B. Al-lazikani, F. B. Sheinerman, and B. Honig, Combining multiple structure and sequence alignments to improve sequence detection and alignment: Application to the SH2 domains of Janus kinases, Proceedings of the National Academy of Sciences, vol.98, issue.26, pp.14796-14801, 2001.
DOI : 10.1073/pnas.011577898

L. S. Argetsinger, J. L. Kouadio, H. Steen, A. Stensballe, O. N. Jensen et al., Autophosphorylation of JAK2 on Tyrosines 221 and 570 Regulates Its Activity, Molecular and Cellular Biology, vol.24, issue.11, pp.4955-4967, 2004.
DOI : 10.1128/MCB.24.11.4955-4967.2004

T. Arora, B. Liu, H. He, J. Kim, T. L. Murphy et al., PIASx Is a Transcriptional Co-repressor of Signal Transducer and Activator of Transcription 4, Journal of Biological Chemistry, vol.278, issue.24, pp.21327-21330, 2003.
DOI : 10.1074/jbc.C300119200

S. Bagrodia, D. Bailey, Z. Lenard, M. Hart, J. L. Guan et al., A Tyrosine-phosphorylated Protein That Binds to an Important Regulatory Region on the Cool Family of p21-activated Kinase-binding Proteins, Journal of Biological Chemistry, vol.274, issue.32, pp.22393-22400, 1999.
DOI : 10.1074/jbc.274.32.22393

J. Banchereau and V. Pascual, Type I Interferon in Systemic Lupus Erythematosus and Other Autoimmune Diseases, Immunity, vol.25, issue.3, pp.383-392, 2006.
DOI : 10.1016/j.immuni.2006.08.010

F. Barahmand-pour, A. Meinke, B. Groner, and T. Decker, Jak2-Stat5 Interactions Analyzed in Yeast, Journal of Biological Chemistry, vol.273, issue.20, pp.12567-12575, 1998.
DOI : 10.1074/jbc.273.20.12567

J. F. Bazan, Structural design and molecular evolution of a cytokine receptor superfamily., Proceedings of the National Academy of Sciences, vol.87, issue.18, pp.6934-6938, 1990.
DOI : 10.1073/pnas.87.18.6934

E. Bettelli, T. Korn, and V. K. Kuchroo, Th17: the third member of the effector T cell trilogy, Current Opinion in Immunology, vol.19, issue.6, 2007.
DOI : 10.1016/j.coi.2007.07.020

A. Billiau, Interferon: The pathways of discovery, Cytokine & Growth Factor Reviews, vol.17, issue.5, pp.381-409, 2006.
DOI : 10.1016/j.cytogfr.2006.07.001

T. J. Boggon, Y. Li, P. W. Manley, and M. J. Eck, Crystal structure of the Jak3 kinase domain in complex with a staurosporine analog, ) Crystal structure of the Jak3 kinase domain in complex with a staurosporine analog, pp.996-1002, 2005.
DOI : 10.1182/blood-2005-02-0707

J. Bromberg, J. E. Darnell, and . Jr, The role of STATs in transcriptional control and their impact on cellular function, Oncogene, vol.19, issue.21, pp.2468-2473, 2000.
DOI : 10.1038/sj.onc.1203476

J. F. Bromberg, M. H. Wrzeszczynska, G. Devgan, Y. Zhao, R. G. Pestell et al., Stat3 as an Oncogene, Cell, vol.98, issue.3, pp.295-303, 1999.
DOI : 10.1016/S0092-8674(00)81959-5

M. Brysha, J. G. Zhang, P. Bertolino, J. E. Corbin, W. S. Alexander et al., Suppressor of Cytokine Signaling-1 Attenuates the Duration of Interferon ?? Signal Transduction in Vitro and in Vivo, Journal of Biological Chemistry, vol.276, issue.25, pp.22086-22089, 2001.
DOI : 10.1074/jbc.M102737200

P. J. Campbell and A. R. Green, The Myeloproliferative Disorders, New England Journal of Medicine, vol.355, issue.23, pp.2452-2466, 2006.
DOI : 10.1056/NEJMra063728

M. Chatterjee-kishore, K. L. Wright, J. P. Ting, and G. R. Stark, How Stat1 mediates constitutive gene expression: a complex of unphosphorylated Stat1 and IRF1 supports transcription of the LMP2 gene, The EMBO Journal, vol.136, issue.15, pp.4111-4122, 2000.
DOI : 10.1093/emboj/19.15.4111

M. Chen, A. Cheng, F. Candotti, Y. J. Zhou, A. Hymel et al., Complex Effects of Naturally Occurring Mutations in the JAK3 Pseudokinase Domain: Evidence for Interactions between the Kinase and Pseudokinase Domains, Molecular and Cellular Biology, vol.20, issue.3, pp.947-956, 2000.
DOI : 10.1128/MCB.20.3.947-956.2000

Y. L. Choi, R. Kaneda, T. Wada, S. Fujiwara, M. Soda et al., Identification of a constitutively active mutant of JAK3 by retroviral expression screening, Leukemia Research, vol.31, issue.2, pp.203-209, 2007.
DOI : 10.1016/j.leukres.2006.05.006

C. D. Chung, J. Liao, B. Liu, X. Rao, P. Jay et al., Specific Inhibition of Stat3 Signal Transduction by PIAS3, Science, vol.278, issue.5344, pp.1803-1805, 1997.
DOI : 10.1126/science.278.5344.1803

A. Claing, S. J. Perry, M. Achiriloaie, J. K. Walker, J. P. Albanesi et al., Multiple endocytic pathways of G protein-coupled receptors delineated by GIT1 sensitivity, Proceedings of the National Academy of Sciences, vol.97, issue.3, pp.1119-1124, 2000.
DOI : 10.1073/pnas.97.3.1119

E. M. Coccia, G. Uze, and S. Pellegrini, Negative regulation of Type I Interferon Signaling: Facts and Mechanisms, Cellular and Molecular Biology, vol.52, pp.77-87, 2006.
URL : https://hal.archives-ouvertes.fr/pasteur-00161598

A. P. Costa-pereira, S. Tininini, B. Strobl, T. Alonzi, J. F. Schlaak et al., Mutational switch of an IL-6 response to an interferon-??-like response, Proceedings of the National Academy of Sciences, vol.99, issue.12, pp.8043-8047, 2002.
DOI : 10.1073/pnas.122236099

A. Couve, S. Restituito, J. M. Brandon, K. J. Charles, H. Bawagan et al., Marlin-1, a Novel RNA-binding Protein Associates with GABA Receptors, Journal of Biological Chemistry, vol.279, issue.14, pp.13934-13943, 2004.
DOI : 10.1074/jbc.M311737200

B. A. Croker, D. L. Krebs, J. G. Zhang, S. Wormald, T. A. Willson et al., SOCS3 negatively regulates IL-6 signaling in vivo, Nature Immunology, vol.4, issue.6, pp.540-545, 2003.
DOI : 10.1038/ni931

M. K. Crow, Type I Interferon in Systemic Lupus Erythematosus Interferon: The 50th Anniversary, pp.359-386, 2007.

J. E. Darnell, . Jr, I. M. Kerr, and G. R. Stark, Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins, Science, vol.264, issue.5164, pp.1415-1421, 1994.
DOI : 10.1126/science.8197455

N. A. De-weerd, S. A. Samarajiwa, and P. J. Hertzog, Type I Interferon Receptors: Biochemistry and Biological Functions, Journal of Biological Chemistry, vol.282, issue.28, 2007.
DOI : 10.1074/jbc.R700006200

T. Decker and P. Kovarik, Serine phosphorylation of STATs, Oncogene, vol.19, issue.21, pp.2628-2637, 2000.
DOI : 10.1038/sj.onc.1203481

T. Decker, M. Muller, and S. Stockinger, The Yin and Yang of type I interferon activity in bacterial infection, Nature Reviews Immunology, vol.264, issue.9, pp.675-687, 2005.
DOI : 10.1016/j.it.2004.08.010

Y. Ding, D. Chen, A. Tarcsafalvi, R. Su, L. Qin et al., Suppressor of Cytokine Signaling 1 Inhibits IL-10-Mediated Immune Responses, The Journal of Immunology, vol.170, issue.3, pp.1383-1391, 2003.
DOI : 10.4049/jimmunol.170.3.1383

E. Dondi, E. Pattyn, G. Lutfalla, X. Van-ostade, G. Uze et al., Down-modulation of Type 1 Interferon Responses by Receptor Cross-competition for a Shared Jak Kinase, Journal of Biological Chemistry, vol.276, issue.50, pp.47004-47012, 2001.
DOI : 10.1074/jbc.M104316200

R. P. Donnelly, F. Sheikh, S. V. Kotenko, and H. Dickensheets, The expanded family of class II cytokines that share the IL-10 receptor-2 (IL-10R2) chain, Journal of Leukocyte Biology, vol.76, issue.2, pp.314-321, 2004.
DOI : 10.1189/jlb.0204117

J. G. Drachman, K. M. Millett, and K. Kaushansky, Thrombopoietin Signal Transduction Requires Functional JAK2, Not TYK2, Journal of Biological Chemistry, vol.274, issue.19, pp.13480-13484, 1999.
DOI : 10.1074/jbc.274.19.13480

L. Dumoutier, D. Lejeune, S. Hor, H. Fickenscher, and J. C. Renauld, Cloning of a new type II cytokine receptor activating signal transducer and activator of transcription (STAT)1, STAT2 and STAT3, Biochemical Journal, vol.370, issue.2, pp.391-396, 2003.
DOI : 10.1042/bj20021935

L. Dumoutier and J. C. Renauld, Viral and cellular interleukin-10 (IL-10)-related cytokines: from structures to functions, Eur Cytokine Netw, vol.13, pp.5-15, 2002.

L. Dumoutier, A. Tounsi, T. Michiels, C. Sommereyns, S. V. Kotenko et al., Role of the Interleukin (IL)-28 Receptor Tyrosine Residues for Antiviral and Antiproliferative Activity of IL-29/Interferon-??1: SIMILARITIES WITH TYPE I INTERFERON SIGNALING, Journal of Biological Chemistry, vol.279, issue.31, pp.32269-32274, 2004.
DOI : 10.1074/jbc.M404789200

S. Dupont, A. Masse, C. James, I. Teyssandier, Y. Lecluse et al., The JAK2 617V>F mutation triggers erythropoietin hypersensitivity and terminal erythroid amplification in primary cells from patients with polycythemia vera, Blood, vol.110, issue.3, pp.1013-1021, 2007.
DOI : 10.1182/blood-2006-10-054940

Y. Ezumi, H. Takayama, and M. Okuma, Thrombopoietin, c-Mpl ligand, induces tyrosine phosphorylation of Tyk2, JAK2, and STAT3, and enhances agonists-induced aggregation in platelets in vitro, FEBS Letters, vol.72, issue.1, pp.48-52, 1995.
DOI : 10.1016/0014-5793(95)01072-M

E. P. Feener, F. Rosario, S. L. Dunn, Z. Stancheva, M. G. Myers et al., Tyrosine Phosphorylation of Jak2 in the JH2 Domain Inhibits Cytokine Signaling, Molecular and Cellular Biology, vol.24, issue.11, pp.4968-4978, 2004.
DOI : 10.1128/MCB.24.11.4968-4978.2004

S. Y. Fuchs, V. S. Spiegelman, and K. G. Kumar, The many faces of ??-TrCP E3 ubiquitin ligases: reflections in the magic mirror of cancer, Oncogene, vol.23, issue.11, pp.2028-2036, 2004.
DOI : 10.1038/sj.onc.1207389

Y. Fujitani, M. Hibi, T. Fukada, M. Takahashi-tezuka, H. Yoshida et al., An alternative pathway for STAT activation that is mediated by the direct interaction between JAK and STAT, Oncogene, vol.14, issue.7, pp.751-761, 1997.
DOI : 10.1038/sj.onc.1200907

M. C. Gauzzi, G. Barbieri, M. F. Richter, G. Uze, L. Ling et al., The amino-terminal region of Tyk2 sustains the level of interferon ?? receptor 1, a component of the interferon ??/?? receptor, Proceedings of the National Academy of Sciences, vol.94, issue.22, pp.11839-11844, 1997.
DOI : 10.1073/pnas.94.22.11839

M. C. Gauzzi, I. Canini, P. Eid, F. Belardelli, and S. Gessani, Loss of Type I IFN Receptors and Impaired IFN Responsiveness During Terminal Maturation of Monocyte-Derived Human Dendritic Cells, The Journal of Immunology, vol.169, issue.6, pp.3038-3045, 2002.
DOI : 10.4049/jimmunol.169.6.3038

M. C. Gauzzi, L. Velazquez, R. Mckendry, K. E. Mogensen, M. Fellous et al., Interferon-??-dependent Activation of Tyk2 Requires Phosphorylation of Positive Regulatory Tyrosines by Another Kinase, Journal of Biological Chemistry, vol.271, issue.34, pp.20494-20500, 1996.
DOI : 10.1074/jbc.271.34.20494

M. P. Gil, R. Salomon, J. Louten, and C. A. Biron, Modulation of STAT1 protein levels: a mechanism shaping CD8 T-cell responses in vivo, Blood, vol.107, issue.3, pp.987-993, 2006.
DOI : 10.1182/blood-2005-07-2834

J. A. Girault, G. Labesse, J. P. Mornon, and I. Callebaut, The N-termini of FAK and JAKs contain divergent band 4.1 domains, Trends in Biochemical Sciences, vol.24, issue.2, pp.54-57, 1999.
DOI : 10.1016/S0968-0004(98)01331-0

D. S. Graham, M. Akil, and T. J. Vyse, Association of polymorphisms across the tyrosine kinase gene, TYK2 in UK SLE families, Rheumatology, vol.46, issue.6, pp.927-930, 2007.
DOI : 10.1093/rheumatology/kel449

C. J. Greenhalgh and D. J. Hilton, Negative regulation of cytokine signaling, J Leukoc Biol, vol.70, pp.348-356, 2001.

B. Grimbacher, S. M. Holland, and J. M. Puck, Hyper-IgE syndromes, Immunological Reviews, vol.81, issue.1, pp.244-250, 2005.
DOI : 10.1038/sj.bmt.1702446

D. Guschin, N. Rogers, J. Briscoe, B. Witthuhn, D. Watling et al., A major role for the protein tyrosine kinase JAK1 in the JAK/STAT signal transduction pathway in response to interleukin-6, Embo J, vol.14, pp.1421-1429, 1995.

J. Haendeler, G. Yin, Y. Hojo, Y. Saito, M. Melaragno et al., GIT1 Mediates Src-dependent Activation of Phospholipase C?? by Angiotensin II and Epidermal Growth Factor, Journal of Biological Chemistry, vol.278, issue.50, pp.49936-49944, 2003.
DOI : 10.1074/jbc.M307317200

T. Hayashi, Y. Kobayashi, S. Kohsaka, and K. Sano, The mutation in the ATP-binding region of JAK1, identified in human uterine leiomyosarcomas, results in defective interferon-?? inducibility of TAP1 and LMP2, Oncogene, vol.181, issue.29, pp.4016-4026, 2006.
DOI : 10.1038/sj.onc.1209434

D. Hebenstreit, P. Luft, A. Schmiedlechner, A. Duschl, and J. Horejs-hoeck, SOCS-1 and SOCS-3 inhibit IL-4 and IL-13 induced activation of Eotaxin-3/CCL26 gene expression in HEK293 cells, Molecular Immunology, vol.42, issue.3, pp.295-303, 2005.
DOI : 10.1016/j.molimm.2004.09.004

H. H. Ho and L. B. Ivashkiv, Role of STAT3 in Type I Interferon Responses: NEGATIVE REGULATION OF STAT1-DEPENDENT INFLAMMATORY GENE ACTIVATION, Journal of Biological Chemistry, vol.281, issue.20, pp.14111-14118, 2006.
DOI : 10.1074/jbc.M511797200

S. R. Hofmann, A. Q. Lam, S. Frank, Y. J. Zhou, H. L. Ramos et al., Jak3-Independent Trafficking of the Common ?? Chain Receptor Subunit: Chaperone Function of Jaks Revisited, Molecular and Cellular Biology, vol.24, issue.11, pp.5039-5049, 2004.
DOI : 10.1128/MCB.24.11.5039-5049.2004

S. M. Holland, F. R. Deleo, H. Z. Elloumi, A. P. Hsu, G. Uzel et al., Mutations in the Hyper-IgE Syndrome, New England Journal of Medicine, vol.357, issue.16, pp.1608-1619, 2007.
DOI : 10.1056/NEJMoa073687

R. Hoyt, W. Zhu, F. Cerignoli, A. Alonso, T. Mustelin et al., Cutting Edge: Selective Tyrosine Dephosphorylation of Interferon-Activated Nuclear STAT5 by the VHR Phosphatase, The Journal of Immunology, vol.179, issue.6, pp.3402-3406, 2007.
DOI : 10.4049/jimmunol.179.6.3402

L. J. Huang, S. N. Constantinescu, and H. F. Lodish, The N-Terminal Domain of Janus Kinase 2 Is Required for Golgi Processing and Cell Surface Expression of Erythropoietin Receptor, Molecular Cell, vol.8, issue.6, pp.1327-1338, 2001.
DOI : 10.1016/S1097-2765(01)00401-4

S. F. Hussain, L. Y. Kong, J. Jordan, C. Conrad, T. Madden et al., A Novel Small Molecule Inhibitor of Signal Transducers and Activators of Transcription 3 Reverses Immune Tolerance in Malignant Glioma Patients, Cancer Research, vol.67, issue.20, pp.9630-9636, 2007.
DOI : 10.1158/0008-5472.CAN-07-1243

T. Improta, C. Schindler, C. M. Horvath, I. M. Kerr, G. R. Stark et al., Transcription factor ISGF-3 formation requires phosphorylated Stat91 protein, but Stat113 protein is phosphorylated independently of Stat91 protein., Proceedings of the National Academy of Sciences, vol.91, issue.11, pp.4776-4780, 1994.
DOI : 10.1073/pnas.91.11.4776

G. Inghirami, R. Chiarle, W. J. Simmons, R. Piva, K. Schlessinger et al., New and Old Functions of STAT3: A Pivitol Target for Individualized Treatment of Cancer, Cell Cycle, vol.4, issue.9, pp.1131-1133, 2005.
DOI : 10.4161/cc.4.9.1985

J. Iyer and N. C. Reich, Constitutive nuclear import of latent and activated STAT5a by its coiled coil domain, The FASEB Journal, vol.22, issue.2, 2007.
DOI : 10.1096/fj.07-8965com

D. A. Jaitin, L. C. Roisman, E. Jaks, M. Gavutis, J. Piehler et al., Inquiring into the Differential Action of Interferons (IFNs): an IFN-??2 Mutant with Enhanced Affinity to IFNAR1 Is Functionally Similar to IFN-??, Molecular and Cellular Biology, vol.26, issue.5, pp.1888-1897, 2006.
DOI : 10.1128/MCB.26.5.1888-1897.2006

E. Jaks, M. Gavutis, G. Uze, J. Martal, and J. Piehler, Differential Receptor Subunit Affinities of Type I Interferons Govern Differential Signal Activation, Journal of Molecular Biology, vol.366, issue.2, pp.525-539, 2007.
DOI : 10.1016/j.jmb.2006.11.053

URL : https://hal.archives-ouvertes.fr/hal-00167456

C. James, V. Ugo, L. Couedic, J. P. Staerk, J. Delhommeau et al., A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera, Nature, vol.100, issue.7037, pp.1144-1148, 2005.
DOI : 10.1182/blood-2002-09-2839

A. D. Judge, V. Sood, J. R. Shaw, D. Fang, K. Mcclintock et al., Sequence-dependent stimulation of the mammalian innate immune response by synthetic siRNA, Nature Biotechnology, vol.165, issue.4, pp.457-462, 2005.
DOI : 10.1007/s11095-004-1873-z

J. S. Kaminker, Y. Zhang, A. Waugh, P. M. Haverty, B. Peters et al., Distinguishing Cancer-Associated Missense Mutations from Common Polymorphisms, Cancer Research, vol.67, issue.2, pp.465-473, 2007.
DOI : 10.1158/0008-5472.CAN-06-1736

T. Kamura, S. Sato, D. Haque, L. Liu, W. G. Kaelin et al., The Elongin BC complex interacts with the conserved SOCS-box motif present in members of the SOCS, ras, WD-40 repeat, and ankyrin repeat families, Genes & Development, vol.12, issue.24, pp.3872-3881, 1998.
DOI : 10.1101/gad.12.24.3872

M. Karaghiosoff, H. Neubauer, C. Lassnig, P. Kovarik, H. Schindler et al., Partial Impairment of Cytokine Responses in Tyk2-Deficient Mice, Immunity, vol.13, issue.4, pp.549-560, 2000.
DOI : 10.1016/S1074-7613(00)00054-6

M. Karpusas, M. Nolte, C. B. Benton, W. Meier, W. N. Lipscomb et al., The crystal structure of human interferon ?? at 2.2-A resolution, Proceedings of the National Academy of Sciences, vol.94, issue.22, pp.11813-11818, 1997.
DOI : 10.1073/pnas.94.22.11813

M. Karpusas, A. Whitty, L. Runkel, and P. Hochman, The structure of human interferon- ? : implications for activity, Cellular and Molecular Life Sciences (CMLS), vol.54, issue.11, pp.1203-1216, 1998.
DOI : 10.1007/s000180050248

M. A. Kashef, S. Kashef, F. Handjani, and M. Karimi, HODGKIN LYMPHOMA DEVELOPING IN A 4.5-YEAR-OLD GIRL WITH HYPER-IgE SYNDROME, Pediatric Hematology and Oncology, vol.41, issue.1, pp.59-63, 2006.
DOI : 10.1385/CRIAI:20:1:139

T. Kisseleva, S. Bhattacharya, J. Braunstein, and C. W. Schindler, Signaling through the JAK/STAT pathway, recent advances and future challenges, Gene, vol.285, issue.1-2, pp.1-24, 2002.
DOI : 10.1016/S0378-1119(02)00398-0

L. Knoops, T. Hornakova, Y. Royer, S. N. Constantinescu, and J. C. Renauld, JAK kinases overexpression promotes in vitro cell transformation, Oncogene, vol.8, issue.11, 2007.
DOI : 10.1038/sj.onc.1210800

S. V. Kotenko, G. Gallagher, V. V. Baurin, A. Lewis-antes, M. Shen et al., IFN-??s mediate antiviral protection through a distinct class II cytokine receptor complex, Nature Immunology, vol.4, issue.1, pp.69-77, 2003.
DOI : 10.1038/ni875

R. Kralovics, F. Passamonti, A. S. Buser, S. S. Teo, R. Tiedt et al., in Myeloproliferative Disorders, New England Journal of Medicine, vol.352, issue.17, pp.1779-1790, 2005.
DOI : 10.1056/NEJMoa051113

K. G. Kumar, J. J. Krolewski, and S. Y. Fuchs, Phosphorylation and Specific Ubiquitin Acceptor Sites Are Required for Ubiquitination and Degradation of the IFNAR1 Subunit of Type I Interferon Receptor, Journal of Biological Chemistry, vol.279, issue.45, pp.46614-46620, 2004.
DOI : 10.1074/jbc.M407082200

K. G. Kumar, W. Tang, A. K. Ravindranath, W. A. Clark, E. Croze et al., SCFHOS ubiquitin ligase mediates the ligand-induced down-regulation of the interferon-?? receptor, The EMBO Journal, vol.22, issue.20, pp.5480-5490, 2003.
DOI : 10.1093/emboj/cdg524

V. Lacronique, A. Boureux, R. Monni, S. Dumon, M. Mauchauffe et al., Transforming properties of chimeric TEL-JAK proteins in Ba/F3 cells, Blood, vol.95, pp.2076-2083, 2000.

O. Lahuna, M. Quellari, C. Achard, S. Nola, G. Meduri et al., Thyrotropin receptor trafficking relies on the hScrib?????PIX???GIT1???ARF6 pathway, The EMBO Journal, vol.100, issue.7, pp.1364-1374, 2005.
DOI : 10.1038/sj.emboj.7600616

P. Lamken, S. Lata, M. Gavutis, and J. Piehler, Ligand-induced Assembling of the Type I Interferon Receptor on Supported Lipid Bilayers, Journal of Molecular Biology, vol.341, issue.1, pp.303-318, 2004.
DOI : 10.1016/j.jmb.2004.05.059

R. Lang, A. L. Pauleau, E. Parganas, Y. Takahashi, J. Mages et al., SOCS3 regulates the plasticity of gp130 signaling, Nature Immunology, vol.4, issue.6, pp.546-550, 2003.
DOI : 10.1038/ni932

Y. Lee, S. W. Hyung, H. J. Jung, H. J. Kim, J. Staerk et al., The ubiquitin-mediated degradation of Jak1 modulates osteoclastogenesis by limiting interferon-{beta}-induced inhibitory signaling, Blood, 2007.

D. Lejeune, J. B. Demoulin, and J. C. Renauld, Interleukin 9 induces expression of three cytokine signal inhibitors: cytokine-inducible SH2-containing protein, suppressor of cytokine signalling (SOCS)-2 and SOCS-3, but only SOCS-3 overexpression suppresses interleukin 9 signalling, Biochemical Journal, vol.353, issue.1, pp.109-116, 2001.
DOI : 10.1042/bj3530109

D. Lejeune, L. Dumoutier, S. Constantinescu, W. Kruijer, J. J. Schuringa et al., Interleukin-22 (IL-22) Activates the JAK/STAT, ERK, JNK, and p38 MAP Kinase Pathways in a Rat Hepatoma Cell Line. PATHWAYS THAT ARE SHARED WITH AND DISTINCT FROM IL-10, Journal of Biological Chemistry, vol.277, issue.37, pp.33676-33682, 2002.
DOI : 10.1074/jbc.M204204200

G. D. Leonard, E. Posadas, P. C. Herrmann, V. L. Anderson, E. S. Jaffe et al., Non-Hodgkin's Lymphoma in Job's Syndrome: A Case Report and Literature Review, Leukemia & Lymphoma, vol.329, issue.12, pp.2521-2525, 2004.
DOI : 10.1046/j.1365-2141.2003.04267.x

F. A. Letimier, N. Passini, S. Gasparian, E. Bianchi, and L. Rogge, Chromatin remodeling by the SWI/SNF-like BAF complex and STAT4 activation synergistically induce IL-12R??2 expression during human Th1 cell differentiation, The EMBO Journal, vol.95, issue.5, pp.1292-1302, 2007.
DOI : 10.1038/sj.emboj.7601586

S. Leung, S. A. Qureshi, I. M. Kerr, J. E. Darnell, . Jr et al., Role of STAT2 in the alpha interferon signaling pathway., Molecular and Cellular Biology, vol.15, issue.3, pp.1312-1317, 1995.
DOI : 10.1128/MCB.15.3.1312

R. L. Levine, M. Wadleigh, J. Cools, B. L. Ebert, G. Wernig et al., Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis, ) Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis, pp.387-397, 2005.
DOI : 10.1016/j.ccr.2005.03.023

D. E. Levy and G. Inghirami, STAT3: A multifaceted oncogene, Proceedings of the National Academy of Sciences, vol.103, issue.27, pp.10151-10152, 2006.
DOI : 10.1073/pnas.0604042103

X. Li, S. Leung, I. M. Kerr, and G. R. Stark, Functional subdomains of STAT2 required for preassociation with the alpha interferon receptor and for signaling., Molecular and Cellular Biology, vol.17, issue.4, pp.2048-2056, 1997.
DOI : 10.1128/MCB.17.4.2048

Y. Li, K. G. Kumar, W. Tang, V. S. Spiegelman, and S. Y. Fuchs, Negative Regulation of Prolactin Receptor Stability and Signaling Mediated by SCF??-TrCP E3 Ubiquitin Ligase, Molecular and Cellular Biology, vol.24, issue.9, pp.4038-4048, 2004.
DOI : 10.1128/MCB.24.9.4038-4048.2004

S. C. Liang, X. Y. Tan, D. P. Luxenberg, R. Karim, K. Dunussi-joannopoulos et al., Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides, The Journal of Experimental Medicine, vol.203, issue.10, pp.2271-2279, 2006.
DOI : 10.1016/j.intimp.2004.01.010

V. Libri, D. Schulte, A. Van-stijn, L. Rogge, and S. Pellegrini, Jakmip1, a novel effector memory signature gene, with a regulatory function in human cytotoxic T lymphocytes submitted, 2007.

D. Lietha, X. Cai, D. F. Ceccarelli, Y. Li, M. D. Schaller et al., Structural Basis for the Autoinhibition of Focal Adhesion Kinase, Cell, vol.129, issue.6, pp.1177-1187, 2007.
DOI : 10.1016/j.cell.2007.05.041

K. Lindauer, T. Loerting, K. R. Liedl, and R. T. Kroemer, Prediction of the structure of human Janus kinase 2 (JAK2) comprising the two carboxy-terminal domains reveals a mechanism for autoregulation, Protein Engineering Design and Selection, vol.14, issue.1, pp.27-37, 2001.
DOI : 10.1093/protein/14.1.27

B. Liu, J. Liao, X. Rao, S. A. Kushner, C. D. Chung et al., Inhibition of Stat1-mediated gene activation by PIAS1, Proceedings of the National Academy of Sciences, vol.95, issue.18, pp.10626-10631, 1998.
DOI : 10.1073/pnas.95.18.10626

O. Livnah, E. A. Stura, S. A. Middleton, D. L. Johnson, L. K. Jolliffe et al., Crystallographic Evidence for Preformed Dimers of Erythropoietin Receptor Before Ligand Activation, Science, vol.283, issue.5404, pp.987-990, 1999.
DOI : 10.1126/science.283.5404.987

J. A. Losman, X. P. Chen, D. Hilton, and P. Rothman, Cutting edge: SOCS-1 is a potent inhibitor of IL-4 signal transduction, J Immunol, vol.162, pp.3770-3774, 1999.

X. Lu, R. Levine, W. Tong, G. Wernig, Y. Pikman et al., Expression of a homodimeric type I cytokine receptor is required for JAK2V617F-mediated transformation, Proceedings of the National Academy of Sciences, vol.102, issue.52, pp.18962-18967, 2005.
DOI : 10.1073/pnas.0509714102

I. S. Lucet, E. Fantino, M. Styles, R. Bamert, O. Patel et al., The structural basis of Janus kinase 2 inhibition by a potent and specific pan-Janus kinase inhibitor, Blood, vol.107, issue.1, pp.176-183, 2006.
DOI : 10.1182/blood-2005-06-2413

H. Luo, P. Rose, D. Barber, W. P. Hanratty, S. Lee et al., Mutation in the Jak kinase JH2 domain hyperactivates Drosophila and mammalian Jak-Stat pathways., Mutation in the Jak kinase JH2 domain hyperactivates Drosophila and mammalian Jak-Stat pathways, pp.1562-1571, 1997.
DOI : 10.1128/MCB.17.3.1562

R. Manabe, M. Kovalenko, D. J. Webb, and A. R. Horwitz, GIT1 functions in a motile, multi-molecular signaling complex that regulates protrusive activity and cell migration, J Cell Sci, vol.115, pp.1497-1510, 2002.

X. Mao, Z. Ren, G. N. Parker, H. Sondermann, M. A. Pastorello et al., Structural Bases of Unphosphorylated STAT1 Association and Receptor Binding, Molecular Cell, vol.17, issue.6, pp.761-771, 2005.
DOI : 10.1016/j.molcel.2005.02.021

Z. Marijanovic, J. Ragimbeau, K. G. Kumar, S. Y. Fuchs, and S. Pellegrini, TYK2 activity promotes ligand-induced IFNAR1 proteolysis, Biochemical Journal, vol.397, issue.1, pp.31-38, 2006.
DOI : 10.1042/BJ20060272

URL : https://hal.archives-ouvertes.fr/hal-00478537

Z. Marijanovic, J. Ragimbeau, J. Van-der-heyden, G. Uze, and S. Pellegrini, Comparable potency of IFN??2 and IFN?? on immediate JAK/STAT activation but differential down-regulation of IFNAR2, Biochemical Journal, vol.407, issue.1, pp.141-151, 2007.
DOI : 10.1042/BJ20070605

URL : https://hal.archives-ouvertes.fr/hal-00478796

S. Matikainen, T. Sareneva, T. Ronni, A. Lehtonen, P. J. Koskinen et al., Interferon-alpha activates multiple STAT proteins and upregulates proliferationassociated IL-2Ralpha, c-myc, and pim-1 genes in human T cells, Blood, vol.93, 1980.

A. Meinke, F. Barahmand-pour, S. Wohrl, D. Stoiber, and T. Decker, Activation of different Stat5 isoforms contributes to cell-type-restricted signaling in response to interferons., Molecular and Cellular Biology, vol.16, issue.12, pp.6937-6944, 1996.
DOI : 10.1128/MCB.16.12.6937

P. Mella, R. F. Schumacher, T. Cranston, G. De-saint-basile, G. Savoldi et al., Eleven novel JAK3 mutations in patients with severe combined immunodeficiency?including the first patients with mutations in the kinase domain, Human Mutation, vol.18, issue.4, pp.355-356, 2001.
DOI : 10.1002/humu.1199

T. Mercher, G. Wernig, S. A. Moore, R. L. Levine, T. L. Gu et al., JAK2T875N is a novel activating mutation that results in myeloproliferative disease with features of megakaryoblastic leukemia in a murine bone marrow transplantation model, Blood, vol.108, issue.8, pp.2770-2779, 2006.
DOI : 10.1182/blood-2006-04-014712

D. Metcalf, L. Di-rago, S. Mifsud, L. Hartley, A. et al., The development of fatal myocarditis and polymyositis in mice heterozygous for IFN-gamma and lacking the SOCS-1 gene, Proceedings of the National Academy of Sciences, vol.97, issue.16, pp.9174-9179, 2000.
DOI : 10.1073/pnas.160255197

L. Meyer, B. Deau, H. Forejtnikova, D. Dumenil, F. Margottin-goguet et al., ??-Trcp mediates ubiquitination and degradation of the erythropoietin receptor and controls cell proliferation, Blood, vol.109, issue.12, pp.5215-5222, 2007.
DOI : 10.1182/blood-2006-10-055350

T. Meyer, A. Begitt, I. Lodige, M. Van-rossum, and U. Vinkemeier, Constitutive and IFN-??-induced nuclear import of STAT1 proceed through independent pathways, The EMBO Journal, vol.82, issue.3, pp.344-354, 2002.
DOI : 10.1093/emboj/21.3.344

T. Meyer, K. Gavenis, and U. Vinkemeier, Cell Type-Specific and Tyrosine Phosphorylation-Independent Nuclear Presence of STAT1 and STAT3, Experimental Cell Research, vol.272, issue.1, pp.45-55, 2002.
DOI : 10.1006/excr.2001.5405

Y. Minegishi, M. Saito, T. Morio, K. Watanabe, K. Agematsu et al., Human Tyrosine Kinase 2 Deficiency Reveals Its Requisite Roles in Multiple Cytokine Signals Involved in Innate and Acquired Immunity, Human tyrosine kinase 2 deficiency reveals its requisite roles in multiple cytokine signals involved in innate and acquired immunity, pp.745-755, 2006.
DOI : 10.1016/j.immuni.2006.09.009

Y. Minegishi, M. Saito, S. Tsuchiya, I. Tsuge, H. Takada et al., Dominant-negative mutations in the DNA-binding domain of STAT3 cause hyper-IgE syndrome, Nature, vol.286, issue.7157, pp.1058-1062, 2007.
DOI : 10.1038/nature06096

T. Miyagi, M. P. Gil, X. Wang, J. Louten, W. M. Chu et al., High basal STAT4 balanced by STAT1 induction to control type 1 interferon effects in natural killer cells, The Journal of Experimental Medicine, vol.69, issue.10, pp.2383-2396, 2007.
DOI : 10.1128/JVI.76.9.4520-4525.2002

M. P. Myers, J. N. Andersen, A. Cheng, M. L. Tremblay, C. M. Horvath et al., TYK2 and JAK2 are substrates of protein-tyrosine phosphatase 1B, J Biol Chem, vol.276, pp.47771-47774, 2001.

O. W. Nadeau, P. Domanski, A. Usacheva, S. Uddin, L. C. Platanias et al., The Proximal Tyrosines of the Cytoplasmic Domain of the beta Chain of the Type I Interferon Receptor Are Essential for Signal Transducer and Activator of Transcription (Stat) 2 Activation. EVIDENCE THAT TWO Stat2 SITES ARE REQUIRED TO REACH A THRESHOLD OF INTERFERON alpha -INDUCED Stat2 TYROSINE PHOSPHORYLATION THAT ALLOWS NORMAL FORMATION OF INTERFERON-STIMULATED GENE FACTOR 3, Journal of Biological Chemistry, vol.274, issue.7, pp.4045-4052, 1999.
DOI : 10.1074/jbc.274.7.4045

T. Naka, M. Narazaki, M. Hirata, T. Matsumoto, S. Minamoto et al., Structure and function of a new STAT-induced STAT inhibitor, Nature, vol.387, pp.924-929, 1997.

M. Nakahira, T. Tanaka, B. E. Robson, J. P. Mizgerd, and M. J. Grusby, Regulation of Signal Transducer and Activator of Transcription Signaling by the Tyrosine Phosphatase PTP-BL, Immunity, vol.26, issue.2, pp.163-176, 2007.
DOI : 10.1016/j.immuni.2007.01.010

D. C. Ng, B. H. Lin, C. P. Lim, G. Huang, T. Zhang et al., Stat3 regulates microtubules by antagonizing the depolymerization activity of stathmin, The Journal of Cell Biology, vol.92, issue.2, pp.245-257, 2006.
DOI : 10.1128/MCB.20.19.7132-7139.2000

V. P. Nguyen, A. Z. Saleh, A. E. Arch, H. Yan, F. Piazza et al., Stat2 Binding to the Interferon-?? Receptor 2 Subunit Is Not Required for Interferon-?? Signaling, Journal of Biological Chemistry, vol.277, issue.12, pp.9713-9721, 2002.
DOI : 10.1074/jbc.M111161200

R. H. Nussenzveig, S. I. Swierczek, J. Jelinek, A. Gaikwad, E. Liu et al., Polycythemia vera is not initiated by JAK2V617F mutation, Experimental Hematology, vol.35, issue.1, pp.32-38, 2007.
DOI : 10.1016/j.exphem.2006.11.012

O. Garra, A. Vieira, and P. , TH1 cells control themselves by producing interleukin-10, Nature Reviews Immunology, vol.172, issue.6, pp.425-428, 2007.
DOI : 10.1038/nri2097

URL : https://hal.archives-ouvertes.fr/pasteur-00362024

E. Pattyn, X. Van-ostade, L. Schauvliege, A. Verhee, M. Kalai et al., Dimerization of the Interferon Type I Receptor IFNaR2-2 Is Sufficient for Induction of Interferon Effector Genes but Not for Full Antiviral Activity, Journal of Biological Chemistry, vol.274, issue.49, pp.34838-34845, 1999.
DOI : 10.1074/jbc.274.49.34838

M. A. Pearson, D. Reczek, A. Bretscher, and P. A. Karplus, Structure of the ERM Protein Moesin Reveals the FERM Domain Fold Masked by an Extended Actin Binding Tail Domain, Cell, vol.101, issue.3, pp.259-270, 2000.
DOI : 10.1016/S0092-8674(00)80836-3

S. Pellegrini, J. John, M. Shearer, I. M. Kerr, and G. R. Stark, Use of a selectable marker regulated by alpha interferon to obtain mutations in the signaling pathway., Molecular and Cellular Biology, vol.9, issue.11, pp.4605-4612, 1989.
DOI : 10.1128/MCB.9.11.4605

S. Pestka, The Interferons: 50 Years after Their Discovery, There Is Much More to Learn, Journal of Biological Chemistry, vol.282, issue.28, 2007.
DOI : 10.1074/jbc.R700004200

L. M. Pfeffer, J. E. Mullersman, S. R. Pfeffer, A. Murti, W. Shi et al., STAT3 as an Adapter to Couple Phosphatidylinositol 3-Kinase to the IFNAR1 Chain of the Type I Interferon Receptor, Science, vol.276, issue.5317, pp.1418-1420, 1997.
DOI : 10.1126/science.276.5317.1418

L. C. Platanias, Mechanisms of type-I- and type-II-interferon-mediated signalling, Nature Reviews Immunology, vol.132, issue.5, pp.375-386, 2005.
DOI : 10.1001/jama.290.24.3222

V. Poli, STAT3 oncogenic properties: in vivo studies with a constitutively active STAT3C allele, 5th International Aachen Symposium, 2007.

R. T. Premont, A. Claing, N. Vitale, J. L. Freeman, J. A. Pitcher et al., ??2-Adrenergic receptor regulation by GIT1, a G protein-coupled receptor kinase-associated ADP ribosylation factor GTPase-activating protein, Proceedings of the National Academy of Sciences, vol.95, issue.24, pp.14082-14087, 1998.
DOI : 10.1073/pnas.95.24.14082

Y. Qing and G. R. Stark, Alternative Activation of STAT1 and STAT3 in Response to Interferon-??, Journal of Biological Chemistry, vol.279, issue.40, pp.41679-41685, 2004.
DOI : 10.1074/jbc.M406413200

R. Radhakrishnan, L. J. Walter, A. Hruza, P. Reichert, P. P. Trotta et al., Zinc mediated dimer of human interferon-??2b revealed by X-ray crystallography, Structure, vol.4, issue.12, pp.1453-1463, 1996.
DOI : 10.1016/S0969-2126(96)00152-9

S. Radtke, S. Haan, A. Jorissen, H. M. Hermanns, S. Diefenbach et al., The Jak1 SH2 Domain Does Not Fulfill a Classical SH2 Function in Jak/STAT Signaling but Plays a Structural Role for Receptor Interaction and Up-regulation of Receptor Surface Expression, Journal of Biological Chemistry, vol.280, issue.27, pp.25760-25768, 2005.
DOI : 10.1074/jbc.M500822200

S. Radtke, H. M. Hermanns, C. Haan, H. Schmitz-van-de-leur, H. Gascan et al., Novel Role of Janus Kinase 1 in the Regulation of Oncostatin M Receptor Surface Expression, Journal of Biological Chemistry, vol.277, issue.13, pp.11297-11305, 2002.
DOI : 10.1074/jbc.M100822200

J. Ragimbeau, E. Dondi, A. Alcover, P. Eid, G. Uze et al., The tyrosine kinase Tyk2 controls IFNAR1 cell surface expression, The EMBO Journal, vol.22, issue.3, pp.537-547, 2003.
DOI : 10.1093/emboj/cdg038

M. R. Rani, D. W. Leaman, Y. Han, S. Leung, E. Croze et al., Catalytically Active TYK2 Is Essential for Interferon-??-mediated Phosphorylation of STAT3 and Interferon-?? Receptor-1 (IFNAR-1) but Not for Activation of Phosphoinositol 3-Kinase, Journal of Biological Chemistry, vol.274, issue.45, pp.32507-32511, 1999.
DOI : 10.1074/jbc.274.45.32507

I. Remy, I. A. Wilson, and S. W. Michnick, Erythropoietin Receptor Activation by a Ligand-Induced Conformation Change, Science, vol.283, issue.5404, pp.990-993, 1999.
DOI : 10.1126/science.283.5404.990

E. D. Renner, T. R. Torgerson, S. Rylaarsdam, S. Anover-sombke, K. Golob et al., Mutation in the Original Patient with Job's Syndrome, New England Journal of Medicine, vol.357, issue.16, pp.1667-1668, 2007.
DOI : 10.1056/NEJMc076367

M. F. Richter, G. Dumenil, G. Uze, M. Fellous, and S. Pellegrini, Specific Contribution of Tyk2 JH Regions to the Binding and the Expression of the Interferon ??/?? Receptor Component IFNAR1, Journal of Biological Chemistry, vol.273, issue.38, pp.24723-24729, 1998.
DOI : 10.1074/jbc.273.38.24723

J. L. Roberts, A. Lengi, S. M. Brown, M. Chen, Y. J. Zhou et al., Janus kinase 3 (JAK3) deficiency: clinical, immunologic, and molecular analyses of 10 patients and outcomes of stem cell transplantation, Blood, vol.103, issue.6, 2004.
DOI : 10.1182/blood-2003-06-2104

Y. Royer, J. Staerk, M. Costuleanu, P. J. Courtoy, and S. N. Constantinescu, Janus Kinases Affect Thrombopoietin Receptor Cell Surface Localization and Stability, Journal of Biological Chemistry, vol.280, issue.29, pp.27251-27261, 2005.
DOI : 10.1074/jbc.M501376200

P. Saharinen and O. Silvennoinen, The Pseudokinase Domain Is Required for Suppression of Basal Activity of Jak2 and Jak3 Tyrosine Kinases and for Cytokine-inducible Activation of Signal Transduction, Journal of Biological Chemistry, vol.277, issue.49, pp.47954-47963, 2002.
DOI : 10.1074/jbc.M205156200

P. Saharinen, K. Takaluoma, and O. Silvennoinen, Regulation of the Jak2 Tyrosine Kinase by Its Pseudokinase Domain, Molecular and Cellular Biology, vol.20, issue.10, pp.3387-3395, 2000.
DOI : 10.1128/MCB.20.10.3387-3395.2000

E. M. Sandberg, D. Vonderlinden, D. A. Ostrov, and P. P. Sayeski, Jak2 tyrosine kinase residues glutamic acid 1024 and arginine 1113 form a hydrogen bond interaction that is essential for Jak-STAT signal transduction, Molecular and Cellular Biochemistry, vol.265, issue.1/2, pp.161-169, 2004.
DOI : 10.1023/B:MCBI.0000044393.67980.99

A. Sasaki, H. Yasukawa, T. Shouda, T. Kitamura, I. Dikic et al., CIS3/SOCS-3 Suppresses Erythropoietin (EPO) Signaling by Binding the EPO Receptor and JAK2, Journal of Biological Chemistry, vol.275, issue.38, pp.29338-29347, 2000.
DOI : 10.1074/jbc.M003456200

P. C. Scacheri, O. Rozenblatt-rosen, N. J. Caplen, T. G. Wolfsberg, L. Umayam et al., Short interfering RNAs can induce unexpected and divergent changes in the levels of untargeted proteins in mammalian cells, Proceedings of the National Academy of Sciences, vol.101, issue.7, pp.1892-1897, 2004.
DOI : 10.1073/pnas.0308698100

C. Schindler, D. E. Levy, and T. Decker, JAK-STAT Signaling: From Interferons to Cytokines, Journal of Biological Chemistry, vol.282, issue.28, 2007.
DOI : 10.1074/jbc.R700016200

S. Schnittger, U. Bacher, W. Kern, M. Schroder, T. Haferlach et al., Report on two novel nucleotide exchanges in the JAK2 pseudokinase domain: D620E and E627E, Leukemia, vol.14, issue.12, pp.2195-2197, 2006.
DOI : 10.1038/sj.leu.2404325

L. M. Scott, M. A. Scott, P. J. Campbell, and A. R. Green, Progenitors homozygous for the V617F mutation occur in most patients with polycythemia vera, but not essential thrombocythemia, Blood, vol.108, issue.7, pp.2435-2437, 2006.
DOI : 10.1182/blood-2006-04-018259

M. Severa, M. E. Remoli, E. Giacomini, J. Ragimbeau, R. Lande et al., Differential responsiveness to IFN-?? and IFN-?? of human mature DC through modulation of IFNAR expression, Journal of Leukocyte Biology, vol.79, issue.6, pp.1286-1294, 2006.
DOI : 10.1189/jlb.1205742

URL : https://hal.archives-ouvertes.fr/pasteur-00161981

V. Sexl, Jaks and stats in B-lymphoid leukemia. STATs' stories, European workshop, 2007.

H. Shao, X. Xu, M. A. Mastrangelo, N. Jing, R. G. Cook et al., Structural Requirements for Signal Transducer and Activator of Transcription 3 Binding to Phosphotyrosine Ligands Containing the YXXQ Motif, Journal of Biological Chemistry, vol.279, issue.18, pp.18967-18973, 2004.
DOI : 10.1074/jbc.M314037200

M. H. Shaw, V. Boyartchuk, S. Wong, M. Karaghiosoff, J. Ragimbeau et al., A natural mutation in the Tyk2 pseudokinase domain underlies altered susceptibility of B10.Q/J mice to infection and autoimmunity, Proceedings of the National Academy of Sciences, vol.100, issue.20, pp.11594-11599, 2003.
DOI : 10.1073/pnas.1930781100

K. Shuai and B. Liu, Regulation of JAK???STAT signalling in the immune system, Nature Reviews Immunology, vol.3, issue.11, pp.900-911, 2003.
DOI : 10.1038/nri1226

S. Sigurdsson, G. Nordmark, H. H. Goring, K. Lindroos, A. C. Wiman et al., Polymorphisms in the Tyrosine Kinase 2 and Interferon Regulatory Factor 5 Genes Are Associated with Systemic Lupus Erythematosus, The American Journal of Human Genetics, vol.76, issue.3, pp.528-537, 2005.
DOI : 10.1086/428480

P. D. Simoncic, A. Lee-loy, D. L. Barber, M. L. Tremblay, and C. J. Mcglade, The T Cell Protein Tyrosine Phosphatase Is a Negative Regulator of Janus Family Kinases 1 and 3, Current Biology, vol.12, issue.6, pp.446-453, 2002.
DOI : 10.1016/S0960-9822(02)00697-8

C. A. Sledz, M. Holko, M. J. De-veer, R. H. Silverman, and B. R. Williams, Activation of the interferon system by short-interfering RNAs, Nature Cell Biology, vol.5, issue.9, pp.834-839, 2003.
DOI : 10.1038/ncb1038

X. C. Song, G. Fu, X. Yang, Z. Jiang, Y. Wang et al., Protein Expression Profiling of Breast Cancer Cells by Dissociable Antibody Microarray (DAMA) Staining, Molecular & Cellular Proteomics, vol.7, issue.1, 2007.
DOI : 10.1074/mcp.M700115-MCP200

S. R. Sprang and J. F. Bazan, Cytokine structural taxonomy and mechanisms of receptor engagement, Current Opinion in Structural Biology, vol.3, issue.6, pp.815-827, 1993.
DOI : 10.1016/0959-440X(93)90144-A

J. Staerk, A. Kallin, J. B. Demoulin, W. Vainchenker, and S. N. Constantinescu, JAK1 and Tyk2 Activation by the Homologous Polycythemia Vera JAK2 V617F Mutation: CROSS-TALK WITH IGF1 RECEPTOR, Journal of Biological Chemistry, vol.280, issue.51, pp.41893-41899, 2005.
DOI : 10.1074/jbc.C500358200

L. F. Stancato, M. David, C. Carter-su, A. C. Larner, and W. B. Pratt, Preassociation of STAT1 with STAT2 and STAT3 in separate signalling complexes prior to cytokine stimulation, J Biol Chem, vol.271, pp.4134-4137, 1996.

R. Starr, T. A. Willson, E. M. Viney, L. J. Murray, J. R. Rayner et al., A family of cytokine-inducible inhibitors of signalling, Nature, vol.387, pp.917-921, 1997.

C. Steindler, Z. Li, M. Algarte, A. Alcover, V. Libri et al., Jamip1 (Marlin-1) Defines a Family of Proteins Interacting with Janus Kinases and Microtubules, Journal of Biological Chemistry, vol.279, issue.41, pp.43168-43177, 2004.
DOI : 10.1074/jbc.M401915200

D. Stoiber, B. Kovacic, C. Schuster, C. Schellack, M. Karaghiosoff et al., TYK2 is a key regulator of the surveillance of B lymphoid tumors, Journal of Clinical Investigation, vol.114, issue.11, pp.1650-1658, 2004.
DOI : 10.1172/JCI200422315

R. S. Syed, S. W. Reid, C. Li, J. C. Cheetham, K. H. Aoki et al., Efficiency of signalling through cytokine receptors depends critically on receptor orientation, Nature, vol.395, issue.6701, pp.511-516, 1998.
DOI : 10.1038/26773

Y. Tanabe, T. Nishibori, L. Su, R. M. Arduini, D. P. Baker et al., Cutting Edge: Role of STAT1, STAT3, and STAT5 in IFN-???? Responses in T Lymphocytes, The Journal of Immunology, vol.174, issue.2, pp.609-613, 2005.
DOI : 10.4049/jimmunol.174.2.609

A. N. Theofilopoulos, R. Baccala, B. Beutler, and D. H. Kono, TYPE I INTERFERONS (??/??) IN IMMUNITY AND AUTOIMMUNITY, Annual Review of Immunology, vol.23, issue.1, pp.307-336, 2005.
DOI : 10.1146/annurev.immunol.23.021704.115843

G. Trinchieri, Interleukin-12 and the regulation of innate resistance and adaptive immunity, Nature Reviews Immunology, vol.3, issue.2, pp.133-146, 2003.
DOI : 10.1038/nri1001

C. E. Turner, K. A. West, and M. C. Brown, Paxillin???ARF GAP signaling and the cytoskeleton, Current Opinion in Cell Biology, vol.13, issue.5, pp.593-599, 2001.
DOI : 10.1016/S0955-0674(00)00256-8

S. Uddin, F. Lekmine, A. Sassano, H. Rui, E. N. Fish et al., Role of Stat5 in Type I interferon-signaling and transcriptional regulation, Biochemical and Biophysical Research Communications, vol.308, issue.2, pp.325-330, 2003.
DOI : 10.1016/S0006-291X(03)01382-2

G. Uze and D. Monneron, IL-28 and IL-29: Newcomers to the interferon family, Biochimie, vol.89, issue.6-7, pp.729-734, 2007.
DOI : 10.1016/j.biochi.2007.01.008

G. Uze, G. Schreiber, J. Piehler, and S. Pellegrini, The Receptor of the Type I Interferon Family Interferon: The 50th Anniversary, pp.71-96, 2007.

A. H. Van-boxel-dezaire, M. R. Rani, and G. R. Stark, Complex Modulation of Cell Type-Specific Signaling in Response to Type I Interferons, Immunity, vol.25, issue.3, pp.361-372, 2006.
DOI : 10.1016/j.immuni.2006.08.014

P. Van-kerkhof, J. Putters, and G. J. Strous, The Ubiquitin Ligase SCF(betaTrCP) Regulates the Degradation of the Growth Hormone Receptor, Journal of Biological Chemistry, vol.282, issue.28, pp.20475-20483, 2007.
DOI : 10.1074/jbc.M702610200

L. Velazquez, M. Fellous, G. R. Stark, and S. Pellegrini, A protein tyrosine kinase in the interferon ???? signaling pathway, Cell, vol.70, issue.2, pp.313-322, 1992.
DOI : 10.1016/0092-8674(92)90105-L

L. Velazquez, K. E. Mogensen, G. Barbieri, M. Fellous, G. Uze et al., Distinct domains of the protein tyrosine kinase tyk2 required for binding of interferonalpha/beta and for signal transduction, J Biol Chem, vol.270, pp.3327-3334, 1995.

S. Velichko, T. C. Wagner, J. Turkson, R. Jove, and E. Croze, STAT3 Activation by Type I Interferons Is Dependent on Specific Tyrosines Located in the Cytoplasmic Domain of Interferon Receptor Chain 2c: ACTIVATION OF MULTIPLE STATS PROCEEDS THROUGH THE REDUNDANT USAGE OF TWO TYROSINE RESIDUES, Journal of Biological Chemistry, vol.277, issue.38, pp.35635-35641, 2002.
DOI : 10.1074/jbc.M204578200

J. Vilcek, Cytokines, A Cytokine Handbook, 2003.
DOI : 10.1201/9781420039849.ch2

N. Vitale, W. A. Patton, J. Moss, M. Vaughan, R. J. Lefkowitz et al., GIT Proteins, A Novel Family of Phosphatidylinositol 3,4,5-Trisphosphate-stimulated GTPase-activating Proteins for ARF6, Journal of Biological Chemistry, vol.275, issue.18, pp.13901-13906, 2000.
DOI : 10.1074/jbc.275.18.13901

D. Vonderlinden, X. Ma, E. M. Sandberg, K. Gernert, K. E. Bernstein et al., Mutation of glutamic acid residue 1046 abolishes Jak2 tyrosine kinase activity, Molecular and Cellular Biochemistry, vol.241, issue.1/2, pp.87-94, 2002.
DOI : 10.1023/A:1020829617779

W. T. Watford, B. D. Hissong, J. H. Bream, Y. Kanno, L. Muul et al., Signaling by IL-12 and IL-23 and the immunoregulatory roles of STAT4, Immunological Reviews, vol.279, issue.1, pp.139-156, 2004.
DOI : 10.1074/jbc.274.10.6698

W. T. Watford, M. Moriguchi, A. Morinobu, O. Shea, and J. J. , The biology of IL-12: coordinating innate and adaptive immune responses, Cytokine & Growth Factor Reviews, vol.14, issue.5, pp.361-368, 2003.
DOI : 10.1016/S1359-6101(03)00043-1

W. T. Watford, O. Shea, and J. J. , Human Tyk2 Kinase Deficiency: Another Primary Immunodeficiency Syndrome, Immunity, vol.25, issue.5, pp.695-697, 2006.
DOI : 10.1016/j.immuni.2006.10.007

C. Wellbrock, C. Weisser, J. C. Hassel, P. Fischer, J. Becker et al., STAT5 Contributes to Interferon Resistance of Melanoma Cells, Current Biology, vol.15, issue.18, pp.1629-1639, 2005.
DOI : 10.1016/j.cub.2005.08.036

S. Wormald and D. J. Hilton, Inhibitors of Cytokine Signal Transduction, Journal of Biological Chemistry, vol.279, issue.2, pp.821-824, 2004.
DOI : 10.1074/jbc.R300030200

F. Xu, S. Mukhopadhyay, and P. B. Sehgal, Live cell imaging of interleukin-6-induced targeting of "transcription factor, 2007.

K. Yamamoto, M. Yamaguchi, N. Miyasaka, and O. Miura, SOCS-3 inhibits IL-12-induced STAT4 activation by binding through its SH2 domain to the STAT4 docking site in the IL-12 receptor ??2 subunit, Biochemical and Biophysical Research Communications, vol.310, issue.4, pp.1188-1193, 2003.
DOI : 10.1016/j.bbrc.2003.09.140

K. Yamaoka, P. Saharinen, M. Pesu, V. E. Holt, O. Silvennoinen et al., The Janus kinases (Jaks), Genome Biology, vol.5, issue.12, p.253, 2004.
DOI : 10.1186/gb-2004-5-12-253

C. H. Yang, W. Shi, L. Basu, A. Murti, S. N. Constantinescu et al., Direct association of STAT3 with the IFNAR-1 chain of the human type I interferon receptor, J Biol Chem, vol.271, pp.8057-8061, 1996.

J. Yang, M. Chatterjee-kishore, S. M. Staugaitis, H. Nguyen, K. Schlessinger et al., Novel roles of unphosphorylated STAT3 in oncogenesis and transcriptional regulation, Cancer Res, vol.65, pp.939-947, 2005.

J. Yang, X. Liao, M. K. Agarwal, L. Barnes, P. E. Auron et al., Unphosphorylated STAT3 accumulates in response to IL-6 and activates transcription by binding to NF??B, Genes & Development, vol.21, issue.11, pp.1396-1408, 2007.
DOI : 10.1101/gad.1553707

T. C. Yeh, E. Dondi, G. Uze, and S. Pellegrini, A dual role for the kinase-like domain of the tyrosine kinase Tyk2 in interferon-alpha signaling, Proceedings of the National Academy of Sciences, vol.97, issue.16, pp.8991-8996, 2000.
DOI : 10.1073/pnas.160130297

T. C. Yeh and S. Pellegrini, The Janus kinase family of protein tyrosine kinases and their role in signaling, Cellular and Molecular Life Sciences (CMLS), vol.55, issue.12, pp.1523-1534, 1999.
DOI : 10.1007/s000180050392

G. Yin, J. Haendeler, C. Yan, and B. C. Berk, GIT1 Functions as a Scaffold for MEK1-Extracellular Signal-Regulated Kinase 1 and 2 Activation by Angiotensin II and Epidermal Growth Factor, Molecular and Cellular Biology, vol.24, issue.2, pp.875-885, 2004.
DOI : 10.1128/MCB.24.2.875-885.2004

A. Yoshimura, T. Ohkubo, T. Kiguchi, N. A. Jenkins, D. J. Gilbert et al., A novel cytokine-inducible gene CIS encodes an SH2- containing protein that binds to tyrosine-phosphorylated interleukin 3 and erythropoietin receptors, Embo J, vol.14, pp.2816-2826, 1995.

H. Yu, M. Kortylewski, and D. Pardoll, Crosstalk between cancer and immune cells: role of STAT3 in the tumour microenvironment, Nature Reviews Immunology, vol.172, issue.1, pp.41-51, 2007.
DOI : 10.1038/nri1995

T. Zelante, A. De-luca, P. Bonifazi, C. Montagnoli, S. Bozza et al., IL-23 and the Th17 pathway promote inflammation and impair antifungal immune resistance, European Journal of Immunology, vol.172, issue.10, pp.2695-2706, 2007.
DOI : 10.1002/eji.200737409

L. A. Zenewicz, G. D. Yancopoulos, D. M. Valenzuela, A. J. Murphy, M. Karow et al., Interleukin-22 but Not Interleukin-17 Provides Protection to Hepatocytes during Acute Liver Inflammation, Immunity, vol.27, issue.4, pp.647-659, 2007.
DOI : 10.1016/j.immuni.2007.07.023

R. Zhao, S. Xing, Z. Li, X. Fu, Q. Li et al., Identification of an Acquired JAK2 Mutation in Polycythemia Vera, Journal of Biological Chemistry, vol.280, issue.24, pp.22788-22792, 2005.
DOI : 10.1074/jbc.C500138200

Z. S. Zhao, E. Manser, T. H. Loo, and L. Lim, Coupling of PAK-Interacting Exchange Factor PIX to GIT1 Promotes Focal Complex Disassembly, Molecular and Cellular Biology, vol.20, issue.17, pp.6354-6363, 2000.
DOI : 10.1128/MCB.20.17.6354-6363.2000

Y. J. Zhou, M. Chen, N. A. Cusack, L. H. Kimmel, K. S. Magnuson et al., Unexpected Effects of FERM Domain Mutations on Catalytic Activity of Jak3, Molecular Cell, vol.8, issue.5, pp.959-969, 2001.
DOI : 10.1016/S1097-2765(01)00398-7

. La-première-partie, Partner of Tyk2) et de son rôle potentiel dans la voie de signalisation de IFN!. Pot1 a été isolée dans le laboratoire par un criblage double-hybride utilisant comme appât le domaine FERM de Tyk2 Afin d'évaluer le rôle de Pot1 dans la voie de signalisation de l'IFN!, j'ai mesuré la réponse à l'IFN! de cellules déplétées en Pot1 en évaluant la phosphorylation des STATs et l'induction d'un gène rapporteur. Ces expériences ont montré que, dans ce système, la diminution de l'expression de Pot1 n'a pas d'effet sur la signalisation par l'IFN!. Un criblage double-hybride a été effectué avec Pot1. Parmi les 14 protéines identifiées à haut niveau de confiance, nous nous sommes particulièrement intéressés à GIT1 (G proteincoupled receptor kinase interactor), une protéine adaptatrice impliquée dans de nombreux processus cellulaires, tels que l'internalisation de récepteurs, la signalisation induite par l'EGF et l'angiotensine II ainsi que la migration cellulaire. Afin d'analyser le rôle évantuel de GIT1 dans la signalisation de l'IFN!, j'ai mesuré plusieurs paramètres