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Résumé 
 
Cette thèse traite de divers aspects d'Identification Automatique d'Instruments de 
Musique (IAIM). L'IAIM signifie, d’une manière intuitive, que pour un enregistrement 
musical donné, l'ordinateur essaie d'identifier quels instruments de musique sont utilisés 
dans quelles parties de l'enregistrement. 
 
La recherche en IAIM s'est développée au cours des 10 dernières années en particulier 
grâce à son utilisation en tant que composant d’un moteur de recherche “intelligent” pour 
la musique. Ce moteur de recherche peut trouver la musique sur internet ou sur des 
lecteurs MP3 selon des critères “intelligents” comme par exemple le style ou le genre de 
musique alors que des moteurs de recherche classiques utilisent seulement l'information 
textuelle liée aux fichiers musicaux. D'autres utilisations de l'IAIM concernent d'autres 
algorithmes de recherche dans la musique, comme par exemple la transcription 
automatique et l'alignement de partition, ou encore les logiciels dédiés à la composition 
musicale ou à l’enregistrement en studio.  
 
L'IAIM est composée de plusieurs étapes qui constituent chacune un défi pour les 
chercheurs. Les différentes étapes, présentées dans cette thèse, sont les suivantes: obtenir 
et formater les bases de données de sons pour l'apprentissage et l'évaluation, calculer les 
descripteurs des sons, procéder au nettoyage automatique des bases de données, attribuer 
des poids aux descripteurs et réduire leur dimension, et, enfin, classer les sons selon leur 
appartenance aux différents instruments. Mener une évaluation correcte du déroulement 
de l’AMIR constitue aussi un travail fondamental. 
 
Ce travail traite en détail des différentes étapes du processus de l'IAIM et, tout en 
comblant des lacunes et des défaillances dans l'état de l'art, introduit de nouvelles 
techniques et de nouvelles méthodes pour le perfectionner: il permet d'identifier les 
instruments de musique à partir des tons séparés, des solos, de la musique polyphonique 
et multi-instrumentale. 
 
 
 
 
Mots-clefs : indexation automatique multimedia, extraction automatique du contenu, 
identification d'instrument de musique, méthodes d'évaluation,  
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Abstract 
 
The thesis deals with various aspects of Automatic Musical Instrument Recognition 
(AMIR). AMIR means, intuitively speaking, that given a musical recording, the computer 
attempts to identify which parts of the music are performed by which musical instruments. 
 
AMIR research has gained popularity over the last 10 years especially due to its 
applicability as a component inside “Intelligent” music search-engines, which can allow 
searching the Internet or mass-storage devices in personal “MP3” players for music using 
“intelligent” criteria such as musical style or composition - as opposed to searches 
involving only textual information provided with the musical files. Other usages of 
AMIR include integration and improvement of other Musical Information Retrieval tasks 
such as Automatic Transcription and Score Alignment, and as a tool in applications for 
composers and recording studios. 
 
AMIR is a compound process involving many challenging stages. The various stages of 
the AMIR process as presented in this thesis include obtaining and formatting of 
Learning and Test sound databases, computing feature descriptors on the sounds, 
automatic purging of the databases, feature weighting and dimension reduction of the 
feature descriptor space and finally, classification of the sounds as belonging to different 
instruments. Performing informative evaluation of the AMIR process is also important 
and non-trivial. 
 
This work deals in detail with the different stages of the AMIR process and while “filling 
holes” in the theory it introduces new techniques and methods for performing many of 
the tasks, accomplishing AMIR of separate tones, Solo performances and polyphonic, 
multi-instrumental music. 
 
 
Keywords: Musical instrument recognition, Music information retrieval, Pattern 
recognition, Database purging, Classification, Evaluation methods, Feature selection 
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Chapter 1 OVERVIEW 

This PhD thesis deals with “Automatic Musical Instrument Recognition” (AMIR), which 
means,  intuitively speaking, that given a musical recording, the computer attempts to 
identify which parts of the music are performed by which musical instruments.  
The AMIR process is complex and requires many different stages.  
 
This section describes the AMIR process and brings an overview of each chapter in the 
thesis. 
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1.1 THE AMIR PROCESS 

 

 
Figure  1-A. A flowchart of the AMIR process 

 
Figure  1-A depicts a flowchart of the AMIR process as performed in this thesis: 
• Shapes #1 and #2 – the Learning Music-Database is a collection of instrument-tagged 

musical recordings which is used for performing AMIR of the untagged Test Music-
Database. These music databases could contain separate tones ( Chapter 11), Solo 
performances ( Chapter 12) or Multi-Instrumental, Polyphonic (MIP) music (Chapter 
14).  Chapter 5 details the different sound databases used in this thesis. 
 
A single musical collection may be used for evaluation by being split into Learning 
and Test databases, as performed in AMIR of separate notes ( Chapter 11) and Solos 
( Chapter 12), or the Learning and Test databases could be separate, as done in 
recognition performed on MIP music (Chapter 13). Note that the material contained 
in the Learning and Test databases could be completely different and they may 
require different processing, including different Transformation (shape 2), different 
purging (shape 5), etc. For this reason, two separate arrows are drawn in the flowchart 
in order to indicate the separate flow of the Learning and Test musical databases 
throughout the AMIR process.  
 

• Shape #3 – whatever the original musical-databases may be, the AMIR methods in 
this thesis require their conversion into short sound samples, each containing only 
sounds of a single musical instrument. In the case of AMIR in separate tones ( Chapter 
11) this is trivial as the databases come already in the desired form. When performing 
AMIR on Solos ( Chapter 12), the Solos are cut into small, overlapping pieces, 
monophonic or polyphonic depending on the instruments. When the classified music 
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is MIP,  Chapter 13 proposes several methods in order to obtain separate sound 
samples of the musical notes. 
 

• Shape #4 – after the short sound samples are ready, various statistics are computed 
upon each sample in order to capture the different characteristics of its sound. These 
statistics are called Features. See  Chapter 6 for a list of the feature descriptors used in 
this work. 
 

• Shape #5 – in cases where the Learning sound database may contain samples which 
are badly recorded or mislabeled, it may be beneficial to ‘clean’ it in order to prevent 
classification errors. It may also be possible to remove or label freak samples from the 
Test set which are likely to be classified incorrectly, depending upon the requirements 
of the application. Such cleansing process is called ‘database purging’ and is 
discussed in  Chapter 10. 
 

• Shape #6 – in order to improve class separation and reduce data dimensionality, the 
feature descriptors are weighted and the feature matrices are transformed into a 
lower-dimensional feature space. See  Chapter 7. 
 

• Shape #7 – performing evaluation of an AMIR process requires careful consideration. 
While the ideal evaluation method should check whether an AMIR process 
recognizes “concept instruments” (see Section  2.2 for further discussion), that is, 
regardless of recording conditions, some evaluation methods may inadvertently only 
check whether it could learn to recognize very limited types of samples.  Chapter 9 
presents several evaluation methods and discusses evaluation validity. 
 

• Shapes #8 and #9 – an evaluation method may perform several classification rounds, 
each time using different data collections from the Learning and Test sets for 
classification. The sets in shapes #8 and #9 are subsets of the initial music databases 
in shapes #1 and #2 respectively. 
 

• Shape #10 – the feature vectors are classified by the classification algorithm into 
classes according to the desired musical instrument taxonomy. For the classification 
algorithms used in this thesis, see  Chapter 8. While the sounds in this thesis are 
mostly classified as being played by specific musical instruments, the classification 
classes could be different. See  Chapter 4 for several alternative classification 
taxonomies. 
 

• Shape #11 – semi-purging of the classification results could be done after the sounds 
are classified by the classification algorithm by calculating confidence levels, 
marking some of the classifications as likely to be erroneous and deleting or labeling 
them. See short discussion inside Section  15.5 about some methods for calculating 
confidence levels. One of the possible methods for detecting and removing suspicious 
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classifications is to utilize the same purging algorithms used in  Chapter 10 (shape #5) 
as shortly mentioned in Section  13.3.3.  
 

• Shape #12 – after the evaluation process is finished the AMIR evaluation results are 
reported.  

1.2 THESIS CHAPTERS 

As described in Section  1.1, this thesis deals with the different stages of the AMIR 
process.  
 
 Chapter 2 - Introduction 
This chapter is an introduction to AMIR. After providing a formal definition of the task, 
Section  2.1 explains why AMIR is an important research area and for which practical 
applications it is useful; AMIR is mostly applicable not as an end product, i.e., providing 
instrument recognition results to the user, but rather as a software module integrated into 
various applications and algorithms such as intelligent music searches over the Internet, 
automatic music transcription, software for composers and others. Section  2.2 mentions 
some of the different challenges a researcher in AMIR has to deal with, including 
classification accuracy and generality, erroneous data, overlapping sounds in polyphonic 
music, pattern-recognition issues, etc.  
 
 Chapter 3 - History 
This chapter tells the history of Instrument Recognition research which mainly evolved in 
three stages - recognition of isolated note samples, recognition of Solos, or as frequently 
called, “musical phrases”, and finally, Multi-Instrumental Polyphonic (MIP) music. 
 
 Chapter 4 - Taxonomies 
This chapter mentions some alternative taxonomies and classification hierarchies to the 
flat instrument taxonomy used in this thesis.  
 
 Chapter 5 - Data Sets 
This chapter describes the different sound sets and databases used throughout this 
document: separate tone databases, authentic Solo instrument recordings, authentic Duos 
and MIP music created by mixing several authentic Solos together.  
 
 Chapter 6 - Feature Descriptors 
A full list of the feature descriptors used for classification throughout this document is 
presented along with appropriate references.  
 
 Chapter 7 - Feature Weighting and Selection 
This chapter discusses the feature selection and weighting techniques used in the thesis. 
First, Linear Discriminant Analysis (LDA) is described. Afterwards, the new “GDE” 
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feature selection algorithm is presented and demonstrated. CFS, another feature selection 
algorithm used in  Chapter 11, is described next. 
 
 Chapter 8 - Classification Algorithms 
Two classification algorithms are used in this thesis – “LDA+KNN”, which is my chosen 
method and is used in most of the thesis chapters, and Backpropagation Neural-Network, 
used as an alternative classification algorithm in  Chapter 9.  
 
 Chapter 9 - Different Evaluation Techniques and The Importance of Cross-
Database Evaluation 
This chapter deals with the issue of evaluation of AMIR techniques; it presents different 
evaluation techniques including several new cross-evaluation methods: “Minus-1-DB”, 
“Mutual Classification”, “Minus-1-Instance” and “Minus-1-Solo”. The chapter proves 
that the new cross-evaluation techniques are preferred over the “Self-Classification” 
evaluation method, which was very common until quite recently. 
 
 Chapter 10 - Improving the Consistency of Sound Databases 
The issue of self-consistency of Learning databases for AMIR is addressed. A sound 
database may contain samples which are badly recorded or mislabeled thus increasing 
classification errors. The common Interquantile Range technique is compared with two 
new database purging algorithms – “MIQR” and “SCO”. Their performance is evaluated 
using a sound database contaminated with four different outlier types.  
 
 Chapter 11 - AMIR of Separate Tones and the Significance of Non-Harmonic 
“Noise” Vs. The Harmonic Series 
This chapter begins by performing AMIR of separate tones of 10 musical instruments. 
The chapter then explores the instrument discrimination power of the harmonic series and 
the residuals as compared to the original, complete sounds. While it is common to treat 
the Harmonic Series as the main characteristic of the timbre of pitched musical 
instruments it seems that no direct experiments were performed so far to prove this 
assumption. In order to check it, using Additive Analysis/Synthesis, each sound sample is 
resynthesized using solely its Harmonic Series. These “Harmonic” samples are then 
subtracted from the original samples to retrieve the non-harmonic Residuals. AMIR is 
performed on the original samples, the Resynthesized ones and the Residuals and the 
results are compared and discussed.  Using the CFS algorithm for feature selection, the 
best 10 feature descriptors for instrument recognition are found and presented for the 
Original, Harmonic and Residual sound sets. 
 
 Chapter 12 - AMIR in Solos 
This chapter deals with Instrument recognition in authentic Solo recordings, which are 
monophonic or polyphonic musical phrases performed by a single instrument. AMIR in 
Solos is different and more complicated than dealing with separate note databases as 
performed in the previous chapter, as the time evolution of each sound (attack, decay, 
sustain, release) is not well defined, the notes are not separated, there are superpositions 
of concurrent sounds and room echo, different combinations of playing techniques, etc. 
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First the Solos are classified “offline” using the complete set of feature descriptors, and 
then a specially reduced set of descriptors is presented for performing realtime AMIR of 
Solos.  
 
 Chapter 13 - AMIR in Multi-Instrumental, Polyphonic Music 
The chapter presents three techniques for performing AMIR on MIP music – Naïve Solo 
Classifier, Source-Reduction (SR) and Harmonic-Resynthesis (HR). Both SR and HR 
utilize a multiple-f0 estimation program in order to extract single notes out of MIP music, 
SR using filtering and HR using Additive Synthesis, and classify these using Solos in the 
Learning set. These AMIR techniques are evaluated on authentic recordings of Duos 
played by seven musical instruments and on mixes of authentic Solo recordings 
performed by five different instruments, with two to five instruments playing 
concurrently. 
 
 Chapter 14 - Summary 
This chapter summarizes the various contributions and results in each thesis chapter. 
 
 Chapter 15 - Future Work 
AMIR research does not come to an end with this thesis. The chapter introduces various 
ideas for further research for AMIR improvement. 
 
 Appendix A  
A table of acronyms and abbreviations used in the thesis.  
 
 Appendix B  
Six published papers in which I am the main author: 
(Livshin, Peeters and Rodet 2003), (Livshin and Rodet 2003), (Livshin and Rodet 2004a), 
(Livshin and Rodet 2004b), (Livshin and Rodet 2006a) and (Livshin and Rodet 2006b).  
 
I recommend reading four of them - (Livshin, Peeters and Rodet 2003), (Livshin and 
Rodet 2003), (Livshin and Rodet 2004b) and (Livshin and Rodet 2006b), as (Livshin and 
Rodet 2004a) and (Livshin and Rodet 2006a) are expanded and updated in later papers. 



Introduction  Chapter 2
 

16 
 

Chapter 2 INTRODUCTION 

Intuitively speaking, “Automatic Musical Instrument Recognition” is a process where 
given a musical recording, the computer attempts to identify which parts of the music are 
performed by which musical instruments.  
 
More formally, suppose that a given audio signal contains K notes (or other types of 
audio segments), ݊ଵ, ݊ଶ, . . . , ݊, . . . , ݊. The instrument identification process consists 
of two basic subprocesses: feature extraction and a posteriori probability calculation. In 
the former process, a feature vector consisting of some acoustic features is extracted from 
the given audio signal for each note. Let ࢞ be the feature vector extracted for note ݊. In 
the latter process, for each of the target instruments, ߱ଵ , . . . ,  ߱ , the probability ሺ߱ȁ࢞ሻ that the feature vector ࢞  is extracted from a sound of the instrument ߱  is 
calculated. Based on the Bayes theorem, ሺ߱ȁ࢞ሻ can be expanded as follows: 
ሻ࢞ሺ߱ȁ  ൌ ሺ߱ሻσȁ߱ሻ࢞ሺ ȁ࢞ሺ ߱ሻሺ ߱ሻୀଵ  

 
where ሺ࢞ȁ߱ሻ  is a probability density function (PDF) and ሺ߱ሻ  is the a priori 
probability with respect to the instrument ߱ . The PDF ሺ࢞ȁ߱ሻ is trained using data 
prepared in advance. Finally, the name of the instrument maximizing ሺ߱ȁ࢞ሻ  is 
determined for each note ݊.  
 
When classifying musical phrases (Solos) or Multi-Instrumental, Polyphonic (MIP) 
music, extracting separate notes out of the music is non-trivial. In Solos it is difficult to 
detect exact note boundaries, i.e., where one note begins and another ends, while in MIP 
music, in addition, several notes, possibly of different instruments, may be played at the 
same time and their intermixed waveforms are very difficult to separate. 
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Figure  2-A. An AMIR output example 

This screenshot displays the results of running my AMIR application using the Source-
Reduction technique (see Section  13.1.2) on the Cantata BW 147 by J.S. Bach Duo 
performed by violin and cello. The vertical axis indicates the musical instrument while 
the horizontal axis shows at which points in time it is playing1.  

2.1 MOTIVATION 

Automatic musical instrument recognition algorithms can have different practical 
applications: 

2.1.1 INTELLIGENT SEARCH OF MUSIC 

By 1996 the Internet entered common daily usage, allowing information to be shared and 
exchanged conveniently and quickly around the world. Although public Internet was very 
slow in the beginning, the MPEG-1 Audio Layer 3 (MP3) audio compression algorithm 
(MPEG 1992) allowed music to be compressed several tenfold while still sounding like a 
faithful reproduction of the original uncompressed audio to most listeners, thus making it 

                                                 
1 One can notice a recognition mistake at the 44’th-second, when a “phantom” guitar note was detected. 
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practical to transfer music even through slow Internet.  Peer-to-Peer applications, 
especially since the release of Napster, allowed and encouraged masses of users around 
the world to share and exchange music files. The invention of personal audio players 
capable of playing MP3 compressed files has boosted the rate of music exchange over the 
Internet even further. Today there are billions of musical pieces scattered over the 
Internet. Personal digital-audio players have large storage devices which may contain 
tens of thousands of songs.  
 
To the computer or personal music players, however, the music files are merely streams 
of bits in some coding scheme which are converted into sounds when played. Today, we 
have internet search engines that can identify text documents matching a user’s query, but 
multimedia documents are opaque to search engines. Virtually all today’s systems have 
no way of performing “intelligent” searches of music, such as looking for songs by 
similarity, by genre or by performing instruments. Although efforts have begun to define 
standardized “descriptors,” or meta-data formats, for multimedia data (MPEG 
Requirements Group, 1999), yet there are still no tools that can extract the relevant 
information automatically. The producer of the data must add the meta-data by hand.  
 
In the future, AMIR could be performed automatically on musical pieces scattered on the 
Internet and label them. Musical instrument information, in addition to allowing searches 
to be performed by the playing instruments, can also help greatly in searches by similarity, 
genre and other “intelligent” criteria. 

2.1.2 STRUCTURED-AUDIO ENCODING 

Today, with high bandwidth music distribution channels, including high capacity 
swappable storage such as blu-ray, PDD and even conventional DVD’s, high speed 
Internet and non-swappable high storage capacities of personal music players, musical 
recordings could be distributed in structured formats (like described in Vercoe et al., 
1998) that preserve the isolation of individual sounds until the time of playback but 
require much more storage space than pre-mixed music. 
 
Structured-media formats make automatic multimedia annotation easier. In addition, they 
give the end user more control over the media playback. For example, an audio enthusiast 
could take better advantage of a seven-speaker playback setup if the audio material was 
not pre-mixed for stereo playback. Musicians could “mute” a particular part of a 
recording and play along. 
 
Although structured formats provide immense advantages over their nonstructured 
counterparts (such as the current generation of compact discs and DVDs), there is 
currently no automatic way of adding structure to unstructured recordings.  
 
At the recording stage, the different musical instruments are often recorded and stored 
using separate channels of a multi-track recording system. Performing realtime Solo 
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AMIR while recording the instruments separately or using archived multi-track master 
tapes, as described in Section  12.4 and (Livshin and Rodet 2004b), can allow computing 
instrument Meta-data automatically and preserving it throughout the production process.  
 
In the future, by combining robust tools from AMIR, music transcription, and speech 
recognition, it may be possible to build fully or partly automated tools for unstructured-
to-structured encoding. See for example (Livshin et al. 2005) for a fully automatic Wave-
to-MIDI conversion system.   

2.1.3 MUSIC  INFORMATION  RETRIEVAL  (MIR) 

Successful Musical Instrument Recognition can benefit other MIR research fields, such 
as f0-estimation and score alignment, by allowing their algorithms to assume spectral, 
temporal or other qualities of the specific instruments participating in the analyzed 
musical piece.  

2.1.3.1 Automatic Transcription 

The process of listening to a piece of music and reconstructing the notated score is known 
as transcription. More generally, transcription is the process of determining which 

musical notes were played when (and by which instrument) in a musical recording or 
performance. In the general case of music played by multiple instruments (or a single 
polyphonic instrument such as the guitar or piano), the task is one of polyphonic pitch 
tracking. This is difficult—humans require extensive training in order to transcribe music 
reliably. Nevertheless, as transcription is an important tool for music theorists, music 
psychologists, and musicologists— not to mention music lovers who want to figure out 
what their favorite artists are playing in rapid passages—it would be wonderful to have 
tools that could aid the transcription process, or automate it entirely. Polyphonic pitch 
tracking research demonstrates that the task may be made simpler if good—and 
explicit—models of the sound sources (the musical instruments) are available (Kashino 
and Murase, 1998).  By integrating sound source recognition with a transcription engine, 
the end result can be improved. 
 
In addition to the possibility of improving the transcription engine by providing it with 
the instrument modules, AMIR is indispensible for instrument segmentation of the notes; 
in an unpublished report (Livshin et al. 2005), we have integrated an instrument 
recognition module with a multiple-f0 estimation module to create a system which 
automatically creates partituras out of recorded music, by first finding the different notes 
in a musical piece and then arranging them into staves by their recognized musical 
instruments. 
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2.1.4 A TOOL FOR COMPOSERS AND SOUND EDITORS 

An AMIR option in sound editing applications can allow quick searches inside the music 
for parts where a certain instrument is playing. 

2.2 CHALLENGES 

AMIR poses many challenges and questions:  

2.2.1 ACCURACY 

How can we distinguish between similar instruments - is it possible, for example, to 
distinguish among seemingly identical sounds coming from different instruments, such as 
equally pitched sounds of viola and violin?  

2.2.2 GENERALITY 

The hypothetical goal of building an ideal classifier which could recognize all the sound 
variations of a musical instrument is a wholly different task than successfully classifying 
a specific sound database. What are the distinguishing qualities of a “Concept Instrument” 
which define, bound and fundamentally separate it from all other instrument classes, 
regardless of the recording conditions or the specific instrument (e.g., a specific 
Stradivarius violin) being used? 

2.2.3 TAXONOMY 

What should be the instrument classes, and which instruments should be classified in the 
same class when categorizing into instrument families? Should sounds recorded in 
different settings and playing techniques be classified in the same class? Should 
recordings of a string ensemble, for example, and a pizzicato sound of a single violin 
considered the same instrument class? Acoustic and electric guitars?  

2.2.4 DATA VALIDITY 

Does the instrument recognition algorithm learn enough sound variations of an 
instrument (“encapsulation”)? Are all the learned sound samples really beneficial for the 
recognition or maybe some actually sabotage it (“consistency”)? Are there “bad” samples 
or misclassified sounds (“database errors”)?  
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2.2.5 POLYPHONICITY 

Being able to distinguish Solo recordings of one instrument from another, does not 
suffice in the multi-instrumental case, where several instruments play concurrently. The 
sounds are intermixed and even influence each other. How do we handle instrument 
recognition in MIP music? 

2.2.6 PATTERN RECOGNITION ISSUES 

Misclassification may occur due to different pattern recognition issues: 

2.2.6.1 Classification Process 

• Badly defined sound classes, or different classes with virtually identical sounds 
• Inappropriate or weak classification algorithms 
• Feature descriptors which do not cover enough distinguishing qualities or mislead 

2.2.6.2 Sound sets 

• Misrepresenting or insufficient Learning set   
• Misrepresenting classified sounds 
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Chapter 3 HISTORY 

During the last 30 years, different automatic musical instrument recognition (AMIR) 
systems have been constructed, using different approaches, scopes, and levels of 
performance. Most of these systems have dealt with AMIR of single, isolated tones 
(either synthesized or natural). More recent works, from the last 10 years, have employed 
authentic recordings of musical phrases (Solos), and since 2003, research on AMIR in 
multi-instrumental, polyphonic (MIP) music began to gain popularity. 

3.1 ISOLATED TONES 

In (Cosi et al., 1994; De Poli and Prandoni, 1997), a series of Kohonen Self-Organizing-
Map (SOM) neural networks were constructed using as inputs feature descriptor vectors, 
most often MFCC, computed on isolated tones of a specific pitch. One tone per 
instrument was used with up to 40 instruments in a single experiment. The dimension of 
the feature vectors was reduced sometimes using Principal Component Analysis (PCA) 
(Pearson 1901). Unfortunately, the presented recognition rates are unreliable as the Test 
set was not independent of the Learning set (see  Chapter 9 for the importance of 
independent evaluation).  
 
The instrument classification abilities of a feedforward neural network and a K-Nearest 
Neighbor classifier (KNN) were compared in (Kaminskyj and Materka 1995). The 
classifiers were trained on feature descriptors based on the temporal envelopes of isolated 
tones. The two classifiers achieved recognition rates of about 98% classifying tones of 
four instruments (guitar, piano, marimba, and accordion), over a one-octave pitch range. 
Again, like the paper mentioned in the previous paragraph, while the recognition rate 
seems high, both the Learning and Test data were recorded in the same recording 
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conditions - same instruments, same players and the same acoustic environment. Adding 
to that the fact that the four recognized instruments have sounds which are very different 
from each other implies that it is doubtful whether such high recognition rates will be 
obtained adding additional instruments or even using independent Learning and Test sets. 
 
Traditional pattern-recognition methods were applied by different authors for performing 
AMIR in isolated-tones. In (Bourne 1972), perceptually-motivated Feature Descriptors 
were used as a training set for a Bayesian classifier, including the overall spectrum and 
the relative onset times of different harmonics, extracted from 60 clarinet, French horn, 
and trumpet tones. The Test set included 15 tones, with eight tones which did not appear 
in the Learning set. All tones except one were correctly classified (around 93% 
recognition rate).  
 
In an unpublished report, Casey (1996) describes a novel recognition framework based on 
a “distal learning” technique. Using a commercial waveguide synthesizer to produce 
isolated tones, he trained a neural network to distinguish between two synthesized 
instruments (brass and single-reed) and to recover their synthesizer control parameters.  
Although “recognition” results were not quantified as such, the low “outcome error” 
reported by Casey demonstrates the success of the approach in the limited tests. 
 
In (Fujinaga 1998) a KNN classifier was used with a Learning set consisting of features 
extracted from 1338 spectral slices representing 23 instruments playing a range of pitches. 
Using leave-one-out crossvalidation with a genetic algorithm to identify good feature 
combinations, the system reached a recognition rate of approximately 50%. 
 
(Martin and Kim 1998) exemplified the idea of testing very long lists of features and then 
selecting only those shown to be most relevant for performing classifications. Martin and 
Kim worked with log-lag correlograms to better approximate the way our hearing system 
processes sonic information. They examined 31 features to classify a corpus of 14 
orchestral wind and string instruments. They have found the following features to be the 
most useful: vibrato and tremolo strength and frequency, onset harmonic skew (i.e., the 
time difference of the harmonics to arise in the attack portion), centroid related measures 
(e.g., average, variance, ratio along note segments, modulation), onset duration, and 
select pitch related measures (e.g., value, variance). The authors noted that the features 
they studied exhibited non-uniform influences, that is, some features were better at 
classifying some instruments and instrument families and not others. In other words, 
features could be both relevant and non-relevant depending on the context. The influence 
of non-relevant features degraded the classification success rates between 7% and 14%.  
 
Brown (1999) used cepstral coefficients from constant-Q transforms (instead of 
computing them using FFT-transforms); she also clustered feature vectors in a way that 
the resulting clusters seemed to be coding some temporal dynamics.  
 
Eronen and Klapuri (2000) used non-Mel scaled Cepstral Coefficients, combining these 
features with a long list (up to 43) of complementary descriptors; their list included, 
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among other features, the centroid, rise and decay time, frequency/amplitude modulation 
(FM/AM) rate and width, fundamental frequency and fundamental-variation-related 
features for onset and for the remainder of the note. In a more recent study, using a large 
set of features (Eronen, 2001), the features which turned out to be most important were 
the MFCCs, their standard deviations and their deltas (differences between contiguous 
frames), the spectral centroid and related features, onset duration, and the crest factor 
(especially for instrument family discrimination).  
 
In (Kaminskyj 2001) the main author used the RMS envelope, the Constant-Q frequency 
spectrum, and a set of spectral features derived from Principal Component Analysis 
(PCA).  
 
Note: Most of the papers on AMIR of isolated tones, including Martin and Kim 1998, 
Fraser and Fujinaga 1999, Kaminskyj 2001, Agostini et al. 2001, Peeters and Rodet 2002 
and others, have used tones randomly selected from a single sound database in both the 
Learning and Test sets for evaluation of their AMIR techniques. In (Livshin and Rodet 
2003) we have shown that results of such evaluation techniques do not necessarily 
indicate the general ability or performance of an AMIR classification technique. Read 
further on this issue in  Chapter 9. 
 
In (Livshin, Peeters and Rodet 2003) we describe a classification process which produces 
a high recognition rate with Self-Classification evaluation (see Section  9.4.1). Over 95% 
recognition rate was achieved classifying 18 instruments and results of three 
classification algorithms were compared: Multidimensional Gaussian, K-Nearest 
Neighbors (KNN) and Learning Vector Quantization neural network (LVQ). Lower 
results were achieved with the Minus-1 (DB) evaluation method. This paper deals with 
many aspects of instrument recognition, including feature selection, removing outliers, 
evaluation techniques and more.  
 
In (Livshin and Rodet 2006b) we have taken a similar approach to (Martin and Kim 
1998), (Peeters and Rodet 2002) and (Livshin, Peeters and Rodet 2003), and used a large 
collection of feature descriptors, creating a weighted list of the most relevant features 
using Linear Discriminant Analysis on the Learning set. A KNN classifier was used to 
classify the sounds in a flat “all vs. all” classification of the instrument classes, as unlike 
in (Peeters and Rodet 2003), preliminary tests using hierarchies of instrument families did 
not show improvements in classification results over the flat model. 
A large and diverse collection of sounds was used – tones of 10 different instruments 
taken from 13 sound databases. The recognition results were high – 94.84% using the 
Minus-1-Instance evaluation method (see Section  9.7.1). Comparing with lower results 
using the same classification method, a very similar feature set and the Minus-1-DB 
evaluation method, which also uses independent Test and Learning sets, in (Livshin and 
Rodet 2003a and Livshin and Rodet 2003b), we can see that these classification 
techniques suffice for achieving high recognition rates when using a Learning database 
which is large and diverse enough.  At the time of publishing (Livshin and Rodet 2006b) 
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this was the state-of-the-art for AMIR recognition in Separate tones. Read  Chapter 11 for 
full details.  
 
For several other historical topics related to AMIR in separate tones, see (Herrera, Peeters 
and Dubnov 2003). 

3.2 SOLO PERFORMANCES  

Until 1998, there were practically no published reports of musical instrument recognition 
systems that could operate on realistic musical recordings. 
 
A vector-quantizer based on MFCC features was used in (Dubnov and Rodet 1998) as a 
front-end to a statistical clustering algorithm. The system was trained with 18 short 
excerpts from as many instruments. Although the classification results were not reported, 
it seems that the vector-quantizer have captured something about the “space” of 
instrument sounds.  
 
A classifier that distinguishes oboe from saxophone recordings was described in (Brown 
1999). For each instrument, a Gaussian mixture model (GMM) was trained on constant-Q 
cepstral coefficients, using one minute of music from each instrument. The recognition 
rate of the system was 94% for independent, noisy samples from commercial recordings.  
This work was extended later on, in (Brown Houix and McAdams 2001), where four 
wind instruments (flute, sax, oboe and clarinet) were classified using combinations of 
four feature types, reaching a recognition rate of 82% with the best combination of 
parameters and training material.  
 
In (Marques and Moreno 1999), eight fairly different instruments (bagpipes, clarinet, 
flute, harpsichord, organ, piano, trombone and violin) were classified using one CD per 
instrument for learning and one for classification; they compared three feature types 
using two different classification algorithms, achieving 70% recognition rate. The best 
classifiers used MFCC features, correctly classifying approximately 72% of the test data. 
Performance dropped to approximately 45% when the system was tested with “non-
professional” recordings, suggesting that the classifier has not generalized in the same 
way as humans do. The “non-professional” recordings were a subset of the student 
recordings.   
 
(Martin 1999) has classified sets of six, seven and eight instruments, reaching 82.3% 
(with violin, viola, cello, trumpet, clarinet, and flute), 77.9% and 73% recognition rates 
respectively. Martin has used up to three different recordings from each instrument; in 
each experiment one recording was classified while the others were learned. The feature 
set was relatively large for the time and consisted of 31 one-dimensional features.  
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In our paper, (Livshin and Rodet 2004a), we have presented a process for recognition of 
Solos of seven instruments (including two highly polyphonic – guitar and piano), using 
independent test data (unlike some other papers), which yielded a rather high recognition 
rate (88%) and could also operate in realtime with just a small compromise on the 
recognition score (85%). At the time of publishing this was the state-of-the-art for AMIR 
recognition in Solos, both offline and realtime. See  Chapter 12 for full details. 

3.3 MULTI-INSTRUMENTAL MUSIC 

Only a few studies have attempted instrument recognition for polyphonic music; these 
systems were mostly tested on limited and artificial examples.  
 
A template-based time domain approach was used in (Kashino and Murase 1999). Using 
three different instruments (flute, violin and piano) and specially arranged ensemble 
recordings they achieved 68% recognition rate with both the true fundamental 
frequencies (f0s) and the onsets supplied to the algorithm. With the inclusion of higher 
level musical knowledge, most importantly voice leading rules, recognition accuracy 
improved to 88%. 
 
A frequency domain approach was proposed in (Kinoshita et al. 1999), using features 
related to the sharpness of onsets and the spectral distribution of partials. F0s were 
extracted prior to the instrument classification process to determine where partials of 
more than one f0 would coincide. Using random two-tone combinations from three 
different instruments (clarinet, violin, piano), they obtained recognition accuracies 
between 66% and 75% (73% - 81% if the correct F0s were provided), depending on the 
interval between the two notes. 
 
(Eggink and Brown 2003) have proposed an approach based on missing feature theory to 
enable instrument recognition in situations where multiple tones may overlap in time.  
This approach is motivated by a model of auditory perception which postulates a similar 
process in listeners; since target sounds are often partially masked by an interfering sound, 
it can be inferred that listeners are able to recognize sound sources from an incomplete 
acoustic representation (Cooke et al. 2001). Classifiers based on Gaussian mixture 
models (GMMs) are easily adapted to work with incomplete data (Drygajlo and El-
Maliki, 1998). The approach was tested with artificial mixtures of two instrument tones 
from five different instruments achieving 66% recognition rate, and a single “natural” 
Duo recording of flute and Clarinet consisting of 12 tones achieving correct recognition 
of all tones. 
Note that Eggink has used only the harmonic series of the sounds for instrument 
recognition, assuming that these contain sufficient distinguishing information. 
See  Chapter 11 for a comprehensive research of this issue. 
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(Vincent and Rodet 2004) investigate the use of Independent Subspace Analysis (ISA) 
for AMIR. They represent short-term log-power spectra of possibly polyphonic music as 
weighted non-linear combinations of typical note spectra plus background noise. These 
typical note spectra are learned either on databases containing isolated notes or on Solo 
recordings of different instruments. The technique is first evaluated on 20 five-second 
excerpts from 10 Solos of five monophonic musical instruments, and identifies the 
playing instrument correctly in 90% of these excerpts. When the technique is tested on a 
single polyphonic excerpt (from a difficult duo), the model is able to identify the right 
pair of instruments and to provide an approximate transcription of the notes played by 
each instrument. While the technique was enhanced and improved in a later paper 
(Vincent 2006), the emphasis drifted away from AMIR to source-separation, which is 
performed using instruments known beforehand. 
 
(Essid, Richard and David 2006a), instead of attempting to recognize each instrument 
individually have used classification classes consisting of combinations of instruments 
played simultaneously. The classification was performed hierarchically where the top 
levels contained several instrument combinations. The hierarchy was shown to produce 
higher recognition results than flat, single-level classification. The taxonomy hierarchy 
was automatically constructed using clustering of different instrument combinations and 
thus seems to be highly influenced by the specific musical pieces used for testing and 
their various quantities. 
In order to reduce the huge number of possible instrument combinations, i.e., nodes in the 
hierarchy, they used hypotheses related to genre and orchestration and limited the work to 
real recordings of Jazz quartets. Feature selection was performed for “one vs. one” 
classifications from a large collection of features. The system was tested on up to 4 
concurrent instruments with seemingly high results, although somewhat difficult to 
quantify. 
This method has the disadvantage that it cannot be used for automatic music transcription 
applications (see Section  2.1.3) such as MusicXML (Good 2001) as it identifies which 
group of instruments plays in a time-frame rather than the specific instrument playing 
each note, which is required for transcribing notes in the appropriate staves according to 
the performing musical instruments. 
 
(Kitahara et al. 2007) have performed instrument recognition addressing specifically 
three main issues: feature variations caused by sound mixtures, the pitch dependency of 
timbres, and the use of musical context. For the first issue, templates of feature vectors 
representing timbres are extracted from not only isolated sounds but also sound mixtures. 
Because some features are not robust in the mixtures, features are weighted according to 
their robustness by using linear discriminant analysis. For the second issue, an f0-
dependent multivariate normal distribution was used, which approximates the pitch 
dependency as a function of fundamental frequency. For the third issue, when the 
instrument of each note is identified, the a priori probability of the note is calculated from 
the a posteriori probabilities of temporally neighboring notes – this technique is based on 
the assumption of “well-behaved” music, where an instrument keeps playing above or 
below another instrument’s note-pitches and does not “cross its stream”.  
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This system requires correct f0 information. It was not evaluated on real musical 
recordings but was rather tested with “nonrealistic” musical pieces mixed artificially from 
individual samples - separate tones of 5 musical instruments were mixed according to 
three MIDI files. Experimental results yielded average recognition rates of 84.1% for 
Duo, 77.6% for Trio, and 72.3% for Quartet.  
Note that Kitahara has used only the harmonics of the sounds for instrument recognition, 
saying that “although actual musical instrument sounds contain nonharmonic components 
which can be factors characterizing sounds, (they) focus only on harmonic ones because 
nonharmonic ones are difficult to reliably extract from a mixture of sounds.” In  Chapter 
11 this issue is tackled and it is shown that the harmonic series by itself indeed contains 
enough information in order to achieve high recognition rates comparable with results 
obtained from using the complete signals. 
 
In this thesis two approaches for instrument recognition in polyphonic, multi-instrumental 
music are presented, both described fully in  Chapter 13. These methods use a multiple-f0 
recognition module, currently (Yeh, Röbel and Rodet 2005).  
My “Source-Reduction” method (SR) uses a multiple-f0 estimation program to find the 
different notes in a musical piece, for each detected note over a minimal length to filter 
out everything except its partials and then classify this “cleansed” note using Solos in the 
training set. This method was used in (Livshin and Rodet 2004b) with 18 authentic Duo 
recordings of seven instruments – Bassoon, Flute, Clarinet, Guitar, Piano, Violin and 
Cello, achieving an average “Mutual” grade (See Section  13.2 for explanation) of 81.33% 
with resolution of 0.5second, recognizing correctly both participating instruments in 17 
out of the 18 Duos tested. Using a large number of mixed authentic Solos of five 
instruments – bassoon, flute, clarinet, violin and cello, this method produced an average 
Instrument grade (See Section  13.3) of 54.1% for 2 – 5 instruments playing concurrently, 
with 0.5second resolution.  
 
My “Harmonic-Resynthesis” method is based on my findings in (Livshin and Rodet 
2006b - see  Chapter 11), where it is shown that using only information in the harmonic 
series of a note is enough for achieving high instrument recognition rates. The Harmonic-
Resynthesis method uses a multiple-f0 estimation program to find the different notes in a 
musical piece and for each detected note over a minimal length, to resynthesize it using 
its estimated harmonic series and classify it using a Learning set consisting from notes 
resynthesized from harmonic series of notes detected in Solos. Harmonic-Resynthesis 
achieved a “Mutual” score of 83.2% with authentic Duo recordings of seven instruments 
– bassoon, flute, clarinet, violin, cello, piano and guitar. Using a large number of mixed 
authentic Solos of five instruments (excluding the guitar and piano), the method produced 
an average “Precise” recognition rate (See Section  13.3) of 56.9% for 2 - 5 instruments 
playing concurrently with resolution of 0.5second.  
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Chapter 4 TAXONOMIES 

In pattern recognition, “taxonomy” means the classes into which the data is classified.  
While the great majority of work in this thesis deals with sound samples classified 
directly into classes according to the specific instrument which plays them, this is not the 
only option.  
This short chapter brings a few examples of interesting alternative methods. 
 
Hierarchical Taxonomies 
In (Peeters and Rodet 2002), (Livshin, Peeters and Rodet 2003) and (Peeters and Rodet 
2003) three different taxonomy levels were used - Pizzicato/Sustain, Instrument Families 
and Specific Instruments, as portrayed in Figure  4-A. 
 

 
Figure  4-A. A hierarchical taxonomy of musical instruments according to instrument types 
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The Pizzicato/Sustained, Instrument Families and Specific Instrument classifications 
could be treated as three completely separate taxonomies, but also as levels in a 
hierarchical classification tree, where the ultimate goal is to classify the musical samples 
into specific musical-instrument classes. 
While (Peeters and Rodet 2003) achieves higher recognition rates using hierarchical 
classification with this taxonomy, i.e., first classifying into Pizzicato/Sustained, then 
continuing down the tree with Instrument Families and finally classifying into Specific 
Instruments, in this thesis I use a simple, “flat” taxonomy of the Specific Instrument 
classes as my preliminary tests using the above 3-layer hierarchy did not show 
improvements in classification results over direct classification using the “flat”,  Specific 
Instrument Taxonomy. 
 
Automatic Hierarchical Taxonomy 
 (Kitahara, Goto and Okuno 2004) created automatically a hierarchical taxonomy for 
separate tones, which they call “AcoustMIH”. This taxonomy is based on acoustical 
similarity of musical instruments.   
 
(Essid, Richard and David 2006) automatically create a hierarchical taxonomy which 
maximizes recognition rate for short fragments of MIP Jazz music, with taxonomy nodes 
corresponding to combinations of several instruments playing concurrently.  
 
Non-Registered Instruments 
In (Livshin and Dubnov 1998) monophonic sounds of “Unknown” musical instruments, 
i.e., instruments unrepresented in the Learning set, were classified into 11 instrument 
families, such as “Brass”, “human voice”, “non-pitched percussion”, etc. In (Kitahara, 
Goto and Okuno 2004), sounds of non-registered instruments were classified into 
instrument families using an automatically generated, hierarchical taxonomy tree. 
 
Perceptual Taxonomies 
A somewhat different type of classification arises when the target is not an instrument 
class but a cluster of sounds that can be judged to be perceptually similar. In that case, 
classification does not rely on culturally shared labels but on timbre similarity measures 
and distance functions derived from psychoacoustical studies (Grey, 1977; Krumhansl, 
1989; McAdams, Winsberg, de Soete and Krimphoff, 1995). This type of perceptual 
classification or clustering was addressed to provide indexes for retrieving sounds by 
similarity, using a query by example strategy. 
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Chapter 5 DATA SETS 

During this work, several rather large sound databases were composed for research 
purposes from collected musical data. These databases are used for constructing the 
Learning and Test sets for the AMIR experiments - see the AMIR process overview, 
shapes #1 and #2 (Section  1.1).  

5.1 SEPARATE TONES 

“Separate Tone” databases are sound databases where each sample is a recording of a 
single musical note. The Attack transient is included in the sample, i.e., the note starts 
playing during the sample recording. The Release, i.e., the moment the instrument stops 
playing and the sound decays and disappears, is not necessarily included in the samples 
used in this work and many samples are truncated after a few seconds during the 
sustained part of the sound.  
 
In this thesis, excerpts collected from 12 different commercial and research separate-tone 
sound databases are used; these databases are practically clean of noise. The databases 
contain sounds recorded in different recording environments, using different individual 
instruments (e.g., using different violins in each sound database). The sound sets span the 
entire pitch range of each of the instruments and include vibrato and non-vibrato sounds 
where applicable.  
 
As I gradually gathered these sound database excerpts during my PhD studies, different 
chapters of the thesis may use different tone databases and different instruments 
according to what was available and applicable at the time of these experiments. Each 
thesis chapter specifies explicitly which instrument instances were used.  
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Preprocessing: 

All sounds are sampled in 44 KHz, 16 bit, mono. 

5.2 SOLO PERFORMANCES 

A “Solo” means a monophonic or polyphonic recording of a musical piece performed by 
a single musical instrument. While plenty of Solo recordings of the piano exist, Solos of 
other instruments, especially monophonic and semi-monophonic ones are rather rare and 
hard to find. In this thesis I have insisted that each Solo should be an authentic recording 
of a different musical piece, recorded in a different environment and played by a different 
musician in order to perform a fair and meaningful AMIR cross-evaluation (see  Chapter 9 
and the rest of this section).  
These facts have made obtaining my Solo collection (for research purposes) an extremely 
difficult and time consuming task, and a notable contribution in itself. This Solo database 
is available as part of the MCI project MusicDiscover (MCI 2004). 
 
The Solo sound database consists of 108 different ‘authentic’ Solo performances of seven 
instruments: bassoon, clarinet, flute, classical guitar, piano, cello and violin. These 
performances, which include classical, modern and ethnic music, were gathered from 
commercial CD’s (containing new or old recordings) and MP3 files collected on the 
Internet, played and recorded by professionals and amateurs.  
 
As noted above, each Solo is performed by a different musician and there are no Solos 
taken from the same concert. During the evaluation process the same Solo was never used, 
neither fully or partly, in both the Learning and the Test sets. The reason for these 
limitations is that the evaluation process should reflect the system’s ability to generalize – 
i.e., classify new musical phrases which were not learned, and were recorded in different 
recording conditions and played on different instruments and by different performers than 
the Learning set. We have proved (Livshin and Rodet 2003;  Chapter 9) that the 
evaluation results of a classification system which does learn and classify sounds 
performed on the same instrument and recorded in the same recording conditions, even if 
the actual notes are of a different pitch, are much higher than when classifying sounds 
recorded completely independently. The reason is that such a “non-independent” 
evaluation process actually shows the system’s ability to learn and then recognize 
specific characteristics of specific recordings and not its ability to generalize and 
recognize the “concept instrument”. 
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Preprocessing: 

In Solo recognition ( Chapter 12) and in the Learning set of the Source-Reduction 
Technique ( Chapter 13): 

Only the left channel is taken out of stereo recordings2.  A two-minute piece is taken from 
every Solo recording and cut into one-second cuts with 50% overlap – a total of 240 cuts 
out of each Solo3. The feature descriptors are computed on each one-second Solo-cut 
separately. 

 
In the Learning set of the Harmonic-Resynthesis Technique ( Chapter 13): 

F0-estimation is performed on the Solos and detected notes over a minimal length are 
resynthesized using Additive Synthesis. See Section  13.1.3.2. 

 
Solo List 

 

 Instruments Num. Solos Num. Samples 
Monophonic  
and Semi- 
monophonic 

Bassoon 10 2182 
Clarinet 21 4178 

Flute 14 2724 
Cello 17 3368 
Violin 14 2915 

    

Polyphonic Piano 16 3619 
Guitar 16 3478 

    

Total:  
Mono&Semi 
All 

 
5 
7 

 
76 
108 

 
15367 
22464 

Table  5-A. Solo collection 

Table  5-A shows the list of Solos in the Solo collection. There are monophonic 
instruments – bassoon, clarinet and flute, semi-monophonic (where an occasional 
polyphony of two sounds occurs) – violin and cello, and polyphonic – piano and guitar.   
 
In each row, along with the instrument name, the number of Solos of that instrument is 
written and the total number of one-second cuts from these Solos. 
 
 

                                                 
2 It could be argued that it is preferable to use a mix of both channels. Which method is actually better, 
depends on the specific recording settings of a musical piece. 
3 The “Num. Samples” column in Table  5-A shows that because some Solos are shorter than two minutes 
the total length of the Solos is actually 22464/2=187.2 minutes and not 108*2=216 minutes. 
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5.3 AUTHENTIC DUOS - REAL PERFORMANCES 

 Num.  
Duos 

Bassoon Clarinet Flute Cello Violin Guitar Piano 

Only monophonic 
and 
Semi-monophonic 

3  X X     
5    X X   
3   X X    
1   XX     
1 X  X     

[         

Polyphonic 
instruments 
present 

1  X    X  
1   X   X  
1  X     X 
2 X      X 

         

Total: 
Mono&Semi 
All 

 
13 
18 

 
1 
3 

 
3 
5 

 
8 
9 

 
8 
8 

 
5 
5 

 
 
2 

 
 

3 

Table  5-B. Authentic Duos 

Table  5-B describes the authentic Duo recordings used in  Chapter 13. “Authentic” means 
recordings of actual Duo performances, as opposed to “artificial” Mixtures of Solos 
which are described in the next section. Each row in the table shows how many Duos of a 
specific instrument combination are present. The last line shows the total number of Duos 
in which each instrument plays.  

5.4 MULTI-INSTRUMENTAL SOLO MIXES 

It is very difficult to obtain authentic recordings of “real” music along with their exact 
transcription, which is required in order to perform precise AMIR evaluation. The 
intuitive solution, music resynthesized from MIDI files, such as used in (Kitahara et al. 
2007), while producing exact performances of the symbolic notation, is rather too 
different from real musical recordings to substitute them - the sounds are synthetically 
clean, lacking articulations such as legato, very similar to each other with sounds of the 
same pitch being completely identical and note boundaries being too well defined. 
Therefore, evaluation with resynthesized MIDI files is not likely to indicate the ability of 
the recognition program to handle authentic music recordings. 
 
Artificially mixed authentic Solo performances are a compromise; on the negative side, 
the Solo sounds of the different instruments do not influence each other and do not create 
real, common room echo. Unfortunately also, musical composition rules could not be 
assumed to apply to the mixtures as the mixed Solos have no relevancy to each other.  
On the positive side, all the instrument articulations are present, the sounds are authentic - 
unlike music resynthesized from samples, the notes are not identical each time they are 
played, and while the resulting music is polyphonic the files could be labeled much easier 
than actual MIP musical recordings. In most of today’s studio recordings, a similar 
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process takes place anyway – each instrument is recorded on a separate track and at the 
production stage the tracks are intermixed. 
 
The instrument labeling of the Solo-mixes was performed in the following way: 

• A multiple-f0 estimation program was ran on the original Solos and on their 
mixture 

• Notes detected in the Solo mixtures, which lasted for at least a specific length of 
time (e.g., 0.25second or more), were searched in the f0-estimation data of the 
Solos which were mixed in that mixture, in the appropriate temporal locations 

• When a note from the Solo-mix was found in a participating Solo, it was labeled 
by the same instrument as the one playing this Solo  

• Notes found only in the mixture but not in the participating Solos were discarded 
 
This labeling method works rather well. The average percentage of discarded notes, i.e., 
those found in the mixes but not found in the Solos, is only 6% as indicated in the results-
table in Section  13.3  
 
When creating a Solo-mix database for a specific number of polyphonic notes, the 
coupling of Solos for creation of each multi-instrumental mix is done by randomly 
selecting Solos from different classes depending on desired polyphony level, then 
selecting randomly a 20-second segment out of each of these Solos (hence the length of 
each solo-mix is also 20 seconds), normalizing it and mixing these segments together. 
Each Solo is used only once in a Solo-mix database for a specific polyphonic level. 
At classification time, the Solos mixed in the classified mixture are removed from the 
Learning set for keeping the evaluation independent. 
 
Unfortunately, polyphonic instruments such as the guitar and piano are not appropriate 
for this labeling method as the employed f0-estimation program could not operate 
completely accurately on polyphonic Solos and “loses” some of the notes. Another 
problem is that the polyphonic level is required to remain constant for independently 
testing different voice numbers; the polyphony of the guitar and piano varies constantly 
throughout their Solo performances. Consequently, the musical instruments mixed are the 
bassoon, clarinet, flute, violin and cello, excluding the piano and guitar (which are 
included in the Solo and authentic Duo collections).  
 
The total number of Duo mixes is 34, Trios – 20, Quartets – 14 and Quintets – 10.   
 
See Section  15.4 for several other solutions to the evaluation problem. 
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Chapter 6 FEATURE 
DESCRIPTORS 

In order to perform AMIR of musical instrument sounds a collection of various statistics 
is computed on each sound sample; these statistics are called “Features”.  To understand 
where feature computation is integrated into the complete AMIR process, see the AMIR 
process overview (Section  1.1), shape #4.  
 
Each feature may have one or more values which I shall refer to as “Descriptors”. Rather 
than working with raw sound data, the classification algorithm deals with feature 
descriptor vectors of the sound samples. While saving space and computation time, most 
importantly, feature descriptors allow using knowledge and heuristics for intelligently 
distinguishing between the sounds rather than performing a dumb comparison of the 
sound waveforms.  
  
In order to encapsulate various characteristics of the sound signals an extensive set of 
features is used, consisting of 62 different feature types. Some of these features are 
comprised of several values while some other feature types are computed several times 
using different parameter types; this results in a total of 513 different feature descriptors. 
For example, Spectral Kurtosis “flavors” include Kurtosis computed on the linear 
spectrum, the log-spectrum, the harmonics envelope, etc., while the MFCC feature is a 
vector of 12 coefficients. 
  
Most of the feature descriptors are “frame based”, meaning that they are first computed 
on each frame of a Short-Time Fourier Transform (STFT) of the signal (Allen 1977; 
Allen and Rabiner 1977), using a sliding window of 60 ms with a 66% overlap, and then 
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the average and standard deviation over all these frames are used as the feature 
Descriptors.  
 
After computation, all feature Descriptors are normalized to the range of [0 - 1] using 
Min-Max Normalization.  
 
The feature computation routines were designed and written by Geoffroy Peeters (Peeters 
2004) as part of project Cuidado using Matlab (Matlab) and utilizing functionality from 
several sound toolboxes, such as the VoiceBox toolbox (Brookes 1998).  

6.1 FEATURE TYPES 

6.1.1 TEMPORAL FEATURES  

These features are computed directly on the signal 

6.1.2 ENERGY FEATURES 

Features referring to various energy content of the signal 

6.1.3 SPECTRAL FEATURES  

Features computed from the Short Time Fourier Transform (STFT) of the signal 

6.1.4 HARMONIC FEATURES  

Features computed from the Sinusoidal Harmonic modeling of the signal (harmonic 
series) 

6.1.5 PERCEPTUAL FEATURES  

Features computed using a model of the human hearing process. See (Stevens, Volkmann 
and Newman 1937) for the Mel Scale and (Zwicker and Terhardt 1980) for the Bark 
Scale 
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6.2 FEATURE LIST 

Note that as the feature set was enlarged with time, in several sections of the thesis an 
older, smaller, more compact set of features is used. As it makes no difference whether 
the Compact set or the Full set is used in these sections, the experiments were not 
repeated with the Full set. The Compact Feature Descriptor set has 45 features with a 
total of 162 descriptors while the Full Feature Descriptor set has 62 features with 512 
descriptors as noted above.  The Compact set includes only the mean of the frame-based 
features while the Full set has also the standard deviation.  
 
Table  6-A presents a full list of the feature descriptors. For full explanation of all the 
features and their computations see (Peeters 2004).  
 
The “Related References” column provides references for the features4.  Features without 
references are mostly variations of other features and lack individual references, for 
example Harmonic Spectral Skeweness is actually Spectral Skewness computed using the 
Harmonic Series. References marked “In instrument recognition” show sources which 
used a particular feature specifically for AMIR.  
 
The “#Desc” column lists the number of descriptors per feature in the form ‘X / Y’. On 
the left of the slash symbol (‘X’) is the number of descriptors in the Full Feature 
Descriptor set, while on the right of the slash, underlined (‘Y’), is the number of 
descriptors in the Compact Feature Descriptor set. Cells with a single number show 
descriptors present only in the Full set.  
 
The “STFT” column indicates whether a feature is computed on the STFT of the signal; if 
it is, then the average and the standard deviation of this feature computed over the STFT 
frames are included in the Full Feature Descriptor set, thus doubling the number of 
descriptors for this feature. 
 
Several of the feature descriptors are part of the MPEG-7 standard for audio. MPEG-7 is 
an ISO/IEC standard (ISO/IEC JTC1/SC29/WG11) developed by MPEG (Moving 
Picture Experts Group), formally named "Multimedia Content Description Interface", 
which provides a rich set of standardized tools to describe multimedia content. The 
reference (MPEG-7 2004) applies to all the MPEG-7 features in the table; the formal 
“MPEG-7” names of these features are listed in the “Related References” column.  
 
 
 
 
 
 

                                                 
4 Many of the references in the table complement those which appear in (peeters 2004), mentioned above. 
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Feature STFT 

 
#Desc. Related References 

Temporal Features    
Global Temporal 
Features 

   

Log Attack Time N 1 / 1 Attack time importance – (Eagleson and Eagleson 1947; Saldanha 
and Corso 1964; Elliot 1975)  
Log Attack Time - (Krimphoff, McAdams and Winsberg 1994) 
(Peeters, McAdams and Herrera 2000) 
“LogAttackTime” in MPEG-7

Temporal Increase N 1  
Temporal Decrease N 1 / 1  
Temporal Centroid N 1 / 1 (Peeters, McAdams and Herrera 2000) 

“TemporalCentroid” in MPEG-7 
Effective Duration N 1 / 1  
Instantaneous 
Temporal Features 

   

Signal Auto-
correlation function 

Y 12 / 12 In instrument recognition – (Brown 1998) 

Zero-crossing rate Y 1 In instrument recognition – (Smith, Murase and Kashino 1998)
Energy Features    
Total energy Y 1 (Kaminskyj and Materka 1995) 

“AudioPower” in MPEG-7 
Total energy 
Modulation  
(frequency, amplitude)  

N 
 

2 / 2 
 

In instrument recognition – (Martin and Kim 1998)  

Total harmonic energy Y 1  
Additive harmonic 
energy 

Y 1  

Total noise energy Y 1  
Additive noise energy Y 1  
Spectral Features    
Spectral Shape    
Spectral centroid Y 6 / 1 As “Brightness” - (Grey and Gordon 1978) 

As “Spectral Centroid” - (Beauchamp 1982) 

In instrument recognition – (Fujinaga 1998) 
“AudioSpectrumCentroid” and “SpectralCentroid” in MPEG-7  

Spectral spread Y 6 / 1 In instrument recognition – (Fujinaga 1998) 
 “AudioSpectrumSpread” in MPEG-7 

Spectral skewness Y 6 / 1 In instrument recognition – (Fujinaga 1998) 
Spectral kurtosis Y 6 / 1 (Dwyer 1983) 

In instrument recognition – (Fujinaga 1998) 
Spectral slope Y 6 / 1  
Spectral decrease Y 1 / 1  
Spectral rolloff Y 1 / 1  
Spectral variation Y 3 / 1  
Global spectral 
shape description 

   

MFCC Y 12 / 12 Cepstrum - (Bogert, Healy and Tukey 1963) 
MFCC - (Davis and Mermelstein 1980) 
In instrument recognition – (De Poli and Prandoni 1997) 

Delta MFCC Y 12 / 12 (Soong 1988),  (Rabiner 1993)
Delta Delta MFCC Y 12 / 12  
Harmonic Features   Additive Synthesis - (Risset 1985) 

Partial Tracking – (Depalle, Garcia and Rodet 1993) 
Fundamental 
frequency 

Y 1 / 1 Maximum likelihood algorithm – (Doval and Rodet 1993) 
“AudioFundamentalFrequency” in MPEG-7 
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Fundamental fr. 
Modulation 
(frequency, amplitude)  

Y 2 In instrument recognition – (Martin and Kim 1998)  

Noisiness Y 1 / 1 "AudioHarmonicity” in MPEG-7
Inharmonicity N 1 / 1 Piano - (Fletcher, Blackham and Stratton 1962) 

Saxophone - (Freedman 1967) 
In instrument recognition – (Martin 1999)

Harmonic Spectral 
Deviation 

Y 3 / 1 (Peeters, McAdams and Herrera 2000) 
“HarmonicSpectralDeviation” in MPEG-7

Odd to Even 
Harmonic Ratio 

Y 3 / 1 In instrument recognition – (Martin and Kim 1998) 

Harmonic Tristimulus Y 9 / 3 (Pollard and Jansson 1982)
Harmonic Spectral 
Shape 

  The computations of these features are equivalent to corresponding 
spectral features, but computed on the harmonic series. 

Harmonic Spectral 
centroid 

Y 6 / 1 (Peeters, McAdams and Herrera 2000) 
“HarmonicSpectralCentroid” in MPEG-7

Harmonic Spectral 
spread 

Y 6 / 1 (Peeters, McAdams and Herrera 2000) 
“HarmonicSpectralSpread” in MPEG-7

Harmonic Spectral 
skewness 

Y 6 / 1  

Harmonic Spectral 
kurtosis 

Y 6 / 1  

Harmonic Spectral 
slope 

Y 6 / 1  

Harmonic Spectral 
decrease 

Y 1 / 1  

Harmonic Spectral 
rolloff 

Y 1 / 1  

Harmonic Spectral 
variation 

Y 3 / 1 (Peeters, McAdams and Herrera 2000) 
“HarmonicSpectralVariation” in MPEG-7

Perceptual Features   Mel Scale - (Stevens, Volkmann and Newman 1937) 
Bark Scale -  (Zwicker and Terhardt 1980)  

Loudness Y 1 / 1 (Zwicker 1990) 
(Moore, Glasberg and Baer 1997) 

Relative Specific 
Loudness 

Y 24 / 20 (Zwicker 1990) 

Fluctuation strength N 24 / 24 As “spectral irregularity” - (Krimphoff, McAdams and Winsberg 
1994) 
As “spectral flux” - (Krumhansl 1989) 

Mean Fluctuation 
strength 

N 1 / 1 As “spectral irregularity” - (Krimphoff, McAdams and Winsberg 
1994) 
As “spectral flux” - (Krumhansl 1989) 

Roughness N 24 / 24 (Von Békésy 1960), (Terhardt 1974)
Mean Roughness N 1 / 1 (Von Békésy 1960), (Terhardt 1974)
Sharpness Y 1 / 1 (Aures 1984)
Spread Y 1 / 1  
Perceptual Spectral 
Envelope  
Shape 

  The computations of these features are equivalent to corresponding 
spectral or harmonic features, but computed on perceptual bands. 

Perceptual Spectral 
centroid 

Y 6  

Perceptual Spectral 
spread 

Y 6  

Perceptual Spectral 
skewness 

Y 6  

Perceptual Spectral 
kurtosis 

Y 6  

Perceptual Spectral 
Slope 

Y 6  
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Perceptual Spectral 
Decrease 

Y 1 

Perceptual Spectral 
Rolloff 

Y 1  

Perceptual Spectral 
Variation 

Y 3  

Odd to Even Band 
Ratio 

Y 3  

Band Spectral 
Deviation 

Y 3  

Band Tristimulus Y 9  
Various features   

Spectral flatness Y 4 / 4 (Jayant and Noll 1984) 
In instrument recognition - (Herre, Allamanche and Hellmuth, 2001) 
“AudioSpectrumFlatness” in MPEG-7

Spectral crest Y 4 / 4 (Jayant and Noll 1984)

Table  6-A. List of feature descriptors and references 
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Chapter 7 FEATURE 
WEIGHTING AND 
SELECTION 

Not all feature descriptors provide the same amount of distinguishing AMIR information; 
some may be simply redundant while others could even confuse the classification 
algorithm, diminishing the recognition rate, if not handled properly.  
 
Feature Weighting 
In a feature weighting process, new “super-features” are created from weighted 
combinations of the original feature descriptors in order to maximize classification 
performance. In many cases the number of these “super-features” is smaller than the 
number of original features, thus requiring less memory, storage and classification time. 
 
Feature Selection 
Sometimes it is desirable to choose only a subset of the features. Knowing which feature 
descriptors are the most important ones for class separation has many uses: 
 

• Find out which feature descriptors are required and which ones are redundant 
• Discover which qualities distinguish best among the various sound sources 
• Save descriptor calculation time 
• Save descriptor storage space 
• Reduce memory requirements 
• Reduce classification time 
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To understand where feature weighting and selection are integrated into the complete 
AMIR process, see the AMIR process overview (Section  1.1), shape #6.  
 
Unfortunately finding the ideal feature set is impossible without testing all feature 
combinations, which is an NP-hard problem (Cover and Van Campenhout 1977); this is 
one reason why different feature selection algorithms (with non-exponential complexity) 
may select a somewhat different “best feature set” using the same data. In this thesis two 
feature selection algorithms are used – GDE and CFS. My GDE algorithm, being LDA 
based, has the advantage of producing slightly higher recognition rates when the selected 
descriptors are used for classification with LDA+KNN (discussed in Section  8.3) – the 
classification algorithm used in the great majority of experiments in this thesis. CFS, 
however, has the advantage of dealing “harsher” with correlated variables and thus 
producing somewhat more “interesting” variable lists than the seemingly more erratic 
GDE results, thus providing the user with a better insight into the AMIR distinguishing 
sound qualities, especially when the Complete Feature Descriptor set is used which has 
many more descriptor “flavors” than the Compact Feature set (see Section  6.2).    
For a discussion of relevance vs. usefulness and definitions of the various notions of 
relevance, see the review articles of Kohavi and John (1997) and Blum and Langley 
(1997). 
 
Disclaimer - this chapter does not attempt to cover the Pattern-Recognition fields Feature 
Selection and Feature weighting which are very considerable, but rather sparingly discuss 
the techniques used in this thesis. For a comprehensive review of variable and feature 
selection, see (Guyon and Elisseeff 2003). 

7.1 LINEAR DISCRIMINANT ANALYSIS  

The objective of Linear Discriminant Analysis (LDA) (McLachlan 1992) feature 
weighting algorithm is to perform dimensionality reduction while seeking to find 
discriminating directions along which the classes are best separated. 
 
Methodology 

• Suppose there are C classes 

• Let iµ be the mean vector of class i, i = 1, 2, . . ,C 

• Let Mi be the number of samples ݕ within class i, i = 1, 2, . . ,C, 

• Let M =  
0

C

i

Mi
=
∑  be the total number of samples. and 
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Within-class scatter matrix:  

1 1

( )( )
iMC

T

w j j j j

i j

S y yµ µ
= =

= − −∑∑  

 
 
Between-class scatter matrix: 

1

( )( )
C

T

b i i

i

S µ µ µ µ
=

= − −∑  

where 

1

1 C

i

iC
µ µ

=

= ∑
 
(mean of entire data set) 

 
 

• LDA computes a transformation that maximizes the between-class scatter while 
minimizing the within-class scatter (called Fisher criterion): 
 

maximize
det( )

det( )
b

w

S

S
 

 

 
Linear transformation implied by LDA 

The linear transformation is given by a matrix U which columns are the eigenvectors of 
1

w bS S−
(called Fisherfaces). 

 

1 1

2 2 ( ) ( )
... ...

T

T

T

T
k k

b u

b u
x U x

b u

µ µ

⎡ ⎤⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ = − = −⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦
 

 
• The eigenvectors are solutions of the generalized eigenvector problem: 

 

b k k w kS u S uλ=
 

 

There are at most C − 1 non-zero generalized eigenvectors (i.e.,K < C) 
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Existence of 
1

wS −
  

• If Sw is non-singular, a conventional eigenvalue problem is obtained by writing: 
 

1
w b k k kS S u uλ− =  

 

• In practice, Sw is often singular since some variables could be partly dependent.  
To alleviate this problem, two projections can be performed:  

 
 (1) Principal Component Analysis (PCA) (Pearson 1901) is first applied to the    
      data set to reduce its dimensionality. 

 

1 1

2 2

... ...

n k

x p

x p
PCA

x p

⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥− − > − − >⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
 

 
 (2) LDA is then applied to further reduce the dimensionality to C − 1. 
 

1 1

2 2

1

... ...

k C

p z

p z
LDA

p z −

⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥− − > − − >⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
 

 

 
In most of the experiments in this thesis LDA is used in conjunction with KNN as the 
classification method. See Section  8.3.  
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7.2 GRADUAL DESCRIPTOR ELIMINATION 
(GDE) USING DISCRIMINANT ANALYSIS 

My Gradual Descriptor Elimination feature selection algorithm provides the 
dependencies between the number of descriptors and the average success of the 
classifications, estimating which are the best n descriptors to keep for a desired number of 
descriptors or a desired recognition rate5.  

7.2.1 THE GDE ALGORITHM 

• Suppose there are C classes. Let K= C - 1 
 

• Suppose there are F feature descriptors of S samples in  

feature descriptor matrix ܦௌி  of the sample database. 
 

1. A “classification success” percentage for ܦௌி  is estimated, using for example 
Leave-One-Out (LOO) or Self-Classification (see  Chapter 9 for Evaluation 
Techniques), and recorded along with the current list of descriptors. 
 

2. Let ܷி  = LDA(normalize (ܦௌி) )  
 

Each column f in ܦௌி  (containing the values of descriptor f), is normalized to  
[0 - 1]. A linear discriminant analysis transformation matrix is calculated on the 

normalized ܦௌி . 
 

3. An 'Importance Coefficient' ܲ is calculated for each descriptor: 
 

• Let ிܸ = ܾܽݏ ൦ݑଵ ȉ ଶݑߣ ȉ ிݑǥߣ ȉ ߣ
൪  

 
Where: ߣ is the eigenvalue corresponding to the eigenvector in column  

 k of ܷி,  1≤ k≤ K 

 

The K columns of ܷி  (the Fisherfaces), are multiplied by the 
corresponding eigenvalues (their characteristic roots) and converted to 
distances. Note that the ratio of the eigenvalues indicates the relative 

                                                 
5 Obviously as long as this desired rate is smaller than the maximum recognition rate available 



Feature Weighting and Selection  Chapter 7
 

47 
 

discriminating power of the discriminant functions. If the ratio of two 
eigenvalues is 1.4, for instance, then the first discriminant function 
accounts for 40% more between-class variance in the dependent categories 
than does the second discriminant function. See Section  7.1 for 
computation of LDA. 
 Let ܲ ൌ   ݒ

ୀଵ  

 

Where: 1≤ f≤ F 
 

Each row of ிܸ  is summed, providing the 'Importance Coefficient'  ܲ 
for descriptor  f. 
 

4. The descriptor with the lowest ܲ  is removed. 
 

5. Steps 1 - 4 are repeated until no descriptors are left. 

7.2.2 EXAMPLE EVALUATION 

7.2.2.1 Sound Database 

Evaluation is performed using an excerpt from the extensive IRCAM Studio OnLine a.k.a. 
“SOL” (Ballet 1998) separate tone database (see Section  5.1). This excerpt contains 1325 
sound samples of 20 musical “instruments” - guitar, harp, violin (pizzicato and sustained), 
viola (pizzicato and sustained), cello (pizzicato and sustained), contrabass (pizzicato and 
sustained), flute, clarinet, oboe, bassoon, alto sax, accordion, trumpet, trombone, French 
horn and tuba.  
 
These sounds are classified using the three taxonomies in Figure  4-A: pizzicato/sustained 
(2 classes), instrument families – plucked strings, bowed strings, flute/reeds and brass (4 
classes) and instrument names (20 classes).  All the samples are two-seconds long, 
monophonic and sampled in 44.1 KHz with 16 bit resolution. 

7.2.2.2 Evaluation 

GDE was applied to the SOL database excerpt using the 3 different taxonomies. The 
Compact Feature Descriptor set is used (see Section  6.2), containing 162 descriptors. The 
following graphs depict the Leave-One-Out recognition rate (see Section  9.7.3) against 
the retained number of descriptors in the different taxonomies. Note that sometimes the 
results actually improve after removing a misleading descriptor. 
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Figure  7-A. GDE using the Pizzicato/Sustain taxonomy  

The results in Figure  7-A show it is possible to decrease the number of descriptors from 
162 down to 3 and still get an LOO recognition rate of 97.43% for the Pizzicato/Sustain 
taxonomy. 

 
 

         
Figure  7-B. LOO recognition rates using GDE-selected descriptors with the Instrument Families  

(on the left) and the Specific Instruments taxonomies 

For the Instrument Families and the Specific Instrument taxonomies, LOO results have 
decreased below 90% around 30 descriptors. 
 
LOO does not use random choices, therefore it has the advantage here over other 
database self-consistence evaluation methods which do use random numbers, such as 
Self-Classification (see Section  9.4.1), by giving a constant and consistent recognition 
rate not influenced by the random choices. Nevertheless, in order to show that LOO 
results correspond closely to the results of the more common Self-Classification method, 
Figure  7-C depicts the average results of Self-Classification using the same descriptors as 
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above (selected by the GDE Algorithm), performing 20 Self-Classification rounds, each 
time randomly selecting a Learning set consisting of 66% of the samples.  

 
 Figure  7-C. Self-Classification rates using GDE descriptors with the Instrument Families  

(on the left) and the Specific Instruments taxonomies 

It is easy to see that the result charts for using Self-Classification and LOO are very 
similar.  

7.3 CORRELATION-BASED FEATURE 
SELECTION (CFS) 

The entropy-based CFS algorithm scores and ranks the “worth” of subsets of features by 
considering the individual predictive ability of each feature along with the degree of 
redundancy between them. Subsets of features that are highly correlated with the class 
while having low intercorrelation are preferred. As the feature space is very large and 
checking all the feature combinations is not practical, CFS starts with an empty set and 
adds features using a stepwise forward search method, searching the space of feature 
subsets by greedy hillclimbing augmented with a backtracking facility. For further 
reading on CFS see (Hall 1998). In this thesis, the WEKA data-mining software (Witten 
and Frank 2005) implementation of the CFS algorithm is used. 
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Chapter 8 CLASSIFICATION 
ALGORITHMS 

After the feature descriptors are computed on the sound samples, each sample is 
classified as belonging to a musical instrument by the classification algorithm. To 
understand where the classification algorithm is integrated into the complete AMIR 
process, see the AMIR process overview (Section  1.1), shape #10.  
 
A classification algorithm is an algorithm which receives as input two sets of data 
samples – the Learning Set and the Test Set. The Learning Set contains along with each 
data sample its corresponding class. The purpose of the classification algorithm is to 
classify the data samples in the Test Set by comparing them with the samples in the 
Learning Set. 
 
There are many different types of classification algorithms and covering them is out of 
scope of this work. There are many books on classification algorithms; for further reading 
on the subject, see (James 1985) for example.  
The purpose of this chapter is to introduce only the algorithms used in this thesis and 
explain briefly why these were chosen. 
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8.1 NEURAL NETWORKS 

Disclaimer - Artificial Neural-Networks are a considerable research field by its own 
rights and way beyond the scope of this simplistic Section. For comprehensive 
information on Neural Networks and the backpropagation algorithm read (Aleksander 
and Morton 1990). 
 
An Artificial Neural Network (ANN) is an information processing paradigm that is 
inspired by the way biological nervous systems, such as the brain, process information. 
The key element of this paradigm is the novel structure of the information processing 
system. It is composed of a large number of highly interconnected processing elements 
(neurons) working in unison to solve specific problems. ANNs, like people, learn by 
example. An ANN is configured for a specific application, such as pattern recognition or 
data classification, through a learning process. Learning in biological systems involves 
adjustments to the synaptic connections that exist between the neurons. This is true of 
ANNs as well.  
 
The fundamental building block in an Artificial Neural Network is the mathematical 
model of a neuron. The three basic components of the (artificial) neuron are: 
 
1. The synapses or connecting links that provide weights, ݓ, to the input values, ݔ for ݆ ൌ  ͳǡ Ǥ Ǥ Ǥ ݉; 
2. An adder that sums the weighted input values to compute the input to the activation 
function ݒ ൌ ݓ  σ ୀଵݔݓ , where ݓ  which is called the bias is a numerical value 
associated with the neuron. It is convenient to think of the bias as the weight for an input ݔ whose value is always equal to one, so that ݒ ൌ σ ୀݔݓ ; 
3. An activation function ݃ (also called a squashing function) that maps ݒ to ݃ሺݒሻ the 
output value of the neuron. This function is a monotone function. 
 
While there are numerous different artificial neural network architectures that have been 
studied by researchers, the most successful applications of neural networks have been 
multilayer feedforward networks. These are networks in which there is an input layer 
consisting of nodes that simply accept the input values and successive layers of nodes 
that are neurons. The outputs of neurons in a layer are inputs to neurons in the next layer. 
The last layer is called the output layer. Layers between the input and output layers are 
known as hidden layers. 
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8.1.1 BACKPROPAGATION (BP) 

A backpropagation neural network is a feedforward network which uses the 
backpropagation algorithm for its training process.  

In order to train a neural network to perform some task, the weights of each unit must be 
adjusted in such a way that the error between the desired output and the actual output is 
reduced. This process requires that the neural network compute the error derivative of the 
weights (EW). In other words, it must calculate how the error changes as each weight is 
increased or decreased slightly. The backpropagation algorithm is the most widely used 
method for determining the EW. 

The backpropagation algorithm is easiest to understand if all the units in the network are 
linear. The algorithm computes each EW by first computing the EA, the rate at which the 
error changes as the activity level of a unit is changed. For output units, the EA is simply 
the difference between the actual and the desired output. To compute the EA for a hidden 
unit in the layer just before the output layer, all the weights between that hidden unit and 
the output units to which it is connected are first identified. Those weights are then 
multiplied by the EAs of those output units and the products are added. This sum equals 
the EA for the chosen hidden unit. After calculating all the EAs in the hidden layer just 
before the output layer, the EAs can be computed in similar fashion for other layers, 
moving from layer to layer in a direction opposite to the way activities propagate through 
the network. This is what gives backpropagation its name. Once the EA has been 
computed for a unit, it is straightforward to compute the EW for each incoming 
connection of the unit. The EW is the product of the EA and the activity through the 
incoming connection. 

Note that for non-linear units such as tansig, which is used in this work, the 
backpropagation algorithm includes an extra step. Before backpropagating, the EA must 
be converted into the EI, the rate at which the error changes as the total input received by 
a unit is changed.  

The Backpropagation Neural network is used in  Chapter 9 and has a single hidden layer 
of 80 neurons, using the tan-sigmoid transfer function in the input and hidden layers. It is 
trained using the Conjugate Gradient with Powell/Beale Restarts algorithm (Powell 1977), 
until a Mean Square Error of 0.004 is reached.  

 
Advantages and disadvantages of BP6  
Advantages: can classify non-linearly separable data, does not require normal distribution 
of the classes, deals well with redundant or dependent variables, rapid classifications.  
 

                                                 
6 These advantages and disadvantages apply also to Support Vector Machines (SVM) (Boser, Guyon and 
Vapnik 1992) and to many other types of Neural Networks in addition to backpropagation.  
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Disadvantages: very slow learning process and relatively complicated to predict, selecting 
good starting parameters and a stopping condition which do not cause under/over-fitting 
to input data is somewhat a matter of trial and error. 

8.2 K-NEAREST NEIGHBORS (KNN) 

The classification experiments in this work are performed mostly using the KNN 
classification algorithm preceded by LDA. The K-nearest neighbor (Fix and Hodges 
1951) is a supervised non-linear classification algorithm where the classifier is based on a 
majority voting scheme and does not use a model to fit the Learning set.  
 
Given an unknown feature vector x and a distance measure, then: 
• Out of the N vectors in the Learning set, identify the k vectors which are the “nearest 

neighbors” of x, i.e., have the minimal distance to x.  
• Out of these k vectors, identify the number of vectors ik , that belong to each class iω , 

i = 1, 2 , . . . , C. Obviously, ii
k k=∑ . 

• Assign x to the class iω  with the maximum number of vectors ik . 

 
The most frequently used distance measure for KNN and the one used in this work is the 

Euclidean distance, defined for two n dimensional points P and Q, as: 2

1

( )
n

i i

i

d p q
=

= −∑  

8.2.1 SELECTION OF “K” 

In this work, the value of K (number of neighbors) is chosen from a range of values, 
usually 1 – 80, in order to find the one which produces the best results.  
 
One of these two methods is used here for best-K selection: 

• LOO or one of the “Minus-1” cross-validation methods is performed on the 
Learning set with a range of K values, and the K which produces the best results 
is selected; this method imitates a “real-world” situation where the Learning set is 
provided and the Testing sets are completely unknown a-priori.  

• One of the “Minus-1” evaluation methods is performed with different K values 
and the K leading the best average score on the complete data set is selected; this 
method is useful when the evaluation data originates from different sources, such 
as in the case of “Minus-1-Solo”. This method produces K values which are 
suited for the general, or “concept” classification, as the Learning and Test sets in 
the “Minus-1” methods are independent in each evaluation round and thus the 
selected K suits best the largest number of independent classifications. 
See  Chapter 9 for more details on evaluation methods. 
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8.3 CHOSEN CLASSIFICATION METHOD - 
"LDA+KNN" 

In most classifications performed in this work the data is first transformed using LDA 
and then classified with KNN.  
 
There are several advantages of using this sequence of methods: 
LDA weighs out the descriptors, thus eliminating the problem of redundant or dependent 
variables which are the main weakness of the KNN algorithm, which treats all variables 
as having equal importance. LDA projects the samples into the linear plane which best 
clusters together the samples of each class (minimizing “within-class scatter”) while 
distancing the different classes from each other (maximize “between-class scatter”); this 
helps KNN which requires samples from the same class to be close together and away 
from samples of other classes. 
 

 
Figure  8-A. Two classes (‘o’ and ‘+’) and their LDA projection.  

Example of LDA “saving” KNN by diminishing the influence of problematic 
 descriptors and clustering classes together 
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Figure  8-A exemplifies two classes and the resulting LDA projection - class #1 is marked 
with ‘+’ signs and class #2 is marked with ‘O’s. The points marked “ORIGINAL 
CLASSES” are the samples of the original two-dimensional classes, while the points 
marked “LDA PROJECTION” (on location 0 of the Y axis) are these original samples 
transformed by LDA into one-dimensional space.   

 
Figure  8-A clearly shows how all the samples of the original ‘+’ class would have been 
classified incorrectly by the distance-based KNN because the closest neighbors of all 
these samples are of the ‘O’ class. After the LDA transform, however, both the ‘+’ and 
‘O’ classes are clustered together and “ready” for KNN. 
 

 
Figure  8-B. Three classes (A - ‘+’, B - ‘O’ and C - ‘ǻ’) and their LDA projection (a, b and c).  

Example of KNN (distance-based) handling non-linearly separable classes 

While LDA cannot separate well non-linearly separable data7 (see Section  7.1 for more 
details), KNN does not require specific distribution or linearity and performs the 
classification well even with non-linearly separable data as long as the classes are 
distributed in “chunks”.  
 
Figure  8-B exemplifies three classes and the resulting LDA projection - class ‘A’ is 
marked with ‘O’ signs, class ‘B’ is marked with ‘+’s and class ‘C’ is marked with ‘ǻ’s. 

                                                 
7  Note that my AMIR experiments with various non-linear discriminant analysis methods (quadratic 
discriminant analysis, kernel discriminant analysis, etc.) have not shown any advantages over using 
LDA+KNN while producing different extra problems depending upon the specific DA method tested. 
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The LDA projection of the classes to one-dimensional space8 is labeled with ‘a’, ‘b’, and 
‘c’ respectively (these are positioned in location 0 of the Y axis). Notice class A which is 
clustered in four separate chunks. Although LDA cannot manage linearly clustering A 
into one chunk, yet because after the linear projection the samples ‘a’ remain closely-
distanced, KNN can still classify this data properly. 
 
Although unlike classification methods which fit a model to the data, KNN has somewhat 
large memory requirements at classification time as it needs all data to be present (O(n), 
where n is the number of samples), LDA reduces the data dimensionality considerably 
(down to C-1 dimensions or less, where C is the number of classification classes), 
practically eliminating memory problems. This LDA dimension reduction is done by 
computing a transformation matrix using the Learning set (computation required only 
once for a system with a constant Learning set) and multiplying it by the Learning set and 
by any future Test sets reducing their dimensions. 
For example, in  Chapter 12 when classifying Solos of 7 musical instruments using the 
Full Feature Descriptor Set (see  Chapter 6), the number of dimensions of the feature 
matrix is reduced by LDA from 512 down to 6, reducing storage and memory 
requirements by 98.83%.  
 
Compared to the Bayesian Gaussian Classifier (see Gibbs 1998) for example, KNN does 
not require the data to have a normal distribution which the Gaussian Classifier is based 
upon. Neural networks such as Backpropagation and non-linear Support Vector Machines 
(SVM) (see Boser, Guyon and Vapnik 1992), while being able to classify rapidly, have 
extremely slow learning (“training”) processes such that are impractical for my “Minus-1” 
cross-validation evaluation methods which require multiple classification rounds 
(see  Chapter 9). 
 
LDA+KNN is relatively simple, a learning process is not required at all while 
classification is fast, and the classification, being distance-based, is performed well even 
with non-linearly separable and non-Normal distributed data. The LDA requirement for 
having several times more samples than dimensions is met throughout this document 
except in  Chapter 9, where very small databases are used on purpose in order to 
artificially produce much higher classification results with a Backpropagation network 
than with LDA+KNN and prove the point of that chapter. 
Comparative experimental motivation for LDA+KNN was given in (Livshin, Peeters and 
Rodet 2003), where an average of 20 Self-Classification experiments using 16 
instruments from the IRCAM Studio OnLine database and the Compact Feature set 
(Section  6.2), produced slightly higher recognition rates with LDA+KNN than with 
LDA+Gaussian Classifier (the Gaussian classifier without LDA producing much lower 
results) and Learning Vector Quantization (LVQ) neural network (Kofidis et al. 1996) in 
all three taxonomies compared – Pizzicato/Sustain, Instrument Families and Musical 
Instruments (Figure  4-A). 
                                                 
8 Obviously in this example figure LDA does not project the data unto the X axis. The LDA transformation 
appears on location 0 of the Y axis only for displaying the data conveniently in the same graph. 
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Chapter 9 DIFFERENT 
EVALUATION 
TECHNIQUES AND 
THE IMPORTANCE 
OF CROSS-
DATABASE 
EVALUATION 

Many papers, (Martin and Kim 1998, Fraser and Fujinaga 1999, Kaminskyj 2001, 
Agostini et al. 2001, Peeters and Rodet 2002) and others dealing with AMIR have used 
sounds taken from a single sound database package for evaluation of their proposed 
AMIR algorithms, using an evaluation method which is referred to here as “Self-
Classification”.  
This chapter first performs an experiment which demonstrates the problems with Self-
Classification and then introduces several better evaluation techniques that use data from 
different sources in the Learning and Test sets.   
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The experiment demonstrates the following claims: 
Evaluation results using a single sound database are not necessarily a good statistic for 
the ability of a classification algorithm to learn, generalize or classify well. They also do 
not demonstrate the generalization ability of the trained classifier, after it has learned the 
evaluation database, to perform in "real-world" applications - classifying sounds recorded 
in diverse recording conditions. Furthermore, Self-Classification evaluation results do not 
indicate how well the evaluation database is representative of the possible sound 
variations of the classified instruments.  
A feature selection algorithm might choose different features for classification of the 
same instrument types, depending on the sound database it is activated on. This also 
means that an evaluation of features using a single database will not necessarily 
demonstrate their suitability for universal classification of the instruments. 
The "Minus-1-DB" evaluation method is presented. This method uses several databases, 
each one being classified by the others joined together. It is demonstrated that this 
method does not have the shortcomings detailed above.  
 
After it is shown that cross-database evaluation is necessary, two other new cross-
validation evaluation techniques are presented - “Minus-1-Solo” and “Minus-1-Instance”; 
both use sounds from independent sources in the Learning and Test sets. These 
evaluation techniques are used later in  Chapter 11,  Chapter 12 and  Chapter 13.  
 
To see how AMIR evaluation is integrated into the AMIR process, see the AMIR process 
overview (Section  1.1), shapes #7 - #9. 

9.1 INTRODUCTION 

An ultimate goal of research dealing with classification of sounds of musical instruments 
is to create what I call a "Concept Classifier" - such classifier could recognize which 
instruments are playing regardless of specific recording conditions, a specific performer 
or a specific instrument. But what are the qualities that distinguish between the sounds of 
one Concept instrument and the other, e.g., which features really characterize the sound 
of the Concept Violin and not just a specific violin recording? 
 
Various AMIR papers suggest collections of specific descriptors to be computed on the 
sound samples. These descriptors are supposed to encapsulate the differences between 
different musical instruments. Another approach is to compute a large collection of 
descriptors and then use a feature selection algorithm which attempts to choose the best 
ones, e.g., (Peeters and Rodet 2002). Various classification algorithms are compared, 
with the goal of finding the one which can make the best use of the descriptors and reach 
the highest AMIR recognition rate for the classified musical instruments.  
Until recently, right up to the time (Livshin and Rodet 2003) was published and dealt 
with issues of database-independent evaluation (upon which part of this chapter is based), 
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the common evaluation method for evaluating instrument-recognition techniques, which 
is called here "Self-Classification", was to use a relatively large and well known sound 
database (usually McGill (Opoloko and Wapnick 1991)), choose out of every instrument 
class a random Learning set of a desired size, e.g., 66% of the samples, and use this 
Learning set to classify the remaining samples. The number of papers using a single 
sound database for evaluation of their proposed sound classification processes, as 
mentioned above, is quite large - (Martin and Kim 1998, Fraser and Fujinaga 1999, 
Kaminskyj 2001, Agostini et al. 2001, Peeters and Rodet 2002) and others, while using 
cross validation with samples out of several independent databases (Eronen 2001) was 
uncommon. 
 
The problem with an evaluation which uses a single sound database as a source for both 
the Learning and Test sets, is that normally the samples in the Learning set are quite 
similar to the ones in the Test set - the same recording conditions, same specific musical 
instruments used for the recording, same performer, etc. Does such an evaluation process 
really reflect the classification process's ability to recognize the Concept Instruments, or 
does it just demonstrate the specific qualities of the samples and the self consistency of 
the evaluation database? How much does this database reflect the variety of possible 
sounds of the classified instruments and is it fit for training a Concept Classifier? 
 
This chapter shows that evaluation using a single database indeed does not necessarily 
represent the generalization abilities of the classification process, the selected feature 
descriptors or the Learning database. An alternative evaluation method is presented, 
"Minus-1-DB", which offers better evaluation of the generalization capabilities and the 
suitability of the classification process for "realistic" tasks. As mentioned, "Minus-1-DB" 
uses several databases for evaluation, where every one of them is classified by the rest 
joined together. The assumption behind this method is that it is reasonable to expect 
samples from different databases to be recorded in different conditions. 
The intuitive claim that joining several sound databases in a Learning set helps the 
classifier to deal better with new samples and get nearer to being a Concept Classifier is 
also demonstrated. 
 
Following the experiment results, besides Minus-1-DB, two other new cross-validation 
evaluation techniques are presented - “Minus-1-Solo” and “Minus-1-Instance”, which 
also use sounds from independent sources in the Learning and Test sets. 
 
Finally - is it really possible to reach the theoretical goal of a Concept Classifier, one 
which could deal with considerable success with the diverse sound possibilities of 
Concept Instruments? In Section  11.8.1.1 a Minus-1-Instance (cross-database evaluation 
technique) recognition rate of over 95% for 10 instruments is achieved.  
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9.2 THE TESTING SET 

9.2.1 THE SOUNDS 

Excerpts out of 5 sound databases are used in this experiment: Ircam Studio Online 
(“SOL”) (Ballet 1998), University of Iowa Musical Instrument Samples (“IOWA”) (Fritz 
1997), McGill University Master Samples (“McGill”) (Opoloko and Wapnick 1991) and 
the sound collections Pro and Vi. These databases have been recorded in various acoustic 
conditions and with different recording equipment. 
 
There are seven instruments common to all these sound databases: bassoon, contrabass, 
clarinet, French horn, flute, oboe, and cello; these instruments were extracted out of every 
database for the experiment. The selected sounds were those played with a "regular" 
playing technique (not pizzicato, martellato, etc).  
 
The number of samples extracted out of each database, is: 
SOL (581), IOWA (1289), McGill (85), Pro (158), Vi (249)9 
 
All the samples were resampled in mono, 44.1 KHZ sampling rate, 16bit, and clipped to 
two seconds. 

9.2.2 FEATURE DESCRIPTORS 

The Compact Feature Descriptor set (see  Chapter 6) is used in this chapter. Before each 
classification round, the feature descriptors of the databases used in this round are 
normalized together to the range [0 – 1] using the Min-Max normalization method (STA 
2001). Throughout this section, when there is a reference to a sample, it means its 
corresponding vector of feature descriptor values.  
 
 
 
 
 
 

                                                 
9 As already mentioned, the LDA requirement for having several times more samples than dimensions is 
met throughout the thesis except here, where very small databases are used on purpose in order to 
artificially produce much higher classification results with a Backpropagation network than with 
LDA+KNN and prove one of the points of the chapter. 
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9.3 CLASSIFICATION ALGORITHMS 

Two classification processes are used in the experiments in this chapter:  

9.3.1 "LDA+KNN" 

See Sections  7.1,  8.2 and  8.3 for full explanation of Linear Discriminant Analysis (LDA), 
the K-Nearest Neighbor classifier (KNN) and the LDA+KNN combination. 
  
The value of K used with KNN is selected here from the range of [1 - 20] using LOO on 
the Learning set (Section  8.2.1).  

9.3.2 "BP80"  

The backpropagation neural network used in this chapter has a single hidden layer of 80 
neurons, uses "tansig" functions in all the layers and is trained on the Learning set using 
the Conjugate Gradient with Powell/Beale Restarts algorithm until a Mean Square Error 
of 0.004 is reached 10 . The trained network is then activated on the Test set; this 
classification process is called "BP80" throughout this section.  
To read about Neural-networks see Section  8.1. 
 
Note that an advantage of BP over LDA+KNN is that it can fit models to comparatively 
small collections of samples while LDA needs the number of samples to be larger than 
the number of descriptors to operate well. 

9.4 EVALUATION METHODS 

This section presents the popular Self-Classification evaluation method, Mutual-
Classification and Minus-1-DB, which are to be used in the following experiment for 
“denouncing” the Self-Classification method. Following the conclusions of the 
experiment, two more evaluation methods are presented later. 

9.4.1 SELF-CLASSIFICATION  EVALUATION  METHOD 

In this common evaluation method, a single database of sound samples is split into a 
Learning set and a Test set, thus the name “Self-Classification”. X% of the samples of 
each class are randomly selected for the Learning set and the rest become the Test set. In 

                                                 
10 Class information of each sample is represented in the learning set by a vector of 7 numbers (7 is the 
number of classes), with '1' in the index of the correct class and '0's in the rest. The mean square error is 
computed using these vectors and the neural network outputs.  
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order to eliminate the dependency of the resulting recognition rate on a specific random 
split into Learning and Test sets, this process is repeated N times and the average (and 
possibly the standard deviation and confidence interval) of the recognition rates are 
reported. 
 

 
Figure  9-A. “Self-Classification” Evaluation process using LDA+KNN 

In this chapter, in experiments where Self-Classification is used, 66% of the samples of 
each class are randomly selected for the Learning set and 33% for the Test set. Each 
reported result is the mean of 50 classification rounds with randomly selected sets.  

9.4.2 MUTUAL-CLASSIFICATION  EVALUATION  METHOD 

In this proposed classification method a single complete sound database is used as the 
Learning set, classifying a different single complete database - the Test set. The method 
is repeated for each pair of sound databases. The average recognition rate is reported 
along with individual results of all database pairs. 
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9.4.3 MINUS-1-DB11  EVALUATION  METHOD 

This proposed algorithm is an alternative evaluation method to Self-Classification. The 
Minus-1-DB evaluation method uses several sound databases recorded in different 
recording conditions, classifying each one by the rest joined together.  
If some of the instruments appear only in a single database, they should be removed, as 
obviously these samples could not be classified correctly. In the experiment in this 
chapter there are no such samples, because as already mentioned, the excerpts selected 
out of the five databases contain the same seven instruments. 
 
The advantages of this method over Self-Classification are demonstrated in the following 
sections. 

9.5 DISADVANTAGES OF  
SELF-CLASSIFICATION 

In this section several points are demonstrated: 
 
1. Evaluation results using a single database are not necessarily an indication of the 
generalization abilities of the classification algorithm being used, and its suitability for 
practical applications of AMIR (as already mentioned, the ultimate goal is to have a 
Concept Classifier). 
 
2. Self-Classification results do not reflect the classifier ability, after learning this specific 
database, to deal with new sounds, and thus its performance as a Concept Classifier. 
 
3. Evaluation with Self-Classification of an AMIR process using specific feature 
descriptors does not necessarily reflect the suitability of these feature descriptors for 
classification of the tested instruments in a Concept Classifier.  
 
4. The intuitive claim that enriching the Learning database with diverse samples from 
other databases improves the generalization power of the classifier and makes it more 
suitable for classification of new sounds, is also demonstrated. 
    
The diagonal in Table  9-A (the numbers in parenthesis) shows the average recognition 
rate of 50 Self-Classification rounds for each sound database, using a Learning set 
consisting of 2/3 of its samples.  
The “Minus-1-DB” column shows the recognition rates obtained by classifying a 
database by all the other databases joined together.  

                                                 
11 The name "Minus-1" was taken from Jazz training records with the same name. These records contain 
recordings of "Standards" where the whole band plays together excluding one instrument (minus one). The 
part of the missing instrument should be played by the practicing musician (resembling Kareoke). 
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The rest of the table shows the Mutual-Classification recognition rates of classifying each 
of the sound databases using every other sound database as the Learning set. 
 
The classification process used in Table  9-A is LDA+KNN. 

 
Separate-Tone Database 
 

SOL IOWA McGill Pro Vi Minus-1 
DB 

SOL         (581) classified by (98.24) 39.93 20.14 21.51 58.17 68.5 
IOWA   (1289) classified by 51.43 (97.75) 35.22 29.17 58.42 65.79 
McGill       (85) classified by 51.76 51.76 (60.78) 23.53 48.23 77.65 
Pro           (158) classified by 54.43 41.77 26.58 (48.04) 58.86 75.32 
Vi             (249) classified by 63.45 48.59 30.12 20.88 (64.42) 75.9 

Table  9-A. Self-Classification, Mutual Classification and Minus-1-DB results using LDA+KNN 
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Figure  9-B. Different evaluation grades per sound database using LDA+KNN 

The graph in Figure  9-B shows for each database the Minus-1-DB result, self-
classification result, the average recognition rate when the database is used as the 
Learning set for classifying all other databases, and average recognition rate when the 
database is used as the Test set, being classified by every other database separately.  
 
Some text below is colored in order to point out to which bar in the graph it refers to. 
 
By examining Table  9-A and the   vs.  
bars in the graph we see that the results of Self-Classification of a database are not 
consistent with the results when other databases are being classified by it. This shows that 
Self-Classification results do not predict how a classifier which is trained on one database 
will classify new samples. Point #2 demonstrated. 
 
We can see that the  results are always higher than when classifying a 
database by a single other database . Thus it is demonstrated that 
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enriching the Learning database by samples out of other databases helps the classifier to 
generalize better and get closer to recognizing the Concept Instruments. Even relatively 
small databases, which do not even contain enough samples for good Self-Classification 
using LDA+KNN (McGill, Pro and Vi), when they are added to the Learning set, 
considerably improve the generalization ability of the classifier. For example, even when 
SOL (a relatively large database) is classified by IOWA (the largest one), the results are 
still considerably improved, from 39.93% to 68.5%, after the three small databases are 
added to IOWA (Minus-1-DB classification of SOL). Point #4 demonstrated. 
 
Note that by comparing Self-Classification and Mutual Classification results, it is 
possible to evaluate for each database its  vs. its , 
thus concluding how well the database is suited for generalized classification (which is 
the important thing for a Concept Classifier). For example, when examining Table  9-A, 
we can see that Vi, while not appearing to be very self contained, seems to be diverse 
enough and comparatively suited for classification of the other databases. 

 
 

Instruments 
classification 

Self 
Classification 

Minus-1
DB 

SOL  (97.93) 87.78 
IOWA  (99.35) 74.71 
McGill (77.86) 80 
Pro  (87.55) 84.18 
Vi  (92.84) 89.16 

Table  9-B. Self-Classification and Minus-1-DB results using BP80 

 
Figure  9-C. Self-Classification and Minus-1-DB evaluations  

of LDA+KNN vs. BP80 classification algorithms  
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Examining the graph in Figure  9-C and comparing the   results in 
Table  9-A and Table  9-B, we see that the neural network in this experiment performs 
much better than LDA+KNN. Yet, if we compare the     
results of the SOL and IOWA databases in Table  9-A and Table  9-B, we see that the 
results are very similar. 
Following from that, if we would compare LDA+KNN and BP80 just by using Self-
Classification of a single large database (like already mentioned, this is a common 
practice in many articles), we could conclude that there is no considerable difference in 
the capabilities of LDA+KNN and BP80 and that both perform very well. Point #1 
demonstrated. 

  
Remark: it is interesting to see in Table  9-A and Table  9-B that although the three smaller 
databases are too small to reach good Self-Classification results using LDA+KNN (LDA 
requires having more samples than features), they do contain enough class separation 
information for BP80 to perform Self-Classification with much higher success.  
 
Demonstrating Point #3: 
Using the GDE algorithm (see Section  7.2), the apparently best eight feature descriptors 
were chosen for each sound database (out of the total 162 descriptors). 
Table  9-C shows which features were selected using each database. The upper row 
contains the indices of all the feature descriptors that were chosen. The Xs indicate the 
selected features. 
 
Desc # 18 19 42 44 45 46 47 48 49 50 51 52 73 134 135 136 137 138 140 
SOL X X      X     X X  X X X  
IOWA X   X X X X       X    X X 
McGill   X   X X    X X    X X X  
Pro X     X X  X     X  X X X  
Vi X     X X   X    X X X X   
                    

Total 4 1 1 1 1 4 4 1 1 1 1 1 1 4 1 4 4 4 1 
All DBs Merged  X  X X X      X  X X X  

Table  9-C. Eight best feature descriptors provided by GDE 

The table shows that different “best” features are selected for each database, thus 
evaluation of features using a single database does not necessarily demonstrate the 
usefulness of these features for a Concept Classifier. Point #3 demonstrated. 
 
Note for the curious – the most popularly selected feature descriptors:  
Seven descriptor indices figure four times each - Sharpness, Specific Loudness-19, 
Specific Loudness-20, Spectral Centroid, Spectral Skewness, Spectral Kurtosis and 
Spectral Slope. Out of these, six were selected (except Sharpness) when the merged 
databases were used.  
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9.6 CONCLUSIONS 

In the above experiment the common "Self-Classification" evaluation method, which uses 
a single sound database for evaluation of AMIR, was criticized. 
 
The following claims were shown: 
 
1. Evaluation results using a single sound database are not necessarily an indication of the 
generalization capabilities of the classification process and thus its suitability for realistic 
classification tasks, where the ultimate goal is to have a Concept Classifier - a classifier 
which could classify instrument sounds regardless of their specific recording conditions. 
 
2. Self-Classification results do not demonstrate the ability of a classifier which was 
trained on a single database to classify new sounds, and thus its performance as a 
Concept Classifier. This also means that Self-Classification results do not demonstrate 
the diversity or self containment of the sound database being used. 
 
3. A feature selection algorithm might choose different features for classification of the 
same musical instrument types, depending on the sound database being used. This also 
means that evaluating features using a single database will not necessarily help to choose 
the right features for a Concept Classifier. 
 
4. By enriching the Learning database with diverse sound samples from other databases, 
we help the classifier to generalize better and make it more suitable for classification of 
new sounds. 
 
To deal with the shortcomings of Self-Classification, the "Minus-1-DB" evaluation 
method was introduced. With Minus-1-DB, the evaluation is performed using several 
sound databases, each classified by the rest joined together. Minus-1-DB results do 
provide an indication as to the generalization abilities of the evaluated classification 
algorithm and feature descriptors, as the classification algorithm never learned the 
classified database and is not adapted to the specific features of its samples (as happens in 
Self-Classification). Although the generalization ability still depends on the sound 
databases being used (because getting all the sounds in the world is difficult), it could be 
reasonably assumed that the recording conditions of the samples in the various databases 
are different, which allows evaluation of the generalization abilities of the AMIR process 
concerning at least these databases, while Self-Classification does not practically evaluate 
generalization at all. 
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9.7 MORE EVALUATION ALGORITHMS 

9.7.1 MINUS-1 INSTRUMENT INSTANCE EVALUATION METHOD 

This proposed AMIR evaluation method is an alternative to Minus-1-DB. 
At each classification round, a single instrument is removed from a sound database and 
then classified by all the databases joined together, including its own. This process is 
repeated until all instrument instances are classified. The average recognition rate per 
instrument is reported. 

9.7.1.1 Comparison with Minus-1-DB 

Both these methods are intended for databases of separate notes. Both do not use samples 
from the same source in the Learning and Test sets. 
An advantage of Minus-1 Instrument Instance is that an average ‘Instrument Grade’ is 
calculated, which is much more informative than an average sound-database grade as the 
arbitrary division into databases and the instruments present or missing from certain 
databases do not affect it. 
On the other hand, Minus-1 Instrument Instance is much more time consuming as each 
instrument Instance requires a whole classification learning/classifying cycle while in 
Minus-1-DB several Instances of different instruments may be integrated into a single 
database and classified together in one classification round.  

9.7.2 MINUS-1-SOLO EVALUATION METHOD 

This is a proposed method for evaluation of AMIR in Solos. 
 
Algorithm: 
- All Solos are divided into chunks – either notes or other Solo segments 
- For every Solo: 

• Remove its chunks from the Solo database 
• Classify them by the rest of the Solos in the database together 
• Compute an average recognition rate for the chunks 

- Report average recognition rate of Solos for each musical instrument  
 
This method is more informative than computing the average recognition rate per Solo or 
per chunk, as the number of Solos by each instrument and their lengths could be different. 
Like the proposed methods above, this is a cross-validation method which uses truly 
independent data in the Learning and Test sets.  
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9.7.3 LEAVE-ONE-OUT CROSS VALIDATION METHOD  

This is a comparatively old evaluation method. In order to avoid the possible bias 
introduced in Self-Classification Evaluation by relying on any random division of the 
evaluation database into Test and Learning sets, in this method, each sample of the 
evaluation database is classified by the rest joined together; finally, the average 
recognition rate per sample is reported.  

This method is called leave-one-out (LOO) cross-validation (Kohavi 1995), because one 
sample is always left out of the Learning set.  
 
LOO could be considered the father-method for most of my suggested evaluation 
methods in this chapter. If at each classification round, instead of removing one sample 
and classifying it by the rest, a whole sound database is removed, the resulting algorithm 
is ‘Minus-1-DB’. If at each round an Instrument Instance is removed, the result is Minus-
1-Instance. Removing one Solo at each stage produces Minus-1-Solo. 
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Chapter 10 IMPROVING THE 
CONSISTENCY OF 
SOUND DATABASES 

In AMIR, like in other machine learning fields, the Learning (classifying) database might 
contain samples which could disturb the classification process: 
 

• Attribute Noise 
Badly sampled sounds or garbled data 

 
• Class Noise 

Samples mislabeled as belonging to the wrong class 
 

• Distance Outliers 
Samples correctly recorded and labeled but still mislead the classification process 
by differing too much from other samples in their class (see  10.5 for discussion) 

 
The presence of such samples can lead to inflated error rates and substantial distortions of 
parameter and statistic estimates when using either parametric or nonparametric tests 
(Zimmerman 1998).  
 
For a thorough historical summary on Outliers see (Jason and Overbay 2004). 
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This chapter presents two new algorithms for removing outliers and compares them with 
the common IQR method. To understand where database purging is integrated into the 
complete AMIR process, see the AMIR process overview (Section  1.1), shape #5. 

10.1 ALGORITHMS FOR REMOVING OUTLIERS 

10.1.1 INTERQUANTILE RANGE (IQR)  

IQR (Draper 1999) is a commonly used outlier removal approach: 

For every descriptor, let P1 be some value bigger than X% of the values of this 
descriptor, and let P2 be a value bigger than Y% of the values, X>Y. For example: X=99, 
Y=1. 

 
Remove samples where the descriptor has values that are larger than   

P1+(P1-P2)*C 
or smaller than                 

P2-(P1-P2)*C 
where C is some scalar (e.g., 1).  
 

Instead of using percentages, a common modification of IQR12 is to calculate the mean 
and standard deviation (STD) of every descriptor, and then remove the samples where 
that descriptor has distances which are several times bigger than the STD. 
 
Notice that IQR is not a supervised method, meaning that it does not utilize classification 
information of the Learning database, and thus is appropriate for usage with non-labeled 
databases. 

10.1.2 MODIFIED IQR (MIQR)  

 This is a new, proposed supervised variant of Interquantile Range.  
• Modification 1: Perform IQR on each class separately instead of all the database 

samples together. 
• Modification 2: When a sample with an outlier descriptor is found, do not remove 

it automatically, but rather count for every sample descriptor-vector its number of 
outlying descriptors. At the end of the process remove the samples which have 
more outlying descriptors than a specified threshold. 

                                                 
12 See for example the subsection “Removing Outliers” in section “Data Analysis” in the Matlab R2006b 
documentation. 
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10.1.3 SELF-CLASSIFICATION OUTLIER REMOVAL (SCO) 

This proposed outlier removal method is a kind of a “wrapper method” in the sense that it 
utilizes the specific classification algorithm itself for its purpose. 
Like in Self-Classification evaluation (see Section  9.4.1), the Learning set consists of a 
certain percentage of the samples from each class (66% in the experiment in this chapter) 
which are selected randomly, while the Test set is made of the rest (reminder - the 
Learning set is used to classify the Test set). The classification process repeats N number 
of times (50 times here). After each classification round the indices of the misclassified 
samples are recorded. 
 
At the end of the process, samples which were misclassified more than a certain number 
of times are removed. 
 
Note that this method differs significantly from my older LOO outlier removal method 
presented in (Livshin, Peeters and Rodet 2003) which has classified each sample in the 
database using Leave-One-Out and removed the misclassified ones. SCO uses partial, 
randomly selected groups of samples (66%/34%) at each classification step, creating a 
kind of “bagging” effect and thus lowering the distortion in classifications caused by 
outliers in the Learning set (François et al. 2003), which the older LOO method suffers 
from.  

10.2 CONTAMINATED DATABASE 

The current evaluation was performed using an excerpt of the extensive IRCAM Studio 
OnLine (SOL) separate tone database (see Section  5.1). This excerpt contains 1325 sound 
samples of 20 musical “instruments” - guitar, harp, violin (pizzicato and sustained), viola 
(pizzicato and sustained), cello (pizzicato and sustained), contrabass (pizzicato and 
sustained), flute, clarinet, oboe, bassoon, alto sax, accordion, trumpet, trombone, French 
horn and tuba. All the samples are two seconds long, monophonic and sampled in 44.1 
KHz with 16 bit resolution.  
The Compact Feature Descriptor set, consisting of 162 Feature Descriptors (See  Chapter 
6) is computed on each sample. 
 
As the SOL database was professionally recorded, it is very self-consistent as is evident 
from its average self-classification grade - 95.7% for 50 Self-Classification experiments 
of 66% / 34% split.  
 
In order to compare the effectiveness of the three different outlier removal methods, the 
SOL database was “contaminated” with four kinds of outlying samples: 
 

• “Class Noise”: The class labels of random 5% of the database samples was 
changed to a different, randomly selected, class. 
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• “Random256 Samples”: samples with descriptors selected randomly from the 
range of [0 256] for each descriptor were added to the database with random 
classes. The quantity of these samples is 5% of the original database size. 

• “Random Bound Samples”: the minimum and maximum of each descriptor in 
the original database were found. 5% of random samples were added to the 
database, each random descriptor in these samples is bound by its respective 
minimum and maximum values. 

• “Random Samples Class Bound”: 5% of random samples were added to each 
class, with descriptors bound by their respective minimum and maximum values 
in this class.  

10.3 EXPERIMENT 

Each of the outlier removing algorithms was performed on the contaminated database. As 
there is a tradeoff between the number of good and bad samples removed by the 
algorithms, each algorithm was evaluated twice; first allowing up to 1% of 
“good“ samples to be removed (Table 6.1) and second time with up to 10% good samples 
removed (Table 6.2).  

10.4 RESULTS 

Reading Table  10-A and Table  10-B: 
All the results are in percentages. 
 
The columns 

• “Clean“: this column shows the average Self-Classification result of classifying 
only the good samples in the contaminated database, i.e., the contaminated 
database with all bad samples removed. Note that this “Clean” database is 5% 
smaller than the original SOL database because of the removal of the distorted 
Class Noise samples. 

• “Contaminated”: the average result with the contaminated database. 
• IQR, MIQR, SCO – the classification results of the contaminated database after it 

was purged with each of these algorithms. 
 
 
The rows 

• “Grade” – the average grade of 50 66%/34% self-classification rounds. Numbers 
in parenthesis are the 95% confidence intervals. 

• “Class noise”, “Random256, “Random Bound”, “Random Bound Class” – the 
percentage of each type of bad samples removed by the algorithm. For example, 
in Table  10-A, MIQR has removed 53% of the Class Noise. 
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• “Bad Removed” – the total percentage of bad samples removed. 
• “Good Removed” - the total percentage of good samples removed. 

 
 

 Clean Contaminated IQR MIQR SCO 
Grade 92.7 

(92.0– 93.4)
79 

(78.6 – 79.5)
88.1 

(87.7 – 88.4)
91.6 

(91.3 – 91.8) 
86.2 

(85.8 – 86.6)
      

Class Noise NA 0 0 53 51.5 
Random256 NA 0 100 100 39 
Random Bound NA 0 81.8 100 43.9 
Random Bound Class NA 0 12.5 31.8 7.6 
      

Bad Removed NA 0 49.6 70.1 35.5 
Good Removed NA 0 0.9 0.9 0.95 

Table  10-A. Outlier removal results with up to 1% of good samples removed    

 
 

 Clean Contaminated IQR MIQR SCO 
Grade 92.7 

(92.0– 93.4)
79.2 

(78.6 – 79.5)
89.8 

(89.5 – 90.2)
92.3  

(91.5 – 93.1) 
96.8 

(96.4 – 97.1) 
      

Class Noise NA 0 18.2 75.7 100 
Random256 NA 0 100 100 100 
Random Bound NA 0 100 100 98.5 
Random Bound Class NA 0 50 86.4 51.6 
      

Bad Removed NA 0 67.2 90.4 87.8 
Good Removed NA 0 9.9 8.8 9.5 

Table  10-B. Outlier removal results with up to 10% of good samples removed 

 
Looking at the types of bad samples removed by each algorithm we can see: 
 
IQR - As could be expected from its non-supervised nature, IQR has dealt badly with 
Class Noise, being unable to detect it. Random256 and Random Bound outliers were 
removed well as the probability of getting at least a single descriptor out of 162 with an 
“edge” value is high with these contamination types, and a single outlying descriptor is 
enough for IQR to remove a sample. Samples from the Random Bound Class are much 
more difficult for IQR to detect – many descriptors in many classes do not have edge 
values compared to the Min/Max values of these descriptors over the entire database. For 
example in class X, the minimum and maximum values of descriptor Y could be [-10, 10], 
while the minimum and maximum values of descriptor Y over the entire database are  
[-50, 50]. And so, Random Bound Class samples from class X will never have an 
outlying descriptor Y. As IQR does not use class information, it cannot detect such 
descriptors even if they do have a “local” edge value in their class. 
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MIQR - We can see that the MIQR method has outperformed the other two, removing 
higher percentages of bad samples. As it uses class information, it did not have the 
disadvantages of IQR regarding Class Noise and Random Bound Class samples. Another 
reason for its higher “data-to-noise” ratios is that it did not remove every sample with a 
single outlying descriptor, but rather removed samples which had at least N outlying 
descriptors. Naturally, in systems where a single sensor may go wrong and produce 
sometimes random values, N could be simply set to 1. 
 
SCO – As the SCO algorithm does not attempt guessing whether samples should be 
removed by examining their values, its behavior is the same with all types of outliers as 
long as they are misclassified; however, as the Random Bound Class samples had the 
highest probability of being actually classified as their appointed class (while possibly 
having outlying values which could be detected by MIQR) SCO had the least success 
removing them. Random Bound Class samples were the toughest samples to handle for 
all the outlier removing algorithms. 
In Table  10-B we see that SCO has produced the purged database with the highest mean 
self-classification grade – 96.8%, which is even noticeably higher than the grade the Non-
Contaminated database produced – 92.7%. This high self-classification grade was 
achieved while removing only 87.8% of the contaminated samples vs. 9.5% of good 
samples (worse than MIQR). This is actually not surprising – allowing the SCO 
algorithm to remove as much as 10% of the good samples, we let it tailor the remaining 
database for itself, SCO being a wrapper method; nevertheless, this does not mean that 
SCO outperformed the other algorithms in this case. Our goal was not to get the highest 
self-classification grade but rather to get rid of the most “bad” samples for the price of a 
certain percentage of good samples removed as well. See the next section, “Conclusions”, 
for some more discussion of this topic. 

10.5 CONCLUSIONS 

For non-labeled data, out of the three tested algorithms, IQR is the “only way to go” as 
the other two algorithms require class information. For getting rid of contaminated data in 
labeled databases, MIQR seems to be the best. If maximally high classification results are 
required, specifically tailored wrapper-type methods may well be the answer, such as 
SCO. 
 
Note that not all outliers should be always removed – there are many arguments about the 
desirability of the whole business of removing outliers, as diversity in a database is not 
necessarily bad and may actually model a special, interesting, population rather than 
indicate sampling errors. The general rule is to “know your data” and being able to 
“intelligently guess” which percentage of erroneous samples could be expected thus 
providing the outlier removing algorithms with appropriate limiting parameters, such as 
the percentage of samples to remove, the number of descriptors which are likely to go 
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wrong, or even tailor special outlier removing algorithms for specific data types such as 
the one in (Adam, Rivlin and Shimshoni 2001) for removing outliers from different views 
(graphical images) of the same scenery. 
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Chapter 11 AMIR OF 
SEPARATE TONES 
AND THE 
SIGNIFICANCE OF 
NON-HARMONIC 
�NOISE� VS. THE 
HARMONIC SERIES 

Sound produced by Musical instruments with definite pitch consists of the Harmonic 
Series and the non-harmonic Residual. It is common to treat the Harmonic Series as the 
main characteristic of the timbre of pitched musical instruments. But does the Harmonic 
Series indeed contain the complete information required for discriminating among 
different musical instruments? Could the non-harmonic Residual, the “noise”, be used all 
by itself for instrument recognition?  
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This chapter begins by performing musical instrument recognition with an extensive 
sound collection using a large set of feature descriptors, achieving a high instrument 
recognition rate.  For history of AMIR performed on isolated tones see Section  3.1. 
 
Next, using Additive Analysis/Synthesis, each sound sample is resynthesized using solely 
its Harmonic Series. These “Harmonic” samples are then subtracted from the original 
samples to retrieve the non-harmonic Residuals. Instrument recognition is performed on 
the resynthesized and the “Residual” sound sets. The chapter shows that the Harmonic 
Series by itself is indeed enough for achieving a high instrument recognition rate; 
however, the non-harmonic Residuals by themselves can also be used for distinguishing 
among musical instruments, although with lesser success. Using feature selection, the 
best 10 feature descriptors for instrument recognition out of our extensive feature set are 
presented for the Original, Harmonic and Residual sound sets. 

11.1 INTRODUCTION 

Musical instruments with definite pitch (“pitched instruments”) are usually based on a 
periodic oscillator such as a string or a column of air with non-linear excitation. In 
consequence, their sound is mostly composed of a Harmonic Series of sinusoidal partials, 
i.e., frequencies which are integer multiples of the fundamental frequency (f0); see 
Figure  11-A for several examples of harmonic series of different instruments. 
  

 
Figure  11-A. First 20 harmonics of an A4 note played by different instruments;  

DFT analysis window is 200ms long and taken from the sustained part of the signal 

While the relation between the energy levels of the different harmonics is widely 
considered as the main characteristic of pitched instruments’ timbre, (e.g., (Eggink and 
Brown 2004), (Kitahara et al. 2007)), if we subtract this Harmonic Series from the 
original sound there is a non-harmonic Residual left. This Residual is far from being 
'white noise'; it is heavily filtered by the nature of the instrument itself as well as the 
playing technique, and may contain inharmonic sinusoidal partials as well as non-
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sinusoidal ‘noise’, such as the breathing sounds in the flute or the scraping noises in the 
guitar. 
Does the Harmonic Series indeed encapsulate all the distinguishing information of the 
sounds of pitched musical instruments? If so, about the same instrument recognition rates 
should be achieved by using only the Harmonic Series as by using all the information in 
the signal, with the same feature descriptor set used for classification. This is a practical 
question for the field of instrument recognition; when performing instrument recognition 
in MIP music, it is difficult as well as computationally expensive to perform full source 
separation (Vincent and Rodet 2004) and restore the original sounds out of the 
polyphonic mixture in order to recognize each source separately13. On the other hand, 
estimating the Harmonic Series of the different notes in the mixture is a relatively easier 
task (Yeh, Röbel and Rodet 2005). For example, in (Livshin and Rodet 2004b) Harmonic 
Series estimation is used for performing “Source-Reduction”, reducing the volume of all 
instruments except one and then recognizing it. In (Eggink and Brown 2004), instrument 
recognition is performed using only features based on the Harmonic Series, estimated 
using a-priori f0 information.  

 
Another interesting question comes from the opposite direction: is the non-harmonic 
Residual, the “noise” a musical instrument produces, so distinct as to allow distinguishing 
between different instrument types, e.g., can we actually distinguish between different 
wind instruments just by the sound of their airflow hiss? 

 
In order to answer these questions, this chapter explores how instrument recognition rates 
using signals resynthesized solely from the Harmonic Series of the sound, and signals 
containing solely the non-harmonic Residuals, compare with the recognition rates when 
using the complete signals. In order to perform this comparison as directly as possible, 
the first step is to achieve a high instrument recognition rate. This is accomplished here 
by computing an extensive set of feature descriptors on a large and diverse set of pitched 
musical instrument sound samples, reducing the feature dimensions with Linear 
Discriminant Analysis (LDA) and then classifying the sounds with K-nearest neighbours 
(KNN). 

 
Next, the Harmonic Series of each sample in the sound set is estimated, including the f0s, 
harmonic partials and corresponding energy levels, and using Additive Synthesis all the 
signals are resynthesized using only their Harmonic Series, thus creating synthesized 
‘images’ of the original signals which lack any non-harmonic information; these 
resynthesized sounds are referred to in the chapter as “Harmonic” signals, while the 
original sounds from the sound set are called, the “Original” signals.  
 

                                                 
13 There is also research attempting to perform instrument recognition by recognizing directly instrument 
mixtures instead of trying to separate them into individual instruments, see for example (Essid, Richard and 
David 2006). 
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As the phase information of the Original signals is kept in the Harmonic signals, by 
subtracting the Harmonic signals from the Original signals we remain with the non-
harmonic, “noisy”, part of the signals, referred to shortly as the “Residuals”. 

 
After that, the same set of feature descriptors is computed on each sample group: the 
Original, Harmonic and Residual Signals. These three groups are then divided separately 
into training and Test sets and instrument recognition is performed on each group 
independently.  The instrument recognition results are presented and compared in 
Section  11.8.  

 
Using the Correlation-based Feature Selection (CFS) algorithm with a greedy stepwise 
forward search method, the 10 most important feature descriptors for each of the three 
groups of samples are estimated and presented. 

11.2 ORIGINAL SOUND SET 

This sound set consists of 3223 samples of single notes of 10 “musical instruments”: 
bassoon, clarinet, flute, trombone, trumpet, contrabass, contrabass pizzicato, violin, violin 
pizzicato and piano. As the violin and bass pizzicato sounds are very different from the 
bowed sounds they are treated here as separate instruments. 
 
The sound samples were collected from 12 different commercial and research sound 
databases (see Section  5.1). The databases contain sounds recorded in different recording 
environments, using different individual instruments (e.g., using different violins in each 
sound database). The sound set spans the entire pitch range of each of the 10 instrument 
types and includes vibrato and non-vibrato sounds where applicable.  
 
The collection of all the samples of a specific instrument taken from a single database 
(e.g., all the violin samples from database #1), is referred to here as an “instrument 
Instance”. The total number of instrument Instances in the sound set is 67.  
 
Preprocessing: 

All sounds are sampled in 44 KHz, 16 bit, mono. 

11.3 NOISE REMOVAL 

Some of the noise in the Original sound signals falls inside the harmonic grid of the tones. 
This causes the Additive analysis/synthesis program to attempt modeling such noise with 
sinusoids, along with the true harmonic-series of the notes. Therefore, in order to get 
purely “harmonic-series notes” it is important to get rid of the noise prior to performing 
Additive analysis/synthesis.  
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The noise removal is done here with an algorithm which performs classification of 
sinusoidal and noise peaks in the signal and then removes the noise. The classification is 
based on descriptors derived from properties related to time-frequency distributions: 
mean time, duration, instantaneous frequency and normalized bandwidth. The descriptors 
are designed to properly deal with non-stationary sinusoids, which enables this algorithm 
to produce superior classification results compared to older methods, such as the standard 
correlation based approach. A 10% error threshold was selected for peaks classification. 
For full details see (Zivanovic, Röbel and Rodet 2004). 

11.4 HARMONIC SOUNDS AND RESIDUALS 

Additive analysis/synthesis is based on Fourier's theorem, which states that any physical 
function that varies periodically with time with a frequency f can be expressed as a 
superposition of sinusoidal components of frequencies: f, 2f, 3f, 4f, etc. Additive synthesis 
applies this theorem to the synthesis of sound (Risset 1985). For a review of 
supplementary Additive Synthesis techniques see (Serra and Smith 1990). 
 
In order to separate the sound samples into their harmonic and non-harmonic components, 
after noise removal, the samples are analyzed and then selectively resynthesized using the 
Additive analysis/synthesis program - “Additive” (Rodet 1997; Röbel 2006), which 
considers also inharmonic deviations of the partials (e.g., found in the piano sounds).  
Very precise Additive analysis was performed by supplying the Additive program with 
specifically tailored parameters for each sound sample using its note name and octave, 
known in advance, for estimating its f0. For example, the Additive analysis/synthesis 
window size was set to 4*(1/f0), FFT size to 4*nextpow214(sampleRate * windowSize), 
etc. 
 

 
Figure  11-B. Left to right: original Clarinet sample (A3), the sample resynthesized from the 

Harmonic Series, the Residual (subtraction). 

                                                 
14 nextpow2(N) is the first P such that 2^P >= abs(N) 
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Figure  11-B shows an example of an Original clarinet sample (the note A3), the sound 
resynthesized from the Harmonic Series of the Original, and the non-harmonic Residual. 
We can see that the Original and Harmonic sound envelopes are similar and that the 
Residual energy, resulting from subtracting the resynthesized Harmonic sound from the 
Original, is comparatively very low.  

 
While the sounds resynthesized from the Harmonic Series sound very similar to the 
Original samples, the non-harmonic Residuals sound very differently from them while 
sounding quite similar to each other for the same instrument. For example, the clarinet 
Residual of the note A3 sounds like a steady airflow while the trombone Residual of the 
same pitch sounds mellower and with addition of “static-electricity” crackle. The bass 
pizzicato Residual of A3 sounds like a wooden barrel being hit with a hammer, while the 
Residual of the violin pizzicato of exactly the same note sounds much higher “pitched” 
due to the considerably smaller size of its wooden resonator, and includes some tremolo. 
To learn how the physical structure of musical instruments shapes the sound, see 
(Fletcher and Rossing 1998). Note that the Attacks are far from being the only parts of 
the Residuals influencing the descriptors; The Sustained parts of the Residuals of the 
clarinet, flute, trombone and trumpet contain energy levels as high as or higher than their 
Attack Transients. 

11.5 FEATURE DESCRIPTORS 

The Full Feature Descriptor set with 513 descriptors is computed on the Original 
samples, the Harmonic samples and the Residuals. See  Chapter 6 for full details. 

11.6 FEATURE SELECTION 

In order to provide the 10 best features out of the Full Feature Descriptor set for each 
group of samples (the Original samples, the Harmonic samples and the Residuals) the 
Correlation-based Feature Selection (CFS) evaluator is used with a greedy stepwise 
forward search method (see Section  7.3). CFS was chosen here over GDE (Section  7.2) 
as the purpose is to present a list of non-dependent descriptors as intuitively meaningful 
as possible, showing the different distinguishing features of the different sets, rather than 
to find an overly specific set which produces the highest recognition rate with 
LDA+KNN and the current data (producing around 1% higher recognition rates than 
CFS). 
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11.7 CLASSIFICATION AND EVALUATION 

AMIR is performed on the Original, Resynthesized and Residual sets of samples 
separately. In order to get meaningful instrument recognition results it is necessary not to 
use sounds recorded by the same instrument and the same recording conditions both in 
the Learning and Test sets (Livshin and Rodet 2003). For this purpose, ‘Minus-1 
Instrument Instance’ cross-validation evaluation method is used (see Section  9.7.1). 
 
Each classification phase of the Minus-1-Instance Evaluation is performed using the 
LDA+KNN method (See Section  8.3). K values in the range of [1 - 80] are tested at each 
classification phase. After the Minus-1-Instance evaluation process completes and all the 
Instances are classified, the best K for the whole classification process is reported. 

11.8 RESULTS 

11.8.1 INSTRUMENT RECOGNITION 

The confusion matrices in this section show the Minus-1-Instance recognition rates for 
the Original samples, the Harmonic samples and the Residuals. These matrices show the 
percentage15 of samples (rounded to integers) of the instruments in the first column which 
were classified as the instruments in the first row. For example in Table  11-A, 6% of the 
clarinet samples are misclassified as flute. The instrument abbreviations are: bsn = 
Bassoon, cl = Clarinet, fl = Flute, tbn = Trombone, tr = Trumpet, cb = Contrabass, cbp = 
Contrabass Pizzicato, vl = Violin, vlp = Violin Pizzicato, pno = Piano. 

11.8.1.1 Original Samples 

 bsn Cl fl tbn tr cb cbp vl vlp pno
bsn  96 2 1 1 0 0 0 1 0 0 
cl 0 92 6 0 1 1 0 1 0 0 
fl 0 3 96 0 1 0 0 1 0 0 
tbn 2 0 0 93 5 0 0 0 0 0 
tr 0 1 1 3 96 0 0 0 0 0 
cb 0 0 0 0 0 99 0 1 0 0 
cbp 0 0 0 0 0 1 96 0 0 3 
vl 1 0 2 0 0 0 0 96 0 0 
vlp 0 0 0 0 0 0 0 0 99 0 
pno 2 0 0 0 0 2 0 0 2 94
Table  11-A. Confusion matrix of the Original samples 

                                                 
15 Due to rounding, the total percentage in each row/column does not always add up to 100%. 
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The average Minus-1-Instance recognition rate per instrument for the Original samples is 
95.58% (using K=8 with KNN). It is rather hard to compare recognition rates with other 
papers as each paper attempts to recognize its own instrument set, uses different sound 
databases and different evaluation techniques. In addition, most papers on instrument 
recognition of separate tones are unfortunately using sounds from the same instrument 
Instances both in the Learning and Test sets, a fact which raises a strong doubt regarding 
the applicability of their results, which are often unrealistically high (Livshin and Rodet 
2003; see  Chapter 9). Even so, while the current results are obtained by Minus-1-Instance 
evaluation, they are still higher or comparable to most instrument recognition rates 
reported by papers on instrument recognition of separate tones, regardless of their 
evaluation techniques. In (Livshin and Rodet 2003) for example, an average Minus-1-DB 
recognition rate of 83.17% for seven instruments is achieved.  
 
It is interesting to note, that the main difference between the classification performed in 
this chapter and the one we used in (Livshin and Rodet 2003) is that our current sound set 
is much larger and more diverse. This exemplifies well an intuitive claim from (Livshin 
and Rodet 2003), which states that enriching a Learning set with sound samples from 
different databases improves its generalization power. 

11.8.1.2 Harmonic Samples 

 
 bsn cl fl tbn tr cb cbp Vl vlp pno
bsn 97 1 0 0 0 0 0 1 0 0 
cl 0 88 5 0 4 2 0 0 0 0 
fl 0 4 94 0 0 0 0 1 0 1 
tbn 3 0 0 89 8 0 0 0 0 0 
tr 0 9 5 4 82 0 0 1 0 0 
cb 1 0 0 0 0 95 0 4 0 0 
cbp 0 0 0 0 0 0 94 0 2 4 
vl 0 1 5 0 0 1 0 92 0 0 
vlp 0 0 0 0 0 0 6 0 90 4 
pno 2 0 0 0 0 1 1 0 2 94

Table  11-B. Confusion matrix of the Harmonic samples 

 
The average Minus-1-Instance recognition rate per instrument for the resynthesized 
samples is 91.51% (using K=10 with KNN). This recognition rate is only 4.07% lower 
than the rate achieved using the Original samples, and is still quite high. This rate shows 
that the information in the Harmonic Series of the signal is quite enough for achieving a 
high average instrument recognition rate which is rather close to the rate obtained using 
the complete signals. Comparing the confusion matrices of the Harmonic samples 
(Table  11-B) to the Originals (Table  11-A), we can see that the recognition rate of almost 
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all the instruments has worsened somewhat, which consistently indicates that some 
instrument-discriminating information was lost. The most noticeable declines are the 
trumpet (-13.68%) and the violin pizzicato (-9.69%).  

11.8.1.3 The Residuals 

 
 bsn cl fl tbn tr cb cbp vl vlp pno
bsn  87 2 3 0 0 3 0 1 3 0 
cl 3 76 11 2 2 0 0 5 0 1 
fl 0 12 75 1 7 0 0 6 0 0 
tbn 11 4 3 62 6 0 6 5 0 3 
tr 0 6 15 3 74 0 0 2 0 0 
cb 2 1 0 0 0 97 0 0 0 0 
cbp 0 0 0 0 0 0 97 0 0 3 
vl 1 10 7 0 2 5 0 74 1 1 
vlp 2 3 0 2 0 0 0 2 90 2 
pno 1 0 0 1 0 0 4 0 5 89

Table  11-C. Confusion matrix of the Residuals 

 
The average Minus-1-Instance recognition rate for the Residuals is 81.99% (using K=6 
with KNN), which is 13.59% lower than the rate achieved with the Original samples. 
While this is quite a considerable difference, these results do indicate, perhaps 
surprisingly, that the Residuals by themselves (yes, these “airflow” and “click” sounds) 
contain considerable distinguishing instrument information. As this experiment did not 
involve any descriptors “tailored” specifically for the Residuals, it seems reasonable to 
expect that the recognition rate could be improved further. 
The instrument with the mostly reduced recognition rate compared to the Original 
samples is the trombone (-30.55%), which is now confused mainly with the bassoon.  

 
 
 
 
 
 
 
 
 
 
 
 
 



AMIR of Separate Tones and the Significance of Non-Harmonic 
“Noise” Vs. The Harmonic Series 

 Chapter 11

 

86 
 

11.8.2 BEST 10 FEATURE DESCRIPTORS 

Using CFS with a greedy stepwise forward search method, the best 10 feature descriptors 
were selected for each of the three sample groups out of the total 513 different feature 
descriptors in the Full Feature Descriptor set.  

 
 

Feature Type Descriptor Flavor ST O H R 
Relative Specific 
Loudness                

Mel-Band #2 M 1 1 5 

Temporal  
Increase 

  2 4 X 

Spectral  
Kurtosis                  

log frequency, 
normalized db amplitude 

M 3 X X 

MFCC                   Coefficient #2 M 4 X X 

Temporal  
Decrease 

  5 2 X 

Roughness ERB filter #8  6 5 3 

Spectral  
Spread                   

linear frequency, 
normalized db amplitude 

M 7 10 10 

Bark-Band  
Tristimulus             

linear amplitude,  
bands(2+3+4)/sum(all) 

M 8 X X 

Bark-Band  
Tristimulus             

linear amplitude, 
band(1)/sum(all) 

S 9 X X 

Temporal  
Centroid 

  10 8 4 

Spectral  
Skewness             

linear frequency, 
linear amplitude 

M X 3 X 

Bark-Band  
Tristimulus             

normalized  db amplitude,  
band(1)/sum(all)  

M X 6 X 

Inharmonicity  M X 7 X 

Harmonic  
Spectral Roll-Off 

 M X 9 X 

Bark-Band  
Tristimulus             

normalized db amplitude, 
bands(2+3+4)/sum(all) 

M X X 1 

Fluctuation  
Strength 

mean (ERBs)  X X 2 

MFCC                    Coefficient #4 M X X 6 

Perceptual 
 Spectral Centroid 

linear frequency, 
power  amplitude 

M X X 7 

Roughness ERB filter #5  X X 8 

MFCC                    Coefficient #3 M X X 9 

 
Table  11-D. The 10 best features for the Original, Harmonic and Residual sample groups,  

selected using CFS 

 
The “Feature Type” column shows the feature type, while the “Descriptor Flavor” 
column shows the parameter types used with each feature. For more information on the 
features, see  Chapter 6. 
 
Most features are computed on each STFT frame of the signal separately and then either 
the mean (‘M’) or the standard deviation (‘S’) of these frames is used. For such features, 
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the “Frames” column specifies which of these statistics was used. The “O”, “H” and “R” 
columns indicate the Original sample group, the Harmonic samples and the Residuals, 
and show which feature descriptors were selected for these sample groups and in which 
order of importance, from 1 to 10. An X indicates that a feature was not selected. 

 
Out of the 10 “best” descriptors, the Original samples “share” six descriptors with the 
Harmonic samples; out of these, four are shared also with the Residuals. The other 
descriptors are unique. Although Table  11-B shows that the Harmonic signals contain 
enough distinguishing instrument information for getting a rather high recognition rate 
(resulting in a recognition loss of only 4.07% compared with the Original samples), 
Table  11-D shows that removing the non-harmonic residuals has caused a somewhat 
different set of 10 features to be selected by the CFS feature selection algorithm. This 
indicates that for AMIR purposes the Harmonic set is not equivalent to the Original 
samples as it requires somewhat different features.  

 
The recognition rates using only these sets of 10 selected feature descriptors are 76.11% 
for the Original samples, 65.24% for the Harmonic samples and 62.69% for the Residuals.  
The fact that with the 10 “best” descriptors, the recognition rate of the Harmonic samples 
is 10.87% lower than the Original samples seems to indicate that although the Harmonic 
samples get a high recognition rate with the Full Feature descriptor set (see  Chapter 6), 
yet when the number of descriptors is reduced to a few selected ones, the Harmonic set 
requires more descriptors than the Original set to get similar recognition rates. 

11.9  CONCLUSIONS 

This chapter shows that using only information present in the Harmonic Series of the 
signal is enough for achieving a high average musical instrument recognition rate – 
91.51% for 10 instruments using Minus-1-Instance evaluation. This is only 4.07% less 
than the recognition rate obtained by using the complete, Original signals.  
 
On the other hand, Table  11-C shows that there is much distinguishing instrument 
information present in the non-harmonic Residuals which by themselves produced an 
average instrument recognition rate of 82%. It was also shown that the information 
present in the non-harmonic Residuals is not completely redundant to the information 
present in the Harmonic Series; Table  11-B shows that although the average recognition 
rate of the Harmonic signals is high, some of the instruments have suffered noticeably 
from removing the non-harmonic Residuals, especially the trumpet and violin pizzicato, 
which is an interesting result.  In addition, Table  11-D shows that the 10 best feature 
descriptors selected for the Original sample set differ from the ones selected for the 
Harmonic samples. These results indicate that the sound of pitched musical instruments 
should not be treated as containing only the Harmonic Series, although most of the 
energy and distinguishing instrument information of the signal is indeed present in the 
Harmonic Series.  
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It was shown that using only the harmonic series does not considerably lower the average 
instrument recognition rate although some instruments “suffer” more than others. This 
means that instrument recognition in MIP music could indeed be performed with rather 
high results without performing full source-separation; Using multiple f0 estimation 
algorithms, such as (Yeh, Röbel and Rodet 2005), estimated harmonic partials could be 
used solely to classify musical instruments without lowering too much the recognition 
rates compared with the full signal - see Section  13.1.3 for the Harmonic-Resynthesis 
technique. 

11.10   FUTURE WORK 

It might be possible to increase the instrument recognition rate of the Residuals by 
specifically tailoring special feature descriptors for them. Instrument recognition of 
pitched instruments could then be improved by splitting the classified sounds into 
harmonic and non-harmonic components (when applicable) and computing special 
feature descriptors on the Residuals in addition to the feature descriptors computed on the 
original signal.  Splitting the signal makes it easier to deal with the non-harmonic 
Residuals, due to their relatively low energy.  
Using the current Full Feature Descriptor set, experiments where the descriptors of all 
three sample sets were merged together (Original + Harmonic + Residuals) have not 
yielded higher recognition rates than using the Feature descriptor set of the Original 
samples by itself.   
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Chapter 12 AMIR IN SOLOS   

Instrument recognition in Solo performances (monophonic or polyphonic musical phrases 
performed by a single instrument) is different and more complicated than dealing with 
separate note databases, as the time evolution of each sound (attack, decay, sustain, 
release) is not well defined, the notes may not be separated, there are superpositions of 
concurrent sounds and room echo, different combinations of playing techniques, etc.  
For history of AMIR in Solos see Section  3.2. 

12.1 MOTIVATION 

Although it seems that there are not many applications which actually require Solo 
recognition, yet as shall be demonstrated in the next chapter, knowledge of performing 
AMIR in Solos can help in recognition of MIP music. There are also some applications 
for Solo recognition per se, for example, labeling tracks in multi-track recordings, in real-
time or offline. 

12.2 DATA SET 

For evaluation of AMIR in Solos, a large and very diverse Solo database (See Section  5.2 
for more details) is used in order to encompass the different sound possibilities of each 
instrument and evaluate the generalization abilities of the classification process. 
 
Reminder - this collection includes 108 authentic Solo recordings of 7 instruments: 
bassoon, clarinet, flute, classical guitar, piano, cello and violin. In order to evaluate 
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classification generalization (See  Chapter 9), I made sure that all Solos are performed by 
different musicians, recorded in different concerts (thus different recording conditions) 
and the same Solo is never used fully/partly in both the Learning and the Test sets in the 
experiment. 
 
Preprocessing: 

A two-minute piece is taken from each Solo recording and cut into one-second cuts with 
50% overlap (resulting in instrument segmentation resolution of half a second) – a total 
of 240 cuts out of each Solo. The feature descriptors are computed on each one-second 
Solo-cut separately. 

12.3 CLASSIFICATION 

The classification method is LDA+KNN (see Section  8.3).  
The evaluation method is “Minus-1-Solo” (See Section  9.7.2). 

12.4 REALTIME SOLO RECOGNITION 

‘Realtime’ recognition of Solo performance means here that while the Solo is recorded or 
played the features of each one-second piece of the music are computed and classified 
immediately after it was performed.  
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Figure  12-A. Realtime Solo recognition process  

As the Full Feature Set of 62 features (see  Chapter 6) takes a rather long time to compute, 
in order to achieve Solo recognition in realtime a smaller feature set is required, which is 
quick to compute but compromises the recognition rate as little as possible. To achieve 
that, the most time-consuming features were removed and GDE was used (See 
Section  7.2) to reduce the number of features from 62 (with 512 descriptors) to 20 (with 
250 descriptors), while still maintaining a high recognition rate. Using these features we 
have actually implemented a realtime Solo AMIR program which works on a 1.6Mhz 
Intel Processor and is written in plain Matlab code (without compilation or integration 
with machine language boost routines). Naturally, this program uses a precomputed LDA 
matrix and pre-estimated ‘best K’ for the KNN classification, as the Learning set remains 
constant and should not depend on the Solo input. 
 

We can see in Figure  12-A that the classification process uses at each round the last one-
second of the recording, which makes the recognition ‘resolution’ increase in direct 
relation to the hardware speed and efficiency of the sub-algorithms being used. 
 
 
 

Continuous Online  
playing/recording 

Get Last One-Second Piece of Audio 

Compute Realtime Feature Descriptors 

Normalize Features 
use known min/max values of the feature  

descriptors of the Learning set  

Reduce Dimensionality 
multiply by the precomputed LDA transformation   

 matrix calculated using the Learning set 

Classify 
perform KNN classification using the LDA transformed 

learning set with a pre-estimated ‘best K’ value  
calculated on the Learning set 
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12.5 MINUS-1-SOLO RESULTS 

 
 

 One-second pieces Instrument Detection 
“Realtime” 
20 features 

“Complete Set” 
62 features

“Realtime” 
20 features

“Complete Set” 
62 features 

Bassoon 86.3  90.2   100  100 
Clarinet 79.3   86.9   90.5  100 
Flute 83.3   80.9   100  100 
Guitar 86.3   87.8   93.8  93.8 
Piano 91.0   93.9   100  100 
Cello 82.2   88.7   94.1  100 
Violin 88.3   88.5   92.9  92.9 

   

Average 85.2  % 88.1  % 95.9 % 98.1 % 

Table  12-A. Minus-1-Solo and Solo-Instrument Detection results  
using the Complete and Realtime feature sets 

Table  12-A shows on the left the Minus-1 Solo recognition results for the “Complete” 
and “Realtime” feature sets. On the right side of the table, the Solo-Instrument Detection 
grade shows the percentage of Solos where the performing instrument gets the highest 
number of one-second pieces classified into its class, indicating whether the classification 
results could be used to determine which instrument is playing each Solo. 
 
We can see that the average recognition rate per one-second piece using the “Realtime” 
set is rather close to the “Complete Set” - only 2.9% difference. The difference in average 
Solo-Instrument Detection grade is also small – 2.2%. 

12.5.1 REALTIME FEATURE SET 

Table  12-B shows the resulting 20 feature list for realtime classification of Solos, sorted 
by importance from the most important feature down to the least. 
 

1.   Perceptual Spectral Slope 2.   Perceptual Spectral Centroid 
3.   Spectral Slope 4.   Spectral Spread 
5.   Spectral Centroid 6.   Perceptual Spectral Skewness 
7.   Perceptual Spectral Spread 8.   Perceptual Spectral Kurtosis 
9.   Spectral Skewness 10. Spectral Kurtosis 
11. Spread 12. Perceptual Deviation 
13. Perceptual Tristimulus 14. MFCC 
15. Loudness 16. Auto-correlation 
17. Relative Specific Loudness 18. Sharpness 
19. Perceptual Spectral rolloff 20. Spectral rolloff 

Table  12-B. A sorted list of the most important features for realtime AMIR Solo recognition  
(for the seven musical instruments in this chapter) 
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We can see in Table  12-B that the 10 most important features are the first four statistical 
moments and the Spectral Slope, computed both using the perceptual and spectral models 
(see  Chapter 6). 
 
Note - in Section  13.1.3.2, Solo recognition is performed in a different way than in this 
chapter, using notes resynthesized from their harmonic series. As this method makes no 
sense outside the context of  Chapter 13, where later-on classification of resynthesized 
notes from multi-instrumental music is performed, I chose to present this “Solo 
recognition” technique in  Chapter 13 rather than here. 
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Chapter 13 AMIR IN MULTI-
INSTRUMENTAL, 
POLYPHONIC 
MUSIC 

For most practical applications AMIR needs to be performed on music in which several 
musical instruments are playing concurrently – Multi-Instrumental, Polyphonic (MIP) 
music. Recognition of musical instruments in MIP music is a difficult challenge due to 
the fact that the musical signals of the different instruments are mixed together and 
cannot be simply separated.  

13.1 AMIR METHODS FOR MIP MUSIC 

13.1.1 “NAÏVE” SOLO CLASSIFIER 

What happens when a classifier trained to recognize Solos, such as the one used 
in  Chapter 12, is activated directly on MIP music? Will it recognize one of the playing 
instruments or get “completely confused” by the multi-instrumental mix?  
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Figure  13-A. An example of the Naïve Solo recognizer ran on a flute and cello Duo 

An obvious disadvantage of using a Solo classifier directly on MIP music is that it 
attempts to recognize only one instrument in each classified musical segment, regardless 
of the number of instruments actually playing concurrently. 
 
The Naïve Solo classifier tested in this chapter performs AMIR on each consecutive one-
second segment of the classified music, same as in Chapter 12; the length of musical 
segments in the Learning set is also one second. 

13.1.2 SOURCE-REDUCTION (SR) 

This new technique, like the Naïve Solo Classifier, uses an AMIR Classifier “trained” on 
a Learning set consisting of Solo segments. Nevertheless, in order to make this classifier 
“multi-dimensional”, i.e., perform AMIR on each note separately even if these notes 
sound at the same time, each musical note in the classified MIP piece, in its turn, is made 
easier to recognize by reducing the volume level of all the other notes playing 
concurrently with it. This way, metaphorically, the AMIR “spotlight” is turned to each 
note individually. Next, as mentioned above, this filtered note is classified using an 
AMIR classifier of Solos such as the one presented in Chapter 12.  
 
In an unpublished report (Livshin et al. 2005), we have integrated a Source-Reduction 
AMIR module with a multiple-f0 estimation module to create a system which 
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automatically produces partituras out of recorded MIP music, by first finding the different 
notes in the musical piece and then arranging them into staves by their recognized 
musical instruments. 

13.1.2.1 SR Algorithm  

- A Multiple-f0 detection program is used in order to estimate the note boundaries 
(where each note begins and ends) in a MIP musical piece, the fundamental 
frequencies of each note and its harmonic series. In the experiments in this chapter, 
the f0-estimation program of (Yeh, Röbel and Rodet 2005) is used with 93ms analysis 
window and automatic estimation of the polyphonicity, i.e. number of notes played 
concurrently, in each analysis window.  
In order to reduce the influence of accidental f0-estimation errors, notes shorter than a 
“minimum” threshold are discarded – the reason for this is that when the same note 
pitch (f0) is detected in several consecutive frames (vibrato/glissando are allowed), 
the probability of this note being an accidental estimation error is diminished. 
Recognition rates of two minimum-length note-thresholds are presented in the 
following section - 0.25second and 0.5second. 
 

- Filter and classify each detected note: 
• Perform STFT of the music segment where the note is present 
• For each STFT frame: 

o Normalize DFT bin amplitudes to [0 - 1] 
o Find all peaks in the frame above a minimal threshold. In the experiments 

in this chapter the minimal normalized peak threshold is 0.02 
o In all DFT bins belonging to peaks which do not contain partials of the 

detected note, put 0 
Currently, peaks containing overlapping partials, i.e., partials of the 
detected (classified) note along with partials of other notes, are left 
unmodified16. The expectation that notes “dirty” with some overlapping 
partials from other notes could still be classified correctly is based upon 
the experimental results in Section  13.2 using the Naïve Solo Classifier; 
these results show that when a Solo classifier is activated on a MIP 
musical segment, it usually succeeds to recognize one of the playing 
instruments. Thus, while some overlapping partials of an interfering note 
may remain, if most of the interfering note is removed then the chances of 
the musical segment to be classified as the current, detected (non-filtered) 
note, are increased considerably. 
Note - various, more sophisticated approaches to the problem of 
overlapping partials exist. Eggink and Brown (2003) for example, use 
GMMs with the missing feature model to exclude overlapping partials 

                                                 
16 That is the reason why the correct term for this technique is “Source-Reduction” and not “Source Separation” – full 
separation of the sound sources is not attempted here, but rather, as noted above, a “reduction” of all sounds except a 
selected note in order to make it more easily distinguishable by an AMIR Solo classifier. 
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from the classification process. Virtanen (2002) computes linear models 
for the overtone series and uses these in order to estimate the amplitudes 
of overlapping partials. While producing interesting results, these methods 
still need to be perfected.  

• Classify the filtered note using a Solo Classifier. In this chapter the same Solo 
classifier as presented in  Chapter 12 is used; this classifier is trained on one-
second Solo pieces with 50% overlap, from the Solo database in Section  5.2. 

 

 
Figure  13-B. An AMIR example using Source-Reduction 

Note that when performing AMIR on Duos of two monophonic instruments, it is possible 
to use an “Anti-Note” strategy in order to classify also some of the notes that are shorter 
than the minimum note-threshold mentioned above: 
It was shown in Chapter 12 that in order to classify correctly an instrument using a Solo 
classifier there is no need for each of the played notes to be classified separately and even 
Solo segments containing polyphonic music, such as played by piano and guitar, could be 
recognized successfully. The main reason, in Source-Reduction, for filtering out all notes 
playing concurrently except a single one is that the remaining note is assumed to be 
performed by a single instrument as notes played in complete unison by several 
instruments are very rare.  
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In Duos performed by monophonic instruments it could be quite safely assumed that 
when one instrument is playing a note then all the other notes, of various lengths, 
sounding at the same time with that note, are performed by the other instrument. 
Therefore, it is possible, when detecting a note of at least a minimal length, besides 
filtering everything else out and leaving that note to be classified, to do the complete 
opposite and filter out the note itself, classifying all that remains, as these “Anti-Notes” 
could be assumed to be performed by a single instrument17. 

 

 
Figure  13-C. An example of the Source-Reduction process -   

a special Duo version including the “Anti-Note” strategy 

                                                 
17  Classifying automatically the Anti-Notes as belonging to the other instrument is unadvisable, as a 
recognition error of the detected note will automatically cause recognition error of the Anti-Notes. 
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13.1.3 HARMONIC-RESYNTHESIS (HR) 

It was shown in  Chapter 11 that when performing AMIR on separate tones, using solely 
information present in the harmonic series is enough for achieving high instrument 
recognition rates.  
Automatic estimation of fundamental frequencies in MIP music, such as presented in 
(Yeh, Röbel and Rodet 2005), is a popular research topic producing constantly improving 
algorithms; using such automatic multiple-f0 estimation results allows approximate 
estimation of the harmonic series of the playing notes.  
 
Therefore, it is possible to use the results of an automatic multiple-f0 estimation program 
to estimate the harmonic series of the musical notes in MIP music, and then use these 
harmonic series for performing AMIR, thus creating a completely automatic MIP AMIR 
system. 

13.1.3.1 HR Algorithm  

- A Multiple-f0 detection program is used in order to estimate the note boundaries in a 
musical piece, the fundamental frequencies of each note and its harmonic series. As in 
Source-Reduction, in this chapter the f0-estimation program of (Yeh, Röbel and 
Rodet 2005) is used with 93ms analysis window and automatic estimation of the 
polyphonicity, i.e. number of notes played concurrently, in each analysis window. In 
order to discard accidental f0-estimation errors, notes shorter than a “minimum” 
threshold are discarded – the reason for this is that when the same note pitch (f0) is 
detected in several consecutive frames, the probability of this note being an accidental 
estimation error is diminished. Recognition rates of two minimum-length note-
thresholds are presented below - 0.25second and 0.5second. 
 

- For each detected note (vibrato/glissando are allowed): 
• Resynthesize18 it using its estimated harmonic series (frequencies and amplitudes) 
• Classify it using a Learning set consisting of notes from Solos, resynthesized from 

their estimated harmonic series.  

13.1.3.2 Resynthesized-Solos recognition  

In order to have the Learning and Test sets as similar as possible, HR uses a classifier 
trained on notes resynthesized from estimated harmonic series computed from Solos, to 
perform AMIR on notes resynthesized from estimated harmonic series from MIP music.  
Before classifying resynthesized notes from MIP music, it is important to check that this 
resynthesized Solo classifier can indeed classify resynthesized Solo notes well. The Solo 
collection is the same as used in the Solo recognition in  Chapter 12 (for details see 

                                                 
18 Resynthesis is not compulsory; the harmonic series could be used directly for descriptor computation. 
Here, as many of the descriptor calculation routines are 3’rd party and require a waveform as input, the 
notes are resynthesized “back” from the harmonic series without loss of generality (WLOG). 



AMIR in Multi-Instrumental, Polyphonic Music  Chapter 13
 

100 
 

Section  5.2), and includes Solos of seven instruments: bassoon, clarinet, flute, cello, 
violin, guitar and piano. 
 
Resynthesized-Solo classifier evaluation process: 
• An f0-estimation program is run on the Solos 
• All notes in the estimation results which are at least 0.25second long (to prevent 

accidental estimation errors) are detected 
• The detected notes are resynthesized using their estimated harmonic series using 

Additive Synthesis (see Section  11.4 for explanation of Additive Synthesis) 
• The descriptors of the resynthesized notes are computed 
• AMIR classification evaluation is performed using the “Minus-1-Solo” method 

(Section  9.7.2): the resynthesized notes of each Solo (actually, their descriptor 
vectors) are classified using a Learning set consisting of the notes of all the other 
Solos together 

 
Results 
 

 Bassoon Clarinet Flute Cello Violin Guitar Piano Average
Resynthesized 
Notes 

88.7 72.9 83.2 73.6 80.5 82.4 90.3 81.7 

Solo Instrument 
Detection  

90.9 100 100 100 100 94.1 90.0 96.4 

Table  13-A. “Minus-1-Solo” average recognition rates using resynthesized Solo notes 

The “Resynthesized notes” row in Table  13-A shows the Minus-1-Solo recognition rates 
for the resynthesized Solo notes. The “Solo Instrument Detection” row of the table shows 
the percentage of Solos where the performing instrument gets the highest number of notes 
classified into its class, implying whether the classification results could be used to 
determine which instrument is playing each Solo. 
 
Note that while these results seem somewhat lower than the recognition rates for the 
same Solo database (Table  12-A) using non-resynthesized, original Solo-pieces, it should 
be reminded that these results cannot be directly compared.  
In  Chapter 12, the samples used for Solo recognition (also used as the Learning set with 
the SR method) are sequentially cut, half-overlapping, one-second pieces out of the Solos. 
Here, the current method looks for continuous notes (of at least 0.25second) in the f0-
estimation results and then resynthesizes them. The resynthesized Solo database consists 
of 19769 notes, while the non-resynthesized, “original” Solo database in  Chapter 12 has 
22464 one-second samples. 
 
To conclude - the results in Table  13-A show that this classifier can indeed classify 
resynthesized Solo notes rather well, which means that the Resynthesis method is indeed 
working for Solos, while the recognition rates with the current f0-estimation program are 
somewhat lower than with non-resynthesized Solo pieces.  
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13.1.3.3 HR vs. SR 

• Both systems in this chapter use estimated harmonic-series computed by a multiple-f0 
estimation program - (Yeh, Röbel and Rodet 2005), and thus do not require pre-given 
f0-information and can be directly applied to authentic musical recordings, unlike 
(Kitahara et al. 2007) and (Eggink and Brown 2003) for example.  
 

• Both HR and SR methods first detect note boundaries in the f0 estimation data and 
then perform AMIR on each detected note, thus, unlike (Essid, Richard and David 
2006) for example, can be directly utilized for automatic transcription, ordering notes 
into staves according to the playing instrument and can be directly applied to score-
based annotation systems such as MusicXML (Good 2001). 
 

• Both methods do not use heuristics based on musical context, such as proposed by 
(Kitahara et al. 2007), and thus can be applied indiscriminately to any musical genre, 
including classical music, modern atonal music and even random sound mixtures.  
 

• The HR method is simpler somewhat than SR as it does not require filtering. It can be 
concluded from  Chapter 11 that if the multiple-f0 detection algorithm provides 
reasonable results, the HR method should work well. SR, on the other hand, depends 
also on the filtering method. 
 

• The SR method has less strict demands from the f0-estimation program than HR; it 
requires less precision in the partial frequencies estimation and does not require 
partial amplitude estimation at all: 
The filtering process in the SR method leaves the DFT peaks intact – it does not 
attempt to surgically remove all the partials of undesired notes, but rather to remove 
whole peaks which do not contain partials of the “desired” note inside them (the note 
we wish to keep).  This method, while somewhat rough, is also somewhat “safe”, as it 
leaves partials of the desired note untouched and only removes “undesired” 
information. This means that the Reduction method does not require the f0-estimation 
program to supply energy levels of the partials, which are very hard to estimate in 
cases of partial collisions, but only frequencies, while the Resynthesis method 
requires the amplitudes of partials. This also means that the f0-estimation program has 
some freedom of error regarding the partial frequencies, as long as they still “land” 
inside the partial peaks while HR resynthesizes exactly the estimated frequencies. 
Note however, that the f0-detection program used in this chapter (Yeh, Roebel and 
Rodet 2005) does not attempt to estimate the amplitudes of overlapping partials but 
simply reports the amplitudes in the DFT bins corresponding to the partials and 
therefore the amplitude requirement of the HR method does not greatly differ in this 
case from the inherent amplitude-ignorance of the SR. 
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13.2 EVALUATION RESULTS 

13.2.1 AUTHENTIC DUO RECORDINGS 

Table  13-B shows the average recognition rates of the three methods described above for 
AMIR in MIP music, Naïve Solo Classifier, SR and HR, performed on 18 authentic Duo 
recordings (see Section  5.3); these Duos are performed by different pairs of seven 
musical instruments – bassoon, flute, clarinet, violin, cello and the polyphonic 
instruments - guitar and piano.  
 
The “Recognition Method” column specifies the AMIR technique.  
The SR and HR methods are evaluated on all detected musical notes in a Duo which are 
longer than a selected minimal note length. Different minimal note lengths were 
preliminary tested and two lengths were selected to be shown in this table – 0.25second 
and 0.5second. Note that limiting the note sizes to lengths above 0.5second has decreased 
the number of classified notes down to 45.4% compared with using a minimum threshold 
of 0.25second. Minimal note length thresholds higher than 0.5second leave very few 
notes for classification, while notes significantly shorter than 0.25second are mostly too 
short to be classified correctly. 
 
As exact instrument labeling for the tested Duos is unfortunately not available, the 
recognition rates are computed using the average “Mutual Grade” method, which 
indicates the percentage of notes which are classified correctly as either one of the 
playing instruments. 
 
The “Instrument Detection” columns indicate whether both correct instruments received 
the highest number of classifications, i.e. whether the classification results could be used 
to determine exactly which instruments are playing in the Duo.  
This grade is important; if the maximum number of instruments in a musical piece is 
known and the classifier can be relied upon to correctly determine them (e.g., the two 
correct instruments in a Duo), then it is possible afterwards to limit the Learning set to 
contain only the participating instruments and perform the recognition process again, this 
time getting a much more precise instrument-segmentation of the musical piece 
exclusively into the correct playing instruments. Obtaining the list of participating 
instruments is also useful for performing other MIR tasks, such as f0-estimation and score 
alignment, which could utilize instrument models of the correct participating instruments. 
 
Instrument Detection levels: 

• The “Both” sub-column indicates the percentage of Duos where both instruments 
were identified.  

• The “Only One” sub-column shows the percentage of Duos where only one 
correct instrument got the majority vote of classifications while the other 
instrument “lost” the vote to another, incorrect, instrument. 
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• The “Neither” sub-column shows the percentage of Duos where none of the 
correct instruments got a majority classification.  

 
Recognition Method “Mutual” Grade Instrument Detection 

Both Only One Neither 
{ 

Naïve Solo-Classifier 87.5 % 77.8 %  22.2 % 0 % 
 

Source-Reduction 0.25 78.6 % 88.9 % 5.6 % 5.6 % 

Source-Reduction 0.5 83.0 % 77.8 %  22.2 % 0 % 
  

Harmonic-Resynthesis 0.25 80.9 % 94.4 % 5.6 % 0 % 

Harmonic-Resynthesis 0.5 83.2 % 100 % 0 % 0 % 

Table  13-B. AMIR in authentic Duo recordings of seven instruments,  
using the Naïve Solo classifier, Source-Reduction and Harmonic-Resynthesis methods 

 
Discussion � Authentic Duo Results 

Naïve Solo Classifier 
Looking at Table  13-B, it is interesting to note that the Naïve Solo classifier is not much 
“confused” by the MIP mixture (Livshin and Rodet 2004a); it classifies 87.5% of the one-
second samples correctly as either one of the playing instruments and succeeds to 
determine correctly both participating instruments in 77.8% of the Duos.  
One should keep in mind, however, that the Naïve recognition is only one-dimensional, 
i.e., each one-second piece of the music is classified only once, as if it was performed by 
a single musical instrument. Another disadvantage is that the Naïve method classifies 
here constant-length musical segments, ignoring note boundaries. For this reason, the 
Naïve method cannot be directly compared with the multi-dimensional, single-note 
classifiers - Source-Reduction and Harmonic-Resynthesis, which classify each note 
separately and can classify notes that overlap in time.  
 
The 77.8% Instrument Detection grade seems to suggest that while the Naïve recognizer 
may recognize only the “domineering”, higher-volume, instrument in each one-second 
musical segment, usually there is no complete “domination” of one of the instruments 
throughout the musical piece as both participating instruments could be detected. 
 
The ability to recognize the “domineering” instrument in signals that are comprised of 
two concurrent sounds seems to imply that sounds which contain a domineering note with 
some extra, low-level “leftovers” from other notes, such as may remain in filtered notes 
produced by the Source-Reduction method, may still be correctly classified in most cases.   
 
SR and HR 
Comparing the Source-Reduction (SR) and Harmonic-Resynthesis (HR) results, the table 
shows that HR performs better than SR – it produces a slightly higher mutual grade than 
SR for both minimal note sizes – 2.3% better with 0.25second note threshold and 0.2% 
better for notes over minimal length of 0.5second. The HR method also detects better 
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than SR the participating instruments and when using a minimal note length of 0.5second, 
it actually succeeds to determine correctly the playing instruments in all 18 Duos. 
 
While both SR and HR methods produce higher grades using minimal note length of 
0.5second, it is important to keep in mind that the number of classified notes is actually 
reduced by 54.7% when limiting classification to notes starting from 0.5second compared 
with 0.25second threshold. While this is not important if the goal is to determine the 
instruments playing in the musical piece, when the requirement is to instrument-segment 
as much notes as possible, for automatic transcription applications for example, then it is 
better to use 0.25second minimal note length with a slight compromise on recognition 
rate than to leave more than half the notes in the musical piece unclassified.  

13.3 SOLO MIXTURES 

Authentic musical recordings with their precise transcriptions, as required for exact 
AMIR evaluation, are practically unavailable. Different alternative approaches exist, with 
the most common one being using music resynthesized or automatically mixed from 
separate tones according to MIDI files, such as done in (Kitahara et al. 2007). Music 
resulting from this approach, however, is too different from authentic musical recordings 
to fairly represent them in AMIR experiments.  
Artificially mixing authentic Solo performances is a rather good compromise which 
produces precisely instrument-labeled MIP music which is quite similar to authentic 
recordings of MIP music.  
For full details of my Solo-Mixing process and a more thorough discussion of the 
advantages and disadvantages of evaluation using Solo-mixtures, see Section  5.4. For a 
discussion regarding the requirement for precise AMIR evaluation and proposal of 
several possible solutions, see Section  15.4 in the “Future Work” chapter. 
 
In order to perform precise instrument labeling of the Solo mixtures, it is first required to 
detect the precise note boundaries (where each note begins and ends) in the Solos which 
participate in each mix. While precise boundary detection is relatively easy with Solos 
performed by monophonic and semi-monophonic instruments, detecting note boundaries 
in Solos performed by polyphonic instruments, such as the piano and guitar, is as difficult 
as doing so in MIP music. Therefore, in this section, which is dedicated to providing 
precise MIP AMIR evaluation, the polyphonic instruments were removed from the Solo 
database (described in Section  5.2), resulting in Solo-mixes of five monophonic and 
semi-monophonic instruments – bassoon, flute, clarinet, violin and cello. 
Limiting the Solo-mixes to monophonic instruments also allows setting precisely the 
concurrent number of notes played in the Solo-mixes; mixing Solos of polyphonic 
instruments, such as the guitar, would have created mixes with non-determined numbers 
of notes playing concurrently depending upon the guitar passages. 
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13.3.1 INDEPENDENT EVALUATION 

Before classifying each Solo-mixture, in order to keep the evaluation “fair” (see  Chapter 
9) the Solos which were mixed into it are removed from the Learning database; this 
causes lowering of the recognition rate but allows truly independent evaluation. 

13.3.2 GRADING 

Several different grade methods are used in order to show different strengths of the tested 
recognition methods: 

13.3.2.1 �Instrument� Grade 

Computing the Instrument Grade: 
• Each note is checked whether it is classified exactly as the instrument playing it, 

i.e. its instrument-label  
• An average grade for each participating instrument is computed for each Solo-mix 
• The Instrument Grade is the average of these average instrument-grades over all 

the Solo-mixes 

13.3.2.2  �Notes� Grade 

Computing the Notes Grade: 
• Each note is checked whether it is classified correctly as its instrument label 
• The average recognition rate per note is computed for each mixture 
• The Notes Grade is computed as the average of the average note-grades in all the 

Solo-mixes  
 
The Notes Grade differs from the Instrument Grade as the number of notes performed by 
different instruments in a Solo-mix is different. The instrument grade indicates how well 
each instrument is recognized while the Pieces Grade indicates how well each musical 
note is classified. 

13.3.2.3  �Mutual� Grade 

This is a version of the Notes Grade, where a note is considered to be classified correctly 
if it is classified as either one of the instruments mixed in the mixture. This grade was 
used in the previous section where AMIR was performed on authentic Duo recordings.  
 
The Mutual Grade in this section attempts to produce a grading which diminishes the 
influence of recognition errors between participating instruments, such as may be caused 
by incorrect partial-amplitude estimation by the f0-estimation program or imprecise 
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filtering; while listening to some resynthesized HR notes or some filtered SR notes it 
indeed happened sometimes that I heard several of the instruments playing concurrently.  

13.3.2.4  �Vote� Grade  

This grade shows how well the AMIR algorithm allows precise detection of the 
instruments participating in the MIP music. A high Vote grade means that the resulting 
instrument lists are precise enough to be used practically, for example, in order to pass 
corresponding instrument models to an f0-estimation program. While for Duos, in the 
previous section, a simple Instrument Detection grade was sufficient, for more multi-
instrumental music a somewhat complex grade computation method is required. 
 
Computing the Vote Grade: 

• Produce a sorted list of the instruments in a Solo-mixture by the number of 
samples each of the instruments “received” from the classification 

• If correct instruments get the highest places in the list, each correct instrument 
gets a full 100% rate. If some participating instruments get, however, the same 
number of “votes” as some incorrect instruments, the 100% is divided among all 
of these instruments with the same number of “votes”.  

• A number of “Reserved Places” as the number of participating instruments is kept 
for musical instruments that get the highest number of classifications, regardless 
of whether these are indeed participating instruments or wrong ones. 

• The Vote Grade is the average of the grades of the participating instruments that 
get Reserved Places 

 
Example:  
Let us say that the analyzed musical piece is a clarinet and bassoon Duo. The number of 
samples classified as different instruments are: 
 
Bassoon: 8 samples, Clarinet: 4, Flute: 4, Violin: 4, Cello: 0 
 
Bassoon, which has the majority of classifications (8 samples) gets 100% and occupies 
the first of the 2 places reserved for correct instruments (this is a Duo - 2 instruments are 
playing). 
Clarinet, however, has 4 samples, the same as the incorrectly identified flute and violin, 
and thus it gets the “number of remaining places” divided by the ”number of instruments 
with same number of votes” = 1/3 = 33.3%. 
The average Vote grade in this example is therefore (100 + 33.3) / 2 = 66.7%. 

13.3.2.5 �Vote All� Grade 

This utter simplification of the “Vote” Grade, analogical to the “Both” sub-column of the 
“Instrument Detection” column in Table  13-B, simply gives 100% to Solo-mixes where 
all participating instruments get full majority and 0% to all the other mixes, i.e., it 
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indicates the percentage of mixes where all the participating instruments are identified as 
such. 

13.3.3 RESULTS 

Reading Table  13-C: 
 
• “Info.” column: 

̈ Polyphony – number of musical instruments playing concurrently in this 
experiment 

̈ Mixes – number of Solo-mixes classified in this experiment 
̈ Solos – number of different Solos mixed in this experiment 
̈ Unlabeled – average percentage of notes in the Solo-mixes, over 0.25second long, 

which were not detected during the instrument-labeling procedure in the Solos 
participating in the mix and therefore could not be labeled and were exempted 
from classification (see Section  5.4) 

̈ Over 0.5s – two minimal sample sizes were tested – 0.25second and 0.5second. 
This percentage shows how many samples are in the [0.25second - 0.5second] 
range, i.e. removed during the experiments with a minimal sample size of 
0.5second 

  
• “Min. Len.” column: 

Indicates the minimal classified sample length - 0.25second or 0.5second. Note that 
sometimes it happened that there were no notes of a certain instrument over 
0.5second long at all (may happen also due to f0-estimation errors), resulting in this 
instrument actually “disappearing” from classification. This is the reason why some 
of the 0.5second grades may seem bizarre and much lower than expected. For 
example, the HR grade of 5 voice polyphony is only 60% instead of the normally 
expected 100%. Yet this is fair – if only notes of 4 instruments are left, classifying a 
sample as the 5’th instrument, even if this instrument existed in the original mixture, 
is wrong. 

 
• “Alg.” column: 

Indicates the AMIR MIP algorithm used in the experiment, SR (Source-Reduction) or 
HR (Harmonic-Resynthesis) 
 

• “Instr. G.” column:  average Instrument Grade 
• “Notes G.” column:  average Notes Grade 
• “Mutual G.” column:  average Mutual Grade 
• “Vote G. column:   average Vote Grade 
• “VoteAll G.”:   average Vote-All Grade 
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In columns 4 – 8 the numbers in the brackets indicate the K which was used for KNN in 
each test type. This K, selected from a range of 1 – 80, has produced the highest results 
for this kind of test. 
It is reasonable to use different K values depending on which type of grade we are most 
interested in. Nevertheless, in case where we do want to use the same K value for all the 
polyphonic voice range (2 – 5 voices), the average difference in grade between using 
“best” K’s for each voice number or just a constant K is rather small, around 2%. 
  
• The bottom double-row of the table shows average results for each technique over the 

different numbers of voices. 
 

Info. Min. Len. Alg. Instr. G. Notes G. Mutual G. Vote G. VoteAll  G. 

Polyphony:2 

Mixes:34 

Solos:68 

Unlabeled:9.1% 

Over 0.5s:54.4% 

 

0.25s 

 

SR 

HR 

66.4(15)

66.3(26)

68.0(15)

66.3(30)

79.5(74) 

77.4(12) 

82.8(6) 

84.6(6) 

67.6(6) 

67.6(6) 

 

0.5s 

 

SR 
HR 

67.6(68)

68.9(53)
69.2(18)

66.7(26)
80.8(74) 

78.3(53) 
89.0(3) 

83.6(21)
76.5(3) 

64.7(19)

Polyphony:3 

Mixes:20 

Solos:60 

Unlabeled:7.6% 

Over 0.5s:51.2% 

 

0.25s 

 

SR 
HR 

53.3(13)

57.3(7) 

56.8(13)
59.0(20)

84.7(17) 
86.2(7) 

82.5(12)
89.2(4) 

40.2(14)
65.0(4) 

 

0.5s 

 

SR 
HR 

54.6(3) 

60.5(11)

54.7(2) 

60.2(11)

86.0(17) 

85.4(43) 

84.3(6) 

86.2(34)

50.0(6) 

60.0(3) 

Polyphony:4 

Mixes:14 

Solos:56 

Unlabeled:5.4% 

Over 0.5s:49% 

 

0.25s 

 

SR 
HR 

49.6(9) 
56.9(44)

55.4(9) 
58.9(4) 

94.8(70) 
92.8(2) 

98.2(4) 
91.7(6) 

92.9(4) 

64.3(3) 

 

0.5s 

 

SR 
HR 

51.1(5) 

58.2(8) 

57.0(9) 

60.1(68)

94.0(68) 

91.6(12) 

95.8(17)

94.0(12)

85.7(17)

78.6(12)

Polyphony:5 

Mixes:10 

Solos:50 

Unlabeled:2.1% 

Over 0.5s:41.6% 

 

0.25s 

 

SR 
HR 

38.8(62)

43.3(27)
41.7(64)

45.5(27)
100.0(1) 

100.0(1) 

100.0(1)

100.0(1)

100.0(1)

100.0(1)

 

0.5s 

 

SR 
HR 

43.0(62)

40.1(24)
41.9(62)

38.0(24)
99.4(1) 

86.3(1) 
98.3(1) 

85.8(5) 

90.0(1) 

60.0(4) 

        

AVERAGE 
Unlabeled:6.0% 

Over 0.5s:49% 

0.25s 
SR 
HR 

52.0 

55.9 

55.5 

57.4 

89.7 

89.1 

90.9 

91.4 

75.2 

74.2 

0.5s 
SR 
HR 

54.1 

56.9 

55.7 

56.2 

90.0 

85.4 

91.8 

87.4 

75.5 

65.8 

Table  13-C. Source-Reduction and Harmonic-Resynthesis AMIR results on Solo-Mixtures 

Looking at the Average double-row (bottom one), we can see that HR produces slightly 
higher Instrument Grades and Notes Grades than SR, while SR leads somewhat with the 
Mutual and Vote-All Grades.  
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Both methods produce better average grades using notes of at least 0.5second long than 
with 0.25second minimal threshold, however, on average, using 0.5second minimal note 
length leaves only 49% of the notes to be classified, i.e. there is twice the recognition 
resolution using a minimal note length of 0.25second. As the difference in recognition 
rate is small and the resolution difference is considerable, a 0.25second minimum length 
threshold should be preferred.  
 
The average Vote-All grade reaches 75.5% (the Vote grade 91.8%), which means that 
caution should be taken if using the current program configuration for determining the 
participating instruments in MIP music for practical applications, as on average, the 
program fails to produce the complete list of participating instruments in 24.5% of the 
mixes. 
 
Side Note – an experiment was performed where MIQR was used in order to remove 
10% of the most “suspicious classifications” (corresponding to “results purging” depicted 
in shape #11 of Figure  1-A). This experiment has resulted in slightly over 1% increase in 
all recognition rates over the results summarized in Table  13-C. As this increase in 
recognition rates does not seem very significant, the full details of this experiment are 
omitted. 

13.4 CONCLUSIONS 

It was shown that both methods, Harmonic-Resynthesis and Source-Reduction, are 
relevant and produce much higher recognition rates than random instrument labeling.  
In a way, with the Harmonic-Resynthesis method, the problem of AMIR in MIP music is 
reduced to correct multiple f0-estimation (including the harmonic series); this is because 
in HR there is no fundamental difference between instrument recognition with 
resynthesized notes from Solos and resynthesized notes from MIP music.  
 
In the general case, the preferred recognition method depends on the precision qualities 
of the f0-estimation program. It was shown in (Livshin and Rodet 2006b) and  Chapter 11, 
that when using the HR method, the instrument recognition rate depends almost entirely 
on estimation quality of the frequencies and amplitudes of the partials of the different 
notes. If the f0-estimation is very good, then the HR is a better method as it does not 
require filtering, is comparatively simple and straight-forward, and can lead to very high 
recognition rates.  
Nevertheless, if the f0-estimation program is less precise, SR may be preferred as it 
allows the frequency estimation to be less exact as long as the estimated partials fall 
inside the correct spectral peaks.  
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Chapter 14 SUMMARY 

The subject of this thesis is “Automatic Musical Instrument Recognition” (AMIR) which 
means, intuitively speaking, that given a musical recording, the computer attempts to 
identify which parts of the recording are performed by which musical instruments.   
The thesis deals with the different stages of AMIR as presented in Figure  1-A.  
 
Chapter Summary 

 
 Chapter 1 is an overview of the thesis. It presented a flowchart of the AMIR process and 
described its different stages. It is important to understand the flowchart in order to 
comprehend how each thesis chapter fits in the complete AMIR process. After discussing 
the AMIR process, a short overview of the goals in each thesis chapter was given.  
 
 Chapter 2 presented an introduction to AMIR. After providing a formal definition of the 
task, Section  2.1 explained why AMIR is an important research area and for which 
practical applications it is useful; to summarize, it could be said that AMIR is mostly 
applicable not as an end product, i.e., providing instrument recognition results to the user, 
but rather as a software module integrated into various applications and algorithms such 
as intelligent music searches over the Internet, automatic music transcription, software for 
composers and other applications. Section  2.2 presented some of the different challenges 
a researcher in AMIR has to deal with, including classification accuracy and generality, 
erroneous data, overlapping sounds in polyphonic music, pattern-recognition issues, etc. 
 
 Chapter 3 told the history of Instrument Recognition research which mainly evolved in 
three stages: AMIR in separate tones, Solos and Multi-Instrumental, Polyphonic (MIP) 
music. AMIR research was almost entirely limited to recognition of isolated note samples 
for about 30 years until around 1998, when several works on recognition of Solos, or as 
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frequently called, “musical phrases” have appeared, such as (Dubnov and Rodet 1998). 
Finally, with the paper of Eggink and Brown (2003), research on AMIR in MIP music 
began to gain popularity. 
 
 Chapter 4 mentioned briefly a few alternative taxonomies and classification structures to 
the ones used in this thesis - throughout most of the thesis the classification classes are 
concrete instrument names while the classification structure is a non-hierarchical, flat 
‘all-vs.-all’. 
 
 Chapter 5 detailed the different sound sets used in the thesis: separate tone databases, 
authentic Solos, authentic Duos and Solo mixes.  
 
In separate tone databases each sound sample contains an audio recording of a single note. 
Authentic Solos are recordings of music performed by a single instrument, whether it is a 
monophonic instrument, such as the flute, or polyphonic such as the piano. Authentic 
Duos are recordings of music where two instruments are playing concurrently. 
 
Due to the fact that correctly labeled, recorded multi-instrumental music is virtually 
unavailable, authentic Solos were mixed together to create polyphonic “Solo mixtures” 
used for evaluation of AMIR of MIP music. This automatically tagged Solo-mix database 
is a new method for producing MIP instrument-tagged music for AMIR evaluation. This 
method has many advantages over music resynthesized according to MIDI files out of 
separate tone collections, as commonly used in other AMIR researches, such as (Kitahara 
et al. 2007), while having the disadvantage that the music it produces does not comply 
with any style-dependent composition rules. 
 
Note that several rather large sound databases were created and gathered during this work. 
As such testing material is quite hard to find, obtaining and collecting these sounds for 
research purposes is a notable contribution in itself – most of all the large and diverse 
Solo database, which is available as part of the Scientific project MusicDiscover (MCI 
2004).  
 
 Chapter 6 presented a list of the feature descriptors used for classification throughout 
this thesis along with relevant references. The feature descriptors are of different types – 
“Temporal features”, “Energy features”, “Spectral features”, “Harmonic Features” and 
“Perceptual features”. A full explanation of each feature is available in (Peeters 2004). 
 
 Chapter 7 discussed the feature selection and weighting techniques used in the thesis.  
It explained the pros and cons of Linear Discriminant Analysis, which is the feature 
weighting technique used throughout this document.  
 
The CFS feature selection algorithm was described and the new “GDE” feature selection 
algorithm was presented. While GDE, due to its LDA ‘engine’, selects the descriptors 
which produce the highest recognition rates when classification using LDA+KNN is 
performed, CFS selects a more “meaningful” list of non-dependent descriptors. As a non-



Summary  Chapter 14
 

112 
 

exponential feature selection algorithm which selects the optimal feature list is a 
theoretical impossibility, choosing the best feature selection algorithm depends on 
application. 
 
 Chapter 8 described the classification algorithms used in this thesis - Backpropagation 
Neural Network and KNN. Next, the “LDA+KNN” classification method was presented; 
it was demonstrated why “LDA+KNN” was selected for most of the classification tasks 
in the thesis.  
The Backpropagation Neural Network is used only in  Chapter 9 in comparison with 
“LDA+KNN” in order to demonstrate a specific point. 
 
 Chapter 9 has dealt with the issue of evaluation of AMIR techniques; it presented 
several evaluation methods including the new cross-validation techniques “Minus-1-DB”, 
“Mutual Classification”, “Minus-1-Instance” and “Minus-1-Solo”. The chapter criticized 
the "Self-Classification" evaluation method, which used to be common before the 
publication of our (Livshin and Rodet 2003) paper, and used a single sound database for 
evaluating AMIR results. While a few researchers in AMIR did claim that it is important 
to use independent data in the Learning and Test sets, the importance of this data 
belonging to different sound databases was never directly evaluated before.  
 
This chapter has filled a “theory hole” regarding the evaluation issue and proved the 
following claims: 
• Evaluation results using a single sound database are not necessarily an indication of 

the generalization capabilities of the classification process and thus its suitability for 
realistic classification tasks, where the ultimate goal is to have a Concept Classifier - 
a classifier which could classify instrument sounds regardless of their specific 
recording conditions. 

• Self-Classification results do not demonstrate the ability of a classifier which was 
trained on one database to classify new sounds, and thus its performance as a Concept 
Classifier. This also means that Self-Classification results do not demonstrate the 
diversity of the sound database being used. 

• A feature selection algorithm might choose different features for classification of the 
same instrument types, depending on the sound database being used. This also means 
that evaluating features using a single database will not necessarily help to choose the 
right features for a Concept Classifier. 

• Enriching the Learning database with diverse sound samples from other databases, 
helps the classifier to generalize better and makes it more suited for classification of 
new sounds. 

 
To deal with the shortcomings of Self-Classification, first the "Minus-1-DB" evaluation 
method was introduced following by other multiple-source cross-evaluation methods. In 
“Minus-1-DB”, the evaluation is performed using several sound databases, each 
classified by the rest joined together. Minus-1-DB results do provide an indication as to 
the generalization abilities of the evaluated classification algorithm and feature 
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descriptors, as the classification algorithm never learns the classified databases and is not 
adapted to the specific characteristics of their samples (as happens in Self-Classification). 
Although the generalization ability still depends on the sound databases being used, it 
could be reasonably assumed that the recording conditions of the samples in the various 
databases are different, which allows the evaluation of the generalization ability of the 
databases performed, while Self-Classification does not evaluate generalization at all and 
over-fits the Learning set. 
 
 Chapter 10 dealt with the issue of self-consistency of a Learning database. A sound 
database may contain samples which are badly recorded or mislabeled, causing 
classification errors. This chapter presented two new database purging algorithms – 
“MIQR” and “SCO” and compared them with the common Interquantile Range (IQR) 
algorithm. The performance was evaluated using a sound database contaminated with 
four different outlier types.  
 
For non-labeled data, out of the three algorithms, the unsupervised IQR algorithm is the 
“natural way to go” as the other two algorithms require class information. When the goal 
was to be rid of contaminated data in labeled databases, MIQR achieved the best results. 
If the goal is to achieve the highest classification results, then wrapper-type methods, 
specifically tailored to the data and classification algorithms, such as SCO, may well be 
the answer. 
 
 Chapter 11 performed AMIR of separate tones from 10 instruments reaching a high 
recognition rate - 95.58% using strict Minus-1-Instance evaluation. At the time of 
publishing this result in our (Livshin and Rodet 2006b) paper, this recognition rate 
seemed to be the state of the art although it is somewhat hard to compare results between 
different AMIR papers as the evaluation methods and instruments vary considerably. 
Next, the chapter explored the instrument discrimination power of the harmonic series 
and the non-harmonic residuals. While it is common to treat the Harmonic Series as the 
main characteristic of the timbre of pitched musical instruments it seems that no direct 
experiments were performed to prove this assumption before it was done in our (Livshin 
and Rodet 2006a) paper.  
 
As stated, this chapter has filled a “theory hole”, checking the common assumption that 
distinguishing information is presented mainly/only in the harmonic series; in order to 
check it, using Additive Analysis/Synthesis, each sound sample was resynthesized using 
solely its Harmonic Series. These “Harmonic” samples are then subtracted from the 
original samples to retrieve the non-harmonic Residuals. AMIR is performed on the 
original samples, the Resynthesized ones and the Residuals and the results are compared 
and discussed.  Using CFS feature selection, the best 10 feature descriptors for instrument 
recognition are presented for the Original, Harmonic and Residual sound sets. 
 
The chapter shows that using only information present in the Harmonic Series of the 
signal is enough for achieving a high average musical instrument recognition rate – 
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91.51% for 10 instruments using Minus-1-Instance evaluation. This is only 4.07% less 
than the recognition rate obtained by using the complete, Original signals.  
 
On the other hand, it was also shown that there is considerable distinguishing instrument 
information present in the non-harmonic Residuals, which by themselves produced an 
average instrument recognition rate of 81.99%. It was revealed that the information 
present in the non-harmonic Residuals is not completely redundant to the information 
present in the Harmonic Series as although the average recognition rate of the Harmonic 
signals is high, some of the instruments have “suffered” noticeably from removing the 
non-harmonic Residuals, especially the trumpet and violin pizzicato. In addition, it was 
shown that the 10 best feature descriptors selected for the Original sample set differ from 
the ones selected for the Harmonic samples. These results show that the sound of pitched 
musical instruments should not be treated as containing only the Harmonic Series, 
although most of the energy and distinguishing instrument information of the signal is 
indeed present in the Harmonic Series.  
 
One conclusion from this chapter is that because it was shown that using only the 
harmonic series does not considerably lower the average instrument recognition rate, then 
instrument recognition in MIP music could be done with rather high results without 
performing full source-separation; Using results obtained from multiple-f0 estimation 
algorithms, estimated harmonic partials could be used solely to classify musical 
instruments without losing too much distinguishing information. This is exactly what the 
“Harmonic-Resynthesis” method in  Chapter 13 is based upon. 
 
 Chapter 12 has dealt with Instrument recognition in Solo performances (monophonic or 
polyphonic musical phrases performed by a single instrument) which is different and 
more complicated than dealing with separate tone databases, as the time evolution of each 
sound (attack, decay, sustain, release) is not well defined, the notes are not separated, 
there are superpositions of concurrent sounds and room echo, different combinations of 
playing techniques, etc.  
AMIR was performed on a large Solo collection of 7 instruments – bassoon, clarinet, 
flute, piano, guitar, cello and violin. First the Solos were classified using the Full Feature 
Descriptor set producing a Minus-1-Solo Instrument Grade of 88.13%, and next a 
specifically reduced set of descriptors was used to create an actual realtime AMIR of 
Solos application (while the Solo plays/records, each one-second piece is instrument-
recognized) with only a slight decrease in recognition rate, producing a Minus-1-Solo 
recognition rate of 85.24%. Note that at the time of publishing these results (Livshin and 
Rodet 2004a), both the results for offline and realtime Solo recognition were the state of 
the art and notably higher than other Solo recognition results obtained before. 
 
 Chapter 13 dealt with instrument recognition in multi-instrumental, polyphonic (MIP) 
music. It presented three techniques – Naïve Solo Classifier, Source-Reduction (SR) and 
Harmonic-Resynthesis (HR). The Naïve Classifier only classifies each signal frame one-
dimensionally, as a single instrument, while SR and HR return polyphonic AMIR results. 
Both HR and SR utilize a multiple-f0 estimation program and use Solos in the Learning 
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set. SR attempts to achieve single-instrument notes by filtering out of every section of 
MIP music where a note is detected all the other sounds except this note’s harmonics, 
while Harmonic-Resynthesis resynthesizes, using Additive Synthesis, single notes out of 
harmonic series obtained from f0-estimation information. In a way, with the HR method, 
the problem of AMIR in MIP music is reduced to correct multiple f0-estimation; this is 
because in HR, there is no theoretical difference between instrument recognition with 
resynthesized notes from Solos and resynthesized notes from MIP music.  
 
As both HR and SR systems in this thesis use estimated harmonic-series computed by a 
multiple-f0 estimation program, they can be directly applied to authentic musical 
recordings, unlike (Kitahara et al. 2007) and (Eggink and Brown 2003) for example, 
which require manual f0-information to be supplied. Both SR and HR perform AMIR of 
each note separately (using detected note boundaries), thus, unlike (Essid, Richard and 
David 2006) for example, which performs AMIR of all the polyphony at once, SR and 
HR can be directly utilized for automatic transcription, ordering notes into staves 
according to the playing instrument. Both SR and HR do not use heuristics based on 
musical context, such as proposed by (Kitahara et al. 2007) or assumed in (Essid, Richard 
and David 2006), and thus can be applied with similar success to any musical genre, 
including classical music, modern atonal music and even random sound mixtures. 
 
These techniques were evaluated on authentic recordings of Duos with 7 musical 
instruments and on mixtures of Solo recordings of 5 different instruments with up to 5 
instruments playing concurrently. The chapter showed that both MIP methods, HR and 
SR, produce much higher recognition rates than random instrument labeling. The Mutual 
AMIR Grade for 18 authentic Duos with 7 musical instruments is over 80% with both 
techniques, while with HR, an instrument detection level of 100% is reached. With 
artificial mixes of Authentic Solos of 5 instruments, an average, precise recognition rate 
of 56.9% was reached for 2 – 5 simultaneously playing instruments. 

 
Unfortunately the recognition rates cannot be currently informatively compared among 
AMIR MIP papers as the evaluation methods as well as the evaluation data are very 
different, especially due to lack of commonly available, tagged MIP music. For a 
discussion of the need for precise evaluation, see Section  15.4. 
 
 Chapter 14 presents a summary of the thesis and the various contributions in each 
chapter.  
 
 Chapter 15 recommends further work and research in order to improve AMIR. Utilizing 
composition rules, creating specialized feature descriptors, precise evaluation, human 
integration into the AMIR process and moving from theoretical research into practical 
applications are the various issues discussed in this chapter. 
 
 Appendix A lists acronyms and abbreviations used in the thesis.  
 
 Appendix B contains my 6 published papers.  
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Summarizing Final Words: 

 
Automatic Musical Instrument Recognition is a wide, complex multi-disciplinary field. It 
involves knowledge from various research areas including musical theory, audio physics, 
musical instrument theory, signal processing and pattern recognition.  
 
While this work describes the different stages and components required to perform 
instrument recognition in separate tones, Solos and MIP music, research on AMIR is far 
from being completed. Creating a system which could recognize each instrument 
participating in a classical concert, for example, at least at the level a human listener can, 
is yet far from possible. 
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Chapter 15 FUTURE WORK 

The problem of performing AMIR in MIP music in a practical way for real-world 
applications is yet rather far from being solved. Further work should be done on the 
subject in order to improve recognition rates and other aspects. 

15.1 USING COMPOSITION RULES  

Instrument recognition as performed in this work did not assume any specific musical 
structure and treated music as random sequences of sounds performed by Musical 
Instruments. Moreover, evaluation of MIP music in  Chapter 13 using random mixtures of 
Solos has actually created “music” to which virtually no composition rules apply, thus 
rendering usage of any musical knowledge, such as voice leading rules, common 
harmony, non-crossing of note streams, etc., practically impossible.  
 
Nevertheless, until perfect recognition could be obtained by musicologically-ignorant 
Signal Processing and Pattern-Recognition algorithms, taking into consideration the 
musical style and thus statistically common composition rules from the authentic musical 
genre, the AMIR task could be simplified and improved. For example, Essid, Richard and 
David (2006) write that their AMIR system is suited specifically for Jazz quartets. 
Kitahara et. al (2007) have assumed that note streams of different instruments do not 
cross each other as indeed rarely happens in classical music arrangements.  This 
assumption allowed Kitahara to assume that sudden changes in instruments in the middle 
of note streams are classification errors, and “correct” such “misclassifications” by 
changing the classification of these notes to the same instrument as other notes in their 
vicinity. 
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A musical genre recognition system integrated with an AMIR system could allow 
specifying a set of musical rules for improving the instrument recognition. Otherwise, 
this input may be provided by a user depending upon application – for example if large 
collections of classical music are to be processed for AMIR, the user may set the 
“Classical Music genre” parameter.  
 

15.2 FEATURE DESCRIPTORS 

15.2.1 UTILIZING INFORMATION IN THE NON-HARMONIC 
RESIDUALS 

 Chapter 11 has shown that the Residual part of pitched musical instruments contains 
much instrument distinguishing information. When dealing with Solos or single tone 
databases, Instrument recognition of pitched instruments may be improved by splitting 
the classified sounds into harmonic and non-harmonic components and then computing 
special feature descriptors on the non-harmonic Residuals in addition to the feature 
descriptors computed on the original signals.  The splitting of the signal makes it easier to 
deal with the non-harmonic Residuals due to their relatively low energy levels.  
 
Note that using the current Full Feature descriptor set (see  Chapter 6), experiments where 
the descriptors of the Original samples, the Harmonic and the Residual sets were all used 
together have not yielded higher recognition rates than when using the Feature descriptor 
set of the Original samples by itself. The descriptors for utilizing information from the 
Residuals should therefore be specifically designed for this purpose and take into account 
the special nature of such “noises”. 

15.2.2 HEURISTIC DESCRIPTORS 

Tailored feature descriptors designed to capture certain attributes specific to one or two 
instruments could be added, based on knowledge of very particular instrument 
characteristics (similar to the existing feature descriptor which calculates odd-to-even 
harmonic ratio in order to detect the clarinet).  See (Fletcher and Rossing 1998) for 
example, for physical properties of different musical instruments and how these affect the 
sound.  
 
On the opposite side, attempts have been made to create systems for automatic 
construction of completely non-heuristic descriptors out of prototype signal-processing 
building blocks in order to distinguish best among given musical sample groups. Such is 
the Extractor Discovery System (EDS) (Pachet and Zils 2004) for example. 
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15.2.3 MODELLING SIGNAL EVOLUTION 

In the current feature set the evolution over time of the signal is modeled by the Temporal 
Feature Descriptors (see  Chapter 6) and by computing the frame-based features on each 
STFT frame separately and then using the mean and standard deviation of these frames. 
Much more precise tracking of the sound evolution over time could be achieved using 
Hidden Markov Models (HMM) (Baum and Petrie 1966; Eichner, Wolff and Hoffman 
2006) of the feature descriptors over the STFT frames, Dynamic Time Warping 
(Ratanamahatana 2005) and other time-series modeling techniques. 

15.3 PRACTICAL APPLICATIONS 

The current MIP AMIR systems as defined in  Chapter 13 are not ready yet for many 
AMIR practical applications, such as labeling music on the web, and besides improving 
the recognition rates, should be scaled and enhanced: 

15.3.1 INCREASING THE NUMBER OF INSTRUMENTS  

Currently the systems in  Chapter 13 recognize only seven different instruments in MIP 
music. Besides adding specific instruments, compound instruments could be added, 
where the sounds may consist of several instruments playing concurrently, such as a 
string section, where it is very hard to distinguish each violin by itself while the whole 
section performs together as a single instrument. Databases of instruments and sound sets 
typical of different genres could be used depending on application, such as rock music, 
pop, jazz, etc.  
 
In order to increase the number of recognized instruments using the HR and SR 
techniques, the Learning database should be enriched by Solos of new instruments. This 
was not done in this work as Solos are very hard to find, especially as it was insisted here 
that they come from different recording sources in order to allow informative evaluation 
(see  Chapter 9). This demand may be slackened when enriching the Learning database in 
practical applications, as full Learning database evaluation is not the goal there.     
 
Note that non-pitched instruments such as many drums and percussion instruments 
should be dealt with caution as some techniques presented in this thesis, such as 
Harmonic-Resynthesis (Section  13.1.3), do not apply. 

15.3.2 SPEED IMPROVEMENT 

When a large volume of musical pieces needs to be scanned, speed considerations should 
be applied. Except Section 13.4 which dealt with Solo recognition in realtime, no speed 
improvement attempts have been made in this thesis. Currently, on a Pentium 1.6 MHZ 
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computer it may take around four minutes to perform AMIR on a one-minute musical 
piece with four voices playing concurrently, not counting the multiple-f0 estimation part, 
which may require much longer than that. Current Matlab routines should be translated to 
C or Assembly language and some of the algorithms may be optimized for lower 
complexity.  

15.4 PRECISE EVALUATION 

In order to perform exact AMIR evaluation, authentic recordings of MIP music along 
with its precise transcription are required. Unfortunately, such labeled recordings are 
practically impossible to obtain unless performed on MIDI instruments.  
 
Different researchers use various techniques in order to partially circumvent this problem: 
Music resynthesized from MIDI files, manually labeled musical pieces or as used in this 
thesis, artificial mixtures of authentic Solos.  
While Solo-Mixtures seem to have various advantages over resynthesized MIDI files 
such as including instrument articulations, realistic sounds, etc. (see Section  5.4 for full 
details), the Solo sounds do not influence each other and do not create real, common 
room echo. Moreover, as noted above, musical composition rules do not apply to the 
Solo-mixtures as the mixed Solos have no relevancy to each other. 
 
The precise-evaluation problem is rather hard to tackle.  (Vincent et al 2007) have 
recorded separately, in the same room, instruments playing their different parts in an MIP 
composition and then created an authentically sounding mix by playing the parts together, 
in the same room, and recording “from the air” with differently positioned microphones; 
this method does not seem to suffer from the weaknesses mentioned above. While this 
seems like a rather good solution, unfortunately, it was done only on a very small scale (a 
single three-voice MIP piece) and thus wide MIP evaluation database is still not available. 
 
There are some methods which allow synthesis of semi-natural music with articulations, 
such as Digital Waveguide Synthesis (Smith 1992) which uses computational physical 
models, however, preparing naturally sounding music with such methods without using 
specifically designed instruments (which obviously miss the whole point of automatic 
preparation of an authentic evaluation database), requires too much definition work.  
Another solution could be to perform Score Alignment (see (Rodet, Escribe and Durigon 
2004) and (Cont 2006) for example) in order to align sheet music with audio recordings 
thus gaining an approximate positioning of each transcribed note (e.g., MIDI files) inside 
the recordings.  
 
To create an evaluation database, one of the best direct solutions, in my opinion, is while 
an orchestra (or other musical arrangement) plays, besides recording and mixing the 
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whole music as usual, to record in addition each instrument separately19. Afterwards, f0-
estimation could be performed on each recorded stream, which is relatively easy with 
monophonic music, and the results should be stored in symbolic format along with the 
audio recordings of the full orchestra and each instrument separately. This database could 
be then used by researchers from many MIR fields, including AMIR, Score Alignment, 
Source Separation, etc. I believe such a database would be very useful and save much 
time spent on dealing with certain evaluation problems. Note that polyphonic instruments, 
such as the harpsichord or the piano should be treated differently.  
 
When recording symphonic orchestras, an interesting experiment may be to record the 
whole concert as usual (without recording each instrument separately) while sampling the 
movements of the conductor, afterwards, align the music to the musical partitura 
according to the rhythm of the conductor’s strokes and her other movements. This may be 
also attempted with recorded videos of musical concerts. While this task may prove 
rather difficult, I believe it is an interesting research idea. 
 
While theoretically it may be possible to create special musical arrangements of 
musicians all playing different MIDI instruments, while instrument-specific articulations 
may be present (depending upon the MIDI instrument sophistication), yet the resulting 
music, at least for now, is going to differ significantly from music played on musical 
instruments which produce the sound acoustically (which are still, electrically amplified 
or not, the most commonly used instruments almost in every musical genre and therefore 
desirable for AMIR) 

15.5 HUMAN INTEGRATION 

For different practical applications, such as instrument-indexing large musical collections 
on the Internet, it may be worthwhile to make the human user “part” of the AMIR system 
by asking her some questions about the analyzed musical pieces during the AMIR 
process, which can improve the performance of the AMIR system.  
 
Examples: 

• In many cases, the user may know which instruments are playing in a musical 
piece. Printed labels, for example, usually contain some information regarding the 
musical arrangement. When given the instrument names, the AMIR program can 
index the piece with fewer errors using a reduced sound database containing only 
the participating instruments. 

• The user may supply the musical genre and allow the AMIR program to assume 
appropriate composition rules as explained in Section  15.1 above.  

                                                 
19 This is being done at Ircam with very directive and close microphones; evaluation databases are not 
available yet. 
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• An AMIR confidence level could be defined, thus helping to recognize samples 
which the AMIR system has problems handling and accordingly update the 
database or disregard these samples. Some examples for confidence levels: 

o Using several classification algorithms to classify the same samples and 
giving a low confidence mark to sounds which are differently classified by 
different algorithms. 

o Using database purging methods such as MIQR for detecting outliers, 
before or after the classification (see  Chapter 10). 

o The classification algorithm may directly supply the confidence level. For 
example, when using BP Neural Networks or similar for classification (see 
Section  8.1.1) the confidence level could be defined as the difference 
between the highest network output and the others; the smaller the 
difference, the smaller the confidence. When using KNN, if the number of 
neighbors supporting the winning class is very close to the number of 
other classes, the confidence is small. 

 
 
If a large group of similar samples gains a low confidence level, the user could be 
prompted to specify which instrument these samples belong to. This could be 
instruments already present in the Learning database or completely new 
instruments. Afterwards, the Learning database can be enriched with the new 
samples accordingly.  
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Appendix A - Abbreviations and  
Acronyms 

 
AMIR Automatic Musical Instrument Recognition 
BP Backpropagation neural network 
BP80 A BP with 80 neurons in the hidden level 
CFS Correlation-based Feature Selection 
DB Database 
DFT Discrete Fourier Transform 
f0 Fundamental frequency 
FFT Fast Fourier Transform (Cooley and Tukey 1965) 
GDE Gradual Descriptor Elimination algorithm 
HR Harmonic-Resynthesis algorithm 
Hz Hertz 
IQR InterQuantile Range 
LDA Linear Discriminant Analysis 
LOO Leave-One-Out Cross Validation method 
KNN K-Nearest Neighbors classifier 
MFCC   Mel Frequency Cepstral Coefficients 
MIP Multi-Instrumental Polyphonic  
MIQR Modified InterQuantile Range 
MIR Music Information Retrieval 
PCA Principal Component Analysis 
SOL Studio en Ligne IRCAM sound database 
SCO Self-Classification Outlier removal method 
SOM Self Organizing Map 
SR Source-Reduction algorithm 
STFT Short Time Fourier Transform (Allen 1977; Allen and Rabiner 1977)
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Appendix B - Published Papers 

 
(Papers are present only in the “library CD” version of the thesis) 
 
This appendix contains six published papers of which I am the main author: 
(Livshin, Peeters and Rodet 2003), (Livshin and Rodet 2003), (Livshin and Rodet 2004a), 
(Livshin and Rodet 2004b), (Livshin and Rodet 2006a) and (Livshin and Rodet 2006b).  
 
Most of this material is presented in the thesis as well. 
 
To people who are interested in reading the papers, I recommend reading only four of 
them - (Livshin, Peeters and Rodet 2003), (Livshin and Rodet 2003), (Livshin and Rodet 
2004b) and (Livshin and Rodet 2006b). 
 
(Livshin and Rodet 2004a) and (Livshin and Rodet 2006a) are expanded and updated in 
my later papers and therefore do not have much individual contribution. 
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