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Rezumat

Creşterea cantităţii de informaţie transformă minarea datelor secvenţiale într-un impor-
tant domeniu de cercetare. Un număr mare de modele în data mining au fost dezvoltate
pentru a extrage patternuri de date interesante şi utile. Majoritatea modelelor sânt folosite
cu scopuri strategice rezultând în utilizarea parametrului timp. Totuşi, domeniul extins al
aplicaţiilor în data mining necesită introducerea de noi modele. Teza dată propune mod-
ele pentru minarea datelor temporal secvenţiale având ca şi scop procesul de predicţie.
Studiul nostru este bazat pe analiza bazelor de date temporal secventţiale şi pe serii
temporale. Pentru analizarea bazelor de date secvenţiale noi propunem măsuri de in-
teres pentru selecţia regulilor şi extragerea patternurilor. Scopul lor este de a avantaja
acele reguli/patternuri a căror distana̧ în timp între elemente este mic. Informaţia ex-
trasă este folosită pentru a prezice solicitările ulterioare ale utilizatorului într-o bază de
date web log, obţinând o performanţă mai mare în comparaţie cu modelele de referinţă.
Pentru analizarea seriilor temporale am propus model de predicţie bazate pe Reţele Neu-
ronale, Algoritmi Genetici şi Transformarea Wavelet. Modelul este aplicat pe traficul unei
reţele WiMAX şi a ratei de schimb EUR/USD pentru a compara performanţa de predicţie
cu performanţele obţinute din alte modele existente. Diverse modalităţi de schimbare a
parametrilor adaptate la o situaţie dată şi simulările corespunzătoare sânt prezentate. S-a
demonstrat că modelul propus surclasează cele folosite pentru comparaţie din punctul de
vedere al predicţiei aplicate pe seriile temporale utilizate. Ca un întreg, teza prezentă
propune modele de predicţie pentru diferite tipuri de date temporal secvenţiale cu diferite
caracteristici şi comportamente.

Cuvinte cheie: Explorarea datelor secvenţiale, analiza seriilor temporale, reguli şi
motive (patternuri) secvenţiale, măsuri de interes, predicţie.
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Abstract

The increasing amount of information makes sequential data mining an important domain
of research. A vast number of data mining models and approaches have been developed
in order to extract interesting and useful patterns of data. Most models are used for
strategic purposes resulting in using of the time parameter. However, the extensive field
of data mining applications requires new models to be introduced. The current thesis
proposed models for temporal sequential data mining having as a goal the forecasting
process. We focus our study on sequential temporal database analysis and on time-series
data. In sequential database analysis we propose several interestingness measures for rules
selection and patterns extraction. Their goal is to advantage those rules/patterns whose
time-distance between the itemsets is small. The extracted information is used to predict
user’s future requests in a web log database, obtaining a higher performance in comparison
to other compared models. In time-series analysis we propose a forecasting model based on
Neural Networks, Genetic Algorithms, and Wavelet Transform. We apply it on a WiMAX
network traffic and EUR/USD currency exchange data in order to compare its prediction
performance with those obtained using other existing models. Different ways of changing
parameters adapted to a given situation and the corresponding simulations are presented.
It was shown that the proposed model outperforms the existing ones from the prediction
point of view on the used time-series. As a whole, this thesis proposes forecasting models
for different types of temporal sequential data with different characteristics and behaviour.

Keywords: Sequence data mining, time-series analysis, sequential rules and patterns,
interestingness measures, forecasting.
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Résumé

La quantité croissante d’information rend l’exploration de données séquentielles un do-
maine important de la recherche. Un grand nombre de modèles d’exploration de données
et d’approches ont été développés afin d’extraire des patterns intéressants et utiles de
données. La plupart des modèles sont utilisés avec des objectifs stratégiques résultant
en l’utilisation du paramètre de temps. Cependant, le vaste champ d’applications de
data mining nécessite l’introduction de nouveaux modèles. La thèse en cours propose des
modèles pour l’exploration de données temporelle séquentielle ayant comme objectif le pro-
cessus de prévision. Notre étude se concentre sur l’analyse de base de données séquentielles
et temporelles et de données time-series. Dans l’analyse de base de données séquentielles,
nous proposons plusieurs mesures d’intérêt pour la sélection des règles et l’extraction des
patterns. Leur but est de mettre en valeur ces règles / patterns dont la distance-temps
entre les itemsets est petit. L’information extraite est utilisée pour prédire les futures
demandes des utilisateurs dans une base de données web log, l’obtention d’un rendement
plus élevé en comparaison avec d’autres modèles. En ce qui concerne l’analyse des séries
temporelles, nous proposons un modèle de prévision basé sur les réseaux de neurones,
algorithmes génétiques, et la transformée en ondelettes. Nous l’appliquons sur un trafic
réseau WiMAX et de données de change EUR/USD afin de comparer ses performances de
prédiction à celles obtenues avec d’autres modèles existants. Différentes façons de modifi-
cation des paramètres adaptés à une situation donnée et les simulations correspondantes
sont présentées. Nous avons montré que le modèle proposé surpasse ceux déjà existants
du point de vue de la prédiction sur les time-series que nous avons utilisées. Dans son
ensemble, cette thèse propose des modèles de prévision pour différents types de données
séquentielles et temporelles avec des caractéristiques et des comportements différents.

Mots clés: Exploration de données séquentielles, analyse des séries temporelles, règles
et motifs séquentiels, mesure d’intérêt, prédiction.
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1
Introduction

The rapid growth of online information due to Internet, computer storage and the
widespread use of database technologies, have created a massive need for data analy-
sis methods in order to find relationships in it and seek solutions to difficult problems.
With this goal, Data Mining techniques are used, which are the processes of analysing
the information and extract interesting knowledge from it (patterns) that might otherwise
remain unknown.

The extracted information from applying data mining analysis, is mostly used for
strategic purposes. For example, many card-thieves have the same behaviour – they pur-
chase expensive luxury goods, which are unusual to the card-holder. By using data mining
systems and discovering the unexpected behaviour in the account operations, the losses
could be minimized [Liu 08, Singh 09a]. Telecommunication engineers use data mining to
predict errors and failures in their systems [Weiss 01, Devitt 05]. Google (and other web-
sites) uses data mining techniques in advertising, showing us those ads which we are more
interested in, after analysing our search queries on its engine [Tuğ 06, Liu 07]. Technical
analysts use data mining in the financial market to identify patterns in order to forecast
future price movements to obtain higher profits [Panda 07, Aggarwal 09, Rai 11]. Biolo-
gists use data mining to prevent a disease, after studying a set of symptoms experienced
by the patients [Ordonez 06, Ohsaki 07, Klema 08]. The list of application areas for data
mining is vast, and is expected to grow rapidly in the years to come.

Nowadays, there exist a large number of data mining models to extract valid, novel,
potentially useful, and ultimately understandable patterns in data [Fayyad 96]. Im-
portant data mining models are Clustering, Association/Sequential Rules extraction,
Sequential Analysis. Clustering analyses a set of data and divides it into groups
of similar objects based on the features present in a set of data from the same
class [Jain 88, Agrawal 98, Bradley 98]. It is used in Internet (discovering groups of
similar access patterns), biology (classification of plants and animals according to their
features). Association and sequential rules extraction imply the finding of certain rela-
tionships among a set of objects in a database (i.e. these objects occur together or one
implies the other) [Agrawal 93, Agrawal 94]. These are mostly used in mining transaction
data (e.g. if a customer bought items A and B, then he will buy the item C next), med-
ical diagnosis (if a patient has the symptoms A and B, then he is having the disease C).
Sequential analysis aims to discover frequent (or interesting from the user’s point of view)
patterns that occur in a sequential database [Agrawal 95]. It is used in biology (in finding
DNA sequences, gene structures), Weblog click streams (to discover user access patterns).

An interesting parameter in databases used by data mining analysis is the time param-
eter. It denotes the time period during which a certain action is true (e.g. the time-interval
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of having breakfast or searching the internet); or the time instance at which an action was
performed (e.g. he went out at 9h00 AM, the items have been bought yesterday). Many
data mining problems involve this temporal aspect resulting in Temporal Data Mining
(TDM) [Lin 02]. It has the capacity to look for interesting correlations, rules, patterns in
large temporal data sets, which might be missed if temporal component is not taken into
consideration [Roddick 02]. Typically, the sequential rules and sequential patterns mining
are those models which associate a time-stamp to its elements. The problem of TDM
consists in mining patterns from ordered data with temporal interdependencies, which
could be either sequences or numerical time-series [Antunes 01, Laxman 06, Mehta 11].
A sequence is composed by a series of nominal symbols from a particular alphabet (e.g.
customer transactions logs, protein sequences), while a time-series is a sequence of con-
tinuous, real-valued elements (e.g. temperature values monitoring, price of a stock). In
the current work we view as sequential data both: sequences and time-series. Both these
data types are sequential by their nature, the only difference being the alphabet used by
sequences and the real-valued elements used by time-series.

Initial work in TDM reasoning that refined the temporal relationships used in later
TDM research was defined in [Allen 83, Dean 87, Freksa 92]. The goal in sequential TDM
is to extract temporal patterns that are used to support diagnosis and to predict future
behaviours. The sequential TDM is based on conventional sequential pattern mining algo-
rithms while taking into consideration the temporal aspect also. Such conventional algo-
rithms are AprioriAll [Agrawal 95], Generalized Sequential Patterns [Srikant 96], pattern-
growth approach [Pei 04], CMRules [Fournier-Viger 12]. Their goal is to extract patterns
and rules after a processing with an Interestingness Measure (IM) (or several IM used as
post-treatment on the extracted information). The task of the IM is to determine the
most useful patterns and rules from the user’s perspective by selecting them from a large
set of candidates. In order to take into account the temporal aspect in the mining process,
one has to consider the time parameter into such an IM. In this way, the IM will use
in its computation formula the time distances between the itemsets of a pattern or rule.
Some of the IMs which take into consideration the temporal aspect of a pattern or rule are
generalized information gain [Yang 02] (penalizing the gaps between pattern occurrences),
Time-interval Weighted-support [Chang 11] (which uses time-interval decreasing weighted
functions disadvantaging the distance between the itemsets of a pattern).

In comparison to sequential TDM, the time-series analysis has a long history [Box 70].
It is used for providing explanations for data pattern changes and to forecast future values
of data points being analysed. Contrary to sequential TDM, the observations in time-
series are taken at a constant time-interval having a natural temporal ordering. This
allows them to be frequently plotted using line charts resulting in a more understandable
view of the data. There are many models for time-series analysis, from which we distin-
guish Case-Based Reasoning models [Kolodner 92, Riordan 02]; Rule-Based Forecasting
models [Webb 03]; Statistical models [Mandal 06, Nochai 06]; Artificial Intelligence mod-
els [Refenes 93, Abrahart 98].

The current problem in temporal sequential data mining is that extensive field of data
mining applications and the challenge of prediction processes brought to the point where
different models are required for data analysis and forecasting of different data types. This
is needed despite significant advances in research over the last few decades. In this work
we propose models for sequential temporal data mining having as a goal the forecasting
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aspect of the TDM [Lin 02]. We center our research on sequential temporal database
analysis, by introducing new time-based interestingness measures for sequential rules and
patterns extraction used for prediction purposes, and on time-series analysis by proposing
a forecasting model.

The current thesis is divided into two main parts. Each one deals with a type of
sequential data, i.e. sequences and time-series.

The goal of the first part of our research is to introduce Interestingness Measures
for sequential rule and pattern mining that take into consideration the time parameter
and are used to build accurate forecasting models. In sequential rule mining, we propose
the Closeness Preference (CP) IM. It takes into consideration the time-distance between
the antecedent and consequent of a sequential rule in order to advantage those which
occur closer one to another. In the sequential pattern mining, we present two types of
Modified Closeness Preference (MCP) measure: the first one is based on Support and
Confidence (MCPsc), while the second one is based on Support combined with a new
weighting function in order to fulfil the anti-monotone property of the IM (MCPs func).
Their goal is to rank at the top the patterns which have their itemsets closer with respect
to time. They are pre-processing measures used instead of Support. These extracted
sequential patterns and rules could be used in market basket analysis (to predict an item
being purchased), web analysis (for predicting the pages that will be visited), network
security (to prevent intrusion from an unusual activity).

In the second part of our research, i.e. in case of time-series analysis, our goal is to pro-
pose and study models used in forecasting of time-series with different characteristic. We
present the prediction performance of different models applied on different series in order
to see if there are forecasting models that could be used in different domains. We study
how the selection of parameters could improve the performance of a prediction model, and
how a constant upgrading with the latest available information and retraining the model
influences the effectiveness of the prediction. We propose a forecasting model based on
time-series decomposition in wavelet domain Stationary Wavelet Transform (SWT) using
Artificial Neural Networks (ANN) and their optimization using Genetic Algorithms (GA).
The proposed approaches are used in domains where the forecasting of future real-valued
data samples is needed (e.g. trend detection, transaction volumes of a retail company).

Each part is based on results on real datasets. The thesis ends with a conclusion of
our work followed by future perspectives.
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2 Sequential Rule and Pattern
Mining

2.1 INTRODUCTION

Sequential pattern mining, introduced in [Agrawal 95] and considered as one of the most
challenging problems in data mining [Yang 06], aims to extract the relationships between
occurrences of sequential events. It has large applications, such as the analysis of DNA
sequences, stock marketing, web access patterns, transactional databases, security of the
network systems [Zhao 03].

A sequential pattern or a sequence AB is simply an ordered list of itemsets [Agrawal 95].
From sequential patterns one can obtain sequential rules of the form A → B, where A
(the antecedent) and B (the consequent) are two itemsets. Sequential pattern and rule
mining aims at extracting those patterns and rules whose number of appearances, i.e.
their Support, is higher than a minimum Support threshold [Agrawal 95]. The Support
of the rule A → B is defined as the fraction of total sequences which support this rule.
Consequently, the Support of a pattern AB is defined as the fraction of the total sequences
which support this pattern.

A typical example of a sequential pattern is a customer who, after buying a laser
printer, returns to buy a scanner (after one month) and then a CD burner (after another
one month) [Chang 11], which could be written as:

printer 1 month−−−−−→ scanner 1 month−−−−−→ CD burner

From this, we can construct sequential rules of the form:

printer 1 month−−−−−→ scanner

printer 2 months−−−−−→ CD burner

scanner 1 month−−−−−→ CD burner

In this example, the pattern and the rules "tell" the store’s manager which items were
bought and in which order.

In order to extract the rules and patterns, many algorithms have been introduced
for sequential mining over the last decade. Besides the first ones, AprioriAll, Apri-
oriSome, and DynamicSome presented in [Agrawal 95] many improvements have been
proposed such as with Generalized Sequential Patterns [Srikant 96], SPADE [Zaki 01],
GO-SPADE [Leleu 03], the pattern-growth approach [Pei 04], ExMiner [Quang 06], WS-
pan [Yun 06], Graph for Time Constraints [Masseglia 09], CMRules [Fournier-Viger 12].
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A nice taxonomy of sequential pattern mining techniques and algorithms is presented
in [Mabroukeh 10]. The most common approach consists in discovering ordered itemsets
which appear frequently in the sequence database.

During the mining process, one can obtain many patterns and rules which are not
relevant from the user’s point of view. One of the most interesting and difficult approach
to reduce the number of patterns and rules, is to construct Interestingness Measures (IM)
used to show the quality of a given pattern/rule and to select and rank the patterns/rules
according to their potential interest to the user. Many studies have been made regard-
ing the formalization of rule/pattern interestingness, and concerning the substitution to
human’s evaluation of them using formalized interestingness measures [Ohsaki 07]. These
measures could be categorized as follows [Geng 06]:

• Objective Measures: based on probability, or on the form of the rules (such as pecu-
liarity, surprisingness, conciseness);

• Subjective Measures: which take into account both the data and the user’s knowledge
(such as surprisingness, novelty);

• Semantic Measures: which consider the semantics and explanations of the patterns
or rules (such as utility, actionability).

In the current research we focus on objective measures. Based on the data distribution,
the objective interestingness measures can evaluate a rule via its statistical factors. De-
pending on the user’s point of view, each objective IM reflects his/her interests on the
data [Lenca 08].

The most used measures for evaluating the quality of the extracted information is
Support (in case of pattern mining), and Support and Confidence (in case of rule min-
ing) [Mannila 97] . However it is well-known that the Support and the Confidence mea-
sures are not enough to consider the interestingness of those sequential rules and patterns.
Another aspect consists in the fact that sequential patterns/rules and items within them
have been treated uniformly, while, in reality these have different importance. Other cri-
teria are needed in order to discover those patterns/rules which are interesting from the
user and domain application points of view. This is why lately different approaches have
been presented regarding interestingness related to the sequential extracted data to select
or rank it. Many of those take into consideration the weights of the items and the time-
distance between the itemsets [Lo 05, Yun 08]. Indeed, it could be desirable to weight
recent events more heavily than remote events [Lo 05, Yun 08, Chang 11]. If we retake
our example with the buyer, then, the rule printer 1 month−−−−−→ scanner is more important than
printer 2 months−−−−−→ CD burner, because the time distance between the events is smaller in the
first case. Temporal constraints which bound the distance between a pair of events have
been introduced in [Bettini 98b]. Such constraints like regularity has recently attracted
attention [Tanbeer 09, Surana 11, Amphawan 12]. It can also be useful to use interest-
ingness measures in addition to Support that help to select the good rules. For example
[Zhao 08] considers the Lift [Brin 97] in addition to the Support and the Confidence to
evaluate positive and negative sequential rules.

During the data mining process, interestingness measures could be used mostly in 2
ways, as presented in Figure 2.1. First of all, measures could be used to prune uninteresting
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patterns/rules during the mining process in order to diminish the search space and improve
the mining efficiency. This is the role of the pre-processing measures most of which are
based on the anti-monotone property of a measure stating that the measure’s value of a
pattern must be no greater than the measure’s value of its subpatterns [Agrawal 94] An
example of this measure is Support, as presented in [Agrawal 94], where the user can set
a threshold to eliminate the information which appears not enough times in the database.
Then, the measures can be used to filter the extracted information in a post-processing
step, in order to obtain the final patterns and rules, as in the case of Confidence and
Lift [Mannila 97].

Figure 2.1 : Roles of interestingness measures in data mining process.

In our research we take into consideration both types of measures: pre- and post-
processing ones. We consider the time-distance between the events also.

Regarding the sequential rule mining, we here propose post-processing interestingness
measure, Closeness Preference (CP), that takes into consideration the time interval to
meet the user’s preference of selecting the rules with closer antecedent and consequent in
a post-processing step (Section 2.4).

For the sequential pattern mining, we present two types of a Modified CP measure
that are used in the extraction and ranking of sequential patterns (Section 2.5). The first
one is Support-Confidence-CP based measure (MCPsc (Modified CP), Subsection 2.5.2),
while the second one is Support-CP based combined with a weighting function that as
results fulfils the anti-monotone property (MCPs func, Subsection 2.5.3). The aim of both
measures is to select the patterns with closer itemsets and are used instead of the Support,
thus, they are pre-processing measures, the difference being that the first one does not
fulfil the apriori principle, while the second does. Our results on a real dataset show that
the new measures are able to evidentiate the sequential patterns with closer events, and
present different results in comparison to the Support mining (Subsections 2.4.4 and 2.5.6).
Such patterns and rules could be used in web analysis (for predicting the pages that will
be visited), marketing (to find the next items that would be bought), network security (to
prevent intrusion from unwanted packages).

2.2 STATE OF THE ART

In the current part we briefly review the related works developed to improve the useful-
ness of sequential rules and patterns following some user’s expectations (e.g. taking into
account time interval, importance between items and interestingness measures to focus on
a special kind of rules). As it has been stated in Section 2.1 we are concerned about In-
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terestingness Measures, and not the extraction algorithms. However, a review of existing
methods for patterns and rules extraction are presented in the Annexes 5.

We first review some post-processing techniques used in sequential data mining. Ob-
viously the Confidence (P (B|A)) measure is often used (where P (X) is the probability of
X). It measures the accuracy of a given rule. But it can produce misleading results when
the Support of the rule is higher than the rule’s Confidence. For example, if the itemset A
happens in 25% of the cases, while the itemset B in 90%, then the events A and B might
be completely independent, and the rule A→ B might not be statistically significant even
if its Confidence is high. Confidence and Lift ( P (AB)

P (A)·P (B)) are used for example to find the
unexpected sequential rules [Spiliopoulou 99], to discover atherosclerosis risks [Klema 08],
or to monitor a network [Costa 09]. The J-Measure [Smyth 91]

J-Measure = P (A)
(
P (B|A) · log

(
P (B|A)
P (B)

)
+ (1− P (B|A)) · log

(
1−P (B|A)
1−P (B)

))
is used to rank the rules in time-series [Das 98, Höppner 02] or in interval se-
quences [Höppner 01] due to its good properties. The generalized information gain which
penalizes the gaps between pattern occurrences is proposed in [Yang 02]:

The Generalized Information Gain of D (a sequence of events) with respect to P (a
pattern) is defined as I(P )×(SD(P )−1)−LD(P ), where I(P ), SD(P ), and LD(P ) are the
information of P , the Support of P within D, and the information loss of D with respect
to P , respectively.

The Sequential Implication Intensity measure which evaluates the statistical signifi-
cance of the rules in comparison with a probabilistic model is proposed in [Blanchard 08]:

SII(A ω−→ B) = 1−
∑NAB̄(ω)
k=0 CknA(e−

ω
L
nB )k(1− e−

ω
L
nB )nA−k

where ω is a time window, while nA, nB, nAB̄ are the number of the itemsets A, B in the
database and of the counterexamples respectively.

An interesting empirical comparison between several interestingness measures for asso-
ciation rules and sequential patterns for web mining is done in [Huang 02, Huang 07]. It is
shown that some measures are much more effective than others: some give the best rank-
ing performances of the sequential patterns, some contain more variety of high-ranked
patterns while others are more specialized. Thus, a user should use a measure that is
suitable for his application and interest.

Let’s now consider pre-processing approaches. A practical application to identify pat-
terns in network alarm logs in order to predict telecommunication equipment failures is
presented in [Weiss 01]. Patterns are generated with a genetic algorithm where the fit-
ness of the prediction pattern is based on its F-measure (i.e. on both its precision and
recall). However most of the pre-processing approaches are based on the anti-monotone
property (property defined in Section 2.1) as it was defined for the case of the Support
in [Agrawal 94]. Also based on precision and recall the statistical support for mining
sequential patterns on data streams is proposed in [Laur 05].

Fβ = (1 + β2)PR/(R+ β2P )
where P is the precision, i.e. TP

TP+FP
1, R is the recall, i.e. TP/(TP + FN), while β is

1TP - true positive; TN - true negative; FP - false positive; FN - false negative
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a parameter adjusted by the user. This measure is anti-monotone and is used in place
of the Support. In [Giannella 04] the frequent-pattern mining framework was extended
to mine time-sensitive patterns with approximate support guarantee in data streams.
This framework offers several kinds of pruning strategies to mine a variety of frequent
patterns associated with time. Sequential Interestingness measure [Sakurai 07] takes into
consideration the supports of a pattern and its subpattern and has thus the anti-monotone
property:

inst(s) = minsp⊆s
{(

1
freq(sp)

)α}
× (freq(s))1+α

N

where α ≥ 0 is a sequential interestingness parameter, sp is a sequential sub-pattern of
a sequential pattern s, freq() is a function that calculates the frequency of a sequential
pattern in sequential data, and N is the number of sequential data.

Weighted Interesting Sequential pattern mining with sequential s-confidence and w-
confidence measures, which support the apriori principle, are proposed in [Yun 07]. The
anti-monotone Weighted Support, a Support-based measure, takes into consideration the
weights (to be set by the user) of the itemsets to extract weighted sequential pat-
terns [Yun 08]. In [Chang 11] this approach is extended with the Time-interval Weighted
Support (TiW-support) measure in order to consider the time-intervals between itemsets:

TiW-Supp(X) =
∑

S:(X⊆S)
∧

(S∈SDB) W (S)∑
S:S∈SDBW (S)

where W (S) is the time-interval weight of a sequence. TiW-support uses three kinds of
time-interval weighted functions where weights could decrease in general with or without
ceiling or in log scale. In addition it takes into consideration the number of items of a
sequence (more items in the itemset having a higher influence on the measure’s value,i.e. it
might increase or decrease the final result (according to the time-intervals in the pattern)
with a greater ratio than the smaller itemsets). This measure appears to fulfil the a
priori principle, however, the author does not explain which distance to choose from a
pattern which appears several times inside a sequence. For example the pattern a b inside
a (bc) x a x b, i.e. we are not told if we should choose the first a b pair or the second
one, because if we choose the other one, than the weight of the next pattern (in this case
a (bc)) will be higher, thus, the anti-monotone principle will not be fulfilled.

2.3 THEORETICAL FUNDAMENTALS

We here present the basic concepts in time stamp sequential data mining. Definitions are
exemplified with a toy sequential database (defined next) presented in Table 2.1.

Let’s denote by I = {i1, i2, ..., ik} the set of all items. An itemset is a non-empty subset
of I. A sequence is an ordered list of itemsets, denoted by S = {(s1, t1), (s2, t2), ..., (sn, tn)},
where si is an itemset and ti its corresponding time stamp, 1 ≤ i ≤ n. Obviously ti < ti+1
for 1 ≤ i < n. An item can occur at most once in an itemset of a sequence but an item
can occur in several itemsets of a sequence. A sequence database is a set of sequences,
denoted by SD = {S1, S2, ..., Sm}, each one being associated with an ID. A sequential rule
A → B is a relationship between two itemsets A and B where B occurs at a time stamp
tB > tA, and where A and B belong to the same sequence. A sequential pattern P1P2...Pn
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Table 2.1 : Toy example DB.
ID \ Time 1 2 3 4 5 6 7

10 a (de) b a b e
20 (bc) e (ab) e b c c
30 c d e b a
40 (ab) (cd) b
50 c (ade) (ad) a e c
60 e b c e b
70 d d c b d
80 (abd) c b
90 a b (de) a c e
100 e c b

is a relationship between the itemsets Pi where Pi+1 occurs at a time stamp ti+1 > ti, and
where Pi and Pi+1 belong to the same sequence.

Let’s consider the set of items I = {a, b, c, d, e} and the sequential database SD
in Table 2.1 which contains 10 sequences: S10, S20, . . .S100. We consider in this toy
example only discrete time-stamps without loss of generality. The second sequence
S20 = {(bc, 1), (e, 2), (ab, 3), (e, 4), (b, 5), (c, 6), (c, 7)} is composed of seven itemsets
while S60 = {(e, 1), (b, 2), (c, 3), (e, 4), (b, 5)} contains five itemsets.

From S20 we might form for example the following sequential rules: b→ e (from (bc, 1)
with (e, 2), or from (ab, 3) with (e, 4)), bc → a (from (bc, 1) with (ab, 3)), e → c (from
(e, 2) or (e, 4) with (c, 6) or (c, 7)), or the patterns b e c (from (b, 1), (e, 2) and (c, 6) or
(c, 7)), (ab) b (from ((ab), 3) and (b, 5)). In the same way, the rules c → d, c → e, c → b
and c → a can be extracted from S30. In our analysis we consider a rule and a pattern
valid also if ti+1 ≥ ti, e.g. the rule b→ c and the pattern b c e, formed from (b, 1), (c, 1),
and (e, 2) are good ones.

One of the issues of the existing measures presented in Section 2.2 is that in real
applications events that appear after 2 time units might be as important as the ones
that occur after 5 time units. And then further events may be of continuous decreasing
interest to the user. For example, the rules printer 1 day−−−→ scanner and printer 3 days−−−−→
CD burner might be equivalent to the user, i.e. having the same importance as the time
difference between the antecedent and consequent is not so big from the user’s point of
view. While the rule printer 1 day−−−→ scanner would be of much greater importance than the
rule printer 10 days−−−−→ CD burner, because the time-difference in this case is not negligible
to the user. One of the solutions to achieve this is using time-window sequential rules
and patterns mining. But in order to differentiate between these time intervals the user
would have to execute the extraction algorithms separately for a given time-interval. For
example, one has to execute the algorithm by taking into consideration the rules happening
inside a time-interval of 10 days to select and advantage the rules printer 1 day−−−→ scanner
and printer 3 days−−−−→ CD burner, and a different simulation with a different time-interval to
select the rule printer 10 days−−−−→ CD burner and to give it less importance. If a more precise
differentiation of the rules is needed, then more simulations have to be performed. These
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point of views, has not been considered previously and are the basis of our proposition.

Thus, the user may be interested in taking into account the time-difference between
the consequent itemsets, i.e. the antecedent and the consequent of the rules and the time-
difference between the appearance of 2 consequent itemsets in a pattern. For example,
from this point of view the rules obtained from S30 c → d (c and d are very close with
respect to time) and c→ a (c and a are further) are not equivalent. In the same way the
pattern c e a (c, e, and a are very close with respect to time) and (bc) e c (e and c are
further) are not equivalent also. Indeed it could be desirable to have the rules/patterns
ranked at the same level if the time-difference between the itemsets is no greater than a
certain time, denoted by us with σt, and then, to decrease their importance with a certain
speed w.r.t. to time by imposing a time-window ωt where the value of the measure passes
below the 50% of the maximum value. These considerations lead us to define the notion
of closeness in time.

Definition 1: Time Closeness - sequential rules. Let ωt be a time
interval and W a time window of size ωt. We say that the itemsets A and B
with time-stamps tA and tB are ωt-close iff |tA− tB| ≤ ωt. When considering
a sequential rule A→ B, i.e. tB ≥ tA, A and B are ωt-close iff tB − tA ≤ ωt.

Definition 2: Closeness Measure - sequential rules. Let σt be a user-
preference time-interval, σt < ωt. We define a closeness measure for a ωt-
close rule A → B as a decreasing function of tB − tA and 1/σt such that if
tB − tA ≤ σt then the measure should decrease slowly while if tB − tA > σt
then the measure should decrease rapidly.

In the following only ωt-close rules will be considered (Definition 1). The set of ωt-close
rules will be ranked according to the closeness measure (Definition 2): the closer B to A
the higher the measure’s value of the ωt-close rule A→ B is.

Let’s take as an example the sequence S90 = {(a, 1), (b, 2), (de, 3), (a, 4), (c, 5), (e, 6)}
(Table 2.1). Some of the rules that could be formed from S90 are: a → b (from (a, 1)
with (b, 2)), a → (de) (from (a, 1) with (de, 3)), a → a (from (a, 1) and (a, 4)), a → c
(from (a, 1) with (c, 5)), a → e (from (a, 1) with (e, 6)). Let now set ωt = 4 and σt = 2.
All the rules are 4-close rule except a → e (the time difference between the itemsets is
5). The rules a → b and a → (de) will have close measure’s values (the time-difference
between the itemsets is less or equal to σt), the value for a→ b being slightly greater (the
time-difference for this rule is smaller). The measure for a → (de) must be much greater
than for a→ a (the time-difference are smaller and greater respectively than σt).

Regarding patterns, we state the following Definition:

11
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Definition 3: Time-Closeness Weight - sequential patterns. Let σt
and ωt be two user-preference time-intervals, s.t. σt < ωt, and ωt being the
time after which the value of the weight passes below 50%. We define a time-
closeness weight for a pattern P1P2...Pn as a decreasing function of ti+1 − ti
and 1/σt and 1/ωt such that if ti+1− ti ≤ σt, then the weight should decrease
slowly, while if ti+1 − ti > σt then the weight should decrease faster. The
speed of the decreasing depends on the time-interval ωt − σt, i.e.: a higher
value results in a slower decreasing, while a small value results in a faster
decreasing of the time-closeness weight.

The set of obtained patterns will be ranked according to the time-closeness weight
(Definition 3): the closer the itemsets, the higher the measure’s value is.

From the same database in Table 2.1 , we consider S20 where we might form the
following sequential patterns from: (bc) e c (from (bc, 1), (e, 2) or (e, 4), and (c, 6) or
(c, 7)), (ab) b (from (ab, 3) with (b, 5)), (ab) e (from (ab, 3) with (e, 4)), c e a (from (c, 1),
(e, 2), and (a, 3)). If we take an ωt = 2 and a value for σt = 1, then the measure’s value
for the pattern (bc) e c should be lower than for c e a (the time difference between the
itemsets of the first pattern is higher). The measure of the pattern (ab) e is higher than
for the pattern (ab) b (the time difference of the itemsets from (ab) e is ≤ σt, which is not
the case for (ab) b).

2.4 CLOSENESS PREFERENCE INTERESTINGNESS MEASURE
FOR SEQUENTIAL RULES SELECTION

In this Section we present the closeness IM for sequential rules mining, its properties, and
how to use it in order to rank or compare the ωt-close rules. A toy example is presented
followed by simulations on a real Web-log database used for prediction purposes. The
results show that the proposed measure is able to advantage and select the rules with closer
itemsets which give higher prediction performance than the existing sequential forecasting
algorithms and measures.

2.4.1 Definition

Let’s consider a sequential rule A → B. We define an interestingness measure which will
favour the rules with a relation of dependency between the itemsets A and B (require-
ment 1) where the consequent B is as close as possible to the antecedent A in most of the
cases (requirement 2).

The first requirement implies to consider R(A) ·R(B), where R(X) = nX
|DB| , nX being

the number of sequences where the itemsetX appears, and |DB| is the number of sequences
in the database DB. In order to penalize very frequent itemsets in the database the higher
R(A) · R(B), the lower the closeness measure’s value will be (following the properties
proposed in [Piatetsky-Shapiro 91]).

The second requirement considers two parameters: the size of the (sliding) window
ωt (in order to consider only ωt-close rules – Definition 1) and the user-predefined time-
interval σt (Definition 2). It will measure the strength of the closeness of the itemsets B
to A over all sequences of the database. We denote by Cωt,σt(B|A) this closeness.
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As a whole the proposed Closeness (User) Preference interestingness measure CP is
defined as CP (A→ B) = Cωt,σt (B|A)

R(A)·R(B) .
Let’s now define the strength of the closeness Cωt,σt(B|A) between A and B.
First of all each B following A is weighted by a decreasing function f(t, s, ωt) of its

distance in time from A inside the time-window ωt:

f(t, s, ωt) = 1
1 + st−ωt

(2.1)

where t = tB − tA, s is the slope of the plot (s > 1) and is directly proportional with
the user-preference time-interval σt (Definition 2.3). The greater s implies that the rules
with the consequent closer to the end of ωt will be much more penalized than the others.
As s and ωt are user-fixed parameters, we simply denote the function by f(t). Figure 2.2
illustrates the behaviour of this function for s = 3, 7, 25 and ωt = 5.

Figure 2.2 : Weight distance function according to ωt and slope s.

For a given value for σt and the minimum value f(σt) of f(t) in the interval [0, σt], the
slope s is given by:

s = σt−ωt

√
1

f(σt)
− 1 (2.2)

The strength of the time-relation between a single antecedent A and one or several
consequents B inside the same time-window of width ωt, is the average value of all the
f(t) function’s values:

CPB|A = 1
ntB|A

ntB|A∑
j=1

1
1 + s

tBj−ωt
(2.3)

where ntB|A is the number of B between 2 consecutive A inside the same window and
where tBj is the time distance of each B from the beginning of the window (starting from
the first A). If there is only one itemset A in the time-interval [0, ωt], then ntB|A is the
number of B inside the window. Next, this calculation is done for each A inside ωt (see
Figure 2.3 for an illustration):

CPω = 1
ntA

nt
A∑

i=1
CPB|Ai (2.4)
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where ntA is the number of A inside [0, ωt], and CPB|Ai is the expression from Equa-
tion (2.3) for each Ai. Note that each A not followed (w.r.t ωt) by a B will penalize the
rule’s evaluation.

Figure 2.3 : An example of the CPω calculation.

We then extend this approach to all time-windows of size ωt of a sequence. The
strength of A→ B in a sequence is the average value of all windows in it:

CPS = 1
nωt

nωt∑
k=1

CPωk (2.5)

where nωt is the number of time-windows of size ωt in a single sequence containing the rule
A→ B, and CPωk is defined as in Equation (2.21) for each window k. This calculation is
illustrated in Figure 2.4.

Last the average strength of the rule A → B is calculated from all the sequences
containing A → B to the entire database and the closeness index Cωt,σt(B|A) is defined
by:

Cωt,σt(B|A) = 1
|DB|

nABω∑
m=1

CPSm (2.6)

where nABω is the total number of sequences where the rule A→ B holds at least once in
the interval [0, ωt]; and CPSm is the expression from the Equation (2.5) for each sequence
m.

Finally the Closeness (User) Preference interestingness measure CP is defined as the
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Figure 2.4 : An example of the CPS calculation.

following:

CP (A→ B) =
1
|DB|

∑nABω
m=1

[
1

nωt|m

∑nωt|m
k=1

[
1

ntA|k

∑nt
A
|k

i=1
1

ntB|Ai

∑ntB|Ai
j=1

1
1+stj−ωt

]]
R(A) ·R(B) (2.7)

The goal of the proposed measure is to select the "strong" rules with respect to the
probability of the antecedent’s and consequent’s appearances in the database, and with
respect to the temporal proximity between the itemsets of the rule. The numerator of the
Equation (2.7), Cωt,σt(B|A), is actually the frequency of an ωt-close rule A → B taking
into account the temporal proximity (Cωt,σt(B|A) < R(AB)), where R(AB) = nAB

|DB| , nAB
being the number of sequences where the rule A→ B is sustained. It results that the CP
measure has some similarities with the Lift measure (i.e. P (AB)

P (A)·P (B) , where P (X) is the
probability of the itemset X in the database).

The CP measure can thus be used in order to rank the rules. In addition if one fixes
a threshold it can be used to select the rules. Such a threshold θ∗ could be the average
value of the weighting function (Equation (2.1)) over ωt. It is the area delimited by the
curve of the function and the x-axis divided by ωt, i.e. its integral. In order to calculate
this integral we denote: tj by x; s−ωt by a constant c; stj by ax. Results that the total
area of the function from Figure 2.2 is:

∫ ωt

0

1
1 + cax

dx =
∫ ωt

0

1 + cax − cax

1 + cax
dx =

=
∫ ωt

0

[
1− cax

cax + 1

]
dx =

∫ ωt

0

[
1− cax ln(a)

(cax + 1) ln(a)

]
dx =

=
∫ ωt

0

[
1− 1

ln(a) ·
cax ln(a)
cax + 1

]
dx

(2.8)
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As we know:

(ux)′ = ux ln(u) (2.9)

(u(x))′

u(x) = (ln(u(x)))′ (2.10)

So, it can be written:

(cax + 1)′ = cax ln(a) (2.11)

By substituting Equations (2.10) and (2.11) in (2.8), we obtain:

∫ ωt

0

[
1− 1

ln(a) ·
(cax + 1)′

cax + 1

]
dx =

∫ ωt

0

[
1− 1

ln(a) · ln(cax + 1)
]
dx =

=
∫ ωt

0
x′ dx− 1

ln(a)

∫ ωt

0
(ln(cax + 1))′ dx =

[
x− ln(cax + 1)

ln(a)

] ∣∣∣∣∣
ωt

0

=

= ωt + ln(c+ 1)− ln(caωt + 1)
ln(a) = ωt +

ln
(

c+1
caωt+1

)
ln(a)

(2.12)

By resubstituting the values of a and c, we obtain the final propose threshold value of
the CP :

θ∗ = 1
ωt

∫ ωt

0

1
1 + st−ωt

dx =
ωt +

ln
(
s−ωt+1

2

)
ln(s)

ωt
(2.13)

This average value will select the rules with very close itemsets. Of course depending
of user’s goal another threshold can be used (by setting the threshold higher or lower).

2.4.2 CP properties

We now discuss some properties of the CP measure. Many studies on a large num-
ber of interestingness measures, especially for association rules, and on their properties
has attracted significant attention in the literature (e.g. [Tan 04, Geng 06, Lenca 08]).
[Piatetsky-Shapiro 91] proposed three properties that must be satisfied by any reasonable
interestingness measure: a measure should value 0 if A and B are statistically indepen-
dent i.e. when P (AB) = P (A) · P (B) [property P1]; a measure should monotonically
increase with P (AB) when P (A) and P (B) remain the same [property P2]; a measure
should monotonically decrease with P (A) (or P (B)) when P (AB) and P (B) (or P (A))
remain the same [property P3]. 2

We focus on P2 and P3 properties. Indeed, CP measure is not concerned by the
property P1 as it was not designed for. However, as CP is a measure to be used in a
post-analysis phase to select the rules one can first filter the rules with the help of a

2Note that here we do not consider P (X) but instead R(X) as defined in Subsection 2.4.1.
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measure that fulfils property P1. This is the case of the Lift measure which values 1 at
the independence (property P1 can be extended to any constant value [Lenca 08]).

Regarding the property P2: if R(AB) increases then the number nABω of sequences
containing ωt-close rules might only increase (in the worst case it remains the same). As
CP sums only positive numbers the numerator of Equation (2.7) can only increase while
the denominator is constant. CP has the property P2.

A similar reasoning is done to show that CP has the property P3. If R(AB) does
not change then no new ωt-close rules can appear and the numerator of Equation (2.7) is
constant while the denominator will increase with R(A). Thus CP decreases. The same
reasoning is done for R(B).

2.4.3 Toy example

Let’s consider the toy example database of Table 2.1. In order to extract the rules we
use the post-processing from the Generalized Sequential Pattern algorithm [Srikant 96]. It
was selected because of its simplicity and its property to extract all the existing sequential
patterns that pass a given Support threshold. The algorithm passes the database several
times. At each pass there is a Join Phase, and Prune Phase. For the first phase the set
Lk−1 of all frequent k − 1 sequences is joined with itself in order to generate a superset
of the set of all frequent k-sequences (where k is the number of items). For the Prune
Phase the candidate sequences whose Support count is less than the minimum Support
are deleted. A hash-tree data structure is used for an efficient candidate counting. Using
GSP we extract all the possible sequential patterns that have 2 itemsets (note, that there
might be several items in the antecedent or consequent itemset) and analyse them as rules.
With a Support threshold of 50% the GSP algorithm extracts 15 sequential rules.

These rules are sorted with respect to their Lift (Lift(A → B) = R(AB)
R(A)·R(B)), Con-

fidence (conf(A → B) = R(AB)
R(A) ) and CP values. Note, that we adapt the formulas for

Support, Confidence, and Lift for a sequential rule A→ B, i.e.:

supp = R(AB)
|DB|

; conf = R(AB)
R(A) ; Lift = R(AB)

R(A) ·R(B) (2.14)

For CP we select ωt = 6, σt = 4, and f(σt) = 0.8. According to Equation (2.19), it re-
sults that we obtain the following value for the slope of the function f(t): s = 4−6

√
1

0.8 − 1 =
2. Thus, the CP measure is parametrized with ωt = 6 and s = 2 (which lead to the func-
tion presented in Figure 2.5 and a medium value θ∗ of 0.837). The results are shown in
Table 2.2.

Let’s illustrate the case of the rule d → a. The contribution CPSi for each sequence
Si containing d → a (Equation (2.5)) is illustrated in Figure 2.6. These values are then
averaged (Equation (2.6)) over the sequences containing d→ a (the items a and d appear
in 7 sequences out of 10):

CP (d→ a) =
1
10 (0.941+0.889+0.974+0.985+0.969)

7
10 ·

7
10

= 0.97

Let’s consider some rules with the highest Lift in Table 2.2, for example rules 1 and
4. Following our goals the CP measure is not in favour of e → a but is in favour of
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Figure 2.5 : The function f(t) with s = 2 and ωt = 6.

Figure 2.6 : CPω and CPS calculation for the rule d→ a.

d → a. Indeed the rule e → a (respectively d → a) is supported five times (respectively
six times) but is not supported seven times (respectively four times). In addition the item
a occurs in average further from item e than from item d. Here CP disagrees with Lift
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Table 2.2 : Sequential rules of the toy database with their CP and Lift
values.

Rule ID Rule CP Lift Confidence
1 d → a 0.970 1.020 0.714
2 e → e 0.900 1.020 0.714
3 a → d 0.677 1.020 0.714
4 e → a 0.584 1.020 0.714
5 b → a 0.601 0.952 0.667
6 c → b 0.742 0.864 0.778
7 a → b 0.682 0.794 0.714
8 e → b 0.675 0.794 0.714
9 d → b 0.665 0.794 0.714
10 a → c 0.638 0.794 0.714
11 d → c 0.625 0.794 0.714
12 c → e 0.577 0.794 0.556
13 e → c 0.514 0.794 0.714
14 b → b 0.570 0.617 0.556
15 b → c 0.368 0.617 0.556

as it was expected in order to advantage the rules with closer itemsets. Nevertheless they
are concordant when rules can be considered as bad rules3.

2.4.4 Closeness Preference measure in real application

In this section we experimentally study the ability of the CP measure to select good
prediction rules with close itemsets. The results show in particular that few and simple
rules with high CP evaluation may produce an accurate rules set. For that purpose we
use the ClickStream data provided for the ECML/PKDD 2005 data mining challenge4.
Indeed in such data one can be interested in predicting the next page that will be visited
by a user based on a history of visited pages [Labsky 05]. Rules with close itemsets make
here sense and thus CP should be well-adapted.

2.4.4.1 Purpose

As a forecasting problem we build a simple prediction model used to forecast the users’
future requests in the ClickStream database, i.e. the visited page Vn which appears after
a visited page Vi in order to provide reasonable recommendations to meet the user’s
requirements. So, we are searching for the rules of the form Vi → Vn. In order to evaluate
the performance of the extracted rules, a classical Training - Testing phase methodology
is applied. Thus, the database is splitted into a training part and into a testing part. From

3Kendall’s Rank Correlation coefficient [Kendall 38] on 170 rules extracted from ClickStream database
(presented in the next section) is 0.68.

4http://lisp.vse.cz/challenge/CURRENT/index2.html
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the training part we extract the rules using the GSP algorithm with a Support pruning,
followed by a filtering with CP , Confidence, or Lift. On the testing part we verify the
forecasting performance of the obtained sequential rules making a comparison between
CP , Confidence and Lift (Subsection 2.4.4.4), and between the proposed forecasting model
with existing ones (Subsection 2.4.4.5) where we also compare the simple rules with the
prediction performance of the complex rules of the form V1V2V3...Vn−1 → Vn. The order
of the V1, V2, ..., Vn−1 is not important, while Vn should be inside the same time window
ωt proceeding V1, V2, ..., Vn−1.

The comparison with other existing models is done with the results from [Labsky 05]
and [Liu 07]. Labsky et al [Labsky 05] use the same database and are motivated by two
goals: to predict the next visited page Vn after observing a sequence of pages V1V2...Vn−1,
and to find interesting patterns in the visited page sequences. We are focusing on his first
objective, as it is similar to ours. Three algorithms are used [Labsky 05]: one statistical –
Markov n-gram models, and two rule-based – set covering and compositional algorithms.
Only Accuracy is used as a prediction performance measure and the best result, an ac-
curacy of 0.67, was obtained using the Markov N-gram model. Liu and Keselj [Liu 07]
propose an approach for user navigation patterns classification and user’s future requests
prediction. They use a database from a server log access file at Dalhousie University, sim-
ilar to ClickStream Database5. Their model is based on combined mining of the log data
and the contents of the corresponding web pages, which are captured through extraction of
character N-grams. For the prediction process the authors do not split the entire database
in Training/Testing but they split each session in two parts. One for analyzing (training)
in order to predict the second part. The best result in prediction was obtained using 4
N-gram size model, with an Accuracy of 0.644.

We evaluated the performance of our approach using prediction accuracy measures,
such as Accuracy, Precision, Recall, and F1-Score.

2.4.4.2 ClickStream database

The ClickStream database contains about 3.6 millions records (24 days) from a www shop
web server log. Each record contains the time, IP address, session ID, page request URL,
and referee. Most of the sessions are very short (with an average of 16 pages).

For our purpose only the time, the session ID, and the visited page are relevant. Data
are then grouped into sessions (Figure 2.7). A session was described as a set of visited
pages with the same session ID from the moment a user entered the site until the moment
he left it. There are 522 410 sessions. Only 203 887 of them are of length greater than
1 (i.e. they contain more than 1 visited page). More basic analysis of the ClickStream
database is provided in [Naito 05, Labsky 05].

The database is splitted into a training set (first 100K sessions) and testing set (next
60K) in order to make our result compatible to those from [Labsky 05].

5The [Liu 07] didn’t provide us their DB for experiments and comparison
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Figure 2.7 : Data transformation of the ClickStream database. Each row
of the initial log file contains: shop ID s ID; unixtime UT t; IP address
IP; session sess ID; visited page VP; referrer ref. From these, we group the
rows into sessions, thus, a session will contain several visited pages and the
corresponding time. The notation with x presents different shop IDs or IP
addresses (that of course might be the same, but these are not taken into
consideration by us).

2.4.4.3 Rules extraction and validation algorithm

For the sequential rules extraction we have implemented the GSP algorithm (described
briefly in Subsection 2.4.3). We used a Support threshold value of 1.5%. This threshold
leads to several interesting profiles as shown in [Hofgesang 05]. We then obtain 170 rules
from the training set. Each of these rules are then evaluated with the CP measure. The
time windows size ωt used in the CP measure was set to 360 and 420 seconds. Indeed
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these times are the most frequent time-interval a user spend on the shop site [Naito 05].
Last we study two user scenarios to set the slope s of the f(t) function (Equation (2.1)):
one where the importance of the next visited page decreases rapidly (s = 1.05) and an
another one where it decreases slower (s = 1.25) (Figure 2.8). The efficiency of the set
of rules (or of any subset of rules) can then be studied on the testing set. We used the
classical measures used in supervised learning i.e. accuracy (A), precision (P), recall (R)
and F1-Score (F1).

Figure 2.8 : The functions to calculate the proposed IM for the ClickStream
dataset: top (from left to right): slope = 1, 05, ωt = 360, 420; bottom (from
left to right): slope = 1, 25, ωt = 360, 420.

From the obtained rules we use those which were selected by each of these measure
and pass a certain threshold value. The GSP algorithm will extract the rules of the form
Vi → Vn. However, we would like also to know if we could increase the performance of the
prediction by computing the so called complex rules of the form V1V2...Vn−1 → Vn. For
this, we take all the rules of the simple form Vi → Vn, after which we made combinations
between all Vi itemsets. For example, having the rules A → Y , B → Y , and C → Y ,
we get the complex rules AB → Y , AC → Y , BC → Y , ABC → Y . All these simple
and complex rules are applied on the test database. In the testing phase, the rules are
considered to be valid if all of its itemsets are occuring in the time-window of length ωt.

As in [Labsky 05, Liu 07], we evaluated our results using the Accuracy (Equa-
tion (2.15)) measure:

Accuracy = TP + TN

TN + FN + FP + TP
(2.15)

where TN is True Negative, FN is False Negative, FP is False Positive, and TP is True
Positive

We compute also other three popular performance indicators used in data mining
[Goutte 05, Feng 07, Devitt 05]: Precision (Prec), Recall (Rec) and F1-Score (F1).

Prec = TP

FP + TP
, Rec = TP

FN + TP
, F1 = 2 · Prec ·Rec

Prec+Rec
(2.16)
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2.4.4.4 CP vs Lift and Confidence in rule ranking and forecasting

In order to see the differences between the proposed measure with Confidence and Lift
we have computed the Kendall’s τ Rank Correlation coefficient [Kendall 38] based on the
measures’ results from the 170 extracted rules:

τ = C −D
1
2n(n− 1)

(2.17)

where C is the number of concordant pairs, and D the number of discordant pairs, while
1
2n(n− 1) is the total number of pairs. The coefficient takes values in the interval [−1; 1].

There are low Kendall’s τ correlation values between CP and the Confidence (see
Table 2.3) showing the properties’ and the rule ranking differences between these two
measures. These differences are also shown in Figure 2.9 from the left, where the graph of
the rules’ Confidence versus CP are presented. The mathematical similarity between CP
(see Equation (2.7)) and Lift (see Equation (2.14)) induce higher Kendall’s τ correlation
values (see Table 2.3). Nevertheless, the differences between the rules’ ranking given by
CP and Lift measures are showed by the corresponding plot from Figure 2.9 from the
right, where the rules’ values of the Lift and CP are shown.

Table 2.3 : Kendall’s τ Correlation coefficients between CP and Confidence
with Lift computed on the ClickStream database.

ωt = 360s ωt = 360s ωt = 420s ωt = 420s
s = 1.05 s = 1.25 s = 1.05 s = 1.25

Confidence 0.408 0.404 0.399 0.394
Lift 0.674 0.689 0.701 0.706

Figure 2.9 : The values for Confidence, Lift, and CP . CP parameters
were: ωt = 360 slope = 1, 25. From 170 rules only 158 are shown because of
the very high values of the CP of the remaining rules resulting in a graphic
concentration at the origins.
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The differences are observed from the histograms of these values. Let’s take a closer
look to the rules generated from Figure 2.10. In case of the CP measure we have the
width of the time window ωt = 360, 420. We should also point out that the rules found in
ωt = 360 would be found in the rules from ωt = 420 also. Confidence and Lift histograms
are obviously the same, because these measures do not take into consideration the time-
distance between events. In the histograms from our IM, the medium IM values increase
(from aproximately 0, 4305 to 0, 6045 in the next histograms). This fact proves that the
new IM is able to distinguish and advantage the rules which have the events closer one
to another relative to the ωt value. Also, by increasing the slope coefficient in our IM
calculation from 1, 05 to 1, 25, we would be able to give similar importance to the rules
which have the consequences inside the same window, because in this case the function in
the IM calculation would decrease later with a faster rate.

The differences between the Kendall’s τ Correlation coefficients and the plots from
Figures 2.9 and 2.10, allow us to affirm that our CP measure shows different results and
properties compared with Confidence and Lift. This difference is much higher because
CP has a temporal aspect. Also, if we increase the ωt value much more, than it should be
supposed that the similarity between CP and Lift should be higher. however, according to
our experiments, if we increased ωt the τ value didn’t improve significantly. For example,
if we take an ωt = 900 seconds, then we obtain a value for τ between CP and Lift around
0.670, while for ωt = 1800, we get τ = 0.650. There is no big difference in the graphs of
the CP versus Lift also.

Earlier we have showed that there are differences between CP measure and the Con-
fidence with the Lift. Now, we want to know if these differences of the CP imply better
prediction performance. We present the results by using an ωt = 360 and a slope s = 1.25
for the CP parameters. The pruning is done with a CP threshold of 0.8 and we obtain
31 simple rules. In order to obtain the same number of rules, we must set a threshod of
0.6 for the Confidence and of 1.240 for the Lift respectively.

Table 2.4 : Accuracy (A), Precision (P), Recall (R), and F1-Score(F1) for
ωt = 360. The CP ’s slope s = 1.25. The number of simple rules tested was
31 for each measure.

Measure CP Conf Lift
Thr values 0.8 0.6 1.240

A 0.757 0.508 0.709
P 0.785 0.809 0.571
R 0.676 0.349 0.785
F1 0.662 0.416 0.565

The obtained results (see Table 2.4) show that CP is better than Confidence in Ac-
curacy, Recall, and F1-Score performance criterias, while is worse in Precision (i.e. CP
gives more False Positives). If we look at the formulas of the prediction performances
measures, we can deduce that in comparison to Confidence the CP measure has higher
values for the ratio FP/TP , while lower values for the ratio FN/TP . This is because of
the time-window, and of the fact that Confidence takes into consideration only R(AB) and
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Figure 2.10 : The histograms of the ClickStream dataset with s = 1.5%,
ωt = 360, 420, and slope = 1, 05; 1, 25. Notice the increasing of the rules’
values in the proposed IM while increasing the window’s width and slope.

R(A) parameters (resulting in lower FP for the Confidence), while CP considers R(B)
also.

In comparison to Lift, the CP performance measures are higher with: 6.7% for the
Accuracy, 37% for the Precision, and 17% for the F1-Score. While it is lower with 14%
in case of the Recall (i.e. it gives more False Negatives). In this case we have a lower
value for the ratio FP/TP , while a higher ratio FN/TP . The reason for this is the ωt
parameter in CP , which has more restriction in allowing a rule to be selected and to
perform a prediction, thus resulting in less false positives and more false negatives.
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2.4.4.5 Forecasting model using CP measure vs existing prediction methods that use
sequential patterns/rules processing

From the initial 170 simple rules, we have selected those with a CP value higher than
a threshold value θ. Eight threshold values 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, θ∗ and 1.0 (θ∗
corresponds to the medium value of the function f(t) –see Equation (2.13)) for the CP
measure have been used for our s and wt choices.

The prediction model using the CP measure allows us to retain the rules that give an
Accuracy of up to 0.886 (see Tables 2.5 and 2.6). Labsky et.al. [Labsky 05], have obtained a
value for Accuracy of 0.61 using N-gram model, 0.59 using set covering algorithm, and 0.49
using the compositional algorithm. However, in [Labsky 05] the authors only consider in
rules the consequent that appear at the next time stamp while we consider time-interval,
this is why there is a big difference in the performance results. While Liu and Keselj
[Liu 07] have the highest prediction Accuracy of 0.643 in case of the 3 N-gram size model,
and 0.644 when applying 4 N-gram size model.

This difference in Accuracy is because of the CP ’s capacity in filtering the rules of the
form Vi → Vn which have closer antecedents and consequents. The rules with higher CP
value are expected to have better prediction performance in the future. However, in this
way we might loose several interesting complex rules V1V2...Vn−1 → Vn (that are found
by the models used by other authors) that would give better results than some simple
rules, but this is a risk we take in order to simplify the proposed approach, as an initial
goal, in case of very large databases. Figure 2.11 illustrates these results and extend the
Table 2.5 (for s = 1.25 and ωt = 360; the conclusions are similar for the other parameters
values). It plots A, P , R, and F1 as a function of the number of rules with the highest
CP values. The initial decreasing spike is only due to the fact that when adding new rules
these rules introduce false positive and false negative cases. This is afterwards redressed in
average with additional rules. The optimal set of rules are of size around 18-20. This size
corresponds to the number of rules selected with a threshold value of θ∗ (Equation (2.13)).

The values for Precision, Recall, and F1-Score are also presented in Tables 2.5 and 2.6.

Table 2.5 : Number of rules nr, Accuracy (A), Precision (P), Recall (R),
and F1-Score (F1) for ωt = 360 according to slope s and threshold θ set for
the CP .

s θ 0.4 0.5 0.6 0.7 0.8 0.9 0.960 1.0
nr 93 64 47 39 28 21 18 18
A 0.596 0.611 0.655 0.692 0.749 0.837 0.863 0.863

1.05 P 0.514 0.586 0.670 0.710 0.801 0.883 0.897 0.897
R 0.480 0.540 0.599 0.647 0.693 0.787 0.843 0.843
F1 0.370 0.440 0.530 0.587 0.677 0.789 0.839 0.839
θ 0.4 0.5 0.6 0.7 0.8 0.9 0.991 1.0
nr 97 70 52 41 31 21 18 18
A 0.596 0.597 0.653 0.689 0.757 0.837 0.863 0.863

1.25 P 0.499 0.578 0.635 0.682 0.785 0.883 0.897 0.897
R 0.485 0.511 0.563 0.634 0.676 0.787 0.843 0.843
F1 0.364 0.416 0.497 0.565 0.662 0.789 0.839 0.839
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rules containing the highest CP .

Table 2.6 : Number of rules nr, Accuracy (A), Precision (P), Recall (R),
and F1-Score (F1) for ωt = 420 according to slope s and threshold θ set for
the CP .

s θ 0.4 0.5 0.6 0.7 0.8 0.9 0.966 1.0
nr 103 78 54 44 31 23 18 17
A 0.598 0.605 0.636 0.667 0.755 0.810 0.862 0.886

1.05 P 0.481 0.543 0.641 0.673 0.785 0.847 0.897 0.929
R 0.467 0.484 0.544 0.606 0.675 0.843 0.843 0.844
F1 0.351 0.391 0.484 0.536 0.661 0.838 0.838 0.859
θ 0.4 0.5 0.6 0.7 0.8 0.9 0.992 1.0
nr 107 82 55 45 32 25 18 17
A 0.598 0.610 0.629 0.658 0.759 0.783 0.862 0.886

1.25 P 0.467 0.542 0.643 0.671 0.773 0.817 0.897 0.929
R 0.467 0.479 0.535 0.596 0.632 0.704 0.843 0.844
F1 0.343 0.389 0.476 0.529 0.639 0.697 0.838 0.859

We made prediction experiments using both simple and complex rules. The results for
ωt = 360 and slope = 1.25 are presented in Figure 2.12. The OX axis presents the number
of simple rules and the number of initial simple rules used to form the complex ones (e.g.
from 18 simple we formed 22 complex, from 25 we formed 59, and so on). According to
the graphs, we can observe that the Accuracy of the simple rules begins to decrease faster
and to make an important difference with the complex rules starting from about 18-20
rules. We can observe that this value corresponds to the number of rules selected after a
threshold value of θ∗ as a medium value of the function f(t) (Equation (2.13)). In case
of the Precision, the simple rules have lower performance. This means that these give
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Figure 2.12 : A comparison between simple and complex rules. Note,
that the OX axis represents the number of simple rules. The information
from the axis does not correspond to the number of complex rules, but it
corresponds to the initial number of simple rules from which the complex
ones were derived. CP parameters were: ωt = 360, slope = 1.25.

more False Positives than the complex rules. For the Recall the facts change: now the
complex rules are the ones which give less performance, i.e. more False Negatives. The
fast decreasing in Recall and Precision graphics around 4 rules tells us about the fact that
the CP measure still can give a high importance to some rules that are not quite good in
the prediction process. The F1-Score graph is actually a generalization between Precision
and Recall.

2.5 MODIFIED CLOSENESS PREFERENCE MEASURE FOR PAT-
TERNS EXTRACTION

In this Section we propose interestingness measures that will favour the smaller time-
distance between the itemsets of a pattern (Section 2.4 was concerned by sequential rules).
These should be used in a pre-processing step of the pattern mining process. One of the
measure fulfils the anti-monotone property (defined in Section 2.1), while the other doesn’t.
This results in the fact that the search space of the first measure will be much larger than
for the second one. The mining principles of the measures are also presented followed by
comparison with Support on a toy example and a real database.

2.5.1 Closeness weight implementation

As it has been stated in Definition 3, a function has to be introduced that will advantage
the smaller time-difference between the itemsets of a pattern. We take into consideration
the time between 2 consecutive itemsets, it results that we may consider that each pattern
of length n is made of n − 1 subpatterns of length 2. So, our measure will have in its
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formula a coefficient of the form C(ωt, σt)pattern = 1
n−1

∑n−1
i=1 C(ωt, σt)pattern length 2.

Now, we denote a pattern as P1P2...Pn, where Pi is an itemset, and 1 ≥ i ≤ n. Thus, we
define the closeness weight between 2 itemsets Pi and Pi+1 of a pattern using the weighting
function proposed in Equation (2.1) and Figure 2.2 (page 13), where the influence on the
measure’s value of the itemset Pi+1 is weighted according to its time distance from Pi:

f(t, s, ωt) = 1
1 + st−ωt

(2.18)

where t = ti+1 − ti, s is the slope of the plot (s > 1) and is directly proportional with
the user-preference time-interval σt (Definition 3). The greater s implies that the itemset
Pi+1 closer to the end of ωt in relation to the itemset Pi will be much more penalized. As
s and ωt are user-fixed parameters, we simply denote the function by f(t).

For a given value for σt and the minimum value f(σt) of f(t) in the interval [0, σt], the
slope s is given by (reminder of Equation (2.19)):

s = σt−ωt

√
1

f(σt)
− 1 (2.19)

What we search for are the patterns whose itemsets are as close as possible, but we
make an average of this closeness between itemsets. For example, let’s suppose that we
have a sequence s = (a1b1) c2 c3 a4 c5 d6 c7 d8 c9. We search the pattern a c d inside
this sequence. First, we find the subpattern a c, but we do not know to which a and c
our pattern refers to. To solve this issue, we apply the following technique: we calculate
an average value of time-distance weights of all c with respect to all a until the end of
the sequence or until a new instance of the searched pattern occurs (e.g. if the pattern s
continued with a10 c11 d12, then we take for the first instance of a c d only the itemsets
until c9). This implies that we consider all c between a1 and a4 with respect to a1 meaning
c2 and c3; and all c between a4 and the end of the sequence, meaning c5, c7 and c9. The
distance between a4 and c5, c7 and c9 is considered twice: once with a window having as
origin a1; and the second time with a window starting from a4. In this way we disadvantage
the itemsets which are further from the origin, but at the same time we advantage the
closeness between these itemsets and the next searched ones appearing closer to the end
of the sequence (e.g. as d is expected to appear further than c w.r.t. a, through this
technique we disadvantage the time-difference from a1, but advantage the time-distance
from a4).

Next, we find the subpattern c d, and we compute a medium value of time-distances
of all d between c2 and c3 (i.e. 0), between c3 and c5 (0 again), c5 and c7 (i.e. d6), c7 and
c9 (i.e. d8), and c9 until the end of the sequence (i.e. 0). Another aspect that should be
mentioned is why we consider the elements after the last itemset of the searched pattern
(e.g. in our case we still consider c9 even if it is after the last d, i.e. d9, of the searched
pattern a c d). This is done in order to disadvantage the itemsets which are independent
from each other and occur randomly inside a sequence. Thus, if c occurs independently
of a and d, then it might appear many times before, between, and after a and d, and this
fact will diminish the final measure value.

Thus, first we define the strength of the time-relation between a single itemset Pi and
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an (or several) itemset(s) Pi+1 as follows:

CPi+1|Pi = 1
ntPi+1|Pi

ntPi+1|Pi∑
j=1

1
1 + s

tPi+1,j−ωt
(2.20)

where ntPi+1|Pi
is the number of Pi+1 between 2 consecutive Pi, or, if there is no another

Pi, then we look until the end of the sequence or until a new appearance of the searched
pattern; while tPi+1,j is the time distance of each Pi+1 from the beginning of the window
(starting from the considered Pi). In the above example, we would have Pi = a, Pi+1 = c,
and Pi+2 = d and this expression calculates e.g. c2 and c3 with respect to a1, or c5, c7
and c9 with respect to a4.

Secondly, we have to calculate an average value of each Cc|a:

Cmult Pi+1|Pi = 1
ntPi

ntPi∑
m=1

CPPi+1|Pi,m (2.21)

where ntPi is the number of Pi between the previous and next itemsets, and CPi+1|Pi,m is
the expression from the Equation (2.20) for each Pi. In our example this expression would
calculate a medium value of c2 and c3 with respect to a1 and c5, c7 and c9 with respect to
a4.

As it has been mentioned earlier, we consider that each pattern of length n is made of
n− 1 subpatterns of length 2. By taking into consideration this aspect together with the
Equation (2.21), we can define a function fpattern in the following way6:

fpattern = 1
nr2-length subpattern

·
nr2-length subpattern∑

k=1

 1
ntPi,k

ntPi,k∑
m=1

1
ntPi+1|Pi,k,m

ntPi+1|Pi,k,m∑
j=1

1
1 + s

tPi+1,j−ωt


(2.22)

2.5.2 MCPsc: Support - Confidence - Closeness Preference based mea-
sure

In the following part we present the first proposed measure for the patterns extraction
and ranking. We are showing the thinking process taken in its computation.

In order to consider the statistical appearance of a pattern, we combine the fpattern
formula (Equation (2.22)) with Support and Confidence for a pattern. We introduce some
modifications in case of the Confidence measure to make it usable in the pattern processing.

As we know, the Support is defined as follows:

supppattern = nrpattern occurrences
|DB|

(2.23)

The Confidence is defined for sequential rules as R(AB)
R(A) (Equation (2.14)), where R(AB)

is the number of sequences containing the rule A → B, and R(A) is the number of
6We should point out that we take into consideration the weighted value of the 2-length subpatterns

even if it is outside ωt value (in comparison to the expression from CP calculation for sequential rules,
Equation (2.3)).
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sequences containing the antecedent A in the database. For sequential pattern however,
we do not know what an antecedent stands for, this is why we first of all propose the
following definition of an incomplete pattern:

Definition 4: An incomplete sequential pattern is the relation between a
pattern p and a sequence S of a form I(p;S) where p is the searched pattern
through the sequence S such that several first itemsets of p (at most n − 1,
where n is the total number of itemsets of p) occur inside the sequence S.

For example, let’s suppose that we are searching for the pattern acf in the sequence
abcdef . In this case, we do find it in the sequence, meaning that it would not be considered
as incomplete. While if we are looking for the pattern bcz, then it would be an incomplete
one. However, if we are searching for the pattern xaz, then we cannot find a relation of
the form I(p;S) after analyzing the sequence abcdef , because the first item x cannot be
found in the sequence.

Thus, we define the equation for Confidence in the following way:

confpattern = nrpattern occurrences
nrpattern occurrences + nrincomplete patterns

(2.24)

Another aspect, is that we might have several occurences of a pattern in a sin-
gle sequence (note, that in spite of this fact the value of nrpattern occurences (nrp o) and
nrincomplete patterns (nri p) does not change). Taking into consideration this remark and
the Equations (2.22), (2.23), and (2.23), we can obtain the final proposed measure (Mod-
ified Support - Confidence - based Closeness Preference) MCPsc:

MCPsc = nrp o
nrp o + nri p

· nrp o
|DB|

· 1
nrp o

nrp o∑
s=1

[
1

nrp in seq

nrp in seq∑
t=1

fpattern

]
(2.25)

where fpattern is calculated as in Equation (2.22), |DB| is the total size of the database,
nrp in seq is the number of how many times the pattern p is found in a given sequence.

The proposed measure is to be used as a pre-processing one instead of Support. The
question is how we value single itemsets pattern which could not be decomposed into
2-length subbpatterns (these are formed at the initial stages of the GSP algorithm).

In the case of a pattern with a single itemset, e.g. (abc) instead of abc, the value of
fpattern from Equation (2.22), is replaced simply by 1

1+stj−ωt
:

MCPsingle itemset pattern = po

|DB|
· 1

1 + stj−ωt
(2.26)

as nrip is always 0.

2.5.3 MCPs func: Support - Closeness Preference based measure com-
bined with an additional weighting function to fulfil the anti-
monotone property

In this Subsection we introduce a measure also based on the fpattern expression from the
Equation (2.22), but which fulfils the anti-monotone property.
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As it has been mentioned, the Apriori principle states that the measure of a pattern
cannot be greater than that of its subpattern. Thus, we have to meet the following aspect
Mpattern ≤Msubpattern.

One of the ways that seem to fulfil this property is if instead of the medium value of
the expressions presented in the Equation (2.22), we compute their product. So, as in
the previous case, we use the same function fpattern, but its influence on the MCPs func
measure will be:

nrseq with p∏
s=1

[
1

nrp in seq

nrp in seq∑
t=1

fpatternt

]
(2.27)

Even if it seems that the patterns’ values should always have a measure lower than
that of its subpatterns because of the fact that values inside the

∏
operation is < 1, there

are several problems which arise. There might be subpatterns with theirMCPs func value
lower than that of the next formed pattern.

Let’s analyze deeper our problem, depicted in Figure 2.13. First of all, it should be
taken into consideration that fpattern is applied only on a given instance of a pattern,
and later we make a medium value on all the values from the pattern’s appearances in
the sequences, and a product of all the values from the sequences containing the pattern.
Because of the fact that xyz might happen more times than xyzt, we might have xyz final
fpattern value obtained from all patterns and sequences lower than that of xyzt. So, we
should define a function such that:

• its value for xyzt and xyzr is lower than for xyz

• its value for xyzr is lower than for xyzt

Figure 2.13 : An example of the time-differences problem.

The only way to define such a function is when taking into consideration the following
parameters: the size of the pattern, and the medium time-interval in a pattern. So, the
function f(nr,∆taverage) should:

• f(nr,∆′taverage) < f(nr − 1,∆′′taverage), regardless of the ∆′taverage value

• f(nr,∆′taverage) < f(nr,∆′′taverage) for ∆′taverage > ∆′′taverage
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We propose the function in Figure 2.14. With such a function way we make sure
that the first important parameter is the number of items nr, after which we take into
consideration the ∆taverage , s.t. it never passes the value of the function in the point nr−1,
in this way we guarantee the apriori principle.

The formula of the proposed function is:

f(nr,∆taverage) = 0.9nr + (0.9nr−1 − 0.9nr) ·∆taverage (2.28)
where ∆taverage will be replaced by the Equation (2.27). The value of 0.9 was selected

because it has almost a constant decreasing with nr .

Figure 2.14 : An explanation of the coefficient function to meet our re-
quirements. We can see, that if ∆taverage is higher, it takes the upper value
of the ceiling, otherwise, it takes the bottom value, but it never passes to
the previous coefficient values of its subpatterns.

Another aspect consists in how to disadvantage the patterns which are not frequent
in the database, but have high fpattern values. For example, there might be cases where
fpattern has high values, but the pattern itself is not actually statistically valid (i.e. it
occurs too few times in the entire database). In order to overcome this issue, we simply
integrate the Support measure as defined in the Equation (2.23).

It results, that the final formula for the algorithmical measure is as follows:

MCPs func = nrp o
|DB|

·
[
0.9nr + (0.9nr−1 − 0.9nr) ·

nrp o∏
s=1

[
1

nrp in seq

nrp in seq∑
t=1

fpatternt

]]
(2.29)

2.5.4 Pattern Mining and MCPsc with MCPs func properties

In the current part we present the way of mining the sequential patterns according to
the proposed measures. We do not focus on the speed of the extraction, but only on the
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time-closeness weight of a given pattern.
The pattern formation is done using the Join-Phase from the well-known Generalized

Sequential Patterns algorithm [Srikant 96]. In this phase the set of Lk−1 previous patterns
is joined with itself in order to generate a superset of the set of the future possible k-
patterns. While the Prune Phase is done differently for MCPsc and MCPs func.

Thus, at the beginning we set a thresholdMCPthr in order to select the valid patterns.
In case of the MCPs func the process is quite simple because it fulfils the apriori principle
as shown earlier. So, we compute the value of the measure of a given pattern, and if it
passes the threshold value, then it is considered as a valid one and passes to the next
joining phase, otherwise the pattern is discarded.

In case of the MCPsc, the measure does not fulfil the apriori principle, and we have
to keep all the patterns from the current joining phase to the next joining phase. This
aspect requires a lot of time-processing. At the end, the patterns which pass the MCPthr
value will be considered valid.

In order to show thatMCPsc does not fulfil the apriori principle, we state the following
property:

Property 1: A A sequential subpattern S1 = st1, st2, ..., stn−1
with MCPsc < MCPsc thr might give a sequential pattern S =
st1, st2, ..., stn−1, stn with MCPsc ≥ MCPsc thr iff the MCPsc value of the
second subpattern S2 = st2, ..., stn−1, stn used in forming the final pattern
S = st1, st2, ..., stn−1, stn is greater than MCPsc thr

The above Property 2.5.4 is valid when MCPsc S2 < MCPsc thr and MCPsc S1 ≥
MCPsc thr also. This theorem states the fact that a pattern obtained from previous stage
might give a valid pattern in the next stage of pattern composition even if its MCPsc
value is smaller thanMCPsc thr. It implies the fact that in comparison to Support pruning
(where a pattern is certainly not valid if the two subpatterns forming it have a value less
then suppthr), we have to keep the entire set of subpatterns. The only patterns which do
not pass to the next step are those which have the MCPsc = 0, meaning that there are
no instances of such patterns in the entire database.

Proof . Let’s denote by αk = 1
ntPi,k

∑ntPi,k
m=1

1
ntPi+1|Pi,k,m

∑ntPi+1|Pi,k,m
j=1

1
1+s

tPi+1,j−ωt
.

Then, the Equation (2.25) might be rewritten as:

MCPsc =
[

1
nrs

nrs∑
s=1

[
1
nrp

nrp∑
t=1

[
1

nr2−len p

nr2−len p∑
k=1

αk

]]]
· nc · nc

(nc + ni)|DB|
(2.30)

where nc and ni are the number of complete and incomplete patterns respectively.
We suppose that we have 2 patterns with MCPsc1 and MCPsc2.
The values for MCPsc might be written as:

MCPsc1 =
[

1
nrs1

nrs1∑
s=1

[
1

nrp1

nrp1∑
t=1

[
1
nr1

∑
nr1

(α1 + α2 + ...+ αn−1)
]]]
· nc1 · nc1

(nc1 + ni1)|DB|

MCPsc2 =
[

1
nrs2

nrs2∑
s=1

[
1

nrp2

nrp2∑
t=1

[
1
nr2

∑
nr2

(α2 + ...+ αn−1 + αn)
]]]
· nc2 · nc2

(nc2 + ni2)|DB|
(2.31)
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Results the following MCPsc 1+2 value:

MCPsc 1+2 =

 1
nrs1+2

nrs1+2∑
s=1

 1
nrp1+2

nrp1+2∑
t=1

 1
nr1+2

∑
nr1+2

(α1 + α2 + ...+ αn−1 + αn)

 ·
· nc1+2 · nc1+2
(nc1+2 + ni1+2)|DB|

(2.32)
Let’s consider that we have MCPsc1 < MCPsc thr and MCPsc2 ≥ MCPsc thr. Based

on the same Equations (2.31) and (2.32) we can see that even if the nr1+2 value might be
higher than nr1 and nr2, the final medium coefficients values of α between the first and
second subpatterns also might be higher than that of the first pattern, while lower than
that of the second pattern. This could result in a value MCPsc 1+2 ≥MCPsc thr.

The search space of MCPsc is large, but will we get the same patterns by diminishing
the searched patterns after a pre-processing with Support, followed by a post-processing
with MCPsc? We base on the assumption that MCPsc contains in its formula (Equa-
tion (2.25)) the relation for Support, i.e. nrp o

|DB| . Let’s rewrite the Equation (2.25) in the
following form:

MCPsc = conf · supp · gpattern (2.33)

where gpattern = nrp o
|DB| ·

1
nrp o

∑nrp o

s=1

[
1

nrp in seq

∑nrp in seq

t=1 fpattern
]
. We have conf and supp

in the interval (0; 1). It results that MCPsc ∈ ((0; 1) · supp). We denote conf · gpattern =
coeff ∈ (0; 1). In this way there could be patterns that do not pass the support threshold,
but pass the MCPsc threshold, patterns that will be lost, but could be interesting from
our point of view (i.e. closer itemsets giving a high value for coeff resulting in an overall
high MCPsc).

Figure 2.15 : MCPsc as a function of coeff and supp. Both coeff and
supp varied from 0.1 to 0.9.

For example, Figure 2.15 shows a 3D plot for the MCPsc = coeff · supp, where coeff
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and supp varied from 0.1 to 0.9. In case if one sets a suppthr = 0.4 and MCPsc thr = 0.2
there could be patterns with a supp < suppthr, but with MCPsc > MCPsc thr that will
be lost (Figure 2.16).

Figure 2.16 : Lost patterns for a suppthr = 0.4. Note, that in case of
MCPsc thr = 0.2 the patterns with measure’s values > thr at the upper
part of the graph will be lost.

2.5.5 Toy example

We make a comparison on a toy example database between patterns extraction done by
MCPsc, MCPs func, and Support.

Let’s consider the 10 sequences from Table 2.1. We consider s = 2 and the time window
length ωt = 2, the function beeing presented in Figure 2.17 with its corresponding values.

Figure 2.17 : The function used in toy example. The slope s = 2 and the
time window ωt = 2.

After applying the extraction algorithm, one of the obtained pattern is d b a. Let’s
show step by step how to calculate its MCPsc value. We are based on Equation (2.25).
First of all, we find the sequences where the pattern d b a appears, i.e. S10, S30, and
S80, resulting in np o = 3. From each of these sequences we calculate the expression

1
nrp in seq

∑nrp in seq

t=1 fpattern. In all sequences we have just one occurrence of the pat-
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tern, i.e. nrp in seq = 17 In order to calculate fpattern we use Equation (2.22). The
searched pattern d b a is made of the following 2-length sub-patterns d b and b a, thus
nr2-length subpattern = 2. It results:

fS10
pattern = 1

2

[1
1

0.667 + 0.333
2 + 1

2 (0.667 + 0)
]

= 0.417

fS30
pattern = 1

2

[1
1 · 0.5 + 1

2 · 0.667
]

= 0.583

fS80
pattern = 1

2

[1
1

0.8 + 0.5
2 + 1

2 (0.8 + 0)
]

= 0.525

(2.34)

The number of incomplete patterns is nri p = 4, as we have appearances of d or d b
only in S40, S50, S70, and S90; while |DB| = 10. Results the final MCPsc value:

MCPsc = 3
3 + 4 ·

3
10 ·

1
3
(
fS10
pattern + fS30

pattern + fS80
pattern

)
= 3

70 (0.417 + 0.583 + 0.525) = 0.06536

Next, we show how we calculate the MCPs func value for the same pattern, using
Equation (2.29). The values of fpattern are the same with those from theMCPsc calculation
(Equation (2.34)). The value for nrp o is 3 (there are 3 sequences in the database containing
the pattern d b a), and the value for nr is 3, because we have 3 items in the pattern.
Replacing the numbers in Equation (2.29), we obtain:

MCPs func = 3
10 ·

[
0.93 +

(
0.93−1 − 0.93

)
· fS10
pattern · f

S30
pattern · f

S80
pattern

]
= 0.3 · (0.729 + 0.081 · 0.128) = 0.2218

The calculation of Support is simple, we have 3 sequences containing the pattern d b a
from a total of 10 sequences. Thus, supp = 3

10 = 0.3.

2.5.5.1 MCPsc and MCPs func vs Support

Next, we make the comparison between MCPsc, MCPs func and Support.
In case of the MCPsc and Support extraction comparison, we will take into considera-

tion two different aspects: the number of patterns kept at each stage for future processings,
and the number of selected final patterns passing the threshold value at each step.

For this, we have set the threshold values in order to obtain the same number of final
patterns. In case of the MCPsc: MCPsc thr = 0.0345, and suppthr = 20%. We have
obtained in both cases 163 patterns. In Table 2.7 we have the following information: the
total number of patterns to be checked at each stage, the number of patterns to be kept
for the next stage, and the number of patterns that pass the threshold value. In case of
the Support prunning it should be obvious that the number of patterns for the next stage
is identical with the number of those which pass suppthr value.

7If we would have had a sequence a (de) b a b e d b e a, then nrp in seq = 2, and in the case of the
pattern d b a we would calculate an fpattern for a (de) b a b e, and another fpattern for d b e a.
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Table 2.7 : The number of obtained sequential patterns at each stage of
the GSP algorithm using classic Support processing and MCPsc processing.
NAP - Number of analyzed patterns; NKPF - Number of kept patterns for
the future processings; NPT - Number of patterns with IM value greater
than threshold value.

Stage ID Support processing MCPsc processing
NAP NKPF NPT NAP NKPF NPT

1 40 28 28 40 32 31
2 157 74 74 197 153 57
3 216 51 51 490 289 39
4 27 10 10 189 107 34
5 0 0 0 34 32 2
6 - - - 4 4 0
7 - - - 0 0 0

After analyzing the information from Table 2.7, we can observe that the number of
patterns kept for the future stages using MCPsc is higher than the ones using Support.
This means that the MCPsc search space is larger then the one of the Support because
it does not fulfil the anti-monotone property. However, at each stage the number of good
patterns that pass the threshold values are smaller when using the MCPsc then in the
case where Support is used, resulting that the MCPsc is more selective. Another aspect
observed is that the MCP tends to advantage longer patterns. We can see, that there are
36 patterns with length ≥ 4, while the Support passes just 10 of such patterns.

From these 163 patterns, 95 of them could be found in both MCPsc and Support
processing. So, there is approximately 60% of common patterns.

In case of the MCPs func against Support, because of the fact that the proposed
measure is directly proportional with the Support, and that the toy example database is
quite small, the number of extracted and analysed rules in this case are the same between
Support and MCPs func (as in Table 2.7). This is the reason why in Subsections 2.5.5.2
and 2.5.5.3 we consider MCPsc only.

Now, let’s take a look at the values of these measures given to certain patterns. The
MCPs func thr was set to 0.1, while the thresholds for the MCPsc and Support are the
same: 0.0345 and 20% respectively.

Some results are presented in Table 2.8. We can observe that for the patterns where
the Support gives the same results, in the case of the proposed measures the values and
ranking are different. Also, even if the Support values are the same (i.e. the patterns
2, 3, and 4, or 5 and 6), the values of the MCPsc and MCPs func are different, ranking
the patterns in different order, because they take into consideration the time-differences
between the itemsets. Also, in case of the patterns 5 and 6, we can see that the pattern 5
is a subpattern for the pattern 6. Despite this, MCPsc5 < MCPsc6, while MCPs func5 >
MCPs func6, showing once more time that MCPsc does not satisfy the anti-monotone
property, while MCPs func does fulfil it. Note, the lower value for the MCPsc is because
we have integrated the Confidence measure in its formula also.
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Table 2.8 : Differences in measure’s values between Support, MCPsc, and
MCPs func.

Pattern ID Pattern Support MCPsc MCPs func

1 d e a 0.4 0.126 0.294
2 a d e 0.3 0.086 0.226
3 a (de) e 0.3 0.037 0.197
4 d c b 0.3 0.084 0.225
5 a d c b 0.2 0.041 0.139
6 (ab) d c b 0.2 0.095 0.125

2.5.5.2 MCPsc vs windowing Support

In the current section we compare MCPsc against Support GSP processing if we use the
same window interval for the Support. In the case of MCPsc we have set an ωt = 2. We
use the same ωt = 2 for Support also.

In this case, with the same value for Support = 20%, we have obtained 121 rules. In
order to obtain 121 patterns with MCPsc we set its value to MCPsc thr = 0.0495. The
information with the number of patterns at each stage is shown in Table 2.9. From these
121 patterns only 71 are common, which is about 60%. As in the previous case, the search
space for MCPsc is larger and the proposed measure tends to advantage longer patterns.

Table 2.9 : The number of obtained sequential patterns at each stage
of the GSP algorithm using windowed Support ωt processing and MCPsc
processing. NAP - Number of analysed patterns; NKPF - Number of kept
patterns for the future processing; NPT - Number of patterns with IM value
greater than the threshold value.

Stage ID Support processing MCPsc processing
NAP NKPF NPT NAP NKPF NPT

1 40 25 25 40 32 29
2 130 55 55 195 152 47
3 146 35 35 431 263 28
4 18 6 6 144 88 16
5 0 0 0 23 21 1
6 - - - 2 2 0
7 - - - 0 0 0

2.5.5.3 MCPsc processing vs Support, Confidence, and fpattern processing

In the current part our aim was to compare the result of theMCPsc (noted further as Case
I ) with the case if we would applied separately the measures that are used in the Equation
of the MCPsc (Equation (2.25)) (noted further as Case II ). So, in the second case there
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are 3 stages in processing: pre-processing with Support, processing with Confidence, and
post-processing with a variant of CP addapted for the patterns, as in Equation (2.22) of
the fpattern. The differences in the processing are shown in Figure 2.18.

Figure 2.18 : A comparison of the processing steps between MCPsc and
the decomposition of the MCPsc.

In order to obtain approximately the same number of the final patterns, for the Case
I we set MCPsc thr = 0.050 (119 patterns obtained), while for the Case II we set the
following values: Support = 10% (2571 patterns extracted); conf = 20% (533 patterns
remaining); variant of CP = 0.58333 (122 final patterns remaining).

In order to analyse the results, we have arranged the final patterns in a decreasing
order of their final IM values, and took the number of common patterns that are in the
first top-i ranked, where i = {1..119}. The graph with the result showing the number of
common patterns is presented in Figure 2.19, while their percentage is in Figure 2.20.

From the results we can notice that the final patterns are different. The highest
percentage number of the common patterns is achieved when we take into consideration
the top- ranked 72− 80 patterns, thus obtaining 51%− 52% of the same patterns.
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Figure 2.19 : The number of common patterns between Case I and Case
II according to the top-i ranked patterns arranged in a decreasing order of
their IM.
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Figure 2.20 : The number of the common patterns in percentage % between
Case I and Case II according to the first taken patterns arranged in a
decreasing order of their IM.

2.5.6 Real database analysis

The goal of our case study was to make a comparison between the patterns’ extraction
using the proposed interestingness measures, i.e. MCPsc andMCPs func, and Support. In
order to form the sequential patterns we have implemented the Generalized Sequential Pat-
tern algorithm [Srikant 96] presented in the subsection 2.5.4 and adapted for usingMCPsc
and MCPs func measures instead of Support. We use the same ClickStream database pre-
sented in Subsection 2.4.4.2 for rule selection.

2.5.6.1 MCPsc vs Support on ClickStream database

Because of the fact that MCPsc does not have the anti-monotone property, it means
that the processing-time is very high. This is why we have performed a simulation with
the following parameters for the function of the MCPsc: ωt = 60, slope s = 1.05, and
MCPsc thr = 0.02.

The results are shown in Table 2.10. 193 rules have been obtained in the case of
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the MCPsc processing. In order to obtain the same number of patterns with Support, a
value of suppthr = 17.52% was set. We can observe a lot of patterns kept for the future
processing, which shows the time-inefficiency of the MCPsc, however, in comparison to
the Support pruning it selects the patterns with closer itemsets. A graphical comparison
between the number of common patterns according to the top-i ranked selected patterns
by MCPsc and Support are given in Figures 2.21 and 2.22. This number increases almost
linearly with the number of compared patterns staying at around 70% of the number of
compared patterns.

Table 2.10 : The number of obtained sequential patterns at each stage of
the GSP algorithm using classic Support processing and MCPsc processing.
NAP - Number of analyzed patterns; NKPF - Number of kept patterns for
the future processings; NPT - Number of patterns with IM value greater
than the threshold value.

Stage ID MCPsc processing Support processing
NAP NKPF NPT NAP NKPF NPT

1 61 61 20 6 6 6
2 3094 1348 26 57 19 19
3 2383 2256 44 58 34 34
4 3903 3779 53 69 50 50
5 4735 4603 39 91 57 57
6 3348 3253 11 93 26 26
7 891 867 0 25 1 1
8 0 0 0 0 0 0
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Figure 2.21 : The number of common patterns betweenMCPsc and Support
according to the first taken patterns arranged in a decreasing order of their
IM.

In comparison to the Toy example from Subsection 2.5.5, here is the Support who
advantages longer patterns (we consider longer patterns those whose number of items≥ 4)
i.e. 134 vs 103 patterns. This is explained by the fact that longer patterns tend to have
larger time-intervals between the itemsets, while this fact is disadvantaged by MCPsc
measure. Another point to be mentioned is the much greater number of checked patterns
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Figure 2.22 : The number of common patterns in percentage % between
MCPsc and Support according to the first taken patterns arranged in a
decreasing order of their IM.

at each stage when using MCPsc, explained by the fact that it does not fulfil the anti-
monotone property in comparison to Support.

2.5.6.2 MCPsc vs MCPs func on ClickStream database

For the MCPsc processing the same parameters are used: ωt = 60, slope s = 1.05,
and MCPsc thr = 0.02. In case of MCPs func in order to obtain 193 patterns also, we
set its threshold of MCPs func thr = 0.1072. Its ωt and s values were as in the case
of MCPsc. The results are shown in Table 2.11. A graphical comparison between the
number of common patterns according to the top-i ranked selected patterns by MCPsc
and MCPs func are given in Figures 2.23 and 2.24.

Table 2.11 : The number of obtained sequential patterns at each stage
of the GSP algorithm using MCPsc and MCPs func processing. NAP -
Number of analyzed patterns; NKPF - Number of kept patterns for the
future processings; NPT - Number of patterns with IM value greater than
the threshold value.

Stage ID MCPsc processing MCPs func processing
NAP NKPF NPT NAP NKPF NPT

1 61 61 20 61 10 10
2 3094 1348 26 1714 27 27
3 2383 2256 44 112 47 47
4 3903 3779 53 113 57 57
5 4735 4603 39 109 50 50
6 3348 3253 11 76 2 2
7 891 867 0 2 0 0
8 0 0 0 - - -

In this case, the number of longer patterns (i.e. with number of items ≥ 4) is ap-
proximately the same (103 in case of MCPsc vs 109 in case of MCPs func). However,
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the number of similar extracted patterns is around 70%, the differences resulting from
the coefficient function from Equation (2.28) used in MCPs func formula. As in the case
of Support, the anti-monotone property of MCPs func facilitates the amount of verified
patterns at each stage in comparison to MCPsc.
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Figure 2.23 : The number of common patterns between MCPsc and
MCPs func according to the first taken patterns arranged in a decreasing
order of their IM.
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Figure 2.24 : The number of common patterns in percentage % between
MCPsc and MCPs func according to the first taken patterns arranged in a
decreasing order of their IM.

2.5.6.3 MCPs func vs Support on ClickStream database

We have performed a simulation with the following parameters for MCPs func: ωt = 360,
slope s = 1.05, and MCPs func thr = 0.01. 629 patterns were obtained. In order to
compare it to Support processing, i.e. to obtain the same number of patterns, a value of
suppthr = 12.85% was set. The results are shown in Table 2.12. As it is expected, the
Support measure is the one advantaging longer patterns in comparison toMCPs func (524
vs 480). The explanation is the same as for MCPsc: Support does not take into account
the time-distance between its itemsets. A graphical comparison between the number of
common patterns according to the top-i ranked patterns byMCPsc and Support are given
in Figures 2.25 and 2.26. This number represents around 80%−85% from the total number
of compared patterns, which is higher then for the MCPsc vs Support comparison (where

44



CHAPTER 2. SEQUENTIAL RULE AND PATTERN MINING

2

we had a value of 70%). This is due to the anti-monotone property of theMCPsc, making
it "closer" in "properties" to Support measure.

Table 2.12 : The number of obtained sequential patterns at each stage of the
GSP algorithm using classic Support processing and MCPs func processing.
NAP - Number of analyzed patterns; NKPF - Number of kept patterns for
the future processings; NPT - Number of patterns with IM value greater
than the threshold value.

Stage ID MCPs func processing Support processing
NAP NKPF NPT NAP NKPF NPT

1 61 11 11 10 10 10
2 1859 41 41 155 28 28
3 197 96 96 122 67 67
4 332 161 161 184 98 98
5 397 148 148 209 127 127
6 289 142 142 239 155 155
7 260 30 30 281 128 128
8 25 0 0 187 14 14
9 - - - 14 2 2
10 - - - 2 0 0
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Figure 2.25 : The number of common patterns between MCPs func and
Support according to the first taken patterns arranged in a decreasing order
of their IM.

2.6 CONCLUSIONS

The temporal aspect in sequential rules and patterns makes an important topic in sequen-
tial data mining. Especially, the time closeness between itemsets of a sequential data could
be important for the end-user, if he is interested in predicting the events (i.e. itemsets)
which might appear in the forthcoming time-interval. We thus proposed Interestingness
measures for sequential rules and patterns mining that could be used to build accurate
forecasting models.
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Figure 2.26 : The number of common patterns in percentage % between
MCPs func and Support according to the first taken patterns arranged in a
decreasing order of their IM.

In case of sequential rules selection, we have introduced the Closeness Preference,
an interestingness measure that will favour the rules with close itemsets (within a user-
predefined time-interval and with the help of a user preference function). This measure is
used as a post-processing filter. It can thus be used alone or it can be used to complement
traditional measures like the Lift. Some properties of this measure are discussed and
we have shown that it satisfies 2 out of 3 important properties proposed by Piatetsky-
Shapiro [Piatetsky-Shapiro 91]. A case study on web logs data shows that the Closeness
Preference measure is helpful to find small and efficient set of simple sequential rules. We
could conclude that we have met 3 important goals by using our measure for a prediction
problem: (1) a higher Accuracy in comparison to other exiting algorithms; (2) simplicity
of the algorithm by obtaining a greater performance with the simple rules compared to
the complex ones; (3) an usage of the time parameter through a maximum time-interval
ωt and a time importance variation inside ωt by using a sloping coefficient for the function
2.1.

In case of sequential patterns mining we proposed 2 derivatives of the CP measure,
i.e. MCPsc andMCPs func, that also have as goal to advantage the shorter time-distance
between the itemsets of a pattern. Both measures are used in pre-processing step of the
algorithm, but only one of it fulfils the anti-monotone property. This fact results in an issue
for the second measure which does not fulfil the apriori principle: the search space and
patterns’ check is large and time consuming. A comparison of the top-i ranked extracted
patterns using these measures and Support was presented using the ClickStream database.
The results have shown that the number of common patterns between the 2 measures and
Support is around 70%− 85% from the total number of compared patterns, where higher
values being specific to the comparison between the measure satisfying the anti-monotone
property, i.e. MCPs func and support. This is due to the fact that the anti-monotone
property makes MCPs func "closer" in "properties" to Support measure. Another point
is that both MCPsc and MCPs func tend to rank at the top shorter patterns. This is
explained by the fact that longer patterns tend to have larger time-intervals between the
itemsets, and this fact is disadvantaged by the proposed measures. Thus, the proposed
pre-processing measures do advantage those sequential patterns which have shorter time-
interval between its itemsets.
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Time Series

3.1 INTRODUCTION

A time-series represents a set of historical data measured sequentially through time. Ac-
cording to the way the data is recorded, we distinguish two types of series: continuous,
where the observed data is continuously measured (e.g. seismogram records), and discrete,
where the data is taken at a discrete set of time points (e.g. daily revenue of an on-line
shop, or the temperature measured at hourly intervals). Of course, any continuous time-
series can be sampled and transformed into a discretized one, where little information is
lost if the sampling intervals are small enough. In our work, we are going to discuss about
discrete time-series.

Time-series analysis has become one of the most important and broadly used branches
of research applied to extract meaningful information and characteristics from the data.
It has large applications such as economic planning, stock market analysis, process and
quality control, signal processing, inventory studies. An application of time-series analysis
is forecasting (or prediction).

Two important domains where the time-series forecasting is applicable are commu-
nications and finance. In case of communications, globally for a radio network, and
particularly for a WiMAX network (Worldwide Interoperability for Microwave Access),
predicting the future traffic level is mandatory in order to keep satisfactory quality of ser-
vices, to characterize its performance and it is of significant interest in its control, design
and management. In case of finance, particularly for foreign currency exchange rate or
stock market volatility, its forecasting is of high interest in the financial world in order to
increase gains and to have a better risk management. The main idea behind time-series
analysis used in forecasting is that successive observations are dependent on each other,
thus, one should consider the order in which the observations are collected and to find
some similar patterns that will help in prediction. Thus, a model is applied on previously
collected historical values, in order to estimate the future values of the time-series. In our
work we discuss about WiMAX and EUR/USD currency exchange forecasting.

According to our knowledge and experience, there are several problems in time-series
analysis. The first issue (i1 ) is finding a model that could be suitable to analyse and
predict different types of time-series. For example, we suppose that the same model
cannot be applied on a network traffic (where a trend line could be observed because of the
increasing/decreasing number of subscribers) and on a Foreign Exchange market (where
there are a lot of speculators influencing randomly the price between currencies). Our
goal is to find such a model. The second issue (i2 ) consists in finding better parameters
involved in a prediction model. For example, if we use a neural network to simulate a
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WiMAX traffic during a day, then we have to set the type of the network, number of
layers, of neurons in the hidden layers, the number of training epochs, because different
values would result in different approximation of the desired output series. These setting
would be different from those used in simulation of the traffic during one week. The third
issue (i3 ) consists in the fact that the effectiveness of a prediction model changes as soon
as the behaviour of the time-series varies, i.e. the phenomena that generates a time-
series change in the long run. If we suppose that the analysed WiMAX traffic experiences
some increase in users, or installation of new base stations (radio receiver/transmitter),
then a change in signal characteristic has to be expected. This implies a retraining of
the prediction model, changing of its parameters, or finding an easier and better model
instead for reproducing and forecasting the wanted time-series.

In the current work we propose a model to forecast future evolution of a time-series
based on its historical information. We formulate our problem as follows: given some
observed labels y1, y2, ..., yn of a time-series of length n, apply the proposed model, and
predict the labels yn+1, ..., yn+k of the future k labels. Our model is based on time-series
decomposition in wavelet domain (Stationary Wavelet Transform (SWT) using Artificial
Neural Networks (ANN) and their optimization using Genetic Algorithms (GA). The orig-
inality of our proposed approach in comparison to other works is based on time-series
decomposition in wavelet domain and the way we use the ANNs in the forecasting step
(the configuration of inputs, of weights, the selection of data for each level of wavelet de-
composition, the optimization with GAs). We compare existing models with the proposed
one. As analysed data we used two time-series from different domains: WiMAX network
traffic data and EUR/USD currency exchange. Our results present the performance of
different forecasting models in case of different time-series (i1 ). Different settings of the
model are also studied in order to see how the selection of parameters could improve its
performance (i2 ). Finally, we see how a constant upgrading with the latest available infor-
mation and retraining the model plays an important role in the effectiveness of the future
estimation of the time-series (i3 ). In this way if the behaviour of the series changes, then
we keep our model up-do-date by analysing each time newer parts of the series.

3.2 STATE OF THE ART

There are numerous existing models for time-series forecasting, which can be grouped into
four categories [Rong 08]:

1. Case-Based Reasoning model (CBR): is a means for solving a new problem by using
or adapting solution to old problems - its essence in analogy. The basic principle of
CBR is that similar problems have similar solutions.

2. Rule-Based Forecasting model (RBF): is a set of rules that use the experts’ domain
knowledge and the characteristics of the data to produce a forecast from a combi-
nation of simple extrapolation methods. It consists of 99 rules that use 28 features
of time-series, such as: causal forces, functional form, types of data, length of series,
instability. Its application depends upon features of the time-series.

3. Statistical model: is a probability distribution model such as the single regressive
model, exponential smoothing, autoregressive integrated moving average model.
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4. Soft Computing model: is based on information processing in biological systems
solving the problems by exploiting the tolerance for imprecision, uncertainty, par-
tial truth, and approximation in order to obtain robustness and low solution cost.
Example of such models are neural networks and their amelioration or mixture with
other methods, fuzzy logic, support vector machine.

Next, we present how different time-series were analysed and forecasted using the
above models (problems i1 and i3 from our goals). A fuzzy CBR system [Kolodner 92]
for weather prediction is proposed by [Riordan 02]. The knowledge about temporal fea-
tures used by human forecasters is encoded in a fuzzy similarity measure, used later to
locate the k-nearest neighbours from the historical database. The accuracy of 0 to 6
hour predictions was up to 85%. The prediction of bank lending decisions using CBR
approach taking into considerations subjective factors also (e.g. Economic sentiment) is
presented in [Teodoro 06]. The data from the Euro-system survey for Portugal was used.
The results show that the system can forecast with quite a high precision (90%) the de-
cision of economic agents. A CBR model for individual demand forecasting is proposed
in [Rong 08]. The forecast process is divided into 3 stages: case representation, similar-
ity search, and case forecasting and adjustment. A distance-based formula is presented,
which compares time-series according to their slope and length. The empirical results
show that this method is able to produce forecasts with a high degree of accuracy (a
medium absolute error (MASE) of 0.470 in comparison to the moving average algorithm
which obtained a MASE of 0.745). A CBR system to forecast the presence of oil slicks is
shown in [Corchado 08]. Information as salinity, temperature, pressure, number and area
of slicks, is also used. The percentage of correct predictions was up to 87%.

Adya and Armstrong [Adya 00] describe the utilization of a RBF approach. This
technique was applied on 126 annual time-series from Makridakis time-series Competition.
Mean absolute percentage error (MAPE) was used as a performance indicator. A value
of 8.92 was obtained for 1 year prediction. A RBF model used to estimate the cost
per megabyte of hard disk drives is shown in [Webb 03]. At the moment the paper was
written, the results suggested a fall rate in price of about 48% per year. A comparison
between RBF and neural networks, Box-Jenkins models, to be used under given conditions
(markets, game theory) is presented in [Armstrong 06]. The results show that RBF models
could be applied to cross-sectional data (i.e. observations of many objects at a given time)
with a 10% error reduction in comparison to ex ante forecasting accuracy of alternative
methods, and to time-series data with about 60% error reduction.

A prediction of applying least square method (LSM) and linear regression method
(LRM) models is described in [Moungnoul 05]. For better performance, a combination
between these two is used. LSM is a prediction model using trend line by least square
method, which has the minimum summary of square of difference between trend line’s
data and collected data. LRM is a method for defining the relation of two variables. The
model was applied on GSM traffic data. Errors around 25% were obtained. A statistical
model used to forecast monthly large wildfire events in Western United States is presented
in [Preisler 06]. The method is based on logistic regression techniques with spline functions
to accommodate non-linear relationships between fire-danger predictors and probability
of large fire events. Simulations on datasets from federal land management agency fire
reports showed that the model is able to miss only 2% of the large fire events during
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the month of August. The autoregressive integrated moving average (ARIMA) model
was used to forecast the Indian sugar-cane production in [Mandal 06]. Standard errors
between 0.116 and 0.134 were obtained. A study of predicting oil palm price of Thailand
using ARIMA model is shown in [Nochai 06]. The obtained MAPE values were up to
5.27%. Models based on the ensemble multiple linear regression (EMR) and projection
pursuit regression (PPR) techniques were developed to forecast the south-west monsoon
rainfall over India [Rajeevan 07]. A root mean square error between 4.56 and 6.75% was
obtained.

Regarding the soft-computing methods, in [Tan 93] the advantages of the artificial
neural networks over traditional rule-based systems are shown in case of a financial trad-
ing system to improve trading profitability (the authors presents only the concept, no
real data simulations are performed). A comparison between ARIMA and neural net-
works modelling is presented in [Mohammed 04, Feng 05]. [Mohammed 04] applied the
models on a Financial Balance Sheet’s data of a commercial bank in Egypt, obtaining an
accuracy higher with about 10% using the neural networks. While [Feng 05] made simu-
lations on four wireless network traffic traces obtaining values for MSE with 8% and for
Normalized MSE (NMSE) with 10% higher in case of ANN in comparison to ARIMA
approach. It was also shown that linear models reach their limitation with non-linearity
in the data, while ANNs are successful in handling non-linear problem optimization and
prediction. This is due to several distinguishing features of ANNs, making them valuable
and attractive for a forecasting task. First of all, they can be treated as multivariate non-
linear non-parametric statistical methods [White 89, Ripley 93, Zhang 98]. After that,
ANNs can generalize, are non-linear, and are universal function approximators [Zhang 98].
The fact that neural networks produce better results than a standard statistical time-
series predictor, has been demonstrated in [Refenes 93, Abrahart 98, Ibarra-Berastegi 07].
[Abrahart 98] provides a forecasting benchmark for river flow prediction reaching a mean
absolute error (MAE) smaller with about 19% for the ANN in comparison to ARMA.
[Ibarra-Berastegi 07] presents a chemical modelling problem, showing that the neural net-
works were able to explain 92% of the overall variability of the data in comparison to
the multiple linear regression (MLR) model, where a value of 0.72% of the variability was
expressed.

When the time-series is non-stationary, it is very difficult to identify a proper global
model [Zhang 01]. To overcome this problem, an efficient way is to use the wavelet decom-
position technique in the preprocessing step, because it provides a useful decomposition
of time-series, in terms of both time and frequency, permitting to effectively diagnose the
main component and to extract abstract local information from the time-series. Thus,
Wavelet Transform (WT) has been frequently used for time-series analysis and forecast-
ing in recent years [Wang 02, Papagiannaki 05, Feng 05]. Mitra [Mitra 06] presents in his
work the capability of a technique using wavelet multi-resolution and neural networks to
forecast the daily spot foreign exchange rates of major internationally traded currencies.
The original exchange rate series to be modelled is first decomposed into various frequency
resolution related components using wavelets. Next neural networks are applied for mod-
elling components of the decomposed series resulting in a high performance prediction with
a MSE value as low as 0.001. A prediction technique for one day ahead energy prices
using WT is described in [Nguyen 08]. The results demonstrate that the use of wavelets
as a pre-processing procedure of forecasting data improves the performance of prediction
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models, the authors obtaining an improvement of MSE up to 20%.
One of the problems in neural networks consists in their design configuration (size,

weights). This is why the optimization of Artificial Neural Networks using Genetic Al-
gorithms applied in forecasting have been proposed in many papers [Ojeda 95, Yu 07,
Fiszelew 07] (problem (i2 ) from our goals). The simultaneous optimization of the net-
work architecture and the training weights is presented in [Zhang 93]. The simulation
results on two benchmark problems of different complexity (majority and parity) have
suggested that the proposed method is able to find minimal size network. In [Ojeda 95] a
method of determining the optimal size of the hidden layer and the number of connections
between the layers is presented, which is used for processing ECG signals. In [Ileană 04] an
approach using genetic computing is given that is used for establishment of the optimum
number of layers and the number of neurons on a layer, for a given problem. An approach
using GA algorithm to select the optimal architecture for ANN model in hot rolling pro-
cess is shown in [Son 04]. A genetic algorithm-based ANN model for the turning process
in manufacturing industry is presented in [Venkatesan 09].

Concluding, we can state that a better performance in forecasting is obtained using
soft computing methods. These models were used in our research also (i.e. artificial neural
networks which could be optimized using genetic algorithms, and wavelet transform of the
time-series).

3.3 THEORETICAL FUNDAMENTALS

In the current section we present theoretical fundamentals related to the proposed predic-
tion approach. We present basic aspects about wavelets transform, neural networks, and
genetic algorithms.

3.3.1 Wavelets

3.3.1.1 Introduction

Wavelets are mathematical functions that cut up a signal into several frequency compo-
nents in order to produce a good local representation of a signal in both time and frequency
domain. If we look at a series with a large window, we would notice gross features. Simi-
larly, if we look at a series with a small window, we would notice small features [Graps 95].
The goal of the wavelet transform is to see both the forest and the trees [Grosse 04].

The wavelet analysis process consists in using a wavelet prototype function, called an
analysing wavelet or mother wavelet on a time-series, i.e. it is a convolution of a series
s(t) with a set of functions generated from the mother wavelet. There are two types of
analysis: temporal and frequency. The temporal analysis is achieved with the translations
of the prototype wavelet, while the frequency analysis is realised with a dilations of the
same wavelet.

The wavelet transforms are broadly divided into three classes: continuous, discrete,
and multi-resolution-based.
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3.3.1.2 Continuous Wavelet Transforms (CoWT)

In continuous wavelet transforms, a given time-series s(t) of finite energy is projected on a
continuous family of frequency bands. The series can be represented on a frequency band
[f, 2f ] for all positive frequencies f > 0. Next, the original s(t) can be reconstructed by
a suitable integration over all the resulting frequency components.

The most common approach of building the wavelets is the one proposed by
Daubechies [Daubechies 92], where we have 2 orthonormal parent wavelets (i.e. they are
orthogonal and normalized, meaning that their inner product 〈f, g〉 is zero): the scaling
function φ (father wavelet) and the analysing function ψ (mother wavelet)1 . For a func-
tion ψ(t), in order to be admissible as a wavelet, it should have the average value zero and
be localized in time and frequency space [Farge 92]. Thus, the complex-valued function ψ
should satisfy the following conditions:∫ ∞

−∞
|ψ(t)|2dt <∞ (3.3)

cψ = 2π
∫ ∞
−∞

|Ψ(ω)|2

|ω|
dω <∞ (3.4)

where Ψ represents the Fourier transform of ψ, and cψ are the wavelet coefficients which
are used later in the reconstruction of the initial time-series s(t). The Equation (3.3)
requires the function ψ to have finite energy, while Equation (3.4) is the admissibility
condition, stating that if Ψ(ω) is smooth, then Ψ(0) = 0.

The different wavelets in the basis are generated through translations of the father
wavelet φ and dilations and translations of the mother wavelet ψ. The wavelet transform
of a real series s(t) is defined as:

S(b, a) = 1√
a

∫ ∞
−∞

ψ′
(
t− b
a

)
s(t)dt (3.5)

1 Orthonormal bases of wavelets generated by one function were constructed for different function
spaces. However, Mallat [Mallat 89] unified the construction of these bases for L2(R) using the multireso-
lution approximation (MRA) defined as a sequence of closed subspaces (Vm)m∈Z of L2(R) [Goodman 93].
(Vm)m∈Z has to satisfy the next properties:

1. Vm ⊂ Vm+1, m ∈ Z
2.
⋃
m∈Z Vm is dense in L2(R) and

⋂
m∈Z Vm = {0}

3. g ∈ Vm ↔ D2g ∈ Vm+1, m ∈ Z, where DAg(t) := g(at), t ∈ R, for any positive number a
4. g ∈ Vm ↔ T2−mnf ∈ Vm, (m,n) ∈ Z2, where Tτ (t) := g(t− τ), x ∈ R, for ∀τ ∈ R
5. there exists an isomorphism I from V0 onto I2(Z) which commutes with the action of Z

For the MRA, it was shown by Mallat [Mallat 89] that there exists the father wavelet φ ∈ V0 such that
(Tnφ)n∈Z is an orthonormal basis of V0. If

φm,n(t) :=
√

2mφ(2mt− n), (m,n) ∈ Z2 (3.1)
then for ∀m ∈ Z, (φm,n)n∈Z is an orthonormal basis of Vm. We suppose Wm as being the orthogonal
complement of Vm in Vm+1. Then, the mother wavelet ψ ∈ W0 exists, s.t. (Tnφ)n∈Z is an orthonormal
basis of W0, and if:

ψm,n(t) :=
√

2mψ(2mt− n), (m,n) ∈ Z2 (3.2)
then (ψm,n)n∈Z is a complete orthonormal set in Wm.
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ψ′ is the complex conjugate of ψ. The pair (a, b) defines a point in the right half-plane
R+ × R. The parameter b corresponds to the time shift, while a to the scale of the
analysing wavelet. Thus, when the scaling parameter a is varied from high to low values,
then the wavelet function ψ′

(
t−b
a

)
will be compressed, i.e. the corresponding wavelet

transform changes from low-frequency to high-frequency signal structures. A shifting by
b and rescaling by a could be written as:

ψa,b(t) = 1√
a
ψ

(
t− b
a

)
(3.6)

In this case, the Equation (3.5) can be rewritten as:

S(b, a) =
∫ ∞
−∞

ψ′a,b(t)s(t)dt (3.7)

With the above relations, the original signal s(t) can be obtained from S(b, a) – its
wavelet transform, using the following equation:

s(t) = 1
cψ

∫ ∞
−∞

∫ ∞
−∞

S(b, a)ψa,b(t)
da db

a2 (3.8)

where cψ are obtained from the Equation (3.4).
The most famous pair of father and mother wavelets is the Daubechies 4 tap wavelet

(Figure 3.1).

Figure 3.1 : Daubechies 4-tap (db2) wavelet. The scaling function is φ
(father wavelet), while the wavelet function is ψ (mother wavelet).

3.3.1.3 Discrete Wavelet Transform (DWT)

The CoWT has an issue of redundancy with digital computers, because the parameters
(a, b) take continuous values, and thus, its computation may consume significant amount
of time and resources, depending on the resolution required. This is the reason why
usually we are more concerned with discretely sampled, rather than continuous func-
tions [Abramovich 00].
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The DWT analyses a discrete signal s[n], taking a series of N samples and producing
N new values called wavelet coefficients. There are 2 types of coefficients: approximation
and detail. If we consider the series s[n] and the wavelet and scale functions ψj0,k[n] and
φj,k[n] being discrete defined in [0,M − 1] (i.e. totally M points), then the approximation
coefficients are given by:

Wφ[j0, k] = 1√
M

∑
n

s[n]φj0,k[n] (3.9)

and the detail coefficients by:

Wψ[j, k] = 1√
M

∑
n

s[n]ψj,k[n]; j ≥ j0 (3.10)

The initial approximated signal s[n] will be given in this case by:

s[n] = 1√
M

∑
k

Wφ[j0, k]φj0,k[n] + 1√
M

∞∑
j=j0

∑
k

Wψ[j, k]ψj,k[n] (3.11)

Multi-resolution Analysis :
In case of the CoWT, we compute the wavelet transform by changing the scale of the

analysis window, shifting the window in time, multiplying it by the signal, and integrating
over all times. In case of the DWT however, filters of different cut-off frequencies are used
to analyse the signal at different scales. Thus, the DWT is formed around a set of filtering
operations in order to determine the coefficients from Equations (3.9) and (3.10). These
coefficients could be written in the following form:

Wφ[j, k] = hφ[−n] ∗Wφ[j + 1, n]|n=2k,k≥0 (3.12)

Wψ[j, k] = hψ[−n] ∗Wψ[j + 1, n]|n=2k,k≥0 (3.13)
where ∗ is the convolution operation, hφ is the high-pass filter, and hψ is the low-pass
filter respectively.

This way of obtaining a DWT is referred to as the Mallat’s algorithm in the literature.
The original signal is first passed through two complementary filters, low-pass and high-
pass (as illustrated in Figure 3.2) after which is decomposed into two components, sub-
sampled by 2, a low-frequency content and a high-frequency content of the same size. The
low-frequency content of the signal (i.e.the approximation) gives a signal its basic identity,
the high-frequency content on the other hand (i.e. detail) presents the finer details of data.
Due to successive sub-sampling by 2, the length of the signal must be a power of 2, or at
least a multiple of power of 2, and it determines the number of levels the signal can be
decomposed into.

For a multilevel decomposition, the approximation series after the first filtering is
further decomposed to obtain the approximation and detail series at the next level of de-
composition [Mitra 06]. This multilevel decomposition is iterated until the predetermined
or desired decomposition level is attained. In this way, we obtain, using a sequence of
low-pass and high-pass filters, the wavelet decomposition of a signal at different frequency
level. At the end of an rth level decomposition, we get the following decomposition of the
original series:
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Figure 3.2 : Low-pass and high-pass filtering of a signal. S denotes the
original signal, A denotes the approximation and D, the detail; ↓ represents
the sub-sampling of the signal.

• a(r): approximation at the coarsest level rth of decomposition

• d(r): details at the coarsest level rth of decomposition

• d(r − 1): details at the (r − 1)th level of decomposition

• d(1): details at the finest level of decomposition

A two-level wavelet decomposition is illustrated in Figure 3.3, where S denotes the
original signal, and L and H denote the low-pass and high-pass filters respectively.

Figure 3.3 : A two-level wavelet decomposition process; ↓ represents the
down-sampling of the signal.

In order to assemble back those components into the original signal, we use the re-
construction, or synthesis using the relation from the Equation (3.11). Where wavelet
analysis involves filtering and down-sampling, the wavelet reconstruction process consists
of up-sampling and filtering [MathWorks 12c]. Up-sampling is the process of lengthening
a signal component by inserting zeros between samples (Figure 3.4). An example of 2 level
signal reconstruction is presented in Figure 3.5. Note, that the reconstruction filters have
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Figure 3.4 : Up-sampling of a signal [MathWorks 12c].

Figure 3.5 : A two-level wavelet reconstruction process; ↑ represents the
up-sampling of the signal.

Figure 3.6 : Decomposition and Reconstruction filters for the db4 wavelet
8-tap).

their coefficients opposite to the decomposition filters. An example of the Daubechies 4
level filters is presented in Figure 3.6.

The disadvantage of the Mallat’s algorithm is the decreasing of the length of the
coefficient sequences with the increasing of the iteration index due to the use of decimators.
Because of the decimation step in the DWT analysis, it makes the standard DWT time
shift-variant. Another way to implement the MRA is to use the à trous algorithm, proposed
by Shensa [Shensa 92], which corresponds to the computation of the Stationary Wavelet
Transform (SWT). In this case, the use of decimators is avoided, but different low-pass
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and high-pass filters are used at each iteration. At each level the filters are up-sampled
versions of the corresponding filters from the previous level. Thus, the difference between
SWT and DWT is that the signal is not sub-sampled in the SWT case, but the filters are
up-sampled at each level. In the SWT each set of coefficients contains the same number
of samples as the input signal. For example, for a decomposition of N levels, there is a
redundancy of 2N , because no sub-sampling is performed. This redundant representation
makes it shift-invariant, becoming suitable for edge detection, de-noising.

3.3.1.4 Wavelet types

One of the problems in the wavelet analysis consists in choosing the wavelet function ψ.
There are different types of wavelets which are more or less suitable for a given prob-
lem [Farge 92, Torrence 98]:

• Orthogonal, non-orthogonal, or biorthogonal. Orthogonal wavelets are obtained when
the scaling function φ(t) and analysis function ψ(t) are orthonormal. Using the
orthogonal analysis, the number of convolutions at each scale is proportional to
the width of the wavelet basis at the given scale. This is used for signal process-
ing, because it gives the most compact representation of the signal. However, in
case of time-series analysis, an aperiodic shift in the time-series produces a different
wavelet spectrum. The non-orthogonal analysis instead, is redundant at large scales,
and are useful for time-series analysis, where continuous and smooth variations in
wavelet amplitude are expected. In case of the biorthogonal wavelets, the orthog-
onal condition is relaxed to biorthogonal conditions, there are two multiresolution
analyses [Strang 96]. For the biorthogonal wavelet filter, the low-pass and high-pass
filters do not have the same length. The low-pass is always symmetric, while the
high-pass filter can be either symmetric or a-symmetric.

• Complex or real. The issues of the standard DWT for analysis has three main disad-
vantages [Shukla 03]: shift-sensitivity, poor directionality, and lack of phase informa-
tion. These facts restrict the scope of DWT for certain signal and image processing
(edge detection, motion estimation). Stationary Wavelet Transform (SWT) reduce
only the first disadvantage of shift-sensitivity, but brings very high redundancy and
computation. In order to overcome these issues, the complex wavelet transforms are
used. They use complex-valued filtering that decomposes the real/complex time-
series into real and imaginary parts in transform domain. These parts return in-
formation about amplitude and phase, being suited for oscillatory behaviours, i.e.
non-stationary series. While a real wavelet function gives information of a single
component and is better applied to isolate peaks or discontinuities in a time-series.

• Width. It is defined as the e-folding time of the wavelet amplitude. A narrow
function (in time) has good time resolution, but poor frequency one. From the other
part, the wider function has poor time resolution, but good frequency resolution.

• Shape. A wavelet function has as goal to reflect the features of the time-series. Thus,
for a series with spikes or sharp jumps, a boxcar-like function should be used (e.g.
Haar wavelet). For a smooth varying time-series, a smooth wavelet function has to
be applied (e.g. damped cosine wavelet).

57



3

3.3. THEORETICAL FUNDAMENTALS

• Vanishing Moments. An important parameter of a wavelet function is its number of
vanishing moments, which gives the order of the wavelet and is a necessary condition
for the smoothness of the wavelet function [Daubechies 92]. Thus, if the wavelet can
generate polynomials up to degree p−1, then it can have p vanishing moments. The
vanishing aspect means that the wavelet coefficients are zero for those polynomials.
More vanishing moments result in better approximation of the time-series.

There are many wavelet families which depend on the choice of the mother wavelet
function. At the same time, the choice of the mother wavelet depends on a given applica-
tion.

Some examples of wavelet shapes are presented in Table 3.1 for real functions, and in
Table 3.2 for complex wavelet functions.

Table 3.1 : Examples of real wavelet functions. The number represents
the order of the given wavelet. In case of the biorthogonal and reversed
biorthogonal wavelets, the first number is the number of vanishing moments
in the synthesis wavelet, while the second one is the number of vanishing
moments in the analysis wavelet.

WT Name ψ plot WT Name ψ plot

Haar Symlet 2

Coiflet 2 Biorthogonal
1.3

Reversed
Biorthogonal

3.3
Meyer

The Haar wavelet is the first and the simplest orthonormal (i.e. orthogonal and nor-
mal) wavelet. Being a step function, it is an asymmetric wavelet. The Daubechies family
wavelets are asymmetric and orthogonal and they vary according to their number of van-
ishing moments. Biorthogonal and Reversed Biorthogonal family wavelets are symmetric
and exhibit the property of linear phase, needed in signal and image reconstruction. The
Symlets and Coiflets families are near symmetric (i.e. almost symmetric) and orthogonal.
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Table 3.2 : Examples of complex wavelet functions. The number represents
the order of the given wavelet.

WT Name ψ plot WT Name ψ plot

Cgau 3 Real Shan 3 Real

Cgau 3 Imag Shan 3 Imag

They are modified versions of Daubechies wavelets. Meyer wavelets are symmetric and
orthogonal.

The Complex Gaussian and Complex Shannon wavelets are families of complex
symmetric wavelets which are neither orthogonal, nor biorthogonal. They are built
from the complex Gaussian function and from the frequency B-spline wavelets respec-
tively [Crowley 96].

3.3.2 Neural Networks

3.3.2.1 Introduction

The Artificial Neural Network (ANN) is an important paradigm for the cognitive ma-
chine [Ojeda 95]. The goal of the ANN is to model complex systems allowing it to
be used in solving difficult tasks such as pattern recognition, classification, predic-
tion [Gorman 88, Sbirrazzuoli 97, Beasley 97]. The ANN is an emulation of the biological
neural system with the principal characteristic the distributed information or knowledge
in connection or weight between simple elements, the artificial neuron. This element ba-
sically consists of input signals which are multiplied by weights (i.e. strengths of the
respective signals) and summed up followed by a transfer function in order to compute
the output of the neuron. This artificial neuron is associated with other similar elements
and are interconnected in the network, the Neural Network. There are different types of
interconnections between neurons, i.e. architectures of the ANN, requiring different types
of algorithms to find its weights, but despite to be an apparently complex system, a neural
network is relatively simple.

A neuron with a single R-element input vector is shown in Figure 3.7. The individual
element inputs p1, p2, ..., pR are multiplied by weights w1,1, w1,2, ..., w1,R, and the weighted
values are passed to the summator. Their sum is Wp, the dot product of the (single row)
matrix W and the vector p. The neuron has a bias b, which is summed with the weighted
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inputs to form the net input n. This sum, n, is the argument of the transfer function f in
order to compute the output a:

n = w1,1p1 + w1,2p2 + ...+ w1,RpR + b (3.14)

a = f(Wp+ b) (3.15)

Figure 3.7 : Single Neuron Model [MathWorks 12b].

As in most of the systems, the Neural Networks have their own advantages and disad-
vantages [sit 12a]:

1. Advantages:

• A neural network can perform tasks that a linear program cannot,
• When an element of the neural network fails, it can continue without any prob-
lem by their parallel nature,
• A neural network learns and does not need to be programmed,
• It can be implemented in any application,
• It can be implemented without any problem.

2. Disadvantages:

• The neural network needs training to operate,
• The architecture of a neural network is different from the architecture of mi-
croprocessors therefore needs to be emulated,
• Requires high processing time for large neural networks.

A neural network is characterized by three things [Marchiori 08]:

1. Its architecture: the pattern of nodes and connections between them (Subsec-
tion 3.3.2.2),

2. Its learning algorithm, or training method: the method for determining the weights
of the connections (Subsection 3.3.2.3),

3. Its transfer function: the function that produces an output based on the input values
received by a node (Subsection 3.3.2.4),
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3.3.2.2 Network Architecture

There are three different classes of network architectures:

1. Single-layer feed-forward

2. Multi-layer feed-forward

3. Recurrent

Single-Layer Feed-Forward Networks :
Two or more of the neurons shown before can be combined in a layer. A one layer

network with R input elements and S neurons is shown in Figure 3.8.

Figure 3.8 : Single Layer Neural Network [MathWorks 12b].

In this network, each element of the input vector p is connected to each neuron input
through the weight matrix W . The ith neuron has a summer that gathers its weighted
inputs and bias to form its own scalar output n(i). The various n(i) taken together form
an S-element net input vector n. Finally, the neuron layer outputs form a column vector
a.

Multi-Layer Feed-Forward Networks :
A network can have several layers [MathWorks 12b]. Each layer has a weight matrix

W , a bias vector b, and an output vector a. A 3 layer network, is shown in Figure 3.9.
Recurrent Networks :
In a recurrent network, the weight matrix for each layer contains input weights from

all the neurons in the network, not just neurons from the previous layer. A fully network
is one where every neuron receives input from all other neurons in the system. Such
a network cannot be easily arranged in layers. A simple recurrent network is shown in
Figure 3.10.
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Figure 3.9 : Three Layer Neural Network [MathWorks 12b].

Figure 3.10 : Simple Recurrent Neural Network.

3.3.2.3 Learning and Training the Neural Network

When adjusting the weights of an ANN we are able to obtain the desired output for a
given inputs. However, when there are many neurons, it would be complicated to find
the necessary weight values by hand. This is why various methods to set the strengths of
the connections exist. One way is to set the weights explicitly, using a priori knowledge.
Another way, is to train the neural network by feeding it teaching patterns and letting it
change its weights according to some learning rule [Singh 09b, Krishna 11].

The training procedure dictates a global algorithm that affects all the weights and
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biases of a given network, such as Bayesian regulation back-propagation, gradient de-
scent back-propagation, Levenberg-Marquardt back-propagation, unsupervised random or-
der weight/bias training. Training the network is time consuming. It usually learns after
several epochs, depending on how large the network is. Thus, a large network requires
more training time compared to a smaller one. The main idea in training is to min-
imize a performance function (the global error) while updating the weights and biases
of the network. Basically, the network is trained for several epochs and stopped after
reaching the maximum epoch. Another way to stop the training process is to check
if the differences between network output and known outcome is less than a specified
value [MathWorks 12b, Thalatam 10].

The learning functions (e.g. Hebb weight learning rule, Kohonen weight learning func-
tion, batch self-organizing map weight learning function) can be applied to individual
weights and biases within a network [MathWorks 12b]. We can categorize the learning as
follows:

• Supervised learning: in which the network is trained by providing it with input and
matching output patterns;

• Unsupervised learning: in which the output unit is trained to respond to clusters of
pattern within the inputs;

• Reinforcement learning: it can be considered as an intermediate of the supervised
and unsupervised processes. Some action on the environment is performed and a
feedback response is received, after which the learning system grades its action as
good (rewarding), or bad (punishable) based on the environmental response, and
adjusts its parameters accordingly.

3.3.2.4 Transfer Functions of the Neural Networks

There are two functions that determine the way signals are processed by neurons: activa-
tion and output functions. The activation function acts on the input vector and influences
the total signal a neuron receives. The output function, operates on a scalar activation,
influences the scalar output. The composition of the activation and the output function
is called the transfer function. For some transfer functions there is no natural division
between activation and output functions.

There are many types of transfer functions, but only three of them are presented next.
Hard-Limit Transfer Function :
The hard-limit transfer function, shown in Figure 3.11, is given by the following equa-

tion:

a = f(n) =
{

0 if n < 0
1 if n ≥ 0 (3.16)

It limits the output of the neuron to either 0, if the net input argument n is less than
0; or 1, if n is greater than or equal to 0. There is also a symmetric hard-limit transfer
function that forces a neuron to output a 1 if its net input reaches a threshold, otherwise
it outputs −1.

Linear Transfer Function :
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Figure 3.11 : Hard-Limit transfer function.

The linear transfer function from Figure 3.12 calculates the neuron’s output by simply
returning the value passed to it:

a = f(n) = n (3.17)

Figure 3.12 : Linear transfer function.

Log-Sigmoid Transfer Function :
The sigmoid transfer function shown in Figure 3.13, takes the input, which may have

any value between plus and minus infinity:

a = f(n) = 1
1 + exp(−n) (3.18)

It generates a continuous valued output between 0 and 1. Is defined as a strictly
increasing function that exhibits smoothness and asymptotic properties, being also differ-
entiable.

Figure 3.13 : Log-Sigmoid transfer function.
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3.3.3 Genetic Algorithms

3.3.3.1 Introduction

Genetic Algorithms (GAs), introduced by Holland in years 1970 (with a revised work
in [Holland 92]), are search algorithms based on the mechanics of natural selection
and genetics as observed in the biological world providing efficient, effective techniques
for optimization and machine learning applications [Goldberg 88, Man 96, Paulinas 07,
Musliu 12]. The natural selection is based on the principle that strong species have greater
opportunity to pass their genes to future generations, while weaker species are faced with
extinction by natural selection. Sometimes, several random changes could occur in genes,
which will result in the appearance of new future species in case if these genes bring sup-
plementary advantages for survival. Through time, species with more adapted genes to
the surrounding environment become dominant in the population. Thus, a GA performs
similar actions as in real world by repeatedly modifying a population of individual solu-
tions. At each step, it selects individuals at random from the current population to be
parents and uses them to produce the children for the next generation. Over successive
generations, the population "evolves" toward an optimal solution for survival.

In GA terminology, the population members are strings or chromosomes, which are
binary representations of solution vectors xi (xi ∈ P , 1 ≤ i ≤ N , where P is the population
of size N). These chromosomes are made of discrete units called genes gk (1 ≤ k ≤ m,
where m is the length of a chromosome, i.e. xi = g1, g2, ..., gm). A GA undertakes to
select subsets (usually pairs of the form xi with xj) of solutions from a population, called
parents, to combine them to produce new solutions called children or offsprings. The
rules of combination to form children are based on the genetic notion of crossover, which
consists of interchanging solution values of particular variables (i.e. interchanging gk),
together with occasional operations such as random value changes, called mutations. The
children produced by the mating of parents, and that pass a survivability test, are then
available to be chosen as parents for the next generation. This survivability test consists
in optimization of a function f – the fitness function – which has as an input variable a
certain solution vector xi.

There are several steps in order to apply a GA:

1. Encoding technique: gene, chromosome

2. Initialization procedure: creation

3. Evaluation function: environment

4. Selection of parents: reproduction

5. Genetic operators: mutation, recombination

6. Parameter settings: practice and art

The standard genetic algorithm is illustrated in Figure 3.14.
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Figure 3.14 : Block diagram of a standard Genetic Algorithm.

3.3.3.2 Encoding and Initialization Techniques

In the initialization step, the first thing to do is to decide the coding structure. Coding
for a solution xi, is usually made using binary encoding, described as a string of binary
symbols 0 and 1. The initial population is selected completely at random, with each
symbol of each solution having a 50% chance of taking the value 0 or 1.

Example 1: gene gk represents a datum: car brand (001), engine type
(010), color (101).
A chromosome xi would be an array of genes:

(car brand, engine type color) ↔ (001, 010, 101).

Another type of encoding is value encoding, where values such as real numbers, or
characters, or objects are used and the binary encoding would be difficult to apply.

Example 2: Chromosome 1: (0.12, 3.45, 6.78).
Chromosome 2: (A, E, I, O, U, Y).

In permutation encoding a chromosome is formed of a string of numbers giving a
position in a sequence. It is used in ordering problems mostly (e.g. the Travelling Salesman
problem).

Example 3: Chromosome 1: (1, 3, 5, 2, 4).
Chromosome 2: (1, 2, 4, 3, 5).

66



CHAPTER 3. TIME SERIES

3

3.3.3.3 Evaluation Function and Selection of Parents

At each step, the GA uses the current population to create the children that make up
the next generation. The algorithm selects a group of chromosomes, who contribute their
genes, the entries of their vectors, to their children. The problem is how to select these
chromosomes. According to Darwin’s evolution theory, the best ones should survive and
create new offspring. In case of GA, the selection is done according to the fitness function
(i.e. the function to be optimized): the parents with better fitness values have greater
chance to be selected. There are many methods how to select the best chromosomes, for
example roulette wheel selection, Boltzman selection, tournament selection, rank selection,
steady state selection [sit 12c].

Roulette Wheel Selection :
In Roulette Wheel Selection a subject representing p% of total fitness has p% chances to

be selected for mating. It is like a roulette wheel where all chromosomes of the population
are placed, everyone of them having its place as big as its fitness function, as shown in
Figure 3.15. When a marble is thrown there and selects the chromosome. The chromosome
with bigger fitness will be selected more times.

Figure 3.15 : Roulette wheel selection [sit 12c].

Example 4: Let’s suppose 4 chromosomes c1, c2, c3, and c4 needed to
maximize a function f . The score of each chromosome (i.e. its fitness value)
will be 1, 1.25, 1.5, and 6.25 respectively. The total fitness will be 10 in
this case, and the chromosomes will have the following percentages of the
total fitness: 10%, 12.5%, 15%, and 62.5% respectively. Thus, for the next
generation, c1 will have 10% chance to be selected, while c4 will have a chance
of 62.5%.

Rank Selection :
The roulette wheel selection will have problems when the fitness differs very much.

Supposing that the best chromosome fitness is 90%, then the other chromosomes will have
very few chances to be selected. Rank selection first ranks the population and then every
chromosome receives fitness from this ranking. The worst will have fitness 1, second worst
2, etc., and the best will have fitness N (number of chromosomes in population). You
can see in Figures 3.16 and 3.17 how the situation changes after changing fitness to order
number. After this, all the chromosomes have a chance to be selected. But this method
can lead to slower convergence, because the best chromosomes do not differ so much from
the others.
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Figure 3.16 : Situation before ranking (graph of fitnesses) [sit 12c].

Figure 3.17 : Situation after ranking (graph of order numbers) [sit 12c].

Example 5: Let’s consider the same 4 chromosomes from Example 3.3.3.3.
After ranking them decreasingly according to their score, we obtain the next
order: c4, c3, c2, c1 resulting in the following fitness values: 4, 3, 2, 1. The total
fitness will be 10, and the chromosomes will have the following percentages
of the total fitness: 40%, 30%, 20%, and 10% respectively. Thus, for the next
generation, c1 will have 10% chance to be selected, while c4 will have a chance
of 40%.

Steady-State Selection :
In the Steady-State one (or a few) member at random is selected, replicated, and

another (or a few) random member is replaced with the copy in each time step [Rogers 99].
The replacement is done even if the offsprings are worse than the chromosomes they
replace. The main idea of this selection is that big part of chromosomes should survive to
the next generation.

Elitism :
Elitism provides a means for reducing genetic drift by ensuring that the best chromo-

somes are allowed to pass/copy their traits to the next generation [Ahn 03]. Some genes of
chromosomes may turn out to be more important to the final solution than others. Thus,
using the elitism, the best a few best chromosomes are copied to a new population. The
rest is done in a classical way. Elitism can very rapidly increase the performance of GA,
because it prevents losing the best found solution [sit 12b].

3.3.3.4 Genetic Operators

The genetic algorithm creates three types of children for the next genera-
tion [MathWorks 12a]:

Elite children : are the individuals in the current generation with the best fitness
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values. These individuals automatically survive to the next generation.
Crossover children : are created by combining the genes of a pair of parents. We

distinguish one-point crossover, two-point crossover, uniform crossover.

• One-point crossover : the child chromosome is formed by appending the last t genes of
the first parent chromosome to the firstm−t genes of the second parent chromosome
(where m represents the total number of elements of a parent, and t is the number
of elements to be exchanged between parents).

Example 6: Considering the following chromosome parents, where | is the
crossover point:
Chromosome 1: 01100010|00111110101
Chromosome 2: 11001110|10100111011
The following offsprings will be produced:
Offspring 1: 01100010|10100111011
Offspring 2: 11001110|00111110101

• Two-point crossover : the child chromosome is formed by interchanging the genes
between two crossover points.

Example 7: Considering the following chromosome parents, where | is the
crossover point:
Chromosome 1: 01100010|00111110| 101
Chromosome 2: 11001110|10100111|011
The following offsprings will be produced:
Offspring 1: 01100010|10100111|101
Offspring 2: 11001110|00111110|011

• Uniform crossover : it decides (with a given probability known asmixing ratio) which
genes from a parent will contribute to form the children. It allows the parents to be
mixed at gene level rather than the segment level.

Example 8: Considering the following chromosome parents:
Chromosome 1: 0110001000111110101
Chromosome 2: 1100111010100111011
Considering a mixing ratio of 50% means that approximately half of the genes
will be taken from each of the parents. The following offsprings could be
produced:
Offspring 1: 0110101000100110101
Offspring 2: 1100011010111111011

Mutation children : are created by introducing random changes, or mutations, to a
single parent. It operates independently on each individual by perturbing with a certain
probability each bit string. A usual way to mutate is to generate a random value v
between 1 and N and then make a random change in the vth element of the string with a
probabilistic bit mutation.

69



3

3.4. PROPOSED FORECASTING MODEL

Example 9: Considering the following offspring:
Initial offspring: 0110001000111110101
If the generated value v = 5, then at the 5th gene of the offspring a mutation
will occur:
Mutated offspring: 0110101000111110101

3.4 PROPOSED FORECASTING MODEL

The current section describes the proposed forecasting model for a time-series. The archi-
tecture of Neural Networks is presented that depends on the number of series coming from
the Wavelet Transform decomposition of the input data. An optimization of the ANN
with Genetic Algorithms is shown. Different settings of the model according to different
time-range forecasting is described.

3.4.1 Sidebar

As it was stated in Section 3.1 we propose a time-series forecasting model in order to
answer the following questions: is there a model that could be used in forecasting dif-
ferent time-series (i1 ), what parameters to use in order to improve the performance of
the prediction model (i2 ), and how a constant upgrading with the latest available infor-
mation and retraining the model influences the forecasting (i3 ). The proposed model,
presented in this section, is based on Stationary Wavelet Transform time-series processing
with Artificial Neural Networks and their optimization using Genetic Algorithms.

The model is implemented using the usual training-testing phases in order to evaluate
its performance. Thus, the time-series will be divided into a training and testing part.
The training part will be analysed and will teach the model. The learned model will be
used to predict future information, which will be compared to the remained testing part
from the time-series.

The implementation is done as follows. From the Input Data for Analysing we have to
extract the training and testing series (Figure 3.18). This extraction is done according to
the following choices:

• type of data,

• time-range of prediction,

• type of forecasting model.

After this division of data, the next step is to make the wavelet decomposition of level
n of both training and testing time-series. These 2 steps are described in section 3.4.3.

The nth level of decomposition gives us n+1 series for processing: 1 approximation and
n detail. Each of these is used to forecast the time-series corresponding to the same level
from the predicted signal (i.e. the 3rd level details from training and testing series, are
responsible for prediction of the 3rd level details from the forecasted one). The forecasting
is done using n + 1 Artificial Neural Networks, one for each level of decomposition. But,
before applying the wavelet to the ANN, we need to group parts of the signals into neurons.
This is done according to our choice of time-shifting between different parts of the series.
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Figure 3.18 : Block diagram of the forecasting process.
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Another user’s input is the ANN’s training, which can be done in 2 ways:

• using usual Neural Network training (e.g. with the Matlab R©’s Toolbox), or

• using the Genetic Algorithm.

These points correspond to steps 3, 4, and 5 from Figure 3.18 and are explained in
sections 3.4.4 and 3.4.5.

The next step, represents the reconstruction of the predicted signal by applying the
Inverse Stationary Wavelet Transform. For this phase, we use one forecasted approxima-
tion signal, and n forecasted detail signals. After reconstruction, we make a comparison
between the real and predicted signals.

A simplified diagram of these steps is presented in Figure 3.19.

Figure 3.19 : Simplified block diagram of the forecasting process.

3.4.2 Data for Analysing

Two sets of time-series were used. The first one consists of WiMAX traffic volume, while
the second is the EUR/USD currency exchange volume and price.

The WiMAX traffic series consists of 2 subsets. The first one was obtained by moni-
toring the incoming and outgoing traffic from 67 Base Stations for 8 weeks: from March
17th till May 11th. For each Base Station we have its own series. It consists of numerical
values representing the total number of packets from the uplink or downlink traffic during
a time interval of 15 minutes. It can be easily deducted that for a given BS we have the
following number of samples: 96[Samples/Day], 972[Samples/Week], and a total number
of 5376[Samples]. This database will be names as W67. The second WiMAX data set was
obtained by monitoring the traffic from 504 BS for 5 days. In comparison to the previous
set, the numerical values for this one are the total number of packets from the uplink or
downlink traffic during 30 minutes. Results 48[Samples/Day]. It will be noted as W504
database.

Regarding the EUR/USD time-series, we used the volume and exchange rate of the
EUR/USD pair. The period of collection is of 15 weeks and the values are recorded
every 15 minutes. We have 96[Samples/Day], 672[Samples/Week] and a total number of
10, 080[Samples]. The volume database will be noted by us as EUV ol, while the exchange
rate DB as EURate.
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3.4.3 Wavelet decomposition

Our understanding in using Wavelet Decomposition was that the observed traffic can
be thought of as a mixture of some distinct process components at different scales and
volatility levels. Since the observed time-series is a mixture of such complex processes,
a forecaster who is unable to identify the separate scale-related components of the se-
ries, is unable to produce models which are capable of giving accurate forecasts. So, our
approach consists into decomposing the original time-series into scale or frequency re-
lated components and model each component separately, in order to obtain more accurate
models. With this hypothesis, after obtaining the wavelet decomposition, neural network
predictive models for each of the decomposed level of the original series were designed.

We test the prediction performance after processing the time-series with various types
of mother wavelets such as Daubechies (db), Coiflet (coif), Symlet (sym), Biorthogonal
(bior), and Reverse Biorthogonal (rbio). When applying the WT on our data, we have
to choose the level of decomposition n. The level n of decomposition depends on the
number of samples per day we can choose: 96, 32, or 16 samples. For a discrete signal,
in order to be able to apply the Stationary Wavelet Transform, if a decomposition at
level n is required, then 2n must divide evenly into the length of the signal. So, for our
data, if we have 96 samples per day, then n cannot be greater than 5. For 32 and 16
samples per day, n is 4 and 3 respectively. The decision of choosing 32 and 16 samples per
day is because of the fact that there should be some periodicities in the WiMAX traffic,
which are better noticed if we modify the sampling from 15 minutes to 45 and 90 minutes,
each sample being obtained by making the mean value between other 3 or 6 consecutive
samples [Stolojescu 09]. It was supposed that the networks would perform better if we
have some "periodicities" in the traffic.

An important aspect when applying wavelets is to choose which part of the data should
be used for decomposition. We constructed 3 different models regarding this aspect: 2
for one day prediction, and the 3rd for week prediction described next. These approaches
contribute to the analysis of the issue (i2 ) described in Section 3.1.

3.4.3.1 Single Day Prediction model 1 - Similar Days Selection

This method is used for prediction of a given day from the last week. The same days of the
week are selected for analysis as the one we want to forecast. For example, let’s consider
the W67 database to predict how the traffic on Wednesday at the 33rd BS is. Taking
into account that we have 8 weeks period, then, only the time-series from all Wednesdays
during weeks 1 to 7 will be taken for processing. The advantage in this technique is that
usually the user’s behaviour is modelled during certain week days, but the disadvantage
is that the number of subscribers is always changing.

For training time-series, we concatenated the raw series representing the samples from
Wednesdays taken from weeks 1 till 6. This information is used, after wavelet decomposi-
tion, for ANN inputs represented in steps 3 and 4 of the block diagram (Figure 3.18). For
ANN target in training process, the time-series from the Wednesday of the 7th week was
used (Figure 3.20). For testing data, we need at ANN’s inputs the SWT of the concate-
nated days from weeks 2 to 7. What we expect from the output of the ANN is the SWT of
Wednesday traffic from 8th week (Figure 3.21). An example of approximation and detail
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Figure 3.20 : SWT preprocessing for ANN training, used in 1st method for
day prediction.

signals is shown in Figure 3.22.
Regarding the W504 dataset, it has traffic information from 5 days only. Thus, we did

not use this method in prediction.

3.4.3.2 Single Day Prediction model 2 - All Days Selection

The second approach in this prediction, was to take into consideration all the available
data before required day for forecasting. In comparison to the previous case (Subsec-
tion 3.4.3.1), here our series is not interrupted and we do always know about the amount
of traffic coming from new subscribers.

Let’s take the same example: prediction for Wednesday, 8th week for theW67 DB. For
the training of neural network, we use for ANNs’ inputs the data beginning from Monday
of the 1st week till the day before forecasting from the 7th week, i.e. Tuesday. For the
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Figure 3.21 : SWT preprocessing for ANN testing, used in 1st method for
day prediction.

ANNs’ targets the signal representing WiMAX traffic on Wednesday, 7th week was used
(Figure 3.23).

For testing phase we need at ANN inputs the SWT from Monday of the 2nd week,
till Tuesday of the 8th week (Figure 3.24). We expect from the ANNs’ outputs the SWT
transform of the time-series, which after Inverse SWT processing, would give us the traffic
during the forecasted day (i.e. Wednesday, from the 8th week).

This technique of forecasting is applied to the W504 data set also. No day ahead
forecasting was performed with the EUR/USD currency exchange databases.

3.4.3.3 One Week Prediction

Based on the Hann and Steurer [Hann 96] remarks in a research regarding weekly exchange
rate data forecasting that ANN outperforms the linear models, we made prediction of one
week ahead. Also, in this case we do have the correlation between given days of the weeks
(explained further in ANN approaching), and we know the rising of customer demands,
because we are able to process every day from all weeks.

We take once again as an example the W67 database, and we forecast the traffic from
the last 8th week of a given Base Station (Figures 3.25 and 3.26). As in the previous cases,
the role of SWT is to make the decomposition of data before entering the ANNs. As an
input, we had the wavelet transforms obtained after the decomposition of the time-series
from weeks 1 till 6, while the series from the 7th week was taken as a target. In testing
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Figure 3.22 : Approximation and Detail time-series for training, used in
1st method for future ANN inputs (to the left), and for ANN target (to the
right).

process, the ANNs inputs contained the SWT of the series from weeks 2nd till 7th. The
traffic from the last week was obtained at the output.

3.4.4 Neural Network design

After wavelet decomposition, our next task is to design the Artificial Neural Networks
(Figure 3.19). In order to implement a neural network, first of all we had to choose its
model. As it has been mentioned in Section 3.3.2.2, the 2 most important types of ANNs
are Feed-Forward Neural Networks and Recurrent Neural Networks. Feed-Forward ANNs
were applied in our forecasting techniques, because according to [Dematos 96], this model
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Figure 3.23 : SWT preprocessing for ANN training, used in 2nd method for
day prediction.

is relatively accurate in forecasting, despite being quite simple and easy to use. Anyway,
the recurrent network forecast performance was lower than that of the feed-forward model.
It might be because of the fact that recurrent networks pass the data from back to forward
as well as from forward to back, and can become "confused" or unstable.

Further designing of feed-forward network implies the establishment of:

• the number of layers,

• the number of neurons in each layer.

These aspects are very important if we want to minimize the generalization error, the
learning time, and the ANN dimension.

In [Ileană 04] is pointed out the fact that the choice of the number of layers is made
knowing that one hidden layer network is able to approximate most of the nonlinear
functions demanded by practice. This fact has been observed by us also in our earlier
studies on neural networks, that’s why we have chosen single hidden layer ANN.

Concerning the dimension of each neuron layer the situation is as follows:

• input and output layers are imposed by the problem to be solved,
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Figure 3.24 : SWT preprocessing for ANN testing, used in 2nd method for
day prediction.

Figure 3.25 : SWT preprocessing for ANN training, used in One Week
Forecasting.
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Figure 3.26 : SWT preprocessing for ANN testing, used in One Week
Forecasting.

• the dimension of the hidden layer is essential for efficiency of the network.

3.4.4.1 Single Day Prediction model 1 - Similar Days Selection

In case of day forecasting we predict a single-vector time-series (data from one day, or
data from one week). This aspect imposes us the condition of using a single vector-neuron
for output2, which contains in case of day prediction an array of 96, 32, or 16 samples. In
case of week forecasting, the number of samples is 672, 224, or 112 values3.

For the number of input neurons we take into consideration different periods of the
day and different user’s behaviours. One of the possibilities for grouping the input data
is to perform a temporal synchronization of all inputs (Figure 3.27). We take the time-
series from an entire day from hours 00h00 till 24h00 as each vector-input of the ANN.
By this we make sure that the morning, noon and evening periods from known series, are
responsible for the same periods of the day from the forecasted series.

Another possibility of choosing the information for our input neurons arises if we think
about the behaviour of each person. According to [Knauth 96] our life cycle is divided into
3 parts: 8 hours of sleep, 8 hours of work, and the rest of 8 hours we use for resting. But

2We used Matlab R© in our simulations, and in its neural toolbox a neuron is seen actually as a vector
of elements.

3For further explanation, we use the case of 96[Samples/Day]
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Figure 3.27 : 24 Hours Shift for neuron decomposition.

there are some industries where the use of these hours is shifted, like the ones presented
in Figure 3.28. Taking into consideration this information, we made a time superposition
between these 3 parts, design shown in Figure 3.29. The data for vector-neurons is taken
by shifting with an 8 hours time interval, but the length of each of them still is taken from
24 hours. So, we have 2/3 of similar data for two adjacent vector-neurons.

Figure 3.28 : Continuous shift system in the steel industry (to the left),
and in the chemical industry (to the right).

Thus, the number of input vector-neurons can be deducted according to the next
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Figure 3.29 : 8 Hours Shift for neuron decomposition.

formula (for the W67 DB):

[NrOfDays - 1] · 24h
[NrOfShiftHours] + 1 = 6 · 24h

8h + 1 = 16 [Vector-Neurons] (3.19)

Based on similar research as in [Knauth 96], Tucker et.al. [Tucker 99] describes a recent
survey of the range of shift systems that are currently operating, and found that about
one third of continuous systems now involve 12 hours shifts. The organisations that
participated for this research were manufacturing companies (steel, chemicals, aluminium,
oil, chipboard, food, glass fibre) along with one engineering company. Based on this
information, we made a 12 hours temporal synchronization between ANN’s neurons. Half
of the information of two adjacent ANN’s vector-inputs are identical. The number of
vector-neurons, according to the formula 3.19, is:

[NrOfNeurons] = 6 · 24h
12h + 1 = 11 [Vector-Neurons]

3.4.4.2 Single Day Prediction model 2 - All Days Selection

This approach is similar to the first model of day prediction (Subsection 3.4.4.1). The
main difference is the length of series received transformed by the SWT prepared for
neural network’s inputs. If in the previous method it represents the time-series from 6
days interval, then in this case (if we suppose the 3rd day of the week, Wednesday, for the
W67 DB), we have the samples from:
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[NrOfDays] = 6[Weeks] · 7[Days/Week] + [Monday + Tuesday] = 44[Days]

For a shifting of 12 hours in this case, by using Equation (3.19), the number of input
neurons are:

[NrOfDays− 1] · 24h
[NrOfShiftHours] + 1 = [44− 1] · 24h

12h + 1 = 87[Vector-Neurons]

and for 8 hours shifting:

[44− 1] · 24h
8h + 1 = 130[Vector-Neurons]

We did show how we have chosen the number of input and output neurons. Next, we
present how the number of neurons from the hidden layer were selected.

If the number of input and output neurons are kind of "decided" by the information
we have, then the hidden layer stays completely at our choice of designing. In [Ileană 04]
is said that the network must satisfy at least 2 criteria:

• the network must be able to learn the input data,

• the network must be able to generalize for similar input data that was not used in
training set.

The accomplishment degree of these requirements depends on the network complexity
(i.e. number of neurons), training data set and number of iterations for training. Fig-
ure 3.30 presents the dependence of ANN’s performance as a function of complexity, while
Figure 3.31 shows the same dependence of the number of iterations used for training.

Figure 3.30 : Performance’s dependence of
network complexity.

Based on the above remarks, we diminished the complexity of the ANN, leading to
a better generalization and an increased training speed. After simulations and tests,
presented in Figure 3.32, we got the conclusion that the best value for the number of

82



CHAPTER 3. TIME SERIES

3

Figure 3.31 : Performance’s dependence of
number of iterations used for training.

neurons in the hidden layer is 3 (more information about SMAPE value can be found in
subsection 3.5.2). Initially, it seemed to be good for the first method for day prediction,
where we had at least 6 input vector-neurons, but it wouldn’t be a good value for the
second method, where the smallest number of input vector-neurons is 42, this being in
case for 24 hours shifting only, while beginning with 12 hours shifting, the inputs increase
to already a value greater then 80. However, by increasing the size of the hidden layer,
the network was not be able to make a good generalization of the signal and of its main
characteristics (i.e. periodicities, trend). At the output we had a lot of noise, because
the ANN has been over-learned with the training signal. A comparison between 3 and 15
neurons for the intermediate layer is shown in Figure 3.33.

Figure 3.32 : Obtained SMAPE values as a function of neurons number in
the hidden layer for One Day Prediction ANN.

For theW504 data set, the idea is the same. The only difference is that we have 5 days
for processing instead of 8 weeks. At the ANNs’ inputs, the wavelet transforms from the
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Figure 3.33 : Forecasting capability when using 3 neurons (above) and 15
neurons (below) for the size of the hidden layer in One Day Prediction.

first 3 days are used, and as a target the wavelet decompositions from 4th day are applied.
In the testing phase, the inputs contained days 2nd till 4th, and we obtained the 5th day
decomposition at the output.

3.4.4.3 One Week Prediction

We forecasted the data for the entire last week. The number of vector-neurons at the
output is 1, the reason being the same as in One Day Forecasting.

In order to figure out how many inputs should we have, we must know which samples
to take from the wavelet decomposition signals and how to group these samples into
neurons. We took into consideration the behaviour of different companies regarding the
days of working, or resting, given to their employees. In [Tucker 99] is pointed out that
there is a form of system involving work with four shifts system - for example, two days
shifts, followed immediately by two night shifts, followed by several rest days. This type
of day working is usually popular in medicine, and restaurant business. So, the idea is
that we have many industries in which the working and rest days have a variable schedule.
According to the information just described, we made a variable day shifting at the inputs
of our ANN also. An example of 2 days shifting for the W67 database is depicted in
Figure 3.34. The first input has the information from the first 7 days of the traffic. The
next input, contains also the time-series from 7 days, but shifted with 2 days. The third
vector-neuron, contains the information shifted with 4 days, and so on. This is done until
the end of the entire wavelet decomposition signal, obtained from the first 6 weeks for the
ANN’s inputs (in case of W67 dataset).
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Figure 3.34 : 2 Days Shift for input vector-neuron decom-
position, One Week Prediction.

85



3

3.4. PROPOSED FORECASTING MODEL

The number of input vector-neurons, was calculated according to the next relation:

⌊
[NrOfWeeks− 1] · 7[Days]

[NrOfShiftDays]

⌋
+ 1 =

⌊
5 · 7

2

⌋
+ 1 = 18[Vector-Neurons] (3.20)

where bxc is the floor function, also called the greatest integer function or integer value,
and gives the largest integer less than or equal to x.

For the number of neurons in the hidden layer, several tests were done by comparing
the ANN capacity of prediction for different sizes of the hidden layer. The results are
shown in Figure 3.35. According to these values, the number of vector-neurons for the
hidden layer is 12.

Figure 3.35 : Obtained SMAPE values as a function of neurons number in
the hidden layer for One Week Prediction ANN.

So far, we have described the proposed solution for designing the neural networks, i.e.
their configuration, the number of neurons at each layer. Another problem that stays in
the ANN design, consists in choosing its training periods and its training performance.
These two parameters are related to each other, meaning that more epochs will result
in a better performance usually. However, a better training performance (implying more
iterations) doesn’t mean a correct trained network (Figure 3.31). It is considered that
during training, the Mean Squared Error (MSE) between the output signal and the target
should be about 5% [MathWorks 12b]. So, we set the limits for MSE to be 0.05. Regarding
the number of epochs, we just made sure that they are sufficient to be able to achieve in
most of the cases the MSE value written above: 350↔ for One Day Prediction; while 150
for approximation with 150 + i · 250 for details, where i represents the level of the detail
signal ↔ for Week Prediction.

Another important parameter in ANN design is the decision of the training function
to be used.
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There are several training functions:

• Batch Gradient Descent (traingd): in this function the weights and biases are
updated in the direction of the negative gradient of the performance function.

• Batch Gradient Descent with Momentum (traingdm): momentum allows a
network to respond not only to the local gradient, but also to recent trends in the
error surface. Acting like a low-pass filter, momentum allows the network to ignore
small features in the error surface. Without momentum a network may get stuck in
a shallow local minimum. With a momentum a network can slide through such a
minimum.

• Backpropagation training with an adaptive learning rate (traingda): in
standard steepest descent, the learning rate is held constant throughout training.
The performance of the algorithm is very sensitive to the proper setting of the
learning rate. If the learning rate is too high, the algorithm may oscillate and
become unstable. If the learning rate is too small, the algorithm will take too long
to converge. The performance can be improved if we allow the learning rate to change
during training process. A near-optimal is obtained for the local terrain. When a
larger learning rate could result in stable learning, the learning rate is increased.
When the learning rate is too high to guarantee a decrease in error, it gets decreased
until stable learning resumes.

• Combination between Adaptive Learning Rate with Momentum training
(trainingdx): as its definition says, it will apply both the adaptive learning and
momentum.

After several tests, we saw that traingd gets blocked fast and was not able to a further
converging of training (it usually stopped at a MSE value of 0.74). Traingdm: even if it
says that it doesn’t get stocked in a local minimum, in our case we had several unsuccessful
simulations regarding this aspect (the ANN did stop at a performance value of 0.95 also,
and was not able to convergence further). Both traingda and traingdx managed to train
the network, but traingda was a little bit slower then traingdx (for example, after 900
iterations of training, traingda reached 0.573 performance value, while traingdx had an
MSE of 0.532). Thus, we used the adaptive learning rate with momentum training function
for our networks.

3.4.5 Genetic Algorithm optimization

One of the problems in ANN designing is that during under-training or over-training
the network with its usual training algorithm, its weights are not optimized, causing in
undesired prediction signal. This is why an optimization technique of its weights would
be required. We optimized our artificial neural networks using genetic algorithms (GA)
(Figure 3.19).

We applied the GA in order to find the optimal weights between the input and hidden
layer. The proposed designing of the Genetic Algorithm is as follows:

1. Each individual contained a set of weights for all the links between layers
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2. Each gene represented a single weight (real value)

3. We had a population size of 100 individuals, meaning 100 different possibilities at
each generation for the network

4. The number of generations was 100 ↔ less generations resulted in not finding an
acceptable solution for our problem, while more generations results in a longer time
processing. Anyway, above this value, we didn’t manage to observe better perfor-
mance of the final result

5. The fitness function represented the summation between the two training data sets,
calculated as follows:

[Fitness] = 1
[NrOfSamples/Day]

[NrOfSamples/Day]∑
i=1

(xtraining1
i − xoriginal1

i )

+ 1
[NrOfSamples/Day]

[NrOfSamples/Day]∑
i=1

(xtraining2
i − xoriginal2

i )

(3.21)

6. The crossover function was Scattered, which creates a random binary vector and se-
lects the genes where the vector is a 1 from the first parent, and where the vector is a 0
from the second parent, after, combines the genes to form the child [MathWorks 12a].
For example, if p1 and p2 are the parents

p1 = [a b c d e f g]; p2 = [1 2 3 4 5 6 7 8]

and the binary vector is [11001000], then the function returns the following child:

c = [a b 3 4 e 6 7 8]

The reason of choosing this crossover function is because the others would do 2 point
or single point crossover between parents, and while we had so many variables, there
was a great probability that the good weights would not be situated next to each
other, thus, the performance of the algorithm would decrease

7. The number of Elite Count was set to 2. It represents the individuals with better
fitness (i.e. a smaller error value) which pass to the next population. It would seem
wiser to set this number to a greater value, as we used 100 individuals, but, because
of many variables (genes), we let more parents to mutation and crossover

8. The mutation function was Gaussian, having as input 2 parameters: the Scale and
the Shrink. The Scale parameter determines the standard deviation at the first
generation. The Shrink parameter controls how the standard deviation shrinks as
generation go by using the recursive formula:

σk = σk−1(1− Shrink k
Generations)

where the standard deviation is:
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σ =
√

1
N

∑n
i=1(xi − µ)2

Both values are 1.

9. The crossover fraction was set to 0.75, 0.80, 0.85 as follows: we run the algorithm
3 times for each ANN, but the initial population for the second time, was actually
the final population obtained from the first rulation, and, consequently, the initial
population for the last time was the final population from the second time of applying
the GA. The reason of doing this, was because with each application the randomizing
values and vectors used for mutation and crossover are different, so, this implied a
larger domain of activity and searching for the genetic algorithm. Also, by using
the Gaussian function, at the end of the generations, the mutation values was 0, but
applying once again the algorithm, this value was restarted

10. Because the training and testing error were used for function optimization, we
changed the input data used, in order to have another week with unused sequences
in training for the final prediction and performance comparison

GA was applied only for the first model for day prediction described in subsec-
tion 3.4.4.1, i.e. for W67 and W504 databases. The reason is the great number of links
between the hidden and input layers for the second model of day prediction, resulting in a
high time-consuming operation. Also, in order to diminish the time needed for processing
and the number of variables needed (represented by genes), the hidden layer contained
just 2 neurons instead of 3. If applying the genetic algorithm to the second model day
prediction and one week prediction, then, according to the next equation:

[NrOfLinks] = [NrInputNeurons] · [NrHiddenNeurons] (3.22)

there are at least 42 ·3 = 126 and 6 ·10 = 60 links, implying the same number of variables,
resulting in a time-consuming issue. While for the first prediction method (WiMAX
traffic), there are 6 · 2 = 12 links for 24 hours shifting.

For theW67 database we have 8 weeks of time-series. The first model for day prediction
uses 1 day from each week. In order to use the GA algorithm, we need 2 different time-
series for training. For the calculation of the first part in the fitness function, at the input
of the ANN the samples from wavelet transform of the weeks 1st till 5th were used. As a
target, the wavelet transform of the day from week number 6 was used. The second part
of the fitness function, was calculated by applying to the network’s inputs the time-series
from the second training signal: wavelet decomposition of the days starting with 2nd till
6th week as input, and the wavelet decomposition for the day from the 7th week. So,
during one generation of a given individual, supposing 10 links between first 2 layers, we
perform the following steps (Figure 3.36):

• Take those 10 genes of the individual and apply as weights to the network;

• Input data from weeks 1st till 5th, compare the output with the day from the 6th
week, retain the first part of the fitness function;
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• During the same generation, using the same weights, input data from weeks 2nd till
6th, compare the output with the day from the 7th week, retain the second part of
the fitness function;

• Compute the final value for the fitness function;

• Apply mutation and crossover to these weights (genes), use their new values (chil-
dren) in next generation.

Figure 3.36 : Applying Genetic Algorithm on Neural Networks in case of
W67 database. The signals from the last week will be used for testing.
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Note: the input time-series was normalized to have values in the interval [−1,+1].
Regarding the values from those two links between the hidden and output layer, we

let them the same as obtained from the net initializing.
The question is why to complicate? Using this GA method for training, ensures us

better approximation of the signals. It is like training the same network with two different
sets of data, kind of double-training, which cannot be accomplished by using the usual
Neural Network training.

A comparison between training an ANN using GA method with the usual training
of the ANN, is shown in Figure 3.37. It can be observed, that in the case of the GA
algorithm, it approximates both signals, because we were able to apply both of them
in training process. While with the usual training of the ANN, it approximates just one
target signal. Another aspect is that after each startup, the usual ANN training initialized
its weights differently, while at the end, the GA algorithm was able to learn better the
characteristics of the signal.

Figure 3.37 : GA Training ((a) and (b)) vs usual ANN Training ((c) and
(d)) (for the approximation signals chosen from a random Base Station).
The blue signals are the original ones, the red and green signals represent
the output of the network after training.

The testing process, shown in Figure 3.38, uses as input data starting from the 3rd
until the 7th weeks. The signal predicted is one taken from the last week of our data.

The using of GA optimization for the W504 data set, is almost similar to the one
described above. Anyway, some aspects should be pointed out. Two data sets are needed:
2 for training and 1 in forecasting. Because there were only 5 days, the methodology of
distributing the information is as follows (Figure 3.39):

• Take the wavelet decomposition from the time-series of days 1 and 2 as ANN inputs,
3rd day’s series use as a target, compute the first part of the fitness function

• Take the wavelet decomposition from the time-series of days 2 and 3 as ANN inputs,
4th day’s series use as a target, compute the second part of the fitness function
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Figure 3.38 : Prediction of the signal using optimized Artificial Neural
Networks for the W67 database.

• After training, use the wavelet decomposition from days 3 and 4, predict the last
day (Figure 3.40)

In this case, the minimum number of links between the input and hidden layers were 4
(for 24 hours shifting during neuron decomposition). According to the previous use of GA
with the first data set, it results that we had 4 genes which encoded the weights from these
links, the 2 weights between the hidden and output layer were let by default during ANN
initializing. But, because in this case we had only 4 genes, the 2 weights from the next
layer were of a much greater importance. This is the reason why we encoded them also.
Finally, 6 genes instead of 4 were used, which encoded all ANN’s weights (this example
refers to 24 hours shifting, for 12 hours shifting we would have had 6 + 2 = 8 genes, and
so on).

3.5 EVALUATION OF THE PREDICTION MODEL

The current section is the evaluation of the prediction model (last step from block diagram
in Figure 3.19). We reconstruct our signal from the predicted SWT signals and compare
it to the original one in order to answer the questions from Section 3.1. We compare
our model with other forecasting techniques on different types of time-series in order to
analyse the problem (i1 ) (Sections 3.5.3.2 and 3.5.4). Different parameters are changed to
meet the requirements of the problem (i2 ) concerned about the change of the settings of
the forecasting model (Section 3.5.3). And, a retraining of the ANNs with the incoming
time-series is presented in order study the last problem (i3 ), regarding the effectiveness
of the model when the time-series changes its characteristics (Sections 3.5.3 and 3.5.4).
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Figure 3.39 : Applying Genetic Algorithm on Neural Networks for the
W504 database (24 hours shifting).

3.5.1 Additional forecasting models

In our analysis we made comparisons with other forecasting models and to see the per-
formance of different wavelet families in signal decomposition. The following forecasting
models were used for this purpose:
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Figure 3.40 : Prediction of the signal using optimized Artificial Neural
Networks for the W504 database (24 hours shifting).

• Linear Regression (LR): a statistical tool for modelling where the output is a linear
combination of inputs:

y = β0 +
∑n
i=1 βixi

where y represents the output data, β is the weight vector, β0 is called bias of the
model, and x represents the input data (x0 = 1 for bias). The parameters of the
linear regression model are usually estimated using the least-squares method.

• Random Walk (RW): it is the simplest model from time-series models and it is
characterized by the fact that the changes in the time-series follow a random direction
that is unpredictable:

y(t) = y(t− 1) + α

i.e. the prediction of next values equal the previous values plus the average change
one period to the next, α. This model assumes that, from one period to the next,
the original time-series takes a random step away from its last recorded position.

• ARIMA: which is based on Box-Jenkins Methodology [Box 70], used to build the
time-series model in a sequence of steps which are repeated until the optimum model
is achieved.

3.5.2 Measuring the accuracy

The following widely used statistical measures for error that are used to identify a method
or the optimum value of the parameter within a method were computed:
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• Mean Absolute Error (MAE) value is the average absolute error value, closer this
value is to zero, the better the forecast is:

MAE = 1
T

T∑
t=1
|Ft −Xt| (3.23)

where Ft is the prediction and Xt is the true value

• Mean Square Error (MSE) with Root MSE (RMSE) and its normalized function
(NMSE) is a measure of the absolute error, as the prediction accuracy increases, the
MSE becomes smaller. If NMSE> 1, it means that the prediction performance is
worse than that of the trivial predictor:

RMSE =
√
MSE =

√√√√∑T
t=1(Xt − Ft)2∑T
t=1(Xt −Xt)2

(3.24)

• R-Square (RSQ): is the coefficient of determination R2, in statistics, is the pro-
portion of variability in a data set that is accounted for by a statistical model. In
this definition, the term variability is defined as the sum of squares. A version of its
calculation is:

R2 = SSR
SST

(3.25)

where
SST =

∑
t

(Xt −Xt)2; SSR =
∑
t

(Ft − Ft)2 (3.26)

in which Xt, Ft are the original data values and modelled values (predicted) respec-
tively, while Xt and Ft are the means of the observed data and modelled (predicted)
values, respectively. SST is the total sum of squares, SSR is the regression sum of
squares. In ideal case RSQ = 1.

• Mean Absolute Percent Error (MAPE): calculates the mean absolute error in
percent between the real and forecasted signals:

MAPE = 1
T

T∑
t=1

∣∣∣∣Xt − Ft
Xt

∣∣∣∣× 100% (3.27)

• Symmetric Mean Absolute Error (SMAPE): calculates the symmetric absolute
error in percent between the actual X and the forecast F across all observations t
of the test set of size T :

SMAPE = 1
T

T∑
t=1

|Xt − Ft|
(Xt + Ft)/2

(3.28)
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3.5.3 WiMAX traffic (W67 and W504 databases)

3.5.3.1 One Day Prediction

For the One Day Prediction model we analysed the issue (i2 ) defined in Section 3.1, i.e.
finding better parameters for a better prediction result.

We could select the following parameters: the BS number (from 67 or 504 possible),
the number of sample per day (16, 32, or 96), the number of hours shifted (4, 8, 12, or
24), the day of the week (from Monday till Sunday), and between applying or not the
GA optimization. Previously, the configuration of the ANN was analysed also (Subsec-
tions 3.4.4 and 3.4.5). We compared the performances of the model 1 and model 2 for day
forecasting, and the performance of the ANN optimization using GA. After combining the
above possibilities and eliminating the erroneous data, we considered 8, 232 final number
of simulations. The results are presented in Tables 3.3 and 3.4.

Table 3.3 : Medium RSQ and SMAPE, Day Prediction.
Model Hours shifted Measured value 96 samples 32 samples 16 samples

Similar Days

4 hours RSQ 1.212 1.249 1.317
SMAPE 0.905 0.927 0.802

8 hours RSQ 1.159 1.120 1.205
SMAPE 0.886 0.858 0.756

12 hours RSQ 1.330 1.219 1.287
SMAPE 0.904 0.924 0.814

24 hours RSQ 1.178 1.201 1.263
SMAPE 0.910 0.946 0.780

All Days

4 hours RSQ 0.715 0.739 0.711
SMAPE 0.868 0.843 0.732

8 hours RSQ 0.820 0.782 0.792
SMAPE 0.861 0.849 0.720

12 hours RSQ 0.634 0.767 0.690
SMAPE 0.866 0.857 0.738

24 hours RSQ 0.741 0.781 0.703
SMAPE 0.869 0.876 0.752

By comparing the results from these tables, we can see that applying second model for
day prediction (all days selection), gave us better results with about 2−6% in comparison
with the first forecasting model (Similar Days Selection). Regarding the use of the genetic
optimization for ANN, we can see that the results for SMAPE are worse with about 10%
compared to those obtained using ordinary ANN training, But the RSQ values are closer
to the ideal 1 when we applied the genetic optimization.

Speaking about the number of samples per day, the best result was obtained when
using 16[Samples/Day]. But in this case, the forecasting technique was not able to predict
the sudden increasing and the peaks of our WiMAX traffic. This was because of the way
the 16 samples per day were obtained: by making a medium value from other 6 consecutive
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Table 3.4 : Medium RSQ and SMAPE, Similar Days Selection Model,
using Genetic Algorithms optimization.
Hours shifted Measured value 96 samples 32 samples 16 samples

4 hours RSQ 1.127 1.200 1.176
SMAPE 1.001 0.913 0.867

8 hours RSQ 1.108 1.129 1.099
SMAPE 0.983 0.924 0.820

12 hours RSQ 1.211 1.155 1.168
SMAPE 1.008 0.951 0.851

24 hours RSQ 1.087 1.189 1.215
SMAPE 1.067 0.950 0.872

original samples. Regarding this aspect, 96 samples per day were better to be used instead.
In both cases, the optimal number of shifted hours is 8.

3.5.3.2 Week Prediction

Using Week Prediction we analyse the issues (i1 ) – concerned about a model to be used
for different time-series characteristics; (i2 ) – finding better parameters of the model;
(i3 ) – answering if the upgrading of the model with the latest information improves its
performance.

The problem (i1 ) was studied using 2 time-series from different domains: WiMAX
network traffic and EUR/USD currency exchange. A comparison of the proposed model
using neural networks and existing models (i.e. linear regression, random walk, ARIMA)
was performed. For the problem (i2 ) the following parameters have been changed: the
number of samples per day, the number of shifted days for the ANN input, the type of
wavelet. The configuration of the ANN was analysed earlier (Subsection 3.4.4.3). In order
to answer the last question (i3 ), we used for the proposed model different input series.
Thus, the first method using ANNs, i.e. ANN No Sliding: we train the networks once for
each decomposition level, as described in subsections 3.4.3.3 and 3.4.4.3. For inputs, we
have the first (n− 2k) weeks, where n is the total number of weeks, and k is the number
of weeks we want to forecast (i.e. 1 in this case). The target consists of the data taken
from the weeks (n− 2k+ 1) to (n− k). The data used for ANN’s input during the testing
phase is the information from the weeks (k+ 1) to (n−k). The output signal is compared
to the real data of the last k weeks. The next method, ANN Known Sliding, uses sliding,
retraining the network with the real information. The entire signal is divided into smaller
parts. Each of these sequences will predict a small part of the final forecasted signal. The
information for networks’ retraining is always taken from the real data. The last method,
ANN UnKnown Sliding, proposes a forecasting using sliding with unknown data. The
only difference consists in the fact that the information used for the next simulation and
retraining is taken not from the original signal, but from the previously predicted one.

We had 1, 449 simulations by changing the BS number from the W67 database, the
number of samples per day, the number of shifted days, and after eliminating the erroneous
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data. The results for RSQ and SMAPE are presented in Tables 3.5 and 3.6.

Table 3.5 : Medium RSQ and SMAPE by comparing the number of shifted
days in one week No Sliding prediction model for the W67 database.

Samp/Day Shifted Days 1 2 3 4 5 6 7

96 RSQ 1.243 1.195 1.659 1.281 1.308 1.077 1.252
SMAPE 0.895 1.036 1.057 1.247 1.081 0.819 0.894

32 RSQ 1.318 1.276 1.415 1.392 1.401 1.106 1.380
SMAPE 0.992 1.000 0.989 1.129 1.001 0.857 0.896

16 RSQ 1.663 1.397 1.891 1.805 1.742 1.215 1.712
SMAPE 0.840 1.012 0.961 1.093 1.036 0.845 0.793

Table 3.6 : Comparison between the three models based on ANN.
ANN Type RSQ SMAPE MAPE RMSE MAE

No Sliding 1.137 0.946 48,728 1.430 0.602
Known Sliding 0.960 1.006 25,218 1.399 0.573

UnKnown Sliding 0.845 1.052 33,783 1.738 0.648

From the results we can notice that the best performance is obtained using one or
six days shifting. Also, the best solutions for forecasting were obtained using 2 or 6 days
shifting with 16[Samples/Day]. Anyway, as in the one day prediction model, using 16
samples do not give the peaks of the signals which could results in system failures in case
of a very high users’ demand.

Regarding the WT, we propose various types of mother wavelets such as Daubechies
(db), Coiflet (coif), Symlet (sym), Biorthogonal (bior), and Reverse Biorthogonal (rbio).
In Table 3.7 we present the results. MAE, MSE, RSQ, SMAPE, and RMSE are the
average value for all 67 Base Stations for 2 weeks forecasting from ANN and RW prediction.
While SMAPE L, MAPE L, and MAE L are the average value corresponding to the
ANN, RW, LR, and ARIMA obtained from the mean of the original signal and the mean of
the forecasted signal, because ARIMA and LR cannot be used to obtain forecasts for every
moment of time as ANN and RW do. For linear models the trajectory of the forecasts is
represented through a sloping line which represents the weekly increase.

According to the results, the wavelet of Haar (db1), which is the simplest of the
Daubechies family and rbio1.1 give the best prediction performance. The results also
indicate that with the increase of the filters’ length (support of the mother wavelets), the
performance of the wavelet transform deteriorates.

A comparison between all the mentioned forecasting models is presented in Table 3.8.
The db1 mother wavelet was used. The results prove that ANN performs better than
other prediction techniques. The linear regression model gives good forecasting results
also.
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Table 3.7 : Comparison between wavelets in week prediction, W67 WiMAX
traffic database.

Wavelet RSQ SMAPE MAPE MSE RMSE MAE SMAPEL MAPEL MAEL

coif 1 1.4450 1.0900 0.2113 11.720 2.8000 1.0304 0.8900 0.0020 0.9599
coif 2 1.4930 1.2200 0.2285 12.950 2.8300 0.8748 0.8370 0.0019 0.7191
db 1 1.1680 1.0800 0.2367 8.0600 2.4300 0.7685 0.8120 0.0016 0.7327
db 2 1.3640 1.1500 0.2451 10.520 2.6900 0.8408 0.8550 0.0019 0.7768
db 3 1.3580 1.1200 0.2117 9.7600 2.6400 0.8193 0.8570 0.0018 0.7678
db 4 1.490 1.1100 0.2159 10.610 2.5800 0.7985 0.8340 0.0018 0.7563
db 5 1.4350 1.1100 0.2190 12.560 2.7500 0.8339 0.8230 0.0019 0.7730

bior 3.1 0.6950 1.1300 0.3152 9.8600 2.5200 0.8402 0.860 0.0018 0.7071
rbio 1.1 1.2000 1.0800 0.2215 10.000 2.6100 0.7948 0.8200 0.0017 0.8947
rbio 2.2 1.4820 1.1900 0.3202 10.290 2.7100 0.8747 0.8910 0.0018 0.7690
rbio 3.3 1.9520 1.2100 0.2623 10.330 2.8800 0.9509 0.9070 0.0022 1.0690
sym 2 1.3650 1.2600 0.2146 13.200 2.8900 0.8854 0.8950 0.0019 0.7412

Table 3.8 : Comparison between the forecasting techniques for 2 weeks pre-
diction, W67 WiMAX traffic database.

Forecasting Model SMAPE L MAPE L MAE L

ANN No Sliding 0.472 0.0011 0.4428
ANN Known Sliding 0.509 0.0009 0.4241

ANN UnKnown Sliding 0.722 0.0017 0.6681
ARIMA 0.772 0.0027 0.9990

Linear Regression 0.523 0.0031 0.3868
Random Walk with Wavelets 4.440 0.0030 1.3633

3.5.4 EUR/USD currency exchange (EUV ol and EURate databases)

For EUR/USD currency pair 2 weeks ahead forecasting was performed. The wavelets’
results for the volume data are shown in Table 3.9. The best forecasting performance is
obtained using the mother wavelets coif2 and sym2.

The comparison between the models is shown in Table 3.10. Coif2 mother wavelet was
used. Best results are obtained with ANN and LR. However, we should apply LR model
for long time interval prediction if we are interested in the tendency of the signal, and not
in possible peaks.

The wavelets’ results for the EUR/USD exchange rate data are shown in Table 3.11.
According to the results, no preferable wavelet transform was found for this data set.

The comparison between the models is shown in Table 3.12. Db1 mother wavelet was
used. The smallest error value have been obtained using neural networks (No Sliding).
Its performance is much higher for this data set than the results using other forecasting
techniques. In comparison to the previous data sets, the LR model cannot be used for
long time interval forecasting in this case.

Concluding, we can observe that the proposed model using ANN outperforms other
forecasting ones for different time-series characteristics (i1 ). The better performance after
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Table 3.9 : Comparison between wavelets in week prediction, EUV ol
database.

Wavelet RSQ SMAPE MAPE MSE RMSE MAE SMAPEL MAPEL MAEL

coif 1 0.6880 0.5560 0.1152 1.6270 1.2200 0.3586 0.5160 0.0821 0.4240
coif 2 0.4550 0.5220 0.0793 1.089 1.0380 0.2967 0.4530 0.0732 0.3799
db 1 0.6250 0.5200 0.0839 1.3560 1.1260 0.3175 0.4540 0.0713 0.3690
db 2 0.7150 0.5780 0.1088 1.6100 1.2190 0.3550 0.4970 0.0812 0.4199
db 3 0.5860 0.5850 0.1156 1.4990 1.1880 0.3618 0.5310 0.0864 0.4461
db 4 0.871 0.6000 0.1114 1.6040 1.2390 0.3745 0.5270 0.0863 0.4459
db 5 0.808 0.587 0.1121 1.5570 1.2250 0.3700 0.54600 0.0912 0.4710

bior 3.1 0.6280 0.5340 0.1137 1.5520 1.1730 0.3390 0.4330 0.0712 0.3681
rbio 1.1 0.6150 0.5190 0.0958 1.2860 1.0960 0.3208 0.4570 0.0716 0.3704
rbio 2.2 0.5410 0.5550 0.1087 1.4400 1.1490 0.3406 0.4910 0.0790 0.4081
rbio 3.3 0.7720 0.5950 0.0993 1.4180 1.1670 0.3480 0.4550 0.0716 0.3705
sym 2 0.4760 0.4990 0.0890 1.1170 1.0370 0.2962 0.4530 0.0736 0.3813

Table 3.10 : Comparison between the forecasting techniques for 2 weeks
prediction, EUV ol database.

Forecasting Model SMAPE L MAPE L MAE L

ANN No Sliding 0.1690 0.0200 0.1079
ANN Known Sliding 0.1530 0.0178 0.9570

ANN UnKnown Sliding 0.2670 0.0344 0.1812
ARIMA 1.1350 0.3245 1.7054

Linear Regression 0.1910 0.0243 0.1109
Random Walk with Wavelets 0.9400 0.2670 1.4173

Table 3.11 : Comparison between wavelets in week prediction, EURate
database.

Wavelet RSQ SMAPE MAPE MSE RMSE MAE SMAPEL MAPEL MAEL

coif 1 1.4612 0.0087 0.6698 11.733 3.2000 0.0087 0.2745 0.3149 0.4105
coif 2 2.4350 0.0089 0.6876 10.296 3.0502 0.0090 0.2739 0.3135 0.4088
db 1 0.5011 0.0093 0.7199 11.078 3.1762 0.0094 0.2675 0.3025 0.3945
db 2 0.9468 0.0112 0.8723 12.636 3.4910 0.0114 0.2772 0.3179 0.4145
db 3 1.7864 0.0071 0.5491 8.3235 2.6839 0.0072 0.2725 0.3123 0.4073
db 4 3.9849 0.0069 0.5308 10.6729 2.9384 0.0070 0.2726 0.3128 0.4079
db 5 3.3660 0.0068 0.5255 10.6936 2.8954 0.0069 0.2731 0.3137 0.4090

bior 3.1 2.4196 0.0085 0.6609 11.4006 3.2603 0.0086 0.2727 0.3119 0.4066
rbio 1.1 0.5584 0.0103 0.7971 11.3382 3.2730 0.0104 0.2681 0.3030 0.3951
rbio 2.2 0.8704 0.0080 0.6172 10.6246 3.0167 0.0080 0.2722 0.3112 0.4058
rbio 3.3 0.7793 0.0087 0.6723 10.6935 3.0813 0.0088 0.2652 0.2991 0.3897
sym 2 0.9531 0.0089 0.6893 11.0653 3.1447 0.0090 0.2758 0.3168 0.4131

parameters’ selection was obtained using db1 wavelet with a 2 or 6 days shifting of the
time-series for the ANN inputs with 16 samples per day in case of WiMAX time-series.
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Table 3.12 : Comparison between the forecasting techniques for 2 weeks
prediction, EURate database.

Forecasting Model SMAPE L MAPE L MAE L

ANN No Sliding 0.00524 0.40321 0.00536
ANN Known Sliding 0.01244 0.95650 0.01258

ANN UnKnown Sliding 0.00957 0.72781 0.00965
ARIMA 0.02159 1.63279 0.02163

Linear Regression 1.17423 56.4945 0.74656
Random Walk with Wavelets 0.08567 6.17345 0.08111

For the EUR/USD time-series better prediction performance was obtained using coif2
and sym2 wavelets. Regarding the third problem (i3 ) we have shown that a constant
upgrading and retraining of the model improves its performance when a change of time-
series characteristics is observed for WiMAX and EUVol , as we have obtained a higher
prediction accuracy with ANN Known Sliding modification. In case of EURate time-
series this type of upgrading diminished the performance, where the ANN No Sliding
modification performed better than ANN Known Sliding.

3.6 CONLCUSIONS

The searching for models used in forecasting the future evolution of a time-series has
gained large interest lately. In this chapter we proposed a time-series forecasting model
in order to answer the following questions: finding a model that could be used in a time-
series forecasting for different series characteristics (i1 ); the selection of parameters of the
proposed approach and their influence on the final prediction performance (i2 ); and the
influence of the constant upgrading with the latest available information and retraining
the model on the forecasting (i3).

The proposed forecasting model was built by using neural networks, wavelet trans-
form, and genetic algorithms (in order to optimize the neural network training). In order
to answer the question (i1) two types of data were used from different domains: WiMAX
traffic and EUR/USD currency exchange. A comparison between our approach, ARIMA,
Linear Regression, Random Walk was done. The prediction performance was calculated
using the following performance errors: SMAPE, RSQ, MAPE, RMSE, MAE. For
both data-types our results have shown that the proposed model outperforms other ex-
isting algorithms in forecasting. However, if we are interested in the tendency of the
analysed data, then ARIMA and Linear Regression models are the one to be taken into
consideration.

For the second question (i2) the following parameters were changed and verified: the
type of wavelet function, the time-shifting of the data used for the inputs of the neural
networks, the predicted time-interval, the type of the ANN training (using or not the
optimization with genetic algorithms). Best results were obtained using the simplest Haar
mother wavelet (i.e. db1 ), especially those wavelets with good time-frequency localization
which have a reduced number of vanishing moments, such as rbio1.1 or db3. For the
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input time-shifting interval best results were obtained using 8-hours shifting in case of day
prediction (for WiMAX data), with an increased performance of 1%−3% . In case of week
prediction, better results are obtained using 1, 2 and 6 days shifting, with an increased
performance of 5%−15%. The genetic algorithms were used to find out the optimal values
for ANN’s weights. This optimization increased the SMAPE error with 2% − 7%, but
decreased the RSQ error, setting it closer to the ideal value of 1.

In case of the third question i3, we have compared the prediction performance of our
approach when we retrain the algorithm with newest available information. In case of
WiMAX and EUR/USD volume databases, the best performance was obtained using this
approach, however in case of SMAPE andMAE calculation, the results were comparable
with those from using Linear Regression model. In case of EUR/USD exchange rate the
best results were obtained when not using the retraining process, and the Linear Regression
model was the worst performer from all tested algorithms.
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4 Conclusions and
Perspectives

In our work we propose forecasting models for 2 types of sequential data that consider the
temporal interdependencies of its items: rules/patterns from a sequential database, and
time-series.

For sequential rules selection we introduced the Closeness Preference measure. Its goal
is to advantage those rules whose antecedent and consequent are as close as possible. A
weighting function is used that has as parameters the time-distance between the itemsets,
the slope s and a maximum allowed time-window ωt, where s and ωt are set by the user
according to his preferences. The measure satisfies the 2nd and 3rd properties of Piatetsky-
Shapiro, showing its quality factors of coverage. It has been tested on a web log database
having as a goal to predict the future user’s request after analysing previous ones. The
following parameters were set for CP : time-window ωt = {360, 420} seconds, and the
slope s = {1.05, 1.25}. The threshold value varied from 0.4 to 1.0 containing a value θ∗
corresponding to a recommended threshold value. The results have shown that using CP
measure we are able to select those rules which give high Accuracy, Precision, Recall and
F1-Score in a forecasting process (up to 0.89). We compared the prediction performance
of the extracted simple rules (i.e. the rules of the form Vi → Vn) with complex rules (i.e.
the rules of the form V1V2...Vn−1 → Vn). Using simple rules a higher Accuracy, Precision
and F1-Score (but a lower Recall) was obtained, proving an existence of a simple and
accurate predictive model.

For sequential patterns mining, 2 Modified CP measures were introduced, that also
advantage the time-closeness between the itemsets of a pattern. These measures are used in
the pre-processing step of the Generalized Sequential Pattern extraction algorithm instead
of Support measure. The first measure based on Support and Confidence, i.e. MCPsc, does
not satisfy the a-priori principle in comparison to the second one, i.e. MCPs func, that
contains another weighting function in its computation. A comparison of the extracted
patterns after applying these 2 measures and Support is presented on a web log database in
order to see the differences of extracted patterns. The results show a number of common
patterns between the 2 measures and Support of around 70%−85% from the total number
of compared patterns. Higher similarity with Support is experienced by MCPs func. This
is explained by its anti-monotone property, setting it "closer" to Support. In comparison
to Support, the MCPsc and MCPs func measures advantage shorter patterns. This is due
to the fact that these patterns have higher probability of having shorter time-intervals
between the itemsets in comparison to longer ones. The extracted patterns using the
proposed measures could be used to forecast the short time-range events. For example, in
case of market basket data if one buys the item A followed by an item B during a time-
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interval ωt, the manager might find a beginning of a time-closeness pattern A→ B → C.
In this case it will be supposed that the buyer will come after the item C within a time-
window ωt. However, if the item B is bought within an interval much further than ωt,
then the mentioned pattern will no longer be applied.

For the time-series analysis, we proposed a forecasting model in order to study and
answer the following issues: finding a model that could be used in forecasting of the time-
series with different characteristics (i1 ); to obtain a better forecasting performance after
the change of model’s parameters (i2 ); to see if the constant upgrading of the model with
the latest information from a changing time-series characteristics improves its prediction
accuracy. The proposed model was built using Artificial Neural Networks, Stationary
Wavelet Transform, and Genetic Algorithms. As databases for analysis we used WiMAX
network traffic (day and week forecasting), and EUR/USD currency exchange volume and
rate (week forecasting). In order to test our model by analysing the first problem (i1 )
comparisons with Linear Regression, Random Walk, and ARIMA models were performed.
The prediction performance was evaluated using SMAPE, RSQ, MAPE, RMSE, and
MAE errors. In case of WiMAX traffic a performance higher between 5% − 35% was
obtained by the proposed model. For the EUV ol time-series a performance around 15%
higher was seen by our model, and a much higher performance for the EURate series. For
both types of data we have shown that the proposed model outperforms the existing ones.
The second problem (i2 ) was studied changing the following parameters: the number of
the base station, the types of days for analysis (first or second model for day forecasting),
the number of samples per day, the number of hours shifted (in case of day prediction) or
days shifted (in case of week selection), the wavelet transform used, and between applying
or not the GA optimization (for day prediction). We have performed day prediction for
WiMAX series and week prediction for WiMAX and EUR/USD series. The presented
results were obtained after computing a medium value from of the prediction from all base
stations. In case of day forecasting, best performance was obtained using 8 hours shifting
with 16 samples per day. Between the first and the second model for day prediction, the
second one gave a better result with about 2% − 6%. The GA optimization did not give
a better value for SMAPE (worse with 2− 7%), but a better value for RSQ (with about
5%). In case of week forecasting, best results were obtained using 1, 2 and 6 days shifting,
with the Haar wavelet in case of WiMAX, and coif2 and sym2 in case of EUR/USD.
Summing up the above results, we say that a better performance is obtained using the
second model for day prediction, genetically optimized neural networks; 16 samples per
day (resulting in 3 levels wavelet transform); 8 hours shifting for day prediction and 1,
2 or 6 days shifting for week prediction; with Haar, coif2 or sym2 wavelets. Another
aspect is that we need different configurations for different time-series characteristics in
order to obtain a better prediction performance. For the question (i3 ) the prediction
performance of the proposed model was compared when we did and didn’t retrain the
model with new available series. For WiMAX and EUVol databases the results have
shown an improvement after retraining. For WiMAX traffic an increase of MAE and
MAPE with 4% was observed, but a decreasing in SMAPE with 7%. For EUV ol time-
series it was SMAPE and MAPE which gave better results (10%), a worse value for
MAE (more than 10%). For EURate time-series the retraining process didn’t prove itself
to be a good solution. All the performance parameters worsened twice.

Despite of the above results, it should be kept in mind that different settings and
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configurations of the proposed models must be tested in case of the different sequential
databases and time-series characteristics.

As perspectives, one of our current work in progress consists in adapting the proposed
interestingness measures for extraction of sequential patterns for time-series analysis and
forecasting and to compare them with the proposed ANN model. Another goal consists in
verifying the prediction performance for a short-range forecasting using the MCPsc and
MCPs func measures. A way of selecting the time-window parameters ωt and the slope
of the function s to the user should be given according to different types of sequential
databases and time-series.
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Contributions

In this chapter we present the main contributions of the current thesis. As we have stated
we propose forecasting models for 2 types of sequential data that consider the temporal
interdependencies of its items: rules/patterns from a sequential database, and time-series.

For sequential database analysis our main contributions are as follows:

• We proposed a post-processing interestingness measure called Closeness Preference
which advantages those rules whose antecedent and consequent are as close as pos-
sible. It uses a weighting function having as input parameters the time-distance
between the itemsets, a maximum time-window ωt, and a slope s.

• We proposed 2 pre-processing interestingness measures for patterns extraction which
also advantage the patterns with close itemsets. The first measure, MCPsc, is based
on Support and Confidence and does not satisfy the a-priori principle. The second
one, MCPs func, does satisfy this principle, having another weighting function in its
computation.

• We analysed the proposed measures from different points of view (i.e. the Piatetsky-
Shapiro properties for the CP measure, the existence or not of the anti-monotone
principle for MCPsc and MCPs func).

• We tested our measures on a toy example and ClickStream database and have shown
their performance in a prediction process of using the selected rules and the differ-
ences in the extraction process of the patterns. Comparisons with Support, Confi-
dence, and Lift measures was performed. Comparison with results from other papers
is presented in the case of the CP measure.

For the time-series analysis, we have the following main contributions:

• We proposed a model that could be used in forecasting of the time-series with differ-
ent characteristics. The model uses Artificial Neural Networks, Stationary Wavelet
Transform, and Genetic Algorithms. Experiments on a WiMAX traffic and EU-
R/USD currency exchange databases shows better prediction performance in com-
parison to the compared models.

• We showed how to obtain better forecasting performance after changing of model’s
parameters depending on predicted time-interval, samples per day, number of hours
or days shifted at the inputs of the ANN, the wavelet transform used, applying or
not the GA optimization, and on the database.
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• We presented that the prediction performance does not always improve after a con-
stant upgrading of the model with the latest information from a time-series.

Concluding, the contributions of the current thesis consist of building efficient predic-
tion models for different types of databases. This work could be used in different areas of
activities requiring forecasting, such as telecommunications, marketing, finance. It could
be used later to combine the proposed models from different domains in order to obtain a
better prediction performance.
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PREFACE

In the annexes chapter we analyse the existing algorithms for sequential patterns ex-
traction. We classify them according to their goal, their relations, and their differences
regarding complexity and mining speed.

B CLASSIFICATION OF SEQUENTIAL PATTERN MINING ALGO-
RITHMS

Many previous studies contributed to finding different algorithms for mining the sequential
data. Zhao and Bhowmick [Zhao 03] categorize the patterns that could be obtained from
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different types of time-series data into four categories:

• Trend analysis: finds the evolution patterns of attributes over time;

• Similarity search: finds sequences that differ only slightly;

• Sequential patterns: finds the relationships between occurrences of sequential events,
in order to see if there is any specific order of the occurrences;

• Periodical patterns: recurring patterns in the time series databases, periodicity can
be daily, weekly, monthly, seasonal or yearly.

What we are looking for is the classification of the algorithms according to their final
goal. In this way we could define three important categories and tasks of the algorithms
used for sequential data mining.

B.1 First category

The methods from the first category are used in the classification of sequences: Leslie
et.al. [Leslie 04], propose an extended k-mer based kernel framework for use with SVMs
for classification of protein sequence data. These kernels (restricted gappy kernels, sub-
stitution kernels, and wildcard kernels) are based on feature spaces indexed by k-length
subsequences, and use biologically-inspired models of inexact matching. An evaluation
of K-nearest neighbor, Markov models (simple Markov chains of various orders, sequence
classifiers derived from Interpolated Markov Models, Selective Markov Models, SVM) are
presented in [Deshpande 02].

The formal feature selection method based on the Gamma (or near-neighbor) test is
developed by Chuzanova et al. [Chuzanova 98]. The process of finding the best subset
of the features is speeded up by using genetic algorithms and a kd-tree technique for the
construction of the nearest-neighbor lists. Graves et al. proposes an AI approach using
Recurrent Neural Networks for phonetic labeling on the TIMIT speech corpus [Graves 06].

B.2 Second category

The second category finds periodic frequent patterns in a database. In the case when we
have a very long itemset (i.e. DNA sequence), then different comppressed indexes methods
are applied, such as BWT (Burrows−Wheeler Transform), CSA(Compressed Suffix Array),
FM-index [Lam 08], in order to speed up the process of finding the local alignments of
another (much shorter) itemset.

However, if our database consists of time sequences, then we do not need a compression
for the itemset, what we need is a compression of the entire database, taking into account
only the elements appearing more frequently. Bettini et al. [Bettini 98a], [Bettini 98b],
propose a strategy for finding the solution of event−mining problems, which relies on
the many optimization opportunities provided by the temporal constraints of the event
structures. They use a timed automata with granularities (TAGs) (for testing whether
a specific temporal pattern, appears frequently in a time sequence), and heuristics (aim
at reducing the number of candidate eventy types and reducing the time spent by the
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TAGs testing whether a candidate sype does appear frequently in the sequence), which
has been proven to be more performant then GSP (Generalized Sequential Pattern). These
optimizations consist in identifying the possible inconsistencies in the given event structure
before starting the process, and reducing the length of the sequence.

Pai et al. [Pei 04] explore a pattern-growth approach: sequence databases are recur-
sively projected into a set of smaller databases based on the current sequential patterns,
and sequential patterns are grown in each projected database by exploring only locally
frequent fragments. The following methods were proposed based on this ideas:

• FreeSpan (Frequent pattern−projected Sequential pattern mining), which reduces
the efforts of candidate subsequence generation;

• PrefixSpan (Prefix−projected Sequential pattern mining), which offers ordered
growth and reduced projected databases;

• Pseudo−projection technique was developed in PrefixSpan to further improve the
performance.

Raissi et al. [Raïssi 07] propose a Frequent itemsets mining on data streams (FIDS)
algorithm. The advantage of the algorithm is that the users can issue requests for frequent
itemsets over an arbtirary time interval at any time. In [Tanbeer 09] a tree−based struc-
ture is used, called Periodic−frequent pattern tree (PF-tree), that captures the database
contents in a highly compact manner, and enables a pattern growth mining technique to
generate the complete set of periodic-frequent patterns in database for user−given peri-
odicity and support thresholds. However, a newer method based on the same principles,
but with fewer modifications, are depicted by Amphawan et al. [Amphawan 10]. The
main difference is that in this case the authors do not use the exact periodicity as in
[Tanbeer 09], but an approximate periodicity.

A problem with the frequent patterns findings, is that the user should provide a sup-
port threshold which is very difficult to identify withoud knowledge about the dataset in
advance. This is where the mining top−k frequent patterns are used, where the users con-
trol the number of pattern to be discovered for analyzing [Minh 06]. Minh et al. [Minh 06]
propose an optimization method of ExMiner [Quang 06], called OExMiner, to mine the
top-k frequent patterns from a large scale dataset efficiently and effectively. Another 3
methods have been proposed by them also: Seq-Miner, and Seq−BOMA, being slight
modifications of the OExMiner.

B.3 Third category

To the third category, could be attached the methods used in prediction. For example, pre-
dicting a user’s behavior on a Web site in need to personalize and influence user’s browsing
experience, or detecting suspicious activity detection methods [Lane 99], [Duskin 09]. In
case of the web access prediction, Deshpande and Karypis [Deshpande 04] combine differ-
ent order Markov models, so that the resulting model has a low state−space complexity
and, at the same time, retains the coverage and the accuracy of the All−Kth−Order
Markov models. The key idea is that many of the states of the different order Markove
models can be eliminated without affecting the performance of the overall scheme. They
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also use Selective Markove models, in order to reduce the state complexity and improve
the prediction accuracy of the resulting model. Three schemes are presented for pruning
the states of the All−Kth−Order Markove model: (1) frequency pruning, (2) confidence
pruning, (3) error pruning.

An example of predicting the money laundering, is presented by Liu et al. [Liu 08].
They combine sequence matching and classification methods. There are four steps

• data acquisition and parsing, in order to determine the peer group (the following
attributes are used: industry, account type, and company size);

• high-risk sequence selection;

• similarity calculation between high-risk sequences and reference sequences: the sim-
ilarities are calculated between each query sequence and each reference sequence
(Euclidean distance measure is used);

• sequences classification: the process consists in ordering the similarity of each can-
didate sequence, giving a threshold Ts, choosing the relatively higher ones, and flag
them in the original database as suspicious.

Of course, that many of the algorithms could be used in both: periodic frequent
patterns finding and prediction.

C RELATIONAL REPRESENTATION OF EXISTING ALGORITHMS.
USED DATABASES

In Figure 1 you can observe the existing methods for mining sequential patterns and the
relations between them. The arrow indicates the parrent - child relation, for example
PF-Tree algorithm was developed by taking the main ideas from FP-Growth algorithm,
Seq-Miner from OExMiner, and so on. The dashed line represent that the connected
methods are from the same "family", meaning that they explore the same global idea.

Now, let’s describe briefly each of the algorithms:

• Apriori [Agrawal 94]. The algorithm consists of two steps: the first one counts
item occurences to determine the large 1-itemsets. A subsequent pass k consists of 2
phases: (1) the large itemsets Lk−1 found in the k−1th pass are used to generate the
candidate itemsets Ck using the apriori function; (2) next, the database is scanned
and the support of candidates in Ck is counted.

• AprioriAll [Agrawal 95]. In each pass the large sequences from the previous pass are
used to generate the candidate sequences and then measure their support by making
a pass over the database. At the end of the pass, the support of the candidates is
used to determine the large sequences. In the first pass, the output of the l-itemset
phase is used to initialiez the set of large 1-sequences. The candidates are stored in
hash-tree to quickly find all candidates contained in a customer sequence.

• BWT-SW, exploits BWT index of a text T to speed up the dynamic programming
for finding all local alignments [Lam 08].
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Figure 1 : Relations between existing method for Mining Sequential Patterns. The ar-
row indicates the parrent - child relation between algorithms (which method is an exten-
sion/improvement/new idea from a previous one). The dashed line shows the methods
from the same "family".
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• COD (Common Outlier Detection) [Singh 09a]. The principle of the algorithm is to
perform successive clustering steps on usage patterns of different partners sites, until
the number of common outliers meets the number of alarms desired by the user. The
data sets for the analysis were taken from two different research organizations. The
first log file the total number of objects is 30,454. The second log file contains 72,381
objects.

• CP-Tree (Compact Pattern Tree) [Tanbeer 08]. It captures database information
with one scan (Insertion phase), and provides the same mining performance as the
FP-Growth method (Restructuring phase) by dynamic tree restructuring process. It
can give also full functionalities for interactive and incremental mining. The exper-
iments were performed on two real dense (chess and mushroom) and one synthetic
sparse datasets.

• CSP (Conjunctive Sequence Pattern mining) [Raïssi 08]. The basic idea of the algo-
rithm is to alternate between a sequence mining task and a generation of all possible
conjunctions. The data used in experiments was a synthetic data set containing
200,000 sequences based on 10,000 items, and the UNIX User Data set containing 9
sets of sanitized user data drawn from the command histories of 8 UNIX computer
users at Purdue University.

• DSM-FI (Data Stream Mining for Frequent Itemsets), based on Lossy Counting
[Li 08b]. It is composed of four steps: (1) reading a block of transactions; (2) con-
structing the summary data structure; (3) pruning the infrequent information from
the summary data structure; (4) and top-down frequent itemset discovery scheme.
Steps 1 and 2 are performed in sequence for a new block. Steps 3 and 4 are usually
performed periodically or when it is needed. Two synthetic data sets were used.
The first one had an average transaction size T of 10 items and the average size of
frequent itemset I is 5-items. In the second data set, the average transaction size T
and average frequent itemset size I are set to 30 and 20, respectively. Both of them
have 1,000,000 transactions.

• ExMiner [Quang 06].

• FastUP (Enhanced GSP) [Lin 98]. It is used for the continuously updating
databases. The idea is to count over appended data sequences instead of the entire
updated database, and fast filtering of patterns found in last mining and succes-
sive reductions in candidate sequences. The algorithm starts with finding frequent
1-sequences in updated database. After that, at each step k, it finds frequent k-
sequences in updated database.

• FIDS (Frequent Itemsets Mining on Data Streams) [Raïssi 07]. It is used for the
continuously updating databases. The algorithm has 2 main steps: (1) the insertion
of each itemset of the studied batch in teh data structure Latticereg using a region
principle; (2) the extraction of the maximal subset. The stream data was generated
from Web Server Log Data of the ECML/PKDD Challenge 2005. These data comes
from a Czech company running several internet shops. The log data cover the traffic
on the web server of about 3 weeks. This represents about three million records.
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• FP-Stream [Giannella 04]. A compact tree is used to represent the frequent pattern
set. Each node in teh frequent pattern tree represents a pattern and its frequency
is recorded in the node. This tree shares the similar structure with FP-tree. The
difference is that it stores frequent patterns instead of streaming data. An interesting
idea is the use of natural and logarithmic titled-time windows. The stream data was
generated by the IBM synthetic market-basket data generator. In all the experiments
3M transactions were generated using 1K distinct items.

• FP-Tree (Frequent Pattern Tree), is an extended prefix-tree structure, and developes
FP-Growth [Han 00b]. There are 2 basic steps: (1) scan the transaction database
once, collect the set of frequent items F and their supports; sort F in support de-
scending order as L, the list of frequente items. (2) Create the root of an FP-tree,
T, and label it as "null". For each transaction Trans in DB do: select and sort the
frequent items in Trans according to the order of L. There are 2 synthetic data
sets. The first one has 1K items, with an average transaction size and the average
maximal potentially frequent itemset size are set to 25 and 10, respectively, while
the number of transactions in the dataset is set to 10K. The second data set has
10K items.

• FreeSpan (Frequent pattern-projected Sequential pattern mining) [Han 00a]. Given a
sequence database S and the support threshold epsilon, FreeSpan mine the complete
set of sequential patterns as follows. (1) Scan S, find the set of frequent items in S,
and (in frequency descending order) sort them into flist. (2) Perform alternative-
level projection mining which consists of the following steps: (a) construct a frequent
item matrix by scanning the database once, (b) generate length-2 sequential patterns
and the annotations on item-repeating patterns and projected databased, (c) scan
database to generate item-repeating patterns and projected databases, and (d) do
matrix projection mining on projected databases recursively, if there are still longer
candidate patterns to be mined. The synthetic datasets used were generated using
the standard procedure described by Srikant and Agrawal. The number of items
were set to 10,000.

• FTP-DS (Frequent Temporal Patterns of Data Streams) [Teng 03]. It scans online
transaction flows and generates candidate frequent patterns in real time. It has
also a regression based compact pattern representation. There were 2 synthetic
datasets, with 200 (100) items, 3 (5) average number of items per transaction, 1000
customers, and 500,000 transactions. A real data set, AlarmLog, was used also. It
had 287 items, 1.6 numbers of items per transaction, 5788 customers, and 128,815
transactions.

• Gamma test for feature selection [Chuzanova 98]. It was used for feature selection
and LSU rRNA classification according to RDP phylogenetic classes.

• GSP (Generalized Sequential Patterns) [Srikant 96]. The algorithm tries to generate
as few candidates as possible while maintaining completeness. Another aspect is the
way the support count for the candidate sequences is determined.

• GTC (Graph for Time Constraints), is the implementation of the TCLW algorithm
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(Time Constraints Level Wise), and the structure used for organizing candidate
sequences is a prefix tree structure as in PSP [Masseglia 09].

• HDM (Heuristic Based Distributed Miner) [Masseglia 02]. Is used to get frequent
behaviour patterns answering the Web Usage Mining problem in real time.

• ISE (Incremental Sequence Extraction) [Masseglia 03]. It is used for the continu-
ously updating databases. The main feature is that the set of candidate sequences
to be tested is reduced. It reuses the minimal information from the old frequent
sequences, i.e. the support of frequent sequences. A synthetic data set was used.

• ISM (Interactive Sequence Mining), extension of SPADE, [Parthasarathy 99]. It
is used for the continuously updating databases. The idea in interactive sequence
mining is that the end user is able to query the database dor association rules at
different values of support and confidence. Synthetic datasets were used.

• ITL-Tree (Interval Transaction-ids List Tree) [Amphawan 10]. Is a variation of PF-
tree, but where an approximate periodicity is found instead of the exact periodicity
as in PF-tree. Synthetic and real (Mushroom) datasets were used.

• KNN [Deshpande 02]

• MAD-IDS (Mobile Agent Using Data mining based Intrusion Detection System)
[Brahmi 10]. It is an Intrusion Detection System. Its distributed structure comprises
different agents which are able to move from one station to another, called: Sniffer,
Filter, Misuse Detection, Anomaly Detection, Rule Mining and Reporter Agent. The
traffic data DARPA was used.

• Markov [Deshpande 02]

• Moment (Maintaining Closed Frequent Itemsets by Incremental Updates) [Chi 04].
An efficient in-memory data structure, the closed enumeration tree (CET) is used to
record all closed frequent itemsets in the current sliding window. CET also monitors
the itemsets that form the boundary between closed frequent itemsets and the rest
of the itemsets. A synthetic and a real dataset were used. The real one contains
a few months of clickstream data from an e-commerce web sites. There are 59,602
transactions in the dataset. The sliding window was set to 50,000 and the experiment
was done on 100 consecutive sliding windows. The number of distinct items is 497,
the maximal transaction size is 267, the average transaction size is 2.5.

• OExMiner [Minh 06]. Is an optimized version of ExMiner, used to mine the top-k
frequent patterns from a large scale dataset. It reduces the search space in compar-
ison to the previous version.

• PF-Tree (Periodic Frequent pattern Tree), uses FP-Growth mining technique,
[Tanbeer 09]. The PF-Tree contains a prefix-tree and a periodic-frequent item list,
called the PF-list, consisting of each distinct item with relative support, periodicity,
and a pointer pointing to the first node in the PF-tree carrying the item. The items
in the tree are arranged in support-descending item order. Several synthetic and
real datasets (chess, mushroom, and kosarak) were analyzed.
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• PrefixSpan [Pei 04]. In comparison to FreeSpan it tries to avoid checking every
possible combination of a potential candidate sequence. For example, since items
within an element of a sequence can be listed in any order, without loss of generality,
one can assume that they are always listed alphabetically. In this case the concept
of prefix and suffix is introduced. A real data set was used, Gazelle from Blue
Martini. It contains 29,369 customers’ Web click-stream data provided by Blue
Martini Software company. It contains 35,722 sessions and 87,546 page views. The
synthetic data set contains 200,000 customers, and the number of items is 10,000.
The average number of items in a transaction is 2.5, and the average number of
transactions in a sequence is 10.

• PSP, resumes general principles of GSP, but different intermediary data structure
[Masseglia 98].

• PriPSeP (Privacy Preserving Sequential Patterns) [Kapoor 06].

• RNN [Graves 06].

• SCM (Schema Mining), based on OEM (Object Exchange Model), but makes struc-
tural regularities of semistructured data [Laur 00]. There are two steps: mapping
phase, and mining phase.

• Selective Markov Models, based on All-Kth Order Markov models, contains Fre-
quency Pruned MM, Confidence Pruned MM, Error-Pruned MM [Deshpande 04].

• Seq-BOMA [Minh 06]. It builds in adnvance a "large" FP-tree which can be used to
mine top-k frequent patterns with any different values of top-k in order to save the
computation time.

• Seq-Miner [Minh 06]. Only a very small number of items (compared to k) are ex-
amined to generate top-k frequent patterns in comparison to OExMiner.

• SPADE [Zaki 01]. The idea is to break the large search space into small, manageable
chunks that can be processed independently in memory. This is accomplished via
suffix-based equivalence classes. Synthetic data sets were used in the analysis.

• String Kernels (restricted gappy kernels, substitution kernels, wildcard kernels)
[Leslie 04].

• SVM [Deshpande 02].

• SuffixTree [Wang 96].

• TAG and heuristics (Timed Automata with Granularities) [Bettini 98b]. The data
set was the closing prices of 439 stocks for 517 trading days during the period between
January 3, 1994, and January 11, 1996.

• UFR (Unexpected Fuzzy Recurrence) [Li 08a]. The algorithm accepts a belief base
B, a sequence database D, and a minimum fuzzy degree threshold ς as input data,
and outputs all unexpected sequences in D with respect to B and ς. The evaluation
was done on Web access logs. One was a large access log file of an online forum site,
and another one was a large access log file of a mixed homepage hosting server.
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D. DIFFERENCES REGARDING COMPLEXITY

Algorithms with unset IMs :
As it has been presented, we are interested in algorithms and Interestingness Measures

for sequential data mining. However, there are some algorithms that do not require a
set IM for patterns and rules extraction. The only algorithms that we were able to find
regarding this aspect, are the one used in top-k sequential mining. Almost all of them
are based on Lossy Counting algorithms [Li 04]. The following methods are described:
TSP [Tzvetkov 05], and the ones based on ExMiner algorithm [Quang 06]: OExMiner,
Seq-Miner, Seq-BOMA [Minh 06].

However, there is one based also on the Chernoff bound with a guarantee of the output
quality and also a bound on the memory usage [Wong 06].

D DIFFERENCES REGARDING COMPLEXITY

Comparisons between the algorithms from the same "family" are presented in Figures 2,
3, 4, and 5. You can notice the following characteristics: the noted difficulty in order to
implement the method, the comparison times with other algorithms, if the algorithm does
or does not take into consideration all the possibilities (if it has or not heuristic ideas), if
it can be applied in incremental databases, and some important observations. In case of
the Takes all possibilities and Incremental Databases columns, if nothing is written this
means that it was not pointed out by the authors about these aspects.

Figure 2 : First family

In Figure 6, the time comparison relative to Apriori algorithm is presented. You should
take into consideration that the distance between methods does not represent the exact
time difference (for example, if the ratio between the PSP and Apriori time seems to be 2
on the graph, it doesn’t mean that it is 2 in reality, it only means that PSP is faster than
Apriori).
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Figure 3 : Second family
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Figure 4 : Families 3, 4, and 5

Figure 5 : Family 6
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Figure 6 : Times Comparison of the algorithms. This is done relative to the Apriori
method. The placements of the algorithms do not represent the real time ratios, they
represent just that one is slower or faster than another. The times between different
classes are not compared (for example, FreeSpan seems to be at the same level as ExMiner
it does not mean that they have the same processing time)
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