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“Un ejército de invisibles manos ha labrado la tierra,

ha levantado tu casa, ha servido tu mesa, para que tú puedas aprender.

Ahora, esas innumerables manos - las más desposéıdas - se tienden hacia ti

con el gesto de la necesidad. Te piden simplemente lo que les pertenece.”

Cristián del Campo, Doctor en Economı́a, chileno.





Résumé

La croissance explosive des réseaux sans fil et l’augmentation du nombre de dispositifs sans
fil ont soulevé de nombreuses difficultés techniques dans la planification et l’analyse de ces
réseaux. Nous utilisons la modélisation continue, utile pour la phase initiale de déploiement
et l’analyse à grande échelle des études régionales du réseau. Nous étudions le problème de
routage dans les réseaux ad hoc, nous définissons deux principes d’optimisation du réseau:
le problème de l’utilisateur et du système. Nous montrons que les conditions d’optimalité
d’un problème d’optimisation construit d’une manière appropriée cöıncide avec le principe de
l’optimisation de l’utilisateur. Pour fonctions de coût différentes, nous résolvons le problème
de routage pour les antennes directionnelles et omnidirectionnelles. Nous trouvons également
une caractérisation des voies du coût minimum par l’utilisation extensive du Théorème de
Green dans le cas d’antennes directionnelles. Dans de nombreux cas, la solution se caractérise
par une équation aux dérivées partielles. Nous proposons l’analyse numérique par éléments
finis qui donne les limites de la variation de la solution en ce qui concerne les données. Lorsque
nous permetons la mobilité des origines et destinations, on trouve la quantité optimale de
relais actif. Dans les réseaux MIMO et canaux de diffusion MIMO, nous montrons que,
même lorsque la châıne offre un nombre infini de degrés de liberté, la capacité est limitée par
le rapport entre la taille du réseau d’antennes la station de base et la position des mobiles
et la longueur d’onde du signal. Nous constatons également l’association optimale mobile
pour différentes politiques et distributions des utilisateurs.
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Abstract

The growing number of wireless devices and wireless systems present many challenges on
the design and operation of these networks. In this thesis, we focus on massively dense
ad hoc networks and cellular systems. We use the continuum modeling approach, useful
for the initial phase of deployment and to analyze broad-scale regional studies of the net-
work. We study the routing problem in massively dense ad hoc networks, and similar to
the work of Nash [1], and Wardrop [2], we define two principles of network optimization:
user- and system-optimization. We show that the optimality conditions of an appropri-
ately constructed optimization problem coincides with the user-optimization principle. For
different cost functions, we solve the routing problem for directional and omnidirectional
antennas. We also find a characterization of the minimum cost paths by extensive use of
Green’s theorem in directional antennas. In many cases, the solution is characterized by a
partial differential equation. We propose its numerical analysis by finite elements method
which gives bounds in the variation of the solution with respect to the data. When we allow
mobility of the origin and destination nodes, we find the optimal quantity of active relay
nodes.

In Network MIMO systems and MIMO broadcast channels, we show that, even when the
channel offers an infinite number of degrees of freedom, the capacity is limited by the ratio
between the size of the antenna array at the base station and the mobile terminals position
and the wavelength of the signal. We also find the optimal mobile association for the user-
and system-optimization problem under different policies and distributions of the users.
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Résumé en Français

Introduction

La croissance explosive des réseaux sans fil et l’augmentation du nombre de dispositifs sans
fil tels les téléphones 3G, les ordinateurs portables WiFi, et les réseaux de capteurs sans-fil,
ont soulevé de nombreuses difficultés techniques dans la planification et l’analyse des réseaux
sans fil.

Les réseaux sans fil peuvent être essentiellement classifiés en deux catégories : réseaux
d’accès sans fil et les réseaux ad hoc sans fil.

• Les réseaux d’accès sans fil offrent habituellement la connectivité au réseau filaire via
l’environnement sans fil. Les réseaux d’accès sans fil comprennent, par exemple, les
systèmes cellulaires comme 2G GSM, 3G UMTS, etc., et les systèmes WiFi comme
802.11 WLANs.

• Les réseaux ad hoc sans fil sont des réseaux décentralisés qui peuvent être installés et
désinstallés de manière dynamique. Les réseaux de capteurs sans fil, VANETs, etc.,
sont des exemples de réseaux ad hoc sans fil.

Dans cette thèse, nous nous sommes intéressés aux réseaux sans fil massivement denses
dans les systèmes cellulaires et les réseaux ad hoc sans fil massivement denses. Le terme
“massivement dense” sera formellement défini par la suite. Cette thèse a débuté sur l’idée
d’un projet de recherche sur la planification et l’analyse des réseaux sans fil en établissant
un parallèle avec les dits “outils physiques” au sens large. Au début de ce travail, nous
avons découvert qu’il existait une grande quantité de travaux préalables et en cours de
développement dans une autre communauté scientifique: la communauté des réseaux de
transport. Nous allons introduire brièvement l’objet de la recherche dans cette communauté
et les liens avec notre travail sur la modélisation de réseaux sans fil. Dans la littérature
de la communauté de réseaux de transport, la modélisation des problèmes de circulation et
d’équilibre pour un réseau de transport est classifiée en modélisation discrète et modélisation
continue :

• Dans la modélisation discrète, la demande d’accès est supposée concentrée dans des
dits barycentres; ces barycentres sont des points hypothétiques qui représentent une
zone de couverture, chaque liaison routière entre les zones au sein du réseau étant alors
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des liaisons entre les barycentres. Cette approche de modélisation est couramment
adoptée pour la planification et l’analyse détaillée de réseaux de transport.

• La modélisation continue est utilisée pour la phase initiale de planification et la modélisa-
tion à large échelle des études régionales. L’objectif de cette approche est d’obtenir
la tendance générale et le schéma de la distribution et du choix de voyage des utilisa-
teurs. L’objectif est aussi l’étude des modifications de ces deux facteurs en réponse
aux changements de politique dans le système de transport à l’échelle macroscopique,
plutôt qu’une description détaillé du réseau. L’hypothèse fondamentale est que la
différence dans les caractéristiques de modélisation, comme le coût du voyage et la de-
mande entre zones adjacentes au sein d’un réseau, est relativement faible par rapport à
la variation de l’ensemble du réseau. Par conséquent, les caractéristiques d’un réseau,
tels que l’intensité de flux, la demande, et le coût du voyage, peuvent être représentés
par des fonctions mathématiques régulières.

La modélisation continue a plusieurs avantages par rapport à l’approche discrète. Premiè-
rement, elle réduit la taille du problème dans les réseaux, car la taille du problème dans la
modélisation continue dépend de la méthode qui est utilisée pour rapprocher la région de
modélisation mais ne dépend pas du réseau lui-même. Ainsi, une méthode d’approximation
efficace, telle que la méthode des éléments finis (FEM en anglais), peut largement réduire
la taille du problème. Cette réduction du problème permet de gagner du temps de calcul et
de la mémoire. Deuxièmement, moins de données sont nécessaires dans la configuration du
modèle dans une modélisation continue. La modélisation continue peut être caractérisée par
un petit nombre de variables spatiales, peut être miss en place avec une quantité beaucoup
plus restreinte de données que la modélisation discrète, qui elle a besoin de données pour tous
les liens. Cela rend la modélisation continue plus adaptée à l’étude macroscopique que la
modélisation discrète. Dans la phase initiale de conception du réseau, la collecte des données
prend du temps et requiert de complexes calculs, de sorte que les ressources nécessaires pour
l’entreprendre ne sont généralement pas disponibles. Il n’y a ainsi généralement pas de
données suffisantes dans le système pour mettre en place un modèle détaillé. Enfin, la
modélisation continue nous donne une meilleure compréhension des caractéristiques glob-
ales d’un réseau. De manière assez surprenante, les avancées de cette communauté ne sont
pas très répandues dans la communauté des télécommunications. Dans ce contexte, nous
avons d’abord analysé le problème de routage dans les réseaux ad hoc sans fil de capteurs
qui doivent transporter des paquets à travers le réseau. Les parallèles avec le transport
routier ont été abordées précédemment dans le contexte d’allocation optimale des ressources
grâce à la programmation linéaire, par Hitchcock [3] et Kantorovich [4] (qui a plus tard
partagé le prix Nobel avec Koopmans) ainsi que par Koopmans [5] et Dantzig [6]. Dans ces
modèles, toutefois, la congestion liée au réseau de transport n’était pas considérée. En 1952,
Wardrop [2] a établi deux principes de transport dans l’utilisation du réseau, qui sont ap-
pelés respectivement l’optimisation de l’utilisateur et l’optimisation du système: le premier
principe déclare que les voyageurs vont choisir l’itinéraire de voyage d’origine en destination
de manière indépendante. Dans une situation d’équilibre, le temps de parcours des routes
utilisés entre une paire origine-destination est invariante. De plus, ce temps est inférieur à ce
qu’obtiendrait un seul véhicule, s’il prend une voie libre. Le second principe reflète la situa-
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tion dans laquelle un contrôleur central achemine les flux de circulation de manière optimale
entre origines et destinations de manière à minimiser le coût total du réseau. En 1956, Beck-
mann, McGuire, et Winsten [7] ont été les premiers à fournir une formulation mathématique
rigoureuse des conditions énoncées par le premier principe de Wardrop, qui a permis de
trouver la solution du problème d’équilibre de la circulation dans le réseau pour des fonc-
tions de coût croissantes par rapport au flux sur les liens. En particulier, il a été démontré
que les conditions d’optimalité sous la forme de conditions de Karush-Kuhn-Tucker [8, 9]
d’une programmation mathématique appropriée conduisent à un problème d’optimisation qui
cöıncidé avec l’affirmation selon laquelle les coûts du voyage sur les routes utilisées (chemins
reliant chaque paire origine-destination dans un réseau de transport) ont les même coûts
de voyage et ces coûts de voyage sont minimum. Par conséquent, aucun voyageur, agissant
de façon unilatérale n’aura de motivation à modifier sa trajectoire (en supposant un com-
portement rationnel) donnée si son coût du voyage (délai de voyage) est minimum. Ainsi,
un problème dans lequel il existe de nombreux décideurs agissant de manière indépendante,
et comme plus tard a été également noté par Dafermos et Sparrow [10] concurrentes dans
le sens de Nash [1], pourraient être reformulé (sous des hypothèses appropriées qui seront
définies ultérieurement) comme un problème d’optimisation convexe avec une fonction ob-
jectif unique, soumise à des contraintes linéaires et de non-négativité des hypothèses du flux
sur le réseau.

Beckmann [11] a noté la pertinence des concepts d’équilibre dans les réseaux de télécommu-
nications. Dans une autre étude, Bertsekas et Gallager [12] ont observé des similitudes entre
les réseaux de communication et les réseaux de transport. Les travaux sur le paradoxe de
Braess [13], par la suite, ont fourni l’un des principaux liens entre les réseaux du transport et
les réseaux en informatique. En 1990, Cohen et Kelly [14] ont décrit un paradoxe analogue
à celui de Braess dans le cas d’un réseau de files d’attente. Ce paradoxe continue à être
étudié dans le contexte du trafic routier [15, 16], ainsi que dans la communauté de réseaux
de télécommunications [17, 18, 19].

Dans la communauté des réseaux de télécommunications, les réseaux massivement denses
ont apporté de nombreuses difficultés. Quand un réseau a un nombre croissant de nœuds, la
modélisation et l’analyse du réseau est beaucoup plus difficile et parfois impossible à résoudre.
Quand nous parlons de réseaux denses, mous supposons une forte séparation entre le niveau
macroscopique, correspondant à des distances typiques entre les sources et ses destinations,
et le niveau microscopique, correspondant à des distances entre les nœuds voisins. Lorsque
le système est suffisamment grand, le modèle macroscopique nous donnera une meilleure
description de ce réseau et l’on peut tirer des conclusions de ses propriétés à partir de
considérations microscopiques. Dans la modélisation continue, la description détaillée de
la solution optimisée est sacrifiée mais le modèle macroscopique permet de préserver une
quantité d’informations suffisantes afin de donner une meilleure description du réseau et la
dérivation des résultats intéressants dans des configurations différentes.

Les méthodes inspirées de la physique ont été utilisées pour l’étude des réseaux ad hoc
massivement denses avec les travaux initiaux de Jacquet [20], et de Kalantari et Shayman [21,
22]. Dans ce contexte, un certain nombre de groupes de recherche ont travaillé sur les
réseaux ad hoc massivement denses en utilisant des outils issus de la recherche en optique
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géométrique [20] ainsi que de l’électrostatique (voir par exemple [23, 24, 25], et l’étude [26]
sur ce sujet, ainsi que les références contenues dans ces textes). Nous allons les décrire
dans les sections suivantes en accordant une attention particulière dans le Chapitre 1, Partie
II. Les paradigmes physiques ont permis de minimiser divers critères liés au problème de
routage. Hyytia et Virtamo ont proposé dans [27] une approche basée sur l’équilibrage des
charges de flux dans le réseau en faisant valoir que, si le plus court chemin (ou chemin de
coût minimal) est suivi, certaines parties du réseau devraient transporter plus de trafic que
les autres et donc consommer plus d’énergie que les autres. Cela aboutirait à une vie plus
courte du réseau étant donné que quelques parties auront épuisé leur énergie plus tôt que
d’autres, et plus tôt que dans un réseau avec une charge de flux équilibrée.

Le développement de la théorie originelle de routage dans les réseaux massivement denses
parmi la communauté de réseaux ad hoc a émergé de manière complètement indépendante
de la théorie existante de routage dans les réseaux massivement denses élaborée au sein
de la communauté des réseaux de transport. L’approche adoptée en 1952 par Wardrop [2]
et par Beckmann [28] est encore un domaine de recherche active dans cette communauté,
voir [29, 30, 31, 32, 33] et références dans celles-ci.

Les principales contributions de la thèse seront le déploiement optimal des nœuds de
relais dans le cas des réseaux ad hoc sans fil massivement denses et le déploiement optimal
des stations de base et d’association des mobiles dans le cadre de systèmes cellulaires. Nous
associons dans ces thèses différentes approches pour résoudre ces problématiques, comme
par exemple, la théorie du contrôle et de la théorie du transport optimal, et fournissons de
nouvelles méthodologies pour le problème de routage.

Réseaux ad hoc sans fil

Les problèmes de cheminement

Le problème du chemin le plus court ou chemin de coût minimal consiste à trouver un
chemin entre deux sommets (ou nœuds) tel que la somme des poids des arêtes traversées par
ce chemin est minimisé. L’objective est ainsi de trouver un chemin des origines jusqu’aux
destinations de telle façon que le coût total du trajet (considéré comme la somme des coûts
de transmission de toutes les liens entre les nœuds qui appartiennent au trajet) est mini-
male parmi tous les chemins reliant les origines aux destinations. Les algorithmes les plus
importants pour faire face à ce problème sont :

• L’algorithme de Dijkstra qui résout le problème de cheminement en présence d’une
seule source et d’une seule destination, en utilisant la famille de notations de Landau,
à un temps d’exécution O(nombre d’arêtes2).

• L’algorithme de Ford-Bellman qui résout le problème d’acheminement pour une seule
source lorsque les poids des arêtes peuvent être négatifs, et qui a un temps d’exécution
O(nombre de sommets x nombre d’arêtes).
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• L’algorithme de Floyd-Warshall connu aussi sous le nom de l’algorithme WFI ou Roy-
Floyd, qui résout toutes les paires de chemins les plus courts, a un temps d’exécution
O(nombre de arêtes3)

Pour une explication sur ces algorithmes, voir par exemple [34]. Un problème important
pour tous ces algorithmes est qu’ils ont besoin d’un temps d’exécution exponentielle dans le
nombre d’entrées et que la quantité de données requises par la modélisation discrète peut
ne pas être disponible. L’autre problème avec la résolution du problème du chemin le plus
court a été mentioné par Hyytiä et Virtamo dans [27]. Comme mentionné précédemment,
ils proposent une approche basée sur l’équilibrage des charges de flux dans le réseau en
faisant valoir que, si le plus court chemin (ou de minimisation des coûts) est suivi, certaines
parties du réseau devraient transporter plus de trafic que les autres et donc consommer plus
d’énergie que les autres. Cela aboutirait à une vie plus courte du réseau donné étant donné
qu’un sous-partie du réseau aura épuisé son énergie plus tôt que l’ensemble du réseau, et
plus tôt que dans un réseau avec une charge de flux équilibrée.

Fonctions de coût

Dans l’optimisation d’un protocole d’acheminement dans les réseaux ad hoc, ou d’optimisation
du positionnement des nœuds, l’un des points de départ est la détermination de la fonction
de coût qui reflète le coût de transporter d’un paquet à travers le réseau. Pour déterminer
celle-ci, une spécification du réseau est nécessaire, qui comprend les éléments suivants :

• Une topologie du réseau

• Une règle de transfert que les nœuds vont utiliser pour sélectionner le prochain nœud
pour la transmission d’un paquet.

• Les coûts de transmission pour transmettre un paquet entre nœuds intermédiaires.

Fonctions de coûts indépendants de la congestion

Une métrique utilisée souvent dans l’Internet pour déterminer les coûts du chemin entre une
origine et une destination est le nombre de transmissions nécessaires pour transmettre un
paquet entre cette origine et cette destination. Dans le cadre de réseaux ad hoc, le nombre de
transmissions entre nœuds intermédiaires est proportionnel au délai prévu dans le chemin,
si les délais des files d’attente sont négligeables par rapport aux délais de transmission sur
chaque paire origine-destination. Ce critère est insensible aux interférences ou à la congestion
du réseau. Nous supposons qu’il ne dépend que du rayon de transmission.

Fonction de coût dépendant de la congestion

Une autre fonction de coût plus générale est de considérer que le coût peut dépendre d’une
mesure de la congestion dans le réseau. Pour mesurer la congestion, nous considerons la
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Figure 1: Flux de

l’information T(x) a travers
le segment de ligne incremental dℓ,
decomposé dans sa composante
horizontal T1(x) (dans la di-
rection X1) et sa composante
vertical T2(x) (dans la direc-

tion X2).

T(x)

T1(x)

T2(x)

X1

X2

dℓ

fonction de flux de l’information T(x), mesurée en bps/m, de tel façon que ses directions
coincident avec la direction du flux de l’information dans le point x, et ‖T(x)‖ est le taux
avec lequel le flux de l’information croisse un segment linéaire perpendicular à T(x) centré
en x, c.à.d, ‖T(x)‖ ε nous donne la quantité total de traffic que croisse un segment linéaire
de longueur infinitesimal ε, centré dans le point x, et perpendiculaire à T(x).

Nous considerons maintenant qu’une fonction de coût, dénotée c, peut dépendre du flux
de trafic, dénoté T, qui passe par un point particulier x. Dans ce cas, nous supposons que la
fonction de coût dépend de la quantité du flux de l’information qui passe par ce point mais
elle ne dépendra pas de la direction de ce flux. En plus, elle peut dépendre aussi de l’endroit
où la transmission a lieu. Dans ce cas, c = c(x, ‖T(x)‖).

Modélization de l’équation de conservation

Nous considèrons un réseau dans le plan à deux dimensions X1×X2. Nous considèrons aussi,
la fonction d’information continue ρ(x), mesurée en bps/m2, telle que dans les points x
où ρ(x) > 0, l’information est créée par les sources, de telle façon que le taux auquel
l’information est créée dans un zone de taille infinitésimale dAǫ, centré à l’ endroit x,
est ρ(x)dAǫ. De la même manière, aux points où ρ(x) < 0, il existe des centres d’agrégation
où il existe une récupération de l’information, telles que le taux auquel l’information est
reçue en un point de taille infinitésimale dAǫ, centré en x, est égale à −ρ(x)dAǫ.

Étant donné que cette situation se déroule en tout point du domaine, il s’ensuit que
nécessairement:

∇ ·T(x) :=
∂T1(x)

∂x1
+
∂T2(x)

∂x2
= ρ(x),

où “∇·” est l’opérateur de divergence.

Notons que la dernière équation est la version différentielle du théorème de Gauss (aussi
appelé théorème de Gauss-Ostrogradsky ou théorème de Green).
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T1(x1, x2)

T2(x̂1, x̂2 + δx̂2)

T1(x1 + δx1, x2)

T2(x̂1, x̂2)

ρ

X2

X1

Antennes directionnelles

Optimisation d’utilisateurs et fonctions de coûts indépendants de la congestion

Nous autorisons le coût de transmission local c1 pour une transmission horizontale (dans la
direction de l’axe X1) à être différent de celui du transmission local c2 pour une transmission
verticale (dans la direction de l’axe X2). On suppose que les coûts de transmission local, c1
et c2, ne dépendent pas du flux de l’information T. Le coût de transmission d’un paquet à
travers d’un chemin p est donnée par l’intégrale

cp =

∫

p

c · dx.

Soit V (x) le coût minimum pour aller d’un point x a un ensemble B. Par conséquence,
on obtient que pour tout x dans l’ensemble des destinations V (x) = 0. Nous obtenons
récursivement

V (x) = min (c1(x) dx1 + V (x1 + dx1, x2), c2(x) dx2 + V (x1, x2 + dx2)) . (1)

Cela peut être écrit comme une équation de Hamilton-Jacobi-Bellman:

∀x ∈ D, 0 = min

(

c1(x) +
∂V (x)

∂x1
, c2(x) +

∂V (x)

∂x2

)

; ∀x ∈ B , V (x) = 0 . (2)

Si la fonction V est dérivable, alors (dans des conditions appropriées) elle est la solution
unique de (2). Dans le cas où V n’est pas partout différentiable (dans des conditions appro-
priées) elle est la solution unique de l’équation de viscosité (2) (voir par exemple [35, 36]).
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Il existe des nombreuses méthodes numériques pour résoudre l’équation de Hamilton-
Jacobi-Bellman (HJB). Par exemple, on peut discrétiser l’équation de HJB et trouver un
problème de programmation dynamique discrète pour lequel il existe des méthodes qui nous
donnent des solutions d’une manière efficace. Si l’on répète ces mesures de discrétisation
diverses, alors on sait que la solution du problème discret converge vers la solution de viscosité
du problème original (dans des conditions appropriées) quand la taille de l’étape suivante
par rapport a l’étape actuelle, tend vers zéro [35].

Caractérisation des chemins de coût minimum

Nous considérons maintenant notre modèle d’antennes directionnelles dans une zone rect-
angulaire dénotée R, définie par la courbe fermée Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4. Nous étudions le cas
où les transmissions peuvent aller de Nord en Sud ou d’Ouest en Est. Cette convention
est prise en suivant la notation utilisée par Dafermos dans [29]. Grâce à la modélisation
continue les chemins optimaux définis comme les chemins qui permettent d’atteindre le coût
de transmission minimal de paquets sont obtenus. Nous allons étudier deux problèmes :

• Chemin optimal d’une seule source à une seule destination: nous cherchons le chemin
de coût de transmission minimal de la route entre deux nœuds: une seule source et
une seule destination.

• Chemin optimal d’une seule source à plusieurs destinations: nous cherchons le chemin
de coût de transmission minimal entre une seule source qui peut choisir entre un en-
semble de destinations celui qui minimise le coût de transmission de la route.

Nous allons utiliser pour cela le théorème suivant pour la caractérisation des chemins opti-
maux:

Theorem 0.0.1 (Théorème de Green) Soit S, une courbe plane simple, positivement
orienté et C1 par morceaux, D le domaine compact lisse du plan délimité par S et P dx+Qdy
une 1-forme différentielle sur R2. Si P et Q ont des dérivées partielles continues sur une
région ouverte incluant D, alors :

∫

S
P dx+Qdy =

∫

D

(

∂Q

∂x
− ∂P

∂y

)

dx dy.

Considérons la fonction

U(x) =
∂c2
∂x1

(x)− ∂c1
∂x2

(x),

alors la structure du chemin du coût minimum va dépendre du signe de cette fonction U .

En fait, on prouve le théorème suivant:

Theorem 0.0.2 (Chemin optimal d’une seule source à une seule destination) Si on
suppose qu’un point d’origine xo = (xo1, x

o
2) veut envoyer un paquet a une point de destina-

tion xd = (xd1, x
d
2) et les deux points sont à l’intérieur du rectangle R.
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1. Si la fonction U est “presque partout” (p.p.) positive dans l’intérieur du rectangle Rod,
défini par les deux points, le chemin optimal γopt est l’union d’une ligne horizontale γH
et d’une ligne verticale γV (voir Fig. 2(a)). Plus précisément: γopt = γH ∪ γV où

γH = {(x1, x2) such that xo1 ≤ x1 ≤ xd1, x2 = xo2},
γV = {(x1, x2) such that x1 = xd1, x

o
2 ≤ x2 ≤ xd2}.

2. Si la fonction U est “presque partout” positive dans l’intérieur du rectangle Rod, défini
par les deux points, le chemin optimal γopt est l’union d’un ligne horizontale γH et
d’une ligne verticale γV (voir Fig. 2(b)). Plus précisément, γopt = γV ∪ γH où

γV = {(x1, x2) such that x1 = xo1, x
o
2 ≤ x2 ≤ xd2},

γH = {(x1, x2) such that xo1 ≤ x1 ≤ xd1, x2 = xd2}.

3. Dans les deux cas précedents, γopt est unique presque sûrement.

γopt

γC

x
o

x
d

Γ1

Γ2

Γ3

Γ4

U > 0

Rod

(a) Case U > 0.

γopt

γC

x
o

x
d

Γ1

Γ2

Γ3

Γ4

U < 0

(b) Case U < 0.

Figure 2: Chemins Optimaux (a) quand U > 0 p.p. et (b) quand U < 0 p.p. dans l’intérieur
du rectangle défini par le point d’origine xo et le point de destination xd.

Theorem 0.0.3 (Chemin optimal d’une seule source à plusieurs destinations)
Si on suppose qu’un point d’origine xo veut envoyer un paquet vers un point de la frontière Γ1 ∪ Γ2

1. Si la fonction U est “presque partout” positive dans l’intérieur du rectangle R, et le
coût dans la frontière Γ1 est non-positive et dans la frontière Γ2 est non-négative, alors
le chemin optimal γopt est la ligne horizontale γH (voir Fig 3)

2. Si la fonction U est “presque partout” négative dans l’intérieur du rectangle R, et le
coût dans la frontière Γ1 est non-négative et dans la frontière Γ2 est non-positive, alors
le chemin optimal γopt est la ligne vertical γV (voir Fig. 4)

3. Dans les deux cas précédents, γopt est unique presque sûrement.
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η

Γ2

Γ3

Γ4

U ≥ 0
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Figure 3: Chemin optimal quand
U > 0 p.p.

η Γ1

Γ2

Γ3

Γ4

U ≤ 0
x

o

γopt γC

Figure 4: Chemin optimal quand
U < 0 p.p.

Coût dépendent de la congestion

Comme avant, nous autorisons le coût de transmission local c1 (dans la direction de l’axe X1)
à être différent de celui du transmission local c2 (dans la direction de l’axe X2). Cette fois-ci
nous permetons aussi que le coût de transmission c1 puisse dépendre du flux de trafic T1
(dans la direction de l’axe X1). De la même façon, le coût de transmission c2 peut dépendre
du flux de trafic T2 (dans la direction de l’axe X2).

Soit V (x) le coût minimal pour aller d’une source x à la frontière B dans une situation
d’équilibre. L’équation (1) est toujours valide mais cette fois-ci avec c1 et c2 qui dépendent
du flux de l’information T1 et T2, respectivement. Donc l’équation (2) devient

∀x ∈ D, 0 = min
i=1,2

(

ci(x, Ti) +
∂V (x)

∂xi

)

, ∀x ∈ B , V (x) = 0 . (3)

Notez que cette méthode peut être considérée comme une généralisation de la méthode
d’optimisation connus dans la programmation dynamique dans la modélisation discrète. En
particulier, la dernière équation est une généralisation de “l’équation de Bellman” également
connu comme “l’équation de programmation dynamique”.

Nous notons que, si T > 0, alors par la définition d’équilibre, le minimum est atteint
dans (3). Donc (3) implique les relations suivantes pour i = 1, 2:

ci(x, Ti) +
∂V k

∂xi
= 0 if T ki > 0, (4a)

ci(x, Ti) +
∂V k

∂xi
≥ 0 if T ki = 0. (4b)

Il s’agit d’un ensemble d’équations aux dérivées partielles couplées difficile d’analyser
sans faire plus d’hypothèses.
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(a, b)(0, b)
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Γ2

Γ3

Γ4 U > 0

Figure 5: Le rectangle R défini par les
frontières Γ1∪Γ2∪Γ3∪Γ4, lorsque U >
0.
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Figure 6: Le cas de deux régions
séparées par une courbe.

Transformation de Beckmann

De manière similaire à Beckmann et al. [7] pour la modélisation discrète, nous avons trans-
formé le problème du chemin de coût minimal en un système équivalent de minimisation.
Nous allons analyser maintenant le problème d’une seule classe. Pour ceci, nous constatons
que les équations (4a)-(4b) ont exactement la même forme que les conditions de Karush-
Kuhn-Tucker ([8])-([9]), sauf que les fonctions de coût c1(x, T1) et c2(x, T2) dans la première
équation sont remplacées par ∂g(x,T)/∂T1(x) et ∂g(x,T)/∂T2(x) respectivement, dans le
second. Nous allons introduire une fonction de potentielle ψ, définie par

ψ(x,T) =
∑

i=1,2

∫ Ti

0

ci(x, s)ds

Alors pour chaque i ∈ {1, 2}
ci(x, Ti) =

∂ψ(x,T)

∂Ti
.

Par conséquent, le flux de l’information dans une situation d’équilibre est celui obtenu à
partir du système de problèmes d’optimisation où nous utilisons ψ comme le coût local.
Notre conclusion est comme suit:

Theorem 0.0.4 Soit x∗ une solution pour le problème d’optimisation suivant :

min
T (·)

∫

Ω

ψ(x,T) dx

soumis aux conditions suivantes:

∇ ·T(x) = ρ(x), ∀x ∈ Ω.

Alors, c’est un équilibre de Wardrop.
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Les messages doivent aller d’une région des sources ou origins de l’information O à une
région disjointe des récepteurs de l’information R (dans les réseaux de capteurs sans fil,
il correspondrait aux centres d’agrégation de données). Ces deux régions sont supposées
d’être situés à des portions disjointes de la frontière. L’intensité σ(x1, x2) de la production
des messages sur O est donné, tandis que l’intensité ρ(x1, x2) de reception des messages
sur R est inconnue. C’est seulement supposer que ceux-ci sont cohérentes: le débit total
de messages émis et reçus sont égaux. Sur le reste de la frontière (denotés par F), aucun
message devrait entrer ni sortir de Ω, i.e. il s’agit d’un région interdit à croisser.

Soit Q = O ∪ F et on extende la fonction σ dans tout Q par σ(x) = 0 en F . Nous
modelons les conditions de la frontière comme:

∀x ∈ Q , 〈n(x),T(x)〉 = −σ(x). (5)

Nous supposons seulement dans cette partie qu’il n’y a pas des sources ni destinations
des messages dans l’interior de Ω. Ce qu’on modelise comme la contrainte:

∀x ∈ Ω , ∇ ·T(x) = 0 . (6)

Le coût de congestion par paquet transmis c(x1, x2, φ) (par exemple en termes de retards,
ou utilisation de l’énergie) à chaque point de Ω est une fonction du point et de l’intensité φ
du flux de messages à travers ce point.

Nous voulons étudier la politique optimal de routage et sa relation avec l’équilibre de
Wardrop ou l’optimalité de l’utisateur.

Le coût de la congestion par paquet c est censé être une fonction C1 strictemente positive
c(x, φ) : Ω× R+ → R+, croissante et convexe dans φ pour chaque x. Le coût total de la
congestion sera considéré comme

G(T(·)) =
∫

Ω

c(x, ‖T(x)‖)) · ‖T(x))‖ dx. (7)

Le chemin suivi par un paquet est spécifié par sa direction de voyage eθ = (cos θ, sin θ)
au long de son parcours, en fonction de ẋ = eθ. Le coût par un paquet qui voyage de x0 ∈ O
au moment t0 en x1 ∈ R au moment t1 est

J(eθ(·)) =
∫

x1

x0

c(x, ‖T(x)‖)
√

dx2 + dy2 =

∫ t1

t0

c(x(t), ‖T(x(t))‖) dt . (8)

Notons ici que le “temps” t peut être un temps fictif, lié au temps physique, disons τ , par
dτ = c dt, par exemple. Par consequence, c est l’inverse de la vitesse du voyage, un retard dû
à la congestion, et J est le temps pris par le message pour aller de la source à la destination.

Optimisation du système

Le cas différentiable

Soit C(x, φ) := c(x, φ)φ. C’est une fonction convexe en φ et coercive, c.à.d., elle tend vers
l’infini avec φ. Par conséquent, T(·) 7→ G(T(·)) est continue, convexe et coercive. De
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plus, les contraintes sont linéaires. Donc, un optimum existe, et nous pouvons appliquer le
Théorème de Karush-Kuhn-Tucker.

Nécessairement

∀x : f ⋆(x) 6= 0 , D2C(x, ‖f ⋆(x)‖)
f ⋆(x)

‖f ⋆(x)‖ = ∇p(x) . (9)

Il résulte de cette équation que p(·) ∈ H1(Ω), et aussi que la première intégrale dans le côté
droit doit être zéro pour chaque G en VQ. En choisissant maintenant g ∈ VQ, il s’ensuit que

p(·) ∈ H1
R. (10)

Manque de dérivabilité

En remplaçant cela dans le sous-différentiel de L, nous obtenons, pour x ∈ Ω0,

∃q(x) such that ‖q(x)‖ ≤ D2C(x, 0) and ∀g ∈ VQ ,

∫

Ω0

(q(x)−∇p(x))g(x) dx = 0 .

En combinant les deux cas, nous arrivons à la conclusion que, pour qu’une fonction f ⋆(·) ∈
V avec un ensemble nul Ω0 soit optimale, il doit exister un p(·) ∈ H1

R de tel façon que

∀x ∈ Ω , ‖∇p(x)‖ ≤ D2C(x, 0) ,

∀x ∈ Ω− Ω0 , ∇p(x) = D2C(x, ‖T(x)⋆‖) 1
‖f⋆(x)‖f

⋆(x) .
(11)

Nous pouvons remarquer que la première condition ci-dessus implique aussi

∀x : f ⋆(x) 6= 0 , ‖∇p(x)‖ = D2C(x, ‖f ⋆(x)‖).

Dans l’ensemble, le problème de la détermination de l’optimum f ⋆ est équivalente (si ce
système a une solution unique) à déterminer simultanément f ⋆ et p en satisfaisant (5),(6) et
(11).

Ce système a certainement au moins une solution, puisque notre problème est convexe,
coercive avec des contraintes affines, et a donc un minimum. Unicité, d’autre part, est loin
d’être simple. On peut remarquer que l’on pourrait chercher à retrouver les deux fonctions
scalaires phi et p, satisfaisant

∀x : φ(x) 6= 0 , ‖∇p(x)‖ = D2C(x, φ(x)) ,
∀x : φ(x) = 0 , ‖∇p(x)‖ ≤ D2C(x, 0) ,
∀x ∈ R , p(x) = 0 ,

et qui imposent en plus les contraintes (5) et (6)

f ⋆(x) =
φ(x)

D2C(x, φ(x))
∇p(x) .
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Optimisation de l’utilisateur (équilibre de Wardrop)

Supposons que le flux de messages obéit aux conditions nécessaires obtenues ci-dessus. Nous
voulons étudier s’il est optimal pour un seul message en suivant la route prescrite par f ⋆, i.e.,
d’une intégrale de ligne de ce champ, en supposant que son seul écart de ce schema n’aurait
pas d’effet sur l’ensemble de la congestion (c’est ce qu’on appelle hypothèse d’“atomicité”).

Nous étudions l’optimisation de la fonction d’objectif (8) via son équation de Hamilton-
Jacobi-Bellman. Soit V (x) la fonction de retour, donc elle doit être la solution de viscosité
de

∀x ∈ Ω , minθ〈eθ,∇V (x)〉+ c(x, ‖f ⋆(x)‖) = 0 ,
∀x ∈ R , V (x) = 0 .

alors
∀x ∈ Ω , −‖∇V (x)‖+ c(x, ‖f ⋆(x)‖) = 0 ,
∀x ∈ R , V (x) = 0 .

(12)

Et la direction optimale de voyage est contraire par ∇V (x), i.e., eθ = −∇V (x)/‖∇V (x)‖.
Notons que ce système d’équations et similaire à celui précedent en remplaa̧nt p(x) par

−V (x), et D2C(x, φ) par c(x, φ). Nous arrivons à la conclusion que l’équilibre de Wardrop
peut être obtenu en résolvant le problème d’optimisation du système dans lequel la fonction

de coût est remplacé par
∫ φ

0
c(x, s)ds. Celle-ci est la version continue de la fonction de

potentiel de Beckman et al. [7]. Cette transformation a été fréquement utilisée dans le
contexte de trafic routier mais seulement par une fonction de coût particulière [37, 38, 33, 39].
Cette équivalence a été montrée dans [37, 38].

Coût du Monôme

Dans le cas où c(x, φ) = c(x)φα, alors C(x, φ) = αc(x, φ), et par conséquent, les deux
systèmes déquations cöıncident dans le domaine {x | f ⋆(x) 6= 0}. Nous allons montrer que,
pour φ(·) donné, p est défini de façon unique. Nous avons donc la propriété suivante:

Proposition 0.0.1 Pour un coût du monôme, tout équilibre dans le plan où Ω0 = ∅ est un
équilibre de Wardrop.

Coût linear de la congestion

Nous étudions ici le cas typique simple, où le coût de congestion est linéaire:

c(x, φ) =
1

2
c(x)φ, et alors C(x, φ) =

1

2
c(x)φ2 .

Ensuite, L est dérivable partout, et la condition nécessaire d’ optimalité est simplement qu’il
doit exister p : Ω → R2 tel que ∇p(x) = c(x)f ⋆(x).
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En remplaçant ceci dans (5) et (6), nous nous retrouvons avec une équation elliptique
simple avec les conditions de frontière mixtes Dirichlet - Neuman:

∀x ∈ Ω , ∇( 1
c(x)

∇p(x)) = 0 ,

∀x ∈ Q ,
∂p

∂n
(x) = c(x)σ(x) ,

∀x ∈ R , p(x) = 0 ,















(13)

pour laquelle on obtient facilement l’existence et l’unicité de la solution.

Dans le but de trouver une solution numérique de notre problème, nous considérons la

Méthode des Éléments Finis (MEF), qui est très utilisée dans la modélisation numérique des

systèmes physiques dans plusieurs domaines comme: l’Électromagnétisme, la Dynamique
des Fluides, etc.

La formulation variationnelle d’un problème consiste en général à chercher u ∈ V tel que

(VP)

{

a(u, v) = l(v)
∀ v ∈ V.

En ce sens, si nous considérons les fonctions a(·, ·) et l(·) définies ci dessous

a(u, v) =

∫

Ω

1

c
∇u · ∇v dx and l(v) =

∫

Q
σ · v dx.

dans l’espace V = H1
R(Ω), notre problème se réduit à sa formulation variationnelle, dont la

solution sera la fonction p.

Dans notre cas, la fonction bilinéaire a(·, ·) est V -elliptique, symétrique et continue dans
H1(Ω) et la fonction linéaire l(·) est bornée. Donc nous pouvons utiliser le théorème de
Lions-Lax-Milgram et conclure qu’il existe une solution unique.

Ce théorème nous fournit non seulement l’existence et l’unicité de la solution mais aussi
l’information par rapport à la stabilité de cette solution quand les données initiales du
problème changent. Ceci veut dire que la solution dépend continument des données initiales.

Dans les réseaux mobiles ad hoc, la fonction de la densité d’information ρ, la fonction du
flot de trafic T et la fonction de densité des nœuds η, définies auparavant, peuvent varier
dans le temps, i.e., ρ = ρ(x, t), T = T(x, t), et η = η(x, t). Nous considérons le problème de
routage pour un intervalle de temps défini t ∈ [ti, tf) où ti représente l’instant initial et tf
est l’instant final.

Réseaux Cellulaires

Nous considérons le réseau D avec un grand nombre des terminaux mobiles repartis avec une
distribution intégrable de λ(x, y) qu’on peut dimensionner de telle façon que

∫∫

Ω

λ(x, y) dx dy = 1.
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Figure 7: Triangulation du domain [−1, 1]× [−0.5, 0.5]\D((−0.5, 0), 0.2).
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Figure 8: Solution pour un réseau des capteurs sans fils dans le do-
main [−1, 1]× [−0.5, 0.5]\D((−0.5, 0), 0.2).
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Alors, le nombre d’utilisateurs dans un espace A est

N

(∫∫

A

λ(x, y)

)

où N est le nombre totale de terminaux mobiles.

Nous supposons que dans le réseau il y a K stations de base BS1,BS2, . . . ,BSK situées
dans les positions (x1, y1), (x2, y2) . . . , (xK , yK).

Pour la voie montante (transmission des terminaux mobiles aux stations de base) nous
considérons comme mesure le SINR (rapport signal et interférence plus bruit). Pour la voie
descendante (transmission des stations de base aux terminals mobils) entre stations de base
voisins, ils transmet dans des canaux orthogonaux (comme en OFDMA), et l’interférence
entre stations de base distantes est négligeable, donc au lieu de considérer le SINR comme
mesure, on utilise le SNR (rapport signal à bruit).

Theorem 0.0.5 Considérons le problème (P1)

Min
Ci

K
∑

i=1

∫∫

Ci

[

F (di(x, y)) + si

(∫∫

Ci

λ(ω, z) dω dz

)]

λ(x, y) dx dy,

où Ci est la partition des cellules de Ω. Supposons que si sont des fonctions continument
différentiable, croissante, et convexe. Le problème (P1) admet une solution que vérifie

(S1)







Ci = {x : F (di(x, y)) + si(Ni) +Ni · s′i(Ni) ≤
≤ F (dj(x, y)) + sj(Nj) +Nj · s′j(Nj)}

Ni =
∫∫

Ci
λ(ω, z) dω dz.

Theorem 0.0.6 Nous considérons le problème (P2)

Min
Ci

K
∑

i=1

∫∫

Ci

[

F (di(x, y)) ·mi

(∫∫

Ci

λ(ω, z) dω dz

)]

λ(x, y) dx dy

où Ci est une partition en cellules du réseau Ω. Nous supposons que les fonctions mi, i ∈
{1, . . . , K} sont dérivables. Le problème (P2) admet une solution que vérifie

(S2)















Ci = {x : mi(Ni)F (di(x, y)) λ(x, y) + Ui(x, y) ≤
≤ mj(Nj)F (dj(x, y)) λ(x, y) + Uj(x, y)}

Ui = m′
i(Ni)

∫∫

Ci
F (di(x, y))λ(x, y) dx dy

Ni =
∫∫

Ci
λ(ω, z) dω dz.

Nous supposons qu’on veut minimiser la fonction de puissance total du réseau en assurant
un certain débit moyen de θ à chaque mobile dans le système en utilisant la politique de
round robin donnée par le problème (RR)

Min
Ci

K
∑

i=1

∫∫

Ci

σ2(R2 + di(x, y)
2)ξ/2(2Niθ − 1)λ(x, y) dx dy.
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Figure 9: Interference comme fonction de l’ubication de terminal mobiles quand BS1 est
dans la position 0 (ligne plaine) et BS2 dans −10 (ligne en pointillés).

Nous notons que ce problème est un problème de transport optimal comme (P1) avec
une fonction de coût donnée par

F (di(x, y)) = σ2(R2 + di(x, y)
2)ξ/2

mi(x, y) = (2Niθ − 1)

Synthèse et conclusions

Dans ce manuscrit, nous avons étudié la planification et l’analyse des réseaux sans fil mas-
sivement denses. Nous nous sommes intéressés à l’approche de modélisation continue, qui
est utile pour la phase initiale de planification et de modélisation à grande échelle dans les
grandes études régionales. L’objectif de cette approche est d’obtenir la tendance générale et le
schéma de la distribution et du choix de voyage des utilisateurs. L’objectif est aussi l’étude
des modifications de ces deux facteurs en réponse aux changements de politique dans le
système de transport à l’échelle macroscopique, plutôt qu’une description détaillée du réseau.
L’hypothèse fondamentale est que la différence dans les caractéristiques de modélisation,
comme le coût du voyage et la demande entre zones adjacentes au sein d’un réseau, est
relativement faible par rapport à la variation de l’ensemble du réseau. Par conséquent, les
caractéristiques d’un réseau, telles que l’intensité de flux, la demande, et le coût du voyage,
peuvent être représentés par des fonctions mathématiques régulières.

Dans la première partie, nous nous sommes concentrés sur les réseaux ad hoc sans fil, où
nous avons considéré une fonction de coût générique, qui peut prendre en compte différents
paramètres tels que la congestion du réseau, la quantité de nœuds de relais nécessaires
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Figure 10: SINR comme fonction de l’ubication de terminal mobiles quand BS1 est dans la
position 0 (ligne plaine) et BS2 dans −10 (ligne en pointillés).
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Figure 11: Zoom du SINR comme fonction de l’ubication de terminal mobiles quand BS1 est
dans la position 0 (ligne plaine) et BS2 dans −10 (ligne en pointillés). Le meilleur équilibre
est eq1 = −4.68 avec un valeur de SINR de 0.0025.



xxiv Résumé
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Figure 12: Meilleurs Équilibres: Seuils qui détérminent les frontières des cellules (dans l’axe
vertical) comme fonction de l’ubication de BS2 avec BS1 dans la position 0.
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Figure 13: Pires Équilibres: Seuils qui détérminent les frontières des cellules (dans l’axe
vertical) qui nous donnent le pire équilibre (en considerant le SINR comme utilité) comme
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Résumé xxv

−30 −20 −10 0 10 20 30
−15

−10

−5

0

5

10

15

BS2

C
e

ll 
B

o
u

n
d

a
ri
e

s 
w

h
e

n
 B

S
1

 is
 a

t 
0

BE : Cell Boundaries when BS1 is at 0 vs position of BS2

Figure 14: Le cas non-homogène: Seuils qui détérminent les frontières des cellules (dans
l’axe vertical) des meilleurs équilibres (en considerant le SINR comme utilité) comme fonction
de l’ubication de BS2 avec BS1 dans la position 0 quand nous considerons la distribution
donné par λ(x) = (L− x)/2L2.
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Figure 16: Le cas en 2D: Les frontières des cellules avec une distribution uniforme
d’utilisateurs.
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Figure 17: Le cas en 2D: Les contours des cellules avec une distribution uniforme
d’utilisateurs.
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Figure 18: Le cas non-homogène en 2D : Les frontières des cellules avec une distribution
non-uniforme d’utilisateurs.
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Figure 19: Le cas non-homogène en 2D : Les contours des cellules avec une distribution
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pour maintenir un certain débit, ou des paramètres liés à la consommation d’énergie du
réseau. Avec cette fonction de coût, nous sommes en mesure de formuler et de résoudre
le problème de routage de l’utilisateur et le problème d’optimisation du système pour les
antennes directionnelles et les antennes omnidirectionnelles. Nous avons également trouvé
des caractérisations du chemin de coût minimum grâce au théorème de Green. Lorsque nous
permétons la mobilité des nœuds d’origine, et les nœuds de destination, nous sommes en
mesure de donner un cadre pour modéliser et résoudre la quantité optimale de nœuds de
relais nécessaires pour transmettre une certaine quantité de données.

Dans la deuxième partie, nous nous sommes concentrés sur les réseaux cellulaires, où
nous avons étudié la capacité des canaux de diffusion MIMO (et des canaux de diffusion
point-à-point MIMO) et le problème d’association de mobiles dans les réseaux cellulaires.
En vertu de ce cadre, nous avons pu assurer la qualité de service, tout en minimisant la
puissance totale du réseau. Nous avons résolu dans ce contexte le problème d’optimisation
de l’utilisateur et le problème d’optimisation du système.

Perspectives

Il existe un certain nombre de problèmes ouverts qui peuvent être vus dans ce manuscrit.
Toutefois, l’un des problèmes fondamentaux qui reste ouvert est de rompre la frontière entre
la modélisation discrète et la modélisation continue. Pour étudier ce problème, nous pen-
sons construire un cadre théorique cohérent pour aborder ces deux problèmes ensembles et
analyser la convergence du problème discret vers le problème continu. Dans la même per-
spective, il serait d’un intérêt particulier d’étudier le problème d’optimisation du point de
vue de l’utilisateur et analyser sa convergence.







Pour moi le passé ne passe pas. Il ne passe pas, n’est pas passé et ne passera jamais.

Quand on me dit “je suis quelqu’un de mon temps”, on peut le dire, mais ce n’est pas vrai.

Et quelqu’un de son temps est quelqu’un de tous les temps aussi, du temps qui s’est écoulé.

Parce que la culture, la langue, l’histoire, tout ce qu’elle a trouvé à sa naissance

n’est pas son œuvre, c’est œuvre de toutes les générations qui l’ont précédé.

Alors la vérité c’est qu’il y a un pourcentage d’héritage qui se poursuit,

c’est-à-dire que nous héritons en permanence tout ce qui vient du passé :

le bien, le mal, le merveilleux, le pire et l’horrible.

Nous sommes les héritiers de tout ce qui a précédé et nous contribuons,

avec notre part, à l’héritage de ceux qui viendront après nous.

C’est une sorte de vague qui ne s’arrête jamais, qui va et vient en permanence

et qui accumule chaque fois plus de passé. Le passé augmente.

José Saramago.





Introduction

The explosive growth of wireless systems coupled with the proliferation of wireless devices
such as 3G phones, WiFi laptops, and wireless sensor devices, have raised many technical
challenges in the planning and analysis of wireless networks. Roughly speaking, wireless
networks can be classified into two categories: wireless access networks and wireless ad hoc
networks. On the one hand, wireless access networks usually provide connectivity to the
wired infrastructure network through the wireless medium. Examples of wireless access
networks include cellular systems such as 2G GSM, 3G UMTS, etc., and WiFi systems such
as 802.11 WLANs. On the other hand, wireless ad hoc networks are decentralized wireless
networks that may be set up and dismantled dynamically.

In this thesis, we are interested in massively dense wireless networks in cellular systems
and massively dense wireless ad hoc networks. The term “massively dense” will be formally
defined afterward. This thesis starts with the idea of studying wireless networks by analogy to
what was called in a broad sense “physical tools”. When we started this work, we discovered
that there was a large amount of work being done and still under construction by another
community: the road traffic community. We will briefly explain what this community is
interested in and why this is interesting for our work on the modeling of wireless networks.
In the literature of the road traffic community the modeling of traffic equilibrium problems
for a transportation system is classified in the discrete modeling approach and the continuum
modeling approach:

• In the discrete modeling approach, each road link in the network is modeled separately
and the demand is assumed to be concentrated at hypothetical points, called zone
centroids. This modeling approach is commonly adopted for the detailed planning and
analysis of transportation systems.

• The continuum modeling approach is used for the initial phase of planning and mod-
eling in broad-scale regional studies. In this setting, the focus is on the general trend
and pattern of the distribution, the travel choice of users, and on changes in these two
factors in response to policy changes in the transportation system. The fundamental
assumption is that the difference in modeling characteristics, such as the travel cost
and the demand pattern between adjacent areas in the network, is relatively small
compared to the variation over the entire network. Hence, the characteristics in a
network, such as the flow intensity, demand, and travel cost, can be represented by
smooth mathematical functions [40].
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2 Introduction

The continuum modeling approach has many advantages over the discrete approach in
macroscopic studies on dense transportation systems. First, it reduces the problem size
for dense transportation networks. The problem size in the continuum model depends on
the method that is adopted to approximate the modeling region, but not on the actual
network itself. Because of that, an effective approximation method, such as the finite element
method (FEM), can extensively reduce the size of the problem. This reduction in problem
size saves computational time and memory. Second, less data is required to model the
set-up in a continuum model. As continuum modeling can be characterized by a small
number of spatial variables, it can be set-up with a much smaller amount of data than
the discrete modeling approach, which requires data for all of the included links. This
makes the continuum model convenient for macroscopic studies in the initial phase of design
since the collection of data in this phase is time consuming and labor intensive, and the
resources to undertake it are generally not available, which means there is usually insufficient
data on the system to set up a detailed model. Finally, the continuum modeling approach
gives a better understanding of the global characteristics of a network. To our surprise
the advances of this community are not well known in our community. In this context we
first analyze the routing problem in wireless ad hoc sensor networks which has to deal with
the transportation of packets through the network. The topic of transportation has been
addressed earlier in the context of optimal allocation of resources through linear programming
by Hitchcock [3] and Kantorovich [4] (who later shared the Nobel Prize with Koopmans) as
well as by Koopmans [5] and Dantzig [6]. In such models, however, there was no congestion
associated with transportation. In 1952, Wardrop [2] had set two principles of transportation
network utilization, which have become to be termed, respectively user-optimization and
system-optimization:

• The first principle expresses that vehicles select their routes of travel from origins to
destinations independently. Then, in an equilibrium situation, the journey times of all
routes actually used between an origin/destination pair are equal. This journey time is
less than the journey time that would be experienced by a single vehicle on any unused
route. The user-optimized solution is also referred to as traffic network equilibrium or
as traffic assignment.

• The second principle reflects the situation in which there is a central controller which
routes the traffic flows in an optimal manner from origins to destinations to minimize
the total cost of the network.

In 1956, Beckmann, McGuire, and Winsten [7] were the first to provide a rigorous mathe-
matical formulation of the conditions set forth by Wardrop’s first principle that allowed for
the ultimate solution of the traffic network equilibrium problem in the context of certain
link cost functions which were increasing functions of the flows on the links. In particular,
they demonstrated that the optimality conditions in the form of Karush-Kuhn-Tucker [8, 9]
conditions of an appropriately constructed mathematical programming/optimization prob-
lem coinciding with the statement that the travel costs on utilized routes/paths connecting
each origin/destination pair of nodes in a transportation network have equal and minimal
travel costs. Hence, no traveler, acting unilaterally will have any incentive to alter its path
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(assuming rational behavior) since his travel cost (travel time) is minimal. Thus, a problem
in which there are numerous decision-makers acting independently and as later also noted by
Dafermos and Sparrow [10] competing in the sense of Nash [1], could be reformulated (under
appropriate assumptions that will be defined later) as a convex optimization problem with
a single objective function subject to linear constraints and non-negativity assumptions on
the flows in the network.

Beckman [11] noted the relevance of network equilibrium concepts to communication
networks. In another interesting work, Bertsekas and Gallager [12] realized the similarities
between communication and transportation networks. The work on the Braess paradox [13]
subsequently provided one of the main links between transportation science and computer
science. In 1990, Cohen and Kelly [14] described a paradox analogous to that of the Braess
in the case of a queueing network. The Braess paradox still continues to be investigated in
the road-traffic context [15, 16], as well as in the networking community [17, 18, 19].

In the networking community there have been some problems in the analysis of what
has received the name of massively dense networks. When the network has an increasing
number of nodes, the modeling and analysis of the network is much more difficult and
sometimes intractable. When we speak about dense networks, we assume a strong separation
in spatial scales between the macroscopic level, corresponding to typical distances between
the source and destination nodes, and the microscopical level, corresponding to distances
between the neighboring nodes. When the system is sufficiently large, the macroscopic model
will give a better description of the network and we can derive its properties from microscopic
considerations. We will sacrifice a detailed description of the optimized solution but the
macroscopic model will preserve enough information in order to give a good description of
the network and the derivation of insightful results under different settings.

The physics-inspired methodologies used for the study of dense ad hoc networks starts
with the pioneering works of Jacquet [20], and Kalantari and Shayman [21, 22]. In this
area, a number of research groups have worked on dense ad hoc networks using tools from
Geometrical Optics [20] as well as Electrostatics (see e.g. [23, 24, 25], and the survey [26] and
references therein). We shall describe these in the next sections, with particular attention
in Chapter 1, Part I. The physical paradigms allow the authors to minimize various metrics
related to the routing. Hyytia and Virtamo propose in [27] an approach based on load
balancing arguing that if shortest path (or cost minimization) arguments were used, then
some parts of the network would carry more traffic than others and may use more energy
than others. This would result in a shorter lifetime of the network since some parts would
be out of energy earlier than others and earlier than any part in a load balanced network.

The development of the original theory of routing in massively dense networks among the
community of ad hoc networks has emerged in a complete independent way of the existing
theory of routing in dense networks which had been developed within the community of road
traffic engineers. The approach introduced in 1952 by Wardrop [2] and by Beckmann [28]
is still an active research area among this community, see [29, 30, 31, 32, 33] and references
therein. We combine in this thesis various approaches from this area as well as from optimal
control theory and optimal transportation theory in order to formulate models for routing
in massively dense networks.



4 Introduction

The main contributions of the thesis will be the optimal deployment of relay nodes in
the case of massively dense wireless ad hoc networks and the optimal deployment of base
stations and mobile association in the case of wireless access networks.



Thesis Organization and Contribution

Part I - Optimal Planning for Massively Dense Wireless Ad Hoc Networks:
Routing optimization

1. Basic Concepts on Massively Dense Ad Hoc Networks

This chapter gives an introduction to the main problems related to the optimal routing
and analysis of massively dense ad hoc network in the user- and system-optimization
context. We consider a generic cost function and we also describe some important
particular cases for this function. The objective is to understand the context of the
optimal routing and the scalability problem within this type of networks.

2. Electrostatics Approach

This chapter first gives a brief summary of the related work and describes the main
approaches that have been made by doing a parallel to Optics and Electrostatics in the
optimal placement of relay nodes for wireless static ad hoc networks. We start by an
example to describe the problem in the one-dimensional case and then the extension
of the results for the two-dimensional case.

3. Directional Antennas

This chapter focus on directional antennas, and gives an extension of the concept of
Wardrop equilibrium for the continuum case. We are able to show a simple path
characterization (under appropiate assumptions) by the use of Green’s theorem.

4. Omni-directional Antennas

This chapter extends the previous results for the user- and system-optimization prob-
lem in the context where the mobiles can choose any direction at any given time.

5. Numerical Analysis

In many cases, we have that the optimal solution to both the user- and the system-
optimization problem are given by a partial differential equation. We propose the finite
elements method to solve this equation since this method allow us to give bounds in
the variation of the solution with respect to the variation of the data in the considered
problem.

6. Magnetworks: Mobility of the nodes

5



6 Introduction

In this chapter we give the results related to the mobility of the nodes. Even when
we allow mobility of the origin and destination nodes, we are able to find the optimal
quantity of relay nodes needed to support a certain throughput. We also show a
relation between the metrics of Electrostatics and Optics works.

Part II. - Optimal Planning of Cellular Networks

7. Capacity of Networks with MIMO capabilities

This chapter gives an introduction to random matrix theory and its application to
Network MIMO (multiple-input and multiple-output). We have shown that even when
the channel offers an infinite number of degrees of freedom, the capacity is mainly
limited by the ratio between the size of the antenna array at the base station and the
mobile terminals and the wavelength of the signal.

8. Mobile association and optimal placement of base stations

This chapter gives an introduction to optimal transport: Monges problem, duality
results from Kantorovich and some of the consequences. It presents the solution to
the quality of service (QoS) problem in the downlink and uplink case results where
different policies are analyzed.

• Summary and Conclusion

This chapter presents a summary of the main results of the thesis and the conclusions
that can be extracted from them. This chapter gives an insight new perspectives and
future works that can be devised from the results of this thesis.
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In this part of the thesis, we are interested in the routing optimization problem in mas-
sively dense ad hoc networks. We also consider the problem of the optimal deployment of
nodes in the network by taking into account the optimal routing.

The routing optimization problem can take into account different cost functions and each
cost function may produce a different solution. Moreover, the cost function could take into
account several network metrics. Because of this, we start by considering a general cost
function. However, when the particular structure of the network allow us to provide some
insightful solution to the problem, we consider some particular cost function. Within this
context, we restrict our attention to the routing problem in massively dense ad hoc networks.
These networks can be considered as fluid approximations of ad hoc networks which have
a large number of nodes. We combine several approaches, from the area of road traffic
engineering as well as from optimal control theory, to analyze and solve this problem in
different situations.

We start by providing several cost functions included in the scope of our work. We
give a brief description of related works and their contribution to the routing problem in
massively dense ad hoc networks. To introduce the subject, we present the problem in
the one-dimensional setting, where we are able to find the deployment of nodes needed to
maintain the optimal throughput at each portion of the network. Then, we focus on the
two-dimensional setting in the case of directional antennas and omni-directional antennas in
static ad hoc networks. We analyze the routing problem in directional antennas when only
horizontal and vertical transmissions are allowed and in omni-directional antennas when any
direction can be chosen at any location. The fluid approximation methodology allow us to
solve different optimization problems: the system-optimization problem in which the objec-
tive is to minimize the total cost of the network, and the user-optimization problem, where
each user seeks to minimize its own cost function. In the latter case, we analyze the equi-
librium situation, that we denote Wardrop equilibrium by analogy with the work developed
in [2]. A simple characterization of minimum cost paths for the user-optimization problem
can be found, by using a classical control based on Green’s theorem. As in many situations
the solution to the optimization problem is characterized by a partial differential equation,
we propose the numerical analysis of these equations by finite elements methods. We briefly
explain this method and provide bounds for this numerical approximation. Afterwards, we
extend our results to mobile ad hoc networks where we consider different mobility scenarios.
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Chapter 1

Basic Concepts on Massively Dense
Wireless Ad Hoc Networks

In this chapter we give a brief introduction to massively dense wireless ad hoc networks.
We describe the physics-inspired methodologies that have been used to analyze the optimal
planning and analysis of these networks taking into account the routing problem in the
user-optimization and system-optimization context. We present Road Traffic theory in this
context and the tools that have been used to analyze this type of networks. We give a general
framework for the cost function but we also present some particular cost functions related
to the congestion of the network, the capacity scaling of the network, and costs related to
energy consumption.

1.1 Introduction

We are interested in the modeling and analysis of massively dense wireless ad hoc networks.
First question to ask is: What are wireless ad hoc networks? Wireless ad hoc networks are
basically decentralized ad hoc networks. This type of wireless networks is called “ad hoc”
because it doesn’t depend on a preexisting infrastructure. In wired networks, routers control
and operate the network. Access points do the same in managed wireless networks. Instead,
in wireless ad hoc networks each node participates in the routing process by forwarding data
for other nodes, and so the determination of which nodes forward data is made dynami-
cally based on the network connectivity. Wireless ad hoc networks have many advantages
with respect to wired networks such as lower installation and maintenance costs, ease of
replacement and upgrading, reduced connector failure, greater physical mobility, etc. Min-
imal configuration and quick deployment make ad hoc networks suitable, for example, for
emergency situations like natural disasters or military conflicts. For a nice introduction to
the advantages of wireless ad hoc networks and its industrial applications see e.g. [41].

Research on wireless ad hoc networks involves many issues such as the design of proto-
cols at various network layers (MAC, transport, etc.), the investigation of physical limits of
transfer rates, the optimal design of end-to-end routing, efficient energy management, con-
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nectivity and coverage issues, performance analysis of delays, loss rates, etc. The study of
these issues has required the use of engineering methodologies as well as information theoret-
ical ones, control theoretical tools, queueing theory, and others. One of the most challenging
problems in the performance analysis and in the control of ad hoc networks has been the
routing problem. There are two approaches to this problem: the discrete and the continuous
modeling approach. The discrete modeling approach for this problem consist on considering
a graph, i.e., a set of vertices (or nodes) and a set of edges (or the set of possible transmis-
sions between nodes, when by possible transmission we mean that the receiving node is on
the transmission range of the transmitting node), and a real-valued weight function which
takes into account the transmission cost between the transmitting and receiving nodes for
every single transmission. One of the main problems analyzed within this context is the
shortest path problem.

The shortest path problem or minimum cost path is the problem of finding a path between
two vertices (or nodes) such that the sum of the weights (or transmission cost between nodes)
of its constituent edges is minimized. Then the objective is to find a path from the origin
to the destination node such that the total cost of the path (considered as the sum of
the transmission costs of every transmission between the nodes that belong to the path)
is minimal among all paths connecting the origin to the destination. The most important
algorithms to deal with this problem are:

• Dijkstra’s algorithm which solves the single-pair, single-source, and single-destination
shortest path problem, which by using Big-O notation has running time of O(number of vertices2).

• Bellman-Ford algorithm which solves the single source problem when the edge weights
may be negative, which has running time of O(number of vertices × number of edges).

• Floyd-Warshall algorithm (sometimes known as the WFI algorithm or Roy-Floyd algo-
rithm) which solves all pairs of shortest paths and has running time of O(number of vertices3).

For an explanation on these algorithms see e.g. [34].

The problem with these algorithms is that they need an exponential running time with
respect to the number of entries and that the quantity of data required by the discrete mod-
eling may not be available, e.g. for the initial phase of planning and modeling in broad-scale
regional studies there are mainly estimations but not precise data; or our focus in on the
general trend and pattern of the distribution and travel choice of packets, and on changes in
response to policy changes in the network. The other problem with just solving and imple-
menting the shortest path problem was given by Hyytiä and Virtamo in [27]. As previously
mentioned, they proposed an approach based on load balancing arguing that if shortest path
(or cost minimization) arguments were used, then some parts of the network would carry
more traffic than others and would use more energy than others and this would result in a
shorter lifetime of the network since some parts would be out of energy earlier than others
and earlier than any part in a load balanced network. On the other hand, the continuum
modeling approach used for obtaining the general trend has various advantages over the
discrete approach, since it reduces the problem size for dense transportation networks given
that the problem size in the continuum model depends only on the method that is adopted
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to approximate the modeling region but not on the actual network itself. The fundamental
assumption on the continuum modeling approach is that the difference in modeling char-
acteristics, such as the travel cost and the demand pattern between adjacent areas within
the network, is relatively small compared with the variation over the entire network. Hence,
the characteristics in a network, such as the flow intensity, demand, and travel cost, can be
represented by smooth mathematical functions.

We will work on the continuum modeling of massively dense wireless ad hoc networks.
The term “massively dense” is used to indicate not only that the number of nodes in the
network is large, but also that the network itself is highly connected. By the term “dense”
we further understand that for every point in the plane there is a node close to it with high
probability; by “close” we mean that its distance is much smaller than the transmission
range. Another possibility to describe this type of networks is to assume a strong separation
in spatial scales between the macroscopic level, corresponding to typical distances between
the source and destination nodes, and the microscopic level, corresponding to distances
between the neighboring nodes.

The main problem on dealing with massively dense ad hoc networks is that when applying
existing tools for optimal routing, the complexity makes the solution intractable as the
number of nodes becomes very large. Nevertheless, it has been observed that as an ad
hoc network becomes “more dense” (in a sense that will be defined precisely later), the
optimal routes seem to converge to some limit curves. This is illustrated in Fig. 1.1. We
call this regime, the limiting “macroscopic” regime. We shall show that the solution to the
macroscopic behavior (i.e., the limit of the optimal routes as the system becomes more and
more dense) is sometimes much easier to solve than the original “microscopic model”.

The empirical discovery of the macroscopic limits motivated a large number of researchers
to investigate continuum-type limits of the routing problem. A very basic problem in doing
so has been to identify the most appropriate scientific context for modeling and solving this
continuum limit routing problem. Our major contribution in this part of the thesis is to
identify the main paradigms (from optimal control as well as from road traffic engineering)
for the modeling and the solution of this problem.

1.1.1 Physics-inspired paradigms

The physics-inspired paradigms used for the study of massively dense ad hoc networks go
way beyond those related to statistical-mechanics in which macroscopic properties are de-
rived from microscopic structure. Starting from the pioneering work of Jacquet [20], and
Kalantari and Shayman [21, 22], a number of research groups have worked on massively dense
ad hoc networks using tools from geometrical Optics [20], as well as Electrostatics [21, 22].
Popa et al. studied in [42] optical paths and actually showed that the optimal solution to
a min-max problem of load balancing can be achieved by using an appropriately chosen
optical profile. The forwarding load corresponds to the scalar sum of traffic flows of differ-
ent classes. This means that the optimal solution (with respect to this objective) can be
achieved by single path routes, a result obtained in [42, 43]. Similar problems have been also
studied in [44], as well as in works doing load balancing by analogies to Electrostatics (see
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Figure 1.1: Minimum cost routes connecting a source node placed at the origin (0 m, 0 m) and
a destination node placed at the location (0 m, 200 m), through an area where relay nodes
are placed according to a spatial Poisson process of density λ(x1, x2) = a× [10−4x21 + 0.05]
nodes per m2, for four increasing values of a (a = 1/30, 1/10, 1/5, 1/2) in increasingly large
networks. This figure was gently given by Prof. Toumpis.

e.g. [21, 22, 23, 24, 25], and the survey [26] and references therein). The physical paradigms
allow the authors to minimize various metrics related to the routing problem. Hyytia and
Virtamo proposed in [27] an approach based on load balancing arguing that if shortest path
(or cost minimization) arguments were used, then some parts of the network would carry
more traffic than others and may use more energy than others. This would result in a shorter
lifetime of the network since some parts would be out of energy earlier than others.

1.1.2 Note on road traffic theory

The development of the original theory of routing in massively dense networks among the
community of ad hoc networks has emerged in a completely independent way of the existing
theory of routing in massively dense networks, which has been developed within the commu-
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nity of road traffic engineers. Indeed, this approach has already been introduced in 1952 by
Wardrop [2] and Beckmann [28] and is still an active research area among that community
(see e.g. [29, 30, 32, 33], the survey [31], and references therein).

1.2 Cost functions for the routing problem

In optimizing a routing protocol in ad hoc networks, or in optimizing the placement of nodes,
one of the starting points is the determination of the cost function that captures the cost of
transporting a packet through the network. To determine it, we need a specification of the
network which includes the following:

• A network topology for the network.

• A forwarding rule that nodes will use to select the next hop of a packet.

• The cost incurred for transmitting a packet to an intermediate node.

Below we present several ways of choosing cost functions.

We define the flow of information T(x) (see Fig. 2.4) to be a vector whose components
are the horizontal and vertical flows at location x. Throughout we assume that each point
carries a single flow (although the methodology can be extended to the multi-class flow case).
The restriction to a single flow is justified when there is either a single destination, or when
there is a set of destination points and the routing protocol has the freedom to decide to
which of the set the packets will be routed. Under this type of conditions, one may assume
a single flow at each point without loss of optimality (see e.g. [43]).

In this section we present several cost functions. We analyze the problem in its more
general form by considering a general cost function, and then we will further investigate
some particular cost functions that are of our interest.

1.2.1 Costs related to congestion

Congestion independent routing

A metric often used in the Internet for determining routing costs is the number of hops
from origins to destinations, which routing protocols try to minimize. The number of hops
is proportional to the expected delay along the path in the context of ad hoc networks, in
case the queueing delay is negligible with respect to the transmission delay over each hop.
This criterion is insensitive to interference or congestion. We assume that it depends only
on the transmission range. We describe various cost criteria that can be formulated with
this approach.

• If the range is constant then the cost density c(x) is constant so that the cost of a path
is its length in meters. The routing then follows a shortest path selection.
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• Let us assume that the range R(λ;x) is small, and it depends on local radio condi-
tions at position x (for example, if it is influenced by weather conditions) but not on
interference. The latter is justified when dedicated orthogonal channels (e.g. in time
or frequency) can be allocated to traffic flows that would otherwise interfere with each
other. Then determining the optimal routing becomes a path cost minimization prob-
lem. We further assume, as in [45], that the range is scaled to go to 0 as the total
density λ of nodes grows to infinity. More precisely, let us consider a scaling of the
range such that the following limit exists:

r(x) := lim
λ→∞

R(λ;x)

λ

Then in the dense limit, the fraction of nodes that participate in forwarding packets
along a path is 1/r(x) at position x, and the path cost is the integral of this density
along the path.

• The influence of varying radio conditions on the range can be eliminated using power
control that can equalize the hop distance.

Congestion dependent routing

Another more general transmission cost function may depend on a measure of the congestion
of the network. For instance a transmission cost c may depend on the traffic flow T that is
passing through a particular location x. In this case we will assume that it will depend on
the magnitude of the traffic flow ‖T(x)‖ at that location but not in its direction. And even
more, it may depend on the location at which the transmission takes place. In which case,
c = c(x, ‖T(x)‖).

1.2.2 Costs derived from capacity scaling

One particular class of cost functions is given by the quantity or density of nodes needed
to maintain the traffic requirements of the network. In that framework, it makes sense
to investigate how much traffic can be carried by a certain quantity or density of nodes.
That quantity receives the name of transport capacity. Many models have been proposed
in the literature that show how the transport capacity scales with the number of nodes n
or with the density of nodes λ within a certain region. Then the typical cost (see e.g. [24])
considered at a neighborhood of a location1 x is the density of nodes required there to
carry a given flow of information T(x). We work within a general framework and then
investigate some particular cases with different protocols. Assume that we use a protocol
that provides a transport capacity of the order of f(λ) at some region in which λ denotes
the density of nodes within that region (we will provide examples for function f ahead).
This means that in order to support a flow of information of norm ‖T(x)‖ passing through
a neighborhood of the location x, we need to place deterministically the nodes according to

1We denote the vectors by bold fonts.
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the formula f−1(‖T(x)‖). Then if we assume that a flow of information T(x) is assigned to
location x, the cost will be taken as

c(x,T(x)) = f−1(‖T(x)‖) (1.1)

where ‖·‖ represents the norm of a vector. As our protocol provides a transport capacity of
the order of f(λ) and our cost is the density. Then f ◦f−1(T(x)) = T(x) if the function f is
invertible. Most of the works in this area has considered the ℓ2-norm, i.e., for x = (x1, x2),

we define ‖x‖ =
√

x21 + x22.

Examples for function f :

• Using a network theoretic approach based on multi-hop communication, Gupta and
Kumar proved in [45] that the throughput of the system that can be transported by

the network when the nodes are optimally located is2 Ω(
√
λ), and when the nodes are

randomly located this throughput becomes Ω(
√
λ/

√
log λ). Using percolation theory,

the authors of [46] have shown that in the randomly located set the same Ω(
√
λ) can

be achieved.

• Baccelli, Blaszczyszyn and Mühlethaler introduce in [47] an access scheme, denoted
MSR protocol (Multi-hop Spatial Reuse Aloha), reaching the Gupta and Kumar bound
which does not require prior knowledge of the node density.

For the model of Gupta and Kumar with either the optimal location or the random location
approaches, as well as for the MSR protocol (Multi-hop Spatial Reuse Aloha) with a Poisson
distribution of nodes, we obtain a quadratic cost of the form

c(T(x)) = k‖T(x)‖2 = k(T1(x)
2 + T2(x)

2). (1.2)

This follows from the fact that in the previous examples f(x) behaves like
√
x, so the inverse

of the function f must be quadratic. Then from (1.1) we conclude that the cost function
derived from capacity scaling in the previously analyzed cases must be quadratic on ‖T(x)‖.

Toumpis and Tassiulas in [48] focus on a particular physical layer model characterized
by the following assumption:

Assumption 1: A location x, where the node density is η(x), can support any traffic flow
vector with a magnitude less or equal to a bound ‖T(x)‖max which is proportional to the

square root of the density, i.e. ‖T(x)‖ ≤ ‖T(x)‖max = K
√

d(x).

The validity of Assumption 1 depends on the physical layer and the medium access control
protocol used by the network. Although it is not generally true, it holds in many different
settings of interest. For example, in [48] Toumpis and Tassiulas give an example of network
where m2 nodes are placed in a perfect square grid of m×m nodes and each node can listen
to transmissions from its four nearest neighbors. They give a simple time division scheme so
that the network of m2 nodes can support a traffic on the order of m. In [49] it was shown

2 We denote f ∈ Ω(g) if f is bounded below by g (up to a constant factor) asymptotically and we denote
f ∈ Θ(g) if f is bounded both above and below by g (up to a constant factor) asymptotically.
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that the traffic that can be supported in the above network, if nodes access the channel by
use of slotted Aloha instead of time division, is Tlocal = K ×W ×m, where nodes transmit
data with a fixed global rate of W bps, K is a constant-smaller than 1/3 (that captures the
efficiency of Aloha). Finally, in [45] it was shown that a network of n randomly placed nodes

can support an aggregate traffic on the order of
√

n/ log n under a more realistic interference
model that accounts for interference coming from arbitrarily distant nodes. The logarithm
in the denominator appears due to the methodology of [45], and it has been shown [46] that
it can be removed by use of percolation theory.

1.2.3 Costs related to energy consumption

In the absence of capacity constraints, the cost can represent energy consumption. In a
general multi-hop ad hoc network, the hop distance can be optimized so as to minimize the
energy consumption. Even within a single cell of 802.11 IEEE wireless LAN one can improve
the energy consumption by using multiple hops, as it has been shown not to be efficient in
terms of energy consumption to use a single hop [50].

Alternatively, the cost can take into account the scaling of the nodes (as we have done
in Section 1.2.2) that is obtained when there are energy constraints. As an example, assuming
random deployment of nodes, where each node has data to send to another randomly selected
node, the capacity (in bits per Joule) has the form f(λ) = Ω

(

(λ/ log λ)(q−1)/2
)

where q is

the path-loss, see [51]. The cost is then obtained using (1.1).



Chapter 2

Electrostatics Approach

In the work of Toumpis et al. ([25, 48, 24, 23, 26, 52]), the authors addressed the problem
of the optimal deployment of massively dense wireless ad hoc networks by analogy with
Electrostatics. We shall recall below the representation of the flow conservation constraint,
which is well known in Electrostatics. This derivation appears both in physics-inspired works,
as well as in the road traffic literature [29].

We first consider the one dimensional case in order to explain the main concepts involved
in our model and how these concepts can be extended to the two dimensional case in order
to obtain the optimal deployment of the relay nodes in a wireless ad hoc network.

2.1 Fluid approximations: one-dimensional case

As a first approach we consider the line segment [0, L] as the geographical reference of the
network. We consider the continuous node density function η(x), measured in nodes/m, such
that the total number of nodes on a segment [ℓ0, ℓ1], denoted by N(ℓ0, ℓ1), is

N(ℓ0, ℓ1) =

ℓ1
∫

ℓ0

η(x) dx.

We consider as well the continuous information density function ρ(x), measured in bps/m,
generated by the nodes such that

• At location x where ρ(x) > 0 there is a fraction of data created by the sensor sources,
such that the rate with which information is created in an infinitesimal area of size dε,
centered at position x, is equal to ρ(x) dε.

• Similarly, at location x where ρ(x) < 0 there is a fraction of data received at the sensor
destinations such that the rate with which information is received by an infinitesimal
area of size dε, centered at position x, is equal to −ρ(x) dε.
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We assume that the total rate at which sensor destinations have to receive data is the
same as the total rate which the data is created at the sensor sources, i.e.,

L
∫

0

ρ(x) dx = 0. (2.1)

Notice that if we have an estimation of the packet loss through the network, we can put
different weights to the evaluations of the function ρ in order to adequate the function to
satisfy equation (2.1).

Consider the continuously differentiable traffic flow function T (x), measured in bps/m,
such that its direction (positive or negative) coincides with the direction of the flow of
information at point x and ‖T (x)‖ is the rate at which information propagates at position
x, i.e., ‖T (x)‖ gives the total amount of traffic that is passing through the position x.

Next we present the flow conservation condition. In order to conserve the information
transmitted over a line segment [ℓ0, ℓ1], it is necessary that the rate with which information is
created over the segment is equal to the rate with which information is leaving the segment,
i.e.,

T (ℓ1)− T (ℓ0) =

∫ ℓ1

ℓ0

ρ(x) dx.

The integral on the right hand side is equal to the quantity of information generated (if it’s
positive) or demanded (if it’s negative) by the fraction of nodes over the line segment [ℓ0, ℓ1].
The expression T (ℓ1)−T (ℓ0), measured in bps/m, is equal at the rate with which information
is leaving (if it’s positive) or entering (if it’s negative) the segment [ℓ0, ℓ1]. This holding for
any line segment, it follows that necessarily,

dT (x)

dx
= ρ(x) for all x ∈ (0, L). (2.2)

The problem considered is to find the number of nodes N(0, L) in the line segment [0, L],
needed to support the information created by the sources and received at the destinations
subject to the flow conservation condition given by equation (2.2) and imposing that there
is no flow of information leaving the network, i.e., T (0) = 0 and T (L) = 0. Thus the system
of equations that model our problem in the one-dimensional case is given by:

MinN(0, L) =

∫ L

0

η(x) dx, (2.3)

subject to the following constraints

dT (x)

dx
= ρ(x) for all x ∈ (0, L), (2.4)

T (0) = 0 and T (L) = 0. (2.5)

Notice that in the one-dimensional case, there is no minimization problem since by using
the constraints (2.4) and (2.5), we obtain just one solution. As we will see, this will not
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Figure 2.1: The information density function over the line segment [0 m, 10 m] in Exam-
ple 2.1.1, given in the first half of the line segment [0 m, 5 m] by a uniform information den-
sity function generated by the sources of ρ(x) = 1 bps/m and in the second half [5 m, 10 m]
by a uniform information density function received at the sensor destinations given by
ρ(x) = −1 bps/m.

be the case for the two-dimensional case. Within the one-dimensional case context, we
further assume that the proportion of sensor nodes η(x) in a line segment of infinitesimal
size dε, centered at location x, needed as relay nodes, is proportional to the traffic flow of
information that is passing through that region, i.e., η(x) dε = ‖T (x)‖α dε where α > 0 is a
fixed number called the relay-traffic constant. Then the optimal placement of the relay nodes
in the network will be given by η∗(x) = ‖T ∗(x)‖α, where the traffic flow function T ∗(x) is
the optimal traffic flow function, given by the solution of the previous system of equations.
Furthermore, the optimal total number of relay nodesN∗(0, L) needed to support the optimal
traffic flow function T ∗(x) in the network will be

N∗(ℓ0, ℓ1) =

∫ ℓ1

ℓ0

η(x) dx =

∫ ℓ1

ℓ0

‖T (x)‖α dx.

Let us see an example to illustrate the previous framework.

Example 2.1.1 Suppose that we can divide the line segment [0, L] in two parts:

• In the first half [0, L/2] there will be a uniform information density function generated
by the sensor sources, given by ρ(x) = 1 bps/m.

• In the second half [L/2, L] there will be a uniform information density function received
at the sensor destinations given by ρ(x) = −1 bps/m (see Figure 2.1).

From the equations (2.4) and (2.5) we obtain that the optimal traffic flow function will be
given by

T ∗(x) =

{

x bps/m for all x ∈ [0, L/2]
L− x bps/m for all x ∈ [L/2, L]
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Figure 2.2: Optimal magnitude of the traffic flow T ∗ with positive direction in Example 2.1.1
where in the first half of the line segment [0 m, 5 m] there is a uniform information density
function generated by the sensor sources of ρ(x) = 1 bps/m and in the second half [5 m, 10 m]
there is a uniform information density function received at the sensor destinations given by
ρ(x) = −1 bps/m.

with positive direction (see Figure 2.2). If we further assume that the relay-traffic con-
stant α = 2, then the optimal placement of the relay nodes needed to relay the information
from the sources to the destinations on the network will be given by (see Figure 2.3)

η∗(x) =

{

x2 nodes for all x ∈ [0, L/2]
(L− x)2 nodes for all x ∈ [L/2, L]

The optimal total number of relay nodes N∗(0, L) needed to support the optimal traffic
flow T ∗(x) will be given by

N∗(L) =

∫ L/2

0

x2 dx+

∫ L

L/2

(L− x)2 dx = L3/12.

From this example we obtained a closed-form expression for the total number of nodes needed
to maintain the optimal traffic flow as a function of the length of the line segment for the
one-dimensional case. Within this context the problem didn’t required any minimization.
This will not be the case for the two-dimensional case.

2.2 Fluid approximations: two-dimensional case

Consider a grid area network D in the two dimensional plane1 X1 × X2. Consider the
continuous information density function ρ(x), measured in bps/m2, such that at locations

1We will denote with bold fonts the vectors and x = (x1, x2) will denote a location in the two dimensional
plane X1 ×X2.
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Figure 2.3: Optimal placement of the relay nodes η∗ in Example 2.1.1 where in the first half
of the line segment [0 m, 5 m] there is a uniform information density function generated by
the sensor sources of ρ(x) = 1 bps/m and in the second half [5 m, 10 m] there is a uniform
information density function received at the sensor destinations given by ρ(x) = −1 bps/m.

x where ρ(x) > 0, there is a distributed data created by sources, such that the rate with
which information is created in an infinitesimal area of size dAε, centered at location x, is
ρ(x) dAε. Similarly, at locations x where ρ(x) < 0, there is a distributed data received at
destinations, such that the rate with which information can be treated by an infinitesimal
area of size dAε, centered at location x, is equal to −ρ(x) dAε.

The total rate at which sensor destinations must process data is the same as the total
rate which the data is created at the sensor sources, i.e.,

∫

X×Y

ρ(x) dx = 0.

Consider the continuous node density function η(x), measured in nodes/m2, defined so that
the number of relay nodes in an area of infinitesimal size dAε, centered at x, is equal to
η(x) dAε.

The total number of nodes on a region A, denoted by N(A), is then given by

N(A) =

∫

A

η(x) dx.

Consider the continuous traffic flow functionT(x), measured in bps/m, such that its direction
coincides with the direction of the flow of information at point x, and2 ‖T(x)‖ is the rate
with which information rate crosses a linear segment perpendicular to T(x) centered on
x, i.e., ‖T(x)‖ ε gives the total amount of traffic crossing a linear segment of infinitesimal
length ε, centered at location x, and placed vertically to T(x).

2 The norm ‖·‖ is the Euclidean norm, i.e., for a vector x = (x1, x2), its norm will be ‖x‖ =
√

x2
1 + x2

2.
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Figure 2.4: Flow of informa-

tion T(x) through incremental line
segment dℓ, decomposed in its hor-
izontal component T1(x) (in the di-
rection X1) and its vertical compo-

nent T2(x) (in the direction X2).

T(x)

T1(x)

T2(x)

X1

X2

dℓ

Next we present the flow conservation condition (see e.g. [24, 29], for more details about
this type of condition). For information to be conserved over a domain D of arbitrary shape
on the X × Y plane, with smooth boundary S, it is necessary that the rate with which
information is created in the area is equal to the rate with which information is leaving the
area, i.e.,

∫

D

ρ(x) dD =

∮

S

[T · n (x)] dℓ (2.6)

The integral on the left-hand side is the surface integral of ρ(x) over the domain D. The
integral on the right-hand side is the path integral of the inner product T · n over the
boundary S. The vector n(x) is the unit normal vector to S at the boundary point x ∈ S
and pointing outwards. Then the function T · n (x), measured in bps/m2, is equal at the
rate with which information is leaving the domain D at the boundary point x.

This holding for any (smooth) domain D, it follows that necessarily

∇ ·T(x) :=
∂T1(x)

∂x1
+
∂T2(x)

∂x2
= ρ(x), (2.7)

where “∇·” is the divergence operator. Notice that equations (2.6) and (2.7) are the integral
and differential versions of Gauss’s law, respectively.

Thus the problem considered is to minimize the quantity of nodes N(D) in the grid area
network D needed to support the information created by the distribution of sources subject
to the flow conservation condition, i.e., our problem is given by the system of equations:

Min N(D) (2.8)

subject to ∇ ·T = ρ(x). (2.9)

Tassiulas and Toumpis prove in [48] that among all traffic flow functions that satisfy
∇ · T = ρ, the one that minimizes the number of nodes needed to support the throughput
demands of the network, must be irrotational, i.e.,

∇×T = 0. (2.10)

where “∇×” is the curl operator.
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Extension to multi-class traffic

The work on massively dense ad hoc networks considers a single class of traffic. In the
Geometrical Optics approach it corresponds to the demand at location A from location B.
In Electrostatics it corresponds to a set of origins and a set of destinations where traffic from
any origin point could go to any destination point. The analogy to positive and negative
charges in Electrostatics may limit the perspectives of multi-class problems where traffic
from distinct origin sets has to be routed to distinct destination sets.

The model based on Geometrical Optics can directly be extended to include multiple
classes as there are no elements in the model that suggest coupling between classes. This is
due in particular to the fact that the cost density has been assumed to depend only on the
density of the nodes and not on the density of the flows.

In contrast, the cost in the model based on Electrostatics is assumed to depend both on
the location as well as on the local flow density. It thus models more complex interactions
that would occur if we considered the case of m traffic classes. Extending the relation (2.7)
to the multi-class case, we have traffic conservation at each point in space for each traffic
class as expressed in the following:

∀k ∈ {1, . . . , m} ∇ ·Tk(x) = ρk(x), ∀x ∈ D. (2.11)

The function Tk is the flow distribution of class k and ρk corresponds to the distribution of
the external origin and/or destinations.

Let T(x) be the total flow vector at point x ∈ D. It is a vector of dimension m, and each
one of the m-entries is a two dimensional flow. A generic multi-class optimization problem
would then be: minimize Z over the flow distributions {Tk}

Z =

∫

D
c(x,T(x)) dx subject to ∇ ·Tk(x) = ρk(x), k ∈ {1, ..., m}, ∀x ∈ D. (2.12)
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Chapter 3

Directional Antennas: User- and
System-Optimization

So far we have adopted a general framework under which the information is conserved.
Through this chapter we make more specific assumptions on the cost function. The particular
cost function introduced here can be called an ℓ1-norm cost model, in which the transmission
cost from a location to another is the sum of the horizontal and vertical transmission cost
components. This assumption is justified in the case when the information can be transmit-
ted only horizontally or vertically (so that even a continuous diagonal curve is understood as
the limit of many horizontal and vertical transmissions into smaller hop distances). In road
traffic engineering, this corresponds to a Manhattan-like network, see e.g. [29]. In the context
of ad hoc networks this would correspond to directional antennas (with either horizontal or
vertical direction). In this type of networks we are able to provide a simple characterization
for the minimum cost paths with a particular cost structure.

3.1 Basics on directional antennas

Consider a wireless ad hoc network where a large number of nodes are placed deterministically
in the grid area network D. For energy efficiency reasons, we assume that each node is
equipped with one or two directional antennas, allowing transmissions at each hop to be
directed either from North-to-South or from West-to-East following the notation convention
used in the work of Dafermos [29]. We extend the work of Dafermos [29] in road traffic
engineering to the multi-class problem into the directional antennas framework. We consider
m classes of transmissions in each of these directions: T k1 ≥ 0, k ∈ {1, ..., m} (West-to-East,
taken as the positive direction of the axis x1), T

k
2 ≥ 0, k ∈ {1, ..., m} (North-to-South, taken

as the positive direction of the axis x2). In a massively dense ad hoc network, or continuous
approximation of the network, a curved path can be viewed as a limit of a path with many
such hops as the hop distance tends to zero.

Some assumptions on the cost function:

29
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• User cost

– We allow the cost for a horizontal transmission (West-to-East, or equivalently, in
the direction of the axis x1) to be different than the cost for a vertical transmission
(North-to-South, or equivalently, in the direction of the axis x2).
It is assumed that a packet traveling in the direction of the axis x1 incurs in a
transmission cost of g1, and equivalently, traveling in the direction of the axis x2
incurs in a transmission cost of g2.

– Congestion dependent cost: Notice that the transmission costs g1 and g2 depend
on the location x and the traffic flow T(x) that is flowing through that location,
i.e.,

g1 = g1(x,T(x)) and g2 = g2(x,T(x)).

– We consider a vector transmission cost g := (g1, g2). Notice that as each of its
components, such vector transmission cost also depends upon the location x and
the traffic flow T(x) flowing through that location, i.e., g = g(x,T(x)).

– The local transmission cost g is given by the inner product between the vector
transmission cost and the flow of information, i.e.,

g(x,T(x)) = g(x,T(x)) ·T(x) = g1T1 + g2T2,

and it corresponds to the sum of the transmission costs multiplied by the quantity
of flow in each direction.

– The local transmission cost g(x,T(x)) is assumed to be non-negative, monotone
increasing in each component of T (T1 and T2 in our 2-dimensional case).

• System cost

– The system transmission cost is the integral of the local transmission cost over
the network, i.e.,

∫

D
g(x,T(x)) dx.

The boundary conditions are determined by the options that users have in selecting
their origin and/or destinations. Notice that, with abuse of terminology, we use the generic
term “users” to denote packets or data in the network. Another abuse of notation, is that
the decision about which destination to transmit each packet is not done by the packets or
data itself but by the network configuration in which each node decides to which destination
to transmit in order to minimize the cost function. Examples of boundary conditions are:

• Assignment problem: users of the network have predetermined origin and destinations
and are free to choose their travel paths.

• Combined distribution and assignment problem: users of the network have predeter-
mined origins and are free to choose their destinations (within a certain destination
region) as well as their travel paths.
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• Combined generation, distributions and assignment problem: users are free to choose
their origins, their destinations, as well as their travel paths.

One important application of wireless ad hoc networks is “area monitoring of sensor nodes”
where there are one or several data aggregation centers of the phenomenon being monitored.
The problem when there is only one data aggregation center can be seen as an assignment
problem where the origins are the sensor nodes location where the phenomenon is being
monitored and the destination is the unique data aggregation center. When there are several
data aggregation centers it can be seen as a combined distribution and assignment problem
where the packet or data can be transmitted to any of the data aggregation centers. In this
chapter we are interested in these types of boundary conditions.

The problem formulation is again to minimize Z as defined in (2.12). The natural choice
of functional spaces to make the problem precise, and to take advantage of the available
theory developed in the PDE (Partial Differential Equations) community, is to work in the
Sobolev space H1(D). In order to define this space, we need to introduce two other concepts:

• We define L2(D) as the space of functions that are square-integrable in D, i.e.,

L2(D) =

{

f measurable, such that

∫

D
‖f(x)‖2 dx < +∞

}

.

• Take f to be a scalar function, define its weak gradient as a vector function g such
that, for any smooth vector function ϕ with compact support in D,

∫

D

f ∇ · ϕ = −
∫

D

< g, ϕ > .

We define H1(D) as the space of functions that are square integrable, and with weak gradient
square-integrable. Then our objective is to find the optimal traffic flow functions T k1 , k ∈
{1, . . . , m} and T k2 , k ∈ {1, . . . , m} in H1(D), for an information density function ρ in L2(D).

3.2 Karush-Kuhn-Tucker conditions

The Karush-Kuhn-Tucker conditions (KKT conditions), which we introduce below, are nec-
essary conditions for a solution to be optimal in nonlinear programming. It is a generalization
of the method of Lagrange multipliers to inequality constraints. We recall that the method
of Lagrange multipliers provides a strategy for finding the minimum of a function subject
to constraints and it is based on introducing new variables called Lagrange multipliers and
study a new function called Lagrange function. In the method of Lagrange multipliers, if
a point is optimal for the minimization problem then there exist Lagrange multipliers such
that the point is stationary for the Lagrange function. Notice however that not all stationary
points for the Lagrange function yield a solution to the original problem. Thus, this method
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yields necessary conditions for optimality. However, it helps us to restrict our candidates
to be optimal. And under some extra conditions there are some sufficient conditions on the
results.

In the problem considered here, the traffic flows in each direction T k1 and T k2 are function-
als (maps from the vector space to the scalar space). Then we have to consider variational
inequalities, i.e., inequalities involving a functional which have to be solved for all the values
of the vector space.

A key application of these KKT conditions will be introduced in Section 3.5 where we
study the user-optimization (non-cooperative) problem for each packet sent through the
network and show that the solution must satisfy some variational inequalities. We then show
that these inequalities can be interpreted as the Karush-Kuhn-Tucker conditions that we
introduce in this chapter, applied to some transformed cost (called “potential” and introduced
by Beckmann [7]). This will allow us to propose a method for solving the user-optimization
(non-cooperative) problem.

We begin by recalling Green’s Theorem which has proved to be useful for many phys-
ical phenomena. We will make extensive use of this theorem in this section as well as in
Section 3.5.

Theorem 3.2.1 (Green’s Theorem) Let D be a region of the space, and let S be its
piecewise-smooth boundary, for all x ∈ S, n a unit outward normal to D. Consider the
scalar function u and a continuously differentiable vector function v, then

∫

D
u∇ · vdx =

∫

S

u < v,n > dℓ−
∫

D
< v,∇u > dx.

Using this theorem and the Karush-Kuhn-Tucker conditions we are able to prove a result
that provides a characterization of the optimal solution for some special cases as we will see
in Section 3.4.

Theorem 3.2.2 Define the Lagrange function as

Lζ(T) :=

∫

D
ℓζ(x,T) dx with ℓζ(x,T) := g(x,T)−

m
∑

j=1

ζj(x)
[

∇·Tj(x)− ρj(x)
]

where ζj(x) ∈ L2(D) are called Lagrange multipliers.

For a vector field T(·) with positive components satisfying (2.11), a necessary and suffi-
cient condition for minimizing the cost (2.12) is that the Lagrangian be minimized over all
vector fields with positive components, or equivalently, that equations

∂g(x,T)

∂T ji
+
∂ζj(x)

∂xi
= 0 if T ji (x) > 0, (3.1a)

∂g(x,T)

∂T ji
+
∂ζj(x)

∂xi
≥ 0 if T ji (x) = 0. (3.1b)

be satisfied.
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Proof.- The criterion is convex, and the constraint (2.11) is affine. Therefore the Karush-
Kuhn-Tucker theorem holds, stating that the Lagrangian is minimum at the optimum. A
variation δT(·) will be admissible if T(x) + δT(x) ≥ 0 for all x, hence in particular, for all

x such that T ji (x) = 0 and δT ji (x) ≥ 0.

As we are working with functionals, we need a generalization of the concept of directional
derivative used in differential calculus. The Gâteaux differential DF (u, d) of functional F
at u in the direction d is defined as

DF (u, d) = lim
t→0

F (u+ td)− F (u)

t
=

d

dt
F (u+ td)

∣

∣

∣

t=0
.

if the limit exists. If the limit exists for all d, one says that F is Gâteaux differentiable at u.

Let DLζ denote the Gâteaux derivative of functional Lζ with respect to T(·). First order
condition for local minimum reads:

For all δT admissible,DLζ · δT ≥ 0 ,

therefore here
∫

D

∑

j

〈∇Tjg(x,T(x)), δTj(x)〉 dx−
∫

D

∑

j

ζj(x)∇·δTj(x) dx ≥ 0.

Integrating by parts using Green’s Theorem, this is equivalent to
∫

D

∑

j

[

〈∇Tjg, δTj〉+ 〈∇xζ
j, δTj〉

]

dx−
∫

∂D

∑

j

ζj〈δTj,n〉 dℓ ≥ 0 .

We may choose all the components δTk = 0 except δTj, and choose δTj in (H1
0 (D))2, i.e.,

functions in H1(D) such that their boundary integral be zero. This is always feasible and
admissible. Then the last term above vanishes, and it is a classical fact that the inequality
implies (3.1a)-(3.1b) for i = 1, 2. Placing this back in Euler’s inequality, and using a δTj

non zero on the boundary, it follows that necessarily1 ζj(x) = 0 at any x of the boundary S
where T (x) > 0. As we shall see, this conditions provides the boundary condition to recover
the Lagrange multipliers ζj from equation (2.11). Equations (3.1a)-(3.1b) are already stated
in [29] for the single class case. However, as Dafermos states explicitly, its rigorous derivation
is not available there. �

Consider the following special cases that we shall need later. We assume a single traffic
class, but this could easily be extended to several traffic classes. Let

g(x,T(x)) =
∑

i=1,2

gi(x,T(x))Ti(x).

• Monomial cost per packet:

gi(x,T(x)) = ki(x)
(

Ti(x)
)β

(3.2)

1This is a complementary slackness condition on the boundary.



34

for some β > 1. Then (3.1a)-(3.1b) simplify to

(β + 1)ki(x) (Ti(x))
β +

∂ζ(x)

∂xi
= 0 if Ti(x) > 0, (3.3a)

(β + 1)ki(x) (Ti(x))
β +

∂ζ(x)

∂xi
≥ 0 if Ti(x) = 0. (3.3b)

In that case, recovery of ζ to complete the process is difficult, at best. Things are much
simpler in the next case.

• Affine cost per packet:

gi(x,T(x)) =
1

2
ki(x)Ti(x) + hi(x). (3.4)

Then, equations (3.1a)-(3.1b) simplify to

ki(x)Ti(x) + hi(x) +
∂ζ(x)

∂xi
= 0 if Ti(x) > 0,

ki(x)Ti(x) + hi(x) +
∂ζ(x)

∂xi
≥ 0 if Ti(x) = 0.

Assume that the ki(·)’s are positive everywhere and bounded away from 0. For sim-
plicity, let ai = 1/ki, and b be the vector with coordinates bi = hi/ki, all assumed to
be square integrable. Assume that there exists a solution where T (x) > 0 for all x.
Then

Ti(x) = −
(

ai(x)
∂ζ(x)

∂xi
+ bi(x)

)

.

As a consequence, from (2.11) and the above remark, we get that ζ(·) is to be found
as the solution in H1

0(D) of the elliptic equation (an equality in H−1(D))

∑

i

∂

∂xi

(

ai(x)
∂ζ(x)

∂xi

)

+∇·b(x) + ρ(x) = 0 .

This is a well behaved Dirichlet problem, known to have a unique solution2 in H1
0 (D),

furthermore easy to compute numerically.

3.3 User-optimization and congestion independent costs

In this section, we extend the shortest path approach for optimization that has already
appeared using Geometrical Optics tools [20]. We present a general optimization framework
for handling shortest path or minimum cost paths problems. We assume that the local
transmission cost depends on the direction of the flow but not on its size, i.e., it is a congestion

2There are many cases where the equilibrium may not be unique (see e.g. [53]).
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independent cost as explained in subsection 1.2.1. The cost is c1(x) for a flow that is locally
horizontal and is c2(x) for a flow that is locally vertical. As previously stated, we assume in
this section that c1 and c2 do not depend on T. The cost incurred by a packet transmitted
along a path p is given by the line integral

cp =

∫

p

c · dx. (3.6)

Let V j(x) be the minimum cost to go from a point x to a set Bj , j = 1, ..., m. Then

V j(x) = min
(

c1(x) dx1 + V j(x1 + dx1, x2), c2(x) dx2 + V j(x1, x2 + dx2)
)

. (3.7)

This can be written as the Hamilton-Jacobi-Bellman (HJB) equation:

0 = min

(

c1(x) +
∂V j(x)

∂x1
, c2(x) +

∂V j(x)

∂x2

)

, ∀x ∈ Bj , V j(x) = 0 . (3.8)

If V j is differentiable then, under suitable conditions, it is the unique solution of (3.8). In
the case that V j is not everywhere differentiable then, under suitable conditions, it is the
unique viscosity solution of (3.8) (see [35, 36]).

There are many numerical approaches for solving the Hamilton-Jacobi-Bellman (HJB)
equation. One can discretize the HJB equation and obtain a discrete dynamic programming
for which efficient solution methods exist. If one repeats this for various discretization steps,
then we know that the solution of the discrete problem converges to the viscosity solution
of the original problem (under suitable conditions) as the step size converges to zero [35].
In next section we will see nice characterization of the paths by considering some particular
transmission cost structure.

3.4 Characterization of minimum cost paths

We consider now our directional antenna model in a given rectangular area R, defined by the
simple closed curve Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4 (see Fig. 3.1). We study the case where transmissions
can go from North-to-South or from West-to-East. We obtain below optimal paths defined
as paths that achieve the minimum packet transmission cost defined by (3.6). We shall study
two problems:

• Point to point optimal path: we seek the minimum cost path between two points. This
corresponds to the combined distribution and assignment problem when the destination
region is a point or it can be considered as the assignment problem as explained in
Section 3.1.

• Point to boundary optimal path: we seek the minimum cost path on a given region
that starts at a given point and is allowed to end at any point on the boundaries. This
corresponds to the case of combined distribution and assignment problem.
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Another formulation of Green’s Theorem, stated previously as Theorem 3.2.1, gives us a
characterization of the optimal paths for those two problems.

Theorem 3.4.1 (Green’s Theorem: alternative version) Let D be a region of the space,
and let S be its piecewise-smooth boundary. Suppose that P and Q are continuously differ-
entiable functions in D. Then

∮

S

Pdx+Qdy =

∫

D

(

∂Q

∂x
− ∂P

∂y

)

dxdy.

Recall that the cost is composed of a horizontal and a vertical component (these are c1(x)
and c2(x) respectively), which do not depend on the traffic flow.

Consider the function

U(x) =
∂c2
∂x1

(x)− ∂c1
∂x2

(x).

It will turn out that the structure of the minimum cost path depends on the costs through
the sign of the function U . Now, if the function c is continuously differentiable then U is
a continuous function. This motivates us to study cases in which U has the same sign
everywhere (see Fig. 3.1), or in which there are two regions in the rectangle R, one with
U > 0 and one with U < 0, separated by a curve ℓ on which U = 0 (see e.g. Fig. 3.2). We shall

(0, 0) (a, 0)

(a, b)(0, b)

Γ1

Γ2

Γ3

Γ4 U > 0

Figure 3.1: The rectangle R defined by
the boundaries Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4. The
case where U > 0.

ℓ

(0, 0) (a, 0)

(a, b)(0, b)

Γ1

Γ2

Γ3

Γ4

U < 0

U > 0

Figure 3.2: The case of two regions sep-
arated by a curve. Case 1.

assume throughout that the function c is continuously differentiable, and that, if non-empty,
the set of points inside the domain where the function U is zero, i.e., ℓ = {x : U(x) = 0},
is a smooth line. (This is true, e.g., if c is a smooth function and ∇U 6= 0 on ℓ.)

The function U has the same sign over the whole region

Theorem 3.4.2 (Point to point optimal path) Suppose that an origin point xo = (xo1, x
o
2)

wants to send a packet to a destination point xd = (xd1, x
d
2) and both points are in the interior

of a rectangle R.
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i. If the function U is positive almost everywhere in the interior rectangle Rod defined by
both points (see Fig. 3.3(a)), then the optimal path γopt is given by a horizontal straight
line γH and then a vertical straight line γV (see Fig. 3.3(a)).

More precisely, γopt = γH ∪ γV where

γH = {(x1, x2) such that xo1 ≤ x1 ≤ xd1, x2 = xo2},
γV = {(x1, x2) such that x1 = xd1, x

o
2 ≤ x2 ≤ xd2}.

ii. If the function U is negative almost everywhere in the interior rectangle Rod then there
is an optimal path γopt given by a vertical straight line γV and then a horizontal straight
line γH (see Fig. 3.3(b)).

More precisely, γopt = γV ∪ γH where

γV = {(x1, x2) such that x1 = xo1, x
o
2 ≤ x2 ≤ xd2},

γH = {(x1, x2) such that xo1 ≤ x1 ≤ xd1, x2 = xd2}.

iii. In both cases, γopt is unique almost surely (i.e., the area between γopt and any other
optimal path is zero).

Proof.- Consider an arbitrary path3 γC joining xo to xd, and assume that the area
between γopt and γC is nonzero. We call γC the comparison path (see Fig. 3.3(a) for the case
U > 0 and Fig. 3.3(b) for the case U < 0).

(i) Showing that the cost over path γopt is optimal is equivalent to showing that the
integral of the cost over the closed path P is negative. Hereby P is given by following γopt

from the origin point xo to the destination xd, and then returning from the destination xd to
the origin point xo by moving along the comparison path γC in the reverse direction. This
closed path is written as P = γopt ∪ γ−C and A denotes the bounded area described by P.
Using Green’s Theorem we obtain

∮

P
c · dx = −

∫

A

U(x)dS

which is strictly negative since U > 0 almost everywhere on the interior rectangle Rod.
Decomposing the left integral, this concludes the proof of (i), and establishes at the same
time the corresponding statement on uniqueness in (iii).
(ii) is obtained similarly. �

Theorem 3.4.3 (Point to boundary optimal path)
Consider the problem of finding an optimal path from a point xo in the rectangle R to the
boundary Γ1 ∪ Γ2.

3Respecting that each sub-path can be decomposed in sums of paths either from North to South or from
West to East (or is a limit of such paths).
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Figure 3.3: Optimal paths (a) when U > 0 and (b) when U < 0 in the interior rectangle
defined by the origin point xo and the destination point xd.

i. If the function U is almost everywhere negative inside the rectangle R and the cost on
the boundary Γ1 is non-negative and on boundary Γ2 is non-positive, then the optimal
path is the straight vertical line (see Fig. 3.4).

ii. If the function U(x) is almost everywhere positive inside the rectangle R and the cost on
the boundary Γ1 is non-positive and on boundary Γ2 is non-negative. Then the optimal
path is the straight horizontal line (see Fig. 3.5).

Proof.-

(i) Denote by γopt the straight vertical path joining xo to the boundary Γ1. Consider
another arbitrary valid path γC joining xo to any point x∗ on the boundary Γ1 ∪ Γ2, and
assume that the area between γopt and γC is nonzero. We call γC the comparison path.

Assume first that x∗ is on the boundary Γ2. Denote xd the South-East corner of the
rectangle R, i.e., xd := Γ1 ∩ Γ2. Then by Theorem 3.4.2(ii), the cost to go from xo to xd

is smaller when using γopt and then continuing eastwards (along Γ1) than when using the
comparison path γC and then southwards (along Γ2). Due to our assumptions on the costs
over the boundaries, this implies that the cost along the straight vertical path γopt is smaller
than along the comparison path γC.

Next consider the case where x∗ is on the boundary Γ1. Denote by η the section of the
boundary Γ1 that joins γopt ∩ Γ1 with x∗ (see Figure 3.4). Then again, by Theorem 3.4.2
(ii), the cost to go from xo to x∗ is smaller when using γopt and then continuing eastwards
(along Γ1) than when using the comparison path γC . Due to our assumptions that the cost
on Γ1 is non-negative, this implies that the cost along γV is smaller than along γC .

(ii) is obtained similarly. �
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Figure 3.4: Theorem 3.4.3 (i)
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Figure 3.5: Theorem 3.4.3 (ii)

The function U changes sign within the region

Consider the region on the space ℓ := {x ∈ R such that U(x) = 0} . Let us consider the
case when ℓ is a valid path in the rectangular area, such that it starts at the North-West
corner (the intersection of the boundaries Γ3∩Γ4) and finishes at the South-East corner (the
intersection of the boundaries Γ1 ∩ Γ2). Then the space is divided in two areas, and as the
function U is continuous we have the following cases:

1. U(x) is negative in the upper area and positive in the lower area (see Fig. 3.2).

2. U(x) is positive in the upper area and negative in the lower area.

The two other cases where the sign of U is the same over R are contained in what we solved
in the previous subsection 3.4.

Case 1: The function U(x) is negative in the upper area and positive in the lower area.

We shall show that in this case, ℓ is an attractor, in the sense that the optimal path
reaches the line ℓ with the minimal possible distance and then continues along this line until
it reaches the destination.

Proposition 3.4.1 Assume that the origin point xo and the destination point xd are both
on ℓ. Then the path pℓ that follows ℓ from the origin point xo to the destination point xd is
optimal.

Proof.- Consider a comparison path γC that coincides with ℓ only in the origin xo and
destination xd points. First assume that the comparison path γC is entirely in the upper
(i.e., northern) part and call A the area between γC and pℓ. Define P to be the closed path
that follows pℓ from xo to xd and then returns along γC .

The integral
∫

A
U(x) dx is negative by assumption. By Green’s Theorem, it is equal

to
∮

P c · dx. This implies that the cost along pℓ is strictly smaller than along γC .



40

A similar argument holds for the case that γC is below pℓ.

A path between xo and xd may have several intersections with ℓ. Between each pair of
consecutive intersections of ℓ, the sub-path has a cost larger than that obtained by following
ℓ between these points (this follows from the previous steps of the proof). We conclude that
pℓ is indeed optimal. �

Proposition 3.4.2 Let an origin point xo send packets to a destination point xD.

i. Assume both points are in the upper region. Denote by γ1 the two segments path given
by Theorem 3.4.2 (ii). Then the optimal curve γopt is obtained as the maximum between
ℓ and γ1

4.

ii. Let both points be in the lower region. Denote by γ2 the two segments path given in
Theorem 3.4.2 (i). Then the optimal curve γopt is obtained as the minimum between ℓ
and γ2.

Proof.-

(i) A straightforward adaptation of the proof of the previous proposition implies that
the path in the statement of the proposition is optimal among all those restricted to the
upper region. Consider now a path γC that is not restricted to the upper region. Then
ℓ∩γC contains two distinct points such that γC is strictly lower than ℓ between these points.
Applying Proposition 3.4.1, we then see that the cost of γC can be strictly improved by
following ℓ between these points instead of following γC there. This concludes (i).

(ii) Proved similarly. �

Proposition 3.4.3 Let a point xo send packets to a point xd.

i. Assume the origin is in the upper region and the destination in the lower one. Then the
optimal path has three segments;

1. It goes straight vertically from xo to ℓ,

2. Continues as long as possible along ℓ, i.e., until it reaches the first coordinate of the
destination,

3. At that point it goes straight vertically from ℓ to xd.

ii. Assume the origin is in the lower region and the destination in the upper one. Then the
optimal path has three segments;

1. It goes straight horizontally from xo to ℓ,

2. Continues as long as possible along ℓ, i.e., until it reaches the second coordinate of
the destination,

4By the maximum we mean the following: If γ1 does not intersect ℓ, then γopt = γ1. If it intersects ℓ,
then γopt agrees with γ1 over the path segments where γ1 is in the upper region and otherwise agrees with ℓ.
The minimum is defined similarly.
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3. At that point it goes straight horizontally from ℓ to xd.

Proof.- The proofs of (i) and of (ii) are the same. Consider an alternative route γC. Let
x̃ be some point in γC ∩ ℓ. The proof now follows by applying the previous proposition to
obtain first the optimal path between the origin and x̃ and second, the optimal path between
x̃ and the destination. �

Case 2: The function U is positive in the upper area and negative in the lower area.

This case turns out to be more complex than the previous one. The curve M has some
obvious repelling properties which we state next, but they are not as general as the attractor
properties that we had in the previous case.

Proposition 3.4.4 Assume that both origin and destination are in the same region. Then
the paths that were optimal in Theorem 3.4.2 are optimal here as well, if we restrict ourselves
to paths that remain in the same region.

Proof.- Given that the origin and destination are in a region we may change the cost
over the other region so that it has the same sign over all the region R. This does not
influence the cost of path restricted to the region of the origin-destination pair. With this
transformation we are in the scenario of Theorem 3.4.2 which we can then apply. �

Discussion.- Note that the (sub)optimal policies obtained in Proposition 3.4.4 indeed
look like being repelled from ℓ; their two segments trajectory guarantees to go from the
origin to the destination as far as possible from ℓ.

We note that unlike the attracting structure that we obtained in Case 1, one cannot
extend the repelling structure to the case where the paths are allowed to traverse from one
region to another.

3.5 User-optimization and congestion dependent cost

We now go beyond the approach of the previous sections by allowing the cost to depend
on congestion. In this setting, minimum cost paths can be a system objective as we shall
motivate below. But it can also be the result of decentralized decision making by many
“infinitesimally small” players where a player may represent a single packet (or a single
session) in a context where there is a huge population of packets (or sessions). The result
of such a decentralized decision making can be expected to satisfy the following properties
which define the so called user (or Wardrop) equilibrium:

“Under equilibrium conditions traffic arranges itself in congested networks such that all
used routes between an OD pair (origin-destination pair) have equal and minimum costs
while all unused routes have greater or equal costs” [2].

Motivation.- A popular objective in some routing protocols in ad hoc networks is to
assign routes for packets in such a way that each packet follows a minimal cost path (given
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the others’ paths choices) [54]. This has the advantage of equalizing origin-destination delays
of packets that belong to the same class, which allows one to minimize the amount of packets
that come out of the sequence (this is desirable since in data transfers, out of order packets
are misinterpreted to be lost which results not only in retransmissions but also in drop of
system throughput).

Related work.- Both the framework of system-optimization as well as the minimum
cost path have been studied extensively in the context of road traffic engineering. The use
of a continuum network approach was already introduced on 1952 by Wardrop [2] and by
Beckmann [28]. For more recent papers in this area, see e.g. [29, 30, 31, 32, 33] and references
therein. We formulate it below and obtain some of its properties.

Congestion dependent cost.- We allow the local transmission cost c1 for a horizontal
transmission (in the direction of the axis x1) to be different than the individual transmission
cost c2 for a vertical transmission (in the direction of the axis x2). We add to the individual
transmission cost c1 the dependence on the traffic flow T1 (in the direction of the axis x1) and
to the individual transmission cost c2 the dependence on the traffic flow T2 (in the direction
of the axis x2).

Let V k(x) be the minimum cost to go from a point x to Bk at equilibrium. Equation (3.7)
still holds but this time with c1 and c2 that depends on T

k
1 , T

k
2 , and on the total flows T1, T2.

Thus (3.8) becomes, for all k ∈ {1, . . . , m},

0 = min
i=1,2

(

ci(x, Ti) +
∂V k(x)

∂xi

)

, ∀x ∈ Bk , V k(x) = 0 . (3.9)

Notice that this method can be viewed as a generalization of the optimization method known
as dynamic programming, in particular, last equation would be a generalization of Bellman
equation also known as dynamic programming equation.

We note that if T ki (x) > 0 then by the definition of the equilibrium, i attains the minimum
at (3.9). Hence (3.9) implies the following relations for each traffic class k, and for i = 1, 2:

ci(x, Ti) +
∂V k

∂xi
= 0 if T ki > 0, (3.10a)

ci(x, Ti) +
∂V k

∂xi
≥ 0 if T ki = 0. (3.10b)

This is a set of coupled PDE’s (Partial Differential Equations), actually difficult to analyze
further.

Beckmann transformation
As Beckmann et al. did in [7] for discrete networks, we transform the minimum cost path
problem into an equivalent system-minimization one. We shall restrict our analysis to the
single class case. To that end, we note that equations (3.10a)-(3.10b) have exactly the same
form as the Karush-Kuhn-Tucker conditions (3.1a)-(3.1b), except that ci(x, Ti) in the former
are replaced by ∂g(x,T)/∂Ti(x) in the latter. We therefore introduce a potential function ψ
defined by

ψ(x,T) =
∑

i=1,2

∫ Ti

0

ci(x, s)ds
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so that for both i = 1, 2:

ci(x, Ti) =
∂ψ(x,T)

∂Ti
.

Then the user equilibrium flow is the one obtained from the system-optimization problem
where we use ψ(x,T) as local cost. We conclude the following:

Theorem 3.5.1 Let x∗ be a solution to the following system-optimization problem.

min
T (·)

∫

D
ψ(x,T) dx subject to ∇ ·T(x) = ρ(x), ∀x ∈ D.

Then it is the Wardrop equilibrium.

Remark 3.5.1 In the special case where costs are given as a power of the flow as defined
in Eq. (3.2), we observe that equations (3.10a)-(3.10b) coincide with equations (3.3a)-(3.3b)
(up-to a multiplicative constant of the cost). We conclude that for such costs, the user
equilibrium and the system-optimization solution coincide.

Example 3.5.1 The following example is an adaptation of the road traffic problem solved
by Dafermos in [29] to our ad hoc setting. We therefore use the notation of [29] for the
orientation, as we did in Section 3. Thus the direction from North-to-South will be our
positive x1 axis, and from West-to-East will be the positive x2 axis. The framework we
study is the user optimization problem with congestion dependent cost. For each point on
the West and/or North boundary we consider the point to boundary problem. We thus seek
a Wardrop equilibrium where each user can choose its destination among a given set. A
flow configuration is a Wardrop equilibrium if under this configuration, each origin chooses
a destination and a path to that destination that minimize that user’s cost among all its
possible choices.

Consider the rectangular area R on the bounded domain D defined by the simple closed
curve Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4 where

Γ1 = {0 ≤ x1 ≤ a, x2 = 0} , Γ2 = {x1 = a, 0 ≤ x2 ≤ b} ,
Γ3 = {0 ≤ x1 ≤ a, x2 = b} , Γ4 = {x1 = 0, 0 ≤ x2 ≤ b} .

Assume throughout that ρ = 0 for all x in the interior of D, and that the costs of the routes
are linear, i.e.,

c1 = k1T1 + h1 and c2 = k2T2 + h2, (3.11)

with k1 > 0, k2 > 0, h1, and h2 constant over D. Linear costs can be viewed as a Taylor
approximation of an arbitrary cost.

We are precisely in the framework of Section 3 and Section 3.5 with affine costs per
packet. As a matter of fact, the potential function associated with these costs is

ψ(T) =
2
∑

i=1

∫ Ti

0

(kis+ hi) ds =
2
∑

i=1

(

1

2
kiTi + hi

)

Ti .
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Now, we want to handle a condensation of origins or destinations along the boundary. While
this is feasible with the framework of section 3, it is rather technical. We rather use a more
direct path below.

Notice that in the interior of D, we have

∂T1
∂x1

+
∂T2
∂x2

= 0.

Take any closed path γ surrounding a region ω. Then by Green formula,

∮

γ

T1dP2 − T2dP1 =

∫

ω

∂T1
∂x1

+
∂T2
∂x2

= 0

Therefore we can define

φ(x) :=

∫

x

xo

T1dP2 − T2dP1

the integral will not depend on the path between xo and x and φ is thus well defined, and we
have

∂φ(x)

∂x2
= T1(x)

∂φ(x)

∂x1
= −T2(x) . (3.12)

We now make the assumption that there is sufficient demand and that the congestion cost is
not too high so that at equilibrium the traffic T1 and T2 are strictly positive over all D [29].
It turns out that all paths to the destination are used. Thus, from Wardrop’s principle, the
cost

∫

c dx is equalized between any two paths. And therefore,

∂c1
∂x2

=
∂c2
∂x1

.

Using the equations in (5.7b) then

k1
∂T1
∂x2

= k2
∂T2
∂x1

,

and from equations in (5.7a) we have

k1
∂2φ

∂x22
+ k2

∂2φ

∂x21
= 0.

Let ki = K2
i . Divide the above equation by k1k2. One obtains

1

K2
1

∂2φ

∂x21
+

1

K2
2

∂2φ

∂x22
= 0.

Following the classical way of analyzing the Laplace equation, (see [55]) we attempt a sepa-
ration of variables according to

φ(x1, x2) = F1(K1x1)F2(K2x2) .
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We then get that
F ′′
1 (K1x1)

F1(K1x1)
= −F

′′
2 (K2x2)

F2(K2x2)
= s2 .

In that formula, since the first term is independent on x2 and the second on x1, then both
must be constant. We call s2 that constant, but we do not know its sign. Therefore, s may
be imaginary or real. All solutions of this system for a given s are of the form

F1(x) = A cos(isx) +B sin(isx) , F2 = C cos(sx) +D sin(sx) .

As a matter of fact, φ may be the sum of an arbitrary number of such multiplicative decom-
positions with different s. We therefore arrive at the general formula

φ(x1, x2) =

∫

[A(s) cos(isK1x1) +B(s) sin(isK1x1)][C(s) cos(sK2x2) +D(s) sin(sK2x2)] ds.

From this formula, we can write T1 and T2 as integrals also. The flow T at the boundaries
should be orthogonal to the boundary, and have the local origin density for inward modulus (it
is outward at a sink). It remains to expand these boundary conditions in Fourier integrals to
identify the functions A, B, C, and D, which is tedious but straightforward (it is advisable to
represent the integrals of the boundary densities as Fourier integrals, since then the boundary
conditions themselves will be of the form s

∫

R(s) ds, closely matching the formulas we obtain
for the Ti’s).
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Chapter 4

Omni-directional Antennas

Inspired by the work of Dafermos [29], who considered the routing problem over two possible
directions (North-to-South and West-to-East), we have studied in the previous chapter the
routing problem in massively dense ad hoc networks with directional antennas. In this chap-
ter, we study the case where any general direction can be chosen at any location. Within this
context, we analyze the system-optimization and the user-optimization problem. Afterward,
we further study some important examples and give some comments and remarks about the
results obtained in this chapter.

4.1 Introduction

An important approach for routing in wireless ad hoc networks has been to design traffic
dependent adaptive protocols that send packets along paths that have smallest delays. This
metrics goes back to an early paper by Gupta and Kumar [54] who show that by doing so,
resequencing delays (that are undesirable in real time traffic and that are very harmful in
data transfers using the TCP protocol) are minimized. A recent line of research has been to
study such protocols in massively dense static wireless ad hoc networks.

Two types of objectives are aimed for the routing problem in the road traffic context. The
first is to minimize the total cost of the system and the second is to find a routing configura-
tion (called “traffic assignment”) such that each transmission uses only paths with minimum
costs. Configurations satisfying this property are known as “Wardrop Equilibrium”, and
they coincide with the solution concept used by Gupta and Kumar [54]. We study the two
types of objectives in this paper in the context of massively dense static wireless ad hoc
networks. For the first objective (which corresponds to cooperation between nodes) we use
and strengthen results of Beckmann by using tools from optimization and control theory
that were not available at the middle of the last century. We further study the Wardrop
equilibrium and establish conditions under which it coincides with the system-optimization
solution.

After describing the model in next section, we provide in Section 4.3 the mathematical
foundations for the system-optimization problem. The mathematical foundations for de-
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scribing and solving the user-optimization (i.e. the Wardrop equilibrium) are introduced
in Section 4.4. This is followed by Section 4.5 with some important examples for the con-
gestion cost. Finally, we end this chapter with a concluding section that summarizes our
contributions in this context.

4.2 Routing in massively dense static ad hoc networks

with omni-directional antennas

We recall that we are interested on the routing problem in a massively dense ad hoc network.
We consider, within this context, a grid area network or domain D of the two-dimensional
plane, with boundary S, densely covered by potential relay nodes. In the previous chapter,
messages could be transmitted on two possible directions (North-to-West or West-to-East)
and that was justified by the use of directional antennas. In this chapter, messages can be
transmitted on any direction at any location, but we restrict ourselves to the case where the
sources and destinations are located within the boundary. As we will see in the examples
of the following chapter, this is a reasonable assumption for many interesting cases. Under
this assumption, messages have to be transmitted from a region of sources or origins of the
information O to a disjoint region of receivers of the information R (in wireless sensor net-
works, it would correspond to data aggregation centers). Both of these regions are assumed
to be located at disjoint portions of the boundary. The intensity σ(x1, x2) of message gen-
eration on O is given, while the intensity ρ(x1, x2) of signal destination on R is unknown.
It is only assumed that these are consistent: the total transmission of messages emitted and
received are equal. On the rest of the boundary (denoted by F), no message should enter
or leave D, i.e. it is a forbidden-to-cross region. The congestion cost per packet transmitted
(say in terms of delays, or energy use) at each location in D is a function c(x1, x2, ϕ) of the
location and of the intensity ϕ of the messages transmission through that point. We wish to
investigate the system-optimal routing policy and its relationship with a Wardrop (or user-)
kind of optimality.

Formal equations

Let D be an grid area network or domain of the plane R2 with smooth boundary S. We
assume that the domain D is at every point of the boundary S on a single side of S, so that
an exterior normal to D, say n(x) is well defined and smooth on S. This last assumption is
made to avoid “strange” boundaries that are unrealistic in practice.

We model the transmission of messages as a vector field T : D → R2, and we let
ϕ(x) = ‖T(x)‖ be its intensity. The transmission of messages through O is given as a
continuously differentiable function σ(·) : O → R+. The conservation assumption now reads

∫

R
ρ(x) ds =

∫

O
σ(x) ds . (4.1)

Let Q = O ∪ F and extend the function σ to the whole of Q by σ(x) = 0 on F . We
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model the conditions on the boundary as

∀x ∈ Q , 〈n(x),T(x)〉 = −σ(x). (4.2)

There is neither source nor destination of messages inside D, which we model as the
constraint (see Section 2.2, Eq. (2.7)):

∀x ∈ D , ∇ ·T(x) = 0 . (4.3)

It follows that
∫

S
〈n(x),T(x)〉 ds = 0 ,

which suffices to insure the consistency condition (4.1).

The congestion cost per packet c is supposed to be a strictly positive continuously differ-
entiable function c(x, ϕ) : D × R+ → R+, increasing and convex in ϕ for each x. The total
cost of congestion will be taken as

G(T(·)) =
∫

D
c(x, ‖T(x)‖)) · ‖T(x))‖ dx. (4.4)

The path followed by a packet is specified by its direction of travel eθ = (cos θ, sin θ)
along its path, according to ẋ = eθ. The cost incurred by one packet traveling from x0 ∈ O
at time t0 to x1 ∈ R reached at time t1 is

J(eθ(·)) =
∫

x1

x0

c(x, ‖T(x)‖)
√

dx2 + dy2 =

∫ t1

t0

c(x(t), ‖T(x(t))‖) dt . (4.5)

Notice that this “time” tmay be a fictitious time, related to physical time, say τ , by dτ = c dt
for instance. Then c is the inverse of a speed of travel, a delay due to congestion, and J is
the time taken by the message to go from source to destination.

Regularity and function spaces

We shall seek T(·) in a space which we denote V . We next discuss the choice of the functional
spaces so that the problem is a well-posed problem. A non-mathematical oriented reader
may skip the description of the function spaces we introduce.

The mathematical term well-posed problem stems from a definition given by Hadamard [56].
He believed that mathematical models of physical phenomena should have the properties that

• a solution exists,

• the solution is unique,

• the solution depends continuously on the data, in some reasonable topology.
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Notice that in order to obtain a well-posed problem, we may choose V = (H1(D))2, but

this will require σ(·) to be slightly more regular than necessary, namely, H1/2(S). To keep
with the classical hypothesis in fluid dynamics, we may choose V = (H∇(D))2, the space
of L2 functions whose divergence is in L2. Then we choose σ(·) in L2(S).

The above Sobolev spaces have been introduced by the modern theory of partial differen-
tial equations (PDEs) [57]. An extensive theory of PDEs and their numerical approximations
is now available in these Sobolev spaces. This choice of spaces allows one to have complete
spaces for the considered functions and for their derivatives, along with a scalar product for
square-integrable functions. The completeness of the space is needed to have existence of
the solution. The scalar product allows to have duality. The completeness together with the
duality allows Karush-Kuhn-Tucker Theorem to hold, which we make use of in this work.

Let V0 be the closure in V of the set of C∞ functions with compact support in D. Let VR
and VQ be the closures in V of the set of C∞ functions that are null in a neighborhood of R
and Q respectively. They are vector spaces, super-sets of V0. Let T(·) : D → R2 be a vector
field in V satisfying the constraint (4.2) (for instance a smooth extension of σ(x)n(x)). Let

V be the affine space f̃ + VQ. We shall also need the space H1
R of functions of H1(D) whose

trace on R is zero. Finally, we let D0 = {x | f ⋆(x) = 0}, or more precisely, since f ⋆ is not
necessarily continuous, the largest open subset of D over which

∫

D0
‖f ⋆(x)‖2 dx = 0.

The case of elastic traffic

Let’s assume that we do not have to transmit the whole demand σ(x) to the destination.
We shall send less if there is congestion. The standard way to model that is first to define
a utility u(s) for having s units of information transmitted; we take s(x) ≤ σ(x). The new
objective is to minimize the sum of C(f)−U(s) where U(s) is the integral of u(s(x)) over x.

One way to solve the problem is to define a new destination S. Then add an alternative
route from each source to S; the cost to transmit f units from a source x to S is −u(σ(x)−f).
Thus instead of directly adding utilities to the optimization problem, they appear through
costs of new routes that are added. The elastic routing problem is thus transformed into an
equivalent routing problem with fixed demand. This transformation is standard, see [58, 59],
and we shall not pursue it here.

4.3 System-optimization

4.3.1 The differentiable case

We seek here the vector field f ⋆ ∈ (L2(D))2 satisfying the constraints (4.2) and (4.3) and
minimizing G(f). Let C(x, ϕ) = c(x, ϕ)ϕ. It is convex in ϕ and coercive (i.e. goes to
infinity with ϕ). As a consequence, T(·) 7→ G(T(·)) is continuous, convex and coercive.
Moreover, the constraints are linear. Therefore an optimum exists, and we may apply the
Karush-Kuhn-Tucker Theorem (see Section 3.2).
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We dualize only the constraint (4.3) and look for f ⋆ in V. Let therefore p(·) ∈ L2(D) be
the dual variable, we let

L(f, p) =
∫

D

(

C(x, ‖T(x)‖) + p(x)∇ ·T(x)
)

dx .

Using Green’s formula, we may also write

L(f, p) =
∫

D

(

C(x, ‖T(x)‖)− 〈∇p(x),T(x)〉
)

dx+

∫

S
p(x)〈n(x),T(x)〉 ds .

The optimal vector field f ⋆ should minimize L over V, for some p. Therefore, 0 must
belong to the sub-differential with respect to f of the restriction of L to V.

Wherever f ⋆ 6= 0, L is actually differentiable, so that the sub-differential contains only
the derivative. Actually, we only need the restriction of the derivative to VQ.

DL · g =
∫

D

(

D2C(x, ‖f ⋆(x)‖)
〈f ⋆(x), g(x)〉

‖f ⋆(x)‖ − 〈∇p(x), g(x)〉
)

dx+

∫

R
p(x)〈n(x), g(x)〉 ds ,

which should be zero for every g ∈ VQ. Pick first g in V0. The last integral vanishes. It
follows that necessarily

∀x : f ⋆(x) 6= 0 , D2C(x, ‖f ⋆(x)‖)
f ⋆(x)

‖f ⋆(x)‖ = ∇p(x) . (4.6)

It follows from this equation that p(·) ∈ H1(D), and also that the first integral in the
right-hand side must be zero for every g in VQ. Picking now g ∈ VQ, it follows that

p(·) ∈ H1
R. (4.7)

Wherever ‖f ⋆(x)‖ = 0, a discussion arises. If D2C(x, ϕ)/ϕ remains bounded as ϕ → 0,
there is nothing to add to equations (4.6) and (4.7) above. (We shall see the typical example
C(x, ϕ) = (1/2)c(x)ϕ2 below.) Otherwise the situation is more complicated.

4.3.2 Lack of differentiability

We investigate now the case where D2C(x, ϕ)/ϕ → ∞ as ϕ → 0. This typically arises,
e.g. if D2C(x, 0) 6= 0. We shall see the typical example C(x, ϕ) = c(x)ϕ below. Then,
f 7→ C(x, ‖f‖) is not differentiable (with respect to f) at 0. Its sub-differential is the set

∂fC(x, 0) = {q ∈ R
2 | ∀g ∈ R

2 , C(x, ‖g‖)− C(x, 0) ≥ 〈q, g〉} .

Since C is assumed to be differentiable and convex in its second argument, this is equivalent
to

∂fC(x, 0) = {q | ∀g ∈ R
2 , D2C(x, 0)‖g‖ ≥ 〈q, g〉} ,
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which in turn is equivalent to ‖q‖ ≤ |D2C(x, 0)|. Now, since C is assumed to be increasing
in ϕ, D2C ≥ 0. Placing this back into the sub-differential of L, we get, for x ∈ D0,

∃q(x) such that ‖q(x)‖ ≤ D2C(x, 0) and ∀g ∈ VQ ,

∫

D0

(q(x)−∇p(x))g(x) dx = 0 .

Combining both cases, we conclude that, for a function f ⋆(·) ∈ V with null set D0 to be
optimal, there must exist a p(·) ∈ H1

R such that

∀x ∈ D , ‖∇p(x)‖ ≤ D2C(x, 0) ,

∀x ∈ D −D0 , ∇p(x) = D2C(x, ‖T(x)⋆‖) 1
‖f⋆(x)‖f

⋆(x) .
(4.8)

We may notice that the first condition above also yields

∀x : f ⋆(x) 6= 0 , ‖∇p(x)‖ = D2C(x, ‖f ⋆(x)‖).

Overall, the problem of determining the optimum f ⋆ is equivalent (if that system has a single
solution) to determining simultaneously f ⋆ and p satisfying (4.2),(4.3) and (4.8).

This system certainly has at least one solution, since our problem is convex, coercive
with affine constraints, and thus has a minimum. Uniqueness, on the other hand, is by no
means simple. It may be noticed that one might look for the two scalar functions ϕ and p,
satisfying

∀x : ϕ(x) 6= 0 , ‖∇p(x)‖ = D2C(x, ϕ(x)) ,
∀x : ϕ(x) = 0 , ‖∇p(x)‖ ≤ D2C(x, 0) ,
∀x ∈ R , p(x) = 0 ,

and impose furthermore the constraints (4.2) and (4.3) on

f ⋆(x) =
ϕ(x)

D2C(x, ϕ(x))
∇p(x) .

We shall investigate a typical case hereafter.

4.4 User-optimization (Wardrop equilibrium)

Assume the message flow obeys the above necessary conditions. We want to investigate
whether it is optimal for a single message to follow the route prescribed by f ⋆, i.e., an
integral line of that field, assuming that its lone deviation from that scheme would have no
effect on the overall congestion of the network.

We investigate the optimization of the criterion (5.4) via its Hamilton-Jacobi-Bellman
equation. Let V (x) be the return function, it must be a viscosity solution of

∀x ∈ D , minθ〈eθ,∇V (x)〉+ c(x, ‖f ⋆(x)‖) = 0 ,
∀x ∈ R , V (x) = 0 .
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hence
∀x ∈ D , −‖∇V (x)‖+ c(x, ‖f ⋆(x)‖) = 0 ,
∀x ∈ R , V (x) = 0 .

(4.9)

And the optimal direction of travel is opposite to ∇V (x), i.e., eθ = −∇V (x)/‖∇V (x)‖.
Clearly, this is the same system of equations as previously, upon replacing p(x) by −V (x),

and D2C(x, ϕ) by c(x, ϕ). We thus conclude that the Wardrop equilibrium can be obtained
by solving the globally optimal problem in which the cost density is replaced by

∫ ϕ

0
c(x, s)ds.

This is the continuous version of the potential function approach of Beckmann et al. [7].
This transformation has been frequently used in the road traffic context but only for one
particular cost structure [37, 38, 33, 39] the equivalence was shown to hold in [37, 38].

4.5 Important examples

4.5.1 Monomial cost

In the case where c(x, ϕ) = c(x)ϕα, then C(x, ϕ) = αc(x, ϕ), and therefore the two systems
of equations coincide (up to a constant), or more precisely, they coincide in the domain
{x | f ⋆(x) 6= 0}. We shall show that for a given ϕ(·), p is uniquely defined. We therefore
have the following property:

Proposition 4.5.1 For a monomial cost, any global equilibrium where D0 = ∅ is a Wardrop
equilibrium.

4.5.2 Linear congestion cost

We investigate here the simple typical case, where the cost of congestion is linear:

c(x, ϕ) =
1

2
c(x)ϕ, so that C(x, ϕ) =

1

2
c(x)ϕ2 .

Then, L is differentiable everywhere, and the necessary condition of optimality is just that
there should exist p : D → R2 such that ∇p(x) = c(x)f ⋆(x). Placing this into (4.2) and
(4.3), we see that we end up with a simple elliptic equation with mixed Dirichlet - (non-
homogeneous) Neumann boundary conditions:

∀x ∈ D , ∇( 1
c(x)

∇p(x)) = 0 ,

∀x ∈ Q ,
∂p

∂n
(x) = c(x)σ(x) ,

∀x ∈ R , p(x) = 0 ,















(4.10)

for which existence and uniqueness of the solution follows.

A more or less explicit solution can then be given in terms of the Green function G(x,P)
of the domain

f ⋆(x) =

∫

Q

1

c(x)
∇1G(x,P)σ(P) ds(P) .
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If the Green function is not available, according to a classical approach, we may derive a
finite element method from the variational form: Find p ∈ H1

R such that, for any q ∈ H1
R,

∫

D

1

c(x)
〈∇p(x),∇q(x)〉 dx−

∫

Q
σ(x)q(x) ds = 0 .

This can be read as DK(p) = 0 where K : H1
R → R is given by

K(p) =
1

2

∫

D

1

c(x)
‖∇p(x)‖2 −

∫

Q
σ(x)p(x) ds .

Thanks to Poincaré’s inequality, it is convex and coercive. We therefore obtain:

Proposition 4.5.2 Equations (4.10) have a unique solution p ∈ H1
R.

4.5.3 Uncongested network

An algorithm

We consider now a situation where the network operates far from congestion. The “cost”
c(x) may be regarded as a delay, then the cost of any trajectory is just the time it takes, or
an energy expenditure. In any case, it is related to the state of the infrastructure, not to its
load. Then, c is independent of ‖T(x)‖, and we get C(x, ϕ) = c(x)ϕ. Then, (4.8) simplifies
into

∀x ∈ D , ‖∇p(x)‖ ≤ c(x) ,

∀x : f ⋆(x) 6= 0 , ∇p(x) = c(x)
f ⋆(x)

‖f ⋆(x)‖ .

Let

ϕ(x) = ‖f ⋆(x)‖ , ψ(x) =
ϕ(x)

c(x)
.

The above system yields

∀x ∈ D , ψ(x) ≥ 0 , ‖∇p(x)‖ ≤ c(x) , ψ(x)[‖∇p(x)‖ − c(x)] = 0 , (4.11)

and also f ⋆(x) = ψ(x)∇p(x), which placed in (4.3) and (4.2) yields

∀x ∈ D , ψ(x)∆p(x) + 〈∇ψ(x),∇p(x)〉 = 0 ,
∀x ∈ S , ψ(x)〈n(x),∇p(x)〉 = σ(x) .

(4.12)

We do not have a satisfactory theory of this equation. Even if, as we noticed, the existence
is guaranteed, we do not know whether that solution is unique. It should be noticed that the
uniqueness proof given for a very similar equation in [28] does not carry over here, because
it relies critically on the strict convexity of the cost in ‖f‖.

As an attempt, we provide here an iterative algorithm which, if it converges, converges
toward a solution of the system. It provides us with a uniqueness result under a strong
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hypothesis. We suspect that a more general result is true, and also that the algorithm
converges even without that hypothesis.

We seek ψ in H1(D), and p in H1
R. We may reformulate the system (4.12) as ∀q ∈ VR,

∫

D
[ψ(x)∆p(x) + 〈∇ψ(x),∇p(x)〉]q(x) dx−

∫

Q
[ψ(x)〈n(x),∇p(x)〉 − σ(x)]q(x) ds = 0 .

Using Green’s formula for q ∈ H1(D):
∫

D
[ψ(x)∆p(x) + 〈∇ψ(x),∇p(x)〉]q(x) dx =

−
∫

D
ψ(x)〈∇p(x),∇q(x)〉 dx+

∫

S
ψ(x)〈n(x),∇p(x)〉q(x) ds ,

system (4.12) can therefore be stated as:

∀q ∈ VR ,

∫

D
ψ(x)〈∇p(x),∇q(x)〉 dx−

∫

Q
σ(x)q(x) ds = 0 . (4.13)

This equality may also be interpreted as D1J(p, ψ)q = 0 where J : VR → R is defined by

J(p, ψ) =
1

2

∫

D
ψ(x)‖∇p(x)‖2 dx−

∫

Q
σ(x)p(x) ds .

Poincaré’s inequality states that there exists C > 0 such that,

∀p ∈ VR, ‖p‖2 ≤ C‖∇p‖2 . (4.14)

Thus the functional J above is coercive and has a single minimum.

One may guess the following algorithm: fix ψ0(x) (say = 1). Given ψn, minimize J with
respect to p, say solving the finite element equations corresponding to (4.13). Call pn the
solution, and do

ψn+1(x) = max{0, ψn(x) + θ(‖∇pn(x)‖2 − c(x)2)} (4.15)

for some positive θ. We shall prove the following theorem :

Proposition 4.5.3 If there exists a solution of equations (4.11)–(4.12) such that ‖f ⋆‖ is
essentially bounded away from 0 in D, it is unique and for θ small enough algorithm (4.15)
converges toward that solution.

Analysis of the algorithm

Let ψ⋆, p⋆ be a solution of our system of equations. Notice first that indeed, for any θ > 0,

∀x ∈ D , ψ⋆(x) = max{0, ψ⋆(x) + θ(‖∇p⋆(x)‖2 − c(x)2)} (4.16)

And any limit of the above algorithm has to satisfy this equation, which says that
‖∇p(x)‖ = c(x) for every x where ψ(x) 6= 0. Together with the condition that p minimizes
J for ψ, this is exactly the conditions (4.11) and (4.12).
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Subtract (4.16) from (4.15). It results that

|ψn+1(x)− ψ⋆(x)| ≤ |ψn(x)− ψ⋆(x) + θ(‖∇pn(x)‖2 − ‖∇p⋆(x)‖2)| .

Take the square, and integrate over D :

∫

D
|ψn+1(x)− ψ⋆(x)|2 dx ≤

∫

D
|ψn(x)− ψ⋆(x)|2 dx

+2θ

∫

D
(ψn(x)− ψ⋆(x))(‖∇pn(x)‖2 − ‖∇p⋆(x))‖2) dx

+θ2
∫

D
(‖∇pn(x)‖2 − ‖∇p⋆(x)‖2)2 dx .

(4.17)

Using Cauchy-Schwarz inequality, the last term is bounded from above by

∫

D
(‖∇pn(x)‖2 − ‖∇p⋆(x)‖2)2 dx ≤

∫

D
‖∇(pn(x)− p⋆(x))‖2 dx

∫

D
‖∇(pn(x) + p⋆(x))‖2 dx .

Hence, assuming
∫

D‖∇pn(x)‖2 dx remains bounded, there exists a > 0 such that

∫

D
(‖∇pn(x)‖2 − ‖∇p⋆(x)‖2)2 dx ≤ a

∫

D
‖∇(pn(x)− p⋆(x))‖2 dx . (4.18)

Concerning the second term of the right-hand side of (4.17), write

‖∇p⋆‖2 = ‖∇pn +∇(p⋆ − pn)‖2 = ‖∇pn‖2 + 2〈∇pn,∇(p⋆ − pn)〉+ ‖∇(p⋆ − pn)‖2 .

Thus (using short notations for convenience)

1

2

∫

D
ψn‖∇p⋆‖2 dx−

∫

Q
σp⋆ ds

=
1

2

∫

D
ψn‖∇pn‖2 dx−

∫

Q
σpn ds+

1

2

∫

D
ψn‖∇(p⋆ − pn)‖2 dx

+

∫

D
ψn〈∇pn,∇(p⋆ − pn)〉 dx−

∫

Q
σ(p⋆ − pn) ds .

By the definition of pn as solving equation (4.13), the second line above is zero, leaving the
first line alone. In a symmetric fashion, we also get

1

2

∫

D
ψ⋆‖∇pn‖2 −

∫

Q
σpn =

1

2

∫

D
ψ⋆‖∇p⋆‖2 −

∫

Q
σp⋆ +

1

2

∫

D
ψ⋆‖∇(pn − p⋆)‖2 .

Summing the last two equalities (and multiplying by 2), we obtain

∫

D
(ψn − ψ⋆)(‖∇pn‖2 − ‖∇p⋆‖2) = −

∫

D
(ψn + ψ⋆)‖∇(pn − p⋆)‖2 .
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Placing this and (4.18) in (4.17), we may summarize the above calculations as

∫

D
|ψn+1(x)− ψ⋆(x)|2 dx ≤

∫

D
|ψn(x)− ψ⋆(x)|2 dx

−2θ

∫

D
(ψn(x) + ψ⋆(x))‖∇(pn(x)− p⋆(x))‖2 dx

+aθ2
∫

D
‖∇(pn(x)− p⋆(x))‖2 dx .

(4.19)

Assume that, for almost all x ∈ D, ψ⋆(x) ≥ b > 0. It follows that

∫

D
(ψn(x) + ψ⋆(x))‖∇(pn(x)− p⋆(x))‖2 dx ≥ b

∫

D
‖∇(pn(x)− p⋆(x))‖2 dx ,

and therefore that for any θ ≤ b/a,

∫

D
|ψn+1(x)− ψ⋆(x)|2 dx ≤

∫

D
|ψn(x)− ψ⋆(x)|2 dx− bθ

∫

D
‖∇(pn(x)− p⋆(x))‖2 dx .

Summing these inequalities, it follows that the series of the L2 norms ‖∇pn∇p⋆‖2 converges,
and according to Poincarés inequality again, pn → p⋆ in H1(D). The field of optimal
directions converges as well, and assuming it is regular enough for the integral curves to be
unique, the optimal field converges as well.

The algorithm is independent from the choice of p⋆ and ψ⋆ who are therefore uniquely
defined.

4.6 Comments

We present a brief comparison of our treatment with the work made by Martin Beckman [28],
called hereafter M.B.. In M.B., one introduces both the density u(x) of commodity to be
moved, and the speed v(x) of this motion, which is a data. And the cost of transportation
is assumed to be a function of u alone. The decision variable in M.B. is the vector field ϕ
of transportation where the direction of ϕ is that of the transportation, and ‖ϕ‖ its density
u. Hence M.B.’s vϕ is our f . And his equation (11) (see [28]) is our equation (4.6).

In M.B. there is an area source or destination of matter to be transported. It is not
needed in our context, but technically, it would be trivially done just adding a non-zero right
hand side to equation (4.3) and its various forms, the first equation of (4.10) and of (4.12).

Now, since the early 50’s, the theory of partial differential equations (PDEs) has been
considerably developed, using the tools of Sobolev spaces and the variational theory of J-L.
Lions, P. Lax, and others. Thus our derivation is not formal any more, and we are able
to give existence and uniqueness theorems impossible to derive in 1952 when his work was
published. Notice that our example with no congestion, where our uniqueness theorem is
not very satisfactory, does not satisfy the hypotheses of the uniqueness theorem of M.B.,
because that paper requires that the cost function be strictly convex.
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Finally, we solve for the concept of Wardrop equilibrium, and we are therefore able
to compare the global optimum to the Wardrop equilibrium, which was not available to
Beckmann in 1952.

By casting the routing problem in massively dense wireless ad hoc networks in the con-
text of the road traffic framework of Beckmann, we are able to formulate and solve various
optimization problems and study various cost functions, which was not the case with the
physics-inspired paradigms that had been used before to study massively dense ad hoc net-
works.



Chapter 5

Numerical Analysis

The road traffic community and the partial differential equations community have developed
numerical approaches to solve the continuous approximation model through the discretiza-
tion of the region under study. Although it may seem that one is back to the starting point
with yet another discrete problem to solve, the new discrete problem is simpler, and the
resolution is independent of the number of nodes in the original system. In this chapter, we
analyze the numerical resolution to the routing problem in massively dense static wireless
ad hoc networks via Finite Element Method (FEM). We focus in some examples where we
are able to solve the system- and the user-optimization problem.

5.1 Model specification

We recall some of the notations used and results obtained in the previous chapter:

A domain D of the two-dimensional plane is densely covered by relay nodes. Messages
have to flow from a region of origins of the information O to a region of receivers of this
information R. Both of these regions are assumed to be located at disjoint portions of the
boundary S. The rest of the boundary is assumed to be a forbidden-to-cross region F where
no message should enter nor leave D. The intensity σ(x, y) of message generation on O is
given, while the intensity ρ(x, y) of received message on R is unknown. It is only assumed
that these are consistent: the total flow of messages emitted and received are equal, i.e.,

∫

R
ρ(x) ds =

∫

O
σ(x) ds . (5.1)

The flow of messages is a vector field T : D → R2, and ϕ(x) = ‖T(x)‖ is its intensity.
The congestion cost per packet transmitted at each point in D is a function c(x, y, ϕ) of the
point and the intensity ϕ of the flow of messages through that point.

We defined Q := O∪F and extend the function σ to the whole of Q by setting σ(x) = 0
on F . The boundary conditions are given by

∀x ∈ Q 〈T(x),n(x)〉 = −σ(x). (5.2)

59
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There is no source nor sink of messages in D, which such as in fluid models, implies the
constraint

∀x ∈ D ∇ ·T(x) = 0 . (5.3)

which suffices to insure the consistency condition (5.1).

The path followed by a packet is specified by its direction of travel eθ = (cos θ, sin θ) along
its path, according to x = eθ. The user-cost or the cost incurred by one packet traveling
from x0 ∈ O at time t0 to x1 ∈ R reached at time t1 is

J(eθ(·)) =

∫

S
c(x, ‖T(x)‖)

√

dx2 + dy2 (5.4)

=

∫ t1

t0

c(x(t), ‖T(x(t))‖) dt . (5.5)

where S is the path such that (x(t0), y(t0)) = x0 and (x(t1), y(t1)) = x1 following at each
time t the path given by eθ(·).

The system-cost is taken as

G(T(·)) =
∫

D
c(x, ‖T(x)‖)‖T(x)‖ dx . (5.6)

Quadratic congestion total cost

In this chapter, we focus on the quadratic congestion total cost that has been studied for
the system-optimization problem in the work by Tassiulas and Toumpis [24]. As it was
explained in Section 1.2, this election is justified by taken into account the work of Gupta
and Kumar [45]. We assume in this context that the local cost is linear on the congestion,
i.e.,

c(x,T) =
1

2
c(x)‖T‖,

which implies that the total cost function for the system-optimization problem is

G(x,T) =
1

2

∫

D
c(x)‖T‖2 dx.

The necessary optimality condition for the global optimization problem gives us that if
we find p such that

∀x ∈ D ∇ ·
(

1

c(x)
∇p(x)

)

= 0, (5.7a)

∀x ∈ Q ∂p

∂n
(x) = c(x)σ(x), (5.7b)

∀x ∈ R p(x) = 0. (5.7c)
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Then p is optimal. We deduced that the optimal flow is given by

T∗(x) =
∇p(x)
c(x)

.

In the previous section we defined a continuum Wardrop equilibrium where each single
message seeks its optimal solution to follow the path that minimizes the integral line of the
cost function across the path, assuming that its lone deviation from that scheme would have
no effect on the overall congestion map. In that setting the Wardrop equilibrium can be
obtained by solving the system optimal problem in which the total cost density is replaced
by
∫ ϕ

0
c(x, ϕ) dϕ. This implies that the system optimal solution and the Wardrop equilibrium

coincide in the domain {x ∈ D; f ∗(x) 6= 0}.
In order to find a numerical solution to our problem we consider the Finite Element

Method (FEM), largely used in numerical modeling of physical systems in disciplines such
as Electromagnetism, Fluid Dynamics, and others.

The general variational problem is to seek u ∈ V such that

(VP)

{

a(u, v) = l(v)
∀ v ∈ V.

We seek the weak formulation of the set of equations (??). If we multiply equation (5.7a)
by a generic function ψ ∈ H1

R(D) where we consider the closed subspace

H1
R(D) = {v ∈ H1(D); v(x) = 0 ∀x ∈ R},

and integrate over the domain D, after a small manipulation using equations (5.7b) and
(5.7c), we obtain that equation (5.7a) is equivalent to

∫

D

1

c
∇p · ∇ψ dx =

∫

Q
σ · ψ dx.

The problem defined by the set of equations (??) is equivalent to the problem of seeking
p ∈ H1

R(D) such that

∫

D

1

c
∇p · ∇ψ dx =

∫

Q
σ · ψ dx ∀ψ ∈ H1

R(D).

In that sense, if we consider the functions a(·, ·) and l(·) defined as

a(u, v) =

∫

D

1

c
∇u · ∇v dx and l(v) =

∫

Q
σ · v dx.

in the space V = H1
R(D), we have set our problem as a variational problem, where the

solution will be the function p.
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In our case, the bilinear function a(·, ·) is V -elliptic, symmetric and continuous in H1(D)
and the linear function l(·) is bounded. Then we can use Lions-Lax-Milgram Theorem and
conclude that the solution exists and is unique.

This theorem gives us not only the existence and uniqueness of the solution but also
gives us information about the stability of the solution when the data changes saying that
the solution depends continuously on the data.

5.1.1 Why to use the Finite Element Method?

The idea of the Finite Element Method is to discretize the problem (VP) when the dimension
of the space is infinite. This is interesting in our case as we are looking for a solution within
the space of functions H1(D). From this approach we obtain a linear system for which there
are many standard methods to solve it. An intern discretization of the variational problem is
to take Vh as a vector subspace of finite dimension (Vh ⊆ V ), where h > 0 is a discretization
parameter such that when h→ 0, the dimension of Vh goes to infinity. Since Vh ⊆ V , a(·, ·),
l(·) are well defined in Vh, then the discretized problem becomes to seek uh ∈ Vh such that

(EVh)

{

a(uh, vh) = l(vh)
∀vh ∈ Vh, ∀uh ∈ Vh.

Due to Lions-Lax-Milgram we have a solution that depends continuously on the data.

Let {ϕ1, . . . , ϕNh
} be a base of Vh, then we can write for every uh ∈ Vh,

uh =

Nh
∑

j=1

αjϕj,

where α = (α1, . . . , αNh
) ∈ RNh is unique for each uh ∈ Vh. Then the equation of the (EVh)

problem for the base of Vh becomes

a

(

Nh
∑

j=1

αjϕj, ϕi

)

= l(ϕi) ∀i = 1, . . . , Nh,

Then from the bilinearity and symmetry of a(·, ·), we obtain

Nh
∑

j=1

a(ϕi, ϕj)αj = l(ϕi) i = 1, . . . , Nh, α ∈ R
Nh,

which is equivalent to the linear system

Aα = b,

where α ∈ RNh , Aij = a(ϕj , ϕi), and bi = l(ϕi). In order to solve this linear system, we can
use standard methods.
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5.1.2 Description of the Finite Element Method

In this part we are going to give some definitions to understand the finite element method.

For every k ≥ 0, we denote Pk to the space of polynomial functions from R2 to R of
degree less or equal to k.

Definition 5.1.1 (2-simplex) Consider 3 vertices

a1 = (a11, a21), a2 = (a12, a22), a3 = (a13, a23),

in R
2, not aligned (we call them non-degenerated vertices), then a 2-simplex T of vertices

{aj ; 1 ≤ j ≤ 3} is the convex hull of those vertices.

As the vertices are not in the same line, every point x ∈ R
2 can be written as a linear

combination of those vertices. We denote {λj(x) ; 1 ≤ j ≤ 3} the barycentric coordinates
of the point x with respect to the vertices {aj, 1 ≤ j ≤ 3}. Then, we can characterize the
2-simplex T of vertices {aj, 1 ≤ j ≤ 3} by

T =

{

x ∈ R
2 ; x =

3
∑

i=1

λj(x) aj ; 0 ≤ λj(x) ≤ 1 , ∀ 1 ≤ j ≤ 3

}

.

For the error analysis it is useful to consider the following geometric parameters:

hT = diameter of T (length of the greatest side),

ρT = roundness of T (diameter of the greatest ball included in T ).

We define the 2-simplex of reference T̂ as the 2-simplex that has as vertices
â1 = (1, 0), â2 = (0, 1) and â3 = (0, 0). If we consider T as a non-degenerated 2-simplex of
vertices {aj, 1 ≤ j ≤ 3}, then there exists a unique invertible matrix BT ∈ M2(R) and a
unique vector bT ∈ R2 such that

∀ 1 ≤ j ≤ 3 , aj = BT âj + bT .

We denote FT this affine transformation from R2 to R2.

Construction of the finite elements

Let us consider:

• A compact set T ⊆ R2, connected and with non-empty interior.

• A finite set Σ = {aj}Nj=1 of N distinct points of T .

• A vectorial space P of finite dimension and made of functions from T to the set of real
numbers.
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Definition 5.1.2 (P -unisolvent) The set Σ is called P -unisolvent, if and only if, given N
scalars αj , 1 ≤ j ≤ N , there exists a function p on the space P and only one such that

p(aj) = αj, 1 ≤ j ≤ N.

When the set Σ is P -unisolvent, the triplet (T, P,Σ) is called finite element of Lagrange.

Given these definitions we have that for every function v defined over T to real values,
there exists a function p ∈ P and only one, that interpolate v over Σ, i.e., it satisfies

p(aj) = v(aj), 1 ≤ j ≤ N.

Definition 5.1.3 Given a finite element of Lagrange (T, P,Σ), we call functions of base to
the N functions pi, 1 ≤ i ≤ N , such that

pi(aj) = δij , 1 ≤ j ≤ N.

We call operator of P -interpolation of Lagrange over Σ to the operator that to any function
v defined over T it gives

Πv =
N
∑

i=1

v(ai)pi,

and Πv is called the P -interpolate of Lagrange of v over Σ.

Theorem 5.1.1 ([60],Theorem 4.5.) Let (T̂ , P̂ , Σ̂ = {ϕ̂i; 1 ≤ i ≤ M}) be a finite element
of Lagrange on R2 and let F be a bicontinuous bijective function from R2 to R2. Then the
triplet (T, P,Σ = {ϕi; 1 ≤ i ≤M}) defined by

T = F (T̂ ) (5.8a)

P = {p̂ ◦ F−1; p̂ ∈ P̂} (5.8b)

dom(Σ) = {v = v̂ ◦ F−1; v̂ ∈ dom(Σ̂)} (5.8c)

∀v ∈ dom(Σ), ϕi(v) = ϕ̂i(v̂), 1 ≤ i ≤M, (5.8d)

is also a finite element of Lagrange.

Definition 5.1.4 Two finite elements of Lagrange (T̂ , P̂ , Σ̂ = {ϕ̂i; 1 ≤ i ≤ M}) and
(T, P,Σ = {ϕi; 1 ≤ i ≤ M}) are equivalents if there exists a bicontinuous bijective func-

tion F from T̂ to T such that (T, P,Σ) satisfy (5.8). If F is an affine transformation, we
say that they are affine-equivalents.
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Figure 5.1: Triangulation of the domain [−1, 1]× [−0.5, 0.5]\D((−0.5, 0), 0.2).

From the elements described above we realize that we can construct from the 2-simplex of

reference T̂ all the 2-simplex that we want and that these 2-simplex will be affine-equivalents
to the 2-simplex of reference.

Suppose the domain D has a polygonal boundary S, then we can cover the closure of D
(the union of D and S, denoted by D̄) by a triangulation, i.e.,

D̄ =
⋃

T∈T
T

and each T is a closed triangle where

• Every T ∈ T is a triangle.

• The interior of two different triangles are disjoint.

• Every face of a triangle is either the face of another triangle (in which case, they are
called adjacent) or a part of the boundary.

As an example, in Figure 5.1 we have a rectangular domain of boundary [−1, 1]× [−1, 1]
minus the disk of center (−0.5, 0) and radius 0.2, and triangulation approximation defined
on this domain.

For convention, Th denotes a triangulation of D̄ such that

h = max
T∈Th

hT ,

where hT is the diameter of the polygon T .

Suppose that for every polygon T of Th, there is associated a finite element of Lagrange
(T, PT ,Σ) such that

PT ⊆ H1(T ) ,
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and we define the finite dimensional spaces

Xh = {v ∈ C0(D̄) ; ∀T ∈ Th, v|T ∈ PT} (5.9)

X0h = {v ∈ Xh ; v|R = 0}. (5.10)

If (T, P,Σ) is a finite element of Lagrange, to any function v defined over T , we associate
the function Πv that P -interpolates v over T . The idea is to study an upper bound for the
interpolation error v − Πv with the norm H1(T ).

Let T be a compact of R2, connected and with non-empty interior. For simplicity we

denote Hm(T ) at the Sobolev space Hm(T̊ ) where T̊ is the interior of T .

Definition 5.1.5 Let T be a polygon on R2. A finite element (T, P,Σ) is called of class C0

if the two following conditions are satisfied:

1. P ⊆ C0(T ),

2. For every face T ′ of T , the set Σ′ = Σ ∩ T ′ is P ′-unisolvent where P ′ = {p|T ′; p ∈ P}

Definition 5.1.6 We call (Th) a family of regular triangulations of D̄ if the following four
conditions are satisfied:

1. All the finite elements (T, PT ,ΣT ) of every triangulation are affine-equivalents to the

same finite element of reference (T̂ , P̂ , Σ̂) of class C0.

2. For every pair (T̂ ′
1, T̂

′
2) of faces of T̂ and for every application F̂ affine invertible and

from R2 to R2 such that T̂ ′
2 = F̂ (T̂ ′

1), we have

σ̂ ∩ T̂ ′
2 = F̂ (σ̂ ∩ T̂ ′

1)

and
{p̂|K ′

2
; p̂ ∈ P̂} = {p ◦ F̂ |K ′

1
; p ∈ P̂}.

3. We have
h = max

T∈Th
hT → 0.

4. There exists a constant σ ≥ 1 such that

∀h, ∀T ∈ Th,
hT
ρT

≤ σ.

Theorem 5.1.2 Let D be an open polytope of Rd, d ≤ 3. Let (Th) be a family of regular

triangulations of D̄ associated to a finite element of reference (T̂ , P̂ , Σ̂) of class C0. We
suppose that there exists an integer k ≥ 1 such that

Pk ⊆ P̂ ⊆ H1(K̂)
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Then the finite element method is convergent, i.e. the solution uh of the problem (VPh)
converges to the solution of (VP) in H1(D):

lim
h→0

‖u− uh‖1,D = 0.

There exists a constant C independent of h such that if the solution belongs to the Sobolev
space Hk+1(D)

‖u− uh‖1,D ≤ Chk‖u‖k+1,D.

5.2 Examples of applications

1.- Gathering in Wireless Sensor Networks

Suppose that we want to protect a land for growing crops from an external threat such as
forest fire. We deploy uniformly a large quantity of sensor nodes over the land and we want
to give a description of the flow according to this setting and a description of the arrival of
the new information that is coming from the sensor nodes which are on the boundary of the
land. As we are considering an external threat we consider that only the external nodes are
going to generate information and the interior nodes are going to serve only as relay nodes.

We suppose that the generation of information can be approximated by σ = 1 for every
sensor node in the boundary. We also consider that the center of analysis of information is
located inside the domain and for simplicity we suppose that it can be modeled as a closed
set with non-empty interior.

We suppose that our land can be modeled by the rectangle [−1, 1]× [−0.5, 0.5] and the
center of analysis of information is located at the point (−0.5, 0). If we suppose that we
distribute uniform over the whole network, then it is reasonable to assume that if the land
doesn’t have other environmental problems the cost of the network will be uniform and for
simplicity we consider c = 1.

After using the model explained in the previous section the direction of the flow of
information can be described by the red lines in Figure 5.2.

2.- Dafermos Example

We consider a rectangular domain [−1, 1] × [−0.5, 0.5]. Following the paper of Dafer-
mos [29] we impose that the value of the flow in the boundary is uniform and equal to 1 in
the vertical left boundary and in the horizontal lower boundary.

We suppose that we distribution of the nodes inside the domain is uniform, then it
is reasonable to assume that if the land doesn’t have other environmental problems, the
transmission cost over the network is uniform and for simplicity we consider c = 1.

Then the description of the flow of information is given by the red lines in Figure 5.3.

3.- Example with obstacles

Once more, for simplicity we consider a rectangular domain but this time for problems
in the land we consider that some of the relay nodes can not be put in a specific area. We
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Figure 5.2: Solution for a wireless sensor network.
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Figure 5.3: Problem similar to Dafermos’ problem.
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Figure 5.4: When the domain considered is not simply connected.

suppose that the distribution of the nodes is uniform and we suppose that the cost of the
network will be uniform c = 1.

We consider that the domain is give by [−1, 1]× [−0.5, 0.5] and the hole is modeled as a
circle with center in (−0.5, 0) and radius 0.2.

Then the direction of the flow of information is given by the red lines in Figure 5.4.

5.3 Conclusions

In the present work we have used the Finite Element Method in solving the routing problem
in massively dense static ad-hoc networks. The node density in these massively dense systems
is approximated by a continuous area with costs depending on the location and the congestion
of the network.

The problem considered is that messages have to flow from a region O of the boundary S
of a domain D to a disjoint region R of S. The intensity of message generation on O is
given. In this framework we study the case of linear congestion cost per packet. We mention
a result from [61] on existence and uniqueness of the solution and present the stability of
this solution with respect to the initial flow.

Numerically we obtain via the Finite Element Method an approximation of the solu-
tion and prove a result of convergence and the velocity of convergence of this numerical
approximation to the exact solution.
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Notations

Some of the notations used in this chapter are currently used in the Partial Differential
Equations (PDE) community, but may not be well known in our community.

The functions in L1
loc(D), also called locally integrable functions, are the functions which

are integrable on any compact set of its domain of definition D .

The functions in L2(D) are the functions that are square integrable, i.e.

L2(D) =

{

f : D → R;

∫

D
‖f(x)‖2 dx < +∞

}

.

Note: The functions in L2(D), also belong to L1
loc(D).

The functions in Cc(D) are the continuous functions with compact support over D. The
functions in Ck(D) are the functions k times continuously differentiable over D (k ≥ 0).

The function in C∞(D) =
⋂

k≥0

Ck are the functions for which all its derivatives are differ-

entiable over D.

The function in C∞
c = C∞ ∩ Cc(D) are the functions with compact support over D for

which all its derivatives are differentiable over D.

Given a function u ∈ C1(D) and a function ϕ ∈ C∞
c , using the integration by parts

formula we obtain
∫

D
u
∂ϕ

∂xi
dx = −

∫

D

∂u

∂xi
ϕdx ∀i = 1, 2. (5.11)

There are no boundary terms, since ϕ has compact support in D and thus vanishes near
the boundary ∂D. The left hand side of equation (5.11) makes sense even if u ∈ L1

loc(D).

However, the expression ∂u
∂xi

on the right hand side doesn’t have a meaning. Then in Partial

Differential Equations people work with a concept called weak partial derivative.

Definition 5.3.1 Suppose u, v ∈ L1
loc(D). We say that v is the weak partial derivative of u,

written v = Du provided

∫

D
u
∂ϕ

∂xi
= −

∫

D
viϕ ∀ϕ ∈ C∞

c (D) ∀i = 1, 2.

The functions in H1(D) are the functions that are square integrable and whose weak
partial derivative is also square integrable.

H1(D) =
{

u ∈ L2(D);Du ∈ L2(D)

For more information about the motivation to work on these spaces consult chapter VIII
and IX of the book on Functional Analysis [62].



Chapter 6

Magnetworks: Mobility of the Nodes

In this chapter, we modelize and analyze mobile ad hoc networks. The mobility of the
nodes in this type of network is not a negligible fact. Recall that to determine, at each
stage of the route, to which node forward data is made dynamically based on the network
connectivity. Consequently, in the presence of mobility, traditional routing schemes meant
for wired networks are not appropriate for a mobile ad hoc environment. Because of this,
one of the most challenging problems in the performance analysis of this type of networks
has been the routing problem.

6.1 Introduction

In this chapter, we are mainly interested on the mobility issue on mobile ad hoc networks. In
recent years, the idea of designing wireless networks where mobile terminals would themselves
serve as relay nodes and route communications in a completely descentralized and self-
organized fashion has generated a lot of interest. The growth of laptops and 802.11 wireless
networking have made mobile ad hoc networks an increasingly popular research topic since
the mid- to late 1990s, for the potential possibility to communicate between mobile terminals
without the need of access points or base stations. There has been a particular interest in
the application of this type of network in other situations. For example:

• Vehicular Ad Hoc Networks (VANETs), used for communication among vehicles and
between vehicles and roadside equipment. This could give safety and comfort for
passengers by providing collision warnings, road sign alarms and in-place traffic view
to decide the best path along the road.

• Disruption-Tolerant Networking (DTN) that address the technical issues involving het-
erogeneous networks that may lack continuous network connectivity. The disruption
may occur because of the limits of wireless radio range, energy resources, attack, and
noise. One of many applications could be to upgrade the operating system of laptops
or mobile phones without ever connecting to the Internet by simply being near another
mobile terminal who has an updated version.

71
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There has been as well industrial applications for mobile ad hoc networks. For example,
the Swedish company TerraNet AB presented in 2007 a mesh network of mobile phones
that allowed calls and data to be routed between participating handsets, without the need
for a mobile phone base station [63]. Another example is the US non profit organization
One Laptop per Child (OLPC) program. This program make use of IEEE 802.11s based ad
hoc wireless mesh networking chip to create an affordable educational device for use in the
developing world where the set of laptops establish a mobile ad hoc network [64]. In order
to analyze the continuous approximation problem for this type of network, we first need to
redefine some terms used in the context of static wireless ad hoc networks to mobile ad hoc
networks.

In mobile ad hoc networks, the information density function ρ, the traffic flow func-
tion T, and the node density function η, previously defined, may depend on time, i.e.,
ρ = ρ(x, t), T = T(x, t), and η = η(x, t). We consider the routing problem within a time
window t ∈ [ti, tf) where ti is the initial time and tf is the final time. By analogy with
Electromagnetism, we define the continuous node current J as the density of nodes ρ(x, t)
in the position x multiplied by the nodes average drift velocity v(x, t), i.e.,

J = ρ(x, t)v(x, t).

The rate at which nodes leaves an area (or volume) V , bounded by a curve (or surface) S,
is given by the following expression:

∮

S

J · dS. (6.1)

Since the information density function is conserved in the plane this integral must be equal
to

∮

S

J · dS = − d

dt

∮

S

ρ · n dS = −
∫

V

∂ρ

∂t
dV. (6.2)

From the divergence theorem and imposing the equality between the equations (6.1) and
(6.2), we obtain the equivalent to Kirchhoff’s current law:

∇ · J+
∂ρ

∂t
= 0.

Notice as well that
∇ · J = ∇ · (ρv) = v · ∇ρ+ ρ∇ · v.

We assume that we know the initial distribution of the sources and the destinations at time 0
denoted by ρ0. Thus we obtain the following transport equation (TE):

(TE)

{

∂ρ
∂t

+ v · ∇ρ+ ρ∇ · v = 0 in D × (0, T )
ρ(0) = ρ0 on D × {0}.

The previous system of equations is known as the linear transport equation with initial
condition for which a known solution (see Proposition II.1 of [65]) exists. A solution can be
easily found in numerical softwares such as Matlab (PDE toolbox), Octave (PDE toolbox),
or others.
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Notice that given the initial distribution of the sources and destinations and the velocity
of these distributions, we are able to compute the evolution of sources and destinations
distributions over time t ∈ [ti, tf ). The velocity of sources and destinations may be estimated
by having some previous knowledge about the behavior of these sources and destinations in
our network such as, for example, measuring day-to-day variability in its travel behavior
using GPS data, or by statistical inference.

In this chapter, our objective is to minimize the number of relay nodes N(D) in the grid
area network D needed to support the information created by the distribution of sources
and received by the distribution of destinations. This should be done subject to the flow
conservation condition, and knowing that the distribution of mobile sources and mobile
destinations is the solution to the system of equations (TE). Thus our problem reads for all
t ∈ [ti, tf )

Min N(D, t) =

∫

D

η(x, t) dx =

∫

D

‖T(x, t)‖2 dx (6.3)

subject to ∇ ·T(x, t) = ρ(x, t) in D, (6.4a)

T · n = 0 on S. (6.4b)

where ρ(x, t) is the solution to the problem (TE).

We recall that Tassiulas and Toumpis proved in [48] that among all traffic flow functions
that satisfy equation (6.4a), the one that minimizes the number of nodes needed to support
the network, must satisfy

∇×T = 0. (6.5)

Using Helmholtz’s theorem (also known as fundamental theorem of vector calculus) to last
equation (6.5) we conclude that there exists a scalar potential function ϕ such that

−∇ϕ = T. (6.6)

Replacing this function into the conservation equation (6.4a), we obtain that

−∆ϕ = ρ for all t ∈ [ti, tf). (6.7)

We impose that no information is leaving the considered region D in mean. This im-
plies that we are not considering the case where some of the nodes may leave the region.
In equation (6.4b) from equation (6.6), this condition translates into ∇ϕ · n = 0. From
equation (6.7) and the last condition, we obtain the following system

(LE)

{

−∆ϕ = ρ in D,
∇ϕ · n = 0 on S,

(6.8)

which is the Laplace equation with Neumann boundary conditions.

If the function f is square integrable then the Laplace equation with Neumann boundary
conditions has a unique solution1 in H1(D)/R.

1 As stated in the previous chapter there are many cases where the uniqueness of the solution to a
transportation problem does not hold.
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In summary, in order to solve our problem given by the equations (6.3), (6.4a), (6.4b),
and (TE) we need to:

1. Solve the system of equations (TE),

2. Put the solution as input into the system of equations (LE),

3. Solve the system of equations (LE).

In the following, we give an example of this resolution where you can get explicit solutions.

Example 6.1.1 We consider the one-dimensional case with ti = 0 and tf = 2 hours. We

consider an initial distribution of sources (denoted ρ+0 ) and an initial distribution of desti-
nations (denoted ρ−0 ) on the positive real line [0,+∞). We scale these distributions to be
probability distributions. They represent in each location the proportion of sources and the
proportion of destinations:

ρ+0 = k1e
−(x−3)2 and ρ−0 = −k2e−(x−10)2 ,

where k1 and k2 are normalization factors given by k1 = 2√
πerfc(−3)

, k2 = 2√
πerfc(−10)

, and

erfc(x) is the complementary error function defined as erfc(x) = 2√
π

∫ +∞
x

e−s
2
ds.

We consider that the nodes average drift velocity is given by v(x, t) = x. We can think,
as an example, of a highway where the cars are equipped with sensors and while they are
advancing on the highway they can go faster as they advance.

1.- We first need to solve the transportation equation system (TE), that in our example
reads

{

∂ρ
∂t

+ ∂(xρ)
∂x

= 0 on R+ × [0, T ),
ρ(0) = ρ+0 + ρ−0 on R+.

Using the method of characteristics we obtain that the information density function over
time is given by ρ(x, t) = ρ+(x, t) + ρ−(x, t) where

{

ρ+(x, t) = k1e
−(xe−t−3)2−t,

ρ−(x, t) = −k2e−(xe−t−10)2−t.

The solution combining the sources and destinations information density function over
time are showed in Fig. 6.1.

2.- We use the above solution as input into the system of equations (LE). From the
conservation equation we obtain

∂T (x, t)

∂x
=
∂T+(x, t)

∂x
+
∂T−(x, t)

∂x

where
∂T+(x, t)

∂x
= ρ+ and

∂T−(x, t)

∂x
= −ρ−,
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Figure 6.1: Distribution of the sources and destinations in the same line over time [0, 2] hours.

The initial proportion of sources and destinations is given by ρ+0 = k1e
−(x−3)2 and ρ−0 =

−k2e−(x−10)2 , with average drift velocity v(x, t) = x.

with initial condition that the flow is zero at the boundary point zero, i.e. T (0, t) = 0.

3.- We solve the Laplacian system of equations: Then the optimal traffic flow function is
given by T ∗(x, t) = T+(x, t) + T−(x, t) where

{

T+(x, t) =
∫ x

0
k1e

−(xe−t−3)2−t dx

T−(x, t) = −
∫ x

0
k2e

−(xe−t−10)2−t dx.

Thus the minimal number of active relay nodes needed to support the optimal flow at
every time t will be given by

N∗(t) =

∫ +∞

0

‖T ∗(x, t)‖2 dx

which can be solved numerically.

In next section we present another type of mobility model where we consider the ran-
domness in the mobility of the users.

6.2 Brownian mobility model

One of the most used mobility models used in networks is the Random Walk Mobility Model
also known as the Brownian Mobility Model (see the survey [66] and the references therein).

If we have previous knowledge about the velocity drift of the distribution of information
created at the sources (denoted ρ+) and/or the distribution of information received at the
destinations (denoted ρ−), and we assume the Brownian mobility model, then the distribu-
tion of sources and/or the distribution of the destinations evolves according to the stochastic
differential equation

dρ+(t) = v+(x, t) dt+ σ+(x, t) dW
+(t)
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Figure 6.2: Optimal traffic flow over time [0, 2] hours. The initial proportion of sources

and destinations is given by ρ+0 = k1e
−(x−3)2 and ρ−0 = −k2e−(x−10)2 , with average drift

velocity v(x, t) = x.
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Figure 6.3: Optimal relay node distribution over time [0, 2] hours. The initial proportion of

sources and destinations is given by ρ+0 = k1e
−(x−3)2 and ρ−0 = −k2e−(x−10)2 , with average

drift velocity v(x, t) = x.
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and/or dρ−(t) = v−(x, t) dt+ σ−(x, t) dW
−(t),

where W+(t) and W−(t) are two independent Brownian motions with values in X × Y
and the variance of the Brownian motions for sources and destinations, σ+ := σ+(x, t) and
σ− := σ−(x, t), are parameters of the model.

Assume as in the previous case that we know the initial distribution of the information
created at the sources. Then by using Itô’s lemma [67], ρ+ evolves in time by the Kolmogorov
Forward Equation

∂

∂s
p(x, s) = − ∂

∂x
[v+(x, s)p(x, s)] +

1

2

∂2

∂x2
[σ2

+p(x, s)],

for s ≥ 0, with initial condition p(x, 0) = ρ+(x). Equivalently, the initial distribution of the
destinations evolves in time by the Kolmogorov Forward Equation

∂

∂s
p(x, s) = − ∂

∂x
[v−(x, s)p(x, s)] +

1

2

∂2

∂x2
[σ2

−p(x, s)].

for s ∈ [ti, tf ), with initial condition p(x, ti) = ρ−(x).

6.3 Optimization over time

Notice that the minimization problem we solve does not really consider the interaction on
time because the problem describes the motion of sources and destinations nodes in the
space and then we solve the static problem at each time.

The problem solved at each time may not be optimal in the whole period of time con-
sidered. Another more realistic problem would be to minimize the quantity of nodes used in
the whole network during a fixed period of time [ti, tf ], i.e.,

Min

∫ tf

ti

N(D, t) dt =

∫ tf

ti

∫

D

η(x, t) dx =

=

∫ tf

ti

∫

D

‖T(x, t)‖2 dx

where N(D, t) is the number of active relay nodes in the network D at time t, subject
to (6.4a), (6.4b), and (TE).

For the case that we have randomness in the system, this problem is given as

Min

∫ tf

ti

E{N(D, t)} dt =
∫ tf

ti

∫

D

E
{

‖T(x, t)‖2
}

dx (6.9)

subject to (6.4a), (6.4b), and (TE) since D is compact. From the work of Santambrogio ([68],
page 6) we have the following result: The problem

Min

∫

D

k(x)‖T(x)‖ dx such that ∇ ·T = µ− ν,
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is equivalent by duality to the problem of finding

Min

∫

D×D
dk(x, y) dγ such that γ ∈ Π(µ, ν) where

dk(x, y) = inf
{ω :ω(0)=x,

ω(1)=y}

Lk(ω) :=

∫ 1

0

k(ω(t))‖ω′(t)‖ dt.

and Π(µ, ν) is the set of probability distributions with marginals µ and ν. In our case k(x) = ‖T(x)‖
such that

Lk(ω) =

∫ 1

0

‖T(ω(t))‖‖ω′(t)‖ dt.

Given that ω(0) = x, and ω(1) = y then by change of variables Lk(ω) =
∫ y

x
‖T(x)‖ dx, and

as it is independent of ω then dk(x, y) =
∫ y

x
‖T(x)‖ dx.

Example 6.3.1 For the case where we do not have previous knowledge about the velocity
drift then we just consider the standard Brownian mobility model given by

dρ+(t) = σ+(x, t) dW
+(t),

and/or
dρ−(t) = σ−(x, t) dW

−(t),

where W+(t) and W−(t) are two independent Brownian motions with values in X × Y .

Then, the previous equations translate into

∂

∂s
p(x, s) = +

1

2

∂2

∂x2
[σ2

+(x, s)p(x, s)],

∂

∂s
p(x, s) = +

1

2

∂2

∂x2
[σ2

−(x, s)p(x, s)],

which have as solution the following equations

ρ+(x, t) =
1√

2πtσ+
e−

x2

2tσ+ ,

ρ−(x, t) =
1√

2πtσ−
e−

x2

2tσ− .

Now we can replace this solution into Step 2 and Step 3.

Remark 6.3.1 Notice that if we suppose that the distribution of the destinations is fixed, as
it will be the case for aggregation centers of information, then σ− = 0 and then ρ−(x, t) = ρ−

for all time t.
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Chapter 7

Capacity of Massively Dense
Networks with MIMO capabilities

7.1 Introduction

More than sixty years ago, Shannon [69] provided a mathematical framework to analyze
fundamental limits of information transfer for the case of single-input and single-output
channels. He introduced the channel capacity as the maximum rate at which information
can be reliably transmitted through the channel. From a purely theoretical point of view,
there is no bound on the capacity as both bandwidth and power can be arbitrarily high.
However, in practice, we can only transmit with finite power and over a restricted frequency
band for physical and regulatory reasons. Recently, multiple-input and multiple-output
(MIMO) systems have been extensively studied since significant growth in terms of capacity
has been predicted (see e.g. [70, 71]). More specifically, in a system with nT transmit
and nR receive antennas the capacity scales linearly with min{nT, nR} for independent and
identically distributed (i.i.d.) Gaussian channels, at high signal-to-noise ratio (SNR). Again,
MIMO systems suggest that the capacity can increase to infinity if the number of antennas
grows large at both the transmitter and the receiver.

One possible alternative to achieve the capacity of MIMO systems from conventional
SISO systems is through cooperation between mobile devices. These systems are known
as network MIMO systems, distributed MIMO systems, or virtual antenna array systems.
Mobile devices use the partnered mobile device’s antenna as virtual antennas.

Recent works [72] have shown that the capacity, even for an increasing number of (virtual)
antennas, is limited by the density of scatterers in the environment. In other words, the
number of antennas should be less than the number of degrees of freedom (modes) provided
by the channel. The goal of this chapter is to show that, even when the channel offers
an infinite number of modes, the capacity is mainly limited by the ratio between the size
of the antenna array at the base station and at the mobile terminal and the wavelength,
which we call the space frontier. Indeed, in general, for a given space, increasing nT or nR

decreases the relative distances between the antennas. Once the distance is less than half
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the transmit signal wavelength λ the antennas become correlated [73] and the capacity does
not grow linearly anymore. In case of a circular antenna array, it has been demonstrated by
Pollock [74] that the capacity saturates if the number of antennas increases. In this work,
we aim to extend Pollock’s contribution to one- and two-dimensional antenna arrays. We
study the capacity limits of Network MIMO channels as well as of MIMO Gaussian broadcast
channels (MIMO-GBC) with linear precoding. In the latter, we assume a single transmitter
modeled as a dense line of antennas which transmits to many independent single-antenna
receivers. The general capacity solutions for those schemes are mathematically involved [75]
and require the application of results from random matrix theory and free probability [76].

7.2 Random matrix theory tools

Since the pioneering work of Wigner [77] on the asymptotic empirical eigenvalue distribution
of random Hermitian matrices, random matrix theory has grown into a new field of research
in theoretical physics and applied probability. The main application to communications
lies in the derivation of asymptotic results for large matrices. Specifically, the eigenvalue
distribution of large Hermitian matrices converges, in many practical cases, to a definite
probability distribution, called empirical distribution. For instance, if X ∈ M(C, N, L) is a
N×K Gaussianmatrix (i.e. a matrix with Gaussian i.i.d. entries), the eigenvalue distribution
of the matrix 1

L
XXH is known to converge, when N,L → ∞ and N/L → c, towards the

Marc̆henko-Pastur law µc [76]. Random Matrix Theory provides many tools to handle the
empirical distribution of large random matrices. Among those tools, the Stieltjes transform
SX of a large Hermitian matrix X, defined on the half complex space {z ∈ C, Im(z) > 0}, is

SX(z) =

∫ +∞

−∞

1

λ− z
f(λ)dλ (7.1)

where f is the empirical distribution of eigenvalues of X.

Silverstein [78] derived a fixed-point expression of the Stieltjes transform for a particular
random matrix structure in the following theorem,

Theorem 7.2.1 Let the entries of the N × K matrix W be i.i.d. with zero mean and
variance 1/N . Let X be an N × N Hermitian random matrix with an empirical eigenvalue
distribution function converging weakly to PX(x) almost surely. Moreover, let Y be a K×K
real diagonal random matrix with an empirical distribution function converging almost surely
in distribution to a probability distribution function PY(x) as K → ∞. Then almost surely,
the empirical eigenvalue distribution of the random matrix:

H = X+WYWH (7.2)

converges weakly, as K,N → ∞ but K/N → α fixed, to the unique distribution function
whose Stieltjes transform satisfies:

SH(z) = SX

(

z − α

∫

y

1 + ySH(z)
dPY(y)

)

(7.3)
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This theorem is generalized by Girko [79] who derived a fixed-point equation for the
Stieltjes transform of large Hermitian matrices H = WWH when H has independent entries
wij with variance σ2

ij/N such that the set
{

σ2
ij

}

i,j
is uniformly upper-bounded. In the

following, we will extensively use this result to derive the asymptotic network MIMO capacity.

7.3 Fundamental capacity limits

7.3.1 Massively dense network MIMO capacity

We first consider a network MIMO system with nT virtual transmit antennas (one for each
base station) and nR virtual receive antennas (one for each mobile terminal). The linear
transmission model is

y =

√

SNR

nT

Hx+ n (7.4)

with transmit vector of signals sent by the base station x ∈ CnT , receive vector y ∈ CnR

and channel H ∈ M(C, nR, nT). The noise vector n has independent circularly symmetric
standard Gaussian entries and SNR is the average Signal-to-Noise-Ratio.

Let the elements of the transmit vector x be Gaussian with covariance matrix E[xxH] = Φ.
The ergodic achievable rate per sub-channel per cell is given by [69]

C(nR, nT) = E

[

log det

(

InR
+

SNR

nT
HΦH

H

)]

(7.5)

Following Jakes’ model [80], the spatial autocorrelation functions of fading processes h1
and h2 experienced by two antennas separated by distance d reads

E[h1h
∗
2] = J0(2πd/λ) (7.6)

where λ = c/fc denotes the transmit signal wavelength and J0(x) is the zero-order Bessel
function of the first kind. Thus, by placing several virtual antennas in close proximity their
signals tend to be, to some extent, correlated. The correlation function of Jakes’ model is
depicted in figure 7.1.

In [74], Pollock et al. considered an increasing number of antennas distributed on a
uniform circular array of fixed radius. By using bounds on the Bessel function, Pollock
derived an approximation of the channel capacity and shows that the capacity bound is
independent of (nR, nT). In the following, we will extend these results using Random Matrix
Theory. For a given β ∈ R+, we will consider that nT/nR → β when nT and nR grow large.
The entries of H represent the fading coefficients between each transmit and each receive
antenna normalized such that

E
[

tr
(

HHH
)]

= nRnT (7.7)

while
E[‖x‖2] = nT (7.8)
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Figure 7.1: Spatial correlation vs. d/λ

It is useful to decompose the input covariance matrix Φ = E[xxH] in its eigenvectors and
eigenvalues,

Φ = VPVH (7.9)

According to the maximum entropy principle [81], the most appropriate density function
for H, given nR, nT, l and λ, is the classical separable (also termed Kronecker or product)
correlation model [82]

H = Θ
1/2
R

HwΘ
1/2
T

(7.10)

where the deterministic matrices ΘT and ΘR represent the correlation between the virtual
transmit antennas and the virtual receive antennas, respectively. The entries of Hw are i.i.d.
standard Gaussian. With statistical channel state information at the transmitter (CSIT),
capacity is achieved if the eigenvectors of the input covariance Φ coincide with those of
ΘT. Consequently, denoting ΛT and ΛR the diagonal eigenvalue matrices of ΘT and ΘR

respectively we have

C(β,SNR) = lim
nT→∞

log det

(

I+
SNR

nT
Λ

1/2
R

HwΛ
1/2
T

PΛ
1/2
T

H
H

wΛ
1/2
R

)

(7.11)

As a direct consequence of theorem 7.2.1:

Theorem 7.3.1 [83] The capacity of a Rayleigh-faded channel with separable transmit and
receive correlation matrices ΘT and ΘR and statistical CSIT almost surely converges to

C(β, SNR)
nR

→βE[log(1 + SNR · λTS(SNR))]

+ E[log(1 + SNR · λRΥ(SNR))]

− β · SNR · S(SNR)Υ(SNR) log e (7.12)
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Figure 7.2: One-dimensional antenna array geometry

where

S(SNR) =
1

β
E

[

λR
1 + SNR · λRΥ(SNR)

]

(7.13)

Υ(SNR) = E

[

λT
1 + SNR · λTS(SNR)

]

(7.14)

and the dumb random variables λR, λT are asymptotically distributed as the diagonal ele-
ments of ΛR and PΛT respectively.

7.3.2 Impact of base station geometry and correlation

One-dimensional setup

The antenna setup is depicted in figure 7.2. We consider two uniform linear antenna arrays
of length l placed at a distance L. The transmit and receive array is equipped with nT and
nR antennas, respectively. The correlation matrices ΘT and ΘR have the same form and
read













1 J0(
2π
λ

l
N−1

) J0(
2π
λ

2l
N−1

) . . . J0(
2π
λ

(N−1)l
N−1

)

J0(
2π
λ

l
N−1

) 1 J0(
2π
λ

l
N−1

) . . . J0(
2π
λ

(N−2)l
N−1

)

J0(
2π
λ

2l
N−1

) J0(
2π
λ

l
N−1

) 1 . . .
...

...
...

...
. . .

...

J0(
2π
λ

(N−1)l
N−1

) J0(
2π
λ

(N−2)l
N−1

) . . . . . . 1













(7.15)

with N equal to nT, nR for ΘT, ΘR, respectively. The normalized matrices 1
nR

ΘR and
1
nT

ΘT are Wiener class Toeplitz matrices [84], i.e.

lim
N→∞

1

N

N
∑

k=1

| [Θ]1,k | <∞ (7.16)



86

There is no exact expression for the eigenvalues like in the case of a circulant matrix. How-
ever, for large (nR, nT) the eigenvalue distribution of a Wiener class Toeplitz matrix con-
verges to that of the circulant matrix, both with the same first row [84]. The set of the
eigenvalues of 1

nR

ΘR and 1
nT

ΘT for large (nR, nT) is the image of the function

F1 : N → R

n 7→ lim
N→∞

1

N

N−1
∑

p=−(N−1)

J0

(

2πl

λ

p

N − 1

)

cos(2πn
p

N
) (7.17)

= 2

∫ 1

−1

J0

(

2πl

λ
x

)

cos(2πnx)dx (7.18)

Since F (N) is a discrete countable set (and not a continuum), the limit eigenvalue distribution
of ΘT and ΘR is a sum of Dirac functions

pν(ν) = lim
N→∞

1

N

N
∑

k=0

δ (ν −N · F1(k)) (7.19)

At this point it is important to note that the cumulated surface of both virtual antenna
arrays must be constant regardless of nR and nT. Hence increasing the number of antennas
must lead to a reduction of the individual antenna surface. As a result, the power per receive
antenna must scale with 1/nR, hence

SNR =
SNR′

nR

(7.20)

for a constant total SNR SNR′. We first consider the case where no CSIT is available, hence
a uniform power allocation over the transmit antennas is optimal (i.e. P = InT

). Applying
Theorem 7.3.1 and expanding the expectations for large (nR, nT), we have

C(β, SNR′) =βnR

1

nT

nT
∑

k=0

log(1 +
ρ′

nR
nTF1(k)S) + nR

1

nR

nR
∑

k=0

log(1 +
ρ′

nR
nRF1(k)Υ)

− nRβ · SNR
′

nR
· S(SNR′)Υ(SNR′) log(e) (7.21)

with

S(SNR′) =
1

βnR

nR
∑

k=0

nRF1(k)

1 + SNR′F1(k)Υ
and Υ(SNR′) =

1

nT

nT
∑

k=0

nTF1(k)

1 + SNR′βF1(k)S
(7.22)

In the limit, this becomes

C(β, SNR′) →
+∞
∑

k=0

log(1 + SNR′βF1(k)S) +
+∞
∑

k=0

log(1 + SNR′F1(k)Υ)

− βSNR′S(SNR′)Υ(SNR′) log(e) (7.23)
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with

S(SNR′) =
1

β

+∞
∑

k=0

F1(k)

1 + SNR′F1(k)Υ
(7.24)

Υ(SNR′) =
+∞
∑

k=0

F1(k)

1 + SNR′βF1(k)S
(7.25)

where ∀k ∈ N, F1(k) ≥ 0 as they are eigenvalues of a covariance matrix. Also
∑+∞

k=0 F1(k) =
1
nR

tr(ΘR) = 1. This implies that S and Υ are finite and therefore the total capacity C is

also finite.

Further note that (7.19) only depends on the system parameters through the ratio l/λ.
This leads to the conclusion that the network MIMO capacity limit depends only on the
ratio l/λ and β when CSIT is absent.

Consider now the case of perfect CSIT. Here, it is optimal to distribute the power ac-
cording to the water-filling solution [85]. That is, only sufficiently strong eigenmodes of the
channel (7.10) are used for transmission. If we allocate the power constrained by (7.8) on

the dominating channel eigenmodes (i.e. the relevant eigenvalues of 1
nT

Θ
1/2
R

HwΘTH
H

wΘ
1/2
R

),

then for large nT, the capacity grows unbounded. As a result, increasing the number of
antennas at either side of the transmission allows to achieve arbitrarily high capacity under
the assumption of perfect CSIT.

Two-dimensional setup

The previous scheme can be extended to a surface area. We now increase the density of
virtual antennas uniformly along each dimension of the surface. Consider a rectangular
surface of respective height and width lx and ly. Then, equation (7.19) has an equivalent
version in two dimensions,

pν(ν) = lim
N→∞

1

N

N
∑

k=0

δ(ν −N · F2(k)) (7.26)

with

F2(k) =2

∫ lx

−lx

∫ ly

−ly
J0





2πlx
λ

√

u2x +

(

ly
lx

)2

u2y





× cos(2πν(ux + uy))duxduy (7.27)

From (7.26), one verifies that the final capacity formulation depends on the two constant
values lx/λ and lx/ly, or similarly on the two ratios lx/λ and ly/λ. Note that the capacity
for a given surface might then differ depending on the shape of the surface.
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7.3.3 MIMO-GBC capacity

We assume a GBC generated by a base station with multiple antennas and many non-
cooperative single-antenna receivers. It has been shown in [86] that the capacity region
is achieved by dirty-paper coding (DPC). However, to derive closed-form expressions, we
restrict our analysis in the following to suboptimal linear precoding techniques. As the
receivers are uncorrelated, the GBC channel model is

H = HwΘ
1/2
T

(7.28)

and the transmitted signal x is obtained by

x = Gu (7.29)

where the symbol vector u ∈ CnR has unit power, and G ∈ M(C, nT, nR).

ZF-beamforming

Zero-Forcing (ZF) beamforming is a mere channel inversion precoding. With the same
notation as in previous sections, the channel model reads

y =

√

SNR

nT

Hx+ n (7.30)

with

x =

{

αH′−1u , if β = 1

α
(

H′HH′
)−1

H′Hu , if β > 1
(7.31)

for H′ =
√

1
nT

H. The parameter α is set to fulfill the transmission power constraint (7.8)

which leads to

α2 =
1

1
nT

tr (H′H′H)−1 (7.32)

where

1

nT

tr
(

H′H′H
)−1

→
∫

1

ν
f(ν)dν (7.33)

with f the empirical distribution of H′H′H. We recognize in (7.33) the Stieltjes transform
of f(x) in x = 0.

To the authors’ knowledge, in contrast to [87] where no power limitation is imposed on
x, no asymptotic expression for α is known when (nR, nT) grow large.

Recall that HHH = HwΘTH
H

w. Thus by diagonalizing ΘT = VΛTV
H with unitary

matrix V, we have

H′H′H =

(

1√
nT

HwV

)

ΛT

(

1√
nT

VHHH

w

)

(7.34)
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where the entries of 1√
nT

HwV are i.i.d. with zero mean and variance 1
nT

, andΛT is distributed

as in (7.19). Applying theorem 7.2.1, we prove the existence of S
H′H′H , when nT/nR → β,

that satisfies

S
H′H′H(z) =

(

−z + β

∫

νpν(ν)

1 + ν · S
H′H′H(z)

dν

)−1

(7.35)

Expanding x according to (7.4), one obtains parallel non-interfering channels with the per-
user capacity

Cu(β, SNR) = log(1 + SNRα2) (7.36)

= log(1 + SNRSH′H′H(0)−1) (7.37)

In our specific correlation scenario, this capacity limit is in fact zero. Indeed, if nT = nR we
have

1

nT

tr
(

H′H′H)−1
=

1

nT

tr
(

(H̃H

wH̃w)
−1Λ−1

T

)

(7.38)

where H̃w = HwV is a Gaussian random matrix with entries of variance 1/nT.

Lemma 7.3.1 For any two Hermitian n×n matrices A and B with eigenvalues λi(A) and
λi(B) respectively arranged in decreasing order,

tr(AB) ≥
n
∑

i=1

λi(A)λn−i+1(B) (7.39)

From lemma 7.3.1, we have

tr
(

(H̃H

wH̃w)
−1Λ−1

T

)

≥
nR
∑

i=1

λi((H̃
H

wH̃w)
−1)λn−i+1(Λ

−1
T
) (7.40)

The eigenvalues of H̃H

wH̃w are known [76] to be asymptotically distributed as the Marc̆henko-
Pastur law on a bounded (positive) support excluding zero. Therefore the eigenvalues of

(H̃H

wH̃w)
−1 are also bounded on a finite positive support. Denote λmin the minimum of those

eigenvalues, we have

tr
(

(H̃H

wH̃w)
−1Λ−1

T

)

≥ λmin

nR
∑

i=1

λi(Λ
−1
T
) (7.41)

Observing that

λnR
(ΛT) =

nR−1
∑

p=−(nR−1)

J0

(

2πl

λ

p

nR − 1

)

cos(2π
p

N
) → 0 (7.42)

we conclude

tr
(

(H̃H

wH̃w)
−1Λ−1

T

)

→ +∞ (7.43)

Therefore, α2 → 0 and the ZF capacity goes to zero for increasing (nR, nT) and β = 1. The

case nT > nR can be solved by dividing H̃w in a two blocks of size nR×nR and (nT−nR)×nR

where the capacity limit for the former already grows to infinity.
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MMSE-beamforming

Let us consider regularized ZF-beamforming. The system model in (7.30) becomes

x =
(

H′HH′ + αInT

)−1

H′Hu (7.44)

When α = 0, we fall back the ZF solution. The parameter α is set so to fulfill the transmission
power constraint (7.8) which leads to

1 =
1

nT

tr

(

(

H′HH′ + αI
)−1

H′HH′
(

H′HH′ + αI
)−1
)

(7.45)

=
1

nT

tr

(

(

H′HH′ + αI
)−2

H′HH′
)

(7.46)

→
∫

ν

(ν + α)2
f(ν)dν (7.47)

=

∫
(

1

(ν + α)
− α

(ν + α)2

)

f(ν)dν (7.48)

= S
H′H′H(−α) + α

d

dx
S
H′H′H(−α) (7.49)

The received signal can be written as

y =
√
ρ ·H′

(

H′HH+ αI
)−1

H′Hu+ n (7.50)

Let us denote H′H = [h1, . . . ,hnR
]. We will focus on user i without loss of generality. The

received symbol of user i is

yi =
√
ρ · hH

i

(

H′HH′ + αI
)−1

hiui

+

nR
∑

k=1,k 6=i
hH

i

(

H′HH′ + αI
)−1

hkuk

+ n (7.51)

Lemma 7.3.2 [88] Let A be a deterministic N ×N complex matrix with uniformly bounded
spectral radius for all N . Let x = 1√

N
[x1, . . . , xN ]

T where the {xi} are i.i.d complex random

variables with zero mean, unit variance and finite eighth moment. Then

E

[

| xHAx− 1

N
trA |4

]

≤ c

N2
(7.52)

where c is a constant that does not depend on N or A.
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Corollary 7.3.1 This result ensures that

xHAx− 1

N
trA → 0 (7.53)

almost surely.

Henceforth we write UH

i = [h1, . . . ,hi−1,hi+1, . . . ,hnR
] (in other words, we remove column

i). Applying the matrix inversion lemma yields

hH

i

(

H′HH′ + αI
)−1

=
hH

i

(

UH

i Ui + αI
)−1

1 + hH

i

(

UH

i Ui + αI
)−1

hi

As the elements of hi are i.i.d. (due to the one sided correlation assumption), we can use
lemma 7.3.2

hH

i

(

H′HH′ + αI
)−1

hi →
1

nT

tr
(

H′HH′
)

(7.54)

Asymptotically, the removal of a single column in the large matrix H′ does not affect

tr(H′HH′), we have

hH

i

(

UH

i Ui + αI
)−1

hi → hH

i

(

H′HH′ + αI
)−1

hi (7.55)

hence

hH

i

(

H′HH′ + αI
)−1

→ hH

i

(

UH

i Ui + αI
)−1

1 + S
H′H′H(−α)
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(β, ρ) without CSIT for different l/λ, nR =

nT, SNR
′ = 20 dB



92

Denote γ = (1 + SHHH(−α))−2. The expression for the SINR is therefore given by

SINRi =
ργhH

i W
2
ihi

ργhH

i WiUH

i UiWihi + 1
(7.56)

with Wi =
(

UH

i Ui + αI
)−1

. In the limit this leads to a user-independent SINR

SINR →
ργS2

H′H′H(−α)
ργ
(

S
H′H′H(−α) + α d

dx
S
H′H′H(−α)

)

+ 1
(7.57)

The corresponding per-user capacity is

Cu(β, SNR) = log(1 + SINR) (7.58)

Diagonalizing UHU, we observe that the numerator in (7.56) converges to finite strictly
positive values (for the regularization term α ensures that no term diverges). However, as
already noted, the strongest eigenvalue of ΘT grows linearly with nT, hence, with to lemma
7.3.1, the denominator grows to infinite for large nT. This proves that the per-user capacity
goes to zero.

Hence, for large (nR, nT) the MMSE-beamforming algorithm yields zero per-user capac-
ity. Therefore both MMSE beamforming and ZF beamforming achieve asymptotically zero
per-user capacity.

As a consequence, it turns out that additional antennas might impair the achievable
transmission rate. This is explained by the fact that loading power on more and more
correlated antennas, instead of available channel modes, is an inefficient power allocation
strategy.

7.4 Network simulations and results

Let us first consider the network MIMO scenario with dense antenna arrays at both trans-
mitter and receiver side. Figures 7.3 and 7.4 present the results of ergodic capacities found
by numerical simulation.

CnR
(β, ρ) = nRE

[

log det

(

I+
SNR

nT

Λ
1/2
R

HwΛ
1/2
T PΛ

1/2
T H

H

wΛ
1/2
R

)]

In figure 7.3, we allocate equal power (i.e. P = InT
) to the transmit symbols. We observe,

as previously concluded, that the capacity saturates for large (nT, nR). In addition we
provide the theoretical limits derived from (7.11) (which are obtained by solving numerically
(7.24),(7.25)). Note that the capacity increases first to a maximum for small (nR, nT) and
then decreases to the capacity limit. In figure 7.4, we apply water-filling (i.e. loading the
transmit power on the dominant eigenmodes of the channel), which leads to a non-saturating
capacity.

Let us now consider the MIMO-GBC with uncorrelated transmitters/receivers and ZF-
beamforming. As has been shown in [87] the sum capacity is saturating if β = 1 and growing
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Figure 7.4: Ergodic Network MIMO capacity CnR
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linearly with nR when β > 1 which is in accordance with figure 7.6. From this figure we
further observe that the sum capacity is going to zero in case of correlation between the
transmit antennas. Figure 7.5 shows the corresponding per-user capacity.

In figures 7.7 and 7.8 we apply MMSE-beamforming. Since no closed-form solution for
α under the constraint (7.49) is available, the optimal α is found by exhaustive search.
We observe again that the per-user capacity is going asymptotically to zero, which is in
accordance with equations (7.57) and (7.58). The same observation can be made for the
sum capacity in figure 7.8. Both, the per-user capacity and the sum capacity are decreasing
less rapidly for large (nR, nT) than in the case of ZF-beamforming.

7.5 Discussion

A few limitations are worth mentioning about our previous conclusions. In the MIMO case
we stated that, with perfect CSIT, the channel capacity grows unbounded even with a strong
virtual antenna correlation at the transmitter side. This might indicate that densifying the
array of virtual transmit antennas is the preferred option to increase the capacity (rather
than increasing the transmitted power or the channel bandwidth). However, perfect CSIT
implies that the receiver has to feed back channel information to the transmitter (either
as pilot sequences or as directly quantized CSI). For a dense network MIMO system, this
introduces an enormous feedback overhead and is thus reducing the achievable throughput.

The same conclusion holds for channel state information at the receiver (CSIR). As Tse
demonstrated [89], the capacity with perfect CSIR is limited by the coherence time of the
channel. If the number of virtual antennas grows, one needs to estimate more and more
degrees of freedom with less power. An optimal trade-off must then be found between
increasing the number of antennas (and thus the capacity) and decreasing the amount of
channel state information required for reliable transmission. However, if the channel coher-
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nR

ence time is infinite and a long synchronization stage prior to data transmission is allowed,
then the channel capacity can effectively go unbounded. The only limitation that would
appear lies in the physical ability to design a dense array of virtual antennas on a limited
surface. In addition, a dense scattering environment is necessary to assure that the assumed
channel model is accurate.

7.6 Conclusions

In this work we analyzed the asymptotic capacity of the dense multiple antenna configu-
rations. For the network MIMO channel we have shown that in the absence of CSIT, the
capacity is bounded and related to the ratio between the size of the antenna array and the
transmit signal wavelength. The capacity grows unbounded if perfect CSIT is available. In
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case of the dense MIMO broadcast channel the per-user capacity goes asymptotically to zero
for ZF-beamforming as well as for MMSE-beamforming.
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Chapter 8

Mobile Association and Optimal
Placement of Base Stations

8.1 Introduction

We consider the case where intelligent mobile terminals capable of accessing multiple radio
access technologies will decide for themselves the wireless access technology to use and the
access point to which to connect. We consider that these capabilities should be taken into
account in the design and strategic planning of wireless networks. We also consider the
global optimization problem to minimize the total power of the network in the downlink and
in the uplink context.

We propose a new framework for mobile association problems using optimal transport
theory, a theory that has prove to be useful on many economical context [90], [91], [92],
as well as in the road traffic community [93]. There is a number of papers on “optimal
transport” (see [94], and reference therein) however the authors in [94] consider an optimal
selection of routes but do not use the rich theory of optimal transport. To the best of the
authors knowledge optimal transport theory has never been used in the telecommunication
community.

The remaining of this chapter is organized as follows. Section 8.2 presents the formulation
of the problem of minimizing the power under quality of service constraint from different
perspectives. In Section 8.3 we give some basics in optimal transport theory. We then
address the problem

• for the downlink case where we considered two different policies: round robin schedul-
ing policy (also known as time fair allocation policy) and rate fair allocation policy
which are defined in section 8.2 and studied precisely in sections 8.4 and 8.6 as well
as the fairness problem (detailed in section 8.5) with uniform and non-homogeneous
distribution of users, and

• for uplink case where we study the optimal cell association with uniform and non-
homogeneous distribution of users.
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In Section 8.8 we give numerical examples in both one dimensional and two-dimensional
mobile distribution. Section 8.9 concludes the paper.

8.2 The model

Consider a grid area network D with large number of mobile terminals distributed with
a square integrable distribution of λ(x, y) scaled so that

∫∫

D
λ(x, y) dx dy = 1. Then the

number of users in an area A will be N
(∫∫

A
λ(x, y)

)

where N is the total number of mobile
terminals.

Examples of the distribution of users λ(x, y):

1. If the users are distributed uniformly in the network, then λ(x, y) = 1/D̄ where D̄ is
the total area of the network.

2. If the users are distributed according to different levels of population density, then

λ(x, y) =







λHD if (x, y) is at a High Density region,
λND if (x, y) is at a Normal Density region,
λLD if (x, y) is at a Low Density region.

where λHD, λND, and λHD are defined similarly to 1).

3. If the distribution of the users is radial with more mobile terminals in the center and

less mobile terminals in the suburban areas then λ(x, y) =
R2

D−(x2+y2)

KD
, where RD is the

radius of the network and KD is a coefficient of normalization.

4. If the distribution of users is a Poisson process with intensity ν, then

λ(x, y) = e−νπr
2

where r is the polar coordinate representation of (x, y). This particular case has been
examined in [95].

Notice that the distribution of users λ(x, y) considered in our work is more general than all
the examples mentioned above.

We assume that in this grid area network there are K base stations BS1,BS2, . . . ,BSK
located at positions (x1, y1), (x2, y2) . . . , (xK , yK). For the uplink case (transmission from
mobile terminals to base stations) we consider the SINR (Signal to Interference plus Noise
Ratio). However, we assume for the downlink case (transmission from base stations to mobile
terminals) that between neighboring base stations, they transmit in orthogonal channels
(such as in OFDMA), and the interference between base stations that are far from each
other is negligible, so instead of considering the SINR (Signal to Interference plus Noise
Ratio) we consider the SNR (Signal to Noise Ratio).
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Our objective is to determine the optimal mobile association to each base station in
order to minimize the total power of the network needed to maintain an average throughput
of θ̄(x, y) > 0 for each mobile of the network located at position (x, y). We also determine
the equilibrium situation where the mobile terminals decide for themselves with which base
station to connect in order to maximize their rate.

8.2.1 Downlink case

Consider in the downlink case that when the base station BSi transmits to a mobile terminal
located at position (x, y), it uses power Pi(x, y). Each base station BSi is going to transmit
to the mobiles distributed within its cell Ci (the mobile terminals associated to BSi) to be
determined.

Denote by Ni the quantity of mobiles that are assigned to base station BSi. If the quantity
of mobiles is greater than some M (for example, the number of possible carriers in WiMAX
is around 2048, so in this case M = 2048) then we consider a penalization cost function
given by

{

0 if Ni ≤ M,
h(Ni −M) if Ni > M.

We will assume that h is a non-decreasing and convex function. We analyze the case Ni ≤M
but for the resolution in section 8.4 we will remove this assumption. As each cell Ci of the
network contain a large number of mobiles continuously distributed with a distribution of
λ(x, y) then the quantity of mobiles assigned to base station BSi will be

Ni = N

∫∫

Ci

λ(x, y) dx dy. (8.1)

Notice that
∑K

i=1Ni = N so each mobile terminal is associated to one base station in the
network. The power received at a mobile terminal located at position (x, y) from base station
BSi is given by Pi(x, y)hi(x, y) where hi(x, y) is the channel gain. We shall further assume
that it corresponds to the path loss given by

hi(x, y) = (R2 + di(x, y)
2)−P/2 (8.2)

where P is the path loss exponent [96], R is the high of the base station, and di(x, y) is
the Euclidean distance between a mobile located at position (x, y) and the base station BSi
located at (xi, yi), i.e., di(x, y) =

√

(xi − x)2 + (yi − y)2.

The SNR received at mobile terminals located at position (x, y) in cell Ci to be determined
is given by

SNRi(x, y) =
Pi(x, y)hi(x, y)

σ2
, (8.3)

where σ2 is the noise power.

We assume that the instantaneous mobile throughput is given by the following expression,
which is based on Shannon’s capacity theorem[97]:

θi(x, y) = log(1 + SNRi(x, y)).
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Suppose that we want to satisfy an average throughput for mobile terminals located at
position (x, y) given by θ̄(x, y) > 0.

We shall consider two different policies:

1. the policy that each base station BSi devotes an equal fraction of time for transmission
to each of its mobile terminals located within its cell Ci. We denote this policy as
round robin scheduling policy.

2. the policy where each base station BSi will maintain a constant power Pi sent to the
mobile terminals within its cell. However, each base station will modify the fraction of
time allowed to mobile terminals with different channel gains, in order that the average
SNR of Θ(x, y) is satisfied for each mobile located at position (x, y). We denote this
policy as rate fair allocation policy

For more information about this type of policies in the one dimensional case see [98].

Round robin scheduling policy

• Global Optimization

Following this policy each base station BSi devotes an equal fraction of time for transmission
to each mobile terminal located within its cell Ci. From equation (8.1) we have that the
number of mobiles located in cell Ci is Ni(Ci). As we are dividing our time of service
proportional to the quantity of users Ni inside cell Ci then the throughput following the
round robin scheduling policy will be given by:

θRR
i (x, y) =

1

Ni
log(1 + SNRi(x, y)).

From equation (8.3) we obtain that the power needed to satisfy a throughput θ̄(x, y) will
be θRR(x, y) ≥ θ̄(x, y), i.e.,

Pi(x, y) ≥
σ2

hi(x, y)
(2Niθ̄(x,y) − 1). (8.4)

As our objective function is to minimize the total power of the network, the constraint will
be reached, and from equation (8.2) we obtain

Pi(x, y) = σ2(2Niθ̄(x,y) − 1)(R2 + d2i (x, y))
P/2. (8.5)

From last equation (8.5) we can observe that:

• If the quantity of mobile terminals increases inside the cell, it will need to transmit
more power to each of the mobile terminals. The reason is that the base station is
dividing each time-slot into mini-slots with respect to the number of the mobiles within
its cell.
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• The function (R2 + d2i (x, y))
P/2 on the right hand side give us the dependence of the

power with respect to the distance between the base station and the mobile terminal
located at position (x, y).

The problem that we are trying to solve deals with the optimal mobile association in
order to minimize the total power of the network. Then the problem, that we denote (RR),
reads

(RR) Min
Ci

K
∑

i=1

∫∫

Ci

Pi(x, y)λ(x, y) dx dy.

where λ(x, y) is the function of distribution of the users. From equation (8.5) we obtain that
in order to minimize the total power of the network using the round robin scheduling policy
the problem, that we denote (RR), reads

Min
Ci

K
∑

i=1

∫∫

Ci

σ2(R2 + di(x, y)
2)P/2(2NiΘ(x,y) − 1)λ(x, y) dx dy.

We will solve this problem in section 8.4.

Formulation for the fairness problem

The general formulation for the problem of maximization of a function of the throughput
given the constraint on the maximal power used admits a generalized α-fairness formulation
given by:

Max

K
∑

i=1

∫∫

Ci

1

1− α
[f(θi(x, y))

1−α − 1]λ(x, y) dx dy

where we can identify different problems for different values of α:

• α = 0 maximization of throughput problem

• α→ 1 proportional fairness (a uniform case of Nash bargaining)

• α = 2 delay minimization

• α→ +∞ max-min fairness (maximize the minimum throughput that a user can have).

Since in our setting the problem is different since we are minimizing the total power on
the network given the constraint of a minimum level of throughput we define the following
formulation, that we call generalized γ-fairness:

Min

K
∑

i=1

∫∫

Ci

1

γ − 1
[f(Pi(x, y)

γ−1 − 1]λ(x, y) dx dy

where we can also identify different problems for different values of γ:
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• γ = 0 maximization of the inverse of power (energy efficiency maximization)

• γ → 1 proportional fairness

• γ = 2 minimization of total power

• γ → +∞ min-max fairness1 (to minimize the maximum power per BS).

This problem is studied in section 8.5.

Rate fair allocation policy

• User optimization

In the round robin scheduling policy each base station BSi modifies the power sent to mo-
bile terminals with different channel gains in order to satisfy a throughput of Θ(x, y) for
each mobile located at position (x, y). Instead, in the rate fair allocation policy each base
station BSi will maintain a constant power Pi sent to mobile terminals within its cell, i.e.,

Pi(x, y) = Pi for each (x, y) ∈ Ci, (8.6)

but it will modify the fraction of time allotted to the mobile terminals set in a way such
that the average transmission rate to each mobile terminal with different channel gain is the
same Θ(x, y) for each mobile located at position (x, y).

Let ri be the fixed rate of mobile terminals located inside cell Ci. Following the rate fair
allocation policy, the fraction of time that a mobile terminal at position (x, y) ∈ Ci receives
positive throughput will be

ri
SNRi(x, y)

.

Then the fixed rate ri is the solution to the equation

∫∫

Ci

ri
SNRi(x0, y0)

λ(x, y) dx dy = Θ := 2θ̄ − 1,

where θ̄ is the throughput to be satisfied. Then the rate

ri =
(

∫∫

Ci

1

SNRi(x, y)
λ(x, y) dx dy

)−1

Θ.

From equations (8.3) and (8.6) replacing the SNR we obtain

ri =
(

∫∫

Ci

σ2

Pihi(x, y)
λ(x, y) dx dy

)−1

Θ,

1The min-max fairness is not well studied in the literature but one can map the max-min fairness studies
into the min-max fairness for minimization problem. The convexity properties required becomes concavity,
Schur convexity, sub-stochastic ordering, etc.
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and from equation (8.2) we obtain

ri = ΘPi

(

∫∫

Ci

σ2(R2 + di(x, y))
P/2λ(x, y) dx dy

)−1

, (8.7)

We seek for an equilibrium in the game in which each mobile terminal chooses to which
base station is going to be served. Similar notion of equilibrium has been studied in the
context of large number of small players in transportation by Wardrop [2].

Definition.- The Wardrop equilibrium is given by:

If

∫∫

Ci

λ(x, y) dx dy > 0, then ri = max
1≤j≤K

rj(Cj), (8.8a)

and if

∫∫

Ci

λ(x, y) dx dy = 0, then ri ≤ max
1≤j≤K

rj(Cj).

As in our case we consider that the area of each cell is non-zero and the distribution of
the mobile terminals within each cell is positive, then the equilibrium situation will be given
by

r1 = r2 = . . . = rK .

To understand this equilibrium situation, consider as an example the case of two base sta-
tions BSi and BSj . Assume that one of the base stations BSi offer more rate than the other
base station BSj, then the mobiles served by BSj will have an incentive to be served by base
station BSi. Notice that the terms inside the integral of equation (8.7) are all positive. Then
the rate transmitted from base station depends inversely on the quantity of mobiles inside
the cell. It depends on the quantity of mobiles through the size of the cell Ci and through
the density of mobiles inside the cell λ(x, y). As more mobile terminals will try to connect
to the base station BSi the rate will diminish until arrive to the equilibrium where both base
stations will offer the same rate.

Let us denote by r to the rate offered by the base station at equilibrium, i.e.,

r := r1 = r2 = . . . = rK .

Then from equation (8.7)

Pi(Ci) =
r

Θ

∫∫

Ci

σ2(R2 + d2i (x, y))
P/2λ(x, y) dx dy. (8.9)

We want to choose the optimal mobile assignment in order to minimize the total power
of the network under the constraint that the mobile terminals have an average throughput
of θ, i.e.,

Min
Ci

K
∑

i=1

Pi(Ci) (8.10)
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Then our problem reads

(RF) Min
Ci

K
∑

i=1

∫∫

Ci

σ2(R2 + d2i (x, y))
P/2λ(x, y) dx dy.

We will solve this problem in section 8.6.

8.2.2 Uplink Case

Consider the SINR density given by base station BSi located at y as in Altman et al. [99]

SINRi(x) =
[R2 + (y − x)2]−P/2

∫

D
(R2 + (y − z)2)−P/2 dz + σ2

In this case, the authors of [99] considered a uniform distribution of mobile terminals and a
constant power. We generalize their setting by considering a density of mobile terminals λ(x)
and a power given by Pi(x) in the one dimensional case. Then the problem reads

SINRi(x) =
Pi(x)[R

2 + (y − x)2]−P/2
∫

D
Pi(z)(R2 + (y − z)2)−P/2λ(z) dz + σ2

dx

This can be generalized to the two dimensional case

SINRi(x, y) =
Pi(x, y)(R

2 + di(x, y)
2)−P/2

Ptotal + σ2
dx,

where

Ptotal :=

∫∫

D

(R2 + di(x, y)
2)−P/2λ(x, y) dx dy.

As we want to guarantee an average SNR of Θ(x, y) to a mobile located at position (x, y)
this condition is written as

Pi(x, y)(R
2 + di(x, y)

2)−P/2

Ptotal + σ2
dx ≥ Θ(x, y).

Then as the constraint will be reached it follows that

Pi(x, y) = Θ(x, y)(Ptotal + σ2)(R2 + di(x, y)
2)+P/2.

And then our problem reads

Min
Ci

K
∑

i=1

∫∫

Ci

Pi(x, y)λ(x, y)Θ(x, y) dx dy
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We denote this problem as (UL) and replacing the power is written as

Min
Ci

K
∑

i=1

∫∫

Ci

(Ptotal + σ2)(R2 + di(x, y)
2)P/2λ(x, y)Θ(x, y) dx dy

which is similar except by a constant to our problem (RF).

In order to solve the problem of the round robin scheduling policy (RR), the rate fair
allocation policy (RF), and the uplink case (UL) we will make use of Optimal Transport
Theory. a theory that has prove to be useful on many economical context [90], [91], [92], as
well as in the road traffic community [93], but to the best of the authors knowledge it has
never been used in the telecommunication community.

8.3 Basics in optimal transport theory

The theory of mass transportation, also called optimal transport theory, goes back to the
original works by Monge in 1781 [100], and later in 1942 by Kantorovich [4].

The work by Brenier [101] has renewed the interest for the subject and since then many
articles have been published in this topic (see [102] and references therein).

The original Monge’s problem can be interpreted as the question: “How do you best
move given piles of sand to fill up given holes of the same total volume?”. The general
mathematical framework to deal with this problem is a little technical but we encourage to
jump the details and to focus on the main ideas.

We first consider a grid area network D in the one-dimensional case. As an example, the
function f(t) will represent the proportion of how much sand is located at t and we denote

dµ(t) := f(t) dt.

The function g(s) will represent the proportion of how much sand can be piled at location s
and we denote

dν(s) := g(s) ds.

The function T (called transport map) is the function that transfers sand from location s
to location t. The condition of conservation that the sand transferred is equal to the sand
received gives

∫

A

g(y) dy =

∫

{x : T (x)∈A}
f(x) dx

and we denote this condition T#µ = ν.

The original problem was to move piles of sand to holes, Monge’s problem considered
that the cost of moving sand from position x to position y depends on the distance c(|x−y|).
Then the cost of moving sand from position x through T to its image position T (x) will be
c(|x− T (x)|). We consider the total cost over D. Then Monge’s problem is

Min

∫

D

c(|x− T (x)|) f(x) dx such that T#µ = ν.



106

The main difficulty in solving Monge’s problem is the highly non-linear structure of the
objective function. As an example, consider the domain D = [0, 2], the throughput from
the base stations located at position 1 to the mobile terminals denoted µ = δ1 and the
throughput of two mobile terminals demanded to the base stations located at positions 0
and 2, denoted ν = 1

2
δ0 +

1
2
δ2. According to the formulation given by Monge, there is no

splitting of throughput so this problem doesn’t have a transport map (see Fig. 8.1). We
pointed out the limitations of Monge’s problem that motivated Kantorovich to consider
another modeling of this problem in [4].

Figure 8.1: Monge’s problem can not model a simple scenario of two mobile terminals and
one base station. Kantorovich’s problem however can model very general scenarios.

Kantorovich noticed that the problem of transportation from one location to another can
be seen as “graphs” (called transport plans) of functions in the product space (See Fig. 8.2).

Then Kantorovich’s problem is

Min
ψ∈Π(µ,ν)

∫∫

D×D

c(x, y) dψ(x, y)

where Π(µ, ν) = {ψ : π1#ψ = µ and π2#ψ = ν} is denoted the ensemble of transport
plans ψ, π1(x, y) stands for the projection on the first axis x, and π2(x, y) stands for the
projection on the second axis y.

The relationship between Monge and Kantorovich problems is that every transport map T
of Monge’s problem determines a transport plan ψ = (Id× T )#µ in Kantorovich’s problem
with the same cost (Id denotes the identity). However, Kantorovich’s problem consider more
functions than the ones coming from Monge’s problem, so we can choose from a bigger set
Π(µ, ν).

We denote when it exists

Mp(µ, ν) :=

(

Min
T#µ=ν

∫

D

|x− T (x)|p f(x) dx
)1/p
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Figure 8.2: Kantorovich considered “graphs” where the projection in the first axis coincide
with the mobile terminal position (MT1 = 3.5, MT2 = 5 and MT3 = 6.5) and the second
axis coincides with the base station position (BS1 = 4 and BS2 = 6).

and Wp(µ, ν) :=

(

Min
ψ∈Π(µ,ν)

∫∫

D×D

|x− y|p dψ(x, y)
)1/p

.

We are now ready to give a result on existence and uniqueness of the transport plan.

Theorem 8.3.1 (Existence and uniqueness) Consider the cost function c(|x − y|) =
|x − y|p. Let µ and ν be probability measures in D and fix p ≥ 1. We assume that µ can
be written2 as dµ = f(x) dx. Then the optimal value of Monge’s problem coincides with
the optimal value of Kantorovich’s problem, i.e., Mp(µ, ν) = Wp(µ, ν) and there exists an
optimal transport map from µ to ν, which is also unique almost everywhere if p > 1.

This result is very difficult to obtain and it has been proved only recently (see [101] for
the case p = 2, and the references at [102] for the other cases).

The case that we are interested in can be characterized because the image of the transport
plan is a discrete finite set.

Since the problem is a linear optimization problem under linear constraints we look at
the dual formulation of Kantorovich’s relaxation problem:

Theorem 8.3.2 (Dual formulation) For µ and ν probability measures in D, the following
equality holds:

W p
p (µ, ν) = sup

(
∫

D

u dµ+

∫

D

v dν

)

such that

{

u ∈ L1
µ, v ∈ L1

ν

u(x) + v(y) ≤ |x− y|p µ and ν almost everywhere

2The exact condition is that µ is absolutely continuous with respect to the Lebesgue measure Ld where d
is the dimension of the space.
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where u ∈ L1
µ means that

∫

D

u(x)f(x) dx < +∞

and similarly for v ∈ L1
ν . Moreover, there exists an optimal pair (u, v) for this dual formu-

lation.

Remark 8.3.1 In the particular case when ν =
∑

i∈N biδyi is a sum of Dirac measures, the
dual formulation reads

W p
p

(

µ,
∑

i∈N
biδyi

)

= sup

{

∫

D

u dµ+
∑

i∈N
biv(yi)

}

{

u ∈ L1
µ(D), v ∈ L1

ν(D)
u(x) + v(yi) ≤ |x− yi|p for µ-a.e. x and every i ∈ N.

Remark 8.3.2 In the particular case when µ can be written as dµ = f(x) dx and ν =
∑

i∈N biδyi
any transport map T is associated to a partition (Bi)i∈N of D satisfying µ(Bi) = bi. As (Bi)i∈N
is a partition, x belongs to some element of the partition Bj and then we associate it to yj,
i.e., T (x) = yj.

Thanks to optimal transport theory we are able to characterize the partitions on very
general settings. For doing so, consider locations (x1, y1) . . . , (xK , yK), the Euclidean distance

di(x, y) =
√

(x− xi)2 + (y − yi)2, and F a continuous function.

Theorem 8.3.3 Consider the problem (P1)

Min
Ci

K
∑

i=1

∫∫

Ci

[

F (di(x, y)) + si

(∫∫

Ci

λ(ω, z) dω dz

)]

λ(x, y) dx dy,

where Ci is the cell partition of D. Suppose that si are continuously differentiable, non-
decreasing, and convex functions. The problem (P1) admits a solution that verifies

(S1)







Ci = {x : F (di(x, y)) + si(Ni) +Ni · s′i(Ni) ≤
≤ F (dj(x, y)) + sj(Nj) +Nj · s′j(Nj)}

Ni =
∫∫

Ci
λ(ω, z) dω dz.

Theorem 8.3.4 Consider the problem (P2)

Min
Ci

K
∑

i=1

∫∫

Ci

[

F (di(x, y)) ·mi

(
∫∫

Ci

λ(ω, z) dω dz

)]

λ(x, y) dx dy
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Figure 8.3: Interference as a function of location of mobile terminals when BS1 is at position
0 (solid line) and BS2 at −10 (dashed line).
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Figure 8.4: SINR as a function of location of mobile terminals when BS1 is at position 0
(solid line) and BS2 at −10 (dashed line).
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Figure 8.5: Zoom of the SINR as a function of the location of mobile terminals when BS1 is
at position 0 (solid line) and BS2 is at position −10 (dashed line). The best equilibrium is
eq1 = −4.68 with SINR value of 0.0025.
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Figure 8.6: Best Equilibrium: Thresholds determining the cell boundaries (vertical axis) as
a function of the location of BS2 for BS1 at position 0.
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Figure 8.7: Worst Equilibrium: Thresholds determining the cell boundaries (vertical axis)
that give the worst equilibrium in terms of the SINR as a function of the location of BS2 for
BS1 at position 0.
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Figure 8.8: Non-Homogeneous case: Thresholds determining the cell boundaries (vertical
axis) of the best equilibrium in terms of the SINR as a function of the location of BS2 for
BS1 at position 0 when we consider a distribution given by λ(x) = (L− x)/2L2.



112

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

BS3

B
S

1
 is

 a
t 
−

1
0

 a
n

d
 B

S
2

 is
 a

t 
1

0

Cell Boundaries with uniform distribution

Figure 8.9: Several BSs: Threshold determining the cell boundaries as a function of the
location of BS3 for BS1 = −10 and BS2 = 10
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Figure 8.11: 2D case: Cell contours of the best equilibrium with uniform distribution of
users.
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Figure 8.13: 2D Non-Homogeneous : Cell contours of the best equilibrium with non-
homogeneous distribution of users.

where Ci is the cell partition of D. Suppose that mi are derivable. The problem (P2) admits
a solution that verifies

(S2)















Ci = {x : mi(Ni)F (di(x, y)) λ(x, y) + Ui(x, y) ≤
≤ mj(Nj)F (dj(x, y)) λ(x, y) + Uj(x, y)}

Ui = m′
i(Ni)

∫∫

Ci
F (di(x, y))λ(x, y) dx dy

Ni =
∫∫

Ci
λ(ω, z) dω dz.

Notice that in problem (P1) if the functions si ≡ 0 the solution of the system (S1)
becomes the well known Voronoi cells. In problem (P2) if we have that the functions hi ≡ 1
we find again the Voronoi cells. However in all the other cases the Voronoi configuration is
not optimal.

8.4 Round robin scheduling policy

We assume that a service provider wants to minimize the total power of the network while
maintaining a certain average throughput of θ to each mobile terminal of the system using
the round robin scheduling policy given by problem (RR)

Min
Ci

K
∑

i=1

∫∫

Ci

σ2(R2 + di(x, y)
2)P/2(2Niθ − 1)λ(x, y) dx dy.

We see that this problem is an optimal transportation problem (P1) with cost function
given by

F (di(x, y)) = σ2(R2 + di(x, y)
2)P/2
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mi(x, y) = (2Niθ − 1)

Proposition.- There exist a unique optimum given by

Ci =
{

x ∈ D : di(x0, y0)
p + hi(Ni) +Nih

′
i(Ni)

≤ d[(x0, y0), (xj , yj)]
p + kj(Nj) +Njk

′
j(Nj) ∀j 6= i

}

Ni =

∫∫

Ci

λ(x0, y0) dx0 dy0

Proof.- See Appendix A.

Example.- Consider a network ofN = 2500 mobile terminals distributed according to λ(x)
in [0, L] (for example, with L = 5.6 miles for WiMAX radius cell). We consider two base
stations at position BS1 = 0 and BS2 = L and the high of the base stations is scaled to
be R = 1. Then the system of equations is reduced to find x such that:

(2N1θ − 1)(1 + x2)λ(x) + 2N1θθ log 2

[

x+
x3

3

]

= (2N2θ − 1)(1 + (1− x)2)λ(x)+

2N2θθ log 2

[

4

3
− 2x+ x2 − x3

3

]

This is a fixed point equation on x since N1, N2 and λ depend on x. When mobile terminals
are distributed uniformly, the optimal solution is given by [0, 1/2) and [1/2, 1], which is the
case of Voronoi cells and the number of mobile terminals connected to each base station is
equal and given by N1 = N2 = 1250. However when the distribution of mobile terminals is
increasingly more concentrated at location L, given by λ(x) = 2x, the optimal solution is
given by [0, q) and [q, 1] with q = 0.6027 and the quantity of mobile terminals connecting to
BS1 is equal to N1 = 908 and the quantity of mobile terminals connecting to BS2 is equal to
N2 = 1592 (See Fig. 8.14).

8.5 Fairness problem

As we mention in section 8.2 the solution given by previous section 8.4 is optimal but may
not be fair to all the mobile terminals since it will give higher throughput to the mobile
terminals that are near the base stations.

To deal with this problem we considered the fairness problem given by

Min
K
∑

i=1

∫∫

Ci

1

γ − 1

(

σ2(R2 + di(x, y)
2)P/2

)γ−1

(2Niθ − 1)γ−1λ(x, y) dx dy.
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Figure 8.14: Example: equilibrium when then distribution of mobile terminals is given
by λ(x) = 2x in the interval [0, L]. and the positions of the base stations are BS1 = 0
and BS2 = L.

As we can see this is also an optimal transportation problem (P1) where the functions
considered in this setting are given by

F (di(x, y)) =
1

γ − 1

(

σ2(R2 + di(x, y)
2)P/2

)γ−1

mi(x, y) = (2Niθ − 1)γ−1

Using Theorem 8.3.3 we are able to characterize the optimal cells for any γ considered.

8.6 Rate fair allocation policy

In this framework we give the possibility to mobile terminals to connect to the base station
they prefer in order to minimize their power cost function while maintaining an average
throughput of θ. This is the reason why we denote this type of network as hybrid network.

As we saw this problem is equivalent to

(RF) Min
Ci

K
∑

i=1

∫∫

Ci

σ2(R2 + d2i (x, y))
P/2λ(x, y) dx dy.

Notice that this problem is equivalent to (P1) where the functions si ≡ 1 The problem
has then a solution given by
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Proposition.- There exist a unique optimum given by

Ci =
{

x ∈ D : σ2(R2 + d2i (x0, y0))
P/2

≤ σ2(R2 + d2j(x0, y0))
P/2 ∀j 6= i

}

Ni =

∫∫

Ci

λ(x0, y0) dx0 dy0

which is the Voronoi cells.

8.7 Uplink case

Penalization function As an illustration example, suppose that on the network D = [0, 1]
there are two base stations at coordinates x1 = 1/4 and x2 = 3/4. Assume that mobile
terminals are uniformly distributed, and consider the case when P = 2.

Suppose the first base station can handle more downlink demand than the second one, as
for example the first base station uses a IEEE 802.16 (WiMAX) technology while the second
one uses UMTS technology, so that the penalization cost are

h1(t) = t and h2(t) = (1 + ε)t.

Then the optimum cell configuration (C∗
1 , C

∗
2) is given by

C∗
1 = [0, λ∗ε[, C∗

2 =]λ∗ε, 1] with λ∗ε =
1

2
+

ε

5 + 2ε
,

whereas the equilibrium cell configuration (CE
1 , C

E
2 ) will be C

E
1 = [0, λEε [, CE

2 =]λEε , 1] with

λEε =
1

2
+

ε

6 + 2ε
≤ λ∗ε.

8.8 Validation of our theoretical model

8.8.1 One-dimensional case: uniform distribution of users

We first consider the one-dimensional case and we consider a uniform distribution of users
in the interval [−L, L]. We set L = 10 and the noise parameter σ = 0.3. We fix one base
station BS2 at position 0 and we move the other base station BS1. We consider the path
loss exponent of P = 2.

In the SINR-association game we found two pure equilibria: the best equilibrium at
position eq1 = −4.68 with SINR value of 2.5 × 10−3 and the worst equilibrium at position
eq2 = 78.69 with SINR value of 1.4769×10−9. It is known than any other mixed equilibrium
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will give lower values of SINR. From now on we will only be interested in the best equilibrium.
See Fig. 8.6 and Fig. 8.7.

We found that even in the one-dimensional case, the results of [99] are not-valid, the cells
are convex and monotone inside the network.

8.8.2 One-dimensional case: non-uniform distribution of users

In this case we consider a non-uniform distribution of users λ(x) = (L − x)/L2 under the
same setting as in 8.8.1. we found again that the cells are convex and monotone inside the
network.

8.8.3 Two-dimensional case: uniform distribution of users

We consider the two-dimensional case and we consider a uniform distribution of users in the
square [−L, L]× [−L, L]. We set L = 10 and the noise parameter σ = 0.3. We set five base
stations at positions BS1 = (−L+1,−L+1), BS2 = (L−1,−L+1), BS3 = (−L+1, L−1),
BS4 = (L− 1, L− 1), and BS5 = 0. Numerically we observe again that the cells are convex
and monotone inside the domain. See Fig. 8.11

8.8.4 Two-dimensional case: non-uniform distribution of users

We consider the two-dimensional case and this time we consider a non-uniform distribution
of users in the square [−L, L] × [−L, L] given by λ(x, y) = (L2 − (x2 + y2))/K where K
is a normalization factor. This situation can be interpreted as the situation when mobile
terminals are more concentrated in the center and less concentrated in suburban areas as
in Paris, New York or London. We observe that the cell size of the base station BS5 at the
center is smaller than the others at the suburban areas. This can be explained by the fact
that as the density of users is more concentrated in the center the interference is greater in
the center than in the suburban areas and then the SINR is smaller in the center. However
the quantity of users is greater than in the suburban areas.

See Fig. 8.13.

8.9 Conclusions

We have proposed a new approach using optimal transport theory for mobile association and
we have been able to completely characterize this mobile association under different policies
in both uplink and downlink cases.



Conclusions and Perspectives

Conclusions

The growing number of wireless systems and wireless devices present many challenges for
industry and academia in the planning and analysis of wireless networks. In this manuscript,
we focus on the modeling and analysis of massively dense wireless networks, in particular,
massively dense ad hoc networks and massively dense cellular systems. We study the contin-
uum modeling approach, which is useful for the initial phase of deployment of the network,
as well as to analyze broad-scale regional studies of the network. In this type of studies,
the focus is on the general trend and pattern of the transmission distribution through the
network.

The modeling of congestion-aware routing problems for a network can be classified in the
discrete modeling approach and the continuum modeling approach:

• In the discrete modeling approach, the network is modeled as a graph, where each
wireless link connecting two nodes in the network is modeled separately an the demand
is assumed to be concentrated at some part of the nodes. This modeling approach is
commonly adopted for the detailed planning and analysis of the network.

• In the continuum modeling approach, we are interested on the macroscopic behavior
of the network. This macroscopic analysis is not as detailed as the discrete modeling
approach, but nevertheless, it contains enough information to allow meaningful results.

In the first part of the thesis, we have investigated the routing optimization problem in
massively dense ad hoc networks, where we have considered a generic cost function, that can
take into account different metrics such as the congestion of the network, the quantity of relay
nodes needed to maintain a certain throughput, or metrics related to the energy consumption
of the network. Following a similar approach to the work of Nash [1] and Wardrop [2], we
have defined for massively dense networks two principles of network optimization, which we
denoted, respectively, user-optimization and system-optimization:

• The first principle takes into account the situation in which each user select its routes
from origins to destinations, in order to minimize its own cost. Then, in an equilibrium
situation, the cost of all routes actually used between an origin/destination pair are
equal. This cost turns out to be less than the cost that would be experienced by a single
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user on any of the unused routes. In road-traffic theory, the user-optimized solution is
also referred to as the traffic network equilibrium.

• The second principle reflects the situation in which there is a central controller which
decide the routes and the traffic flows in an optimal manner from origins to destinations
to minimize the total cost of the network.

Beckmann, McGuire, and Winsten [7] were the first to provide a rigorous mathematical for-
mulation of the conditions set forth by Wardrop’s first principle in the context of certain
link cost functions, which were increasing functions of the flows on the links. In particular,
they demonstrated that the optimality conditions in the form of Karush-Kuhn-Tucker [8, 9]
conditions of an appropriately constructed mathematical programming/optimization prob-
lem coinciding with Wardrop’s first principle. We have shown that a similar analysis can
be done for the continuum modeling approach. With different cost functions, we were able
to formulate and solve the routing problem for the user- and system-optimization problem
in two different contexts: for directional antennas and omnidirectional antennas. We have
also found a simple characterization of the minimum cost paths by extensive use of Green’s
theorem in directional antennas.

In many situations, the optimal solution of the problem, in the user- as well as in the
system-optimization problem, is characterized by a partial differential equation. We propose
the numerical analysis of this equations by finite elements method which have allow us to
give bounds in the variation of the solution with respect to the variation of the data. When
we allow mobility of the origin and destination nodes, we are able to found the optimal
quantity of relay nodes needed to transmit a certain quantity of data.

In the second part, our focus was on cellular networks, where we investigated the capacity
of Network MIMO systems and MIMO broadcast channels as well as the mobile association
problem in cellular networks.

In Network MIMO systems and MIMO broadcast channels, we have shown that, even
when the channel offers an infinite number of degrees of freedom, the capacity is mainly
limited by the ratio between the size of the antenna array at the base station and the mobile
terminals and the wavelength of the signal.

For the mobile association problem, we were able to provide quality of service constraints
while minimizing the total power of the network for the continuum modeling approach. We
have solved in this context the user- and system-optimization problem under different policies
and different distribution of the users in the network.

In conclusion, we have provided elements of analysis in both user-optimization and
system-optimization networks. We have focus on the continuum modeling approach instead
of the discrete modeling approach. Both approaches are not opposed, but complementary.
However, most of the works in networks have been centered on the discrete modeling ap-
proach.

The continuum modeling approach has many advantages over the discrete approach in
macroscopic studies on dense networks.

• First, it reduces the problem size for dense transportation networks. The problem size
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in the continuum model depends on the method that is adopted to approximate the
modeling region, but not on the actual network itself. Because of that, an effective
approximation method, such as the finite element method (FEM), can extensively
reduce the size of the problem. This reduction in problem size saves computational
time and memory.

• Second, less data is required to model the set-up in a continuum model. As continuum
modeling can be characterized by a small number of spatial variables, it can be set-
up with a much smaller amount of data than the discrete modeling approach, which
requires data for all of the included links.

This makes the continuum model convenient for macroscopic studies in the initial phase
of design since the collection of data in this phase is time consuming and labor intensive,
and the resources to undertake it are generally not available, which means there is usually
insufficient data on the system to set up a detailed model. Finally, the continuum modeling
approach gives a better understanding of the global characteristics of a network.

Perspectives

There exists a number of open problems that can be seen inside this manuscript. However,
from my point of view the most important problems that remain open are:

To break the boundary between the discrete and the continuous modeling approach In
addressing this problem, we are thinking of constructing a consistent theoretical framework
to address both problems and the convergence from the discrete problem into the continuous
problem. In the same perspective, it would be of particular interest to study the user-
optimization problem and its convergence from the discrete to the continuum approach.

Price of Anarchy on massively dense networks The price of anarchy is a common subject
in routing. The price of anarchy is equal to the ratio of the utility obtained by selfish users
to the utility they would obtain by the system-optimal solution. It measures the loss suffered
by the system when there is no central controller. In general, to centralize the information
and to take a global solution is expensive and in many ocassions impossible.
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[83] A. M. Tulino, A. Lozano, and S. Verdú, “Impact of antenna correlation on the capacity
of multiantenna channels,” IEEE Transactions on Information Theory, vol. 51, no. 7,
pp. 2491–2509, 2005.

[84] R. M. Gray, “Toeplitz and circulant matrices: A review,” Foundations and Trends
in Communications and Information Theory, vol. 2, no. 3, 2005. [Online]. Available:
http://dx.doi.org/10.1561/0100000006

[85] D. Tse and P. Viswanath, Fundamentals of Wireless Communication. Cambridge
University Press, 2005.

[86] P. Viswanath and D. N. C. Tse, “Sum capacity of the vector gaussian broadcast channel
and uplink-downlink duality,” IEEE Transactions on Information Theory, vol. 49,
no. 8, pp. 1912–1921, 2003.

[87] C. B. Peel, B. M. Hochwald, and A. L. Swindlehurst, “A vector-
perturbation technique for near-capacity multiantenna multiuser communication-
part I: channel inversion and regularization,” IEEE Transactions on Com-
munications, vol. 53, no. 1, pp. 195–202, 2005. [Online]. Available:
http://doi.ieeecomputersociety.org/10.1109/TCOMM.2004.840638

[88] Z. D. Bai and J. W. Silverstein, “No eigenvalues outside the support of the limiting
spectral distribution of large-dimensional sample covariance matrices,” Jan. 1998.
[Online]. Available: http://ProjectEuclid.org/getRecord?id=euclid.aop/1022855421

[89] L. Zheng and D. N. C. Tse, “Communication on the grassmann manifold: A geomet-
ric approach to the noncoherent multiple-antenna channel,” IEEE Transactions on
Information Theory, vol. 48, no. 2, pp. 359–383, 2002.

[90] G. Buttazzo and F. Santambrogio, “A model for the optimal planning of an urban
area,” SIAM J. Math. Anal., vol. 37, no. 2, pp. 514–530 (electronic), 2005. [Online].
Available: http://dx.doi.org/10.1137/S0036141003438313

[91] G. Carlier and I. Ekeland, “The structure of cities,” J. Global
Optim., vol. 29, no. 4, pp. 371–376, 2004. [Online]. Available:
http://dx.doi.org/10.1023/B:JOGO.0000047909.02031.ab

[92] ——, “Equilibrium structure of a bidimensional asymmetric city,” Nonlinear
Anal. Real World Appl., vol. 8, no. 3, pp. 725–748, 2007. [Online]. Available:
http://dx.doi.org/10.1016/j.nonrwa.2006.02.008

[93] G. Carlier, C. Jimenez, and F. Santambrogio, “Optimal transportation with traffic
congestion and Wardrop equilibria,” SIAM J. Control Optim., vol. 47, no. 3, pp.
1330–1350, 2008. [Online]. Available: http://dx.doi.org/10.1137/060672832

[94] Y. Yu, B. Danila, J. A. Marsh, and K. E. Bassler, “Optimal transport on
wireless networks,” Mar. 28 2007, comment: 5 pages, 4 figures. [Online]. Available:
http://arxiv.org/abs/physics/0703261

http://dx.doi.org/10.1561/0100000006
http://doi.ieeecomputersociety.org/10.1109/TCOMM.2004.840638
http://ProjectEuclid.org/getRecord?id=euclid.aop/1022855421
http://dx.doi.org/10.1137/S0036141003438313
http://dx.doi.org/10.1023/B:JOGO.0000047909.02031.ab
http://dx.doi.org/10.1016/j.nonrwa.2006.02.008
http://dx.doi.org/10.1137/060672832
http://arxiv.org/abs/physics/0703261


130

[95] F. Baccelli and B. Blaszczyszyn, Stochastic Geometry and Wireless Networks,
Volume I - Theory, ser. Foundations and Trends in Networking Vol. 3: No
3-4, pp 249-449, F. Baccelli and B. Blaszczyszyn, Eds. NoW Publish-
ers, 2009, vol. 1, Stochastic Geometry and Wireless Networks, Volume
II - Applications; see http://hal.inria.fr/inria-00403040. [Online]. Available:
http://dx.doi.org/10.1561/1300000006http://hal.inria.fr/inria-00403039/en/

[96] T. S. Rappaport, Wireless Communication Principles and Practice. Prentice Hall,
1996.

[97] T. M. Cover and J. A. Thomas, Elements of Information Theory. Wiley & Sons,
N.Y., 1991.

[98] G. S. Kasbekar, E. Altman, and S. Sarkar, “A hierarchical spatial game over licenced
resources,” in GameNets’09: Proceedings of the First ICST international conference
on Game Theory for Networks. Piscataway, NJ, USA: IEEE Press, 2009, pp. 70–79.

[99] E. Altman, A. Kumar, C. K. Singh, and R. Sundaresan, “Spatial SINR games
combining base station placement and mobile association,” in INFOCOM. IEEE, 2009,
pp. 1629–1637. [Online]. Available: http://dx.doi.org/10.1109/INFCOM.2009.5062081
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