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1 Introduction 

1.1 Cell cycle and cell division 

1.1.1 The cell cycle  

The cell cycle represents an ensemble of events during which a cell duplicates its material and 

splits it into two new cells. The cell cycle can be seen as a succession of two main phases: 

interphase, during which the cell duplicates its material and mitosis phase or M-phase, during 

which the material is split. 

Most of the cells spend 90% of their cell cycle in interphase, which is subdivided into three 

consecutive phases: G1 (Gap1), S-phase (Synthesis phase) and G2 (Gap2). During interphase, 

the microtubule organizing center or centrosome duplicates at the transition G1-S-phase and 

the chromosomes replicate in S-phase. 

On the other hand, nucleus and cytoplasm divide during M-phase, in processes known as 

mitosis and cytokinesis respectively. The switch between interphase and M-phase is triggered 

by the Mitotis Promoting Factor (MPF), which is composed of cyclin dependent kinase 1 

(Cdk1) and cyclinB2 (Murray et al., 1989), (Murray and Kirschner, 1989). Cdks are kinases 

that activate proteins by phosphorylating them during M-phase. Cdk activity depends on their 

interaction with cyclins. 

Biochemical studies of the cell cycle, and yet MPF discovery, have been facilitated by the 

development of open systems such as cell extracts. 

For instance, the early embryonic cell cycle of Xenopus laevis is a succession of interphasic 

and mitotic states, which can be easily recapitulated in vitro by the use of Xenopus egg 

extracts (Fig. 1) (Masui, 1974) (Lohka and Masui, 1984). As a consequence, events of 

interphase and M-phase could be studied in details by means of these extracts. More 

particularly, they have allowed the biochemical and mechanical characterization of M-phase 

or cell division. 

 

 



Introduction 

 6 

 

Figure 1: The Xenopus egg extract system. Adapted from (Karsenti and Vernos, 2001). 

 

1.1.2 Cell division 

Cell division is the process by which cells split and therefore is vital for unicellular and 

multicellular organisms. First, cell division underlies development of multicellular organisms. 

Second, it ensures the accurate segregation of the genetic material. As a matter of fact, 

chromosomal mis-segregation can lead to disorders such as Klinefelter, Turner or Down 

syndromes if it occurs during meiosis or sexual cell division, or to aneuploidy and cancer if it 

occurs during M-phase or somatic cell division. Third, it guaranties that each new cell receive 

only one centrosome. Indeed, aberrant centrosome number has been reported to contribute to 

aneuploidy (Wong and Stearns, 2003). 

Both chromosome and centrosome segregations rely on the proper formation of the bipolar 

spindle during mitosis. The bipolar spindle results from the reorganization of rigid polymers, 

the microtubules, at mitosis onset. 

Mitosis is subdivided in four phases: prophase, metaphase, anaphase and telophase. 

In prophase, chromatin starts to condense into chromosomes followed by the disassembly of 

the interphasic radial array of microtubules. Two asters assemble from the newly duplicated 

centrosome and their microtubules start to interact, pushing them apart from each other.  

During metaphase, the nuclear envelope breaks down, allowing microtubules to interact with 

chromosomes at specific sites called kinetochores (multi-protein complexes that assemble on 

centromeric DNA). Consequently, chromosomes congress and align at the metaphase plate. 

The bipolar metaphase spindle is established. At this stage, two classes of microtubules are 

distinguished in the spindle: kinetochore microtubules, which are in contact with 

kinetochores, and interpolar microtubules, which emanate from the opposite centrosomes or 

spindle poles (Fig. 2). 

In anaphase, sister chromatids separate and are pulled towards their respective poles. The 

spindle starts to elongate moving the two spindle poles apart from each other. 
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In telophase, the separated chromatids have reached spindle poles and start to decondense. 

Mitosis is finished and cytokinesis begins. The cytoplasm is separated equally into two new 

cells, each containing one nucleus and one centrosome.  

As a consequence, the accuracy of chromosome and centrosome segregations depends highly 

on spindle formation and function. The establishment of the bipolar spindle not only ensures 

the proper bipolar attachment of sister chromatids, hence the equal repartition of the genetic 

material to the daughter cells, but also drives chromatid and centrosome separations. Bipolar 

spindle assembly is therefore crucial for proper cell division. 

 

 

Figure 2: The metaphase spindle. Adapted from (Sharp et al., 2000). 

 

1.2 The mitotic bipolar spindle 

The bipolar spindle results from the dynamic organization of microtubules by microtubule 

associated proteins (MAPs) and molecular motors. 

 

1.2.1 Microtubules 

Microtubules are polymers arising from the polymerization of heterodimers of tubulin, !" 

and #" tubulin. Tubulin heterodimers associate head to tail into a protofilament. Usually 13 to 
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15 of these protofilaments assemble laterally in a sheet that finally closes forming a hollow 

cylindrical tube of 25nm diameter (Fig. 3A).  

Microtubules are structurally and dynamically polarized filaments. Indeed, the tubulin 

heterodimers are arranged such that the #-tubulin monomer is exposed at the fast growing end 

or plus-end, while the !-tubulin monomer is at the more slowly growing end or minus-end. 

Microtubules alternate stochastically between polymerization and depolymerisation phases, 

which is referred to dynamic instability (Fig. 3B) (Mitchison and Kirschner, 1984). In 

addition, microtubules have been observed pausing. It has been suggested that microtubule 

dynamic instability is powered by guanosine triphosphate (GTP) hydrolysis. As microtubules 

polymerize, GTP on the #-tubulin is hydrolysed so that microtubules are almost only 

composed of GDP tubulin. However, the interactions between GDP tubulin subunits are 

weak. As a result the microtubule lattice is unstable and microtubule is ready to depolymerize. 

To prevent depolymerisation and allow growth, the microtubule plus-end is thought to be 

capped by #-tubulin subunits, which were delayed in their GTP hydrolysis, forming a 

stabilizing structure called the GTP-cap. Consequently, loss of the GTP cap would cause a 

rapid depolymerization of the microtubule. 

Dynamic instability is thought to be of great importance in the behavior of microtubules in 

vivo. Indeed, dynamic instability would allow microtubules to explore more efficiently their 

surrounding space, which is an essential property for interphasic and mitotic microtubules. In 

interphase, microtubules, which form the cytoskeleton in addition to actin microfilaments and 

intermediate filaments, have to deliver vesicles or organelles in the cell cytoplasm.  

In mitosis, microtubules have to catch chromosomes which is crucial for processes like 

spindle formation (Desai and Mitchison, 1997) . 
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Figure 3: The microtubule. Adapted from (Desai and Mitchison, 1997). (A) Microtubule 

assembly. (B) Microtubule dynamic instability. 

 

1.2.2 The microtubule associated proteins (MAPs) 

To be able to catch chromosome, for example, microtubule dynamics must be somehow 

controlled, which is achieved by microtubule associated proteins (MAPs). MAPs are proteins 

that can bind in a nucleotide insensitive manner to the microtubule lattice.  

MAPs can influence microtubule dynamics by stabilizing or destabilizing microtubules. 

MAPs that stabilize microtubules are often seen at microtubule plus-ends, such as EB1 or 

XMAP215. Although it is still not understood how plus-end tip proteins stabilize 

microtubules, two mechanisms of microtubule destabilization have been reported for MAPs. 

The first one is to sequester free tubulin subunits, such as Op18 or stathmin, while the second 

is to sever microtubule lattice, such as katanin (McNally and Vale, 1993). Katanin is an 

heterodimeric enzyme, which promotes microtubule disassembly by generating internal 

breaks within the microtubule lattice. This severing activity is cell cycle dependent and 

particularly high in mitosis (Vale, 1991) (McNally and Thomas, 1998). 

Moreover, MAPs can also act as nucleating factors, for example TPX2. 

MAPs are often found complexed with each other and their activity is also regulated, usually 

through phosphorylation. 
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1.2.3 The molecular motors 

Like MAPs, molecular motors bind to microtubules and transduce chemical energy, provided 

by ATP hydrolysis, into kinetic energy for movement along microtubules. Microtubule-

dependant molecular motors can be classified into two superfamilies: dyneins and kinesins. 

  

1.2.3.1 The dynein superfamily 

1.2.3.1.1 Classification and structure of dyneins 

Dynein was first identified in 1965 by Gibbons (Gibbons, 1965a) (Gibbons, 1965b). Dynein 

is a microtubule minus-end motor and can be classified into two forms: axonemal and 

cytoplasmic dyneins.  

Axonemal dynein has been implicated in cilia and flagella beating, whereas cytoplasmic 

dynein is involved in intracellular transport, mitosis, cell polarization and cell movement. 

Thereafter, we will only focus on cytoplasmic dynein. 

Cytoplasmic dynein is a multi-subunit complex composed of variable numbers of heavy 

chains, intermediate chains, light intermediate chains and light chains. Dynein heavy chain 

interacts with microtubules via its stalk and contains the motor domain. The intermediate, 

light intermediate and light chains are thought to mostly interact with the cargo (Fig. 4).  
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Figure 4: The cytoplasmic dynein. Adapted from (Hook and Vallee, 2006). 

 

Dynein belongs to the AAA (ATPase Associated with diverse cellular Activities) class of 

proteins. As such, its motor domain is composed of seven globular domains arranged in a 

ring, out of which six are AAA domains. ATP hydrolysis at the AAA unit is transmitted to the 

microtubule binding stalk for force production leading to cargo transport along microtubules. 

 

1.2.3.1.2 Motor properties of cytoplasmic dynein 

In contrast to kinesins, the detailed mechanism of dynein stepping is unknown, probably due 

to its high molecular weight in the mega dalton range, which makes its study difficult. 

Although dynein alone is sufficient to drive microtubule gliding in vitro, addition of yet 

another multi-protein complex, dynactin, considerably enhances dynein motor properties. 

Dynactin can interact in vivo and in vitro with dynein intermediate chain but can also directly 

bind microtubules via its p150
glued

 subunit. This additional microtubule binding site of 

dynactin could explain the increase in dynein processivity in vitro (King and Schroer, 2000). 

In addition, dynein has been proposed to function like a ‘gear’ as its step size decreases while 

its produced force increases under increasing load (Mallik et al., 2004). 
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1.2.3.1.3 Function and regulation of cytoplasmic dynein 

Unlike kinesins, which have expanded and specialized in evolution, often resulting in ‘one 

kinesin=one function’, dynein completes its various functions by interacting with different 

accessory proteins. 

First, the composition of dynein itself can be subjected to changes. Heterogeneity in dynein 

light intermediate chain number could lead to differential regulation of its motor domain. In 

this way, it has been reported that dynein intermediate chain could act as a negative regulator 

of the motor domain (Mallik and Gross, 2004). 

As already mentioned, dynein can interact with dynactin, probably in a phosphorylation 

dependent manner. Formation of the dynein/dynactin complex is essential for dynein 

targeting and function. For example, dynein localization at the kinetochore is achieved 

through dynactin binding to ZW10, a kinetochore component. This ternary complex may be 

involved in a tension-sensitive checkpoint mechanism, which would delay anaphase if 

chromosome bipolar attachment is defective (Starr et al., 1998). 

MAP-2 has also been reported to stimulate dynein detachment from microtubules, probably 

by interfering with dynein microtubule binding sites (Schroer, 1994). 

 

1.2.3.2  The kinesin superfamily 

1.2.3.2.1 Classification and structure of kinesins 

The founding member of the kinesin superfamily was identified in 1985 by Vale et al (Vale et 

al., 1985) and Brady (Brady, 1985). The superfamily has now expanded and includes 14 

subfamilies of kinesin-related proteins (KRP) (Lawrence et al., 2004) (Fig. 5). Each KRP 

shares a roughly 350 amino acid sequence that represents the motor domain. The motor 

domain, which contains the microtubule and the nucleotide binding sites, is usually followed 

by a stalk domain and a tail domain. 
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Figure 5: Example of members of the kinesin superfamily, as observed by low-angle rotary 

shadowing electron microscopy on the left and their schematic illustrations on the right. Scale 

bar is100nm. Adapted (Hirokawa, 1998). 

 

However, not all KRPs possess a motor domain in the N terminus of their polypeptide 

sequence. Indeed, KRP motor domain can also be found at the C terminus or internally within 

their polypeptide sequence. Interestingly, KRP with a C terminus motor domain are 

microtubule minus-end directed motors, while KRP with an internal motor domain modulate 

microtubule dynamics.  

As noticed, there is a correlation between KRPs directionality and their motor domain 

location. A region between the motor and the stalk domains, called the neck linker, has been 

shown to be involved in KRPs directionality (Sablin et al., 1998). Thus, the neck linker 

‘dictates’ the orientation of the unbound motor domain so that it extends towards 

microtubules plus-ends for KRP with a N terminal motor domain, for example, initiating 

movement. 

 

1.2.3.2.2 Motor properties of kinesins 

The mechanism of movement of KRPs along microtubules varies between different KRPs and 

it seems that even the same KRP can switch occasionally between different modes of 

movement. Nevertheless, 3 categories of movement can be described for KRPs: processive 

movement, non-processive movement and diffusion.  
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A processive motor makes several steps before detaching from the microtubule. It is now well 

accepted that the hand-over-hand model, in which the release of the rearward head is tightly 

coupled with the binding of the forward head, can describe KRP processive movement. 

Succinctly, the forward head releases its adenosine diphosphate (ADP) upon microtubule 

binding. Subsequent ATP binding promotes docking of the flexible neck linker, “throwing” 

the rearward head in the front. The new forward head binds the microtubule. ATP hydrolysis 

occurs on the new rearward head followed by phosphate release and detachment. Thus, ADP 

release is catalyzed by KRP binding to the microtubule, whereas unbinding of KRPs from the 

microtubule requires ATP hydrolysis (Howard, 2001). The kinetic properties of the 

conventional kinesin, which belongs to the kinesin-1 subfamily, have been extensively 

studied: it moves along microtubules with a speed of 20µm/min, hydrolyses one ATP per step 

and makes on average 100 steps of 8nm, corresponding to a tubulin dimer, per run. Optical-

trapping studies have also revealed that conventional kinesin can sustain hindering loads up to 

6pN, with its velocity slowing down until the motor finally stalls (Valentine and Gilbert, 

2007). Most of the KRPs studied so far move processively along microtubules (Fig. 6).  
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Figure 6: Stepping (K0-K7) model for kinesin. Adapted from (Valentine and Gilbert, 2007). 

 

In contrast to processive KRPs, non-processive KRPs make only one step. Typically, non-

processive KRPs bind to microtubules, hydrolyze one ATP and dissociate from the 

microtubule. Non-processive motors are thought to act cooperatively in an ensemble to 

perform their task. KIF1D, a plus-end directed KRP and Ncd, a dimeric minus-end directed 

KRP, have been shown to be non-processive (Endow and Barker, 2003).  

Although different, processive and non-processive movements can be explained by a stepping 

mechanism that allows KRPs to move along microtubules. Surprisingly, KRPs with an 

internal motor domain do not move in a step-by-step fashion to reach microtubule ends but 

rather diffuse in an ATP independent mechanism. Instead of using their ability to generate 

movement via ATP hydrolysis, these KRPs, such as XKCM1, use ATP hydrolysis to 

depolymerize efficiently microtubules (Moore and Wordeman, 2004) (Walczak et al., 1996). 
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1.2.3.2.3 Function and regulation of kinesins 

As there is a various number of KRPs with potentially different functions, the general 

function of the different KRPs subfamilies are listed in Table 1, without detailing each 

subfamily members. 

 

Table 1: Functions of KRPs subfamilies. Adapted from (Mountain and Compton, 2000). 

 

Subfamily Directionality General function Members 

(non-exhaustive 

list) 

Kinesin-1 plus-end Non mitotic motor: cargo transport DmKHC 

Kinesin-2 plus-end Non mitotic motor: anterograde 

transport in association with KAP3  

KIF3A/3B, 

KRP85/95 

Kinesin-3 plus-end Non mitotic motor: cargo transport  KIF1 

Kinesin-4 plus-end Mitotic motor: microtubule/DNA 

attachment, chromosomes segregation  

Non mitotic motor: organelle transport 

Kid, Xklp1, KIF4 

Kinesin-5 plus-end Mitotic motor: spindle bipolarity bimC, Cin8, Kip1, 

Cut7, Eg5, Klp61F 

Kinesin-6 plus-end Mitotic motor: central spindle formation 

and cytokinesis 

MKLP1, ZEN-4, 

CHO1, pavarotti 

Kinesin-7 plus-end Mitotic motor: microtubule/kinetochore 

attachment, chromosomes segregation 

CENP-E 

Kinesin-8 plus-end Microtubule depolymerisation 

Nuclear migration 

Kip3 

Kinesin-13 No directed 

motility 

Microtubule depolymerisation MCAK, XKCM1, 

KIF2A 

Kinesin-14 minus-end Mitotic motor: microtubule cross-

linking, opposition Kinesin-5 

HSET, XCTK2, 

ncd, CHO2, KAR3 

 

As described above, KRPs have different functions even within one subfamily. As a 

consequence, their tail domains have been postulated to encode ‘functional information’. 
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Indeed, regulatory elements like phosphorylation sites can be found in the tail domains of Eg5 

(Sawin and Mitchison, 1995) and CENP-E (Liao et al., 1994) for example but also directly in 

the motor domain as for MKLP1. These regulatory elements often control KRP binding to 

microtubules as an ON/OFF switch. Other KRPs, like XCTK2, are regulated via their binding 

to an activator/repressor (Ems-McClung et al., 2004). 

MKLP1 is probably the best example to illustrate the complexity of KRP regulation as it can 

be phosphorylated by two different kinases in two different residues. Indeed, in early mitosis, 

Cdk1/cyclinB phosphorylates the MKLP1 motor domain preventing its binding to spindle 

microtubules (Mishima et al., 2004). Upon anaphase as Cdk1 activity decreases, MKLP1 

starts to assemble the central spindle by binding to microtubules. Once at the central spindle, 

the MKLP1 tail can be phosphorylated by Aurora B to allow proper completion of cytokinesis 

(Guse et al., 2005). Thus, MKLP1 is temporally and spatially regulated. 

 

1.2.4 Spindle architecture 

Spindle formation requires dynamic microtubules, MAPs and molecular motors but their 

mechanistical interplay is still not understood.  

The first well accepted model formulated to describe spindle formation was the “search and 

capture” model (Kirschner and Mitchison, 1986). In this model, dynamic microtubules 

nucleated from the two centrosomes are stabilized and captured by kinetochores. Once the 

spindle axis is determined, connections between microtubules emanating from opposite poles 

are established. In this case, the two centrosomal asters act as drivers of spindle bipolarity. 

However, bipolar spindles were also observed to form around chromatin beads, without 

centrosomes and kinetochore microtubules, suggesting that chromatin could also drive spindle 

bipolarity (Heald et al., 1996). Several studies have since demonstrated the existence of a 

gradient of a small GTPase in its GTP bound form, RanGTP, around chromatin (Kalab et al., 

2002) (Kalab et al., 2006). Such a RanGTP gradient could give spatial cues for MAPs and 

molecular motors to assemble the spindle (Caudron et al., 2005). Bipolar spindles could arise 

from self-organization of microtubules around chromatin.  

A new model emerged, in which bipolar spindle formation results from a combination of 

centrosomal search and capture and chromatin self organization. 

Once established, the dynamic mitotic spindle has to be maintained for a certain period of 

time before anaphase onset. Spindle bipolarity maintenance is thought to be achieved by a 

“push and pull” mechanism. In such a mechanism, antagonistic microtubule-sliding motors 
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would be balanced to ensure spindle integrity. Two mitotic motors, Eg5 and XCTK2, have 

been shown to play an essential role. Both motors crosslink antiparallel microtubules in the 

interpolar region. However, Eg5 moving towards microtubule plus-ends would push the pole 

apart, while XCTK2 moving towards microtubule –ends would pull them together (Saunders 

and Hoyt, 1992) (Roof et al., 1992) (Sharp et al., 1999b) (Sharp et al., 1999a). Such opposing 

activity has also been described in a reduced systems, for example in aster formation 

(Mountain et al., 1999) (Surrey et al., 2001). 

Recently, microtubule poleward flux has been suggested to be involved in spindle 

bipolarization. Microtubule poleward flux was first observed by Mitchison (Mitchison, 1989) 

and describes the continuous movement of spindle microtubules towards spindle poles during 

mitosis. Microtubule poleward flux has been reported to appear as monoaster spontaneously 

bipolarizes into spindle, suggesting that microtubule antiparallel organization, mediated by 

Eg5, is required for flux (Mitchison et al., 2004). 

Hence, Eg5 plays an interesting and important role in the process of spindle formation in 

general and in spindle bipolarity in particular, which makes it interesting, in respect of cell 

division, for further investigation. 

 

1.3 The Xenopus kinesin-5: XlEg5 

1.3.1 Eg5 homologs 

Xenopus laevis Eg5, XlEg5, was first identified by screening for mRNAs that are essential for 

the rapid and synchronous cell divisions occurring after fertilization in Xenopus laevis (Le 

Guellec et al., 1991). After sequence analysis, they found that XlEg5 shared homology with 

an Aspergillus nidulans KRP: BimC. XlEg5 is a mitotic KIN-N KRP and belongs to the 

kinesin-5 subfamily. It is well conserved from A. nidulans to Homo Sapiens, suggesting that it 

underlies an important role in mitotic events (Fig. 7).  
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Figure 7: The kinesin 5 family members. Adapted from (Dagenbach and Endow, 2004). 

 

In vertebrates, Kinesin-5 is found on spindle microtubules and at spindle poles on the 

metaphase spindle in mitosis. It has also been observed on interphase microtubules although 

this point is still under debate (Houliston et al., 1994) (Sawin and Mitchison, 1995). 

 

1.3.2 Structure of Eg5 

Interestingly, all the members of the kinesin-5 subfamily display the same unusual ultra-

structure. Indeed, Eg5 is a tetramer whereas most of the KRP are dimers. 

Eg5 homotetramer has a bipolar arrangement with motor domains at opposite ends. Kashina 

et al (Kashina et al., 1996a) (Kashina et al., 1996b) described it as an elongated structure with 

an overall length of 100nm on average, consisting of two globular domains of 25nm diameter 

connected by a central rod with a length of 65nm. Furthermore they observed that Eg5 could 

bind microtubules with one or both ends. 
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Another interesting feature was revealed by Turner et al (Turner et al., 2001) as they 

crystallized the Eg5 motor domain. In contrast to conventional kinesin, the Eg5 neck linker 

appears to be well ordered. This calls Eg5 stepping mechanism into question, as the flexibility 

of conventional kinesin neck linker was essential for its processivity. 

 

1.3.3 Motor properties of Eg5 in vitro 

Thanks to the development of single molecule assays, insight into Eg5 motor properties was 

gained and in particular the role of its unique neck linker configuration for its processivity. 

Eg5 processivity has remained for a long time under debate, whereas Eg5 plus-end directed 

microtubule gliding, with a velocity of 2µm/min, was clearly demonstrated (Sawin et al., 

1992a). A study by Valentine et al (Valentine et al., 2006), using optical-trapping shed light 

on Eg5 processivity. 

In this study, Valentine et al demonstrated that individual purified Eg5 dimers (hsEg5-513-

5His) step processively along microtubules. Eg5 dimers make on average 8 steps per run 

(compared to 100 for conventional kinesin), with 1 step per tubulin dimer and one ATP 

hydrolysed per step (like conventional kinesin). Moreover, they showed that Eg5 velocity was 

less force-sensitive when compared to conventional kinesin. While kinesin velocity slows and 

stalls at high hindering loads, Eg5 dissociates from microtubules after a slight slowdown. 

Furthermore, they interpreted this low processivity as being a consequence of Eg5 rigid neck 

linker. In order that the Eg5 forward head binds ATP, Eg5 neck linker must undergo a 

conformational change from perpendicular to parallel with respect to the long axis of the 

motor core. Once this isomerisation has occurred and ATP has bound, the rearward head can 

move forward, initiating the processive run. This rearrangement of Eg5 neck linker was also 

described by Rosenfeld et al (Rosenfeld et al., 2005), and is believed to be slow: 0.5 - 1 s
-1 

(Valentine and Gilbert, 2007). This also suggests that unlike kinesin, for which stepping is 

limited by phosphate release, ATP hydrolysis is rate limiting for Eg5 stepping. 

Recombinant Eg5 tetramer has also been reported to be processive by Kwok et al, who also 

described an additional diffusive component to Eg5 motility (Kwok et al., 2006). Eg5 

diffusive behavior is ATP independent, in contrast to its directional stepping, and is favored 

when Eg5 is inhibited by monastrol (Crevel et al., 2004). Korneev et al. (Korneev et al., 

2007) also confirmed that Eg5 tetramer is processive with an 8nm step size and an average of 

10 steps per run, similar to Eg5 dimer. However, they reported that individual Eg5 tetramers 

are released at lower force compared to individual Eg5 dimers (respectively 2pN in low salt 
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buffer and 7pN in high salt buffer), suggesting that Eg5 load-dependent detachment could be 

regulated by the Eg5 tail.  

These final evidences that Eg5 tetramer is processive corroborate and furthermore give a 

possible explanation to previous experiments such as those of Kapitein et al in which they 

observed that Eg5 tetramers crosslink, align and drive microtubules sliding relative to each 

other (Kapitein et al., 2005). This would have been difficult to explain for a non-processive 

motor as its probability of simultaneously binding two microtubules would be extremely low. 

One should also emphasize that this study was the first to directly show that Eg5 could 

crosslink parallel and slide antiparallel microtubules. 

These studies have shed light on Eg5 in vitro motor properties, providing basis to understand 

Eg5 in vivo motor properties and in particular in relation to its function. 

 

1.3.4 Function of Eg5 in vivo 

1.3.4.1 Eg5 function in bipolar spindle formation and maintenance 

The monopolar phenotype observed when the Eg5 inhibitor, monastrol, is added to BS-C-1 

cells was further characterized by Kapoor et al (Kapoor et al., 2000). They concluded that 

monastrol inhibits centrosome separation, hence leading to monopolar spindles. This is 

consistent with previous data involving Eg5 in centrosome separation and consequently 

bipolar spindle formation, although these observations are still under debate in Drosophila 

melanogaster (Sharp et al., 1999b). 

Interestingly, the role of Eg5 in bipolar spindle assembly seems to be evolutionarily 

conserved since it has been described in A. nidulans (Enos and Morris, 1990) in fission yeast 

(Hagan and Yanagida, 1990), in Saccharomyces cerevisiae 11 (Hoyt et al., 1992), in 

Drosophila melanogaster (Heck et al., 1993), in Xenopus (Sawin and Mitchison, 1995), in 

Homo Sapiens (Blangy et al., 1995). In addition to bipolar spindle assembly, Eg5 has also 

been implicated in bipolar spindle maintenance, probably in a “push and pull” mechanism, as 

addition of anti-Eg5 antibodies or monastrol disrupt preformed spindle in Xenopus egg extract 

(Sawin et al., 1992b) (Kapoor et al., 2000). Both bipolar spindle formation and maintenance 

intimately rely on Eg5 capacity to link interpolar microtubules together in vivo as described 

by Sharp et al (Sharp et al., 1999a), and remarkably reflect Eg5 in vitro motor properties 

(Kapitein et al., 2005). 
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This shows that Eg5 is absolutely essential for spindle bipolarity and therefore proper 

chromosome segregation in all eukaryotes except Caenorhabditis elegans (Saunders et al., 

2007). 

 

1.3.4.2 Eg5 function in microtubule poleward flux 

It is no longer controversial that Eg5 also plays a role in microtubule poleward flux. Poleward 

flux is composed of 3 coordinated activities: microtubule minus-end depolymerization, 

microtubule translocation and microtubule plus-end polymerization (Kwok and Kapoor, 

2007) (Rogers et al., 2005).  

Spindle elongation rate and Eg5 microtubule sliding rate have been correlated (Shirasu-Hiza 

et al., 2004), suggesting that Eg5 is responsible for the ‘microtubule translocation activity’ of 

poleward flux. Eg5 involvement in microtubule poleward flux has also been reported in 

Xenopus egg extract (Miyamoto et al., 2004). Indeed, addition of Eg5 inhibitors inhibited 

spindle microtubule poleward flux in a dose-responsive manner, suggesting that flux is driven 

by an ensemble of non-processive Eg5. In addition, microtubules move poleward with a speed 

of 2µm/min in Xenopus egg extract 2,22µm/min in Drosophila S2 (Rogers et al., 2004), 

which is found to match Eg5 microtubule gliding speed in vitro. However, Eg5 is probably 

not the only flux driver as Eg5 independent poleward flux as been observed for kinetochore 

microtubules, which interestingly are organized in parallel arrays, in PtK1 cells (Cameron et 

al., 2006). 

Since both spindle bipolarity and microtubule poleward flux clearly involve Eg5 antiparallel 

microtubule cross-linking and sliding activities, it is not surprising that spindle bipolarization 

itself relies on microtubule poleward flux, at least in Xenopus egg extract, as suggested by 

Mitchison et al (Mitchison et al., 2004). 

 

1.3.4.3 Eg5 function in a potential spindle matrix 

Owing to Eg5 intriguing localization to spindle poles, it was proposed earlier that Eg5 could 

be part of a “spindle matrix” (Sawin et al., 1992a). Thus Eg5 localization to minus-ends of 

microtubules would not depend on its motor activity as such. However, the existence of the 

matrix itself is still hypothetical as its composition, regulation and role are unknown. The 

current hypothesis proposes that such a matrix would help to stabilize, organize microtubules 

and serve as a stationary substrate against which motors could slide microtubules (Scholey et 
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al., 2001).  

To date, many different proteins (e.g.: NuMa, skeletor) have been proposed to form or be part 

of the matrix. The best candidate so far is lamin B as it associates with the mitotic spindle, is 

nocodazole insensitive and retains a certain number of proteins involved in spindle formation 

such as Eg5 (Tsai et al., 2006). Moreover, another study also implicated Eg5 as being part of 

a spindle matrix (Kapoor and Mitchison, 2001).  

As described above, the evidence for the matrix existence and thus, Eg5 being part of it, are 

rather poor. As a consequence, the actual role of Eg5 in the matrix remains unclear, in 

particular if the matrix is a non-microtubule based structure, raising the question of how the 

microtubule-dependant molecular motor Eg5 can bind to it. 

 

1.3.5 Regulation of Eg5 

1.3.5.1 Cdk1 phosphorylation of Eg5 

All the members of the kinesin-5 subfamily possess a conserved sequence in their C-terminal 

part, called the “bimC box” (Heck et al., 1993). Interestingly, besides its location in the tail, 

the bimC box contains a highly conserved sequence: TGX-TPXK/RR (in Eg5 TGTTPQRR) 

with a Cdk1/cyclinB consensus site (underlined). As a consequence, it has been postulated 

that Cdk1 could phosphorylate Eg5 in its bimC box to regulate Eg5 function. 

Indeed, expression of the mutant Eg5 T937A, in which Cdk1 phosphorylation is silenced, 

abolishes Eg5 localization to spindle microtubules but does not perturb spindle formation in a 

dominant negative fashion in HeLa cells and in Xenopus A6 cells (Blangy et al., 1995) (Sawin 

and Mitchison, 1995). In 2005, Goshima et al (Goshima and Vale, 2005) investigated Eg5 

Drosophila melanogaster homolog, Klp61F, phosphorylation by Cdk1. By means of RNA 

interference, endogenous Klp61F was knocked down and replaced by Klp61F T933A, in 

which the conserved Cdk1 phosphorylation site was mutated. Klp61F T933A could not rescue 

spindle bipolarity, as most structures were monopolar spindles. They confirmed that Klp61F 

phosphorylation by Cdk1 is essential for Klp61F to interact with microtubules and therefore 

to function, explaining the monopolar spindle phenotype.  

Surprisingly, mutation of the Eg5 Cdk1 phosphorylation site in the Eg5 homolog, Cut7, does 

not affect its association with the mitotic yeast spindle (Drummond and Hagan, 1998). 

In addition, Eg5 phosphorylation by Cdk1 has also been reported to control Eg5 association 

with dynactin (Blangy et al., 1997). 
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1.3.5.2 Eg2 phosphorylation of Eg5 

Another kinase, Aurora A or Eg2 in Xenopus laevis, has also been reported to phosphorylate 

Eg5 in Xenopus egg extract. 

Eg2, which belongs to the AIRK kinase family, was shown to be involved in centrosome 

separation and bipolar spindle stability (Glover et al., 1995) (Giet and Prigent, 2000). The 

strong similarities between Eg2 and Eg5-depletion phenotypes suggest that both proteins 

might interact. Indeed, Eg2 can interact with Eg5 and furthermore can phosphorylate a 

truncated version of Eg5 in its stalk domain in vitro (Giet et al., 1999). Unfortunately, the Eg2 

phosphorylation site of Eg5 still remains unidentified. 

 

1.3.5.3 RanGTP regulation of Eg5 

As previously mentioned, RanGTP stimulates spindle formation by changing microtubule 

dynamics and the balance of motor activities (Wilde et al., 2001). Microtubule seed 

movements were observed along microtubules of taxol induced-asters in Xenopus egg extract. 

Seeds movement was bidirectional, but a twofold increase in the number of seeds moving 

away from the center was found upon RanL43E addition (a constitutively active Ran bound to 

GTP). Furthermore, this movement was demonstrated to be Eg5 driven, which led to the 

conclusion that RanGTP increases the number of motile Eg5, probably by releasing it from 

the center of the aster. Moreover, no changes could be detected in Eg5 velocity upon RanGTP 

addition. 

Another study (Silverman-Gavrila and Wilde, 2006) also reported that Eg5 is mis-localized in 

spindles formed in Drosophila embryos injected with a RanT24L (constitutively inactive 

Ran). Bipolar spindles formed in the presence of RanT24L are shorter than control spindles, 

which was also described in Xenopus egg extract (Carazo-Salas et al., 2001). 

The fact that RanGTP might influence Eg5 properties is interesting in regards to its 

phosphorylation by Eg2. Indeed Eg2 kinase activity and thus spindle assembly is RanGTP 

dependent (Tsai et al., 2003). Therefore, RanGTP could activate Eg2 kinase, which in turn 

would phosphorylate Eg5 allowing spindle formation. In addition, Eg5 and Eg2 have been 

characterized as part of a complex involved in spindle formation (Koffa et al., 2006). 

However no increase in Eg5 phosphorylation is detected upon RanGTP addition in Xenopus 

egg extract (Wilde et al., 2001). 
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2 Motivation 

 

Bipolar spindle assembly is an essential process of cell division, which success intimately 

depends on Eg5. As already reported, Eg5 regulation and motor properties are required for 

spindle formation. However, their relative contribution remains unclear and will therefore be 

addressed in this study. 

On one hand, we will focus on Eg5 regulation by two kinases, Eg2 and Cdk1, which have 

been shown to phosphorylate Eg5. For this purpose, non-phosphorylatable mutants will be 

generated and their ability to assemble spindles will be tested by a depletion/add back 

experiments in Xenopus egg extract. 

On the other hand, Eg5 motor properties will be examined by generating Eg5 chimeras, in 

which Eg5 motor domain will be replaced by other motor domains with distinct properties. To 

investigate whether these new motor properties can substitute for the Eg5 original ones, the 

ability of the Eg5 chimeras to form a bipolar spindle will be examined by a depletion/ add 

back experiment in Xenopus egg extract. In parallel, Eg5 motor properties will be directly 

assessed by means of a newly developed microtubule gliding assay in Xenopus egg extract.
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3 Results 

3.1 Role of Eg5 phosphorylation in bipolar spindle formation in 

Xenopus egg extract 

3.1.1 Eg2 phosphorylates full length Eg5 at serine 543 

3.1.1.1 Eg2 phosphorylates truncated GST-Eg5 at serine 543 in vitro and 

in mitotic egg extract 

In order to identify a potential Eg2 phosphorylation site in the Eg5 sequence, full length Eg5 

was phosphorylated in vitro by Eg2. The protein was then analyzed by mass spectrometry by 

Gilles Lajoie and as a result, serine 543 was proposed as a potential Eg2 phosphorylation site. 

To our opinion, serine 543 was a good candidate because first Eg2 is a Ser/Thr kinase and 

second it is located in Eg5 stalk, in agreement with Giet et al (Giet et al., 1999).  

In a first approach, the predicted site was verified by using the same truncated version of Eg5, 

GST-Eg5(1-634), as used by Giet et al (Giet et al., 1999). Therefore, a GST-Eg5 mutant was 

generated, in which the potential Eg2 phosphorylation site, serine 543 was mutated to alanine, 

GST-Eg5 S543A. 

To test this mutant, phosphorylation experiments were performed. GST-Eg5 S543A was 

incubated in the presence of Eg2 kinase and radioactive [$32
P]ATP, followed by analysis by 

SDS-polyacrylamide gel electrophoresis (SDS-PAGE). The autoradiography of the SDS-

PAGE gel shows that GST-Eg5 WT is phosphorylated by Eg2 in vitro, whereas GST-Eg5 

S543A is not (Fig. 8A). This indicates that serine 543 is the Eg2 phosphorylation site of 

truncated Eg5 in vitro.  

 

3.1.1.2 Eg2 phosphorylates full length Eg5 on Serine 543 in vitro 

A full length Eg5 mutant was generated, in which serine 543 was mutated to alanine,. To test 

this Eg5 S543A mutant, phosphorylation experiments were carried out in vitro. Eg5 S543A 

was incubated in the presence of Eg2 kinase plus radioactive [$32
P]ATP. Thereafter, the 

mutant was immunoprecipitated, followed by analysis on SDS-PAGE. To our surprise, in 

contrast to GST-Eg5 S543A, Eg5 S543A was similarly phosphorylated compared to Eg5 WT, 

as revealed by the autoradiography (Fig. 1B). 
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Two hypotheses were proposed to explain these contrasting results: either Eg2 could 

phosphorylate Eg5 on a second site in Eg5 tail, which was missing in the GST-Eg5 construct, 

or Eg2 could phosphorylate Eg5 on a second site in the tag, as the two Eg5 constructs also 

differ in their tag sequences.  

As a consequence, we decided to search further for this new Eg2 site by mass spectrometry. 

After comparison of the mass spectrometry profiles between phosphorylated Eg5 S543A and 

Eg5 WT, another Eg2 phosphorylation site was revealed by the analysis of Gilles Lajoie. This 

second Eg2 phosphorylation site was not in the tail but at serine 2. We believed serine 2 to be 

an artificial Eg2 phosphorylation site. Indeed, serine 2 belongs to a stretch of amino acids 

with a high probability to be phosphorylated by Eg2 as predicted by Group-based 

Phosphorylation Scoring (GPS). This stretch of amino acid starts in the Eg5 non-coding linker 

sequence and ends at the fifth amino acid of Eg5 coding sequence.  

The GPS program also confirmed that mutations in the Eg5 linker of arginines -1 and -2 to 

alanines would prevent phosphorylation. For this reason, the two arginines in Eg5 linker 

sequence were mutated to alanines, generating Eg5 S543A’ and Eg5 WT’ for comparison. 

Phosphorylation experiments were performed to test Eg5 S543A’. After incubation with Eg2 

kinase and radioactive [$32
P]ATP, Eg5 S543A’ was immunoprecipitated and analyzed by 

SDS-PAGE. As shown on the autoradiography (Fig. 1C), Eg5 S543A’ is not as 

phosphorylated as Eg5 WT’. This indicates that serine 2 was indeed an artificial 

phosphorylation site as mutations in Eg5 non-coding sequence prevented Eg2 

phosphorylation at this site. Furthermore, this observation suggests that serine 543 is the real 

phosphorylation site where Eg2 phosphorylates full length Eg5 in vitro. 

Furthermore, as a control, Eg2 phosphorylation of full length Eg5 and truncated GST-Eg5 

were compared. The autoradiography of the phosphorylation experiment (Fig. 1D) shows no 

striking difference, indicating that they are comparably phosphorylated by Eg2. 

Taken together, these results suggest that Eg2 phosphorylates Eg5 on serine 543 in vitro.  
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Figure 8: Xenopus laevis Eg5 is phosphorylated by Eg2 in vitro. CBB, coomassie; 
32

P, 

autoradiography, +, kinase added; -, without kinase. (A) In vitro phosphorylation of GST-Eg5 

by Eg2. WT, GST-Eg5 wild-type; S543A, GST-Eg5 S543A. (B) Eg5 is not phosphorylated 

by Eg2 in vitro. WT, Eg5 wild-type; S543A, Eg5 S543A. (C) Eg5’ is phosphorylated by Eg2 

in vitro. (D) Comparison between GST-Eg5 and Eg5’ phosphorylations by Eg2 in vitro. 

 

3.1.2 Cdk1 is the major kinase that phosphorylates Eg5 in Xenopus egg 

extract 

To continue the study of Eg5 phosphorylation, another Eg5 mutant was generated, in which 

the known site T937 was mutated to alanine to prevent Eg5 phosphorylation by Cdk1. To 

verify that T937 is the Eg5 Cdk1 phosphorylation site, Eg5 T937A was immunoprecipitated 

after in vitro incubation with Cdk1 kinase and radioactive [$32
P]ATP followed by SDS-PAGE 

analysis. The autoradiography of the SDS-PAGE gel (Fig. 2A) reveals that Eg5 T937A is less 

phosphorylated than Eg5 WT, confirming that T937 is the major phosphorylation site of Eg5 

for Cdk1 in vitro. 

Hence, with the two mutants, Eg5 S543A’ and Eg5 T937A, Eg5 phosphorylation in Xenopus 

egg extract could be examined. Both mutants were incubated in mitotic egg extract in the 

presence of radioactive [$32
P]ATP. The immunoprecipitated proteins were thereafter analyzed 

by SDS-PAGE. Interestingly, the two mutants gave different results as seen on the 

autoradiography. Whereas Eg5 S543A’ is as phosphorylated as Eg5 WT’ (Fig. 9B), the 
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overall phosphorylation of Eg5 T937 decreases of about 80% when compared to Eg5 WT 

(Fig. 9B) in mitotic egg extract. These results clearly demonstrate that, in contrast to Eg2, 

Cdk1 is the major kinase that phosphorylates Eg5 in Xenopus egg extract.  

 

 

Figure 9: Xenopus laevis Eg5 is phosphorylated by Cdk1 in vitro and in Xenopus egg, but not 

by Eg2 in Xenopus egg extract. (A) In vitro phosphorylation of wild-type Eg5 and Eg5 T937A 

by Cdk1/cyclin B in vitro. (B) Phosphorylation of wild-type and mutated Eg5 by Eg2 (left) 

and Cdk1/cyclin B (right) in mitotic egg extract.  

 

3.1.3 Eg5 S543A’ and Eg5 T937A are functional motors in vitro 

We next wanted to examine whether Eg5 phosphorylation is important for its function during 

spindle assembly in Xenopus egg extract. But, before doing so, we tested if the mutations 

themselves did not damage Eg5 ability to move along microtubules. Therefore, in vitro 

microtubule gliding assays on glass surfaces were performed. Both mutants were able to bind 

and move microtubules (Fig. 10A). In addition, microtubule gliding velocities were roughly 

similar to Eg5 WT with a speed of about 2µm/min (Fig. 10B). These results show that Eg5 

S543A’ and Eg5 T937A are functional motors.  
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Figure 10: Non-phosphorylatable Eg5 mutants support microtubule gliding in vitro. (A) 

Fluorescence microscopy images of rhodamine-labelled microtubules bound to Eg5 adsorbed 

to a glass surface. Eg5 (left), Eg5 S543A’ (middle) and Eg5 T937A (right) recruit 

microtubules to the surface with similar efficiency Scale bars are 10µm. (B) Velocity of 

microtubule gliding. Scale bars are 5µm.  

 

3.1.4 Cdk1 phosphorylation, but not Eg2 phosphorylation is required for 

spindle assembly in Xenopus egg extract 

Having confirmed that the mutants were functional motors, we could investigate the role of 

Eg5 phosphorylation in bipolar spindle formation in Xenopus egg extract. 

To do so, we performed depletion-add back experiments. We removed the endogenous Eg5 

from CSF-extract by immunodepletion and cycled spindles were assembled as described in 

material and methods (Fig. 11A). As judged by Western blotting, no endogenous Eg5 could 

be detected after depletion and recombinant proteins were added to a final concentration 

400nM, which was reported to be Eg5 endogenous concentration (Fig. 11A). Moreover, 

observation of the structures formed after 45min incubation revealed that Eg5 depletion 

severely impaired bipolar spindle formation. Only 20% bipolar spindles could form in Eg5 

depleted extract against 85% in control extract. Instead of bipolar spindles, monopolar 

spindles were predominantly observed in Eg5 depleted extract (Fig. 11B). Remarkably, 

bipolar spindle assembly was only altered in the presence of Eg5 T937A. Whereas Eg5 
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S543A’ could rescue bipolar spindle formation as well as recombinant Eg5 (Fig. 11B), Eg5 

T937A led to the formation of monopolar spindles such as in Eg5 depleted extract (Fig. 11C). 

No evident changes in spindle morphology, besides a slight decrease in spindle length when 

compared to Eg5 WT’ were observed in the presence of Eg5 S543A’. Our results demonstrate 

that Cdk1 phosphorylation is essential for Eg5 to function in assembling bipolar spindles in 

Xenopus egg extract, whereas Eg2 phosphorylation is not. 
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Figure 11: Spindles assemble in Eg5-depleted Xenopus egg extract in the presence of Eg5 

S543A’, but not in the presence of Eg5 T937A. (A) Amounts of Eg5 in Xenopus egg extract 

after 'mock'-depletion (mock), after depletion (%Eg5) and after addition of recombinant 

proteins to depleted extract as determined by Western blot. (B) Fluorescence microscopy 

image of a monopolar spindle and of a bipolar spindle (right). Microtubules are rhodamine-

labelled (red) and DNA is stained with Hoechst (blue). Scale bar is 10 µm. Percentage of 

monopolar and bipolar spindles formed after add back of Eg5 S543A’ (C) Percentage of 

monopolar and bipolar spindles formed after add back of Eg5 T937A.  
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3.1.5 Eg5 T937A localization to spindle microtubule is disrupted in 

Xenopus egg extract 

It has been previously reported that Klp61F, Eg5 Drosophila homolog, does not localize to 

spindle microtubules if not phosphorylated by Cdk1 (Goshima and Vale, 2005). Since we 

found that Eg5 T937A binds microtubules in microtubule in vitro gliding assays, Eg5 T937A 

localization was further investigated in Xenopus egg extract.  

In a first approach, the structures obtained after depletion-add back experiments were either 

immunostained with an anti-Eg5 antibody or pelleted and analyzed for Eg5 presence by 

western blot. However, the results obtained with these experiments were not consistent.  

Therefore, GFP tagged versions of Eg5 WT and Eg5 T937A were used in order to directly 

follow the protein behavior in extract using confocal microscopy. GFP fusion did not perturb 

Eg5 function as GFP-Eg5 WT rescued spindle formation after Eg5 depletion in Xenopus egg 

extract. GFP-Eg5 T937A prevents bipolar spindle assembly, similarly to the untagged protein. 

Moreover, GFP-Eg5 T937A was almost not observed on microtubules of monopolar spindles 

(Fig. 12A).  

Since, it has been reported that a certain amount of Eg5 needs to be present on microtubules 

to allow spindle formation, the amount of Eg5 T937A and Eg5 WT were quantified. 

Quantification of the GFP-Eg5 T937A signal over the rhodamine microtubule signal showed 

that 20 times less GFP-Eg5 T937A localized to microtubules when compared to GFP-Eg5 

WT (Fig. 12B). These findings indicate that Cdk1 phosphorylation regulates Eg5 localization 

to spindle microtubules in Xenopus egg extract. 

 

 

Figure 12: Eg5 T937A does not localize efficiently to microtubules of monopolar spindles in 

Eg5-depeted egg extract. (A) Confocal fluorescence microscopy images of a monopolar 
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spindle in Eg5-depleted extract (top), of a bipolar spindle after add back of wild-type Eg5-

GFP (left) and of a monopolar spindle after add back of Eg5 T937A-GFP (bottom) to Eg5 

depleted extract. Fluorescence of Eg5-GFP (left, green), of rhodamine-labelled microtubules 

(red, middle) is shown together with merged images (right). Scale bar is 10µm. (B) Average 

ratio of the fluorescence intensities measured in the GFP channel divided by the fluorescence 

intensities measured in the rhodamine channel for depleted extract (%Eg5), for the add back of 

Eg5-GFP and Eg5 T937A–GFP.  

 

3.2 Role of Eg5 intrinsic motor properties in spindle formation in 

Xenopus egg extract 

 

The depletion-add back experiments suggest that Eg5 needs to be phosphorylated by Cdk1 to 

interact with spindle microtubules and therefore to function in bipolar spindle assembly in 

Xenopus egg extract. However, they do not explain how bipolar spindle formation occurs 

when Eg5 is localized to spindle microtubules, or which particular feature of Eg5 is required 

for bipolar spindle formation. Are Eg5 bipolar organization and cross-linking activity 

sufficient or are Eg5 motor properties also needed? To tackle this question, we decided on one 

hand to examine the contribution of Eg5 motor properties to spindle assembly by generating 

Eg5 chimeras in which Eg5 motor domain has been replaced by other kinesin motor domains 

and on the other hand to investigate Eg5 motor properties by developing a microtubule 

gliding assay in Xenopus egg extract. 

 

3.2.1 Eg5 chimeras 

3.2.1.1 Kid-Eg5, Dkhc-Eg5 support microtubule gliding 

To examine the contribution of Eg5 motor properties to spindle assembly, Eg5 chimeras were 

generated, in which the Eg5 motor domain has been replaced by other kinesin motor domains. 

Since Eg5 has been characterized as a slow plus-end and mildly processive mitotic motor, the 

similarly slow plus-end and mildly or non-processive mitotic motor domain of the 

chromokinesin XKid and on the contrary, the fast plus-end and highly processive non-mitotic 

motor domain of Drosophila melanogaster Kinesin-1 were chosen. 

Chimeras, Kid-Eg5 and Dkhc-Eg5, were designed by aligning the different sequences 

amongst them and by determining the end of the respective neck linker. By doing so, the 

“motile unit” of Kid and Dkhc, motor domain and neck linker, were preserved. To assess their 
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motor functionalities, both chimeras were tested by motility assay in vitro. Microtubule 

gliding is observed with both chimeras. Interestingly, the measured speed corresponds to the 

original speed of the replacing motor domain. Thus Kid-Eg5 moves microtubules with a 

speed of 2µm/min like Xkid (Fig. 13A) and Dkhc-Eg5 with a speed of 22µm/min, like 

Kinesin-1 (Fig. 13B). This demonstrates that the intrinsic properties of the chosen motor 

domains are not altered and drive the chimeras motility in vitro.  

 

Figure 13: Chimeric Kid-Eg5 and Dkhc-Eg5 mutants support microtubule gliding in vitro. 

(A) Scheme of the chimeric Kid-Eg5 construct (top), and an in vitro microtubule gliding 

assay with Kid-Eg5 as illustrated by fluorescence images of gliding rhodamine-labelled 

microtubules propelled by Kid-Eg5 at different time points (left) and by a histogram 

representing the distribution of microtubule velocities (right). (B) Same presentation of 

microtubule gliding data for Dkhc-Eg5. Scale bars are 5 µm. 
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3.2.1.2 The specific properties of Eg5 motor domain are required for 

spindle formation in Xenopus egg extract 

We next wanted to know if our chimeras could first function in extract and second rescue 

spindle bipolarity after Eg5 depletion. Therefore, we made a depletion-add back experiment. 

After removing the endogenous Eg5 from CSF-extract by immunodepletion, cycled spindles 

were assembled as described in material and methods. The western blot shows that 

endogenous Eg5 was depleted from the extract and that the two chimeras were added up to 

the endogenous Eg5 concentration (Fig. 14A). 

When the chimeras were added to Eg5 depleted extract, bipolar spindle formation was not 

rescued and instead new structures were formed (Fig. 14C). This suggests that Kid-Eg5 and 

Dkhc-Eg5 are both active in mitotic egg extract but unable to substitute for Eg5 activity. 

Moreover, each chimera gave rise to the formation of different structures, probably as a 

consequence of their different motor properties. 

In the case of Kid-Eg5, the structures observed were short and tight bundles always connected 

to DNA on one end as well as some monopolar spindles (Fig. 14B). Kid-Eg5 was found 

preferentially at microtubule plus-ends close to DNA (Fig. 14D). For Dkhc-Eg5, the 

structures studied were long and thin splayed bundles connected together by DNA. These 

bundles were loose as they sometimes detached leading to a mixture of single bundles 

connected to DNA or not (Fig. 14B). In addition, Dkhc-Eg5 was localized all along these 

bundles (Fig. 14D). The observation that both chimeras are able to bundle microtubules in 

extract and in vitro (data not shown) strongly indicates that they are bipolar motors like Eg5. 

Because spindle bipolarity rescue occurs at a certain Eg5 concentration threshold (Goshima et 

al., 2005), we then tested if bipolarity could be rescued by adding various concentrations of 

chimeras in add back experiments. For this experiment, Kid-Eg5 chimera was chosen because 

no bipolar spindle at all were observed in the Dkhc-Eg5 add back experiment (Fig. 14E). 

Interestingly, the percentage of aberrant structures increases with increasing concentration of 

Kid-Eg5, while the percentage of Kid-Eg5 induced monopolar spindles decreases. In addition, 

spindle bipolarity could not be rescued in none of the tested condition. This observation 

emphasizes that spindle bipolarity requires a unique activity, which is specific of Eg5 motor 

domain. 

All together, these results indicate that Kid-Eg5 and Dkhc-Eg5 are unable to form a bipolar 

spindle, although they are able to bind spindle microtubules and active in mitotic extract, 

suggesting that Eg5 intrinsic motor properties are required for bipolar spindle assembly. 
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Figure 14: Distinct aberrant spindle phenotypes generated by chimeric Kid-Eg5 and DKhc-

Eg5 after addition to Eg5-depleted egg extract. (A) Amounts of Eg5 in Xenopus egg extract 

after 'mock'-depletion (mock), after Eg5-depletion (%Eg5) and after addition of recombinant 

proteins to depleted extract (Kid-Eg5, DKhc-Eg5) as determined by Western blot. (B) 

Fluorescence microscopy images of a bipolar spindle after ‘mock’-depletion and of a 

monopolar spindle and aberrant structures formed after addition of recombinant Kid-Eg5 or 

DKhc-Eg5 to Eg5 depleted extract. Microtubules are rhodamine-labelled (red) and DNA is 

stained with Hoechst (blue). Scale bars are 20 µm. (C) Percentage of monopolar, aberrant and 

bipolar structures formed at the different conditions. (D) Localization of Kid-Eg5 and DKhc-

Eg5 in aberrant structures as determined by indirect immunofluorescence (rhodamine-labelled 

microtubules, red; chimeric motors, green; Hoechst-stained DNA, blue). Scale bars are 10 

µm. (E) Percentages of monopolar, aberrant and bipolar structures formed after addition of 

different concentrations of Kid-Eg5 to Eg5-depleted extract. 
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3.2.2 Eg5 motility in mitotic Xenopus egg extract, development of an 

assay 

3.2.2.1 Microtubule gliding assay in mitotic Xenopus egg extract 

So far, our study of Eg5 phosphorylation showed that its phosphorylation by Cdk1 is required 

for its efficient binding to spindle microtubules. In addition to its binding, Eg5 intrinsic motor 

properties are also essential for Eg5 to function as demonstrated in our study of Eg5 chimeras. 

To try to get more insight into which of the Eg5 intrinsic properties are needed for bipolar 

spindle formation, we undertook the development of a microtubule gliding assay in Xenopus 

egg extract.  

With such a new assay, Eg5 intrinsic motor properties could be directly investigated in an “in 

vivo like environment”, where Eg5 undergoes the same regulatory mechanisms as in a cell. 

Moreover, Xenopus egg extract can be prepared as mitotic or interphasic extracts and is an 

open system, which allows additional experimental manipulations such as addition or removal 

of potential regulators.  

To develop a microtubule motility assay in extract, we were confronted with two major 

problems. First, Eg5 needed to be selectively bound onto a surface, while non-specific 

binding of other microtubule associated proteins (MAPs) and microtubule-dependant motors, 

present in mitotic extract, had to be prevented. This was achieved by using chemically nano-

patterned modified glass surfaces prepared by Jacques Blümmel (Spatz laboratory, University 

Heidelberg) (Blümmel et al., 2007). 

These glass surfaces were first nano-patterned with gold dots to which Eg5 was later 

adsorbed. The glass surface between nano-dots was then chemically passivated by addition of 

a layer of polyethylene glycol to prevent binding of proteins from the extract (Fig. 15A). 

To test the efficiency of the passivation, flow chambers were assembled using these surfaces. 

These flow chambers were constructed such that the nano-dots were present only on one side 

of the chambers, the other side being chemically passivated. Mitotic egg extract was 

incubated such a flow chamber, followed by microtubule flow. No microtubules were 

observed to bind onto the surface, suggesting that neither the MAPs, nor the molecular motors 

present in the extract were recruited to the passivated surface (Fig. 15B). 

The ability of the nano-dot attached Eg5 to move microtubules was then tested in an in vitro 

gliding assay on these nano gold dot surfaces. Eg5 was adsorbed on the nano-dots and 

microtubules were flowed in. The microtubules were able to glide at a velocity of about 
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2µm/min, which is similar to Eg5 microtubule gliding velocity measured on normal glass 

surface.  

Since Eg5 could be selectively bound to a surface to which none of the MAPs or molecular 

motors contained in the mitotic extract could attach, the microtubule gliding assay on nano-

dots was tested with mitotic Xenopus egg extract. In order to do so, Eg5 was adsorbed on the 

nano-dot surface of a flow chamber, followed by microtubule and mitotic egg extract flows. 

However, no motility was observed as exogenous microtubules were severed leading to their 

disappearance within 2 minutes (Fig. 15C). This was not unexpected, as it was previously 

reported that exogenous microtubules are cut in mitotic egg extract by an enzyme called 

katanin (McNally and Vale). Therefore, to inhibit katanin activity, anti-katanin antibody was 

added to the mitotic extract. Microtubule severing activity was reduced but microtubules 

depolymerized (Fig. 15C). Antibody against XKCM1, which is the major depolymerizing 

activity in extract, was added in combination with anti-katanin antibody to mitotic extract. In 

such a treated extract, microtubules were stable enough so that Eg5 driven microtubule 

gliding could be recorded using fluorescence microscopy (Fig. 15C). 

Our results suggest that Eg5 can be selectively bound to a nano-dot patterned surface. Binding 

of MAPs and molecular motors from the extract is prevented in between the nano-dots and on 

the other side of the flow chamber by chemically passivating these areas. In addition, 

exogenous microtubules can be kept stable in mitotic extract for two minutes, allowing 

microtubule gliding to be recorded. 

 

 

Figure 15: Development of a microtubule gliding assay in mitotic Xenopus egg extract. 



Results 

 40 

(A) Scheme of the nano-patterned surfaces. Adapted from (Blümmel et al., 2007). (B) 

Passivation of the nano-patterned surface against MAPs and molecular motors from mitotic 

Xenopus egg extract. (C) Stabilization of exogenous microtubules in mitotic Xenopus egg 

extract. Left panel: mitotic egg extract; middle panel: mitotic egg extract supplemented with 

anti-katanin antibody; right panel: mitotic egg extract supplemented with anti-katanin and 

anti-XKCM1 antibodies. Scale bar is 10µm. 

 

3.2.2.2 Eg5 motility in mitotic Xenopus egg extract 

Having developed the first microtubule gliding assay in mitotic Xenopus egg extract, Eg5 

kinetic properties could be assessed in extract. Therefore, Eg5 was adsorbed to the nano-dot 

surface. Microtubules were flowed in the flow chamber, followed by mitotic extract 

supplemented with anti-katanin and anti-XKCM1 antibodies. Microtubule velocities were 

measured in mitotic extract, as well as before extract flow and after extract wash out. 

Interestingly, Eg5 velocity was on average 40% slower in mitotic egg extract when compared 

to in vitro assays (Fig. 16A-C). Moreover, Eg5 in vitro speed recovered after extract removal, 

showing that the motor was not washed away during the procedure (Fig. 16D).  

It has been reported that spindle bipolarity is also ensured by a balance between antagonistic 

motor activities. To test this hypothesis, we inhibited the major minus-end directed motor, the 

dynein/dynactin complex and examine whether Eg5 plus-end directed motor properties were 

altered in a microtubule gliding assay performed in mitotic extract. Therefore, Eg5 was 

adsorbed to nano-dot surface. Thereafter, microtubules were flowed into the flow chamber, 

followed by mitotic extract, supplemented with anti-katanin and anti-XKCM1 antibodies. 

When the dynein/dynactin complex was inhibited by addition of p50, Eg5 driven microtubule 

gliding velocity almost doubled (Fig. 16B-C).  
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Figure 16: Eg5 driven microtubule gliding assay in mitotic Xenopus egg extract. 

(A) Eg5 driven microtubule gliding in mitotic Xenopus egg extract. (B) Eg5 driven 

microtubule gliding in mitotic Xenopus egg extract in which dynein/dynactin was inhibited. 

Scale bar is 5µm. (C) Eg5 velocity in mitotic Xenopus egg extract. Orange, Eg5 velocity in 

mitotic Xenopus egg extract; purple, Eg5 velocity in mitotic Xenopus egg extract in which 

dynein/dynactin was inhibited. (D) Change in Eg5 velocity between in vitro and in mitotic 

Xenopus egg extract. 

 

Our results show that Eg5 velocity decreased in mitotic Xenopus egg extract compared to in 

vitro situation. In addition, this decrease cannot be explained by a change in salt 

concentration. Indeed, salt concentration in extract is supposed to be high and as a 

consequence Eg5 velocity should increase, which is not the case. Interestingly, Eg5 velocity 

in mitotic egg extract increases upon dynein/dynactin inhibition, which will be further 

examined. Furthermore, through this microtubule gliding assay in mitotic egg extract, we 

provide a new method to study molecular motor regulation. 
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4 Discussion 

4.1 Eg5 phosphorylation by Eg2 is not required for bipolar spindle 

formation in Xenopus egg extract. 

Just as it functions in nucleocytoplasmic transport during interphase, RanGTP has been 

shown to be involved in spindle formation. A RanGTP signaling pathway has already been 

described and interestingly, one of its key players in spindle formation is Eg2 kinase (Tsai et 

al., 2003). A previous study has also reported that addition of Eg2 kinase dead mutant (Roghi 

et al., 1998) leads to the formation of monopolar spindles like those observed when Eg5 has 

been depleted or inhibited in Xenopus egg extract (Sawin et al., 1992a). Moreover, in Xenopus 

egg extract, Eg5 activity is regulated by RanGTP (Wilde et al., 2001). However, how this 

regulation of RanGTP over Eg5 is molecularly achieved remained unknown. As RanGTP 

regulates Eg2 kinase activity, which has been shown to phosphorylate Eg5 in its stalk (Giet et 

al., 1999), we postulated that RanGTP could regulate Eg5 activity through Eg2 

phosphorylation of Eg5. 

Therefore, we sought to search for Eg2 phosphorylation site in Eg5 entire sequence and 

actually identified by mass spectrometry serine 543, yet in Eg5 stalk.  

Our phosphorylation experiment shows that Eg5 phosphorylation by Eg2 is reduced when 

S543 has been mutated to alanine, indicating that Eg2 phosphorylates Eg5 in vitro at serine 

543.  

However, Eg2 does not significantly phosphorylate Eg5 in mitotic egg extract. This suggests 

that Eg2 phosphorylation of Eg5 might not be important in mitotic egg extract. 

As a matter of fact, Eg5 S543A’ was able to rescue spindle bipolarity as well as recombinant 

Eg5 in depletion-add back experiments performed in egg extract. This confirms that Eg2 

phosphorylation of Eg5, at serine 543 is not important for Eg5 to function in Xenopus egg 

extract. Furthermore, sequence analysis revealed that serine 543 is not conserved among Eg5 

homologs, reinforcing the fact that this phosphorylation site is not crucial for Eg5 activity. 

Nevertheless, Eg2 could still regulate Eg5 by another potentially more indirect mechanism.  
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4.2 Cdk1 phosphorylation regulates Eg5 efficient binding to 

spindle microtubule 

In contrast to the Eg2 phosphorylation site, Eg5 possesses a Cdk1 consensus phosphorylation 

site in a conserved sequence among the members of the kinesin-5 subfamily (Heck et al, J. 

Cell. Biol. 1993, 123:665-679). For this reason, Cdk1 phosphorylation of Eg5 has been 

studied in many different organisms, leading to hypothesize that Cdk1 phosphorylation of 

Eg5 is required for its interaction with spindle microtubules.  

However these studies from various organisms do not clearly demonstrate the link between 

Eg5 phosphorylation by Cdk1 and loss of spindle bipolarity. Therefore, we addressed Eg5 

phosphorylation by Cdk1 in Xenopus egg extract, as well as its consequence in spindle 

assembly in Xenopus egg extract.  

To do so, the first recombinant Eg5 mutant, where T937 was mutated to alanine in order to 

prevent Cdk1 phosphorylation, was produced. After having confirmed in vitro that T937 is 

the Cdk1 phosphorylation site of Eg5, Eg5 T937A phosphorylation was examined in mitotic 

egg extract. In contrast to previous study in HeLa cells reporting that only 20% of total Eg5 

phosphorylation can be accounted to Cdk1 (Blangy et al., 1995), we found that Cdk1 is the 

major kinase that phosphorylates Eg5, as phosphorylation of Eg5 T937 decreased of about 

80% when compared to Eg5 WT in mitotic extract.  

Eg5 is involved in bipolar spindles formation as its loss or inhibition leads to the formation of 

monopolar spindles (Mayer et al., 1999) (Sawin et al., 1992a). Interestingly, these monopolar 

spindles are reminiscent of the structures that were observed after replacement of endogenous 

Eg5 by Eg5 T937A. Such monopolar spindles were also described to form in Drosophila S2 

cells transfected with the mutant Klp61F T933A (Goshima and Vale, 2005), leading to the 

proposal that Klp61F interacts with microtubules Because it was proposed that Cdk1 

phosphorylation of Eg5 is important for its interaction with spindle microtubules, Eg5 T937A 

was quantified on the monopolar structures. Our result shows that Eg5 T937A does not 

strongly localize to microtubule of monopolar spindles, suggesting that Eg5 phosphorylation 

by Cdk1 is necessary for Eg5 to efficiently bind spindle microtubules.  

Moreover, our findings are in agreement with a previous study demonstrating that the 

transition from monopolar to bipolar spindles was dependent on the amount of Eg5 present on 

spindle microtubules (Goshima et al., 2005). 

However, although our results in extract clearly show that Eg5 T937 interaction with 

microtubules is perturbed, our in vitro motility assays do not show any. Indeed, Eg5 T937A is 



Discussion 

 44 

able to bind microtubules (even in high salt buffer) just as Eg5 WT does. And furthermore, 

Eg5 T937A is a functional motor as microtubule gliding was observed.  

There are two major differences between these two assays that could explain this divergence 

between the results. First, whereas Eg5 is free to diffuse in an add back experiment, it is 

physically bound to a glass surface, probably in high concentration, in a motility assay, which 

could lead to favor its interaction with microtubules. Moreover, microtubule organization also 

differs. In a monoaster, microtubules are mostly arranged in parallel bundles, whereas single 

microtubules are observed in a gliding experiment. Binding of the Eg5 to parallel microtubule 

bundles on one hand or to single microtubules on the other hand could also differ. 

Cdk1 phosphorylation is essential for Eg5 to interact efficiently with microtubules and hence 

to function in bipolar spindle assembly. Remarkably, the results also suggest that the 

mechanism by which Cdk1 regulates Eg5 is conserved in eukaryotes, with the exception of 

the fission yeast (Goshima and Vale, 2005) (Drummond and Hagan, 1998). 

 

4.3 Eg5 intrinsic motor properties are required for spindle 

assembly in Xenopus egg extract 

Our study of Eg5 regulation taught us that Cdk1 phosphorylation is essential for Eg5 to be 

targeted to microtubules but we do not learn about how Eg5 functions once on spindle 

microtubule. From previous studies, we know that an active Eg5 motor domain is required for 

bipolar spindle assembly (Mayer et al., 1999). However, we do not know if all or only some 

of its intrinsic motor properties are required for spindle formation.  

To undertake this question, Eg5 chimeras were generated, in which the Eg5 motor domain 

was replaced by the motor domains of Xkid and Dkhc, which have distinct motor properties. 

In vitro motility assays show that the chimeras move microtubules with the same speed as the 

protein from which the motor domain originate from, suggesting that the motility properties 

were conserved.  

Moreover, both chimeras were not only active in vitro but also in mitotic Xenopus egg extract, 

as they gave rise to two distinct phenotypes after depletion-add back experiments. This is 

interesting regarding the fact that Dkhc-Eg5 motor domain comes from kinesin 1, which is 

not a mitotic motor. 

Furthermore, whereas Kid-Eg5 add back leads to the formation of small bundles connected to 

DNA, long and splayed bundles were observed when Dkhc-Eg5 was added back. This 

difference in bundle length could be explained by the different motor properties. As Dkhc-
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Eg5 is a highly processive, it could sustain microtubule contact for longer time, while its high 

speed would increase the displacement between microtubules. 

Since none of the active chimeras could rescue spindle bipolarity, this indicates that Eg5 

intrinsic properties are essential for spindle formation. Eg5 is a bipolar motor, which is able to 

bundle antiparallel and parallel microtubules. The fact that two chimeras are able to form 

bundles strongly suggests that they are also bipolar motors. Moreover, the plus-end directed 

motor Kid-Eg5 is preferentially found next to DNA indicating that Kid-Eg5 bundles are likely 

to be composed of parallel microtubule arrays. Taken together, this suggests that Eg5 cross-

linking activity of parallel microtubules is probably not essential for bipolarity establishment. 

In addition, the loss of bipolarity was robust over a wide range of Kid-Eg5 concentration, 

suggesting that Eg5 motor activity could not be compensated. 

Furthermore, although having the same tail domain, the two chimeras are performing 

different functions. This is interesting in regard to the kinesin phylogenetic tree. The kinesin 

phylogenetic tree was built according to the sequence homology between the different kinesin 

motor domains, leading to 14 kinesin related protein (KRP) subfamilies. KRP motor domains, 

which contain the microtubule and the nucleotide binding sites, share roughly 30% homology. 

Interestingly, this classification has also yielded to classify KRPs according to their function. 

This was unexpected as KRP tail, which differs from one KRP to another one, was the only 

part believed to encode some “functional activity”. Our experiments give for the first 

experimental evidence that KRP motor domain does indeed encode some “functional 

activity”, supporting the phylogenetic classification of KRPs. 

 

4.4 Eg5 motility in Xenopus egg extract 

So far, our results suggest that not only Cdk1 phosphorylation of Eg5 is required for bipolar 

spindle formation but also its intrinsic motor properties. Therefore, we sought to investigate 

Eg5 motor properties, and in particular Eg5 kinetic, in Xenopus egg extract. To do so, we 

developed a microtubule gliding assay in Xenopus egg extract. 

To date, this assay is the only one that allows the study of molecular motors, and conventional 

MAPs, in an “in vivo like environment”, such as Xenopus egg extract. Indeed, this assay is 

performed in egg extract, where proteins are subjected to the same regulatory events as they 

undergo in cells. However, in contrast to cells, egg extract is an open system, which gives the 

opportunity to examine protein behavior at a molecular level, by removing or inhibiting 

potential regulators for example. 
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As a matter of fact, Eg5 velocity measured in mitotic extract differs from velocity measured 

in vitro. Different parameters can actually influence Eg5 velocity in an extract microtubule 

gliding assay.  

The first, the environment, in which the two gliding assays are performed, differs. This 

environment can vary for instance in term of salt concentration. In vitro gliding assays are 

performed in buffer solution, which composition can be optimized depending of the protein of 

interest. In an extract gliding experiment, the environment composition is thought to be 

suitable for any proteins as it is their “natural environment”. As a consequence, in vitro 

microtubule gliding assay were performed in buffer solution in which the salt concentration 

was elevated to be as close as possible to that of the extract. The results show that Eg5 driven 

microtubule gliding velocity increased with the salt concentration. Therefore, this difference 

in salt concentration cannot explain the difference in Eg5 speeds between in vitro and in 

extract experiments.  

The second parameter that could infer for a reduced Eg5 speed is a crowed microtubule. In 

extract gliding assay, MAPs from the extract also bind to microtubules, which reduces the 

number of binding sites available for Eg5 stepping. This could lead to a decrease of Eg5 

velocity as Eg5 is a processive motor. As a matter of fact, Eg5 velocity increases upon 

dynein/dynactin inhibition, which could be explained if dynein/dynactin indeed challenges 

Eg5 for microtubule binding.  

On the other hand, the minus-end directed dynein/dynactin complex could also compete with 

Eg5 plus-end directed motility, leading to a decrease in Eg5 speed. In this way, it has been 

reported that dynactin can associate in a phosphorylation dependant manner with Eg5 (Blangy 

et al., 1997). Therefore, dynein/dynactin could bind microtubule by binding to some of the 

Eg5 adsorbed on the nano-dots, hence counteracting Eg5 motility. Besides dynein/dynactin, 

Eg5 motor properties could also be regulated by other proteins in extract, consequently 

reducing Eg5 speed.  

These interesting findings will definitely be further investigated. 
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5 Material and methods 

5.1 Cloning 

5.1.1 Full length Eg5 constructs 

Eg5 plasmid was inserted in pFastBac HTa vector (Invitrogen) via a Stu1 restriction site at the 

5’ and a Not1 at the 3’so that the protein was His tagged at its N terminus. Single point 

mutations, S543A and T937A, were introduced using Quickchange 2 XL from Stratagene 

giving rise to two constructs Eg5 S543A and Eg5 T937A.  

To abolish residual artificial phosphorylation signal, two additional point mutations in the 

linker region were done for Eg5
 
S543A. -R35 and -R36, located in the N terminal tag of the 

pFastBac vector between the TEV cleavage site and the beginning of Eg5 sequence, were 

mutated to glycines, generating Eg5 S543A’. For comparison, -R35G and-R36G were also 

mutated in Eg5 WT, producing Eg5 WT’. 

GFP-Eg5 fusion constructs were obtained as described in Uteng et al (manuscript in 

preparation). 

 

5.1.2 Chimeric Eg5 constructs 

Kid(1-369)-Eg5(369-1103) was constructed as follows. Kid motor domain was amplified by 

PCR using 5’GCTGCCATGGTTCTTACTGGGCCTCTC 3’ as 5’primer and 

5’GGTGGTTTCCTGGCTGAAAG-3’ as 3’primer. Thus Nco1 site was introduced at the 

5’end, whereas a blunt end was generated at the 3’end. Eg5 sequence was amplified by PCR 

using 5’ACAAAGAAGGCACTCATCAAGGAG3’ as 5’ primer and 

5’TTCGAAAGCGGCCGCTC3’ as 3’primer respectively. This generated a blunt end at the 

5’end, while a Not1 site was introduced at the 3’end. The PCR product were digested, 

phosphorylated and ligated into pFastBac Hta.  

The same cloning strategy was used to generate Dkhc(1-354)-Eg5(369-1103). 

The primers used for Dkhc-Eg5 are 5’GCTGCCATGGCAATGTCCGCGGAACGAGAG3’ 

for the 5’primer, generating a Nco1 site restriction site and 

5’AAGCTCCTCGTTAACGCAG3’ for the 3’primer, generating a blunt end. Same Eg5 

primers were used.  
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5.2 Proteins expression and purification 

5.2.1 Expression and purification of Eg5 constructs 

Full length Eg5 was expressed in Sf9 insect cells and purified as followed. Cells were lysed in 

lysis buffer (50mM KH2PO4, 250mM KCl, 10mM imidazole, 0.5mM MgATP, 0.1% Triton 

X100, 10mM #-mercaptoethanol, protease inhibitors (Roche), pH8) and centrifuged at 

176000g for 30min at 4°C. Supernatant was incubated with Talon resin (Clontech) for 1h at 

4°C. Resin was washed with washing buffer (50mM KH2PO4, 250mM KCl, 10mM 

imidazole, 0.1mM MgATP, 10% glycerol, protease inhibitors (Roche),10mM #-

mercaptoethanol pH8) and protein was eluted with elution buffer (50mM KH2PO4, 150mM 

KCl, 250mM imidazole, 0.1mM MgATP, 10% glycerol, protease inhibitors (Roche), pH7). 

The protein was dialysed overnight in dialysis buffer (50mM KCl, 50mM imidazole, 0.5mM 

EGTA, 10% sucrose, 10mM #-mercaptoethanol, pH 7) at 4°C. If the protein was used for add 

back experiment, the #-mercaptoethanol free dialysis buffer was degazed and dialysis lasted 

for 3h. Finally, the protein was aliquoted in maximum 10ul aliquot, frozen in ethane and 

stored in liquid nitrogen.  

Eg5 T937A, Eg5 S543A’, Kid-Eg5, Dkhc-Eg5, GFP-Eg5 T937A were expressed and purified 

following the same protocol as Eg5. GFP-Eg5 WT was expressed and purified as described in 

Uteng et al (manuscript in preparation). 

 

5.2.2 Expression and purification of Eg2 

BL21-RIL E. coli were transformed with pET28a-Eg2 (gift from Teresa Sardon). Expression 

was induced with 0.3mM IPTG and cells were harvested after 4h expression at 30°C. Pelleted 

cells were lysed in lysis buffer (25mM HEPES, 330mM KCl, 5mM MgCl2, 0.1% TritonX100, 

5mM #-mercaptoethanol, protease inhibitors (Roche), pH7). Then, Eg2 was purified over a 

Talon resin (Clontech) and eluted with elution buffer (25mM HEPES 330mM KCl, 5mM 

MgCl2, 10% glycerol, 300mM imidazole, 5mM #-mercaptoethanol, protease inhibitors, 

pH7.5). Eg2 was dialyzed overnight at 4°C in dialysis buffer (25mM HEPES, 250mM KCl, 

2mM MgCl2, 10% glycerol, 1mM DTT, pH 7.5), aliquoted, frozen in liquid nitrogen and 

stored at -80°C. 
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5.2.3 Expression and purification of p50 

Expression and purification were performed according to (Wittmann and Hyman, 1999). 

5.2.4 Antibody purification 

5.2.4.1 Eg5 antibody 

GST-Eg5, purified as described in Sawin et al (Nature 1992, 359:540-543) was injected into 

rabbits (Eurogentec). Eg5 was coupled to NHS-activated HiTrap column (Amersham) 

according to the manufacture instructions. For affinity purification, the serum was 

recirculated over the column overnight at 4°C. The column was washed with washing buffer 

(0.5M NaCl, 0.1% Triton X100, Phosphate-buffered saline, PBS) followed by elution with 

0.1M glycine pH2.6 in Eppendorf tubes containing 10% (v/v) of 2M Tris pH8. The antibody 

was dialysed overnight in PBS/50% glycerol and stored at -20°C.  

5.2.4.2 XKCM1 antibody 

The !-XKCM1 antibody was purified as described in (Walczak et al., 1996). 

5.2.4.3 Katanin antibody 

The !-Katanin antibody was purified as described in (McNally and Thomas, 1998).  

5.3 Phosphorylation experiments 

In vitro phosphorylation of Eg5 was performed by incubating 1µg of Eg5 in 20µl with either 

0.1µg of Cdk1/cyclinB (Cell Signaling) or 0.2µg of Eg2. Phosphorylation reactions were 

carried out for 30min at room temperature in CSF-XB (100mM KCl, 0.1mM CaCl2, 3mM 

MgCl2, 10mM HEPES, 50mM sucrose, 5mM EGTA, pH7.7) containing 10µM MgATP and 

0.75µCi/µl radioactive [$32
P]ATP (Amersham). After 2h incubation on ice, Eg5 was 

immunoprecipitated using anti-His antibody (Qiagen) coupled to proteinG dynabeads from 

the phosphorylation reaction, which was diluted with 20µl CSF-XB + phosphatase inhibitors 

(100mM NaF, 80mM Glycerophosphate, 1mM PMSF, 20mM EDTA, 1mM sodium vanadate, 

1µM microcysteine and protease inhibitors (Roche)). 

Beads were retrieved, boiled and loaded on a 10% SDS-PAGE gel. The gel was exposed to a 

Kodak Biomax film.  
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The same protocol was followed for phosphorylation experiments in mitotic egg extract, 

except that phosphorylation reactions were performed in Xenopus mitotic egg extract with a 

final radioactive [$32
P]ATP concentration of 15µCi/µl. 

 

5.4 Xenopus egg extract experiment 

5.4.1 Preparation of Xenopus egg extract 

Cytostatic factor arrested extracts (CSF extract) were prepared as described by Murray 

(Murray A.W, Methods Cell. Biol. 1991, 36:581-605) except that eggs were packed 1min at 

600g then1min at 1200g and crushed at 10000g, 18min, 16°C, acceleration slow. Spindle 

assembly was performed as described in Peset et al (J. Cell. Biol. 2005, 170:1057-1066). 

Briefly, TAMRA labeled tubulin (Hyman et al, Methods Enzymol 1991, 196:478-485) and 

sperm nuclei were added to CSF extract, half of which was sent was to interphase with 

calcium solution (0.4mM CaCl2, 10mM KCl, 0.1mM MgCl2), while the other half was kept 

on ice. After usually 60min, interphasic nuclei were observed and the extract was cycled back 

to mitosis with the addition of the other half of CSF extract. 

 

5.4.2 Depletion-add back experiments 

80µl of anti-Eg5 antibody coupled proteinA dynabeads were used to deplete 100µl extract for 

1h on ice. Spindle assembly was performed as described above. Recombinant proteins or 

buffer as a control were added with depleted CSF extract as the reaction was cycled back to 

mitosis. After 45min extracts were diluted with dilution buffer (30% glycerol, 0.5% Triton 

X100 in BRB80 (80 mM PIPES, 1mM MgCl2, 1mM EGTA, pH 6.8)), fixed with fixation 

buffer (dilution buffer with 4% formaldehyde) and layered on top of a 3ml cushion (30% 

glycerol in BRB80). After centrifugation at 3000rpm, 30min, 20°C (Hereaus centrifuge), 

cover slips were post-fixed in methanol at -20°C. After rehydratation in PBS/0.1% Triton 

X100, coverslips were incubated with anti-Eg5 antibody, washed and incubated with alexa488 

anti rabbit antibody (Molecular Probes). Hoechst (H33342, Sigma) was used to stain DNA. 

Then coverslips were washed and mounted. Depletion efficiency was assayed by Western 

Blot. Images were taken using an inverted microscope (Axiovert 135TV, Zeiss, 100W 
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mercury, CDD camera, Coolsnap Photometric) with an oil immersion 63X objective (Zeiss). 

Structures were quantified from at least 3 different experiments. 

For GFP-Eg5 localization, images were taken from non-fixed samples with confocal 

microscope (Zeiss LSM 510 Meta) with a 63X water immersion objective (Leica). For 

quantification, a region of interest was drawn in which the mean intensity per area was 

measured using ImageJ. After background subtraction, ratios of GFP intensities over TAMRA 

intensities were calculated and averaged over 10 structures. 

 

5.5 Microtubule gliding assay 

5.5.1 In vitro microtubule gliding assay 

Tetramethylrhodamine (TAMRA, Molecular Probes) labeled microtubules were generated by 

polymerizing 5µg/µl tubulin (Castoldi and Popov, 2003) with 0.1µg/µl TAMRA tubulin, 

1mM guanosine 5’-triphosphate, GTP, in BRB80.  

After a tenfold dilution in BRB80 containing 20µM taxol (paclitaxel, Sigma), microtubules 

were pelleted 10min in a tabletop centrifuge at 140000rpm (Eppendorf 5417C). For use, 

microtubule pellet was resuspended and further diluted 1:1000 in BRB80/taxol. 

A flow chamber was built by assembling 2 cleaned ethanol coverslips on top of each other 

using double sticky tape. Flow chamber volume was about 5µl.  

One flow chamber volume of BRB80 was first flowed in, followed by the motor mix (3µM 

motor protein and 10mM MgATP). After 5min incubation on ice, one flow cell of washing 

buffer (10mg/ml BSA, 10mM MgATP in BRB80) was introduced and followed by another 

5min incubation. Microtubules mix (10mg/ml BSA, 10mM MgATP, 0.25mg/ml glucose 

oxidase, 0.12mg/ml catalase, 25mM glucose, microtubules 1:5, in BRB80) was flowed in at 

room temperature. 

To image, an inverted microscope (as described above) was used. Usually sequences of 2min 

time lapse were recorded with 1 frame taken every 10s and 100ms exposure time per frame. 

Velocities were analyzed by kymographs by using a macro developed by Arne Seitz on 

ImageJ (Seitz and Surrey, 2006). One kymograph was constructed per microtubule and 10 to 

20 microtubules were analyzed per time lapse series. Average microtubule velocity per time 

lapse series was obtained by a Gauss fit. Three time-lapse series were recorded per flow 

chamber, each flow chamber repeated twice from which the arithmetic average was 

calculated. 
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5.5.2 In extract microtubule gliding assay 

Gold dots surfaces were done as described in (Blümmel et al., 2007). 

A flow chamber of about 5-10ul was built by putting the cover slip with the nanostructures on 

top of a cover slip, which surface has been passivated. The 2 cover slips were assembled via 2 

layers of double sticky tape. Microtubules were prepared as described above. 

One flow chamber volume of Eg5 dialysis buffer containing 10mM ATP was introduced. The 

motor protein ([Eg5]=700nM, 10mM ATP in Eg5 dialysis buffer) was then flowed in and the 

flow chamber was incubated for 10 min on ice. The flow chamber was washed with 5 

volumes of Eg5 dialysis buffer containing 10mM ATP. Microtubule solution (10mM ATP, 

0.25mg/ml glucose oxidase, 0.12mg/ml catalase, 25mM glucose, microtubule 1:5, in Eg5 

dialysis buffer/20µM taxol) was introduced, followed by 5min incubation at room 

temperature. Unbound microtubules were washed with one volume of microtubule solution 

without microtubules.  

The flow chamber was brought to the microscope (as described above) where a first movie 

was recorded. Then 3 volumes of freshly thawed mitotic extract were flowed in. The extract 

was previously incubated 1h on ice with 50µg/µl anti-katanin, 90µg/µl anti-XKCM1, 10µM 

RanQ69L, 20µM nocodazole and 0.9mg/ml of p50 if added. After recording of movies in 

extract, the flow chamber was washed with 3 volumes of Eg5 dialysis buffer containing 

10mM ATP and one volume of microtubule solution was introduced. After 5min incubation 

and washing of unbound microtubules, movies were recorded as described above. 
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7 Appendix 
 

7.1 Résumé 

Par cette étude, nous montrons que la phosphorylation d’Eg5 par Eg2 n’est pas importante 

pour sa fonction dans la formation du fuseau mitotique dans l’extrait d’oeuf de Xénope. Au 

contraire, la phosphorylation d’Eg5 par Cdk1 est nécessaire pour son attachement aux 

microtubules. Cet attachement permettra par la suite l’assemblage du fuseau mitotique. En 

plus de confirmer de précédentes études, ces résultats indiquent que le site de phosphorylation 

de Cdk1 n’est pas seulement conservé parmi les membres des Kinésines 5, mais également 

que son mécanisme de régulation est conservé. 

Bien que des expériences plus approfondies soient nécessaires afin de caractériser les 

propriétés motrices d’Eg5 par l’intermédiaire de notre expérience de “microtubule-gliding” 

dans l’extrait de Xénope, nos expériences réalisées avec des chimères d’Eg5 ont souligné 

l’importance des propriétés motrices intrinsèques à Eg5 qui sont cruciales pour la formation 

du fuseau mitotique. En effet, aucune de ces chimères n’a pu rétablir la formation du fuseau 

mitotique. De plus, ces expériences ont fourni la première preuve expérimentale que la 

classification des Kinésines en différentes sous-familles selon la conservation de séquence de 

leur domaine moteur a également abouti à les classer selon leurs différentes fonctions. 
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7.2 Abstract 

In this study, we show that Eg2 phosphorylation of Eg5 is not important for its function in 

bipolar spindle formation in Xenopus egg extract. Conversely, Eg5 needs to be 

phosphorylated by Cdk1 to be targeted to spindle microtubules and hence assemble a bipolar 

spindle in Xenopus egg extract. These findings confirm previous studies and furthermore 

indicate that Cdk1 phosphorylation site is not only conserved among kinesin-5 members but 

also that its mechanism of regulation is conserved among this subfamily. 

Although further experiments are required to fully characterize Eg5 motor properties in by 

means of our microtubule gliding assay in Xenopus egg extract, Eg5 intrinsic motor properties 

are definitely crucial for bipolar spindle assembly as none of the Eg5 chimeras could rescue 

spindle formation in Xenopus egg extract. Moreover, these experiments provide the first 

experimental evidence that the classification of kinesins in different subfamilies, according to 

their conserved motor domain sequences, has also yielded to classify them according to their 

diverse function. 
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7.3 Abbreviations 

 

AAA ATPase Associated with diverse cellular Activities 

ADP Adenosine DiPhosphate 

ATP Adenosine TriPhosphate 

Cdk Cyclin dependent kinase 

Ci Curie 

CSF CytoStatic Factor 

DNA DeoxyriboNucleic Acid 

e.g. exampli gratia 

EDTA Ethylene Diamine Tetraacetic Acid 

EGTA Ethylene Glycol Tetraacetic Acid 

g gram 

GDP Guanosine DiPhosphate 

GFP Green Fluorescent Protein 

GPS Group-based Phosphorylation Scoring 

GST Glutathione-S-Transferase 

GTP Guanosine TriPhosphate 

KRP Kinesin-Related Protein  

l liter 

m micrometer 

M Molar 

m milli 

m meter 

MAP Microtubule Associated Protein 

min minute 

MPF Mitotis Promoting Factor 

MT MicroTubule 

n nano 

N Newton 

NHS N-HydroxySuccinimide 

nRNA messenger RNA 

p pico 
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PBS Phosphate Buffered Saline 

PCR Polymerase Chain Reaction  

PEG PolyEthylene Glycol 

pH potential of Hydrogen 

RNA RiboNucleic Acid 

s second 

SDS-

PAGE 

Sodium Dodecyl Sulfate - Polyacrylamide Gel 

Electrophoresis  

ser serine 

thr threonine 

v/v by volume 

WT Wild-Type 
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