed-parameter tractable due to a result of H. Kaplan, R. Shamir and R.E. Tarjan in
FOCS ’94 [83, 84]. Nevertheless, it was not known whether this problem admit a polynomial kernel or not.
We settled this question by proving the following.

Theorem 48 (S. Bessy, A. Perez, 2011, [20]). The Proper Interval Completion problem admits a kernel
with at most O(k3) vertices.

Remark that this problem is quite similar to the 3-leaf power completion: this is an edge completion
problem to a class of chordal graph defined by a finite set of obstructions. The proof also follows the previous
general scheme, but this time the proof for the ’branches rules’ is really more technical. A branch for this
problem is a subgraph H of our instance graph G which induces a proper interval graph and such that the
edges standing across the partition (H,G \ H) form at most two generalized join. Such a join is a set of
edges which contains no induced 2K2 (two disjoint edges). It corresponds to the edges across a partition
({v1, . . . , vk}, {vk+1, . . . vn}) of an umbrella ordering of a proper interval graph. Detecting and reducing the
branches produced the cubic kernel.

Moreover, we applied our techniques to the so-called Bipartite Chain Deletion problem, closely
related to the Proper Interval Completion problem where one is given a graph G = (V,E) and seeks
a set of at most k edges whose deletion from E result in a bipartite chain graph (a graph that can be
partitioned into two independent sets connected by a generalized join). For this problem, we obtained a
quadratic kernel.

Theorem 49 (S. Bessy, A. Perez, 2011, [20]). The problem Bipartite Chain Deletion admits a kernel
with at most O(k2) vertices.

This result completes a previous result of Guo [74] who proved that the Bipartite Chain Deletion
With Fixed Bipartition problem admits a kernel with O(k2) vertices.

To conclude these two parts, we return on a more general framework for the Parameterized Π-
modification Problems. As previously mentioned, it is known that a graph modification problem is
FPT whenever Π can be characterized by a finite set of forbidden induced subgraphs [34]. However, recent
results proved that several graph modification problems do not admit a polynomial kernel even for such
classes Π [73, 94]. For instance, an impressive result is that if Π is the class of the graphs without induced

8This subsection is linked with the paper: S. Bessy and A. Perez. Polynomial kernels for proper interval completion and
related problems. In FCT, volume 6914 of LNCS, pages 1732–1744, 2011, annexed p.134.
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2K2, then the Parameterized Π-completion problem has no polynomial kernel (personal communica-
tion of F. Havet, C. Paul, A. Perez and S. Guillemot on a work in progress). So, in this field, the following
question is a central one.

Problem 50. Is it possible to characterize the class Π of graphs such that the Parameterized Π-
modification Problem is FPT or admits a polynomial kernel?

More precisely, with A. Perez, focusing on completion problems, we tried to generalize the notion of
branches and apply it to the Parameterized Π-completion problem. In the two examples presented,
the fact that the classes of graphs (3-leaf power and proper interval) are chordal seems very useful to obtain
polynomial kernels. So, we asked the following question.

Conjecture 51 (S. Bessy, A. Perez, 2011 [20]). If Π is a class of chordal graphs defined by a finite set of
obstructions, then the Parameterized Π-completion problem admits a polynomial kernel.

As mentioned in [20], it is easy to see that such problems are FPT. Moreover, another clue for this
conjecture is that when Π is simply the class of chordal graphs, H. Kaplan, R. Shamir and R.E. Tarjan have
shown in 1994 [83] that the Parameterized Π-completion problem (also called the Minimum Fill-In
problem) admits a cubic kernel.

A polynomial kernel for the feedback-arc-set in tournament problem9

The last problem I looked at in the context of parameterized complexity deals with feedback-arc-set in
tournaments. It is (very) collective work done in 2009 and join with F.V. Fomin, S. Gaspers, C. Paul,
A. Perez, S. Saurabh and S. Thomassé and it is not very far from the problems presented in the two first
subsection. Given a directed graph G = (V,A) on n vertices and an integer parameter k, the Feedback-
Arc-Set problem asks whether the given digraph has a set of k arcs whose removal results in an acyclic
directed graph. It is a Parameterized Π-arc-deletion problem, where Π stands for the class of acyclic
digraphs. We considered this problem in a the class of tournaments. More precisely, the problem is the
following.

Feedback-Arc-Set in Tournaments (FAST):
Input: A tournament T = (V,A) and a positive integer k.
Parameter: k.
Question: Is there a subset F ⊆ A of at most k arcs whose removal makes T acyclic?

Feedback-arc-sets in tournaments are well studied from the combinatorial [61, 82, 113, 118, 122, 135],
statistical [121] and algorithmic [1, 4, 44, 90, 129, 130] points of view. The problem FAST has some nice
applications, as for instance, in rank aggregation, where we are given several rankings of a set of objects,
and we wish to produce a single ranking that on average is as consistent as possible with the given ones,
according to some chosen measure of consistency. This problem has been studied in the context of voting
[31, 39, 43], machine learning [42], and search engine ranking [56, 57]. A natural consistency measure for
rank aggregation is the number of pairs that occur in a different order in the two rankings. This leads to
Kemeny rank aggregation [88, 89], a special case of a weighted version of FAST.

However, we were mainly motivated by theoretical aspects of the problem, on which the following is
known. The FAST problem is NP-complete by recent results of N. Alon [4] and P. Charbit et al. [38]. From
an approximation perspective, FAST admits an approximation algorithm, found in 2007 by C. Kenyon-
Mathieu and W. Schudy [90] and which is used it in our kernelization process. The problem is also well
studied in parameterized complexity. V. Raman and S. Saurabh [110] showed that FAST is FPT and a
kernel on O(k2) vertices is known for this problem, a result from N. Alon et al. [5] and M. Dom et al. [54].
We improved these last results by providing a linear vertex kernel for FAST.

Theorem 52 (S. Bessy, F.V. Fomin, S. Gaspers, C. Paul, A. Perez, S. Saurabh and S. Thomassé., 2009, [15]).
Given any fixed ǫ > 0, FAST admits a kernel with a most (2 + ǫ)k vertices.

For that, given an instance (T, k) of FAST, we start by computing a feedback-arc-set with at most

9This subsection is linked with the paper: S. Bessy, F. V. Fomin, S. Gaspers, C. Paul, A. Perez, S. Saurabh, and S. Thomassé,
Kernels for feedback arc set in tournaments, In FSTTCS, volume 4 of LIPIcs, pages 37–47, 2009, annexed p.161.
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(1 + ǫ
2 )k arcs by using the approximation algorithm of C. Kenyon-Mathieu and W. Schudy [90] (if we do not

success, then we answer ’NO’ for the instance (T, k)). Then, if T is large enough, with more than(2 + ǫ)k
vertices, we find a partition of T with few arcs going across the partition. Using the following useful lemma,
we can remove these arcs and decrease k accordingly.

Lemma 53 (S. Bessy, F.V. Fomin, S. Gaspers, C. Paul, A. Perez, S. Saurabh and S. Thomassé., 2009, [15]).
Let E = v1, . . . , vn be an enumeration of a tournament T with p backward arcs (i.e. arcs vivj with i > j). If
every interval vi, . . . , vj of E with i < j contains at most j−i

2 backward arcs of T , then, T contains exactly p
arc-disjoint 3-cycles.

After that, we remove from T the vertices not contained in any cycle and repeat the process until we
obtain the kernel with the desired size (or answer ’NO’ if we have to reduce k below 0).

Remark that the complexity needed to compute the kernel depends on the complexity of the feedback-
arc-set approximation of [90], and thus is in time O(nO(ǫ−12)). However, C. Paul, A. Perez and S. Thomassé
gave in 2011 [107] a simpler kernelization process for FAST, providing a 4k kernel in quadratic time.
To conclude, there is an interesting open question related to the FAST problem. Indeed, if we are interested
now in computing a feedback-vertex-set of size less than k in a tournament, there exists a kernel on O(k2)
vertices for the parametrized version of this problem, see [126] for instance. But the existence of a linear
kernel for this problem is still open.

Problem 54. Is there a kernel on O(k) vertices for the Parametrized Feedback-Vertex-Set in Tour-
nament problem?

1.4.2 Counting edge-colorings of regular graphs10

In this last subsection, I present a work done with F. Havet on the number of edge-colorings of regular
graphs. This work was initially motivated by results and questions from P.A. Golovach, D. Kratsch and
J.F. Couturier. Indeed, in [69] there were interested in enumerating all the edge-colorings of a regular
graph and provided exponential exact algorithms for this problem. However, they asked if the exponential
bases for their algorithms could be improved, specially in the case of edge-coloring of cubic graphs. By us-
ing some structural tools to enumerate the edge-colorings, we settled the question and improved their results.

Algorithmic for graph coloring is a very large field of research and a lot of results are known in this
area. Very classically, every kind of usual chromatic number (related to vertex-coloring, edge-coloring...)
is NP-complete to compute (see [68, 81, 115] for instance). So, many exact algorithms with exponential
time concerning these problems have been published in the last decade. One of the major results is the
O∗(2n) inclusion-exclusion algorithm to compute the chromatic number of a graph found independently by
A. Björklund, T. Husfeldt [24] and M. Koivisto [92]. This approach may also be used to establish a O∗(2n)
algorithm to count the k-colorings and to compute the chromatic polynomial of a graph. It also implies a
O∗(2m) algorithm to count the k-edge-colorings. Since edge-coloring is a particular case of vertex-coloring,
a natural question is to ask if faster algorithms than the general one may be designed in these cases. For
instance, very recently A. Björklund et al. [25] showed how to detect whether a k-regular graph admits a
k-edge-coloring in time O∗(2(k−1)n/2).
The existential problem, asking whether a graph has a coloring with a fixed and small number k of colors,
has also attracted a lot of attention. For vertex-colorability the fastest algorithm for k = 3 has running
time O∗(1.3289n) and was proposed by R. Beigel and D. Eppstein [12], and the fastest algorithm for k = 4
has running time O∗(1.7272n) and was given by F. Fomin et al. [64]. They also established algorithms for
counting k-colorings for k = 3 and 4. The existence problem for a 3-edge-coloring is considered in [12, 93, 69].
L. Kowalik [93] gave an algorithm deciding if a graph is 3-edge-colorable in time O∗(1.344n) and polynomial
space and P.A. Golovach et al. [69] presented an algorithm counting the number of 3-edge-colorings of a
graph in time O∗(3n/6) = O∗(1.201n) and exponential space. They also showed a branching algorithm to

10This subsection is linked with the paper: S. Bessy and F. Havet. Enumerating the edge-colourings and total colourings of
a regular graph. accepted in Journal of Combinatorial Optimization, 2011, annexed p.172.



24 CHAPTER 1. OVERVIEW OF MY RESEARCH WORKS

enumerate all the 3-edge-colorings of a connected cubic graph of running time O∗(25n/8) = O∗(1.5423n)
using polynomial space. In particular, this implies that every connected cubic graph of order n has at most
O(1.5423n) 3-edge-colorings. Moreover,they gave an example of a connected cubic graph of order n having
Ω(1.2820n) 3-edge-colorings.
We filled the gap between these two bounds and improved their results by proving the following.

Theorem 55 (S. Bessy, F. Havet, 2011, [16]). In every connected cubic multi-graph of order n, the number of
3-edge-colorings is at most 3 ·2n/2. Furthermore, they can be all enumerated in time O∗(2n/2) = O∗(1.4143n)
using polynomial space by a branching algorithm.

Moreover, we gave an example of connected cubic multi-graph achieving this bound. To compute ef-
ficiently the number of edge-colorings of a cubic graph G, we used an special enumeration of G, defined
by A. Lempel et al. in 1967 and called a st-ordering of G [95]. In such an ordering, every of vertex of G
(excepted from the first and the last) has degree at least one on its left and also degree at least one on its
right. More precisely, if we orient every edge of G from the left to the right in an st-ordering, we can see that
the first vertex has out-degree 3, the last vertex as out-degree 0 and n

2 − 1 vertices of G have out-degree 1
and n

2 − 1 vertices of G have out-degree 2. So, given an st-ordering E of G, we sort the edges of G according
to their left extremity in E. Then, we greedily enumerate all the edge-colorings of G by coloring as many
ways as possible the edges of G according to this sorting. As, the only choices for colorings appear when a
vertex has two neighbors in its right in E, we obtained the announced bound.

For simple graphs, we tried to sharpen the previous bound and showed the following.

Theorem 56 (S. Bessy, F. Havet, 2011, [16]). In every connected cubic simple graph of order n, the number
of 3-edge-colorings is at most 9

4 · 2n/2.

However, we did not find an example of graph having this number of 3-edge-colorings, and we believe
that 9

4 is not the optimal value in the previous statement. Precisely, guided by some examples with high
number of 3-edge-colorings, we conjectured the following.

Conjecture 57 (S. Bessy, F. Havet, 2011, [16]). Up to an additive constant, in every connected cubic simple
graph of order n the number of 3-edge-colorings is at most 2n/2.

To conclude, let me mention that we extended our results to k-regular connected multi-graph and obtained
the following statement.

Theorem 58 (S. Bessy, F. Havet, 2011, [16]). In every connected k-regular multi-graph of order n, the
number of k-edge-colorings is at most k · ((k − 1)!)n/2. Furthermore, they can be all enumerated in time
O∗(((k − 1)!)n/2) using polynomial space by a branching algorithm.
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2.1 Spanning a strong digraph with alpha cycles
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2.2 Bermond-Thomassen conjecture for regular tournaments
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Abstract

The Bermond-Thomassen conjecture states that, for any positive integer r, a di-
graph of minimum out-degree at least 2r − 1 contains at least r vertex-disjoint
directed cycles. Thomassen proved that it is true when r = 2, and very recently
the conjecture was proved for the case where r = 3. It is still open for larger values
of r, even when restricted to (regular) tournaments. In this paper, we present two
proofs of this conjecture for tournaments with minimum out-degree and minimum
in-degree at least 2r − 1. In particular, this shows that the conjecture is true for
almost regular tournament. In the first proof, we prove auxiliary results about union
of sets contained in other union of sets, that might be of independent interest. The
second one uses a more graph-theoretical approach, by studying the properties of a
maximum set of vertex-disjoint directed triangles.
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1 Introduction

In 1981, Bermond and Thomassen [1] conjectured that for any positive integer
r, any digraph of minimum out-degree at least 2r−1 contains at least r vertex-
disjoint directed cycles. It is trivially true when r is one, and it was proved by
Thomassen [2] when r is two in 1983. Very recently, the conjecture was also
proved in the case where r is three [3]. It is still open for larger values of r. We
prove, in two different ways, that the restriction of this conjecture to almost
regular tournaments is true.

Chen, Gould and Li [4] proved that a k-strongly-connected tournament of
order at least 5k − 3, contains k vertex-disjoint directed cycles. Given a tour-
nament T , let q(T ) be the maximum order of a transitive subtournament
of T . Li and Shu [5] showed that any strong tournament T of order n with
q(T ) ≤ n−5k+8

2
can be vertex-partitioned into k cycles. However, these results

do not prove the Bermond-Thomassen conjecture for regular tournaments.

The following definitions are those of the monograph by Bang-Jensen and
Gutin [6]. A tournament is a digraph T such that for any two distinct vertices
x and y, exactly one of the couples (x, y) and (y, x) is an arc of T . The vertex
set of T is V (T ), and its cardinality is the order of T . The set of arcs of T
is A(T ). A vertex y is a successor of a vertex x if (x, y) is an arc of T . A
vertex y is a predecessor of a vertex x if x is a successor of y. The number of
successors of x is the out-degree δ+(x) of x, and the number of predecessors of
x is the in-degree δ−(x) of x. Let δ+(T ) := min{δ+(x) : x ∈ V (T )}, δ−(T ) :=
min{δ−(x) : x ∈ V (T )} and δ(T ) := min{δ+(T ), δ−(T )}.

Given a tournament T , its reversing tournament is the tournament T ′ =
(V (T ),A′), where A′ := {(x, y) : (y, x) ∈ A(T )}. A tournament is regular of
degree d if δ+(x) = δ−(x) = d for every vertex x. Necessarily, the order of such a
tournament is 2d+1. It is almost regular if |δ+(x)−δ−(x)| ≤ 1 for every vertex
x. An almost regular tournament of odd order is regular, and an almost regular
tournament T of even order v is characterised by δ+(T ) = δ−(T ) = v

2
− 1.

For any subset A of V (T ), we let T (A) be the sub-tournament induced by the
vertices of A. By a path or a cycle of a tournament T , we mean a directed
path or a directed cycle of T , respectively. By disjoint cycles, we mean vertex-
disjoint cycles. A cycle of length three is a triangle.

A tournament is acyclic, or transitive, if it does not contain cycles, i.e. if its
vertices can be ranged into a unique Hamiltonian path x1, . . . , xn such that
(xi, xj) is an arc if and only if i < j. As is well-known, and straightforward to
prove, a non-acyclic tournament contains a triangle. In particular, note that if
a tournament contains k disjoint cycles, then it contains k disjoint triangles.

2
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2 Preliminary results

Let (x, y) be an arc of a tournament T . We set

A(x, y) := {z ∈ V (T ) : (z, x) ∈ A(T ) and (z, y) ∈ A(T )},

B(x, y) := {z ∈ V (T ) : (x, z) ∈ A(T ) and (y, z) ∈ A(T )},

E(x, y) := {z ∈ V (T ) : (z, x) ∈ A(T ) and (y, z) ∈ A(T )}, and

F (x, y) := {z ∈ V (T ) : (x, z) ∈ A(T ) and (z, y) ∈ A(T )}.

Note that E(x, y) is the set of vertices z such that x, y and z form a triangle.
We let a(x, y), b(x, y), e(x, y) and f(x, y) be the respective cardinalities of these
four sets. The proof of the following proposition is straightforward, and can
be found in [7], so we omit it.

Proposition 1 If (x, y) is an arc of a tournament, then e(x, y) = f(x, y) +
δ+(y)− δ+(x) + 1.

A set of cardinality m is an m-set. We give now three new results, which may
be of independent interest. The first one is essential in our first proof of the
Bermond-Thomassen conjecture for almost regular tournaments.

Theorem 2 Fix two integers m ≥ 3 and r ≥ 1. Let n ∈ {1, 2, . . . , r} and

s =
⌈
r+m−1

2

⌉

. For every i ∈ {1, 2, . . . , n}, let Bi be an m-set, and for every

j ∈ {1, 2, . . . , s}, fix a set Aj ⊆
⋃

1≤i≤nBi of cardinality at least r+m+1−2j.
Then, there exist i ∈ {1, 2, . . . , n} and distinct elements j and k of {1, 2, . . . , s}
such that Bi has distinct elements x and y with x ∈ Aj and y ∈ Ak.

Proof. If n < r, then proving the result for the sets B′
1, B

′
2, . . . , B

′
r with

B′
i = Bi if i ≤ n and B′

i = Bn if i > n will yield the desired conclusion. So,
we suppose now that n = r, and we use induction on r.

Observe that it is sufficient to prove that there exist i ∈ {1, 2, . . . , n} and
distinct integers j, k ∈ {1, 2, . . . , s} such that |Aj ∩Bi| ≥ 1 and |Ak ∩Bi| ≥ 2.

The assertion is true when r = 1. Indeed, in this case, s =
⌈
1+m−1

2

⌉

=
⌈
m
2

⌉

≥ 2,

|A1| ≥ m ≥ 3, |A2| ≥ m − 2 ≥ 1 and B1 is an m-set such that Ai ⊆ B1 for
i ∈ {1, 2, . . . , s}. Therefore, |A1 ∩B1| ≥ 3 and |A2 ∩B1| ≥ 1, which yields the
desired conclusion.

The assertion is true also for r = 2. Indeed, in this case, s =
⌈
2+m−1

2

⌉

=
⌈
m+1
2

⌉

≥ 2, |A1| ≥ m + 1 ≥ 4, |A2| ≥ m − 1 ≥ 2 and A1 ∪ A2 ⊆ B1 ∪ B2.

Clearly, A1∩B1 6= ∅— otherwise B2 would contain A1, which has at leastm+1
elements — and similarly, A1 ∩ B2 6= ∅. If |A1 ∩ B1| ≥ 2 and |A1 ∩ B2| ≥ 2,

3
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then the result holds. Otherwise, we have, say, |A1 ∩ B1| = 1 and hence
|A1∩B2| = m. Now, either |A2∩B1| ≥ 2 or |A2∩B2| ≥ 1, so the result holds.

Suppose now that the assertion is true for every k < r, for some integer r ≥ 3,
and let us prove it for r. Then, s =

⌈
r+m−1

2

⌉

≥ 3, |A1| ≥ r + m − 1 and

|A2| ≥ r+m− 3 ≥ r. Without loss of generality, we assume that |B1 ∩A1| ≥
|B2 ∩ A1| ≥ · · · ≥ |Br ∩ A1|.

Suppose first that |B2 ∩ A1| ≤ 1. Then, B2 ∪ · · · ∪ Br contains at most r − 1
elements of A1 and B1∪B2∪· · ·∪Br contains at least r+m−1 elements of A1.
So, we deduce that |B1∩A1| = m and |Bi∩A1| = 1 for every i ∈ {2, 3, . . . , r}.
The assertion of the theorem holds if |B1 ∩ A2| ≥ 1. If |B1 ∩ A2| = 0, then
there exists i ∈ {2, 3, . . . , r}, such that |Bi ∩ A2| ≥ 2 — otherwise we would
have |(B1 ∪ B2 ∪ · · · ∪ Br) ∩ A2| ≤ r− 1, a contradiction. Clearly, Bi contains
distinct elements x and y with x ∈ A1 and y ∈ A2.

Suppose now that |B2∩A1| ≥ 2. In this case, |B1∩A1| ≥ 2, |B2∩A1| ≥ 2 and
the desired conclusion holds if B1 ∪ B2 contains an element of A2 ∪ · · · ∪ As.
If B1 ∪ B2 does not contain an element of A2 ∪ · · · ∪ As, let A

′

i := Ai+1 for

i ∈ {1, 2, . . . , s − 1}. We have s − 1 =
⌈
r−2+m−1

2

⌉

, |A
′

i| ≥ r − 2 +m + 1 − 2i

and A
′

i ⊆
⋃

3≤j≤r

Bj for i ∈ {1, 2, . . . , s− 1}. Therefore, by induction hypothesis

there exist i ∈ {3, . . . , r} and distinct elements j and k of {2, . . . , s} such
that Bi contains distinct elements x and y with x ∈ Aj and y ∈ Ak, which
concludes the proof. 2

The second and third results can be proved analogously, and we omit their
proofs.

Theorem 3 Fix two integers m ≥ 3 and r ≥ 2. Let n ∈ {1, 2, . . . , r}, and for
every i ∈ {1, 2, . . . , n}, denote by Bi an m-set. For every j ∈ {1, 2, . . . , r}, let
Aj ⊆

⋃

1≤i≤nBi with |Aj| ≥ r +m + 1 − 2j. Then, there exist i ∈ {1, . . . , n}
and distinct elements j and k of {1, . . . , r} such that Bi has distinct elements
x and y with x ∈ Aj and y ∈ Ak.

The best result is a combination of the first two.

Theorem 4 Fix two integers m ≥ 3 and r ≥ 2. Let n ∈ {1, 2, . . . , r} and set

s = min
(⌈

r+m−1
2

⌉

, r
)

. For i ∈ {1, 2, . . . , n}, denote by Bi an m-set, and for

every j ∈ {1, 2, . . . , s}, let Aj ⊆
⋃

1≤i≤n Bi with |Aj| ≥ r +m+ 1− 2j. Then,
there exist i ∈ {1, . . . , n} and distinct elements j and k of {1, . . . , s} such that
Bi has distinct elements x and y with x ∈ Aj and y ∈ Ak.

4
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3 Disjoint cycles in tournaments T with δ(T ) ≥ 2r − 1

In this section, we give two different proofs of the following result.

Theorem 5 For any r ≥ 1, every tournament T with δ(T ) ≥ 2r− 1 contains
r disjoint cycles.

Proof. The case r = 1 being a simple observation, we assume that r ≥
2. Let v be the order of T , and let n be the maximum number of disjoint
cycles of T . Thus, n is also the maximum number of disjoint triangles: let Ti,
i ∈ {1, 2, . . . , n} be n disjoint triangles. Let V ′ := V (T ) \

⋃

1≤j≤n

V (Tj) and

p := |V ′|. Suppose that n ≤ r − 1. Thus, p ≥ v − 3(r − 1), that is p ≥ r + 2,
since v ≥ 4r− 1. The subtournament T (V ′) is acyclic — otherwise, we would
have an extra cycle — and, consequently, its vertices can be ranged into a
Hamiltonian path x1, . . . , xp such that (xi, xj) is an arc of T (V ′) if and only
if i < j, see Figure 1.

. . .

x1 x2 x3 xpxp−1xp−2xr+1xr

. . . . . .

TnT1

Fig. 1. Disjoint triangles and Hamiltonian path of T(V’)

For i ∈
{

1, 2, . . . ,
⌈
r+1
2

⌉}

, consider the arc (xi, xp+1−i): each vertex xj with

j ∈ {i+ 1, i+ 2, . . . , r + 2− i} belongs to F (xi, xp+1−i). Therefore,

f(xi, xp+1−i) ≥ p− 2i ≥ v − 3n− 2i.

By Proposition 1,

e(xi, xp+1−i) ≥ p− 2i+ δ+(xp+1−i)− δ+(xi) + 1.

Since 2r − 1 ≤ δ+(x) ≤ v − 2r for every vertex x, we deduce that

e(xi, xp+1−i) ≥ v − 3n− 2i+ 2r − 1− (v − 2r) + 1 ≥ (r − 1) + 3 + 1− 2i,

as n ≤ r − 1.

Observe now that every vertex of E(xi, xp+1−i) forms a triangle with the ver-
tices xi and xp+1−i. Moreover, as T (V ′) is acyclic, we have E(xi, xp+1−i) ⊆
⋃

1≤j≤n

V (Tj) for i ∈
{

1, 2, . . . ,
⌈
r+1
2

⌉}

. Hence, the conditions of Theorem 2

5
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are fulfilled — the r of the theorem being r − 1, m being three, s =
⌈
r+1
2

⌉

,

Ai = E(xi, xp+1−i) and Bj = V (Tj). Consequently, with s =
⌈
r+1
2

⌉

, there

exist i ∈ {1, · · · , n} and distinct elements j and k of {1, · · · , s} such that
V (Ti) contains distinct vertices x and y with x ∈ E(xj, xp+1−j) and y ∈
E(xk, xp+1−k). Each Tq, for q ∈ {1, 2, . . . , n} \ {i}, and the tournaments in-
duced by xj, xp+1−j, x and by xk, xp+1−k, y are n + 1 disjoint triangles, which
contradicts the definition of n. Therefore, T contains at least r disjoint cycles,
as desired. 2

Second proof. As mentioned in the Introduction, Thomassen [2] proved the
conjecture in the general case for r ≤ 2, and the general case for r = 3 was
recently proved [3]. Thus, we assume in this proof that r ≥ 4.

Suppose that V ′ is a subset of at least 6 vertices such that T (V ′) is acyclic.
Let {x1, x2, . . . , xp} be the vertices of V ′, indexed such that (xi, xj) is an arc
if and only if i < j. We set AV ′ := {x1, x2, x3} and BV ′ := {xp−2, xp−1, xp}.
For a vertex x, let s−V ′(x) be the in-score of x with respect to V ′, that is the
number of predecessors of x in BV ′ . Analogously, s+V ′(x) is the out-score of x
with respect to V ′, that is is the number of successors of x in AV ′ . Given a
subgraph H of T , the in-score of H with respect to V ′ is

s−V ′(H) :=
∑

x∈V (H)

s−V ′(x).

We define s+V ′(H), the out-score of H with respect to V ′, analogously regarding
the outscores of the vertices of H. Last, the score of H with respect to V ′ is
sV ′(H) = s−V ′(H) + s+V ′(H). In all these notations, we may omit the subscript
if the context is clear.

As in the first proof, let n be the maximum number of disjoint triangles,
and consider a family Ti, i ∈ {1, 2, . . . , n}, of n disjoint triangles. We set
V ′ := V (T ) \

⋃

1≤j≤n

V (Tj) and p := |V ′|. Again, we consider the Hamiltonian

path x1, . . . , xp of the acyclic tournament T (V ′) such that (xi, xj) is an arc of
T (V ′) if and only if i < j.

Suppose that n ≤ r − 1. Then, we obtain that p ≥ 4r − 1 − 3(r − 1), that is
p ≥ r + 2, and hence p ≥ 6 since r ≥ 4.

For each triangle Ti, we have s−(Ti) ≤ 9 and s+(Ti) ≤ 9. If s−(Ti) ≥ 7
and s+(Ti) ≥ 4, then there exists a matching of size three from BV ′ to Ti,
and a matching of size two from Ti to AV ′ . Therefore, T (AV ′ ∪BV ′ ∪ V (Ti))
contains two disjoint triangles, which contradicts the maximality of n. Thus,
either s−(Ti) ≤ 6 or s+(Ti) ≤ 3. Similarly, either s+(Ti) ≤ 6 or s−(Ti) ≤ 3.

6
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We assert that s(Ti) ≤ 12 for each triangle Ti: indeed, if s
−(Ti) > 6, then

s+(Ti) ≤ 3, and since s−(Ti) ≤ 9, we infer that s(Ti) ≤ 12. In the same way,
if s+(Ti) > 6, one can deduce that s(Ti) ≤ 12. Finally, if s−(Ti) ≤ 6 and
s+(Ti) ≤ 6, we also have s(Ti) ≤ 12. Hence, the sum s of the scores of the n

triangles is at most 12n.

Observe that the vertices xp, xp−1 and xp−2 have δ+(xp), δ
+(xp−1) − 1 and

δ+(xp−2) − 2 successors in
⋃

1≤j≤n

V (Tj), respectively. Moreover, the vertices

x1, x2 and x3 have respectively δ−(x1), δ
−(x2)− 1 and δ−(x3)− 2 predecessors

in
⋃

1≤j≤n

V (Tj). It follows that

s = δ+(xp) + δ+(xp−1) + δ+(xp−2) + δ−(x1) + δ−(x2) + δ−(x3)− 6.

Therefore, it holds that

δ+(xp)+δ+(xp−1)+δ+(xp−2)+δ−(x1)+δ−(x2)+δ−(x3)−6 ≤ 12n ≤ 12r−12.

Recall that δ+(x) ≥ 2r − 1 and δ−(x) ≥ 2r − 1 for every vertex x. Thus, we
infer that δ+(xp) = δ+(xp−1) = δ+(xp−2) = δ−(x1) = δ−(x2) = δ−(x3) = 2r−1
n = r − 1 and s(Ti) = 12 for every triangle Ti. Note that this assertion holds
for any set on n disjoint triangles — their score being with respect to the
remaining vertices.

For each integer i ∈ {4, 5, . . . , p−3}, the vertex xi belongs to F (x3, xp−2), and
hence f(x3, xp−2) ≥ p− 6. Therefore, by Proposition 1,

e(x3, xp−2) ≥ p− 6 + δ+(xp−2)− δ+(x3) + 1

≥ v − 3(r − 1)− 6 + (2r − 1)− (v − 1− 2r + 1) + 1

≥ r − 3 ≥ 1.

Consequently, there exists a vertex x of some triangle Tj such that the vertices
x3, xp−2, x induce a triangle T ′. Let y and z be the vertices of Tj different
from x. The triangles T ′ and Ti for i 6= j form a new collection of n disjoint
triangles, and V ′′ := (V ′ \ {x3, xp−2}) ∪ {y, z} is the set of the remaining
vertices. Consider now the set AV ′′ : observe that x3 has at most two successors
in AV ′′ , and it can have two only if both y and z belong to AV ′′ . Furthermore,
the predecessors of x3 in BV ′′ can only be y and z. Therefore, it follows that
s−V ′′(x3) + s+V ′′(x3) ≤ 3 with equality only if both y and z belong to BV ′′ .
Similarly, s−V ′′(xp−2)+s+V ′′(xp−2) ≤ 3 with equality only if both y and z belong
to AV ′′ . Thus, the score of the triangle T ′ with respect to V ′′ is at most 11, a
contradiction. This concludes the proof. 2

7
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2.3 A proof of Bermond-Thomassen conjecture for tournaments

Disjoint 3-cycles in tournaments: a proof of the

Bermond-Thomassen conjecture for tournaments∗

Jørgen Bang-Jensen † Stéphane Bessy ‡ Stéphan Thomassé§

July 22, 2011

Abstract

We prove that every tournament with minimum out-degree at least 2k− 1 contains k disjoint
3-cycles. This provides additional support for the conjecture by Bermond and Thomassen that
every digraph D of minimum out-degree 2k − 1 contains k vertex disjoint cycles. We also prove
that for every ǫ > 0, when k is large enough, every tournament with minimum out-degree at least
(1.5+ ǫ)k contains k disjoint cycles. The linear factor 1.5 is best possible as shown by the regular
tournaments.
Keywords: Disjoint cycles, tournaments.

1 Introduction

Notation not given below is consistent with [3]. Paths and cycles are always directed unless otherwise
specified. In a digraph D = (V,A), a k-cycle is a cycle of length k, and for k ≥ 3, we denote by
x1x2 . . . xk the k-cycle on {x1, . . . , xk} with arc set {x1x2, x2x3, . . . , xk−1xk, xkx1}. The minimum
length of a cycle in D is called the girth of D. The underlying graph of a digraph D, denoted
UG(D), is obtained from D by suppressing the orientation of each arc and deleting multiple edges.
For a set X ⊆ V , we use the notation D〈X〉 to denote the subdigraph of D induced by the vertices
in X. For two disjoint sets X and Y of vertices of D, we say that X dominates Y if xy is an arc of D
for every x ∈ X and every y ∈ Y . In the digraph D, if X and Y are two disjoint subsets of vertices of
D or subdigraphs of D, we say that there is a k-matching from X to Y if the set of arcs from X to
Y contains a matching (in UG(D)) of size at least k. A tournament is an orientation of a complete
graph, that is a digraph D such that for every pair {x, y} of distinct vertices of D either xy ∈ A(D)
or yx ∈ A(D), but not both. Finally, an out-neighbour (resp. in-neighbour) of a vertex x of D
is a vertex y with xy ∈ A(D) (resp. yx ∈ A(D)). The out-degree (resp. in-degree) d+D(x) (resp.
d−D(x)) of a vertex x ∈ V is the number of out-neighbours (resp. in-neighbours) of x. We denote by
δ+(D) the minimum out-degree of a vertex in D.
The following conjecture, due to J.C. Bermond and C. Thomassen, gives a relationship between δ+

and the maximum number of vertex disjoint cycles in a digraph.

Conjecture 1.1 (Bermond and Thomassen, 1981) [4] If δ+(D) ≥ 2k − 1 then D contains k
vertex disjoint cycles.

Remark that the complete digraph (with all the possible arcs) shows that this statement is best
possible. The conjecture is trivial for k = 1 and it has been verified for general digraphs when k = 2
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2, France whose hospitality is gratefully acknowledged. Financial support from the Danish National Science research
council (FNU) (under grant no. 09-066741) is gratefully acknowledged.

†Department of Mathematics and Computer Science, University of Southern Denmark, Odense DK-5230, Denmark
(email: jbj@imada.sdu.dk).
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in [8] and for k = 3 in [7]. N. Alon proved in [1] that a lower bound of 64k on the minimum outdegree
gives k disjoint cycles.

It was shown in [5] that every tournament with both minimum out-degree and minimum in-degree
at least 2k − 1 has k disjoint cycles each of which have length 3. Very recently Lichiardopol [6]
obtained a generalization of this result to the existence of k disjoint cycles of prescribed length q in a
tournament with sufficiently high minimum degree.

In this paper we will prove Conjecture 1.1 for tournaments. Recall that by Moon’s Theorem [3,
Theorem 1.5.1], a tournament has k disjoint cycles if and only if it has k disjoint 3-cycles.

Theorem 1.2 Every tournament T with δ+(T ) ≥ 2k − 1 has k disjoint cycles each of which have
length 3.

We also show how to improve this result for tournaments with large minimum out-degree.

Theorem 1.3 For every value α > 1.5, there exists a constant kα, such that for every k ≥ kα, every
tournament T with δ+(T ) ≥ αk has k disjoint 3-cycles.

Remark that the constant 1.5 is best possible in the previous statement. Indeed, a family of sharp
examples is provided by the rotative tournaments TR2p+1 on 2p+ 1 vertices {x1, . . . , x2p+1} with arc
set {xixj : j − i mod 2p + 1 ∈ {1, . . . , p}}. For 2p + 1 = 0 mod 3, we denote 2p + 1/3 by k. Then,
we have δ+(TR2p+1) = ⌊1.5k⌋ and TR2p+1 admits a partition into k vertex disjoint 3-cycles and no
more.
Theorem 1.3 does not give any result both for small values of k and for tournaments with δ+ ≥
1.5k, even asymptotically. We conjecture that we could still have k disjoint 3-cycles in these cases.
Furthermore, in the light of the sharp examples to Conjecture 1.1 and Theorem 1.3, we extend these
questions to digraphs with no short cycles. Namely, we conjecture the following.

Conjecture 1.4 For every integer g > 1, every digraph D with girth at least g and with δ+(D) ≥ g
g−1k

contains k disjoint cycles.

Once again, the constant g
g−1 is best possible. Indeed, for every integers p and g, we define the

digraph Dg,p on n = p(g − 1) + 1 vertices with vertex set {x1, . . . , xn} and arc set {xixj : j − i
mod n ∈ {1, . . . , p}}. The digraph Dg,p has girth g and we have δ+(Dg,p) = p = ⌊ g

g−1k⌋. Moreover,
for n = 0 mod g, the digraph Dg,p admits a partition into k vertex disjoint 3-cycles and no more.
Even a proof of Conjecture 1.4 for large values of k or g (or both) would be of interest by itself. On
the other hand, for g = 3, the first case of our conjecture which differs from Conjecture 1.1 and which
is not already known corresponds to the following question: does every digraph D without 2-cycles
and δ+(D) ≥ 6 admit four vertex disjoint cycles?

In Section 2 and Section 3, we respectively prove Theorem 1.2 and Theorem 1.3. Before starting
these, we precise notations that will be used in both next sections. Let T be a tournament and F a
maximal collection of 3-cycles of T . The 3-cycles of F are denoted by C1, . . . , Cp and their ground set
V (C1)∪· · ·∪V (Cp) is denoted by W . The remaining part of T , T \W is denoted by U . By the choice
of F , U induces an acyclic tournament on T , and we denote its vertices by {up, up−1, . . . , u2, u1}, such
that the arc uiuj exists if and only if i > j.

2 Proof of Conjecture 1.1 for tournaments

In this section, we prove Conjecture 1.1 for tournaments. In fact, we strengthen a little bit the
statement and prove the following:

Theorem 2.1 For every tournament T with δ+(T ) ≥ 2k−1 and every collection F = {C1, . . . , Ck−1}
of k − 1 disjoint 3-cycles of T , there exists a collection of k disjoint 3-cycles of T which intersects
T − V (C1) ∪ · · · ∪ V (Ck−1) on at most 4 vertices.
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This result implies Theorem 1.2. Indeed, for a tournament T with δ+(T ) ≥ 2k0 − 1, we apply
Theorem 2.1 k0 times, with k = 1 to obtain a family F of one 3-cycle, and then with this family F
and k = 2 to obtain a new family F of two 3-cycles, and so on.

To prove Theorem 2.1, we consider a counter-example T and a family F of k − 1 disjoint 3-cycles
with k minimum. The chosen family F is then maximal. So, from now on we use the notation stated
in the first Section.

We will say that i 3-cycles of F , with i = 1 or i = 2 can be extended if we can make i+1 3-cycles
using the vertices of the initial i 3-cycles and at most four vertices of U . If there one or two 3-cycles in
F can be extended, we say that we could extend F . If this happens, it would contradict the choice of
T and F . The following definition will be very useful in all this section. For an arc xy with x, y ∈ W ,
we say that a vertex z of U is a breaker of xy if xyz forms a 3-cycle. By extension, a vertex z of U
is a breaker of a 3-cycle Ci of F if it is a breaker of one of the arcs of Ci.

The following claim is fundamental, and we will use it later several times without explicit mention.

Claim 1 Every 3-cycle C of F has breakers for at most two of its three arcs, and every arc of C has
at most three breakers. As a consequence, C has at most six breakers.

Proof: Consider a 3-cycle Ci = xyz of F . Assume that Ci has a breaker for each of its arcs.
We denote by ve a breaker of the arc e, for e ∈ {xy, yz, zx}. If vyz dominates vzx then we form the
3-cycles xyvxy and zvyzvzx, which intersect U on three vertices and we extend F . So, by symmetry,
we obtain that vzxvyzvxy forms a 3-cycle. This contradicts that T 〈U〉 is acyclic.
Now, if an arc xy of Ci has four breakers v1, v2, v3, v4 in U , then in T \ {x, y} every vertex has out-
degree at least 2(k − 1) − 1, and F \ Ci forms a collection of k − 2 3-cycles. So, by the choice of T ,
there exists a collection F ′ of k−1 3-cycles of T \{x, y} which intersect U ∪ z in at most four vertices.
Then F ′ does not contain one of the vertices v1, v2, v3, v4, z. If z /∈ V (F ′), we complete F ′ with the
3-cycle xyz, and obtain a collection of k 3-cycles which has the same intersection with U than F ′. If
z ∈ V (F ′), then one of the vi, say v1 does not belong to V (F ′) and F ′ intersect U on at most three
vertices. Then, we complete F ′ with the 3-cycle xyv1, and obtain a collection of k 3-cycles which
intersect U on at most four vertices. ⋄

Observe that if a 3-cycle xyz of F has a breaker for two of its arcs, then these breakers are disjoint.
Indeed, if x′ and y′ are respectively breaker of xy and yz then yx′ and y′y are arcs of T . As T has no
2-cycle, x′ and y′ have to be distinct.

Informally, Claim 1 gives that every 3-cycle C of F can be extended or can be inserted in the
transitive tournament T 〈U〉, that is, there exists a partition (U2, U1) of U such that there is no arc
from U1 to U2, there is few arcs from U1 to C and few from C to U2 (otherwise, too roughly many
breakers appear). This will be settled at Claim 2. The condition on the minimum out-degree of T
will then allow one or two 3-cycles of F to be extended. Fixing precisely the computation will show,
in the following subsection, that k cannot be too large (k ≤ 6). Then, we treat the small cases in the
last subsection.

2.1 A bound on k

For any partition (U1, U2) of U with no arc from U1 to U2, we have the following.

Claim 2 For every 3-cycle C = xyz of F , we have:

1. If C receives at least four arcs from U1 then there exists a 2-matching from U1 to C.

2. If C receives at least eight arcs from U1 then either there exists a 3-matching from U1 to C
or, up to permutation on x, y, z, yz has three breakers, xy has at least two breakers and x has
in-degree at least five in U1. Furthermore, x is dominated by U2 and both y and z have each at
most one out-neighbour in U2.
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3. Consequently, if C receives at least eight arcs from U1 then, there is no 2-matching from C to
U2 and, in particular, C sends at most three arcs to U2.

Symmetrically, the same statements hold if we exchange the role of U1 and U2, and the bounds on in-
and out-neighbours for every vertex.

Proof: 1. Assume that there is no 2-matching from U1 to C then one vertex x of U1 ∪C belongs
to all the arcs from U1 to C. It is clear that x ∈ C. Hence if y is the successor of x in C, then four
in-neighbours of x in U1 form four breakers for the arc xy, which is not possible.

2. If there is no 3-matching from U1 to C, then two vertices {x, y} in U1 ∪ C belongs to all arcs
from U1 to C. If x ∈ U1 and y ∈ C, then there exists at least four in-neighbours of y different of x
which form four breakers for the arc yz, where z is the successor of y in C, which is forbidden. As
the case {x, y} ⊂ U1 is not possible, we have {x, y} ⊂ C. Assume that x dominates y and call z the
third vertex of C. If d−U1

(y) ≤ 2, then d−U1
(x) ≥ 6 and xy has four breakers, which is not possible.

If d−U1
(y) ≥ 4, yz has four breakers. So d−U1

(y) = 3 and d−U1
(x) ≥ 5 which means that yz has three

breakers and that x has at least two in-neighbours in U1 which are not in-neighbours of y, and so, are
breakers of xy. If x has an out-neighbour x′ in U2, we extend C using the 3-cycles xx′x1 and yzy1
where x1 and y1 are breakers of respectively xy and yz. So U2⇒x must hold (that is, there is no arc
from x to U2). Now, if y has two out-neighbours in U2, they form two more breakers for xy, and xy
would have four breakers. Finally, if z has two out-neighbours in U2, one of these is in-neighbour of
y and would form a new breaker for yz, which had already three.

3. Assume that C receives at least eight arcs from U1 and that there is a 2-matching from C to
U2. If there exists a 3-matching from U1 to C, then we can extend C using at most four vertices of U .
If not, then we are in the case described in the point 2, and C has at least five breakers in U1, three
for yz and at least two for xy. We can conclude except if the 2-matching from C to U2 starts from y
and z. We denote it by {yy′, zz′}. If z′y is an arc of T , then yz would have four breakers. Then yz′

is an arc of T , but then, as U2 dominates x, the vertices y′ and z′ would be two breakers of xy, which
already has two. ⋄

The two following claims are useful to extend two 3-cycles of F in order to form three new 3-cycles.

Claim 3 There are no two 3-cycles C and C ′ of F with a 3-matching from U1 to C, a 3-matching
from C to C ′ and a 3-matching from C ′ to U2.

Proof: If this happens, we respectively denote these matchings by {x1x, y1y, z1z}, {xx′, yy′, zz′}
and {x′x2, y

′y2, z
′z2}, where V (C) = {x, y, z}, V (C ′) = {x′, y′, z′}, x1, y1, z1 ∈ U1 and x2, y2, z2 ∈ U2.

If all three of {x2x, y2y, z2z} are arcs of T , then we can extend C and C ′ by x2xx
′, y2yy

′ and z2zz
′.

So, we can assume that xx2 is an arc of T . If one of the arcs yy2 or zz2 exists then, we can extend
C. So, xx2, y2y and z2z are arcs of T and we extend C and C ′ using the 3-cycles xx2x1, y2yy

′ and
z2zz

′. ⋄

Claim 4 There are no two 3-cycles C, C ′ such that |E(U1, C)| ≥ 8, |E(C,C ′)| ≥ 7 and |E(C ′, U2)| ≥
8.

Proof: Assume that C and C ′ satisfy the hypothesis of the claim. We denote V (C) = {x, y, z}
and V (C ′) = {x′, y′, z′}. As |E(C,C ′)| ≥ 7 there is a 3-matching between C and C ′. By the Claim 3,
one cannot both find a 3-matching from U1 to C and a 3-matching from C ′ to U2. By symmetry, two
cases arise:

Case 1 : there are no 3-matching from U1 to C and from C ′ to U2. We fix the orientations of
C and C ′: C = xyz and C ′ = x′y′z′. By Claim 2, up to permutation, we can assume that yz has
three breakers in U1 and xy at least two, and that x′y′ has three breakers in U2 and y′z′ at least
two. Furthermore we know, by Claim 2 that U2 dominates x, z has at most one out-neighbour in
U2, z′ dominates U1 and x′ has at most one in-neighbour in U1. We denote then by x1 a breaker of
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Figure 1: The case 2 of the proof of Claim 4

xy in U1 which is an out-neighbour of x′, and by z2 a breaker of y′z′ in U2 which is an in-neighbour
of z. We denote also by y2 and y1 a breaker of respectively x′y′ and yz. Now, if xz′ is an arc
of T , then, we form the 3-cycles xz′z2, y1yz and x′y′y2. If xx′ is an arc of T , then, we form the
3-cycles xx′x1, y′z′z2 and yzy1. And, if zz′ is an arc of T , then, we form the 3-cycles zz′z2, x′y′y2
and xyx1. As |E(C,C ′)| ≥ 7, one of the three arcs xz′, xx′ and zz′ exists and we can extend C and C ′.

Case 2 : there is no 3-matching from U1 to C and there is a 3-matching from C ′ to U2. We fix the
orientation of C, C = xyz, but we do not fix the orientation of C ′. We just assume that {xx′, yy′, zz′}
is a 3-matching between C and C ′. We denote by {x′x2, y

′y2, z
′z2} a 3-matching from C ′ to U2. By

Claim 2, up to permutation, we can assume that yz has three breakers in U1, we denote by y1 one of
them, and that xy has at least two. Furthermore we know, that d−U1

(x) ≥ 5, that U2 dominates x and
that y and z have at most one out-neighbour in U2. The situation is depicted in Figure 1.

To obtain a contradiction, we follow the next implications:

- zz2 is an arc of T , otherwise we form the three circuits zz′z2, xx′x2 and yy′y2y1, which contain
three 3-cycles intersecting U on at most four vertices.

- yz2 is an arc of T , otherwise z2 is a fourth breaker of yz.

- x2 and y2 dominate y and z. Indeed, the only out-neighbour of y and z in U2 is z2.

- {y′, y2, z, z
′} form an acyclic tournament. Indeed if {y′, y2, z, z

′} contains a circuit, we pick this
circuit, xx′x2 and yz2y1 to extend C and C ′. In particular, the orientation of C ′ is x′y′z′ and
y′z ∈ A(T ).

- xy′ is an arc of T . Otherwise, y′z and y′x are the only arcs from C ′ to C and we form the
3-cycles xz′z2, zx′x2 and yy′y2 to extend C and C ′.

- z′x2 is an arc of T . Otherwise, we form the 3-cycles z′x′x2, xy′y2 and yzy1.

Finally, we extend C and C ′ using the 3-cycles zz′x2, xy′y2 and yz2y1. ⋄

Now, we will show that k ≤ 6. For this, we consider the partition (U2, U1) of U with |U1| = 5 (as
W contains 3k− 3 vertices, and T has at least 4k− 1 vertices, U contains at least k + 2 vertices, and
provided that k ≥ 3, it is possible to consider such a U1). So, we denote by I the set of 3-cycles which
receive at least 8 arcs each from U1 (the in 3-cycles), by O the set of 3-cycles which send at least 8
arcs each to U2 (the out 3-cycles) and by R the remaining 3-cycles of F \ (I ∪ O). Furthermore, i,
o and r respectively denote the size of I, O and R (with i + o + r = k − 1 as I ∩O = ∅ by Claim 2).
First, we bound below and above the number of arcs leaving U1, and obtain:

5(2k − 1) − 10 ≤ 15i + 7(k − 1 − i− o) + 3o

In the right part, we bound the number of arcs from U1 to I, to R and to O (using Claim 2). Finally,
we have:
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3k + 4o− 8 ≤ 8i (1)

Now, we bound below and above the number of arcs leaving F \ O and obtain

3(k−1−o)(2k−1)−
1

2
3(k−1−o)(3(k−1−o)−1) ≤ 9ro+6io+7r+3i+(15(i+r)− (10k−15−3o))

In the right part, we bound the number of arcs from R to O, from I to O (using Claim 4), from R
to U2, from I to U2 (using Claim 2) and from I ∪ R to U1. For the last bound, we know that at
least 5(2k − 1) − 10 = 10k − 15 arcs leave U1 and that at most 3o of these arcs go to O. So, at least
10k − 15 − 3o arcs go from U1 to I ∪R on the 15(i + r) possible arcs between these two parts. Now,
we replace r by k − 1 − i− o and obtain:

9 o2 − 12 k o + 6 i o + 41 o + 3 k2 − 21 k + 8 i + 8 ≤ 0

We bound i from below using (1) to get (after adjusting to get integral coefficients):

16 o2 − 13 k o + 52 o + 4 k2 − 24 k ≤ 0

This inequality admits solution for o only if

(52 − 13k)2 − 4 · 16 · (4 k2 − 24 k) = −87k2 + 184k + 2704

is positive, that is, if k ≤ 6.

2.2 Small cases

Below we handle the cases k ≤ 6. The partition (U1, U2) is no more fixed by |U1| = 5, we will specify
its size later.

2.2.1 Some remarks

We need some more general statements to solve the cases k ≤ 6. For the following Claim 5 and
Claim 6, symmetric statements hold if we exchange the roles of U1 and U2, and the bounds on in- and
out-neighbours for every vertex.

Claim 5 If |E(U1, C)| ≥ 10, then there exists a 3-matching from U1 to C.

Proof: Otherwise, two vertices, {x, y}, belong to all arcs from U1 to C. As {x, y} ⊂ U1 is not
possible (otherwise only at most 6 arcs go from U1 to C), either x ∈ U1 and y ∈ C or {x, y} ⊂ C. In
the first case, y has at least seven in-neighbours in U1 distinct of x, and if z is the out-neighbour of
y in C, these seven vertices would be breakers of yz, contradicting Claim 1. So, we have {x, y} ⊂ C.
We assume that x dominates y and that the orientation of C is C = xyz. Then y has at most three
in-neighbours in U1, otherwise yz would have four breakers, and x has at most three in-neighbours in
U1 which are not also in-neighbours of y, otherwise xy would have four breakers. But then there are
at most nine arcs from U1 to C, contradicting the hypothesis. ⋄

As for Claim 2, it is possible to obtain the same result by exchanging U1 and U2 and the role of
in- and out-neighbours for every vertex.

We say that a 3-cycle C has a 3-cover from U1 if there is a 3-matching from U1 to C or two
2-matchings from U1 to C which cover all the vertices of C.

Claim 6 For every 3-cycle C of F , if there is a 3-cover from U1 to C, then there is no 2-matching
from C to U2. In particular, |E(C,U2)| ≤ 3.

6
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Proof: Assume that C = xyz and that there is a 2-matching {zz′, xx′} from C to U2 and a
3-cover from U1 to C. If there is a 2-matching from U1 to {z, x}, we are done. The remaining case
occurs when the 3-cover from U1 to C is formed by a 2-matching {ax, by} to {x, y} and a 2-matching
{cy, dz} to {y, z} with a = d. In this case, we form the circuits axx′ and byzz′, which contain two
3-cycles extending C. The bound on |E(C,U2)| follows from Claim 2. ⋄

For a fixed U1, we say that a 3-cycle C of F is of type 2-m, 3-m or 3-c if there respectively is a
2-matching, a 3-matching or a 3-cover from U1 to C. A 3-cover is useful to extend a 3-cycle, using
Claim 6, but not very convenient in the general case, because the number of arcs that forces a 3-cover
from U1 to some 3-cycle C of F is the same than the number of arcs that forces a 3-matching (which
is seven). However, to prove the existence of a 3-cover, we have the following statement.

Claim 7 If there are three vertices a, b, c of U1 such that d+Y (a) ≥ 2p, d+Y (b) ≥ 2p − 1 and d+Y (c) ≥
2p− 2, where Y is the set of vertices of a set of p 3-cycles F ′ ⊂ F , then F ′ contains a 3-c 3-cycle or
all the 3-cycles of F ′ are 2-m.

Proof: We prove it by induction on p. If p = 1 then there is a 2-matching from {a, b} to the
3-cycle of F ′. Thus we may assume that p ≥ 2. There is 6p− 3 arcs from {a, b, c} to the p 3-cycles of
F ′. Thus there is a 3-cycle C of F ′ such that there are at least four arcs from {a, b, c} to C and so
there is a 2-matching from {a, b, c} to C. If C is 3-c, we are done, otherwise each vertex of {a, b, c}
sends at most two arcs to C. We apply induction on F ′ \ C. ⋄

Now we are ready to prove the remaining cases (k ≤ 6). As mentioned in the beginning of the
paper, Conjecture 1.1 is known to hold for all digraphs when k ≤ 3, so we only have to deal with the
cases k ∈ {4, 5, 6}.

We will use several times, without referring explicitly, that a 3-cycle of type respectively 2-m and
3-c or 3-m sends respectively at most 7 and 3 arcs to U2, by Claim 6 and 2. For each of the three
cases below, we will use the three first vertices of U for U1, that is, U1 = {u1, u2, u3}.

2.2.2 Case k = 4

For k = 4, we have δ+(T ) ≥ 7 and three 3-cycles in F . There are:

• at least 21-3=18 arcs from U1 to W and then at most 9 arcs from W to U1.

• at least 9 · 7 − 1
29 · 8 = 27 arcs from W to U and then, at least 18 arcs from W to U2.

So it is not possible to have types 3-c, 2-m and 2-m for the three 3-cycles of F , otherwise, they send
at most 3 + 7 + 7 = 17 arcs to U2. Now we prove that there are at least two 3-cycles of type 3-c. As
u1 sends seven arcs to W , one of the 3-cycle, say C1 receives 3 arcs. If u2 or u3 sends one arc to C1,
then C1 is of type 3-c, if not, then C2 and C3 are of type 3-c. So, at least one of the three 3-cycle is
of type 3-c, we assume that it is C1. Note that u1, u2 and u3 send respectively at least 4,3 and 2 arcs
to C2 ∪C3. Using Claim 7, we find a second 3-cycle which is of type 3-c. We assume that this second
one is C2. Now, we have:

• there is no 2-matching from U1 to C3, then C3 receives at most 3 arcs from U1, and then C1∪C2

receive at least 15 arcs from U1, what means that there is a 3-matching from U1 to C1 for
instance.

• C1 ∪ C2 sends at least 6 · 7 − 1
26 · 5 = 27 arcs to U ∪ C3, at most 3 to U1 and 6 to U2, what

means that there all the arcs from C1 ∪ C2 to C3

• C3 sends at least 18 − 3 − 3 = 12 arcs to U2, then, by Claim 5, there is a 3-matching from C3

to U2.

Finally, using 3-matchings from U1 to C1, from C1 to C3 and from C3 to U2 and Claim 3, we can
extend C1, C2 and C3.

7
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2.2.3 Case k = 5

For k = 5, we have δ+(T ) ≥ 9 and four 3-cycles in F . There is:

• at least 24 arcs from U1 to W and then at most 12 arcs from W to U1.

• at least 12 · 9 − 1
212 · 11 = 42 arcs from W to U and then, at least 30 arcs from W to U2.

So, it is not possible to have types 2-m, 2-m, 2-m and 2-m for the four 3-cycles of F , otherwise, they
send at most 7 + 7 + 7 + 7 = 28 arcs to U2. There are no three type 3-c among the four 3-cycles of F .
Otherwise, assume that C1, C2 and C3 are of type 3-c, then, C4 can not be of type 2-m, and there
are at most 3 arcs from U1 to C4 and at least 21 arcs from U1 to C1 ∪ C2 ∪ C3. Then, C1 ∪ C2 ∪ C3

sends at most 3 arcs to U1, at most 9 arcs to U2 and at most 27 arcs to C4. However, there is at least
9 · 9 − 1

29 · 8 = 45 arcs going out of C1 ∪ C2 ∪ C3, what gives a contradiction.
Using Claim 7 twice, we find two 3-cycles, C1 and C2 for instance, in F that are of type 3-c. Now, u1,
u2 and u3 respectively send at least 3, 2 and 1 arc to C3 and C4 and it is easy to find a 2-matching
from U1 to C3 or C4.
Now, we assume that C1 and C2 have a 3-cover from U1 and that C3 have a 2-matching from U1. We
obtain:

• C4 receives at most three arcs from U1 (otherwise C4 would be a fourth 3-cycle of type 2-m).

• U1 sends at least 21 arcs to C1 ∪ C2 ∪ C3, then there is a 3-matching from U1 to one of these
3-cycle, say C1 and there is at most 6 arcs from C1 ∪ C2 ∪ C3 to U1.

• there is at most 3 + 3 + 7 = 13 arcs from C1 ∪ C2 ∪ C3 to U2, and then as there is at least
9 · 9− 1

29 · 8 = 45 arcs going out of C1 ∪C2 ∪C3, there is 45− 6− 13 = 26 arcs from C1 ∪C2 ∪C3

to C4. In particular, there is a 3-matching from C1 to C4.

• there are at most 13 arcs from C1 ∪ C2 ∪ C3 to U2, so, there are at least 17 arcs from C4 to U2

and then a 3-matching from C4 to U2.

Finally, we extend C1 and C4 using 3-matchings from U1 to C1, from C1 to C4 and from C4 to U2.

2.2.4 Case k = 6

For k = 6, we have δ+(T ) ≥ 11 and five 3-cycles in F . There is:

• at least 30 arcs from U1 to W and then at most 15 arcs from W to U1.

• at least 15 · 11 − 1
215 · 14 = 60 arcs from W to U and then, at least 45 arcs from W to U2.

Finding five 3-cycles of type 2-m in F is not possible then, because we would have at most 7 · 5 = 35
arcs from W to U2. We will see that there are either at least three 3-cycles which are of type 3-c or
there are two 3-cycles of type 3-c and two 3-cycles of type 2-m. Using Claim 7 twice, we find two
3-cycles which are of type 3-c, say C1 and C2. There remains at least 5, 4 and 3 arcs from respectively
u1, u2 and u3 to C3 ∪C4 ∪C5. One of the 3-cycles C3, C4 or C5, say C3, receives at least 4 arcs from
{u1, u2, u3} and then is of type 2-m. If C3 is of type 3-c, we are done, otherwise, it receives at most 2
arcs from each of u1, u2, u3, and u1, u2 and u3 respectively send at least 3, 2 and 1 arcs to C4 ∪ C5.
We then find another 3-cycle of type 2-m.

First, we consider the case where there are two 3-cycles of type 3-c, C1 and C2 and two 3-cycles
of type 2-m, C3 and C4. Then, we have:

• C5 receives at most 3 arcs from U1 (otherwise there is a fifth 3-cycle of type 2-m).

• U1 sends at least 27 arcs to C1∪C2∪C3∪C4, thus there is at most 9 arcs from C1∪C2∪C3∪C4

to U1.

• there are at most 3 + 3 + 7 + 7 = 20 arcs from C1 ∪ C2 ∪ C3 ∪ C4 to U2.
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U0 = U U1 Up−1 Up

step 1

add F0

step 2

add F1

step p− 1

add Fp−2

step p

add Fp−1

Figure 2: The p steps in the procedure to define free vertices.

• as there are at least 11 · 12− 1
212 · 11 = 66 arcs going out of C1 ∪C2 ∪C3 ∪C4, there are at least

66 − 9 − 20 = 37 arcs from C1 ∪ C2 ∪ C3 ∪ C4 to C5, which is not possible.

Now, we treat the case where there are three 3-cycles of type 3-c in F , C1, C2 and C3. Then, we
obtain:

• C4 and C5 receive each at most 3 arcs from U1 (otherwise we are in one of the previous situations).

• U1 sends at least 24 arcs to C1 ∪ C2 ∪ C3. Thus there is a 3-matching from U1 to two of these
3-cycles, say C1 and C2 and there are at most 3 arcs from C1 ∪ C2 ∪ C3 to U1.

• there are at most 3 + 3 + 3 = 9 arcs from C1 ∪ C2 ∪ C3 to U2, and then as there are at least
9 ·11− 1

29 ·8 = 63 arcs going out of C1∪C2∪C3, there are 63−3−9 = 51 arcs from C1∪C2∪C3

to C4 ∪ C5. In particular, there is, a 3-matching from any of 3-cycle of {C1, C2, C3} to any of
the 3-cycle of {C4, C5}, excepted possibly for one pair, say C2 to C4, to be in the worst case.

• there are at least 45-9=36 arcs from C4 ∪C5 to U2, so, there are at least 18 arcs from one of the
3-cycle C4 or C5 to U2, say from C4, and then there is a 3-matching from C4 to U2.

Finally, we extend C1 and C4 using 3-matchings from U1 to C1, from C1 to C4 and from C4 to U2.

3 Proof of Theorem 1.3: An asymptotic better constant

In this part, we will asymptotically ameliorate the result of Theorem 1.2 by proving Theorem 1.3.

Let α be a real number with α > 1.5, and T be a tournament with δ+(T ) ≥ αk. We assume that
α < 2, otherwise Theorem 1.2 gives

We consider a family F of less than k disjoint 3-cycles in T . We will see that if k is great enough,
then we can extend F . As usual, we denote by W the set of vertices of all the 3-cycles of F , and by
U the other vertices that form an acyclic part (otherwise, we directly extend F). As δ+(T ) ≥ αk,
remark that T has at least 2αk vertices and then, as |W | ≤ 3k− 3, the size of U is at least (2α− 3)k.
The main idea of the proof is to obtain (almost) a partition of W into two parts X1 and X2 such that,
as previously, X1 receives many arcs from U and X2 sends many arcs to U , with the requirement that
the 3-cycles of F behave well with respect to the partition. The 3-cycles (or parts of the 3-cycles) of
X1 will act as in-3-cycles and the 3-cycles of X2 as out-3-cycles. If we assume that F is maximum, a
contradiction will result by computing the number of arcs leaving X1.

We chose a positive real number ǫ such that ǫ < (α− 1.5)/4. This value corresponds to the room
that we have to ignore some vertices, which we will do several times during the proof. Then we fix an
integer p with (3 − α)/p < ǫ/3 , and we will repeat p times the procedure described below to define
free vertices. We define three families of sets:

• (Fi)0≤i≤p−1 the free vertices produced at step i,

• (Ui)0≤i≤p the free vertices produced since the beginning (they will form an acyclic part), and

• (Wi)0≤i≤p the remaining vertices, see Figure 2.
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We initialize by setting U0 = U , and W0 = W . For 0 ≤ i ≤ p − 1, a vertex x of Wi (resp. an
arc xy of Wi) is good at step i if there exists at least 3p+1 disjoint pairs of vertices {y, z} (resp.
distinct vertices z) of Ui such that {x, y, z} induces a 3-cycle. In other words, an element (vertex or
arc) is good if it is contained in at least 3p+1 3-cycles which are disjoint on Ui. When we find good
elements, we will split the 3-cycles they are involved in into the good vertices (or vertices belonging
to a good arc), that we will keep in Wi+1, and the others, called later free vertices and that we put
with the transitive part Ui+1. For a 3-cycle C of F , the vertices of C which we keep in Wi+1 form
the remainder of C. The remainder of C can contain one or two vertices. We use the name a
1-remainder for a remainder of a 3-cycle with one vertex and a 2-remainder for a remainder with
2 vertices.

Then, for i = 0, . . . , p− 1, we initialise Fi = ∅ and perform the step i of the procedure below, that
is, we apply the first of the following rules as long as possible and then we consider the second rule,
apply it as long as possible and proceed similarly for the third and fourth rule. When it is no more
possible to apply the fourth rule, the step i is over, and we deal with the step i + 1.

Rule 3.1 If a 3-cycle or a 2-remainder C belonging to Wi contains a vertex x which is good at step
i, then we add V (C) \ {x} to Fi.

Rule 3.2 If C, C ′ and C ′′ are 3-cycles or 2-remainders belonging to Wi and T < V (C) ∪ V (C ′) ∪
V (C ′′) > contains three disjoint arcs, say xy, x′y′ and x′′y′′, which are good at step i, then we add
V (C) ∪ V (C ′) ∪ V (C ′′) \ {x, x′, x′′, y, y′, y′′} to Fi.

Rule 3.3 If C and C ′ are 3-cycles or 2-remainders belonging to Wi and T < V (C)∪V (C ′) > contains
two disjoint arcs, say xy and x′y′, which are good at step i, then we add V (C) ∪ V (C ′) \ {x, x′, y, y′}
to Fi.

Rule 3.4 If a 3-cycle C of F belonging to Wi contains a good arc xy at step i, then we add V (C) \
{x, y} to Fi.

Now, we fix the sets Ui+1 to Ui∪Fi and Wi+1 to Wi\Fi. Furthermore, we call Ui the free vertices
at step i. The next claim shows that these vertices are ’free to form a 3-cycle’.

Claim 8 If the final set of free vertices, Up, contains a 3-cycle, then, we can extend the family F .

Proof: Assume that Up contains a 3-cycle xyz, we will build a family F ′ of 3-cycles with
|F ′| = |F| + 1. The family F ′ initially contains xyz and all the 3-cycles of F that still exist in
Wp. We will inductively complete F ′ with 3-cycles formed from remainings of 3-cycles of F that
are in Wp by going step by step backward from the step p to the initial configuration. A vertex of

Up \ U0 = ∪p−1
i=0Fi is called busy if it is currently contained in a 3-cycle of F ′. At the end of step

p, only x, y, z are possibly busy (and only if they do not belong to U0), and, for i = 1, . . . , p we will
prove the following (where stage i corresponds to the ith level of undoing the steps performed above,
starting with stage 1 where we undo step p):

At stage i, every remainder created at step p − i + 1 is contained in a 3-cycle of F ′

or in a 2-remainder previously created and Up−i contains at most 3i+1 busy vertices.
(⋆)

Let us see what happens when i = 1. If, {x, y, z} ∩ Fp−1 = ∅, then using the vertices of Fp−1

and the corresponding remainders we undo step p − 1 to re-create original 3-cycles, which we add
to F ′ or 2-remainders previously created (if Rule 3.1 has been used on a 2-remainder at step p− 1).
So, in this case, the only possible busy vertices of Up−1 are x, y and z and the property (⋆) holds
for i = 1. Otherwise, consider a busy vertex in {x, y, z} which is contained in Fp−1. It became free
through the application of one of the Rules 3.1, 3.2, 3.3 or 3.4. In each of these cases, it has been
separated from good elements (vertex or arc(s)), and these good elements can be re-completed into
3-cycles by adding at most three vertices (two for Rule 3.1, three for Rule 3.2, two for Rule 3.3 and
one for Rule 3.4). Each of these good elements can be completed into at least 3p+1 disjoint (on Up−1)
3-cycles. Hence, it is always possible to complete them disjointly with vertices of Up−1. In the worst
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case, 3 vertices were busy in the beginning (x, y and z) and each of the corresponding good element
needs 3 vertices in Up−1 to be completed, producing 9 busy elements in Up−1. Finally, the vertices of
Fp−1 that are not busy are used to re-create 3-cycles or 2-remainders destroyed at step p.
For i = 2, . . . , p − 1, we apply exactly same arguments to pass from stage i to stage i + 1, provided
that at each stage i at most 3i+1 ≤ 3p+1 busy vertices are present in Up−i. For the last stage, that
is to undo step 1, everything is similar, except that, by definition, U0 contains no busy vertices and
hence the corresponding vertices can be directly taken to form the last 3-cycles of F ′.
Finally, F ′ contains one 3-cycle for each remainder in Wp and xyz, so |F ′| = |F| + 1. ⋄

An immediate consequence of Claim 8 is that the size of set Wp can not be less than α · k, because
the first vertex of Up has its out-neighbour-hood contained in Wp. So, the number of free vertices

added to U0 = U , that is ∪p−1
i=0Fi, is at most (3−α)k, and thus there is a step i0+1 with 0 ≤ i0 ≤ p−1,

with |Fi0 | < (3 − α)k/p < ǫk/3. We stop just before this step i0 + 1, and denote by R the set of
3-cycles or 2-remainders with at least one vertex in Fi0 . So, the size of R = V (R), is at most ǫk. We
symbolically remove the small set R and go on working on the other 3-cycles and remainders. Remark
that, now, in Wi0 \R there are no more free elements.

For any q ≤ p, we say that a set of vertices (or abusively a sub-digraph) S of Wq is insertable in
Uq up to l vertices, if there exists a partition of Uq into three sets Z1, Z2 and Z such that: there is
no arc from Z1 to Z2, |Z| ≤ l and there is no arc from Z1 to S and no arc from S to Z2 .

Claim 9 Every vertex x ∈ Wi0 \R belonging to a 3-cycle of F or a 2-remainder is insertable in Ui0

up to 3p+1 vertices. Furthermore, every 3-cycle of F contained in Wi0 \ R is insertable in Ui0 up to
5 · 3p+1 vertices.

Proof: Consider C a 3-cycle of F or a 2-remainder which is contained in Wi0 \ R and let x
be a vertex of C. As Ui0 is an acyclic tournament by Claim 8, we denote by {u1, u2, . . . , ur} its
vertices in such way that Ui0 contains no arc uiuj with i < j. Among all the r + 1 cuts of type
(Z1 = {u1, . . . , ui}, Z2 = {ui+1, . . . , ur}), we choose one for which d+(x, Z2) + d+(Z1, x) is minimum1

and abusively denote it by (Z1, Z2) with Z1 = {u1, . . . , ui}. If d+(Z1, x) = l then it is possible to
build l 3-cycles containing x and some vertices of Z1 which are all disjoint on Z1. Indeed, we denote
by (uin(j))1≤j≤l (resp. (uout(j))1≤j≤i−l) the in-neighbours of x in Z1 (resp. the out-neighbours of x
in Z1) sorted according to the order (ui, ui−1, . . . , u1). Then, assume that for some j, xuout(j)uin(j)

is not a 3-cycle (because uout(j) is after uin(j), or because uout(j) does not exist), it means that x has
more in-neighbours than out-neighbours in the set {ui, ui−1, . . . uin(j)}, which contradicts the choice
of the partition (Z1, Z2). So, it is possible to form all the 3-cycles (xuout(j)uin(j))1≤j≤l. Similarly, the
same statement holds with Z2, and globally it is possible to provide d+(x, Z2) + d+(Z1, x) 3-cycles
containing x and all disjoint on Ui0 . Then, as x ∈ Wi0 \R we have d+(x, Z2) + d+(Z1, x) ≤ 3p+1 and
hence x is insertable in Ui0 up to 3p+1 vertices.

For the second part of the claim, consider a 3-cycle C = xyz which is contained in Wi0 \ R. By
the first part of the claim, we know that there exist three sets of vertices Zx, Zy and Zz in Ui0 of size
at most 3p+1 such that (Ui0 \ {Zx ∪Zy ∪Zz})−{xy, yz, zx} forms an acyclic digraph. We consider an
acyclic ordering of this digraph. If one of three arcs xy, yz or zx, say xy, is backward in this ordering
and ’jumps’ across more than 3p+1 vertices of Ui0 , then the arc xy is good and C should have been
put in R. So, as C can have one or two backward arcs with respect to this order, it is possible to
remove from Ui0 \ {Zx ∪ Zy ∪ Zz} two further sets of vertices of size at most 3p+1 to insert C. ⋄

Now, using Claim 9, we give to every vertex x of a 2-remainder which is contained in Wi0 \ R a
position p(x) in the ordering of Ui0 . More precisely, there exists a set Z of at most 3p+1 vertices of
Ui0 such that there is no arc from {u1, . . . , up(x)} \Z to x and no arc from x to {up(x)+1, . . . , ur} \Z.
If there is several possibilities to choose p(x), we pick one arbitrarily. Similarly, for a 3-cycle C = xyz
which lies in Wi0 \R, we assign to each of its vertices a position p(x) = p(y) = p(z), such that up to
5 · 3p+1 vertices, C is insertable between {u1, . . . , up(x)} and {up(x)+1, . . . , ur}.

1Here for two disjoint sets of vertices R,S d+(R,S) denotes the number of arcs from R to S.
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(a)

(b)
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X1X2

(g)
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, thrown away to find the step i0,

, thrown away to find the block Bj0
,
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finite set (≤ l⌈9
ǫ
⌉)

a lot of arcs

Figure 3: The situation in the proof of Theorem 1.3.

Then, we fix an integer l such that (α−1.5)l > 2·3p+2 and l > 3·3p+1 and we consider a partition of
the first vertices of Ui0 into ⌈9/ǫ⌉ blocks of l vertices, provided that Ui0 is large enough. This is insured
if U , of size at least (2α− 3)k, is large enough, that is if (2α− 3)k > l⌈9/ǫ⌉, what is possible as l and
ǫ only depend on α. Exactly, for j = 1, . . . , ⌈9/ǫ⌉, the block Bj is Bj = {u(j−1)l+1, u(j−1)l+2, ..., ujl}.
As Wi0 \R contains at most 3k vertices, there is at most 3k different values p(x) for x ∈ Wi0 \R. So,
one of the ⌈9/ǫ⌉ blocks Bj , say Bj0 , contains at most 3k/⌈9/ǫ⌉ ≤ ǫk/3 values p(x) for x being a vertex
of a 2-remainder or of a 3-cycle of Wi0 \R. We call R′ these 2-remainders and 3-cycles of Wi0 \R and
denote by R′ the set V (R′). Remark that R′ has size at most ǫk.

So, we partition the remaining vertices of Wi0 \ (R ∪ R′) into two parts: X1 = {x ∈ Wi0 : p(x) ≤
(j0 − 1)l} and X2 = {x ∈ Wi0 : p(x) > j0l}. By the definition of p, a 3-cycle C of F which lies in
Wi0 \ (R ∪ R′) satisfies V (C) ⊆ X1 or V (C) ⊆ X1. Whereas the 2-remainders of Wi0 \ (R ∪ R′) can
intersect both parts of the partition (X1, x2) of Wi0 \ (R ∪R′). The situation is depicted in Figure 3.

We have the following property on the partition ((X1, x2) of Wi0 \ (R ∪R′).

Claim 10 Every arc from X1 to X2 is a good arc.

Proof: Let xy be an arc from X1 to X2. By definition, we know that p(x) ≤ (j0 − 1)l and that
p(y) > j0l. That means that all the vertices of Bj0 dominate x except for at most 3p+1 of them, and
that all the vertices of Bj0 are dominated by y except for at most 3p+1 of them. As |Bj0 | > 3 · 3p+1,
we can find 3p+1 vertices of Bj0 that are dominated by y and that dominate x, implying that xy is a
good arc. ⋄

Now, according to their behaviour, we classify the 2-remainders and 3-cycles which are in Wi0 \
(R ∪R′):

• A 2-remainders which have one vertex in X1 and the other in X2 is of type (a).

• We consider a maximal collection of disjoint pairs of 3-cycles {C,C ′} where C is in X1, C ′ is in
X2 and there is at least one arc from C to C ′. All the 3-cycles involved in this collection are of
type (b).

• A 3-remainder included in X1 is of type (c) if it is not of type (b).

• A 3-remainder included in X2 is of type (d) if it is not of type (b).

12
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• A 2-remainder included in X1 is of type (e).

• A 2-remainder included in X2 is of type (f).

We abusively denote by a (resp. c, d, e and f) the number of remainders of type (a) (resp. (c),
(d), (e) and (f)). We denote by b the number of pairs of 3-remainders of type (b). Finally, we denote
by g the number of 1-remainders. At this point of the proof, any of this value is an integer between
0 and k − 1 and X1 or X2 could be empty. This will be settled by the computation at the end of the
proof. For the moment, we have the following properties.

Claim 11 We have the following bounds on the number of arcs from X1 to X2:

- The number of arcs from X1 to X2 linking a 3-cycle with another 3-cycle or a 2-remainder is at
most 3.

- The number of arcs going from X1 to X2 and linking a vertex of an element of type (a) and a
vertex of an element of type (b) is at most 4ab.

- There is no arc from a 3-cycle of type (c) to a 3-cycle of type (d).

Proof: To prove the first point, consider C a 3-cycle of X1 and C ′ a 3-cycle or a 2-remainder of
X2. If there are more than three arcs from C to C ′, then we find a 2-matching from C to C ′. By
Claim 10, this 2-matching is made of good arcs and the Rule 3.3 could apply to find a free vertex in
C, contradicting that Wi0 \R has no free elements.

For the second point, consider a 2-remainder of type (a) on vertices v1 and v2 with v1 ∈ X1 and
v2 ∈ X2 and a pair (C1, C2) of 3-cycles of type (b) with C1 = x1y1z1 contained in X1 and C2 = x2y2z2
contained in X2 and x1x2 being an arc of T . To find a contradiction, assume that the number of arcs
from v1 to C2 plus the number of arcs from C1 to v2 is at least 5. It means that either v1 dominates
C2 or C1 dominates v2, say that v1 dominates C2. Now, v2 is dominated by at least two vertices of
C1, and one of these two is not x1, say that it is y1. But, the arcs x1x2, y1v2 and v1y2 are good by
Claim 10, and z1 and z2 should be free by Rule 3.2, contradicting that Wi0 \R has no free elements.

The third point follows from the definition of 3-cycles of type (c) and (d). ⋄

Now, we can derive a number of in-equalities from the structure derived so far, in order to obtain
a contradiction, knowing that it has not been possible to increase the size of F above.

The first in-equality comes from the fact that there is a most k−1 remainders and 3-cycles in Wi0 .

a + 2b + c + d + e + f + g < k (2)

For the second one, we compute the number of arcs going outside of Bj0 , which has size l. There

are at least αkl − l(l − 1)/2 such arcs. The number of arcs from Bj0 to ∪j0−1
j=1 Bj is at most l2⌈9/ǫ⌉.

There is no arc from Bj0 to Ui0 \ (∪j0
j=1Bj). The number of arcs from Bj0 to X2 is at most |X2|3

p+1,

because every vertex of X2 is insertable into Ui0 before Bj0 up to 3p+1 vertices. As X2 ⊆ W we
can bound this number by 3k3p+1. Finally, the remaining arcs going outside of Bj0 are at most
l(a + 3b + 3c + 2e + g + |R| + |R′|), and we obtain:

αkl −
l(l − 1)

2
≤ ⌈

9

ǫ
⌉l2 + k3p+2 + l(a + 3b + 3c + 2e + g + 2ǫk, )

which we rewrite as

(α− 1.5)kl −
l(l − 1)

2
− ⌈

9

ǫ
⌉l2 − k3p+2 − 2lǫk ≤ l(a + 3b + 3c + 2e + g − 1.5k)

And finally arrange in:

(
(α− 1.5)l

2
− 3p+2

)

k +

(

(
(α− 1.5)

2
− 2ǫ)k −

l − 1

2
− ⌈

9

ǫ
⌉l

)

l ≤ l(a + 3b + 3c + 2e + g − 1.5k)
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By choice of l, the first term is positive, and as ǫ < (α− 1.5)/4, if k is large enough, the second term
is strictly positive too, implying that:

a + 3(b + c) + 2e + g > 1.5k (3)

For the last in-equality, we compute the number of arcs going outside of X1. As previously, we
first show that, if k is large enough, we have αk|X1| − d+(X1, Ui0) − d+(X1, R ∪ R′) − 1.5k|X1| is
positive. Indeed, this term is greater than (α− 1.5)k|X1| − ⌈ 9

ǫ ⌉l|X1| − 2ǫk|X1| which is

|X1|

(

((α− 1.5) − 2ǫ)k − ⌈
9

ǫ
⌉l

)

and this is positive if k is large enough. Now, we have to take in account the arcs inside X1 and those
from X1 to X2 and to the 1-remainders. By the calculation above we still have at least 1.5k|X1| arcs
incident with vertices of X1 to account for. Using Claim 11 we obtain

1.5k(a + 3(b + c) + 2e) −
1

2
(a + 3(b + c) + 2e)2 <

a(a + 4b + 3d + 2f + g) + b(3b + 3d + 3f + 3g) + c(3a + 3b + 3f + 3g) + e(2a + 3b + 3d + 4f + 2g) =

a(a + 4b + 3c + 3d + 2e + 2f + g) + b(3b + 3c + 3d + 3e + 3f + 3g) + c(3f + 3g) + e(3d + 4f + 2g)
(4)

Considering (2), (3) and (4), an equation solver leads to a contradiction. We just indicate how
to manage the computation ’by hand’. Suppose that there exists a solution X = (a, b, c, d, e, f, g) to
these three in-equalities, we will show that then X ′ = (a+ b+ f + g, 0, b+ c+ d+ e, 0, 0, 0, 0) is also a
solution to these equations. It is easy to check that X ′ is a solution to (2) and (3). For (4), we denote
by φ(a, b, c, d, e, f, g) the value

2a(a + 4b + 3c + 3d + 2e + 2f + g) + 2b(3b + 3c + 3d + 3e + 3f + 3g) + 2c(3f + 3g) + 2e(3d + 4f + 2g)

+(a + 3(b + c) + 2e)2 − 3k(a + 3(b + c) + 2e)

Then, we compute φ(a + b + f + g, 0, b + c + d + e, 0, 0, 0, 0) − φ(a, b, c, d, e, f, g) and obtain:

2a(2b+ 3d+ 2e+ f + 2g) + 3b(3b+ 2c+ 8d+ 4e+ 4f + 4g) + 6c(3d+ e+ f + g) + 3d(3d+ 4e+ 4f + 4g)

+e(5e + 4f + 8g+) + 3f(f + 2g) + 3g2 − 3k(b + 3d + e + f + g)

Using the fact that X is a solution of (3), we have −3k > −2(a + 3(b + c) + 2e + g) and so φ(a + b +
f + g, 0, b + c + d + e, 0, 0, 0, 0) − φ(a, b, c, d, e, f, g) is greater than

2a(b + e + g) + b(3b + 6d + 2e + 6f + 4g) + 3d(3d + 4f + 2g) + e(e + 2g) + f(3f + 4g) + g2

which is positive. So, φ(a+ b+ f + g, 0, b+ c+ d+ e, 0, 0, 0, 0) is strictly positive and X ′ is a solution
of (4).
Now, there is a solution to the in-equations (2), (3) and (4) of type (a′, 0, c′, 0, 0, 0, 0), what is impos-
sible: (2) gives a′ + c′ < 1 and (4) gives 3(a′ + 3c′)(a′ + c′ − 1) > 0.

This concludes the proof of Theorem 1.3. As a last remark, note that kα is larger than a polynomial
function in l, which is larger than an exponential in p, itself larger than a linear function in the inverse
of α− 1.5. So, kα is an exponential function in the inverse of α− 1.5.
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4 Some Remarks

It is perhaps worth pointing out that the following obvious idea does not lead to a proof of Conjecture
1.1 for tournaments: find a 3-cycle C which is not dominated by any vertex of V (T ) − V (C), remove
C and apply induction. This approach does not work because of the following2.

Proposition 4.1 For infinitely many k ≥ 3 there exists a tournament T with δ+(T ) = 2k − 1 such
that every 3-cycle C is dominated by at least one vertex of minimum out-degree.

Proof: Consider the quadratic residue tournament T on 11 vertices V (T ) = {1, 2, . . . , 11} and
arcs A(T ) = {i→i+ p mod 11 : i ∈ V (T ), p ∈ {1, 3, 4, 5, 9}}. The possible types of 3-cycles in T are
i→i + 1→i + 10→i, i→i + 1→i + 6→i, i→i + 3→i + 6→i, i→i + 3→i + 7→i, where indices are taken
modulo 11. These are dominated by the vertices i− 3, i− 3, i + 2, i + 2 respectively. By substituting
an arbitrary tournament for each vertex of T , we can obtain a tournament with the property that
every 3-cycle is dominated by some vertex of minimum out-degree. ⋄

On the other hand, removing a 2-cycle from a digraph D with δ+(D) ≥ 2k − 1 clearly results in
a new digraph D′ with δ+(D′) ≥ 2(k − 1) − 1 and hence, when trying to prove Conjecture 1.1, we
may always assume that the digraph in question has no 2-cycles. In particular the following follows
directly from Theorem 1.23.

Corollary 4.2 Every semicomplete digraph D with δ+(D) ≥ 2k − 1 contains k disjoint cycles. ⋄

A chordal bipartite digraph is a bipartite digraph with no induced cycle of length greater than
4. Note that in particular semicomplete bipartite digraphs [3, page 35] are chordal bipartite. It is
easy to see that Conjecture 1.1 holds for chordal bipartite digraphs.

Proposition 4.3 Every chordal bipartite digraph D with δ+(D) ≥ 2k − 1 contains k disjoint cycles.

Proof: This follows from the fact that such a digraph contains a directed cycle C of length 2 or 4 as
long as k ≥ 1. As D is bipartite, no vertex dominates more than half of the vertices on C and so we
have δ+(D − C) ≥ 2(k − 1) − 1 and the result follows by induction on k. ⋄

An extension of a digraph D = (V,A) is any digraph which can be obtained by substituting
an independent set Iv for each vertex v ∈ V . More precisely we replace each vertex v of V by an
independent set Iv and then add all arcs from Iu to Iv precisely if uv ∈ A.

Proposition 4.4 Let D = T [In1 , In2 , . . . , In|V (T )|
] be an extension of a tournament T such that Ini

is an independent set on ni vertices for i ∈ {1, 2, . . . , |V (T )|}. If δ+(D) ≥ 2k − 1, then D contains k
disjoint 3-cycles.

Proof: Let T ′ be the tournament that we obtain from D by replacing each Ini
by a transitive

tournament on ni vertices. Then δ+(T ′) ≥ 2k−1 and hence, by theorem 1.2, T ′ contains k disjoint 3-
cycles C1, C2, . . . , Ck. By the definition of an extension and the fact that we replaced independent sets
by acyclic digraphs, no Ci can contain more than one vertex from any Ini

, implying that C1, C2, . . . , Ck

are also cycles in D. ⋄
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2.4 Arc-chromatic number for digraphs
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�
���������� -�1�áÇ5*�v'�â�¼0-J1Ké¦�M�v�*é"8�-�+P-{/0�Y)��E/�),'Y)���3H��576�_��[+��Y� 5�����),12-!_�-�1¦æ),��1��{5�_�-�1®è�����8c-��;1,8�-�+P-�-0²Y) _71,_�5*�;G�á�N.â�L0¨�)��v'm-�6�-��E'Y5*�E1q_7³�¼7_�-�1�æ%À���� /05*+.'*),�E5*�§)�1
�i5*1g�<-$5^_[1 � æ!�#"%$��¤ Z[XSáDA*VcRMâM��Z�X2dg9iVc9�d%b�Z�:$Z�~�9*>WV�~�><R�>WVcaihJAFC�@%Q�:09YhÒAJåvVc>fX$Z @$Z[X�æí>WVmX$9{èz����Z!R�Z[åvVcZ�&�G�á�N.âELAF@�X0b�ZJh�>WVc>Wh!��h Vx��h ��Z�:�9*Q�G�á�N.â�LK¸2>WV�R�Z�C�Z�VcREA*VmX�@$Z[X$@�X$9MCEAF:PX$>fX$><9YV�æ��z�%bcZ�V'&�G�á�N.â�L�ª¾½�GKòzï[ð ñ^L�ª½�Ä�GK=�ï[ð ñFL$�¤ Z[X)(�G2ÈELsGK:$Z�@$C��*(�+�G2ÈvN0n�LPLq��Z�X0bcZShzAÂ·�>Wh!��hÔ|FAF�W��ZS9*Q	&�G�á�N.â�L�Q,9*:gX2dg9JVc9�d�bcZ�:$Z�~�9*>WVc~�><R�>WVca�hzAFC�@á¯A*VcRDâ4Q�:$9YhÅæ¥>WVYX$9�èç@0�c~	bÝX0bEA^X!Q,9*:�Z[|YZ�:P}-,;>WVºèJ�®â Ü�. G/,xL10¥ÈÃGK:$Z�@$C���Z�>fX0bcZ�:�â Ü�. G/,xL10¥È49*:

õ



66 CHAPTER 2. MATERIALS

á�Ü�.�G/,xL20Òn2L$� �ebcZ{~�9YVcR�>fX$><9YVÃá�Ü�.�G/,�LzGK:$Z�@$C��Ýâ�Ü�.�G/,�LPL b�AF@JA^XzhJ9*@PXJÈÝZ��<Z�h�Z�VmX$@zhJZ�A*Vc@!X0b�A^X�Z�AF~	b|YZ�:PX$Z7· b�AF@!>WVcR�Z�a*:$Z�Z;GK:$Z�@0C���9Y��X$R�Z�a*:$Z�Z^L�A^X�hJ9*@PX�È4>WVÝ=�ï[ð ñY�43�Z�Vc~�Z5(�G2ÈEL�GK:$Z�@$C��6( + G2ÈvN0n2LPL�><@ X0bcZhJAÂ·c>Wh!��hÉ|FAF�W��Z�9*Q®½�ÄYGK=ML�Q,9*:s=ÒAzÈm¸2R�><a*:0AFCEb�GK:0Z�@$C��sG2È�Êin2LK¸2R�><a*:	AFCEb�L$�
7 ø�û4�Eú98: ¤ Z[X{áÇA*VcR âã��ZiXËdq9ãVc9�d�bcZ�:$Zy~�9*>WVc~�><RE>WVcaÝhzAFC�@�Q,:$9Yh(æ´>WVmX$9Dèz���ebcZ�V æ hJA�}º��ZCEAF:PX$>fX$><9YVEVcZ�Ry>WVmX$92(�G;� æ!�FÕ ° L%G�á�N.âELK¸2>WVcR�Z�C�Z�VcREA*VmXs@$Z[X$@���eb�ZSQ,��V�~[X$><9YVc@)(�+yA*V�R<(�AF:$ZS|YZ�:$}B~��<9*@$Z�X$9�Z�AF~	bH9FX0bcZ�:�o
= úÂù?>�ù?@9�BA%�,ùDC:E (�G2ÈEL*0F( + G2ÈvN;G�LH0JI�I�IK0L( + G2ÈvN	ÈELH0L(�G2ÈELDM õ
= úÂù�ùKN � �ebcZH@$9*�<Z\>WVcZ�Ox�EAF�<>fX2} X0b�A^X{R�9xZ�@zVc9FX{>WhJhJZ�R�>WA^X$�f}ºQ�9*�<�<9�d X0bcZMR�Z[å�Vc>fX$><9YVc@B><@�( + G2ÈvN	ÈEL<0(�G2ÈELDM�õ�� ¤ Z[X%��@¢C�:$9�|YZ�>fX��¤ Z[Xs=î��Z�A{G2È�ÊBÈELK¸2R�><a*:0AFCEb�� PSVcZ�~�A*V{~�9*�<9Y�c:¢X0bcZ�AF:0~�@¢>WV{= Ú2Q =MÜ;de>fX0b5(�G2ÈEL¦~�9*�<9Y�c:$@���¡ËXs:$Z�hzAF>WVc@X$9!~�9*�<9Y�c:gX0bcZ�AF:$~�@qde>fX0bzX0AF><��>WV{I Ü A*V�R{b�Z�AFRB>WViI�Ú�de>fX0bB9YVcZ�VcZ[d�~�9*�<9Y�c:¢A*VcRBX0bcZ�AF:$~�@gde>fX0bJX0AF><��>WVI Ú A*VcRybcZ�AFRM>WVHI!Ü�de>fX0byA�@$Z�~�9YVcRMVcZ[d`~�9*�<9Y�c:�� R

S 9*:$Z�9�|YZ�:��vdgZ�~�9YV^TPZ�~[X0�c:$ZSX0bEA^XT(�+�G2ÈvN	ÈEL�><@�VcZ[|YZ�:eZ�O���AF��X$9�(�G2ÈELUM õ��
V ùDCXW�øZY[A]\�úÂø<^ ( + G2ÈvN	ÈELH0L(�G2ÈELDM °¡PV Î à Ð �EÞ��§¸�ßcA*bc><�<>�aYA�|YZ�X0bcZ�Q�9*�<�<9�de>WVcaJ�cCEC�Z�:¢��9Y��V�RB9YV<(�+�G2ÈvN	ÈEL$oö!÷�øxùvúÂø�û̀ _ þ$ÿ��������v÷	�
�
���aEK��� ( + G2ÈvN	ÈELH0Ãõ*ÈbM °¡PV�X0b�><@"CvAFC�Z�:��^dgZqåE:$@PX"a*>f|YZg@$>Wh�C��<Z�C�:$9x9*Q�@"9*QE�%bcZ�9*:$Z�h�@ ° A*VcR�c����eb�Z�V��^>WV�ß�Z�~[X$><9YV�àx�*dgZg>Wh�C�:09�|YZX0bcZ��cC�C�Z�:���9Y��VcR�@¦9YV2(�G2ÈEL¦A*VcR2( + G2ÈvN0n2L$�¦��Z�@0bc9�d`GK�eb�Z�9*:$Z�h °ed L®X0b�A^X�(�G2ÈEL*0gfcG2õ*ÈEL®><Q�È2hÃõ��cA*VcR(�+�G2ÈvN0n2L*0FfcG2õ*È�M�õFn2L®><Q"È�M�n	h�àx��d�bcZ�:$Zif�><@qX0bcZ�Q,��V�~[X$><9YVJR�Z[å�VcZ�Rz��}jfcG2ÈEL"ªÇh�>WVvØ9k�omlonp n�qsrutsv hÃÈvÙ*�ß�>WVc~�Zeõ n "[k�0 lonp n�qsrutsv 0Ãõ n "[w ksQ,9*:*k�hÃõ���9YVc~�Ze~�A*V�9*�cX0AF>WV�X0bcZ¢Q�9*�<�<9�de>WVca�Z�Ox�c>f|*AF�<Z�VmX�Q,9*:xf�AF@qÈ�pzȳ o

f�G2ÈEL®ª«�<9*aEG2ÈEL�M:{!GK�<9*a�GK�<9*aEG2ÈELPLPL¤ 9�dgZ�:���9Y�EVcR�@�Q,9*:|(4A*V�R!( + AF:0Z�@PX0A^X$Z�R���} Æg9*:09*�<�WAF:$><Z�@ ° $SA*VcR ° c�o�hJAÂ·�Ø��<9*avG2õ*È�MJà�L$N;fcG2È�M ° L$Ù�0(�G2ÈELqA*V�RMhJAÂ·�Ø��<9*avG2õ*ÈbM�õFn}M~$xL$N;fcG2ÈbM ° L$N;fcG�n�M ° L$Ù�0F(�+�G2ÈvN0n2L$���Z�AF�<@09�Z�@PX0AF���<><@0b4G2Æg9*:$9*�<�WAF:P}Mõ ° LqX0b�A^XT( + G2ÈvN0n2LH0FfcG2õ*ÈEL�><Q�fcG2õ*ÈEL*hÃõFn�M ° �¡PV ßcZ�~[X$><9YV�$��*dqZq@PX0�cRc}�>WV h�9*:0Z�R�Z[X0AF><�<@®X0bcZq:$Z��WA^X$><9YVc@���Z[XËdqZ�Z�V!(�+�G2ÈvN0n2L�A*VcR!(�G2ÈEL$�®��Zg~�9YV^T.Z�~[X0��:$ZX0b�A^X�><Q�Èy><@e|YZ�:$}{�WAF:0a*Z�~�9YhJCEAF:$Z�RiX$9{n"X0bcZ�V<(�+�G2ÈvN0n2L¦ª�(�G2ÈEL$�¢��Z�CE:$9�|YZ�X0b�A^Xi(�+�G2ÈvN;G�L�ª�(�G2ÈEL¢A*VcR~�9YV^TPZ�~[X0�c:$ZgX0b�A^X*( + G2ÈvN ° L�ª�(SG2ÈEL�><Q�È�h ° �®��Z¢C�:09�|YZ¢X0b�A^X¦Q,9*:¦A�åc·cZ�R�È Z�>fX0bcZ�:�X0bc><@��WA^XPX$Z�:�~�9YV^T.Z�~[X0��:$Zbc9*�<R�@e9*:%Æg9YV^TPZ�~[X0�c:$Zb$�b�9*�<R�@����eb�><@¢>Wh�C��<><Z�@¢X0bEA^XT( + G2ÈvN ° L 0F(�G2ÈELUM ° �Ì >WV�AF�<�f}*��>WVHßcZ�~[X$><9YV�c���dgZ�a*>f|YZ�X0bcZ�Z7·�AF~[X�|FAF�W�cZ�@�9*Qx(�G2ÈEL¢A*VcR�( + G2ÈvN0n�L¢Q,9*:%n|0�È�0¯àx�e�%bcZ[}yAF:$Z@0��hzhJAF:$>���Z�R{>WV{X0b�ZSQ�9*�<�<9�de>WVca�X0AF�E�<Z�o
( + G/GxN;G�L�ª ° ( + G ° N;G�L�ª�(SG ° L®ª�à ( + G2õ�N;G�L�ª�(�G2õmL�ª�$ ( + G�àxN;G�L¦ª�(�G�à�L®ª�$(�+�G ° N ° L¦ª�à (�+�G2õ�N ° L�ª�$ (�+�G�àxN ° L�ªJ$(�+�G2õ�N	õmL�ª�$ (�+�G�àxN	õmL�ª�c( + G�àxN0à�L�ª�c

à
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� ��#����!�;���!�������e�̀ �)�'�����¦�e���x���¾���s�!���
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© Z�Q,9*:$Z�a*>f|�>WVcazA!@0b�9*:PXeC�:$9x9*Q�9*Q®�eb�Z�9*:$Z�h�c���dgZ�C�:$Z�~�><@0ZSQ�Z[dê@PX0A*VcREAF:$RiREZ[åvVc>fX$><9YVc@��
ª øZ«¬C	�BA%�,ùUC: & 6x5*1,8�><@eA�V�9YVx¸2Z�h�CcXË}zR�><a*:	AFCEb¯®í9*Q"X0bcZSQ,9*:0hIJG
®!L®ªÁØ��%°FN$� . N�±�±�±�N$�[²mÙ OzG
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®!L�ªêØ�� ° � . N$� . � r N�±�±�±ÂN$�]² Ü�. �[²YN$�[²Â� ° Ù*Nd%bcZ�:0Z�X0bcZS�% �AF:0Z�AF�<��R�><@PX$>WV�~[X��&£R�><a*:0AFCvb�><@�_[1K+��Y��3*�́ �\/	�*���v-0/�12-0'z9*:�_71K+.�*��3z><QgQ�9*:�Z[|YZ�:P}�X2dg9y|YZ�:$X$><~�Z�@ �ãA*VcRD�MX0bcZ�:0Z�><@�AMCEA^X0bde>fX0b\9*:$><a*>WV;��A*VcR\X$Z�:0hJ>WV���@%�E��&ÉhJAÂ·c>WhJAF��@PX$:$9YVca{@0����RE><a*:0AFCEby9*QqAJRE><a*:0AFCEb\= ><@S~�AF�<�<Z�R�AM_71K+.�*��3/0�Y�e6��*�v-��E1"9*Q�=M�s&¿~�9YhJC�9YV�Z�VYXTµB9*Q�=´><@ ),��)�1K)U5*��><Q®X0b�Z�:$Z�><@�Vc9zAF:0~�de>fX0bMX0AF><��>WV;IJGK=yL�ÖeIJG
µcLsA*VcRbcZ�AFR\>WV\IJG
µcL$��&¿~�9Yh�C�9YVcZ�VmX)µ{9*Q�=´><@ 12-�+7� ),�E5*�v><Q®X0bcZ�:$Z�><@�Vc9BAF:$~�de>fX0byX0AF><�">WV;I�G
µ�L¢A*VcR;bcZ�AFR\>WVIJGK=yL�ÖeI�G
µ�L$��&ÁR�><a*:0AFCEb{><@ /0�*����-$/�12-0'�><Q">fX$@%�EVcR�Z�:$�f}�>WVca!a*:0AFCEbi><@e~�9YV�VcZ�~[X$Z�R��&ÁR�><a*:0AFCvb{=î><@�nË¨.'m-Ë3m-���-�+.5*12-s><Q"Z[|YZ�:P}i@0�c��R�><a*:	AFCEbBòÅbEAF@eA |YZ�:PX$Z7·M9*Q"R�Z�a*:$Z�Z�A^X�h�9*@PXsnË��eb�ZSQ�9*�<�<9�de>WVcaJ�<Z�hzhJA ~�9*:$:$Z�@0C�9YV�R�>WVca X$9�X0bcZ�a*:0Z�Z�Rc}B~�9*�<9Y��:$>WVcazAF�<a*9*:0>fX0b�h¶><@eA�C�><Z�~�Z�9*Q®Q�9*���x�<9*:$ZF�
¶ ø�ûDû·�-¸�¹ ]^-�+�� n�¨�'m-Ë3m-��v-�+.5*12-!'*)<3*+.576�8H) _�G�n�M ° L0¨./0�*�f�*³�+�5�¼��<-��

= úÂù�ùKN�ùKN�ö!÷�øxùvúÂø�ûº_�� ¤ Z[XS= ��Z�A\G2È�Ê\ÈELK¸2R�><a*:0AFCvb��S&%~�9*:$RE>WVcaBX$9 ¤ Z�hJhJA2»���>fX�@	�}¼J~�Z�@�X$9C�:$9�|YZSX0b�A^Xe©%GK=yLq><@%õ*Èm¸2R�Z�a*Z�VcZ�:0A^X$ZF�¡PV4Z[|YZ�:$}D>WVc>fX$>WAF�g@PX$:$9YV�a\~�9YhJC�9YVcZ�VYX!³¥X0bcZ�:$Z{><@�Ay|YZ�:PX$Z7·Ýde>fX0bÝ>WVcR�Z�a*:$Z�Z{A^X�h�9*@PX�Èv�\¡.VcREZ�Z�RD><QX0bcZ�:$Z!><@�Vc9{@0��~	bH|YZ�:PX$Z7·;X0bcZ�VãG2È�M ° L��#³1�½0o¾L¿�À[Á�w Ü GK��LT0�¾�¿�À]Á�w�Ú�GK��LT0ÁÈ��#³1�Ñ��&�V�AF�<9*a*9Y�c@$�f}*�">WVZ[|YZ�:P}{X$Z�:0hJ>WV�AF��@PX$:$9YVcaJ~�9Yh�C�9YVcZ�VmXqX0b�Z�:$Z�><@eA!|YZ�:$X$Z7·{d%>fX0by9Y��X$R�Z�a*:0Z�Z�A^X%h�9*@$X%Èv�ô�9�d���X0bcZ�:0Z%><@gA�CvA^X0bJ9*:$><a*>WVEA^X$>WVca!>WVzA�h�>WVc>WhzAF��~�9Yh�C�9YVcZ�VmX�A*VcRzX$Z�:0h�>WVEA^X$>WVca�>WVBA�X$Z�:	h�>WV�AF�v9YVcZF�3�Z�Vc~�Z�X0bcZ�:$Z�><@gA�CEA^X0bJd%bc9*@$Z�9*:$><a*>WV{b�AF@g>WVcR�Z�a*:0Z�Z�A^Xsh�9*@$XgÈzA*VcRJd�bc9*@$Z%X$Z�:0h�>WVx�c@�bEAF@q9Y�cX$R�Z�a*:$Z�ZSA^Xh�9*@$XqÈv�¬3%Z�Vc~�ZeX0bcZ�:$Zs><@qA*VzAF:0~%u¢d�bc9*@$Z¢X0AF><��b�AF@�>WV�R�Z�a*:$Z�ZeA^Xgh�9*@PXqÈ�A*VcR�d%b�9*@$ZebcZ�AFRBb�AF@¦9Y��X$R�Z�a*:0Z�ZA^X%hJ9*@PX%Èv���ebx�c@eu�b�AF@sR�Z�a*:$Z�Z�A^X%h�9*@PX%õ*Èi>WVi©eGK=ML$� R

Â ÃM�xÄ��¦�Å�s�!�r�!�!�2�¦�ÇÆB�%���!�!�����e�ÉÈ �s�!�ÊÈ ×

��Z�d%><�<��Vc9�dê@$Z�AF:$~	bMQ�9*:e��9Y�EVcR�@g9YV�(«@$>WV�~�ZSX0bcZ[}iAF�<@$9Ja*>f|YZ���9Y�EVcR�@g9YV�(�+���eb�Z�9*:$Z�h ° A*VcRãA*VÝZ�AF@P}4>WVcRv�c~[X$><9YVD}x><Z��<R�@ ½ Ä GK=yL!0¾�<9*a ¨ q�Ë � =·�Ñ��3�9�dgZ[|YZ�:�X0bcZ�:0ZzZ7·c><@PX$@!��Z[XPX$Z�:�cC�C�Z�:¦��9Y��V�R�@¦@PX0A^X$Z�R{��}ÍÌ"9*� T$A]�JA*VcRjÎ�Ï9*R��®Î#c Ð � Ì 9*:g@0A]�*Z�9*Q�~�9Yh�C��<Z[X$Z�V�Z�@$@qA*V�Rz>WVJ9*:$R�Z�:�X$9�>WVmX$:$9xRE�c~�Z�c@$Z�QU�c��X$9x9*�<@���dgZ�C�:$9�|x><REZ�A�C�:$9x9*Q�9*Q"�ebcZ�9*:0Z�h °*° �
$
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ª øZ«¬C	�BA%�,ùUC:Ð ��ZzR�Z�Vc9FX$Z���} ò�²JX0bcZ�~�9YhJC��<Z�h�Z�VmX0AF:P};9*Q�X0b�ZJbY}�C�Z�:$~��c��Z!9*QgR�>Wh�Z�Vc@0><9YV4Èv��X0b�A^X�><@X0bcZ�RE><a*:0AFCEbBde>fX0b{|YZ�:$X$Z7·�¸2@$Z[XSAF�<��X0bcZS@	�c��@$Z[X$@s9*QqØ ° N�±�±�±ÂN	ÈvÙ A*VcR{de>fX0bMAF:$~7¸2@$Z[X�Ø�×UÑBo*×D»Í ÑvÙ*�&í8x�*���*���*+26�8�) _7�¾tyoY=±pÛ= À ><@sA!hJAFC�CE>WVca tyo�IzGK=yL"p I�GK= À L�@	�c~	bzX0b�A^XsQ,9*:gZ[|YZ�:P}{AF:0~�×?Ñ�9*Q=H�vt�GU×�L�t�G
Ñ�L¢><@eA*VyAF:0~�9*Q®=JÀ,�¤ Z[X�µ���Z�A*VMAF:$~7¸2~�9*�<9Y��:$>WVcaB9*Q®A�R�><a*:0AFCEbM=î>WVmX$9zAJ@$Z[Xe9*Q®~�9*�<9Y�c:$@S¹q� Ì 9*:%A*Vm}i|YZ�:PX$Z7·y×;9*Q"=H��dgZR�Z�Vc9FX$Zz�m}4³bÒFnUÚÓ GU×�L�9*:�@$>WhJC��f}�³�Ò^nUÚqGU×�L%X0bcZ�@$Z[X 9*Qq~�9*�<9Y��:$@�AF@$@0><aYVcZ�R4X$9yX0bcZzAF:$~�@�de>fX0b�X0AF><��×��z��ZR�Z[åvV�Z�³�ÒFn�Ü�GU×�L�ªÇ¹iÖ ³bÒFn Ú GU×�L$��ô%9FX$Z�X0b�A^X)³bÒFn2Ü¦GU×�L�~�9YVmX0AF>WVc@�GK�E�cX¢hzA�}B��Z���><a*a*Z�:sX0b�A*V�L�X0bcZS@$Z[Xs9*Q~�9*�<9Y�c:$@gAF@$@$><aYV�Z�RJX$9�X0bcZ%AF:0~�@�de>fX0bBbcZ�AFRz×����ebcZ%~�AF:$R�>WV�AF�<>fXË}J9*Qm³bÒFn Ú GU×�L¢GK:$Z�@$C��x³bÒFn2Ü¦GU×�LPL®><@�R�Z�V�9FX$Z�R��}{µÔÒFnUÚgGU×�L%GK:$Z�@0C���µÔÒ^n Ü GU×�LPL$�ö!÷�øxùvúÂø�ûÊÕ�Ö �*+�-�]^-�+��z'Y)f3Y+�576E8z=5×�½�ÄYGK=ML®ª�h�>WV�ØÂÈzo�=£p ò�²mÙØ�
= úÂù�ùKN �É&�@$@0��hJZ%X0bEA^Xe=ÒAFRvh�>fX$@sA*VyAF:$~7¸2~�9*�<9Y��:$>WVca�d%>fX0b;Ø ° N�±�±�±ÂN	ÈvÙ*��¡ËXe><@eZ�AF@P}{X$9�~	bcZ�~��{X0b�A^XT³�Ò̂ nUÚ><@eA�b�9Yh�9Yh�9*:0CEbc><@0hÉQ�:09Yh±=¥X$9 ò�²m�Æg9YVm|YZ�:$@$Z��f}*��@0�cC�C�9*@$Z%X0b�A^XsX0bcZ�:0ZSZ7·�><@PX$@�A�bc9Yh�9YhJ9*:$CEbc><@	h¾tyQ�:$9Yh¶=¶X$9 ò�²Y�¦&�@$@$><aYViX$9�Z�AF~	bHAF:$~S×?ÑA*ViZ��<Z�hJZ�VYXe9*Q¦t�G
Ñ�L�Ö¢t�GU×�L$�vd%bc><~	by><@%Vc9FXsZ�hJCcX2}*���%bc><@¢C�:$9�|x><R�Z�@�A*VyAF:$~7¸2~�9*�<9Y�c:0>WVcaJ9*Q"=M� R
ª øZ«¬C	�BA%�,ùUC«üXÙ �ebcZ�/0�*�%6v�<-�12-H'*)<3*+.576�8����y�*+.'m-�+!Ú®��R�Z�Vc9FX$Z�RÜÛÝÍÞ ��><@!X0bcZ{R�><a*:0AFCvb4d%>fX0b4|YZ�:$X$Z7·�¸2@$Z[XØ�� . N$� r N�±�±�±�N$� Þ Ù�A*V�RyAF:$~7¸2@$Z[X�Ø��% K��ßSoYl%»ª-à�Ù*��eb�Z¢1K+�5*�c_7),1K)�]F-g1��*³�+	�v5*��-���1����g�*+.'m-�+	Ú®�ÂR�Z�V�9FX$Z�Riá�á Þ �F><@�X0bcZ�R�><a*:0AFCvb�de>fX0b�|YZ�:PX$Z7·x¸2@$Z[X�Ø�� . N$� r N�±�±�±ÂN$� Þ ÙA*VcRMAF:0~7¸2@$Z[X�Ø��   � ß oYlxâ4àEÙ*��eb�ZBQ,9*�<�<9�d%>WVca�~�9*:$9*�<�WAF:P}ã9*Q��ebcZ�9*:$Z�häã\C�:$9�|x><REZ�@���9Y�EVcR�@!9YVÝX0bcZiAF:$~7¸2~	b�:$9YhJA^X$><~MVx��h ��Z�:�9*Q�AR�><a*:0AFCvbyAF~�~�9*:$R�>WVca�X$9�>fX$@e~7bc:$9YhJA^X$><~�V���h ��Z�:��ö!÷�øxùvúÂø�ûýüEüãþ = ùD�aWÔ�K8-�UC½å 7<æù?å����ç_}���4Ö �*+�-�]^-�+��B'*)f3Y+�5[6�8z=�×

è néÒ�â�GK½�GK=MLPLéê�0 ½�ÄmGK=ML*0:fcGK½�GK=MLPLë±
= úÂù�ùKN � © }iR�Z[åvVc>fX$><9YVy9*Q�X0b�Z�~	bc:09YhJA^X$><~�Vx��h ��Z�:��c=£p ÛÝÍì ¤¦¥|§ �q&%@sX0bcZ�@0�c�E@$Z[X$@s9*QqØ ° N�±�±�±�N	ÈvÙ�de>fX0b~�AF:$R�>WVEAF�<>fX2}�í ²r]î >WVcRv�c~�Z�A�~�9Yh�CE�<Z[X$Z�RE><a*:0AFCEbB9YV-l ²è�ï ð ê v |YZ�:PX$><~�Z�@s>WV ò�²Y��dgZ�9*�cX0AF>WViA!bc9Yh�9YhJ9*:$CEbc><@0hQ,:$9Yh±=îX$9 ò<ñ ¤ ì ¤¦¥|§�§ ��ß�9�½�ÄmGK=ML*0gfcGK½�GK=yLPL$�© }i�ebcZ�9*:$Z�h�ãx��dqZ�b�A�|YZ�=±p ò<ì]ò ¤�¥|§ ��&�@s½�G ò<ì]ò ¤�¥|§ L"ªÇõ ì]ò ¤¦¥|§ ��dqZ�9*�cX0AF>WVi=±p ÛÝ r�ó ò9ôaõ?ö � R�eb�Z�@$Z���9Y��VcR�@�AF:0Z�X$><aYbmX @$>WV�~�Z�X0bcZ��<9�dqZ�:!9YVcZJ><@ AF~7bc><Z[|YZ�Rã�m};X$:0A*Vc@0>fX$>f|YZJX$9Y�c:	V�A*h�Z�VmX$@�A*VcR�X0bcZ�cC�C�Z�:¢9YVcZ��m}i~�9YhJC��<Z[X$Z�R�><a*:0AFCvbc@s��}yßcC�Z�:	VcZ�:�÷ @ ¤ Z�hJhJABGK@$Z�Z{Î ø Ð L$� 3%9�dqZ[|YZ�:���X0bcZ��<9�dgZ�:���9Y��V�RyhJA�}��Z%>WV�~�:$Z�AF@$Z�Ri><Q�X0bcZ�R�><a*:	AFCEb{b�AF@¢Vc9�@0>WV��yGU|YZ�:PX$Z7·{de>fX0bB9Y��X$R�Z�a*:$Z�ZbG�L¦9*:�ùFA*V�RyVc9�@09Y�c:$~�Z!GU|YZ�:PX$Z7·{de>fX0b>WVcR�Z�a*:0Z�Z�G�L$�ö!÷�øxùvúÂø�ûýü}�� -�1�= ¼	-!5B'Y)f3Y+�576E8X�
ú )çû�üý�%= 8x5^_��E�J_[)��}þ�1,8�-��{�<9*avGK½�GK=yLDM ° L*0 ½�ÄmGK=yL��
ú )�)çû�üý�%= 8x5^_��E�J_��*³�+�/7-!5*�E'{�E�J_7),�}þJ1,8�-��{�<9*aEGK½�GK=MLDM õmLH0 ½�ÄYGK=ML��

c
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= úÂù�ùKN �Á�%bcZ¢C�:$9x9*Q�><@�><R�Z�VmX$><~�AF��X$9�X0bcZsC�:$9x9*Q�9*Q��ebcZ�9*:$Z�h °*° � © ��X�><Q�A�R�><a*:0AFCEbJb�AF@�Vc9S@09Y�c:$~�Z�GK:0Z�@$C��Vc9�@$>WV���L�X0b�Z�ViQ�9*:eZ[|YZ�:P}i���U³�Ò^nUÚ�GK�cL�»ªÇ¹«GK:$Z�@$C��*³bÒFnUÚ�GK��L%»ª�ì�L$� R&�aYAF>WV��qX0bcZ�@$Z{X2dg94�<9�dqZ�:z��9Y��VcR�@!AF:$ZyAF�<@$9�X$><aYbmX�� ¤ Z[Xjÿ Þ GK:$Z�@0C���� Þ L���ZBX0bcZ{X$9Y�c:0V�A*hJZ�VYX�9*Q9*:$R�Z�:�Úº9*��X0AF>WVcZ�R�Q,:$9Yh á�á Þ ��}H:$Z[|YZ�:$@0>WVca{X0bcZ�AF:$~�� . � Þ GK:$Z�@0C�� � r � Þ L$�1PSV�Z�~�A*V�Z�AF@$><�f}�~	bcZ�~��\X0b�A^X½�Ä�G�� Þ L"ª è �<9*aEG
Ú1M ° Léê�ª è �<9*aEGK½�G�� Þ LUM ° Léê�A*VcRM½�ÄYGuÿ Þ L®ª è �<9*a�G
Ú1M õmLéêSª è �<9*avGK½�Guÿ Þ L�M õmLéê��
= úÂù?>�ù?@9�BA%�,ùDC«üXE�¹ ]F-�+�� È�¨.'*)<3*+.576�8M) _�õ*È�¨�'m-Ë3m-��v-�+.5*12-��
= úÂù�ùKN � Þ�|YZ�:P};@0�c��R�><a*:0AFCEb\9*QgAyÈm¸2R�><a*:0AFCEb�><@�AF�<@$9yAMÈm¸2R�><a*:	AFCEb��!3%Z�V�~�Z�>fX�@0�}¼J~�Z�@�X$9iC�:$9�|YZ�X0b�A^XZ[|YZ�:P}4Èm¸2R�><a*:0AFCvb�b�AF@�A{|YZ�:PX$Z7·�de>fX0b�R�Z�a*:$Z�ZJA^X�hJ9*@PX�õ*Èv�zß�>WVc~�Z!X0bcZJ@0��h 9*Qq9Y��X$R�Z�a*:$Z�Z�@�Z�Ox��AF�<@�X0bcZ@0��h¾9*Q�>WVcR�Z�a*:$Z�Z�@��cX0b�Z�:$Z�><@sA |YZ�:PX$Z7·Bd%>fX0b{>WVcR�Z�a*:$Z�ZSA^Xeh�9*@$X¢ÈBA*VcR{X0bx�c@qde>fX0b{R�Z�a*:$Z�Z�A^XehJ9*@PXsõ*Èv�HR
V ù�ú�ùD�
�ý�Eú��̄ üZ^ hJAÂ·�Ø��<9*avG2õ*È�Mºà�L$N;fcG2ÈbM ° L$Ù�0F(�G2ÈEL*0gf�G2õ*È�M ° L
= úÂù�ùKN �ç�ebcZ���C�C�Z�:s��9Y��VcRyQ,9*�<�<9�de@�Q,:$9Yh Ì�:$9*C�9*@$>fX$><9YV ° àx� ¤ Z�hJhJAÍ»JA*VcRM�%bcZ�9*:$Z�h °*° �e�ebcZ��<9�dqZ�:��9Y��VcRi~�9YhJZ�@sQ�:09Yh¶A�:$Z�aY�c�WAF:eX$9Y�c:0V�A*hJZ�VYXs9YVHõ*ÈbM ° |YZ�:PX$><~�Z�@�á r ² Ú . A*V�RiX0bcZ�~�9YhJC��<Z[X$Z�R�><a*:0AFCvbi9YVÈ�M ° |YZ�:PX$><~�Z�@ ÛÝ ² Ú . �¦¡PVcR�Z�Z�Ri½�Gýá r ² Ú . L®ªÇõ*È�M ° �E@$9�½�ÄmGýá r ² Ú . LHh �<9*aEG2õ*ÈbMãà�Lq�m}B�ebcZ�9*:$Z�h ° õ�A*VcR½�Ä�G|ÛÝ ² Ú . L®ª�fcG2È�M ° L$� R
V ù�ú�ùD�
�ý�Eú��̄ ü}_ hJAÂ·vØ��<9*a�G2õ*ÈbM õFn�M $xL$N;f�G2È�M ° L$N;fcG�n�M ° L$Ù 0F( + G2ÈvN0n2L*0FfcG2õ*ÈbMºõFn�M õmL
= úÂù�ùKN �í�ebcZe�cCEC�Z�:���9Y�EVcRJQ,9*�<�<9�de@ Ì�:$9*C�9*@$>fX$><9YV ° à A*VcRz�ebcZ�9*:$Z�h °*° @0>WVc~�Z%Z[|YZ�:$}yG2È¢Ê!n�LK¸2RE><a*:0AFCEb�=><@¢õ*È*M\õFneM\õ�¸2~�9*�<9Y�c:0AF���<Z!GK= Ú ><@qõ*Èm¸2R�Z�a*Z�V�Z�:0A^X$ZSA*VcRJ@$9zG2õ*È*M ° LK¸2~�9*�<9Y�c:0AF�E�<Z�A*V�RJ=MÜM><@gõFn ¸2R�Z�aYVcZ�:	A^X$ZA*VcR @09ºG2õFn M ° LK¸2~�9*�<9Y�c:0AF���<Z^L$�«�ebcZi�<9�dqZ�:z��9Y�EVcRº~�9Yh�Z�@�Q,:$9Yh ÛÝ ² Ú . � ÛÝ�� Ú . A*VcR A;X$9Y�c:	V�A*h�Z�VmX�á~�9Yh�C�9*@$Z�Rz9*Q�A�:$Z�aY���WAF:�X$9Y��:0V�A*h�Z�VmX�9YV{õFn%M ° |YZ�:PX$><~�Z�@gR�9Yh�>WVEA^X$>WVca�A�:$Z�aY�c�WAF:�X$9Y�c:0V�A*hJZ�VYXq9YVBõ*È M °|YZ�:PX$><~�Z�@���¡.V�R�Z�Z�R���½�ÄmG ÛÝ ² Ú . L¢ªÇfcG2È�M ° L$��½�ÄYG ÛÝ�� Ú . LgªÇfcG�nKM ° LeA*VcR<áÔb�AF@SVc9{@$9Y�c:$~�ZF��Vc9B@$>WV��HA*VcR~	b�:$9YhJA^X$><~�Vx��h ��Z�:sõ*ÈbM õFn�M õ��E@$9��v�m}{�ebcZ�9*:$Z�h ° õ��v½�ÄmGýá�L*h �<9*a�G2õ*ÈbM õFn�M-$xL$� R��Z�~�A*Vi9*�cX0AF>WVMA�@$�<><aYbYX$�f}y��Z[XPX$Z�:e��C�C�Z�:q��9Y��V�Ri9YV�(�� © 9Y��VcR�@e9YV�(�+iQ,9*�<�<9�d��
ª øZ«¬C	�BA%�,ùUC«üX Ì 9*:�A*Vm}i>WVYX$Z�a*Z�:SÈ¯h ° �E�<Z[X�á Ú² G2È�h ° Lg��Z�X0b�Z�~�9Yh�C��<Z[X$Z�R�><a*:0AFCEby9YVij Ú . N�±�±�±�NPj Úr ² Ú .h�>WVx�c@gX0bcZ�AF:0~�@�Ø�j Ú . j Úr NPj Ú . j ÚË N�±�±�±�NPj Ú . j Ú² Ú . Ù*�
¶ ø�ûDû·�ºüK¸�� -�1qÈ h ° ¼0-{5*�ã),��12-23�-�+Ô��üý��=�)W_J5iÈ�¨.'*)f3Y+�5[6�8 ×S1,8�-��ã1,8�-�+.-y-0²Y) _71,_J5M8x�*���*���*+26�8�) _7�t Ú �7+.�*�¾=Û1���á Ú² _[³�/�8{1,8�5*1g) ��t Ú GU×�L®ª¯j Ú . 1,8�-��iw Ú GU×�L�ªÇÈD�
= úÂù�ùKN � Ì 9*:�A!åc·cZ�RHÈv�cdqZ�C�:$9�|YZ�>fXe�m}i>WVcRv�c~[X$><9YVi9YV'�ÏIJGK=yL��Ñ�Ì ><:$@PX���@	�cC�C�9*@$ZsX0bEA^XqX0b�Z�:$Z�Z7·�><@PX$@e>WVz=ÒA�|YZ�:PX$Z7·B×id%>fX0biw Ü GU×�L*â¯Èv�¦�ebcZ�V���wmÚqGU×�L�M4w Ü GU×�LHâÃõ*Èv�© }i>WVcRE�c~[X$><9YVi9YVM=ÉÕ�×���X0bcZ�:0Z�><@eA�bc9YhJ9Yh�9*:$Cvbc><@0h±tyQ,:$9Yh±=¾Õ�×HX$9!á Ú² @0�c~7b{X0b�A^X�><Q®t Ú GK�cL®ª�j Ú .X0bcZ�Viw Ú¥ Ü�� GK��L®ªÇÈv�x3�Z�Vc~�ZF��tEÚqG
Ñ�L%»ª«j Ú . Q�9*:¢Z[|YZ�:$}B>WV�V�Z�><aYbm��9Y�c:�Ñz9*Q�×�����Z�~�A*�c@0Z�w Ú¥ Ü�� G
Ñ�LHâÃÈv�¦&%@s×b�AF@qA^XghJ9*@PXqõ*ÈeÕ ° VcZ�><aYb���9Y��:$@��YdgZsåvV�RJl¦¬�ØÂõ�N�±�±�±̂ N	õ*ÈHM ° Ù�@0�c~7b�X0b�A^XgVc9�VcZ�><aYb���9Y�c:xÑ�9*Q�×i@0A^X$><@PåvZ�@t�ÚqG
ÑEL®ª¯j Ú  �qß�9��vt�ÚgGU×�L®ªÃj Ú  Z7·xX$Z�VcRE@%t�ÚÝX$9JAJbc9Yh�9YhJ9*:$CEbc><@0hÉQ,:$9Yh±=îX$9�á Ú² �

ø
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ßc��C�C�9*@$ZyVc9�dÒX0b�A^XBZ[|YZ�:P} |YZ�:PX$Z7·Ã�ã9*QS=rb�AF@B>WVcR�Z�a*:$Z�Z\A^XB�<Z�AF@$XiÈv�`ß�>WV�~�Z ¾L¿�À
	 ¤�¥|§ w�Ü�GK��LBª¾L¿�À
	 ¤�¥|§ w Ú GK��L*0ÃÈ��ÏIzGK=ML��Ñ��Z[|YZ�:P}J|YZ�:PX$Z7·ib�AF@g>WVcR�Z�a*:$Z�ZSA*VcR{9Y��X$REZ�a*:$Z�Z�Èv�x3%Z�V�~�ZF����} © :$9x9[�x@q�%bcZ�9^¸:$Z�h¿GK@0Z�Z�Î ° Ð LvZ�>fX0b�Z�:�=ê><@"õ*Èm¸2~�9*�<9Y�c:0AF�E�<ZqA*VcR�=£p á Ú² ÎÑØ�j Úr N�±�±�±�NPj Úr ² Ú . Ù Ð �*9*:�=Á><@�As:$Z�aY�c�WAF:�X$9Y��:0V�A*h�Z�VmX9YVDõ*È�M ° |YZ�:$X$><~�Z�@��{¡.V;X0b�><@��WA^XPX$Z�: ~�AF@$ZF���WAF��Z��¦X0bcZ�|YZ�:PX$><~�Z�@!9*Qg=çd%>fX0b�� . N$� r N�±�±�±ÂN$� r ² Ú . @	�c~	b�X0b�A^X� Ü�GK� . L"ªêØ�� r N�±�±�±ÂN$�]² Ú . Ù*���eb�Z�VMt Ú R�Z[åvV�Z�Ry�m}yt Ú GK�% �L®ªÃj Ú  ><@¢X0bcZ�R�Z�@0><:$Z�Rybc9Yh�9YhJ9*:$CEbc><@	hi� R
ö!÷�øxùvúÂø�ûýüXÐ�� -�1®ÈD5*�E'!n%¼	-�1Ké¦��6x�^_7),1K),]^- ),��12-23�-�+0_Ô�
ú )çû�üý��È2hÃõØ×�1,8�-��¯(SG2ÈEL*0gfcG2õ*ÈEL��
ú )�)çû�üý��È�Mºn	h�àZ×�1,8�-��¯(�+�G2ÈvN0n2L*0gfcG2õ*ÈbM�õFn�L��

= úÂù�ùKN � ú )�ûS¡.Q�Èiª¿õ���X0bcZ!:$Z�@0�c�fX�Q�9*�<�<9�de@�Æg9*:09*�<�WAF:P} ° ${@$>WVc~�Z!fcG
$xLqª�fcGucmLqª�$���ß��cC�C�9*@$Z�Vc9�dÁX0b�A^XÈ¯h̄ àx� ¤ Z[X%= ��Z�AJÈm¸2RE><a*:0AFCEb�� © } ¤ Z�hJhzA ° »!X0bcZ�:$Z�><@%Azbc9Yh�9YhJ9*:$CEbc><@0h¾Q,:$9Yh¶=ÒX$9Íá Ú² �g��Z�de><�<�C�:$9�|x><REZ�A�bc9Yh�9YhJ9*:$CEbc><@	h¿â{Q�:$9Yh á Ú² X$9 ò<ñ ¤ r ² § �Ì >§·¿¹ . N�±�±�±�N	¹ r ²Y��õ*È`@0�c��@$Z[X$@\9*QiØ ° N�±�±�±̂ N;fcG2õ*ÈEL$Ùãde>fX0bê~�AF:$R�>WV�AF�<>fXË}�Bf�G2õ*ÈEL�"*õ��̄ A*VcRÁ¹ÒA¯@0�c�E@$Z[XH9*QØ ° N�±�±�±̂ N	õ*ÈvÙ�de>fX0b¯~�AF:$R�>WV�AF�<>fXË}��BfcG2õ*ÈEL�"*õ��iÕ ° �Ô�«>fX0bc9Y��Xi�<9*@$@i9*Q�a*Z�V�Z�:0AF�<>fX2}*�SX0bcZ�¹U �~�9YVYX0AF>WVc>WV�aÃ¹AF:$Z�¹ . N�±�±�±�N	¹ � de>fX0byn	0 è f�G2õ*ÈEL�"*õ�ê�M ° 0ÃÈv�sGuP�VcZS~�A*VyZ�AF@$><�f}i~7bcZ�~;�BX0b�A^X)f�G2õ*ÈEL�"*õ�M ° 0ÃÈBC�:09�|�><R�Z�RX0b�A^X�È̄ hÃàx�fL�ô%9�d��E@$Z[XeâvGUj Ú . L¦ªÇ¹ A*VcRiâvGUj Ú  Ú . L®ª`¹   Q�9*: ° 0�l*0¯õ*Èv��¡�Xe><@%@PX$:0AF><aYbmX$Q�9*:Pd¢AF:$RMX$9J~	b�Z�~;�X0b�A^X¢â{><@eA�bc9YhJ9Yh�9*:$Cvbc><@0hi�ú )�)çû ¤ Z[XS=´��Z AHG2È Êyn2LK¸2R�><a*:0AFCEb�� © } ¤ Z�hJhzA ° »���X0bcZ�:$Z Z7·�><@$X$@�Azbc9YhJ9Yh�9*:$Cvbc><@0h¥t Ú Q,:$9YhÒ= ÚX$9já Ú² @	�c~	bMX0b�A^XS><Q�t�ÚqGU×�Lgª`j Ú . X0bcZ�V;wmÚqGU×�L¢ª¿ÈMA*VcR�����}M@P}chJhJZ[X$:P}\��A{bc9YhJ9Yh�9*:$Cvbc><@0h¥t Ü Q,:$9Yh=MÜHX$9 á Ü� ��X0bcZ�~�9Yh�C��<Z[X$Z�R�><a*:	AFCEbB9YVMØ�j Ü. N�±�±�±�NPj Ür � Ú . Ù�h�>WVx�c@�X0bcZ�AF:$~�@�Ø�j Ür j Ü. NPj ÜË j Ü. N�±�±�±$j Ü� Ú . j Ü. Ù*��@0�c~7bX0b�A^Xe><Q�t�Ü�GU×�L®ª¯j Ü. X0bcZ�Vyw�Ü¦GU×�L®ª�nË�¦��Z�Vc9�d`C�:09�|�><R�Z�A�bc9YhJ9Yh�9*:$CEb�><@0hÔQ,:$9Yh±=îX$9 ò�ñ ¤ r ² Ú r � § �Ì >§·B¹�Ú�A*VcRB¹ Ü ��XËdq9 @0�c��@0Z[X$@�9*Q"Ø ° N�±�±�±ÂN;f�G2õ*È*M;õFn2L$Ùede>fX0bJ~�AF:$R�>WV�AF�<>fXË}��BfcG2õ*ÈHM;õFn�L�"*õ��¦Õ ° Q,9*:g¹¦Ú�A*VcR
�BfcG2õ*È MÃõFn2L�"*õ��iM ° Q�9*:�¹�Üã@0�c~7b\X0b�A^X�¹ Ú »Í ¹�Ü��JGK�%bc><@�><@SC�9*@0@$><���<Z @$>WVc~�Z!fcG2õ*È MÃõFn2LTh�$�����Z�~�A*��@$ZÈ�M�n	hÃõ��fL�ß�Z[X���ª`Ø�� Í Ø ° N�±�±�±̂ N;fcG2õ*È�M�õFn2L$Ù�o?���Í�Yª��BfcG2õ*È�M�õFn2L�"*õ��mÙ*����Z�d¢A*VYXsA CEAF:PX$>fX$><9YVB9*Q��>WVmX$9eXËdq9�CEAF:PX$@���A*V�R��Hde>fX0bj� �5�}hÃõ*È�A*VcR2� �i�XhÃõFnË�*@0�c~7bSX0b�A^X¦¹�Ú{><@">WVc~��W�cR�Z�R�>WV�A^X"hJ9*@PX"È�@$Z[X$@�9*Q��A*VcRJ¹�Üi~�9YVmX0AF>WVc@�A^X�h�9*@$X�nv@$Z[X$@¦9*Q��s� ¤ Z[X����! \GK:$Z�@$C�������"�L���ZqX0bcZg@$Z[X¦9*Q�Z��<Z�h�Z�VmX$@�9*Q!� ~�9YVYX0AF>WVc>WV�a¹�ÚÝGK:$Z�@$C��®~�9YVmX0AF>WVcZ�RB>WVJ¹ Ü L$�®��Z%b�A�|YZ�� ���# ¬�Yª è fcG2õ*È¬MyõFn2L�"*õ�êDM ° A*VcR<� ����"¬�*ª��BfcG2õ*È¬MyõFn2L�"*õ��DM ° ���Z�~�A*�c@$Z�ÈTM4n�h�àx��>fX¢Q,9*�<�<9�de@ � ���# |�X0ÃÈTMÝn�A*VcR4� ���$"��X0ÃÈTMDnË� S 9*:$Z�9�|YZ�:��EX0bcZ�@$Z[X$@%���! \A*V�R&���$"AF:$Z�RE><@UT.9*>WVmX�� ¤ Z[X%�c@¢@$9*:PXeX0bcZSZ��<Z�h�Z�VmX$@e9*Q�� ��Z�a*>WVEVc>WVca de>fX0b{X0bc9*@0Z�9*Q�� � "HA*VcRyZ�V�R�>WVca!de>fX0b{X0b�9*@$Z9*Q����! "� ¤ Z[X'�Ô��ZeX0bcZSõ*ÈJåE:$@PXg@$Z[X$@g>WVzX0bc><@g@$9*:PX$>WVca�A*VcR(�ãd�b�A^Xq:0Z�hJAF>WVc@�G;� �T�Xh̄ õFn�L$����ZS~��WAF>Wh¾X0b�A^X
�¶~�9YVmX0AF>WVc@SA^X�hJ9*@PX�ÈyZ��<Z�h�Z�VmX$@�9*Q)� � �s¡�Q¦V�9FX��vX0bcZ�V-� �5��* l ñ ¤ r ² Ú r � §+ ñ ¤ r ² Ú r � § qsr�, v ÕL� ���! ¬�eM�Èv�%��Z�9*��X0AF>WVõ*È-*Ãõ*È�M�õFnvÕL� ���# ¬��M Èzd%bc><~7bi~�9YVmX$:0AFR�><~[X$@!� ���# ¬�X0ÃÈ�MºnË�¦�«>fX0bi@0A*hJZ�AF:$aY��h�Z�VmX���� ~�9YVmX0AF>WVc@�A^Xh�9*@$Xen�Z��<Z�hJZ�VYX$@%9*Q.���$"��Ì >WV�AF�<�f}*��@$Z[X/�£ª¿Ø�æ . N�±�±�±�N$æ r ²�Ù�@0�c~7biX0b�A^XSVc9YVcZ�9*Q�æT² Ú . N�±�±�±�N$æ r ²�~�9YVmX0AF>WVc@�¹ Ú A*VcR4Ø�è . N�±�±�±�N0è r � ÙõFn®@$Z[X$@s9*Q%�Ã@0�c~7b{X0b�A^X%Vc9YV�ZS9*Q"è � Ú . N�±�±�±�N0è r � ><@e~�9YVmX0AF>WVcZ�RM>WVH¹ Ü �¤ Z[X!�c@�R�Z[åvVcZBt o"=(p ò r ² Ú r � �y¡�Qg×«¬¯I Ú A*VcRºt Ú GU×�LSª£j Ú  X0bcZ�Vãt�GU×�L�ªî¹ Ú ><Q¢l�ª ° A*VcRt�GU×�L�ª¾æ�  Ü�. 9FX0b�Z�:Pde><@$ZF�z¡�Qq×�¬�I Ü A*VcRDt Ü GU×�L�ªÉj Ü  X0b�Zzt�GU×�L�ª±¹ Ü ><Qgleª ° A*VcRÝt�GU×�L�ª£è)  Ü�.9FX0bcZ�:Pd%><@$ZF� ¤ Z[Xe��@q~7bcZ�~;�BX0b�A^X�t{><@eA�bc9YhJ9Yh�9*:$CEb�><@0hi� ¤ Z[X¢×?Ñz��ZSA*ViAF:$~S9*Q�=M��á Ú² ><@sA!@	�c��R�><a*:0AFCEb9*Q ò r ² Ú r � ÎÑØ�æ . N�±�±�±ÂN$æ r ²�N	¹qÙ Ð A*VcR̄ á Ü� ><@�AJ@0�c��R�><a*:0AFCvbi9*Q ò r ² Ú r � ÎÑØ�è . N�±�±�±ÂN0è r � N	¹ Ü Ù Ð ��ß�9���t�GU×�L�t�G
ÑEL><@�A*V�AF:$~�9*Q ò r ² Ú r � ><Q�×DA*VcR·ÑHAF:0Z ��9FX0b;>WV�I Ú 9*:���9FX0b\>WV�I�Ü¦�!ßc��C�C�9*@$Z�Vc9�díX0b�A^XS×ã¬ãI Ú A*VcRÑ�¬ºI!Ü���X0bcZ�V�t Ú GU×�L!»ª¿j Ú . ��Z�~�A*��@$Z�w ¥  GU×�L�â¿È;A*VcR4t�GU×�L!»ª¾¹ Ú ��ßc>Wh�><�WAF:$�f}*��t�Ü�G
Ñ�L!»ªÉ¹�Ü����ebx�c@t�GU×�L¢A*V�R\t�G
ÑELsAF:$Z�Z��<Z�hJZ�VYX$@�9*Q)�̀ ��@$9{t�GU×�L�t�G
ÑELe¬\OzG ò r ² Ú r � L$� Ì >WV�AF�<�f}*��@0�cC�C�9*@$Z�X0b�A^X�×�¬�I Ü A*VcR

»
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Ñ{¬\I Ú �q�eb�Z�VMt�GU×�L�t�G
ÑELg¬HOJG ò r ² Ú r � L���Z�~�A*�c@$Z�Vc9JZ��<Z�h�Z�VmX%9*QqØ�è . N�±�±�±�N0è r � N	¹�Ü�Ù�><@�A�@0�c�E@$Z[Xs9*Q¦A*VZ��<Z�h�Z�VmXe9*Q�Ø�æ . N�±�±�±ÂN$æ r ²�N	¹�Ú�Ù*� R
7 ø�û4�Eú98¯ü}Õ ô�9FX$Z¦X0bEA^X�X0bcZ¦bc9YhJ9Yh�9*:$CEb�><@0h�CE:$9�|�><R�Z�R�>WV ú )�û�b�AF@�Q,9*:�>WhzAFa*Z�@0�c��@$Z[X$@�9*QEØ ° N�±�±�±̂ N;fcG2õ*ÈEL$Ùde>fX0bB~�AF:$R�>WVEAF�<>fX2}BA^X¢h�9*@$X��BfcG2õ*ÈEL�"*õ��m�¢ß�9��c�c@$>WVca�X0bcZ�h�Z[X0bc9xRJR�Z[|YZ��<9*CEC�Z�R{>WVz�ebcZ�9*:$Z�h ãx��dgZ%C�:09�|�><R�ZA*VãAF:$~7¸2~�9*�<9Y�c:$>WV�a\9*Q%A;Èm¸2RE><a*:0AFCEbD=Ûde>fX0b-fcG2õ*ÈELS~�9*�<9Y�c:$@ d%bc><~7bD@	A^X$><@PåEZ�@�µÔÒFn Ú GU×�L�00�BfcG2õ*ÈEL�"*õ��m�q@$9µÔÒFn�Ü¦GU×�L*h è fcG2õ*ÈEL�"*õ�êm��Q�9*:eZ[|YZ�:P}{|YZ�:PX$Z7·y×H9*Q®=H���Z�de><�<��Vc9�dê>Wh�C�:09�|YZ�X0bcZ���9Y��V�R ú )�)çû%9*Q®�eb�Z�9*:$Z�h °ed d%b�Z�Vyn"><@¢|YZ�:P}i@0hJAF�<��~�9YhJCEAF:$Z�R{X$9zÈv�
¶ ø�ûDû·�6KÙ�� -�1�= ¼	-�5�G2È¢Ê!n2L0¨.'*)<3*+.576�8{5Y�E'�=�.�1,8�-�_[³c¼0'*)<3*+.576�8y���q= ),�E'*³c/	-0'J¼��!1,8�-�5*+�/�_�é�),1,8B1�5Y)��),�MI�Ú ��üý�!1,8�-�+P-J-0²Y) _71,_�5*�45*+./�¨./0�*�f�*³�+7)���3H����= . é�),1,821 h õFnKM ° /	�*�§�Y³x+0_ _7³c/[8H1,8�5*1����*+!-�]^-�+���×Ã),�I Ú ×®µ�ÒFn2Ü¦GU×�L*hÃn}M ° 1,8�-��{½�ÄmGK=ML"ª314�
= úÂù�ùKN �Ô��Z�d%><�<��Z7·xX$Z�VcRMX0bcZS~�9*�<9Y�c:$>WV�aJAF@e@PX0A^X$Z�RH>WVYX$9BA*VyAF:$~7¸2~�9*�<9Y�c:0>WVcaJ9*Q"=M�Ì ><:$@PX��EdqZSZ7·�X$Z�VcRiX0bc><@e~�9*�<9Y�c:$>WVca�X$9�X0bcZ�AF:$~�@s9*Q"=yÜ��qßc>WVc~�Z ¾F¿�À4	 " w Ú¥ " GK�cL�ª ¾L¿�À
	 " w Ü¥ " GK��L*0ns�ÏI!Ü*�Ñ�"X0bcZ�:$Z�><@ Ai|YZ�:PX$Z7·4� . ¬�I�Ü�@0�c~	b�X0b�A^X w Ú¥ " GK�cL 0ín2�B&�V�R�@$9M9YV�����};>WV�RE�c~[X$><9YV���X0bcZ�:$ZJ><@ A*V9*:$R�Z�:0>WVca�GK� . N$� r N�±�±�±�N$�65xL�9*QqX0bcZ�|YZ�:PX$><~�Z�@!9*Qg= Ü @0�c~	b�X0b�A^X��®Q�9*:�Z[|YZ�:P} ° 0ílb037��®�% ¢R�9Yh�>WV�A^X$Z�@ A^Xh�9*@$X�n�|YZ�:$X$><~�Z�@�>WVDØ�� ß o à8*Çl$Ù*� ¤ Z[X��c@%~�9*�<9Y��:�X0bcZ AF:0~�@S9*Q¦=yÜã>WV\R�Z�~�:$Z�AF@$>WVcaB9*:$R�Z�:�9*Q�X0b�Z�><:�b�Z�AFR��X0b�A^Xs><@¢åv:$@PX¢~�9*�<9Y�c:sX0b�Z�AF:0~�@¢de>fX0bybcZ�AFRi�65!X0bcZ�VBX0b�9*@$ZSde>fX0bibcZ�AFRM�95 Ü�. �EA*V�Ri@$9�9YV��¦�ebc><@¢><@eC�9*@0@$><���<Z@$>WVc~�ZsA^X�Z�AF~	b�@$X0AFa*ZslP�xA*VJAF:$~¢�E�% �b�AF@�A^X�h�9*@$X¦õFn�â:1±Q�9*:$�E><R�R�Z�V ~�9*�<9Y�c:$@sG�n�>WVca*9*>WV�a��zA*VcR�n�9Y��X$a*9*>WV�a�% ®X$9JA |YZ�:PX$Z7·M>WV;Ø���ßSo9à2* l$ÙFL$�¡�X�:$Z�hzAF>WVc@SX$9H~�9*�<9Y�c: X0bcZJAF:$~�@�de>fX0b�X0AF><�q>WVDI�ÜÃA*VcRÝbcZ�AFR4>WVãI Ú � ¤ Z[X��cÜ�� Ú ��Z�@0�c~7b4A*VÝAF:$~F�ß�>WVc~�Z!µÔÒFn�Ü¦GK� Ú L�hÇn�M ° A*VcR;w�Ü�GK�cÜ�L�0ÇnË��X0bcZ�:$Z ><@SAJ~�9*�<9Y�c:<;�>WV�³�Ò̂ n2Ü¦GK� Ú L¢X0b�A^X�><@SAF@$@$><aYVcZ�R\X$9iVc9AF:$~�>WV�a*9*>WVca�� Ü �x3�Z�Vc~�ZF�vAF@0@$><aYVc>WVca�;DX$9�� Ü ��Ú���dgZSZ7·xX$Z�V�RyX0bcZ�AF:$~7¸2~�9*�<9Y��:$>WVca�X$9J� Ü ��Ú�� R
V ù�ú�ùD�
�ý�Eú��:�ü üý�)fcG2õ*ÈELxh¯õFn�M ° ×�1,8�-��¯&U+�G2ÈvN0n2L 0gfcG2õ*ÈEL��
= úÂù�ùKN ���ebcZ R�><a*:0AFCEb\= . ��AF@SR�Z[å�VcZ�RH>WV ¤ Z�hJhJABõ]Gx��><@�ABÈm¸2RE><a*:0AFCEb����eb�Z�:$Z�@	�c�fX�Q,9*�<�<9�d%@�R�><:$Z�~[X$�f}Q,:$9Yh ÎeZ�hzAF:ë� ° ãzA*VcR ¤ Z�hzhJA�õ]Gx� R

= > �*�ë�q��#0�%���ÅÆ2�®�}ÄL�x���`È@?�ACB'�s�!�̀ È × ?�AED$FGB
V ùDCXW�øZY[A]\�úÂø�?o� -�1¦n�¼0-J5 6x�^_[)�1K),]^-J)��E12-23m-�+��<��8�-�+P-z-0²Y) _71,_�5*��),��12-23�-�+SÈ � _[³�/�8H1,8x5*1e) �SÈ�h È � 1,8�-��(�+�G2ÈvN0n2L®ª�(�G2ÈEL����Z Vc9�d CE:$9�|YZ�Æ¢9YV^T.Z�~[X0��:$Z�õ*õ��EQ,9*:en�ªJGx�E@0b�9�de>WVca�X0b�A^X�È[°eª ° �ö!÷�øxùvúÂø�û̀ �E üý�%È�h ° × ( + G2ÈvN;G�L�ª�(�G2ÈELë±
= úÂù�ùKN � ¤ Z[X�= ªÒG2I¦N$æ�L���Z�A�G2È!Ê�G�L�R�><a*:0AFCvb�� ¤ Z[X!I�°���Z!X0bcZ�@0Z[X�9*Qq|YZ�:PX$><~�Z�@�d%>fX0b�>WVcR�Z�a*:0Z�Z1Gx�¤ Z[X¢=zÀE��ZsX0bcZ�R�><a*:	AFCEbJ9*��X0AF>WVcZ�RiQ�:09YhÔ=¶��}J@$CE�<>fXPX$>WVca!Z�AF~	b{|YZ�:PX$Z7·{��9*Q"IK°e>WVmX$9�wmÚgGK�cL�|YZ�:PX$><~�Z�@sde>fX0b9Y��X$R�Z�a*:0Z�Z ° � Ì 9*:0hzAF�<�f}*�"Q,9*:�Z�AF~7b�|YZ�:PX$Z7·���¬ IK°�>WVc~�><R�Z�VmXSX$9iX0bcZJAF:$~�@��#H . N�±�±�±�N$�!HJI  ¤ ¿ § �":$Z�C��WAF~�Z��

d
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��}�Ø�� . N$� r N�±�±�±ÂN$� I  ¤ ¿ § Ù�A*VcRM�!H   �m}H�   H   � ° 0«l�0�w Ú GK�cL$� © }M~�9YVc@PX$:0��~[X$><9YV���= À ><@�ABÈm¸2RE><a*:0AFCEb\A*VcR©eGK=ML®ª«©%GK=JÀ�L$�qß�9�½�ÄmGK=ML"ª«½�Ä�GK=JÀ�L*0F(SG2ÈEL$� R��Z�~�9YV^T.Z�~[X0��:$ZSX0b�A^Xe><Q®n�ª ° ��Æg9YVFT.Z�~[X0�c:0Z�õ*õ�bc9*�<R�@sde>fX0bMÈ . ª ° �
V ùDCXW�øZY[A]\�úÂø��^ üý�%È¯h ° × ( + G2ÈvN ° L¦ª�(�G2ÈELö!÷�øxùvúÂø�û`K_ üý�)(�G2ÈEL®ª�(SG2È!Õ ° L��*+)(�G2ÈEL®ª�(�G2È�M ° L�1,8�-��5(�+�G2ÈvN ° L�ªJ(�G2ÈEL��
= úÂù�ùKN � © } ¤ Z�hzhJAzõ]Gx��>fXS@0��¼J~�Z�@�X$9{C�:$9�|YZ X0b�A^XS><Q (�G2ÈELgªÅ(�G2È�Õ ° Ls9*:�(�G2ÈEL¢ªÅ(�G2È�M ° LeZ[|YZ�:P}Èm¸2R�><a*:0AFCvbyAFREh�>fX$@%A*VyAF:$~7¸2~�9*�<9Y�c:$>WV�a�de>fX0b�(SG2ÈEL�~�9*�<9Y�c:$@%@0�c~	biX0b�A^XeQ,9*:sZ[|YZ�:P}{|YZ�:PX$Z7·i×��vµÔÒFn2Ü¦GU×�L*hÃõ��ßc��C�C�9*@$ZsX0b�A^X�(�G2ÈEL�ª�(�G2ÈSÕ ° L$� ¤ Z[X¢=î��Z�A�Èm¸2R�><a*:0AFCEb{A*VcR{=zÀv��Z�AzG2È�Õ ° LK¸2RE><a*:0AFCEb{@0�c~7bzX0b�A^X½�Ä�GK= À Leª (SG2ÈEL$� ¤ Z[X ³£��Z X0bcZ�R�><a*:	AFCEb�~�9YVc@PX$:	�c~[X$Z�R4AF@�Q,9*�<�<9�de@�o�Q�9*:�Z[|YZ�:P};|YZ�:PX$Z7·�× ¬ãIzGK=ML%AFR�RAz~�9*Cm}\=JÀUGU×�Ls9*Q¦=zÀ�@0�c~7bHX0b�A^XSZ[|YZ�:P}M|YZ�:PX$Z7·;9*Q¦=zÀ,GU×�L¢RE9Yh�>WV�A^X$Z�@%×��S�ebcZ�V�³É><@SA{Èm¸2RE><a*:0AFCEb���@$9B>fXAFREhJ>fX$@eA*VyAF:$~7¸2~�9*�<9Y�c:0>WVcaBµ�d%>fX0b�(�G2ÈEL�~�9*�<9Y�c:0@���ô�9FX$Z�X0b�A^X�µ�><@eAF�<@$9BA*VyAF:$~7¸2~�9*�<9Y�c:$>WV�az9*Q®=îd%bc><~	by><@A�@0����RE><a*:0AFCEbB9*Q�³�� ¤ Z[X%��@sC�:$9�|YZSX0b�A^XeQ,9*:sZ[|YZ�:P}{|YZ�:PX$Z7·y×\¬HI�GK=ML$�vµÔÒFn2Ü�GU×�L*hÃõ��ßc��C�C�9*@$ZF��:$Z�RE�c~[X$><9;AFR AF��@0�c:0RE��hi��X0b�A^X!X0bcZ�:$ZB><@�AM|YZ�:$X$Z7·D× ¬ÇIJGK=yL�@0�c~7b�X0bEA^X�µÔÒFn Ü GU×�LÍ0 ° �ß�>WVc~�ZzX0bcZ�:$Z{AF:$ZiAF:$~�@!>WVca*9*>WVca\× >WV~³ GUX0bc9*@$Z{Q,:$9YhÛI�GK= À GU×�LPLPL$�¦X0bcZ�V~³�Ò^n2Ü¦GU×�LS><@�A\@$>WVca*�<Z[X$9YV¯ØK;�Ù*�ô�9�d£Z[|YZ�:P}DAF:$~z�Y×ãde>fX0b��ã¬ =zÀUGU×�L�><@ ~�9*�<9Y�c:$Z�RL;�@$9\A*VY}4AF:0~J�E�Ý¬ OzGK=JÀKGU×�LPLS><@!Vc9FX�~�9*�<9Y�c:0Z�RM;��3�Z�Vc~�Z�µ�><@eA*VHAF:$~7¸2~�9*�<9Y�c:$>WVca�de>fX0b<(�G2ÈEL�Õ ° ~�9*�<9Y�c:$@ed%bc><~	by><@eA�~�9YVmX$:0AFR�><~[X$><9YV���eb�Z�C�:$9x9*Q�><@ A*V�AF�<9*a*9Y�c@ ><Q (�G2ÈEL�ª (�G2È�M ° Led%>fX0b�=JÀ¦AMÈm¸2RE><a*:0AFCEb�@0��~	b�X0bEA^X�½�ÄYGK=zÀ,L%ª (�G2ÈEL$��ebcZ�V5³í><@%A{G2ÈbM ° LK¸2R�><a*:0AFCEbHA*VcR{dqZ�a*Z[XeX0bcZS:$Z�@	�c�fXe>WV{X0bcZS@	A*h�Z�d¢A�}*� R�eb�Z�VcZ7·xXeX0bcZ�9*:$Z�h±@0b�9�de@¢X0bEA^XeQ�9*:�A åc·cZ�Ry>WVYX$Z�a*Z�:SÈv�E9YVcZS9*Q"X0bcZ�Æ¢9YV^T.Z�~[X0��:$Z�@�õ%$JA*V�R5$�bc9*�<R�@��ö!÷�øxùvúÂø�û`��� -�1®ÈÝ¼0- 5*�;),��12-23�-�+Ô�Í��8�-��5( + G2ÈvN ° L¦ª�(�G2ÈEL��*+)( + G2ÈvN	ÈELH0F(�G2ÈEL�M ° �
= úÂù�ùKN �¾ßc�cC�C�9*@$ZsX0b�A^X)(�+�G2ÈvN ° L�»ª�(�G2ÈEL$� ¤ Z[X�³ê��Z�AzG2È%Ê ° LK¸2R�><a*:	AFCEb{@0�c~7bJX0bEA^Xg½ Ä Gu³ L�ª�(�G2ÈEL�M °A*VcR·³ . X0b�Z�@0����RE><a*:0AFCEbi9*Qx³É>WVcRE��~�Z�RM��}iX0bcZ AF:0~�@%d%>fX0byX0AF><�">WV\I ÚqGu³ L$� © } ¤ Z�hJhzAJõ]Gx��Q�9*:�Z[|YZ�:P}AF:$~7¸2~�9*�<9Y�c:0>WVcaJ9*Q¬³ .sde>fX0b<(�G2ÈEL�~�9*�<9Y�c:$@sX0bcZ�:$Z�Z7·c><@PX$@%A�|YZ�:PX$Z7·i×\9*Q¬³ Ú de>fX0byµÔÒFn2Ü¦GU×�L*0 ° �¤ Z[Xe=î��ZSAiG2ÈSÊyÈELK¸2RE><a*:0AFCEb�� ¤ Z[Xe= . GK:$Z�@0C���= r Lq��Z�X0bcZS@	�c��R�><a*:0AFCEbB9*Q®=î>WV�RE�c~�Z�Ri��}zX0bcZ�AF:0~�@de>fX0byX0AF><��>WV\I Ú GK=ML�GK:$Z�@$C��¢b�Z�AFRM>WVHI�Ü¦GK=MLPL$� ¤ Z[XeO À ��Z�X0bcZ�@$Z[X�9*Q¦AF:$~�@e9*Q�=Òde>fX0byX0AF><��>WV\I�ÜDA*VcRbcZ�AFR�>WV�I Ú � ¤ Z[X�Ó�.¦��Z�X0bcZgR�><a*:0AFCvb!~�9YVc@PX$:0�c~[X$Z�R�Q,:$9YhÅ³�.�AF@�Q,9*�<�<9�de@so"Q,9*:�Z[|YZ�:P} |YZ�:PX$Z7· ×\¬HI Ú Gu³!L$�AFR�RBA�~�9*C�}�=BÚqGU×�L®9*Q�=BÚ4A*VcR�X0bcZ�AF:$~�@sØ���GU×�L�×;oY�E�B¬yOzGK=yL$N$�\¬HI�Ú�GK=ML$N�A*V�Ri�z¬HI Ü GK=yL$Ù*�¦�%bcZ�VÓ�.!><@ A;Èm¸2R�><a*:0AFCEbD@$9\>fX AFREhJ>fX$@ A*VÝAF:$~7¸2~�9*�<9Y�c:0>WVca�µ . de>fX0b�Ø ° N�±�±�±ÂN�(�G2ÈEL$Ù*�;ô�9�d£X0bcZ�:$Zz><@!Ay|YZ�:PX$Z7·×H¬\I�ÚqGu³ L�@	�c~	bBX0b�A^XeµÔÒFn Ü GU×�L*0 ° �gß�9�AF�<��X0bcZ�AF:$~�@¢Q,:$9Yh£=BÚqGU×�L¦X$9!×HAF:$ZS~�9*�<9Y�c:$Z�RyX0bcZS@0A*h�ZF� Ì :0Z�ZX$9SC�Z�:0h!��X$Z�X0bcZ¢�WAF��Z��<@��YdgZshJA�}!AF@$@0��hJZqX0bcZ[}!AF:0Zq~�9*�<9Y��:$Z�R ° ��ß�>WVc~�ZgÓ�.̂ ÎÏIJGK= Ú GU×�LPL Q × Ð b�AF@®X0bcZ¢@	A*h�Z�<>WVcZ7¸2R�><a*:	AFCEb;X0b�A*V�=�.���X0bcZ�AF:$~7¸2~�9*�<9Y��:$>WVca*@ 9*Q�Ó�.ÂÎÏIzGK= Ú GU×�LPL Q × Ð ><@�>WV�9YVcZ7¸�X$9^¸29YV�ZJ~�9*:$:$Z�@0C�9YV�R�Z�Vc~�Zde>fX0b\X0bcZ�AF:$~7¸2~�9*�<9Y��:$>WVca*@�9*Q�=5.���ß�9{=5.�AFREh�>fX$@�A*V�AF:0~7¸2~�9*�<9Y�c:$>WVcayµe.Sde>fX0bÝØ ° N�±�±�±̂ N�(�G2ÈEL$Ù�@0�c~7b\X0b�A^XZ[|YZ�:P}yAF:$~Sd%>fX0bybcZ�AFRy>WVMI�Ü4><@s~�9*�<9Y�c:0Z�R ° �&�V�AF�<9*a*9Y�c@$�f}*��= r AFRvh�>fX$@¦A*V�AF:$~7¸2~�9*�<9Y�c:0>WVca�µ r de>fX0bBØ ° N�±�±�±̂ N�(�G2ÈEL$Ùe@0�c~7b X0b�A^X�Z[|YZ�:P}�AF:$~gde>fX0bJbcZ�AFR>WV�I�ÜÝ><@S~�9*�<9Y�c:$Z�R ° ���ebcZ!��Vc><9YV\9*Q�µ . A*VcR�µ r ><@�A*V;AF:$~7¸2~�9*�<9Y�c:0>WVcay9*Q¦=¶ÕÝO À de>fX0bDØ ° N�±�±�±ÂN�(SG2ÈEL$Ù*�3�Z�Vc~�ZiAF@$@$><aYVc>WVca·(�G2ÈEL�M ° X$9;Z[|YZ�:P}ÝAF:$~{9*QsO�ÀU��dgZz9*�cX0AF>WVºA*VãAF:$~7¸2~�9*�<9Y��:$>WVca;9*Qe=Åde>fX0b~(�G2ÈEL¬M °~�9*�<9Y�c:$@�� R
V ù�ú�ùD�
�ý�Eú��:U¸ (�+�G2ÈvN ° L 0F(�G2ÈELDM ° �

ã
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ô�9FX$ZyX0b�A^Xz@$>WVc~�Z<(�G2ÈEL ><@���9Y��VcR�Z�Rã��}~f�G2õ*ÈEL$��X0bcZM~�9YVcR�>fX$><9YVF(�+�G2ÈvN ° L�ª (�G2ÈEL�9*:2(�+�G2ÈvN	ÈEL50(�G2ÈEL	M ° ><@�|YZ�:P}�9*Q�X$Z�VDX$:0�cZF�{¡PVcR�Z�Z�R��"dqZz~�9YV^TPZ�~[X0�c:$ZzX0b�A^X�>fX!>fX AF�fd¢A�}�@ X$:0�cZzA*V�R�X0b�A^XÍ(¿��Z�b�A�|YZ�@
N @0hJ9�9FX0bc�f}�O��
V ùDCXW�øZY[A]\�úÂø�KÐ ú )�û·üý�%È�h ° ×�(SG2È�M ° L*0F(�G2ÈEL�M ° �
ú )�)çû�üý��È2h ° ×�(�G2È�M õmLH0F(�G2ÈELDM ° �
ú ),)�)çû�(SG2È . È r Lx0L(�G2È . LDMg(�G2È r L��ô�9FX$Z�X0b�A^X ú ),)�û�>Wh�C��<><Z�@ ú )�û�A*VcRHÆg9YVFT.Z�~[X0�c:0Z�õ%$���eb�ZqAF:$~7¸2@0Z[X¦9*QvA!G2È . MzÈ r LK¸2R�><a*:0AFCEb!=ÔhzA�}�X$:$>f|x>WAF�<�f}!��Z�CvAF:PX$><9YV�VcZ�R!>WVmX$9�X2dg9S@$Z[X$@�O . A*VcR�O r @0�c~7bX0b�A^X�G2IzGK=ML$N$O . Lv><@"AeÈ . ¸2RE><a*:0AFCEb�A*VcRzG2I�GK=ML$N$O r Lv><@�A%È r ¸2R�><a*:0AFCEb���ß�9)(�G2È . M�È r L*0F(�G2È . L�M�(�G2È r L$��¡PVCEAF:PX$><~����WAF:��}(�G2È¬M ° LH0F(�G2ÈEL%M�(�G ° L�ª�(SG2ÈEL%Miàx�QP�Z�@$C�>fX$ZsdgZ¢dgZ�:$ZeVc9FX�AF�E�<Z¢X$9�C�:09�|YZ%Æg9YVFT.Z�~[X0�c:0Zeõ d ¸ú )çû��EdqZ�V�9�d >WhJC�:$9�|YZ�X0b�Z�AF��9�|YZSX$:$>f|�>WAF��:0Z�@0�c�fX��ö!÷�øxùvúÂø�û̀ �Õ üý�%È�h ° 1,8�-���×�(�G2È�M ° L*0L(�G2ÈELDM õ}�
= úÂù�ùKN � ¤ Z[X�=Ò��Z�AHG2ÈbM ° LK¸2R�><a*:0AFCEb�� Ì :$Z�Z�X$9{AFR�R\AF:$~�@���dqZ hJA�}yAF@$@	��h�ZSX0bEA^X�wmÚqGK��L�ªêÈ�M ° Q,9*:Z[|YZ�:P}B�z¬HIJGK=ML$� ¤ Z[XHá . N�±�±�±ÂN�á�5 ��ZeX0b�Z%X$Z�:	h�>WV�AF��~�9Yh�C�9YVcZ�VmX$@g9*Q�=H�®ÞqAF~	b2áD �~�9YVmX0AF>WVc@eA ~�><:$~��c>fX�³* d%bc><~7byb�AF@sA!~7bc9*:$R��¦¡PVcR�Z�Z�Ri~�9YV�@$><R�Z�:sA�hJAÂ·c>WhJAF��CEA^X0b5®¿>WV2áU �A*VcR{XËdq9JAF:0~�@¢de>fX0b{X0AF><��>fX$@sX$Z�:0h�>WVx�c@A*VcR{bcZ�AFRB>WVj®��x��}JhJAÂ·c>WhJAF�<>fXË}*�*PSVcZ�~�A*VJZ7·�X$Z�VcR�R:³* �>WVmX$9 A�@0�c��R�><a*:	AFCEb�ÓÁ@$CEA*V�V�>WVca�=¶@0��~	bJX0b�A^Xw ÚS GK��L�h ° Q,9*:�Z[|YZ�:P}D�Ý¬«I�GK=ML�A*VcR�X0bcZB@$9*�<ZB~�><:$~��c>fX$@!AF:$ZzX0bcZ2³* �� ° 0Ôl 0T7��y¡.V4Q,AF~[X��¦ÓÒ><@�X0bcZ��Vc><9YVM9*Q�7H~�9YV�V�Z�~[X$Z�R\~�9YhJC�9YVcZ�VYX$@%Ó . N�±�±�±<N$Ó�5c��Z�AF~	b\Ó  ¦��Z�>WV�a�X0bcZ��EVc><9YVy9*Qx³* �A*VcRH>WV�AF:$��9*:$Z�@$~�Z�V�~�Z�@æ�.  N�±�±�±�N$æEUWV  de>fX0bD:$9x9FX$@YXZ.  N�±�±�±�NZX�U�V  >WV6³   @0�c~7b�X0bEA^XzG2IzGu³   L$N	IzGKæ�.  L"Ö�Ø�XZ.  Ù*N�±�±�±ÂN	IzGKæ 5   L"Ö�Ø�X 5   ÙFL�><@!ACEAF:PX$>fX$><9YVM9*Q¦I�GK=ML$�ô�9�dê=ÉÕ�ÓÉ><@eAJÈm¸2R�><a*:	AFCEb���ß�9�dgZS~�9*�<9Y�c:eX0bcZ�AF:$~�@%9*Q�=¾Õ�Óíd%>fX0b�(�G2ÈEL�~�9*�<9Y�c:0@�� ¤ Z[X[;ÝA*V�R�\��ZgX2dg9 V�Z[d�~�9*�<9Y�c:$@�� ¤ Z[X��c@¦~�9*�<9Y��:�X0bcZ%AF:$~�@�9*Q�Ó�� ¤ Z[X ° 0ºlx0]7��®¡�Q�³* �><@�A*V�Z[|YZ�Vz~�><:$~��c>fX�X0bcZ�V�Ó  �><@��><CEAF:$X$>fX$Z�A*V�RB>fX$@sAF:0~�@shJA�}z��Z�~�9*�<9Y�c:$Z�Ri��}̂ ;4A*VcR(\®�¦¡.Q ³* �><@sA*V{9xR�Rz~�><:0~��c>fX���~�9YVc@$><R�Z�:g>fX$@¢~7bc9*:$R{×?Ñ>WViOzGK=¾Õ4Ó!L$�¦¡PV{X0bcZ�~�9*�<9Y�c:0>WVca�9*Q®=ÉÕ4Ó��U³bÒFn Ú GU×�L%»Í ³bÒFn Ú G
ÑEL�X0bx�c@¢X0bcZ�:$Z�><@%A*VyAF:$~�× À Ñ À 9*Q"OJGu³   L@0�c~7b\X0b�A^X ³�Ò̂ nUÚ�GU×EÀ,L »Í ³�Ò̂ nUÚ�G
ÑmÀ,L$��3%Z�V�~�Z�dqZ�hzA�};AF@$@$><aYV;X$9i×vÀ́ Ñ�À�A{~�9*�<9Y�c:�9*Q�³bÒFnUÚ�GU×vÀ�L�Öi³bÒFnUÚ�G
Ñ�À,L$�ô�9�d`Ó  �Õ�× À Ñ À ><@%��><CEAF:PX$>fX$Z�A*V�Ry>fX$@eAF:$~�@�hJA�}{��ZS~�9*�<9Y�c:$Z�RH�m}(;ãA*VcR�\®� R

� È �s�!�̀ È × ���%�Ç�U�����;�8_ ���	���¶����A¥�e�`FKa
bdcfe gihkj4lKmng + hkj�o r l�p)qsrtg + hZj�o�j
l�cö!÷�øxùvúÂø�ûÊEKÙ ( + G ° N ° L�ª�( + G ° N;G�L�ª�(�G ° L�ª�à
= úÂù�ùKN � © } �eb�Z�9*:$Z�h c��)(�+�G ° N ° L<0´àx�Ç�ebcZMàÂ¸2~�><:0~��c>fXB><@B>fX$@B9�d%VÃ�<>WVcZ7¸2R�><a*:0AFCvb�A*VcRÃ><@BVc9FXiõ�¸~�9*�<9Y�c:0AF�E�<ZF� R

° G
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bdcvu gih q lip�qwrtg + h q o6xWl�m'y{z}|~x'� q c�ebcZ;AF>Wh?9*Q�X0b�><@B@	�c��@$Z�~[X$><9YV¯><@{X$9ãC�:$9�|YZ��ebcZ�9*:$Z�h?à c���X0b�A^Xi><@¯(SG2õmLyª (�+�G2õ�N;G�LHª (�+�G2õ�N ° LHª( + G2õ�N	õmL�ª $��y�%bcZ�:$Z�Q,9*:$ZF�®dqZJåE:$@PX�Z7·�bc><��>fX!A\õ�¸2RE><a*:0AFCEb4d%bc><~	b4><@ V�9FX àÂ¸ËAF:$~7¸2~�9*�<9Y�c:	AF���<ZF�\�%bcZ�V�dgZ@0bc9�dÇX0b�A^XT(�+�G2õ�N	õmLH0:$��
ª øZ«¬C	�BA%�,ùUC:E�ü Ì 9*:¦A*VY}�>WVYX$Z�a*Z�:�È2h ° �*X0b�Z%+.�*1�5*1K),]^-%1��*³�+7�E5*��-���1�9YV�õ*È�M ° |YZ�:PX$><~�Z�@��mR�Z�V�9FX$Z�R&� r ² Ú . �><@�X0bcZ�X$9Y�c:0V�A*hJZ�VYX%de>fX0by|YZ�:$X$Z7·�¸2@$Z[X�Ø�� . N�±�±�±ÂN$� r ² Ú . Ù�A*VcR;AF:$~7¸2@$Z[X!Ø��% U��ß!o2à!ÕDlsG�hJ9�Rv�c�<9¥õ*È�M ° Le¬Ø ° N�±�±�±̂ N	ÈvÙ*Ù*�
= úÂù?>�ù?@9�BA%�,ùDC:E? ��8�- 1��*³�+7�E5*��-��E1��<�J)W_��E�Y1"à�¨.5*+./�¨./0�*�f�*³�+�5�¼��<-��Y�v�!(�G2õmL*h:$��
= úÂù�ùKN � ßc�cC�C�9*@$Z!X0bEA^X��<�JAFREhJ>fX$@�AHàÂ¸ËAF:$~7¸2~�9*�<9Y�c:$>WVca�µ�>WV�Ø ° N	õ�N0àxÙ*�;�ebcZ�V��®Q�9*: A*VY}4X2dg9M|YZ�:PX$><~�Z�@×DA*VcR·Ñv�	³�Ò^nUÚ�GU×�L�»ªÉ³�ÒFn,Ú�G
ÑEL%A*VcR ° 0ÁµÔÒ^nUÚgGU×�LT0¿õ�� 3�Z�Vc~�Z�X0bcZ�:0Z ><@�AB|YZ�:PX$Z7·���@0A�}�� . ��@0�c~7b\X0b�A^XµÔÒFn Ú GK� . LBª ° �e@	A�}L³�Ò̂ n Ú GK� . LBªäØ ° Ù*�`�eb�Z�VF³bÒFn Ú GK� r L!A*VcRJ³bÒFn Ú GK� Ë L�AF:$ZH@	�c��@$Z[X$@z9*Q�ØÂõ�N0àxÙ�A*VcR³bÒFnUÚ�GK� r LB»Í ³bÒFnUÚ"� Ë �i¡�X�Q,9*�<�<9�de@ X0b�A^X!µ�ÒFnUÚqGK� Ë L�ª ° �5ÎeZ�C�Z�A^X$>WVcaMX0bcZzAF:0aY��h�Z�VmX�Q,9*:�� Ë ��dgZJ9*��X0AF>WVµÔÒFn Ú GK�4�ÂL®ª ° A*VcR{X0bcZ�VyµÔÒFn Ú GK�9 ËL®ª ° �vQ�9*:sZ[|YZ�:$} ° 0 l|0Fc���d�bc><~	bM><@eA�~�9YVmX$:0AFR�><~[X$><9YV�� R¡PVº9*:$R�Z�:�X$9�C�:$9�|YZiX0b�A^X2(�+�G2õ�N	õmL�0¢$���dgZMVcZ�Z�R X$9�@0bc9�d¥X0b�A^X�Z[|YZ�:P}ÇG2õ�ÊDõmLK¸2RE><a*:0AFCEb AFREhJ>fX$@bc9YhJ9Yh�9*:$CEb�><@0h¥t\>WVmX$9 ò ¨ ��¡.VH9*:$R�Z�:�X$9BZ7·cb�><��>fXS@0�c~	b\A{bc9Yh�9*:0CEbc><@0hy��dqZ�åE:$@$X%@0bc9�dÁX0b�A^X�X0bcZ�:$Z ><@A�bc9YhJ9Yh�9*:$Cvbc><@0h±t Ú Q,:$9Yh±= Ú >WVmX$9zA�@0����RE><a*:0AFCEby¹ Úr 9*Q ò ¨ A*VcRHA�b�9Yh�9Yh�9*:0CEbc><@0h±t�Ü4Q,:$9Yh¥=yÜ>WVmX$9\AH@0�c��R�><a*:0AFCvb4¹ Ür 9*Q ò ¨ d%>fX0b4@$C�Z�~�>fåE~zC�:$9*C�Z�:PX$><Z�@!AF�<�<9�de>WV�a;��@�X$9\Z7·xX$Z�V�Rãt Ú A*VcRºt�Ü«>WVYX$9;Abc9YhJ9Yh�9*:$CEb�><@0h¾tMQ,:$9Yh±=Ò>WVYX$9 ò ¨ �
ª øZ«¬C	�BA%�,ùUC:EKE ¤ Z[X�¹ Úr ��Z�X0b�ZzR�><a*:	AFCEb�d%>fX0b4|YZ�:$X$Z7·�¸2@$Z[X{Ø9k Ú . N�±�±�±�N�k Ú� ÙBde>fX0bãAF:$~7¸2@$Z[X{Ø9k Ú  k Úß o®l{»ªà�ÙgÖ�Ø9k Úr k Ú . N�k Ú¨ k ÚË N�k Ú� k Ú� Ù*�
¶ ø�ûDû·�'EK^�� -�1�=r¼0-z5Jõx¨�'Y)f3Y+�576E8X�4��8�-�+P-B-$²Y) _71,_�5{8��*���*���*+�6E8�)W_[� t Ú �7+.�*�¶=ä1��J¹ Úr _[³c/[8H1,8x5Y11,8�- ]F-�+71K),/7-7_s×ºé�)�1,8BtEÚqGU×�L�¬�Ø9k Úr N�k Ú¨ N�k Ú� ÙJ8x5Y]^-!�*³�1�'m-Ë3*+P-0-&�Z�
= úÂù�ùKN � ¤ Z[X �c@�C�:$9�|YZB>fX���}�>WVcRE�c~[X$><9YV49YVL�ÏIJGK=ML��Ñ�i¡�Q¢w Ú GU×�L�0 ° Q,9*: Z[|YZ�:P}�|YZ�:PX$Z7·4×ã9*Q¢= X0bcZ�V=ç><@�àÂ¸2~�9*�<9Y��:0AF���<ZJA*VcR;= p ¹ Úr ÎÑØ9k Ú . N�k ÚË N�k Ú� Ù Ð �!ß�9���dgZ�AF@$@0��hJZ�X0bEA^XSX0bcZ�:$Z!Z7·�><@$X$@�AB|YZ�:PX$Z7·\×4de>fX0b9Y��X$R�Z�a*:0Z�Z{õ�� © }�>WVcRv�c~[X$><9YV4bm}xC�9FX0bcZ�@0><@��®X0bcZ�:$ZJ><@!AMb�9Yh�9Yh�9*:0CEbc><@0h t Ú o�=¥Õ ×ºp ¹ Úr de>fX0b�X0bcZ:$Z�O��c><:$Z�RÝ~�9YVcR�>fX$><9YV���ô�9FX$ZBX0b�A^X Z[|YZ�:$}D>WV�VcZ�><aYb���9Y�c:�9*Qs×�b�AF@�9Y�cX$R�Z�a*:$Z�ZiA^X�h�9*@PX ° >WVÝ=ÒÕã×�A*VcRX0bx�c@%~�A*V;Vc9FX�b�A�|YZ!>WhzAFa*Z k Úr �½k Ú¨ 9*:ik Ú� ��}Ht Ú �/P�Z�Vc9FX$Z!��}5ÑMA*VcR�,JX0b�Z�9Y��X0VcZ�><aYb���9Y�c:$@�9*Q®×����ebcZ@$Z[X ØÂt Ú G
ÑEL$N	t Ú G/,�L$Ù!RE9�Z�@�Vc9FX�>WVYX$Z�:$@0Z�~[X�9YVcZ�@0Z[X�9*Q¢Ø9k Ú . N�k Úr Ù*�®Ø9k ÚË N�k Ú¨ Ù�A*VcR4Ø9k Ú� N�k Ú� Ù*��@0A�}4Ø9k Ú . N�k Úr Ù*��ebcZ�V���@$Z[XPX$>WVca�tEÚ�GU×�L®ª�k Úr ��dgZ%Z7·�X$Z�VcRyt�Ú4>WVYX$9!A bc9Yh�9YhJ9*:$CEbc><@0hÁQ,:$9YhÉ=±X$9�¹ Úr de>fX0bzX0bcZ%:$Z�Ox��><:$Z�R~�9YVcR�>fX$><9YV�� R
ö!÷�øxùvúÂø�ûÊE?_ (�G2õmL®ª�( + G2õ�N;G�L�ª�( + G2õ�N ° L�ª�( + G2õ�N	õmL�ª�$
= úÂù�ùKN �© }¯Ì�:$9*C�9*@$>fX$><9YVMàYõ��?$!0F(�G2õmLH0F( + G2õ�N;G�L 0F( + G2õ�N ° L�0F( + G2õ�N	õmL$�¤ Z[X��c@®C�:$9�|YZgX0bEA^X|(�+�G2õ�N	õmLH0:$�� ¤ Z[X¦=Ô��ZqA G2õvÊ%õmLK¸2R�><a*:	AFCEb��¦��Zgde><�<��C�:09�|�><R�Z¢ASbc9Yh�9YhJ9*:$CEbc><@0hQ,:$9Yh±=îX$9 ò ¨ �

°*°
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¤ Z[Xz¹ Ür ��ZBX0bcZ{RE��AF�g9*Q�¹ Úr �¦X0b�A^X�><@!X0bcZiRE><a*:0AFCEbÝ9YV¯Ø9k Ü. N�±�±�±ÂN�k Ü� Ùide>fX0bºAF:$~7¸2@0Z[XiØ9k Ü  k Üß o¦lH»ªà�Ù%Ö�Ø9k Ü. k Ür N�k ÜË k Ü¨ N�k Ü� k Ü� Ù*� © } ¤ Z�hzhJA{à]$��®X0bcZ�:$Z�><@ AMbc9YhJ9Yh�9*:$CEb�><@0h´t Ú o�= Ú p ¹ Úr @	�c~	b�X0b�A^X><Qet�ÚgGU×�L ¬`Ø9k Úr N�k Ú¨ N�k Ú� ÙBX0bcZ�VDw Ú¥  GU×�L�ª¥õ���ßx}chJh�Z[X$:0><~�AF�<�f}*��X0bcZ�:0ZzZ7·c><@PX$@�AHb�9Yh�9Yh�9*:0CEbc><@0h t Ü o=MÜMp ¹ Ür @0�c~7b{X0b�A^Xe><Q�t�Ü¦GU×�Lq¬�Ø9k Ür N�k Ü¨ N�k Ü� Ù�X0bcZ�VMw Ü¥ " GU×�L®ª�õ��¤ Z[X!¹ r ��Z!X0bcZ�RE><a*:0AFCEb�9*��X0AF>WVcZ�R4Q,:$9Yh X0bcZzR�><@UTP9*>WVYX ��Vc><9YV�9*Qs¹ Úr A*VcRã¹ Ür ��};AFR�RE>WVcaiX0bcZJAF:0~�@9*QsØ9k Ü  k Úß o ° 0êlT0oøxN ° 0gà·0�øxÙ Q Ø9k Ú  k Üß o�lgª ° N0àxN�c�N)àMª ° N0àxN�c�Ù*���%bcZ�hJAFC�C�>WV�a{t4ov=çp ¹ rR�Z[åvV�Z�Ry�m}Ht�GU×�L�ª t Ú GU×�Lq><Q"×�¬�I Ú A*V�R\t�GU×�L¦ªêt�Ü¦GU×�Lq><Q"×�¬;I�ÜD><@%Azbc9Yh�9YhJ9*:$CEbc><@	hi��¡PVcR�Z�Z�Ry><Q×?Ñ ><@�A*VzAF:$~s9*Q�=¾de>fX0b!×\¬HI�Ú�A*V�RÍÑz¬\I Ü ��~�9YV�R�>fX$><9YVc@�9YVBt�Ú�A*VcRBt Ü >WhJC��f}�X0b�A^Xgt�GU×�L¦ªÇt�ÚqGU×�L�¬Ø9k Ú . N�k ÚË N�k Ú� ÙSA*VcRit�G
ÑEL®ªÇt�Ü�G
ÑEL�¬;Ø9k Ü. N�k ÜË N�k Ü� Ù*�¦��9 ~�9YVc~��W�cR�ZF� Ì ><aY�c:$Z ° C�:$9�|�><R�Z�@¢A bc9Yh�9YhJ9*:$CEbc><@0hâJQ,:$9Yh±¹ r X$9 ò ¨ �¦�ebcZ�Vc9YVx¸29*:$><Z�VmX$Z�RyAF:$~�@¢9YVzX0bcZ�åEaY�c:$Z%~�9*:$:$Z�@$C�9YVcRE@�X$9�~�><:$~���>fX$@¢9*Q��<Z�VcaFX0byõ A*VcRiAF�<�X0bcZ�AF:0~�@sQ�:09Yh¥¹ Ür X$9B¹ Úr AF:$Z�Vc9FXs:$Z�C�:$Z�@0Z�VYX$Z�R�� R

2g(s  )={2} g(s  )={1,2}

g(s  )={3}

g(s  )={4} g(s  )={1,4}

g(s  )={1,3}

+
1

3

56

4

+
+

+

+ +

g(s  )={3,4}

2

3 g(s  )={1,3,4}

g(s  )={1,2,4}g(s  )={2,4}

1 g(s  )={1,2,3}

4

65

−

−

−

−

g(s  )={2,3}

−−Ì ><aY��:$Z ° o��eb�Z�bc9Yh�9YhJ9*:$CEbc><@0híâBQ,:$9Yh¥¹ r X$9 ò ¨ �
bdc�� gih w lip�qwrtg + h w o6xWl�m'y{z}|~x'� w cö!÷�øxùvúÂø�ûÊEK (�G�à�L¦ªJ( + G�àxN;G�L�ª�( + G�àxN ° L�ª�$
= úÂù�ùKN �É$Í0F(SG2õmL*0F(�G�à�L*0L(�+�G�àxN;G�LH0L(�+�G�àxN ° LH0FfcG/ø�L"ª�$���}iÆ¢9*:$9*�<�WAF:P}Mõ ° � R¡PV X0bcZ¢:$Z�hzAF>WVc>WVcaS9*QvX0bc><@¦@0�c�E@$Z�~[X$><9YV��YdgZ¢@0b�AF�<�cC�:09�|YZs�eb�Z�9*:$Z�hÇ$mõ��mX0bEA^X�><@*(�+�G�àxN	õmL�ª�(�+�G�àxN0à�L¦ªc��¦�ebcZ�:0Z�Q�9*:$ZF��dqZsåE:$@PX¦Z7·�bc><��>fX�AJG�à�Ê�õmLK¸2RE><a*:0AFCEbJd%bc><~	bJ><@�Vc9FX*$^¸ËAF:$~7¸2~�9*�<9Y�c:0AF���<ZF�g�ebcZ�V�dqZs@	bc9�dÃX0b�A^X(�+�G�àxN0à�L 0Fc��
ª øZ«¬C	�BA%�,ùUC:ED¸ ¤ Z[XY� Üã��Z�X0bcZ R�><a*:0AFCEb\9*�cX0AF>WV�Z�R\Q,:$9YhîX0bcZ!:$9FX0A^X$>f|YZ!X$9Y�c:	V�A*h�Z�VmX�9YVHå�|YZ |YZ�:PX$><~�Z�@
� � �xd%>fX0bB|YZ�:PX$Z7·B@$Z[X�Ø�� Ü. N�±�±�±�N$� Ü� Ù�A*VcRiAF:$~7¸2@$Z[X�Ø�� Ü  � Üß o�à�ÕMl%G�h�9xRE�c�<9 cmL�¬�Ø ° N	õ�Ù*Ù�A*V�RzåE|YZ�~�9*CE><Z�@9*Q"X0bcZ�àÂ¸2~�><:$~��c>fX$@[� .Ë N�±�±�±�NZ� �Ë ��}iAFRER�>WVca���Q,9*: ° 0 l|0Lc���X0bcZ�AF:$~�@e�m� Ü  �vQ�9*:s�z¬��  Ë �¤ Z[X�� Ú ��Z�X0b�Z�R�><a*:0AFCEb49*�cX0AF>WVcZ�RDQ�:$9Yh X0bcZJ:09FX0A^X$>f|YZJX$9Y�c:	V�A*h�Z�VmX�9YV�@0Z[|YZ�V�|YZ�:PX$><~�Z�@��<�^�"de>fX0b|YZ�:PX$Z7·�@$Z[X�Ø�� Ú. N�±�±�±�N$� Ú� ÙJA*V�R4AF:$~7¸2@$Z[X�Ø�� Ú  � Úß oXà�Õãl%G�h�9xRE�c�<9 »mL�¬�Ø ° N	õ�N0àxÙ*ÙyA*VcR�@$Z[|YZ�V4~�9*C�><Z�@�9*QX0bcZ�:09FX0A^X$>f|YZ�X$9Y�c:0VEA*h�Z�VmXs9*Q2��� .� N�±�±�±�NZ� �� ��}yAFR�R�>WVca���Q,9*: ° 0�l|0F»���X0bcZ�AF:$~�@s�m� Ú  �EQ,9*:s�J¬��   � �Ì >WV�AF�<�f}*�¢�<Z[X2� ��ZBX0bcZ�G�à�ÊDõmLK¸2R�><a*:0AFCEb 9*�cX0AF>WVcZ�R Q,:$9Yh X0bcZ{R�><@UTP9*>WVmXJ��Vc><9YVã9*Q<� ÜÇA*VcR:� Ú �m}AFR�R�>WV�a�AF�<��X0bcZ�AF:$~�@e9*Q�X0b�Z�Q�9*:	h£�cÜ�� Ú de>fX0bM�cÜ�¬HIJG�� Ü®LqA*VcRM� Ú ¬HIJG�� Ú L$�qß�Z�Z Ì ><aY�c:0Z�õ��

° õ
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Ì ><aY�c:$Z õ�o��ebcZ�Vc9YV5$̂ ¸ËAF:$~7¸2~�9*�<9Y�c:0AF���<ZBG�àeÊyõmLK¸2RE><a*:0AFCEb����
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= úÂù?>�ù?@9�BA%�,ùDC:EKÐ ��8�-!'*)<3*+.576�8(�¥) _��E�*1�$c¨.5*+�/�¨�/	�*�f�*³�+�5m¼��f-e�<�v�!(�G�àxN	õmL hFc}�
= úÂù�ùKN �£ßc�cCEC�9*@0Z�Q,9*:eA!~�9YVmX$:0AFR�><~[X$><9YVHX0b�A^X[�íAFREh�>fX$@eA*VMAF:$~7¸2~�9*�<9Y�c:$>WVcaBµ�>WV;Ø ° N	õ�N0àxNë$�Ù*�¤ Z[X�� Ú ��Z�Az|YZ�:PX$Z7·;9*Qw� Ú A*VcR\�cÜãAz|YZ�:PX$Z7·;9*Qw� Ü����ebcZ�VH@$>WVc~�Z!�cÜ�� Ú ><@SA*V;AF:$~F� ³bÒFn Ú GK� Ú L�»ª³bÒFnUÚ�GK� Ü L$�¦��Z�de><�<��@0bc9�d�oG ° LJX0b�Z�:$Z�AF:$Z�A^X{�<Z�AF@$XiX2dg9�õ�¸2@0�c��@$Z[X$@y¹É9*Q�Ø ° N	õ�N0àxNë$�ÙÝ@0�c~7b�X0bEA^XMA�|YZ�:PX$Z7·��cÜÒ¬��!Üê@0A^X$><@PåvZ�@³�ÒFn,ÚqGK� Ü L�ªÇ¹q�G2õmLJX0b�Z�:$Z�AF:$Z�A^Xy�<Z�AF@PXiå�|YZ�õ�¸2@0�c��@0Z[X$@M¹Ô9*QJØ ° N	õ�N0àxNë$�ÙÝ@	�c~	bÃX0b�A^XMAD|YZ�:PX$Z7·�� Ú ¬�� Ú @0A^X$><@PåvZ�@³�ÒFn,ÚqGK�xÚ¦L�ªÇ¹q��ebc><@ea*>f|YZ�@%A�~�9YVmX$:0AFR�><~[X$><9YVH@$>WVc~�ZSX0b�Z�:$Z�AF:$ZS9YVc�f}i@$>§·Mõ�¸2@0�c�E@$Z[X$@e>WV;Ø ° N	õ�N0àxNë$�Ù*�¤ Z[X���@�åv:$@PX!@0bc9�d´G ° L$�4Þ�|YZ�:P}4|YZ�:$X$Z7·Ý9*Q[�!Ü¯@0A^X$><@$åEZ�@�µÔÒ^n Ú h¶õM9FX0b�Z�:Pde><@$ZiAF�<�qX0bcZiAF:$~�@!9*Q/� �>WV@��Ú`h!�c@PX!��ZB~�9*�<9Y�c:$Z�R de>fX0bÝX0bc:$Z�Z{~�9*�<9Y�c:$@��qA\~�9YVYX$:	AFR�><~[X$><9YVºX$9��eb�Z�9*:$Z�h ° õ��63�Z�Vc~�ZF��@0>WVc~�Zi>WV
�<�yAF�<�sX0b�Z�³bÒFn Ú AF:$ZyRE><@PX$>WVc~[XBA*V�RÃVc9FXHØ ° N	õ�N0àxNë$�Ù*��A�|YZ�:PX$Z7·�9*Q<�<���s@	A�} � Ü. �sb�AF@{µÔÒ^n Ú ªÅõ��s@0A�}³bÒFn Ú GK� Ü. L�ªÒØ ° N	õ�Ù*�HÆg9YV�@$><R�Z�:�Vc9�dÔX0bcZ�|YZ�:PX$><~�Z�@!9*Q'� .Ë �Bô%9YV�ZJ9*QqX0bcZ�hçbEAF@ ³bÒFn Ú ªÒØ ° N	õ�N0àxÙyVc9*:³bÒFnUÚ ª¾Ø ° N	õ�Në$�ÙB@$>WVc~�Z!X0bcZ[};AF:$Z!R�9Yh�>WV�A^X$Z�R;��}H� Ü. � S 9*:$Z�9�|YZ�:�X0bcZ[}�AF�<��b�A�|YZ�RE>���Z�:$Z�VmX�³bÒFnUÚ @0>WVc~�Z� .Ë ><@%A!X$9Y��:0V�A*h�Z�VmX��|3�Z�Vc~�Z�9YVcZ�9*Q�X0bcZ�hy��@0A�}i���v@0A^X$><@PåEZ�@eµÔÒFn Ú GK�cL®ª õ���ô%9�d�³�Ò̂ n Ú GK�cL�»ª�³bÒFn Ú GK� Ü. L@$>WVc~�Z�� Ü. pÛ�E�¤ Z[XJ�c@�Vc9�d¶CE:$9�|YZ�G2õmL$� ¤ Z[Xi�£ªÅØÂõ�¸2@	�c��@$Z[X$@�¹ã@0�c~7b{X0b�A^X��Ý�xÚ£¬���Ú�N�³bÒFnUÚ�GK��Ú�L!ª ¹gÙMA*VcR@0�cCEC�9*@0ZeX0b�A^X�� ���}0:$��¦Þ�|YZ�:P}z|YZ�:$X$Z7·i9*Q�� Ú b�AF@sµÔÒFn Ú 0¯õ 9FX0bcZ�:Pde><@$Z�AF�<��X0b�Z�AF:0~�@s9*Qd�<��>WV�� Ü�h!�c@PX��Z!~�9*�<9Y�c:$Z�R�de>fX0b�X0bc:$Z�Z�~�9*�<9Y�c:$@���A{~�9YVYX$:	AFR�><~[X$><9YV�X$9¯Ì�:$9*C�9*@$>fX$><9YV�àYõ���ô�9�d��"AF�<��X0bcZ!|YZ�:PX$><~�Z�@�9*Qw� �b�A�|YZ�R�><@$X$>WVc~[X�A*VcR\Vc9YVx¸2Z�hJCcX2}5³bÒFn Ú �sßc9zA^X%�<Z�AF@$X%X0bc:0Z�ZS|YZ�:PX$><~�Z�@S9*Q�� � b�A�|YZ!µÔÒFn Ú ª õJA*VcR � ����h«àx��ebx�c@��cde>fX0b�9Y��Xs�<9*@$@e9*Q"a*Z�VcZ�:0AF�<>fXË}*�vdgZ�AF:$Z�>WVi9YVcZSX0bcZ�@0Z�X0bc:$Z�Z�Q,9*�<�<9�de>WV�aJ~�AF@$Z�@�oG�A�L�� Í Ø*Ø ° N	õ�Ù*N�ØÂõ�N0àxÙ*N�ØÂàxNë$cÙ*N�Ø ° Në$�ÙYÙBA*V�R�³bÒFn Ú GK� Ú. L"ªêØ ° N	õ�Ù*�GK��L�� Í Ø*Ø ° N	õ�Ù*N�ØÂõ�N0àxÙ*N�Ø ° N0à�Ù*N�Ø ° Në$�ÙYÙBA*V�R�³bÒFn Ú GK� Ú. L"ªêØÂõ�N0àxÙ*�GK~^L�� Í Ø*Ø ° N	õ�Ù*N�ØÂõ�N0àxÙ*N�Ø ° N0à�Ù*N�Ø ° Në$�ÙYÙBA*V�R�³bÒFn Ú GK� Ú. L"ªêØ ° Në$�Ù*�
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2.5 Wavelengths Division Multiplexing Networks
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161, rue Ada, 34000 Montpellier,

France

bessy@lirmm.fr

and

C. Lepelletier,

Projet Mascotte, CNRS/INRIA/UNSA,

INRIA Sophia-Antipolis,

2004 route des Lucioles BP 93,

06902 Sophia-Antipolis Cedex,

France

June 9, 2009

Abstract

Maňuch and Stacho [7] introduced the problem of designing f -tolerant routings in optical

networks, i.e., routings which still satisfy the given requests even if f failures occur in the

network. In this paper, we provide f -tolerant routings in complete and complete balanced

bipartite optical networks, optimal according to two parameters: the arc-forwarding index

and the optical index. These constructions use tools from design theory and graph theory

and improve previous results of Dinitz, Ling and Stinson [4] for the complete network, and

Gupta, Maňuch and Stacho [5] for the complete balanced bipartite network.

Keywords: optical networks, forwarding and optical indices, routing, fault tolerance
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1 Introduction

In this paper, we are interested in a problem arising in the design of optical networks. Using

models of graph theory and design theory, this topic has been of considerable interest over

the last decade (see [1], [2] or [5] for instance). Readers may refer to [1] for a background

review of optical networks. The model studied in this article is valid for the so-called wavelength

division multiplexing (or WDM) optical network. Such a network is modeled by a symmetric

directed graph with arcs representing the fiber-optic links. A request in the network is an

ordered pair of graph nodes, representing a possible communication in the network. A set of

different requests is an instance in the network. For each request of the instance, we have to

select a routing directed path to satisfy it, and the set of all selected paths forms a routing

set according to the instance. To make the communications possible, a wavelength is allocated

to each routing path, such that two paths sharing an arc do not carry the same wavelength;

otherwise the corresponding communications could be perturbed. Given a routing set related

to the wavelength assignment, we can define two classical invariants. The arc-forwarding index

of the routing set is the maximum number of paths sharing the same arc. In the network,

there is a general bound on the number of wavelengths which can transit at the same time in

a fiber-optic link, corresponding to the admissible maximal arc-forwarding index. The other

invariant, called the optical index of the routing set, is the minimum number of wavelengths

to assign to the routing paths in order to ensure that there is no interference in the network.

The main challenge here is to provide, for a given instance, a routing set which minimizes the

arc-forwarding index or the optical index, or both if possible.

Our work is a contribution to a variant of this problem, introduced by Maňuch and Stacho [7],

in which we focus on possible breakdowns of nodes in the network. Precisely, for a given fixed

integer f , we have to provide, for every request, not just one directed path to satisfy it, but

rather a set of f +1 directed paths with the same beginning and end nodes (corresponding to the

request) and which are internally disjoint. In this routing, if f nodes break down, every request

between the remaining nodes could still be satisfied by a previously selected routing path which

contains no failed component. Such a routing set of directed paths is called an f -fault tolerant

routing or an f -tolerant routing.

In this paper, we focus on the very special cases of complete symmetric directed graphs and
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complete balanced bipartite symmetric directed graphs. Moreover, we only study the case of

all-to-all communication, i.e., where the instance of the problem is the set of all ordered pairs of

nodes of the network. Some results on these problems were presented by Gupta, Maňuch and

Stacho [5] and Dinitz, Ling and Stinson [4]. We improve these results: for complete symmetric

directed graphs, we show that optimal routings for the arc-forwarding index given in [5] are also

optimal for the optical index. And for complete balanced bipartite symmetric directed graphs,

we provide routings that are optimal for both parameters.

2 Preliminaries

In this section, we specify the previous definitions and formalize the problem. For the purpose

of the paper, we only describe the case of all-to-all communication, but the notions can be

extended to any kind of instances. We mainly use the notations proposed in [5].

We model an all-optical network as a symmetric directed graph D = (V (D), A(D)), where

V (D) is the vertex set of D and A(D) is the arc set with the additional property that if

(u, v) ∈ A(D) then (v, u) ∈ A(D). If no confusion is possible, we simply write V and A instead

of V (D) and A(D), respectively. All paths and circuits are considered as oriented.

A directed graph D is strongly connected if, for every two vertices x and y of D, there is

a path from x to y in D. In a symmetric directed graph, strong connectivity is equivalent to

connectivity of the underlying non-oriented graph. So, for an integer k ≥ 1, a symmetric directed

graph D is k-connected if, for every set {x1, . . . , xk−1} of vertices of D, D \ {x1, . . . , xk−1} is

strongly connected.

For a fixed positive integer f , an f -tolerant routing in D is a set of paths:

R = {Pi(u, v) : u, v ∈ V, u 6= v, i = 0, . . . , f}

where, for each pair of distinct vertices u, v ∈ V , the paths P0(u, v), . . . , Pf (u, v) are internally

vertex disjoint. Note that such a set of paths exists if and only if the connectivity of the directed

graph is large enough (at least f +1), which will be the case in complete and complete bipartite

networks for suitable f .

The basic parameters for WDM optical networks, the arc-forwarding index and the optical

index, are generalized in f -tolerant routings. The load of an arc in R is the number of directed

3
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paths of R containing it. By extension, the maximum load over all the arcs of D is the load of

the routing, which is also called the arc-forwarding index of R and is denoted by π(R). Each

path of R receives a wavelength in the network to enable the communication and, to avoid

interference, two paths sharing an arc do not receive the same wavelength. Like graph coloring,

we speak about wavelengths as colors to assign to the paths of R. Finally, the optical index

of R, denoted w(R), is the minimum number of wavelengths to assign to paths of R so that

no two paths sharing an arc receive the same wavelength. In other words, w(R) is exactly the

chromatic number of the graph with vertex set R and where two paths of R are linked if they

share the same arc of D (known as the path graph of R).

The goal is to minimize π(R) and w(R). So the f -tolerant arc-forwarding index of D and

the f -tolerant optical index of D are respectively defined by:

πf (D) = min
R

π(R)

wf (D) = min
R

w(R)

where the minima span all the possible routing sets R. A routing set achieving one of the bounds

is said to be optimal for the arc-forwarding index or optimal for the optical index, respectively.

For a routing set R, all paths sharing the same arc must receive different wavelengths in the

computation of w(R). In particular, we have π(R) ≤ w(R). By considering a routing set which

is optimal for the optical index, we obtain πf (D) ≤ wf (D). The equality was conjectured by

Maňuch and Stacho [7].

Conjecture 1 (J. Maňuch, L. Stacho, 2003, [7]) Let D be a symmetric directed k-connected

graph. For any f , 0 ≤ f < k, we have πf (D) = wf (D).

For f = 0 (without tolerating any faults), the conjecture was previously raised by Beauquier

et al. [1].

Let K⋆
n denote the complete symmetric directed graph with vertex set {x1, . . . , xn} and arc set

{xixj : i 6= j}. The complete balanced bipartite symmetric digraph K ⋆
n,n is the directed graph on

vertex set X∪Y with X = {x1, . . . , xn} and Y = {y1, . . . , yn} and arc set {xy, yx : x ∈ X, y ∈ Y }.
The arc-forwarding indices of K⋆

n and K⋆
n,n were computed by Gupta, Maňuch and Stacho in [5].

4
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Moreover, they give wf (K
⋆
n) and wf (K

⋆
n,n) up to a multiplicative factor. In [4], Dinitz, Ling and

Stinson compute, among other things, wf (K
⋆
n) up to an additive constant in some cases.

In the next two sections, we provide exact values for wf (K
⋆
n) and wf (K

⋆
n,n) and hence prove

Conjecture 1 for the complete symmetric directed graph and the complete balanced bipartite

symmetric directed graph.

3 Complete optical network

It is easy to provide a lower bound for the arc-forwarding index of K ⋆
n. Indeed, any two vertices

x and y of K⋆
n have to be linked in an f -tolerant routing by f + 1 internally disjoint paths. If

one of these paths has length one (the direct arc xy), all the others have length at least two,

and at least 2f + 1 arcs are needed to ensure f -tolerant communication from x to y. So, by an

average argument, one arc of K⋆
n must have load at least 2f + 1, providing wf (K

⋆
n) ≥ 2f + 1.

In the case of K⋆
n, Gupta, Maňuch and Stacho prove that this lower bound gives exactly the

value of the arc-forwarding index. Indeed, they construct f -tolerant routings through families

of independent idempotent Latin squares in [5], which are optimal for the arc-forwarding index.

Theorem 2 (A. Gupta, J. Maňuch, L.Stacho, 2005, [5]) For every f with 0 ≤ f ≤ n−2,

we have πf (K
⋆
n) = 2f + 1.

They also partially bound the optical index of their f -tolerant routings, proving that wf (K
⋆
n) ≤

3f + 1 for some f . This result was improved by Dinitz, Ling and Stinson [4], who gave a better

multiplicative factor for some infinite sets of values of n and the optimal index up to an additive

constant for another infinite set of values of n. We improve these results by showing that every

f -tolerant routing set of K⋆
n which is optimal for the arc-forwarding index is also optimal for

the optical index.

Theorem 3 For every f , 0 ≤ f ≤ n−2, and every f -tolerant routing set R of K ⋆
n with π(R) =

πf (K
⋆
n) = 2f + 1, we have w(R) = 2f + 1. In particular, we have wf (K

⋆
n) = πf (K

⋆
n) = 2f + 1.

Proof. Let f be fixed with 0 ≤ f ≤ n− 2 and consider an f -tolerant routing R of K ⋆
n which is

optimal for the arc-forwarding index, i.e., of value 2f + 1. By the tightness of the lower bound,

for any two vertices x and y of K⋆
n there is exactly one path xy of length 1 and f paths of length

5
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2 from x to y in R (otherwise, summing up the total load gives π(R) ≥ 2f + 2). Hence, every

arc of K⋆
n has a load of exactly 2f + 1 and appears in one path of length 1 and 2f paths of

length two in R. Now, define the graph H with vertex set being the set of the arcs of K ⋆
n and

link two arcs of K⋆
n if they belong to the same path of R of length 2. Thus, we have a one-to-one

correspondence between the edge set of H and the paths of length 2 of R. Since each arc of K ⋆
n

belongs to exactly 2f paths of R of length 2, H is regular with degree 2f . By Vizing’s Theorem

(see [3] or [9]), the edges of H can be colored with 2f + 1 distinct colors such that any two

adjacent edges receive distinct colors. This provides a coloring of the paths of length 2 of R
with 2f + 1 colors. To conclude, a path of length 1 of R intersects exactly 2f paths of length 2

and we can color this path with the remaining color. �

Moreover, the edge-coloring provided by Vizing’s Theorem can be computed in polynomial

time (polynomial in the size of the input graph, H here). So, given an optimal routing for the

arc-forwarding index, this proof gives a polynomial algorithm (polynomial in n and f) to obtain

a wavelength assignment for a routing which is optimal for the optical index.

4 Complete balanced bipartite optical network

In this section, we compute the exact optical index of K ⋆
n,n and thus prove Conjecture 1 for this

family of graphs. This improves the result in [5], where the upper bound given on the optical

index of K⋆
n,n is 20% higher than the conjectured optimal value.

Theorem 4 For any n ≥ 1 and any f with 0 ≤ f ≤ n − 1, we have wf (K
⋆
n,n) = πf (K

⋆
n,n).

To prove Theorem 4, we provide a routing set for K⋆
n,n which is optimal both for the arc-

forwarding index and the optical index. The construction depends on the values of n and f .

Recall that X ∪ Y denotes the canonical partition of K ⋆
n,n, with X = {x1, . . . , xn} and Y =

{y1, . . . , yn}. For convenience, indices of the vertices of X and Y are computed modulo n.

4.1 Routing set and arc-forwarding index

We use the paths of minimum length to route in K⋆
n,n. Indeed, for two vertices x and y, we use

paths of length 2 when x and y belong to the same partite set of K ⋆
n,n and one path of length 1

6
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and other paths of length 3 (if f > 0) when x and y do not belong to the same partite set. The

main challenge here is to pack the paths of length 3 in order to provide the right optical index.

This will be achieved by using the following decomposition result.

Theorem 5 (Tillson, 1980, [8]) The arcs of K⋆
n can be partitioned into Hamiltonian circuits

if and only if n 6= 4 and n 6= 6.

For n 6= 4 and n 6= 6, {C1, . . . , Cn−1} denotes a set of n − 1 Hamiltonian circuits which

partition the arcs of K⋆
n. Let {1, . . . , n} denote the vertex set of K⋆

n. Moreover, for a vertex i

of K⋆
n and a circuit Ck, the out-neighbor of i in Ck is denoted Ck(i). We use Ck as a functional

notation: for p ≥ 1, Cp
k(i) = Ck(C

p−1
k (i)). Moreover, we compute the powers of Ck modulo n,

in particular C0
k(i) = i and C−1

k (i) is the in-neighbor of i in Ck.

The previous Hamiltonian decomposition is used to route paths of length 3 in K ⋆
n,n. For

paths of length 2, we use a Latin square A of order n, i.e., a n×n matrix in which each row and

each column is a permutation of the set {1, . . . , n}. Moreover, we require A to be idempotent :

for every i, 1 ≤ i ≤ n, we have A(i, i) = i. An idempotent Latin square exists for each value

of n, except for n = 2 (see [6], Chapter 2, for an explicit construction). For 0 ≤ k ≤ n − 1,

Mk = {xiyi+k, yi+kxi : 1 ≤ i ≤ n}, denotes the symmetric orientations of n disjoint matchings

which partition the arcs of K⋆
n,n (see Figure 1). The indices of Mk are computed modulo n. In

our figures, we represent two symmetric arcs by a (non-oriented) edge.

x x21 x xx n−1 n3x x21 x xx n−1 n3x x21 x xx n−1 n3

y y21 y yy n−1 n3y y21 y yy n−1 n3 y y21 y yy n−1 n3

MMM
1 20

Figure 1: Some matchings Mk.

Now, for n 6= 2, n 6= 4 and n 6= 6, we describe three kinds of paths to construct the routing set:

7



88 CHAPTER 2. MATERIALS

- Paths of length 1 between vertices which belong to different partite sets of K ⋆
n,n:

D0[X,Y ] = {xiyj : 1 ≤ i ≤ n, 1 ≤ j ≤ n}

D0[Y,X] = {yixj : 1 ≤ i ≤ n, 1 ≤ j ≤ n}

D0 = D0[X,Y ] ∪ D0[Y,X]

- Paths of length 3 between vertices which belong to different partite sets of K ⋆
n,n, for 1 ≤ k ≤

n − 1:

Dk[X,Y ] = {xiyC−1

k
(j)xCk(i)yj : 1 ≤ i ≤ n, 1 ≤ j ≤ n}

Dk[Y,X] = {yixC−1

k
(j)yCk(i)xj : 1 ≤ i ≤ n, 1 ≤ j ≤ n}

Dk = Dk[X,Y ] ∪Dk[Y,X]

- Paths of length 2 between vertices which belong to the same partite set of K ⋆
n,n, for 0 ≤ k ≤

n − 1:

Sk[X,X] = {xiyA(i,j)+kxj : 1 ≤ i ≤ n, 1 ≤ j ≤ n, i 6= j}

Sk[Y, Y ] = {yixA(i,j)+k+⌈n/2⌉yj : 1 ≤ i ≤ n, 1 ≤ j ≤ n, i 6= j}

Sk = Sk[X,X] ∪ Sk[Y, Y ]

And for a fixed f , 0 ≤ f ≤ n − 1, we define the routing set Rf by

Rf =

f
⋃

k=0

(Sk ∪ Dk)

Note that, by construction, for distinct vertices x and y of K ⋆
n,n, Rf contains exactly f + 1

internally disjoint paths from x to y. So, Rf is an f -tolerant routing for an all-to-all instance in

K⋆
n,n. Moreover, note that every arc of K⋆

n,n appears exactly once in D0 and three times in Dk

for 1 ≤ k ≤ n−1 (for instance the arc xiyj appears in Dk in paths from xi to yCk(j), from xC−1

k
(i)

to yj and from yC−1

k
(j) to xCk(i)). For 0 ≤ k ≤ n, the routing Sk behaves slightly differently:

Sk[X,X] contains only pairwise arc-disjoint paths and the same holds for Sk[Y, Y ]. Moreover,

Sk[X,X] and Mk are disjoint and every arc not in Mk appears exactly once in Sk[X,X]; on the

other hand, Sk[Y, Y ] and Mk+⌈n/2⌉ are disjoint and every arc not in Mk+⌈n/2⌉ appears exactly

once in Sk[X,X]. Using these remarks, we can give the arc-forwarding index of Rf . The

computation of πf (K
⋆
n,n) was obtained in [5].

8
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Lemma 6 (A. Gupta, J. Maňuch, L. Stacho, 06, [5]) The arc-forwarding of K ⋆
n,n is:

πf (K
⋆
n,n) =







5f + 3 for 0 ≤ f ≤ ⌈n/2⌉ − 2

5f + 2 for ⌈n/2⌉ − 1 ≤ f ≤ n − 2

5f + 1 for f = n − 1

In fact, we prove that Rf is optimal for the arc-forwarding index.

Lemma 7 For every f , 0 ≤ f ≤ n − 1, the routing set Rf satisfies π(Rf ) = πf (K
⋆
n,n).

Proof. For 0 ≤ f ≤ ⌈n/2⌉ − 2, every arc of K⋆
n,n appears at least 5 times in Sk ∪ Dk for

1 ≤ k ≤ f and 3 times in S0 ∪ D0, so the computation of π(Rf ) is clear. For f ≥ ⌈n/2⌉ − 1,

every arc of K⋆
n,n is in a matching Mk or Mk+⌈n/2⌉ for some k, 0 ≤ k ≤ f and thus is not in a

path of one of the Sk[X,X] or Sk[Y, Y ]. We then save 1 in the computation of π(Rf ) in these

cases. Finally, if f = n− 1, every arc of K⋆
n,n is in a matching Mk and in a matching Mk′+⌊n/2⌋

for some suitable k and k′ in {0, . . . , n− 1}. So, every arc of K⋆
n,n is not in any path of Sk[X,X]

and not in any path of Sk′ [Y, Y ], and we save two in the computation of π(K⋆
n,n). �

We then have a lower bound for the optical index of K⋆
n,n, and now we prove that the routing

set Rf achieves this bound.

4.2 Packing the paths of Rf

A color class of paths of Rf is set of paths which are pairwise arc-disjoint. To construct

the different color classes, we need the following notations and definitions. To indicate a

path or a set of paths of Rf , we always specify the subset Dk or Sk it belongs to. For

instance, S0[X,X]{x1yA(1,2)x2} is the path x1yA(1,2)x2 of S0[X,X] and D0{M1} is the set

of paths in M1 of D0. We use the notation ⋆ as a ‘joker’ instead of all the possible path

names. For instance, S0[X,X]{⋆ y1 ⋆} stands for all paths of S0[X,X] whose intermediate

vertex is y1. We specially focus on two particular subsets of paths. For k ≥ 1 and xi, a

vertex of K⋆
n,n, Dk[X,Y ]{xi ⋆ xCk(i) ⋆} contains the n paths of Dk which start at xi and

whose third vertex is xCk(i). As (Ck(1), Ck(2), . . . , Ck(n)) is a permutation of (1, 2, . . . , n),

note that these paths are pairwise arc-disjoint and that they cover exactly all arcs begin-

ning at xi, all arcs beginning at xCk(i) and all arcs ending at xCk(i). Moreover, we have

9
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⋃n−1
l=0 Dk[X,Y ]{xCl

k
(1) ⋆ xCl+1

k
(1) ⋆} = Dk[X,Y ]. The set Dk[X,Y ]{xi ⋆ xCk(i) ⋆} and its rep-

resentation on X, which shows the saturated in and out-neighborhood, are depicted in Fig-

ure 2. Similarly, we will use the sets Dk[X,Y ]{⋆ yi ⋆ yCk(i)}, Dk[Y,X]{⋆xi ⋆ xCk(i)} and

Dk[Y,X]{yi ⋆ yCk(i) ⋆}.

21 3 n−1 ni k
x xx x xx xC (i)

21 3 n−1 ni k
x xx x xx xC (i)

y y21 3y y yn−1 n ++

[X,Y]Dk

_

Figure 2: The set of paths Dk[X,Y ]{xi ⋆ xCk(i) ⋆} and its representation on X.

In addition, for 0 ≤ k ≤ n − 1 and 1 ≤ i ≤ n, Sk[Y, Y ]{⋆xi ⋆} denotes the set of paths

Sk[Y, Y ]{⋆xi ⋆}∪D0{xiyi+k+⌈n/2⌉, yi+k+⌈n/2⌉xi}. As Sk[Y, Y ] and Mk+⌈n/2⌉ are disjoint, Sk[Y, Y ]{⋆xi ⋆}
contains only arc-disjoint paths. Moreover, it contains exactly all arcs beginning and ending at

xi, and we have
⋃n

i=1 Sk[Y, Y ]{⋆xi ⋆} = Sk[Y, Y ]∪D0{Mk+⌈n/2⌉}. This set and the representation

of Sk[Y, Y ]{⋆xi ⋆} on X are shown in Figure 3. Similarly, we will use the sets Sk[X,X]{⋆ yi ⋆},
disjoint from D0{Mk}.

+

−

21 3x xx ix n−1 nx x 21 3x xx ix n−1 nx x

y y21 3y yi+k+ n/2 y yn−1 n
y y21 3y yi+k+ n/2 y yn−1 n

21 3x xx ix n−1 nx x

S [Y,Y]k

Figure 3: The sets Sk[Y, Y ]{⋆xi ⋆}, Sk[Y, Y ]{⋆xi ⋆} and the representation of Sk[Y, Y ]{⋆xi ⋆}
on X.

Now we can define the colors classes. They are constructed differently according to the

value of f : we distinguish three main cases following the residue of n modulo 3. However, some

particular cases occur: n = 2 due to the non-existence of an idempotent Latin square of order

10
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2, n = 4 and n = 6 which are exceptions to Tillson’s Theorem, and n = 1 and n = 5 for which

the techniques used in general cases n ≡ 1 (mod 3) and n ≡ 2 (mod 3) cannot be applied.

Moreover, for any value of n, the case f = 0 is different from the other cases.

4.3 Routings without fault

The case f = 0 is simpler than other cases in the sense that the paths of length 1 form a proper

color class, whereas for f > 0 these paths are used to complete other color classes. More precisely,

R0 = D0 ∪S0 and to obtain the optical index, we assign one different color to each of these sets

of paths: D0, S0[X,X] and S0[Y, Y ]. So, for every n ≥ 1, we have w0(K
⋆
n,n) = π0(K

⋆
n,n) = 3.

4.4 Optical index in case n ≡ 0 (mod 3)

This is the simplest case, so paths of length 2 and 3 can be packed separately. For any k,

1 ≤ k ≤ n − 1, to color paths of length 3, we define:

c3k =

n/3−1
⋃

t=0

(

Dk[Y,X]{⋆xC3t
k
(1) ⋆ xC3t+1

k
(1)} ∪ Dk[X,Y ]{xC3t+1

k
(1) ⋆ xC3t+2

k
(1) ⋆}

)

c4k =

n/3−1
⋃

t=0

(

Dk[Y,X]{⋆xC3t+1

k
(1) ⋆ xC3t+2

k
(1)} ∪ Dk[X,Y ]{xC3t+2

k
(1) ⋆ xC3t+3

k
(1) ⋆}

)

c5k =

n/3−1
⋃

t=0

(

Dk[Y,X]{⋆xC3t+2

k
(1) ⋆ xC3t+3

k
(1)} ∪ Dk[X,Y ]{xC3t+3

k
(1) ⋆ xC3t+4

k
(1) ⋆}

)

In Figure 4, we give the representation on X of c3k, where the vertices of X are sorted along

Ck. A shift of one vertex on the right side (modulo n) of the sets of paths gives the representation

of c4k, for the same k. And a shift of two vertices gives the representation of c5k. Then, note that

every path of Dk[X,X] belongs to one of the class c3k, c4k or c5k. For k ∈ {0, . . . , n − 1}, we also

define c1k = Sk[Y, Y ]. Now, we pack the remaining paths of length 1 and 2 in classes c2k according

to the value of f .

• If 1 ≤ f ≤ ⌈n/2⌉ − 2, for 0 ≤ k ≤ f , we fix:

c2k = Sk[X,X]

11
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+

− −

+ +

−

x
C  (1)

k
2 x

C  (1)
k
4x

C  (1)
k
3 x

C  (1)
k
5

+

− −

+ +

−

x
C     (1)

k
n−2 x

C     (1)
k
n−1x

C     (1)
k
n−3x

k
C  (1)

D [X,Y]

x
1

+

− −

+ +

−

[Y,X]D [X,Y]D [Y,X]D [X,Y]D [Y,X]D
k k k k kk

Figure 4: The representation on X of the color class c3k, where the vertices of X are sorted along

Ck.

All paths of D0 have not been used in the sets c10 ∪ c20 ∪ ⋃f
k=1{c1k, c2k, c3k, c4k, c5k} (sole

D0{M⌈n/2⌉},D0{M1+⌈n/2⌉}, . . . ,D0{Mf+⌈n/2⌉} are used). So, we put the remaining paths

of D0 in a class c30, and we obtain, in this case, wf (K
⋆
n,n) = 5f + 3.

• If ⌈n/2⌉ − 1 ≤ f ≤ n − 2, we have enough space to pack the paths of length one in

the other classes. Indeed, c10 ∪ c20 ∪
⋃f

k=1{c1k, c3k, c4k, c5k} does not contain the direct paths

D0{Mf+1+⌈n/2⌉},D0{Mf+2+⌈n/2⌉}, . . . ,D0{M⌈n/2⌉−1}, with n ≤ f+1+⌈n/2⌉ ≤ n+⌈n/2⌉−
1 (note that indices of Mi are computed modulo n). So, for 0 ≤ k ≤ f , we set:

c2k = Sk[X,X] if f + 1 + ⌈n/2⌉ − n ≤ k ≤ ⌈n/2⌉ − 1

c2k = Sk[X,X] else

So, all paths of D0 are used, and we obtain wf (K
⋆
n,n) = 5f + 2.

• If f = n − 1, we should save another color. This time, all paths of length 1 are packed

in
⋃n−1

k=0 c2k and the second saved color is obtained by optimally packing the set of paths

{Sk[X,X] : 0 ≤ k ≤ n − 1} using only n − 1 colors. First, we complete the color class

c21. We start by covering all the arcs beginning at x1 and all the arcs ending at x2, which

can be done by placing in c21 all the paths from x1 to x2:
⋃n−1

i=0 Si[X,X]{x1yA(1,2)+ix2}
(corresponding to the paths of

⋃n−1
i=0 Si[X,X] which use the value A(1, 2) in the matrix

A). Then, we focus on the arcs beginning at x2 and the arcs ending at x3 using the

paths:
⋃n−1

i=0 Si[X,X]{x2yA(2,3)+ix3} (paths using A(2, 3)). Subsequently, we cover the

arcs beginning at xp and the arcs ending at xp+1 for p = 1, 2, . . . , n (corresponding to all

paths using values A(p, p + 1) in A). So, c21 forms a color class which covers exactly once

all arcs of K⋆
n,n. Once c21 is complete, we proceed in the same way to obtain c22, using, this

time, for p = 1, 2, . . . , n, the paths of
⋃n−1

i=0 Si[X,X] obtained through the values A(p, p+2)

12
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to cover the arcs from xp and those to xp+2.

In general way, 1 ≤ k ≤ n − 1, c2k is constructed using the paths obtained through the

values A(p, p + k), for p = 1, 2, . . . , n. More precisely, we define:

c2k =
n⋃

j=1

n−1⋃

i=0

Si[X,X]{xj ⋆ xj+k}

Finally, we obtain the color classes {c10} ∪ ⋃n−1
k=1{c1k, c2k, c3k, c4k, c5k} which give the optimal

value for the optical index: wf (K
⋆
n,n) = 5f + 1.

4.5 Optical index in case n ≡ 1 (mod 3)

This time a color class cannot be composed with only paths of length 3. For 1 ≤ k ≤ n − 1, we

pack together a maximum number of paths of length 3 (i.e., from Dk) in classes c3k, c4k and c5k,

which we supplement with paths of length 2 from c1k (i.e., from Sk). Consequently, c1k contains

the main part of paths of length 2 and the remaining paths of length 3, which is possible as soon

as n ≥ 3. Precisely, for n ≥ 3, we construct c10 = S0[Y, Y ], and, for 1 ≤ k ≤ n − 1, we set:

c3k =

[ (n−1)/3−1
⋃

t=0

(

Dk[Y,X]{⋆xC3t+1

k
(1) ⋆ xC3t+2

k
(1)} ∪ Dk[X,Y ]{xC3t+2

k
(1) ⋆ xC3t+3

k
(1) ⋆}

)
]

∪

[

Sk[Y, Y ]{⋆x1 ⋆}
]

c4k =

[ (n−1)/3−1
⋃

t=0

(

Dk[Y,X]{⋆xC3t+2

k
(1) ⋆ xC3t+3

k
(1)} ∪ Dk[X,Y ]{xC3t+3

k
(1) ⋆ xC3t+4

k
(1) ⋆}

)
]

∪

[

Sk[Y, Y ]{⋆xCk(1) ⋆}
]

c5k =

[
(n−1)/3−1

⋃

t=0

(

Dk[Y,X]{⋆xC3t+3

k
(1) ⋆ xC3t+4

k
(1)} ∪ Dk[X,Y ]{xC3t+4

k
(1) ⋆ xC3t+5

k
(1) ⋆}

)
]

∪

[

Sk[Y, Y ]{⋆xC2
k
(1) ⋆}

]

c1k =

[
(

Sk[Y, Y ]
)

\
(

Sk[Y, Y ]{⋆x1 ⋆} ∪ Sk[Y, Y ]{⋆xCk(1) ⋆} ∪ Sk[Y, Y ]{⋆xC2
k
(1) ⋆}

)
]

∪

13
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[

Dk[Y,X]{⋆x1 ⋆ xCk(1)} ∪ Dk[X,Y ]{xCk(1) ⋆ xC2
k
(1) ⋆}

]

As previously, Figure 5 shows the representation on X of c3k, where the vertices of X are

sorted along Ck. A shift of one vertex on the right (modulo n) of the sets of paths gives the

representation of c4k for the same k. And a shift of two vertices gives the representation of c5k.

+

x
C  (1)

k
2 x

C  (1)
k
4x

C  (1)
k
3 x

C  (1)
k
5 x

C     (1)
k
n−2 x

C     (1)
k
n−1x

C     (1)
k
n−3x

k
C  (1)

x
1

+

− −

+ +

−

+ +

−

+

− −

+

−

+

− −

[Y,Y]S
k

D [X,Y][Y,X]D [Y,X]D D [X,Y][Y,X]D
k k k k k

Figure 5: The representation on X of the color class c3k, where the vertices of X are sorted along

Ck.

Figure 6 gives the representation on X of the color classes c1k. Note that c1k is well defined

only if n ≥ 3.

+

−

+

−

x
C  (1)

k
4x

C  (1)
k
3x

1
x

C  (1)
k
2 x

C     (1)
k
n−3 x

C     (1)
k
n−2 x

C     (1)
k
n−1

+ +

−

k[Y,Y]S k[Y,Y]S k[Y,Y]S k[Y,Y]S k[Y,Y]S

+

−

+

−

+

−

+

− −

x
k

C  (1)

[Y,X]D [X,Y]D
k k

Figure 6: The representation on X of the color class c1k, where the vertices of X are sorted along

Ck.

Now, the exact optical index will be obtained by packing the remaining paths of length 1

and 2, as done previously: the classes c2k for 0 ≤ k ≤ f are defined exactly as in the case n ≡ 0

(mod 3). Indeed, even if the definitions of classes c1k, c3k, c4k and c5k have changed, the use of the

paths D0{Mi} is still the same: for every k, 0 ≤ k ≤ f , we have D0{Mk} ⊂ c1k ∪ c3k ∪ c4k ∪ c5k.

Finally, we obtain:

• If 1 ≤ f ≤ ⌈n/2⌉ − 2, wf (K
⋆
n,n) = 5f + 3.

• If ⌈n/2⌉ − 1 ≤ f ≤ n − 2, wf (K
⋆
n,n) = 5f + 2.

14
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• And, if f = n − 1, wf (K
⋆
n,n) = 5f + 1.

4.6 Optical index in case n ≡ 2 (mod 3)

We proceed as in case n ≡ 1 (mod 3), except that this time we supplement each class of paths of

length 3 with two sets of paths from Sk[Y, Y ]. Conversely, the classes c1k contain the remaining

paths of Sk[Y, Y ] and 4 sets of paths of length 3 from Dk, provided that n ≥ 6. Precisely, for

n ≥ 6, we construct c10 = S0[Y, Y ], and for 1 ≤ k ≤ n − 1, we set:

c3k =

[ (n−2)/3−1
⋃

t=0

(

Dk[Y,X]{⋆xC3t+2

k
(1) ⋆ xC3t+3

k
(1)} ∪ Dk[X,Y ]{xC3t+3

k
(1) ⋆ xC3t+4

k
(1) ⋆}

)
]

∪

[

Sk[Y, Y ]{⋆x1 ⋆} ∪ Sk[Y, Y ]{⋆xCk(1) ⋆}
]

c4k =

[ (n−2)/3−1
⋃

t=0

(

Dk[Y,X]{⋆xC3t+4

k
(1) ⋆ xC3t+5

k
(1)} ∪ Dk[X,Y ]{xC3t+5

k
(1) ⋆ xC3t+6

k
(1) ⋆}

)
]

∪

[

Sk[Y, Y ]{⋆xC2
k
(1) ⋆} ∪ Sk[Y, Y ]{⋆xC3

k
(1) ⋆}

]

c5k =

[ (n−2)/3−1
⋃

t=0

(

Dk[Y,X]{⋆xC3t+6

k
(1) ⋆ xC3t+7

k
(1)} ∪ Dk[X,Y ]{xC3t+7

k
(1) ⋆ xC3t+8

k
(1) ⋆}

)
]

∪

[

Sk[Y, Y ]{⋆xC4
k
(1) ⋆} ∪ Sk[Y, Y ]{⋆xC5

k
(1) ⋆}

]

c1k =

[
(

Sk[Y, Y ]
)

\
(

Sk[Y, Y ]{⋆x1 ⋆} ∪ Sk[Y, Y ]{⋆xCk(1) ⋆} ∪ Sk[Y, Y ]{⋆xC2
k
(1) ⋆}∪

Sk[Y, Y ]{⋆xC3
k
(1) ⋆} ∪ Sk[Y, Y ]{⋆xC4

k
(1) ⋆} ∪ Sk[Y, Y ]{⋆xC5

k
(1) ⋆}

)
]

∪

[

Dk[Y,X]{⋆x1 ⋆ xCk(1)} ∪ Dk[X,Y ]{xCk(1) ⋆ xC2
k
(1) ⋆}∪

Dk[Y,X]{⋆xC3
k
(1) ⋆ xC4

k
(1)} ∪ Dk[X,Y ]{xC4

k
(1) ⋆ xC5

k
(1) ⋆}

]

15
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Once again, we give in Figure 7 the representation on X of c3k, assuming that vertices of X

are sorted along Ck. A shift of two vertices on the right side (modulo n) of the sets of paths gives

the representation of c4k, for the same k. And a shift of four vertices gives the representation of

c5k.
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C     (1)
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C     (1)
k
n−3x

k
C  (1)

x
1

[Y,Y]S
k

[Y,Y]S
k

+

− −

+ +

−

D [X,Y][Y,X]D [Y,X]D
k k k

+

− −

+ +

−

D [X,Y][Y,X]D
k k

+

−

Figure 7: The representation on X of the color class c3k, where the vertices of X are sorted along

Ck.

Figure 8 gives the representation on X of the color classes c1k. Note that c1k is well defined

only if n ≥ 6.
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+

−

+ +
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x
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1
x
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k
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C     (1)
k
n−1x

C     (1)
k
n−2x

C  (1)
k
5 x

C  (1)
k
6

[Y,X]D [X,Y]D
k k

[Y,X]D [X,Y]D
k k k[Y,Y]S k[Y,Y]S k[Y,Y]S

x
k

C  (1)

Figure 8: The representation on X of the color class c1k, where the vertices of X are sorted along

Ck.

To conclude, the classes c2k for 0 ≤ k ≤ f are defined exactly as in the cases n ≡ 0 (mod 3)

and n ≡ 1 (mod 3). Once again, the paths D0{Mk} are used as previously, and we obtain:

• If 1 ≤ f ≤ ⌈n/2⌉ − 2, wf (K
⋆
n,n) = 5f + 3.

• If ⌈n/2⌉ − 1 ≤ f ≤ n − 2, wf (K
⋆
n,n) = 5f + 2.

• And, if f = n − 1, wf (K
⋆
n,n) = 5f + 1.
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4.7 Remaining particular cases

As previously noted, five cases were not treated in the previous study: n = 2 because of the

non-existence of a Latin square of order 2, n = 4 and n = 6 due to the exception to Tillson’s

Theorem and n = 1 and n = 5, where the general techniques for n = 1 mod 3 and n = 2

mod 3 fail. For all of these cases, we provide routings that give, for every f , 0 ≤ f ≤ n − 1,

wf (K
⋆
n,n) = πf (K

⋆
n,n). These cases illustrate the above-mentioned general method and are

studied in an appendix, available at: http://www.lirmm.fr/~bessy/publis.html.

Acknowledgment

We thank Jean-Claude Bermond for introducing the problem to us and for motivating our

research.

References

[1] B. Beauquier, J.-C. Bermond, L. Gargano, P. Hell, S. Pérennes, and U. Vaccaro, Graph
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Appendix

A Routing in K
⋆
1,1

We are in the case n ≡ 1 (mod 3), but the general decomposition is valid for n ≥ 3. However,

here, there is just one value of f to study: f = 0 and the direct routing immediately gives

w0(K
⋆
1,1) = π0(K

⋆
1,1) = 1.

B Routing in K
⋆
2,2

For n = 2, there is no idempotent Latin square of order 2, so we provide precisely the routing.

• For f = 0, D0 forms a color class, and we choose the set of pairwise arc-disjoint paths of

length 2 given by S0 = {x1y1x2, x2y2x1, y1x1y2, y2x2y1} to form the second color class. So,

we obtain w0(K
⋆
2,2) = π0(K

⋆
2,2) = 2.

• For f = 1, we define S1 = {x1y2x2, x2y1x1, y1x2y2, y2x1y1}, which contains pairwise arc-

disjoint paths, and D1 = {xiyj+1xi+1yj, yixj+1yi+1xj : 1 ≤ i ≤ 2, 1 ≤ j ≤ 2} (which

corresponds to usual definition of D1). The color classes are defined by: c1 = S0, c2 = S1

and c(i,j) = D0{xiyj, yjxi} ∪ D1{xiyj+1xi+1yj, yjxi+1yj+1xi} for 1 ≤ i ≤ 2 and 1 ≤ j ≤ 2.

Finally, we obtain w1(K
⋆
2,2) = π1(K

⋆
2,2) = 6.

C Routing in K
⋆
4,4

The case n = 4 is the first exception to Tillson’s Theorem of decomposition, so we define in

Figure 9 the partition of the arcs of K⋆
4 . Then, for the different values of f , the routings are

defined as previously, in Section 4.1.

• For f = 0, f = 1, and f = 2, since C1 and C2 are disjoint Hamiltonian circuits of K⋆
4 , the

routings are defined exactly as in the general case n ≡ 1 (mod 3). So, in these cases, we

obtain wf (K
⋆
4 ) = πf (K

⋆
4 ).

• For f = 3, we need to pack the paths of R3. We differently organize the arcs of K⋆
4 in

order to obtain a suitable decomposition of the paths. The scheme of the routing is given

Figure 10. The arcs are labeled with the name of the circuit Ci they belong to.
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2 3

4 1

2 3

41

2 3

4

C 1 C 2 C 3

Figure 9: The chosen decomposition of the arcs of K⋆
4 .
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C 3

2
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1

C 2

Figure 10: New decomposition of the arcs of K⋆
4 in case f = 3.

Now, using these circuits, we route almost as in general case n ≡ 1 (mod 3). Using paths

of some Dk and Sk[Y, Y ], each one of these new circuits gives three color classes. The

remaining paths, mainly from Sk[X,X], are packed together to form the four remaining

colors.

More precisely, the first circuit provides the following classes:

c1 = D1[Y,X]{⋆x1 ⋆ x2} ∪ D1[X,Y ]{x2 ⋆ x3 ⋆} ∪ S1[Y, Y ]{⋆x4 ⋆}

c2 = D1[Y,X]{⋆x2 ⋆ x3} ∪ D3[X,Y ]{x3 ⋆ x1 ⋆} ∪ S2[Y, Y ]{⋆x4 ⋆}

c3 = D3[Y,X]{⋆x3 ⋆ x1} ∪ D1[X,Y ]{x1 ⋆ x2 ⋆} ∪ S3[Y, Y ]{⋆x4 ⋆}

From the second circuit, we obtain:

c4 = D3[Y,X]{⋆x1 ⋆ x3} ∪ D1[X,Y ]{x3 ⋆ x4 ⋆} ∪ S1[Y, Y ]{⋆x2 ⋆}

c5 = D1[Y,X]{⋆x3 ⋆ x4} ∪ D1[X,Y ]{x4 ⋆ x1 ⋆} ∪ S2[Y, Y ]{⋆x2 ⋆}

c6 = D1[Y,X]{⋆x4 ⋆ x1} ∪ D3[X,Y ]{x1 ⋆ x3 ⋆} ∪ S3[Y, Y ]{⋆x2 ⋆}

From the third circuit, we obtain:

c7 = D2[Y,X]{⋆x1 ⋆ x4} ∪ D3[X,Y ]{x4 ⋆ x2 ⋆} ∪ S1[Y, Y ]{⋆x3 ⋆}
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c8 = D3[Y,X]{⋆x4 ⋆ x2} ∪ D2[X,Y ]{x2 ⋆ x1 ⋆} ∪ S2[Y, Y ]{⋆x3 ⋆}

c9 = D2[Y,X]{⋆x2 ⋆ x1} ∪ D2[X,Y ]{x1 ⋆ x4 ⋆} ∪ S3[Y, Y ]{⋆x3 ⋆}

Finally, we obtain from the fourth circuit:

c10 = D3[Y,X]{⋆x2 ⋆ x4} ∪ D2[X,Y ]{x4 ⋆ x3 ⋆} ∪ S1[Y, Y ]{⋆x1 ⋆}

c11 = D2[Y,X]{⋆x4 ⋆ x3} ∪ D2[X,Y ]{x3 ⋆ x2 ⋆} ∪ S2[Y, Y ]{⋆x1 ⋆}

c12 = D2[Y,X]{⋆x3 ⋆ x2} ∪ D3[X,Y ]{x2 ⋆ x4 ⋆} ∪ S3[Y, Y ]{⋆x1 ⋆}

The next class uses S0[Y, Y ] and the last matching of D0:

c13 = S0[Y, Y ]

To conclude, as previously in the case n ≡ 0 (mod 3), we pack the paths of
⋃3

k=0 Sk[X,X]

in three color classes:

c14 =

4⋃

j=1

3⋃

i=0

Si[X,X]{xj ⋆ xj+1}

c15 =
4⋃

j=1

3⋃

i=0

Si[X,X]{xj ⋆ xj+2}

c16 =
4⋃

j=1

3⋃

i=0

Si[X,X]{xj ⋆ xj+3}

Finally, we obtain w3(K
⋆
4,4) = π3(K

⋆
4,4) = 16.

D Routing in K
⋆
5,5

We are in the case n ≡ 2 (mod 3), but the general decomposition is only valid for n ≥ 6. Indeed,

for every k, we need six sets of Sk[Y, Y ] centered on six different vertices to complete the three

color classes constructed from the paths of Dk. In the case n = 5, we need to use paths from

different sets Sk[Y, Y ] to complete the color classes constructed from a single set Dk.

To simplify the notation, we fix, in Figure 11, a decomposition of the arcs of K ⋆
5 . Using this

decomposition we define the routing sets as previously, in Section 4.1.

Now, we detail how to pack the paths for all values of f .
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Figure 11: An explicit decomposition of the arcs of K ⋆
5 .

• For f = 0, as usual, we set c10 = D0, c20 = S0[X,X] and c30 = S0[Y, Y ] and have w0(K
⋆
5,5) =

π0(K
⋆
5,5) = 3.

• For f = 1, we use paths from S0[Y, Y ] and S1[Y, Y ] to complete the colors obtained with

paths from D1. More precisely, we define for k = 1, . . . , 5:

ck1 = D1[Y,X]{⋆xk ⋆ xk+1} ∪ D1[X,Y ]{xk+1 ⋆ xk+2 ⋆}∪

S0[Y, Y ]{⋆xk+3 ⋆} ∪ S1[Y, Y ]{⋆xk+4 ⋆}

The remaining paths form the three color classes S0[X,X], S1[X,X] and D0{M0,M1,M2}
(D0{M3} and D0{M4} are respectively contained in S0[Y, Y ] and S1[Y, Y ]). So, we obtain

w1(K
⋆
5,5) = π1(K

⋆
5,5) = 8.

• For f = 2, the paths from D1 are packed as previously: for k = 1, . . . , 5 we use ck1 . The

paths from D2 form color classes with paths from S0[X,X] and S1[X,X]. We define, for

k = 1, . . . , 5:

ck2 = D2[X,Y ]{⋆ yk ⋆ yk−1} ∪ D2[Y,X]{yk−1 ⋆ yk−2 ⋆}∪

S0[X,X]{⋆ yk−3 ⋆} ∪ S1[X,X]{⋆ yk−4 ⋆}

The remaining paths form the two color classes S2[X,X] and S2[Y, Y ] (D0{M0}, D0{M1}
and D0{M2} are respectively contained in S0[X,X], S1[X,X] and S2[X,X]). So, we obtain

w2(K
⋆
5,5) = π2(K

⋆
5,5) = 12.

• For f = 3, we use the same method to pack the paths from D3 with paths from S2[Y, Y ]

and S3[Y, Y ]. For the paths from D1 and D2, we use c11, . . . , c
5
1 and c12, . . . , c

5
2 and, for

22



2.5. WAVELENGTHS DIVISION MULTIPLEXING NETWORKS 103

k = 1, . . . , 5, we define:

ck3 = D3[Y,X]{⋆xk ⋆ xk+2} ∪ D3[X,Y ]{xk+2 ⋆ xk+4 ⋆}∪

S2[Y, Y ]{⋆xk+1 ⋆} ∪ S3[Y, Y ]{⋆xk+3 ⋆}

The remaining paths form the two color classes S2[X,X] and S3[X,X] So, we obtain

w3(K
⋆
5,5) = π3(K

⋆
5,5) = 17.

• Finally, for f = 4, we have to change color classes. Indeed, this time, paths from Di

are packed with sets of type (
⋃4

p=0 Sp[X,X]{xl ⋆ xm})∪ (
⋃4

p=0 Sp[X,X]{xm ⋆ xl}) which

saturate exactly the in and out-neighborhood of the vertices xl and xm. Precisely, we

define, for k = 1, . . . , 5:

ck1 = D1[Y,X]{⋆xk ⋆ xk+1} ∪ D1[X,Y ]{xk+1 ⋆ xk+2 ⋆}∪

(

4⋃

p=0

Sp[X,X]{xk+3 ⋆ xk+4}) ∪ (

4⋃

p=0

Sp[X,X]{xk+4 ⋆ xk+3})

ck2 = D2[X,Y ]{⋆ yk ⋆ yk−1} ∪ D2[Y,X]{yk−1 ⋆ yk−2 ⋆}∪

(
4⋃

p=0

Sp[Y, Y ]{yk−3 ⋆ yk−4}) ∪ (
4⋃

p=0

Sp[Y, Y ]{yk−4 ⋆ yk−3})

ck3 = D3[Y,X]{⋆xk ⋆ xk+2} ∪ D3[X,Y ]{xk+2 ⋆ xk+4 ⋆}∪

(

4⋃

p=0

Sp[X,X]{xk+1 ⋆ xk+3}) ∪ (

4⋃

p=0

Sp[X,X]{xk+3 ⋆ xk+1})

ck4 = D4[X,Y ]{⋆ yk ⋆ yk−2} ∪ D4[Y,X]{yk−2 ⋆ yk−4 ⋆}∪

(
4⋃

p=0

Sp[Y, Y ]{yk−1 ⋆ yk−3}) ∪ (
4⋃

p=0

Sp[Y, Y ]{yk−3 ⋆ yk−1})

The remaining paths are exactly the direct paths, D0. So, we obtain w4(K
⋆
5,5) = π4(K

⋆
5,5) =

21.

23



104 CHAPTER 2. MATERIALS

E Routing in K
⋆
6,6

The case n = 6 is the second exception to Tillson’s Theorem of decomposition, so we define in

Figure 12 the partition of the arcs of K⋆
6 . Then, for the different values of f , the routings are

defined as previously, in Section 4.1.
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Figure 12: The chosen decomposition of the arcs of K ⋆
6 .

As all the circuits involved in this decomposition have length 3 or 6, the computation of

wf works exactly as in general case n ≡ 0 (mod 3). Finally, we obtain, for all f = 0, . . . , 5,

wf (K
⋆
6,6) = πf (K

⋆
6,6), which completes the proof of Theorem 4.
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2.6 A proof of Lehel’s Conjecture

Partitioning a graph into a cycle and an anticycle, a

proof of Lehel’s conjecture

Stéphane Bessy and Stéphan Thomassé∗

Abstract

We prove that every graph G has a vertex partition into a cycle and an anticycle (a cycle in the
complement of G). Emptyset, singletons and edges are considered as cycles. This problem was posed
by Lehel and shown to be true for very large graphs by ÃLuczak, Rödl and Szemerédi [7], and more
recently for large graphs by Allen [1].

Many questions deal with the existence of monochromatic paths and cycles in edge-colored complete
graphs. Erdős, Gyárfás and Pyber asked for instance in [3] if every coloring with k colors of the edges
of a complete graph admits a vertex partition into k monochromatic cycles. In a recent paper, Gyárfás,
Ruszinkó, Sárközy and Szemerédi [5] proved that O(k log k) cycles suffice to partition the vertices. This
question was also studied for other structures like complete bipartite graphs by Haxell [6]. One case
which received a particular attention was the case k = 2, where one would like to cover a complete graph
which edges are colored blue and red by two monochromatic cycles. A conjecture of Lehel, first cited
in [2], asserts that a blue and a red cycle partition the vertices, where emptyset, singletons and edges
are considered as cycles. This was proved for sufficiently large n by ÃLuczak, Rödl and Szemerédi [7], and
more recently by Allen [1] with a better bound. Our goal is to completely answer Lehel’s conjecture.

Our starting point is the proof of Gyárfás of the existence of two such cycles covering the vertices and
intersecting on at most one vertex (see [4]). For this, he considered a longest path consisting of a red
path followed by a blue path. The nice fact is that such a path P is hamiltonian. Indeed, if a vertex v is
not covered, it must be joined in blue to the origin a of P and in red to the end b of P . But then, one can
cover the vertices of P and v using the edge ab. Consequently, there exists a hamiltonian cycle consisting
of two monochromatic paths. Hence, there exists a monochromatic cycle C, of size at least two, and a
monochromatic path P with different colors partitioning the vertex set. This is the key-structure for the
proof of our main result:

Theorem 1 Every complete graph with red and blue edges has a vertex partition into a red cycle and a
blue cycle.

Proof. Assume that C and P are chosen as above in such a way that C has maximum size and has
color, say, blue. We will show that we can either increase the length of C or prove the existence of our
two cycles. If P has less than three vertices, we are done. We denote by x and y the endvertices of P .
Note that if x and y are joined by a red edge, we have our two cycles. We then assume that xy is a blue
edge. A vertex of C is red if it is joined to both x and y by red edges. The other vertices of C are blue.
Observe that C cannot have two consecutive blue vertices, otherwise we would extend C. Moreover, the
two neighbors in C of a red vertex v cannot be joined by a blue edge, since we could add v to the path P
to form a red cycle. Similarly, if C has two or three vertices, one of them is red and could be added to P
to form a red cycle. So, in particular, C has at least four vertices. Observe also that |C| > |P | since we

∗Université Montpellier 2 - CNRS, LIRMM, 161 rue Ada, 34392 Montpellier Cedex 5, France, bessy,thomasse@lirmm.fr
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could give a red vertex to P to form a better partition into a cycle and a path. In this proof, removing
a vertex x from a path or a cycle Q is denoted by Q \ x, whereas removing an edge xy is denoted by
Q− xy.

Claim 1 There are no successive blue, red, blue, red, blue vertices in C.

Proof. Assume that b, r, b′, r′, b′′ is such a sequence (with possibly b = b′′) and that, say, xb′ is a blue
edge. Let x′ be the successor of x on the red path P . We claim that x′r is a blue edge. Otherwise, either
bx is a blue edge in which case (C \ r)∪x is a blue cycle and (P \x)∪ r is a red cycle, or by is a blue edge
and then (P \ {x, y})∪ r is a red path and (C \ r)∪ {x, y} is a blue cycle longer than C, a contradiction.
Similarly, x′r′ is a blue edge. Since b′′ is blue, there exists a blue path P ′ = b′xb′′ or P ′ = b′xyb′′.
Replacing the path brb′r′b′′ in C by brx′r′b′P ′b′′ would increase the length of C, a contradiction. ¥

When acb are consecutive vertices of C and c is a red vertex, we call ab a special edge. Observe that
special edges are red. We denote by Gs the graph on the same vertex set as C whose edges are the special
edges. Observe that the maximum degree of Gs is two. It appears that the proof is easier if we have
several blue vertices in C. Let us prove for a start that there exists at least one.

Claim 2 There exists a blue vertex in C.

Proof. If not, Gs is either a cycle or the union of two cycles, depending if C has an odd or an even
number of vertices. If C contains a red hamiltonian path, we can form, with P , a hamiltonian red cycle
of the whole graph. Therefore Gs is the union of two red cycles W and Z, alternating along C, with the
same cardinality and no red edge between them. We denote by x′ and y′ the respective neighbors of x
and y in P , with possibly x′ = y′ if |P | = 3. There is no red edge from x′ to W , otherwise, (P \ x)WxZ
forms a hamiltonian red cycle. Similarly, there is no red edge from x′ to Z or from y′ to W ∪ Z.

• If |P | = 3, then W ∪ x ∪ Z ∪ y is spanned by a red cycle and x′ forms a blue one.

• If |P | = 4, then pick a vertex w of W and a vertex z of Z, consecutive along C, and form a red
cycle wxzy. To conclude, partition the remaining blue path of C into two subpaths P ′ and P ′′ and
form the blue cycle x′P ′y′P ′′.

Now we assume that P has at least five vertices. We denote by x′′ and y′′ the respective neighbors of
x′ and y′ on P . There is no red edge from x′′ to W , otherwise (P \ {x′, x})WxZ forms a red cycle and x′

forms a blue one. Similarly, there are all blue edges from x′′ to Z and from y′′ to W ∪ Z. Observe that
xx′′ is a blue edge, otherwise P \ x′ forms a red path and C ∪ x′ is spanned by a blue cycle longer than
C, a contradiction. Similarly, yy′′ is a blue edge.

• Assume that |P | = 5, in particular y′′ = x′′ and |C| ≥ |P |+1 = 6. Pick a vertex w in W and a vertex
z in Z. Form the red cycle wxzy, a blue cycle covering the blue bipartite graph (W \ w) ∪ (Z \ z)
and finally insert in this blue cycle, of length more than three, the vertices x′, y′ and x′′.

• If |P | ≥ 6, we insert the three blue paths x′, y′ and x′′xyy′′ in C to form a blue cycle longer than
C, a contradiction. ¥

Now, fix an orientation of the cycle C. We define the set L of left vertices as the vertices which are
left neighbors in C of some blue vertex. We define similarly the set R of right vertices. Note that L and
R are not empty, may intersect and contain only red vertices.

Claim 3 The set of left (resp. right) vertices spans a red clique.
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Proof. Assume for contradiction that there exists a blue edge joining two left red vertices u and v. We
denote by u′ and v′ their respective right blue neighbors in C. There exists a path Q from u′ to v′ in
{u′, x, y, v′} with length at least two. Now (C − {uu′, vv′}) ∪Q ∪ uv is a blue cycle which is longer than
C, a contradiction. ¥

Every connected component of Gs which is a path has an endvertex in L and the other endvertex in
R. Furthermore, if Gs has a cycle Z, it is unique and it contains all the blue vertices of C. In this case,
Z cannot contain all the vertices of C, for instance, the neighbor of a blue vertex in C does not belong to
Z. Indeed, if it exists, Z is simply obtained by taking all the vertices of C at even distance of some blue
vertex, so Z contains every other vertex on C, and |C| is even. Hence, the vertices of the whole graph
are partitioned into a red clique L, a red clique R, a set S = C \ (R ∪L∪Z) which is covered by a set S
of |R| disjoint RL paths of red edges, the original path P , and (possibly) the cycle Z.

Claim 4 There exists a red path which spans S ∪R ∪ L. More precisely:
- If |S| is even, for all distinct vertices of R (resp. L) x and y there is a red path from x to y which spans
S ∪R ∪ L.
- If |S| is odd, then for all x ∈ R and y ∈ L such that x and y are not the endvertices of a same path of
S, there is a red path from x to y which spans S ∪R ∪ L.

Proof. We give a constructive proof. Denote by Px (resp. Py) the path of S which contains x (resp.
y). Starting from x, we follow the path Px until its end. At the end of a path of S, R and L being red
cliques, we go to the beginning of a unvisited path of S, which is not Py, and follow it. When the process
stops, using a red edge of R or L, we go to the endvertices of Py, which is not y (because of the parity
of |S|, and terminate the spanning path on y. ¥

A direct corollary of Claim 4 is that if Z does not exist, one can cover C, whose vertices are exactly
S ∪ R ∪ L, by a red path P ′ ending in two red vertices. Hence P ∪ P ′ forms a red hamiltonian cycle.
Thus we can assume that Z exists. Observe that by Claim 1, every blue vertex of Z is the neighbor in
Z of a red vertex.

Claim 5 Every blue vertex is joined in blue to R ∪ L.

Proof. Indeed, assume for contradiction that br is a red edge where b is a blue vertex and r belongs to
R. Let z be a red vertex which is consecutive to b in Z. By Claim 4, there exists a red path P ′ starting at
r, covering S ∪R∪L, and terminating on a red vertex of C. Now, (Z − zb)∪P ∪P ′ forms a hamiltonian
red cycle. ¥

Claim 6 There is a red cycle W spanning S ∪R ∪ L.

Proof. If |S| is even, then Claim 4 directly gives the result. So, we assume that |S| is odd.
If there is a unique blue vertex b in C, the graph Gs consists of the union of Z and a unique path P ′

(|S| = 1) whose endvertices u and v are the neighbors of b in C. If uv is a red edge, we are done. So,
assume that uv is a blue edge, in particular |C| > 4 otherwise uv would be a (red) edge of Gs. Denote
by u′ the second neighbor of u in C and by u′′ the second neighbor of u′ in C (and thus the successor
of u in P ′). If bu′′ is a blue edge, then replacing in C the path vbuu′u′′ by vubu′′ forms a blue cycle and
P ∪u′ forms a red cycle. Thus bu′′ is a red edge, in which case we form a red cycle (Z− bu′)∪ (P ′ \u)∪P
and the singleton u as a blue cycle.

Assume now that C has at least two blue vertices. As |S| is odd, by Claim 4, we just have to prove
that there exists a red edge between a vertex of R and a vertex of L which are not the endvertices of
the same path of S. For this, we consider a subpath I of C containing two blue vertices forming the
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endvertices of I. By Claim 1 and the fact that there exists at least two blue vertices, there is such an
I = br1 . . . rkb

′, wihere k > 1 and r1, . . . , rk are red vertices. By Claim 5, brk and b′r1 are blue edges, we
can replace I by brkrk−1 . . . r1b

′. Hence, r1 becomes a left vertex. Thus by Claim 3, r1 is joined in red
to all the vertices of R ∪ L, except possibly rk. ¥

Now, if a blue vertex is joined in red to any vertex of S ∪R ∪ L, we can conclude as in Claim 5.

Claim 7 There is no red edge between W and Z.

Proof. Assume that zw is a red edge with z ∈ Z and w ∈ W . Let z′ be the first vertex to the right
of z in Z which is joined to W with at least a red edge (here z′ can be z). By the above remark, z′ is
a red vertex. Let A be the set of vertices between z and z′ in Z. Let B be the set of |A| consecutive
vertices to the right of w on the cycle W (recall that Z and W have the same size, hence B does not
contain w). Now, A∪B is a complete bipartite blue graph hence it has a blue spanning cycle. Moreover,
(Z \ A) ∪ (W \ B) is spanned by a path P ′ starting at z′ and ending in W . Both endvertices of P ′ are
red, thus P ∪ P ′ forms a red cycle. ¥

We now achieve the proof of the theorem. Let W be the red cycle w1 . . . wk and Z be the red cycle
z1 . . . zk, where z1 is a blue vertex such that, say, the edge xz1 is blue. Denote by y′ the neighbor of y
on P . There is no red edge between y′ and a vertex of Z. Otherwise, letting z be this vertex and Q be a
minimal path in Z from z to a red vertex of Z (Q has length zero or one). Denote by Q′ a red path of
W with same length as Q. Then, P ∪Q∪Q′ is spanned by a red cycle (by inserting Q between y′ and y
and inserting Q′ between x and y) and C \ (Q ∪Q′) is spanned by a blue one. Similarly, there is no red
edge between y′ and W , otherwise denote by w a red neighbor of y′ on W and by z a red vertex on Z.
Then, P ∪ w ∪ z is spanned by a red cycle and (Z \ z) ∪ (W \ w) is spanned by a blue one. Hence y′ is
linked in blue to W ∪ Z.

If |P | = 3, we choose two red vertices z and w respectively in Z and in W . Now, xzyw is a red cycle,
and ((W ∪ Z) \ {w, z}) ∪ y′ is spanned by a blue cycle. Finally, if |P | ≥ 4, we denote by y′′ the second
neighbor of y′ on P . The edge yy′′ is a blue one, otherwise, P \ y′ is a red path and C ∪ y′ is spanned by
a blue cycle longer than C. The edge y′′w1 is a blue one, otherwise for any red vertex z of Z, we would
span (P \ y′) ∪ w1 ∪ z by a red cycle and (C \ {w1, z}) ∪ y′ by a blue one. Now, starting with any blue
cycle covering W ∪Z which contains the subpath z1, w1, z2, we replace this path by z1, x, y, y

′′, w1, y
′, z2,

a contradiction to the maximality of C. ¥

We would like to thank P. Allen and A. Gyárfás for stimulating discussions.
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[7] T. ÃLuczak, V. Rödl and E. Szemerédi, Partitioning two-colored complete graphs into two
monochromatic cycles, Combinatorics, Probability and Computing, 7 (1998), 423–436.

5



110 CHAPTER 2. MATERIALS

2.7 A poly-kernel for 3-leaf power graph modification

Polynomial kernels for 3-leaf power

graph modification problems✩
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Abstract

A graph G = (V, E) is a 3-leaf power iff there exists a tree T the leaf set of which is V
and such that uv ∈ E iff u and v are at distance at most 3 in T . The 3-leaf power graph
edge modification problems, i.e. edition (also known as the closest 3-leaf power),
completion and edge-deletion are FPT when parameterized by the size of the edge set
modification. However, polynomial kernels were known for none of these three problems.
For each of them, we provide kernels with O(k3) vertices that can be computed in linear
time. We thereby answer an open problem first mentioned by Dom, Guo, Hüffner and
Niedermeier [9].

Key words: Algorithms, data-structures, FPT, kernel, graph modification problems,
leaf power

Introduction

The combinatorial analysis of experimental data-sets naturally leads to graph modifi-
cation problems. For example, extracting a threshold graph from a dissimilarity on a set
is a classical technique used in clustering and data analysis to move from a numerical to
a combinatorial data-set [1, 16]. The edge set of the threshold graph aims at represent-
ing the pairs of elements which are close to each another. As the dissimilarity reflects
some experimental measures, the edge set of the threshold graph may reflect some false
positive or negative errors. So for the sake of cluster identification, the edge set of the
threshold graph has to be edited in order to obtain a disjoint union of cliques. This
problem, known as cluster editing, is fixed-parameter tractable (see e.g. [12, 13, 25])
and efficient parameterized algorithms have been proposed to solve biological instances
with about 1000 vertices and several thousand edge modifications [2, 7]. So, motivated
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by the identification of some hidden combinatorial structures on experimental data-sets,
edge-modification problems cover a broad range of classical graph optimization problems,
among which completion problems, edition problems and edge-deletion problems (see [19]
for a recent survey). Precisely, for a given graph G = (V,E), in a completion problems,
the set F of modified edges is constrained to be disjoint from E, whereas in an edge dele-
tion problems F has to be a subset of E. If no restriction applies to F , then we obtain an
edition problem. Though most of the edge-modification problems turn out to be NP-hard
problems, efficient algorithms can be obtained to solve the natural parameterized version
of some of them. Indeed, as long as the number k of errors generated by the experimental
process is not too large, one can afford a time complexity exponential in k. A problem
is fixed parameterized tractable (FPT for short) with respect to parameter k whenever
it can be solved in time f(k) · nO(1), where f(k) is an arbitrary computable function.
Here, the natural parameterization is the number k = |F | of modified edges. The generic
question is thereby whether for fixed k, a given edge modification problem is tractable.
More formally:

Parameterized Π-modification Problem
Input: An undirected graph G = (V,E).
Parameter: An integer k > 0.
Question: Is there a subset F ⊆ V × V with |F | 6 k such that the graph G + F =
(V,E △ F ) satisfies Π.

This paper studies the parameterized version of edge modification problems and more
precisely the existence of a polynomial kernel. A problem is kernelizable if every instance
(G, k) can be reduced in polynomial time (using reduction rules) into an instance (G′, k′)
such that k′ 6 k and the size of G′ is bounded by a function of k. The membership to the
FPT complexity class is equivalent to the property of having a kernel (see [20] for example).
Having a kernel of small size is clearly highly desirable [15]. Indeed, preprocessing the
input in order to reduce its size while preserving the existence of a solution is an important
issue in the context of various applications ([15]). However, the equivalence mentioned
above only provides an exponential bound on the kernel size. For a parameterized problem,
the challenge is then to know whether it admits or not a polynomial - or even linear (in
k) - kernel (see e.g. [20]). The k-vertex cover problem is the classical example of a
problem with a linear kernel. Recently, parameterized problems (among which the k-
treewidth problem) have been shown to not have polynomial kernels [3] (unless some
collapse occurs in the computational complexity hierarchy).

This paper follows this line of research and studies the kernelization of edge-modification
problems related to the family of leaf powers, graphs arising from a phylogenetic recon-
struction context [17, 18, 21]. The goal is to extract, from a threshold graph G on a set
S of species, a tree T , whose leaf set is S and such that the distance between two species
is at most p in T iff they are adjacent in G (p being the value used to extract G from
dissimilarity information). If such a tree T exists, then G is a p-leaf power and T is its
p-leaf root. For p 6 5, the p-leaf power recognition is polynomial time solvable [5, 6],
whereas the question is still open for p strictly larger than 5. Parameterized p-leaf power
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edge modification problems have been studied so far for p 6 4. The edition problem for
p = 2 is known as the Cluster Editing problem for which the kernel size bound has
been successively improved in a series of recent papers [12, 13, 24], culminating in [14]
with a kernel with 4k vertices. For larger values of p, the edition problem is known as
the closest p-leaf power problem. For p = 3 and 4, the closest p-leaf power
problem is known to be FPT [10, 9], while its fixed parameterized tractability is still open
for larger values of p. However, the existence of a polynomial kernel for p 6= 2 remained
an open question [8, 11]. Though the completion and edge-deletion problems are FPT for
p 6 4 [9, 11], no polynomial kernel is known for p 6= 2 [14].

Our results. We prove that the closest 3-leaf power, the 3-leaf power com-
pletion and the 3-leaf power edge-deletion admit a kernel with O(k3) vertices.
We thereby answer positively to the open question of Dom, Guo, Hüffner and Nieder-
meier [11, 9].

Outlines. First section is dedicated to some known and new structural results of 3-leaf
powers and their related critical clique graphs. Section 2 describes the data-reduction
rules for the closest 3-leaf power problem. The kernels for the other two variants,
the 3-leaf power completion and the 3-leaf power edge-deletion problems, are
presented in Section 3.

1. Preliminaries

The graphs we consider in this paper are undirected and loopless. The vertex set of a
graph G is denoted by V (G), with |V (G)| = n, and its edge set by E(G), with |E(G)| = m
(or V and E when the context is clear). The open neighborhood of a vertex x is denoted
by NG(x) (or N(x)), and its closed neighborhood (i.e. NG(x)∪{x}) by N [x]. Two vertices
x and y of G are true twins if they are adjacent and N(x) = N(y). A subset S of vertices
is a module if for every distinct vertices x and y of S, N(x)\S = N(y)\S. Given a subset
S of vertices, G[S] denotes the subgraph of G induced by S. If H is a subgraph of G,
G \H stands for G[V (G) \ V (H)]. We write dG(u, v) the distance between two vertices
u and v in G. For a subset S ⊆ V , dS(u, v) denotes the distance between u and v within
G[S], and is set to ∞ if u and v are not connected in G[S]. A graph family F is hereditary
if for every graph G ∈ F , every induced subgraph H of G also belongs to F . For a set S
of graphs, we say that G is S-free if none of the graphs of S is an induced subgraph of G.

As the paper deals with undirected graphs, we abusively denote by X × Y the set of
unordered pairs containing one element of X and one of Y . Let G = (V,E) be a graph
and F be a subset of V × V , we denote by G+F the graph on vertex set V , the edge set
of which is E △ F (the symmetric difference between E and F ). Such a set F is called
an edition of G (we may also abusively say that G + F is an edition). We improperly
speak about edges of F , even if the elements of F are not all edges of G. A vertex v ∈ V
is affected by an edition F whenever F contains an edge incident to v. Given a graph
family F and given a graph G = (V,E), a subset F ⊆ V × V is an optimal F-edition of
G if F is a set of minimum cardinality such that G + F ∈ F . If we constrain F to be
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disjoint from E, we say that F is a completion, whereas if F is asked to be a subset of E,
then F is an edge deletion.

1.1. Critical cliques

The notions of critical clique and critical clique graph have been introduced in [18] in
the context of phylogenetic. More recently, they have been successfully used in various
modification problems such as Cluster Editing [14] and Bicluster Editing [24].

Definition 1.1. A critical clique of a graph G is a clique K which is a module and is
maximal under this property.

It follows from definition that the set K(G) of critical cliques of a graph G defines a
partition of its vertex set V .

Definition 1.2. Given a graph G = (V,E), its critical clique graph C(G) has vertex set
K(G) and edge set E(C(G)) with

KK ′ ∈ E(C(G)) ⇔ ∀ v ∈ K, v′ ∈ K ′, vv′ ∈ E(G)

Let us note that given a graph G, its critical clique graph C(G) can be computed in
linear time with modular decomposition algorithm (see [26] for example).

The following lemma was used in the construction of polynomial kernels for Cluster
Editing and Bicluster Editing problems in [24].

Lemma 1.3. Let G = (V,E) be a graph. If H is the graph G + {(u, v)} with (u, v) ∈
V × V , then |K(H)| 6 |K(G)|+ 4.

The next lemma shows that for a range of graph families, critical cliques are robust
under optimal edition.

Lemma 1.4. Let F be an hereditary graph family closed under true twin addition. For ev-
ery graph G = (V,E), there exists an optimal F-edition (resp. F-deletion, F-completion)
F such that every critical clique of G + F is the disjoint union of a subset of critical
cliques of G.

Proof. We prove the statement for the edition problem. Same arguments apply for edge
deletion and edge completion problems.

Let F be an optimal F -edition of G such that the number i of critical cliques of G
which are clique modules in H = G + F is maximum. Denote K(G) = {K1, . . . , Kc} and
assume that i < c (i.e K1, . . . , Ki are clique modules in H and Ki+1, . . . , Kc are no longer
clique modules in H). Let x be a vertex of Ki+1 such that the number of edges of F
incident to x is minimum among the vertices of Ki+1. Roughly speaking, we will modify
F by editing all vertices of Ki+1 like x. Let Hx be the subgraph H \ (Ki+1 \ {x}). As F
is hereditary, Hx belongs to F and, as F is closed under true twin addition, reinserting
|Ki+1| − 1 true twins of x in Hx results in a graph H ′ belonging to F . It follows that
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F ′ = E(G) △ E(H ′) is an F -edition of G. By the choice of x, we have |F ′| 6 |F |. Finally
let us remark that, now, K1, . . . , Ki and Ki+1 are clique modules of H ′, thus proving the
lemma. �

In other words, for an hereditary graph family F which is closed under true twin
addition and for every graph G, there always exists an optimal F -edition F (resp. F -
deletion, F -completion) such that :

1) every edge between two vertices of a critical clique of G is an edge of G+ F , and

2) between two distinct critical cliques K,K ′ ∈ K(G), either V (K)×V (K ′) ⊆ E(G+F )
or (V (K)× V (K ′)) ∩ E(G+ F ) = ∅.
¿From now on, every considered optimal edition (resp. deletion, completion) is sup-

posed to verify these two properties.

1.2. Leaf powers

Definition 1.5. Let T be an unrooted tree whose leaves are one-to-one mapped to the
elements of a set V . The k-leaf power of T is the graph T k, with T k = (V,E) where
E = {uv | u, v ∈ V and dT (u, v) 6 k}. We call T a k-leaf root of T k.

It is easy to see that for every k, the k-leaf power family of graphs satisfies the condi-
tions of Lemma 1.4. In this paper we focus on the class of 3-leaf powers for which several
characterizations are known.

Theorem 1.6. [4, 10] For a graph G, the following conditions are equivalent:

1. G is a 3-leaf power.

2. G is {bull, dart, gem, C>4}-free, C>4 being the cycles of length at least 4. (see
Figure 1).

3. The critical clique graph C(G) is a forest.

Bull Dart Gem Cycles of length >3

Figure 1: Forbidden induced subgraphs of a 3-leaf power.

The parameterized 3-leaf power edition problem, with respect to parameter k
being the size of the edited set, is tractable. An O((2k + 8)k · nm) algorithm is proposed
in [10]. The proofs of our kernel for the 3-leaf power edition problem rely on the
critical clique graph characterization and on the following new one which is based on the
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join composition of graphs.

Join Composition. Let G1 = (V1, E1) and G2 = (V2, E2) be two disjoint graphs and
let S1 ⊆ V1 and S2 ⊆ V2 be two non empty subsets of vertices. The join composition
of G1 and G2 on S1 and S2, denoted (G1, S1) ⊗ (G2, S2), results in the graph H =
(V1 ∪ V2, E1 ∪ E2 ∪ (V (S1)× V (S2))) (see Figure 2).

S S1 2

G G1 2

Figure 2: The join composition H = (G1, S1) ⊗ (G2, S2) creates the doted edges. As G1 and G2 are two
3-leaf powers and as the subsets S1 and S2 of vertices are critical cliques of respectively G1 and G2, by
Theorem 1.7, H is also a 3-leaf power.

Theorem 1.7. Let G1 = (V1, E1) and G2 = (V2, E2) be two connected 3-leaf powers. The
graph H = (G1, S1)⊗ (G2, S2), with S1 ⊆ V1 and S2 ⊆ V2, is a 3-leaf power if and only if
one of the following conditions holds:

1. S1 and S2 are two cliques of G1 and G2 respectively, and if S1 (resp. S2) is not
critical, then G1 (resp. G2) is a clique or,

2. there exists a vertex v ∈ V1 such that S1 = N [v] and S2 = V2 is a clique.

Proof.

⇐ If condition (2) holds, then H is obtained from G1 by adding true twins to v, hence
H is a 3-leaf power.. Assume S1 and S2 are two cliques. If S1 and S2 are both critical
cliques of respectively G1 and G2, then the critical clique graph C(H) is clearly the
tree obtained from C(G1) and C(G2) by adding the edges between S1 and S2. By
Theorem 1.6, H is a 3-leaf power. For i = 1 or 2, if Gi is a clique and Si ⊂ V (Gi),
then Si and V (Gi) \ Si are critical cliques in H . Again, it is easy to see that C(H)
is a tree.

⇒ First, let us notice that if S1 and S2 are not cliques, then H contains a C4, which
is forbidden. So let us assume that S1 is not a clique but S2 is. Then S1 contains
two non-adjacent vertices x and y. First of all, if dS1

(x, y) = ∞ (i.e. if x and y
are not connected in G1[S1]), we consider πG1

a shortest path in G − 1 between
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the connected component of G1[S1] containing x and the one containing y (such a
path exists because G1 is connected). It is easy to see that v together with πG1

forms an induced (chordless) cycle in H , which is forbidden. Now, if dS1
(x, y) > 2,

then H contains a gem. To see this, let πS1
be a shortest x, y-path in S1. Together

with any vertex v ∈ S2, the vertices of πS1
induce a cycle at length at least 5 in H .

By construction the only possible chords are incident to v. So any 4 consecutive
vertices on πS1

plus the vertex v induce a gem. It follows that there exists in S1

a vertex u which dominates x and y. Now if there exists a vertex in V (G2) \ S2,
as G2 is connected, there exists two adjacent vertices, v ∈ S2 and w ∈ V (G2) \ S2.
But, {w, u, x, y, v}, induce a dart in H , which is also forbidden. So, S2 = V (G2)
and G2 is a clique. Finally, assume by contradiction again that u has a neighbor
w ∈ V (G1) \ S1. Considering a vertex v of S2, the set of vertices {w, x, y, u, v}
induces an obstruction in H , whatever the adjacency between w and {x, y} is. So,
N [u] ⊂ S1. Conversely, if S1 contains a vertex w /∈ N(u), {w, x, y, u, v} induces an
obstruction in H . So, S1 = N [u], as expected in condition (2).

Assume now that both S1 and S2 are cliques. If S1 and S2 are not modules in
respectively G1 and G2, then we can find a bull in H . Assume that only S1 is not a
module, i.e. there exist x, y ∈ S1 and u ∈ V (G1) \S1 such that w.l.o.g. ux ∈ E(G1)
and uy /∈ E(G1). If S2 6= V (G2), then again H has a bull induced by {u, x, y, v, w}
with v ∈ S2 and w ∈ V (G2) \ S2, w neighbor of v. Otherwise, either condition (2)
holds or y has a neighbor w in V (G1) \ S1. The latter case is impossible since we
find in H an obstruction induced by {u, x, y, v, w} whatever the adjacency between
w and {u, x} is. Finally assume that S1 and S2 are modules, but consider the case
where S1 is not critical (the case S2 is not critical is symmetric). Then there exists
a critical clique C1 ∈ K(G1) containing S1. Denote by x a vertex of S1 and by y a
vertex of C1 \ S1. If V (G1) 6= C1, then G1 contains two non-adjacent vertices, say u
and u′. If u = x and u′ /∈ C1, then as G1 is connected, we can choose u′ and w /∈ C1

such that {u′, w, x, y, v} with v ∈ S2 is a bull in H . Otherwise we can choose u and
u′ both adjacent to the vertices of C1, and then {u, u′, x, y, v} would induce a dart
in H . It follows that if S1 is not critical, then condition (1) holds.

�

The following observation will be helpful to apply Theorem 1.7 in the safeness’ proofs
of the reduction rules.

Observation 1.8. Let C be a critical clique of a 3-leaf power G = (V,E). For every
S ⊆ V , if the clique C \ S is not critical in G[V \ S], then the connected component of
G[V \ S] containing C \ S is a clique.

Proof. Assume that C \ S is not a critical clique of G[V \ S], i.e. though C \ S is a
clique module in G[V \ S], it is not maximal. Let x /∈ S be a vertex such that C ∪ {x} is
a clique module of G[V \ S]. Then x belongs to a critical clique C ′ of G adjacent to C in
C(G). It follows that S has to contain the union of all the critical cliques of G adjacent
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to C in C(G) but C ′ (otherwise C ∪ {x} could not be a module of G[V \ S]), and all the
critical cliques of G adjacent to C ′ in C(G) but C (for the same reason). This means that
the connected component containing C \ S in G[V \ S] is a subset of C ∪ C ′ which is a
clique. �

Finally, let us conclude this preliminary study of 3-leaf powers by a technical lemma
required in the proof of the last reduction rule.

Lemma 1.9. Let G = (V,E) be a 3-leaf power. Every cycle C of length at least 5 in G
contains four distinct vertices a, b, c, d (appearing in this order along C) with ab and cd
edges of C such that ad ∈ E, ac ∈ E and bd ∈ E.

Proof. As the 3-leaf power graphs form an hereditary family, the subgraph H of G
induced by the vertices of the cycle C is a 3-leaf power with at least 5 vertices. As H is
not a tree, it contains a critical clique K of size at least 2. Let a and d be two distinct
vertices of K. As |C| ≥ 5, observe that there exist two distinct vertices b and c, distinct
from a and d, such that a, b, c and d appear in this order along C and such that ab and
cd are edges of C. As K is a clique module, any vertex adjacent to some vertex in K
neighbors all the vertices of K. It follows that ad ∈ E, ac ∈ E and bd ∈ E. �

2. A kernel for 3-leaf power edition

In this section, we present five preprocessing reduction rules the application of which
leads to a kernel with O(k3) vertices for the 3-leaf power edition problem. The first
rule gets rid of connected components of the input graph that are already 3-leaf powers.
Rule 2.1 is trivially safe.

Rule 2.1. If G has a connected component C such that G[C] is 3-leaf power, then remove
C from G.

The next rule was already used to obtain a kernel with O(k2) vertices for the param-
eterized cluster editing problem [24]. It bounds the size of every critical clique in a
reduced instance by k + 1.

Rule 2.2. If G has a critical clique K such that |K| > k + 1, then remove |K| − k − 1
vertices of K from V (G).

Proof. By Lemma 1.4, we know that there always exists an optimal 3-leaf power edition
that contains none or every edge incident to a critical clique K. Thus, if |K| > k+1, this
means that there is no optimal 3-leaf power edition that contains an edge incident to K.
As this is still true if |K| = k + 1, it is safe to remove |K| − (k + 1) vertices of K from
V (G) (meaning that every optimal 3-leaf power edition in the reduced graph will also be
an optimal 3-leaf power edition in the input graph). �
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2.1. Branch reduction rules

We now assume that the input graph G is reduced under Rule 2.1 (i.e. none of the
connected component is a 3-leaf power) and Rule 2.2 (i.e. critical cliques of G have size at
most k + 1). The next three reduction rules use the fact that the critical clique graph of
a 3-leaf power is a forest. The idea is to identify induced subgraphs of G, called branches,
which correspond to subtrees of C(G). That is, a branch of G is an induced subgraph
which is already a 3-leaf power. More precisely:

Definition 2.1. Let G = (V,E) be a graph. An induced subgraph G[S], with S ⊆ V , is
a branch if S is the disjoint union of critical cliques K1, . . . , Kr ∈ K(G) such that the
subgraph of C(G) induced by {K1, . . . , Kr} is a tree.

Let B = G[S] be a branch of a graph G and let K1, . . . , Kr be the critical cliques of G
contained in S. We say that Ki (1 6 i 6 r) is an attachment point of the branch B if it
contains a vertex x such that NG(x) intersects V (G)\S. A branch B is a l-branch if it has
exactly l attachment points. Our next three rules deal with 1-branches and 2-branches.

In the following, we denote by BR the subgraph of B in which the vertices of the
attachment points have been removed. If P is an attachment point of B, then the set of
neighbors of vertices of P in B is denoted NB(P ).

Lemma 2.2. Let G = (V,E) be a graph and B be a 1-branch of G with attachment point
P . There exists an optimal 3-leaf power edition F of G such that :

1. the set of affected vertices of B is a subset of P ∪NB(P ) and

2. in G+F , the vertices of NB(P ) are all adjacent to the same vertices of V (G)\V (BR).

Proof. Let F be an arbitrary optimal 3-leaf power edition of G. We construct from F
another optimal 3-leaf power edition which satisfies the two conditions above.

Let C be the critical clique of H = G + F that contains P and set C ′ = C \ BR.
By Lemma 1.4, the set of critical cliques of G whose vertices belong to NB(P ) contains
two kind of cliques: K1, . . . , Kc, whose vertices are in C or adjacent to the vertices of C
in H , and Kc+1, . . . , Kh whose vertices are not adjacent to the vertices of C is H . For
i ∈ {1, . . . , h}, let Ci be the connected component of BR containing Ki.

Let us consider the three following induced subgraphs : G1 the subgraph of G induced
by the disjoint union of C1, . . . , Cc; G2 the subgraph of G induced by the disjoint union of
Cc+1, . . . , Ch; and finally G′, the subgraph of H induced by V (G) \ V (BR). Let us notice
that these three graphs are 3-leaf powers.

By Observation 1.8, if C ′ is not a critical clique of G′, then the connected component
of G′ containing C ′ is a clique. Similarly, if Ki, for every 1 6 i 6 c, is not a critical
clique of G1, then the connected component of G1 containing Ki is a clique. Thus, by
Theorem 1.7, the disjoint union H ′ of G2 and (G′, C ′) ⊗ (G1, {K1, . . . , Kc}) is a 3-leaf
power. By construction, the edge edition set F ′ such that H ′ = G + F ′ is a subset of F
and thus |F ′| 6 |F |. Moreover the vertices of B affected by F ′ all belong to P ∪NB(P ),
which proves the first point.

9
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... ...

G1 G2

KhK1 Kc

P
C’

G’

Figure 3: A 1-branch of G where all editions adjacent to vertices in V (BR) \NB(P ) have been removed.
This shows in particular the appearance of the three subgraphs we consider.

To state the second point, we focus on the relationship between the critical cliques Ki

and C ′ in H ′ = G + F ′. If some Ki is linked to C ′ in H ′ (i.e. c > 1), it means that the
cost of adding the missing edges between Ki and C ′ (which, by Theorem 1.7, would also
result in a 3-leaf power) is lower than the cost of removing the existing edges between Ki

and C ′: |Ki| · |C
′ \ P | 6 |Ki| · |P |. On the other hand, if some Kj is not linked to C ′ in

H ′ (i.e. c < h), we conclude that |P | 6 |C ′ \ P |. Finally, if both cases occur, we have
|P | = |C ′ \ P |, and we can choose to add all or none of the edges between Ki and C ′. In
all cases, we provide an optimal edition of G into a 3-leaf power in which the vertices of
NB(P ) are all adjacent to the same vertices of V (G) \ V (BR). �

We can now state the first 1-branch reduction rule whose safeness follows from Lemma 2.2.

Rule 2.3. If G contains a 1-branch B with attachment point P , then remove from G the
vertices of BR and add a new critical clique of size min{|NB(P )|, k + 1} adjacent to P .

Our second 1-branch reduction rule considers the case where several 1-branches are
attached to the rest of the graph by a join. The following lemma shows that under certain
cardinality conditions, the vertices of such 1-branches are not affected by an optimal 3-leaf
power edition.

Lemma 2.3. Let G = (V,E) be a graph for which a 3-leaf power edition of size at most
k exists. Let B1, . . . , Bl be 1-branches, the attachment points P1, . . . , Pl of which all have
the same neighborhood N in V \ ∪l

i=1V (Bi). If
∑l

i=1 |Pi| > 2k + 1, then, in every 3-leaf
power optimal edition F of G, N has to be a critical clique of H = G + F and none of
the vertices of ∪l

i=1V (Bi) is affected.

Proof. We just show that every optimal 3-leaf power edition F of G has to transform
N into a critical clique, which directly implies the second part of the result. Notice that

10
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K

Rule 3

NB

C’
P

BR

P

Figure 4: On the left, a 1-branch B with attachment point P . On the right, the effect of Rule 2.3 which
replace BR by a clique K of size min{|NB(P )|, k + 1}.

since G is reduced under Rule 2.2, every attachment point Pi satisfies |Pi| 6 k + 1, thus
implying that l > 2.

First, assume that F does not edit N into a clique: i.e. there are two vertices a and
b of N such that ab /∈ E(H). For every pair of vertices ui ∈ Pi and uj ∈ Pj with i 6= j,
the set {a, b, ui, uj} cannot induce a chordless cycle in H , which implies that the vertices
of Pi or those of Pj must be affected. It follows that among the attachment points, the
vertices of at most one Pi are not affected by F . As |Pi| 6 k + 1 for every i, the size of
F has to be at least k + 1: contradicting the assumptions. So N is a clique in H .

Now, assume that N is not a module of H : i.e. there exists w /∈ N such that for
some x, y ∈ N we have w.l.o.g. xw ∈ E(H) and yw /∈ E(H). As |F | 6 k, there exist two
vertices ui ∈ Pi and uj ∈ Pj , non affected by F and such that uiuj /∈ E(H). Together
with x, y and w, ui and uj induce a dart in H , contradicting Theorem 1.6. So, in H , the
set of vertices N has to be a clique module.

Finally, let us notice that N has to be critical in H , otherwise it would imply that
there exists a vertex v /∈ N that has been made adjacent to at least k + 1 vertices of
∪l
i=1Bi, implying that |F | > k: contradiction. �

By Lemma 2.3, if there exists a 3-leaf power edition F of G such that |F | 6 k, then
the 1-branches B1, . . . , Bl can be safely replaced by two critical cliques of size k+1. This
gives us the second 1-branch reduction rule.

Rule 2.4. If G has several 1-branches B1, . . . , Bl, the attachment points P1, . . . , Pl of
which all have the same neighborhood N in V \∪l

i=1V (Bi) and if
∑l

i=1 |Pi| > 2k+1, then
remove from G the vertices of ∪l

i=1V (Bi) and add two new critical cliques of size k + 1
neighboring exactly N .

2.2. The 2-branch reduction rule

Let us consider a 2-branch B of a graph G = (V,E) with attachment points P1 and
P2. The subgraph of G induced by the critical cliques of the unique path from P1 to P2 in

11
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C(B) is called the main path of B and denoted path(B). A min-cut of pathB is a set F
of edges of B such that B − F does not contain any path from P1 to P2 and such that F
has minimal cardinality for this property. We say that B is clean if P1 and P2 are leaves
of C(B), in which case we denote by Q1 and Q2 the critical cliques which respectively
neighbor P1 and P2 in B.

Lemma 2.4. Let B be a clean 2-branch of a graph G = (V,E) with attachment points
P1 and P2 such that path(B) contains at least 5 critical cliques. There exists an optimal
3-leaf power edition F of G such that :

1. if path(B) is a disconnected subgraph of G + F , then F may contain a min-cut of
path(B);

2. and in each case, the other affected vertices of B belong to V (P1 ∪Q1 ∪ P2 ∪Q2).

Proof. Let F be an arbitrary optimal 3-leaf power edition of G. We call C1 and C2 the
critical cliques of G + F that respectively contain P1 and P2 (possibly, C1 and C2 could
be the same), and denote C1 \ B

R and C2 \B
R respectively by C ′

1 and C ′
2 see Figure 6).

We will construct from F another optimal 3-leaf power edition F ′ of G satisfying the
statement.

• Assume that F disconnects path(B). First of all, it is clear that for every subset F1 of
F , if F2 is an optimal edition of H1 = G+F1, then F ′ = F1∪F2 is an optimal edition
of G. We use this fact in the following different cases. Assume that F contains the
edges F1 := V (P1)× V (Q1) and consider the graph H1 := G + F1. We call B1 the
1-branch B \ P1 of H1 whose attachment point is P2. Then, Lemma 2.2 applies to
B1 and provides from F an optimal 3-leaf power edition of H1, say F2, where the
edited vertices of B1 are contained in V (P2 ∪ Q2). By the previous observation, it
follows that F1∪F2 is an optimal edition for G that respects conditions (1) and (2).
We proceed similarly if F contains the edges V (P2)× V (Q2).
Now, assume that F does not contain V (P1) × V (Q1) nor V (P2) × V (Q2). In
that case, there exists F1 ⊂ F which is a minimal cut of path(B) disjoint from
V (P1) × V (Q1) and V (P2) × V (Q2). Then, there are two connected components
in B + F1, the one containing P1, say B1, and the one containing P2, say B2. The
subgraphs B1 and B2 of H1 := G + F1 are 1-branches with respectively P1 and P2

as attachment points. So, Lemma 2.2 applies to B1 and B2, and provides from F
an optimal 3-leaf power edition of H1, say F2, where the edited vertices of B1 and
B2 are contained in V (P1 ∪ P2 ∪Q1 ∪Q2). To conclude, remark that if F1 is not a
minimum (for cardinality) cut of path(B), we could replace F1 by such a minimum
cut, and perform a similar 3-leaf power edition for G with size strictly lower than
|F |, thus contradicting the choice of F . It follows that F1∪F2 is an optimal edition
for G that respects conditions (1) and (2).

• Assume that F does not disconnect path(B). Let X1 (resp. X2) be the connected
component of (G+ F ) \BR containing P1 (resp. P2).

12
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We first consider the case where X1 and X2 are two distinct connected components.
By definition, BR is a 3-leaf power and Q1 and Q2 are two of its critical cliques (since
path(B) contains at least 5 critical cliques). Moreover, the subgraph X1 (resp. X2)
is also a 3-leaf power which is a clique if C ′

1 (resp. C ′
2) is not a critical clique

(Observation 1.8). By Theorem 1.7, it follows that the composition of these three
subgraphs : H ′ = (X1, C

′
1)⊗ (BR, Q1) and (H ′, Q2)⊗ (X2, C

′
2) yields a 3-leaf power.

Thus, if F affects some vertices of V (BR)\V (Q1∪Q2), then a smaller edition could
be found by removing from F the edges in V (BR)× V (BR). This would contradict
the optimality of F .

2P

Q
2

Q
1

1P
C’2C’1

X1
X2

RB

Figure 5: A clean 2-branch of G. The bold edge represent the first join composition H ′ := (X1, C
′
1) ⊗

(BR, Q1) while the dotted bold edge represent the join composition which is done in a second place,
namely (H ′, Q2) ⊗ (X2, C

′
2)
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So, assume that P1 and P2 belong to the same connected component X of (G +
F ) \ BR. Let y1 and y2 be respectively vertices of P1 and P2 (in the case C1 = C2,
choose y1 = y2). Let πB and πX be two distinct paths between y1 and y2 defined as
follows : πB is obtained by picking one vertex bi in each critical clique Hi of path(B)
(H1 = P1 and Hq = P2, with q > 5) and πX is a chordless path in X (thereby its
vertices x1, . . . , xp, with x1 = y1 and xp = y2 belong to distinct critical cliques of
G+ F , say K1, . . . , Kp, with K1 = C ′

1 and Kp = C ′
2). The union of these two paths

results in a cycle C of length at least 5. By Lemma 1.9, there are two disjoint edges
e = ab and f = cd in C such that the edges (a, c) and (b, d) belong to E △ F . By
construction of C, at most one of the edges e and f belongs to πX (otherwise πX

would not be chordless). We now study the different cases :

Edges e and f belong to πB. W.l.o.g assume that a = bi, b = bi+1 and c = bj , d = bj+1

(i+1 < j). By Lemma 1.4, F contains the set of edges (V (Hi)×V (Hj))∪(V (Hi+1)×
V (Hj+1)). Notice that min{|Hi| · |Hi+1|, |Hj| · |Hj+1|} < |Hi| · |Hj|+ |Hi+1| · |Hj+1|.
W.lo.g., assume that min{|Hi| · |Hi+1|, |Hj| · |Hj+1|} = |Hi| · |Hi+1|. We will ’cut’
the edges between Hi and Hi+1. Consider the set :

F ′ = (F \ (V × V (BR))) ∪ (V (Hi)× V (Hi+1))

Moreover, if Hi 6= P1, add to F ′ the edges FC1
:= V (C ′

1 \P1)×V (Q1) (which belong
to F ) and, if Hj+1 6= P2, add to F ′ the edges FC2

:= V (C ′
2 \ P2) × V (Q2) (which

belong to F ). In all cases, we have |F ′| < |F |. As in the case where X1 and X2

were distinct connected components, by Theorem 1.7, the graph G + F ′ is a 3-leaf
power : contradicting the optimality of F .

14
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1

1
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Hj+1

Hj

Hi

Q
2

Q
1

P2
C’2C’1
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Figure 6: An illustration of the first case, with Hi 6= P1 and Hj+1 6= P2. The bold edges represent the
edges we put in F ′ while the dotted bold edges denote the edges we removed from F to obtain F ′.

Edge e belongs to πB and f to πX . W.l.o.g., assume that a = bi and b = bi+1, and c =
xj+1, d = xj . As above, by Lemma 1.4, F contains (V (Hi)×V (Kj+1))∪ (V (Hi+1)×
V (Kj)). Notice that min{|Hi| · |Hi+1|, |Kj| · |Kj+1|} < |Hi| · |Kj+1|+ |Hi+1| · |Kj|. If
min{|Hi| · |Hi+1|, |Kj| · |Kj+1|} = |Hi| · |Hi+1|, then we consider the set :

F ′ = (F \ (V × V (BR))) ∪ (V (Hi)× V (Hi+1))

Here again, if Hi 6= P1, add to F ′ the edges FC1
(which belong to F ) and, if

Hj+1 6= P2, add to F ′ the edges FC2
(which belong to F ). As previously, |F ′| is

smaller than |F | and by Theorem 1.7, we can prove that G + F ′ is a 3-leaf power.
Finally, if min{|Hi| · |Hi+1|, |Kj| · |Kj+1|} = |Kj| · |Kj+1|, then we consider the set

F ′ = (F \ (V × V (BR))) ∪ (V (Kj)× V (Kj+1)) ∪ FC1
∪ FC2

Again |F ′| is smaller than |F | and by Theorem 1.7, we can prove that G + F ′ is a
3-leaf power. In each case, we found a better 3-leaf power edition F ′, contradicting
the optimality of F .

�

Rule 2.5. Let G be a graph having a clean 2-branch B such that path(B) is composed
by at least 5 critical cliques. Remove from G all the vertices of V (B) except those of
V (P1 ∪Q1 ∪ P2 ∪Q2) and add four new critical cliques :

• K1 (resp. K2) of size k + 1 adjacent to Q1 (resp. Q2);

• K ′
1 (resp K ′

2) adjacent to K1 (resp. K2) and such that K ′
1 and K ′

2 are adjacent and
|K ′

1| · |K
′
2| equals the min-cut of path(B).

Proof. Let B′ be the 2-branch replacing B after the application of the rule. It is easy to
see that by construction the min-cut of B′ equals the min-cut of path(B). Moreover the
attachment points P1 and P2 and their respective neighbors Q1 and Q2 are unchanged.
It follows by Lemma 2.4 that every optimal edition F of G corresponds to an optimal
edition F ′ of G′, the graph reduced by Rule 2.5, such that |F | = |F ′|. �
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Rule 2.5

1

C’2C’1

Q1 2Q

P2P1

C’2C’1

K K’ K’ K1 1 2

B
2

R

Q1 2Q

P2P

Figure 7: A 2-branch B on the left (only pendant critical cliques are hanging on path(B) since we can
assume that the graph is reduced by the previous rules). On the right, the way Rule 2.5 reduces B.

2.3. Kernel size and time complexity

Let us discuss the time complexity of the reduction rules. The 3-leaf power recognition
problem can be solved in O(n+m) [4]. It follows that Rule 2.1 requires linear time. To
implement the other reduction rules, we first need to compute the critical clique graph
C(G). As noticed in [24], C(G) can be built in O(n + m). For instance, to do so, we
can compute in linear time the modular decomposition tree of G, which is a classical and
well-studied problem in algorithmic graph theory (see [26] for a recent paper). Then, a
critical clique is a serie-node of the decomposition tree with only leaves below it. Given
K(G), which is linear in the size of G, it is easy to detect the critical cliques of size at least
k+1. So, Rule 2.2 requires linear time. A search on C(G) can identify the 1-branches. It
follows that the two 1-branches reduction rules (Rule 2.3 and Rule 2.4) can also be applied
in O(n+m) time. Let us now notice that in a graph reduced by the first four reduction
rules, a 2-branch is a path to which pendant vertices are possibly attached. It follows
that to detect a 2-branch B, such that path(B) contains at least 5 critical cliques, we first
prune the pendant vertices, and then identify in C(G) the paths containing only vertices
of degree 2, and at least 5 of them. To do this, we compute the connected components
of the graph induced on vertices of degree 2 in C(G). This shows that Rule 2.5 can be
carried in linear time.

Theorem 2.5. The parameterized 3-leaf power edition problem admits a kernel with
O(k3) vertices. Given a graph G, a reduced instance can be computed in linear time.

Proof. The discussion above established the time complexity to compute a kernel.
Let us determine the kernel size. Let G = (V,E) be a reduced graph (i.e. none of the
reduction rules applies to G) which can be edited into a 3-leaf power with a set F ⊆ V ×V
such that |F | 6 k. Let us denote H = G+ F the edited graph. We first show that C(H)
has O(k2) vertices (i.e. |K(H)| ∈ O(k2)), and then Lemma 1.3 enables us to conclude.

We say that a critical clique is affected if it contains an affected vertex and denote by
A the set of the affected critical cliques. As each edge of F affects two vertices, we have
that |A| 6 2k. Since H is a 3-leaf power, its critical clique graph C(H) is a tree. Let T be

16
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the minimal subtree of C(H) that spans the affected critical cliques. Let us observe that
if B is a maximal subtree of C(H)− T , then none of the critical cliques in B contains an
affected vertex and thus B was the critical clique graph of a 1-branch of G, which has
been reduced by Rule 2.3 or Rule 2.4. Let A′ ⊂ K(H) be the critical cliques of degree at
least 3 in T . As |A| 6 2k, we also have |A′| 6 2k. The connected components resulting
from the removal of A and A′ in T are paths. There are at most 4k such paths. Each
of these paths is composed by non-affected critical cliques. It follows that each of them
corresponds to path(B) for some 2-branch B of G, which has been reduced by Rule 2.5.

¿From these observations, we can now estimate the size of the reduced graph. Attached
to each of the critical cliques of T \A, we can have 1 pendant critical clique resulting from
the application of Rule 2.3. Remark that any 2-branch reduced by Rule 2.5 has no such
pendant clique and that path(B) contains 5 critical cliques. So, a considered 2-branch
in C(H) is made of at most 8 critical cliques. Finally, attached to each critical clique of
A, we can have at most (4k + 2) extra critical cliques resulting from the application of
Rule 2.4. See Figure 8 for an illustration of the shape of C(H). Summing up everything,
we obtain that C(H) contains at most 4k · 8 + 2k · 2 + 2k · (4k + 3) = 8k2 + 42k vertices.

Rule 2.4 + Rule 2.3

Rule 2.5

Rule 2.3

Rule 2.3

Figure 8: The black circles are the critical cliques of A, the grey ones belong to A′, and the squares are
the critical cliques not in T . On the figure, we can observe a 2-branch of size 8 reduced by Rule 2.5.
There cannot be pendant critical cliques attached to its nodes. Application of Rule 2.3, may let a path of
two critical cliques pendant to the elements of A∪A′ and a single critical clique pendant to the elements
of the small 2-branches. Finally, Rule 2.4 can only affect critical cliques of A.

By Lemma 1.3, we know that for each edited edge in a graph, the number of critical
cliques increase by at most 4. It follows that K(G) contains at most 8k2 + 46k critical
cliques. By Rule 2.2, each critical clique of the reduced graph has size at most k+1. This
implies that the reduced graph contains at most 8k3 + 54k2 + 46k vertices, proving the
O(k3) kernel size. �

We should notice that some small modifications of the branch reduction rules and a
more precise analysis would improve the constants involved in the kernel size. However,
the cubic bound would not change.

17
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3. Kernels for edge completion and edge deletion

We now prove and adapt the previous rules to the cases where only insertions or only
deletions of edges are allowed. First, observe that Rules 2.1 and 2.2 are also safe in
3-leaf power completion and 3-leaf power edge-deletion (Rule 2.2 directly
follows from Lemma 1.4). We have a similar result for the 1-branches reduction rules.

Lemma 3.1. Rule 2.3 is safe for both 3-leaf power completion and 3-leaf power
deletion.

Proof. In the following, we consider an optimal solution F such that H := G + F is a
3-leaf power, denote by C the critical clique containing P in H and set C ′ = C \BR.

• 3-leaf power completion. To show the safeness of Rule 2.3 in this case, we
will build from F an optimal 3-leaf power completion that respects conditions of
Lemma 2.2. By Lemma 1.4, we know that the set of critical cliques {K1, . . . , Kh}
of G whose vertices belong to NB(P ) are in C or adjacent to the vertices of C in
H . For i ∈ {1, . . . , h}, let Ci be the connected component of BR containing Ki.
As previously, we consider G1 the subgraph of G induced by the disjoint union of
C1, . . . , Ch and G′ the subgraph of H induced by V (H) \ V (BR). By Observation
1.8, if C ′ is not a critical clique of G′, then G′ is a clique. Similarly, if Ki, for every
1 6 i 6 h, is not a critical clique of G1, then Ci is a clique. By Theorem 1.7, it
follows that the graph H ′ := (G′, C ′) ⊗ (G1, {K1, . . . , Kh}) is a 3-leaf power. By
construction, the edge completion set F ′, such that H ′ = G + F ′, is a subset of F
and the vertices of B affected by F all belong to P ∪NB(P ). Finally, as every Ki is
connected to C ′ in H ′, the vertices of NB(P ) are all adjacent to the same vertices
of V (G) \ V (BR).

• 3-leaf power edge-deletion. In the case where only edges deletion are allowed,
we will build from F an optimal 3-leaf power deletion respecting the conditions of
Lemma 2.2 by studying the behavior of P in H . First of all, notice that if P forms
a larger critical clique in H with some vertex x ∈ V (G) \V (BR), this means that F
contains P × NB(P ). Thus, there is no need to do extra deletions in BR and then
we are done.

Now, consider the cases where P is critical in H or form a larger critical clique
with some Ki. In both cases, we have C ′ = P . By Theorem 1.7, the graph H ′ :=
(G′, C ′)⊗(G1, {K1, . . . , Kc}) is a 3-leaf power, and the edge set F ′ used to transform
G into H ′ is a subset of F (all the edges between C ′ and {K1, . . . , Kc} are present
in G), and then we are done.

�

Lemma 3.2. Rule 2.4 is safe for both 3-leaf power completion and 3-leaf power
deletion.
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Proof. As in Lemma 2.3, we consider B1, . . . , Bl 1-branches of G, the attachment points
P1, . . . , Pl of which all have the same neighborhood N and satisfy

∑l
i=1 |Pi| > 2k + 1.

Again, as every critical clique of G has at most k + 1 vertices, we have l > 2.

• 3-leaf power completion. In this case, same arguments as the ones used in
the proof of Lemma 2.3 hold. We briefly detail them. First, assume that N is not
transformed into a clique by an optimal 3-leaf power completion F . To get rid of
all the C4’s involving two non-adjacent vertices of N and Pi, Pj, i 6= j, the only
possibility is to transform ∪l

i=1Pi into a clique, which requires more than k+1 edge
insertions. Thus N has to be a clique. Moreover, N must also become a module,
otherwise we would find darts that would imply to transform ∪l

i=1Pi into a clique,
which is impossible. Finally, N must be critical (otherwise, at least one insertion
for each vertex of ∪l

i=1Pi must be done), thus implying that no vertex in ∪l
i=1Pi is

affected by an optimal edition.

• 3-leaf power edge-deletion. Firstly, observe that if N is not a clique, then
every optimal 3-leaf power deletion in that case would have to destroy at least k+1
edge disjoint C4’s with edges deletion only, which is impossible. The arguments
used previously hold again in this case to conclude that N must become a critical
clique in the modified graph.

�

Now, observe that the 2-branch reduction rule can be applied directly to 3-leaf
power edge-deletion, but will not be safe for 3-leaf power completion. Indeed,
in the proof of Lemma 2.4, if we look at the cycle C of G containing vertices of B, we
may have to delete edges between two consecutive critical cliques along C to transform
C(C) into a tree. Nevertheless, it is possible to bound the number of vertices of path(B)
in the case of 3-leaf power completion by looking at the edges completions required
to make a cycle chordal (see Lemma 3.4).

Lemma 3.3. Rule 2.5 is safe for 3-leaf power edge-deletion.

Proof. Let F be an arbitrary optimal 3-leaf power deletion of G. We call C1 and C2 the
critical cliques of H := G+F that respectively contain P1 and P2, and set C ′

1 := C1 \B
R

and C ′
2 := C2 \ B

R. We will construct from F another optimal 3-leaf power deletion F ′

of G satisfying the conditions of Lemma 2.4.
We have two cases to consider : 1) either path(B) is disconnected in H or 2) path(B)

is still connected in H . Case 1) works exactly as the first case studied in the proof of
Lemma 2.4, and thus there exists an optimal 3-leaf power deletion on which conditions of
Lemma 2.4 holds.

If case 2) holds, i.e. if path(B) is still connected in H , then P1 and P2 must belong
to distinct connected components of H \BR, say X1 and X2 (otherwise H would admit a
chordless cycle as induced subgraph). Furthermore, notice that we must have C1 = P1 and
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C2 = P2 in H . Indeed, if P1 forms a critical clique with some vertex x ∈ V (G) \ V (BR),
this means F must contain V (P1)× V (Q1), which contradicts the hypothesis. Similarly,
if P1 forms a critical clique with Q1, then F must contain edges between Q1 and NBR(Q1)
which cannot be (the cases for P2 are symmetric). By definition, BR is a 3-leaf power,
and so are X1 and X2. By Theorem 1.7, it follows that the composition of these three
subgraphs : H ′ = (X1, P1)⊗(BR, Q1) and H ′′ := (H ′, Q2)⊗(X2, P2) yields a 3-leaf power.
The edge set F ′ used to obtain H ′ from G is a subset of F that respects conditions of
Lemma 2.4, thus implying the lemma. �

The next lemma is useful to conclude on the size of the kernel in the 3-leaf power
completion problem.

Lemma 3.4. Let G be a graph admitting a clean 2-branch B such that path(B) is com-
posed by at least k+4 critical cliques. If P1 and P2 belong to the same connected component
in G \BR, then there is no 3-leaf power completion of size at most k.

Proof. Let G be a graph with a clean 2-branch B on which conditions of the Lemma
3.4 apply, and let F be an optimal 3-leaf power completion of G. As P1 and P2 belong
to the same connected component in G \ BR, we have a cycle C of size at least k + 4 in
C(G). Consider the subgraph of C(G) induced by the critical cliques of C. By Lemma 1.4
we know that there exists F ′ ⊆ F such that C(C + F ′) is a tree. It is known that F ′ is
a triangulation of C [10]. Moreover, every triangulation of a n-cycle needs at least n− 3
chords, thus implying that |F ′| > k, which is impossible. �

This result allows us to obtain a 2-branch reduction rule for the 3-leaf power
completion problem as well.

Rule 3.1. Let G be a graph having a clean 2-branch B with attachment points P1 and P2

such that path(B) is composed by at least k + 4 critical cliques.

• if P1 and P2 belong to the same connected component in G \ BR, then there is no
completion of size at most k.

• otherwise, remove from G all the vertices of V (BR) except those of V (Q1 ∪Q2) and
add all possible edges between Q1 and Q2.

Proof. The first point follows directly from Lemma 3.4. To see the second point, we need
to show that if P1 and P2 belong to different connected components in G \BR, then there
exists an optimal 3-leaf power completion that affects no vertex in V (BR) \ V (Q1 ∪Q2).
To show this, assume that F is an optimal 3-leaf power completion of G and let C1, C2

be the critical cliques containing P1, P2 in H := G + F . Notice that P1 and P2 belong
to different connected components in H \BR, otherwise we show that, as in the proof of
Lemma 3.4, F has to triangulate a cycle of length at least k + 4, thus contradicting the
assumption |F | 6 k. Now, consider the subgraphs H1 being the connected component
of H \ BR containing P1, and H2 being the one containing P2. By Theorem 1.7 and
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Observation 1.8, H ′ := (H1, C
′
1)⊗ (BR, Q1) where C ′

1 := C1 \B
R is a 3-leaf power. With

a similar argument, we can show that H ′′ := (H2, C
′
2) ⊗ (H ′, Q2), where C ′

2 := C2 \ B
R,

is a 3-leaf power. The completion used to obtain H ′′ from G is a subset of F respecting
conditions of Rule 3.1, thus implying the result. �

Theorem 3.5. The parameterized 3-leaf power completion and 3-leaf power
edge-deletion problem admit kernels with O(k3) vertices. Given a graph G a reduced
instance can be computed in linear time.

Proof. We detail separately completion and deletion.

• 3-leaf power completion. As in the proof of Theorem 2.5, we consider H :=
G+ F with G being reduced and F being an optimal completion and we denote by
T the minimal subtree of C(H) spanning the set of affected critical cliques A. As
noticed before, we have |A| 6 2k.

First, remark that the only difference between this case and 3-leaf power edition
concerns the 2-branch reduction rule. This means that the only difference will occur
in the number of vertices of the paths resulting from the removal of A and A′ in T
(A′ being critical cliques of degree at least 3 in T ). Due to Lemma 3.4 and Rule
3.1 we know that a 2-branch in C(H) is made of at most 2k + 6 critical cliques,
corresponding to a path of at most k + 4 critical cliques, each one (excepted the
terminal ones) having a pendant critical clique (Rule 2.3). This means that C(H)
contains at most 4k · (2k+6)+2k · 2+2k · (4k+3) = 16k2+34k critical cliques. By
Lemma 1.3, we know that each edited edge creates at most 4 new critical cliques.
If follows that C(G) contains at most 16k2+38k vertices. By Rule 2.2, each critical
clique of the reduced graph has size at most k + 1, thus implying that the reduced
graph contains at most 16k3 + 54k2 + 38k vertices, proving the O(k3) kernel size.

• 3-leaf power edge-deletion. The rules used for the 3-leaf power edge-
deletion problem are exactly the same than the one used to obtain a cubic kernel
for 3-leaf power edition. Thus, the size of a reduced instance of 3-leaf power
edge-deletion will be exactly the same as one of a reduced instance of 3-leaf
power edition.

�
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4. Conclusion

By proving the existence of a kernel with O(k3) vertices for the 3-leaf power edi-
tion problem, we positively answered an open problem [11, 9]. The natural question is
now whether the cubic bound could be improved. A strategy could be, as for the quadratic
kernel of 3-hitting set [22] which is based on the linear kernel of vertex cover [20],
to consider the following subproblem:

parameterized fat star edition problem
Input: An undirected graph G = (V,E).
Parameter: An integer k > 0.
Question: Is there a subset F ⊆ V × V with |F | 6 k such that the graph G + F =
(V,E △ F ) is a 3-leaf power and its critical clique graph C(G + F ) is a star (we say that
G+ F is a fat star).

It can be shown that small modifications of the Rule 2.1, 2.2 and 2.4 yield a kernel
with O(k2) vertices for the fat star edition problem [23]. A linear bound may be
helpful to improve the kernel of the 3-leaf power edition since it can be shown that
the neighborhood of each big enough critical clique of the input graph as to be edited into
a fat star.

References
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[2] S. Böcker, S. Briesemeister, and G. W. Klau. Exact algorithms for cluster editing:
evaluation and experiments. In International Workshop on Experimental Algorithms
(WEA), volume 5038 of Lecture Notes in Computer Science, pages 289–302, 2008.

[3] H. Bodlaender, R.G. Downey, M.R. Fellows, and D Hermelin. On problems without
polynomial kernels (extended abstract). In Automata, Languages and Programming,
35th International Colloquium (ICALP), volume 5125 of Lecture Notes in Computer
Science, pages 563–574, 2008.
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Abstract

Given a graph G = (V,E) and a positive integer k, the Proper Interval Completion
problem asks whether there exists a set F of at most k pairs of (V ×V ) \E such that the graph
H = (V,E ∪F ) is a proper interval graph. The Proper Interval Completion problem finds
applications in molecular biology and genomic research [16, 24]. First announced by Kaplan,
Tarjan and Shamir in FOCS ’94, this problem is known to be FPT [16], but no polynomial kernel
was known to exist. We settle this question by proving that Proper Interval Completion
admits a kernel with at most O(k3) vertices. Moreover, we prove that a related problem, the
so-called Bipartite Chain Deletion problem, admits a kernel with at most O(k2) vertices,
completing a previous result of Guo [13].

Introduction

The aim of a graph modification problem is to transform a given graph in order to get a certain
property Π satisfied. Several types of transformations can be considered: for instance, in vertex
deletion problems, we are only allowed to delete vertices from the input graph, while in edge
modification problems the only allowed operation is to modify the edge set of the input graph. The
optimization version of such problems consists in finding a minimum set of edges (or vertices) whose
modification makes the graph satisfy the given property Π. Graph modification problems cover
a broad range of NP-Complete problems and have been extensively studied in the literature [20,
23, 24]. Well-known examples include the Vertex Cover [8], Feedback Vertex Set [26], or
Cluster Editing [5] problems. These problems find applications in various domains, such as
computational biology [16, 24], image processing [23] or relational databases [25].

A natural approach to deal with such problems is to measure their difficulty with respect
to some parameter such as ,for instance, the number of allowed modifications. Parameterized
complexity provides a useful theoretical framework to that aim [10, 21]. A problem parameterized
by some integer k is said to be fixed-parameter tractable (FPT for short) whenever it can be solved
in time f(k) · nc for some constant c > 0, where n is the size of the instance (for problems on
graphs, usually, n is the number of vertices of the input graph). A natural parameterization for
graph modification problems thereby consists in the number of allowed transformations. As one of
the most powerful technique to design fixed-parameter algorithms, kernelization algorithms have
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2.8. A POLY-KERNEL FOR PROPER INTERVAL COMPLETION 135

been extensively studied in the last decade (see [2] for a survey). A kernelization algorithm is a
polynomial-time algorithm (called reduction rules) that given an instance (I, k) of a parameterized
problem P computes an instance (I ′, k′) of P such that (i) (I, k) is a Yes-instance if and only
if (I ′, k′) is a Yes-instance and (ii) |I ′| ≤ h(k) for some computable function h() and k′ ≤ k.
The instance (I ′, k′) is called the kernel of P . We say that (I ′, k′) is a polynomial kernel if the
function h() is a polynomial. It is well-known that a decidable parameterized problem is FPT if
and only if it has a kernelization algorithm [21]. But this equivalence only yields kernels of super-
polynomial size. To design efficient fixed-parameter algorithms, a kernel of small size - polynomial
(or even linear) in k - is highly desirable [22]. However, recent results give evidence that not every
parameterized problem admits a polynomial kernel, unless NP ⊆ coNP/poly [3]. On the positive
side, notable kernelization results include a less-than-2k kernel for Vertex Cover [8], a 4k2 kernel
for Feedback Vertex Set [26] and a 2k kernel for Cluster Editing [5].

We follow this line of research with respect to graph modification problems. It has been shown
that a graph modification problem is FPT whenever Π is hereditary and can be characterized by
a finite set of forbidden induced subgraphs [4]. However, recent results proved that several graph
modification problems do not admit a polynomial kernel even for such properties Π [12, 18]. In this
paper, we are in particular interested in completion problems, where the only allowed operation is
to add edges to the input graph. We consider the property Π as being the class of proper interval
graphs. This class is a well-studied class of graphs, and several characterizations are known to
exist [19, 30]. In particular, there exists an infinite set of forbidden induced subgraphs that charac-
terizes proper interval graphs [30] (see Figure 1). More formally, we consider the following problem:

Proper Interval Completion:
Input: A graph G = (V,E) and a positive integer k.
Parameter: k.
Output: A set F of at most k pairs of (V ×V ) \E such that the graph H = (V,E ∪F ) is a proper
interval graph.

Interval completion problems find applications in molecular biology and genomic research [15,
16], and in particular in physical mapping of DNA. In this case, one is given a set of long contiguous
intervals (called clones) together with experimental information on their pairwise overlaps, and the
goal is to reconstruct the relative position of the clones along the target DNA molecule. We focus
here on the particular case where all intervals have equal length, which is a biologically important
case (e.g. for cosmid clones [15]). In the presence of (a small number of) unidentified overlaps, the
problem becomes equivalent to the Proper Interval Completion problem. It is known to be
NP-Complete for a long time [11], but fixed-parameter tractable due to a result of Kaplan, Tarjan
and Shamir in FOCS ’94 [16, 17]1. The fixed-parameter tractability of the Proper Interval
Completion can also be seen as a corollary of a characterization of Wegner [30] combined with
Cai’s result [4]. Nevertheless, it was not known whether this problem admits a polynomial kernel
or not.

Our results We prove that the Proper Interval Completion problem admits a kernel with
at most O(k3) vertices. To that aim, we identify nice parts of the graph that induce proper interval
graphs and can hence be safely reduced. Moreover, we apply our techniques to the so-called
Bipartite Chain Deletion problem, closely related to the Proper Interval Completion
problem where one is given a graph G = (V,E) and seeks a set of at most k edges whose deletion

1Notice also that the vertex deletion of the problem is fixed-parameter tractable [28].
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from E results in a bipartite chain graph (a graph that can be partitioned into two independent
sets connected by a join). We obtain a kernel with O(k2) vertices for this problem. This result
completes a previous result of Guo [13] who proved that the Bipartite Chain Deletion With
Fixed Bipartition problem admits a kernel with O(k2) vertices.

Outline We begin with some definitions and notations regarding proper interval graphs. Next,
we give the reduction rules the application of which leads to a kernelization algorithm for the
Proper Interval Completion problem. These reduction rules allow us to obtain a kernel with
at most O(k3) vertices. Finally, we prove that our techniques can be applied to Bipartite Chain
Deletion to obtain a quadratic-vertex kernel.

1 Preliminaries

1.1 Proper interval graphs

We consider simple, loopless, undirected graphs G = (V (G), E(G)) where V (G) denotes the vertex
set of G and E(G) its edge set2. Given a vertex v ∈ V , we use NG(v) to denote the open neighborhood
of v and NG[v] = NG(v) ∪ {v} for its closed neighborhood. Two vertices u and v are true twins
if N [u] = N [v]. If u and v are not true twins but uv ∈ E, we say that a vertex of N [u] △ N [v]
distinguishes u and v. Given a subset of vertices S ⊆ V , NS(v) denotes the set NG(v) ∩ S and
NG(S) denotes the set (∪s∈SNG(s)) \ S. Moreover, G[S] denotes the subgraph induced by S, i.e.
G[S] = (S,ES) where ES = {uv ∈ E : u, v ∈ S}. A join in a graph G = (V,E) is a bipartition
(X,Y ) of G and an order x1, . . . , x|X| on X such that for all i = 1, . . . , |X|−1, NY (xi) ⊆ NY (xi+1).
The edges between X and Y are called the edges of the join, and a subset F ⊆ E is said to form a
join if F corresponds to the edges of a join of G. Finally, a graph is an interval graph if it admits a
representation on the real line such that: (i) the vertices of G are in bijection with intervals of the
real line and (ii) uv ∈ E if and only if Iu ∩ Iv 6= ∅, where Iu and Iv denote the intervals associated
to u and v, respectively. Such a graph is said to admit an interval representation. A graph is a
proper interval graph if it admits an interval representation such that Iu 6⊂ Iv for every u, v ∈ V .
In other words, no interval strictly contains another interval.
We will make use of the two following characterizations of proper interval graphs to design our
kernelization algorithm.

Theorem 1.1 (Forbidden subgraphs [30]). A graph is a proper interval graph if and only if it does
not contain any {hole, claw, net, 3-sun} as an induced subgraph (see Figure 1).

The claw graph is the bipartite graph K1,3. Denoting its bipartition by ({c}, {l1, l2, l3}), we call
c the center and {l1, l2, l3} the leaves of the claw.

Theorem 1.2 (Umbrella property [19]). A graph is a proper interval graph if and only if its vertices
admit an ordering σ (called umbrella ordering) satisfying the following property: given vivj ∈ E
with i < j then vivl, vlvj ∈ E for every i < l < j (see Figure 2).

In the following, we associate an umbrella ordering σG to any proper interval graph G = (V,E).
There are several things to remark. First, note that in an umbrella ordering σG of a graph G, every
maximal set of true twins of G is consecutive. Moreover, it is known [9] that σG is unique up to
permutation of true twins of G or by reversal of the ordering induced on a connected component of

2In all our notations, we forget the mention to the graph G whenever the context is clear.
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claw hole3−sun net

Figure 1: The forbidden induced subgraphs of proper interval graphs. A hole is an induced cycle
of length at least 4.

vi vl

σ
vj

Figure 2: Illustration of the umbrella property. The edge vivj is extremal. 3

G. Remark also that for any edge uv with u <σG
v, the set {w ∈ V : u ≤σG

w ≤σG
v} is a clique

of G, and for every i with 1 ≤ i < l, ({v1, . . . , vi}, {vi+1, . . . , vn}) is a join of G.
According to this ordering, we say that an edge uv is extremal if there does not exist any edge u′v′

different from uv such that u′ ≤σG
u and v ≤σG

v′ (see Figure 2).
Let G = (V,E) be an instance of Proper Interval Completion. A completion of G is a

set F ⊆ (V × V ) \ E such that the graph H = (V,E ∪ F ) is a proper interval graph. In a slight
abuse of notation, we use G+F to denote the graph H. A k-completion of G is a completion such
that |F | ≤ k, and an optimal completion F is such that |F | is minimum. We say that G = (V,E)
is a positive instance of Proper Interval Completion whenever it admits a k-completion. We
state a simple observation that will be very useful for our kernelization algorithm.

Observation 1.3. Let G = (V,E) be a graph and F be an optimal completion of G. Given an
umbrella ordering σ of G + F , any extremal edge of σ is an edge of G.

Proof. Assume that there exists an extremal edge e in σ that belongs to F . By definition, σ is still
an umbrella ordering if we remove the edge e from F , contradicting the optimality of F .

1.2 Branches

We now give the main definitions of this Section. The branches that we will define correspond to
some parts of the graph that already behave like proper interval graphs. They are the parts of the
graph that we will reduce in order to obtain a kernelization algorithm.

Definition 1.4 (1-branch). Let B ⊆ V . We say that B is a 1-branch if the following properties
hold (see Figure 3):

3In all the figures, (non-)edges between blocks stand for all the possible (non-)edges between the vertices that lie
in these blocks, and the vertices within a gray box form a clique of the graph.
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(i) The graph G[B] is a connected proper interval graph admitting an umbrella ordering σB =
b1, . . . , b|B| and,

(ii) The vertex set V \ B can be partitioned into two sets R and C with: no edges between B
and C, every vertex in R has a neighbor in B, no edges between {b1, . . . , bl−1} and R where
bl is the neighbor of b|B| with minimal index in σB, and for every l ≤ i < |B|, we have
NR(bi) ⊆ NR(bi+1).

We denote by B1 the set of vertices {v ∈ V : bl ≤σB
v ≤σB

b|B|}, which is a clique (because bl
is a neighbor of b|B|). This set is exactly the neighborhood of b|B| in B. We call B1 the attachment

clique of B, and use BR to denote B \B1.

R C

B1

bl b|B|b1
B

BR

Figure 3: A 1-branch of a graph G = (V,E). The vertices of B are ordered according to the
umbrella ordering σB.

Definition 1.5 (2-branch). Let B ⊆ V . We say that B is a 2-branch if the following properties
hold (see Figure 4):

(i) The graph G[B] is a connected proper interval graph admitting an umbrella ordering σB =
b1, . . . , b|B| and,

(ii) The vertex set V \B can be partitioned into sets L,R and C with:

• no edges between B and C,

• every vertex in L (resp. R) has a neighbor in B,

• no edges between {b1, . . . , bl−1} and R where bl is the neighbor of b|B| with minimal index
in σB,

• no edges between {bl′+1, . . . , b|B|} and L where bl′ is the neighbor of b1 with maximal
index in σB and,

• NR(bi) ⊆ NR(bi+1) for every l ≤ i < |B| and NL(bi+1) ⊆ NL(bi) for every 1 ≤ i < l′.

Again, we denote by B1 (resp. B2) the set of vertices {v ∈ V : b1 ≤σB
v ≤σB

bl′} (resp.
{v ∈ V : bl ≤σB

v ≤σB
b|B|}). We call B1 and B2 the attachment cliques of B, and use BR to

denote B \ (B1 ∪B2). We assume that L 6= ∅ and R 6= ∅, otherwise B is a 1-branch. Finally, when
BR = ∅, it is possible that a vertex of L or R is adjacent to all the vertices of B. In this case, we
will denote by N the set of vertices that are adjacent to every vertex of B, remove them from R
and L and abusively still denote by L (resp. R) the set L \N (resp. R \N). We will precise when
we need to use the set N .

In both cases, in a 1- or 2-branch, whenever the proper interval graph G[B] is a clique, we say
that B is a K-join. Observe that, in a 1- or 2-branch B, for any extremal edge uv in σB, the set of
vertices {w ∈ V : u ≤σB

w ≤σB
v} defines a K-join. In particular, this means that a branch can
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bl′

B1 BR B2

L
b1 bl b|B| R C

B

Figure 4: A 2-branch of a graph G = (V,E). The vertices of B are ordered according to the
umbrella ordering σB.

be decomposed into a sequence of K-joins. Observe however that the decomposition is not unique:
for instance, the K-joins corresponding to all the extremal edges of σB are not disjoint. We will
precise in Section 2.1.5, when we will reduce the size of 2-branches, how to fix a decomposition.
Finally, we say that a K-join is clean whenever its vertices are not contained in any claw or 4-cycle.
Remark that a subset of a K-join (resp. clean K-join) is also a K-join (resp. clean K-join).

2 Kernel for Proper Interval Completion

The basic idea of our kernelization algorithm is to detect the large enough branches and then to
reduce them. This section details the rules we use for that.

2.1 Reduction rules

2.1.1 Basic rules

We say that a rule is safe if when it is applied to an instance (G, k) of the problem, (G, k) admits
a k-completion if, and only if, the instance (G′, k′) reduced by the rule admits a k′-completion.

The first reduction rule gets rid of connected components that are already proper interval
graphs. This rule is trivially safe and can be applied in O(n + m) time using any recognition
algorithm for proper interval graphs [6].

Rule 2.1 (Connected components). Remove any connected component of G that is a proper interval
graph.

The following reduction rule can be applied since proper interval graphs are closed under true
twin addition and induced subgraphs. For a class of graphs satisfying these two properties, we
know that this rule is safe [1] (roughly speaking, we edit all the large set of true twins in the same
way). Furthermore, it is possible to compute every set of pairewise true twins using a modular
decomposition algorithm or more easily, partition refinement (see [14] for example).

Rule 2.2 (True twins [1]). Let T be a set of true twins in G such that |T | > k. Remove |T |−(k+1)
arbitrary vertices from T .

We also use the classical sunflower rule, allowing to identify a set of edges that must be added
in any optimal completion.

Rule 2.3 (Sunflower). Let S = {C1, . . . , Cm}, m > k be a set of claws having two leaves u, v in
common but distinct third leaves. Add uv to F and decrease k by 1.
Let S = {C1, . . . , Cm}, m > k be a set of distinct 4-cycles having a non-edge uv in common. Add
uv to F and decrease k by 1.

6
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Lemma 2.1. Rule 2.3 is safe and can be carried out in polynomial time. More precisely, it is
possible to detect all the 4-cycles and claws of G in time O(n2m).

Proof. We only prove the first rule. The second rule can be proved similarly. Let F be a k-
completion of G and assume that F does not contain (u, v). Since any two claws in S only share
(u, v) as a common non-edge, F must contain one edge for every Ci, 1 ≤ i ≤ m. Since m > k,
we have |F | > k, which cannot be. Now, we brievely indicate how to compute all claws and the
4-cycles of G. For every edge xy of G, in time O(n), we compute the sets Nx = NG(x) \NG[y] and
Ny = NG(y) \ NG[x]. Each edge uv between Nx and Ny correspond to the 4-cycle xyvu. So, in
time O(m.(n + m)) (less than O(n2m)), we enumerate all the 4-cycles of G. On the other hand,
for every vertex x of G, we compute all the three cycle in Hx, the complementary of G[NG(x)],
what can be done in time O(n(Hx)m(Hx)) (for instance, by computing for every vertex y of Hx, a
breadh search tree rooted on y). This gives all the claws with center x. And, in all, we enumerate
all the claws of G in time O(n2m). Finaly, sparsing the claws and the 4-cycles, it is then easy to
detect the sunflowers.

2.1.2 Number of vertices in claws or 4-cycles

The general idea of our process is to reduce the size of the branches. However, we realized that is
not always possible, even for K-join. We will see that this problem is due to the presence of claws
or 4-cycles intersecting the branches. So, in this part, we give a bound of the number of vertices
belonging to these obstructions in a positive instance of Proper Interval Completion.

Lemma 2.2. Let G = (V,E) be a positive instance of Proper Interval Completion on which
Rule 2.3 has been applied. There are at most k2 claws with distinct sets of leaves, and at most
k2 + 2k vertices of G are leaves of claw. Furthermore, there are at most 2k2 + 2k vertices of G that
are vertices of a 4-cycle.

Proof. As G is a positive instance of Proper Interval Completion, every claw or 4-cycle of G
has a non-edge that will be completed and then is an edge of F . Let xy be an edge of F . As we
have applied Rule 2.3 on G, there are at most k vertices in G that form the three leaves of a claw
with x and y. So, at most (k + 2)k vertices of G are leaves of claws. Similarly, there are at most
k non-edges of G, implying at most 2k vertices, that form a 4-cycle with x and y. So, at most
(2k + 2)k vertices of G are in a 4-cycle.

Lemma 2.3. Let G = (V,E) be a positive instance of Proper Interval Completion on which
Rule 2.2 and Rule 2.3 have been applied. There are at most 4k3 + 15k2 + 16k vertices of G that
belong to a claw or a 4-cycle.

Proof. As G is a positive instance of Proper Interval Completion, there exists a set F of
at most k edges such that G + F is a proper interval graph and admits an umbrella ordering σ.
We contract all the set of true twins of G and denote by G′ the obtained graph. Remark that,
as Rule 2.2 has been applied on G, every contracted set has size at most k + 1. As G′ is also an
induced subgraph of G, we denote by σ′ the order induced by σ on G′.
Now, we define C to be the vertices of G′ which are center of a claw in G′, not incident to any edge
of F , are not contained in a 4-cycle neither a leaf of a claw. We sort this set according to σ′ and
denote by c1, . . . , cl its vertices in this order. As the vertices of C are not incident with edges of F ,
the edges incident with vertices of C respect the umbrella property.
We look for distinct vertices which distinguish the pairs of consecutive vertices of C. Remark that
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it is possible that two consecutive vertices of C, ci and ci+1 are twins, but not true twins. In this
case, we can identify all the neighbors of ci and ci+1. Indeed, assume that ci and ci+1 are not linked
but that they have same neighborhood. Then, ci has no neighbor x with x <σ′ ci, otherwise x is
also a neighbor of ci+1 and ci and ci+1 would be neighbors, by the umbrella property. As ci is not an
isolated vertex, it has at least one neighbor. So, let x be the neighbor of ci with maximal index in σ′.
As ci and ci+1 are not linked, then x <σ′ ci+1. So, let Y denotes the set {y ∈ G′ : x <σ′ y <σ′ ci+1}.
If Y 6= ∅, as x and ci+1 are linked by an edge, then Y is a set of neighbors of ci+1 and then a set of
neighbors of ci also, what contradicts the choice of x. So, Y = ∅, and ci+1 is the first non-neighbor
of ci after ci according to σ′. Similarly, ci is the last non-neighbor of ci+1 before ci+1 according to
σ′, and we conclude that NG′(ci) = NG′(ci+1) = {x ∈ G′ : ci <σ′ x <σ′ ci+1}. So, ci and ci−1

cannot be twins, so it is for ci+1 and ci+2. It means that we can remove at most half of ci and
obtain C ′ = {c′1, . . . , c′p} (with p ≥ l/2), a subset of C, sorted according to σ′, in which every pair
of consecutive vertices is not made of twins.
Now, let x be a vertex of G′. As no vertex of C ′ are incident to an edge of F , it means that the
neighborhood of x in C ′ is consecutive according to the order c′1, . . . , c

′
p. Then, x distinguishes at

most two pairs {c′i, c′i+1}, for 1 ≤ i ≤ p− 1 So, for 1 ≤ i ≤ p− 1, we choose di a vertex of G′ which
distinguishes c′i from c′i+1. If, amongst all the vertices of G′ which distinguishes c′i from c′i+1, one
is the leaf of a claw, we preferably choose it for di. As seen previously, it is possible that a vertex
has been chosen twice to be a vertex di, but no more than two times. So, the set {d1, . . . , dp−1}
contains at least (p − 1)/2 distinct vertices which we denote by d′1, . . . , d

′
q sorted according to σ′,

and with q ≥ (p− 1)/2 ≥ l/4 − 1.
Now, for every i = 1, . . . , q, we will find a claw containing d′i as leaf. Assume that such a claw does
not exist, we will derive a contradiction. Without loss of generality, we can assume that we have
d′ic

′
j /∈ E(G′) and d′ic

′
j+1 ∈ E(G′), for some j with 1 ≤ j ≤ p− 1. By hypothesis, c′j+1 is the center

of a claw in G′. We denote by x, y and z the leaves of this claw. As d′i is not the leaf of a claw,
it is disjoint from {x, y, z}, and by the choice of d′i, no one of these vertices distinguishes c′j from
c′j+1. It means that c′j is linked to all vertices of {x, y, z}. If two elements of this set, say x and y,
are adjacent to d′i, then {x, d′i, y, c′j} forms a 4-cycle that contains c′j , which is not possible. So, at
least two elements among {x, y, z}, say x and y, are not adjacent to d′i and then, we find the claw
{c′j+1, x, y, d

′
i} of center c′j+1 that contains d′i, which is also not possible, by assumption.

Finally, for 1 ≤ i ≤ q every d′i is the leaf of a claw. So, by Lemma 2.2, we have q ≤ k2+2k. Then, we
conclude that l ≤ 4(k2+2k+1) and that G contains at most 4(k2+2k+1)(k+1) vertices which are
center of a claw. Finally, using Lemma 2.2 G contains at most 4(k2+2k+1)(k+1)+k2+2k+2k2+2k
vertices belonging to a claw or a 4-cycle.

Remark that, using Lemma 2.1, it possible to detect all the vertices of G which belongs to a
claws or a 4-cycle in time O(n2m).

2.1.3 Bounding the size of the clean K-joins

Now, we set a rule that will bound the number of vertices in a clean K-join, once applied. Although
quite technical to prove, this rule is the core tool of our process of kernelization. Remark that, if
we remove the vertices contained in a claw or a 4-cycle from a (general) K-join, we obtain a clean
K-join. So, by the result of the previous subsection, providing a bound on the size of the clean
K-joins will give a bound on the size of K-joins.

Rule 2.4 (K-join). Let B be a clean K-join of size at least 2k + 2, provided with an umbrella
ordering σB. Let BL be the k + 1 first vertices of B (according to σB), BR be its k + 1 last vertices
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(according to σB) and M = B \ (BR ∪BL). Remove the set of vertices M from G.

Lemma 2.4. Rule 2.4 is safe.

Proof. Let G′ = G\M . Observe that the restriction to G′ of any k-completion of G is a k-completion
of G′, since proper interval graphs are closed under induced subgraphs. So, let F be a k-completion
for G′. We denote by H the resulting proper interval graph G′ + F and by σH = h1, . . . , h|H| an
umbrella ordering of H. We prove that we can insert the vertices of M into σH and modify it if
necessary, to obtain an umbrella ordering for G without adding any edge (in fact, some edges of F
might even be deleted during the process). This will imply that G admits a k-completion as well.
To see this, we need the following structural description of G. As explained before, we denote by
N the set ∩b∈BNG(b) \ B, and abusively still denote by L (resp. R) the set L \ N (resp. R \ N)
(see Figure 5). We also denote by b1, . . . , b|B| the umbrella ordering σB of B.

Claim 2.5. The sets L and R are cliques of G.

Proof. We prove that R is a clique in G. The proof for L uses similar arguments. No vertex
of R is a neighbor of b1, otherwise such a vertex must be adjacent to every vertex of B and then
stands in N . So, if R contains two vertices u, v such that uv /∈ E, we form the claw {b|B|, b1, u, v}
with center b|B|, contradicting the fact that B is clean. ⋄

The following observation comes from the definition of a K-join.

Observation 2.6. Given any vertex r ∈ R, if NB(r) ∩BL 6= ∅ holds then M ⊆ NB(r). Similarly,
given any vertex l ∈ L, if NB(l) ∩BR 6= ∅ holds then M ⊆ NB(l).

BL

L R C

B

N

M BR

Figure 5: The structure of the K-join B.

We use these facts to prove that an umbrella ordering can be obtained for G by inserting the
vertices of M into σH . Let hf and hl be respectively the first and last vertex of B \M appearing
in σH . We let BH denote the set {u ∈ V (H) : hf ≤σH

u ≤σH
hl}. Observe that BH is a clique in

H since hfhl ∈ E(G) and that B \M ⊆ BH . Now, we modify σH by ordering the true twins in H
according to their neighborhood in M : if x and y are true twins in H, are consecutive in σH , verify
x <σH

y <σH
hf and NM (y) ⊂ NM (x), then we exchange x and y in σH . This process stops when

the considered true twins are ordered following the join between {u ∈ V (H) : u <σH
hf} and M .

We proceed similarly on the right of BH , i.e. for x and y consecutive twins with hl <σH
x <σH

y
and NM (x) ⊂ NM (y). The obtained order is clearly an umbrella ordering too (in fact, we just
re-labeled some vertices in σH), and we abusively still denote it by σH .

Claim 2.7. The set BH ∪ {m} is a clique of G for any m ∈ M , and consequently BH ∪ M is a
clique of G.

9
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Proof. Let u be any vertex of BH . We claim that um ∈ E(G). Observe that if u ∈ B then
the claim trivially holds. So assume u /∈ B. Recall that BH is a clique in H. It follows that
u is adjacent to every vertex of B \ M in H. Since BL and BR both contain k + 1 vertices, we
have NG(u) ∩ BL 6= ∅ and NG(u) ∩ BR 6= ∅. Hence, u belongs to L ∪ N ∪ R and um ∈ E(G) by
Observation 2.6. ⋄

Claim 2.8. Let m be any vertex of M and σ′
H be the ordering obtained from σH by removing BH

and inserting m to the position of BH . The ordering σ′
H respects the umbrella property.

Proof. Assume that σ′
H does not respect the umbrella property, i.e. that there exist (w.l.o.g.)

two vertices u and v of H \ BH such that either (1) u <σ′
H
v <σ′

H
m, um ∈ E(H) and uv /∈ E(H)

or (2) u <σ′
H

m <σ′
H

v, um /∈ E(H) and uv ∈ E(H) or (3) u <σ′
H

v <σ′
H

m, um ∈ E(H) and
vm /∈ E(H). First, assume that (1) holds. Since uv /∈ E(H) and σH is an umbrella ordering,
uw /∈ E(H) for any w ∈ BH , and hence uw /∈ E(G). This means that BL ∩ NG(u) = ∅ and
BR ∩ NG(u) = ∅, which is impossible since um ∈ E(G). Then, assume that (2) holds. Since
uv ∈ E(H) and σH is an umbrella ordering, BH ⊆ NH(u), and in particular BL and BR are
included in NH(u). As |BL| = |BR| = k + 1, we know that NG(u) ∩ BL 6= ∅ and NG(u) ∩ BR 6= ∅,
but then, Observation 2.6 implies that um ∈ E(G). So, (3) holds, and we choose the first u
satisfying this property according to the order given by σ′

H . So we have wm /∈ E(G) for any
w <σ′

H
u. Similarly, we choose v to be the first vertex after u satisfying vm /∈ E(G). Since

um ∈ E(G), we know that u belongs to L ∪ N ∪ R. Moreover, since vm /∈ E(G), v ∈ C ∪ L ∪ R.
There are several cases to consider:

(i) u ∈ N : in this case we know that B ⊆ NG(u), and in particular that uhl ∈ E(G). Since
σH is an umbrella ordering for H, it follows that vhl ∈ E(H) and BH ⊆ NH(v). Since
|BL| = |BR| = k + 1, we know that NG(v) ∩ BL 6= ∅ and NG(v) ∩ BR 6= ∅. But, then
Observation 2.6 implies that vm ∈ E(G).

(ii) u ∈ R, v /∈ R: since um ∈ E(G), BR ⊆ NG(u). Let b ∈ BR be the vertex such that
BR ⊆ {w ∈ V : u <σH

w ≤σH
b}. Since ub ∈ E(G), this means that BR ⊆ NH(v). Now,

since |BR| = k + 1, it follows that NG(v) ∩ BR 6= ∅. Observation 2.6 allows us to conclude
that vm ∈ E(G).

(iii) u, v ∈ R: in this case, uv ∈ E(G) by Claim 2.7 but u and v are not true twins in H (otherwise
v would be placed before u in σH due to the modification we have applied to σH). This means
that there exists a vertex w ∈ V (H) that distinguishes u from v in H.
Assume first that w <σH

u and uw ∈ E(H), vw /∈ E(H). We choose the first w satisfying this
according to the order given by σH . There are two cases to consider. First, if uw ∈ E(G), then
since wm /∈ E(G) for any w <σH

u by the choice of u, {u, v, w,m} is a claw in G containing a
vertex of B (see Figure 6 (a) ignoring the vertex u′), which cannot be. So assume uw ∈ F . By
Observation 1.3, uw is not an extremal edge of σH . By the choice of w and since vw /∈ E(H),
there exists u′ with u <σH

u′ <σH
v such that wu′ is an extremal edge of σH (and hence

belongs to E(G), see Figure 6 (a)). Now, by the choice of v we have u′m ∈ E(G) and hence
u′ ∈ N ∪ R ∪ L. Observe that u′v /∈ E(G): otherwise {u′, v, w,m} would form a claw in G.
Since R is a clique of G, it follows that u′ ∈ L∪N . Moreover, since u′m ∈ E(G), BL ⊆ NG(u′).
We conclude like in configuration (ii) that v should be adjacent to a vertex of BL and hence
to m.
Hence we can assume that all the vertices that distinguish u and v are after u in σH and that
uw′′ ∈ E(H) implies vw′′ ∈ E(H) for any w′′ <σH

u. Now, suppose that there exists w ∈ H

10
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such that hl <σH
w and uw /∈ E(H), vw ∈ E(H). In particular, this means that BL ⊆ NH(v).

Since |BL| = k+1 we have NG(v)∩BL 6= ∅, implying vm ∈ E(G) by Observation 2.6. Assume
now that there exists a vertex w which distinguishes u and v with v <σH

w <σH
hf . In this

case, since uw /∈ E(H), B ∩ NH(u) = ∅ holds and hence B ∩ NG(u) = ∅, which cannot be
since u ∈ R. Finally, assume that there is w ∈ BH with wu /∈ E(H) and wv ∈ E(H). Recall
that wm ∈ E(G) as BH ∪ {m} is a clique by Claim 2.7. We choose w in BH distinguishing u
and v to be the last according to the order given by σH (i.e. vw′ /∈ E(H) for any w <σH

w′,
see Figure 6 (b), ignoring the vertex u′).

(a)

m

u vu′

(b)

w′w ∈ BH

m

u′u vw

Figure 6: (a) u and v are distinguished by some vertex w <σH
u; (b) u and v are distinguished by

a vertex w ∈ BH .

If vw ∈ E(G) then {u,m,w, v} is a 4-cycle in G containing a vertex of B, which cannot be.
Hence vw ∈ F and by the choice of w, there exists u′ ∈ V (H) such that u <σH

u′ <σH
v

and u′w is an extremal edge of σH (and then belongs to E(G)). By the choice of v we know
that u′m ∈ E(G). Moreover, by the choice of w, observe that u′ and v are true twins in
H (if a vertex s distinguishes u′ and v in H, s cannot be before u, since otherwise s would
distinguishes u and v, not between u and w because it would be adjacent to u′ and v, and not
after w, by choice of w). This leads to a contradiction since we assumed that NM (x) ⊆ NM (y)
for any true twins x and y with x <σH

y <σH
hf .

The cases where u ∈ L are similar, what concludes the proof of Claim 2.8 ⋄

Now, we will insert vertices of M into the graph H while preserving an umbrella ordering. For
simplicity, once one vertex of M is inserted into H, we still denote the obtained graph by H and
consider the new vertex as a vertex of H, for the next add. We then prove the following.

Claim 2.9. Let m be a vertex of M . Then m can be added to the graph H while preserving an
umbrella ordering.

Proof. Let m be a vertex of M and hi (resp. hj) be the vertex with minimal (resp. maximal)
index in σH such that him ∈ E(G) (resp. hjm ∈ E(G)). By definition, we have hi−1m /∈ E(G),
hj+1m /∈ E(G) and through Claim 2.8, we know that NH(m) = {w ∈ V (H) : hi ≤σH

w ≤σH
hj}.

Moreover, since BH ∪ M is a clique by Claim 2.7, it follows that hi−1 <σH
hf and hl <σH

hj+1.
Hence, by Claim 2.8, we know that hi−1hj+1 /∈ E(G), otherwise the ordering σ′

H defined in Claim 2.8
would not be an umbrella ordering. The situation is depicted in Figure 7 (a). For any vertex
v ∈ NH(m), let N−(v) (resp. N+(v)) denote the set of vertices {w ∈ V (H) : w ≤σH

hi−1 and wv ∈
E(H)} (resp. {w ∈ V (H) : w ≥σH

hj+1 and wv ∈ E(H)}). Observe that for any vertex

11
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v ∈ NH(m), if there exist two vertices x ∈ N−(v) and y ∈ N+(v) such that xv ∈ E(G) and
yv ∈ E(G), then the set {v, x, y,m} defines a claw containing m in G, which cannot be. We now
consider chi−1

the neighbor of hi−1 with maximal index in σH . Similarly we let chj+1
be the neighbor

of hj+1 with minimal index in σH . Since hi−1hj+1 /∈ E(G), we have chi−1
, chj+1

∈ NH(m). We
study the behavior of chi−1

and chj+1
in order to conclude.

Assume first that chj+1
≤σH

chi−1
. Let X be the set of vertices {w ∈ V (H) : chj+1

≤σH

w ≤σH
chi−1

}. Remark that we have chi−1
≤σH

hl and hf ≤σH
chj+1

, otherwise for instance, if we
have chi−1

>σH
hl, then BH ⊆ NH(hi−1) implying, as usual, that hi−1m ∈ E(G) which is not. So,

we know that X ⊆ BH . Then, let X1 ⊆ X be the set of vertices x ∈ X such that there exists
w ∈ N+(x) with xw ∈ E(G) and X2 = X \X1. Let x ∈ X1: observe that by construction xw′ ∈ F
for any w′ ∈ N−(x). Similarly, given x ∈ X2, xw

′′ ∈ F for any w′′ ∈ N+(x). Now, we reorder the
vertices of X as follows: we first put the vertices from X2 and then the vertices from X1, preserving
the order induced by σH for both sets. Moreover, we remove from E(H) all edges between X1 and
N−(X1) and between X2 and N+(X2). Recall that such edges have to belong to F . We claim that
inserting m between X2 and X1 yields an umbrella ordering (see Figure 7 b). Indeed, by Claim 2.8,
we know that the umbrella ordering is preserved between m and the vertices of H \BH .

X2 X1

m

hi−1hi chj+1 chi−1 hj hj+1

(b)(a)

mhi−1hi hj hj+1

Figure 7: Illustration of the reordering applied to σH . The thin edges stand for edges of G. On the
left, the gray vertices represent vertices of X1 while the white vertex is a vertex of X2.

Now, remark that there is no edge between X1 and {w ∈ V (H) : w ≤σH
hi−1}, that there is

no edge between X2 and {w ∈ V (H) : w ≥σH
hj+1}), that there are still all the edges between

NH(m) and X1∪X2 and that the edges between X1 and {w ∈ V (H) : w ≥σH
hj+1} and the edges

between X2 and {w ∈ V (H) : w ≤σH
hi−1} are unchanged. So, it follows that the new ordering

respects the umbrella property, and we are done.
Next, assume that chi−1

<σH
chj+1

. We let chi
(resp. chj

) be the neighbor of hi (resp. hj)
with maximal (resp. minimal) index in NH(m). Notice that chi−1

≤σH
chi

and chj
≤σH

chj+1
(see

Figure 8). Two cases may occur:

(i) First, assume that chi
<σH

chj
, case depicted in Figure 8 (a). In particular, this means that

hihj /∈ E(G). If chi
and chj

are consecutive in σH , then inserting m between chi
and chj

yields
an umbrella ordering (since chj

(resp. chi
) does not have any neighbor before (resp. after) hi

(resp. hj) in σH). Now, if there exists w ∈ V (H) such that chi
<σH

w <σH
chj

, then one can
see that the set {m,hi, w, hj} forms a claw containing m in G, which is impossible.

(ii) The second case to consider is when chj
≤σH

chi
. In such a case, one can see that m and

12
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the vertices of {w ∈ V (H) : chj
≤σH

w ≤σH
chi

} are true twins in H ∪ {m}, because their
common neighborhood is exactly {w ∈ V (H) : hi ≤σH

w ≤σH
hj}. Hence, inserting m just

before chi
(or anywhere between chi

and chj
or just after chj

) yields an umbrella ordering.

chj+1chj
hj+1hjhi−1hi chi−1 wchi

chj+1bhi
hj+1hjhi−1hi chi−1 wchj

m

(b)(a)

m

Figure 8: The possible cases for chi−1
<σH

chj+1
.

⋄

As explained before, since the proof of Claim 2.9 does not use the fact that the vertices of H
do not belong to M , it follows that we can iteratively insert the vertices of M into σH , preserving
an umbrella ordering at each step. This concludes the proof of Lemma 2.4.

The complexity needed to compute Rule 2.4 will be discussed in the next section. The following
observation results from the application of Rule 2.4 and from Section 2.1.2.

Observation 2.10. Let G = (V,E) be a positive instance of Proper Interval Completion
reduced under Rules 2.2 to 2.4. Any K-join of G contains at most 2k + 2 vertices which are not
contained in any 4-cycle or claw of G.

Proof. Let B be any K-join of G, and X be the set of vertices of B which are contained in a 4-cycle
or a claw of G. As any subgraph of a K-join is a K-join, B \X is a clean K-join of G. Then, after
having applied Rule 2.4, we have |B \X| ≤ 2k + 2.

2.1.4 Cutting the 1-branches

We now turn our attention to branches of a graph G = (V,E), proving how they can be reduced.

Lemma 2.11. Let G = (V,E) be a connected graph which is a positive instance of Proper
Interval Completion, and let B be a 1-branch of G associated with the umbrella ordering σB.
Assume that |BR| ≥ 2k + 1 and let BL be the 2k + 1 last vertices of BR according to σB. Then,
there exists a k-completion F of G into a proper interval graph and a vertex b ∈ BL such that the
umbrella ordering of G+F preserves the order induced by σB on the set Bb = {w ∈ V (B) : b1 ≤σB

w ≤σB
bf}, where f is the maximal index in σB such that bbf ∈ E(G). Moreover, the vertices of

Bb are the first in an umbrella ordering of G + F .

Proof. Let F be any k-completion of G, H = G + F and σH be the umbrella ordering of H. Since
|BL| = 2k + 1 and |F | ≤ k, there exists a vertex b ∈ BL not incident to any added edge of F . We
let Nb be the set of neighbors of b that are after b in σB, Bb = {w ∈ V (B) : b1 ≤σB

w ≤σB
bf},

where f is the maximal index in σB such that bbf ∈ E(G) (i.e. bf is the last vertex of Nb), and
C = V \ Bb (see Figure 9, which depicts the case where bf ∈ B1, but bf ∈ BL is possible too).

13
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︸ ︷︷ ︸

B V \B

B1

b ∈ BL

BR

bf

Bb

︸ ︷︷ ︸

C

Figure 9: The different sets to cut a 1-branch (the set Nb, not shown in figure, is made by vertices
lying under the edge bbf , including bf , not b).

Remark that, by the definition of the attachment clique B1 (which is B1 = NB(b|B|)), we have
B1 * Bb (because b is not a neighbor of b|B|) and then B ∩ C 6= ∅.

Claim 2.12. We have:
- (i) G[C] is a connected graph and
- (ii) Either for every vertex u of C we have b <σH

u or for every vertex u of C we have u <σH
b.

Proof. The first point follows from the fact that by definition of a 1-branch, every vertex of
V \B which has a neighbor in B is a neighbor of b|B| (which belongs to C). So, as G is connected,
every connected component of G[V \ B] contains a neighbor of b|B|. As, C ∩ B is a subset of the
attachement clique B1 and then linked to bB, we conclude that G[C] is a connected graph.
To see the second point, assume that there exist u, v ∈ C such that w.l.o.g. u <σH

b <σH
v. Since

G[C] is a connected graph, there exists a path between u and v in G that avoids NG[b], which is
equal to NH [b] since b is not incident to any edge of F . Hence there exist u′, v′ ∈ C, consecutive
along this path, such that u′ <σH

b <σH
v′ and u′v′ ∈ E(G). Then, as the neighborhood of b is

the same in G than in H, we have u′b, v′b /∈ E(H), contradicting the fact that σH is an umbrella
ordering for H. ⋄

In the following, up to reversing the order σH , we assume that b <σH
u holds for any u ∈ C.

We will then find Bb at the beginning of σH . We now consider the following ordering σ of H: we
first put the set Bb according to the order of B and then put the remaining vertices C according
to σH (see Figure 10). We construct a coresponding completion F ′ of G from F as follows: we
remove from F the edges with both extremities in Bb, and remove all edges between Bb \Nb and
C. In other words, we set:

F ′ = F \ (F [Bb ×Bb] ∪ F [(Bb \Nb) × C])

Finally, we inductively remove from F ′ any extremal edge of σ that belongs to F ′, and abusively
still call F ′ the obtained edge set.

Claim 2.13. The set F ′ is a k-completion of G.

Proof. We prove that σ is an umbrella ordering of H ′ = G+F ′. Since |F ′| ≤ |F | by construction,
the result will follow. Assume this is not the case. By definition of F ′, H ′[Bb] and H ′[C] induce
proper interval graphs. This means that there exists a set of vertices S = {u, v, w}, u <σ v <σ w,
intersecting both Bb and C and violating the umbrella property. We either have (1) uw ∈ E, uv /∈ E
or (2) uw ∈ E, vw /∈ E. Since neither F ′ nor G contain an edge between Bb \Nb and C, it follows
that S intersects Nb and C. We study the different cases:

14
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︸ ︷︷ ︸

C

σB[Bb] σH [C]

︸ ︷︷ ︸

Nb{bi ∈ B : bi ≤B b}

b

Figure 10: The construction of the ordering σ and the set F ′ (possible cut edges are from F ).

(i) (1) holds and u ∈ Nb, v, w ∈ C: since the edge set between Nb and C is the same in H
and H ′, it follows that uv /∈ E(H). Since σH is an umbrella ordering of H, we either have
v <σH

u <σH
w or v <σH

w <σH
u (recall that C is in the same order in both σ and σH).

Now, recall that b <σH
{v, w} by assumption. In particular, since bu ∈ E(G), this implies in

both cases that σH is not an umbrella ordering, what leads to a contradiction.

(ii) (1) holds and u, v ∈ Nb, w ∈ C: this case cannot happen since Nb is a clique of H ′.

(iii) (2) holds and u ∈ Nb, v, w ∈ C: this case is similar to (i). Observe that we may assume
uv ∈ E(H) (otherwise (i) holds). By construction of F ′, we have vw /∈ E(H) and hence
v <σH

w <σH
u or v <σH

u <σH
w. The former case contradicts the fact that σH is an

umbrella ordering since wu ∈ E(H). In the latter case, since σH is an umbrella ordering this
means that bv ∈ E(H) (as bu ∈ E(H) and v <σH

u <σH
w). Since b is non affected vertex

and v ∈ C, we have bv /∈ E(G), which leads to a contradiction.

(iv) (2) holds and u, v ∈ Nb, w ∈ C: first, if uw ∈ E(G), then we have a contradiction since
NC(u) ⊆ NC(v). So, we have uw ∈ F ′. By construction of F ′, we know that uw is not an
extremal edge. Hence there exists an extremal edge (of G) above uw, which is either uw′

with w <σ w′ , u′w with u′ <σ u or u′w′ with u′ <σ u <σ w <σ w′. The three situation are
depicted in Figure 11. In the first case, vw′ ∈ E(G) (since NC(u) ⊆ NC(v) in G) and hence
we are in configuration (i) with vertex set {v, w,w′}. In the second case, u′w ∈ E(G) and
vw /∈ E(G) are in contradiction with NC(u′) ⊆ NC(v) in G (since u′ ∈ Bb). Finally, in the
third case, vw′ ∈ E(G) (since NC(u′) ⊆ NC(v) in G), and we are in configuration (i) with
vertex set {v, w,w′}.

(a) (c)(b)

w ∈ Cv ∈ Nbu ∈ Nb v ∈ Nb w ∈ C w
′
∈ Cw

′
∈ Cv ∈ Nb w ∈ Cu ∈ Nb u

′
∈ Bb u

′
∈ Bb u ∈ Nb

Figure 11: Illustration of the different cases of configuration (iv) (the bold edges belong to F ′).

⋄
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Altogether, we proved that there exists a k-completion of G associated with an umbrella ordering
where the vertices of Bb are ordered in the same way than in the ordering of B and stand at the
beginning of this ordering, what concludes the proof.

Rule 2.5 (1-branches). Let B be a 1-branch such that |BR| > 2k + 1. Remove BR \ BL from G,
where BL denotes the 2k + 1 last vertices of BR.

Lemma 2.14. Rule 2.5 is safe.

Proof. Let G′ = G \ (BR \ BL) denote the reduced graph. Observe that any k-completion of G
is a k-completion of G′ since proper interval graphs are closed under induced subgraphs. So let
F be a k-completion of G′. We denote by H = G′ + F the resulting proper interval graph and
let σH be the corresponding umbrella ordering. Without loss of generality, we assume that the
connected component of H containing BL is the first according to σH . Remark that B1∪BL forms
a 1-branch of G′, which we denote by B′. The umbrella ordering associated with B′ is induced by
σB. So, as previously, for a vertex b of BL, we denote {wV (B′) : b1 ≤σB′ w ≤σB′ bf} by Bb. By
Lemma 2.11 we know that there exists a vertex b ∈ BL such that the order of Bb in σH is the same
than in σB′ and the vertices of Bb are the first of σH . Since NG(BR \BL) ⊆ Bb, it follows that the
vertices of BR \BL can be inserted into σH while respecting the umbrella property. Hence, F is a
k-completion for G, implying the result.

Here again, the time complexity needed to compute Rule 2.5 will be discussed in the next
section. The following property of a reduced graph will be used to bound the size of our kernel.

Observation 2.15. Let G = (V,E) be a positive instance of Proper Interval Completion
reduced under Rules 2.2 to 2.5. Every 1-branch of G contains at most 4k+ 3 vertices which are not
contained in any 4-cycle or claw of G.

Proof. Let B be a 1-branch of a graph G = (V,E) reduced under Rules 2.2 to 2.5. As B has been
reduced under Rule 2.5, we know that B \ B1 contains at most 2k + 1 vertices. Furthermore B1

forms a K-join of G, and then, by Observation 2.10, contains at most 2k+ 2 vertices which are not
contained in any 4-cycle or claw of G.

2.1.5 Cutting the 2-branches

We now focus on 2-branches of the graph and explain how to reduce them. Let (G, k) be an instance
of Proper Interval Completion and B = {b1, . . . , b|B|} be a 2-branch of G associated with the
umbrella ordering σB. Recall that the attachment cliques of B are B1 = {b ∈ V (B) : b1 ≤σB

b ≤σB
bl′}, where bl′ is the neighbor of b1 with maximal index in σB, and B2 = {b ∈ V (B) : bl ≤σB

b ≤σB
b|B|}), where bl is the neighbor of b|B| with minimal index in σB. Now, we define the next

cliques in the 2-branch B (see Figure 12), namely B′
1 = {b ∈ V (B) : bl′+1 ≤σB

b ≤σB
bl̃′}, where

bl̃′ is the neighbor of bl′+1 with maximal index in σB, and B′
2 = {b ∈ V (B) : bl̃ ≤σB

b ≤σB
bl−1}),

where bl̃ is the neighbor of bl−1 with minimal index in σB. Finaly, we denote by BM the set
B \ (B1∪B′

1∪B′
2∪B2). Remark that by definition, we have BR = B′

1∪BM ∪B′
2. Remark also that

BM could be empty if B is made with four K-join or less. However, we are interested in 2-branches
B with BM large enough, to reduce it.

Rule 2.6 (2-branches). Let G be a connected instance of Proper Interval Completion and

B be a 2-branch such that G[V \ BR] is not connected. Assume that |BM | ≥ 4k + 2 and let Bf
M

be the set of the 2k + 1 vertices after B′
1 according to σB and Bl

M be the set of the 2k + 1 vertices

16
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B1

B1 B′
1

Bl
M B2

B2Bl
M

B′
1 B′

2

B′
2Bf

M

BM

b1 bl′ bl′+1 b
l̃′

b
l̃

bl−1 bl b|B|Bf
M

Figure 12: Applying Rule 2.6.

before B′
2 according to σB. Remove BM \ (Bf

M ∪ Bl
M ) from G (see Figure 12) and delete all the

edges between B′
1 ∪Bf

M and Bl
M ∪B′

2, if exist.

Lemma 2.16. Rule 2.6 is safe.

Proof. We denote by G′ the reduced graph, and first remark that G′ is no more a connected graph.
Indeed, by assumption G \ BR is not connected and we denote by G1 and G2 its two connected
components containing respectively B1 and B2. As B is a 2-branch, all the neighbors of G1 in B
stand in B′

1 (that is why we need B′
1). Similarly, all the neighbors of G2 in B stand in B′

2. As,

in G′ we have removed all the edges between B′
1 ∪Bf

M and Bl
M ∪B′

2, G
′
1 = G[G1 ∪B′

1 ∪Bf
M ] and

G′
2 = [Bl

M ∪B′
2 ∪G2] form two connected components of G′.

Now, observe that any k-completion of G induces a k-completion of G′. Indeed, since proper interval
graphs are closed under induced subgraphs, any k-completion of G induces a k1-completion of G′

1

and a k2-completion of G′
2 with k1 +k2 ≤ k and then a k1 +k2-completion of G′. Conversely, let F ′

be a k-completion of G′. We denote by F ′
1 (resp. F ′

2) the edges of F ′ the extremities of which lie

in G′
1 (resp. G′

2). Then, remark that B1 ∪B′
1 ∪Bf

M forms a 1-branch of G′
1 (and then of G′) with

attachment clique B1 and with |B′
1∪Bf

M | ≥ 2k+ 1 (that is why we need Bf
M ). So, by Lemma 2.11,

there exist a k1-completion F ′
1 of G′

1 with k1 ≤ |F1| and a vertex b1 ∈ B′
1 ∪ Bf

M such that Bb1 ,

which is the set of vertices of B′
1 ∪ Bf

M which are neighbors of b1 or lie after b1 according to σB,
is in the same order in σB than in an umbrella ordering of G′

1 + F ′
1, and say, at the end of this

ordering. Similarly, there exist a k2-completion F ′
2 of G′

2 with k2 ≤ |F2| and a vertex b2 ∈ B′
2 ∪Bl

M

such that Bb2 , which is the set of vertices of B′
2 ∪ B2

M which are neighbors of b2 or lie before b2
according to σB, is in the same order in σB than in an umbrella ordering of G′

2 + F ′
2, and say, at

the beginning of this ordering. Now, we can insert back the vertices and edges removed from G to
obtain G′. Indeed, as B is 2-branch, the neighbors of BM \ (Bf

M ∪Bl
M ) in G′

1∪G′
2 are in Bb1 ∪Bb2 ,

and similarly the removed edge between B′
1∪Bf

M and Bl
M ∪B′

2 have their extremities in Bb1 ∪Bb2 .
So, as Bb1 and Bb2 lie as in σB, we can put back the removed edges and vertices in order to obtain
a k′1 + k′2-completion of G, with k′1 + k′2 ≤ k.

The following observation bounds the number of vertices in a 2-branch of a positive instance of
Proper Interval Completion.

Observation 2.17. Let G = (V,E) be a connected positive instance of Proper Interval Com-
pletion, reduced under Rules 2.2 to 2.6, and B be a 2-branch of G such that G[C \ BR] is not
connected, where C is the connected component of G containing B. Then B contains at most
12k + 10 vertices which are not contained in any 4-cycle or claw of G.

17
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Proof. Let B be a 2-branch of G,reduced under Rules 2.2 to 2.6, and C be the connected component
containing B. The sets B1, B

′
1, B

′
2 and B2 form four K-joins of G, and then by Observation 2.10,

they contain in all at most 4.(2k + 2) = 8k + 8 vertices which are not contained in any 4-cycle
or claw of G. Furthermore, if G[C \ BR] is not connected, then, as G is reduced under Rule 2.6,
B \ (B1 ∪B′

1 ∪B′
2 ∪B2) contains at most 4k + 2 vertices, what provides the announced bound.

2.2 Detecting the branches

We now turn our attention to the complexity needed to compute reduction rules 2.4 to 2.6. Mainly,
we indicate how to obtain the maximum branches in order to reduce them. The detection of a
branch is straightforward except for the attachment cliques, where several choices are possible.
So, first, we detect the maximum 1-branches of G. Remark that for every vertex x of G, the set {x}
is a 1-branch of G. The next lemma indicates how to compute a maximum 1-branch that contains
a fixed vertex x as first vertex.

Lemma 2.18. Let G = (V,E) be a graph and x a vertex of G. In time O(nm), it is possible to
detect a maximum 1-branch of G containing x as first vertex.

Proof. To detect such a 1-branch, we design an algorithm which has two parts. Roughly speaking,
we first try to detect the set BR of a 1-branch B containing x. We set BR

0 = {x} and σ0 = x. Once
BR

i−1 has been defined, we construct the set Ci of vertices of G\(∪i−1
l=1B

R
l ) that are adjacent to at least

one vertex of BR
i−1. Two cases can appear. First, assume that Ci is a clique and that it is possible

to order the vertices of Ci such that for every 1 6 j < |Ci|, we have NBR
i−1

(cj+1) ⊆ NBR
i−1

(cj) and

(NG(cj) \ B
R
i−1) ⊆ (NG(cj+1) \ B

R
i−1). In this case, the vertices of Ci correspond to a new K-join

of the searched 1-branch (remark that, along this inductive construction, there is no edge between
Ci and ∪i−2

l=1B
R
l ). So, we let BR

i = Ci and σi be the concatenation of σi−1 and the ordering defined
on Ci. In the other case, such an ordering of Ci can not be found, meaning that while detecting a
1-branch B, we have already detected the vertices of BR and at least one (possibly more) vertex of
the attachment clique B1 with neighbors in BR. Assume that the process stops at step p and let
C be the set of vertices of G \ ∪p

l=1B
R
l which have neighbors in ∪p

l=1B
R
l and B′

1 ⊆ BR
p be the set of

vertices that are adjacent to all the vertices of C. Remark that B′
1 6= ∅, as B′

1 contains at least the
last vertex of σp. We denote by BR the set (∪p

l=1B
R
l ) \B′

1 and we will construct the largest K-join
containing B′

1 in G \BR which is compatible with σp, in order to define the attachment clique B1

of the desired 1-branch. The vertices of C are the candidates to complete the attachment clique.
On C, we define the following oriented graph: there is an arc from u to v if: uv is an edge of G,
NBR(v) ⊆ NBR(u) and NG\BR [u] ⊆ NG\BR [v]. This graph can be computed in time O(nm). Now,
it is easy to check that the obtained oriented graph is a transitive graph, in which the equivalent
classes are made of true twins in G. A path in this oriented graph corresponds, by definition, to a
K-join containing B′

1 and compatible with σp. As it is possible to compute a longest path in linear
time in this oriented graph, we obtain a maximum 1-branch of G that contains x as first vertex.

So, we detect all the maximum 1-branches of G in time O(n2m).
Now, to detect the 2-branches, we first detect for all pairs of vertices a maximum K-join with these
vertices as ends. More precisely, if {x, y} are two vertices of G linked by an edge, then {x, y} is a
K-join of G, with N = NG(x)∩NG(y), L = NG(x) \NG[y] and R = NG(y) \NG[x]. So, there exist
K-joins with x and y as ends, and we will compute such a K-join with maximum cardinality.

Lemma 2.19. Let G = (V,E) be a graph and x and y two adjacent vertices of G. It is possible to
compute in O(nm) time a maximum (in cardinality) K-join that admits x and y as ends.
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Proof. We denote NG[x]∩NG[y] by N , NG(x)\NG[y] by L and NG(y)\NG[x] by R. Let us denote
by N ′ the set of vertices of N that contains N in their closed neighborhood. The vertices of N ′ are
the candidates to belong to the desired K-join, and we can identify them in time O(n2). Now, we
construct on N ′ an oriented graph D, putting, for every vertices u and v of N ′, an arc from u to
v if: NG(v) ∩ L ⊆ NG(u) ∩ L and NG(u) ∩ R ⊆ NG(v) ∩ R. Basically, it could take a O(n) time
to decide if there is an arc from u to v or not, and so the whole oriented graph could be computed
in time O(n.|N ′|2). As N ′ is a clique of G, we have |N ′|2 = O(m). Now, it is easy to check that
the obtained oriented graph is a transitive graph in which the equivalent classes are made of true
twins in G. In this oriented graph, it is possible to compute a longest path from x to y in linear
time. Such a path corresponds to a maximal K-join that admits x and y as ends. It follows that
the desired K-join can be identified in O(nm) time.

Now, for every edge xy of G, we compute a maximum K-join that contains x and y as ends and
a reference to all the vertices that this K-join contains. This computation takes a O(nm2) time
and gives, for every vertex, some maximum K-joins that contain this vertex. These K-joins will
be useful to compute the 2-branches of G, in particular through the next lemma.

Lemma 2.20. Let B be a 2-branch of G with BR 6= ∅, and x a vertex of BR. Then, for every
maximal (by inclusion) K-join B′ that contains x there exists an extremal edge uv of σB such that
B′ = {w ∈ B : u ≤σB

w ≤σB
v}.

Proof. As usually, we denote by L, R and C the partition of G \ B associated with B and by σB
the umbrella ordering associated with B. Let B′ be a maximal K-join that contains x and define
by bf (resp. bl) the first (resp. last) vertex of B′ according to σB. As there is no edge between
{u ∈ B : u <σB

bf} ∪ L ∪ C and bl and no edge between {u ∈ B : bl <σB
u} ∪R ∪ C and bf , we

have B′ ⊆ {u ∈ B : bf ≤σB
u ≤ bl}. Furthermore, as {u ∈ B : bf ≤σB

u ≤ bl} is a K-join and
B′ is maximal, we have B′ = {u ∈ B : bf ≤σB

u ≤ bl}. Now, if bfbl was not an extremal edge of
σB, it would be possible to extend B′, contradicting the maximality of B′.

Now, we can detect the 2-branches B with a set BR non empty.

Lemma 2.21. Let G = (V,E) be a graph, x a vertex of G and B′ a given maximal K-join that
contains x. There is a O(nm) time algorithm to decide if there exists a 2-branch B of G which
contains x as a vertex of BR, and if it exists, to find a maximum 2-branch with this property.

Proof. By Lemma 2.20, if there exists a 2-branch B of G which contains x as a vertex of BR, then
B′ corresponds to a set {u ∈ B : bf ≤σB

u ≤σB
bl} where bfbl is an extremal edge of B. We

denote by L′, R′ and C ′ the usual partition of G \B′ associated with B′, and by σB′ the umbrella
ordering of B′. In G, we remove the set of vertices {u ∈ B′ : u <σB′ x} and the edges between
L′ and {u ∈ B′ : x ≤σB′ u} and denote by H1 the resulting graph. From the definition of the
2-branch B, {u ∈ B : x ≤σB

u} is a 1-branch of H1 that contains x as first vertex. So, using
Lemma 2.18, we find a maximal 1-branch B1 that contains x as first vertex. Remark that B1 has
to contain {u ∈ B : x ≤σB

u} ∩BR at its beginning. Similarly, we define H2 from G by removing
the vertex set {u ∈ B′ : x <σB′ u} and the edges between R′ and {u ∈ B′ : u ≤σB′ x}. We detect
in H2 a maximum 1-branch B2 that contains x as last vertex, and as previously, B2 has to contain
{u ∈ B : u ≤σB

x} ∩ BR at its end. So, B1 ∪ B2 forms a maximum 2-branch of G containing
x.

We would like to mention that it could be possible to improve the execution time of our detecting
branches algorithm, using possibly more involved techniques (as for instance, inspired from [7]).
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However, this is not our main objective here.
Anyway, using the O(n2m) time algorithm explained in Lemma 2.1 to localize all the 4-cycles and
the claws, we obtain the following result.

Lemma 2.22. Given a graph G = (V,E), the reduction rules 2.4 to 2.6 can be carried out in
polynomial time, namely in time O(nm(n + m)).

2.3 Kernelization algorithm

We are now ready to the state the main result of this Section. The kernelization algorithm consists
of an exhaustive application of Rules 2.1 to 2.6.

Theorem 2.23. The Proper Interval Completion problem admits a kernel with O(k3) ver-
tices, computable in time O(nm(n + m)).

Proof. Let G = (V,E) be a positive instance of Proper Interval Completion reduced under
Rules 2.1 to 2.6. Let F be a k-completion of G, H = G + F and σH be the umbrella ordering of
H. Since |F | ≤ k, G contains at most 2k affected vertices (i.e. incident to an added edge). Let
A = {a1 <σH

. . . <σH
ai <σH

. . . <σH
ap} be the set of such vertices, with p ≤ 2k. The size of the

kernel is due to the following observations, which we admit without proof (see Figure 13).

1−branch 1−branch 1−branch2−branch1−branch

︸ ︷︷ ︸︸ ︷︷ ︸ ︸ ︷︷ ︸︸ ︷︷ ︸ ︸ ︷︷ ︸︸ ︷︷ ︸ ︸︷︷︸︸ ︷︷ ︸ ︸︷︷︸

K-join K-join K-joinK-join

a1 a2 a7a6a5a4a3

Figure 13: Illustration of the size of the kernel. The figure represents the graph H = G + F , the
ai’s are the affected vertices, and the bold edges are edges of F .

Between two consecutive affected vertices ai and ai+1, the interval of vertices of G, denoted by
I, forms:

• Either a K-join, if I lies under an edge of F . For instance, on Figure 13, it corresponds
to intervals of vertices between a1 and a2, or between a3 and a4, or between a4 and a5 or
between a6 and a7. So, by Observation 2.10, we know that such a I contains at most 2k + 2
vertices which are not contained in any claw or 4-cycle of G.

• Either a 1-branch or two disjoint 1-branch. If I lies at the beginning or at the end of σH ,
then I forms a 1-branch (for instance, on Figure 13, it corresponds to intervals of vertices
before a1 or after a7). If I lies between two vertices ai and ai+1 which are respectively the last
(according to σH) of a connected component of G and the first (according to σH) of another
connected component of G, then I forms two disjoint 1-branches (for instance, on Figure 13,
it corresponds to the interval of vertices between a2 and a3). So, by Observation 2.15, we
know that such a I contains at most 2.(4k + 3) = 8k + 6 vertices which are not contained in
any claw or 4-cycle of G.

• Or a 2-branch, if I lies between two vertices ai and ai+1 which belongs to the same connected
component C of G and such that there is no edge of F standing above I. In this case the
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2-branch B forms by the vertices of I is such that G[C \ BR] is not connected, and then by
Observation 2.17, we know that I contains at most 12k + 10 vertices which are not contained
in any claw or 4-cycle of G.

Finaly, as there is at most 2k + 1 such intervals I, the graph H (and hence G) contains at most
(2k+1).(12k+10) vertices different from the ai’s and which are not contained in any claw or 4-cycle
of G. Moreover, by Lemma 2.2, there is at most 4k3 + 15k2 + 16k vertices of G contained in any
claw or 4-cycle. Alltogether, G contains at most 4k3 + 15k2 + 16k + (2k + 1).(12k + 10) + 2k + 1 =
4k3 + 39k2 + 50k + 11 vertices, which implies the claimed O(k3) bound. The complexity directly
follows from Lemma 2.22.

3 A special case: Bi-clique Chain Completion

Bipartite chain graphs are defined as bipartite graphs whose parts are connected by a join. Equiv-
alently, they are known to be the graphs that do not admit any {2K2, C5,K3} as an induced
subgraph [31] (see Figure 14). In [13], Guo proved that the so-called Bipartite Chain Deletion
With Fixed Bipartition problem, where one is given a bipartite graph G = (V,E) and seeks
a subset of E of size at most k whose deletion from E leads to a bipartite chain graph, admits a
kernel with O(k2) vertices. We define bi-clique chain graph to be the graphs formed by two disjoint
cliques linked by a join. They correspond to interval graphs that can be covered by two cliques.
Since the complement of a bipartite chain graph is a bi-clique chain graph, this result also holds for
the Bi-clique Chain Completion With Fixed Bi-clique Partition problem. Using similar
techniques than in Section 2, we prove that when the bipartition is not fixed, both problems admit
a quadratic-vertex kernel. For the sake of simplicity, we consider the completion version of the
problem, defined as follows.

Bi-clique Chain Completion:
Input: A graph G = (V,E) and a positive integer k.
Parameter: k.
Output: A set F ⊆ (V ×V )\E of size at most k such that the graph H = (V,E∪F ) is a bi-clique
chain graph.

It follows from definition that bi-clique chain graphs do not admit any {C4, C5, 3K1} as an
induced subgraph, where a 3K1 is an independent set of size 3 (see Figure 14). Observe in particular
that bi-clique chain graphs are proper interval graphs, and hence admit an umbrella ordering.

2K2 K3 C5 C4 3K1

Figure 14: The forbidden induced subgraphs for bipartite and bi-clique chain graphs.

We provide a kernelization algorithm for the Bi-clique Chain Completion problem which
follows the same lines that the one in Section 2.
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Rule 3.1 (Sunflower). Let S = {C1, . . . , Cm}, m > k be a set of 3K1 having two vertices u, v in
common but distinct third vertex. Add uv to F and decrease k by 1.
Let S = {C1, . . . , Cm}, m > k be a set of distinct 4-cycles having a non-edge uv in common. Add
uv to F and decrease k by 1.

The following result is similar to Lemma 2.2.

Lemma 3.1. Let G = (V,E) be a positive instance of Bi-clique Chain Completion on which
Rule 3.1 has been applied. There are at most k2+2k vertices of G contained in 3K1’s. Furthermore,
there at most 2k2 + 2k vertices of G that are vertices of a 4-cycle.

We say that a K-join is simple whenever L = ∅ or R = ∅. In other words, a simple K-join
consists in a clique connected to the rest of the graph by a join. We will see it as a 1-branch which
is a clique and use for it the classical notation devoted to the 1-branch. Moreover, we (re)define
a clean K-join as a K-join whose vertices do not belong to any 3K1 or 4-cycle. The following
reduction rule is similar to Rule 2.4, the main ideas are identical, only some technical arguments
change. Anyway, to be clear, we give the proof in all details.

Rule 3.2 (K-join). Let B be a simple clean K-join of size at least 2(k + 1) associated with an
umbrella ordering σB. Let BL (resp. BR) be the k + 1 first (resp. last) vertices of B according to
σB, and M = B \ (BL ∪BR). Remove the set of vertices M from G.

Lemma 3.2. Rule 3.2 is safe and can be computed in polynomial time.

Proof. Let G′ = G \M . Observe that any k-completion of G is a k-completion of G′ since bi-clique
chain graphs are closed under induced subgraphs. So, let F be a k-completion for G′. We denote
by H = G′ + F the resulting bi-clique chain graph and by σH an umbrella ordering of H. We
prove that we can always insert the vertices of M into σH and modify it if necessary, to obtain an
umbrella ordering of a bi-clique chain graph for G without adding any edge. This will imply that
F is a k-completion for G. To see this, we need the following structural property of G. As usual,
we denote by R the neighbors in G \B of the vertices of B, and by C the vertices of G \ (R ∪B).
For the sake of simplicity, we let N = ∩b∈BNG(b) \ B, and remove the vertices of N from R. We
abusively still denote by R the set R \N , see Figure 15.

M BR

B

N CRBL

Figure 15: The K-join decomposition for the Bi-clique Chain Completion problem.

Claim 3.3. The set R ∪ C is a clique of G.

Proof. Observe that no vertex of R is a neighbor of b1, since otherwise such a vertex must be
adjacent to all the vertices of B and then must stand in N . So, if R ∪C contains two vertices u, v
such that uv /∈ E, we form the 3K1 {b1, u, v}, contradicting the fact that B is clean. ⋄

The following observation comes from the definition of a simple K-join.

Observation 3.4. Given any vertex r ∈ R, if NB(r) ∩BL 6= ∅ holds then M ⊆ NB(r).
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We use these facts to prove that an umbrella ordering of a bi-clique chain graph can be ob-
tained for G by inserting the vertices of M into σH . Let bf , bl be the first and last vertex of B \M
appearing in σH , respectively. We let BH denote the set {u ∈ V (H) : bf <σH

u <σH
bl}. Now, we

modify σH by ordering the twins in H according to their neighborhood in M : if x and y are twins
in H, are consecutive in σH , verify x <σH

y <σH
bf and NM (y) ⊂ NM (x), then we exchange x

and y in σH . This process stops when the considered twins are ordered following the join between
{u ∈ V (H) : u <σH

bf} and M . We proceed similarly on the right of BH , i.e. for x and y
consecutive twins with bl <σH

x <σH
y and NM (x) ⊂ NM (y). The obtained order is clearly an

umbrella ordering of a bi-clique chain graph too (in fact, we just re-labeled some vertices in σH ,
and we abusively still denote it by σH).

Claim 3.5. The set BH ∪ {m} is a clique of G for any m ∈ M , and consequently BH ∪ M is a
clique of G.

Proof. Let u be any vertex of BH .We claim that um ∈ E(G). Observe that if u ∈ B then
the claim trivially holds. So, assume that u /∈ B. By definition of σH , BH is a clique in H since
bfbl ∈ E(G). It follows that u is incident to every vertex of B \H in H. Since BL contains k + 1
vertices, it follows that NG(u)∩BL 6= ∅. Hence, u belongs to N∪R and um ∈ E by Observation 2.6.
⋄

Claim 3.6. Let m be any vertex of M and σ′
H be the ordering obtained from σH by removing BH

and inserting m to the position of BH . The ordering σ′
H respects the umbrella property.

Proof. Assume that σ′
H does not respect the umbrella property, i.e. that there exist (w.l.o.g.)

two vertices u, v ∈ H \BH such that either (1) u <σ′
H
v <σ′

H
m, um ∈ E(H) and uv /∈ E(H) or (2)

u <σ′
H
m <σ′

H
v, um /∈ E(H) and uv ∈ E(H) or (3) u <σ′

H
v <σ′

H
m, um ∈ E(H) and vm /∈ E(H).

First, assume that (1) holds. Since uv /∈ E and σH is an umbrella ordering, uw /∈ E(H) for
any w ∈ BH , and hence uw /∈ E(G). This means that BR ∩ NG(u) = ∅, which is impossible
since um ∈ E(G). If (2) holds, since uv ∈ E(H) and σH is an umbrella ordering of H, we have
BH ⊆ NH(u). In particular, BL ⊆ NH(u) holds, and as |BL| = k + 1, we have BL ∩ NG(u) 6= ∅
and um should be an edge of G, what contradicts the assumption um /∈ E(H). So, (3) holds,
and we choose the first u satisfying this property according to the order given by σ′

H . So we have
wm /∈ E(G) for any w <σ′

H
u. Similarly, we choose v to be the first vertex satisfying vm /∈ E(G).

Since um ∈ E(G), we know that u belongs to N ∪ R. Moreover, since vm /∈ E(G), v ∈ R ∪ C.
There are several cases to consider:

(i) u ∈ N : in this case we know that B ⊆ NG(u), and in particular that ubl ∈ E(G). Since
σH is an umbrella ordering for H, it follows that vbl ∈ E(H) and that BL ⊆ NH(v). Since
|BL| = k + 1 we know that NG(v)∩BL 6= ∅ and hence v ∈ R. It follows from Observation 2.6
that vm ∈ E(G).

(ii) u ∈ R, v ∈ R ∪C: in this case uv ∈ E(G), by Claim 3.3, but u and v are not true twins in H
(otherwise v would be placed before u in σH due to the modification we have applied to σH).
This means that there exists a vertex w ∈ V (H) that distinguishes u from v in H.

Assume first that w <σH
u and that uw ∈ E(H) and vw /∈ E(H). We choose the first w

satisfying this according to the order given by σ′
H . Since vm,wm, vw /∈ E(H), it follows that

{v, w,m} defines a 3K1 of G, which cannot be since B is clean. Hence we can assume that
for any w′′ <σH

u, uw′′ ∈ E(H) implies that vw′′ ∈ E(H). Now, suppose that bl <σH
w and

uw /∈ E(H), vw ∈ E(H). In particular, this means that BL ⊆ NH(v). Since |BL| = k + 1

23



2.8. A POLY-KERNEL FOR PROPER INTERVAL COMPLETION 157

we have NG(v) ∩ BL 6= ∅, implying vm ∈ E(G) (Observation 2.6). Assume now that v <σH

w <σH
bf . In this case, since uw /∈ E(H), B ∩ NH(u) = ∅ holds and hence B ∩ NG(u) = ∅,

which cannot be since u ∈ R. Finally, assume that w ∈ BH and choose the last vertex w
satisfying this according to the order given by σ′

H (i.e. vw′ /∈ E(H) for any w <σH
w′ and

w′ ∈ BH). If vw ∈ E(G) then {u,m,w, v} is a 4-cycle in G containing a vertex of B, which
cannot be (recall that BH ∪ {m} is a clique of G by Claim 2.7). Hence vw ∈ F and there
exists an extremal edge above vw. The only possibility is that this edge is some edge u′w for
some u′ with u′ ∈ V (H), u <σH

u′ <σH
v and u′w ∈ E(G). By the choice of v we know that

u′m ∈ E(G). Moreover, by the choice of w, observe that u′ and v are true twins in H (if a
vertex s distinguishes u′ and v in H, s cannot be before u, since otherwise s would distinguish
u and v, and not before w, by choice of w). This leads to a contradiction because v should
have been placed before u through the modification we have applied to σH . ⋄

Claim 3.7. Every vertex m ∈ M can be added to the graph H while preserving an umbrella ordering.

Proof. Let m be any vertex of M . The graph H is a bi-clique chain graph. So, we know that in its
associated umbrella ordering σH = b1, . . . , b|H|, there exists a vertex bi such that H1 = {b1, . . . , bi}
and H2 = {bi+1, . . . , b|H|} are two cliques of H linked by a join. We study the behavior of BH

according to the partition (H1, H2).

(i) Assume first that BH ⊆ H1 (the case BH ⊆ H2 is similar). We claim that the set H1∪{m} is a
clique. Indeed, let v ∈ H1 \BH : since H1 is a clique, BH ⊆ NH(v) and hence NG(v)∩BL 6= ∅.
In particular, this means that vm ∈ E(G) by Observation 3.4. Since BH ∪ {m} is a clique
by Claim 3.5, the result follows. Now, let u be the neighbor of m with maximal index in σH ,
and bu the neighbor of u with minimal index in σH . Observe that we may assume u ∈ H2

since otherwise NH(m) ∩ H2 = ∅ and hence we insert m at the beginning of σH . First, if
bu ∈ H1, we prove that the order σm obtained by inserting m directly before bu in σH yields
an umbrella ordering of a bi-clique chain graph. Since H1 ∪ {m} is a clique, we only need to
show that NH2

(v) ⊆ NH2
(m) for any v ≤σm bu and NH2

(m) ⊆ NH2
(w) for any w ∈ H2 with

w ≥σm bu. Observe that by Claim 3.6 the set {w ∈ V : m ≤σm w ≤σm u} is a clique. Hence
the former case holds since vu′ /∈ E(G) for any v ≤σm bu and u′ ≥σm u. The latter case also
holds since NH(m) ⊆ NH(bu) by construction. Finally, if bu ∈ H2, then bu = b|H1|+1 since H2

is a clique. Hence, using similar arguments one can see that inserting m directly after b|H1| in
σH yields an umbrella ordering of a bi-clique chain graph.

(ii) Assume now that BH ∩H1 6= ∅ and BH ∩H2 6= ∅. In this case, we claim that H1 ∪ {m} or
H2∪{m} is a clique in H. Let u and u′ be the neighbors of m with minimal and maximal index
in σH , respectively. If u = b1 or u′ = b|H| then Claims 3.5 and 3.6 imply that H1 ∪ {m} or
H2∪{m} is a clique and we are done. So, none of these two conditions hold and mb1 /∈ E(H)
and mb|H| /∈ E(H) Then, by Claim 3.6, we know that b1b|H| and the set {b1, b|H|,m} defines
a 3K1 containing m in G, which cannot be. This means that we can assume w.l.o.g. that
H1 ∪ {m} is a clique, and we can conclude using similar arguments than in (i).

⋄

Since the proof of Claim 3.7 does not use the fact that the vertices of H do not belong to M , it
follows that we can iteratively insert the vertices of M into σH , preserving an umbrella ordering at
each step. To conclude, observe that the reduction rule can be computed in polynomial time using
Lemma 2.19.
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Observation 3.8. Let G = (V,E) be a positive instance of Bi-clique Chain Completion
reduced under Rule 3.2. Any simple K-join B of G has size at most 3k2 + 6k + 2.

Proof. Let B be any simple K-join of G, and assume |B| > 3k2 + 6k + 2. By Lemma 3.1 we know
that at most 3k2 + 2k vertices of B are contained in a 3K1 or a 4-cycle. Hence B contains a set B′

of at least 2k + 3 vertices not contained in any 3K1 or a 4-cycle. Now, since any subset of a K-join
is a K-join, it follows that B′ is a clean simple K-join. Since G is reduced under rule 3.2, we know
that |B′| ≤ 2(k + 1) what gives a contradiction.

Finally, we can prove that Rules 3.1 and 3.2 form a kernelization algorithm.

Theorem 3.9. The Bi-clique Chain Completion problem admits a kernel with O(k2) vertices.

Proof. Let G = (V,E) be a positive instance of Bi-clique Chain Completion reduced under
Rules 3.1 and 3.2, and F be a k-completion for G. We let H = G+F and H1, H2 be the two cliques
of H. Observe in particular that H1 and H2 both define simple K-joins. Let A be the set of affected
vertices of G. Since |F | ≤ k, observe that |A| ≤ 2k. Let A1 = A ∩H1, A2 = A ∩H2, A

′
1 = H1 \A1

and A′
2 = H2 \ A2 (see Figure 16). Observe that since H1 is a simple K-join in H, A′

1 ⊆ H1 is a
simple K-join of G (recall that the vertices of A′

1 are not affected). By Observation 3.8, it follows
that |A′

1| ≤ 3k2 + 6k + 2. The same holds for A′
2 and H contains at most 2(3k2 + 6k + 2) + 2k

vertices.

H1 H2

A′
1 A′

2

Figure 16: Illustration of the bi-clique chain graph H. The square vertices stand for affected
vertices, and the sets A′

1 = H1 \A1 and A′
2 = H2 \A2 are simple K-joins of G, respectively.

Corollary 3.10. The Bipartite Chain Deletion problem admits a kernel with O(k2) vertices.

4 Conclusion

In this paper we prove that the Proper Interval Completion problem admits a kernel with
O(k3) vertices. Two natural questions arise from our results: firstly, does the Interval Com-
pletion problem admit a polynomial kernel? Observe that this problem is known to be FPT
not for long [29]. The techniques we developed here intensively use the fact that there are few
claws in the graph, what help us to reconstruct parts of the umbrella ordering. Of course, these
considerations no more hold in general interval graphs. The second question is: does the Proper
Interval Edge-Deletion problem admit a polynomial kernel? Again, this problem admits a
fixed-parameter algorithm [27], and we believe that our techniques could be applied to this prob-
lem as well. Finally, we proved that the Bi-clique Chain Completion problem admits a kernel
with O(k2) vertices, which completes a result of Guo [13]. In all cases, a natural question is thus
whether these bounds can be improved?
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2.9 A poly-kernel for FAS in tournaments
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ABSTRACT. A tournament T = (V, A) is a directed graph in which there is exactly one arc between
every pair of distinct vertices. Given a digraph on n vertices and an integer parameter k, the FEED-
BACK ARC SET problem asks whether the given digraph has a set of k arcs whose removal results
in an acyclic digraph. The FEEDBACK ARC SET problem restricted to tournaments is known as the
k-FEEDBACK ARC SET IN TOURNAMENTS (k-FAST) problem. In this paper we obtain a linear vertex
kernel for k-FAST. That is, we give a polynomial time algorithm which given an input instance T
to k-FAST obtains an equivalent instance T′ on O(k) vertices. In fact, given any fixed ǫ > 0, the
kernelized instance has at most (2 + ǫ)k vertices. Our result improves the previous known bound of
O(k2) on the kernel size for k-FAST. For our kernelization algorithm we find a subclass of tourna-
ments where one can find a minimum sized feedback arc set in polynomial time and use the known
polynomial time approximation scheme for k-FAST.

1 Introduction

Given a directed graph G = (V, A) on n vertices and an integer parameter k, the FEEDBACK

ARC SET problem asks whether the given digraph has a set of k arcs whose removal results

in an acyclic directed graph. In this paper, we consider this problem in a special class of

directed graphs, tournaments. A tournament T = (V, A) is a directed graph in which there

is exactly one directed arc between every pair of vertices. More formally the problem we

consider is defined as follows.

k-FEEDBACK ARC SET IN TOURNAMENTS (k-FAST): Given a tournament T =
(V, A) and a positive integer k, does there exist a subset F ⊆ A of at most k arcs

whose removal makes T acyclic.

In the weighted version of k-FAST, we are also given integer weights (each weight is at

least one) on the arcs and the objective is to find a feedback arc set of weight at most k. This

problem is called k-WEIGHTED FEEDBACK ARC SET IN TOURNAMENTS (k-WFAST).

Feedback arc sets in tournaments are well studied from the combinatorial [16, 17, 23,

24, 26, 30], statistical [25] and algorithmic [1, 2, 11, 20, 28, 29] points of view. The problems

k-FAST and k-WFAST have several applications. In rank aggregation we are given several

NOT FOR DISTRIBUTION
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rankings of a set of objects, and we wish to produce a single ranking that on average is as

consistent as possible with the given ones, according to some chosen measure of consistency.

This problem has been studied in the context of voting [6, 10], machine learning [9], and

search engine ranking [14, 15]. A natural consistency measure for rank aggregation is the

number of pairs that occur in a different order in the two rankings. This leads to Kemeney-

Young rank aggregation [18, 19], a special case of k-WFAST.

The k-FAST problem is known to be NP-complete by recent results of Alon [2] and

Charbit et al. [8] while k-WFAST is known to be NP-complete by Dwork et al. [14, 15]. From

an approximation perspective, k-WFAST admits a polynomial time approximation scheme

[20]. The problem is also well studied in parameterized complexity. In this area, a problem

with input size n and a parameter k is said to be fixed parameter tractable (FPT) if there exists

an algorithm to solve this problem in time f (k) · nO(1), where f is an arbitrary function of

k. Raman and Saurabh [22] showed that k-FAST and k-WFAST are FPT by obtaining an

algorithm running in time O(2.415k · k4.752 + nO(1)). Recently, Alon et al. [3] have improved

this result by giving an algorithm for k-WFAST running in time O(2O(
√

k log k) + nO(1)). This

algorithm runs in sub-exponential time, a trait uncommon to parameterized algorithms. In

this paper we investigate k-FAST from the view point of kernelization, currently one of the

most active subfields of parameterized algorithms.

A parameterized problem is said to admit a polynomial kernel if there is a polynomial

time algorithm, called a kernelization algorithm, that reduces the input instance to an in-

stance whose size is bounded by a polynomial p(k) in k, while preserving the answer. This

reduced instance is called a p(k) kernel for the problem. When p(k) is a linear function of

k then the corresponding kernel is a linear kernel. Kernelization has been at the forefront

of research in parameterized complexity in the last couple of years, leading to various new

polynomial kernels as well as tools to show that several problems do not have a polyno-

mial kernel under some complexity-theoretic assumptions [4, 5, 7, 13, 27]. In this paper we

continue the current theme of research on kernelization and obtain a linear vertex kernel for

k-FAST. That is, we give a polynomial time algorithm which given an input instance T to

k-FAST obtains an equivalent instance T′ on O(k) vertices. More precisely, given any fixed

ǫ > 0, we find a kernel with a most (2 + ǫ)k vertices in polynomial time. The reason we call

it a linear vertex kernel is that, even though the number of vertices in the reduced instance

is at most O(k), the number of arcs is still O(k2). Our result improves the previous known

bound of O(k2) on the vertex kernel size for k-FAST [3, 12]. For our kernelization algo-

rithm we find a subclass of tournaments where one can find a minimum sized feedback arc

set in polynomial time (see Lemma 12) and use the known polynomial time approximation

scheme for k-FAST by Kenyon-Mathieu and Schudy [20]. The polynomial time algorithm

for a subclass of tournaments could be of independent interest.

The paper is organized as follows. In Section 2, we give some definition and prelim-

inary results regarding feedback arc sets. In Section 3 we give a linear vertex kernel for

k-FAST. Finally we conclude with some remarks in Section 4.
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2 Preliminaries

Let T = (V, A) be a tournament on n vertices. We use Tσ = (Vσ, A) to denote a tournament

whose vertices are ordered under a fixed ordering σ = v1, . . . , vn (we also use Dσ for an

ordered directed graph). We say that an arc vivj of Tσ is a backward arc if i > j, otherwise we

call it a forward arc. Moreover, given any partition P := {V1, . . . , Vl} of Vσ, where every

Vi is an interval according to the ordering of Tσ, we use AB to denote all arcs between

the intervals (having their endpoints in different intervals), and AI for all arcs within the

intervals. If Tσ contains no backward arc, then we say that it is transitive.

For a vertex v ∈ V we denote its in-neighborhood by N−(v) := {u ∈ V | uv ∈ A} and its

out-neighborhood by N+(v) := {u ∈ V | vu ∈ A}. A set of vertices M ⊆ V is a module if and

only if N+(u) \ M = N+(v) \ M for every u, v ∈ M. For a subset of arcs A′ ⊆ A, we define

T[A′] to be the digraph (V ′, A′) where V ′ is the union of endpoints of the arcs in A′. Given

an ordered digraph Dσ and an arc e = vivj, S(e) = {vi, . . . , vj} denotes the span of e. The

number of vertices in S(e) is called the length of e and is denoted by l(e). Thus, for every arc

e = vivj, l(e) = |i − j| + 1. Finally, for every vertex v in the span of e, we say that e is above v.

In this paper, we will use the well-known fact that every acyclic tournament admits a

transitive ordering. In particular, we will consider maximal transitive modules. We also need

the following result for our kernelization algorithm.

LEMMA 1.([22]) Let D = (V, A) be a directed graph and F be a minimal feedback arc set of

D. Let D′ be the graph obtained from D by reversing the arcs of F in D, then D′ is acyclic.

In this paper whenever we say circuit, we mean a directed cycle. Next we introduce a

definition which is useful for a lemma we prove later.

DEFINITION 2. Let Dσ = (Vσ, A) be an ordered directed graph and let f = vu be a backward

arc of Dσ. We call certificate of f , and denote it by c( f ), any directed path from u to v using

only forward arcs in the span of f in Dσ.

Observe that such a directed path together with the backward arc f forms a directed

cycle in Dσ whose only backward arc is f .

DEFINITION 3. Let Dσ = (Vσ, A) be an ordered directed graph, and let F ⊆ A be a set

of backward arcs of Dσ. We say that we can certify F whenever it is possible to find a set

F = {c( f ) : f ∈ F} of arc-disjoint certificates for the arcs in F.

Let Dσ = (Vσ, A) be an ordered directed graph, and let F ⊆ A be a subset of backward

arcs of Dσ. We say that we can certify the set F using only arcs from A′ ⊆ A if F can be

certified by a collection F such that the union of the arcs of the certificates in F is contained

in A′. In the following, f as(D) denotes the size of a minimum feedback arc set, that is, the

cardinality of a minimum sized set F of arcs whose removal makes D acyclic.

LEMMA 4. Let Dσ be an ordered directed graph, and let P = {V1, . . . , Vl} be a partition of

Dσ into intervals. Assume that the set F of all backward arcs of Dσ[AB] can be certified using

only arcs from AB. Then f as(Dσ) = f as(Dσ[AI ]) + f as(Dσ[AB]). Moreover, there exists a

minimum sized feedback arc set of Dσ containing F.

PROOF. For any bipartition of the arc set A into A1 and A2, f as(Dσ) ≥ f as(Dσ[A1]) +
f as(Dσ[A2]). Hence, in particular for a partition of the arc set A into AI and AB we have
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that f as(Dσ) ≥ f as(Dσ[AI ]) + f as(Dσ[AB]). Next, we show that f as(Dσ) ≤ f as(Dσ[AI ]) +
f as(Dσ[AB]). This follows from the fact that once we reverse all the arcs in F, each remaining

circuit lies in Dσ[Vi] for some i ∈ {1, . . . , l}. In other words once we reverse all the arcs in F,

every circuit is completely contained in Dσ[AI ]. This concludes the proof of the first part of

the lemma. In fact, what we have shown is that there exists a minimum sized feedback arc

set of Dσ containing F. This concludes the proof of the lemma.

3 Kernels for k-FAST

In this section we first give a subquadratic vertex kernel of size O(k
√

k) for k-FAST and then

improve on it to get our final vertex kernel of size O(k). We start by giving a few reduction

rules that will be needed to bound the size of the kernels.

Rule 3.1 If a vertex v is not contained in any triangle, delete v from T.

Rule 3.2 If there exists an arc uv that belongs to more than k distinct triangles, then reverse uv and

decrease k by 1.

We say that a reduction rule is sound, if whenever the rule is applied to an instance

(T, k) to obtain an instance (T′, k′), T has a feedback arc set of size at most k if and only if T′

has a feedback arc set of size at most k′.

LEMMA 5.([3, 12]) Rules 3.1 and 3.2 are sound and can be applied in polynomial time.

The Rules 3.1 and 3.2 together led to a quadratic kernel for k-WFAST [3]. Earlier, these

rules were used by Dom et al. [12] to obtain a quadratic kernel for k-FAST. We now add a

new reduction rule that will allow us to obtain the claimed bound on the kernel sizes for

k-FAST. Given an ordered tournament Tσ = (Vσ, A), we say that P = {V1, . . . , Vl} is a safe

partition of Vσ into intervals whenever it is possible to certify the backward arcs of Tσ[AB]
using only arcs from AB.

Rule 3.3 Let Tσ be an ordered tournament, P = {V1, . . . , Vl} be a safe partition of Vσ into intervals

and F be the set of backward arcs of Tσ[AB]. Then reverse all the arcs of F and decrease k by |F|.

LEMMA 6. Rule 3.3 is sound.

PROOF. Let P be a safe partition of Tσ. Observe that it is possible to certify all the back-

ward arcs, that is F, using only arcs in AB. Hence using Lemma 4 we have that f as(Tσ) =
f as(Tσ[AI ]) + f as(Tσ[AB]). Furthermore, by Lemma 4 we also know that there exists a min-

imum sized feedback arc set of Dσ containing F. Thus, Tσ has a feedback arc set of size at

most k if and only if the tournament T′
σ

obtained from Tσ by reversing all the arcs of F has a

feedback arc set of size at most k − |F|.

3.1 A subquadratic kernel for k-FAST

In this section, we show how to obtain an O(k
√

k) sized vertex kernel for k-FAST. To do so,

we introduce the following reduction rule.
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Rule 3.4 Let Vm be a maximal transitive module of size p, and I and O be the set of in-neighbors

and out-neighbors of the vertices of Vm in T, respectively. Let Z be the set of arcs uv such that u ∈ O

and v ∈ I. If q = |Z| < p then reverse all the arcs in Z and decrease k by q.

I O

Tm

|Tm| = p

q < p

Figure 1: A transitive module on which Rule 3.4 applies.

LEMMA 7. Rule 3.4 is sound and can be applied in linear time.

PROOF. We first prove that the partition P = {I, Vm, O} forms a safe partition of the input

tournament. Let V ′
m = {w1, . . . , wq} ⊆ Vm be an arbitrary subset of size q of Vm and let

Z = {uivi | 1 ≤ i ≤ q}. Consider the collection F = {viwiui | uivi ∈ Z, wi ∈ V ′
m} and

notice that it certifies all the arcs in Z. In fact we have managed to certify all the backwards

arcs of the partition using only arcs from AB and hence P forms a safe partition. Thus, by

Rule 3.3, it is safe to reverse all the arcs from O to I. The time complexity follows from the

fact that computing a modular decomposition tree can be done in O(n + m) time on directed

graphs [21].

We show that any YES-instance to which none of the Rules 3.1, 3.2 and 3.4 could be

applied has at most O(k
√

k) vertices.

THEOREM 8. Let (T = (V, A), k) be a YES-instance to k-FAST which has been reduced

according to Rules 3.1, 3.2 and 3.4. Then T has at most O(k
√

k) vertices.

PROOF. Let S be a feedback arc set of size at most k of T and let T′ be the tournament

obtained from T by reversing all the arcs in S. Let σ be the transitive ordering of T′ and

Tσ = (Vσ, A) be the ordered tournament corresponding to the ordering σ. We say that a

vertex is affected if it is incident to some arc in S. Thus, the number of affected vertices is

at most 2|S| ≤ 2k. The reduction Rule 3.1 ensures that the first and last vertex of Tσ are

affected. To see this note that if the first vertex in Vσ is not affected then it is a source vertex

(vertex with in-degree 0) and hence it is not part of any triangle and thus Rule 3.1 would

have applied. We can similarly argue for the last vertex. Next we argue that there is no

backward arc e of length greater than 2k + 2 in Tσ. Assume to the contrary that e = uv is a

backward arc with S(e) = {v, x1, x2, . . . , x2k+1, . . . , u} and hence l(e) > 2k + 2. Consider the

collection T = {vxiu | 1 ≤ i ≤ 2k} and observe that at most k of these triples can contain

an arc from S \ {e} and hence there exist at least k + 1 triplets in T which corresponds to

distinct triangles all containing e. But then e would have been reversed by an application
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of Rule 3.2. Hence, we have shown that there is no backward arc e of length greater than

2k + 2 in Tσ. Thus ∑e∈S l(e) ≤ 2k2 + 2k.

We also know that between two consecutive affected vertices there is exactly one max-

imal transitive module. Let us denote by ti the number of vertices in these modules, where

i ∈ {1, . . . , 2k − 1}. The objective here is to bound the number of vertices in Vσ or V using

∑
2k−1
i=1 ti. To do so, observe that since T is reduced under the Rule 3.4, there are at least ti

backward arcs above every module with ti vertices, each of length at least ti. This implies

that ∑
2k−1
i=1 t2

i ≤ ∑e∈S l(e) ≤ 2k2 + 2k. Now, using the Cauchy-Schwarz inequality we can

show the following.

2k−1

∑
i=1

ti =
2k−1

∑
i=1

ti · 1 ≤

√
√
√
√

2k−1

∑
i=1

t2
i ·

2k−1

∑
i=1

1 ≤
√

(2k2 + 2k) · (2k − 1) =
√

4k3 + 2k2 − k.

Thus every reduced YES-instance has at most
√

4k3 + 2k2 − k + 2k = O(k
√

k) vertices.

3.2 A linear kernel for k-FAST

We begin this subsection by showing some general properties about tournaments which

will be useful in obtaining a linear kernel for k-FAST.

Backward Weighted Tournaments

Let Tσ be an ordered tournament with weights on its backward arcs. We call such a tourna-

ment a backward weighted tournament and denote it by Tω, and use ω(e) to denote the weight

of a backward arc e. For every interval I := [vi, . . . , vj] we use ω(I) to denote the total

weight of all backward arcs having both their endpoints in I, that is, ω(I) = ∑e=uv w(e)
where u, v ∈ I and e is a backward arc.

DEFINITION 9.(Contraction) Let Tω = (Vσ, A) be an ordered tournament with weights on

its backward arcs and I = [vi, . . . , vj] be an interval. The contracted tournament is defined

as T
ω

′ = (V
σ
′ = Vσ \ {I} ∪ {cI}, A′). The arc set A′ is defined as follows.

• It contains all the arcs A1 = {uv | uv ∈ A, u /∈ I, v /∈ I}
• Add A2 = {ucI | uv ∈ A, u /∈ I, v ∈ I} and A3 = {cIv | uv ∈ A, u ∈ I, v /∈ I}.

• Finally, we remove every forward arc involved in a 2-cycle after the addition of arcs in

the previous step.

The order σ
′ for T

ω
′ is provided by σ

′ = v1, . . . , vi−1, cI , vj+1, . . . , vn. We define the weight of

a backward arc e = xy of A′ as follows.

w′(xy) =







w(xy) if xy ∈ A1

∑{xz∈A | z∈I} w(xz) if xy ∈ A2

∑{zy∈A | z∈I} w(zy) if xy ∈ A3

We refer to Figure 2 for an illustration.

Next we generalize the notions of certificate and certification (Definitions 2 and 3) to

backward weighted tournaments.
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vp vp

c
I

2

vjvi

Figure 2: Illustration of the contraction step for the interval I := [vi, . . . , vj].

DEFINITION 10. Let Tω = (Vσ, A) be a backward weighted tournament, and let f = vu ∈ A

be a backward arc of Tω. We call ω-certificate of f , and denote it by C( f ), a collection of ω( f )
arc-disjoint directed paths going from u to v and using only forward arcs in the span of f in

Tω.

DEFINITION 11. Let Tω = (Vσ, A) be a backward weighted tournament, and let F ⊆ A be

a subset of backward arcs of Tω. We say that we can ω-certify F whenever it is possible to

find a set F = {C( f ) : f ∈ F} of arc-disjoint ω-certificates for the arcs in F.

LEMMA 12. Let Tω = (Vσ, A) be a backward weighted tournament such that for every

interval I := [vi, . . . , vj] the following holds:

2 · ω(I) ≤ |I| − 1 (1)

Then it is possible to ω-certify the backward arcs of Tω.

PROOF. Let Vσ = v1, . . . , vn. The proof is by induction on n, the number of vertices. Note

that by applying (1) to the interval I = [v1, . . . , vn], we have that there exists a vertex vi

in Tω that is not incident to any backward arc. Let T′
ω

= (V ′
σ
, A′) denote the tournament

Tω \ {vi}. We say that an interval I is critical whenever 2 · ω(I) = |I| − 1. We now consider

several cases, based on different types of critical intervals.

(i) Suppose that there are no critical intervals. Thus, in T′
ω

, every interval satisfies (1), and

hence by induction on n the result holds.

(ii) Suppose now that the only critical interval is I = [v1, . . . , vn], and let e = vu be a

backward arc above vi with the maximum length. Note that since vi does not belong

to any backward arc, we can use it to form a directed path c(e) = uviv, which is a

certificate for e. We now consider T′
ω

where the weight of e has been decreased by

1. In this process if ω(e) becomes 0 then we reverse the arc e. We now show that

every interval of T′
ω

respects (1). If an interval I′ ∈ T′
ω

does not contain vi in the

corresponding interval in Tω, then by our assumption we have that 2 ·ω(I′) ≤ |I′| − 1.

Now we assume that the interval corresponding to I′ in Tω contains vi but either u /∈
I′ ∪ {vi} or v /∈ I′ ∪ {vi}. Then we have 2 · ω(I′) = 2 · ω(I) < |I| − 1 = |I′| and hence

we get that 2 ·ω(I′) ≤ |I′| − 1. Finally, we assume that the interval corresponding to I′

in Tω contains vi and u, v ∈ I′ ∪ {vi}. In this case, 2 · ω(I′) = 2 · (ω(I)− 1) ≤ |I| − 1−
2 < |I′| − 1. Thus, by the induction hypothesis, we obtain a family of arc-disjoint ω-

certificates F ′ which ω-certify the backward arcs of T′
ω

. Observe that the maximality

of l(e) ensures that if e is reversed then it will not be used in any ω-certificate of F ′,

thus implying that F ′ ∪ c(e) is a family ω-certifying the backward arcs of Tω.
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(iii) Finally, suppose that there exists a critical interval I ⊂ Vσ. Roughly speaking, we will

show that I and Vσ \ I can be certified separately. To do so, we first show the following

claim.

Claim. Let I ⊂ Vσ be a critical interval. Then the tournament T
ω

′ = (V
σ
′ , A′) obtained

from Tω by contracting I satisfies the conditions of the lemma.

PROOF. Let H′ be any interval of T
ω

′ . As before if H′ does not contain cI then the

result holds by hypothesis. Otherwise, let H be the interval corresponding to H′ in Tω.

We will show that 2ω(H′) ≤ |H′| − 1. By hypothesis, we know that 2ω(H) ≤ |H| − 1

and that 2ω(I) = |I| − 1. Thus we have the following.

2ω(H′) = 2 · (ω(H) − ω(I)) ≤ |H| − 1 − |I| + 1 = (|H| + 1 − |I|) − 1 = |H′| − 1

Thus, we have shown that the tournament T
ω

′ satisfies the conditions of the lemma.

We now consider a minimal critical interval I. By induction, and using the claim, we

know that we can obtain a family of arc-disjoint ω-certificates F ′ which ω-certifies

the backward arcs of T
ω

′ without using any arc within I. Now, by minimality of I,

we can use (ii) to obtain a family of arc-disjoint ω-certificates F ′′ which ω-certifies the

backward arcs of I using only arcs within I. Thus, F ′ ∪ F ′′ is a family ω-certifying all

backward arcs of Tω.

This concludes the proof of the lemma.

In the following, any interval that does not respect condition (1) is said to be a dense

interval.

LEMMA 13. Let Tω = (Vσ, A) be a backward weighted tournament with |Vσ| ≥ 2p + 1,

having at most p backward arcs and every backward arc has weight one. Then there exists

a safe partition of Vσ with at least one backward arc between the intervals and it can be

computed in polynomial time.

PROOF. The proof is by induction on n = |Vσ|. Observe that the statement is true for

n = 3, which is our base case.

For the inductive step, we assume first that there is no dense interval in Tω. In this case

Lemma 12 ensures that the partition of Vσ into singletons of vertices is a safe partition. So

from now on we assume that there exists at least one dense interval.

Let I be a dense interval. By definition of I, we have that ω(I) ≥ 1
2 · |I|. We now

contract I and obtain the backward weighted tournament T
ω

′ = (V
σ
′ , A′). In the contracted

tournament T
ω

′ , we have:

{

|V
σ
′ | ≥ 2p + 1 − (|I| − 1) = 2p − |I| + 2;

ω
′(V

σ
′) ≤ p − 1

2 · |I|.

Thus, if we set r := p − 1
2 · |I|, we get that |V

σ
′ | ≥ 2r + 1 and ω

′(V
σ
′) ≤ r. Since |V

σ
′ | < |Vσ|,

by the induction hypothesis we can find a safe partition P of T
ω

′ , and thus obtain a family

F
ω

′ that ω-certifies the backward arcs of T
ω

′ [AB] using only arcs in AB.

We claim that P ′ obtained from P by substituting cI by its corresponding interval I is

a safe partition in Tω. To see this, first observe that if cI has not been used to ω-certify the
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backward arcs in T
ω

′ [AB], that is, cI is not an end point of any arc in the ω-certificates, then

we are done. So from now on we assume that cI has been part of a ω-certificate for some

backward arc. Let e be a backward arc in T
ω

′ [AB], and let c
ω

′(e) ∈ F
ω

′ be a ω-certificate

of e. First we assume that cI is not the first vertex of the certificate c
ω

′(e) (with respect to

ordering σ
′), and let c1 and c2 be the left (in-) and right (out-) neighbors of cI in c

ω
′(e). By

definition of the contraction step together with the fact that there is a forward arc between

c1 and cI and between cI and c2 in T
ω

′ , we have that there were no backward arcs between

any vertex in the interval corresponding to cI and c1 and c2 in the original tournament Tω.

So we can always find a vertex in I to replace cI in c
ω

′(e), thus obtaining a certificate c(e) for

e in Tω[AB] (observe that e remains a backward arc even in Tω). Now we assume that cI is

either a first or last vertex in the certificate c
ω

′(e). Let e′ be an arc corresponding to e in T
ω

′

with one of its endpoints being eI ∈ I. To certify e′ in Tω[AB], we need to show that we can

construct a certificate c(e′) using only arcs of Tω[AB]. We have two cases to deal with.

(i) If cI is the first vertex of c
ω

′(e) then let c1 be its right neighbor in c
ω

′(e). Using the

same argument as before, there are only forward arcs between any vertex in I and

c1. In particular, there is a forward arc eIc1 in Tω, meaning that we can construct a

ω-certificate for e′ in Tω by setting c(e′) := (c
ω

′(e) \ {cI}) ∪ {eI}.

e
I

c
I

c
1

c
1

I

Figure 3: On the left, the ω-certificate c
ω

′(e) ∈ F
ω

′ . On the right, the corresponding ω-

certificate obtained in Tω by replacing cI by the interval I.

(ii) If cI is the last vertex of c
ω

′(e) then let cq be its left neighbor in c
ω

′(e). Once again, we

have that there are only forward arcs between cq and vertices in I, and thus between

cq and eI . So using this we can construct a ω-certificate for e′ in Tω.

Notice that the fact that all ω-certificates are pairwise arc-disjoint in T
ω

′ [AB] implies that the

corresponding ω-certificates are arc-disjoint in Tω[AB], and so P ′ is indeed a safe partition

of Vσ.

We are now ready to give the linear size kernel for k-FAST. To do so, we make use of

the fact that there exists a polynomial time approximation scheme for this problem [20].

THEOREM 14. For every fixed ǫ > 0, there exists a vertex kernel for k-FAST with at most

(2 + ǫ)k vertices that can be computed in polynomial time.

PROOF. Let (T = (V, A), k) be an instance of k-FAST. For a fixed ǫ > 0, we start by

computing a feedback arc set S of size at most (1 + ǫ

2 )k. To find such a set S, we use the

known polynomial time approximation scheme for k-FAST [20]. Then, we order T with

the transitive ordering of the tournament obtained by reversing every arc of S in T. Let Tσ

denote the resulting ordered tournament. By the upper bound on the size of S, we know

that Tσ has at most (1 + ǫ

2 )k backward arcs. Thus, if Tσ has more than (2 + ǫ)k vertices then

Lemma 13 ensures that we can find a safe partition with at least one backward arc between

the intervals in polynomial time. Hence we can reduce the tournament by applying Rule 3.3.

We then apply Rule 3.1, and repeat the previous steps until we do not find a safe partition or
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k = 0. In the former case, we know by Lemma 13 that T can have at most (2 + ǫ)k vertices,

thus implying the result. In all other cases we return NO. This concludes the proof of our

main theorem.

4 Conclusion

In this paper we obtained linear vertex kernel for k-FAST, in fact, a vertex kernel of size

(2 + ǫ)k for any fixed ǫ > 0. The new bound on the kernel size improves the previous

known bound of O(k2) on the vertex kernel size for k-FAST given in [3, 12]. It would be

interesting to see if one can obtain kernels for other problems using either polynomial time

approximation schemes or a constant factor approximation algorithm for the correspond-

ing problem. An interesting problem which remains unanswered is, whether there exists

a linear or even a o(k2) vertex kernel for the k-FEEDBACK VERTEX SET IN TOURNAMENTS

(k-FVST) problem. In the k-FVST problem we are given a tournament T and a positive

integer k and the aim is to find a set of at most k vertices whose deletion makes the input

tournament acyclic. The smallest known kernel for k-FVST has size O(k2).
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2.10 Counting the number of edge-colourings

Enumerating the edge-colourings and total colourings of a regular

graph∗

S. Bessy† and F. Havet‡

November 5, 2011

Abstract

In this paper, we are interested in computing the number of edge colourings and total
colourings of a connected graph. We prove that the maximum number of k-edge-colourings of
a connected k-regular graph on n vertices is k · ((k − 1)!)n/2. Our proof is constructive and
leads to a branching algorithm enumerating all the k-edge-colourings of a connected k-regular
graph in time O∗(((k − 1)!)n/2) and polynomial space. In particular, we obtain a algorithm to
enumerate all the 3-edge-colourings of a connected cubic graph in time O∗(2n/2) = O∗(1.4143n)
and polynomial space. This improves the running time of O∗(1.5423n) of the algorithm due to
Golovach et al. [10]. We also show that the number of 4-total-colourings of a connected cubic
graph is at most 3 · 23n/2. Again, our proof yields a branching algorithm to enumerate all the
4-total-colourings of a connected cubic graph.

1 Introduction

We refer to [5] for standard notation and concepts for graphs. In this paper, all the considered
graphs are loopless, but may have parallel edges. A graph with no parallel edges is said to be
simple. Let G be a graph. We denote by n(G) the number of vertices of G, and for each integer
k, we denote by nk(G) the number of degree k vertices of G. Often, when the graph G is clearly
understood, we abbreviate n(G) to n and nk(G) to nk.

Graph colouring is one of the classical subjects in graph theory. See for example the book of
Jensen and Toft [12]. From an algorithmic point of view, for many colouring type problems, like
vertex colouring, edge colouring and total colouring, the existence problem asking whether an input
graph has a colouring with an input number of colours is NP-complete. Even more, these colouring
problems remain NP-complete when the question is whether there is a colouring of the input graph
with a fixed (and greater than 2) number of colours [9, 11, 17].

Exact algorithms to solve NP-hard problems are a challenging research subject in graph algo-
rithms. Many papers on exact exponential time algorithms have been published in the last decade.
One of the major results is the O∗(2n)-time inclusion-exclusion algorithm to compute the chromatic
number of a graph found independently by Björklund, Husfeldt [2] and Koivisto [14], see [4]. This

∗This work is supported by the French Agence Nationale de la Recherche under reference AGAPE ANR-09-BLAN-
0159.

†Université Montpellier 2 - CNRS, LIRMM. e-mail: Stephane.Bessy@lirmm.fr.
‡Projet Mascotte, I3S (CNRS, UNSA) and INRIA, Sophia Antipolis.

email: Frederic.Havet@inria.fr.
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approach may also be used to establish a O∗(2n)-time algorithm to count the k-colourings and to
compute the chromatic polynomial of a graph. It also implies a O∗(2m)-time algorithm to count
the k-edge-colourings and a O∗(2n+m)-time algorithm to count the k-total-colourings of a given
graph.

Since edge colouring and total colouring are particular cases of vertex colouring, a natural
question is to ask if faster algorithms than the general one may be designed in these cases. For
instance, very recently Björklund et al. [3] showed how to detect whether a k-regular graph admits
a k-edge-colouring in time O∗(2(k−1)n/2).

The existence problem asking whether a graph has a colouring with a fixed and small number
k of colours also attracted a lot of attention. For vertex colourability the fastest algorithm for
k = 3 has running time O∗(1.3289n) and was proposed by Beigel and Eppstein [1], and the fastest
algorithm for k = 4 has running time O∗(1.7272n) and was given by Fomin et al. [8]. They also
established algorithms for counting k-vertex-colourings for k = 3 and 4. The existence problem for
a 3-edge-colouring is considered in [1, 15, 10]. Kowalik [15] gave an algorithm deciding if a graph is
3-edge-colourable in time O∗(1.344n) and polynomial space and Golovach et al. [10] presented an
algorithm counting the number of 3-edge-colourings of a graph in time O∗(3n/6) = O∗(1.201n) and
exponential space. Golovach et al. [10] also showed a branching algorithm to enumerate all the 3-
edge-colourings of a connected cubic graph in time O∗(25n/8) = O∗(1.5423n) and polynomial space.
In particular, this implies that every connected cubic graph of order n has at most O(1.5423n) 3-
edge-colourings. They give an example of a connected cubic graph of order n having Ω(1.2820n)
3-edge-colourings. In Section 2, we prove that a connected cubic graph of order n has at most 3·2n/2
3-edge-colourings and give an example reaching this bound. Our proof can be translated into a
branching algorithm to enumerate all the 3-edge-colourings of a connected cubic graph in time
O∗(2n/2) = O∗(1.4143n) and polynomial space. Furthermore, we extend our result proving that
every k-regular connected graph of order n admits at most k · ((k− 1)!)n/2 k-edge-colourings. And,
similarly, we derive a branching algorithm to enumerate all the k-edge-colourings of a connected
k-regular graph in time O∗(((k − 1)!)n/2) and polynomial space.

Regarding total colouring, very little has been done. Golovach et al. [10] showed a branching
algorithm to enumerate the 4-total-colourings of a connected cubic graph in time O∗(213n/8) =
O∗(3.0845n), implying that the maximum number of 4-total-colourings in a connected cubic graph
of order n is at most O∗(213n/8) = O∗(3.0845n). In Section 3, we lower this bound to 3 · 23n/2 =
O(2.8285n). Again, our proof yields a branching algorithm to enumerate all the 4-total-colourings
of a connected cubic graph in time O∗(2.8285n) and polynomial space.

2 Edge colouring

A (proper) edge colouring of a graph is a colouring of its edges such that two adjacent edges receive
different colours. An edge colouring with k colours is a k-edge-colouring. We denote by ck(G) the
number of k-edge-colourings of a graph G.

2.1 General bounds for k-regular graphs

In this section, we are interested in computing the number of k-edge-colourings of k-regular con-
nected graphs. We start by computing exactly the number of 3-edge-colourings of the cycles.

Proposition 1. Let Cn be the cycle of length n.

2
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c3(Cn) =

{
2n + 2, if n is even,
2n − 2, if n is odd.

Proof. By induction on n. It is easy to check that c3(C2) = c3(C3) = 6.
Let Cn = (v1, v2, . . . , vn, v1). Let A be the set of 3-edge-colourings of Cn such that c(vn−1vn) 6=

c(v1v2) and B the set of 3-edge-colourings of Cn such that c(vn−1vn) = c(v1v2). The 3-edge-
colourings of A are in one-to-one correspondence with those of Cn−1 and the pair of colourings of
B agreeing everywhere except on vnv1 are in one-to-one correspondence with the 3-edge-colourings
of Cn−2. Thus c3(Cn) = c3(Cn−1) + 2c3(Cn−2). Hence, if n is even, then c3(Cn) = 2n−1 − 2 +
2(2n−2 + 2) = 2n + 2, and if n is odd, then c3(Cn) = 2n−1 + 2 + 2(2n−2 − 2) = 2n − 2.

Let us now present our method which is based on a classical tool: (s, t)-ordering.

Definition 2. Let G be a graph and s and t be two distinct vertices of G. An (s, t)-ordering of G
is an ordering of its vertices v1, . . . , vn such that s = v1 and t = vn, and for all 1 < i < n, vi has a
neighbour in {v1, . . . , vi−1} and a neighbour in {vi+1, . . . , vn}.

Lemma 3 (Lempel et al. [16]). A graph G is a 2-connected graph if, and only if, for every pair
(s, t) of vertices, it admits an (s, t)-ordering.

In fact, Lempel et al. established Lemma 3 only for simple graphs but it can be trivially
extended to graphs since replacing all the parallel edges between two vertices by a unique edge
does not change the connectivity.

Theorem 4. Let G be a 2-connected subcubic graph. Then c3(G) ≤ 3 · 2n−
n3
2 .

Proof. If G is a cycle, then the result follows from Proposition 1. Hence we may assume that G is
not a cycle and thus has at least two vertices of degree 3, say s and t. By Lemma 3, there exists
an (s, t)-ordering v1, v2, . . . , vn of G. Orient each edge of G according to this order, that is from
the lower-indexed end-vertex towards its higher-indexed one. Let us denote by D the obtained
digraph. Observe that d+(v1) = 3 = d−(vn) and d−(v1) = 0 = d+(vn). Let A+ (resp. A−) be the
set of vertices with outdegree 2 (resp. indegree 2) in D and A2 be the set of vertices with degree
2 in G (and thus with indegree 1 and outdegree 1 in D). Clearly, (A2, A

−, A+) is a partition of
V (D) \ {v1, vn}. Observe that |A2| = n − n3. Since

∑

v∈V (D) d
+(v) =

∑

v∈V (D) d
−(v), we have

|A+| = |A−|, and so |A+| = (n3 − 2)/2.
Now for i = 1 to n− 1, we enumerate the pi partial 3-edge-colourings of the arcs whose tail is

in {v1, . . . , vi}. For i = 1, there are 6 such colourings, since d+(v1) = 3.
Now, for each i, when we want to extend the partial colourings, two cases may arise.

• If d−D(vi) = 1, then we need to colour one or two arcs, and one colour (the one of the arc
entering vi) is forbidden, so there are at most 2 possibilities. Hence pi ≤ 2pi−1.

• If d−D(vi) = 2, then we need to colour one arc, and at least two colours (the ones of the arcs
entering vi) are forbidden, so there is at most one possibility. Hence pi ≤ pi−1.

At the end, all the edges of G are coloured, and a simple induction shows that c3(G) = pn−1 ≤

6 · 2|A2|+|A+| = 3 · 2n−
n3
2 .

3
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In particular, for a connected cubic graph G, we obtain c3(G) ≤ 3 · 2n/2. We now extend this
result to k-regular graphs.

Theorem 5. Let G be a connected k-regular graph, with k ≥ 3. Then ck(G) ≤ k · ((k − 1)!)n/2.

Proof. First, remark that if a connected k-regular graph G admits a k-edge-colouring, then every
colour induces a perfect matching of G, and then n is even. Furthermore, observe that G is 2-
connected. Indeed, assume that G has a cutvertex x and admits a k-edge-colouring c. As G has
an even number of vertices, one of the connected components, say C, of G− x has odd cardinality.
A colour appearing on an edge between x and a connected component of G − x different from C
must form a perfect matching on C which is impossible. So, G is 2-connected.

Hence we can use the method of the proof of Theorem 4 and consider an (s, t)-ordering v1, . . . , vn
of G and D the orientation of G obtained from this ordering (i.e. vivj ∈ A(D) if and only if vivj ∈
E(G) and i < j). The analysis made in the proof of Theorem 4 yields ck(G) ≤ ∏

x∈V (G)(d
+(x)!). For

i = 1, . . . , k−1, we define Ai = {x ∈ V (G)\{v1, vn} : d+(x) = i}. It is clear that (Ai)1≤i≤k−1 form

a partition of V (G) \ {v1, vn}. If we denote |Ai| by ai, then ck(G) ≤ P := k!
∏k−1

i=1 (i!)ai . Moreover

S1 :=
∑k−1

i=1 ai = n−2 (by counting the number of vertices of G) and S2 :=
∑k−1

i=1 i ·ai = k(n−2)/2
(by counting the number of arcs of D − v1).

Let us now find the maximum value of P under the conditions S1 = n− 2 and S2 = k(n− 2)/2.
If we can find 1 < p ≤ q < k − 1 with ap 6= 0 and aq 6= 0 (or ap ≥ 2 if p = q), then we decrease
ap and aq by one and increase ap−1 and aq+1 by one. Doing this, S1 and S2 are unchanged and
P is multiplied by q+1

p > 1. We repeat this operation as many times as possible and stop when
(a) for every i = 2, . . . , k − 2, ai = 0 or (b) there exists j ∈ {2, . . . , k − 2} such that for every
i = 2, . . . , k − 2 and i 6= j, ai = 0 and aj = 1. In case (b), S1 gives a1 + 1 + ak−1 = n − 2 and S2

is a1 + j + (k − 1)ak−1 = k(n− 2)/2. Combining S1 and S2, we obtain 2(k − 2)ak−1 + 2(j − 1) =
(k − 2)(n − 2) and we conclude that k − 2 divides 2(j − 1) and so that j = k/2. Solving S1

and S2 we have in particular that a1 = ak−1 and 2a1 = n − 3 which is impossible, as n is even.
Hence, we are in case (a), and solving S1 and S2 yields to a1 = ak = (n− 2)/2. We conclude that
P ≤ k!((k − 1)!)n/2−1.

We turn now the proof of Theorem 5 into an algorithm to enumerate all the k-edge-colourings
of a connected k-regular graph.

Corollary 6. There is an algorithm to enumerate all the k-edge-colourings of a connected k-regular
graph on n vertices in time O∗(((k − 1)!)n/2) and polynomial space.

Proof. Let G be a connected k-regular graph. We first check the 2-connectivity of G. If it is not
2-connected, then we return ‘The graph is not k-edge-colourable’.

If it is 2-connected, then we proceed as follows. We compute an (s, t)-ordering v1, . . . , vn of G,
which can be done in polynomial time (see [6] and [7] for instance), and orient G accordingly to this
ordering. Now, it is classical to enumerate all the permutations of a set of size p in time O(p!) and
linear space, in such way that, being given a permutation we compute in average constant time the
next permutation in the enumeration (with the Steinhaus-Johnson-Trotter algorithm for instance,
see [13]).

Using this and the odometer principle, it is now easy to enumerate all the edge colourings we
want. In the enumeration of all the permutations of {1, . . . , k}, we take the first one and assign the
corresponding colours to the arc with tail x1. For any index i with 2 ≤ i ≤ k, we assign to the arcs
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with tail xi the first permutation in the enumeration of the permutations of the possible colours
for these arcs (i.e. all the colours of {1, . . . , k} minus the one of the arcs entering in xi). Then, we
have the first colouring, and we check if it is a proper edge colouring of G (in polynomial time).
To obtain the next colouring, we take the next permutation on the colours possible on the arcs
with tail xn−1, and so on. Once all the possible permutations have been enumerated for these arcs,
we take the next permutation on the colours possible on the arcs with tail xn−2 and re-enumerate
the permutation of possible colours for the arcs with tail xn−1, and so on, following the odometer
principle.

The bound given by Theorem 5 is optimal on the class of connected k-regular graphs. For all
k ≥ 3, and n ≥ 2, n = 2p even, the k-noodle necklace Nk

n is the k-regular graph obtained from
a cycle on 2p vertices (v1, v2, . . . , v2p, v1) by replacing all the edges v2i−1v2i, 1 ≤ i ≤ p by k − 1
parallel edges.

Proposition 7. Let k ≥ 3 and n ≥ 2,

ck(Nk
n) = k · ((k − 1)!)n/2.

Proof. Observe that in every k-edge-colouring of Nk
n the edges which are not multiplied (i.e.

v2iv2i+1) are coloured the same. There are k choices for such a colour. Once this colour is fixed,
there are (k − 1)! choices for each set of k − 1 parallel edges. Hence ck(Nk

n) = k · ((k − 1)!)n/2.

2.2 A more precise bound for cubic graphs

For simple cubic graphs, we lower the bound on the number of 3-edge-colourings from 3 · 2n/2 to
9
4 · 2n/2.

Lemma 8. If G is a connected cubic simple graph, then c3(G) ≤ 9
4 · 2n/2.

Proof. As in Theorem 4, let us consider an (s, t)-ordering v1, v2, . . . , vn of the vertices and the
acyclic digraph D obtained by orienting all the edges of G according to this ordering.

Let i be the smallest integer such that d−(vi) = 2. Since every vertex (except v1) has an
inneighbour, there exists j such that there are two internally-disjoint directed paths from vj to vi
in D. In G, the union of these two paths forms a cycle C. By definition of i, all vertices of C but vi
have outdegree 2. So, if there is k such that j < k < i and vk /∈ V (C), then vk has no outneighbour
in C and the ordering v1, . . . , vk−1, vk+1, . . . vi, vk, vi+1, . . . , vn is also an (s, t)-odering. Repeating
this operation as many times as necessary, we may obtain that all the vertices of C are consecutive
in the ordering, that is C = (vj , vj+1, . . . , vi, vj).

We enumerate the 3-edge-colourings of G in a similar way to the proof of Theorem 4, except
that instead of examining the colour of arcs with tail in {vj , . . . , vi} one after another, we look at
C globally. If j = 1, then there are exactly c3(C) 3-edge-colourings of C, because no arcs has head
in C. If j > 1, then there are c3(C)/3 3-edge-colourings of C, because one arc has head vj and we
need the colours of the two arcs with tail vj to have a colour distinct from it.

Recall that in D, v1 has indegree 0, vp has indegree 3, n−2
2 vertices have indegree 2 and n−2

2
vertices have indegree 1. If j > 1 (resp. j = 1), then there are i− j (resp. i−2) vertices of indegree
1 in C, so there are n−2i+2j−2

2 (resp. n−2i+2
2 ) vertices of indegree 1 in V (G) \ V (C).

If j = 1, then we start by colouring C and then extend the colouring to G. Once C is coloured,

there is at most one possibility to colour each arc with tail in C, so c3(G) ≤ c3(C) · 2
n−2i+2

2 =

5
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(c3(C)/2i−1) · 2n/2. If j > 1, we colour the arcs with tail in {v1, . . . , vj−1} as usual. Remark that,
by the choice of C, there is exactly one of these arcs, denoted by e, which has head in C and more
precisely e has tail vj . Then, we consider all the 3-edge-colourings of C that agree with the colour
of e (i.e. c(vjvj+1) 6= c(e) and c(vjvi) 6= c(e)). There are exactly c3(C)/3 such colourings. Finally,
we extend the edge colourings in all possible ways to G using the usual method. So, in this case,

we obtain c3(G) ≤ 6 · c3(C)/3 · 2
n−2i+2j−2

2 = (c3(C)/2i−j) · 2n/2.

In all cases, we have to bound the value c3(C)
2i−j for 1 ≤ i < j. Since G has no 2-cycles, C has

length at least 3, and so i − j ≥ 2. By Proposition 1, c3(G) = 2i−j+1 + 2 if i − j is odd, and

c3(G) = 2i−j+1− 2 if i− j is even. Easily one sees that the value c3(C)
2i−j is maximized when i− j = 3

(i.e. C has length four), and so c3(C)
2i−j ≤ 18

8 = 9
4 . Thus c3(G) ≤ 9

4 · 2n/2.

Theorem 5 for k = 3 states that a connected cubic graph G has at most 3·2n/2 3-edge-colourings.
We shall now describe all connected cubic graphs attaining this bound.

Let G be a cubic graph and C = uvu be a 2-cycle in G. Then G/C is the graph obtained from
G − {u, v} by adding an edge between the neighbour of u distinct from v and the neighbour of v
distinct from u.

Let Θ be the graph with two vertices joined by three edges. And let L be the family of graphs
defined recursively as follows:

• Θ ∈ L.

• if G has a 2-cycle C such that G/C is in L, then G is in L.

Remark that the 3-noodle necklaces N3
n (with n even) belongs to the family L.

Theorem 9. Let G be a connected cubic graph. If G ∈ L, then c3(G) = 3 · 2n/2. Otherwise
c3(G) ≤ 9

4 · 2n/2.

Proof. By induction on n, the result holding for simple graphs by Lemma 8 and for Θ because
c3(Θ) = 6.

Assume that n ≥ 4 and that G has a 2-cycle C = uvu. In any 3-edge-colouring of G, the
edges not in C incident to u and v are coloured the same. Hence to each 3-edge-colouring c
of G/C corresponds the two 3-edge-colourings of G that agrees with c on G − {u, v}. Hence
c3(G) = 2c3(G/C).

If G/C is in L, then G is also in L. Moreover, by the induction hypothesis, c3(G/C) = 3·2(n−2)/2.
So c3(G) = 3 · 2n/2.

If G/C is not in L, then G is not in L. Moreover, by the induction hypothesis, c3(G/C) ≤
9
4 · 2(n−2)/2. So c3(G) ≤ 9

4 · 2n/2.

We have no example of cubic simple graphs admitting exactly 9
4 · 2n/2 3-edge-colourings, and

we believe that 9
4 could be replaced by a lower constant in the statement of Theorem 9. In fact,

we conjecture that the maximum number of 3-edge-colourings of cubic simple graphs of order n is
attained by some special graphs that we now describe.

For all n ≥ 2, n = 2p even, the hamster wheel Hn is the cubic graph obtained from two
cycles on p vertices Cv = (v1, v2, . . . , vp, v1) and Cw = (w1, w2, . . . , wp, w1) by adding the matching
M = {viwi : 1 ≤ i ≤ p}. This construction for a lower bound was proposed by Pyatkin as it is
mentioned in [10].
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Proposition 10.

c3(Hn) =

{
2n/2 + 8, if n/2 is even,

2n/2 − 2, if n/2 is odd.

Proof. Let φ is a 3-edge-colouring of Cv.
If the three colours appear on Cv, then there is a unique 3-edge-colouring of Hn extending φ.

Indeed, to extend φ, the colours of the edges of M are forced. Since the three colours appear on
Cv, there are two edges of M which are coloured differently. Without loss of generality, we may
assume that these two edges are consecutive, that is there exists i such that they are vjwj and
vj+1wj+1. But then the colour of wjwj+1 must be equal to the one of vjvj+1. Then, from edge to
edge along the cycle, one shows that for all i, the colour of wiwi+1 is the one of vivi+1.

If only two colours appear on Cv, then there are two 3-edge-colourings of Hn extending φ.
Indeed in this case, n is even and all the edges of M must be coloured by the colour not appearing
on Cv. So, there are two possible 3-edge-colourings of Cw with the colours appearing on Cv.

Hence the number of 3-edge-colourings of G is equal to the number of 3-edge-colourings of Cv

plus the number of 3-edge-colourings of Cv in which two colours appear. If n/2 is odd, this last
number is 0, and if n/2 is even, this number is 6. So, by Proposition 1, c3(Hn) = 2n/2 − 2 if n/2 is
odd and c3(Hn) = 2n/2 + 8 if n/2 is even.

For all n ≥ 2, n = 2p even, the Mœbius ladder Mn is the cubic graph obtained from a cycle on
n vertices C = (v1, v2, . . . vn, v1) by adding the matching M = {vivi+p : 1 ≤ i ≤ p} (indices are
modulo n).

Two edges e and f of the cycle C are said to be antipodal, if there exists 1 ≤ i ≤ p such that
{e, f} = {vivi+1, vi+pvi+p+1}. A 3-edge-colouring c of Mn is said to be antipodal if c(e) = c(f) for
every pair (e, f) of antipodal edges.

Proposition 11. Let c be a 3-edge-colouring of Mn. If c is not antipodal, then n/2 is odd and all
the arcs vivi+n/2+1 are coloured the same.

Proof. Suppose that two antipodal edges are not coloured the same. Without loss of generality,
c(vnv1) = 2 and c(vpvp+1) = 3, where n = 2p. Hence, we have c(v1vp+1) = 1, c(v1v2) = 3 and
c(vp+1vp+2) = 2. And so on by induction, for all 1 ≤ i ≤ p, c(vivi+p) = 1 and {c(vivi+1), c(vi+pvi+p+1)} =
{2, 3}. Hence, the edges of C are coloured alternately with 2 and 3, Since c(v2pv1) = 2 and
c(vpvp+1) = 3, p must be odd.

Proposition 12.

c3(Mn) =

{
2n/2 + 2, if n/2 is even,

2n/2 + 4, if n/2 is odd.

Proof. Clearly, there is a one-to-one mapping between the antipodal 3-edge-colourings of Mn and
the 3-edge-colourings of Cn/2. Hence, by Proposition 11, if n/2 is even, then c3(Mn) = c3(Cn/2) =

2n/2 + 2 by Proposition 1.
If n/2 is odd, non-antipodal 3-edge-colourings are those such that all arcs vivi+n/2+1 are coloured

the same, by Proposition 11. There are 6 such edge colourings (three choices for the colour of
the edges vivi+n/2+1 and for each of these choices, two possible edge colourings of C). Hence

c3(Mn) = c3(Cn/2) + 6 = 2n/2 + 4 by Proposition 1.

We think that Hn and Mn are the connected cubic graphs which admit the maximum number
of 3-edge-colourings. Precisely, we raise the following conjecture.

7
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Conjecture 13. Let G be a connected cubic simple graph on n vertices. If n/2 is even, then
c3(G) ≤ c3(Hn) and if n/2 is odd, then c3(G) ≤ c3(Mn).

3 Total colouring

A total colouring of a graph G into k colours is a colouring of its vertices and edges such that
two adjacent vertices receive different colours, two adjacent edges receive different colours and a
vertex and an edge incident to it receive different colours. A total colouring with k colours is a
k-total-colouring. For every graph G, let cTk (G) be the number of k-total-colourings of G.

For each 4-edge-colouring c of a cubic graph G, there is at most one 4-total-colouring of G
whose restriction to E(G) equals c. Indeed, the colours of the three edges incident to a vertex force
the colour of this vertex. Hence if G is cubic, we have that cT4 (G) ≤ c4(G).

By the method described in the previous section, one can show that if G is 2-connected, then
c4(G) = O(2n/2 · 6n/2), and so cT4 (G) = O(2n/2 · 6n/2). We now obtain better upper bounds for cT4 .

Theorem 14. Let G be a 2-connected subcubic graph. Then cT4 (G) ≤ 3 · 22n−n3/2.

Proof. Assume first that G is a cycle (v1, . . . , vn, v1). Let us totally colour it greedily starting from
v1. There are 4 possible colours for v1, and then 3 possible colours for v1v2. Afterwards for every
i ≥ 2, there at most two possible colours for vi (the ones distinct from the colours of vi−1 and vi−1vi)
and then at most two possible colours for vivi+1 (the ones distinct from the colours of vi−1vi and
vi). Hence cT4 (G) ≤ 4 · 3 · 22n−2 = 3 · 22n.

Assume now that G is not a cycle. Let s and t be two distinct vertices of degree 3. Consider
an (s, t)-ordering v1, v2, . . . , vn of V (G), which exists by Lemma 3, and the orientation D of G
according to this ordering. Then d+(v1) = 3 = d−(vn) and d−(v1) = 0 = d+(vn). Let A+ (resp.
A−) be the set of vertices of outdegree 2 (resp. indegree 2) in D and A2 be the set of vertices of
degree 2 in G. As in the proof of Theorem 4, we have |A2| = n−n3, and |A+| = |A−| = (n3−2)/2.

Now for i = 1 to n− 1, we enumerate the pi partial 4-total-colourings of vertices in {v1, . . . , vi}
and arcs with tail in {v1, . . . , vi}. For i = 1, there are 4! = 24 such colourings, since v1 and its three
incident arcs must receive different colours.

For each 1 < i < n, when we extend the partial total colourings. Two cases may arise.

• If d−D(vi) = 1, then there are two choices to colour vi and then two other choices to colour
the (at most two) arcs leaving vi. Hence pi ≤ 4pi−1.

• If d−D(vi) = 2, then there are at most two choices to colour vi and then the colour of the arc
leaving vi is forced since three colours are forbidden by vi and its two entering arcs. Hence
pi ≤ 2pi−1.

Finally, we need to colour vn. Since its three entering arcs are coloured its colour is forced (or
it is impossible to extend the colouring).

Hence an easy induction shows that cT4 (G) = pn−1 ≤ 24 · 4|A2|+|A+| · 2|A
−| = 3 · 22n−n3/2.

A leaf of a tree is a degree one vertex. A vertex of a tree which is not a leaf is called a node. A
tree is binary if all its nodes have degree 3.

Proposition 15. If T is a binary tree of order n, then cT4 (T ) = 3 · 23n/2.

8
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Proof. By induction on n, the results holding easily when n = 2, that is when T = K2.
Suppose now that T has more than two vertices. There is a node x which is adjacent to two leaves

y1 and y2. Consider the tree T ′ = T −{y1, y2}. By the induction hypothesis, cT4 (T ′) = 3 · 23(n−2)/2.
Now each 4-total-colouring of T ′ may be extended into exactly eight 4-total-colourings of T ′. Indeed
the two colours of x and its incident edge in T ′ are forbidden for xy1 and xy2, so there are two
possibilities to extend the colouring to these edges, and then for each yi, there are two possible
colours available. Hence cT4 (T ) = 8 · cT4 (T ′) = 3 · 23n/2.

Theorem 16. Let G be a connected cubic graph. Then cT4 (G) ≤ 3 · 23n/2.

Proof. Let F be the subgraph induced by the cutedges of G. Then F is a forest. Consider a tree of
F . It is binary, its leaves are in different non-trivial 2-connected components of G, and every node
is a trivial 2-connected component of G.

A subgraph H of G is full if it is induced on G, connected and such that for every non-trivial
2-connected component C, H ∩C is empty or is C itself and for every tree T of F , H ∩T is empty,
or is just one leaf of T or is T itself. Observe that a full subgraph has minimum degree at least 2.

We shall prove that for every full subgraph H, cT4 (H) ≤ 3 · 22n(H)−n3(H)/2. We proceed by
induction on the number of 2-connected components of H. If H is 2-connected, then the result
holds by Theorem 14.

Suppose now that H is not 2-connected. Then H contains a tree T of F . Let v1, . . . , vp be the
leaves of T , ei, 1 ≤ i ≤ p the edge incident to vi in T and N the set of nodes of T . Then H −N
has p connected components H1, . . . , Hp such that vi ∈ Hi for all 1 ≤ i ≤ p. Furthermore, each Hi

is a full subgraph of G.
Let c be a 4-total-colouring of T . It can be extended to Hi by any 4-total-colouring of Hi

such that vi is coloured c(vi) and the two edges incident to vi in Hi are coloured in {1, 2, 3, 4} \
{c(vi), c(ei)}. There are 1

12c
T
4 (Hi) such colourings because each of them correspond to exactly

twelve 4-total colourings of Hi obtained by permuting the colour of vi (there are 4 possibilities) and
then the colour of ei (there are 3 possibilities). Hence each 4-total-colouring of T can be extended
into

∏p
i=1

1
12c

T
4 (Hi) 4-total-colourings of H and so

cT4 (H) = cT4 (T ) ·

p
∏

i=1

1

12
cT4 (Hi).

Now by Proposition 15, T has 3 · 23n(T )/2 4-total-colourings, and since Hi is full cT4 (Hi) ≤ 3 ·
22n(Hi)−n3(Hi)/2 by the induction hypothesis. Moreover, n3(H) = n(T ) +

∑p
i=1 n3(Hi) and n(H) =

n(T ) +
∑p

i=1 n(Hi) − p. Hence cT4 (H) ≤ 3 · 22n(H)−n3(H)/2.

As previously for the edge colourings of graphs, we derive from Theorem 16 an algorithm to
enumerate all the 4-total-colourings of a cubic graph. The proof is similar to the one of Corollary 6.

Corollary 17. There is an algorithm to enumerate all the 4-total-colourings of a connected cubic
graph on n vertices in time O∗(23n/2) and polynomial space.

The bound of Theorem 16 is seemingly not tight. Indeed, in Theorem 14, the equation pi ≤ 2pi−1

when d−D(vi) often overestimates pi, because there are two choices to colour vi only if the two colours
appearing on its two entering arcs are the same two as the ones assigned to the tails of these arcs.
If not the colour of vi is forced or vi cannot be coloured.

9
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Problem 18. What is cT4 (n), the maximum of cT4 (G) over all connected graphs of order n?

We shall now give a lower bound on cT4 (n). A binary tree is nice if its set of leaves may be
partitionned into pairs of twins, i.e. leaves at distance 2. Clearly, every nice binary tree T has an
even number of leaves and thus n(T ) ≡ 2 mod 4. Moreover if n(T ) = 4p+ 2, then T has 2p nodes
and p+ 1 pairs of twins. A noodle tree is a cubic graph obtained from a nice binary tree by adding
two parallel edges between each pair of twins.

Proposition 19. Let p be a positive integer and n = 4p + 2. If G is a noodle tree G of order n,
then cT4 (G) = 3√

2
· 25n/4.

Proof. Let X1, . . . , Xp+1 be the pairs of twins of G, and let T be the binary tree G−⋃p+1
i=1 Xi. Let

us label the leaves of T , y1, . . . , yp+1 such that for all 1 ≤ i ≤ p+1, yi is adjacent to the two vertices
of Xi in G.

Every 4-total-colouring of T , may extended in exactly 4 ways to each pair of twins Xi = {xi, x′i}
and their incident edges. Indeed, without loss of generality we may assume that yi is coloured 1
and its incident edge in T is coloured 2. Then the edges yixi and yix

′
i must be coloured in {3, 4},

which can be done in two possible ways. For each of these possibilities, the parallel edges between
xi and x′i must be coloured in {1, 2}, which again can be done in two possible ways. Finally, we
must colour xi (resp. x′i) with the colour of yix

′
i (resp. yixi).

Hence c4(G) = 4p+1 · c4(T ), and so by Proposition 15, c4(G) = 3 · 25p+2.
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