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Abstract

HAPTIC collaborative tasks are actions performed jointly by several partners,
involving direct or indirect physical contact among them. A typical example of
such tasks are collaborative manipulation tasks, where the partners apply forces on
a same object to impose it a desired motion or bring it to a target location. Human
beings learn naturally how to perform such tasks with other human partners, but
implementing such behaviors on a robotic platform is challenging. When jointly
manipulating an object, the partners no longer act independently, and must negoti-

ate a common plan to perform the task.
To avoid conflicts among the partners’ intentions, the leader-follower model

defines a task leader, who imposes a task plan to the other partners, while the latter
act as follower and follow at best the intentions of the leader. This model has often
been used in physical Human-Robot Interaction (pHRI). Because robotic systems
have limited cognitive capabilities in comparison to human beings, a follower role
has generally been assigned to robotic systems to cooperate with human operators.
Recently, thanks to the increasing computational power embedded into the robots,
more and more initiative has been given to robotic assistants. In some recent works,
robots were sometimes even given the possibility to lead human operators.

In the context of physical tasks, where the partners are in direct or indirect
contact through an object and exchange mechanical energy, we believe that the
haptic channel is a favored and fast way for the partners to exchange information
about their intentions. Therefore, this thesis will focus on the kinesthetic aspects
of collaborative tasks. The long-term aim of the project is to endow humanoid
robots with the necessary haptic skills to perform collaborative tasks with a human
operator as a partner rather than as a helper. The work presented here proposes
solutions towards this direction.

In its first part, our contribution is to extend the leader-follower model to con-

tinuous, time-varying role distributions among the partners in the context of haptic
dyadic collaborative tasks. This model describes the behavior of each partner of
the dyad as a variable weighting between the two extreme leader and follower
behaviors. Our goal is to abstract the concept of role distribution from the im-
plementation of the underlying controllers, and to describe the behavior of dyads
using two independent functions that will shape the behavior of each partner in
term of leadership. We exemplify the use of our model in a virtual reality scenario
where a human operator manipulates an object in cooperation with a virtual robotic
system. We also explore possible strategies to exploit it. The problem we adress
is to define how the weighting between both behaviors can be adjusted automati-
cally on a robotic system, depending on various criteria such as constraints of the
robot or knowledge from human-human haptic interaction. Simulations and ex-
periments conducted on a humanoid robot are presented to illustrate the proposed
solutions. The results show that the extended leader-follower model can be applied
to realize collaborative tasks with a human operator while avoiding self-collision.
The model also encompasses the specialization phenomenon recently highlighted
in human-human collaborative haptic tasks.

We then propose to use a programming by demonstration method to teach col-



laborative skills to a robotic system. This method uses a probabilistic framework to
encode the characteristics of the task and reproduce it autonomously. This frame-
work is based on Gaussian Mixture Models and Gaussian Mixture Regression and
has been successfully applied to various stand-alone tasks. We remind the main
components of this framework and present its application to collaborative lifting
tasks between a humanoid robot and a human operator. Our first contribution is the
design of the experimental setup, based on a teleoperation system whith kinesthetic
feedback which allows the human teacher to demonstrate the task while taking into
account the constraints and sensor data of the robotic system. The main contribu-
tion, however, is the use of this methodology to attempt to assess the validity of our

extended leader-follower model, by highlighting smooth switching behaviors on
human partners during collaborative lifting tasks. The experimental data aquired
during reproductions of the task is analyzed within this perspective.

The second part of this thesis focuses on the control of humanoid robots in
the context of pHRI. We examine several paradigms of interaction: interaction be-
tween two remote human partners through a tele-presence system, direct interac-
tion between an autonomous humanoid robot and a human operator, and collabora-
tive transportation tasks between a human operator and a humanoid robot. Behind
these different paradigms of interaction lies one common problem: the generation
of whole-body motion and gait in response to external forces that arise from the
haptic interaction with a human operator. This thesis does not aim at tackling the
problem of gait generation at the mechanical and control level. We will rather use
state-of-the-art algorithms which do not consider external disturbances, and show
to what extent they can be used to generate complex and intuitive collaborative
behaviors. Our contributions in this part are thus to integrate impedance control
and gait generation within an existing control architecture in a generic and flexible
way in order to (i) use the resulting controller in various contexts, (ii) demonstrate

how the basic principles of impedance control can be implemented on a complex

platform biped humanoid robot while exploiting all the capabilities of such plat-
forms and (iii), highlight the limitations of the passivity-based approaches often
used in pHRI, and thereby justify further research in the field of pHRI. The work
presented in this part has been integrated within a complex demonstrator where the
robot walks in a teleoperated manner and performs autonomously a collaborative
transportation task with a human operator.
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ONE of the features of human beings is their ability to collaborate to per-
form tasks. Collaborative tasks range from searching an object, piloting a plane
to handing over objects, dancing, assembly tasks or daily bulky or heavy object
transportation, etc. In this work, we are interested by tasks which involve physical
contacts between two partners, typically manipulation tasks where more than one
agent act on an object of interest to the task. More specifically, our main target is
to achieve a similar task on virtual or robotic avatars such as humanoids (virtual
or robotic ones). In the long term, we aim at enhancing robotic or virtual avatars
with physical interaction cognition so that they become more human-like partners
in physical collaborative tasks.
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In this chapter, we introduce haptic collaborative tasks and present different
problems that must be solved to give a robotic system the ability to perform such
tasks jointly with a human partner. We introduce the leader-follower model, which
has been used (often implicitly) in most research works in the field of physi-
cal Human-Robot-Interaction (pHRI). We also present some knowledge gathered
about human-human behavior in physical collaborative tasks. This knowledge
gives insight on how to partially answer one of the problems that characterizes
collaborative tasks, namely load sharing. Since most works in pHRI are based on
impedance control, we recall its fundamentals and highlight the reason for its use
in pHRI. Finally, a summary of the previous works in the field is given, showing a
trend to give more and more responsibility to the robotic partners for the realiza-
tion of collaborative tasks, which culminates in assigning leader roles to the robot,
which is the keystone of next chapter.
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1.1 Introduction

1.1.1 Humanoid robots

Humanoid robots are robotic platforms whose overall shape is similar to the hu-
man body: it generally features a torso, two arms, and a head. Some platforms
consist in a humanoid torso mounted on a mobile base, such as the ARMAR hu-
manoid robot [4], and other are bipeds, such as Honda’s ASIMO, or robots from
the HRP series. In this thesis, we will implicitly refer to this second category when
mentioning humanoid robots.

Biped humanoid robots are redundant, free-floating robots, which require ap-
propriate motion control strategies to synchronize all the parts of their body to per-
form different tasks. As walking systems, humanoid robots have a wide workspace,
but can fall (lose their static or dynamic balance). Static walking refers to gait
where the robot is constantly in static equilibrium. This condition is not necessary
to walk without falling: the ZMP criterion [114] has been widely used as a basis
for dynamic walking.

1.1.2 Haptic collaborative tasks

The goal of this work is to study how a humanoid robot can be endowed with the
ability to perform haptic collaborative tasks with a human operator. The redun-
dancy that characterizes humanoid robots and their shape make them polyvalent
tools that can potentially exert various physical works (pick up and manipulate ob-
jects, repair vehicles, assembly tasks) in various environments (homes, offices or
hostile environments). Contrary to industrial robots, humanoid robots are expected
to spread in everyday’s environment such as homes and offices. Thus, humanoid
robots must be able to operate in the same workspace as humans, and are likely
to interact with them. One paradigm of interaction takes form through physical
contact between the agents, and occurs in different contexts, such as involuntary
contact, pushing aside, handshaking, dancing, transporting objects and so on.

Situations where the dynamics of a human and a robot are coupled by direct
contact or contact through an object, are referred to as physical Human-Robot In-

teraction, or pHRI. We will focus on the case where the contact is intentional, and
established by the human and robotic partners to perform a collaborative task. In
such configurations, we believe that haptic cues play an important role, hence we
will call these tasks haptic collaborative tasks.

More precisely, we will study dyadic collaborative manipulation tasks. A col-
laborative manipulation task is an instance of haptic collaboration whose goal is
to modify the position and orientation of an object with time, by applying forces
on the object. We look at the case where two partners participate to the task, and
aim at the realization of such tasks by a human operator and a humanoid robot. An
instance of collaborative manipulation task is shown on figure 1.1.

To achieve a task such as the one depicted on figure 1.1, a mutual adaptation

process must take place between the partners, at different levels, which are detailed
below.

Dynamic interaction

The dynamics of the human operator and the humanoid are coupled by contact
with a common object. This must somehow be taken into account in their con-
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Figure 1.1 – Collaborative transportation task between a human and a humanoid robot.

trol strategies: their motions must be coordinated to keep contact with the object
and maintain interaction forces at a reasonable level while moving towards a goal
configuration. When both systems are coupled, they also have to take into account
their respective constraints. As we are considering bipeds, one very important
constraint is keeping dynamic balance. The mechanical power flow between the
partners must be appropriately absorbed or transformed into kinetic energy in order
not to fall. One way to do this is to perform steps.

Load sharing

The goal of collaborating to perform a manipulation task is to share the task load.
For simple tasks, this mainly consists of sharing the physical load, i.e. by sharing
the inertial load and countering the effects of friction or any other dissipative ef-
fect. For more complex tasks, this can also imply sharing a cognitive load. When
performing a collaborative manipulation task, the partners have to agree on a load
sharing strategy so as to act in a complementary way.

We can imagine several ways to share the cognitive load during a task, by
decomposing the task into subtasks. For example, when transporting a table upon
which a vase is standing, one partner can ensure a desired trajectory of the table in
the horizontal plane, while the other can adjust the altitude of the table and ensure
it is kept horizontal. There is no guarantee, however, that this decomposition will
be natural for a human operator. Hence, to devise cognitive load sharing strategies
for a robotic partner, we must first understand how humans themselves decompose
tasks, if they do so.

The problem of sharing the physical load is unfortunately not simpler. In order
to move an object, only a 6-dimensional force/torque vector is necessary. When
two partners move the same object, they form a redundant system, as an infinite
set of pairs of force vectors can be applied to result in the same motion. The set of
possibilities is only limited by the constraints of each partner, namely, their balance
and their muscular force. Here also, the study of human-human collaboration can
provide useful information.

Planning

When two humans perform a collaborative manipulation task, they both might have
their own initial plan. However, the object will finally follow only one trajectory
to move from its initial to its final configuration. This means that either one of the
partner has to totally ignore her/his initial plan, or that the plans of both partners
must be adapted to result in a final, common plan. Somehow, we can say that
collaborative tasks must be negotiated by the partners.
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1.1.3 Interaction control and the leader-follower model

Previous works in pHRI are articulated around two concepts: interaction control,
and the leader-follower model. Interaction control is an approach of robot control
that addresses the problem of dynamic interaction between robots and their en-
vironment. Whereas servo control aims at tracking reference signals, interaction
control places interactive behavior above command following in the design crite-
ria [15]. A well-known instance of interaction is impedance control [44], which
has been used as a basis for a great amount of research in pHRI [3,64,70,86,110].

Besides impedance control, a common model use in pHRI is the leader-
follower model. According to this model, one agent (the leader) has knowledge
about the tasks and imposes his plan to his partners. Generally, the robot is as-
signed a follower role. While most works imposed a passive behavior to the robot,
some researchers argued that passive following increased the necessary work to be
performed by the human operator in order to move the object, since the robot is
dissipating part of it [16, 70]. They proposed active following schemes for point-
to-point tasks, where the robot predicts the human motion, based on the minimum
jerk model [31]. In such schemes, the limit between the leader and the follower
roles becomes fuzzier. When the robot fails to estimate the human intentions, the
human partner can adapt to the resulting motion of the robot instead of sticking to
his or her original intentions. Hence, active following does not mean the absence
of mutual adaptation.

Even if they can actively follow human operators, robotic systems have gen-
erally not been programmed to have their own task plan and negotiate it with the
human operator: the human partner is almost always leading the task. We believe
that such a binary, fixed role distribution does not reflect the strategies adopted by
two humans when they jointly perform physical tasks. We propose to extend the

leader-follower model to a continuous, time-varying distribution between the two

roles. This idea is formalized in the next chapter and is the keystone of the first
part of this thesis.

1.1.4 Human-human collaboration

To implement efficient collaborative behaviors on a robotic system, it can be in-
teresting to understand how humans themselves perform collaborative tasks. The
study in [75] shows that the minimum jerk model does not hold for collaborative
point-to-point tasks. In this study, an object is moved from one place to another,
in two conditions: by one partner alone, or by two partners. When the task was
performed by two partners, the mass of the object was doubled. The comparison
between these two conditions shows that the object reaches higher altitudes when
manipulated by two partners. However, the velocity profiles obtained in the case
where two partners manipulate the object was close to the average between the
velocity profiles obtained with each partner alone.

In his thesis, Kyle Reed thoroughly studies the state-of-the-art in human-
human physical interaction and in the related fields: human motion control in free
space, human-robot physical interaction and tele-operation [90]. Kyle Reed then
studies a one degree-of-freedom symmetrical task, where two partners turn a crank
to reach a common target angle. He noticed, among others, a difference force
(which produces no motion) in the steady state, when partners have reached the
target and stop. He speculates that this contraction could help partners stabilize the
system or feel each other. He also validated Fitt’s law [30] for dyads, though he
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pointed out that Fitt’s law did not apply when both partners were given conflicting
target positions [92].

His major result is highlighting a phenomenon he named specialization. Ex-
perimental results showed that after several trials, the force patterns applied by
the participants change so that each partner contributes to a subtask and hinders
the other subtasks. During his experiments, most dyads adopted an accelera-
tion/deceleration specialization: one partner will accelerate the crank at the begin-
ning of the motion, while the other one will decelerate it during the second part of
the movement. Other dyads, though eventually adopted a left/right specialization:
one partner contributed to motions in one direction and vice-versa. The hypothetic
reasons for specialization are the resolution of the redundancy and increase per-
formance by focusing on one subtask only. He could yet not determine how the
humans specialize (except that it establishes via the haptic channel), neither who
specializes for which subtask, nor why. It is essential to underline that the task he
studied was symmetrical, thus it did not suggest any specialization a priori.

Reed tried reproducing the performance of human-human dyads with human-
robot dyads. In his experiments, the robot was applying a “specialized” force
profile that was obtained by averaging the profiles of a human subject. Though
the setup did suggest a (complementary) specialization for the human, the latter
kept an unspecialized force profile during all the trials. The mechanism of com-
munication through which specialization emerges is thus not characterized, and yet
not understood. Reed suggests that the human subjects did not specialize because
the robot was specialized from the first trials. He cites the work of Corteville et

al. [16], where a human adapted his motion according to the behavior of the robot.
In these experiments, the robot was also adapting to the motion of the human. This
adaptation of the robot to the human is maybe a necessary process for the human
to also adapt his force profile.

Specialization could partly answer the problem of physical load sharing, as it
can be seen as a way to resolve redundancy. The question is yet not totally solved,
since the works just cited are purely descriptive. We do not know how to generate

the described behavior, given the fact that what is described is a joint behavior

of the robotic and human partners, and we can only control the robotic partner.
However, from the works presented in this paragraph, we can extract the following
information:

⊲ the output behavior of a dyad as a whole can be (but is not always!) an
average of the behaviors of the individuals [75];

⊲ the physical load can be shared by specializing for subtasks [90];

⊲ specialization is an emerging phenomenon, which means that any attempt to
model it should take into account “degrees” of specialization (unspecialized,
hardly specialized, totally specialized).

Specialization will be mentioned again in the next chapter, where it is related
with our continuous, time-varying, role distribution hypothesis. The model pro-
posed in the next chapter encompasses the three concluding remarks of this para-
graph. The remainder of this chapter recalls the fundamentals about impedance
control, and shows why it is a relevant control scheme for haptic collaboration.
Then, a critical review of previous works in pHRI is presented and we evaluate
to what extent the problem of physical collaboration is solved (or unsolved). We
conclude this chapter by summarizing the main ideas defended in this thesis.
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1.2 Impedance control

When a human operator interacts with a robotic system, it is necessary to limit, to
some extent, the interaction forces to prevent injuries of the human partner. Con-
trolling forces is precisely the purpose of force control. However, among force
controllers, two categories can be distinguished: explicit force controllers, and
implicit force controllers. Controllers of the first category follow the design spec-
ifications of servo controllers, which focus on tracking a signal, treating the en-
vironment as a source of disturbances. Impedance control belongs to the second
category, but restricting impedance control to a form of force control is restrictive.
Impedance control actually falls under interaction control, which places interac-
tive behavior above command following in the design specifications [15]. This
section first recalls some facts about force control, and then goes into the details
about impedance control, to highlight the aspects that make impedance control an
appropriate control strategy for pHRI.

1.2.1 Force control and compliance control

Motion control consists in sending commands to the robot so that a given point
on the robot tracks a desired motion. Motion control is efficient for robotic tasks
which do not involve interaction with the environment, such as spray-painting, or
any task which only requires trajectory tracking in free space. When the motion
of the effector is constrained, however, there exist directions along which the mo-
tion can no longer be controlled and is imposed by the environment. On these
directions, the interaction force resulting from the environment constraint can be
controlled.

Force control consists in controlling, directly or indirectly, the forces ap-
plied by the manipulator on the environment. Force control appeared in the
early 1970s [49, 50, 100], and was formalized mainly in the second half of the
decade [17, 74, 82, 94, 117]. Force control and position control are often jointly
applied, in complementary subspaces [17, 74]. Force control is applied along the
constrained direction of the manipulator, and position control is applied on the
unconstrained ones.

Two different issues are actually considered in what is called “force control”.
The first one, sometimes referred to as “explicit force control” consists of track-

ing a desired interaction force between a manipulator and its environment. This
can be done in an open-loop fashion, based on the dynamic model of the manipu-
lator and the environment, but more precision can be achieved by closing the loop
around force measurements. Figure 1.2 shows a basic structure for closed-loop
force control. Note that force controllers can be built around inner position or
velocity control loops (see e.g. [58]).

The second one is concerned with positioning the manipulator while limiting
to some extent the interaction forces. Stiffness, damping and impedance control
fall under this category. This objective can be achieved by defining a relation
between the position error and the contact force. Since the basic idea is to generate
motions that comply to the environmental constraints, this strategy can be termed
compliance control [44].

The first approach belongs to servo control, and as such does not take into
account the dynamics of interaction between the manipulator and the environment.
This means that if the robot interacts with a human operator, or with another robot,



8 Chapter 1. Haptic interaction: a survey

Figure 1.2 – Structure of a closed-loop force servo controller. C is a compensator, G is

a feedforward gain, D is a function applied to force measurements (typically, low-pass

filtering), and P is the plant.

these will be considered as sources of disturbances and the actions they will take
will be rejected by the controller. As will be shown in the remainder of this section,
the second approach is more appropriate for pHRI, especially for manipulation
tasks, which are formulated in terms of desired motions rather than desired forces.

A complete review of the field of force control, providing implementation
details, can be found in [69]. The next paragraph gives further details about
impedance control and briefly presents two categories of implementation of
impedance controllers.

1.2.2 Impedance control

Impedance control [44] can be seen as a generalization of stiffness and damping
control. The main point of impedance control is that it defines a physically con-
sistent framework for the control of robotic systems that interact with their envi-
ronment. This framework has been extended in [15], where the difference between
servo control and interaction control are clearly stated in terms of objectives, re-
sulting in two different approaches to design controllers: in interaction control, the
so-called interactive behavior has more importance than command following.

Intuition

Position and force control are appropriate when the environment of the manipula-
tor is perfectly modeled and can be treated as kinematic constraints on the robot’s
motion. Consider a robot with a torus end-effector sliding along a bar without fric-
tion: along the bar, the motion of the robot is not constrained, but in the orthogonal
directions, no motion is possible. However, forces can be applied along these di-
rections. Assuming the position of the bar is exactly known, hybrid controllers [88]
will allow to perform any desired motion along the bar and to apply any desired
force in the orthogonal directions. The only limitation to the motions and forces
come from the capabilities of the robot itself. Note, also, that no mechanical power
flows between the robot and its environment during the task.

Let us consider the same environment, where this time dynamic constraints
are imposed to the manipulator: the manipulator is coupled to a mass, which can
only slide along the bar, subject to viscous friction (see figure 1.3). This task
corresponds to a one degree-of-freedom manipulation task, except that the contact
between the robot and the object to be manipulated (the mass) is bilateral.
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Figure 1.3 – Robot end-effector (represented by a torus) moving along a bar. The torus is

coupled to a mass which moves along the bar and is subject to viscous friction.

Because the end-effector of the robot is coupled to the mass, its motion is
no longer unconstrained. The motion of the end-effector will be constrained by
the dynamic equations that govern the motion of the mass the robot is coupled
to. Because of this coupling, on the same direction (along the bar), the robot will
experience both force and motion: in other terms, mechanical power will flow
between the robot and its environment.

If the mass and the damping it is subject to are significant, the robot will be
able to accelerate the object arbitrarily or attain arbitrary high velocities only at the
expense of a significant energy. The highest the mass is, the more energy will be
necessary for high frequency motions. When the damping increases, lower veloc-
ities can be attained for the same mechanical power provided by the robot. This
means that if the robot acts as a position source (which would the target behavior
of a position controlled system), then to avoid too high energy flows, the desired
motion of the system should be adapted. If this motion is computed off-line by a
planner, this will severely limit the applicability of the system (each trajectory will
be compatible with only a range of masses and dampings), or will require ad-hoc
trajectory adaptations for new environments. In environments with uncertainties
or variability, this approach is impractical.

To introduce impedance control as a solution to this power flow problem, let us
use electrical analogies. Instead of considering force and motion, we will consider
voltage and current. Intuitively, motion control with a servo approach aims at mak-
ing the manipulator behave as a motion source. At steady state, this motion can be
countered by resistive elements in the environment like dampers, whose electrical
equivalent are resistors. Hence, a position controlled manipulator performing a
manipulation task at steady state can be modelled by the electrical network shown
on fig 1.4.

For very resistive environments, the power flow between the manipulator and
the environment is P=R i2d and will increase with the resistance of the environment
(i.e. as the environment admittance decreases to zero) for arbitrarily high desired
currents id . One way to control the power flow between the manipulator and the
environment is to add a second resistor in parallel with the environment, as shown
in figure 1.5.

In figure 1.5, the manipulator no longer appears as a current (or motion) source,
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Figure 1.4 – Electrical equivalent of a manipulation task at steady state performed by a

motion controlled manipulator.

Figure 1.5 – Electrical equivalent of a manipulation task at steady state performed by an

impedance controlled manipulator.

but as a voltage source, where the voltage depends on the difference between
the desired current and the current flowing through the environment. The volt-
age across the environment terminals and the power flow between the manipulator
and the environment are given by:

ud = Rd (id − i)

P =
R2

d (id − i)2

R

(1.1)

where Rd is a controller gain. Now, if R increases, the network is transformed into
the circuit of figure 1.4, except that this time, the resistance is Rd and is set by the
designer. Hence, in case of very resistive environments, the power flow will be
bound by Rd i2d . When the resistance of the environment becomes close to zero,
then i = id , ud = 0 and no power flows through the environment. This degenerated
case corresponds to unconstrained motion, and the equivalent network is no longer
feasible, since current flows are ideal elements. The important point is that the
power flow between the manipulator and the environment will tend to zero as the
environment resistance decreases, and be bounded by Rd i2d as the environment
resistance increases. Of course, the power flow can still grow to infinity for a given
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value of Rd for arbitrarily large desired currents id , but the bounds on the power
flow now entirely depends on the manipulator control system and do not depend
on the environment. Moreover, the resistance parameter Rd can be adjusted to
allow for higher desired velocities for a given maximum power flow, at the cost, of
course, of potentially larger current errors i0 = id − i.

This electrical analogy illustrates the purpose of impedance control. In
impedance control, the target system is not a pure position source, but a position
source with a target dynamic response to motion errors. The difference with pure
motion control is that the primary goal is not to reject all disturbances and track a
desired motion. The primary goal is the dynamics of the response to the motion
errors. Command following comes after, and will be ensured when no disturbance
occurs. One of the effects is that the mechanical power flow between the manipu-
lator and the environment is somehow controlled, which is an important criterion
to avoid physical damage of the manipulator or the manipulated object.

One can argue that motion control would in reality have exactly the same struc-
ture as impedance control. In our electrical network on figure 1.5, by using very
high values for Rd , we tend to make our manipulator behave as a pure current
source. Likewise, in control theory, position controllers are often implemented
using Proportional-Derivative (PD) controllers, which corresponds to coupling the
object to the desired position using a virtual spring-damper system, which is a com-
mon target dynamics in impedance control, as will be seen further in this section.
Stated like this, there seems to be no difference in the structure of a PD posi-
tion controller and an impedance controller. However, the goal of position control
is to make the manipulator behave as a motion source, which is not the case in
impedance control. On figure 1.5, position control will want very high values for
Rd , while this is generally not the case with impedance control.

Note that the general case of impedance control considers any form of
impedance. Our electrical example contained only resistors, which are the electri-
cal equivalent of dampers. More general impedances could have been considered
by including inductances (the equivalent of masses) and capacitors (the equivalent
of mechanical springs). We now briefly present the history of impedance control,
admittance control, and, more generally, interaction control.

Impedance control: a history

Impedance control was proposed by Neville Hogan [44] as an alternative to pure
position or force control and hybrid control. As Hogan pointed out, neither position
nor force control allows the control of the mechanical energy exchanged between
a robotic system and its environment. Since the mechanical energy transfer at the
interaction port depends on both the velocity and force variables, he proposed to
impose a relation between them.

The approach proposed by Hogan consists of imposing a dynamic behavior
to the system. Thus, instead of tracking either the interaction force or velocity
of the robot’s tool tip, a dynamic relation between the two variables is enforced.
This allows the control of the mechanical power flow between the robot and its
environment, which is defined by the product of force and velocity. Hogan also
postulates that no controller can make the robot manipulator appear as anything
but a physical system to the environment. As a result, the manipulator can not
impose both a velocity and a force to the environment at the interaction port, but
only one of them. Two categories of systems can be distinguished: impedances,
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which input flow and output effort, and admittances, which input effort and output
flow. As the environment of a robotic manipulator arm is mainly composed of
inertial loads, which are admittances, Hogan states that, to be compatible with
its environment, the manipulator should be controlled to appear as an impedance,
hence the term “impedance control”.

Citing the case of robots jointly performing a task, Colgate suggests that the
control of systems that dynamically interact with their environment requires a dif-
ferent approach from servo control [15]. In servo control, the environment of the
control system is generally seen as a source of disturbances to be rejected. This
approach is not suitable when the environment is composed of other robots or hu-
man operators. Compared to servo control, Colgate adds coupled stability and
interactive behavior as design criteria for interaction control. Coupled stability is
obtained if the system remains stable when coupled to any environment. Interac-
tive behavior focuses on the dynamics of the overall system in interaction with its
environment, whereas in servo control, the stress is put on tracking a desired trajec-
tory for one single variable (in the Single Input, Single Output case). Colgate also
derives a necessary and sufficient condition for linear systems to be stably coupled
to passive environment: the controlled system must exhibit a positive real driving
point impedance. This result is extended to active system under the condition that
the system and the state-dependant control together are passive, and the active part
is state-independent. Finally, a systematic approach is proposed to design inter-
action controllers to obtain both stable coupling and good performance (namely,
command following and interactive behavior). The coupled stability constraint
relies on the concept of “worst environment”, which are the most destabilizing.

Whereas Hogan states that manipulator arms physically interacting with their
environment should behave as impedances, a common control scheme for robots
physically interacting with their environment consists in taking into account force
feedback within the position control loop. This corresponds to admittance control.
Admittance controllers are easily built upon low level position controllers by com-
puting the position command depending on the force feedback. They are suitable
on platforms with high inertia and friction. More specifically, dry friction tends
to decrease the performance of force controllers. This problem can be overcome
by using a high-gain position controller; the admittance controller then computes
position commands from a force signal, which has to be measured by a sensor.
Admittance controller can be implemented on devices with a large workspace and
can display high stiffnesses, but generally have a reduced bandwidth compared to
impedance controllers [112]. Note that when the robot is directly interacting with
a human (such as haptic interfaces), if we consider the human as an impedance,
then the robot can be admittance controlled without breaking causality.

It has been suggested [57] that “impedance control” would be an inappropriate
term to refer to the control strategy proposed by Hogan. The main argument is that
the input of the controller is a desired position, and impedance controllers simply
define a dynamical relationship between the force exerted on the environment and
the position error. Hence, impedance control would fall under position control,
and since the generated motion is compliant, the term “compliant motion control”
is proposed. This is merely a matter of vocabulary, nevertheless it is important
to state that the approach adopted in impedance control and position control are
totally different. Impedance control does not belong to servo control, whereas
position control traditionally does. In position control, the environment is seen as
a source of disturbances to be rejected, and command following has a high priority
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in the design criteria [15]. Impedance control is rather focused on the dynamic
behavior of the overall system when the environment and manipulator dynamics
are coupled (as in contact situations) [44, 47]. Command following has a lower
priority with respect to interactive behavior [15].

To conclude about this vocabulary issue, let us say that in impedance control
(or compliant motion control), finally, neither the force nor the position are con-
trolled, since they both depend on the environment the manipulator interacts with.
The position will only be controlled in the free space, while no force command
is explicitly given to the controller. The only defined entity is the manipulator
impedance, i.e. its force response to motion inputs. Thus, we feel that “impedance
control” is as valid as a term as “compliant motion control”, keeping in mind that
this control strategy does not belong to servo control anyway.

Impedance control implementations

Roughly speaking, impedance control consists in defining a target dynamics and
controlling the manipulator to track this desired dynamics. A usual target dynamic
behavior is to make the end-effector behave as a linear mass-spring-damper system,
such as in figure 1.6.

Figure 1.6 – Target mass-spring-damper system. M is the target mass, B the target damp-

ing, K the target stiffness, x0 is the virtual compliance center and x is the position of the

mass, which corresponds to the position of the end-effector.

The target system dynamics is described by the following equation:

M ẍ = f+B (ẋ0 − ẋ)+K (x0 −x) (1.2)

where M, B, K are the target mass, damping and stiffness of the system, x is the
position of the end-effector of the manipulator, x0 is the equilibrium position, and
f is the external force applied on the end-effector.

The initial implementations proposed by Hogan [45, 46] target torque con-
trolled manipulators, i.e. manipulators that are controlled by specifying desired
actuator torques. On such manipulators, impedance control can be implemented
using resolved acceleration control. If force sensing is not available, but the dy-
namic model of the manipulator is known, arbitrary damping and stiffness coeffi-
cients can be chosen, but the manipulator inertia can not be changed: that is, the
target mass M must be the actual apparent mass of the manipulator, obtained by
projecting the inertia matrix in the operational space. If the dynamic model of the
manipulator is not available, the target dynamics can be approximated, if the tar-
get inertia is the actual manipulator inertia, by specifying the following actuator
torques:

τa = J(q)T (B (ẋ0 − ẋ)+K (x0 −x)) (1.3)

where J(q) is the manipulator jacobian, and q is the configuration vector of the
manipulator.
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Many robotic platforms cannot be controlled by specifying desired torques, but
by specifying desired positions or velocities. In this case, the impedance controller
is built around the inner position or velocity control loop. This means that the
output of the controller is no longer a force, but a motion. For this reason, the
control scheme might be considered as an “admittance controller”. However, since
we consider a nominal position, which will be tracked whenever the manipulator
is in free space, we can still consider motions as the input of the overall control
system. Hence, the term “position based impedance control” can be found in the
literature. We will use either of them in this thesis.

Position-based impedance controllers require force sensing devices. The
sensed force is integrated using equation (1.2), to obtain a reference velocity ẋ
and/or a reference position x to send to the inner position controller. Figure 1.7
shows the structure of a position-based impedance controller.

Figure 1.7 – Position-based impedance controller. A is the target impedance, C is a position

controller, and P is the plant.

Position based impedance controllers offer the advantage of a certain simplicity
of implementation, since the manipulator dynamics are masked behind the inner
motion control loop. However, they loose the advantage of passive compliance,
which is a significant on redundant manipulators. Indeed, the output of a position-
based impedance controller is a vector of joint positions to be sent to an inner
high-gain joint position controller. This means that the posture of the robot will
be fixed for a given sensed force, even if the manipulator is redundant. On the
other hand, torque-based impedance controllers produce an output torque as a ref-
erence for each joint of the manipulator. It is then possible for an operator to
modify the posture of a redundant robot by applying forces at arbitrary points of
the robot; the posture of the robot will be modified according to the dynamics of
the manipulator under the constraint that the end-point dynamic behavior imposed
by the impedance controller is unchanged. Position-based impedance controllers
also suffer from other drawbacks: the performance of such controllers is depen-
dant on the quality of the inner position control loop [67]. Finally, time delays in
the control law computation, and due to the transmission dynamics tend to have a
greater impact on contact instability.

1.2.3 Contact instability

Stability (having a bounded output in response to bounded inputs) is the most im-
portant design criteria for a controller. Among the robotic tasks, those that involve
physical contact with the environment are prone to instability. In position and
force control, these instabilities can arise because these approaches focus on the
regulation of one variable and neglect the dynamics of interaction [46]. However,
the dynamics of the robotic system before and after physical contact dramatically
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change. Moreover, the disturbances can no longer be considered as independent
from the controlled system since the robot is dynamically interacting with its en-
vironment [47]. Actually, there are well-known sources of contact instability that
limit the efficiency of any force feedback controller, including impedance con-
trollers: the most critical ones are maybe the non-collocation of sensors and ac-
tuators, and the transmission dynamics [14, 22]. Colgate highlighted a fundamen-
tal limitation to the performance of force feedback controllers, resulting from the
non-collocation of actuators and sensors: the apparent end-point inertia of a sys-
tem controlled with force feedback can not be reduced by more than half without
risking instability when interacting with the environment. Other researchers stud-
ied the stability properties of different implementations of impedance control [67].
Position-based impedance control (or admittance control) appears to have different
stability boundaries from torque-based control. While the stability of the latter is
only affected by time delay, the former is also affected by the performance of the
inner position control loop. These effects decrease as the position control gains
increase. These results are consistent with [14, 22] since the non-collocation of
sensors and actuators causes time delay.

1.2.4 Conclusion

This section has recalled some fundamental aspects of impedance control. After
having shown how it distinguishes from explicit force control schemes, a simple
example has been introduced to show how impedance control can act as an energy
regulator. The history of impedance control has been quickly presented, as well
as the two classes of implementation of impedance controllers. Finally, some ele-
ments about the stability of impedance controllers have been briefly mentioned, to
complete the introduction.

Impedance control has played an essential role in the history of pHRI. This
is partly due to the fact that impedance control is suitable for manipulation tasks,
which collaborative manipulation tasks are a subset of. But more importantly, the
key feature of impedance control is that it regulates the mechanical power flow
between the robot and the environment during physical interactions, which is safe
if the environment the robot interacts with is another human. Finally, impedance
control is a way to make a robot comply to external forces, which is one way to
implement follower robots, as will be shown in the next section.

1.3 Impedance control and collaborative tasks

Impedance control has been proposed as way to regulate the mechanical energy ex-
changed between a robot and its environment. Considering human-robot collabo-
rative tasks as an exchange of mechanical energy between the partners, impedance
control seems to be an appropriate basis to design control schemes that allow a
robot to perform physical tasks jointly with a human partner. We will show in this
section why impedance control is relevant in the context of collaborative tasks.

However, we will also show that, the general problem of pHRI cannot be solved
by impedance control on its own 1.3.3. Impedance control tells us to enforce a re-
lationship between force and motion, but it does not say, in general, how they must
be related. Impedance controllers have parameters that can vary, and can take a
virtual position input. It is not sufficient just to define parameters and trajecto-
ries offline: even if impedance control will guarantee that the mechanical energy
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flow between the robot and its environment will be controlled in case of disagree-
ment between the partners, it does not guarantee that the task can be accomplished.
Impedance control provides a robust basis to address the low-level aspects of phys-
ical collaborative tasks, but leaves a blank page in the chapter on high-level control
and communication aspects induced by such tasks between the partners.

1.3.1 Why impedance control?

We place ourselves in the context of a physical collaborative task, where two part-
ners jointly manipulate an object. We will consider a simple instance of a collab-
orative manipulation task, depicted on figure 1.8. Both partners are considered as
force sources. The forces fh (h for human) and fr (r for robot) applied to the object
result in an acceleration ẍ. The motion of the object is described by the equation:

ẍ = M−1 ( fh + fr) (1.4)

where M is the mass of the object.

Figure 1.8 – One dof point-to-point task.

The goal of the task is to bring the object from a location xi to a location x f .
The collaborative motion problem can be stated as: given these locations, what
forces should the partners exert on the object to reach the target location?

One solution in general to bring an object to a desired location is position con-
trol. To join xi to x f , a desired trajectory xd(t) can be computed, for instance a
trajectory minimizing jerk, as seems to be generally used by humans [31]. The
position of the object is then “servoed” to track xd(t). While this is easily per-
formed when one agent acts on the object, it is no longer a suitable approach when
considering joint manipulation. If we extend this approach to the case where two
agents act on the object, we have two desired trajectories, xh

d(t) and xr
d(t), one for

each agent. However, both agents cannot act as position sources, since in the end,
the object can have only one position. This means that position control would be
possible only in the very improbable case where both partners have exactly the
same desired trajectory xd(t) = xh

d(t) = xr
d(t). If both partners attempt to behave

as position sources, conflicts in the desired trajectories will result in significant

interaction forces.
On the same degree of freedom, there can be only one pure position source.

This means that only one agent can impose a desired trajectory, hence only one
agent should be position controlled. But in this case, what force should the other
partner apply? Any force applied that disturbs the desired motion of the position
controlled partner will be rejected: the second partner is finally pretty useless and
this scenario hardly corresponds to a collaboration. Moreover, the position con-
trolled partner finally finds her/himself performing a manipulation task in presence
of disturbances using position control, as shown on figure 1.9. We have seen in the
previous section (1.2.2) that this approach could lead to potential problems.
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Figure 1.9 – Servo-control approach to collaborative manipulation. One partner tries to

impose a desired position Xd to the object. The partner applying the force Fd appears as a

disturbance to the other partner.

We have seen that impedance control consists in defining a desired force re-
sponse of a system to positioning errors, rather than making the system appear as a
position source. Applied to collaborative manipulation, this would lead to defining
a dynamic response for each partner to the disturbances that occur because of the
differences in their target trajectories. If one partner exerts no force on the object,
then the other partner is free to impose a desired trajectory to the object. Other-
wise, even in case of conflicts, the interaction forces will be limited. Moreover,
impedance control allows symmetry in the controllers of the partners. Impedance
control applied to the example shown in figure 1.8 gives the following expressions
for fh and fr:

fh = Bh

(

ẋh
d − ẋ

)

+Kh

(

xh
d − x

)

fr = Br

(

ẋr
d − ẋ

)

+Kr

(

xr
d − x

) (1.5)

Again, a position controller could be implemented using the same structure for
each partner. However, the design criteria for the choice of Bh, Kh, Br and Kr would
have been different. In position control, the gains would be set to enforce position
tracking, which would lead to high values for all gains. In impedance control, the
gains will be set to guarantee limited interaction forces in case of motion errors.

To further illustrate the difference in position control and impedance control
design, figure 1.10 shows the equivalent target networks corresponding to position
control for both partners, position control for one partner and force control for the
other, and impedance control for both partners, in the context of the example task
illustrated in figure 1.8.

Now that impedance control has been introduced as a settlement for collabora-
tive manipulation tasks, we will review its implementations and applications in the
last decades.

1.3.2 Applications in the previous works

Desired dynamics

Impedance control has been used as a basis for a great amount of research aiming
at designing robot helpers to physically assist human operators [3, 64, 70, 86, 110].

The idea in [64], as in [39, 40, 42], is to impose a suitable dynamics to the
system composed by the manipulated object and the helper robot(s). In [64], the
dynamics of the system is the one of a linear impedance and opposes a reaction



18 Chapter 1. Haptic interaction: a survey

Figure 1.10 – Target equivalent networks for different control schemes: on the left, both

partners are position controlled and try to act as a position source. The target network is

not feasible. Middle: one of the partners only is position controlled, and the other acts as

a force source. The current that flows through the inductance corresponds to the motion

of the object and is imposed by only one partner. On the right: target network when both

partners are impedance controlled. The network is feasible, and symmetric: both partners

can act on the motion of the object.

force fext to its motion:
fext = M ẍ+B ẋ (1.6)

where x is a generalized coordinate vector of a point fixed on the manipulated ob-
ject. The global system comprising the object, the robotic systems and the human
operators is shown to be stable assuming a passive behavior for the human oper-
ators, and assuming that the system is controlled to have exactly the prescribed
dynamics.

Complex tasks where a long object is manipulated raise an ambiguity regarding
the interpretation of forces/torques at the grasping point. To generate pure lateral
motion in coordination with the helper robot, high torques must be applied by the
human operator to compensate for the momentum of the force s/he applied on the
object, while a lateral drift will tend to occur when the operator wants to perform
a pure rotational motion. This problem has been tackled in [3] by imposing a
virtual nonholonomic constraint to the robot, resulting in caster-like motions of
the system, a motion human operators are familiar with. Caster-like motions have
largely been used for the manipulation of long objects [39, 40, 42], but alternative
strategies have also been proposed [118], where the objects is imposed a pump-like
motion. This problem has also been addressed using oral communication to switch
between rotational and translational motions [120].

Several teams proposed variable impedance controllers to assign more complex
dynamics to the system. In [110], the collaborative task is divided into different
phases based on a difficulty index, with different sets of impedance parameters for
the different phases. Duchaine et al. [20] proposed to use the time derivative of
the force applied by the human operator to modify the damping parameter of their
impedance controller, based on the idea that this signal conveys information on the
human intentions. In order to produce more human-like motions when a robotic
system assists a human operator by following him, the impedance of a human arm
has been identified and embedded in an impedance controller [86]. In the context
of this investigation, the dynamic behavior of the arm was modeled as a second
order linear impedance (mass-spring-damper system) with variable parameters. It
has been found that the overall dynamics was dominated by the damping term [48].

In the aforementioned works, the robot behaves passively. For simple tasks
where a model can be used to predict the human motion, active following can also
be implemented. The case of point-to-point tasks has been studied in [16, 70]. For
more complex interactions, like dancing [65], the use of Hidden Markov Models
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(HMM) has been proposed [107], as a way to predict the next dance step, based on
the forces applied by the human dancer on the robot partner, and a knowledge of
the different steps and possible transitions.

Some of these works will be analyzed in more detail in the next section, where
we see how the performance of robotic followers has been improved by assigning
them more active behaviors.

Stability

In practice, the desired dynamics defined by the impedance controllers differs from
the real dynamics of the system. For instance, many industrial platforms embed
a low-level position or velocity controller, and impedance controllers are imple-
mented as an outer control loop which sends position or velocity commands to the
inner control loop. Such setups require the tool tip or end effector of the robot to
be mounted with a force sensor. The non-collocation of the force sensor with the
actuators, plus the time delay due to the sampling rate and the actuator and sen-
sor dynamics make it impossible to track exactly the dynamics prescribed by the
impedance controller (one may argue that the sensor and actuator dynamics might
be modelled and taken into account in the controller to track the desired impedance,
but whatever the sophistication of the controller, it is never possible to compensate
for the time delay). These factors, apart from inducing an impedance error, can
destabilize the system. In the specific context of human-robot interaction, a study
performed by Tsumugiwa et al. considered the impact of the sensor dynamics and
the human reaction time on the stability of impedance control [111]. Without con-
sidering time delay, a common approach is to impose a passive behavior to the
robot to guarantee the stability of the system [39, 42]. In [8], the authors propose
a less conservative stability criterion to allow for easier human-robot interaction
by taking into account the impedance characteristics of the target environment the
robot is to interact with (namely, a human operator). The authors also propose a
computational design method for interaction controllers based on the optimization
of a performance measure under stability constraints. In some recent work, Lya-
punov stability was considered for impedance controlled devices, to obtain critical
values of the impedance parameters [21]. This work was later used as a basis to
design a stable adaptive admittance controller [19].

1.3.3 Limitations

Impedance control as a model for the motion control of partners jointly performing
a manipulation task allows a symmetric representation of the partners in dyadic
tasks, and the extension to tasks with more than two participants. It allows the
partners to accommodate to differences in their desired trajectories without result-
ing in too large interaction forces. Therefore, it partially solves the problem of
dynamic interaction between the partners. The problem is only partially solved,
because impedance control does not explicitly take into account the nature of the
controlled system and assumes fixed-base manipulators (see e.g. the implementa-
tion suggested in [46]).

Our work is concerned with humanoid robots, which are highly redundant, un-
deractuated systems. The fact that their base is not fixed, and the dynamic balance
constraint, limit the range of achievable impedances by the robot. We will see in the
second part of this thesis that the application of impedance control without regard

for the specific nature of humanoid robots leads to unsatisfying results. The fact
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is, impedance control is merely a principle, and further work must be performed to
implement it on underactuated platforms such as humanoid robots.

Restraining ourselves to the one degree-of-freedom case, impedance control
leaves several problems unsolved. Many of the previous works in the field of
pHRI considered robots deprived of any intelligence, and considered that only the
human partner had knowledge about the task to perform. In terms of collaborative
manipulation, this means that the robotic system has a priori no desired trajectory.
Hence, the robot is often programmed to be fully passive. This is illustrated on
figure 1.11 in terms of electrical equivalents.

Figure 1.11 – Passive impedance control.

As a result, the robot appears as a purely dissipative elements, which makes
the environment more resistive then when the human operator performs the task
on her/his own. This fact is pointed out in [16]. Still, passive impedance control
is not useless: when manipulating a heavy object, a robot can be programmed
to keep the object at a fixed altitude (in this case, it acts as a position source, so
the human cannot control the altitude of the object). On the horizontal plane, the
robot will behave passively, so that the human can move the object just as if it
had a slightly larger inertia and was subject to some damping. The robot will
be programmed to be as little dissipative as possible on the horizontal plane, under
stability constraints. The human is at least relieved from the task of fighting against
gravity. Note that using force feedback, it is also possible to control the robot to
behave so that the system composed of the robot and the object is passive, with
a reduced apparent inertia, following the arguments given in [46]. However, in
practice, the apparent inertia can not be significantly decreased without causing
instability [14], and additional damping will hinder high velocity motions from the
human and requires her/him to constantly input mechanical power into the system
to keep a constant velocity.

To relieve the operator from this additional workload, researchers followed
two different paths. The first one consists in adjusting and varying the impedance
parameters. On the other hand, to actively, or even better, proactively assist the
human operator, the robotic partner must be endowed with higher level controllers
that will input suitable commands into the low level impedance controller. The first
approach is the safest, because the apparent system dynamics is still the one of a
passive system, with varying parameters. The second approach goes further, and
allows the robot to input energy into the system, by specifying desired motions to
the robot. This approach, first applied in [70] to point-to-point tasks, necessitates
either knowledge about the task, and/or a way to predict the desired motion of the
human. As soon as the robot can have a desired motion, conflicts with the human
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intentions will result in task failure. This problem goes beyond what impedance
control can address, and concerns higher level control.

Finally, when we consider robotic systems that can input mechanical power to
the object to follow a desired path, the question arises of what amount of energy
will be input by the robot, and what amount will be input by the human. Con-
sidering that their respective desired motions can be slightly different, the actual
trajectory of the object will depend on the respective amount of mechanical power
input by both partners into the system. This problem of load sharing arises on each
degree-of-freedom of a task, and on each subtask that compose a complex task.
This also goes beyond the impedance control principles, and, assuming low-level
impedance controllers, can be formulated as: how can impedance be adjusted in
each actor to reach a desired load sharing. This problem is formalized in the next
chapter.

1.3.4 Conclusion

In this section, we have related impedance control to collaborative tasks. The prob-
lem of dyadic collaborative manipulation can be formulated as having two partners
with two different desired trajectories to impose to one object. The partners then
have to apply appropriate forces to try to track their respective desired trajectories,
while maintaining a reasonable energy flow through the object, given the potential
discrepancies between their desired motions. Impedance control allows to solve
this problem for small discrepancies, by limiting the forces applied by the partners
in response to positioning errors.

In the early history of pHRI, however, robotic partners were not programmed
to track a desired trajectory, but to only comply to the human partner’s intentions.
Impedance control was then used to assign a desired, intuitive (and often passive)
dynamics to the robot, or to the whole {object + robot} system. As a result, a
human operator is able to manipulate objects simply by applying forces on it. This
can be used to transport bulky objects, where a robot will support the whole weight
on the vertical axis, and comply to the forces applied by the human partner on the
horizontal plane, according to the dynamics assigned by the impedance controller.
We briefly presented the enhancements that have been brought to impedance con-
trollers to decrease the workload of the human operator.

The stability of impedance controllers was also studied in the context of pHRI,
because it is a key element to the human safety. A quick look at some works in
the field shows that different approaches are possible, depending on the design
objectives.

Finally, the limitations of impedance control as a stand-alone solution to imple-
ment collaborative behaviors have been highlighted. The first obvious limitation is
that not any impedance can be displayed by any device. Free floating robots such
as humanoids have a higher bound on the maximal impedance they can display
without slipping or falling. More generally, impedance control is concerned with
the lower level aspects of manipulation tasks, but does not tackle any decisional
aspect, and no general rule exists to adjust the impedance parameters depending
on the context of the task. These limitations have called for more research that has
resulted in different enhancements. This is the topic of the next section, where we
also show that the progress in pHRI comes with a more and more important role in
the task. This will bring the robot from the role of passive follower to the role of
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proactive partner, and the whole point of the next chapter will be to see how to go
even beyond, and assign a leader role to the robot.

1.4 Recent advances: towards perfect followers?

As mentioned in the beginning of this chapter, most implementations of controllers
on robotic systems in order to jointly manipulate objects with a human operator
consider the robot as a follower, and leave the responsibility of leading the task
to the human operator. We have briefly introduced in the previous section (1.3.2)
some advanced controllers where the parameters vary with time, or depending on
the human intention. We present some of these schemes in more detail, to highlight
the fact that the performance of robotic partners has generally been improved by
considering active behaviors rather than purely passive ones.

1.4.1 Human impedance models

More work has been done regarding temporal variations of the impedance of the
robot, with different concerns: either relieving the human operator from workload,
or having human-like dynamics. Regarding the first concern, an early work has
been performed by Tsumugiwa et al. regarding variable impedance depending on
the task phase [110]. We hereby focus on the second concern, with the works
of Ikeura et al. and Rahman et al. [48, 86, 87]. In their work, these authors first
proposed a model for the distribution of the forces applied by the partners in a
collaborative task:







f1 = α f + fint

f2 = (1−α) f − fint

f = Mẍ

(1.7)

According to this model, the partners each apply part of the force f necessary
to move the object, plus an internal force fint such that the internal force compo-
nents of each partner sum out to zero. As we will see in the next section, this model
introduces the idea that both partners can contribute to the task, but this model is
only descriptive, since it applies to the output variable of the partners (consider-
ing the partners as systems), i.e. the force they apply on the object. This model
cannot apply directly to design a decentralized control strategy, because the same
variable α is used for both partners. However, it has been used to study the haptic
dominance in human-human collaborative tasks [35].

In their work, the authors assume that only one partner is doing most of the
job, while the other is following. In other words, they assume that either α = 0 or
α = 1. Then, they identify fint as the output of the impedance characteristics of
the follower arm. They model this impedance by a second order, linear impedance
with time-varying parameters and identify the gains for a human subject. Then,
they embed the identified impedance in a robotic system to replay the task, and
their results show a trajectory that is close to the minimum-jerk trajectory.

One of the most noticed and reused results [16,90] is that the gains they identify
are so that the damping term is dominating the dynamics of the follower arm. The
model used in their work is not easy to interpret though. Because they used the
starting position as a nominal position for their spring and damper, they identify a
negative stiffness coefficient, which corresponds to a destabilizing force field. Of
course, the amplitude of the stiffness can then only decrease along the task, else
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the corresponding behavior would be to move further and further away from the
starting position, with increasing velocities. An interpretation given by the authors
is that the arm was in an unsteady position because the subject did not know the
direction of the motion in advance.

By slightly changing the model, though, a positive stiffness could be identi-
fied, with another, sensible interpretation. The impedance model proposed by the
authors was:

M ẍ+B ẋ+K x = f (1.8)

where f is the force applied on the human hand, x is the position of the hand, and
M, B and K are impedance parameters to identify. Let us replace the last term so
as to obtain the following model:

M ẍ+B ẋ+K0 (x− x0) = f (1.9)

where K0 is a stiffness, and x0 is the nominal position of the arm impedance and is
this time chosen to be the target destination, instead of the starting position. Then,
keeping the same values for K, B and M as the ones identified by the authors, we
have the following relationship between the stiffness K identified by the authors
and K0:

K0 = K
x

x− x0
(1.10)

Assuming that K is such that K x/(x− x0) tends towards 0 when x tends to-
wards x0

1, we then can obtain a positive stiffness K0 which is 0 at the beginning
and the end of the motion, and is maximal in the middle of the motion. This can be
interpreted as follows: at the beginning of the motion, the human subject does not
know where the leader robot will go. Hence, the arm stiffness is adjusted to zero,
so that the arm does not restore any energy to produce motion. In the middle of the
motion, we can suppose that the human is able to predict, to some extend, the tar-

get position. Hence, he slightly helps the motion by increasing the arm stiffness.
At the end of the motion, the desired location being only imprecisely estimated
by the human, the arm stiffness is decreased again so as not to perturb the final
positioning phase.

This interpretation is highly speculative, of course, since we don’t know how
the human would estimate the target location. It has the advantage, however, of
producing a positive stiffness parameter that is easier to interpret. Moreover, the
corresponding interpretation is consistent with active following schemes such as
in [16, 70], that we will examine later.

1.4.2 Active following

A more recent work by Duchaine et al. [20] considered the time derivative of the
force applied by the human. Their idea is that derivating a signal is doing pre-
diction. Hence, the time derivative of the force applied by the human partner on
his robot helper gives a clue on the human’s intentions. More to the point, they
applied this idea to tune the damping parameter of an impedance controller, so as
to increase it when the human operator wants to decelerate and decrease it when
the human operator wants to accelerate. The resulting dynamics is given by:

f = Mẍ+
(

B−α ḟ
)

ẋ (1.11)

1This is the case for example if K is of the shape e
xα

x−x0



24 Chapter 1. Haptic interaction: a survey

where x is the Cartesian position of the end-effector, f is the force applied by the
human operator, M is a virtual mass parameter, B is a damping parameter, and α

is a weighting factor.
An interesting point is that for high values of α and ḟ, the overall damping of

the system, i.e. B−α ḟ, can become negative. In this case, the robot no longer acts
passively. Since this will happen only based on the actions of the human operator,
and since the robot has no desired task plan, the robot is still following the human,
but instead of only dissipating energy, the robot can sometimes actively follow the
human operator.

In this control law, active following is a consequence of the controller design,
but was not specified as a goal for the controller. The key point is rather to use the
time derivative of the force as a predictor of the intentions of the human operator.

In some works [16], however, it is explicitly argued that passive following gen-
erally merely helps the human, since it dissipates part of the energy introduced by
the human into the system, so that only part of it is transformed into kinetic en-
ergy. To increase the performance of robotic assistants, some researchers proposed
model-based active following schemes [16, 70]. The idea is the following: if the
helper robot is able to predict the desired trajectory of the human operator, then it
can actively track it rather than just passively react on the external forces.

A common model for point-to-point human motions is the minimum jerk
model [31]. According to this model, the trajectory followed by the human hand
for point-to-point tasks is a straight line, and the position along this line is given
by:

x(t) = (x f − xi)(6τ5 −15τ4 +10τ3)

τ =
t

T

(1.12)

where xi and x f are the initial and final positions, T is the duration of the motion
and t is the time.

In [70], the parameters x f and T are estimated using a least squares method.
The control law implemented on the robot was:

f = Mẍ+Bẋ+K(x− x̂) (1.13)

where x̂ was the position obtained from the minimum jerk model with estimated
parameters x f and T . The stiffness parameter K was varying along the task: be-
cause little data is available at the beginning of the task, the starting value for K

was set to zero, and increased progressively to its maximal value. At the end of
the task, in order not to hinder precise positioning by the human operator (because
of an imprecise evaluation of the end position), the stiffness was again decreased
to zero. This algorithm is then consistent with the reinterpretation we gave of the
human impedance identification in the previous paragraph (1.4.1). Finally, the au-
thors also show that the unnecessary energy transfer can be reduced when the robot
actively follows the human using their proposed coordination scheme.

The idea of identifying the parameters of the minimum jerk model was also
used in [16]. However, in [16], the final position was fixed and only the duration of
the motion was estimated. From the estimated duration of the motion, the desired
velocity of the human was computed, and used to reduce the apparent damping of
a pure damping controller. The main idea in this work is that this active assistance
can be scaled by a weighting factor α . For α = 0, the robot was acting passively.
The higher α is, the less effort the human operator has to produce to perform his
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desired motion. The value α = 1 is impossible in practice since the robot needs
some input from the human operator to estimate her/his desired trajectory.

Active following, especially in the case of [16], is a good illustration of the fact
that even if the robot is following the human intentions, this does not mean that the
human operator does not adapt to the robot. Assuming a given desired time for
a point-to-point task in the context of [16], for different levels of assistance (for
different values of the scaling parameter α), the human operator will have to apply
different forces to produce the same desired motion.

Hence, we state again that the leader/follower model does not exclude mutual

adaptation. We also see from the works presented in this paragraph that the leader

and follower concepts are decoupled from the concepts of active and passive be-

haviors: this paragraph has presented three different active following schemes,
which shows that a follower does not need to be passive.

1.4.3 Proactive behaviors

In the previous paragraph, we have presented works were the robot was actively

following the human operator, based on an estimation of his intentions. These
works did not consider ambiguities, and estimations errors are implicitly handled
by the compliance of the controller, which limits the effect of discrepancies be-
tween the real and estimated intentions of the human operator.

If we consider that there can be ambiguities in the information provided by the
human operator, so that the robot “hesitates” between two actions to take, what
should the robot do?

In such a situation, one can either wait or act passively, or one can be proactive

and take an initiative which will hopefully lead to a disambiguation of the part-
ner’s intention. A cognitive architecture has been proposed for proactive human-
robot cooperation, based on Dynamic Bayesian Networks [97]. In their paper,
Schrempf et al. propose a Bayesian approach to intention recognition based on
system knowledge acquired by hard-coding or programming by demonstration,
and the concept of proactive behavior. Proactive behavior is relevant when ambi-
guities arise regarding the human partner’s intentions. When the intention of the
partner is ambiguous and a (small) number of possible actions are possible from
the robot, the robot chooses the one that optimally reduces ambiguity about the
human intention and starts executing it, and possibly rolls back if it appears that
the wrong action has been taken.

1.4.4 Leader robots?

Up to now, all the works we have presented considered follower robots. Even when
the robot takes initiatives when the human intentions are unclear, the robot always
tries to comply to the intentions of the human. Let us state again that this does not
mean that the human operator does not have to adapt to the robotic partner. Typi-
cally, if the follower robot implements a passive behavior with a virtual nonholo-
nomic constraint [3], the human operator will adapt to this constraint when per-
forming collaborative tasks with the robot. More recently, the use of servo brakes
has been proposed to implement obstacle avoidance for assistive robots. Using this
technology, the robot can increasingly resist to the human operator when moving
towards obstacles [41]. As a result, the human operator can adapt his trajectory to
avoid the obstacle. Again, this highlights adaptation from the human operator to a
follower robot.
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The same technology can also be used to track a desired trajectory. Of course,
since the robot is passive (it only uses servo brakes), the human operator has to
inject energy into the system, for example by pushing the robot. The robot can
then use the servo brakes to track a reference trajectory. In such a configuration,
the robot imposes a trajectory to the human, and the human operator will be re-
sponsible for the motion along the trajectory. Such a situation is encompassed by
the model we present in the next chapter. We will also present other works where
the robot is not acting as a pure follower.

1.4.5 Conclusion

In this section, we have studied different recent models that have been proposed
either to describe or to implement collaborative behaviors on a robotic system.
The first model we study (paragraph 1.4.1) decomposes the force applied by each
partner into a component that generates motion of the object and an internal force.
The proposed model is descriptive, and has been used in the case where only one
partner (the leader) generates motion of the object, and the other partner (the fol-
lower) only applies disturbing forces. The force applied by the follower has been
fit by a second order linear impedance model with time varying parameters. By
reinterpreting this result, we highlight a behavior that is consistent with active fol-

lowing algorithms presented in this section. We conclude that active following is
a realistic behavior for a human partner, which further validates the approaches
presented in [16, 70] and recalled in this section. Finally, this section shows that
robotic partners have been recently given more and more active roles and decision
capabilities, sometimes even acting as a leader.

1.5 Conclusion

This thesis focuses on dyadic collaborative manipulation tasks, where two partners
apply forces on a same object to impose a desired motion, or to bring the object
into a desired configuration in space. This chapter has introduced characteristic
problems of such tasks:

⊲ dynamic interaction: how the partner can deal with each other’s dynamics
and constraints, and handle the differences in their intentions in a stable man-
ner. This problem is partially solved by using impedance control approaches,
which limit the energy flow between the partners given different desired tra-
jectories for the partners. However, for some specific platforms, such as
humanoid robots, which can lose balance, impedance control is not suffi-
cient to have a safe physical interaction with a human operator. Moreover,
even if the energy flow is regulated, impedance control will not guarantee
that a task can be realized if the partners have different intentions.

⊲ load sharing: how the partners can resolve redundancy when manipulating
the object. In general, an infinite set of force vectors acting on an object can
lead to the same motion, because internal forces on the object will not in-
fluence its motion. How can the partners find strategies to solve redundancy
efficiently? The specialization phenomenon highlighted by Kyle Reed and
presented in the first section of this chapter can be interpreted as an answer
to this problem for a specific class of tasks. However, we do not have a gen-
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eral framework to represent load sharing strategies among the partners. The

model presented in the next chapter is an attempt to fill this gap.

⊲ planning: how can two partners negociate a common task plan, and to what
extent is it possible to do so through the haptic channel?

To solve this problem, mutual adaptation processes must take place, which in
turns requires to be able to understand the behavior and to some extent predict

the intentions of the other partner. Mutual adaptation at the dynamic behavior
level can be somehow implemented on a robotic system using impedance control.
Impedance control can be seen as a way to accommodate to the human partner
by limiting the force response to positioning errors. In other terms, impedance
control allows a robot to have a compliant behavior, which is the reason why it has
been used in most works in the field of pHRI. Its fundamentals and history have
been presented in this chapter, to justify its importance in the context of haptic
collaborative tasks.

Impedance control has been used in such a way that the robot implements a
follower behavior, letting the human operator take the responsibility of imposing
a task plan, i.e. leading the task. This is a way to solve at the same time the load
sharing problem and the planning problem. The robot complies to the plan imposed
by the human partner, generally supports the whole weight of the manipulated
object, and the human simply adapts to the dynamic constraints imposed by the
robotic system and its controller. While early robotic followers adopted a passive
behavior, recent works proposed active following schemes, and a trend in the last
years consisted in giving more and more responsibility to the robot to achieve a
task. This trend has been highlighted by presenting some recent models in detail.

Finally, despite the trend in giving more and more initiative to the robotic part-
ner, only a very few works considered assigning a leader behavior to robotic sys-
tems. In the next chapter, we devise an abstract framework to consider an equal
attribution of the responsibility to perform the task to both the human and the
robotic partners. This framework assumes that the robot can take initiatives of its
own, and adopt active behaviors that do not solely depend on the human partner’s
intentions. We also formulate the hypothesis that the leader-follower model can be
extended to a continuous, time-varying role distribution and propose a model built
upon this hypothesis in order to encompass most behaviors that can be encountered
in haptic collaborative tasks.
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IN the previous chapter, we described existing approaches to physical Human-
Robot Interaction. A recurrent assumption in these works is to appoint a unilateral
distribution of the roles to the partners that will not change all along the task exe-
cution.

In this chapter, we go beyond the fixed leader-follower distribution archetype.
Our main contribution is a model based on homotopy switching between intrinsi-
cally distinct controllers, to allow continuous, time-varying role distribution among
the partners. The proposed model is designed to encompass most behaviors en-
countered in dyadic haptic collaborative tasks through an intermediate object. The
basic idea is to switch continuously between two distinct extreme behaviors (leader
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and follower) for each individual. The physical collaborative interaction is then
described only with two distinct homotopy time-functions that vary independently.
We also come up with the idea that these functions can describe the signature of a
collaborative task.

This chapter introduces the model through insights and a mathematical basis.
We then use the model in three different applications: i) modelling and ii) simu-
lating behaviors that were observed in human-human collaborative tasks, and iii)
collision avoidance. We exemplify the use of this model in a collaborative task
between a human and a virtual avatar using a priori homotopies. The collision
avoidance application is also demonstrated on a real humanoid platform.
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2.1 A homotopy switching model for physical Human-Robot
Interaction

In this section, we examine a new model for dyadic tasks that encompasses most
behavioral situations that are encountered in pHRI. This model is based on a time-
varying weighting between a leader and a follower behavior. This model is based
on the intuition that when two human partners perform a task, each one is likely
to have his own task plan, and therefore, it is not possible to know a priori which
partner will be the leader and which will be the follower.

2.1.1 The leader-follower model

Physical collaborative tasks raise the problem of motion coordination. When two
partners jointly manipulate an object, they have potentially two different desired
trajectories for the object, but in the end, the object will have only one trajectory.
To avoid too large interaction forces between the partners through the object, both
partners must be compliant when trying to impose a motion to the object. As we
have shown in the previous chapter, this is a reason for implementing impedance
controllers on robotic systems to cooperate with human partners.

This compliance, however, will only absorb reasonable differences in the part-
ners’ intentions. In an extreme case, if both partners intend to move to opposite
directions, compliance will avoid a too sudden increase of the interaction forces,
but the task will fail anyway as the object will not move. While we expect that two
human partners solve such situations “naturally”, we do not know exactly how hu-
mans negotiate a task when they have incompatible intentions. Therefore, handling
conflicting situations in human-robot collaborative tasks can be more problematic.

Such situations will not occur, however, if one of the partners has no intention
but to follow the other partner. The task is then conducted like a dance, where
one partners leads the other [32]. This configuration defines the leader-follower

model, where one partner has knowledge about the task and takes initiatives, while
the other attempts to follow the leader as closely as possible.

This model has been extensively used in robotics to implement human-object-
robot collaborative tasks. It is certainly easier to affix a robot to behave in either
one of these cases. This is made simply by programming the appropriate con-
troller. However, it is nearly impossible to force the human partner to behave in an
exclusively passive role. Therefore, in robotics, this problem has recurrently been
solved by programming robots to be followers and assigning the human operator
the leadership in the task.

2.1.2 Intuition

In human-human interaction, both partners have intelligence and knowledge about
the task to perform. Especially in tasks were the roles of the participants are sym-
metric, it is thus impossible, a priori, to assign a leader role to one partner and
a follower role to the other partner. If such roles can be defined, their attribution
must be negotiated “on-line” by the partners.

In the previous chapter, we mentioned the problem of load sharing. Given a
task, what will be the contributions of the partners, and how will they organize
themselves to act complementarily? A solution can be to decompose the task into
subtasks and subsets of constraints. Complementary roles can then be negotiated
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between the partners to be the leader for some subtasks and act as a follower for
the other ones. Each partner is therefore leading and following at the same time.

Another point to highlight is that the distribution of the leadership for the dif-
ferent subtasks does not need to be affixed. Depending on the context, on the
amount of information available, each partner may choose to give up or claim for
the leadership of a subtask. This can especially occur if one partner is close to vio-
late one of his own constraints that are not directly related to the collaborative task.
For example, a robot which follows a human being may come close to a joint limit
or singularity which will prevent it from behaving as the human partner intends to.
A biped robot can be about to lose dynamic balance. Before it happens, the robot
may claim for leadership and handle the subtask in a way that will keep it far from
its constraints (of course this requires that the task can be achieved in several ways,
i.e. that the task offers some degree of redundancy).

This role switching should occur in a smooth way, so that i) the human partner
has time to react and negotiate progressively the role sharing and ii) the motion
of the robot is not abrupt and jerky. Moreover, a smooth transition between the
leader and follower roles, and its timing, is necessary to translate progressive ne-

gotiation and hesitation. When switching abruptly between these states, the only
way to translate hesitation is to oscillate from one state to the other while trying to
decide what to do. On the contrary, if the switching is smooth, the role redistribu-
tion and sharing is progressive. This allows each partner to have knowledge and
understanding on what the collaborative partners’ intents are.

Finally, by allowing each partner to adopt a behavior “between” the leader and
follower ones, we introduce the idea of mutual adaptation: each partner can try to
find a compromise between her/his own intentions, and what he perceives from the
other partner’s intentions.

The remainder of this section more formally presents a model that accounts for
these intuitions.

2.1.3 Mathematical formulation

Definition 2.1.1 A homotopy between two continuous function maps f : X → Y and g : X → Y ,

where X and Y are topological spaces, is defined to be a continuous function map

h : X × [0,1]→ Y such that:

h(x,0) = f (x) and h(x,1) = g(x) (2.1)

The function h describes a “continuous deformation” of f into g. If the homo-
topy parameter (the second parameter of h) is 0, we have the function f , and if it
is 1, we have the function g.

We then propose to extend the leader-follower model as follows:

In dyadic, physical collaborative tasks, the behavior of each partner i

can be characterized by:

⊲ a homotopy hi : Xi× [0,1]→Yi between a map fi : Xi →Yi charac-
terizing a leader behavior, and a map gi : Xi → Yi characterizing
a follower behavior;

⊲ a continuous function of time, αi : R+ → [0,1].

At time t, the behavior of each partner is thus characterized by the
function

x ∈ Xi → hi(x,αi(t)) (2.2)
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The model does not define the spaces Xi and Yi, nor the functions αi, fi and gi.
They are just supposed to be a characterization of a leader and a follower behaviors.
An analytical definition of these elements is actually not necessary to translate the
idea behind this model: each partner will be “between” the leader and follower
modes, and that his “weighting” between these two modes will vary continuously
with time.

We need, however, to make clear what a leader behavior and a follower behav-
ior are. By saying a partner has a leader behavior, we understand that the partner
has a task plan he tries to follow, and that this task plan is not computed to match
the intentions of the other partner. This does not mean that the plan can not be
adapted in response to actions taken by the other partner, however, these adap-
tations will be local, and the overall task plan will be decided according to the
partner’s own intentions.

On the contrary, a follower will never have any task plan, and will only act
based on the intentions of the human, or simply comply to the external forces
applied by the other partner. Note that a partner that resists more and more to
the forces applied by the other partner to avoid an obstacle, as in [41], can not be
considered as a leader, even if it somehow “refuses” to follow. Indeed, avoiding
an obstacle is not imposing a task plan to the human partner. More generally,
enforcing unilateral constraint does not correspond to our idea of a leader behavior,
since a leader would try to impose one specific trajectory or task plan to the other
partner.

We will see in the remainder of this chapter that the homotopy need not be
defined explicitly at the lowest level of the control space (i.e. the torques on torque
control robots, reference positions on position controlled robots and so on). It is
also possible to define specific leader and follower behaviors and the homotopy at
a higher control level. The homotopy then extends implicitly to the control space,
assuming continuous control laws.

2.1.4 Example: linear homotopy

We now propose a typical application of this model using a linear homotopy be-
tween two controllers. Let (Ui)i=1,2 be the controllers used by partners 1 and 2 to
realize a physical collaborative task. We propose to define (Ui)i=1,2 as the image
of a real number αi by a linear homotopy between a controller Fi that implements
a follower behavior and a controller Li that implements a leader behavior, that is:

Ui = αiLi +(1−αi)Fi (2.3)

Both controllers Li and Fi are seen as functions that produce an output com-
mand (a joint torque, joint position, or joint velocity vector) and are defined on
a common space where the state of the collaborative task can be described. Typ-
ically, Li can be a position controller, and Fi can be an impedance controller,
though other schemes can be imagined, as we will see later. The controller Ui will
compute the outputs of the controllers Li and Fi, and produce a weighted sum of
these outputs.

This model allows the description of several behaviors that can be expected
during physical tasks using only two time-varying independent mappings, α1 and
α2, that take values between 0 and 1, as shown on figure 2.1. These mappings
are continuous functions of time and can have different values on each dimension
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of the control space. Various dynamics can be given to the controllers Li in re-
sponse to tracking errors, but the idea is to remain stiff enough to impose a desired
trajectory. Fi, on the other hand, can be set as a compliant controller to imple-
ment a passive follower role, or an active one, as proposed in [16]. Even if Fi

can implement active following, it should be as compliant as possible in case of
misunderstanding of the leader’s intentions.

leader leader

followerfollower

1

0

1

0

α
1

α
2

Figure 2.1 – Illustration of one degree of freedom homotopy for each individual of the

physical interaction task dyad (holding a table). Each αi∈{1,2} may evolve independently

from the other and their time function results on a dynamic sliding between 0 and 1 during

task execution.

Considering only one dimension, if α1 = α2 = 0, both partners will wait for
each other since they both behave as pure followers, and nothing will happen. If
α1 = 1 and α2 = 0, then the task plan of the first partner is accepted by partner
2. If α1 = α2 = 1, then if both partner have the same task plan, they will follow
it. Else, they will conflict and each of them will try to stick to his/her plan, which
can result in unwanted behavior, such as high interaction forces, task constraint
violation or inability to achieve the task. For example, think of two partners who
hold a table and want to walk around an obstacle, but each partner wants to go on a
different side, if each partner sticks to his/her plan and have comparable strength,
they will just run into the obstacle or will have to stop, while significant forces will
be applied on the table as the partners try to pull it to different sides.

2.1.5 Genericity of the proposed model

Our model is an abstract model and can be implemented in various ways, using
very sophisticated controllers for Li and Fi. A potential implementation for the
leader controller would be the one proposed in [16], where the follower robot can
be a more or less active follower. Any level of sophistication can be chosen for
the implementation, including implementation based on stack of tasks [102] or
operational space formulation [60].

An important point is that the homotopy does not need to be defined at the
lowest control level. Actually, in most of the examples presented in this chapter,
the homotopy will be defined at the joint position level: the output of the controller
is a joint position vector that is sent to an inner position control loop. However,
by defining a homotopy at the desired joint position level, we also implicitly define

a homotopy at the actuator torque level, assuming that the inner position control
loop computes reference torques, as long as the function that links the state of the
robot and the desired joint position vector to the output torques is continuous.

We can also choose to define the homotopy at the Cartesian trajectory level,
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and to use the output trajectory as a virtual position input in an impedance con-
troller [44]. Let M, B and K be a virtual mass, damping and stiffness used to
implement an impedance controller on a robotic partner. The controller takes a
desired trajectory x0 as an input, and imposes the following dynamic behavior to
the end-effector of the robot:

f = Mẍ+Bẋ+Kv

v = x− x0 (2.4)

where f is the force applied on the end-effector of the robot. This equation can
then be used to compute a reference force or a reference position for a lower-level
controller. We then can define the input trajectory x0 as the image of an homotopy
between a leader and a follower behavior:

x0(y, t) = α(y, t)L (y, t)+(1−α(y, t))F (y, t) (2.5)

where t is the time, y is a state vector and α is the homotopy parameter. The
functions L and F correspond to trajectories that are characteristic of leader and
follower behaviors: to give an extreme example, the leader trajectory will be state
independent, while the follower trajectory will be computed by estimating the de-
sired trajectory of the human partner, like in [16, 70].

The dynamic behavior (i.e. how the robot reacts to disturbances while tracking
its own desired trajectories) are then defined by setting the gains of the low level
impedance controller. These gains can be set according to the context of task
execution, on stability criteria, or even be a function of the homotopy variable, so
that the final controller is a homotopy between two impedance controllers. This is
richer than interpolating the gains between follower gains and leader gains, as the
leader-mode impedance controller is not constrained to have fixed gains. Hence,
it is possible to have a “soft” leader, when the other partner is gently following,
or a “stiff” follower 1, when the follower wants to limit the motion speed, without
necessarily having a specific desired trajectory (to have a flavor of what acting as a
“stiff” follower is, try to let someone guide you by pulling your hand in a cluttered
environment, while closing your eyes).

2.1.6 Challenges for the application to pHRI: reasons for a haptic language

Our idea is to use the proposed model to implement controllers on a robotic plat-
form to perform physical collaborative tasks with a human partner. Our model
allows the robot to behave as a pure leader, or as a pure follower, or to adopt
any intermediate behavior. By tuning the homotopy parameter, the behavior of the

robot can be shaped between the extreme leader and follower roles.
The main question is now: according to what criteria should this parameter

be defined? In simple words, when should the robot behave as a leader, or as a
follower? How to shape its behavior appropriately?

A possible solution is to assume that this model can describe the human be-
havior, and to try to identify the homotopy parameter of the human partner. The
robot can then use a complementary behavior. However, the identification of this
parameter, if the model is valid (a preliminary assessment is presented in the next
chapter), is likely to be difficult. Indeed, as we mentioned in the previous chapter,

1Here, the work ‘stiff” does not refer to a mechanical stiffness, but rather to a very dissipative
behavior.
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a follower does not need to be passive, and can even be proactive. However, if the
human partner is proactive, he can misunderstand the intention of the robot, which
will generate interaction forces. But from the point of view of the robotic system,
it will be impossible to know whether these forces arise from an intention of the

human partner to lead, or from a misunderstanding of the intentions of the robotic
partner.

In such an ambiguous situation, looking locally at the interaction forces will
not allow to analyze the situation. For the robotic system to guess whether the
human is trying to lead or “failing to follow”, a form of communication must prob-
ably take place, where both partners will hesitate and wait and see what happens,
and so on. For instance, in the situation we just described, we can imagine that the
robot will try to act as a follower, and see that nothing happens, so it might try to
lead again. But if meanwhile the human partner has decided that because the robot
stopped, he should take the lead, conflicts will arise, which will lead to interaction
forces, and so on. We see here the premises of a haptic dialog between the partners
to decide who leads and who follows. This hypothetic dialog can be an exciting
research topic, but it goes beyond the scope of the work presented in this thesis.

Finally, assuming stable leader and follower controllers, there is no guarantee
that the controller obtained from the homotopy between these two controllers will
also be stable [78].

2.1.7 Relation to previous works

In most previous works in pHRI, the leader’s role is assigned to the human operator,
and a follower’s role to all other agents. Some researchers [86], however, suggested
that the contribution to the motion of the manipulated object can be distributed
between partners, but studied the case where a robot follower collaborates with a
human leader. The model used in [86] has been detailed in the previous chapter. It
states that each partner applies a part of the force necessary to produce the actual
motion of the object, and an internal force. When summing the forces applied by
each partner, the internal forces cancel out, leaving only the resultant force. Let us
recall the equations:







f1 = α f + fint

f2 = (1−α) f − fint

f = Mẍ

(2.6)

where fi is the force applied by partner i, fint is an internal force, m is the mass of
the manipulated object, x is its position, and α ∈ [0;1] is a weighting factor. The
signification of this weighting factor is close to the signification of the homotopy
parameter used in our model: indeed, when α = 1, partner 1 only is responsible
for the motion of the object, and conversely when α = 0, the motion of the object
is only cause by partner 2. Hence, this parameter could be seen as a description
of a continuous role distribution. However, looking more closely, we see that the
parameter α used in this model has not the same meaning as our homotopy pa-
rameter. The parameter used in eq. (2.6) describes the actual role distribution, in
terms of which participant has the “higher responsibility” in producing the motion
of the object. Note that the parameter is the same in both equations, which implies
a complementarity in the role distribution. Hence, this model allows to know who
was de facto the “leader” of the task, whereas our model translates an intention to
act as a leader.
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In our model, both partners can try to act as leader, hence we have two in-
dependent parameters, one for each partner, and no relation is imposed a priori

between those parameters. This is essential to use the model to implement behav-
iors on a robotic system, because we can not impose a role to the human partner.
The actual value of the parameter α in eq. (2.6) can only be known if both f1 and f2

are known. However, these forces are supposed to be the output of the controllers.
Note also that the parameter α used in eq. (2.6) is not necessarily related to the

homotopy parameters of each partner, assuming our model describes their behav-
ior. Actually, who will be the leader de facto depends not only on the homotopy
parameter of each partner, but also on their physical abilities: both partners can try
to act as a leader, but in the end, the stronger partner will be leading the task in the
sense of eq. (2.6). However, one can try to obtain a given dominance distribution
among the partners by setting appropriate values for the homotopy parameters. In
other terms, a robotic partner will have more chance to dominate a human partner
if it is always trying to act as a leader.

The model used in [86] has been used in [35] to derive a measure of dominance
in collaborative task. This measure is used to analyze human-human collaborative
tasks where both partners share the same intention (the task consist in following
a given track, and both partners have the same feedback about the task). One of
the results presented in [35] is that the dominance can be separated into two com-
ponents: one being intrinsic to the partners, and one coming from the interaction
between the partners. The authors suggest that to obtain a natural behavior from
a robotic partner, both components should be taken into account. In the current
state of their work, only physical aspects of collaborative tasks have been studied,
and in the context of one specific task. Hence, the results they obtain might not be
applicable to other tasks. However, such studies about human-human interaction
are interesting since they can provide strategies to define the homotopy parameter
of a robotic system controlled using our behavior weighting model.

Other works have proposed to assign a leader role to robotic partners, and
to switch during the task. Role switching and defining passive and active roles
has been evoked in [116], and successfully applied to human-robot hand-shaking
in [115]. Our contribution is to systematize this concept and propose a framework
that allows us to abstract from the implementation of the underlying controllers, to
focus only on the role distribution. Moreover, we consider continuous role distri-
butions: we hypothesize that the behavior of an individual in a collaborative task
can be in between the extreme leader and follower roles. Note that the work pre-
sented in [115] is interesting, since the robot will switch between the leader and
follower roles based on the identified role of the human. This gives us hope that the
role of the human partner can be estimated to some extent, which might be useful
to adjust the homotopy parameter of the robotic partner.

2.1.8 Behavioral architecture

Our goal is to enhance robotic or virtual avatars with physical interaction cognition
so that they become more human-like partners in physical collaborative tasks, see
Figure 2.2. Our newly proposed approach to physical interaction provides a model
on which a behavioral architecture could be built.

The task represented on figure 2.2 consists in bringing a wooden board from
an initial position to a final position. The solid and dashed lines represent the
respective plans of the human and the robotic partner. The planned trajectory of
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Figure 2.2 – Person-Object-Avatar physical collaborative task architecture and main mod-

ules. The solid and dashed lines represent the a priori plans of the partners. The red point

represents the starting position of the object and the yellow one represents the target desti-

nation. Two data flows can be seen on the figure. The flow that goes through the light gray

boxes represents data that is closely related to the communication with the human partner.

The dark gray blocks are more related to the internal state and constraints of the robot.

the robot can have been computed by a planner and presented to the human partner
to agree on a rough plan before starting the task. However, the final plan will be
negotiated during the task.

The extreme leader and follower behaviors take part of two different data flows.
The leader controller will mainly rely on the internal state of the robot with regard
to its constraints and its a priori plan. The task and robot state can come from the
perception of the robot through the interpretation of measured signals. Basically,
the leader behavior will especially involve the robot’s own state or internal data
(dark blocks on figure 2.2).

The follower behavior, on the other hand, will call for perceptual capabilities
and estimation of the human partner’s intentions. The information gathered from
this interpretation of the human partner’s actions will be used as an input by the
follower controller. The leader behavior, in general, will involve communication
with the human partner (light blocks on figure 2.2).

The leader and follower behaviors will be blended by the homotopy weighting
module, which will rely on predefined task signatures, on the state of the robot, or
on the perception of the human intentions, as will be shown in section 2.3. This
module is not yet clearly defined, and will certainly benefit from studies of human-
human interaction such as the ones conducted in [29, 35, 90].

Finally, the haptic patterns communication module is simply a hypothetical
module which generates distinct haptic patterns (signals) on top of or blended with
the control signal of the avatar: its main mission is to try to communicate avatar
intention to the human operator through the haptic channel. We don’t know yet
whether such a module is relevant, but this module would implement haptic com-
munication capabilities to face such situations as described in paragraph 2.1.6.

2.2 A concrete example

We now propose a concrete implementation of the model to exemplify its use. We
will apply it to an Avatar-Object-Avatar scenario: two virtual humanoid robots
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manipulate an object to move it over an obstacle. We will define the behavior of
each robot using the homotopy controller.

2.2.1 Setup

The task to be performed is illustrated on figure 2.3: two virtual avatars have to lift
and pass an object over an obstacle.

Figure 2.3 – Collaborative task between two virtual avatars.

For the leader behavior, we implement a Cartesian position controller. The
follower behavior will be a damping controller (i.e. a static relation between the
external force and the velocity is specified). Both controllers will rely on a pseudo-
inverse of the Jacobian matrix that links joint displacements to Cartesian displace-
ments of the robot’s gripper, and will compute an output desired joint velocity.
From the desired trajectory of the object, a desired trajectory pd

i (t) is computed
as an input to the gripper position controller for each robot i ∈ {1,2}. We define
ei = pd

i −pi as the tracking error, where pi is the actual position of the gripper of
the virtual robot 2. We denote fi the interaction force sensed at the wrist of robot i.
The leader and follower controllers Li and Fi are defined as follows:

Li : q̇L
i = αiλp J#

i ei

Fi : q̇F
i = (1−αi)λ f J#

i fi
(2.7)

where J#
i is the pseudo-inverse of the Jacobian, λp, λ f are given controller gains.

The leader controller is a position controller: the leader behavior will consist in
tracking a desired, pre-programmed trajectory. The follower controller is a damp-
ing controller, so that when the virtual avatar acts as a follower, the motion of its
gripper complies with the forces applied by the human operator.

The controller Ui is then defined by:

Ui : q̇d
i = q̇L

i + q̇F
i (2.8)

where q̇d
i is integrated and sent to an inner joint position controller.

2Unless the contrary is stated, positions will refer to positions and orientations, and forces will
refer to forces and torques.



40 Chapter 2. Physical collaborative tasks: a homotopy-based interaction model

Both virtual partners have different desired trajectories: though the starting and
ending position of the object are the same for each avatar, the maximum altitude is
different.

2.2.2 Results

To illustrate the effect of the homotopy parameters αi∈{1,2}, a simulation has been
performed for different values of each parameter. First, when α1 = α2 = 0, nothing
happens, as expected. The object remains on the table, and each avatar “waits” for
the other to perform the task.

When α1 = α2 = 1, each avatar tries to impose its desired trajectory. As the
same gains have been used for each avatar’s leader and follower controllers, the ac-
tual trajectory of the object is the average of both desired trajectories, as illustrated
on figure 2.4. We can also see that significant interaction forces are generated
(about 500 N of internal forces along the vertical axis).

Figure 2.4 – Result of the simulation of a collaborative task between two virtual humanoids

when both act as leader. Left: desired trajectory for each avatar, and actual trajectory of

the object. Right: vertical force applied by each avatar.

When α1 = α2 = 0.5, both avatars try at the same time to track their desired
trajectory, but part of their action consists in complying to external forces. As all
controllers have the same gains, the trajectory of the object is again between the
desired trajectories of both partners. However, the internal forces along the vertical
axis are only about 200 N. Note that in this case, the homotopy controller corre-
sponds to a position-based first-order linear impedance controller, if we assume
a stiff low-level position controller. If we define B = 2/λ f and K = λp/λ f , then
assuming the Jacobian Ji is full rank and the low-level position control makes the
robot behave as a perfect position source, the motion of the gripper of partner i is
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Figure 2.5 – Trajectory of the object when one of the partners is a leader and the other is a

follower in the Avatar-Object-Avatar experiment, where two virtual avatars lift an object

and pass it over an obstacle.

described by the equation:

fi = Bṗi +K
(

pi −pd
i

)

(2.9)

Finally, if α1 = 1 and α2 = 0, the object follows the trajectory desired by part-
ner 1, as shown on figure 2.5. We also notice a position overshoot, which means
that the gains of the low-level position controller did not make the robot appear
as a position source. Indeed, the position controller did not overcome the inertial
effects at the end of the lifting phase.

2.2.3 Extension to a Person-Object-Avatar scenario

Figure 2.6 – Experimental setup: a human operator uses a PHANToM Desktop device to

lift a virtual object in collaboration with a virtual robotic partner.

We can extend the scenario by replacing one of the avatars by a human opera-
tor. The human partner operates through a PHANToM Desktop haptic device and
has a 3-dimensional force feedback (see Figure 2.6). Figure 2.7 shows part of the
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Figure 2.7 – Plan of the virtual avatar: desired motion of the object.

virtual scene and the trajectory of the object desired by robot to complete the task.
This trajectory is unknown to the human partner and is not displayed during the
task.

To assess the usability of the proposed model, we have conducted several ex-
periments with one subject, where this time the homotopy parameter of the virtual
avatar varies with time. The control law implemented on the avatar is the same as
in the previous subsection. The task was either not divided, or divided into two or
three parts, depending on the time-profile of the homotopy variable. We used the
following time profiles:

⊲ L: the virtual avatar tries to lead the whole task.

⊲ F: the virtual avatar follows the human all along the task.

⊲ L-F: the virtual avatar tries to lead (follows) during the first half of the mo-
tion, and follows (tries to lead) the human at the end of the motion.

⊲ L-F-L (F-L-F): the avatar leads (follows) during the lifting and landing
phases only, while the human operator leads (follows) while the object
passes over the obstacle.

Stability

One important thing to consider when switching between two controllers in such a
linear way is stability: for a bounded input, the controller must produce a bounded
output. Though we did not tackle this issue theoretically, we plotted the output of
the controller along the task to check its smoothness during the transitions between
the leader’s and follower’s states. Figure 2.8 shows a typical joint torque output
from the homotopy controller. The signal appeared to be smooth, with higher
torques during the transitions.

Specialization

We could not highlight specialization from the force applied by the subject and his
virtual partner on the object. This result was expected from [89], where even using
a very simple setup, specialization of a human partner could not be obtained when
collaborating with a robotic partner.

When the human user talked about his impressions on how the robot virtual
avatar behaved, he explained that he did not trust the avatar, and thus applied a
“safety” force, even when he felt like the avatar was leading the task, to be sure to
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Figure 2.8 – Typical joint torques at the joints of the avatar (chest joint and right arm

joints). The torque references sent to the actuators of the robot are smooth even when the

value of the homotopy variable changes.

avoid the obstacle. This is a probable reason why we could not observe specializa-
tion. Moreover, we only looked for the same functional specialization as the one
discovered by Reed, which consist in specializing in the acceleration and deceler-
ation of the object. As our task is more complex, other specializations might have
been elected by human partners performing the task.
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Figure 2.9 – Trajectories when the human leads all the task (blue) and when he leads part

of the task (green). The human trajectory goes further from the obstacle.

Questioned about his experience, the subject reported that he felt more com-
fortable when the avatar was following him during the lifting and landing phase
(F-L-F time profile of the homotopy variable α), and especially when being close
to the corners of the object, as he did not trust the virtual avatar. He also reported
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that the robot was suggesting him a more time-optimal trajectory, as it was mov-
ing much closer to the object than he would have done. Figure 2.9 highlights
this fact by showing a typical trajectory of the object when the subject lead the
task and when the robot was leading part of it. Note that when the robot is a fol-
lower all along the task, the trajectories of the object are very close to the ones
reported in [75], while the trajectory desired by the avatar is more square-shaped
as it closely follows the contour of the object (thus leading to more jerky motions).
Hence, the reference path of the avatar is maybe unnatural to the human operator,
which could explain why he did not follow the avatar passively.

Feeling of control over the task

Surprisingly, though the subject was presented several trials where the avatar was
leading the entire task, the subject felt like it was never the case. This might be
related to the stiffness of the leader controller L . Maybe the controller did not
offer enough disturbance rejection, thus giving the subject the feeling that he had
some control over the task.

Unnatural changes in the robot behavior

Finally, it appeared that the subject was somehow disrupted at first when the robot
changed his homotopy variable during the task. It took time for him to understand
what was happening. A similar result has been reported in [16], in which subjects
felt that a robot varying his level of assistance during the task, rather than between
tasks, was unnatural. Our time profiles of the homotopy variable corresponded to
artificial specialization, which was applied without taking into account contextual
aspects or force signals, and which started abruptly after a set of trials in which
the robot was a pure follower. This scenario seems not very probable in real-life
situations, as Reed reported that specialization emerged quickly, but after several
trials [91]. In future work, we plan to investigate on how to define the homotopy
variable depending on the task, its context and the forces perceived by the virtual
avatar so that its behavior is more user-friendly. This might require to use a more
appropriate implementation of our abstract model (in other words, to change the
L and F controllers).

2.3 Defining the homotopy

In the previous sections, we have presented a new model to describe the behavior of
two partners performing a physical collaborative task. The behavior of each partner
is defined as a homotopy between a leader controller and a follower controller. The
implementation of this model has been exemplified in the case of a linear homotopy
with either a constant parameters or arbitrary time profiles.

In this section, we examine how the time profile of the homotopy parameter
could be defined to enhance collaborative tasks. The first solution is to define
the homotopy parameter by looking at the constraints of the system on which the
controller is implemented. As an example, we propose the case of self-collision
avoidance. A second strategy is to parameterize phenomena observed in human-
human collaboration. We will investigate how our model could possibly reproduce
the specialization phenomenon observed by Kyle Reed.
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2.3.1 Enforcing constraints: self-collision avoidance

The homotopy controller switching model we propose allows a robotic system to
smoothly switch between a leader and a follower behavior. The robot can exploit
this switching to impose the user some specific trajectories that fit its own con-
straints.

Let us define the following scenario: a human and a humanoid robot are lifting
and moving an object. The human partner initiates the motion and starts lifting the
object. The robot then acts as a follower and complies to the intentions of the hu-
man. At some point, the trajectory suggested by the operator leads to auto-collision
between the arm of the robot and its waist. Hence the robot takes leadership and
the human operator then switches to a follower role.

This can be implemented by defining a homotopy parameter that depends on
the collision distance between the arm and the trunk of the robot. Let β be a real
number between 0 and 1. Consider the function α defined as follows, built from a
smoothed Heaviside function as proposed in [93]:
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where d is the minimum distance to self-collision, and dmin and dmax define the
interval where the robot will switch from follower to leader. For distances d ≤ dmin,
α = 1, and for distances d ≥ dmax, α = 0. For dmin < d < dmax, α will smoothly
decrease from 1 to 0.

This function can be used to define the homotopy between the leader and fol-
lower behaviors. When the robot is far from self-collision, it will behave as a fol-
lower. From distances below a threshold dmax, it will smoothly switch to a leader
role, and for distances below dmin, it will act as a pure leader, following its own
desired, collision-free trajectory. If the desired trajectory is reduced to a desired,
safe position, then the obtained controller implements a compliance control with
self collision avoidance.

This scenario raises planning issues, since at the beginning of the motion the
humanoid robot is acting as a follower and hence it can be brought to any state.
When it gets close to self-collision and switches to a leader role, the question arises
of how to catch the original plan. If the state of the robot is far from its initial plan,
a re-planning is necessary. As the transition between the follower and leader roles
is smooth, the robot should compute what it would do if it was switching to a leader
role from the current state, even when it is acting as a follower.

We implemented this collision avoidance scenario on an HRP-2 humanoid
robot. The task consists in grasping an object and moving it in front of the robot.
At first, the object is far on the right of the robot and its arm is far from its body.
When the task is performed, the arm gets closer to its waist. In more complex
tasks, it can be suitable that the robot starts leading the task in such situations, to
suggest a plan that keeps it far from its own constraints. In our case, the robot will
thus start the motion as a follower and switch to a leader role when the arm gets
too close to the trunk, see figure 2.10.

To obtain this behavior, we defined the homotopy variable of the robot using
equation 2.10. As the HRP-2 robot is position controlled, we used controllers that
are similar to the one defined in the previous section: the leader controller is a
Cartesian position controller, and the follower controller is a Cartesian admittance
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Figure 2.10 – A human operator and HRP-2 jointly moving an object towards the left-hand

side of the robot. During the motion, the right arm of the robot moves towards the chest,

increasing the risk of self-collision.

controller. The homotopy controller U outputs a desired velocity ẋr for the robot’s
gripper which is sent to an inner controller performing inverse kinematics and PD
joint control to track the desired trajectory of the gripper. We performed the inverse
kinematics using the pseudo-inverse J#

r of the Jacobian. The desired joint velocity
q̇d reference is computed by solving for the output reference velocities of the leader
and follower controllers, ẋL

r and ẋF
r :

{

ẋL
r = λl (xr

o −x)
Mrẍr

F +Brẋr
F = fs

(2.11)

where x is the actual position of the end-effector of the robot, and the force fs

applied on the gripper of the robot is computed from the measurements of a 6 axes
force sensor placed at the robot’s wrist. The Cartesian reference velocity ẋU

r for
the end-effector and the desired joint velocity q̇d are then computed as:

{

ẋU
r = αrẋL

r +(1−αr) ẋF
r

q̇d = J#
r ẋr

U (2.12)

The joint velocity reference qd is numerically integrated and sent to the PD joint
controller of the robot provided by the control software OpenHRP.

The desired trajectory for the leader controller is defined by a set of key points,
which are interpolated using splines. The resulting function xr

o is a smooth function
defined on [0,1]. The reference sent at time t to the leader controller is xr

o (ρ(Yt)),
with Yt = max(0,min(1, t

T
)), where ρ has a bell-shaped profile and ρ̇ reaches its

maximum for t = T
2 . Hence if the desired trajectory of the gripper is perfectly

tracked, the maximum velocity is reached at the middle of the range of the motion.
The minimum distance between the arm and the trunk of the robot is computed

by [23], and the homotopy parameter is computed at each time using equation 2.10.
Figure 2.11 shows the motion of the object on the (y,z) plane, the minimum dis-
tance before self-collision and the homotopy parameter of the robot. At the be-
ginning of the motion, the robot follows the human. When the human brings the
object in front of the robot, the robot starts switching to a leader role and takes con-
trol of the task. Note that a similar effect could be obtained by implementing an
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impedance controller and changing the gains online, as in [41]. However, our ap-
proach will allow the use of different controller shapes for the leader and follower
behaviors, and an active behavior in response to the risk of constraint violation.
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Figure 2.11 – Evolution of the homotopy parameter and collision distance along the task

performance (bottom graph, solid line: homotopy parameter, dashed line: collision dis-

tance). On the top graph, the trajectory of the robot is shown. The blue line corresponds

to the plan of the robot, the yellow line corresponds to the actual trajectory followed by

the robot.

Here, the planning issue mentioned earlier appears clearly. Around t = 15s,
the homotopy variable of the robot is close enough to 1 for the robot to mostly
contribute to the motion of the object. However, by the time it happens, the desired
state of the robot is already the final position of the hand. Consequently, there is a
jump in the velocity of the hand of the robot, which starts going down abruptly.

To tackle this issue, a more appropriate strategy would be suitable. A possibil-
ity would be that the robot replans a desired motion regularly even when it behaves
as a follower, so that when it switches to a leader mode, the current state of the task
is close enough to the plan of the robot. This is however only possible for simple
tasks. Investigations on collaborative planning should be conducted to tackle this
problem appropriately and to design suitable leader behaviors for complex tasks.

2.3.2 parameterizing phenomena observed in human-human collaboration

Another strategy to define appropriate homotopies between leader and follower be-
haviors is to look at phenomena observed in human-human collaborative tasks. An
interesting phenomenon, from which we can easily derive a homotopy, is the spe-
cialization phenomenon highlighted by Reed [91]. Specialization has been shown
to emerge across trials of a collaborative positioning task where two human part-
ners rotate a two-handled crank to reach a desired angle in a minimum amount of
time. During the early trials of the task, partners participated to both the acceler-
ation and the deceleration of the crank. However, a different role distribution was
generally established in later trials, with one partner accelerating the crank and the
other partner decelerating the crank.

We defined specialized behavior as having a homotopy parameter that is differ-
ent from 1

2 , and that can switch to values closer to 0 to values closer to 1 depending
on some criteria. The more extreme the values of the homotopy parameter is, the
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“more specialized” the behavior is. Hence, specialization is described by specific
profiles of the homotopy mappings for each partner. In this scenario, we present
profiles that correspond to the particular case of the specialization highlighted by
Reed, and show that by defining appropriate Li and Fi controllers, specialization
also applies to point-to-point tasks.

Figure 2.12 – 1 degree-of-freedom collaborative positioning task.

The collaborative task we consider is a 1 degree-of-freedom point-to-point task
where two partners, 1 and 2 move a punctual mass M by applying forces f1 and f2

on the object. The position of the object is denoted x, xi is the starting position of
the object and x f is its target position. Figure 2.12 summarizes the notations.

The specialization phenomenon described by Reed is characterized by having
one partner accelerating the object and one partner decelerating the object. While
one partner accelerates the object, the other applies less force in the accelerating
direction. Hence, we can interpret this as having one partner leading the accelera-
tion phase and one partner leading the deceleration phase. Each partner switches
from one role to the other during the task, when switching from the acceleration
to the deceleration phase. To translate this evolution, we must define a profile for
the homotopy mappings that will have different extreme values at the beginning
and end of the task. To obtain a smooth behavior from the partners, the homotopy
parameter should smoothly switch from one value to the other.

To implement this switching, let us define the following smooth heaviside func-
tion:
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where y is the normalized position of the object, such that y(x ≤ xi) = 0 and y(x ≥

x f ) = 1. This function is so that α(0) = 1
2 +

β
2 , α(1) = 1

2 −
β
2 , and α(1

2) =
1
2 . The

plot of this function for different values of β is shown on figure 2.13.
We define the homotopy parameter for each partner as:

{

α1(y) = α(y)
α2(y) = 1−α(y)

(2.14)

then, if β = 0, both partners are between the leader and follower mode during the
whole motion, and do not specialize. If β > 0, partner 1 starts the task as a leader
and smoothly changes his/her around the middle of the motion to finish the task
as a follower, while partner 2 adopts the opposite behavior. If β = 1, then the
behaviors at the beginning and at the end of the task are pure leader and follower
behaviors. To simulate the emergence of specialized behavior, we can simulate
partners 1 and 2 using increasing values of β from 0 to 1 from trial to trial.

Now that we have defined a specialized behavior, we define the controllers
Li and Fi to obtain a behavior similar to that adopted by human partners, i.e.
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Figure 2.13 – Profile of the homotopy variable for different values of β . High values of β
give highly specialized profiles. The specialization is less pronounced for small values of

β . An unspecialized profile is obtained for β = 0.

a functional specialization where one partner accelerates the object and the other
partner decelerates it. That is, for i ∈ {1,2}:

{

Li : f L
i = Ki (x

i
o − x)+Bl

i (ẋ
i
o − ẋ)

Fi : f F
i = − Miẍ−B

f
i ẋ

(2.15)

where xi
o is the reference trajectory of the object for partner i, and Ki, B

l, f
i , Mi and

Ki are positive control gains. The output fi of the controller Ui =αiLi+(1−αi)Fi

is a force applied to the object by partner i. Hence the motion of the object obeys
the following equation:

Mẍ = f1 + f2 (2.16)

Finally, the desired motion of the object for partner i is defined using the min-
imum jerk model:


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

Ti = min

(

1,
t

T i
d

)

xi
o(Ti) = xi +(x f − xi)(10T 3

i −15T 4
i +6T 5

i )
(2.17)

Here, we assume same desired initial and final positions xi and x f for each
partner, and only the duration of the motion T i

d is different for partners 1 and 2.
This means that both partners want the object to reach the same target position, but
each partner may choose to move at a different pace. The system is simulated under
MATLAB, with the profiles shown on figure 2.13 for the homotopy parameters α1

and α2. Figure 2.14 shows an overview of the simulation model.
The resulting forces applied by the partners to achieve the task are plotted on

figure 2.15. The non-specialized and fully specialized profiles are plotted sepa-
rately on figure 2.16 to highlight the difference between these two extreme cases.
The motion of the object in the fully specialized case as well as its velocity, the
applied forces and the homotopy parameters are shown on figure 2.17.

In the case of the bottom plot of figure 2.16, the force profiles are similar to the
specialized profiles shown in [91]: one partner mainly applies positive forces, with
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Figure 2.14 – Simulation model. PDi denotes the Proportional-Derivative controller used

to implement the leader behavior. Z
f
i denotes the follower impedance controller.

0 0.5 1 1.5 2 2.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

time (s)

fo
rc

e 
(N

)

 

 

β=0
β=1/3
β=2/3
β=1

Figure 2.15 – Force applied by each partner on the object to reach a common target posi-

tion, for different specialization profiles (from non-specialized to fully specialized).

high forces during the acceleration phase and low forces during the deceleration
phase. The other partner applies mainly negative forces, with higher forces during
the deceleration phase.

This simulation was performed with different gains for each partner and dif-
ferent desired motion durations. However, the difference between the gains and
desired durations was kept relatively small compared to their values (random val-
ues were generated with a normal distribution around an identical values for each
partner, and a standard deviation arbitrarily chosen between 1% and 20% of the
values). The following facts have been empirically noticed:

⊲ specialized force profiles are generally obtained when the follower applies
relatively low forces on the object;

⊲ specialized force profiles appeared more often when the partner with the
smaller motion duration started as a leader.

This last point can be intuitively understood. If the slower partner starts the
motion, then at the middle of the range, when the faster partner starts leading the



2.3. Defining the homotopy 51

0 0.5 1 1.5 2 2.5
−2

−1

0

1

2

3

time (s)

fo
rc

e 
(N

)
 

 

0 0.5 1 1.5 2 2.5
−2

−1

0

1

2

3

time (s)

fo
rc

e 
(N

)

 

 

partner 1
partner 2

partner 1
partner 2

Figure 2.16 – Force applied by each partner on the object to reach a common target posi-

tion: β = 0, unspecialized case (up); β = 1, fully specialized case (down).
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Figure 2.17 – Motion of the object (up), forces applied by the partners (middle) and homo-

topy parameters of each partner (down).

task, s/he is behind schedule regarding her/his plan. Hence s/he will accelerate the
object to catch up her/his original plan. As a result, the partner who leads the end of
the task will not only decelerate, but will also accelerate the object, which does not
correspond to the functional specialization described in [91]. This gives us a hint
on how the partners specialize, i.e. how they will decide who will adopt a leader-

to-follower scheme and who will adopt the reverse follower-to-leader scheme: the
partner who leads the beginning of the task might be the partner who has the faster
desired motion. However, our simulations are not sufficient to draw solid conclu-
sions on this issue.
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2.3.3 Conclusion

In this section, we have examined two strategies to define the homotopy between
the leader and follower behavior on a robotic system. The first one consists in
looking at internal constraints of the robot, so that the robot will only act as a
follower when it is far from its constraints. This concept has been exemplified
with self-collision avoidance.

The second strategy is to parameterize phenomena observed in human-human
behaviors. By parameterizing phenomena such as specialization, one can obtain
task signatures in terms of role distribution which can then be used by a robotic
system to adopt a natural, human-like behavior.

Finally, a third strategy that we did not mention would be to look at the behav-
ior of the human and to adapt the homotopy parameter based on the human state
or intentions. A typical example would consist in taking the lead when the human
is inactive, and switch to a follower mode when the human takes an initiative.

2.4 Conclusion

The motivation of our work is to establish a physical haptic interaction model
which does not appoint any agent composing a dyad to be in either a follower
or leader role. Our approach consists in considering that in realizing a given task,
each individual would behave in an extreme case as either an agent who imposes
his intention suspecting from the collaborator to be a gentle follower or in a reverse
way. We believe that in reality these extreme cases are rarely reached and made the
hypothesis that each individual behaves according to a continuous weighted con-
trol between these two extreme cases. This weighting is realized by a homotopy
(interpolation) switching between either two distinct controllers (one ensuring a
follower behavior the other one the leader behavior), or between two sets of gains
for a single controller (case of adjustable impedance).

We believe that this model is expressive enough to encompass many scenarios
that can be imagined in dyadic collaborative tasks, such as conflicting situations,
dead-locks, or hesitations. We also believe that such a model can call for hap-
tic communication, because the partners will have to negotiate a role distribution
along the task.

We demonstrated how our model can be applied to human/humanoid physical
collaboration through exemplifying its concrete use in two scenarios: (i) homo-
topy is able to encompass role switching in specialization and (ii) homotopy role
switching appears as an elegant way for the robot to avoid self-collisions by acting
directly on the mapping to take the leadership of the task; this scenario is expe-
rienced with the HRP-2 humanoid robot moving collaboratively an object with a
human partner: the robot takes leadership when getting close to violate the self-
collision constraint. These two scenarios define two classes of strategies to define
the homotopy, namely looking at the internal constraints of the robot, and parame-
terizing phenomena observed in human-human collaborative tasks. These parame-
terizations can then be seen as task signatures in terms of role distribution. A third
class of strategies can be to adjust the homotopy parameter based on the interpre-
tation of the human behavior and intention. This option has not been investigated
in the context of this thesis, but will be examined in the near future.

Our model also raises the necessity of further investigations. First of all, stabil-
ity conditions have to be investigated. Even if the leader and follower controllers
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are stable, there is no guarantee that their homotopy mapping will be a stable con-
troller for any function α . Second, assuming that this model properly describes
the behavior of a cooperating human, which still has to be assessed, then, based on
limited knowledge on the underlying controllers, how can the homotopy variable
of a human operator be evaluated? This question is important if we want to im-
plement human-robot collaboration schemes, since this knowledge is likely to be
useful to adjust the homotopy variable of the robot partner.

The following chapter is a first step towards the validation of our model as a
description of human behavior. Assuming the model is valid, the results of next
chapter suggest that the weighting between the leader and follower behavior would
actually be continuous, and would not correspond to abrupt changes between a
leader and a follower behavior.
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WE are interested in giving robotic systems the ability to cooperate with hu-
man operators as partners, and not just as (passive) followers. In this chapter,
we adopt a Programming by Demonstration approach: we propose to teach col-

laborative tasks to a robot, rather than explicitly program them. By the mean of
probabilistic tools used in automatic learning, we try to encapsulate the complex-
ity of collaborative tasks by automatically extracting the important features that
characterize them.

Hereby, we present a probabilistic framework and an experimental setup which
allows us to demonstrate a collaborative lifting task to a robot. During the demon-
strations, the robot is taught the two extreme leader and follower behaviors. These
two behaviors can be clearly separated in the data-space, and their characteristics
are encoded using Gaussian Mixture Models. The models of both behaviors are
used jointly during the reproduction phase to retrieve the skill by performing a
Gaussian Mixture Regression. As a consequence, the robot can choose between
both behaviors when performing the task with a human partner.
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Using the proposed method, several successful lifting tasks could be per-
formed. It appears that during the reproduction experiments, several subjects acted
in such a way that the robot switched between the leader and follower behaviors
during the task. This supports the hypothesis formulated in the previous chapter,
namely, that partners can switch roles during a collaborative task and that this
switching is continuous.

The work presented in this chapter has been realized in collaboration with Syl-
vain Calinon, Elena Gribovskaya and Aude Billard from the Learning Algorithms
and Systems Laboratory, Ecole Polytechnique Federale de Lausanne. They have
provided probabilistic framework for teaching collaborative tasks by demonstra-
tion and focused on the demonstration method and the learning phase. Our con-
tributions have been to implement the teleoperation setup for the demonstrations,
to integrate the controller developped at the LASA, to conduct the reproduction
experiments and analyze the experimental data, and to exploit the probabilistic

framework to assess the extended leader-follower model proposed in this thesis.
For clarity, some technical details about the probabilistic framework are briefly in-
troduced here. The interested reader is kindly invited to read [11] and other papers
from the LASA, EPFL for a deeper presentation of the aspects related to automatic
learning.
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3.1 Programming by demonstration of collaborative tasks

3.1.1 Introduction

To perform collaborative manipulation tasks, the partners concurrently apply
forces on a common object of interest. During the task, they regulate the exchange
of mechanical energy not only based on the task to realize and environmental con-
straints, but also through mutual understanding of each other’s intentions. Since
most tasks can be realized in different manners (e.g. different velocity profiles or
trajectories), the partners have to mutually adapt to negotiate a common plan and
perform the task in a good synergy.

We believe that this multilateral adaptation process relies on haptic commu-

nication among the partners. This is however merely an hypothesis and little is
known about mutual adaptation processes in collaborative tasks. It is therefore
challenging to replace a human partner with a robotic one. The problem is usually
simplified by assigning a fixed follower role to the robotic partner, thus avoiding
the negotiation of a common plan between the robot and the human partner.

We proposed in chapter 2 an extension of the usual leader-follower model that
allows the robot to smoothly switch between the leader and follower behaviors,
or to adopt a mixed behavior during the whole task [26]. The behavior of the
robot is therefore characterized by a time-varying leadership ratio that balances
both behaviors. We proposed different strategies [25] to define and adapt this ratio.
The first one is based on knowledge about usual role distributions used by human
partners for a given task. The second one is based on the constraints of the task or
of the robotic partner.

In order to generalize these strategies to any task to adapt the leadership ratio
will require investigations on each task to extract role distributions favored by hu-
man partners (if any). Moreover, a mapping between the task constraints and the
leadership ratio must be devised. Finally, for the robot to act as a leader, a task
model is also necessary. Implementing these strategies explicitely can therefore be
a daunting task.

Bringing the programming of a machine (computer or robotic system) to a less
technical level is the aim of the Programming by Demonstration paradigm. Instead
of programming a complex motion based on an explicit model of a task, a teacher

will for instance demonstrate a task to the robot by seizing its arms and moving
them to perform the task, much like a parent will teach a child how to cut his meat.
Hence, our goal is to avoid deriving explicit models and role switching strategies
for the task, by using a Programming by Demonstration framework.

This chapter is built upon the work presented in [11], which investigates how to
demonstrate a collaborative lifting task to a robotic system through a teleoperation
setup. For the robot to extract the characteristics of the task and generalize to
undemonstrated situations, a representation of the task through Gaussian Mixture

Models (GMM) is used, which encode local correlations between the variables of
the task. From a set of input data, outputs can then be reconstructed on-the-fly
using a Gaussian Mixture Regression process.

We performed reproduction experiments on a real humanoid platform, to assess
whether the model presented in [11] is able to catch all the aspects and complex-

ity of the haptic cue exchange during collaborative physical task, including the
dynamics of the motion, the synchronization and adaptation processes and the un-
derlying haptic communication. We analyze the experimental result to evaluate the
teaching method, the learning process and, more generally, the usability of the Pro-
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gramming by Demonstration and GMM-GMR framework to endow a robot with
collaborative skills. Then we try to use obtained results to see whether our theory
developed in the previous chapter is somehow viable, at least for what concerns
role switching.

The work presented in [11] is hereby reviewed with the benefit of hindsight
gained through the experiments, and in the perspective of the extended leader-
follower model presented in the previous chapter. What is presented in this chapter
is therefore not the approach initially followed to transfer collaborative skills by
demonstration to a robot. It is rather a synthesis that shows how the Programming
by Demonstration methodology and probabilistic framework proposed in [11] can
be used to allow smooth switching between the leader and follower roles without
explicit models, how it relates with our extended leader-follower model and how it
can be used to assess its validity.

3.1.2 Programming by Demonstration

Programming by demonstration appeared in the 1980’s where it has been used in
industrial robotics to avoid the explicit programming of robotic tasks. A complete
review of the history and state of the art in the field, with many references, is given
in [7]. The purpose of this paragraph is not to provide a complete survey about
the topic, but to recall some basic notions in this paragraph, which are useful to
understand the chapter.

In the Programming by Demonstration paradigm, a teacher will demonstrate
a task to a robot, so that the robot can autonomously reproduce the task. A sim-
ple way to reproduce a skill is for example to extract keypoints of a trajectory,
or take snapshots of the robot’s state during the demonstration, and to replay the
trajectories by interpolating between these keypoints. Such a strategy will yet not
allow the robot to generalize the skill to adapt to new situations. Advances in ma-
chine learning allowed to address the generalization problem at two levels: how to
extract the important features of a task from a set of demonstrations, and how to
generalize to new situations.

Generalization

The problem of generalizing across the demonstrations consists in extracting the
constraints of a task. Let us consider the example of picking a cube on a table and
passing it over an obstacle. The first phase of the task, which consists in reaching
the cube, can be accomplished in many different ways, namely by starting from any
point in space, and by moving at different velocities towards the cube. However,
at some point, the distance between the hand and the cube must become zero. This
is a characteristic of the task that the robot must be able to extract by generalizing
this property over all the demonstrations.

When teaching a task, a human operator will not be able to demonstrate all pos-
sible ways of realizing the task in all possible contexts. Hence, we expect the robot
to be able to adapt to some extent to new situations. In the task described above,
the objectives remain unchanged whatever the starting position of the cube, or the
height of the obstacle. Therefore, we expect that if new obstacles are presented to
the robot, the latter will not fail to do the task. To increase the chances that the
robot can actually adapt to new situations, two aspects must be considered: first,
demonstrations must be performed with enough variability in the variables over
which we expect the robot to generalize (e.g. the relative position of the cube and
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the obstacle at the end of the task). Else, the robot might generalize over the trials
and extract constraints on these variables, preventing any adaptation. Second, ap-
propriate variables must be defined to describe the task. For example, considering
the absolute altitude of the cube when passing over the obstacle will not allow to
generalize to obstacles of a different size. Considering the distance to the obstacle
is more relevant in this case.

Demonstration modalities

Different interfaces can be used to transmit a skill to a robot. A very natural cue is
to rely on the visual perception of the robot, so that the teacher naturally performs
the task, and the robot looks at him to extract the features of the task. This can be
augmented by using motion capture to further get more precise information on the
posture of the teacher. Other possibilities are to teleoperate the robot, or to directly
seize and move its members to perform the tasks. Examples and references can be
found in [7], and in [9, 10].

3.1.3 Application to Human-Robot collaborative lifting tasks

If two partners perform a lifting task collaboratively, they are likely to have dif-
ferent intentions regarding some task parameters, such as the velocity profile, or
the target altitude of the object. Hence, during the motion, they will have to adjust
towards a common plan. We make the hypothesis that this is made partly through
haptic communication cues, i.e. that the partners will guess each other’s intentions
by interpreting the interaction forces they sense at the grasping points of the manip-
ulated object. This hypothesis relies on the common sense fact that a disagreement
between the partners will result in higher interaction forces.

We hereby consider a one-dimensional task where the position of the lifted ob-
ject is described by its altitude. We also consider the vertical velocity of the object
and the force applied by the robot along the vertical axis. We assume the mass of
the object is known, and more importantly, that the task will be demonstrated in
predetermined stereotypical manners, where one partner is asked to always lead

and the other is asked to act as a pure follower. Finally, we also assume that the
partner acting as a follower is blindfolded, so that visual cues do not interfere with
the task.

Rahman et. al showed that the dynamics of a follower human arm during
collaborative task was dominated by a variable damping term [86]. The force
applied on the robot’s wrist and the gripper velocity should therefore be taken into
consideration in order to reproduce human-like dynamics during the task. In our
case, we consider that the robot can also have its own desired trajectory to perform
the task. A position-dependent term can be added to the dynamics to drive the arm
towards a target position. In the context of this work, we will consider the position
x of the robot’s gripper and its velocity ẋ, as well as the force f sensed by the robot
at the grasping point, as depicted on figure 3.1.

3.2 Demonstration setup and experiments

This section presents the experimental setup adopted to demonstrate a collaborative
lifting task to the humanoid robot HRP-2. The task is demonstrated by adopting
two extreme role distributions: one where the human partner is leading, and one
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Figure 3.1 – The three variables considered in our study. The vertical force f is the force

exerted on the robot’s wrist.

where he is following. In both cases, the robot is teleoperated to adopt a com-
plementary behavior. The analysis of the data recorded during the demonstrations
shows that the data-sets corresponding to both role distributions are clearly sepa-
rated along the force axis. We conclude that role swithcing during the reproduc-
tions can be considered.

3.2.1 Hardware setup and controller

Hardware setup

Collaborative lifting tasks have been demonstrated on the full sized humanoid
robot HRP-2. As the joints of the HRP-2 robot are subject to significant friction,
kinesthetic teaching where the teacher manipulates the robot by direct contact is
not possible, as the unactuated motion of the HRP-2 robot is not compliant enough.
Active compliance can be implemented, but forces need to be applied after the
wrist force sensor, which is impractical when the robot is holding an object. As a
result, a teleoperation setup with kinesthetic feedback was chosen to demonstrate
the collaborative lifting tasks to the HRP-2 robot.

Figure 3.2 shows the experimental setup used during the teaching phase. Dur-
ing the demonstrations, a human operator (the teacher), teleoperates the robot
using PHANToM device with 6 degrees-of-freedom force feedback. Hence, the
teacher had a full feedback of the interaction wrench measured at the gripper of
the robot. A second operator (the operator) assists the teleoperated robot to lift
a beam, while keeping it horizontal. Only the right arm is used to perform the
lifting task, while the robot is standing. The wrist of the robot is constrained to
move only along the vertical direction during the whole task, while its orientation
is constrained to remain constant.

Overall control scheme

PHANToM devices are impedance type devices, meaning that they are low friction,
low inertia mechanisms, and accept force and torque references, whereas the HRP-
2 robot accepts joint position commands. Thus, a natural coupling scheme is a
bilateral 2-channel Velocity-Force coupling. The vertical velocity of the tip of the
PHANToM device was measured and sent as a velocity reference to the robot. The
vertical force was measured at the wrist of the robot, and sent as a reference to the
PHANToM device.
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Figure 3.2 – A human (teacher) teleoperates the humanoid robot HRP-2 through a force

feedback haptic display to demonstrate how to perform a collaborative task with a human

partner (operator).

Stability

The reader who is familiar to teleoperation systems will notice that this scheme is
particularly simple and will certainly lead to instability when the teleoperator will
be in contact with a stiff environment, because of unavoidable time delays. Differ-
ent solutions exist to avoid these instabilities: the transmission of wave variables
instead of power variables, to ensure the passivity of the transmission system [79],
and the addition of impedances at the ports of the transmission setup. Nevertheless,
this is at the cost of transparency, and will reduce the bandwidth of the system. As
we want to investigate human-human haptic communication, we want to have a
bandwidth as large as possible.

To ensure the stability of the system in the context of our experiment, we
rescaled the force fed back to the PHANToM device. This rescaling did not reduce
the bandwidth of the system. The value scale factor applied to the robot sensor
forces was set to 0.3, and was obtained empirically. Since only 30% of the sensed
force was fed back to the operator, we feared that the task performance would be
decreased. Thus, we also tried to damp the motion, so as not to impact the ampli-
tude of the forces in the bandwidth of the system. However, the damping caused
by usual stabilizing methods in teleoperation resulted in slower motions, and the
slight forces caused by differences in the operator’s intentions could hardly be felt
by the teacher using the master device. The force rescaling method felt more nat-
ural to the human teacher and resulted in better demonstration performance than
reducing the bandwidth of the system.

Haptic communication

The stability of the proposed setup can be affected by time delay, but the system
allows the robot to perform fast motions, as a human would, because its apparent
inertia to the teacher is actually the one of the PHANToM device. Furthermore,
the operator will sense all and only the forces sensed at the wrist of the robot, and
these forces will not be filtered by any admittance before being transmitted to the
operator. This has two implications:

⊲ little information will be lost between the teleoperator and the operator, be-
cause only the very high frequencies of the force signal will be filtered out;
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⊲ if the operator manages to perform the task, then the resulting performance
defines what we could definitely expect from a robot performing such a task
based only on sensor measurements.

This second point is very important, because our goal is to endow robotic plat-
forms with the ability of performing physical collaborative tasks with a human
partner, and we believe that the haptic signal has a great importance in the task
performance. In our setup, the teacher using the PHANToM device has his eyes
closed when following the other human partner. Since the forces transmitted to
this operator are only the ones measured at the robot’s wrist, if the operator can
perform the task with a very good performance, it means that the haptic signal

measured at the robot’s wrist conveys enough information to perform the task in a
stand-alone mode with the same performance as the human operator. This allows
us to know where to put our expectations.

3.2.2 Experiments

The teaching process was conducted with one teacher (the robot’s behavior was
thus personalized to this teacher), and two humans as task-partners. The task con-
sisted in lifting an object synchronously so as to keep the object horizontal. The
subjects were instructed not to vary the final altitude of the object across trials,
although no marker indicated a common target altitude to reach. The mutual adap-
tation between both partners thus lied in the velocity profile to reach the target
altitude, and in the force profiles applied by each partner to realize the motion.

Two sets of scenarios were demonstrated to the robot. In the first set, the
teacher closed the eyes and the user initiated and ended the motion. In the other
set, the roles were exchanged, and the teacher lead the onset and end of the mo-
tion. Given the short duration of the motion (less than 10 seconds), this practically
corresponds to caricatural fixed leader-follower distributions. Therefore, the robot
was taught to realize the task with two different dynamics, corresponding to two
extreme role distributions among the partners.

The position and velocity of the robot’s gripper and the force measured by a
force/torque sensor located at the robot’s wrist were recorded at 200Hz. A chal-
lenge when dealing with the analysis of a force signal coming from a force/torque
sensor is noise. The force signals had to be filtered prior to analysis, which some-
how limited the frequencies in which we could observe potential haptic phenom-
ena.

The results are illustrated in figure 3.3. We notice a certain consistency in
the position-velocity plane. The force-velocity plane shows two separate patterns
for the two different teaching behaviors (robot leader and robot follower and the
counterpart task-partner follower and task-partner leader respectively). The forces
in the case where the robot is leader are lower than in the follower case, because
the partner follows the robot with a lag. Hence the robot has to “pull” the human
partner and a negative force with a higher amplitude is measured. This is clearly
visible on the forces’ time profiles on figure 3.3.

3.2.3 Conslusions

We can draw several conclusions from the graphs shown in figure 3.3. By looking
at the relationship between position and velocity (bottom-left corner), we see that
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ẋ

Figure 3.3 – First row: force against time and position against forces. The forces in the

“leader robot” case (in red) and the “follower robot” case (in green) are clearly sepa-

rated. Second row: velocity profiles plotted against the position and force variables. The

trajectories in red and the trajectories in green correspond respectively to the demonstra-

tions of the robot acting as a leader and as a follower. The circles represent the beginning

of the motions.
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the kinematics of the task in both role distributions are not very different. There-
fore, an observer looking at the two partners when they perform the task is unlikely
to tell which of the partners is leading and which is following. The only slight dif-
ference is that the velocity decreases at an earlier stage of the motion when the
robot follows the human partner.

By looking at the bottom-right graph on figure 3.3, however, we see that the
dynamics of the motion, i.e. the concurrent evolution of force and velocity, is
different in both cases.

Finally, we notice that what separates both behaviors is the force measured at
the wrist of the robot. This means that given an input force, it is possible to deter-
mine the role distribution among the partners: roughly speaking, forces above −7N
correspond the the case where the robot acts as a follower, and forces below this
value correspond to the case where the human acts as a follower1. This distinction
is however impossible to do with the kinematical variables: for a given position
or velocity, it is impossible to know the applied force, and thus to know the role
distribution among the partners. Therefore, without regard for the algorithms and
controllers used to reproduce the task, the measured force will have to be an input

to the system.
Considering measured forces as an input will allow to determine, during re-

productions, what task dynamics the robot should select: the one learned when it
acted as a leader or the one when it aced as a follower. Thus, by asking the teacher
and his partners to demonstrate two extreme role distributions, a criterion to select
the role distribution could be extracted for the task. In this particular context, it is
possible to consider switching between the two role distributions based on the be-
havior of the human partner, for the partner can decrease the applied force during
the task so as to be in the “leader robot” domain, or increase it to move towards the
“follower robot” domain.

3.3 Learning collaborative tasks

The previous section has introduced a setup and an experimental method to demon-
strate a collaborative lifting task to a robotic system. The analysis of the data
recorded during the demonstrations shows two distinct patterns in the force-
position-velocity space corresponding to the two demonstrated role distributions.

In this section, we present the probabilistic framework which we used to en-
code these patterns, so as to retrieve the skill in autonomous lifting tasks performed
with human operators. This framework was developped at the LASA, EPFL and
has been applied to collaborative tasks in the context of a joint work in the Euro-
pean project Robot@CWE.

Understanding these tools is important to analyze and understand the experi-
mental results, and to draw conclusions about the usability of this framework to
transfer collaborative skills to a robot. Some aspects must also be presented to
fit the experimental results with the extended leader-follower model presented in
chapter 2.

1We will see later in the chapter that the limit between both behaviors is not that sharp.
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3.3.1 Probabilistic encoding of the task

The data consist in a set of points D = {ξk},k = 1..Nd recorded during the demon-
strations of the task (Nd is the number of recorded data points). Each point ξ is
defined as ξ = [x f ẋ]T , where x, ẋ and f are the position and velocity of the robot’s
gripper and the vertical force measured at the robot’s wrist at a given time of given
demonstration.

We considered the data-sets corresponding to the two role distributions sep-
arately: DL is the data-set corresponding to the “leader robot-follower human”
distribution, and is depicted in red on figure 3.4. Conversely, DF is the data-set
corresponding to the “follower robot-leader human” distribution, and is depicted
in green on figure 3.4.

Figure 3.4 – The two data-sets recorded during the demonstration. The data-set DL corre-

sponding to the demonstrations with a leader robot is depicted in red, and the data-set DF

corresponding to the complementary role distribution (follower robot and leader human)

is shown in green.

The probabilistic framework used to encode the characteristics of the demon-
strated task is based on Gaussian Mixture Models (GMM). A GMM is a combi-
nation of Gaussian probability density functions, used to estimate an unobservable
density function from a set of data samples. GMMs are often used as classifiers, but
in our context, they are used as an efficient and compact way to encode local corre-
lations and variations across different variables in a data-set. A GMM is defined by
a set of K components corresponding to K Normal distributions N (µi,Σi), i= 1..n.
The joint density of a random vector ξ given a GMM G is defined by:

p(ξ = ξ̂ |G ) =
K

∑
i=1

hiN (ξ̂ ; µi,Σi) (3.1)

N (ξ̂ ; µi,Σi) =
1

√

(2π)N |Σi|
exp

(

−
1
2

(

(ξ̂ −µi)
T Σ−1

i (ξ̂ −µi)
)

)

(3.2)

where hi is the a priori probability of the component i of the GMM, µi is the mean
vector of the ith Gaussian component, and Σi is its covariance matrix; the integer
N is the dimension of the data-space.

The data-sets DL and DF have been encoded in two different GMMs, GL

and GF . The idea is to see each point of a data-set D j∈{L ,F} as the realization of
a random vector ξ whose probability density function is given by p(ξ |G j). The
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parameters of this probability density function are estimated using the Expectation
Maximization algorithm, which maximizes the likelihood of the model:

G j = argmax
G j

L(G j|D j) = ∏
ξ∈D j

p(ξ |G j) (3.3)

The two GMMs GL and GF are then mixed to build a single GMM with two
subsets of components associated with both demonstrated role distributions.

Note that this way of encoding the data is much more compact than storing
the whole data-set. The components of a GMM give local information about the
characteristics of the task: local correlations between variables, and constraints
(areas with low variability). Moreover, from a limited set of samples, we construct
a model that is defined on the whole data space. This is very useful to allow the
reproduction of the task in unlearned situations, i.e when some of the variables take
values that were never demonstrated.

A GMM can be graphically represented by plotting each of the gaussian com-
ponents of the model. Each component is represented by a set of points that share
the same value of the probability density function associated with the component.
Therefore, each component is represented by an ellipse in 2D, and by an ellipsoid
in 3D. The coordinates of the center of the ellipse/ellipsoid are given by the mean
vector of the component. The orientation of the ellipse or ellipsoid depends on
the covariance matrix of the component. The GMM encoding the demonstrated
task is depicted on figure 3.5. The subsets of components corresponding to the
demonstrated role distributions are represented in two different colors.

3.3.2 Probabilistic reconstruction of the task

In the previous paragraph, we explained how GMMs can be used to encode the
characteristics of the task. GMMs are an approximation of the density function
of the data recorded during demonstrations of the task. Therefore, we implicitely
define the task as the realization of a random vector with a given probability density
function that we estimate using our GMM.

This interpretation is useful to consider the reproduction of the task. When re-
producing the task, some of the variables (the inputs) are known, while the outputs
are to be computed so as to produce the desired behavior. If we consider a task
encoded through a GMM, it is possible, given the values of the input variables,
to compute the conditional probability density function of the random vector com-
posed of the output variables. An approach to reproduce the task is then to compute
the conditional expected value of these output variables and use this value as an
output to produce the desired behavior. In simpler terms, we compute the expected

value of the outputs, given the inputs, and given a probability density function.
Let us state this formally. Let G be a GMM defining the probability density

function of a random vector ξ and encoding a given task. Let us decompose the
vector ξ in a vector of input variables ξ I whose value is given when reproducing
the task, and a vector of output variables ξ O whose value is unknown during the
reproduction. To reproduce the task, we compute a command vector ξ̂ O as:

ξ̂ O = E
(

p(ξ O|ξ I,G )
)

(3.4)

where E
(

p(ξ O|ξ I,G )
)

is the conditional expected value of the random vector ξ O
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Figure 3.5 – Gaussian Mixture Models encoding the task dynamics. The red ellipsoids

represent the components of the GMM GL encoding the task dynamics with the “leader

robot-follower human” role distribution. The green ellipsoids represent the components of

the GMM GF associated with the “follower robot-leader human” demonstrations.
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given the value of the input random vector ξ I and the GMM G . This process is
called Gaussian Mixture Regression (GMR)2.

The conditional expected value of the output vector is computed from the con-
ditional distribution of the vector. If we split the random vector ξ into the output
vector ξ O and the input vector ξ I , then for each component i of the GMM, the
mean vector µi and covariance matrix Σi have the following structure:

µi =

[

µ I
i

µO
i

]

,Σi =

[

ΣI
i ΣIO

i

ΣOI
i ΣO

i

]

(3.5)

The conditional probability density function of the output vector given the in-
put vector and the model is then also a mixture of gaussians [10, 96]:

p(ξ O|ξ I,G ) =
K

∑
i=1

hi(ξ
I)N (ξ O; µ̂i, Σ̂i) (3.6)

hi(ξ
I) =

N (ξ I; µ I
i ,Σ

I
i )

∑
K
j=1 N (ξ I; µ I

j ,Σ
I
j)

(3.7)

µ̂i = µO
i +ΣOI

i (ΣI
i )
−1(ξ I −µ I

i ) (3.8)

Σ̂i = ΣO
i −ΣOI

i

(

ΣI
i

)−1
ΣIO

i (3.9)

The conditional expectancy of the output vector given a value of the input
vector and the model is thus obtained, from the linearity of the expectancy, by:

ξ̂ O = E
(

p(ξ O|ξ I,G )
)

=
K

∑
i=1

hi(ξ
I)

(

µO
i +ΣOI

i (ΣI
i )
−1(ξ I −µ I

i )
)

(3.10)

The figure 3.6 illustrates the GMR process with a 2-dimensional input vector
ξ I =

[

ξ I
1 ξ I

2

]T
and a 1-dimensional output ξ O. The GMM has only one compo-

nents and gives the joint distribution p(ξ I,ξ O). The red plane S represents the
subspace of points whose altitude is given by the conditional expectancy of the
output variable, given the inputs. The different conditional distributions are rep-
resented on the picture by ellipses (when only one input variable is given) or by a
segment (when both input values are given).

When the GMM has more than one component, the output of the GMR
E(p(ξ O|ξ I)) can be obtained by computing E(pi(ξ

O|ξ I)) for each component i

of the GMM taken separately, and then weighting the results with the function hi

given in equation (3.7). This is illustrated on figure 3.7

3.3.3 Control scheme

As mentionned earlier in the chapter (see paragraph 3.2.3), the leader and follower
data-sets are separated along the force axis. Therefore, if we consider building a
controller to reproduce the tasks from these demonstrations, it is natural to consider
force as an input to the system. It is also natural to consider the velocity of the
gripper as an output of the controller rather than position, so that for a given force
at a given position, a reference velocity should be computed.

2Note that this approach is not specific to random vectors with Normal distributions; it is a pos-
sible approach whatever the distribution whose conditional distribution exists. An example with
Bernoulli Mixture Models is cited in [10].
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Figure 3.6 – Illustration of the GMR process. The red plane represents the image of the

input space through the GMR process. The orientation of this plane gives information on

how the reconstructed output E(p(ξ O|ξ I)) will vary with the values of the inputs ξ I
1 and

Iξ I
2 .

Figure 3.7 – Illustration of the GMR process with two gaussian components. The surface

represents the image of the input space through the GMR process. The blue (respectively

red) part shows the area where the blue (respectively red) component has more effect

on the value of E(p(ξ O|ξ I)). In the blue (red) area, the surface is almost the image

plane obtained with only the blue (red) component such as in figure 3.6. Between these

areas, the colors are mixed, since both components will have influence on the output. The

figure shows how the blue and red components are used to compute Eblue(p(ξ O|ξ I)) and

Ered(p(ξ O|ξ I)), which are located on the cross-ruled planes. These values are weighted

to obtain E(p(ξ O|ξ I)), located on the surface S.

One approach to compute this reference velocity is to perform a GMR and
compute the reference velocity as ẋ∗ = ξ̂ O = E(p(ẋ|x, f )). The reference velocity
is then sent to some low-level Cartesian velocity controller.

A more sophisticated solution, proposed in [11] is to build a controller that
will at the same time follow the trend of the motion given by E(p(ẋ|x, f )), while
trying to stay in the learned domain, i.e. keep the gripper’s position x close to the
demonstrated values for a given gripper’s velocity ẋ and a given sensed force f .
The resulting controller is then:
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ẍ∗ = κV ( ˆ̇x− ẋ)+κP(x̂− x)

ˆ̇x = E(p(ẋ|x, f ))

x̂ = E (p(x| f , ẋ))

(3.11)

where κV and κP are positive gains. The reference acceleration ẍ∗ is then inte-
grated to produce the reference velocity ẋ∗. More details about this controller can
be found in [11]. During the reproduction experiments described in the next sec-
tion, we used a very small position gain compared to the velocity gain (namely
κP ≪ κV ). Equation (3.11) thus practically reduced to:

ẍ∗ ≃ κV ( ˆ̇x− ẋ) (3.12)

Note that for a constant reference velocity ˆ̇x, the actual velocity of the robot’s
gripper ẋ will exponentially converge to ˆ̇x. If the gain κV is large, the gripper’s
velocity will track the reference velocity with a small error, for the derivative
of the reference velocity is not taken into account. We will from now on as-
sume that equation (3.12) is a perfect equality, and that the reference velocity
ˆ̇x = E(p(ẋ|x, f )) is perfectly tracked. The next section presents and analyzes the
results of the reproduction experiments.

3.4 Task reproduction

In this section, we evaluate the usability of the proposed method and its robustness.
We discuss experimental results obtained during reproduction attempts of the task.
We also discuss how these results support the continuous role distribution model
proposed in the previous chapter.

3.4.1 Reproduction setup

The setup used for the reproduction of the demonstrated task was the same as
for the teaching phase, except that the robot was acting autonomously, instead of
being teleoperated. A reference velocity was computed at each control iteration
using Eq (3.11). Each experiment lasted less than 5 seconds, time after which the
robot came back to the initial position.

Different subjects were asked to lift the object together with the robot. The
subjects were not given any specific instructions apart that they needed to lift the
object naturally together with the robotic partner. Figure 3.8 shows an autonomous
replication of a beam lifting task by HRP-2 jointly with a human task-partner.

3.4.2 Preliminary analysis

Several reproductions of the task were performed, involving 13 subjects (including
the teacher). Only once, the object was not lifted and stayed at the starting point.
A preliminary study was conducted by analyzing 71 trials among the whole set of
reproductions, involving 7 of the 13 subjects (the teacher was not part of these 7
subjects). The velocity of the robot’s gripper was plotted against the sensed force
at the robot’s wrist for each experiment. The resulting curve was compared to the
GMM encoding the task. Among the 71 trials, 38 were considered successful: the
subjects applied forces within the demonstrated range and the lifting motion was
smooth.
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Figure 3.8 – Autonomous replication of a lifting task by HRP-2 jointly with a human part-

ner.

Most of the 33 failed attempts corresponded to the cases where the object could
be lifted, but where the subject applied large forces on the object, such as shown
on figure 3.9.
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Figure 3.9 – Failed reproduction attempts. The object was successfully lifted, but the

dynamics of the motion is not the demonstrated one: the human partner applied very large

forces on the object, which we interpret as an unsatisfied will to increase the pace.

From now on, we will study and comment only the 38 trials that were consid-
ered successful. We were interested in observing how the subject and the robot
would behave if we did not impose any role during the reproduction. Since we
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use a GMM composed from both leader and follower models, we expected that the
robot would be able to act either as a leader or as a follower, depending on the pref-
erence of the human partner. In this preliminary analysis, the behavior of the robot
is determined according to the forces applied by the partner. If the partner applies
positive forces, the follower part of the GMM will have a stronger influence on the
motion of the robot than the leader part, and conversely, negative forces will result
in a stronger influence of the leader part.
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Figure 3.10 – Reproduction trials where the dynamics of the motion is close to the demon-

strated “human leader-robot follower” task dynamics.

Among the 38 successful trials, the dynamics of the motion was most of the
time close to the demonstrated “human leader-robot follower” task dynamics (23
trials), as shown on figure 3.10. The opposite case, illustrated on fig. 3.11 appeared
only once.
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Figure 3.11 – Reproduction trial where the dynamics of the motion is close to the demon-

strated “human follower-robot leader” task dynamics.
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During the reproductions of the task, we were willing to notice the switching
between the follower and leader behaviors in some experiments. Two extreme,
complementary role distributions have been demonstrated to the robot, resulting
in two different task dynamics, encoded in two GMMs. During the reproductions
of the task, those two GMMs were used jointly, as a single GMM. By varying the
applied force, the partner can place the motion of the gripper under the influence
of either the “leader” components of the GMM, or of the “follower” components.
This was possible because both role distributions are encoded in two GMMs that
are clearly separated along the force axis. The consequence is that the robot can
switch between the two demonstrated task dynamics according to the forces ap-
plied by the human.

The figures 3.12 illustrates 3 cases among 14 observed trials where such a
switching between these two dynamics occured: the task dynamics switched from
the demonstrated “leader robot-follower human” to the demonstrated “follower
robot-leader human” dynamics. Figure 3.13 shows a case where the dynamics
switched twice. These switchings suggest that role switching as defined in the
extended leader-follower model presented in chapter 2 can occur during collabo-
rative tasks, and can occur naturally even if one of the partner is a robotic system,
if this system is given the ability to switch between both behaviors. It also sug-
gests that the presented probabilistic framework can be used in a programming-by-
demonstration setup to avoid explicitly devising the leader and follower behaviors
and switching strategies.
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Figure 3.12 – Reproduction trials where the dynamics of the motion switched from the

“robot leader” to the “robot follower” dynamics.

3.4.3 Quantitative analysis

The previous paragraph presented a qualitative analysis of the experimental results,
where the reproduction data was superimposed to the GMM to conclude about the
dynamics of the task and the role distribution. Besides, unsuccessful trials were
sorted out by looking at the range of applied forces: trials where forces above 5N
were applied were considered as unsuccessful, for the magnitude of the demon-
strated forces was below this value.
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Figure 3.13 – Reproduction trials where the dynamics of the motion switched twice between

both demonstrated dynamics.

In this paragraph, we attempt to quantitatively evaluate the reproduction re-
sults, to conclude more precisely about the usability of the Programming by
Demonstration framework presented in this chapter for collaborative tasks. The
results are also fitted with our extended leader-follower model and we investigate
to what extend the experimental results allow us to conclude about role switching.

This paragraph analyses the experimental results of 70 trials performed by 6
subjects: one of the subjects of the preliminary study was involved in only 1 trial.
This subject was excluded from the quantitative study, so that the 6 subjects per-
formed about 10 trials.

Image of the force-position plane through GMR

The learning phase provided us with a GMM for the lifting task. This GMM is used
to perform a GMR and compute a reference velocity for the gripper of the robot,
from its position and the force sensed at the wrist. To understand the behavior
of the robot, it is useful to have an idea about what the output velocity will be,
depending on the force and position variables. This can be done, as shown in the
previous section, by drawing the surface {[a ∈R; b ∈R; E(p(ẋ|x = a, f = b))]T},
as shown on figure 3.14.

Assuming that equation (3.12) holds, and that the reference velocity is perfectly
tracked by the gripper, the data-points {ξ = [x f ẋ]T} will be located on this surface,
that we will refer to as the “image of the force-position plane through GMR”. Note
that the point ξ (t) representing the coordinates of the robot’s gripper in the data-
space at time t will not move freely on this surface: while the motion along the
force axis depends on the force applied by the partner, the motion of the point
along the position axis will depend on the velocity of the robot’s gripper, i.e. on
the altitude of point ξ (t).
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Figure 3.14 – Image of the force-position plane through the GMR process. The ellip-

soids represent the components of the GMM, and the surface shows the velocity output

E(p(ẋ|x, f )) for each value of the position x and force f . Orange areas correspond to the

higher velocities, and blue ones to the lower velocities.

Successful trials

In the preliminary analysis, the success rate was determined according to the force
range. The intuition is that if subjects pulled too hard, they probably felt like the
robot did not adapt properly. In this paragraph, we adopt another method and try
to quantitatively establish a success rate. This can be done by comparing the task
dynamics to the demonstrated one, which will take the sensed force into account.
It is also possible to consider only the kinematics of the task: the task will be
considered successful if the kinematics of the motion is close to the demonstrated
one, whatever forces the subject had to apply. Here, we choose to consider the
applied forces.

We need to evaluate, for each trial, how close the dynamics of the motion is to
the demonstrated one. We propose to evaluate the log-likelihood of each data-point
of the trial given the GMM, and to compare it to the maximum log-likelihood of
the image of the force-position plane through the GMR process. We first compute
a threshold llim as:

llim = lmin +0.75 (lmax − lmin)
lmin = minξ∈V log(L(ξ ,G ))
lmax = maxξ∈V log(L(ξ ,G ))

(3.13)

where L(ξ ,G ) is the likelihood of the data-point ξ given the GMM G . llim is
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thus at 75% the the interval [lmin; lmax], where lmin and lmax are the log-likelihood
extrema observed in the volume V . The volume considered for this analysis was
x∈ [−0.1;0.4] (in meter) and f ∈ [−20;5] (in Newton) and ẋ∈ [−0.1;0.2] (in meter
per second).

For a given trial, the log-likelihood of each point is computed and compared
to llim. If all points have a log-likelihood over this value, the trial is considered
successful. By applying this criterion to the 70 trials, 38 were considered success-
ful. The success ratio is thus similar to the one obtained in the preliminary study.
Figure 3.15 shows the points on the image of the force-position plane that satisfy
the criterion. Figure 3.16 shows the successful and failed trials.

Figure 3.15 – Image of the force-position plane through the GMR process. The area

in light gray is the area where the success criterion is satisfied, i.e. points ξ such that

log(L(ξ ,G ))> llim.

Figure 3.16 – Left: successful trials. The data-points have been projected on the position-

velocity plane. Right: failed trials. By comparing these pictures, we notice that successful

trials generally followed the shape suggested by the ellipsoids, and reached a final position

that was closer to the demonstrated one, above the final position of the failed trials.
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Figure 3.17 – In red: area where the robot will behave mostly according to the “leader

robot-follower human” task dynamics. In green: area where the robot will behave mostly

according to the “follower robot-leader human” task dynamics. The transition between

these two areas is smooth.

Figure 3.18 – Trial where the task dynamics switched between both role distributions. The

switching is more apparent on the bottom figure, where the data-points are plotted over the

leader and follower areas.
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Figure 3.19 – Velocity of the gripper of the robot and value of the homotopy parameter

during one trial. The smooth transition between both task dynamics can be seen from the

continuous transition of the homotopy parameter from 1 to 0.

Role distribution and behavior switching

In the preliminary analysis, the role distribution was estimated by looking at the
applied forces and by projecting the reproduction data and the GMM in the force-
velocity plane. The robot was considered follower when the curves were over the
green ellipses (the components of the GMM that correspond to the “follower robot-
leader human” demonstrations), and considered as a leader when the curves were
over the red ellipses. The intuition behind this criterion is that the influence of
the components of the GMM are weighted according to the relative values of the
probability density functions of the components of the GMM. Since for a given
component, this value increases when going towards the mean vector of the com-
ponent (towards the center of the ellipse), this component will have more influence
in the neighbourhood of the ellipse.

Let us state this idea more formally and analyze the experimental results quan-
titatively with regard to role distribution among the partners. For this purpose,
let us first define the set IL of components of the GMM GL , which encodes the
“leader robot-follower human” task dynamics. Likewise, IF is the set of compo-
nents of the GMM GF . We also define I = IL ∪ IF . The i-th component of the
GMM G will be denoted Gi. Let us define the function α as:

α(ξ ) = ∑
i∈IL

p(Ξ = ξ |Gi)

p(Ξ = ξ |G )
, ξ =





x

f

ẋ



 (3.14)

Then for any data-point ξ , we have α(ξ )∈ ]0;1[. If α → 1, the output velocity
E(ẋ|x, f ) computed through GMR will almost only depend on the components
of GMM GL , i.e. according to a “leader robot-follower human” task dynamics.
The opposite case occurs when α → 0. Therefore, the function α characterizes a
homotopy between a leader controller and a follower controller. The leader and
follower areas are depicted on figure 3.17.

The figure 3.17 shows that for a given position, the behavior of the robot (leader
or follower) will depend on the force applied by the human partner. Thus, we
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have implicitely designed a behavior switching strategy, based on the force applied
by the partner. Though qualitatively, this strategy is straightforward (the robot
becomes a follower if the human pulls the object, which means the human is trying
to go up faster than the robot), the exact value that separates both behaviors is
not easily determined and is likely to depend on the mass of the object. Therefore,
transforming this intuitive idea into a mapping from force to a homotopy parameter
is not an easy task. The Programming by Demonstration method used here allows
us to implicitely determine both the qualitative and quantitative aspects of the role
switching strategy. Note, also, that in our case the swithcing strategy can be seen
as:

⊲ Detecting the role of the human through the applied force;

⊲ Adapt a complementary role.

The figure 3.18 shows a case where the role distribution switched from “leader
robot-follower human” to “follower robot-leader human”. The figure 3.19 shows
the velocity of the robot’s gripper and the evolution of the function α along the
task for this trial.

3.5 Conclusion

In this chapter, we have applied the Programming by Demonstration paradigm to
collaborative lifting tasks. We restricted ourselves to a one degree-of-freedom de-
scription of such tasks. Based on this description, variables that describe the task
were recorded during demonstrations of the task and the relevant features of the
tasks were encoded in a Gaussian Mixture Model. This GMM was used in the
reproduction phase to reconstruct the data using a Gaussian Mixture Regression
process. The task could be successfully demonstrated using a teleoperation setup
with kinesthetic feedback, on the humanoid robot HRP-2. The task was then suc-
cessfully reproduced with several operators in an autonomous way.

From the learning point of view, the work performed here is a new applica-
tion of Programming by Demonstration. Much work can still be done to extend
the proposed framework to encompass different objects and investigate the varia-
tions between different human partners. We hereby assumed that even if the task
had been demonstrated in collaboration with only two different partners, the robot
would be able to perform the task with any operator, since human operators would
be able to adapt to the dynamics of the motion of the robot.

In the perspective of the extended leader-follower model presented in this the-
sis, this chapter presents a method based on the Programming by Demonstration
paradigm and a probabilistic framework to implicitely design role switching strate-
gies for a given collaborative task. The method consists in demonstrating how the
task is performed with two extreme role distributions and to encode these dynam-
ics separately in two GMMs. If the two resulting models are well separated along
one dimension, then a homotopy is implicitely defined by considering the relative
influence of the leader and follower parts of the GMM during the reproduction of
the task through GMR.

Experiments conducted with the humanoid robot HRP-2 assess the usability
of the proposed method. It also allowed us to highlight switchings between both
demonstrated role distributions during the reproductions of the collaborative lifting
task. This result supports the model presented in the previous chapter, according to
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which partners in a collaborative task smoothly switch from a leader to a follower
role.

This chapter concludes the first part of this thesis. In this part, we studied
existing models for collaborative tasks, and proposed a theoretical framework to
describe dyadic collaborative tasks. The main idea is to extend the classical leader-
follower approach to continuous, time-varying role distributions among the part-
ners, thus giving an equal responsibility to both partners to perform the task. Dif-
ferent ways of adjusting the role distribution were examined. Finally, a study of
haptic communication between human partners during collaborative lifting tasks
using a Programming by Demonstration framework allowed us to demonstrate
collaborative tasks to a robot so that it could successfully reproduce them, and
to support our continuous switching model. The next part of the thesis is more
focused on implementation aspects of collaborative tasks on robotic systems.
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IN this chapter, we study the realization of collaborative tasks between two dis-
tant human operators. The work reported here has been conducted jointly with
Martin Buss, Sandra Hirche, Inga Krause, Angelika Peer, Thomas Schauß, Car-
olina Weber (in alphabetical order) from the Institute of Automatic Control, at the
Technische Universität München.

In this chapter, a scenario is proposed whereby a human operator takes control
of a humanoid robot using a mobile telepresence setup to perform some task with
another operator at a distance. The originality of this scenario lies in the second
human operator being on-site. The human partners must then perform a physical
collaborative task under reduced transparency, limited feedback and time delay.
Another challenge is the whole-body control of the humanoid robot, and the cou-
pling between two platforms with different dynamics: one is a haptic interface
mounted on an omnidirectional mobile base, and moves continuously; the other is
a humanoid robot, whose locomotion is realized by stepping.

After a more detailed presentation of the application and a review of the rele-
vant literature, we investigate how such an experimental setup can be established,
and discuss about the possible coupling schemes between the telepresence setup
(i.e. the master device, to adopt a conventional terminology) and the distant hu-
manoid robot (i.e. the teleoperator, or slave). We then extend the setup to wide-area
manipulation, relying on the mobility of the telepresence setup and the gait capa-
bilities of the teleoperated humanoid robot. The main components used for the
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whole-body control of the humanoid platform are described. Some of these com-
ponents will be described in more details in the next chapter, where we present an
experimental setup that uses the same components to perform collaborative tasks
in an autonomous way with a human operator.
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4.1 Teleoperation of humanoid robots: a brief review

Teleoperation allows a human operator to perform tasks at a distant location, or
in hostile environments. It has required a substantial amount of work for several
decades to solve the problems due to time delay, limited feedback, or to increase
user-friendliness.

The study of bilateral teleoperation has focused on stability and trans-
parency [62, 79]. Stability is probably the most important issue since it puts the
safety of the operator at stake. One of the main reasons for instability in force re-
flecting teleoperation setups is the transmission time delay between the master and
slave devices. Unfortunately, it is physically impossible to avoid or compensate
for this time delay. Depending on the scale of transmission time delay, teleopera-
tion systems will have to be more or less damped, i.e. reduce the bandwidth of the
system. It has been shown [2, 79] that the transmission of power variables (forces
and velocities) between the local and distant site is non-passive and thus can desta-
bilize the system. A solution to this problem is to transmit wave variables rather
than power variables [79].

Virtual Reality-based methods can be employed to enhance teleoperation se-
tups [61]. Visually displaying the interaction forces rather than reflecting them at
the master device’s actuators avoids the stability issues inherent to bilateral teleop-
eration with force feedback. Likewise, supervisory control is a modality where the
human will issue high-level commands and the low-level motions of the teleopera-
tor will be driven only by local controllers. Obviously, such modalities impair the
telepresence feeling, since the master and slave devices are no longer bilaterally
coupled. Predictive display has also been proposed to avoid stability issues caused
by time-delayed transmission in force reflecting teleoperation setups [5]. To avoid
the so-called "Move and Wait" strategy adopted by operators in face of significant
time delay, a model of the robot is super-imposed on the video feedback of the
teleoperator. The motion of the virtual slave is computed locally using a model
of the robot and the environment, or only with a model of the robot [51]. This
approach can be applied to the display of any other artefact to improve the task
performance, such as virtual beams, that help the operator estimate the distance
between the teleoperator and the environment [109].

The teleoperation of humanoid platforms is a very appealing concept, since the
teleoperator can really be seen as a projection of the body of the operator. Nev-
ertheless, several challenges arise from the specificity of humanoid robots. These
devices are often highly redundant, and always comprise many degrees of freedom,
and obviously several end-effectors. As a consequence, the cognitive load for the
operator increases compared to manipulator arms. Bilaterally coupling the whole
platform can be done using master devices that can simultaneously control several
aspects of the remote task in a user-friendly way, such as [106], or the "marionette"
system presented in [108].

When teleoperating humanoid robots, all the degrees of freedom are generally
not coupled to the master device, for several reasons. First, it would represent a
high cognitive load for the operator, unless a very human friendly system is used
which does not require the human to think about operating the robot, i.e. her/his
motions would be naturally mapped on the slave device. But more importantly,
humanoid platforms, as walking systems, must keep their balance. This specific
constraint can be difficult to enforce for the human operator, especially with lim-
ited, time-delayed feedback. This is even more difficult if the master and slave
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devices are not of the same type (e.g. joysticks on the master side, and a humanoid
robot on the slave side). A solution is to delegate part of the control to the teleoper-
ator. This is the shared control paradigm, and has proven to be effective in the case
of complex tasks or manipulators, such as dexterous tasks performed by hand ma-
nipulators [34], or peg-in-hole tasks with full force-torque reflection [37]. Shared
control has been applied to the control of humanoid robots for the generation of
whole-body motions and balance control, where the master devices are joysticks
with different control modes corresponding to different effectors and tasks [77].

A setup that uses both shared control phases and supervisory control phases
has been proposed in [119]. A humanoid robot is teleoperated to perform outdoor
tasks. The scenario comprises a walking phase, a phase where the robot steps into
a lift truck and an operating phase. The remote control device includes two master-
arms for the control of the robot’s arms, master-foot devices to teleoperate the legs
without force feedback, and a device to control the head. Video feedback is dis-
played on a screen. Switches and voice commands are used to trigger the execution
of pre-programmed tasks. Shared control has been used to generate whole body
motions while the operator controls specific sub-tasks. It has been used specifi-
cally for collision avoidance: the operator commanded the positions of the arms,
and the elbow was locally controlled to avoid self-collision. Walking and sitting
into the truck was achieved using a preprogrammed walking pattern and motion.
Vision was used to compute a collision-free sitting motion, with the assistance of
the operator, to take a screenshot of landmarks installed in the backhoe. In this
case, the operator and the teleoperator are somehow collaborating to perform a
task (a sitting motion), but they act using two different modalities.

Collaborative teleoperation has been relatively little studied. Glassmire et al.

presented an experiment involving a collaborative task between a human and the
humanoid robot Robonaut [33]. In this setup, Robonaut is grounded and teleoper-
ated by another human operator. The goal of the experiment was to evaluate the
importance of force feedback in teleoperation setups. The study reveals that force
feedback reduces peak forces but increases the time integral of the sensed force
increases. The completion time was similar in both cases.

4.2 The telepresence setup

Our goal is to allow a human operator to participate to a collaborative task that
takes place on a distant site, by the mean of a telepresence setup. Thanks to this
setup, the operator has both haptic and visual feedbacks with a subjective point of
view, and can take part in the distant task as if s/he was on-site. On the distant site, a
physical task is realized by a human operator in collaboration with the teleoperated
humanoid robot.

We consider long-distance teleoperation, and thus a transmission time delay
between the local and distant sites. We make the following assumptions about the
setup:

⊲ The master device is an holonomous mobile haptic interface [113].

⊲ The operator is immersed and has a subjective visual feedback.

⊲ The teleoperator is the HRP-2 [63] humanoid robot.

⊲ A tracking system on the master site can provide the attitude of the operator.
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Figure 4.1 – Telepresence setup for distant collaborative tasks.

Fig. 4.1 summarizes these assumptions in a schematic view. On this figure, the
tracking system appears as a camera, but it can be actually any device capable of
estimating the attitude of the master operator.

4.3 Taxonomies of coupling

Assuming the setup described in the previous section, several coupling schemes
between the master platform and the humanoid teleoperator can be proposed. This
section discusses different couplings.

The simplest coupling consists in bilaterally coupling the end-effectors of both
robotic systems, so that the interaction on the distant site is reflected on the master
site. This way, the operator can feel as if it was directly interacting with the remote
environment. This is illustrated on fig. 4.2.

Figure 4.2 – End-effector coupling.

The motions of both platforms are controlled independently; the platforms are
just seen as tools to allow wide-range motions. While this setup is satisfactory
on the master site, discrepancies are likely to occur between the postures of the
operator and of the teleoperator. In some cases, this can be very disturbing for the
distant human partner, since s/he might not interpret the intentions of the master
operator properly. Figure 4.3 illustrates this potential issue. It appears clearly
on this figure that the posture and attitude of the operator (i.e. her/his relative
position with respect to the manipulated object) are important pieces of information
to convey to the distant site.
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Figure 4.3 – Discrepancies between the operator and teleoperator’s posture result in a

wrong intention estimation by the distant human partner.

To ensure the consistency between the postures on the local and distant sites,
we can track each operator’s posture and map it onto the master and slave devices.
This illustrated on top of fig. 4.4. Since on the master side, we intend to reflect
the interaction between the teleoperator and the manipulated object, the posture
and the attitude of the object should be mapped onto the master device. Another
solution is to manipulate the same object on both sides, and to reflect the posture
of the distant human only onto the master device, as depicted on the bottom part
of fig. 4.4. It is however impractical to manipulate the same object on both sides.
Moreover, these bilateral posture couplings require a tracking system on both sides.

Figure 4.4 – Top: the teleoperator mimics the operator’s posture; the posture and attitude

of both the distant human and the object are mapped onto the master device. Bottom: the

same object is manipulated on both sides, and only the posture of the distant human is

mapped onto the mobile haptic interface.

In our particular case, we assume that the human on the local site is immersed,
and has a subjective feedback of the remote environment. As a result, reflecting
the posture and attitude of the distant human and object is not necessary, since
the master operator can see them thanks to the immersive visual feedback. It is
more important to accurately reflect the interaction between the end-effector of the
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teleoperator and the remote environment (mainly the manipulated object). Hence,
we propose to enhance the end-effector coupling scheme depicted on fig. 4.2 with
a posture reflecting coupling: the end-effectors of both platforms are bilaterally
coupled, and the humanoid teleoperator uses its redundancy to mimic at best the
posture and attitude of the human on master site. The posture and attitude of the
operator is obtained via the tracking system on the local site. This coupling scheme
is described on fig. 4.5.

Figure 4.5 – End-effector coupling with posture reflection.

This coupling scheme presents several advantages. First, it reduces the risk
of misunderstanding of the operator’s intentions. Second, the end-effectors can
be coupled using classical techniques of bilateral teleoperation, which eases the
stability and transparency analysis of the haptic interaction between the distant
partners. Finally, this scheme can be adapted to several levels of shared control.
When walking, the gait of the operator on master site and of the teleoperator can
be either totally decoupled, or the operator can control the gait of the teleoperator
using the tracking system, for a higher sense of presence.

Although the posture reflection scheme offers great possibilities, this chap-
ter will discuss the implementation of the simpler end-effector coupling scheme,
which is the basis upon which we can build a posture reflection scheme in the fu-
ture. The remainder of this chapter presents a deeper analysis of the end-effector
coupling scheme.

4.4 Whole-body control and extension to wide-area motions

When coupling two complex robotic systems to implement a teleoperation setup,
several coupling schemes can be selected. In our case, we address the bilateral
coupling of a holonomic mobile platform on which two haptic arms are mounted on
the local site, and a full-sized, biped humanoid robot on the distant site. The robot
is holding an object that it manipulates together with an onsite human collaborator.
Our goal is to immerse the local operator into the distant environment, so that s/he
feels the body of the humanoid robot as her/his own body, and so that s/he feels like
s/he is performing the task at the remote location. For this purpose, reproducing
the interaction between the humanoid robot and the manipulated object is very
important. If this interaction is reproduced with enough fidelity on the master site,
the operator will feel like s/he is actually grasping the object.

Although three- and four-channel architectures have been studied in the past,
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two-channel architectures are commonly used and very intuitive. When transmit-
ting power variables, four two-channel couplings are possible:

⊲ Position-Position (P-P): the position of each device is sent as a command to
the other device;

⊲ Position-Force (P-F): the position of the master device is sent as a reference
to the slave device, and the forces measured at the slave site are reflected at
the master site;

⊲ Force-Position (F-P): the forces applied by the operator on the master are
sent as a reference to the slave device, while the position of the master device
tracks the position of the slave device;

⊲ Force-Force (F-F): the forces applied by the slave and master devices on
their environment are coupled.

In this chapter, an F-P architecture is chosen to couple the end-effectors. The
reasons for this choice are reported in a paper lead by our colleagues from the
Institute of Automatic Control at the Technische Universität München [84]. Part
of the work presented in [84] is recalled in the first appendix of this thesis, for the
sake of completeness. For a good understanding of the remainder of this chapter,
fig. 4.6 shows the main blocks of the F-P control architecture on slave site.

Figure 4.6 – F-P bilateral coupling: local control on the slave site.

This section presents the extension of the end-effector coupling to allow wide-
range teleoperation. We hereby focus on the control of the slave device: a hu-
manoid robot will be used as a projection of the operator’s body into the remote
environment. The control of the humanoid platform for wide-area motions in-
volves gait and dynamic balance issues, and the redundancy of the platform calls
for appropriate schemes for whole-body control. Details about the control of the
master device can be found in [113] and are briefly summarized in [27]. Parts of
the components presented here are described in more details in the next chapter.

4.4.1 Whole-body motion control

A redundant humanoid robot is used as a slave platform. To take advantage of
the redundancy, a task-based control approach is adopted [95, 99]. This approach
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allows the decomposition of a complex behavior into a set of n tasks described by
triplets

(

ei,Ji, ėi
∗
)

, i ∈ {1..n}, where ei is typically an error between a signal and

its desired value ei = si − s∗i , Ji =
∂ei
∂q maps the displacements from the joint space

to the task space, and ėi
∗ defines the reference behavior of the error function. Typ-

ically, imposing ėi
∗ = −λiei, with λi a positive gain, will result in an exponential

decay of the error with time.
The evolution of each task i is then given by

ėi = Jiq̇ (4.1)

where q̇ is the joint velocity vector used as a control input on the robot. To obtain
the desired behavior ėi, the general solution is given by

q̇ = J#
i ėi +Pz (4.2)

where J#
i is a Pseudoinverse of Ji [6] and z is any arbitrary vector projected in the

null space of the Jacobian Ji. Thanks to the projection, any value can be chosen,
without effect on ėi. It can thus be used to realize a second task. Following this
reasoning, a set of n tasks can be hierarchically organized such that the first task
has the highest priority, and the other tasks will be realized as possible with the
guarantee of not hindering the tasks with higher priorities. The control law to en-
sure the realization of the set of n tasks with decreasing priorities can be computed
using the following recursive equations [99]:

q̇i = q̇i−1 +(JiP
A
i−1)

#(ėi −Jiq̇i−1), i = 1..n (4.3)

where PA
i is the projector onto the null-space of the augmented Jacobian JA

i =
(J1, . . .Ji), JiPA

i−1 is the limited Jacobian of the task i and q̇0 = 0. The robot joint
velocity realizing all the tasks in the stack is q̇ = q̇n.

The stack of tasks (SoT) is a structure that orders the tasks that are currently
active. Only the tasks in the stack are taken into account in the control law. The
task at the bottom level has priority over all the others, and the priority decreases
as the stack level increases. Any new task added in the stack does not disturb the
tasks already in the stack. A complete description of the Stack of Tasks is given
in [71].

4.4.2 Force-based control

Using the foregoing control scheme, it is straightforward to realize displacement
tasks without contact. However, for force-based control and tasks involving con-
tact, the inverse kinematics-based control does not directly apply. Moreover, the
end-effector coupling scheme presented in the previous section requires the end-
effector to behave as a desired admittance (or impedance). A solution to imple-
ment impedance control (or more generally, force-based control) on torque control
robots is to use the dynamic inverse as proposed in [60, 81].

For position controlled robots, position-based impedance control (the so-called
admittance control) must be implemented to display a desired impedance. Admit-
tance control can easily fit the task formalism: the space in which the control is
designed is the operational space (6D position) of the contact point denoted by r.
Admittance control consists in defining a desired dynamic behavior for this point,
such as the one of a virtual mass-damping system:

Mr̈+Bṙ = f (4.4)
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where M and B are arbitrary mass and damping matrices of the equivalent virtual
system, and f are forces and torques exerted on the equivalent virtual point. For the
F-P coupling scheme setup, f is defined as the sum of the real forces measured at
the contact point and the reference forces sent by the master operator.

The equation (4.4) is then integrated to compute a desired velocity ṙ, which
is then used as the desired behavior for a task i: ėi = ṙ. We will see in the next
chapter how the Stack of Tasks framework presented in the previous paragraph can
be modified to improve the performance of this admittance control scheme.

4.4.3 Wide-area motions

The admittance control tasks allow us to implement a bilateral F-P coupling. To
allow wide-area motions, the humanoid robot will also have to walk. To address
dynamic gait generation, we used a walking pattern generator based on the pre-
view control and on the Zero-Momentum Point (ZMP) condition, proposed by Ka-
jita [52]. This algorithm uses a preview window to compute the control law from
a simplified Linearized Inverted Pendulum Model (LIPM), to compute the current
control command from the future state of the system. The core part of this algo-
rithm is to solve a quadratic programming (QP) problem, where the cost function
is to minimize the jerk of the LIPM and to follow an ideal ZMP trajectory. From
this ZMP trajectory defined by the foot prints given as input, the solution of the QP
gives a Center of Mass (CoM) trajectory which is dynamically stable. Finally, the
reference trajectories are integrated in the Stack of Tasks.

An appealing solution to apply this algorithm would be to recompute the CoM
and foot trajectories for the whole preview window at each control cycle. However,
the computation cost to solve the QP problem with the multibody model is too high
for the control loop on the teleoperator 1. Hence the pattern generator is used as
a planner which generates a stable motion within a fixed time. Consequently, it is
impossible to input any footprint reference within this time window.

The inputs of the pattern generator are desired footprints. From these foot-
prints, CoM and feet trajectories that lead to a stable motion are computed. The
problem is now to define the desired footprints. Assuming only the end-effectors
of the master and slave devices are coupled, the role of the slave humanoid gait is
simply to make possible arbitrarily large motions of the end-effectors. A simple
way to achieve this is to have the feet “follow” the hands. Hence, the footprints
will be selected to track a desired relative position of the feet with respect to the
hands of the robot.

In practice, we used the pattern generator software described in [104]. To ac-
count for the preview window, four footprints had to be provided to the algorithm.
A new footprint is then added each time one step has been executed by the robot.
The outputs of the pattern generator are reference trajectories for the feet and for
the CoM, that can be taken into account as top-priority tasks in the Stack of Tasks.

4.5 Experiments

4.5.1 Setup

We implemented the components described in this chapter to perform telepresence
collaborative tasks between Munich, Germany, and Tsukuba, Japan.

1The control loop runs at 200 Hz on the humanoid robot HRP-2.
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On the remote side in Tsukuba, Japan, a HRP-2 humanoid robot with 30 actu-
ated degrees of freedom (DOF) is used to mirror the actions of the master operator.
It is capable of bipedal locomotion, and is equipped with force sensors at the wrists
and at the ankles. Visual feedback is provided by stereovision from two cameras
located on the head of the robot. PD joint position controllers run at 1 kHz. Desired
positions are provided at 200 Hz to the PD controllers.

Reference positions are provided by an admittance controller, which takes the
sum of the environmental forces read at the force sensor on the wrist, and the refer-
ence force sent from the master site. Since the PD joint position control loop runs
5 times faster than the admittance controller, and since the PD controller is stiff,
the assumption that the teleoperator actually behaves like the imposed admittance
is reasonable.

The human-system interface, located in Munich, Germany, consists of two
VISHARD7 [83] mounted on a mobile base. The two 7-DOF arms have a human-
sized workspace and high force output capabilities. The haptic interfaces can per-
form movements in a workspace similar to that of the human operator at a fast
speed. The interfaces were especially designed to be mounted on an omnidirec-
tional, nonholonomic mobile base [113]. The mobile base can perform arbitrarily
large movements at a slower speed. The combination is capable of displaying fast
movements and high forces in an arbitrarily large workspace. The operator has
visual feedback from the remote environment through a Head Mounted Display.

For control, forces and torques from both arms are sent from master to slave,
while end-effector positions and orientation of both arms are sent from slave to
master. At a transmission rate of 50 Hz using a protocol based on UDP, the packet
loss was negligible (< 1%) and the round-trip time between Germany and Japan
was approximately T = 280 ms, and almost constant.

The setup used for the experiments is depicted in Fig 4.7.

Figure 4.7 – Photos of the experimental setup. On the left the operator site with the hu-

man operator and the mobile haptic interface in Munich is depicted. On the right the

teleoperator HRP2 and the human collaborator in Tsukuba are shown.

4.5.2 Control

Bilateral coupling of the end-effectors

As mentioned earlier in this chapter, an F-P architecture has been implemented.
The forces applied by the human operator in Munich are sent to the distant site in
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Japan, while the positions of the gripper of the teleoperator are sent as a reference
for the position of the master platform’s grippers. Forces on both sides contribute
to the motion of the platform after having been filtered by an admittance. The
admittance parameters on master site are mm = 1 kg, bm = 200 Ns/m and km = 600
N/m for the translational part, and mm = 0.02 kgm2, bm = 2 Ns/rad and km = 20
Nm/rad.

On the slave side, the admittance controller performance could be improved
by setting the virtual mass matrix of the admittance as the real inertia matrix of
the robot projected into the operational space of the contact point. The damping
was selected to stabilize the coupled system, according to the theoretical study
presented in the first section: bs = 200 Ns/m for the translational part, and bs = 1
Ns/rad for the rotational part. The details about the admittance controller of the
arms of the robot are presented in the next chapter.

Whole-body motion control

On the slave side, the Stack of Tasks was running with the following tasks:

⊲ 1) ewalk tracks the desired trajectories of the legs provided by the pattern
generator. Only the position of the free flying foot is controlled, and the sup-
port foot is considered as fully constrained by the contact with the ground.
Compared to controlling the absolute positions of both feet, this relaxes 6
DOF of the robot, thus allowing a wider range of motions.

⊲ 2) ecom regulates the position of the CoM on the trajectory given by the
pattern generator.

⊲ 3+4) ezr and ezl regulate the altitude of both right and left hands of the robot
to a desired fixed height, in order to simplify the task of the master operator
when the robot is walking. The positions of the end-effectors rr and rl are
controlled by taking into account only the z component of the vector. These
tasks are removed when the robot is not walking.

⊲ 5+6) efr and efl are the admittance control tasks for both right and left hands
of the robot. They are defined as in (4.4). The reference force f is the sum
of real measured forces and reference forces sent by the master. Each of
these tasks is a 6 degrees-of-freedom task, but due to 3+4), only 5 degrees-
of-freedom are expressed during the control.

⊲ 7) ehead controls the orientation of the head according to the reference posi-
tion given by the master operator.

⊲ 8) egrip is finally added to control specifically the gripper aperture to the
reference transmitted from the master.

Gait

The challenge when controlling a walking humanoid platform to perform a phys-
ical collaboration task lies in the fact that interaction forces induced by the task
create sudden perturbations on the ZMP of the robot. In order to keep dynamic
balance, the footprints would have to be modified within the preview window. The
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a) b) c) d)

Figure 4.8 – Cooperative telemanipulation task: a) approach, b) grasp, c) lift, d) put down

technical difficulty to cope with this, is hence to be able to compute a new ref-
erence for the CoM and the feet trajectories with modified inputs in the preview
window, and/or with a new initial state.

In this work, we have experimentally evaluated whether the humanoid plat-
form could keep its balance while performing a collaborative task. It appears that
the commercial stabilizer provided with the control software of the HRP-2 robot
and the admittance control implemented for the end-effectors limit to some extent
the interaction forces between the teleoperator and the onsite operator. Thus, per-
turbations on the ZMP of the robot are small enough for the stability criterion to
be satisfied without changing the footprints in the preview window.

Control of the master platform

The haptic interfaces are controlled using admittance controllers. From the po-
sition of the end-effectors, the base is repositioned so as to always maximize
the minimum manipulability of the two end-effectors. More details are given
in [27, 83, 113].

4.5.3 Results and Discussion

Preliminary experiments

A set of preliminary experiments has been performed where only fixed-based ma-
nipulation tasks were performed. These experiments allowed us to assess the qual-
ity of the bilateral coupling of the end-effectors, and already highlighted a number
of problems related to a reduced bandwidth in the haptic communication channel
between the human partners.

In these experiments, an object is moved from one side of a table to another.
On the remote site, only the arm of the humanoid robot is moving, and the chest
is allowed to rotate around the vertical axis. The setup is illustrated on figs. 4.8
and 4.9.

The system remained stable during all the phases of the task, including dur-
ing interaction with the remote human operator or with the stiff surface of the
table. Fig. 4.10 shows the data recorded during a typical trial of the task. Three
phases can be distinguished: approaching and grasping (1), moving (2), and land-
ing (3). During free space motion (phase 1) the position tracking is very good. The
impedance implemented on the slave site contains an important damping compo-
nent, hence forces are necessary to move the arm, even for unconstrained motion.
In the contact phase, the positions deviate from each other, while the forces are
well tracked. Actually, for the robot not to move, the remote and slave forces have
to be exactly opposite, to result in a zero reference velocity output from the admit-
tance controller. Hence, steady state phases will be characterized by good force
tracking. Since the force tracking is good, but positions deviate, the impedance of
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Figure 4.9 – Left: teleoperated HRP-2 collaborating with a human on the remote-site.

Right: immersed human operator operating the HRP-2 robot using the VISHARD arm.

the remote environment is not well reflected on the master site: the environment is
perceived softer as it really is.

This simple experiment needed a significant training period from the operator
at master site. First, the narrow angle cameras used for stereovision resulted in a
very limited visual feedback. As a result, the operator could not see the arm of the
teleoperator and could only see the end-effector. However, although the arm of the
teleoperator has six degrees of freedom, the wrists are not spherical, i.e. the last
three axes do not intersect in a single point. As a result, large elbow motions oc-
curred when rotating the gripper around the vertical axis, leading either to singular
positions or self-collisions. To limit this problem, more damping was set on the
slave platform around the vertical axis, to discourage the operator from performing
this motion. This strategy was effective and the task could be performed without
reaching dangerous postures.

On the communication aspects, the intentions of the remote operator could be
easily conveyed to the master operator as far as forward-backward motions are con-
sidered. Indeed, it is very easy for the remote human operator to apply significant
forces in these directions.

In the other directions, however, the perception of each operator’s intentions
was made difficult by the low bandwidth of the system and the low transparency of
the system. It often occurred that both operators kept on moving in the same direc-
tion, waiting for each other to stop, or that the master operator did not understand
that the remote operator intended to stop the motion. Since forces are only felt
from the soft position coupling on the master site, the remotely located operator
had to apply significant forces to keep the object from moving so that the master
operator could feel some resistive forces.

Wide-area motions

Experiments in which both, the human operator and the teleoperator performed
some steps have been successfully performed. In these experiments, forward and
backward motions have been performed, in interaction with a human operator on
slave site. The robot was able to walk and keep balance during the experiments,
and the tracking of the end-effector positions was very good. Overall, the master
operator did not face much difficulty to take control over the remote humanoid
robot.

Fig. 4.11 depicts the results for an experiment in which the human operator
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in Munich applies most of the force necessary to initiate the movement and the
human collaborator in Tsukuba loosely holds the end-effectors of the teleoperator.

A very good position tracking between the respective end-effectors is achieved
(solid lines), also while walking. The slight deviations that can be seen are caused
by time-delay in the communication channel and a desired compliant behavior of
the haptic interfaces on master side. However, a large deviation of the body posi-
tions between the human operator and the teleoperator are observed (dashed lines).
E.g. after 43 s the teleoperator starts moving backwards from the operator’s point
of view although the human operator is still moving forwards. Also, some low
frequency oscillations of the teleoperator position that are caused by the current
implementation of the walking pattern generator are evident. The human opera-
tor observes this as disturbing. Thus, a high degree of immersion and good task
performance while walking were not achieved using this coupling scheme.
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Figure 4.11 – Position tracking of body and end-effectors with a dominant human operator

at the master site. Data of the human operator at master site is depicted in black, data of

the teleoperator in gray. The dashed lines represent the body position whereas the solid

lines represent the right hand/end-effector.

Fig. 4.12 depicts the results for the reverse experiment, i.e. the human operator
in Munich loosely holds the end-effectors and is guided by the human collabora-
tor in Tsukuba. Position tracking of the end-effectors is equally good. Again, a
deviation of the body positions is apparent. However, as the human collaborator
on site notices oscillations caused by the walking pattern generator more quickly
and reacts immediately, no low frequency oscillations of the teleoperator’s body
position can be observed.

Summarizing the experimental results, it can be concluded that the goal of per-
forming a teleoperation experiment, in which walking and haptic interaction occur
simultaneously, has been achieved. Further improvements to this concept are how-
ever necessary to achieve a high degree of immersion and a good task performance.
In both experiments, due to the current implementation of the walking pattern gen-
erator, the walking speed is relatively slow. The implementation of a faster walking
pattern generator is in progress.

4.6 Conclusion

We have presented a telepresence setup where a teleoperation system is sand-
wiched between two humans. The purpose of the setup is to allow two human
operators located at different locations to perform collaborative tasks. One of the
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Figure 4.12 – Position tracking of body and end-effectors with a dominant human collab-

orator at remote site. Data of the human operator at master site is depicted in black, data

of the teleoperator in gray. The dashed lines represent the body position whereas the solid

lines represent the right hand/end-effector.

human is directly located on the place where the task takes place, while the other
assists her/him using an immersive teleoperation system.

We considered a setup where the master device is a mobile haptic interface and
where the operator is immersed. On the slave site, we considered a biped humanoid
robot, since this platform allows a natural projection of the body of the operator
into the remote location.

These experiments were the first step towards a more complex setup were
wider range motions were allowed, by exploiting the mobility of the mobile plat-
form on the master site and the biped walking capabilities of the humanoid robot
on master site. This involved a significant effort for the whole body control of the
humanoid robot on the remote side, to include in a unified framework admittance
control, for the bilateral coupling of the grippers, head tracking and gait. The con-
trol framework has been introduced, and the components will be more thoroughly
presented in the next chapter.

A simple coupling scheme where the end-effectors are bilaterally coupled and
where the motions of the mobile base and humanoid robot’s body are controlled
independently has been implemented. Using the presented control scheme, suc-
cessful experiments could be performed where a human operator teaches the oper-
ator on master site how to operate the robot to walk. The operator on master site
could then reproduce the walking motion.

In the next chapter, we present in more detail the control framework used in
this experiment. Indeed, all components have been developed within an integrated
framework, which allowed a great reusability, and many components used in this
teleoperation experiment could be reused “as is” to performed autonomous collab-
orative transportation tasks.
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THIS chapter describes a framework for the control of a humanoid robot to
perform collaborative tasks jointly with a human operator. The main components
used to build our control architecture are first presented. We introduce an algorithm
to realize Cartesian admittance control, while being consistent with the inertial
properties of the multi-body at the joint level. We also study how locomotion
and manipulation can be integrated together for the robot to perform collaborative
transportation tasks as a pure follower.

We then give details about the integration and implementation of these compo-
nents. We present different experiments where human operators interact directly
or through a manipulated object with a humanoid robot HRP-2. We also present a
demonstrator including a collaborative transportation task. This demonstrator has
been the subject of a user study, which allowed us to assess the validity of our con-
trol architecture. Finally, the limitations of our control architecture are discussed
and potential improvements are proposed.
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5.1 Introduction

The work presented in this chapter has been realized in the context of the European
project Robot@CWE, in collaboration with my colleagues Olivier Stasse, Nicolas
Mansard, Pierre Gergondet and Nicolas Perrin. The Robot@CWE project aims
at introducing advanced robotics platforms, such as humanoid robots embedding
information systems, into collaborative working environments. As multi-purpose
robotic systems they would be intended to manipulate product, carry tools, inspect
product lines and so on. To separate the different contexts of collaborative work
in nowadays companies’ IT-infrastructure, we have introduced a taxonomy of con-

texts to realize collaborative tasks. This taxonomy is depicted in Fig.5.1. More
precisely it consists in four different classes of situations:

⊲ (1) An autonomous context realization when the robot is directly interacting
with a human to perform a task, and particularly during physical interaction.

⊲ (2) A local context realization when the robot is using the surrounding net-
work and computer capabilities to expand its functional space.

⊲ (3) A semi-local context realization when the robot is interacting with a col-
laborative working application targeted for an application or for a structure
such as a company.

⊲ (4) A global context realization when the robot is interacting with services
external to its semi-local structure for instance Google Images services, man-
ufacturer product specification, etc.
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In [101], an example of semi-local context where a robot is asked to perform
an inspection task has been presented. For collaborative tasks in a global con-
text, the previous chapter presented how collaborative tasks can be performed by
a robot in collaboration with a second human located in the workspace of the tele-
operator [27, 84]. In this chapter, we focus on the autonomous context with the
performance of autonomous collaborative tasks in collaboration with a human.

We describe the control architecture we implemented on a humanoid robot
HRP-2 [63] to perform various kind of tasks, including direct interaction with a
human, bimanual manipulation, and transportation tasks. We tackle some control
aspects, as well as software architecture aspects and briefly present the software
framework we used to implement our controllers. We show how, thanks to this
framework, the work presented here could be integrated seamlessly within the final
demonstrator for the Robot@CWE project.

5.2 Collaborative transportation task

In this section, we describe how a collaborative transportation task can be imple-
mented on a biped humanoid robot. We present the problems to solve and the main
concepts that we used to achieve our goal.

5.2.1 Problem statement

The scenario of the task is the following: an HRP-2 robot is holding one side
of a board, and a human operator is holding the other side. Ideally, most of the
weight of the table should be supported by the humanoid robot. In our setup, we
will consider a follower robot. Therefore, the robot will have to react to the human
intentions and will not perform actions of its own initiative. We consider the haptic
channel as the only information flow between the robot and the human operator.
Fig. 5.2 shows the experimental setup.

Physical joint actions with a human partner are among the most challenging
tasks a humanoid robot is expected to achieve with robustness and safety. The
scenario presented on fig. 5.2 raises the following difficulties:

⊲ Since a human operator is in the loop, the trajectory of the table, and thus
of the robot itself, can not be pre-programmed. Therefore, the robot needs
to reactively plan footprints to adjust its trajectory, and to quickly generate a
dynamically stable gait.

⊲ When walking while manipulating an object jointly with a human operator,
the robot will be subject to external forces which will threaten its balance.
If these forces are significant, they have to be taken into account in the gait
generation itself [80,105]. In general, however, if both agents collaborate in
a constructive way, and if the robotic partner has a compliant behavior, the
interaction forces will be limited to some extent. Therefore we will not take
these forces into account at the gait generation level in the context of our
work.

⊲ Since we consider the haptic channel as the only information channel
through which the human operator can communication his intentions, the
forces measured at the wrists of the humanoid robot must be mapped into a
whole body motion, and footprints generation.



5.2. Collaborative transportation task 103

Figure 5.2 – Cooperative table transportation between an HRP-2 humanoid robot and a

human operator.

⊲ Finally, given the discrete nature of the bipedal gait, the motion of the body
of the robot should be computed to absorb as much as possible the fluctua-
tions induced by the gait, for the comfort of the human operator.

The remainder of this section describes the main components that have been
used to address these problems. Then, we show how they have been integrated
together to achieve our goal.

5.2.2 Stack of Tasks

To generate whole-body motion on the highly redundant HRP-2 humanoid robot,
we make use of the Stack of Tasks briefly introduced in the previous chapter. From
a task function e, its Jacobian J = ∂e

∂q and a desired behavior ė∗, a joint velocity
vector is computed, using the generic inverse kinematics solution:

q̇ = J#ė+Pz (5.1)

where z is an arbitrary vector projected into the null space of the Jacobian J, and
J# can be any Pseudoinverse of the task Jacobian. This equation can be used re-
cursively, using the vector z to try to realize at best other tasks (see the brief intro-
duction in the previous chapter (4.4.1), as well as e.g. [71]).

5.2.3 Force-based control

For position controlled robots, admittance can be implemented to obtain an active
compliant behavior of the robot. As stated in the previous chapter, admittance
control consists in defining a desired dynamic behavior for a given point on the
robot, such as the one of a virtual mass-damping system:

Mr̈+Bṙ = f (5.2)
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where M and B are arbitrary mass and damping matrices of the equivalent virtual
system, and f are forces and torques exerted on the equivalent virtual point. The
equation (5.2) is then integrated to compute a desired velocity ṙ, which is then
used as the desired behavior for a task i: ėi = ṙ. Assuming that the robot has no
dynamics and is a pure motion source, admittance control will result in the desired
compliant behavior of the robot. In practice, this is not the case, and the gains
will be limited by the control rate, and by the intrinsic dynamic properties of the
controlled system.

In (5.1), the matrix J# can be chosen as any Pseudoinverse. Using the usual
Moore-Penrose Pseudoinverse, the solution we obtain, assuming z = 0, is the one
that minimizes the norm of q̇. If the solution given by this Pseudoinverse is used as
a reference joint velocity vector for the controlled robotic system, then the joints
will participate to the compliant motion regardless of the inertia they are subject

to. In other terms, we might impose a very different dynamics than the natural dy-
namics of each joint in the multi-body. The effect of force-feedback control is to
reduce the apparent inertia of the system [46]. Thus, by “asking the contribution”
of each joint independently of the inertia they are subject to, we are potentially
trying to reduce significantly the apparent inertia of each joint. This can desta-
bilize the system, because the low-level PD joint position controller of the robot
might not be able to track the desired joint dynamics. Moreover, we impose very
fast motion of joints subject to high inertias, which is not optimal in terms of en-
ergy consumption, and will tend to excite oscillatory behaviors if the PD position
controller can not perfectly track the imposed dynamics.

To solve this problem, we propose to apply a weighted Pseudoinverse [18],
defined when J is full-row-rank by:

J#W = W−1JT
(

JW−1JT
)−1

(5.3)

with W an arbitrary invertible matrix that represents the weights on the joints.
Taking the derivative of (5.1) with z = 0 yields:

q̈− J̇#Wė∗ = W−1JT
(

JW−1JT
)−1

M−1 (f−Bṙ) (5.4)

Selecting the weight W as the inertia matrix A of the robot and the virtual
mass M as Λ =

(

JA−1JT
)−1

, the apparent inertia of the end-effector of the robot,
we obtain:

Aq̈+Bqq̇ = JTf (5.5)

where Bq = JTBJ−AJ̇#WJ is the friction factor of the whole body structure. It
can reasonably be assumed, if enough friction has been set for the desired dynamic
behavior, that the friction term is equivalent to the projection of the desired friction
into the joint space. This last equation corresponds to a simplified version of the
dynamic equation of the whole-body compliant robot with gravity compensation,
with forces f acting on r and a friction Bq that may be tuned by selecting B to
stabilize the system.

Selecting the parameters as proposed, namely, setting the desired mass as the
real apparent mass at the contact point, and weighting the Pseudoinverse by the in-
ertia matrix of the robot have two effects. The first one comes from the Pseudoin-
verse: by weighting it, we avoid to solicit joints which are subject to high inertias.
The second effect is that by further not imposing a different inertial behavior to the
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robot from the natural one, the dynamics of the system can be approximated by the
dynamics of a multibody with gravity compensation and tunable joint friction.

At first, we can think that keeping the real apparent mass of the contact point
will reduce the performance of the system. However, on the HRP-2 robot, the main
benefit of force feedback control is actually to help the operator fight against fric-
tion. The joint friction of the HRP-2 robot makes it very difficult to exploit passive
compliance and to move the body of the robot when it is unactuated. Hence, this
control scheme effectively eases human-robot interaction even if the prescribed
inertia is not reduced.

5.2.4 Real-time Walking Pattern Generator

Considering a humanoid robot with a state vector x = [r,q]T , where r are the free
floating parameters and q the joint position vector. To perform motions while
keeping balance, a trajectory q(t) has to be generated such that the Zero Momen-
tum Point of the robot lies within the support polygon defined by the contact points
between the robot and its environment.

One approach to generate such movements consists in first defining a set of
contact (typically, footprints), then computing a desired ZMP trajectory that is
compatible with this contact (which lies within the support polygon at all time),
and then compute a motion q(t) such that the ZMP of the system tracks the desired
ZMP trajectory.

To solve this problem, a simplified Linear Inverted Pendulum Model is often
used [53]. From this model, a relationship can be established between the ZMP of
the system and the CoM of the pendulum. This relationship can be written under
the form of a dynamical system where the jerk of the CoM is used as an input.
We can thus derive a controller that compute appropriate values of the jerk of the
CoM to obtain the desired ZMP trajectory. However, the structure of the system
is such that, to have a good tracking of the desired ZMP trajectory, the position of
the CoM should move in advance. In other terms, the current output of the ZMP
controller (the jerk of the CoM) must be computed from the future desired ZMP
trajectory. As a result, the ZMP trajectory must be specified for a preview window
of a given length. In addition, the algorithm proposed in [52] takes into account,
to some extent, the whole multi-body model by computing the ZMP error between
the LIPM and the multi-body model, and a resulting compensation in advance.

As a result, new reference footprints can be used as a reference to generate
walking motions with a delay corresponding to the length of the preview window.
This considerably reduces the reactivity of the system. The cost of the dynamic
filter is too high to change in real-time the feet positions inside the preview window,
when the CoM reference trajectory is generated every 5 ms. In Nishiwaki et al. [80]
a method is proposed to change on-line, and inside a step-cycle, the ZMP and CoM
trajectories while including a dynamic filter. This impressive method has been
used for vision based reactive planning [12] and reactive interaction with heavy
objects [105]. The method relies mostly onto two main concepts: increasing the
time period to generate the reference CoM trajectory with the dynamic filter (from
5 ms to 20 ms) and increasing the frequency of the ZMP controller (from 200 Hz
to 1 kHz).

Another technique, proposed by Harada, and Morisawa [38,76], considers that
the ZMP trajectory is a third order polynomial. This allows the derivation of an an-
alytical solution for the CoM trajectory and the modification of the steps in preview
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Figure 5.3 – Virtual coupling of the end-effectors and the body of a humanoid robot to

synchronize the arms and the body of the robot during a collaborative transportation task.

Mbase, Bbase, Marms, Barms and Karms are the virtual impedance parameters used to couple

the arms and the base, and to generate the motion of the base. Fext is the force applied by

the human operator on the arms. The model depicted on the right can be seen as desired

dynamics for the motion of the body and arms of the robot.

window. One particularity of this algorithm is that changing the ZMP reference in
the preview window can induce fluctuations of the ZMP reference when connect-
ing the new reference to the old one. This is due to the polynomial nature of the
ZMP reference in this algorithm. To compensate for these fluctuations, it has been
proposed in [76] to increase the single support time of the step.

5.2.5 Footprints planning: the Mobile Robot Helper approach

The problem of footprints planning can be tackled in different ways. In [120],
the authors implemented the algorithm proposed by Kosuge for his Mobile Robot
Helper in [66] to synchronize the motion of the arms with the motion of the body
of the robot. The idea of this algorithm is to decompose the robot into two parts:
the arms and a mobile base, and to virtually couple the motion of these elements.
This is illustrated on fig. 5.3.

Intuitively, one can see that a problem arises with this algorithm. The motion
of the base specified by the desired dynamics shown on fig. 5.3 is continuous, but
a biped humanoid robot will typically perform discrete steps, which will result in a
body motion that is different from the prescribed dynamics. Unless this prescribed
dynamics is taken into account during the gait generation phase, it will not be
correctly tracked by the robot.

In our case, we will avoid, as possible, to modify the gait generation of a robot,
which we will consider as a black box. Hence, the only way to approximate the dy-
namics specified by fig. 5.3 is to plan appropriate footprints. The reactive walking
pattern generator presented in the previous paragraph allows us to modify the next
step to be performed by the robot during each double support phase. In our setup,



5.2. Collaborative transportation task 107

0 10 20 30 40 50 60
−0.2

−0.1

0

0.1

0.2

time (s)

ve
lo

ci
ty

 (
m

/s
)

Velocity of the arms and base

0 10 20 30 40 50 60
−0.4

−0.2

0

0.2

0.4

time (s)

po
si

tio
n 

er
ro

r 
(m

)

Position difference between the arms and base

0 10 20 30 40 50 60
−10

−5

0

5

10

time (s)

fo
rc

e 
(N

)

Output force from the virtual coupling

Figure 5.4 – Top: velocity of the arms and base using the algorithm of Kosuge with time

delay. Middle: distance between the arms and base. This distance must be kept slow

enough to fit the workspace of the robot. Bottom: virtual force applied on the base of the

robot due to the virtual coupling between the arms and base.

these phases are separated by a duration of approximately one second. Therefore,
we can roughly model the nature of the motion of the humanoid body by adding a
time delay of one second in the system depicted on fig. 5.3: that is, the force due to
the virtual coupling between the arms and the base will be transmitted with a one
second time delay to the base.

If we denote Farm/base the force applied by the spring damper system Karms,
Barms on the base of the robot, then the motion on the base would then be given by:

Vbase(t) = Bbase(t −T )−1 Farm/base (5.6)

where T = 1s is the time delay induced by the discrete nature of the stepping and
the computation constraints of the pattern generator.

To evaluate the impact of this time delay on the gait of the robot, we simulated
this system using Simulink, with gains that we knew by experience to be appro-
priate for the admittance control of the arms of the robot 1. Fig. 5.4 shows the
simulation results for Marms = 5 kg, Barms = 100 Ns/m, Karms = 25 N/m, Mbase = 5
kg, and Bbase = 50 Ns/m. The figure 5.5 shows the result with the same gains
without time delay.

We notice that the time delay introduces a highly oscillatory behavior, which
might disturb the human operator. To avoid these oscillations, we rather use a
different approach where the base and the arms are not bilaterally coupled, but
only unilaterally. This is explained in the next paragraph.

1If we consider a fixed mobile base, the virtual coupling between the arms and the base reduces
to impedance/admittance control of the arms.
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5.2.6 Decoupling the gait and manipulation tasks

Regardless of the synchronization of the base of the robot with the arms to perform
wide-range motions, a problem that arises when the robot walks using the LIPM
and ZMP criterion is that the body of the robot swings laterally to track the CoM
reference computed by the walking pattern generator. If this swinging motion is
not compensated by the arms of the robot, then the human operator will experience
oscillatory forces at the grasping points of the table. On top of being uncomfortable
for the human operator, this will make precise positioning tasks difficult, because
the grippers of the robot will oscillate.

This swinging motion can be compensated for by considering the appropriate
Jacobian matrix for the admittance control task. The gait of a biped robot is a
succession of double support phases and single support phases. During each of
these phases, if we assume no slippage between the floor and the support foot,
the support foot can be considered as a fixed base for the robot. This means that
the absolute velocity of this body of the robot is considered to be zero. Thus, by
considering the support foot as the root of the robot, and by considering Jacobian
matrices with respect to this root, the motions of the legs when the robot is walking
can be compensated for. Fig. 5.6 shows the swinging motion of the waist and the
motion of the grippers, to show the amplitude of the swinging motion of the waist
during the walk and the efficiency of the compensation for the positioning of the
grippers. We see that the amplitude of the swinging motion of the grippers is 10
times less than the one of the waist. The small oscillations of the gripper could be
explained by the damping of the Pseudoinverse used to compute the control law.
This implementation issue is discussed in the next section.

Therefore, this allows us to implement the admittance control of the arms of
the robot in such a way that in absence of external forces applied on the grippers
of the robot, the end-effectors will have a zero absolute velocity, despite of the
swinging of the body of the robot due to the gait. In other terms, this allows us to
decouple the gait of the robot from the manipulation task, and to display a desired
admittance on the grippers of the robot regardless of the body motion. This is
illustrated on fig. 5.7.
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Figure 5.7 – Decoupled admittance control and gait: the admittance of the end-effector of

the robot is a damper fixed to the ground rather than to the body of the robot, allowing to

decouple force-based control from the motion of the body of the robot.
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Now that the gait of the robot is decoupled from the admittance control task,
the question is: how do we plan footprints to synchronize the locomotion with the
gait? Indeed, the decoupling between the manipulation task and gait is possible
only as long as we stay in the workspace of the robot. But to allow wider-range
motions, the robot will have to walk.

Let us first define a reference frame related to the hands of the robot. The center
of this frame is the middle of the segment joining the robot’s end-effectors. One of
the axes of this frame is supported by this segment, the other axis is vertical, and
the third axis is set so as to obtain a right-hand frame. We note l f Hre f and r f Hre f

the transformation matrices (homogeneous matrices) from the left and right foot to
this reference frame, respectively, as depicted on fig. 5.8.

Figure 5.8 – Reference frames used for the synchronization of the feet and hands.

Synchronizing the hands and feet is defined as keeping these transformations
as close as possible to two reference transformations l f H0

re f and r f H0
re f . This can

be seen as tracking a reference posture, but instead of defining a full configuration
in the joint space of the robot, we define a relationship between the feet and hand
positions, giving more freedom to the robot.

During each double support phase, the relative position error between the next
fly foot and the reference frame will be computed, and the landing position of
the next fly foot will be selected so as to correct this error. The transformation
describing the fly foot destination is:

H = ( f f H0
re f )

−1 f f Hre f (5.7)

where f f means fly foot. This transformation is then projected into the appro-
priate coordinate system to send a new footprint reference to the walking pattern
generator.

The planned footprint is then clipped to a safe area, which computation is de-
scribed in [85]. This safe area is depicted on fig. 5.9.
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5.3 Integration and implementation

This section presents how the concepts presented in the previous sections are inte-
grated together to realize collaborative transportation tasks as well as direct phys-
ical interaction with a humanoid robot. We describe some issues we faced when
implementing such a task on a real system and present the experimental results.
The limitations of the presented scheme are explained and related to the concepts
presented in the first part of this thesis.

5.3.1 Software framework

All the components described in the previous section have been integrated within
or interfaced with a flexible software framework centred on the Stack of Tasks.

Entities, graph of entities and signals

The control framework used to implement our algorithms has been thoroughly
described in [73]. This framework is centred on computational elements called
entities. Each entity has input and output signals and provides algorithms to update
the values of the output signals based on the input signals. Each class of entity
can be instantiated several times. Each instance is associated with a unique string
identifier, and all entities are registered into a pool of entities.

The entities are connected together through the input and output signals to
form a graph of entities. The data flow through the graph is based on the signals,
which are associated to timestamps. This timestamps allow a signal to trigger its
recomputation only once when its timestamp is not up-to-date. Output signals
can be connected to zero, one or several input signals. If an output signal is not
connected to any input signal, its value will never be updated.

The control framework is mainly built upon these concepts of entities and sig-
nals, which can be compared to the mechanism offered by Simulink. To build
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a controller, entities which perform elementary operations will be connected to-
gether to perform more complex actions. The framework can be extended via a
plugin mechanism. The framework allows to load online dynamic libraries which
contain entities, which can then be instantiated and used within the controller. We
thus benefit a highly dynamic control framework which allows online modification
of the structure and parameters of the controllers.

Scripting

The control framework comes with a shell and a script language, which allows to
instantiate entities, to display information about them, and to connect them through
their input and output signals. The script language and shell prompt also allow to
call specific methods implemented by the entities, using a very simple syntax. For
instance typing

pool.help

returns:

Pool:

- list

- listFeature

- listTask

- writegraph FileName

The first method list all the entities created in the current instance of the factory.
The second list only the features, while the third provides the name of the task en-
tities. The last one finally generates dot graph which can be displayed as presented
in Fig.5.10.

Stack of Tasks

The control framework is built upon the concept of Stack of Tasks. The Stack of
Task is a special entity that computes the control law using the formalism presented
in the previous chapter. Different tasks can be pushed into and popped from the
stack, and the tasks can be reorganized so as to change their respective priorities.
The tasks pushed into the stack are again specific entities which implement the
necessary computations to implement the control law. The tasks use feature to
compute the task error. Features objects provide the vectors si, s∗i and the matrix
LsiMJq for a task ei. The role of the features here is strictly limited to:

⊲ receive the desired values s∗i , the current value si of the feature according to
the robot state, and the robot articular jacobian in the proper reference frame
i.e. MJq.

⊲ compute the feature Jacobian Lsi .

External components

The framework presented in [73] provides generic elements to compute control
laws based on the Stack of Tasks. However, it does not come as a stand-alone solu-
tion to control a humanoid robot. Hence, specific entities have been programmed
to be used as interfaces between the Stack of Tasks software framework and other
libraries, such as libraries to compute the dynamical model of the robot, or the
walking pattern generator, described in [104].
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Figure 5.10 – Graph of entities at a given time of the control (particular case of the tele-

operation experiment presented in the previous chapter). Such a graph is useful to have an

idea of the data flow in a given control architecture and can be generated using a simple

command line.
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Figure 5.11 – Simplified view of the architecture used for the collaborative transportation

experiment. OpenHRP is used as a proxy between the robot and the Stack of Tasks control

architecture. From the state of the robot, a relative position error between the end-effectors

and the feet of the robot is computed, and resulting footprints are planned and sent to the

pattern generator. From these footprints, the pattern generator computes a reference CoM

trajectory and reference trajectories for the feet. The Stack of task then computes a global

control law to realize the CoM and feet trajectories as well as the admittance control of

the end-effectors, which has the lowest priority.

5.3.2 Integration

The Stack of Tasks framework has been used together with the OpenHRP [55] ar-
chitecture to implement the proposed algorithms. OpenHRP is used as a proxy to
get the state of the robot (joint position vector, sensor values) and send reference
joint position vectors to the actuators. The global architecture is depicted in a sim-
plified form on fig. 5.11. This figure also illustrates how the tele-cooperation setup
presented in the previous chapter is seamlessly integrated within the framework.

Using the three tasks that appear in fig. 5.11, the robot can walk stably, while
its arm will comply to external forces applied on the grippers. The highest priority
task is the tracking of the trajectory for the feet. Then comes the tracking of the
CoM trajectory. These two tasks are essential to keep the balance of the robot, thus
they must be realized with the highest priority.

5.3.3 Implementation issues

We faced several issues when implementing the algorithms on the real humanoid
platform HRP-2. Some of these issues are inherent to the control architecture we
used, and others are inherent to the mechanical structure of the robot itself. We
detail these issues in this paragraph.
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Arm manipulability

First of all, the gains of the admittance controller could not be selected to reach
a very compliant behavior of the robot because of the high joint friction and the
inertia of the robot. When performing bimanual manipulation tasks, the admittance
has to be even lower than when moving the arms freely. Since we do not take into
account the external forces in the gait generation, the less compliant the arms of
the robot are, the higher the risk to lose dynamical balance will be.

The wrists of the HRP-2 robot are not spherical, which means that the end-
effectors of the robot can not reach any desired orientation without moving the
elbow. This results in very large motions of the elbow for only small orientation
displacements of the end-effector, with two consequences:

⊲ the elbow can easily get aligned with the shoulder, resulting in a kinematic
singularity;

⊲ the elbow can easily collide the trunk of the robot.

This second problem could probably be solved using collision avoidance algo-
rithms. However, such algorithms do not easily fit the current implementation of
the Stack of Tasks, which brings to a second class of issues.

Unilateral tasks

Unilateral tasks are tasks that are defined by inequalities. Typical unilateral tasks
are contact tasks, collision avoidance task, singularity avoidance and joint limit
avoidance tasks. The implementation of the Stack of Tasks we used for our experi-
ments did not handle unilateral tasks. Attempts to treat unilateral tasks as bilateral
ones can result in getting stuck on the constraints. This problem is evoked in [102].

Another possibility is to freeze the motion of the robot when colliding, but then
we need a criterion to unfreeze the motion. A solution is to compute the control
law all the times and check whether the robot is self-colliding or not, and to send
only those commands that are safe for the robot.

Joint limits avoidance is another typical unilateral task. The HRP-2 robot can
only bend a few degrees backwards using its chest joint. However, when pulling the
end-effectors up, the robot tries to contribute to this motion using the chest joint,
and hence reaches the chest joint limit. This problem can only be limited to some
extent using the weighted Pseudoinverse method presented in section 5.2.3. Here,
freezing the whole robot can result in strong limitations in the possible motions
of the robot, since the joint limit can be reached for any upwards motion of the
end-effectors.

One solution is then to only clamp the values of chest joint into its articular
limits. However, if this is done after the computation of the control law, then the
computed joint motion will lead to an incorrect realization of the tasks, since from
the point of view of the Stack of Tasks, the chest joint is supposed to be used.
This means that if the chest joint is clamped, this information must be taken into
account in the computation of the control law, i.e. to handle unilateral tasks [72],
which is not the case in our current implementation of the Stack of Tasks. The
solution we adopted is thus to freeze the chest joints by adding a bilateral task
which imposes a zero velocity to the chest joints. In practice, this results in a slight
loss of performance because of the reduced workspace, but it greatly improved the
repeatability of our experiments.
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An elegant mathematical framework to address this problem has been recently
proposed by Kanoun [56]. However, there is currently no solver that can compute
the control law fast enough to fit the 5 ms of the HRP-2 control loop.

Singularities and damping

The Stack of Tasks relies on the computation of a Pseudoinverse of the Jacobian
matrix associated to each task. This matrix can sometimes lose rank and become
singular. In such situations, the reference joint velocities can be very high. To
avoid this problem, the Pseudoinverses of the Jacobian matrices are damped. As a
result, the tasks are not correctly realized when reaching singularities.

This had dramatic consequences in experiments where the robot was supposed
to handle a table. In these experiments, a task was used to constrain the altitude
and attitude of the end-effectors of the robot, so that they could only comply to the
external forces by moving in the horizontal plane or by rotating along the vertical
axis. However, due to the limited manipulability of the arms of the HRP-2 robot,
the arms got very close to singularities when pulling on the table to make the robot
step forward. As a result, the altitude-servoing task was not correctly realized when
the arms were stretched. This resulted in instable behaviors and very high internal
forces on the table.

The solution we adopted is to replace the servoing task by an impedance con-
trol task. We made use of the admittance control task and added a virtual spring
along the vertical axis to maintain the table around a desired altitude. This has
significantly improved the stability of the system. This issue was a good illustra-
tion of the relevance of impedance control for manipulation task compared to servo
control.

5.3.4 Experimental results

Two kinds of task were performed with the HRP-2 robot. The first interaction
paradigm that was tested is direct interaction between a human operator and the
robot, where a user moves the arms of the robot to trigger locomotion. This is
illustrated on fig. 5.14. As can be seen, several users could interact with the robot.

Good ZMP tracking

Fig. 5.12 depicts the ZMP reference along the x axis computed by the pattern
generator described in section 5.2.4, and obtained during an experiment where
the motion of the robot was constrained on the sagittal plane (the robot stepped
only forward and backward). The real ZMP is also represented. One can see
the deformation induced by the change of the swinging foot position when this
one starts its flying phase. The ZMP real is deviating of 2 cm from the reference
trajectory which is quite similar to the result obtained in [80]. We conclude that
the compliance of the arms of the robot is able to absorb most of the perturbation
coming from the interaction with the user, preventing the fall of the robot. It is also
important to note that the experiments were ran using the commercial stabilizer
provided with OpenHRP [54]. This also explains the good quality of the ZMP
tracking.
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Figure 5.12 – Reference and real ZMP in a direct interaction experiment. On the right:

zoom between t = 40s and t = 50s.
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Figure 5.13 – Force exerted on the right wrist (component along the axis of the forearm).

The impacts due to the steps of the humanoid robot result in additional noise in the signal.

Overall, during direct physical interactions between the robot and human operators, the

applied forces rarely exceed 10 N.

Low interaction forces

This is confirmed by looking at the interaction force measured by the wrist sensors.
The component along the right arm is plotted on fig. 5.13. We first notice that the
signal is very noisy. This is generally the case with force measurements, and this
is made worse by the impacts between the feet and the ground, which generate
structural vibration of the robot. However, the noise is filtered by the admittance
controller, and has no noticeable impact on the motion of the arms. We also no-
tice that forces do not exceed about 10 N in the plotted time interval. This value
was actually an upper bound for the whole experiment from which the data has
been recorded. This means that forward and backward motions, which are essen-
tially generated by applying forces along the arms of the robot, can be generated
by forces under 10 N. This also explains the relatively good quality of the ZMP
tracking shown in fig. 5.12, considering that the interaction forces are neglected.

In a second phase, the robot was holding a board, and a human operator was
applying forces on the other side of the board to move the board along with the
robot. This is illustrated on fig. 5.15. More details about this experiment are given
in the next paragraph.

5.3.5 Integration to the final demonstrator of the Robot@CWE project

The “Human-Robot interaction through an Object” paradigm was integrated in
the final demonstrator of the European project Robot@CWE. The scenario of the
demonstrator also includes a teleoperation phase, which integrates the work pre-
sented in the previous chapter. The complete scenario of the demonstrator is the
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(c) (d)

(a) (b)

Figure 5.14 – Experimental results: direct interaction between a user and the HRP-2 robot

following: a human supervisor requires the robot to go to a target location where an
object of interest is located, using a tablet PC. The robot takes a picture of the ob-
ject and sends it to the supervisor. The trajectory to the target location is computed
using a planner. This phase of the demonstrator has been described in [101].

Once the picture has been taken, the robot waits for another human operator to
teleoperate it, in order to walk to the object and grasp it. The robot then lifts the
object autonomously, and the collaborative transportation task starts. The robot and
the human jointly transport the object to a specified destination, the robotic partner
acting as a pure follower. When reaching the target location, a new teleoperation
phase starts, where the teleoperation system is sandwiched between two human
operators to perform an assembly task.

A preliminary version of this demonstrator, including the autonomous walking
phase, the two teleoperation phases and the transportation phase has been the sub-
ject of a user study conducted by researchers from the University of Salzburg. In
the context of this study, 12 users with no experience in robotics have participated
to the scenario of the demonstrator, taking the role of the human partner during the
collaborative manipulation task. Among these 12 subjects, 11 managed to perform
the task, and 3 of them from the first trial. This highlights the repeatability of the
experiment and the robustness of the algorithms. We can also conclude that the
proposed architecture for collaborative transportation task results in a sufficiently
natural behavior of the robot, to allow inexperienced users to rapidly manage to
perform the task successfully.
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Figure 5.15 – Cooperative table transportation between an HRP-2 humanoid robot and a

human operator.
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Figure 5.16 – Motion of the robot during one trial of the final demonstration scenario

for the Robot@CWE (top view). The dashed gray line shows the rough trajectory of the

robot. The arrows correspond to snapshots of the position and orientation of the robot

every 3s. The red part corresponds to the beginning of the scenario, when the robot walks

autonomously, following a computed plan. The purple part corresponds to the first teleop-

eration phase, where the robot is teleoperated to walk towards the object to transport. The

blue part corresponds to the collaborative transportation phase.

5.3.6 Discussion and future works

One of the main limitations encountered during our experiments, regardless of
the implementation details mentioned in paragraph 5.3.3, is the low velocity of
the locomotion of the humanoid robot when walking in reaction to the human
forces. This slow motion can be appreciated by looking at figure 5.16, where the
arrows are snapshots of the robot’s position and orientation taken at constant time
intervals (every 3 seconds). One can see that during the teleoperated phase and the
collaborative transportation phase (purple and blue arrows), the locomotion of the
robot is much slower than during the fully autonomous phase (red arrows).

The low velocity of the locomotion can be explained in different ways.

⊲ One of the reasons for the slow locomotion comes from the reactivity of the
walking pattern generator itself, which we use as a black box. Due to numer-
ical issues in the implementation we used, small changes in the orientation
of the footprints resulted in longer single support phases. This phenomenon
is specific to the algorithm we used to generate gait [76, 103]. Note that
this only occurs in the teleoperated and collaborative transportation phases,
because in these phases, the footsteps are constantly replanned within the
preview window used by the preview control in the walking pattern gener-
ator. In the autonomous phase, the footsteps are pre-programmed for the
whole trajectory, and the steps in preview window are thus never modified.

⊲ A second reason is that the position of the swinging foot is planned at the
very beginning of the single support phases. Soon after the swinging foot
leaves the ground, the landing position can no longer be modified, which
limits the reactivity of the system 2. This is not a limitation of the algorithm
itself, and we could also try to allow the modification of the landing posi-
tion of the swinging foot for a longer time after the double support phase.

2This had been taken into account by adding a time delay in the model described in para-
graph 5.2.5
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However, modifying the landing position at an early stage of the single sup-
port phase is more conservative and has greater chances to result in a stable
motion.

To overcome this issues, it is of course necessary to improve the gait generation
itself, to be able to perform fully reactive gait. Another approach, which could
allow to improve the task performance without working on the gait generation
problem, is to focus on the aspects related to collaborative tasks.

The collaborative behavior we have presented in this chapter assigns a fully
passive follower behavior to the robot. Since the locomotion and the manipulation
of the robot are only unilaterally coupled (the manipulation task influences the lo-
comotion, but the locomotion does not directly influences the manipulation task),
what the human operator perceives is the dynamic behavior imposed by the admit-
tance control of the end-effectors of the robot. The locomotion is only used as a
tool to enlarge the workspace of the robot. Hence, even if the robot supports the
weight of the manipulated object, it dissipates the energy introduced by the human
operator, thus making the task actually more difficult (at least regarding the mo-
tions in the horizontal plane). Finally, one more difficulty comes from the instable
nature of humanoid robots. Because external forces are not taken into account at
the gait generation level, the human operator must avoid to apply too large forces
on the end-effectors of the robot, thus limiting the velocity of the system.

This problem is the main reason why active following schemes such as
in [16, 70], which we presented in the first chapter of this thesis, were proposed.
However, the difficulty with active following is that it requires a model for the
prediction of the human intentions. In [16, 70], simple point-to-point tasks were
considered, which can be well described by the minimum jerk model [31]. For
more complex tasks, such as the one envisaged in this chapter, where the robot
has no clue on the task to realize, active following schemes will be probably very
difficult to implement.

Therefore, to give a more active role to the robot, it would be useful to give
a a priori task plan to the robot. This task plan will then need to be adapted and
negotiated with the human operator. In such a situation, the model we presented in
the second chapter of this thesis would be applicable.

5.4 Conclusion

In this chapter, we have presented basic components used to build a control archi-
tecture to allow an HRP-2 humanoid robot to perform whole body motion and lo-
comotion in response to forces applied by a human operator. The first section also
introduced a way to integrate dynamically consistent admittance control within the
Stack of Tasks framework, presented in this chapter and in the previous chapter.
This admittance control makes use of the redundancy of the robot to display a
Cartesian admittance while following a whole body dynamics which is consistent
with the inertial properties of the multi-body system. Note that this controller does
not need the robot to be force control and simply requires redundancy of the con-
trolled robot. In the case where the robot is not redundant, this algorithm reduces
to the case of classical Cartesian admittance control built around a joint position
controller.

The second section has presented how the different components were inte-
grated together to achieve our goal, namely, to have a real humanoid robot phys-
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ically interact with a human operator. The software framework within which our
components have been implemented allow a seamless integration of the work pre-
sented in this chapter and the previous one. This integration resulted in a complex
demonstrator for the European project Robot@CWE. The usability of this demon-
strator as well as the robustness of our algorithms have been assessed by a user
study conducted within the project. During this study, users who were not expe-
rienced with robots were asked to perform a collaborative transportation task with
the HRP-2 robot. Though at this time, the final results of the study are not known,
only one of the twelve subjects could not perform the task, and three of them could
perform the task from the first trial.

Finally, we have discussed the implementation issues and experimental results,
in the context of direct interaction between the human operator and interaction
through a jointly manipulated object. The results show that the interaction forces
are low during the tasks, and that the perturbations on the dynamic balance of the
robot are limited by the compliance control of the arms of the robot as well as the
commercial stabilizer provided with the low-level control architecture of the robot.

The main possibility of improvement of our system is to accelerate the motion
of the robot. We discussed the potential ways to achieve this. It can be done by
addressing perturbation forces at the gait generation level, but the task performance
could also be improved by enhancing the collaborative skills of the robot. Indeed,
the behavior of the robot in our system corresponds to the one of a passive follower.
This means that part of the energy provided by the user is dissipated instead of
being transformed into kinematic energy. However, in order not to destabilize
the robot, the amount of power input from the human operator is limited. As a
result, the velocity of the robot is limited. Investigations must be conducted to
evaluate how the collaborative behavior of the robot could be enhanced by the
model we proposed in the second chapter of this thesis. A better understanding
on how the human partner conveys his intentions would also allow to implement
active following behaviors, which could lead to faster motions.





Conclusion

PHYSICAL interaction between robotic systems and human beings is a chal-
lenging and interdisciplinary topic. In this thesis, we focused on one modality of
physical interaction between one robotic and one human agents, namely, haptic
collaborative tasks. The typical tasks we considered are collaborative manipula-
tion tasks where the two partners apply forces on a same object to bring it to a
target destination or to impose a desired motion. A general problem for such task
is that both partners must agree on a common plan, even when their intentions dif-
fer, since only one trajectory can be imposed to the object. The partners have to
adapt to the discrepancies between their respective intentions, and to each other’s
constraints.

The first part of this thesis is centred on this role distribution issue. The main
contribution is to extend the classical leader-follower model to a continuous, time-

varying role distribution between the leader and follower behaviors. We propose
to model this idea using a homotopy between two controllers: one implementing
the leader behavior, and the other implementing the follower behavior. The behav-
ior of each partner of a dyad during collaborative tasks can then be described by
two independent functions that characterize the role distribution among the part-
ners and shape their behavior. This model raises the question of how to define the

role distribution along the task. If we want to implement such a model on a robotic
system, then we must be able to set the homotopy parameter that will define the
behavior of the robot during the task. We propose three different strategies. The
first one consists in looking at the internal constraints of the robot, and to adopt
a leader behavior when these constraints are close to be violated. This allows the
robot to impose a behavior which is consistent with its constraints to the human
partner. The second strategy consists in parameterizing observed phenomena in
human-human interaction. Finally, the third strategy is to look at the behavior of
the human partner and to adapt the behavior of the robotic partner accordingly. For
this purpose, the identification of the actual role of the human would be useful,
although this is likely to be difficult. In this thesis, examples have been given to
illustrate the first two strategies, which show that our model is rich enough to en-
compass the specialization phenomenon observed in human-human collaborative
positioning tasks, and also allows the implementation of collaborative behaviors
with self-collision avoidance.

Our extended leader-follower model allows the implementation of many be-
haviors on a robotic platform, but it can be interesting to assess its relevance to
describe actual human behaviors. Another contribution of this thesis is to propose
the use of programming by demonstration to teach collaborative skills for physical
tasks to a robot. Using a programming by demonstration framework, where ex-
treme leader and follower roles were demonstrated to a robot, collaborative lifting
tasks could be successfully reproduced by the robot in an autonomous way. Dur-
ing the reproductions, we observed that for several subjects, the robot smoothly
switched from a leader to a follower behavior. This switching suggests a comple-
mentary behavior of the human partner, in accordance with our extended leader-
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follower model. This interesting result is a preliminary assessment of the relevance
of this model to describe actual human behaviors.

The second part of the thesis focuses on the implementation of collaborative
behaviors on a real humanoid platform. We focus on two different kinds of phys-
ical interaction. In the first setup, a telepresence system is sandwiched between
two human operators located at two different locations. The telepresence system
allows a human operator to project himself to a remote location to perform a phys-
ical task with an other human partner located on the teleoperator site. The second
setup is centred on physical interaction between a humanoid robot and a human
operator. We proposed a control architecture to perform physical interaction and
collaborative transportation tasks involving whole-body motion control and loco-
motion. The experiments presented in this part of the thesis reveal the importance
of the haptic channel to perform physical collaborative tasks: the performance of
collaborative tasks performed through teleoperation with time delay is severely
decreased by the lack of transparency of the system. The experiments also high-

lighted the point in developing advanced collaborative behaviors, such as active
following, or leader/follower switching using our extended model, to allow for
faster task execution with humanoid robots.

The model leader/follower switching model proposed in this thesis raises sev-
eral questions which could not be answered yet. Short term objectives would
include a stability study of the homotopy-based controller proposed for our ex-
tended leader-follower model. Even by selecting stable controllers for the extreme
leader and follower behaviors, there is a priori no guarantee that any intermedi-
ate behavior obtained from a homotopy between these controllers will be stable.
Furthermore, only few strategies to shape the behavior of the robot by tuning the
homotopy parameter have been explored. Strategies based on the human behav-
ior could be investigated to evaluate the concept. Finally, deeper investigations
would also be needed to further assess that our homotopy switching model can
describe human behavior in general haptic collaborative tasks. In the context of
this thesis, the proposed extension of the leader-follower model has been investi-
gated for simple tasks. We could apply this model to more complex setups, such as
those described in the second part of the thesis, namely, cooperative telepresence
and collaborative transportation tasks including biped locomotion. In the context
of cooperative tasks via telepresence, role distributions could be enforced by the
telepresence setup among the partners to resolve conflicts and overcome commu-
nication problems. Regarding collaborative transportation tasks, key applications
would be to give a more active role to the robotic partner.

In the middle term, we could also investigate deeper how the role of the robot
can be adjusted from the human behavior, going beyond simply illustrating the
concept. This possibility has not been explored within this work, and it could be
addressed in several different ways. One can try to identify the role of the human
partner (i.e. his homotopy parameter) and to adopt a complementary behavior.
This could be done using heuristics, or based on system identification methods.
But we don’t know actually what should be the appropriate behavior of the robot,
given the knowledge of the homotopy parameter of the human partner. Moreover,
the identification of the human role distribution is likely to be a very difficult task.
Assuming we have thoroughly explored the different strategies to define the ho-
motopy between the leader and follower controller for a robotic system, the final
question is: how can these strategies be used together? How to know whether the
homotopy parameter should be decided based upon the internal constraints of the
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robot, or whether task signatures should have more importance than adaptations
based on the partner’s behavior?

Finally, we suggested several times in this thesis the existence of a haptic form
of communication for collaborative tasks. We believe that because each partner
participating to a physical collaborative task has his own task plan, a dialog must
take place among them to converge to a common plan. This dialog must bring

the partners from a challenging stance to a collaborative stance. How such a
communication process can be established and what would be its primitives is still
an open issue. Such a communication could explain how two partners can negotiate
a role distribution or a common task plan. The process through which the a priori

plan of each partner is deformed through haptic communication or identification
of the other partner’s intentions can be a very interesting research topic.

In the long term, physical interactions other than collaborative tasks could be
addressed. Along the whole thesis, we studied the case of collaborative manip-
ulation tasks. These are only a subset of possible physical collaborative tasks.
Collaborative assembly tasks, for example, will require the coordination of very
fine motions from the partners, along with force control. Such tasks will also prob-
ably require other cues than the haptic cue, and involve low-level control based on
visuo-haptic feedback, as well as visuo-haptic communication among the partners.
Collaborative physical tasks are also a subset of all possible physical interactions,
which include dancing, involuntary contact, hugging, shoulder tapping, and many
others. Each of these interactions come with low-level control aspects, but also
involve social and emotional aspects in the sense of touch. When a robotic sys-
tem interacts with another human, its haptic behavior must be adapted to social
constraints: the inclination to physical contacts with human beings in households
and offices should not be the same. Concerning emotional aspects, we can wonder
how a robotic system can convey and trigger emotions from the human beings it
interacts with.





ABilateral coupling of the
end-effectors for a tele-cooperation
system

The theoretical work presented in this appendix was conducted by members of
the LSR at the Technische Universität München. The study is presented here for
the sake of completeness. The original version of this work has been presented in
more details in [84].

A.1 Network model

A.1.1 Modelling the operator and environment

Two-channel bilateral teleoperation setups are generally modelled by two-port net-
works [36]. By considering generalized flows instead of velocities and generalized
efforts instead of forces, it is possible to reason about teleoperation setups using
electrical analogies.

When in use, teleoperation systems can be represented by a loaded two-port.
The human operator on master site is modelled by a linear impedance Zh and an
effort source [43, 98]. The remote environment is modelled by an impedance Ze.
Fig. A.1 shows the two-port model of the teleoperation setup connected to the local
and remote environments.

Figure A.1 – Two-port model of a teleoperation setup interacting with the human operator

on master site and the remote environment.

A.1.2 Adding a second human in the loop

Our work focuses on collaborative tasks performed between two human located at
two different sites, by mean of a teleoperation setup. In other terms, the teleopera-
tion system is “sandwiched” between two humans. Thus, a human arm impedance
and a force source must be incorporated in our model on the distant side in the
network model. Since the environment and the human impedances are connected
in series, they can be summed, resulting in an equivalent impedance Ze−rh.
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As the stability of a bilateral teleoperation system is conditioned on the en-
vironment impedances, considering any impedance for the local and remote en-
vironments may result in very conservative stability conditions. In reality, the
impedance on both sites is bounded. This is taken into account by adding parallel
impedances Zmax

h and Zmax
e−rh on each side of the two-port network (fig. A.2).

Figure A.2 – Two-port model of a teleoperation setup with bounded impedances at the

interaction ports.

The impedance at the interaction ports are then defined by:

Z∗
h =

Zh Zmax
h

Zh +Zmax
h

(A.1a)

Z∗
e−rh =

Ze−rh Zmax
e−rh

Ze−rh +Zmax
e−rh

(A.1b)

A.1.3 Teleoperation interface and communication setup

Two-channel bilateral-couplings are classified according to the information ex-
changed between the master and slave site. Considering forces and positions, we
can distinguish four architectures:

⊲ P-P: the position of the master device is sent as a reference for a local posi-
tion controller on the slave device. The position of the slave device is sent
as a reference command for the master device.

⊲ P-F: the position of the master device is sent as a reference to the slave
device. The interaction force on the slave site is reflected on the master site.

⊲ F-P: the force applied by the human operator on master site is sent as a
reference to the slave device, and the position of the slave device is sent as a
reference to the master device.

⊲ F-F: the force applied by the human operator on master site is sent as a ref-
erence to the slave device, and the interaction force on slave site is reflected
on the master device.

It has been shown [62] that transparency can not be achieved with P-P and F-F

schemes. Thus, we will focus on the F-P and P-F schemes.
To implement F-P and P-F schemes, position and force controllers are needed,

on the master or slave device, depending on the scheme. In presence of time delay,
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tracking exactly the transmitted reference signals will result in instability. Intu-
itively, if the master device sends position references, and brings the slave device
to contact with a rigid environment, the reaction force (and hence the information
that contact occurred) will arrive with delay to the operator. Meanwhile, s/he can
try to go further, which will dramatically increase the reaction force, since the slave
device tries to strictly follow the position reference sent by the master. These sig-
nificant reaction forces can either damage the slave device or the environment, or
provoke a violent motion on the master side when the reaction force is transmitted
to the operator.

Consequently, compliance must be added on both sides rather than strictly fol-
lowing the transmitted reference signals, at the cost of transparency. The effect of
compliance on each side of the teleoperation system will makes environment look
softer than they really are. In free space, the operator will feel damping forces that
will hinder her/his motion.

A.2 Stability analysis

So far, we have presented general concepts of bilateral coupling. We now apply
these concepts to a concrete model of a teleoperation system, and present a method
for the stability analysis of the system.

A.2.1 Model

We assume a linear teleoperation system, with position controlled master and slave
devices. We also assume that the local controllers on the master and slave devices
have significantly faster dynamics than the global coupling. Thus, we assume that
the reference forces and velocities sent to the low-level controllers of the platforms
are perfectly tracked. Lets us know determine the expressions of the hybrid matrix
of the system for the F-P and P-F architectures.

In the case of the F-P scheme, reference forces are sent to the slave platform.
The usual way to implement force control on positioned control mechanisms is ad-
mittance control. The slave platform must also be compliant to environment forces
for stability reasons, as stated above. Hence, the reference force and environment
force (measured by a sensor) are summed, and filtered by an admittance, Y

f p
s . The

output of the admittance is a reference velocity that we integrate to obtain a ref-
erence position x

f p
s . We assume this position is perfectly tracked by the low-level

controller of the slave device. The slave position is sent to the master site as a ref-
erence. A position error is computed by filtering the sensed force (which is sent to
the slave site) by an admittance Y

f p
m . The position sent to the low-level controller

is the sum of the reference position from the slave site and the position error. This
is summarized on fig. A.3.

In the P-F scheme, the local controllers on each side also include admittances,
but the exchanged signals are not the same: reference velocities are sent to the slave
device, while the distant forces are fed back to the master device, see fig. A.4.

A.2.2 Stability criterion

Assuming all the components of the system are linear, the network model can be
characterized by a hybrid matrix. Different matrices can be chosen, depending on
which variables are considered independent, and which variables are seen as the
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Figure A.3 – FP control architecture.

Figure A.4 – PF control architecture.

’input’ of the system. However, the term ’hybrid’ matrix refers to the case where
both input variables are not homogeneous, i.e. one is a generalized effort and one
is a generalized flow.

The stability of linear two-port can be studied using Llewelyn’s absolute sta-
bility criteria [68]. An absolute linear two-port network is stable for any passive
termination. Necessary and sufficient conditions on the hybrid matrix H for abso-
lute stability are as follows [1, 68, 84]:

Re(h11)> 0
Re(h22)> 0
2 Re(h11)Re(h22)−Re(h12 h21)−|h12 h21|> 0

(A.2)

where hi j are the elements of the immitance matrix characterizing the two-port.
For our analysis, we will select the matrix H defined by

[

Fm

−Vs

]

= H

[

Vm

Fs

]

(A.3)

for the P-F architecture, and the matrix G defined by

[

Vm

Fs

]

= G

[

Fm

−Vs

]

(A.4)
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for the F-P architecture, where Fm, Vm, Fs and Vs are the generalized efforts and
flows at the interaction ports of the network. This choice reflects the causality of
each architecture, the input variables being the transmitted ones.

The derivation of matrices H and G is straightforward using network analysis
and admittance association rules together with Kirchhoff’s circuit laws. To ease the
derivations, it is useful to represent the complete architecture as a network system,
assuming that both master and slave platforms can be controlled to appear as pure
admittances, as in fig. A.5. Since the form of matrix H has been given in detail
in [84], we give here the complete form of matrix G.

Figure A.5 – Network representation of the F-P architecture.

Using the notations of fig. A.5, we have the following expressions for the ele-
ments of G:

g11 =
1

Zmax
h

+
e−Tsms e−Tmss

Zmax
e−rh +

1
Y

f p
s

+Y
f p

m

g12 =−
e−Tsms Zmax

e−rh Y
f p

s

1+Zmax
e−rh Y

f p
s

g21 =
e−Tmss Zmax

e−rh Y
f p

s

1+Zmax
e−rh Y

f p
s

g22 =
Zmax

e−rh

1+Zmax
e−rh Y

f p
s

(A.5)

The expression of the admittances Y
{ f p,p f}
{s,m} is given by the general expression:

Y =
s

m s2 +b s+ k
(A.6)

and the impedance bounds Zmax
h and Zmax

e−rh have the following general form:

Z =
b s+ k

s
(A.7)

A.2.3 Numerical analysis

To select the admittance gains on the local and distant site, the Llewelyn condi-
tions (A.2) are tested for different sets of parameters. To reduce the size of the
parameter space, the parameters mm, km, and ks are fixed a priori. The master mass
parameter is selected to keep the system stable. On the master site, the stiffness pa-
rameter is set to km = 600 N/m, and on the remote side, it is set to ks = 0 N/m. The
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time delay is assumed to be constant, and the parameters are set to Tms = Tsm = 0.15
s. The other parameters are gridded and the absolute stability is tested for each set.
The results are shown on fig. A.6 for the P-F architecture, considering interaction
with a stiff environment. The stable region is inside the envelope. The stable area
increases with the slave inertia and damping.

Figure A.6 – Stability envelope for the P-F architecture. mm = 5 kg.

The F-P architecture detailed in the previous paragraph leads to a wider range
of stable parameters, as shown on fig. A.6. Starting from a minimal value of
the slave damping, the coupling is always absolutely stable. Hence, this second
scheme was implemented for the experimental evaluation.
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Figure A.7 – Stability area for the F-P architecture. ms = 5 kg.



BA study of inter-trial adaptation in
dyadic collaborative lifting tasks

The work presented in this appendix has been performed in collaboration with
Satoshi Endo and Alan Wing, from the University of Birmingham, in the context
of the European project ImmerSence(www.immersence.info). It focuses on
behavioral changes of the partners in response to errors in the previous trials of a
collaborative lifting task.

B.1 Problem statement

During a dyadic collaborative lifting task where the attitude of the lifted object

is to be maintained, e.g. the object must be kept horizontal, both partners must
synchronize their motion so that both ends of the object are lifted at the same time,
and with the same velocity. Synchronization errors will result in changes in the
orientation of the object, which violates the constraint of the task.

We are interested in knowing how two human partners can use the error knowl-
edge of one performance to adapt their behavior for the next trial. Ideally, if the
lifting task is repeated again and again, the partners will adapt their behavior across
trials to converge towards a synchronous motion. More specifically, we want to in-
vestigate how the haptic channel can be used by the partner to adapt their behavior
across trials.

A common problem when studying human-human collaborative tasks is the
variability of the human behavior. Due to this variability, it is difficult to reproduce
twice the same condition to evaluate particular hypotheses about the behavior of
one human partner. A possible solution is then to replace one of the human partner
by a robot, which allows the exact reproduction of specified behaviors.

B.2 Experimental setup

We propose to study the adaptive behavior of human beings in collaborative lift-
ing tasks by asking human subjects to perform such tasks in cooperation with a
humanoid robot HRP-2. Fig. B.1 shows the experimental setup. Only the six
degrees-of-freedom of the right arm were used in this experiment. The robot arm
is controlled using the Stack of Tasks, presented in chapter 4 and 5. A high priority
task was used to constrain the attitude of the robot’s gripper. A low priority task
was used to produce a vertical lifting motion (we ensured no motion was produced
in the horizontal plane, to obtain a one degree-of-freedom motion).

Motion trackers (Ascension miniBirds) were installed on the manipulated ob-
ject to track its motion. The data was acquired on a computer which was placed
near the human partner. This computer displayed the maximal angle of the ob-
ject in each trial to give an idea of the global performance to the subject. A value
of zero meant that the subject performed the task in perfect synchronization with

www.immersence.info
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Figure B.1 – Experimental setup: collaborative lifting task between an HRP-2 humanoid

robot and a human subject.

the robot. The computer located near the partner was controlled remotely using a
CORBA client-server architecture so that the experimenter could control the over-
all experiment and check that validity of the data after each trial.

B.3 Method

Ten right-handed participants (age 26.5±3.47 years) sat at a table and grasped the
handle at one side of the object. At the opposite side, the robot grasped another
handle. The object had a symmetric mass distribution and a mass of about 1 kg.
Because the actuators of the robot produce a lot of noise, white noise was presented
to the participants using headphones so that they could not rely on the sound of the
joint actuators to synchronize their motion with the robot. To avoid latencies at
the beginning of the motion, a starting auditory signal was given after three fixed
paced beeps. As the beeps started, the partners were asked to close their eyes, and
could only open them again at the end of the motion to check their final altitude
with respect to the robot, and the performance measure displayed by the computer
nearby.

B.4 Adaptation law

In a first step, we want to assess an analytical form for an adaptation law from the
human partner. In a first series of experiments, we played minimum jerk trajec-
tories on the robot with different peak velocities. The motion was played in an
open-loop manner and the robot did not adapt across trials.
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An analysis of the data revealed a correlation between the peak velocity dif-
ferences between the partners in one trial and the peak velocity difference for the
human partner between this trial and the next one. Hence, the following adaptation
law is proposed:

ZA
n = ZA

n−1 +αA
(

ZB
n−1 −ZA

n−1

)

ZB
n = ZB

n−1 +αB
(

ZA
n−1 −ZB

n−1

) (B.1)

where ZA
n and ZB

n are the respective peak velocities of partners A and B during trial
n, and αA and αB are positive adaptation gains. Given appropriate values for αA

and αB, the peak velocities of partners A and B will converge to a common value.

B.5 Optimal adaptive behavior

In a second series of experiments, the adaptation law (B.1) was implemented on
the robot, with different sets of adaptation gains αR. The gain of the robot was ei-
ther high (αR = 0.8), intermediate (αR = 0.5), low (αR = 0.2), zero, or randomly
changed between 0 and 1 every trial, with a resolution of 0.1. Two different be-
haviors can be expected. Either the human partner will adapt to the gain adopted
by the robot, or he will keep a consistent value for all trials.

This series of experiments was conducted with 10 partners who performed
15 trials for each condition (zero, low, intermediate, high and random adaptation
gains). The results show that the adaptation gain αH of the human varied with the
gain of the robot, αR, in such a way that αH +αR ≈ 1 (r ≈ 0.892).

Let us show that this correspond to an optimal behavior. The system (B.1) can
be rewritten as:

zn = A zn−1 (B.2)

with

A =

[

1−αA αA

αB 1−αB

]

(B.3)

and

zn =

[

ZA
n

ZB
n

]

(B.4)

The equation B.2 defines a geometric sequence which general term is:

zn = An z0 (B.5)

The convergence of such a sequence is a classical result. Let us study it for
our case. A is diagonalizable, with eigenvalues λ1 = 1 and λ2 = 1− (αA +αB).
Hence, equation B.5 can be rewritten:

zn = P Dn P−1 z0 (B.6)

where P is a 2x2 matrix of eigenvectors, and

D =

[

1 0
0 1− (αA +αB)

]

(B.7)

From equations B.6 and B.7, it appears that the convergence of (z)n de-
pends only on (1 − (αA + αB))n. If αA + αB < 2, then zn will converge to
z f = P D f P−1z0, where

D f =

[

1 0
0 0

]

(B.8)
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⊲ If αA +αB = 1, then z f is reached from the first iteration (n = 1). Hence the
convergence is the fastest.

⊲ If 1 < αA+αB < 2, the term 1−(αA+αB) will be negative, and (1−(αA+
αB))n will be alternatively positive and negative, depending on whether n is
even or odd; but still converges to 0. Hence (z)n asymptotically converges
to z f , but the system will exhibit an oscillatory behaviour.

⊲ If 0 < αA +αB < 1, the term (1− (αA +αB))n will converge to 0 and hence
(z)n asymptotically converges to z f , and the convergence is monotonic.

⊲ For the limit cases where αA + αB = 0 and αA + αB = 2, the system is
marginally stable. (z)n is bounded but does not converge, and indefinitely
oscillates.

⊲ If αA + αB > 2, the system is unstable: (z)n diverges. As the gains are
positive, we don’t consider any other case.

Hence, the fact αH +αR ≈ 1 shows that the human behavior will change his
adaptation gain so that the robot and him will quickly converge to a same velocity,
the fastest convergence being obtained for αH +αR = 1.

B.6 Conclusion

In this appendix, we have studied an adaptation behavior of human beings in dyadic
collaborative lifting tasks where the attitude of the lifted object is supposed to re-
main constant. The synchronization of the motions of both partners is very impor-
tant for the task to be successfully realized. We presented a setup were one of the
human partners is replaced by a robotic one. We proposed an adaptation law to de-
scribe the evolution of the peak velocities of the motion across trials. Experimental
data suggests that this adaptation law is valid and that the adaptation gain of the
human partner is adapted to the one of the robot to reach optimal convergence of
the system.



CDevelopment of an interactive
simulation framework with haptic
rendering

C.1 Introduction

This appendix focuses on an integrative software architecture for dynamic simula-
tion centred on haptic interaction with virtual avatars. This framework is devised
to integrate developments in digital actors control with a focus on haptic tasks and
communication. The framework integrates and extends the work presented in [59],
where the implementation of constraint-based simulation including haptic interac-
tion with virtual avatars through a haptic device is described.

The framework presented in this appendix intends to include not only task-
driven simulations, but also cognitive aspects linked to haptic interaction such as
haptic communication and advanced interaction with digital actors that can be ei-
ther virtual or real (robots). It is devised to allow fast prototyping of virtual reality
experiments, such as the ones described in the chapter 2 of this thesis.

In this appendix, we mainly focus on the software design aspects of the frame-
work rather than on the constraint-based dynamics or collision detection algo-
rithms. A previous version of this framework is described in [24].

C.2 Software architecture

C.2.1 Presentation of Amelif

In software engineering, a framework is a set of interfaces that describe how soft-
ware components interact. A framework defines or imposes constraints on the
control flow of an application, and lets the user specialize, define or override spe-
cific operations that are part of the control flow. A framework can be provided
together with a library (a set of useful generic components, data structures, and
tools).

Amelif is both a library and a framework. It provides useful pieces of code that
can be reused to perform usual operations. The use of these components rather
than handcrafted ones will increase homogeneity in the developments of the labo-
ratory and lower the maintenance cost. Amelif also provides an application to run
Virtual Reality (VR) simulations with a specified control flow, and interfaces for
algorithms related to VR. Developing within Amelif should result in code that is
fully integrated and that can interact with all the other components of the frame-
work.

Amelif is developed in C++, and most components are portable. Some pack-
ages, due to some of their dependencies, might not work under all platforms
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though. This is the case of the OpenHaptics wrapper, which requires either Win-
dows, or a SuSe or Red Hat distribution, with a 2.4 Linux kernel.

C.2.2 Basic components

This section briefly introduces the different components and libraries that have
been developed within Amelif. Some of them are described in more details in [24].

Core library

Amelif is built upon a core library which regroups several generic components:
small vectors and matrices, an implementation of the spatial algebra proposed
in [28], generic XML parsers, generic data structures and so on. The core library
also provides an applicative framework to quickly design multi-threaded applica-
tions based on any GUI library of choice. Finally, it also provides an extensible
command line system which allows to register any object to a console so as to in-
teract with it through a command prompt. An adapter class is provided so that this
mechanism is not intrusive and existing code need not be modified to be interfaced
with it.

Basic application

A basic GLUT application is provided as an additional package to avoid the re-
development of repetitive GUI-related code. This application provides only basic
functionalities, namely, a GL rendering window, and a command prompt interfaced
with the console mechanism offered by the core library. A more sophisticated ap-
plication existed in earlier versions of the framework and will be ported to the
current version of the framework.

Scene renderer

A simple OpenGL rendering library has also been developed as an optional com-
ponent of Amelif. This library includes wrapper classes around OpenGL, as well
as scene graph classes which make use of template meta programming to avoid
code repetition and ease the extension of the library.

State

The virtual scene is represented by a set of classes which store the state of each
element of the scene. XML parsers are also provided to parse XML files where
virtual scenes can be described.

Engine and applicative framework

The core library of Amelif provides an engine and an applicative framework. The
applicative framework together with the engine define a specific control flow which
allows to instantiate programs and attach them to threads. Programs are actually
instances of an abstract interface which implement initialization and cleanup pro-
cedures, as well as the content of a simulation loop.
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Collision detection

The collision detection module provides interfaces to trigger the detection of col-
lisions between sets of bodies of the scene. A user has the possibility to gather
different sets of bodies and to detect collisions among these sets independently.
This can be useful when the virtual scene includes elements that are totally sepa-
rated. Among the groups, it is possible to associate flags to pairs of bodies. These
flags will determine which data is required from the collision detection low-level
library about the specified pair of bodies (proximity distance, interpenetration. . . ).
Finally, it is possible to exclude pairs from a set of bodies, or to add pairs and
detect collisions among the specified pairs only.

Device management

The devices library manages external devices such as haptic devices. It provides
a high-level interface to get information about various devices that can be used
within Amelif. The haptic device library possibly uses the collision detection and
the dynamic simulator to handle interactions between the haptic probe and the vir-
tual environment. This dependency can be reversed if the haptic device is provided
with its own collision detection library and the ability to compute the feedback
force; in this case, the dynamic simulator would rely on the haptic device to take
into account the interaction force between the haptic tool-tip and the environment
for the computation of direct dynamics.

Dynamic simulator

The dynamic simulator provides interfaces to drive a dynamic simulation and to
run usual algorithms related to dynamics (direct dynamics, computation of the
operational space inertia matrix. . . ). The dynamics simulation is responsible for
computing accelerations from the forces applied on bodies and for resolving al-
gorithms to handle contacts, impacts, deformations, etc. It is also responsible for
integrating the computed accelerations and updating the state of the scene. This
module depends on the collision detection for bodies and articulated bodies not to
pass through each other.

The collision and dynamics modules can communicate with other modules in
two ways: they can either be used as usual components that are queried on demand;
or they can be used as publishers that will send events to their listeners, according
to the well-known Observer (or Publisher/Subscriber) design pattern. This way of
communicating with other modules has a strong advantage upon the usual query-
on-demand communication as it allows a clear and automatic separation between
algorithms and code that handles output data types when polymorphism can not
easily be used (a typical case in communication among modules). Client code can
also be made aware of new output information automatically, whereas with query-
on-demand, the user needs to read the documentation of the queried module to keep
aware of new outputs. This mechanism is used by the collision detection module
to send information about detected collisions to all the subscribers modules, which
can either handle the collision as soon as it is received or store the information
for future use. Likewise, the dynamic simulator publishes interactions, which are
collisions augmented with a contact force information. A publisher module has
the responsibility for defining the interface of its subscribers. Thus, the publisher
module has control over the data that a client module can receive and can or must
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handle. A publisher module is aware of the existence of its clients and thus can
have control over them while being independent of the specific type of its client.

C.3 Demonstrator

To illustrate the advantages of our software architecture and the capabilities of our
simulator, we developed a small demonstrator in which a user interacts at different
levels with a virtual avatar. We also introduce some modules that are currently
under development and being integrated to Amelif: the Haptic Perception mod-
ule and the Visual Perception module. The goal of this section is to emphasize
the possibilities offered by our framework for prototyping algorithms centred on
interaction with virtual avatars.

C.3.1 Scenario

In this demonstration, a virtual HRP-2 humanoid robot stands in front of a table
upon which lies an object. The robot first goes to a predefined initial posture,
and then stands idle. The user touches the robot with a haptic probe; the robot is
triggered by this action and stares at the body that was just touched. The robot
then sees the haptic probe near the touched body (if the haptic probe is in its field
of view). It thus starts to stare at the probe. The user moves the probe toward the
object on the table and just waits aside. After a given amount of time during which
the probe is close to the object, the robot starts focusing on the object and grasps
it. Once the object is grasped, the robot’s arm is compliant to forces applied on the
object, which allows the user to move the object to any configuration together with
the robot.

Let us examine how such a behavior can be implemented under Amelif and
how, starting from this implementation, virtual prototyping for Virtual Reality-
related algorithms centred on human-avatar interaction can easily be realized.

C.3.2 The virtual HRP-2 avatar

The highest level component of the demonstrator is the HRP-2 avatar. This com-
ponent will implement a finite state machine that will drive the avatar into different
states. In each state, a different set of behaviors are activated. From the definition
of the scenario, five states can be drawn: the "going to initial position" state, the
"idle" state, the "focus on cursor" state, the "grasping phase" state and the "task"
state. As the scenario is very simple, these states are just sequential. Once we leave
a state, we can never come back to this state. This make the implementation of the
Finite State Machine very easy.

The "going to initial position" state is straightforward and just relies on con-
trollers that will servo the joints to follow specified trajectories defined off-line.
The "idle" state is just a state where the robot keeps its current position and can
just rely on a simple PD controller.

C.3.3 Dynamic simulation

The very first thing to do is to simulate the virtual environment. Amelif provides
default implementations for the visual and haptic rendering of a scene, low-level
haptic interaction with free-bodies and constraint-based dynamic simulation with
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Figure C.1 – Structure of the demonstrator

frictions. All we have to do is to load the modules, parse XML files in which the
environment is described using the parser provided with the framework, and run
the components in the main program.

C.3.4 Focus on the haptic probe

The "idle" state is left when the robot is touched. Therefore, we need to let the
HRP-2 avatar know when something touches it. Typically, this can be implemented
with the Skin component, which is part of the Haptic Perception module. This
module is currently under development and proposes interfaces and components
related to haptic perceptions (various force sensors, skins. . . ). The Haptic Per-
ception module is implemented as a subscriber of the dynamic simulator. Indeed,
the simulator outputs collisions and their associated interaction forces and bodies.
When a virtual avatar is registered in the Haptic Perception module as having a
skin, the Haptic Perception module will trigger it each time this avatar is involved
in a collision, and will send it the associated interaction force. This communica-
tion between the Haptic Perception module and the avatar is realized through a
Skin component, which allows users to model various phenomena related to the
perception of forces by the skin.

The "focus on cursor" state can be implemented in a similar way. Instead of the
Haptic Perception module, we use a Visual Perception module. This module allows
an avatar to be triggered on different conditions. The simplest way of triggering
the avatar is to associate a Field of View (FoV) component to the avatar. A FoV
component raises messages when objects of the scene that have been registered as
visible objects in the Visual Perception Module enter and leave the field of view.
We have the possibility to easily add uncertainty about the position of the objects
in the field of view by adding an occluding component between the FoV and the
avatar.
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(a) (b)

(c) (d)

Figure C.2 – The different steps of the simulation: (a) Go to initial configuration (b) Trig-

ger the robot by patting its hand (c) Show it the object (d) Move the object together

Figure C.3 – Interacting with the HRP-2 avatar using a haptic device.
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In our demonstration, we did not add any uncertainty and considered that the
avatar was able to perfectly determine the position of objects in his field of view.
Using a very simple controller, we servo the joints of the robot’s neck so as to stare
at the cursor when the cursor is inside the field of view. When both the haptic probe
and the object on the table are in the field of view, the avatar looks at the distance
between them and if it stays under a given threshold during a given amount of time,
the "focus on cursor" state is left and the "grasping phase" state is entered.

In our demonstration, the grasping phase is implemented using pre-defined
joint trajectory. However, using the jacobian computation algorithm provided in
the scene library, an inverse kinematics algorithm could be used to automatically
reach the object at any location.

C.3.5 Task

In the "task" state, the virtual HRP-2 was position-controlled using a PD joint
controller. To make the robot compliant to the interaction force with the haptic
device, the desired joint positions qd are defined by the following equation:

Mq̈d +Bq̇d = JT
e fe (C.1)

where M and B are diagonal matrices of positive coefficients corresponding to a
virtual inertia and a virtual damping, fe is the interaction force with the haptic
device, and Je is the Jacobian relating joint velocities to Cartesian velocities and
angular velocities for the kinematic chain that starts from the root body of the
avatar (here, the waist of the robot) and ends at the body touched by the haptic
device. To get the haptic device force, we either need to subscribe to the dynamic
simulator and listen for interactions between the haptic device and the environment
or to directly query the haptic device manager. For our demonstration, we chose
the first solution.

C.3.6 Results

Figure C.1 shows the final architecture of the demonstrator, including components
that are part of the framework and components that are specific to the demonstrated
scenario. The relationship between the different components and modules is rep-
resented by arrows. The only components that we need to write to implement this
scenario are the controllers used by the avatar as well as the higher-level behavior
encapsulated in the Avatar component. We ran the demonstration on a computer
equipped with a PHANToM c© Premium 1.5 High ForceTM. The robot indeed re-
acted according to the scenario. Figure C.2 shows screenshots of the different
states of the scenario. The translucid, light blue pyramid represents the field of
view of the robot. The haptic probe is represented by the orange bar. The setup of
the demonstration is shown on figure C.3. Although most parts of the demonstra-
tor use naive and simple implementations, it lays the basis for more complicated
simulations where sensor noise for the haptic and visual perception can easily be
integrated. A user who focuses on the haptic interaction during the task phase
and does not want to start from scratch can use such a demonstrator and focus on
the task behavior without caring about the other components, while other users
can at the same time work on aspects related to vision. The integration of their
own components to the demonstrator is easily realized if the users comply to the
proposed interfaces. The overall amount of code for this simple, skeletic demon-
strator is rather small and the development cost for the demonstrator was no more
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than a couple of person-hours (not including the haptic and visual perception mod-
ules which are provided to the user). The demonstrator is robust to changes in the
modules on which it depends; the implementation of the dynamics simulator and
collision detection modules used by this simulator would have no influence on the
demonstrator’s code. A user can replace one of these modules by any other im-
plementation by changing only two lines of the demonstrator’s code. Any haptic
device can be integrated to Amelif; replacing the haptic device used in the demon-
strator by another integrated haptic device would then require to change only two
lines of code.



DA PHANTOMr Device with 6DOF
Force Feedback and Sensing
Capabilities

This appendix describes a technical solution that has been devised to embed
the SensAble PHANTOMr 6dof force feedback device with a light-weight 6dof
force sensor from ATI: the Nano43. The design has been made in a way such that
original performances are kept in terms of force feedback and sensing.

D.1 Introduction

At CNRS, in the frame of the ImmerSence project1, we aim at achieving a demon-
strator with various modelling of the interaction between two persons through an
intermediary object (person-object-person, acronymed POP in the remaining). Ex-
amples where such an interaction applies, are collaborative transportation and as-
sembly tasks, virtual prototyping, etc. Models will be built upon knowledge ac-
quired from collaborative robotics, cognitive science as well as the use of haptic
and multimodal patterns of communication. These models, integrated together will
allow us to provide avatars with a set of realistic behaviors during the realization
of POP tasks. The POP tasks demonstrated can be carried out with different con-
figurations: either two persons manipulating an object in a shared virtual or mixed
(i.e. augmented reality) environments or a person performing a collaborative task
with a virtual avatar.

Preliminary investigations on this scenario [59] using desktop haptic devices,
such as the PHANTOM Omnir, revealed limitations in performing interactive
POP tasks because of the lack of torque feedback. Moreover force and torque
sensing will allow a better haptic patterns identification and interpretation. These
supposed haptic patterns can ideally be used as bricks of an hypothetical haptic

language which, in turn, can be used at a higher level control of virtual avatars in-
teracting with users through direct touch (pure communicative aspects) or through
a virtual object manipulation (functional tasks aspects). Therefore, it appeared
important to conceive a 6dof2 haptic sensing/display device.

This appendix presents a technical solution which allowed to mount a 6dof
force sensors from ATI3 (the Nano43) on a SensAble PHANTOM 6dof force feed-
back device (High Force 1.5). The obtained system is an integrated 6dof force
sensing/display device that is aimed for our research and development in haptic
interaction in POP application scenarios.

In addition to the previous concern, there are other reasons and benefits gained
by a force display embedded with force sensor:

1http://www.immersence.info/
2dof, states for Degrees Of Freedom.
3http://www.ati-ia.com/

http://www.immersence.info/
http://www.ati-ia.com/
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⊲ it is possible to have a direct measure of the resultant wrench acting on the
device without noise and computations/approximations that are consequent
to collecting these data from an identification algorithm which uses the mo-
tors’ torques (in direct drive case) or current measures;

⊲ force sensor can be used directly in admittance-type feedback (i.e. when
forces are obtained from constrained-based methods, it is more robust and
stable to know actual external forces applied by the user on the manipulated
object (proxy), so that they are directly integrated in the computation of the
dynamics);

⊲ characterization of haptic texture rendering as presented in [13] where a
force sensor from ATI (the Nano17 model) has been mounted on a 3dof
force feedback from SensAble.

The remainder of the appendix will describe the prototype we devised and that
is made by SensAble Technologies to provide a solution that satisfies our require-
ments.

D.2 Technical solution

At first we envisaged using the same mounting solution that has been proposed
in [13]. However given our specific requirements we favored a solution where the
force sensor is mounted between the handle and the remaining mechanical linkage
of the force feedback display. The reason for this is to be as close as possible to
the interaction point between the user and the force display. Nevertheless, because
of the presence of an actuator within the handle which ensures torque feedback
along the handle’s axis; the armature of the handle’s actuator (i.e. external cover)
is attached to the handle where as its shaft is statically linked to the hammerhead
and subsequently, to the remaining mechanical linkage of the PHANTOM 6dof.
Therefore, it was not possible to use a small and plain force sensor such as the
Nano17 ATI force sensor.

In addition, secondary but important constraints which guided the design, is to
have a reasonable price solution, which means:

⊲ using commercially available products,

⊲ keep performances similar to the original products, and

⊲ limit the possible modifications/adaptations.

Therefore, the adopted technical solution allowing to customize the PHAN-
TOM 6dof with a 6dof sensing capability close to the hand is as follows:

⊲ make use of an available PHANTOM Premium 1.5 High Force/6DOF de-
vice, although the solution would also apply to other PHANTOM 6dof de-
vices;

⊲ make use of an ATI Nano43 with DAQ F/T transducer: this force sensor
model has a through hole which allows to bypass the difficulty of changing
the handle and the attachment mechanism;

⊲ A modified handle to accommodate the ATI force sensor.
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Hammer cover

Face to be affixed to 
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Mounting 

plate
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Centers plate 

anti-rotation

Flat head screw 

holds plate to 
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knuckle

Stylus shaft
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Figure D.1 – Mechanical parts of the new SensAble 6dof stylus with force feedback inte-

gration.

Note that the solution is in fact using two commercially available products; the
problem remains only in the mechanical design of the handle (named also stylus)
in order to accommodate the ATI sensor without extensively changing the origi-
nal mechanical design. The sensor is mounted closer to the pivoting gimbals and
thereby closer to the original end-point of the force feedback device (hammer-
head). This provides more accurate measurement of the forces and torques exerted
by the user. The position of the control switch button was moved behind the sensor
so that the user can easily reach it during operation.

The resulting new handle is illustrated under different views in the figure D.2.
The overall new device is illustrated in the figure D.3.

In this version the additional weight (the force sensor weighs only 40g) in-
duced by the force sensor is negligible and is mechanically compensated by the
counterweight balance used originally by the display. The PHANTOM 6DOF de-
vice with the new customizable handle was tested and adjusted to take up to 50g
of weight in the handle without losing performance. This was done for the 7DOF
extensions for the new handle (scissors/pinch) which weight approximately 50g
and are already commercially available. The apparent inertia can be compensated
in the software by using a simple closed-loop gravity compensation; this will be
used in future work that makes usage of this solution in our applications.

D.3 Conclusion

This appendix presented a technical solution for the design of A PHANTOM de-
vice with 6dof force feedback display and sensing capabilities. The design allowed
keeping the performances of both the PHANTOM device and the force sensor. It
will be used in further investigations for research on desktop human/virtual avatars
interaction.
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Figure D.2 – Different views (left side and isometric) of the new PHANTOM 6dof handle

with the 6dof Nano43 force sensor from ATI.

Figure D.3 – A 6dof PHANTOM device with 6DOF sensing sensor from ATI (Nano43) and

the new handle.



Bibliography

[1] Richard J. Adams. Stable Haptic Interaction with Virtual Environments.
PhD thesis, University of Washington, 1999. (Cité page 132.)

[2] Robert J. Anderson and Mark W. Spong. Bilateral Control of Teleoperators
with Time Delay. IEEE Trans. on Automatic Control, 34:494–501, 1989.
(Cité page 83.)

[3] Hirohiko Arai, Tomohito Takubo, Yasuo Hayashibara, and Kazuo Tanie.
Human-robot cooperative manipulation using a virtual nonholonomic con-
straint. In IEEE Int. Conf. on Robotics and Automation, pages 4064–4070,
San Francisco, CA, April 2000. (Cité pages 5, 17, 18 et 25.)

[4] Tamim Asfour, Karsten Berns, and Rüdiger Dillmann. The humanoid robot
armar: Design and control. In in IEEE/APS Intl Conference on Humanoid

Robots, pages 7–8, 2000. (Cité page 3.)

[5] Antal K. Bejczy, Won S. Kim, and Steven C. Venema. The Phantom Robot:
Predictive Displays for Teleoperation with Time Delay. In IEEE Int. Conf.

on Robotics and Automation, 1990. (Cité page 83.)

[6] A. Ben-Israel and T. Greville. Generalized Inverses: Theory and Appli-

cations. CMS Books in Mathematics. Springer, 2nd edition, 2003. (Cité
page 89.)

[7] Aude Billard, Sylvain Calinon, Rüdiger Dillmann, and Stefan Schaal. Robot
Programming by Demonstration. In Handbook of Robotics, volume chapter
59. MIT Press, 2008. (Cité pages 58 et 59.)

[8] Stephen P. Buerger and Neville Hogan. Complementary Stability and Loop
Shaping for Improved Human-Robot Interaction. IEEE Transactions on

Robotics, 23:232–244, 2007. (Cité page 19.)

[9] S. Calinon and A. Billard. Active teaching in robot programming by demon-
stration. In Proceedings of the IEEE International Symposium on Robot

and Human Interactive Communication (RO-MAN), pages 702–707, August
2007. (Cité page 59.)

[10] S. Calinon, F. Guenter, and A. Billard. On learning, representing and gen-
eralizing a task in a humanoid robot. IEEE Transactions on Systems, Man

and Cybernetics, Part B. Special issue on robot learning by observation,

demonstration and imitation, 37(2):286–298, 2007. (Cité pages 59 et 68.)

[11] Sylvain Calinon, Paul Evrard, Elena Gribovskaya, Aude Billard, and Ab-
derrahmane Kheddar. Learning collaborative manipulation tasks by demon-
stration using a haptic interface. In IEEE Int. Conf. on Advanced Robotics,
Munich, Germany, June 2009. (Cité pages 56, 57, 58, 69 et 70.)

[12] Joel Chestnutt. Navigation Planning for Legged Robots. PhD thesis, The
Robotics Institute, Carnegie Mellon University, 2007. (Cité page 105.)



152 Bibliography

[13] S. Choi and H. Z. Tan. Perceived instability of virtual haptic texture: Ii effect
of collision detection algorithm. PRESENCE, 14(4):463–481, August 2005.
(Cité page 148.)

[14] Ed Colgate. An analysis of contact instability in terms of passive physical
equivalents. In IEEE Int. Conf. on Robotics and Automation, 1989. (Cité
pages 15 et 20.)

[15] James Edward Colgate and Neville Hogan. Robust control of dynamically
interacting systems. International Journal of Control, 48(1):65–88, 1988.
(Cité pages 5, 7, 8, 12 et 13.)

[16] B. Corteville, E. Aertbelien, Herman Bruyninckx, Joris De Schutter, and
Hendrik Van Brussel. Human-inspired robot assistant for fast point-to-point
movements. In IEEE Int. Conf. on Robotics and Automation, pages 3639–
3644. IEEE, 2007. (Cité pages 5, 6, 18, 20, 22, 23, 24, 25, 26, 34, 35, 44
et 122.)

[17] J.J. Craig and M.H. Raibert. A systematic method of hybrid position/force
control of a manipulator. In IEEE Computer Society’s Third International

Computer Software and Applications Conference, 1979. (Cité page 7.)

[18] K. Doty, C. Melchiorri, and C. Bonivento. A Theory of Generalized Inverses
Applied to Robotics. Int. J. Robotics Research, 12(1):1–19, 1993. (Cité
page 104.)

[19] Vincent Duchaine and Clement Gosselin. Safe, Stable and Intuitive Control
for Physical Human-Robot Interaction. In IEEE Int. Conf. on Robotics and

Automation, 2009. (Cité page 19.)

[20] Vincent Duchaine and Clement M. Gosselin. General model of human-
robot cooperation using a novel velocity based variable impedance control.
In Joint EuroHaptics Conference and Symposium on Haptic Interfaces for

Virtual Environment and Teleoperator Systems, pages 446–451, Washing-
ton, DC, USA, 2007. IEEE Computer Society. (Cité pages 18 et 23.)

[21] Vincent Duchaine and Clement M. Gosselin. Investigation of Human-
Robot Interaction Stability Using Lyapunov Theory. In IEEE Int. Conf. on

Robotics and Automation, 2008. (Cité page 19.)

[22] Steven D. Eppinger and Warren P. Seering. Understanding Bandwidth Lim-
itations in Robot Force Control. In IEEE Int. Conf. on Robotics and Au-

tomation, 1987. (Cité page 15.)

[23] Adrien Escande, Sylvain Miossec, and Abderrahmane Kheddar. Contin-
uous gradient proximity distance for humanoids free-collision optimized-
postures. In IEEE RAS/RSJ Conference on Humanoids Robots, Pittsburg,
USA, 2007. (Cité page 46.)

[24] P. Evrard, F. Keith, J-R. Chardonnet, and A. Kheddar. Framework for haptic
interaction with virtual avatars. In 17th IEEE Int. Symposium on Robot

and Human Interactive Communication (Ro-Man 2008), Munich, Germany,
August 2008. (Cité pages 139 et 140.)



Bibliography 153

[25] Paul Evrard and Abderrahmane Kheddar. Homotopy-based controller for
human-robot interaction. In 18th IEEE Int. Symposium on Robot and

Human Interactive Communication (Ro-Man 2009), Toyama, Japan, 27
september – 2 october 2009. (Cité page 57.)

[26] Paul Evrard and Abderrahmane Kheddar. Homotopy switching model for
dyad haptic interaction in physical collaborative tasks. In Joint EuroHap-

tics Conference and Symposium on Haptic Interfaces for Virtual Environ-

ment and Teleoperator Systems, Salt Lake City, USA, March 2009. (Cité
page 57.)

[27] Paul Evrard, Olivier Stasse, Nicolas Mansard, Abderrahmane Kheddar,
Thomas Schauss, Carolina Weber, Angelika Peer, and Martin Buss. In-
tercontinental, Multimodal, Wide-area Tele-Cooperation using a Humanoid
Robot. In IEEE/RSJ Int. Conf. on Robots and Intelligent Systems, 2009.
(Cité pages 88, 93 et 102.)

[28] Roy Featherstone and David Orin. Springer Handbook of Robotics, chapter
Dynamics. Springer, 2008. (Cité page 140.)

[29] Daniela Feth, Raphaela Groten, Angelika Peer, and Martin Buss. Control-
theoretic model of haptic human-human interaction in a pursuit tracking
task. In 18th IEEE Int. Symposium on Robot and Human Interactive Com-

munication (Ro-Man 2009), 2009. (Cité page 38.)

[30] Paul M. Fitts. The information capacity of the human motor system in con-
trolling the amplitude of movement. Journal of Experimental Psychology,
47:381–391, 1954. (Cité page 5.)

[31] T. Flash and N. Hogan. The coordination of arm movements: an exper-
imentally confirmed mathematical model. The Journal of Neuroscience,
5(7):1688–1703, July 1985. (Cité pages 5, 16, 24 et 122.)

[32] S. Gentry and E. Feron. Musicality experiments in lead and follow dance.
In IEEE International Conference on Systems, Man, and Cybernetics, vol-
ume 1, pages 984–988, 2004. (Cité page 31.)

[33] John Glassmire, Marcia O’Malley, William Bluethmann, and Robert Am-
brose. Cooperative manipulation between humans and teleoperated agents.
haptics, 00:114–120, 2004. (Cité page 84.)

[34] Weston B. Griffin, William R. Provancher, and Mark R. Cutkosky. Feedback
Strategies for Telemanipulation with Shared Control of Object Handling
Forces. Presence: Teleoper. Virtual Environ., 14(6):720–731, 2005. (Cité
page 84.)

[35] Raphaela Groten, Daniela Feth, Angelika Peer, D. A. Kenny, and Martin
Buss. Experimental analysis of dominance in haptic collaboration. In 18th

IEEE Int. Symposium on Robot and Human Interactive Communication (Ro-

Man 2009), 2009. (Cité pages 22, 37 et 38.)

[36] Blake Hannaford. A Design Framework for Teleoperators with Kinesthetic
Feedback. IEEE Trans. on Robotics and Automation, 5:426–434, 1989.
(Cité page 129.)



154 Bibliography

[37] Blake Hannaford, Laurie Wood, Douglas A. McAffee, and Haya Zak. Per-
formance Evaluation of a Six-Axis Generalized Force-Reflecting Teleoper-
ator. IEEE Transactions on Systems, Man, and Cybernetics, 21(3):620–633,
1991. (Cité page 84.)

[38] K. Harada, S. Kajita, K. Kaneko, and H. Hirukawa. An analytical method
for real-time gait planning for humanoid robots. Internation Journal of Hu-

manoid Robotics, 3(1):1–19, 2006. (Cité page 105.)

[39] Yasuhisa Hirata and Kazuhiro Kosuge. Distributed robot helpers handling a
single object in cooperation with a human. In IEEE Int. Conf. on Robotics

and Automation, pages 458–463, 2000. (Cité pages 17, 18 et 19.)

[40] Yasuhisa Hirata, Youhei Kume, Zhi-Dong Wang, and Kazuhiro Kosuge.
Decentralized control of multiple mobile manipulators based on virtual 3D
caster motion of handling an object in cooperation with a human. In IEEE

Int. Conf. on Robotics and Automation, pages 938–943, Taipei, Taiwan,
September 2003. (Cité pages 17 et 18.)

[41] Yasuhisa Hirata, Yosuke Ojima, and Kazuhiro Kosuge. Variable Motion
Characteristics Control of an Object by Multiple Passive Mobile Robots in
Cooperation with a Human. In IEEE Int. Conf. on Robotics and Automation,
2008. (Cité pages 25, 33 et 47.)

[42] Yasuhisa Hirata, Takeo Takagi, Kazuhiro Kosuge, Hajime Asama, Hayato
Kaetsu, and Kuniaki Kawabata. Manipulation of a large object by multiple
DR helpers in cooperation with a human. In IEEE/RSJ Int. Conf. on Robots

and Intelligent Systems, pages 126–131, Maui, Hawaii, October–November
2001. (Cité pages 17, 18 et 19.)

[43] Sandra Hirche, Manuel Ferre, Jordi Barrio, Claudio Melchiorri, and Martin
Buss. Advances in Telerobotics, chapter Bilateral Control Architectures for
Telerobotics, pages 163–176. Springer, 2007. (Cité page 129.)

[44] Neville Hogan. Impedance Control: An Approach to Manipulation, Part 1 –
Theory. Journal of Dynamic Systems, Measurement, and Control, 107:1–7,
March 1985. (Cité pages 5, 7, 8, 11, 13 et 35.)

[45] Neville Hogan. Impedance Control: An Approach to Manipulation: Part ii –
Implementation. Journal of Dynamic Systems, Measurement, and Control,
108:8–16, 1985. (Cité page 13.)

[46] Neville Hogan. Stable execution of contact tasks using impedance control.
In IEEE Int. Conf. on Robotics and Automation, 1987. (Cité pages 13, 14,
19, 20 et 104.)

[47] Neville Hogan. On the Stability of Manipulator Performing Contact Tasks.
IEEE Journal of Robotics and Automation, 4:667–686, 1988. (Cité pages 13
et 15.)

[48] R. Ikeura, H. Monden, and H. Inooka. Cooperative motion control of a robot
and a human. In 3nd IEEE Int. Symposium on Robot and Human Interactive

Communication (Ro-Man 1994), pages 112–117, July 1994. (Cité pages 18
et 22.)



Bibliography 155

[49] H. Inoue. Computer Controlled Bilateral Manipulator, 1971. (Cité page 7.)

[50] H. Inoue. Force Feedback in Precise Assembly Tasks, 1974. (Cité page 7.)

[51] Tomotaka Itoh, Koji Yudate, Shinsuke Ito, and Takashi Matsui. New Predic-
tive Display Method of Motion and Force Information for Network Teleop-
eration Without Using Virtual Environment Model. In IEEE/RSJ Int. Conf.

on Robots and Intelligent Systems, 2003. (Cité page 83.)

[52] S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi, and
H. Hirukawa. Biped Walking Pattern Generation by Using Preview Control
of Zero-Moment Point. In IEEE Int. Conf. on Robotics And Automation,
pages 1620–1626, 2003. (Cité pages 90 et 105.)

[53] S. Kajita, F. Kanehiro, K. Kaneko, K. Yokoi, and H. Hirukawa. The 3d linear
inverted pendulum mode : A simple modeling of a biped walking pattern
generation. In IEEE/RSJ Int. Conf. on Robots and Intelligent Systems, pages
239–246, 2001. (Cité page 105.)

[54] S. Kajita, K. Yokoi, M. Saigo, and K. Tanie. Balancing a humanoid robot us-
ing backdrive concerned torque control and direct angular momentum feed-
back. In IEEE Int. Conf. on Robotics and Automation, pages 3376–3382,
2001. (Cité page 116.)

[55] F. Kanehiro, K. Fujiwara, S. Kajita, K. Yokoi, K. Kaneko, H. Hirukawa,
Y. Nakamura, and K. Yamane. Open architecture humanoid robotics plat-
form. In International Conference on Robotics and Automation, pages 24–
30, May 2002. (Cité page 114.)

[56] O. Kanoun, F. Lamiraux, F. Kanehiro, E. Yoshida, J.-P. Laumond, and P.-B.
Wieber. Prioritizing linear equality and inequality systems: Application to
local motion planning for redundant robots. In IEEE Int. Conf. on Robotics

and Automation, pages 2939–2944, 2009. (Cité page 116.)

[57] H. Kazerooni. Robust Compliant Control for Manipulators, Part i: The
Fundamental Concepts of Compliant Motion. IEEE Journal of Robotics

and Automation, RA-2:83–92, 1986. (Cité page 12.)

[58] H. Kazerooni. Human/robot interaction via the transfer of power and infor-
mation signals; part 1: Dynamics and control analysis. In IEEE Int. Conf.

on Robotics and Automation, Scottsdale, Arizona, May 1989. (Cité page 7.)

[59] François Keith, Paul Evrard, Jean-Rémy Chardonnet, Sylvain Miossec, and
Abderrahmane Kheddar. Haptic interaction with virtual avatars. In Manuel
Ferre, editor, EuroHaptics, volume 5024 of Lecture Notes in Computer Sci-

ence, pages 630–639. Springer, 2008. (Cité pages 139 et 147.)

[60] Oussama Khatib. A unified approach for motion and force control of robot
manipulators: The operational space formulation. IEEE Journal of Robotics

and Automation, 3(1):43–53, 1987. (Cité pages 34 et 89.)

[61] Abderrahmane Kheddar, Ee-Sian Neo, Riichiro Tadakuma, and Kazuhito
Yokoi. Advances in Telerobotics, chapter Enhanced Teleoperation Through
Virtual Reality Techniques, pages 139–159. Springer, 2007. (Cité page 83.)



156 Bibliography

[62] Jonghyun Kim, Pyung Hun Chang, and Hyung-Soon Park. Transparent
Teleoperation Using Two-channel Control Architectures. In IEEE/RSJ Int.

Conf. on Robots and Intelligent Systems, 2005. (Cité pages 83 et 130.)

[63] K.Kaneko, F.Kanehiro, S.Kajita, H.Hirukawa, T.Kawasaki, M.Hirata,
K.Akachi, and T.Isozumi. Humanoid robot hrp-2. In IEEE/RSJ Int. Conf.

on Robots and Intelligent Systems, volume 2, pages 1083–1090, 2004. (Cité
pages 84 et 102.)

[64] K. Kosuge, H. Yoshida, and T. Fukuda. Dynamic control for robot-human
collaboration. In 2nd IEEE Int. Symposium on Robot and Human Interactive

Communication (Ro-Man 1993), pages 389–401, Tokyo, Japan, 1993. (Cité
pages 5 et 17.)

[65] Kazuhiro Kosuge, Tomohiro Hayashi, Yasuhisa Hirata, and Ryosuke To-
biyama. Dance partner robot –Ms DanceR–. In IEEE/RSJ Int. Conf. on

Robots and Intelligent Systems, pages 3459–3464, Las Vegas, Nevada, Oc-
tober 2003. (Cité page 18.)

[66] Kazuhiro Kosuge, Manabu Sato, and Norihide Kazamura. Mobile robot
helper. In IEEE Int. Conf. on Robotics and Automation, pages 583–588,
San Francisco, CA, USA, April 2000. (Cité page 106.)

[67] Dale A. Lawrence. Impedance Control Stability Properties in Common Im-
plementations. In IEEE Int. Conf. on Robotics and Automation, 1988. (Cité
pages 14 et 15.)

[68] F.B. Llewellyn. Some fundamental properties of transmission systems. Pro-

ceedings of IRE, pages 271–283, 1952. (Cité page 132.)

[69] Joris De Schutter Luigi Villani. Springer Handbook of Robotics, chapter
Force Control, pages 161–185. Springer, 2008. (Cité page 8.)

[70] Yusuke Maeda, Takayuki Hara, and Tamio Arai. Human-robot cooperative
manipulation with motion estimation. In IEEE/RSJ Int. Conf. on Robots and

Intelligent Systems, pages 2240–2245, Maui, Hawaii, October–November
2001. (Cité pages 5, 17, 18, 20, 23, 24, 26, 35 et 122.)

[71] N. Mansard and F. Chaumette. Task Sequencing for Sensor-Based Con-
trol. IEEE Trans. on Robotics, 23(1):60–72, February 2007. (Cité pages 89
et 103.)

[72] Nicolas Mansard, Oussama Khatib, and Abderrahmane Kheddar. A unified
approach to integrate unilateral constraints in the stack of tasks. IEEE Trans.

on Robotics, 25:670–685, 2009. (Cité page 115.)

[73] Nicolas Mansard, Olivier Stasse, Paul Evrard, and Abderrahmane Kheddar.
A versatile generalized inverted kinematics implementation for collabora-
tive working humanoid robots: the stack of task. In IEEE Int. Conf. on

Advanced Robotics, Munich, Germany, June 22-26 2009. (Cité pages 111
et 112.)

[74] Matthew T. Mason. Compliance and force control for computer controlled
manipulators. Master’s thesis, Massachusetts Institute of Technology, 1979.
(Cité page 7.)



Bibliography 157

[75] Sylvain Miossec and Abderrahmane Kheddar. Human hand motion in co-
operative tasks: moving object case study. In IEEE Int. Conf. on Robotics

and Biomimetics, Bangkok, Thailand, December 14-17 2008. (Cité pages 5,
6 et 44.)

[76] M. Morisawa, K. Harada, S. Kajita, S. Nakaoka, K. Fujiwara, F. Kanehiro,
K. Kaneko, and H. Hirukawa. Experimentation of humanoid walking al-
lowing immediate modification of foot place based on analytical solution.
In IEEE Int. Conf. on Robotics and Automation, pages 3989–3994, 2007.
(Cité pages 105, 106 et 121.)

[77] Ee-Sian Neo, Kazuhiko Yokoi, Shuuji Kajita, and Kazuo Tanie. Whole-
Body Motion Generation Integrating Operator’s Intention and Robot’s Au-
tonomy in Controlling Humanoid Robots. IEEE Trans. on Robotics,
23:763–775, 2007. (Cité page 84.)

[78] H. Niemann, J. Stoustrup, and R. B. Abrahamsen. Switching between mul-
tivariable controllers. Optimal control applications and methods, 25:51–66,
2004. (Cité page 36.)

[79] Günter Niemeyer and Jean-Jacques E. Slotine. Stable Adaptive Teleoper-
ation. IEEE Journal of Oceanic Engineering, 16:152–162, 1991. (Cité
pages 61 et 83.)

[80] K. Nishiwaki and S. Kagami. Online walking control system for humanoids
with short cycle pattern generation. International Journal of Robotics Re-

search, 28(6):729–742, 2009. (Cité pages 102, 105 et 116.)

[81] J. Park and O. Khatib. Contact Consistent Control Framework for Hu-
manoid Robots. In IEEE Int. Conf. on Robotics and Automation, 2006.
(Cité page 89.)

[82] R. Paul and B. Shimano. Compliance and control. In Proceedings of the

1976 Joint Automatic Control Conference, 1976. (Cité page 7.)

[83] A. Peer and M. Buss. A New Admittance-Type Haptic Interface for Bi-
manual Manipulations. IEEE/ASME Trans. on Mechatronics, 13:416–428,
2008. (Cité pages 91 et 93.)

[84] Angelika Peer, Sandra Hirche, Carolina Weber, Inga Krause, Martin Buss,
Sylvain Miossec, Paul Evrard, Olivier Stasse, Ee-Sian Neo, Abderrahmane
Kheddar, and Kazuhito Yokoi. Intercontinental multimodal tele-cooperation
using a humanoid robot. In IEEE/RSJ Int. Conf. on Robots and Intelligent

Systems, pages 405–411, Nice, France, 2008. (Cité pages 88, 102, 129, 132
et 133.)

[85] Nicolas Perrin, Olivier Stasse, Florent Lamiraux, Paul Evrard, and Abder-
rahmane Kheddar. On the problem of online footsteps correction for hu-
manoid robots. In Proceedings of the RSJ conference, 2009. (Cité page 110.)

[86] Md.Mozasser Rahman, Ryojun Ikeura, and Kazuki Mizutani. Investigation
of the impedance characteristic of human arm for development of robots to
cooperate with humans. JSME Int. Journal Series C, Mechanical Systems,

Machine Elements and Manufacturing, 45(2):510–518, 2002. (Cité pages 5,
17, 18, 22, 36, 37 et 59.)



158 Bibliography

[87] M.M. Rahman, R. Ikeura, and K. Mizutani. Control characteristics of two
humans in cooperative task. In IEEE International Conference on Systems,

Man, and Cybernetics, volume 2, pages 1301–1306, 2000. (Cité page 22.)

[88] M. H. Raibert and J. J. Craig. Hybrid position/force control of manipula-
tors. Journal of Dynamic Systems, Measurement, and Control, 103:126–
133, June 1981. (Cité page 8.)

[89] Kyle Reed, James Patton, and Michael Peshkin. Replicating human-human
physical interaction. In IEEE Int. Conf. on Robotics and Automation, 2007.
(Cité page 42.)

[90] Kyle B. Reed. Understanding the Haptic Interactions of Working Together.
PhD thesis, Northwestern University, June 2007. (Cité pages 5, 6, 22 et 38.)

[91] Kyle B. Reed and Michael A. Peshkin. Physical collaboration of human-
human and human-robot teams. IEEE Transactions on Haptics, 1(2):108–
120, August-December 2008. (Cité pages 44, 47, 49 et 51.)

[92] Kylle Reed, Michael Peshkin, J. Edward Colgate, and James Patton. Initial
studies in human-robot-human interaction: Fitts’ law for two people. In
IEEE Int. Conf. on Robotics and Automation, volume 3, pages 2333–2338,
2004. (Cité page 6.)

[93] A. Remazeilles, N. Mansard, and F. Chaumette. Qualitative visual servoing:
application to the visibility constraint. In IEEE/RSJ Int. Conf. on Robots

and Intelligent Systems, pages 4297–4303, Beijing, China, October 2006.
(Cité page 45.)

[94] J. Kenneth Salisbury. Active stiffness control of a manipulator in cartesian
coordinates. In IEEE Conference on Decision and Control including the

Symposium on Adaptive Processes, 1980. (Cité page 7.)

[95] C. Samson, M. Le Borgne, and B. Espiau. Robot Control: the Task Function

Approach. Clarendon Press, Oxford, United Kingdom, 1991. (Cité page 88.)

[96] Gilbert Saporta. Probabilités, Analyse des données et Statistiques. Editions
Technip, 1990. (Cité page 68.)

[97] Oliver C. Schrempf, Uwe D. Hanebeck, Andreas J. Schmid, and Heinz
Wörn. A Novel Approach To Proactive Human-Robot Cooperation. In
14th IEEE Int. Symposium on Robot and Human Interactive Communica-

tion (Ro-Man 2005), 2005. (Cité page 25.)

[98] T.B. Sheridan and Staff. Mit Research in Telerobotics. In Proc. of the

Workshop on Space Telerobotics, 1987. (Cité page 129.)

[99] B. Siciliano and J-J. Slotine. A general framework for managing multiple
tasks in highly redundant robotic systems. In IEEE Int. Conf. on Advanced

Robotics, pages 1211–1216, Pisa, Italy, 1991. (Cité pages 88 et 89.)

[100] D. Silver. The Little Robot System, 1973. (Cité page 7.)



Bibliography 159

[101] O. Stasse, F. Lamiraux, R. Ruland, A. Kheddar, K. Yokoi, and W. Prinz. In-
tegration of humanoid robots in collaborative working environment: A case
study on motion generation. Intelligent Service Robotics, page accepted,
2009. (Cité pages 102 et 119.)

[102] Olivier Stasse, Adrien Escande, Nicolas Mansard, Sylvain Miossec, Paul
Evrard, and Abderrahmane Kheddar. Real-time (self)-collision avoidance
task on a HRP-2 humanoid robot. In IEEE Int. Conf. on Robotics and

Automation, pages 3200–3205, Pasadena, California, May 2008. (Cité
pages 34 et 115.)

[103] Olivier Stasse, Paul Evrard, Nicolas Perrin, Nicolas Mansard, and Abder-
rahmane Kheddar. Fast foot prints replanning and generation during walk-
ing in physical human-humanoid interaction. In IEEE-RAS International

Conference on Humanoid Robots, 2009. (Cité page 121.)

[104] Olivier Stasse, Bjorn Verrelst, Pierre-Brice Wieber, Bram Vanderborghtand,
Paul Evrard, Abderrahmane Kheddar, and Kazuhito Yokoi. Modular ar-
chitecture for humanoid walking pattern prototyping and experiments. Ad-

vanced Robotics, Special Issue on Middleware for Robotics –Software and

Hardware Module in Robotics System, 22(6):589–611, 2008. (Cité pages 90
et 112.)

[105] M. Stilman, K. Nishiwaki, and S. Kagami. Learning object models for
whole body manipulation. In IEEE-RAS International Conference on Hu-

manoid Robots, pages 820–826, 2007. (Cité pages 102 et 105.)

[106] Susumu Tachi, Kiyoshi Komiyama, Kazuya Sawada, Takashi Nishiyama,
Toshiyuki Itoko, Masami Kobayashi, and Kozo Inoue. Development of
telexistence cockpit for humanoid robot control. In Proceedings of the 32nd

ISR (International Symposium on Robotics), 2001. (Cité page 83.)

[107] Takahiro Takeda, Kazuhiro Kosuge, and Yasuhisa Hirata. HMM-based
dance step estimation for dance partner robot –MS DanceR–. In IEEE/RSJ

Int. Conf. on Robots and Intelligent Systems, pages 1602–1607, 2005. (Cité
page 19.)

[108] Tomohito Takubo, Kazutoshi Nishii, Kenji Inoue, Yasushi Mae, and Tatsuo
Arai. Marionette System for Operating and Displaying Robot Whole-Body
Motion -Development of Similar Humanoid-Type Device-. In IEEE/RSJ

Int. Conf. on Robots and Intelligent Systems, 2004. (Cité page 83.)

[109] Y. Tsumaki and M. Uchiyama. Predictive Display of Virtual Beam for Space
Teleoperation. In IEEE/RSJ Int. Conf. on Robots and Intelligent Systems,
1996. (Cité page 83.)

[110] Toru Tsumugiwa, Ryuichi Yokogawa, and Kei Hara. Variable impedance
control with regard to working process for man-machine cooperation-work
system. In IEEE/RSJ Int. Conf. on Robots and Intelligent Systems, pages
1564–1569, Maui, Hawaii, October–November 2001. (Cité pages 5, 17, 18
et 22.)

[111] Toru Tsumugiwa, Ryuichi Yokogawa, and Kazunobu Yoshida. Stability
analysis for impedance control of robot for human-robot cooperative task



160 Bibliography

system. In IEEE/RSJ Int. Conf. on Robots and Intelligent Systems, pages
3883–3888, Sendai, Japan, September–October 2004. (Cité page 19.)

[112] Marc Ueberle and Martin Buss. Control of Kinesthetic Haptic Interfaces. In
IEEE/RSJ Int. Conf. on Robots and Intelligent Systems, 2004, Workshop on

Touch and Haptics, 2004. (Cité page 12.)

[113] U. Unterhinninghofen, T. Schauss, and M. Buss. Control of a mobile haptic
interface. In IEEE Int. Conf. on Robotics and Automation, volume pp. 2085-
2090, 2008. (Cité pages 84, 88, 91 et 93.)

[114] M. Vukobratovic and B. Borovac. Zero moment point-thirty-five years of
its life. International Journal of Humanoid Robotics, 1(1):157–173, 2004.
(Cité page 3.)

[115] Zheng Wang, Angelika Peer, and Martin Buss. An hmm approach to real-
istic haptic human-robot interaction. In Joint EuroHaptics Conference and

Symposium on Haptic Interfaces for Virtual Environment and Teleoperator

Systems, pages 374–379, 2009. (Cité page 37.)

[116] Zhi-Dong Wang, E. Nakano, and T. Matsukawa. A new approach to multiple
robots’ behavior design for cooperative object manipulation. Distributed

Autonomous Robotic Systems, 2:350–361, March 1996. (Cité page 37.)

[117] D. E. Whitney. Force feedback control of manipulator fine motions. In
Proceedings of the 1976 Joint Automatic Control Conference, 1976. (Cité
page 7.)

[118] S. Yigit, C. Burghart, and H. Wörn. Cooperative carrying using pump-like
constraints. In IEEE/RSJ Int. Conf. on Robots and Intelligent Systems, pages
3877–3882, Sendai, Japan, September–October 2004. (Cité page 18.)

[119] Kazuhito Yokoi, Katsumi Nakashima, Masami Kobayashi, Humisato Mi-
hune, Hitoshi Hasunuma, Yoshitaka Yanagihara, Takao Ueno, Takuya
Gokyuu, and Ken Endou. A Tele-operated Humanoid Operator. The Inter-

national Journal of Robotics Research, 25:593–602, 2006. (Cité page 84.)

[120] Kazuhiko Yokoyama, Hiroyuki Handa, Takakatsu Isozumi, Yutaro Fukase,
Kenji Kaneko, Fumio Kanehiro, Yoshihiro Kawai, Fumiaki Tomita, and Hi-
rohisa Hirukawa. Cooperative Works by a Human and a Humanoid Robot.
In IEEE Int. Conf. on Robotics and Automation, 2003. (Cité pages 18
et 106.)


	Abstract
	Contents
	List of Figures
	List of Tables
	Haptic interaction: a survey
	Introduction 
	Humanoid robots
	Haptic collaborative tasks
	Interaction control and the leader-follower model
	Human-human collaboration

	Impedance control 
	Force control and compliance control 
	Impedance control 
	Contact instability
	Conclusion

	Impedance control and collaborative tasks 
	Why impedance control?
	Applications in the previous works 
	Limitations 
	Conclusion

	Recent advances: towards perfect followers? 
	Human impedance models 
	Active following
	Proactive behaviors
	Leader robots?
	Conclusion

	Conclusion 

	Physical collaborative tasks: a homotopy-based interaction model
	A homotopy switching model for physical Human-Robot Interaction
	The leader-follower model
	Intuition
	Mathematical formulation
	Example: linear homotopy
	Genericity of the proposed model
	Challenges for the application to pHRI: reasons for a haptic language 
	Relation to previous works
	Behavioral architecture

	A concrete example
	Setup
	Results
	Extension to a Person-Object-Avatar scenario

	Defining the homotopy 
	Enforcing constraints: self-collision avoidance
	parameterizing phenomena observed in human-human collaboration
	Conclusion

	Conclusion

	Learning haptic patterns
	Programming by demonstration of collaborative tasks
	Introduction
	Programming by Demonstration
	Application to Human-Robot collaborative lifting tasks

	Demonstration setup and experiments
	Hardware setup and controller
	Experiments
	Conslusions 

	Learning collaborative tasks
	Probabilistic encoding of the task
	Probabilistic reconstruction of the task
	Control scheme

	Task reproduction
	Reproduction setup
	Preliminary analysis
	Quantitative analysis

	Conclusion

	Collaborative tasks via telepresence
	Teleoperation of humanoid robots: a brief review
	The telepresence setup
	Taxonomies of coupling
	Whole-body control and extension to wide-area motions
	Whole-body motion control 
	Force-based control
	Wide-area motions

	Experiments
	Setup
	Control
	Results and Discussion

	Conclusion

	Experiments on virtual avatars and humanoid robots
	Introduction
	Collaborative transportation task
	Problem statement
	Stack of Tasks
	Force-based control 
	Real-time Walking Pattern Generator 
	Footprints planning: the Mobile Robot Helper approach 
	Decoupling the gait and manipulation tasks

	Integration and implementation
	Software framework
	Integration
	Implementation issues 
	Experimental results
	Integration to the final demonstrator of the Robot@CWE project
	Discussion and future works

	Conclusion

	Bilateral coupling of the end-effectors for a tele-cooperation system
	Network model
	Modelling the operator and environment
	Adding a second human in the loop
	Teleoperation interface and communication setup

	Stability analysis
	Model
	Stability criterion
	Numerical analysis


	A study of inter-trial adaptation in dyadic collaborative lifting tasks
	Problem statement
	Experimental setup
	Method
	Adaptation law
	Optimal adaptive behavior
	Conclusion

	Development of an interactive simulation framework with haptic rendering
	Introduction
	Software architecture
	Presentation of Amelif
	Basic components

	Demonstrator
	Scenario
	The virtual HRP-2 avatar
	Dynamic simulation
	Focus on the haptic probe
	Task
	Results


	A PHANTOM"472 Device with 6DOF Force Feedback and Sensing Capabilities
	Introduction
	Technical solution
	Conclusion

	Bibliography

