The main topics of interest in this thesis will be two types of complexity, abelian complexity and permutation complexity. Abelian complexity has been investigated over the past decades. Permutation complexity is a relatively new type of word complexity which investigates lexicographical ordering of shifts of an aperiodic word.

We will investigate two topics in the area of abelian complexity. Firstly we will consider an abelian variation of maximal pattern complexity. Secondly we consider an upper bound for words with the C-balance property. In the area of permutation complexity, we compute the permutation complexity function for a number of words. A formula for the complexity of Thue-Morse word is established by studying patterns in subpermutations and the action of the Thue-Morse morphism on the subpermutations. We then give a method to calculate the complexity of the image of certain words under the doubling map. The permutation complexity function of the image of the Thue-Morse word under the doubling map and the image of a Sturmian word under the doubling map are established.

Les principaux sujets d'intérêt de cette thèse concerneront deux notions de la complexité d'un mot inni : la complexité abélienne et la complexité de permutation. La complexité abélienne a été étudiée durant les dernières décennies. La complexité de permutation est, elle, une forme de complexité des mots relativement nouvelle qui associe à chaque mot apériodique de manière naturelle une permutation innie.

Nous nous pencherons sur deux sujets dans le domaine de la complexité abélienne. Dans un premier temps, nous nous intéresserons à une notion abélienne de la maximal pattern complexity dénie par T. Kamae. Deuxièmement, nous analyserons une limite supérieure de cette complexité pour les mots C-équilibré.

Dans le domaine de la complexité de permutation des mots apériodiques binaires, nous établissons une formule pour la complexité de permutation du mot de Thue-Morse, conjecturée par Makarov, en étudiant la combinatoire des sous-permutations sous l'action du morphisme de Thue-Morse. Par la suite, nous donnons une méthode générale pour calculer la complexité de permutation de l'image de certains mots sous l'application du morphisme du doublement des lettres. Finalement, nous déterminons la complexité de vi permutation de l'image du mot de Thue-Morse et d'un mot Sturmien sous l'application du morphisme du doublement des lettres. vii Sommaire Les thèmes principaux de recherche de cette thèse concernent diverses notions de la complexité des mots innis : la complexité abélienne, une variation abélienne de la complexité de Kamae, et la complexité de permutation.

Nous commençons par un étude combinatoire des mots C-équilibrés. Il sera démontré que les mots épisturmiens équilibrés ayant des fréquences de lettre distinctes obéissent à la conjecture de Fraenkel. Il sera aussi démontré qu'un mot récurrent équilibré w faiblement riche possédant au moins 3 lettres est en fait un mot périodique épisturmien, et si les fréquences des lettres sont distinctes, alors w obéira à la conjecture de Fraenkel.

Dans le domaine de la complexité abélienne, nous nous intéresserons à une variation abélienne de la maximal pattern complexity dénie par T. Kamae. Il sera démontré que cette notion de complexité donne une classication des mots binaires apériodiques récurrents. Nous analyserons ensuite le lien entre la complexité abélienne et les mots C-équilibrés. Nous établissons une méthode générale permettant de calculer la valeur maximale de la complexité abélienne d'un mot récurrent inni équilibré. Nous trouvons ensuite une limite supérieure pour la complexité abélienne d'un mot C-équilibré et nous donnons des exemples de mots atteignant cette limite supérieure.

La majeure partie de la recherche présentée dans cette thèse concerne la complexité de permutation. La complexité de permutation prendra en compte l'ordre lexicographique des shifts d'un mot inni. D'abord, nous établissons une formule pour la complexité de permutation du mot de Thue-Morse, conjecturée par Makarov. Puis, nous donnons une méthode générale pour calculer la complexité de permutation d'un mot binaire apériodique sous l'application du morphisme du doublement des lettres. Finalement, nous calculons la fonction de la complexité de permutation de l'image d'un mot sturmien et du mot de Thue-Morse sous l'application du morphisme du doublement de lettre. viii First and foremost, I would like to thank my wife, Alisa. Your love and support through this trying time has been unwavering, and for this I can never thank you enough. The antics of Baxter have also brought many smiles over these years. Together we make a great team.
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Introduction

Combinatorics on words is a relatively new eld of study in discrete mathematics. The study of combinatorics on words has grown independently in dierent areas of mathematics; such as number theory, group theory, dierential geometry, and probability. The applications of combinatorics on words have extended to various elds such as theoretical computer science, dynamical systems, biology, and linguistics. Many books have been written on the subject of combinatorics, but the best known may be the collected works written by a group of researchers under the nom de plume of Lothaire [START_REF] Lothaire | Combinatorics on Words[END_REF][START_REF] Lothaire | Algebraic Combinatorics on Words, volume 90 of Encyclopedia of Mathematics and its Applications[END_REF][START_REF] Lothaire | Applied Combinatorics on Words, volume 105 of Encyclopedia of Mathematics and its Applications[END_REF].F o r a survey of the beginnings of combinatorics on words and the inter-working of the early discoveries see [START_REF] Berstel | The origins of combinatorics on words[END_REF].

The original study of words has been attributed to Axel Thue (1863Thue ( -1922) ) with the investigation of repetitions in words. Thue is credited with the discovery of the rst square-free innite word in [START_REF] Thue | Über unendliche Zeichenreihen[END_REF]. In Thue's second paper on the subject, [START_REF] Thue | Über die gegenseitige lage gleicher Teile gewisser Zeichenreihen[END_REF], he introduced what is now generally referred to as the Thue-Morse word, which he proved was overlapfree. After the work of Thue there were relatively few researchers working with words in the early twentieth century. A greater number of researchers gave interest to words in the 1950's in connection with areas of discrete mathematics. Interest in combinatorics on words grew rapidly after the publication of the publication of Lothaire's book ( [START_REF] Lothaire | Combinatorics on Words[END_REF]).

Possibly the most studied class of words is the Sturmian words. The history of Sturmian words dates back to the 1700's, with the rst formal investigation by Morse and Hedlund [START_REF] Morse | Symbolic dynamics II: Sturmian trajectories[END_REF] in 1940. There have been many surveys written on the topic of Sturmian words, with [START_REF] Berstel | Recent results in sturmian words[END_REF][START_REF] Berstel | A characterization of Sturmian morphisms[END_REF] as examples.

A natural extension of studying words is word complexity. For example, the Sturmian words are the class of aperiodic binary words with minimal factor complexity. Many dierent notions of word complexity have been introduced over the years, such as factor complexity, abelian complexity, palindromic complexity, pattern complexity, and recently permutation complexity. The main goal of this thesis is to investigate topics related to 1 dierent types of complexity, namely abelian complexity and permutation complexity, as well as maximal abelian pattern complexity.

Thesis Outline

In Chapter 2 we give some background information necessary for the later chapters. Preliminary notation and terminology are dened, and some classic results in combinatorics on words are given.

We start by looking at a class of balanced words. In [START_REF] Paquin | A characterization of balanced episturmian sequences[END_REF] it is shown that balanced episturmian words with distinct letter frequencies obey Fraenkel's conjecture. In Chapter 3, we show that a recurrent balanced weakly rich word w with at least 3 letters is in fact a periodic episturmian word, and if w is a word with distinct letter frequencies then w will obey Fraenkel's conjecture.

In Chapter 4, we investigate abelian complexity of words. First we will consider a new type of complexity related to abelian complexity, maximal abelian pattern complexity. It will be shown that maximal abelian pattern complexity will classify the recurrent aperiodic binary words. We then investigate how abelian complexity and the C-balance property are related. We rst develop a method to calculate the maximal value for abelian complexity of an innite balanced recurrent word. We then nd an upper bound for the abelian complexity of an innite C-balanced word. It is unknown if this upper bound is the least upper bound, but we give some examples of words over a relatively small alphabet which achieve the given upper bound.

In Chapter 5, we investigate a relatively new type of word complexity called permutation complexity. Permutation complexity will consider the lexicographic ordering of shifts of an innite word. For this reason permutation complexity is only dened for aperiodic words, because no two shifts of an aperiodic word will be identical. We will give the permutation complexity function of the Thue-Morse word. We will also give a method to calculate the permutation complexity of an innite word which is the image of an uniformly recurrent aperiodic binary word under the doubling map. We then give a formula for the permutation complexity of the image of a Sturmian word under the doubling map, and give the permutation complexity function of the image of the Thue-Morse word under the doubling map.

Future Research

From the dierent areas of research in this thesis, there seem to be many possibilities for future research topics. For example, one avenue of further research would be to nd bounds for maximal abelian pattern complexity of binary aperiodic words that are not necessarily recurrent. Another direction is to nd bounds for maximal abelian pattern complexity of words on an alphabet of size k ≥ 3.

Early work in this thesis was focused on the link between abelian complexity and the notion of C-balance. The direction of this thesis changed before many questions could be answered. The main question related to abelian complexity is if the upper bound given in Section 4.2.2 is the least upper bound for abelian complexity of C-balanced words. Some examples of balanced recurrent words have been found which attain the upper bound for abelian complexity, but no method has been developed to construct balanced recurrent words over an alphabet with 7 or more letters.

The majority of the later research in this thesis was in the area of permutation complexity. The permutation complexity has been calculated for some well-known words, but many other classes of words have not been investigated. One avenue of future research would be to calculate the permutation complexity of some other well-known words. Additionally, early research has been focused on binary words. Another research direction is to investigate the permutation complexity of words over a k-letter alphabet, where k ≥ 3.

The action of the Thue-Morse morphism on subpermutations played a key role in the investigation of the permutation complexity of the Thue-Morse word. The action of the doubling map on subpermutations played a key role as well in the investigation of the permutation complexity of words which are the image of an uniformly recurrent aperiodic binary word under the doubling map. One direction of future research is to generalize permutation complexity results to aperiodic words which are the image of an aperiodic binary word under a morphism. This could be an aperiodic word which is the xed points of a morphism, or maybe the image of any word under some xed morphism. An early thought leads us to believe that the investigation of the action of morphisms on subpermutations will answer many open questions about permutation complexity.

A method has been developed by Makarov to nd the permutations of length n generated by binary words, but no method has been developed to determine if a given permutation of length n can be attained by a binary word. A natural question to ask is, are there permutations which are not attainable from a binary word? The answer to this question is yes, for example the permutation (2134) will never occur in a binary word. Some additional research topics are

• Is there a classication of the unattainable permutations?

• What are the necessary and sucient conditions for a permutation to be attainable by a binary word, or a word over a general k-letter alphabet?

• Are there permutations that are not attainable from a word on a k-letter alphabet?

Chapter 2

Background

In this chapter, we present some preliminary denitions and results about words and morphisms. We will also introduce the notion of word complexity and give some examples and results. We will nish the chapter by introducing some well-known words and results

which will be used in this writing.

Words

A word is a nite, (right) innite, or biinnite sequence of symbols taken from a nite non-empty set, A, called an alphabet. The elements of A are called letters. For any word w over the alphabet A, denote Alph(w)=B⊆Ato be the subset of letters in A that are used to form the word w. In what follows, if w is a word over A, then Alph(w)=A unless otherwise noted.

Finite Words

A nite word over A is an element of the free monoid A * , generated from A by concatenation of the letters in A and is represented by juxtaposition of letters and words. For example, if u = power and v = nap the concatenation of u and v is uv = powernap.I t should be noted that this operation is not commutative, because vu = nappower. Concatenation is an associative operation because (uv)w = u(vw)=uvw for all u, v, w ∈A * .

The identity element ε of A * is called the empty word, and the free semigroup over A is dened by A + = A * \ ε.

A nite word u ∈A * has the form u = a 1 a 2 ...a n with each a i ∈Aand n ≥ 0, and the length of u is the number of symbols in the sequence and is denoted |u| = n (if n =0, then u = ε and |u| = |ε| =0).

Denote ∼ to be the reversal operation on A * . Let ε = ε and for u = u 1 u 2 ...u n ∈ A + the reversal of u is denoted by ũ = u n ...u 2 u 1 . For example if u = peanut and v = racecar, then ũ = tunaep and ṽ = racecar. A word u ∈A * is said to be a palindrome if u =ũ, by denition the empty-word ε is a palindrome. The word v in the previous example is a palindrome, as are the English words kayak, rotator, and aibohphobia (which is the fear of palindromes).

Innite Words

A (right) innite word over A is a list of letters in A indexed by N. An innite word has the form ω = ω 0 ω 1 ω 2 ... with each ω i ∈A. The set of all innite words over A is denoted A N , and let A ∞ = A * ∪A N .Abiinnite word is a list of letters in A indexed by Z and the set of all biinnite words is denoted A Z . In what follows, all innite words will be considered to be right innite words unless otherwise noted.

A word ω ∈A N is said to be periodic of period p if p is the least integer so that ω i = ω i+p for each i ∈ N. A word ω ∈A N is said to be eventually periodic of period p if p is the least integer so that for some N ∈ N, ω i = ω i+p for each i>N. It should be noted that all periodic words are eventually periodic. A word ω ∈A N is said to be aperiodic if it is not periodic or eventually periodic.

Factors

A nite word x is a factor of w ∈A ∞ if w = uxv for some u ∈A * and v ∈A ∞ . The word x is a called a prex of ω if u = ε, and is called a proper prex of ω if v = ε. The word x is a called a sux of ω if v = ε, and is called a proper sux of ω if u = ε.

For any word ω ∈A ∞ , dene F(ω) to be the set of all factors of ω and F ω (n) to be the set of all factors of ω of length n where |ω|≥n.

A factor u of a word ω is said to be right special (resp. left special) in ω if there are at least two distinct letters a, b so that ua and ub (resp. au and bu) are also factors of ω.

A factor that is both right and left special is called bispecial.

The innite word ω ∈A N is said to be recurrent if for any prex p of ω there exists a prex q of ω so that q = pvp for some v ∈A * . Equivalently, a word ω is recurrent if each factor of ω occurs innitely often in ω. The word ω ∈A N is uniformly recurrent if each factor occurs innitely often with bounded gaps. Thus if ω is uniformly recurrent, for each integer n>0 there is a positive integer N so that for each factor v of ω with |v| = N , F ω (n) ⊂F(v).

Lexicographic Order

Suppose the letters of A are ordered with a linear order <. Then all the elements of A * can be linearly ordered by the lexicographic order, <. For words u, v ∈A * ,w e say u<vif and only if either u is a proper prex of v or u = xau ′ and v = xbv ′ , for x, u ′ ,v ′ ∈A * and a, b ∈Awith a<b . To see an example of this ordering, the lexicographic order is the ordering used in a dictionary or phone book with the intuitive ordering a<b<••• <y<zon the letters. For a more explicit example consider the English words race < raceCar < racIng, where the larger letters show where one word is greater than the previous word in the list.

This ordering can be naturally extended to elements of A N . Let u, v ∈A N , where u = u 1 u 2 ••• and v = v 1 v 2 •••,w es a yu<vif and only if there is some i ≥ 0 so that u i <v i and u j = v j for each 0 ≤ j<i .

Complement of a Word

Supposing |A| =2 ,o rA = {0, 1} is a binary alphabet, we can dene another operation on A ∞ . Denoteto be the complement operation on A ∞ .L e ta denote the complement of a ∈A , that is 0=1and 1=0 . For example, if u ∈A * with u = 101001 then u = 010110.I fω = ω 1 ω 2 ω 3 ••• ∈ A ∞ , the complement of ω is dened to be the word composed of the complement of the letters in ω, that is ω = (ω

1 ω 2 ω 3 •••)=ω 1 ω 2 ω 3 •••.
F o raw o r dω ∈A ∞ we say the set of factors of ω is closed under complementation if for each u ∈F(ω) then u ∈F(ω).

Morphisms

Let A and B be two nite alphabets. A map ϕ : A * →B * so that ϕ(uv)=ϕ(u)ϕ(v) for any u, v ∈A * is called a morphism of A * into B * , and ϕ is dened by the image of each letter in A. Note that ϕ(ε)=ε.

Example Let A = {a, f, s, t}, B = {a, e, f, i, r}, and ϕ : A * →B * be dened by ϕ :

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ a → a f → fer s → rr t → i.

Then we have ϕ(fast)=ferarri.

A morphism on A is a morphism from A * into A * , also called an endomorphism of A. A morphism ϕ is said to be non-erasing if the image of any non-empty word is not empty. All morphisms contained in this paper will be considered to be non-erasing unless otherwise noted.

A morphism on A worth noting here is the doubling map, d, dened by d : a → aa for each a ∈A. The doubling map will be discussed more in Section 5. [START_REF] Allouche | Automatic sequences[END_REF].

If there is a positive integer N so that |ϕ(a)| = N for each a ∈A , then ϕ is called an N -uniform morphism. The morphism µ T on A = {0, 1} dened by

µ T : ⎧ ⎨ ⎩ 0 → 01 1 → 10 is a 2-uniform morphism.
The action of a morphism ϕ on A can naturally be extended from A * to A N . For any ω = ω 0 ω 1 ω 2 ... ∈A N , we dene ϕ(ω)=ϕ(ω 0 )ϕ(ω 1 )ϕ(w 2 ) ... as in the case for words in A * . We say that a word ω is a xed point of the morphism ϕ if ϕ(ω)=ω.

The n-iteration of a morphism ϕ on some a ∈Ais denoted ϕ n (a) and is dened by

ϕ 0 (a)=a, ϕ n (a)=ϕ(ϕ n-1 (a)) for n ≥ 1.
If ϕ is a morphism on A and if ϕ(a)=au for some a ∈Aand u ∈A + , ϕ is said to be prolongable on a.I fϕ is a morphism on A that is prolongable on some a ∈A, then ϕ n (a) is a proper prex of ϕ n+1 (a) for each n ∈ N. The limit of the sequence {ϕ n (a)} n∈N will be the unique innite word

ω = lim n→∞ ϕ n (a)=ϕ ∞ (a)=auϕ(u)ϕ 2 (u) •••
where ω is a xed point of ϕ, and we say that ω is generated by ϕ. A morphism ϕ on A is said to be primitive if there is a positive integer k so that for each a ∈A, ϕ k (a) contains all the letters of A.

Word Complexity

The study of combinatorics on words eventually led to the investigation of how complex a word can be. There have been dierent ways to dene the complexity of a word. A natural way to dene the complexity of a word ω is to count the number of distinct factors of ω of each length, which is known as the factor complexity of a word. Recently a generalization of factor complexity led to counting the number of pairwise non-abelian equivalent factors, formally compiled in [START_REF] Richomme | Abelian complexity in minimal subshifts[END_REF], known as the abelian complexity of a word. Other ways to measure the complexity of a word have been developed over the years, and many well-known classes of words have been classied using dierent denitions of complexity. The Sturmian words have been classied as the words having minimal factor complexity without being periodic, but they also have minimal abelian complexity.

A common question for any notion of complexity is to nd the complexity of some well-known words. For example a classication of Sturmian words has been given by palindromic complexity, introduced by Droubay and Pirillo in [START_REF] Droubay | Palindromes and Sturmian words[END_REF]. For an innite word ω, let h ω (n) be the number of palindromic factors of length n of ω.

Theorem 2.3.1 ([16]) Let ω be an innite word. Then ω is Sturmian if and only if

h ω (n)= ⎧ ⎨ ⎩ 1 if n is even 2 otherwise
In this section we are concerned with some dierent denitions of word complexity. In Section 2.3.1 we present some fundamental results of studies in factor complexity. Some of the research of this author has been concerned with abelian complexity and pattern complexity, so these types of complexity are considered in Sections 2.3.2 and 2.3.3, respectively. Permutation complexity is left out of this section, but is investigated in Chapter 5.

Factor Complexity

For a word ω ∈A ∞ , recall from Section 2.1.3, F(ω) is the set of all factors of a word ω, and F ω (n) is the set of all factors of ω of length n, where |ω|≥n. We are now ready to dene the notion of factor complexity. Dene the function ρ ω by

ρ ω (n)=|F ω (n)| .
The function ρ ω : N → N is called the factor complexity function,orsubword complexity function,ofω and it counts the number of distinct factors of ω for each length.

A natural investigation led to the possible bounds of factor complexity for words. Early work in the area of factor complexity (see [START_REF] Coven | Sequences with minimal block growth[END_REF][START_REF] Morse | Symbolic dynamics[END_REF]) characterized the biinnite (resp. right innite) words with bounded factor complexity as the periodic (resp. eventually periodic) words. Proposition 2.3.2 [START_REF] Coven | Sequences with minimal block growth[END_REF] An innite word x ∈A N is eventually periodic if and only if

ρ x (n) ≤ n for some n ≥ 1. A biinnite word y ∈A Z is periodic if and only if ρ y (n) ≤ n for some n ≥ 1.
Therefore periodic and eventually periodic words have bounded factor complexity. For a word ω ∈A N , where |A| = k, the maximal value for the factor complexity for a length n will be k n . Thus for an aperiodic innite word ω, the bounds for factor complexity are

n +1≤ ρ ω (n) ≤ k n for all n ≥ 1.
One consideration to factor complexity are words with maximal factor complexity. Suppose |A| = k, k ≥ 2, and x an integer n ≥ 1. A trivial way to construct a nite word u ∈A * with maximal factor complexity ρ u (n)=k n is to concatenate all k n distinct words of length n. By this construction, the word u has maximal factor complexity and |u| = n • k n , but many words of length n appear as factors of u multiple times. The minimal length cyclic words to contain all k n distinct words of length n are the de Bruijn cycles ( [START_REF] Van Aardenne-Ehrenfest | Circuits and trees in oriented linear graphs[END_REF][START_REF] Sainte-Marie | Solution to question nr. 48[END_REF]), B(n, k). The length of a de Bruijn cycle B(k, n) is k n , and each word of length n appears as a factor in B(k, n) exactly once. There are a total of k -n (k!) n k-1 such cycles, so B(k, n) is not unique. The de Bruijn cycles will be discussed further in Section 2.4.1. An innite word over A with maximal factor complexity can be created by concatenating all words of length n, for each n ≥ 1. For example, the binary word C = 01 00011011 000001010011100101110111 ••• contains all binary words of length n as a factor, and thus ρ C (n)=2 n for each n ≥ 1.

Aperiodic words with minimal factor complexity are the Sturmian words, rst studied in [START_REF] Morse | Symbolic dynamics[END_REF], having n +1 distinct factors of length n, for each n ≥ 1. First we note that Sturmian words are binary words since they have 2 distinct factors of length 1. Then for each length n ≥ 1, there is exactly one factor of length n that can be followed by more than one letter, or else the number of factors of length n +1 will not be n +2.T h u s for each length, n ≥ 1, Sturmian words have exactly one right special factor (as well as exactly one left special factor) of length n. Sturmian words have been studied extensively and will be discussed further in Section 2.4.2.

Extending the idea of words with minimal factor complexity to a general k-letter alphabet can be done by limiting the number of left and right special factors. The rst natural generalization in this direction was given by Arnoux and Rauzy [START_REF] Arnoux | Représentation géométrique de suites de complexité 2n+1[END_REF] for the case of k =3.A nArnoux-Rauzy word has exactly one left special factor and one right special factor of each length, and for each right (resp. left) special factor u of ω, ua (resp. au) is a factor of ω for each a ∈A . Thus, an Arnoux-Rauzy word over A, with |A| = k, has k factors of length 1, and then an additional k -1 factors for each additional length. The Sturmian words are precisely the Arnoux-Rauzy words over a 2-letter alphabet. Arnoux-Rauzy words have a factor complexity function with linear growth with respect to factor length, and for an Arnoux-Rauzy word x ∈A N , ρ x (n)=(k -1)n +1. Another generalization of words with linear factor complexity are the episturmian words which will be discussed further in Section 2.4.3.

A nice property of Sturmian words, Arnoux-Rauzy words, and episturmian words is that their sets of factors are closed under reversal. That is, if ω ∈A N is such a word and u ∈F(ω),t h e nũ ∈F(ω). Factor complexity of other well-known words has also been investigated. For example, the factor complexity of the Thue-Morse word ( [START_REF] Brlek | Enumeration of factors in the Thue-Morse word[END_REF][START_REF] De Luca | Some combinatorial properties of the Thue-Morse sequence and a problem in semigroups[END_REF]) and generalized Thue-Morse words ( [START_REF] Tromp | Subword complexity of the generalized Thue-Morse word[END_REF]) have been found to increase with linear bounds, with respect to factor length.

Abelian Complexity

A natural extension of factor complexity is abelian complexity. In the sense that abelian group is a group with a commutative operation, abelian complexity will count the number of occurrences of letters in factors. Much of the content in this section is taken from [START_REF] Richomme | Abelian complexity in minimal subshifts[END_REF]. We dene abelian complexity as follows.

For any nite word u ∈A * and for each a ∈A , let |u| a denote the number of occurrences of the letter a in the word u. Any two words u and v in A * are said to be abelian equivalent, denoted u ∼ ab v,i f|u| a = |v| a for each a ∈A, and it is readily veried that ∼ ab denes an equivalence relation on A * . For example, eleven plus two ∼ ab twelve plus one.

The frequency of the letter a ∈Ain the word u ∈A * is dened to be |u| a / |u|. The frequency of the letter a ∈Ain an innite word ω ∈A N is dened to be

lim n→∞ |p n | a n ,
if the limit exists, where p n is the prex of ω of length n.

We can then expand on the denition of factor complexity and dene

F ab ω (n)=F ω (n)/ ∼ ab
to be the set of non-abelian equivalent factors of ω of length n, and let

ρ ab ω (n)= F ab ω (n) .
The function ρ ab ω : N → N is called the abelian complexity function of ω and it counts the number of non-abelian equivalent factors of ω of length n.

The alphabet A will generally consist of the numbers {0, 1, 2,...k -1}. Then for each u ∈A * we can naturally dene the Parikh vector associated to u by

Ψ(u)=(|u| 0 , |u| 1 ,...,|u| k-1 ).
For example, if A = {0, 1, 2} and u = 0102010 ∈A * then Ψ(u)=(4, 2, 1).

Extending this notion to an innite word ω ∈A N , we dene

Ψ ω (n)={ Ψ(u) | u ∈F ω (n) }
to be the set of all distinct Parikh vectors of factors of ω of length n. It is also useful to note that

ρ ab ω (n)=|Ψ ω (n)|.
Let a and b be letters in A = {0, 1,...,k -1} and let u ∈A * .I fa = b then Ψ(au)=Ψ ( ub). When a = b, the vector V =Ψ ( au) -Ψ(ub) will be the vector so that V a+1 =1 , V b+1 = -1 and for each other i ∈A , V i =0 . This shows how Parikh vectors change when considering two successive factors of the same length of a word ω. These observations directly imply the following fact. Fact 2. 3.3 ([40]) If an innite word ω has two factors u and v of same length n for which the i-th entry of the Parikh vector are p and p + c respectively for some p and c>0, then for all l =0,...,c, there exist factors u l of ω whose i-th entry is p + l.

Using the notation from Fact 2.3.3, it should be clear that ρ ab ω (n) ≥ c +1. For an innite word ω ∈A N it is said that ω is C-balanced (where C is a positive integer) if for all factors u and v with |u| = |v|, ||u| a -|v| a |≤C for each a ∈A. It should be clear that if a word is C-balanced then it is (C +1)-balanced. If a word ω is 1-balanced, we say that the word ω is balanced. An initial link between C-balance and abelian complexity can be seen in the next lemma. Lemma 2.3.4 ([40]) For a word ω ∈A Z ∪A N , the abelian complexity function ρ ab ω is bounded if and only if ω is C-balanced for some positive integer C.

Proof If ρ ab

ω is bounded by some K, then it is easy to see ω is (K -1)-balanced. Conversely, if ω is C-balanced then for any positive integer n the Parikh vectors of factors of length n can take on at most The maximum number of elements of Ψ ω (n) can be calculated with relative ease. Each element in Ψ ω (n) is a k-tuple Ψ(u)=(i 0 ,i 1 ,...,i k-1 ) where i 0 + i 1 + ...+ i k-1 = n. Thus, the maximal size of Ψ ω (n) is the same as the number of ways to write n as the sum of k non-negative integers. This value (see [START_REF] Weisstein | Composition. From MathWorldA Wolfram Web Resource[END_REF]), l k (n), is called the number of compositions of n into k parts and is given by the binomial coecient

l k (n)= n + k -1 k -1 .
Thus, for an innite word ω over a k-letter alphabet A

ρ ab ω (n) ≤ l k (n),
for each positive integer n. A word with maximal factor complexity will contain all words of length n as factors, and thus a word with maximal factor complexity will also have maximal abelian complexity. One topic of this thesis will be to investigate the link between the notions of abelian complexity and C-balance, namely an optimal upper bound for abelian complexity for a word that is C-balanced. This topic will be covered in more detail in Section 4.2.

As introduced in the previous section (2.3.1), the Sturmian words are the class of aperiodic words with minimal factor complexity. An equivalent denition of Sturmian words is that they are also the class of aperiodic balanced binary words (see Theorem for all n ≥ 1.

Thus the Sturmian words are the aperiodic words with minimal abelian complexity.

The abelian complexity of the Thue-Morse word has also been calculated. Moreover, the class of words having the same abelian complexity as the Thue-Morse word has been characterized. This class of words is described as the image of any aperiodic binary word under the Thue-Morse morphism, µ T , dened as

µ T : ⎧ ⎨ ⎩ 0 → 01 1 → 10.
Theorem 2.3.7 ([40]) The abelian complexity of an aperiodic binary word ω is

ρ ab ω (n)= ⎧ ⎨ ⎩ 2 for n odd 3 for n =0even
if and only if there exists a word ω ′ so that

ω = µ T (ω ′ ), ω =0µ T (ω ′ ),o rω =1µ T (ω ′ ).
Since the Thue-Morse word, T , clearly satises the conditions of Theorem 2.3.7, we have a formula to calculate the abelian complexity of the Thue-Morse word. So far we have seen some examples of words with linear factor complexity functions having low abelian complexity. This is not always the case. It is possible to construct words with an exponential factor complexity function, yet have bounded abelian complexity. Take for example the word C dened previously,

C = 01 00011011 000001010011100101110111 •••
and consider the word C ′ = µ T (C). Theorem 2.3.7 says that this word will have bounded abelian complexity (ρ ab C ′ (n) ≤ 3), yet ρ C ′ (2n)=2 n has exponential growth. It is also possible to construct a word with maximal abelian complexity and linear factor complexity. This example is given in [START_REF] Richomme | Abelian complexity in minimal subshifts[END_REF]. Let f and g be morphisms dened by f (a)=abc, f (b)=bbb, f (c)=ccc, g(a)=0=g(c), and g(b)=1 . It should be clear that f is prolongable on a, and thus the word

u = f ∞ (a) is a xed point of f . The word ω = g(u)=g(f ∞ (a)) is the word ω =0 i≥0 1 3 i 0 3 i = 010111000 ••• .
It is readily veried that ρ ab ω (n) is maximal for each n ≥ 1, and thus not bounded. It turns out that this word ω is an automatic sequence, and thus it has linear factor complexity (see [START_REF] Allouche | Automatic sequences[END_REF], Theorems 6.3.2 and 10.3.1). An automatic sequence is dened as follows. Starting with a morphism f on the alphabet B, where f is prolongable on some b ∈B , and a projection map g : B →A .I fu is a xed point of f , then g(u) is an automatic sequence over A. An automatic sequence can also be seen as an word generated by a nite automaton.

Inspired by the result of Sturmian words having constant abelian complexity, G. Rauzy asked if there existed an innite word ω so that ρ ab ω (n)=3for all n ≥ 0 ( [START_REF] Rauzy | Suites à termes dans un alphabet ni[END_REF]). In general, it is possible to create a word with constant abelian complexity. For example (see [START_REF] Richomme | Abelian complexity in minimal subshifts[END_REF]), let k ≥ 3, and let s be a Sturmian word on the alphabet {0, 1}. Then the word

ω ′ =(k -1)(k -2) ...2s will have ρ ab ω ′ (n)=k for all n ≥ 1.
The case where k =3gives an answer to Rauzy's question, but it is a trivial answer since ω ′ is not recurrent. An example of an innite recurrent word ω with ρ ab ω =3is a word ω, where ω is the image of a Sturmian word s on {a, b} under the morphism ϕ where ϕ(a)=012and ϕ(b)=021, ([40]). It has recently been shown (see [START_REF] Currie | Recurrent words with constant abelian complexity[END_REF]) that for k ≥ 4, there is no recurrent word over a k letter alphabet with constant abelian complexity.

Pattern Complexity

The idea of maximal pattern complexity was introduced by T. Kamae ([26]). The pattern complexity function is dened as follows. Let k be a positive integer. A k-pattern P is a sequence of k integers with

0=P 0 <P 1 < ••• <P k-1 A (k +1)-pattern P ′ is called an immediate extension of a k-pattern P if P ′ (i)=P (i) for 0 ≤ i ≤ (k -1)
, and we call this P an immediate restriction of P ′ . Now let ω be an innite word over the nite alphabet A. For each k-pattern P dene

F ω (P )= ω n+P 0 ω n+P 1 •••ω n+P k-1 | n ≥ 0 and let p * ω be dened as p * ω (k)=sup P |F ω (P )|
where the supremum is taken over all k-patterns P . The function p * ω : N → N is called the maximal pattern complexity function.Ak-pattern P will attain p

* ω (k) if |F ω (P )| = p * ω (k).
The maximal value for the pattern complexity of a k-pattern will be |A| k , since for each of the k windows there are |A| possible letters to choose from. Thus for an innite word ω over A,w eh a v ep * ω (k) ≤|A| k Maximal pattern complexity can be used to characterize eventually periodic innite words. Theorem 2.3.8 ([26]) An innite word ω is eventually periodic if and only if for some

n, p * ω (n) ≤ 2n -1.
The class of innite words having maximal pattern complexity p * ω (k)=2 k are called pattern Sturmian words. Note that a pattern Sturmian word ω must be binary, since p * ω (1) = 2.

In [START_REF] Kamae | Sequence entropy and the maximal pattern complexity of innite words[END_REF], it is shown that for any irrational 0 <α<1, and interval I ⊂ [0, 1] with 0 < |I| < 1 and any x ∈ [0, 1), the word ω = R(α, I, x, Z) dened by

ω(n)= ⎧ ⎨ ⎩ 0 x + nα ∈ I(mod Z)
1 otherwise is a pattern Sturmian word. Thus every Sturmian word is pattern Sturmian ( [START_REF] Kamae | Sequence entropy and the maximal pattern complexity of innite words[END_REF]), but if |I| / ∈{α, 1 -α} then ω is not Sturmian.

In [START_REF] Kamae | Maximal pattern complexity for discrete systems[END_REF] an interesting property is shown if the set I dened above is not an interval but is a particular closed set. Theorem 2.3.9 ([25]) For any irrational rotation α, there exists a closed set S in [0, 1)

so that p * ω (k)=2 k , k ≥ 1, for almost all x ∈ [0, 1) with ω = R(α, S, x, Z)
The notion of pattern complexity can be naturally extended to abelian pattern complexity. For a k-pattern P and an innite word ω we consider the set

Ψ(ω n+P 0 ω n+P 1 •••ω n+P k-1 ) | n ≥ 0 ,
the set of Parikh vectors of the pattern words. Then counting the size of this set will give the maximal abelian pattern complexity. Maximal abelian pattern complexity will be discussed further in Section 4.1. Expanding some of the notions of minimal factor complexity led to the discovery of other classes of words, namely the Arnoux-Rauzy words (or strict episturmian) and the episturmian words. These classes of words will be described in more detail in the following sections. First we will look at some well-known nite words and then consider innite words.

Some Well-Known Words

Finite Words

The rst type of nite words to discuss are the Lyndon words. This notation and terminology can be found in [START_REF] Lothaire | Combinatorics on Words[END_REF] A word is primitive if it is not a power of another word. Thus if x is primitive and 

x = z n for z ∈A * , then n =1and x = z.
L k (n)= 1 n d|n µ n d k d .
The sum is taken over all d which divide n and µ(m) is the Möbius function, which is dened to be 1 if m is a square-free positive integer with an even number of distinct prime factors, 0 if m is not square-free, and -1 otherwise.

Another well-known class of nite words are the de Bruijn cycles. The de Bruijn cycles, B(k, n), are the minimal length cyclic words to contain all k n distinct words of length n ( [START_REF] Van Aardenne-Ehrenfest | Circuits and trees in oriented linear graphs[END_REF][START_REF] Sainte-Marie | Solution to question nr. 48[END_REF]). The length of a de Bruijn cycle B(k, n) is k n and each word of length n appears once as a factor. There are a total of k -n (k!) n k-1 such cycles, so B(k, n) is not unique. The construction and enumeration of such words over a binary alphabet was rst completed by Sainte-Marie [START_REF] Sainte-Marie | Solution to question nr. 48[END_REF], and the extension to a general k-letter alphabet is stated and solved by van Aardenne-Ehrenfest and de Bruijn in [START_REF] Van Aardenne-Ehrenfest | Circuits and trees in oriented linear graphs[END_REF]. The next set of nite words to consider are the Fraenkel words, which are used to construct the so-called Fraenkel sequences, in connection to a conjecture by Fraenkel (see [START_REF] Fraenkel | Complementing and exactly covering sequences[END_REF]). A combinatorial version of the conjecture (from [START_REF] Paquin | A characterization of balanced episturmian sequences[END_REF]) can be read as: Conjecture 2.4.1 (Fraenkel) For a k letter alphabet {1, 2,...,k} with k ≥ 3, there is a unique balanced word, up to letter permutations and shifts, that has distinct letter frequencies.

The nal well-known class of nite words to be discussed here are the nite Sturmian words. The set of nite Sturmian words is the set of all balanced nite binary words. For example the word 001001 is a nite Sturmian word, while the word 000101 is not a nite Sturmian word due to an imbalance in the factors 000 and 101. Another denition for the nite Sturmian words is, a word u is a nite Sturmian word if and only if it is a factor of some (innite) Sturmian word s.

Sturmian Words

An innite word s is a Sturmian word if for each n ≥ 0, s has exactly n+1 distinct factors of length n,o rρ s (n)=n +1 (the only factor of length n =0being the empty-word). Thus since ρ s (1) = 2, it should be clear that Sturmian words are binary words.

Example An example of a Sturmian word is the Fibonacci word, t, where t = 01001010010010100101 ... The Fibonacci word can be constructed in a number of ways. One way to construct t is by iteration of the morphism τ :0 → 01; 1 → 0.T h u st = τ ∞ (0), and t is a xed point of τ . Is is good to note that for each n ≥ 0 we have τ n (0) as a prex of t. These nite iterations of τ are called the nite Fibonacci words, f n = τ n (0). The morphism τ is called the Fibonacci morphism because for each n ≥ 0 the length of f n = τ n (0) is the n-th Fibonacci number. This word can also be dened recursively, f n+2 = f n+1 f n where f n-1 =1and f 0 =0 . Yet another way to view the Fibonacci word is as a mechanical word (dened below) with irrational slope α =1/φ 2 , where φ =(1+ √ 5)/2 is the golden ratio.

As stated above, there are many equivalent denitions for the class of Sturmian words. Before some equivalent denitions are given, let's look at words created geometrically by an irrational slope. These descriptions have been given many times in the literature (see, e.g. [START_REF] Lothaire | Algebraic Combinatorics on Words, volume 90 of Encyclopedia of Mathematics and its Applications[END_REF], Chapter 2).

Given two real numbers α and ρ with 0 ≤ α ≤ 1, dene the words s α,ρ and s ′ α,ρ by

s α,ρ (n)=⌊α(n +1)+ρ⌋-⌊αn + ρ⌋ s ′ α,ρ (n)=⌈α(n +1)+ρ⌉-⌈αn + ρ⌉
for each n ≥ 0. For simplicity we can assume 0 ≤ ρ<1 or 0 <ρ≤ 1. It is readily veried that the words s α,ρ and s ′ α,ρ are over the alphabet A = {0, 1}. The word s α,ρ is called the lower mechanical word, s ′ α,ρ is the upper mechanical word, with slope α and intercept ρ. It should be clear that s 0,ρ = s ′ 0,ρ =0 ∞ and s 1,ρ = s ′ 1,ρ =1 ∞ , so we will assume that 0 <α<1 unless otherwise noted. The condition on 0 <α<1 is more of a simplication. If we let α>0 then we would have ⌊α⌋≤s α,ρ (n) ≤ 1+⌊α⌋, and s α,ρ would be a binary word over the alphabet A = {⌊α⌋ , 1+⌊α⌋}.

A mechanical word is said to be irrational or rational according to if its slope is irrational or rational. When αn + ρ is not an integer we have 1+⌊αn + ρ⌋ = ⌈αn + ρ⌉, so s α,ρ = s ′ α,ρ except when αn + ρ is an integer. Thus if α is irrational, αn + ρ can be an integer at most once so s α,ρ and s ′ α,ρ can dier by at most one factor of length 2. If α is rational, say α = q/p for q, p ∈ N with p =0,i ti se a s yt os e es α,ρ is periodic of period p. So for each n we have

s q p ,ρ (n + p)= q p (n +1+p)+ρ - q p (n + p)+ρ = q + q p (n +1)+ρ -q + q p (n)+ρ = q p (n +1)+ρ - q p n + ρ = s q p ,ρ (n) 
The case where 0 <α<1 and ρ =0is going to come up again, so let's note that case now. In this case we have s α,0 (0) = ⌊α⌋ =0and s ′ α,0 (0) = ⌈α⌉ =1 , and if α is irrational (thus αn is irrational for all n ≥ 1)w eg e t s α,0 =0c α ,s ′ α,0 =1c α It is also helpful to notice s α,α = c α ,s ′ α,α = c α where c α is called the characteristic Sturmian word with slope α. Characteristic words will be discussed more later. Now we will see some of the equivalent denitions of innite Sturmian words, proven by Morse and Hedlund. There also exists a relation between the slope of a Sturmian word and the frequency of the letters in the word. Recall from Section 2.3.2 that the frequency of the letter a in a nite word is the number of occurrences of a divided by the length of the word. In the case of an innite word ω, the frequency of the letter a is the limit (if the limit exists) of the frequency of a in the prexes of ω. Let s be a lower mechanical word over {0, 1} with irrational slope α and intercept ρ. Then for each m ≥ 1 there exists an n m ∈ N where 0 ≤ n m ≤ m -1 so that n m m <α< n m +1 m Thus for each m, any factor u of s where |u| = m we know

n m m m + ρ ≤|u| 1 ≤ n m +1 m m + ρ n m ≤|u| 1 ≤ n m +1
Thus the frequency of the letter 1 in s will be bounded by nm m and nm+1 m . It is readily veried that the sequences ( nm m ) m∈N and ( nm+1 m ) m∈N will both limit to α, and thus the frequency of the letter 1 in s will be α. The frequency of the letter 0 in s will then be 1α.

Mechanical words can be interpreted other ways. For dierent applications of words, dierent interpretations may be more useful. This rst alternative interpretation will be mentioned again in Section 4.2.1, and can be found in [START_REF] Lothaire | Algebraic Combinatorics on Words, volume 90 of Encyclopedia of Mathematics and its Applications[END_REF]. For this we will consider the line y = βx + ρ with β>0 and any ρ ∈ R, and with no other restrictions on β and ρ. This line will then dene a sequence of points Q 0 ,Q 1 ,... where the line intersects the lines of the grid of non-negative integer points. Thus if we let Q n =( x n ,y n ) for each n ≥ 0 we have x 0 <x 1 < •••, y 0 <y 1 < •••, and at least one of x n or y n an integer.

We call Q n horizontal if y n is an integer, and vertical if x n is an integer. If both x n and y n are integers we create an additional point Q n-1 before Q n and say Q n-1 is horizontal and Q n is vertical (we could say Q n-1 is vertical and Q n is horizontal, but would always use the same choice), and then repeat in this manner when ever both x n and y n are both integers.

If we associate a 0 to each vertical point anda1t oe a c hhorizontal point we get the word K β,ρ called the (lower) cutting sequence with slope β and intercept ρ. More formally, to each Q n associate the point I n =(u n ,v n ) where:

(u n ,v n )= ⎧ ⎨ ⎩ (⌈x n ⌉ ,y n -1) if Q n is horizontal (x n , ⌊y n ⌋) if Q n is vertical
The I n points are below (resp. below and to the right) of Q n if Q n is vertical (resp. horizontal). Similar points J n can be dened to the left (resp. above and to the left) of Q n if Q n is horizontal (resp. vertical) to dene the upper cutting sequence K ′ β,ρ .I t i s readily veried that u n + v n = n for each n ≥ 0, and the cutting sequence K β,ρ is dened by:

K β,ρ (n)=v n+1 -v n =1+u n -u n+1
As with the mechanical words, the upper and lower cutting words will only dier where βn + ρ is an integer. Let's look at the special case where ρ =0and β is irrational, and we get innite words where the rst letter is dierent. Thus we have the word C β where

K β,0 =0C β ,K ′ β,0 =1C β
and C β is similar to a characteristic word for mechanical words. Cutting sequences are related to mechanical words (s α,ρ ) by the following identity:

K β,ρ = s β 1+β , ρ 1+β 
Some other interpretations of mechanical words can be seen. In [START_REF] Morse | Symbolic dynamics II: Sturmian trajectories[END_REF], Morse and Hedlund show that mechanical words can be realized by coding the orbit of a point on the circle of circumference equal to one under a shift of angle 0 <α<1, where the circle is partitioned into two intervals of size α and 1-α. Sturmian words have also been shown to be represented by coding square billiard words (see [START_REF] Vuillon | Balanced words[END_REF]). This, along with Proposition 2.4.3, implies that the set of right special factors of a Sturmian word s with slope α are the reversal of the prexes of the characteristic Sturmian word c α .

Proposition 2.4.3 was used to generalize the idea of minimal factor complexity from aperiodic binary words to aperiodic words over an alphabet with k letters, for k ≥ 3. These classes of words are the Arnoux-Rauzy words (or strict episturmian words) and the episturmian words, which will be discussed more in Section 2.4.3. Now let's look at another property relating an irrational number α and the characteristic Sturmian word with slope α. This explanation also comes from [START_REF] Lothaire | Algebraic Combinatorics on Words, volume 90 of Encyclopedia of Mathematics and its Applications[END_REF]. Every irrational number α has a unique expansion as a continued fraction, so

α = d 0 + 1 (1 + d 1 )+ 1 d 2 + 1 •••
where each d i an integer, d 0 ≥ 0, d 1 ≥ 0, and d i > 0 for each i ≥ 2. We then write For the case of characteristic Sturmian words with irrational slope α, we have 0 <α<1, and thus α =[ 0 , (1 + d 1 ),d 2 ,...]. To the sequence (d i ) i≥1 we associate the sequence of words (s n ) n≥-1 where

s -1 =1,s 0 =0,s n = s dn n-1 s n-2 (n ≥ 1)
The sequence (s n ) n≥-1 is a standard sequence, and the sequence (d 1 ,d 2 ,...) is called its directive sequence. It should be clear that each s n is a prex of s n+1 for each n ≥ 1.

Example The directive sequence (1, 1, 1,...)=(1) gives the standard sequence dened by

s 1 =0 1 , s 2 = 010, s 3 = 01001, •••, s n = s n-1 s n-2
, which are exactly the nite Fibonacci words.

The property we have for the directive sequence is that the limit of the sequence (s n ) n≥-1 gives the characteristic Sturmian word c α . Formally, Proposition 2.4.6 ([28]) Let α =[0, (1 + d 1 ),d 2 ,...] be the continued fraction expansion of some irrational α, with 0 <α<1, and let (s n ) n≥-1 be the standard sequence associated to the directive sequence (d 1 ,d 2 ,...). Then every s n is a prex of c α and

c α = lim n→∞ s n .
Thus, the continued fraction expansion of an irrational α can be used to construct the characteristic Sturmian word of slope α. Likewise, if a word ω is a characteristic Sturmian word we can use the form of ω to construct the continued fraction expansion of the irrational value of its slope.

Another characterization of characteristic Sturmian words deals with palindromic prexes. In Theorem 2.4.7, the equivalence of ( 1), (2), and ( 3) is given in [START_REF] Droubay | Episturmian words and some constructions of de Luca and Rauzy[END_REF], while the equivalence between ( 3) and ( 4) is given in [START_REF] De Luca | Sturmian words: structure, combinatorics, and their arithmetics[END_REF]. The right palindromic closure of the nite word u, denoted (u) + , is the shortest palindrome that has u as a prex. For example, (01011) + = 01011010 and (11001) + = 110011. A palindrome u is a central factor of the palindrome w if w = vuṽ for some v ∈A * . Theorem 2.4.7 ([15, 30]) For an aperiodic word ω on the binary alphabet A = {0, 1}, the following are equivalent:

1. For any prex v of ω, (v) + is a prex of ω.
2. The leftmost occurrence of a palindromic factor of ω is a central factor of a palindromic prex of ω.

3. There exist an innite sequence of palindromes u 1 = ε, u 2 ,u 3 ,... and an innite word

∆(s)=x 1 x 2 •••, each x i ∈A , and ∆(s) ∈A N \(A * 0 N ∪A * 1 N ) so that the u i are prexes of ω and u i+1 =(u i x i ) + for all i ≥ 1.
4. The word ω is a characteristic Sturmian word.

The word ∆(s) in (3) of Theorem 2.4.7 is called the directive word (not to be confused with the directive sequence dealing with the continued fraction expansion, the directive sequence was a general sequence of integers rather than over the alphabet A). Other notation in the literature also use the PAL operator. The comparison between PAL and the notation in Theorem 2.4.7 is as follows:

x = x 1 x 2 ...x n , each x i ∈A , u 1 = ε, ..., u n+1 =(u n x n ) + , then PAL(x)=u n+1 .
It is also helpful to point out that in [START_REF] Droubay | Episturmian words and some constructions of de Luca and Rauzy[END_REF], any innite word on a general alphabet A that satises properties (1) and (2) in Theorem 2.4.7 is uniformly recurrent (specically cases (1), [START_REF] Allouche | The ubiquitous Prouhet-Thue-Morse sequence[END_REF], and (3) in Theorem 2.4.12, which Sturmian words satisfy). Therefore characteristic Sturmian words are uniformly recurrent. Since a Sturmian word has the same set of factors as the characteristic word of the same slope, Sturmian words are uniformly recurrent as well.

The idea of morphisms related to Sturmian words is another topic that has been of interest in the area of combinatorics on words (see [START_REF] Berstel | A characterization of Sturmian morphisms[END_REF][START_REF] Lothaire | Algebraic Combinatorics on Words, volume 90 of Encyclopedia of Mathematics and its Applications[END_REF]). A morphism f is called a Sturmian morphism if f (s) is a Sturmian word for every Sturmian word s. The set of all Sturmian morphisms form a monoid with the operation of composition. As we will see, the building blocks of the Sturmian morphisms are the following three morphisms:

τ : τ (0) = 01,τ (1) = 0 τ :τ (0) = 10, τ (1) = 0 θ : θ(0) = 1,θ (1) = 0
The Fibonacci morphism used in the example at the beginning of this section is exactly the morphism τ listed here. is primitive and balanced. Moreover, it is decidable whether a morphism is Sturmian.

Thus to test if a morphism is Sturmian, is suces to apply the morphism to a word of length 14 and see of it is primitive and balanced. For example, τ (10 2 10 2 1010 2 101) = 0010100101001001010010 which is readily veried to be primitive and balanced.

A characterization of Sturmian morphisms can be seen in the following theorem. Theorem 2.4.10 ([10]) A morphism ϕ is Sturmian if and only if ϕ is a composition of the morphisms θ, τ , and τ .

Then classifying the morphisms that preserve characteristic Sturmian words we have the following result. Theorem 2.4.11 ([10]) Let ϕ be a morphism, and let 0 <α ,β<1 be two irrational numbers so that c α = ϕ(c β ). Then ϕ is a composition of the morphisms θ and τ .

Thus any composition of the morphisms θ, τ , and τ will give a Sturmian morphism, but only a composition of only the θ and τ morphisms will preserve the characteristic Sturmian words. Therefore the set of Sturmian morphisms are a monoid under composition with generators θ, τ , and τ , while the morphisms that preserve characteristic Sturmian words are a submonoid of the monoid of Sturmian morphisms generated by θ and τ .

Episturmian Words

As stated before the Sturmian words are the words with exactly n +1 distinct factors of length n. Therefore, Sturmian words have exactly one left special and one right special factor for each length. Since the set of factors of a Sturmian word are closed under reversal we know if u is a right special factor of the Sturmian word s, then ũ is a left special factor of s. Extending the singular left and right special factor property to an alphabet A, where |A| = k ≥ 3, we have the following denition using terminology from [START_REF] Glen | Episturmian words: a survey[END_REF], and introduced in [START_REF] Droubay | Episturmian words and some constructions of de Luca and Rauzy[END_REF].

Denition An innite word s on the nite alphabet A is episturmian if the set of factors of s are closed under reversal and s has at most one left special factor (equivalently right special factor) of each length. An episturmian word s is standard episturmian if all the left special factors s are prexes of s.

The standard episturmian words are a generalization of the characteristic Sturmian words to an alphabet of size k ≥ 3. We also have the property that if a word ω is episturmian then F(ω) = F(s) for some standard episturmian word s ( [START_REF] Droubay | Episturmian words and some constructions of de Luca and Rauzy[END_REF]). The denition of episturmian words does allow for periodic words, and thus we say that an episturmian word is aperiodic (resp. periodic) if its associated standard episturmian word is aperiodic (resp. periodic). All episturmian words mentioned here will be aperiodic episturmian words, unless otherwise noted.

Another class of words that are contained in the class of episturmian words are the Arnoux-Rauzy words (or strict episturmian words).

Denition A word ω is an Arnoux-Rauzy word if the set of factors of ω is closed under reversal and ω has exactly one right (resp. left) special factor of each length, and if u is a right (resp. left) special of ω then ua (resp. au) is a factor of ω for each a ∈ Alph(ω).

In the case where ω is a strict episturmian word and Alph(ω)=B⊆A , then ω is said to be B-strict, and if B = A then ω is said to be strict or A-strict.

A characterization of standard episturmian words dealing with palindromic prexes exists, similar to Theorem 2.4.7.

Theorem 2.4.12 ([15]) For an innite word ω ∈A N , the following are equivalent:

1. For any prex v of ω, (v) + is a prex of ω.

3. There exist an innite sequence of palindromes u 1 = ε, u 2 ,u 3 ,... and an innite word ∆(s)=x 1 x 2 •••, each x i ∈A, so that u i+1 =(u i x i ) + for all i ≥ 1 and all the u i are prexes of ω.

4. The word ω is a standard episturmian word.

The word ∆(s) in (3) of Theorem 2.4.12 is called the directive word of the standard episturmian word ω. The notation ∆=x 1 x 2 ••• will be the directive word of a standard episturmian word, unless otherwise noted. As stated after Theorem 2.4.7, words satisfying cases (1), (2), and (3) in Theorem 2.4.12 are uniformly recurrent. Therefore episturmian words are uniformly recurrent. Thus, eventually periodic episturmian words are purely periodic.

Example The standard episturmian word with directed word ∆ = (012) ∞ is known as the Tribonacci word (or Rauzy word, [START_REF] Rauzy | Suites à termes dans un alphabet ni[END_REF]). The word begins as follows:

r = τ ∞ 3 (0) = 010201001020101020100102010201001 ...
where the bold letters follow the palindromic prexes u i , or for ∆=x 1 x 2 ••• it is written u i x i . Another way to view the Tribonacci word r is as the unique xed point of the morphism τ 3 ,

τ 3 :0 → 01; 1 → 02; 2 → 0
To generalize this, for an alphabet

A = {1, 2 ••• ,k}, for k ≥ 2, the k-bonacci word has directed word (12 ...k) ∞ and is the unique xed point τ ∞ k (1) of the morphism τ k where 1 → 12, 2 → 13, •••, k → 1.I fk =2we get the Fibonacci word.
As stated in the previous section, the set of Sturmian morphisms is the monoid of morphisms that preserve Sturmian words. The morphisms that generate the Sturmian morphisms are easily generalized to a general alphabet of size k ≥ 3. The monoid of all episturmian morphisms E (see [START_REF] Droubay | Episturmian words and some constructions of de Luca and Rauzy[END_REF][START_REF] Glen | Episturmian words: a survey[END_REF][START_REF] Justin | Episturmian words and episturmian morphisms[END_REF]) is generated, using composition, by the following three morphisms: ψ a : ψ a (a)=a, ψ a (b)=ab for any letter b = a ψ a : ψ a (a)=a, ψ a (b)=ba for any letter b = a θ ab : θ ab (a)=b, θ ab (b)=a, θ ab (x)=x, for any letter x/ ∈{a, b} For any morphism f ∈E, the decomposition of f need not be unique. In [START_REF] Droubay | Episturmian words and some constructions of de Luca and Rauzy[END_REF] it is shown that these morphisms satisfy the relation θ ab ψ a = ψ b θ ab , and thus ψ a = θ ab ψ b θ ab . The monoid of standard episturmian morphisms S is the submonoid of E generated by the ψ a and θ ab . The monoid of pure episturmian morphisms E p is the submonoid of E generated by the ψ a and ψ a . Characterizing the episturmian and standard episturmian morphisms, we have the following theorem. Theorem 2.4.13 ([24]) A morphism ϕ is episturmian (resp. standard episturmian) if there exist strict episturmian (resp. standard episturmian) words m and t so that m = ϕ(t).

Moreover, the episturmian (resp. standard episturmian) morphisms preserve the set of episturmian (resp. standard episturmian) words.

The following theorem shows a nice property of the standard episturmian words, namely the distribution of the most frequent letter. Theorem 2.4.14 ([15]) An innite word s ∈A N is a standard episturmian word if and only if there exist a standard episturmian word t and a ∈Aso that s = ψ a (t). Moreover, the rst letter of s is a, t is unique and the directive words satisfy ∆(s)=a∆(t).

Thus, for a standard episturmian word s over A there is a letter a ∈Aso that for each factor u of s with |u| =2, then |u| a ≥ 1. Therefore, balanced standard episturmian words have a letter that satises the conditions of Lemma 3.2.2 (see later).

When generalizing Sturmian words to an arbitrary nite alphabet by preserving the singular (or at most one) special factor it is possible to lose balance. Thus there are balanced episturmian words as well as unbalanced episturmian words. For example, the [START_REF] Richomme | Balance and abelian complexity of the tribonacci word[END_REF]). In [START_REF] Paquin | A characterization of balanced episturmian sequences[END_REF], Paquin and Vuillon classied the balanced standard episturmian words. Theorem 2.4.15 ([38]) Any balanced standard episturmian word s over an alphabet A = {1, 2,...,k}, where k ≥ 3, has a directive word, up to a letter permutation, in one of the three following families:

Tribonacci word t = 0102010010201 ••• is not balanced, but is 2-balanced (see
1. ∆(s)=1 n k-1 i=2 i (k) ∞ =1 n 23 ...(k -1)(k) ∞ , with n ≥ 1; 2. ∆(s)= j-1 i=1 i 1 k-1 i=j i (k) ∞ =12...(j-1)1j...(k-1)(k) ∞ , with 3 ≤ j ≤ k-1; 3. ∆(s)= k i=1 i (1) ∞ = 123 ...k(1) ∞ ;
Thus the balanced episturmian words with distinct letter frequencies satisfy Fraenkel's conjecture (from [START_REF] Paquin | A characterization of balanced episturmian sequences[END_REF], and stated in Proposition 3.1.1 below). Then considering this theorem with a result from [START_REF] Droubay | Episturmian words and some constructions of de Luca and Rauzy[END_REF], we have Corollary 2.4.17.

Theorem 2.4.16 ([15]) A standard episturmian word s is eventually periodic if and only if its directive word ∆ has the form ga ∞ , with g ∈A * and a ∈A. Moreover, s is periodic.

Thus, the following Corollary comes rather naturally.

Corollary 2.4.17 ([38]) Every balanced standard episturmian word over 3 or more letters is periodic.

For a periodic word s, there will be an n ∈ N so that no factor of length n can be right special. Thus, none of the Arnoux-Rauzy words are balanced. In fact, it has been shown in [START_REF] Cassaigne | Imbalances in Arnoux-Rauzy sequences[END_REF] that an Arnoux-Rauzy word can be constructed that is not C-balanced for any positive integer C.

Chapter 3 Weakly Rich Words

In this chapter we will investigate weakly rich words. One topic in [START_REF] Glen | Palindromic richness[END_REF] involved showing that recurrent balanced weakly rich words are necessarily balanced periodic episturmian words. Thus, recurrent balanced weakly rich words with distinct letter frequencies obey Fraenkel's conjecture.

Note: Results of this chapter appear in [START_REF] Glen | Palindromic richness[END_REF].

Preliminaries

Given a (nite or innite) word x over A and any a ∈A ,acomplete return to a in x is a factor of x of the form aya, where |y| a =0 . We say that an innite word ω over A is weakly rich if for each a ∈A , all complete returns to a in ω are palindromes. For example, the innite periodic word (acbcaacbc) ∞ can be veried to be weakly rich. It should be clear that each binary word is weakly rich, since complete returns in binary words would look like either 01 k 0 or 10 l 1 for integers k, l ≥ 0.

As mentioned in Section 2.4.3, Theorem 2.4.15, balanced episturmian words are characterized into three classes. One of these classes involved words with distinct letter frequencies and they, up to letter permutation and shifts, correspond to the Fraenkel sequences.

Proposition 3.1.1 ([38]) Suppose t is a balanced episturmian word with Alph(t)= {1, 2,...,k}, k ≥ 3.I ft has mutually distinct frequencies, then up to a letter permutation, t is a shift of (F k ) ∞ Also recall from Section 2.4.3, the episturmian morphism ψ a , dened as:

ψ a : ⎧ ⎨ ⎩ a → a b → ab for b = a
This morphism will play a fundamental role in the construction of balanced weakly rich words.

Main Result

To show the main result of this section, we need the following notation.

Denition Let x = x 1 x 2 x 3 ... ∈A N and let a be a new symbol not in A. Then dene

σ a : A N → (A ∪{a}) N by σ a (x)=ax 1 a ǫ 1 x 2 a ǫ 2 x 3 a ǫ 3 •••
where ǫ i ∈{1, 2}, with ǫ i =2if and only if

x i = x i+1 .
The theorem to be shown is then stated as follows.

Theorem 3.2.1 ([21]) Suppose ω is a recurrent balanced weakly rich word over A = {1, 2,...,k}, k ≥ 3. Then, up to a letter permutation, ω is either:

(1) a shift of the periodic word

ψ n 1 • ψ 2 •••••ψ k-1 (k ∞ ), for some n ≥ 1;
(2) or a shift of the periodic word

σ 1 • σ 2 •••••σ j • ψ 2 j+1 •••••ψ k-1 (k ∞ ), for some 1 ≤ j ≤ k -2.
The proof of Theorem 3.2.1 will require several lemmas. For the following lemmas, we will assume that ω ∈A N and |A| ≥ 3. For each a ∈Adenote g a =s u p|u|, where the supremum is taken over all factors u of ω not containing a and observe that each g a is nite.

Lemma 3.2.2 ([45]

) Suppose ω ∈A N is balanced, and let a ∈Abe such that the fre- quency of a in ω is at least 1/3. Then the word ω ′ ∈ (A\{a}) N obtained from ω by deleting all occurrences of the letter a in ω is also balanced.

The following (Lemmas 3.2.3, 3.2.4, 3.2.5 and Corollaries 3.2.6, 3.2.7) are stated and proven in [START_REF] Glen | Palindromic richness[END_REF] (numbered 5.9, 5.10, 5.11, 5.12, 5.13 respectively). Lemma 3.2.3 Suppose ω ∈A N is a recurrent balanced weakly rich word, and let a ∈A be such that g a ≤ g x for all x ∈A . Then the word ω ′ ∈ (A\{a}) N obtained from ω by deleting all occurrences of the letter a in ω is also a recurrent balanced weakly rich word. Lemma 3.2.4 Suppose ω and ω ′ are as in Lemma 3.2.3. Suppose ω ′ contains the factor bb for some b ∈ A\{a}. Then ω is a shift of σ a (ω ′ ). In particular, the complete returns to b in ω are of the form baab or baxab for some x ∈ A\{a, b} Lemma 3.2.5 Suppose ω and ω ′ are as in Lemma 3.2.3 and let b ∈ A\{a}. Then bbb is not a factor of ω ′ .

Proof [Theorem 3.2.1] The proof of Theorem 3.2.1 is done by induction on k, the number of letters in the alphabet. Suppose ω is a recurrent balanced weakly rich word on the alphabet A 3 = {1, 2, 3} and without loss of generality we can assume g 1 ≤ g 2 ≤ g 3 . Let ω ′ ∈{ 2, 3} N be obtained from ω by deleting all occurrences of the letter 1 in ω. First suppose that ω ′ does not contain the factor 22. Then ω ′ = (23

) ∞ = ψ 2 (3 ∞ ).
Thus, the only complete return to 2 in ω ′ is 232. Then because ω is weakly rich, there must be some m ≥ 0 so that the only complete return to 2 in ω is 21 m 31 m 2 and thus

ω = ψ m 1 (ω ′ )=ψ m 1 • ψ 2 (3 ∞ ).
Next, suppose that the factor 22 does occur in ω ′ .I f the rst returns to 3 in ω ′ were of the form 323 and 3223 Lemma 3.2.4 implies that 31213 and 31211213 will be complete returns to 3 in ω, contradicting the fact that ω is balanced. Thus ω ′ is a shift of the periodic word (223

) ∞ = ψ 2 2 (3 ∞ ). Then ω is a shift of σ 1 (ω ′ )=σ 1 • ψ 2 2 (3 ∞ ). Therefore Theorem 3.2.1 holds for k =3.
Next, let k>3 and suppose ω is a recurrent balanced weakly rich word over A k = {1, 2,...,k}. Then by the induction hypothesis, assume that Theorem 3.2.1 holds for any recurrent balanced weakly rich words over a k -1 letter alphabet. Without loss of generality we again assume that g 1 ≤ g 2 ≤ ... ≤ g k . Let ω ′ ∈{ 2, 3,...,k} N be obtained from ω by deleting all occurrences of the letter 1 in ω. By Lemma 3.2.3, ω ′ is a recurrent balanced weakly rich word. By the induction hypothesis, ω ′ is a shift of either

ψ n 2 • ψ 3 •••••ψ k-1 (k ∞ ) for some n ≥ 1,o rσ 2 • σ 3 •••••σ j • ψ 2 j+1 •••••ψ k-1 (k ∞ ), for some 2 ≤ j ≤ k -2.
First suppose that ω ′ does not contain the factor 22. Then ω ′ must be a shift of

ψ 2 • ψ 3 •••••ψ k-1 (k ∞ ).
Thus the complete returns to 2 in ω ′ are of the form 2a2 for some a ∈{3, 4,...,k} and there exists some m ≥ 1 so that the complete returns to 2 in ω are of the form 21 m a1 m 2. Therefore in this case

ω = ψ m 1 (ω ′ )=ψ m 1 • ψ 2 • ψ 3 •••••ψ k-1 (k ∞ ).
Next suppose that ω ′ does contain the factor 22. Then ω ′ is a shift of either

ψ 2 2 • ψ 3 • ••• • ψ k-1 (k ∞ ) or σ 2 • σ 3 • ••• • σ j • ψ 2 j+1 • ••• • ψ k-1 (k ∞ ), for some 2 ≤ j ≤ k -2. Lemma 3.2.4 implies that ω is a shift of either σ 1 • ψ 2 2 • ψ 3 •••••ψ k-1 (k ∞ ) or σ 1 • σ 2 •••••σ j • ψ 2 j+1 •••••ψ k-1 (k ∞ ), for some 2 ≤ j ≤ k -2.
Therefore by the induction hypothesis, Theorem 3.2.1 is true.

Thus once we have Theorem 3.2.1, we have the following corollaries. Corollary 3.2.6 Suppose that ω is a recurrent balanced weakly rich word over A = {1, 2,...,k}, k ≥ 3. Then ω is a balanced periodic episturmian word. This is true by showing

σ 1 • σ 2 •••••σ j • ψ 2 j+1 • ψ j+2 •••••ψ k-1 (k ∞ )= ψ 1 • ψ 2 •••••ψ j • ψ j+1 • ψ 1 • ψ j+2 •••••ψ k-1 (k ∞ )
Corollary 3.2.7 Suppose that ω is a recurrent balanced weakly rich word over A = {1, 2,...,k}, k ≥ 3. If the letters in ω have distinct frequencies, then up to a letter permutation, ω is a shift of (F k ) ∞ . This is then true by Proposition 3.1.1 and Corollary 3.2.6.

Chapter 4 Topics In Abelian Complexity

In this chapter, we will consider two problems related to abelian complexity. First, in Section 4.1 we will investigate an abelian variation of maximal pattern complexity. The main result will be to classify the set of binary recurrent aperiodic words using maximal abelian pattern complexity.

In Section 4.2, we will investigate the link between abelian complexity and the Cbalance property. First we will develop a method to calculate the maximal value for abelian complexity of innite balanced words. Next an upper bound for the abelian complexity of innite recurrent C-balanced words is given. We end this chapter with a conjecture about words which achieve the maximal abelian complexity value.

Maximal Abelian Pattern Complexity

The goal of this section is to classify eventually periodic words using maximal abelian pattern complexity. Recall from Section 2.3.3 the notion of pattern complexity. 

A k- pattern P is a sequence of k integers with 0=P 0 <P 1 < ••• <P k-1 ,
p * ab (k)=sup P Ψ(ω n+P 0 ω n+P 1 •••ω n+P k-1 ) | n ≥ 0
where the supremum is taken over all k-patterns P . The maximal value for p * ab (k) on an innite binary word will be k +1.

An innite pattern P is an innite sequence of integers (P i ) i≥0 so that

0=P 0 < P 1 < P 2 < ••• A nite or innite pattern P ′ = N 0 <N 1 <N 2 < ••• is a sub-pattern of P if the sequence (N i ) i≥1
is a subsequence of the sequence (P i ) i≥0 , and we write P ′ ⊂P.

Let ω be an innite binary word. For an innite pattern P and some positive integer k,w esay

ω[P](k)= ω n+P 0 ω n+P 1 •••ω n+P k-1 | n ≥ 0 and ω[P] * = k≥0 ω[P](k) Given a nite sub-pattern P =(N i ) 0≤i≤k ⊂P=(P i ) i≥0 say ω[P ]={ ω n+N 0 ω n+N 1 •••ω n+N k | n ≥ 0 } Lemma 4.1.1
Let ω be an innite recurrent binary word. There exists an innite pattern P so that:

( * ) u 1 u 2 ...u n ∈ ω[P] * ⇒ u 1 u 2 ...(u n ) m ∈ ω[P] * for m ≥ 1
Proof Let ω be an innite recurrent binary word. The innite pattern P will be the limit of the patterns n P , dened as follows for each n.

Let n P be an n-pattern. Since ω[ n P ] is nite there is a prex of ω which contains all pattern words found by n P in ω, so let U n be a prex of ω so that ω[ n P ]=U n [ n P ]. Since ω is recurrent there will be another occurrence of U n , innitely many to be precise, so

that ω = U n vU n ••• with z = |U n v|≥|U n |. Note that for each 0 ≤ i ≤|U n |, ω i = ω i+z .
We now dene n+1 P as the immediate extension of n P ,s o n+1 P i = n P i for each 0 ≤ i ≤ n -1, where n+1 P n = n+1 P n-1 + z. Then for any u 1 u 2 ...

u n ∈ ω[ n P ], it is true that u 1 u 2 ...u n ∈ U n [ n P ] so there is some 0 ≤ i ≤|U n |-n P n-1 so u 1 u 2 ...u n = u i+nP 0 u i+nP 1 ...u i+nP n-1 .
For each 0 ≤ j ≤ n -1, i+ n P j = i+ n+1 P j , and n+1 P n = n+1 P n-1 + z so

u i+ n+1 P n-1 = u i+ n+1 Pn . Thus u 1 u 2 ...u n u n ∈ ω[ n+1 P ].
So P = lim n P , and if for some n, u

1 u 2 ...u n ∈ ω[P] * it follows that u 1 u 2 ...(u n ) m ∈ ω[P] * for each m ≥ 1.
Lemma 4.1.2 Let P be an innite pattern satisfying the above condition ( * ), and let P ′ be any innite sub-pattern of P. Then P ′ also satises ( * ).

Proof Let u 1 u 2 ...u n ∈ ω[P ′ ] * and let m ′ ≥ 0. Then since P ′ ⊂P , there is a word v 1 v 2 ...v l ∈ ω[P] * so that P ′ n = P l and for each 1 ≤ i<nthere is some j so that

P ′ i = P j . Then for each m ≥ 0 v 1 v 2 ...v m l ∈ ω[P] * .
Thus there is some m so that P ′ n+m ′ = P l+m and so that for some

x ∈ N, v 1 v 2 ...v m l = ω x+P 0 ω x+Pa ...ω m x+P l-1
, and thus

ω x+P ′ 0 ω x+P ′ 1 ...ω m ′ x+P ′ n-1 = u 1 u 2 ...u m ′ n ∈ ω[P ′ ] * .
Proposition 4.1.3 Let ω be an innite binary word and let P be an innite pattern.

Then for each positive integer K, there exists an innite sub-pattern P ′ = P K ⊂P so that for any two nite sub-patterns P, Q ⊂P ′ with |P | = |Q| and 1 ≤|P | , |Q|≤K, then

ω[P ]=ω[Q].
Proof This will be done by induction, creating a series of nested innite patterns 

P ′ = P K ⊂P K-1 ⊂•••⊂P 1 = P so that for each 1 ≤ i ≤ K we have ω[P ]=ω[Q] for
P ∼ 2 Q ⇐⇒ ω[P ]=ω[Q].
Thus ∼ 2 forms an equivalence relation on all sub-patterns of P 1 of length 2, and thus naturally denes a nite coloring (since there are nitely many sets of words of a nite length) on the set of size 2 sub-patterns of P 1 . Equivalently we can say we have a nite coloring on the set of all 2-element subsets of N; where two patterns P and Q are monochromatic if and only if P ∼ 2 Q. Recall the following well-known theorem of Ramsey: Theorem 4.1.4 (Ramsey) Let k be a positive integer. Then given any nite coloring of the set of all k-element subset of N; there exists an innite set A⊂N such that any two k-element subsets of A are monochromatic.

Thus by the above theorem, there exists an innite sub-pattern P 2 ⊂P 1 so that any two sub-patterns of P 2 are ∼ 2 equivalent. Then, having constructed

P n ⊂P n-1 ⊂•••⊂P 1 we construct P n+1 as follows. For sub-patterns P, Q ⊂P n with |P | = |Q| = n +1 say that P ∼ n+1 Q ⇐⇒ ω[P ]=ω[Q].
This then denes a nite coloring of the set of size n +1 sub-patterns. Thus, again by Ramsey's Theorem, there exists an innite sub-pattern P n+1 ⊂P n so that any two sub-patterns of P n+1 are ∼ n+1 equivalent. Also, for any Now show that for each pair of non-negative integers (k, l), where 1 ≤ k + l ≤ K, there exists a word u ∈ ω[P ′ ] so that Ψ(u)=( |u| 0 , |u| 1 )=( k, l). This will be done by induction on k + l. Since ω is aperiodic, ω[P ′ ] will contain both 0 and 1, so the result is true for k + l =1.

Next, suppose the result is proved for all pairs (k, l) where k + l = n, and consider the pair (k, l +1) where k + l +1=n +1, k ≥ 0, and l ≥-1. Consider the following three cases.

Case 1: l = -1. Since 0 ∈ ω[P ′ ], and P ′ has (*), 0 k ∈ ω[P ′ ], and Ψ(0 k )=( k, 0). Thus the result is true for l = -1.

Case 2: l =0. Since both 0, 1 ∈ ω[P ′ ], and from ( * ) both 00, 11 ∈ ω[P ′ ]. Then since ω is aperiodic, both 01, 10 ∈ ω[P ′ ].B y( * ), 10 k ∈ ω[P ′ ] and Ψ(10 k )=( k, 1). Thus the result is true for l =0 Case 3: l>0. By the induction hypothesis, there exists a word u ∈ ω[P ′ ] so that Ψ(u)=(k, l), and there is at least one occurrence of 1 in u since l>0.I fu ends in a 1, then by ( * ) u1 ∈ ω[P ′ ], and Ψ(u1) = (k, l+1) and we are done. Thus suppose that u ends in a 0. By Corollary 4.1.5 either 0u or 1u is in ω

[P ′ ].I f1u ∈ ω[P ′ ] then Ψ(1u)=(k, l +1)
and we are done. Thus suppose

ω[P ′ ] does not contain 1u,s o0u ∈ ω[P ′ ] Let u ′ =0u0 -1 . Then u ′ ∈ ω[P ′ ], Ψ(u ′ )=Ψ(u)
, and u ′ is a cyclic shift of u.I fu ′ ends in a 1 then u ′ 1 ∈ ω[P ′ ] and we are done, otherwise u ′ ends with a 0. If 1u ′ ∈ ω[P ′ ] then we are done, otherwise by Corollary 4.1.50 u ′ ∈ ω[P ′ ]. In this case, set u ′′ =0 u ′ 0 -1 and repeat as above. Since there is at least one occurrence of 1 in u there will eventually be a conjugate of u which ends in a 1, say v1 ∈ ω[P ′ ] with Ψ(v1) = (k, l).T h usv11 ∈ ω[P ′ ] and Ψ(v11) = (k, l +1). Thus the result is true for l>0.

Therefore, if ω is a binary recurrent aperiodic word, then it has maximal abelian pattern complexity p * ab (n)=n +1 for all n ≥ 1.

Abelian Complexity of C-Balanced Words

In this section we will investigate the link between the notions of abelian complexity and C-balance. To be more specic, we will investigate the upper bound for abelian complexity of C-balanced words.

As stated in Section 2.3.2, the upper bound for abelian complexity of a word ω over a k-letter alphabet is

ρ ab ω (n) ≤ l k (n)= n + k -1 k -1 .
A natural question to ask is, are there words which achieve this upper bound? The answer to this question is yes, as any word with maximal factor complexity will have maximal abelian complexity. Recall Lemma 2.3.4 ([40]): For a word ω ∈A Z ∪A N , the function ρ ab ω is bounded if and only if ω is C-balanced for some positive integer C, namely the abelian complexity is bounded by (C +1) |A| . Thus an initial link is seen between abelian complexity and the C-balance property. The rst question to ask is if the bound ρ ab ω (n) ≤ (C +1) |A| is optimal? The answer to this question is no because this much variation of the values in the Parikh vectors does not take into account that the sum of the values in the Parikh vector must be equal to n.

In Section 4.2.1 we develop a way to calculate the abelian complexity of aperiodic balanced words. This calculation will involve the connection between aperiodic balanced binary words and constant gap sequences. Thus given a balanced word ω over a k-letter alphabet, we can nd the maximal value for the abelian complexity of ω. Then in Section 4.2.2 we will calculate an upper bound for abelian complexity of C-balanced words. In Section 4.2.3 we calculate the maximal abelian complexity of balanced aperiodic words as well as some balanced periodic words. We also give a conjecture about words which achieve the abelian complexity upper bound found in Section 4.2.2.

Abelian Complexity of Balanced Aperiodic Words

The goal of this section is to determine the abelian complexity of balanced aperiodic words over an alphabet A, where |A| ≥ 3. For this we will need a new denition. A word G ∈A N is of constant gap if for each a ∈Athere is a period p a so that if G i = a then G i+pa = a. The following proposition should be clear. Proof Let p be the least common multiple of the set of integers { p a | a ∈ A }, where p a is the period of a ∈A. Then for each i ≥ 0 we have G i = G i+p ,soG is periodic.

Then for any factor u of G, with |u| = n, we have for each a ∈A n p a ≤|u| a ≤ n p a +1

Thus for any factors u, v of G with |u| = |v|, we have ||u| a -|v| a |≤1, and G is balanced.

In [START_REF] Altman | Balanced sequences and optimal routing[END_REF], the authors describe the possible frequencies for the letters in a constant gap sequence. For each k ≥ 1, there will be nitely many constant gap sequences over k letters. Here is a list of the constant gap sequences, up to a permutation or shift, on k letters for k =1, 2, 3, 4:

k =1 (1) ∞ k = 2 (12) ∞ k = 3 (123) ∞ ; (1213) ∞ k = 4 (1234) ∞ ; (121314) ∞ ; (12131214) ∞ ; (123124) ∞
We suspect that there are 10 constant gap sequences over a 5 letter alphabet, and at least 24 over a 6 letter alphabet. The number of constant gap sequences that exist over an alphabet of size k, for an arbitrary k, is still an open problem, see [START_REF] Altman | Balanced sequences and optimal routing[END_REF].

For a constant gap sequence

G =( g) ∞ =( g 1 g 2 •••g p ) ∞
, call g the base of G.L e tu be a factor of G so that |u| <p. Call the factor v of G the compliment of u in G if uv is a cyclic shift of the base g.

Another note to make is about the abelian complexity of a constant gap sequence G. For any n ≥ 1 there exists numbers m ≥ 0 and b ≡ (n mod p) so that n = mp + b, and for any factor u of length n of G, u will contain m copies of a cyclic shift of g, and then a cyclic factor of length b of g.T h u sρ ab

G (n)=ρ ab G (b). Thus the sequence of abelian complexity values (ρ ab G (i)) i≥1 is periodic, since ρ ab G (i)=ρ ab G (i + p) for each i ≥ 1. Moreover, the sequence (ρ ab G (i)) 1≤i<p is a palindrome. Suppose that u b is a factor of G of length b<p , and let v b =Ψ ( u b ). Let u ′ b be the compliment of u,s o|u ′ b | = p -b.T h u s Ψ(g)=Ψ ( u b u ′ b )=Ψ ( u b )+Ψ(u ′ b ),s oΨ(u ′ b )=Ψ ( g) -Ψ(u b )
. Thus, a Parikh vector of a factor of length b will determine a Parikh vector of a factor of length pb. Therefore,

ρ ab G (b)=ρ ab G (p -b).
In [START_REF] Graham | Covering the positive integers by disjoint sets of the form {[nα + β]: n =1, 2[END_REF] and [START_REF] Hubert | Propriétés combinatoires des suites dénies par le billard dans les triangles pavants[END_REF] the following characterization of balanced words involving constant gap sequences and balanced binary words is given, also listed and proven in [START_REF] Altman | Balanced sequences and optimal routing[END_REF].

Theorem 4.2.2 Let s be a balanced word over {0, 1}. Construct a new word ω by replacing in s, the subsequence of 0's by a constant gap sequence G on alphabet A 1 , and the subsequence of 1's by a constant gap sequence H on a disjoint alphabet A 2 . Then ω is balanced on the alphabet A 1 ∪A 2 . Theorem 4.2.3 Let ω ∈A N be a balanced aperiodic word. Then there exists a partition of A into two sets A 0 and A 1 so that the word s dened by:

u n =0 if ω n ∈A 0 u n =1 if ω n ∈A 1
is balanced. Moreover, the words z 0 and z 1 constructed from ω by keeping only the letters from A 0 and A 1 respectively have constant gaps.

Thus, a balanced aperiodic word is generated from a balanced aperiodic binary word on {a, b} by replacing the a's with a constant gap sequence G and the b's by a constant gap sequence H, where Alph(G) ∩ Alph(H)=∅. Since the balanced aperiodic binary words are precisely the Sturmian words, we can use properties of Sturmian words to help calculate the abelian complexity of balanced aperiodic words on an alphabet of size k ≥ 3.

We now recall some properties of Sturmian words from Section 2.4.2. First, for any Sturmian word s and for each n ≥ 1, ρ ab s (n)=2. Thus for each n ≥ 1 there exist unique values r n and t n so that Ψ s (n)={(r n ,t n ), (r n -1,t n +1)}. Secondly, for any Sturmian word s, there a mechanical word s α,ρ so that s α,ρ (i)=s(i) for each i ≥ 0. Recall that the prexes of c α = s α,α are left special factors, and F(c α )=F(s α,ρ ) for any 0 ≤ ρ, and s α,0 =0c α .

Sturmian words can also be generated by cutting words, K β,ρ . For the cutting word K β,0 , where β = α/(1α),w ehaveK β,0 = s α,0 and F(K β,0 )=F(s α,0 ). Thus the prex of length n +1, for each n ≥ 0,o fK β,0 is of the form 0p n where p n is the left special factor of length n of K β,0 , and thus 1p n is also a factor of K β,0 .

The word K β,0 is generated by considering the line y = βx and how it travels through the plane. For positive integers a and b, if the line passes through the square [a, a +1]× [b, b +1], then there is some n so that I n =( a +1,b) (where I n is dened for cutting words in Section 2.4.2) and a + b +1 = n. The next proposition will, for each n ≥ 1, connect the point I n with the unique values r n and t n . Lemma 4.2.4 Given a Sturmian word w with slope α, dene the cutting word K β,0 , with β = α/(1α), and I n =(u n ,v n ) as above. Then Induction on the prex length n will be used to show the claim is true. For n =1 , I 0 =( 0 , 0) and

Ψ w (n)={I n ,I n +(-1, 1)} = {(u n ,v n ), (u n -1,v n +1)} for each n>0. Proof For β = α/(1 -α), K β,0 = s α,0 . Since w has slope α, F(w)=F(s α,0 )=F(K β,0 ). If K β,0 (0)K β,0 (1) ...K β,0 (n)=0p n is the prex of K β,
I 1 =( 1 , 0). Then K β,0 (0) = 0, p 0 = ε so Ψ w (1) = Ψ K β,0 (1) = {I 1 ,I 1 + (-1, 1)} = {(1, 0), (0, 1)}.
Then suppose n ≥ 1 and the claim is true for all lengths less than or equal to n,s o

I n =(|p n-1 | 0 +1, |p n-1 | 1 )=(u n ,v n ) and Ψ w (n)=Ψ K β,0 (n)={I n ,I n +(-1, 1)}. Case 1: K β,0 (n +1)=0. Then p n = p n-1 0,s o(|p n | 0 , |p n | 1 )=( |p n-1 | 0 +1, |p n-1 | 1 )
and

Ψ K β,0 (n +1)={(u n +1,v n ), (u n ,v n +1)}.T h u s K β,0 (n +1)=0=v n+1 -v n ⇒ v n+1 = v n n = u n+1 + v n+1 ⇒ u n+1 = u n +1 Thus I n+1 =(u n+1 ,v n+1 )=(u n +1,v n ). Case 2: K β,0 (n +1)=1. Then p n = p n-1 1,s o(|p n | 0 , |p n | 1 )=( |p n-1 | 0 , |p n-1 | 1 +1) and Ψ K β,0 (n +1)={(u n ,v n +1), (u n -1,v n +2)}.T h u s K β,0 (n +1)=1=v n+1 -v n ⇒ v n+1 = v n +1 n = u n+1 + v n+1 ⇒ u n+1 = u n Thus I n+1 =(u n+1 ,v n+1 )=(u n ,v n +1).
In either case, Ψ w (n +1)=Ψ K β,0 (n +1)={I n+1 ,I n+1 +(-1, 1)} Lemma 4.2.5 Let w be a Sturmian word and K β,0 be as in Lemma 4.2.4. For all positive integers k, l, a, and b with 0 ≤ a<kand 0 ≤ b<l; there is an n>0 so that I n =(r n ,t n ) with r n ≡ (a mod k) and t n ≡ (b mod l). Moreover, there are innitely many n for which this holds.

Proof Let k, l, a, and b be as in the hypothesis. Any line with an irrational slope will have a dense orbit in the torus generated by [0, 1] × [0, 1]. Thus, the line y = βx will also have a dense orbit in the torus generated by [0,k] × [0,l], and for each n>0 the points I n =(r n ,t n ) will correspond to the points I ′ n =((r n mod k), (t n mod l)) on the torus. Thus since the line that generates K β,0 has a dense orbit in the torus, there is an n>0 so that I ′ n =( a, b), and thus r n ≡ (a mod k) and t n ≡ (b mod l). This happens innitely many times due to the density of the path.

Thus for any factor u of length n of a Sturmian word w over {0, 1} where u = w i w i+1 ...w i+n-1 for some i, I i =( r i ,t i ), so there are r i occurrences of 0 to the left of u and t i occurrences of 1 to the left of u.

Since |u| = n then Ψ(u) ∈{(r n ,t n ), (r n -1,t n +1)} because Ψ w (n)={(r n ,t n ), (r n -1,t n +1)}.
Lemma 4.2.6 Let w be a Sturmian word and K β,0 , k, l, a, and b be as in Lemma 4.2.5. For any n>0, there exist n 1 ,n 2 so that

I ′ n 1 =( a, b)=I ′ n 2 ,a n dΨ(u n 1 )= (r n ,t n ) and Ψ(u n 2 )=( r n -1,t n +1 ) , where u n 1 = w n 1 w n 1 +1 ...w n 1 +n-1 and u n 2 = w n 2 w n 2 +1 ...w n 2 +n-1 are factors of w of length n.
Proof There are factors U and V of length n of w so that Ψ(U )=(r n ,t n ) and Ψ(V )= (r n -1,t n +1). Thus let

I ′ n U =(a U ,b U ) and I ′ n V =(a V ,b V ) be so that U = w n U ...w n U +n-1 and V = w n V ...w n V +n-1 . Then the line that generates K β,0 enters the square [a U ,a U + 1] × [b U ,b U +1]
and there is a small interval, J U , so that any time the line passes through this interval, the word U will be the next n letters. A similar interval, J V will exist for the square

[a V ,a V +1]× [b V ,b V +1]
where the word V will be the next n letters.

Then considering the interval J U in the same relative location on the square [a, a + 1] × [b, b +1], when the line passes through J U the resulting n letters will have (r n ,t n ) as their Parikh vector. Likewise, since the path of the line that generates K β,0 is dense in the orbit, when the line passes through the interval

J V on the square [a, a +1]× [b, b +1],
the resulting n letters will have (r n -1,t n +1) as their Parikh vector. Since the path of the line that generates K β,0 is dense in the orbit, there is an n 1 so that I ′ Thus for w, k, l, a, and b as in the previous lemmas, there exist factors u and v of length n of w so that Ψ(u)=(r n ,t n ), Ψ(v)=(r n -1,t n +1), and there are (a mod k) occurrences of 0 and (b mod l) occurrences of 1 to the left of both u and v.

Now that we have these Lemmas, let's look at the main result of this section dealing with the abelian complexity of balanced aperiodic words on an alphabet of size at least 3.

Theorem 4.2.7 Let ω ∈A N be a balanced aperiodic word, with |A| ≥ 3. Thus ω is the image of a Sturmian word s over {0, 1} obtained by replacing the subsequence of 0's by a constant gap sequence G 0 on alphabet A 0 , and the subsequence of 1's by a constant gap sequence G 1 on a disjoint alphabet A 1 , where A 0 ∪A 1 = A. For each n>0, let r n and t n be unique so that Ψ s (n)={(r n ,t n ), (r n -1,t n +1)}. Then:

ρ ab ω (n)=ρ ab G 0 (r n ) • ρ ab G 1 (t n )+ρ ab G 0 (r n -1) • ρ ab G 1 (t n +1)
Proof By Theorems obtained by replacing the subsequence of 0's by a constant gap sequence G 0 on alphabet A 0 , and the subsequence of 1's by a constant gap sequence G 1 on a disjoint alphabet A 1 , where

A 0 ∪A 1 = A.
Consider the factors of length n of ω. Each factor of length n of ω corresponds to a factor of length n of s where the 0's have been replaced by letters in G 0 and the 1's have been replaced by letters in G 1 . Thustondρ ab ω (n) we need to consider the number of ways to map factors of length n of s by replacing the 0's by consecutive letters from G 0 and the 1's by consecutive letters from G 1 .

So for a factor u of length n of s, Ψ(u) ∈{(r n ,t n ), (r n -1,t n +1)}. By Lemma 4.2.5, the rst 0 in u can be replaced by any letter in the base of G 0 , and the rst 1 can be replaced by any letter in the base of G 1 . By Lemma 4.2.6 the image of u in ω can have either r n or r n -1 letters from G 0 and either t n or t n +1 letters from G 1 respectively.

Thus there are ρ ab G 0 (r n ) ways to select r n distinct consecutive letters from G 0 , and for each of those ways there are ρ ab G 1 (t n ) ways to select t n distinct consecutive letters from G 1 , and all possible ways can occur. Thus if u is a factor of s with Ψ(u)=( r n ,t n ), there are ρ ab G 0 (r n ) • ρ ab G 1 (t n ) possible ways to select distinct (not having the same Parikh vector) consecutive letters from G 0 and G 1 . Likewise, if u is a factor of s with Ψ(u)= (r n -1,t n +1) there are ρ ab G 0 (r n -1)•ρ ab G 1 (t n +1) possible ways to select distinct consecutive letters from G 0 and G 1 . Since these methods are independent we have ρ ab

G 0 (r n ) • ρ ab G 1 (t n )+ ρ ab G 0 (r n -1) • ρ ab G 1 (t n +1
) ways to select distinct letters from G 0 and G 1 to replace the 0's and 1's in a factor of length n of s.

Therefore, any factor of length n of ω will be constructed from either r n consecutive letters from G 0 and t n consecutive letters from G 1 ,orr n -1 consecutive letters from G 0 and t n +1 consecutive letters from G 1 . Thus we have

ρ ab ω (n)=ρ ab G 0 (r n ) • ρ ab G 1 (t n )+ρ ab G 0 (r n - 1) • ρ ab G 1 (t n +1).
Using this formula to nd the abelian complexity of a balanced word over a 4 letter alphabet, we would consider what constant gap sequences are used to create it. We could use a constant gap sequence over three letters with another constant gap sequence over one letter, or two constant gap sequences over two letters.

Example Suppose ω ∈A N is a balanced word, |A| =5, and ω is created from a Sturmian word s over {a, b} by replacing the subsequence of a's by a constant gap sequence G a = (123124) ∞ , and the subsequence of b's by a constant gap sequence G b =( 5 ) ∞ . Then

(ρ ab Ga (i)) i≥1 =( 4 , 5, 2, 5, 4, 1) ∞ and (ρ ab G b (i)) i≥1 =( 1 ) ∞ .
Thus there exists an n so that I n =(u n ,v n ) and u n ≡ (2 mod 6), note that for any n (v n mod 1) ≡ 0, and so

ρ ab ω (n)=ρ ab Ga ((u n mod 6))•ρ ab G b (v n )+ρ ab Ga ((u n -1m o d 6 ) ) •ρ ab G b (v n +1) = 5 * 1+4 * 1=9
We now look at the upper bound for abelian complexity of a C-balanced word.

Upper Bound For Abelian Complexity

As stated in the introduction, if we consider nite words of length n over a k-letter alphabet A, k ≥ 2, there will be at most

l k (n)= n+k-1 k-1
possible distinct Parikh vectors. Now we will consider looking at the set of possible Parikh vectors in a dierent way. Let A = {0, 1,...,k-1} and u ∈A + with |u| = n. Thus,

k-1 i=0 |u| i = n ⇐⇒ | u| 0 = n - k-1 i=1 |u| i ,
so we see the Parikh vector for u only depends on k -1 values since we know the word has length n. Now consider the set Λ k,n , which is the subset of Z k-1 , the set of (k -1)-tuples of integers, where

Λ k,n = (x 1 ,x 2 ,...,x k-1 ) ∈ Z k-1 k-1 i=1 x i ≤ n; ∀ix i ∈ Z,x i ≥ 0 .
Then to see the correspondence between Λ k,n and the collection of all possible Parikh vectors for words of length n over a k-letter alphabet, consider the collection of k-tuples of non-negative integers (i 0 ,i 1 ,...,i k-1 ) where i

0 + i 1 + •••i k-1 = n, and also note i 0 = n -(i 1 + •••i k-1
). Map such a k-tuple to Λ k,n as follows:

(i 0 ,i 1 ,i 2 ,...,i k-1 ) → (i 1 ,i 2 ,...,i k-1 )
This mapping gives a bijective relation, which can be seen as follows. By denition, each i j ≥ 0, and since

i 0 + i 1 + •••i k-1 = n we know i 1 + •••i k-1 ≤ n so the mapping is into Λ k,n
.Ift w ok-tuples u and v map to the same λ ∈ Λ k,n , then for each i we know u i = v i and thus

u 0 = n -(u 1 + •••+ u k-1 )=n -(v 1 + •••+ v k-1 )=v 0 ,sou = v. Then for some λ =( λ 1 ,λ 2 ,...,λ k-1 ) ∈ Λ k,n , the k-tuple (n -(λ 1 + λ 2 + •••+ λ k-1 ),λ 1 ,λ 2 ,...,λ k-1
), which satises the above conditions, would map to λ.

The set Λ k,n can be equipped with a metric, giving a discrete metric space. The most useful metric on the space in the sense of C-balance is dened as follows, for λ, κ ∈ Λ k,n :

η(λ, κ)=sup |λ 1 -κ 1 | , |λ 2 -κ 2 | ,...,|λ k-1 -κ k-1 | , k-1 i=1 λ i - k-1 i=1 κ i .
In the case of the metric, the dierence |λ i -κ i | corresponds to the dierence in the number of occurrences of the letter i, and the term | λ i -κ i | corresponds to the dierence in the number of occurrences of the letter 0.

Thus for an innite word ω ∈A N , the set Ψ ω (n) can be embedded as a subset of Λ k,n . Then if the word ω is C-balanced, we know if λ, κ ∈ Λ k,n correspond to Parikh vectors of factors of ω of length n then η(λ, κ) ≤ C. Therefore, if a word ω is C-balanced the embedding of Ψ ω (n) would be bounded by a sphere, in the sense of the metric η, of diameter C and thus the abelian complexity, ρ ab ω , would be bounded above by the cardinality of such a sphere. Theorem 4.2.8 Let |A| = k ≥ 2, and ω ∈A N be C-balanced. Then for each n,

ρ ab ω (n) ≤ k Ck 2 [C+1]
.

Proof Let A = {0, 1,...,k -1}, and ω ∈A N be C-balanced. For any u, v ∈F ω (n) we know ||u| i -|v| i |≤C, so for suciently large n there exist integers t i so that t i ≤|u| i ≤ t i + C for each i =1, 2,...,k-1. Let B ω,n be the subset of Λ k,n so that:

B ω,n = { λ ∈ Λ k,n | t i ≤ λ i ≤ t i + C for each i =1, 2,...,k-1 } . Another way to view B ω,n is as a hypercube with side length C in Z k-1 .
For the sake of nding the sphere of diameter C with the largest possible cardinality we can assume that each t i ≥ 0 and

(t i + C) ≤ n, i.e. B ω,n is totally contained in Λ k,n . Then it should be clear that the image of Ψ ω (n) in Λ k,n is a subset of B ω,n .F o r each m =0, 1,...,C(k -1) dene D m = λ ∈ B ω,n k-1 i=1 (λ i -t i )=m
to be the set of parallel hyperplanes in B ω,n , where all factors of ω corresponding to points in D m would have the same number of occurrences of the letter 0.T h usB ω,n is the disjoint union of all the D m , and the image of Ψ ω (n) will be a subset of

D m ∪ D m+1 ∪•••∪D m+C for some m =0, 1,...,C(k -2).
Thus for the largest (C +1) of the D m sets,

ρ ab ω (n)=|Ψ ω (n)|≤ C i=0 |D m+i |.
Thus we need to nd the cardinality of the sets D m , and then we can nd an upper bound for the abelian complexity.

For each m, the cardinality of D m is the number of ways to write m as the sum of k -1 non-negative integers less than or equal to

C,o rm = i 1 + i 2 + •••i k-1 where 0 ≤ i j ≤ C for each j =1 , 2,...,k -1.
F o re a c hm, this value is known. This is the same value as the coecient of x m in the expansion of

(1 + x + ••• + x C ) k-1 .T h u si f (1 + x + •••+ x C ) k-1 = a 0 + a 1 x + a 2 x 2 + •••+ a C(k-1) x C(k-1) , we know a 0 <a 1 < ••• <a ⌊ C(k-1) 2 ⌋ = a ⌈ C(k-1) 2 ⌉ > ••• >a C(k-1) ,
and thus |D m | = a m . Then considering the coecients of (1

+ x + •••+ x C ) k = b 0 + b 1 x + •••b Ck x Ck , we have b ⌊ Ck 2 ⌋ = b ⌈ Ck 2 ⌉
are the greatest coecients, and they are the sum of the greatest C +1 coecients of (1

+ x + •••+ x C ) k-1 .
To nd the coecients of (1

+ x + •••+ x C ) k = b 0 + b 1 x + •••b Ck x Ck ,
we will need to dene some new notation. We rst dene k m

[2] = k m ,
and for C ≥ 2 we dene recursively

k m [C+1] = m i=0 k m -i m -i i [C]
.

From [START_REF] Euler | On the expansion of the power of any polynomial (1+x+x 2 +x 3 +x 4 +etc) n[END_REF], the coecient b m of x m in the expansion of (1

+ x + x 2 + •••+ x C ) k is k m [C+1] = k m m 0 [C] + k m -1 m -1 1 [C] + k m -2 m -2 2 [C] + •••
where s t =0if s ≤ 0, t ≤ 0,o rs<t . Thus using this notation from Euler we have a nice way to write the value for the upper bound of the abelian complexity of a innite word ω on a k-letter alphabet that is C-balanced. We have:

ρ ab ω (n) ≤ k Ck 2 [C+1]
.

In the case of a balanced word ω,w eh a v eρ ab ω (n) ≤ k ⌊ k 2 ⌋ , and for k =1, 2, 3, 4, 5, 6, 7 we have ρ ab ω (n) is bounded by 1, 2, 3, 6, 10, 20, 35 respectively. As discussed in the previous section, the abelian complexity for an aperiodic balanced word ω on k letters can be determined by the abelian complexity of the constant gap sequences that are used to create it.

For example, if an alphabet is composed of 5 letters then a recurrent aperiodic balanced word over that alphabet will not achieve the maximum values of 10.

An aperiodic balanced word ω on a 5 letter alphabet has ρ ab ω (n) ≤ 9. Thus if ω achieves the maximal abelian complexity, it must be (eventually) periodic. In the following section we will investigate the maximum value the abelian complexity can achieve. At the time of this writing, only balanced words have been considered. This is because there exist nice ways to generalize recurrent balanced words, namely the method described in Section 4.2.1.

Calculating Abelian Complexity

The previous two sections dealt with some theorems and lemmas, but this section will look at some of the numbers. Initially work has been done with a k-letter alphabet, with k ≤ 6. This initial work leads to a conjecture about C-balanced words with maximal abelian complexity.

In Section 4.2.1 the constant gap sequences on k letters for k =1 , 2, 3, 4 are listed. These sequences are listed again below, but listed with them is the periodic abelian complexity sequence.

k =1 CGS (1) ∞ ρ ab (1) ∞ k =2 CGS (12) ∞ ρ ab (2, 1) ∞ k =3 CGS (123) ∞ (1213) ∞ ρ ab (3, 3, 1) ∞ (3, 2, 3, 1) ∞ k =4 CGS (1234) ∞ (121314) ∞ (12131214) ∞ ( 
123124) ∞ ρ ab (4, 4, 4, 1) ∞ (4, 3, 6, 3, 4, 1) ∞ (4, 3, 5, 2, 5, 3, 4, 1) ∞ (4, 5, 2, 5, 4, 1) ∞ Any balanced aperiodic word over an alphabet of 5 or less letters will be created from a Sturmian word over any two of the above constant gap sequences. For example, to create a balanced word over a 5 letter alphabet we could use a constant gap sequence over 4 letters and another over 1 letter, or a sequence over 3 letters and another over 2 letters. While we can use two constant gap sequences over 4 letters to create a balanced aperiodic word over 8 letters, we can not nd all balanced aperiodic words over 8 letters with the above sequences.

Let ω be a balanced aperiodic word over a k-letter alphabet, where 2 <k≤ 5. Then ω can be created from a Sturmian word s and constant gap sequences g and h,a s described in Section 4.2.1. To see the possible values for ρ ab ω (n), consider the set

S ω = ρ ab g (r) • ρ ab h (t)+ρ ab g (r -1) • ρ ab g (t +1) | r ≥ 1,t ≥ 1 ,
and thus ρ ab ω (n) ∈S ω . Since the abelian complexity sequence for both g and h are periodic, |S ω | will be nite. Thus the maximal value for ρ ab ω (n) will be max S ω . Example (1) Suppose ω is a balanced aperiodic word constructed from a Sturmian word s and constant gap sequences g = (123124) ∞ and h =(5) ∞ . Then

S ω = {5+4, 2+5, 5+2, 4+5, 1+4} = {5, 7, 9}
and the maximal value for ρ ab ω (n) will be 9.

(2) Suppose ω is a balanced aperiodic word constructed from a Sturmian word s and constant gap sequences g = (1213) ∞ and h = (45) ∞ . Then

S ω = {2 • 2+3• 1, 3 • 2+2• 1, 1 • 2+3• 1, 2 • 1+3• 2, 3 • 1+2• 2, 1 • 1+3• 2} = {5, 7, 8}
and the maximal value for ρ ab ω (n) will be 8.

It turns out that for a recurrent aperiodic balanced word ω over a 5 letter alphabet,

ρ ab ω (n) ≤ 9.
This comes from considering the abelian complexity sequence of constant gap sequences and the possible combinations of them to create a recurrent aperiodic balanced word over a 5 letter alphabet. Thus no balanced aperiodic word over a 5 letter alphabet will achieve the maximum value of 5 ⌊ 5 2 ⌋ =1 0 . Thus if a balanced word over a 5 letter alphabet does have abelian complexity of 10, for some factor length, it is not an aperiodic word.

As stated before, we believe there are 10 constant gap sequences over 5 letters. Each of these 10 sequences (up to permutation or shift) are listed with its periodic abelian complexity sequence. If the method used in the previous example is used with the constant gap sequences above, we nd that a balanced aperiodic word over a 6 letter alphabet will have abelian complexity bounded above by 18.

Conjecture 4.2.9 Suppose |A| = k, k ≥ 5, and ω ∈A N is a recurrent C-balanced word.

If there exists an n so that

ρ ab ω (n)= k Ck 2 [C+1]
.

then ω is eventually periodic.

Work has been done to nd words which attain the upper bound found in Theorem 4.2.8. For example, the following words

α 5 = (12312412512312412) ∞ α 6 = (12312412512312412612312412) ∞
are balanced words which achieve maximal abelian complexity, and it is readily veried that ρ ab α 5 (4) = 10 and ρ ab α 6 (13) = 20. At the time of this writing, no balanced word over an alphabet of size at least 7 has been found to achieve the value found through Theorem 4.2.8.

For each k ≥ 1, there will be nitely many constant gap sequences over k letters, [START_REF] Altman | Balanced sequences and optimal routing[END_REF], but the number of constant gap sequences that exist over an alphabet of size k, for an arbitrary k, is still an open problem. There seems to be many unanswered questions in nding the optimal upper bound for the abelian complexity of C-balanced words.

Chapter 5 Permutation Complexity

Permutation complexity of aperiodic words is a relatively new notion of word complexity which was rst introduced and studied by Makarov [START_REF] Makarov | On permutations generated by innite binary words[END_REF] based on ideas of S.V. Avgustinovich (see the acknowledgments in [START_REF] Fon-Der-Flaass | On periodicity and low complexity of innite permutations[END_REF]), and is based on the idea of an innite permutation associated to an aperiodic word. For an aperiodic word ω, no two shifts of ω are identical. Thus, given an order on the symbols used to compose ω, no two shifts of ω are equal lexicographically. The innite permutation associated with ω is the linear order on N induced by the lexicographic order of the shifts of ω. The permutation complexity of the word ω will be the number of distinct subpermutations of a given length of the innite permutation associated with ω.

This chapter will have a few dierent permutation complexity results. Section 5.1 has some preliminary information about innite permutations induced by an aperiodic word, as well as some basic properties about these innite permutations. In Section 5.2 we calculate the permutation complexity of the Thue-Morse word. Section 5.3 deals with the permutation complexity of innite words which are the image of an aperiodic uniformly recurrent word under the doubling map, d. We also give the permutation complexity of the image of Sturmian words under d, and the image of the Thue-Morse word under d.

Preliminaries

Innite permutations associated with innite aperiodic words over a binary alphabet act fairly well-behaved, but many of the arguments used for binary words break down when used with words over more than two symbols. Given a subpermutation of length n of an innite permutation associated with a binary word, a portion of length n -1 of the word can be recovered from the subpermutation. This is not always the case for subpermutations associated with words over 3 or more symbols. For example, consider the permutation (123). If this permutation is associated with a binary word over {0, 1},with 0 < 1, it could only correspond to the word 00. On the other hand, if this permutation is associated with a word over 3 symbols, suppose {0, 1, 2} with 0 < 1 < 2, then the permutation could be associated with any of 00, 01,o r11.

For binary words the subpermutations depend on the order on the symbols used to compose ω, but the permutation complexity does not depend on the order. For words over 3 or more symbols, not only do the subpermutations depend on the order on the alphabet but so does the permutation complexity. For example, consider the Fibonacci word t = 0100101001001010010100100101 ..., dened by iterating the morphism 0 → 01, 1 → 0 on the letter 0, and suppose the 1s are replaced by alternating a's and b's to create the word: t =0a00b0a00b00a0b00a0b00a00b0a.... If the symbols in t are ordered 0 <a<bthere will be 5 distinct subpermutations of length 3, and if the symbols are ordered a<0 <bthere will be only 4 distinct subpermutations of length 3.

In this section we will give some basic denitions which will be used in this chapter.

Innite Permutation

The idea of an innite permutation that will be here used was introduced in [START_REF] Fon-Der-Flaass | On periodicity and low complexity of innite permutations[END_REF]. Since we will be investigating the permutation complexity of innite words, the set used in the following denition will be N rather than an arbitrary countable set. To dene an innite permutation π, start with a linear order ≺ π on N, together with the usual order < on N. To be more specic, an innite permutation is the ordered triple π = N, ≺ π ,< , where ≺ π and < are linear orders on N. The notation to be used here will be π(i) <π(j) rather than i ≺ π j.

Permutations Induced by Words

Given an aperiodic word ω = ω 0 ω 1 ω 2 ... on an alphabet A, x a linear order on A. We will use the binary alphabet A = {0, 1} with the natural ordering 0 < 1.O n c e a linear order is set on the alphabet, we can then dene an order on the natural numbers based on the lexicographic order of shifts of ω. Considering two shifts of ω with a = b, ω[a]=ω a ω a+1 ω a+2 ... Thus there exists some minimal number c ≥ 0 so that ω a+c = ω b+c and ω a+i = ω b+i for each 0 ≤ i<c . We call π ω the innite permutation associated with ω and say that π ω (a) <π ω (b) if ω a+c <ω b+c , else we say π ω (b) <π ω (a). 

≤ i, j ≤ (b -a), π ω [a, b](i) <π ω [a, b](j) if and only if π ω (a + i) <π ω (a + j). Say that p = p 0 p 1 •••p n is a (nite) subpermutation of π ω if p = π ω [a, a + n] for some a, n ≥ 0. For the subpermutation p = π ω [a, a + n] of {1, 2, ••• ,n+1},w esaythelength of p is n +1.
Denote the set of all subpermutations of π ω by Perm ω , and for each positive integer n let

Perm ω (n)={ π ω [i, i + n -1] | i ≥ 0 }
denote the set of distinct nite subpermutations of π ω of length n. The permutation complexity function of ω is dened as the total number of distinct subpermutations of π ω of a length n, denoted τ ω (n)=|Perm ω (n)|.

Example Let's consider the well-known Fibonacci word, t = 0100101001001010010100100101 ..., with the alphabet A = {0, 1} ordered as 0 < 1. We can see t[2] = 001010 ... is lexicographically less than t[1] = 100101 ..., and thus π t (2) <π t [START_REF] Allouche | Extremal properties of (epi)Sturmian sequences and distribution modulo[END_REF].

Then for a subpermutation, consider the factor t[3, 5] = 010. We see π t [3, 5] = (231) because in lexicographic order if we have π t (5) <π t (3) <π t (4).

We will also be interested in the form of the subpermutations of π ω .

Denition For a binary word u of length n -1, say that p has form u if

p i <p i+1 ⇐⇒ u i =0
for each i =0 , 1,...,n -2. Two permutations p and q of {1, 2,...,n} have the same form if for each i =0, 1,...,n-1,

p i <p i+1 ⇐⇒ q i <q i+1 .
Then given a subpermutation p of π ω we dene the following restrictions of p.

Denition Let p = π ω [a, a + n] be a subpermutation of the innite permutation π ω . For each i, there are p i -1 terms in p that are less than p i and there are np i terms that are greater than p i . Thus consider i ∈{0, 1,...,n-1} and the values of L(p) i and R(p) i .I fp 0 <p i+1 there will be p i+1 -2 terms in R(p) less than R(p) i so we have R(p) i = p i+1 -1. In a similar sense, if p n <p i we have L(p) i = p i -1.I fp 0 >p i+1 there will be p i+1 -1 terms in R(p) less than R(p) i so we have R(p) i = p i+1 . In a similar sense, if p n >p i we have L(p) i = p i .

The values in M (p) can be found by nding the values in R(L(p)) or L(R(p)). Since R(L(p)) or L(R(p)) correspond to the same subpermutation of p, R(L(p)) i <R(L(p)) j if and only if

L(R(p)) i <L(R(p)) j . Therefore R(L(p)) = L(R(p)).
It should also be clear that if there are two subpermutations p = π ω [a, a + n] and q = π ω [b, b + n], a = b, so that p = q then L(p)=L(q), R(p)=R(q), and M (p)=M (q) since if p = q then p i <p j if and only if q i <q j .

General Permutation Complexity Properties

Initially work has been done with innite binary words (see [START_REF] Avgustinovich | Innite permutations of lowest maximal pattern complexity[END_REF][START_REF] Fon-Der-Flaass | On periodicity and low complexity of innite permutations[END_REF][START_REF] Makarov | On permutations generated by innite binary words[END_REF][START_REF] Makarov | On the permutations generated by the Sturmian words[END_REF][START_REF] Makarov | On the innite permutation generated by the period doubling word[END_REF]). Suppose A = {0, 1} and ω = ω 0 ω 1 ω 2 ... ∈A N is an aperiodic word. First let's look at some remarks about permutations generated by binary words where we use the natural order, 0 < 1, on A.

Claim 5.1.1 ([32]) For an aperiodic word ω over A = {0, 1} with the natural ordering we have: 1. π ω (i) <π ω (i +1) if and only if ω i =0.

2.

π ω (i) >π ω (i +1) if and only if ω i =1.

If ω

i = ω j , then π ω (i) <π ω (j) if and only if π ω (i +1)<π ω (j +1).
Proof (1) Suppose π ω (i) <π ω (i +1) and assume ω i =1 . Then if ω i+1 =0we have a contradiction, so ω i+1 =1must be true. Thus there is some m ≥ 2 so

ω[i]=1 m 0 ••• ,ω [i +1]=1 m-1 0 ••• Thus π ω (i) >π ω (i +1), which is a contradiction. Therefore ω i =0.
Conversely suppose that ω i =0 .I fω i+1 =1then we are done so suppose ω i+1 =0 as well. Thus there is some m ≥ 2 so

ω[i]=0 m 1 ••• ,ω [i +1]=0 m-1 1 ••• Thus π ω (i) <π ω (i +1).
of ω. There is a b so that v is a prex of ω[b], and let q

= π ω [b, b + n -1]. For each i, j ∈{0, 1,...,n-1},i fp i <p j ω[b + i]=u i,j 1 ••• ,ω [b + j]=u i,j 0 •••
and thus, q i >q j .

For any i ∈{ 0, 1,...,n-1} there are p i -1 many j so that p j <p i and there are np i many j so that p j >p i . Therefore there are np i many j so that q j <q i ,s o q i = np i +1.

For an aperiodic word ω ∈A N , the following lemma shows the relationship of the permutation complexity of ω and ω.

Lemma 5.1.4 Let ω = ω 0 ω 1 ω 2 ••• be an aperiodic binary word, and let ω be the comple- ment of ω. For each n ≥ 1,

τ ω (n)=τ ω (n).
Proof For some a = b, suppose ω[a] <ω [b]. Thus there is some (possibly empty) factor

u of ω so that ω[a]=u0 ••• and ω[b]=u1 •••.T h u sω[a]=u1 ••• and ω[b]=u0 •••,s o ω[a] > ω[b].
For both ω and ω it should be clear τ ω (1) = τ ω (1) = 1, namely the subpermutation (1). Let n ≥ 2. For a permutation p of {1, 2,...,n}, dene the permutation p of {1, 2,...,n} by pi = npi +1

for each i.

Let p = π ω [a, a + n -1] be a subpermutation of π ω ,s op is a permutation of {1, 2,...,n}. Let q = π ω [a, a+n-1] be a subpermutation of π ω . For each 0 ≤ i, j ≤ n-1, i = j,i fp i <p j then q i >q j .

Let 0 ≤ i ≤ n -1. There are p i -1 many j so that p j <p i and there are np i many j so that p j >p i . Therefore there are exactly np i many j so that q j <q i ,s o q i = np i +1.T h u sq =p and for any p

∈ Perm ω (n) we have p ∈ Perm ω (n),s o |Perm ω (n)|≤ Perm ω (n) .
By a similar argument we can see p =q and for q ∈ Perm ω (n) we have q ∈ Perm ω (n),s o

Perm ω (n) ≤|Perm ω (n)| . Therefore |Perm ω (n)| = Perm ω (n) and τ ω (n)=τ ω (n).

Permutation Complexity of Sturmian Words

Consider now a case where we start with a Sturmian word. An interesting property of characteristic Sturmian words can be seen in the next proposition, listed in [START_REF] Berstel | Recent results in sturmian words[END_REF].

Proposition 5.1.5 ([1, 8, 28]) Let 0 <α<1 be an irrational and s be Sturmian word with slope α over {0, 1} with 0 < 1. Then

π 0cα (0) ≤ π s (0) ≤ π 1cα (0).
Therefore the characteristic Sturmian word with slope α can be used to generate the least and greatest innite permutations associated to a Sturmian word with slope α. If a word s is Sturmian then we know ρ s (n)=n +1 for each n. We have the following lemma. Lemma 5.1.6 ([33]) Let s be a Sturmian word. For natural numbers a 1 and a 2 we have

π s [a 1 ,a 1 + n +1]=π s [a 2 ,a 2 + n +1] if and only if s[a 1 ,a 1 + n]=s[a 2 ,a 2 + n].
Thus for a Sturmian word s we have τ s (n)=ρ s (n -1). As a result of the above lemma we have the following.

Theorem 5.1.7 ([33]) An aperiodic binary word ω is Sturmian if and only if

τ ω (n)=n for each n ≥ 1.
Proof If ω is Sturmian it follows directly from Lemma 5.1.6 that τ ω (n)=ρ ω (n -1) = n.

If τ ω (n)=n for all n, then we have:

n +1=τ ω (n +1)≥ ρ ω (n) >n
and thus ρ ω (n)=n +1 for all n, and therefore ω is Sturmian. Therefore, permutation complexity can be used to classify the Sturmian words.

Permutation Complexity of the Thue-Morse Word

The Thue-Morse word,

T = T 0 T 1 T 2 •••, is: T = 01101001100101101001011001101001 ••• ,
which can be generated by the morphism:

µ T : ⎧ ⎨ ⎩ 0 → 01 1 → 10
55 by iterating on the letter 0. Axel Thue introduced this word in his studies of repetitions in words, and proved that the word T is overlap-free ( [START_REF] Thue | Über die gegenseitige lage gleicher Teile gewisser Zeichenreihen[END_REF]). A word ω is said to be overlap-free if it does not contain a factor of the form vuvuv for words u and v, with v non-empty.

The Thue-Morse word was again discovered independently by Marston Morse in 1921 [START_REF] Morse | Recurrent geodesics on a surface of negative curvature[END_REF] through his study of dierential geometry, and used in the foundations of symbolic dynamics. For a more in depth look at further properties, independent discoveries, and applications of the Thue-Morse word see [START_REF] Allouche | The ubiquitous Prouhet-Thue-Morse sequence[END_REF].

The factor complexity of the Thue-Morse word was computed independently by two groups in 1989, Brlek [START_REF] Brlek | Enumeration of factors in the Thue-Morse word[END_REF] and de Luca and Varricchio [START_REF] De Luca | Some combinatorial properties of the Thue-Morse sequence and a problem in semigroups[END_REF]. Our proof of the permutation complexity of the Thue-Morse word does not use the factor complexity function.

The permutation complexity of the Thue-Morse word can be found as follows. For any n ≥ 2, we can write n as n =2 r + p, with 0 <p≤ 2 r . Using this notation, it will be shown that the formula for the permutation complexity of T, initially conjectured by M. Makarov, is

τ T (n)=2(2 r+1 + p -2).
We give a a non-trivial proof of this formula here. The method of this proof relies upon special properties of the Thue-Morse word and the morphism that generates it. It is currently not clear how to generalize this method to a wider class of words.

The innite permutation associated with the Thue-Morse word, π T , is introduced in Section 5.2.1. Patterns found in the subpermutations of π T are studied in Section 5.2.3, while Section 5.2.4 investigates when a specic pattern occurs. The formula for the permutation complexity is established in Section 5.2.5. Low order subpermutations are listed in Appendix A to be used as a base case for induction arguments.

Note: Results of this section (5.2) appear in [START_REF] Widmer | Permutation complexity of the Thue-Morse word[END_REF].

The Thue-Morse Permutation

In this section the action of the Thue-Morse morphism on the subpermutations of π T will be investigated. This action will induce a well-dened map on the subpermutations of π T and lead to an initial upper-bound on the permutation complexity of T .

It can readily be veried that if a is a natural number then

µ T (T [a]) = T [2a]
because for any letter x ∈{0, 1}, |µ T (x)| =2. A nice property of the factors of T is that any factor of length 5 or greater contains either 00 or 11. Another interesting property is that for any i ∈ N, T [2i, 2i +1] will be either 01 or 10. Thus any occurrence of 00 or 11 must be a factor of the form T [2i +1, 2i +2] for some i ∈ N. 

ρ T (n -1) ≤ τ T (n) ≤ ρ T (2n -1).
Since the factor complexity of the Thue-Morse word is known (see [START_REF] Brlek | Enumeration of factors in the Thue-Morse word[END_REF][START_REF] De Luca | Some combinatorial properties of the Thue-Morse sequence and a problem in semigroups[END_REF])w ec a n nd all factors of a given length. Thus for any natural number n, all factors of T of length 2n -1 can be identied and thus the set of all subpermutations of π T of length n, Perm T (n), can be identied as well. The subpermutations of {1, 2,...,n} have been identied for relatively low n (up to n =6 5 ) and in these cases no more than two subpermutations of any length were identied to have the same form. In other words, for any factor u of T of length n ≤ 64 there are at most two subpermutations of length n +1 having form u.

This section will deal with some properties of π T . Something to note about the Thue- Morse morphism is that it is an order preserving morphism, as shown by the following lemma. 

(v)=1 0 µ T (T [b]). Thus 0µ T (T [b]) < 01µ T (T [a]) < 10µ T (T [b]) < 1µ T (T [a]).
Proof The rst letters in T [a] will be either 01 or 1,t husµ T (T [a]) will start with either 0110 or 10. The rst letters in T [b] will be either 10 or 0,t husµ T (T [b]) will start with either 1001 or 01, respectively.

Then 0µ T (T [b]) will start with 01001 or 001 and 01µ T (T [a]) will start with 010110 or 0110.T h u s001 < 01001 < 010110 < 0110, and

0µ T (T [b]) < 01µ T (T [a]).
Then 10µ T (T [b]) will start with 101001 or 1001 and 1µ T (T [a]) will start with 10110 or 110.T h u s1001 < 101001 < 10110 < 110, and

10µ T (T [b]) < 1µ T (T [a]). Therefore 0µ T (T [b]) < 01µ T (T [a]) < 10µ T (T [b]) < 1µ T (T [a]).
Let u be a factor of T of length n. There is an a ∈ N so that u = T [a, a + n -1]. Also recall that |u| 1 is the number of occurrences of the letter 1 in u, and that |u| 1 = n -|u| 0 . Let p = π T [a, a + n] be a subpermutation of π T with form u. Then µ T (u)=T [2a, 2a + 2n -1], and let p ′ be the subpermutation p ′ = π T [2a, 2a +2n] with form µ T (u). When Lemma 5.2.2 is used with this notation, for 0 ≤ i, j ≤ n-1, where T a+i =0and T a+j =1, we have p i <p j and p ′ 2j+1 <p ′ 2i <p ′ 2j <p ′ 2i+1 . The following lemma describes the values of p ′ in terms of the values of p.

Proposition 5.2.3 Let u, p, and p ′ be as described above. For any i ∈{0, 1,...,n}:

p ′ 2i = p i + |u| 1
and for any i ∈{0, 1,...,n-1}: Proof To take care of the p ′ 2i terms, let i ∈{0, 1,...,n}. There will be p i -1 many j so that p i >p j , so there are p i -1 many j so that p ′ 2i >p ′ 2j . Clearly, if p i <p j then p ′ 2i <p ′ 2j . So there are exactly p i -1 many even j so that p ′ 2i >p ′ j . There are |u| 1 many j so that T a+j =1, so there are |u| 1 many j so that p ′ 2i >p ′ 2j+1 and |u| 0 many j so that T a+j =0,so p ′ 2i <p ′ 2j+1 . So there are exactly |u| 1 many odd j so that p ′ 2i >p ′ j . Thus there are exactly p i -1+|u| 1 many j so that p ′ 2i >p ′ j , and therefore p ′ 2i =(p i -1+|u| 1 )+1=p i + |u| 1 . The p ′ 2i+1 terms will be done in two cases. First when p i <p i+1 and then when p i >p i+1 .

p ′ 2i+1 = ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ p i + |u| 1 +(n +1) if p i <p
Case a: Suppose that p i <p i+1 ,soT a+i =0by Claim 5.1.1. For each j =0, 1,...,n we must have p ′ 2i+1 >p ′ 2j , so for each even j (there are n +1 many such j) p ′ 2i+1 >p ′ j . There are |u| 1 many j so that T a+j =1 , so there are |u| 1 many j so that p ′ 2i+1 >p ′ 2j+1 . Thus the only other j where p ′ 2j+1 can be less than p ′ 2i+1 are j ∈{0, 1,...,n-1} where T a+j =0and p i >p j . Subcase a.1: If p i <p n then there are p i -1 many j so that T a+j =0and p i >p j , and then np i -|u| 1 = |u| 0p i many j so that T a+j =0and p i <p j . Thus there can only be (n +1)+|u| 1 + p i -1 many j so that p ′ 2i+1 >p ′ j , and therefore

p ′ 2i+1 = (n +1)+|u| 1 + p i -1+1=p i + |u| 1 +(n +1).
Subcase a.2: If p i >p n then there are p i -2 many j so that T a+j =0and p i >p j (since T a+n is not in u = T [a, a + n -1]), and then n -

(p i -1) -|u| 1 = |u| 0 -(p i -1)
many j so that T a+j =0and p i <p j . Thus there can only be (n +1)+|u| 1 + p i -2 many j so that p ′ 2i+1 >p ′ j , and therefore

p ′ 2i+1 =(n +1)+|u| 1 + p i -2+1=p i + |u| 1 + n.
Case b: Suppose that p i >p i+1 ,soT a+i =1by Claim 5.1.1. For each j =0, 1,...,n we must have p ′ 2i+1 <p ′ 2j , so for each even j (there are n +1 many such j) p ′ 2i+1 <p ′ j . There are |u| 0 many j so that T a+j =0 , so there are |u| 0 many j so that p ′ 2i+1 <p ′ 2j+1 . Thus the only other j where p ′ 2j+1 can be less than p ′ 2i+1 are j ∈{0, 1,...,n-1} where T a+j =1and p i >p j . Subcase b.1: If p i <p n then there are (p i -1) -|u| 0 many j so that T a+j =1 and p i >p j , and there can only be |u| 1 -(p i -1 -|u| 0 ) -1=np i many j so that T a+j =1and p i <p j (since T a+n is not in u = T [a, a + n -1]). Thus there can only be

(p i -1) -|u| 0 = p i -1 -(n -|u| 1 )=p i + |u| 1 -n -1 many j so that p ′ 2i+1 >p ′ j , and therefore p ′ 2i+1 = p i + |u| 1 -n -1+1=p i + |u| 1 -n.
Subcase b.2: If p i >p n then there are (p i -2) -|u| 0 many j so that T a+j =1and p i >p j (since T a+n is not in u = T [a, a + n -1]), and there can only be |u| 1 -(p i -2 -|u| 0 ) -1=( n +1)-p i many j so that T a+j =1and p i <p j . Thus there can only be

(p i -2) -|u| 0 = p i -2 -(n -|u| 1 )=p i + |u| 1 -n -2 many j so that p ′ 2i+1 >p ′ j ,and therefore p ′ 2i+1 = p i + |u| 1 -n -2+1=p i + |u| 1 -(n +1).
Fix a subpermutation p = π T [a, a+n], and then let p ′ = π T [2a, 2a+2n]. So the terms of p ′ can be dened using the method dened in Proposition 5.2.3. Let q = π T [b, b + n], b = a, be a subpermutation of π T and let q ′ = π T [2b, 2b +2n] as in Proposition 5.2.3. The following lemma concerns the relationship of p and q to p ′ and q ′ . Therefore the idea of p ′ can be used to dene a map on the subpermutations of π T , and the map will be well-dened by Proposition 5.2.3. Lemma 5.2.4 p = q if and only if p ′ = q ′ . Proof Supposing that p = q, there are i, j ∈{ 0, 1,...,n} so that p i <p j and q i >q j .

Since the Thue-Morse morphism is order preserving we have p ′ 2i <p ′ 2j and q ′ 2i >q ′ 2j ,s o p ′ = q ′ . Now to show by contrapositive, suppose that p = q,s op i = q i for each i ∈ {0, 1,...,n}. Since p = q, p and q have the same form, because p i <p i+1 if and only if

q i <q i+1 ,soT [a, a+n-1] = T [b, b+n-1] and thus T [2a, 2a+2n-1] = T [2b, 2b+2n-1].
Then by Proposition 5.2.3 it should be clear that for each j ∈{ 0, 1,...,2n} we have p ′ j = q ′ j , and thus p ′ = q ′ . Therefore if p ′ = q ′ then p = q.

The next corollary follows directly from Lemma 5.2.4.

Corollary 5.2.5 If

p = π T [a, a + n]=π T [b, b + n] for some a = b, then π T [2a, 2a +2n]= π t [2b, 2b +2n].
Thus there is a well-dened function on the subpermutations of π T . Let p = π T [a, a + n], and dene φ(p)=p ′ = π T [2a, 2a +2n] using the formula in Proposition 5.2.3.T h u s we have the map

φ :P erm T (n +1) → Perm T (2n +1)
which is injective by Lemma 5.2.4.

Not all subpermutations of π T will be the image under φ of another subpermutation. Let n ≥ 5 and a be natural numbers. Then n and a can be either even or odd, and for the subpermutation π T [a, a + n], there exist natural numbers b and m so that one of 4 cases hold:

1. π T [a, a + n]=π T [2b, 2b +2m 
], even starting position with odd length. is the set of subpermutations p of length n so that p = π T [2b, 2b + n -1] for some b, and that Perm T odd (n) is the set of subpermutations p of length n so that p = π T [2b +1, 2b + n] for some b.T h u s

Perm T (n)=P erm T ev (n) ∪ Perm T odd (n),
where we have

Perm T ev (n) ∩ Perm T odd (n)=∅.
Thus for n ≥ 3, Perm T ev (2n +1) is the set of all subpermutations of length 2n +1 starting at an even position. So for π T [2a, 2a +2n], we know there is a subpermutation For p = π T [a, a + n], we can then dene three additional maps by looking at the left, right, and middle restrictions of φ(p)=p ′ . These maps are

p = π T [a, a + n] so that φ(p)=p ′ = π T [2a,
φ L :P erm T (n +1) → Perm T ev (2n) φ R :P erm T (n +1) → Perm T odd (2n) φ M :P erm T (n +2) → Perm T odd (2n +1)
and are dened by

φ L (p)=L(φ(p)) = L(p ′ ) φ R (p)=R(φ(p)) = R(p ′ ) φ M (p)=M (φ(p)) = M (p ′ )
It can be readily veried that these three maps are surjective. To see an example of this, consider the map φ L , and let π T [2b, 2b +2n -1] be a subpermutation in Perm T ev (2n).

Then for the subpermutation

p = π T [b, b + n], φ L (p)=L(p ′ )=π T [2b, 2b +2n -1] so φ L is surjective.
A similar argument will show that φ R and φ M are also surjective.

Lemma 5.2.6 For n ≥ 2:

τ T (2n) ≤ 2(τ T (n +1)) τ T (2n +1)≤ τ T (n +1)+τ T (n +2)
Proof Let n ≥ 2.W eh a v e :

Perm T ev (2n) ≤ Perm T (n +1) Perm T odd (2n) ≤ Perm T (n +1) Perm T ev (2n +1) = Perm T (n +1) Perm T odd (2n +1) ≤ Perm T (n +2)
since φ is a bijection, and the 3 maps φ L , φ R , and φ M are all surjective. Thus we have the following inequalities:

τ T (2n)= Perm T (2n) = Perm T ev (2n) + Perm T odd (2n) ≤ Perm T (n +1) + Perm T (n +1) =2(τ T (n +1)) τ T (2n +1)= Perm T (2n +1) = Perm T ev (2n +1) + Perm T odd (2n +1) ≤ Perm T (n +1) + Perm T (n +2) = τ T (n +1)+τ T (n +2)
The three maps φ L , φ R , and φ M are not injective maps. To see this, consider the subpermutations p = π T [START_REF] Arnoux | Représentation géométrique de suites de complexité 2n+1[END_REF][START_REF] Berstel | The origins of combinatorics on words[END_REF]=(23541) q = π T [START_REF] Hubert | Propriétés combinatoires des suites dénies par le billard dans les triangles pavants[END_REF][START_REF] Lothaire | Combinatorics on Words[END_REF]=(13542).

Both of these subpermutations have form T [START_REF] Arnoux | Représentation géométrique de suites de complexité 2n+1[END_REF][START_REF] Berstel | Recent results in sturmian words[END_REF] = T [START_REF] Hubert | Propriétés combinatoires des suites dénies par le billard dans les triangles pavants[END_REF][START_REF] Kamae | Sequence entropy and the maximal pattern complexity of innite words[END_REF] = 0011. Then applying the maps we see: [START_REF] Brlek | Enumeration of factors in the Thue-Morse word[END_REF][START_REF] Fon-Der-Flaass | On periodicity and low complexity of innite permutations[END_REF]=(74862513)=π T [START_REF] Van Aardenne-Ehrenfest | Circuits and trees in oriented linear graphs[END_REF]54] 

p ′ = φ(p)=π T [10, 18]=(485972613) q ′ = φ(q)=π T [46, 54]=(385972614) φ L (p)=π T [10, 17]=(37486251)=π T [46, 53] = φ L (q) φ R (p)=π T
= φ R (q) φ M (p)=π T [11, 17]=(6375241)=π T [47, 53] = φ M (q) So p ′ = q ′ but φ L (p)=φ L (q), φ R (p)=φ R (q)
, and φ M (p)=φ M (q), and these maps are not injective in general. Hence the values in Lemma 5.2.6 are only upper bounds. The next goal is to determine when these maps are not injective.

Creating φ(p) From a Table

Given a subpermutation p = π T [a, a + n], we can use a table to calculate the subpermutation p ′ = φ(p)=π T [2a, 2a +2n]. To show how this is done we will use an example. Let The table we create will have 3 columns. In the rst column of the table we list all the values in the subpermutation p from least to greatest. We will add a horizontal line just above the least value which corresponds to a 1 in u and add an empty box in the third column of the row corresponding to the last element in p. In this example the least value of p which corresponds to a 1 in u is the number 6 so the horizontal line will be between p 2 =5and p 6 =6 . The last element of p is p 8 =3 , so we place the empty box in the last column of row 3. Since p is a permutation of {1, 2,...,9} we have the table in Figure 1. The empty box will act as a place holder. In all the steps listed below we will ignore the location with the empty box and write nothing in that spot. In the second column of the table we will write the value we get from adding |u| 1 to the number in the rst column, see Figure 2. Note |u| 1 =4and there are 4 rows below the horizontal line. Fig. 2 In the third column we start by writing a 1 in the rst row below the horizontal line and then increasing by 1 for the following columns, see Figure 3. To nish the table we will add 1 to the last value in the second column (a 13 in this example) and write the result in the rst row of the third column, and then increase by 1 in the following columns until we reach the horizontal line, see Figure 4. Fig. 4 Now that we have the completed table in Figure 4 we can see how φ will alter the permutation p. We have p 2 =5,sop ′ 4 =9and p ′ 5 =17. From the table in Figure 4, when w e n dt h er o ww i t ha5i nt h erst column we see the next elements in the row are 9 and 17. This is exactly the behavior described in Lemma 5.2.2 and Proposition 5.2.3.T h u s to create p ′ from the table we nd the row which has the value p i in the rst column, and then p ′ 2i is the value in the second column and p ′ 2i+1 is the value in the third column. So

p 0 =4 = ⇒ p ′ 0 =8 p ′ 1 =16 p 1 =8 = ⇒ p ′ 2 =12 p ′ 3 =3 p 2 =5 = ⇒ p ′ 4 =9 p ′ 5 =17
. . .

p 7 =1 = ⇒ p ′ 14 =5 p ′ 15 =14 p 8 =3 = ⇒ p ′ 16 =7
which is readily veried to be the same as p ′ listed above. One note about this example. It should be fairly clear for the subpermutation p = π T [START_REF] Berstel | A characterization of Sturmian morphisms[END_REF][START_REF] Fon-Der-Flaass | On periodicity and low complexity of innite permutations[END_REF] that T 18 =0 . In the table above p 8 =3is in the portion of the table which corresponds to the 0's. Consider the subpermutation q =( 136524 )of π T which has form v = 00110, and φ(q)=( 3951 1827141 06 ) . Each of q 0 , q 1 , and q 4 correspond to a 0, and q 2 and q 3 each correspond to a 1. Because v is a right special factor of T it is not clear if q 6 will correspond to a 0 or a 1. It turns out that when we construct the table to create φ(q), it does not matter. In Figure 5 we construct the table as above, and in Figure 6 we construct the table assuming q 6 corresponds to a 1, but note that |v| 1 =2. Fig. 6 In either case we will construct the same subpermutation q ′ from the table. A note about this example is that it is a contrived example. It turns out that only 001101 will correspond to the subpermutation q, and 001100 will correspond to the subpermutation (246513). This example was chosen to show that if there is some ambiguity with what letter corresponds with the last value in a subpermutation, the table construction will still work. The reason the above denition used the value |u| 1 to place the horizontal line was to make the steps in the table creation explicit.

Type k and Complementary Pairs

An interesting pattern occurs in some subpermutations of π T . The subpermutations that follow this pattern are said to be subpermutations of type k which is described in the next denition. Proposition 5.2.3 will be used inductively to show the maps φ, φ L , φ R , and φ M preserve subpermutations of type k. An induction argument with this fact will be used to show that two subpermutations have the same form if and only if they are a complementary pair of type k, dened below. A corollary of this will determine when the maps φ L , φ R , and φ M are bijective.

Denition A subpermutation p = π T [a, a + n] is of type k,f o rk ≥ 1,i fp can be decomposed as p =(α 1 •••α k λ 1 •••λ l β 1 •••β k ) where α i = β i + ǫ for each i =1, 2,...,k and an ǫ ∈{-1, 1}.
Some examples of subpermutations of type 1, 2, and 3 (resp.) are:

π T [5, 9]=(23541) π T [20, 25]=(254136) π T [6, 12]=(3751264) proof of Theorem SameFormIFFCompPair.L e tu = T [a, a + n -1] = T [b, b + n -1]
be the form of p and q. For the values of k and l, 2k + l = n +1 and 4k +2l -1=2n +1.

(a) The rst thing to show is that φ(p) is of type 2k -1. For i ∈{0, 1,...,k-1} we have p i = p n-(k-1)+i + ǫ, so by Proposition 5.2.3: 

p ′ 2i = p ′ 2(n-(k-1)+i) + ǫ For i ∈{0,
p ′ 2i+1 = p ′ 2(n-(k-1)+i)+1 + ǫ
So for each i ∈{0, 1,...,2k -2}:

p ′ i = p ′
2n-2k+2+i + ǫ, and φ(p) can be decomposed as

φ(p)=π T [2a, 2a +2n]=(α ′ 1 •••α ′ 2k-1 λ ′ 1 •••λ ′ 2l+1 β ′ 1 •••β ′ 2k-1 ),
where

α ′ i = β ′ i + ǫ,s oφ(p)=p ′ is of type 2k -1. Next, suppose that k ≥ 2 so 2k-1 ≥ 3, we show that φ L (p)=L(p ′ ) and φ R (p)=R(p ′ ) are of type 2k -2 and φ M (p) is of type 2k -3.
Let i ∈{ 0, 1,...,2k -3}, and consider

φ L (p)=L(p ′ ). Since p ′ i and p ′ 2n-2k+2+i are consecutive values, p ′ i <p ′ 2n if and only if p ′ 2n-2k+2+i <p ′ 2n .S o i f L(p ′ ) i = p ′ i then L(p ′ ) 2n-2k+2+i = p ′ 2n-2k+2+i , and if L(p ′ ) i = p ′ i -1 then L(p ′ ) 2n-2k+2+i = p ′ 2n-2k+2+i -1.
In either case, L(p ′ ) i = L(p ′ ) 2n-2k+2+i + ǫ and there is a decomposition

φ L (p)=π T [2a, 2a +2n -1] = (α ′′ 1 •••α ′′ 2k-2 λ ′′ 1 •••λ ′′ 2l+2 β ′′ 1 •••β ′′ 2k-2 ),
and φ L (p) is of type 2k -2. A similar argument will show φ R (p) is of type 2k -2 and φ M (p) is of type 2k -3.

(b) From (a), φ(q)=q ′ is of type 2k -1. Since p and q are a complementary pair of type k, p i = p n-k+1+i + ǫ = q i + ǫ = q n-k+1+i for each i ∈{0, 1,...,k-1}, and p k+i = q k+i for each i ∈{0, 1,...,l-1}. We can assume that ǫ =1by exchanging the role of p and q. Thus for i ∈{0, 1,...,k-1}:

p ′ 2i = p ′ 2(n-k+1+i) + ǫ p ′ 2i = q ′ 2(n-k+1+i) q ′ 2(n-k+1+i) = q ′ 2i + ǫ
For i ∈{0, 1,...,k-2}:

p ′ 2i+1 = p ′ 2(n-k+1+i)+1 + ǫ p ′ 2i+1 = q ′ 2(n-k+1+i)+1 q ′ 2(n-k+1+i)+1 = q ′ 2i+1 + ǫ We know p k-1 = p n +ǫ = q k-1 +ǫ = q n ,sop k-1 >p n and q k-1 <q n .T h u si fp k-1 <p k p ′ 2k-1 = p k-1 + |u| 1 + n = q k-1 +1+|u| 1 + n = q k-1 + |u| 1 +(n +1)=q ′ 2k-1 and if p k-1 >p k p ′ 2k-1 = p k-1 + |u| 1 -(n +1)=q k-1 +1+|u| 1 -(n +1)=q k-1 + |u| 1 -n = q ′ 2k-1 .
By Proposition 5.2.3, since p k+i = q k+i for each i ∈{0, 1,...,l-1},

p ′ 2(k+i) = q ′ 2(k+i) p ′ 2(k+i)+1 = q ′ 2(k+i)+1
Thus there are decompositions of φ(p)=p ′ and φ(q)=q ′ so that

φ(p)=π T [2a, 2a +2n]=(α ′ 1 •••α ′ 2k-1 λ ′ 1 •••λ ′ 2l+1 β ′ 1 •••β ′ 2k-1 ), φ(q)=π T [2b, 2b +2n]=(β ′ 1 •••β ′ 2k-1 λ ′ 1 •••λ ′ 2l+1 α ′ 1 •••α ′ 2k-1 ),
where α ′ i = β ′ i + ǫ. Therefore φ(p)=p ′ and φ(q)=q ′ are a complementary pair of type 2k -1.

(c) From (b), φ(p)=p ′ and φ(q)=q ′ are a complementary pair of type 2k -1. Suppose k ≥ 2 and so 2k -3 ≥ 1, and let i ∈{ 0, 1,...,2k -3}, then p

′ i = q ′ i + ǫ = p ′ 2n-2k+2+i + ǫ = q ′ 2n-2k+2+i
.T h u sp ′ i and p ′ 2n-2k+2+i are consecutive values, as are q ′ i and

q ′ 2n-2k+2+i , also p ′ 2n <p ′ i if and only if p ′ 2n <p ′ 2n-2k+2+i
, and

p ′ 2n <p ′ i and p ′ 2n <p ′ 2n-2k+2+i ⇐⇒ q ′ 2n <q ′ i and q ′ 2n <q ′ 2n-2k+2+i . If L(p ′ ) i = p ′ i -1 or L(p ′ ) i = p ′ i ,w eh a v eL(q ′ ) i = q ′ i -1 or L(q ′ ) i = q ′ i (resp.
), and

L(p ′ ) i = L(q ′ ) i + ǫ = L(p ′ ) 2n-2k+2+i + ǫ = L(q ′ ) 2n-2k+2+i . Now let i ∈{ 0, 1,...,2l},s op ′ 2k-1+i = q ′ 2k-1+i .T h u sp ′ 2n <p ′ 2k-1+i if and only if q ′ 2n <q ′ 2k-1+i
, and so we have

L(p ′ ) 2k-1+i = L(q ′ ) 2k-1+i . Then p ′ 2k-2 = q ′ 2k-2 + ǫ = p ′ 2n + ǫ = q ′ 2n ,sop ′ 2k-2 >p ′ 2n if and only if q ′ 2k-2 <q ′ 2n .I f p ′ 2k-2 >p ′ 2n and q ′ 2k-2 <q ′ 2n , then p ′ 2k-2 = q ′ 2k-2 +1=p ′ 2n +1=q ′ 2n so L(p ′ ) 2k-2 = p ′ 2k-2 -1=q ′ 2k-2 = L(q ′ ) 2k-2 .,
For each i ∈{ 0, 1,...,k -2}, p i and p n-k+1+i are consecutive values, as are q i and q n-k+1+i ,so p i <p i+1 and p n-k+1+i <p n-k+1+i+1 ⇐⇒ q i <q i+1 and q n-k+1+i <q n-k+1+i+1 .

Since p k-1 = q k-1 + ǫ, p k+l + ǫ = q k+l , p k = q k , and p k+l-1 = q k+l-1 :

p k-1 <p k ⇐⇒ q k-1 <q k p k+l-1 <p k+l ⇐⇒ q k+l-1 <q k+l .
For each i ∈{0, 1,...,l-2}, p k+i = q k+i ,so p k+i <p k+i+1 ⇐⇒ q k+i <q k+i+1 .

Therefore p i <p i+1 if and only if q i <q i+1 for each i ∈{0, 1,...,n-1},s op and q have the same form.

To show that distinct subpermutations with the same form are a complementary pair of type k, for some k ≥ 1, an induction argument will be used. The subpermutations of lengths 2 through 9 are listed in Appendix A, along with the form of the subpermutations. It can be seen that distinct subpermutations with the same form are a complementary pair of type k, for some k ≥ 1.

Assume that n ≥ 9 and that the theorem is true for all subpermutations of length at most n. Let p ′ and q ′ be distinct subpermutations of length n +1 with the same form, so p ′ i <p ′ i+1 if and only if q ′ i <q ′ i+1 for each i =0, 1,...,n-1. Then

p ′ ,q ′ ∈ Perm T ev (n +1) or p ′ ,q ′ ∈ Perm T odd (n +1).
If, without loss of generality, p ′ ∈ Perm T ev (n +1) and q ′ ∈ Perm T odd (n +1), then p ′ = π T [2a, 2a + n] and q

′ = π T [2b +1, 2b + n +1],s oT [2a, 2a + n -1] = T [2b +1, 2b + n].
Since n ≥ 9, T [2a, 2a + n -1] will contain either 00 or 11, so there is some c so that T [2a +2c +1, 2a +2c +2] is 00 or 11. Then also,

T [2b +1+2c +1, 2b +1+2c +2] = T [2b + 2c+2, 2b+2c+3] must be the same as T [2a+2c+1, 2a+2c+2], but T [2b+2c+2, 2b+2c+3] is either µ T (0) = 01 or µ T (1) = 10,soT [2b+2c+2, 2b+2c+3] = T [2a+2c+1, 2a+2c+2]. Therefore, either p ′ ,q ′ ∈ Perm T ev (n +1) or p ′ ,q ′ ∈ Perm T odd (n +1)
Thus one of the 4 following cases must hold:

1. p ′ ,q ′ ∈ Perm T ev (n +1) and n +1 is odd. 2. p ′ ,q ′ ∈ Perm T ev (n +1) and n +1 is even. 3. p ′ ,q ′ ∈ Perm T odd (n +1)and n +1 is even. 70 ev (n +1) and n +1=2m +1, so there are numbers a and b so that p ′ = π T [2a, 2a +2m] and q ′ = π T [2b, 2b +2m], and

p = π T [a, a + m] q = π T [b, b + m], p ′ = φ(p) q ′ = φ(q). If T [a, a + m -1] = T [b, b + m -1] then T [2a, 2a +2m -1] = T [2b, 2b +2m -1]. Hence T [a, a + m -1] = T [b, b + m -1]
and p and q have the same form. Since p = q would imply p ′ = q ′ , it must be that p = q. By the induction hypothesis, p and q are a complementary pair of type k, for some k ≥ 1. Therefore, by Proposition 5.2.7, φ(p)=p ′ and φ(q)=q ′ are a complementary pair of type 2k -1.

Case 2 Suppose p ′ ,q ′ ∈ Perm T ev (n +1) and n +1=2m, so there are numbers a and b so that p ′ = π T [2a, 2a +2m -1] and q ′ = π T [2b, 2b +2m -1], and

p = π T [a, a + m] q = π T [b, b + m], p ′ = φ L (p) q ′ = φ L (q).
Since p ′ and q ′ have the same form, T [2a, 2a +2m

-2] = T [2b, 2b +2m -2].T h u s T 2a+2m-2 = T 2b+2m-2 implies T a+m-1 = T b+m-1 ,s oT [2a +2 m -2, 2a +2 m -1] = T [2b +2m -2, 2b +2m -1] and T [2a, 2a +2m -1] = T [2b, 2b +2m -1]. If T [a, a + m -1] = T [b, b + m -1] then T [2a, 2a +2m -1] = T [2b, 2b +2m -1]. Hence T [a, a + m -1] = T [b, b + m -1]
and p and q have the same form. Since p = q would imply φ(p)=φ(q), and thus p ′ = q ′ , it must be that p = q. By the induction hypothesis, p and q are a complementary pair of type k, for some k ≥ 1.I fk =1 , then φ L (p) and φ(q) L are a complementary pair of type 2k -2=0and p ′ = q ′ ,t h u sk ≥ 2. Therefore, by Proposition 5.2.7, φ L (p)=p ′ and φ L (q)=q ′ are a complementary pair of type 2k -2 ≥ 2.

Case 3 Suppose p ′ ,q ′ ∈ Perm T odd (n +1) and n +1=2m, so there are numbers a and b so that p ′ = π T [2a +1, 2a +2m] and q ′ = π T [2b +1, 2b +2m], and

p = π T [a, a + m] q = π T [b, b + m], p ′ = φ R (p) q ′ = φ R (q).
Since p ′ and q ′ have the same form,

T [2a +1, 2a +2m -1] = T [2b +1, 2b +2m -1]. Thus T 2a+1 = T 2b+1 implies T a = T b ,s oT [2a, 2a +1]=T [2b, 2b +1] and T [2a, 2a +2m -1] = T [2b, 2b +2m -1]. If T [a, a + m -1] = T [b, b + m -1] then T [2a, 2a +2m -1] = T [2b, 2b +2m -1]. Hence T [a, a + m -1] = T [b, b + m -1]
and p and q have the same form. Since p = q would imply φ(p)=φ(q), and thus p ′ = q ′ , it must be that p = q. By the induction hypothesis, p and q are a complementary pair of type k, for some k ≥ 1.I fk =1 , then φ R (p) and φ R (q) are a complementary pair of type 2k -2=0and p ′ = q ′ ,th usk ≥ 2. Therefore, by Proposition 5.2.7, φ R (p)=p ′ and φ(q) R = q ′ are a complementary pair of type 2k -2 ≥ 2.

Case 4 Suppose p ′ ,q ′ ∈ Perm T odd (n +1) and n +1=2m +1, so there are numbers a and b so that p ′ = π T [2a +1, 2a +2m +1] and q ′ = π T [2b +1, 2b +2m +1], and

p = π T [a, a + m +1] q = π T [b, b + m +1], p ′ = φ M (p) q ′ = φ M (q).
Since p ′ and q ′ have the same form, T [2a +1, 2a +2m]=T [2b +1, 2b +2m].A si n cases 2 and 3 we nd T [a, a + m]=T [b, b + m] and p and q have the same form. Since p = q would imply φ(p)=φ(q), and thus p ′ = q ′ , it must be that p = q. By the induction hypothesis, p and q are a complementary pair of type k, for some k ≥ 1.I fk =1 , then φ M (p) and φ M (q) are a complementary pair of type 2k -3=-1 and p ′ = q ′ ,th usk ≥ 2. Therefore, by Proposition 5.2.7, φ M (p)=p ′ and φ M (q)=q ′ are a complementary pair of type 2k -3 ≥ 1.

Therefore subpermutations p and q have the same form if and only if p and q are a complementary pair of type k, for some k ≥ 1.

There are a number of useful corollaries of Theorem 5.2.8. These corollaries give the number of subpermutations that can have the same form and show when the maps φ L , φ R , and φ M are not injective.

(c) φ M (p)=φ M (q) if and only if p and q are a complementary pair of type 1.

Proof It should be clear for all three cases that if p and q are a complementary pair of type 1 then

φ L (p)=φ L (q) φ R (p)=φ R (q) φ M (p)=φ M (q)
by Proposition 5.2.7. For the three cases, let p = π T [a, a + n] and q = π T [b, b + n] and p = q.

(a) Suppose φ L (p)=φ L (q),soπ T [2a, 2a +2n

-1] = π T [2b, 2b +2n -1] and T [2a, 2a + 2n -2] = T [2b, 2b +2n -2]. As before we nd T [2a, 2a +2n -1] = T [2b, 2b +2n -1] and T [a, a + n -1] = T [b, b + n -1]
,s op and q have the same form. By Theorem 5.2.8, p and q are a complementary pair of type k ≥ 1.I f k>1, then φ L (p) and φ L (q) are a complementary pair of type 2k -2 > 1,s oφ L (p) = φ L (q). Therefore p and q are a complementary pair of type 1.

(b

) Suppose φ R (p)=φ R (q). This again implies T [a, a + n -1] = T [b, b + n -1] so p
and q have the same form. As in case (a) we then nd p and q are a complementary pair of type 1.

(c) Suppose φ M (p)=φ M (q). This again implies T [a, a

+ n -1] = T [b, b + n -1] so
p and q have the same form. As in case (a) we then nd p and q are a complementary pair of type 1.

So when there are complementary pairs of type 1 none of the maps φ L , φ R , and φ M are injective, and thus they are not bijective. In cases where there are no complementary pairs of type 1 the maps φ L , φ R , and φ M are injective and the inequalities in Lemma 5.2.6 become equalities. So we need to know when complementary pairs of type 1 will occur, and how many complementary pairs there are.

Type 1 Pairs

This section investigates when complementary pairs of type 1 arise and the number of pairs that occur. To show when the maps φ L , φ R , and φ M are bijections we need to consider when complementary pairs of type 1 occur. The following lemma shows when there are complementary pairs of type k, for each k ≥ 0. An induction argument will be used with Proposition 5.2.7 and Theorem 5.2.8 to show that all complementary pairs of a given length are of same type.

Proposition 5.2.12 Let n>4 be a natural number and let p and q be subpermutations of π T of length n +1 with the same form. There exist r and c so that n =2 r + c, where 0 ≤ c<2 r .

(a) If 0 ≤ c<2 r-1 +1, then either p = q or p and q are a complementary pair of type c +1.

(b) If 2 r-1 +1≤ c<2 r , then p = q.
Proof This will be proved using an induction argument on r. By looking at the subpermutations in Appendix A it can be readily veried that the lemma is true for r =2 and c =0 , 1, 2, 3, so for n =4 , 5, 6, 7. Suppose that r>2 and that the statement of the lemma is true when n<2 r . It will be shown that it is true for all n =2 r + c where 0 ≤ c<2 r .

(a) Let n =2 r + c with 0 ≤ c<2 r-1 +1.I fp ′ = q ′ the proposition is satised, so assume that p ′ = q ′ . As it was stated in the proof of Theorem and q ′ ∈ Perm T odd (n +1 ) , then p ′ and q ′ cannot have the same form. We must also consider when n +1 is both even and odd. So there will be four subcases to consider, when p ′ ,q ′ ∈ Perm T ev (n +1) or when p ′ ,q ′ ∈ Perm T odd (n +1) and when n +1 is even or odd.

Case a.1: Suppose p ′ ,q ′ ∈ Perm T ev (n +1) and n +1 is odd, so c is even. There is a d so that c =2 d, with 0 ≤ d<2 r-2 +1, and there are numbers a and b so that p ′ = π T [2a, 2a +2 r +2d] and q ′ = π T [2b, 2b +2 r +2d], and

p = π T [a, a +2 r-1 + d],q = π T [b, b +2 r-1 + d], p ′ = φ(p),q ′ = φ(q). We again nd T [a, a +2 r-1 + d -1] = T [b, b +2 r-1 + d -1]
,sop and q have the same form. Since p = q would imply p ′ = q ′ , it must be that p = q. By the induction hypothesis, p and q are a complementary pair of type d +1. Therefore, by Proposition 5.2.7, φ(p)=p ′ and φ(q)=q ′ are a complementary pair of type 2(d +1)-1=2d +1=c +1.

Case a.2: Suppose p ′ ,q ′ ∈ Perm T ev (n +1) and n +1 is even, so c is odd. There is a d so that c =2 d +1, with 0 ≤ d<2 r-2 +1, and there are numbers a and b so that p ′ = π T [2a, 2a +2 r +2d +1] and q ′ = π T [2b, 2b +2 r +2d +1], and

p = π T [a, a +2 r-1 + d +1],q = π T [b, b +2 r-1 + d +1], p ′ = φ L (p),q ′ = φ L (q).
As in case a.3, T [a, a +2 r-1 + d]=T [b, b +2 r-1 + d],s op and q have the same form. By the induction hypothesis p = q, so by Corollary 5.2.5, φ(p)=φ(q) and therefore p ′ = φ R (p)=φ R (q)=q ′ . Case b.5: Suppose c =2 r -2.T h u sn =2 r +2 r -2=2 r+1 -2, and the subpermutations p ′ and q ′ will have odd length. There will be two subcases, these being when p ′ ,q ′ ∈ Perm T ev (n +1) and when p ′ ,q ′ ∈ Perm T odd (n +1). Case b.5.i: Suppose p ′ ,q ′ ∈ Perm T ev (n +1 ) . There are numbers a and b so that

p ′ = π T [2a, 2a +2 r+1 -2] and q ′ = π T [2b, 2b +2 r+1 -2],
and

p = π T [a, a +2 r -1],q = π T [b, b +2 r -1], p ′ = φ(p),q ′ = φ(q).
As in cases a.1 and b.1, T [a, a +2 r -2] = T [b, b +2 r -2],sop and q have the same form. By the induction hypothesis p = q, so by Corollary 5.2.5, p ′ = φ(p)=φ(q)=q ′ .

Case b.5.ii: Suppose p ′ ,q ′ ∈ Perm T odd (n +1). There are numbers a and b so that

p ′ = π T [2a +1, 2a +2 r+1 -1] and q ′ = π T [2b +1, 2b +2 r+1 -1], and p = π T [a, a +2 r ],q = π T [b, b +2 r ], p ′ = φ M (p),q ′ = φ M (q).
As in cases a.2 and b.2, T [a, a +2 r -1] = T [b, b +2 r -1],s op and q have the same form. If p = q then φ(p)=φ(q), by Corollary 5.2.5, and p ′ = M (φ(p)) = M (φ(q)) = q ′ . If p = q then by case a.1, p and q are a complementary pair of type 1. Therefore, by Proposition 5.2.7, p ′ = φ M (p)=φ M (q)=q ′ . Case b.6: Suppose c =2 r -1.T h u sn =2 r +2 r -1=2 r+1 -1, and the subpermutations p ′ and q ′ will have even length. There will be two subcases, these being when p ′ ,q ′ ∈ Perm T ev (n +1) and when p ′ ,q ′ ∈ Perm T odd (n +1). Case b.6.i: Suppose p ′ ,q ′ ∈ Perm T ev (n +1 ) . There are numbers a and b so that

p ′ = π T [2a, 2a +2 r+1 -1] and q ′ = π T [2b, 2b +2 r+1 -1], and p = π T [a, a +2 r ],q = π T [b, b +2 r ], p ′ = φ L (p),q ′ = φ L (q).
As in cases a.2 and b.3, T [a, a +2 r -1] = T [b, b +2 r -1],sop and q have the same form. If p = q then φ(p)=φ(q), by Corollary 5.2.5, and p ′ = L(φ(p)) = L(φ(q)) = q ′ .I fp = q then by case a.1, p and q are a complementary pair of type 1. Therefore, by Proposition 5.2.7, p ′ = φ L (p)=φ L (q)=q ′ . Case b.6.ii: Suppose p ′ ,q ′ ∈ Perm T odd (n +1). There are numbers a and b so that p ′ = π T [2a +1, 2a +2 r+1 ] and q ′ = π T [2b +1, 2b +2 r+1 ], and

p = π T [a, a +2 r ],q = π T [b, b +2 r ], p ′ = φ R (p),q ′ = φ R (q).
As in cases a.3 and b.4, T [a, a +2 r -1] = T [b, b +2 r -1],sop and q have the same form.

If p = q then φ(p)=φ(q), by Corollary 5.2.5, and p ′ = R(φ(p)) = R(φ(q)) = q ′ .I fp = q then by case a.1, p and q are a complementary pair of type 1. Therefore, by Proposition

5.2.7, p ′ = φ R (p)=φ R (q)=q ′ .
Therefore the lemma is true when n =2 r + c with 0 ≤ c<2 r , and therefore for all n.

Thus, only subpermutations of length 2 r +1 can be a complementary pair of type 1, and we have the following corollary.

Corollary 5.2.13 If n =2 r , for r ≥ 1, then for any subpermutations p = π T [a, a + n]

and q = π T [b, b + n] (a) φ L (p)=φ L (q) if and only if p = q. (b) φ R (p)=φ R (q) if
and only if p = q.

(c) φ M (p)=φ M (q) if and only if p = q.

Proof It should be clear in each case that if p = q then φ L (p)=φ L (q) φ R (p)=φ R (q) φ M (p)=φ M (q). Suppose φ L (p)=φ L (q).I fp = q, by Corollary 5.2.11 p and q are a complementary pair of type 1. By Proposition 5.2.12, p and q are cannot be complementary pair of type 1, therefore p = q.

A similar argument will show if φ R (p)=φ R (q) then p = q, and if φ M (p)=φ M (q) then p = q.

We now consider the number of factors u of T of length 2 r that have two subpermutations which form a complementary pair of type 1. Lemma 5.2.14 Let n =2 r or 2 r +1, with r ≥ 2. Then there are exactly 2 r factors u of T of length n so that there exist subpermutations p = π T [a, a + n] and q = π T [b, b + n] with form u and p = q.

Proof It can be readily veried by looking at the subpermutations in Appendix A that the lemma is true for r =2 . So there are 4 factors u of T of length 4 with two distinct subpermutations of length 5 with form u, and there are 4 factors v of T of length 5 with two distinct subpermutations of length 6 with form v.

Suppose r ≥ 2 and that the lemma is true for r. We now show the lemma is true for r +1. Let Γ be the set of factors of length 2 r , |Γ| =2 r , so that for u ∈ Γ there are subpermutations p and q with form u so that p = q, hence, by Proposition 5.2.12, p and q are a complementary pair of type 1. Let Γ ′ be the set of factors of length 2 r+1 so that if u ∈ Γ ′ then there exist subpermutations p and q with form u so that p = q. Let ∆ be the set of factors of length 2 r +1, |∆| =2 r , so that for v ∈ ∆ there are subpermutations p and q with form v so that p = q, hence, by Proposition 5.2.12, p and q are a complementary pair of type 2. Let ∆ ′ be the set of factors of length 2 r+1 +1 so that if v ∈ ∆ ′ then there exist subpermutations p and q with form v so that p = q.

The sizes of Γ ′ and ∆ ′ will be considered in two cases.

Case Γ ′ : Any factor in Γ ′ will either start in an even position or an odd position, call these sets of factors Γ ′ ev and Γ ′ odd and hence

Γ ′ =Γ ′ ev ∪ Γ ′ odd .
Since the factors are of length 2 r+1 ≥ 8, for any factors s ∈ Γ ′ ev and t ∈ Γ ′ odd , s = t,t h u s

Γ ′ ev ∩ Γ ′ odd = ∅.
There will be two subcases to establish the size of Γ ′ , rst by showing the size of Γ ′ ev and then the size of Γ ′ odd .

Subcase Γ ′ ev : Fo r u ∈ Γ there are subpermutations p and q of π T of length 2 r +1, so that p = q. By Proposition 5.2.12, p and q are a complementary pair of type 1. By Proposition 5.2.7 φ(p) and φ(q) are a complementary pair of type 1, so φ(p) = φ(q) and they both have form µ T (u). Therefore for each u ∈ Γ, µ T (u) ∈ Γ ′ ev . Hence |Γ ′ ev |≥|Γ| .

Suppose that u ′ ∈ Γ ′ ev , so there are subpermutations p ′ = π T [2a, 2a +2 r+1 ] and q ′ = π T [2b, 2b +2 r+1 ] with form u ′ = T [2a, 2a +2 r+1 -1] = T [2b, 2b +2 r+1 -1], so that p ′ = q ′ . Hence there exist subpermutations p and q so that φ(p)=p ′ and φ(q)=q ′ .A s in case a.1 of Proposition 5.2.12, p and q are a complementary pair of type 1 with form u where µ T (u)=u ′ . Thus for each u ′ ∈ Γ ′ ev , there is some u ∈ Γ so that µ T (u)=u ′ . Hence

|Γ ′ ev |≤|Γ| . Therefore |Γ ′ ev | = |Γ|.
Subcase Γ ′ odd : For u ∈ ∆, u = T [a, a +2 r ] , there are subpermutations p and q of π T of length 2 r +2, so that p = q. By Proposition 5.2.12, p and q are a complementary pair of type 2. By Proposition 5.2.7, φ(p) and φ(q) are a complementary pair of type 3 with form µ T (u)=T [2a, 2a +2 r+1 +1] and φ M (p) and φ M (q) are a complementary pair of type 1, so φ M (p) = φ M (q) and they both have form

T [2a +1, 2a +2 r+1 ]. Therefore for each T [a, a +2 r ] ∈ ∆, T [2a +1, 2a +2 r+1 ] ∈ Γ ′ odd . Hence |Γ ′ odd |≥|∆| .
Suppose that u ′ ∈ Γ ′ odd , so there are subpermutations

p ′ = π T [2a +1, 2a +2 r+1 +1] and q ′ = π T [2b +1, 2b +2 r+1 +1] with form u ′ = T [2a +1, 2a +2 r+1 ]=T [2b +1, 2b +2 r+1 ],
so that p ′ = q ′ . Hence there exist subpermutations p and q so that φ M (p)=p ′ and φ M (q)=q ′ . As in case a.4 of Proposition 5.2.12, p and q are a complementary pair of type 2 with form T [a, a +2 r ]. Thus for each u ′ ∈ Γ ′ odd , there is some

T [a, a +2 r ] ∈ ∆ so that u ′ = T [2a +1, 2a +2 r+1 ]. Hence |Γ ′ odd |≤|∆| . Therefore |Γ ′ odd | = |∆|.
Therefore

|Γ ′ | = |Γ ′ ev | + |Γ ′ odd | = |Γ| + |∆| =2 r +2 r =2 r+1 .
Case ∆ ′ : Any factor in ∆ ′ will either start in an even position or an odd position, call these sets of factors ∆ ′ ev and ∆ ′ odd and hence

∆ ′ =∆ ′ ev ∪ ∆ ′ odd .
Since the factors are of length 2 r+1 +1≥ 8, for any factors s ∈ ∆ ′ ev and t ∈ ∆ ′ odd , s = t, thus

∆ ′ ev ∩ ∆ ′ odd = ∅.
There will be two subcases to establish the size of ∆ ′ , rst by showing the size of ∆ ′ ev and then the size of ∆ ′ odd .

Subcase ∆ ′ ev : For u ∈ ∆, u = T [a, a +2 r ] , there are subpermutations p and q of π T of length 2 r +2, so that p = q. By Proposition 5.2.12, p and q are a complementary pair of type 2. By Proposition 5.2.7, φ(p) and φ(q) are a complementary pair of type 3 with form µ T (u)=T [2a, 2a +2 r+1 +1] and φ L (p) and φ L (q) are a complementary pair of type 2, so φ L (p) = φ L (q) and they both have form T [2a, 2a +2 r+1 ]. Therefore for each

T [a, a +2 r ] ∈ ∆, T [2a, 2a +2 r+1 ] ∈ ∆ ′ ev . Hence |∆ ′ ev |≥|∆| .
is a surjective map, but it is not injective because n +1=2 r +1. By a similar argument to above we can see

Perm T odd (2n) = Perm T (n +1) -2 r . Therefore τ T (2n)=( Perm T (n +1) -2 r )+( Perm T (n +1) -2 r )=2(τ T (n +1)-2 r ).
Case n ≥ 3: It can be readily veried by looking at the subpermutations in Appendix A that the proposition is true for n =3 . Suppose n ≥ 3 and the lemma is true for n, and we show that the lemma is true for n +1. Since 2(n +1)+1, 2(n +1) / ∈ {2 r -1, 2 r |r ≥ 2} for any r,w eh a v en +2,n+3 / ∈{ 2 r +1|r ≥ 2}. So for 2(n +1) and 2(n +1)+1each of the maps

φ :P erm T (n +2) → Perm T ev (2(n +1)+1) φ L :P erm T (n +2) → Perm T ev (2(n +1)) φ R :P erm T (n +2) → Perm T odd (2(n +1)) φ M :P erm T (n +3) → Perm T odd (2(n +1)+1)
are all bijections. Therefore:

Perm T ev (2(n +1)+1) = Perm T (n +2) = τ T (n +2) Perm T ev (2(n +1)) = Perm T (n +2) = τ T (n +2) Perm T odd (2(n +1)) = Perm T (n +2) = τ T (n +2) Perm T odd (2(n +1)+1) = Perm T (n +3) = τ T (n +3). So: τ T (2(n +1))= Perm T ev (2(n +1)) + Perm T odd (2(n +1)) =2(τ T (n +2)) τ T (2(n +1)+1)= Perm T ev (2(n +1)+1) + Perm T odd (2(n +1)+1) = τ T (n +2)+τ T (n +3).
Theorem 5.2.16 For any n ≥ 6, where n =2 r + p with 0 <p≤ 2 r ,

τ T (n)=2(2 r+1 + p -2).
Proof The proof will be done by induction on n. The above formula can be readily veried by looking at the subpermutations listed in Appendix A for n ≤ 9. Suppose the theorem is true for all values less than or equal to 2n.

Case 2n +1=2 r -1: Suppose 2n +1=2 r -1=2 r-1 +2 r-1 -1, then n =2 r-1 -1, so n +1=2 r-1 =2 r-2 +2 r-2 and n +2=2 r-1 +1. Thus:

τ T (n +1)=2(2 r-2+1 +2 r-2 -2) = 2(2 r-1 +2 r-2 -2) = 2(3(2 r-2 ) -2) τ T (n +2)=2(2 r-1+1 +1-2) = 2(2 r -1)
From Proposition 5.2.15:

τ T (2n + 1) = 2(3(2 r-2 ) -2) + 2(2 r -1) -2 r-1 = 2(3(2 r-2 ) -2+2 r -1 -2 r-2 ) = 2(2(2 r-2 )+2 r -3) = 2(2 r +(2 r-1 -1) -2) Case 2n +2=2(n +1)=2 r : Suppose 2n +2=2(n +1)=2 r =2 r-1 +2 r-1 : τ T (2(n + 1)) = 2(2(2 r -1) -2 r-1 )=2(2 r+1 -2 r-1 -2) = 2(3(2 r-1 ) -2) = 2(2(2 r-1 )+2 r-1 -2) = 2(2 r +2 r-1 -2)
Case else: Suppose 2n+1 = 2 r +p, 2n+2 = 2(n+1) = 2 r +p+1, and 0 <p<2 r -1.

Since 2n +1 = 2 r + p is odd, p is odd. So n =2 r-1 + p-1 2 , n +1 = 2 r-1 + p+1 2 ,
and

n +2=2 r-1 + p+3
2 . Thus:

τ T (n +1)=2(2 r + p +1 2 -2) τ T (n +2)=2(2 r + p +3 2 -2).
From Proposition 5.2.15:

τ T (2n +1)=2(2 r + p +1 2 -2) + 2(2 r + p +3 2 -2) =2(2 r +2 r + p +1 2 + p +3 2 -2 -2) = 2(2 r+1 + 2p +4 2 -4) =2(2 r+1 + p -2) τ T (2(n + 1)) = 2(2(2 r + p +3 2 -2)) = 2(2 r+1 + p +3-4) =2(2 r+1 +(p +1)-2).
Therefore, for all n ≥ 6, where n =2 r + p with 0 <p≤ 2 r , τ T (n)=2(2 r+1 + p -2)

Permutation Complexity and the Doubling Map

Recall the doubling map, d,o nA dened by d : a → aa for each a ∈A. Let A = {0, 1}, and ω ∈A N be an aperiodic uniformly recurrent word. In this section we will investigate permutation complexity of d(ω). We will give an upper bound for the permutation complexity of d(ω) by looking at how the doubling map alters the subpermutations of π ω . After some general results are established we will give a method to calculate the permutation complexity of d(s), where s is a Sturmian word, and give the permutation complexity function of d(T ), where T is the Thue-Morse word.

Uniformly Recurrent Words

Let ω be an aperiodic uniformly recurrent word over {0, 1}, and π ω be the innite permutation associated with ω using the natural order on the alphabet. We would like to describe the innite permutation associated with d(ω), the image of ω under the doubling map. If u = ω[a, a + n -1] is a factor of ω of length n, it is helpful to note d(u)=d(ω)[2a, 2a +2n -1] will be a factor of d(ω) of length 2n.

Since ω is a uniformly recurrent word it can not have arbitrarily long strings of contiguous 0 or 1. Thus there are k 0 ,k 1 ∈ N so that

10 k 0 1 01 k 1 0
are factors of ω, but 0 k 0 +1 and 1 k 1 +1 are not. We then dene the following class of words:

C 0 =0 k 0 C 1 =0 k 0 -1 1 C 2 =0 k 0 -2 1 . . . C k 0 -1 =01 C k 0 =10 . . . C k 0 +k 1 -2 =1 k 1 -1 0 C k 0 +k 1 -1 =1 k 1 .
For each i ∈ N, ω[i]=ω i ω i+1 ••• can have exactly one the above classes of words as a prex. It should be clear (c) Suppose ω a =0and ω b =1 ,soi<j. Since ω[a] starts with 0 and ω[b] starts with 1, ω[a] has 0 k 0 -i 1 as a prex and ω[b] has 1 j-k 0 +1 0 as a prex. Thus d(ω)[2a] has 0 2(k 0 -i) 1 as a prex and d(ω)[2b] has 1 2(j-k 0 )+2 0 as a prex, and the result follows from

C 0 <C 1 < ••• <C k 0 +k 1 -1 ,
0 2(k 0 -i) 1 < 0 2(k 0 -i)-1 1 < 1 2(j-k 0 )+1 0 < 1 2(j-k 0 )+2 0. (d) Suppose ω a = ω b =1and i<j. Since both ω[a]
and ω[b] start with 1, ω[a] has 1 i-k 0 +1 0 as a prex and ω[b] has 1 j-k 0 +1 0 as a prex. Thus d(ω)[2a] has 1 2(i-k 0 )+2 0 as a prex and d(ω)[2b] has 1 2(j-k 0 )+2 0 as a prex, and the result follows from

1 2(i-k 0 )+1 0 < 1 2(i-k 0 )+2 0 < 1 2(j-k 0 )+1 0 < 1 2(j-k 0 )+2 0. (e) Suppose ω a = ω b =1and i = j. Since both ω[a] and ω[b] start with 1, ω[a] and ω[b] have 1 i-k 0 +1 0 as a prex. Thus d(ω)[2a] and d(ω)[2b] have 1 2(i-k 0 )+2 0 as a prex. Since ω[a] <ω[b]
is given and d is an order preserving map

d(ω)[2a] <d(ω)[2b] d(ω)[2a +1]<d(ω)[2b +1] 1 2(i-k 0 )+1 0 < 1 2(i-k 0 )+2 0. Thus d(ω)[2a +1]<d(ω)[2b +1]<d(ω)[2a] <d(ω)[2b].
Because ω is uniformly recurrent, for k =sup{k 0 ,k 1 }, there is an N k so any factor u of ω of length n ≥ N k will contain all factors of ω of length k as a subword, and thus u will have C j as a subword for each j.

One note about the factors of d(ω).F orn ≥ N k and two factors u = d(ω)[2x, 2x +2n] and v = d(ω)[2y +1, 2y +2n +1] of d(ω), then u = v. This is because a prex of u will begin with an even number of one letter (either 0 2m 1 or 1 2m 0 for some m), and a prex of v will begin with an odd number of one letter (either 0 2m+1 1 or 1 2m+1 0 for some m).

Let u be a factor of ω of length n ≥ N k . There is an a so that u = ω[a, a + n -1]. For each 0 ≤ i ≤ n -1 there is one j so that ω[a + i] has C j as a prex. In the factor ω[a, a + n + k -2] of length n + k -1, we will know explicitly which C j is a prex of the shift ω[a + i] for each 0 ≤ i ≤ n -1. Let p = π ω [a, a + n + k -1] be a subpermutation of π ω of length n + k. The factor ω[a, a + n + k -2] of length n + k -1 is the form of p, and has u as a prex.

For each j ∈{0, 1,...,k 0 + k 1 -1} dene

γ j = { i | 0 ≤ i ≤ n -1 and C j is a prex of ω[a + i] } . So |γ 0 | + |γ 1 | + •••+ |γ k 0 +k 1 -1 | = n and γ i ∩ γ j = ∅ for i = j. For each j ∈{0, 1,...,k 0 + k 1 -1} dene S j = j i=0 |γ i |
and say S -1 =0. Since |u|≥N k , each γ j is not empty, so |γ j |≥1 for each j. We can see d(u)=d(ω)[2a, 2a +2n -1], and let p ′ be the subpermutation p ′ = π d(ω) [2a, 2a +2n -1]. Using Lemma 5.3.1 and the size of each of the γ j sets we can determine the values of p ′ based on the values of L k (p), the k-left restriction of p.

Proposition 5.3.2 Let ω, u, p, and p ′ be as above. For each 0

≤ i ≤ n -1, there is a j so ω[a + i] has C j as a prex. (a) If p i <p i+1 then p ′ 2i = L k (p) i + S j-1 and p ′ 2i+1 = L k (p) i + S j (b) If p i >p i+1 then p ′ 2i = L k (p) i + S j and p ′ 2i+1 = L k (p) i + S j-1 Proof Let 0 ≤ i ≤ n -1 and suppose that C j is a prex of ω[a + i] for some 0 ≤ j ≤ k 0 + k 1 -1.
(a) Suppose p i <p i+1 , and so ω a+i = u i =0.

For p ′ 2i , there are L k (p) i -1 many h ∈{ 0, 1,...,n -1} so that p i >p h , and thus L k (p) i -1 many h so that p ′ 2i >p ′ 2h . Likewise there are n -L k (p) i many h so that

p ′ 2i <p ′ 2h . By Lemma 5.3.1 if m<jand h ∈ γ m then p ′ 2i >p ′
2h+1 , and if m ≥ j and h ∈ γ m then p ′ 2i <p ′ 2h+1 . Thus there are S j-1 many h so that p ′ 2i >p ′ 2h+1 , and likewise there are n-S j-1 many h so that p ′ 2i <p ′ 2h+1 . Therefore there are exactly L k (p) i -1+S j-1 many h so that p ′ 2i >p ′ h ,so

p ′ 2i = L k (p) i -1+S j-1 +1=L k (p) i + S j-1 .
For 

L k (p) i -1+S j-1 many h so that p ′ 2i >p ′ h ,s o p ′ 2i+1 = L k (p) i -1+S j-1 +1=L k (p) i + S j-1 .
The following corollaries show some nice properties that follow from Proposition 5.3.2. The rst corollary (5.3.3) gives an example of when distinct subpermutations of π ω will lead to the same subpermutation of π d(ω) . The next corollary (5.3.4) shows when two subpermutations of π ω will denitely lead to distinct subpermutations of π d(ω) .

Corollary 5.3.3 Let ω be as dened above.

If π ω [a, a + n + k -1] and π ω [b, b + n + k -1], a = b, are subpermutations of π ω where π ω [a, a + n -1] = π ω [b, b + n -1]
and for each 0 ≤ i ≤ n -1, there is some j so that both ω[a + i] and ω[b + i] have C j as a prex. Then

π d(ω) [2a, 2a +2n -1] = π d(ω) [2b, 2b +2n -1]. Proof Let p = π ω [a, a + n + k -1] and q = π ω [b, b + n + k -1]
, a = b, with p and q as in the hypothesis. For each 0

≤ i ≤ n -1, L k (p) i = L k (q) i and ω[a + i] and ω[b + i] have C j as a prex for some j,s op ′ 2i = q ′ 2i and p ′ 2i+1 = q ′
2i+1 by Proposition 5.3.2, and p ′ = q ′ . Corollary 5.3.4 Let ω be as dened above. If p = π ω [a, a + n + k -1] and q = π ω [a, a + n + k -1] are subpermutations of π ω where one of the following conditions is true

(a) ω[a, a + n -1] = ω[b, b + n -1] (b) L k (p) = L k (q) then p ′ = q ′ . Proof (a) Since ω[a, a + n -1] = ω[b, b + n -1],
then there is an 0 ≤ i ≤ n -1 so that, without loss of generality, ω a+i =0and ω b+i =1 .T h u sd(ω)[2a +2i, 2a +2i +1]=00 and d(ω)[2b +2i, 2b +2i +1]=11so p ′ 2i <p ′ 2i+1 and q ′ 2i >q ′ 2i+1 , and p ′ = q ′ . (b) Since L k (p) = L k (q), then there are 0 ≤ i, j ≤ n -1, i = j, so that, without loss of generality, L k (p) i <L k (p) j and L k (q) i >L k (q) j ,s oω[a + i] <ω [a + j] and ω

[b + i] >ω[b + j].T h u sd(ω)[2a +2i] <d(ω)[2a +2j] and d(ω)[2b +2i] >d(ω)[2b +2j] so p ′ 2i <p ′ 2j and q ′ 2i >q ′ 2j , and p ′ = q ′ . Fix a subpermutation p = π ω [a, a + n + k -1], and let p ′ = π d(ω) [2a, 2a +2n -1].
The terms of p ′ can be dened using the method given in Proposition 5.3.2. Let q = π ω [b, b + n + k -1], b = a, be a subpermutation of π ω and let q ′ = π d(ω) [2b, 2b +2n -1] as in Proposition 5.3.2. The following lemma shows that if p = q we know p ′ = q ′ , but the converse of this is not necessarily true. The objective here is using the idea of p ′ to dene a map from the set of subpermutations of π ω to the set of subpermutations of π d(ω) , and this map will be well-dened by Proposition 5.3.2.

Lemma 5.3.5 If p = q, then p ′ = q ′ . Proof Suppose that p = q.S op i = q i and thus

L k (p) i = L k (q) i for each 0 ≤ i ≤ n -1.
Since p = q, p and q have the same form, so ω[a, a

+ n + k -1] = ω[b, b + n + k -1] and for each 0 ≤ i ≤ n -1 if ω[a + i]
has C j as a prex, for some j, then ω[b + i] has C j as a prex as well. Then by Proposition 5.3.2 it should be clear that for each 0 ≤ i ≤ 2n -1 we have p ′ i = q ′ i , and thus p ′ = q ′ . Corollary 5.3.6 Let ω be as dened above.

If π ω [a, a + n + k -1] = π ω [b, b + n + k -1] for some a = b, then π d(ω) [2a, 2a +2n -1] = π d(ω) [2b, 2b +2n -1].
Thus there is a well-dened function from the set of subpermutations of π ω to the set of subpermutations of π d(ω) . Let p = π ω [a, a + n + k -1], and dene δ(p)=p ′ = π d(ω) [2a, 2a +2n -1] using the formula in Proposition 5.3.2. Thus we have the map

δ :P erm ω (n + k) → Perm d(ω) (2n)

Creating δ(p) From a Table

As in Section 5.2.2, given a subpermutation p we can create δ(p) by using a table. The table created in Section 5.2.2 used properties of the Thue-Morse morphism, namely the behavior described in Lemma 5.2.2. In the table representing the behavior of δ, the properties of the doubling map d will be considered and the behavior described in Lemma 5.3.1 and Proposition 5.3.2 will be used.

We will again construct the table by using an example. In this example we will use a subpermutation p of π T and nd δ(p). When we calculate δ(p) we are interested in the C j classes. In the case of the Thue-Morse word there will be 4 of these classes, namely

C 0 =00, C 1 =01, C 2 =10, C 3 =11, with k =2.
Let u = T [9, 15] = 0010110 which is a factor of length 7, we will consider the subpermutation From the form of p we see γ 0 = {0}, γ 1 = {1, 3, 6}, γ 2 = {2, 5}, and γ 3 = {4}.T h u s S 0 =1, S 1 =4, S 2 =6, and S 3 =7. Let p ′ = δ(p)=π T [START_REF] Fon-Der-Flaass | On periodicity and low complexity of innite permutations[END_REF][START_REF] De Luca | Some combinatorial properties of the Thue-Morse sequence and a problem in semigroups[END_REF], so by Proposition 5.2.3 p ′ =( 12471 21 0581 41 31 1936 ) .

The table we will create will have 3 columns. In this example there will be an additional column to the left of the table listing the 4 C j classes. In the rst column of the table we list all the values in the subpermutation L 2 (p), because k =2, from least to greatest.

We will add a double horizontal line just before the least value which corresponds to a1i nu, and a single horizontal line between the values which correspond to dierent C j classes. There will be S 0 many shifts within u which have C 0 as a prex so the rst horizontal line will be placed after the number S 0 . Then there will be S 1 -S 0 many shifts within u which have C 1 as a prex, so the next horizontal line will be placed after S 1 . Continue in this fashion and place a horizontal line after S j for each j. The double horizontal line will be placed after

S k 0 -1 , because if L 2 (p) i ≤ S k 0 -1 then u i =0 , and if L 2 (p) i >S k 0 -1 then u i =1.
In this example, we place a horizontal line after S 0 =1and S 2 =6, and the double horizontal line after S 1 =4, see Figure 1.

We will ll in the table by the C i classes. We start witha1i nt h et o pr o wo ft h e second column, and then increasing by 1 for the following columns increase by 1 until we reach the rst horizontal line. The next number will go in the top of the third column, and increase by 1 for the following rows until we reach the rst horizontal line. In this example there is only one element in γ 0 , see Figure 2. Fig. 2 The next number will go in the top of the second column for the C 1 class, and increase by 1 for the following rows until we reach the next horizontal line. The next number will go in the top of the third column for the C 1 class and increase by 1 for the following rows until we reach the next horizontal line. We then continue in this fashion for the remaining C j classes which begin with a 0, or for the classes above the double horizontal line. In this example there are 2 classes (namely C 0 and C 1 ) above the double horizontal line, see Figure 3.

The numbers below the double line correspond to classes which begin with a 1, so the values in the third row will be less than the values in the second row. For these classes we start in the top row of the third column and then move to the second row, which is a slight adjustment from the above steps. Continuing in this fashion we get the table in Figure 4. Fig. 4 Now that we have the completed table in Figure 4 we can see how δ will alter the permutation p. We have L 2 (p) 1 =3 ,s op ′ 2 =4and p ′ 3 =7 . From the table in Figure 4, when we nd the row witha3intherst column we see the next elements in the row are 93 4 and 7. This is exactly the behavior described in Lemma 5.3.1 and Proposition 5.3.2. Thus to create p ′ from the table we nd the row which has the value L 2 (p) i in the rst column, and then p ′ 2i is the value in the second column and p ′ 2i+1 is the value in the third column. So

L 2 (p) 0 =1 = ⇒ p ′ 0 =1 p ′ 1 =2 L 2 (p) 1 =3 = ⇒ p ′ 2 =4 p ′ 3 =7 L 2 (p) 2 =6 = ⇒ p ′ 4 =12 p ′ 5 =10 . . . L 2 (p) 6 =2 = ⇒ p ′ 12 =3 p ′ 13 =6
which is readily veried to be the same as p ′ listed above.

Injective Restrictions

Not all subpermutations of π d(ω) will be the image under δ of another subpermutation. Let n>2N k and a be natural numbers. Then n and a can be either even or odd, and for the subpermutation π d(ω) [a, a + n -1], there exist natural numbers b and m so that one of 4 cases hold: 

d(ω) (n)=P erm d(ω) ev (n) ∪ Perm d(ω) odd (n),
where

Perm d(ω) ev (n) ∩ Perm d(ω) odd (n)=∅.
Thus for n ≥ N k , Perm d(ω) ev (2n) is the set of all subpermutations of length 2n starting at an even position. So for π d(ω) [2a, 2a +2 n -1], we have the subpermutation p = π ω [a, a + n + k -1], and δ(p)=p ′ = π d(ω) [2a, 2a +2n -1]. Thus the map

δ :P erm ω (n + k) → Perm d(ω) ev (2n) is a surjective map. For p = π ω [a, a + n + k -1],
we can then dene three additional maps by looking at the left, right, and middle restrictions of δ(p)=p ′ . These maps are

δ L :P erm ω (n + k) → Perm d(ω) ev (2n -1) δ R :P erm ω (n + k) → Perm d(ω) odd (2n -1) δ M :P erm ω (n + k) → Perm d(ω) odd (2n -2)
and are dened by

δ L (p)=L(δ(p)) = L(p ′ ) δ R (p)=R(δ(p)) = R(p ′ ) δ M (p)=M (δ(p)) = M (p ′ )
It can be readily veried that these three maps are surjective. To see an example of this, consider the map δ L , and let π d(ω) [2b, 2b +2n -2] be a subpermutation of π d(ω) in Perm d(ω) ev (2n -1). Then for the subpermutation p

= π ω [b, b + n + k -1], δ L (p)=L(p ′ )= π d(ω) [2b, 2b +2n -2]
so δ L is surjective. A similar argument will show that δ R and δ M are also surjective. Lemma 5.3.7 For n ≥ N k :

τ d(ω) (2n -1) ≤ 2(τ ω (n + k)) τ d(ω) (2n) ≤ τ ω (n + k)+τ ω (n + k +1) Proof Let n ≥ N k .W eh a v e : Perm d(ω) ev (2n -1) ≤|Perm ω (n + k)| Perm d(ω) odd (2n -1) ≤|Perm ω (n + k)| Perm d(ω) ev (2n) ≤|Perm ω (n + k)| Perm d(ω) odd (2n) ≤|Perm ω (n + k +1)|
since the maps δ, δ L , δ R ,a n dδ M are all surjective. Thus we have the following inequalities:

τ d(ω) (2n -1) = Perm d(ω) (2n -1) = Perm d(ω) ev (2n -1) + Perm d(ω) odd (2n -1) ≤|Perm ω (n + k)| + |Perm ω (n + k)| =2(τ ω (n + k)) τ d(ω) (2n)= Perm d(ω) (2n) = Perm d(ω) ev (2n) + Perm d(ω) odd (2n) ≤|Perm ω (n + k)| + |Perm ω (n + k +1)| = τ ω (n + k)+τ ω (n + k +1)
The maps δ, δ L , δ R , and δ M can be, but are not necessarily, injective maps. To see this, consider the following example. For this example we will use the Thue-Morse word T , dened in Section 5.2, and subpermutations of π T , the innite permutation associated with T . There will be 4 classes of C j words for the Thue-Morse word (namely C 0 =0 0 , C 1 =01, C 2 =10, and C 3 =11), and any factor of length n ≥ 9 will contain each of these 4 classes. The following example will use subpermutations of length 9, with n =7and k =2 , to keep the example subpermutations short. Examples like this (as in Corollary 5.3.3) can be found for subpermutations of π T of length 2 r +1 for any r ≥ 3. [START_REF] Cassaigne | Imbalances in Arnoux-Rauzy sequences[END_REF][START_REF] Glen | Episturmian words: a survey[END_REF]=(597261384).

p = π T [0, 8]=(497261385) q = π T
So p = q and both of these subpermutations have form T [0, 7] = T [START_REF] Cassaigne | Imbalances in Arnoux-Rauzy sequences[END_REF][START_REF] Fraenkel | Complementing and exactly covering sequences[END_REF] = 01101001. Let p ′ = δ(p)=π d(T ) [0, 13] and q ′ = δ(q)=π d(T ) [START_REF] Justin | Episturmian words and episturmian morphisms[END_REF][START_REF] Morse | Symbolic dynamics II: Sturmian trajectories[END_REF]. Then by Proposition 5.3.2 we see:

p ′ =(5814131210361191247)=q ′ .
So δ(p)=δ(q) which leads to δ L (p)=δ L (q), δ R (p)=δ R (q), and δ M (p)=δ M (q).T h u s these 4 maps are not injective in general and the values in Lemma 5.3.7 are only an upper bound. If δ is an injective map it implies δ R and δ L are both injective, as shown by the following lemma. Lemma 5.3.8 For any aperiodic uniformly recurrent word ω, let p, q, p ′ , and q ′ be as above. Then (a) p ′ = q ′ if and only if R(p ′ )=R(q ′ ).

(b) p

′ = q ′ if and only if L(p ′ )=L(q ′ ). Proof Let p = π ω [a, a + n + k -1], q = π ω [b, b + n + k -1], p ′ = δ(p), and q ′ = δ(q).
For both of these cases it should be clear that if p ′ = q ′ then each of R(p ′ )=R(q ′ ) and L(p ′ )=L(q ′ ). Also recall that n>N k . Also note since u = ω[a, a + n -1] and v = ω[b, b + n -1], d(u)=d(ω)[2a, 2a +2n -1] and d(v)=d(ω)[2b, 2b +2n -1] so for each 0 ≤ i ≤ n -1 we have d(u) 2i = d(u) 2i+1 = u i and d(v) 2i = d(v) 2i+1 = v i We will use the following notation U j = { i | 0 ≤ i ≤ n -1 and ω[a + i] has C j as a prex. } V j = { i | 0 ≤ i ≤ n -1 and ω[b + i] has C j as a prex. } and due to the length of u and v we know |U j |≥1 and |V j |≥1 for each j.

(a) Suppose p ′ = q ′ , and assume R(p ′ )=R(q ′ ). We will need the following claim about R(p ′ ) and R(q ′ ) before we proceed. Claim 5.3.9 If R(p ′ )=R(q ′ ) then d(u)=d(v).

Proof Suppose R(p ′ )=R(q ′ ). For each 0 ≤ i ≤ 2n -3, R(p ′ ) i <R (p ′ ) i+1 if and only if R(q ′ ) i <R (q ′ ) i+1 and thus For each pair of real numbers i = j where 0 ≤ i, j ≤ 2n -2, R(p ′ ) i <R(p ′ ) j ⇐⇒ R(q ′ ) i <R(q ′ ) j and thus p ′ i+1 <p ′ j+1 ⇐⇒ q ′ i+1 <q ′ j+1 .

Since p ′ = q ′ there must be some 1 ≤ i ≤ 2n -1 so, without loss of generality,

p ′ 0 <p ′ i and q ′ 0 >q ′ i .
There is an α ∈{ 0, 1} so d(u) 1 = d(v) 1 = α, and so d(u) 0 = d(v) 0 = α.I fd(u) i = d(v) i = α we have p ′ 0 <p ′ i if and only if q ′ 0 <q ′ i , which would be a contradiction. So 

p ′ 2n-1 <p ′ i =⇒ p ′ 2n-2 <p ′ i-1 q ′ 2n-1 >q ′ i =⇒ q ′ 2n-1 >q ′ i-1
which contradicts the assumption L(p ′ )=L(q ′ ).S od(u) i-1 = d(v) i-1 = α,s ayd(u) i-1 = d(v) i-1 = β.T h u sd(u)[i -1,i+1]=βαα and i is an even number, so rather than using i we will use 2c. Now we will consider when α =0and when α =1. 2n-2 <q ′ 2n-1 , and since L(p ′ )=L(q ′ ) we see Thus by Lemma 5.3.1, we know there are i<jso ω[a + n -1] has C i as a prex and ω[a + c] has C j as a prex. Since ω[b + n -1] also begins with 0 and q ′ 2n-1 >q ′ 2c , the order of q ′ 2c , q ′ 2c+1 , q ′ 2n-2 , and q ′ 2n-2 must be as follows by Lemma 5.3.1 q ′ 2n-2 <q ′ 2c <q ′ 2n-1 <q ′ 2c+1 .

p ′ 2n-2 = L(p ′ ) 2n-2 = L(q ′ ) 2n-2 = q ′ 2n-2 , so p ′ 2n-2 = q ′ 2n-2 . Since p ′
So we have both ω[a + n -1] and ω[a + c] have C j as a prex. If j>i+1, there will be some l so that ω[a + l] and ω[b + l] each have C i+1 as a prex which is totally contained in u and v. Thus we would have p l <p n-1 and q l >q n-1 and L k (p) = L k (q), therefore j = i +1.

Since ω[a + n -1] has C i as a prex for each l ∈ U i+1 we know p n-1 <p l , and so q n-1 <q l since L k (p)=L k (q). Likewise, since ω[b + n -1] has C i+1 as a prex, for each l ∈ V i we know q n-1 >q l and so p n-1 >p l .T h u sp n-1 is the greatest of all occurrences of C i and q n-1 is the least of all occurrences of C i+1 .S oL k (p) n-1 = L k (q) n-1 and we see

L k (p) n-1 = |U 0 | + •••+ |U i | L k (q) n-1 = |V 0 | + •••+ |V i | +1.
Now we investigate how the size of U 0 , ..., U i are related to the size of V 0 , ..., V i . Since u = v, and these words have 0 as a sux, there is some m ≥ 1 so that 10 m is a sux of both u and v. Thus for each 0 ≤ h ≤ nm -1, there is some j so ω[a + h] and ω[b + h] have C j as a prex, so h ∈ U j and h ∈ V j . Moreover, this prex is totally contained within u and v, respectively, because ω[a + nm -1] and ω[b + nm -1] begin with the class 10.F ornm ≤ h ≤ n -1 we have

n -m ∈ U i-m+1 ,n -m +1∈ U i-m+2 , ••• n -1 ∈ U i n -m ∈ V i-m+2 ,n -m +1∈ V i-m+3 , ••• n -1 ∈ V i+1 .
For example, if m =1we have n -1 ∈ U i and n -1 ∈ V i+1 ,so 

|U i | = |V i | +1 |U i+1 | = |V i+1 |-
p ′ 2n-2 = L k (p) n-1 + |U 0 | + •••+ |U i-1 | =2(|U 0 | + •••+ |U i-1 |)+|U i | q ′ 2n-2 = L k (q) n-1 + |V 0 | + •••+ |V i-1 | + |V i | =2(|V 0 | + •••+ |V i-1 | + |V i |)+1 =2(|U 0 | + •••+ |U i-1 | + |U i |-1)+1=2(|U 0 | + •••+ |U i-1 |)+|U i | + |U i |-1 ≥ p ′ 2n-2 +2-1=p ′ 2n-2 +1
and we see p ′ 2n-2 <q ′ 2n-2 . Therefore we have a contradiction, and L(p ′ )=L(q ′ ). So we have both ω[a + n -1] and ω[a + c] have C i as a prex. If j>i+1, there will be some l so that ω[a + l] and ω[b + l] each have C i+1 as a prex which is totally contained in u and v. Thus we would have p l >p n-1 and q l <q n-1 and L k (p) = L k (q), therefore j = i +1.

Since ω[a + n -1] has C i as a prex for each l ∈ U i+1 we know p n-1 <p l ,a n ds o q n-1 <q l since L k (p)=L k (q). Likewise, since ω[b + n -1] has C i+1 as a prex, for each l ∈ V i we know q n-1 >q l and so p n-1 >p l .T h u sp n-1 is the greatest of all occurrences of C i and q n-1 is the least of all occurrences of C i+1 .S oL k (p) n-1 = L k (q) n-1 and we see

L k (p) n-1 = |U 0 | + •••+ |U i | L k (q) n-1 = |V 0 | + •••+ |V i | +1.
Now we investigate how the size of U 0 , ..., U i are related to the size of V 0 , ..., V i . Since u = v, and these words have 1 as a sux, there is some m ≥ 1 so that 01 m is a sux of both u and v. Thus for each 0 ≤ h ≤ nm -1, there is some j so ω[a + h] and ω[b + h] have C j as a prex, so h ∈ U j and h ∈ V j . Moreover, this prex is totally contained within u and v, respectively, because ω[a + nm -1] and ω[b + nm -1] begin with the class 01.For nm ≤ h ≤ n - If m =2we have n -2 ∈ U i+1 and n -2 ∈ V i+2 ; n -1 ∈ U i and n -1 ∈ V i+1 ,s o

1 we have n -m ∈ U i+m-1 ,n -m +1∈ U i+m-2 , ••• n -1 ∈ U i n -m ∈ V i+m ,n -m +1∈ V i+m-1 , ••• n -1 ∈ V i+1 .
|V i+2 | = |U i+2 | +1 |V i+1 | = |U i+1 || V i | = |U i |-1
Therefore when δ is injective, δ R and δ L are both injective as well. A troubling fact is the map δ being injective does not imply δ M is injective. As will be shown for the Thue-Morse word T , there are cases of distinct subpermutations p and q where δ(p) = δ(q) but δ(p) M = δ M (q). The following sections deal with some dierent words and we will show when δ and δ M are injective, but these proofs will use special properties of the words considered.

Permutation Complexity of d(s)

In this section we will investigate the permutation complexity of Sturmian words under the doubling map. We now recall from Section 2.4.2 some of the equivalent denitions of Sturmian words. The class of Sturmian words are the aperiodic binary words with minimal factor complexity. So an innite word s is a Sturmian word if for each n ≥ 0, s has exactly n +1 distinct factors of length n,o rρ s (n)=n +1 (the only factor of length n =0being the empty-word). An equivalent denition for Sturmian words is that they are the class of aperiodic balanced binary words. First we will show when the map δ is applied to permutations from a Sturmian word, δ is injective and thus a bijection. Then we show the maps δ R , δ L , and δ M are injective as well and thus also bijections. First we look at the permutation complexity of Sturmian words. Recall from Theorem 5.1.7, that if s is a Sturmian word then τ s (n)=n for each n ≥ 1.I fs is a Sturmian word, then d(s) is not Sturmian. The word d(s) will contain both 00 and 11 as factors and is not balanced. Thus we know τ d(s) (n) >nfor some n ≥ 3.

Fix a Sturmian word s over {0, 1}. Since s is balanced, there is some k>0 so that for a, b ∈{0, 1}, with a = b, every a is followed by either k or k -1 b's. So consecutive a's will look like either ab k a or ab k-1 a. For example consider the Fibonacci word, t, where t = 01001010010010100101 ... In t, consecutive 1's look like either 1001 or 101, and if 000 or 11 were factors then t would not be balanced. Let d(s) be the image of s under the doubling map. Let π s be the innite permutation associated to s, and π d(s) be the innite permutation associated to d(s). We will now calculate the permutation complexity of d(s). By Lemma 5.1.4 we may assume there is a natural number k>1 so that each 1 is followed by either 0 k 1 or 0 k-1 1, because d(s) and d(s)=d(s) have the same permutation complexity. There will be k +1 classes of factors Theorem 5.3.14 Let s be a Sturmian word over A, where for a, b ∈A , a = b, there are strings of either k or k -1 a's between each b, with k>1. There is an N so that each factor of s of length at least N will contain each of a k , a k-1 b, ..., ab, b. For each n ≥ 2N the permutation complexity of d(s) is

τ d(s) (n)=n +2k +1
Proof Let s be a Sturmian word as in the hypothesis, and let n ≥ 2N . Then there is m ≥ N so that either n =2m or n =2m -1, and recall τ s (n)=n for each n ≥ 1. Since s is Sturmian, each of Case (a.2) Suppose p and q do not have the same form. Thus there is an 0 ≤ i ≤ n so that, without loss of generality, p i <p i+1 and q i >q i+1 . We may say i = n is the only i so that p i <p i+1 and q i >q i+1 , because if there is an 0 ≤ i ≤ n -1 so p i <p i+1 and q i >q i+1 then u = v, and p ′ = q ′ be Corollary 5.3.4. We may also say L 2 (p)=L 2 (q), because if L 2 (p) = L 2 (q) then p ′ = q ′ be Corollary 5.3.4.T h u su = v and p n <p n+1 and q n >q n+1 .

For 0 ≤ j ≤ 3 let we know for each j there is an 0 ≤ i ≤ n -2 so that i ∈ U j and i ∈ V j ,th us|U j |≥1 and |V j |≥1. Since u = v and p n <p n+1 and q n >q n+1 there is an α ∈{0, 1} so that 

U j = { i | 0 ≤ i ≤ n -
p ′ 2n-1 = L 2 (p) n-1 + |U 0 | + |U 1 | q ′ 2n-1 = L 2 (q) n-1 + |V 0 | + |V 1 | + |V 2 |≥L 2 (p) n-1 + |U 0 | + |U 1 | +1>p ′ 2n-1 .
Therefore in either case (a.1) or (a.2), p ′ = q ′ . Therefore if p and q are subpermutations of π T of length n +2, with n =2 r -1 or 2 r for any r ≥ 3, p = q if and only if p ′ = q ′ . (b) Suppose n ∈{2 r -1, 2 r | r ≥ 3 }.I fp and q do not have the same form, there is an 0 ≤ i ≤ n so that, without loss of generality, p i <p i+1 and q i >q i+1 and p = q.T h u s p and q are as in Case (a.2), and p ′ = q ′ . (b.3) Suppose p =2 r -1,s on =2 r +2 r -1=2 r+1 -1.S o2n =2 ( 2 r+1 -1) = 2(2 r+1 ) -2, and from Lemma 5.3.17 and Lemma 5. 

Further Research Ideas

In Section 1.2, some possible directions for further research were given.

One direction of further research will be to investigate a possible relationship between morphisms and permutation complexity. For words which are the xed point of a morphism an initial conjecture could be that permutation complexity can be calculated recursively, but if the morphism is not N -uniform (recall, |ϕ(a)| = N for each a ∈A ) there may be complications with such a calculation. It may be possible determine an upper bound for the permutation complexity of a xed point of a morphism based on only the morphism, but it is unclear at the time of this writing if even this will be possible.

Another research direction is to start with a morphism ϕ on A and determine the permutation complexity of ϕ(ω), for some aperiodic binary word ω. After the investigation of permutation complexity and the doubling map, for an arbitrary morphism ϕ it may not be possible to determine the permutation complexity of ϕ(ω) based only on ϕ.

There is a class of morphisms, call it M, so that if ϕ ∈Mthe permutation complexity of ϕ(ω) can be calculated recursively for any word ω. The doubling map is not in the class M, but the class M is not empty either. Trivially the identity map (a → a) and the complement map (0 → 1; 1 → 0) are both in M. A natural question is, are there any other morphisms in M?

In this study of permutation complexity, the main focus has been on counting the number of subpermutations which arise from an innite permutation induced by a word. In the case of the permutation complexity of the Thue-Morse word we considered a pattern in subpermutations, but this was the depth of considering the subpermutations which arise. At the time of this writing, this author is not aware of an investigation of the subpermutations which arise from an aperiodic word. There are many possible questions in this area, but one question stands out. Given a permutation group G, where the maximum length of any permutation in G is n, is there a word ω so that

G = { Perm ω (i) | i ≤ n }?
Since there are permutations which will not occur in a binary word, there would be some conditions to impose on G, but what conditions could lead to a possible answer?

  set of factors of x of length n, where |x|≥n ρ x (n) size of F x (n), where |x|≥n Ψ(u) Parikh vector of u Ψ x (n) set of all distinct Parikh vectors of factors of x of length n, where |x|≥n u ∼ ab v u and v are abelian equivalent F ab x (n) set of non-abelian equivalent factors of x of length n where |x|≥n ρ ab x (n) size of F ab x (n), where |x|≥n T Fraenkel word over k letters F y (P ) set of pattern words in y from the k-pattern P p * y (k) maximal pattern complexity function p * ab (k) maximal abelian pattern complexity function (p 0 p 1 ••• p n-1 ) permutation of the numbers 1, 2, ..., n iv Symbol Denition π w innite permutation associated with w π w [n, m] subpermutation of π w from n to m, only dened when n ≤ m Perm(w) set of subpermutations of π w Perm w (n) set of subpermutations of π w of length n Perm w ev (n) length n subpermutations with even starting index Perm w odd (n) length n subpermutations with odd starting index τ w (n) size of Perm w (n) [α 0 ,α 1 ,α 2 ,...] continued fraction expansion of α [α 0 ,α 1 ,α 2 ,...,α n ]

  The factors of length n of a cyclic word B(k, n)=b 1 b 2 ...b k n are of the form b i b i+1 ...b i+n-1 for i ≤ k nn +1 or b i b i+1 ...b k n b 1 ...b i-k n +n-1 for k nn +1<i . For example, it is readily veried that the words B(3, 3) = 000111222012022110021210102 B(2, 5) = 00000100011001010011101011011111 contain all words, of their respective lengths, as factors exactly once.

α

  =[d 0 , (1 + d 1 ),d 2 ,...] If the sequence (d i ) i∈N is eventually periodic where d i = d i+p for each i>N,w ew r i t e α = d 0 , (1 + d 1 ),...,d N , d N +1 ,d N +2 ,...,d N +p

  and denote by |P | = k the number of terms in P . Then set F ω (P ) to be the set of pattern words over a k-pattern, and p * ω (k)=sup P |F ω (P )|. The maximal abelian pattern complexity function is dened by

  Proposition 4.2.1([4]) A constant gap sequence G ∈A N is periodic and balanced.

  0 , and also of s α,0 , of lengthn+1 then {(|p n | 0 +1, |p n | 1 ), (|p n | 0 , |p n | 1 +1)}are the possible Parikh vectors for factors of length n +1 of K β,0 , because of Theorem 2.3.6, and thus for w as well. For each n ≥ 0, I n =(u n ,v n ) and u n + v n = n by denition.

n 1 =

 1 ( a, b) and the line enters the square [a, a +1]× [b, b +1] in J U and an n 2 so that I ′ n 2 =( a, b) and the line enters the square [a, a +1]× [b, b +1] in J V . Thus for u n 1 = w n 1 w n 1 +1 ...w n 1 +n-1 and u n 2 = w n 2 w n 2 +1 ...w n 2 +n-1 we have Ψ(u n 1 )=(r n ,t n ) and Ψ(u n 2 )=(r n -1t n +1).

  and ω[b]=ω b ω b+1 ω b+2 ..., we know ω[a] = ω[b] because ω is aperiodic.

For

  natural numbers a ≤ b consider the factor ω[a, b]=ω a ω a+1 ...ω b of ω of length ba +1. Denote the nite permutation of {1, 2,...,ba +1} corresponding to the linear order by π ω [a, b]. That is, π ω [a, b] is the permutation of {1, 2,...,b-a +1} so that for each 0

  The left restriction of p, denoted by L(p), is the subpermutation of p so thatL(p)= π[a, a + n -1].The right restriction of p, denoted by R(p), is the subpermutation of p so that R(p)=π[a +1,a+ n]. The middle restriction of p, denoted by M (p), is the subpermutation of p so that M (p)=R(L(p)) = L(R(p)) = π[a +1,a+ n -1].

  Therefore any factors T [2i, 2i + n] and T [2j +1, 2j +1+n] where n ≥ 4 cannot be equal based on the location of the factors 00 or 11. Let π T be the innite permutation associated to the Thue-Morse word, T . Let a and n be natural numbers and suppose we want to determine if T [a] <T[a + n]. There will be some (possibly empty) factor u of T , and suxes x and y of T so that T [a]=uλx and T [a + n]=u λy, for λ ∈{0, 1}.I f|u|≥n +1 we would have T a+i = T a+n+i for each i =0 , 1,...,n, and thus T [a, a + n]=T [a + n, a +2n], and T [a, a +2n] would violate the fact that T is overlap-free. Thus |u|≤n, and if |u| = n we have T [a, a + n -1] = T [a + n, a +2n -1] and T 2n = T a . Therefore the subpermutation π T [a, a + n] can be determined within the factor T [a, a +2n] of length 2n +1. Thus the trivial bounds for the permutation complexity of the Thue-Morse word T are

Lemma 5 . 2 . 1

 521 For natural numbers a and b, T [a] <T [b] if and only if µ T (T [a]) < µ T (T [b]). Proof If T [a] <T[b], then there exists a nite factor u of T , and suxes x and y of T so that T [a]=u0x and T [b]=u1y. Thus we can see µ T (T [a]) = µ T (u)01µ T (x) and µ T (T [b]) = µ T (u)10µ T (y) and therefore µ T (T [a]) <µ T (T [b]). Then suppose T [a] >T[b], and we see µ T (T [a]) >µ T (T [b]) by a similar argument. Thus µ T (T [a]) <µ T (T [b]) will imply T [a] <T[b].

Lemma 5 . 2 . 2

 522 If u and v are shifts of T so that for some a and bu=0 T [a] and v =1 T [b], and hence u<v , µ T (u)=0 1 µ T (T [a]), and µ T

2 .

 2 π T [a, a + n]=π T [2b, 2b +2m -1], even starting position with even length. 3. π T [a, a + n]=π T [2b +1, 2b +2m], odd starting position with even length. 4. π T [a, a + n]=π T [2b +1, 2b +2m +1], odd starting position with odd length. Consider two subpermutations of length n>5, π T [2c, 2c+n] and π T [2d+1, 2d+n+1]. The subpermutations π T [2c, 2c+n] will have form T [2c, 2c+n-1], and π T [2d+1, 2d+n+1] will have form T [2d +1, 2d + n]. Since the length of these factors is at least 5, we know T [2c, 2c+n-1] = T [2d+1, 2d+n], and thus π T [2c, 2c+n] = π T [2d+1, 2d+n+1] because they do not have the same form. Thus we can break up the set Perm T (n) into two classes of subpermutations, namely the subpermutations that start at an even position or an odd position. So say that Perm T ev (n)

  2a +2n]. Thus the map φ :P erm T (n +1) → Perm T ev (2n +1) is also a surjective map, and is thus a bijection. Recall the left, right, and middle restrictions of a subpermutation. If p = π T [a, a + n] then L(p)=π[a, a+n-1], R(p)=π[a+1,a+n], and M (p)=R(L(p)) = L(R(p)) = π[a+ 1,a+ n -1]. These restrictions will be helpful to count the size of the sets Perm T odd (2n), Perm T ev (2n), and Perm T odd (2n +1).

p

  = π T [10, 18]=(485972613) u = T [10, 17] = 01011010, so p has form u and |u| 1 =4. Let p ′ = φ(p)=π T [20, 36], so by Proposition 5.2.3 p ′ =( 81 61 2391 71 341 1261 51 0151 47 ) .

  Fig. 1

  Fig.3

  Fig.5

  and so d(C i ) <d(C j ) for i<jsince the doubling map d is order preserving, as shown in Lemma 5.3.1. The next lemma will Thus d(ω)[2a] <d(ω)[2b] <d(ω)[2a +1]<d(ω)[2b +1].

p

  = π T [9, 17]=(248597361) of length 9. The form of p is T [9, 16] = 00101101, and L 2 (p)=π T [9, 17]=(1364752).
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  Fig.1

  Fig.3

1 .

 1 π d(ω) [a, a + n]=π d(ω) [2b, 2b +2m], even starting position with odd length. 2. π d(ω) [a, a + n]=π d(ω) [2b, 2b +2m -1], even starting position with even length. 3. π d(ω) [a, a + n]=π d(ω) [2b +1, 2b +2m], odd starting position with even length.4. π d(ω) [a, a + n]=π d(ω) [2b +1, 2b +2m -1], odd starting position with odd length. Consider two subpermutations π d(ω) [2c, 2c + n] and π d(ω) [2d +1, 2d + n +1], with n>2N k . The subpermutation π d(ω) [2c, 2c + n] will have form d(ω)[2c, 2c + n -1], and π d(ω) [2d +1, 2d + n +1] will have form d(ω)[2d +1, 2d + n]. Since the length of these factors is at least 2N k , these factors each contain both 0 and 1, so d(ω)[2c, 2c + n -1] = d(ω)[2d +1, 2d + n], and thus π d(ω) [2c, 2c + n] = π d(ω) [2d +1, 2d + n +1] because they do not have the same form. Thus we can break up the set Perm d(ω) (n) into two classes of subpermutations, namely the subpermutations that start at an even position or an odd position. So say that Perm d(ω) ev (n) is the set of subpermutations p of length n so that p = π d(ω) [2b, 2b + n -1] for some b, and that Perm d(ω) odd (n) is the set of subpermutations p of length n so that p = π d(ω) [2b +1, 2b + n] for some b.T h u s Perm

  d(u) i+1 = d(v) i+1 . Since d(u) 0 = d(u) 1 and d(v) 0 = d(v) 1 , we see d(u) 0 = d(u) 1 = d(v) 1 = d(v) 0 . In a similar fashion we see d(u) 2n-1 = d(u) 2n-2 = d(v) 2n-2 = d(v) 2n-1 .T h u sd(u)=d(v) and u = v.

d

  (u) i = d(v) i = α.Case a.1: Suppose 1 ≤ i ≤ 2n -2 and recall that p ′0 <p ′ i and q ′ 0 >q ′ i .I fd(u) i+1 = d(v) i+1 = α we have d(u)[0, 1] = αα and d(u)[i, i+1] = αβ,sop ′ 0 <p ′ i if and only if q ′ 0 <q ′ i , would be a contradiction, so d(u) i = d(v) i = α. It should be noted that i =2 n -2, because d(u) 2n-2 = d(v) 2n-2 = α so p ′ 2n-2 <p ′ 2n-1 if and only if q ′ 2n-2 <q ′ 2n-1 . Case b.1: Suppose for 1 ≤ i ≤ 2n -2 we have p ′ 2n-1 <p ′ i and q ′ 2n-1 >q ′ i . If d(u) i-1 = d(v) i-1 = α we have d(u)[2n -2, 2n -1] = αα and d(u)[i -1,i]=αα,so

  Case b.1.i: Suppose α =0. Then we know d(u)[2n-2, 2n-1] = d(v)[2n-2, 2n-1] = 00, and d(u)[2c-1, 2c+1] = d(u)[2c-1, 2c+1] = 100.S op ′ 2n-2 <p ′ 2n-1 and q ′

2n- 1

 1 <p ′ 2c and d(u)[2n -2, 2n -1] = 00 we have p ′ 2n-2 <p ′ 2n-1 <p ′ 2c <p ′ 2c+1 .

|U i- 1 |

 1 = |V i-1 | +1 |U i | = |V i || U i+1 | = |V i+1 |-1 and |U j | = |V j | for all other j.Thus for m ≥ 1,|U i-m+1 | = |V i-m+1 | +1 |U i+1 | = |V i+1 |-1 and |U j | = |V j | for all other j. Since |V i-m+1 |≥1 we see |U i-m+1 |≥2. Each occurrence of C i-m+1 which is contained in u will have C i as a sux, and since n -1 ∈ U i we have |U i |≥|U i-m+1 |≥2. Thus by Proposition 5.3.2

Case b. 1 . 2

 12 ii: Suppose α =1 . This argument is similar to the argument used inCase (b.1.i). Then we know d(u)[2n -2, 2n -1] = d(v)[2n -2, 2n -1] = 11, and d(u)[2c -1, 2c +1]=d(u)[2c -1, 2c + 1] = 011.S op ′ 2n-2 >p ′ 2n-1 and q ′ 2n-2 >q ′ 2n-1 , and since L(p ′ )=L(q ′ ) we see p ′ 2n-2 -1=L(p ′ ) 2n-2 = L(q ′ ) 2n-2 = q ′ 2n-2 -1, 103 so p ′ 2n-2 = q ′ 2n-2 . Since q ′ 2n-1 >q ′ 2c and d(v)[2n -2, 2n -1] = 11 we have q ′ 2c+1 <q ′ 2c <q ′ 2n-1 <q ′ 2n-Thus by Lemma 5.3.1, we know there are i<jso ω[b + n -1] has C j as a prex and ω[b + c] has C i as a prex. Since ω[b + n -1] also begins with 1 and p ′ 2n-1 <p ′ 2c , the order of p ′ 2c , p ′ 2c+1 , p ′ 2n-2 , and p ′ 2n-2 must be as follows by Lemma 5.3.1 p ′ 2c+1 <p ′ 2n-1 <p ′ 2c <p ′ 2n-2

For example, if m =1we have n - 1 ∈

 1 U i and n -1 ∈ V i+1 ,s o |V i+1 | = |U i+1 | +1 |V i | = |U i |-1 and |U j | = |V j | for all other j. Since |U i+1 |≥1 we see |V i+1 |≥2.

δ

  :P erm s (m + k) → Perm d(s) ev (2m) δ L :P erm s (m + k) → Perm d(s) ev (2m -1) δ R :P erm s (m + k) → Perm d(s) odd (2m -1) δ M :P erm s (m + k +1) → Perm d(s) odd (2m)are bijections, and soPerm d(s) ev (2m -1) = |Perm s (m + k)| Perm d(s) odd (2m -1) = |Perm s (m + k)| Perm d(s) ev (2m) = |Perm s (m + k)| Perm d(s) odd (2m) = |Perm s (m + k +1)| .Thusτ d(s) (2m -1) = Perm d(s) (2m -1) = Perm d(s) ev (2m -1) + Perm d(s) odd (2m -1) =(m + k)+(m + k)=(2m -1) + 2k +1 τ d(s) (2m)= Perm d(s) (2m) = Perm d(s) ev (2m) + Perm d(s) odd (2m) =(m + k)+(m + k +1)=2m +2k +1Therefore for either n =2m -1 or n =2m, τ d(s) (n)=n +2k +1.

  1 and T [a + i] has C j as a prex. }V j = { i | 0 ≤ i ≤ n -1 and T [b + i] has C j as a prex. } and |U 0 | + |U 1 | + |U 2 | + |U 3 | = |V 0 | + |V 1 | + |V 2 | + |V 3 | = n. Since u = v and |u| = |v|≥9

T 2 .

 2 [a + n -1,a+ n]=α0 T [b + n -1,b+ n]=α1 so either |U 0 | = |V 0 || U 1 | = |V 1 || U 2 | = |V 2 || U 3 | = |V 3 | or |U 0 | = |V 0 || U 1 | = |V 1 || U 2 | = |V 2 || U 3 | = |V 3 | . If α =0then |U 0 | = |V 0 | and |U 1 | = |V1 |, and by Proposition 5.3.2p ′ 2n-2 = L 2 (p) n-1 q ′ 2n-2 = L 2 (q) n-1 + |V 0 |≥L 2 (p) n-1 +1>p ′ 2n-If α =1then |U 2 | = |V 2 |and |U 3 | = |V 3 |, and by Proposition 5.3.2

  3.18 each of the maps δ :P erm T (n +2) → Perm d(T ) ev (2n)δ L :P erm T (n +2) → Perm d(T ) ev (2n -1) δ R :P erm T (n +2) → Perm d(T ) odd (2n -1) δ M :P erm T (n +3) → Perm d(T ) odd (2n)are not injective.So n +1 = 2 r+1 =2 r +(2 r -1) + 1, and n +2=2 r+1 +1 = 2 r +2 r +1.S ob y Proposition 5.3.15τ d(T ) (2n -1) = Perm d(T ) ev (2n -1) + Perm d(T ) odd (2n -1) = |F T (n +1)| + |F T (n +1)| =8(2 r-1 )+2(2 r -1) + 8(2 r-1 )+2(2 r -1) = 2 r+3 +2 r+2 -4 =2 r+3 +4(2 r -1) τ d(T ) (2n)= Perm d(T ) ev (2n) + Perm d(T ) odd (2n) = |F T (n +1)| + |F T (n +2)| =8(2 r-1 )+2(2 r -1) + 8(2 r-1 )+2(2 r )=2 r+3 +2 r+2 -2 =2 r+3 +4(2 r -1) + 2

  n, m non-negative integer k positive integer s, t integers β real number α positive irrational u, v nite word x nite or innite word over A y innite word over A w aperiodic word over A

	A + A N A Z A ∞ Alph(x) ∼ -|u| |u| a	free semigroup A * \ ε set of (right) innite words over A set of biinnite words over A the set A * ∪A N letters in A used to form x reversal operation on A * complement operation on A * , only if |A| =2 the number of letters in u, length of u the number of occurrences of the letter a in u
	F(x) x[n]	set of all factors of x
	Symbol	Denition
	Z	the integers
	N	the natural numbers, non-negative integers
	Q	the rational numbers
	R	the real numbers
	absolute value of β greatest integer ≤ β least integer ≥ β s ≡ (t mod k) s is congruent to t modulo k |β| ⌊β⌋ ⌈β⌉ end of a proof
	|A| A A *	cardinality of the nite set A nite alphabet free monoid generated by A, the set of nite words over A

iii Symbol Denition ε identity element of A * , empty word

  C +1 distinct values. Thus ρ ab ω (n) ≤ (C +1) |A| . A natural question with regards to abelian complexity of a word ω is, what are the maximal and minimal values for the abelian complexity of ω? Minimal values for abelian complexity are achieved by periodic words. Lemma 2.3.5 ([13], Remark 4.07) Let ω ∈A N ∪A Z . Then ω is periodic of period p if and only if ρ ab

ω (p)=1.

  2.4.2). The following theorem gives another classication of the Sturmian words. Theorem 2.3.6 ([13]) Let ω ∈{ 0, 1} N . Then ω is Sturmian if and only if ρ ab

ω (n)=2

  The nite words x, y ∈A * are said to be conjugate if there exist words u, v ∈A * so that cyclic permutation is a map σ so that if a ∈Aand v ∈A * , then σ(av)=va.T h u st w o words x and y are conjugate if there is some n so that σ n (x)=y. Conjugacy denes an equivalence relation on A * , where two words are equivalent if they are conjugate.If we dene an order on the alphabetA = {0, 1,...,k-1}, namely 0 < 1 < ••• <k-1,we can use lexicographical ordering on the elements of A * . The Lyndon words are precisely the set of words which are minimal in their conjugacy class, or l is a Lyndon word if for each 1 ≤ n ≤| l|-1 then l<σ n (l). An equivalent way to dene Lyndon words is that a word l is a Lyndon word if and only if for any factorization l = uv, with both u and v non-empty, then l<v .T h u sl is less than any of its proper suxes. By this denition Lyndon words must be primitive words, or else if l = xx then lexicographically x<l and l is not a Lyndon word. The rst few Lyndon words on the alphabet A = {0, 1} with 0 < 1 are: 0, 1, 01, 001, 011, 0001, 0011, 0111, •••. The general formula for L k (n), the number of Lyndon words of length n on an alphabet with k letters, is

	x = uv	y = vu

A

  An interesting point is that there are uncountably many distinct Sturmian words due to uncountably many irrational numbers in the interval [0, 1]. A word is said to be a nite Sturmian word if it is a factor of some Sturmian word. Thus, as stated at the end of Section 2.4.1, the set of nite Sturmian words is the set {u ∈{0, 1} * | u is balanced}

	Theorem 2.4.2 ([37]) Let s be an innite word. The following are equivalent: 1. s is Sturmian. 2. s is balanced and aperiodic. 3. s is irrational mechanical. Thus the class of Sturmian words corresponds to the words generated by irrational me-chanical words. All Sturmian words considered in this writing will be innite Sturmian words, unless otherwise noted.

  Sturmian word with slope α, it is sucient to talk about the set of factors of the characteristic Sturmian word with the same slope α.Since the words s α,0 =0 c α and s ′ α,0 =1 c α have the same slope, they have the same set of factors. Therefore, for each n ≥ 1 the prex p n of length n of c α is a left special factor. That is, both 0p n and 1p n are factors of c α . More formally, Proposition 2.4.5([28]) For every Sturmian word s, either 0s or 1s is Sturmian. A Sturmian word s is characteristic if and only if 0s and 1s are both Sturmian.

	Now let's consider some properties of the factors of Sturmian words.
	Proposition 2.4.3 ([28]) The set F(s) of factors of a Sturmian word s is closed under reversal.
	Proposition 2.4.4 ([28]) Let s and t be Sturmian words.
	1. If s and t have the same slope, then F(s)=F(t).
	2. If s and t have distinct slopes, then F(s) ∩F(t) is nite.
	Thus for two Sturmian words s α,ρ and s α,ρ ′ , we know F(s α,ρ )=F(s α,ρ ′ ). Moreover, we know for any Sturmian word s α,ρ , F(s α,ρ )=F(s α,0 )=F(c α )=F(C α/(1-α) ). Thus when
	talking about the set of factors of a

  Proposition 2.4.8 ([10]) The morphisms τ and τ are Sturmian. To test if a morphism ϕ is a Sturmian morphism could be a dicult task if we really needed to test if ϕ preserved all Sturmian words. Fortunately, that much work is not necessary thanks to following result. Theorem 2.4.9 ([10]) A morphism ϕ is Sturmian if and only if the word ϕ(10 2 10 2 1010 2 101)

  all nite sub-patterns P and Q of P i with |P | = |Q| and 1 ≤|P | , |Q|≤i. Begin by constructing P 2 . For two sub-patterns P, Q ⊂P 1 with |P | = |Q| =2say that

  1 ≤ i ≤ n +1 any sub-patterns of length i are ∼ i equivalent since P n+1 ⊂P i . As a corollary to Proposition 4.1.3, we have the following Corollary 4.1.5 Let ω, P, K, and P ′ be as in Proposition 4.1.3.I fu ∈ ω[P ′ ] and |u| <K, then au ∈ ω[P ′ ] for some a ∈ Alph(ω). as the main result the classication of eventually periodic words by maximal abelian pattern complexity, namely the words with maximal abelian pattern complexity p * Theorem 4.1.6 Let ω ∈{0, 1} N be a recurrent aperiodic word. Then the maximal abelian pattern complexity is p * ab (n)=n +1 for all n ≥ 1. Proof By Lemma 4.1.1 there exists an innite pattern P satisfying ( * ). Let K be a positive integer, and then by Proposition 4.1.3 there exists a sub-pattern P ′ ⊂Pso that for two sub-patterns P, Q ⊂P ′ with |P | = |Q| and 1 ≤| P | , |Q|≤K we know

	Now ab (n) ≤ n for some n ≥ 1.

ω[P ]=ω[Q]. Moreover, by Lemma 4.1.2, P ′ also satises ( * ).

  4.2.2 and 4.2.3, ω is the image of a Sturmian word s over {0, 1}

  i+1 and p i <p n p i + |u| 1 + n if p i <p i+1 and p i >p n p i + |u| 1n if p i >p i+1 and p i <p n

p i + |u| 1 -(n +1) if p i >p i+1 and p i >p n

  1,...,k-2}, p i <p i+1 if and only if p n-(k-1)+i <p n-(k-1)+i+1 , and p i <p n if and only if p n-(k-1)+i <p n since p i and p n-(k-1)+i are consecutive values. By Proposition

	5.2.3:

  5.2.8,ifp ′ ∈ Perm T

	ev (n +1)

  p ′ 2i+1 , there are L k (p) i -1 many h so that p i >p h , and thus L k (p) i -1 many h so that p ′ 2h+1 . Likewise there are n -L k (p) i many h so that 2h+1 . By Lemma 5.3.1 if m ≤ j and h ∈ γ m then p ′ 2h . Thus there are S j many h so that p ′ 2i+1 >p ′ 2h , and likewise there are n -S j many h so that p ′ 2i+1 <p ′ 2h . Therefore there are exactly L k (p) i -1+S j many h so that p ′ b) Suppose p i >p i+1 , and so ω a+i = u i =1.For p ′ 2i , there are L k (p) i -1 many h so that p i >p h , and thus L k (p) i -1 many h so that p ′ 2i >p ′ 2h . Likewise there are n -L k (p) i many h so that p ′ 2i <p ′ 2h . By Lemma 5.3.1 if m ≤ j and h ∈ γ m then p ′ 2i >p ′ 2h+1 , and if m>jand h ∈ γ m then p ′ 2i <p ′ 2h+1 .T h u s there are S j many h so that p ′ 2i >p ′ 2h+1 , and likewise there are n -S j many h so thatp ′ 2i <p ′ 2h+1 . Therefore there are exactly L k (p) i -1+S j many h so that p ′ L k (p) i -1+S j +1=L k (p) i + S j .For p ′ 2i+1 , there are L k (p) i -1 many h so that p i >p h , and thus L k (p) i -1 many h so that p ′ 2h+1 . Likewise there are n -L k (p) i many h so thatp ′ 2i+1 <p ′ 2h+1 . By Lemma 5.3.1 if m<jand h ∈ γ m then p ′ 2i+1 >p ′2h , and if m ≥ j and h ∈ γ m then p ′ 2i+1 <p ′ 2h . Thus there are S j-1 many h so that p ′ 2i+1 >p ′ 2h , and likewise there are n -S j-1 many h so that p ′

		2i >p ′ h ,s o
	p ′ 2i = 2i >p ′ 2h and p ′ 2i+1 >p ′	
		2i+1 <p ′ 2h . Therefore there are exactly
	2i >p ′ 2h and p ′ 2i+1 >p ′	
	p ′ 2i+1 <p ′	2i+1 >p ′ 2h , and if m>jand
	h ∈ γ m then p ′ 2i+1 <p ′	
	2i >p ′ h ,so	

p ′ 2i+1 = L k (p) i -1+S j +1=L k (p) i + S j .

(

  [START_REF] Allouche | Extremal properties of (epi)Sturmian sequences and distribution modulo[END_REF] and|U j | = |V j | for all other j. Since |V i |≥1 we see |U i |≥2. If m =2we have n -2 ∈ U i-1 and n -2 ∈ V i ; n -1 ∈ U i and n -1 ∈ V i+1 ,so

This word is called Fraenkel's sequence and is written as (F k ) ∞ , where the Fraenkel words are the F k and are dened recursively as F 1 =1and F n = F n-1 nF n-1 for n ≥ 2. Fraenkel's conjecture has been veried for an alphabet of size up to 7 ([START_REF] Altman | Balanced sequences and optimal routing[END_REF][START_REF] Barát | Partitioning the positive integers to seven beatty sequences[END_REF][START_REF] Graham | Covering the positive integers by disjoint sets of the form {[nα + β]: n =1, 2[END_REF]).

The leftmost occurrence of a palindromic factor of ω is a central factor of a palindromic prex of ω.
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(2) This is true, as it is the contrapositive of [START_REF] Allouche | Extremal properties of (epi)Sturmian sequences and distribution modulo[END_REF]. [START_REF] Allouche | Automatic sequences[END_REF] Let ω i = ω j .I fπ ω (i) <π ω (j), then there is some a ∈Aand u ∈F(ω) so that

and thus

If π ω (i +1)<π ω (j +1),w eseeπ ω (i) <π ω (j) by a similar argument.

Lemma 5.1.2 ([32]) Given two innite binary words u = We do have a trivial upper bound for τ ω (n) being the number of permutations of length n, which is n!. Lemma 5.1.2 directly implies a lower bound for the permutation complexity for a binary aperiodic word ω, namely the factor complexity of ω. Thus, initial bounds on the permutation complexity can be seen to be:

Recall from Section 2.1.5 the complement operator on A ∞ .F o rA = {0, 1}, 0=1 and 1=0.I fu ∈A ∞ , u = u 1 u 2 u 3 •••. Also recall that ω the set of factors of ω is closed under complementation if for each u ∈F(ω) then u ∈F(ω). The following lemma shows an interesting property of the subpermutations of the innite permutation π ω . Lemma 5.1.3 Let ω = ω 0 ω 1 ω 2 ••• be an aperiodic binary word with factors closed under complementation. If p is a subpermutation of π ω of length n, then the subpermutation q dened by q i = n -p i +1 for each i, is also a subpermutation of π ω of length n.

Proof Let p be a subpermutation of π ω . There is an a ∈ N so that p = π ω [a, a + n -1]. For each i, j ∈{0, 1,...,n-1},ifp i <p j then ω[a + i] <ω[a + j] and there is some nite word u i,j so that

Let v be the prex of ω[a] so that for each i, j ∈{ 0, 1,...,n-1}, v contains both u i,j 0 and u i,j 1. Since the set of factors of ω is closed under complementation, v is a factor Denition Suppose that the subpermutation p = π T [a, a + n] is of type k so that for some ǫ ∈{ -1, 1}, α i = β i + ǫ for each i =1 , 2,...,k. If there exists a subpermutation q = π T [b, b + n] of type k so that p and q can be decomposed as:

then p and q are said to be a complementary pair of type k.I fp and q are a complementary pair of type k ≤ 0 then p = q.

The subpermutations π T [START_REF] Arnoux | Représentation géométrique de suites de complexité 2n+1[END_REF][START_REF] Berstel | The origins of combinatorics on words[END_REF]=(23541) π T [START_REF] Hubert | Propriétés combinatoires des suites dénies par le billard dans les triangles pavants[END_REF][START_REF] Lothaire | Combinatorics on Words[END_REF]=(13542) are a complementary pair of type 1. The following subpermutation of type 1

does not have a complementary pair, since (1432) is not a subpermutation of π T .

The following proposition considers subpermutations of type k, and complementary pairs of type k. (b) φ(p) and φ(q) are a complementary pair of type 2k -1.

(c) φ L (p) and φ L (q) are a complementary pair of type 2k -2.

(d) φ R (p) and φ R (q) are a complementary pair of type 2k -2.

(e) φ M (p) and φ M (q) are a complementary pair of type 2k -3.

Proof Since p and q are a complementary pair of type k they can be decomposed as

and for ǫ ∈{-1, 1}, α i = β i +ǫ for each i =1, 2,...,k. Since p and q are a complementary pair they have the same form, which is shown relatively quickly at the beginning of the If p ′ 2k-2 <p ′ 2n and q ′ 2k-2 >q ′ 2n , then p ′ 2k-2 = q ′ 2k-2 -1=p ′ 2n -1=q ′ 2n so L(p ′ ) 2k-2 = p ′ 2k-2 = q ′ 2k-2 -1=L(q ′ ) 2k-2 .

In either case, L(p ′ ) 2k-2 = L(q ′ ) 2k-2 . Thus there are decompositions of φ L (p)=L(p ′ ) and φ L (q)=L(q ′ ) so that

,

2n and

In either case, L(p ′ ) 0 = L(q ′ ) 0 . Then for each i ∈{1, 2,...,2n -1},

(d) A similar argument from part (c) will show φ R (p) and φ R (q) are a complementary pair of type 2k -2.

(e) If k ≥ 2, from (d) φ R (p) and φ R (q) are a complementary pair of type 2k -2.A similar argument from part (c) will show L(φ R (p)) = φ M (p) and L(φ R (q)) = φ M (q) are a complementary pair of type 2k -3.I fk =1 , then φ R (p)=φ R (q) and φ L (p)=φ L (q) so φ M (p)=φ M (q). Theorem 5.2.8 Let p and q be distinct subpermutations of π T .T h e np and q have the same form if and only if p and q are a complementary pair of type k, for some k ≥ 1.

Proof First, suppose that p and q are a complementary pair of type k, for some k ≥ 1.

So there are decompositions:

so that for ǫ ∈{-1, 1}, α i = β i + ǫ for each i ∈{1, 2,...,k}.

Corollary 5.2.9 For a subpermutation p of π T , there can be at most one subpermutation q of π T so that p and q are a complementary pair.

Proof Assume that p is a subpermutation of π T so that p and q are a complementary pair of type s, and p and r are a complementary pair of type t. Moreover, s = t,a nd thus q = r. Then there are decompositions:

so that for ǫ s ∈{-1, 1}, α i = β i + ǫ s for each i =1, 2,...,s, and

so that for

..,t. Since p and q are a complementary pair they have the same form, as do p and r. Thus q and r are distinct subpermutations with the same form, so by Theorem 5.2.8 q and r are a complementary pair of type k, for some k.

If

Hence

Therefore q 0 = r 0 ± 1, and q and r are not a complementary pair, contradicting the assumption.

The next corollary follows directly from Theorem 5.2.8 and Corollary 5.2.9

Corollary 5.2.10 For a factor u of T , there are at most two subpermutations of π T with form u.

The next corollary shows when the maps φ L (p), φ R (p), and φ M (p) are not injective. (a) φ L (p)=φ L (q) if and only if p and q are a complementary pair of type 1.

(b) φ R (p)=φ R (q) if and only if p and q are a complementary pair of type 1.

Case b.1: Suppose p ′ ,q ′ ∈ Perm T ev (n +1) and n +1 is odd, so c is even. There is a d so that c =2 d,w i t h2 r-2 +1 ≤ d<2 r-1 , and there are numbers a and b so that p ′ = π T [2a, 2a +2 r +2d] and q ′ = π T [2b, 2b +2 r +2d], and

,s op and q have the same form. By the induction hypothesis p = q, so by Corollary 5.2.5, p ′ = φ(p)=φ(q)=q ′ . Case b.2: Suppose p ′ ,q ′ ∈ Perm T odd (n +1) and n +1 is odd, so c is even. There is a d so that c =2 d,w i t h2 r-2 +1 ≤ d<2 r-1 , and there are numbers a and b so that p ′ = π T [2a +1, 2a +2 r +2d +1] and q ′ = π T [2b +1, 2b +2 r +2d +1], and

s op and q have the same form.

By the induction hypothesis p = q, so by Corollary 5.2.5, φ(p)=φ(q) and therefore

Case b.3: Suppose p ′ ,q ′ ∈ Perm T ev (n +1) and n +1 is even, so c is odd. There is a d so that c =2 d +1, with 2 r-2 +1≤ d<2 r-1 , and there are numbers a and b so that p ′ = π T [2a, 2a +2 r +2d +1] and q ′ = π T [2b, 2b +2 r +2d +1], and

As in case a.2, T [a, a +2 r-1 + d]=T [b, b +2 r-1 + d],s op and q have the same form.

By the induction hypothesis p = q, so by Corollary 5.2.5, φ(p)=φ(q) and therefore

Case b.4: Suppose p ′ ,q ′ ∈ Perm T odd (n +1) and n +1 is even, so c is odd. There is a d so that c =2 d +1, with 2 r-2 +1≤ d<2 r-1 , and there are numbers a and b so that p ′ = π T [2a +1, 2a +2 r +2d +2] and q ′ = π T [2b +1, 2b +2 r +2d +2], and

Suppose that u ′ ∈ ∆ ′ ev , so there are subpermutations p ′ = π T [2a, 2a +2 r+1 +1] and q ′ = π T [2b, 2b +2 r+1 +1] with form u ′ = T [2a, 2a +2 r+1 ]=T [2b, 2b +2 r+1 ], so that p ′ = q ′ . Hence there exist subpermutations p and q so that φ L (p)=p ′ and φ L (q)=q ′ . As in case a.3 of Proposition 5.2.12, p and q are a complementary pair of type 2 with form u = T [a, a +2 r ]. Thus for each u ′ ∈ ∆ ′ ev , there is some

Subcase ∆ ′ odd : A symmetric argument to the argument used in Subcase ∆ ′ ev will show

Now we know when there are complementary pairs of type 1, and how many pairs of type 1 there are in each case.

Permutation Complexity of T

We are now ready to give a recursive denition for the permutation complexity of T .T o show this we consider when the maps φ, φ L , φ R , and φ M are bijective. After the recursive denition is given, it will be shown that the recursive denition yields a formula for the permutation complexity. Proposition 5.2.15 Let n ∈ N. When 2n +1=2 r -1, for some r ≥ 3:

When 2n =2 r , for some r ≥ 3:

For all other n ≥ 3:

This proof will be done in three cases. The rst is when 2n +1=2 r -1 for some r ≥ 3, the second is when 2n =2 r for some r ≥ 3, and the third for all other n.

Case 2n +1=2 r -1: It can be readily veried by looking at the subpermutations in Appendix A that the proposition is true for r =3 . Suppose r ≥ 3 and the lemma is true for r. We show that the lemma is true for r +1,s o2n +1=2 r+1 -1.

Since the map under φ M . The other Perm T (n +2)-2 r+1 subpermutations in Perm T (n +2) are pairwise distinct and not complementary pairs, and thus will be pairwise distinct under φ M . Hence

Case 2n +1=2 r : It can be readily veried by looking at the subpermutations in Appendix A that the proposition is true for r =3. Suppose r ≥ 3 and the lemma is true for r, and we show that the lemma is true for r +1,s o2n +1=2 r+1 . The map

is a surjective map, but it is not injective because n +1=2 r +1. So there are 2 r factors u of length 2 r with a complementary pair of type 1 by Proposition 5.2.12 and Lemma 5.2.14. Thus there are exactly 2 r complementary pairs of type 1 in Perm T (n +1).S o2 r+1 subpermutations in Perm T (n +1) will be mapped to 2 r subpermutations in Perm T ev (2n)

under φ M . The other Perm T (n +1) -2 r+1 subpermutations in Perm T (n+1) are pairwise distinct and not complementary pairs, and thus will be pairwise distinct under φ L . Hence

The map

not only show that the doubling map is an order preserving map, but also the order of the image of ω i under the doubling map.

Lemma 5.3.1 Let ω be as above. Suppose ω[a] and ω[b] are two shifts of ω for some

there is some (possibly empty) factor u of ω so that

) and d is an order preserving map. Each of the cases will be looked at independently.

(a) Suppose ω a = ω b =0and i<j. Since both ω[a] and ω[b] start with 0, ω[a] has

as a prex and d(ω)[2b] has 0 2(k 0 -j) 1 as a prex, and the result follows from

and

is given and d is an order preserving map

which is a contradiction, so d(u

Case a.2: Suppose i =2n-1 is the only i so that p ′ 0 <p ′ i and q ′ 0 >q ′ i . So as above we have

For each 1 ≤ j ≤ 2n -2 we know the following

and thus p ′

Case a.2.i:

, and q 0 <q n-1 .T h u s

and by Lemma 5.3.1 we know α =1and there is a j so that both ω[b] and ω

have C j as a prex and q 0 <q n-1 , there is some m ≥ 1 so that

For this to occur q 0 must be less than all other shifts of v which have C j as a prex, and q n-1 must be greater than all other shifts of v which have C j as a prex.

Since ω[a + n -1] also begins with a 1 and p 0 <p n-1 , the order of p ′ 0 , p ′ 1 , p ′ 2n-2 , and p ′ 2n-2 must be as follows by Lemma 5.3.1
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So we have ω[a] has C j as a prex and for i>jω [a + n -1] has C i as a prex. If i>j+1, there will be some l so that ω[a + l] and ω[b + l] each have C j+1 as a prex which is totally contained in u and v. Thus we would have p l <p n-1 and q l >q n-1 ,s o R(p ′ ) 2l-1 <R(p ′ ) 2n-3 and R(q ′ ) 2l-1 >R(q ′ ) 2n-3 which would be a contradiction, therefore i = j +1.

Since

For this to occur p 0 must be greater than all other shifts of u which have C j as a prex, and p n-1 must be less than all other shifts of u which have C j+1 as a prex. Based on the construction of p ′ and q ′ from Proposition 5.3.2, there will be m shifts of u that have C j as a prex, and m shifts of u which have C j+1 as a prex. Since the word C j+1 occurs in the word u, there is at least one l so that ω[a + l] has C j+1 as a prex which is totally contained in u. Thus both ω[a + l] and ω[a

and m must be greater than 1. Since m>1, there is some i so that q n-1 = q i +1 and thus ω[b + i] has C j as a prex and q ′ 2i+1 = x -1. In a similar fashion, there is some î so that p 0 = p î +1 and thus ω[a + î] has C j as a prex and p ′

, and q 0 >q n-1 .T h u s

and by Lemma 5.3.1 we know α =0and there is a j so that both ω[a] and ω[a + n -1] have C j as a prex. Since both ω[a] and ω[a + n -1] have C j as a prex and p 0 >p n-1 , there is some m ≥ 1 so that

For this to occur p 0 must be greater than all other shifts of u which have C j as a prex, and p n-1 must be less than all other shifts of u which have C j as a prex.

also begins witha0a n d q 0 >q n-1 , the order of q ′ 0 , q ′ 1 , q ′ 2n-2 , and q ′ 2n-2 must be as follows by Lemma 5.3.1

So we have ω[b] has C j as a prex and for i<jω [b + n -1] has C i as a prex. If i<j-1, there will be some l so that ω[a + l] and ω[b + l] each have C j-1 as a prex which is totally contained in u and v. Thus we would have p l <p n-1 and q l >q n-1 ,so R(p ′ ) 2l-1 <R(p ′ ) 2n-3 and R(q ′ ) 2l-1 >R(q ′ ) 2n-3 which would be a contradiction, therefore

For this to occur q 0 must be less than all other shifts of v which have C j as a prex, and q n-1 must be greater than all other shifts of v which have C j-1 as a prex. Based on the construction of p ′ and q ′ from Proposition 5.3.2, there will be m shifts of v that have C j as a prex, and m shifts of v which have C j-1 as a prex. Since the word C j-1 occurs in the word v, there is at least one l so that ω

x -1 and m must be greater than 1. Since m>1, there is some i so that p i = p n-1 +1 and thus ω[a + i] has C j as a prex and p ′ 2i+1 = x +2. In a similar fashion, there is some î so that q î = q 0 +1 and thus ω[b + î] has C j as a prex and q ′ 2 î = x +2.T h u sp ′ 2i+1 = x +2=q ′ 2 î, and so p ′ 2i = q ′ 2i as well as p ′ 2 î+1 = q ′ 2 î+1 which gives a contradiction. In either case (a.2.i) or (a.2.ii) we nd a contradiction, so R(p ′ ) = R(q ′ ). Therefore p ′ = q ′ if and only if R(p ′ )=R(q ′ ).

(b) Suppose p ′ = q ′ , and assume L(p ′ )=L(q ′ ). For each pair of real numbers i = j where 0 ≤ i, j ≤ 2n -2, L(p ′ ) i <L(p ′ ) j ⇐⇒ L(q ′ ) i <L(q ′ ) j and thus

In particular for each pair of real numbers i = j where 0 ≤ i, j ≤ n -1,

So we see

and thus L k (p)=L k (q). We will need the following claim about L(p ′ ) and L(q ′ ) before we proceed.

Claim 5.3.10 If L(p ′ )=L(q ′ ) then d(u)=d(v).

Proof Suppose L(p ′ )=L(q ′ ) and assume

and so

Recall that |u| 0 is the number of occurrences of the letter 0 in the word u. Without loss of generality, say u n-1 =0and v n-1 =1, and so |u| 0 = |v| 0 +1. We also have

and so

For each 0 ≤ i ≤ n -2,i fu i = v i =0then q n-1 >q i , and so

has 01 as a prex and ω[b + n -1] has 10 as a prex. To see this let Thus there are exactly |v| 0 many j so that q n-1 >q j ,t h u sL k (p) n-1 = L k (q) n-1 = |v| 0 +1=|u| 0 . By Proposition 5.3.2 we see

and ω[a + n -1] both have 01 as a prex and p n-1 >p i , we have

both have 10 as a prex and q n-1 <q i , we have

and we have a contradiction to

Since p ′ = q ′ there must be some 0 ≤ i ≤ 2n -2 so, without loss of generality,

There is an α ∈{ 0, 1} so d(u 

and we see p ′ 2n-2 <q ′ 2n-2 . Therefore we have a contradiction, and L(p ′ )=L(q ′ ).

Case b.2: Suppose i =0is the only i so that p ′ 2n-1 <p ′ i and q ′ 2n-1 >q ′ i . So as above we have

For each 1 ≤ j ≤ 2n -2 we know the following

and thus p ′ j = q ′ j for each 1 ≤ j ≤ 2n -2, because L(p ′ ) j = L(q ′ ) j . So only p ′ 0 = q ′ 0 and p ′ 2n-1 = q ′ 2n-1 . Since q ′ 0 = p ′ 0 +1,i tm u s tb e

Then, as in Case (a.2), we nd a contradiction to the construction of p ′ and q ′ . Therefore p ′ = q ′ if and only if L(p ′ )=L(q ′ ).

From the previous lemma, if the map δ is injective,

of s, which are

For each i ∈ N, s[i]=s i s i+1 ••• will have exactly one the above classes of words as a prex. Since Sturmian words are uniformly recurrent ( [START_REF] Coven | Sequences with minimal block growth[END_REF]), there is an N ∈ N so that each factor of s of length n ≥ N will contain each of

Since |u| = |v|≥N we know for each j there is an occurrence of C j in both u and v so |U j |≥1 and |V j |≥1.L e t p = π s [a, a + n + k -1] and q = π s [b, b + n + k -1] be subpermutations of π s . Then dene subpermutations δ(p)=p ′ = π d(s) [2a, 2a +2n -1] and δ(q)=q ′ = π d(s) [2b, 2b +2n -1] as in Proposition 5.3.2. The following lemma concerns the relationship of p and q to p ′ and q ′ . Lemma 5.3.11 For the Sturmian word s, let p, q, p ′ , and q ′ be as above. Then p = q if and only if p ′ = q ′ . Proof If p = q, then it follows from Lemma 5.3.5 that p ′ = q ′ . Then suppose that p = q.T h u sp and q have a dierent form by Lemma 5.1.6.T h u s there is an 0 ≤ i ≤ n + k -2 so that, without loss of generality, p i <p i+1 and q i >q i+1 . We will look at the least i where this happens and it will be handled in two cases. First when 0 ≤ i ≤ n -1, and then when n

Case a: Suppose 0 ≤ i ≤ n -1 is the least i where p i <p i+1 and q i >q i+1 . Then p ′ = q ′ follows from Corollary 5.3.4.

Case b: Suppose n ≤ i ≤ n + k -2 is the least i where p i <p i+1 and q i >q i+1 .T h u s we know u = s[a, a + n -1] = s[b, b + n -1] = v, and so L k (p)=L k (q) by Lemma 5.1.6.

If u n-1 = v n-1 =1 , then both u and v are followed by 0 k-1 so s[a, a + n + k -2] = s[b, b+n+k -2] = u0 k-1 and p = q contradicting the assumption. Thus

For l = ink +1, s[a + l] has C 0 as a prex and s[b + l] has C 1 as a prex. Since L k (p)=L k (q) and |V 0 |≥1, by Proposition 5.3.2 we have

, and p ′ = q ′ . Therefore p = q if and only if p = q.

Thus the map δ :P erm s (n + k) → Perm d(s) ev (2n) is injective when applied to permutations associated with a Sturmian word, and is therefore bijective. When Lemma 5.3.11 is used with Lemma 5.3.8 we see the maps

are also injective, and thus are bijections. So when n ≥ N

odd (2n -1) = |Perm s (n + k)| . We will now show the map δ M is also injective when applied to permutations associated with a Sturmian word. Lemma 5.3.12 For the Sturmian word s, let p, q, p ′ , and q ′ be as above. Then

Proof It should be clear that if p ′ = q ′ then M (p ′ )=M (q ′ ).

Note that since

We will need the following claim about M (p ′ ) and M (q ′ ) before we proceed.

Claim 5.3.13 If M (p ′ )=M (q ′ ) then d(u)=d(v).

Proof Suppose M (p ′ )=M (q ′ ).F o r0 ≤ i ≤ 2n -3, d(u) i = d(v) i by Claim 5.3.9. Then assuming d(u) = d(v) we nd a contradiction by Claim 5.3.10,s od(u)=d(v). Therefore if M (p ′ )=M (q ′ ) then d(u)=d(v), and u = v.

Suppose p ′ = q ′ , and assume M (p ′ )=M (q ′ ). For each pair of real numbers i = j where 0 ≤ i, j ≤ 2n -3,

Thus we know d(u)=d(v) and u = v,s oL k (p)=L k (q). From Lemma 5.3.8 we know R(p ′ ) = R(q ′ ) and L(p ′ ) = L(q ′ ) because p ′ = q ′ , but

Thus there is an 1 ≤ i ≤ 2n -2 so that L(p ′ ) 0 <L(p ′ ) i and L(q ′ ) 0 >L(q ′ ) i . As in Lemma 5.3.8 Case (a.1),i f1 ≤ i ≤ 2n -3 we have a contradiction. Thus we can assume that i =2n -2 is the only i so that L(p ′ ) 0 <L(p ′ ) i and L(q ′ ) 0 >L(q ′ ) i .T h u s

and L k (p) = L k (q), and so by Lemma 5.1.6 we see u = v and d(u) = d(v) which is a contradiction to the assumption. Therefore M (p ′ ) = M (q ′ ). Therefore p ′ = q ′ if and only if M (p ′ )=M (q ′ ).

Thus we see, for a Sturmian word s,

and thus the map

is also injective, and thus is a bijection. So when n ≥ N

The following theorem will give the permutation complexity of a Sturmian word.

Permutation Complexity of d(T )

In this section we will investigate the permutation complexity of d(T ), the image of the Thue-Morse word, T , under the doubling map, d. Recall from Section 5.2, the Thue-Morse word T = 011010011001 ••• is the xed point of the Thue-Morse morphism µ T :0 → 01, 1 → 10.

The calculation of the permutation complexity of d(T ) will use the formula for the factor complexity of T . Again, the factor complexity is known ( [START_REF] Brlek | Enumeration of factors in the Thue-Morse word[END_REF][START_REF] De Luca | Some combinatorial properties of the Thue-Morse sequence and a problem in semigroups[END_REF]) and we will use the formula calculated by S. Brlek. Proposition 5.3.15 ([11]) For n ≥ 3, the function ρ T (n) is given by

where r and p are uniquely determined by the equation

We also need many properties from Section 5.2, which we now recall. Theorem 5.2.8 stated that subpermutations of π T have the same form if and only if they are a complementary pair. Proposition 5.2.12 calculated, based on subpermutation length, the type for complementary pairs, and Lemma 5.2.14 which stated how many complementary pairs of type 1 or 2 can arise for each length n. Finally Theorem 5.2.16 gives the permutation complexity function.

The following proposition is a variation of Proposition 5.2.7. (a) L(p) and L(q) are a complementary pair of type k -1.

(b) R(p) and R(q) are a complementary pair of type k -1.

(c) M (p) and M (q) are a complementary pair of type k -2.

Proof Let p = π T [a, a + n] and q = π T [b, b + n] be a complementary pair of type k ≥ 1.

The argument from Proposition 5.2.7, part (c), will show if p and q are a complementary pair of type k, then L(p) and L(q) are a complementary pair of type k -1.I n a similar fashion Proposition 5.2.7, part (d), implies R(p) and R(q) are a complementary pair of type k -1, and Proposition 5.2.7, part (e), implies M (p) and M (q) are a complementary pair of type k -2. Now to calculate the permutation complexity of d(T ) we need to identify the classes of factors of T with blocks of the same letter. Since T is overlap-free, and thus cube-free, we can identify the 4 classes of factors of T , which are

For each i ∈ N, T [i]=T i T i+1 ••• will have exactly one of the above classes of words as a prex. Since the Thue-Morse word is uniformly recurrent ( [START_REF] Allouche | The ubiquitous Prouhet-Thue-Morse sequence[END_REF]), there is an N ∈ N so that each factor of T of length n ≥ N will contain each of C 0 , C 1 , C 2 , and C 3 . It is readily veried that any factor of length n ≥ 9 will contain each of these 4 classes of words as a factor.

Let

The following lemma concerns the relationship of p and q to p ′ and q ′ . Lemma 5.3.17 Let p and q be subpermutations of length n +2 of π T , with n ≥ 9, and

r ≥ 3 }, p and q have the same form if and only if p ′ = q ′ . Proof Let p = π T [a, a + n +1] and q = π s [b, b + n +1], a = b, be subpermutations of π T of length n +2, with n ≥ 9, and let

Since the length of u and v is at least 9, each of C 0 , C 1 , C 2 , and C 3 occurs in both of u and v. Then let p ′ = δ(p)=π d(s) [2a, 2a +2n -1] and q ′ = δ(q)=π d(s) [2b, 2b +2n -1] as in Proposition 5.3.2.

(a) Suppose n/ ∈{2 r -1, 2 r | r ≥ 3 }.I fp = q then p ′ = q ′ by Lemma 5.3.5. Suppose p = q. Then either p and q have the same form, or they do not have the same form. These cases will be handled independently.

Case (a.1) Suppose p and q have the same form. Since n/ ∈{ 2 r -1, 2 r | r ≥ 3 }, p and q are a complementary pair of type k ≥ 3, by Theorem 5.2.8. By Proposition 5.3.16, L 2 (p) and L 2 (q) are a complementary pair of type k -2, where k -2 ≥ 1, and so L 2 (p) = L 2 (q). Therefore p ′ = q ′ , by Corollary 5.3.4.

Suppose p and q have the same form, so for each 0 ≤ i ≤ n -1, there is some j so that both T [a + i] and T [b + i] have C j as a prex. We can say p = q, because if p = q then p ′ = q ′ by Lemma 5.3.5. By Theorem 5.2.8 and Proposition 5.2.12, p and q are a complementary pair of type 1 or 2 and L 2 (p)=L 2 (q) by Proposition 5.3.16.S ob y Corollary 5.3.3, p ′ = q ′ . Therefore if p and q are subpermutations of π T of length n +2, with n =2 r -1 or 2 r for some r ≥ 3, p and q have the same form if and only if p ′ = q ′ . Thus, for n ≥ 9, the maps

when applied to permutations associated with the Thue-Morse word are injective when n/ ∈{2 r -1, 2 r | r ≥ 3 } (or when there are no complementary pairs of type 1 or 2), so

When n ∈{2 r -1, 2 r | r ≥ 3 } the maps δ, δ R , and δ L are surjective, but not injective because complementary pairs of type 1 or 2 will give the same subpermutation under δ. In this case, if p and q are subpermutations of π T of length n +2, where p has form u ′ and q has form v ′ , |u ′ | = |v ′ | = n +1, δ(p)=δ(q) if and only if u ′ = v ′ . Likewise we see δ L (p)=δ L (q) and δ R (p)=δ R (q) if and only if u ′ = v ′ . Thus the number of subpermutations of π d(T ) for these lengths are determined by the number of factors of T , or

The following lemma shows when the map δ M is injective when applied to permutations associated with the Thue-Morse word. Lemma 5.3.18 For the Thue-Morse word T , let p, q, p ′ , and q ′ be as above. Then (a) If n =2 r -1, 2 r ,or2 r +1 for any r ≥ 3, p ′ = q ′ if and only if M (p ′ )=M (q ′ ).

(b) If n =2 r -1, 2 r ,o r2 r +1 for some r ≥ 3, p and q have the same form if and only if M (p ′ )=M (q ′ ).

Proof It should be clear for either case that if p ′ = q ′ then M (p ′ )=M (q ′ ).

Note that since d(u)=d(s)[2a, 2a +2n -1] and d(v)=d(s)[2b, 2b +2n -1], for each

If M (p ′ )=M (q ′ ) then d(u)=d(v), by Claim 5.3.13, and so u = v.

We will again use the notation

and due to the length of u and v we know |U j |≥1 and |V j |≥1 for each j.

(a) Let n =2 r -1, 2 r ,o r2 r +1 for any r ≥ 3, and p = π T [a, a + n +1 ] and q = π T [b, b + n +1] be subpermutations of π T of length n +2≥ 11. Then p ′ = δ(p) and q ′ = δ(q) by Proposition 5.3.2.

Suppose p ′ = q ′ , and assume M (p ′ )=M (q ′ ). For each pair of real numbers i = j where 0 ≤ i, j ≤ 2n -3, M (p ′ ) i <M(p ′ ) j ⇐⇒ M (q ′ ) i <M(q ′ ) j and thus p ′ i+1 <p ′ j+1 ⇐⇒ q ′ i+1 <q ′ j+1 .

Thus we know d(u)=d(v) and u = v. There is an α ∈{0, 1} so that d(u (a.1) Suppose p and q have the same form. By Theorem 5.2.8 and Proposition 5.2.12, p and q are a complementary pair of type k ≥ 4. By Proposition 5.3.16, L 2 (p)

and L 2 (q) are a complementary pair of type k -2 ≥ 2. Thus, without loss of generality,

(a.2) Suppose p and q do not have the same form. From Lemma 5.3.8 we know

Thus there is an 1 ≤ i ≤ 2n -2 so that L(p ′ ) 0 <L(p ′ ) i and L(q ′ ) 0 >L(q ′ ) i . As in Lemma 5.3.8 Case (a.1),i f1 ≤ i ≤ 2n -3 we have a contradiction. Thus we can assume that i =2n -2 is the only i so that L(p ′ ) 0 <L(p ′ ) i and L(q ′ ) 0 >L(q ′ ) i .T h u s

so L 2 (p) = L 2 (q), and u = v. Thus, by Theorem 5.2.8 and Proposition 5.2.12, L 2 (p) and L 2 (q) are a complementary pair of type k ≥ 2. Thus, without loss of generality,

Therefore if n =2 r -1, 2 r ,or2 r +1 for any r ≥ 3, p ′ = q ′ if and only if M (p ′ )=M (q ′ ).

(b) Let n =2 r -1, 2 r ,o r2 r +1 for some r ≥ 3, and p = π T [a, a + n +1] and q = π T [b, b + n +1] by subpermutations of π T of length n +2≥ 11. Then p ′ = δ(p) and q ′ = δ(q) as in Proposition 5.3.2.

(b.1) Suppose p and q have the same form. So for each 0 ≤ i ≤ n, p i <p i+1 ⇐⇒ q i <q i+1 .

So we know for each i, T [a + i] and T [b + i] both have the same C j as a prex, so i ∈ U j ⇐⇒ i ∈ V j and so |U j | = |V j | for each j.

If p = q, then p ′ = q ′ and M (p ′ )=M (q ′ ), so we can say p = q.I fn =2 r -1 or 2 r then p ′ = q ′ by Lemma 5.3.17 and M (p ′ )=M (q ′ ), so we can say n =2 r +1 for some r ≥ 3. Thus p and q are a complementary pair of type 3 by Theorem 5.2.8 and Proposition 5.2.12, and L 2 (p) and L 2 (q) are a complementary pair of type 1 by Proposition 5.3.16. So, without loss of generality, there is some

Since p and q are a complementary pair of type 3 we know

and T [b + n -1] each have C j as a prex. So by Proposition 5.3.2, there are some y and z so that

The order of y and z will be either y<y+1<z<

Therefore if p and q have the same form then M (p ′ )=M (q ′ ).

(b.2) Suppose p and q do not have the same form, and assume M (p ′ )=M (q ′ ).I fp and q do not have the same form, there is an 0 ≤ i ≤ n so that, without loss of generality, p i <p i+1 and q i >q i+1 and p = q. By Lemma 5.3.17, p ′ = q ′ . Then as in Case (a.2) we nd a contradiction to the assumption, so M (p ′ ) = M (q ′ ).

Therefore p and q have the same form if and only if M (p ′ )=M (q ′ ).

Thus, for n ≥ 9, the map

when applied to permutations associated with the Thue-Morse word are injective when n =2 r -1, 2 r ,o r2 r +1 for any r ≥ 3 (or when there are no complementary pairs of type 1, 2, or 3), so Perm

When n =2 r -1, 2 r ,o r2 r +1 for some r ≥ 3 the map δ M is surjective, but not injective. In this case, if p and q are subpermutations of π T of length n +2, where p has form u and q has form v, |u| = |v| = n +1, δ M (p)=δ M (q) if and only if u = v.T h u st h e number of subpermutations of π d(T ) of length 2n -2 which start in an odd position are determined by the number of factors of T of length n +1,o r

We are now ready to calculate the permutation complexity of d(T ). (a) If n =2 r , then

(a) Suppose n =2 r .S o2n =2 ( 2 r )=2 ( 2 r +1)-2, and from Lemma 5.3.17 and Lemma 5.3.18 each of the maps

are not injective.

So n +1 = 2 r +1 = 2 r-1 +2 r-1 +1, and n +2 = 2 r +2 = 2 r +1+1. So by Proposition