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Abstract

S ecurity is one of the main issues of modern computer science. Nowadays more and
more people use a computer to perform sensitive operations like bank transfer, Internet

shopping, tax payment or even to vote. Most of these users do not have any clue how the
security is achieved, therefore they totally trust their applications. These applications often
use cryptographic protocols which are notoriously error prone even for experts. For instance a
flaw was found in the Needham-Schroeder protocol seventeen years after its publication. These
errors come from several aspects:

— Proofs of security of cryptographic primitives can contain some flaws.

— Security properties are not well specified, making it difficult to formally prove them.

— Assumptions on the intruder’s model might be too restrictive.

In this habilitation thesis we propose formal methods for verifying security of these three
layers. First, we build Hoare logics for proving the security of cryptographic schemes like
public encryption, encryption modes, Message Authentication Codes (MACs). We also study
electronic voting protocols and wireless sensor networks (WSNs). In each one of these areas
we first analyze the required security properties in order to propose a formal model. Then we
develop adequate techniques for their verification.

Keywords: Formal verification, computational model, symbolic model, concrete secu-
rity, public encryption scheme, encryption modes, MAC, homomorphic encryption, privacy,
electronic voting protocol, wireless sensor networks, neigbourhood discovery, independent
intruders, routing algorithms, resilience.
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Résumé

L a sécurité est une des préoccupations principales de l’informatique moderne. De plus en
plus de personnes utilisent un ordinateur pour des opérations sensibles comme pour des

transferts bancaires, des achats sur internet, le payement des impôts ou même pour voter. La
plupart de ces utilisateurs ne savent pas comment la sécurité est assurée, par conséquence
ils font totalement confiance à leurs applications. Souvent ces applications utilisent des
protocoles cryptographiques qui sont sujet à erreur, comme le montre la célèbre faille de
sécurité découverte sur le protocole de Needham-Schroeder dix-sept ans après sa publication.
Ces erreurs proviennent de plusieurs aspects :

— Les preuves de primitives cryptographiques peuvent contenir des erreurs.

— Les propriétés de sécurité ne sont pas bien spécifiées, par conséquence, il n’est pas facile
d’en faire la preuve.

— Les hypothèses faites sur le modèle de l’intrus sont trop restrictives.

Dans cette habilitation, nous présentons des méthodes formelles pour vérifier la sécurité
selon ces trois aspects. Tout d’abord, nous construisons des logiques de Hoare afin de prouver
la sécurité de primitives cryptographiques comme les chiffrements à clef publique, les modes de
chiffrement asymétriques et les codes d’authentification de message (Message authentication
codes, MACs). Nous étudions aussi les protocoles de votes électroniques et les réseaux de
capteus sans fil (Wireless Sensor Networks, WSNs). Dans ces deux domaines, nous analysons
les propriétés de sécurité afin de les modéliser formellement. Ensuite nous développons des
techniques appropriées afin de les vérifier.

Mots Clefs: Vérification formelle, modèle symbolique, modèle calculatoire, sécurité
concrète, chiffrement à clef publique, mode de chiffrement, MAC, chiffrement homomorphique,
respect de la vie privée, vote électronique, réseaux de capteurs sans fil, découverte de voisinage,
intrus indépendants, algorithmes de routage, résilience.
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Chapter 1
Introduction

P reamble: This habilitation thesis summarizes a selection of my research results obtained
since my PhD thesis. This summary is not exhaustive. In order to facilitate reading,

citations of my own works are denoted using a plain, numerical style, e.g. [1], while other
works are cited using alpha-numerical style, e.g. [NS78]. Moreover many proofs and details are
not presented in this document but can be found in associated articles or technical reports.
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1. Introduction

1.1 Context

Proving that a protocol is secure is not an easy task, even for simple and short protocols.
In 1996 G.Lowe [Low96] found an attack on the famous Needham-Schroeder protocol [NS78]
seventeen years after its publication. He found this flaw using his automatic verification
tool Casper [Low98] based on the CSP (Communicating Sequential Processes) model checker
FDR [Hoa85, Sch96, RSG+00]. The protocol proposed by Needham and Schroeder was proven
secure by using a formalism called BAN logic using the following intruder model: only one
single execution of the protocol. But the flaw proposed uses two parallel executions of the
protocol and assumes the so-called perfect encryption hypothesis. More precisely it means that
the only way to decrypt a cipher text is to know the inverse key. This hypothesis abstracts
the cryptography in order to detect “logical flaw” due to possible interleavings of different
protocol executions. This model is called symbolic by contrast to the computational approach
proposed by the cryptographers where intruders are represented by polynomial probabilistic
Turing Machines and messages are bits. In the symbolic model:

— messages are represented by terms built over a signature,

— the perfect encryption hypothesis is assumed,

— the intruder controls the network,

— the intruder has a limited capabilities, usually represented by a deduction system, first
introduced by Dolev and Yao in [DY81].

The discovery of the “logical” attack by G. Lowe shows that even experts can miss some
flaws even on small protocols (only three messages exchanged) and often underestimate the
complexity of analyzing the security of such protocols. It also indicates that automatic
analysis is crucial for assessing the security of cryptographic protocols, because humans can
not reasonably verify their correctness. Then formal verification methods are an ideal tool to
analyze protocols and avoid bugs. Hence symbolic and automatic verification of cryptographic
protocols is one of the active topics in security. Over the past two decades many automatic tools
based on several different formal techniques have been designed for cryptographic protocols,
e.g [ABB+05, Bla01, Bor01, BLP03, CE02, Cre08, Low98, Mea96, MMS97, Ros95, SBP01].
One can find a survey of formal approaches for proving security protocols in [BCM11].

On the other the hand, security proofs of cryptographic primitives are usually manually
done by their authors. Unfortunately mistakes can appear as it was the case with the famous
case of OAEP [BR94, Sho02, FOPS04a, BGLB11a]. In order to detect some mistakes, one
possible technique is to prove in the symbolic world the security of a scheme and to establish
soundness results as it has been done after the pioneer work of Abadi et al [AR00], see [CKW11]
for a survey of these techniques. However there is another solution which consists in directly
reasoning in the computational model using logical ingredients such as predicates, deduction
rules, Hoare logic.
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1.2. Contributions

Such cryptographic primitives are used to develop secure applications in an hostile envi-
ronment. With Internet democratization, many countries might want to use electronic voting
protocols for their elections. There already exist several e-voting protocols, but voter fear is
real. Issues include preserving confidentiality of vote, preventing double voting, ensuring that
all votes are counted etc. Many of these properties are achieved by cryptographic operators
like homomorphic encryption e.g. J.Benaloh [Ben87]. A formal analysis of these properties
should augment the confidence of citizens in such protocols and avoid bugs in applications.

Another application is the security in wireless networks. Cellular phones are now more
common than wired ones, the number of mobile connections to Wireless Local Area Networks
(WLANs) is increasing, and wireless devices are now used everyday at homes, companies and
administrations. Moreover wireless devices have become so small and cheap that they can be
used in sensor networking applications such as environmental or building monitoring. These
devices communicate by relaying packets of other devices across multiple wireless links (hops).
This new communication technology changes usual intruder models used in verification of
cryptographic protocols. For instance: agents can move and still be connected; nodes have
a limited battery and computation power; intercepting a message over the network becomes
easy; an intruder cannot control the whole network.

1.2 Contributions

All works of this habilitation thesis aim to formally model security properties, to verify security
of protocols and to prove schemes under well identified assumptions. All my contributions
have been part of the following projects: ANR SCALP, AVOTÉ, SFINCS, ARESA2 and
PROSE, project Minalogic SHIVA and project UJF MSTIC TERRA.

Security mistakes can come from several aspects:

— Proofs of security of cryptographic primitives can contain some flaws.

— Security properties are not well specified, making it difficult to formally prove them.

— Assumptions on intruder’s model might be too restrictive.

In this habilitation thesis we propose formal methods for verifying security of these three
axis. First, we look at the security of cryptographic schemes. Then we analyze electronic
voting protocols and wireless sensors networks (WSNs).

1.2.1 — Proving Cryptographic Primitives using Logic

Several cryptographic primitives thought to be proven secure by their authors have been
broken several year latter, due to errors in the original proofs. For instance it took 5
years to break the Merkle-Hellman cryptosystem [MH06], 10 years to break the Chor-Rivest
cryptosystem [CR88, Jr.91, Vau98]. Proving the security of cryptographic primitives is not an
easy task and is error prone.

7



1. Introduction

For verifying such primitives, we analyze a cryptographic primitive as a successive appli-
cation of simple actions forming a small program. We model security properties by a set of
invariants. Then we prove a set of Hoare logic rules for each simple action in order to preserve
or propagate invariants through the program. If the application of our rules on a program
leads us to a set of invariants modeling our security property then the primitive is secure. In
the first part of this habilitation thesis, we propose three logics in order to verify some public
encryption schemes, symmetric encryption modes, and MACs [5, 18, 6, 17].

1.2.2 — Electronic Voting Protocols

In this area, many different formal models and definitions of the security properties have
been proposed such as [CG96, DKR09, DKR10, MN06, BHM08, SRKK10, KRS10, JCJ05,
JCJ02, SC10, SC11, KT09, UMQ10, LJP10]. They have been used successfully to discover
bugs in systems like Helios [SC11]. However, since the structure, setting and basic design
of voting protocols can be quite different depending on the primitives used, many of these
definitions are tailored to fit a specific (sub-)group of protocols. Sometimes a protocol can be
proved secure in one model, but not in another. This hinders the objective comparisons of
protocols. We refine privacy notions, which allow us to compare the security level of existing
protocols. We obtain a precise formal taxonomy of different privacy notions [11] and are able
to compare security levels of existing protocols. Moreover we give a definition of privacy notion
for voting protocols which allow weighted votes. In this framework, we also prove that it is
equivalent to consider one or several malicious voters [10]. For obtaining this we prove a result
of process decomposition unicity in applied π-calculus [14]. We also use the applied π-calculus
to formalize the vote-independence: a protocol ensures this property if a vote cannot “copy”
the vote of another voter. In [11], we show the relation with existing notions and give an
example of protocol which does not satisfy this property.

Finally, in [15], we discover that Benaloh’s homomorphic encryption [Ben87] is ambiguous:
for certain parameters decryption of a cipher text gives two valid plaintexts. We illustrate the
impact of such problem on several applications such as an electronic voting protocol. We also
propose a modified version of this scheme and prove its correctness.

1.2.3 — Wireless Sensor Networks

During the last years several formal verification works [SSBC09a, ACD10, DDS10, CDD12] have
been proposed in this area. One of the main issues for WSNs is that each node must discover
or rediscover which nodes are within its communication range. This is called neighborhood
discovery. In 2006, C. Meadows et al [MPP+06] propose a first formal analysis of neighborhood
discovery protocol without mobility. In [20] we give a model inspired from [SSBC09a] in
which we consider mobile agents and intruders. We also provide a formal definition of the
(k)-neighborhood.

Recently [ACD10], the authors propose a formal verification method for verifying routing
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1.3. Content of the Thesis

protocols. They prove that the route built by a protocol corresponds to all visited nodes. They
give an extension of the Dolev-Yao intruder model where all nodes share collected information.
If we assume deployed sensors in the nature, it becomes really difficult and expensive for an
intruder to collect in several points exchanged messages and to easily exchange all collected
information. We consider independent intruders that do not know each other and do not
share any knowledge. In this intruder model, the classical assumption of monotonicity of the
intruder knowledge is no longer true. We propose a decision algorithm for constraint systems
associated to this weaker intruder model [Kas12].

Another challenging problem in WSNs is to develop efficient and resilient routing algorithms.
By resilient we mean that if a node disappear due to an environmental event (fire, rain etc.),
or to an attack by an intruder, or simply by reaching the battery limits, then the routing
mechanism should continue to work. As a consequence a deterministic routing algorithms
cannot be resilient to topology changes. On the other hand random walk is really resilient but
is not efficient. We propose two categories of probabilistic routing algorithms using tabu lists
in order to improve random walks. Our first idea is to share the information of already visited
nodes. We include into each message the list of already visited nodes. Then each node routes
the messages randomly over their neighbors excluding nodes of the tabu list. This generates
an overload in the network and is not secure in presence of an intruder. In order to avoid these
drawbacks we propose a first family of algorithms which store routing information locally in
each node. This allows them to be more efficient than random walks by avoiding links which
are identified as a cycle. Moreover in order to be more resilient to the intruders we propose a
last routing algorithm which uses cryptographic primitives and acknowledgment mechanism.

1.3 Content of the Thesis

Before presenting the plan of this habilitation thesis, I explain the process followed to obtain
these works. I started my research with my Master thesis [22] in Artificial Intelligence on
“Solving logical conflicts, using decision methods for sequencing” at University Paul Sabatier
(Toulouse). I continue in PhD [23] on “Verification of cryptographic protocols in presence of
algebraic properties” at ENS Cachan (LSV). In my PhD, I studied homomorphic inscriptions,
which have the following property: {a}k ∗ {b}k = {a + b}k. I proposed an intruder model
which takes into account this property and allows to find attacks on protocols proven secure in
the classical Dolev-Yao intruder model. Then during my post-doctoral internship at the ETH
Zürich, I started to look at efficiency of verification tools and at the neighborhood property in
WSNs [25]. Then I naturally continue to study WSNs at Verimag, by proposing a model for
verifying (k)-neighborhood property for mobile node, another model for independent intruders,
and some protocols and analysis of routing algorithms. I also continue to study homomorphic
encryptions by developing models for electronic voting protocols in the symbolic model. Finally
I have started a new topic research with the verification of cryptographic primitives in the
computational model.
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1. Introduction

1.3.1 — Outline

This document is organized in three independent parts.

Part I In this first part, we propose three Hoare Logic to verify security of asymmetric
encryption in Chapter 2, prove the IND-CPA security of symmetric encryption mode in
Chapter 3 and prove the security of Message Authentication Codes (MACs) in Chapter 4.

Part II In Chapter 5, we revisited Benaloh’s homomorphic encryption [CB87][15]. In
Chapter 6, we propose a formal taxonomy of Privacy in voting protocols [11]. Finally in
Chapter 7, we formally model Privacy notions for protocols supported weighted vote in the
applied π-calculus [10, 14].

Part III In Chapter 8, we present our formal model for secure (k)-neighborhood discovery
protocols. In Chapter 9, we develop a formal constraint system in order to analyze routing
protocols in presence of independent intruders. In Chapter 10, we propose a class of probabilistic
routing algorithms which store information in the messages. We also make a theoretical
analysis of such protocols. Finally in Chapter 11, we give another class of probabilistic routing
algorithms which store local information in each node. We also shows that such algorithms
are resilient to several types of attacks.

1.3.2 — Collaborations

The results presented in this habilitation thesis have been mainly obtained in collaboration
with the researchers listed below:

— Mohammed Alnuaimi

— Karine Altisen

— Judicaël Courant

— Cas J. F. Cremers

— Marion Daubignard

— Stéphane Devismes

— Jannik Dreier

— Cristian Ene

— Laurent Fousse

— Martin Gagné

— Antoine Gerbaud

— Nacira Ghoualmi

— Raphaël Jamet

— Ali Kassem

— Noudjoud Kahya

— Yassine Lakhnech

— Philippe Nadeau

— Clément Ponsonnet

— Reihaneh Safavi-Naini

— Vanessa Terrade

— Sylvain Vigier

In particular, this habilitation thesis describes some results obtained during the supervision
of the following PhDs:

— Marion Daubignard, she obtained her PhD about formalization of concrete security proofs
in January 2012 [Dau12]. We have collaborated for developing our first Hoare Logic for
public encryption scheme [5, 6], presented in Chapter 2.
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1.3. Content of the Thesis

— Jannik Dreier, he started his PhD in September 2010 at Verimag, we have worked on
formalizing privacy notions for electronic voting protocols [8, 14, 11, 10], works presented
in Chapter 6 and 7.

— Raphaël Jamet, he began his PhD in September 2011 at Verimag, we worked together
on the formalization of the (k)-neighborhood property in Chapter 8 and [20]. He is now
studying resilient routing algorithms in WSNs, as it is presented in Chapter 11.

Other results have been obtained during the supervision of some undergraduate internships,
master theses and post-doctoral internships:

— During the Master internship of Ali Kassem [Kas12], we proposed a model for verifying
routing protocol in presence of independent intruders, work presented in Chapter 9.

— The work [15], presented in Chapter 5, about Benaloh’s encryption scheme [CB87] was
initiated during the Mohammed Alnuaimi’s master internship.

— The results obtained during the Master thesis of Clément Ponsonnet, allowed us to design
routing algorithms based on tabu lists which are presented in Chapter 10 and 11.

— In collaboration with Nacira Ghoualmi professor and Noudjoud Kahya PhD student at
Badji Mokhtar University (Annaba, Algeria) we used SCYTHER [Cre08] for verifying
IEEE802.16 standard (Wimax). This analysis shows some weaknesses that we corrected [19].
This work is not presented in this habilitation thesis.

— During the collaboration with Antoine Gerbaud, post-doctoral fellow at Verimag, we
analyzed some routing algorithms using tabu lists [1, 2]. This work is described in
Chapter 10.

— With Martin Gagné post-doctoral fellow we developed the Hoare logics for encryption
mode and for MACs respectively presented in Chapter 3 and 4.

— During the undergraduate internships of Vanessa Terrade and Sylvain Vigier, we have
extended the comparison of existing automatic verification tool done in [7] to protocols
using algebraic properties [24]. These works are not presented in this habilitation thesis.
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Part I

Proving Cryptographic Primitives
using Hoare Logic





Proving security of cryptographic primitives is not an easy task. Cryptographers design
schemes and usually provide hand proofs of their security. Unfortunately sometimes such
proofs contain errors. For instance, the scheme proposed by Zheng and Seberry [ZS93] was
claimed to be IND-CCA2 by the authors but an attack was found few years later [SSQ02].
Another famous example is OAEP [BR94], which was proven secure until Victor Shoup in
2000 [Sho02] gave an attack in a particular setting. Then an updated version using RSA was
proposed in [FOPS04b]. All these examples clearly show that proving security of cryptographic
primitives is difficult and error prone due to their intrinsic complexity. Then it is important to
develop automatic formal methods for proving such schemes. In [Sho04], Shoup presents a first
attempt by using games as a way to clarify and structure such proofs. Moreover Halevi has
argued in [Hal05] that the design of formal verification techniques and their implementation
in tools that could be used by the cryptographic community is crucial to support the trust in
cryptographic proofs.

Related Work: Using the Symbolic Model: A possible approach is to prove the scheme
in the symbolic model using formal methods and also prove a soundness result. In [AR00],
Abadi and Rogaway proved the first computational soundness result. Such theorems typically
argue that if proven in the symbolic model, a security criterion also holds in the computational
model. After this work several relevant computational soundness results have been obtained,
see [CKW11] for an inventory of the different flavors of results and practices.

In [DDMR07], Datta, Derek, Mitchell and Roy present a survey of the Protocol Composition
Logic (PCL), which is a logic in Hoare style to prove security properties of network protocols,
using symmetric and asymmetric schemes. The reasoning of PCL is not performed in the
computational model directly. The computational soundness is given under the assumption that
the protocols use an IND-CCA encryption scheme. The associated computational semantics
are given in [BDD+06]. Several extensions of PCL have been published [DDMW06, RDDM07,
RDM07]. These techniques have been applied to prove security achievements of widely used
protocols such as SSL/TLS, IEEE 802.11i, Kerberos V5, Diffie-Hellman based protocols and
IKEv2, the revised standard key management protocol for IPSEC.

Fournet et al. [FKS11] developed a framework for modular code-based cryptographic
verification. However, their approach considers interfaces for MACs. In a way, our work is
complementary to theirs, as our results presented in Chapter 4, coupled with theirs, could
enable a more complete verification of systems.

The Direct Approach: In [BR04], Bellare and Rogaway propose code-based proofs resembling
game-playing techniques, as a first step towards enabling automatic verification of the proofs.
However it does not provide a formalism for the verification.

Impagliazzo and Kapron were the first to develop a logic to reason about indistinguishability
in [IK06]. It is based on a more general logic whose soundness relies on non-standard arithmetic.
Later, Zhang has proposed a logic built on top of Hofmann’s SLR, named computational
SLR [Zha08]. His logic, as that of Impagliazzo and Kapron, allows for a proof that next-
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bit unpredictability implies pseudo-randomness and is used to show the correctness of a
pseudo-random generator.

In [CdH06], R. Corin and Den Hartog present a Hoare-style proof system for game-based
cryptographic proofs. They are able to prove semantic security of ElGamal.

In [BCT04, BT04], G. Barthe et al give machine-checked proofs of computational security
using the Coq-proof assistant [BC04, Tea04] for hardness of the discrete logarithm in the
generic model and security of signed ElGamal encryption against interactive attacks.

Nowak [Now07] also shows a preliminary implementation of the game-based approach
in Coq. Backes, Berg, Unruh [BBU08] propose a formalization of a language for games in
the Isabelle proof assistant, and provide a proof of the fundamental lemma of game-playing;
however, subsequent work [BMU10] rather presents symbolic analysis with computational
soundness results.

In [BDKL10], the authors introduce the Computational Indistinguishability Logic (CIL).
It is a logic for proving the security of cryptographic primitives in the computational model.
This framework can be extended in order to integrate results that are presented in this part.

Tools : Nowadays, there exist some automated verification frameworks for computational
security proofs:

— CryptoVerif [BP06, BJST08, Bla08], a tool developed by Bruno Blanchet. It is based
on observational equivalence. It uses rules to transform games into equivalent or almost
equivalent ones. A large collection of cases studies is available with the tool including an
automated proof of Kerberos 5 and Diffie-Hellman based constructions. Further progress
have been reported in [BP10, Bla11, PB12].

— CertiCrypt [BGZB09] is a framework enabling machine-checked design and verification of
code-based concrete security proofs. It is built on top of the proof assistant Coq. Case
studies include existential unforgeability of the FDH signature scheme and semantic security
of OAEP.

— EasyCrypt [BGHB11], an automated tool generating partial verifiable evidence of cryp-
tographic proofs out of proof sketches. The sketches are checked using SMT solvers and
automated theorem provers, and then compiled into verifiable proofs in the Certicrypt
framework. Recently, in [BGLB11b], they prove the security of OAEP.

Contributions: Our aim is to develop a formal method in order to prove cryptographic
primitives. We consider cryptographic primitives as small programs, usually it is just few lines
of code. In the last century Tony Hoare provided mechanisms in order to prove that a program
is correct, so-called Hoare logic. Our approach consists in the three following steps:

1. Modeling properties that studied primitives have to ensure by proposing some invariants.

2. Defining the language which represent the small set of commands used to construct a
primitives at the good abstract level.

3. Proving Logics rules, that allows us to generate and propagate invariants according to
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the commands executed in the program.

Once the language fixed, the invariants developed and the rules of the Hoare Logic
established, we can verify a primitive. This approach is sound, because all our rules are proved.
It means that if – after modeling a primitive in the specific language and applying the rules for
each command – we obtain the desired invariant, this means that the primitive satisfies the
properties. But if the analysis stops or does not provide desired invariant at the end, usually
two situations appear: the scheme is not secure and there is an attack, or our system cannot
prove this scheme. This last possibility comes from the fact that is very difficult to design a
Logic which is complete. The three logics presented in this part contain enough rules to prove
all secure primitives and to fail on insecure well-known schemes.

Outline: In Chapter 2, we present a Hoare Logic for verifying asymmetric encryption. In
Chapter 3 we develop a framework for proving the IND-CPA security of symmetric encryption
mode. Finally in Chapter 4, we propose other invariants and another Logic for proving the
security of Message Authentication Codes (MACs).
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Chapter 2
Public Encryption Schemes

O n admet que le niveau minimum de sécurité des chiffrements à clef publique est IND-CPA.
De plus de nombreux chiffrements à clef publique peuvent s’écrire sous forme de petits

programmes de quelques lignes. Nous définissons une logique de Hoare afin d’analyser ces
chiffrements et de prouver qu’ils sont IND-CPA [5, 6][Dau12].
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2. Public Encryption Schemes

C. A. R. Hoare [Hoa69] and R. Floyd [Flo67] proposed inference systems using statements
of the form {P} cmd {Q}, where P and Q are assertions and cmd is a command. Traditionally,
P is called a precondition and Q a postcondition. A Hoare triple is valid if whenever the
precondition is met, the postcondition is verified after the command execution. We propose a
Hoare logic for capturing asymmetric encryption constructions in the random oracle model.
Our framework is based on programs specified using a small fixed programming language
operating. After having provided a semantics for this language we define predicates capturing
properties of the encryption schemes.

2.1 Programming Language

We suppose that we have a finite set of symbols ~H, representing a finite collection of hash
functions; H is a meta-variable ranging over ~H. Each hash function H is mapped to an integer
`(H), which is a (public) parameter of the system and represents the length of outputs of the
hash function. Moreover, each element H ∈ ~H is associated to a specific list, the variable TH .
The collection of all these lists is denoted HList. In addition, we have two special variables pk
and sk which are meant to store public and secret key values; symbol f̃ denotes an algorithm
which can be instantiated for any value of pk and then yield a trapdoor permutation f . We
suppose that f̃ is fixed and known to the adversary, and OW (t) denotes an upper-bound of
the probability that an adversary succeeds in inverting f on a random argument in time at
most t. Additionally, K denotes the key generation algorithm. Another special variable, σ,
takes values in bitstrings of finite length, and denotes the variable in which the adversary can
store its state. Finally, we have a finite set of variables Var to denote any other variables. We
use any symbol different from those above to denote elements in Var, e.g. x, y, t, q. Though
finite, the set Var is assumed to be large enough to contain all symbols that we introduce in
programs.

Grammar: We now describe a simple imperative language with random assignment. Whereas
the language allows the application of a trapdoor permutation f , it does not include the
application of the inverse of such permutations. Our programming language is built according
to the BNF described in Table 2.1, where:

— x← U(l) samples a value in U(l) and assigns it to x, with U the uniform distribution over
the set of bitstrings of length l. Since we do not suppose that all the bitstrings are drawn
in the same set {0, 1}l, we have to specify a length for each drawing command. In the
sequel, we use l as a generic notation each time a length needs to be specified.

— x := f(y) applies the trapdoor one-way function f to the value of y and assigns the result
to x.

— x := α⊕H(y), where α is a constant or a variable. This command first applies the random
oracle H to the value v of y, i.e. a new hash value h is drawn whenever v has not been
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already hashed. As a side effect, the pair (v, h) is added to the variable TH if it was not
stored yet. After the hash computation, the bitwise exclusive or of α and the hash value is
assigned to x.

— x := y ⊕ z applies the exclusive or operator to the values of y and z and assigns the result
to x.

— x := y||z represents the concatenation of the values of y and z.

— cmd1; cmd2 is the sequential composition of commands cmd1 and cmd2.

Command cmd ::= x← U(l) | x := f(y) | x := α⊕H(y) |
x := y ⊕ z| x := y||z | cmd; cmd

Table 2.1 – Language Grammar.

We disregard the execution time needed for all these operations but the application of
f as it is usually the case in concrete security proofs. We assume that command x := f(y)

admits an upper-bound on the time required for its execution, independent of the input, which
we denote Tf . We can then define Tcmd for any command in the language by summing the
number of applications of f involved.

Semantics: States m ∈ M map pk, sk, σ and all variables of Var to bitstrings, and variables
HList to lists of pairs of bitstrings. The semantics of our language is specified in Table 2.2.
Notice that the semantic function of commands can be lifted in the usual way to a function
from Dist(M) to Dist(M). That is, let F : M → Dist(M) be a function. Then, F defines a
unique function F ∗ : Dist(M)→ Dist(M) such that F ∗(D) = [m← D;m′ ← F (m) : m′]. By
abuse of notation we denote the semantic function of commands and their lifted counterparts
by [[cmd]]: according to our semantics, commands denote functions that transform distributions
on states into distributions on states.

[[x← U(l)]](m) = [u← U(l) : m.[x 7→ u]]

[[x := f(y)]](m) = δ(m.[x 7→ f̃(m.pk,m.y)])
[[x := α⊕H(y)]](m) ={

δ(m.[x 7→ m.α⊕ TH(m.y)]) if m.y ∈ dom(m.TH)
[v ← U(`(H)) : m.[x 7→ m.α⊕ v, TH 7→ TH :: (m.y, v)]] if m.y /∈ dom(m.TH)

[[x := y ⊕ z]](m) = δ(m.[x 7→ m.y ⊕m.z])
[[x := y||z]](m) = δ(m.[x 7→ m.y||m.z])
[[cmd1; cmd2]] = [[cmd2]] ◦ [[cmd1]]

Table 2.2 – The semantics of the programming language

Definition 1 Constructible Distribution Let χ be a function mapping each H ∈ ~H to a positive
integer. A χ-constructible distribution is of the form:[

(pk0, sk0)← K;m← A
~H(pk0) : m[pk 7→ pk0, sk 7→ sk0]

]
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where A is a probabilistic algorithm with oracle access to the hash functions in ~H, making a
number of calls bounded by χ. Moreover, A’s queries to the hash oracles are recorded with their
answers in the lists of HList in m; in other words, A cannot tamper with these lists. Finally,
we require that for all hash function H ∈ ~H, Card(dom(TH)) ≤ χ(H).

The set of χ-constructible distributions is denoted by constD(χ). A distribution X is said
constructible if there exists a tuple χ such that X ∈ constD(χ). The set of constructible
distributions is denoted constD.

Indistinguishability: We define the indistinguishability between two constructible distri-
butions.

Definition 2 Indistinguishability Let A denote a (k, t)-adversary, and let X and X ′ be two
constructible distributions in constD(χ). Let ε : (k, χ, t) 7→ ε(k, χ, t) be a function ranging in
[0, 1]. The advantage of A in distinguishing X and X ′ is denoted Adv(A, X,X ′) and defined
as

|Pr[m← X : A ~H(m.[sk 7→ λ]) = 1]− Pr[m← X ′ : A ~H(m.[sk 7→ λ]) = 1]|

We say that distributions X and X ′ are ε-indistinguishable iff for all (k, t)-adversary A,
Adv(A, X,X ′) ≤ ε(k, χ, t). In this case, we write X ∼ε X ′.

We stress that A is provided with the whole information stored in the state but the
secret key value. In particular, it includes lists (TH)H∈ ~H of hash values computed during the
construction of X or X ′. As a consequence, whenever A queries one of its oracle H on a value
appearing in list TH , it gets the same answer that is stored in TH . We emphasize that the
function k bounding the number of queries to oracles in ~H does not take into account queries
performed during the construction of X or X ′.

Definition 3 Distribution Restricted to Sets of Variables Let X be a constructible distribution,
let V1 and V2 be sets of variables such that V1 ⊆ Var ∪ {σ} and V2 ⊆ Var. By D(X,V1, V2) we
denote the following distribution:

D(X,V1, V2) = [m← X : (m.V1, f(m.V2))]

where m.V1 denotes the values of variables in V1 in state m, and f(m.V2) denotes the point-wise
application of f to the values given by state m to variables in V2.

Definition 4 Restricted Indistinguishability Let X and X ′ be two constructible distributions.
X and X ′ are V1;V2; ε-indistinguishable, denoted by X ∼V1;V2;ε X ′, iff D(X,V1, V2) ∼ε
D(X ′, V1, V2).

We emphasize that in the above definition, V1 and V2 cannot contain any list TH , since
HList and Var are disjoint. Hence, every time we use the equivalence ∼V1;V2;ε, the variables
(TH)H∈ ~H are not given to the adversary.
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Replacing the value of a given variable by an independently uniformly drawn bitstring of
the right length is an operation on constructible distributions that we often use. We introduce
the notation νx.X to denote distributions:

[v ← U(l);m← X : m.[x 7→ v]] and [m← X; v ← U(l) : m.[x 7→ v]]

given any constructible distribution X and variable x of length l. We notice that if X ∈
constD(χ), then νx.X belongs to the same set constD(χ).

2.2 Assertion Language

Our assertion language is defined by the following grammar, where ψ defines the set of atomic
assertions:

ψ ::= Indis(x;V1;V2; ε) | WS(x;V1;V2; ε) | H(H; e; ε)

ϕ ::= true | ψ | ϕ ∧ ϕ

Intuitively, Indis(νx;V1;V2; ε) is satisfied by a distribution on configurations, if given values
of variables in V1 and images by f of values of variables in V2, any polynomial adversary in η
has probability to distinguish between the following two distributions is smaller than ε: first,
the distribution resulting of computations performed using the original value of x as is in
X, secondly, the distribution resulting from computations performed replacing everywhere
the value of x by a random value of the same length as x. The assertion WS(x;V1;V2; ε)

stands for Weak Secret and is satisfied by a distribution, if any adversary has a probability to
compute the value of x smaller or equal to ε, when he is given the values of the variables in
V1 and the image by the one-way permutation of those in V2. Lastly, H(H; e; ε) is satisfied
when the probability that the value of e has been submitted to the hash oracle H is smaller
or equal to ε. More precisely, the satisfaction relation X |= ψ is defined as follows, where
ε : (k, χ, t) 7→ ε(k, χ, t) a function ranging in [0, 1]:

— X |= true.

— X |= Indis(x;V1;V2; ε) iff X ∼V1;V2;ε νx.X

— X |= WS(x;V1;V2; ε) iff for any (k, t)-adversary A, Pr[m ← X : A ~H((m.V1), f(m.V2)) =

m.x] ≤ ε(k, χ, t).

— X |= H(H; e; ε) iff Pr[m← X : m.e ∈ dom(m.TH)] ≤ ε(χ) where m.e is the evaluation of
expression e in state m.

For the sake of readability, sets V1 and V2 appearing in the predicates are enumerated as
collections of variables only separated by commas. For example, in Indis(x; y; t, z; 0), V1 = {y}
and V2 = {t, z}, and in WS(x;V, t; y; ε), V1 = V ∪ {t} and V2 = {y}.

Proposition 1 Let cmd be an encryption using only commands described the grammar of
Table 2.1 and computing a cipher in the variable oute. Then this scheme is IND-CPA secure,
if {true}cmd{Indis(νoute)} is valid.
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Indeed, if {true}cmd{Indis(νoute)} holds then the encryption scheme is secure with respect
to randomness of ciphertext. It is standard that randomness of ciphertext implies IND-CPA
security.

2.3 Hoare Logic

Now that basic predicates and properties are set, we provide the rules that ensure their
conservation or sound transformation when commands are applied. Rules fall into two
categories: preservation rules that express how a property is modified after the command,
and creation rules that state a property of a variable newly assigned. The rules are given
along with some inequality restrictions, which are meant to be understood syntactically, e.g.
x 6= t, y means that x and t, y are not the same variable name. In all the rules we state, and
as their definitions require, predicates take as arguments a variable in Var, a set V1 included in
Var ∪ {σ} and a set V2 is included in Var.

Generic preservation rules: Below, cmd is x ← U or of the form x := e′ with e′ being
either w||y, w ⊕ y, f(y) or α⊕H(y).

Provided x 6∈ V1 ∪ V2, and z 6= x:

(G1) {Indis(z;V1;V2; ε)} cmd {Indis(z;V1;V2; ε′)}

(G2) {WS(z;V1;V2; ε)} cmd {WS(z;V1;V2; ε
′)}

where ε′(k, κ, t) = ε(k, κ− κcmd, t).

When z 6= x:

(G1’) {Indis(z;V1;V2; ε)} cmd {Indis(z;V1, x;V2; ε′)}, if e′ is constructible from (V1r{z};V2r{z}),

(G2’) {WS(z;V1;V2; ε)} cmd {WS(z;V1, x;V2; ε
′)}, if e′ is constructible from (V1;V2),

where ε′(k, κ, t) = ε(k + κcmd, κ− κcmd, t+ Tcmd)).

When H ′ 6= H:

(G3) {H(H ′; e[e′/x]; ε)} cmd {H(H ′; e; ε′)}, where ε′(k, κ, t) = ε(k, κ− κcmd, t).

(G3’) {H(H ′; e; ε)} x← U(l) {H(H ′; e; ε)}, if x does not appear in e.

Random assignment rules:

(R1) {true} x← U(l) {Indis(x; Var ∪ {σ}, ∅; 0)}

(R2) {true} x← U(l) {H(H; e; κ(H)
2l

)} if x ∈ subvar(e).

If x 6= y:

(R3) {Indis(y;V1;V2; ε)} x← U(l) {Indis(y;V1, x;V2; ε)}

(R4) {WS(y;V1;V2; ε)} x← U(l) {WS(y;V1, x;V2; ε)}
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Hash functions rules:
When x 6= y:

(H1) {WS(y;V1;V2; ε) ∧ H(H; y; ε′)} x := α ⊕H(y) {Indis(x;V1, x;V2; ε
′′)}, where ε′′(k, κ, t) =

ε′(κ− 1H) + k(H) ∗ ε(k, κ− 1H , t).

(H2) {WS(y;V1;V2, y; ε) ∧ H(H; y; ε′)} x := α⊕H(y) {Indis(x;V1, x;V2, y; ε′′)} if y 6∈ V1, where
ε′′(k, κ, t) = ε′(κ− 1H) + ε(k, κ− 1H , t+ k(H) ∗ Tf )

When x 6= y, and x ∈ subvar(e):

(H3) {H(H; y; ε)} x := α⊕H(y) {H(H ′; e; ε′)}
where ε′(κ) = ε(κ− 1H) + κ(H)

2`(H) .

Provided that x 6= y, z:

(H4) {WS(y;V1;V2; ε1) ∧WS(z;V1;V2; ε2) ∧ H(H; y; ε3)} x := α⊕H(y)

{WS(z;V1, x;V2; ε4)}
where ε4(k, κ, t) = k(H) ∗ ε1(k, κ− 1H , t) + ε2(k, κ− 1H , t) + ε3(κ− 1H).

Provided that z ∈ subvar(e) ∧ x /∈ subvar(e):

(H5) {H(H; e; ε) ∧WS(z; y; ∅; ε′)} x := α⊕H(y) {H(H; e; ε′′)}
where ε′′(κ) = ε(κ− 1H) + ε′(0, κ− 1H , 0).

If x 6= y:

(H6) {WS(y;V1;V2, y; ε) ∧ H(H; y; ε′)} x := α⊕H(y) {WS(y;V1, x;V2, y; ε′′)}
where ε′′(k, κ, t) = ε(k, κ− 1H , t+ (k(H) + 1) ∗ Tf ) + ε′(κ− 1H) + ε(k, κ− 1H , t).

When x 6= y, z:

(H7) {Indis(z;V1, z;V2; ε1)∧WS(y;V1, z;V2; ε2)∧H(H; y; ε3)} x := α⊕H(y) {Indis(z;V1, z, x;V2; ε4)}
where ε4(k, κ, t) = ε1(k, κ− 1H , t) + 2.k(H) ∗ ε2(k, κ− 1H , t) + 2.ε3(κ− 1H).

One-way function rules:
If x, y 6∈ V1 ∪ V2:

(P1) {Indis(y;V1;V2, y; ε)} x := f(y) {Indis(x;V1, x;V2; ε)}

If y 6∈ V1 ∪ {x}:
(P2) {Indis(y;V1;V2, y; ε)} x := f(y) {WS(y;V1, x;V2, y; ε′})}
where ε′(k, κ, t) = ε(k, κ, t+ Tf ) +OW (t).

If z 6= x, y:

(P3) {Indis(z;V1, z;V2, y; ε)} x := f(y) {Indis(z;V1, z, x;V2, y; ε)}.
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If z 6= x, y

(P4) {WS(z;V1;V2; ε)∧Indis(y;V1;V2, y, z; ε′)} x := f(y) {WS(z;V1, x;V2, y; ε′′)} where ε′′(k, κ, t) =

ε(k, κ, t+ Tf ) + ε′(k, κ, t+ Tf ).

Exclusive or rules:

If y 6∈ V1 ∪ V2, y 6= x, z:

(X1) {Indis(y;V1, y, z;V2; ε)} x := y ⊕ z {Indis(x;V1, x, z;V2; ε)}

(X2) {Indis(w;V1, y, z;V2; ε)} x := y ⊕ z {Indis(w;V1, x, y, z;V2; ε)}, if w 6= x, y, z

(X3) {WS(w;V1, y, z;V2; ε)} x := y ⊕ z {WS(w;V1, x, y, z;V2; ε)}, if w 6= x

Concatenation rules:

If x 6∈ V1 ∪ V2:
(C1) {WS(y;V1;V2; ε)} x := y||z {WS(x;V1;V2; ε)}
A dual rule applies for z.

If y, z 6∈ V1 ∪ V2 ∪ {x}:
(C2) {Indis(y;V1, y, z;V2; ε) ∧ Indis(z;V1, y, z;V2; ε′)} x := y||z {Indis(x;V1, x;V2; ε+ ε′)},

(C3) {Indis(w;V1, y, z;V2; ε)} x := y||z {Indis(w;V1, x, y, z;V2; ε)}, if w 6= x, y, z,

(C4) {WS(w;V1, y, z;V2; ε)} x := y||z {WS(w;V1, y, z, x;V2; ε)}, if w 6= x,

Consequence and sequential composition rules:

(Csq) if ϕ0 ⇒ ϕ1, {ϕ1} cmd {ϕ2} and ϕ2 ⇒ ϕ3 then {ϕ0} cmd {ϕ3}

(Seq) if {ϕ0} cmd1 {ϕ1} and {ϕ1} cmd2 {ϕ2}, then {ϕ0} cmd1; cmd2 {ϕ2}

(Conj) if {ϕ0} cmd {ϕ1} and {ϕ0} cmd {ϕ1}, then {ϕ0} cmd {ϕ1 ∧ ϕ2}

2.4 Example of Application

We illustrate our proposition with Bellare & Rogaway’s generic construction [BR93], which
can be shortly described as f(r)||(q ⊕G(r))||H(q||r), where q is a plaintext to be ciphered. A
description of the algorithm in our framework, under the form of an oracle declaration, is the
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following:

BR(q,A) : var {r, g, b, c, d, s, t};
(r ← U(l); b := f(r); g := G(r); c := q ⊕ g; s := q||r; d := H(s); t := b||c; A := t||d)

We give a proof constructed using our Hoare Logic.
V = {q,A, σ, r, g, b, c, d, s, t}:

r ← U(l) Indis(r;V ; ∅; 0) ∧ H(G; r; χ0(G)
2l

) ∧ H(H; q||r; χ0(H)
2l

) (R1)(R2)

b := f(r) Indis(b;V r {r}; ∅; 0) ∧WS(r;V r {r}; r;OW (t)) (P1)(P2)

∧H(G; r; χ0(G)
2l

) ∧ H(H; q||r; χ0(H)
2l

)

g := G(r) Indis(b;V r {r}; ∅; ε) ∧ Indis(g;V r {r}; r; ε)∧ (H1)(H4)(G3)

WS(r;V r {r}; r; ε/2) ∧ H(H; q||r; χ0(H)
2l

)

c := q ⊕ g Indis(b;V r {r}; ∅; ε) ∧ Indis(c;V r {g, r}; r; ε)∧ (X1)(X2)(X3)(G3)

WS(r;V r {r}; r; ε/2) ∧ H(H; q||r; χ0(H)
2l

)

s := q||r Indis(b;V r {r, s}; ∅; ε) ∧ Indis(c;V r {g, r, s}; r; ε)∧
WS(s;V r {r, s}; r; ε/2) ∧ H(H; s; χ0(H)

2l
) (C1)(G1)(G3)

d := H(s) Indis(b;V r {r, s}; ∅; ε′) ∧ Indis(c;V r {r, g, s}; r; ε′)∧ (H1)(H7)

Indis(d;V r {r, s}; r; ε′′)
t := b||c Indis(t;V r {b, c, r, g, s}; ∅; 2.ε′) (C2)(C3)

Indis(d;V r {b, c, r, s}; r; ε′′)
A := t||d Indis(A; q,A, σ; ∅; 2.ε′ + ε′′) (C2)

where ε(k, χ, t) = 2.k(G)∗OW (t)+2.χ0(G)
2l

, ε′(k, χ, t) = (1+k(H))ε(k, χ−1H , t)+2.χ0(H)
2l

=

2.(1+k(H))(k(G)∗OW (t)+ χ0(G)
2l

)+2χ0(H)
2l

, ε′′(k, χ, t) = χ0(H)
2l

+k(H)∗(k(G)∗OW (t)+ χ0(G)
2l

).

2.5 Conclusion

We have developed rules for a command x := f(y) where f is a one-way permutation. However,
bijectivity is a strong requirement for a cryptographic primitive. In [5], we relax this assumption
and provide other invariants and revisited our Hoare logic. Moreover in order to capture cases
when f is not a one-way function but an injective partially trapdoor one-way function [Poi00].
Then we reformulate rules for x := f(y) into rules for z := f(x||y) so that they take into
account the new properties of f . For instance using these extensions, we are able to prove
Pointcheval’s transformer [Poi00],
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Chapter 3
Symmetric Encryption Modes

U tiliser un chiffrement symmétrique comme AES pour transmettre une grande qunatitié
de données est beaucoup plus efficace qu’un chiffrement à clef publique. Par contre

il est nécessaire d’utiliser un mode de chiffrement IND-CPA. Afin d’étudier les modes de
chiffrement symmétrique, nous donnons une logique de Hoare permettant d’analyser la sécurité
concréte de ces primitives. Pour vérifier les modes utilisants un compteur, nous introduisons
des prédicats permettant de suivre les dépedences entres ces variables. Nous introduisons
aussi la commande for afin de pouvoir écrire les modes de chiffrement en fonction d’un
nombre d’itérations arbitraire. Il faut alors trouver l’invariant de boucle lors de l’analyse
d’un programme représentant un mode de chiffremet. Pour cela nous proposons une méthode
automatique de génération d’invariants pour les boucles qui fonctionne pour l’ensemble des
modes testés.
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Block ciphers are among the most basic building blocks in cryptography. They can be used
to construct primitives as varied as message authentication codes, hash functions and, their
main application, symmetric encryption. Block ciphers are deterministic, and have fixed-size
input and output, so protocols, called modes of operation, are required to encrypt messages of
arbitrary length. The security of these modes of operation is then proven by reduction from
the security of the mode of operation to some security property of the block cipher.

While the security of early modes of operation, such as Cipher Block Chaining (CBC),
Cipher Feedback mode (CFB), Output Feedback (OFB), and Counter mode (CTR), can be
proven relatively easily, the same cannot always be said for more recent modes of operation.
Many new modes of operation were designed in the past decade (IACBC, IAPM [Jut01],
XCB [MF07], TMAC [IK03c, KI03], HCTR [CN08], HCH [CS08], EMU [HR04], EMU* [Hal04],
PEP [CS06], OMAC [IK03a, IK03b], TET [Hal07], CMC [HR03], GCM [MV04], EAX [BRW04],
XEX [Rog04], TAE, TCH, TBC [LRW02a, WFW05] to name only a few), which often offer
security properties that early modes did not possess. However, these additional properties
often come at the cost of an increased complexity of the mode of operation, which, in turn,
increase the complexity of the proof of security.

Contributions: We verify the security of modes of operation using an Hoare Logic. For
example we are able to verify the security of Propagating Cipher-Block Chaining (PCBC) –
an encryption mode that was introduced for Kerberos version 4. We use only few predicates:
one that states that the value of a variable is indistinguishable from a random value, one that
states that the block cipher has never been computed at the value of a variable, one that
states if a counter have been sent to the block cipher and one that keeps track of the most
recent value of a counter. In order to produce tight concrete security bounds we introduce
a predicate “BAD” that collect only once the probability of collision of each predicate. We
also include in our grammar the command for in order to analyze modes described as program
using such a loop. For sake of simplicity we give a method for generating the loop invariant
only for predicates without any security parameter.

Outline: Section 3.1 introduces some notation that will be used, as well as the definitions
of concepts. In Section 3.2, we define a generic encryption mode and its semantics. Then in
Section 3.3, we present our assertion language, invariants. In Section 3.4, we give the set of
rules that is used to propagate those invariants and prove our main result. In Section 3.5,
we present our method for generating loop invariants and two examples. We conclude in
Section 3.6.

3.1 Background

For a set V and an element x, we write V, x as a shorthand for V ∪ {x} and V − x as a
shorthand for V \{x}. We say that a function f : N→ R is negligible in η iff for any polynomial
p, there exists a number η0 such that for all η ≥ η0, f(η) ≤ 1

p(η) .
A block cipher is a family of permutations Ek : {0, 1}η → {0, 1}η indexed with a key

30
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k ∈ {0, 1}k. We generally omit the key used every time to simplify the notation, but it is
understood that a key was selected at random and remains the same throughout.

We assume that the block cipher is a pseudo-random function. While block ciphers
are really families of permutations, it is well known that pseudo-random permutations are
indistinguishable from pseudo-random functions if the block size is large enough [BDJR97].
This is a standard assumption for proving the security of block-cipher-based schemes.

Definition 5 (Pseudo-Random Function) Let P : {0, 1}k ×{0, 1}n → {0, 1}n be a family
of functions and let A be an algorithm that takes an oracle and returns a bit. The prf-advantage
of A is defined as follows.

AdvprfA,P = Pr[K $←− {0, 1}k;AP (K,·) = 1]− Pr[R $←− Φn;AR(·) = 1]

where Φn is the set of all functions from {0, 1}n to {0, 1}n.

Definition 6 (Symmetric Encryption) A symmetric encryption scheme is a triple of prob-
abilistic polynomial-time algorithms (K, E ,D) where

— the key generation algorithm K takes a security parameter η and outputs a key k

— the encryption algorithm E takes a key and a message m, and outputs a ciphertext c, and

— the decryption algorithm D takes a key and a ciphertext, and outputs a message.

These algorithms must satisfy the standard soundness requirement that for any key k generated
by K and any message m, we have D(k, E(k,m)) = m.

We define the function LR, which takes two strings of equal lengths, as follows:

LR(µ0, µ1, b) =

{
µ0 if b = 0

µ1 if b = 1,

We give the formal definition of security for symmetric encryption below. In the definition,
the attacking adversary has access to an oracle which, given two equal length messages, either
always encrypts the first message, or always encrypts the second one. The objective of the
adversary is then to determine which of the two message is encrypted by his oracle, and the
encryption scheme is considered secure if no polynomial-time adversary is able to reliably
distinguish between the two scenarios.

Definition 7 (LoR-CPA security [BDJR97]) Let S = (K, E ,D) be a symmetric encryp-
tion scheme. An LoR-CPA adversary is a probabilistic algorithm A that has access to an
oracle E(k, LR(·, ·, b)), takes a security parameter η and outputs a bit b′. Consider the following
experiment:

Experiment ExpLoR-CPA−b
S (A, η):

k
$←− K(η)

b′
$←− AE(k,LR(·,·,b))(η)

return b′
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We define the LoR-CPA advantage of A as follows:

AdvLoR-CPA
S (A, η) = Pr[ExpLoR-CPA−1

S (A, η) = 1]− Pr[ExpLoR-CPA−0
S (A, η) = 1].

We say that a symmetric encryption scheme is LoR-CPA-secure if AdvLoR-CPA
S (A, η) is negligible

for any LoR-CPA adversary A that runs in time polynomial in η.

3.2 Programming language

We first introduce a grammar that describes the programming language used to generate
encryption modes. We then formally define generic encryption modes, and present the semantics
of our programming language.

3.2.1 — Grammar

We introduce our language for defining a generic encryption mode. The commands are given
by the grammar of Figure 1, where:

— x
$←− U(l) the assignment to x of a value sampled uniformly at random from {0, 1}l.

— x := y denotes the assignment to x of the value of y.

— x := y ⊕ z denotes the assignment to x of the xor of the values of y and z.

— x := y‖z denotes the assignment to x of the concatenation of the values of y and z.

— x := y+ 1 denotes the assignment to x of the incrementation by one of the value or y. The
operation is carried modulo 2η.

— x := E(y) denotes the assignment to x of the value obtained by computing the function E
to the value of y.

— for k = p to q do: [ck] denotes the successive execution of cp, cp+1, . . . , cq.

— c1; c2 is the sequential composition of c1 and c2.

c ::= x
$←− U(l) | x := y | x := E(y) | x := y ⊕ z | x := y‖z

| x := y + 1 | for k = p to q do: [ck] | c1; c2

Figure 1 – Language grammar

To simplify our analysis, we assume that each variable is assigned a value at most once
by the program. It should be clear that any program can be transformed into an equivalent
program with this property.
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3.2.2 — Generic Encryption Mode

We formally define a mode of encryption.

Definition 8 (Generic Encryption Mode) A generic encryption mode M is represented
by ME(m1‖ . . . ‖mn, cn) : var ~xn; cmdn, where E is a block cipher, each mj is a message blocks
of size η according to the input length of the block cipher E, cn is the ciphertext output at the
end of the execution of the program, cmdn is a program built using the grammar described in
Figure 1, and ~xn is the set of variables used in cmdn.

We also assume that all programs have length polynomial in the security parameter η.
We denote by Var the set containing all the variables in the program, and by var the set of
variables in the program other than the mi’s and cn.

In Figure 2, we present the standard encryption modes cipher block chaining (CBCE) [EMST76]
and counter mode (CTRE).

CBCE(m1‖m2‖ . . . ‖mn, cn) : CTRE(m1‖m2‖ . . . ‖mn, cn)
var i, y1, . . . , yn, z0, . . . , zn, var i, y1, z1, . . . , yn, zn, ctr0, . . . , ctrn,

c0, . . . , cn−1; c0, . . . , cn−1

z0
$←− U ; c0 := z0; ctr0

$←− U ; c0 := ctr0;
for i = 1 to n do: for i = 1 to n do:

[yi := zi−1 ⊕mi; [ctri := ctri−1 + 1;
zi := E(yi); yi := E(ctri);
ci = ci−1‖zi]; zi := yi ⊕mi;

ci := ci−1‖zi];

Figure 2 – Description of CBCE and CTRE

3.2.3 — Semantics

We view each command as a function that takes as input a configuration and outputs a
distribution on configurations. A configuration is a tuple of the form (S, σ, E , T ,Q,L) where S
is a state, σ is a bitstring, E is a block cipher, T is a set of arrays, Q is a set of sets, and L is
a multiset of pairs (s, x) where x is a bitstring and v is a variable. If γ is a configuration, we
write by Sγ , σγ , Eγ , Tγ , Qγ and Lγ the state, bitstring, block cipher and sets contained in γ

A state is a function S : V → {0, 1}∗ that assigns bitstrings to variables. The domain V of
S must contain at least all the variables Var of the program.

The bitstring σ contains information written by the algorithm that created the configuration.
The lists T and Q are used to keep track of the variables that contain values used as

counters, and variables that contain values that are derived from a counter respectively.
Whenever the program samples a value at random or computes the block cipher at a new point
and assigns the resulting value to a variable x, a new array Tx with Tx[0] = x and, initially,
Tx[i] = ⊥ for i > 0 is added to T and a new set Qx, initially empty, is added to Q. For each
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integer i ≥ 0, Tx[i] contains the first variable whose value is known to be S(x) + i (or the
symbol ⊥ if no such variable is known), and Qx contains the set of variables whose value is
derived from the value of a variable in {v ∈ Var | ∃i ≥ 0, v = Tx}. Counters are often used
to create a one-time pad by successively computing the block cipher on each value of the
counter, so computing the block cipher on variables in T is considered ‘safe’. On the other
hand, computing the block cipher on the values of the variables in Q is considered ‘unsafe’
and will invalidate the corresponding counter. We note that since we assumed that each
variable is assigned a value at most once by the program, a variable will always appear at most
once in T , and the variables appearing in T cannot be in Q. We denote by T Q(x) the set
{v : Tx[i] = v}∪Qx of all variables that are either counters based on x, or variables containing
values derived from a counter based on x.

The multiset L contains pairs (s, x) where s is a bitstring and x is a variable. A pair (s, x)

is added to L every time the block cipher is computed on a value s contained in a variable
x - that is, every time a command of the form y := E(x) is executed in the program. If the
computation of the block cipher occurs before the execution of the program (for example,
by the algorithm that creates the configuration, see below), then a pair of the form (s,⊥) is
added to L. We write L.dom and L.res to denote the multisets obtained by projecting each
pair in L to its first element and second element respectively.

Since commands never alter σ or E , we can, without ambiguity, write

(S′, T ,Q,L)
$← [[c]](S, σ, E , T ,Q,L)

instead of
(S′, σ, E , T ,Q,L)

$← [[c]](S, σ, E , T ,Q,L)

Similarly, we removed σ and E from the configurations in Table 3.1, but it is understood that
they are implied in each configuration. Let Γ denote the set of configurations and Dist(Γ)

the set of distributions on these configurations. The semantics is given in Table 3.1 where,
δ(x) denotes the Dirac measure, i.e. Pr[x] = 1, S{x 7→ v} denotes the function such that
S{x 7→ v}(y) = S(y) for all variables y in the domain of S except for the variable x, for which
we have S{x 7→ v}(x) = v and g ◦ f denotes the composition of functions f and g. We also
write Q+(x, V ) for a variable x and a set of variables V to denote the set

Q+(x, V ) = {Qy ∪ {x} : T Q(y) ∩ V 6= ∅} ∪ {Qy : ∀v ∈ V, T Q(v) ∩ V = ∅}.

This notation is used to when we want to add the variable x to all the sets Qy such that one
of the variables in V is either in Ty or in Qy. This is done, for example, to update Q after the
execution of x := y ⊕ z: obviously, x is derived from both y and z, so we want to add x to all
the sets Qw such that y ∈ T Q(w) or z ∈ T Q(w).

Notice that the semantic function of commands can be lifted in the usual way to a function
from Dist(Γ) to Dist(Γ). That is, let φ : Γ → Dist(Γ) be a function. Then, φ defines a
unique function φ∗ : Dist(Γ)→ Dist(Γ) obtained by point-wise application of φ. By abuse of
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[[x
$← U(l)]](S, T ,Q,L) = [u

$← U(l) : (S{x 7→ u}, T ∪ {Tx},Q∪ {Qx},L)]
[[x := E(y)]](S, T ,Q,L) ={

δ(S{x 7→ E(S(y))}, T ∪ {Tx},Q∪ {Qx},L ∪ {(S(y), y)})if S(y) 6∈ L.dom
δ(S{x 7→ E(S(y))}, T ,Q,L ∪ {(S(y), y)}) otherwise

[[x := y ⊕ z]](S, T ,Q,L) = δ(S{x 7→ S(y)⊕ S(z)}, T ,Q+(x, {y, z}),L)
[[x := y||z]](S, T ,Q,L) = δ(S{x 7→ S(y)||S(z)}, T ,Q+(x, {y, z}),L)
[[x := y + 1]](S, T ,Q,L) ={

δ(S{x 7→ S(y) + 1, T {Tz[i+ 1] 7→ x},Q,L) if ∃z, y = Tz[i] ∧ Tz[i+ 1] = ⊥
δ(S{x 7→ S(y) + 1, T ,Q+(x, {y}),L) otherwise

[[for k = p to q do: [ck]]] = [[cq]] ◦ [[cq−1]] ◦ . . . ◦ [[pi]]
[[c1; c2]] = [[c2]] ◦ [[c1]]

Table 3.1 – The semantics of the programming language

notation we also denote the lifted semantics by [[cmd]].
We consider distributions of configurations that can be constructed in polynomial time.

We denote their set by Dist(Γ,F), where F is a family of block ciphers, and is defined as the
set of distributions of the form:

[E $← F(1η);S, σ
$← AME(·)(1η) : (S, σ, E , ∅, ∅,L)]

where A is a polynomial-time algorithm with oracle access to ME(·), the encryption function
corresponding to the generic encryption mode ME(m1| . . . ‖mn, cn) : var ~xn; cmdn. The
adversary can set the value of all the variables of S and the value of σ, and all the block cipher
computations that are required to answer its calls to the oracle ME(·) are recorded in L as
pairs of the form (s,⊥). The other sets, T and Q, are initially empty.

3.3 Assertion Language

Before we introduce the invariants that are the basis of our Hoare logic, we describe an
important property of a configuration.

Definition 9 We say that a configuration (S, σ, E , T ,Q,L) is bad if there exists two elements
(s, v) and (s′, v′) in L with s = s′ and at least one of v or v′ is not ⊥.

Intuitively, a configuration becomes bad after the execution of a command of the form
x := E(y) such that the value contained in the variable y was already in L.dom.

In the following, for any set V ⊆ Var and configuration γ = (S, σ, E , T ,Q,L), we denote
by S(V ) the multiset resulting from the application of S on each variable in V . We write
BAD(γ) to denote the event that configuration γ is bad. We also use S(V, `E) as a shorthand
for S(V ) ∪ L.dom and Var∗ as a shorthand for Var ∪ {`E}.
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Our Hoare Logic is based on the following invariants:

ϕ ::= true | ϕ ∧ ϕ | ψ
ψ ::= Bad(ε) | Indis(x;W ; ε) | lcounter(x; y;V ;V ′;V ′′; ε) | C(x; y;V ;V ′; ε) | E(x; ε)

where x, y ∈ Var, V, V ′, V ′′ ⊆ Var and W ⊆ Var ∪ {`E}. These invariants are properties of
distribution of configurations that, intuitively, have the following meaning:

Bad(ε): means that the probability that a configuration is bad is at most ε

Indis(x;W ; ε): means that the probability that a configuration is not bad, and that an
algorithm can distinguish whether he is given results of computations performed using the
value of x or a random value, when he is given the values S(W ) is at most ε.

lcounter(x; y;V ;V ′;V ′′; ε): means that the probability that the conjunction of the following
events is false is at most ε

— the configuration is not bad

— x contains the most recently computed value of a counter that started with random value y

— V contains all the variables with previous values of the counter

— V ′ contains all the variables not containing values that are dependent on values of the
counter, but that are not previous values of the counter

— V ′′ contains all the variables with previous values of the counter on which the block cipher
has has been computed

C(x; y;V ;V ′;V ′′; ε): means the probability that the conjunction of the the following events is
false is at most ε:

— the configuration is not bad

— x contains the value of a counter that started with random value y

— V contains all the variables with previous values of the counter

— V ′ contains all the variables not containing values that are dependent on values of the
counter, but that are not previous values of the counter

— no algorithm can distinguish whether he is given results of computations performed using
the value x or a random value when he is given the values {s : (s, v) ∈ L ∧ v 6∈ V ′′}

E(x; ε): means the probability that the image of the value of x through the block cipher has
already be calculated is at most ε.

More formally, for each invariant ψ, we define that a distribution X satisfies ψ, denoted
X |= ψ as follows, where x, y ∈ Var, V, V ′, V ′′ ⊆ Var and W ⊆ Var ∪ {`E}:

— X |= true.

— X |= ϕ ∧ ϕ′ iff X |= ϕ and X |= ϕ′.

— X |= Bad(ε) iff Pr[γ $← X : BAD(γ)] ≤ ε
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— X |= Indis(x;W ; ε) (where L 6∈ V ) iff for every polynomial-time algorithm A,∣∣ Pr[γ $← X : A(Sγ(x), Sγ(W − x)) = 1 ∧ ¬BAD(γ)]−

Pr[γ $← X;u
$← U(length(x)) : A(u, Sγ(W − x)) = 1 ∧ ¬BAD(γ)]

∣∣ ≤ ε.
— X |= lcounter(x; y;V ;V ′;V ′′; ε) iff for every configuration (S, σ, E , T ,Q,L) that has non-

zero probability in X and that is not bad, x = Ty[i] for some i, V = T (x), V ′ = Qy,
V ′′ = V ∩ L.res; and for every polynomial-time algorithm A,∣∣ Pr[γ $← X : A(Sγ(x),W ) = 1 ∧ ¬BAD(γ)]−

Pr[γ $← X;u
$← U(length(x)) : A(u,W ) = 1 ∧ ¬BAD(γ)]

∣∣ ≤ ε
where the set W is equal to Sγ(Var \ (V ∪ V ′ ∪ {x})) ∪ {s : (s, v) ∈ Lγ ∧ v 6∈ V ′′}.

— X |= C(x; y;V ;V ′;V ′′; ε) iff for every configuration (S, σ, E , T ,Q,L) that has non-zero
probability in X and that is not bad, x = Ty[i] for some i, V = T (x), V ′ = Qy, V ′′ =

V ∩ L.res; and for every polynomial-time algorithm A,∣∣ Pr[γ $← X : A(Sγ(x),W ) = 1 ∧ ¬BAD(γ)]−

Pr[γ $← X;u
$← U(length(x)) : A(u,W ) = 1 ∧ ¬BAD(γ)]

∣∣ ≤ ε
where the set W is equal to {s : (s, v) ∈ Lγ ∧ v 6∈ V ′′}.

— X |= E(x; ε) iff Pr[γ $← X : Sγ(x) ∈ Lγ .dom ∧ ¬BAD(γ)] ≤ ε.

3.3.1 — Properties of Invariants and Useful Lemmas

We present a series of result that show how each of our invariants relate with the others. We
also prove a few useful lemmas that will be used repeatedly in the proofs of the rules of our
Hoare logic.

We present three results that should be self-evident, since all they state is that strong
invariants imply weaker ones which is a direct consequence of the definitions.

Lemma 2 For any distribution X ∈ Dist(Γ,F), any variable x ∈ Var and any sets V ′ ⊆
V ⊆ Var and V0, V1, V2 ⊆ Var,

X |= Indis(x;V ; ε)⇒ X |= Indis(x;V ′; ε)

X |= lcounter(x; y;V0;V1;V2; ε)⇒ X |= Indis(x; Var \ (V ∪ V ′); ε).

The following proves the intuitive observation that if the value of a variable x is indistin-
guishable from a random value when given the values of the variables in V ⊆ Var, then the
probability that the value of x is equal to any of the values in V is negligible.
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Lemma 3 For any distribution X ∈ Dist(Γ,F), any variable x ∈ Var and any set V ⊆ Var,

X |= Indis(x;V ; ε) ∧X |= Bad(ε′)⇒ Pr[γ $← X : Sγ(x) ∈ Sγ(V − x)] ≤ ε+ ε′ +
|S(V − x)|
2length(x)

.

As a consequence to Lemma 3, if X |= Indis(x;V,L; ε), then the probability that the value
of x is either in V − x or in L.dom and that X is bad is bounded by ε+ |S(V−x)|+|L.dom|

2length(x)
. So

by combining Lemma 3 with Lemma 2, we obtain the following:

Corollary 4 For any distribution X ∈ Dist(Γ,F), any variables x ∈ Var and any set
V ⊆ Var,

X |= Indis(x;V, `E ; ε)⇒ X |= E(x; ε+
|L.dom|
2length(x)

)

Using a similar reasoning, we also obtain the following:

Corollary 5 For any distribution X ∈ Dist(Γ,F), any variables x ∈ Var and any set
V ⊆ Var,

X |= C(x; y;V ;V ′;V ′′; ε)⇒ X |= E(x; ε+
|L.dom|
2length(x)

)

3.4 Proving Semantic Security

We now link the notion of LoR-CPA security to our invariants as follows.

Proposition 6 Let ME(m1| . . . ‖mn, cn) : var ~xn; cmdn be a generic encryption mode. Then,
if for any distribution X ∈ Dist(Γ,F) we have [[cmdn]]X |= Indis(cn; Var \ var ; ε(qE , qE)) ∧
[[cmdn]]X |= Bad(ε′(qE , qE)), where qE and qE are the number of calls to the encryption oracle
made by the adversary A that created X and the number of computations of the block cipher
required to answer all these encryption oracle queries, then for any adversary B, the following
holds:

AdvLoR-CPA
ME (B) ≤

Q−1∑
i=0

2
(
ε(i, q

(i)
E ) + ε′(i, q

(i)
E )
)

where Q is an upper bound on the number of encryption queries made by B, and q(i)E is an
upper bound on the number of computations of the block cipher required to answer the first i
encryption queries made by B.

This proposition is a formal statement of the well-known result that an encryption scheme is
secure against chosen plaintext attack if the ciphertexts are indistinguishable from random
bits.

3.4.1 — Hoare Logic Rules

In Table 3.2, we present a set of rules of the form {ϕ}cmd{ϕ′}, meaning that execution of
command cmd in any distribution that satisfies ϕ leads to a distribution that satisfies ϕ′.
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Using Hoare logic terminology, this means that the triple {ϕ}cmd{ϕ′} is valid. We group
rules together according to their corresponding commands. For all the rules, we assume that
t 6= x, y, z unless indicated otherwise.

3.4.2 — Example

In Figure 3, we only present the three first steps of CBC. The notation (Cor) means that we
use one corollary in order to transform an invariant. We denote by λ the size of L.dom before
the execution of the program, and by η the length of all the strings used in the program.

ECBC(m1|m2|m3, c3)
var c0, y1, y2, y3;

{Bad(0)} (init)

c0
$←− U ; {Indis(c0; Var∗; 0) ∧ Bad(0)} (R1)(G1)

y1 := c0 ⊕m1; {Indis(c0; Var∗ − y1; 0) ∧ Indis(y1; Var∗ − c0; 0) (X1)(G2)
∧ E(y1;

λ
2η ) ∧ Bad(0)} (Cor)(G1)

z1 := E(y1); {Indis(c0; Var− y1; 0) ∧ Indis(z1; Var∗; 0) (B2)(B3)
∧ Bad( λ2η )} (B1)

c1 := c0‖z1 {Indis(c1; Var− c0 − z1 − y1; 0) ∧ Indis(z1; Var∗ − c1; 0) (C1)(G2)
∧ Bad( λ2η )} (G1)

y2 := z1 ⊕m2; {Indis(c1; Var− c0 − z1 − y1; 0) ∧ Indis(y2; Var∗ − z1) (G2)(X1)
∧ E(y2;

λ+1
2η ) ∧ Bad( λ2η )} (Cor)(G1)

z2 := E(y2); {Indis(c1; Var− c0 − z1 − y1; 0) ∧ Indis(z2; Var∗; 0) (B2)(B3)
∧ Bad(2λ+1

2η )} (G1)
c2 := c1‖z2 {Indis(c2; Var \ {c0, c1, z1, z2, y1}; 0) ∧ Indis(z2; Var∗; 0) (C1)(G2)

∧ Bad(2λ+1
2η )} (G1)

y3 := z2 ⊕m3; {Indis(c2; Var \ {c0, c1, z1, z2, y1}; 0) ∧ Indis(y3; Var∗ − z2) (G2)(X1)
∧ E(y3;

λ+2
2eta) ∧ Bad(2λ+1

2η )} (Cor)(G1)
z3 := E(y3); {Indis(c2; Var \ {c0, c1, z1, z2, y1}; 0) ∧ Indis(z3; Var∗; 0) (B2)(B3)

∧ Bad(3λ+3
2η )} (B1)

c3 := c2‖z3 {Indis(c3; Var \ {c0, c1, c2, z1, z2, z3, y1}; 0) ∧ Bad(3λ+3
2η )} (C1)

Figure 3 – Analysis of CBC encryption mode

We easily see, by extrapolating the example, that after processing n blocks, we would have
that [[prg]]X |= Indis(cn; Var \ var ; 0) and [[prg]]X |= Bad(

∑n−1
j=0

λ+j
2η ).

Let ni be the number of blocks in the ith encryption query of the adversary and λi be
the size of L.dom just before processing the ith encryption query of the adversary, we apply
Proposition 6 and we get the security bound of CBC:
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Generic Preservation
(G1) {Indis(t;V ; ε)} cmd {Indis(t;V ; ε)} if x 6∈ V unless x is constructible from V − t,

even if t = y or t = z
(G2) {lcounter(t;w;V ;V ′;V ′′; ε)} cmd {lcounter(t;w;V ;V ′;V ′′; ε)} if y, z 6∈ V ∪ V ′
(G3) {lcounter(t;w;V ;V ′;V ′′; ε)} cmd {lcounter(t;w;V ;V ′, x;V ′′; ε)} if y ∈ V ∪ V ′ or

z ∈ V ∪ V ′, even if t = y or t = z
(G4) {C(t;w;V ;V ;V ′′; ε)} cmd {C(t;w;V ;V ′;V ′′; ε)} if x 6∈ V , even if t = y or t = z
Random Assignment

(R1) {true} x $←− U {Indis(x; 0) ∧ lcounter(x; {x}; ∅; 0) ∧ C(x;x; {x}; ∅; ∅; 0)}
(R2) {Indis(t;V ; ε)} x $←− U {Indis(t;V, x; ε)}
(R3) {C(E)t;w;V ; ε} x $←− U {C(E)t;w;V, x; ε+ 2−length(t)}
Assignment
(A1) {Indis(y;V ; ε)} x := y {Indis(x;V ; ε)} provided y 6∈ V
Xor Operation
(X1) {Indis(y;V, y, z; ε)} x := y ⊕ z {Indis(x;V, x, z; ε)} if y 6= z and y 6∈ V
Concatenation
(C1) {Indis(y;V, y, z; ε1) ∧ Indis(z;V, y, z; ε2)} x := y‖z {Indis(x;V, x; ε1 + ε2)} if

y, z 6∈ V
Block Cipher
(B1) {E(y; ε) ∧ Bad(ε′)} x := E(y) {Bad(ε+ ε′)}
(B2) {E(y; ε)} x := E(y) {Indis(x; Var∗; 0) ∧ lcounter(x;x; {x}; ∅; ∅; 0)}
(B3) {E(y; ε) ∧ Indis(t;V ; ε′)} x := E(y) {Indis(t;V, x; ε′)} provided x,L 6∈ V
(B4) {E(y; ε) ∧ Indis(t;V, y,L; ε′)} x := E(y) {Indis(t;V, x, y,L; ε′)} provided x 6∈ V
(B5) {C(y; z;V ;V ′;V ′′; ε) ∧ lcounter(t;w;V ;V ′;V ′′; ε′)} x := E(y)

{lcounter(t;w;V ;V ′;V ′′; ε′)} provided y 6∈ V ′ and z 6= w
(B6) {C(y; z;V ;V ′;V ′′; ε) ∧ lcounter(t; z;V ;V ′;V ′′; ε′)} x := E(y)

{lcounter(t; z;V ;V ′;V ′′, y; ε′)} provided y 6∈ V ′
(B7) {C(y; z;V ;V ′;V ′′; ε) ∧ C(t;w;V ;V ′;V ′′; ε′)} x := E(y) {C(t;w;V ;V ′;V ′′; ε′)}

provided y 6∈ V ′ and z 6= w
(B8) {C(y; z;V ;V ′;V ′′; ε) ∧ C(t; z;V ;V ′;V ′′; ε′)} x := E(y) {C(t; z;V ;V ′;V ′′, y; ε′)}

provided y 6∈ V ′
Increment
(I1) {lcounter(y; z;V ;V ′;V ′′; ε)} x := y + 1 {lcounter(x; z;V, x;V ′;V ′′; ε)∧

C(x; z;V, x;V ′;V ′′; ε)}
(I2) {Indis(y;V ; ε)} x := y + 1 {Indis(x;V ; ε)} if y 6∈ V
For Loop
(F1) {ψ(p− 1)} for k = p to q do: [ck] {ψ(q)} provided {ψ(k − 1)} ck {ψ(k)} for

p ≤ k ≤ q
General Rules
(Csq) if φ1 ⇒ φ2, φ3 ⇒ φ4 and {φ2}cmd{φ3}, then {φ1}cmd{φ4}
(Seq) if {φ1}cmd1{φ2} and {φ2}cmd2{φ3}, then {φ1}cmd1; cmd2{φ3}
(Conj) if {φ1}cmd{φ2} and {φ3}cmd{φ4}, then {φ1 ∧ φ3}cmd{φ2 ∧ φ4}

Table 3.2 – Hoare Logic Rules
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AdvLoR-CPA
ME (B) ≤

Q−1∑
i=0

2
(
ε(i, q

(i)
E ) + ε′(i, q

(i)
E )
)

≤ 2

Q−1∑
i=0

0 +

ni+1−1∑
j=0

λi + j

2η


≤ 2

Q−1∑
i=0

ni+1−1∑
j=0

(
∑k=i

k=1 nk) + j

2η


≤ 2

(
∑Q
i=1 ni)−1∑
i=0

i

2η

≤ 2

QE−1∑
i=0

i

2η

≤ QE(QE − 1)

2η

3.5 Loops Analysis

In order to keep simple our presentation we do not consider security parameters in this section.
Two methods could be used to verify that {true} cmdn {Indis(cn; Var\var )} is valid. The first
method consists in starting at the beginning of cmdn and, at each simple command, applying
every possible rule until we reach the end, and see if Indis(cn; Var \ var ). The second method
consists in starting at the end of cmdn with the invariant we need there (Indis(cn; Var \ var ))
and, at each command, determining which precondition before the command in order to have
the predicate we know we need afterwards.

The first method tends to be more straightforward, but may require to keep track of many
invariants that are not necessary to obtain the final result. The second method lets us keep
only those invariants that we need, but sometimes, several choices of preconditions to obtain
the postconditions we need are possible, so each ‘branch’ resulting from each possibility must
be explored, which could require a very large (in the worst case, exponential) number of
branches being explored. Here, we prefer the second method because superfluous branches
tend to die off quickly.

The code of a general encryption mode will generally contain a for loop. It is therefore
important to be able to find predicates ψ(i) that will enable us to apply the rule (F1) from
our logic. We present two heuristic that can be used to discover such an invariant, and we
show how to apply them on CBCE and on a modified version of CTRE . The first heuristic

When we hit a command textsffor k = p to q do:" [ck], we express the predicate that needs
to hold at the end of the loop in the form ϕ(k). We note that, usually, we expect that the loop
will go from 1 to n, and the predicate that will need to hold at the end is Indis(cn; Var \ var ).
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In that case, ϕ(k) = Indis(ck; Var \ var ).
Then, we go backwards through the instructions ck of the loop to find a predicate ψ(k− 1)

such that {ψ(k − 1)} ck {ϕ(k)} holds. If ϕ(k) ∧ ψ(k) = ϕ(k), then we have found a predicate
such that {ϕ(k − 1)} ck {ϕ(k)} holds, and we can apply rule (F1). Otherwise, we repeat this
process with ϕ′(k) = ϕ(k) ∧ ψ(k) until we find a stable predicate.

Example We show how to apply this heuristic in the case of CBCE , whose description can
be found in Figure 2. As mentioned before, the predicate that we need at the end of the loop
is ϕ(n) = Indis(cn; Var \ var ). Going backwards one first time through the loop, we find that
in order to have ϕ(k) hold at the end of the code of the loop, the following must hold at the
beginning:

ψ(k − 1) = Indis(ck−1; Var \ var ) ∧ Indis(zk−1; {mk,LE})

= ϕ(k − 1) ∧ Indis(zk−1; {mk,LE})

Clearly, ϕ(k)∧ψ(k) 6= ϕ(k), so we set ϕ′(k) = ϕ(k)∧ψ(k). Repeating this process again with
ϕ′(k) as our desired end invariant, we find that, with {ϕ′(k − 1)} ck {ϕ′(k)} holds (where ck
denotes the commands inside the loop in Figure 2). Therefore, we can apply rule (F1) with
ϕ′(k) as our stable invariant. �

We find that this simple heuristic is sufficient for finding loop invariants for all our examples,
provided that the program is written using a single loop.

However, it is easy to construct examples for which the heuristic will fail. For example,
Figure 4 shows an alternative description of CTRE that makes the heuristic fail. In cases such
as these, we use a second heuristic based on widening in abstract interpretation. If, after a
number n of iteration of the first heuristic, we have not found a stable predicate, we decide that
the heuristic has failed (the choice of the number n is artibrary, we find that n = 2 is sufficient
for all our examples). Then, we go back to the starting predicate ϕ(k) and we go backwards
through the instructions ck of the loop to find ψ1(k) and ψ2(k) such that {ψ1(k − 1)} ck
{ϕ(k)} and {ψ2(k − 1)} ck {ϕ(k) ∧ ψ1(k)} hold. By analyzing the predicates ϕ(k), ψ1(k) and
ψ2(k), we identify the predicate γ(k) such that γ(k+ 1) appears in ψ1(k) and γ(k+ 2) appears
in ψ2(k). We then start over with the first heuristic using ϕ′(k) = ϕ(k) ∧

∧q
j=k+1 γ(j) as the

invariant that needs to hold at the end of the loop.

Example We show how the second heuristic is used to find a stable predicate for the second
loop in CTR′E (see Figure 4). As before, the predicate that we need at the end of the loop is
ϕ(n) = Indis(cn; Var \ var ). Going backwards one first time through the loop, we find that
in order to have ϕ(k) hold at the end of the code of the loop, the following must hold at the
beginning:

ψ1(k − 1) = Indis(ck−1; (Var \ var ), yk) ∧ Indis(yk; (Var \ var ), ck−1)
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CTR′E(m1‖m2‖ . . . ‖mn, cn)
var i, y1, z1, . . . , yn, zn, ctr0, . . . , ctrn, c0, . . . , cn−1
ctr0

$←− U ; c0 := ctr0;
for i = 1 to n do:

[ctri := ctri−1 + 1; yi := E(ctri)];
for i = 1 to n do:

[zi := yi ⊕mi; ci := ci−1‖zi];

Figure 4 – Alternative description of CTRE

Repeating this process with ϕ(k) ∧ ψ1(k), we obtain

ψ2(k − 1) =Indis(ck−1; (Var \ var ), yk+1, yk) ∧ Indis(yk+1; (Var \ var ), ck)

∧ Indis(yk; (Var \ var ), ck−1)

Analyzing ψ1(k) and ψ2(k), we find the following γ(l)

γ(l) = Indis(ck; (Var \ var ), {yi}li=k+1) ∧ Indis(yl; (Var \ var ), cl−1)

We then start over with the first heuristic with the following invariant

ϕ(k)′ =Indis(ck; Var \ var )∧
q∧

j=k+1

(
Indis(ck; (Var \ var ), {yi}ji=k+1) ∧ Indis(yj ; (Var \ var ), cj−1)

)
=Indis(ck; (Var \ var ), {yi}qi=k+1) ∧

q∧
j=k+1

Indis(yj ; (Var \ var ), cj−1)

and we find that this invariant is a stable predicate. �

3.6 Conclusion

We propose a Hoare logic for the verification of symmetric encryption modes in concrete
security model. Our language is expressive enough in order to take into account for loops.
We also propose a method for generating automatically loop’s invariants.
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Chapter 4
Message Authentication Codes

R appelons que les MACs (Message authentication codes) sont des primitives de sécurité
assurant l’intégrité et l’authentification des messages. Ils sont aussi utilisés dans la

construction de schémas plus complexes, comme par exemple les chiffrement à base d’identité
(identity-based encryption). Les MACs sont souvent composés de deux phases. Une première
phase qui produit un “hâché”, puis une seconde phase qui rend le MACs non prédictible
par un adversaire. Nous proposons une logique de Hoare vérifiant que la prmière partie est
bien une fonction de hâchage quasi-universelle (almost-universal hash function) utilisant des
fonctions de hâchage et des chiffrements symmétriques par blocs. Enfin nous donnons une liste
d’options possibles pour finir d’analyser les dernières lignes des MACs. Nous avons dévelopé
un prototype en Ocaml permettant de prouver la sécurité de nombreux MACs parmi DMAC,
ECBC, FCBC, XCBC, PMAC et HMAC.
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4. Message Authentication Codes

Messages Authentication Codes (MACs) are among the most common primitives in
symmetric key cryptography. They ensure the integrity and provenance of a message, and
they can be used, in conjunction with chosen-plaintext secure encryption, to obtain chosen-
ciphertext secure encryption. The study of the security of MACs is, of course, not a new field.
Bellare et al. [BKR94] were the first to prove the security of CBC-MAC for fixed-length inputs.
Following this work, a myriad of new MACs secure for variable-length inputs were proposed
([BCK96, BHK+99, BR00, BR02, PR00]).

Contributions: We present a method for proving the security of MACs based on block
ciphers and hash functions. To prove the security of MACs, we first break the MAC algorithms
into two parts: a ‘front-end’, whose work is to compress long input messages into small digests,
and a ‘back-end’, usually a mixing step, which obfuscates the output of the front-end. We
present a Hoare logic to prove that the front-ends of MACs are almost-universal hash functions.
We then make a list of operations which, when composed with an almost-universal hash
function, yield a secure MAC.

Proving the security of MACs requires predicates that model the security of authentication.
We have to consider the simultaneous execution of a program on two input messages in order
to bound collision probabilities. As a result, we propose a new semantics, and define new
invariants for determining equality or inequality of values. We also present a treatment of for
loops, which allows us to prove the security of protocols that can take arbitrary strings as an
input. Finally, we implemented our method into a tool [16] that can be used to prove the
security of several well-known MACs, such as HMAC [BCK96], DMAC [PR00], ECBC, FCBC
and XCBC [BR00] and PMAC [BR02].

Outline: In Section 4.1, we introduce cryptographic background. The following section
introduces our grammar, semantics and assertion language. In Section 4.3, we present our
Hoare logic and method for proving the security of almost-universal hash functions. In
Section 4.4, we discuss our implementation of this logic and treatment of loops. In Section 4.5,
we explain how to combine our Hoare logic with one of the possible back-end options in orer
to obtain a secure MAC. Finally, we conclude in Section 7.4. Moreover, all proofs are given
in [17]. Note that we also use the same notations and conventions as in the previous chapters.

4.1 Cryptographic Background

Definition 10 (MAC) A message authentication code is a triple of polynomial-time algo-
rithms (K, MAC, V ), where K(1η) takes a security parameter 1η and outputs a secret key
sk,1 MAC(sk,m) takes a secret key and a message m, and outputs a tag, and V (sk,m, tag)

takes a secret key, a message and a tag, and outputs a bit: 1 for a correct tag, 0 otherwise.

Definition 11 (Unforgeability) A MAC given by (K,MAC, V ) is unforgeable under a
chosen-message attack (UNF-CMA) if for every oracle polynomial-time algorithm A whose

1The secret key sk can consist of one or several strings, depending on the MAC.
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output message m∗ is different from any message it sent to the MAC oracle, the following
probability is negligible
space xxxxPr[sk $← K(1η); (m∗, tag∗)

$← AMAC(sk,·),V (sk,·,·) : V (sk,m∗, tag∗) = 1]

A standard method for constructing MACs is to apply a pseudo-random function, or some
other form of ‘mixing’ step, to the output of an almost-universal hash function [WC19, WC81].
Our verification technique assumes that the MAC is constructed in this way.

Definition 12 (Almost-Universal Hash) A family of functions H = {hi}i∈{0,1}η is a fam-
ily of almost-universal hash functions if for any two strings a and b, Prhi∈H[hi(a) = hi(b)] is
negligible, where the probability is taken over the choice of hi in H.

It is much easier to work with this definition because the adversary against an almost-
universal hash function is non-adaptive, and must output his attempt at finding a collision in
the almost-universal hash function independently from the choice of the key.

4.2 Models

4.2.1 — Grammar

We consider the language defined by the following BNF grammar.
cmd ::= x := E(y) | x := H(y) | x := y | x := y ⊕ z | x := y‖z | x := ρi(y)

| for l = p to q do: [cmdl] | cmd1; cmd2

All command have the usual expected effect, we just precise that

— We omit the key used every time to simplify the notation in block cipher applications.

— x := ρi(y) denotes the i-fold application of the function ρ to the value of y (that is,
ρ(. . . (ρ(y) . . .)), where ρ is repeated i times) and assigning the result to x.

— for l = p to q do: [cmdl] denotes the successive execution of cmdp, cmdp+1, . . . , cmdq.

— c1; c2 is the sequential composition of c1 and c2.

The function ρ is used to compute the tweak in tweakable block ciphers ([LRW02b]). The
function used to compute this tweak can vary from one protocol to the next, so we only specify
that it must be a public function. When a scheme uses a function ρ, the properties of the
function ρ required for the proof will be added to the initial conditions of the verification
procedure.

We assume that, prior to executing the MAC, the message has been padded using some
unambiguous padding scheme, so that all the message blocks m1, . . . ,mi are of equal and
appropriate length for the scheme, usually the input length of the block cipher. We denote by
Var the full set of variables used in the program. This set always includes input and output
variables, and the special variable k that contains a secret key. The set var ~xi contains the
variables of the programs that are neither input variables, output variables or the secret key.

47



4. Message Authentication Codes

Definition 13 (Generic Hash Function) A generic hash function Hash on i message
blocks m1, . . . ,mi and with output c, is represented by a tuple (FE ,FH, Hash(m1‖ . . . ‖mi, c) :

var ~xi; cmdi), where FE is a family of pseudorandom permutations (usually a block cipher),
FH is a family of cryptographic hash functions, and Hash(m1‖ . . . ‖mi, c) : var ~xi; cmdi is the
code of the hash function, where the commands of cmdi are built using the grammar described
above.

We describe in our formalism the hash function HashCBC , which is used in DMAC [PR00]
and ECBC [BR00]:

Space HashCBC(m1‖ . . . ‖mn, cn) : var i, z2, . . . , zn, c1, . . . , cn−1;
c1 := E(m1);
for i = 2 to n do: [zi := ci−1 ⊕mi; ci := E(zi)]

Description of HashCBC′ , HashPMAC and HashHMAC are explained in [17]. These are
used in FCBC, XCBC [BR00], PMAC [BR02] and HMAC [BCK96].

4.2.2 — Semantics

We consider the execution of a program on two inputs simultaneously. These simultaneous
executions will enable us to define predicates about the equality or inequality of intermediate
values in the program.

A program takes as input a configuration (S, S′, E ,H,LE ,LH) and yields a distribution on
configurations. A configuration is composed of two states S and S′, a block cipher E , a hash
function H, and two lists of pairs LE and LH. The two states S and S′, which are functions
that take a variable as input and return a value in {0, 1}∗ ∪ {⊥} (the symbol ⊥ indicates that
no value has been assigned to the variable yet), assign values to all the variables in each of the
two simultaneous executions of the program. The lists LE and LH record the values for which
the functions E and H were computed respectively. These lists are common to both executions
of the program. We denote by LE .dom and LE .res the lists obtained by projecting each pair
in LE to its first and second element respectively. We define LH.dom and LH.res similarly.

Let Γ denote the set of configurations and Dist(Γ) the set of distributions on configurations.
The semantics is given in Table 4.1, where δ(x) denotes the Dirac measure, i.e. Pr[x] = 1,
S{x 7→ v} denotes the state which assigns the value v to the variable x, and behaves like S
for all other variables, LE · (x, y) denotes the addition of element (x, y) to LE and ◦ denotes
function composition. The semantic function φ : Γ→ Dist(Γ) of commands can be lifted in
the usual way to a function φ∗ : Dist(Γ)→ Dist(Γ) by point-wise application of φ. By abuse
of notation we also denote the lifted semantics by [[cmd]].

Here, we are only interested in the distributions that can be constructed in polynomial
time by an adversary having access only to the random oracle. We denote their set by
Dist(Γ,FE ,FH), where FE is a family of block ciphers, FH is a family of hash functions, and
is defined as the set of distributions of the form:
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[[x := E(y)]](S, S′, E ,H,LE ,LH) =

δ(S{x 7→ v}, S′{x 7→ v′}, E ,H,LE ,LH) if (S(y), v), (S′(y), v′) ∈ LE
δ(S{x 7→ v}, S′{x 7→ v′}, E ,H,LE · (S(y), v),LH)

if (S(y), v) 6∈ LE , (S′(y), v′) ∈ LE and v = E(S(y))
δ(S{x 7→ v}, S′{x 7→ v′}, E ,H,LE · (S′(y), v′),LH)

if (S(y), v) ∈ LE , (S′(y), v′) 6∈ LE and v′ = E(S′(y))
δ(S{x 7→ v}, S′{x 7→ v′}, E ,H, (LE · (S(y), v)) · (S′(y), v′),LH)

if (S(y), v), (S′(y), v′) 6∈ LE and v = E(S(y)), v′ = E(S′(y))
[[x := H(y)]](S, S′, E ,H,LE ,LH) =

δ(S{x 7→ v}, S′{x 7→ v′}, E ,H,LE ,LH) if (S(y), v), (S′(y), v′) ∈ LH
δ(S{x 7→ v}, S′{x 7→ v′}, E ,H,LE ,LH · (S(y), v))

if (S(y), v) 6∈ LH, (S′(y), v′) ∈ LH and v = H(S(y))
δ(S{x 7→ v}, S′{x 7→ v′}, E ,H,LE ,LH · (S′(y), v′))

if (S(y), v) ∈ LH, (S′(y), v′) 6∈ LH and v′ = H(S′(y))
δ(S{x 7→ v}, S′{x 7→ v′}, E ,H,LE , (LH · (S(y), v)) · (S′(y), v′))

if (S(y), v), (S′(y), v′) 6∈ LH and v = H(S(y)), v′ = H(S′(y))
[[x := y ⊕ z]](S, S′, E ,H,LE ,LH) = δ(S{x 7→ S(y)⊕ S(z), S′{x 7→ S′(y)⊕ S′(z)}, E ,H,LE ,LH)
[[x := y||z]](S, S′, E ,H,LE ,LH) = δ(S{x 7→ S(y)||S(z), S′{x 7→ S′(y)||S′(z)}, E ,H,LE ,LH)
[[x := ρi(t)]](S, S′, E ,H,LE ,LH) = δ(S{x 7→ ρi(S(y))}, S′{x 7→ ρi(S′(y))}, E ,H,LE ,LH)
[[for l = p to q do: [cmdl]]] = [[cmdq]] ◦ [[cmdq−1]] ◦ . . . ◦ [[cmdp]]
[[c1; c2]] = [[c2]] ◦ [[c1]]

Table 4.1 – The semantics of the programming language

space[E $← FE(1η);H
$← FH(1η);u

$← {0, 1}η; (S, S′,LE ,LH)
$← AH(1η) :

a whole lot of white space xxxxxxxxxxxxxxxxxxxxx(S{k 7→ u}, S′{k 7→ u}, E ,H,LE ,LH)]

where k is a variable holding a secret string needed in some MACs (among our examples,
HashPMAC and HashHMAC need it) and A is a probabilistic polynomial-time algorithm with
oracle access to the hash function, such that LH contains the list of queries made by A to the
random oracle, and LE is empty since A does not have access the key of the block cipher.

A notational convention. It is easy to see that commands never modify E or H. Therefore,
we can, without ambiguity, write (Ŝ, Ŝ′,L′E ,L′H)

$← [[c]](S, S′,LE ,LH) instead of (Ŝ, Ŝ′, E ,H,
L′E ,L′H)

$←− [[c]](S, S′, E ,H,LE ,LH).

4.2.3 — Assertion Language

We give an intuitive description of the invariants used in our logic, note that the three last
predicates are adapted version of the one used in the previous chapters to the fact that we
have two paralell executions2:

— Empty: means that the probability that LE contains an element is negligible.

— Equal(x,y): means that the probability that S(x) 6= S′(y) is negligible.

2In ordert to keep this chapter self-contain we explicitely define all predicates
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— Unequal(x,y): means that the probability that S(x) = S′(y) is negligible.

— E(E ;x;V): means that the probability that the value of x is either in LE .dom or in V is
negligible.

— H(H;x;V;): means that the probability that the value of x is either in LH.dom or in V is
negligible.

— Indis(x;V;V′): means that no adversary has non-negligible probability to distinguish
whether he is given results of computations performed using the value of x or a random
value, when he is given the values of the variables in V and the values of the variables
in V ′ from the parallel execution. In addition to variables in Var, the set V can contain
special symbols `E or `H. When the symbol `E is present, it means that, in addition to the
other variables in V , the distinguisher is also given the values in LE .dom, similarly for `H.

In the following, for any set V ⊆ Var, we denote by S(V ) the multiset resulting from the
application of S on each variable in V . We also use S(V, `E) as a shorthand for S(V )∪LE .dom,
and similarly for S(V, `H) and S(V, `E , `H). For a set V and a variable, we write V, x as a
shorthand for V ∪{x} and V −x as a shorthand for V \{x} and we use Indis(x) as a shorthand
for Indis(x; Var, `E , `H; Var).

Our Hoare logic is based on statements from the following language.
ϕ ::= true | ϕ ∧ ϕ | ϕ ∨ ϕ | ψ
ψ ::= Indis(x;V ;V ′) | Equal(x, y) | Unequal(x, y) | Empty | E(E ;x;V ) | H(H;x;V ;)

where x, y ∈ Var and V, V ′ ⊆ Var, except for Indis(x;V ;V ′) where V ⊆ Var ∪ {`E , `H}.
More formally, we define that a distribution X satisfies ψ, denoted X |= ψ as follows:

— X |= true, X |= ϕ ∧ ϕ′ iff X |= ϕ and X |= ϕ′, X |= ϕ ∨ ϕ′ iff X |= ϕ or X |= ϕ′

— X |= Empty iff Pr[(S, S′,LE ,LH)
$← X : LE 6= ∅] is negligible

— X |= Equal(x, y) iff Pr[(S, S′,LE ,LH)
$← X : S(x) 6= S′(y)] is negligible

— X |= Unequal(x, y) iff Pr[(S, S′,LE ,LH)
$← X : S(x) = S′(y)] is negligible

— X |= E(E ;x;V ) iff Pr[(S, S′,LE ,LH)
$← X : {S(x), S′(x)} ∩ (LE .dom ∪ S(V − x) ∪ S′(V −

x)) 6= ∅] is negligible3

— X |= H(H;x;V ;) iff Pr[(S, S′,LE ,LH)
$← X : {S(x), S′(x)}∩ (LH.dom∪S(V −x)∪S′(V −

x)) 6= ∅] is negligible

— X |= Indis(x;V ;V ′) iff the two following formulas hold:
space[(S, S′,LE ,LH)

$← X : (S(x), S(V − x) ∪ S′(V ′))] ∼
a lot of white space xxxxx[(S, S′,LE ,LH)

$← X;u
$← U : (u, S(V − x) ∪ S′(V ′))]

space[(S, S′,LE ,LH)
$← X : (S′(x), S′(V − x) ∪ S(V ′))] ∼

a lot of white space xxxxx[(S, S′,LE ,LH)
$← X;u

$← U : (u, S′(V − x) ∪ S(V ′))]

3Since the variable x is removed from the set V when taking the probability, we always have X |= E(E ;x;V )
iff X |= E(E ;x;V, x). This is to remove the trivial case that Pr[{S(x), S′(x)}∩ (LE .dom∪S({x})∪S′({x})) 6= ∅]
never holds, and to simplify the notation. The same is also used for invariants H(H;x;V ;) and Indis(x;V ;V ′).
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Lemma 7 The following relations are true for any sets V1, V2, V3 and variables x, y with x 6= y

1. Indis(x;V1;V2)⇒ Indis(x;V3;V4) if V3 ⊆ V1 and V4 ⊆ V2
2. H(H;x;V ;⇒)H(H;x;V ′;) if V ′ ⊆ V
3. E(E ;x;V )⇒ E(E ;x;V ′) if V ′ ⊆ V
4. Indis(x;V, `H; ∅)⇒ H(H;x;V ;)

5. Indis(x;V, `E ; ∅)⇒ E(E ;x;V )

6. Indis(x; ∅; {y})⇒ Unequal(x, y) ∧ Unequal(y, x)

The proof of this lemma is in [17]. Note that results 4, 5 and 6 are particularly helpful because
the invariant Indis is much easier to propagate than the other invariants.

4.3 Proving Almost-Universal Hash with an Hoare Logic

We prove that a program is an almost-universal hash function. To do this, we require that
the program be written in a way so that, on input m1‖ . . . ‖mn, the program must assign
values to variables c1, . . . , cn in such a way that the variable c1 contains the output of the
function on input m1, the variable c2 contains the output of the function on input m1‖m2 and
so on. Under this assumption, we determine the condition under which a program computes
an almost-universal hash function family.

Proposition 8 Let the generic hash (FE ,FH, Hash(m1‖ . . . ‖mn, cn) : var ~x; cmd) describe
the program to compute a hash function Hash on an n block message. Then, Hash is an
almost-universal hash function if, for every positive integer n, the following holds:

UNIV (n) =

(
n−1∧
i=1

Unequal(cn, ci) ∧
n∧
i=1

Equal(mi,mi)

)
∨

n∧
i=1

Unequal(cn, ci)

The intuition for this is that if m consists of l message blocks and m′ consists of n ≤ l

message blocks, then the fact that the probability that the hashes of m1 and m2 are equal is
negligible, when the probability is taken over the choice of the key, is captured exactly by the
invariant Unequal(cl, cn). The proof of this theorem is in [17].

We prove that this predicate holds at the end of execution by propagating and generating
invariants through the program using rules of our Hoare Logic. We group rules together
according to their corresponding commands. The proofs of soundness of our rules are given
in [17]. First we note that several rules are just revisted versions of rules described in the
previous chapters, but we prefer to rewrite them in order to facilitate the read. Moreover a
concrete security analysis could be done since most of the work have been done in the previous
sections or are not difficut to produce4 but in order to keep the rules more readable we omit

4For the ρfunction, the securiy bound have to be specify according to each given functions
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it. Since the invariants Equal(mi) are useful only if the whole prefix of the two messages up
to the ith block are equal, so that keeping track of the equality or inequality of the message
blocks after that point is unnecessary. For this reason, when we design our rules, we never
produce the invariants Unequal(mi,mi) even when they would be correct.

In all the rules below, unless indicated otherwise, we assume that t 6∈ {x, y, z} and
x 6∈ {y, z}. In addition, for all rules involving the invariant Indis, we assume that `E and `H
can be among the elements in the set V .

Initialization: The following predicate holds at the beginning of execution of the program.
The string k is part of the secret key sk of the MAC.

(Init) {Indis(k; Var, `E , `H; Var− k) ∧ Equal(k, k) ∧ Empty}

Generic preservation rules: The following rules show how invariants are preserved by
most of the commands when the invariants concern a variable other than that being operated
on. For all these rules, we assume that t and t′ can be y or z and cmd is either x := ρi(y),
x := y, x := y‖z, x := y ⊕ z, x := E(y), or x := H(y).
(G1) {Equal(t, t′)} cmd {Equal(t, t′)}
(G2) {Unequal(t, t′)} cmd {Unequal(t, t′)}
(G3) {E(E ; t;V )} cmd {E(E ; t;V )} provided x 6∈ V and cmd is not x := E(y)

(G4) {H(H; t;V ; }) cmd {H(H; t;V ; }) provided x 6∈ V and cmd is not x := H(y)

(G5) {Indis(t;V ;V ′)} cmd {Indis(t;V ;V ′)} provided cmd is not x := E(y) or x := H(y), and
x 6∈ V unless x is constructible from V − t and x 6∈ V ′ unless x is constructible from V ′ − t

(G6) {Empty} cmd {Empty} provided cmd is not x := E(y)

Function ρ: Since the details of the function ρ are not known in advance, we cannot infer
many rules, other than the following, which is a simple consequence of the fact that ρ is a
function.
(P1) {Equal(y, y)} x := ρi(y) {Equal(x, x)} for any positive integer i

Assignment: Most of the rules for the assignment follow simply from the fact that the value
of x is equal to the value of y.
(A1) {true} x := mi {(Equal(mi,mi) ∧ Equal(x, x)) ∨ Unequal(x, x)}
(A2) {Equal(y, y)} x := y {Equal(x, x)}
(A3) {Unequal(y, y)} x := y {Unequal(x, x)}
(A4) {Indis(y;V ;V ′)} x := y {Indis(x;V ;V ′)} provided y 6∈ V and x 6∈ V ′ unless y ∈ V ′

(A5) {E(E ; y;V )} x := y {E(E ;x;V ) ∧ E(E ; y;V )} provided y 6∈ V
(A6) {H(H; y;V ; }) x := y {H(H;x;V ;∧)H(H; y;V ; }) provided y 6∈ V
(A7) {E(E ; t;V, y)} x := y {E(E ; t;V, x, y)}
(A8) {H(H; t;V, y; }) x := y {H(H; t;V, x, y; })
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Concatenation: The most important rule for the concatenation is (C4), which states that
the concatenation of two random strings results in a random string. Rules (C5) and (C6)
state that if a string is indistinguishable from a random value given all the values in the list of
queries to the block cipher (or the hash function), then clearly it cannot be a prefix of one of
the strings LE .
(C1) {Equal(y, y)} x := y‖mi {(Equal(mi,mi) ∧ Equal(x, x)) ∨ Unequal(x, x)}
(C2) {Equal(y, y) ∧ Equal(z, z)} x := y‖z {Equal(x, x)}
(C3) {Unequal(y, y)} x := y‖z {Unequal(x, x)}
(C4) {Indis(y;V, y, z;V ′) ∧ Indis(z;V, y, z;V ′)} x := y‖z {Indis(x;V, x;V ′)}

provided x, y, z 6∈ V , x 6∈ V ′ unless y, z ∈ V ′ and y 6= z

(C5) {Indis(y;V, `E ;V )} x := y‖z {E(E ;x;V )}
(C6) {Indis(y;V, `H;V )} x := y‖z {H(H;x;V ; })

For rules (C1), (C3), (C5) and (C6), the roles of y and z, or y and mi in the case of (C1), can
be exchanged.

Xor operator: Rules (X2) is reminiscent of a one-time-pad encryption of z with a random-
looking value y. The other rules are propagation of the Equal and Unequal predicates.
(X1) {Equal(y, y)} x := y ⊕mi {(Equal(mi,mi) ∧ Equal(x, x)) ∨ Unequal(x, x)}
(X2) {Indis(y;V, y, z;V ′)} x := y ⊕ z {Indis(x;V, x, z;V ′)}

provided y 6= z, y 6∈ V and x 6∈ V ′ unless y, z ∈ V ′

(X3) {Equal(y, y) ∧ Equal(z, z)} x := y ⊕ z {Equal(x, x)}
(X4) {Equal(y, y) ∧ Unequal(z, z)} x := y ⊕ z {Unequal(x, x)}

Due to the commutativity of the xor, the role of y and z can be exchanged in all the rules
above.

Block cipher: Since block ciphers are modeled as ideal ciphers, that is, functions picked at
random among all functions from {0, 1}η to {0, 1}η, the output of the function for a point on
which the block cipher has never been computed is indistinguishable from a random value.
This is expressed in rules (B1) to (B3), and also used in the proof of many other rules. Since
the querying of a block cipher twice at any point is undesirable, we always require the invariant
E as a precondition.
(B1) {Empty} x := E(mi) {(Equal(mi,mi) ∧ Equal(x, x) ∧ Indis(x; Var, `E , `H; Var− x))∨

(Unequal(x, x) ∧ Indis(x))}
(B2) {E(E ; y; ∅) ∧ Unequal(y, y)} x := E(y) {Indis(x)}
(B3) {E(E ; y; ∅) ∧ Equal(y, y)} x := E(y) {Indis(x; Var, `E , `H; Var− x) ∧ Equal(x, x)}
(B4) {E(E ; y; ∅) ∧ Indis(t;V ;V ′)} x := E(y) {Indis(t;V, x;V ′, x)} provided `E 6∈ V , if t = y

(B5) {E(E ; y; ∅) ∧ Indis(t;V, `E , y;V ′, y)} x := E(y) {Indis(t;V, `E , x, y;V ′, x, y)}
(B6) {E(E ; y; ∅) ∧ E(E ; t;V, y)} x := E(y) {E(E ; t;V, y)}

We also have rules similar to (B2) to (B5), with the invariant E(E ; y; ∅) replaced by the
invariant Empty, since both imply that the value of y is not in LE .
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Hash Function: We note that the distinguishing adversary, described in Section 3.1, does
not have access to the random oracle. This is an unusual decision, but sufficient for our
purpose since our goal is only to prove inequality of strings, not their indistinguishability from
random strings. As a result, the rules for the hash function are essentially the same as those
for the block cipher.
(H1) {H(H; y; ∅;∧)Unequal(y, y)} x := H(y) {Indis(x)}
(H2) {H(H; y; ∅;∧)Equal(y, y)} x := H(y) {Indis(x; Var, `H; Var− x) ∧ Equal(x, x)}
(H3) {H(H; y; ∅;∧)Indis(t;V ;V ′)} x := H(y) {Indis(t;V, x;V ′, x)} provided `H 6∈ V , if t = y

(H4) {H(H; y; ∅;∧)Indis(t;V, `H, y;V ′, y)} x := H(y) {Indis(t;V, `H, x, y;V ′, x, y)}
(H5) {H(H; t;V, y; }) x := H(y) {H(H; t;V, y; })

For loop: The rule for the For loop simply states that if an indexed predicate ψ(i) is preserved
through one iteration of the loop, then it is preserved through the entire loop, for p ≤ l ≤ q.
We discuss methods for finding such a predicate in Section 4.4.
(F1) {ψ(p− 1)} for l = p to q do: [cmdl] {ψ(q)} provided {ψ(l − 1)} cl {ψ(l)}

Finally, we introduce a few general rules for consequence, sequential composition, conjunc-
tion and disjunction. Let φ1, φ2, φ3, φ4 be any four predicates in our logic, and let cmd, cmd1,
cmd2 be any three commands.

(Csq) if φ1 ⇒ φ2, φ3 ⇒ φ4 and {φ2}cmd{φ3}, then {φ1}cmd{φ4}
(Seq) if {φ1}cmd1{φ2} and {φ2}cmd2{φ3}, then {φ1}cmd1; cmd2{φ3}
(Conj) if {φ1}cmd{φ2} and {φ3}cmd{φ4}, then {φ1 ∧ φ3}cmd{φ2 ∧ φ4}
(Disj) if {φ1}cmd{φ2} and {φ3}cmd{φ4}, then {φ1 ∨ φ3}cmd{φ2 ∨ φ4}

Theorem 9 A generic hash Hash(m1‖ . . . ‖mi, c) : var ~xi; cmdi computes an almost-universal
hash function if {init}cmdi{UNIV (i)}.

The theorem is the consequence of Proposition 8 and of the soundness of our Hoare logic. We
then say that a sequence of predicates [φ0, . . . , φn] is a proof that a program [cmd1, . . . , cmdn]

computes an almost-universal hash function if φ0 = true, φn ⇒ UNIV (n) and for all i, 1 ≤ n,
{φi−1} cmdi {φi} holds.

4.4 Implementation

To use our method, we start at the beginning of the program, at each command apply every
possible rule and, once done, test if the invariant UNIV (n) holds at the end of the program.

4.4.1 — Invariant Filter

We say that φ is an invariant on x if φ is either Equal(x, y), Unequal(x, y), E(E ;x;V ) H(H;x;V ;)
or Indis(x;V1, V2). We say that an invariant φ on variable x is obsolete for program p if x does
not appear anywhere in p and if ¬(φ⇒ Unequal(cn, ci)) and ¬(φ⇒ Equal(mi,mi)) for any i,
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1 ≤ i ≤ n. The following theorem shows that once an invariant is obsolete, it can be discarded.

Theorem 10 If there exists a proof [φ0, . . . , φn] that a program p = [cmd1, . . . , cmdn] computes
an almost-universal hash function, then there also exists a proof [φ′0, . . . , φ

′
n] that p computes

an almost-universal hash function where for each i, φi ⇒ φ′i and each φ′i does not contain any
obsolete invariants for [cmdi+1, . . . , cmdn].

The theorem is a consequence of the fact that, in our logic, the rules for creating an invariant
on x following the execution of command x := e only have as preconditions invariants on the
variables in e. As a result, we can always filter out obsolete invariants after processing each
commands.

Also, we note that the only commands that can make an invariant Equal(mi,mi) appear
are those of the form x := e in which mi appears in e. As a result, if we find that, for some
integer l, the invariant Equal(ml,ml) is not present in one of the conjunction of the current
predicate (after transforming the predicate in DNF form) and that the variable ml is no longer
present in the rest of the program, then there is no longer any chance that it will satisfy the
conjunction with

∧n
j=1 Equal(mj ,mj) from UNIV (n). Therefore, we can also safely filter out

all other invariants of the form Equal(mi,mi) from that conjunction.
We also add a heuristic filter to speed up the execution of our method. We make the

hypothesis that the invariant Indis(cn;V ; {c1, . . . , cn−1}) will be present at the end of the
program, which the case for all our examples, so that we can filter out Indis(ci;V ;V ′) if i < n

and ci is no longer present in the remainder of the program. In addition to speeding up the
program, filtering out these invariants greatly simplifies the construction of loop predicates
discussed in the next section. If we fail to produce a proof while using the heuristic filter, we
simply attempt again to find a proof without it.

4.4.2 — Finding Loop Predicates

The programs describing the almost-universal hash function usually contains for loops. It is
therefore necessary to have an automatic procedure to detect the predicate ψ(i) that allows us
to apply rule (F1). We now show a heuristic that can be used to construct such a predicate,
and illustrate how it works by applying them to HashCBC , described in Section 4.2.1. One
could easily verify that it also works on HashCBC′ , HashHMAC and HashPMAC .

Once we hit a command "for l = p to q do: [cmdl]", we express the precondition in the
form ϕ(p− 1). The classical method for finding a stable predicate consists in processing the
instructions cl contained in the loop to find the predicate ψ(l) such that {ϕ(l − 1)} cl {φ(l)}.
If ϕ(l) ⇒ ψ(l), then we have found an predicate such that {ϕ(l − 1)} cl {ϕ(l)} and we can
apply rule (F1). Otherwise, we repeat this process with ϕ′(l) = ϕ(l) ∧ ψ(l) until we find a
stable predicate.

Unfortunately, for certain loops, one could repeat the process infinitely and never obtain
a stable predicate. If, after a certain number n of iterations of the process above, we did
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not find a stable invariant5, we decide that the classical method has failed and so we need
a new heuristic to construct the stable predicate. We start over with invariant ϕ(l − 1),
and process the code of the loop once to find invariant ψ1(l) such that {ϕ(l − 1)} cl {ψ1(l)}.
Then, we repeat this starting with invariant ϕ(l − 1) ∧ ψ1(l − 1) to find invariant ψ2(l) such
that {ϕ(l − 1) ∧ ψ1(l − 1)} cl {ψ2(l)}. By analyzing the predicates ϕ(l), ϕ(l) ∧ ψ1(l) and
ϕ(l) ∧ ψ1(l) ∧ ψ2(l), we identify the predicate γ(l) such that γ(l) appears in ϕ(l), γ(l − 1)

appears in ψ1(l) and γ(l − 2) appears in ψ2(l). We then use ϕ′(l) = ϕ(l) ∧
∧j=l−1
j=p−1 γ(j) as our

new starting predicate. In [17] we give an example of this technique.
We programmed a tool in OCaml implementing our method for proving that the front end

of MACs are almost-universal hash functions. The program requires about 1000 lines of code,
and can successfully produce proofs of security for all the examples discussed in this paper in
less than one second on a personal workstation. Our tool is available on [16].

4.5 Proving MAC Security

We prove the security of MACs in two steps: first we show that the ‘compressing’ part of the
MAC is an almost-universal hash function family, and then we show that the last section of
the MAC, when applied to an almost-universal hash function, results in a secure MAC. The
following shows how a secure MAC can be constructed from an almost-universal hash function.
The proof can be found in [BCK96, BR00, BR02], so we do not repeat them here.

Proposition 11 Let FE be a family of block ciphers, H = {hi}i∈{0,1}η and H′ = {hi}i∈{0,1}η
be families of almost-universal hash function and G be a random oracle. If h $← H, hE

$← H′,
E $← FE , G is sampled at random from all functions with the appropriate domain and range
and k, k1, k2

$← {0, 1}η, then the following hold:

— MAC1(m) = E(hi(m)) is a secure MAC with key sk = (i, E).

— MAC2(m) = G(l‖hi(m)) is a secure MAC with key sk = (i, k).

— MAC3(m) =

{
E1(hi(m′)) where m′ = pad(m) if m’s length is not a multiple of η
E2(hi(m)) if m’s length is a multiple of η

is a secure MAC with key sk = (i, E1, E2).

— MAC4(m) =

{
E(hE(m

′)⊕ k1) where m′ = pad(m) if m’s length is not a multiple of η
E(hE(m)⊕ k2) if m’s length is a multiple of η

is a secure MAC with key sk = (E , k1, k2)

Using HashCBC withMAC1 andMAC3 yield the message authentication code DMAC and
ECBC respectively, using HashCBC′ with MAC3 and MAC4 yield FCBC and XCBC, com-
bining HashPMAC and MAC4 yield a four key construction of PMAC and using HashHMAC

with MAC2 yield HMAC.

5The choice of the number of times the process is repeated is completely arbitrary, we choose to try only
two iterations since it is sufficient for all our examples.
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4.6 Conclusion

We presented a Hoare logic that can be used to automatically prove the security of constructions
for almost-universal hash functions based on block ciphers and compression functions modeled
as random oracles. We can then obtain a secure MAC by combining with a few operations,
such as those presented in Section 4.5. Our method can be used to prove the security of
DMAC, ECBC, FCBC, XCBC, a two-key variant of HMAC and a four-key variant of PMAC.
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Part II

Voting Protocols





Motivations: Nowadays electronic voting protocols are more and more used to organize
elections. Systems like Civitas [CCM08] or Prêt à voter [CRS05, RP05] have been developed.
Moreover they have been used for government elections and referendums in the United
Kingdom, Estonia and Switzerland as well as municipal elections in Canada and party primary
or company elections in the United States and France. The fear of a voter against possible
frauds is real, e.g: How to ensure that nobody can vote twice? How to be sure that nobody
can learn the vote of somebody or that a vote is part of the final count? In several voting
protocols such properties are usually achieved using cryptographic primitives like homomorphic
encryption, e.g. Benaloh’s encryption scheme [CB87]. A formal analysis of such protocols is
crucial in order to win user’s confidence.

Contributions: In Chapter 5, we first look at one of the first homomorphic encryption
scheme proposed by Benaloh’s [CB87]. We discover that for certain key parameters the scheme
is ambiguous, this means that a cipher can be decrypt into two different plaintexts. We show
using an example the impact of such a flaw. Then we propose a corrected version of the scheme
and prove his correctness [15].

In Chapter 6, we propose a formal taxonomy of Privacy in voting protocols. After a first
attempt in [8] to model the notion of “vote independence” i.e. that a voter cannot copy the
vote of another one, we refine existing privacy definitions according several directions using
applied π-calculus:

— Communication between the attacker and the targeted voter (SwV P , SwRF , and SwCR).

— Vote-Independence/Corrupted Voter: The attacker can control another voter or not
(Insider/Outsider) (I and O).

— Security against forced-abstention-attacks: The attacker can force abstention of a voter or
not (FA and PO).

This leads us to more fine grained definitions which allow us to compare the security levels
of several voting protocols which was often difficult using existing notions [11].

Finally in Chapter 7, we propose a formal modeling for Privacy notions for protocols
supported weighted vote in the applied π-calculus. We show that these notions coincide with
existing one for non weighted votes under some hypothesis. We also prove that under realistic
assumptions one coerced voter is equivalent to several [10]. This lead us to prove a new result
of decomposition unicity in the π-calculus [14].

We also mention two other works related to privacy:

— DETECTIVE: proof-of-concept implementation for medical services with electronic health
records [26]. This real system shows the feasibility of a secure medical application which
respects patient privacy.

— A study of an e-auction protocol [21]. We discovered a flaw in an existing protocol and
proposed a corrected version, with a formal analysis of security using AVISPA [AVI].
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Chapter 5
Benaloh Revisited

T rouver un chiffrement homomorphique n’est pas facile, en 1994 Benaloh inventa est un
des premiers chiffrements homomorphiques. Nous avons montré que ce chiffrement est

ambigü. C’est à dire qu’un message chiffré peut se déchiffrer en deux messages différents.
Nous illustrons ici l’impact de ce problème sur un exemple de système de vote utilisant ce
chiffrement. L’utilisation de “mauvais” paramètres peut inverser le résultat de l’élection. Nous
avons proposé une version corrigée de ce chiffrement homomorphique, prouvé que cette nouvelle
version est correcte et effectué une preuve de sécurité sémantique. Enfin nous avons montré
qu’étonnamment la génération de tels paramètres n’est pas si rare [15].
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5. Benaloh Revisited

We discover that Benaloh’s encryption scheme is ambiguous. In general the ambiguity in
the ciphertexts means that for a given cleartext m ∈ Zr the value actually computed by the
decryption algorithm is

m′ = D(Er(m)) ≡ m mod r′ (5.1)

with r′ 6= r. Depending on the implementation of the discrete logarithm used by D (naive
enumeration, baby steps/giant steps, possibly combined with a divide-and-conquer strategy
when r is smooth) the value m′ can be any of the values defined mod r that satisfy Equation
(5.1). As the discrete logarithm algorithm used is not aware of the reduction from r to r′,
the impact in terms of computation time should be minimal (except for a naive increasing
enumeration strategy which will always finish earlier, and where we are guaranteed to get the
canonical solution mod r′).

Outline: We first recall original Benaloh’s scheme, then explain on a small example why it
is ambiguous. We analyze the consequences of using a bad y parameter produced during the
key generation for one application. Then we give a corrected version of the scheme and give a
semantic security proof using the Decisional Subgroup Membership Problem (DSMP). We
also explain that it occurs more often than expected, before comparing with other schemes in
the conclusion. All detailled proofs are given in [15].

5.1 Original Benaloh’s Scheme

Benaloh’s “Dense Probabilistic Encryption” [Ben94] describes a homomorphic encryption
scheme with a significant improvement in terms of expansion factor compared to Goldwasser-
Micali [GM82]. For the same security parameter (the size of the RSA modulus n), the ciphertext
is in both cases an integer mod n, but the cleartext in Benaloh’s scheme is an integer mod r

for some parameter r depending on the key, whereas the cleartext in Goldwasser-Micali is only
a bit. When computing the expansion factor for random keys, we found that it is most of the
times close to 2 while it is dlog2(n)e for Goldwasser-Micali. We now recall the three steps of
the original scheme given in Benaloh’s paper [Ben94].

Key Generation: The public and private key are generated as follows:

— Choose a block size r and two large primes p and q such that:

– r divides (p− 1).

– r and (p− 1)/r are relatively prime.

– r and q − 1 are relatively prime.

– n = pq.

— Select y ∈ (Zn)∗ = {x ∈ Zn : gcd(x, n) = 1} such that

yϕ/r 6= 1 mod n (5.2)
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where ϕ denotes (p− 1)(q − 1).

The public key is (y, r, n), and the private key is the two primes p and q.

Encryption: If m is an element in Zr and u a random number in (Zn)∗ then we compute
the randomized encryption of m using the following formula:

Er(m) = {ymur mod n : u ∈ (Zn)∗}.

It is easily verified that:

Er(m1)× Er(m2) = Er(m1 +m2).

Decryption: We first notice that for any m, u we have:

(ymur)(p−1)(q−1)/r = ym(p−1)(q−1)/ru(p−1)(q−1) = ym(p−1)(q−1)/r mod n.

Since m < r and y(p−1)(q−1)/r 6= 1 mod n, Benaloh concludes that m = 0 mod r if and
only if (ymur)(p−1)(q−1)/r = 1 mod n. So if z = ymur mod n is an encryption of m, given
the secret key (p, q) we can determine whether m = 0 mod r. If r is small, we can decrypt
z by doing an exhaustive search of the smallest non-negative integer m such that (y−mz

mod n) ∈ Er(0). By precomputing values and using the baby-step giant-step algorithm it is
possible to perform the decryption in time O(

√
r). Finally if r is smooth we can use classical

index-calculus techniques. More details about these optimization of decryption are discussed
in the original paper [Ben94].

We remark that there is a balance to find between three parameters in this cryptosystem:

— ease of decryption, which requires that r is a product of small prime powers,

— a small expansion factor, defined as the ratio between the size of the ciphertexts and the
size of the cleartexts. Because p and q have the same size and r | p − 1, this expansion
factor is at least 2,

— strength of the private key, meaning that n should be hard to factorize. In the context of
the P-1 factorization method [Pol74], a large smooth factor of p− 1 is a definite weakness.

We notice that the cryptosystem proposed by Naccache-Stern [NS98] four years after Benaloh’s
scheme and based on the same approach addresses this issue and does not produce ambiguous
encryption.

5.2 A Small Counter-Example with Huge Consequences

5.2.1 — Simple Counter-Example

We start by picking a secret key n = pq = 241× 179 = 43139, for which we can set r = 15.
Algorithm 1 may be used to compute the maximal suitable value of the r parameter if you
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start by picking p and q at random, but a smaller and smoother value may be used instead,
for an easier decryption.

Algorithm 1 Compute r from p and q.
r ← p− 1;
while gcd(q − 1, r) 6= 1 do

r ← r/ gcd(r, q − 1);
end while

We verify that r = 15 divides p− 1 = 240 = 16× 15, r and (p− 1)/r = 16 are relatively
prime, r = 15 = 3× 5 and q − 1 = 178 = 2× 89 are coprime. Assume we pick y = 27, then
gcd(y, n) = 1 and y(p−1)(q−1)/r = 40097 6= 1 mod n so according to Benaloh’s key generation
procedure all the original conditions are satisfied.

By definition, y112r = 24187 mod n is a valid encryption of m1 = 1, while y64r =

24187 mod n is also a valid encryption of m2 = 6. In fact we can verify that with this choice
of y, the true cleartext space is now Z5 instead of Z15 (hence the ambiguity in decryption):
first notice that in Zp, y5 = 275 = 8 = 4115 = 41r. This means that a valid encryption of 5 is
also a valid encryption of 0. For any message m, the set of encryptions of m is the same as
the set of encryptions of m+ 5, hence the collapse in message space size. The fact that the
message space size does not collapse further can be checked by brute force with this small set
of parameters.

5.2.2 — One Application: Receipt-free Elections

In [BT94], Benaloh and Tuinstra propose an application of homomorphic encryption for
designing new receipt-free secret-ballot elections. They describe two protocols which use a
homomorphic encryption scheme and verify a list of properties. They also give in the appendix
of the paper a precise description of an encryption scheme which satisfies their properties.

The new voting protocol uses the fact that the encryption is homomorphic and probabilistic.
If we have two candidates Nicolas and Ségolène then the system associates for instance the
ballot 0 for Nicolas and the ballot 1 for Ségolène. The main idea is that the server collects
the m authenticated encrypted ballots {vi}k corresponding to the choices vi of the m voters.
Then the server performs the multiplication of the ciphertexts to sum the votes and decrypts
the product once to obtain the result. The number obtained corresponds to the number of
votes nS for Ségolène and the difference m− nS gives the number of votes for Nicolas.

Based on the simple counter-example proposed in 5.2.1, we construct a basic application of
the first protocol proposed in [BT94]. We consider only 12 voters and the final result obtained
by the server is {11}k. It means that after decryption Ségolène has 11 votes and Nicolas has
1 vote. But if instead of computing the result 11 mod 15 we are taking the result modulo 5,
then we obtain a result of 11 mod 5 = 1. This time the server concludes that Nicolas obtains
11 votes and Ségolène only 1. This example clearly shows that the flaw in the parameters
generation process can have important consequences. In [15], we present other examples of
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the impact of this flaw.

5.3 Revisited Benaloh’s Scheme

Let g be a generator of the group (Zp)∗, and since y is coprime with n, let α be the value in
Zp−1 such that y = gα mod p. We are able to prove the Theorem 121

Theorem 12 The following properties are equivalent:

1. α and r are coprime;

2. decryption works unambiguously;

3. for all prime factors s of r, we have y(ϕ/s) 6= 1 mod n.

Property (2) is what we expect of the scheme, while (1) is useful to analyze the proportion
of invalid y’s and (3) is more efficient to verify in practice than (1), especially considering that
in order to decrypt efficiently the factorization of r is assumed to be known.

5.4 Semantic Security of the Corrected Scheme

In [Gjo05], Kristian Gjøsteen formulates the security of several homomorphic encryption
schemes in a common setting and relates the semantic security of the schemes to a generic
problem (the Decisional Subgroup Membership Problem [DSMP]) which we recall here:

Problem [DSMP] Let G be an abelian group with subgroups K, H such that G = KH

and K ∩H = {1}. The Decisional Subgroup Membership Problem is to decide whether a given
g ∈ G is in K or not.

The cryptosystems by Goldwasser-Micali, Naccache-Stern, Okamoto-Uchiyama and Paillier
respectively are shown to fit in this setting, with a proper definition for G (the ciphertexts
space), H (coding the cleartexts) and K (the “cloak” space used to randomize encryptions).
For example for Paillier’s encryption, the ciphertext space is G = (Zn2)∗ ' (Zn)∗ × Zn, the
cleartexts coding subgroup H is the subgroup of order n (generated by g = 1 +n) and K is the
set of the invertible n-th powers mod n2. This is consistent with the probabilistic encryption
function

Eu(m) = (1 + n)mun mod n2.

It can be verified quite easily that the following choices make the corrected version of Benaloh’s
scheme fit in this setting:

— G = (Zn)∗

— H the cyclic subgroup of order r of G

— K the set of invertible r-th powers in G
1The detailed proof is available in [15].
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— the public element y must generate H.

Using the result in [Gjo05], the semantic security of our corrected scheme is therefore
equivalent to the DSMP for K, that is, being able to distinguish r-th powers modulo n.

Although several homomorphic encryption schemes are analyzed in [Gjo05], Benaloh’s
is not, because it not satisfy all requirement by the framework proposed in [Gjo05]. Our
correction ensures that the last condition is met, otherwise y could generate a strict subgroup
of the intended group H. This explains why it was not listed by Kristian Gjøsteen, and
provides a semantic security proof of the corrected version.

5.5 Probability of Failure of Benaloh’s Scheme

We now estimate the probability of failure in the scheme as originally described. For this we
need to count the numbers y that satisfy Equation (5.2) and not property (3) of Theorem 12.
We call these values of y “faulty”.

Lemma 13 Equation (5.2) is equivalent to the statement: r - α.

Since picking y ∈ (Zp)∗ at random is the same when seen mod p as picking α ∈ {0, . . . , p−
2} at random, we can therefore conclude that the proportion ρ of faulty y’s is exactly the
proportion of non-invertible numbers mod r among the non-zero mod r. So ρ = 1− ϕ(r)

r−1 . We
notice that this proportion depends on r only, and it is non-zero when r is not a prime. Since
decryption in Benaloh’s scheme is essentially solving a discrete logarithm in the subgroup
of (Zp)∗ of order r, the original scheme recommends to use r as a product of small primes’
powers, which tends to increase ρ. In fact, denoting by (pi) the prime divisors of r we have:

ρ = 1− ϕ(r)

r − 1

= 1− r

r − 1

ϕ(r)

r

= 1− r

r − 1

∏
i

pi − 1

pi

≈ 1−
∏
i

pi − 1

pi

which shows that the situation where decryption is easy also increases the proportion of
invalid y’s when using the initial description of the encryption scheme. As a practical example,
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assume we pick two 512 bits primes p and q as

p = 2× (3× 5× 7× 11× 13)× p′ + 1

p′ = 4464804505475390309548459872862419622870251688508955\

5037374496982090456310601222033972275385171173585381\

3914691524677018107022404660225439441679953592

q = 1005585594745694782468051874865438459560952436544429\

5033292671082791323022555160232601405723625177570767\

523893639864538140315412108959927459825236754568279.

Then

gcd(q − 1, p− 1) = 2

r = (3× 5× 7× 11× 13)× p′

ρ = 1− r

r − 1
× 2

3
× 4

5
× 6

7
× 10

11
× 12

13
× p′ − 1

p′

ρ > 61%.

This example was constructed quite easily: first we take p′ of suitable size, and multiply
its value until p = k× p′+ 1 is prime. Then we generate random primes q of suitable size until
the condition gcd(p− 1, q − 1) = 2 is verified; it took less than a second on a current laptop
using Sage [S+10].

5.6 Conclusion

We first discuss some schemes related to that of [Ben94].

— In [BT94], Benaloh and Tuinstra describe a cryptosystem which closely resembles that
of [Ben94], but the conditions given on r are less strict. Let us recall briefly the parameters
of the cryptosystem as described in [BT94]:

– r | p− 1 but r2 - p− 1.

– r - q − 1.

– y is coprime with n and y(p−1)(q−1)/r 6= 1 mod n.

It is clear that r2 - p− 1 is weaker than gcd((p− 1)/r, r) = 1, and that r - q − 1 is weaker
than gcd(q − 1, r) = 1. Therefore any set of parameters satisfying [Ben94] are also valid
parameters as defined in [BT94].
Unfortunately the condition imposed on y is the same and still insufficient, and finding
counter-examples is again a matter of picking α not coprime with r. Our theorem still
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stands for this cryptosystem if you replace condition (3) by the following condition:

For all prime factors s of r, we have y(p−1)/s 6= 1 mod p. (5.3)

— Going back in time, the scheme of Goldwasser and Micali [GM82] can be seen as a precursor
of [BT94] with a fixed choice of r = 2. The choice of y in [GM82] as a quadratic non-residue
mod n is clearly an equivalent formulation of condition (5.3).

— Before [Ben94] and [BT94], the scheme was defined by Benaloh in [Ben87], with the
parameter r being a prime. In this case our condition (3) is the same as the one proposed
by Benaloh, and the scheme in this thesis is indeed correct. The main difference between
the different versions proposed afterwards and this one is that it is not required for r to be
prime, which leads in some cases to ambiguous ciphers. This remark clearly shows that
all details are important in cryptography and that the problem we discovered is subtle
because even Benaloh himself did not notice it.

— Finally the scheme proposed by Naccache and Stern [NS98] is quite close to the one
proposed in [Ben87] but with a parameterization of p and q. It makes decryption correct,
efficient, and leaves the expansion factor as an explicit function of the desired security
level with respect to methods of factoring taking advantage of this specific form of n, like
the P − 1 method [Pol74] (the expansion is essentially the added size of the big cofactors
of p− 1 and q − 1). If we drop this requirement that p− 1 and q − 1 have big cofactors,
their scheme becomes a corrected generalization of Benaloh’s, so application writers should
probably use Naccache-Stern’s scheme directly. We note that a modulus size of 768 bits
was considered secure at the time, a fact disproved twelve years later [KAF+10] only!

We have shown that the original definition of Benaloh’s homomorphic encryption does
not give sufficient conditions in the choice of public key to get an unambiguous encryption
scheme. We also explain on one example what can be the consequences of the use of the
original Benaloh scheme. We propose a necessary and sufficient condition which fixes the
scheme and prove this semantic security. Finally we show that the probability of choosing an
incorrect public key is non negligible parameters where decryption is efficient. In fact, it is
surprising this result was not found before, considering the number of applications built on
the homomorphic property of Benaloh’s scheme. This strongly suggests this scheme was rarely
implemented or even worse, implementations were rarely well tested.
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Chapter 6
Hierarchy of Privacy Properties

O n remarque que les protocoles de vote électronique sont de plus en plus utilisés dans les
démocracies modernes. Il est donc important d’identifier, de formaliser et de vérifier les

propriétés qu’ils doivent assurer. Dans ce cadre nous avons étendu en π-calcul appliqué les
propriétés existantes pour le respect de la vie privée (Privacy). Ceci afin de prendre en compte
à la fois :

— les communications entre l’attaquant et le votant attaqué (SwV P , SwRF , et SwCR).

— le contôle de part l’adversaire ou non d’un autre participant au vote (I et O).

— la possibilité de forcer un votant à s’abstenir ou non (FA et PO).

Nous obtenons alors un ensemble de propriétés plus précises que les propriétés existantes,
mais aussi des relations claires entres ces propriétés. Ceci nous permet de comparer les niveaux
de sécurité des protocoles de la littérature [11].
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6. Hierarchy of Privacy Properties

6.1 Introduction

Since the existence of democracy, populations have been often consulted about critical decisions.
To achieve it, a lot of voting systems have been designed. That’s why since the 1980’s, electronic
voting schemes have attracted intrest of many researchers. While more and more protocols
have been developed, the set of security properties that a protocol has to achieve has evolved.
Thus, researchers keep combining existing or created cryptographic primitives to construct
efficient electronic voting schemes, with respect to these security requirements. Researchers
have identified numerous security properties that are required for secure voting systems and
protocols. These properties can be classified into three categories: i) Correctness and robustness
properties, ii) verifiability and iii) privacy properties. Typical correctness and robustness
properties include:

— Eligibility : Only the registered voters can vote, and nobody can submit more votes than
allowed (typically only one).

— Fairness: No preliminary results that could influence other voters’ decisions are made
available.

— Robustness: The protocol can tolerate a certain number of misbehaving voters.

Verifiability is usually split into two properties:

— Individual Verifiability : Each voter can check whether his vote was counted correctly.

— Universal Verifiability : Anybody can verify that the announced result corresponds to the
sum of all votes.

Last different levels of privacy can be achieved:

— Vote-Privacy : The votes are kept private. This can also be modeled as an unlinkability
between the voter and his vote.

— Receipt-Freeness: A voter cannot construct a receipt which allows him to prove to a third
party that he voted for a certain candidate. This is to prevent vote-buying.

— Coercion-Resistance: Even when a voter interacts with a coercer during the entire voting
process, the coercer cannot be sure whether he followed his instructions or actually voted
for another candidate.

However the design of complex protocols to fulfill all these partly antipodal require-
ments [CMFP+06] is notoriously difficult and error-prone. In particular in the area of privacy
properties there is a great variety of models. Recent research shows that some existing defi-
nitions might be insufficient: Smyth and Cortier [SC11] pointed out that the ability to copy
another voter’s vote can enable attacks on privacy.

Our Contributions.

— We propose a new family of privacy notions which allows us to assess of the level of
privacy provided by a voting protocol. These notions are based on formal definitions of the
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classical notions (Vote-Privacy, Receipt-Freeness and Coercion-Resistance) in the applied
π-calculus [AF01a], with a refined protocol model and including new attacks. The resulting
family gives a deep understanding of the different levels and requirements for privacy.
Additionally our notions generalize [8] and deal with attacks based on vote-copying that
were not captured in the model by Delaune et al. [DKR09].

— A deep understanding of privacy properties, and in particular the relationship between the
different notions, is a prerequisite for the correct design of voting protocols. We provide a
thorough comparison of existing and new notions.

— In [9], we analyze several case studies to illustrate our definitions [FOO92, Oka96, JCJ05,
BMQR07]. To automatically analyze these protocols, we use ProSwapper [KSR10] and
ProVerif [BAF08].

Related Work. Previous research on formal verification of voting protocols concerned
privacy properties (privacy, receipt-freeness and coercion-resistance) [DKR09, DKR10, MN06,
BHM08][8, 9], election verifiability [SRKK10, KRS10], or both [JCJ05, JCJ02].

Although the informal specifications of the properties are very general, most of the formal
models and definitions in the literature are tailored to a specific type of protocols. Many
protocols where in fact developed together with their own definitions (e.g. [MN06, JCJ05,
JCJ02]) and analyzed by hand in the original paper.

Juels et al. [JCJ05] (which became the bases for Civitas [CCM08]) were the first to give
a formal, but computational definition of coercion-resistance. It was later translated to the
applied π-calculus and automated using ProVerif [BHM08]. However – as their protocol is
based on voting “credentials” – credentials also appear in the definition. Their model is thus
unsuitable for protocols that do not use credentials (e.g. Bingo Voting [BMQR07] or the
protocol by Lee et al. [LBD+04]).

More general definitions were developed by Delaune, Kremer and Ryan [DKR09, DKR10].
They express different levels of privacy as observational equivalence in the applied π-calculus
[AF01a]. An attacker should not be able to distinguish one case in which the voter complies
with the coercer’s instructions and another in which he only pretends to do so and votes as he
wishes. Unfortunately their definitions are too strong for the protocol proposed by Juels et al.:
since in one case the targeted voter complies and posts only one correct ballot, and in the
other he secretly posts his actual ballot and a fake one to cheat the coercer, both cases can be
distinguished by counting the ballots.

Smyth and Cortier [SC10, SC11] showed that being able to copy votes can compromise
privacy if the number of participants is small or a noticeable fraction of voters can be corrupted.
For example in the case of three voters, the third voter can try to copy the first voter’s vote
and submit it as his vote. This will result in (at least) two votes for the candidate chosen
by the first voter and his choice can thus be inferred from the result. They also formally
analyzed ballot secrecy in Helios using an adaption of the model by Delaune, Kremer and
Ryan. However in [8, 9] we demonstrate that the protocol by Lee et al. [LBD+04], shown to
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be coercion-resistant in DKR model [DKR09], is vulnerable to a vote-copy attacks. It clearly
shows DKR model is not sufficient to capture vote-independence. Moreover the DKR model
can not deal with weighted votes.

Küsters and Truderung [KT09] proposed a first model independent definition of coercion-
resistance for voting protocols. Their definition has to be instantiated using a concrete formal
model. The exact security level can be defined with respect to certain chosen goals, and
excluding explicit special cases. In contrast to our family of notions, their definition is based
on traces and not bisimulations, and they only define coercion-resistance.

Langer et al. [LJP10] developed verifiability definitions and privacy notions based on
(un-)linkability between a voter and his vote. Similarly to Küsters and Truderung, their
definitions have to be instantiated with a concrete formal process and attacker model.

Computational definitions of receipt-freeness [CG96] and coercion-resistance [UMQ10]
that can be applied to other applications than voting have also been proposed. Completely
application-independent anonymity notions were proposed by Bohli and Pashalidis [BP09].
Although their definitions are very general, the application on voting protocols results in – for
this context – rather unusual privacy notions (Pseudonymity etc.), compared to the classic
properties such as receipt-freeness or coercion-resistance.

Outline: In the next section, we give a brief introduction of the applied π-calculus. In
Section 6.3 starts by explaining informally our privacy notions and subsequently gives the
formal definitions. In the next section, we discuss the relationship between the different notions
and explain the hierarchy implied by the definitions. In the last section, we conclude.

6.2 Preliminaries

In the first part of this section, we introduce the applied π-calculus. We use it to model voting
protocols and express privacy properties. In the second part, we define our model of a voting
protocol in the applied π-calculus.

6.2.1 — The Applied π-Calculus

The applied π-calculus [AF01a] is a formal language to describe concurrent processes. The
calculus consists of names (which typically correspond to data or channels), variables, and a
signature Σ of function symbols which can be used to build terms. Functions typically include
encryption and decryption (for example enc(message, key), dec(message, key)), hashing, sign-
ing etc. Terms are correct (i.e. respecting arity and sorts) combinations of names and functions.
To model equalities we use an equational theory E which defines a relation =E . A classical ex-
ample which describes the correctness of symmetric encryption is dec(enc(message, key), key)

=E message.
There are two types of processes in the applied π-calculus: plain processes and extended

processes. Plain processes are constructed using the following grammar:
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P , Q, R := plain processes
0 null process
P |Q parallel composition
!P replication
νn.P name restriction (“new”)
if M = N then P else Q conditional
in(u, x).P message input
out(u, x).P message output

Extended processes are plain processes or active substitutions:

A, B, C := active processes
P plain process
A|B parallel composition
νn.A name restriction
νx.A variable restriction
{M/x} active substitution

The substitution {M/x} replaces the variable x with term M . We denote by fv(A), bv(A),
fn(A), bn(A) the free variables, bound variables, free names or bound names respectively. A
process is closed if all variables are bound or defined by an active substitution.

The frame Φ(A) of an extended process A is obtained when replacing all plain processes in
A by 0. This frame can be seen as a representation of what is statically known to the exterior
about a process. The domain dom(Φ) of a frame Φ is the set of variables for which Φ defines
a substitution. An evaluation context C[_] denotes an extended process with a hole for an
extended process.

The semantics of the calculus are given by Structural equivalence (≡), which is defined
as the smallest equivalence relation on extended processes that is closed under application of
evaluation contexts, α-conversion on names and variables such that:

PAR-0 A|0 ≡ A
PAR-A A|(B|C) ≡ (A|B)|C
PAR-C A|B ≡ B|A
NEW-0 νn.0 ≡ 0

NEW-C νu.νv.A ≡ νv.νu.A
NEW-PAR A|νu.B ≡ νu.(A|B) if u /∈ fn(A) ∪ fn(b)

REPL !P ≡ P |!P
REWRITE {M/x} ≡ {N/x} if M =E N

ALIAS νx. {M/x} ≡ 0

SUBST {M/x} |A ≡ {M/x} |A {M/x}

and extended by Internal reduction (→), the smallest relation on extended processes closed
by structural equivalence and application of evaluation contexts such that:

75



6. Hierarchy of Privacy Properties

COMM out(a, x).P | in(a, x).Q → P | Q
THEN if M = M then P else Q → P

ELSE if M = N then P else Q → Q

for any ground terms such that M 6=E N

To describe the interaction of processes with the exterior, we use labeled operational
semantics ( α−→) where α can be an input or an output of a channel name or a variable of base
type.

IN in(a, x).P
in(a,M)−−−−−→ P {M/x}

OUT-ATOM out(a, u).P
out(a,u)−−−−−→ P

OPEN-ATOM
A

out(a,u)−−−−−→ A′ u 6= a

νu.A
νu.out(a,u)−−−−−−−→ A′

SCOPE
A

α−→ A′ u does not occur in α
νu.A

α−→ νu.A′

PAR
A

α−→ A′ bv(α) ∩ fv(B) = bn(α) ∩ fn(B) = ∅
A | B α−→ A′ | B

STRUCT
A ≡ B B

α−→ B′ B′ ≡ A′

A
α−→ A′

Labeled transitions are not closed under the evaluation contexts. Note that a term M

cannot be output directly. Instead, we have to assign M to a variable, which can then be
output. This is to model that e.g. the output of enc(m, k) does not give the context access to
m. In our definitions we will use the following equivalence and bisimilarity properties:

Definition 14 (Equivalence in a Frame) Two terms M and N are equal in the frame φ,
written (M = N)φ, if and only if φ ≡ νñ.σ, Mσ = Nσ, and {ñ} ∩ (fn(M) ∪ fn(N)) = ∅ for
some names ñ and some substitution σ.

Definition 15 (Static Equivalence (≈s)) Two closed frames φ and ψ are statically equiv-
alent, written φ ≈s ψ, when dom(φ) = dom(ψ) and when for all terms M and N (M = N)φ

if and only if (M = N)ψ. Two extended processes A and B are statically equivalent (A ≈s B)
if their frames are statically equivalent.

The intuition behind this definition is that two processes are statically equivalent if
the messages exchanged with the environment cannot be distinguished by an attacker (i.e.
all operations on both sides give the same results). This idea can be extended to labeled
bisimilarity.

Definition 16 (Labeled Bisimilarity (≈l))
Labeled bisimilarity is the largest symmetric relation R on closed extended processes, such that
A R B implies

1. A ≈s B,
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2. if A→ A′, then B → B′ and A′ R B′ for some B′,

3. if A α−→ A′ and fv(α) ⊆ dom(A) and bn(α) ∩ fn(B) = ∅, then B →∗ α−→→∗ B′ and
A′ R B′ for some B′.

In this case each interaction on one side can be simulated by the other side, and the
processes are statically equivalent at each step during the execution, thus an attacker cannot
distinguish both sides.

To formally describe the interaction between a voter and the attacker, we use the following
two definitions. The first one turns a process P into another process P ch that reveals all its
inputs and secret data on the channel ch. This can be seen as trying to construct a receipt.

Definition 17 (Process P ch [DKR09]) Let P be a plain process and ch be a channel name,
P ch is defined by:

— 0ch =̂ 0,

— (P |Q)ch =̂ P ch|Qch,

— (νn.P )ch =̂ νn.out(ch, n).P ch when n is a name of base type,

— (νn.P )ch =̂ νn.P ch otherwise,

— (in(u, x).P )ch =̂ in(u, x).out(ch, x).P ch when x is a variable of base type,

— (in(u, x).P )ch =̂ in(u, x).P ch otherwise,

— (out(u,M).P )ch =̂ out(u,M).P ch,

— (!P )ch =̂ !P ch,

— (if M = N then P else Q)ch =̂ if M = N then P ch else Qch.

In the remainder we assume that ch /∈ fn(P )∪ bn(P ) before applying the transformation. The
second definition does not only reveal the secret data, but also takes orders from an outsider
before sending a message or branching, i.e. the process is under complete remote control.

Definition 18 (Process P c1,c2 [DKR09]) Let P be a plain process and c1, c2 be channel
names, We define P c1,c2 is defined by:

— 0c1,c2 =̂ 0,

— (P |Q)c1,c2 =̂ P c1,c2 |Qc1,c2,

— (νn.P )c1,c2 =̂ νn.out(c1, n).P c1,c2 when n is a name of base type,

— (νn.P )c1,c2 =̂ νn.P c1,c2 otherwise,

— (in(u, x).P )c1,c2 =̂ in(u, x).out(c1, x).P c1,c2 when x is a variable of base type and x is a
fresh variable,

— (in(u, x).P )c1,c2 =̂ in(u, x).P c1,c2 otherwise,

— (out(u,M).P )c1,c2 =̂ in(c2, x).out(u, x).P c1,c2,
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— (!P )c1,c2 =̂ !P c1,c2 ,

— (if M = N then P else Q)c1,c2 =̂ in(c2, x).if x = true then P c1,c2 else Qc1,c2 where
and x is a fresh variable and true is a constant.

To hide the output of a process, we use the following definition.

Definition 19 (Process A\out(ch,·) [DKR09]) Let A be an extended process. The process
A\out(ch,·) is defined by νch.(A|!in(ch, x)).

6.2.2 — Voting Protocol and Process

First of all, we define the notion of a voting protocol. Informally, a voting protocol specifies
the processes executed by voters and authorities.

Definition 20 (Voting Protocol) A voting protocol is a tuple (V,A1, . . . , Am, ñ) where V
is the process that is executed by the voter, the Aj’s are the processes executed by the election
authorities, and ñ is a set of private channels.

Note that the protocol only defines one process V which will be instantiated for each voter.
Yet here may be several authorities, for example a registrar, a bulletin board, a mixer, a tallier,
. . . In our definitions we reason about privacy using concrete instances of a voting protocol.
An instance is called a Voting Process.

Definition 21 (Voting Process) A voting process of a voting protocol (V,A1, . . . , Am, ñ) is
a closed plain process

νm̃.(V σid1σf1σv1 | . . . |V σidnσfnσvn |A1| . . . |Al)

where l ≤ m, m̃ includes the secret channel names, V σidiσviσfi are the processes executed by
the voters where:

— σidi is a substitution assigning the identity to a process (this determines for example the
secret keys),

— σvi specifies the vote(s) and if the voter abstains,

— and σfi defines the other behavior, in particular if fake votes are issued,

and Ajs are the election authorities which are required to be honest.

We notice that if an authority is not supposed to be honest, it is not modeled and left to
the context, i.e. the attacker (thus l ≤ m).

Note also that each voter runs the same process V , which is instantiated with a different
σidi (his identity), σvi (his vote(s)) and σfi (the fakes). If a protocol does not allow fakes, σfi
is empty.
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This model allows us to reason about protocols where voters can submit fake ballots and/or
several real ballots, even if only one of them is actually counted (like in the one by Juels et
al. [JCJ05]). In that case σvi determines those who are actually counted, and σfi the others.

Note that as voting always includes a deadline, we will only consider finite processes V
with a finite number of choices.

Example As a running example, we consider the following simple voting protocol.

Informal description: To construct his ballot, each voter encrypts his vote with the
administrator’s public key and signs it using his secret key. The resulting ballot is posted on
the bulletin board. After the voting deadline is over, the administrator checks if each ballot is
signed by an eligible voter. He then decrypts the correct ballots and publishes the result.

Formal description in our model: The protocol is a tuple (V,A, ∅) where

A = in(ch, (sig, vote)).

if checksign(sig, pkv) = vote

then sync 1.

out(chR, dec(vote, ska))

V = νr.

let evote = enc(v, pka, r) in

out(ch, (sign(evote, skv), evote))

where – by abuse of notation, this can rewritten in the “pure” calculus – sync 1 is a synchro-
nization point as defined by ProSwapper [KSR10]. A substitution determining the identity of a
voter would in this case assign the secret key, e.g. σidk = {skk/skv}. The substitution specifying
the vote as for example a vote for candidate a would be σvk = {a/v}. As the protocol does not
specify the possibility to create fakes, σvk is the empty substitution.

To facilitate notation we denote by S and S′ two contexts which are like voting processes
but with holes for two and three voters respectively.

Definition 22 (S and S′) We define evaluation contexts S and S′ such that

— S is like a voting process, but has a hole instead of three processes among (V σidiσviσfi)1≤i≤n.

— S′ is like as voting process, but has a hole instead of two processes among (V σidiσviσfi)1≤i≤n.

Finally, we formally define what it means for a voting process to abstain. An abstaining
voter does not send any message on any channel, in particular no ballot. In the real world,
this would correspond to a voter that does not even go to polling station. This is stronger
than just voting for a particular “null” candidate ⊥, which will still result in sending a ballot
(a blank vote).

Definition 23 (Abstention) A substitution σvi makes a voter abstain if V σidiσvi ≈l 0.

Note that abstention is determined by σvi only, so the voter abstains for any σfi .
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6.3 Hierarchy of Privacy Properties

In our approach, the attacker targets one voter (the targeted voter) and tries to extract
information about the targeted voter’s vote(s). If the attacker knows the votes of all other
voters, he can infer the targeted voter’s vote from the result. Thus we suppose that he is
unsure about the vote(s) of one other voter (the counterbalancing voter).

We express privacy as an observational equivalence. Intuitively, an attacker should not
be able to distinguish between an execution in which the targeted voter behaves and votes
as the attacker wishes, and another execution where he only pretends to do so and votes
differently. To ensure that the attacker cannot tell the difference by just comparing the result,
the counterbalancing voter will compensate the different vote.

Starting from the definitions of Coercion-Resistance, Receipt-Freeness and Vote-Privacy in
the literature [DKR09, BHM08, JCJ05] we propose extensions in the four following dimensions:
Communication between the attacker and the targeted voter, Vote-Independence, security
against forced-abstention-attacks and knowledge about the behavior of the counterbalancing
voter.

1. Communication between the attacker and the targeted voter: We define three different
levels:

(a) In the simplest case, the attacker only observes publicly available data and commu-
nication. We call this case Vote-Privacy, denoted SwV P .

(b) In the second case, the targeted voter tries to convince the attacker that he voted
for a certain candidate by revealing his secret data. Yet the attacker should not be
able to determine if he actually sent his real data, or a fake receipt. We call this
case Receipt-Freeness, denoted SwRF .

(c) In the strongest case, the voter pretends to be completely under the control of the
attacker, i.e. he reveals his secret data and follows the intruder’s instructions. Yet
the attacker should be unable to determine if he complied with his instructions or if
he only pretended to do so. We call this case Coercion-Resistance, denoted SwCR.

It is easy to see that Coercion-Resistance is stronger than Receipt-Freeness, which is
stronger than Vote-Privacy (SwCR > SwRF > SwV P ).

2. Vote-Independence/Corrupted Voter: The attacker may control another legitimate voter
(neither the targeted nor the counterbalancing voter). In that case he could be able
to compromise privacy by trying to relate the corrupted voter’s vote to the targeted
voter’s vote (e.g. by copying it) or using the corrupted voter’s secret data, such as his
credentials or keys. In our definitions, we distinguish two case for Eve (the attacker):

(a) Eve is an Outsider (denoted O): The attacker is an external observer.

(b) Eve is an Insider (denoted I): The attacker has a legitimate voter under his control.

Intuitively, Insider is the stronger setting (I > O).

3. Security against forced-abstention-attacks: A protocol can ensure that a voter can still
vote as intended, although a coercer wants him to abstain. Note that in contrast to
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the literature [JCJ05, BHM08], we define this property independently from of Coercion-
Resistance, as we also want to apply it in the case of Vote-Privacy. Our model expresses
this by requiring the observational equivalence to hold:

(a) in any case, i.e. even if the voter is forced to abstain. We call this case security
against Forced-Abstention-Attacks, denoted FA.

(b) if the targeted voter does not abstain from voting (i.e. always participates). We
call this case Participation Only, denoted PO.

In this dimension security against Forced-Abstention-Attacks is a stronger property than
Participation Only (FA > PO).

4. Knowledge about the behavior of the counterbalancing voter : To model different knowledge
about the behavior of the counterbalancing voter, we consider two cases:

(a) The observational equivalence holds for any behavior of this voter, i.e. any σfi .
This models an attacker that knows if the counterbalancing voter is going to post
fake ballots, or a situation where there is no “noise” (=fake ballots) on the bulletin
board. We call this case Any Behavior, denoted AB.

(b) The observational equivalence holds for at least one behavior of this voter, which
may additionally change, i.e. one σfi and one σf ′i . In this case, the attacker is
unsure about the number of fake ballots, i.e. there is enough noise. We call this
case Exists Behavior, denoted EB.

Any Behavior is stronger than EB (AB > EB).

The strongest possible property is thus SwCRI,FA,AB , the weakest SwV PO,PO,EB . If we leave
out the parameter, we take the weakest setting as a default, i.e. SwV P denotes SwV PO,PO,EB .

6.3.1 — Definitions in the applied π-calculus

Our definition is parameterized using the following parameters (as explained above):

— Privacy = {SwCR,SwRF, SwV P} (“Coercion-Resistance”, “Receipt-Freeness” or “Vote-
Privacy”).

— Eve = {I,O} (“Insider” or “Outsider”).

— Abs = {FA,PO} (“Security against Forced-Abstention-Attacks”or “Participation Only”).

— Behavior = {AB,EB} (“Any Behavior”or “Exists Behavior”).

Definition 24 (PrivacyEve,Abs,Behavior) A protocol fulfills PrivacyEve,Abs,Behavior if for any
voting process S there exists a process V ′ and for any substitution σfA and σfC , and any
context A such that A = νc̃h.(_|A′chout)) where c̃h are all unbound channels and names in A′

and in the “hole”,

— if Behavior is EB: there exist substitutions σfB , σf ′B and σf ′A,

— if Behavior is AB: for any substitutions σfB = σf ′B there exists a substitution σf ′A,
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such that for all votes σvA and σvB where V σvB does not make a voter abstain1, one of the
following holds depending on the privacy setting:

— if Privacy is Vote-Privacy (SwV P ):

A [S [V σidAσfAσvA |V σidBσfBσvB |VC ]] ≈l A
[
S
[
V σidAσf ′AσvB |V σidBσf ′BσvA |VC

]]
— if Privacy is Receipt-Freeness (SwRF ):

– V ′\out(chc,·) ≈l V σidAσf ′AσvB

– A
[
S
[
V σidAσfAσ

chc
vA
|V σidBσfBσvB |VC

]]
≈l A

[
S
[
V ′|V σidBσf ′BσvA |VC

]]
— if Privacy is Coercion-Resistance (SwCR):

For any context C = νc1.νc2.(_|P ′) with ñ ∩ fn(C) = ∅ and
S
[
C
[
V σc1,c2idA

]
|V σidBσfBσvB |VC

]
≈l S

[
V σidAσfAσ

chc
vA
|V σidBσfBσvB |VC

]
we have

– C [V ′]\out(chc,·) ≈l V σidAσf ′AσvB

– A
[
S
[
C
[
V σc1,c2idA

]
|V σidBσfBσvB |VC

]]
≈l A

[
S
[
C [V ′] |V σidBσf ′BσvA |VC

]]
where

— If Eve is:

– Insider(I): S := S and VC := V σc1,c2idC

– Outsider (O): S := S′ and VC := 0

— If Abs is:

– Participation Only (PO): V σidA does not abstain, i.e. V σidAσfAσvA 6≈l 0.

– Security against Forced-Abstention-Attacks (FA), he may abstain.

The context A represents the attacker. We chose to make the attacker’s behavior explicit as
some protocols (such as the one by Juels et al. [JCJ05]) require σfB and σf ′B to be chosen
as a function of the attacker. To ensure that A does not only forward the channels (which
would leave the attacker to the outside again and thus contradict our intention of choosing the
processes as a function of A), we require A to bind all free names and channels inside. He will
only forward the knowledge he is able to obtain during the execution of the protocol.

Note that SwV PO,PO,AB coincides with the definition of Vote-Privacy given by De-
laune et al. [DKR09]: Two situations where two voters swap votes are bisimilar. Similarly
SwV PO,FA,AB coincides with the definition of Vote-Independence with Passive Collaboration
in the DKR-model [DKR09]: If a protocol is receipt-free, there exists a counter-strategy
(V ′) that allows the targeted voter to fake the receipt and vote differently. Analogously,
Vote-Independence in the DKR-model corresponds to SwV P I,PO,AB , and Vote-Independence
with passive Collaboration corresponds to SwCRI,PO,AB in our model.

1This condition is needed to ensure that in the case PO no voter can abstain.
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6.4. Conclusion

Proposition 14 For Privacy ∈ {SwV P , SwRF, SwCR} , Abs ∈ {FA,PO} and Behavior ∈
{AB,EB} we have:

1. Any attack that works for an outsider can also be used for an insider: If a protocol respects
PrivacyI,Abs,Behavior, then it also respects PrivacyO,Abs,Behavior.

2. If a protocol is secure against Forced-Abstention attacks, it is also secure in the “PO” case:
If a protocol respects PrivacyEve,FA,Behavior, it also respects PrivacyEve,PO,Behavior.

3. If the property holds for any behavior, there exists a behavior for which it holds: If a
protocol respects PrivacyEve,Abs,AB, it also respects PrivacyEve,Abs,EB.

4. Coercion-Resistance is stronger than Receipt-Freeness, which is stronger than Vote-
Privacy:

— If a protocol respects SwCREve,Abs,Behavior, it also respects SwRFEve,Abs,Behavior.

— If a protocol respects SwRFEve,Abs,Behavior, it also respects SwV PEve,Abs,Behavior.

Formal proofs are given in [11]. This leads us to a clear hierarchy of privacy notions
described in Figure 5. Notice that for protocols that do not use fakes, the forth dimensions
“Behavior” collapses and we obtain a simple tower (see Figure 6).
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Figure 5 – Hierarchy of privacy notions. A → B means that any protocol that respects
property A also respects property B.

6.4 Conclusion

In [9], we applied our family of notions on several case studies (FOO [FOO92], Okamoto [Oka96],
Juels et al. [JCJ05], Bingo Voting [BMQR07], Lee et al. [LBD+04]) chosen to show that each
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Figure 6 – Collapsed hierarchy of privacy notions with examples: The simple voting protocol,
our running example (•); Bingo Voting with the assumption that the attacker does
not know if a voter entered the voting booth (∗); Okamoto with a private channel
to the administrator (�); FOO with a private channel to the administrator (†); and
Lee et al.

of our dimensions corresponds to a different property of real-world protocols. The results are
summed up in and Table 6.1, the position of the case studies within our hierarchy is shown in
Figure 6. We proposed a modular family of formal privacy notions in the applied π-calculus
which allows to assess the level of privacy provided by a voting protocol.
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Protocol Privacy Notion Comments
Juels et al. [JCJ05] SwCRI,FA,EB Requires fakes to achieve coercion-

resistance
Bingo Voting [BMQR07] SwCRI,PO,AB Trusted voting machine, vulnerable to

forced abstention
- variant SwCRI,FA,AB Secure against forced abstention if the

attacker is unaware of the voter entering
the voting booth

Lee et al. [LBD+04] SwCRO,PO,AB Trusted randomizer, vulnerable to vote-
copying

Okamoto [Oka96] SwRF I,PO,AB Based on trap-door commitments
- variant SwRF I,FA,AB Private channel to the administrator,

secure against forced abstention attacks
Fujioka et al. [FOO92] SwV P I,PO,AB Based on blind signatures
- variant SwV P I,PO,AB Permits multiple votes
Simple Voting Protocol SwV PO,PO,AB The running example, vulnerable to

vote-copying

Table 6.1 – Results of the case studies
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Chapter 7
One coercer is enough

I l existe des protocoles de vote qui pondérent les votes de chaque votant par exemple en
fonction de leur part dans une entreprise. Dans ce chapitre, nous modélisons en π-calcul

appliqué les propriétés de respect de la vie privée (Privacy) d’absence de reçu (Receipt-Freness)
et de non coercition pour des protocoles de votes pondérés. Nous exhibons les conditions
rendant équivalent ces nouvelles définitions et les définition basé sur l’échange de vote. De
plus, ce formalisme nous permet de considérer qu’un seul ou plusieurs votants sont corrompus.
Nous prouvons que sous des hypothèses réalistes il est équivalent de considérer un seul votants
compromis que plusieurs [10].
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7. One coercer is enough

Most existing formal privacy definitions for voting protocols are based on observational
equivalence between two situations where two voters swap their votes. If the votes are private,
a case where Alice votes “yes” and Bob votes “no” should be indistinguishable from a case
where Alice votes “no” and Bob votes “yes”. Yet this definition is unsuitable for some situations,
for example in companies where votes are weighted according to the proportion of shares
held by each shareholder. Consider the following example: Alice owns 50% of the stocks, and
Bob and Carol each hold 25%. The cases where Alice and Bob swap votes are now easily
distinguishable if Carol votes “yes” all the time, as the result of the vote is different: 75%
vs. 50% vote for “yes”. Protocols supporting vote weights have been proposed, for example
Eliasson and Zúquete [EZ06] developed a voting system supporting vote weights based on
REVS [JZF03], which itself is based on the protocol by Fujioka et al. [FOO92].

We define a symbolic privacy notion in the Applied π-calculus [AF01a] that takes weighted
votes into account. Instead of requiring two executions where voters swap votes to be bisimilar,
we require two executions to be bisimilar if they publish the same result, independent of the
mapping between voters and votes. We analyze the relationship of our notion to the existing
swap-based ones and give precise conditions for formally proving the equivalence between them.
Then, we generalize our notion to Receipt-Freeness and Coercion-Resistance for weighted votes.
Using our model, we are also able to define multi-voter coercion, i.e. situations where several
voters are attacked at the same time. Then we prove that under certain realistic assumptions
a protocol secure against coercion of a single voter is also secure against coercion of multiple
voters. This applies for Receipt-Freeness as well as Coercion-Resistance. Note that all detailled
proofs and examples can be found in [10, 12, 13].

Outline: In Section 7.1, we introduce our privacy definition and show under which condition
it is equivalent to the existing ones. Then, in Section 7.2, we define Single- and Multi-
Voter Receipt-Freeness, analyze their relationship and prove their equivalence under certain
assumptions. In Section 7.3 we define Single- and Multi-Voter Coercion-Resistance and again
prove their equivalence under the same hypotheses, before concluding in Section 7.4.

7.1 Privacy Notions for Weighted Votes

Our privacy definition is based on the observation that - as the result of the vote is always
published - some knowledge about the voter’s choices can always be inferred from the outcome.
The classical example is the case of a unanimous vote where the contents of all votes are
revealed just by the result. Yet - as already discussed in the introduction - there can also be
other cases where some of the votes can be inferred from the result, in particular in the case
of weighted votes. If for example Alice holds 66% of the shares and Bob 34%, both votes are
always revealed when announcing the result: If one option gets 66% and the other 34%, it
is clear which one was chosen by Alice or Bob. However, if we have a different distribution
of the shares (e.g. 50%, 25% and 25%), some privacy is still possible as there are several
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situations with the same result. Thus our main idea: If two instances of a protocol give the
same results, an attacker should not be able to distinguish them. Note that this includes the
classic definition where votes are swapped, if this give the same result.

7.1.1 — Formal Definition

To express this formally, we need to define the result of an election. We suppose that the
result is always published on a special channel res. The following definition allows us to hide
all channels except for a specified channel c, which we can use for example to reason about
the result on channel res.

Definition 25 (P |c) Let P |c = νc̃h.P where c̃h are all channels except for c, i.e. we hide all
channels except for c.

Now we can formally define our privacy notion: If two instances of a protocol give the same
result, they should be bisimilar.

Definition 26 (Vote-Privacy (VP)) A voting protocol ensures Vote-Privacy (VP) if for
any two instances V PA = νñ.(V σid1σvA1

| . . . | V σidnσvAn | A1 | . . . | Al) and V PB =

νñ.(V σid1σvB1
| . . . | V σidnσvBn | A1 | . . . | Al) we have

V PA|res ≈l V PB|res ⇒ V PA ≈l V PB.

A simple interpretation of this definition is that everything apart from the result on channel
res has to remain private. This obviously relies heavily on the notion of “result” and the
modeling of the protocol. Typically the result will only contain only the sum of all votes,
which corresponds to a simple and intuitive understanding of privacy.

Some protocols may leak some additional information, for example the number of ballots
on the bulletin board. For instance in the protocol by Juels et al. [JCJ05] voters can post fake
ballots. In this case, the above definition of the result may lead to a too restrictive privacy
notion, since two situations with the same votes but a different number of fakes are required
to be bisimilar. To address this issue, we can include the number of ballots in the result if we
want to accept the additional leakage. This gives very fine-grained control about the level of
privacy we want to model.

Note that if the link between a voter and his vote is also published as part of the result on
channel res, our definition of privacy may be true although this probably does not correspond
to the intuitive understanding of privacy. This is however coherent within the model since
everything apart from the result is private; simply the result itself leaks too much information.

7.1.2 — Link to Existing Definitions

To establish the relationship of our definition and the existing ones, we need to formally
characterize their difference. Intuitively the swap-based definition assumes that swapping two
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votes will not change the result. This can be formalized as follows: If two instances of the
protocol with the same voters give the same result, then the votes are a permutation of each
other, and vice versa. This precludes weighted votes, thus the name “Equality of Votes”.

Definition 27 (Equality of Votes (EQ)) A voting protocol respects Equality of Votes (EQ)
if for any

V PA = νñ.(V σid1σvA1
| . . . |V σidnσvAn |A1| . . . |Al)

and
V PB = νñ.(V σid1σvB1

| . . . |V σidnσvBn |A1| . . . |Al)

we have
V PA|res ≈l V PB|res ⇔ ∃π : ∀i : σvBi

= σvA
π(i)
,

where π is a permutation.

This allows us to formally prove that our definition is equivalent to the existing ones if (EQ)
holds.

Theorem 15 (Equivalence of Privacy Definitions) If a protocol respects (EQ), then (VP)
and (SwP) are equivalent.

Intuitively, because of (EQ), two instances of a protocol can only have the same result if the
votes are a permutation of each other. As any permutation can be written as a sequence of
simple permutations (swaps), (SwP) is enough to generate any possible permutation, which
gives (VP). Conversely, the definition of (SwP) becomes just a particular case of (VP).

It is easy to see that this condition (EQ) is necessary: If a protocol uses weighted votes
(e.g. Alice 66%, Bob 34%), it may satisfy (VP), but not (SwP).

Similarly, consider the following example: In the official result announced on channel res,
a pre-selected candidate always wins - this could be the case if the authorities are dishonest
and want to manipulate the election outcome. If however at the same time the ballots on
the bulletin board allow to calculate the result, such a protocol may ensure (SwP) – if the
ballots cannot be linked to the voters –, but not (VP) because two instances with a different
outcome based on the ballots will have the same “result” on res. Note that such a protocol
would contradict (EQ) because we have instances where the votes are not a permutation of
each other, but still give the same result.

7.2 Receipt Freeness

In this section we define receipt-freeness for weighted votes. We first consider the case where
only one voter is attacked, then we define multi-voter attacks.
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7.2.1 — Single-Voter Receipt-Freeness (SRF)

We combine the idea by Delaune et al. [DKR09] with our definition of Privacy: If two instances
of a voting protocol give the same result, they should be bisimilar even if one voter reveals his
secret data in one case or fakes it in the other.

Definition 28 (Single-Voter Receipt Freeness (SRF)) A voting protocol ensures Single-
Voter Receipt Freeness (SRF) if for any voting processes V PA = νñ.(V σid1σvA1

| . . . | V σidnσvAn
| A1 | . . . | Al), V PB = νñ.(V σid1σvB1

| . . . | V σidnσvBn | A1 | . . . | Al) and any number

i ∈ {1, . . . , n} there exists a process V ′i such that we have V ′\out(chci,·)i ≈l V σidiσvBi and

V PA|res ≈l V PB|res ⇒ V P ′A

[
(V σidiσvAi

)chci
]
≈l V P ′B

[
V ′i
]
,

where V P ′A and V P ′B are like V PA and V PB, but with holes for the voter V σidi .

As for (VP), our definition is equivalent to the existing one based on swapping if the protocol
ensures (EQ), which is the case if it does not use weighted votes. Similarly to swap-based
definitions, (SRF) is stronger than (VP). The proof is analogous to the proof in the swap-based
model (see [12] for details).

7.2.2 — Multi-Voter Receipt-Freeness (MRF)

We now generalize the idea of Receipt-Freeness to the case where multiple voters are attacked.
Instead of only considering one attacked voter i, we consider a set I of attacked voters. To
be receipt-free, it should be possible for all attacked voters to fake the receipt. Note that we
assume that there is always at least one honest voter, except for the case with only one voter.

Definition 29 (Multi-Voter Receipt Freeness (MRF)) A voting protocol ensures Multi-
Voter Receipt Freeness (MRF) if for any voting processes V PA = νñ.(V σid1σvA1

| . . . | V σidnσvAn
| A1 | . . . | Al), V PB = νñ.(V σid1σvB1

| . . . | V σidnσvBn | A1 | . . . | Al) and any subset
I ⊂ {1, . . . , n}, I 6= {1, . . . , n} if n > 1, then there exists processes V ′i such that we have
∀i ∈ I : V

′\out(chc,·)
i ≈l V σidiσvBi and

V PA|res ≈l V PB|res ⇒ V P ′A

[
|
i∈I

(V σidiσvAi
)chci

]
≈l V P ′B

[
|
i∈I
V ′i

]
,

where V P ′A and V P ′B are like V PA and V PB, but with holes for all voters V σidi , i ∈ I.

By choosing I = {i} we obtain that (MRF) implies (SRF). Under certain conditions the
converse is also true. To prove this, we define a “generalized voting process” which is like a
voting process, but some voters might be under attack.

Definition 30 (Generalized Voting Process) A Generalized Voting Process is a voting
process V P with variables for the voter’s processes that can either be a “normal” voter or a voter
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communicating with the intruder, i.e. V P = νñ.(V1| . . . |Vn|A1| . . . |Al) where Vi ≈l V σidiσvi
or V \out(chci,·)i ≈l V σidiσvi .

The next definition captures the key properties required for our proof. It expresses two
modularity conditions of a voting protocol.

Definition 31 (Modularity (Mod)) A voting protocol is modular (Mod) if it is composable
and decomposable. A voting protocol is composable if for any generalized voting processes V PA
and V PB there exists a generalized voting process V P such that V P ≈l V PA|V PB. A voting
protocol is decomposable if any generalized voting process V P = νñ.(V1| . . . |Vn|A1| . . . |Al) can
be decomposed into processes V Pi = νñi.(Vi|Ai1| . . . |Ail) where

V P ≈l V P1| . . . |V Pn. (7.1)

Imagine a protocol where in order to escape coercion the voters can claim that a certain ballot
on the bulletin board is their ballot, but it was actually prepared by some honest authority to
allow the voters to create a fake receipt. If we suppose that this ballot exists only once no
matter how many voters are attacked, it would be enough for a single voter to fake his receipt.
However we cannot compose two instances with one attacked voter each, as they would use
the same fake ballot which would be noticeable for the attacker. Hence the above definition
also captures the fact that faking the receipt to escape coercion can be done by each voter
independently.

In order to obtain this property for several examples, it is convenient to have a result of
decomposition unicity in the π-calculus. We prove such result in [14].

Another property we need for our proof is Correctness, i.e. the fact that if in two instances
the voters’ choices are the same, they give the same result1.

Definition 32 (Correctness (Cor)) A voting protocol is correct if for any generalized voting
processes V PA = νñA.(V1,A| . . . |Vn,A|A1| . . . |Al) and V PB = νñB.(V1,B| . . . |Vn,B|A1| . . . |Al)
with for any i and X ∈ {A,B}: V \out(chci,·)i,X ≈l V σidiσvi , we have

V PA|res ≈l V PB|res (7.2)

It is easy to see that Correctness is implied by Equality of Votes as the identity is a permutation,
hence any protocol ensuring (EQ) ensures (Cor) [12]. Putting everything together, we are able
to prove the equivalence of (SRF) and (MRF).

Theorem 16 If a protocol is modular, correct and ensures Single-Voter Receipt Freeness, it
also ensures Multi-Voter Receipt Freeness.

The main idea is that we can decompose an instance with multiple attacked voters into
instances with at most one attacked voter, where we can apply the single-voter assumption,

1This does not entirely cover intuitive correctness as it will be fulfilled by protocols always giving the same
result independently from the votes, but it will fail for a protocol announcing a random result.
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and recompose the result. Note that the assumptions (Mod), (EQ) are satisfied by many
well-known protocols (e.g. [BMQR07, FOO92, Oka96]), we illustrate this on an example.

Remark. We have to be careful when modeling protocols using a full PKI. If we model the
PKI inside the voting process, decomposing a protocol would result in two instances using
different keys, which will most probably be visible to an attacker and the bisimilarity (7.1)
will not hold. A possible solution could be to externalize the PKI into a context K such that
K[V P ] ≈l K[V P1|V P2], which ensures that V P1 and V P2 use the same keys. This would
allow us to obtain the same result for protocols such as [LBD+04, WB09].

7.3 Coercion Resistance

After discussing Receipt-Freeness, we now define Coercion-Resistance. As before, we start
with Single-Voter Coercion-Resistance.

7.3.1 — Single-Voter Coercion (SCR)

In this case, we combine (VP) with (SwCR): If two instances of a voting protocol give the
same result, they should be bisimilar even if one voter interacts with the attacker in one case
or only pretends to do so in the other case. The coercion is modeled by the context C that
interacts with the voter and tries to force him to vote for a certain candidate.

Definition 33 (Single-Voter Coercion-Resistance (SCR)) A voting protocol ensures the
property of Single-Voter Coercion-Resistance (SCR) if for any voting processes V PA =

νñ.(V σid1σvA1
| . . . | V σidnσvAn | A1 | . . . | Al), V PB = νñ.(V σid1σvB1

| . . . | V σidnσvBn | A1 | . . .
| Al) and any number i ∈ {1, . . . , n} there exists a process V ′i such that for any context Ci with
Ci = νc1.νc2.(_|Pi) and ñ∩ fn(C) = ∅, V P ′A

[
Ci

[
(V σidiσvAi

)c1,c2
]]
≈l V P ′A

[
(V σidiσvAi

)chci
]

we have Ci [V ′i ]\out(chc,·) ≈l V σidiσvBi and

V PA|res ≈l V PB|res ⇒ V P ′A

[
Ci

[
(V σidiσvAi

)c1,c2
]]
≈l V P ′B

[
Ci
[
V ′i
]]
,

where V P ′A and V P ′B are like V PA and V PB, but with a holes for the voter V σidi .

As above, we can easily link this definition to the existing swap-based definition using (EQ): If
a protocol respects (EQ), (SCR) and (SwCR) are equivalent. The proof given in [12] is similar
to the (SRF) case.

7.3.2 — Multi-Voter Coercion (MCR)

We now discuss Multi-Voter Coercion-Resistance. To model the case where multiple voters are
attacked, we consider the set I of attacked voters.
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Definition 34 (Multi-Voter Coercion-Resistance (MCR)) A voting protocol ensures
Multi-Voter Coercion-Resistance (MCR) if for any voting processes V PA = νñ.(V σid1σvA1

| . . .
| V σidnσvAn | A1 | . . . | Al), V PB = νñ.(V σid1σvB1

| . . . | V σidnσvBn | A1 | . . . | Al) and any subset
I ⊂ {1, . . . , n}, I 6= {1, . . . , n} if n > 1, there exists processes V ′i such that for any contexts

Ci, i ∈ I with Ci = νc1.νc2.(_|Pi) and ñ ∩ fn(C) = ∅, V P ′A
[
|
i∈I
Ci

[
(V σidiσvAi

)c1,c2
]]
≈l

V P ′A

[
|
i∈I

(V σidiσvAi
)chci

]
we have ∀i ∈ I : Ci [V ′i ]\out(chc,·) ≈l V σidiσvBi and

V PA|res ≈l V PB|res ⇒ V P ′A

[
|
i∈I
Ci

[
(V σidiσvAi

)c1,c2
]]
≈l V P ′B

[
|
i∈I
Ci
[
V ′i
]]
,

where V P ′A and V P ′B are like V PA and V PB, but with holes for all voters V σidi , i ∈ I.

As for (MRF), (MCR) implies (SCR), and (MCR) resp. (SCR) is stronger than (MRF) resp.
(SRF) (for the proofs, see the technical report [12]). We also have equivalence between (SCR)
and (MCR) under the same assumptions as in the case of Receipt-Freeness using a similar
proof.

7.4 Conclusion

SwCR

SwRF

SwP

SCR

SRF

VP

EQ

EQ

EQ

MCR

MRF

Cor, Mod

Cor, Mod

Figure 7 – Relations among the notions. A C−→ B means that under the assumption C a
protocol ensuring A also ensures B.

We presented an intuitive definition of privacy for voting protocols that generalizes to
situations with weighted votes. We extended the definition to include Receipt-Freeness and
Coercion-Resistance as well. We considered situations where only one voter is under attack, and
others where multiple voters are attacked. We were able to show that - under the assumptions
that votes are not weighted and correctly counted - the single voter case is equivalent to
(SwP), (SwRF), (SwCR) as defined by Delaune et al. [DKR09]. Moreover, we proved that
the multi-voter case is equivalent to the single-voter case if the protocol is correct (Cor) and
respects a modularity condition (Mod). This condition allows us to compose and decompose
protocols, which expresses the fact the different parts of the protocol are independent. Figure 7
summarizes our results. Finally, we illustrated our work by analyzing two existing protocols.
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Part III

Wireless Sensor Network





More and more devices are nowadays connected using wireless communication. They use
protocols that rely on the fact that each node can discover his neighbors. As it is explained
in [25], discovering correct neighborhood is an important feature for Wireless Sensors Networks
(WSNs). This a basic requirement for building routing algorithms, but there are often proposed
without a security proof. Our first result is a formal method for proving neighborhood discovery
protocols.

Moreover wireless communication changes the original intruder model proposed by Dolev-
Yao, where the intruder controls all communications. In practice in a WSN with several nodes,
it is not realistic that an intruder controls all communication links. Moreover if we consider
that intruders are nodes then it is also not realistic that malicious nodes share all information
they learned. Hence we propose a weaker intruder model where intruders are independent
nodes.

Finally how can we construct efficient secure routing algorithms? A first observation shows
that random walks are not efficient routing algorithms but they are unpredictable and more
resilient to certain attacks than existing protocols. We propose probabilistic routing algorithms
using tabu list in order to find a trade-off between security, efficiency and energy consumption.

Contributions: Our contributions can be split into two parts: the first one is the proposition
of a formal trace-based model for verifying neighborhood discovery protocols and a constraint-
based model for proving routing protocols in presence of independent intruders. The second
contribution is the design and the analysis of some probabilistic routing algorithms using tabu
lists.

Formal Models: We first propose a trace-based formal description for k-neighborhood dis-
covery protocols. Our definition is recursive, because if two nodes are (k)-neighbor then
there are necessarily nodes which are (k − 1)-neighbor. We focus on timed protocols which
enable the verification in presence of mobile nodes. In order to verify protocol, we model the
following property: a protocol and two nodes of a given topology are (k)-neighborhood secure
if the protocol discovers a path of length k between these two nodes without any intruder.
It allows us to verify existing protocols. Finally, we construct and prove a generic secure
(k)-neighborhood protocol based on any secure (1)-neighborhood protocol [20].

In our second model, we use a constraints system to verify routing protocol in the presence
of independent intruders. This intruder model is weaker than the usual Dolev-Yao intruder
model where he controls the whole network. Here intruders are independent nodes that do not
collaborate: they even do not know each other and they do not share any knowledge. This
models is different than the usual one: it corresponds to situations in which adversaries cannot
communicate. Our result implies that the usual monotonicity property of constraint systems
must be relaxed. It leads us to a different approach in order to solve such constraint systems
modeling protocol in presence of independent intruders. We obtain an NP-time decision
procedure for verifying routing protocol in presence of independent intruders.

Adaptive randomized routing protocol with tabu list: The goal of routing algorithm
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in WSNs is to transfer a data using distributed algorithms over a network from any node to a
special node called a sink. We are interesting in minimizing the hitting time of such algorithms,
it means the number of hops needed to reach the sink. One main advantage of random walks
is that it is difficult to predict their behavior. The drawback is that they are not efficient
for routing data. Our main idea is to improve the efficiency of random walks and to exploit
their non-determinism for improving the security of routing algorithms. Because they are non
predictable, an intruder will have difficulties to mount systematic attacks. We propose two
randomized approaches for routing protocols using tabu lists. The first one stores the tabu list
in messages sent over the network; second one each node has a tabu list per communication
link:

Tabu list in the message: The main idea in this approach is to avoid to forward messages
already transmitted to the same node. The structure used to prevent such event is a tabu list
containing previous visited nodes. We call such a class of algorithms Tabu List in the Message
(TLM). Of course our tabu lists are finite, then it is natural to see the impact of different
update functions when the list is full. We first define a class of update rules. Then we show
the impact of the update functions and the size of the list on the efficiency of such algorithms.
We characterize a class of graph called m-free graph for which the tabu list of size m using the
update function FIFO2 is optimal. As a corollary, due to the fact that all graphs are 1-free, it
proves that FIFO with only one memory is also optimal [2].

Tabu list in the node: We proposed two different algorithms based on tabu list stored in
node (TLN).

— Each message contains a tabu list of all the previous nodes visited. When a message is
received by a node, it can check if the message has been already sent: then we can detect a
loop. We also increase a counter associated to node corresponding to the loop. Finally we
decide to route a message using a probability law which prefers link with smaller counters.
Indeed we avoid to send message in a loop. This algorithm is quite efficient without any
malicious node. However we propose a scenario where a strong intruder can clearly disturb
our algorithm.

— As a consequence, our second algorithm aims to resist to such attacks. It uses cryptographic
primitives and an acknowledgment mechanism. The main idea of our second algorithm is
to detect valid route to the sink and try to route messages only by using such routes. In
order to do so, we have several lists per node in order to store: i) a kind of routing table
which stores acknowledgments send by the sink, ii) generated data messages sent through
a link and iii) good links, i.e. links that reach the sink. Our algorithms uses a probability
law which prefers nodes present in the list of good links [3].

Of course we compare our different approaches to some of existing routing protocols using a
WSN simulator: SINALGO [Gro08].

2First In First Out
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Outline: In Chapter 8, we present our formal model for secure (k)-neighborhood discovery
protocols. We also give a framework which allows us to construct a secure (k)-neighborhood
protocol based on any secure (1)-neighborhood protocol. In Chapter 9, we develop a formal
constraint system in order to analyze routing protocols in presence of independent intruders.
In Chapter 10, we propose a class of probabilistic routing algorithms which store information
in the messages. We also make a theoretical analysis of such protocols. Finally in Chapter 11,
we develop another class of probabilistic routing algorithms which store local information in
each node. We also shows that such algorithms are resilient to several types of attacks.
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Chapter 8
Formal Verification of Neighborhood
Discovery

L es protocoles de communication utilisent souvent la connaissance de leur voisinage.
S’assurer que la découverte du voisinage est correcte constitue un élément important

de ces protocoles. Tout d’abord, nous donnons une définition formelle de la notion de (k)-
voisinage entre deux nœuds. Ensuite nous proposons un système formel à base de trace
permettant de vérifier la sécurité de tels protocoles. Ce système prend en compte la mobilité
des nœuds et la présence d’intrus. Enfin à partir de la connaissance d’un protocole sûr de dé-
couverte de (1)-voisinage nous proposons un protocole permettant de découvrir le (k)-voisinage
d’un nœud de manière sûre [20].
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8. Formal Verification of Neighborhood Discovery

8.1 Introduction

Neighborhood discovery protocols are basic components in mobile wireless systems. Knowledge
of node’s neighbors is for instance critical for routing protocols. The goal of a neighborhood
discovery protocol is to identify the nodes which are in the proximity, even in presence of
intruders. Designing a secure neighborhood discovery protocol is not an easy task, as illustrated
in [And01] with the famous “MIG-in-the-middle” attack accounted in the late 1980s. In this
attack, Angolan MIG airplanes were able to be impersonate a South African unit by relaying
challenge messages from South African defense to another South Africa units, which then
answered the challenge for them. The Angolan MIGs could therefore bomb their targets
without being attacked by the South African air defense. A secure neighborhood discovery
system would have prevented such a problem, by detecting that the MIG is not actually in
range for the authentication protocol, and then preventing further impersonation by enemy
forces. In [PPS+08], we survey the question of secure neighborhood discovery, providing
definitions of neighborhood types and neighbor discovery protocol properties. We also describe
different attacks against wireless networks.

We assume that two nodes are neighbors if they can communicate directly together, without
the help of another node. As a consequence, an attack is any situation in which two nodes
communicate together believing that they are neighbors when a malicious forwarder is involved.

Contributions:. Our formal model is in the continuation of the work initiated by Basin et
al in [SSBC09b]. Based on the observation that the neighborhood is a physical property1,
we distinguish two layers: the physical layer representing physical characteristics of the
communications (radio for instance) and the abstract layer modeling node behavior. Then we
formalize the communication between nodes by a trace-based model inspired by the symbolic
approach proposed by Paulson in [Pau98]. We propose a system of rules for modeling exchanges
between nodes given a topology which represents the environment and position between nodes.
Moreover, we notice that most of the neighborhood discovery protocols use time measurements
and can work even for mobile nodes, so we add timestamps in all our events. Then we give a
deduction system which models the abilities of an intruder. Using all these ingredients, we can
define the neighborhood’s property by generating a special event called END when a node
concludes that he is neighbor with another node. Consequently, an attack is the situation
where a node concludes that another node is his neighbor according to the protocol but indeed
they are not able to communicate directly. A protocol is secure for this property if for any
execution in presence of intruder, and for a given topology, there exists no attack. Then
we extend it to (k)-neighborhood, i.e. we propose a formal definition for modeling that two
nodes can communicate with k hops. examples illustrating how our Finally we propose a
protocol, called Sharek protocol, for discovering the (k)-neighborhood of a node based on a
secure (1)-neighborhood secure protocol. This protocol can be used to securely discover the

1We remark that is not the case for the authentication which is a property based on exchanged messages.
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set of neighbors of neighbors, and further. It can help to determine the dominating sets of a
wireless network, as explained in [DB97, WL99, BMSU01b].

Related works:. Neighborhood discovery and analysis of protocols are active research topics
in wireless networks security. One of the first neighborhood discovery protocol was given
by S. Brands and D. Chaum in [BC94]. Later other works have approached the problem
differently using for instance directional antennas [VKT05, DKPR11], probabilistic protocols
and challenge-response in RFID context [HK05], or specific protections against some attacks
by analyzing network topology based on time of flight of messages in [SPRH09].

In [PPH08a], the authors investigate the possibility of neighborhood detection. They
take into account several transmission speeds, directional emissions, localization and clock
synchronization, and conclude by proving that time-based protocols cannot securely detect
neighborhoods if and only if intruders can forward faster than legitimate nodes. They also
consider protocols which use location data.

One of the first formal verification of neighbor discovery protocol is the work done by
Meadows et al. in [MPP+06]. In this paper they developed a formal methodology to prove
properties of distance bounding protocols. They extend the authentication logic to reason
about distance bounding property and they extend the protocol of S. Brands and D. Chaum.
However, they do not consider (k)-neighborhoods, and deal only with static nodes.

Another formal approach for distance bounding protocols is introduced by Basin et al.
in [SSBC09b]. Their approach also uses notions of distances, time and events-trace. They
use the Isabelle/HOL proof assistant [NPW02] to check results from their model. They apply
their model on three security protocols, the authentication ranging protocol [CH05], the
distance bounding protocol of [BC94], which calculates distance between two nodes using
communication time and finally the TESLA protocol of [PCTS02]. In their work they only
consider static nodes and do not consider (k)-neighborhoods.

In [TSG10] the authors present a systematic technique for verifying that location discovery
protocols satisfy local authentication whereby an entity can authenticate the physical location
of a device, even in the presence of malicious adversaries. They extend the strand space
theory with a metric that captures the geometric properties of time and space. They prove
that several prominent location discovery protocols including GPS do not satisfy the local
authentication goal and analyze a location discovery protocol that does satisfy the goal under
some reasonable assumptions.

In some recent works, C. Cremers et al [CRC11] propose distance bounding protocols
resistant to distance hijacking attacks. The authors in [PPH08b] and [PPH07] build a formal
model based on traces. They apply their model on a protocol they introduced and on the
temporal packet leash protocol [HPJ03]. However their method does not take the mobility of
the nodes into account.

Outline:. In Section 8.2, we present our model. We first give the network representation,
the events and traces definitions, and show how to specify a protocol and an intruder. Then
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in Section 8.3, we define the neighborhood property. We extend the usual notion of (1)-
neighborhood to (k)-neighborhood.In Section 8.4, we propose a secure protocol to build the
(k)-neighborhoods of a node, based on any secure (1)-neighborhood protocol. Finally we prove
it is secure against a class of intruders, before concluding in the last section.

8.2 Timed Model

We assume the time needed to transmit a message between two nodes. As a consequence two
nodes are neighbors if they can communicate directly, i.e. their transmission time is finite. In
the topology depicted in Figure 8, if communication times are proportional to the distances,
then, due to signal reflection on the wall and to the presence of a wall between A and B,
we have that the transfer time between A and I plus the transfer time between I and B is
strictly smaller than the transfer time between A and B. This situation shows that in some
setting triangular inequality may not always hold. It is why we consider transfer time and not
distances.

I

A B

Wall

Figure 8 – Triangle inequality counter-example.

We have two kinds of node : honest nodes, which follow the protocol, and malicious nodes.
We consider a simple protocol called Ping-Pong protocol. A node sends the message “Ping” to
all his neighbors, then they answer with their name and the message “Pong”. Once the Pong is
received, the protocol claims that the initiator and the responder are neighbors. A high-level
description of this protocol is given in Figure 9. Of course this protocol is obviously not secure.

A
Ping−−−−−−→ B

A
〈B,Pong〉←−−−−−−−−− B

Figure 9 – Ping-Pong protocol communications diagram

We start by formally defining characteristics of a network and nodes. Then we model
behaviors of nodes using two family of events with timestamps. We explain using rules
describing a given protocol how to build traces, which are sequences of events. We model by
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a set of rules the intruder capabilities. Finally, we explain two realistic assumptions, which
allow us to take into account mobility in our approach.

8.2.1 — Networks and Nodes

Wireless Sensors Networks are composed of several nodes, that are small devices usually
equipped with sensors, a battery and a radio. They use their radio for sending their measure-
ments through the network. A network is composed of a set of nodes (identified by an unique
number) and a topology, which represents communications between nodes.

Definition 35 (Network) A network N is defined by (V,T) where:

— V denotes the set of all node identities, which is partitioned into two sets: VP denotes all
the honest nodes who are following the protocol and VI represents the intruder nodes which
are malicious.

— T represents the matrix containing the time of communication between two nodes. More
precisely, TA,B denotes the time that a message takes starting from node A to reach node
B. If A can not reach directly B then TA,B is equal to +∞. We also require that the
communication time between a node and itself is null: ∀A ∈ V,TA,A = 0.

We denote honest node identities by A,B,C, ..., and I, J, .. for intruders. By extension, we
will often refer to nodes by their identity (for example, node A).

This definition models only static networks. In order to express the possible movements of
nodes, we need to take into account the changes in topology over time, and so we extend the
previous definition by making the communication time depend on time. N = (V,T) becomes
N = (V,T(t)), where the element of the matrix are functions with parameter t. Each element
TA,B(t) models how much time a message emitted by the node A at time t takes to reach
node B. If needed, we use TA,B(t) instead of TA,B.

We denote N the set of all possible networks, which takes into account any number of
nodes, any number of intruders, and any possible evolution of the connections over time. Here
are a few examples of useful network families:

— N0 is the family of networks where no intruder is present at all. This allows us to show
that a protocol is insecure even when no intruder is present.

N0 = {N = (V,T(t)) ∈ N | VI = ∅} .

— Nsym is the family of networks where message transfer times are symmetrical.

Nsym = {N = (V,T(t)) ∈ N | ∀t,∀A,B ∈ V,TA,B(t) = TB,A(t)} .

— Nfully_connected is the family of networks where each node can communicate with any other
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node at any time.

Nfully_connected = {N = (V,T(t)) ∈ N | ∀t,∀A,B ∈ V,TA,B(t) 6= +∞} .

— Nstill is the family of networks where there is no change in transfer times depending on
time, or in other words a static network.

Nstill = {N = (V,T(t)) ∈ N | ∀t1, t2, ∀A,B ∈ V,TA,B(t1) = TA,B(t2)} .

8.2.2 — Events

Neighborhood is a physical property, which is linked to communication channels. In order to
isolate physical communications and abstract commands, we have two distinct layers, one of
which is strictly restricted to model physical behavior, and the other corresponding to the
abstract behavior of the nodes, which correspond to computations performed by a node. In
order to model communication between nodes and behaviors of a node on these two layers we
define the following events:

— sendφ(A,m, t) : A transmits m at time t using the physical layer.

— recvφ(A,m, t) : A receives m at time t using the physical layer.

— sendα(A,m, t) : A orders the transmission of m at time t using the logical layer.

— recvα(A,m, t) : A received and processed m at time t using the logical layer.

Physical events are annotated by φ and abstract events are annotated by α. In order to
construct meaningful sequences of events, nodes need to be able to know when a message was
sent or received at the physical layer. It is why each event has a timestamp. In the Ping-Pong
protocol the first action performed by A is modeled by the event sendα(A,P ing, t0) and
sendφ(A,P ing, t1), where t0 is the time when the node A transmit to the radio the message
Ping and t1 is the time when the radio of the node A emits the message. We introduce
another event END(N1, ..., Nk, tprop, t), which models that a protocol ends well at time t, and
concludes that nodes N1, ..., Nk are neighbors at time tprop.

8.2.3 — Rules and Traces

We build traces which are sequence of events. We use three sets of rules which model the
protocol, the communications between nodes and the intruder.

§ 8.2.3.1. Building traces from rules. Our approach is based on the trace-based model-
ing presented by Paulson for cryptographic protocols in [Pau98]. The rules represents a step
in the construction of a trace and has the following form:

(R)
H1 . . . Hn

C
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where R is the name of the rule, H1 . . . , Hn are the hypothesis that have to be satisfied in
order to produce the conclusion C.

A trace is a set of events which models the communication between nodes during the
execution of a protocol in a given network and a given intruder behavior. We use traces as
sets of events, not sequences as in Paulson’s model, since we have timestamps for each event,
the order is implicit. We denote by SN,I,P the set of all traces, i.e. possible executions, built
by successive applications of rules of our system.

The behavior of a node which respects a protocol is modeled by a set of rules denoted
P. Usually, protocols are specified at the logical layer and generate an END event when the
protocol finishes. We describe the three rules of PPingPong corresponding to the Ping-Pong
protocol.

(PingPong_1)
tr ∈ SN,I,P

(tr ∪ {sendα(A,P ing, t)}) ∈ SN,I,P

(PingPong_2)
tr ∈ SN,I,P recvα(A,P ing, t1) ∈ tr t1 ≤ t2

(tr ∪ {sendα(A, 〈A,Pong〉, t2)}) ∈ SN,I,P

(PingPong_3)

tr ∈ SN,I,P
sendα(A,P ing, t1) ∈ tr sendφ(A,P ing, t2) ∈ tr
recvα(A, 〈B,Pong〉, t3) ∈ tr t1 ≤ t2 ≤ t3 ≤ t4

(tr ∪ {END(A,B, t2, t4)}) ∈ SN,I,P

The two first rules correspond to the counterpart in the protocol, properly specified with
timestamps on the abstract layer. The last rule raises the END flag, which models the fact
that the protocol reached a conclusion about A and B.

§ 8.2.3.2. Communication Rules. We present the set of rules inherent to all networks.
The axiom (Begin) initializes a trace with the empty set. For generating events from one
layer to the other, we have two rules (Con0) and (Con1), where δ denotes the delay a node
needs to relay a message. Finally, we have the rule (Phy) which allows messages to go from a
node’s physical layer to another node in a time greater than or equal to TA,B(t1).

(Begin)
∅ ∈ SN,I,P

(Con0)
tr ∈ SN,I,P sendα(A,m, t1) ∈ tr t1 + δ/2 ≤ t2

(tr ∪ {sendφ(A,m, t2)}) ∈ SN,I,P

(Con1)
tr ∈ SN,I,P recvφ(A,m, t1) ∈ tr t1 + δ/2 ≤ t2

(tr ∪ {recvα(A,m, t2)}) ∈ SN,I,P
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(Phy)
tr ∈ SN,I,P sendφ(A,m, t1) ∈ tr TA,B(t1) ≤ (t2 − t1)

(tr ∪ {recvφ(B,m, t2)}) ∈ SN,I,P

This rule may be applied multiple times for a single send event, to model signal reflections
which may cause a message to be received twice or more, as shown in Figure 10. It is why there
is no upper bounds on t2. We also assume that all the nodes have access to a New_Nonce()
function, which returns a fresh random value at each new call.

A B

Figure 10 – Network where the same message hits the same node twice.

8.2.4 — Intruder Rules

Intruder capabilities are described by the set of rules denoted I, common to all the intruder
nodes. I describes both what an intruder node can know, and what it can do. We adapt the
classical Dolev-Yao intruder models [DY83a] given by the following rules. Symmetric keys are
labeled k, and asymmetric secret and public keys are denoted by (sk, pk). Encryptions are
denoted by {m}k. The set IKI(tr, t) represents the knowledge of the intruder node I at time
t and ÎKI(tr, t) represents what I can deduce from IKI(tr, t). We denote IKI(∅, 0) the initial
knowledge of the intruder I. It contains all agent names, public keys and intruder private keys.

(IK_init)
m ∈ IKI(∅, 0)

m ∈ IKI(tr, t)
(IK_hat)

m ∈ IKI(tr, t)

m ∈ ̂IKI(tr, t)

(IK_left)
〈m,n〉 ∈ ̂IKI(tr, t)

m ∈ ̂IKI(tr, t)
(IK_right)

〈m,n〉 ∈ ̂IKI(tr, t)

n ∈ ̂IKI(tr, t)

(IK_pair)
m ∈ ̂IKI(tr, t) n ∈ ̂IKI(tr, t)

〈m,n〉 ∈ ̂IKI(tr, t)

(IK_decrypt_sym)
{m}k ∈ ̂IKI(tr, t) k ∈ ̂IKI(tr, t)

m ∈ ̂IKI(tr, t)
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(IK_encrypt_sym)
m ∈ ̂IKI(tr, t) k ∈ ̂IKI(tr, t)

{m}k ∈ ̂IKI(tr, t)

(IK_decrypt_asym_sk)
{m}sk ∈ ̂IKI(tr, t) pk ∈ ̂IKI(tr, t)

m ∈ ̂IKI(tr, t)

(IK_encrypt_asym_sk)
m ∈ ̂IKI(tr, t) sk ∈ ̂IKI(tr, t)

{m}sk ∈ ̂IKI(tr, t)

(IK_encrypt_asym_pk)
m ∈ ̂IKI(tr, t) pk ∈ ̂IKI(tr, t)

{m}pk ∈ ̂IKI(tr, t)

(IK_nonce)
NI = New_Nonce()

NI ∈ ̂IKI(tr, t)

We have two other rules: (IK_recv) which increases the intruder’s knowledge with received
messages and (Intrude_forge) which represents the emission of a message forged by the
intruder.

(IK_recv)
recvα(I,m, t1) ∈ tr t1 ≤ t2

m ∈ IKI(tr, t2)

(Intrude_forge)
tr ∈ SN,I,P m ∈ ÎKI(tr, t1) t1 ≤ t2

(tr ∪ {sendα(I,m, t2)}) ∈ SN,I,P

8.2.5 — Mobility

Mobility of nodes is taken into account in the model, since the values of T(t) varies with time.
We add two realistic assumptions according to modern communication channels.

Assumption 1 A node moves much slower than a message.

Assumption 2 The time needed to forward a message δ is in the same order of magnitude of
value as the message transfer time.

It means that sending and relaying messages does not take a significant time with regard
to node movement.
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8.3 Neighborhood and (k)-Neighborhoods

8.3.1 — Neighborhood

A node A is neighbor or (1)-neighbor to the node B at time t if TA,B(t) is finite which means
that A is in communication range of B.

Definition 36 (Neighborhood) Let N = (V,T(t)) be a network, the neighborhood of a
node at time t, denoted by Ng1

A(t), is the set of nodes that A can reach with a message sent
at time t. It is formally defined by:

Ng1
A(t) = {X | X ∈ V ∧TA,X(t) < +∞} .

If tr ∈ SN,I,P is a trace, we denote by t̂r the set of all possible traces that can be inferred
from tr using rules defined previously. It allows us to define ttransfer(A,B,), the smallest time
possible needed to send a fresh message m from A to B at time t using only communication
rules.

We also define a protocol PForward and an intruder IForward which consist in the following
unique rule which makes nodes forward message on abstract layer:

(Forward)
tr ∈ SN,I,P recvα(A,m, t1) ∈ tr t1 ≤ t2

(tr ∪ {sendα(A,m, t2)}) ∈ SN,I,P

We use IForward and PForward to establish the minimum transfer time between two nodes.
For this we assume the simplest situation, where nodes can only forward messages.

Definition 37 (ttransfer(A,B, t)) Let N = (V,T(t)) be a network, and tr = {sendφ(A,m, t)}
be a trace in SN,IForward,PForward. We define ttransfer(A,B, t) by:

— ttransfer(A,B, t) = min{x− t | recvφ(B,m, x) ∈ t̂r ⊆ SN,IForward,PForward}.

— If the event recvφ(B,m, t) does not belong to SN,IForward,PForward then we state that
ttransfer(A,B, t) = +∞.

The time ttransfer(A,B, t) is different than TA,B(t), because it can take into account
multiple hops, and the relay times needed between nodes. Also, there may be routes which
are faster than the direct ones (with some conditions on δ and N, as in the first example in
Figure 8).

We denote by tmax_emitter the maximum positive finite time in T(t), i.e. the maximal com-
munication time of two connected nodes. If we assume that δ > tmax_emitter then we are able
to characterize the definition of Ng1

A(t) by relations between tmax_emitter and ttransfer(A,B, t).
In [20] we show that the authenticated ranging protocol, proposed in [PPH08a], is secure under
this assumption and exhibit an attack otherwise.
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Our idea for (1)-neighborhood is to prove that if a protocol claims to satisfy (1)-neighborhood
then there exists a direct way of communication between the nodes. It is captured by the
following definition.

Definition 38 Let N be a family of networks and I an intruder. A protocol P verifies the
(1)-neighborhood relation in presence of an intruder I over N if and only if ∀N = (V,T(t)) ∈
N ,∀A,B ∈ V , @tr ∈ SN,I,P such that END(A,B, t, tx) ∈ tr ∧B 6∈ Ng1

A(t).

A protocol does not verify a neighborhood property in presence of an intruder I over a
set of networks N if and only if there is at least a trace tr in the networks in N , built by the
given protocol and intruder rules, such that END(A,B, tprop, t) ∈ tr and there is no direct
communication possibility between those nodes at time tprop.

8.3.2 — (k)-neighborhood

We extend our definition in order to determine if a node is neighbor to another one after k
hops. For simplicity’s sake, we consider that all nodes have the same relaying time δ. We can
easily generalize our results with a different time for each node in the network.

Definition 39 ((k)-or-less-neighborhood) Let N = (V,T(t)) be a network, Ng≤kA (the
(k)-or-less-neighborhood of A) is the set of all the nodes B for which there is a path starting at
A at time t and ending at B with k hops or less, taking into account the minimal flight time
of messages and the relaying time δ. We define it recursively by:

Ng≤kA (t) =
{
B |

(
X ∈ Ng1

A (t)
)
∧
(
B ∈ Ng

≤(k−1)
X (t+ TA,X(t) + δ)

)}
.

This recursive definition means that the (k)-or-less neighborhood of A at time t is the
union, for all the neighbors X reachable by A at time t, of the (k − 1)-or-less-neighborhoods
of the different X at time t+ TA,X(t) + δ. Colloquially, a (k)-neighbor of A is a node which
can be reached in k or less hops by a message sent from A at time t, and relayed through any
other nodes. As expected, the (1)-or-less-neighborhood is the same thing as the neighborhood
given in Definition 36. According to our definition, (k)-or-less-neighborhood has the following
straightforward property.

Property 1 Let N = (V,T(t)) be a network, then we have:

Ng≤kA (t) ⊆ Ng
≤(k+1)
A (t).

We now define the (k)-neighborhood, which is the set of nodes for which there is a path
(in the sense of the previous definition) of length exactly k. It is the set of all the nodes B for
which there is a path starting at A at time t and ending at B with k hops, but there is no
such path with k − 1 hops or less.
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Definition 40 ((k)-neighborhood) Let N = (V,T(t)) be a network, NgkA ((k)-neighborhood
of A) is defined by:

NgkA(t) =
(
Ng≤kA (t)

)
\
(
Ng≤k−1A (t)

)
.

Now, as in the previous subsection, we can formally define what is a protocol which verifies
the (k)-or-less-neighborhood relation in our framework.

Definition 41 Let N be a network family. A protocol P verifies the (k)-or-less-neighborhood
relation in presence of an intruder I if and only if ∀N = (V,T(t)) ∈ N , ∀A,B ∈ V , @tr ∈
SN,I,P such that END(A,B, t, tx) ∈ tr ∧B 6∈ Ng≤kA (t).

In [20], we present proofs using our model on several examples.

8.4 (k)-or-less-Neighbors Discovery Protocol

Assuming that we have a secure (1)-neighbor discovery protocol, we propose a (k)-or-less-
neighbor discovery protocol based on it. This protocols aims to construct the (k)-or-less-
neighborhood, by using the knowledge each node has about its neighborhood. For this protocol,
we need to consider several END events, each being a stepping stone towards a final conclusion.
For instance ENDk(A,B, tprop, t) expresses the (k)-or-less neighborhood property between A
and B at time tprop. We notice that definitions of how a protocol verifies a property follows
the same idea as before: there should not exist a trace where an END contradicts the physical
property it claims. We call this protocol the Sharek protocol.

In the first phase of the protocol, each node floods the network with its signed (1)-
neighborhood. We model this with the V iew function, which corresponds to a part of the
local neighborhood of a node. After this, no more communications happen.

Then, all the nodes try to map their (2)-or-less-neighborhoods based on two or more
of their (1)-neighbors claiming neighborhood to another node. After that, each node
continues by computing its upper neighborhood based on its previous deductions. We do not
require that each node knows its whole (1)-neighborhood, but only a subset of it. If two nodes
claim neighborhood with a third one, but are not at the same level of neighborhood, then
the third one will be accepted at the highest level, since the (k − 1)-or-less neighborhood is
included in the (k)-or-less neighborhood.

This protocol is sensitive to the number of intruders, we present it for only one intruder
in the network. This way, the single intruder can not create false conclusions by lying, since
there will not be the same claim from another node. If we increase the number of approving
nodes in the deduction, then we can resist to more intruders.

For proving our protocol we also assume one of the two following assumptions:

— Nodes have synchronized clocks. This is required by the protocol which makes nodes use
timestamp sent by their neighbors. If honest nodes send erroneous times, then the intruder
can easily leverage this and trick the protocol into a false conclusion. In the rest, we
consider this assumption.
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— Nodes are static. i.e. Nstill as defined above. Then, the neighborhoods will not change
over time, and the timestamps become trivially useless. It is easy to infer a proof with this
assumption from the previous case.

We give the few rules modeling our protocol:

(Sharek_begin)
tr ∈ SN,I,P

tr.sendα(A, {〈tprop, A, V iew(A,Ng1
A(tprop))〉}skA , t) ∈ SN,I,P

(Sharek_basis)
tr ∈ SN,I,P B ∈ V iew(A,Ng1

A(tprop)) tprop ≤ t

tr.END1(A,B, tprop, t) ∈ SN,I,P

(Sharek_forward)

tr ∈ SN,I,P
recvα(A, {〈tprop, B, {N1, ..., Nk}〉}skB , t1) ∈ tr

t1 ≤ t2
tr.sendα(A, {〈tprop, B, {N1, ..., Nk}〉}skB , t2) ∈ SN,I,P

(Sharek_makestep)

tr ∈ SN,I,P
recvα(A, {〈tprop, B, {D, ...}〉}skB , t1) ∈ tr
recvα(A, {〈tprop, C, {D, ...}〉}skC , t2) ∈ tr

ENDb(A,B, tprop, tb) ∈ tr
ENDc(A,C, tprop, tc) ∈ tr
∀tx ∈ {t1, t2, tb, tc}, tx ≤ td

tr.ENDmax(b,c)+1(A,D, tprop, td) ∈ SN,I,P

In [20], we prove the security of this protocol. We use N1,sym the family of networks where
there is only a single intruder, and where all the connections are symmetric. First we prove
that our protocol verifies (1)-neighborhood property then we assume Sharek protocol verifies
all (i)-neighborhood properties for i ≤ k and we show that it verifies (k + 1)-neighborhood
property.

8.5 Conclusion

We modeled (k)-neighborhood property in a wireless network in order to verify protocols in the
presence of intruders. We take into account time and movement of nodes. We also proposed
the Sharek protocol, which securely discover (k)-neighbors based on the knowledge of the
(1)-neighborhood, in presence of one intruder. We can generalize this protocol in order to be
resistant to several intruders. We also provide a formal proof of the security of the Sharek
protocol in our formal model.
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Chapter 9
Independent Intruders

U ne des principales caractéristiques du modèle d’intrus introduit par Dolev et Yao est que
l’intrus contrôle le réseau. Dans ce chapitre, nous avons développé un modèle formel à

base de contraintes pour vérifier des protocoles de routage dans les réseaux ad-hoc, en présence
de nœuds malicieux intépendants : ces intrus ne partagent pas les informations collectées
individuellement et ne collaborent pas entre eux. Etant donné une topologie, un nombre borné
de session, nous avons proposé une procédure pour trouver une attaque en présence de tels
intrus pour des protocoles de routage dans les réseaux sans fil ad-hoc.

Tout d’abord, nous avons défini un système de contraintes adapté à de tels intrus, appelé
système de contraintes partiellement bien-défini. Chaque intrus augmente uniquement sa propre
connaissance, alors que les systèmes de contraintes existants considéraient une connaissance
global. Pour trouver une solution à un système de contrainte il est usuel de donner des règles
de simplification afin de réduire le système à un système plus simple. Les règles existantes ne
fonctionnent pas pour les systèmes de contraintes partiellement bien-définis. Nous avons donc
construit de nouvelles règles de simplification pour de tels systèmes. Bien entendu nous avons
montré la correction, la complétude et la terminaison de ces règles.

Ensuite nous avons utilisé un calcul permettant de modéliser les protocoles de routage
dans les réseaux ad-hoc proposé par M. Arnaud [Arn12], et l’avons adapté afin de prendre
en compte les caractéristiques d’intrus indépendents. Nous avons aussi proposé des règles de
transfomation qui étant donné un protocol de routage modèlisé dans ce calcul contruisent un
système de contraintes partiellement bien-défini.
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Ad-hoc network is a collection of wireless devices forming a network without the aid of
any stand-alone infrastructure or centralized administration. Each device itself acts as a
router for forwarding and receiving packets to and from other devices. A routing protocol
is always needed to transport data and finding a path using control packet is a critical
task. Several protocols have been presented to accomplish routing in ad-hoc networks such
as [JMB01, HPJ05, PR99, BV04, PH02, ZA02]. An example of routing protocol for ad-hoc
network is Dynamic Source Routing protocol (DSR)[JMB01]. The route discovery in DSR is
divided into two phases:

— In the request phase a source S broadcasts a route request message which is received by
all nodes currently within wireless communication range of S. Request message contains
source and destination identifiers (S and D) and a unique request Id, chosen by S. Each
route request also contains the list of forwarding nodes identifiers. At the beginning of the
protocol, this route list is empty. When a certain node receives a request two situations
occurs:

– If the current node is the target of the request, it returns a route reply which contains
the list of all forwarding nodes including the source and the destination.

– Otherwise, the current node appends its own identifier to the list of all forwarding
nodes and broadcasts it. Note that, if the current node has already seen another request
message from the same source bearing the same request Id, or if its own identifier is
already listed in the route list, it discards the request.

— In the reply phase, the node D (the destination) replies back the discovered route to S
through the intermediate nodes appears on the list. The intermediate node that receives
the reply message just forwards the message to the previous node in the list.

Figure 11 illustrates normal DSR route discovery between source node S and node D.

S A B D
[] [A] [A,B]

[A,B] [A,B] [A,B]

Figure 11 – DSR route discovery.

We describe the Secure Routing Protocol (SRP) which was claimed to be secure [PH02].
It is a generic way for securing on-demand source routing protocols. We use the following
notations:

— [] is empty list and a :: r the insertion of a to the list r.

— < a, b, c > denotes a tuple.

— req, rep are identifiers indicating the phase of the execution.

— Id is request identifier.

— l, l′ are lists of nodes
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— KSD is a shared key between S and D.

— hmac is a MAC function and m,m′ represent MACs.

The protocol works in two phases:

Request phase:

— The source S broadcasts to its neighbors a request containing its identifier S, the destination
identifier D, an Id that identifies the request, an empty list [], and a MAC computed over
the content of the request with the key.

— Each intermediate node that receives a request message checks that the list representing
the route ends with the identifier of one of its neighbors, appends its identifier to the list,
and broadcasts the modified request.

In Figure 12, we give a more formal description of this phase.

Request phase:
The source S broadcasts 〈req, S,D, Id, [], hmac(〈req, S,D, Id〉,KSD)〉

Intermediate node V receives 〈req, S,D, Id, l,m〉
V checks that the last element of l is one of its neighbors
V broadcasts 〈req, S,D, Id, l :: V,m′〉

The destination D receives 〈req, S,D, Id, l′, hmac(〈req, S,D, Id〉,KSD)〉

Figure 12 – Specification of SRP Request Phase Applied to DRS.

Reply phase:

— Once the destination node received a message, it checks that last node in the route is one of
its neighbors and verifies the MAC. Then it initiates the reply phase by sending a message
containing the discovered route with a MAC computed over it with the key KSD.

— Each node checks if its identifier appears in the route list between two of its neighbors, if
so they forward the replay to the previous node in the route.

— Then once the source S receives an answer containing a route to D with a MAC matching
this route. It checks that the route does not contains a loop and that its neighbor in the
route is indeed one of its neighbor in the network.

In Figure 13, we give a more formal description of this second phase.

Against a routing protocol, the attacker goal is to force S and D to believe in a false route. We
now describe two attacks on SRP, one with colluding malicious nodes and one with independent
adversaries.

Consider the network represented by graph G0 in Figure 14, where the edges between
nodes represent symmetric communication links. The node S initiates a route discovery
procedure to reach D. Let M1 and M2 be two malicious nodes. We show that if M1 and
M2 are collaborating and sharing their acquired knowledge, then there is an attack on SRP
protocol applied to DSR, for any “sub-network” between them. We just assume that each node
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Reply phase:
The destination D sends 〈rep, S,D, Id, l′, hmac(〈req,D, S, Id, l′〉,KSD)〉

Intermediate node V receives 〈rep,D, S, Id, l′,m′〉
V checks if its identifier appears in the l′ between two of its neighbors
V sends to next node in the list 〈rep,D, S, Id, l′,m′〉

The source S receives 〈rep,D, S, Id, l′, hmac(〈rep,D, S, Id, l′〉,KSD)〉

Figure 13 – Specification of SRP Reply Phase Applied to DRS.

knows its neighbors.

S M1 M2 DCloud

Figure 14 – Graph G0

Request phase: To initiate the request phase S chooses a unique Id, in order to avoid
replay attacks, and broadcasts m1 = 〈req, S,D, Id, [], hmac(〈req, S,D, Id〉,KSD)〉. The node
M1 receives the route request message m1. As M1 and M2 share their knowledge, then M2

also get the message m1 (from M1). So, M2 can modify m1 and obtain a fake message m′1 = 〈
req, S,D, Id, [M1,M2], hmac(〈req, S,D, Id〉,KSD)〉 and send it to D. Since, M2 is neighbor
of D and the MAC of the message m′1 is correct, then D accepts m′1.

Reply phase: D builds the replay message m2 = 〈req, S,D, Id, [M1,M2], hmac(〈req, S,D,
Id, [M1,M2]〉,KSD)〉 and sends it to M2 in order to propagate back to S. When the node
M2 receives the message m2, M2 shares it with M1. In order to complete the attack M1 just
forwards m2 to S. As the MAC of m2 built by D with the correct key KDS , M1 is neighbor
of S, and the route [M1,M2] is free from loops, then S believes that [S,M1,M2, D] is a valid
route.

This attack is know as wormhole attack.
We now assume that M1 and M2 are two malicious nodes, each knowing only its neighbors

(local knowledge) and there is no collaboration between them. If we consider the network
represented by graph G1 in Figure 15, there is still an attack on SRP. We remark that M1 nor
M2 can make alone an attack on SRP in network G1.

S A

B

M1

M2 C

D

Figure 15 – Graph G1
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First request phase: The source node S initiates the SRP protocol by broadcasting a
request message 〈req, S,D, Id, [], hs〉, where hs = hmac(〈req, S,D, Id〉,KSD). Then A receives
the request message, checks that S is one of its neighbors, adds its identifier to the list and
broadcasts the resulting message 〈req, S,D, Id, [A], hs〉. The node B receives the message and
does the same as A, then M2 receives m1 = 〈req, S,D, Id, [A,B], hs〉. The malicious node
M2 forges the message m′1 = 〈req, S,D, Id, [A,M2], hs〉 and sends it to C which accepts it
and broadcasts m2 = 〈req, S,D, Id, [A,M2, C], hs〉. Then D and M1 receive m2. Since C is
neighbor of D, D accepts m2

First reply phase: The node D replies m3 = 〈req, S,D, Id, [A,M2, C], hD〉, where hD =

hmac(〈req,D, S, Id, [A,M2, C]〉,KSD). The malicious node M1 receives the message m2 =

〈req, S,D, Id, [A,M2, C], hs〉 from C. Now M1 believes that M2 is neighbor of A and C (since
from the point of view of M1, the node M2 is honest).

Second request phase: Thus,M1 forgesm′2 = 〈req, S,D, Id, [A,M1,M2, C], hs〉, and sends
it to D in the name of C. Then D accepts the message.

Second reply phase: the node D generates h′D = 〈req,D, S, Id, [A,M1,M2, C]〉,KSD) over
a false route [A,M1,M2, C], and replies 〈req, D,S, Id, [A,M1,M2, C], h′D〉 to C and M1. M1

forwards it to A who accepts the message and forwards it to S. Finally S verifies the MAC,
checks that A is its neighbor and that the route is free from loops, and accepts the false route
[S,A,M1,M2, C,D], which concludes the attack.

We notice that M2 cannot mount alone this attack since:

— m3 is received by M2 cannot directly be forwarded to B because he will drop it since B is
not in the route list.

— even if M2 adds B to the list so that B will accept the message, but the message will be
rejected by S when MAC will be checked.

In wireless ad-hoc network where communication can only occur node to node, it is not
realistic to assume that an intruder can listen to all messages exchanged in the network. The
intruder has to be located somewhere, and can thus only receive the messages sent by his
immediate neighbors. Similarly, he can only send messages directly to his neighbors. As
a consequence we have several intruders (malicious nodes) each located somewhere on the
network and listen only to his neighbors and thus has only local knowledge. Our aim is to
propose a formal verification model which takes into account such independent intruders. This
intruder model is weaker than the classical one proposed by Dolev-Yao, and also than the
one proposed by M. Arnaud [Arn12]. In other words, it is possible that there is no attack for
a given protocol in presence of independent intruder, but there is an attack in presence of
collaborative intruders that share information. Both models are useful because the first one
allows to verify protocols against possible wormhole attack, where intruder are very powerful,
while the second one models the situation of several nodes independent malicious nodes.
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Moreover if we consider that an adversary wants to attack nodes of an existing network
then it is possible to take the control of some nodes without changing any communication
settings. While it is very difficult to add an extra communication channel to such small devices
in order to establish a private channel with a central intruder station that share knowledge
collected by each corrupted nodes. Hence modeling intruders with independent nodes seems
again more realistic.

Related Work: In [MS01a, MS03, Shm04, CLCZ10], the authors propose simplification
rules to transform a constraints system into a simpler constraints system called solved form.
They also provide a decision procedure for solving such systems. Generally they assume one
intruder with a global knowledge, which is always increasing.

In [Arn12], a constraint based formal model was proposed to verify the security of ad-hoc
network protocols in the presence of an intruder that controls several malicious nodes. These
nodes collaborate between each other by sharing their acquired knowledge. This constraints
system is an extension of the one proposed by Comon-Lundh et al. in [CLCZ10].

To the best of our knowledge, there is no work considering constraints systems that model
several independent intruders.

Contributions: For a bounded number of session, we develop a constraint based model
for the formal verification of secured ad-hoc routing protocols in a context where intruders
are independent malicious nodes. We propose what we call partially well-formed constraints
system, which is suitable to represent several independent intruders where each has his own
knowledge. Known constraints systems permit to represent only one intruder. To decide if a
certain constraints system has a solution or not, usually a set of simplification rules is used in
order to transform the system into simpler one. But, the existing rules do not work for our
system, we propose rules to simplify partially well-formed constraints systems. Naturally, we
prove termination, soundness and completeness of our rules.

Moreover in [Kas12], we use pi-calculus to model ad-hoc network routing protocols. We
extend the concrete transition system proposed in [Arn12] in order to represent all executions of
certain protocol in presence of independent malicious nodes that do not share their knowledge.
We also give transformation rules to construct a partially well-formed constraints system.
Hence we obtain a decision procedure to decide if a given protocol is insecure in the presence
of independent malicious nodes for a given network topology. The details of this modeling and
transformations for obtaining a partially well-formed constraints system are given in [Kas12].

Outline: In the next section we introduce notations and background. In Section 9.2 we
describe our intruder model. In Section 9.3 we define constraints system in order to model
independent intruder. In Section 9.4, we propose a set of rules for transforming our constraints
system into a quasi-solved form. Finally in Section 9.5, we give a resolution procedure for such
constraints system.
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9. Independent Intruders

9.1 Preliminaries

We assume the perfect encryption assumption, it means that the only way to obtain information
of a cryptographic primitive is to known his inverse function. Hence all messages are modeled
as elements of some term algebra where the constructors of that algebra are seen as abstractions
of cryptographic algorithms.

Definition 42 (Signature). A signature is a finite set of function symbols F , where every
f ∈ F associated with a positive natural number called arity, i.e. the number of arguments it
has, denoted by ar. The set of function symbols of arity p is denoted by Fp. We distinguish a
set of secret function Fpriv that contains private functions, i.e. functions that the intruder can
not use.

Definition 43 (Terms). Let F be a signature, X be an infinite set of variables and N be an
infinite set of names. The set of terms T (F ,N ,X ) is defined to be the smallest set such that:

— N ∪ X ⊆ T (F ,N ,X ).

— Any f ∈ Fp, if f : s1 × · · · × sp → s and t1, . . . , tp ∈ T (F ,N ,X ) such that for any i, ti is
of the sort si, then f(t1, . . . , tp) ∈ T (F ,N ,X ).

Definition 44 (Term Size). Let t be a ground term. The size of t, denoted by |t|, is the
number of function symbols used to build t, defined recursively by:

— |t| = 0 if t ∈ N

— |t| = |u1|+ · · ·+ |up|+ 1 if t = f(u1, · · · , up) for certain f ∈ Fp

Example Let t = 〈senc(m, k), a〉, then |t| = 2.

Definition 45 (Subterms). Let t be a term, we define a set of subterms st(t) as a smallest
set such that:

— t ∈ st(t).

— f(t1, . . . , tp) ∈ st(t)⇒ t1, . . . , tp ∈ st(t), for f ∈ Fp
For a set of terms T we define st(T ) as

⋃
t∈T st(t).

We consider a finite set of variables X and a finite set of names N , that represents nonces,
keys, agent names and some special names like req, rep, Id, etc . . . . We assume that names and
variables are given with sorts. We consider sort Agent that contains agent names (nodes), sort
Key that contains keys and sort List that contains lists. Also we consider a special sort Msg

that subsumes all other sorts. Furthermore, we consider a special set of names Nagent, which
represents only agent names, i.e Nagent contains the elements of N that are of sort Agent.

In the rest, we use the signature F = {senc, aenc, 〈−,−〉,− :: −, hmac, sig, priv} of
function symbols, that are modeled as follows:

— f : Msg ×Key →Msg for f ∈ {senc, aenc, sig, hmac}
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9.2. Intruder Model

— 〈−,−〉 : Msg ×Msg →Msg

— h : Msg →Msg

— − :: − : List×Agent→ List

— g : Agent→Msg for g ∈ {pub, priv}
The symbol 〈−,−〉 represents pairing function, and − :: − is list constructor. We write
〈u1, u2, u3〉 for the term 〈u1, 〈u2, u3〉〉, and [u1, u2, u3] for (([] :: u1) :: u2) :: u3, where []

represents the empty list. The term priv(A) represents the private key associated to the agent
A. The intruder has no access to the priv function as he cannot generate private keys. For
simplicity, we assume that agent identities are also their public keys. The function symbol
senc (resp. aenc) is used to model symmetric (resp. asymmetric) encryption, hmac is used to
compute message authentication code, and sig is used to sign messages.

Example Consider a set T = {hmac(〈m,m′〉, k), [A,B]}, then st(T ) = {hmac(〈m, m′〉, k),
〈m,m′〉, k, m,m′, [A,B], [B], B, A, []}.

Definition 46 Let t be a term, we define a set of its variables by vars(t) = X ∩ st(t). For a
set of terms T we define vars(T ) as

⋃
t∈T vars(t).

A term t that does not contain variables, i.e. vars(t) = φ is called ground term.

Example Consider a set T = {[A,B, x], senc(y,K)}, where A and B are agent names, x and
y are variables, and K is a symmetric key, then vars(T ) = {x, y}.

Definition 47 (Substitution). A substitution σ is a mapping from X to T (F ,N ,X ) with
the domain dom(σ) = {x ∈ X | σ(x) 6= x}. We often use postfix notation tσ instead of σ(t).
We consider only well-sorted substitutions, that is substitutions for which x and xσ have the
same sort. We call a substitution σ ground if for every x ∈ dom(σ), the term xσ is ground.

Example The substitution σ = {x → 〈A,NA〉}, where A is an agent name, and NA is a
nonce cannot be applied to the term aenc(m, pub(x)).

Definition 48 (Unification and mgu). Two terms t1 and t2 are unifiable if there exists a
substitution σ such that t1σ = t2σ. The most general unifier between two terms t1 and t2,
denoted by mgu(t1, t2) is a substitution, such that for any substitution θ if t1θ = t2θ, then
there exists θ′ such that θ′ = mgu(t1, t2)θ.

9.2 Intruder Model

As it has been done in [Arn12], we extend the classic Dolev-Yao intruder deduction system.
The relation T ` u represents the fact that the term t is deducible from the set of terms T .
Our deduction system is described in Figure 16. The first inference rule (A) is an axiom, and
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the second rule (C) describes the composition rules. The remaining inference rules describes
the decomposition rules. These deduction rules say that an intruder can compose messages by
pairing, building lists, encrypting and signing messages providing he has the corresponding
keys. Conversely, he can retrieve the components of a pair or a list, and he can also decrypt
(resp. unsign) encrypted messages (resp. signed messages) provided he has the decryption key.
However, he can not create private keys, for instance, as the deduction system does not allow
him to use function priv.

(A)
u ∈ T

T ` u
(C)

T ` u1 T ` u2
T ` f(u1, u2)

f ∈ {senc, aenc, 〈〉, ::, hmac, sig}

(UP )
T ` 〈u1, u2〉

T ` ui
i ∈ {1, 2} (UL)

T ` u1 :: u2

T ` ui
i ∈ {1, 2}

(SD)
T ` senc(u1, u2) T ` u2

T ` u1
(AD)

T ` aenc(u1, pub(u2)) T ` priv(u2)

T ` u1

(US)
T ` sig(u1, priv(u2)) T ` pub(u2)

T ` u1

Figure 16 – Intruder deduction system.

Definition 49 — The size of a proof π, denoted by |π|, is the number of nodes of π.

— Let T be any set of terms, and u be any term. A proof π of T ` u is minimal if there is no
proof π′ of T ` u with fewer nodes than π, i.e. |π′| < |π|.

— Let T be any set of terms, and u be any term. We say that a proof of T ` u is simple proof
if there is no repeated nodes on any branch. Remark that a sub-proof of a simple proof is
also simple.

9.3 Partially Well-Formed Constraints System

Several works [MS01b, CLCZ10] consider so-called well-formed constraints system of the form
T1 
 u1 ∧ · · · ∧ Tn 
 un, where Ti is a set of terms and ui is a term, that satisfies the two
following assumptions:

- Intruder knowledge monotonicity: T1 ⊆ · · · ⊆ Tn.

- Variable origination: if x occurs in vars(Ti) for certain Ti then there exists k < i such
that x ∈ vars(uk).

The first assumption models the fact that the intruder controls the network, as it was
proposed by Dolev-Yao [DY83b]. So the intruder listens to all communications and thus his
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9.3. Partially Well-Formed Constraints System

knowledge is always increasing. The second assumption models the behavior of the agents
participating to the protocol saying that all used variables have values previously instantiated.
In order to reason about protocol insecurity taking into account several independent intruders,
we define a new kind of constraints systems called partially well-formed constraints system.

Definition 50 (PWFCS). Let m be the number of intruders, n be the total number of
constraints, and nj be the number of constraints associated to the jth intruder, so we have∑j=m

j=1 nj = n. A partially well-formed constraints system C is either ⊥ or a finite conjunction
of constraints satisfying origination and partial monotonicity, modeled as follows:

C = T l1 
 u1 ∧ · · · ∧ T qn 
 un

where l and q ∈ {1, . . . ,m}.

- Origination, i.e. for any j ∈ {1, . . . ,m}, if x ∈ vars(T ji ) then there exists k < i such
that x ∈ vars(uk).

- Partial monotonicity, i.e. T jk ⊆ T
j
i for every j ∈ {1, 2, . . . ,m} such that k < i.

The constraint T ji 
 ui represents the i
th constraint in the system, and it is associated to

the jth intruder. T ji is a finite set of terms called the left-hand side of the constraint, and ui is
a term called the right-hand side of the constraint.

The partial monotonicity condition states that the knowledge of each intruder is always
increasing, and that when a certain intruder acquires a new message only his knowledge is
increased.

The origination condition stays the same modulo the presence of several intruders. It says
that each time a new variable is introduced, it first occurs in some right hand side of the
constraint system.

Definition 51 (Right and Left Hand Sides). Let C be a constraints system. We denote by
rhs(C) (resp. lhs(C)) the set of right-hand side terms (resp. left-hand side sets of terms) of
C. Formally, rhs(C) and lhs(C) are defined recursively in the following way:

rhs(⊥) = φ lhs(⊥) = φ

rhs(C ∧ T ji 
 ui) = rhs(C) ∪ {ui} lhs(C ∧ T ji 
 ui) = lhs(C) ∪ {T ji }

The subterms of C is defined as st(C) = st(lhs(C)) ∪ st(rhs(C)). Also we define right-hand
variables of C by rvars(C) = vars(rhs(C)). Due to the origination property rvars(C) contains
all the variables that appear in C. One other consequence of the origination is the following
property, which says that for any variable there exists a constraint, denoted Tx 
 ux, where
the variable appears for the first time on the right hand side.

Property 2 For any variable x ∈ vars(C), there exist l and k such that: T lk 
 uk ∈ C, x /∈
vars(T lk), x ∈ vars(uk) and for every T ji 
 ui ∈ C such that x ∈ T ji , i > k. We denote T lk by
Tx and uk by ux.
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Definition 52 (Solution) A solution θ of a partially well-formed constraints system C is a
well-sorted ground substitution whose domain is rvars(C) and such that, for every T ji 
 ui ∈ C,
T ji θ ` uiθ.

Definition 53 (Minimal Solution) Let C be a partially well-formed constraints system and
rvars(C) = {x1, · · · , xp}. A solution θ of C is minimal if for every solution θ′ of C, we have∑j=p

j=1 |xjθ| ≤
∑j=p

j=1 |xjθ′|.

Example Consider the partially well-formed constraints system C2 of Figure 17. C2 has
a minimal solution θ = {x 7→ senc(m, k)}. Another possible solution of C2 is θ′ = {x 7→
senc(senc(m, k), k1) but it is not minimal.

T 1
1 = {m, k, k1} 
 x

T 2
2 = {x, k1} 
 senc(m, k)

Figure 17 – Partially well-formed constraints system C2

9.4 Simplifying Constraints System

Deciding if a certain constraints system has a solution is not an easy task. There exist
procedures to solve a well-formed constraints system according to the variant of intruder model
considered. However the main idea of these procedure is to use a set of simplification rules
in order to reduce the initial system of constraints into a simpler one that has a solution. A
good simple form to decide if a certain constraints system has a solution or not is the one
used in [CLCZ10], which is called solved form. A constraints system is in solved form if all its
constraints are of the form T 
 x where x is a variable. Any constraints system in this form has
a solution. It is enough to assign a ground term from left-hand side of each constraint to the
right-hand variable. Comon-Lundh et al. in [CLCZ10] prove that any well-formed constraints
system that has a solution can be transformed to the solved form. But, this is not the case
of partially well-formed constraints system. Consider the partially well-formed constraints
system C1 of Figure 18, C1 has a solution θ = {x 7→ 〈a, b〉}. But, using simplification rules
proposed in [CLCZ10] C1 can not be transformed into solved-form. For this reason we consider
another form we called quasi-solved form defined below, where right hand side of a constraint
can either be a variable or a constant. As a consequence C1 of Figure 18 is in quasi-solved
form.

Definition 54 (Quasi-solved form). A partially well-formed constraints system is in quasi-
solved form if it is ⊥ or each of its constraints T ji 
 ui satisfies:
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T 1
1 = {a, b} 
 x
T 2
2 = {x} 
 a
T 3
3 = {x} 
 b

Figure 18 – Partially well-formed constraints system C1

1. ui is either variable or ground term.

2. T ji ∪ {x | T
j
k 
 x ∈ C, k < i} 0 ui1

In Figure 19, we propose a simplification rules that transform any any partially well-formed
constraints system that has a solution into a quasi-solved form that has a solution. The rule
Rax removes the redundant constraints, i.e when the constraint is a logical consequence of
previous constraints. The rule Runif guesses some equality between two parts of the sent
messages. R′unif allows assigning to a variable a concatenation (or list) of two other terms.
The rule Rf decomposes a term f(u, v) for certain f ∈ {senc, aenc, 〈−,−〉,− :: −, hmac, sig},
and Rfail states the constraints system has no solution if it contains a constraints T Ji 
 ui
free from variables with ui is not deducible from T ji .

In fact all the rules are indexed by a substitution, when there is no index then the identity
substitution is implicitly assumed. We write C  n

σ Ĉ if there are C1, · · · , Cn with n > 1, Ĉ = Cn,
C  σ1 C1  σ2 · · ·  σn Cn and σ = σn · · ·σ2σ1. We write C  ∗σ Ĉ if there exists n > 1 such
that C  n

σ Ĉ.

Rax : C ∧ T ji 
 ui  C if T ji ∪ {x | T
j
k 
 x ∈ C, k < i} ` ui

Runif : C  σ Cσ σ = mgu(t1, t2), t1, t2 ∈ st(C)

R′unif : C ∧ T ji 
 ui  σ Cσ ∧ T ji σ 
 uiσ σ = mgu(t, f(t1, t2)), f ∈ {〈−,−〉,− :: −},

t ∈ vars(ui), t1, t2 ∈ st(T lk), where k ≤ i

Rf : C ∧ T j 
 f(u, v) C ∧ T j 
 u ∧ T j 
 v if f ∈ {senc, aenc, 〈−,−〉,− :: −, hmac, sig}

Rfail : C ∧ T ji 
 ui  ⊥ if T ji = ∅, or vars(T ji ∪ {ui}) = ∅

and T ji 0 ui

Figure 19 – Simplification rules.

We first prove that using these rules still produce a partially well-formed constraints system,
then we prove the completeness, soundness and termination.

1It means that we cannot apply the rule Rax to T ji 
 ui.
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Lemma 17 The simplification rules of Figure 19 transform a partially well-formed constraints
system into a partially well-formed constraints system.

Theorem 18 Let C be a partially well-formed constraints system, we have that:

— Soundness (Correctness): If C  ∗σ Ĉ for some substitution σ, and if θ′ is a solution of Ĉ
then θ = σθ′ is a solution of C.

— Completeness: If θ is a minimal solution of C, then there exist a partially well-formed
constraint system Ĉ in quasi-solved form and substitutions σ and θ′ such that θ = σθ′,
C  ∗σ Ĉ and θ′ is a solution of Ĉ.

— Termination: There is no infinite derivation sequence C  σ1 C1  σ2 C2 · · · σn Cn · · · .

The difficult part is the completeness. Our idea for constructing θ′ is to construct a minimal
solution. Moreover we first to apply the rule Runif then the rule Rf . After if the system is
still not in quasi-solved form we construct a minimal solution using the rule R′unif . Finally we
apply rule Rax in order to eliminate redundant constraints. Detailed proofs of these results
can be found in [Kas12].

9.5 Solving quasi-solved form constraints system

Let C be a partially well-formed constraints system, in quasi-solved form different from ⊥. We
can see C as two systems:

- C1 contains constraints T ji 
 xi of C with xi is variable.

- C2 contains constraints T ji 
 ui of C with ui is a ground term.

Finding a solution on C1 corresponds to the usual solved form proposed in the literature.
Usually it is enough to assign to xi a ground term from T ji for each T ji 
 xi of C1 to get a
solution of C1. After we just have to check that constraints system C2 is satisfied or not.

This concludes the resolution of partially well-formed constraints system. For verifying
routing protocol, we adapt the modeling and transformations of M. Arnaud in applied π-
calculus for the independent intruders in order to obtain a partially well-formed constraints
system.

9.6 Conclusion

We considered an intruder model that is close to the reality by limiting the sharing ability of
intruders. In this model, we assume the existence of several independent intruders that do not
share any knowledge. In this setting, we show that deciding whether there is an attack against
a given ad-hoc routing protocol for a bounded number of sessions can be done in NP time.

We define a new type of constraints system called partially well-formed constraints system
and propose simplification rules that can be used to transform it into quasi-solved form. This
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new constraints system is convenient to model security protocols in the presence of several
independents intruders.

We extend modeling in applied π-calculus and transformations for obtain constraints
system proposed by M. Arnaud in [Arn12] to protocols considering the presence of malicious
nodes that do not share their knowledge. It gives us a decision procedure for verifying ad-hoc
routing protocols in presence to independent intruder.
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Chapter 10
Routing with Shared Tabu List

C e chapitre présente l’étude de marches aléatoires employant des listes taboues afin d’éviter
que les messages passent deux fois par le même nœud. L’itinéraire du message est stocké

dans son contenu. Il est donc posible d’éviter de repasser par un nœud déjà visité. Pour des
raisons d’implémentations évidentes nos listes taboues sont finies. Il faut donc déterminer
la taille de la liste mais aussi la politique appropriée pour gérer le cas des listes pleines.
Nous definissons une large classe de politiques de gestion des marches aléatoires avec liste
taboue. Nous donnons une condition nécessaire et suffisante sur ces politiques afin d’assurer la
convergence de ces algorithmes en temps fini. De plus nous caractérisons en fonction de la
taille des listes taboues la politique la plus efficace. Enfin nous comparons en fonction de leurs
tailles trois politiques usuelles de gestion de listes taboues: FIFO, LRU, RAND.
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10. Routing with Shared Tabu List

10.1 Introduction

A random walk is a mathematical formalization of a route taken by a walker through a
topology of locations: at each step, the next destination is randomly chosen. Random walks
are probabilistic distributed algorithms and this is one of their main advantages. The main
drawback of random walks is the large number of steps generally needed to reach one vertex
starting from another one, namely the hitting time. This is mainly due to the fact that the
walker may come back to previously visited vertexes, as a consequence forming useless loops.
We study partially self-avoiding random walks on finite graphs. They are variants of the
simple random walk, for which at each step the walker chooses its next destination uniformly
at random among all its neighbors. We add a bounded memory to the walker in order to
reduce the number of loops. This memory is called a tabu list and contains a view of previously
visited vertexes. We say that a tabu list is of length m, if the list can contain at most m
elements. The walker avoids every vertex contained in its tabu list unless it has no choice.
One can expect that the tabu list helps to reduce the mean hitting time of the walk. For
instance, sending 500 000 messages in a network of 200 nodes with one sink and an average
degree of 8, the mean hitting time is 449 hops for a random walk and 310.4 hops for a random
walk with a tabu list of size one. More experimental details are presented in the next chapter.

Adding a tabu list in the message in order to share information considerably improve the
performance of such routing algorithms. But, as the size of the tabu list is bounded, when the
list is full, one element has to be removed before any new insertion. We call update rule the
algorithm which drives the policy of insertion and removal in the list. For example, in the
FIFOm update rule, the tabu list is of length m, the current position of the walker is always
inserted, and when the list is full, the oldest element is firstly removed to make room for the
current position. In particular, FIFO1 is a non-backtracking random walk, where the walker
never backtracks to the last visited vertex except if it is his only neighbor. Our goal is to give
some answers to the following question: How do the update policy and the size of the tabu list
influence the performance of such routing algorithms?

Contribution. A tabu random walk is characterized by its update rule. We define a large
class of update rules and analytically study their associated tabu random walks. We compare
all these tabu random walks w.r.t. the mean hitting time between every two given vertexes.
Mainly, we try to figure out how to handle the memory of the tabu list and what is the best
way to do so. The panel of answers proposed here helps to choice an update rule. More
precisely, our contribution is threefold:

1. We provide a necessary and sufficient condition on our update rules that ensures the
finiteness of the mean hitting time on every graph.

2. We partially answer to the question “What is the best update rule?” by exhibiting a
large collection of graphs indexed by a positive integer m, called m-free graphs, in which
FIFOm is the optimal (w.r.t. the mean hitting time) update rule, provided that the
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length of the tabu list is at most m. In particular, the 1-free class contains all graphs.
Therefore, FIFO1 is the optimal policy on every graph if the tabu list contains at most
one element.

3. We compare the performances of three collections of classical update rules, i.e., FIFOm,
RANDm, and LRUm, according to the length m of the tabu list. Our results show that
no general answer can be given. For some classes of topologies, the mean hitting time
decreases when the size of the memory increases. But, counter-intuitively, there exist
cases where having more memory is a penalty: We exhibit topologies where the mean
hitting time increases when the length of the tabu list increases.
A important (perhaps surprising) consequence of our results is that for every update
rule FIFOm with m > 2, there exists a graph and two vertexes x, y such that the mean
hitting time from x to y using FIFOm is strictly greater than that of the simple random
walk. By contrast, FIFO1 always yields smaller mean hitting times than the simple
random walk.

Related Work. For a general account on simple random walks, we refer to the survey
[Lov93] and the forthcoming book [AF01b].

Random walks with memories have received much less attention. Most analytic results
deal with infinite graphs. For example, there are results on self-avoiding random walks for
infinite graphs, see the survey [Sla10].

On finite graphs, [Li10] and [4] study random walks that attach memories on the vertexes
of the graph. Nevertheless, no theoretical analysis of these solutions are yet available.

In [OW07], the authors study non-backtracking random walk on finite and infinite connected
graphs with minimum degree two. In particular, they show that for each finite graph, except
cycles, FIFO1 is irreducible1. Consequently, the mean hitting time of FIFO1 on these graphs
is also finite. Our first result is more general than this latter assertion because it deals with
all finite connected graphs and a class of update rules that includes FIFO1.

Outline. The description of a random walk with a tabu list is given in Section 10.2. Sec-
tion 10.3 we give necessary and sufficient condition on our update rules that ensures the
finiteness of the mean hitting time on every graph. In Section 10.4 we propose a class of graph
in which FIFOm is the optimal. Then in Section 10.5 we compare different policies according
to the length of the tabu list. In Section 10.6 we conclude. All formal definitions and proofs
are given in [2, 1].

10.2 Tabu Random Walks and Update Rules

In our framework, the walker evolves on a simple, undirected and connected graph. Besides,
we assume that the vertex set is finite and contains at least two vertexes.

1It is possible to get to any state from any state.
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10.2.1 — Tabu Random Walks

A tabu random walk on a simple graph is a partially self-avoiding random walk, where the
walker is endowed with a finite memory and can jump from a node to another, provided that
they are neighbors. At step n, the position of the walker is represented by the random variable
Xn and the current tabu list by the random variable Tn. We will denote by T in the i-th element
of Tn. The successive ordered pairs (Xn, Tn)n>0 is a Markov chain, called tabu chain. The
tabu random walk is the sequence (Xn)n>0 of the successive positions of the walker.

At each step, the walker avoids to revisit vertexes which are present in the current tabu
list, unless he is forced to. More precisely, for every non-negative integer n, the next visited
vertex Xn+1 is uniform on the set formed by the neighbors of the current vertex Xn which are
not in the tabu list Tn. If this is not possible because all neighbors of Xn are already in the
tabu list Tn, then the next visited vertex Xn+1 is uniform on the neighborhood of the current
vertex Xn. Afterward, the next tabu list Tn+1 is obtained using an update rule.

10.2.2 — Update Rules

The policy to insert or remove an entry in the tabu list is called the update rule and denoted
by Rm, where m is the maximum number of elements of the tabu list. By extension, m also
called the length of the update rule. Every update rule works as follows:

(1) First, concatenate the current vertex Xn and the current tabu list Tn, the concatenation
being noted Xn · Tn.

(2) Then, possibly remove an element of Xn · Tn.
Note that according to (2), for some policies, the first element of the concatenation Xn · Tn
might be directly discarded, which means that the current vertex Xn is actually not inserted
in the tabu list, i.e., Tn = Tn+1.

An update rule is trivial if the current vertex is never inserted in the tabu list when the
tabu list contains no element. For example, the unique update rule with zero length is trivial.
For every trivial update rule, if the tabu list is initially empty, then it remains empty forever
and the walker performs a simple random walk : at each step, the next visited vertex is chosen
uniformly at random among the neighbors of the current vertex.

10.2.3 — Examples of Update Rules

For every non-negative integerm, we describe three update rules FIFOm, LRUm and RANDm

of length m by giving for every non-negative integer n, the law of the next tabu list Tn+1

conditionally on (Xn, Tn):2

FIFOm: The current vertex Xn is inserted at the beginning (left) of the current tabu list Tn.
If Tn was already full, then its rightmost element is firstly removed.

2These rules match the requirements given in Subsection 10.2.2, see [1] for their formal definition.
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LRUm: All occurrences of the current vertex Xn in Tn are removed. If Tn is still full afterward,
then its rightmost element is removed. Then, Xn is inserted at the beginning (left) of Tn.

RANDm: If the current vertex Xn has an occurrence in Tn, then Tn+1 = Tn. Otherwise, if
Tn is full, then Tn+1 is formed by removing one of the m+ 1 elements of Xn · Tn uniformly at
random. If Tn is not full, then Tn+1 = Xn · Tn.

Remark that FIFO0, LRU0 and RAND0 denote the unique trivial update rule with length
0. Note also that when m equals 1 or 2, the update rules FIFOm and LRUm coincide and
are both distinct from RANDm. However, for every integer m > 3, FIFOm, LRUm and
RANDm are distinct.

In general, a random walk equipped with a tabu list is not a Markovian process. However,
when using FIFOm (for some positive integer m), the next visited vertex only depends on the
current one and on the m previous steps: this is called a Markov chain with internal states;
refer to [Hug95, p. 177].

10.3 Finite Mean Hitting Times

For every update rule Rm of length m, the hitting time Hy(Rm) of every vertex y is the
random number of steps needed by a walker to reach y. It is defined as the first instant when
the tabu random walk (Xn(Rm))n>0 reaches y: Hy(Rm) = inf{n > 0 : Xn(Rm) = y}. The
mean hitting time E(x,ε)Hy(Rm) is the mean hitting time of y when the walker starts at x
with an empty tabu list ε. Our goal is to characterize the class of update rules that have finite
mean hitting times, for all graphs and all vertexes x and y.

Definition 55 We define two conditions. For every tabu list t and every position of the walker
x, if t is not full and does not contain x, then applying the update rule on x and t results in :

(C1) in inserting x in t with a positive probability.

(C2) removing rightmost element from t with a positive probability.

Figure 20 – The flower F1.

The conjunction of (C1) and (C2) is a necessary and suffi-
cient condition that ensures the finiteness of all mean hitting
times for every associated tabu random walk on every graph.
The update rules FIFOm, LRUm and RANDm satisfy both
(C1) and (C2). On the contrary, an update rule of length 1 that
keeps the unique element of the tabu list until the corresponding vertex is visited again does
not satisfy (C2). Using such an update rule may lead to an infinite mean hitting time. Indeed,
on the flower graph F1 given in Figure 20,3 if the walker starts at vertex 1 with the empty
tabu list and does not hit vertex 0 at his first step, then its tabu list is 1 forever. Thus, the
walker never comes back to vertex 1 and, consequently, the walker will never reach vertex 0.
Hence, the mean hitting time to reach 0 from 1 is infinite.

3F` is defined in Section 10.5, for all values of `.
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Theorem 19 Let Rm be an update rule of length m. The mean hitting time E(x,ε)Hy(Rm)

is finite on all graphs, for all vertexes x and y, if and only if Rm is either trivial or satisfies
(C1) and (C2).

10.4 Optimal Update Rule for m-Free Graphs

For each positive integer m, we identify a non trivial class of graphs on which FIFOm gives
the smallest mean hitting time, among all update rules of length at most m. Then, we describe
a class of update rules that yield tabu random walks with the same law than FIFOm on this
class of graphs.

Definition 56 (m-Free Graphs) Let m be a positive integer. A graph is m-free if there does
not exist any path x0, . . . , xk with length k > 1 that satisfies the four following conditions:

1. The vertex xk has degree at least two.

2. For all integers j in {0, . . . , k − 1}, xj 6= xk.

3. All neighbors of xk of degree at least two belong to {x0, . . . , xk−1}.
4. k + 2d 6 m, where d is the number of neighbors of xk of degree one.

The idea behind Definition 56 is that for each m-free graph with m ≥ 2, a walker who
uses FIFOm always selects a destination that is not in his current tabu list. Hence, he avoids
cycles of size less than or equal to m.

As direct consequences of the definition, all graphs are 1-free and that all (m + 1)-free
graphs are also m-free, for every positive integer m. Furthermore:

— A graph is 2-free if and only if it does not contain any triangle with one vertex of degree
exactly two, namely, if and only if it does not possess any vertex x such that Vx = {y, z}
and {x, z} ⊆ Vy, where Vx and Vy are, respectively, the set of neighbors of x and y.

— Every (m+ 1)-regular graph, namely with all vertexes of degree m+ 1, is m-free. Indeed,
assume that x0, . . . , xk is a path that satisfies the four conditions stated above. Since d = 0,
we infer that k 6 m. Yet, xk has m + 1 > k neighbors of degree at least two while the
set {x0, . . . , xk−1} has k elements. Thus, the condition 3 is not satisfied and we reach a
contradiction.

— Every graph with girth4 strictly greater than m+ 1, that is, where every cycle has at least
m+ 2 edges, is m-free.

The following theorem states that for m-free graphs, and with no more than m memories,
FIFOm is the optimal update rule.

Theorem 20 Let m be a positive integer and Rk be an update rule of length k 6 m. On a
m-free graph, for every two vertexes x and y, E(x,ε)Hy(FIFOm) 6 E(x,ε)Hy(Rk).

4The length of a shortest cycle contained in a graph
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Note that being m-free is not a necessary condition to have, for every two vertexes x and
y, E(x,ε)Hy(FIFOm) 6 E(x,ε)Hy(Rk) (Theorem 20 only gives a sufficient condition). Indeed,
consider the clique with vertex set {0, 1, 2}. The path (x0, x1, x2) = (0, 1, 2) ensures that the
graph is not 2-free. Yet, for every two distinct vertexes x and y and for every update rule R,
E(x,ε)Hy(R) > 3/2, while E(x,ε)Hy(FIFO2) = 3/2.

From the above theorem, we can deduce that the non-backtracking random walk (FIFO1)
is the fastest among all update rules of length less or equal to 1, since every graph is 1-free.

Corollary 21 For every update rule R of length 0 or 1 and for every two vertexes x and y of
every graph, E(x,ε)Hy(FIFO1) 6 E(x,ε)Hy(R).

Proposition 3 completes Corollary 21 and states that FIFO1 is the only update rule of
length 1 such that, on all graphs, all hitting times are smaller than those associated to the
simple random walk, here represented by FIFO0.

Property 3 If R is an update rule of length 1 distinct from FIFO1, then there exists a
positive integer ` such that on the graph F`,5 E(1,ε)H0(FIFO0) < E(1,ε)H0(R) .

Theorem 20 shows that FIFOm is the best update rule of length at most m for m-free
graphs. In Theorem 22 below, we characterize a larger class of update rules which are optimal
policies in that specific case; for example, LRU is in this class as stated by Corollary 23 (as a
direct application of Theorem 22).

Theorem 22 Consider a positive integer m and an m-free graph. Every update rule of length
k in {0, . . . ,m} yields tabu random walks with the same law as those associated to FIFOk if
and only if it satisfies the two following conditions:

— If the tabu list is not full and does not contain the current vertex, then it is inserted.

— If the tabu list is full and does not contain the current vertex, then the last element is
removed and the current vertex is inserted.

Corollary 23 Let m be a positive integer. On every m-free graph, for every integer k in
{0, . . . ,m}, the update rules LRUk and FIFOk have the same probability law.

As a conclusion, within the class of m-free graphs and no more than m memories, we
identified a class of optimal update rules which contains FIFOm. For other cases, namely, for
graphs that are not m-free or using more that m memories, the question is still open.

10.5 Impact of the Length of the Update Rules

We study the effect of the size of the memory of the walker, on the mean hitting times using
3 collections of update rules: (FIFOm)m>0, (LRUm)m>0, and (RANDm)m>0. Our results

5Flower graphs F` are defined in Section 10.5.
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shows that there is no general trend, i.e., having more memory does not always increase the
performances. To see this, we present comparisons based on four particular collections of
graphs:

Figure 21 – The clique K6.

• Cliques (Kr)r>2: For every integer r ≥ 2, the clique
Kr is the complete graph with vertex set {0, . . . , r − 1}:
each vertex is neighbor of all other vertexes. As an example,
the clique K6 is drawn in Figure 21. Note also that Kr, for
r > 2 is (r − 2)-free.

• Lines (Pr)>2: For every integer r > 2, Pr denote the graph line with vertex set {0, . . . , r−
1} and edge set {{i, i+ 1}, i ∈ {0, . . . r − 2}}.

Figure 22 – The lollipop L6.

• Lollipops (Lr)r>3: For every integer r > 3, Lr denotes
the lollipop graph with vertex set {0, . . . , r − 1} such that
the vertexes 2, . . . , r − 1 form a clique with r − 1 elements
and the vertex 1 has 0 and 2 as neighbors. As an example,
the lollipop L6 is drawn in Figure 22.

Figure 23 – The flower F3.

• Flowers (F`)`>1: For all positive integers `, we define
the graph F` with vertex set {0, . . . , 2` + 1} as follows.
Initially, the vertexes 0 and 1 are isolated and for each
integer x in {1, . . . , `}, the vertexes 2x and 2x + 1 are
neighbor. Then, each vertex is linked to the vertex 1,
except the vertex 1 itself. As an example, the flower F3 is drawn in Figure 23.

For a given update rule, Rm of length m, we study the mean hitting time h(Rm) =

E(1,ε)H0(Rm) of the vertex 0 for a walker that starts from vertex 1 with an empty tabu list.
The next proposition presents a complete view of the impact of the length on the update rules
for (FIFOm)m>0, (LRUm)m>0 and (RANDm)m>0.

Property 4 On the graph written at k-th row and m-th column,

1. h(FIFOk) > h(FIFOm):

HHH
HHHHk

m
0 1 2 m > 3

0 ∅ K3 K3 K3

1 ∅ ∅ K3 K3

2 F7 F4 ∅ K4

k > 3 P4 P4 P4


Pm+2 if m < k ,

∅ if m = k ,

Kk+2 if m > k .

2. h(LRUk) > h(LRUm):
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H
HHH

HHHk
m

0 1 2 > 3

0 ∅ K3 K3 K3

1 ∅ ∅ K3 K3

2 F7 F4 ∅ K4

> 3 P4 L4 L4


Kk+2 if m > k ,

∅ if m = k ,

Lm+2 if m < k .

3. h(RANDk) > h(RANDm):

H
HHH

HHHk
m

0 1 2 3 m > 4

0 ∅ K3 K3 K3 K3

1 F5 ∅ K3 K3 K3

2 F5 F6 ∅ K4 K4

3 P4 P4 L5 ∅ K5

k > 4 P4 L5 L5 L5


Kk+2 if m > k ,

∅ if m = k ,

Lm+2 if m < k .

In each table, the symbol ∅ means that no such graph exists. Actually, symbol ∅ appears in two
disjoint cases : when k = m or when we compare FIFO0 to FIFO1. (In this latter case, for
all graphs and all vertexes x and y, E(x,ε)Hy(FIFO0) > E(x,ε)Hy(FIFO1), by Corollary 21.)

The above proposition shows that, for the three studied collections of update rules, there
is no general trend: increasing the length of the memory does not always lead to a gain of
performance and may even be a penalty in some cases.

10.6 Conclusion

We analyzed classes of tabu random walks characterized by their update rules. Our goal was
to study the impact of the choice of an update rule on the performance of tabu random walks.
We focus on classes of update rules for which we give a necessary and sufficient condition that
ensures the finiteness of the mean hitting time of the associated tabu random walk on every
graph. Then, we exhibit non-trivial classes of graphs, namely the m-free graphs on which we
exhibit the optimal update rules among those of length at most m. Finally, we demonstrate
the impact of the tabu list length on the efficiency of the walk. This latter study shows that,
except in one case (namely FIFO1), modifying the length of the tabu list does not guarantee
a better hitting time in all cases.
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Chapter 11
Routing with Local Tabu List

I l est possible de mémoriser de l’information des listes taboues dans les nœuds afin de réduire
la charge du réseau. Nous proposons deux algorithmes stockant des listes taboues dans les

nœuds (TLN):

— La première solution enregistre les messages déjà envoyés dans une direction. Lorsque le
message revient, s’il a déjà été envoyé alors il a fait une boucle, nous augmentons donc un
compteur associé à ce lien. Ensuite nous utilisons les compteurs pour favoriser l’envoi des
messages par des liens ayant une petite valeur, afin d’éviter les boucles. Cet algorithme est
efficace sans la présence de nœuds malicieux. Nous montrons qu’un intrus peut tirer profit
de notre algorithme pour attirer le traffic vers lui.

— Par conséquence nous proposons un second algorithme résilient en présence d’intrus et
utilisant des primitives cryptographiques. Pour cela nous mettons en place un système
de confirmation des messages reçus par le puits. Ceci nous permet de favoriser les routes
“correctes”. Pour cela nous utilisons plusieurs listes de stockage d’information par nœuds [3].

Nous comparons ces deux approches à des protocoles de la littérature en utilisant le
simulateur SINALGO [Gro08].
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A wireless sensor network (WSN) is a network made of numerous interconnected nodes
using wireless communications and having batteries. Usually, a WSN is organized around a
special node called the sink (or base station), which acts as a gateway between the wireless
sensor network and more traditional data processing facilities. The role of a routing protocol
is to allow communication between nodes that are not immediate neighbors, using other nodes
in the network. In the case of WSNs, a routing protocol should scale up to thousands of nodes
and does not consume too much energy. The energy consumed will depend on the internal
node operations and the length of the route. We are interested in all-to-one routing algorithms,
where all packets are destined to the sink, and all other nodes regularly process new data to
route. We also consider only bidirectional communications.

Moreover routing protocols are often designed without security in mind. Adding security is
not an easy task in WSN, because asymmetric cryptography require expensive computations,
and so energy. Hence, they cannot be suitable for WSNs. Therefore we use lightweight cryp-
tography, such as symmetric encryption, hash functions, in order to protect communications.

Contributions: We propose algorithms that try to maintain a good trade-off between the
quality of the service (delivery rate) and energy consumption in presence of attackers or faults.
These algorithms are called resilient. We mean by resilient that even if there is a change in
the environment, e.g., in the topology, or a problem due to an intruder or a failure, then a
resilient algorithm still ensures a certain quality of service [OMVK10, Pon11]. Our approach
is based on local tabu list stored in node (TLN).

— Tabu lists store messages that have been already sent through a link. When a message is
received, if it has already be send by a link, then we detect a loop. Then we increase a
counter associated to this link. Finally we decide to route a message using a probability
law which prefers nodes with smaller counter. We try to not send messages in potential
loops. Without any malicious node, this algorithm is efficient comparing to a random walk
or even to the algorithm presented in the previous chapter, cf Figure 26. However we
propose a scenario where a strong intruder can clearly disturb our algorithm.

— As a consequence the second algorithm that we proposed aims to resist to such attacks.
Hence it uses cryptographic primitives and an acknowledgement mechanism. The main
idea of our second algorithm is to detect valid route to the sink and try to route messages
only using such routes. In order to do so, we have several lists per node in order to store:
i) a kind of routing table which stores acknowledgments send by the sink, ii) generated
data messages sent through a link and iii) good links, i.e. links that reach the sink. Our
algorithm uses a probability law which prefers nodes present in the list of good links [3, 3].

In order to evaluate our solutions we perform simulations using the simulator SINALGO [Gro08],
considering different scenarios.

Outline: We first describe our routing algorithm that avoid loops then we present an attack
in presence of malicious node. In the next section we give another resilient algorithm using
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cryptographic primitives. Then in the last section we conclude this chapter.

11.1 Tabu List with Counter in the Node (TLCN)

The efficiency of the random walks is mainly affected by the existence of cycles in the graph: a
message can follow cycles many times before going out and reaching the sink. As we have seen
in the previous chapter avoiding cycle of size one already improved such kind of algorithms.
To overcome this problem, we propose to use local tabu lists to detect cycles. The protocols
are basically random walks for which, at each hop, tabu lists are maintained and the message
is preferably sent to some neighbor nodes, according to constraints on the tabu lists. We thus
adapt the random walk optimized by Yamashita RWLD in [SIY09] and modify its probability
to chose the next node to now depend on tabu list information. We call such protocols TLCN
(Tabu List with Counter in the Node).

11.1.1 — Protocol Description

Tabu lists contain message identifiers. Actually, at each node v, there is a tabu list TL[u]

attached to each possible destination u ∈ Nv. When a message leaves node v through some link
(v, u), then the message identifier is added to the corresponding tabu list, TL[u]. The following
invariant is maintained: at each node v, tabu lists are exclusive (any message identifier appears
in at most one list at node v), and if a message identifier appears in a list TL[u], then this
means that the last time it visited v, the message left v through the corresponding link (v, u).
This enables to detect that a message followed a cycle: when it comes back to some node, its
identifier is present in the list of the link through which it previously left the node. Then, we
are able to detect two links of the cycle: the link through which the message previously left
the node and the link through which it comes back to the node.

At each node v, an accusation counter1 Counter[u] is also associated to each possible
destination u ∈ Nv (henceforth, to each tabu list). Such a counter is used to remember how
many times the node v detects that a message followed a cycle containing this link. Tabu lists
and counters are therefore used to detect cycles : the higher the counter of a link, the more the
link leads to some cycles. Thus, a node preferably sends the messages through the links with
small counter values. The selection of the next link then uses the probability law P vTLCN which
is derived from the one of RWLD. P vTLCN(Counter) : Nv → [0; 1] selects a node u among the
neighbors of a node v, is weighted by the array of counters Counter, and is defined as follows:

P vTLCN(Counter)(u) =
Counter[u]−1 × δ−

1
2

u∑
w∈Nv

Counter[w]−1 × δ−
1
2

w

Where δv is the degree of the node v, i.e. the number of neighbors of v. Notice that when all

1This method was originally used in fault-tolerant algorithms, see [ADGFT08].
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counter values are equal, then the probability law is the one of RWLD.

Algorithm 2 TLCN (k,update)
Code for every source node v

1: Variables:
2: id: integer
3: TL[i]: array of lists defined for all i ∈ Nv
4: Counter[i]: array of integer defined for all i ∈ Nv
5: End Variables

6: Initialization
7: id← 1
8: for all i ∈ Nv do
9: TL[i]←⊥
10: Counter[i]← 1
11: end for
12: End Initialization

13: On request to route 〈m〉
14: randomly select next ∈ Nv using probability law P vTLCN(Counter)
15: send 〈m, (v, id)〉 to next
16: update((v, id), TL[next], k)
17: id← id+ 1
18: End Request

19: Upon receiving 〈m, tag〉 from u
20: if ∃z ∈ Nv : tag ∈ TL[z] then
21: Counter[u]← Counter[u] + 1
22: Counter[z]← Counter[z] + 1
23: remove(tag, TL[z])
24: end if
25: randomly select next ∈ Nv using probability law P vTLCN(Counter)
26: send 〈m, tag〉 to next
27: update(tag, TL[next], k)
28: End Receive

Code for the sink s

1: Upon receiving 〈m, tag〉 from u
2: deliver(m)
3: End Receive

Overview of Algorithm TLCN (Algorithm 2) Each source node is equipped with a tabu
list and a counter for each outgoing link. The tabu list of a link contains identifiers of a part
of the messages that were sent through the link. The counter of a link represents the number
of time (plus one) the protocol detected that the link was involved in a cycle, namely some
message moved along a cycle containing this link.

At the beginning (Lines 6-12), all the tabu lists are empty and the counters are set to one.2

When a source node v produces a new datum m (Lines 13-18), it first encapsulates m in a
message labeled by tag = (v, id) where id is a sequence number that uniquely identifies the
message among all others whose source is v. Hence, the label (v, id) uniquely determines the
message in the network. The message is then sent to the next node using the probability law
P vTLCN(Counter) and the tabu list of the link is updated with tag = (v, id).

When a source node v receives a message 〈m, tag〉 from a node u (Lines 19-24), it first
updates the counters. If the message was already in some of the tabu lists, e.g., TL[z], this
means that it was formerly sent by v through the link (v, z). As it came back via the link

2We do not initialize the counter to zero because in P vTLCN(Counter) we consider the inverse of counters.
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(u, v), v detects 〈m, tag〉 moved along a cycle v, z,. . . , u, v. The counters of u and z are then
incremented. The tabu lists are also updated: tag is removed from the tabu list of z and added
to that of the node where the message will be sent next (to maintain the exclusion property
of the lists). This next destination is randomly chosen using the probability law P vTLCN which
gives preferences to links with small counters.

Influence of the update policy The update policy of the tabu lists slightly influences
the execution of the algorithms. For tabu lists of bounded size sz, FIFO update enables to
store the sz last messages that were sent through the link, whereas with random update, some
messages may be older. Both cases are heavily influenced by 1) the load of the node, i.e., the
number of messages treated by the node and 2) the size of the cycles to be detected.

11.1.2 — Attack

Experimentally without intruder this protocol improves considerably the RWLD. Unfortunately
if some nodes are malicious and behave like a black-hole: is a node who is receiving all messages
but does not emit any message. For our algorithm, such malicious nodes attract the traffic
like a sink, because all received messages will not be considered in any loop so the counter to
reach these nodes are anymore increased, as a consequence associated links will be preferred.
Hence a black hole will attract part of the traffic and decrease the delivery rate of information
to the sink as it is shown in Figure 27 where we consider a graph with 10% of black holes and
only 3.2 % of sent messages are delivered.

11.2 A Secure Algorithm

In order to improve TLCN, we add cryptographic mechanism and a reputation mechanism in
order to prevent the previous attack. We call this algorithm TLCNS only because it was
proposed after TLCN and it is secure.

11.2.1 — Idea of the Protocol

Security: First, each node gets an unique public identity, and a pre-shared key with the
sink. This enables symmetric encryption between the sink and each node, a step towards
confidentiality. Then, each message is identified by a nonce. It is concatenated with the data
and this is encrypted to protect data from eavesdropping. A hash of the identifier added to the
message, moreover the identity of the emitter is part of the message, so that the sink knows
which key to use. This whole construction guarantees the unforgeability and confidentiality of
the packet. This means that an attacker cannot create or alter a message, so that it will be
considered valid by the sink.

Self-adaptivity: Our algorithm implements a kind of learning mechanism. To achieve this,
we added memory of previous decisions and their outcomes, which will in turn influence the
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routing decisions. The reputation mechanism determines if a message was actually delivered
or not. Only the sink can reliably determine if it received a message. So, each time it receives
one, it produces a control packet, called an acknowledgment. It contains the message identifier.
The acknowledgment will then be routed to the original sender, who will then learn that its
message was correctly delivered. The original sender keeps track of the emitted message in a
finite memory and selects with high probability “correct” nodes when he is routing a message.

11.2.2 — TLCNS Algorithm

We use the following notations:

— Encrypt(plaintext, kab) computes the symmetric encryption of the plaintext with the
key kab and Decrypt(ciphertext, kab) decrypts the ciphertext.

— Hash(key) denotes the hash function Hash.

— New_Nonce() generates a new nonce.

— Count(elem,LRouting) is the function which returns the number of occurrences of elem in
LRouting.

— Let the random variable X represent the identity of the chosen next node for a message. X
takes its value among Ngv3. Its law is denoted LvTLCNS(LRouting) for a node v, and defined
by:

Pr(XM = n) =
Count(n,LRouting) + δ−1v∑

x∈CandidatesCount(x, LRouting) + δ−1v

Where δv denotes the degree of node v. When a node needs to route a message, it will
follow this law, which means that it will select more often a route with “correct” nodes
present in LRouting than other nodes, but it is still possible to select any neighbor.

In our algorithm, packets sent by nodes to the sink are made of five parts 〈M, C,H, o, f〉,
where:

— M is a flag (a constant) which indicates that this packet is a message.

— C is the encryption of the tuple 〈Data,No〉, where No is a nonce generated by the originator
of the message, and Data is the information the node wants to route to the sink.

— H is Hash(No).

— o is the identity of the node that generated the message (the origin), so that the sink knows
which key will open C.

— f is the identity of the last node to have forwarded that message.

On the other side packets emitted by the sink are called Acknowledgments and contain three
parts 〈A, No, o〉 :
— A is a flag which indicates that this packet is an acknowledgment.

3Neighbors of node v
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— No is the nonce used in the acknowledged message, which has been generated by o.

— o is the identity of the node that generated the initial message, which is now the destination
of the acknowledgment.

In order to store information each nodes maintains the 3 following lists:

— LRouting is a FIFO4 list of node identities with a maximal size, where insertion of a new
element in a full list replaces the earliest inserted element. We add elements using the
function Enqueue(L, elem).

— MQueue and MAckRouting are lists of tuples made out of a message identifier (denoted m)
and a node identifier (v), with a maximal number of entries, and an uniqueness constraint
on the first element of the tuple. It means that:

– When a 〈m, v〉 pair is inserted in the list M , with function AddToLRM(M, 〈m, v〉), if
there is already an entry containing m, delete it. Otherwise , if the maximum number
of entries is already reached, remove the least recently modified (LRM) tuple. Finally,
insert the new pair 〈m, v〉 in the list.

– When a message identifier m should be deleted from M , we remove the tuple containing
m if it exists, by using function RemoveFromLRM(M,m).

– IsInLRM(M,m) is the test that returns true if there is an entry containing m in M .

– GetFromLRM(M,m) is the function which returns the node identifier for that entry.

– We denote {} the empty list

In Algorithm 3 we give a pseudo-algorithm for a non-sink node and in Algorithm 4 we describe
the behavior of the sink.

First, when a node v has data to send, it generates a message (line 7-14). This message is
randomly routed to a neighbor of v, which we name n, and we store in the finite list MQueue

the tuple made of the message identifier and the neighbor n which was the first hop. When
the sink receives that message (lines 48-54), if it is valid, it replies with an acknowledgment
(lines 50-54), containing the message identifier and the initial sender v. If a message gets
routed back to its initial sender, the corresponding entry is removed and the routing process is
restarted (lines 28-44).

Each node maintains a finite list MAckRouting of the messages that it received, and their
origin. Thanks to these lists, acknowledgments can follow the route of their corresponding
messages, and revert to RW if there is a problem (lines 28-44).

Upon reception of that acknowledgment, the sender v will recover the identity of n from
MQueue, and insert it into LRouting to register its trust in n (lines 15-27). Each time v has to
route a message, it takes into account the entries in LRouting to make a decision (lines 11).

4First In First Out
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11.3 Implementations

11.3.1 — Delivery Rate

In order to evaluate the performance of the routing algorithms we observe the delivery rate,
we use the following metrics.

Mean Length Route: We look at the mean number of edges traversed, for each message
that reached its destination. If a message does loop, we count the length of the loop in the
route.

Average Delivery Rate: The delivery rate of a routing algorithm is the proportion of
data-bearing packets received by the sink. The average delivery rate is a measure of how the
algorithm manages to bring packets to the sink.

Delivery Rate Classes In order to compare different algorithms on a lot of graphs, we
need a way to average the measures over different runs of the algorithm, so that they still
make sense. For this, we expanded the idea of delivery rate classes from [EOKMV11].

From a bundle of simulation runs in the same setting (same degree, number of nodes,
number of intruders, and simulation parameters), we compute the overall delivery rate of each
node, and the global delivery rate over all simulations. At the end, we categorize them in
12 classes as follows: 0% delivery rate, each slice of 10%, and exactly 100%. We look at the
relative sizes of the classes and indicate the average delivery rate of the simulations.

Fairness: We compute delivery rates of each individual node and the fairness is the standard
deviation of this data for one simulation run. It characterizes the fact that the algorithm tries
to have a high delivery rate for most of the nodes. For instance if we consider a deterministic
algorithm and a black-hole on the path of a node then his delivery rate is 0%, as a consequence
it is decreasing his fairness.

11.3.2 — Results

To evaluate the performance and resilience of our algorithm, we compare with the following
routing algorithms.

Other Algorithms: We select either well-known algorithms (RW, GFG, GBR), and algo-
rithms designed to be resilient (PRGBR, PRDGBR). We now describe these algorithms:

Uniform Random Walk (RW): Each packet to route is sent to a random uniformly
selected neighbor.

Gradient-based routing and variants Gradient-based routing (GBR) algorithm
described in [SS01] works in two phases. First, the sink floods the network with an INTEREST
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packet containing a counter (indicating the distance to the sink, also called the height of the
node), which is then broadcasted by all nodes after incrementing the counter. Nodes keep the
minimal value of the counter they have seen, which denotes its height, and also keeps track of
the height of each of its neighbors. If a new INTEREST packet with a smaller height than the
node has seen until now, the node updates its height, and notifies its neighbors.

On each routing request, nodes choose a next hop according to the specific variant5.

— Deterministic GBR (GBR): Nodes send their messages to a fixed lower-height neighbor,
this is the original GBR protocol proposed in [SS01].

— Probabilistic-random GBR (PRGBR): With probability p, the message is routed to
a random same-height node if one exists, and otherwise, to a random lower-height node.
We used p = 0.4, as suggested in [EOKMV11].

— Duplicating probabilistic-random GBR (PRDGBR): It is PRGBR where at each
hope messages are duplicated [EOKMV11] and messages already seen by a node are
discarded.

By design, GBR variant always routes packets to lower-height nodes. This means that
neighbors of the sink will always send to the sink, and (n)-height nodes will send to (n− 1)-
height nodes. Thus, by induction, it will always route packets in the minimal number of hops.
The two other variants do not verify that property.

Greedy-Face-Greedy (GFG): It is a combination of Greedy routing algorithm and
Face-based routing algorithm (FBR). They both require that each node knows its position
(GPS coordinates), its neighbors positions, and the sink position. Also, FBR requires a
planar graph (where no edges intersect) which can be done using the algorithm proposed
in [BMSU01a].

— Greedy (or geographical) routing consists of routing each message to the neighbor with the
closest position to the sink. However, this algorithm can get blocked in graph components
where a node is closer to the sink than all its neighbors, creating a routing loop. When
this happens, FBR is executed until it reaches a position closer to the sink than the point
where the message got stuck. Then, Greedy runs, and so on.

— Face-based routing [BMSU01a] works on a planar graph as follow. A line between the
origin of the routing and the sink is computed, and the face adjacent to the emitter is
selected. This face is followed until to come back to the initial node. The line to the sink
intersect some edges. Then we select the closet node to the sink of these edges as a new
starting point.

Settings and Scenario: We use the following setting for testing these algorithms:

— For PRGBR p is set at 0.4.

— For TLCNS, we set at 10 the size of LRouting, 5 the size of MQueue and 3 the size of

5We used the variants and notations from [EOKMV11].
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MAckRouting, according to experimental results obtained over several graphs.

We consider networks containing 200 UDG6 nodes, here we chose a radius of 20, in a square
177*177. The sink is at the center of the square, the network is connected and the mean degree
per node is 8. We consider a simulation of 500 000 messages. Among the 200 nodes, 180 are
honest, 10 are black-holes and 10 are wormholes with the sink. Here a wormhole with the sink
is a node of the network which has an extra direct link with the sink, as it is illustrated in
Figure 24.

Figure 24 – An example wormhole (sink in red)

We consider the scenario where the 10 black-holes and 10 wormhole are active. Then once
one third of messages are emitted wormholes become black-holes.

Performance: We randomly generate a first network described in Figure 25. We first
consider that all nodes are honest. Of course the delivery rate is 100% for all our algorithms
and the fairness is zero. In Figure 26, we class algorithms according to the mean length of all
routes. We see that GBR is the best, then all variants follow. After GFG is close to TLCNS.
Then come TLCN with a tabu list of size 8 and TLM with a tabu list of one element. Finally
random walk has a high mean number of hops.

We now consider that10 % of the nodes are black holes (pink and black nodes in Figure 25).
In Figure 27 we class algorithm according to the mean delivery rate, and we indicate the
fairness and the mean number of hop. We see that TLCNS has the best delivery rate and
fairness but the worst mean number of hop because he has to follow longer path in order to
avoid the black holes. The worst algorithms are TLCN8, RW and TLM1 which fall very often
in the black holes. It is why the mean number of hop is so small and the fairness so good. due

6UDG (Unit Disc Graph) is a usual communication model, where two nodes are connected if and only if
their distance is at most at a fixed positive distance.
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Figure 25 – First network where the sink is red, wormholes are pink and black holes are black.

Algorithms Mean length route
GBR 5.4
PGBR 5.4
PRGBR 8.4
PRDGBR 8.9
GFG 14.2
TLCNS 14.3
TLCN8 93.7
TLM1 310.4
RW 449

Figure 26 – Mean number of hops for all the algorithms without intruder.

to the position of the black holes 72.7 % of traffic falls in the black holes. All variants of GBR
are in the same range around 50 % of delivery rate, except PRDGBR due to the duplication
which avoids in a better way the black holes.

In Figure 28, we present ours results for the same graph with our scenario with 5% of
wormholes that become black-holes after a third of messages sent. We see that the second
phase does not change the order, except for GFG that becomes the second due to the particular
place of intruders on this graph. We also see that this change of behavior affects drastically all
algorithms, except TLCNS.

In order to look more precisely this phenomenon we represent the delivery rate of each
algorithm in presence of black-hole and wormhole, and after to see how the algorithms behave
once the wormholes become black-hole. For this we sort by emission date all the messages,
and group them in blocks of 100 messages. We average block’s messages emission date to have
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Algorithms Total delivery rate Fairness Mean number of hop
TLCNS 90.1 % 0.043 12.3
PRDGBR 57.7 % 0.376 8.3
GBR 49.5 % 0.500 4.7
PGBR 48.9 % 0.469 4.8
PRGBR 38,4 % 0.354 6.9
GFG 28.3 % 0.451 6.7
TLM1 4.3 % 0.082 10.1
RW 4 % 0.084 11.4
TLCN8 3.2 % 0.104 2.8

Figure 27 – Total delivery rate, fairness and mean number of hop for all the algorithms with
10% of black holes.

Algorithms Total Delivery Rate Fairness Mean Number of Hop
TLCNS 89.8 % 0.206 9.490
PRDGBR 44.1 % 0.272 5.097
GFG 38.2 % 0.410 6.361
RGBR 36 % 0.288 2.442
GBR 34.3 % 0.312 2.417
PRGBR 33.4 % 0.239 3.720
TLM1 16.8 % 0.140 10.911
RW 16.6 % 0.143 13.856
TLCN8 16.6 % 0.162 4.173

Figure 28 – Total delivery rate, fairness and mean number of hop for all the algorithms with
5% of black holes and 5% of worm holes.

the x coordinate. We calculate the proportion of the block’s messages which were delivered to
the sink to get the y coordinate. This leads us to several points for each algorithm then we
take the “mean curve” using Bezier method, the result is given in Figure 29. This explain the
small variations that we can observe at the end of the simulation which are not significant. In
order to help the reader to distinguish these curve we add some special symbols.

During the first phase TLCNS is the best, then comes PRDGBR with more than 80%.
TLCNS prefers to take routes that are “good”, then is avoiding black-hole for reaching the sink.
PRDGBR tries to choose shortest routes but in a non deterministic manner and duplicating
the message at each step which allows it to avoid the black-holes but it clearly augment the
load of the network as a consequence it is very energy consuming. Algorithms GFG and
GBR are deterministic and according to the position of the black-hole they have more or less
influence on the delivery rate. Finally other random algorithms, with optimization or not to
avoid loops, have more chance to meet one of the black-hole than the sink, as a consequence
have smaller delivery rates.

In the second phase, we double the number of black-holes by transforming all wormholes
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Figure 29 – Delivery rate, we add symbols on the curves in order to increase its readability.

in black-holes. It first affects drastically the delivery rates of all algorithms we notice that
the order is respected. We also notice that TLCNS re-converges toward a high delivery rate.
It is due to the fact that TLCNS adapts his behavior in function of the acknowledgment of
correct routes that he received. The speed of the re-convergence depend of the size of the list
LRouting, delivery rate is also influenced by the size of the two other lists.

We can also look at the total delivery rate over all the simulation which is represented in
Figure 27. We see that TLCNS has the best total delivery rate in presence of black-holes and
wormholes, and all other are less than 50%.

We now run the same scenario over 20 similar networks: average degree 8, 200 nodes, 5 %
black-holes, 5% wormholes. We compute the average of the delivery rate’s average, which is
represented by a pink dot in Figure 30. We also represent the percentage of node having a
certain delivery rate by slices of 10 % (it i a kind of distribution of delivery rate over nodes).
We can see that TLCNS has only nodes over 70 % of delivery rate, whereas deterministic
algorithms like GFG or GBR have nodes with a null delivery rate, other with 100 % and some
between. Other probabilistic algorithms like Random walk or TLM1 have very low delivery
rate node because they have more probability to hit one black-hole than the sink, specially in
the second phase.

11.4 Conclusion

We first give an algorithm that stores in local tabu lists information that allows to avoid
cycles. But we clearly show that simple black-holes can attract the traffic like a sink. Then
we propose another solution concerning security in presence of malicious nodes. We show
using simulation that our second solution is more resilient than existing solution due to the
learning mechanism we have developed. Finding a good trade-off between efficiency, energy
consumption and security is still a real challenge. A precise model for energy consumption is
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Figure 30 – Delivery rates classes for all the algorithms.

needed in order to evaluate the energy-consumption quality of our solution which might be
worst than existing algorithms.
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Algorithm 3 TLCNS routing for a non-sink node v
1: Variables:
2: MQueue : fixed-size LRM list of tuples 〈nonce, node identity〉, initially empty
3: MAckRouting : fixed-size LRM list of tuples 〈digest, node identity〉, initially empty
4: LRouting : fixed-size FIFO list of nodes identities„ initially empty
5: kvs : the symmetric key of this node v, shared with the sink s
6: End Variables

7: On data generation of (Data)
8: Nv ← New_Nonce()
9: H ← Hash(Nv)
10: C ← Encrypt(〈Data,Nv〉, kvs)
11: next← DrawAccordingTo(LvM(Ngv, LRouting))
12: AddToLRM(MQueue, 〈Nv, next〉) . Store this decision for feedback
13: Send(next, 〈M, C,H, v, v〉)
14: End

15: On reception of a message (〈M, C,H, o, f〉)
16: next← DrawAccordingTo(LvM(Ngv, LRouting))
17: if v = o then . The message looped
18: 〈Data,No〉 ← Decrypt(C, kvs)
19: if Hash(No) = H then . If legitimate
20: AddToLRM(MQueue, 〈No, next〉)
21: Send(next, 〈M, C,H, o, v〉)
22: end if
23: else . The message is from elsewhere
24: AddToLRM(MAckRouting, 〈H, f〉) . Reverse chaining
25: Send(next, 〈M, C,H, o, v〉)
26: end if
27: End

28: On reception of an ack (〈A, No, o〉)
29: if v = o then . Ack was intended for v
30: if No ∈MQueue then . v remembers that Ack
31: first_hop← GetValueFromLRM(MQueue, No)
32: Enqueue(LRouting, first_hop) . Use the feedback
33: RemoveFromLRM(MQueue, No)
34: end if
35: else . Ack was for another node, route it
36: H ← Hash(No)
37: if H ∈MAckRouting then . Reverse chaining
38: next← GetValueFromLRM(MAckRouting, H)
39: else . Random walk
40: next← DrawAccordingTo(LvA(Ngv))
41: end if
42: Send(next, 〈A, No, o〉)
43: end if
44: End
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Algorithm 4 TLCNS routing for a sink s
45: Variables:
46: keys[n] : the array of symmetric keys defined for all nodes in the network.
47: End Variables

48: On reception of a message (〈M, C,H, o, f〉)
49: 〈Data,No〉 ← Decrypt(C, keys[o])
50: if (Hash(No)= H) then . Check validity
51: Use the Data
52: Send(f, 〈A, No, o〉) . And send the ack
53: end if
54: End

55: On reception of an ack (〈A, No, o〉)
56: next← DrawAccordingTo(LsA(Ngs)) . Just forward it
57: Send(next, 〈A, No, o〉)
58: End
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Chapter 12
Conclusion

E ncryption or more generally cryptographic primitives have a cost in term of time and
energy. Finding the good trade-off between security, efficiency and energy will be one of

the main challenge in the next years. Before presenting some perspectives, we first summarize
our works.

In Part I, we have proposed three Hoare logics for proving the security of generic public
encryption schemes, generic symmetric encryption modes, and generic MACs. In the last
chapter we decided to present a version without the concrete security parameters in order
to keep rules and invariants simple but also to explain clearly our model with two parallel
executions. Of course it is possible to add security parameters to all the rules as we did in
Chapter 2 and 3.

We did not provide one logic with all rules presented in part I, because each logic has
his own goal and therefore specific invariants to achieve. It is possible to define a general
configuration with all tables, variables needed, adapted preservation and propagation rules,but
we do not know any primitive that perform at the same time the goals of three studied
primitives.

In Part II, we first described a flaw in Benaloh’s homomorphic encryption scheme and
proposed a corrected version in Chapter 5. The corrected version of Benaloh is still a manual
proof. A tool which takes as input a description of these encryption and decryption primitives
and provide for instance a proof in Coq [BC04, Tea04] would be very useful.

Then in Chapter 6, we model privacy properties of electronic voting protocols in applied
π-calculus. First our taxonomy allows us to assess the level of privacy provided by a voting
protocol. We illustrated on several case studies, including a case with multiple votes per
voter (a variant of FOO [FOO92]) and forced abstention attacks. In particular we were able
to show that the different dimensions of our definitions correspond to different properties of
real-world protocols, and that in many cases the verification can be done automatically using
existing tools. a natural continuation of this work would be to to translate our definitions to
a computational setting. As we are in a symbolic model, we do not consider exact analysis.
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Hence the adversary may in reality still have a certain probability of detecting that the coerced
voter tried to resist coercion. A computational translation of our definitions should be able
take this into account.

In Chapter 7, we presented an intuitive definition of Privacy, Receipt-Freeness and Coercion-
Resistance for voting protocols using weighted votes. We considered situations where only one
voter is under attack, and others where multiple voters are attacked. We were able to link these
notions to existing ones and to prove that the multi-voter case is equivalent to the single-voter
case if the protocol is correct and respects a modularity condition. Finally, we illustrated our
work by analyzing two existing protocols. As future work, we would like to investigate the
conditions necessary for the equivalence of the single and multi-voter cases more precisely. We
hope to remove some of the hypotheses or to give further examples underlining the necessity
of these assumptions. Another direction is also to translate these symbolic definitions to the
computational setting.

In Part III, we studied WSNs. In Chapter 8, we modeled (k)-neighborhood property and
proposed a trace-based verification technique that takes into account time and movement of
nodes. We also described the Sharek protocol, which securely discover (k)-neighbors based on
the knowledge of the (1)-neighborhood, in presence of one intruder. This formal modeling of
the (k)-neighborhood is the first step toward an automatic tool, but due to the large number
of possible traces we believe that dedicated techniques should be found in order to obtain a
practical tool.

In Chapter 9, we verified routing protocols in presence of independent intruders. All
the intruders have their own knowledge, as a consequence corresponding constraint systems
does not satisfy the classical monotonicity assumption. We proposed a decision procedure
for solving such constraint systems. For this purpose we introduced partially well-formed
constraint systems and proposed simplification rules that can be used to transform it into
quasi-solved form.

In Chapter 10, we improved random walks by adding to each message a tabu list containing
already visited nodes. We studied the impact of the choice of an update rule on the performance
of such algorithms. We provided a class of update rules that ensures the finiteness of the mean
hitting time on every graph. Then, we exhibited non-trivial classes of graphs, namely the
m-free graphs on which we exhibited the optimal update rules among those of length at most
m. Our results could be extended to a larger class of update rules for which more removals
are allowed; for example, the list could be reset regularly. A preliminary study shows that this
extension should be carefully done: we believe that the necessary and sufficient condition of
Theorem 19 could be adapted and that the result on m-free graphs still holds. We would also
like to compare the relative performance of different update rules of same length. As a first
step, we know that given a positive integer m, FIFOm is faster than LRUm on line graphs,
and LRUm is faster than RANDm on lollipop graphs (see [1]).

Finally in Chapter 11, we give another class of probabilistic routing algorithms which store
local information in each node. This allows us in a first version to send with a high probability
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messages in route that are not a loop. Then in a secure version using a probabilistic adaptative
reputation mechanism and some acknowledgments, we forward messages preferably in “correct”
routes. We also show that such algorithms are resilient to several types of attacks and compare
to other existing algorithms.

Perspectives:

I would like to continue to work in automatic formal verification of security protocols according
to the following three axis:

• Formal analysis of non functional properties of WSNs

• Verification of e-auction protocols

• Security proofs of cryptographic primitives based on pairings

Formal analysis of non functional properties of WSNs

My first aim is to define non functional properties in WSNs like energy consumption, con-
nectivity. Then develop verification technique for energy consumption which are able also to
consider security issue, because adding security has a non negligible energy, or computation
resource cost. Finally I would like to study a intruder model than can take into account such
constraints. An intruder model which assumes that intruders have also a limited battery as
normal nodes seems to be more realistic.

Verification of e-auction protocols

Many e-actions protocols have been proposed and are now used over the Internet. They
have to guarantee for instance anonymity of users, confidentiality of transactions, or fairness.
Moreover often e-auction protocols use cryptographic primitives that use specific algebraic
properties. These protocols can be analyzed according to this point of view but also according
to the new properties that they should achieved. These properties are closed but also different
of the of e-voting protocols.

Security proofs of primitives cryptographic primitives based on pairing

This axis is the most challenging.
In groups equipped with a bilinear mapping such as the Weil pairing or Tate pairing,

generalizations of the computational Diffie-Hellman problem are believed to be a difficult
problem while the simpler decisional Diffie-Hellman problem can be easily solved using the
pairing function. Several cryptographic primitives have been designed based on pairing like
identity-based encryptions, attribute-based encryptions, or signcryption. These primitives
manipulate complex algebraic structures. Some errors have been found in some proofs of such
schemes. S. Kremer et al [KM10] proposed a formal approach for verifying pairing. This result
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prove that if using their symbolic model the indistinguishability property holds on pairing the
using a soundness theorem it also holds in computational model. As we have done in Part I, we
would like to first identify the main algebraic properties used in pairing-based primitives, then
propose a formal method directly in the computational model for verifying these primitives.

160



BIBLIOGRAPHY

Bibliography

[ABB+05] A. Armando, D. Basin, Y. Boichut, Y. Chevalier, L. Compagna, J. Cuellar, P. H.
Drielsma, P.-C. Heám, O. Kouchnarenko, J. Mantovani, S. Mödersheim, D. von
Oheimb, Michael R., J. Santiago, M. Turuani, L. Viganò, and L. Vigneron. The
AVISPA tool for the automated validation of internet security protocols and
applications. In Proc. of CAV’2005, LNCS 3576, pages 281–285. Springer, 2005.

[ACD10] Mathilde Arnaud, Véronique Cortier, and Stéphanie Delaune. Modeling and
verifying ad hoc routing protocols. In Proceedings of the 23rd IEEE Computer
Security Foundations Symposium (CSF’10), pages 59–74, Edinburgh, Scotland,
UK, July 2010. IEEE Computer Society Press.

[ADGFT08] Marcos Kawazoe Aguilera, Carole Delporte-Gallet, Hugues Fauconnier, and Sam
Toueg. On implementing omega in systems with weak reliability and synchrony
assumptions. Distributed Computing, 21(4):285–314, 2008.

[AF01a] Martín Abadi and Cédric Fournet. Mobile values, new names, and secure
communication. In Proceedings of the 28th ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, POPL ’01, pages 104–115, New York,
2001. ACM.

[AF01b] D.J. Aldous and J.A. Fill. Reversible Markov chains and random walks on graphs.
Book in preparation, 2001.

[And01] Ross J. Anderson. Security Engineering: A Guide to Building Dependable
Distributed Systems. John Wiley & Sons, Inc., New York, NY, USA, 2001.

[AR00] Martín Abadi and Phillip Rogaway. Reconciling two views of cryptography
(the computational soundness of formal encryption). In IFIP International
Conference on Theoretical Computer Science (IFIP TCS2000), Sendai, Japan,
2000. Springer-Verlag, Berlin Germany.

[Arn12] Mathilde Arnaud. Formal verification of secured routing protocols. PHD, Ecole
normale supérieure de Cachan-ENS Cachan, 2012.

BIBLIOGRAPHY



BIBLIOGRAPHY

[AVI] AVISPA Project. AVISPA protocol library. Available at http://www.

avispa-project.org/.

[BAF08] Bruno Blanchet, Martín Abadi, and Cédric Fournet. Automated verification
of selected equivalences for security protocols. Journal of Logic and Algebraic
Programming, 75(1):3–51, 2008.

[BBU08] Michael Backes, Matthias Berg, and Dominique Unruh. A formal language for
cryptographic pseudocode. In LPAR 2008, pages 353–376. Springer, November
2008.

[BC94] S. Brands and D. Chaum. Distance-bounding protocols. In Advances in Cryptol-
ogy (EUROCRYPT’93), pages 344–359. Springer, 1994.

[BC04] Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program
Development. CoqâĂŹArt: The Calculus of Inductive Constructions. Texts in
Theoretical Computer Science. An EATCS series. Springer Verlag, 2004.

[BCK96] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Keying hash functions for
message authentication. In Advances in Cryptology - CRYPTO ’96, Lecture
Notes in Computer Science, pages 1–15. Springer-Verlag, 1996.

[BCM11] David Basin, Cas Cremers, and Catherine Meadows. Model Checking Security
Protocols, chapter 24. Springer, 2011. To appear.

[BCT04] Gilles Barthe, Jan Cederquist, and Sabrina Tarento. A Machine-Checked For-
malization of the Generic Model and the Random Oracle Model. In D. Basin
and M. Rusinowitch, editors, Proceedings of IJCAR’04, volume 3097 of LNCS,
pages 385–399, 2004.

[BDD+06] Michael Backes, Anupam Datta, Ante Derek, John C. Mitchell, and Mathieu
Turuani. Compositional analysis of contract-signing protocols. Theor. Comput.
Sci., 367(1-2):33–56, 2006.

[BDJR97] Mihir Bellare, Anand Desai, Eron Jokipii, and Phillip Rogaway. A concrete
security treatment of symmetric encryption. Annual IEEE Symposium on Foun-
dations of Computer Science, 0:394, 1997.

[BDKL10] Gilles Barthe, Marion Daubignard, Bruce Kapron, and Yassine Lakhnech. Com-
putational indistinguishability logic. In Proceedings of the 17th ACM conference
on Computer and communications security, CCS ’10, pages 375–386. ACM, 2010.

[Ben87] Josh Daniel Cohen Benaloh. Verifiable Secret-Ballot Elections. PhD thesis, Yale
University, New Haven, CT, USA, 1987.

[Ben94] Josh Benaloh. Dense Probabilistic Encryption. In In Proceedings of the Workshop
on Selected Areas of Cryptography, pages 120–128, 1994.

162

http://www.avispa-project.org/
http://www.avispa-project.org/


BIBLIOGRAPHY

[BGHB11] Gilles Barthe, Benjamin Grégoire, Sylvain Heraud, and Santiago Zanella Béguelin.
Computer-aided security proofs for the working cryptographer. In CRYPTO,
pages 71–90, 2011.

[BGLB11a] Gilles Barthe, Benjamin Grégoire, Yassine Lakhnech, and Santiago Zanella
Béguelin. Beyond provable security verifiable ind-cca security of oaep. In
CT-RSA, Lecture Notes in Computer Science, pages 180–196. Springer, 2011.

[BGLB11b] Gilles Barthe, Benjamin Grégoire, Yassine Lakhnech, and Santiago Zanella
Béguelin. Beyond provable security verifiable ind-cca security of oaep. In
CT-RSA, pages 180–196, 2011.

[BGZB09] Gilles Barthe, Benjamin Grégoire, and Santiago Zanella Béguelin. Formal
certification of code-based cryptographic proofs. In POPL ’09: Proceedings of the
36th annual ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 90–101, New York, NY, USA, 2009. ACM.

[BHK+99] John Black, Shai Halevi, Hugo Krawczyk, Ted Krovetz, and Phillip Rogaway.
Umac: Fast and secure message authentication. In Advances in Cryptology -
CRYPTO ’99, 19th Annual International Cryptology Conference, Santa Barbara,
California, USA, August 15-19, 1999, Proceedings, pages 216–233, 1999.

[BHM08] Michael Backes, Catalin Hritcu, and Matteo Maffei. Automated verification of
remote electronic voting protocols in the applied pi-calculus. Computer Security
Foundations Symposium, IEEE, 0:195–209, 2008.

[BJST08] Bruno Blanchet, Aaron D. Jaggard, Andre Scedrov, and Joe-Kai Tsay. Com-
putationally sound mechanized proofs for basic and public-key Kerberos. In
Proceedings of ASIACCS’08, pages 87–99. ACM, 2008.

[BKR94] Mihir Bellare, Joe Kilian, and Phillip Rogaway. The security of cipher block
chaining. In Advances in Cryptology - CRYPTO ’94, 14th Annual International
Cryptology Conference, Santa Barbara, California, USA, August 21-25, 1994,
Proceedings, pages 341–358, 1994.

[Bla01] B. Blanchet. An efficient cryptographic protocol verifier based on prolog rules. In
Proc. 14th Computer Security Foundations Workshop (CSFW’01), pages 82–96,
Cape Breton (Canada), 2001. IEEE Comp. Soc. Press.

[Bla08] Bruno Blanchet. Vérification automatique de protocoles cryptographiques : modèle
formel et modèle calculatoire. Automatic verification of security protocols: formal
model and computational model. Mémoire d’habilitation à diriger des recherches,
Université Paris-Dauphine, November 2008. En français avec publications en
anglais en annexe. In French with publications in English in appendix.

163



BIBLIOGRAPHY

[Bla11] Bruno Blanchet. A second look at shoup’s lemma. In Workshop on Formal and
Computational Cryptography (FCC 2011), Paris, France, June 2011.

[BLP03] L. Bozga, Y. Lakhnech, and M. Perin. HERMES: An Automatic Tool for
Verification of Secrecy in Security Protocols. In Computer Aided Verification,
2003.

[BMQR07] Jens-Matthias Bohli, Jörn Müller-Quade, and Stefan Röhrich. Bingo voting:
Secure and coercion-free voting using a trusted random number generator. In
E-Voting and Identity, volume 4896, pages 111–124. Springer Berlin / Heidelberg,
2007.

[BMSU01a] P. Bose, P. Morin, I. Stojmenović, and J. Urrutia. Routing with guaranteed
delivery in ad hoc wireless networks. Wireless Networks, 7(6):609–616, 2001.

[BMSU01b] Prosenjit Bose, Pat Morin, Ivan Stojmenović, and Jorge Urrutia. Routing with
guaranteed delivery in ad hoc wireless networks. Wireless Networks, 7:609–616,
2001. 10.1023/A:1012319418150.

[BMU10] Michael Backes, Matteo Maffei, and Dominique Unruh. Computationally sound
verification of source code. In ACM CCS 2010, pages 387–398. ACM Press,
October 2010. Preprint on IACR ePrint 2010/416.

[Bor01] M. Boreale. Symbolic trace analysis of cryptographic protocols. In Proc. 28th
International Colloquium on Automata, Languages and Programming (ICALP),
LNCS. Springer, 2001.

[BP06] Bruno Blanchet and David Pointcheval. Automated security proofs with se-
quences of games. In Advances in Cryptology – CRYPTO’06, volume 4117 of
Lecture Notes in Computer Science, pages 537–554. Springer, 2006.

[BP09] Jens-Matthias Bohli and Andreas Pashalidis. Relations Among Privacy Notions,
pages 362–380. Springer-Verlag, 2009.

[BP10] Bruno Blanchet and David Pointcheval. The computational and decisional Diffie-
Hellman assumptions in CryptoVerif. In Workshop on Formal and Computational
Cryptography (FCC 2010), Edimburgh, United Kingdom, July 2010.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm
for designing efficient protocols. In ACM Conference on Computer and Commu-
nications Security, pages 62–73, 1993.

[BR94] Mihir Bellare and Phillip Rogaway. Optimal asymmetric encryption. In EURO-
CRYPT, pages 92–111, 1994.

164



BIBLIOGRAPHY

[BR00] John Black and Phillip Rogaway. CBC MACs for arbitrary-length messages:
The three-key constructions. In Advances in Cryptology - CRYPTO’00, Lecture
Notes in Computer Science, pages 197–215. Springer-Verlag, 2000.

[BR02] John Black and Phillip Rogaway. A block-cipher mode of operation for paralleliz-
able message authentication. In Advances in Cryptology - EUROCRYPT 2002.
Lecture Notes in Computer Science, pages 384–397. Springer-Verlag, 2002.

[BR04] Mihir Bellare and Phillip Rogaway. Code-based game-playing proofs and the
security of triple encryption. Cryptology ePrint Archive, Report 2004/331, 2004.

[BRW04] Mihir Bellare, Phillip Rogaway, and David Wagner. The EAX mode of operation.
In Bimal K. Roy and Willi Meier, editors, Fast Software Encryption, 11th
International Workshop, FSE 2004, Delhi, India, February 5-7, 2004, Revised
Papers, volume 3017 of Lecture Notes in Computer Science, pages 389–407.
Springer, 2004.

[BT94] Josh Benaloh and Dwight Tuinstra. Receipt-free Secret-Ballot Elections (ex-
tended abstract). In STOC ’94: Proceedings of the twenty-sixth annual ACM
symposium on Theory of computing, pages 544–553, New York, NY, USA, 1994.

[BT04] Gilles Barthe and Sabrina Tarento. A machine-checked formalization of the
random oracle model. In Jean-Christophe Filliâtre, Christine Paulin-Mohring,
and Benjamin Werner, editors, Proceedings of TYPES’04, volume 3839 of Lecture
Notes in Computer Science, pages 33–49. Springer, 2004.

[BV04] L. Buttyan and I. Vajda. Towards provable security for ad hoc routing protocols.
In Proc. of the ACM Workshop on Security in Ad Hoc and Sensor Networks,
pages 94–105, 2004.

[CB87] Josh Cohen Benaloh. Secret Sharing Homomorphisms: Keeping Shares of a
Secret Secret. In Proceedings on Advances in Cryptology—CRYPTO ’86, pages
251–260, London, UK, 1987. Springer-Verlag.

[CCM08] Michael R. Clarkson, Stephen Chong, and Andrew C. Myers. Civitas: Toward
a secure voting system. IEEE Symposium on Security and Privacy, 0:354–368,
2008.

[CDD12] Véronique Cortier, Jan Degrieck, and Stéphanie Delaune. Analysing routing
protocols: four nodes topologies are sufficient. In Pierpaolo Degano and Joshua D.
Guttman, editors, Proceedings of the 1st International Conference on Principles
of Security and Trust (POST’12), volume 7215 of Lecture Notes in Computer
Science, pages 30–50, Tallinn, Estonia, March 2012. Springer.

165



BIBLIOGRAPHY

[CdH06] Ricardo Corin and Jerry den Hartog. A probabilistic hoare-style logic for
game-based cryptographic proofs. In Michele Bugliesi, Bart Preneel, Vladimiro
Sassone, and Ingo Wegener, editors, ICALP (2), volume 4052 of Lecture Notes
in Computer Science, pages 252–263. Springer, 2006.

[CE02] R. Corin and S. Etalle. An improved constraint-based system for the verification
of security protocols. In Proc. 9th International Static Analysis Symposium
(SAS), volume 2477 of LNCS, pages 326–341. Springer, Sep 2002.

[CG96] Ran Canetti and Rosario Gennaro. Incoercible multiparty computation (extended
abstract). In FOCS, pages 504–513, 1996.

[CH05] Srdjan Capkun and Jean-Pierre Hubaux. Secure positioning of wireless devices
with application to sensor networks. In IEEE INFOCOM. IEEE Journal on
Selected Areas in Communications: Special Issue on Security in Wireless Ad
Hoc Networks, 2005.

[CKW11] Véronique Cortier, Steve Kremer, and Bogdan Warinschi. A survey of sym-
bolic methods in computational analysis of cryptographic systems. J. Autom.
Reasoning, 46(3-4):225–259, 2011.

[CLCZ10] H. Comon-Lundh, V. Coltier, and E. Zalinescu. Deciding security properties
for cryptographic protocols. application to key cycles. ACM Transactions on
Computational Logic, pages 496–520, 2010.

[CMFP+06] Benoît Chevallier-Mames, Pierre-Alain Fouque, David Pointcheval, Julien Stern,
and Jacques Traoré. On some incompatible properties of voting schemes. In
Proceedings of the IAVoSS Workshop on Trustworthy Elections, 2006.

[CN08] Debrup Chakraborty and Mridul Nandi. An improved security bound for HCTR.
In Fast Software Encryption: 15th International Workshop, FSE 2008, Lausanne,
Switzerland, February 10-13, 2008, Revised Selected Papers, pages 289–302.
Springer-Verlag, Berlin, Heidelberg, 2008.

[CR88] Benny Chor and Ronald L. Rivest. A knapsack-type public key cryptosystem
based on arithmetic in finite fields. IEEE Transactions on Information Theory,
pages 901–909, 1988.

[CRC11] Cas Cremers, Kasper Bonne Rasmussen, and Srdjan Capkun. Distance hijacking
attacks on distance bounding protocols. Cryptology ePrint Archive, Report
2011/129, 2011. http://eprint.iacr.org/.

[Cre08] C.J.F. Cremers. The Scyther Tool: Verification, falsification, and analysis of
security protocols. In Computer Aided Verification, 20th International Confer-
ence, CAV 2008, Princeton, USA, Proc., volume 5123/2008 of Lecture Notes in
Computer Science, pages 414–418. Springer, 2008.

166

http://eprint.iacr.org/


BIBLIOGRAPHY

[CRS05] David Chaum, Peter Ryan, and Steve Schneider. A practical voter-verifiable
election scheme. In Sabrina di Vimercati, Paul Syverson, and Dieter Gollmann,
editors, Computer Security - ESORICS 2005, volume 3679 of Lecture Notes in
Computer Science, pages 118–139. Springer Berlin, Heidelberg, 2005.

[CS06] Debrup Chakraborty and Palash Sarkar. A new mode of encryption providing
a tweakable strong pseudo-random permutation. In Matthew J. B. Robshaw,
editor, FSE, volume 4047 of Lecture Notes in Computer Science, pages 293–309.
Springer, 2006.

[CS08] Debrup Chakraborty and Palash Sarkar. HCH: A new tweakable enciphering
scheme using the hash-counter-hash approach. IEEE Transactions on Information
Theory, 54(4):1683–1699, 2008.

[Dau12] Marion Daubignard. Formalisation de preuves de sÃľcuritÃľ concrÃĺte. PhD
thesis, Université de Grenoble, Janvier 2012.

[DB97] B. Das and V. Bharghavan. Routing in ad-hoc networks using minimum connected
dominating sets. In Communications, 1997. ICC 97 Montreal, ’Towards the
Knowledge Millennium’. 1997 IEEE International Conference on, volume 1,
pages 376 –380 vol.1, jun 1997.

[DDMR07] Anupam Datta, Ante Derek, John C. Mitchell, and Arnab Roy. Protocol
composition logic (PCL). Electr. Notes Theor. Comput. Sci., 172:311–358, 2007.

[DDMW06] Anupam Datta, Ante Derek, John C. Mitchell, and Bogdan Warinschi. Com-
putationally sound compositional logic for key exchange protocols. In CSFW
’06: Proceedings of the 19th IEEE workshop on Computer Security Foundations,
pages 321–334, Washington, DC, USA, 2006. IEEE Computer Society.

[DDS10] Morten Dahl, Stéphanie Delaune, and Graham Steel. Formal analysis of pri-
vacy for vehicular mix-zones. In Dimitris Gritzalis and Bart Preneel, editors,
Proceedings of the 15th European Symposium on Research in Computer Security
(ESORICS’10), volume 6345 of Lecture Notes in Computer Science, pages 55–70,
Athens, Greece, September 2010. Springer.

[DKPR11] J. Du, E. Kranakis, O. Morales Ponce, and S. Rajsbaum. Neighbor discovery
in a sensor network with directional antennae. In Algosensors, Saarbruecken,
Germany, September 2011.

[DKR09] Stéphanie Delaune, Steve Kremer, and Mark Ryan. Verifying privacy-type
properties of electronic voting protocols. Journal of Computer Security, 17:435–
487, December 2009.

167



BIBLIOGRAPHY

[DKR10] Stéphanie Delaune, Steve Kremer, and Mark D. Ryan. Verifying privacy-type
properties of electronic voting protocols: A taster. In David Chaum, Markus
Jakobsson, Ronald L. Rivest, Peter Y. A. Ryan, Josh Benaloh, Mirosław Ku-
tyłowski, and Ben Adida, editors, Towards Trustworthy Elections – New Direc-
tions in Electronic Voting, volume 6000 of LNCS, pages 289–309. Springer, May
2010.

[DY81] D. Dolev and A.C. Yao. On the security of public key protocols. In Proc. of the
22nd Symp. on Foundations of ComputerScience, pages 350–357. IEEE Computer
Society Press, 1981.

[DY83a] D. Dolev and A. Yao. On the security of public key protocols. Information
Theory, IEEE Transactions on, 29(2):198–208, 1983.

[DY83b] D. Dolev and A. Chi-Chih Yao. On the security of public key protocols. IEEE
Transactions on Information Theory, pages 198–207, 1983.

[EMST76] William F. Ehrsam, Carl H. W. Meyer, John L. Smith, and Walter L. Tuchman.
Message verification and transmission error detection by block chaining. US
Patent 4074066, 1976.

[EOKMV11] O. Erdene-Ochir, A. Kountouris, M. Minier, and F. Valois. Enhancing resiliency
against routing layer attacks in wireless sensor networks: Gradient-based routing
in focus. International Journal On Advances in Networks and Services, 4(1 and
2):38–54, 2011.

[EZ06] Charlott Eliasson and André Zúquete. An electronic voting system supporting
vote weights. Internet Research, 16(5):507–518, 2006.

[FKS11] C. Fournet, M. Kohlweiss, and P. Strub. Modular code-based cryptographic
verification. In Y.Chen, G. Danezis, and V. Shmatikov, editors, ACM-CCS’11,
pages 341–350. ACM, 2011.

[Flo67] Robert W. Floyd. Assigning meanings to programs. Proceedings of Symposium
on Applied Mathematics, 19:19–32, 1967.

[FOO92] Atsushi Fujioka, Tatsuaki Okamoto, and Kazuo Ohta. A practical secret voting
scheme for large scale elections. In Jennifer Seberry and Yuliang Zheng, editors,
Advances in Cryptology – AUSCRYPT ’92, volume 718 of LNCS, pages 244–251.
Springer Berlin / Heidelberg, 1992.

[FOPS04a] Eiichiro Fujisaki, Tatsuaki Okamoto, David Pointcheval, and Jacques Stern.
Rsa-oaep is secure under the rsa assumption. J. Cryptology, 17(2):81–104, 2004.

[FOPS04b] Eiichiro Fujisaki, Tatsuaki Okamoto, David Pointcheval, and Jacques Stern.
Rsa-oaep is secure under the rsa assumption. J. Cryptology, 17(2):81–104, 2004.

168



BIBLIOGRAPHY

[Gjo05] Kristian Gjosteen. Homomorphic cryptosystems based on subgroup membership
problems. In Ed Dawson and Serge Vaudenay, editors, Progress in Cryptology -
Mycrypt 2005, volume 3715 of Lecture Notes in Computer Science, pages 314–327.
Springer Berlin / Heidelberg, 2005.

[GM82] Shafi Goldwasser and Silvio Micali. Probabilistic Encryption and How to Play
Mental Poker Keeping Secret All Partial Information. In STOC, pages 365–377,
1982.

[Gro08] Distributed Computing Group. Sinalgo - simulator for network algorithms, 2008.
http://disco.ethz.ch/projects/sinalgo/.

[Hal04] S. Halevi. EME*: Extending EME to handle arbitrary-length messages with
associated data. In Anne Canteaut and Kapalee Viswanathan, editors, Progress
in Cryptology - INDOCRYPT 2004, 5th International Conference on Cryptology
in India, Chennai, India, Proceedings, volume 3348 of LNCS, pages 315–327.
Springer, 2004.

[Hal05] Shai Halevi. A plausible approach to computer-aided cryptographic proofs.
http://theory.lcs.mit.edu/~shaih/pubs.html, 2005.

[Hal07] Shai Halevi. Invertible universal hashing and the tet encryption mode. In Alfred
Menezes, editor, CRYPTO, volume 4622 of Lecture Notes in Computer Science,
pages 412–429. Springer, 2007.

[HK05] G.P. Hancke and M.G. Kuhn. An rfid distance bounding protocol. In Security and
Privacy for Emerging Areas in Communications Networks, 2005. SecureComm
2005. First International Conference on, pages 67–73. IEEE, 2005.

[Hoa69] C. A. R. Hoare. An axiomatic basis for computer programming. Commun. ACM,
12:576–580, October 1969.

[Hoa85] C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.

[HPJ03] Y. C. Hu, A. Perrig, and D. B. Johnson. Packet leashes: a defense against
wormhole attacks in wireless networks. In INFOCOM 2003. Twenty-Second
Annual Joint Conference of the IEEE Computer and Communications Societies.
IEEE, volume 3, pages 1976–1986 vol.3, 2003.

[HPJ05] Yih-Chun Hu, Adrian Perrig, and David B. Johnson. Ariadne: a secure on-
demand routing protocol for ad hoc networks. Wirel. Netw., 11(1-2):21–38,
January 2005.

[HR03] Shai Halevi and Phillip Rogaway. A tweakable enciphering mode. In Dan Boneh,
editor, CRYPTO, volume 2729 of Lecture Notes in Computer Science, pages
482–499. Springer, 2003.

169

http://theory.lcs.mit.edu/~shaih/pubs.html


BIBLIOGRAPHY

[HR04] Shai Halevi and Phillip Rogaway. A parallelizable enciphering mode. In Tatsuaki
Okamoto, editor, CT-RSA, volume 2964 of Lecture Notes in Computer Science,
pages 292–304. Springer, 2004.

[Hug95] B.D. Hughes. Random walks and random environments, volume 1. Oxford
University Press, 1995.

[IK03a] Tetsu Iwata and Kaoru Kurosawa. OMAC: One-key CBC MAC. In Thomas
Johansson, editor, FSE, volume 2887 of Lecture Notes in Computer Science,
pages 129–153. Springer, 2003.

[IK03b] Tetsu Iwata and Kaoru Kurosawa. On the security of a new variant of OMAC.
In Jong In Lim and Dong Hoon Lee, editors, ICISC, volume 2971 of Lecture
Notes in Computer Science, pages 67–78. Springer, 2003.

[IK03c] Tetsu Iwata and Kaoru Kurosawa. Stronger security bounds for OMAC, TMAC,
and XCBC. In Thomas Johansson and Subhamoy Maitra, editors, INDOCRYPT,
volume 2904 of Lecture Notes in Computer Science, pages 402–415. Springer,
2003.

[IK06] Russell Impagliazzo and Bruce M. Kapron. Logics for reasoning about crypto-
graphic constructions. Journal of Computer and Systems Sciences, 72(2):286–320,
2006.

[JCJ02] Ari Juels, Dario Catalano, and Markus Jakobsson. Coercion-resistant electronic
elections, 2002. Cryptology ePrint Archive, Report 2002/165, http://eprint.
iacr.org/.

[JCJ05] Ari Juels, Dario Catalano, and Markus Jakobsson. Coercion-resistant electronic
elections. In Proceedings of the 2005 ACM workshop on Privacy in the electronic
society, WPES ’05, pages 61–70. ACM, 2005.

[JMB01] David B. Johnson, David A. Maltz, and Josh Broch. Dsr: the dynamic source
routing protocol for multihop wireless ad hoc networks. In Ad hoc networking,
pages 139–172. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 2001.

[Jr.91] Hendrik W. Lenstra Jr. On the chor-rivest knapsack cryptosystem. J. Cryptology,
3:149–155, 1991.

[Jut01] Charanjit S. Jutla. Encryption modes with almost free message integrity. In
EUROCRYPT ’01: Proceedings of the International Conference on the Theory
and Application of Cryptographic Techniques, pages 529–544, London, UK, 2001.
Springer-Verlag.

170

http://eprint.iacr.org/
http://eprint.iacr.org/


BIBLIOGRAPHY

[JZF03] Rui Joaquim, André Zúquete, and Paulo Ferreira. Revs - a robust electronic vot-
ing system. In IADIS International Conference e-Society 2003, Lisboa (Portugal),
June 3-6, 2003.

[KAF+10] Thorsten Kleinjung, Kazumaro Aoki, Jens Franke, Arjen K. Lenstra, Emmanuel
ThomÃľ, Pierrick Gaudry, Peter L. Montgomery, Dag Arne Osvik, Herman Te
Riele, Andrey Timofeev, and Paul Zimmermann. Factorization of a 768-bit RSA
modulus, 2010.

[Kas12] Ali Kassem. Formal verification of routing protocols in ad-hoc networks in
presence of independent intruders. Master’s thesis, Université Joseph Fourrier,
2012.

[KI03] Kaoru Kurosawa and Tetsu Iwata. TMAC: Two-key CBC MAC. In Marc Joye,
editor, CT-RSA, volume 2612 of Lecture Notes in Computer Science, pages 33–49.
Springer, 2003.

[KM10] Steve Kremer and Laurent Mazaré. Computationally sound analysis of protocols
using bilinear pairings. Journal of Computer Security, 18(6):999–1033, 2010.

[KRS10] Steve Kremer, Mark Ryan, and Ben Smyth. Election verifiability in electronic
voting protocols. In Proceedings of the 15th European Symposium on Research
in Computer Security, ESORICS 2010, volume 6345 of LNCS, pages 389–404.
Springer, 2010.

[KSR10] Petr Klus, Ben Smyth, and Mark D. Ryan. Proswapper: Improved equivalence
verifier for proverif. http://www.bensmyth.com/proswapper.php, 2010.

[KT09] R. Küsters and T. Truderung. An Epistemic Approach to Coercion-Resistance
for Electronic Voting Protocols. In 2009 IEEE Symposium on Security and
Privacy (S&P 2009), pages 251–266. IEEE Computer Society, 2009.

[LBD+04] Byoungcheon Lee, Colin Boyd, Ed Dawson, Kwangjo Kim, Jeongmo Yang, and
Seungjae Yoo. Providing receipt-freeness in mixnet-based voting protocols. In
Information Security and Cryptology - ICISC 2003, volume 2971 of LNCS, pages
245–258. Springer Berlin / Heidelberg, 2004.

[Li10] K. Li. Performance analysis and evaluation of random walk algorithms on wireless
networks. In IPDPS Workshops, pages 1–8, 2010.

[LJP10] Lucie Langer, Hugo Jonker, and Wolter Pieters. Anonymity and verifiability in
voting: understanding (un)linkability. In Proceedings of the 12th international
conference on Information and communications security, ICICS’10, pages 296–
310. Springer-Verlag, 2010.

171

http://www.bensmyth.com/proswapper.php


BIBLIOGRAPHY

[Lov93] L. Lovász. Random walks on graphs: A survey. In T. Szőnyi D. Miklós,
V.T. Sós, editor, Combinatorics, Paul Erdős is Eighty, volume 2 of Bolyai Society
Mathematical Studies, pages 1–46. János Bolyai Mathematical Society, 1993.

[Low96] G. Lowe. Breaking and fixing the Needham-Schroeder public-key protocol using
FDR. In Proc. 2nd International Workshop on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS’96), volume 1055 of LNCS, pages
147–166, Berlin (Germany), 1996. Springer-Verlag.

[Low98] G. Lowe. Casper: a compiler for the analysis of security protocols. J. Comput.
Secur., 6(1-2):53–84, 1998.

[LRW02a] Moses Liskov, Ronald L. Rivest, and David Wagner. Tweakable block ciphers.
In CRYPTO ’02: Proceedings of the 22nd Annual International Cryptology
Conference on Advances in Cryptology, pages 31–46, London, UK, 2002. Springer-
Verlag.

[LRW02b] Moses Liskov, Ronald L. Rivest, and David Wagner. Tweakable block ciphers.
In Moti Yung, editor, Advances in Cryptology – CRYPTO 2002, volume 2442 of
Lecture Notes in Computer Science, pages 31–46. Springer, 2002.

[Mea96] C. Meadows. Language generation and verification in the NRL protocol analyzer.
In Proc. 9th Computer Seurity Foundation Workshop (CSFW’96), pages 48–62,
Kenmare (Ireland), 1996. IEEE Comp. Soc. Press.

[MF07] David A. McGrew and Scott R. Fluhrer. The security of the extended codebook
(XCB) mode of operation. In Carlisle M. Adams, Ali Miri, and Michael J.
Wiener, editors, Selected Areas in Cryptography, 14th International Workshop,
SAC 2007, Ottawa, Canada, Revised Selected Papers, volume 4876 of Lecture
Notes in Computer Science, pages 311–327. Springer, 2007.

[MH06] R. Merkle and M. Hellman. Hiding information and signatures in trapdoor
knapsacks. IEEE Trans. Inf. Theor., 24(5):525–530, September 2006.

[MMS97] J.C. Mitchell, M. Mitchell, and U. Stern. Automated analysis of cryptographic
protocols using Murphi. In IEEE Symposium on Security and Privacy, May
1997.

[MN06] Tal Moran and Moni Naor. Receipt-free universally-verifiable voting with ev-
erlasting privacy. In CRYPTO 2006, volume 4117 of LNCS, pages 373–392.
Springer, 2006.

[MPP+06] Catherine Meadows, Radha Poovendran, Dusko Pavlovic, LiWu Chang, and
Paul Syverson. Distance bounding protocols: Authentication logic analysis and
collusion attacks. In Secure Localization and Time Synchronization for Wireless
Sensor and Ad Hoc Networks, edited volume, Springer, Nov. 2006, Nov 2006.

172



BIBLIOGRAPHY

[MS01a] J. Millen and V. Shmatikov. Constraint solving for bounded-process crypto-
graphic protocol analysis. In Proc. 8th ACM Conference on Computer and
Communications Security (CCS’01). ACM Press, 2001.

[MS01b] J. Millen and V. Shmatikov. Constraint solving for bounded-process crypto-
graphic protocol analysis. In Proc. of the ACM Conference on Computer and
Communications Security, pages 166–175, 2001.

[MS03] J. Millen and V. Shmatikov. Symbolic protocol analysis with products and
Diffie-Hellman exponentiation. In Proc. 16th Computer Security Foundation
Workshop (CSFW’03), pages 47–62, Pacific Grove (California, USA), 2003. IEEE
Comp. Soc. Press.

[MV04] David A. McGrew and John Viega. The security and performance of the
galois/counter mode (GCM) of operation. In Anne Canteaut and Kapalee
Viswanathan, editors, Progress in Cryptology - INDOCRYPT 2004, 5th Interna-
tional Conference on Cryptology in India, Chennai, India, Proceedings, LNCS,
pages 343–355. Springer, 2004.

[Now07] David Nowak. A framework for game-based security proofs. In ICICS, pages
319–333, 2007.

[NPW02] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL — A
Proof Assistant for Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.

[NS78] R. Needham and M. Schroeder. Using encryption for authentication in large
networks of computers. Communication of the ACM, 21(12):993–999, 1978.

[NS98] David Naccache and Jacques Stern. A New Public Key Cryptosystem Based
on Higher Residues. In ACM Conference on Computer and Communications
Security, pages 59–66, 1998.

[Oka96] Tatsuaki Okamoto. An electronic voting scheme. In Proceedings of the IFIP
World Conference on IT Tools, pages 21–30, 1996.

[OMVK10] E.-O. Ochirkhand, M. Minier, F. Valois, and A. Kountouris. Resilient networking
in wireless sensor networks. Research report, Inria, 2010.

[OW07] R. Ortner and W. Woess. Non-backtracking random walks and cogrowth of
graphs. Canad. J. Math., 59(4):828–844, 2007.

[Pau98] L.C. Paulson. The inductive approach to verifying cryptographic protocols.
Journal of computer security, 6(1-2):85–128, 1998.

[PB12] Miriam Paiola and Bruno Blanchet. Verification of security protocols with lists:
From length one to unbounded length. In Pierpaolo Degano and Joshua D.

173



BIBLIOGRAPHY

Guttman, editors, POST, volume 7215 of Lecture Notes in Computer Science,
pages 69–88. Springer, 2012.

[PCTS02] Adrian Perrig, Ran Canetti, J. D. Tygar, and Dawn Song. The tesla broadcast
authentication protocol. RSA CryptoBytes, 5, 2002.

[PH02] P. Papadimitratos and Z. Haas. Secure routing for mobile ad hoc networks.
Proc.of the SCS Communication Networks and Distributed Systems Modeling
and Simulation Conference, January 2002.

[Poi00] D. Pointcheval. Chosen-ciphertext security for any one-way cryptosystem. In
PKC’00, pages 129–146, 2000.

[Pol74] J. M. Pollard. Theorems on Factorization and Primality Testing. Mathematical
Proceedings of the Cambridge Philosophical Society, 76(03):521–528, 1974.

[Pon11] C. Ponsonnet. Secure probabilistic routing in wireless sensor networks. Master
thesis, Laboratoire Verimag, 2011.

[PPH07] Marcin Poturalski, Panos Papadimitratos, and Jean-Pierre Hubaux. Secure
Neighbor Discovery in Wireless Networks: Formal Investigation of Possiblity.
Technical report, EPFL, 2007.

[PPH08a] Marcin Poturalski, Panos Papadimitratos, and Jean-Pierre Hubaux. Secure
neighbor discovery in wireless networks: formal investigation of possibility.
In Proceedings of the 2008 ACM symposium on Information, computer and
communications security, pages 189–200. ACM, 2008.

[PPH08b] Marcin Poturalski, Panos Papadimitratos, and Jean-Pierre Hubaux. Towards
Provable Secure Neighbor Discovery in Wireless Networks. In The 6th ACM
Workshop on Formal Methods in Security Engineering, pages 31–42, Alexandria,
VA, 2008. ACM.

[PPS+08] Panagiotis Papadimitratos, Marcin Poturalski, Patrick Schaller, Pascal Lafour-
cade, Davin Basin, Srdjan Capkun, and Jean-Pierre Hubaux. Secure Neighbor-
hood Discovery: A Fundamental Element for Mobile Ad Hoc Networking. IEEE
Communications Magazine, 46(2), 2008.

[PR99] Charles E. Perkins and Elizabeth M. Royer. Ad-hoc on-demand distance vector
routing. Pro. 2nd Workshop on Mobile Computing Systems and Appliations,
pages 99–100, 1999.

[PR00] Erez Petrank and Charles Rackoff. CBC MAC for Real-Time Data Sources. J.
Cryptology, 13(3):315–338, 2000.

[RDDM07] Arnab Roy, Anupam Datta, Ante Derek, and John C. Mitchell. Inductive proofs
of computational secrecy. In ESORICS, pages 219–234, 2007.

174



BIBLIOGRAPHY

[RDM07] Arnab Roy, Anupam Datta, and John C. Mitchell. Formal proofs of cryptographic
security of diffie-hellman-based protocols. In TGC, pages 312–329, 2007.

[Rog04] Phillip Rogaway. Efficient instantiations of tweakable blockciphers and refine-
ments to modes OCB and PMAC. In Pil Joong Lee, editor, ASIACRYPT,
volume 3329 of Lecture Notes in Computer Science, pages 16–31. Springer, 2004.

[Ros95] A. W. Roscoe. Modelling and verifying key-exchange protocols using CSP and
FDR. In IEEE Symposium on Foundations of Secure Systems, 1995.

[RP05] Peter Y.A. Ryan and Thea Peacock. Prêt à voter: a systems perspective.
Technical Report 929, Newcastle University, School of Computing Science, 2005.

[RSG+00] P.Y.A. Ryan, S.A. Schneider, M.H. Goldsmith, G. Lowe, and A.W. Roscoe. The
modelling and analysis of security protocols: the CSP approach. Addison-Wesley,
2000.

[S+10] W.A. Stein et al. Sage Mathematics Software (Version 4.5.1). The Sage
Development Team, 2010. http://www.sagemath.org.

[SBP01] D. Song, S. Berezin, and A. Perrig. Athena: A novel approach to efficient
automatic security protocol analysis. Journal of Computer Security, 9(1/2):47–
74, 2001.

[SC10] Ben Smyth and Veronique Cortier. Attacking and fixing helios: An analysis
of ballot secrecy. Cryptology ePrint Archive, Report 2010/625, 2010. http:

//eprint.iacr.org/.

[SC11] Ben Smyth and Veronique Cortier. Attacking and fixing helios: An analysis of
ballot secrecy. In Proceedings of the 24th IEEE Computer Security Foundations
Symposium (CSF’11), pages 297–311. IEEE, 2011.

[Sch96] S.A. Schneider. Security properties and CSP. In Proc. of the Symposium on
Security and Privacy, pages 174–187. IEEE Computer Society Press, 1996.

[Shm04] V. Shmatikov. Decidable analysis of cryptographic protocols with products and
modular exponentiation. In Proc. 13th European Symposium On Programming
(ESOP’04), volume 2986 of LNCS, pages 355–369, Barcelona (Spain), 2004.
Springer-Verlag.

[Sho02] Victor Shoup. Oaep reconsidered. J. Cryptology, 15(4):223–249, 2002.

[Sho04] V. Shoup. Sequences of games: a tool for taming complexity in security proofs,
2004. URL: http://eprint.iacr.org/2004/332.

175

http://eprint.iacr.org/
http://eprint.iacr.org/


BIBLIOGRAPHY

[SIY09] Izumi Kubo Satoshi Ikeda and Masafumi Yamashita. The hitting and cover times
of random walks on finite graphs using local degree information. Theoretical
Computer Science, 410:94–100, 2009. Contents lists available at ScienceDirect.

[Sla10] G. Slade. The self-avoiding walk: A brief survey. To appear in Surveys in
Stochastic Processes, Proceedings of the Thirty-third SPA Conference in Berlin,
2009, to be published in the EMS Series of Congress Reports, eds. J. Blath, P.
Imkeller, S. Roelly, 2010.

[SPRH09] R. Shokri, Marcin Poturalski, G. Ravot, and Panos Papadimitratosand Jean-
Pierre Hubaux. A practical secure neighbor verification protocol for wireless
sensor networks. In Proceedings of the second ACM conference on Wireless
network security, pages 193–200. ACM, 2009.

[SRKK10] Ben Smyth, Mark D. Ryan, Steve Kremer, and Mounira Kourjieh. Towards
automatic analysis of election verifiability properties. In Proceedings of the Joint
Workshop on Automated Reasoning for Security Protocol Analysis and Issues in
the Theory of Security (ARSPA-WITS’10), volume 6186 of LNCS, pages 146–163.
Springer, 2010.

[SS01] C. Schurgers and M.B. Srivastava. Energy efficient routing in wireless sensor
networks. In Military Communications Conference, 2001. MILCOM 2001. Com-
munications for Network-Centric Operations: Creating the Information Force.
IEEE, volume 1, pages 357–361. Ieee, 2001.

[SSBC09a] Patrick Schaller, Benedikt Schmidt, David Basin, and Srdjan Capkun. Modeling
and verifying physical properties of security protocols for wireless networks. In
Proceedings of the IEEE Computer Security Foundations Symposium (CSF).
IEEE, 2009.

[SSBC09b] Patrick Schaller, Benedikt Schmidt, David Basin, and Srdjan Capkun. Modeling
and verifying physical properties of security protocols for wireless networks. In
Proceedings of the IEEE Computer Security Foundations Symposium (CSF),
pages 109–123. IEEE, 2009.

[SSQ02] David Soldera, Jennifer Seberry, and Chengxin Qu. The analysis of zheng-seberry
scheme. In Lynn Margaret Batten and Jennifer Seberry, editors, ACISP, volume
2384 of Lecture Notes in Computer Science, pages 159–168. Springer, 2002.

[Tea04] The Coq Development Team. The Coq proof assistant reference manual. LogiCal
Project, 2004. Version 8.0.

[TSG10] F. Javier Thayer, Vipin Swarup, and Joshua D. Guttman. Metric strand spaces
for locale authentication protocols. In Masakatsu Nishigaki, Audun Jøsang, Yuko
Murayama, and Stephen Marsh, editors, Trust Management IV - 4th IFIP WG

176



BIBLIOGRAPHY

11.11 International Conference, IFIPTM 2010, Morioka, Japan, June 16-18,
2010. Proceedings, volume 321 of IFIP Conference Proceedings, pages 79–94.
Springer, 2010.

[UMQ10] Dominique Unruh and Jörn Müller-Quade. Universally composable incoercibility.
In Tal Rabin, editor, Advances in Cryptology - CRYPTO 2010, volume 6223 of
LNCS, pages 411–428. Springer, 2010.

[Vau98] Serge Vaudenay. Cryptanalysis of the chor-rivest cryptosystem. In CRYPTO
’98, pages 243–256. Springer-Verlag, 1998.

[VKT05] S. Vasudevan, J. Kurose, and D. Towsley. On neighbor discovery in wireless
networks with directional antennas. In INFOCOM 2005, volume 4, pages 2502–
2512, 2005.

[WB09] Roland Wen and Richard Buckland. Masked ballot voting for receipt-free online
elections. In Proceedings of the 2nd International Conference on E-Voting and
Identity, VOTE-ID ’09, pages 18–36, Berlin, Heidelberg, 2009. Springer-Verlag.

[WC19] M. Wegman and J. L. Carter. Universal classes of hash functions. Journal of
Computer and System Sciences, 18(2):143–154, 1919.

[WC81] M. Wegman and J. L. Carter. New hash functions and their use in authentication
and set equality. Journal of Computer and System Sciences, 22(3):265–279,
1981.

[WFW05] Peng Wang, Dengguo Feng, and Wenling Wu. On the security of tweakable
modes of operation: TBC and TAE. In Jianying Zhou, Javier Lopez, Robert H.
Deng, and Feng Bao, editors, ISC, volume 3650 of Lecture Notes in Computer
Science, pages 274–287. Springer, 2005.

[WL99] Jie Wu and Hailan Li. On calculating connected dominating set for efficient rout-
ing in ad hoc wireless networks. In Proceedings of the 3rd international workshop
on Discrete algorithms and methods for mobile computing and communications,
DIALM ’99, pages 7–14, New York, NY, USA, 1999. ACM.

[ZA02] M. Guerrero Zapata and N. Asokan. Securing ad-hoc routing protocols. Proc.
1st ACM workshop on Wireless Security (WiSE’ 02), 2002.

[Zha08] Yu Zhang. The computational SLR: a logic for reasoning about computational
indistinguishability. IACR ePrint Archive 2008/434, 2008. Also in Proc. of
Typed Lambda Calculi and Applications 2009.

[ZS93] Yuliang Zheng and Jennifer Seberry. Immunizing public key cryptosystems
against chosen ciphertext attacks. IEEE Journal on Selected Areas in Communi-
cations, 11(5):715–724, 1993.

177





MY PUBLICATIONS LIST

My Publications List

[1] K. Altisen, S. Devismes, A. Gerbaud, and P. Lafourcade. Comparisons of mean hitting
times for tabu random walks on finite graphs. Technical report, Laboratoire Verimag,
2011. http://www-verimag.imag.fr/TR/TR-2012-6.pdf.

[2] K. Altisen, S. Devismes, A. Gerbaud, and P. Lafourcade. Analysis of random walks
using tabu lists. In G. Even and M. M. Halldórsson, editors, Structural Information and
Communication Complexity - 19th International Colloquium, SIROCCO 2012, Reykjavik,
Iceland, June 30-July 2, 2012, Revised Selected Papers, volume 7355 of Lecture Notes in
Computer Science, pages 254–266. Springer, 2012.

[3] K. Altisen, S. Devismes, P. Lafourcade, and C. Ponsonnet. Routage par marche aléatoire
à listes tabous. In Algotel, 2011. to appear.

[4] K. Altisen, S. Devismes, P. Lafourcade, and C. Ponsonnet. Routage par marche aléatoire
à listes tabous. In Algotel’2011 (23–26 Mai 2011, Cap Estérel), 2011.

[5] J. Courant, M. Daubignard, C. Ene, P. Lafourcade, and Y. Lakhnech. Towards automated
proofs for asymmetric encryption schemes in the random oracle model. In P. Ning, P. F.
Syverson, and S. Jha, editors, Proceedings of the 2008 ACM Conference on Computer and
Communications Security, CCS 2008, Alexandria, Virginia, USA, October 27-31, 2008,
pages 371–380, Alexandria, Virginia, USA, october 2008. ACM.

[6] J. Courant, M. Daubignard, C. Ene, P. Lafourcade, and Y. Lakhnech. Automated proofs
for asymmetric encryption. Journal of Automated Reasoning, 2010.

[7] C. J. F. Cremers, P. Lafourcade, and P. Nadeau. Comparing state spaces in automatic
security protocol analysis. In V. Cortier, C. Kirchner, M. Okada, and H. Sakurada,
editors, Formal to Practical Security - Papers Issued from the 2005-2008 French-Japanese
Collaboration, volume 5458 of Lecture Notes in Computer Science, pages 70–94. Springer,
2009.

MY PUBLICATIONS LIST

http://www-verimag.imag.fr/TR/TR-2012-6.pdf


MY PUBLICATIONS LIST

[8] J. Dreier, P. Lafourcade, and Y. Lakhnech. Vote-independence: A powerful privacy notion
for voting protocols. In Proceedings of the 4th Workshop on Foundations & Practice of
Security (FPS), LNCS. Springer, 2011.

[9] J. Dreier, P. Lafourcade, and Y. Lakhnech. Vote-independence: A powerful privacy notion
for voting protocols. Technical Report TR-2011-8, Verimag Research Report, April 2011.
Available at http://www-verimag.imag.fr/TR/TR-2011-8.pdf.

[10] J. Dreier, P. Lafourcade, and Y. Lakhnech. Defining privacy for weighted votes, single and
multi-voter coercion. In S. Foresti, M. Yung, and F. Martinelli, editors, Computer Security
- ESORICS 2012 - 17th European Symposium on Research in Computer Security, Pisa,
Italy, September 10-12, 2012. Proceedings, volume 7459 of Lecture Notes in Computer
Science, Pisa, Italy, sept 2012. Springer.

[11] J. Dreier, P. Lafourcade, and Y. Lakhnech. A formal taxonomy of privacy in voting proto-
cols. In First IEEE International Workshop on Security and Forensics in Communication
Systems (ICC’12 WS - SFCS), 2012.

[12] J. Dreier, P. Lafourcade, and Y. Lakhnech. On defining privacy in the presence of weighted
votes and the equivalence of single and multi-voter coercion. Technical Report TR-2012-2,
Verimag Research Report, March 2012. Available at http://www-verimag.imag.fr/TR/
TR-2012-2.pdf.

[13] J. Dreier, P. Lafourcade, and Y. Lakhnech. On parallel factorization of processes in the
applied pi calculus. Technical Report TR-2012-3, Verimag, March 2012. Available at
http://www-verimag.imag.fr/TR/TR-2012-3.pdf.

[14] J. Dreier, P. Lafourcade, and Y. Lakhnech. On unique decomposition of processes in the
applied π-calculus. In Technichal repoart, 2012.

[15] L. Fousse, P. Lafourcade, and M. Alnuaimi. Benaloh’s dense probabilistic encryption
revisited. In A. Nitaj and D. Pointcheval, editors, Progress in Cryptology - AFRICACRYPT
2011 - 4th International Conference on Cryptology in Africa, Dakar, Senegal, July 5-7,
2011. Proceedings, volume 6737 of Lecture Notes in Computer Science, pages 348–362.
Springer, 2011.

[16] M. Gagné, P. Lafourcade, and Y. Lakhnech. OCaml implementation of our method.
Laboratoire Verimag, Université Joseph Fourier, France, April 2012. Available at http:
//www-verimag.imag.fr/~gagne/macChecker.html.

[17] M. Gagné, P. Lafourcade, and Y. Lakhnech. Automated security proofs for message
authentication codes. Technical report, Verimag, 2012. Technical Report TR-2012-5.

[18] M. Gagne, P. Lafourcade, Y. Lakhnech, and S. Reihaneh. Automated proofs for encryption
modes. In 13th Annual Asian Computing Science Conference Focusing on Information
Security and Privacy: Theory and Practice (ASIAN0’9), Urumqi, China, Oct. 2009.

180

http://www-verimag.imag.fr/TR/TR-2011-8.pdf
http://www-verimag.imag.fr/TR/TR-2012-2.pdf
http://www-verimag.imag.fr/TR/TR-2012-2.pdf
http://www-verimag.imag.fr/TR/TR-2012-3.pdf
http://www-verimag.imag.fr/~gagne/macChecker.html
http://www-verimag.imag.fr/~gagne/macChecker.html


MY PUBLICATIONS LIST

[19] N. Ghoualmi, N. Kahya, and P. Lafourcade. Key management protocol in wimax revisited.
In The Third International Conference on Communications Security and Information
Assurance (CSIA 2012), Delhi, India, May 2012. Springer.

[20] R. Jamet and P. Lafourcade. Formal Model for (k)-Neighborhood Discovery Protocols,
chapter in Advances in Network Analysis and its Applications. Springer, 2012. to appear.

[21] B. Ksieżopolski and P. Lafourcade. Attack and revison of an electronic auction protocol
using OFMC. Technical Report 549, Department of Computer Science, ETH Zurich,
Switzerland, Feb. 2007. 13 pages.

[22] P. Lafourcade. Application de la résolution de conflits « logiques », à l’aide à la décision
pour la résolution de conflits des problèmes d’ordonnancement. Rapport de DEA, DEA
Représentation de la Connaissance et Fomalisation du Raisonnement, Toulouse, France,
June 2003. 66 pages.

[23] P. Lafourcade. Vérification des protocoles cryptographiques en présence de théories
équationnelles. Thèse de doctorat, Laboratoire Spécification et Vérification, ENS Cachan,
France, ENS Cachan, Sept. 2006. 209 pages.

[24] P. Lafourcade, V. Terrade, and S. Vigier. Comparison of cryptographic verification
tools dealing with algebraic properties. In J. Guttman and P. Degano, editors, sixth
International Workshop on Formal Aspects in Security and Trust, (FAST’09), Eindhoven,
Netherlands, Nov. 2009.

[25] P. Papadimitratos, M. Poturalski, P. Schaller, P. Lafourcade, D. Basin, S. Čapkun, and
J.-P. Hubaux. Secure Neighborhood Discovery: A Fundamental Element for Mobile Ad
Hoc Networking. IEEE Communications Magazine, 46(2):132–139, February 2008.

[26] J. Tharaud, S. Wohlgemuth, I. Echizen, N. Sonehara, G. Müller, and P. Lafourcade.
Privacy by data provenance with digital watermarking - a proof-of-concept implementation
for medical services with electronic health records. In I. Echizen, J.-S. Pan, D. W.
Fellner, A. Nouak, A. Kuijper, and L. C. Jain, editors, Sixth International Conference
on Intelligent Information Hiding and Multimedia Signal Processing (IIH-MSP 2010),
Darmstadt, Germany, 15-17 October, 2010, Proceedings, pages 510–513. IEEE Computer
Society, 2010.

181



MY PUBLICATIONS LIST

182


	Introduction
	Context
	Contributions
	Proving Cryptographic Primitives using Logic
	Electronic Voting Protocols
	Wireless Sensor Networks

	Content of the Thesis
	Outline
	Collaborations


	I Proving Cryptographic Primitives using Hoare Logic
	Public Encryption Schemes
	Programming Language
	Assertion Language
	Hoare Logic
	Example of Application
	Conclusion

	Symmetric Encryption Modes
	Background
	Programming language
	Grammar
	Generic Encryption Mode
	Semantics

	Assertion Language
	Properties of Invariants and Useful Lemmas

	Proving Semantic Security
	Hoare Logic Rules
	Example

	Loops Analysis
	Conclusion

	Message Authentication Codes
	Cryptographic Background
	Models
	Grammar
	Semantics
	Assertion Language

	Proving Almost-Universal Hash with an Hoare Logic
	Implementation
	Invariant Filter
	Finding Loop Predicates

	Proving MAC Security
	Conclusion


	II Voting Protocols
	Benaloh Revisited
	Original Benaloh's Scheme
	A Small Counter-Example with Huge Consequences
	Simple Counter-Example
	One Application: Receipt-free Elections

	Revisited Benaloh's Scheme
	Semantic Security of the Corrected Scheme
	Probability of Failure of Benaloh's Scheme
	Conclusion

	Hierarchy of Privacy Properties
	Introduction
	Preliminaries
	The Applied -Calculus
	Voting Protocol and Process

	Hierarchy of Privacy Properties
	Definitions in the applied -calculus

	Conclusion

	One coercer is enough
	Privacy Notions for Weighted Votes
	Formal Definition
	Link to Existing Definitions

	Receipt Freeness
	Single-Voter Receipt-Freeness (SRF)
	Multi-Voter Receipt-Freeness (MRF)

	Coercion Resistance
	Single-Voter Coercion (SCR)
	Multi-Voter Coercion (MCR)

	Conclusion


	III Wireless Sensor Network
	Formal Verification of Neighborhood Discovery
	Introduction
	Timed Model
	Networks and Nodes
	Events
	Rules and Traces
	Building traces from rules
	Communication Rules

	Intruder Rules
	Mobility

	Neighborhood and (k)-Neighborhoods
	Neighborhood
	(k)-neighborhood

	(k)-or-less-Neighbors Discovery Protocol
	Conclusion

	Independent Intruders 
	Preliminaries
	Intruder Model
	Partially Well-Formed Constraints System
	Simplifying Constraints System
	Solving quasi-solved form constraints system
	Conclusion

	Routing with Shared Tabu List
	Introduction
	Tabu Random Walks and Update Rules
	Tabu Random Walks
	Update Rules
	Examples of Update Rules

	Finite Mean Hitting Times
	Optimal Update Rule for m-Free Graphs 
	Impact of the Length of the Update Rules
	Conclusion

	Routing with Local Tabu List
	Tabu List with Counter in the Node (TLCN)
	Protocol Description
	Attack

	A Secure Algorithm
	Idea of the Protocol
	TLCNS Algorithm

	Implementations
	Delivery Rate
	Results

	Conclusion

	Conclusion
	Bibliography
	My Publications List


