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Chapter 1

Overview of my research works

Foreword

This document is a long abstract of my research work, concerning graph theory and algorithms on graph. It
summarizes some results, gives ideas of the proof for some of them and presents the context of the different
topics together with some interesting open questions connected to them. This is an overview of ten selected
papers which have been published in international journals or are submitted and which are included in the
annex. This document is organized as follow: the first part precises the notations used in the rest of the
paper; the second part deals with some problems on cycles in digraphs, a topic I am working on for almost 10
years; the third part is an overview of two graph coloring problems and one problem on structures in colored
graphs; finally the fourth part focus on some results in algorithmic graph theory, mainly in parametrized
complexity. I mainly worked in this last field with A. Perez who I co-supervised with C. Paul during his
PhD Thesis.

To conclude, I would like to mention that this work is the result of different collaborations and each result is
then a collective work, with me as common link. Doing research in graph theory is for me a great pleasure,
and a job, and meeting people from various place to work with them is an also great pleasure. I would like
to thank them for the nice moments we spent working together: J. Bang-Jensen, E. Birmelé, F.V. Fomin,
S. Gaspers, F. Havet, C. Lepelletier, N. Lichiardopol, C. Paul, A. Perez, S. Saurabh, J.-S. Sereni and S.
Thomassé.

1.1 Introduction

Almost all the definitions given below are standard and can be found in classical books on Graph Theory
(see [47], [30] or [8]) or Parametrized Complexity Theory (see [55], [63] or [105]). We give them to precise
the notations used in this document.

1.1.1 Basic definitions on graphs
Graphs

For a set X, we denote by [X]? the set of 2-element subsets of X. A graph G is a pair (V(G), E(G)) consisting
of a finite set V(G), called the vertex set of G, and a set E(G), subset of [V (G)]?, called the edge set of G.
Classically, the cardinality of V(G) and E(G) are respectively denoted by n(G) and m(G). For notational
simplicity, we write uv an unordered pair {u,v} of E(G). Two vertices z and y which belong to an edge e
are adjacent, and x and y are the ends of e. Furthermore, we say that e is incident to x and y.

The set of vertices which are adjacent to a specified vertex x is the neighborhood of x and is denoted by
Ng(z). So, we call a neighbor of x a vertex which is adjacent to it. The degree of a vertex x, denoted by
dg(x), is the cardinality of its neighborhood. Finally, when two adjacent vertices  and y have the same
neighborhood in V'\ {x, y}, we say that = and y are true twins. When no confusion can occur, we will forget
the reference to the background graph in all the previous notations.

5



6 CHAPTER 1. OVERVIEW OF MY RESEARCH WORKS

A graph H = (V(H),E(H)) is a subgraph of a graph G = (V(G), E(G)) if we have V(H) C V(G) and
E(H) C V(G). If H is a subgraph of G with V(H) = V(G), we say that H is a spanning (or covering)
subgraph of G. And, if H is a subgraph of G with E(H) = E(G) N [V(H)]?, we say that H is an induced
subgraph of G. For X a subset of the vertex set of G, the induced subgraph of G on X, denoted by G[X],
is the induced subgraph of G which has X as vertex set. We denote also by G\ X the induced subgraph
of Gon V(G)\ X. And, if F is a subset of the edge-set of G, we denote by G — F the subgraph of G with
vertex set V(G) and edge set E(G) \ F. Finally, we say that two graphs G and H are isomorphic if there
exists a bijection f from V(G) to V(H) such that for every vertices z and y of G, zy € E(G) if, and only
if, f(x)f(y) € E(H). And, an homomorphism from G to H is a mapping f from V(G) to V(H) such that
if zy is an edge of G, then f(z)f(y) is an edge of H.

In Section 1.4.2, we will deal with multi-graphs (i.e. graphs with a multiset for edge set), but anywhere
else in this document, the considered graphs are simple.

Some special graphs

The following definitions deal with some remarkable subgraphs. The complete graph on n vertices, denoted
by K, is the graph on vertex set V(K,) = {v1,...,v,}, and with edge set [V(K,)]?, meaning that K,
contains all the possible edges on its vertex set. A clique of a graph G is a subset of its vertex set which
induces on G a graph isomorphic to a complete graph. Similarly, the empty graph on n vertices (which
is not totally empty) is the graph on n vertices and with an empty edge set. An independent set of a
graph G is a subset of its vertex set which induces on GG a graph isomorphic to an empty graph. The path
graph on k vertices, denoted by Py is the graph on vertex set V(P) = {v1,...,v}, and with edge set
{viviy1 = i =1,...,k —1}. The vertices v; and vy are called the ends of P,. A path of a graph G is a
subgraph of G which is isomorphic to a path graph. Finally, the cycle graph on k vertices, denoted by CY is
the graph on vertex set {vy,...,vx}, and with edge set {v;v;01 : i =1,...,k =1} U{vivr}. A cycle of a
graph G is a subgraph of G which is isomorphic to a cycle graph. Sometimes, we will use the term k-cycle
to precise that the considered cycle has k vertices. A hamiltonian graph is a graph which admits a spanning
cycle, an acyclic graph is a graph which contains no cycle, and a chordal graph is a graph with no induced
cycle of size more than three. Finally, a matching in a graph is a set of pairwise disjoint edges of this graph.

Now, through these structures, we define some properties of graphs. First, a graph is connected if for
every pair of vertices x and y of G, there exists a path in G with ends = and y. A tree is a connected graph
without cycle. It is well known that a graph is connected if, and only if, it contains a spanning tree. A
graph is bipartite if its vertex set admits a partition into two independent sets. The complete bipartite K, 4
is the graph on vertex set {v1,...,vp, w1,...,wy}, and with edge set {v;w; : i=1,...,pand j=1,...,¢}.
Finally, we say that a graph G is planar if there exists a plane representation of G, i.e. a drawing of G in
the plane such that its edges intersect only at their ends.

1.1.2 Directed graphs

A directed graph (or digraph) D is a pair (V(D), E(D)) consisting of a finite set V' (D), also named the vertex
set of D, and a subset A(D) of V(D) x V(D), named the arc set of D. For simplicity, we also denote by zy
an arc (x,y) of D, but this time the order in the notation matters. We say that z is the tail of the arc xy and
y its head. We obtain then a different notion of neighborhood than in the non-oriented case. For a vertex x
of D, the out-neighborhood (resp. in-neighborhood) of x, denoted by Nj)(z) (resp. Nj (X)) is the set of all
vertices y in V — x such that zy (resp. yz) is an arc of A(D). The out-degree (resp. in-degree) of a vertex
z, denoted by d},(z) (resp. dp(z)) is the cardinality of its out-neighborhood (resp. in-neighborhood). The
notions of sub-digraph, induced and spanning sub-digraph, homomorphism and isomorphism for digraphs
are similar to those from graphs. For digraphs, paths and cycles are always directed. Namely, the (directed)
path on k vertices has vertex set {v1,..., v}, and arc set {v;v;41 : i =1,...,k — 1}. The vertex vy is the
beginning of the path and vy, is its end. Similarly, the (directed) cycle (or circuit) on k vertices has vertex set
{v1,...,vx}, and arc set {v;v;41 : i =1,...,k—1}U{vpv1}. An acyclic digraph is a digraph which contains
no (directed) cycle. A digraph D = (V, A) is strongly connected (or just strong) if there exists a path from
2 to y in D for every choice of distinct vertices z and y of D. A feedback-vertex-set (resp. feedback-arc-set)
is a set X of vertices (resp. arcs) of D such that D\ X (resp. D — X) is acyclic. The underlying graph of a
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digraph D, denoted by UG(D), is the (non-oriented) graph obtained from D by suppressing the orientation
of each arc and deleting multiple edges.

To conclude on directed graph, a tournament is an orientation of a complete graph, that is a digraph D such
that for every pair {z, y} of distinct vertices of D either xy € A(D) or yx € A(D), but not both. Finally, the
complete digraph, denoted by K, is the digraph on n vertices containing all the possible arcs, i.e. obtained
from the complete graph by replacing each edge by a directed cycle of size two.

1.1.3 Some graphs invariants

The independence number of a graph (or a digraph) G is the size of a largest independent set of G. We
denote it by a(G).

A vertex-cut in a graph G is a subset X of vertices of G such that G \ X is not connected. A graph G
is k-vertex-connected if all its vertex-cut have size at least k, and the minimal size of one of its vertex-cut
is the vertex-connectivity of G and it is denoted by x(G). This definition extends to edge-cut, which is a
subset F' of the edge-set of G such that G — F' is not connected. The edge-connectivity, defined similarly
than the vertex-connectivity, of a graph G is denoted by A(G). These definitions extend also to digraphs,
where the notion of strong connectivity stands for connectivity. Remark that, given any two vertices  and
y in a graph, if there exists p paths from z to y in G, vertex-disjoint except in their ends, z and y, it is not
possible to find a vertex-cut of G with size less than p that separate = from y. In fact, Menger’s Theorem
states that this fact characterizes the vertex-connectivity of a graph.

Theorem 1 ("Menger’s Theorem’, K. Menger, 1927, [103]). Let G be graph. The vertez-connectivity of G is
p if, and only if, for every pair of vertices x and y of G, there exists p paths from x to y in G, vertezx-disjoint
except in their ends.

This theorem also holds for edge-connectivity and oriented case (where the paths are oriented paths).

Finally, we define the general notion of proper coloring of a graph. A k-coloring of a graph G is a mapping
¢ from V(G) to the set {1,...,k} such that if zy is an edge of G, then the values ¢(z) and c¢(y) are distinct.
Equivalently, a k-coloring of G is a vertex-partition of G into k£ independent sets. The chromatic number of
G, denoted by x(G) is the minimum number & such that G admits a k-coloring. Coloring edges of graph leads
to similar definitions. A k-edge-coloring of G is a mapping ¢’ from E(G) to the set {1,...,k} such that if two
edges e and f have a common extremity, then the values ¢/(e) and ¢/(f) are distinct. Equivalently, a k-edge-
coloring of GG is an edge-partition of GG into k matchings. Similarly to the vertex case, the edge-chromatic
number of G, denoted by x'(G) is the minimum number k such that G admits a k-edge-coloring.

1.1.4 Algorithmic basics

We refer to [45] for general definition on polynomially solvable problems and NP-complete problems. For
what we need, we focus on algorithms on graphs only, and will give the definition of FPT algorithms in this
context.

When a problem turns out to be NP-complete, a lot of algorithmic tools have been developed to find a
acceptable solution to it, for instance, approximation algorithms, randomized algorithms, exact algorithms
with exponential time... An FPT algorithm can be viewed as a member of this late class. The principle
of such an algorithm is to contained the exponential explosion to a special parameter. Namely, a problem
parameterized by some integer k (i.e. its input is a graph G and an integer k) is said to be fized-parameter
tractable (FPT for short) whenever it can be solved in time f(k) - n¢ for some constant ¢ > 0. As one
of the most powerful technique to design fixed-parameter algorithms, kernelization algorithms have been
extensively studied in the last decade (see [26] for a survey). A kernelization algorithm is a polynomial-time
algorithm (called a series of reduction rules) that given an instance (G, k) of a parameterized problem P
computes an instance (G', k") of P such that (i) (G, k) is a YEs-instance if and only if (G', k') is a YES-
instance and (i¢) |G’| < h(k) for some computable function h() and k' < k. The instance (G', k') is called a
kernel of P. Kernelization can be viewed as a sort of pre-processing algorithm that reduces the size of any
instance. We say that (G’, k') is a polynomial kernel if the function h() is a polynomial. It is well-known
that a parameterized problem is FPT if and only if it has a kernelization algorithm [105]. But the proof
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of this equivalence provides standard kernels of super-polynomial size (in the size of f(k), precisely). So,
to design efficient fixed-parameter algorithms, a kernel of small size - polynomial (or even linear) in k -
is highly desirable. However, recent results give evidence that not every parameterized problem admits a
polynomial kernel, unless something very unlikely happens in the polynomial hierarchy, see [27]. On the
positive side, notable kernelization results include a 2k kernel for VERTEX COVER [46], a 4k? kernel for
FEEDBACK-VERTEX-SET [126] and a 2k kernel for CLUSTER EDITING [41].

1.2 Problems on circuits in digraphs

In this section, we are concerned with digraphs and every concept discussed deals with directed graphs. We
are interested in finding cycles in strongly connected digraphs. As trees is a cornerstone for connectivity in
graphs, cycles have this central place for strong digraph. Cycles are the simplest oriented structure in which
starting from any vertex it is possible to reach any other vertex.

In a strong digraph, every arc is contained in a cycle and so, there exists a family of cycles which union is the
whole digraph. Problems considered here deal with finding a family of cycles in a strong digraph D which
satisfies certain properties. For instance, if we want a minimum (in cardinality) family of cycles which union
spans D, we obtain a covering problem (Section 1.2.1). One of the tools for this problem is cyclic orders for
strong digraphs, which we develop with S. Thomassé (Section 1.2.2). Another important class of problems,
the packing problems, deals with finding a maximum family of disjoint cycles in a digraph (Section 1.2.3).
Some results which appear in the two first sections were already mentioned in my PhD Thesis. I decide to
present them because they have led to some tools and problems on which I am still working.

1.2.1 Covering by directed cycles!

Let D = (V, E) be a strong digraph. We are mainly concerned here in finding a family F of cycles of D
which union covers all the vertices of D. The most natural problem in this context is to ask for a family F
with minimal cardinality. For long, this problem is known to be easy on tournaments, as stated by a result
of P. Camion.

Theorem 2 (’Camion’s Theorem’, P. Camion, 1959, [35]). Every strongly connected tournament is hamil-
tonian.

For general digraphs, there is no hope to have such an exact value or even a polynomial time process to

compute the minimum number of cycles needed in F. Indeed, as this problem contains the HAMILTONIAN
CYCLE PROBLEM for digraphs, it turns out to be NP-complete, and so we ask for upper bounds on the
cardinality of F.
Let us mention the closely related problem consisting in finding a family of paths, instead of cycles, which
union covers all the vertices of a digraph. A well-known bound on the cardinality of such a family is given
by a Theorem of T. Gallai and A. Milgram, which provides not only a covering by paths, but a partition of
the digraph into paths.

Theorem 3 (’paths partition’, T. Gallai and A. Milgram, 1960, [67]). Every digraph D admits a vertex-
partition into at most a(D) paths.

Thank to the above result on paths and Camion’s theorem on tournament, T. Gallai conjectured in 1964
that the independence number could also be an upper bound for the minimum number of cycles which cover
the vertices of a digraph [65]. During my PhD thesis, with S. Thomassé, we proved this conjecture and
obtained the following.?

Theorem 4 (S. Bessy, S. Thomassé, 2003, [22]). Fvery strong digraph D contains a family of at most a(D)
cycles which union covers the vertices of D.

In 1995, Gallai’s conjecture was refined by A. Bondy [29] (stating explicitly a remark of C.C. Chen and

1This subsection and the next one are linked with the paper: S. Bessy and S. Thomassé, Spanning a strong digraph with
alpha cyles: a conjecture of gallai. Combinatorica, 27(6):659-667, 2007, annexed p.34.
2] highlight the results appearing in the papers which form my habilitation.
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P. Manalastas [40]) who asked for some control on the cycles. More precisely: a strong digraph D = (V, E)
is a k-handle if k = |E| — |[V]| + 1 (a O-handle is simply a single vertex). A handle is a directed path
H := xq,...,x; in which we allow x; = x;. The vertices z; and x; are the extremities of the handle H,
and its other vertices are its internal vertices. For a subdigraph H of D, an H-handle is a handle of D
with its extremities in V(H) and its internal vertices disjoint from H. Finally, a handle basis of D (or ear
decomposition, see [8]) is a sequence Hy, Hy, ..., Hj of handles of D such that Hy is a single vertex, H; is a
(U{H, : j < i})-handle for all ¢ = 1,...,k and D = U{H, : i = 0,...,k}. Clearly, a digraph has a handle
basis Hy, ..., Hy if and only if D is a k-handle. In this context the conjecture of A. Bondy is the following.

Conjecture 5 ('Bondy’s Conjecture’, A. Bondy, 1995, [29]). The vertices of every strong digraph D can be
covered by the disjoint union of some k;-handles, where k; > 0 for all 4, and the sum of the k; being at most
a(D).

As it is possible to cover every k-handle by k cycles, Bondy’s conjecture is stronger than the result of
Theorem 4. For k = 1, Bondy’s conjecture is true by Camion’s Theorem. Furthermore, for k£ = 2, it has
been solved by C.C. Chen and P. Manalastas [40], and by S. Thomassé for k& = 3 [125]. The techniques
used in the proof of Theorem 4 seem to be useless to tackle Bondy’s Conjecture. However, using a different
approach, with S. Thomassé, we obtained a result closely related to this conjecture.

Theorem 6 (S. Bessy, S. Thomassé, 2003, [21]). Fvery strong digraph D is spanned by a k-handle, with
k <2a(D) - 1.

In other words, every strong digraph D admits a spanning strong subdigraph with at most n + 2a/(D) — 2
arcs. The problem of finding such a subdigraph with a minimum number of arcs is a classical problem
in graph theory, named the MSSS PROBLEM (for minimal strong spanning subdigraph). This problem is
also NP-complete (it also contains the HAMILTONIAN CYCLE PROBLEM) and the best known approximation
algorithm, found by A. Vetta in 2001 [131], achieves a % factor of approximation. A nice question is to look
at what happens on some particular classes of digraphs, and particularly the following one.

Problem 7. Is there an approximation algorithm for the MSSS PROBLEM with a better factor than %?
What about if we restrict the instances to the class of planar strong digraph?

1.2.2 Cyclic order of strong digraphs

In this section is presented a tool that we developed in order to prove Theorem 4. The notion of cyclic order
allows, in some sense, cyclic statements of classical results on paths a digraphs.

Let D be a strong digraph on vertex set V. If E = vy,...,v, is an enumeration of V, for any k €
{2,...,n}, the enumeration vg,...,v,,v1,...05_1 is obtained by rolling E. Two enumerations of V are
equivalent if we can pass from one to the other by a sequence of the following operations: rolling and
exchanging two consecutive but not adjacent vertices. The classes of this equivalence relation are called the
cyclic orders of D. Roughly speaking, a cyclic order is a class of enumerations of the vertices on a circle,
where one stay in the class while switching consecutive vertices which are not joined by an arc. We fix an
enumeration £ = vy,...,v, of V, the following definitions are understood with respect to E. An arc v;v; of
D is a forward arc if i < j, otherwise it is a backward arc. With respect to E, the index of a cycle C' of D
is the number of backward arcs containing in C, we denote it by ig(C). This corresponds to the winding
number of the cycle. Observe that ig(C) = ig/(C) if E and E’ are equivalent. Consequently, the index of
a cycle is invariant in a given cyclic order O and we denote it by in(C). A circuit is simple if it has index
one. A cyclic order O is coherent if every arc of D is contained in a simple circuit.

The following lemma states the existence of coherent cyclic orders. It is proved by considering a cyclic order
which minimizes the sum of the cyclic indices of all the cycles of D.

Lemma 8 (D.E. Knuth, 1974, [91] / S. Bessy, S. Thomassé, 2007, [22]). Every strong digraph has a coherent
cyclic order.

As mentioned by A. Bondy in [30], this result was found originally by D.E. Knuth in 1974 [91] (we ignored
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it when we settled Lemma 8), in a different context, and no link with Gallai’s conjecture have been done.

Now, we describe two min-max relations in context cyclic orders. As previously said, cyclic orders can be
understood as a cyclic version of classical theorems on paths in digraphs. First, we give a cyclic version of
Gallai-Milgram’s paths partition Theorem. Given O a cyclic order of a strong digraph D, we denote by «(QO)
the size of a maximum cyclic independent set of O, that is an independent set of D which is consecutive in
an enumeration of @. The following theorem provides a family of cycles which cover all the vertices of the
considered digraph D.

Theorem 9 (S. Bessy, S. Thomassé, 2007, [22]). Let D be a strong digraph with a coherent cyclic order O.
The minimal ) e 10(C), where R is a spanning set of cycles of D is equal to a(O).

The proof uses a very basic algorithmic process. Let us briefly explain it. We start by computing greedily
a cyclic independent set X of O and consider an enumeration F of O where X stands at the beginning of
E. Then, in a digraph build from the transitive closure of the acyclic digraph formed by the forward arcs
of E, we apply Dilworth’s Theorem [48] (a classical version of Gallai-Milgram’s Theorem for orders). So,
either we find a larger cyclic independent set than X, and we go on the process, or we find a set of | X| paths
covering this digraph, and we stop and show that these paths can be turned into cycles covering D.
Remark that, as a(Q) is the size of an independent set of D, we find a set of at most a(D) cycles which
covers the vertices of D. This gives a proof of Gallai’s Conjecture. However, we have no control on the
number of arcs involved in this covering and then no bound on the sum of the k-handles needed to cover D,
as asked by Bondy’s Conjecture. On the other hand, in the proof of Theorem 9, as previously explained, we
obtained a family F of k cycles, with k < a(D), and a set X of k vertices such that the union of the cycles
of F minus X forms an acyclic digraph D’. In D', the cycles of F become paths. So, the main challenge to
attempt resolving Bondy’s Conjecture could be the following.

Problem 10. Is it possible to 'uncross’ the k paths in D’ in order to reduce their length and, then, the
total number of arcs involved in the covering?

The second min-max theorem which we found in the field of cyclic order can be viewed as a cyclic version
of the Gallai-Roy’s Theorem.

Theorem 11 (’The Gallai-Roy Theorem’, T. Gallai, 1966, [66] and B. Roy, 1967, [114]). FEvery digraph D
contains a directed path on x(D) vertices.

The cyclic version is the following. Given an enumeration £ = vq,...,v, of the vertices of a digraph
D, a coloring of E into r colors is a partition of V into r sets Vi,---,V,. such that for every j, V; are an
independent set of D and V; are consecutive on E (i.e. there exist integers 1o =0 < iy < -+ < i, = n such
that Vj = {vi,_, 41, -~ ,v;;} forall j € {1,...,7r}). The chromatic number of E is the minimum value 7 for
which there exists a r-coloring of E. For a cyclic order O of D, the cyclic chromatic number of O, denoted
by x(O) is the minimum value of the chromatic number of an enumeration belonging to O. Finally, for a
cycle C of D and a cyclic order O of D, the cyclic length of C' is the value |C|/io(C). We have the following
min-max relation.

Theorem 12 (S. Bessy, S. Thomassé, 2007, [22]). Let O be a coherent cyclic order of a strong digraph D.
The mazimal |lo(C) |, where C is a circuit of D is equal to x(O).

There even exists a fractional version of this theorem (see [22]). It is similar (but oriented) to the classical
result on the circular chromatic number for non-oriented graphs (see the survey of X. Zhu [137], for instance).
As a corollary of Theorem 12, we obtain a classical theorem of A. Bondy.

Theorem 13 (A. Bondy, 1976, [28]). Every strong digraph D contains a cycles on at least x(D) vertices.

To conclude this section, remark that we established some results on cyclic orders using graph theoretical
tools. However, there exists proofs of these results (and even others) obtained by techniques from linear
programming or polyhedral combinatorial optimization (see the work of P. Charbit and A. Seb6 [37] and
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A. Seb6 [117]). In particular, using these techniques, A. Sebd gave in [117] a cyclic version of Menger’s
Theorem (we missed it...). Let O be a cyclic order of a strong digraph D. A cyclic feedback-vertex-set of O
is a set U of vertices of D such that for every cycle C of D, we have |[V(C)NU| > in(C). A. Sebo establishes
the following.

Theorem 14 (A. Sebd, 2007, [117]). Let O be a cyclic order of a strong digraph D. The minimum cardinality
of a cyclic feedback-vertez-set is equal to the mazimum of Y . i0(C), where R is a set of vertez-disjoint
cycles of D.

A. Sebo gives also in [117] an ’arc version’ of this result and weighted analogous of these two statements.
Obviously, we can wonder if there exists other theorems on paths which can be turn into a cyclic form.

Problem 15. Is there other results on paths in digraphs which admits a cyclic equivalent?

1.2.3 Packing of directed cycles?

In this section, we are concerned about a converse problem (in a certain way) of the previous one. Given a
digraph D, we denote by vo(D) (resp. v1(D)) the maximum number of vertex-disjoint (resp. arc-disjoint)
circuits in D. The problems dealing with circuits packing in digraphs consist in computing, or finding bounds
on vy and vq.

In addition, we define 79(D) (resp. 71(D)) to be the minimum size of a feedback-vertex-set of D (resp.
feedback-arc-set of D). It is clear that 7o (resp. 71) is a natural lower bound of for the packing number vy
(resp. v1). The converse is not true, but it is possible to bound above vy (resp. v1) by a function of 7y (resp.
71). This statement was conjectured in 1973 by D.H Younger [136], and the first case of this conjecture ’is
7o bounded when vy = 17’, was solved by W. McCuaig.

Theorem 16 (W. McCuaig, 1991, [102]). If D is a digraph with no two vertex-disjoint cycles, then there
exists a set X of at most 3 vertices such that D\ X is acyclic.

In fact, some years later, in 1996, Younger’s Conjecture was settled by B. Reed, N. Robertson, P.D. Sey-
mour and R. Thomas who proved the following.

Theorem 17 (’Younger’s Conjecture’, B. Reed, N. Robertson, P.D. Seymour and R. Thomas, 1996, [112]).
There ezist functions fo, f1 : N — N such that for every digraph D we have 79(D) < fo(vo(D)) and 71(D) <

f1(n(D)).

More precisely, to prove Theorem 16, W. McCuaig gave a complete characterization of digraphs with no
two disjoint cycles. To prove Theorem 17, the authors used Ramsey Theory, leading to exponential functions
for fy and fi. We can ask if there is possible other ways to prove these two theorems. In particular, as cyclic
orders have strong link with cycles in digraphs, they could be useful for that.

Problem 18. Is it possible to prove Theorem 16 or Theorem 17 using cyclic orders of digraphs, and then,
obtaining simpler proofs or better bounds on fy and f17

For the end of this subsection, we focus on different lower bounds for the maximum number of vertex-
disjoint cycles in a digraph (i.e. ). By Theorem 17, we know that if 7¢ is large enough, then vy will be large
also. There is no hope to easily obtain an exact value for 7y, as it is known for long that computing 7y is an
NP-hard problem (it has been proved by R.M. Karp in 1972 [85]). However, there is a natural and tractable
lower bound for 7g. For a digraph D, the minimum out-degree (resp. minimum in-degree) of D, denoted by
d1(D) (resp. 6~ (D)), is the minimum value over the out-degrees (resp. in-degrees) of the vertices of D. As
there exists a set X of 79(D) vertices of D such that D\ X is acyclic, there is a vertex x with out-degree
0 in D\ X and thus, we have §7(D) < d™(z) < 79(D). So, using Theorem 17, we know that if 6T is large
enough, vy will be also large. This corollary of Theorem 17, was, in fact, directly proved by C. Thomassen in
1983 [127]. With J.C. Bermond, they raised a conjecture on the minimum value of §* which insures vy > k.

3This subsection is linked with the papers: S. Bessy, N. Lichiardopol, and J.S. Sereni, Two proofs of the bermond-thomassen
conjecture for tournaments with bounded minimum in-degree. Discrete Mathematics, 310:557-560, 2010, annexed p.40 and
J. Bang-Jensen, S. Bessy, and S. Thomassé, Disjoint 3-cycles in tournaments: a proof of the bermond-thomassen conjecture for
tournaments, submitted, 2011, annexed p.48.
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Conjecture 19 ('The Bermond Thomassen Conjecture’, J.C. Bermond and C. Thomassen, 1981, [13]). If
dT(D) > 2k — 1 then vy(D) > k, what means that D contains at least k vertex-disjoint cycles.

Remark that the complete digraph (with all the possible arcs) is a sharp example for this statement. The
conjecture is trivial for k = 1 and it has been verified for general digraphs when k = 2 by C. Thomassen [127]
and k = 3 by N. Lichiardopol, A. Pér and J.-S. Sereni [96]. Furthermore, N. Alon proved in 1996 that there
exists a linear function of k that insure vy > k. Namely, using some probabilistic arguments, he proves the
following.

Theorem 20 (N. Alon, 1996, [3]). If 6T (D) > 64k then vo(D) > k.

The status of the Bermond Thomassen Conjecture was even not known on tournaments. I have worked on
this specific problem. In this case, as any cycle in tournament always contains a 3-cycle, we focus on disjoint
3-cycles. First, in 2005, with N. Lichiardopol and J.S. Sereni, we proved that the Bermond Thomassen
Conjecture is true for regular tournaments. More precisely, we obtained the following result.

Theorem 21 (S. Bessy, N. Lichiardopol and J.S. Sereni, 2005, [18]). If T is a tournament with 6% (T) > 2k—1
and 6~ (T) > 2k — 1 then, vy(T) > k.

More precisely, we proved that, given a collection F of t < k disjoint 3-cycles of T, it is always possible
to find a 3-cycle C of F such that T[(V(T) \ V(F)) UV(C)] contains two disjoint 3-cycles. Then, removing
C from F and adding these two 3-cycles, we obtain a collection of ¢ + 1 disjoint 3-cycles of T'. Unfortunately,
this scheme of proof does not work if we remove the condition §~(7) > 2k — 1. However, some years later,
in 2010, during a second attempt with J. Bang-Jensen and S. Thomassé, we finally proved the Bermond
Thomassen Conjecture for tournaments.

Theorem 22 (J. Bang-Jensen, S. Bessy and S. Thomassé, 2010, [7]). Every tournament T with §*(T) > 2k—1
has k disjoint cycles each of which have length 3.

Here, the proof is also based on the possibility to extend a family of disjoint 3-cycles. More precisely,
given a collection F of t < k disjoint 3-cycles of T', we proved that is always possible to find a larger family
of disjoint 3-cycles intersecting V' (T') \ V(F) on a most four vertices. This method is similar to the one used
in the proof of Theorem 21, but it allows more recombination possibilities on the 3-cycles when enlarging F.

As previously mentioned, Bermond Thomassen Conjecture is sharp on complete digraphs. But for large
k, we did not find any sharp example of this statement for tournaments, and then without 2-cycles. Indeed,
such examples do not exist for tournament as we have shown by improving Theorem 22 for tournaments
with large minimum out-degree. Roughly speaking, a tournament 7' with §%(T) > %k and k large enough
contains k disjoint cycles of length 3. More precisely, we proved the following.

Theorem 23 (J. Bang-Jensen, S. Bessy and S. Thomassé, 2010, [7]). For every value o > %, there exists a
constant ky, such that for every k > ko, every tournament T with 6+ (T) > ak has k disjoint 3-cycles.

This statement is optimal for the value %, as shown by the family of regular tournament, i.e. tournament 7’
that verify d*(z) = d~ (z) for every vertices of T'. However, we do not know what happens for tournaments
with 6+ = %k, but we conjecture that they also contain k disjoint 3-cycles. As when we forbid small
cycles (of length 2) we can asymptotically improve the statement of the Bermond Thomassen Conjecture on
tournaments and we conjecture that this could be also true for general digraphs.

Conjecture 24 (J. Bang-Jensen, S. Bessy and S. Thomassé, 2010, [7]). If a digraph D has no cycles of
length less than g and minimum out-degree at least k, with k large enough, then D contains at least % -k
disjoint cycles.

To conclude this subsection, I just would like to mention two nice conjectures dealing with feedback-arc-
set in digraphs. As previously mentioned, we know that 7, is NP-hard to compute for digraph, and even for
tournaments [9]. However there is a class of digraphs where 77 is not hard to compute. Indeed, for planar
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digraph, C.L. Lucchesi proved in 1976 [98] that is possible to compute a feedback-arc-set on a planar digraph
in polynomial time. Furthermore, always for planar digraphs, the Lucchesi-Younger Theorem [99] asserts
that 7y = ;. But even in the planar case, much remains unknown on feedback arc set, as shown by these
two long-standing conjectures.

Conjecture 25 ((weak form) D.R. Woodall, 1978, [134]). Every planar strong digraph with no 2-cycles
admits three disjoint feedback-arc-sets.

Conjecture 26 (V. Neumann-Lara, 1982, [104]). Every planar digraph D with no 2-cycles has a feedback-
arc-set which forms a bipartite subdigraph of D.

1.3 Coloring and partitioning problems

During my research works, I also focused on some graph coloring problems or problems in colored graphs.
These topics are structural and can be viewed as partitioning questions, as those from Section 1.2. However,
they do not present such a unity and come from really different fields. The two first subsections deal with
some questions arising in a modeling context. In Subsection 1.3.1, we use an arc-coloring model to obtain
results on a function theory problem, and Subsection 1.3.2 deals with questions from a classical application
of graph coloring theory: optimization in optical communication networks. Finally, in Subsection 1.3.3, we
are interested in a problem from a slightly different context. Given a graph and a coloring of this graph, we
look for a subgraph having some structural properties (e.g. a path, a cycle...) and some properties according
to the coloring (e.g. monochromatic, bi-chromatic...).

1.3.1 Arc-coloring in digraphs*

Related to a function theory problem, with E. Birmelé and F. Havet, we have studied an extension of graph
coloring to digraphs. The problem was initially proposed by A. El Sahili [58] and comes from a question
arising in function theory. Namely, let f and g be two maps from a finite set A into a set B. Suppose that
f and g are nowhere coinciding, that is for all a € A, f(a) # g(a). A subset A’ of A is (f, g)-independent if
Ff(A)YNg(A") = 0. We are interested in finding the minimum number of (f, g)-independent subsets needed
to partition A in the case where every element of B has a bounded number of antecedents by the functions
f and g. As shown by El-Sahili [59], this can be translated into an arc-coloring problem.

We focus on a special type of arc-coloring for digraphs, introduced by S. Poljak and V. R6dl in 1981 [108].
Other classical arc-colorings exist, see [72] for instance, but this one model the previous problem. So, here,
an arc-coloring of a digraph D is an application ¢ from the arc-set A(D) into a set of colors S such that if
the tail of an arc e is the head of an arc ¢’ then c¢(e) # ¢(e’). In other words, the arcs from a same color class
form a bipartite graph and are oriented from a part of the bipartition to the other one. The arc-chromatic
number of D, denoted by x.(D), is the minimum number of colors used by an arc-coloring of D. Another
way to define the notion of arc-coloring is the following: in an arc-coloring of D, for any arc xy, the set of
colors appearing on the arcs with tail  must not be a subset of the set of colors appearing on the arcs with
tail y (as it contains the color of xy). We denote by Hy, the complementary of the hypercube of dimension &,
i.e. Hy is the digraph with vertex set all the subsets of {1,...,k} and with arc set {XY : X ¢ Y}. With the
previous remark, a digraph D has an arc-coloring with % colors if, and only if, it admits an homomorphism
to Hj, (then, if an arc xy of D is mapped to an arc XY of Hy, we color zy with an integer of X \ Y). Using
this and Sperner’s Lemma [123] to find a homomorphism into a complete subdigraph of Hy, S. Poljack and
V. Rodl obtained the following theorem.

Theorem 27 (S. Poljak and V. R6dl, 1981, [108]). For every digraph D, we have log(x(D)) < xa(D) <
0(x(D)), where 8(k) = min{s : (LS?2J) > k}.

Now, we come back to the function theory problem and the model proposed by A. El-Sahili in [59]. Let
Dy 4 be the digraph defined by: V(Dy ,) = B and (b,b') € E(Dy ) if there exists an element a in A such that

4This subsection is linked with the paper: S. Bessy, E. Birmelé, and F. Havet, Arc-chromatic number of digraphs in which
every vertex has bounded outdegree or bounded indegree, Journal of Graph Theory, 53(4):315-332, 2006, annexed p.64.



14 CHAPTER 1. OVERVIEW OF MY RESEARCH WORKS

g(a) = b and f(a) = b". Then, a (f, g)-independent subset of A corresponds to a set of arcs of Dy, which
do not form paths of length more than one or cycles. And so, the minimum number of (f, g)-independent
subsets needed to partition A, denoted by ¢(f, g) is exactly the arc-chromatic number of Dy ,. Furthermore,
we want to take into consideration in the model the number of antecedents by f and g for the elements of
B. Precisely, let ®(k) (resp. ®V(k,1)) be the maximum value of ¢(f, g) for two nowhere coinciding maps f
and g from A into B such that for every z in B, |¢g~!(2)| < k (resp. either |[¢g=1(2)| < k or [f~1(z)| <1). The
condition f~1(z) (resp. g~'(z)) has at most k elements means that each vertex has in-degree (resp. out-
degree) at most k in Dy ,. To turn these notions into digraphs context, A. El-Sahili [59] defines a k-digraph
to be a digraph in which every vertex has out-degree at most k. Similarly, a (k V [)-digraph is a digraph in
which every vertex has either out-degree at most k or in-degree at most I. Hence, ®(k) (resp. ®V(k,1)) is
the maximum value of x,(D) for D a k-digraph (resp. a (k V [)-digraph).

So, motivated by the previous interpretation in function theory and by the corresponding coloring prob-
lem, we studied the behavior of the functions ® and ®V. The first results on these functions was given by
A. El-Sahili, who proved the following.

Theorem 28 (A. El-Sahili, 2003, [59]). We have ®V(k, k) < 2k + 1.

Using Theorem 27, we improved this bound to the following.

Theorem 29 (S. Bessy, E. Birmelé and F. Havet, 2006, [14]). We have ®(k) < 6(2k) if k > 2, and
OV (k1) <02k +2l) if k+1>3.

As asymptotically the function 6 is equivalent to the function log, we obtain quite better bounds than
those from Theorem 28. Furthermore, we get examples proving that, up to constant multiplicative factor,
the bounds given by Theorem 29 are optimal.

We have completed our work by finding some properties on the behavior of the functions ® and ®V.

Theorem 30 (S. Bessy, E. Birmelé and F. Havet, 2006, [14]). For every k > 1, we have ®(k) < ®V(k,0) <
c < OV(k, k) < (k) +2 and DV (k,1) < ®(k) + 1.

Moreover, we conjectured that the first inequality is not optimal, and that ®V is closer to ®.

Conjecture 31 (S. Bessy, E. Birmelé and F. Havet, 2006, [14]). For every k > 1, we have ®V(k,1) = ®(k)
and @V (k, k) < ®(k) + 1.

Finally, we checked our conjecture for small values of k& by computing exact values of ®V(k,l) and ®(k)
for k£ < 3 and I < 3. In particular, as a remarkable result we obtain the following.

Theorem 32 (S. Bessy, E. Birmelé and F. Havet, 2006, [14]). We have ®¥(2,2) = 4, that is, every digraph
with the property that d*(z) < 2 or d™(x) < 2 for each of its vertex x admits an arc-coloring with at most
four colors.

This statement was settled by using more sharpened homomorphisms from (2 V 2)-digraph into H, than
the usual mapping to a maximum complete subdigraph of H, (given by Sperner’s Lemma [123]).

1.3.2 WDM?®

This subsection presents another application of graph coloring, in the domain of network optimization and
design. I worked in that field while I was in postdoc in 2004 in the Mascotte Team at Sophia Antipolis,
a research team led by J.C. Bermond and working on algorithms, discrete mathematics and combinatorial
optimization with motivations coming from communication networks. During this year, with C. Lepelletier,
a Master’s degree student, we were interested in a problem arising in the design of optical networks. This

5This subsection is linked with the paper: S. Bessy and C. Lepelletier, Optical index of fault tolerant routings in wdm
networks, Networks, 56(2):95-102, 2010, annexed p.81.
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topic has been of growing interest over the two last decades, using tools from graph theory and design theory
(for instance, see [11], [75] or [10] for a background review of optical networks). The model considered
here is valid for the so-called wavelength division multiplexing (or WDM) optical network. Such a network is
modeled by a symmetric directed graph with arcs representing the fiber-optic links. A request in the network
is an ordered pair of graph nodes, representing a possible communication in the network. A set of different
requests is an instance in the network. For each request of the instance, we have to select a routing directed
path to satisfy it, and the set of all selected paths forms a routing set according to the instance. To make
the communications possible, a wavelength is allocated to each routing path, such that two paths sharing an
arc do not carry the same wavelength; otherwise the corresponding communications could interfere. Given a
routing set related to the wavelength assignment, we can define two classical invariants. The arc-forwarding
index of the routing set is the maximum number of paths sharing the same arc. In the network, there is
a general bound on the number of wavelengths which can transit at the same time in a fiber-optic link,
corresponding to the admissible maximal arc-forwarding index. The other invariant, called the optical index
of the routing set, is the minimum number of wavelengths to assign to the routing paths in order to ensure
that there is no interference in the network. The main challenge is to provide, for a given instance, a routing
set which minimizes the arc-forwarding index or the optical index, or both if possible.

Our work is a contribution to a variant of this problem, introduced by J. Manuch and L. Stacho [101], in

which we focus on possible breakdowns of nodes in the network. Precisely, for a given fixed integer f, we have
to provide, for every request, not just one directed path to satisfy it, but rather a set of f 4 1 directed paths
with the same starting and ending nodes (corresponding to the request) and which are pairwise internally
disjoint. In this routing, if f nodes break down, every request between the remaining nodes could still be
satisfied by a previously selected routing path which contains no failed component. Such a routing set of
directed paths is called an f-fault tolerant routing or an f-tolerant routing.
Considering the problematics developed in [101], we focused on the very special cases of complete symmetric
directed graphs and complete balanced bipartite symmetric directed graphs. Moreover, we only studied the
case of all-to-all communication, i.e., where the instance of the problem is the set of all ordered pairs of
nodes of the network. So, in a all-to-all context, for a digraph D and a fixed positive integer f, an f-tolerant
routing in D is a set of paths R = {P;(u,v) : u,v € Vu#v,i =0,..., f} where, for each pair of distinct
vertices u,v € V (D), the paths Py(u,v),..., Py(u,v) are internally vertex disjoint. Note that such a set of
paths exists if and only if the connectivity of the directed graph is large enough (at least f + 1), which will
be the case in complete and complete bipartite networks for suitable f.

The basic parameters for WDM optical networks, the arc-forwarding index and the optical index, are
generalized in f-tolerant routings. The load of an arc in R is the number of directed paths of R containing
it. By extension, the maximum load over all the arcs of D is the load of the routing, which is also called
the arc-forwarding index of R and is denoted by 7(R). Finally, the optical index of R, denoted w(R), is
the minimum number of wavelengths to assign to paths of R so that no two paths sharing an arc receive
the same wavelength. In other words, w(R) is exactly the chromatic number of the graph with vertex set R
and where two paths of R are linked if they share the same arc of D (known as the path graph of R). The
goal, in that context, is to minimize 7(R) and w(R). So the f-tolerant arc-forwarding index of D and the
f-tolerant optical index of D are respectively defined by:

74(D) = min(R)

wy(D) = m%n w(R)

where the minima span all the possible routing sets R. A routing set achieving one of the bounds is said to
be optimal for the arc-forwarding index or optimal for the optical indez, respectively.

For a routing set R, all paths sharing the same arc must receive different wavelengths in the computation
of w(R). In particular, we have m(R) < w(R). By considering a routing set which is optimal for the optical
index, we obtain 7;(D) < ws(D). The equality was conjectured by J. Manuch and L. Stacho [101].

Conjecture 33 (J. Manuch, L. Stacho, 2003, [101]). Let D be a symmetric directed k-vertex-connected
graph. For any f, 0 < f < k, we have 7;(D) = wy;(D).
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For f = 0 (without tolerating any faults), the conjecture was previously raised by B. Beauquier et al. [10]
and plays a central role in the field of WDM networks.

Recall that we denote by K} the complete symmetric directed graph on n vertices. In addition, the
complete balanced bipartite symmetric digraph K , is the directed graph on vertex set X UY with X =
{z1,...,zx}andY = {y1,...,yn} and arc set {zy,yz : © € X,y € Y'}. Thus, we have considered the problem
of computing exactly wy(K;) and wy (K} ). It is easy to provide a lower bound for the arc-forwarding index
of K*. Indeed, any two vertices x and y of K have to be linked in an f-tolerant routing by f + 1 internally
disjoint paths. If one of these paths has length one (the arc zy), all the others have length at least two, and
at least 2f 4+ 1 arcs are needed to ensure f-tolerant communication from z to y. So, by an average argument,
one arc of K} must have load at least 2f + 1, providing m(K}) > 2f + 1. Similarly, we obtain an easy lower
bound on 7y (K, ,,). In the case of K;, in 2005, A. Gupta, J. Mafuch and L. Stacho proved in [75] that this
lower bound gives exactly the value of the arc-forwarding index. Indeed, they construct f-tolerant routings
through families of independent idempotent Latin squares which are optimal for the arc-forwarding index.

Theorem 34 (A. Gupta, J. Manuch, L.Stacho, 2005, [75]). For every f with 0 < f < n — 2, we have
mp(Kr)=2f+1.

They also partially bound the optical index of their f-tolerant routings, proving that wy(K}) < 3f+1
for some values of f. This result was improved in 2006 by J.H. Dinitz, A.C.H. Ling and D.R. Stinson [49],
who gave a better multiplicative factor for some infinite sets of values of n and the optimal index up to
an additive constant for another infinite set of values of n. We have improved these results and fixed this
computation by showing that every f-tolerant routing set of K which is optimal for the arc-forwarding
index is also optimal for the optical index. We thus prove Conjecture 33 for the complete digraphs.

Theorem 35 (S. Bessy, C. Lepelletier, 2007, [17]). For every f, 0 < f < n — 2, and every f-tolerant
routing set R of K} with 1(R) = m¢(K}) = 2f + 1, we have w(R) = 2f + 1. In particular, we have
wp(K7) =mp(K3) =2f + 1.

We obtained this result using an edge coloring model. We define a graph with vertex set the arcs of
K and where to arcs of K are linked by an edge if they belong to a same path of the considered routing.
Theorem 35 is then simply obtained by applying Vizing’s Theorem [132] to this special graph.

A remaining important issue concerning f-tolerant routings for K7 is the design of the routings.

Problem 36. Is there a simple way (without using idempotent Latin square, for instance) to design in K,
optimal f-tolerant routings for the arc-forwarding index?

Moreover, we have computed the exact optical index of K7; ,, and thus proved Conjecture 33 also for this
family of graphs. This improves the result of A. Gupta, J. Manuch and L. Stacho [75], where the upper
bound given on the optical index of K7, , is 20% higher than the conjectured optimal value. For that, we
described a family of routings and shown that they are all optimal for the arc-forwarding index and the
optical index.

Theorem 37 (S. Bessy, C. Lepelletier, 2007, [17]). For any n > 1 and any f with 0 < f <n — 1, we have
wy (K ) = 7K ).

1.3.3 Substructures in colored graphs®

The problem studied in this section is not exactly a coloring problem, but concerns the existence of some
structure in a colored graph. This problematic covers a broad range of problems, and with S. Thomassé, we
focused on a conjecture of J. Lehel on the partition of a bi-colored complete graph into two monochromatic
cycles. To be precise, we say that a colored graph has a partition into p monochromatic cycles (or paths) if

6This subsection is linked with the paper: S. Bessy and S. Thomassé, Partitionning a graph into a cycle and an anticycle, a
proof of lehel’s conjecture, Journal of Combinatorial Theory, Serie B, 100(2):176-180, 2010, annexed p.105.
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it admits a vertex-partition into p subgraphs every one of which admits a spanning monochromatic cycle (or
path).

Many questions deal with the existence of monochromatic paths and cycles in edge-colored complete graphs.
For instance, in 1991, P. Erdds, A. Gydrfds and L. Pyber studied in [60] the minimal number of monochro-
matic cycles needed to partition the vertex set of the complete graph with edges colored with &k colors.
In 2006, A. Gyérfds, M. Ruszinkd, G.N. Sarkozy and E. Szemerédi [77] proved that O(klogk) such cycles
suffice to partition the vertices. One case which received a particular attention was the case k = 2, where
we would like to cover a complete graph which edges are colored blue and red by two monochromatic cycles.
A conjecture of Lehel, first cited in [6], asserts that a blue and a red cycle partition the vertices, where
empty set, singletons and edges are allowed as cycles. This statement was proved for sufficiently large n by
T. Luczak, V. Rédl and E. Szemerédi [128], and more recently by P. Allen [2] with a better bound. Their
proofs respectively use the Szemerédi Regularity Lemma and Ramsey’s Theory to find useful partition of the
vertex set of the colored complete graph. With S. Thomassé, we obtained a general proof of this statement.

Theorem 38 (S. Bessy, S. Thomassé, 2010, [23]). Every complete graph with red and blue edges has a vertex
partition into a red cycle and a blue cycle.

Our proof is based on induction, using as starting point the proof of A. Gyarfas of the existence of one
red cycle and one blue cycle covering the vertices and intersecting on at most one vertex (see [76]). For
this, he considered a longest path consisting of a red path followed by a blue path. The nice fact is that
such a path P is hamiltonian. Indeed, if a vertex v is not covered, it must be joined in blue to the origin
a of P and in red to the end b of P. But then, one can cover the vertices of P and v using the edge ab.
Consequently, there exists a hamiltonian cycle consisting of two monochromatic paths. Hence, there exists a
monochromatic cycle C, of size at least two, and a monochromatic path P with different colors partitioning
the vertex set. The induction in our proof of Theorem 38 runs on the size of C: at each step, either we can
find the two desired cycles, or we increase the length of C.

There exist many other interesting questions dealing with substructures in colored graphs. I list below
some of them, which are either generalizations of Lehel’s Conjecture, or famous questions raised in that field.
The first natural extension to this problem is to increase the number of colors of the background structure. It
was considered by P. Erdés, A. Gyarfas and L. Pyber in their seminal paper, where there raised the following
conjecture, still open for k > 3.

Conjecture 39 (P. Erdés, A. Gyérfas and L. Pyber, 1991, [60]). For every coloring of the edges of the
complete graph K, with k colors, there exists a partition of the vertex set of K, into r monochromatic
cycles.

Nothing is said on requirement for cycles with different colors. Maybe, some connectivity conditions
could be asked for each graph induced by the edges with same color. In particular, the following question is
interesting.

Problem 40. Let be a coloring of the edges of the complete graph K,, with 3 colors such that each graph
induced by the edges with the same color has vertex-connectivity at least 2. Is it possible to partition the
vertex set of K, into three monochromatic cycles, one of each color?

Another kind of questions arises when we change the background graph. For instance, partitioning the
complete balanced bipartite graph K, , with colored edges has been studied by P. Haxell [79]. She proved
that for every k, there exists an integer c; such that, for every coloring of the edges of K, ,, with k colors,
their exists a partition of the vertex set of K, ,, into ¢, monochromatic cycles. In the paper [79], there is
no precise mention to the case k = 2. The bound computed on ¢ gives c; > 64, but we can conjecture that
the real value of ¢ is really less than 64.

Problem 41. If n is large enough, for every coloring of the edges of K, , with 2 colors, does there exist a
partition of the vertex set of K, , into two monochromatic cycles?

Remark that for n = 3, it is possible to color the edges of K53 with two colors such that each color class
induced a forest of K3 3. Then, in this case, there is no hope to have a partition of the vertex set of K33
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into two monochromatic cycles. That is why we ask for n to be large enough, to have enough space in the
edge set to form cycles.

A third generalization of Lehel’s Conjecture could be obtained in considering objects of higher dimensions.
On a ground set V of n points, we color into two colors, say red and blue, all the d-subsets of V. We call a
d-dimensional cycle the set of all the facets (faces of dimension d) of a polytope (a bounded intersection of
half planes) of the d + 1-dimensional space which vertices are seen as elements of V. The natural extension
to Lehel’s question is the following.

Conjecture 42 (S. Bessy, S. Thomassé, 2007). For every coloring of the d-subsets of a n-set V, there exists
a partition of V into 2 parts, each of them being covered by a monochromatic d-dimensional cycle, one red
and one blue.

For d = 2, we obtain the statement of Lehel’s Conjecture, which is then true. However, for d = 3, the
question remains open, and we obtained the following short statement.

Conjecture 43 (S. Bessy, S. Thomassé, 2007). For every coloring of the triples of a n-set V', there exists a
partition of V' into 2 planar triangulations, one red and one blue.

Finally, the last kind of problems I am interested in that field concerns digraphs. If we want a direct
translation of Lehel’s problem on the complete digraph, we need to ensure that the considered colorings do
not induce big acyclic part in each color. For instance, if we consider an enumeration of the vertices of the
complete digraph and color all forward arcs in blue and all backward arcs in red, there is no hope to find
a vertex partition into two monochromatic directed cycles. To raise a possible conjecture, we ask that for
each color, the digraph induced by the arcs of this color must be strongly connected.

Conjecture 44 (S. Bessy, S. Thomassé, 2007). For every coloring of the arcs of the complete digraph K}
into two colors such that each color induces a strongly connected digraph, there exists a vertex partition of
K} into two directed cycles, one of each color.

Remark that there exists an oriented version of the starting point of the proof of Theorem 38: the exis-
tence of a hamiltonian cycle consisting of two monochromatic paths in every edge colored complete graph.
Indeed, in 1973, H. Raynaud [111] proved that every arc coloring of the complete digraph contains a hamil-
tonian (oriented) cycle consisting of two monochromatic (oriented) paths. This should be worth to exploit
this result in order to tackle Conjecture 44.

To conclude, let us mention a long standing open problem, initially stated by P. Erdds (cited in [116])
and concerning arc-colored tournaments. This problem is not related to monochromatic cycles but it is
quite natural in that field and deals with unavoidable structures in colored directed graphs. In a colored
digraph D, a set of vertices S is a set of monochromatic sources if from every vertex = of D, there exists a
monochromatic path from a vertex of S to x. This problem first appeared in print in a paper of B. Sands,
N. Sauer, and R. Woodrow [116], where they proved that every tournament with arcs colored with two colors
has a vertex which is a monochromatic source.

Problem 45 (P. Erdds, 1982). For every k, is there an integer f(k) such that every tournament with arcs
colored with k colors has set of monochromatic sources with cardinality at most f(k).

So, according to this formalism, B. Sands, N. Sauer, and R. Woodrow proved that f(2) = 1. However,
for k > 3, the value f(k) is not known and even not known to exist. More precisely, for £k = 3 the last
authors conjectured the following

Problem 46 (B. Sands, N. Sauer, and R. Woodrow, 1982, [116]). We have f(3) = 3, that is, every
tournament with arcs colored with 3 colors has set of monochromatic sources with cardinality at most 3.

1.4 Algorithmic problems on graphs

This last section deals with some algorithmic problems on graphs and exact solutions for these problems.
The first subsection is an overview of the work I have done with A. Perez (and other co-authors) while he
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prepared his PhD Thesis which I co-supervised with C. Paul. We looked at some parameterized problems
and presented kernelization algorithms for these problems. The second subsection presents a join work with
F. Havet on a problem consisting in counting the number of edge-colorings of a regular graph. We gave upper
bound for this number and yielded to exponential algorithms, with lowest as possible exponential basis, to
enumerate all this colorings.

1.4.1 Kernelization for some editing problems

With A. Perez, we worked on some modification problems for graphs and digraphs. Given a class II of
graphs (or digraphs), generally defined by some properties or a set of forbidden induced subgraphs, the
generic modification problem is the following.

PARAMETERIZED II-MODIFICATION PROBLEM

Input: A graph (or a directed graph) G = (V, E) .

Parameter: An integer k > 0.

Question: Is there a subset F' C V' x V with |F'| < k such that the graph G + F' = (V, E A F) belongs
to the class II7

Graph modification problems cover a broad range of NP-Complete problems and have been extensively
studied in the literature [100, 119, 120]. Well-known examples include the VERTEX COVER [46], FEEDBACK-
VERTEX-SET [126], or CLUSTER EDITING [41] problems. These problems find applications in various do-
mains, such as computational biology [83, 120], image processing [119] or relational databases [124]. Precisely,
for a given graph G = (V, E), in a completion problem, the set F of modified edges is constrained to be dis-
joint from F, whereas in an edge deletion problem F has to be a subset of E. If no restriction applies to F',
then we obtain an edition problem. Though most of the edge-modification problems turn out to be NP-hard
problems, in some cases, efficient algorithms can be obtained to solve the natural parameterized version of
some of them. The goal is to obtained a classification in the context of parameterized complexity (polynomial
kernel, FPT without polynomial kernel or not FPT, for instance) of the PARAMETERIZED II-MODIFICATION
PROBLEMs according to the class II. Very few general results are known in this problematic. For instance,
a graph modification problem is FPT whenever II can be characterized by a finite set of forbidden induced
subgraphs [34]. But, even in this simple case, the existence of a polynomial kernel is not ensure. We will dis-
cuss later this question more precisely, but it motivated our work on graph modification problems. Thus, in
order to find polynomial kernel for some PARAMETERIZED II-MODIFICATION PROBLEMs, we focused on very
structured class of graphs II (classes having a tree-like decomposition and tournaments). More precisely, we
found three polynomial kernelizations: for the 3-LEAF POWER EDITING PROBLEM (join work with C. Paul
and A. Perez), for the PROPER INTERVAL COMPLETION PROBLEM (join work with A. Perez) and for the
FEEDBACK-ARC-SET IN TOURNAMENT PROBLEM (join work with F.V. Fomin, S. Gaspers, C. Paul, A. Perez,
S. Saurabh and S. Thomassé). We used a very similar approach for the two first problems, which are closed.
For the third problem, which is on tournaments, the techniques are quite different but the general scheme
of the algorithm design is also similar.

Very classically, given a PARAMETERIZED II-MODIFICATION PROBLEM, the general process used to find a
small kernel is the following. For an instance (G, k) of this problem, we apply on G a set of rules to obtain a
graph G’ equivalent to GG, and we show that if G is a positive instance of the considered problem, then, the
size of G’ is bounded by a polynomial in k. Some of the rules we used are quite generic. I list them bellow.

e If a connected component of G is already a graph belonging to II, then we can remove it, under the
condition that II is closed under disjoint union. Provided that the class II has a polynomial algorithm
of recognition, this rule can be applied in polynomial time.

e If G has a big set of vertices which have the same behavior, then we can edit this set in a same
way. Precisely, we proved in [19] the following. If II is closed under true twin addition and induced
subgraphs then, from every set T of true twins in G with |T| > k, we can remove |T'| — (k+1) arbitrary
vertices from T. Moreover, this rule can be applied in polynomial time using a modular decomposition
algorithm or more easily, partition refinement (see [78] for example).
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e If G has an edge or a non-edge e contained in more than k obstructions of the class II, which are
elsewhere disjoint, then we can edit e and reduce the parameter consequently. Classically, this rule is
call a sunflower rule, and is usually applied for the finite obstructions of the class II. Thus, it can be
computed in polynomial time.

After that, we tried to generalize the first of these rules by reducing parts of the graph G which are already
‘clean’, but not necessarily form a connected component. We call such a part of G, a branch of G. The exact
definition has to be adapted for each singular case, but broadly speaking, a subgraph H of G is a branch
if H belongs to II and has some special properties of adjacency with the remaining of G. The ’branches
rule’ consists then in localizing big branches in the graph and reducing them (’cutting the branches’). It is
possible if we can show that for the considered PARAMETERIZED II-MODIFICATION PROBLEM, the relevant
information contained in a branch lie in its border. This 'concept’ of branch is a natural idea, and as been
used before for kernelization algorithms (see [83], for instance). Finally, we have to prove that if G is a
positive instance of the problem, then, after applying these rules, the size of the obtained graph G’ will be
small, i.e. polynomial in k. This will be possible, as if G is a positive instance, up to few edges, it looks like
a graph of II, and then has big parts, branches, behaving like subgraphs of a graph of II, and will be reduced
by the "branches rule’.

A polynomial kernel for the 3-LEAF POWER EDITING PROBLEM’

In this subsection, I present a joint work with C. Paul and A. Perez, which consists in finding a polynomial
kernel for a PARAMETERIZED II-MODIFICATION PROBLEM, where II is the class of 3-leaf powers, graphs aris-
ing from a phylogenetic reconstruction context [86, 87, 106]. Briefly these graphs come from the following
problem. We want to extract, from a threshold graph G on a set S of species, a tree T', whose leaf set is S and
such that the distance between two species is at most p in T if, and only if, they are adjacent in G (p being
the value used to extract G from dissimilarity information). If such a tree T exists, then G is a p-leaf power
and T is its p-leaf root. Here, we are dealing with 3-leaf power which have several nice characterizations
(see [32] and [52]). The critical graph of a graph G is obtained by contracting all the set of pairwise true
twins of the graphs G. Then, a graph is a 3-leaf power if its critical graph is a tree. Equivalently, 3-leaf
powers are the chordal graphs without induced bull (a 3-cycle with two pending vertices), dart (build from
a path of length 2 and an isolated vertex, both dominated by a fifth vertex) and gem (a path of length three
with a dominating vertex).

Following theoretical motivations, we looked for a polynomial kernel for the 3-LEAF POWER EDITING PROB-
LEM, answering to an open question of M. Dom, J. Guo, F. Hiiffner and R. Niedermeier [53, 51].

Concerning algorithmic on p-leaf power, the following is known. For p < 5, the p-leaf power recognition is
polynomial time solvable [33, 36], whereas the question is still open for p strictly larger than 5. Parameterized
p-leaf power edge modification problems have been studied so far for p < 4. The edition problem for p = 2
is known as the classical CLUSTER EDITING problem for which the kernel size bound has been successively
improved in a series of papers [62, 71, 109, 74], culminating in 2010 [41] with a kernel with 2k vertices.
For larger values of p, the edition problem is known as the CLOSEST p-LEAF POWER problem. For p = 3
and 4, the CLOSEST p-LEAF POWER problem is known to be FPT [52, 51], while its fixed-parameterized
tractability is still open for larger values of p. However, the existence of a polynomial kernel for p > 2
remained an open question [50, 53]. Moreover, though the completion and edge-deletion problems also are
FPT for p < 4 [51, 53], no polynomial kernel was known for p # 2 [74]. In this context, we focused on the
case p = 3 and obtained the following.

Theorem 47 (S. Bessy, C. Paul, A. Perez, 2010, [19]). The CLOSEST 3-LEAF POWER, the 3-LEAF POWER
COMPLETION and the 3-LEAF POWER EDGE-DELETION admit a kernel with O(k3) vertices.

To obtain this kernel, we followed the general scheme explained previously. In this context, for an instance
graph G, a branch of G is a subgraph which forms a sub-tree of the critical graph of G containing at most

7TThis subsection is linked with the paper: S. Bessy, C. Paul, and A. Perez, Polynomial kernels for 3-leaf power graph
modification problems, Discrete Applied Mathematics, 158(16):1732-1744, 2010, annexed p.110.
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two vertices with neighbors outside of this sub-tree in the critical graph of G. Then, the analysis of the rules
yielded to the desired kernel.

A polynomial kernel for the PROPER INTERVAL COMPLETION PROBLEM®

In this second subsection, I present a join work with A. Perez, related to a PARAMETERIZED [I-MODIFICATION
PROBLEM, where the allowed modifications are only edge completions and the class IT is the class of proper
interval graphs, which are the intersection graphs of finite sets of unit length intervals on a line. Thus, we
studied the PROPER INTERVAL COMPLETION PROBLEM and found a kernelization algorithm for this problem.
The class of proper interval graphs is a well-studied class of graphs, and several characterizations are known
to exist. In particular, there exists an set of forbidden induced subgraphs that characterizes proper interval
graphs [133]: all the k-cycles with k& > 4, the claw, which the complete bipartite graph K3, the net, a
3-cycle with three pending vertices, and the 3$-sumn, which is the complementary of the net. The proper
interval graphs are also characterized by having an umbrella ordering [97]. An umbrella ordering of a graph
G is an ordering vy, ..., v, of its vertices such that for every edge v;v; of G with ¢ < j, the set {v;,...,v;} is
a clique of G (it corresponds to the order of the first extremity of each interval in an interval representation
of G).

Interval completion problems find applications in molecular biology and genomic research [80, 83], and in
particular in physical mapping of DNA. This motivation was cited in the first papers dealing with PROPER
INTERVAL COMPLETION PROBLEM (see [83] for instance). This problem is known to be NP-Complete for a
long time [70], but fixed-parameter tractable due to a result of H. Kaplan, R. Shamir and R.E. Tarjan in
FOCS ’94 [83, 84]. Nevertheless, it was not known whether this problem admit a polynomial kernel or not.
We settled this question by proving the following.

Theorem 48 (S. Bessy, A. Perez, 2011, [20]). The PROPER INTERVAL COMPLETION problem admits a kernel
with at most O(k3) wvertices.

Remark that this problem is quite similar to the 3-LEAF POWER COMPLETION: this is an edge completion
problem to a class of chordal graph defined by a finite set of obstructions. The proof also follows the previous
general scheme, but this time the proof for the ’branches rules’ is really more technical. A branch for this
problem is a subgraph H of our instance graph G which induces a proper interval graph and such that the
edges standing across the partition (H,G \ H) form at most two generalized join. Such a join is a set of
edges which contains no induced 2K, (two disjoint edges). It corresponds to the edges across a partition
({v1,..., v}, {vk+1,...vn}) of an umbrella ordering of a proper interval graph. Detecting and reducing the
branches produced the cubic kernel.

Moreover, we applied our techniques to the so-called BIPARTITE CHAIN DELETION problem, closely
related to the PROPER INTERVAL COMPLETION problem where one is given a graph G = (V, E) and seeks
a set of at most k edges whose deletion from E result in a bipartite chain graph (a graph that can be
partitioned into two independent sets connected by a generalized join). For this problem, we obtained a
quadratic kernel.

Theorem 49 (S. Bessy, A. Perez, 2011, [20]). The problem BIPARTITE CHAIN DELETION admits a kernel
with at most O(k?) vertices.

This result completes a previous result of Guo [74] who proved that the BIPARTITE CHAIN DELETION
WIiTH FIXED BIPARTITION problem admits a kernel with O(k?) vertices.

To conclude these two parts, we return on a more general framework for the PARAMETERIZED II-
MODIFICATION PROBLEMs. As previously mentioned, it is known that a graph modification problem is
FPT whenever II can be characterized by a finite set of forbidden induced subgraphs [34]. However, recent
results proved that several graph modification problems do not admit a polynomial kernel even for such
classes II [73, 94]. For instance, an impressive result is that if II is the class of the graphs without induced

8This subsection is linked with the paper: S. Bessy and A. Perez. Polynomial kernels for proper interval completion and
related problems. In FCT, volume 6914 of LNCS, pages 1732-1744, 2011, annexed p.134.
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2K, then the PARAMETERIZED II-COMPLETION PROBLEM has no polynomial kernel (personal communica-
tion of F. Havet, C. Paul, A. Perez and S. Guillemot on a work in progress). So, in this field, the following
question is a central one.

Problem 50. Is it possible to characterize the class II of graphs such that the PARAMETERIZED II-
MODIFICATION PROBLEM is FPT or admits a polynomial kernel?

More precisely, with A. Perez, focusing on completion problems, we tried to generalize the notion of
branches and apply it to the PARAMETERIZED II-COMPLETION PROBLEM. In the two examples presented,
the fact that the classes of graphs (3-leaf power and proper interval) are chordal seems very useful to obtain
polynomial kernels. So, we asked the following question.

Conjecture 51 (S. Bessy, A. Perez, 2011 [20]). If II is a class of chordal graphs defined by a finite set of
obstructions, then the PARAMETERIZED II-COMPLETION PROBLEM admits a polynomial kernel.

As mentioned in [20], it is easy to see that such problems are FPT. Moreover, another clue for this
conjecture is that when II is simply the class of chordal graphs, H. Kaplan, R. Shamir and R.E. Tarjan have
shown in 1994 [83] that the PARAMETERIZED II-COMPLETION PROBLEM (also called the MINIMUM FILL-IN
PROBLEM) admits a cubic kernel.

A polynomial kernel for the FEEDBACK-ARC-SET IN TOURNAMENT PROBLEM?

The last problem I looked at in the context of parameterized complexity deals with feedback-arc-set in
tournaments. It is (very) collective work done in 2009 and join with F.V. Fomin, S. Gaspers, C. Paul,
A. Perez, S. Saurabh and S. Thomassé and it is not very far from the problems presented in the two first
subsection. Given a directed graph G = (V, A) on n vertices and an integer parameter k, the FEEDBACK-
ARC-SET problem asks whether the given digraph has a set of k£ arcs whose removal results in an acyclic
directed graph. It is a PARAMETERIZED II-ARC-DELETION PROBLEM, where II stands for the class of acyclic
digraphs. We considered this problem in a the class of tournaments. More precisely, the problem is the
following.

FEEDBACK-ARC-SET IN TOURNAMENTS (FAST):

Input: A towrnament T = (V, A) and a positive integer k.

Parameter: k.

Question: Is there a subset F' C A of at most k arcs whose removal makes T' acyclic?

Feedback-arc-sets in tournaments are well studied from the combinatorial [61, 82, 113, 118, 122, 135],
statistical [121] and algorithmic [1, 4, 44, 90, 129, 130] points of view. The problem FAST has some nice
applications, as for instance, in rank aggregation, where we are given several rankings of a set of objects,
and we wish to produce a single ranking that on average is as consistent as possible with the given ones,
according to some chosen measure of consistency. This problem has been studied in the context of voting
[31, 39, 43], machine learning [42], and search engine ranking [56, 57]. A natural consistency measure for
rank aggregation is the number of pairs that occur in a different order in the two rankings. This leads to
Kemeny rank aggregation [88, 89], a special case of a weighted version of FAST.

However, we were mainly motivated by theoretical aspects of the problem, on which the following is
known. The FAST problem is NP-complete by recent results of N. Alon [4] and P. Charbit et al. [38]. From
an approximation perspective, FAST admits an approximation algorithm, found in 2007 by C. Kenyon-
Mathieu and W. Schudy [90] and which is used it in our kernelization process. The problem is also well
studied in parameterized complexity. V. Raman and S. Saurabh [110] showed that FAST is FPT and a
kernel on O(k?) vertices is known for this problem, a result from N. Alon et al. [5] and M. Dom et al. [54].
We improved these last results by providing a linear vertex kernel for FAST.

Theorem 52 (S. Bessy, F.V. Fomin, S. Gaspers, C. Paul, A. Perez, S. Saurabh and S. Thomassé., 2009, [15]).
Given any fized e > 0, FAST admits a kernel with a most (2 + €)k vertices.

For that, given an instance (T,k) of FAST, we start by computing a feedback-arc-set with at most

9This subsection is linked with the paper: S. Bessy, F. V. Fomin, S. Gaspers, C. Paul, A. Perez, S. Saurabh, and S. Thomassé,
Kernels for feedback arc set in tournaments, In FSTTCS, volume 4 of LIPIcs, pages 37-47, 2009, annexed p.161.
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(1+ §)k arcs by using the approximation algorithm of C. Kenyon-Mathieu and W. Schudy [90] (if we do not
success, then we answer '"NO’ for the instance (T, k)). Then, if T is large enough, with more than(2 + €)k
vertices, we find a partition of 7" with few arcs going across the partition. Using the following useful lemma,
we can remove these arcs and decrease k accordingly.

Lemma 53 (S. Bessy, F.V. Fomin, S. Gaspers, C. Paul, A. Perez, S. Saurabh and S. Thomassé., 2009, [15]).
Let E = v1,...,v, be an enumeration of a tournament T with p backward arcs (i.e. arcs v,v; with i > j). If
every interval v;,...,v; of B with i < j contains at most ]%1 backward arcs of T, then, T contains exactly p
arc-disjoint 3-cycles.

After that, we remove from T the vertices not contained in any cycle and repeat the process until we
obtain the kernel with the desired size (or answer '"NO’ if we have to reduce k below 0).

Remark that the complexity needed to compute the kernel depends on the complexity of the feedback-

arc-set approximation of [90], and thus is in time O(no(fflz)). However, C. Paul, A. Perez and S. Thomassé
gave in 2011 [107] a simpler kernelization process for FAST, providing a 4k kernel in quadratic time.
To conclude, there is an interesting open question related to the FAST problem. Indeed, if we are interested
now in computing a feedback-vertex-set of size less than k in a tournament, there exists a kernel on O(k?)
vertices for the parametrized version of this problem, see [126] for instance. But the existence of a linear
kernel for this problem is still open.

Problem 54. Is there a kernel on O(k) vertices for the PARAMETRIZED FEEDBACK-VERTEX-SET IN TOUR-
NAMENT problem?

1.4.2 Counting edge-colorings of regular graphs'’

In this last subsection, I present a work done with F. Havet on the number of edge-colorings of regular
graphs. This work was initially motivated by results and questions from P.A. Golovach, D. Kratsch and
J.F. Couturier. Indeed, in [69] there were interested in enumerating all the edge-colorings of a regular
graph and provided exponential exact algorithms for this problem. However, they asked if the exponential
bases for their algorithms could be improved, specially in the case of edge-coloring of cubic graphs. By us-
ing some structural tools to enumerate the edge-colorings, we settled the question and improved their results.

Algorithmic for graph coloring is a very large field of research and a lot of results are known in this
area. Very classically, every kind of usual chromatic number (related to vertex-coloring, edge-coloring...)
is NP-complete to compute (see [68, 81, 115] for instance). So, many exact algorithms with exponential
time concerning these problems have been published in the last decade. One of the major results is the
O*(2™) inclusion-exclusion algorithm to compute the chromatic number of a graph found independently by
A. Bjorklund, T. Husfeldt [24] and M. Koivisto [92]. This approach may also be used to establish a O*(2")
algorithm to count the k-colorings and to compute the chromatic polynomial of a graph. It also implies a
O*(2™) algorithm to count the k-edge-colorings. Since edge-coloring is a particular case of vertex-coloring,
a natural question is to ask if faster algorithms than the general one may be designed in these cases. For
instance, very recently A. Bjorklund et al. [25] showed how to detect whether a k-regular graph admits a
k-edge-coloring in time O*(2(F=1)/2),

The existential problem, asking whether a graph has a coloring with a fixed and small number k& of colors,
has also attracted a lot of attention. For vertex-colorability the fastest algorithm for & = 3 has running
time O*(1.3289™) and was proposed by R. Beigel and D. Eppstein [12], and the fastest algorithm for k = 4
has running time O*(1.7272") and was given by F. Fomin et al. [64]. They also established algorithms for
counting k-colorings for &k = 3 and 4. The existence problem for a 3-edge-coloring is considered in [12, 93, 69].
L. Kowalik [93] gave an algorithm deciding if a graph is 3-edge-colorable in time O*(1.344™) and polynomial
space and P.A. Golovach et al. [69] presented an algorithm counting the number of 3-edge-colorings of a
graph in time O*(3"/%) = 0*(1.201") and exponential space. They also showed a branching algorithm to

10This subsection is linked with the paper: S. Bessy and F. Havet. Enumerating the edge-colourings and total colourings of
a regular graph. accepted in Journal of Combinatorial Optimization, 2011, annexed p.172.
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enumerate all the 3-edge-colorings of a connected cubic graph of running time O*(25"/%) = O*(1.5423")
using polynomial space. In particular, this implies that every connected cubic graph of order n has at most
0(1.5423™) 3-edge-colorings. Moreover,they gave an example of a connected cubic graph of order n having
0(1.2820™) 3-edge-colorings.

We filled the gap between these two bounds and improved their results by proving the following.

Theorem 55 (S. Bessy, F. Havet, 2011, [16]). In every connected cubic multi-graph of order n, the number of
3-edge-colorings is at most 3-2"/2. Furthermore, they can be all enumerated in time O*(2"/?) = O*(1.4143")
using polynomial space by a branching algorithm.

Moreover, we gave an example of connected cubic multi-graph achieving this bound. To compute ef-
ficiently the number of edge-colorings of a cubic graph G, we used an special enumeration of GG, defined
by A. Lempel et al. in 1967 and called a st-ordering of G [95]. In such an ordering, every of vertex of G
(excepted from the first and the last) has degree at least one on its left and also degree at least one on its
right. More precisely, if we orient every edge of G from the left to the right in an st-ordering, we can see that
the first vertex has out-degree 3, the last vertex as out-degree 0 and 4§ — 1 vertices of GG have out-degree 1
and 5 — 1 vertices of G have out-degree 2. So, given an st-ordering E of G, we sort the edges of G according
to their left extremity in E. Then, we greedily enumerate all the edge-colorings of G by coloring as many
ways as possible the edges of G according to this sorting. As, the only choices for colorings appear when a
vertex has two neighbors in its right in F, we obtained the announced bound.

For simple graphs, we tried to sharpen the previous bound and showed the following.

Theorem 56 (S. Bessy, F. Havet, 2011, [16]). In every connected cubic simple graph of order n, the number
of 3-edge-colorings is at most % on/2,

However, we did not find an example of graph having this number of 3-edge-colorings, and we believe
that % is not the optimal value in the previous statement. Precisely, guided by some examples with high
number of 3-edge-colorings, we conjectured the following.

Conjecture 57 (S. Bessy, F. Havet, 2011, [16]). Up to an additive constant, in every connected cubic simple
graph of order n the number of 3-edge-colorings is at most 2"/2.

To conclude, let me mention that we extended our results to k-regular connected multi-graph and obtained
the following statement.

Theorem 58 (S. Bessy, F. Havet, 2011, [16]). In every connected k-regular multi-graph of order n, the
number of k-edge-colorings is at most k - (k — 1))*/2.  Purthermore, they can be all enumerated in time
O*(((k — 1)1)™?) using polynomial space by a branching algorithm.
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2.1 Spanning a strong digraph with alpha cycles

Spanning a strong digraph by « circuits: A proof of
Gallai’s conjecture.
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and
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Abstract

In 1963, Tibor Gallai [9] asked whether every strongly connected directed graph D is spanned by
« directed circuits, where « is the stability of D. We give a proof of this conjecture.

1 Coherent cyclic orders.

In this paper, circuits of length two are allowed. Since loops and multiple arcs play no role in this topic,
we will simply assume that our digraphs are loopless and simple. A directed graph (digraph) is strongly
connected, or simply strong, if for all vertices z,y, there exists a directed path from z to y. A stable
set of a directed graph D is a subset of vertices which are not pairwise joined by arcs. The stability
of D, denoted by a(D), is the number of vertices of a maximum stable set of D. It is well-known, by
the Gallai-Milgram theorem [10] (see also [1] p. 234 and [3] p. 44), that D admits a vertex-partition
into a(D) disjoint paths. We shall use in our proof a particular case of this result, known as Dilworth’s
theorem [8]: a partial order P admits a vertex-partition into a(P) chains (linear orders). Here a(P)
is the size of a maximal antichain. In [9], Gallai raised the problem, when D is strongly connected, of
spanning D by a union of circuits. Precisely, he made the following conjecture (also formulated in [1] p.
330, [2] and [3] p. 45):

Conjecture 1 Every strong digraph with stability « is spanned by the union of a circuits.

The case a = 1 is Camion’s theorem [6]: Every strong tournament has a hamilton circuit. The case
a =2 is a corollary of a result of Chen and Manalastas [7] (see also Bondy [4]): Every strong digraph
with stability two is spanned by two circuits intersecting each other on a (possibly empty) path. In [11]
was proved the case & = 3. In the next section of this paper, we will give a proof of Gallai’s conjecture

for every a.
Let D be a strong digraph on vertex set V. An enumeration E = vq,...,v, of V is elementary
equivalent to E' if one the following holds: E' = v,,v1,...,05—1, or E' = vs,v1,v3,...,v, if neither
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v1v2 nor vevy is an arc of D. Two enumerations E,E' of V are equivalent if there is a sequence E =
E,,...,E, = E' such that E; and E;y; are elementary equivalent, for ¢ = 1,...,k — 1. The classes of
this equivalence relation are called the cyclic orders of D. Roughly speaking, a cyclic order is a class
of enumerations of the vertices on the integers modulo n, where one stay in the class while switching
consecutive vertices which are not joined by an arc. We fix an enumeration E = vy,...,v, of V, the
following definitions are understood with respect to E. An arc vv; of D is a forward arc if i < j,
otherwise it is a backward arc. A directed path of D is a forward path if it only contains forward arcs.
The index of a directed circuit C' of D is the number of backward arcs of C, we denote it by ig(C).
This correspond to the winding number of the circuit. Observe that ig(C) = ig/(C) if E' is elementary
equivalent to E. Consequently, the index of a circuit is invariant in a given cyclic order C, we denote it
by ic(C). By extension, the index i¢(S) of a set of circuits S is the sum of the indices of the circuits of
S. A circuit is simple if it has index one. A cyclic order C is coherent if every arc of D is contained in a
simple circuit, or, equivalently, if for every enumeration E of C and every backward arc v;v; of E, there
exists a forward path from v; to v;. We denote by cir(D) the set of all directed circuits of D.

Lemma 1 Every strong digraph has a coherent cyclic order.

Proof. Let us consider a cyclic order C which is minimum with respect to ic(cir(D)). We suppose for
contradiction that C is not coherent. There exists an enumeration E = vy,...,v, and a backward arc
a = vjv; which is not in a simple circuit. Assume moreover that E and a are chosen in order to minimize
j —i. Let k be the largest integer i < k < j such that there exists a forward path from v; to v;. Observe
that vy has no out-neighbour in Jug,v;]. If k # ¢, by the minimality of j — ¢, v has no in-neighbour

in Jug,v;]. In particular the enumeration E' = vy, ..., 0k_1,Vk41,---,Vj, Uk, Vjt1,---,Un is equivalent to
E, and contradicts the minimality of j — . Thus k£ = i, and by the minimality of j — i, there is no
in-neighbour of v; in Jv;, v;[. In particular the enumeration E' = v1,...,0i_1,Vif15+++,Vj—1,V5,Vj; -, Un
is equivalent to E. Observe now that in E" = v1,...,01,0i41,..,Vjm1,Vj, Vi, ..., Un, every circuit C

satisfies i (C) < ip(C), and the inequality is strict if the arc a belongs to C, a contradiction. O

A direct corollary of Lemma 1 is that every strong tournament has a hamilton circuit, just consider
for this any coherent cyclic order.

2 Cyclic stability versus spanning circuits.

The cyclic stability of a coherent cyclic order C is the maximum & for which there exists an enumeration
v1,...,0p of C such that {v,...,vx} is a stable set of D. We denote it by a(C), observe that we clearly
have a(C) < a(D).

Lemma 2 Let D be a strong digraph and vy, ...,v, be an enumeration of a coherent cyclic order C of
D. Let X be a subset of vertices of D such that there is no forward path between two distinct vertices of
X. Then | X| < a(C).

Proof. We consider an enumeration £ = vy, ..., v, of C such that there is no forward path between two
distinct vertices of X, and chosen in such a way that j — 4 is minimum, where v; is the first element of X
in the enumeration, and v; is the last element of X in the enumeration. Suppose for contradiction that
X # {vi,...,v;}. There exists vy ¢ X for some i < k < j. There cannot exist both a forward path from
X N{wi,...,vk-1} to vg and a forward path from vy to X N{ve+1,...,v;}. Without loss of generality, we

assume that there is no forward path from X N {v;,...,vk—1} to vj. Suppose moreover that vy, is chosen
with minimum index k. Clearly, v has no in-neighbour in {v;,...,v;_1}, and since C is coherent, vy,
has no out-neighbour in {v;,...,v;_1}. Thus the enumeration vy,...,v;—1,Vk, Vi, -, Vk—1,Vkt1,---,Vn

belongs to C, contradicting the minimality of j —i. Consequently, X = {v;,...,v;}, and there is no
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forward arcs, and then no backward arcs, between the vertices of X. Considering now the enumeration
Uiy ey Un,y U1, ..., Vi—1, we conclude that | X| < «(C). O

Let P = 1,..., 2 be a directed path, we call z; the head of P and zj, the tail of P. We denote the
restriction of P to {z;,...,z;} by Plz;,z;].

Theorem 1 Let D be a strong digraph with a coherent cyclic order C. The minimal ic(S), where S is a
spanning set of circuits of D is equal to a(C).

Proof. We consider a coherent cyclic order C of D with cyclic stability k := a(C). Let E = vy,...,v,
be an enumeration of C such that S = {vy,...,v;} is a stable set of D. Clearly, if a circuit C' contains
q vertices of S, the index of C is at least ¢. In particular the inequality i¢(S) > k is satisfied for every
spanning set, of circuits of D. To prove that equality holds, we consider an auxiliary acyclic digraph D’
on vertex set V' U {v},...,v;} which arc set consists of every forward arc of E and every arc v;v} for
which v;v; is an arc of D. We call T' the transitive closure of D'. Let us prove that the size of a maximal
antichain in the partial order 7" is exactly k. Consider such an antichain A, and set A; := AN{v1,..., v},
Ag = AN{vk+1,...,0n} and A := AN{v1,...,v;}. Since one can arbitrarily permute the vertices of S in
the enumeration E and still remain in C, we may assume that A3 = {v],...,v}} for some 0 < j < k. Since
every vertex is in a simple circuit, there is a directed path in D' from v; to v}, and consequently we cannot
both have v; € A and v} € A. Clearly, the enumeration E' = vj;1,...,vn,v1,...,v; belongs to C. By the
fact that A is an antichain of 7", there is no forward path joining two elements of (ANV) U {v1,...,v;}
in E', and thus, by Lemma 2, |[A] = [(ANV)U{vq,...,v;}| < k. Observe also that {vi,...,v;} are
the sources of T” and {vj,...,v},} are the sinks of 7", and both are maximal antichains of T'. We apply
Dilworth’s theorem in order to partition 7" into k chains (thus starting in the set {v1, ..., v} and ending
in the set {v{,...,v}}), and by this, there exists a spanning set P, ..., P of directed paths of D' with
heads in {v1,...,v;} and tails in {v{,...,v};}. We can assume without loss of generality that the head of
P; is exactly v;, for all i = 1,..., k. Let us now denote by o the permutation of {1,...,k} such that U’ﬂ(i)
is the tail of P;, for all . Assume that among all spanning sets of paths, we have chosen P, ..., Py (with
respective heads vy, ...,v;) in such a way that the permutation o has a maximum number of cycles.
We claim that if (i1,...,ip) is a cycle of o (meaning that o(i;) = i;41 and o(i,) = i1), then the paths
P;,,..., P, are pairwise vertex-disjoint. If not, suppose that v is a common vertex of P;, and P;,, and
replace P;, by P [vi,,v] U P;,, [v,04(;,,y] and P, by P;, [v;,,,v] U P;[v,v4(;,)]. This is a contradiction to
the maximality of the number of cycles of 0. Now, in the set of paths Pi, ..., Py, contract all the pairs
{v;,v}}, for i =1,..., k. This gives a spanning set S of circuits of D which satisfies i¢c(S) = k. O

Corollary 1.1 Every strong digraph D is spanned by a(D) circuits.

Proof. By Lemma 1, D has a coherent cyclic order C. By Theorem 1, D is spanned by a set S of circuits
such that |S| < ic(S) = a(C) < a(D). O

We now establish the arc-cover analogue of Theorem 1. Again, a minimax result holds.

3 Cyclic feedback arc set versus arc cover.

Let C be a cyclic order of a strong digraph D. We denote by 3(C) the maximum k& for which there exists
an enumeration of C with k backward arcs. We call k the mazimal feedback arc set of C. Since every
vertex of D has indegree at least one, we clearly have a(C) < B(C).

Theorem 2 Let D = (V, A) be a strong digraph with a coherent cyclic order C. The minimal ic(S),
where S is a set of circuits which covers the arc set of D, is equal to 5(C).
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Proof. If S is a set of circuits which spans the arcs of D, every backward arc in any enumeration of
C must be in a circuit of S. In particular the inequality ic(S) > B(C) clearly holds. Let D' be the
subdivision of D, i.e. the digraph with vertex set V U A and arc set {(v,e) : v is the head of e and
e € A}J{(e,v) : v is the tail of e and e € A}. There is a one-to-one correspondence ¢ between the
circuits of D' and the circuits of D. Let E = vy, ...,v, be an enumeration of C with backward arc set
{e1,...,ex}, where k = 3(C). Consider the enumeration E' of D' given by

1 1 2 2
E = elv"'7ek7vl7f17"'7fnlvv27f17"'7fn27"'7un

where {f{,..., fi.} is the set of forward arcs in E with head v;. Let C' be the cyclic order of E’. The
index in C' of a circuit C' of D' is equal to the index in C of ¢(C), thus C' is coherent. Let F' be any
enumeration of C'. We denote by F' the enumeration induced by F' on V. Since C’ is coherent, if e := zy
is a forward arc of F, zey is a forward path of F’. In particular, F belongs to C (since one cannot switch
z and y in F'). Moreover, if e := zy is a backward arc of F', exactly one of ze or ey is a backward arc of
F'. Thus, we have 8(C') < 8(C). By Theorem 1, the vertex set of D' is spanned by a set of circuits S’
with i¢/(8") < a(C") < B(C") < B(C). To conclude, observe that S := {¢(C),C € S'} is a set of circuits
which covers the arc set of D and verify i¢(S) = i¢/(S') < B(C). O

4 Longest circuit versus minimum cyclic coloration.

In this section, we present a third min-max theorem which consists of a fractional version of a theorem
of J.A. Bondy ([5]). Our proof is similar to the classical proof on the circular chromatic number in the
non-oriented case, see X. Zhu ([12]) for a survey.

The cyclic chromatic number of a coherent cyclic order C of a strong digraph D, denoted by x(C), is the
minimum & for which there exists an enumeration E = v1,..., Vi, Vi, 41, - -, Vig, Vig+1,-- -, Vi Of C for
which v, 41,...,v;,,, is a stable set for all j =0,...,k —1 (with ig := 0).

Under the same hypothesis, the circular chromatic number of C, denoted by x.(C) is the infimum of
the numbers r > 1 for which C admits an r-circular coloration. A mapping f : V — [0,r[ is called an
r-circular coloration if f verifies:

1) If z and y are linked in D, then 1 <|f(z) — f(y)| <r—1.
2) If 0 < f(v1) < f(v2) < -+ < f(vp) <7, then vy,...,v, must be an enumeration of C. Such an
enumeration is called related to f.

As usual, it is convenient to represent such an application as a mapping from V into a circle of the
euclidean plane with circumference r. Condition 1) asserts then that two linked vertices have distance
at least 1 on this circle. And by condition 2), the vertices of D are placed on the circle according to
an enumeration of the cyclic order C. By compactness of this representation, the infimum used in the
definition of x. is a minimum, that is to say that there exists a x.(C)-circular coloration of C.

Note that the enumeration given by 2) is possibly not unique. Indeed, two vertices of V' may have the
same image by f. In this case, these two vertices are not linked in D (because of 1)) and so, the two
enumerations are equivalent. Moreover, two enumerations related to f have same sets of forward arcs
and backward arcs.

Lemma 3 For D a strong digraph and C a coherent cyclic order of D, we have [x.(C)] = x(C).

Proof. First, if E = v1,...,0i,Vi41,- Vg, Vig41,- - -, Vi, 1S an enumeration of C which realizes x(C),
we can easily check that f: V — [0, k[ defined by f(vp) =jifi; +1 <p <ijpq for 0 < j <k —1 with
i9 = 0 is a k-circular coloration of C. So, we get the inequality x.(C) < x(C).

Conversely, the existence of an enumeration of C which realizes x.(C) will achieve the bound. Indeed, fix
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f an r-circular coloration of C with r = x.(C) and E an enumeration of C related to f. By definition of
f, for every integer 0 < j < [r] — 1, the set {v € V : f(v) € [j,j + 1[} is a stable set of D and forms an
interval on E, so we get x(C) < [x.(C)]. O

The following Lemma gives a criterion to decide whether an r-circular coloration f is best possible
or not. We define an auxiliary digraph Dy with vertex set V and arc set {zy € E(D) : f(y) — f(z) =
1or f(z)— f(y) = r—1}. Observe that the arcs zy of Dy with f(y) — f(x) =1 (resp. f(z)— f(y) =r—1)
are forward (resp. backward) in any enumeration related to f.

Lemma 4 If f is an r-circular coloration of C with r > 2 for which Dy is an acyclic digraph, then we
can provide a real number ' < r such that C admits an r'-circular coloration.

Proof. First of all, if a vertex « of D has an out-neighbour y with f(z) — f(y) = 1, by property 1)
of f and coherence of C, the arc yz must be also in D, and similarly if 2 has an out-neighbour y with
f(y) — f(x) = r —1, the arc yz must be in D. So, a vertex = with in-degree 0 (resp. out-degree 0) in Dy
has no neighbour z with f(z)— f(z) = 1 modulo r (resp. f(z)— f(z) = 1 modulo r). Then, if E(Dy) =0,
it is easy to provide an r'-circular coloration f' of C with v’ < r. Just multiply f by a factor 1 — € with
€ > 0 and € small enough.

Now, amongst the r-circular colorations f of C for which Dy is acyclic, choose one with minimal number
of arcs for Dy. Assume that E(Dy) # 0. We can choose a vertex ¢ of Dy with in-degree 0 and out-degree
at least 1. Denote by y1,...,y, the out-neighbours of z in Dy, we have for all i, f(y;) = f(z) + 1 modulo
r. By definition of f, z has no neighbour z such that f(z)— f(z) < 1 or f(z)— f(z) > r—1 and, moreover,
since z has in-degree 0 in Dy, by the previous remark, & has no neighbour z with f(z) — f(2) =1 or
f(2) = f(z) = r — 1. Observe that none of the y; verifies this, because r > 2. So, we can provide an
r-circular coloration f' derived from f just by changing the value of f(z): choose f'(z) = f(z) —e modulo
r with € > 0 and such that no neighbour of = has an image by f in [f'(z) — 1, f'(z)]U[r — 1 + f'(z),7[.
We check that E(Dy) = E(Dy) \ {zy; : i = 1,...,p}, which contradicts the choice of f.

So, E(Dy) =0 and we provide an r'-circular coloration of C with r' < r as previously. O

Finally, we can state a third min-max theorem about cyclic orders. For this, we define, for a fixed
cyclic order C, the cyclic length of a circuit C' of D, denoted by l¢(C), as the number of vertices of C' in
D, divided by the index of C in C.

Theorem 3 Let C be a coherent cyclic order of a strong digraph D. The mazimal lc(C'), where C is a
circuit of D is equal to x.(C).

Proof. Consider an r-circular coloration f of C with r = x.(C) and E = vy,..., v, an enumeration of C
related to f. For a circuit C' in D, we compute the length [ of the image of C by f:

L= ) (- f@)+ Y Hfly) - f@)
zyeE(C) zyeE(C)
zy forward in E zy backward in E

A straighforward simplification of the sum gives | = r.ic(C). Furthermore, condition 1) of the
definition of f implies that f(y) — f(z) > 1 if 2y € E(C) and =y is forward in E (i.e. f(z) < f(y))
and r + f(y) — f(z) > 1 if zy € E(C) and zy is backward in E (i.e. f(y) < f(z)). So, we have
c=r.ic(C) > 1(C), hence r > l¢(C), and the inequality x.(C) > max{l¢(C) : C circuit of D} holds.

To get the equality, we have to find a circuit C' of D such that l¢c(C) =r.

First of all, since C is coherent, it has a circuit of index 1 and, then the cyclic length of this circuit is
greater or equal to 2. Thus, the previous inequality gives r > 2 and so, states the case r = 2. From
now on, assume that r > 2, Lemma 4 asserts that there exists a circuit C' in the digraph Dys. So,
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now, the inequalities provided in the direct sens of the proof are equalities: the image of every arc of
C by f has length 1 if the arc is forward or r — 1 if the arc is backward. So, we have | = I(C'), and
1c(C) =1(C)/ic(C) = r, which achieves the bound. O

A corollary of Theorem 3 is an earlier result of J.A. Bondy, known since 1976. The chromatic number
of a digraph D, denoted by x(D), is the minimal number % such that the vertices of D admit a partition
into k stable sets of D. Clearly, x(D) < x.(C).

Corollary 3.1 (Bondy [5]) Every strong digraph D has a circuit with length at least x(D).

Proof. Consider a coherent cyclic order C for D and apply Theorem 3 to provide a circuit C with
1e(C) = xc(C). Since by Lemma 3 [lc(C)] = xc(C)] = x(C), we get x(D) < x(C) = [lc(C)] <U(C). O

We gratefully thank J.A. Bondy who told us that a link could exist between [5] and Gallai’s problem.
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2.2. BERMOND-THOMASSEN CONJECTURE FOR REGULAR TOURNAMENTS

1 Introduction

In 1981, Bermond and Thomassen [1] conjectured that for any positive integer
r, any digraph of minimum out-degree at least 2r—1 contains at least r vertex-
disjoint directed cycles. It is trivially true when r is one, and it was proved by
Thomassen [2] when 7 is two in 1983. Very recently, the conjecture was also
proved in the case where r is three [3]. It is still open for larger values of r. We
prove, in two different ways, that the restriction of this conjecture to almost
regular tournaments is true.

Chen, Gould and Li [4] proved that a k-strongly-connected tournament of
order at least 5k — 3, contains k vertex-disjoint directed cycles. Given a tour-
nament 7', let ¢(7") be the maximum order of a transitive subtournament
of T. Li and Shu [5] showed that any strong tournament 7" of order n with
q(T) < %’”8 can be vertex-partitioned into k cycles. However, these results
do not prove the Bermond-Thomassen conjecture for regular tournaments.

The following definitions are those of the monograph by Bang-Jensen and
Gutin [6]. A tournament is a digraph T such that for any two distinct vertices
x and y, exactly one of the couples (z,y) and (y, ) is an arc of T. The vertex
set of T is V(T'), and its cardinality is the order of T. The set of arcs of T’
is A(T). A vertex y is a successor of a vertex z if (z,y) is an arc of T. A
vertex y is a predecessor of a vertex x if x is a successor of y. The number of
successors of x is the out-degree §*(x) of x, and the number of predecessors of
x is the in-degree 0~ (x) of z. Let §7(T) := min{6"(z) : z € V(T)}, 67 (T) :=
min{d~(z) : x € V(T)} and §(T) := min{é"(T"), 6 (T)}.

Given a tournament T, its reversing tournament is the tournament 7" =
(V(T), A'), where A" := {(z,y) : (y,z) € A(T)}. A tournament is regular of
degree dif 67 (x) = 6~ () = d for every vertex . Necessarily, the order of such a
tournament is 2d+1. It is almost regular if |6 (z) =0~ (z)| < 1 for every vertex
x. An almost regular tournament of odd order is regular, and an almost regular
tournament T of even order v is characterised by 6+(T) =6 (T) = § — 1.
For any subset A of V(T'), we let T(A) be the sub-tournament induced by the
vertices of A. By a path or a cycle of a tournament 7', we mean a directed
path or a directed cycle of T', respectively. By disjoint cycles, we mean vertex-
disjoint cycles. A cycle of length three is a triangle.

A tournament is acyclic, or transitive, if it does not contain cycles, i.e. if its
vertices can be ranged into a unique Hamiltonian path xi,...,z, such that
(@i, ;) is an arc if and only if ¢ < j. As is well-known, and straightforward to
prove, a non-acyclic tournament contains a triangle. In particular, note that if
a tournament contains k disjoint cycles, then it contains £ disjoint triangles.
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2 Preliminary results

Let (x,y) be an arc of a tournament 7. We set

Az, y):={z € V(T) : (z,2) € A(T) and (z,y) € A(T)},
B(z,y):={z e V(T): (x,2) € A(T) and (y,z) € A(T)},
E(z,y):={ze V(T): (z,2) € AT) and (y,2) € A(T)}, and
F(z,y):={ze V(T): (z,2) € A(T) and (z,y) € A(T)}.

Note that E(z,y) is the set of vertices z such that z, y and z form a triangle.
We let a(x,y),b(x,y), e(z,y) and f(x,y) be the respective cardinalities of these
four sets. The proof of the following proposition is straightforward, and can
be found in [7], so we omit it.

Proposition 1 If (x,y) is an arc of a tournament, then e(x,y) = f(z,y) +
0t (y) — 6T (z) + 1.

A set of cardinality m is an m-set. We give now three new results, which may
be of independent interest. The first one is essential in our first proof of the
Bermond-Thomassen conjecture for almost regular tournaments.

Theorem 2 Fiz two integers m > 3 and r > 1. Let n € {1,2,...,7} and
s = [%1 For every i € {1,2,...,n}, let B; be an m-set, and for every
Je{1,2,...,5}, fiv a set A; C Ur<ic,, Bs of cardinality at least r+m+1—2j.
Then, there existi € {1,2,...,n} and distinct elements j and k of {1,2,...,s}
such that B; has distinct elements v and y with x € A; and y € Ay.

Proof. If n < r, then proving the result for the sets Bj, B, ..., Bl with
B} = B; ifi <n and B, = B, if i > n will yield the desired conclusion. So,
we suppose now that n = r, and we use induction on r.

Observe that it is sufficient to prove that there exist ¢ € {1,2,...,n} and
distinct integers j, k € {1,2,..., s} such that |A; N B;| > 1 and |A; N B;| > 2.

The assertion is true when r = 1. Indeed, in this case, s = [%-‘ = [%W > 2,
|A;] > m > 3, |A3] > m —2 > 1 and Bj is an m-set such that A; C B; for
i €{1,2,...,s}. Therefore, |A; N By| > 3 and |As N By| > 1, which yields the
desired conclusion.

The assertion is true also for r = 2. Indeed, in this case, s = (%1 =

(2] > 2, (A >m+ 124, [A| >m—1>2and A UA, C BiUB,.
Clearly, AiNB; # () — otherwise B, would contain A, which has at least m+1
elements — and similarly, A; N By # 0. If |[A; N By| > 2 and [A; N By| > 2,
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then the result holds. Otherwise, we have, say, |A; N B;] = 1 and hence
|A; N By| = m. Now, either |As N By| > 2 or |42 N Bs| > 1, so the result holds.

Suppose now that the assertion is true for every k < r, for some integer r > 3,
and let us prove it for r. Then, s = [%T >3, |Al > r+m—1and
|As| > r +m —3 > r. Without loss of generality, we assume that |By N A;| >
[BaN Ay > --- > |B, N Ay

Suppose first that |Bs N Ay| < 1. Then, Bo U --- U B, contains at most r — 1
elements of A; and B;UByU---UB, contains at least r+m—1 elements of A;.
So, we deduce that |BiNA;| = m and |B;NA;| =1forevery i € {2,3,...,r}.
The assertion of the theorem holds if |B; N Ay > 1. If |By N Ay| = 0, then
there exists ¢ € {2,3,...,7}, such that |B; N Ay| > 2 — otherwise we would
have |(B; U By U--- U B,) N Ay| < r—1, a contradiction. Clearly, B; contains
distinct elements z and y with z € A; and y € A,.

Suppose now that [By N A;| > 2. In this case, |[ByNA;| > 2, |[BoNA;| > 2 and
the desired conclusion holds if B; U By contains an element of Ay U--- U Aj.
If By U By does not contain an element of Ay U ---U Ay, let A; = Ay for
i€{L,2,...,s—1} Wehave s — 1 = [=25m=1] |4} > 7 — 24 m+1—2i
and A; - U Bj fori € {1,2,...,s—1}. Therefore, by induction hypothesis
3<j<r
there exist ¢ € {3,...,r} and distinct elements j and k of {2,...,s} such
that B; contains distinct elements  and y with x € A; and y € A, which
concludes the proof. O

The second and third results can be proved analogously, and we omit their
proofs.

Theorem 3 Fix two integersm >3 andr > 2. Letn € {1,2,...,r}, and for
every i € {1,2,...,n}, denote by B; an m-set. For every j € {1,2,...,r}, let
A; C Uicicn Bi with |Aj] > r+m+1—2j. Then, there exist i € {1,...,n}
and distinct elements j and k of {1,...,r} such that B; has distinct elements
z and y with x € Aj and y € Ay,.

The best result is a combination of the first two.

Theorem 4 Fiz two integers m > 3 and r > 2. Let n € {1,2,...,r} and set
$ = min (P*’m_lw .,r). Fori € {1,2,...,n}, denote by B; an m-set, and for

2

every j € {1,2,...,s}, let A; C Urcicn Bi with |Aj| > r+m+1—2j. Then,
there existi € {1,...,n} and distinct elements j and k of {1,..., s} such that
B; has distinct elements x and y with x € A; and y € Ay.
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3 Disjoint cycles in tournaments T with 6(7) > 2r — 1

In this section, we give two different proofs of the following result.

Theorem 5 For any r > 1, every tournament T with §(T) > 2r — 1 contains
r disjoint cycles.

Proof. The case r = 1 being a simple observation, we assume that r >
2. Let v be the order of T, and let n be the maximum number of disjoint
cycles of T'. Thus, n is also the maximum number of disjoint triangles: let T3,
i € {1,2,...,n} be n disjoint triangles. Let V' := V(T)\ |J V(T}) and
1<j<n
p := |V’|. Suppose that n < r — 1. Thus, p > v —3(r — 1), that is p > r + 2,
since v > 4r — 1. The subtournament T'(V") is acyclic — otherwise, we would
have an extra cycle — and, consequently, its vertices can be ranged into a

Hamiltonian path z1,...,z, such that (z;,z;) is an arc of T(V"’) if and only
if i < j, see Figure 1.
T Tn
x1 z2 z3 Ty Tr4+1 ITp—2 Tp-1 Tp

Fig. 1. Disjoint triangles and Hamiltonian path of T(V’)

For i € {1,27 e [%H consider the arc (z;,z,11-;): each vertex z; with
je{i+1,i+2,...,r+2—i} belongs to F(z;, tp+1-;). Therefore,

f@i, pp1-i) > p—2i > v —3n—2i.
By Proposition 1,
e(@i, Tpp1-i) = P — 20+ 0" (wpa1—i) — 07 (2q) + L.
Since 2r — 1 < 0% (z) < v — 2r for every vertex x, we deduce that
e(T;, Tpy1—) v —3n—21+2r—1—(v—2r)+1>(r—1)+3+1— 2,
asn <r—1.

Observe now that every vertex of E(x;, x,11—;) forms a triangle with the ver-
tices x; and x,41_;. Moreover, as T'(V') is acyclic, we have E(x;, 2pi1-;) C
U V(@) for i € {1,2,..., (%H Hence, the conditions of Theorem 2

1<j<n
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are fulfilled the r of the theorem being r — 1, m being three, s = [%1,

A; = E(xi,2p11—;) and B; = V(Tj). Consequently, with s = [%1, there
exist ¢ € {1,---,n} and distinct elements j and k of {1,---,s} such that
V(T;) contains distinct vertices z and y with z € E(zj,zp11-;) and y €
E(xy, tpy1-k). Each T, for ¢ € {1,2,...,n} \ {i}, and the tournaments in-
duced by x;, xp11—j, x and by zy, Tpt1-k, y are n + 1 disjoint triangles, which
contradicts the definition of n. Therefore, T' contains at least r disjoint cycles,
as desired. O

Second proof. As mentioned in the Introduction, Thomassen [2] proved the
conjecture in the general case for r < 2, and the general case for r = 3 was
recently proved [3]. Thus, we assume in this proof that r > 4.

Suppose that V' is a subset of at least 6 vertices such that T'(V’) is acyclic.
Let {@1,29,...,2,} be the vertices of V', indexed such that (z;,z;) is an arc
if and only if i < j. We set Ays 1= {z1, 29,23} and By := {zp_0,xp_1,2,}.
For a vertex z, let sy, (x) be the in-score of x with respect to V', that is the
number of predecessors of x in By. Analogously, s (z) is the out-score of ©
with respect to V', that is is the number of successors of x in Ay.. Given a
subgraph H of T', the in-score of H with respect to V' is

sp(H) = > sp(x).

zeV(H)

We define si (H), the out-score of H with respect to V', analogously regarding
the outscores of the vertices of H. Last, the score of H with respect to V' is
syr(H) = sy (H) + si(H). In all these notations, we may omit the subscript
if the context is clear.

As in the first proof, let n be the maximum number of disjoint triangles,

and consider a family T;, i € {1,2,...,n}, of n disjoint triangles. We set

V':=V(T)\ |J V(I}) and p := |V'|. Again, we consider the Hamiltonian
1<j<n

path zy,...,z, of the acyclic tournament T'(V’) such that (z;,z;) is an arc of

T(V') if and only if ¢ < j.

Suppose that n < r — 1. Then, we obtain that p > 4r — 1 — 3(r — 1), that is
p > r+ 2, and hence p > 6 since r > 4.

For each triangle T;, we have s™(7;) < 9 and s*(T;) < 9. If s7(T;) > 7
and sT(T;) > 4, then there exists a matching of size three from By to T;,
and a matching of size two from 7; to Ay. Therefore, T (Ay: U By UV (T}))
contains two disjoint triangles, which contradicts the maximality of n. Thus,
either s7(7;) < 6 or s(T;) < 3. Similarly, either s7(T;) <6 or s~ (T;) < 3.
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We assert that s(7;) < 12 for each triangle T;: indeed, if s~(7;) > 6, then
sT(T;) < 3, and since s~ (T;) < 9, we infer that s(7;) < 12. In the same way,
if st(T;) > 6, one can deduce that s(7;) < 12. Finally, if s7(7;) < 6 and
sT(T;) < 6, we also have s(7;) < 12. Hence, the sum s of the scores of the n
triangles is at most 12n.

Observe that the vertices x,,x,-1 and z,_ have 6% (x,),0" (z,-1) — 1 and

6F(zp—2) — 2 successors in | J V/(T}), respectively. Moreover, the vertices
1<j<n

z1, T2 and x3 have respectively 0~ (1), (z2) — 1 and 0~ (z3) — 2 predecessors

in (J V(Tj). It follows that

1<j<n
s=06%(xp) + 0" (wp1) + 0 (@p—2) + 6 (z1) + 0 (22) + 6 (z3) — 6.
Therefore, it holds that
8 (@p) + 61 (xpo1) + 0T (Tpoa) + 07 (1) + 6 (z2) +0~ (23) —6 < 12n < 127 —12.

Recall that §*(z) > 2r — 1 and 6~ (z) > 2r — 1 for every vertex x. Thus, we
infer that 6%(z,) = 0% (xp_1) = 0T (2p—2) = 07 (21) = 07 (x2) = 0™ (x3) = 2r—1
n=r—1and s(7;) = 12 for every triangle T;. Note that this assertion holds
for any set on n disjoint triangles their score being with respect to the
remaining vertices.

For each integer i € {4,5,...,p— 3}, the vertex z; belongs to F(z3,x,—2), and
hence f(z3,2,_2) > p — 6. Therefore, by Proposition 1,

e(x3,Tp_2) > p—6+ 8 (2p_2) — 61 (z3) +1
>v—-3r—1)—6+2r—-1)—(v—-1-2r+1)+1
>r—3>1.

Consequently, there exists a vertex z of some triangle T} such that the vertices
T3, Tp_2,x induce a triangle T". Let y and z be the vertices of T; different
from x. The triangles 7" and T; for i # j form a new collection of n disjoint
triangles, and V" := (V' \ {z3,2,_2}) U {y, 2} is the set of the remaining
vertices. Consider now the set Ay»: observe that x3 has at most two successors
in Ay, and it can have two only if both y and z belong to Ay». Furthermore,
the predecessors of x3 in By~ can only be y and z. Therefore, it follows that
syn(x3) + siu(z3) < 3 with equality only if both y and z belong to By».
Similarly, sy (2p—2) + s{ (xp—2) < 3 with equality only if both y and 2 belong
to Ayw. Thus, the score of the triangle T" with respect to V" is at most 11, a
contradiction. This concludes the proof. O
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2.3 A proof of Bermond-Thomassen conjecture for tournaments

Disjoint 3-cycles in tournaments: a proof of the
Bermond-Thomassen conjecture for tournaments*

Jorgen Bang-Jensen Stéphane Bessy * Stéphan Thomassé®
July 22, 2011

Abstract

We prove that every tournament with minimum out-degree at least 2k — 1 contains & disjoint
3-cycles. This provides additional support for the conjecture by Bermond and Thomassen that
every digraph D of minimum out-degree 2k — 1 contains k vertex disjoint cycles. We also prove
that for every e > 0, when & is large enough, every tournament with minimum out-degree at least
(1.5 + €)k contains k disjoint cycles. The linear factor 1.5 is best possible as shown by the regular
tournaments.

Keywords: Disjoint cycles, tournaments.

1 Introduction

Notation not given below is consistent with [3]. Paths and cycles are always directed unless otherwise
specified. In a digraph D = (V, A), a k-cycle is a cycle of length k, and for & > 3, we denote by
T1%2 ... x) the k-cycle on {z1,...,z,} with arc set {122, 2223, ..., 2p_12, Txz1}. The minimum
length of a cycle in D is called the girth of D. The underlying graph of a digraph D, denoted
UG(D), is obtained from D by suppressing the orientation of each arc and deleting multiple edges.
For a set X C V, we use the notation D(X) to denote the subdigraph of D induced by the vertices
in X. For two disjoint sets X and Y of vertices of D, we say that X dominates Y if xy is an arc of D
for every x € X and every y € Y. In the digraph D, if X and Y are two disjoint subsets of vertices of
D or subdigraphs of D, we say that there is a k-matching from X to Y if the set of arcs from X to
Y contains a matching (in UG(D)) of size at least k. A tournament is an orientation of a complete
graph, that is a digraph D such that for every pair {z,y} of distinct vertices of D either xy € A(D)
or yz € A(D), but not both. Finally, an out-neighbour (resp. in-neighbour) of a vertex x of D
is a vertex y with 2y € A(D) (resp. yx € A(D)). The out-degree (resp. in-degree) dj(z) (resp.
dp(z)) of a vertex x € V is the number of out-neighbours (resp. in-neighbours) of . We denote by
0% (D) the minimum out-degree of a vertex in D.

The following conjecture, due to J.C. Bermond and C. Thomassen, gives a relationship between 6+
and the maximum number of vertex disjoint cycles in a digraph.

Conjecture 1.1 (Bermond and Thomassen, 1981) /4] If 6t(D) > 2k — 1 then D contains k
vertez disjoint cycles.

Remark that the complete digraph (with all the possible arcs) shows that this statement is best
possible. The conjecture is trivial for £ = 1 and it has been verified for general digraphs when k& = 2

*Part of this work was done while the first author was on sabbatical at AIGCo, LIRMM, Université Montpellier
2, France whose hospitality is gratefully acknowledged. Financial support from the Danish National Science research
council (FNU) (under grant no. 09-066741) is gratefully acknowledged.

TDepartment of Mathematics and Computer Science, University of Southern Denmark, Odense DK-5230, Denmark
(email: jbj@imada.sdu.dk).

$A1GCo, LIRMM, Université Montpellier 2, France (email: bessy@lirmm.fr). Financial support: ANR GRATOS
NANR-09-JCJC-0041-01

8Laboratoire LIP (U. Lyon, CNRS, ENS Lyon, INRIA, UCBL), Lyon, France (email: stephan.thomasse@ens-lyon.fr)



2.3. A PROOF OF BERMOND-THOMASSEN CONJECTURE FOR TOURNAMENTS

in [8] and for k = 3 in [7]. N. Alon proved in [1] that a lower bound of 64k on the minimum outdegree
gives k disjoint cycles.

It was shown in [5] that every tournament with both minimum out-degree and minimum in-degree
at least 2k — 1 has k disjoint cycles each of which have length 3. Very recently Lichiardopol [6]
obtained a generalization of this result to the existence of k disjoint cycles of prescribed length ¢ in a
tournament with sufficiently high minimum degree.

In this paper we will prove Conjecture 1.1 for tournaments. Recall that by Moon’s Theorem [3,
Theorem 1.5.1], a tournament has k disjoint cycles if and only if it has & disjoint 3-cycles.

Theorem 1.2 Every tournament T with 6T(T) > 2k — 1 has k disjoint cycles each of which have
length 3.

We also show how to improve this result for tournaments with large minimum out-degree.

Theorem 1.3 For every value o > 1.5, there exists a constant ko, such that for every k > kq, every
tournament T with §T(T) > ak has k disjoint 3-cycles.

Remark that the constant 1.5 is best possible in the previous statement. Indeed, a family of sharp

examples is provided by the rotative tournaments T'Ra,11 on 2p + 1 vertices {1, ..., Z2p+1} with arc
set {x;x; : j—4 mod 2p+1e{l,...,p}}. For 2p+1=0 mod 3, we denote 2p+ 1/3 by k. Then,
we have 6+ (TRgpi1) = |1.5k] and TRopy1 admits a partition into k vertex disjoint 3-cycles and no
more.
Theorem 1.3 does not give any result both for small values of k and for tournaments with 6+ >
1.5k, even asymptotically. We conjecture that we could still have k disjoint 3-cycles in these cases.
Furthermore, in the light of the sharp examples to Conjecture 1.1 and Theorem 1.3, we extend these
questions to digraphs with no short cycles. Namely, we conjecture the following.

Conjecture 1.4 For every integer g > 1, every digraph D with girth at least g and with 6+ (D) > g’%lk
contains k disjoint cycles.

Once again, the constant % is best possible. Indeed, for every integers p and g, we define the
digraph Dy, on n = p(g — 1) + 1 vertices with vertex set {xy,...,z,} and arc set {wiz; + j—1
mod n € {1,...,p}}. The digraph D, , has girth g and we have 6+ (Dy,) =p = [g%]kj Moreover,
for n =0 mod g, the digraph Dy, admits a partition into k vertex disjoint 3-cycles and no more.
Even a proof of Conjecture 1.4 for large values of k or g (or both) would be of interest by itself. On
the other hand, for g = 3, the first case of our conjecture which differs from Conjecture 1.1 and which
is not already known corresponds to the following question: does every digraph D without 2-cycles
and §7(D) > 6 admit four vertex disjoint cycles?

In Section 2 and Section 3, we respectively prove Theorem 1.2 and Theorem 1.3. Before starting
these, we precise notations that will be used in both next sections. Let 7" be a tournament and F a
maximal collection of 3-cycles of T'. The 3-cycles of F are denoted by C1,...,C), and their ground set
V(Cy)U---UV(Cyp) is denoted by W. The remaining part of T', '\ W is denoted by U. By the choice
of F, U induces an acyclic tournament on 7', and we denote its vertices by {up, up_1,...,us, u1}, such
that the arc u;u; exists if and only if ¢ > j.

2 Proof of Conjecture 1.1 for tournaments

In this section, we prove Conjecture 1.1 for tournaments. In fact, we strengthen a little bit the
statement and prove the following:

Theorem 2.1 For every tournament T with 6+ (T) > 2k—1 and every collection F = {C4,...,Cx—1}
of k — 1 disjoint 3-cycles of T, there exists a collection of k disjoint 3-cycles of T which intersects
T—-V(Cy)U---UV(Ck-1) on at most 4 vertices.
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This result implies Theorem 1.2. Indeed, for a tournament 7' with 6 (7") > 2ko — 1, we apply
Theorem 2.1 ko times, with £ = 1 to obtain a family F of one 3-cycle, and then with this family F
and k = 2 to obtain a new family F of two 3-cycles, and so on.

To prove Theorem 2.1, we consider a counter-example 7" and a family F of k — 1 disjoint 3-cycles
with £ minimum. The chosen family F is then maximal. So, from now on we use the notation stated
in the first Section.

We will say that ¢ 3-cycles of F, with ¢ = 1 or i = 2 can be extended if we can make i+ 1 3-cycles
using the vertices of the initial ¢ 3-cycles and at most four vertices of U. If there one or two 3-cycles in
F can be extended, we say that we could extend F. If this happens, it would contradict the choice of
T and F. The following definition will be very useful in all this section. For an arc zy with z,y € W,
we say that a vertex z of U is a breaker of zy if xyz forms a 3-cycle. By extension, a vertex z of U
is a breaker of a 3-cycle C; of F if it is a breaker of one of the arcs of C;.

The following claim is fundamental, and we will use it later several times without explicit mention.

Claim 1 FEvery 3-cycle C' of F has breakers for at most two of its three arcs, and every arc of C has
at most three breakers. As a consequence, C' has at most siz breakers.

Proof: Consider a 3-cycle C; = xyz of F. Assume that C; has a breaker for each of its arcs.
We denote by v, a breaker of the arc e, for e € {zy,yz, zz}. If v,. dominates v, then we form the
3-cycles xyvyy and 2zvy.v.., which intersect U on three vertices and we extend F. So, by symmetry,
we obtain that v,,v,.v,, forms a 3-cycle. This contradicts that 7(U) is acyclic.

Now, if an arc 2y of C; has four breakers vy, vs,vs,v4 in U, then in T'\ {z,y} every vertex has out-
degree at least 2(k — 1) — 1, and F \ C; forms a collection of k& — 2 3-cycles. So, by the choice of T,
there exists a collection F’ of k — 1 3-cycles of T'\ {z,y} which intersect U Uz in at most four vertices.
Then F' does not contain one of the vertices vy, vs,vs,v4,2. If 2 ¢ V(F'), we complete F’ with the
3-cycle zyz, and obtain a collection of k 3-cycles which has the same intersection with U than F’. If
z € V(F’), then one of the v;, say v does not belong to V(F’) and F’ intersect U on at most three
vertices. Then, we complete F' with the 3-cycle zyvi, and obtain a collection of k 3-cycles which
intersect U on at most four vertices. o

Observe that if a 3-cycle xyz of F has a breaker for two of its arcs, then these breakers are disjoint.
Indeed, if 2’ and 3’ are respectively breaker of zy and yz then yz’ and y'y are arcs of T. As T has no
2-cycle, 2’ and y' have to be distinct.

Informally, Claim 1 gives that every 3-cycle C' of F can be extended or can be inserted in the
transitive tournament T(U), that is, there exists a partition (Us,Uy) of U such that there is no arc
from Uy to Us, there is few arcs from Uy to C and few from C to U, (otherwise, too roughly many
breakers appear). This will be settled at Claim 2. The condition on the minimum out-degree of T'
will then allow one or two 3-cycles of F to be extended. Fixing precisely the computation will show,
in the following subsection, that k& cannot be too large (k < 6). Then, we treat the small cases in the
last subsection.

2.1 A bound on k
For any partition (Uy,Us) of U with no arc from U; to Us, we have the following.
Claim 2 For every 3-cycle C = xyz of F, we have:
1. If C receives at least four arcs from Uy then there exists a 2-matching from Uy to C.

2. If C receives at least eight arcs from Uy then either there exists a 3-matching from Uy to C
or, up to permutation on x,y,z, yz has three breakers, xy has at least two breakers and x has
in-degree at least five in Uy. Furthermore, x is dominated by Uy and both y and z have each at
most one out-neighbour in Us.
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3. Consequently, if C receives at least eight arcs from Uy then, there is no 2-matching from C' to
Uy and, in particular, C sends at most three arcs to Us.

Symmetrically, the same statements hold if we exchange the role of Uy and Uy, and the bounds on in-
and out-neighbours for every vertes.

Proof: 1. Assume that there is no 2-matching from U; to C then one vertex = of Uy U C belongs
to all the arcs from U; to C. Tt is clear that x € C. Hence if y is the successor of  in C, then four
in-neighbours of = in U; form four breakers for the arc xy, which is not possible.

2. If there is no 3-matching from U; to C, then two vertices {z,y} in U; U C belongs to all arcs
from Uy to C. If x € Uy and y € C, then there exists at least four in-neighbours of y different of =
which form four breakers for the arc yz, where z is the successor of y in C, which is forbidden. As
the case {x,y} C U, is not possible, we have {z,y} C C. Assume that z dominates y and call z the
third vertex of C. If dy; (y) < 2, then dj; (#) > 6 and y has four breakers, which is not possible.
If dpy, (y) > 4, yz has four breakers. So d;, (y) = 3 and dy; (¥) > 5 which means that yz has three
breakers and that = has at least two in-neighbours in U; which are not in-neighbours of y, and so, are
breakers of zy. If z has an out-neighbour z’ in Us, we extend C using the 3-cycles za’x; and yzy;
where x1 and y; are breakers of respectively zy and yz. So Us=-z must hold (that is, there is no arc
from z to Usz). Now, if y has two out-neighbours in Us, they form two more breakers for zy, and zy
would have four breakers. Finally, if z has two out-neighbours in Us, one of these is in-neighbour of
y and would form a new breaker for yz, which had already three.

3. Assume that C receives at least eight arcs from U; and that there is a 2-matching from C to
U,. If there exists a 3-matching from U; to C, then we can extend C' using at most four vertices of U.
If not, then we are in the case described in the point 2, and C has at least five breakers in Uy, three
for yz and at least two for xy. We can conclude except if the 2-matching from C' to Us starts from y
and z. We denote it by {yy’, 22’'}. If 2’y is an arc of T, then yz would have four breakers. Then yz’
is an arc of T', but then, as Us dominates z, the vertices ¥’ and 2’ would be two breakers of xy, which
already has two. o

The two following claims are useful to extend two 3-cycles of F in order to form three new 3-cycles.

Claim 3 There are no two 3-cycles C' and C' of F with a 3-matching from Uy to C, a 3-matching
from C to C' and a 3-matching from C' to Us.

Proof: If this happens, we respectively denote these matchings by {z1z,y1y, 212}, {z2/,yy', 22"}
and {2'2,y'y2, 2’22}, where V(C) = {z,y, 2z}, V(C") = {2/, ¥/, 2'}, 1,91, 21 € Uy and z2,y2, 22 € Us.
If all three of {zaz, yoy, 222} are arcs of T, then we can extend C and C’ by xeza’, y2yy’ and zo22'.
So, we can assume that zxo is an arc of 7. If one of the arcs yys or zz, exists then, we can extend
C. So, xxg, Yoy and 29z are arcs of T and we extend C' and C’ using the 3-cycles zz2x1, yoyy’ and
20272 S

Claim 4 There are no two 3-cycles C, C' such that |E(Uy,C)| > 8, |[E(C,C")| > 7 and |E(C',Us)| >
8.

Proof: Assume that C' and C” satisfy the hypothesis of the claim. We denote V(C) = {z,vy, 2}
and V(C') = {«',y/,2'}. As |E(C,C’)| > 7 there is a 3-matching between C and C’. By the Claim 3,
one cannot both find a 3-matching from U; to C and a 3-matching from C’ to Uy. By symmetry, two
cases arise:

Case 1: there are no 3-matching from U; to C and from C’ to U,. We fix the orientations of
C and C": C = zyz and C' = 2'y’2’. By Claim 2, up to permutation, we can assume that yz has
three breakers in U; and zy at least two, and that z’y’ has three breakers in U and y'z’ at least
two. Furthermore we know, by Claim 2 that U, dominates z, z has at most one out-neighbour in
Us, 2’ dominates U; and 2’ has at most one in-neighbour in U;. We denote then by z1 a breaker of
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Figure 1: The case 2 of the proof of Claim 4

zy in Uy which is an out-neighbour of 2/, and by 23 a breaker of 3’2" in Uz which is an in-neighbour
of z. We denote also by y» and y; a breaker of respectively z’y’ and yz. Now, if xz’ is an arc
of T, then, we form the 3-cycles xz'z2, y1yz and z'y'ys. If zz’ is an arc of T, then, we form the
3-cycles xa'wy, y'2' 20 and yzy;. And, if 22 is an arc of T, then, we form the 3-cycles 22za, 2'y'ys
and zyzy. As |E(C,C")| > 7, one of the three arcs 2z’, za’ and 22’ exists and we can extend C' and C".

Case 2: there is no 3-matching from U; to C and there is a 3-matching from C’ to U,. We fix the
orientation of C', C' = zyz, but we do not fix the orientation of C’. We just assume that {zz’, yy', 22’}
is a 3-matching between C and C’. We denote by {2'z2,y'y2, 2’22} a 3-matching from C’ to Us. By
Claim 2, up to permutation, we can assume that yz has three breakers in Uy, we denote by y; one of
them, and that zy has at least two. Furthermore we know, that d;, (z) > 5, that Us dominates x and
that y and z have at most one out-neighbour in Us,. The situation is depicted in Figure 1.

To obtain a contradiction, we follow the next implications:

229 is an arc of T', otherwise we form the three circuits 22’29, 22’25 and yy'y2y1, which contain
three 3-cycles intersecting U on at most four vertices.

- yz9 is an arc of T, otherwise z, is a fourth breaker of yz.
- x2 and y; dominate y and z. Indeed, the only out-neighbour of y and z in Us is z2.

- {y,y2, 2,2’} form an acyclic tournament. Indeed if {y/,y2, 2, 2’} contains a circuit, we pick this
circuit, z2'zo and yzoy; to extend C and C’. In particular, the orientation of C” is 2'y’z" and
y'z e A(T).

2y’ is an arc of T. Otherwise, ¥’z and y'z are the only arcs from C’ to C' and we form the
3-cycles x2'29, za'xs and yy'ys to extend C and C”.

- 2'xg is an arc of T'. Otherwise, we form the 3-cycles 2'2'xs, 2y'ys and yzy;.

Finally, we extend C' and C’ using the 3-cycles z2'wo, xy'y2 and yzoy;. 3

Now, we will show that k£ < 6. For this, we consider the partition (Us, Uy) of U with |U;| =5 (as
W contains 3k — 3 vertices, and T has at least 4k — 1 vertices, U contains at least k + 2 vertices, and
provided that k > 3, it is possible to consider such a U;). So, we denote by Z the set of 3-cycles which
receive at least 8 arcs each from U; (the in 3-cycles), by O the set of 3-cycles which send at least 8
arcs each to Us (the out 3-cycles) and by R the remaining 3-cycles of F \ (ZU O). Furthermore, 1,
o and r respectively denote the size of Z, O and R (withi+o+7r=k—1asZNO = by Claim 2).
First, we bound below and above the number of arcs leaving U;, and obtain:

5(2k—1) =10 <15+ 7(k—1—i —0) + 30

In the right part, we bound the number of arcs from Uy to Z, to R and to O (using Claim 2). Finally,
we have:
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3k+40—8 < 8i (1)

Now, we bound below and above the number of arcs leaving F \ O and obtain

3(k—1—0)(2k—1) —é3(k—1—0)(3(k—1—o)— 1) < 9ro+6io+7r+3i+ (15(i +r) — (10k — 15— 30))

In the right part, we bound the number of arcs from R to O, from Z to O (using Claim 4), from R
to Us, from 7 to Us (using Claim 2) and from ZU R to U;. For the last bound, we know that at
least 5(2k — 1) — 10 = 10k — 15 arcs leave U; and that at most 30 of these arcs go to O. So, at least
10k — 15 — 30 arcs go from Uy to ZUR on the 15(i + r) possible arcs between these two parts. Now,
we replace r by k — 1 — i — o and obtain:

90> —12ko+6io+4l0+3k>—21k+8i+8<0
We bound ¢ from below using (1) to get (after adjusting to get integral coefficients):

160 —13ko+520+4k* —24k <0

This inequality admits solution for o only if

(52 — 13k)% —4-16 - (4k? — 24 k) = —87k* + 184k + 2704

is positive, that is, if k& < 6.

2.2 Small cases

Below we handle the cases k < 6. The partition (U, Us) is no more fixed by |U;| = 5, we will specify
its size later.

2.2.1 Some remarks

‘We need some more general statements to solve the cases k < 6. For the following Claim 5 and
Claim 6, symmetric statements hold if we exchange the roles of U; and Us, and the bounds on in- and
out-neighbours for every vertex.

Claim 5 If |[E(Uy,C)| > 10, then there exists a 3-matching from Uy to C.

Proof: Otherwise, two vertices, {z,y}, belong to all arcs from Uy to C. As {z,y} C U; is not
possible (otherwise only at most 6 arcs go from U; to C), either z € Uy and y € C or {z,y} C C. In
the first case, y has at least seven in-neighbours in U; distinct of x, and if z is the out-neighbour of
y in C, these seven vertices would be breakers of yz, contradicting Claim 1. So, we have {z,y} C C.
We assume that « dominates y and that the orientation of C' is C' = xyz. Then y has at most three
in-neighbours in Uj, otherwise yz would have four breakers, and « has at most three in-neighbours in
U, which are not also in-neighbours of y, otherwise xy would have four breakers. But then there are
at most nine arcs from Uy to C, contradicting the hypothesis. o

As for Claim 2, it is possible to obtain the same result by exchanging U; and U, and the role of
in- and out-neighbours for every vertex.

We say that a 3-cycle C' has a 3-cover from U; if there is a 3-matching from U; to C or two
2-matchings from Uy to C' which cover all the vertices of C.

Claim 6 For every 3-cycle C' of F, if there is a 3-cover from Uy to C, then there is no 2-matching
from C to Us. In particular, |E(C,Us)| < 3.
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Proof: Assume that C = zyz and that there is a 2-matching {22/, 22’} from C to U and a
3-cover from Uy to C. If there is a 2-matching from Uy to {z,2}, we are done. The remaining case
occurs when the 3-cover from U; to C is formed by a 2-matching {az, by} to {z,y} and a 2-matching
{cy,dz} to {y,z} with a = d. In this case, we form the circuits azz’ and byzz’, which contain two
3-cycles extending C. The bound on |E(C, Us)| follows from Claim 2. o

For a fixed Uy, we say that a 3-cycle C of F is of type 2-m, 3-m or 3-c if there respectively is a
2-matching, a 3-matching or a 3-cover from U; to C. A 3-cover is useful to extend a 3-cycle, using
Claim 6, but not very convenient in the general case, because the number of arcs that forces a 3-cover
from U; to some 3-cycle C' of F is the same than the number of arcs that forces a 3-matching (which
is seven). However, to prove the existence of a 3-cover, we have the following statement.

Claim 7 If there are three vertices a,b,c of Uy such that di>(a) > 2p, di>(b) > 2p — 1 and df:(c) >
2p — 2, where Y is the set of vertices of a set of p 3-cycles F' C F , then F' contains a 3-¢ 3-cycle or
all the 3-cycles of F' are 2-m.

Proof: We prove it by induction on p. If p = 1 then there is a 2-matching from {a, b} to the
3-cycle of . Thus we may assume that p > 2. There is 6p — 3 arcs from {a, b, c} to the p 3-cycles of
F'. Thus there is a 3-cycle C' of 7’ such that there are at least four arcs from {a,b,c} to C and so
there is a 2-matching from {a,b,c} to C. If C is 3-c, we are done, otherwise each vertex of {a,b,c}
sends at most two arcs to C. We apply induction on F'\ C. o

Now we are ready to prove the remaining cases (k < 6). As mentioned in the beginning of the
paper, Conjecture 1.1 is known to hold for all digraphs when k& < 3, so we only have to deal with the
cases k € {4,5,6}.

We will use several times, without referring explicitly, that a 3-cycle of type respectively 2-m and
3-c or 3-m sends respectively at most 7 and 3 arcs to Us, by Claim 6 and 2. For each of the three
cases below, we will use the three first vertices of U for Uy, that is, Uy = {uy,uz2, us}.

2.2.2 Casek=14
For k = 4, we have §7(T") > 7 and three 3-cycles in F. There are:
e at least 21-3=18 arcs from U; to W and then at most 9 arcs from W to Uj.
e at least 9.7 — %9 -8 = 27 arcs from W to U and then, at least 18 arcs from W to Us.

So it is not possible to have types 3-c, 2-m and 2-m for the three 3-cycles of F, otherwise, they send
at most 3+ 7+ 7 = 17 arcs to Uy. Now we prove that there are at least two 3-cycles of type 3-c. As
uy sends seven arcs to W, one of the 3-cycle, say C receives 3 arcs. If ug or ug sends one arc to C1,
then C is of type 3-c, if not, then Cy and Cj5 are of type 3-c. So, at least one of the three 3-cycle is
of type 3-c, we assume that it is C;. Note that w1, us and ug send respectively at least 4,3 and 2 arcs
to Cy U C3. Using Claim 7, we find a second 3-cycle which is of type 3-c. We assume that this second
one is Cy. Now, we have:

e there is no 2-matching from U; to Cj, then Cj receives at most 3 arcs from Uy, and then C; UCy
receive at least 15 arcs from Uj, what means that there is a 3-matching from U; to C; for
instance.

e (1 UC5 sends at least 6 -7 — %6 -5 = 27 arcs to U U C3, at most 3 to Uy and 6 to Us, what
means that there all the arcs from C7 U Cy to C3

e (5 sends at least 18 — 3 — 3 = 12 arcs to Us, then, by Claim 5, there is a 3-matching from Cj
to Us.

Finally, using 3-matchings from U; to C4, from C; to C3 and from C3 to Uy and Claim 3, we can
extend C1, Cy and Cs.
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2.2.3 Casek=5
For k =5, we have §7(T") > 9 and four 3-cycles in F. There is:
e at least 24 arcs from U; to W and then at most 12 arcs from W to U;.
e at least 12-9 — %12 <11 = 42 arcs from W to U and then, at least 30 arcs from W to Us.

So, it is not possible to have types 2-m, 2-m, 2-m and 2-m for the four 3-cycles of F, otherwise, they
send at most 747+ 7+ 7 = 28 arcs to Us. There are no three type 3-c among the four 3-cycles of F.
Otherwise, assume that Cy, Cy and C3 are of type 3-c, then, Cy can not be of type 2-m, and there
are at most 3 arcs from U; to Cy and at least 21 arcs from U; to C; U Cy U C3. Then, C; UCy U Cy
sends at most 3 arcs to Uy, at most 9 arcs to Uy and at most 27 arcs to Cy. However, there is at least
9-9— %9 -8 = 45 arcs going out of C; U C2 U C3, what gives a contradiction.

Using Claim 7 twice, we find two 3-cycles, C; and C; for instance, in F that are of type 3-c. Now, uq,
ug and ug respectively send at least 3, 2 and 1 arc to C3 and Cj and it is easy to find a 2-matching
from U; to C3 or Cy.

Now, we assume that C; and C5 have a 3-cover from Uy and that C3 have a 2-matching from U;. We
obtain:

e (Cy receives at most three arcs from U; (otherwise Cy would be a fourth 3-cycle of type 2-m).

e U sends at least 21 arcs to Cy; U Cy U C3, then there is a 3-matching from U; to one of these
3-cycle, say C7 and there is at most 6 arcs from Cy UCy U C3 to Us.

e there is at most 3 +3 + 7 = 13 arcs from Cy U Cy U C3 to Us, and then as there is at least
9-9— %9 -8 = 45 arcs going out of C; UCy U Cj3, there is 45 — 6 — 13 = 26 arcs from C; UC, UCy
to Cy4. In particular, there is a 3-matching from C; to Cy.

e there are at most 13 arcs from Cy U Cy U C3 to Us, so, there are at least 17 arcs from Cy to Us
and then a 3-matching from Cjy to Us.

Finally, we extend C; and Cy using 3-matchings from U; to Cy, from C; to Cy and from Cy to Us.

2.24 Casek=6
For k = 6, we have 7 (T) > 11 and five 3-cycles in F. There is:
e at least 30 arcs from U; to W and then at most 15 arcs from W to U;.
e at least 15-11 — %15 - 14 = 60 arcs from W to U and then, at least 45 arcs from W to Us.

Finding five 3-cycles of type 2-m in F is not possible then, because we would have at most 7-5 = 35
arcs from W to Us. We will see that there are either at least three 3-cycles which are of type 3-c or
there are two 3-cycles of type 3-c and two 3-cycles of type 2-m. Using Claim 7 twice, we find two
3-cycles which are of type 3-c, say C1 and Cy. There remains at least 5, 4 and 3 arcs from respectively
uy, ug and ug to C3 U Cy U Cs. One of the 3-cycles C3, Cy or C5, say Cs, receives at least 4 arcs from
{u1,uz,u3} and then is of type 2-m. If Cj is of type 3-c, we are done, otherwise, it receives at most 2
arcs from each of uy,ug,us, and uy, us and ug respectively send at least 3, 2 and 1 arcs to Cy U Cs.
We then find another 3-cycle of type 2-m.

First, we consider the case where there are two 3-cycles of type 3-¢, C1 and Cs and two 3-cycles
of type 2-m, C3 and Cy4. Then, we have:

o (5 receives at most 3 arcs from Uy (otherwise there is a fifth 3-cycle of type 2-m).

e U sends at least 27 arcs to C1 UCyUC3UCYy, thus there is at most 9 arcs from C; UC,UC3UCy
to Uj.

e there are at most 3+ 3+ 7+ 7 = 20 arcs from C; U Cy U C3 U Cy to Us.
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Figure 2: The p steps in the procedure to define free vertices.

e as there are at least 11-12 — %12 -11 = 66 arcs going out of Cy U Cy U C3 U Cy, there are at least
66 — 9 — 20 = 37 arcs from Cy U Cy U C5 U Cy to C5, which is not possible.

Now, we treat the case where there are three 3-cycles of type 3-¢ in F, C1, Cy and C5. Then, we
obtain:

e Cy and C5 receive each at most 3 arcs from U; (otherwise we are in one of the previous situations).

e U sends at least 24 arcs to C7 U Co U C3. Thus there is a 3-matching from U; to two of these
3-cycles, say C7 and Co and there are at most 3 arcs from C; U Cy U Cs5 to Uy.

e there are at most 3+ 3 + 3 = 9 arcs from C U Cy U C3 to Us, and then as there are at least
9-11— %9-8 = 63 arcs going out of C; UC5UC}3, there are 63 —3—9 = 51 arcs from C; UC, UC}3
to C4y U Cs. In particular, there is, a 3-matching from any of 3-cycle of {C1,C2,C3} to any of
the 3-cycle of {C4,C5}, excepted possibly for one pair, say Ca to Cy, to be in the worst case.

o there are at least 45-9=36 arcs from Cy U C5 to Us, so, there are at least 18 arcs from one of the
3-cycle Cy or C5 to Us, say from Cy, and then there is a 3-matching from Cy to Us,.

Finally, we extend Cy and Cy using 3-matchings from U; to Cy, from C; to C4 and from Cy to Us.

3 Proof of Theorem 1.3: An asymptotic better constant

In this part, we will asymptotically ameliorate the result of Theorem 1.2 by proving Theorem 1.3.

Let « be a real number with o > 1.5, and T be a tournament with 67 (7T") > ak. We assume that
« < 2, otherwise Theorem 1.2 gives

We consider a family F of less than & disjoint 3-cycles in 7. We will see that if k is great enough,
then we can extend F. As usual, we denote by W the set of vertices of all the 3-cycles of F, and by
U the other vertices that form an acyclic part (otherwise, we directly extend F). As 67(T) > ok,
remark that T has at least 2ak vertices and then, as |W| < 3k — 3, the size of U is at least (2 — 3)k.
The main idea of the proof is to obtain (almost) a partition of W into two parts X; and X5 such that,
as previously, X receives many arcs from U and X, sends many arcs to U, with the requirement that
the 3-cycles of F behave well with respect to the partition. The 3-cycles (or parts of the 3-cycles) of
X1 will act as in-3-cycles and the 3-cycles of X5 as out-3-cycles. If we assume that F is maximum, a
contradiction will result by computing the number of arcs leaving X;.

We chose a positive real number € such that € < (o — 1.5)/4. This value corresponds to the room
that we have to ignore some vertices, which we will do several times during the proof. Then we fix an
integer p with (3 — )/p < ¢/3 , and we will repeat p times the procedure described below to define
free vertices. We define three families of sets:

o (F;)o<i<p—1 the free vertices produced at step ¢,
o (Uj)o<i<p the free vertices produced since the beginning (they will form an acyclic part), and

o (W;)o<i<p the remaining vertices, see Figure 2.
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We initialize by setting Uy = U, and Wy = W. For 0 < ¢ < p — 1, a vertex x of W; (resp. an
arc zy of W;) is good at step i if there exists at least 3P*! disjoint pairs of vertices {y, 2z} (resp.
distinct vertices z) of U; such that {z,y, z} induces a 3-cycle. In other words, an element (vertex or
arc) is good if it is contained in at least 377! 3-cycles which are disjoint on U;. When we find good
elements, we will split the 3-cycles they are involved in into the good vertices (or vertices belonging
to a good arc), that we will keep in W;y, and the others, called later free vertices and that we put
with the transitive part U;;1. For a 3-cycle C of F, the vertices of C' which we keep in W;;1 form
the remainder of C. The remainder of C' can contain one or two vertices. We use the name a
1-remainder for a remainder of a 3-cycle with one vertex and a 2-remainder for a remainder with
2 vertices.

Then, for i =0,...,p— 1, we initialise F; = () and perform the step i of the procedure below, that
is, we apply the first of the following rules as long as possible and then we consider the second rule,
apply it as long as possible and proceed similarly for the third and fourth rule. When it is no more
possible to apply the fourth rule, the step i is over, and we deal with the step i + 1.

Rule 3.1 If a 3-cycle or a 2-remainder C belonging to W; contains a vertex x which is good at step
i, then we add V(C)\ {z} to F;.

Rule 3.2 If C, C" and C" are 3-cycles or 2-remainders belonging to W; and T < V(C)U V(C") U
V(C") > contains three disjoint arcs, say xy, z'y’ and x"y", which are good at step i, then we add

vieyuv(eHuv(e") \{z, o' 2", y,y',y"} to F;.

Rule 3.3 IfC and C’ are 3-cycles or 2-remainders belonging to W; and T < V(C)UV (C") > contains
two disjoint arcs, say xy and z'y’, which are good at step i, then we add V(C)UV(C")\ {z,2',y,y'}
to F;.

Rule 3.4 If a 3-cycle C of F belonging to W; contains a good arc xy at step i, then we add V(C)\
{z,y} to F;.

Now, we fix the sets U; 11 to U; UF; and Wi 41 to W;\ F;. Furthermore, we call U; the free vertices
at step i. The next claim shows that these vertices are ’free to form a 3-cycle’.

Claim 8 If the final set of free vertices, Uy, contains a 3-cycle, then, we can extend the family F.

Proof: Assume that U, contains a 3-cycle zyz, we will build a family 7’ of 3-cycles with
|F'| = |F| + 1. The family F’ initially contains zyz and all the 3-cycles of F that still exist in
W,. We will inductively complete F’ with 3-cycles formed from remainings of 3-cycles of F that
are in W), by going step by step backward from the step p to the initial configuration. A vertex of
U\ Uy = Uf;(]l F; is called busy if it is currently contained in a 3-cycle of F’. At the end of step
p, only ,y, z are possibly busy (and only if they do not belong to Up), and, for i = 1,...,p we will
prove the following (where stage i corresponds to the ith level of undoing the steps performed above,
starting with stage 1 where we undo step p):

At stage i, every remainder created at step p — i+ 1 is contained in a 3-cycle of F' ()
or in a 2-remainder previously created and U,_; contains at most 3+ busy vertices.

Let us see what happens when ¢ = 1. If, {z,y,2z} N F,_1 = 0, then using the vertices of F,_;
and the corresponding remainders we undo step p — 1 to re-create original 3-cycles, which we add
to F' or 2-remainders previously created (if Rule 3.1 has been used on a 2-remainder at step p — 1).
So, in this case, the only possible busy vertices of U,_; are x, y and z and the property (x) holds
for ¢ = 1. Otherwise, consider a busy vertex in {z,y, z} which is contained in F,_;. It became free
through the application of one of the Rules 3.1, 3.2, 3.3 or 3.4. In each of these cases, it has been
separated from good elements (vertex or arc(s)), and these good elements can be re-completed into
3-cycles by adding at most three vertices (two for Rule 3.1, three for Rule 3.2, two for Rule 3.3 and
one for Rule 3.4). Each of these good elements can be completed into at least 37! disjoint (on Up_1)
3-cycles. Hence, it is always possible to complete them disjointly with vertices of U,_1. In the worst
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case, 3 vertices were busy in the beginning (z, y and z) and each of the corresponding good element
needs 3 vertices in U,_; to be completed, producing 9 busy elements in U,_;. Finally, the vertices of
F,_1 that are not busy are used to re-create 3-cycles or 2-remainders destroyed at step p.

For i =2,...,p— 1, we apply exactly same arguments to pass from stage i to stage i + 1, provided
that at each stage i at most 3'*! < 37T! busy vertices are present in U,_;. For the last stage, that
is to undo step 1, everything is similar, except that, by definition, Uy contains no busy vertices and
hence the corresponding vertices can be directly taken to form the last 3-cycles of F'.

Finally, 7' contains one 3-cycle for each remainder in W), and zyz, so |F'| = |F| + 1. S

An immediate consequence of Claim 8 is that the size of set W, can not be less than « - k, because
the first vertex of U, has its out-neighbour-hood contained in W,,. So, the number of free vertices
added to Uy = U, that is Uf;olFi, is at most (3—a)k, and thus there is a step ip+1 with 0 < ip < p—1,
with |Fj,| < (3 — a)k/p < €k/3. We stop just before this step ig + 1, and denote by R the set of
3-cycles or 2-remainders with at least one vertex in Fj . So, the size of R = V(R), is at most ek. We
symbolically remove the small set R and go on working on the other 3-cycles and remainders. Remark
that, now, in W;, \ R there are no more free elements.

For any g < p, we say that a set of vertices (or abusively a sub-digraph) S of W, is insertable in
U, up to [ vertices, if there exists a partition of U, into three sets Z;, Z» and Z such that: there is
no arc from Z; to Zs, |Z| <1 and there is no arc from Z; to S and no arc from S to Z .

Claim 9 Every vertex x € Wy, \ R belonging to a 3-cycle of F or a 2-remainder is insertable in U;,
up to 3PT1 wertices. Furthermore, every S-cycle of F contained in Wy, \ R is insertable in Uy, up to
5 - 3PFL vertices.

Proof: Consider C' a 3-cycle of F or a 2-remainder which is contained in W;, \ R and let z
be a vertex of C. As U;, is an acyclic tournament by Claim 8, we denote by {u1,us, ..., u,} its
vertices in such way that U;, contains no arc w;u; with ¢ < j. Among all the r + 1 cuts of type
(Z1 = {u1,...,u;}, Zo = {uiy1,...,u,}), we choose one for which d*(z, Z2) +d*(Z;,z) is minimum®
and abusively denote it by (Z1, Z») with Z1 = {us1,...,w;}. If d7(Z1,2) = [ then it is possible to
build [ 3-cycles containing x and some vertices of Z; which are all disjoint on Z;. Indeed, we denote
by (win(jy)1<j<t (1esp. (Uout(j))1<j<i—1) the in-neighbours of = in Z; (resp. the out-neighbours of x
in Zp) sorted according to the order (u;,u;—1,...,u1). Then, assume that for some j, TUout () Uin(j)
is not a 3-cycle (because gy (;) is after Uin(j)s OF because Uy, () does not exist), it means that = has
more in-neighbours than out-neighbours in the set {w;, u;_1, .. .um(j)}, which contradicts the choice
of the partition (Zy, Z). So, it is possible to form all the 3-cycles (gt (j)Uin(j))1<j<i- Similarly, the
same statement holds with Z», and globally it is possible to provide d*(z, Z3) + d*(Z1,z) 3-cycles
containing x and all disjoint on U;,. Then, as € W;, \ R we have d*(z, Z2) + d*(Z1,2) < 3P+ and
hence z is insertable in U;, up to 37*! vertices.

For the second part of the claim, consider a 3-cycle C' = xyz which is contained in W;, \ R. By
the first part of the claim, we know that there exist three sets of vertices Z,, Z, and Z, in U, of size
at most 37! such that (Us, \ {Z,UZ,UZ.}) — {zy, yz, 2z} forms an acyclic digraph. We consider an
acyclic ordering of this digraph. If one of three arcs zy, yz or zx, say xy, is backward in this ordering
and ’jumps’ across more than 3P*1 vertices of U, , then the arc xy is good and C should have been
put in R. So, as C' can have one or two backward arcs with respect to this order, it is possible to
remove from U, \ {Z, U Z, U Z.} two further sets of vertices of size at most 37*1! to insert C. o

Now, using Claim 9, we give to every vertex x of a 2-remainder which is contained in W;, \ R a
position p(z) in the ordering of U;,. More precisely, there exists a set Z of at most 3P*! vertices of
Ui, such that there is no arc from {uy, ..., up)} \ Z to x and no arc from & to {up()11,-- -, ur} \ Z.
If there is several possibilities to choose p(z), we pick one arbitrarily. Similarly, for a 3-cycle C' = zyz
which lies in W;, \ R, we assign to each of its vertices a position p(z) = p(y) = p(z), such that up to
5 3771 vertices, C' is insertable between {u1, ..., Upz)} and {uym)41s-- -5 tr}-

1Here for two disjoint sets of vertices R, S d* (R, S) denotes the number of arcs from R to S.

11
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——
finite set (< 1[2])

R . thrown away to find the step i,
size less than ek

R, thrown away to find the block B;,,

\\ (e) 1-remainders

size less than ek

Figure 3: The situation in the proof of Theorem 1.3.

Then, we fix an integer [ such that (a—1.5)I > 2-37*2 and [ > 3-37*! and we consider a partition of
the first vertices of U;, into [9/€] blocks of I vertices, provided that U;, is large enough. This is insured
if U, of size at least (2a. — 3)k, is large enough, that is if (2a — 3)k > 1[9/€], what is possible as [ and
e only depend on a. Exactly, for j =1,...,[9/¢€], the block B; is Bj = {u¢;_1)i41, U(j—1)1425 -+ Uji }-
As W;, \ R contains at most 3k vertices, there is at most 3k different values p(z) for € W;, \ R. So,
one of the [9/¢] blocks Bj, say Bj,, contains at most 3k/[9/¢| < ek/3 values p(x) for = being a vertex
of a 2-remainder or of a 3-cycle of W;, \ R. We call R’ these 2-remainders and 3-cycles of W;, \ R and
denote by R’ the set V(R’). Remark that R’ has size at most ek.

So, we partition the remaining vertices of W, \ (R U R’) into two parts: X; = {z € W;, : p(z) <
(Jo — 1)I} and Xy = {z € Wy, : p(x) > jol}. By the definition of p, a 3-cycle C' of F which lies in
Wi, \ (RU R') satisfies V(C) C X; or V(C) C X;. Whereas the 2-remainders of W;, \ (RU R’) can
intersect both parts of the partition (X7, z2) of W;, \ (RU R’). The situation is depicted in Figure 3.

We have the following property on the partition ((X1,z2) of W;, \ (RUR’).

Claim 10 Ewvery arc from X to Xs is a good arc.

Proof: Let zy be an arc from X; to X,. By definition, we know that p(z) < (jo — 1)! and that
p(y) > jol. That means that all the vertices of Bj, dominate & except for at most 3P*1 of them, and
that all the vertices of Bj, are dominated by y except for at most 37*1 of them. As |Bj,| > 3 3rT1,
we can find 3P+! vertices of Bj, that are dominated by y and that dominate x, implying that zy is a
good arc. o

Now, according to their behaviour, we classify the 2-remainders and 3-cycles which are in W, \
(RUR):
o A 2-remainders which have one vertex in X7 and the other in X, is of type (a).

e We consider a maximal collection of disjoint pairs of 3-cycles {C,C"} where C'is in X7, C’ is in
X and there is at least one arc from C to C’. All the 3-cycles involved in this collection are of
type (b).

e A 3-remainder included in X; is of type (c) if it is not of type (b).

e A 3-remainder included in X5 is of type (d) if it is not of type (b).

12
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e A 2-remainder included in X; is of type (e).
o A 2-remainder included in X5 is of type (f).

We abusively denote by a (resp. ¢, d, e and f) the number of remainders of type (a) (resp. (c),
(d), (e) and (f)). We denote by b the number of pairs of 3-remainders of type (b). Finally, we denote
by ¢ the number of 1-remainders. At this point of the proof, any of this value is an integer between
0 and k£ — 1 and X; or X, could be empty. This will be settled by the computation at the end of the
proof. For the moment, we have the following properties.

Claim 11 We have the following bounds on the number of arcs from Xy to Xo:

The number of arcs from X to Xy linking a 3-cycle with another 3-cycle or a 2-remainder is at
most 3.

The number of arcs going from X to Xo and linking a vertex of an element of type (a) and a
vertex of an element of type (b) is at most 4ab.

- There is no arc from a 3-cycle of type (c) to a 3-cycle of type (d).

Proof: To prove the first point, consider C' a 3-cycle of X; and C’ a 3-cycle or a 2-remainder of
Xs. If there are more than three arcs from C to C’, then we find a 2-matching from C to C’. By
Claim 10, this 2-matching is made of good arcs and the Rule 3.3 could apply to find a free vertex in
C, contradicting that W;, \ R has no free elements.

For the second point, consider a 2-remainder of type (a) on vertices v; and vy with v; € X7 and
vg € X5 and a pair (Cy, Cs) of 3-cycles of type (b) with C; = z1y121 contained in X7 and Cy = zaya22
contained in Xy and x5 being an arc of T'. To find a contradiction, assume that the number of arcs
from v; to Cy plus the number of arcs from C) to v, is at least 5. It means that either v; dominates
Cy or C dominates vs, say that v; dominates Cy. Now, v is dominated by at least two vertices of
C1, and one of these two is not z1, say that it is y;. But, the arcs z1z2, y1v2 and v1ys are good by
Claim 10, and z; and z» should be free by Rule 3.2, contradicting that W;, \ R has no free elements.

The third point follows from the definition of 3-cycles of type (¢) and (d). o

Now, we can derive a number of in-equalities from the structure derived so far, in order to obtain
a contradiction, knowing that it has not been possible to increase the size of F above.

The first in-equality comes from the fact that there is a most £ — 1 remainders and 3-cycles in W .

a+2btct+dte+f+g<k (2)

For the second one, we compute the number of arcs going outside of B;,, which has size I. There

are at least akl — (I — 1)/2 such arcs. The number of arcs from Bj, to U;L‘:?Bj is at most [2[9/¢].

There is no arc from Bj, to Us, \ (Uj:“:lB]v). The number of arcs from By, to X, is at most |X»|3P+1,

because every vertex of Xy is insertable into U;, before Bj, up to 3PF1 vertices. As Xo C W we

can bound this number by 3k3P*!. Finally, the remaining arcs going outside of Bj, are at most
l(a+3b+3c+2e+ g+ |R|+|R'|), and we obtain:

1

akh%”g [9'\12+k3”+2+l(a+3b+36+2€+g+2ek,)
€

which we rewrite as

[Z]02 — k3P+2 — 2lek < 1(a+ 3b+ 3¢+ 2¢ + g — 1.5k)

LoM=-1 9
(= 1.5)kl — 5 ¢

And finally arrange in:

<(“’7;5)l 73”2)“ ((w — 20k - Z’Tl - (%11)1 <l(a+3b+3c+2e+g— L5k

13
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By choice of [, the first term is positive, and as € < (o« — 1.5)/4, if k is large enough, the second term
is strictly positive too, implying that:

a+3(b+c)+2e+g>15k (3)

For the last in-equality, we compute the number of arcs going outside of X;. As previously, we

first show that, if k is large enough, we have ak|X:| — d*(X1,U;,) — dT(X1, RU R') — 1.5k| X4 is
positive. Indeed, this term is greater than (o — 1.5)k|X1| — [2]1|X1| — 2€k| X1| which is

1l (= 15) ~ 20k - 1271)

and this is positive if k is large enough. Now, we have to take in account the arcs inside X; and those
from X7 to X3 and to the l-remainders. By the calculation above we still have at least 1.5k|X| arcs
incident with vertices of X; to account for. Using Claim 11 we obtain

1 ‘
L5k(a+3(b+c) +2¢) = S(a+3(b+c) + 2¢)? <

ala+4b+3d+2f +g) +b(3b+3d+3f 4+ 39) + c(3a+3b+3f +3g) +e(2a + 3b+3d +4f + 2g) =
ala+4b+3c+3d+2e+2f + g) +b(3b+ 3¢+ 3d + 3e + 3f + 3g) + c(3f + 39) + e(3d + 4f + 29)
(4)

Considering (2), (3) and (4), an equation solver leads to a contradiction. We just indicate how
to manage the computation 'by hand’. Suppose that there exists a solution X = (a,b,c,d, ¢, f,g) to
these three in-equalities, we will show that then X’ = (a+b+ f +¢,0,b+c+d+¢,0,0,0,0) is also a
solution to these equations. It is easy to check that X’ is a solution to (2) and (3). For (4), we denote
by ¢(a,b,c,d, e, f,g) the value

2a(a+4b+3c+3d+2e+2f +g) +2b(3b+ 3¢+ 3d +3e+ 3f +3¢g) + 2¢(3f + 3g) + 2¢(3d + 4f +2g)

+(a+3(b+c) +2e)? — 3k(a+ 3(b+ c) + 2¢)
Then, we compute ¢(a +b+ f+¢,0,b+c+d+e,0,0,0,0) — ¢(a,b, ¢,d, e, f,g) and obtain:

2a(2b+3d+2e+ f +2g) +3b(3b+2c+ 8d +4e+4f +4g) +6¢(3d + e+ f+g) +3d(3d +4e+4f +4g)

+e(5e +4f +8g+) +3f(f +29) + 39> —3k(b+3d+e+ f+g)

Using the fact that X is a solution of (3), we have —3k > —2(a+ 3(b+¢) + 2e + g) and so ¢(a + b +
f+9,0,b+c+d+¢0,0,0,0) — ¢(a,b,c,d, e, f,g) is greater than

2a(b+ e+ g) + b(3b+ 6d + 2¢ + 6 f + 4g) + 3d(3d + 4f + 2g) + e(e + 2g) + f(3f + 4g) + ¢*

which is positive. So, ¢(a+b+ f+¢,0,b+c+d+e,0,0,0,0) is strictly positive and X’ is a solution
of (4).

Now, there is a solution to the in-equations (2), (3) and (4) of type (a’,0,¢,0,0,0,0), what is impos-
sible: (2) gives @’ + ¢ < 1 and (4) gives 3(a’ + 3¢')(a’ + ¢ — 1) > 0.

This concludes the proof of Theorem 1.3. As a last remark, note that k, is larger than a polynomial

function in I, which is larger than an exponential in p, itself larger than a linear function in the inverse
of a — 1.5. So, k, is an exponential function in the inverse of a — 1.5.

14
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4 Some Remarks

It is perhaps worth pointing out that the following obvious idea does not lead to a proof of Conjecture
1.1 for tournaments: find a 3-cycle C' which is not dominated by any vertex of V(T') — V(C'), remove
C' and apply induction. This approach does not work because of the following?.

Proposition 4.1 For infinitely many k > 3 there exists a tournament T with §7(T) = 2k — 1 such
that every 3-cycle C' is dominated by at least one vertexr of minimum out-degree.

Proof: Consider the quadratic residue tournament 7' on 11 vertices V(T') = {1,2,...,11} and
arcs A(T) = {i—i+p mod 11 : i€ V(T),p € {1,3,4,5,9}}. The possible types of 3-cycles in T" are
=1 4+ 1=i 4+ 10—, i—1 + 1—i + 6—i,i—i + 3—i + 6—4,9—4 + 3—7 + 7—i, where indices are taken
modulo 11. These are dominated by the vertices ¢ — 3,7 — 3,7 + 2,7 + 2 respectively. By substituting
an arbitrary tournament for each vertex of T, we can obtain a tournament with the property that
every 3-cycle is dominated by some vertex of minimum out-degree. o

On the other hand, removing a 2-cycle from a digraph D with 6¥(D) > 2k — 1 clearly results in
a new digraph D’ with 67(D’) > 2(k — 1) — 1 and hence, when trying to prove Conjecture 1.1, we
may always assume that the digraph in question has no 2-cycles. In particular the following follows
directly from Theorem 1.23.

Corollary 4.2 Every semicomplete digraph D with §*(D) > 2k — 1 contains k disjoint cycles. o

A chordal bipartite digraph is a bipartite digraph with no induced cycle of length greater than
4. Note that in particular semicomplete bipartite digraphs [3, page 35] are chordal bipartite. It is
easy to see that Conjecture 1.1 holds for chordal bipartite digraphs.

Proposition 4.3 Every chordal bipartite digraph D with §*(D) > 2k — 1 contains k disjoint cycles.

Proof: This follows from the fact that such a digraph contains a directed cycle C' of length 2 or 4 as
long as k > 1. As D is bipartite, no vertex dominates more than half of the vertices on C' and so we
have 67 (D — C) > 2(k — 1) — 1 and the result follows by induction on k. S

An extension of a digraph D = (V, A) is any digraph which can be obtained by substituting
an independent set I, for each vertex v € V. More precisely we replace each vertex v of V by an
independent set I, and then add all arcs from I, to I, precisely if uv € A.

Proposition 4.4 Let D =TI, I,, ... 7Imv<'1')\] be an extension of a tournament T such that I,
is an independent set on n; vertices for i € {1,2,...,|V(T)|}. If 67 (D) > 2k — 1, then D contains k
disjoint 3-cycles.

Proof: Let T” be the tournament that we obtain from D by replacing each I,,, by a transitive
tournament on n; vertices. Then §*(7”) > 2k — 1 and hence, by theorem 1.2, 7" contains k disjoint 3-

cycles C1,Cy, ..., Cy. By the definition of an extension and the fact that we replaced independent sets
by acyclic digraphs, no C; can contain more than one vertex from any I,,,, implying that Cy, Cs, ..., Cj
are also cycles in D. o
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Abstract
A k-digraph is a digraph in which every vertex has outdegree at most k. A (k VI)-
digraph is a digraph in which a vertex has either outdegree at most k or indegree at most
1. Motivated by function theory, we study the maximum value ®(k) (resp. ®V(k,l)) of the
arc-chromatic number over the k-digraphs (resp. (kV 1)-digraphs). El-Sahili [3] showed that
®V(k, k) < 2k+1. After giving a simple proof of this result, we show some better bounds. We
show max{log(2k+3),0(k+1)} < ®(k) < 0(2k) and max{log(2k+21+4),0(k+1),0(1+1)} <

BV (k,1) < 0(2k + 21) where 6 is the function defined by 6(k) = min{s : z ) > k}. We

2
then study in more details properties of ® and ®V. Finally, we give the exact values of ®(k)
and ®V(k,l) for I < k < 3.

1 Introduction

A directed graph or digraph D is a pair (V(D), E(D)) of disjoint sets (of vertices and arcs)
together with two maps tail : E(D) — V(D) and head : E(D) — V(D) assigning to every arc
e a tail, tail(e), and a head, head(e). The tail and the head of an arc are its ends. An arc with
tail u and head v is denoted by wv; we say that u dominates v and write u — v. We also say
that v and v are adjacent. The order of a digraph is its number of vertices. In this paper, all
the digraph we consider are loopless, that is that every arc has its tail distinct from its head.

Let D be a digraph. The line-digraph of D is the digraph L(D) such that V(L(D)) = E(D)
and an arc a € E(D) dominates an arc b € E(D) in L(D) if and only if head(a) = tail(b).
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A wvertez-colouring or colouring of D is an application ¢ from the vertex-set V(D) into a set of
colours S such that for any arc uv, c(u) # c(v). The chromatic number of D, denoted x(D), is
the minimum number of colours of a colouring of D.
An arc-colouring of D is an application ¢ from the arc-set E(D) into a set of colours S such that
if the tail of an arc e is the head of an arc ¢’ then c(e) # c(e’). Trivially, there is a one-to-one
correspondence between arc-colourings of D and colourings of L(D). The arc-chromatic number
of D, denoted x4(D), is the minimum number of colours of an arc-colouring of D. Clearly
Xa(D) = x(L(D)).

A k-digraph is a digraph in which every vertex has outdegree at most k. A (k V [)-digraph is
a digraph in which a vertex has either outdegree at most k£ or indegree at most /.

For any digraph D and set of vertices V! C V(D), we denote by D[V'], the subdigraph of
D induced by the vertices of V’. For any subdigraph F of D, we denote by D — F the digraph
D[(V(D)\ V(F)]. For any arc-set E' C E, we denote by D — E' the digraph (V(D), E(D)\ E')
and for any vertex x € V(D), we denote by D — z the digraph induced by V(D) \ {z}.

Let D be a (k V I)-digraph. We denote by V¥ (D), or VT if D is clearly understood, the
subset of the vertices of D with outdegree at most k, and by V(D) or V~ the complementary
of V¥(D) in V(D). Also D" (resp. D) denotes D[V ] (resp. D[V ]).

In this paper, we study the arc-chromatic number of k-digraphs and (k V I)-digraphs. This
is motivated by the following interpretation in function theory as shown by El-Sahili in [3].

Let f and ¢ be two maps from a finite set A into a set B. Suppose that f and g are
nowhere coinciding, that is for all a € A, f(a) # g(a). A subset A’ of A is (f, g)-independant if
f(A)YNg(A’) = 0. We are interested by finding the largest (f,g)-independant subset of A and
the minimum number of (f,g)-independant subsets to partition A. As shown by El-Sahili [3],
this can be translated into an arc-colouring problem.

Let Df4 and Hy g be the digraphs defined as follows :

o V(Dy4) = Band (b,b') € E(Dy,) if there exists an element a in A such that g(a) = b and
f(a) = V. Note that if for all a, f(a) # g(a), then Dy 4 has no loop.

o V(Hpg) = A and (a,0') € B(Hpg) if f(a) = g(a').

We associate to each arc (b,b') in Dy 4 the vertex a of A such that g(a) = b and f(a) =¥'.
Then (a,a’) is an arc in Hyg if, and only if, head(a) = tail(a’) (as arcs in Dy ,4). Thus Hy g =
L(Dy4). Note that for every digraph D, there exists maps f and g such that D = Dy 4.

It is easy to see that an (f,g)-independant subset of A is an independant set in Hy 4. In [2]
El-Sahili proved the following :

Theorem 1 (El-Sahili [2]) Let f and g be two nowhere coinciding maps from a finite set A
into a set B. Then there ezists an (f, g)-independant subset A" of cardinality at least |A|/4.

Let f and g be two nowhere coinciding maps from a finite set A into B. We define ¢(f,g)
as the minimum number of (f, g)-independant sets to partition A. Then ¢(f,g) = x(Hyg4) =
Xa(Df,g)~

Let ®(k) (vesp. ®V(k,!)) be the maximum value of ¢(f, g) for two nowhere coinciding maps
f and g from A into B such that for every z in B, g7!(z) < k (resp. either ¢g71(z) < k or
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f~Yz) < 1). The condition f~'(z) (resp. ¢~!(z)) has at most k elements means that each
vertex has indegree (resp. outdegree) at most k in Dy 4. Hence ®(k) (resp. ®Y(k,l)) is the
maximum value of x,(D) for D a k-digraph (resp. (k V l)-digraph).

Remark 2 Let f and g be two nowhere coinciding maps from A into B. Then A may be
partitionned into ®(|A| — 1) (f, ¢)-independant sets.

The functions ®¥ and ® are very close to each other:

Proposition 3
B(k) < ®Y(k,0) < -+ < BV(k, k) < B(k) +2

Proof. The sole inequality that does not immediatly follow the definitions is ®V(k, k) <
®(k) + 2. Let us prove it.

Let D be a (k V k)-digraph. One can colour the arcs in DT U D~ with ®(k) colours. It remains
to colour the arcs with tail in V'~ and head in V't with one new colour and the arcs with tail in
V+ and head in V'~ with a second new colour. O

Moreover, we conjecture that ®V(k, k) is never equal to ®(k) + 2.

Conjecture 4
V(k, k) <®(k)+1

In [3], El-Sahili gave the following upper bound on ®V(k, k):
Theorem 5 (El-Sahili [3]) ®V(k, k) <2k +1

In this paper, we first give simple proofs of Theorems 1 and 5. Then, in Section 3, we improve
the upper bounds on ®(k) and ®V(k,[). We show (Theorem 18) that ®(k) < §(2k) if k > 2, and
®V(k,l) < 0(2k +21) if k+1 > 3, where @ is the function defined by (k) = min{s : ((572]) > k}.
Since 2° /s < ((s;ﬂ) < 2%/y/s for s > 2, once can obtain the following equivalent for 6 as k — oo:

0(k) = log(k) + ©(log(log(k)))

Lower bounds for ® and @V are stated by Corollaries 14 and 15: max{log(2k+3),0(k+1)} <
®(k) and max{log(2k + 21 + 4),0(k +1),0(1 + 1)} < ®V(k,1).

We also establish (Corollary 21) that ®V(k,1) < 6(2k) if (2k) > 21 + 1.

In Section 4, we study in more details the relations between ® (k, ) and ®(k). We conjecture
that if k is very large compared to [ then ®V(k,l) = ®(k). We prove that ®V(k,0) = ®(k) and
conjecture that ®V(k,1) = ®(k) if k > 1. We prove that for a fixed k either this latter conjecture
holds or Conjecture 4 holds. This implies that ®(k,1) < ®(k) + 1.

Finally, in Section 5, we give the exact values of ®(k) and ®V(k,[) for [ < k < 3. They are
summarized in the following table :

®V(0,0) =1 ] ®V(1,0) = ®(1) =3 | ®V(2,0) = ®(2) = 4 | 27(3,0) = ¥(3) = 4
3V(1,1) =3 3V(2,1) =4 3V(3,1) =4
3V(2,2) — 4 3V(3,2) =5
3V(3,3) = 5
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2 Simple proofs of Theorems 1 and 5

Proof of Theorem 1. Let D = Dy . Let (V1,V3) be a partition of V(D) that maximizes the
number of arcs a with one end in V; and one end in V3. It is well-known that a > |E(D)|/2. Now
let Ay be the set of arcs with head in V; and tail in V5 and Ay be the set of arcs with head in V,
and tail in V;. Then A; and A, corresponds to independant sets of L(D) and |A;| + |A2] = a.

Hence one of the A; has cardinality at least a/2 = @. O

Before giving a short proof of Theorem 5, we precise few standard definitions.
Definition 6 A path is a non-empty digraph P of the form
V(P) = {vg,v1,...,vk}  E(P)={vgvi,v1v9,...,vk_10k},

where the v; are all distinct. The vertices vy and vy are respectively called the origin and
terminus of P.
A circuit is a non-empty digraph C of the form

V(C) = {vo,v1,...,v}  E(P)={vov1,v1v2,...,Vk—1Vk, VK0 },

where the v; are all distinct.

A digraph is strongly connected or strong if for every two vertices u and v there is a path
with origin u and terminus v. A maximal strong subdigraph of a digraph D is called a strong
component of D. A component I of D is initial if there is no arc with tail in V(D) \ V(I) and
head in V(I). A component I of D is terminal if there is no arc with tail in V(I) and head in
V(D)\ V(I). A digraph is connected if its underlying graph is connected.

A digraph D is [-degenerate if every subdigraph H has a vertex of degree at most /.

The following lemma corresponding to the greedy colouring algorithm is a piece of folklore.
Lemma 7 Every l-degenerate digraph is (I + 1)-colourable.

Proof of Theorem 5. Let D be a (kV k)-digraph. Acording to Lemma 7, it suffices to
prove that L(D) is 2k-degenerate.

In every initial strong component C there is a vertex with indegree at most k. Indeed if
there is no such vertex then (k + 1)|C| < ¥, o d™(v) < X, d¥(v) < k|C|. Analogously, in
every terminal strong component there is a vertex with outdegree at most k.

Now, there is a path originating in a minimal component and terminating in a terminal one.
Hence there is a path whose origin has indegree at most k£ and whose terminus has outdegree at
most k. Hence there is an arc e whose tail has indegree at most & and whose head has outdegree
at most k. Thus e has degree at most 2k in L(D). O

3 Lower and upper bounds for ® and ®V
We will now search for bounds on ® since they also give bounds on ®V.

Theorem 1 and an easy induction yields xq(D) < logy/s|D|. However there exists better
upper bounds stated by Poljak and Rodl [5]. For sake of completeness and in order to introduce
useful tools, we provide a proof of Theorem 11.
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Definition 8 We denote by H}, the complementary of the hypercube of dimension k, that is
the digraph with vertex-set all the subsets of {1,...,k} and with arc-set {zy:z ¢ y}.

A homomorphism h : D — D' is a mapping h : V(D) — V(D') such that for every arc zy of
D, h(z)h(y) is an arc of D'.

Let ¢ be an arc-colouring of a digraph D into a set of colours S. For any vertex x of D, we
denote by Colf(z) or simply Col™(z) the set of colours assigned to the arcs with tail z. We
define Col™(x) = S\ Col™(z). Note that Col™ () contains (but may be bigger than) the set of
colours assigned to the arcs with head z. The cardinality of Col™(z) (resp. Col~(x)) is denoted
by col™(x) (resp. col™(x)).

Theorem 9 For every digraph D, xo(D) = min{k : D — H}}.

Proof. Assume that D admits an arc-colouring with {1,...,k}. It is easy to check that Col™
is a homomorphism from D to Hy.

Conversely, suppose that there exists a homomorphism % from D to Hy. Assign to each arc zy
an element of A(y) \ h(x), which is not empty. This provides an arc-colouring of D. O

Definition 10 The complete digraph of order n, denoted I-(‘n, is the digraph with vertex-set
{v1,v,...,vn} and arc-set {vv; : i # j}.

The transitive tournament of order n, denoted T'T},, is the digraph with vertex-set {v1,va,..., v}
and arc-set {v;vj 14 < j}.

The following corollary of Theorem 9 provides bounds on the arc-chromatic number of a
digraph according to its chromatic number.

Theorem 11 (Poljak and R&dl [5]) For every digraph D,

[log(x(D))] < xa(D) < 8(x(D))-

Proof. By definition of the chromatic number, D — KX(D). As the subsets of {1,...,k} with
cardinality |—§-| induce a complete digraph on ((ﬁ) vertices in Hy, we obtain a homomorphism
p— 2
from D to H&(x(D))- So xa(D) < 0(x(D)).
By Theorem 9, we have D — an(D). As X(an(D)) = 2Xa(D) we obtain D — Koyomy. O

These bounds are tight since the lower one is achieved by transitive tournaments and the
upper one by complete digraphs by Sperner’s Lemma (see [6]). However, the lower bound may
be increased if the digraph has no sink (vertex with outdegree 0) or/and no source (vertex with
indegree 0).

Theorem 12 Let D be a digraph.
(i) If D has no sink then log(x(D) + 1) < xa(D).

(i) If D has no source and no sink then log(x(D) + 2) < xq(D).
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Proof. The proof is identical to the proof of Theorem 11. But if a digraph has no source (resp.
no sink) then for every v, Col*(v) # S (resp. Col*(v) # 0). O

Again, these two lower bounds are also tight. Let @, (resp. W,) be the tournament of
order n obtained from TT,, by reversing the arc viv, (resp. vav,). One can easily check that
Xa(Wn) = log(n +1)] = [log(x(Wa) + 1)] and xa(@n) = [log(n + 2)] = [log(x(Qn) + 2)1-

Proposition 13 FEvery k-digraph is 2k-degenerate.

Proof. Every subdigraph of a k-digraph is also a k-digraph. Hence it suffices to prove that
every k-digraph has a vertex with degree at most 2k. Since the sum of outdegrees equals the
sum of indegrees, there is a vertex with indegree at most £ and thus with degree at most 2k. O

Corollary 14
max{log(2k +3),0(k+ 1)} < ®(k) < 0(2k+ 1)

Proof. The upper bound follows from Proposition 13, Lemma 7 and Theorem 11. The lower
bound comes from a regular tournament on 2k + 1 vertices Ty and the complete digraph on
k+1 vertices Kpi1. Indeed Xx(Topr1) = 2k + 1, 50 Xa(Tops1) > log(2k + 3) by Theorem 12 and
Xa(EKg41) = 0(k + 1). o

Corollary 15
max{log(2k + 21 +4),0(k +1),0( + 1)} < ®Y(k,1) < 6(2k + 21+ 2)

Proof. The upper bound follows Proposition 13 and Theorem 11 since every (k V{)-digraph D
is 2k + 21+ 2-colourable (D™ is 2k-degenerate and so (2k + 1)-colourable and D~ is 2/-degnerate
and so (21 + 1)-colourable). The lower bound comes from Kj41, K41 and a tournament T
composed of a regular tournament on 2/ + 1 vertices dominating a regular tournament on 2k +1
vertices. Indeed, ya(Kpi1) = 0(k + 1), xa(EKis1) = 6(1 + 1) and T has no source, no sink and
chromatic number 2k + 21 + 2, so, by Theorem 12, xo(T) > log(2k + 21 + 4). O

We can obtain a slightly better upper bound on ®. Bounds on ®" follow.

Definition 16 For any integer k > 1, let TkJr (k > 1) be the complete digraph on tf, el 7t;rk+1
minus the arcs {5, 73 ,... ,ti"t;:ﬂ}.

Lemma 17 Let k > 1 be an integer. If D is a k-digraph, then there exists a homomorphism
B from D to T} such that if h(x) = t] then d*(z) = k.

Proof. For a fixed k, we prove it by induction on |V (D).

First, suppose that there exists in D a vertex x with d~(x) < k. Then, d*(z) +d ™ (z) < 2k.
By induction on D — x, there is a homomorphism % from D — x to ;! such that if h*(v) = ¢
then d}, _(v) = k. Hence, h*(y) # t{ for every inneighbour y of x, because df;, _(y) <k. Asx
has at most 2k — 1 neighbours, we find 7 € {2,...,2k+1} such that no neighbour y of z satisfies
Rt (y) =tf. So, h*(z) =t} extends h* to a homomorphism from D to T}
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Suppose now that every vertex v of D has indegree at least k. Since Zuev( D) d=(v) =
> vev(D) d*(v) < k|V(D)], every vertex has indegree and outdegree k. Hence, by Brooks Theo-
rem (see [1]) either D is 2k-colourable and D — T,/ [{t3 ,.. ., 15,1 }], or D is a regular tournament
on 2k + 1 vertices. In this latter case, label the vertices of D with vi,vs,...,v2,4+1 such that
N~(v1) = {va,...,vk41}. Then ht defined by h*(v;) =t is the desired homomorphism. O

Theorem 18 Let k and | be two positive integers.
(i) If k > 2, then ®(k) < 0(2k).
(i) If k+1> 3, then ®V(k,1) < 6(2k + 21).

Proof. (i) If k = 2, the result follows Corollary 14 since 6(4) = 6(5) = 4. Suppose now that
k > 3. Let D be a k-digraph. By Lemma 17 there is a homomorphism from D to Tk+. We will
provide a homomorphism ¢ from T,:’ to H,,@k).

Fix Si,...,S2, 2k subsets of {1,...,0(2k)} with cardinality |6(2k)/2] and S a subset of
{1,...,2k} with cardinality |0(2k)/2] — 1. Without loss of generality, the S; containing S
are S1,...,.5; with I < [0(2k)/2] +1 < k. (One can easily check that 6(2k)/2 + 1 < k provided
that k > 3.) Now, set g(t) = S and g(t/;) = S; for 1 < i < 2k. It is straightforward to check
that ¢ is a homomorphism.

(i) Let D be a (k V l)-digraph. By Lemma 17, there exists a homomorphism h* from D¥
to T, such that if h*(z) = t{ then d*(x) = k and, by symmetry , a homomorphism A~ from
D~ to T}, the complete digraph on {t,,...,t; ,} minus the arcs {t, ¢, ¢3¢, ,...t,, ¢ }, such
that if o~ (z) = ¢ then d™(z) = I. We now provide a homomorphism from D to H(gp121)-
Fix S* and S™, two subsets of {1,...,0(2k+21)} with cardinality |8(2k+21)/2] —1 for ST and
6(2k + 20)/2] +1 for S~ such that S* ¢ S~. (This is possible since 6(2k + 2I) > 4, because
k+1>2) Set N ={U C{1,...,002k+20)} : [U| = |0(2k +21)/2|}. We want a partition of N’
into two parts A and B with |.A| > 2k and | B| > 21, such that ST is included in at most & sets of A
and S~ contains at most  sets of B. Let Mg+ (resp. Ns-) be the set of elements of A" containing
ST (resp. contained in S7). We have [Ng+| = [0(2k+21)/2] +1 and |[Ng-| = [6(2k+21)/2] + 1;
because k + 1 > 3, it follows |[Ng+| < k+1 and |[Ng-| < k+ 1. Moreover, the sets Ng+ and Ng-
are disjoint. Let us sort the elements of A" beginning with those of Ng- and ending with those
of Ng+. Let A be the 2k first sets in this sorting and B what remains (|B| > 2I). We claim that
A contains at most k elements of NVs. If not, then |[A| > (wgii_gf)l/)%) — |Ns+| + k. We obtain
2k > 2k + 21 — |Ng+| + k which contradicts |[Ns+| < k + 1. With same argument, B contains at
most [ elements of Ng-.

Finally, set A = {A1,..., A} such that none of Ajy1,...,Ag contains St and {By,..., By}
21 sets of B such that none of Byy1,..., By is contained in S—.

Let us define b : D — Hapyo. If 2 € VT and ht(x) = ¢f then h(z) = ST if i = 1 and
h(z) = A;j_1 otherwise. If x € V™ and h™(z) = t; the h(z) = S~ if i = 1 and h(z) = Bj_;
otherwise. Let us check that h is a homomorphism. Let zy be an arc of D. T,:' is a subdigraph
of Hopqo[{A1,.-.,Ag, S} and T, is a subdigraph of Hopy[{B1,--., By, S™}]. So, h(x)h(y)
is an arc of ﬁ2k+21 if x and y are both in V't or both in V. Suppose now that 2 € V* and
y € V™, then h¥(x) # t§ because dp+(z) < k and h(z) # S*t. Similarly, h~(y) # S~. Thus
h(z) and h(y) are elements of N, so h(x)h(y) € E(Hagy2). Finally, suppose that € V™~ and
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y € VF. Then h(x)h(y) € E(Hak12) because no element of {By, ..., By, S™} is a subset of an
element of {A;,..., Ay, ST} O

Remark 19 Note that the homomorphism provided in (i) has for image subsets of {1, ..., 6(2k)}
with cardinality at most |6(2k)/2]. So, using the method developped in Theorem 9, we provide
an arc-colouring of a k-digraph D with 6(2k) colours which satisfies col*(x) < [0(2k)/2], so
col™(x) > [6(2k)/2], for every vertex x of D.

We will now improve the bound (i) of Theorem 18 when [ is very small compared to k.

Lemma 20 Let D be a (kV1)-digraph and D' the subdigraph of D induced by the arcs with tail
in V*t. If there exists an arc-colouring of D' with m > 21 4+ 1 colours such that for every x in
V*, col™(x) > 1+ 1 then xo(D) = m.

Proof. We will extend the colouring as stated into an arc-colouring of D.

First, we extend this colouring to the arcs of D~. Since 3",y - df_(v) =3 ey - dj-(v) <
[|[V~|, there is a vertex vy € V~ such that d’g_(v) < I. And so on, by induction, there is an
ordering (v1,va,...,vp) of the vertices of D~ such that, for every 1 < i < p, v; dominates at
most [ vertices in {v; : j > i}. Let us colour the arcs of D™ in decreasing order of their head;
that is first colour the arcs with head v, then those with head v,_;, and so on. This is possible
since at each stage i, an arc uv; has at most 2! < m forbidden colours (! ingoing u and [ outgoing
v; to a vertex in {v; : j > i}).

It remains to colour the arcs with tail in V'~ and head in V*. Let v—v™ be such an arc.
Since col~(vt) > 1+ 1 and d~(v™) < I, there is a colour a in Col™ (v') that is assigned to no
arc ingoing v~. Hence, assigning o to v~ vT, we extend the arc-colouring to v~ v™. O

Corollary 21 If 6(2k) > 21+ 1, then ¢V (k,1) < 6(2k).

Proof. The digraph D!, as defined in Lemma 20, is a k-digraph. The result follows directly
from Remark 19 and Lemma 20. O

4 Relations between ®(k) and ®V(k,!)

Conjecture 22 Let | be a positive integer. There exists an integer k; such that if k > k; then
®V(k,1) = ®(k).

We now prove Conjecture 22, for | = 0, showing that ko = 1.

Theorem 23 Ifk > 1,
OV (k,0) = (k).

Proof. Let D = (V,A) be a (kV 0) digraph. Let V; be the set of vertices with indegree 0.
Let D' be the digraph obtained from D by splitting each vertex v of Vj into d*(v) vertices with
outdegree 1. Formally, for each vertex v € Vj incident to the arcs vws,... ; VWa+(y), Teplace v
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by {v1,v2,...,v4+ @)} and vw; by v;w;, 1 < i < d*(v). By construction, D’ is a k-digraph and
L(D) = L(D'). So xa(D) = xa(D') < (k). o

We conjecture that if [ = 1, Conjecture 22 holds with &k = 1.

Conjecture 24 Ifk > 1,
®V(k,1) = ®(k)

Theorem 25 If ®(k) = ®(k —1) or ®(k) = ®(k + 1) then ®V(k,1) = ®(k).

Proof. By Lemma 20, it suffices to prove that if ®(k) = ®(k — 1) or ®(k) = ®(k + 1) every
k-digraph admits an arc-colouring with ®(k) colours such that for every vertex z, col™(z) > 2.

Suppose that ®(k) = ®(k —1). Let D be a k-digraph and D’ be a (k — 1)-digraph such that
Xa(D') = ®(k). Let C be the digraph constructed as follows: for every vertex z € V(D) add
a copy D'(x) of D' such that every vertex of D'(x) dominates x. Then C is a k-digraph, so it
admits an arc-colouring ¢ with ®(k) colours. Note that ¢ is also an arc-colouring of D which is
a subdigraph of C. Let us prove that for every vertex = € V(D), col™ (z) > 2.

Suppose, reductio ad absurdum, that there is a vertex x € V(D) such that col™(z) < 1.
Since there are arcs ingoing z in C (those from V(D'(z))), then Col™(z) is a singleton {a}.
Now every arc vz with v € D'(z) is coloured « so any arc uwv € E(D'(z)) is not coloured .
Hence c is an arc-colouring with ®(k) — 1 colours which is a contradiction.

The proof is analogous if ®(k) = ®(k + 1) with D’ a k-digraph such that x,(D’) = ®(k).
Then C is a (k + 1)-digraph and we get the result in the same way. O

The next theorem shows that for a fixed integer k, one of the Conjectures 24 and 4 holds.
Theorem 26 Let k be an integer. Then ®V(k,1) = ®(k) or ®V(k,k) < ®(k) + 1.

Proof. Suppose that ®V(k,1) # ®(k). Let C be a (k V 1)-digraph such that x,(C) = ®(k) +1
and C? the subdigraph of C induced by the arcs with tail in V*+(C). By Lemma 20, for every
arc-colouring of C! with ®(k) colours there exists a vertex x of C* with col™(z) < 1.

Let D be a (k V k)-digraph. Let D! (resp. D?) be the subdigraph of D induced by the arcs
with tail in V(D) (resp. head in V~(D)). Let E' be the set of arcs of D with tail in V™~ and
head in V*. Let F! be the digraph constructed from C? as follows : for every vertex = € V(C),
add a copy DT (z) of D and the arcs {u(z)z : wv € E(D),u € V*¥(D), and v € V(D)}. Then
F! is a k-digraph so it admits an arc-colouring ¢; with {1,...,®(k)}. Now there is a vertex
x € VT(C) such that col™(x) < 1. So all the arcs from D¥(z) to x are coloured the same. Free
to permute the labels, we may assume they are coloured 1. Since F![V(D*(z))Uz] has the same
line-digraph than D!, the arc-colourings of F![V (D% (x)) U x] is in one-to-one correspondence
with the arc-colourings of D'. So D' admits an arc-colouring ¢! with {1,..., ®(k)} such that
every arc with head in V'~ is coloured 1.

Analogously, D? admits an arc-colouring ¢? with {1,...,®(k)} such that every arc with head

in V7~ is coloured 1. The union of ¢; and ¢ is an arc-colouring of D — E' with {1,...,®(k)}.
Hence assigning ®(k) + 1 to every arc of E’, we obtain an arc-colouring of D with ®(k) + 1
colours. O

Corollary 27 ®V(k,1) < ®(k) + 1.
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Note that since ®(k) is bounded by #(2k), the condition ®Y(k,1) = ®(k) or ®V(k,k) <
®(k) + 1 is very often true. Indeed, we conjecture that it it always true and that @ behaves
“smoothly”.

Conjecture 28 (i) If k> 1, ®(k+1) < ®(k) + 1.
(i) If k> 1, ®(k +2) < (k) + 1.
(iii) @(kiks) < @(k1) + D(k2)-

Note that (i) implies (1) and Conjecture 24.

The arc-set of a (k1 +k2)-digraph D may trivially be partionned into two sets Ey and E, such
that (V(D), E1) is a ki-digraph and (V/(D), Ey) is a ke-digraph. So ®(ki+kg) < ®(k1)+P(kg). In
particular, ®(k+1) < ®(k)+®(1) = ®(k)+ 3. Despite we were not able to prove Conjecture 28-
(i), we now improve the above trivial result.

Theorem 29 If k > 1 then, ®(k+1) < ®(k) + 2.

Proof. Let D be a (k + 1)-digraph. Free to add arcs, we may assume that d*(v) = k + 1 for
every v € V(D). Let T1,..., T, be the terminal components of D. Each T; contains a circuit C;
which has a chord. Indeed consider a maximal path P in T; and two arcs with tail its terminus
and head in P, by maximality. One can extend |J C; into a subdigraph F spanning D such that
df(v) > 1 for every v € V(D) and the sole circuits are the C;, 1 < i < p. In fact, F is the
union of p connected components Fi, ..., Fj,, each F; being the union of C; and inarborescences
Al .. A% with roots r},...,7% in C; such that (V(C;), V(AN \ {r}},...,V(4AD)\ {rf}) is a
partition of V(D).

Now D — F is a k-digraph. So we colour the arcs of D — F with ®(k) colours. Let o and 8
be two new colours. Let us colour the arcs of F. Let 1 <7 < p. If C; is an even circuit then F; is
bipartite and its arcs may be coloured by « and 3. If C; is an odd circuit, consider its chord zy
in E(D — F). In the colouring of D — F, Col™(z) ¢ Col™(y) thus there is an arc 2y’ of E(C;)
such that Col™(z') ¢ Col*(y'). Hence we may assign to z'y’ a colour of Col*(z') \ Col*(y').
Now F; — z'y' is bipartite and its arcs may be coloured by « and 3. O

5 & and ®V for small value of k or [.
5.1 (1), ®¥(1,0) and &Y(1,1).

Theorem 30
®V(1,1) = ®V(1,0) = ®(1) =3

Proof. By Theorem 5, ®V(1,1) < 3. The 3-circuit is its own line-digraph and is not 2-
colourable. O

10
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5.2 ®(2) and ®V(2,1), for | < 2.

The aim of this subsection is to prove Theorem 35, that is ®(2) = ®V(2,0) = ®¥(2,1) =
®V(2,2) = 4. Therefore, we first exhibit a 2-digraph which is not 3-arc-colourable. Then we
show that ®V(2,2) < 4.

Definition 31 For any integer £ > 1, the rotative tournament on 2k+1 vertices, denoted Rop41,
is the tournament with vertex-set {vq,...,vax41} and arc-set {v;v; : j —i (modulo 2k +1) €

{1,...,k}}.
Proposition 32 The tournament Rs is not 3-arc-colourable. So ®(2) > 4.

Proof. Suppose that R; admits a 3-arc-colouring c in {1,2,3}. Then, for any two vertices
z and y, Col*(z) # Col*(y) and 1 < col™(x) < 2. Hence there is a vertex, say vy, such that
colt(v1) = 1, say Col*(v1) = {1}. Then Col*(vs) and Col*(vs) are subsets of {2,3} and
Col™(vy) ¢ Coltwz. Tt follows that colt(v3) = 1. Repeating the argument for vs, we obtain
col™(vs) = 1 and then col*(v;) = 1, for every 1 < i <5, which is a contradiction. a

In order to prove that ®V(2,2) < 4, we need to show that every (2 V 2)-digraph admits
homomorphism % into Hy. In order to exhibit such a homorphism, we first show that there is
a homomorphism h* from D into a subdigraph S; of H, and a homomorphism h~ from D~
into a subdigraph S; of H, with specific properties allowing us to extend At and k™ into a
homomorphism h from D into H,.

Definition 33 Let Sj be the digraph with vertex-set {s],...,sd} with arc-set {sfsj 11 #£
JI\{s3 81 sis5, 5883}

Lemma 34 Let D be a 2-digraph. There exists a homomorphism hT from D to S; such that
the vertices = with h* (x) € {s5,sf,s¢} have outdegree 2.

Proof. Let us prove it by induction on [V(D)|. If d*(x) < 1 for every vertex = of D then
D is 3-colourable and D — S5 [{s],s7,s3}]. So, we assume that there exists a vertex = with
outdegree 2. By induction hypothesis, there is a homomorphism At : D — 2 — S;' with the
required condition. Note that every inneighbour of x has outdegree at most 1 in D — x and
thus can not have image s, s} or sg' by hT. Denote by y and z the outneighbours of 2. The
set {hT(y),h*(2)} does not intersect one set of {s",s5}, {s§,sf} and {sF,sd}, say {s],s7}.
Then, setting h(x) = 53, we extend h™ into a homomorphism from D to Sy with the required
condition. O

Theorem 35
D(2) = ®Y(2,0) = dY(2,1) = ®Y(2,2) = 4

Proof.

By Proposition 32, 4 < &(2) < ®V(2,0) < $V(2,1) < 8Y(2,2).

Let us prove that ®V(2,2) < 4. Let D be a (2V2)-digraph. We will provide a homomorphism
from D to Hy.

11
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Let Sy be the dual of Sy, that is the digraph on {s7,...,ss } with arc-set {sis; i #
3} \ {s752,5351,55 56 }- By Lemma 34, there is a homomorphism h* : D* — S such that
if h*(z) € {sf,sf, s} then df (z) = 2. Symmetrically, there exists a homomorphism b~ :
D~ — S, such that if h=(z) € {s5,5;,55 } then d,_(x) = 2.

Let Sy be the digraph obtained from the disjoint union of Sj and S, by adding the arcs
of {s;s7:1<i<6,1<j<6U{sfs; :i=13,5 j=1,35} The mapping h: D — S
defined by h(z) = h*(z) if z € VT and h(z) = h~(z) if x € V™ is a homomorphism. Indeed if
xy is an arc of D with z € V* and y € V—, conditions on h™ and A~ imply that h(z) = hT(z) €
{sf,s3, s} and h(y) = h=(y) € {s7,53,55 }. To conclude, Figure 1 provides a homomorphism
g from Sy to H,. The non-oriented arcs on the figure corresponds to circuits of length 2 and all

the arcs from Sy to Sy are not represented. O
g(s5)=(2} g(sP)={1.2} g(s7)={2.3} g(s7)={1.2,3}
a(s)=(3) ges)=13 g5)=034 as)=134]
g(s5)={4} g($)={14} a(s5)=(2.4) a(s5)=(1.2.4}

Figure 1: The homomorphism ¢ from Sy to Hy.

5.3 &(3) and 9V(3,1), for | < 3.

Theorem 36
®(3) = ®Y(3,0) =d(3,1) =4

Proof. 4 < ®(2) < ®(3) < ®V(3,0) < ®Y(3,1) < 6(6) = 4 by Corollary 21. O

In the remaining of this subsection, we shall prove Theorem 42, that is ®¥(3,2) = ®V(3,3) =
5. Therefore, we first exhibit a (3V 2)-digraph which is not 4-arc-colourable. Then we show that
3V(3,3) < 5.

Definition 37 Let G~ be the digraph obtained from the rotative tournament on five vertices
Rs, with vertex set {v],...,v;'} and arc-set {v; v; : j —i (modulo 5) € {1,2}} and five copies
of the 3-circuits R},, e ,Rg by adding, for 1 < ¢ < 5, the arcs vv; , for v € Ré.

Let G be the digraph obtained from the rotative tournament on seven vertices Ry, with
vertex set {v{,...,v7} and arc-set {v;"v}' :j—i (modulo 7) € {1,2,3}} and seven copies of
the rotative tournament of, R}, ..., R by adding, for 1 <4 < 7, the arcs m);", for v € RL.

Finally, let G be the (3 V 2)-digraph obtained from the disjoint union of G~ and G* by
adding all the arcs of the form v~ vt with v~ € V(G™) and v* € V(G™). See Figure 2.

12
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Proposition 38 The digraph G is not 4-arc-colourable. So ®(3,2) > 5.

Proof. Suppose for a contradiction that G admits an arc-colouring c in {1,2,3,4}.
Let vt be a vertex of Gt and v~ a vertex of G~. Then since v~ v* is an arc, Col*(v") #
Col*(v™). We will show:

(1) there are at least two 2-subsets S of {1,2,3,4} such that a vertex v~ € G~ satisfies
Colt(v™) = S;

(2) there are at least five 2-subsets S of {1,2,3,4} such that a vertex vt € G satisfies
Col*(vt) = S.

This gives a contradiction since there are only six 2-subsets in {1,2, 3, 4}.

Let us first show (1). Every vertex of G~ satisfies col™ > 2 otherwise all the arcs of Ry
in GT must be coloured with three colours, a contradiction to Theorem 12. Hence, since in
R; all the Col™ are distinct and not {1,2,3,4}, a vertex of Rj, say vy, has col™ = 2, say
Col*(vy) = {1,2}. Consider now the vertices of R}. None of them has Col™ = {1,2,3} nor
Col* = {1,2,4} since they are dominated by v;. Moreover they all have different Cool™ since
R} is a tournament. Hence one of them, say v, satisfies col™(v) = 2. Now Col*(v) # Col*(vy)
since v; — v.

Let us now prove (2). Let S = {2-subsets S such that 3 v* € G*,Colt(v") = S} and
suppose that |S| < 4. Every vertex of G has col™ < 2 otherwise all the arcs of R in G~ must
be coloured with three colours, a contradiction to Proposition 32. Now, all the vertices of R;
have distinct and non-empty Col™. So at least three vertices of Ry have col™ = 2 and |S| > 3.
Thus, without loss of generality, we are in one these three following cases:

(a) S € {{1,2},{2,3},{3,4}, {1,4}} and Col*(v") = {1,2};
(b) S ¢ {{1,2},{2,3},{1,3},{1,4}} and Col*(v]") = {2,3};
(¢) 8 ¢ {{1,2},{2,3},{1,3},{1,4}} and Col*(v]") = {1,4}.

Let x1,...,25 be the vertices of Ré such that x;x; is an arc if and only if j =¢+1 mod 5 or
j=i+2mod5and F = {Col*(z;) : 1 <4 < 5}. Recall that |F| = 5 since R} is a tournament
and that every element S of F is not included in Col*(vf') since x; — vf for every 1 < < 5.

Case (a): We have F = {{3}, {4},{2,3}, {3,4},{1,4}}. So we may assume that Col*(z;) =
{3}. Now because x1 — 2, z1 — x3 and Ty — x3, Col™ (x1) ¢ Col™ (x2), Col*(z1) ¢ Col™ (x3)
and Colt(xy) ¢ Col™(x3). It follows that Col™(z2) = {1,4} and Col™ (x3) = {4}. Hence, none
of Col*(x4) and Col™(z5) is {3,4} since z3 — x4 and z3 — x5, a contradiction.

Case (b): We have F = {{1}, {4}, {1,2},{1,3},{1,4}}. So we may assume that Col*(z;) =
{1}. Since 1 — x9, Col*(x1) ¢ Col™(x2), so Col™(x3) = {4}. Similarly, Col™ (z3) = {4} which
is a contradiction.

Case (c): We have F = {{2}, {3},{1,2},{1,3},{2,3}}. So we may assume that Col™ (z1) =
{2}. Tt follows that Col*(z9) = {1,3} and Col*(x3) = {3}. Hence, none of Col*(x4) and
Col*(x5) is {2,3} since x5 — x4 and 3 — 5, a contradiction. O

14
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We will now prove that ®V(3,3) < 5. As in the proof of Theorem 35, in order to exhibit a
homomorphism from a (3V3)-digraph D to Hs, we first show that there are two homomorphisms,
h* from D* into a subdigraph Sy of Hs and k™ from D~ into another subdigraph S5 of Hs,
with specific properties.

Definition 39 Let S; be the complete digraph with vertex-set {s},...,s7}.
Let S; be the digraph with vertex-set {sy,..., sy} and arc-set {s; s; 14 # j} \ {s3 57,531 }-

Lemma 40 Let D be a 3-digraph. There exists a homomorphism h™ from D to S; such that
the vertices x with h*(z) € {sg,sT} have outdegree 3.

Proof. Let us prove it by induction on n = [V(D)|. If there exists a vertex x with d*(z) +
d~(x) < 4 then we obtain the desired homomorphism h* from D — z to Sy and extend it with
a suitable choice of h* (z) in {s7,...,s7}.

Assume now that d*(z)+d~(z) > 5 for every x. Let n; be the number of vertices with outdegree
i. Clearly, n = ng + n1 + na + n3. Moreover, we have:

>y di@) =) d (=)= Y d@+ Y, d@+ Y d@+ Y d(

z€V zeV dt(z)=0 dt(z)=1 dt(z)=2 d+(z)=3

Then, by assumption:
3n > 5ng + 4n1 + 3ng + Z d (z)
dt(z)=3

If there is no vertex with outdegree 3, then D is 5-colourable and there is an homomorphism i ™
from D to Sf[{s],...,s7}]. Suppose now that there exists a vertex with outdegree 3. Then,
there exists a vertex with outdegree 3 and indegree at most 3. If not, d~(z) > 4 for every x
with d*(x) = 3 and the previous inequality implies 3n > 5ng + 4n; + 3ny + 4ng with ng # 0,
what contradicts n = ng + n1 + na2 + ns.

Finally, let  be a vertex with outdegree 3 and indegree at most 3. By induction hypothesis,
there is a homomorphism At from D — z to 53+ with the required property. As x has at most 6
neighbours, we extend h* with a suitable choice for h*(z) in {s],...,sT}. O

Lemma 41 Let D be a digraph with maximal indegree at most 3. There exists a homomorphism
h™ from D to Sy such that the vertices x with h™(x) € {sg,...,sy } have indegree 3.

Proof. We prove the result by induction on |[V(D)|.

If every vertex have indegree at most 2 then, by the dual form of the Lemma 17, there exists a
homomorphism from D to Sy [{s1,...,s5 }].

Now, let = be a vertex with indegree 3. Let y1, y2 and y3 be the outneighbours of . By induction,
there is a homomorphism 2~ from D — x to S; with the required property. In particular, as

the vertex y;, 1 <4 < 3, has indegree at most 2 in D —x, we have h™(y;) € {s{,...,s; }. So, as
« has 3 inneighbours, we can extend h~ with a suitable choice for A~ (x) in {sg,...,s9}. O
Theorem 42

®V(3,2) =2Y(3,3) =5

15
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Proof. By Proposition 38, 5 < ®V(3,2) < ®V(3,3). We will prove that ®V(3,3) < 5. Let D
be a (3 V 3)-digraph, we will provide a homomorphism from D to H3.

By Lemma 40, there is a homomorphism A% : D* — S5 such that if h*(z) € {sg, 57} then
d}r(x) = 3. Moreover by Lemma 41, there is a homomorphism A~ : D~ — S5 such that if
h=(x) € {sg,.--,59 }, then d;_(x) = 3.

Let S3 be the digraph obtained from the disjoint union of S and S; by adding the arcs
of {s7sf 1 <i<91<j<7uU{sfsy:i=1,..5 j=1..,5. The mapping
h: D — S3 defined by h(z) = kT (z) if x € V* and h(z) = b~ (z) if € V'~ is a homomorphism.
Indeed if 2y is an arc of D with x € VT and y € V™, conditions on A" and h™ imply that
h(z)=h*(z) € {sf,...,sF} and h(y) = h~(y) € {s7,...,s5 }. To conclude, Figure 3 provides
a homomorphism ¢ from S3 to Hs. Inside S3 and S;’ , only the arcs which are not in a circuit
of length 2 are represented, every pair of not adjacent vertices are, in fact, linked by two arcs,
one in each way. O

o5)=(125} 25)=(2.34) 2(5)=(2.35 25 =(2.4.5} 25, =(3.4.5)
[} [} [ ] [}

S3

[ ] [}
g5)=(12) e()=(15) gp=(13) e()=(1.4)

) ° . ° ° .
. g)=123) e6H)=(24) g&=(34) 6=(35) e6H=(45) | aH=(25)
S3
°
a)=(1)
Figure 3: The homomorphism g from S3 to Hs.
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Abstract

Manuch and Stacho [7] introduced the problem of designing f-tolerant routings in optical
networks, i.e., routings which still satisfy the given requests even if f failures occur in the
network. In this paper, we provide f-tolerant routings in complete and complete balanced
bipartite optical networks, optimal according to two parameters: the arc-forwarding index
and the optical index. These constructions use tools from design theory and graph theory
and improve previous results of Dinitz, Ling and Stinson [4] for the complete network, and

Gupta, Manuch and Stacho [5] for the complete balanced bipartite network.

Keywords: optical networks, forwarding and optical indices, routing, fault tolerance
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1 Introduction

In this paper, we are interested in a problem arising in the design of optical networks. Using
models of graph theory and design theory, this topic has been of considerable interest over
the last decade (see [1], [2] or [5] for instance). Readers may refer to [1] for a background
review of optical networks. The model studied in this article is valid for the so-called wavelength
division multiplexing (or WDM) optical network. Such a network is modeled by a symmetric
directed graph with arcs representing the fiber-optic links. A request in the network is an
ordered pair of graph nodes, representing a possible communication in the network. A set of
different requests is an instance in the network. For each request of the instance, we have to
select a routing directed path to satisfy it, and the set of all selected paths forms a routing
set according to the instance. To make the communications possible, a wavelength is allocated
to each routing path, such that two paths sharing an arc do not carry the same wavelength;
otherwise the corresponding communications could be perturbed. Given a routing set related
to the wavelength assignment, we can define two classical invariants. The arc-forwarding index
of the routing set is the maximum number of paths sharing the same arc. In the network,
there is a general bound on the number of wavelengths which can transit at the same time in
a fiber-optic link, corresponding to the admissible maximal arc-forwarding index. The other
invariant, called the optical index of the routing set, is the minimum number of wavelengths
to assign to the routing paths in order to ensure that there is no interference in the network.
The main challenge here is to provide, for a given instance, a routing set which minimizes the
arc-forwarding index or the optical index, or both if possible.

Our work is a contribution to a variant of this problem, introduced by Manuch and Stacho [7],
in which we focus on possible breakdowns of nodes in the network. Precisely, for a given fixed
integer f, we have to provide, for every request, not just one directed path to satisfy it, but
rather a set of f+1 directed paths with the same beginning and end nodes (corresponding to the
request) and which are internally disjoint. In this routing, if f nodes break down, every request
between the remaining nodes could still be satisfied by a previously selected routing path which
contains no failed component. Such a routing set of directed paths is called an f-fault tolerant
routing or an f-tolerant routing.

In this paper, we focus on the very special cases of complete symmetric directed graphs and
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complete balanced bipartite symmetric directed graphs. Moreover, we only study the case of
all-to-all communication, i.e., where the instance of the problem is the set of all ordered pairs of
nodes of the network. Some results on these problems were presented by Gupta, Marnuch and
Stacho [5] and Dinitz, Ling and Stinson [4]. We improve these results: for complete symmetric
directed graphs, we show that optimal routings for the arc-forwarding index given in [5] are also
optimal for the optical index. And for complete balanced bipartite symmetric directed graphs,

we provide routings that are optimal for both parameters.

2 Preliminaries

In this section, we specify the previous definitions and formalize the problem. For the purpose
of the paper, we only describe the case of all-to-all communication, but the notions can be
extended to any kind of instances. We mainly use the notations proposed in [5].

We model an all-optical network as a symmetric directed graph D = (V(D), A(D)), where
V(D) is the vertex set of D and A(D) is the arc set with the additional property that if
(u,v) € A(D) then (v,u) € A(D). If no confusion is possible, we simply write V and A instead
of V(D) and A(D), respectively. All paths and circuits are considered as oriented.

A directed graph D is strongly connected if, for every two vertices x and y of D, there is
a path from z to y in D. In a symmetric directed graph, strong connectivity is equivalent to
connectivity of the underlying non-oriented graph. So, for an integer k£ > 1, a symmetric directed
graph D is k-connected if, for every set {z1,...,z_1} of vertices of D, D\ {x1,...,z5_1} is
strongly connected.

For a fixed positive integer f, an f-tolerant routing in D is a set of paths:
R ={Pi(u,v) : u,v e Viu#v,i=0,...,f}

where, for each pair of distinct vertices u,v € V, the paths Py(u,v),..., Pf(u,v) are internally
vertex disjoint. Note that such a set of paths exists if and only if the connectivity of the directed
graph is large enough (at least f+ 1), which will be the case in complete and complete bipartite
networks for suitable f.

The basic parameters for WDM optical networks, the arc-forwarding index and the optical

index, are generalized in f-tolerant routings. The load of an arc in R is the number of directed
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paths of R containing it. By extension, the maximum load over all the arcs of D is the load of
the routing, which is also called the arc-forwarding indez of R and is denoted by 7(R). Each
path of R receives a wavelength in the network to enable the communication and, to avoid
interference, two paths sharing an arc do not receive the same wavelength. Like graph coloring,
we speak about wavelengths as colors to assign to the paths of R. Finally, the optical index
of R, denoted w(R), is the minimum number of wavelengths to assign to paths of R so that
no two paths sharing an arc receive the same wavelength. In other words, w(R) is exactly the
chromatic number of the graph with vertex set R and where two paths of R are linked if they
share the same arc of D (known as the path graph of R).

The goal is to minimize 7(R) and w(R). So the f-tolerant arc-forwarding index of D and

the f-tolerant optical index of D are respectively defined by:
D) =min7(R
(D) = minx(R)

wy(D) = H%n w(R)

where the minima span all the possible routing sets R. A routing set achieving one of the bounds
is said to be optimal for the arc-forwarding index or optimal for the optical index, respectively.

For a routing set R, all paths sharing the same arc must receive different wavelengths in the
computation of w(R). In particular, we have 7(R) < w(R). By considering a routing set which
is optimal for the optical index, we obtain 7;(D) < ws(D). The equality was conjectured by
Maiiuch and Stacho [7].

Conjecture 1 (J. Manuch, L. Stacho, 2003, [7]) Let D be a symmetric directed k-connected

graph. For any f, 0 < f <k, we have wy(D) = wy(D).

For f = 0 (without tolerating any faults), the conjecture was previously raised by Beauquier

et al. [1].

Let K} denote the complete symmetric directed graph with vertex set {z1,...,,} and arc set

{xijz; - i # j}. The complete balanced bipartite symmetric digraph K7, is the directed graph on

n,n

vertex set XUY with X = {z1,...,z,}and Y = {y1,...,yn} and arc set {zy,yz : 2 € X,y € Y}.
The arc-forwarding indices of K} and K}, were computed by Gupta, Maiiuch and Stacho in [5].

n,n
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Moreover, they give wy(Ky) and wy (K ,,) up to a multiplicative factor. In [4], Dinitz, Ling and
Stinson compute, among other things, w;(K}) up to an additive constant in some cases.
In the next two sections, we provide exact values for wy(K;) and wy (K ,) and hence prove

Conjecture 1 for the complete symmetric directed graph and the complete balanced bipartite

symmetric directed graph.

3 Complete optical network

It is easy to provide a lower bound for the arc-forwarding index of K. Indeed, any two vertices
z and y of K} have to be linked in an f-tolerant routing by f + 1 internally disjoint paths. If
one of these paths has length one (the direct arc zy), all the others have length at least two,
and at least 2f + 1 arcs are needed to ensure f-tolerant communication from x to y. So, by an
average argument, one arc of K must have load at least 2f + 1, providing wy(Ky) > 2f + 1.
In the case of K}, Gupta, Manuch and Stacho prove that this lower bound gives exactly the
value of the arc-forwarding index. Indeed, they construct f-tolerant routings through families

of independent idempotent Latin squares in [5], which are optimal for the arc-forwarding index.

Theorem 2 (A. Gupta, J. Manuch, L.Stacho, 2005, [5]) For every f with0 < f <n—2,
we have my(Ky) =2f + 1.

They also partially bound the optical index of their f-tolerant routings, proving that w f(K}) <
3f +1 for some f. This result was improved by Dinitz, Ling and Stinson [4], who gave a better
multiplicative factor for some infinite sets of values of n and the optimal index up to an additive
constant for another infinite set of values of n. We improve these results by showing that every
f-tolerant routing set of K which is optimal for the arc-forwarding index is also optimal for

the optical index.

Theorem 3 For every f, 0 < f < n—2, and every f-tolerant routing set R of K} with 7(R) =
mr(Ky) =2f + 1, we have w(R) = 2f 4+ 1. In particular, we have w¢(K}) = np(K}) = 2f + 1.

Proof. Let f be fixed with 0 < f < n —2 and consider an f-tolerant routing R of K} which is
optimal for the arc-forwarding index, i.e., of value 2f + 1. By the tightness of the lower bound,

for any two vertices  and y of K} there is exactly one path zy of length 1 and f paths of length
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2 from z to y in R (otherwise, summing up the total load gives 7(R) > 2f + 2). Hence, every
arc of K5 has a load of exactly 2f + 1 and appears in one path of length 1 and 2f paths of
length two in R. Now, define the graph H with vertex set being the set of the arcs of K} and
link two arcs of K} if they belong to the same path of R of length 2. Thus, we have a one-to-one
correspondence between the edge set of H and the paths of length 2 of R. Since each arc of K
belongs to exactly 2f paths of R of length 2, H is regular with degree 2f. By Vizing’s Theorem
(see [3] or [9]), the edges of H can be colored with 2f + 1 distinct colors such that any two
adjacent edges receive distinct colors. This provides a coloring of the paths of length 2 of R
with 2f + 1 colors. To conclude, a path of length 1 of R intersects exactly 2f paths of length 2

and we can color this path with the remaining color. d

Moreover, the edge-coloring provided by Vizing’s Theorem can be computed in polynomial
time (polynomial in the size of the input graph, H here). So, given an optimal routing for the
arc-forwarding index, this proof gives a polynomial algorithm (polynomial in n and f) to obtain

a wavelength assignment for a routing which is optimal for the optical index.

4 Complete balanced bipartite optical network

In this section, we compute the exact optical index of K, and thus prove Conjecture 1 for this
family of graphs. This improves the result in [5], where the upper bound given on the optical

index of K, is 20% higher than the conjectured optimal value.

n,n
Theorem 4 For any n > 1 and any f with 0 < f <n —1, we have wy(K}, ) = np(K; ).

*
n,n

To prove Theorem 4, we provide a routing set for K = which is optimal both for the arc-
forwarding index and the optical index. The construction depends on the values of n and f.
Recall that X UY denotes the canonical partition of K, with X = {z1,...,2,} and ¥V =

{y1,-..,yn}. For convenience, indices of the vertices of X and Y are computed modulo n.

4.1 Routing set and arc-forwarding index

*
n,n"

We use the paths of minimum length to route in K Indeed, for two vertices = and y, we use

paths of length 2 when x and y belong to the same partite set of K7, ,, and one path of length 1
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and other paths of length 3 (if f > 0) when = and y do not belong to the same partite set. The
main challenge here is to pack the paths of length 3 in order to provide the right optical index.

This will be achieved by using the following decomposition result.

Theorem 5 (Tillson, 1980, [8]) The arcs of K} can be partitioned into Hamiltonian circuits

if and only if n # 4 and n # 6.

For n # 4 and n # 6, {C1,...,Ch—_1} denotes a set of n — 1 Hamiltonian circuits which
partition the arcs of K. Let {1,...,n} denote the vertex set of K*. Moreover, for a vertex i
of K} and a circuit Cy, the out-neighbor of i in Cj, is denoted Cy (7). We use C}, as a functional
notation: for p > 1, Cp(i) = Ck(le_l(i)). Moreover, we compute the powers of Cy modulo n,

in particular C9(i) = i and Cj '(i) is the in-neighbor of i in C.

The previous Hamiltonian decomposition is used to route paths of length 3 in K T*L’n. For
paths of length 2, we use a Latin square A of order n, i.e., a n x n matrix in which each row and
each column is a permutation of the set {1,...,n}. Moreover, we require A to be idempotent:
for every 4, 1 < i < n, we have A(¢,i) = i. An idempotent Latin square exists for each value
of n, except for n = 2 (see [6], Chapter 2, for an explicit construction). For 0 < k < n —1,
My, = {ziYisk, Yitrxi : 1 < i < n}, denotes the symmetric orientations of n disjoint matchings
which partition the arcs of K}, (see Figure 1). The indices of M, are computed modulo n. ITn

our figures, we represent two symmetric arcs by a (non-oriented) edge.

Y12 Vs Yn-1Yn Y1Y2 Vs Yn-1Yn Y12 Vs Yn-19n
° eoe LX)

Figure 1: Some matchings Mj.

Now, for n # 2, n # 4 and n # 6, we describe three kinds of paths to construct the routing set:
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- Paths of length 1 between vertices which belong to different partite sets of K7, :
Dol X, Y] ={zy; : 1 <i<n,1<j<n}

DoV, X] ={yixj: 1 <i<n,1<j<n}
Dy = Dyl X, Y] UDy[Y, X]

- Paths of length 3 between vertices which belong to different partite sets of K ,, for 1 <k <
n—1:

DrX,Y] = {Iiyc,gl(j)xck(i)yj :1<i<n,1<j5<n}
DY, X] = {Z/ﬂckfl(j)yck(i)ﬂcj :1<i<n,1<j<n}
Dy = Dk[X7Y} U'Dk[Y7X]

- Paths of length 2 between vertices which belong to the same partite set of K ,, for 0 <k <
n—1:

Sk[X, X] = {zyagjy+rry 1 <0 <n, 1 <j <nji # 5}
SelY, Y] = {yiraqjyrusn21yi 0 1 <0 <n, 1< 5 <myi # g}
Sk = Sk[X, X] U S[Y, Y]
And for a fixed f, 0 < f <n — 1, we define the routing set R by

f
Rf = U(Sk UDk)

k=0
Note that, by construction, for distinct vertices x and y of K, Ry contains exactly f + 1
internally disjoint paths from x to y. So, Ry is an f-tolerant routing for an all-to-all instance in

K3, - Moreover, note that every arc of K, ,, appears exactly once in Dy and three times in Dy,

3
for 1 <k < n—1 (for instance the arc x;y; appears in Dy, in paths from z; to y¢, (;), from Lo
to y; and from Yo' G to z¢, (7). For 0 < k < n, the routing Sy behaves slightly differently:
Si[X, X] contains only pairwise arc-disjoint paths and the same holds for Si[Y,Y]. Moreover,
Sk X, X] and M}, are disjoint and every arc not in My, appears exactly once in S;[X, X]; on the
other hand, S[Y,Y] and My 4 [n/2) are disjoint and every arc not in My /2] appears exactly

once in Si[X, X]. Using these remarks, we can give the arc-forwarding index of Ry. The

computation of 7¢(K; ) was obtained in [5].
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Lemma 6 (A. Gupta, J. Manuch, L. Stacho, 06, [5]) The arc-forwarding of Ky, , is:

5f+3 for0< f<[n/2]—-2
(K ) =9 5f+2 for [n/2] —1<f<n-—2
5f+1 for f=n-1

In fact, we prove that R is optimal for the arc-forwarding index.

Lemma 7 For every f, 0 < f <n — 1, the routing set Ry satisfies n(Ry) = mp(K} ).

n,n

Proof. For 0 < f < [n/2] — 2, every arc of K}, appears at least 5 times in Sy U Dy for
1 <k < fand 3 times in Sy U Dy, so the computation of m(Ry) is clear. For f > [n/2] — 1,
every arc of K, is in a matching M}, or My [,/9) for some k, 0 < k < f and thus is not in a

path of one of the Si[X, X] or S;[Y,Y]. We then save 1 in the computation of 7(Ry) in these

*

cases. Finally, if f =n—1, every arc of Kj; , is in a matching M}, and in a matching My |2

for some suitable k and k" in {0,...,n—1}. So, every arc of K}, is not in any path of Si[X, X]

n,n

and not in any path of Sp/[Y, Y], and we save two in the computation of 7(K}, ). O

We then have a lower bound for the optical index of K7, ,,, and now we prove that the routing

set Ry achieves this bound.

4.2 Packing the paths of R,

A color class of paths of Ry is set of paths which are pairwise arc-disjoint. To construct
the different color classes, we need the following notations and definitions. To indicate a
path or a set of paths of Ry, we always specify the subset D or S it belongs to. For
instance, So[X, X{w1yaq1,2)z2} is the path z1y,q 922 of So[X, X] and Do{M;} is the set
of paths in M; of Dy. We use the notation x as a ‘joker’ instead of all the possible path
names. For instance, So[X, X|{*xy; *} stands for all paths of Sp[X,X] whose intermediate
vertex is y;. We specially focus on two particular subsets of paths. For k > 1 and z;, a

*
vertex of K,

Dy[X,Y{z; x xg, ;) *} contains the n paths of Dy which start at z; and
whose third vertex is x¢, ). As (Ci(1),Ck(2),...,Cr(n)) is a permutation of (1,2,...,n),
note that these paths are pairwise arc-disjoint and that they cover exactly all arcs begin-

ning at z;, all arcs beginning at z¢,(;) and all arcs ending at z¢, ;). Moreover, we have
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Uio DelX, Y]{ze 1) * Tty ¥} = Dr[X,Y]. The set DX, Y|{z; * 2, )} and its rep-

resentation on X, which shows the saturated in and out-neighborhood, are depicted in Fig-

ure 2. Similarly, we will use the sets Di[X,Y]{*xy: * v}, DulYs X|{*zi * 2¢, )} and

DlY, XHyi * ye,6) *}-

Y1Y2 Y3

.
X1 X9 X3 Xi X

Yn-1¥n + +

DX, Y]

® O @ cc0 @ co0 @ 00 O O
X1 X X3 Xi  XGi) Xn-1%Xn

o O
Xp-1%n

Figure 2: The set of paths Di[X, Y [{z; * x¢,(;)*} and its representation on X.

In addition, for 0 < k¥ < n—1 and 1 < i < n, S[Y,Y]{xz;x} denotes the set of paths

SelY, Y {x 2 % }UDo{ @i 1ot [ny21 Yitht [ny21%i ) As Sp[Y, Y] and My /) ave disjoint, Sg[Y, Y ]{xz;*}

contains only arc-disjoint paths. Moreover, it contains exactly all arcs beginning and ending at

x4, and we have (i) Sp[Y, Y|{* @i x} = Si[Y, Y]UDo{ M} [y/21}. This set and the representation

of 8;[Y,Y]{xz; *} on X are shown in Figure 3. Similarly, we will use the sets Si[X, X|{*y; x},

disjoint from Do{M}}.

Y1Y2 Y3 yi+k+.Fn/2T Yn-1¥n

® O O oo vee O O
X1 Xg X3 X; Xn-1Xn

SIY,Y]
Y1Ye Y3 Yitk+n/2] Yn-1Yn

® O O coe eee 0 O
X1 Xp X3 X; Xn-1Xn

Figure 3: The sets S[Y,Y]{*xz;x}, Si[Y,Y]{*z; x} and the representation of Sg[Y,Y]{xz; x}

on X.

Now we can define the colors classes. They are constructed differently according to the

value of f: we distinguish three main cases following the residue of n modulo 3. However, some

particular cases occur: n = 2 due to the non-existence of an idempotent Latin square of order

10
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2, n =4 and n = 6 which are exceptions to Tillson’s Theorem, and n = 1 and n = 5 for which
the techniques used in general cases n = 1 (mod 3) and n = 2 (mod 3) cannot be applied.

Moreover, for any value of n, the case f = 0 is different from the other cases.

4.3 Routings without fault

The case f = 0 is simpler than other cases in the sense that the paths of length 1 form a proper
color class, whereas for f > 0 these paths are used to complete other color classes. More precisely,
Ro =Dy USp and to obtain the optical index, we assign one different color to each of these sets

of paths: Dy, Sp[X, X]| and Sp[Y,Y]. So, for every n > 1, we have wo(K},,) = mo(K;,,) = 3.

n,n n,n

4.4 Optical index in case n =0 (mod 3)

This is the simplest case, so paths of length 2 and 3 can be packed separately. For any k,
1 <k <n-—1, to color paths of length 3, we define:

n/3—1
Ci = LJO (Dk[Y, X}{*IC}:‘(D * ‘TCzHl(l)} ] Dk[X7 Y]{‘TCng(l) * ICZHQ(U *})
t=l

n/3—1
ci = tL_JO (Dk[Y, X]{*$Cg‘+1(1) * .Tcgt+2<1)} U Di[X, Y]{:L'Cgurz(l) * Toss(y) *})

C‘Z = (Dk[y X]{*ICEHQ(I) * xczt+3<1)} U Dk[X, Y]{Icgr,+3(l) * Icgt+4(1) *})

In Figure 4, we give the representation on X of ci, where the vertices of X are sorted along
C. A shift of one vertex on the right side (modulo n) of the sets of paths gives the representation
of cg, for the same k. And a shift of two vertices gives the representation of CZ' Then, note that
every path of Dy[X, X] belongs to one of the class ¢}, cf or . For k € {0,...,n — 1}, we also
define c,lc = m Now, we pack the remaining paths of length 1 and 2 in classes ci according

to the value of f.
e If1< f<[n/2]—2,for 0 <k < f, wefix:

i = SulX, X]

11
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DIVX] DX Y] DY.X] DX Y] DIY.X] DX Y]
¥ + ¥ ¥ + ¥ ¥ + ¥
[ ) [ ) [ ) [ ] [ ] [ ] [ ) [ ) [ )

x Yo, Yo Yoo *co Yoo Xems oz ot

Figure 4: The representation on X of the color class c}z, where the vertices of X are sorted along

C.

All paths of Dy have not been used in the sets c} U c2 U Uﬁzl{cbci,ci,ci,cZ} (sole
Do{ M2}, Do{Mis1ny21}s - - s Do{Mpinjo1} arve used). So, we put the remaining paths

of Dy in a class ¢, and we obtain, in this case, wy(Ky ) =5f+3.

o If [n/2] —1 < f < n — 2, we have enough space to pack the paths of length one in
the other classes. Indeed, ¢} Ucd U U‘Ié:l{c}c,ci,cz, 3} does not contain the direct paths
Do{Myi11tn/21} Do{Mproginsa}s- s Do{Mppo1—1}, withn < f+14[n/2] < nt[n/2]—
1 (note that indices of M; are computed modulo n). So, for 0 < k < f, we set:

=8[X,X] iff+1+n/2]-n<k<[n/2]-1
& =S[X, X] else

So, all paths of Dy are used, and we obtain wy (K} ) = 5f + 2.

o If f = n — 1, we should save another color. This time, all paths of length 1 are packed
in Uz;é ci and the second saved color is obtained by optimally packing the set of paths
{Sk[X,X] : 0 < k <n—1} using only n — 1 colors. First, we complete the color class
3. We start by covering all the arcs beginning at z1 and all the arcs ending at x5, which
can be done by placing in ¢? all the paths from z; to za: Uf;ol SilX, XH{z1yaa,2)+iT2}
(corresponding to the paths of U;Lgol S;[X, X] which use the value A(1,2) in the matrix
A). Then, we focus on the arcs beginning at z2 and the arcs ending at x3 using the
paths: U?:_ol Si[X, X{z2ya2,3)+i73} (paths using A(2,3)). Subsequently, we cover the
arcs beginning at x, and the arcs ending at x4 for p=1,2,...,n (corresponding to all
paths using values A(p,p + 1) in A). So, ¢? forms a color class which covers exactly once
all arcs of K,*m Once c% is complete, we proceed in the same way to obtain c%, using, this

time, for p = 1,2, ..., n, the paths of U?:_(]l Si[X, X] obtained through the values A(p, p+2)

12
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to cover the arcs from x, and those to xp;2.
In general way, 1 < k < n -1, c% is constructed using the paths obtained through the

values A(p,p+ k), for p=1,2,...,n. More precisely, we define:
n
Ci = U SZ[X,X]{CEJ * ijrk}

Finally, we obtain the color classes {cj} U Uz;% {c},c},c, ¢}, c}} which give the optimal
value for the optical index: wy(K; ) = 5f + 1.
4.5 Optical index in case n =1 (mod 3)

This time a color class cannot be composed with only paths of length 3. For 1 <k <n —1, we
pack together a maximum number of paths of length 3 (i.e., from Dy) in classes 0%7 ci and 0‘27
which we supplement with paths of length 2 from c,lC (i.e., from Si). Consequently, c}ﬁ contains
the main part of paths of length 2 and the remaining paths of length 3, which is possible as soon
as n > 3. Precisely, for n > 3, we construct c(l) = m., and, for 1 < k <n — 1, we set:

(n-1)/3-1
C}z = |: U (Dk[Y, X]{*.Tczﬁrl(l) * 9”02”2(1)} @] 'D;C[)(7 Y}{xcjj‘“(l) * J?CEH:{(I) *}>:| ]
t=0

[Sk Y, Y]{xz: *}:|

(n—1)/3-1
C% = |: LJO (Dk [Y, XH*:EC]::Hz(I) * ICZH:&(D} U Dy [_X7 Y}{:I;C:H:s(l) * ‘/EC:H“i(l) *}):| ]
t=

{Sk Y Y{xzeo.m *}}

(n—1)/3-1
CZ = |: tL_JO (Dk[y7 X}{*[EC;ZHAS(D * wczz+4(1)} U DX, Y}{l’cgﬁ»zl(l) * Teais g *}):| U

{Sk Y, Y{xzczq) *}}

ol =

(sk[y, Y]) \ (skm V]{x21 %} USKY. V]{x 26, 1) #} USkY: V{* 2z *})] U

13
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|:Dk[K X]{*:L’l * ka(l)} @] Dk[X, Y]{ICL,(l) * xC’E(l) *}]

As previously, Figure 5 shows the representation on X of c%, where the vertices of X are
sorted along Cj. A shift of one vertex on the right (modulo n) of the sets of paths gives the

representation of cj, for the same k. And a shift of two vertices gives the representation of cj.

S, [Y.YT DLY.XI

DIXY] DYYX]

DIY.X]

DX.Y]

+

=

+

+

+

Figure 5: The representation on X of the color class c%, where the vertices of X are sorted along

C.

Figure 6 gives the representation on X of the color classes ci. Note that c}c is well defined

only if n > 3.

DJY.X]

[ ]
Yo Yo *oo Fco oo

DX Y] STY] S,YYT

+

Xers o) ot

SUY,YT SyIY,YT SiIV,Y]

+ + + + + + + +
[ ] [ [ [} [ J [ [ J [ J
x Yo Yo *oo Folo Xemsa) X ez Xeri

Figure 6: The representation on X of the color class c,l€7 where the vertices of X are sorted along

C.

Now, the exact optical index will be obtained by packing the remaining paths of length 1
and 2, as done previously: the classes cz for 0 < k < f are defined exactly as in the case n =0
(mod 3). Indeed, even if the definitions of classes c}C, c‘z, cﬁ and c;z have changed, the use of the
paths Do{M;} is still the same: for every k, 0 < k < f, we have Do{My} C ct Uc} Uctuc).

Finally, we obtain:

o If 1 < f < [n/2] —2, we(K},) =5f+3.

n,n

o If [n/2] —1< f<n—2, wp(K},)=5f+2.

n,n

14
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o And, if f=n—1, wy(K},) =5f + 1.

4.6 Optical index in case n =2 (mod 3)

We proceed as in case n = 1 (mod 3), except that this time we supplement each class of paths of
length 3 with two sets of paths from S;[Y,Y]. Conversely, the classes ci contain the remaining
paths of Sk[Y,Y] and 4 sets of paths of length 3 from Dy, provided that n > 6. Precisely, for

n > 6, we construct ¢§ = Sp[Y,Y], and for 1 <k <n — 1, we set:

(n—2)/3—1
ci = |: H} (Dk[Y, X}{*:L'ngrz(l) * x02'+3(1)} @] Dk[)(7 Y}{mCSHS(l) * ‘TCZ‘“(I) *}):l U

{m{*xl *} U Sk[Yv Y]{*xck(l) *}:|

(n-2)/3-1
Cé = |: LJO ('Dk [Y, XH*CEC;?HA](]) * Iczwr:s(l)} U Dy [AX—7 Y}{IC:Hs(l) * Icgue(l) *}>:| ]
t=

[Sk[K Y{xzcza)*} USKY, Y]{xzcaq) *}}
(n—2)/3-1
Cz = |: U (Dk [Y7 XH* {L'Cl:zHG(I) * (L'Cl:zt+7<1)} U Dy [X7 Y}{.’L'Clzzt+7(1> * wC:‘+8(1) *}>:| ]

[Sk[Y: Y{azoaay x} USKY, Yl{x 2oz *}}

(SIVYT)\ (Se¥s YT 1 5} U SV, VI, 1y %} U SKYV, YT {x ez ) #JU

=

SelV Y {x gy %} USHY Y]{xagny %} USHY. Yl{x 2 sy *})] U

Dy [Y, X]{* T x 'TCk.(l)} U Dy, [X, Y]{xcku) * IC’;‘:(l) *}U
DY, X x s (1) * weay} UD[X, Y {zoay * 2oz *}}

15
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Once again, we give in Figure 7 the representation on X of c% assuming that vertices of X
are sorted along C},. A shift of two vertices on the right side (modulo n) of the sets of paths gives
the representation of cﬁ, for the same k. And a shift of four vertices gives the representation of

5

cp-
5k YYy; S, [Y,Y] Q)k[Y,X] Q)k[X, Y/ i)k[Y,X] Q)k[Y,X] Q)k[X, Y/
+ + + + + + L + + +
° ° ° ° ° ° - ° ° °
X x C,(D x [o40)) x i) x clw x ci(1) x cr(1) x () x ol

Figure 7: The representation on X of the color class ci, where the vertices of X are sorted along

Ch.

Figure 8 gives the representation on X of the color classes c}ﬁ. Note that c,lC is well defined

only if n > 6.
DJY.X] DIXY] DJY.X] DIXY] S, IV,Y] SV YT S,IYY]
+ + + + + + + + +
[ ) [ ) [ ) [ ) [ ) [ ) [ ) [ )
*; Yew *ow Tao oo Yoo Fow X2y *eri

Figure 8: The representation on X of the color class c,l67 where the vertices of X are sorted along

C.

To conclude, the classes ¢ for 0 < k < f are defined exactly as in the cases n =0 (mod 3)
and n =1 (mod 3). Once again, the paths Do{M}.} are used as previously, and we obtain:

o If 1< f < [n/2] =2, wy(Kp,) = 5f +3.

o If [n/2] =1 < f<n—2, we(K},)=5f+2.

o And, if f=n—1, ws(K},) =5f+1.

16
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4.7 Remaining particular cases

As previously noted, five cases were not treated in the previous study: n = 2 because of the
non-existence of a Latin square of order 2, n = 4 and n = 6 due to the exception to Tillson’s
Theorem and n = 1 and n = 5, where the general techniques for n = 1 mod 3 and n = 2
mod 3 fail. For all of these cases, we provide routings that give, for every f, 0 < f <n —1,
wy(Ky,) = (K} ,). These cases illustrate the above-mentioned general method and are

studied in an appendix, available at: http://www.lirmm.fr/ bessy/publis.html.
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Appendix

A Routing in K7,

We are in the case n =1 (mod 3), but the general decomposition is valid for n > 3. However,
here, there is just one value of f to study: f = 0 and the direct routing immediately gives

wo(K7q) = mo(Kf ;) = 1.

. . «
B Routing in K3,
For n = 2, there is no idempotent Latin square of order 2, so we provide precisely the routing.

e For f =0, Dy forms a color class, and we choose the set of pairwise arc-disjoint paths of
length 2 given by Sy = {z1y172, T2y2T1, Y121Y2, Y222y1 } to form the second color class. So,

we obtain wo(K3,) = mo(K3 ) = 2.

e For f = 1, we define §1 = {x1y2x2, T2y171, Yy1T2Y2, Y2T1Y1 }, which contains pairwise arc-
disjoint paths, and D; = {2;yj11%ir1¥j, Yi¥j¥it12; © 1 < i@ < 2,1 < j < 2} (which
corresponds to usual definition of D;). The color classes are defined by: ¢1 = Sy, 2 = &1
and c(; ;) = Do{wiyj, yjoi} U Di{aiyj 4124195, YjTiv1yj12: ) for 1 <i<2and 1 <j <2.
Finally, we obtain w1 (K3,) = m1(K3,) = 6.

C Routing in Kj,

The case n = 4 is the first exception to Tillson’s Theorem of decomposition, so we define in
Figure 9 the partition of the arcs of K. Then, for the different values of f, the routings are

defined as previously, in Section 4.1.

e For f=0, f=1, and f =2, since C; and C5 are disjoint Hamiltonian circuits of K7}, the
routings are defined exactly as in the general case n = 1 (mod 3). So, in these cases, we

obtain wy(Kj) = mp(K}).

e For f = 3, we need to pack the paths of R3. We differently organize the arcs of Kj in
order to obtain a suitable decomposition of the paths. The scheme of the routing is given

Figure 10. The arcs are labeled with the name of the circuit C; they belong to.
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C, C, Cs

1 2 1 2 C, 1 2 1
o [ ]
C,
Cs c c Cs
o [ ]
4 3 Cc, 4 3 4 3  C, 4

Figure 10: New decomposition of the arcs of K in case f = 3.

Now, using these circuits, we route almost as in general case n =1 (mod 3). Using paths
of some Dy, and Si[Y,Y], each one of these new circuits gives three color classes. The
remaining paths, mainly from S;[X, X], are packed together to form the four remaining

colors.

More precisely, the first circuit provides the following classes:

c] = D] [Yv7 X]{*l‘] * 3?2} UD] [X Y]{Z‘Z * I3 *} US] [Y, Y]{*.T4 *}

Cy = Dl[Y, X}{*TIEQ * Tg} UD3[X, Y]{Tg * T *} USQ[Y, Y]{*,’I,’4 *}

Cc3 = DS[Y;X}{*‘E:; * .7}1} UDl[X,Y]{Zbl * T9 *} USg[Y,Y]{*l‘4*}

From the second circuit, we obtain:

cq = Dg[Y, X}{*:L’l * :L'3} UDl[X, Y]{Lg * :L‘4*} USl[Y7 Y]{*:L’g *}

cs = DY, X|[{*xx3 *x 24} UD1[X,Y[{zy * x1 %} US[Y, Y |{*xo *}

cg = Dy [Y, XH*I4 * J?l} @] 'D;;[X, Y]{Il * T3 *} @] Sg[Y, Y]{*Ig *}
From the third circuit, we obtain:

7 =DolY, X]{xx1 * 24} UD3[X,Y]{zy * zox} US1[Y, Y |{*z3}
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cg = Dg[Y, XH*{L’4 * :L'Q} UDZ[X, Y]{{LQ * T *} USQ[Y, Y]{*:L’g *}

Cg = DQ[Y, X]{*.TQ * .7}1} UDQ[X, Y]{.Tl * T4 *} USg[Y, Y]{*.’I}3 *}

Finally, we obtain from the fourth circuit:

c10 = Ds[Y, X|{,xg * 24} UD2[X,Y{xy * 3%} US1[Y,Y]|{*21 +}

Cc11 = DQ[Y,X]{*$4 * I5} UDQ[X, Y]{Id * IQ*} USQ[KY]{*Il *}

clp = DQ[Y',X]{*lg * {L’z} UD3[.X7 Y]{:L‘z * .’D4*} USg[Y7YH*.I'1 *}

The next class uses S[Y, Y] and the last matching of Dy:

C13 = S() [Y. Y]
To conclude, as previously in the case n = 0 (mod 3), we pack the paths of Uz:o S| X, X]
in three color classes:

4 3

e = J U SiX Xy * 2}

j=1i=0

4 3
as = (J | SilX X * w40}

j=1i=0

4 3
s = J U SilX, X{aj * 243}

j=1i=0
Finally, we obtain w3(Kj,) = m3(Kj ) = 16.

D Routing in K3

We are in the case n = 2 (mod 3), but the general decomposition is only valid for n > 6. Indeed,

for every k, we need six sets of Si[Y,Y] centered on six different vertices to complete the three

color classes constructed from the paths of Dy. In the case n = 5, we need to use paths from

different sets Sk[Y,Y] to complete the color classes constructed from a single set Dy.

To simplify the notation, we fix, in Figure 11, a decomposition of the arcs of KZ. Using this
decomposition we define the routing sets as previously, in Section 4.1.

Now, we detail how to pack the paths for all values of f.
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1 1 1 1
2@5 2@5 2 /i 5 2 i\ 5
3 4 3 4 3 4 3 4
C, C, C; C,

Figure 11: An explicit decomposition of the arcs of KZ.

e For f =0, as usual, we set ¢c§ = Dy, ¢§ = So[X, X] and ¢§ = Sy[Y,Y] and have wo(KZ5) =
mo(K55) = 3.

e For f =1, we use paths from Sy[Y, Y] and S1[Y, Y] to complete the colors obtained with
p p.

paths from D;. More precisely, we define for k =1,...,5:
le = D] [Yv7 X]{*l‘k * xk+l} U D] [X Y]{Jj]ﬁ,l * Tht2 *}U

SolV, Y [{xzpi3x} USIY, Y [{x zp1a %}

The remaining paths form the three color classes So[X, X|, $1[X, X]| and Do{ My, M1, M}
(Do{M3} and Do{ My} are respectively contained in Sy[Y,Y] and S1[Y,Y]). So, we obtain
wy(KE5) = mi(Kfs) = 8.

e For f = 2, the paths from D; are packed as previously: for k = 1,...,5 we use c’f. The

paths from Dy form color classes with paths from So[X, X] and S1[X, X]|. We define, for
k=1,...,5:

k5 = Do X, Y{xys * ye—1} UD2[Y, X{yk—1 * yr_2*}U

SolX, X{x yr—3 %} US1[X, X{*yp—ax}

The remaining paths form the two color classes S3[X, X| and S[Y, Y] (Do{ Mo}, Do{M:}
and Do{ Mz} are respectively contained in So[X, X], S$1[X, X] and S2[X, X]). So, we obtain
w2(K55) = ma(K55) = 12.

e For f = 3, we use the same method to pack the paths from D3 with paths from Sy[Y,Y]

and S3[Y,Y]. For the paths from D; and Dy, we use c%, e ,ci’ and c%, . ,cg and, for
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k=1,...,5, we define:
= Dg[Y, X]{*Ik * xk+2} UD3[X, Y]{l‘kJrg * $k+4*}U

SolV, Y {x w1 5} USs[Y, V]{xwppss*}

The remaining paths form the two color classes Sp[X, X] and S3[X, X] So, we obtain
w3 (K3 5) = m3(K55) = 17,

Finally, for f = 4, we have to change color classes. Indeed, this time, paths from D;
are packed with sets of type (Uf::o Sp| X, X|{z; x xm})U (Uﬁ:o SplX, X[{xp, * x;}) which
saturate exactly the in and out-neighborhood of the vertices xz; and z,,. Precisely, we

define, for k =1,...,5:

= Dl[Y7 X}{*{Lk * $k+1} U'Dl[X7 Y]{:L’;H_l * l’k+2*}U

4 4

U Sp[X, XH{wpy3 * Tpya}) U U SplX, XU @k va * Thy3})
p=0 p=0

= Do X, Y{*y * yp-1} UD2[Y, X[{yg—1 * yp—2x}U
4 4
(U SV Y Hurs * vea}) U Sl Y{yr—a * ys3})

p=0 p=0

=Ds[Y, X[{,zp * Tpt2} UDs[X, Y[{zhsa * Thya U
4 4

(U SplX, X{wrga * 2igs}) U (U SpIX XNarys * 2ra})
p=0 p=0

k= D[ X, Y{xy * ye—2} UD4[Y, X[{yk—2 * yr_a*}U
4 1

(U SV Yy * ye-sh) U (U SolY, Y{wn—s * yr—1})
p=0 p=0

The remaining paths are exactly the direct paths, Dg. So, we obtain ws (K3 5) = m4(K35) =
21.
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E Routing in K{g

The case n = 6 is the second exception to Tillson’s Theorem of decomposition, so we define in
Figure 12 the partition of the arcs of K§. Then, for the different values of f, the routings are
defined as previously, in Section 4.1.

1 1 1

2 6 2 6 2 6
3 5 3 5 3 5
4 4
C, C, C;
1 1
2 6 2 6
3 5 3 5
4 4
CA CS

Figure 12: The chosen decomposition of the arcs of K.

As all the circuits involved in this decomposition have length 3 or 6, the computation of
wy works exactly as in general case n = 0 (mod 3). Finally, we obtain, for all f = 0,...,5,

wy(Kgg) = ms(Kgg), which completes the proof of Theorem 4.
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2.6 A proof of Lehel’s Conjecture

Partitioning a graph into a cycle and an anticycle, a
proof of Lehel’s conjecture

Stéphane Bessy and Stéphan Thomassé*

Abstract
We prove that every graph G has a vertex partition into a cycle and an anticycle (a cycle in the
complement of (). Emptyset, singletons and edges are considered as cycles. This problem was posed
by Lehel and shown to be true for very large graphs by Luczak, Rodl and Szemerédi [7], and more
recently for large graphs by Allen [1].

Many questions deal with the existence of monochromatic paths and cycles in edge-colored complete
graphs. Erdés, Gydrfds and Pyber asked for instance in [3] if every coloring with k colors of the edges
of a complete graph admits a vertex partition into & monochromatic cycles. In a recent paper, Gyarfds,
Ruszinkd, Sdrkozy and Szemerédi [5] proved that O(klogk) cycles suffice to partition the vertices. This
question was also studied for other structures like complete bipartite graphs by Haxell [6]. One case
which received a particular attention was the case k = 2, where one would like to cover a complete graph
which edges are colored blue and red by two monochromatic cycles. A conjecture of Lehel, first cited
in [2], asserts that a blue and a red cycle partition the vertices, where emptyset, singletons and edges
are considered as cycles. This was proved for sufficiently large n by Luczak, Rodl and Szemerédi (7], and
more recently by Allen [1] with a better bound. Our goal is to completely answer Lehel’s conjecture.

Our starting point is the proof of Gyérféas of the existence of two such cycles covering the vertices and
intersecting on at most one vertex (see [4]). For this, he considered a longest path consisting of a red
path followed by a blue path. The nice fact is that such a path P is hamiltonian. Indeed, if a vertex v is
not covered, it must be joined in blue to the origin a of