
HAL Id: tel-00812570
https://theses.hal.science/tel-00812570

Submitted on 12 Apr 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Transformées redondantes pour la représentation de
signaux audio : application au codage et à l’indexation

Emmanuel Ravelli

To cite this version:
Emmanuel Ravelli. Transformées redondantes pour la représentation de signaux audio : application
au codage et à l’indexation. Traitement du signal et de l’image [eess.SP]. Université Pierre et Marie
Curie - Paris VI, 2008. Français. �NNT : 2008PA066359�. �tel-00812570�

https://theses.hal.science/tel-00812570
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT

UNIVERSITÉ PARIS 6 - PIERRE ET MARIE CURIE

ECOLE DOCTORALE EDITE DE PARIS

Spécialité

Informatique, Télécommunications et Électronique

Présentée par

M. Emmanuel RAVELLI

Pour obtenir le grade de

Docteur de l’université Paris 6

Sujet de la thèse

Transformées redondantes pour la
représentation de signaux audio :

application au codage et à l’indexation

Thèse dirigée par

Laurent DAUDET - Université Paris 6

et

Gaël RICHARD - TELECOM ParisTech

Soutenance prévue le 27 Octobre 2008

devant le jury composé de:

Laurent DAUDET Université Paris 6 Directeur de thèse
Gaël RICHARD TELECOM ParisTech Directeur de thèse
Pierre DUHAMEL CNRS Paris Rapporteur
Bastiaan KLEIJN KTH Stockholm Rapporteur
Mike DAVIES Université d’Edinburgh Examinateur
Jean-Gabriel GANASCIA Université Paris 6 Examinateur
Pierrick PHILIPPE France Télécom R&D Examinateur

Transformées redondantes pour la représentation de signaux audio :
application au codage et à l’indexation

Résumé Cette thèse étudie de nouvelles techniques de représentation du signal pour le codage
audio. Les codeurs audio existants sont basés soit sur une transformée (codage par transformée),
soit sur un modèle paramétrique (codage paramétrique), soit sur une combinaison des deux (codage
hybride). D’une part, le codage par transformée permet une qualité transparente à haut débit (ex.
AAC à 64 bkps/canal), mais obtient de mauvaises performances à bas débit. D’autre part, le
codage paramétrique et le codage hybride obtiennent de meilleures performances que le codage
par transformée à haut débit mais ne permettent pas une qualité transparente à haut débit. La
nouvelle approche de représentation du signal que nous proposons permet d’obtenir une qualité
transparente à haut débit et de meilleures performances que le codage par transformée à bas débit.
Cette représentation du signal est basée sur un ensemble redondant de fonctions temps-fréquence
composée d’une union de plusieurs bases MDCT à différentes échelles. La première contribution
majeure de cette thèse est un algorithme à la fois rapide et performant qui décompose un signal
dans cette ensemble redondant de fonctions. La deuxième contribution majeure de cette thèse est
un ensemble de techniques qui permettent un codage de ces représentations à la fois performant et
progressif. Finalement, cette thèse étudie l’application à l’indexation audio. Nous montrons que
l’utilisation d’une union de plusieurs MDCT permet de dépasser les limitations des représentations
utilisées dans les codeurs par transformée (en particulier la résolution fréquentielle), ce qui rend
ainsi possible une indexation dans le domaine transformée performant.

Mots clés Traitement du signal, représentation des signaux, représentations parcimonieuses,
transformées temps-fréquence, codage audio, quantification, indexation audio, classification.

Equipe d’acceuil Institut Jean le Rond d’Alembert, Equipe Lutherie Acoustique Musique (LAM),
11 rue Lourmel, 75015 Paris.

Audio signal representations with overcomplete transforms for cod-
ing and indexing

Abstract This thesis investigates new signal representations for audio coding. Existing state-of-
the-art audio coders are based either on a transform (transform coding), or on a parametric model
(parametric coding), or on a combination of both (hybrid coding). On the one hand, transform
coding achieves (near-)transparent quality at high bitrates (e.g. AAC at 64kbps/channel), but gives
poor performance at lower bitrates. On the other hand, parametric and hybrid coding achieve
better performance than transform coding at low bitrates but cannot give transparent quality
at high bitrates. The new approach for signal representation that we propose allows to achieve
transparent quality at high bitrates, while giving better performance than transform coding at low
bitrates. This signal representation is based on an overcomplete set of time-frequency functions
composed by a union of several MDCT bases with different scales. The first major contribution
of this thesis is a fast and efficient algorithm that decomposes a signal into this overcomplete set
of functions. The second major contribution of this thesis is a set of techniques that allows the
coding of these representations in an efficient and scalable way. Finally, this thesis investigates
the application to audio indexing. We show that using a union of several MDCT bases allows
to go beyond the limitations of the representations used in the transform coders (particularly the
frequency resolution), which makes possible an efficient indexing in the transform domain.

Keywords Signal processing, signal representations, sparse representations, time-frequency trans-
forms, audio coding, quantization, audio indexing, classification.

vii

Résumé long

Nous proposons ici un long résumé en français de la thèse. Plutôt qu’un résumé exhaustif
de la thèse, nous ne citerons que les points essentiels : une courte introduction comprenant les
motivations ainsi que les contributions de la thèse; un bref état de l’art du codage audio et des
représentations parcimonieuses; une étude de la représentation de signaux audio dans une union de
bases MDCT; une étude de l’application au codage audio; une étude de l’application à l’indexation
audio.

Introduction

Motivations

Le codage audio est né dans les années 80 de la nécessité de réduire le coût de stockage et
de transmission des données audio numériques. Le premier format de codage audio standardisé est
le MPEG-1, publié en 1993. La 3ème couche du standard MPEG-1 (MPEG-1 Layer 3 ou MP3) est
la plus performante et elle connue un succès grandissant dans les années 90 avec le développement
d’internet. Parallèlement à ce succès, la recherche en codage audio donna naissance à un nouveau
standard, le codage audio avancé (Advanced Audio Coding ou AAC), publié en 1997 dans MPEG-2
et mis à jour en 1999 dans MPEG-4. Le AAC est plus performant que le MP3 et est considéré
encore actuellement comme l’état de l’art en codage audio haute qualité. Contrairement au MP3,
le AAC ne connu un succès que plus tard, avec le choix d’Apple de donner la priorité au format
AAC pour ses produits. Bien que le codage audio haute qualité a atteint probablement une limite
de performance avec le AAC, les performances à bas débit sont encore très mauvaises. La recherche
en codage audio dans les années 2000 a ainsi donné naissance à plusieurs standards de codage
audio bas débit, comme le MPEG-4 HE-AAC, le MPEG-4 SSC, et le 3GPP AMR-WB+. Ces
nouveaux standards ne viennent pas en remplacement du AAC mais plutôt en complément, car ils
sont performants à bas débit mais ne permettent pas de donner la même qualité transparente que
le AAC à haut débit.

Il existe maintenant un grand nombre de codecs audio standardisés et performants. Mais
chaque codec est spécialisé , par exemple pour un signal particulier comme la parole, ou encore
pour une certaine plage de débit. Un des défis en codage audio actuellement est alors de concevoir
un codec audio universelle, qui combine les avantages des codecs audio actuelles d’une manière
adaptative et flexible. Un autre défi en codage audio est de combiner codage audio et indexation
audio, par exemple en concevant une technique de représentation du signal utile à la fois pour le
codage audio et l’indexation audio. Cela permettrait de concevoir des systèmes d’indexation audio
rapides et performants qui fonctionnent à partir de fichiers codés.

Contributions

Contributions en représentation du signal Nous proposons dans cette thèse de nou-
velles approches pour la représentation du signal qui sont utiles à la fois pour le codage audio
et l’indexation audio. Ces nouvelles méthodes sont basés sur un domaine de recherche appelé
“représentations parcimonieuses de signaux” et dont le but est de modéliser un signal comme la
somme d’un petit nombre de fonctions élémentaires qui sont choisis parmi une collection (appelé
dictionnaire) de taille arbitraire (généralement bien plus grande que la dimension du signal). Con-
trairement aux approches traditionnels du codage audio haute qualité où un signal est représenté
grâce à une transformée temps-fréquence, la méthode proposée utilise une union redondante de
plusieurs transformées à différents compromis temps-fréquence. Cela permet la modélisation d’un
signal avec moins de fonctions élémentaires, une propriété qui a un intérêt évident en codage audio.
Le principal problème d’une telle approche est de trouver un moyen efficace pour décomposer un sig-
nal dans cette ensemble redondant de fonctions. Nous proposons alors plusieurs algorithmes basés
sur l’algorithme de Matching Pursuit: une implémentation rapide, un contrôle du pre-echo, et une
optimisation débit-distortion. En plus de l’intérêt en codage audio, ce travail sur la représentation
du signal a permis aussi d’étudier le problème fondamental en représentations parcimonieuses de
signaux qui est le choix du dictionnaire.

Contributions en codage audio Nous proposons dans cette thèse deux codeurs au-
dio basés sur les nouvelles approches de représentation du signal introduites précédemment. Le
principal problème est de trouver des techniques de codage efficaces et flexibles qui sont adaptés
aux représentations du signal proposés. Nous proposons alors plusieurs techniques qui permettent
un codage audio progressif et performant: un algorithme d’entrelacement de coefficients, un algo-
rithme de codage psychoacoustique en plan de bits, et un algorithme en plan de bits adaptatif. Le
premier codeur audio est basé sur l’algorithme de codage psychoacoustique et a été évalué à la fois
avec une mesure objective et un test d’écoute. Le deuxième codeur utilise l’approche adaptative et
nous proposons dans ce cas uniquement des résultats préliminaires car une évaluation complète n’a
pas encore été faite. Nous proposons aussi dans cette thèse une étude de la quantification polaire
imbriquée, une technique qui peut être utilisée pour par ex. le codage audio progressif basé sur une
transformée complexe comme la MCLT.

Contributions en indexation audio dans le domaine transformée Nous proposons
dans cette thèse de nouvelles approches pour l’indexation audio dans le domaine transformée. Nous
considérons à la fois de nouveaux codeurs audio et de nouvelles applications d’indexation. L’état de
l’art dans ce domaine est assez limité: peu de résultats ont été publiés, essentiellement pour le codeur
audio MP3. Notre travail considère non seulement le MP3, mais aussi le plus récent AAC ainsi
qu’un des codeurs développé dans cette thèse. Pour chaque codeur, nous proposons des algorithmes
simples et rapides qui calculent des descripteurs pour l’indexation audio, comme une fonction de
détection, un chromagramme, et des coefficients MFCC. Nous étudions les performances de ces
descripteurs ainsi que le temps de calcul pour 3 applications: le suivi de rythme, la reconnaissance
d’accords, et la classification de genre musical.

Codage audio avec pertes: une introduction

Le principe du codage audio avec pertes est de réduire la redondance statistique et la
non-pertinence perceptive d’un signal audio. Pour réaliser une telle tâche, un codeur utilise deux
opérations principales (voir Fig. 0.1). Premièrement, le signal original est analysé à l’aide d’une
technique de représentation du signal. Deuxièmement, les coefficients ou paramètres qui décrivent
cette représentation du signal sont convertis en un format binaire à l’aide d’une technique de

codage de source. Selon les techniques utilisées, chaque étage du codeur audio réduit la redondance
statistique et/ou la non-pertinence perceptive d’un signal audio. Le décodeur audio à la même con-
figuration à deux étages, il convertit la séquence de bits produite par le codeur audio en un ensemble
de coefficients ou paramètres puis synthétise le signal audio décodé à l’aide de ces coefficients ou
paramètres. Nous proposons dans la suite une introduction des techniques les plus utilisées pour
la représentation du signal et le codage de source, ainsi que des méthodes pour l’évaluation des
codeurs audio avec pertes.

Figure 0.1: Schéma bloc simplifié d’un codec audio.

Représentation du signal

Il y a trois catégories principales de représentation du signal utilisé en codage audio avec
pertes: les bancs de filtres, les modèles paramétriques, et les approches hybrides. Le principe du
banc de filtres est de convertir un signal temporel en une représentation temps-fréquence composé de
plusieurs signaux en sous-bandes. Les approches par banc de filtres sont utilisés dans les codeurs
audio haute-qualité comme le MP3 ou le AAC. Contrairement aux bancs de filtres, les modèles
paramétriques modélisent, en général, un sous-espace du signal original à l’aide d’un petit nombre
de paramètres. Les modèles paramétriques sont utilisés dans les codeurs bas-débit pour la parole
ou l’audio comme le AMR ou le SSC. Finalement, les approches hybrides combinent des techniques
basées sur des bancs de filtres et des modèles paramétriques pour améliorer la performance. De
telles approches sont utilisées dans des codeurs audio récents comme le HE-AAC ou le AMR-WB+.

Nous ne détaillerons pas ici toutes les techniques utilisées en codage audio, nous ne men-
tionnerons que la transformée en cosinus discrète modifiée (MDCT) car c’est le banc de filtres
que nous étudierons principalement dans le reste de cette thèse. Considérons un vecteur (le signal
audio) x de longueur N = PK échantillons, composé de P segments de longueur K échantillons
chacun. La matrice transformée T de taille N ×N qui correspond à une MDCT avec une fenêtre
de taille fixe L = 2K est définie comme

T (n, pK + k) = gp,k(n) , 0 ≤ p < P , 0 ≤ k < K , 0 ≤ n < N

avec

gp,k(n) = wp(u)

√

2

K
cos

[

π

K

(

u +
K

2
+

1

2

)(

k +
1

2

)]

et

u = n−
(

p− 1

2

)

K

et wp(u) est une fenêtre définie sur 0 ≤ u < L et qui vérifie

w0(u) = 1 , 0 ≤ u < L/2

w2
p(u + L/2) + w2

p+1(u) = 1 , 0 ≤ u < L/2 , 0 ≤ p < P − 1

wP−1(u + L/2) = 1 , 0 ≤ u < L/2.

Les deux fenêtres les plus utilisées sont la fenêtre sinusöıdale et la fenêtre Kaisel-Bessel Derived
(KBD). Il est important de noter que les codeurs de l’état de l’art comme le AAC utilisent une
MDCT adaptative avec deux tailles de fenêtres et des fenêtres de transition entre les fenêtres longues
et les fenêtres courtes.

Codage de source

Les techniques de représentation du signal introduites précédemment produisent un en-
semble de coefficients ou paramètres, comme par ex. les coefficients d’une MDCT. Le but du codage
source est alors de convertir ces coefficients ou paramètres en une séquence de bits et inversement,
convertir cette séquence de bits en un ensemble de coefficients ou paramètres décodés. Le codage
de source fait référence à deux opérations: le codage et le décodage. Le codeur prend en entrée une
séquence de vecteurs à valeurs réelles et produit en sortie une séquence de bits à longueur variable.
Dans les applications pratiques, cette séquence de bits est alors ajouté à un fichier ou transmise
dans un réseau. Le décodeur prend en entrée la séquence de bits produite par le codeur et produit
en sortie une séquence de vecteurs à valeurs réelles. Le processus de codage/décodage introduit
nécessairement des dégradations: la sortie du décodeur n’est pas parfaitement égale à l’entrée du
codeur. Cette perte est due au premier étage du codeur, appelé quantification, qui convertit la
séquence de vecteurs à valeurs réelles en une séquence d’entiers. En codage audio, le système est
conçu pour que cette perte ne soit pas ou peu perçu par le système auditif humain. Le deuxième
étage du codeur est appelé codage entropique et convertit simplement la séquence d’entiers en une
séquence de bits, de manière à minimiser le nombre de bits produits. Le décodeur a la même
configuration à deux étages.

Il existe un grand nombre de techniques de codage de source. L’approche que nous utilis-
erons principalement dans le reste de cette thèse est appelée codage en plan de bits. Cette technique
est une combinaison de quantification imbriquée et de codage entropique et permet un codage pro-
gressif.

Evaluation du codage audio avec pertes

Considérons un signal audio x appelé “signal de référence”, un codeur audio avec pertes
produit un autre signal x̂ appelé “signal test”. Le but du codage audio est d’obtenir un signal de
test avec un minimum de dégradations dans la qualité perçue et comparé au signal de référence. Il
est ainsi nécessaire en codage audio d’évaluer ces dégradations d’un point de vue perceptif. Comme
les auditeurs humains sont les juges ultimes de la qualité du signal de test, les tests d’écoutes
formels sont considérés comme le seul moyen satisfaisant pour évaluer les performances d’un codeur
audio. Cependant, les tests d’écoutes sont très long à réaliser car ils nécessitent l’implication d’un
grand nombre de sujets. Ceci est particulièrement vrai lorsqu’on veut comparer un grand nombre
de codeurs et de signaux. Par conséquent, il existe maintenant un certain nombre de mesures
objectives de qualité audio qui sont censées être bien corrélées avec les résultats des tests d’écoutes.
Bien que ces mesures sont loin d’être parfaites et ne peuvent pas remplacer les tests d’écoutes, elles
donnent une bonne indication générale de la performance d’un codeur et sont utiles par exemple
pour régler les paramètres d’un codeur.

Nous utiliserons dans cette thèse: un test d’écoute MUSHRA, destiné à évaluer les codeurs
de qualité intermédiaire (généralement bas débit); et la mesure objective PEMO-Q, basé sur un
modèle de l’audition développé à l’université d’Oldenburg.

Représentations parcimonieuses de signaux

Les représentations parcimonieuses de signaux cherchent à modéliser un signal avec un
petit nombre de fonctions élémentaires. Ces fonctions sont choisies parmi une collection de taille
arbitraire, qui peut être bien plus grande que la taille du signal. Les représentations parcimonieuses
de signaux trouvent des applications évidentes en codage, que ce soit en codage audio, codage
d’image ou codage vidéo. Mais elles trouvent aussi un succès grandissant dans d’autres applications,
comme la séparation de sources, le débruitage, la reconnaissance de formes...

Problèmes et solutions

Notations mathématiques Considérons un vecteur colonne (le signal) x dans RN . Les
représentations parcimonieuses consistent à approximer le signal x (avec une possible égalité) par
une combinaison linéaire de K vecteur colonnes unitaires gk

x ≃
K
∑

k=1

ckgk

Les vecteurs gk appartiennent à RN et sont appelés “atomes”, les scalaires ck sont les coefficients.
La collection finie de tous les atomes est appelée le “dictionnaire” et s’écrit

D = {gk, 1 ≤ k ≤ K}

Pour simplifier les notations, nous définissons la matrice synthèse Φ de taille N×K, où les colonnes
Φk de Φ correspondent aux atomes gk; ΦΓ; la sous-matrice de Φ qui contient seulement les colonnes
de Φ aux indices dans Γ; le vecteur colonne c, où les éléments sont les coefficients ck; et cΓ est le
sous-vecteur de c qui contient seulement les éléments de c dont les indices sont dans Γ. On a alors

x ≃ Φc

S’il y a égalité dans l’équation précédente, alors le signal est représenté exactement par une com-
binaison linéaire d’atomes, et le vecteur de coefficients c est alors appelé “représentation exacte”
(ou simplement “représentation”). Sinon, le signal est approximé avec plus ou moins de précision
par une combinaison linéaire d’atomes, le vecteur c est alors appelé “approximation”, et x̂ = Φc
est appelé “approximant” de x. On considère ces deux cas dans la suite.

Représentations exactes On peut distinguer ici les deux cas les plus rencontrés. Si
le dictionaire est une base orthonormale, alors la représentation est unique et est donné par
c = ΦTx. Si le dictionaire est complet et redondant, alors la représentation n’est pas unique
et le but des représentations parcimonieuses est alors de trouver “la représentation la plus parci-
monieuse”, ou autrement dit celle dont l’énergie est concentrée sur le plus petit nombre de co-
efficients. Plusieurs critères de “parcimonie” existent, le plus utilisé étant la “quasi-norme p”

définie comme E(p) (c) =
(

∑K
k=1 |ck|p

) 1
p

pour p > 0 et E(0) (c) = limp→0
∑K

k=1 |ck|p. Trouver une

représentation parcimonieuse revient alors à résoudre un problème d’optimisation où le critère de
parcimonie est minimisée. Deux exemples connus sont “Basis Pursuit” et “FOCUSS”.

Approximations Dans le cas d’une approximation du signal, les représentations parci-
monieuses cherchent non seulement une approximation “parcimonieuse” mais aussi une approxi-
mation aussi proche que possible du signal. Il faut donc définir dans ce cas-là, en plus d’un critère
de parcimonie, une mesure de l’erreur d’approximation. La plus simple et la plus utilisée est la
norme l2 mais d’autres existent en audio, en particulier les mesures de distortion psychoacoustique.
Trouver une approximation parcimonieuse revient alors à résoudre un problème d’optimisation,
soit en contraignant la mesure de parcimonie, soit en contraignant l’erreur d’approximation, soit en
utilisant une méthode lagrangienne. Des exemples connus sont “Basis Pursuit denoising”, les algo-
rithmes de seuil, “LASSO”, “Regularized FOCUSS”. Le principal inconvénient de ces approches est
leur complexité calculatoire. Une alternative moins coûteuse est d’utiliser des algorithmes itératifs
qui sélectionnent un atome à chaque itération. Ces algorithmes sont appelés “algorithmes gloutons”
et sont détaillés dans la suite.

Algorithmes gloutons

Les algorithmes gloutons sont des algorithmes itératifs qui sélectionnent à chaque itération
un atome. L’algorithme le plus simple et le plus connue est l’algorithme “Matching Pursuit”. A
chaque itération, il sélectionne l’atome le plus corrélé avec le résidu, puis le soustrait au résidu.
L’algorithme s’arrête lorsqu’un critère d’arrêt est vérifié, comme par exemple un seuil sur le rapport
signal à bruit. L’algorithme Matching Pursuit est détaillé ci-dessous.

Algorithm 1: Algorithme “Matching Pursuit”

Input: Le signal x et le dictionaire Φ
Output: Le vecteur de coefficients c et le résidu r telle que x = Φc + r
Initialisation: r = x, c = 0;1

repeat2

Produits scalaires: a = ΦT r;3

Trouver le maximum: kmax = argmax
1≤k≤K

|ak|;
4

Mis à jour des coefficients: ckmax
= ckmax

+ akmax
;5

Mis à jour du résidu: r = r− akmax
Φkmax

;6

until un critère d’arrêt est satisfait ;7

L’algorithme Matching Pursuit est le plus simple et le plus répandu, mais il existe d’autres
algorithmes gloutons, comme par exemple l’algorithme Matching Pursuit Orthogonal (OMP) qui
est plus performant que Matching Pursuit mais aussi plus complexe. Une alternative récente à
OMP sont les algorithmes de “Gradient Pursuit”, qui permettent une performance proche de OMP
et une complexité proche de Matching Pursuit.

Dictionnaires

Un des problèmes des représentation parcimonieuses est la conception du dictionnaire.
Une première approche consiste à concevoir les formes d’ondes des atomes à partir d’une base de
signaux à modéliser et en utilisant des méthodes d’apprentissage. Une deuxième méthode, celle
qui nous intéresse, consiste à utiliser des formes d’ondes déterministes. Nous donnons quelques
exemple ci-dessous de dictionnaires utilisés dans les applications de codage audio/image/vidéo.

Dictionnaires orthogonaux Le dictionnaire orthogonal le plus simple est le dictionnaire
de dirac, cela correspond à un signal PCM. En audio, on obtient des approximations plus parci-

monieuses avec des dictionnaires d’atomes temps-fréquence, comme la MDCT, le plus utilisée en
codage audio et déjà introduite précédemment. En codage d’image, les dictionnaires orthogonaux
les plus utilisés sont la DCT (utilisé dans le codeur JPEG), et la DWT (utilisée dans le codec JPEG
2000). La DCT est aussi utilisée en codage vidéo.

Dictionnaires redondants Un dictionnaire redondant très utilisé en audio est le dictio-
nnaire de Gabor, un ensemble d’atomes sinusöıdaux fenêtrés à échelle et fréquence variable. Un
autre exemple d’atome utilisé en audio est “l’atome harmonique” composé de la somme de plusieurs
atomes de Gabor dont leurs fréquences sont reliées harmoniquement. Pour l’image, les atomes de
Gabor à deux dimensions sont utilisés par exemple en codage de vidéo pour coder le résidu de
prédiction. Un autre dictionnaire redondant utilisé en image est composé d’atomes générés par
l’application de transformations géométriques (translation, rotation, étirement) à une ou plusieurs
fonctions génératrices. Ce type de dictionnaire est utilisé en codage d’image bas débit et en codage
vidéo.

Représentation de signaux dans une union de bases MDCT

L’approche traditionnel en codage audio haute-qualité est d’utiliser la transformée MDCT
(introduite précédemment), ou la variante adaptative de la MDCT qui utilise deux tailles de fenêtre.
Nous proposons dans la suite une nouvelle représentation du signal pour le codage audio, basée
sur une union de plusieurs MDCT à différentes échelles. Contrairement à l’approche traditionnel,
cette nouvelle approche permet une approximation plus parcimonieuse du signal, en modélisant les
parties stationnaires du signal avec un petit nombre d’atomes à grande échelle, et en modélisant
les parties transitoires avec un petit nombre d’atomes à petite échelle.

Modèle du signal

Considérons un signal x de longueur N échantillons, il est approximé comme

x = Φc + r

avec r le résidu, c le vecteur de coefficients de longeur MN et Φ la matrice synthèse de taille
N ×MN défini comme la concaténation de M matrices Tm de taille N × N , chaque matrice Tm

correspondant à une MDCT avec une taille de fenêtre Lm = L02
m. La matrice synthèse Φ est alors

définie comme

Φ (n, mN + pKm + k) = gm,p,k(n) , 0 ≤ m < M , 0 ≤ p < Pm , 0 ≤ k < Km , 0 ≤ n < N

où Pm est tel que N = PmKm et correspond au nombre de segments de longueur Km = Lm/2, et

gm,p,k(n) = wm,p(u)

√

2

Km
cos

[

π

Km

(

u +
Km

2
+

1

2

)(

k +
1

2

)]

et

u = n−
(

p− 1

2

)

Km

La fenêtre wm,p(u) est définie sur 0 ≤ u < Lm et est dans notre cas une fenêtre sinusoidale.

1 2 3 4

x 10
4

0

5

10

15

20

25

30

Iteration

S
N

R
 (

dB
)

bagp

1xMDCT
4xMDCT
8xMDCT
12xMDCT

2000 4000 6000 8000 10000 12000
0

5

10

15

20

25

30

Iteration

S
N

R
 (

dB
)

gloc

1xMDCT
4xMDCT
8xMDCT
12xMDCT

1 2 3 4 5

x 10
4

0

5

10

15

20

25

30

Iteration

S
N

R
 (

dB
)

harp

1xMDCT
4xMDCT
8xMDCT
12xMDCT

1 2 3 4 5 6 7

x 10
4

0

5

10

15

20

25

30

Iteration

S
N

R
 (

dB
)

orch

1xMDCT
4xMDCT
8xMDCT
12xMDCT

2 4 6 8 10 12 14

x 10
4

0

5

10

15

20

25

30

Iteration

S
N

R
 (

dB
)

popm

1xMDCT
4xMDCT
8xMDCT
12xMDCT

1 2 3 4 5 6 7 8 9 10 11

10
3

10
4

Time (seconds)

30dB approximation of the glockenspiel signal with MP and the dictionary 1xMDCT

F
re

qu
en

cy
 (

H
z)

1 2 3 4 5 6 7 8 9 10 11

10
3

10
4

Time (seconds)

30dB approximation of the glockenspiel signal with MP and the dictionary 8xMDCT

F
re

qu
en

cy
 (

H
z)

Figure 0.2: Union de bases MDCT: performance et tracé temps-fréquence.

5 10 15 20 25 30

20

40

60

80

100

120

SNR (dB)

C
om

pu
ta

tio
n

tim
es

 (
se

co
nd

s)

gloc

1xMDCT
4xMDCT
8xMDCT
12xMDCT

5 10 15 20 25 30

500

1000

1500

2000

2500

3000

3500

SNR (dB)

C
om

pu
ta

tio
n

tim
es

 (
se

co
nd

s)

popm

1xMDCT
4xMDCT
8xMDCT
12xMDCT

Figure 0.3: Union de bases MDCT: temps de calcul.

Expérience

Nous comparons dans la suite les performances obtenues avec plusieurs dictionnaires sur 5
signaux. Les dictionnaires sont: une MDCT à 2048 (1xMDCT), 4 MDCT de 512 à 4096 (4xMDCT),
8 MDCT de 128 à 16384 (8xMDCT), et 12 MDCT de 32 à 65536 (12xMDCT). Les signaux sont
approximés dans ces dictionnaires avec une implémentation rapide de l’algorithme Matching Pur-
suit: the Matching Pursuit ToolKit (MPTK). La Fig. 0.2 montre le SNR en fonction de l’itération
(environ égale au nombre d’atomes) pour les 5 signaux et les 4 dictionnaires, ainsi qu’un tracé temps-
fréquence pour un signal et deux dictionaires. Ces résultats montrent premièrement qu’augmenter
le nombre de MDCT dans le dictionnaire augmente la parcimonie du signal. Cependant, le dictio-
nnaire 12xMDCT obtient des performances très proche du dictionnaire 8xMDCT, il apparâıt donc

que les performances sont bornées. Deuxièmement, ces résultats montrent que les performances sont
très dépendants du signal, l’approximation du signal gloc est par exemple bien plus parcimonieuse
que celle du signal orch. Le tracé temps-fréquence du signal gloc montre bien l’excellente perfor-
mance obtenue avec ce signal. Contrairement au dictionnaire 1xMDCT, le dictionnaire 8xMDCT
permet de modéliser les parties stationnaires du signal avec un petit nombre d’atomes à grande
échelle, et de modéliser les parties transitoires avec un petit nombre d’atomes à petite échelle. La
Fig. 0.3 montre les temps de calcul obtenus avec 2 signaux et les 4 dictionaires. Ces résultats
montrent que le temps de calcul augmente grandement avec la taille du dictionaire. Cela est dû
aux MDCT de grande taille de fenêtre.

Comme le dictionaire 8xMDCT obtient des performances proches du dictionnaire 12xMDCT
mais avec un temps de calcul grandement inférieure, nous choisirons pour la suite de cette thèse le
dictionnaire 8xMDCT pour approximer un signal audio.

Algorithme Matching Pursuit modifié avec contrôle du pré-echo

L’algorithme de Matching Pursuit standard permet d’obtenir une représentation parci-
monieuse comme nous l’avons vu précédemment. Cependant, nous avons remarqué que cet algo-
rithme aussi produit un artefact de pré-echo sur des signaux contenant de fortes attaques, comme
par exemple le signal gloc. Nous proposons alors un algorithme de Matching Pursuit modifié, qui
va tester à chaque itération si l’atome sélectionné introduit du pré-echo ou non. S’il introduit du
pré-echo, il est enlevé du dictionnaire et un autre atome est selectionné. Pour savoir si un atome
introduit du pré-echo, on calcule la corrélation entre l’atome et le signal dans des sous-fenêtres. S’il
y a une grande variation entre ces corrélations (le ratio entre le max et le min est plus grand qu’un
seuil) alors l’atome introduit du pré-echo. Pour régler le paramètre de seuil, nous avons réaliser
un certain nombre d’expérience, en particulier à l’aide d’une mesure proposé par B. Sturm appelé
“Dark Energy” et qui mesure l’interférence entre les atomes successifs sélectionnés par l’algorithme
de Matching Pursuit. Les résultats ont montrés une préférence pour une valeur de seuil de 100.

Union de bases MDCT pour le codage audio

Nous décrivons dans la suite un codeur audio progressif basé sur la nouvelle approche de
représentation de signaux introduite précédemment.

Groupement et entrelacement

D’une part, l’approximation du signal c est calculé par l’algorithme Matching Pursuit
pour le signal entier. D’autre part, pour améliorer l’efficacité de codage, on utilise une approche
de codage en trame-par-trame. Il est donc nécessaire de “découper” le vecteur de coefficient c en
trames. On utilise pour cela une approche en deux étapes. L’ensemble des coefficients est d’abord
partitionné en sous-ensemble de coefficients correspondant à des segments temporels de taille fixe
est égale à la moitié de la plus grande taille de fenêtre. Ces sous-ensembles sont appelés “slot”, sont

définis comme Sq =
{

cm,p,k | floor
(

p−(P ′

m−1)
P ′

m

)

= q
}

avec P ′
m−1 = 2M−m−1−1, et sont illustrés Fig.

0.4. La deuxième étape consiste à créer un vecteur de coefficients par “slot” grâce à un algorithme
d’entrelacement. Cet algorithme d’entrelacement est illustré Fig. 0.4 pour un cas simple (M = 3
et L0 = 2).

BLOCK 1

BLOCK 0

BLOCK 2Slen

L2

L0

Soff

L1

SLOT S
0

SLOT S
1

SLOT S
2

L2/4

L1/4

L0/4

Figure 0.4: Groupement et entrelacement: examples simple où M = 3.

Codage en plan de bits

Chaque vecteur de coefficients entrelacés est ensuite codé avec un algorithme de codage en
plan de bits. Cet algorithme permet un codage progressif de l’information. Le principe basique est le
suivant: les coefficients sont d’abord normalisés par le maximum des amplitudes des coefficients; ce
maximum est quantifié et codé; les coefficients sont alors représentés sous une forme signe/amplitude
où l’amplitude est quantifié de manière très fine et représenté sous une forme binaire; l’algorithme
code ensuite successivement chaque plan de bits (un plan de bits étant le vecteur des bits de
même poids) partant des bits de poids fort; un plan de bits est codé en deux étapes, une étape de
signifiance et une étape de raffinement; l’étape de signifiance code la position des coefficients pour
lesquels un “1” apparâıt pour la première fois, l’étape de rafinement code les bits de rafinements
pour les coefficients dont la position à déjà été codé; on utilise un algorithme basé sur des codes de
Golomb adaptatifs pour l’étape de signifiance. L’algorithme en plan de bits est détaillé ci-dessous

Algorithm 2: Codage en plan de bits

Input: Un vecteur de coefficients entrelacés v = {vi|i = 1...MLM−1}
Output: La séquence de bits de sortie
Quantifier et coder l’amplitude maximale A = max(abs(vi));1

Initialisation: z = 0, ν = 1;2

repeat3

Calculer un plan de bits: bi = mod(floor(abs(vi) ∗ 2ν/A), 2) for all i;4

Etape de signifiance: code BS = {bi|zi = 0} and signs;5

Etape de rafinement: code BR = {bi|zi = 1};6

Mis à jour de la signifiance: zi = 1 for all i such that bi ∈ BS and bi = 1;7

Iteration: ν = ν + 1;8

until le budget de bits dépensé ou ν > νmax ;9

Nous proposons ensuite un algorithme de codage en plan de bits modifié qui prend en
compte des considérations psychoacoustiques et permet une organisation de l’information où les
composantes les plus importantes perceptivement sont codées en premier. Pour cela, on utilise une
généralisation du modèle de Johnston à une représentation de signaux multi-échelles. Ce modèle
psychoacoustique est calculé à partir d’un signal synthétisé en utilisant les coefficients partiellement
codés. Cela permet de ne pas transmettre les paramètres du modèle et ainsi réduire le coût de codage
car le modèle est calculé de la même manière sur les coefficients partiellement décodés au niveau
du décodeur. Pour intégrer ce modèle dans l’algorithme de codage en plan de bits, on utilise une

méthode simple qui consiste à coder un sous-ensemble de chaque plan de bits à chaque itération
de l’algorithme, ce sous-ensemble correspond aux coefficients dont le niveau de quantification est le
plus loin du niveau de masque donné par le modèle, cela revient à coder les coefficients qui minimise
le rapport bruit à masque. Cet algorithme est détaillé ci-dessous.

Algorithm 3: Codage en plan de bits psychoacoustique

Input: Un vecteur de coefficients entrelacés v = {vi|i = 1...MLM−1}
Output: La séquence de bits de sortie
Quantifier et coder l’amplitude maximale A = max(abs(vi));1

Initialisation: z = 0, ν = 1;2

Initialiser le masque psycho. th to the ATH;3

repeat4

if U nouveau bits on été ajoutés à la séquence de bits then5

mettre à jour le masque th;6

end7

Calculer la différence: gi = −log2(
√

thi/A)− νi for all i;8

Selectionner: si = gi ≥ mean(gi) for all i;9

Calculer le plan de bits: bi = mod(floor(abs(vi) ∗ 2νi/A), 2) for all i;10

Etape de signifiance: code BS = {bi|zi = 0 and si = 1} and signs;11

Etape de rafinement: code BR = {bi|zi = 1 and si = 1};12

Mettre à jour la signifiance: zi = 1 for all i such that bi ∈ BS and bi = 1;13

Iteration: ν = ν + 1;14

until le budget de bits dépensé ou ν > νmax ;15

Résultats

Evaluation objective Nous proposons dans un premier temps une évaluation objective
du codeur audio proposé. Pour cela, nous utilisons le logiciel PEMO-Q qui produit deux mesures:
la mesure “Perceptual Similarity Measure (PSM)” et la mesure “Objective Difference Grade”. La
Fig. 0.5 montre les résultats de deux expériences. La première compare le codeur proposé avec
un codeur par transformée de référence. Le codeur par transformée utilise exactement le même
système de codage, seul la représentation du signal est différente: c’est une MDCT simple avec une
taille de fenêtre égale à 2048 échantillons. Cette première expérience montre la supériorité de la
nouvelle approche de représentations de signaux. La deuxième expérience compare notre codeur
audio avec un codeur audio par transformée de l’état de l’art, le codeur AAC de iTunes 7. Nous
comparons aussi avec une version de notre codeur sans modèle psychoacoustique. Les résultats
montrent que le modèle psychoacoustique donne un gain significatif et permet des performances
comparables avec celles du codeur AAC.

Evaluation subjective Nous proposons dans un second temps une évaluation subjective
du codeur audio proposé. Nous avons réalisé un test MUSHRA qui a impliqué une vingtaine de
participants. Ce test compare les performances de 3 codeurs à deux débits, et pour 5 signaux
différents. Les résultats montrent premièrement que le modèle psychoacoustique permet un gain
conséquent mais uniquement pour les signaux polyphoniques. Les résultats montrent ensuite que les
performances de notre codeur sont bien meilleurs que le codeur AAC pour les sons monophoniques,
mais légèrement inférieurs pour les sons monophoniques.

8 16 32 64 128 256
0.7

0.8

0.9

1

P
S

M

Union of MDCT
Single MDCT

8 16 32 64 128 256
−4

−3

−2

−1

0

O
D

G

Bitrate (in kbps)

16 24 32 40 48 56 64
0.92

0.94

0.96

0.98

1

P
S

M

AAC
Without Psy Model
With Psy Model

16 24 32 40 48 56 64
−4

−3

−2

−1

0

O
D

G

Bitrate (in kbps)

Figure 0.5: Résultats de l’evaluation objective avec PEMO-Q.

Indexation audio dans le domaine transformée

Nous proposons dans la suite une étude de l’indexation audio dans le domain transformée.
Nous proposons des algorithmes simples pour le calcul de représentations mi-niveaux directement à
partir de la représentation interne d’un codeur audio. Nous considérons trois applications: le suivi
de rhythme, la reconaissance d’accords, le classification de genre musicale. Nous comparons les
résultats obtenus avec trois codeurs: deux codeurs de l’état de l’art (MP3 et AAC), et un codeur
proposé dans cette thèse.

Codage audio et représentation du signal

Nous étudions dans la suite trois codeurs audio: le MPEG-1 Layer 3 (MP3), le MPEG-4
Advanced Audio Coding (AAC), et un codec semblable à celui proposé précédemment mais avec le
Matching Pursuit standard (sans contrôle de pré-echo) et sans modèle psycho-acoustique (ce codec
est noté 8xMDCT).

MP3 Le MP3 utilise un banc de filtres hybride: un banc de filtre Polyphase Quadrature
Filterbank (PQF) à 32 sous-bandes+une MDCT adaptative dans chaque sous-bande. Certains
travaux existants utilisent les signaux en sous-bandes du banc de filtres PQF, nous préférons utiliser
les coefficients MDCT pour deux raisons: une meilleure résolution fréquentielle, un coût calculatoire
réduit (pas de transformée inverse).

AAC Nous utilisons ici la version la plus simple du codeur AAC, il s’agit du profil Low
Complexity (LC) sans Temporal Noise Shaping (TNS) ni Perceptual Noise Substitution (PNS). La
représentation du signal est alors très simple car composée d’une simple MDCT adaptative. Nous
utiliserons dans la suite les coefficients de cette MDCT.

8xMDCT Le codeur proposé utilise une union de 8 bases MDCT. Cette représentation
du signal a déjà été décrite précédemment. Nous utiliserons dans la suite les coefficients de ces 8
MDCT.

Représentations mi-niveaux

Nous proposons ici des algorithmes pour le calcul de 3 représentations mi-niveaux dans
le domaine transformée: une fonction de détection d’attaque, un chromagramme, des coefficients

Anchor 3.5 AAC 24 Codec_A 24 Codec_B 24 AAC 48 Codec_A 48 Codec_B 48
0

20
40
60
80

100

B
ag

p

Anchor 3.5 AAC 24 Codec_A 24 Codec_B 24 AAC 48 Codec_A 48 Codec_B 48
0

20
40
60
80

100

H
ar

p

Anchor 3.5 AAC 24 Codec_A 24 Codec_B 24 AAC 48 Codec_A 48 Codec_B 48
0

20
40
60
80

100

G
lo

c

Anchor 3.5 AAC 24 Codec_A 24 Codec_B 24 AAC 48 Codec_A 48 Codec_B 48
0

20
40
60
80

100

O
rc

h

Anchor 3.5 AAC 24 Codec_A 24 Codec_B 24 AAC 48 Codec_A 48 Codec_B 48
0

20
40
60
80

100

P
op

m

Anchor 3.5 AAC 24 Codec_A 24 Codec_B 24 AAC 48 Codec_A 48 Codec_B 48
0

20
40
60
80

100

A
ll

Figure 0.6: Résultats du test MUSHRA.

MFCC.

Fonction de détection d’attaque Pour les codeurs MP3 et AAC, la fonction de détection
d’attaque est calculée de manière similaire au calcul du flux spectral où l’amplitude de la trans-
formée de Fourier à court-terme est remplacé par l’amplitude des coefficients MDCT. Pour le codeur
8xMDCT, l’approche est différente, on ne garde que les coefficients des 2 MDCT à plus petite taille
de fenêtre et on somme l’amplitude de ces coefficients dans des “cases” temporelles.

Chromagramme La faible résolution fréquentielle des codeurs MP3 et AAC empêche le
calcul d’un chromagramme. Par contre, l’utilisation de MDCT avec des grandes fenêtres dans le
codeur 8xMDCT permet le calcul d’un chromagramme performant. Pour cela, on ne garde que les
coefficients des 2 MDCT à plus grande taille de fenêtre et on somme l’amplitude de ces coefficients
dans des “cases” temps/fréquence.

Coefficients MFCC Pour les codeurs MP3 et AAC, les coefficients MFCC sont cal-
culés de manière similaire au calcul dans le domaine temporelle où l’amplitude de la transformée
de Fourier à court-terme est remplacé par l’amplitude des coefficients MDCT. Pour le codeur
8xMDCT, on utilise une approche multi-échelle similaire à l’approche initialement proposé par
Marcela Morvidone, on calcule un histogramme pondéré fréquence/échelle puis on applique une
DCT à deux dimensions.

Applications

Nous proposons l’évaluation des méthodes proposées pour 3 applications: suivi de ry-
thme, reconnaissance d’accords, et classification de genre. Le suivi de rythme utilise la fonction de

CML cont. CML total AML cont. AML total
0

10

20

30

40

50

60

70

80

90

100

Ref.
MP3 64kpbs
AAC 64kbps
8xMDCT 64kbps

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Time−domain

Transform−domain

Normalised computation time (seconds/seconds)

MP3 Beat Tracking

Decoding
Synthesis
Detection function
Beat tracker

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Time−domain

Transform−domain

Normalised computation time (seconds/seconds)

AAC Beat Tracking

Decoding
Synthesis
Detection function
Beat tracker

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Time−domain 64 kbps

Transform−domain 64 kbps

Transform−domain 2 kbps

Normalised computation time (seconds/seconds)

8xMDCT Beat Tracking

Decoding
Synthesis
Detection function
Beat tracker

Figure 0.7: Suivi de rythme: performance et temps de calcul.

0.25 0.5 1 2 4 8 16 32 64 128
0

10

20

30

40

50

60

70

80
CD1: Please Please Me

Bitrate in kbps

R
ec

og
ni

tio
n

ra
te

 in
 %

Ref.
8xMDCT
1xMDCT

0.25 0.5 1 2 4 8 16 32 64 128
0

10

20

30

40

50

60

70

80
CD2: Beatles for Sale

Bitrate in kbps

R
ec

og
ni

tio
n

ra
te

 in
 %

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Time−domain 64 kbps

Transform−domain 64 kbps

Transform−domain 2 kbps

Normalised computation time (seconds/seconds)

8xMDCT Chord recognition

Decoding
Synthesis
Chromagram
HMM classifier

Figure 0.8: Reconnaissance d’accords: performance et temps de calcul.

32kbps 64kbps
60

62

64

66

68

70

72

74

76

78

80

Ref.
MP3
AAC
8xMDCT

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

Time−domain

Transform−domain

Normalised computation time (seconds/seconds)

MP3 Musical Genre Classification

Decoding
Synthesis
MFCC
SVM classifier

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

Time−domain

Transform−domain

Normalised computation time (seconds/seconds)

AAC Musical Genre Classification

Decoding
Synthesis
MFCC
SVM classifier

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

Time−domain 64 kbps

Transform−domain 64 kbps

Transform−domain 2 kbps

Normalised computation time (seconds/seconds)

8xMDCT Musical Genre Classification

Decoding
Synthesis
MFCC
SVM classifier

Figure 0.9: Classification de genre musical: performance et temps de calcul.

détection d’attaque et un système proposé par M. Davies. La reconnaissance d’accords utilise le
chromagramme et un système proposé par J. Bello. La classification de genre utilise les coefficients
MFCC et un système basé sur des machines à vecteur support (SVM). Les figures ci-dessous don-
nent quelques résultats pour les systèmes dans le domaine transformée ainsi que pour les systèmes
de référence dans le domaine temporelle.

Conclusion

Conclusion générale

La motivation initiale de cette thèse était l’étude de l’application de nouvelles techniques
de représentation du signal au codage audio. Ces nouvelles techniques sont basées sur un domaine
de recherche appelé “représentations parcimonieuses de signaux”. Elles permettent la conception de
représentations du signal qui ont plusieurs avantages comparés aux approches traditionnels, comme
une meilleure résolution ainsi qu’une meilleure flexibilité.

Cependant, le principale inconvénient de ces méthodes est leur complexité calculatoire.
Quand ces techniques ont été développés (ex. Matching Pursuit en 1992), ce problème de com-
plexité empêchait leurs utilisations dans des applications concrètes. Ce n’est que depuis quelques
années, avec l’augmentation des performances des ordinateurs et aussi surtout le développement
d’algorithmes performants (ex. MPTK), que ces techniques ont trouvé un intérêt dans certaines
applications. Par exemple, un des systèmes de codage que nous proposons obtient des temps calcul
d’environ 3 fois le temps réel, ce qui est acceptable pour certaines applications.

Bien sûr, les méthodes proposées sont toujours plus lentes que les approches traditionnels
utilisés en codage par transformée, mais nous avons montrés que notre approche a plusieurs avan-
tages par rapport au codage par transformée, et par conséquent le compromis performance/complexité
à maintenant tendance à pencher en notre faveur. Ces avantages comprennent de meilleures per-
formances à bas débit, et une qualité transparente à haut débit. Notre approche permet donc un
“codeur plus universelle” que le traditionnel codage par transformée.

Cependant, les méthodes proposées ne sont encore qu’une première étape vers un codeur
vraiment universel et performant, car nous avons vu que les performances obtenues par notre
système sont élevées uniquement pour les sons monophoniques. Pour les sons polyphoniques, les
performances ne sont pas aussi satisfaisantes, mais nous avons aussi montrés que, dans ce cas-là,
notre approche a un autre avantage par rapport au codage par transformée qui est une indexation
audio dans le domaine transformée performant. Nous avons montré que combiner codage audio et
indexation audio est maintenant possible.

Perspectives de recherche

Nous proposons ci-dessous plusieurs perspectives de recherche.

Représentation du signal Une première extension serait d’approfondir l’approche basée
sur la MCLT introduite dans le chapitre 7. Une deuxième extension serait d’étudier d’autres
modèles de signaux comme l’approche moléculaire introduite dans la thèse de Pierre Leveau. Une
troisième extension serait d’étudier d’autres algorithmes de décomposition, comme le Gradient
Pursuit. Une étude préliminaire montre que le Gradient Pursuit obtient de meilleures performances
que le Matching Pursuit avec un coût calculatoire comparable.

Codage audio Une première extension serait d’étudier d’autres algorithmes de codage
de source pour le codage en plan de bits, comme des algorithmes de codage arithmétique à contexte
ou des algorithmes basés modèles comme ceux étudiés dans la thèse de Marie Oger. Une deuxième

extension serait d’étudier de meilleures modèles pyschoacoustiques pour les représentations multi-
échelles. D’autres possibilités sont l’étude de la MDCT entière pour le codage sans pertes, et
l’extension au stéréo et à la réplication de bande.

Indexation audio Une première extension serait d’étudier d’autres codeurs standards
comme le MPEG-4 HILN ou le MPEG-4 SSC. Une deuxième extension serait d’étudier le codec
proposé dans le chapitre 6. Une dernière extension serait d’étudier d’autres applications, comme la
recherche du plus proche voisin dans une base de fichier codés, une application déjà étudié dans le
cadre du codage d’image.

xxiii

Acknowledgments

First of all, I would like to thank all my thesis jury: Laurent Daudet, Mike Davies, Pierre
Duhamel, Jean-Gabriel Ganascia, Bastiaan Kleijn, Pierrick Philippe and Gaël Richard. I thank
you for carefully evaluating my thesis and for your pertinent comments and interesting questions.

I would like particularly to thank my supervisors Laurent Daudet and Gaël Richard with-
out whom all this work could not be possible. I thank them for their support, their help, their
ideas, their guidance, the motivation and the freedom they gave me during these three years.

I would like to thank all the researchers I had the pleasure to work with: Rémi Gribonval
and Sacha Krstulovic from IRISA, for their help in understanding and contributing to the MPTK
project, I thank them particularly for the several days I spent in Rennes; Pierre Leveau, a past PhD
Student in LAM, with whom I had interesting discussions and collaborations; the intern Grégory
cornuz who worked with Pierre Leveau on object-based audio coding; Pierre Vandergheynst and
his team, who kindly invite me during two months in Lausanne, I thank you for the time you
spent with me; Olivier derrien, with whom I had useful discussions on transform audio coding
and psychoacoustic models; Marcela Morvidone, a past postdoctoral scholar in LAM, who greatly
contributes to the multi-scale MFCC-like I use in this thesis; Matthew Davies from QMUL and
Juan Bello from NYU, I thank you for your source code and your help on beat tracking and chord
recognition; Nicolas Montgermont, my office-mate; all members of the LAM team, and particularly
its director Jean-Dominique Polack.

I would like to take advantage of the opportunity to thank all my past supervisors, who
greatly contributed to the passion I have in research: Jean-Yves Tourneret from TéSA (Toulouse),
who gave me the taste of signal processing research; Philippe Gournay and Roch Lefevbre from
Sherbrooke University, who make me discover the world of audio coding; Juan Bello and Mark
Sandler from QMUL, who confirmed my passion for digital music.

I also would like to thank all the institutions that supported me materially during these 3
years. The french ministry for higher education and research and the university Pierre and Marie
Curie for the grant that funded my PhD studies. I particularly thank the personns who help me
getting the grant: Laurent Daudet who help me writing the request; Roch Lefevbre, Mark Sandler
and Francis Castanié for their support letters. The institutions that funded several travels and
conferences: QMUL, IRISA, Sherbrooke University, Edinburgh University, TELECOM ParisTech,
EPFL, LaBRI, CNRS...

Finally, I would like to thank my family and my friends for their support. I particularly
thank my wife Linh, who was always there for me.

xxv

Contents

1 Introduction 1

1.1 Background . 1

1.2 Main contributions . 5

1.3 Thesis outline . 6

2 Lossy audio coding: an overview 9

2.1 Introduction . 10

2.2 Signal representation . 10

2.2.1 Filter bank approaches . 10

2.2.2 Parametric models . 16

2.2.3 Hybrid approaches . 18

2.3 Source coding . 20

2.3.1 Quantization . 20

2.3.2 Entropy coding . 23

2.3.3 Bitplane coding . 23

2.4 Evaluation . 26

2.4.1 Listening tests . 26

2.4.2 Objective Measures . 26

2.5 Conclusions . 28

3 Sparse signal representations 29

3.1 Introduction . 30

3.2 Problems and solutions . 30

3.2.1 Mathematical settings . 30

3.2.2 Exact signal representations . 31

3.2.3 Signal approximations . 32

3.3 Greedy algorithms . 34

3.3.1 Matching Pursuit . 35

3.3.2 Variants of Matching Pursuit . 36

3.4 Dictionaries used in coding applications . 37

3.4.1 Orthogonal dictionaries . 38

3.4.2 Overcomplete dictionaries . 39

3.5 Conclusions . 40

4 Signal representation in a union of MDCT bases 41

4.1 Introduction . 42

4.2 Signal model . 42

CONTENTS

4.2.1 Motivations . 42

4.2.2 Model formalization . 43

4.3 Fast implementation of Matching Pursuit in a union of MDCT bases 46

4.3.1 MP: Naive implementation . 47

4.3.2 MP: Fast implementation . 47

4.3.3 Fast Implementation of the MDCT . 48

4.4 Experiment . 50

4.4.1 Experimental setup . 50

4.4.2 Results . 51

4.4.3 Discussion . 54

4.5 Modified Matching Pursuit with pre-echo control . 54

4.5.1 Problem statement . 54

4.5.2 Proposed algorithm . 55

4.5.3 Results . 56

4.6 Conclusions . 58

5 Union of MDCT bases for audio coding 59

5.1 Introduction . 60

5.2 Grouping and interleaving . 60

5.2.1 Segmentation in timeslots . 62

5.2.2 Coefficients interleaving . 63

5.3 Bitplane coding . 64

5.3.1 Simple bitplane encoder . 64

5.3.2 Psychoacoustic bitplane encoder . 66

5.4 Evaluation . 68

5.4.1 Source coding algorithm . 68

5.4.2 Modified MP with pre-echo control . 70

5.4.3 Final codec: objective evaluation . 70

5.4.4 Final codec: subjective evaluation . 72

5.5 Conclusions . 74

6 Matching Pursuit in adaptive dictionaries for scalable audio coding 75

6.1 Introduction . 76

6.2 Signal representation . 76

6.2.1 Signal model . 76

6.2.2 Decomposition algorithm . 77

6.3 Coding . 79

6.3.1 Adaptive bitplane coding . 79

6.3.2 Optimal switching parameter . 81

6.4 Evaluation . 83

6.4.1 Performance . 83

6.4.2 Computation times . 83

6.5 Conclusion . 84

7 Embedded Polar Quantization 85

7.1 Introduction . 86

7.2 Embedded Strict Polar Quantization . 88

7.2.1 Quantizers design . 88

xxvi

CONTENTS

7.2.2 Application: Gaussian data . 89
7.3 Embedded Unrestricted Polar Quantization . 90

7.3.1 Quantizers design . 90
7.3.2 Choice between amplitude and phase refinement 91
7.3.3 Application: Gaussian data . 92

7.4 Conclusions . 93

8 Transform-domain Audio Indexing 95
8.1 Introduction . 96
8.2 Audio coding and transform representations . 97

8.2.1 MPEG-1 Layer 3 . 98
8.2.2 MPEG-2/4 Advanced Audio Coding . 99
8.2.3 8xMDCT Audio Coding . 100

8.3 Mid-level signal representations . 100
8.3.1 Onset detection function . 101
8.3.2 Chromagram . 104
8.3.3 Mel-Frequency Cepstrum Coefficients . 107

8.4 Applications . 110
8.4.1 Beat tracking . 110
8.4.2 Chord recognition . 113
8.4.3 Musical genre classification . 115
8.4.4 Computation times . 115

8.5 Conclusions . 119

9 Conclusions 121
9.1 General conclusion . 121
9.2 Future research . 121

Publications 125

Bibliography 127

A Testing material 141

B Gradient pursuit over a union of MDCT bases 143

xxvii

CONTENTS

xxviii

1

Chapter 1

Introduction

1.1 Background

The last decades have seen a revolution in the way sound is processed. Sound, which can
be defined as a pressure wave transmitted through a medium (e.g. the air), was originally processed
as a continuous (or analog) signal. A typical analog audio system could be described as follows. A
transducer (e.g. a microphone) is used to convert the pressure wave into a continuous signal (e.g.
an electrical signal), which is then stored (e.g. on a compact cassette) or transmitted (e.g. on a
FM channel). At the end of the chain, the continuous signal is restored, amplified and converted
into a pressure wave using e.g. a loudspeaker. The first devices able to record and to play back
sound appeared at the end of the 19th century (invention of the phonograph by Thomas Edison in
1877) but the analog audio devices became widely used only later, with the spread of the turntable
in the 1920s and the spread of the compact cassette in the 1960s.

With the increase of the computing hardware performance in the 70s and later, analog
audio systems have gradually been replaced by digital audio systems. A typical digital audio system
could be described as follows (see Fig. 1.1). As in an analog audio system, a transducer is first used
to convert the pressure wave into an electrical signal. Then, this analog signal is converted into
a digital signal using a three-step process, called Pulse Code Modulation (PCM): the continuous
signal is first sampled at a given sampling rate, then each sample is quantized at a given resolution,
and finally converted into a binary format composed by a sequence of 0 and 1, called bits. This
digital signal is then stored (e.g. on a hard disk), or transmitted (e.g. through the internet). At the
end of the chain, the digital signal is restored, converted into an electrical signal, and played back as
an analog signal. Digital audio has several advantages over analog audio including high robustness
to channel noise and interferences, lossless duplication, powerful processing capabilities, and cheap
high-quality hardware. Digital audio became widely used with the spread of the Compact Disc
(CD) in the 80s, replacing the traditional vinyl record and the compact cassette. The CD is still

Figure 1.1: A typical digital audio chain.

1.1. Background

considered as the highest quality format widely available on the market1: its format is based on
a 2-channel (stereo) track with a sampling rate of 44100 samples per second where each sample is
quantized on 65536 values (i.e. 16 bits per sample).

Digital audio has many advantages over analog audio, and these made him preferable in
most applications. However, the traditional way of representing a digital signal using PCM has a
main drawback which is a high storage requirement. As an example, a 12-minute stereo track in
CD format requires around one billion bits. To lower costs related to the storage and transmission
of digital audio data, there was then a necessity to develop methods that allow the representation
of digital audio with fewer bits than PCM. This research area, known as audio coding, emerged
in the 80s with the development of technologies based on digital signal processing techniques and
psychoacoustic models. Fig. 1.2 shows a simplified block diagram of an audio codec. An audio
codec is the combination of an audio coder and an audio decoder. The audio coder takes as input
a (digital) audio signal and outputs a sequence of bits using a two-stage approach: the input
audio signal is first transformed into a different domain (e.g. time-frequency), then the resulting
coefficients or parameters that describe this signal representation are converted into a sequence of
bits using a source coding technique. The audio decoder has the same two-stages configuration as
the coder: it first converts the sequence of bits into a set of coefficients or parameters, and then
synthesizes the decoded audio signal using these coefficients or parameters.

Figure 1.2: A simplified audio codec (assuming lossless transmission/storage)

The basic principle of audio coding is to reduce statistical redundancy and perceptual
irrelevancy in an audio signal. On the one hand, statistical redundancy is reduced by exploiting the
properties of the source of the sound, which is actually the ultimate first stage of the digital audio
chain. There are mainly two types of statistical redundancy. Firstly, the consecutive samples of an
audio signal are generally highly dependent; this property is exploited by the first stage of the audio
coder (i.e. the signal representation technique) using e.g. a time-frequency transform. Secondly,
the coefficients or parameters that describe the signal representation have generally a highly non-
uniform statistical distribution; this property is exploited by the second stage of the audio coder
(i.e. the source coding technique) using e.g. Huffman coding. On the other hand, perceptual
irrelevancy is reduced by exploiting the properties of the human auditory system, which is actually
the ultimate last stage of the digital audio chain. Two main properties of the auditory system
are used in audio coding, the absolute threshold of hearing and auditory masking. The absolute
threshold of hearing is defined as the sound level below which a pure tone is not perceived by the
auditory system, while auditory masking is defined as the increase of the threshold of audibility of
one sound in the presence of another sound. These two properties are exploited in audio coding
by shaping the coding noise such that it is below the threshold of audibility. This is generaly done
using a psychoacoustic model computed on the input audio signal and that controls the source

1It is worth noting that the market proposes also the Super Audio CD (SACD), which is of higher quality but it
is not widely used.

2

Chapter 1. Introduction

coding technique (the second stage of the coder). The coefficients or parameters that describe
the signal representation are then coded with a precision that depends of the masking threshold
computed by the psychoacoustic model. In some cases, perceptual irrelevancy is also reduced in the
first stage of the audio coder using a signal representation technique controled by a psychoacoustic
model (e.g. a sinusoidal model that only extracts the most perceptually important sinusoids).

In early 90s, prestigious labs including AT&T Bell Labs, Fraunhofer IIS, Thomson-Brandt
and France-Telecom-CCETT gathered their technologies and gave birth to the Moving Picture
Expert Group 1 (MPEG-1) standard, published in 1993. This standard is based on 3 layers of
increasing quality and complexity, including the well known MPEG-1 Layer 3 (MP3). These are all
based on a subband approach where the input digital signal is first mapped into a time-frequency
representation composed by several subband signals, which are then encoded according to a psy-
choacoustic model. The MP3 format at a bitrate of 128 kilobits per seconds (one minute of stereo
music approximately equal to eight million bits) is able to represent sound with almost the same
quality as a CD but with 12 times less bits. This property made MP3 very attractive when it
appeared on the market because the size of the personal computer hard disks rarely exceeded sev-
eral hundred Megabytes at that time. Moreover, MP3 format really began to spread widely with
the development of internet in the second half of the 90s. Napster, the first peer-to-peer network
released in the 1999, is a well-known example of the success of the MP3 format. The number of
users that shared MP3 files on the Napster network was estimated at approximately 25 million in
2001, just before its shutdown due to a lawsuit issued by the Recording Industry Association of
America.

Despite of the success of the MP3 format, which is still widely used all over the world,
research in audio coding still continued in the 90s. Several improvements over the MP3 gave birth to
a new standard called Advanced Audio Coding (AAC), first introduced in the MPEG-2 standard in
1997 and included in the MPEG-4 standard in 1999. Though the basic principle of AAC is based on
a similar subband approach as MP3, this second-generation audio codec allows more flexibility and
better performance than MP3. It is generally considered that AAC at 96 kbps gives approximately
the same near-CD quality as MP3 at 128 kbps. However, AAC did not get the same success as
MP3 at first, it started to become widespread only in 2003, when Apple announced that its music
online store (iTunes store) and its mobile device products (iPod) would support the AAC format.
At that time, music songs was sold in a proprietary Digital Rights Management (DRM)-restricted
form of AAC, to avoid the copyright-related problems raised by Napster. Despite this limitation,
iTunes store proved rapidly its success and viability with 200 million songs sold at the end of 2004,
1.5 billion songs at the end of 2006, and 5 billion songs at the mid of 2008.

AAC is still considered as the state-of-the-art audio coding format for CD-quality music,
and there is probably very little room for improvement now in this context. However, it is known
that encoding stereo music with AAC at low bitrates (typically lower than 96 kbps) gives poor qual-
ity, far from the reference CD-quality. This issue has motivated several research teams to propose
new low-bitrate audio coding technologies that perform better than AAC at low bitrates. These
third-generation audio codecs include High Efficiency-AAC (HE-AAC) standardized in MPEG-4 in
2003 and revised (HE-AACv2) in 2005, SinuSoidal Coding (SSC) standardized in MPEG-4 in 2004,
and Extended Adaptive Multi-Rate Wideband (AMR-WB+) standardized by the 3rd Generation
Partnership Project (3GPP) in 2004. Contrary to the MP3 and AAC codecs which are based on
subband techniques, these new audio codecs use parametric modeling. This includes spectral band
replication (HE-AAC, HE-AACv2 and AMR-WB+), sinusoidal+transients+noise modeling (SSC),
linear prediction (AMR-WB+) and parametric stereo (HE-AACv2, SSC and AMR-WB+). Lis-
tening tests showed that HE-AACv2, SSC and AMR-WB+ allow much better quality than AAC

3

1.1. Background

at bitrates of 48 kbps and even lower. It is important to note that these new audio codecs are
not a replacement for AAC but rather a complement because they are targeted for low bitrate
coding only and can’t give the same CD-quality as AAC at high bitrates. They find thus interests
in applications that require low bitrates such as 3G mobile devices, streaming applications, and
digital broadcasting. Though these audio coding formats are not yet as spread as MP3 and AAC,
they are more and more widely used.

There are now many efficient and standardized audio codecs on the market, but each one
has been designed for a specific target. Indeed, the performance of each codec strongly depends on
several parameters including the input audio material (e.g. speech, monophonic music, polyphonic
music...), the application constraints (e.g. bitrate, quality, delay, complexity...) and possibly the
network constraints (e.g. internet, switched telephone network...). A current research challenge in
audio coding is then to design universal audio coding technologies that combine the advantages
of existing approaches in a flexible and adaptive way. Universal audio coding would have many
interests including simplified systems (a single codec instead of one codec for each application con-
straint), adaptation to user preferences (e.g. reduced complexity for reduced power consumption),
efficient use of available bandwidth or storage capacity (codec adaptation to application/network
constraints in real time) and possibly transcoding (e.g. transcoding between different bitrates).
There is currently an active research community that investigates this research area, e.g. the euro-
pean projects ARDOR (adatpive rate-distortion optimised sound coding) and FLEXCODE (flexible
coding for heterogeneous networks).

Another challenge in audio coding, much less explored, is to combine audio coding with
audio indexing (i.e. audio content-based automatic indexing). Audio indexing is useful for music
information retrieval (MIR), a recent research domain that studies the problem of finding quickly
a given information in the constant increasing mass of digital music data. MIR includes several
useful tasks such as e.g. chord transcription, rhythm analysis, musical genre classification, cover-
song identification, music recommendation, playlist generation, audio fingerprinting... Though
researches in audio coding and audio indexing have been conducted independently, the methods
used in both areas have many similarities. Then, the challenge would be to design a single technique
that is useful for both audio coding and audio indexing. Such a technique would be used by an
audio coder at the analysis stage. This would have for consequence that the sequence of bits
produced by the coder contains most of the information necessary to perform audio indexing tasks.
The final audio indexing application is then performed at the decoder with very low additional
computation (see Fig. 1.3). A system that combines audio coding and audio indexing would have
obvious interests for applications that require low computational costs, such as processing on mobile
devices, or processing very large databases of coded files.

Figure 1.3: An audio codec with a transform-domain audio indexing system

4

Chapter 1. Introduction

1.2 Main contributions

The main contributions of the thesis can be summarized as follows

New signal representation approaches We propose in this thesis new signal representation
approaches that are useful for both audio coding and transform-domain audio indexing. These
novel methods are based on a research domain known as sparse signal representations and that
aim at modeling a signal as a sum of small number of elementary functions which are chosen
among a collection of arbitrary size (usually much larger than the signal dimension). Contrary
to the traditional approach in high-quality audio coding where a signal is represented using a
time-frequency transform (e.g. AAC), the proposed method uses an overcomplete union of several
transforms with different time-frequency tradeoffs. This allows the modeling of a signal with a
fewer number of elementary functions than in the transform case, a property obviously useful for
audio coding. The main issue is to find efficient ways to decompose a signal in this overcomplete
set of functions. We thus propose several algorithms based on the matching pursuit algorithm,
namely a fast implementation, a pre-echo control modification, and a rate-distortion optimization.
All these algorithms have been implemented in C++ and are freely available2 (GNU General Public
License). It is worth noting that the proposed study also investigates the problem of choosing the
set of elementary functions (also called dictionary), which is a fundamental problem for sparse
signal representations.

Improvements in audio coding We propose in this thesis two audio codecs based on the new
signal representation approaches. The main issue is to find efficient and flexible coding strategies
for the proposed signal representations. We thus propose several new techniques that allow efficient
and high-quality scalable audio coding, namely a coefficient interleaving process, a psychoacoustic
bitplane coding algorithm and an adaptive bitplane coding algorithm. The first audio codec uses
the psychoacoustic bitplane coding algorithm; it is evaluated using PEMO-Q, a recent objective
measure developed at Oldenburg university, and a MUSHRA listening test performed in our lab.
This codec has been implemented in C++ and is freely available2 (GNU General Public License).
The second audio codec uses the adaptive approach; we provide only preliminary results in this
case as we have not yet performed a complete evaluation. We also propose in this thesis a study on
embedded polar quantization that would be useful for e.g. scalable audio coding based on complex
transforms (e.g. the modulated complex lapped transform), this study is however still preliminary
as we do not provide a complete audio codec based on this approach.

Improvements in transform-domain audio indexing We propose in this thesis new ap-
proaches for transform-domain audio indexing. We consider both new audio codecs and new ap-
plications. Existing prior work is relatively limited, only a few results have been published in the
literature for the MPEG-1 Layer 3 format only. In our work, we study not only the MP3 format
but also AAC and one of the codec we have developed in the thesis. For each codec, we propose
fast algorithms that compute features for audio indexing tasks. Three applications are considered:
beat tracking, chord recognition and musical genre classification. For each codec and for each ap-
plication, we provide evaluation of both the performance and the computation time. The proposed
algorithms have been implemented in C++ (using existing open source softwares for MP3/AAC
decoding) and are freely available2 (GNU General Public License).

2Download source code at the following address: http://www.emmanuel-ravelli.com/downloads

5

http://www.emmanuel-ravelli.com/downloads

1.3. Thesis outline

1.3 Thesis outline

The main contributions are organized in the thesis as shown in Fig. 1.4. It is important
to note that the chapters are sufficiently self-contained that they can be read independently. We
detail the content of each chapter below.

Figure 1.4: Thesis organization

Chapter 2 proposes an overview of lossy audio coding. This chapter first reviews existing
signal representation methods used in modern lossy audio coding, then describes briefly the main
approaches used for source coding and finally presents a few methods for both subjectively and
objectively evaluating lossy audio codecs.

Chapter 3 proposes a brief review of sparse signal representations, a class of signal
representation methods used in several coding applications (including audio, image and video).
This chapter first introduces the mathematical problems and some algorithms to solve them, then
describes several signal models used in coding applications.

Chapter 4 introduces a new signal representation approach based on sparse signal repre-
sentations. This chapter first describes the motivations and the signal model, then proposes several
algorithms to approximate a signal with this model, and finally presents the results.

Chapter 5 proposes a source coding algorithm that efficiently encodes the new signal
representation approach presented in the Chapter 4. This chapter gives results for each stage of
the proposed codec, and proposes an objective and subjective evaluation of the final codec. Results
presented in chapters 4 and 5 have been published in two papers: one presented at WASPAA
2007 [RRD07] and one accepted for future publication in IEEE Transactions on Speech, Audio and
Language Processing [RRD08c].

Chapter 6 introduces a way to improve the audio codec presented in the previous chapter.

6

Chapter 1. Introduction

This chapter proposes improvements for both the signal representation and the source coding. This
chapter also gives preliminary results of the improved audio codec, both in terms of performance
and complexity. Results presented in this chapter have been published in a paper that will be
presented at EUSIPCO 2008 [RRD08b].

Chapter 7 proposes a short study on embedded polar quantization. This chapter proposes
simple algorithms for the design of embedded quantizers for circularly symmetric data. This could
be applied for example to sparse signal representations based on complex transforms. One notes
that we do not propose an audio codec in this chapter, we only study the quantization stage. This
chapter has been published in IEEE Signal Processing Letters [RD07].

Chapter 8 studies transform-domain audio indexing. This chapter proposes simple algo-
rithms for the computation of several mid-level representations for transform-domain audio index-
ing. This chapter considers three applications, respectively beat tracking, chord recognition and
musical genre classification. The performance of three coders are compared and discussed. Two
standard filter-bank based audio codecs and one of our audio codec are considered. A subset of the
results presented in this chapter have been published in a paper that will be presented at ISMIR
2008 [RRD08a], and a longer journal paper is currently being written.

Chapter 9 proposes conclusions and possible future work.

7

1.3. Thesis outline

8

9

Chapter 2

Lossy audio coding: an overview

Abstract

We propose in the first chapter a state-of-the-art of lossy audio coding, which is the
main topic of this thesis. The aim of this chapter is not to give an exhaustive review
of existing technologies as the literature on audio coding is very wide. We rather
review the main techniques used in the state-of-the-art audio codecs such as those
from MPEG and 3GPP. We also emphasize several techniques that we will use in the
rest of this thesis such as the Modified Discrete Cosine Transform and the bitplane
coding.

Contents
2.1 Introduction . 10

2.2 Signal representation . 10

2.2.1 Filter bank approaches . 10

2.2.2 Parametric models . 16

2.2.3 Hybrid approaches . 18

2.3 Source coding . 20

2.3.1 Quantization . 20

2.3.2 Entropy coding . 23

2.3.3 Bitplane coding . 23

2.4 Evaluation . 26

2.4.1 Listening tests . 26

2.4.2 Objective Measures . 26

2.5 Conclusions . 28

2.1. Introduction

2.1 Introduction

The basic principle of lossy audio coding is to reduce statistical redundancy and perceptual
irrelevancy in an audio signal. To perform such a task, an audio coder uses two main operations
(see Fig. 2.1). First, the original audio signal is analyzed using a signal representation technique.
Then, the resulting coefficients or parameters that describe this signal representation are converted
into a binary format using a source coding technique. Depending on the techniques used, each
stage of the audio coder removes either statistical redundancy and/or perceptual irrelevancy. The
audio decoder has the same two-stages configuration as the coder, it first converts the sequence of
bits into a set of coefficients or parameters, and then synthesizes the decoded audio signal using
these coefficients or parameters.

Figure 2.1: A simplified audio codec (assuming lossless transmission/storage)

In this chapter, we review some of the most widely used techniques in lossy audio coding:
some signal representation techniques in section 2.2, and some source coding techniques in section
2.3. Finally, as it is necessary to evaluate the degradations introduced by a codec in lossy audio
coding, we review some evaluation techniques in the section 2.4.

2.2 Signal representation

There are three main categories of signal representation used in modern lossy audio coding:
the filter bank approaches, the parametric models and the hybrid approaches. The basic principle of
the filter bank approaches is to map a temporal domain signal into a time-frequency representation
composed by several subband signals. These are used in CD-quality audio codecs such as MP3 and
AAC. Contrary to the filter banks, the parametric modeling approaches represent, generally, only
a certain subspace of the signal using a few parameters. These are used in low-bitrate speech and
audio codecs such as AMR and SSC. Finally, the hybrid approaches combine filterbank-based and
parametric-based techniques for improved performance. They are used in recent audio coders such
as HE-AAC and AMR-WB+. We detail in this section the most popular techniques in these three
categories.

2.2.1 Filter bank approaches

The filter bank approach is historically one of the first signal representation technique
used in audio coding and it is now one of the most widely used. There are two main reasons that
make the filter banks attractive for audio coding. First, the filter bank reduces the redundancy of
an audio signal, by mapping the time domain signal into subband signals where only a few of these
subband signals have a high energy. Second, this time-frequency mapping allows an individual

10

Chapter 2. Lossy audio coding: an overview

processing of each subband signal, which is adapted to the perceptually-based quantization used in
audio codecs.

A K-band system is given in Fig. 2.2. It is composed of two filter banks, an analysis and
a synthesis filter bank. In the coder, the analysis filter bank maps the time-domain signal into K
subband signals. These subband signals are then encoded. In the decoder, the subband signals are
decoded and passed through the synthesis filter bank in order to restore the time-domain signal. A
common K-band analysis-synthesis system used in audio coding has the following two properties.
First, the analysis-synthesis system is critically sampled: the overall samplerate of the subband
signals is the same than the samplerate of the original signal (We will see later in this thesis that it
is possible in audio coding to use filter banks which are not critically sampled). This is easily done
using downsampling and upsampling as shown in Fig. 2.2. Second, the analysis-synthesis system
allows perfect or near-perfect reconstruction (up to a delay), a property more difficult to achieve.

Figure 2.2: A K-band analysis/synthesis filter bank used in audio coding.

The common approach to achieve a K-band critically sampled filter bank with
(near-)perfect reconstruction is to use a low pass FIR prototype filter H(z) and define the analysis
filters Hk(z) and the synthesis filters Gk(z) as a function of this prototype filter. Thus, the design
of the filter bank depends only on the design of a FIR prototype filter. We will assume in the
following that all filters have the same length, written L (in samples).

We describe in the following the two most widely used filter bank approaches in audio
coding, the K-band Polyphase Quadrature Filter bank (PQF) and the Modified Discrete Cosine
Transform (MDCT).

K-band Polyphase Quadrature Filter bank

The K-band Polyphase Quadrature Filter bank (PQF) has been proposed independently
by Nussbaumer in 1981 [Nus81] and Rothweiler in 1983 [Rot83]. It is also referred sometimes as
Pseudo Quadrature Mirror Filter bank (PQMF) in the literature. The filters of the PQF are defined
in the temporal domain as:

hk(n) = h(n)cos

[

π

K

(

k +
1

2

)(

n− L− 1

2

)

+ θk

]

(2.1)

gk(n) = h(n)cos

[

π

K

(

k +
1

2

)(

n− L− 1

2

)

− θk

]

(2.2)

(2.3)

11

2.2. Signal representation

where h(n) the impulse response of the low-pass FIR prototype filter and L the length of the filters.
To achieve perfect reconstruction, the θk must verify the following constraints [Rot83]

ej4θ0 = −1 (2.4)

ej2θk + ej2θk−1 = 0 , with 1 ≤ k < K (2.5)

ej4θK−1 = −1 (2.6)

and the transfer function H(z) of the prototype filter must verify the following constraints:

H
(

ejω
)

= 0 if π/K ≤ |ω| (2.7)
∣

∣H
(

ejω
)∣

∣

2
+
∣

∣

∣H
(

ej(π/K−ω)
)∣

∣

∣

2
= cst if 0 ≤ |ω| < π/2K (2.8)

While the constraints on θk are easily verified, the constraints on H(z) can’t be achieved exactly
in practice. Consequently, the PQF provides only near-perfect reconstruction.

The PQF is used mainly in the MPEG-1 audio coders [ISO92]. The MPEG-1 coders use
a 32-band PQF where θk is defined as:

θk =
π

K

(

k +
1

2

)(

L− 1

2
− K

2

)

(2.9)

where K = 32 and L = 513. The prototype filter is designed such that it provides more than 96dB
sidelobe suppression in the stopband of each analysis channel and an output ripple less than 0.07
dB. Fig. 2.3 shows the impulse and frequency responses of the MPEG-1 prototype filter and the
frequency response of the 32 MPEG-1 analysis filters.

50 100 150 200 250 300 350 400 450 500
−0.01

0

0.01

0.02

0.03

0.04
Impulse response of the prototype filter

Time (samples)

A
m

pl
itu

de

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
−150

−100

−50

0

Frequency response of the prototype filter

Normalized frequency (Hz/Hz)

A
m

pl
itu

de
 (

dB
)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−150

−100

−50

0

Frequency response of the 32 analysis filters

Normalized frequency (Hz/Hz)

A
m

pl
itu

de
 (

dB
)

Figure 2.3: Impulse response and frequency response of the MPEG-1 prototype filter; frequency
response of the 32 analysis filters of the MPEG-1 PQF

12

Chapter 2. Lossy audio coding: an overview

Modified Discrete Cosine Transform

The Modified Discrete Cosine Transform (MDCT) has been initially proposed by Princen,
Johnson and Bradley in 1987 as the Time Domain Aliasing Cancellation (TDAC) [PB86, PJB87]
and later reinvestigated by Malvar in 1990 as the Modulated Lapped Transform (MLT) [Mal90]. It
is a K-band filter bank that is critically sampled and achieves perfect reconstruction. The MDCT
has several advantages compared to the PQF, such as perfect reconstruction, ease of window design,
good frequency resolution, ease of adapting the filterbank resolution. All these advantages have
made the MDCT the filter bank of choice for most of the recent audio coders. It is used for
example in MPEG-2/4 AAC [ISO98b, ISO01], Dolby AC2/3 [FBD+96] and also in MPEG-1 Layer
3 in combination with PQF [ISO92]. The filters are defined in the temporal domain as:

hk(n) = h(n)cos

[

π

K

(

k +
1

2

)(

(L− 1− n) +
K

2
+

1

2

)]

(2.10)

gk(n) = h(n)cos

[

π

K

(

k +
1

2

)(

n +
K

2
+

1

2

)]

(2.11)

where h(n) the impulse response of the low-pass FIR prototype filter and L = 2K the length of the
filters. To achieve perfect reconstruction, the impulse response of the prototype filter must satisfy
the following constraint

h2(n) + h2(n + L/2) = cst , with 0 ≤ n < L/2 (2.12)

Actually, it is possible to show that the MDCT filterbank is just a particular case of the PQF where
L = 2K and the θk are defined as

θk = − π

K

(

k +
1

2

)(

L− 1

2
+

K

2
+

1

2

)

(2.13)

We will now reformulate the MDCT as a transform, as it has a much simpler expression.
This is also the formulation we will use in this thesis. Considering a signal vector x of length
N = PK, composed by P segments of length K samples each. The transform matrix T of size
N ×N corresponding to the MDCT with window length L = 2K is defined as

T (n, pK + k) = gp,k(n) , 0 ≤ p < P , 0 ≤ k < K , 0 ≤ n < N (2.14)

with

gp,k(n) = wp(u)

√

2

K
cos

[

π

K

(

u +
K

2
+

1

2

)(

k +
1

2

)]

(2.15)

and

u = n−
(

p− 1

2

)

K (2.16)

and wp(u) defined on 0 ≤ u < L. The MDCT achieves perfect reconstruction if the matrix T is an
orthogonal matrix

TTT = I (2.17)

13

2.2. Signal representation

and this is verified if we have the following conditions:

K−1
∑

k=0

g0,k(n)g0,k(m) = δn,m (first segment) (2.18)

K−1
∑

k=0

gp,k(n)gp,k(m) +
K−1
∑

k=0

gp+1,k(n)gp+1,k(m) = δn,m (two consecutive segments) (2.19)

K−1
∑

k=0

gP−1,k(n)gP−1,k(m) = δn,m (last segment) (2.20)

By using the fact that

K−1
∑

k=0

cos

[

π

K
n

(

k +
1

2

)]

cos

[

π

K
m

(

k +
1

2

)]

=
K

2

∞
∑

p=−∞

(−1)p(δn,m+pL + δn,m+pL) (2.21)

it is easy to find the conditions on w to obtain perfect reconstruction

w0(u) = 1 , 0 ≤ u < L/2 (2.22)

w2
p(u + L/2) + w2

p+1(u) = 1 , 0 ≤ u < L/2 , 0 ≤ p < P − 1 (2.23)

wP−1(u + L/2) = 1 , 0 ≤ u < L/2 (2.24)

The two most used windows verifying the condition (2.23) are the sine window [Mal90], defined as

w(u) = sin

[

π

L

(

u +
1

2

)]

(2.25)

and the Kaisel-Bessel Derived (KBD) window, proposed by the Dolby Laboratories [FBD+96].
At the analysis stage, the coefficient vector is given by c = TTx, and at the synthesis

stage, the signal vector is restored using x = Tc. However, such matrix multiplication is never
done in practice as it has a complexity of O(N2). Practical implementations use a frame-by-frame
approach with an FFT-based transform (e.g. [DMP91]) which considerably reduces the complexity.

The MDCT as described previously uses a fixed window size, and thus has a fixed resolu-
tion. Fig. 2.4 shows an extract of a glockenspiel signal and the corresponding MDCT coefficients for
an analysis window length of 2048 samples. In this figure, the MDCT has a long window size and
thus a good frequency resolution. However it also has a poor time-resolution, the energy of an attack
is spread on the entire spectrum in the 2 consecutive windows that overlap on the attack. When
quantizing the coefficients of such a transform, the quantization noise of coefficients corresponding
to the attacks is spread along the corresponding windows when synthesizing to the time-domain,
resulting in the so-called “pre-echo artifact”. To avoid this problem, a possible solution is to use
a time-varying MDCT which adapts its time-frequency resolution to the signal. In state-of-the-art
transform coders such as AAC, a block-switching approach is used [Edl89], where two window sizes
(one long with good frequency resolution, and one short with good time resolution) are used. To
achieve perfect reconstruction, it is necessary to use transitional windows between the short and
long windows. Fig. 2.5 shows the results obtained with the glockenspiel signal and the time-varying
MDCT used in AAC (long windows with length 2048 samples, and groups of 8 short windows with
length 256 samples).

In recent work, more flexible time-varying MDCT decomposition are considered. Niamut
et al. [Nia06] consider a time-varying MDCT with several window sizes and an optimal Rate-
Distortion segmentation.

14

Chapter 2. Lossy audio coding: an overview

0 0.1 0.2 0.3 0.4 0.5
−0.4

−0.2

0

0.2

Time (seconds)

A
m

pl
itu

de

Signal

0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

Time (seconds)

A
m

pl
itu

de

Analysis Windows

0.5 1 1.5 2

x 10
4

−2

0

2

Indexes

A
m

pl
itu

de

MDCT coefficients

Windows indexes

F
re

qu
en

cy
 in

de
xe

s MDCT spectrogram

5 10 15 20

200
400
600
800

1000

Figure 2.4: Glockenspiel extract and MDCT with a fixed long window size (2048 samples)

0 0.1 0.2 0.3 0.4 0.5
−0.4

−0.2

0

0.2

Time (seconds)

A
m

pl
itu

de

Signal

0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

Time (seconds)

A
m

pl
itu

de

Analysis windows

0.5 1 1.5 2

x 10
4

−2

0

2

Indice

A
m

pl
itu

de

MDCT coefficients

Window indexes

F
re

qu
en

cy
 in

de
xe

s MDCT spectrum

5 10 15 20

200
400
600
800

1000

Figure 2.5: Glockenspiel extract and time-varying MDCT with two window sizes (2048 and 256
samples)

15

2.2. Signal representation

2.2.2 Parametric models

Filter-bank based signal representations have proved their efficiency in lossy audio codecs
that provide CD-quality such as MPEG-1 Layer 3 and MPEG-2/4 AAC. However, these approaches
are known to perform poorly at low bitrates. In this range of bitrates, parametric models are
preferred. The basic principle of parametric modeling is to use a model of the source of the
sound. While a parametric model introduces some errors even without quantization, it has the
advantage that only a small number of parameters has to be encoded, facilitating efficient signal
representations at low bitrates. We present here the two most used parametric models in lossy
audio coding, Code Excited Linear Prediction which is an excellent model of speech signals and
sinusoidal modeling which is a better model for musical signals.

Code Excited Linear Prediction

Code Excited Linear Prediction (CELP) [AS84, SA85] is a parametric representation of
speech that has proven its efficiency for low bitrate speech coding. It was first proposed by Atal
and Schroeder in 1984 [?]. CELP is based on the simple source+filter model of speech production
which assumes that the vocal cords are the source of spectrally flat sound (the excitation signal),
and that the vocal tract acts as a filter to spectrally shape the various sounds of speech. This model
uses four main principles (see Fig. 2.6): a short term predictor, a long term predictor, a perceptual
distortion measure, and a codebook of excitation signals.

Figure 2.6: CELP block diagram

The short-term predictor models the spectrum shape of the signal, and the corresponding
synthesis filter is defined as:

1

A(z)
=

1

1 +
∑p

n=1 aiz−i
(2.26)

with ai are the linear prediction parameters and p the predictor order (usually between 10 and
20). The parameters ai are estimated on a frame-by-frame basis using the standard autocorrelation
technique. The long-term predictor models the pitch of the signal and the corresponding synthesis
filter is defined as:

1

B(z)
=

1

1− gpz−T
(2.27)

where T is the pitch delay and gp is the pitch gain. These parameters are estimated on a frame-
by-frame basis using an analysis-by-synthesis technique where a perceptual distortion measure is
minimized. The perceptual distortion measure is the energy of the prediction error filtered by a
perceptual weighting filter:

W (z) =
A (z/γ1)

A (z/γ2)
(2.28)

16

Chapter 2. Lossy audio coding: an overview

This weighting filter de-emphasizes the error at the formant regions and thus exploits the psy-
choacoustic masking of these regions. Finally, the excitation signal is determined by selecting one
innovation signal from a codebook and scale it by a gain. The best innovation signal is found us-
ing a similar analysis-by-synthesis approach as for the long-term predictor. The exhaustive search
in a general codebook is very costly, and thus the design of the codebook and the search algo-
rithm is one of the main issues of CELP coders. The solution proposed by Adoul et al. in 1987
[AMDM87, LASM90] and called Algebraic Code Excited Linear Prediction (ACELP) provides ex-
cellent performance at low computational cost and is thus used in most narrow-band speech coding
standards (e.g. ETSI GSM-EFR [SL+97], ITU-T G.729 [SLA+98], 3GPP/ETSI AMR [EHJS99]).

Sinusoidal Modeling

CELP is a very good parametric model for speech signals but it is too restrictive for
musical signals. A more general parametric model is sinusoidal modeling. This is a parametric
representation where a signal is modeled by a sum of sinusoids with varying amplitude, frequency
and phase. One of the first speech coder based on sinusoidal modeling was proposed by McAulay
and Quatieri in 1986 [MQ86]. They proposed a simple model of the speech signal where it is
represented by a sum of sinusoidal waves. The model parameters (amplitude, frequency and phase)
are estimated from the signal spectrogram by a simple peak-picking and tracking algorithm. While
this technique was originally targeted to speech signals, it has been later successfully applied to
musical signals by Smith and Serra [SS87, Ser89]. Fig. 2.7 shows the model of McAulay and
Quatieri applied to a trumpet signal sampled at 16 kHz.

Time (Seconds)

F
re

qu
en

cy
 (

H
er

tz
)

Spectrogram

1 2 3 4 5 6 7 8
0

2000

4000

6000

8000

0 1000 2000 3000 4000 5000 6000 7000 8000
−80

−60

−40

−20

0

20

Frequency (Hertz)

A
m

pl
itu

de
 (

dB
)

Spectrum for one frame and peak−picking

1 2 3 4 5 6 7 8
0

2000

4000

6000

8000

Time (Seconds)

F
re

qu
en

cy
 (

H
er

tz
)

Sinusoidal tracks

Figure 2.7: Sinusoidal modeling algorithm of McAulay and Quatieri on a trumpet signal.

Later in 1996, Edler, Purnhagen and Ferekidis proposed a similar sinusoidal model for
audio coding [EPF96]. The main difference with the system of McAulay and Quatieri is that
they use an iterative analysis-by-synthesis method [GS92] to estimate the sinusoidal parameters.

17

2.2. Signal representation

At each iteration, in the current frame, a sinusoid that best approximates the current residual
is extracted and subtracted from the residual. The advantage of this approach compared to the
pick-peaking approach of McAulay and Quatieri is that it reduces the false detections due to the
side lobes, because when a sinusoid is subtracted from the residual, its sides lobes are removed as
well. The audio coder presented in [EPF96] uses a model based on individuals sinusoids only. The
same authors presented later a coder where the signal is modeled by three components [PEF98]:
individual sinusoids as in [EPF96], harmonic tones composed by a sum of harmonically related
sinusoids, and noise. This audio coder, called Harmonic and Individual Lines and Noise (HILN)
was later standardized in the MPEG-4 framework [PM00].

The analysis-synthesis method used in HILN to extract sine waves, is also known as
frame-based matching pursuit (MP) [VM99]. The MP algorithm [MZ93] is an iterative analysis-
by-synthesis method that, at each iteration, selects in a dictionary the basis function that best
approximates the current residual, subtracts it and iterates. Variants of Matching Pursuit use psy-
choacoustic masking models to extract the most perceptually relevant sinusoids. First, Verma and
Meng proposed a perceptually weighted matching pursuit in 1999 [VM99], which was successfully
applied to audio coding by Verma [VM00]. Second, Heusdens, Vafin and Kleijn proposed later
a psychoacoustic-adaptive matching pursuit [HVK02], which was applied to audio coding by e.g.
Vafin [Vaf04].

The matching-pursuit based sinusoidal modeling uses a segment-based fixed resolution
method. Other methods are multi-resolution, where longer window sizes are used for estimating
lower frequency sinusoids. Multi-resolution sinusoidal modeling was first introduced by Levine,
Verma and Smith in 1997 [LVS97], and applied to audio coding in [LS98]. Multi-resolution sinu-
soidal modeling uses a filter bank approach where different analysis window lengths are used in
each subband and an analysis-by-synthesis method similar to matching pursuit extract sinusoids
in each subband. The sinusoids are then combined at the output of the filter bank to build si-
nusoidal tracks. Multi-resolution sinusoidal modeling was also considered by Oomen [Od99] and
Goodwin [Goo01]. Multi-resolution sinusoidal modeling is used recently in the SinuSoidal Coder
(SSC) [Od99, dSO02, SOdB03] standardized in MPEG-4 audio Amendment 2 in 2004. SSC use
a three components model, where it combines multi-resolution sinusoidal modeling, with transient
modeling and noise modeling.

2.2.3 Hybrid approaches

The techniques we have presented previously have all their strengths and weaknesses.
On the one hand, filter-bank based approaches give best performance when used in high bitrates
coding. On the other hand, parametric-model based approaches give better performance when used
in low bitrates coding. We present in the following recent approaches that combine some of these
techniques in order to improve the performance on a wide range of bitrates.

Linear prediction + Transform

One example of audio coding that combines linear prediction and transform based ap-
proaches is MPEG-4 Twin-VQ [IMM95], where the MDCT spectrum is flattened using the linear
prediction spectrum. This allows better performance than the pure-transform AAC at low bitrates
[BKS00]. Another example is 3GPP AMR-WB+ [MBB+05], where ACELP [AMDM87, LASM90]
is combined with a tansform-based approach called Transform Coded eXcitation (TCX) [LSLA94].
3GPP AMR-WB+ gives very good performance for both speech and music material at very low
bitrates [MBB+05]. An approach similar to AMR-WB+ is ITU-T G.729.1 [RKT+07] that extend

18

Chapter 2. Lossy audio coding: an overview

a CELP coder with a MDCT-based approach in order to increase performance for general audio.

Sinusoidal Modeling + Transform

An alternative approach [vv05] combines a sinusoidal modeling based coder with a transform-
based coder: SSC is used to approximate a signal and the residual is coded using a MDCT-based
coder. A rate-distortion optimization is used to allocate the available bit budget among the two
coders. This allows same performance as SSC at low bitrates and improved performance at high
bitrates. A similar approach is found also in [VK06].

Bandwidth Extension

At very low bitrates (e.g. below 24 kbps), it is not possible to encode an audio signal
without significant loss. The common approach is to encode only the lower frequencies components,
which are the most perceptually relevant. This has for consequence a clean but band-limited
decoded signal. An approach recently proposed by Coding Technologies and called Spectral Band
Replication [DLKK02], allows the regeneration of the higher frequency components using a few
parameters. This technique is used as an extension module to a core coder, allowing backwards
compatibility. The core coder models only the lower half of a signal spectrum, and SBR models
the higher half band by replicating the lowest band spectrum, and shaping it with additional few
parameters (see Fig. 2.8). It has been successfully associated with MP3, giving an enhanced coder
called mp3PRO [ZEEL02]; and also with AAC, giving a technology standardized in MPEG-4 and
called HE-AAC [WKHP03]. SBR is a technique originally targeted to be used in combination with
transform-based coding. Other bandwidth extension techniques have been proposed, to be used in
combination with CELP-based coders, for example the techniques used in AMR-WB+ [MBB+05].

0 2000 4000 6000 8000 10000 12000 14000 16000
−60
−40
−20

0
20
40

Frequency (Hz)

A
m

pl
itu

de
 (

dB
)

Original spectrum

0 2000 4000 6000 8000 10000 12000 14000 16000
−60
−40
−20

0
20
40

Frequency (Hz)

A
m

pl
itu

de
 (

dB
)

Lower half band

0 2000 4000 6000 8000 10000 12000 14000 16000
−60
−40
−20

0
20
40

Frequency (Hz)

A
m

pl
itu

de
 (

dB
)

Higher half band reconstruction by replication

0 2000 4000 6000 8000 10000 12000 14000 16000
−60
−40
−20

0
20
40

Frequency (Hz)

A
m

pl
itu

de
 (

dB
)

Envelopment adjustment

Figure 2.8: Simplified process of Spectral Band Replication for one frame of an orchestra signal

19

2.3. Source coding

2.3 Source coding

We have proposed in the previous section a short review of the most popular approaches
for signal representation. These techniques allow the representations of an input digital audio
signal into a set of coefficients or parameters. As an example, these are the output coefficients
of a MDCT-based transform, or the parameters describing a sinusoidal model. The aim of source
coding is then to convert this set of coefficients or parameters into a binary format i.e. a sequence
of bits and conversely convert this sequence of bits into a set of decoded coefficients or parameters.
Source coding then refers to two separate operations: the coder and the decoder. These are shown
in Fig. 2.9. The coder takes as input a L-length sequence of K-dimension vectors of real values
and outputs a variable-length sequence of bits. In practical applications, this sequence of bits is
then appended to a file or transmitted through a network. The decoder takes as input the sequence
of bits produced by the coder and outputs a L-length sequence of K-dimension vectors of real
values. This coding/decoding process necessarily introduces degradations i.e. the output of the
decoder is not perfectly equal to the coder input, this loss is due to the first stage of the coder,
called quantization, which maps the L-length sequence of K-dimension vectors of real values into
a L-length sequence of integer values. In audio coding, the system is generally designed such that
this loss is minimally perceived by the listener. The second stage of the coder is called entropy
coding, it simply converts a sequence of integers into a sequence of bits, such that the number of
bits is minimized. The decoder has the same two-stages configuration.

Figure 2.9: Block diagram of lossy coding.

In the following, we first review the quantization, then the lossless coding, and finally
introduce a particular source coding technique called bitplane coding.

2.3.1 Quantization

Computers cannot deal with real values (i.e. with infinite precision), the goal of quantiza-
tion is then to approximate real values using integer values that are easily processed by computers.
The quantization operation in the coder is called “quantizer encoder” and is defined as

α : R
K → I = {0, 1, ..., N − 1} (2.29)

where α is the quantizer encoder with dimension K and size N . The quantizer encoder is the only
non-reversible and thus lossy operation in the whole process. Associated with the quantizer encoder
is a partition of R

K into N cells Ri for all i ∈ I, defined as

Ri = {x ∈ R
K : α(x) = i} (2.30)

20

Chapter 2. Lossy audio coding: an overview

In the decoder, the corresponding quantization operation is called “quantizer decoder” and is
defined as

β : I → C = {y0,y1, ...,yN−1} (2.31)

where β is the quantizer decoder with dimension K and size N , and yi ∈ R
K for all i ∈ I are

the output points (see examples of 2-D quantizers with cells and output points in Fig. 2.11).
Quantization then refers to the cascade of the quantizer encoder and quantizer decoder

Q : R
K → C (2.32)

and Q is then called the quantizer.
The quantizer input is generally assumed to be a random variable X with probability

density function (pdf) fX(x). The overall performance of a quantizer is then generally characterized
by its average distortion and average rate. The average distortion is defined as

D =

N−1
∑

i=0

∫

Ri

d(x,yi)fX(x)dx (2.33)

where d(., .) is a distortion measure, which can be as simple as the squared-error distortion or more
complicated pyschoacoustically-motivated distortion measures. The common approach is to use a
psychocoustic model that is able to measure how well the degradations introduced by the quantizer
will be perceived by the human auditory system (good reviews on psychoacoustic models for audio
coding are [PS00] and [BG03]). The average rate corresponds to the average number of bits needed
to described the quantizer encoder output, and it is defined as

Rr.c. = log2 (N) (2.34)

if all i ∈ I are described with an equal number of bits, a case called “resolution-constrained”.
Otherwise, it is refered as the “entropy-constrained” case, and the lowest possible average rate is
then defined as the entropy of the quantizer encoder output

Re.c.,min = −
N−1
∑

i=0

∫

Ri

fX(x)dx log2

(∫

Ri

fX(x)dx

)

(2.35)

The design of a quantizer is then to optimize the rate-distortion tradeoff, which can be
done in several ways: either by optimizing distortion for a constrained rate, by optimizing rate for
a constrained distortion, or by an unconstrained optimization using a Lagrange approach. Good
reviews on the design of optimal quantizers are [GG92] and [GN98]. Below, we introduce briefly
the most used quantizers in lossy audio codecs.

If K = 1, the input of the quantizer is a scalar, and this particular case is then called
“scalar quantization”. This is the approach traditionally chosen in many audio coders, due to its
low computational complexity and storage costs. The simplest scalar quantizer is the “uniform
quantizer”, defined as equal-size cells with centered output points. A symmetric uniform quantizer
with a number of cells N even is also known as “midrise quantizer” and with N odd as “midtread
quantizer” (see Fig. 2.10). Most recent audio codecs are based on non-uniform quantization,
for example in MPEG-1 Layer 3 [ISO92] and MPEG-2/4 AAC [ISO98b, ISO01] to quantize the
MDCT coefficients. The non-uniform quantizer of MP3 and AAC raises its input to the 3/4 power
before applying a midtread quantizer (see Fig. 2.10); this way, bigger values are quantized with
less accuracy than smaller values. Moreover, the midtread quantizer used in MP3 and AAC has
generally a bigger central cell, a case also called dead-zone quantizer in the literature.

21

2.3. Source coding

Midrise Uniform Quantizer Midtread Uniform Quantizer Non−Uniform Quantizer (MP3,AAC)

Figure 2.10: Input/Output functions for several scalar quantizers. From left to right: a midrise
uniform quantizer (with N = 10); a midtread uniform quantizer (with N = 9); the non-uniform
quantizer used in MP3,AAC (with N = 9).

Vector quantization is the generalization of scalar quantization to higher dimension K > 1.
Vector quantization allows better performance than scalar quantization but at higher computational
complexity and storage costs. It is used for example to quantize the flattened MDCT coefficients
in Twin-VQ [IMM95], or to quantize the parameters of a CELP model (e.g. [SL+97, SLA+98,
EHJS99]). A good reference on vector quantization is [GG92]. Particular cases of vector quanti-
zation are found in audio coding that use sinusoidal modeling. The first particular case is called
polar quantization and it is the natural 2-dimension quantizer for circularly symmetric data. It
is used e.g. in [VK05] to quantize the amplitude and phase of sinusoids. The extension of polar
quantization to 3 dimensions is used to quantize the amplitude, the phase and the frequency of
sinusoids in e.g. [VPK05], it is also known as spherical quantization in e.g. [KJH04]. Fig. 2.11
shows examples of 2-dimension vector quantizers: a general vector quantizer, a quantizer obtained
by using two scalar quantizers and called rectangular quantizer, and a polar quantizer.

General Vector Quantizer Rectangular Quantizer Polar Quantizer

Figure 2.11: Examples of 2-dimension vector quantizers with size N = 64. From left to right: a
general vector quantizer; a rectangular quantizer; a polar quantizer.

22

Chapter 2. Lossy audio coding: an overview

2.3.2 Entropy coding

Entropy coding aims at converting a sequence of integers into a sequence of bits such that
the average number of bits is minimized. It is defined as a reversible function γ from IL to J , where
I = {0, 1, ..., N − 1} and J is a collection of variable-length binary vectors. The input is generally
assumed to be a sequence of L realizations of a i.i.d. random variable with known probabilities.

The most widely used entropy coding technique is Huffman coding [Huf52]. The basic
principle of Huffman coding is to associate to each integer in I a variable length binary vector in
such a way that shorter binary vectors correspond to more probable input integers. For a L-length
input sequence, Huffman coding then simply concatenates the binary vectors associated to each
integer. The algorithm produces prefix codes, it means that the bit string representing a binary
vector is never a prefix of the bit string representing any other binary vector: this property allows
the decoder to distinguish binary vectors of different integers in the bitstream. Huffman coding is
the optimal entropy coding technique that maps a finite set of integers to a set of variable-length
binary vectors with the prefix condition, where the input probabilities are known. It is used for
example in MP3 [ISO92] and AAC [ISO01] to code the quantizer encoder output.

Another, yet less known, entropy coding technique is Golomb coding [Gol66]. It is similar
to Huffman coding as it associates to each integer in I = {0, 1, ..., N − 1} a unique variable-
length code that has the prefix condition. However, Golomb coding uses a much simpler and more
restrictive probability model than Huffman coding, where small input values are assumed to have
a higher probability than large input values. On the other hand, Golomb coding is able to deal
with infinite N , where Huffman coding cannot. It has been shown that Golomb coding is optimal
for an input with geometric distribution; this is then useful for run-length encoding of a sequence
of bits where the run-lengths follow a geometric distribution.

Arithmetic coding [Pas76, Ris76, WNC87, Sai04] is different from Huffman and Golomb
coding as there is no exact relationship between an integer and a variable-length binary vector, a
binary vector is associated to the entire input sequence of integers. Arithmetic coding is the optimal
source coding technique for infinite-length sequence of integers input, it is used for example in
MPEG-4 BSAC [PKS97] and MPEG-4 SLS [YRXK06]. See [Sai04] for a good report on arithmetic
coding.

The algorithms described above assume that the input is i.i.d. and that the probabilities
are known. In situations where this is not the case, adaptive versions of these algorthims are
preferred (e.g. adaptive Huffman coding [Gal78, Vit87], adaptive Golomb coding [Lan83] and
adaptive Arithmetic coding [WNC87, Sai04]).

2.3.3 Bitplane coding

Bitplane coding is an efficient combination of embedded quantization and lossless coding
that allows the coding of a sequence of real values in an embedded manner. Historically, bitplane
encoding was first used in wavelet-based image coding [Sha93, SP96], and only later in MDCT-based
audio coding [PKS97, RMB02, Dun06]. In the following, we first introduce embedded quantization,
then we describe the basic bitplane coding algorithm.

Embedded quantization refers to sets of quantizers that allow the successive refinement
of an input vector. In most bitplane coding approaches, the embedded quantizers are simple
scalar dead-zone quantizers similar to a midtread quantizer whose central cell width is double.
We detail the expression of these simple embedded quantizers in the following. We assume in the
following that the input is bounded and that the quantizers have a fixed cell width, but this is easily
extended to variable cell width by scaling the quantizers input. Considering P scalar quantizers

23

2.3. Source coding

Q(p), p = 1, ..., P with size N (p) = 2p+1 − 1, the output points of the quantizer Q(p) are defined as

yi = (i− 2p + 1/2)2−p , i = 0, 1, .., 2p − 2 (2.36)

y2p−1 = 0 (2.37)

yi = (i− 2p + 3/2)2−p , i = 2p, 2p + 1..., 2p+1 − 2 (2.38)

and the cells are defined as

R0 = {x ∈ R : x < b
(p)
0 } (2.39)

Ri = {x ∈ R : b
(p)
i−1 ≤ x < b

(p)
i } , i = 1, .., N (p) − 2 (2.40)

RN(p)−1 = {x ∈ R : b
(p)

N(p)−2
≤ x} (2.41)

with b
(p)
i , i = 0, ..., N − 2 are the cell boundaries defined as

b
(p)
i = (i− 2p + 1)2−p , i = 0, 1, .., 2p − 2 (2.42)

b
(p)
i = (i− 2p + 2)2−p , i = 2p, 2p + 1..., 2p+1 − 2 (2.43)

(2.44)

Figure 2.12 shows the first four quantizers Q(p), p = 1, ..., 4.

−1 −0.5 0 0.5 1

Quantizer Q(1)

Quantizer Q(2)

Quantizer Q(3)

Quantizer Q(4)

Figure 2.12: Example of simple scalar embedded quantizers (the cross are the output points and the
vertical lines are the cell boundaries).

Considering a real value x, the output of the quantizer encoder corresponding to Q(p) is
then represented by a binary vector c0c1...cp+1, where the first bit c0 represents the sign of x, and
the following bits c1...cp+1 represent the successive refinements of the amplitude of x

cj = mod(floor(abs(x) ∗ 2j), 2), j = 1, ..., p + 1 (2.45)

24

Chapter 2. Lossy audio coding: an overview

Considering a sequence of real values x0, x2, ..., xL−1, the quantizer encoder corresponding to Q(p)

produces a binary vector per input which are then concatenate in order to produce a binary matrix
(as shown in Fig. 2.13 for P = 4 and L = 12), where the column l corresponds to the quantizer
encoder output of xl, and the row j (also called level j) is called the j-th bitplane noted Bj . An
input xl is said to be significant at level j if abs(xl) ≥ 2−j . The significance of each input is stored
in a vector z (zl = 1 if the coefficient is significant, zl = 0 if not).

Figure 2.13: One iteration of the simple bitplane encoder. The two encoding passes are shown. The
bits in gray corresponds to the transmitted bits.

The basic principle of bitplane encoding is to send successively each bitplane starting from
the first bitplane. This is generally done using a scheme in two passes: the significance pass and
the refinement pass. The significant pass transmits the subset of the bitplane Bj corresponding to
the bits of the non already significant coefficients BSj = {cj,l|zl = 0}. The significance pass also
transmits the sign of the new significant coefficients. The refinement pass transmits the subset of
the bitplane Bj corresponding to the bits of the already significant coefficients BRj = {bj,l|zl = 1}.
All existing bitplane encoding algorithms differ essentially in the way they perform the significance
pass. The refinement pass is generally performed simply by sending directly the bits of BRj .
Image coders such as EZW [Sha93] and SPIHT [SP96] use a bitplane encoding algorithm with a
significance pass that uses the tree structure inherent of the wavelet transform. Though this tree
structure is less evident for a MDCT transform, similar bitplane encoding algorithms as SPIHT have
been applied to MDCT-based audio coding [RMB02, RMB03, SZM05]. Another way to perform
the significance pass is to use arithmetic coding to code the bits in BS; this is the technique chosen
by the MPEG-4 standards BSAC [PKS97] and SLS [YRXK06]. Finally, a technique proposed in
[Dun06] encode the bits in BS using Golomb runlength encoding.

25

2.4. Evaluation

2.4 Evaluation

Considering a PCM input signal x of length N called “reference signal”, a lossy audio
coder produces another signal x̂ called “test signal”. The aim of audio coding is to obtain a test
signal with a minimum of degradations in the perceived audio quality as compared to that of the
reference signal. It is thus necessary to evaluate these degradations from a perceptual point of view.
As the human listeners are the ultimate judges of quality, formal listening tests are considered as the
only satisfactory way to evaluate the performance of an audio coder. However, listening tests are
very time consuming as they have to involve a consequent number of trained “expert” listeners in
order to obtain relevant results. This is particularly true when one has to compare many signals and
coder configurations. Consequently, recent research has focus on trying to find efficient objective
measures that correlate well with listening tests results. Though these objective measures are far
from being perfect, they give a good indication on the perceived audio quality and they are useful
e.g. for tuning the coder parameters. We present in the following the most used listening tests
methods, and some of the most recent objective measures.

2.4.1 Listening tests

ITU-R BS.1116-1 It is referred to as “Methods for the subjective assessment of small impair-
ments in audio systems including multichannel sound systems” [ITU97]. It is also called ABC/HR,
or just ABC. This test is generally used for the evaluation of (near-)transparent audio coding. The
BS.1116-1 test gives to the subject three stimuli to listen to. These are the reference signal, a
signal A and a signal B. Either A or B is the same as the reference signal, and is thus called hidden
reference. The other one is the test signal. The subject has to give a score to both signals A and
B, on a 5-point scale (1. Very annoying, 2. Annoying, 3. Slightly annoying, 4. Perceptible, but not
annoying and 5. Imperceptible). The subject is forced to give the maximum score to at least one
of the two signals. The final score is the difference between the test signal score and the reference
signal score, it is called Subjective Difference Grade (SDG). As an example, this test has been used
by MPEG for evaluating MPEG-2 AAC at high bitrates [ISO98a, ISO96].

ITU-R BS.1534-1 It is referred as “Method for the subjective assessment of intermediate quality
levels of coding systems” [ITU03], but it is usually called MUltiple Stimuli with Hidden Reference
and Anchors (MUSHRA). This test is usually used to evaluate medium to high quality audio coding.
The BS.1534-1 test gives the subject several stimuli to hear. These include the reference, an hidden
reference, one or more anchors and several tests signals. The anchors are generally low-pass versions
of the reference signal, and aim at providing a low-quality signal that scale the output such that test
signals are not scored too low. The subject is asked to evaluate each stimuli using scores that range
from 0 (extremely poor quality) to 100 (transparent). As an example, this test has been used by
MPEG for evaluating MPEG-4 HE-AAC [ISO03] and MPEG-4 SSC [ISO04b]. Several open-source
implementations of the evaluation interface are available (e.g. MUSHRAM [Vin08], see Fig. 2.14).

2.4.2 Objective Measures

The simplest objective measure is the Signal to Noise Ratio (SNR), defined as

SNR(x, x̂) = 10 log10

(

∑N
n=1 x2

n
∑N

n=1(xn − x̂n)2

)

(2.46)

26

Chapter 2. Lossy audio coding: an overview

Figure 2.14: MUSHRAM: A matlab interface for B.1534-1.

However, it is obvious that SNR is far from being a good measure of the perceived quality of coded
audio. One well known example that illustrates this purpose is the comparison of two tests signals,
one obtained by passing a reference signal through a high quality audio coder (e.g. AAC), another
one by adding white noise to the same reference signal such that the resulting SNR is the same as
the SNR of the first test signal. In most cases, one cannot distinguish the reference signal from
the first test signal, whereas the second test signal is easily distinguished. More complex measures
are thus generally used (Fig. 2.15 shows a simplified block diagram of an objective measure).
These approaches are based on an auditory model, which is applied to the reference and tests
signal. These auditory models produce an internal representation for each signal, which are then
compared in order to produce an objective measure. This measure ideally scales with the perceived
signal differences. In the following, we present two of the most recent existing objective measures.

Figure 2.15: Simplified block diagram of an objective measure.

PEAQ Perceptual Evaluation Audio Quality [TTB+00] is the only standardized objective mea-
sure for the assessment of audio coding quality. It has been standardized by ITU-T as BS.1387 in
1998 [ITU98] and revised as BS.1387-1 in 2001 [ITU01]. PEAQ is a combination of several auditory
models developed independently. Several features are extracted from these models for the reference
and the test signals and are passed trough a neural network. This neural network outputs an objec-

27

2.5. Conclusions

tive measure on the same scale than the Subjective Difference Grade used in BS.1116, and is thus
called Objective Difference Grade (ODG). The neural network is trained using a large database
of listening tests performed on various signals and coders, using the BS.1116 method. It is thus
very specialized to the task of evaluating small impairment in audio coding systems. A commercial
implementation of PEAQ is available in a proprietary software called Opera (OPTICOM [Opt08]).
The PEAQ standard has also been well studied by P. Kabal in [Kab03], and his team has imple-
mented an open source version of PEAQ but he claims in [Kab03] that the standard described in
[ITU98] and [ITU01] is not detailed enough for a conforming implementation.

PEMO-Q PEMO-Q has been proposed by Huber and Kollmeier in 2006 [HK06] and it is an
extension of an objective measure of speech quality proposed by Hansen and Kollmeier in 2000
[HK00]. PEMO-Q uses an auditory model based on the work of Dau et al. [DPK96, DKK97] to
compute internal representations of the reference and the test signals. Then the cross-correlation
of these representations is computed and produces a first objective measure called Perceptual
Similarity Measure (PSM), whose value range from 0 (extremely poor quality) to 1 (transparent).
PEMO-Q also produces a second objective measure, which is the fifth percentile of the sequence
of instantaneous PSM. This second measure is mapped to the Subjective Difference Grade used in
BS.1116 and is thus called Objective Difference Grade, as PEAQ. The main difference with PEAQ
is that PEMO-Q does not use a machine learning system (neural network in PEAQ) trained with
a large database of listening tests results, and thus is less specialized than PEAQ. Authors claim
that PEMO-Q is able to predict not only the perceived quality of coded audio, but of any distorted
audio signals.

2.5 Conclusions

We have proposed in this first chapter a short review of lossy audio coding. We have first
introduced the main signal representation approaches used in state-of-the-art lossy audio codecs.
We have seen that there are 3 main categories: the filter banks, the parametric models, and the
hybrid approaches. The filter banks are preferred for CD-quality audio codecs such as MP3 and
AAC, while parametric modeling give better performance in low bitrates speech and audio codecs
such as AMR and SSC. In this thesis, we consider CD-quality audio coding, and investigate new
signal representations that perform better that the filter banks (particularly the state-of-the-art
MDCT) at low bitrates. These new signal representation approaches are based on a class of signal
representations known as sparse signal representations. This is a research domain that has also
found interests in other coding applications such as image and video coding. We will review sparse
signal representations in the next chapter.

In the second section, we have then reviewed source coding. We have briefly introduced
quantization and entropy coding, and we have particularly emphasized a source coding technique
called bitplane coding that allows scalable coding. This technique was originally proposed for image
coding, but is now used also in scalable audio codecs such as the standards MPEG-4 BSAC and
MPEG-4 SLS.

Finally, we have introduced several techniques for evaluating lossy audio coding. Both lis-
tening tests and objective evaluation measure will be used in this thesis for evaluating the proposed
lossy audio codecs.

28

29

Chapter 3

Sparse signal representations

Abstract

In this chapter, we review the foundations of the so-called sparse representations,
that will be used as the primary tool for our new audio codec. As there are numerous
approaches in this research domain, we focus on the techniques related to our study,
namely the greedy algorithms (e.g. Matching Pursuit) and the dictionaries used in
the coding applications.

Contents
3.1 Introduction . 30

3.2 Problems and solutions . 30

3.2.1 Mathematical settings . 30

3.2.2 Exact signal representations . 31

3.2.3 Signal approximations . 32

3.3 Greedy algorithms . 34

3.3.1 Matching Pursuit . 35

3.3.2 Variants of Matching Pursuit . 36

3.4 Dictionaries used in coding applications 37

3.4.1 Orthogonal dictionaries . 38

3.4.2 Overcomplete dictionaries . 39

3.5 Conclusions . 40

3.1. Introduction

3.1 Introduction

Sparse signal representations aim at representing a signal with a small number of ele-
mentary functions. These functions are chosen among a collection of arbitrary size, which may
be much larger than the signal length. Sparse signal representations find obvious applications in
coding such as audio coding (e.g. [Vaf04, VP07]), image coding (e.g. [FiVVF06]) and video coding
(e.g. [NZ97, GMPV04]). They have also been applied successfully to numerous other applications,
examples of recent work include: image decomposition [SED05]; blind source separation [FG06];
convolutive blind source separation [HXDC07]; multimodal signal analysis [MJV+07]; image de-
noising, inpainting and demosaicing [MMES08]; audio denoising [FTDG08]; musical instrument
recognition [LLV+08].

The first main problem of sparse representations is to find “the best representation”. This
actually implies two issues, how to define the best representation, and how to find this representa-
tion. This will be discussed in the sections 3.2 and 3.3. The second main problem is to choose the
collection of elementary functions that will be used to represent a signal. In most applications, the
elementary functions are deterministic waveforms. We review some of these waveforms in section
3.4. As we are interested in this thesis in coding applications, we restrain our review to the sparse
representations used in coding applications (audio, image and video).

3.2 Problems and solutions

3.2.1 Mathematical settings

We consider a column vector (the signal) x in RN . The signal x is approximated (with
possible equality) by a linear combination of K unit-norm column vectors gk

x ≃
K
∑

k=1

ckgk (3.1)

The vectors gk belong to RN and are called “atoms” and the scalars ck are the coefficients. The
finite collection of all atoms is called “dictionary” and is written as

D = {gk, 1 ≤ k ≤ K} (3.2)

To simplify notations, we define the synthesis matrix Φ of size N ×K, where the columns Φk of
Φ correspond to the atoms gk; ΦΓ the submatrix of Φ containing only those columns of Φ with
indices in a set of indices Γ; the column vector c, where elements are the coefficients ck; and cΓ is
the subvector of c containing only those elements of c with indices in Γ. We then have

x ≃ Φc (3.3)

If there is equality in (3.3), the signal is represented exactly by a linear combination of atoms, and
the vector of coefficients c is then called “exact representation” (or just representation). Otherwise,
the signal is approximated with more or less precision by a linear combination of atoms, the vector
of coefficients c is then called “approximation”, and x̂ = Φc is called the “approximant” of x. We
consider these two cases in the following.

30

Chapter 3. Sparse signal representations

3.2.2 Exact signal representations

We consider first the case of an exact signal representation, the signal is then represented
exactly by a linear combination of atoms

x = Φc (3.4)

The problem is now to find a representation c, given a signal x and a dictionary Φ. We distinguish
two cases in the following. Firstly, if the dictionary is an orthonormal basis, then the solution is
straightforward. Secondly, if the dictionary is overcomplete, then the problem is generally more
complicated.

Orthonormal basis

We first consider the simple case of the orthonormal basis. The dictionary is an orthonor-
mal basis if K = N and the atoms are mutually orthogonal. In this case, Φ is an orthogonal matrix
and Φ is invertible with Φ−1 = ΦT . The signal representation is then unique and is given by

c = ΦTx (3.5)

Overcomplete dictionary

Sparse representations The dictionary is overcomplete when it spans the entire signal space
RN and its size is superior to the signal dimension K > N . In this case, the signal representation is
not unique. There exists an infinite number of representations that verify (3.4). In this chapter, we
are interested in sparse representations, which are the representations, among all possible represen-
tations, that concentrate the signal energy on few coefficients. Sparse representations are then the
representations that minimize a measure of “sparseness”. Several measures of the “sparseness” of a
representation have been proposed in the literature. The most popular measure is the “p-like-norm
sparseness measure” E(p) (c) with 0 ≤ p ≤ 1 defined as

E(p) (c) =

(

K
∑

k=1

|ck|p
)

1
p

(3.6)

for p > 0 and

E(0) (c) = lim
p→0

K
∑

k=1

|ck|p (3.7)

Using this sparseness measure, a sparse representation is then defined as a solution of the following
problem

Pp : min
c

E(p) (c) subject to x = Φc (3.8)

Ideal solution The 0-like-norm measure is often used to define the sparsest possible represen-
tation, as E(0) (c) is equal to the number of non-zero terms in c. However, Natarajan [Nat95]
has shown that solving the problem P0 is NP-hard if the dictionary is unrestricted, it means that
it is solved only by an exhaustive search among all possible combinations of atoms. In practical
applications, such an exhaustive search is clearly impossible.

31

3.2. Problems and solutions

Method of frames A straightforward solution exists for the generalized case p = 2. Indeed, the
generalized problem P2 corresponds to the least square problem

P2 : min
c

K
∑

k=1

c2
k subject to x = Φc (3.9)

which has a unique solution given by

copt = Φ+x (3.10)

where Φ+ is the pseudo-inverse of Φ and is defined as

Φ+ = ΦT
(

ΦΦT
)−1

(3.11)

This is the solution adopted by the method of frames [Dau88]. The solution given by P2 has
minimum energy but this energy is generally spread on many coefficients and thus is generally not
sparse [CDS99].

Basis Pursuit Sparse representations are obtained when considering the case 0 < p ≤ 1. Chen,
Donoho and Saunders considered the case p = 1 in [CDS99]. The corresponding problem, called
Basis Pursuit, is

P1 : min
c

K
∑

k=1

|ck| subject to x = Φc (3.12)

It is possible to formulate this problem as a Linear Programming problem and thus solve it by
standard Linear Programming algorithms, such as the simplex method or the interior point method.

FOCUSS Rao and Kreutz-Delgado considered the more general case 0 < p ≤ 1 in [RKD99]
and proposed a class of algorithms called FOCal Undetermined System Solver (FOCUSS) for the
problem

P0<p≤1 : min
c

K
∑

k=1

|ck|p subject to x = Φc (3.13)

The authors also considered other sparseness measures in [RKD99], such as the Gaussian entropy
and the Shannon entropy.

Best Orthogonal Basis The Shannon entropy has also been considered by Coifman and Wick-
erhauser in [CCW92]. They have proposed a method, called Best Orthogonal Basis, that selects the
best orthogonal basis among a union of orthogonal basis, the best one being the one that minimizes
the entropy of the representation. However, this algorithm has severe limitations: the dictionary is
restricted to a union of orthonormal basis, and the signal cannot be represented by elements from
different basis.

3.2.3 Signal approximations

Sparse approximations We now consider the case of a signal approximation. The signal is then
approximated by a linear combination of atoms

x ≃ x̂ = Φc (3.14)

32

Chapter 3. Sparse signal representations

We are interested here in sparse approximations. These are defined as approximations whose
approximant verifies the following two properties: its energy is concentrated on few coefficients,
and it is as close as possible to the signal. The measure of the approximation error is generally
based on the l2 norm, and is given by

‖x− x̂‖22 = ‖x−Φc‖22 (3.15)

but it is important to remark that other approximation measures are also used in specific appli-
cations (e.g. psychoacoustic-motivated distortion measure in parametric audio coding [HVK02,
VP07]). To measure the sparseness of the approximation, as for the exact representation case, the
p-like-norm is a popular choice. A sparse approximation is thus generally defined as the solution
of the following problem

Pp,λ : min
c
‖x−Φc‖22 + λE(p) (c) (3.16)

The parameter λ balances the two terms of the sum. If λ is large, then the solution is very sparse
and the error is large; if λ is small, the error is small but the solution is less sparse.

Ideal solution The l0-norm-like is generally used to define the sparsest possible approximation,
but as for the exact representation problem P0, finding a solution to the problem P0,λ is NP-hard
and it is thus impossible in practical applications.

Method of frames denoising A straightforward solution is given in the case p = 2. The solution
of the problem

P2,λ : min
c
‖x−Φc‖22 + λE(2) (c) (3.17)

is given by

copt = ΦT
(

ΦΦT + λI
)−1

x (3.18)

But similarly to the problem P2, the solution is not sparse [CDS99].

Basis Pursuit Denoising Chen, Donoho and Saunders, who have considered the exact signal
representation case with p = 1, called Basis Pursuit, have also considered the signal approximation
case, and derived a similar problem for p = 1, called Basis Pursuit Denoising [CDS99]

P1,λ : min
c
‖x−Φc‖22 + λE(1) (c) (3.19)

It is possible to formulate this problem as a quadratic programming and thus to find a solution
using standard quadratic programming techniques, such as Active Set algorithms.

Thresholding algorithms Quadratic programming algorithms that solve Basis Pursuit Denois-
ing require high computational cost. However, when the dictionary has a particular structure,
there exist fast algorithms that lead to the solution of P1,λ. The first example is the case of the
orthonormal basis, where the optimal solution of P1,λ is obtained by soft-thresholding [Don95]

copt = ηλ

(

ΦTx
)

(3.20)

with

ηλ (c) =











c− λ
2 , if c ≥ λ

2

0 , if |c| ≤ λ
2

c + λ
2 , if c ≤ −λ

2

(3.21)

33

3.3. Greedy algorithms

Sardy, Bruce and Tseng [SBT00] extend this result to a union of orthonormal basis and proposed
an alternate soft-thresholding algorithm, called Block Coordinate Relaxation. It is an iterative
algorithm that updates at each iteration the coefficients corresponding to only one orthonormal
basis using soft-thresholding. It is shown in [Don95] that this algorithm converges to the optimal
solution of P1,λ. But this algorithm is ineffective when λ→ 0. More general and similar algorithms
are known as iterative thresholding algorithms, they work with any dictionary and converge to a
local minimum of P1,λ, a good review of these algorithms is [EMSZ07].

LASSO A problem similar to Basis Pursuit Denoising (P1,λ) is considered by Tibshirani et al.
and called the Least Absolute Shrinkage and Selection Operator (LASSO) problem [Tib96]. Algo-
rithms that solve this problem include the Least Angle Regression [EJHT04], and more recent and
faster algorithms such as e.g. Gradient Projection [FNW07] or Preconditioned Conjugate Gradient
[KKL+07].

Regularized FOCUSS Rao, Engan, Cotter, Palmer and Kreutz-Delgado [RRE+03] have con-
sidered the more general problem

P0<p≤1,λ : min
c
‖x−Φc‖22 + λE(p) (c) (3.22)

and proposed several algorithms which are regularized versions of the FOCUSS algorithms.

Bayesian framework Another class of methods that find sparse approximations are based on a
Bayesian framework (e.g. [VP07, FTDG08]). The sparseness of the approximation is imposed as a
prior on the coefficients, then the approximation is found using Maximum A Posteriori.

Greedy algorithms Finally, another class of methods that find sparse approximations are based
on iterative methods that selects one atom at a time, they are known as greedy algorithms. They
are very popular due to their performance and their relative low complexity. This is also the class
of methods we have chosen for our project, and thus we detail them with more details in the
following.

3.3 Greedy algorithms

We have presented in the last section a number of algorithms that find sparse represen-
tations/approximations. However, they are only used in very specific applications, and none of
these are found in real coding applications. The reason is either they are restricted to a specific
dictionary, or they have a limited performance, or they are too complex, or they are too recent.

We present in this section a class of algorithms, called “greedy algorithms” that are able
to find sparse approximations with a good compromise in terms of performance and complexity.
The greedy algorithms are used in a number of applications including audio coding (e.g. [Vaf04]),
image coding (e.g. [FiVVF06]) and video coding (e.g. [NZ97]).

Greedy algorithms are iterative algorithms that solve P0,λ at each iteration. However, this
local optimization does not lead to a global optimization in the general case. The basic principle of
greedy algorithms is as follows. At each iteration, a new atom is added to the approximation, which
makes the approximation error tend to zero. The algorithm stops when a user-specified criteria
is met. We first describe in the following the simplest greedy algorithm, called Matching Pursuit.
Then, we describe variants of this algorithm. We assume in the following that the dictionary is
complete.

34

Chapter 3. Sparse signal representations

3.3.1 Matching Pursuit

Matching Pursuit (MP) [MZ93] is the first and simplest greedy algorithm. It selects at
each iteration the locally optimal atom i.e. the atom that minimizes the error at the current
iteration, and subtract it to the residual.

The algorithm is initialized at iteration n = 0 by setting r0 = x, where rn = x − x̂n is
the residual at iteration n and x̂n is the approximant at iteration n. We suppose now that we have
computed the residual at iteration n, it is then further decomposed by projecting it orthogonally
on an atom gkn

rn = 〈rn,gkn
〉gkn

+ rn+1 (3.23)

Since the residual rn+1 is orthogonal to the atom gkn
, we have

‖rn‖2 = |〈rn,gkn
〉|2 + ‖rn+1‖2 (3.24)

At iteration n, the optimal atom index kn is the one which minimizes the norm of the residual

kn = argmin
1≤k≤K

‖rn+1‖2 (3.25)

The minimum is unique and the optimal atom index is given by

kn = argmax
1≤k≤K

|〈rn,gk〉| (3.26)

which corresponds to the atom that is most correlated with rn and the corresponding coefficient is

ckn
= 〈rn,gkn

〉 (3.27)

and the approximant at iteration n is given by

x̂n =

n−1
∑

i=0

cki
gki

(3.28)

The algorithm is stopped when a condition on the number of atoms or on the residual is met. A
simple pseudo-code of the MP algorithm is given in Algorithm 4.

Algorithm 4: Matching Pursuit

Input: The signal x and the dictionary Φ
Output: The vector of coefficients c and the residual r such that x = Φc + r
Initialization: r = x, c = 0;1

repeat2

Inner products: a = ΦT r;3

Find maximum: kmax = argmax
1≤k≤K

|ak|;
4

Update coefficients: ckmax
= ckmax

+ akmax
;5

Update residual: r = r− akmax
Φkmax

;6

until a stopping condition is met ;7

We now recall the convergence of MP [MZ93]. We first define the correlation ratio of a
vector f with respect to the dictionary D

λ (f) = max
1≤k≤K

|〈f ,gk〉|
‖f‖ (3.29)

35

3.3. Greedy algorithms

At iteration n, MP chooses the atom kn and we have

‖rn+1‖2 = ‖rn‖2 − |〈rn,gkn
〉|2 = ‖rn‖2

(

1− λ2 (rn)
)

(3.30)

It is proved in [MZ93] that λ (f) is strictly larger than a positive constant

∃β > 0 such that λ (f) > β , ∀f ∈ RN (3.31)

β is a constant that depends only on the dictionary, it can be interpreted as the cosine of the
maximum angle between any direction in RN and the closest element of the dictionary [MZ93]. We
then have

‖rn+1‖2 ≤ ‖rn‖2
(

1− β2
)

(3.32)

and
‖rn‖ ≤ ‖x‖

(

1− β2
)n/2

(3.33)

This guarantees that MP converges to zero, and it even says that it converges exponentially. How-
ever, this upper bound on the residual energy is pessimistic as it generally decreases much faster
in the first iterations.

3.3.2 Variants of Matching Pursuit

Orthogonal Matching Pursuit Matching Pursuit selects at each iteration the optimal atom,
which is only locally optimal. The first selected atoms are not guaranteed to be optimal globally.
Orthogonal Matching Pursuit (OMP) [PRK93] is a variant of MP that at each iteration, optimizes
the weights of the already selected atoms by projecting orthogonally the signal onto these atoms.
At iteration n, OMP selects an atom using the same criterion as MP, and then solves the following
least-squares problem

min
cΓn

‖x−ΦΓncΓn‖2 (3.34)

where Γn is the set of indices of the selected atoms up to and including iteration n

Γn = {ki, 1 ≤ i ≤ n} (3.35)

This problem has a unique solution which is

cΓn = Φ+
Γn

x (3.36)

Algorithm 5: Orthogonal Matching Pursuit

Input: The signal x and the dictionary Φ
Output: The vector of coefficients c and the residual r such that x = Φc + r
Initialization: r = x, c = 0, Γ = ∅;1

repeat2

Inner products: a = ΦT r;3

Find maximum: kmax = argmax
1≤k≤K

|ak|;
4

Update indices set: Γ = Γ ∪ kmax;5

Update coefficients: cΓ = Φ+
Γ x;6

Update residual: r = x− Φc;7

until a stopping condition is met ;8

36

Chapter 3. Sparse signal representations

where Φ+
Γn

is the pseudo-inverse of ΦΓn . A simple pseudo-code of the OMP algorithm is given
Algorithm 5.

As compared to MP, OMP needs one additional operation, the computation of the pseudo-
inverse of ΦΓ, which is very costly if computed directly. Efficient implementations of this operation
exist, such as [MDZ94] which is based on QR factorization, and [CARKD99] which is based on
Cholesky factorization.

Gradient Pursuits Blumensath and Davies proposed in [BD08] two variants of Matching Pursuit
based on directional optimization: Gradient Pursuit (GP) and Approximate Conjugate Gradient
Pursuit (ACGP). At iteration n, they select the best atom as in MP. Then, instead of updating
ckmax

by adding akmax
(see Alg. 6), they propose a directional update, which is different for GP

and ACGP. These algorithms outperform MP with performances close to OMP. The advantage
compared to OMP is less computational complexity and memory demands, which make them
usable in practical applications. The pseudo-code of the gradient pursuits is given below

Algorithm 6: Gradient Pursuits

Input: The signal x and the dictionary Φ
Output: The vector of coefficients c and the residual r such that x = Φc + r
Initialization: r = x, c = 0, Γ = ∅;1

repeat2

Inner products: a = ΦT r;3

Find maximum: kmax = argmax
1≤k≤K

|ak|;
4

Update indices set: Γ = Γ ∪ kmax;5

Calculate update direction dΓ;6

Calculate corresponding vector: h = ΦΓdΓ;7

Calculate corresponding coefficient: b = 〈r,h〉/‖h‖22;8

Update coefficients: cΓ = cΓ + bdΓ;9

Update residual: r = r− bh;10

until a stopping condition is met ;11

Other variants Other variants of MP include for example Weak (Orthogonal) Matching Pursuit
[Tem00], that relaxes the atom selection rule in (O)MP and tree-based Pursuit [JVF06], that uses
a tree structure to reduce complexity in MP.

3.4 Dictionaries used in coding applications

One of the main issues in sparse representations/approximations is the design of the
dictionary. A first possibility is to learn the dictionary from a large collection of signals (e.g.
[EA06, MJV+07]). Another possibility is to use deterministic dictionaries. An exhaustive review
of all deterministic dictionaries is out of the scope of this chapter. Instead, as we are interested
in coding applications, we restrict our review to the dictionaries used in audio/image/video coding
applications. We first review some of well-known orthogonal dictionaries, which are used widely
in standard transform coding. We then review some overcomplete dictionaries that have been
successfully applied to coding applications.

37

3.4. Dictionaries used in coding applications

3.4.1 Orthogonal dictionaries

The most basic orthogonal dictionary is the Dirac dictionary. This corresponds to a Pulse
Code Modulation (PCM) signal representation. For a signal of length N , the atoms are given by

gm(n) =

{

1 if m = n

0 otherwise
, 0 ≤ n, m < N (3.37)

When dealing with audio signals, we obtain much sparser representations using time-
frequency dictionaries based on local cosine functions. The reason is that audio signals are es-
sentially composed by sinusoidal components. The most widely used orthogonal time-frequency
dictionary in audio coding is the MDCT introduced in Sec. 2.2.1. The atoms corresponding to a
MDCT with a fixed window length 2L are given by

gp,k(n) = wp(u)

√

2

L
cos

[

π

L

(

u +
L

2
+

1

2

)(

k +
1

2

)]

(3.38)

and

u = n−
(

p− 1

2

)

L (3.39)

and wp(u) the analysis window defined on 0 ≤ u < 2L. Refer to Sec. 2.2.1 for details. Examples of
MDCT atoms for a fixed window size MDCT are on Fig. 3.1.

100 200 300 400 500 600 700 800 900 1000
−0.1

0

0.1

Time (samples)

A
m

pl
itu

de

MDCT atom for N=1024, L=128, p=0, k=10

100 200 300 400 500 600 700 800 900 1000
−0.1

0

0.1

Time (samples)

A
m

pl
itu

de

MDCT atom for N=1024, L=128, p=1, k=20

100 200 300 400 500 600 700 800 900 1000
−0.1

0

0.1

Time (samples)

A
m

pl
itu

de

MDCT atom for N=1024, L=128, p=2, k=30

100 200 300 400 500 600 700 800 900 1000
−0.1

0

0.1

Time (samples)

A
m

pl
itu

de

MDCT atom for N=1024, L=128, p=3, k=40

Figure 3.1: Example of MDCT atoms for a signal of length N = 1024 and a MDCT of fixed window
size 2L = 256 and a sine-based window shape.

When dealing with images, either frequency dictionaries such as the Discrete Cosine Trans-
form (DCT) or time-scale dictionaries such as the Discrete Wavelet Transform (DWT) are preferred.
As an example, the JPEG image coder uses a DCT on small blocks of 8x8 or 16x16 pixels. The
atoms corresponding to a 2-dimension DCT with size M ×N are defined as:

gp,q(m, n) = αpβq cos

[

π

M

(

m +
1

2

)]

cos

[

π

N

(

n +
1

2

)]

(3.40)

with

αp =

{

√

1/M , p = 0
√

2/M , p > 0
(3.41)

38

Chapter 3. Sparse signal representations

and

βq =

{

√

1/N , q = 0
√

2/N , q > 0
(3.42)

Fig. 3.2 shows all atoms corresponding to a DCT of size 8× 8 (as in JPEG).

Figure 3.2: All 64 atoms corresponding to a DCT of size 8× 8

DWT is used in more recent standard image coding. A well-known example is JPEG2000
[ISO04a] that uses biorthogonal wavelets, either Daubechies 5/3 wavelets or LeGall 5/3 wavelets.
A good reference for wavelet-based transforms is [Mal98].

3.4.2 Overcomplete dictionaries

The earliest and now widely used overcomplete time-frequency dictionary is the Gabor
dictionary [Gab47], whose atoms are defined as complex exponential modulated Gaussian windows
w and given for a 1-D continuous signal

gs,u,f (t) = w

(

t− u

s

)

e2jπft (3.43)

where u is the time shift, s is the scale and f is the frequency. In practice, discretized Gabor
atoms are used. Gabor atoms were originally defined using a Gaussian window, but they now
refer more generally to the modulated version of any window. It is important to remark that
Gabor atoms are complex atoms, and consequently a real signal is usually represented by pair of
conjugate atoms [MZ93, Gri99, Goo01]. 1-D Gabor atoms are used in parametric audio coding (e.g.
[LS98, VM00, PM00, dSO02, Vaf04]), to model the sinusoidal components of an audio signal. 2-D
Gabor atoms are also used in video coding (e.g. [NZ97, ASMN+99]), to model the motion residual
signals. Figure 3.4.2 shows examples of 1D and 2D gabor atoms (these are discrete signals).

Gabor atoms are very similar to MDCT/DCT atoms as they are all based on local cosine
functions. However, Gabor atoms are more general and allow more freedom in the parameters
of the local cosine functions as compared to the MDCT/DCT: a free phase, a better frequency
resolution, and a freedom in the window size and shape. Such a freedom allows to design large
dictionaries where there is more chance to find atoms that best match the signal to model, and
consequently Gabor dictionary generally produces sparser approximations than MDCT/DCT.

39

3.5. Conclusions

500 1000 1500 2000 2500 3000 3500 4000
−0.2

0

0.2

Time (samples)

A
m

pl
itu

de

500 1000 1500 2000 2500 3000 3500 4000
−0.2

0

0.2

Time (samples)

A
m

pl
itu

de

500 1000 1500 2000 2500 3000 3500 4000
−0.2

0

0.2

Time (samples)

A
m

pl
itu

de

500 1000 1500 2000 2500 3000 3500 4000
−0.2

0

0.2

Time (samples)

A
m

pl
itu

de

Figure 3.3: Examples of 1D and 2D Gabor atoms

Other time-frequency atoms well-suited for audio signals are the so-called harmonic atoms,
which are composed by a linear combination of several Gabor atoms whose frequencies are in
harmonic relation. They defined, for a 1-D continuous signal, as

hs,u,f0,a,φ =
∑

k

ake
jφkgs,u,k.f0 (3.44)

where gs,u,k.f0 are Gabor atoms, ak the partial amplitudes, and φk the partial phases. Harmonic
atoms are used for example in the standard MPEG-4 HILN [PM00], and also in more recent and
experimental very low bitrate parametric audio coding [VP07, CRLD07].

For modeling images, another well suited dictionary is generated by applying meaningful
geometric transformations to one or more generating functions. The transformations are of 3 types:
translation, rotation and anisotropic scaling. The generated atoms efficiently model the edges of
the images. Such a dictionary is successfully applied to low bitrate image coding in [FiVVF06] and
to hybrid video coding in [GMPV04].

3.5 Conclusions

We have introduced in this chapter sparse signal representations. The basic principle
of sparse signal representations is to model a signal as a sum of small number of elementary
functions (called atoms) which are chosen among a collection (called dictionary) of arbitrary size.
We have then defined the basic problems of such representations. One the one hand, we have seen
that the problems have a straightforward solution if the dictionary is an orthogonal basis (this is
the case for example of an MDCT in transform coding). On the other hand, sparser solutions
are generally obtained when using overcomplete dictionaries (for example Gabor atoms used in
sinusoidal modeling) because there are more chances of finding atoms that best match the signal to
model in a larger dictionary, but in this case the problems are also much more complicated. We have
then reviewed some algorithms that find sparse representations/approximations in overcomplete
dictionaries. The main issue of such algorithms is the computational complexity and we have then
focused on a class of algorithms that allow a good trade-off between performance and complexity,
called greedy algorithms and including the well-known Matching Pursuit.

40

41

Chapter 4

Signal representation in a union of
MDCT bases

Abstract

This chapter proposes a new signal representation approach for audio coding. It is
a generalization of the standard MDCT where several MDCT bases with different
scales are used simultaneously. A signal is approximated over a union of MDCT bases
using the matching pursuit algorithm. We show that this new approach gives sparser
approximations than a single MDCT but at a higher computational cost. We also
proposes a new modified matching pursuit algorithm that allows the reducing of the
pre-echo artifact. In this chapter, we restrain our study to the signal representation
only. We will see how it is applied to audio coding in the next chapters.

Contents
4.1 Introduction . 42

4.2 Signal model . 42

4.2.1 Motivations . 42

4.2.2 Model formalization . 43

4.3 Fast implementation of Matching Pursuit in a union of MDCT bases . 46

4.3.1 MP: Naive implementation . 47

4.3.2 MP: Fast implementation . 47

4.3.3 Fast Implementation of the MDCT . 48

4.4 Experiment . 50

4.4.1 Experimental setup . 50

4.4.2 Results . 51

4.4.3 Discussion . 54

4.5 Modified Matching Pursuit with pre-echo control 54

4.5.1 Problem statement . 54

4.5.2 Proposed algorithm . 55

4.5.3 Results . 56

4.6 Conclusions . 58

4.1. Introduction

4.1 Introduction

We have presented in the first chapter a review of existing signal represention methods
used in modern speech and audio coders. We have then presented in the second chapter a particular
class of signal representations, named sparse signal representations, used in numerous applications
and particularly in many coding applications such as audio, image or video coding.

We propose in this chapter a new signal representation for audio coding that uses the
methods of the sparse signal representations. This new signal representation is based on a union
of a number of MDCT bases with different scales. Our approach is related to and different from
existing methods in several ways. First, it is related to MDCT-based coding (see section 2.2.1, e.g.
MPEG-4 AAC) and could be seen as a generalization of the transform approach since it is based on
a simultaneous use of a union of MDCT bases. Second, our approach is also related to sinusoidal
modeling based coding (see section 2.2.2, e.g. MPEG-4 SSC). We model the signal as a sum of multi-
scale sinusoidal atoms which is closely related to multiresolution sinusoidal modeling. In sinusoidal
modeling based audio coding, the sinusoidal model tries to match the sinusoidal content of the
signal as closely as possible, which is done using complex sinusoidal atoms with a precise estimate
of amplitude, frequency and phase and a post-processing stage that builds sinusoidal tracks. In
our approach, we extract real sinusoidal atoms with only an amplitude parameter, and so we do
not have to transmit any phase parameter. Contrary to the parametric approach, our frequencies
are sampled from a limited range (the FFT size equals the analysis window length), which permits
transmission of frequency without requantizing. Moreover, since the sinusoidal decompositions
used in parametric audio coding extract a limited number of sinusoids from the signal and model
the residual as noise (plus perhaps transients modeling). Clearly, the sinusoidal decompositions
only model a subspace of the signal which limits their performance at high bitrates. Our approach
is more general as it models the signal entirely with sinusoidal atoms, which is feasible here at
reasonable coding cost because the set of time-frequency atoms has a limited size and consequently
the cost to encode the index of the selected atoms is not prohibitive. As a consequence, it has the
possibility of providing transparency at high bitrates.

In this chapter, we restrain our study to the signal representation only. We will see how it
is applied to audio coding in the next chapters. We first formalize the signal model (the dictionary)
in Section 4.2. Then, we describe the algorithm that finds sparse approximations and present a
few results in Sections 4.3 and 4.4. And finally, we raise a problem introduced by the standard
decomposition algorithm and propose a solution to solve it in Section 4.5.

4.2 Signal model

We propose a new signal representation method where a signal is approximated by a linear
combination of atoms. These atoms are chosen among a dictionary composed by a union of MDCT
bases. In this section, we first explain why we have chosen such a dictionary. Then, we formalize
the signal model.

4.2.1 Motivations

State-of-the-art audio coders that provide (near-)transparent quality are based on MDCT
(ex. AAC). We have seen in Sec. 2.2.1 that MDCT with a window length L is an orthogonal
transform, and thus provides perfect reconstruction with critical sampling. However, as explained
in Sec. 2.2.1, using a fixed window length provides a time-frequency transform with a fixed time-
frequency resolution. Either the window size is long (e.g. 2048 samples) and the transform has a

42

Chapter 4. Signal representation in a union of MDCT bases

good frequency resolution but a poor time resolution, or the window size is short (e.g. 256 samples)
and the transform has a good time resolution but a poor frequency resolution. The solution used in
state-of-the-art audio coders and presented in Sec. 2.2.1 is to use an adaptive window size. Usually
two window sizes are used, one long for stationary parts and one short for transients; the decision
to use one or the other is based on an energy or a perceptual entropy criterion. This time-varying
MDCT is still an orthogonal transform if appropriate window shapes are used, particularly for the
transition between long and short window sizes. A more general approach has been proposed by
Niamut et al. [Nia06], where a MDCT with several window sizes is used (e.g. 256, 512, 1024,
2048). They propose a RD-optimized algorithm that partitions the signal in segments, where in
each segment a fixed window size is used. With this approach, the time-varying MDCT is still an
orthogonal transform, under the conditions that appropriate window shapes are chosen.

The existing MDCT-based approaches use either a fixed resolution or an adaptive reso-
lution. However, even for the case of an adaptive resolution, the resolution is still fixed inside a
given segment. This is not optimal for sound signals containing simultaneous components localized
both in time and frequency. For instance, drums on top of long sustained notes would force a time
segmentation algorithm to break up the long notes into smaller pieces. It would be better to be
allowed to superimpose components with different time-frequency resolution. We thus propose in
the following the simultaneous use of several MDCT with different window sizes. Each MDCT has
a fixed window size, but the simultaneous use of several MDCT allows the modeling of simultaneous
components which can have different time-frequency tradeoffs.

To better illustrate this time-frequency tradeoff, we consider an extract of a glockenspiel
signal. This signal is characterized by its strong attacks which are localized in time, and its
long stationary components which are localized in frequency. Fig. 4.1 shows the MDCT pseudo-
spectrogram of the glockenspiel extract signal for 8 window sizes: 128, 256, 512, 1024, 2048, 4096,
8192 and 16384. It is obvious to see that a MDCT with a long window size has not enough time
resolution to model efficiently the sharp attacks of the glockenspiel signal. On the other hand,
a small window size MDCT has not enough frequency resolution to model efficiently the long
stationary parts. This second issue is better shown in Fig. 4.2. In this figure, only the spectrum of
a single frame of each MDCT is plotted. The stationary parts of the glockenspiel correspond here
to the peaks of the spectrum which are sharper for a longer window.

4.2.2 Model formalization

Let us now formalize the signal model. We use a union of M MDCT bases with fixed
window size as defined in Section 2.2.1. The analysis window lengths are defined as increasing
power of two

Lm = L02
m. (4.1)

Considering a signal x with length N samples, it is approximated as

x = Φc + r (4.2)

with r the residual, c the vector of coefficients of length MN and Φ the synthesis matrix of size
N×MN defined as the concatenation of M matrices Tm of size N×N , each matrix Tm corresponding
to one MDCT, as defined in equations (2.14), (2.15) and (2.16). The synthesis matrix Φ is defined
explicitly as:

Φ (n, mN + pKm + k) = gm,p,k(n) , 0 ≤ m < M , 0 ≤ p < Pm , 0 ≤ k < Km , 0 ≤ n < N (4.3)

43

4.2. Signal model

MDCT spectrogram for L=128

MDCT spectrogram for L=256

MDCT spectrogram for L=512

MDCT spectrogram for L=1024

MDCT spectrogram for L=2048

MDCT spectrogram for L=4096

MDCT spectrogram for L=8192

MDCT spectrogram for L=16384

Figure 4.1: MDCT spectrogram of an extract of the glockenspiel signal for several window sizes.

44

Chapter 4. Signal representation in a union of MDCT bases

−100

−50

0

MDCT spectrum for L=128

−100

−50

0

MDCT spectrum for L=256

−100

−50

0

MDCT spectrum for L=512

−100

−50

0

MDCT spectrum for L=1024

−100

−50

0

MDCT spectrum for L=2048

−100

−50

0

MDCT spectrum for L=4096

−100

−50

0

MDCT spectrum for L=8192

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

x 10
4

−100

−50

0

MDCT spectrum for L=16384

Frequency (Hz)

Figure 4.2: MDCT spectrum of one frame of the glockenspiel signal for several window sizes.

45

4.3. Fast implementation of Matching Pursuit in a union of MDCT bases

where Pm is such that N = PmKm and is the number of segments of length Km = Lm/2, and

gm,p,k(n) = wm,p(u)

√

2

Km
cos

[

π

Km

(

u +
Km

2
+

1

2

)(

k +
1

2

)]

(4.4)

and

u = n−
(

p− 1

2

)

Km (4.5)

The window wm,p(u) is defined over 0 ≤ u < Lm and verifies Eq. 2.22, 2.23 and 2.24 (see Sec.
2.2.1). Figure 4.3 shows the sine-based windows wm,p(u) for M = 4 MDCT bases.

Figure 4.3: Analysis windows for 4 MDCT bases

4.3 Fast implementation of Matching Pursuit in a union of MDCT
bases

We have formalized in the last section the dictionary that we use to approximate a signal.
Now, given a signal x and the dictionary Φ, the problem is now to find a sparse approximation
c such that we have x = Φc + r where r is the residual. We have seen in section 3.2 that if the
dictionary is overcomplete then there is an infinity of possible approximations, and that finding the
approximation with the minimum number of non-zero terms (minimum 0-like-norm) is a NP-hard
problem. However, we have also seen that there exists a number of algorithms that find “good”
sparse approximations. Particularly, we have presented in section 3.3 a class of algorithms that give
a good compromise between complexity and performance: these are called the greedy algorithms.
The simplest Greedy Algorithm is Matching Pursuit and there exists a fast implementation of
Matching Pursuit for time-frequency dictionaries called Matching Pursuit ToolKit [Krs06] (MPTK)
1. The availability of a fast implementation is one of the main reason we decided to choose Matching

1MPTK is released under the GNU/GPL license and is distributed at the following address:
http://gforge.inria.fr/projects/mptk

46

Chapter 4. Signal representation in a union of MDCT bases

Pursuit and slightly modified versions of Matching Pursuit in this thesis.

In this section, we first recall the Matching Pursuit algorithm and the main implementation
issues, then we introduce the Matching Pursuit ToolKit, and finally we present a fast implementa-
tion of the MDCT we have implemented within the MPTK framework.

4.3.1 MP: Naive implementation

We first recall the matching pursuit algorithm. The pseudo-code of the algorithm is given
below. There are two critical operations that would require high ressources if implemented naively.

Algorithm 7: Matching Pursuit

Input: The signal x and the dictionary Φ
Output: The vector of coefficients c and the residual r such that x = Φc + r
Initialization: r = x, c = 0;1

repeat2

Inner products: a = ΦT r;3

Find maximum: kmax = argmax
1≤k≤K

|ak|;
4

Update coefficients: ckmax
= ckmax

+ akmax
;5

Update residual: r = r− akmax
Φkmax

;6

until a stopping condition is met ;7

These two operations correspond to the lines 3 and 4 of the pseudo-code, and they are detailed in
the following

1. The inner products calculation: a naive implementation would require the storage of MN2

values (the dictionary matrix Φ), and the computation of MN2 multiplications and MN(N−
1) additions per iteration. As an example, we consider a signal of length N = 88200 samples
(2 seconds) and a M = 8 times overcomplete dictionary. A naive implementation would thus
require the storage of 6, 2 · 1010 real values (more than 400 Gigs of memory storage) and the
computation of 6, 2 · 1010 multiplications and 6, 2 · 1010 additions.

2. The search of the maximum: a naive implementation would require a memory scan of MN
values per iteration. For the example given above, this corresponds to a memory scan of
705600 values.

A naive implementation would thus require very high ressources which is not desirable for coding
applications. We then discuss in the following a fast implementation of Matching Pursuit.

4.3.2 MP: Fast implementation

We introduce here MPTK, a fast implementation of MP written in C++ and released
under the GNU/GPL license. MPTK is designed for time-frequency dictionaries and is mainly
based on three tricks that allow a huge gain in terms of computational complexity and memory
requirements as compared to a naive implementation. These three tricks are detailed in the follow-
ing.

1. The first trick is to use a fast transform for the computation of the inner products between
the residual and the time-frequency atoms. This avoids the storage of the dictionary matrix

47

4.3. Fast implementation of Matching Pursuit in a union of MDCT bases

Φ (MN2 values) and greatly reduces the number of multiplications and additions needed for
the inner products calculation. In the case of a union of MDCT bases, one MDCT is called
a “block” in MPTK, and for each block, the set of atoms with same support (same m and
p) is called a “frame”. In MPTK, the inner products are then computed separately for each
frame of each block using a fast transform. The fast implementation of the MDCT we have
implemented in MPTK is described later in 4.3.3.

2. The second trick uses the fact that time-frequency atoms have a finite support, whose length
is small compared to the signal dimension. At each iteration, MP selects one atom of finite
length support. Consequently, the residual is modified only on a finite support (line 6 of
the pseudo-code), the rest of the residual does not change. And only a subset of the inner
products between the atoms and the residual change from one iteration to the next. MPTK
thus computes at each iteration only the inner products of the frames whose support overlap
the support of the atom selected at the previous iteration. As an example, considering a
signal of dimension N , and a union of 4 MDCT bases with window sizes 256,512,1024,2048.
We suppose that at iteration n, MP selects one atom of length 1024. At the next iteration,
only the inner product of a small number of atoms needs updating: 1× 1024 atoms of length
2048, 3× 512 atoms of length 1024, 6× 256 atoms of length 512 and 10× 128 atoms of length
256. This makes a total of 5376 atoms, instead of 4N atoms. If N is large, this makes a huge
difference.

3. The third trick also uses the fact that time-frequency atoms have a finite support to reduce
the computation time needed for searching the maximum (line 4 of the pseudo-code). Instead
of storing all the inner product absolute values and searching for the maximum among these
values, only the maximums of the absolute value of the inner products of each frame of each
block are stored. A tree is then built on top of these values in such a way that the top of
tree corresponds to the searched maximum. Consequently, only a few of the tree values are
scanned and modified at each iteration. Refer to [Krs06] for a more detailed explanation.
This trick significantly reduces the computation time needed by the maximum search.

It should be noted that the only drawback of using MPTK is that it cannot deal with
edge atoms. But this problem is easily avoided in the rest of this thesis by zero-padding the signal
at both edges. The fast Matching Pursuit algorithm as implemented in MPTK is described below:

4.3.3 Fast Implementation of the MDCT

We present here a fast MDCT implementation we have included in MPTK. The fast
implementation of the MDCT avoids the storage of the matrix Φ and reduces the complexity of
the inner products calculation. This implementation is detailed in the following. Considering a
N -length signal x, and a frame p of block m. The inner products between the signal x and the
atoms gm,p,k, k = 0, ...,Km are given by

ipp,m(k) =
N−1
∑

n=0

x(n)gm,p,k(n) (4.6)

=

Lm−1
∑

u=0

x̃(u)wm,p(u)

√

2

Km
cos

[

π

Km

(

u +
Km

2
+

1

2

)(

k +
1

2

)]

(4.7)

48

Chapter 4. Signal representation in a union of MDCT bases

Algorithm 8: Fast Matching Pursuit

Input: The signal x and the dictionary Φ
Output: The vector of coefficients c and the residual r such that x = Φc + r
Initialization: r = x, c = 0;1

Initialize support S;2

repeat3

for Each block in the dictionary do4

Find the set of frames P whose support overlap with support S;5

for For each frame in P do6

Compute the inner products using a fast transform;7

Compute the absolute value;8

Store the maximum in the tree;9

end10

end11

Update the tree;12

Find maximum: kmax = top of the tree;13

Compute inner products of the corresponding frame (coefficient akmax
);14

Build atom waveform Φkmax
;15

Update coefficients: ckmax
= ckmax

+ akmax
;16

Update residual: r = r− akmax
Φkmax

;17

Update support: S = Support(Φkmax
);18

until a stopping condition is met ;19

with x̃(u) = x(u +
(

p− 1
2

)

Km), u = 0, ..., Lm − 1. Now, if we write the cosine function as the real
part of a complex exponential, we have

ipp,m(k) = ℜ
(

ipcp,m(k)
)

(4.8)

with

ipcp,m(k) =

Lm−1
∑

u=0

x̃(u)wm,p(u)

√

2

Km
exp

[

−j
π

Km

(

u +
Km

2
+

1

2

)(

k +
1

2

)]

(4.9)

that can be simplified as

ipcp,m(k) = αm(k)

Lm−1
∑

u=0

βm,p(u)wm,p(u)x̃(u) exp

[

−j
2πuk

Lm

]

(4.10)

with

αm(k) =

√

2

Km
exp

[(

Km

2
+

1

2

)(

k +
1

2

)]

(4.11)

βm,p(u) = exp

[

−j
π

Lm

]

(4.12)

We recognize in equation (4.10) the expression of a DFT which is efficiently implemented using a
FFT. We summarize the fast MDCT below:

1. Window the input signal x using the window wm,p.

49

4.4. Experiment

2. Multiply the windowed signal samples by the pre-twiddle coefficients βm,p(u).

3. Compute the FFT of the resulting signal of length Lm.

4. Multiply the FFT output by the post-twiddle coefficients αm(k).

5. Take the real part.

It should be noted that there exists more efficient implementations of the MDCT (e.g. [DMP91])
but the implementation we have chosen has the advantage to provide a unique algorithm for the
MDCT (algorithm above), the MDST (imaginary part instead of real part at step 5), and the
MCLT (complex output at step 4).

Fig. 4.4 shows the computation time in function of the target SNR needed to approximate
a simple signal composed by 512 zeros + 512 samples of white noise + 512 zeros. The dictionary is
a union of 4 MDCT bases with window sizes 32, 64, 128 and 256. The naive implementation of MP
has been implemented using the Matlab language. These results show that the fast implementation
is more than 200 times faster than the naive implementation.

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

40

45

50

Target SNR (dB)

C
om

pu
ta

tio
n

tim
e

(s
ec

on
ds

)

Naive implementation

0 10 20 30 40 50 60 70 80 90 100
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Target SNR (dB)

C
om

pu
ta

tio
n

tim
e

(s
ec

on
ds

)

Fast Implementation (MPTK)

Figure 4.4: Computation times.

4.4 Experiment

We have formalized in the first section the dictionary that we use to approximate a signal:
the union of several MDCT bases. We have then described in the next section a fast implementation
of the decomposition algorithm we have chosen: the Matching Pursuit ToolKit (MPTK). We will
now present in this section the results of a few experiments using Matching Pursuit in a union of
MDCT bases.

4.4.1 Experimental setup

Test sounds We use the signals described in the appendix A. These are five signals, from the
dataset of [ISO03]: bagp, gloc, harp, orch, popm. Each signal is approximately 10 seconds long.
We resampled the signals from 48 khz to 44.1 khz and kept only the left channel.

50

Chapter 4. Signal representation in a union of MDCT bases

Dictionary We compare in this section several dictionaries: a single MDCT basis with window
size 2048 (1XMDCT); a union of 4 MDCT bases with window sizes from 512 to 4096 (4xMDCT); a
union of 8 MDCT bases with window sizes from 128 to 16384 (8xMDCT) and a union of 12 MDCT
bases with window sizes from 64 to 65536 (12xMDCT).

Algorithm We use the MP algorithm as implemented in MPTK and described in the previ-
ous section. The signals are zero-padded with 65536 null values at the edges before starting the
algorithm. The algorithm is stopped when a SNR of 30 dB is reached.

Machine We use a laptop based on a Core 2 Duo 2GHz processor with 2GB RAM. The algorithms
are run on Matlab R2008a (Matlab 7.6.0).

4.4.2 Results

Fig. 4.5 shows the SNR as a function of the number of iterations, for each signal and each
dictionary. It is important to remark that the number of MP iterations is approximately equal to
the number of non-zero coefficients in the approximation, because MP may select the same atom
several times, but with a low probability. By giving the SNR in function of the l0-norm of the
approximation, these results thus compare the sparseness of the different approximations. Note
that the corresponding results obtained by coding these approximations are in the next Chapter.

These results first show that increasing the size of the dictionary gives a sparser approx-
imation i.e. for the same SNR, the approximation in a larger dictionary has smaller l0-norm or
equivalently for the same l0-norm, the approximation in a larger dictionary gives a higher SNR.
We have remarked that the main contribution in the SNR gain comes from the MDCT bases with
the largest windows. The results also show that the performance appears to be bounded. Except
for the glockenspiel signal, the dictionary 12xMDCT gives only slightly better performance than
the dictionary 8xMDCT. As compared to the 8xMDCT dictionary, the dictionary 12xMDCT adds
very large and very small window sizes MDCT: 32768 samples (0.74 s), 65536 samples (1.48 s), 64
samples (1.45 ms) and 32 samples (0.7 ms). These very large window sizes or very short window
sizes seem to have either not enough time resolution, either not enough frequency resolution to
efficiently model components of the audio signals. Finally, these results show that the performance
is clearly signal dependant. The extreme cases are the glockenspiel signal and the pop music sig-
nal. With the 8xMDCT dictionary, the glockenspiel needs around 4500 iterations to reach 30dB,
whereas the pop music signal needs around 12000 iterations to reach the same SNR. Moreover, for
the glockenspiel signal at 4000 iterations, the gain over the 1xMDCT dictionary is around 8 dB,
whereas for the pop music signal at 12000 iterations, the gain is around 4 dB.

To better illustrate the excellent performance obtained with the glockenspiel signal, we
have plotted the 30-dB approximation using two dictionaries: a single MDCT basis (1xMDCT)
and a union of 8 MDCT bases (8xMDCT). Each atom is represented as a rectangle whose width
is proportional to the window size and the height is inversely proportional to the window size.
The colour of each atom is dependent on its energy. The plots are in Fig. 4.6. We see that the
glocksenspiel signal is badly modeled by the single MDCT basis, the transients and the steady state
part are modeled by a large number of atoms. Using an overcomplete basis allows to efficiently
model the transients with a few short window atoms and the stationary parts with a few long
window sizes atoms. This figure also raises an issue: MP creates unwanted energy before the
attacks, resulting in pre-echo. This issue will be discussed in the next section.

Finally, Figure 4.7 shows computation times in function of the target SNR for the four
dictionaries and two signals: gloc, popm. As the signal popm needs much more iterations to reach

51

4.4. Experiment

1 2 3 4

x 10
4

0

5

10

15

20

25

30

Iteration

S
N

R
 (

dB
)

bagp

1xMDCT
4xMDCT
8xMDCT
12xMDCT

2000 4000 6000 8000 10000 12000
0

5

10

15

20

25

30

Iteration
S

N
R

 (
dB

)

gloc

1xMDCT
4xMDCT
8xMDCT
12xMDCT

1 2 3 4 5

x 10
4

0

5

10

15

20

25

30

Iteration

S
N

R
 (

dB
)

harp

1xMDCT
4xMDCT
8xMDCT
12xMDCT

1 2 3 4 5 6 7

x 10
4

0

5

10

15

20

25

30

Iteration

S
N

R
 (

dB
)

orch

1xMDCT
4xMDCT
8xMDCT
12xMDCT

2 4 6 8 10 12 14

x 10
4

0

5

10

15

20

25

30

Iteration

S
N

R
 (

dB
)

popm

1xMDCT
4xMDCT
8xMDCT
12xMDCT

Figure 4.5: SNR in function of the number of iterations using MP and several dictionaries.

52

Chapter 4. Signal representation in a union of MDCT bases

1 2 3 4 5 6 7 8 9 10 11

10
3

10
4

Time (seconds)

30dB approximation of the glockenspiel signal with MP and the dictionary 1xMDCT

F
re

qu
en

cy
 (

H
z)

1 2 3 4 5 6 7 8 9 10 11

10
3

10
4

Time (seconds)

30dB approximation of the glockenspiel signal with MP and the dictionary 8xMDCT

F
re

qu
en

cy
 (

H
z)

Figure 4.6: Time-frequency plots of the 30dB approximation of the glockenspiel signal using two
dictionaries: 1xMDCT and 8xMDCT.

53

4.5. Modified Matching Pursuit with pre-echo control

the same SNR as gloc, it is obvious that it needs also much more computation time. This figure
shows that increasing the size of the dictionary also significantly increases the computation time.
This is due to the MDCT with large window size.

5 10 15 20 25 30

20

40

60

80

100

120

SNR (dB)

C
om

pu
ta

tio
n

tim
es

 (
se

co
nd

s)

gloc

1xMDCT
4xMDCT
8xMDCT
12xMDCT

5 10 15 20 25 30

500

1000

1500

2000

2500

3000

3500

SNR (dB)

C
om

pu
ta

tio
n

tim
es

 (
se

co
nd

s)

popm

1xMDCT
4xMDCT
8xMDCT
12xMDCT

Figure 4.7: Computation time for several dictionaries and two signals.

4.4.3 Discussion

In this section, we have run a few experiments using Matching Pursuit in a union of
MDCT bases. We have seen that the results are clearly signal dependant. Well-structured signals
such as the glockenspiel signal allow very sparse approximation as the stationary parts are modeled
with few long window size atoms, and the attacks are modeled with few short window size atoms.
However, for less structured signals such as pop music, this is much less obvious. We have also
seen that a 12-times overcomplete dictionary gives only a slight improvement compared to the 8
times overcomplete dictionary, and with much higher computational complexity. This is the main
reason for our choice to use a 8 times overcomplete dictionary in the rest of this thesis. It is also
interesting to remark that we have tried other dictionaries, such as a generalized MDCT where
an arbitrary hop size and frequency resolution are allowed, but experimental results showed poor
performance as compared to a simple union of MDCT bases (see e.g. [RD06]).

4.5 Modified Matching Pursuit with pre-echo control

4.5.1 Problem statement

Standard MP gives good results with most signals; however, it inevitably introduces pre-
echo when decomposing signals containing strong attacks. This problem is illustrated in Fig. 4.8.
An extract of a glockenspiel signal is decomposed with MP over a union of M = 4 MDCT bases
(and L0 = 256 samples). The second subplot shows the residual at iteration 10. The atom which is
best correlated with this residual is in the third subplot. The logarithm of the absolute value of the
correlation of the un-windowed function with the original signal on subframes of size 256 is in the
fourth subplot. This shows that the beginning of the atom is not correlated with the signal. This
results in creating energy just before the transient, which appears in the residual at iteration 11

54

Chapter 4. Signal representation in a union of MDCT bases

in the fifth subplot. This energy is removed in further iterations with atoms of low energy. When
coding such a decomposition at low bitrate, only the greatest energy atoms are kept which then
introduces a pre-echo artifact.

0.01 0.02 0.03 0.04 0.05 0.06 0.07
−0.1

0

0.1

S
ig

na
l

0.01 0.02 0.03 0.04 0.05 0.06 0.07
−0.1

0

0.1

R
es

. 1
0

0.01 0.02 0.03 0.04 0.05 0.06 0.07
−0.1

0

0.1

A
to

m
 1

1

0.01 0.02 0.03 0.04 0.05 0.06 0.07
−4
−2

0
2

C
or

r.

0.01 0.02 0.03 0.04 0.05 0.06 0.07
−0.1

0

0.1

R
es

. 1
1

Time (seconds)

Figure 4.8: Illustration of the pre-echo artifact with standard MP. Dotted lines correspond to sub-
frames.

Gribonval pointed out this problem in [GBM+96] with MP and a Gabor dictionary. He
proposed a modified MP algorithm called High-Resolution Matching Pursuit (HRMP) based on
the work of Jaggi et al. [JCMW95]. However, this algorithm was designed for a complex Gabor
dictionary and is not adapted for a union of real MDCT bases. Moreover, HRMP significantly
increases the computational cost. Alternatively, we propose a simple modification of the MP
algorithm that reduces pre-echo artifacts with a small additional computational cost.

4.5.2 Proposed algorithm

At each iteration, an atom is first selected using the same criterion as MP. Then the
selected atom is unwindowed and segmented in subframes as shown in Fig. 4.8. The subframes
have a length which is a proportion of the atom length. We found experimentally that a good value
for the number of subframes is 8. Moreover, the subframes are imposed to have a mininum length
which corresponds to the length of the smallest atom in the dictionary. Then, the cross-correlation
of each subframe with the corresponding segment of the original signal is computed, as shown on
the 4th plot of Fig. 4.8. Finally, if the dynamic of the cross-correlations (computed as the ratio
of the cross-correlation extrema) is greater than a predefined threshold, it means that the selected
atom adds pre-echo and this atom is then not selected and removed from the dictionary; otherwise
the atom is kept and subtracted from the residual as in MP. A pseudo-code of the modified MP

55

4.5. Modified Matching Pursuit with pre-echo control

algorithm is given below.

Algorithm 9: Modified Matching Pursuit with pre-echo control

Input: The signal x, the dictionary Φ and a parameter threshold thresh
Output: The vector of coefficients c and the residual r such that x = Φc + r
Initialization: r = x, c = 0;1

Shortest window size: Wmin repeat2

Inner products: a = ΦT r;3

Find maximum: kmax = argmax
1≤k≤K

|ak|;
4

Subframe length: W = max (Φkmax
window size/8, Wmin);5

Segment atom in subframes: SiΦkmax
= i−th W-length subframe of Φkmax

;6

Correlations of subframes with signal: di =
∣

∣< Six, SiΦkmax
>
∣

∣;7

if maxi(di) >= thresh ∗mini(di) then8

Φkmax
= 0;9

Go back to step 3;10

end11

Update coefficients: ckmax
= ckmax

+ akmax
;12

Update residual: r = r− akmax
Φkmax

;13

until a stopping condition is met ;14

4.5.3 Results

In a first experiment, we approximate an extract of the glockenspiel signal using a union
of 8 MDCT bases. We compare the standard MP algorithm with the modified MP algorithms and
several values for the threshold parameter. The algorithms are stopped when a SNR of 30 dB is
reached. We plot a time-frequency representation as we have done in the previous section. Results
are in Fig. 4.9. These results show that decreasing the threshold parameter reduce the pre-echo
artifacts but also adds unwanted small window sizes atoms. A high value means that very few
atoms are removed from the dictionary and thus we obtain almost the same result as with the
standard MP. A low value means that a lot of atoms are removed from the dictionary, consequently
the dictionary size decreases and the sparseness of the representation decreases too, with many
unwanted small window sizes atoms. We found that the value 100 is a good compromise between
the pre-echo reduction and the approximation sparseness.

In a second experiment, we study the Dark Energy of the approximation for several values
of the parameter threshold. Dark Energy (DE) have been proposed by Sturm et al. in [SSDR08].
The authors have remarked than the MP algorithm sometimes select an atom that has high energy
in a region of the signal that has no energy. This is the same phenomenom than the pre-echo artifact
we have presented in this section. They have also remarked than if MP selects such an atom then
it will select other atoms in the next iterations that will destructively interfere in order to preserve
the original waveform. The destructive and constructive interferences between the atoms of a MP
decomposition is refered as DE. DE is defined as follows

Ξ(n) = |∆(n)| (4.13)

where ∆(n) is the difference between the energy of the approximant at iteration n and the energy
that would result if the selected atom is orthogonal to the approximant at iteration n− 1

∆(n) = ‖x̂(n)‖22 −
(

‖x̂(n− 1)‖22 + |an−1|2
)

(4.14)

56

Chapter 4. Signal representation in a union of MDCT bases

1.5 2 2.5 3 3.5 4 4.5
0

0.5

1

1.5

2

x 10
4

Time (seconds)

30dB approximation of the glockenspiel signal with standard MP

F
re

qu
en

cy
 (

H
z)

1.5 2 2.5 3 3.5 4 4.5
0

0.5

1

1.5

2

x 10
4

Time (seconds)

30dB approximation of the glockenspiel signal with modified MP and thresh=1000

F
re

qu
en

cy
 (

H
z)

1.5 2 2.5 3 3.5 4 4.5
0

0.5

1

1.5

2

x 10
4

Time (seconds)

30dB approximation of the glockenspiel signal with modified MP and thresh=100

F
re

qu
en

cy
 (

H
z)

1.5 2 2.5 3 3.5 4 4.5
0

0.5

1

1.5

2

x 10
4

Time (seconds)

30dB approximation of the glockenspiel signal with modified MP and thresh=10

F
re

qu
en

cy
 (

H
z)

Figure 4.9: Time-frequency plots.

57

4.6. Conclusions

where an−1 is the coefficient of the atom selected at iteration n− 1. Fig. 4.10 plots the Cumulative
Dark Energy Ratio (CDER) defined as

CDEratio(n) =

(

n
∑

i=1

Ξ(n)

)

/‖x‖22 (4.15)

in function of the SNR. The results show that lower CDER is obtained using the modified MP with
a threshold value of 100. This confirms the results obtained in the first experiment.

0 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25

SNR (dB)

C
D

E
 r

at
io

Standard MP
Modified MP with threshold=10
Modified MP with threshold=100
Modified MP with threshold=1000

Figure 4.10: Cumulative Dark Energy ratio for several values of the threshold parameter.

4.6 Conclusions

We have proposed in this chapter a new approach on signal representation for audio coding.
This new approach could be seen as a generalization of the traditional MDCT transform approach
since it is based on a simultaneous use of a union of MDCT bases with different window sizes.
We have seen that increasing the number of MDCT bases gives sparser approximations, it means
that a signal is approximated by a smaller number of non-zero coefficients under a SNR constraint.
We have also seen that computational complexity is a critical issue of such approximations and we
have then proposed a fast algorithm for the decomposition of signals in a union of MDCT bases.
Finally, we have seen that the sparsest approximation is not necessarily the best approximation
from a perceptual point of view. Indeed, MP in a union of MDCT bases introduces pre-echo when
decomposing signals with strong-attacks. We have then proposed a modified MP algorithm that
is able to reduce the pre-echo artefact. It should be noted that this algorithm has been evaluated
with the glockenspiel signal only, further experiments with other signals are still required.

In the next chapter, we will see how this new signal representation approach is applied to
audio coding.

58

59

Chapter 5

Union of MDCT bases for audio
coding

Abstract

This chapter brings in a new audio codec based on the signal representation approach
presented in the previous chapter. The proposed audio codec is compared with a
state-of-the-art pure-transform audio codec using both an objective and a subjective
evaluation. Results are very signal dependant and show that much better perfor-
mance is obtained with monophonic signals and similar or slightly worse performance
with polyphonic signals. Results presented in this chapter have been published in
IEEE Transactions on Audio, Speech and Language Processing [RRD08c].

Contents
5.1 Introduction . 60

5.2 Grouping and interleaving . 60

5.2.1 Segmentation in timeslots . 62

5.2.2 Coefficients interleaving . 63

5.3 Bitplane coding . 64

5.3.1 Simple bitplane encoder . 64

5.3.2 Psychoacoustic bitplane encoder . 66

5.4 Evaluation . 68

5.4.1 Source coding algorithm . 68

5.4.2 Modified MP with pre-echo control . 70

5.4.3 Final codec: objective evaluation . 70

5.4.4 Final codec: subjective evaluation . 72

5.5 Conclusions . 74

5.1. Introduction

5.1 Introduction

In the previous chapter, we have proposed a new signal representation for audio coding,
based on a union of several MDCT bases with different window sizes. The signal model is written
as

x = Φc + r (5.1)

where x is the signal, Φ is the synthesis matrix (the dictionary), c the vector of coefficients (the
approximation) and r the residual. We have then proposed algorithms that find the coefficient
vector c. In this chapter, we study how to use this signal representation for audio coding, in other
words, how to encode the coefficient vector c.

We have seen in the previous chapter that using an overcomplete union of MDCT bases
allows a sparser approximation than to the traditional transform approach where a single MDCT is
used. This means that for the same SNR, the coefficients vector c has fewer non-zero values when
using an overcomplete union of MDCT bases than when using a single MDCT. However, increasing
the number of MDCT bases also increases the size of the vector c, and thus increases the number of
coefficients to encode. For a low SNR, the approximation has very few non-zero coefficients, and in
this case, an entropy algorithm allows a very low coding cost, as the large proportion of zero values
are encoded using few bits. On the other hand, for a high SNR, the approximation has a much
higher number of non-zero values, and in this case, the required coding cost is then much higher.
To better illustrate this trade-off, we have approximated the 5 signals used in the experiment of the
previous chapter using the standard MP with a target SNR of 100 dB and the same dictionaries
as in the previous experiment: 1xMDCT, 4xMDCT, 8xMDCT and 12xMDCT. The coefficients
are quantized using a simple midtread quantizer with a cell number N = 2k − 1, k = 2, .., 16 and
a cell width ∆ = A/2N with A is the maximum of the absolute value of the coefficients. For
each value of k, a bitrate is estimated using the entropy of the output of the quantizer encoder,
and a SNR is computed using the decoded signal. Results are in figure 5.1. This shows that for
a low SNR, lower bitrate estimates are obtained with a larger number of MDCT bases, and for
a high SNR, lower bitrate estimates are obtained with a single MDCT. However, it also shows
that a small number of MDCT bases never gives best performance, there is thus no compromise
between a highly overcomplete union of MDCT bases and a single MDCT at medium SNR. Finally
these results show that there is potentially little gain in using the dictionary 12xMDCT (except
for the glockenspiel signal), this confirms the remark we have made in the previous chapter, and
consequently we choose in this chapter to only use the dictionary 8xMDCT.

The remainder of this chapter is as follows. We first described the proposed source coding
algorithm that we use to encode the coefficient vector c in sections 5.2 and 5.3. Then, we evalute
the proposed audio codec in section 5.4.

5.2 Grouping and interleaving

We have formalized in the previous chapter the signal model, it is written as

x = Φc + r (5.2)

where x is the signal, Φ is the synthesis matrix (the dictionary), c the vector of coefficients (the
approximation) and r the residual. To simplify the notations, a coefficient is indexed using three
parameters, such that we have

cm,p,k = cmN+pKm+k , 0 ≤ m < M , 0 ≤ p < Pm , 0 ≤ k < Km (5.3)

60

Chapter 5. Union of MDCT bases for audio coding

2 4 8 16 32 64 128 256
0

10

20

30

40

50

60

Bitrate (kbps)

S
N

R
 (

dB
)

bagp

1xMDCT
4xMDCT
8xMDCT
12xMDCT

2 4 8 16 32 64 128 256
0

10

20

30

40

50

60

Bitrate (kbps)

S
N

R
 (

dB
)

gloc

1xMDCT
4xMDCT
8xMDCT
12xMDCT

2 4 8 16 32 64 128 256
0

10

20

30

40

50

60

Bitrate (kbps)

S
N

R
 (

dB
)

harp

1xMDCT
4xMDCT
8xMDCT
12xMDCT

2 4 8 16 32 64 128 256
0

10

20

30

40

50

60

Bitrate (kbps)

S
N

R
 (

dB
)

orch

1xMDCT
4xMDCT
8xMDCT
12xMDCT

2 4 8 16 32 64 128 256
0

10

20

30

40

50

60

Bitrate (kbps)

S
N

R
 (

dB
)

popm

1xMDCT
4xMDCT
8xMDCT
12xMDCT

Figure 5.1: SNR as a function of the estimated bitrate using a simple midtread quantizer.

61

5.2. Grouping and interleaving

with m is the block index, p is the frame index, and k is the frequency index. Contrary to the
transform-coding case where the analysis is done on a frame-by-frame basis, the decomposition is
here performed on the whole signal. As the coefficients are encoded using similar techniques as
used in transform coding, it is necessary to group the coefficients in time segments similar to the
“frames” of the transform coding. These segments are called here “timeslots” (see Fig. 5.2). In each
timeslot, the coefficients are interleaved to produce a vector of coefficients, which is then encoded
using a bitplane algorithm described in the next section. We describe here how the coefficients are
grouped in timeslots and then interleaved to produce a vector of coefficients per timeslot.

BLOCK 1

BLOCK 0

BLOCK 2Slen

L2

L0

Soff

L1

SLOT S
0

SLOT S
1

SLOT S
2

L2/4

L1/4

L0/4

Figure 5.2: Analysis windows for 3 MDCT (without the edge atoms) and corresponding timeslots.

5.2.1 Segmentation in timeslots

The coefficients are grouped in subsets Sq called “timeslots”, each of which includes co-
efficients cm,p,k such that the centers of the corresponding atoms are in the time support of the
timeslot:

qSlen + Soff ≤ (p + 1)Lm/2 + Lm/4 < (q + 1)Slen + Soff (5.4)

where Slen is the timeslot length and Soff is the timeslot offset (position of the first timeslot). The
values are chosen such that the timeslots are “aligned” with the maximum window length block
(see Fig. 5.2):

Slen = Soff = LM−1/2 (5.5)

Using these values, the first P ′
m − 1 = 2M−m−1 − 1 frames of block m are discarded and there are

P ′
m frames of block m in each timeslot. Timeslots are then simply defined as:

Sq =

{

cm,p,k | floor

(

p− (P ′
m − 1)

P ′
m

)

= q

}

(5.6)

where floor(x) is the function that rounds x to the nearest integer less than or equal to x. To
simplify notations in the following, we introduce a new frame index p′ such that the frame index
starts at 0 in each timeslot. It is defined as:

p′ = mod
(

p− P ′
m + 1, P ′

m

)

(5.7)

where mod(x, y) is the remainder of the Euclidean division of x by y.

62

Chapter 5. Union of MDCT bases for audio coding

5.2.2 Coefficients interleaving

To be encoded efficiently with the runlength-based bitplane encoder described in the
next section, the coefficients are interleaved so that the coefficients that are close in the time-
frequency plane are put side by side. The interleaving process produces a vector of coefficients
v = {vi|i = 1, ...,MLM−1}.

Fig. 5.3 shows the interleaving process for a simple example where M = 3 and L0 = 2.
Coefficients are indexed using the notation XY Z where X = m, Y = p′ and Z = k. In 1), each row
corresponds to one block and in each block, coefficients are grouped in frames. In 2) the frames
of smallest scale (block 0) are interleaved two by two with the immediate upper frame in block
1. This first step produces two new frames of interleaved coefficients. In 3), these two frames are
interleaved with the frame of largest scale (block 2) in a way such that the resulting vector has
alternatively a coefficient of each block: one of block 2, followed by one of block 1, followed by one
of block 0, followed by one of block 2, and so on.

Figure 5.3: Interleaving process for M = 3, L0 = 2. 1) The coefficients of the three blocks are given
frame by frame and block by block (XY Z is the coefficient of index m = X, p′ = Y and k = Z). 2)
The frames of block 0 are interleaved two by two with the immediate upper frame of block 1. 3) The
resulting two frames of interleaved coefficients are interleaved with the unique frame of block 2.

The mapping process between the coefficients of a timeslot cm,p′,k and the corresponding
vector values vi may also be formulated as follows. First we define a recursive function r that
performs a permutation of the frames:

r(p′, M − 1) = p′ (5.8)

and for m < M − 1

r(p′, m) =

{

r(p′

2 , m + 1) if p′ is even

r(p′−1
2 , m + 1) + P ′

m+1 if p′ is odd
(5.9)

Then, values are mapped according to:

vi = αm,r(p′,m),k (5.10)

with
i = (kP ′

m + p′)M + m (5.11)

63

5.3. Bitplane coding

0 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0

3

6

9

12

15

18

21

1 4

7 10

13 16

19 22

2 8 5 11

14 20 17 23

Time (samples)

F
re

qu
en

cy
 (

no
rm

al
iz

ed
)

Figure 5.4: Interleaving in the time-frequency plane. Dotted lines correspond to timeslots. Number
correspond to the indexes of the vector of interleaved coefficients.

5.3 Bitplane coding

The vector v of interleaved coefficients of each timeslot is encoded using bitplane encoding
approaches that are similar to those used in transform coding. Though the vector length is much
greater (M times) than it would be in the transform coding case, many coefficients are zero and
energy is concentrated in fewer coefficients than in the transform case. Moreover, the interleaving
process often clusters coefficients of high amplitudes and leaves long series of zeros as explained in
the previous section. Consequently, runlength-based encoding techniques are very efficient in this
case as the long series of zeros are coded using few bits. The runlength based bitplane encoder we
use is based on an approach originally proposed in [Lan83]. We first describe the simple bitplane
encoder as introduced in the first chapter. This algorithm is the same as the one used in some
wavelet-based image coders [OWS98, Mal99a] and also in a transform-based audio coder [Dun06].
Then, we present a modified version of the bitplane encoder that shapes the quantization noise
according to a psychoacoustic model.

5.3.1 Simple bitplane encoder

The coefficients vi are first normalized by the amplitude of the coefficient with maximum
amplitude A = max(abs(vi)). The value A is quantized and transmitted. The coefficients are then
represented in sign-amplitude form (as shown in Fig. 5.5, only the five most significant bits are
shown). The j-th most significant bit of the coefficient vi is given by bi,j = mod(floor(abs(vi) ∗
2j/A), 2). The vector of bits of same significance (or level) j is the j-th bitplane Bj = {bi,j}.
A coefficient vi is said to be significant at level j if abs(vi)/A ≥ 2−j . The significance of each
coefficient is stored in a vector zi (zi = 1 if the coefficient is significant, zi = 0 if not). Then, as
explained in the first chapter, the simple bitplane encoder sends successively each bitplane starting
from the most significant bitplane. This is done using a scheme in two passes. The significant pass

64

Chapter 5. Union of MDCT bases for audio coding

transmits the bits of the non already significant coefficients (BS) and the sign of the new significant
coefficients. The refinement pass transmits the bits of the already significant coefficients.

For the significance pass, we use an approach based on adaptive Golomb codes [Lan83].
Here, the significance pass does not transmit directly the bits in BS but instead transmits the
number of zeros between ones using adaptive Golomb codes. The parameter k of the Golomb coder
is initialized to a fixed value kinit before encoding each bitplane. Then, the bits are encoded using
the following simple algorithm: if a sequence of 2k zeros is found in BS, a bit 0 is transmitted and
k is updated k ← k+1; if not, it means that there remains a number of zeros inferior to 2k followed
by a one, this number of zeros is transmitted on k bits preceded by the bit 1 and k is updated
k ← k − 1. Each one found in BS corresponds to a new significant coefficient, consequently the
sign of this coefficient is also transmitted. This process is repeated until the end of BS is reached.
The complete algorithm of the simple bitplane encoder is detailed in Alg. 10 and 11.

Algorithm 10: Bitplane encoding

Input: A vector of interleaved coefficients v = {vi|i = 1...MLM−1}
Output: The bitstream
Quantize and code max amplitude A = max(abs(vi));1

Initialization: z = 0, ν = 1;2

repeat3

Compute bitplane: bi = mod(floor(abs(vi) ∗ 2ν/A), 2) for all i;4

Significance pass: code BS = {bi|zi = 0} and signs;5

Refinment pass: code BR = {bi|zi = 1};6

Update significance: zi = 1 for all i such that bi ∈ BS and bi = 1;7

Iterate: ν = ν + 1;8

until bit budget spent or ν > νmax ;9

Algorithm 11: Significance pass: adaptive Golomb encoding

Input: A bitplane subset BS and a parameter kinit

Output: The bitstream
Initialization: k = kinit;1

repeat2

if sequence of 2k zeros in BS then3

emit the bit “0”;4

k = k + 1;5

else6

emit the bit “1”;7

emit k bits: number of zeros followed by a one;8

emit 1 bit: sign of corresponding coefficient;9

k = k − 1;10

end11

move to the next bits in BS;12

until the end of BS ;13

65

5.3. Bitplane coding

Figure 5.5: One iteration of the simple bitplane encoder. The two encoding passes are shown. The
bits in gray corresponds to the transmitted bits.

5.3.2 Psychoacoustic bitplane encoder

The simple bitplane encoder sends the coefficients in decreasing order of amplitude. How-
ever, the coefficients with the highest amplitude are not necessarily the most perceptually relevant
coefficients. Indeed some components are masked and some others are below the absolute threshold
of hearing. It is therefore preferable to send first the most perceptually relevant coefficients using
a psychoacoustic model. However, existing psychoacoustic approaches as used in transform coding
can not be easily applied to union of MDCT representations. This is due to two main reasons.

The first reason is that the psychoacoustic models used in transform coding are designed
for a fixed resolution representation and are not adapted to a multiresolution representation where
time-localized components (short window atoms) and frequency-localized components (long window
atoms) are superimposed. We thus propose a suboptimal approach where a masking threshold is
computed for each MDCT as if they were independent MDCTs. In each frame of each block, a
spectral analysis is performed and the Johnston model [Joh88] is used to compute a mask for the
corresponding frame of coefficients.

The second reason is that there are more components in the overcomplete case and thus
more masking values, it is then more costly to send the psychoacoustic masking threshold to
the decoder. Instead we propose a suboptimal approach inspired from [Li02] where the mask is
computed on the partially coded coefficients. Consequently, there is no need to transmit the mask
to the decoder, as it is computed the same way by the decoder on the partially decoded coefficients.

Here, we propose a modification of the simple bitplane encoder which shapes the quan-

66

Chapter 5. Union of MDCT bases for audio coding

tization noise according to the psychoacoustic model. The complete algorithm is detailed in Alg.
12. At each iteration of the algorithm, only a subset of the current bitplane is sent. A masking
threshold is used to select the bits which are transmitted. Firstly, the masking threshold is initial-
ized to the Absolute Threshold of Hearing (ATH). Secondly, the mask is updated every time U bits
have been added to the bitstream. To update the mask, a synthesized signal is first reconstructed
from the partially coded coefficients. Then, a masking threshold is computed on each frame of
each block as mentioned above. The psychoacoustic model gives a masking threshold value thi for
each coefficient. And finally, a simple rule decides which bits are transmitted: the difference “gap”
gi between the masking threshold (converted to the bitplane scale) and the current bitplane level
is computed: gi = −log2(

√
thi/A) − νi. Then we select the bits whose gaps are greater than the

mean of the gap: j such that gj ≥ mean(gi). Fig. 5.6 shows one iteration of the algorithm.
Contrary to the simple bitplane encoder, the current level is different for each coefficient because
only a subset of the bitplane is sent at each iteration. The gap is computed for each coefficient
and the coefficients whose gap value is above the mean of the gap are selected, here the coefficients
0,1,2,8,9,10,11. Finally, the selected bits are encoded using the same two-pass scheme as in the
simple bitplane encoder.

Figure 5.6: One iteration of the psychoacoustic bitplane encoder. Plain rectangles correspond to
the level of the selected coefficients. Dotted rectangles correspond to the level of the non-selected
coefficients. The two encoding passes are shown. The bits in gray corresponds to the transmitted
bits.

67

5.4. Evaluation

Algorithm 12: Psychoacoustic bitplane encoding

Input: A vector of interleaved coefficients v = {vi|i = 1...MLM−1}
Output: The bitstream
Quantize and code max amplitude A = max(abs(vi));1

Initialization: z = 0, ν = 1;2

Initialize the masking threshold th to the ATH;3

repeat4

if U new bits have been added to the bitstream then5

update mask th;6

end7

Compute gap: gi = −log2(
√

thi/A)− νi for all i;8

Make selection: si = gi ≥ mean(gi) for all i;9

Compute bitplane: bi = mod(floor(abs(vi) ∗ 2νi/A), 2) for all i;10

Significance pass: code BS = {bi|zi = 0 and si = 1} and signs;11

Refinment pass: code BR = {bi|zi = 1 and si = 1};12

Update significance: zi = 1 for all i such that bi ∈ BS and bi = 1;13

Iterate: ν = ν + 1;14

until bit budget spent or ν > νmax ;15

5.4 Evaluation

We evaluate in this section the proposed audio coder. We first evaluate the source coding
algorithm. We then study the influence of the pre-echo control MP on the audio coder performance.
And finally, we evaluate the final codec using an objective measure and a listening test.

We use PEMO-Q software [HK06] as an objective measure to evaluate our coder. This
software gives two measures, the Perceptual Similarity Measure (PSM) which is restricted to the
interval [−1, 1] (1 indicates transparency) and the Objective Difference Grade (ODG) which is on
the same scale as the Subjective Difference Grade (0 indicates transparency). It is important to
remark that PEMO-Q was optimized and validated with high bitrates audio coders. Consequently,
the results at low bitrates may be less relevant.

5.4.1 Source coding algorithm

We have proposed in the previous section a source coding algorithm where the coefficient
vector produced by MP is first split into subsets called timeslots, and the coefficients in each
timeslot are interleaved and encoded using a bitplane algorithm. We have seen that the simple
bitplane encoding algorithm depends mainly on the way the significance map is encoded. In a
first experiment, we study the influence of the algorithm used to encode the significance map. The
five signals listed in Annex A are first approximated using MP in the union of 8 MDCT bases.
Then, the resulting coefficient vector is split in timeslots and a vector of interleaved coefficient per
timeslot is produced. Each vector of coefficient is then encoded using the simple bitplane algorithm
described in the previous section. For the significance map coding, we compare two algorithms:
the run-length algorithm based on adaptive Golomb coding described in the previous section, and
the adaptive arithmetic coding algorithm of [Sai04]. Fig. 5.7 shows the mean of the coding cost of
the significance map of each bitplane and the mean of computation time needed to reach a target
bitrate. The mean is computed over the five signals. Results show that the Golomb based coder
gives better performance than the arithmetic based coder in the first bitplanes and slightly worse

68

Chapter 5. Union of MDCT bases for audio coding

on the last bitplanes, and at a lower computational cost. We then choose the Golomb based coder
in the rest of this thesis.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

10
2

10
3

10
4

Bitplane

N
um

be
r

of
 b

its
 to

 c
od

e
th

e
si

gn
ifi

ca
nc

e
m

ap

Cost of the significance map

Adaptive Run−Length Coder
Adaptive Arithmetic Coder

2 4 8 16 32 64 128 256
0.05

0.1

0.15

0.2

0.25

0.3

Bitrate (kbps)

N
or

m
al

iz
ed

 c
om

pu
ta

tio
n

tim
e

(s
ec

on
ds

/s
ec

on
ds

)

Computation time

Adaptive Run−Length Coder
Adaptive Arithmetic Coder

Figure 5.7: Comparison of two algorithms for the coding of the significance map in simple bitplane
coding.

In a second experiment, we study the influence of the proposed interleaving algorithm. Fig.
5.8 shows the mean of coding cost of the significance map of each bitplane, using either the proposed
algorithm or a random interleaving. If the coefficients were i.i.d, any interleaving algorithm would
produce the same results. However, the coefficients are not i.i.d, and the proposed algorithm allows
to reduce the coding cost of the significance map. It is important to note that other interleaving
algorithms are possible, we tested several alternatives and there were no noticeable differences in
most cases.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

10
2

10
3

10
4

Bitplane

N
um

be
r

of
 b

its
 to

 c
od

e
th

e
si

gn
ifi

ca
nc

e
m

ap

Proposed Interleaving
Random Interleaving

Figure 5.8: Influence of the proposed interleaving algorithm on the coding cost of the significance
map in simple bitplane coding.

69

5.4. Evaluation

5.4.2 Modified MP with pre-echo control

We study here the influence of the modified MP with pre-echo control on the audio coder
performance. A 4-seconds extract of the glockenspiel signal is approximated using either the stan-
dard MP or the modified MP, in the union of 8 MDCT bases. The coefficients are then encoded
using the interleaving process and the simple bitplane encoding described previously. As a refer-
ence, the signal is represented using the same time-varying MDCT as used in AAC (long window
sizes 2048 and short window sizes 256), and the resulting coefficients are encoded using the same
source coding algorithm. We then compare the degradation levels introduced by these three codecs.
As formal listening tests are very time consuming, we use here the PEMO-Q objective measures
only. Fig. 5.9 shows the obtained PSM and ODG measures for the three codecs as a function of
the target bitrate. This shows that the modified MP gives better performance than the standard
MP and that proposed approach clearly outperforms the reference codec.

0 20 40 60 80 100 120
0.75

0.8

0.85

0.9

0.95

1

P
S

M

Transform−based reference coder
MP−based coder without pre−echo control
MP−based coder with pre−echo control

0 20 40 60 80 100 120
−4

−3

−2

−1

0

Bitrate (kbs)

O
D

G

Figure 5.9: Influence of the modified MP with pre-echo control, and comparison with a reference
transform-based codec.

5.4.3 Final codec: objective evaluation

Finally, we evaluate the final proposed codec, using the modified MP in a union of MDCT
bases, and the psychoacoustic bitplane coding proposed in the previous section. The final codec
use the following parameters.

1) Signal representation parameters The coder tested is based on a union of M = 8
bases, with the shortest window length being L0 = 128. Two analysis windows have been tested:
the sine window and the KBD window. Since there were no noticeable differences in the results
using one or the other, we used the sine window. The signal is padded with one second of zeros at
both sides. The parameter thresh in the modified MP is set to 100 and the target SNR is set to 80
dB. We found it necessary to use such a high value to obtain relevant objective measurements at

70

Chapter 5. Union of MDCT bases for audio coding

high bitrates (above 128 kbps). However, in practice, it is sufficient to use a target SNR between
30 and 50 dB for low to medium bitrates.

2) Source coding parameters The maximum amplitude value is quantized and coded
using 16 bits. The parameter kinit is set to 2. The bit budget for each timeslot is constant and
is set according to the target bitrate. The maximum level vmax is set to 30. The number of bits
U necessary to update the mask is set to 1 kbits. The critical bands for the Johnston model have
a length of approximately 0.3 barks. The ATH formula is the one provided in [PS00], and the
spreading function formula is the one provided in MPEG-4 specifications [ISO01].

In our first experiment, our coder is compared to a similar transform-based coder. This
makes it possible to assess the usefulness of using an overcomplete basis, all other things (quantizing,
coding) being equal. The reference coder uses only M = 1 MDCT basis with L0 = 2048 samples
and exactly the same coding algorithm. Note that the results of the transform coder may have been
improved by using a time-varying MDCT with a switching block size at transients. The mean of
the PSM and ODG measures over the five signals are in Fig. 5.10. The union of MDCT approach
gives significantly better results at low bitrates while performing similarly at high bitrates.

8 16 32 64 128 256
0.7

0.8

0.9

1

P
S

M

Union of MDCT
Single MDCT

8 16 32 64 128 256
−4

−3

−2

−1

0

O
D

G

Bitrate (in kbps)

Figure 5.10: Mean of PSM and ODG objective measures for 5 signals and 2 coders based on a single
MDCT and a union of 8 MDCT

In our second experiment, two versions of our coder are compared with a reference state-
of-the-art coder. The two versions of our coder are the coder without the psychoacoustic model
and the coder with the psychoacoustic model. The reference coder is the iTunes 7 AAC encoder
[iTu08] as it is a freely available and fully AAC compatible encoder. The mean of the PSM and
ODG over the five signals are in Fig. 5.11. The results show that the psychoacoustic model adds
a significant gain to the results of the previous coder, and gives a coder which is competitive with
the iTunes AAC encoder.

71

5.4. Evaluation

16 24 32 40 48 56 64
0.92

0.94

0.96

0.98

1
P

S
M

AAC
Without Psy Model
With Psy Model

16 24 32 40 48 56 64
−4

−3

−2

−1

0

O
D

G

Bitrate (in kbps)

Figure 5.11: Mean of PSM and ODG objective measures for 5 signals and 3 coders: iTunes’s AAC,
our coder without psychoacoustic model, our coder with psychoacoustic model.

5.4.4 Final codec: subjective evaluation

Two versions of our coder are subjectively evaluated with a MUSHRA listening test
[ITU03], with scores that range from 0 (extremely poor quality) to 100 (transparent). Ideally,
an ABC test would also be needed to test transparency at high bitrates. But performing a listening
test is very time consuming, and we have preferred to test the performance of our coder at medium
and low bitrates only. A total of 20 listeners have evaluated 8 versions of the five test signals:
a hidden reference, a 3.5 khz low-pass anchor, two signals coded with iTunes AAC at 24 and 48
kbps, two signals coded with our coder and the simple bitplane encoder (noted codec_A) at 24
and 48 kbps, and two signals coded with our coder and the psychoacoustic bitplane encoder (noted
codec_B) at 24 and 48 kbps. These 40 sound files and the source code of the codec are available
online1. The participants were post-screened according to the score they attributed to the refer-
ence: the data for listeners who gave a score under 90 (which correspond to the lowest mark for
the category “excellent quality”) were discarded. A total of 12 listeners were kept, mostly graduate
students working in the field of acoustics or audio processing. Fig. 5.12 presents the scores for each
5 signals, with the overall scores shown at the bottom.

The first goal of this listening test is to show the benefit of the psychoacoustic bitplane
encoder (codec_B) compared to the simple bitplane encoder (codec_A). The results are very signal
dependant. Simple signals (bagp, harp and gloc) are very sparse in the time-frequency domain, in
this case there is no gain when using the psychoacoustic bitplane encoder. For harp and gloc signals,
the psychoacoustic approach even slightly degrades the performance, though scores still remain
high. For more complex, polyphonic signals, the psychoacoustic approach significantly increases

1The sound files used in the listening tests and the GNU/GPL source code of the codec needed to reproduce the
results are available online at the following address http://www.emmanuel-ravelli.com/taslp08

72

http://www.emmanuel-ravelli.com/taslp08

Chapter 5. Union of MDCT bases for audio coding

Anchor 3.5 AAC 24 Codec_A 24 Codec_B 24 AAC 48 Codec_A 48 Codec_B 48
0

20
40
60
80

100

B
a

g
p

Anchor 3.5 AAC 24 Codec_A 24 Codec_B 24 AAC 48 Codec_A 48 Codec_B 48
0

20
40
60
80

100

H
a

rp

Anchor 3.5 AAC 24 Codec_A 24 Codec_B 24 AAC 48 Codec_A 48 Codec_B 48
0

20
40
60
80

100

G
lo

c

Anchor 3.5 AAC 24 Codec_A 24 Codec_B 24 AAC 48 Codec_A 48 Codec_B 48
0

20
40
60
80

100

O
rc

h

Anchor 3.5 AAC 24 Codec_A 24 Codec_B 24 AAC 48 Codec_A 48 Codec_B 48
0

20
40
60
80

100

P
o

p
m

Anchor 3.5 AAC 24 Codec_A 24 Codec_B 24 AAC 48 Codec_A 48 Codec_B 48
0

20
40
60
80

100

A
ll

Figure 5.12: MUSHRA listening test results. From left to right: 3.5 khz low-pass anchor, iTunes
AAC at 24 kbps, our coder with the simple bitplane encoder (Codec A) at 24 kbps, our coder with the
psychoacoustic bitplane encoder (Codec B) at 24 kbps, iTunes AAC at 48 kbps, our coder with the
simple bitplane encoder (Codec A) at 48 kbps, our coder with the psychoacoustic bitplane encoder
(Codec B) at 48 kbps. From top to bottom: Bagpipe, Glockenspiel, Harpsichord, Orchestra, Pop
Music, All signals. Error bars indicate 95% confidence intervals.

the scores. This is due to the presence of a very large number of time-frequency components that
mask each other.

The second goal of this listening test was to compare our proposed coders with a reference
pure transform coder, the iTunes AAC coder. These results are also very signal dependant: at low
bitrates, our approach gives much better results for monophonic signals (bagp, harp and gloc) and
slightly worse results for polyphonic signals (orch and popm). At high bitrates, our approach with
the psychoacoustic model gives the same or slightly worse results, except for the case of polyphonic
signals and the simple bitplane encoder, where the poor results show that a psychoacoustic approach
is necessary.

73

5.5. Conclusions

Overall, these results show that our approach is competitive with a state-of-the-art pure
transform coder, especially since we did not spend much effort in the optimization of encoding
parameters as opposed to the highly-optimized AAC coders. It is also interesting to note here that,
as opposed to the reference coder, our approach provides fine-grain scalability, a property which is
generally provided at a cost in terms of performance. An example of fine-grain scalable coder is
MPEG-4 BSAC. Formal listening tests [ISO99] show that at low bitrates BSAC requires a 12.5 %
bitrate overhead compared to AAC, for the same quality.

5.5 Conclusions

We have presented in this chapter a novel audio codec based on an original representation.
Contrary to existing methods, this approach provides transparency at high bitrates and competitive
results at low bitrates. Listening tests that compare our proposed coder with a state-of-the-art
transform-based coder show that our method gives a much better quality for monophonic signals
and similar or only slightly worse results for polyphonic signals. However, it should be emphasized
that the main goal was to show that the concept of sparse overcomplete representations over a
union of MDCT bases is a viable approach for audio coding. Our coder has also been designed
with the extra constraint of fine-grain scalability, although this is by no means a requirement of
our concept.

However, these results are obtained at a cost in terms of computation time. Indeed, the
decomposition algorithm is much slower than what is needed for a transform (which approximately
corresponds to the first iteration of the Matching Pursuit algorithm). Moreover, our approach uses
much longer analysis window lengths (up to 16384 samples at 44.1 kHz) than what is used in an
AAC coder (2048 samples) which gives a much greater delay time. The delay of our coder is equal
to the maximum window length i.e. 371.5 ms. These two issues prevent applications that require
real-time/low-delay encoding. The computation times are high but not excessive (typically between
5 and 200 times the duration of the file, depending on the signal and the target bitrate), and are
acceptable for off-line sound databases or personal music collections.

While the proposed coder is competitive with state-of-the-art transform coder, there is
still much room for improvement. One possibility is to use more efficient decomposition algorithms
such as orthogonal Matching Pursuit [DMA97], Basis Pursuit [CDS99] or Gradient Pursuit [BD08].
We can also improve the coding part: a better psychoacoustic model, a better integration of the
psychoacoustic model into the bitplane encoder and a fixed bitrate coding scheme instead of bitplane
encoding.

74

75

Chapter 6

Matching Pursuit in adaptive
dictionaries for scalable audio coding

Abstract

This chapter proposes an improved matching pursuit algorithm over a union of
MDCT bases for scalable audio coding. It is based on a novel switching procedure
that adaptively reduces the size of the dictionary using a rate-distortion optimiza-
tion. The resulting audio codec gives better SNR than the previous codec at high
bitrate, and with a reduced computational complexity. The results presented in this
chapter have been published in the proceedings of EUSIPCO 2008 [RRD08b].

Contents
6.1 Introduction . 76

6.2 Signal representation . 76

6.2.1 Signal model . 76

6.2.2 Decomposition algorithm . 77

6.3 Coding . 79

6.3.1 Adaptive bitplane coding . 79

6.3.2 Optimal switching parameter . 81

6.4 Evaluation . 83

6.4.1 Performance . 83

6.4.2 Computation times . 83

6.5 Conclusion . 84

6.1. Introduction

6.1 Introduction

In the previous chapter, we have proposed a new signal representation that allows better
performance than transform coding at low bitrates while allowing transparent quality at high bi-
trates. In comparison, for the same target SNR, there are less significant coefficients to encode than
in the transform case, but encoding the parameters of the significant coefficients (the significance
map) is more costly. We have shown that the tradeoff between the number of significant coefficients,
and the coding cost of these coefficients, significantly favors our approach at low bitrates. How-
ever, at high bitrates, it is necessary to encode a high number of coefficients in both approaches,
and the cost of encoding large significance map becomes prohibitive: in this case our approach is
outperformed by the standard transform approach.

In this chapter, we propose a new decomposition algorithm that, under mild assumptions,
provides the “best of both worlds”: the same performance as the previous approach at low bitrates
and the same performance as transform coding at high bitrates. The signal is first approximated
in the overcomplete set of time-frequency atoms used in the previous chapter (union of 8 MDCT
bases), and then the residual of this approximation is decomposed using an orthogonal transform
(one of the MDCT bases). The signal decomposition is performed on the whole signal using a
modified Matching Pursuit (MP) algorithm, with an adaptive dictionary that is changed locally
i.e. the union of MDCT is reduced to one MDCT on a frame-by-frame basis. The decomposition is
then encoded using similar bitplane encoding methods as used in previous chapter. The main issue
is the design of an efficient strategy to decide on the appropriate MP iteration, in a given frame,
to switch from the overcomplete to the complete dictionary.

A similar idea is found in image coding [PGV06], where an overcomplete set of 2D atoms is
used to model the edges of an image and the residual of this approximation is coded using a wavelet
transform. However, this approach is based on two different dictionaries and two different coding
methods. The image coder combines this two different approaches in a rate-distortion way. Another
similar approach is found in audio coding [vv05], where SSC is used to approximate a signal and
the residual is coded using a MDCT-based coder. A rate-distortion optimization is used to allocate
the available bit budget between the two coders. Our approach is however slightly different. We
propose an alternate solution where a single paradigm for the signal representation and the coding
method is used, both are adapted online using the novel switching procedure proposed in this
chapter.

The remainder of this chapter is as follows. In section 6.2, we introduce the signal model
and the decomposition algorithm. In section 6.3, we describe how the decomposition is encoded
and derive an optimal parameter rate-distortion value for the adaptive decomposition algorithm.
In section 6.4, we present the results, and finally we conclude in section 6.5.

6.2 Signal representation

6.2.1 Signal model

An audio signal is approximated using the same union of 8 MDCT bases as in the previous
chapter. We recall here briefly the signal model. Considering a signal x of length N samples, it is
approximated as

x = Φc + r (6.1)

76

Chapter 6. Matching Pursuit in adaptive dictionaries for scalable audio coding

with r is the residual, c the vector of coefficients of length MN and Φ the synthesis matrix of size
N ×MN defined as:

Φ (n, mN + pKm + k) = gm,p,k(n) , 0 ≤ m < M , 0 ≤ p < Pm , 0 ≤ k < Km , 0 ≤ n < N (6.2)

where Pm is the number of segments of length Km = Lm/2 such that N = PmKm, and

gm,p,k(n) = wm,p(u)

√

2

Km
cos

[

π

Km

(

u +
Km

2
+

1

2

)(

k +
1

2

)]

(6.3)

and

u = n−
(

p− 1

2

)

Km (6.4)

The window wm,p(u) is a sine-based window.

6.2.2 Decomposition algorithm

In the previous chapter, the signal was decomposed using MP. Standard MP is performed
globally on the whole signal. To better adapt the model to the local statistics of the signal, we
consider here a modified MP algorithm that adapts the dictionary in the “timeslots” defined in
the previous chapter. We first recall briefly a few definitions. The timeslots group coefficients in
subsets Sq defined as

Sq =

{

cm,p,k | floor

(

p− (P ′
m − 1)

P ′
m

)

= q

}

(6.5)

where

cm,p,k = cmN+pKm+k , 0 ≤ m < M , 0 ≤ p < Pm , 0 ≤ k < Km (6.6)

are the coefficients and P ′
m = 2M−m−1 is the number of frames of block m in each timeslot.

In the timeslot Sq, the time support of the largest scale atom includes all smaller scale atoms.
Consequently, we define the time support Uq of the timeslot Sq as the time support of the largest
scale atom. At every MP iteration, one atom is picked up, that can belong to any timeslot. We
thus define nq(i) the MP iterations where the selected atom belongs to the timeslot Sq. The atom
selected at iteration nq(i) decreases the energy of the residual on the time support Uq. We thus
define the SNR of the timeslot Sq as

SNRq(i) = −20 log10





||Rnq(i)
Uq
||

||R0
Uq
||



 (6.7)

and the SNR decay of the timeslot Sq as

DECq(i) = −20 log10





||Rnq(i)+1
Uq

||
||Rnq(i)

Uq
||



 (6.8)

with Rn
Uq

is the part of the residual at iteration n corresponding to the time support Uq. Fig.

6.1 plots the decay curve DECq(i) as a function of SNRq(i), obtained with the standard MP for
a timeslot of an audio signal and two dictionaries: one single MDCT with window length 2048
samples and the union of 8 MDCT bases. In the first iterations, each atom of the overcomplete
dictionary decreases significantly the SNR of the timeslot, but after some iterations, the SNR decay

77

6.2. Signal representation

becomes small and almost equal to the one of the orthogonal dictionary at same SNR. This is the
same phenomenon as the one described in [MZ93]: the atoms extracted in the first iterations are
the coherent structures of the signal and after some iterations the residue Rn converges to a process
called the dictionary noise. The SNR decay of the overcomplete dictionary even tends towards a
constant which depends only on the dictionary and is equal in this case to approximately 0.002.
When coding such a decomposition, there is a gain in the first iterations but after some point, it is
less costly to encode an atom from an orthogonal dictionary. Consequently, from a coding point of
view, it is better to decompose the first iterations in the union of MDCT bases, and then to reduce
the dictionary when the decay becomes too low.

The proposed modified MP is detailed in Alg. 13. At each iteration, the atom that
is most correlated with the signal is selected (as in standard MP). Then, the SNR decay in the
corresponding timeslot is computed. If the SNR decay is below a constant SW (we will show later
how to compute this constant), the dictionary subset corresponding to that timeslot is reduced to
the orthogonal dictionary i.e. all atoms in the timeslot are removed from the dictionary except those
from the orthogonal dictionary in every timeslot. One possibility is to stop the algorithm when only
atoms from the orthogonal dictionary remains in the dictionary. However, we have found that the
stopping criterion could be simplified as follows. The algorithm is stopped when a given number
of consecutive atoms from the orthogonal dictionary are selected (for example 100). This has for
consequence to stop the algorithm sooner and thus lower the complexity, and with a negligible loss
in terms of performance. Finally, the residual is projected on the orthogonal dictionary and the
coefficients are updated. This algorithm has been implemented in the MPTK framework using the
fast implementation described previously.

0 5 10 15 20 25 30
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

SNR (in dB)

D
ec

ay
 (

in
 d

B
)

1xMDCT
8xMDCT

Figure 6.1: SNR decay as a function of SNR for a timeslot

78

Chapter 6. Matching Pursuit in adaptive dictionaries for scalable audio coding

Algorithm 13: Adaptive Matching Pursuit

Input: The signal x, the dictionary Φ and a parameter SW
Output: The vector of coefficients c and the residual r such that x = Φc + r
Initialization: r = x, c = 0;1

repeat2

Inner products: a = ΦT r;3

Find maximum: kmax = argmax
1≤k≤K

|ak|;
4

Update coefficients: ckmax
= ckmax

+ akmax
;5

Update residual: r = r− akmax
Φkmax

;6

Compute timeslot index q of the selected atom;7

if DECq < SW then8

remove from Φ all atoms in timeslot q except those from the orth. dict.;9

end10

until only atoms from the orth. dict. remain in the dict. ;11

Project the residual r on the orth. dict. and update coefficients;12

6.3 Coding

6.3.1 Adaptive bitplane coding

A vector of interleaved coefficients per timeslot is first produced using the same interleaving
process as in the previous chapter. Fig. 6.2 shows the amplitude of the coefficients of such a
vector on the bitplane scale. The coefficients have been normalized, sorted in decreasing order and
converted on the bitplane scale using log2. The coefficients that belongs to the orthogonal dictionary
are plotted using a dashed line, the other coefficients are plotted using a plain line. As expected,
the coefficients in the first bitplanes (i.e. with the highest amplitudes) belong to any of the MDCT
bases in the overcomplete dictionary, these correspond to the atoms that have been selected in
the first iterations of the modified matching pursuit algorithm. These first bitplanes are encoded
simply with the same standard bitplane encoder than in the previous approach. Then, Fig. 6.2
shows that only coefficients from the orthogonal dictionary remain after the fifth bitplane. These
correspond to the atoms that have been selected after the switch in the modified matching pursuit
algorithm. Consequently, all the coefficients that do not belong to the orthogonal dictionary are
zeros after the fifth bitplane and the cost of encoding the significance map can be thus significantly
reduced, by encoding the bits corresponding to the orthogonal dictionary only. In order that the
decoder knows when the significance map size is reduced, it is necessary to add one bit per bitplane
(“0” = full overcomplete dictionary, “1” orthogonal transform).

The algorithm is detailed in Alg. 14. The coefficients vi are first normalized by the ampli-
tude of the coefficient with maximum amplitude A = max(abs(vi)) and the value A is quantized and
transmitted (as in the standard bitplane encoder). Then, at each iteration, a test is performed. We
decide to switch if all the non already significant coefficients that do not belong to the orthogonal
dictionary are zeros. If it is the case, a bit ”1“ is emitted and the significance map is reduced to the
coefficients of the orthogonal dictionary. Otherwise, a bit ”0“ is emitted and the whole significance
map is encoded. The significance map is encoded using the same adaptive Golomb encoder used in
the previous approach. The refinement pass is also the same.

79

6.3. Coding

0 200 400 600 800
0

1

2

3

4

5

6

7

8

Sorted coefficient index

A
m

pl
itu

de
 o

n
th

e
bi

tp
la

ne
 s

ca
le

Figure 6.2: Sorted coefficient amplitude on the bitplane scale. Dashed line corresponds to the
coefficients that belong to the orthogonal dictionary and the plain line the other coefficients. Dotted
lines correspond to the bitplane boundaries.

Algorithm 14: Adaptive bitplane coding

Input: A vector of interleaved coefficients v = {vi|i = 1...MLM−1}
Output: The bitstream
Quantize and code max amplitude A = max(abs(vi));1

Initialization: z = 0, s = 1, ν = 1;2

repeat3

Test switch: switch if vi = 0 for all i s.t. zi = 0 and i not in orth. dict.;4

if switch then5

emit the bit “1”;6

si = 0 for all i not in orth. dict.;7

else8

emit the bit “0”;9

end10

Compute bitplane: bi = mod(floor(abs(vi) ∗ 2ν/A), 2) for all i s.t. si = 1;11

Significance pass: code BS = {bi|zi = 0 and si = 1} and signs;12

Refinement pass: code BR = {bi|zi = 1};13

Update significance: zi = 1 for all i s.t. bi ∈ BS and bi = 1;14

Iterate: ν = ν + 1;15

until bit budget spent or ν > νmax ;16

80

Chapter 6. Matching Pursuit in adaptive dictionaries for scalable audio coding

6.3.2 Optimal switching parameter

The proposed adaptive MP depends only on one parameter SW , which is the energy
decay per coefficient under which it is better to switch from overcomplete to orthogonal. Of course,
SW can be estimated on-line, by computing at each iteration the most favorable rate-distortion
configuration. However, since the coefficients are not encoded separately but in bitplanes, this
technique leads to a significant complexity increase (at each iteration, one has to “look ahead” a
large number of steps to decide on the best strategy). Instead, we would like to compute a fixed
value for SW that is approximately optimal (in terms of rate-distortion), without any additional
computation in the MP loop. It should be noted that we tried other methods (e.g. based on SNR,
based on the coefficients amplitude) but they were too signal-dependant.

In the following, we consider one particular slot Sq, and we suppose that the switch is done
for that timeslot at the iteration nq(iswitch). We make the assumption that the SNR decay DECq

in that timeslot is constant for the few iterations following the switch (this is approximately verified
if the switch does not occur in the first iterations). Then, we consider two cases: if at iteration
nq(iswitch), we stay in the overcomplete dictionary (no switch), the decay value would be DECO

q ;
if at iteration nq(iswitch), the dictionary is reduced to an orthogonal dictionary (switch), the decay
value would be lower and equal to DECT

q . We now make the empirical observation that there

exists a simple relation between DECO
q and DECT

q . We decompose a 20 seconds signal composed
of several audio types contents (monophonic, polyphonic) with the adaptive MP and several values
of the parameter SW . We also decompose the same signal in the overcomplete dictionary with
the standard MP (no switch) as a reference to compute DECO

q . In each timeslot, and for each
parameter value, we compute the mean of the decay on the 100 iterations nq(i) following the switch
at iteration nq(iswitch) for each case and we plot DECT

q as a function of DECO
q . Fig. 6.3 shows

the obtained values and a linear approximation. We thus approximate the relation between DECT
q

and DECO
q as: DECt = γDECo with γ = 0.6.
Now, as we have supposed that the SNR decay DECq in a timeslot is constant for the few

iterations following the switch, and if we neglect the influence of the neighbouring timeslots Sq−1

and Sq+1, the energy and the absolute value of the coefficients have approximately the same decay:
DECO

q if we remain in the overcomplete dictionary, and DECT
q if we switch to the orthogonal

dictionary. As a bitplane corresponds to a division per two of the absolute value of the coefficients,
we have

10−NbT DECT
q /20 =

1

2
(6.9)

with NbT the approximate number of coefficients per bitplane, which is then equal to

NbT =
20

DECT
q log210

(6.10)

for the orthogonal dictionary and

NbO =
20

DECO
q log210

(6.11)

for the overcomplete dictionary. As the major contribution to the bitrate is due to coding the
significance maps, in following computations we neglect the sign and refinements bits. Assuming
that the coding cost for the significance map can be estimated by entropy, we can then compute
the average rate per significant coefficient as

RT =
1

p
(−p log2(p)− (1− p) log2(1− p)) (6.12)

81

6.3. Coding

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
0

0.005

0.01

0.015

0.02

0.025

SNR decay: overcomplete dictionary (in dB)

S
N

R
 d

ec
ay

: o
rt

ho
go

na
l d

ic
tio

na
ry

 (
in

 d
B

)

Figure 6.3: Decay of the orthogonal dictionary as a function of the overcomplete dictionary; the
decay is computed on the 100 iterations following the switch.

0 0.01 0.02 0.03 0.04 0.05
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

−3

SNR decay (in dB)

S
N

R
 p

er
 b

it
(in

 d
B

/b
it)

1xMDCT
8xMDCT

Figure 6.4: Distortion per bits as a function of the SNR decay for two dictionaries.

82

Chapter 6. Matching Pursuit in adaptive dictionaries for scalable audio coding

with p = NbT

Slen
for the orthogonal dictionary and

RO =
1

p̃
(−p̃ log2(p̃)− (1− p̃) log2(1− p̃)) (6.13)

with p̃ = NbO

MSlen
for the overcomplete dictionary. In short, each coefficient in the bitplane af-

ter the switch iteration decreases the SNR by DECO
q dB at a cost of RO bits if we remain the

overcomplete dictionary, and decreases the SNR by DECT
q dB at a cost of RT bits if we switch

to the orthogonal dictionary. Consequently, we decide to switch to the orthogonal dictionary if
DECT

q /RT > DECO
q /RO. We are now able to compute the optimal value SW numerically. Fig.

6.4 plots DECT
q /RT and DECO

q /RO as a function of DECO
q for γ = 0.6. We finally find numeri-

cally the optimal parameter value which is approximately SW = 0.025 (numerical simulations have
shown that the exact value is not really critical).

6.4 Evaluation

6.4.1 Performance

We have tested our algorithm on the same signals as used in the previous chapter: bagp,
gloc, harp, orch, popm. We compare three coders based on three different signal representations.
First, the two reference coders are a transform coder based on a single MDCT (M = 1) with an
analysis window length of 2048 samples, and the overcomplete approach coder with the standard
MP in a union of 8 MDCT bases. These two coders are compared with the novel coder proposed in
this chapter, based on the modified MP with an adaptive dictionary that switches from 8xMDCT
to 1xMDCT (with length 2048 samples). We remark that contrary to the previous chapter, the
evaluation measure is based here on SNR as the decomposition algorithm is based on SNR too. More
relevant objective measure for audio coding such as PEMO-Q [HK06] or even listening tests are
planned for future work. The results are shown on Fig. 6.5. It clearly shows that the performance
of the new coder is the same as the previous approach at low bitrates and the same as transform
coding at high bitrates, even slightly higher.

6.4.2 Computation times

Fig. 6.1 compare the computation time needed to code the six files with the three ap-
proaches: the single MDCT coder, the proposed adaptive MP coder and the standard MP coder
(with a precision of 60 dB). Though it is still about 100 times slower than a single MDCT, the new
approach is much faster than the previous approach.

MDCT Adaptive MP MP (60dB)

bagp 0.03 3.88 140.60

gloc 0.03 2.11 42.41

harp 0.03 2.00 146.29

orch 0.03 3.89 151.90

popm 0.03 2.05 214.06

Table 6.1: Normalized computation times on a Core 2 Duo 2.0 GHz laptop (in seconds/seconds)

83

6.5. Conclusion

2 4 8 16 32 64 128 256
0

20

40

60

Bitrate (in kbps)

S
N

R
 (

in
 d

B
)

1xMDCT
8xMDCT
Switch 0.025

Figure 6.5: Mean SNR for six signals in function of the bitrate for 3 coders: transform coder with
1xMDCT, standard MP with 8xMDCT, adaptive MP from 8xMDCT to 1xMDCT with a switch
parameter value of SW = 0.025.

6.5 Conclusion

The scalable audio coder proposed in the previous chapter gave better performance than
transform-based coding at low bitrates but slightly worse performance at high bitrates. The signal
representation was based on a standard Matching Pursuit decomposition in an overcomplete union
of MDCT bases. We have shown that the energy decay in this overcomplete dictionary is high on
the first iterations and becomes almost equal to the decay of an orthogonal dictionary after some
iterations. As it is less costly to encode atoms in an orthogonal dictionary, it is better from a coding
point of view to decompose the residual in an orthogonal dictionary when the energy decay becomes
too low. We thus have proposed a modified MP which switches from an overcomplete dictionary
to an orthogonal dictionary when the energy decay is below a threshold. We have then derived
an optimal switching parameter value. Finally, we have shown experimentally that the resulting
coder reaches the performance of the previous approach at low bitrates and the performance of a
transform coder at high bitrates.

This study also raises some questions: first, it is not clear whether there is a fundamental
reason for such a simple (approximate) relationship between DECO

q and DECT
q . Second, this

leads to wonder if there are more signal-independent techniques to perform the switch near the
optimum. Finally, further studies will have to investigate whether the rate-distortion optimization
as performed here, with distortion as mean quadratic error, is also optimal from a perceptual point
of view.

84

85

Chapter 7

Embedded Polar Quantization

Abstract

This chapter proposes simple algorithms for embedded polar quantization. Sets of
constrained-resolution embedded quantizers are built recursively by successive refine-
ment processes, that are detailed for strict polar quantization and unrestricted polar
quantization. The quadratic error minimization problem is solved using equations
similar to those of Max, and the refinement algorithm can, in the unrestricted case,
be simplified using a high-rate approximation. For Gaussian data, comparisons with
reference non-embedded quantizers show that the embedding property comes at an
often negligible cost in terms of rate-distortion performance. The results presented
in this chapter have been published in IEEE Signal Processing Letters [RD07].

Contents
7.1 Introduction . 86

7.2 Embedded Strict Polar Quantization . 88

7.2.1 Quantizers design . 88

7.2.2 Application: Gaussian data . 89

7.3 Embedded Unrestricted Polar Quantization 90

7.3.1 Quantizers design . 90

7.3.2 Choice between amplitude and phase refinement 91

7.3.3 Application: Gaussian data . 92

7.4 Conclusions . 93

7.1. Introduction

7.1 Introduction

We have studied in the previous chapters one overcomplete dictionary based on MDCT
atoms, which is the union of several MDCT with different scales. One can imagine other ways to
build overcomplete dictionaries. For example, one possibility is to use a complex extension of the
MDCT, which is also called Modulated Complex Lapped Transform (MCLT) [Mal99b]. Contrary to
the MDCT, the MCLT has the interesting property of phase-invariance, which is useful for coding
time structures. MCLT-based coding has already been investigated in [DD06] and [YM08]. For
a N -length signal, the MCLT dictionary is composed by N complex atoms and it is thus a twice
overcomplete dictionary. The corresponding signal model is given by

x = ℜ (Φc) + r (7.1)

with x the signal, r the residual, c the vector of (complex) coefficients of length N and Φ the
synthesis matrix of size N ×N defined as

Φ (n, pK + k) = gp,k(n) , 0 ≤ p < P , 0 ≤ k < K , 0 ≤ n < N (7.2)

where P is such that N = PK and is the number of segments of length K = L/2, and

gp,k(n) = wp(u)

√

2

K
exp

[

i
π

K

(

u +
K

2
+

1

2

)(

k +
1

2

)]

(7.3)

and

u = n−
(

p− 1

2

)

K (7.4)

and the window wp(u) is a sine-based window. A signal is approximated in such a dictionary
using a two-dimensional matching pursuit based on the projection of the signal in the subspace
composed by the complex atoms and their conjugates as described in [Goo97]. The algorithm
has been implemented in MPTK. In the following, we describe a small experiment that shows the
potential benefit of using a MCLT instead of a single MDCT in an audio codec. The five signals
of Annex A are approximated in a MCLT dictionary with window size 2048 samples. The vector
of complex coefficients is then represented in magnitude/phase form and quantized using a polar
quantizer. The SNR as a function of the estimated bitrate is plotted on Fig. 7.1. This shows that
gain may be obtained at very low bitrates. However, to use efficient bitplane encoding techniques
similar to those presented in the last chapter, it is necessary to design embedded quantizers for
2-dimension circularly symmetric data. We thus propose several embedded polar quantizers for
such data. This preliminary study is just the first step towards a fully scalable audio coder based
on MCLT. As we did not have time to go further in that direction, we will only present in this
chapter the proposed embedded polar quantizers.

Constrained-resolution embedded quantization as stated in this chapter can be defined as
follows. Consider K quantizers Q(k), k = 1, ...,K

Q(k) : RL →
{

0, .., 2k − 1
}

, (7.5)

with L the dimension of the sample space and N (k) = 2k, the number of cells for quantizer Q(k).
Embedded quantization was first introduced for scalar quantization (L = 1) in [Tzo86].

An optimal quantizer is chosen first as a reference, it is designed using the standard numerical
optimization methods of Max [Max60]. The quantizers of lower and higher rates are designed by

86

Chapter 7. Embedded Polar Quantization

0 2 4 6 8 10
0

5

10

15

Bitrate (kbps)

S
N

R
 (

dB
)

bagp

1xMDCT
1xMCLT + rectangular quantizer
1xMCLT + polar quantizer

0 2 4 6 8
0

5

10

15

20

Bitrate (kbps)

S
N

R
 (

dB
)

gloc

0 2 4 6 8 10 12
0

2

4

6

8

10

12

Bitrate (kbps)

S
N

R
 (

dB
)

harp

0 5 10 15
0

5

10

15

Bitrate (kbps)

S
N

R
 (

dB
)

orch

0 5 10 15 20
0

5

10

15

Bitrate (kbps)

S
N

R
 (

dB
)

popm

Figure 7.1: SNR as a function of the estimated bitrate using simple 2-dimension quantizers.

87

7.2. Embedded Strict Polar Quantization

iteratively aligning the quantization thresholds and optimizing the thresholds and reconstruction
points using methods similar to [Max60]. Such quantizers can be easily represented using binary
trees. Each stage of the tree corresponds to a particular rate, the nodes correspond to the boundary
points, and the branches correspond to the output levels. Practical embedded scalar quantizers have
also been proposed in [KLK02, BF96, BF98]. Finally, embedded quantization has been generalized
to vector quantization. An example of such vector quantizers are the Tree-Structured Vector
Quantizers (TSVQ) [GG92]. The 2-ary TSVQ is designed using a binary tree and numerical solving
methods similar to [Max60], the embedded quantizers are then the pruned tree corresponding to
the first k stages of the TSVQ.

We consider a particular case of 2-dimensional (L = 2) quantizers which enable embedded
polar quantization. Polar quantizers are natural quantizers for 2-dimensional data with circularly
symmetric densities. Amplitude and phase can be quantized separately, this case is called Strict
Polar Quantization (SPQ, [Pea79]) or they can be quantized jointly, this is Unrestricted Polar
Quantization (UPQ, [Wil80]).

In this chapter, a circularly symmetric complex variable x is used, represented by its polar
coordinates (r, θ). Since amplitude and phase variables are independent, the variable joint density
function is then

fX(r, θ) =
1

2π
fR(r), (7.6)

with fR(r) is the marginal density function of the amplitude variable. A polar quantizer Q(k) with
N (k) cells is defined as follows. The amplitude range is partitioned into M (k) levels and within

each amplitude level, indexed by m = 1, 2, ...,M (k), there are P
(k)
m equal-sized phase cells, such

that
∑M(k)

m=1 P
(k)
m = N (k). Note that for SPQ, one has P

(k)
m = P (k) for all m. The boundaries of the

amplitude levels are

R
(k)
0 = 0 < R

(k)
1 < R

(k)
2 < ... < R

(k)
M =∞, (7.7)

and the boundaries of the phase regions for the amplitude level m are

0 <
2π

P
(k)
m

< 2
2π

P
(k)
m

< ... < (P (k)
m − 1)

2π

P
(k)
m

< 2π. (7.8)

The output point for the cell R(k)
m,p defined by the amplitude level m and the phase region p is

(α
(k)
m , β

(k)
m,p). The mean square error is then expressed by

D(k) =
M(k)
∑

m=1

P
(k)
m
∑

p=1

∫∫

R
(k)
m,p

∣

∣

∣
rejθ − α(k)

m ejβ
(k)
m,p

∣

∣

∣

2

fX(r, θ)drdθ. (7.9)

The purpose of this chapter is to detail simple construction rules for embedded quantizers,
in the cases of SPQ (section 7.2) and UPQ (section 7.3). We compare the performance of the
embedded quantizers to the performance of the non-embedded quantizers using Gaussian data.

7.2 Embedded Strict Polar Quantization

7.2.1 Quantizers design

Strict polar quantization (SPQ) is first considered. As amplitude and phase are quantized
separately, scalar embedded quantization techniques can easily be used to design the embedded
SPQ. An algorithm similar to [Tzo86] is used, where an optimal reference quantizer is first selected.

88

Chapter 7. Embedded Polar Quantization

Then, successive lower- and higher-rate quantizers are built in a recursive manner. The design
algorithm consists of three steps:

1. Reference quantizer: An optimal SPQQ(kref) is designed using the algorithm of [Pea79].
Q(kref) has a number of amplitude levels M (kref) and a number of phase levels P (kref).

2. Lower rate quantizers: Two lower-rate quantizers Q(k) are designed from Q(k+1). The
first one is designed from Q(k+1) by selecting only every second amplitude boundary and keeping
the same number of phase levels. The other one is designed from Q(k+1) by selecting only every
second phase boundary and keeping the same number of amplitude levels. The output points for
the two quantizers are found using

α(k)
m = S(P (k))

∫ R
(k)
m

R
(k)
m−1

rfR(r)dr

∫ R
(k)
m

R
(k)
m−1

fR(r)dr
(7.10)

β(k)
m,p =

(

p− 1

2

)

2π

P (k)
, (7.11)

with S
(

P (k)
)

= sinc
(

π/P (k)
)

. Then, the distortion is computed for each quantizer using Eq. (7.9)
and the one with the minimum distortion is selected.

3. Higher rate quantizers: Similarly, two higher-rate quantizers Q(k) are designed from
Q(k−1). The first one is designed fromQ(k−1) by refining the amplitude quantizer by two and keeping
the same number of phase levels. The new amplitude boundaries are initialized at the middle of
the previous amplitude boundaries. Boundaries and output points are then computed iteratively
by first updating the output points using equations (7.10) and (7.11) and next by updating the
new amplitude boundaries using

R(k)
m =

1

S(P (k))

α
(k)
m + α

(k)
m+1

2
. (7.12)

Another higher-rate quantizer can be designed from Q(k−1) by refining the phase quantizer by two
and keeping the same number of amplitude levels. The new phase boundaries are at the middle
of the previous boundaries and the new output points are calculated using Eq. (7.10) and (7.11).
Again, the distortion is computed for each quantizer using Eq. (7.9) and the one with the minimum
distortion is selected.

7.2.2 Application: Gaussian data

The performance of our quantizers are evaluated using an independent bivariate Gaussian
source. Such a source gives a good base of comparison as the results for existing quantizers are
well-known [Pea79, Wil80]. Moreover, the source produced by the DFT of a stationary signal of
length N tends to a bivariate Gaussian source as N becomes large. A bivariate Gaussian source is
equivalent to an independent circularly symmetric complex variable whose amplitude has a Rayleigh

distribution. The joint density function is then fX(r, θ) = 1
2πfR(r) with fR(r) = r

σ2 exp
(

− r2

2σ2

)

.

Several embedded SPQs are compared using different values for kref and these embedded SPQs are
also compared with the (non-embedded) optimal SPQ (from [Pea79]).

Fig. 7.2 shows the results obtained for kref = 1, 6, 8, 12 bits. When the actual number of
bits is not far from kref , the excess distortion of the embedded quantizers is low, typically less than
0.2 dB. The choice of kref will depend on the application: a low kref is selected if the probability

89

7.3. Embedded Unrestricted Polar Quantization

0 2 4 6 8 10 12 14
−40

−30

−20

−10

0

Rate (in bits)

D
is

to
rt

io
n

(in
 d

B
)

Optimal SPQ

0 2 4 6 8 10 12 14
−0.05

0

0.05

0.1

0.15

0.2

0.25

Rate (in bits)

E
xc

es
s

di
st

or
tio

n
(in

 d
B

)

Embbeded SPQ

Reference: 1 bit quantizer
Reference: 6 bits quantizer
Reference: 8 bits quantizer
Reference: 12 bits quantizer

Figure 7.2: (top) Rate-Distortion curve for the optimal SPQ of [Pea79]. (bottom) Excess distor-
tion over the optimal SPQ for several embedded SPQs using different values for kref .

of having low rates is high; and a high kref is selected if the probability of having low rates is low.
Note that in cases where little is known a priori about such probability, a conservative approach
should favor a large kref .

7.3 Embedded Unrestricted Polar Quantization

7.3.1 Quantizers design

Consider the more general case of unrestricted polar quantization (UPQ). Here, lower
rates embedded quantizers cannot necessarily be found using an optimal reference quantizer, and
consequently the same design method as in SPQ cannot be used. Indeed, an optimal UPQ as
designed in [Wil80] does not necessarily have a power-of-two number of phase regions at a given
amplitude level. Instead, an algorithm similar to 2-ary TSVQ is used. The design algorithm consists
of two steps:

1. Reference quantizer: The first quantizer Q(1) is the optimal 2-cell quantizer (top-left
of Fig. 7.5).

2. Higher rate quantizers: For a higher rate quantizer Q(k) with k = 2, ...,K, each region
of Q(k−1) are refined separately in two different ways, either by refining the amplitude or the phase.
This leads to 22k−1

possibilities for Q(k). However, as the source is supposed to be circularly
symmetric, cells at the same amplitude level perform in the same way. Consequently, there are
only 2M(k−1)

possibilities for Q(k). For a cell at a given amplitude level, one has to decide whether
an amplitude refinement or a phase refinement gives the smallest distortion; this choice is discussed
in the next subsection. Then, the new boundaries and output points are computed using equations

90

Chapter 7. Embedded Polar Quantization

similar to those of Max [Max60]. The same process is repeated for each amplitude level.

7.3.2 Choice between amplitude and phase refinement

Figure 7.3: A cell delimited by the amplitude boundaries R and R + δR, and the phase boundaries
difference 2π

P . The dashed line represents the new cells boundary for phase refinement, and the
dash-dotted line the new cells boundary for amplitude refinement.

Consider a cell delimited by the amplitude boundaries R and R + δR, and the phase
boundaries difference 2π

P (see Fig. 7.3). Depending on these three parameters, it may be better
to choose either an amplitude refinement (the new divided cell is noted (a)) or a phase refinement
(the new divided cell is noted (b)). For amplitude refinement, the amplitude boundary R + γ and
the two new output points α1 and α2 are calculated iteratively using the following equations:

R + γ =
1

S(P)

α1 + α2

2
(7.13)

α1 = S(P)

∫ R+γ
R rfR(r)dr
∫ R+γ
R fR(r)dr

(7.14)

α2 = S(P)

∫ R+δR
R+γ rfR(r)dr
∫ R+δR
R+γ fR(r)dr

. (7.15)

For the phase refinement, the phase boundary is at the middle of the cell and the new
output point α is calculated using

α = S(2P)

∫ R+δR
R rfR(r)dr
∫ R+δR
R fR(r)dr

. (7.16)

The distortions Da and Db are computed using Eq. (7.9), and the one that gives the smallest
distortion is selected.

An analytical solution for the refinement choice can be derived using high-rate approxi-
mation. The joint probability density function is supposed to be constant in the cell. Moreover,
P is supposed to be large and S(P) is approximated using its second-order Taylor expansion. The

91

7.3. Embedded Unrestricted Polar Quantization

total distortion Da for the cell (a) is

Da.
P

fR(R)
=

(R + δR− α2)
3 − (R + δR/2− α2)

3

3

+
π2

3P 2
((R + δR)2 − (R + δR/2)2)

α2

2

+
(R + δR/2− α1)

3 − (R− α1)
3

3

+
π2

3P 2
((R + δR/2)2 −R2)

α1

2
,

with

α1 =

(

1− π2

6P 2

)(

R +
δR

4

)

α2 =

(

1− π2

6P 2

)(

R + 3
δR

4

)

.

The total distortion Db for the cell (b) is

Db.
P

fR(R)
=

(R + δR− α)3 − (R− α)3

3

+
π2

3(2P)2
((R + δR)2 −R2)

α

2
,

with

α =

(

1− π2

6(2P)2

)(

R +
δR

2

)

. (7.17)

To find the boundaries, we need to solve Da ≤ Db. Using a first-order approximation of the former
expressions, this inequality is equivalent to:

P

2π
≥
(

R

δR
+

1

2

)

. (7.18)

The inequality (7.18) has a simple interpretation: if the length δR of the radial boundary of the cell
is bigger than (R+δR/2)2π

P which is the length of the average circle arc, then amplitude refinement
is preferred, and vice-versa. In the next subsection, this analytical solution appears to be a good
approximation, even at low rates. It saves computational cost since only boundaries and output
points need to be calculated.

7.3.3 Application: Gaussian data

The performance of our quantizer is evaluated using the same independent bivariate Gaus-
sian source as in section 7.2.2. The following quantizers are compared: the optimal UPQ [Wil80],
the high-rate optimal UPQ [SK86], and our embedded UPQ (without the high-rate approximation
for the refinement choice). For the optimal UPQ, the simulation has been performed up to a rate
of 6 bits only since for higher rates the computational cost is too high.

To evaluate the excess distortion due to the high-rate approximation for the refinement
choice, the excess distortion over the embedded UPQ is plot for the embedded UPQ with the high-
rate approximation for the refinement choice (Fig. 7.4). The excess distortion for the embedding
property here is always less than 1 dB over optimal non-embedded, a price to pay that can, in
certain applications, be considered small with regard to its benefits. Finally, the first six embedded
UPQ are shown in Fig. 7.5, using the high-rate approximation for the refinement choice.

92

Chapter 7. Embedded Polar Quantization

1 2 3 4 5 6 7 8 9 10
−30

−25

−20

−15

−10

−5

0

Rate (in bits)

D
is

to
rt

io
n

(in
 d

B
)

Optimal, High−rate and Embedded UPQ

Optimal UPQ
High−rate approximation UPQ
Embedded UPQ

1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Rate (in bits)

E
xc

es
s

di
st

or
tio

n
(in

 d
B

)

Embedded UPQ with high−rate approximation for the refinement choice

Figure 7.4: (top) Rate-Distortion curves for the optimal UPQ of [Wil80], the optimal high-rate
UPQ of [SK86] and our embedded UPQ (without the high-rate approximation for the refinement
choice). (bottom) Excess distortion over the embedded UPQ for the embedded UPQ with the
high-rate approximation for the refinement choice

7.4 Conclusions

In this chapter, we have described simple algorithms to design polar quantizers that can
be embedded. Two kinds of quantizers have been distinguished: embedded strict polar quantizers
where amplitude and phase are quantized separately; and embedded unrestricted polar quantizers
where amplitude and phase are quantized jointly. For bivariate Gaussian data, this results in a
small increase of distortion over when compared to the standard optimal polar quantizers (typically
less than 0.2 dB for SPQ, less than 1 dB for UPQ). A high-rate approximation for the refinement
choice has been introduced and results in negligible excess distortion.

Future work would investigate the integration of the proposed quantizers in a bitplane
encoder. This would require considering a zero central cell, possibly more than two cells for quan-
tizing the initial phase, possibly more than one refinement bit at each step of the algorithm. The
bitplane encoder would then be associated to a MCLT-based signal representation and the resulting
audio codec would need a proper evaluation. It is also necessary to consider other amplitude dis-
tributions, such as the generalized Gaussian distribution which is closer to the real distribution of
the MCLT coefficient amplitude, or even a simple uniform distribution (as in previous approach).

93

7.4. Conclusions

−2 0 2
−3

−2

−1

0

1

2

3
Rate = 3 bit

−2 0 2
−3

−2

−1

0

1

2

3
Rate = 4 bit

−2 0 2
−3

−2

−1

0

1

2

3
Rate = 5 bit

−2 0 2
−3

−2

−1

0

1

2

3
Rate = 6 bit

−2 0 2
−3

−2

−1

0

1

2

3
Rate = 1 bit

−2 0 2
−3

−2

−1

0

1

2

3
Rate = 2 bit

Figure 7.5: First six embedded UPQs for Gaussian data.

94

95

Chapter 8

Transform-domain Audio Indexing

Abstract

This chapter studies transform-domain audio indexing. We propose simple algo-
rithms for the computation of several mid-level representations directly from trans-
form coefficients. Three applications are considered , respectively beat tracking,
chord recognition and musical genre classification. The performance for three coders
are compared and discussed: two standard filter-bank based audio codecs (MP3 and
AAC) and one proposed audio codec. A subset of the results presented in this
chapter have been published in the proceedings of ISMIR 2008 [RRD08a].

Contents
8.1 Introduction . 96

8.2 Audio coding and transform representations 97

8.2.1 MPEG-1 Layer 3 . 98

8.2.2 MPEG-2/4 Advanced Audio Coding . 99

8.2.3 8xMDCT Audio Coding . 100

8.3 Mid-level signal representations . 100

8.3.1 Onset detection function . 101

8.3.2 Chromagram . 104

8.3.3 Mel-Frequency Cepstrum Coefficients . 107

8.4 Applications . 110

8.4.1 Beat tracking . 110

8.4.2 Chord recognition . 113

8.4.3 Musical genre classification . 115

8.4.4 Computation times . 115

8.5 Conclusions . 119

8.1. Introduction

8.1 Introduction

On the one hand, music recordings are widely available in coded format. The reason is
that state-of-the-art audio coders such as MP3 [ISO92] or AAC [ISO01] are able to reduce the
size of a PCM audio signal more than 10 times, while guaranteeing a near-transparent quality.
Consequently, such technology allows users to easily exchange and store music on mobile devices
and networks.

On the other hand, state-of-the-art audio indexing algorithms such as beat tracking
[KEA06, DP07] and chord recognition [BP05, LS08] are designed to process PCM audio signals.
Consequently, to use them on coded audio, one has to decode to PCM first and then apply the
audio indexing algorithm on the PCM signal (Processing in the time domain, see Fig. 8.1). To save
computational cost, which is often required for example when using such algorithms with mobile
devices or on very large databases, it would be more efficient to design audio indexing algorithms
that work directly with the coded data.

There are two ways to process coded data depending on which stage of the decoding
process we are working on (see Fig. 8.1). The first way is to use directly the bitstream, this
approach is called processing in the compressed domain. The second way is to use the transform
representation, this approach is called processing in the transform domain. The first approach is
faster as we avoid the cost of decoding the transform representation, however, for certain cases the
information available in the bitstream is not sufficiently explicit, and it it thus necessary to use the
transform domain representation. In this chapter, we only study transform domain audio indexing.

Figure 8.1: Block diagram of a common audio decoder and three possible audio indexing systems.

Most existing work on transform-domain audio indexing deal with MPEG-1 coded data
(a good review on MPEG-1 transform-domain audio indexing is the technical report of Pfeiffer and
Vincent [PV01]). Patel and Sethi [PS96] was probably the first study to propose low-level audio
features based on MPEG-1 compressed data. The basic principle is to use the internal MPEG-1
representation composed by the 32 PQF subband signals, and to compute low-level features such
as “signal energy”, “pause rate”, “band energy ratio”... These audio features were then combined

96

Chapter 8. Transform-domain Audio Indexing

with video features and used in a machine learning system in order to classify video clips. Other
works [YZ97, NLS+99, TC00, WV01, SXWK04, ZW08] follow a similar approach but propose
different low-level audio features and consider different applications such as speech recognition
[YZ97], audio segmentation and classification [NLS+99, TC00], beat tracking [WV01, ZW08] and
music summarization [SXWK04]. One should note that the work of Wang et al. [WV01, SXWK04,
ZW08] is in a way different from other works as they use MDCT coefficients for the calculation of
audio features. Their approach is thus limited to MPEG-1 Layer 3, while other approaches work on
MPEG-1 Layer 1 and 2 also. Finally, another recent work that uses MDCT coefficients from MP3
is [KQG06], they also consider MDCT coefficients from AAC bitstreams. They derive a generic
framework for audio classification and segmentation. To our knowledge, this paper is the only work
on transform-domain audio indexing that considers the AAC audio coding format.

In this chapter, we consider three audio indexing applications: beat tracking [Sch98,
Dix01, KEA06, DP07], chord recognition [Fuj99, SE03, BP05, LS08] and musical genre classification
[TC02, BCE+06, HS08]. To our knowledge, beat tracking is the only application that has already
been studied in a transform-domain framework, using MP3 coded data [WV01, ZW08]. No work
related to chord recognition on coded data have been found in the literature. This may be due to
the limited frequency resolution of the time-frequency analysis used in audio coders such as MP3.
Due to this limitation of transform audio coders, it is interesting to consider other kinds of audio
coders, such as parametric coding (e.g. [dSO02]) or sparse representation based coding. We study
here one of our audio codec based on a union of MDCT bases. Our approach has the advantage
to provide a sparse representation which has both precise time and frequency resolution, contrary
to transform based coders. To compare our proposed audio coder with standard audio coders, we
also propose transform-domain systems based on the two most widely used state-of-the-art audio
coders, MPEG-1 Layer 3 (MP3) and MPEG-2/4 AAC. For each of the three coders, we propose
simple algorithms that compute transform-domain mid-level representations for each of the three
applications. A mid-level representation may be defined as an intermediate measure between the
low-level PCM signal and the symbolic representation that aims at emphasizing certain structures
useful for a given application. In our case, these are respectively a detection function for beat
tracking, a chromagram for chord recognition, and MFCC features for musical genre classification.
These proposed algorithms are very fast as compared to the reference time-domain implementation.
The mid-level representations are then passed through a machine learning system in order to obtain
the desired symbolic representation, respectively a sequence of beat positions, a sequence of chords,
and a genre class. We use the same machine learning systems as used in state-of-the-art systems
in order to compare the mid-level representations only.

The remainder of this chapter is as follows. In section 8.2, we briefly introduce the internal
representation of each of the three considered audio codecs. In section 8.3, we propose simple
algorithms to compute mid-level representations for each audio codec and for each application. In
section 8.4, we describe the three applications, and present the results in terms of performance and
computation time.

8.2 Audio coding and transform representations

In this section, we detail the signal representations used in two standard audio codecs
MP3 and AAC, and we recall the signal representation used in the proposed codec based on the
union of 8 MDCT bases (noted in this chapter “8xMDCT codec”). These signal representations
are all based on various forms of MDCT, and thus the transform-domain audio indexing systems
we propose in this chapter are all based on the MDCT coefficients of these representations.

97

8.2. Audio coding and transform representations

8.2.1 MPEG-1 Layer 3

In MPEG-1 Layer 3, a hybrid signal representation is used. The original PCM signal
is first passed through a 32-band PQF filterbank (see Sec. 2.2.1). Then, each subband signal is
transformed with a time-varying MDCT (see Sec. 2.2.1). The time-varying MDCT is based on
two window sizes allowing adaptive time-frequency resolution. The long window has a length of 36
samples and allows a frequency resolution of 38.3 Hz at 44.1 kHz. The short window has a length
of 12 samples and allows a time resolution of 4.35 ms at 44.1 kHz. It is important to note that the
short windows are always selected by groups of 3 consecutive frames. The same window sequence
is used in each subband in order to synchronize the time-varying MDCT of the different subbands
(we assume that the mixed block feature is not used). The MDCT coefficients are then grouped
in temporal segments called “granule”. One granule is composed either by the 32 × 18 = 576
coefficients of one frame of a long window MDCT in each subband, either by the 3× 32× 6 = 576
coefficients of 3 consecutive frames of a short window MDCT in each subband. The coefficients of
a “long-window granule” are noted X long

k (q) with k = k118 + k2 (0 ≤ k < 576) is the frequency
index (0 ≤ k1 < 32 is the subband index and 0 ≤ k2 < 18 is the frequency index in one subband),
and q is the granule index. The coefficients of a “short-window granule” are noted Xshort

p,k (q) with
0 ≤ p < 3 is the frame index, k = k16 + k2 (0 ≤ k < 192) is the frequency index for one frame
(0 ≤ k1 < 32 is the subband index and 0 ≤ k2 < 6 is the frequency index in one subband), and q
is the granule index.

Figure 8.2: Hybrid signal representation used in MP3

The resulting MDCT coefficients are then coded using non-linear quantization and Huff-
man coding. The MP3 decoder simply recovers the MDCT coefficients with Huffman decoding and
inverse quantization. We use in our experiment the MP3 encoder LAME [LAM08], a well-known
open-source encoder, and the MP3 decoder libMAD [lib08], an open-source library written in C. We
had to slightly modify the source of libMAD to be allowed to get the decoded MDCT coefficients
instead of the decoded PCM signal.

98

Chapter 8. Transform-domain Audio Indexing

It is important to note that some existing works (e.g. [TC00]) consider the subband
signals instead of the MDCT coefficients to compute transform-domain features. However, doing
this has 2 drawbacks, firstly the frequency resolution of the MDCT coefficients is lost, secondly,
the computational cost is higher as an inverse MDCT is needed. For these two reasons, we will use
in the proposed transform-domain systems the MDCT coefficients only.

8.2.2 MPEG-2/4 Advanced Audio Coding

We use in this chapter the simplest AAC codec, which is the MPEG-4 AAC Low Com-
plexity (LC) profile with the Temporal Noise Shaping (TNS) and Perceptual Noise Substitution
(PNS) tools disabled. The signal representation is based on a pure time-varying MDCT and it is
thus a simpler approach than MPEG-1 Layer 3. The time-varying MDCT is based on two window
sizes. The long window has a length of 2048 samples and allows better frequency resolution than
the MP3 long window (21.5 Hz for AAC, 38.3 Hz for MP3 at 44.1 kHz). The short window has a
length of 256 samples and allows better time resolution than the MP3 short window (2.90 ms for
AAC, 4.35 ms for MP3 at 44.1 kHz). Similarly to MP3, the short windows are selected in groups of
8 consecutive windows in order to produce a group of 8×128 = 1024 coefficients, which corresponds
to the number of coefficients of one frame of a long window. In the case of AAC, one granule is also
called a “block”, and corresponds to one frame of a long window MDCT or 8 consecutive frames
of a short window MDCT. The coefficients of a “long-window block” are noted X long

k (q), where
0 ≤ k < 1024 is the frequency index and q is the block index. The coefficients of a “short-window
block” are noted Xshort

p,k (q), where 0 ≤ p < 8 is the frame index, 0 ≤ k < 128 is the frequency index
for one frame and q is the block index.

Figure 8.3: Signal representation used in AAC.

The resulting MDCT coefficients are then coded using non-linear quantization and Huff-
man coding. The AAC decoder simply recovers the MDCT coefficients with Huffman decoding and
inverse quantization. We use the AAC encoder FAAC [FAA08], an open-source AAC encoder and
the AAC decoder FAAD [FAA08], an open-source library written in C. We have slightly modified

99

8.3. Mid-level signal representations

the code source of FAAD to be able to get the decoded MDCT coefficients. It is important to
note that the AAC encoder we have chosen is not as highly optimized as iTunes or Nero AAC free
encoders; however, it is the only coder that is open source and highly configurable. Particularly, it
is the only coder that is able to disable the AAC tools such as TNS, and also it is able to produce
a raw bitstream that does not need an external MPEG-4 library.

8.2.3 8xMDCT Audio Coding

We recall here briefly the signal representation used in the proposed 8xMDCT coder. The
signal is modeled using a union of 8 MDCT bases, where the window length ranges from 128 to
16384 samples (i.e. from 2.9 to 370 ms) in powers of 2. A signal x ∈ R

N is then decomposed as a
weighted sum of functions gγ ∈ R

N plus a residual of negligible energy r

x =
∑

γ∈Γ

cγgγ + r (8.1)

where cγ are the coefficients. The set of functions D = {gγ , γ ∈ Γ} is the dictionary composed by
a union of M MDCT bases (called blocks). The functions g are the atoms defined as:

gm,p,k(n) = wm,p(u)

√

2

Km
cos

[

π

Km

(

u +
Km

2
+

1

2

)(

k +
1

2

)]

(8.2)

where u = n− pLm − Tm and m is the block index, p is the frame index, k is the frequency index,
Km is the half of the analysis window length of block m (defined as power of two Km = K02

m),
Pm is the number of frames of block m, Tm is a time offset introduced to “align” the windows of
different lengths (Tm = Lm

2) and wm(u) is the sine window defined on u = 0, .., 2Lm−1. The signal
is approximated with the standard Matching Pursuit, using the Matching Pursuit ToolKit.

BLOCK 1

BLOCK 0

BLOCK 2Slen

L2

L0

Soff

L1

SLOT S
0

SLOT S
1

SLOT S
2

L2/4

L1/4

L0/4

Figure 8.4: Signal representation used in the 8xMDCT codec (only 3 MDCT are shown).

8.3 Mid-level signal representations

We propose here several mid-level representations that are computed in the transform
domain using the MDCT coefficients of the three coders presented in the previous section. The

100

Chapter 8. Transform-domain Audio Indexing

basic idea is that most of the standard mid-level representations are based on the Short-Term Fourier
Transform (STFT) and thus by substituting the STFT spectrogram by the corresponding MDCT
“pseudo-spectrogram”, it is possible to compute similar mid-level representations in the transform
domain using MDCT coefficients. We are interested here in three types of mid-level representations:
onset detection functions, chromagrams, and MFCC-based features. We describe in the following,
for each mid-level representation, a reference approach that we use in our experiment, and the
proposed transform-domain approaches for each of the three coders.

8.3.1 Onset detection function

Onset detection functions are mid-level representations that aim at localizing transients
in an audio signal. These are generally subsampled, and ideally have peaks located at transients.
These functions are obviously useful for onset detection, the onsets are simply detected by peak-
picking the detection function (see [BP05] for a good review on onset detection algorithms). They
are also useful for beat tracking (see e.g. [Sch98, Dix01, KEA06, DP07]), the basic principle is to
look for periodically related peaks in the onset detection function, these particular onsets are called
“beats”. We are interested here in beat tracking. We first review the reference onset detection
function we use in our experiments (from [DP07]), then we propose several detection functions
computed in the transform-domain and based on the MP3, AAC and 8xMDCT coders.

Reference time-domain onset detection function

The reference onset detection function of [DP07] is the complex spectral difference onset
detection function originally proposed by Bello et al. in [BDDS04]. It is the complex extension of
the simple spectral difference detection function that is also known as spectral flux. It is defined as

Γ(q) =

K
∑

k=1

|Sk(q)− Ŝk(q)|2 (8.3)

where Sk(q) = Rk(q)e
jφk(q) is the Short-Time Fourier Transform (STFT) of the input signal at frame

q and frequency k and Ŝk(q) = R̂k(q)e
jφ̂k(q) is the predicted spectrum at frame q and frequency

k. The predicted spectrum is defined using the assumption of a steady-state signal, in order that
the detection function has low value during steady-state parts and high value at transients. The
magnitude of the predicted spectrum is defined as

R̂k(q) = Rk(q − 1) (8.4)

and its phase is defined as

φ̂k(q) = princarg (2φk(q − 1)− φk(q − 2)) (8.5)

where princarg unwraps the phase value. The STFT uses a hanning window with an overlap of
50 %. In the implementation used, the window has a length of 2048 samples, and the resulting
detection function is interpolated by a factor of two in order to get one detection function sample
every 11.6 ms at 44.1 kHz. See [BDDS04], [BDA+05] and Appendix A of [DP07] for complete
reference.

101

8.3. Mid-level signal representations

MP3 transform-domain onset detection function

Ye Wang el al. [WV01, ZW08] propose some onset detection functions built on the MP3
transform-domain. These are simple functions based on the MDCT coefficients energy in subbands.
We have implemented and tested these functions, but we have obtained very poor performance using
the beat tracking algorithm of M. Davies [DP07]. We think that these functions are optimized for
the beat tracking algorithm proposed by Wang et al. in [WV01, ZW08], but not for other algorithms.
We obtain much better performance using a detection function similar to the spectral flux. It is is
defined as

Γ(q) =

576
∑

k=1

|Xk(q)
2 −Xk(q − 1)2|1/2 (8.6)

with Xk(q) is a “pseudo-spectrum” at granule q and frequency k. It is defined for a “long-window
granule” as

Xk(q) = |X long
k (q)| (8.7)

For a “short-window granule”, it is defined as the interleaved coefficients of the 3 short frames

Xk(q) = |Xshort
a,b (q)| (8.8)

where a and b are respectively the rest and the quotient of the Euclidean division of k by 3
(k = 3b+a). The time resolution is here determined by the granule length and is thus equal to 576
samples (13ms at 44.1 kHz).

AAC transform-domain onset detection function

We propose a transform-domain onset detection function based on the AAC MDCT coeffi-
cients that is similar to the proposed MP3 transform-domain onset detection function. A “pseudo-
spectrum” is first computed using the MDCT coefficients, it is defined as

Xk(q) = |X long
k (q)| (8.9)

for a long-window block and as

Xk(q) = |Xshort
a,b (q)| (8.10)

for a short-window block, where a and b are respectively the rest and the quotient of the Euclidean
division of k by 8 (k = 8b + a). The detection function is then defined as

Γ(q) =

576
∑

k=1

|Xk(q)
2 −Xk(q − 1)2|1/2 (8.11)

In this case, the time-resolution is higher and equal to the block length i.e. 1024 samples. To get
the same sample rate as the reference approach, the detection function is interpolated by a factor
of two, resulting in one sample every 11.6 ms at 44.1 kHz.

8xMDCT transform-domain onset detection function

The signal representation used in our proposed audio coder is based on a union of 8 MDCT
bases with analysis window sizes from 128 to 16384 samples. We have remarked that high amplitude
atoms with small window sizes (128 and 256) are often located around attacks; consequently, we
can build a very simple onset detection function by sorting the decomposition such that we keep

102

Chapter 8. Transform-domain Audio Indexing

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−1

−0.5

0

0.5

1

Time (seconds)

A
m

pl
itu

de

Signal

0 50 100 150 200 250 300 350 400
0

2

4

6

x 10
−3

Frame index

A
m

pl
itu

de

Complex spectral difference onset detection function

0 50 100 150 200 250 300 350
0

2

4

6

8
x 10

−3

Frame index

A
m

pl
itu

de

MP3 transform−domain onset detection function

0 50 100 150 200 250 300 350 400
0

2

4

6
x 10

−3

Frame index

A
m

pl
itu

de

AAC transform−domain onset detection function

0 50 100 150 200 250 300 350 400
0

0.005

0.01

0.015

Frame index

A
m

pl
itu

de

8xMDCT transform−domain onset detection function

Figure 8.5: A 5 seconds signal of rock music; the complex spectral difference onset detection function;
the MP3 transform-domain onset detection function; the AAC transform-domain onset detection
function; the 8xMDCT transform-domain onset detection function.

103

8.3. Mid-level signal representations

only small window sizes atoms, and then sum the absolute value of the coefficients in temporal bins
to construct a downsampled signal with peaks located at attacks. The proposed onset detection
function Γ is computed on a frame-by-frame basis. The length of one frame is defined such that
the corresponding time resolution is the same as in the reference detection function which is 11.6
ms and it is equivalent to tDF = 512 samples at 44.1 kHz. The function Γ(q) at frame q is defined
as

Γ(q) =
∑

m,p,k

|cm,p,k| (8.12)

where we sum only the atoms satisfying the following two conditions:

• the window size is 128 or 256 samples

m < 2 (8.13)

• the center is in the temporal support of the frame q

floor

(

(p + 1)Lm + Tm

tDF

)

= q. (8.14)

Fig. 8.5 shows the four onset detection functions obtained with a 5-second signal of rock music. In
this example, the onset detection functions have peaks that correspond to the drum strokes.

8.3.2 Chromagram

A chromagram or Pitch Class Profile (PCP) [Fuj99] traditionally consists of a 12-dimensional
vector, with each dimension corresponding to the intensity of a semitone class (chroma). The pro-
cedure collapses pure tones of the same pitch class, independent of octave, to the same chromagram
bin; for complex tones, the harmonics also fall into particular related bins. Though, the simplest
way is to use a 12-bin chromagram, better modeling is obtained by using more bins (24 or 36),
in order to obtain better resolution and compensate for possible mis-tuning. These features find
obvious interests in tonality-related applications, such as key estimation [Pau04, GH04] and chord
recognition [Fuj99, SE03, BP05, LS08]. We are interested here in chord recognition. We first review
the reference chromagram we use in our experiments (from [BP05]), then we discuss how to build
transform-domain chromagrams.

Reference time-domain chromagram

The reference chromagram is based on the constant-Q transform [Bro91] and it is the
chromagram used in [BP05]. It is defined, at frame q and frequency bin b (0 ≤ b < B), as

CH(q, b) =
Γ
∑

γ=1

XCQ(q, b + γB) (8.15)

where XCQ(q, k) is the constant-Q transform at frame q and frequency fk = 2k/Bfmin, where B is
the number of bins per octave, fmin is the starting point of the analysis in frequency and Γ is the
total number of octaves. The constant-Q transform is based on the STFT of the signal, using the
method proposed in [BP92]. In our implementation, the signal is first downsampled to 11.025 kHz,
then a STFT with a window length of 8192 samples is applied, resulting in a frequency resolution
of 1.35 Hz.

104

Chapter 8. Transform-domain Audio Indexing

MP3/AAC transform-domain chromagram

One possibility to build a chromagram from MP3/AAC transform-domain representations
is to map the MDCT coefficients to chroma-related frequency bin. However, the frequency analysis
performed by the MDCT used in MP3 and AAC does not have enough frequency resolution for an
efficient chromagram. Indeed, with a resolution as high as 21.5 Hz for AAC and 38.3 Hz for MP3,
the system can’t distinguish neighboring notes, and this is particularly true at low frequencies.

Despite this limitation, we have implemented a chromagram based on a single MDCT,
with a fixed window size of 2048 samples, which is the best case and corresponds to a long-window
block of AAC, and we will show later that very poor performance is obtained with this chromagram.

It is important to note that better frequency resolution may be obtained by using more
complex approaches such as the one proposed in [MD03], where parameters of a stationary sinusoid
are estimated using the MDCT coefficients. However, this approach was designed for monophonic
signals, and it is not clear how it would be generalized to polyphonic signals. Moreover, this
transform-domain approach requires rather high computational complexity. Consequently, we have
not investigated this approach.

8xMDCT transform-domain chromagram

Contrary to the MDCT used in AAC and MP3, the 8xMDCT codec uses much longer
window lengths (up to 16384 samples), and thus allow much better frequency resolution than the
MP3/AAC MDCT (up to 2.7 Hz). Consequently, we found it possible in this case to build an
efficient transform-domain chromagram. The basic principle is to sort the decomposition such that
we only keep the atoms with good frequency resolution (i.e. with high window length), and then
sum the absolute value of the coefficients of these atoms in chroma-related time/frequency bins.
In our implementation, we have decided to keep the two largest window sizes (8192 and 16384).
However, it is important to note that the frequency resolution is still lower than the representation
used in the reference chromagram (1.3 Hz), and we will see later that this results in slightly lower
performance as compared to the reference system. The 8xMDCT transform-domain chromagram
CH(q, b) at frame q and frequency bin b is defined as

CH(q, b) =
∑

m,p,k

|cm,p,k| (8.16)

where we only sum the atoms satisfying the following three conditions:

• the window size is 8192 or 16384 samples

m ≥ 6 (8.17)

• the center is in the temporal support of the frame q

floor

(

(p + 1)Lm + Tm

tCH

)

= q. (8.18)

• the frequency value k maps to the frequency bin b of the chromagram

mod

(

round

(

B log2

(

22050 k/Lm

fmin

))

, B

)

= b (8.19)

with B the number of bins per octave and fmin is the minimum frequency.

Fig. 8.6 shows the chromagrams obtained with a 50 seconds signal of rock music.

105

8.3. Mid-level signal representations

0 5 10 15 20 25 30 35 40 45 50
−1

−0.5

0

0.5

1

Time (seconds)

A
m

pl
itu

de

Signal

Frame index

F
re

qu
en

cy
 b

in

Constant−Q transform 36−bin Chromagram

50 100 150 200 250

10

20

30

Frame index

F
re

qu
en

cy
 b

in

1xMDCT 36−bin Chromagram

50 100 150 200 250

10

20

30

Frame index

F
re

qu
en

cy
 b

in

8xMDCT 36−bin Chromagram

50 100 150 200 250

10

20

30

Figure 8.6: A 50 seconds signal of rock music; the reference chromagram; the proposed chroma-
gram based on a single MDCT with window length 2048 samples; the proposed transform-domain
chromagram based on the 8xMDCT coder.

106

Chapter 8. Transform-domain Audio Indexing

8.3.3 Mel-Frequency Cepstrum Coefficients

Mel-Frequency Cepstrum Coefficients (MFCC) aims at providing a compact representation
of the spectral envelope of an audio signal. These features were originally developed for speech
recognition [DM80], as they model the vocal tract transfer function. They are now widely used
in musical applications, as they appear to be a good description of the timbre. They find useful
applications in e.g. musical genre classification [TC02] and music similarity [PA04]. More recently,
MFCC are used in baseline systems for evaluating audio classification systems (e.g. [LLV+08,
HS08]).

Reference time-domain MFCC

We use the implementation of the MA toolbox by E. Pampalk [Pam06]. The computation
of a set of C MFCC coefficients is described as follows. A small frame x(n), n = 0, .., N − 1 is
first extracted from the signal. In our implementation, the frames are non-overlapping and have a
length of 23.2 ms i.e. N = 1024 samples at 44.1 kHz. Then, the magnitude of the Discrete Fourier
Transform is computed

X(k) = |
N−1
∑

n=0

x(n)w(n)e−ikn/N | , k = 0, .., N/2− 1 (8.20)

with w(n), n = 0, .., N − 1 the analysis window. In our implementation, it is a Hamming window.
Then, the resulting spectrum X(k) is mapped onto the Mel scale using L triangular overlapping
windows that are equally spaced on the Mel scale. In our implementation, we use L = 40 triangular
windows whose frequency bounds range from 20 Hz to 20000 Hz, and we use the following formula
for the Mel-scale:

m = 1127.01048 log(1 + f/700) (8.21)

where m is the frequency in mel and f is the frequency in Hz. Fig. 8.7 shows the 40 triangular
overlapping windows.

10
1

10
2

10
3

10
4

0

0.005

0.01

0.015

Frequency (Hz)

A
m

pl
itu

de

Figure 8.7: The 40 triangular overlapping windows equally spaced on the Mel scale.

The mapped spectrum Y (l), l = 0, .., L− 1 is then defined as

Y (l) =

N/2−1
∑

k=0

X(k)Wl(k) , l = 0, .., L− 1 (8.22)

107

8.3. Mid-level signal representations

where Wl(k), k = 0, ..., N/2 − 1 is the l-th window. Finally, the mapped spectrum is converted to
dB and transformed with a Discrete Cosine Transform. The final MFCC coefficients are defined as

mfcc(c) =
1

L/2
Λ(c)

L−1
∑

l=0

10log10(Y (l) + eps) cos

(

π

L

(

l +
1

2

)

c

)

, c = 0, ..., C − 1 (8.23)

with Λ(c) =
√

2/2 if c = 0 and Λ(c) = 1 otherwise. The constant eps = 1e− 16 avoids log of zero.
In our implementation, we keep C = 13 coefficients. The complete algorithm is summarized below

1. Take a N -length frame of an audio signal.

2. Compute the DFT of the windowed frame.

3. Take the magnitude of the DFT output.

4. Map to Mel scale using 40 overlapping triangular windows.

5. Convert to dB.

6. Transform with DCT.

MP3/AAC transform-domain MFCC

We propose here a simple algorithm for the computation of a set of MFCC in the transform-
domain of MP3/AAC audio files. The basic principle is to use the absolute value of the MDCT
coefficients instead of the magnitude of the DFT in the MFCC computation described previously.
The rest of the algorithm is exactly the same. It is important to note that the MFCC are computed
on long-window blocks only (on MDCT-coefficient vectors of length 576 for MP3 and 1024 for
AAC) for two reasons, firstly the frequency resolution of small-window blocks is too low, secondly
we want to have comparable feature vectors in order to estimate long-term statistics (see later
“texture window”). The algorithm is summarized below

1. Take a 576/1024-coefficient vector of a long-window block.

2. Take the absolute value of the coefficients.

3. Map to Mel scale using 40 overlapping triangular windows.

4. Convert to dB.

5. Transform with DCT.

8xMDCT transform-domain MFCC

We propose here an algorithm to compute MFCC-like features from the transform-domain
representation of the 8xMDCT codec. This has been inspired by the work of M. Morvidone (ref-
erence not published yet) who works on automatic identification of musical instruments. These
features are computed on a frame-by-frame basis, where a vector of features is computed for each
frame of 8192 samples (this is equal to the hop size of the maximum window length, and it is
equivalent to the “timeslots” used in audio coding). In each frame, a scale-frequency representa-
tion is computed, where the frequency axis is on the same Mel-scale as in the reference MFCC
computation, and the scale axis corresponds to the window size. This representation can be seen as

108

Chapter 8. Transform-domain Audio Indexing

scale-dependant MFCC. This scale-frequency representation is simply a weighted histogram where
the amplitude of the atoms are summed in scale-frequency bins. The scale-frequency representation
Y (l,m) is defined as

Y (l,m) =
∑

p,k

|cm,p,k|Wm,l(k) , l = 0, .., L− 1 , m = 0, ..,M − 1 (8.24)

where Wm,l(k) is the l-th window of the scale m. This scale-frequency representation is then
converted to dB and transformed with a 2D-DCT. The final MFCC coefficients are defined as

mfcc(i, j) =
1

L/2

1

M/2
Λ(ci)Λ(cj)

L−1
∑

l=0

M−1
∑

m=0

Y DB(l,m) cos

(

π

L

(

l +
1

2

)

ci

)

cos

(

π

M

(

m +
1

2

)

cj

)

(8.25)
with i = 0, .., Cj − 1 , j = 0, .., J − 1. The total number of MFCC coefficients is then equal to

C =
∑J−1

j=0 Cj . In our implementation, we choose J = 4, and C0 = 7 coefficients on the first scale
axis, C1 = 3 on the second scale axis, C2 = 2 on the third scale axis and C3 = 1 on the fourth scale
axis. This results in a total number of coefficients C = 13.

0 5 10 15 20 25 30
−1

−0.5

0

0.5

1

Time (seconds)

A
m

pl
itu

de

Signal

Time (seconds)

F
re

qu
en

cy
 (

H
z)

Spectrogram

0 5 10 15 20 25 30
0

2000

4000

6000

8000

10000

F
ea

tu
re

 In
de

x

Vector index

Ref. time−domain MFCC

1 2 3 4 5 6 7 8 9 10

5

10

15

20

25

F
ea

tu
re

 In
de

x

Vector index

MP3 Transform−domain MFCC

1 2 3 4 5 6 7 8 9 10

5

10

15

20

25

F
ea

tu
re

 In
de

x

Vector index

AAC Transform−domain MFCC

1 2 3 4 5 6 7 8 9 10

5

10

15

20

25

F
ea

tu
re

 In
de

x

Vector index

8xMDCT Transform−domain MFCC

1 2 3 4 5 6 7 8 9 10

5

10

15

20

25

Figure 8.8: A 30-second signal of rock music; the spectrogram; the reference time-domain MFCC
and the 3 transform-domain MFCC (mean and variance for each texture window).

Texture window

MFCC are computed on segments of length 23.2 ms for the reference implementation,
13.0 ms for MP3, 23.2 ms for AAC, and 185.8 ms for 8xMDCT coding. As proposed in [TC02,
BCE+06, HS08], the MFCC are grouped in longer frames, also called texture windows. In our
implementation, we take the mean and the variance of the MFCC on texture windows of length 3
seconds. This results in a vector of 26 features for each 3 seconds of an audio signal. Fig. 8.8 shows
a 30-second signal of rock music, its spectrogram, and the different MFCC implementations.

109

8.4. Applications

8.4 Applications

We have proposed in the previous section three mid-level representations that can be com-
puted in the transform-domain, respectively an onset detection function, a chromagram and MFCC
features. We now integrate these mid-level representations in complete audio indexing systems. For
each of the three considered applications, respectively beat tracking, chord recognition and musical
genre classification, we describe the audio indexing system, then evaluate the performance and
finally give computation time results.

8.4.1 Beat tracking

Machine learning system The same system as in [DP07] is used (see Fig. 8.9). The onset
detection function is first post-processed using an adaptive moving average threshold. Then the
onset detection function is partitioned into overlapping frames to allow variable tempo. In each
frame, the unbiased autocorrelation function of the onset detection function is calculated. The
autocorrelation function is then passed into a shift-invariant context-dependant comb filterbank in
order to estimate the tempo of the current frame. Finally, a beat train at the estimated tempo is
built and aligned with the current frame by passing the detection function into a tuned context-
dependant comb filterbank.

Figure 8.9: Beat tracking system of M. Davies [DP07].

Evaluation metrics We give four measures of beat accuracy, as proposed in [KEA06] and used
also in [DP07]: correct metrical level with continuity required (CML cont); correct metrical level
with continuity not required (CML total); allowed metrical levels with continuity required (AML
cont); allowed metrical levels with continuity not required (AML total). See given references for
details on these measures.

Evaluation database We use the same database as used in [DP07], which was originally provided
by S. Hainsworth [Hai04]. There are 222 files of several music genres. The files are mono, sampled
at 44.1 kHz and have a length of approximately 60 seconds. The database was annotated by a
trained musician, by recordings taps in time to the audio recordings. The annotations were then
corrected and refined using synthesized beat sounds over each track (see [Hai04] for details).

Results Fig. 8.10 and Fig. 8.11 show the obtained performance of the reference and the proposed
transform-domain systems at 32kbps and 64kbps. We give the results for two bitrates only due to
the limitations of the FAAC encoder (allowed bitrate between 30 and 76 kbps). These results show
that the transform-domain systems have a performance close to the reference system. They also
show that the performance is robust against the bitrate. This is particularly true for MP3, whose

110

Chapter 8. Transform-domain Audio Indexing

CML cont. CML total AML cont. AML total
0

10

20

30

40

50

60

70

80

90

100

Ref.
MP3 64kpbs
AAC 64kbps
8xMDCT 64kbps

Figure 8.10: Mean and 95% confidence interval of the 4 beat accuracy measures for the reference
and the proposed transform-domain beat tracking systems at 64 kbps.

CML cont. CML total AML cont. AML total
0

10

20

30

40

50

60

70

80

90

100

Ref.
MP3 32kbps
AAC 32kbps
8xMDCT 32kbps

Figure 8.11: Mean and 95% confidence interval of the 4 beat accuracy measures for the reference
and the proposed transform-domain beat tracking systems at 32 kbps.

111

8.4. Applications

quality is bad at 32kbps. Finally it shows that the transform-domain systems give similar results,
no one seems to outperform the others.

As our 8xMDCT codec is a scalable coder that has no bitrate limitations, we give the
performance obtained by our coder on a wider range of bitrates. Results are in Fig. 8.12. These
results show that the performance of the transform-domain beat tracking system based on the
8xMDCT is highly robust against the bitrate. Even at 8kbps, with a very bad audio quality, the
performance is high.

0.25 0.5 1 2 4 8 16 32 64 128
0

20

40

60

80

100

Bitrate (kbps)

C
M

L
co

nt
. (

%
)

Ref.
8xMDCT

0.25 0.5 1 2 4 8 16 32 64 128
0

20

40

60

80

100

Bitrate (kbps)

C
M

L
to

ta
l (

%
)

0.25 0.5 1 2 4 8 16 32 64 128
0

20

40

60

80

100

Bitrate (kbps)

A
M

L
co

nt
. (

%
)

0.25 0.5 1 2 4 8 16 32 64 128
0

20

40

60

80

100

Bitrate (kbps)

A
M

L
to

ta
l (

%
)

Figure 8.12: Mean of the 4 beat accuracy measures for the reference and the proposed beat tracking
system.

112

Chapter 8. Transform-domain Audio Indexing

8.4.2 Chord recognition

Machine learning system The same system as in [BP05] is used (see Fig. 8.13). The 36-
bin chromagram is first circularly shifted according to the estimated tuning of the piece, low-pass
filtered, and mapped to a 12-bin chromagram by simply summing within semitones. Then, the
Expectation Maximization (EM) algorithm is used to train the initial states probabilities and the
transition matrix of an Hidden Markov Model (HMM). Finally, the sequence of chords is estimated
using the Viterbi algorithm with the chromagram and the trained HMM. The system recognizes
24 chords only (C major, C minor, C# major, C# minor...).

Figure 8.13: Chord recognition system of J. P. Bello et al [BP05].

Evaluation database We use the same evaluation database as in [BP05]. It consists of 2 albums
of the Beatles: Please Please Me (14 songs) and Beatles for Sale (14 songs). Audio signal are mono
and sampled at 44.1 kHz. The database has been annotated by C. Harte et al [HS05]. As some
chords in the database do not belong to the set of 24 recognized chords, these complex chords are
mapped to their root triad as explained in [BP05].

Evaluation metric We use a simple metric to evaluate the chord recognition systems which is
the percentage of well detected frames.

Results Fig. 8.14 shows the obtained performance of the reference and the proposed transform-
domain system based on the 8xMDCT coder. As explained in the previous section, we don’t give
results for the MP3 and AAC codecs due to the limited frequency resolution of their representations.
Instead, we give results obtained with a single MDCT with window size 2048 samples, which
corresponds to a long-window block of AAC, and is thus the best case i.e. with the best frequency
resolution. These results show that the transform-domain system based on the 8xMDCT codec has
a performance close to the reference system at high bitrates. It also shows that the performance is
highly robust against the bitrate. Even at 2kbps, with a very bad audio quality, the performance is
high. Finally, these results show the bad performance obtained with the single MDCT and confirms
the limited frequency resolution of the MP3 and AAC codecs explained in the previous chapter.

113

8.4. Applications

0.25 0.5 1 2 4 8 16 32 64 128
0

10

20

30

40

50

60

70

80
CD1: Please Please Me

Bitrate in kbps

R
ec

og
ni

tio
n

ra
te

 in
 %

Ref.
8xMDCT
1xMDCT

0.25 0.5 1 2 4 8 16 32 64 128
0

10

20

30

40

50

60

70

80
CD2: Beatles for Sale

Bitrate in kbps

R
ec

og
ni

tio
n

ra
te

 in
 %

Figure 8.14: Performance of the proposed chord recognition systems in function of the codec bitrate.
The dotted line corresponds to the performance of the reference system on the original PCM audio;
and the dash-dotted line corresponds to the performance of the proposed system with a single MDCT
(length 2048 samples).

114

Chapter 8. Transform-domain Audio Indexing

8.4.3 Musical genre classification

Machine learning system A simple system is used (see Fig. 8.15). MFCC are first computed
on temporal segments, then the mean and the variance of the coefficients are computed on longer
frames called texture windows (see previous section). The length of the texture window is 3 seconds,
and the number of MFCC is 13. There are then 26 features for each 3 seconds of audio signal. As
an example, for a 30-second signal, there are 10 vector of 26 features. A SVM classifier is used
to classify each vector in a genre class. We use libSVM, a high-performance and easy to use open
source library. Finally, each vector votes for a genre class, and the class with the maximum number
of votes is attributed to the whole song.

Figure 8.15: Proposed genre classification system.

Databases We evaluate the musical genre classification systems on one database. It is one of the
two databases used in [HS08]. It is a database originally provided by G. Tzanetakis [TC02]. It is
composed by 1000 tracks classified in 10 genres (blues, classical, country, disco, hiphop, jazz, metal,
pop, reggae, rock), where each genre class contains 100 tracks. The tracks are mono, 30-second
length and sampled at 22.05 kHz. As we have designed our coder for signals sampled at 44.1 kHz
only, the tracks are resampled at 44.1 kHz.

Evaluation metric The standard 5-fold cross-validation procedure is used (as in [HS08]). The
dataset is first randomly partitioned into 5 equal-size subsets. Then, 4 subsets are chosen to train
the SVM model, and the remaining subset is evaluated using the train model. This procedure is
repeated 5 times such that all subsets have been evaluated. The classification accuracy is then
the total number of good classification. To avoid biased results due to the random partitioning,
the cross-validation procedure is repeated 100 times and the final result is the mean of the 100
classification accuracies.

Results Results are given in Fig. 8.16 and Fig. 8.17. These results show that all system achieved
good results, with a preference for the proposed codec which outperforms the MP3 and AAC systems
and obtain performance similar to the reference system.

8.4.4 Computation times

As stated previously, the performance of the transform-domain systems is similar or
slightly lower than the one of the reference systems. However, working in the transform domain
allows a huge gain in computation times. As we are working with coded audio, there are two possi-
bilities for a user to calculate mid-level representations from the coded audio. The first possibility
is to decode the bitstream, synthesize the decoded transform representation, and calculate state-
of-the-art mid-level representations on the synthesized PCM audio. This is the best approach in

115

8.4. Applications

32kbps 64kbps
60

62

64

66

68

70

72

74

76

78

80

Ref.
MP3
AAC
8xMDCT

Figure 8.16: Classification accuracy for the 4 musical genre classification systems at 32 and 64 kbps.

0.125 0.25 0.5 1 2 4 8 16 32 64 128 256 512 1024
0

10

20

30

40

50

60

70

80

90

100

Bitrate (kbps)

C
la

ss
if.

 A
cc

ur
ac

y
(%

)

Ref.
8xMDCT

Figure 8.17: Classification accuracy for the reference and the 8xMDCT musical genre classification
systems in function of the bitrate.

116

Chapter 8. Transform-domain Audio Indexing

terms of performance. However, it requires several operations with a non negligible computational
cost: the bitstream decoding; the transform representation synthesis; the mid-level representation.
The second possibility is to compute mid-level representations from the transform representation as
explained in the previous sections. This approach is a bit less efficient in terms of performance but it
requires less operations that the first approach and thus is faster. Only two operations are required:
the bitstream decoding; and the mid-level representation calculation, which has small computation
cost as compared to the bitstream decoding cost. We detail below the computation times of each
operation, for each codec and each application. It is important to note that some operations are
fast implementations in C (MP3/AAC/8xMDCT decoding and synthesis, transform-domain repre-
sentations, SVM classifier), while others are slow Matlab implementations (reference time-domain
mid-level representations, beat tracker, HMM classifier). The reason is that we wanted to keep
untouched the reference systems provided by M. Davies, J. Bello, and E. Pampalk, which are im-
plemented in Matlab. All other module have been implemented in C. Consequently, the results are
biased by these different implementations, but the general behavior remains the same.

Fig. 8.18, Fig. 8.19 and Fig. 8.20 show the normalized computation times obtained by the
time-domain and transform-domain systems, for each codec and for each application. The figures
shows the computation times of the different operations: the bitstream decoding; the synthesis; the
mid-level representation; and the machine learning system. We detail the results below.

MP3 In the case of MP3, the bitstream decoding is very fast, this is due to the highly optimized
library used (libMAD). Moreover, the transform-domain mid-level representation and the beat
tracker are very fast operations too. This has for consequence a huge saving in computation time
as compared to the time-domain systems. The beat tracking transform-domain system is 12.5
times faster than the time-domain system, while the musical genre classification transform-domain
system is 11.5 times faster than the time-domain system.

AAC As compared to MP3, the bitstream decoding is a bit more costly, while the other operations
are approximately the same. Consequently, the AAC systems are slightly slower as compared to the
MP3 systems. But the transform-domain systems still remain fast. The beat tracking transform-
domain system is 10 times faster than the time-domain system, while the musical genre classification
transform-domain system is 8 times faster than the time-domain system.

8xMDCT The results are in this case significantly different from the MP3/AAC systems because
the bitstream decoding is here much slower. Moreover, the decoding cost depends here on the
bitrate. As an example, the bitstream decoding at 2 kbps is 3 times faster than at 64 kbps, but it is
still 8 times slower than the MP3 bitstream decoding. Consequently, the transform-domain systems
based on 8xMDCT have the advantage to be scalable in complexity, but the drawback to be slower
than the MP3/AAC systems. At 64kbps, the beat tracking transform-domain system is 4.5 times
faster than the time-domain system, the chord recognition transform-domain system is 2.5 times
faster than the time-domain system, and the musical genre classification transform-domain system
is 3.5 times faster than the time-domain system.

It is also interesting to remark than the gain in computation times for the transform-
domain systems is even higher if several applications are computed at the same time. For example,
considering the 8xMDCT codec at 64 kbps and the 3 applications, the transform-domain system is
5 times faster than the time-domain system.

117

8.4. Applications

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Time−domain

Transform−domain

Normalised computation time (seconds/seconds)

MP3 Beat Tracking

Decoding
Synthesis
Detection function
Beat tracker

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Time−domain

Transform−domain

Normalised computation time (seconds/seconds)

AAC Beat Tracking

Decoding
Synthesis
Detection function
Beat tracker

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Time−domain 64 kbps

Transform−domain 64 kbps

Transform−domain 2 kbps

Normalised computation time (seconds/seconds)

8xMDCT Beat Tracking

Decoding
Synthesis
Detection function
Beat tracker

Figure 8.18: Computation times of the beat tracking systems.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Time−domain 64 kbps

Transform−domain 64 kbps

Transform−domain 2 kbps

Normalised computation time (seconds/seconds)

8xMDCT Chord recognition

Decoding
Synthesis
Chromagram
HMM classifier

Figure 8.19: Computation times of the chord recognition systems.

118

Chapter 8. Transform-domain Audio Indexing

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

Time−domain

Transform−domain

Normalised computation time (seconds/seconds)

MP3 Musical Genre Classification

Decoding
Synthesis
MFCC
SVM classifier

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

Time−domain

Transform−domain

Normalised computation time (seconds/seconds)

AAC Musical Genre Classification

Decoding
Synthesis
MFCC
SVM classifier

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

Time−domain 64 kbps

Transform−domain 64 kbps

Transform−domain 2 kbps

Normalised computation time (seconds/seconds)

8xMDCT Musical Genre Classification

Decoding
Synthesis
MFCC
SVM classifier

Figure 8.20: Computation times of the musical genre classification systems.

8.5 Conclusions

We studied in this chapter transform-domain audio indexing. We have considered 3 audio
codecs, namely the standard MP3, the standard AAC, and our proposed codec based on the union
of 8 MDCT bases. And we have considered 3 applications, namely beat tracking, chord recognition,
and musical genre classification. For each codec, and for each application, we have proposed a fast
and efficient transform-domain mid-level representation, except for the MP3/AAC codecs and the
chord recogntion. Indeed, only the proposed codec has enough frequency resolution to build an
efficient chromagram for chord recognition. On the other hand, the MP3 and the AAC systems
have the advantage of very fast implementations as compared to our 8xMDCT codec.

Future work would investigate other audio codecs, such as e.g. MPEG-4 SSC, which is
based on a parametric model that may be very useful for audio indexing. It would also be interesting
to investigate other audio indexing applications, such as e.g. audio fingerprinting.

119

8.5. Conclusions

120

121

Chapter 9

Conclusions

9.1 General conclusion

The idea behind this thesis was to investigate the application of new signal representation
approaches to audio coding. These new approaches are based on techniques that come from a
research domain known as “sparse signal representations”. These techniques allow the design of
signal representations that have several advantages over the traditional approaches, including better
resolution and flexibility.

However, the main drawback of these methods is their computational complexity. When
these techniques have been developed (e.g. Matching Pursuit in 1992), the complexity problem
prevent their use in real-world applications. It is only since a few years ago, with the increase in
computer performance and especially the development of efficient algorithms (e.g. MPTK), that
these techniques have found interests in practical applications. As an example, the system proposed
in Chapter 6 obtains computation times around 3 times the real-time, which is not excessive and
is acceptable for e.g. off-line sound databases.

Of course, the proposed methods are still slower than the traditional transform coding, but
we have shown that our approach have several advantages over transform coding, and consequently
the performance/complexity tradeoff tends now to be in our favor. These advantages include
better performance than transform coding at low bitrates and similar “transparent-quality” at high
bitrates. Our approach thus allows a more “universal” audio coder than the traditional transform
coders.

However, the proposed methods are still a first step towards efficient universal audio coding
because we have shown that the obtained performance is still highly signal dependant. Particularly,
the performance of our approach is high only for monophonic signals. For polyphonic signals, the
obtained performance is not as satisfactory, but we have shown that, in that case, our approach
has another advantage over transform coding, which is efficient transform-domain audio indexing.
We have shown that a combined audio coding and audio indexing system is now possible.

9.2 Future research

We propose below several possible ways for further research.

9.2. Future research

Signal Representation

The signal model proposed in this thesis is based on a union of MDCT bases. One can
imagine other ways to build overcomplete dictionaries. One possibility is to consider the complex
extension of the MDCT, known as the MCLT. This approach has been introduced in Chapter 7,
but it still needs to be further investigated. A complete audio codec based on MCLT still needs to
be implemented and a proper objective and subjective evaluation is required. Another possibility
we have not considered is to increase the overlap between the MDCT atoms, which leads to a more
shift invariant representation. This approach has been investigated in a recent paper [SM08], they
have also considered atoms with asymmetric windows, such as gammatones.

Other possibilities include considering other decomposition algorithms. In this thesis, we
use the Matching Pursuit (MP) algorithm (and slightly modified versions of MP) to find sparse
approximations in an overcomplete dictionary. However, MP is not the only algorithm to find
sparse approximations. Others exist, and they appeared to perform better than MP for some
applications (see Chapter 3 for a short review of sparse signal representations). Particularly, we
believe that some variants of MP, such as the Gradient Pursuit [BD08] presented in Chapter 3
may potentially significantly increase the performance of our coder. We present in Annex B a
preliminary experiment that shows that sparser approximations are obtained with GP. Further
studies would then develop and evaluate a coder based on GP.

Another perspective would be to consider structured representations (see e.g. the thesis
of P. Leveau [Lev07]). This is a slightly different concept as a signal is here represented as a
combination of “musical objects” instead of individual atoms. While the union of MDCT bases
is closer to the traditional filter-bank based approach, these structured representations are closer
to sinusoidal modeling approaches used in low-bitrates audio codecs such as MPEG-4 SSC. One
interesting problem would be to combine these two concepts. It is particularly not clear how to
design a single coding paradigm for these different representations.

Audio coding

In the proposed audio codec, we use a relatively simple source coding algorithm. Further
studies would investigate better algorithms such as for example bitplane encoding based on context-
based arithmetic coding, or other model-based source coding algorithms (see e.g. the thesis of M.
Oger [Oge07]). It would also be interesting to consider non-scalable audio coding, where the audio
codec is optimized for a particular bitrate.

Also, one of the weak point in the proposed codec and that needs improvements is the
psychoacoustic model. As explained previously, we just have extended a transform-coding model
to our multiresolution model, this is obviously far from optimal. Further research would thus
investigate better psychoacoustic models, we believe that an improved psychoacoustic model would
results in significant improvements. Moreover, a question not yet answered is whether it is better
to integrate the psychoacoustic model directly in the decomposition algorithm, an approach similar
as the psychoacoustic matching Pursuit from Heusdens et al [HVK02]. This would require an
implementation of a psychoacoustic model in MPTK which is far from being straightforward, and
which may also increase significantly the computational cost.

A possible extension would be to investigate the integer MDCT [GSK01, LRYK07]. This
integer transform is useful for lossless audio coding, it is used for example in the standard MPEG-4
SLS [YRXK06]. Using the integer MDCT instead of the standard MDCT in our proposed audio
codec would allows a fine-grain scalable audio coder that operates from very low bitrates to lossless.

Another possible future work would investigate bandwith extension and stereo coding. One

122

Chapter 9. Conclusions

could imagine coding pair of atoms instead of single atoms: either pair of low/high frequency atoms,
or pair of left/right channel atoms. This is particularly relevant in our case because matching pursuit
has a straightforward multichannel implementation. Stereo MP has already been investigated for
source separation [Gri02] and musical instrument recognition [SLD07], but not yet for audio coding.

Transform-domain audio indexing

One natural extension to this work would be the investigation of other audio codecs.
Firstly, it would be interesting to investigate other standard codecs. As an example, we believe
that parametric codecs such as MPEG-4 HILN and MPEG-4 SSC would be very useful for audio
indexing applications such as chord recognition or beat tracking. Indeed, these parametric coders
perform a sinusoidal analysis which estimates with precision the frequency of sinusoidal waves,
this can be useful for computing a chromagram, but also for other frequency-related applications.
Moreover, MPEG-4 SSC also estimates a transient component, which can be useful for onset-related
applications such as beat tracking. The main drawback of these codecs as compared to transform-
based standard codecs is that they are not very widely spread, and even probably not used at all.
Secondly, an interesting question is whether the audio codec based on the adaptive dictionary and
presented in chapter 6 gives the same results as the simple codec based on the union of 8 MDCT
bases. As this “adaptive codec” has several advantages such as increased performance at high
bitrates and lower encoding complexity, it would be interesting to study the application of such an
approach to transform-domain audio indexing.

Another natural extension would be to consider other audio indexing applications. One
interesting example is the problem of finding the nearest neighboor of a given signal in a set of
coded signal. This problem is useful for e.g. audio fingerprinting. A recent work [JV08] studied
this problem for the case of images, where the sparseness of a representation in a overcomplete
dictionary is used to design fast algorithms. It would be interesting to study this problem in the
case of audio.

123

9.2. Future research

124

125

Publications

Publications related to this thesis

• E. Ravelli, G. Richard, and L. Daudet. Union of MDCT bases for audio coding. IEEE
Transactions on Audio, Speech and Language Processing (accepted for future publication),
2008.

• E. Ravelli and L. Daudet. Embedded polar quantization. IEEE Signal Processing Letters,
14(10):657-660, Oct. 2007.

• E. Ravelli, G. Richard, and L. Daudet. Fast MIR in a sparse transform domain. In
Proc. Of 9th International Conference on Music Information Retrieval (accepted for future
publication), Sep. 2008.

• E. Ravelli, G. Richard, and L. Daudet. Matching pursuit in adaptive dictionaries for
scalable audio coding. In Proc. Of 16th European Signal Processing Conference (accepted for
future publication), Aug. 2008.

• E. Ravelli, G. Richard, and L. Daudet. Extending fine-grain scalable audio coding to
very low bitrates using overcomplete dictionaries. In Proc. IEEE Workshop on Applications
of Signal Processing to Audio and Acoustics (WASPAA’07), pages 195-198, Oct. 2007.

• E. Ravelli and L. Daudet. Representations of audio signals in overcomplete dictionaries:
What is the link between redundancy factor and coding properties? In Proc. Of 9th Int.
Conf. on Digital Audio Effects (DAFX’06), pages 267-270, Sep. 2006.

Other publications

• E. Ravelli, J. P. Bello, and M. Sandler. Automatic rhythm modification of drum loops.
IEEE Signal Processing Letters, 14:228-231, Apr. 2007.

• Grégory Cornuz, Emmanuel Ravelli, Pierre Leveau and Laurent Daudet. Object
coding of harmonic sounds using sparse and structured representations. Proc. of 10th Int.
Conf. on Digital Audio Effects (DAFX’07), pages 41-46, Sep. 2007.

• E. Ravelli, P. Gournay, and R. Lefebvre. A two-stage MLP+NLMS lossless coder
for stereo audio. In Proc. IEEE International Conference on Acoustics, Speech, and Signal
Processing, (ICASSP’06), volume 5, pages 177-180, May 2006.

• J. P. Bello, E. Ravelli and M. Sandler. Drum sound analysis for the manipulation of
rhythm in drum loops. In Proc. IEEE International Conference on Acoustics, Speech, and
Signal Processing, (ICASSP’06), volume 5, pages 233-236, May 2006.

126

• E. Ravelli, J. P. Bello, and M. Sandler. Fast implementation for non-linear time-scaling
of stereo signals. In Proc. Of 8th Int. Conf. on Digital Audio Effects (DAFX’05), pages
182-185, Sep. 2005.

127

Bibliography

[AMDM87] J.-P. Adoul, P. Mabilleau, M. Delprat, and S. Morissette. Fast CELP coding based on
algebraic codes. In Proc. IEEE Int. Conf. Acoustics, Speech and Sig. Proc., volume 12,
pages 1957–1960, Apr. 1987.

[AS84] B. S. Atal and M. R. Schroeder. Stochastic coding of speech signals at very low bit
rates. In Proc. Int. Conf. Commun.- ICC84, volume 2, pages 1610–1613, May 1984.

[ASMN+99] O.K. Al-Shaykh, E. Miloslavsky, T. Nomura, R. Neff, and A. Zakhor. Video compres-
sion using matching pursuits. IEEE Trans. Circuits Syst. Video Technol., 9(1):123–
143, Feb. 1999.

[BCE+06] J. Bergstra, N. Casagrande, D. Erhan, D. Eck, and B. Kégl. Aggregate features and
ADABOOST for music classification. Machine Learning, 65(2-3):473 – 484, 2006.

[BD08] T. Blumensath and M. E. Davies. Gradient pursuits. IEEE Trans. on Sig. Proc.,
56(6):2370–2382, June 2008.

[BDA+05] J.P. Bello, L. Daudet, S. Abdallah, C. Duxbury, M. Davies, and M.B. Sandler. A
tutorial on onset detection in music signals. IEEE Trans. Speech and Audio Proc.,
13(5):1035–1047, Sept. 2005.

[BDDS04] J.P. Bello, C. Duxbury, M. Davies, and M. Sandler. On the use of phase and energy for
musical onset detection in the complex domain. IEEE Sig. Proc. Letters, 11(6):553–
556, 2004.

[BF96] H. Brunk and N. Farvardin. Fixed-rate successively refinable scalar quantizers. In
Proc. IEEE Data Compression Conf., pages 250–259, 1996.

[BF98] H. Brunk and N. Farvardin. Embedded trellis coded quantization. In Proc. IEEE
Data Compression Conf., pages 93–102, 1998.

[BG03] M. Bosi and R. E. Goldberg. Introduction to digital audio coding and standards.
Kluwer Academic Publishers, 2003.

[BKS00] K. Brandenburg, O. Kunz, and A. Sugiyama. MPEG-4 natural audio coding. Signal
Processing, 15:423–444, 2000.

[BP92] J. Brown and M. Puckette. An efficient algorithm for the calculation of a constant Q
transform. J. Acoust. Soc. America, 92(5):2698–2701, 1992.

[BP05] J. P. Bello and J. Pickens. A robust mid-level representation for harmonic content in
music signals. In Proc. Int. Conf. Music Inf. Retrieval, pages 304–311, 2005.

BIBLIOGRAPHY

[Bro91] J. Brown. Calculation of a constant Q spectral transform. J. Acoust. Soc. America,
89(1):425–434, 1991.

[CARKD99] S. F. Cotter, J. Adler, B. Rao, and K. Kreutz-Delgado. Forward sequential algorithms
for best basis selection. In IEEE Proc. Vision Image Sig. Proc., pages 235–244, 1999.

[CCW92] R.R. Coifman, R.R. Coifman, and M.V. Wickerhauser. Entropy-based algorithms for
best basis selection. IEEE Trans. Inform. Theory, 38(2):713–718, 1992.

[CDS99] S. Chen, D. Donoho, and M. Saunders. Atomic decomposition by Basis Pursuit. SIAM
Journal on Scientific Computing, 20(1):33–61, 1999.

[CRLD07] G. Cornuz, E. Ravelli, P. Leveau, and L. Daudet. Object coding of harmonic sounds
using sparse and structured representations. In Proc.10th Int. Conf. on Digital Audio
Effects, pages 41–46, 2007.

[Dau88] I. Daubechies. Time-frequency localization operators: a geometric phase space ap-
proach. IEEE Trans. on Inf. Theory, 34(4):605–612, Jul. 1988.

[DD06] M. E. Davies and L. Daudet. Sparse audio representation using the MCLT. Signal
Processing, 86(3):457–470, 2006.

[Dix01] S. Dixon. Automatic extraction of tempo and beat from expressive performances. J.
New Music Research, 30(1):3958, 2001.

[DKK97] T. Dau, B. Kollmeier, and A. Kohlrausch. Modeling auditory processing of amplitude
modulation: I. modulation detection and masking with narrowband carriers. J. Acoust.
Soc. Amer., 102:28922905, 1997.

[DLKK02] M. Dietz, L. Liljeryd, K. Kjörling, and O. Kunz. Spectral band replication, a novel
approach in audio coding. In Proc. of the 112th AES Convention, 2002. Paper 5553.

[DM80] S. Davis and P. Mermelstein. Comparison of parametric representations for monosyl-
labic word recognition in continuously spoken sentences. IEEE Trans. Acoust., Speech,
Sig. Proc., 28(4):357–366, 1980.

[DMA97] G. Davis, S. Mallat, and M. Avellaneda. Greedy adaptive approximation. J. Constr.
Approx., 13:57–98, 1997.

[DMP91] P. Duhamel, Y. Mahieux, and J.P. Petit. A fast algorithm for the implementation of
filter banks based on ‘time domain aliasing cancellation’. In Proc. IEEE Int. Conf.
Acoustics, Speech and Sig. Proc., pages 2209–2212, Apr. 1991.

[Don95] D.L. Donoho. De-noising by soft-thresholding. IEEE Trans. Inform. Theory,
41(3):613–627, May 1995.

[DP07] M. E. P. Davies and M. D. Plumbley. Context-dependant beat tracking of musical
audio. IEEE Trans. on Audio, Speech and Lang. Proc., 15(3):1009–1020, 2007.

[DPK96] T. Dau, D. Pschel, and A. Kohlrausch. A quantitative model of the effective signal
processing in the auditory system: I. Model structure. J. Acoust. Soc. Amer., 99:3615–
3622, 1996.

128

BIBLIOGRAPHY

[dSO02] A.C. den Brinker, E.G.P. Schuijers, and A.W.J. Oomen. Parametric coding for high-
quality audio. In Proc. of the 112th AES Convention, 2002. Paper 5554.

[Dun06] C. Dunn. Scalable bitplane runlength coding. In Proc. 120th Audio Eng. Soc. Conv.,
2006. paper 6749.

[EA06] M. Elad and M. Aharon. Image denoising via sparse and redundant representations
over learned dictionaries. IEEE Trans. Image Proc., 15(12):3736–3745, Dec. 2006.

[Edl89] B. Edler. Codierung von audiosignalen mit berlappender transformation und adap-
tiven fensterfunktionen. Frequenz, pages 252–256, 1989.

[EHJS99] E. Ekudden, R. Hagen, I. Johansson, and J. Svedberg. The adaptive multi-rate speech
coder. In Proc. IEEE Workshop on Speech Coding, pages 117–119, Jun. 1999.

[EJHT04] B. Efron, I. Johnstone, T. Hastie, and R. Tibshirani. Least angle regression. The
Annals of Statistics, 32(2):407499, 2004.

[EMSZ07] M. Elad, B. Matalon, J. Shtok, and M. Zibulevsky. A wide-angle view at iterated
shrinkage algorithms. SPIE, Wavelet XII, 2007.

[EPF96] B. Edler, H. Purnhagen, and C. Ferekidis. ASAC - analysis/synthesis audio codec for
very low bit rates. In Proc. 110th AES Conv., May 1996. Preprint 4179.

[FAA08] FAAC. FAAC and FAAD webpage, 2008. http://sourceforge.net/projects/faac/.

[FBD+96] L. D. Fielder, M. Bosi, G. A. Davidson, M. Davis, C. Todd, and S. Vernon. AC-2
and AC-3: Low Complexity Transform-Based Audio Coding. In Collected Papers on
Digital Audio Bit-Rate Reduction, pages 54–72, 1996.

[FG06] C. Fevotte and S.J. Godsill. A bayesian approach for blind separation of sparse sources.
IEEE Trans. on Audio, Speech and Lang. Proc., 14(6):2174–2188, Nov. 2006.

[FiVVF06] R.M. Figueras i Ventura, P. Vandergheynst, and P. Frossard. Low-rate and flexible
image coding with redundant representations. IEEE Trans. on Image Proc., 15(3):726–
739, Mar. 2006.

[FNW07] M.A.T. Figueiredo, R.D. Nowak, and S.J. Wright. Gradient projection for sparse
reconstruction: Application to compressed sensing and other inverse problems. IEEE
Journal of Selected Topics in Signal Processing, 1(4):586–597, Dec. 2007.

[FTDG08] C. Fevotte, B. Torresani, L. Daudet, and S. J. Godsill. Sparse linear regression with
structured priors and application to denoising of musical audio. IEEE Trans. on Audio,
Speech and Lang. Proc., 16(1):174–185, 2008.

[Fuj99] T. Fujishima. Realtime chord recognition of musical sound: A system using common
lisp music. In Proc. Int. Comput. Music Conf., pages 464–467, 1999.

[Gab47] D. Gabor. Acoustical quanta and the theory of hearing. Nature, pages 591–516, 1947.

[Gal78] R. G. Gallager. Variations on a theme by huffman. IEEE Trans. Inform. Theory,
24(6):668–674, Nov. 1978.

129

BIBLIOGRAPHY

[GBM+96] R. Gribonval, E. Bacry, S. Mallat, P. Depalle, and X. Rodet. Analysis of sound signals
with high resolution matching pursuit. In Proc. of the International Symposium on
Time-Frequency and Time-Scale Analysis, pages 125–128, 1996.

[GG92] A. Gersho and R. M. Gray. Vector Quantization and Signal Compression. Kluwer
Academic Publishers, 1992.

[GH04] E. Gomez and P. Herrera. Estimating the tonality of polyphonic audio files: Cognitive
versus machine learning modelling strategies. In Proc. of the 5th ISMIR, pages 92–95,
2004.

[GMPV04] L. Granai, E. Maggio, L. Peotta, and P. Vandergheynst. Hybrid video coding based
on bidimensional matching pursuit. EURASIP Journal on Applied Signal Processing,
1:2705–2714, 2004.

[GN98] R.M. Gray and D.L. Neuhoff. Quantization. IEEE Trans. Inform. Theory, 44(6):2325–
2383, Oct. 1998.

[Gol66] S.W. Golomb. Run-length encodings. IEEE Trans. Inform. Theory, 12(3):399–401,
1966.

[Goo97] M. Goodwin. Matching pursuit with damped sinusoids. In Proc. IEEE Int. Conf.
Acoustics, Speech and Sig. Proc., volume 3, pages 2037–2040 vol.3, 1997.

[Goo01] M.M. Goodwin. Multiscale overlap-add sinusoidal modeling using matching pursuit
and refinements. In Proc. Workshop on Applications of Signal Processing to Audio
and Acoustics, pages 207–210, Oct. 2001.

[Gri99] R. Gribonval. Approximations non-linéaires pour l’analyse des signaux sonores. PhD
thesis, Université Paris-IX Dauphine, 1999.

[Gri02] R. Gribonval. Sparse decomposition of stereo signals with matching pursuit and ap-
plication to blind separation of more than two sources from a stereo mixture. In Proc.
IEEE Int. Conf. Acoustics, Speech and Sig. Proc., volume 3, pages 3057–3060, 2002.

[GS92] E. B. George and M. J. T. Smith. Analysis-by-synthesis/overlap-add sinusoidal mod-
eling applied to the analysis and synthesis of musical tones. J. Audio Eng. Soc.,
40(6):497–516, June 1992.

[GSK01] R. Geiger, T. Sporer, and J. Koller. Audio coding based on integer transforms. In
Proc. 111th AES Convention, 2001. preprint 5471.

[Hai04] S. Hainsworth. Techniques for the Automated Analysis of Musical Audio. PhD thesis,
Dept. Eng., Cambridge University, 2004.

[HK00] M. Hansen and B. Kollmeier. Objective modelling of speech quality with a psychoa-
coustically validated auditory model. J. Audio Eng. Soc., 48:395–409, 2000.

[HK06] R. Hubert and B. Kollmeier. PEMO-Q–A new method for objective audio quality
assessment using a model of auditory perception. IEEE Trans. on Audio, Speech and
Lang. Proc., 14(6):1902–1911, Nov. 2006.

130

BIBLIOGRAPHY

[HS05] C. Harte and M. Sandler. Automatic chord identification using a quantized chroma-
gram. In Proceedings of the 118th AES Convention, May 2005.

[HS08] A. Holzapfel and Y. Stylianou. Musical genre classification using nonnegative ma-
trix factorization-based features. IEEE Trans. on Audio, Speech and Lang. Proc.,
16(2):424–434, 2008.

[Huf52] D. A. Huffman. A method for the construction of minimum-redundancy codes. Pro-
ceedings of the Institute of Radio Engineers, 40(9):1098–1101, 1952.

[HVK02] R. Heusdens, R. Vafin, and W. B. Kleijn. Sinusoidal modeling using psychoacoustic-
adaptive matching pursuits. IEEE Sig. Proc. Letters, 9(8):262–265, Aug. 2002.

[HXDC07] Z. He, S. Xie, S. Ding, and A. Cichocki. Convolutive blind source separation in the
frequency domain based on sparse representation. IEEE Trans. on Audio, Speech and
Lang. Proc., 15(5):1551–1563, July 2007.

[IMM95] N. Iwakami, T. Moriya, and S. Miki. High-quality audio-coding at less than 64 kbit/s
by using transform-domain weighted interleave vector quantization (TwinVQ). In
Proc. IEEE Int. Conf. Acoustics, Speech and Sig. Proc., volume 5, pages 3095–3098,
May 1995.

[ISO92] ISO/IEC, JTC1/SC29/WG11 MPEG. Information technology - coding of moving
pictures and associated audio for digital storage media at up to about 1.5 Mbit/s -
part 3: Audio, IS11172-3 1992.

[ISO96] ISO/IEC, JTC1/SC29/WG11 MPEG. Report on the formal subjective listening tests
of MPEG-2 NBC multichannel audio coding, Nov. 1996. Tech. report N1419.

[ISO98a] ISO/IEC, JTC1/SC29/WG11 MPEG. Report on the MPEG-2 AAC stereo verification
tests, Feb. 1998. Tech. report N2006.

[ISO98b] ISO/IEC, JTC1/SC29/WG11 MPEG. Information technology - generic coding of
moving pictures and associated audio information - part 3: Audio, IS13818-3 1998.

[ISO99] ISO/IEC, JTC1/SC29/WG11 MPEG. Report on the mpeg-4 audio version 2 verifi-
cation test, Dec. 1999. Tech. report N3075.

[ISO01] ISO/IEC, JTC1/SC29/WG11 MPEG. Information technology - coding of audio-visual
objects - part 3: Audio, IS14496-3 2001.

[ISO03] ISO/IEC, JTC1/SC29/WG11 MPEG. Report on informal MPEG-4 extension 1
(bandwidth extension) verification tests, March 2003. Tech. report N5571.

[ISO04a] ISO/IEC. JPEG 2000 image coding system: Core coding system, IS15444-1 2004.

[ISO04b] ISO/IEC, JTC1/SC29/WG11 MPEG. Report on the verification tests of MPEG-4
parametric coding for high quality audio, July 2004. Tech. report N6675.

[ITU97] ITU-R. Recommendation BS.1116-1. Methods for the subjective assessment of small
impairments in audio systems including multichannel sound systems, 1997.

[ITU98] ITU-R. Recommendation BS.1387. Method for Objective Measurements of Perceived
Audio Quality, 1998.

131

BIBLIOGRAPHY

[ITU01] ITU-R. Draft Revision to BS.1387. Method for Objective Measurements of Perceived
Audio Quality, Document 6/BL/30-E, July 2001.

[ITU03] ITU-R. Recommendation BS.1534-1. Method for the subjective assessment of inter-
mediate quality levels of coding systems, 2003.

[iTu08] iTunes. Apple iTunes 7 webpage, 2008. http://www.apple.com/fr/itunes/download/.

[JCMW95] S. Jaggi, W.C. Carl, S. Mallat, and A.S. Willsky. High resolution pursuit for feature
extraction. Technical report, MIT, Nov. 1995.

[Joh88] J. D. Johnston. Transform coding of audio signals using perceptual noise criteria.
IEEE Journal on selected areas in communications, 6(2):314–323, Feb. 1988.

[JV08] P. Jost and P. Vandergheynst. On finding nearest neighbors in a set of compressible
signals. To appear in IEEE Trans. on Sig. Proc., 2008.

[JVF06] P. Jost, P. Vandergheynst, and P. Frossard. Tree-based pursuit: Algorithm and prop-
erties. IEEE Trans. on Sig. Proc., 54(12):4685–4697, Dec. 2006.

[Kab03] P. Kabal. An examination and interpretation of ITU-R BS.1387: Perceptual evaluation
of audio quality. Technical report, McGill, 2003.

[KEA06] A. P. Klapuri, A. J. Eronen, and J. T. Astola. Analysis of the meter of acoustic
musical signals. IEEE Trans. on Audio, Speech and Lang. Proc., 14(1):342–355, 2006.

[KJH04] P. Korten, J. Jensen, and R. Heusdens. High rate spherical quantization of sinusoidal
parameters. In Proc. EUSIPCO, pages 1757–1760, 2004.

[KKL+07] S. J. Kim, K. Koh, M. Lustig, S. Boyd, and D. Gorinevsky. A method for large-scale
l1-regularized least squares. IEEE Journal on Selected Topics in Signal Processing,
4(1):606–617, 2007.

[KLK02] J. L. Kim, K. L., and T. Kim. Adaptive reconstruction for embedded quantisation.
Electronics Letters, 38(18):1065–1067, Aug. 2002.

[KQG06] S. Kiranyaz, Ahmad Farooq Qureshi, and M. Gabbouj. A generic audio classification
and segmentation approach for multimedia indexing and retrieval. IEEE Trans. on
Audio, Speech and Lang. Proc., 14(3):1062–1081, 2006.

[Krs06] S. Gribonval R. Krstulovic. MPTK: Matching pursuit made tractable. In Proc. Int.
Conf. on Acoustics, Speech, and Sig. Proc., volume 3, pages 496–499, 2006.

[LAM08] LAME. LAME mp3 encoder webpage, 2008. http://lame.sourceforge.net.

[Lan83] G. G. Langdon. An adaptive run-length encoding algorithm. IBM Tech. Discl. Bull.,
26:3783–3785, 1983.

[LASM90] C. Laflamme, J.-P. Adoul, H.Y. Su, and S. Morissette. On reducing computational
complexity of codebook search in CELP coder through the use of algebraic codes. In
Proc. IEEE Int. Conf. Acoustics, Speech and Sig. Proc., pages 177–180, Apr. 1990.

[Lev07] P. Leveau. Décompositions parcimonieuses structurées: Application à la
représentation objet de la musique. PhD thesis, Université Pierre et Marie Curie,
2007.

132

BIBLIOGRAPHY

[Li02] J. Li. Embedded audio coding (EAC) with implicit auditory masking. In Proc. ACM
Multimedia, pages 592–601, 2002.

[lib08] libMAD. libMAD mpeg audio decoder webpage, 2008.
http://www.underbit.com/products/mad/.

[LLV+08] P. Leveau, P. Leveau, E. Vincent, G. Richard, and L. Daudet. Instrument-specific
harmonic atoms for mid-level music representation. IEEE Transactions on Audio,
Speech, and Language Processing, 16(1):116–128, 2008.

[LRYK07] T. Li, S. Rahardja, R. Yu, and S. N. Koh. On Integer MDCT for Perceptual Audio
Coding. IEEE Trans. on Audio, Speech and Lang. Proc., 15(8):2236–2248, Nov. 2007.

[LS98] S. Levine and J. O. Smith. A sines+transient+noise audio representation for data
compression and time/pitch scale modifications. In Proc. of 115th AES Conv., Sept.
1998.

[LS08] K. Lee and M. Slaney. Acoustic chord transcription and key extraction from audio
using key-dependent HMMs trained on synthesized audio. IEEE Transactions on
Audio, Speech, and Language Processing, 16(2):291–301, 2008.

[LSLA94] R. Lefebvre, R. Salami, C. Laflamme, and J.-P. Adoul. High quality coding of wide-
band audio signals using transform coded excitation (TCX). In Proc. IEEE Int. Conf.
Acoustics, Speech and Sig. Proc., volume 1, pages 193–196, Apr. 1994.

[LVS97] S.N. Levine, T.S. Verma, and J.O. Smith. Alias-free, multiresolution sinusoidal mod-
eling for polyphonic, wideband audio. In Proc. IEEE Workshop on Applications of
Signal Processing to Audio and Acoustics, Oct. 1997.

[Mal90] H. S. Malvar. Lapped transforms for efficient transform/subband coding. IEEE Trans.
on Acoustics, Speech, and Sig. Proc., 38(6):969–978, June 1990.

[Mal98] S. Mallat. A wavelet tour of signal processing. Academic Press, 1998.

[Mal99a] H. S. Malvar. Fast progressive wavelet coding. In Proc. Data Compression Conference,
pages 336–343, 1999.

[Mal99b] H. S. Malvar. A modulated complex lapped transform and its applications to audio
processing. In Proc. IEEE Int. Conf. Acoustics, Speech and Sig. Proc., volume 3, pages
1421–1424 vol.3, 1999.

[Max60] J. Max. Quantizing for minimum distortion. IRE Trans. Inf. Thy., 6(1):7–12, Mar.
1960.

[MBB+05] J. Makinen, B. Bessette, S. Bruhn, P. Ojala, R. Salami, and A. Taleb. AMR-WB+:
a new audio coding standard for 3rd generation mobile audio services. In Proc. Int.
Conf. on Acoustics, Speech, and Sig. Proc., volume 2, pages 1109–1112, March 2005.

[MD03] S. Merdjani and L. Daudet. Direct estimation of frequency from MDCT-encoded files.
In Proc. of DAFX 03, 2003.

[MDZ94] S. Mallat, G. Davis, and Z. Zhang. Adaptive time-frequency decompositions. SPIE J.
Opt. Eng., 33:2183–2191, 1994.

133

BIBLIOGRAPHY

[MJV+07] G.. Monaci, P.. Jost, P.. Vandergheynst, B.. Mailhe, S.. Lesage, and R. Gribonval.
Learning multimodal dictionaries. IEEE Trans. Image Proc., 16(9):2272–2283, Sept.
2007.

[MMES08] J. Mairal, J. Mairal, M. Elad, and G. Sapiro. Sparse representation for color image
restoration. IEEE Trans. Image Proc., 17(1):53–69, 2008.

[MQ86] R. McAulay and T. Quatieri. Speech analysis/synthesis based on a sinusoidal rep-
resentation. IEEE Trans. on Acoustics, Speech and Sig. Proc., 34(4):744–754, Aug.
1986.

[MZ93] S.G. Mallat and Z. Zhang. Matching pursuits with time-frequency dictionaries. IEEE
Trans. on Signal Processing, 41(12):3397–3415, Dec. 1993.

[Nat95] B. K. Natarajan. Sparse approximate solutions to linear systems. SIAM J. Comput.,
24(2):227–234, 1995.

[Nia06] O. A. Niamut. Rate-distortion optimal time-frequency decompositions for MDCT-based
audio coding. PhD thesis, Technische Universiteit Delft, 2006.

[NLS+99] Y. Nakajima, Y. Lu, M. Sugano, A. Yoneyama, H. Yamagihara, and A. Kurematsu. A
fast audio classification from MPEG coded data. In Proc. IEEE Int. Conf. Acoustics,
Speech and Sig. Proc., volume 6, pages 3005–3008 vol.6, 1999.

[Nus81] H. Nussbaumer. Pseudo QMF filter bank. IBM Tech. Discl. Bull., 24:3081–3087, Nov.
1981.

[NZ97] R. Neff and A. Zakhor. Very low bit-rate video coding based on matching pursuits.
IEEE Trans. Circuits Syst. Video Technol., 7(1):158–171, Feb. 1997.

[Od99] A. Oomen and A. den Brinker. Sinusoids plus noise modeling for audio signals. In
Proc. of the AES 17th Intl. Conf., pages 226–232, Sept. 1999.

[Oge07] M. Oger. Model-based techniques for flexible speech and audio coding. PhD thesis,
Université de Nice-Sophia Antipolis, 2007.

[Opt08] Opticom. Opticom peaq webpage, 2008. http://www.opticom.de/licensing/peaq.html.

[OWS98] E. Ordentlich, M. Weinberger, and G. Seroussi. A low-complexity modeling approach
for embedded coding of wavelet coefficients. In Proc. Data Compression Conference,
pages 408–417, March 1998.

[PA04] F. Pachet and J. J. Aucouturier. Improving timbre similarity: How high is the sky?
J. Negative Results Speech Audio Sci., 1(1), 2004.

[Pam06] E. Pampalk. MA toolbox, 2006. http://www.ofai.at/ elias.pampalk/ma.

[Pas76] R. Pasco. Source coding algorithms for fast data compression. PhD thesis, Stanford
university, 1976.

[Pau04] S. Pauws. Musical key extraction from audio. In Proc. of the 5th ISMIR, 2004.

[PB86] J. P. Princen and A. B. Bradley. Analysis/synthesis filter bank design based on time
domain aliasing cancellation. IEEE Trans. Acoust., Speech, Sig. Proc., 34(5):1153–
1161, Oct. 1986.

134

BIBLIOGRAPHY

[Pea79] W. A. Pearlman. Polar quantization of a complex gaussian random variable. IEEE
Trans. Commun., 27:892–899, Jun. 1979.

[PEF98] H. Purnhagen, B. Edler, and C. Ferekidis. Object-based analysis/synthesis audio coder
at very low bit rates. In 104th Audio Eng. Soc. Conv., 1998. Paper 4747.

[PGV06] L. Peotta, L. Granai, and P. Vandergheynst. Image compression using an edge adapted
redundant dictionary and wavelets. Signal Processing, 86(3):444–456, 2006.

[PJB87] J. Princen, A. Johnson, and A. Bradley. Subband/transform coding using filter bank
designs based on time domain aliasing cancellation. In Proc. IEEE Int. Conf. Acous-
tics, Speech and Sig. Proc., volume 12, pages 2161–2164, Apr 1987.

[PKS97] S.-H. Park, Y.-B. Kim, and Y.-S. Seo. Multi-layer bit-sliced bit rate scalable audio
coding. In Proceedings of the 103rd AES Convention, 1997. preprint 4520.

[PM00] H. Purnhagen and N. Meine. HILN-the MPEG-4 parametric audio coding tools. In
Proceedings of the IEEE International Symposium on Circuits and Systems, volume 3,
pages 201–204, May 2000.

[PRK93] Y. C. Pati, R. Rezaiifar, and P. S. Krishnaprasad. Orthogonal matching pursuit: recur-
sive function approximation with applications to wavelet decomposition. In Conference
Record of the 27th Annual Asilomar Conference on Signals, Systems and Computers,
volume 1, pages 40–44, 1993.

[PS96] N.V. Patel and I.K. Sethi. Audio characterization for video indexing. In Proc. SPIE,
volume 2670, pages 373–384, 1996.

[PS00] T. Painter and A. Spanias. Perceptual coding of digital audio. Proceedings of the
IEEE, 88(4):451–515, 2000.

[PV01] S. Pfeiffer and T. Vincent. Formalisation of MPEG- 1 compressed domain audio
features. Technical report, Technical Report 01 / 196, CSIRO Mathematical and
Information Sciences, Australia, 2001.

[RD06] E. Ravelli and L. Daudet. Representations of audio signals in overcomplete dictionar-
ies: What is the link between redundancy factor and coding properties? In Proc. Of
9th Int. Conf. on Digital Audio Effects (DAFX’06), pages 267–270, Sep. 2006.

[RD07] E. Ravelli and L. Daudet. Embedded polar quantization. IEEE Signal Processing
Letters, 14(10):657–660, Oct. 2007.

[Ris76] J. Rissanen. Generalized kraft inequality and arithmetic coding. IBM J. Res. Develop.,
20:198–203, 1976.

[RKD99] B. D. Rao and K. Kreutz-Delgado. An affine scaling methodology for best basis
selection. IEEE Trans. Sig. Proc., 47:187–200, 1999.

[RKT+07] S. Ragot, B. Kovesi, R. Trilling, D. Virette, N. Duc, D. Massaloux, S. Proust, B. Geiser,
M. Gartner, S. Schandl, H. Taddei, Yang Gao, E. Shlomot, H. Ehara, K. Yoshida,
T. Vaillancourt, R. Salami, Mi Suk Lee, and Do Young Kim. ITU-T G.729.1: An 8-32
Kbit/s Scalable Coder Interoperable with G.729 for Wideband Telephony and Voice
Over IP. In Proc. IEEE Int. Conf. Acoustics, Speech and Sig. Proc., volume 4, pages
529–532, Apr. 2007.

135

BIBLIOGRAPHY

[RMB02] M. Raad, A. Mertins, and I. Burnett. Audio coding based on the modulated lapped
transform (MLT) and set partitioning in heirarchical trees. In Proc. 6th World Multi-
conference on Systemics, Cybernetics and Informatics, volume 3, pages 303–306, July
2002.

[RMB03] M. Raad, A. Mertins, and I. Burnett. Scalable to lossless audio compression based on
perceptual set partitioning in hierarchical trees (PSPIHT). In Proc. IEEE Int. Conf.
Acoustics, Speech and Sig. Proc., volume 5, pages 624–627, May 2003.

[Rot83] J. Rothweiler. Polyphase quadrature filters–A new subband coding technique. In Proc.
IEEE Int. Conf. Acoustics, Speech and Sig. Proc., volume 8, pages 1280–1283, Apr.
1983.

[RRD07] E. Ravelli, G. Richard, and L. Daudet. Extending fine-grain scalable audio coding
to very low bitrates using overcomplete dictionaries. In Proc. IEEE Workshop on
Applications of Signal Processing to Audio and Acoustics (WASPAA’07), pages 195–
198, Oct. 2007.

[RRD08a] E. Ravelli, G. Richard, and L. Daudet. Fast MIR in a sparse transform domain. In
Proc. Of 9th International Conference on Music Information Retrieval (accepted for
future publication), Sep. 2008.

[RRD08b] E. Ravelli, G. Richard, and L. Daudet. Matching pursuit in adaptive dictionaries
for scalable audio coding. In Proc. Of 16th European Signal Processing Conference
(accepted for future publication), Aug. 2008.

[RRD08c] E. Ravelli, G. Richard, and L. Daudet. Union of MDCT bases for audio coding.
IEEE Transactions on Audio, Speech and Language Processing (accepted for future
publication), 2008.

[RRE+03] B.D. Rao, B.D. Rao, K. Engan, S.F. Cotter, J. Palmer, and K. Kreutz-Delgado. Subset
selection in noise based on diversity measure minimization. IEEE Trans. on Sig. Proc.,
51(3):760–770, 2003.

[SA85] M. Schroeder and B. Atal. Code-excited linear prediction (CELP): High-quality speech
at very low bit rates. In Proc. IEEE Int. Conf. Acoustics, Speech and Sig. Proc.,
volume 10, pages 937–940, 1985.

[Sai04] A. Said. Introduction to arithmetic coding: Theory and practice. Technical report,
Hewlett-Packard Laboratories Report HPL-2004-76, 2004.

[SBT00] S. Sardy, A. G. Bruce, and P. Tseng. Block coordinate relaxation methods for non-
parametric wavelet denoising. Journal of Computational and Graphical Statistics,
9:361–379, 2000.

[Sch98] E. D. Scheirer. Tempo and beat analysis of acoustic musical signals. J. Acoust. Soc.
Am., 103(1):588–601, 1998.

[SE03] A. Sheh and D. P. W. Ellis. Chord segmentation and recognition using EM-trained
hidden Markov models. In Proc. Int. Conf. Music Inf. Retrieval, pages 185–191, 2003.

136

BIBLIOGRAPHY

[SED05] J.-L. Starck, M. Elad, and D.L. Donoho. Image decomposition via the combina-
tion of sparse representations and a variational approach. IEEE Trans. Image Proc.,
14(10):1570–1582, Oct. 2005.

[Ser89] X. Serra. A System For Sound Analysis Transformation Synthesis Based on a Deter-
ministic Plus Stochastic Decomposition. PhD thesis, Stanford University, 1989.

[Sha93] J. M. Shapiro. Embedded image coding using zerotrees of wavelet coefficients. IEEE
Trans. Sig. Proc., 41(12):3445–3462, Dec. 1993.

[SK86] P. F. Swaszek and T. W. Ku. Asymptotic performance of unrestricted polar quantizers.
IEEE Trans. Inf. Theory, 32:330–333, Mar. 1986.

[SL+97] R. Salami, , C. Laflamme, B. Bessette, J.-P. Adoul, K. Jarvinen, J. Vainio, P. Kapae-
nen, T. Honkanen, and P. Haavisto. Description of GSM enhanced full rate speech
codec. In Proc. IEEE Int. Conf. on Communications (ICC 97), volume 2, pages
725–729, 1997.

[SLA+98] R. Salami, C. Laflamme, J.-P. Adoul, A. Kataoka, S. Hayashi, T. Moriya, C. Lamblin,
D. Massaloux, S. Proust, P. Kroon, and Y. Shoham. Design and description of CS-
ACELP: a toll quality 8 kb/s speech coder. IEEE Trans. on Speech and Audio Proc.,
6(2):116–130, Mar. 1998.

[SLD07] David Sodoyer, Pierre Leveau, and Laurent Daudet. Using stereo information for
instrument identification in polyphonic mixtures. In Proc. IEEE Workshop on Appli-
cations of Signal Processing to Audio and Acoustics, pages 259–262, 2007.

[SM08] S. Strahl and A. Mertins. Sparse gammatone signal model optimized for english speech
does not match the human auditory filters. Brain Research (accepted for publication),
2008.

[SOdB03] E. Schuijers, W. Oomen, B. den Brinker, and J. Breebaart. Advances in parametric
coding for high-quality audio. In Proceedings of the 114th AES Convention, 2003.
Paper 5852.

[SP96] A. Said and W. A. Pearlman. A new fast and efficient image codec based on set
partitioning in hierarchical trees. IEEE Trans. Circuits Systems Video Tech., 6(3):243–
250, Jun. 1996.

[SS87] J. O. Smith and X. Serra. PARSHL: A program for the analysis/synthesis of inhar-
monic sounds based on a sinusoidal representation. In Proc. International Computer
Music Conference, 1987.

[SSDR08] B.L. Sturm, J.J. Shynk, L. Daudet, and C. Roads. Dark energy in sparse atomic
estimations. IEEE Trans. on Audio, Speech and Lang. Proc., 16(3):671–676, 2008.

[SXWK04] X. Shao, C. Xu, Y. Wang, and M.S. Kankanhalli. Automatic music summarization
in compressed domain. In Proc. IEEE International Conference on Acoustics, Speech,
and Signal Processing (ICASSP ’04), volume 4, pages iv–261–iv–264, 17–21 May 2004.

[SZM05] S. Strahl, H. Zhou, and A. Mertins. An adaptive tree-based progressive audio com-
pression scheme. In Proc. IEEE Workshop on Applications of Signal Processing to
Audio and Acoustics, pages 219–222, 16-19 Oct. 2005.

137

BIBLIOGRAPHY

[TC00] G. Tzanetakis and F. Cook. Sound analysis using mpeg compressed audio. In Proc.
IEEE Int. Conf. Acoustics, Speech and Sig. Proc., volume 2, pages II761–II764 vol.2,
2000.

[TC02] G. Tzanetakis and P. Cook. Musical genre classification of audio signals. IEEE Trans.
Acoust., Speech, Sig. Proc., 10(5):293–302, 2002.

[Tem00] V. Temlyakov. Weak greedy algorithms. Advances in Computational Mathematics,
12:213–227, 2000.

[Tib96] R. Tibshirani. Regression shrinkage and selection via the LASSO. J. Royal. Statist.
Soc B., 58(1):267–288, 1996.

[TTB+00] T. Thiede, W. C. Treurniet, R. Bitto, C. Schmidmer, T. Sporer, J. G. Beerends,
C. Colomes, M. Keyhl, G. Stoll, K. Brandenburg, , and B. Feiten. PEAQ the ITU
standard for objective measurement of perceived audio quality. J. Audio Eng. Soc.,
48:3–29, 2000.

[Tzo86] K.-H. Tzou. Embedded max quantization. In Proc. IEEE Int. Conf. Acoustics, Speech
and Sig. Proc., volume 11, pages 505–508, 1986.

[Vaf04] R. Vafin. Towards Flexible Audio Coding. PhD thesis, KTH (Royal Institute of
Technology), 2004.

[Vin08] E. Vincent. MUSHRAM: A matlab interface for mushra listening tests, 2008.
http://www.elec.qmul.ac.uk/digitalmusic/downloads.

[Vit87] J. S. Vitter. Design and analysis of dynamic huffman codes. J. ACM, 34(4):825–845,
Oct. 1987.

[VK05] R. Vafin and W.B. Kleijn. Entropy-constrained polar quantization and its application
to audio coding. IEEE Trans. on Audio, Speech and Lang. Proc., 13(2):220–232, 2005.

[VK06] R. Vafin and W.B. Kleijn. Rate-distortion optimized quantization in multistage audio
coding. IEEE Trans. on Audio, Speech and Lang. Proc., 14(1):311–320, 2006.

[VM99] T.S. Verma and T.H.Y. Meng. Sinusoidal modeling using frame-based perceptually
weighted matching pursuits. In Proc. IEEE Int. Conf. Acoustics, Speech and Sig.
Proc., volume 2, pages 981–984, Mar. 1999.

[VM00] T.S. Verma and T.H.Y. Meng. A 6kbps to 85kbps scalable audio coder. In Proc. IEEE
Int. Conf. Acoustics, Speech and Sig. Proc., volume 2, pages 877–880, Jun. 2000.

[VP07] E. Vincent and M. D. Plumbley. Low bit-rate object coding of musical audio us-
ing bayesian harmonic models. IEEE Transactions on Audio, Speech, and Language
Processing, 15(4):1273–1282, May 2007.

[VPK05] R. Vafin, D. Prakash, and W.B. Kleijn. On frequency quantization in sinusoidal audio
coding. IEEE Sig. Proc. Letters, 12(3):210–213, 2005.

[vv05] N.H. van Schijndel and S. van de Par. Rate-distortion optimized hybrid sound coding.
In Proc. Workshop on Applications of Signal Processing to Audio and Acoustics, pages
235–238, 2005.

138

BIBLIOGRAPHY

[Wil80] S. G. Wilson. Magnitude/phase quantization of independent gaussian variates. IEEE
Trans. Commun., 28:1924–1929, Nov. 1980.

[WKHP03] M. Wolters, K. Kjorling, D. Homm, and H. Purnhagen. A closer look into MPEG-4
High Efficiency AAC. In Proceedings of the 115th AES Convention, 2003. paper 5871.

[WNC87] I. H. Witten, R. M. Neal, and J. G. Cleary. Arithmetic coding for data compression.
Communications of the ACM, 30:520–540, 1987.

[WV01] Y. Wang and M. Vilermo. A compressed domain beat detector using mp3 audio
bitstreams. In ACM Multimedia, pages 194–202, 2001.

[YM08] B. J. Yoon and H. S. Malvar. Coding overcomplete representations of audio using the
mclt. In Proc. of IEEE Data Compression Conference, 2008.

[YRXK06] R. Yu, S. Rahardja, L. Xiao, and C. C. Ko. A fine granular scalable to lossless audio
coder. IEEE Trans. in Audio, Speech, and Language Proc., 14(4):1352–1363, July
2006.

[YZ97] L. Yapp and G. Zick. Speech recognition on mpeg/audio encoded files. In Proc. IEEE
International Conference on Multimedia Computing and Systems ’97, pages 624–625,
1997.

[ZEEL02] T. Ziegler, A. Ehret, P. Ekstrand, and M. Lutzky. Enhancing mp3 with SBR: Features
and capabilities of the new mp3PRO algorithm. In Proc. 112th Audio Eng. Soc. Conv.,
2002. Paper 5560.

[ZW08] J. Zhu and Y. Wang. Complexity-scalable beat detection with MP3 audio bitstreams.
Computer Music Journal, 32(1):71–87, 2008.

139

BIBLIOGRAPHY

140

141

Appendix A

Testing material

We describe here the testing material we use in the chapters 4, 5 and 6 of this thesis.
We have chosen five signals, from the dataset of [ISO03] (see Table A.1). This subset was chosen
in order to keep critical and rather varied material (from impulsive monoinstrumental signals to
complex polyphony). The length of each signal is approximately 10 seconds. We resampled the
signals from 48 khz to 44.1 khz and kept only the left channel. Signals and spectrograms are in
Figure A.1.

Table A.1: Testing material

Test Item Description

harp Harpsichord

bagp Bagpipes

gloc Glockenspiel

orch Orchestral piece

popm Contemporary pop music

0 2 4 6 8 10
−0.5

0

0.5
bagp

A
m

pl
itu

de

F
re

qu
en

cy
 (

H
z)

bagp

2 4 6 8 10
0

1

2
x 10

4

0 2 4 6 8 10
−0.5

0

0.5
gloc

A
m

pl
itu

de

F
re

qu
en

cy
 (

H
z)

gloc

2 4 6 8 10
0

1

2
x 10

4

0 2 4 6
−0.5

0

0.5
harp

A
m

pl
itu

de

F
re

qu
en

cy
 (

H
z)

harp

1 2 3 4 5 6 7
0

1

2
x 10

4

0 2 4 6 8 10 12
−0.5

0

0.5
orch

A
m

pl
itu

de

F
re

qu
en

cy
 (

H
z)

orch

2 4 6 8 10 12
0

1

2
x 10

4

0 2 4 6 8 10
−0.5

0

0.5
popm

A
m

pl
itu

de

Time (seconds) Time (seconds)

F
re

qu
en

cy
 (

H
z)

popm

2 4 6 8 10
0

1

2
x 10

4

Figure A.1: Signal and spectrogram of the testing material.

142

143

Appendix B

Gradient pursuit over a union of
MDCT bases

We have used in this thesis Matching Pursuit or slightly modified version of Matching
Pursuit only. We describe here a preliminary experiment that show the potential benefit of using
other greedy algorithms such as Gradient Pursuit [BD08]. We compare in the following three greedy
algortihms, the simple Matching Pursuit, Orthogonal Matching Pursuit, and Gradient Pursuit. We
first described the experimental setup and then present the results.

Test sounds The algorithms are tested on two sounds. To limit complexity, we use short extracts
of approximately two seconds. The first sound is an extract of the glockenspiel signal, caracterized
by sharp attacks and long stationary parts. The second sound is an extract of the orchestra signal,
caracterized by a rich frequency content.

Dictionary We use a union of 8 MDCT bases with sine-based windows of the following sizes (in
samples): 128; 256, 512, 1024, 2048, 4096, 8192, 16384.

Algorithms We compare in this experiment three greedy algorithms: Matching Pursuit (MP)
[MDZ94], Orthogonal Matching Pursuit (OMP) using the QR factorization [CARKD99], and Gra-
dient Pursuit (GP) [BD08]. We use a Matlab implementation of these algorithms, called Sparsify
and developped by Thomas Blumensath 1. It is important to remark that the dictionary matrix Φ
is not implemented explicitly, due to the memory limitations. Instead, we implement the matrix
multiplications ΦT f (with f a column vector of length N) and Φf (with f a column vector of length
K) using the fast transform described in 4.3.

Machine We use a laptop based on a Core 2 Duo 2GHz processor with 2GB RAM. The algorithms
are run on Matlab R2008a (Matlab 7.6.0).

Results The performance of the algorithms are compared using the SNR in function of the
number of selected atoms i.e. the number of non-zero coefficients i.e. the 0-like-norm of the
approximation. Results are on Fig. B.1. As a reference, we also give the SNR obtained by keeping
the first most correlated atoms in an orthogonal dictionary (MDCT with window size 2048 samples).

1The Matlab Sparsify Toolbox is released under a GNU/GPL license and is available at the following adress:
http://www.see.ed.ac.uk/ tblumens/sparsify/sparsify.html

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

5

10

15

20

25

30

35

40

45

Number of atoms

S
N

R
 (

dB
)

Extract of the glockenspiel signal

Reference (Orthogonal dictionary)
Matching Pursuit
Gradient Pursuit
Orthogonal Matching Pursuit

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

5

10

15

20

25

30

35

40

Number of atoms

S
N

R
 (

dB
)

Extract of the orchestra signal

Reference (Orthogonal dictionary)
Matching Pursuit
Gradient Pursuit
Orthogonal Matching Pursuit

Figure B.1: Performance comparison of several greedy algorithms.

It is important to remark that due to the huge memory requirement of OMP, the algorithm
has been stopped after 1000 iterations, this explain the limited curve of OMP. We also remark that
the performance of OMP and GP are nearly the same, and thus the corresponding curves are
superposed, this explain that it is hard to distinguish them on the figure. The performance of the
algorithms in the overcomplete dictionary is always better than in the orthogonal dictionary, but the
gain is less with MP than with the other algorithms (OMP,GP). Moreover, it is interesting to remark
than the gain with OMP and GP is more important on the orchestra signal. The computation time
needed by the three greedy algorithms are now given. Fig. B.2 shows computation time per
iteration for the three algorithms. It is interesting to remark that the compuation time needed by
one iteration of OMP becomes very high when the number of selected atoms increases, contrary to
GP and MP which have a nearly constant computation time per iteration. It also interesting to
remark than GP has almost the same computation time as MP.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0.5

1

1.5

2

2.5

3

3.5

Iteration

T
im

e
(s

ec
on

ds
)

Extract of the glockenspiel signal

Matching Pursuit
Gradient Pursuit
Orthogonal Matching Pursuit

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0.5

1

1.5

2

2.5

3

3.5

4

Iteration

T
im

e
(s

ec
on

ds
)

Extract of the orchestra signal

Matching Pursuit
Gradient Pursuit
Orthogonal Matching Pursuit

Figure B.2: Computation time comparison of several greedy algorithms.

144

	Introduction
	Background
	Main contributions
	Thesis outline

	Lossy audio coding: an overview
	Introduction
	Signal representation
	Filter bank approaches
	Parametric models
	Hybrid approaches

	Source coding
	Quantization
	Entropy coding
	Bitplane coding

	Evaluation
	Listening tests
	Objective Measures

	Conclusions

	Sparse signal representations
	Introduction
	Problems and solutions
	Mathematical settings
	Exact signal representations
	Signal approximations

	Greedy algorithms
	Matching Pursuit
	Variants of Matching Pursuit

	Dictionaries used in coding applications
	Orthogonal dictionaries
	Overcomplete dictionaries

	Conclusions

	Signal representation in a union of MDCT bases
	Introduction
	Signal model
	Motivations
	Model formalization

	Fast implementation of Matching Pursuit in a union of MDCT bases
	MP: Naive implementation
	MP: Fast implementation
	Fast Implementation of the MDCT

	Experiment
	Experimental setup
	Results
	Discussion

	Modified Matching Pursuit with pre-echo control
	Problem statement
	Proposed algorithm
	Results

	Conclusions

	Union of MDCT bases for audio coding
	Introduction
	Grouping and interleaving
	Segmentation in timeslots
	Coefficients interleaving

	Bitplane coding
	Simple bitplane encoder
	Psychoacoustic bitplane encoder

	Evaluation
	Source coding algorithm
	Modified MP with pre-echo control
	Final codec: objective evaluation
	Final codec: subjective evaluation

	Conclusions

	Matching Pursuit in adaptive dictionaries for scalable audio coding
	Introduction
	Signal representation
	Signal model
	Decomposition algorithm

	Coding
	Adaptive bitplane coding
	Optimal switching parameter

	Evaluation
	Performance
	Computation times

	Conclusion

	Embedded Polar Quantization
	Introduction
	Embedded Strict Polar Quantization
	Quantizers design
	Application: Gaussian data

	Embedded Unrestricted Polar Quantization
	Quantizers design
	Choice between amplitude and phase refinement
	Application: Gaussian data

	Conclusions

	Transform-domain Audio Indexing
	Introduction
	Audio coding and transform representations
	MPEG-1 Layer 3
	MPEG-2/4 Advanced Audio Coding
	8xMDCT Audio Coding

	Mid-level signal representations
	Onset detection function
	Chromagram
	Mel-Frequency Cepstrum Coefficients

	Applications
	Beat tracking
	Chord recognition
	Musical genre classification
	Computation times

	Conclusions

	Conclusions
	General conclusion
	Future research

	Publications
	Bibliography
	Testing material
	Gradient pursuit over a union of MDCT bases

