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List of Symbols

In the following table, letters that are not otherwise defined shall be:

n, m non-negative integer
k  positive integer
s, t integers
G real number
«  positive irrational
u, v finite word

x finite or infinite word over A

y infinite word over A

w aperiodic word over A
Symbol Definition
/ the integers
N the natural numbers, non-negative integers
Q the rational numbers
R the real numbers
5] absolute value of g
| 3] greatest integer < (3
(3] least integer > [3
s = (t mod k) | s is congruent to ¢t modulo k
| end of a proof
| A cardinality of the finite set A
A finite alphabet
A* free monoid generated by A, the set of finite

words over A
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Symbol Definition

€ identity element of A*, empty word

At free semigroup A* \ ¢

AN set of (right) infinite words over A

A” set of biinfinite words over A

A the set A* U AN

Alph(z) letters in A used to form x

~ reversal operation on A4*

- complement operation on A*, only if |A| = 2

|ul the number of letters in u, length of u

|ul, the number of occurrences of the letter a in
u

F(x) set of all factors of x

x[n] the n shift of z, x, 2, 1T, 0"

x[n, m] factor x, 2,41 2y of &, n <M

Fe(n set of factors of x of length n, where |z| > n

pz(n) size of F,(n), where |z| > n

U (u) Parikh vector of u

U, (n) set, of all distinct Parikh vectors of factors of
x of length n, where |z| > n

U ~gp UV u and v are abelian equivalent

Fb(n) set of non-abelian equivalent factors of x of
length n,, where |z| > n

0% (n) size of F2(n), where |z| > n

T Thue-Morse word

1% Thue-Morse morphism

F Fraenkel word over k letters

F,(P) set of pattern words in y from the k-pattern
P

p; (k) maximal pattern complexity function

i (k) maximal abelian pattern complexity function

(po 2 pnﬂ)

permutation of the numbers 1, 2, ..., n
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Definition

Tw(n)
[040,041,0427-~]

[QOa ay, 0, ... 7an]

[ag, aq, . .

n!

n

(T:) [k+1]

m

-y Ony Ot 1, -

E) C¥n+m]

infinite permutation associated with w
subpermutation of m,, from n to m, only de-
fined when n <m

set of subpermutations of

set of subpermutations of m,, of length n
length n subpermutations with even starting
index

length n subpermutations with odd starting
index

size of Perm"(n)

continued fraction expansion of «

periodic continued fraction expansion
eventually periodic continued fraction expan-
sion

n factorial, n- (n —1) -« 2-1
m'(:lm)'

coefficient of 2 in the expansion of (14 z +
2?4 b

number of compositions of n into k parts

if m < n, and 0 otherwise



Abstract - Résumé

The main topics of interest in this thesis will be two types of complexity, abelian com-
plexity and permutation complexity. Abelian complexity has been investigated over the
past decades. Permutation complexity is a relatively new type of word complexity which
investigates lexicographical ordering of shifts of an aperiodic word.

We will investigate two topics in the area of abelian complexity. Firstly we will con-
sider an abelian variation of maximal pattern complexity. Secondly we consider an upper
bound for words with the C-balance property. In the area of permutation complexity, we
compute the permutation complexity function for a number of words. A formula for the
complexity of Thue-Morse word is established by studying patterns in subpermutations
and the action of the Thue-Morse morphism on the subpermutations. We then give a
method to calculate the complexity of the image of certain words under the doubling map.
The permutation complexity function of the image of the Thue-Morse word under the

doubling map and the image of a Sturmian word under the doubling map are established.

Les principaux sujets d’intérét de cette thése concerneront deux notions de la com-
plexité d'un mot infini : la complexité abélienne et la complexité de permutation. La
complexité abélienne a été étudiée durant les derniéres décennies. La complexité de per-
mutation est, elle, une forme de complexité des mots relativement nouvelle qui associe a
chaque mot apériodique de maniére naturelle une permutation infinie.

Nous nous pencherons sur deux sujets dans le domaine de la complexité abélienne.
Dans un premier temps, nous nous intéresserons a une notion abélienne de la maximal
pattern complexity définie par T. Kamae. Deuxiémement, nous analyserons une limite
supérieure de cette complexité pour les mots C'—équilibré.

Dans le domaine de la complexité de permutation des mots apériodiques binaires,
nous établissons une formule pour la complexité de permutation du mot de Thue-Morse,
conjecturée par Makarov, en étudiant la combinatoire des sous-permutations sous ’action
du morphisme de Thue-Morse. Par la suite, nous donnons une méthode générale pour
calculer la complexité de permutation de I'image de certains mots sous 'application du

morphisme du doublement des lettres. Finalement, nous déterminons la complexité de

vi



permutation de I'image du mot de Thue-Morse et d'un mot Sturmien sous I’application

du morphisme du doublement des lettres.
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Sommaire

Les thémes principaux de recherche de cette thése concernent diverses notions de la com-
plexité des mots infinis : la complexité abélienne, une variation abélienne de la complexité
de Kamae, et la complexité de permutation.

Nous commencons par un étude combinatoire des mots C'—équilibrés. Il sera démon-
tré que les mots épisturmiens équilibrés ayant des fréquences de lettre distinctes obéissent
a la conjecture de Fraenkel. Il sera aussi démontré qu’'un mot récurrent équilibré w faible-
ment riche possédant au moins 3 lettres est en fait un mot périodique épisturmien, et si
les fréquences des lettres sont distinctes, alors w obéira a la conjecture de Fraenkel.

Dans le domaine de la complexité abélienne, nous nous intéresserons a une variation
abélienne de la maximal pattern complexity définie par T. Kamae. Il sera démontré
que cette notion de complexité donne une classification des mots binaires apériodiques
récurrents. Nous analyserons ensuite le lien entre la complexité abélienne et les mots
C'—équilibrés. Nous établissons une méthode générale permettant de calculer la valeur
maximale de la complexité abélienne d’'un mot récurrent infini équilibré. Nous trouvons
ensuite une limite supérieure pour la complexité abélienne d’'un mot C'—équilibré et nous
donnons des exemples de mots atteignant cette limite supérieure.

La majeure partie de la recherche présentée dans cette thése concerne la complexité de
permutation. La complexité de permutation prendra en compte I'ordre lexicographique
des shifts d’'un mot infini. D’abord, nous établissons une formule pour la complexité de
permutation du mot de Thue-Morse, conjecturée par Makarov. Puis, nous donnons une
méthode générale pour calculer la complexité de permutation d’'un mot binaire apéri-
odique sous l'application du morphisme du doublement des lettres. Finalement, nous
calculons la fonction de la complexité de permutation de I'image d’un mot sturmien et

du mot de Thue-Morse sous I'application du morphisme du doublement de lettre.
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Chapter 1
Introduction

Combinatorics on words is a relatively new field of study in discrete mathematics. The
study of combinatorics on words has grown independently in different areas of mathe-
matics; such as number theory, group theory, differential geometry, and probability. The
applications of combinatorics on words have extended to various fields such as theoretical
computer science, dynamical systems, biology, and linguistics. Many books have been
written on the subject of combinatorics, but the best known may be the collected works
written by a group of researchers under the nom de plume of Lothaire [27, 28, 29]. For
a survey of the beginnings of combinatorics on words and the inter-working of the early
discoveries see [9)].

The original study of words has been attributed to Axel Thue (1863-1922) with
the investigation of repetitions in words. Thue is credited with the discovery of the first
square-free infinite word in [43]. In Thue’s second paper on the subject, [44], he introduced
what is now generally referred to as the Thue-Morse word, which he proved was overlap-
free. After the work of Thue there were relatively few researchers working with words in
the early twentieth century. A greater number of researchers gave interest to words in
the 1950’s in connection with areas of discrete mathematics. Interest in combinatorics
on words grew rapidly after the publication of the publication of Lothaire’s book ([27]).

Possibly the most studied class of words is the Sturmian words. The history of
Sturmian words dates back to the 1700’s, with the first formal investigation by Morse
and Hedlund [37] in 1940. There have been many surveys written on the topic of Sturmian
words, with [8, 10] as examples.

A natural extension of studying words is word complexity. For example, the Sturmian
words are the class of aperiodic binary words with minimal factor complexity. Many
different notions of word complexity have been introduced over the years, such as factor
complexity, abelian complexity, palindromic complexity, pattern complexity, and recently

permutation complexity. The main goal of this thesis is to investigate topics related to



different types of complexity, namely abelian complexity and permutation complexity, as

well as maximal abelian pattern complexity.

1.1 Thesis Outline

In Chapter 2 we give some background information necessary for the later chapters. Pre-
liminary notation and terminology are defined, and some classic results in combinatorics
on words are given.

We start by looking at a class of balanced words. In [38] it is shown that balanced
episturmian words with distinct letter frequencies obey Fraenkel’s conjecture. In Chapter
3, we show that a recurrent balanced weakly rich word w with at least 3 letters is in fact
a periodic episturmian word, and if w is a word with distinct letter frequencies then w
will obey Fraenkel’s conjecture.

In Chapter 4, we investigate abelian complexity of words. First we will consider a new
type of complexity related to abelian complexity, maximal abelian pattern complexity.
It will be shown that maximal abelian pattern complexity will classify the recurrent
aperiodic binary words. We then investigate how abelian complexity and the C-balance
property are related. We first develop a method to calculate the maximal value for abelian
complexity of an infinite balanced recurrent word. We then find an upper bound for the
abelian complexity of an infinite C-balanced word. It is unknown if this upper bound
is the least upper bound, but we give some examples of words over a relatively small
alphabet which achieve the given upper bound.

In Chapter 5, we investigate a relatively new type of word complexity called per-
mutation complexity. Permutation complexity will consider the lexicographic ordering
of shifts of an infinite word. For this reason permutation complexity is only defined for
aperiodic words, because no two shifts of an aperiodic word will be identical. We will
give the permutation complexity function of the Thue-Morse word. We will also give a
method to calculate the permutation complexity of an infinite word which is the image
of an uniformly recurrent aperiodic binary word under the doubling map. We then give a
formula for the permutation complexity of the image of a Sturmian word under the dou-
bling map, and give the permutation complexity function of the image of the Thue-Morse

word under the doubling map.

1.2 Future Research

From the different areas of research in this thesis, there seem to be many possibilities

for future research topics. For example, one avenue of further research would be to find



bounds for maximal abelian pattern complexity of binary aperiodic words that are not
necessarily recurrent. Another direction is to find bounds for maximal abelian pattern
complexity of words on an alphabet of size k& > 3.

Early work in this thesis was focused on the link between abelian complexity and the
notion of C-balance. The direction of this thesis changed before many questions could be
answered. The main question related to abelian complexity is if the upper bound given in
Section 4.2.2 is the least upper bound for abelian complexity of C-balanced words. Some
examples of balanced recurrent words have been found which attain the upper bound for
abelian complexity, but no method has been developed to construct balanced recurrent
words over an alphabet with 7 or more letters.

The majority of the later research in this thesis was in the area of permutation com-
plexity. The permutation complexity has been calculated for some well-known words, but
many other classes of words have not been investigated. One avenue of future research
would be to calculate the permutation complexity of some other well-known words. Ad-
ditionally, early research has been focused on binary words. Another research direction is
to investigate the permutation complexity of words over a k-letter alphabet, where k > 3.

The action of the Thue-Morse morphism on subpermutations played a key role in
the investigation of the permutation complexity of the Thue-Morse word. The action
of the doubling map on subpermutations played a key role as well in the investigation
of the permutation complexity of words which are the image of an uniformly recurrent
aperiodic binary word under the doubling map. One direction of future research is to
generalize permutation complexity results to aperiodic words which are the image of an
aperiodic binary word under a morphism. This could be an aperiodic word which is the
fixed points of a morphism, or maybe the image of any word under some fixed morphism.
An early thought leads us to believe that the investigation of the action of morphisms on
subpermutations will answer many open questions about permutation complexity.

A method has been developed by Makarov to find the permutations of length n
generated by binary words, but no method has been developed to determine if a given
permutation of length n can be attained by a binary word. A natural question to ask is,
are there permutations which are not attainable from a binary word? The answer to this
question is yes, for example the permutation (213 4) will never occur in a binary word.

Some additional research topics are

e [s there a classification of the unattainable permutations?

e What are the necessary and sufficient conditions for a permutation to be attainable

by a binary word, or a word over a general k-letter alphabet?

e Are there permutations that are not attainable from a word on a k-letter alphabet?



e How long are unattainable permutations on a k-letter alphabet?



Chapter 2
Background

In this chapter, we present some preliminary definitions and results about words and
morphisms. We will also introduce the notion of word complexity and give some examples
and results. We will finish the chapter by introducing some well-known words and results
which will be used in this writing.

2.1 Words

A word is a finite, (right) infinite, or biinfinite sequence of symbols taken from a finite
non-empty set, A, called an alphabet. The elements of A are called letters. For any word
w over the alphabet A, denote Alph(w) = B C A to be the subset of letters in A that
are used to form the word w. In what follows, if w is a word over A, then Alph(w) = A

unless otherwise noted.

2.1.1 Finite Words

A finite word over A is an element of the free monoid A*, generated from A by concate-
nation of the letters in A and is represented by juxtaposition of letters and words. For
example, if u = POWER and v = NAP the concatenation of v and v is uv = POWERNAP. It
should be noted that this operation is not commutative, because vu = NAPPOWER. Con-
catenation is an associative operation because (uv)w = u(vw) = uvw for all u, v, w € A*.
The identity element e of A* is called the empty word, and the free semigroup over A is
defined by AT = A* \ e.

A finite word u € A* has the form u = ajas...a, with each a; € A and n > 0, and
the length of u is the number of symbols in the sequence and is denoted |u| = n (if n = 0,
then u = € and |u| = |¢| = 0).

Denote ~ to be the reversal operation on A*. Let € = ¢ and for u = wjuy...u, €



AT the reversal of u is denoted by @ = u, ...usu;. For example if u = PEANUT and
v = RACECAR, then &« = TUNAEP and U = RACECAR. A word u € A* is said to be
a palindrome if u = u, by definition the empty-word ¢ is a palindrome. The word v in
the previous example is a palindrome, as are the English words KAYAK, ROTATOR, and
AIBOHPHOBIA (which is the fear of palindromes).

2.1.2 Infinite Words

A (right) infinite word over A is a list of letters in A indexed by N. An infinite word has
the form w = wowiws . .. with each w; € A. The set of all infinite words over A is denoted
AN and let A® = A* U AN, A biinfinite word is a list of letters in A indexed by Z and
the set of all biinfinite words is denoted 4%. In what follows, all infinite words will be
considered to be right infinite words unless otherwise noted.

A word w € AN is said to be periodic of period p if p is the least integer so that
w; = wiy, for each i € N. A word w € A" is said to be eventually periodic of period p if p
is the least integer so that for some N € N, w; = w;,, for each i > N. It should be noted
that all periodic words are eventually periodic. A word w € A" is said to be aperiodic if

it is not periodic or eventually periodic.

2.1.3 Factors

A finite word z is a factor of w € A if w = uxv for some u € A* and v € A>®. The
word x is a called a prefirz of w if u = €, and is called a proper prefix of w if v # €. The
word x is a called a suffiz of w if v = ¢, and is called a proper suffix of w if u # €.

For any word w € A%, define F(w) to be the set of all factors of w and F,(n) to be
the set of all factors of w of length n where |w| > n.

A factor u of a word w is said to be right special (resp. left special) in w if there are
at least two distinct letters a, b so that ua and ub (resp. au and bu) are also factors of w.
A factor that is both right and left special is called bispecial.

The infinite word w € AY is said to be recurrent if for any prefix p of w there exists
a prefix ¢ of w so that ¢ = pvp for some v € A*. Equivalently, a word w is recurrent if
each factor of w occurs infinitely often in w. The word w € AY is uniformly recurrent if
each factor occurs infinitely often with bounded gaps. Thus if w is uniformly recurrent,

for each integer n > 0 there is a positive integer N so that for each factor v of w with
lv| = N, F,(n) C F(v).



2.1.4 Lexicographic Order

Suppose the letters of A are ordered with a linear order <. Then all the elements of
A* can be linearly ordered by the lexicographic order, <. For words u,v € A*, we
say u < v if and only if either u is a proper prefix of v or v = zau’ and v = zbv/,
for z,u/,v" € A* and a,b € A with a < b. To see an example of this ordering, the
lexicographic order is the ordering used in a dictionary or phone book with the intuitive
ordering a < b < --- < y < z on the letters. For a more explicit example consider the
English words
RACE < RACECAR < RACING,

where the larger letters show where one word is greater than the previous word in the
list.

This ordering can be naturally extended to elements of AYN. Let u,v € AY, where
U = ugug--- and v = vyvy---, we say u < v if and only if there is some ¢ > 0 so that

u; < v; and u; = v; for each 0 < j < 7.

2.1.5 Complement of a Word

Supposing |A| = 2, or A = {0, 1} is a binary alphabet, we can define another operation
on A*. Denote — to be the complement operation on A>. Let @ denote the complement
of a € A, thatis 0 = 1 and 1 = 0. For example, if u € A* with v = 101001 then
u = 010110. If w = wiwaws -+ € A®, the complement of w is defined to be the word
composed of the complement of the letters in w, that is @ = W = W1Wol3 -+ + .
For a word w € A*> we say the set of factors of w is closed under complementation if for
each u € F(w) then u € F(w).

2.2 Morphisms

Let A and B be two finite alphabets. A map ¢ : A* — B* so that p(uv) = p(u)e(v) for
any u,v € A* is called a morphism of A* into B*, and ¢ is defined by the image of each
letter in A. Note that p(g) = e.

Example Let A= {a, f,s,t}, B={a,e, f,i,r}, and ¢ : A* — B* be defined by

(
at—a

f— fer

ST

L t 1.



Then we have ¢(FAST) = FERARRL

A morphism on A is a morphism from A* into A*, also called an endomorphism of
A. A morphism ¢ is said to be non-erasing if the image of any non-empty word is not
empty. All morphisms contained in this paper will be considered to be non-erasing unless
otherwise noted.

A morphism on A worth noting here is the doubling map, d, defined by
d:a— aa

for each a € A. The doubling map will be discussed more in Section 5.3.

If there is a positive integer N so that |p(a)] = N for each a € A, then ¢ is called
an N-uniform morphism. The morphism pz on A = {0,1} defined by

001
1—10

Hr:

is a 2-uniform morphism.

The action of a morphism ¢ on A can naturally be extended from A* to AY. For any
w = wowiws . .. € AN, we define p(w) = p(wy)p(wi)e(ws) ... as in the case for words in
A*. We say that a word w is a fized point of the morphism ¢ if p(w) = w.

The n-iteration of a morphism ¢ on some a € A is denoted ¢"(a) and is defined by

P'a) = a, ¢"(a) =p(¥" '(a)) forn>1.

If ¢ is a morphism on A and if ¢(a) = au for some a € A and u € AT, ¢ is said to be
prolongable on a. If ¢ is a morphism on A that is prolongable on some a € A, then ¢"(a)
is a proper prefix of ¢"*!(a) for each n € N. The limit of the sequence {¢"(a)}, .y will
be the unique infinite word

w = lim ¢"(a) = ¢*(a) = aup(u)p*(u) - - -

n—0o0

where w is a fixed point of , and we say that w is generated by ¢. A morphism ¢ on A is
said to be primitive if there is a positive integer k so that for each a € A, ¥*(a) contains
all the letters of A.

2.3 Word Complexity

The study of combinatorics on words eventually led to the investigation of how complex

a word can be. There have been different ways to define the complexity of a word. A



natural way to define the complexity of a word w is to count the number of distinct
factors of w of each length, which is known as the factor complexity of a word. Recently
a generalization of factor complexity led to counting the number of pairwise non-abelian
equivalent factors, formally compiled in [40], known as the abelian complexity of a word.
Other ways to measure the complexity of a word have been developed over the years,
and many well-known classes of words have been classified using different definitions of
complexity. The Sturmian words have been classified as the words having minimal factor
complexity without being periodic, but they also have minimal abelian complexity.

A common question for any notion of complexity is to find the complexity of some
well-known words. For example a classification of Sturmian words has been given by
palindromic complexity, introduced by Droubay and Pirillo in [16]. For an infinite word

w, let h,(n) be the number of palindromic factors of length n of w.

Theorem 2.3.1 ([16]) Let w be an infinite word. Then w is Sturmian if and only if

1 ifn is even
hu(n) =

2 otherwise

In this section we are concerned with some different definitions of word complexity.
In Section 2.3.1 we present some fundamental results of studies in factor complexity.
Some of the research of this author has been concerned with abelian complexity and
pattern complexity, so these types of complexity are considered in Sections 2.3.2 and
2.3.3, respectively. Permutation complexity is left out of this section, but is investigated
in Chapter 5.

2.3.1 Factor Complexity

For a word w € A, recall from Section 2.1.3, F(w) is the set of all factors of a word w,
and F,(n) is the set of all factors of w of length n, where |w| > n. We are now ready to

define the notion of factor complexity. Define the function p, by

pu(n) = |Fu(n)].

The function p,, : N — N is called the factor complexity function, or subword complexity
function, of w and it counts the number of distinct factors of w for each length.

A natural investigation led to the possible bounds of factor complexity for words.
Early work in the area of factor complexity (see [13, 36]) characterized the biinfinite (resp.
right infinite) words with bounded factor complexity as the periodic (resp. eventually

periodic) words.



Proposition 2.3.2 [13] An infinite word x € AY is eventually periodic if and only if
pz(n) < n for some n > 1. A biinfinite word y € A” is periodic if and only if p,(n) <n

for some n > 1.

Therefore periodic and eventually periodic words have bounded factor complexity. For a
word w € AN, where |A| = k, the maximal value for the factor complexity for a length n

will be k™. Thus for an aperiodic infinite word w, the bounds for factor complexity are
n+1<p,(n) <k

for all n > 1.

One consideration to factor complexity are words with maximal factor complexity.
Suppose |A| =k, k > 2, and fix an integer n > 1. A trivial way to construct a finite
word u € A* with maximal factor complexity p,(n) = k™ is to concatenate all k™ distinct
words of length n. By this construction, the word u has maximal factor complexity and
lu| = n - k™, but many words of length n appear as factors of u multiple times. The
minimal length cyclic words to contain all £" distinct words of length n are the de Bruijn
cycles ([47, 42]), B(n, k). The length of a de Bruijn cycle B(k,n) is k", and each word
of length n appears as a factor in B(k,n) exactly once. There are a total of k=" (k)"
such cycles, so B(k,n) is not unique. The de Bruijn cycles will be discussed further in
Section 2.4.1. An infinite word over A with maximal factor complexity can be created

by concatenating all words of length n, for each n > 1. For example, the binary word
C =0100011011 000001010011100101110111 - - -

contains all binary words of length n as a factor, and thus pc(n) = 2" for each n > 1.

Aperiodic words with minimal factor complexity are the Sturmian words, first studied
in [36], having n + 1 distinct factors of length n, for each n > 1. First we note that
Sturmian words are binary words since they have 2 distinct factors of length 1. Then for
each length n > 1, there is exactly one factor of length n that can be followed by more
than one letter, or else the number of factors of length n 4+ 1 will not be n 4+ 2. Thus
for each length, n > 1, Sturmian words have exactly one right special factor (as well as
exactly one left special factor) of length n. Sturmian words have been studied extensively
and will be discussed further in Section 2.4.2.

Extending the idea of words with minimal factor complexity to a general k-letter
alphabet can be done by limiting the number of left and right special factors. The first
natural generalization in this direction was given by Arnoux and Rauzy [5] for the case
of k = 3. An Arnoux-Rauzy word has exactly one left special factor and one right special
factor of each length, and for each right (resp. left) special factor u of w, ua (resp. au)

is a factor of w for each a € A. Thus, an Arnoux-Rauzy word over A, with |A| = k,
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has k factors of length 1, and then an additional £ — 1 factors for each additional length.
The Sturmian words are precisely the Arnoux-Rauzy words over a 2-letter alphabet.
Arnoux-Rauzy words have a factor complexity function with linear growth with respect
to factor length, and for an Arnoux-Rauzy word x € AY, p,(n) = (k — 1)n + 1. Another
generalization of words with linear factor complexity are the episturmian words which
will be discussed further in Section 2.4.3.

A nice property of Sturmian words, Arnoux-Rauzy words, and episturmian words is
that their sets of factors are closed under reversal. That is, if w € AV is such a word
and u € F(w), then & € F(w). Factor complexity of other well-known words has also
been investigated. For example, the factor complexity of the Thue-Morse word ([11, 31])
and generalized Thue-Morse words ([46]) have been found to increase with linear bounds,

with respect to factor length.

2.3.2 Abelian Complexity

A natural extension of factor complexity is abelian complexity. In the sense that abelian
group is a group with a commutative operation, abelian complexity will count the number
of occurrences of letters in factors. Much of the content in this section is taken from [40].
We define abelian complexity as follows.

For any finite word v € A* and for each a € A, let |u|, denote the number of
occurrences of the letter a in the word w. Any two words v and v in A* are said to be
abelian equivalent, denoted u ~g v, if |u|, = |v|, for each a € A, and it is readily verified

that ~, defines an equivalence relation on A*. For example,
ELEVEN PLUS TWO ~,, TWELVE PLUS ONE.

The frequency of the letter a € A in the word u € A" is defined to be |u]|, /|u|. The
frequency of the letter a € A in an infinite word w € AN is defined to be

lim _|pn|a7
n—oo N

if the limit exists, where p, is the prefix of w of length n.

We can then expand on the definition of factor complexity and define
Fe(n) = Fo(n)/ ~a
to be the set of non-abelian equivalent factors of w of length n, and let
P (n) = |F2*(n)].

The function p® : N+ N is called the abelian complezity function of w and it counts the

number of non-abelian equivalent factors of w of length n.
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The alphabet A will generally consist of the numbers {0,1,2,...k — 1}. Then for

each u € A* we can naturally define the Parikh vector associated to u by

W(u) = (Julg, fuly s fule_y)-

For example, if A = {0,1,2} and u = 0102010 € A* then ¥(u) = (4,2,1).

Extending this notion to an infinite word w € AN, we define
Py(n) ={ ¥(u) | ue F,(n) }

to be the set of all distinct Parikh vectors of factors of w of length n. It is also useful to
note that p®(n) = [¥,(n)|.

Let a and b be letters in A = {0,1,...,k — 1} and let u € A*. If a = b then
U(au) = ¥(ub). When a # b, the vector V = W(au) — ¥(ub) will be the vector so that
Var1 = 1, Vou1 = —1 and for each other ¢ € A, V; = 0. This shows how Parikh vectors
change when considering two successive factors of the same length of a word w. These

observations directly imply the following fact.

Fact 2.3.3 ([40]) If an infinite word w has two factors u and v of same length n for which
the i-th entry of the Parikh vector are p and p+ ¢ respectively for some p and ¢ > 0, then

for all 1 =0,..., ¢, there exist factors u; of w whose i-th entry is p + L.

Using the notation from Fact 2.3.3, it should be clear that p®(n) > ¢+ 1. For an
infinite word w € A" it is said that w is C-balanced (where C'is a positive integer) if for
all factors u and v with |u| = |v|, ||u|, — |v],| < C for each a € A. It should be clear that
if a word is C-balanced then it is (C' 4 1)-balanced. If a word w is 1-balanced, we say
that the word w is balanced. An initial link between C-balance and abelian complexity

can be seen in the next lemma.

Lemma 2.3.4 ([40]) For a word w € A” U AN, the abelian complexity function p® is

bounded if and only if w is C-balanced for some positive integer C'.

Proof If p? is bounded by some K, then it is easy to see w is (K — 1)-balanced. Con-
versely, if w is C-balanced then for any positive integer n the Parikh vectors of factors of
length n can take on at most C -+ 1 distinct values. Thus p2(n) < (C + 1)MI, |

A natural question with regards to abelian complexity of a word w is, what are the
maximal and minimal values for the abelian complexity of w? Minimal values for abelian

complexity are achieved by periodic words.

Lemma 2.3.5 ([13], Remark 4.07) Let w € AN U A%. Then w is periodic of period p if
and only if p®(p) = 1.
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The maximum number of elements of W, (n) can be calculated with relative ease.
Each element in W, (n) is a k-tuple ¥(u) = (ig, i1, - - . ,ir_1) where ig+i;+...+ix_1 = n.
Thus, the maximal size of W, (n) is the same as the number of ways to write n as the
sum of k£ non-negative integers. This value (see [49]), lx(n), is called the number of

compositions of n into k parts and is given by the binomial coefficient

o(n) = (”Zf;l)

Thus, for an infinite word w over a k-letter alphabet A

P (n) < lk(n),

for each positive integer n. A word with maximal factor complexity will contain all
words of length n as factors, and thus a word with maximal factor complexity will also
have maximal abelian complexity. One topic of this thesis will be to investigate the
link between the notions of abelian complexity and C-balance, namely an optimal upper
bound for abelian complexity for a word that is C-balanced. This topic will be covered
in more detail in Section 4.2.

As introduced in the previous section (2.3.1), the Sturmian words are the class of
aperiodic words with minimal factor complexity. An equivalent definition of Sturmian
words is that they are also the class of aperiodic balanced binary words (see Theorem

2.4.2). The following theorem gives another classification of the Sturmian words.

Theorem 2.3.6 ([13]) Let w € {0,1}N. Then w is Sturmian if and only if p®(n) = 2
for alln > 1.

Thus the Sturmian words are the aperiodic words with minimal abelian complexity.
The abelian complexity of the Thue-Morse word has also been calculated. Moreover,

the class of words having the same abelian complexity as the Thue-Morse word has been

characterized. This class of words is described as the image of any aperiodic binary word

under the Thue-Morse morphism, pr, defined as

001
1 — 10.

KT

Theorem 2.3.7 ([40]) The abelian complexity of an aperiodic binary word w is

2 formn odd

P (n) =
3 forn #0 even

if and only if there exists a word w'" so that w = pp(W'), w = Opr(W'), or w = lup(w).
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Since the Thue-Morse word, T', clearly satisfies the conditions of Theorem 2.3.7, we have
a formula to calculate the abelian complexity of the Thue-Morse word.

So far we have seen some examples of words with linear factor complexity functions
having low abelian complexity. This is not always the case. It is possible to construct
words with an exponential factor complexity function, yet have bounded abelian com-

plexity. Take for example the word C' defined previously,
C =0100011011 000001010011100101110111 - - -

and consider the word C” = pur(C). Theorem 2.3.7 says that this word will have bounded
abelian complexity (p&(n) < 3), yet pcr(2n) = 2" has exponential growth.

It is also possible to construct a word with maximal abelian complexity and linear
factor complexity. This example is given in [40]. Let f and g be morphisms defined by
f(a) = abe, f(b) = bbb, f(c) = cce, gla) = 0 = g(c), and g(b) = 1. It should be clear
that f is prolongable on a, and thus the word u = f*°(a) is a fixed point of f. The word
w=g(u) = g(f>*(a)) is the word

W= OH 130% = 010111000 - - - .

120

It is readily verified that p2(n) is maximal for each n > 1, and thus not bounded.
It turns out that this word w is an automatic sequence, and thus it has linear factor
complexity (see [3], Theorems 6.3.2 and 10.3.1). An automatic sequence is defined as
follows. Starting with a morphism f on the alphabet B, where f is prolongable on
some b € B, and a projection map ¢g : B — A. If u is a fixed point of f, then g(u)
is an automatic sequence over A. An automatic sequence can also be seen as an word
generated by a finite automaton.

Inspired by the result of Sturmian words having constant abelian complexity, G.
Rauzy asked if there existed an infinite word w so that p?(n) = 3 for all n > 0 ([39]).
In general, it is possible to create a word with constant abelian complexity. For example
(see [40]), let k > 3, and let s be a Sturmian word on the alphabet {0, 1}. Then the word
W' = (k—1)(k—2)...2s will have p(n) = k for all n > 1. The case where k = 3 gives
an answer to Rauzy’s question, but it is a trivial answer since w’ is not recurrent. An
example of an infinite recurrent word w with p? = 3 is a word w, where w is the image
of a Sturmian word s on {a, b} under the morphism ¢ where ¢(a) = 012 and ¢(b) = 021,
([40]). It has recently been shown (see [14]) that for k > 4, there is no recurrent word

over a k letter alphabet with constant abelian complexity.
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2.3.3 Pattern Complexity

The idea of maximal pattern complexity was introduced by T. Kamae ([26]). The pattern
complexity function is defined as follows. Let k be a positive integer. A k-pattern P is a

sequence of k integers with
O0=F <P < --- <P,

A (k+1)-pattern P’ is called an immediate extension of a k-pattern P if P'(i) = P(i) for
0 <i<(k—1), and we call this P an immediate restriction of P’.

Now let w be an infinite word over the finite alphabet A. For each k-pattern P define

F“"(P) - { Wn+PyWn+Py ** " Wnt Py ‘ n=0 }

and let p’ be defined as
PL(k) = sup | F,(P)|

where the supremum is taken over all k-patterns P. The function p, : N — N is called the
mazimal pattern complexity function. A k-pattern P will attain p’ (k) if |F,,(P)| = p (k).
The maximal value for the pattern complexity of a k-pattern will be |A|k, since for each
of the k windows there are | A| possible letters to choose from. Thus for an infinite word
w over A, we have p* (k) < |A|®

Maximal pattern complexity can be used to characterize eventually periodic infinite

words.

Theorem 2.3.8 ([26]) An infinite word w is eventually periodic if and only if for some
n, pi(n) <2n—1.

The class of infinite words having maximal pattern complexity p’ (k) = 2k are called
pattern Sturmian words. Note that a pattern Sturmian word w must be binary, since
pL(1) =2

In [26], it is shown that for any irrational 0 < a < 1, and interval I C [0, 1] with
0<|I| <1andany z € [0,1), the word w = R(a, I, z,Z) defined by

0 2+ na€ I(mod Z)
w(n) =
1 otherwise

is a pattern Sturmian word. Thus every Sturmian word is pattern Sturmian ([26]), but
if [I| ¢ {a,1 — a} then w is not Sturmian.

In [25] an interesting property is shown if the set I defined above is not an interval

but is a particular closed set.
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Theorem 2.3.9 ([25]) For any irrational rotation «, there exists a closed set S in [0, 1)
so that p* (k) = 2%, k> 1, for almost all x € [0,1) with w = R(«, S, x,7Z)

The notion of pattern complexity can be naturally extended to abelian pattern com-

plexity. For a k-pattern P and an infinite word w we consider the set

{ \I;(wn+PQwTL+P1 v 'wn+Pk,1) | n Z O } )

the set of Parikh vectors of the pattern words. Then counting the size of this set will
give the mazimal abelian pattern complexity. Maximal abelian pattern complexity will be

discussed further in Section 4.1.

2.4 Some Well-Known Words

Many well-known words have been studied extensively. When a new notion or idea of
combinatorics on words is introduced, a first step is to see what happens with some of the
well-known words. For example if a new type of complexity is introduced, does it classify
some of the well-known words, or define a new class of words? Maybe a new family of
morphisms does something interesting to a class of words.

Expanding some of the notions of minimal factor complexity led to the discovery
of other classes of words, namely the Arnoux-Rauzy words (or strict episturmian) and
the episturmian words. These classes of words will be described in more detail in the
following sections. First we will look at some well-known finite words and then consider

infinite words.

2.4.1 Finite Words

The first type of finite words to discuss are the Lyndon words. This notation and termi-
nology can be found in [27]

A word is primitive if it is not a power of another word. Thus if x is primitive and
x = 2" for z € A*, then n = 1 and z = z. The finite words z,y € A* are said to be

conjugate if there exist words u,v € A* so that
T = uv Yy = vu

A eyclic permutation is a map o so that if a € A and v € A*, then o(av) = va. Thus two
words x and y are conjugate if there is some n so that ¢”(z) = y. Conjugacy defines an
equivalence relation on A*, where two words are equivalent if they are conjugate.

If we define an order on the alphabet A = {0,1,...,k—1}, namely 0 <1 < --- < k—1,

we can use lexicographical ordering on the elements of A*. The Lyndon words are precisely
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the set of words which are minimal in their conjugacy class, or [ is a Lyndon word if for
each 1 <n < |l|] — 1 then I < ¢™(l). An equivalent way to define Lyndon words is that
a word [ is a Lyndon word if and only if for any factorization [ = uv, with both v and v
non-empty, then [ < v. Thus [ is less than any of its proper suffixes. By this definition
Lyndon words must be primitive words, or else if [ = xx then lexicographically =z < [
and [ is not a Lyndon word. The first few Lyndon words on the alphabet A = {0,1}
with 0 < 1 are: 0,1,01,001,011,0001,0011,0111, ---. The general formula for Lj(n), the

number of Lyndon words of length n on an alphabet with k letters, is
1 n
Li(n) = = (-) k.
k(n) = %: AW

The sum is taken over all d which divide n and p(m) is the Mobius function, which is
defined to be 1 if m is a square-free positive integer with an even number of distinct prime
factors, 0 if m is not square-free, and -1 otherwise.

Another well-known class of finite words are the de Bruijn cycles. The de Bruijn
cycles, B(k,n), are the minimal length cyclic words to contain all k™ distinct words of
length n ([47, 42]). The length of a de Bruijn cycle B(k,n) is k" and each word of length
n appears once as a factor. There are a total of k~"(k!)™" such cycles, so B(k,n) is
not unique. The construction and enumeration of such words over a binary alphabet was
first completed by Sainte-Marie [42], and the extension to a general k-letter alphabet is
stated and solved by van Aardenne-Ehrenfest and de Bruijn in [47]. The factors of length
n of a cyclic word B(k,n) = biby ... by are of the form b;b;yq...b; 1,1 fori < k" —m+1
or bibiy1...bgnby .. bj_gnin_1 for k" —n + 1 < i. For example, it is readily verified that

the words

B(3,3) = 000111222012022110021210102
B(2,5) = 00000100011001010011101011011111

contain all words, of their respective lengths, as factors exactly once.

The next set of finite words to consider are the Fraenkel words, which are used to
construct the so-called Fraenkel sequences, in connection to a conjecture by Fraenkel (see

[19]). A combinatorial version of the conjecture (from [38]) can be read as:

Conjecture 2.4.1 (Fraenkel) For a k letter alphabet {1,2,... k} with k > 3, there
1s a unique balanced word, up to letter permutations and shifts, that has distinct letter

frequencies.

are the F} and are defined recursively as I} = 1 and F,, = F,,_1nF,_; forn > 2. Fraenkel’s

conjecture has been verified for an alphabet of size up to 7 ([4, 7, 22]).
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The final well-known class of finite words to be discussed here are the finite Sturmian
words. The set of finite Sturmian words is the set of all balanced finite binary words.
For example the word 001001 is a finite Sturmian word, while the word 000101 is not a
finite Sturmian word due to an imbalance in the factors 000 and 101. Another definition
for the finite Sturmian words is, a word w« is a finite Sturmian word if and only if it is a

factor of some (infinite) Sturmian word s.

2.4.2 Sturmian Words

An infinite word s is a Sturmian word if for each n > 0, s has exactly n+ 1 distinct factors
of length n, or ps(n) = n+ 1 (the only factor of length n = 0 being the empty-word).

Thus since p(1) = 2, it should be clear that Sturmian words are binary words.

Example An example of a Sturmian word is the Fibonacci word, t, where
t =01001010010010100101 . ..

The Fibonacci word can be constructed in a number of ways. One way to construct ¢
is by iteration of the morphism 7 : 0 — 01;1 — 0. Thus t = 7°°(0), and ¢ is a fixed
point of 7. Is is good to note that for each n > 0 we have 7"(0) as a prefix of ¢. These
finite iterations of 7 are called the finite Fibonacci words, f, = 7™(0). The morphism 7
is called the Fibonacci morphism because for each n > 0 the length of f,, = 77(0) is the
n-th Fibonacci number. This word can also be defined recursively, f,.o = fni1f, where
fno1 = 1 and fy = 0. Yet another way to view the Fibonacci word is as a mechanical
word (defined below) with irrational slope a = 1/¢?, where ¢ = (1++/5)/2 is the golden

ratio.

As stated above, there are many equivalent definitions for the class of Sturmian words.
Before some equivalent definitions are given, let’s look at words created geometrically by
an irrational slope. These descriptions have been given many times in the literature (see,
e.g. [28], Chapter 2).

Given two real numbers o and p with 0 < a <1, define the words s, , and s’a’p by

Sap(n) = la(n +1) +p| — [an + p]

Sup(n) = [a(n+1) + p] — [an + p]
for each n > 0. For simplicity we can assume 0 < p < 1 or 0 < p < 1. It is readily
verified that the words s, , and s;, , are over the alphabet A = {0,1}. The word s, is

called the lower mechanical word, s’a,p is the upper mechanical word, with slope a and

intercept p. It should be clear that sy, = s, = 0 and 51, = s} , = 1°°, s0 we will
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assume that 0 < a < 1 unless otherwise noted. The condition on 0 < a < 1 is more of
a simplification. If we let o > 0 then we would have |a] < s,,(n) <1+ |af, and s,,
would be a binary word over the alphabet A= {|«a],1+ |a]}.

A mechanical word is said to be irrational or rational according to if its slope is
irrational or rational. When an + p is not an integer we have 1+ |an + p| = [an + p|,
S0 Sa,, = S, , except when an + p is an integer. Thus if « is irrational, an + p can be an
integer at most once so s,,, and s;, , can differ by at most one factor of length 2. If « is
rational, say o = ¢/p for ¢,p € N with p # 0, it is easy to see s,,, is periodic of period p.

So for each n we have

s%,p(njtp): %(n+1+p)+pJ - E(ner)%—pJ

q+%(n+1)+pJ - {qu]%(”)‘l'PJ

The case where 0 < a < 1 and p = 0 is going to come up again, so let’s note that
case now. In this case we have s,0(0) = [a] = 0 and s, ,(0) = [a] = 1, and if a is

irrational (thus an is irrational for all n > 1) we get
Sa.0 = 0cq, Spo = lca

It is also helpful to notice

Sa,a = Ca, Sa,a = Cq
where ¢, is called the characteristic Sturmian word with slope «. Characteristic words
will be discussed more later.

Now we will see some of the equivalent definitions of infinite Sturmian words, proven
by Morse and Hedlund.

Theorem 2.4.2 ([37]) Let s be an infinite word. The following are equivalent:
1. s is Sturmian.
2. s is balanced and aperiodic.
3. s is irrational mechanical.

Thus the class of Sturmian words corresponds to the words generated by irrational me-
chanical words. An interesting point is that there are uncountably many distinct Sturmian

words due to uncountably many irrational numbers in the interval [0,1]. A word is said
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to be a finite Sturmian word if it is a factor of some Sturmian word. Thus, as stated at

the end of Section 2.4.1, the set of finite Sturmian words is the set
{u € {0,1}*| w is balanced}

All Sturmian words considered in this writing will be infinite Sturmian words, unless
otherwise noted.

There also exists a relation between the slope of a Sturmian word and the frequency
of the letters in the word. Recall from Section 2.3.2 that the frequency of the letter a in
a finite word is the number of occurrences of a divided by the length of the word. In the
case of an infinite word w, the frequency of the letter a is the limit (if the limit exists) of
the frequency of a in the prefixes of w. Let s be a lower mechanical word over {0, 1} with
irrational slope « and intercept p. Then for each m > 1 there exists an n,, € N where
0<n, <m-—1so that

n N + 1
m m
Thus for each m, any factor u of s where |u| = m we know

Ny + 1

Nm
L—m—i—pJS]uhS{ m+pJ
m

N < Jul; <np +1

Thus the frequency of the letter 1 in s will be bounded by = and anH It is readily

verified that the sequences ("2 ),,cn and (””;n“)meN will both limit to «, and thus the
frequency of the letter 1 in s will be a. The frequency of the letter 0 in s will then be
1—oa.

Mechanical words can be interpreted other ways. For different applications of words,
different interpretations may be more useful. This first alternative interpretation will be
mentioned again in Section 4.2.1, and can be found in [28]. For this we will consider the
line y = Bz + p with # > 0 and any p € R, and with no other restrictions on 3 and p.
This line will then define a sequence of points g, @1, ... where the line intersects the
lines of the grid of non-negative integer points. Thus if we let @, = (z,,y,) for each
n > 0 we have zog < x; < -+, yop < y; < ---, and at least one of z, or y, an integer.
We call Q),, horizontal if y, is an integer, and wvertical if x,, is an integer. If both x,, and
yn are integers we create an additional point (),_; before (),, and say @),,_; is horizontal
and @, is vertical (we could say @, is vertical and @), is horizontal, but would always
use the same choice), and then repeat in this manner when ever both x,, and vy, are both
integers.

If we associate a 0 to each vertical point and a 1 to each horizontal point we get

the word Kj, called the (lower) cutting sequence with slope 3 and intercept p. More

20



formally, to each Q,, associate the point I,, = (u,,v,) where:

([zn],yn — 1) if @, is horizontal
(Un, Un) =

(T, [Yn]) if ), is vertical
The I, points are below (resp. below and to the right) of @, if @, is vertical (resp.
horizontal). Similar points J, can be defined to the left (resp. above and to the left) of
Qn if Q, is horizontal (resp. vertical) to define the upper cutting sequence Kj . It is
readily verified that u, + v, = n for each n > 0, and the cutting sequence Kz, is defined
by:

Kg,(n) =vps1 — vy = 1+ Uy — tppq

As with the mechanical words, the upper and lower cutting words will only differ
where n + p is an integer. Let’s look at the special case where p = 0 and (3 is irrational,
and we get infinite words where the first letter is different. Thus we have the word Cp
where

Kgo = 0C3, K[/a,o =1Cj

and Cp is similar to a characteristic word for mechanical words. Cutting sequences are

related to mechanical words (s,,,) by the following identity:

P

3
T+5° T+5

Kgp=s

Some other interpretations of mechanical words can be seen. In [37], Morse and
Hedlund show that mechanical words can be realized by coding the orbit of a point on
the circle of circumference equal to one under a shift of angle 0 < o < 1, where the circle
is partitioned into two intervals of size a and 1—«. Sturmian words have also been shown

to be represented by coding square billiard words (see [48]).

Now let’s consider some properties of the factors of Sturmian words.

Proposition 2.4.3 ([28]) The set F(s) of factors of a Sturmian word s is closed under

reversal.

Proposition 2.4.4 ([28]) Let s and t be Sturmian words.
1. If s and t have the same slope, then F(s) = F(t).

2. If s and t have distinct slopes, then F(s) N F(t) is finite.

Thus for two Sturmian words s, , and s, s, we know F(s,,) = F(Sa,). Moreover, we
know for any Sturmian word s, ,, F(Sa,p) = F(5a,0) = F(ca) = F(Caj-a)). Thus when
talking about the set of factors of a Sturmian word with slope «, it is sufficient to talk

about the set of factors of the characteristic Sturmian word with the same slope a.
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Since the words s,0 = Oc, and s;, ; = 1c, have the same slope, they have the same
set of factors. Therefore, for each n > 1 the prefix p, of length n of ¢, is a left special

factor. That is, both Op, and 1p, are factors of ¢,. More formally,

Proposition 2.4.5 ([28]) For every Sturmian word s, either Os or ls is Sturmian. A

Sturmian word s is characteristic if and only if Os and 1s are both Sturmian.

This, along with Proposition 2.4.3, implies that the set of right special factors of a Stur-
mian word s with slope « are the reversal of the prefixes of the characteristic Sturmian
word ¢,

Proposition 2.4.3 was used to generalize the idea of minimal factor complexity from
aperiodic binary words to aperiodic words over an alphabet with k letters, for £ > 3.
These classes of words are the Arnoux-Rauzy words (or strict episturmian words) and
the episturmian words, which will be discussed more in Section 2.4.3.

Now let’s look at another property relating an irrational number « and the char-
acteristic Sturmian word with slope a. This explanation also comes from [28]. Every

irrational number « has a unique expansion as a continued fraction, so

1

(1+dy) + —in%

Oé:do—i-

where each d; an integer, dg > 0, d; > 0, and d; > 0 for each ¢ > 2. We then write
= [d07 (1 + d1>7 d?a . ]

If the sequence (d;);en is eventually periodic where d; = d;,, for each i > N, we write

o = [do, (1 + dl), ces ,dN,dN+1,dN+2, C ;dN—i-pJ

For the case of characteristic Sturmian words with irrational slope «, we have 0 < a < 1,
and thus a = [0, (1 + dy),ds,...]. To the sequence (d;);>1 we associate the sequence of

words (s,)n>—1 where
s_1 =1, s0 =0, Sy = sz”_lsn,g (n>1)

The sequence (s,),>_1 is a standard sequence, and the sequence (dy,ds, ...) is called its

directive sequence. 1t should be clear that each s, is a prefix of s, for each n > 1.

Example The directive sequence (1,1,1,...) = (1) gives the standard sequence defined
by s; = 01, s = 010, s3 = 01001, ---, s, = S,_1S,_2, which are exactly the finite

Fibonacci words.

The property we have for the directive sequence is that the limit of the sequence

(Sn)n>—1 gives the characteristic Sturmian word ¢,. Formally,
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Proposition 2.4.6 ([28]) Let a = [0, (1+dy),ds, .. .] be the continued fraction expansion
of some irrational o, with 0 < o < 1, and let (s,)n>—1 be the standard sequence associated
to the directive sequence (dy,ds,...). Then every s, is a prefic of ¢, and

¢y, = lim s,.
n—oo

Thus, the continued fraction expansion of an irrational a can be used to construct the
characteristic Sturmian word of slope «. Likewise, if a word w is a characteristic Sturmian
word we can use the form of w to construct the continued fraction expansion of the
irrational value of its slope.

Another characterization of characteristic Sturmian words deals with palindromic
prefixes. In Theorem 2.4.7, the equivalence of (1), (2), and (3) is given in [15], while the
equivalence between (3) and (4) is given in [30]. The right palindromic closure of the finite
word u, denoted (u)", is the shortest palindrome that has u as a prefix. For example,
(01011)* = 01011010 and (11001)* = 110011. A palindrome u is a central factor of the

palindrome w if w = vuv for some v € A*.

Theorem 2.4.7 ([15, 30]) For an aperiodic word w on the binary alphabet A = {0,1},

the following are equivalent:
1. For any prefiz v of w, (v)T is a prefiz of w.

2. The leftmost occurrence of a palindromic factor of w is a central factor of a palin-

dromic prefix of w.

3. There exist an infinite sequence of palindromes u; = €, us,us,... and an infinite
word A(s) = x129--+, each x; € A, and A(s) € AN\ (A*ON U A*1Y) so that the u;

are prefizes of w and w1 = (ugx;)™ for all i > 1.
4. The word w is a characteristic Sturmian word.

The word A(s) in (3) of Theorem 2.4.7 is called the directive word (not to be confused
with the directive sequence dealing with the continued fraction expansion, the directive
sequence was a general sequence of integers rather than over the alphabet A). Other
notation in the literature also use the PAL operator. The comparison between PAL and
the notation in Theorem 2.4.7 is as follows: © = zyx9...12,, each z; € A, uy = ¢, ...,
Upt1 = (Upxy,)T, then PAL(x) = tyy1.

It is also helpful to point out that in [15], any infinite word on a general alphabet A
that satisfies properties (1) and (2) in Theorem 2.4.7 is uniformly recurrent (specifically
cases (1), (2), and (3) in Theorem 2.4.12, which Sturmian words satisfy). Therefore

characteristic Sturmian words are uniformly recurrent. Since a Sturmian word has the
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same set of factors as the characteristic word of the same slope, Sturmian words are

uniformly recurrent as well.

The idea of morphisms related to Sturmian words is another topic that has been of
interest in the area of combinatorics on words (see [10, 28]). A morphism f is called a
Sturmian morphism if f(s) is a Sturmian word for every Sturmian word s. The set of all
Sturmian morphisms form a monoid with the operation of composition. As we will see,
the building blocks of the Sturmian morphisms are the following three morphisms:

7: 7(0)=01, 7(1) =0
7: 7(0) =10, 7(1) =0
0(0)=1, 0(1)=0
The Fibonacci morphism used in the example at the beginning of this section is exactly
the morphism 7 listed here.

Proposition 2.4.8 ([10]) The morphisms T and T are Sturmian.

To test if a morphism ¢ is a Sturmian morphism could be a difficult task if we really
needed to test if ¢ preserved all Sturmian words. Fortunately, that much work is not
necessary thanks to following result.

Theorem 2.4.9 ([10]) A morphism ¢ is Sturmian if and only if the word
©(10%10*1010%101)
1s primitive and balanced. Moreover, it is decidable whether a morphism is Sturmian.

Thus to test if a morphism is Sturmian, is suffices to apply the morphism to a word of
length 14 and see of it is primitive and balanced. For example, 7(10210?1010%101) =
0010100101001001010010 which is readily verified to be primitive and balanced.

A characterization of Sturmian morphisms can be seen in the following theorem.

Theorem 2.4.10 ([10]) A morphism ¢ is Sturmian if and only if ¢ is a composition of

the morphisms 0, T, and T.

Then classifying the morphisms that preserve characteristic Sturmian words we have the

following result.

Theorem 2.4.11 ([10]) Let ¢ be a morphism, and let 0 < o, < 1 be two irrational

numbers so that c, = p(cg). Then ¢ is a composition of the morphisms 6 and .

Thus any composition of the morphisms 6, 7, and 7 will give a Sturmian morphism, but
only a composition of only the 6 and 7 morphisms will preserve the characteristic Sturmian
words. Therefore the set of Sturmian morphisms are a monoid under composition with
generators ¢, 7, and 7, while the morphisms that preserve characteristic Sturmian words

are a submonoid of the monoid of Sturmian morphisms generated by 6 and 7.
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2.4.3 Episturmian Words

As stated before the Sturmian words are the words with exactly n + 1 distinct factors of
length n. Therefore, Sturmian words have exactly one left special and one right special
factor for each length. Since the set of factors of a Sturmian word are closed under
reversal we know if w is a right special factor of the Sturmian word s, then @ is a left
special factor of s. Extending the singular left and right special factor property to an
alphabet A, where |A| =k > 3, we have the following definition using terminology from
[20], and introduced in [15].

Definition An infinite word s on the finite alphabet A is episturmian if the set of factors
of s are closed under reversal and s has at most one left special factor (equivalently right
special factor) of each length. An episturmian word s is standard episturmian if all the

left special factors s are prefixes of s.

The standard episturmian words are a generalization of the characteristic Sturmian words
to an alphabet of size k > 3. We also have the property that if a word w is episturmian
then F(w) = F(s) for some standard episturmian word s ([15]). The definition of epistur-
mian words does allow for periodic words, and thus we say that an episturmian word is
aperiodic (resp. periodic) if its associated standard episturmian word is aperiodic (resp.
periodic). All episturmian words mentioned here will be aperiodic episturmian words,
unless otherwise noted.

Another class of words that are contained in the class of episturmian words are the

Arnoux-Rauzy words (or strict episturmian words).

Definition A word w is an Arnouz-Rauzy word if the set of factors of w is closed under
reversal and w has exactly one right (resp. left) special factor of each length, and if wu is

a right (resp. left) special of w then ua (resp. au) is a factor of w for each a € Alph(w).

In the case where w is a strict episturmian word and Alph(w) = B C A, then w is said to
be B-strict, and if B = A then w is said to be strict or A-strict.

A characterization of standard episturmian words dealing with palindromic prefixes

exists, similar to Theorem 2.4.7.

Theorem 2.4.12 ([15]) For an infinite word w € AV, the following are equivalent:

+

1. For any prefiz v of w, (v)T is a prefiz of w.

2. The leftmost occurrence of a palindromic factor of w is a central factor of a palin-

dromic prefix of w.
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3. There exist an infinite sequence of palindromes u; = €, us,us,... and an infinite
word A(s) = xyxg- -+, each x; € A, so that uiy = (ux;)" for all i > 1 and all the

u; are prefives of w.
4. The word w is a standard episturmian word.

The word A(s) in (3) of Theorem 2.4.12 is called the directive word of the standard
episturmian word w. The notation A = x5 --- will be the directive word of a standard
episturmian word, unless otherwise noted. As stated after Theorem 2.4.7, words satisfying
cases (1), (2), and (3) in Theorem 2.4.12 are uniformly recurrent. Therefore episturmian
words are uniformly recurrent. Thus, eventually periodic episturmian words are purely

periodic.

Example The standard episturmian word with directed word A = (012)* is known as

the Tribonacci word (or Rauzy word, [39]). The word begins as follows:
r=745°(0) =010201001020101020100102010201001 . ..

where the bold letters follow the palindromic prefixes wu;, or for A = z1x5 - - - it is written
u;X;. Another way to view the Tribonacci word r is as the unique fixed point of the

morphism 73,
73: 0 01; 1+— 02; 2—0

To generalize this, for an alphabet A = {1,2--- k}, for k > 2, the k-bonacci word has
directed word (12...%)> and is the unique fixed point 7.°(1) of the morphism 7, where
1—12,2— 13, .-+, k— 1. If k = 2 we get the Fibonacci word.

As stated in the previous section, the set of Sturmian morphisms is the monoid of
morphisms that preserve Sturmian words. The morphisms that generate the Sturmian
morphisms are easily generalized to a general alphabet of size k& > 3. The monoid of
all episturmian morphisms £ (see [15, 20, 24]) is generated, using composition, by the

following three morphisms:

Yy Ya(a) =a, 1¥,(b) = ab for any letter b # a
), ,(a) =a, P, (b) = ba for any letter b # a
O Oap(a) = b, O4(b) =a, Ou(x) =z, for any letter x ¢ {a, b}

For any morphism f € &, the decomposition of f need not be unique. In [15] it is shown
that these morphisms satisfy the relation 0,1, = Y04, and thus ¥, = 0,90.,. The
monoid of standard episturmian morphisms S is the submonoid of £ generated by the 1,
and 0,,. The monoid of pure episturmian morphisms &, is the submonoid of £ generated
by the 1, and ¢,. Characterizing the episturmian and standard episturmian morphisms,

we have the following theorem.
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Theorem 2.4.13 ([24]) A morphism ¢ is episturmian (resp. standard episturmian) if

there exist strict episturmian (resp. standard episturmian) words m and t so that m —
o(t).

Moreover, the episturmian (resp. standard episturmian) morphisms preserve the set of
episturmian (resp. standard episturmian) words.
The following theorem shows a nice property of the standard episturmian words,

namely the distribution of the most frequent letter.

Theorem 2.4.14 ([15]) An infinite word s € AN is a standard episturmian word if and
only if there ezist a standard episturmian word t and a € A so that s = 1,(t). Moreover,

the first letter of s is a, t is unique and the directive words satisfy A(s) = aA(t).

Thus, for a standard episturmian word s over A there is a letter a € A so that for each
factor u of s with |u| = 2, then |u|, > 1. Therefore, balanced standard episturmian words
have a letter that satisfies the conditions of Lemma 3.2.2 (see later).

When generalizing Sturmian words to an arbitrary finite alphabet by preserving the
singular (or at most one) special factor it is possible to lose balance. Thus there are
balanced episturmian words as well as unbalanced episturmian words. For example, the
Tribonacci word ¢ = 0102010010201 - - - is not balanced, but is 2-balanced (see [41]). In

[38], Paquin and Vuillon classified the balanced standard episturmian words.

Theorem 2.4.15 ([38]) Any balanced standard episturmian word s over an alphabet A =
{1,2,...,k}, where k > 3, has a directive word, up to a letter permutation, in one of the

three following families:

k-1

1. A(s) =1" (H z) (k) =1"23 ... (k — 1)(k)>, with n > 1;

=2

2. A(s) = (fp) 1 <H2> (k) =12...(G=1D1j... (k=1)(k)>®, with 3 < j < k—1:

i=1 i=j

k
9. A(s) = <H2> (1)®° =123... k(1)>;

=1

Thus the balanced episturmian words with distinct letter frequencies satisfy Fraenkel’s
conjecture (from [38], and stated in Proposition 3.1.1 below). Then considering this

theorem with a result from [15], we have Corollary 2.4.17.

Theorem 2.4.16 ([15]) A standard episturmian word s is eventually periodic if and only
if its directive word A has the form ga™, with g € A* and a € A. Moreover, s is periodic.
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Thus, the following Corollary comes rather naturally.

Corollary 2.4.17 ([38]) Every balanced standard episturmian word over 3 or more let-

ters is periodic.

For a periodic word s, there will be an n € N so that no factor of length n can be right
special. Thus, none of the Arnoux-Rauzy words are balanced. In fact, it has been shown
in [12] that an Arnoux-Rauzy word can be constructed that is not C-balanced for any

positive integer C'.
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Chapter 3

Weakly Rich Words

In this chapter we will investigate weakly rich words. One topic in [21] involved showing
that recurrent balanced weakly rich words are necessarily balanced periodic episturmian
words. Thus, recurrent balanced weakly rich words with distinct letter frequencies obey

Fraenkel’s conjecture.

Note: Results of this chapter appear in [21].

3.1 Preliminaries

Given a (finite or infinite) word = over A and any a € A, a complete return to a in x
is a factor of = of the form aya, where |y|, = 0. We say that an infinite word w over
A is weakly rich if for each a € A, all complete returns to a in w are palindromes. For
example, the infinite periodic word (acbcaacbc)™ can be verified to be weakly rich. Tt
should be clear that each binary word is weakly rich, since complete returns in binary
words would look like either 01%0 or 10'1 for integers k,1 > 0.

As mentioned in Section 2.4.3, Theorem 2.4.15, balanced episturmian words are char-
acterized into three classes. One of these classes involved words with distinct letter
frequencies and they, up to letter permutation and shifts, correspond to the Fraenkel

sequences.

Proposition 3.1.1 ([38]) Suppose t is a balanced episturmian word with Alph(t) =
{1,2,...,k}, k > 3. If t has mutually distinct frequencies, then up to a letter per-
mutation, t is a shift of (Fj)>
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Also recall from Section 2.4.3, the episturmian morphism 1),, defined as:

at—a

br—ab forb+#a

Yo

This morphism will play a fundamental role in the construction of balanced weakly rich

words.

3.2 Main Result

To show the main result of this section, we need the following notation.

Definition Let x = x12525... € AY and let a be a new symbol not in 4. Then define
oo AV — (AU {a})" by

04(x) = ar1a™ roa®x30 - - -

where €; € {1,2}, with ¢; = 2 if and only if z; = ;4.
The theorem to be shown is then stated as follows.

Theorem 3.2.1 ([21]) Suppose w is a recurrent balanced weakly rich word over A =
{1,2,...,k}, k > 3. Then, up to a letter permutation, w is either:
(1) a shift of the periodic word
Yoty o---othy_1(k™®), for somen > 1;
(2) or a shift of the periodic word
o10030--00; 005 0 0th_1(k™), for some 1 < j <k —2.

The proof of Theorem 3.2.1 will require several lemmas. For the following lemmas, we
will assume that w € AY and |A| > 3. For each a € A denote g, = sup |u|, where the
supremum is taken over all factors u of w not containing a and observe that each g, is
finite.

Lemma 3.2.2 ([45]) Suppose w € AN is balanced, and let a € A be such that the fre-
quency of a in w is at least 1/3. Then the word ' € (A\{a})N obtained from w by deleting

all occurrences of the letter a in w is also balanced.

The following (Lemmas 3.2.3, 3.2.4, 3.2.5 and Corollaries 3.2.6, 3.2.7) are stated and
proven in [21] (numbered 5.9, 5.10, 5.11, 5.12, 5.13 respectively).

Lemma 3.2.3 Suppose w € AY is a recurrent balanced weakly rich word, and let a € A
be such that g, < g, for all z € A. Then the word ' € (A\{a}) obtained from w by

deleting all occurrences of the letter a in w is also a recurrent balanced weakly rich word.
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Lemma 3.2.4 Suppose w and W' are as in Lemma 3.2.3. Suppose ' contains the factor
bb for some b € A\{a}. Then w is a shift of o,(w"). In particular, the complete returns
to b in w are of the form baab or baxab for some x € A\{a,b}

Lemma 3.2.5 Suppose w and w' are as in Lemma 3.2.3 and let b € A\{a}. Then bbb is

not a factor of W'.

Proof [Theorem 3.2.1] The proof of Theorem 3.2.1 is done by induction on k, the
number of letters in the alphabet. Suppose w is a recurrent balanced weakly rich word on
the alphabet A3 = {1,2,3} and without loss of generality we can assume g; < gy < gs.
Let ' € {2,3} be obtained from w by deleting all occurrences of the letter 1 in w.
First suppose that w’ does not contain the factor 22. Then w' = (23)®° = 1)»(3%).
Thus, the only complete return to 2 in w’ is 232. Then because w is weakly rich, there
must be some m > 0 so that the only complete return to 2 in w is 21™31™2 and thus
w = YPM(w') = P o Yy(3°). Next, suppose that the factor 22 does occur in . If
the first returns to 3 in «’ were of the form 323 and 3223 Lemma 3.2.4 implies that
31213 and 31211213 will be complete returns to 3 in w, contradicting the fact that w is
balanced. Thus o’ is a shift of the periodic word (223)> = 12(3°°). Then w is a shift of
o1(w') = o1 093(3%). Therefore Theorem 3.2.1 holds for k = 3.

Next, let k& > 3 and suppose w is a recurrent balanced weakly rich word over A, =
{1,2,...,k}. Then by the induction hypothesis, assume that Theorem 3.2.1 holds for
any recurrent balanced weakly rich words over a k — 1 letter alphabet. Without loss
of generality we again assume that g; < go < ... < gp. Let ' € {2,3,... k}" be
obtained from w by deleting all occurrences of the letter 1 in w. By Lemma 3.2.3, ' is a
recurrent balanced weakly rich word. By the induction hypothesis, w’ is a shift of either
Y5 oahgo--- 01 (k) for some n > 1, or gy0030---00; 095 0---0thy_1(k®), for
some 2 < j < k—2.

First suppose that w’ does not contain the factor 22. Then w’ must be a shift of
thgotpgo---0thp_1(k>). Thus the complete returns to 2 in w’ are of the form 2a2 for some
a € {3,4,...,k} and there exists some m > 1 so that the complete returns to 2 in w are
of the form 21™a1™2. Therefore in this case w = Y7 (w') = Y" oy 0thz 0« 0hp_1 (k™).

Next suppose that «’ does contain the factor 22. Then ' is a shift of either 32 o
P30 - 01 (k) or oy 0030 -+ 005 095 00ty (k>), for some 2 < j <
k — 2. Lemma 3.2.4 implies that w is a shift of either o; 0 ¥3 o 1)3 0 -+ o)1 (k*) or
g10090---00,0 32‘+1 o---0thp_1(k*), for some 2 < j < k—2. Therefore by the induction

hypothesis, Theorem 3.2.1 is true. |

Thus once we have Theorem 3.2.1, we have the following corollaries.
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Corollary 3.2.6 Suppose that w is a recurrent balanced weakly rich word over A =

{1,2,...,k}, k > 3. Then w is a balanced periodic episturmian word.

This is true by showing

0-100—20...00']-0 ‘72+10w3+20"owk,1(k00):

Progo---othjorhi1 0000y (k)

Corollary 3.2.7 Suppose that w is a recurrent balanced weakly rich word over A =
{1,2,...,k}, k > 3. If the letters in w have distinct frequencies, then up to a letter

permutation, w is a shift of (Fy)>.

This is then true by Proposition 3.1.1 and Corollary 3.2.6.
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Chapter 4
Topics In Abelian Complexity

In this chapter, we will consider two problems related to abelian complexity. First, in
Section 4.1 we will investigate an abelian variation of maximal pattern complexity. The
main result will be to classify the set of binary recurrent aperiodic words using maximal
abelian pattern complexity.

In Section 4.2, we will investigate the link between abelian complexity and the C-
balance property. First we will develop a method to calculate the maximal value for
abelian complexity of infinite balanced words. Next an upper bound for the abelian
complexity of infinite recurrent C-balanced words is given. We end this chapter with a

conjecture about words which achieve the maximal abelian complexity value.

4.1 Maximal Abelian Pattern Complexity

The goal of this section is to classify eventually periodic words using maximal abelian
pattern complexity. Recall from Section 2.3.3 the notion of pattern complexity. A k-
pattern P is a sequence of k integers with 0 = Py < P, < --- < P,_1, and denote by
|P| = k the number of terms in P. Then set F,(P) to be the set of pattern words over
a k-pattern, and p’ (k) = supp |F,(P)|. The mazimal abelian pattern complexity function
is defined by

Pap(k) = Sl]ip H U (Wny WPy Wnip_y) | 1 >0 }‘

where the supremum is taken over all k-patterns P. The maximal value for p’, (k) on an

infinite binary word will be k + 1.

An infinite pattern P is an infinite sequence of integers (P;);>o so that

0:7)0<731<P2<"'
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A finite or infinite pattern P’ = Ny < N7 < Ny < - -+ is a sub-pattern of P if the sequence
(N;)i>1 is a subsequence of the sequence (P;);>0, and we write P’ C P.

Let w be an infinite binary word. For an infinite pattern P and some positive integer
k, we say

W[PI(k) = { WntpWnipy  wWnipe, | >0}

and

WIP) = JwlPIh)

k>0

Given a finite sub—pattern P = (Ni)OSiSk CcCP= (Pi)iZO say

w[P] = { Wy NoWntn, * Wnin, | >0}

Lemma 4.1.1 Let w be an infinite recurrent binary word. There exists an infinite pattern
P so that:

(%) Uy . .. Uy, € WP = wuy ... (u,)™ € wW[P]* form >1

Proof Let w be an infinite recurrent binary word. The infinite pattern P will be the
limit of the patterns , P, defined as follows for each n.

Let ,P be an n-pattern. Since w[,P] is finite there is a prefix of w which contains all
pattern words found by , P in w, so let U, be a prefix of w so that w[,P| = U, [, P]. Since
w is recurrent there will be another occurrence of U, infinitely many to be precise, so
that w = U,0U, - -+ with z = |U,v| > |U,|. Note that for each 0 < i < |U,|, w; = wis .-

We now define ,, 1P as the immediate extension of ,P, so ,.1P = ,P; for each
0<i<n-—1, where , 1P, = ny1P,_1 + 2. Then for any ujus...u, € w[,P], it is true
that ujus ... u, € U,[,P] so there is some 0 < i < |U,| — ,,P,_1 s0

UrU2 .. . Up = Ui, PyWUit,, P -+ - Wit Ppy_1-
For each 0 < j <n—1, i+ P =i+ 1P}, and 11 P, = 41 Pm1 + 2 50

u7;+n+1Pn—1 = ui+n+lpn °

Thus ujus . .. uyty, € W1 Pl.
So P = lim ,, P, and if for some n, ujus ... u, € w[P]* it follows that ujus ... (u,)™ €
w[P]* for each m > 1. n

Lemma 4.1.2 Let P be an infinite pattern satisfying the above condition (x), and let P’
be any infinite sub-pattern of P. Then P’ also satisfies (x).
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Proof Let ujuy...u, € w[P'|* and let m’ > 0. Then since P’ C P, there is a word
vy ... v € W[P]* so that P, = P, and for each 1 < i < n there is some j so that
P! = P;. Then for each m > 0 vjvy...v" € w[P]*. Thus there is some m so that
P, v = Piym and so that for some z € N, v1vy ... 0" = WyppWartp, - - Wy p,_,» and thus

m’ _ m’ 7%
Wy g PyWaP| - - - Wyypr = Uity ... U € w[P']". []

Proposition 4.1.3 Let w be an infinite binary word and let P be an infinite pattern.
Then for each positive integer K, there exists an infinite sub-pattern P’ = Pr C P so
that for any two finite sub-patterns P,Q) C P" with |P| = |Q| and 1 < |P|,|Q| < K, then

w[P] = w[Q].
Proof This will be done by induction, creating a series of nested infinite patterns
P =PxCPx,C---CP =P

so that for each 1 < ¢ < K we have w|[P| = w[Q] for all finite sub-patterns P and @ of
P; with |P| =|Q| and 1 < |P],|Q| < i.
Begin by constructing P,. For two sub-patterns P,Q C P; with |P| = |Q| = 2 say
that
Py Q = w[P]=w[Q].

Thus ~5 forms an equivalence relation on all sub-patterns of P; of length 2, and thus
naturally defines a finite coloring (since there are finitely many sets of words of a finite
length) on the set of size 2 sub-patterns of P;. Equivalently we can say we have a
finite coloring on the set of all 2-element subsets of N; where two patterns P and Q
are monochromatic if and only if P ~5 ). Recall the following well-known theorem of

Ramsey:

Theorem 4.1.4 (Ramsey) Let k be a positive integer. Then given any finite coloring of
the set of all k-element subset of N; there exists an infinite set A C N such that any two

k-element subsets of A are monochromatic.

Thus by the above theorem, there exists an infinite sub-pattern Py C P; so that any two
sub-patterns of Py are ~g equivalent. Then, having constructed P, C P,_1 C --- C P,
we construct P,4q as follows. For sub-patterns P,Q C P, with |P| = |Q] = n + 1 say
that

P Q = wlP] =w[Q].

This then defines a finite coloring of the set of size n + 1 sub-patterns. Thus, again
by Ramsey’s Theorem, there exists an infinite sub-pattern P,,; C P, so that any two
sub-patterns of P, .1 are ~, 1 equivalent. Also, for any 1 <7 < n + 1 any sub-patterns

of length i are ~; equivalent since P, ;1 C P;. |
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As a corollary to Proposition 4.1.3, we have the following

Corollary 4.1.5 Let w, P, K, and P’ be as in Proposition 4.1.3. If u € w[P'] and
lu| < K, then au € w[P'] for some a € Alph(w).

Now as the main result the classification of eventually periodic words by maximal abelian
pattern complexity, namely the words with maximal abelian pattern complexity p¥,(n) <

n for some n > 1.

Theorem 4.1.6 Letw € {0, 1} be a recurrent aperiodic word. Then the mazimal abelian

pattern complexity is pt,(n) =n+ 1 for alln > 1.

Proof By Lemma 4.1.1 there exists an infinite pattern P satisfying (x). Let K be a
positive integer, and then by Proposition 4.1.3 there exists a sub-pattern P" C P so
that for two sub-patterns P,QQ C P’ with |P| = |Q] and 1 < |P|,|Q| < K we know
w[P] = w[Q]. Moreover, by Lemma 4.1.2, P also satisfies (x).

Now show that for each pair of non-negative integers (k,[), where 1 < k +1 < K,
there exists a word u € w[P’] so that W(u) = (|ul,,|u|,) = (k,I). This will be done by
induction on k + [. Since w is aperiodic, w[P’] will contain both 0 and 1, so the result is
true for k 4+1 = 1.

Next, suppose the result is proved for all pairs (k,[) where k + [ = n, and consider
the pair (k,l+ 1) where k+1l+1=n+1, k>0, and [ > —1. Consider the following
three cases.

Case 1: | = —1. Since 0 € w[P’], and P’ has (*), 0" € w[P’], and ¥(0*) = (k,0).
Thus the result is true for [ = —1.

Case 2: [ = 0. Since both 0,1 € w[P’], and from (*) both 00,11 € w[P’]. Then since
w is aperiodic, both 01,10 € w[P’]. By (*), 108 € w[P'] and ¥(10*) = (k,1). Thus the
result is true for [ =0

Case 3: [ > 0. By the induction hypothesis, there exists a word u € w[P'] so that
U(u) = (k,l), and there is at least one occurrence of 1 in u since [ > 0. If u ends in a 1,
then by (¥) ul € w[P’], and ¥(ul) = (k,l+1) and we are done. Thus suppose that u ends
in a 0. By Corollary 4.1.5 either Ou or 1u is in w[P’]. If 1lu € w[P’] then ¥(1lu) = (k,1+1)
and we are done. Thus suppose w[P’] does not contain 1lu, so Ou € w[P’]

Let v/ = 0u0~'. Then v’ € w[P’], ¥(v') = ¥(u), and ' is a cyclic shift of u. If v’ ends
in a 1 then «'1 € w[P’] and we are done, otherwise u’ ends with a 0. If 1u’ € w[P'] then
we are done, otherwise by Corollary 4.1.5 Ou’ € w[P’]. In this case, set v’ = 0u/0~! and
repeat as above. Since there is at least one occurrence of 1 in u there will eventually be
a conjugate of u which ends in a 1, say vl € w[P’] with ¥(vl) = (k,[). Thus v1l € w[P’]
and W(vll) = (k,l+ 1). Thus the result is true for [ > 0. |
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Therefore, if w is a binary recurrent aperiodic word, then it has maximal abelian pattern

complexity p*,(n) =n+ 1 for all n > 1.

4.2 Abelian Complexity of C'-Balanced Words

In this section we will investigate the link between the notions of abelian complexity
and C-balance. To be more specific, we will investigate the upper bound for abelian
complexity of C-balanced words.

As stated in Section 2.3.2, the upper bound for abelian complexity of a word w over
a k-letter alphabet is

o <um = ("),
A natural question to ask is, are there words which achieve this upper bound? The answer
to this question is yes, as any word with maximal factor complexity will have maximal
abelian complexity.

Recall Lemma 2.3.4 ([40]): For a word w € A% U A", the function p? is bounded if
and only if w is C-balanced for some positive integer C', namely the abelian complexity
is bounded by (C + 1)MI. Thus an initial link is seen between abelian complexity and
the C-balance property. The first question to ask is if the bound p®(n) < (C + 1)l is
optimal? The answer to this question is no because this much variation of the values in
the Parikh vectors does not take into account that the sum of the values in the Parikh
vector must be equal to n.

In Section 4.2.1 we develop a way to calculate the abelian complexity of aperiodic
balanced words. This calculation will involve the connection between aperiodic balanced
binary words and constant gap sequences. Thus given a balanced word w over a k-letter
alphabet, we can find the maximal value for the abelian complexity of w. Then in Section
4.2.2 we will calculate an upper bound for abelian complexity of C-balanced words. In
Section 4.2.3 we calculate the maximal abelian complexity of balanced aperiodic words
as well as some balanced periodic words. We also give a conjecture about words which

achieve the abelian complexity upper bound found in Section 4.2.2.

4.2.1 Abelian Complexity of Balanced Aperiodic Words

The goal of this section is to determine the abelian complexity of balanced aperiodic
words over an alphabet A, where |A] > 3. For this we will need a new definition. A word
G ¢ AV is of constant gap if for each a € A there is a period p, so that if G; = a then

Glitp, = a. The following proposition should be clear.

Proposition 4.2.1 ([4]) A constant gap sequence G € AV is periodic and balanced.
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Proof Let p be the least common multiple of the set of integers { p, | a € A}, where p,
is the period of a € A. Then for each ¢ > 0 we have G; = G, so G is periodic.

Then for any factor u of G, with |u| = n, we have for each a € A

n n
)<< i)+
Pa Pa

Thus for any factors u, v of G with |u| = |v|, we have ||u|, — |v],| < 1, and G is balanced.
|

In [4], the authors describe the possible frequencies for the letters in a constant gap
sequence. For each k£ > 1, there will be finitely many constant gap sequences over k

letters. Here is a list of the constant gap sequences, up to a permutation or shift, on &
letters for k =1,2,3,4:

k=1 (1)™

k=2 (12)®

k=3 (123)>;(1213)>

k=4 (1234); (121314); (12131214): (123124)

We suspect that there are 10 constant gap sequences over a 5 letter alphabet, and at
least 24 over a 6 letter alphabet. The number of constant gap sequences that exist over
an alphabet of size k, for an arbitrary k, is still an open problem, see [4].

For a constant gap sequence G = (¢9)™ = (g1g2- - gp)™°, call g the base of G. Let u
be a factor of G so that |u| < p. Call the factor v of G the compliment of u in G if uv is
a cyclic shift of the base g.

Another note to make is about the abelian complexity of a constant gap sequence
G. For any n > 1 there exists numbers m > 0 and b = (n mod p) so that n = mp + b,
and for any factor u of length n of G, u will contain m copies of a cyclic shift of g,
and then a cyclic factor of length b of g. Thus p@(n) = p2(b). Thus the sequence of
abelian complexity values (p&(i));>1 is periodic, since p2(i) = p%(i + p) for each i > 1.
Moreover, the sequence (p2(i))1<i<, is a palindrome. Suppose that w, is a factor of G of
length b < p, and let v, = W(up). Let u; be the compliment of u, so |uy| = p —b. Thus
U(g) = ¥(upuy) = V(up) + Y(uy), so ¥(u,) = ¥(g) — ¥(up). Thus, a Parikh vector of a
factor of length b will determine a Parikh vector of a factor of length p — b. Therefore,
pE(b) = p&(p — b).

In [22] and [23] the following characterization of balanced words involving constant
gap sequences and balanced binary words is given, also listed and proven in [4].

Theorem 4.2.2 Let s be a balanced word over {0,1}. Construct a new word w by re-

placing in s, the subsequence of 0’s by a constant gap sequence G on alphabet Aq, and
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the subsequence of 1’s by a constant gap sequence H on a disjoint alphabet Ay. Then w
is balanced on the alphabet Ay U As.

Theorem 4.2.3 Let w € AY be a balanced aperiodic word. Then there exists a partition
of A into two sets Ag and Ay so that the word s defined by:

u, =0 ifw, € Ay
u, =1 ifw, €A

s balanced. Moreover, the words zy and z; constructed from w by keeping only the letters

from Ay and Ay respectively have constant gaps.

Thus, a balanced aperiodic word is generated from a balanced aperiodic binary word on
{a, b} by replacing the a’s with a constant gap sequence G and the b’s by a constant
gap sequence H, where Alph(G) N Alph(H) = (). Since the balanced aperiodic binary
words are precisely the Sturmian words, we can use properties of Sturmian words to help
calculate the abelian complexity of balanced aperiodic words on an alphabet of size k > 3.

We now recall some properties of Sturmian words from Section 2.4.2. First, for any
Sturmian word s and for each n > 1, p®(n) = 2. Thus for each n > 1 there exist unique
values r,, and t, so that Wy(n) = {(r,,t,), (rn — 1,t, + 1)}. Secondly, for any Sturmian
word s, there a mechanical word s,, so that s, ,(i) = s(i) for each ¢ > 0. Recall that
the prefixes of ¢, = s, are left special factors, and F(c,) = F(s4,) for any 0 < p, and
Sa,0 = Ocq.

Sturmian words can also be generated by cutting words, Kz ,. For the cutting word
Kps, where 3 = a/(1 — «), we have Ko = 540 and F(Kp) = F(Sap). Thus the prefix
of length n 4 1, for each n > 0, of Kz is of the form Op, where p,, is the left special
factor of length n of Kgo, and thus 1p, is also a factor of Kjp.

The word Kj is generated by considering the line y = Bz and how it travels through
the plane. For positive integers a and b, if the line passes through the square [a,a + 1] x
[b,b + 1], then there is some n so that I,, = (a + 1,b) (where I, is defined for cutting
words in Section 2.4.2) and a + b+ 1 = n. The next proposition will, for each n > 1,

connect the point [,, with the unique values r,, and t,,.

Lemma 4.2.4 Giwen a Sturmian word w with slope o, define the cutting word Kz, with
g =a/(l—a), and I, = (u,,v,) as above. Then

Uy(n) ={l, I, + (=1, 1)} = {(up,vn), (up — L,v, + 1)}

for each n > 0.
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Proof For = a/(1 —«), Kgp = Sa0- Since w has slope «,
F(w) = F(sa0) = F(Kgzp).

If
K30(0)Kpo(1)...Kgo(n) = 0p,

is the prefix of Kz, and also of s, ¢, of length n+1 then {(|pn|o+1, [Pnl;), (IPnly s [Pnl; 1)}
are the possible Parikh vectors for factors of length n + 1 of Kz, because of Theorem
2.3.6, and thus for w as well. For each n > 0, I,, = (u,,v,) and wu,, + v, = n by definition.

Induction on the prefix length n will be used to show the claim is true. For n = 1,
Iy = (0,0) and I; = (1,0). Then Kpgo(0) = 0, po = € so V(1) = Wy, (1) = {I1, [, +
(_17 1)} = {(17 O)? (07 1)}

Then suppose n > 1 and the claim is true for all lengths less than or equal to n, so
Iy = (Ipn-1lo + 1, [pa-1l;) = (un, vn) and ¥y, (n) = \DKﬁ,o(n) ={lp, [, + (=1,1)}.

Case 1: Kgo(n +1) = 0. Then p, = p,10, so (|puly, [pal,) = ([Pa-1lo + 1, IPa-1ly)
and Vg, ((n+1) = {(un + 1,vn), (Un, v, +1)}. Thus

Ksgon+1)=0=v01 — vy = Upy1 =70y

N=1Upt1 + Vpp1 =  Upyl = Up +1

Thus 1,11 = (Unt1, Vnt1) = (up + 1,0,).
Case 2: Kgo(n+ 1) = 1. Then p, = p,_11, 50 (|paly. [Pnl;) = (Pa-tlg s [Pr-1ly + 1)
and Vg, ((n+1) = {(un,vn + 1), (un — 1,v, +2)}. Thus
Kgoin+1)=1=v,01—vy = Upp1=uv,+1

N =1Unpt1 T VUnt1 =  Upt1 = Uy

Thus I11 = (Upi1, Vns1) = (Un, vp + 1).
In either case, Uy(n+1) = Vg, (n+1) = {Loy1, g + (—=1,1)} |

Lemma 4.2.5 Let w be a Sturmian word and Kz be as in Lemma 4.2.4. For all positive
integers k, I, a, and b with0 < a < k and 0 < b < [; there is an n > 0 so that I, = (rp, t,)
with r, = (& mod k) and t,, = (b mod l). Moreover, there are infinitely many n for
which this holds.

Proof Let k,l,a, and b be as in the hypothesis. Any line with an irrational slope will
have a dense orbit in the torus generated by [0, 1] x [0, 1]. Thus, the line y = Sz will also
have a dense orbit in the torus generated by [0, k] x [0,!], and for each n > 0 the points
I, = (ry, t,) will correspond to the points I/ = ((r,, mod k), (¢, mod [)) on the torus.
Thus since the line that generates K, has a dense orbit in the torus, there is an
n > 0 so that I! = (a,b), and thus r, = (¢ mod k) and t,, = (b mod [). This happens
infinitely many times due to the density of the path. |
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Thus for any factor u of length n of a Sturmian word w over {0,1} where u =
WiWit1 ... Wirn—q for some i, I; = (r;,;), so there are r; occurrences of 0 to the left of u
and t; occurrences of 1 to the left of u. Since |u| = n then ¥(u) € {(r,,t,), (r,—1,t,+1)}
because W,,(n) = {(rn, tn), (rn — Lt + 1)}

Lemma 4.2.6 Let w be a Sturmian word and Kz, k, [, a, and b be as in Lemma
4.2.5. For any n > 0, there ewist ny,ny so that I, = (a,b) = I, and V(u,,) =

(Tnytn) and W(u,,) = (r, — 1,t, + 1), where u,, = Wy, Wpy41 - Woyino1 and Uy, =

Why Wyt - - - Whytn—1 are factors of w of length n.

Proof There are factors U and V of length n of w so that W(U) = (r,,t,) and ¥ (V) =
(rn—1,t,+1). Thuslet I, = (ay,by)and I, = (ay,by) beso that U = wy;, ... Wnyqn1
and V = wy,, ... Wy, +n—1. Then the line that generates Kz enters the square [ay, ay +
1] X [by, by + 1] and there is a small interval, J;; , so that any time the line passes through
this interval, the word U will be the next n letters. A similar interval, Jy will exist for
the square [ay,ay + 1] X [by, by + 1] where the word V will be the next n letters.

Then considering the interval J; in the same relative location on the square [a,a +
1] x [b,b+ 1], when the line passes through Ji; the resulting n letters will have (r,,t,) as
their Parikh vector. Likewise, since the path of the line that generates Kz is dense in
the orbit, when the line passes through the interval Ji, on the square [a,a+ 1] x [b, b+ 1],
the resulting n letters will have (r,, — 1,¢, + 1) as their Parikh vector. Since the path of
the line that generates K is dense in the orbit, there is an n; so that I = (a,b) and
the line enters the square [a,a + 1] x [b,b + 1] in Jy and an ngy so that I, = (a,b) and
the line enters the square [a,a+ 1] x [b,b+ 1] in Jy.. Thus for u,, = Wy, Wy, 41 ... Wnyin-1

and Uy, = WpyWnyi1 - - Wnyin—1 We have U(u,, ) = (rp, t,) and VU(uy,,) = (r, — 1, +1). B

Thus for w, k, [, a, and b as in the previous lemmas, there exist factors v and v of length n
of w so that W(u) = (r,,t,), ¥(v) = (r,—1,t,+1), and there are (a mod k) occurrences
of 0 and (b mod ) occurrences of 1 to the left of both u and wv.

Now that we have these Lemmas, let’s look at the main result of this section dealing

with the abelian complexity of balanced aperiodic words on an alphabet of size at least
3.

Theorem 4.2.7 Let w € AY be a balanced aperiodic word, with |A| > 3. Thus w is the
image of a Sturmian word s over {0,1} obtained by replacing the subsequence of 0’s by a
constant gap sequence Gy on alphabet Ay, and the subsequence of 1’s by a constant gap
sequence Gy on a disjoint alphabet Ay, where Ay U Ay = A. For each n > 0, let r,, and
tn be unique so that Ws(n) = {(ry,t,), (rn — 1, t, + 1)}. Then:
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Proof By Theorems 4.2.2 and 4.2.3, w is the image of a Sturmian word s over {0, 1}
obtained by replacing the subsequence of 0’s by a constant gap sequence G on alphabet
Ay, and the subsequence of 1’s by a constant gap sequence (G; on a disjoint alphabet A,
where AgU A, = A.

Consider the factors of length n of w. Each factor of length n of w corresponds to a
factor of length n of s where the 0’s have been replaced by letters in GGy and the 1’s have
been replaced by letters in G;. Thus to find p(n) we need to consider the number of
ways to map factors of length n of s by replacing the 0’s by consecutive letters from G|
and the 1’s by consecutive letters from Gj.

So for a factor w of length n of s, ¥(u) € {(rp, ), (rn — 1,t, +1)}. By Lemma 4.2.5,
the first 0 in u can be replaced by any letter in the base of GG, and the first 1 can be
replaced by any letter in the base of G;. By Lemma 4.2.6 the image of u in w can have
either r, or r,, — 1 letters from GGy and either t, or t,, + 1 letters from (G respectively.

Thus there are p‘ébo (r,) ways to select r, distinct consecutive letters from Gg, and for
each of those ways there are p (t,) ways to select ¢, distinct consecutive letters from
G1, and all possible ways can occur. Thus if u is a factor of s with U(u) = (r,,t,),
there are p® (r,) - p& (t,) possible ways to select distinct (not having the same Parikh
vector) consecutive letters from Gy and Gy. Likewise, if u is a factor of s with U(u) =
(rn—1,t,+1) there are p& (1, —1)-p& (t,+1) possible ways to select distinct consecutive
letters from Gy and Gy. Since these methods are independent we have p& (r,) - p&f () +
P& (1 — 1) - p& (t, + 1) ways to select distinct letters from Gy and Gy to replace the 0’s
and 1’s in a factor of length n of s.

Therefore, any factor of length n of w will be constructed from either r,, consecutive
letters from G and ¢,, consecutive letters from G4, or r,, — 1 consecutive letters from G,
and ¢, +1 consecutive letters from Gy. Thus we have p2(n) = p& (1) - p& () + p&o (1 —
1) p& (t, +1). |

Using this formula to find the abelian complexity of a balanced word over a 4 letter
alphabet, we would consider what constant gap sequences are used to create it. We could
use a constant gap sequence over three letters with another constant gap sequence over

one letter, or two constant gap sequences over two letters.

Example Suppose w € A" is a balanced word, |A| =5, and w is created from a Sturmian
word s over {a, b} by replacing the subsequence of a’s by a constant gap sequence G, =
(123124)>° | and the subsequence of b’s by a constant gap sequence G, = (5)>°. Then
(P& (1))i=1 = (4,5,2,5,4,1)® and (p@ (i))i>1 = (1)*°. Thus there exists an n so that

I, = (up,v,) and u,, = (2 mod 6), note that for any n (v, mod 1) =0, and so

o) = g (o 6)) 2 (0) + &, (=1 mod 6))-pfh (1, 1) = 5x1 441 =9
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We now look at the upper bound for abelian complexity of a C-balanced word.

4.2.2 Upper Bound For Abelian Complexity

As stated in the introduction, if we consider finite words of length n over a k-letter

alphabet A, k > 2, there will be at most l;(n) = (”ﬁ;l) possible distinct Parikh vectors.

Now we will consider looking at the set of possible Parikh vectors in a different way. Let
A={0,1,...,k—1} and u € A" with |u| = n. Thus,

k—1 k—1
dlul=n <= Julg=n—>lul,
i=0 =1

so we see the Parikh vector for v only depends on k£ —1 values since we know the word has
length n. Now consider the set Ay, which is the subset of Z*~1, the set of (k — 1)-tuples

of integers, where

k—1
A = {(a:l,:cz, o Tpy) € ZFTH sz <n; Viw,€Z, ;> 0} )
i=1
Then to see the correspondence between Ay, and the collection of all possible Parikh
vectors for words of length n over a k-letter alphabet, consider the collection of k-tuples
of non-negative integers (ig, 1, ...,4_1) where ig + i1 + -+ - i1 = n, and also note iy =
n — (iy + -+ -ix—1). Map such a k-tuple to A, as follows:

(7;07 il) i27 o 77:143—1) = (ila i27 o 77:143—1)

This mapping gives a bijective relation, which can be seen as follows. By definition, each
t; > 0, and since 79 + %1 + - - -1 = n we know 7; + ---i;_1 < n so the mapping is into
Ay If two k-tuples v and v map to the same A € Ay, then for each i we know u; = v;
and thus up =n— (ug+---4+up_1) =n—(v1+-+-+vp_1) = vg, 0 u = v. Then for some
A= (A, A2, s Am1) € Mgy, the k-tuple (n — (A1 4+ Ao+ -+ Aem1)s A Agy oo A1),
which satisfies the above conditions, would map to A.

The set Ay, can be equipped with a metric, giving a discrete metric space. The most

useful metric on the space in the sense of C-balance is defined as follows, for A\, kK € Ay,

k1 k—1
(A, k) :sup{\)\l — K|, |Ae — Kol ooy [ A1 — Bi—a] Z)‘i —Zni }
i=1 i=1

In the case of the metric, the difference |\; — k;| corresponds to the difference in the
number of occurrences of the letter i, and the term [Y  A\; — > k;| corresponds to the

difference in the number of occurrences of the letter 0.
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Thus for an infinite word w € AY, the set ¥, (n) can be embedded as a subset of
Ak . Then if the word w is C-balanced, we know if \,x € Ay, correspond to Parikh
vectors of factors of w of length n then n(\, k) < C. Therefore, if a word w is C-balanced
the embedding of ¥, (n) would be bounded by a sphere, in the sense of the metric 7,
of diameter C' and thus the abelian complexity, pf;b, would be bounded above by the

cardinality of such a sphere.

Theorem 4.2.8 Let |A| =k > 2, and w € AY be C-balanced. Then for each n,

o) < (L%J)m

Proof Let A= {0,1,...,k— 1}, and w € A" be C-balanced. For any u,v € F,(n) we
know ||u|, — |v|,] < C, so for sufficiently large n there exist integers ¢; so that ¢; < |u|, <
ti+C foreach i =1,2,...,k — 1. Let B, , be the subset of A, so that:

Bon={AeMA, | t; <\ <t;+Cforeachi=1,2,...;k—1 }.

Another way to view B,,,, is as a hypercube with side length C in Z*!.

For the sake of finding the sphere of diameter C' with the largest possible cardinality
we can assume that each ¢; > 0 and ) (t;, + C) < n, i.e. B,, is totally contained in
Ay Then it should be clear that the image of W, (n) in Ay, is a subset of B, ,. For
each m=0,1,...,C(k — 1) define

Dm:{ A€ B,

i=1
to be the set of parallel hyperplanes in B,, ,,, where all factors of w corresponding to points
in D,,, would have the same number of occurrences of the letter 0. Thus B,, ,, is the disjoint
union of all the D,,, and the image of W, (n) will be a subset of D,,UD,,;1U---UD,, ¢
for some m =0,1,...,C(k —2). Thus for the largest (C' + 1) of the D,, sets,

C
P (n) = [Vu(n)] < Y [Dpnsil.
=0

Thus we need to find the cardinality of the sets D,,, and then we can find an upper bound
for the abelian complexity.

For each m, the cardinality of D,, is the number of ways to write m as the sum
of £ — 1 non-negative integers less than or equal to C, or m = iy 4+ iy + -+ - i1 where
0 <1 < Cforeach j =1,2,...,k— 1. For each m, this value is known. This is the
same value as the coefficient of ™ in the expansion of (1 + z + --- + 29)*=!. Thus if
(I+z+- 429 =ag+ a1z + aex® + -+ + acp—12* Y, we know

ag < ap < --- < aLC(kg_l)J = a[c(k2—1)-| > e > A0(k-1),
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and thus |D,,| = a,,. Then considering the coefficients of (1+z+---+ %)% = by + byx +

e bopr©t

the greatest C' + 1 coefficients of (1 4+ + -+ + %)L
To find the coefficients of (1+z+ -+ +29)* = by + bz + - - - bepr®*, we will need to

define some new notation. We first define

\? [k
() =)
and for C' > 2 we define recursively

()=S0

From [17], the coefficient b,, of 2™ in the expansion of (1 +z + 22 + -+ + 2%)* is

9 A A | G B P [ B

i) =0if s <0,t <0, or s <t Thus using this notation from Euler we have a

nice way to write the value for the upper bound of the abelian complexity of a infinite
word w on a k-letter alphabet that is C-balanced. We have:

e (4) "

In the case of a balanced word w, we have p®(n) < (LEJ), and for k =1,2,3,4,5,6,7
we have pff’(n) is bounded by 1, 2, 3, 6, 10, 20, 35 respectively. As discussed in the previous

, we have bL@J = bl’@‘l are the greatest coefficients, and they are the sum of
2 2

NE

Il
=)

where (

section, the abelian complexity for an aperiodic balanced word w on k letters can be
determined by the abelian complexity of the constant gap sequences that are used to
create it.

For example, if an alphabet is composed of 5 letters then a recurrent aperiodic bal-
anced word over that alphabet will not achieve the maximum values of 10.

An aperiodic balanced word w on a 5 letter alphabet has p(n) < 9.

Thus if w achieves the maximal abelian complexity, it must be (eventually) periodic.
In the following section we will investigate the maximum value the abelian complexity can
achieve. At the time of this writing, only balanced words have been considered. This is
because there exist nice ways to generalize recurrent balanced words, namely the method
described in Section 4.2.1.
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4.2.3 Calculating Abelian Complexity

The previous two sections dealt with some theorems and lemmas, but this section will
look at some of the numbers. Initially work has been done with a k-letter alphabet, with
k < 6. This initial work leads to a conjecture about C-balanced words with maximal
abelian complexity.

In Section 4.2.1 the constant gap sequences on k letters for k = 1,2, 3,4 are listed.
These sequences are listed again below, but listed with them is the periodic abelian

complexity sequence.

CGS (1)
k = ]' ab [e%e)
p (1)
CGS (12)>
k = 2 ab [e%s)
p (2,1)
A CGS (123)* (1213)>
B P (3,3,1)® (3,2,3,1)®
_— CGS  (1234)> (121314)> (12131214)* (123124)>
N Pl (4,4,4,1)°  (4,3,6,3,4,1)°  (4,3,5,2,5,3,4,1)®°  (4,5,2,5,4,1)®

Any balanced aperiodic word over an alphabet of 5 or less letters will be created from a
Sturmian word over any two of the above constant gap sequences. For example, to create
a balanced word over a 5 letter alphabet we could use a constant gap sequence over 4
letters and another over 1 letter, or a sequence over 3 letters and another over 2 letters.
While we can use two constant gap sequences over 4 letters to create a balanced aperiodic
word over 8 letters, we can not find all balanced aperiodic words over 8 letters with the
above sequences.

Let w be a balanced aperiodic word over a k-letter alphabet, where 2 < k < 5.
Then w can be created from a Sturmian word s and constant gap sequences g and h, as

described in Section 4.2.1. To see the possible values for p®(n), consider the set
So={ o) A0 + o = 1) 1) 121 621},

and thus p®(n) € S,. Since the abelian complexity sequence for both g and h are

periodic, |S,| will be finite. Thus the maximal value for p®(n) will be max S,,.

Example (1) Suppose w is a balanced aperiodic word constructed from a Sturmian word

s and constant gap sequences g = (123124)>° and h = (5)*°. Then
So=1{p+4,2455+24+51+4} ={57,9)
and the maximal value for p®°(n) will be 9.
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(2) Suppose w is a balanced aperiodic word constructed from a Sturmian word s and

constant gap sequences g = (1213)*° and h = (45)*°. Then
S.=1{2-2+3-1,3-242-1,1-243-1,2-14+3-2,3-1+2-2,1-1+3-2)} = {5,7,8)
and the maximal value for p(n) will be 8.

It turns out that for a recurrent aperiodic balanced word w over a 5 letter alphabet,
p%(n) < 9. This comes from considering the abelian complexity sequence of constant gap
sequences and the possible combinations of them to create a recurrent aperiodic balanced
word over a 5 letter alphabet. Thus no balanced aperiodic word over a 5 letter alphabet
will achieve the maximum value of ( g ) = 10. Thus if a balanced word over a 5 letter
alphabet does have abelian complexity of 10, for some factor length, it is not an aperiodic
word.

As stated before, we believe there are 10 constant gap sequences over 5 letters. Each
of these 10 sequences (up to permutation or shift) are listed with its periodic abelian

complexity sequence.

(12345)° (12341235)>
(5,5,5,5,1) (5,5,7,2,7,5,5,1)®
(123125) (123124125)>
(5,6,3,6,5,1) (5,7,3,9,9,3,7,5,1)
(12131415)> (1213121412131215)>
(5,4,8,4,8,4,5,1)® (5,4,7,3,8,5,7,2,7,5,8,3,7,4,5,1)
(121314121315) (132415231425)
(5,4,9,5,7,2,7,5,9,4,5,1) (5,6,9,3,7,2,7,3,9,6,2,1)
(123124123125) (121312141215)
(5,6,3,8,7,2,7,8,3,6,5,1)® (5,4,7,3,9,6,9,3,7,4,5,1)

If the method used in the previous example is used with the constant gap sequences
above, we find that a balanced aperiodic word over a 6 letter alphabet will have abelian

complexity bounded above by 18.

Conjecture 4.2.9 Suppose |A| =k, k > 5, and w € A" is a recurrent C-balanced word.

) = (@)m

If there exists an n so that

then w is eventually periodic.
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Work has been done to find words which attain the upper bound found in Theorem

4.2.8. For example, the following words

as = (12312412512312412)>°
ag = (12312412512312412612312412)*°

are balanced words which achieve maximal abelian complexity, and it is readily verified
that p2 (4) = 10 and p2 (13) = 20. At the time of this writing, no balanced word over an
alphabet of size at least 7 has been found to achieve the value found through Theorem
4.2.8.

For each k > 1, there will be finitely many constant gap sequences over k letters, [4],
but the number of constant gap sequences that exist over an alphabet of size k, for an
arbitrary k, is still an open problem. There seems to be many unanswered questions in
finding the optimal upper bound for the abelian complexity of C-balanced words.
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Chapter 5
Permutation Complexity

Permutation complexity of aperiodic words is a relatively new notion of word complexity
which was first introduced and studied by Makarov [32] based on ideas of S.V. Avgusti-
novich (see the acknowledgments in [18]), and is based on the idea of an infinite permu-
tation associated to an aperiodic word. For an aperiodic word w, no two shifts of w are
identical. Thus, given an order on the symbols used to compose w, no two shifts of w are
equal lexicographically. The infinite permutation associated with w is the linear order
on N induced by the lexicographic order of the shifts of w. The permutation complexity
of the word w will be the number of distinct subpermutations of a given length of the
infinite permutation associated with w.

This chapter will have a few different permutation complexity results. Section 5.1
has some preliminary information about infinite permutations induced by an aperiodic
word, as well as some basic properties about these infinite permutations. In Section 5.2 we
calculate the permutation complexity of the Thue-Morse word. Section 5.3 deals with the
permutation complexity of infinite words which are the image of an aperiodic uniformly
recurrent word under the doubling map, d. We also give the permutation complexity of

the image of Sturmian words under d, and the image of the Thue-Morse word under d.

5.1 Preliminaries

Infinite permutations associated with infinite aperiodic words over a binary alphabet
act fairly well-behaved, but many of the arguments used for binary words break down
when used with words over more than two symbols. Given a subpermutation of length
n of an infinite permutation associated with a binary word, a portion of length n — 1
of the word can be recovered from the subpermutation. This is not always the case for
subpermutations associated with words over 3 or more symbols. For example, consider the

permutation (12 3). If this permutation is associated with a binary word over {0, 1}, with
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0 < 1, it could only correspond to the word 00. On the other hand, if this permutation
is associated with a word over 3 symbols, suppose {0,1,2} with 0 < 1 < 2, then the
permutation could be associated with any of 00, 01, or 11.

For binary words the subpermutations depend on the order on the symbols used to
compose w, but the permutation complexity does not depend on the order. For words
over 3 or more symbols, not only do the subpermutations depend on the order on the
alphabet but so does the permutation complexity. For example, consider the Fibonacci

word
t = 0100101001001010010100100101. . .,

defined by iterating the morphism 0 — 01,1 — 0 on the letter 0, and suppose the 1s are

replaced by alternating a’s and b’s to create the word:
t = 0a00b0a00b00a0b00a0b00a00b0a . . . .

If the symbols in ¢ are ordered 0 < a < b there will be 5 distinct subpermutations of length
3, and if the symbols are ordered a < 0 < b there will be only 4 distinct subpermutations
of length 3.

In this section we will give some basic definitions which will be used in this chapter.

5.1.1 Infinite Permutation

The idea of an infinite permutation that will be here used was introduced in [18]. Since
we will be investigating the permutation complexity of infinite words, the set used in the
following definition will be N rather than an arbitrary countable set. To define an infinite
permutation 7, start with a linear order <, on N, together with the usual order < on N.
To be more specific, an infinite permutation is the ordered triple 7 = (N, <, <), where
=<, and < are linear orders on N. The notation to be used here will be 7(i) < 7(j) rather

than 7 < j.

5.1.2 Permutations Induced by Words

Given an aperiodic word w = wowiws ... on an alphabet A, fix a linear order on A.
We will use the binary alphabet A = {0,1} with the natural ordering 0 < 1. Once a
linear order is set on the alphabet, we can then define an order on the natural numbers
based on the lexicographic order of shifts of w. Considering two shifts of w with a # b,
wla] = wWewar1Waia .. and wlb] = wywpriwpia ..., we know wla] # wb] because w is
aperiodic. Thus there exists some minimal number ¢ > 0 so that w, . # wpr. and
Wari = wpe; for each 0 < 7 < ¢. We call 7, the infinite permutation associated with w

and say that m,(a) < m,(b) if waie < Whie, else we say m,(b) < m,(a).
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For natural numbers a < b consider the factor wla,b] = w,wayi1 - ..wp of w of length
b — a+ 1. Denote the finite permutation of {1,2,...,b — a + 1} corresponding to the
linear order by =, [a,b]. That is, 7, [a, b] is the permutation of {1,2,...,b—a+ 1} so that
for each 0 < i,j < (b — a), m,[a,b](i) < m,[a,b](y) if and only if 7, (a + i) < m,(a + 7).
Say that p = pop1 -+ p, is a (finite) subpermutation of w, if p = m,[a,a + n] for some
a,n > 0. For the subpermutation p = m,[a,a + n| of {1,2,--- ,n+ 1}, we say the length
of pisn+ 1.

Denote the set of all subpermutations of 7, by Perm®, and for each positive integer
n let

Perm”(n) = { my[i,i+n—1] | i>0 }

denote the set of distinct finite subpermutations of m, of length n. The permutation
complexity function of w is defined as the total number of distinct subpermutations of =,

of a length n, denoted 7,(n) = |Perm®(n)|.

Example Let’s consider the well-known Fibonacci word,
t =0100101001001010010100100101 . . .,

with the alphabet A = {0,1} ordered as 0 < 1. We can see t[2] = 001010... is lexico-
graphically less than ¢[1] = 100101..., and thus m,(2) < m(1).
Then for a subpermutation, consider the factor ¢[3,5] = 010. We see m[3, 5] = (231)

because in lexicographic order if we have m(5) < m(3) < m(4).

We will also be interested in the form of the subpermutations of 7.
Definition For a binary word u of length n — 1, say that p has form u if
Di < Pig1 u; =0

for each i = 0,1,...,n — 2. Two permutations p and g of {1,2,...,n} have the same

form if for each 1 =0,1,...,n —1,
Pi <Pit1 < i < Git1-
Then given a subpermutation p of 7, we define the following restrictions of p.

Definition Let p = m,[a,a + n] be a subpermutation of the infinite permutation 7.
The left restriction of p, denoted by L(p), is the subpermutation of p so that L(p) =
wla,a +n — 1]. The right restriction of p, denoted by R(p), is the subpermutation of
p so that R(p) = w[a + 1,a + n|. The middle restriction of p, denoted by M(p), is the
subpermutation of p so that M(p) = R(L(p)) = L(R(p)) = nla+ 1,a +n — 1].
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For each 7, there are p, — 1 terms in p that are less than p; and there are n — p;
terms that are greater than p;. Thus consider ¢ € {0,1,...,n— 1} and the values of L(p);
and R(p);. If py < pi+1 there will be p;1; — 2 terms in R(p) less than R(p); so we have
R(p); = pix1 — 1. In a similar sense, if p, < p; we have L(p); = p; — 1. If py > p;y1 there
will be p;41 — 1 terms in R(p) less than R(p); so we have R(p); = p;+1. In a similar sense,
if p, > p; we have L(p); = p;.

The values in M (p) can be found by finding the values in R(L(p)) or L(R(p)). Since
R(L(p)) or L(R(p)) correspond to the same subpermutation of p, R(L(p)); < R(L(p)); if
and only if L(R(p)); < L(R(p));. Therefore R(L(p)) = L(R(p)).

It should also be clear that if there are two subpermutations p = 7w [a,a + n] and
q = m,[b,b+n], a # b, so that p = g then L(p) = L(q), R(p) = R(q), and M(p) = M(q)
since if p = ¢ then p; < p; if and only if ¢; < g;.
5.1.3 General Permutation Complexity Properties

Initially work has been done with infinite binary words (see [6, 18, 32, 33, 34]). Suppose
A=1{0,1} and w = wywiwy . .. € AVis an aperiodic word. First let’s look at some remarks

about permutations generated by binary words where we use the natural order, 0 < 1,

on A.

Claim 5.1.1 ([32]) For an aperiodic word w over A = {0,1} with the natural ordering

we have:
1. m,(i) < my(i + 1) if and only if w; = 0.
2. m,(i) > m,(i + 1) if and only if w; = 1.

3. If w; = wj, then m,(i) < m,(j) if and only if m,(i+ 1) < m,(j + 1).

Proof (1) Suppose 7,(i) < m,(i + 1) and assume w; = 1. Then if w;1; = 0 we have a

contradiction, so w;y1; = 1 must be true. Thus there is some m > 2 so
wli] =10+, wli+1]=1""10---

Thus 7, (¢) > m,(i + 1), which is a contradiction. Therefore w; = 0.

Conversely suppose that w; = 0. If w;y; = 1 then we are done so suppose w;y; =0

as well. Thus there is some m > 2 so
wli] =0m1---,  wli+1]=0"""1-..

Thus 7, (1) < m,(i + 1).
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(2) This is true, as it is the contrapositive of (1).
(3) Let w; = wj. If m,(i) < m,(j), then there is some a € A and u € F(w) so that

wli]=au0---, wlj]=aul---,
and thus
wi+1l]=u0---, wj+1l=ul---,
so mu(i+ 1) < m,(5 +1).
Ifm,(i+1) < m,(j+ 1), we see m,(i) < m,(j) by a similar argument. |
Lemma 5.1.2 ([32]) Given two infinite binary words w — uguy -+ and v = vovy - -+ with

mul0,n + 1] = m,[0,n + 1], it follows that u]0,n] = v[0,n].

Proof Let A = {0,1} be equipped with the natural ordering, 0 < 1, and u,v € AN be
aperiodic words with 7,[0,n + 1] = m,[0,n + 1]. For 0 <i <n, m,(i) < m,(i + 1) if and
only if m, (i) < m,(i + 1), so u; = v; by Claim 5.1.1. Therefore u[0,n] = v[0,n]. |

We do have a trivial upper bound for 7,(n) being the number of permutations of
length n, which is n!. Lemma 5.1.2 directly implies a lower bound for the permutation
complexity for a binary aperiodic word w, namely the factor complexity of w. Thus,

initial bounds on the permutation complexity can be seen to be:
pu(n—1) <7,(n) <nl

Recall from Section 2.1.5 the complement operator on A>®. For A = {0,1}, 0 =1
and 1=0. If u € A®, W = W UsU3 - - -. Also recall that w the set of factors of w is closed
under complementation if for each u € F(w) then w € F(w). The following lemma shows

an interesting property of the subpermutations of the infinite permutation .

Lemma 5.1.3 Let w = wowiws - -+ be an aperiodic binary word with factors closed under
complementation. If p is a subpermutation of m, of length n, then the subpermutation q

defined by q; =n — p; + 1 for each 1, is also a subpermutation of m, of length n.

Proof Let p be a subpermutation of 7,. There is an a € N so that p = m,[a,a +n — 1].
For each i,j € {0,1,...,n—1}, if p; < p; then wla+1i] < w[a+ j| and there is some finite
word u; j so that

wla+1 =u;;0---, wla+j]=u;,;l---.

Let v be the prefix of w[a] so that for each i,5 € {0,1,...,n — 1}, v contains both

u;,;0 and w; ;1. Since the set of factors of w is closed under complementation, v is a factor
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of w. There is a b so that v is a prefix of w[b], and let ¢ = m,[b,b + n — 1]. For each
i,7€40,1,...,n—1}, if p; < p;

wbt+i =T, whti]=a,0

and thus, ¢; > ¢;.

For any ¢ € {0,1,...,n — 1} there are p;, — 1 many j so that p; < p; and there are
n — p; many j so that p; > p;. Therefore there are n — p; many j so that ¢; < ¢;, so
¢ =n—p;+ 1. u

For an aperiodic word w € AY, the following lemma shows the relationship of the
g

permutation complexity of w and .

Lemma 5.1.4 Let w = wowiws - -+ be an aperiodic binary word, and let w be the comple-

ment of w. For each n > 1,

Proof For some a # b, suppose wla] < w[b]. Thus there is some (possibly empty) factor
u of w so that wla] = u0--- and w[b] = ul---. Thus W[a] =ul--- and W[b] =u0---, so
wla] > wlb].

For both w and @ it should be clear 7,(1) = 7;(1) = 1, namely the subpermutation
(1). Let n > 2. For a permutation p of {1,2,...,n}, define the permutation p of
{1,2,...,n} by

pi=n—p+1
for each 1.

Let p = myla,a + n — 1] be a subpermutation of m,, so p is a permutation of
{1,2,...,n}. Let ¢ = m5]a,a+n—1] be a subpermutation of 7. Foreach 0 <i,j <n—1,
it # 7,1 p; < p; then ¢; > g;.

Let 0 <7 < n — 1. There are p; — 1 many j so that p; < p; and there are n — p;
many j so that p; > p;. Therefore there are exactly n — p; many j so that ¢; < ¢, so
¢; =n — p; + 1. Thus ¢ = p and for any p € Perm”(n) we have p € Perm®(n), so

[Perm®(n)| < [Perm®(n)| .
By a similar argument we can see p = ¢ and for ¢ € Perm“(n) we have § € Perm“(n), so
|Perm®(n)| < |Perm®(n)|.

Therefore [Perm®(n)| = |Perm”(n)| and 7,(n) = 7(n). |
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5.1.4 Permutation Complexity of Sturmian Words

Consider now a case where we start with a Sturmian word. An interesting property of

characteristic Sturmian words can be seen in the next proposition, listed in [8].

Proposition 5.1.5 ([1, 8, 28|) Let 0 < o < 1 be an irrational and s be Sturmian word
with slope o over {0,1} with 0 < 1. Then

Toea (0) < 75(0) < 1c, (0).

Therefore the characteristic Sturmian word with slope a can be used to generate the least
and greatest infinite permutations associated to a Sturmian word with slope «. If a word

s is Sturmian then we know ps(n) = n + 1 for each n. We have the following lemma.

Lemma 5.1.6 ([33]) Let s be a Sturmian word. For natural numbers a; and ay we have

mslar, a1 +n 4 1] = m5lag, ag +n + 1] if and only if slay, a1 + n] = s[az, as + n.

Thus for a Sturmian word s we have 74(n) = ps(n — 1). As a result of the above lemma

we have the following.

Theorem 5.1.7 ([33]) An aperiodic binary word w is Sturmian if and only if 7,(n) =n
for each n > 1.

Proof If w is Sturmian it follows directly from Lemma 5.1.6 that 7,(n) = p,(n—1) = n.

If 7,(n) = n for all n, then we have:
n+l=7,(n+1)>p,(n)>n
and thus p,(n) =n+ 1 for all n, and therefore w is Sturmian. |

Therefore, permutation complexity can be used to classify the Sturmian words.

5.2 Permutation Complexity of the Thue-Morse Word
The Thue-Morse word, T' = TyT115 - - -, is:

T = 01101001100101101001011001101001 - - -
which can be generated by the morphism:

00— 01
1—10

Hr
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by iterating on the letter 0. Axel Thue introduced this word in his studies of repetitions
in words, and proved that the word T is overlap-free ([44]). A word w is said to be
overlap-free if it does not contain a factor of the form vuwvuv for words v and v, with v
non-empty.

The Thue-Morse word was again discovered independently by Marston Morse in 1921
[35] through his study of differential geometry, and used in the foundations of symbolic
dynamics. For a more in depth look at further properties, independent discoveries, and
applications of the Thue-Morse word see [2].

The factor complexity of the Thue-Morse word was computed independently by two
groups in 1989, Brlek [11] and de Luca and Varricchio [31]. Our proof of the permutation
complexity of the Thue-Morse word does not use the factor complexity function.

The permutation complexity of the Thue-Morse word can be found as follows. For
any n > 2, we can write n as n = 2" 4+ p, with 0 < p < 2". Using this notation, it will be
shown that the formula for the permutation complexity of T, initially conjectured by M.

Makarov, is

mr(n) = 22" +p - 2).
We give a a non-trivial proof of this formula here. The method of this proof relies upon
special properties of the Thue-Morse word and the morphism that generates it. It is
currently not clear how to generalize this method to a wider class of words.

The infinite permutation associated with the Thue-Morse word, 7, is introduced
in Section 5.2.1. Patterns found in the subpermutations of 7 are studied in Section
5.2.3, while Section 5.2.4 investigates when a specific pattern occurs. The formula for the
permutation complexity is established in Section 5.2.5. Low order subpermutations are

listed in Appendix A to be used as a base case for induction arguments.

Note: Results of this section (5.2) appear in [50].

5.2.1 The Thue-Morse Permutation

In this section the action of the Thue-Morse morphism on the subpermutations of 7 will
be investigated. This action will induce a well-defined map on the subpermutations of
w7 and lead to an initial upper-bound on the permutation complexity of 7.

It can readily be verified that if a is a natural number then
pr(T'a]) = T'2d]

because for any letter x € {0,1}, |ur(x)| = 2. A nice property of the factors of T is that

any factor of length 5 or greater contains either 00 or 11. Another interesting property
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is that for any ¢ € N, T'[24,2i + 1] will be either 01 or 10. Thus any occurrence of 00 or
11 must be a factor of the form T'[2i + 1,2i + 2] for some i € N. Therefore any factors
T[2i,2i+n) and T[2j 4+ 1,2j + 1 + n] where n > 4 cannot be equal based on the location
of the factors 00 or 11.

Let mr be the infinite permutation associated to the Thue-Morse word, T'. Let a and
n be natural numbers and suppose we want to determine if T'[a] < T'[a + n]. There will
be some (possibly empty) factor v of 7', and suffixes x and y of T so that T[a] = ulx
and T[a + n] = uly, for X € {0,1}. If |u| > n + 1 we would have T, ; = T,,,,; for each
i =0,1,...,n, and thus T[a,a + n| = T[a + n,a + 2n|, and Ta,a + 2n] would violate
the fact that T is overlap-free. Thus |u| < n, and if |u| = n we have T|a,a +n — 1] =
Tla + n,a+ 2n — 1] and Ty, = T,. Therefore the subpermutation mr[a,a + n| can be
determined within the factor T[a,a + 2n] of length 2n + 1. Thus the trivial bounds for

the permutation complexity of the Thue-Morse word T" are
pr(n—1) < mp(n) < pr(2n —1).

Since the factor complexity of the Thue-Morse word is known (see [11, 31]) we can
find all factors of a given length. Thus for any natural number n, all factors of T" of
length 2n — 1 can be identified and thus the set of all subpermutations of 7 of length
n, Perm” (n), can be identified as well. The subpermutations of {1,2,...,n} have been
identified for relatively low n (up to n = 65) and in these cases no more than two
subpermutations of any length were identified to have the same form. In other words, for
any factor u of T of length n < 64 there are at most two subpermutations of length n+ 1
having form wu.

This section will deal with some properties of 7. Something to note about the Thue-
Morse morphism is that it is an order preserving morphism, as shown by the following

lemma.

Lemma 5.2.1 For natural numbers a and b, T[a] < T[b] if and only if pr(T|a]) <
pr (T[b]).

Proof If T'[a] < T'[b], then there exists a finite factor u of T, and suffixes z and y of T
so that
Tla] = u0z and T[b] = uly.

Thus we can see
pr(Tla]) = pr(u)0lpr(z) and  pp(T0]) = pr(w)10pr(y)

and therefore pr(T[a]) < pr(T[0]).
Then suppose T'[a] > T'[b], and we see pur(T[a]) > pur(T[b]) by a similar argument.
Thus pr(Tal) < pr(T[b]) will imply T'[a] < T'b]. |

o7



Lemma 5.2.2 If u and v are shifts of T so that for some a and b u = 0T'[a] and
v = 1T[b], and hence u < v, pr(u) = 0lup(Tal), and pr(v) = 10ur(T[b]). Thus
Opr(T[b]) < 01pr(T[a]) < 10pr(T'[0]) < 1pr(T|a]).

Proof The first letters in T'[a] will be either 01 or 1, thus pp(7[a]) will start with either
0110 or 10. The first letters in 7'[b] will be either 10 or 0, thus pz(7'[b]) will start with
either 1001 or 01, respectively.

Then O (7T'[b]) will start with 01001 or 001 and 01ur(T[a]) will start with 010110
or 0110. Thus 001 < 01001 < 010110 < 0110, and

Opr (T[b]) < O1pr (T'[a]).

Then 10 (T'[b]) will start with 101001 or 1001 and 1up(T'[a]) will start with 10110
or 110. Thus 1001 < 101001 < 10110 < 110, and

102 (T[0]) < 1pr(Tal).

Therefore
Opr (Tb]) < 01pr(T(a]) < 10p7(T[b]) < 1pur(Tla]).

Let u be a factor of T" of length n. There is an a € N so that u = T'[a,a+n—1]. Also
recall that |u|, is the number of occurrences of the letter 1 in u, and that |u|, =n — |u],.
Let p = mr[a,a + n] be a subpermutation of w7 with form u. Then pr(u) = T[2a,2a +
2n — 1], and let p’ be the subpermutation p’ = wr[2a,2a + 2n] with form pp(u). When
Lemma 5.2.2 is used with this notation, for 0 <i,j <n—1, where T,; = 0 and T;,4; = 1,
we have p; < p; and p,;,, < ph < py; < Ph;y- The following lemma describes the values

of p/ in terms of the values of p.

Proposition 5.2.3 Let u, p, and p’ be as described above. For any i € {0,1,...,n}:
Po; = pi + |uly

and for any i € {0,1,...,n —1}:

pi +|ul, + (n+1) if p; <piga and p; < py

o= pi+ |ul, +n if pi < piv1 and p; > py
241 — ,
pi+|ul, —n if pi > piy1 and p; < pp

(i +|uly = (n+1) if p; > pipr and p; > p,
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Proof To take care of the p), terms, let i € {0,1,...,n}. There will be p; — 1 many j so
that p; > p;, so there are p; —1 many j so that p; > p5;. Clearly, if p; < p; then py, < pj..
So there are exactly p; — 1 many even j so that p,, > p’;. There are |u|, many j so that
Toyj = 1, so there are |u|, many j so that ph, > py,,, and |u[, many j so that T, ; = 0, so
P < Phjy1- So there are exactly |u|, many odd j so that py, > p/;. Thus there are exactly
pi — L+ [u|, many j so that py; > pf;, and therefore py, = (p; — 1+ |ul,) + 1 = p; + [u];.

The p; ., terms will be done in two cases. First when p; < p;4; and then when
Di > Pit1-

Case a: Suppose that p; < p;11, so T,+; = 0 by Claim 5.1.1. For each j =0,1,...,n
we must have ph,; > py;, so for each even j (there are n + 1 many such j) ph,, > p’.
There are |u[, many j so that T,,; = 1, so there are [u|, many j so that py, ., > ph;., ;.
Thus the only other j where p;,, can be less than py,;,, are j € {0,1,...,n — 1} where
Totr; = 0 and p; > p;.

Subcase a.l: If p; < p,, then there are p; — 1 many j so that T,,; = 0 and p; > p,.
and then n — p;, — |u|; = |u|, — p; many j so that T,4; = 0 and p; < p;. Thus there
can only be (n+ 1) + |u|; + p; — 1 many j so that ph, ., > pj, and therefore p,, , =
(n+1)+|ul, +pi =1+ 1=p;+ |u|, + (n +1).

Subcase a.2: If p; > p, then there are p; — 2 many j so that T,,;, = 0 and p; > p,
(since Tyy,, is not in w = T'a,a +n — 1]), and then n — (p; — 1) — |u|; = |u|, — (p; — 1)
many j so that 7, ; = 0 and p; < p;. Thus there can only be (n+ 1)+ |u|, + p; — 2 many
j so that ph;,, > pf;, and therefore ph, | = (n+ 1) + |uly +p; =2+ 1 = p; + [u|, +n.

Case b: Suppose that p; > p; 1, so T,,; = 1 by Claim 5.1.1. For each j =0,1,...,n
we must have ph, ., < ph;, so for each even j (there are n + 1 many such j) py, , < pj.
There are |u|, many j so that T,,; = 0, so there are |u|, many j so that ph, ., < ph,;.
Thus the only other j where p;,, can be less than pj, , are j € {0,1,...,n — 1} where
To+; = 1 and p; > p;.

Subcase b.1: If p; < p, then there are (p; — 1) — |u|, many j so that T, ; = 1
and p; > pj, and there can only be |u|, — (pi — 1 — |u|,) — 1 = n — p; many j so that
Tor; =1 and p; < p; (since Tyhyy, is not in u = Ta,a +n — 1]). Thus there can only be
(pi —1) = |ulyg = pi =1 = (n — |u|y) = pi + |u[y —n — 1 many j so that py,,, > pf;, and
therefore ph, ., =pi+ |ul; —n—1+1=p; + |ul; —n.

Subcase b.2: If p; > p,, then there are (p; —2) — |u|, many j so that T,,; = 1 and
pi > p; (since Ty, is not in w = T'[a, a + n — 1]), and there can only be |u|, — (p; — 2 —
lul,) —1 = (n + 1) — p; many j so that T,;; = 1 and p; < p;. Thus there can only be
(pi —2) = |ulyg = pi —2 = (n — |uly) = pi + |ul; —n — 2 many j so that ph,,, > pf;, and
therefore ph, ., =pi+|ul; —n—2+1=p;+ |ul; — (n+1). |

Fix a subpermutation p = nr[a, a+n], and then let p’ = 7r[2a, 2a+2n|. So the terms
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of p’ can be defined using the method defined in Proposition 5.2.3. Let ¢ = mp[b, b + n],
b # a, be a subpermutation of 7 and let ¢ = 77[2b, 2b + 2n] as in Proposition 5.2.3.
The following lemma concerns the relationship of p and ¢ to p’ and ¢/. Therefore the idea
of p' can be used to define a map on the subpermutations of 77, and the map will be
well-defined by Proposition 5.2.3.

Lemma 5.2.4 p # q if and only if p' # ¢.

Proof Supposing that p # ¢, there are 4, j € {0,1,...,n} so that p; < p; and ¢; > g;.
Since the Thue-Morse morphism is order preserving we have ph, < ph: and gy > gy, s0
V#dq.

Now to show by contrapositive, suppose that p = ¢, so p; = ¢; for each i €
{0,1,...,n}. Since p = ¢, p and ¢ have the same form, because p; < p;4; if and only if
¢ < ¢is1, 50 T[a,a+n—1] = T[b,b+n—1] and thus T[2a,2a+2n—1] = T[2b, 2b+2n—1].
Then by Proposition 5.2.3 it should be clear that for each j € {0,1,...,2n} we have
p; = qé-, and thus p’ = ¢'.

Therefore if p’ #£ ¢ then p # q. |

The next corollary follows directly from Lemma 5.2.4.

Corollary 5.2.5 Ifp = nr[a,a+n] = wr[b,b+n| for some a # b, then nr[2a,2a+ 2n] =
m[20, 20 + 2n)].

Thus there is a well-defined function on the subpermutations of 7. Let p = 7p[a, a+
n|, and define ¢(p) = p’ = 77p[2a,2a + 2n| using the formula in Proposition 5.2.3. Thus
we have the map

¢ : Perm” (n + 1) — Perm” (2n + 1)

which is injective by Lemma 5.2.4.

Not all subpermutations of 77 will be the image under ¢ of another subpermutation.
Let n > 5 and a be natural numbers. Then n and a can be either even or odd, and for
the subpermutation 7r|a,a + n|, there exist natural numbers b and m so that one of 4

cases hold:
1. mpla,a + n| = mp[2b, 2b 4+ 2m], even starting position with odd length.
2. mrla,a + n] = wp[2b,2b + 2m — 1], even starting position with even length.
3. mrla,a+ n] = mr[20 + 1,2b + 2m]|, odd starting position with even length.

3

4. mrla,a+n] = 7p[2b + 1,20 + 2m + 1], odd starting position with odd length.
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Consider two subpermutations of length n > 5, mp[2¢, 2¢+n| and 7p[2d+1, 2d+n+1].
The subpermutations 7r[2¢, 2c+n] will have form T'[2¢, 2c+n—1], and 77 [2d+1, 2d+n+1]
will have form T'[2d + 1,2d + n]. Since the length of these factors is at least 5, we know
T[2¢,2c+n—1] # T[2d+1,2d+n], and thus mr[2¢, 2c+n| # 7r[2d+ 1, 2d+n+ 1] because
they do not have the same form. Thus we can break up the set Perm” (n) into two classes
of subpermutations, namely the subpermutations that start at an even position or an
odd position. So say that Perm” (n) is the set of subpermutations p of length n so that
p = mp[2b,2b +n — 1] for some b, and that Perm’,,(n) is the set of subpermutations p of
length n so that p = 7 [2b + 1,2b + n| for some b. Thus

Perm” (n) = Perm?, (n) U Perm’,,(n),

where we have
Perm’, (n) N Perm?,,(n) = 0.

Thus for n > 3, Perm? (2n + 1) is the set of all subpermutations of length 2n + 1
starting at an even position. So for mr[2a,2a 4 2n], we know there is a subpermutation
p = mrla,a + n| so that ¢(p) = p’ = 7r[2a,2a + 2n]. Thus the map

¢ : Perm” (n + 1) — Perm? (2n + 1)

is also a surjective map, and is thus a bijection.

Recall the left, right, and middle restrictions of a subpermutation. If p = 7mr[a, a +n|
then L(p) = wla,a+n—1], R(p) = wla+1,a+n], and M(p) = R(L(p)) = L(R(p)) = w|a+
1,a +n — 1]. These restrictions will be helpful to count the size of the sets Perm’,,(2n),
Perm! (2n), and Perm’,,(2n + 1).

For p = mr[a, a+ n|, we can then define three additional maps by looking at the left,
right, and middle restrictions of ¢(p) = p’. These maps are
¢r, : Perm” (n + 1) — Perm?, (2n)
¢ : Perm” (n 4 1) — Perm?,(2n)
¢nr - Perm” (n 4 2) = Perm?,(2n + 1)

and are defined by

It can be readily verified that these three maps are surjective. To see an example of this,
consider the map ¢, and let 77[2b,2b + 2n — 1] be a subpermutation in Perm?’, (2n).
Then for the subpermutation p = wp[b,b+ nl, ¢r(p) = L(p') = mr[2b,2b + 2n — 1] so ¢,

is surjective. A similar argument will show that ¢r and ¢,; are also surjective.
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Lemma 5.2.6 Forn > 2:

r(2n) < 2(7p(n+ 1))
TT(2TL + 1) S TT(n + 1) + TT(n + 2)

Proof Let n > 2. We have:

|Perm/, (2n)| < [Perm” (n + 1))|
|Perm/,,(2n)| < |[Perm” (n + 1)
|Perm/,(2n + 1)| = |Perm” (n + 1)
|Perm,,(2n + 1)| < |Perm™ (n + 2)|

since ¢ is a bijection, and the 3 maps ¢, ¢, and ¢); are all surjective. Thus we have

the following inequalities:

77(2n) = |Perm” (2n)| = |Perm[, (2n)| + |Perm/ ,(2n)|

T

S‘Perm n+ 1|+‘Perm n—|—1|:2TT(n+1))

(
(

r(2n+1) = ‘PermT(Qn +1 ‘ = ‘Perm (2n+1) } + ‘Permodd(2n + 1)‘
(

T

< |[Perm”(n + 1) |—|—‘Perm (n+2) |:TT n+1)+7r(n+2)

The three maps ¢, ¢r, and ¢, are not injective maps. To see this, consider the
subpermutations

p=mr[5,9=(23541)
= (23,27 = (13542).

Both of these subpermutations have form 7[5, 8] = T'[23,26] = 0011. Then applying the

maps we see:

p' = é(p) =77[10,18] = (48597261 3)

¢ = ¢(q) = 7r[46,54] = (385972614)
¢r(p) = m7[10,17] = (3748625 1) = 7746, 53] = ¢1.(q)
or(p) = mp[11,18] = (7486251 3) = 7p[47,54] = ¢r(q)
O (p) = mp[11,17] = (637524 1) = 7p[47,53] = dar(q)

So p' # ¢ but ¢r(p) = ¢r(q), ¢r(p) = ¢r(q), and ¢ar(p) = du(q), and these maps are
not injective in general. Hence the values in Lemma 5.2.6 are only upper bounds. The

next goal is to determine when these maps are not injective.
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5.2.2 Creating ¢(p) From a Table

Given a subpermutation p = 7r[a, a + n], we can use a table to calculate the subpermu-
tation p’ = ¢(p) = 7r[2a,2a + 2n]. To show how this is done we will use an example.
Let

p=mp[10,18] = (48597261 3)

u = T[10,17] = 01011010,

so p has form w and |u|; = 4. Let p’ = ¢(p) = m[20, 36], so by Proposition 5.2.3
pP=(8161239 171341126 151015 14 7).

The table we create will have 3 columns. In the first column of the table we list all
the values in the subpermutation p from least to greatest. We will add a horizontal line
just above the least value which corresponds to a 1 in u and add an empty box in the
third column of the row corresponding to the last element in p. In this example the least
value of p which corresponds to a 1 in w is the number 6 so the horizontal line will be
between p, = 5 and pg = 6. The last element of p is pg = 3, so we place the empty box
in the last column of row 3. Since p is a permutation of {1,2,...,9} we have the table in
Figure 1. The empty box will act as a place holder. In all the steps listed below we will
ignore the location with the empty box and write nothing in that spot. In the second
column of the table we will write the value we get from adding |u|, to the number in the

first column, see Figure 2. Note |u|, = 4 and there are 4 rows below the horizontal line.

© 0 -1 & ot
]

10
11
12
13

Fig. 1 Fig. 2
In the third column we start by writing a 1 in the first row below the horizontal line

and then increasing by 1 for the following columns, see Figure 3. To finish the table we

will add 1 to the last value in the second column (a 13 in this example) and write the
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result in the first row of the third column, and then increase by 1 in the following columns

until we reach the horizontal line, see Figure 4.

1] 5 15 14
21 6 21 6 15
317 O 317 O
4] 8 4] 8 16
509 509 17
610 1 — 6110 1
7111 2 7111 2
8|12 3 8|12 3
9|13 4 9|13 4
Fig. 3 Fig. 4

Now that we have the completed table in Figure 4 we can see how ¢ will alter the
permutation p. We have py = 5, so pj = 9 and py = 17. From the table in Figure 4, when
we find the row with a 5 in the first column we see the next elements in the row are 9 and
17. This is exactly the behavior described in Lemma 5.2.2 and Proposition 5.2.3. Thus
to create p’ from the table we find the row which has the value p; in the first column, and

then pj; is the value in the second column and pj;_, is the value in the third column. So

pp=4 = p,=8 p;=16
p=8 = p,=12 ph=3
pp=5= p;=9 pi=17

pr=1= piy=5 pi=14
ps=3 = plg=7

which is readily verified to be the same as p’ listed above.

One note about this example. It should be fairly clear for the subpermutation p =
7p[10, 18] that Tig = 0. In the table above pg = 3 is in the portion of the table which
corresponds to the 0’s. Consider the subpermutation ¢ = (1 3 6 5 2 4) of mp which has
form v = 00110, and ¢(q) = (3 9 5 11 8 2 7 1 4 10 6). Each of gy, ¢1, and ¢4 correspond
to a 0, and ¢, and g3 each correspond to a 1. Because v is a right special factor of T it is
not clear if g will correspond to a 0 or a 1. It turns out that when we construct the table

to create ¢(q), it does not matter. In Figure 5 we construct the table as above, and in
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Figure 6 we construct the table assuming gs corresponds to a 1, but note that |v|, = 2.

113 9 113 9
214 10 214 10
315 11 315 11
416 O 4]6 O
— or
5|17 1 o017 1
68 2 618 2
Fig. 5 Fig. 6

In either case we will construct the same subpermutation ¢ from the table. A note
about this example is that it is a contrived example. It turns out that only 001101 will
correspond to the subpermutation ¢, and 001100 will correspond to the subpermutation
(246513). This example was chosen to show that if there is some ambiguity with what
letter corresponds with the last value in a subpermutation, the table construction will
still work. The reason the above definition used the value |u|, to place the horizontal line

was to make the steps in the table creation explicit.

5.2.3 Type k and Complementary Pairs

An interesting pattern occurs in some subpermutations of 7. The subpermutations that
follow this pattern are said to be subpermutations of type k& which is described in the
next definition. Proposition 5.2.3 will be used inductively to show the maps ¢, ¢, ¢r,
and ¢,; preserve subpermutations of type k. An induction argument with this fact will
be used to show that two subpermutations have the same form if and only if they are a
complementary pair of type k, defined below. A corollary of this will determine when the

maps ¢r, ¢r, and ¢, are bijective.

Definition A subpermutation p = mrl[a,a + n| is of type k, for k > 1, if p can be

decomposed as
p=(ar---apA--- NfBr-- Br)
where a; = 3; + € for each i = 1,2,... k and an e € {—1,1}.
Some examples of subpermutations of type 1, 2, and 3 (resp.) are:
mr[5,9] =(23541)
77[20,25] = (254 136)
m7[6,12] = (3751264)
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Definition Suppose that the subpermutation p = 7r[a,a + n] is of type k so that for
some € € {—1,1}, o; = B; + € for each i = 1,2,... k. If there exists a subpermutation

q = mrlb,b+ n] of type k so that p and ¢ can be decomposed as:

p=rmrla,a+n]=(ar---agAi - NS Gy)
q=7rb,b+n] = (B BpAr Ny ap)

then p and q are said to be a complementary pair of type k. 1f p and ¢ are a complementary

pair of type k < 0 then p = q.
The subpermutations

m7[5,9] = (2354 1)
mr[23,27) = (13542)

are a complementary pair of type 1. The following subpermutation of type 1
mr[0,3] =(2431)

does not have a complementary pair, since (14 3 2) is not a subpermutation of 7.

The following proposition considers subpermutations of type k, and complementary

pairs of type k.

Proposition 5.2.7 Suppose p = mr[a,a + n] and ¢ = 7r[b,b+ n] are a complementary
pair of type k, with k > 1.

(a) &(p) is of type 2k — 1, and if k > 2 then ¢r(p) and ¢r(p) are of type 2k — 2 and
om(p) is of type 2k — 3.

(b) o(p) and ¢(q) are a complementary pair of type 2k — 1.

(c) or(p) and ¢r(q) are a complementary pair of type 2k — 2.

(d) ¢r(p) and ¢r(q) are a complementary pair of type 2k — 2.

(e) om(p) and ¢r(q) are a complementary pair of type 2k — 3.

Proof Since p and g are a complementary pair of type k they can be decomposed as

p=mrla,a+n]=(ar---apAi--- NS Br)
q=mr[b,b+n] = (B BeAr- - N ay)

and for e € {—1,1}, oy = Bi+eforeachi =1,2,... k. Since p and ¢ are a complementary

pair they have the same form, which is shown relatively quickly at the beginning of the
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proof of Theorem SameFormIFFCompPair. Let u = T[a,a+n — 1] = T[b,b+n — 1]
be the form of p and ¢. For the values of k and [, 2k +1l=n+1and 4k+2[—1 =2n+1.

(a) The first thing to show is that ¢(p) is of type 2k — 1.
For i€ {0,1,...,k — 1} we have p; = p,_(1—1)4; + €, so by Proposition 5.2.3:

Ph; = p/2(n—(k—1)+i) te

Fori e {0,1,...,k — 2}, p; < piy1 if and only if pp—k—1)+: < Poe(k—1)4i+1, and p; < py, if
and only if p,_—1)+: < p, since p; and p,,_(x—1)4; are consecutive values. By Proposition
5.2.3:

Pai1 = Pan—(h-1)ips1 + €

So for each i € {0,1,...,2k —2}: pi = ph, o190, + € and ¢(p) can be decomposed as

¢(p) = mr[2a,2a + 2n] = (0/1 s '04/21#1)‘/1 T X21+1ﬁ1 e 'ﬁékfl)u

where o, = 3! + €, so ¢(p) = p' is of type 2k — 1.

Next, suppose that k > 2 so 2k—1 > 3, we show that ¢ (p) = L(p') and ¢r(p) = R(p’)
are of type 2k — 2 and ¢p/(p) is of type 2k — 3.

Let i € {0,1,...,2k — 3}, and consider ¢1(p) = L(p'). Since p; and ph,_,,.o,; are
consecutive values, p; < ph, if and only if pi, o . 0. < ph,. So if L(p'); = p; then

L(p)on—okt2+i = p/2n—2k+2+i7 and if L(p'); = pj — 1 then L(p)an—ok+2+i = p/2n—2k+2+i - L
In either case, L(p'); = L(p')2n—2k+2+i + € and there is a decomposition

¢r(p) = mr[2a,2a +2n — 1] = (0/1/ t 'O/Qlk—2)‘/1/ T /2/l+261/ e gk—Z)a

and ¢ (p) is of type 2k — 2. A similar argument will show ¢g(p) is of type 2k — 2 and
om(p) is of type 2k — 3.

(b) From (a), ¢(q) = ¢’ is of type 2k — 1. Since p and ¢ are a complementary pair of

type k, pi = Ppnki14i €= G+ €= Gnpr14i foreach i € {0,1,... k—1}, and pryi = qrys
for each 7 € {0,1,...,1 — 1}. We can assume that ¢ = 1 by exchanging the role of p and
q. Thus for i € {0,1,...,k—1}:

Ph = p/2(nfk+1+i) +€
P = q;(n—k—&-l—&-i)

Gon—ts14+i) = Qo; T €
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Forie {0,1,...,k—2}:

/ o

D2it1 = Po(n—kti4i)+1 T €
/ o

Pait1 = Qo(n—k+1+i)+1

q;(n—k+1+z‘)+1 = q;z‘+1 te

We know pi1 = pp+€ = qr_1+€ = qn, 80 pp—1 > pp and g1 < q,. Thusif pp_1 < py
/ /
Pok—1 = Pe—1 F [uly +n = g1 + 1+ |ul; + 0= qeo1 + [uly + (0 + 1) = gy
and if pp_1 > pg
Pop1 =Pre1+luly —(n+1) =gy + 14 July = (0 +1) = g1 + |ul; =1 = gy,
By Proposition 5.2.3, since pgi; = qgi; for each ¢ € {0,1,...,1 — 1},
/ /
Pok4iy = D2(k+4)
p/2(k+i)+1 = qé(k+i)+1
Thus there are decompositions of ¢(p) = p’ and ¢(q) = ¢’ so that
¢(p) = mr(2a,2a + 2n] = (o -~ Ay AL+ Ny 1 B -+ Bapa),

P(q) = WT[257 2b + 2"] = (ﬂi e 'ﬂék—l)‘,l T /21+10/1 T 04/2k-1)a

where o, = (3! 4+ €. Therefore ¢(p) = p’ and ¢(q) = ¢’ are a complementary pair of type
2k — 1.

(c) From (b), ¢(p) = p' and ¢(q) = ¢ are a complementary pair of type 2k — 1.
Suppose k > 2 and so 2k — 3 > 1, and let i € {0,1,...,2k — 3}, then p, = ¢/ + € =
Don—okrori T €= Gop_opyors- Thus piand ph. o o . are consecutive values, as are ¢; and

/ / / : : / /
Qop—op ot AlSO o, < p; if and only if ph, < p5, o1 0., and
/ < / d / < / / < ! d / < !
Doy, < p; and Py, < Pop_opioyi S Gop, < G and Go, < (o, opi244-

It L(p'); = pi — 1 or L(p); = p,, we have L(¢'); = ¢, — 1 or L(¢"); = ¢ (resp.), and
L(p)i = L(q)i + € = LD )on-2k+2+i + € = L(q)2n-on4244-

Now let i € {0,1,...,2l}, so phy,_1,; = Go_1,- Thus ph, < ph,_,,,; if and only if
U3y < Gh_144 and so we have L(p')op—14i = L(q')2r—14i-

Then phy_o = Ghy_o + € = Dby, + € = ¢, SO Py _o > phy, if and only if ¢h, o < ¢5,. If
Pog—g > Doy a0d Gy < oy, then ply o = gy o +1=py, +1 = g5, 50

L<p/)2k—2 = p/2k72 —1= qgkq = L(q/)Qk—2->
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If phy o < py, and g5 > Gy, then phy o =g o — 1 =ph, — 1 =gy, so
L(p)ok—2 = Phop_o = Gop_o — 1 = L(q)2p—2-

In either case, L(p')og—2 = L(q')ak—2. Thus there are decompositions of ¢ (p) = L(p')
and ¢1(q) = L(q¢') so that

or(p) = 7TT[2a7 2a + 2n — 1] = (0/1 t '04/21@—2/\,1 T /\/21+2ﬁi e 'ﬁék—2)7

¢r(q) = (26,20 +2n — 1] = (B -+ Bap_oA| - Mgy =+ Q).
where o = 3! + €. Therefore ¢ (p) and ¢ (q) are a complementary pair of type 2k — 2.
Now suppose that £k = 1 and so 2k — 1 = 1. Then pj = q) + € = p5,, + € = ¢}, and
pi=q. fori=1,2,...,2n— 1. If p{, > p), and ¢} < ¢, then py = ¢+ 1 =ph, +1 =),
SO

L )o=py—1=q,=L(¢)o-

If py < ph, and qy > gy, then py = gy — 1 = p5,, — 1 = g5, so
L )o=py=aq —1=L(¢)o-

In either case, L(p')o = L(¢')o- Then for each i € {1,2,...,2n— 1}, pi = ¢}, and p),, < p
if and only if ¢4, < ¢; so L(p'); = L(q');. Therefore, if kK =1 then ¢1(p) = ¢1(q).

(d) A similar argument from part (¢) will show ¢g(p) and ¢r(q) are a complementary
pair of type 2k — 2.

(e) If £ > 2, from (d) ¢r(p) and ¢r(q) are a complementary pair of type 2k — 2. A
similar argument from part (c¢) will show L(¢r(p)) = éar(p) and L(or(q)) = ¢ (q) are a
complementary pair of type 2k — 3. If k = 1, then ¢r(p) = ¢r(q) and ¢r(p) = ¢r(q) so
ou(p) = oar(q)- n

Theorem 5.2.8 Let p and q be distinct subpermutations of mr. Then p and q have the

same form if and only if p and q are a complementary pair of type k, for some k > 1.

Proof First, suppose that p and ¢ are a complementary pair of type k, for some k£ > 1.
So there are decompositions:

p=rmrla,a+n]=(ar---apAi - NS )
q=mrb,b+n] = (B Bl - Nag - ay)

so that for e € {—1,1}, o; = §; + € for each i € {1,2,... k}.
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For each i € {0,1,...,k — 2}, p; and p,_j414; are consecutive values, as are ¢; and

Qn—k+1+i, SO
Pi < Pit1 and pp_piiti < Pn—kpititr = ¢ < @iy1 A Gppri+i < Gnoktititl-
Since pr—1 = qr—1 + € Pryi + € = Qrrts Pk = Gk, and Pryi1 = Qi1

Pe—1 <Pr <~ Q-1 <Gk

Pe+i-1 < Pitl = Gk+i—1 < G+l

For each i € {0,1,...,1 — 2}, Prri = Qrri> SO

Pi+i < Dk+itl = Qkti < Qkti+l-

Therefore p; < p;y1 if and only if ¢; < g;41 for each i € {0,1,...,n — 1}, so p and ¢ have

the same form.

To show that distinct subpermutations with the same form are a complementary pair
of type k, for some k£ > 1, an induction argument will be used. The subpermutations of
lengths 2 through 9 are listed in Appendix A, along with the form of the subpermutations.
It can be seen that distinct subpermutations with the same form are a complementary
pair of type k, for some k > 1.

Assume that n > 9 and that the theorem is true for all subpermutations of length at
most n. Let p’ and ¢’ be distinct subpermutations of length n 4+ 1 with the same form,
so p; < pi,, if and only if ¢; < ¢;,, for each 7 =0,1,...,n — 1.

Then

p,¢d € Perm! (n+1) or p,¢ €Perm?, (n+1).

If, without loss of generality, p’ € Perm (n + 1) and ¢’ € Perm’,,(n + 1), then p’ =
mr[2a,2a 4+ n] and ¢ = 7r[20 4+ 1,2b+ n + 1], so T[2a,2a +n — 1] = T[20 + 1,2b + n].
Since n > 9, T[2a,2a + n — 1] will contain either 00 or 11, so there is some ¢ so that
T[2a+2c+1,2a+2¢c+2] is 00 or 11. Then also, T[2b+1+2c+1,20+1+2¢c+2] = T[2b+
2¢+2,2b4-2¢+3] must be the same as T'[2a+2c+1, 2a+2c¢+2], but T'[2b42c¢+2, 2b+2¢+-3]
is either p7(0) = 01 or (1) = 10, so T'[2042¢+2,2b+2¢+3] # T[2a+2c+1, 2a+2c+2].
Therefore, either p/, ¢’ € Perm? (n + 1) or p/, ¢ € Perm’,(n + 1)

Thus one of the 4 following cases must hold:
1. p/,q € Perm? (n + 1) and n + 1 is odd.
2. p/,q € Perm’ (n+1) and n + 1 is even.

3. p/,¢ € Perm!,,(n + 1)and n + 1 is even.
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4. p',q¢ € Perm!,,(n + 1)and n + 1 is odd.

Case 1 Suppose p', ¢ € Permg(n + 1) and n+ 1 = 2m + 1, so there are numbers a
and b so that p' = 7r[2a,2a + 2m| and ¢’ = 77[2b, 2b + 2m], and

p = 7rla,a +m] q = mr[b,b+m],

P =¢(p) ¢ = (q).
If Tla,a+m — 1] # T[b,b+ m — 1] then T[2a,2a + 2m — 1] # T[2b,2b+ 2m — 1]|. Hence

Tla,a+m —1]=T[b,b+m — 1]

and p and ¢ have the same form. Since p = ¢ would imply p’ = ¢/, it must be that p # q.
By the induction hypothesis, p and g are a complementary pair of type k, for some k > 1.
Therefore, by Proposition 5.2.7, ¢(p) = p’ and ¢(q) = ¢’ are a complementary pair of
type 2k — 1.

Case 2 Suppose p/, ¢’ € Perm? (n+ 1) and n + 1 = 2m, so there are numbers a and
b so that p’ = mr[2a,2a 4+ 2m — 1] and ¢ = 7p[2b,2b 4+ 2m — 1], and
p:wT[a,a—i—m] q:ﬂ-T[b7b+m]7

P =o.(p) ¢ = ¢w(q).
Since p’ and ¢’ have the same form, T'[2a,2a + 2m — 2] = T'[2b,2b 4+ 2m — 2]. Thus

Tooiom—2 = Topyom—o implies Toym1 = Tpym-1, 80 T[2a + 2m — 2,2a + 2m — 1] =
T[2b+ 2m — 2,2b+ 2m — 1] and

T[2a,2a +2m — 1] = T[2b,2b + 2m — 1].
If Tla,a+m — 1] # T'[b,b+ m — 1] then T'[2a,2a + 2m — 1] # T[2b,2b+ 2m — 1]. Hence
Tla,a+m —1]=T[b,b+m — 1]

and p and ¢ have the same form. Since p = ¢ would imply ¢(p) = ¢(q), and thus p’ = ¢/,
it must be that p # ¢. By the induction hypothesis, p and ¢ are a complementary pair
of type k, for some k > 1. If k = 1, then ¢, (p) and ¢(q). are a complementary pair of
type 2k — 2 =0 and p' = ¢/, thus k > 2. Therefore, by Proposition 5.2.7, ¢1(p) = p’ and
¢r(q) = ¢ are a complementary pair of type 2k — 2 > 2.
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Case 3 Suppose p', ¢ € Perm’,,(n+ 1) and n + 1 = 2m, so there are numbers a and
b so that p’ = mr[2a + 1,2a + 2m] and ¢ = 7p[2b+ 1,2b + 2m], and

p = 7rla,a + m] q = mr[b,b+m],

P = or(p) q = or(q).

Since p’ and ¢’ have the same form, T'2a + 1,2a 4+ 2m — 1] = T[2b+ 1,2b + 2m — 1].
Thus Ty, 1 = Topyq implies T, = Ty, so T'[2a, 2a + 1] = T'[2b,2b + 1] and

T[2a,2a +2m — 1] = T[2b,2b + 2m — 1].
If Tla,a+m — 1] # T[b,b+ m — 1] then T[2a,2a + 2m — 1] # T[2b,2b + 2m — 1]. Hence
Tla,a+m —1]=T[b,b+m — 1]

and p and ¢ have the same form. Since p = ¢ would imply ¢(p) = ¢(¢q), and thus p’ = ¢/,
it must be that p # ¢. By the induction hypothesis, p and ¢ are a complementary pair
of type k, for some k > 1. If k = 1, then ¢gr(p) and ¢r(q) are a complementary pair of
type 2k —2 =0 and p’ = ¢/, thus k& > 2. Therefore, by Proposition 5.2.7, ¢r(p) = p’ and
®(q)r = ¢ are a complementary pair of type 2k — 2 > 2.

Case 4 Suppose p/, ¢’ € Perm?,,(n+1) and n + 1 = 2m + 1, so there are numbers a
and b so that p’ = mp[2a + 1,2a + 2m + 1] and ¢ = 7p[2b+ 1,20+ 2m + 1], and

p=7mrla,a+m+1] q=mr[b,b+m+ 1],

P = om(p) q = om(q)-

Since p’ and ¢ have the same form, T'[2a 4+ 1,2a + 2m| = T[2b+ 1,2b + 2m|. As in
cases 2 and 3 we find Ta,a +m] = T[b,b+ m] and p and ¢ have the same form. Since
p = q would imply ¢(p) = ¢(q), and thus p’ = ¢/, it must be that p # ¢. By the induction
hypothesis, p and ¢ are a complementary pair of type k, for some k£ > 1. If £k = 1, then
or(p) and ¢pr(q) are a complementary pair of type 2k —3 = —1 and p' = ¢/, thus k£ > 2.
Therefore, by Proposition 5.2.7, ¢p(p) = p’ and ¢ps(q) = ¢’ are a complementary pair of
type 2k — 3 > 1.

Therefore subpermutations p and ¢ have the same form if and only if p and ¢ are a

complementary pair of type k, for some k& > 1. |

There are a number of useful corollaries of Theorem 5.2.8. These corollaries give the
number of subpermutations that can have the same form and show when the maps ¢,

¢r, and ¢, are not injective.
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Corollary 5.2.9 For a subpermutation p of mr, there can be at most one subpermutation

q of mr so that p and q are a complementary pair.

Proof Assume that p is a subpermutation of 77 so that p and ¢ are a complementary
pair of type s, and p and r are a complementary pair of type ¢t. Moreover, s # t, and

thus g # r. Then there are decompositions:

p:ﬂ'T[a7a—|-n]:(al...as)\l...)\xﬁl...ﬁs>
q=mrb,b+n] = (B BsAi- Aoy - - )

so that for ¢, € {—1,1}, a; = B; + €5 for each i = 1,2,...,s, and

p=mrla,a+n] = (af - oAy A By By)
r=mpbb+n]= (8 BN A )

so that for ¢, € {—1,1}, o/ = 3/ 4+ ¢ for each i = 1,2,... ¢
Since p and ¢ are a complementary pair they have the same form, as do p and r.
Thus ¢ and r are distinct subpermutations with the same form, so by Theorem 5.2.8 ¢

and r are a complementary pair of type k, for some k.
If B, = 3] then p,_ 511 = Pn_ys1, but since s # t this cannot happen. Thus (§; # (]

and €5 # €, S0 €, = —¢;. Hence

ap = [ + € =  [i=0a —€

=0+ = pi=adi—¢ = [i=a+e¢,.

Therefore ¢y # 1o £ 1, and ¢ and r are not a complementary pair, contradicting the

assumption. |
The next corollary follows directly from Theorem 5.2.8 and Corollary 5.2.9

Corollary 5.2.10 For a factor u of T, there are at most two subpermutations of wr with

form .
The next corollary shows when the maps ¢ (p), ¢r(p), and ¢y (p) are not injective.

Corollary 5.2.11 For subpermutations p = 7wrla,a + n] and ¢ = 7r[b,b + n], where
p#q

(a) or(p) = ¢r(q) if and only if p and q are a complementary pair of type 1.

(b) or(p) = or(q) if and only if p and q are a complementary pair of type 1.
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(¢) or(p) = dui(q) if and only if p and q are a complementary pair of type 1.

Proof It should be clear for all three cases that if p and ¢ are a complementary pair of

type 1 then
¢r(p) = ¢1(q) Pr(p) = ¢r(q) om(p) = du(q)

by Proposition 5.2.7. For the three cases, let p = 7r[a,a + n| and ¢ = 7p[b, b+ n] and
p# 4

(a) Suppose ¢r(p) = ¢1(q), so mr[2a,2a+2n—1] = 720, 2b+2n— 1] and T'[2a, 2a+
2n — 2] = T[2b,2b + 2n — 2]. As before we find T'[2a,2a + 2n — 1] = T[2b,2b + 2n — 1]
and T[a,a+mn — 1] =T[b,b+ n — 1], so p and ¢ have the same form. By Theorem 5.2.8,
p and ¢ are a complementary pair of type k& > 1. If & > 1, then ¢, (p) and ¢.(q) are
a complementary pair of type 2k — 2 > 1, so ¢r(p) # ¢r(q). Therefore p and ¢ are a

complementary pair of type 1.

(b) Suppose ¢r(p) = ¢r(q). This again implies T[a,a +n — 1] =T[b,b+n —1] so p
and ¢ have the same form. As in case (a) we then find p and ¢ are a complementary pair

of type 1.

(c) Suppose ¢nr(p) = éar(q). This again implies T'[a,a +n — 1] = T[b,b +n — 1] so
p and ¢ have the same form. As in case (a) we then find p and ¢ are a complementary

pair of type 1. |

So when there are complementary pairs of type 1 none of the maps ¢, ¢r, and ¢y,
are injective, and thus they are not bijective. In cases where there are no complementary
pairs of type 1 the maps ¢, ¢r, and ¢,; are injective and the inequalities in Lemma
5.2.6 become equalities. So we need to know when complementary pairs of type 1 will

occur, and how many complementary pairs there are.

5.2.4 Type 1 Pairs

This section investigates when complementary pairs of type 1 arise and the number of
pairs that occur. To show when the maps ¢, ¢r, and ¢y, are bijections we need to
consider when complementary pairs of type 1 occur. The following lemma shows when
there are complementary pairs of type k, for each £ > 0. An induction argument will be
used with Proposition 5.2.7 and Theorem 5.2.8 to show that all complementary pairs of

a given length are of same type.
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Proposition 5.2.12 Let n > 4 be a natural number and let p and q be subpermutations
of mr of length n + 1 with the same form. There exist r and c so that n = 2" + ¢, where
0<ec< 2.

(a) If 0 < c <21+ 1, then either p = q or p and q are a complementary pair of type
c+1.

(b)) If 21 +1 < c < 2", then p = q.

Proof This will be proved using an induction argument on r. By looking at the sub-
permutations in Appendix A it can be readily verified that the lemma is true for r = 2
and ¢ =0,1,2,3, so for n =4,5,6,7. Suppose that » > 2 and that the statement of the
lemma is true when n < 2". It will be shown that it is true for all n = 2" + ¢ where
0<ec< 2.

(a) Let n = 2" + cwith 0 < ¢ < 2771 + 1. If p’ = ¢ the proposition is satisfied, so
assume that p’ # ¢. As it was stated in the proof of Theorem 5.2.8, if p’ € Perm?, (n+1)
and ¢ € Perm!,;(n + 1), then p' and ¢ cannot have the same form. We must also
consider when n + 1 is both even and odd. So there will be four subcases to consider,
when p/,¢" € Perm’ (n + 1) or when p/, ¢’ € Perm’,,(n + 1) and when n 4 1 is even or
odd.

Case a.1: Suppose p', ¢ € PermeTv(n + 1) and n + 1 is odd, so ¢ is even. There is
a d so that ¢ = 2d, with 0 < d < 2"72 4+ 1, and there are numbers a and b so that
p = mr[2a,2a + 2" + 2d] and ¢ = 7p[2b,2b + 2" + 2d], and

p:WT[a,a—l—Qr_l—kd], q:WT[b7b+2T_1+d],

P = o(p), q = ¢(q).

We again find T'[a,a+2""'+d—1] = T[b,b+2""' +d—1], so p and ¢ have the same form.
Since p = ¢ would imply p’ = ¢/, it must be that p # ¢. By the induction hypothesis, p
and ¢ are a complementary pair of type d + 1. Therefore, by Proposition 5.2.7, ¢(p) = p’
and ¢(q) = ¢’ are a complementary pair of type 2(d+1) —1=2d+1=c+ 1.

Case a.2: Suppose p', ¢ € Perm? (n + 1) and n + 1 is even, so ¢ is odd. There is
a d so that ¢ = 2d + 1, with 0 < d < 272 4+ 1, and there are numbers a and b so that
p = mr[2a,2a 4+ 2" + 2d + 1] and ¢’ = mp[20,2b + 2" 4+ 2d + 1], and

p=rmrla,a+2""t +d+1], q=mrb,b+2" 1 +d+ 1],
P = ow(p), q = or(q).
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Since p’ and ¢’ have the same form, T'[2a, 2a+ 2" +2d] = T'[2b, 2b+ 2" + 2d]. We again
find T'[a, a+2""'+d| = T[b,b+2""'+d], so p and g have the same form. Since p = ¢ would
imply ¢(p) = ¢(q), and thus p’ = ¢/, it must be that p # ¢. By the induction hypothesis, p
/

and ¢ are a complementary pair of type d+2. Therefore, by Proposition 5.2.7, ¢r(p) = p
and ¢r(q) = ¢ are a complementary pair of type 2(d +2) —2=2d+2=c+ 1.

Case a.3: Suppose p',q' € Perm’ ,(n + 1) and n + 1 is even, so c is odd. There is
a dsothat ¢ = 2d + 1, with 0 < d < 2"72 + 1, and there are numbers a and b so that
P =mr2a+1,2a + 2" 4+ 2d + 2] and ¢ = 7p[2b+ 1,2b + 2" 4 2d + 2|, and

p=rmrla,a+2"" +d+1], q=mpb,b+2"1 +d+ 1],

P = or(p), q = or(q).

Since p" and ¢’ have the same form, T'[2a+1, 2a+2"+2d+1] = T[2b+1, 2b+2"+2d+1].
We again find T[a,a + 2"' +d] = T[b,b+ 2! + d], so p and ¢ have the same form.
Since p = ¢ would imply ¢(p) = ¢(q), and thus p’ = ¢, it must be that p # ¢q. By
the induction hypothesis, p and ¢ are a complementary pair of type d + 2. Therefore,
by Proposition 5.2.7, ¢r(p) = p' and ¢(¢)r = ¢ are a complementary pair of type

2(d+2)—2=2d+2=c+1.

Case a.4: Suppose p',¢ € Perm’,,(n + 1) and n + 1 is odd, so ¢ is even. There
is a d so that ¢ = 2d, with 0 < d < 272 + 1, and there are numbers a and b so that
P =mr[2a+1,2a 4+ 2" 4+ 2d + 1] and ¢ = 7p[20+ 1,20 + 2" + 2d + 1], and

p=rmrla,a+2"" +d+1], q=mrb,b+2" 1 +d+ 1],

P = ou(p), q = om(q).

Since p’ and ¢ have the same form, T'[2a + 1,2a + 2" +2d] = T[2b+ 1,2b+ 2" + 2d|.
We again find T[a,a + 2"' +d] = T[b,b+ 2"~' + d], so p and ¢ have the same form.
Since p = ¢ would imply ¢(p) = ¢(q), and thus p’ = ¢/, it must be that p # ¢q. By
the induction hypothesis, p and g are a complementary pair of type d + 2. Therefore,
by Proposition 5.2.7, ¢p(p) = p' and ¢p(q) = ¢ are a complementary pair of type
2d+2)—3=2d+1=c+1,

(b) Let n = 2" + ¢ with 277! +1 < ¢ < 2", There will again be the four subcases
from part (a) when 2"~' +1 < ¢ < 2" — 2, when p/, ¢ € Perm’, (n + 1) or when p/,¢ €
Perm!,,(n + 1) and when n + 1 is even or odd. There will also be 2 additional special

cases to consider, which are when ¢ =2" —2 and ¢ = 2" — 1.
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Case b.1: Suppose p/,¢ € Perm’ (n + 1) and n + 1 is odd, so ¢ is even. There is
a d so that ¢ = 2d, with 2772 +1 < d < 2"!, and there are numbers a and b so that
p = 7r[2a,2a 4+ 2" + 2d] and ¢’ = 7p[2b, 2b + 2" + 2d], and

p:ﬂT[a,a—I—QT_l—kd], q:WT[b,b—kQ’"_qud],

P =¢(p), q = ().
Asin case a.1, T[a,a+ 2" ' +d — 1] = T[b,b+ 2! +d — 1], so p and g have the same

3

form. By the induction hypothesis p = ¢, so by Corollary 5.2.5, p' = ¢(p) = ¢(q) = ¢'.

Case b.2: Suppose p/, ¢ € Perm’,(n + 1) and n + 1 is odd, so ¢ is even. There is
a d so that ¢ = 2d, with 272 +1 < d < 2", and there are numbers a and b so that
P =mr2a+1,2a+ 2"+ 2d + 1] and ¢’ = 7p[20 + 1,20+ 2" + 2d + 1], and

p=rnrla,a+2"""+d+1], q=mr[b,b+2" +d+1],

P = om(p), q = om(q).

As in case a.4, T([a,a + 2" +d] = T[b,b+ 2""! + d], so p and ¢ have the same form.
By the induction hypothesis p = ¢, so by Corollary 5.2.5, ¢(p) = ¢(q) and therefore
P =oup) =ouq) =4

Case b.3: Suppose p/, ¢ € Permgj(n + 1) and n + 1 is even, so ¢ is odd. There is a
d so that ¢ = 2d + 1, with 2772+ 1 < d < 2!, and there are numbers a and b so that
P = mr(2a,2a 4+ 2" + 2d + 1] and ¢’ = mp[20,20 + 2" + 2d + 1], and

p=rmrla,a+2"" +d+1], q=mrb,b+2" 1 +d+ 1],

P = oL(p), q = orlq).

As in case a.2, Tla,a + 2" +d] = T[b,b + 2"~' + d], so p and g have the same form.
By the induction hypothesis p = ¢, so by Corollary 5.2.5, ¢(p) = ¢(q) and therefore

P =or(p) = orlq) = ¢

Case b.4: Suppose p',q’ € Perm’,,(n 4+ 1) and n + 1 is even, so c is odd. There is a
d so that ¢ = 2d + 1, with 2772 +1 < d < 2!, and there are numbers a and b so that
P =mr2a+1,2a + 2" 4+ 2d + 2] and ¢ = 7p[2b+ 1,2b + 2" 4 2d + 2|, and

p=rmrla,a+2"" +d+1], q=mrb,b+2"1 +d+ 1],
P = or(p), q = or(q).
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As in case a.3, Tla,a + 2" +d] = T[b,b+ 2""! + d], so p and ¢ have the same form.
By the induction hypothesis p = ¢, so by Corollary 5.2.5, ¢(p) = ¢(q) and therefore

P = ¢r(p) = ¢r(q) = ¢

Case b.5: Suppose ¢ = 2" — 2. Thus n = 2" + 2" — 2 = 2"*! — 2 and the subper-
mutations p’ and ¢’ will have odd length. There will be two subcases, these being when
P, ¢ € Perm!, (n + 1) and when p/, ¢’ € Perm!,(n + 1).

Case b.5.i: Suppose p’,¢ € Perm’ (n + 1). There are numbers a and b so that
p = 7r[2a,2a + 2" — 2] and ¢/ = 7p[20,20 + 27T — 2], and

p=rrla,a+2" — 1], q=mr[b,b+2" —1],

p'=é), ¢ = ¢(q).
As in cases a.1 and b.1, T'[a,a+2"—2] = T'[b,b+ 2" — 2|, so p and ¢ have the same form.
By the induction hypothesis p = ¢, so by Corollary 5.2.5, p' = ¢(p) = ¢(q) = ¢'.

Case b.5.ii: Suppose p’,q' € Perm’,;(n 4+ 1). There are numbers a and b so that
p =mr[2a+1,2a+ 2" — 1] and ¢ = 7p[2b+ 1,26 + 271 — 1], and

p=mrla,a+ 27, q=mr[b,b+ 27,

P = ou(p), q = om(q).

As in cases a.2 and b.2, Ta,a + 2" — 1] = T[b,b + 2" — 1], so p and ¢ have the same
form. If p = g then ¢(p) = ¢(q), by Corollary 5.2.5, and p' = M(¢p(p)) = M(o(q)) = ¢
If p # ¢ then by case a.1, p and ¢ are a complementary pair of type 1. Therefore, by

Proposition 5.2.7, p' = ¢ (p) = dm(q) = ¢

Case b.6: Suppose ¢ = 2" — 1. Thus n = 2" + 2" — 1 = 2"+ — 1, and the subper-
mutations p’ and ¢’ will have even length. There will be two subcases, these being when
P, ¢ € Perm? (n + 1) and when p', ¢ € Perm’;(n + 1).

Case b.6.i: Suppose p',¢ € PermeTv(n + 1). There are numbers a and b so that
p = mr(2a,2a + 2" — 1] and ¢/ = 77[20,2b + 2" — 1], and

p=mrla,a+ 27, q=mr[b,b+ 2",

P’ = ou(p), ¢ = ¢r(q).
As in cases a.2 and b.3, T'[a,a+2" —1] = T'[b,b+2" — 1], so p and ¢ have the same form.

If p = q then ¢(p) = ¢(q), by Corollary 5.2.5, and p’ = L(¢(p)) = L(¢(q)) = ¢ I p# ¢
then by case a.1, p and ¢ are a complementary pair of type 1. Therefore, by Proposition

52.7,p = ¢1(p) = orlq) = ¢
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Case b.6.ii: Suppose p’,¢' € Perm’,;(n 4+ 1). There are numbers a and b so that
p =7r[2a+1,2a + 2" and ¢/ = 77[2b+ 1,20+ 2"11], and

p:T('T[CL,CL—i—2T], q:ﬂ-T[b7b+2T]7

' = or(p), ¢ = or(q).
As in cases a.3 and b.4, T'[a,a+2" —1] = T'[b,b+2" — 1], so p and ¢ have the same form.

If p = ¢ then ¢(p) = ¢(q), by Corollary 5.2.5, and p' = R(¢(p)) = R(d(q)) = ¢ If p# q
then by case a.1, p and ¢ are a complementary pair of type 1. Therefore, by Proposition

5.2.7,p' = ¢r(p) = ¢rlq) = ¢
Therefore the lemma is true when n = 2" + ¢ with 0 < ¢ < 2", and therefore for all

n. [ |

Thus, only subpermutations of length 2" 4+ 1 can be a complementary pair of type 1,

and we have the following corollary.

Corollary 5.2.13 If n # 27, for r > 1, then for any subpermutations p = mrla,a + nl
and q = mrlb, b+ n]

(a) ér(p) = ¢1(q) if and only if p = q.
(b) ¢r(p) = ér(q) if and only if p = q.

(¢) ém(p) = dun(q) if and only if p=q.
Proof It should be clear in each case that if p = ¢ then

or(p) = ¢r(q) or(p) = dr(q) o (p) = du(q).

Suppose ¢1(p) = ¢r(q). If p # ¢, by Corollary 5.2.11 p and ¢ are a complementary
pair of type 1. By Proposition 5.2.12, p and ¢ are cannot be complementary pair of type
1, therefore p = q.

A similar argument will show if ¢r(p) = ¢r(q) then p = ¢, and if ¢y (p) = Pu(q)
then p = q. |

We now consider the number of factors u of T" of length 2" that have two subpermu-

tations which form a complementary pair of type 1.

Lemma 5.2.14 Let n =2" or 2" + 1, with r > 2. Then there are exactly 2" factors u of
T of length n so that there exist subpermutations p = 7mr[a,a + n| and q¢ = wr[b,b + n]

with form uw and p # q.
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Proof It can be readily verified by looking at the subpermutations in Appendix A that
the lemma is true for r = 2. So there are 4 factors u of T" of length 4 with two distinct
subpermutations of length 5 with form u, and there are 4 factors v of T" of length 5 with
two distinct subpermutations of length 6 with form v.

Suppose r > 2 and that the lemma is true for r. We now show the lemma is true
for r + 1. Let I" be the set of factors of length 2", |I'| = 2", so that for u € I there are
subpermutations p and ¢ with form wu so that p # ¢, hence, by Proposition 5.2.12, p and
q are a complementary pair of type 1. Let I be the set of factors of length 2"*! so that if
u € I" then there exist subpermutations p and ¢ with form u so that p # ¢. Let A be the
set of factors of length 2"+ 1, |A| = 2", so that for v € A there are subpermutations p and
g with form v so that p # g, hence, by Proposition 5.2.12, p and ¢ are a complementary
pair of type 2. Let A’ be the set of factors of length 2! + 1 so that if v € A’ then there
exist subpermutations p and ¢ with form v so that p # q.

The sizes of IV and A’ will be considered in two cases.

Case [": Any factor in IV will either start in an even position or an odd position, call
these sets of factors I', and I" ,, and hence

Since the factors are of length 2"*! > 8, for any factors s € I',, and t € I/ ;;, s # t, thus
[y N0 =0

There will be two subcases to establish the size of I, first by showing the size of I, and
then the size of IV .

Subcase I : For u € I" there are subpermutations p and ¢ of 7y of length 2" + 1,
so that p # ¢q. By Proposition 5.2.12, p and ¢ are a complementary pair of type 1. By
Proposition 5.2.7 ¢(p) and ¢(q) are a complementary pair of type 1, so ¢(p) # ¢(q) and
they both have form pr(u). Therefore for each u € T', pr(u) € T',,. Hence

Teol = [T

Suppose that u' € T”,, so there are subpermutations p’ = 7r[2a,2a + 2""'] and

¢ = 720,20 + 27T with form v’ = T[2a,2a + 2" — 1] = T[2b,2b + 2" — 1], so that
P’ # ¢'. Hence there exist subpermutations p and ¢ so that ¢(p) = p’ and ¢(q) = ¢'. As
in case a.1 of Proposition 5.2.12, p and ¢ are a complementary pair of type 1 with form «
where pr(u) = u'. Thus for each v’ € T”

ev?

there is some u € I' so that pup(u) = u'. Hence
el < T

80



Therefore |, | = |T'].

Subcase I ,;: For v € A, u = Ta,a + 27| , there are subpermutations p and ¢ of
7 of length 2" 4+ 2, so that p # ¢q. By Proposition 5.2.12, p and ¢ are a complementary
pair of type 2. By Proposition 5.2.7, ¢(p) and ¢(q) are a complementary pair of type 3
with form pr(u) = T[2a,2a + 2" + 1] and ¢ (p) and ¢pr(g) are a complementary pair
of type 1, so ¢ar(p) # ¢ar(q) and they both have form T[2a + 1,2a + 2"]. Therefore for
each Tla,a+2"] € A, T[2a +1,2a + 2"t € T ;. Hence

Coaal = A

Suppose that v’ € T/ ;;, so there are subpermutations p’ = 7p[2a + 1,2a + 2" + 1]
and ¢ = 77[2b+ 1,26+ 21 +1] with form o' = T[2a+1,2a+27+1] = T[2b+ 1, 2b+27+1],
so that p’ # ¢/. Hence there exist subpermutations p and ¢ so that ¢, (p) = p’ and
ér(q) = ¢'. As in case a.4 of Proposition 5.2.12, p and ¢ are a complementary pair of
type 2 with form T'[a,a + 2"]. Thus for each v’ € I ,,, there is some T[a,a + 2] € A so
that v’ = T[2a + 1,2a + 2"*']. Hence

Coaal < 1A[-

Therefore |I" ,,| = |Al.
Therefore
IT') = |10, | + [Dhgal = IT| +|A] =27 + 27 = 2F1,

Case A’: Any factor in A’ will either start in an even position or an odd position,

call these sets of factors A, and A/, and hence

Since the factors are of length 2! + 1 > 8, for any factors s € AL, and t € AL ,,, s # t,
thus

AL N A =0
There will be two subcases to establish the size of A’, first by showing the size of AL,
and then the size of A/ .

Subcase A’ : For u € A, u = T[a,a + 2"] , there are subpermutations p and ¢ of
mr of length 2" + 2, so that p # ¢q. By Proposition 5.2.12, p and ¢ are a complementary
pair of type 2. By Proposition 5.2.7, ¢(p) and ¢(q) are a complementary pair of type 3
with form pz(u) = T[2a,2a + 2" + 1] and ¢ (p) and ¢1(q) are a complementary pair
of type 2, so ¢1(p) # ¢1(q) and they both have form T'[2a,2a + 2"1]. Therefore for each
Tla,a+2"] € A, T[2a,2a + 2""'] € AL,. Hence

ALl = (Al
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Suppose that u' € Al | so there are subpermutations p’ = np[2a,2a + 2"+ + 1] and

ev’

q¢ = m[2b,2b + 271 + 1] with form « = T|[2a,2a + 2" = T[2b,2b + 2", so that
P’ # ¢'. Hence there exist subpermutations p and ¢ so that ¢ (p) = p’ and ¢r(q) = ¢
As in case a.3 of Proposition 5.2.12, p and ¢ are a complementary pair of type 2 with
form w = T'[a,a + 2"]. Thus for each v € Al , there is some T'[a,a + 2"] € A so that
u' = T[2a,2a + 2"*']. Hence

A% < [A]

Therefore |AL,| = |A].
Subcase A/ ,;: A symmetric argument to the argument used in Subcase Al will
show |Ab| = A,
Therefore
A = A | + [AGual = [A] + |A] = 27 + 27 = 27+

Now we know when there are complementary pairs of type 1, and how many pairs of

type 1 there are in each case.

5.2.5 Permutation Complexity of T'

We are now ready to give a recursive definition for the permutation complexity of 7. To
show this we consider when the maps ¢, ¢y, ¢r, and ¢, are bijective. After the recursive
definition is given, it will be shown that the recursive definition yields a formula for the

permutation complexity.

Proposition 5.2.15 Let n € N. When 2n+1=2" — 1, for some r > 3:
r(2n+1) = rp(n+ 1) + 7p(n +2) — 271
When 2n = 2", for some r > 3:
r(2n) = 2(rp(n + 1) — 2771,
For all other n > 3:

r(2n) = 2(7p(n + 1))
r(2n+1) =7r(n+ 1) + 7r(n + 2).

Proof For any n,
7r(n) = |Perm” (n)| = |[Perm/, (n)| + [Perm];,(n)] .
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This proof will be done in three cases. The first is when 2n + 1 = 2" — 1 for some r > 3,
the second is when 2n = 2" for some r > 3, and the third for all other n.

Case 2n + 1 =2" — 1: It can be readily verified by looking at the subpermutations
in Appendix A that the proposition is true for r = 3. Suppose r > 3 and the lemma is
true for . We show that the lemma is true for r + 1, so 2n + 1 = 21 — 1.

Since the map

¢ : Perm” (n + 1) ~— Perm’, (2n + 1)

is a bijection, |Perm[,(2n + 1)| = [Perm” (n + 1)| = 7r(n + 1). The map
¢pr : Perm” (n 4 2) +— Perm?,(2n + 1)

is a surjective map , but it is not injective because n+2 = 2"+ 1. So there are 2" factors
u of length 2" with a complementary pair of type 1 by Proposition 5.2.12 and Lemma
5.2.14. Thus there are exactly 2" complementary pairs of type 1 in Perm” (n+2). So 2'*!
subpermutations in Perm” (n+42) will be mapped to 2" subpermutations in Perm’,,(2n+1)
under ¢y;. The other Perm” (n +2) — 21 subpermutations in Perm” (n + 2) are pairwise

distinct and not complementary pairs, and thus will be pairwise distinct under ¢,,;. Hence
|Perm/y,(2n + 1)| = (|Perm” (n +2)| — 2"*') + 2" = 7p(n +2) — 2".

Therefore
r(2n+1) =7r(n+ 1)+ 7p(n +2) — 2",

Case 2n + 1 =2": It can be readily verified by looking at the subpermutations in
Appendix A that the proposition is true for » = 3. Suppose r > 3 and the lemma is true
for r, and we show that the lemma is true for r + 1, so 2n + 1 = 2+,

The map

¢r, : Perm” (n + 1) — Perm?, (2n)

is a surjective map, but it is not injective because n+1 = 2" + 1. So there are 2" factors
u of length 2" with a complementary pair of type 1 by Proposition 5.2.12 and Lemma
5.2.14. Thus there are exactly 2" complementary pairs of type 1 in PermT(n—|— 1). So 2!
subpermutations in Perm” (n + 1) will be mapped to 2" subpermutations in Perm?, (2n)
under ¢y;. The other |Perm” (n + 1)| —2"*! subpermutations in Perm” (n+1) are pairwise

distinct and not complementary pairs, and thus will be pairwise distinct under ¢;. Hence
|Perm/, (2n)| = (|Perm” (n + 1)| — 2"*') + 2" = |[Perm” (n + 1)| — 2"

The map
¢r : Perm” (n 4 1) — Perm’,,(2n)
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is a surjective map, but it is not injective because n + 1 = 2" + 1. By a similar argument
to above we can see

‘Permodd (2n) ‘ = }Perm n+1 ‘ —2".

Therefore

77(2n) = (|[Perm” (n + 1)| — 2) + (|Perm” (n + 1)| — 2") = 2(7p(n + 1) — 2).

Case n > 3: It can be readily verified by looking at the subpermutations in Ap-
pendix A that the proposition is true for n = 3. Suppose n > 3 and the lemma is true
for n, and we show that the lemma is true for n + 1. Since 2(n + 1) + 1,2(n + 1) ¢
{2" — 1,27|r > 2} for any r, we have n+2,n+ 3 ¢ {2" 4+ 1|r > 2}. So for 2(n + 1) and
2(n+ 1) + 1 each of the maps

¢ : Perm” (n + 2) — Perm? (2(n + 1) + 1)
¢r, : Perm” (n + 2) + Perm?, (2(n + 1))

¢r : Perm” (n 4 2) — Perm’,,(2(n + 1))
¢pr : Perm” (n 4 3) = Perm?,(2(n + 1) 4 1)

are all bijections. Therefore:
|Perm, (2(n + 1) + 1)| = |[Perm” (n + 2)| = 77(n + 2)
|Perm,(2(n 4 1))| = |Perm” (n + 2)| = 77(n + 2)

|Perm,,(2(n + 1))| = [Perm” (n + 2)| = 7(n + 2)

a(2(
|Perm,,(2(n + 1) 4 1)| = |Perm™ (n 4 3)| = 77(n + 3).

So:

r(2(n+1)) = !PermT 2(n+1))| + |Permond(2(n +1))| =2(rr(n +2))
r(2(n+1)+1) {Perm 2(n+1)+1) ‘ + ’Permodd(Q(n +1)+ 1)’
= TT(n -+ 2) —+ TT<7”L -+ 3)

Theorem 5.2.16 For any n > 6, where n = 2"+ p with 0 < p < 27,
rr(n) = 227 + p—2).

Proof The proof will be done by induction on n. The above formula can be readily
verified by looking at the subpermutations listed in Appendix A for n < 9. Suppose the

theorem is true for all values less than or equal to 2n.
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Case 2n+1=2"—1: Suppose2n+1=2"—1=2""142"1 1 thenn =2""1-1,
son+1=2"1=2""2492""2and n+2=2"!'+1. Thus:
r(n4+1) =222 4272 9y =2(2" 1 4272 —2) = 2(3(277%) — 2)
mr(n+2) =202 +1-2)=2(2" 1)

From Proposition 5.2.15:

r(2n+1) =232 —-2) +2(2" - 1) -2 ' =2(3(2"?) —2+2" —1-2""?)
=222 +2"=3)=2(2"+ (271 -1) - 2)

Case 2n+2=2(n+1)=2": Suppose 2n+2=2(n+1) =2" =271 4 2r— L

r(2(n+1)) =2(2(2" — 1) — 2" ) =22 — 271 —2) = 2(3(2" 1) — 2)

2
202(2 Y 42t —2) =2(2" + 271 — 2)

Case else: Suppose 2n+1 =2"+p, 2n+2 =2(n+1) =2"+p+1,and 0 < p < 2"—1.
Since 2n + 1 = 2" 4+ p is odd, p is odd. So n = 2"*1+’%1, n+1= 2T*1+’%1, and
n+2=2"14 1%3. Thus:

pt1l_
2

+3
rr(n +2) = 2(2" + pT —9).

r(n+1) =2(2" + 2)

From Proposition 5.2.15:

+1 +3
TT(2TL+1)22(2r+297—2)+2(2T+pT—2)
1 3 2 + 4
:2(2’"+2’”+’%+%—2—2):2(2’”*%%—4)

=22 +p—2)
r(2(n+1)) = 2(2(2" + ’%3 —2) =22 +p+3—14)

=22+ (p+1)—2).

Therefore, for all n > 6, where n = 2" +p with 0 < p < 2", 77(n) = 22" +p—2) N
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5.3 Permutation Complexity and the Doubling Map

Recall the doubling map, d, on A defined by d : a — aa for each a € A. Let A= {0, 1},
and w € AY be an aperiodic uniformly recurrent word. In this section we will investigate
permutation complexity of d(w). We will give an upper bound for the permutation
complexity of d(w) by looking at how the doubling map alters the subpermutations of
7. After some general results are established we will give a method to calculate the
permutation complexity of d(s), where s is a Sturmian word, and give the permutation

complexity function of d(T"), where T is the Thue-Morse word.

5.3.1 Uniformly Recurrent Words

Let w be an aperiodic uniformly recurrent word over {0,1}, and 7, be the infinite per-
mutation associated with w using the natural order on the alphabet. We would like to
describe the infinite permutation associated with d(w), the image of w under the dou-
bling map. If u = wla,a +n — 1] is a factor of w of length n, it is helpful to note
d(u) = d(w)[2a,2a 4+ 2n — 1] will be a factor of d(w) of length 2n.

Since w is a uniformly recurrent word it can not have arbitrarily long strings of

contiguous 0 or 1. Thus there are kg, k1 € N so that

10%01
01%10

are factors of w, but 0%*! and 1¥1*! are not. We then define the following class of words:

Co = 0%

Cl - Okoill

Cy = 0021
Cro—1 = 01

Ci, = 10

k1—1
Cko+k1*2 =170

k
Chotky—1 = 17"

For each i € N, w[i] = wjw;41 -+ can have exactly one the above classes of words as a
prefix. It should be clear Cy < Cy < -+ < Cyyyk,-1, and so d(C;) < d(C}) for i < j since

the doubling map d is order preserving, as shown in Lemma 5.3.1. The next lemma will
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not only show that the doubling map is an order preserving map, but also the order of
the image of w; under the doubling map.

Lemma 5.3.1 Let w be as above. Suppose wla] and w[b] are two shifts of w for some
a # b so that wla] < w[b]. Moreover, suppose C; is a prefix of wla] and C; is a prefiz of
w[b] where i < j. Then d(wla]) < d(w[b]), and

(0) Ifw,=wy =0 and i < j, then d(w)[2a] < d(w)[2a + 1] < d(w)[20] < d(w)[2b + 1].
(b) If wy =wy, =0 and i = j, then d(w)[2a] < d(w)[2b] < d(w)[2a + 1] < d(w)[2b + 1].
(¢) If wa =0 and wy, = 1, then d(w)[2a] < d(w)[2a + 1] < d(w)[2b+ 1] < d(w)[2b)].

(d) If w, = wy, = land i < j, then d(w)[2a + 1] < d(w)[2a] < d(w)[2b+ 1] < d(w)[2b)].
(e) If wy = wy, = land i = j, then d(w)[2a + 1] < d(w)[2b + 1] < d(w)[2a] < d(w)[20].
Proof Since wla] < w[b], there is some (possibly empty) factor u of w so that
wla] =u0 - --
wlb] = ul - -
and thus
d(wla]) = d(u)00 - --
d(w[b]) = d(u)11---

so d(wla]) < d(w[b]) and d is an order preserving map.
Each of the cases will be looked at independently.

(a) Suppose w, = wp = 0 and ¢ < j. Since both wla] and wb] start with 0, w[a] has
0k='1 as a prefix and w[b] has 0771 as a prefix. Thus d(w)[2a] has 02*0=)1 as a prefix
and d(w)[2b] has 02(0=9)1 as a prefix, and the result follows from

02ko=1)1 ~ 2(ko—i)=11 ~ 2(ko—J)1 ~ (2(ko—d)—17

(b) Suppose w, = w, = 0 and i = j. Since both wla] and w|b] start with 0, w[a] and
w[b] have 0¥0~1 as a prefix. Thus d(w)[2a] and d(w)[2b] have 02*0=91 as a prefix. Since
wla] < w[b] is given and d is an order preserving map

d(w)[2a] < d(w)[20]
d(w)[2a + 1] < d(w)[2b+ 1]
02ko=)1 < 2(ko—i)=17
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Thus d(w)[2a] < d(w)[2b] < d(w)[2a + 1] < d(w)[20 + 1].

(c) Suppose w, = 0 and w, = 1, so i < j. Since w(a| starts with 0 and w[b] starts
with 1, w[a] has 0%~1 as a prefix and w[b] has 197%F1(0 as a prefix. Thus d(w)[2a] has
02*k0=91 as a prefix and d(w)[2b] has 120=*0)+2() as a prefix, and the result follows from

02001 < p2homD=1] < 120 Rl < 120 Ro) 2,

(d) Suppose w, = wp, = 1 and ¢ < j. Since both wla] and w(b] start with 1, wla] has
17=k+1() as a prefix and w[b] has 177%0+10 as a prefix. Thus d(w)[2a] has 120750)+2() as a
prefix and d(w)[2b] has 120750)+2() as a prefix, and the result follows from

12(—ko)+1( ~ 12(i=ko)+2() ~ 120 —ko)+1(y ~ 12(7—ko)+2()

(e) Suppose w, = w, = 1 and ¢ = j. Since both wla] and w[b] start with 1, wla] and
w[b] have 177%+10 as a prefix. Thus d(w)[2a] and d(w)[2b] have 120=50)+20 as a prefix.

Since wla] < w[b] is given and d is an order preserving map

d(w)[24] < d(w)[20]
dw)[2a + 1] < d(w)[2b + 1]
12(i=ko)+1()  12(i=ko)+2().

Thus d(w)[2a + 1] < d(w)[2b+ 1] < d(w)[2a] < d(w)[20]. 0

Because w is uniformly recurrent, for k = sup{ko, k1}, there is an N}, so any factor u
of w of length n > N; will contain all factors of w of length k as a subword, and thus «
will have C; as a subword for each j.

One note about the factors of d(w). For n > N}, and two factors u = d(w)[2x, 22+ 2n]
and v = d(w)[2y + 1,2y 4+ 2n + 1] of d(w), then u # v. This is because a prefix of u will
begin with an even number of one letter (either 0?1 or 1?0 for some m), and a prefix
of v will begin with an odd number of one letter (either 021 or 12"*10 for some m).

Let u be a factor of w of length n > Njy. There is an a so that u = w[a,a +n — 1].
For each 0 < ¢ < n — 1 there is one j so that w[a + 7] has C; as a prefix. In the factor
wla,a+n+k —2] of length n+ k — 1, we will know explicitly which C; is a prefix of the
shift w[a + 4] for each 0 < i <n — 1. Let p = m,]a,a + n + k — 1] be a subpermutation
of m, of length n + k. The factor wla,a +n + k — 2] of length n+ k — 1 is the form of p,

and has v as a prefix.
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For each j € {0,1,... ko + k; — 1} define
v =1{i|0<i<n-—1and C}is a prefix of wja+1] }.

So |yl + |l + -+ [Veotk—1| =n and ;N y; = 0 for @ # j. For each j € {0,1,... ko +
ki1 — 1} define

j
Sj = Z il
1=0

and say S_; = 0. Since |u| > N, each ~; is not empty, so |y;| > 1 for each j. We can see
d(u) = d(w)[2a,2a+ 2n — 1], and let p’ be the subpermutation p’ = my[2a, 2a + 2n — 1].
Using Lemma 5.3.1 and the size of each of the 7; sets we can determine the values of p’

based on the values of L*(p), the k-left restriction of p.

Proposition 5.3.2 Let w, u, p, and p’ be as above. For each 0 <i <n —1, there is a j

so wla+ 1] has C; as a prefiz.
(a) If pi < pia then phy = L¥(p); + Sj—1 and py;y = LF(p)i + S,
(b) If pi > piy1 then py; = L*(p)i + Sj and ph;y = L*(p)i + Sj

Proof Let 0 < ¢ < n — 1 and suppose that C; is a prefix of wla + i| for some 0 < j <
ko + ky — 1.

(a) Suppose p; < pir1, and S0 we; = u; = 0.

For p),, there are L*(p); — 1 many h € {0,1,...,n — 1} so that p; > p,, and thus
L*(p); — 1 many h so that p), > ph,. Likewise there are n — L*(p); many h so that
Ph; < Phy,. By Lemma 5.3.1if m < j and h € 7, then ph;, > ph, ;, and if m > j and
h € 7, then py; < py,. ;. Thus there are S;_; many h so that ph; > pf, ., and likewise
there are n—S;_; many h so that p); < ph,. ;. Therefore there are exactly L*(p);—1+5;_1
many h so that pi, > pj, so

Py =LF(p)i =1+ Sjo1 + 1= L*¥(p); + Sj-1.

For ph;.,, there are L*(p); — 1 many h so that p; > pj, and thus L*(p); — 1 many
h so that ph;, > ph, and ph;,, > ph,,,. Likewise there are n — L¥(p); many h so that
Phit1 < Phpyr- By Lemma 5.3.1 if m < j and h € v, then ph; ., > p5,, and if m > j and
h € 7y, then ph; ., < ph,. Thus there are S; many h so that p), | > pl,, and likewise
there are n — S; many h so that p;,; < pj,. Therefore there are exactly L*(p); — 1+ S;
many h so that pj, > pj, so

Phivi = LF(p)i — 1+ S; +1=LF(p); + 5.
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(b) Suppose p; > p;y1, and s0 wey; = u; = 1.

For p),, there are L*(p); — 1 many h so that p; > py,, and thus L¥(p); — 1 many h so
that p), > ph,. Likewise there are n — L*(p); many h so that p), < p),. By Lemma 5.3.1
if m < j and h € 7, then py; > py, .. and if m > j and h € 7, then pjy; < p5, ;. Thus
there are S; many h so that py, > p, ,, and likewise there are n — S; many h so that

ph; < Dhpiq- Therefore there are exactly L*(p); — 1 + S; many h so that ph; > p}, so
poi = LA(p)i =1+ 85+ 1= L*(p); + 5;.

For ph;.,, there are L*(p); — 1 many h so that p; > pj, and thus L*(p); — 1 many
h so that ph;, > ph, and ph,, > ph,.,. Likewise there are n — L¥(p); many h so that
Phipr < DPhpyq- By Lemma 53.1if m < j and h € v, then ph, | > ply,, and if m > j
and h € 7, then p)_, < py,. Thus there are S;_; many h so that py , > pj,, and
likewise there are n — S;_; many h so that pjy; ., < pj,. Therefore there are exactly

L*(p); — 1+ S;_1 many h so that ph, > p}, so

p/21'+1 = Lk(mi -1+ ijl +1= Lk(p)z‘ + ijl-

The following corollaries show some nice properties that follow from Proposition 5.3.2.
The first corollary (5.3.3) gives an example of when distinct subpermutations of m,, will
lead to the same subpermutation of m4,). The next corollary (5.3.4) shows when two

subpermutations of m,, will definitely lead to distinct subpermutations of ).

Corollary 5.3.3 Let w be as defined above. If m,[a,a+n+k—1] and m,[b,b+n+k—1],
a # b, are subpermutations of m, where m,[a,a +n — 1] = m,[b,b+ n — 1| and for each
0 <i<n—1, there is some j so that both wla+1i| and w[b+1] have C; as a prefiz. Then
Ta(w)[2a, 2a + 2n — 1] = 741,)[20, 20 4 2n — 1].

Proof Let p =mn,[a,a+n+k—1] and ¢ = 7 [b,b+n+k—1], a # b, with p and ¢ as in
the hypothesis. For each 0 <i <n—1, L*(p); = L*(q); and w[a + 1] and w[b +i] have C;

as a prefix for some j, so ph; = ¢5; and ph; | = ¢y, by Proposition 5.3.2, and p' =¢'.

Corollary 5.3.4 Let w be as defined above. If p = 7w [a,a+n+k—1] and q = 7, [a,a+

n + k — 1] are subpermutations of m, where one of the following conditions is true
(a) wla,a+n—1] #w[b,b+mn—1]
(b) L*(p) # L*(q)
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then p' # ¢'.

Proof (a) Since wla,a+n — 1] # w[b,b+ n — 1], then there is an 0 <i < n — 1 so that,
without loss of generality, w,; = 0 and wpy; = 1. Thus d(w)[2a + 27, 2a + 2i + 1] = 00
and d(w)[20 + 27,20 + 21 + 1] = 11 s0 py; < pyq and g5 > @5, and p' # ¢

(b) Since L*(p) # Lk(q), then there are 0 < 4,5 < n — 1, i # j, so that, without
loss of generality, L¥(p); < L*(p); and L*(q); > L*(q);, so wla + i] < w[a + j] and
wl[b+i] > w[b+ j]. Thus d(w)[2a + 2i] < d(w)[2a + 2j] and d(w)[2b + 2i] > d(w)[2b + 2j]
50 Py; < Py; and gy; > ¢o;, and p' # ¢ u

Fix a subpermutation p = m,[a,a +n + k — 1], and let p’ = 7mq,)[2a,2a + 2n — 1.
The terms of p’ can be defined using the method given in Proposition 5.3.2. Let ¢ =
T,[b,b+n+k—1], b # a, be a subpermutation of 7, and let ¢’ = my,)[20, 20+ 2n — 1] as
in Proposition 5.3.2. The following lemma shows that if p = ¢ we know p’ = ¢/, but the
converse of this is not necessarily true. The objective here is using the idea of p’ to define
a map from the set of subpermutations of 7, to the set of subpermutations of 74, and

this map will be well-defined by Proposition 5.3.2.
Lemma 5.3.5 If p =q, then p' = ¢ .

Proof Suppose that p = ¢. So p; = ¢; and thus LF(p); = L¥(q); for each 0 <i <n — 1.
Since p = ¢, p and g have the same form, so wla,a +n+k — 1] = w[b,b+n+ k — 1] and
for each 0 <i <n —1if wja+i] has C; as a prefix, for some j, then w[b+ ] has C; as a
prefix as well. Then by Proposition 5.3.2 it should be clear that for each 0 <7 <2n —1
we have p; = ¢, and thus p’ = ¢'. |

Corollary 5.3.6 Let w be as defined above. If w,[a,a+n+k—1] =m,[b,b+n+k—1]
for some a # b, then Ty.)[2a,2a + 2n — 1] = T4, [2b,2b + 2n — 1.

Thus there is a well-defined function from the set of subpermutations of 7, to the
set of subpermutations of mg,). Let p = 7w [a,a +n + k — 1], and define 6(p) = p’ =

Taw)[2a, 2a + 2n — 1] using the formula in Proposition 5.3.2. Thus we have the map

§ : Perm®(n + k) — Perm®“)(2n)

5.3.2 Creating 6(p) From a Table

As in Section 5.2.2, given a subpermutation p we can create §(p) by using a table. The
table created in Section 5.2.2 used properties of the Thue-Morse morphism, namely the

behavior described in Lemma 5.2.2. In the table representing the behavior of 4, the
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properties of the doubling map d will be considered and the behavior described in Lemma
5.3.1 and Proposition 5.3.2 will be used.

We will again construct the table by using an example. In this example we will use
a subpermutation p of w7 and find 0(p). When we calculate §(p) we are interested in the
C; classes. In the case of the Thue-Morse word there will be 4 of these classes, namely
Co =00, C7 =01, Cy =10, C5 = 11, with k£ = 2.

Let v = T[9,15] = 0010110 which is a factor of length 7, we will consider the
subpermutation

p=mr[9,17=(248597361)

of length 9. The form of p is T'[9,16] = 00101101, and L?*(p) = 7p[9,17] = (1364 752).
From the form of p we see v = {0}, 1 = {1,3,6}, 72 = {2,5}, and 3 = {4}. Thus
So=1,5 =4,5 =6,and S3 =7. Let p’ = §(p) = m[18, 31], so by Proposition 5.2.3

pP=(1247121058 14 13 11 9 3 6).

The table we will create will have 3 columns. In this example there will be an
additional column to the left of the table listing the 4 C; classes. In the first column of
the table we list all the values in the subpermutation L?(p), because k = 2, from least to
greatest.

We will add a double horizontal line just before the least value which corresponds to
a 1 in u, and a single horizontal line between the values which correspond to different
C; classes. There will be Sy many shifts within « which have Cj as a prefix so the first
horizontal line will be placed after the number Sy. Then there will be S; — Sy many
shifts within « which have C] as a prefix, so the next horizontal line will be placed after
Si. Continue in this fashion and place a horizontal line after S; for each j. The double
horizontal line will be placed after Sy,_1, because if L?(p); < Si,—1 then w; = 0, and if
L*(p); > Sk,—1 then u; = 1. In this example, we place a horizontal line after Sy = 1 and
Sy = 6, and the double horizontal line after S; = 4, see Figure 1.

We will fill in the table by the C; classes. We start with a 1 in the top row of the
second column, and then increasing by 1 for the following columns increase by 1 until we
reach the first horizontal line. The next number will go in the top of the third column,
and increase by 1 for the following rows until we reach the first horizontal line. In this

example there is only one element in v, see Figure 2.
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00 1 00 1|1 2
2| 2

01 3 01 3
4 4

0 ° 7 0 °
6 6

1mn 7| 17

Fig. 1 Fig. 2

The next number will go in the top of the second column for the (' class, and increase
by 1 for the following rows until we reach the next horizontal line. The next number will
go in the top of the third column for the C) class and increase by 1 for the following
rows until we reach the next horizontal line. We then continue in this fashion for the
remaining C; classes which begin with a 0, or for the classes above the double horizontal
line. In this example there are 2 classes (namely Cy and C) above the double horizontal
line, see Figure 3.

The numbers below the double line correspond to classes which begin with a 1, so the
values in the third row will be less than the values in the second row. For these classes
we start in the top row of the third column and then move to the second row, which is
a slight adjustment from the above steps. Continuing in this fashion we get the table in

Figure 4.

00 11 2 00 11 2
213 6 213 6
01 3|4 7 01 3|4 7
415 8 415 8
10 5 — 10 5111 9
6 6112 10
11 7 11 7114 13
Fig. 3 Fig. 4

Now that we have the completed table in Figure 4 we can see how ¢ will alter the
permutation p. We have L?*(p); = 3, so py = 4 and pj = 7. From the table in Figure 4,

when we find the row with a 3 in the first column we see the next elements in the row are
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4 and 7. This is exactly the behavior described in Lemma 5.3.1 and Proposition 5.3.2.
Thus to create p’ from the table we find the row which has the value L?(p); in the first
column, and then p); is the value in the second column and pj,  ; is the value in the third

column. So

L*(po=1 = py=1 p|=2
L*(p)y=3 = ph=4 Py =17
L*(p)e=6 = p, =12 pL =10

L*(p)e=2 = ply=3 pl3=6

which is readily verified to be the same as p’ listed above.

5.3.3 Injective Restrictions

Not all subpermutations of 74, will be the image under § of another subpermutation.
Let n > 2N, and a be natural numbers. Then n and a can be either even or odd, and
for the subpermutation 7y [a,a + n — 1], there exist natural numbers b and m so that

one of 4 cases hold:
1. Tywla, a4+ n] = mqe)[2b, 2b 4 2m], even starting position with odd length.
2. Tawla, a4+ n] = m4.)[2b, 20 + 2m — 1], even starting position with even length.
3. Tawla, a+n] = Tqw)[20 + 1,2b 4 2m)|, odd starting position with even length.
4. Tawyla, a +n] = w20 + 1,2b + 2m — 1], odd starting position with odd length.

Consider two subpermutations 7g,)[2¢,2c + n] and 74,)[2d + 1,2d + n + 1], with
n > 2Nj. The subpermutation 7. [2¢, 2c 4+ n| will have form d(w)[2¢,2c +n — 1], and
Tawy[2d 4+ 1,2d + n + 1] will have form d(w)[2d + 1,2d + n]. Since the length of these
factors is at least 2Ny, these factors each contain both 0 and 1, so d(w)[2¢,2¢ +n — 1] #
d(w)[2d + 1,2d +n], and thus 74, [2¢, 2¢ +n] # Tqe)[2d + 1,2d 4 n + 1] because they do
not have the same form. Thus we can break up the set Perm®“)(n) into two classes of
subpermutations, namely the subpermutations that start at an even position or an odd
position. So say that Perm®“)(n) is the set of subpermutations p of length n so that
P = Tq(w)|2b, 2b + n — 1] for some b, and that Perng;)(n) is the set of subpermutations p
of length n so that p = my,[2b+ 1,2b + n] for some b. Thus

Perm?®) (n) = Perm?*) (n) U Permi%) (n),
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where
Perm®®) (n) N Perm™) (n) = 0.

Thus for n > N, Perm®“)(2n) is the set of all subpermutations of length 2n starting
at an even position. So for my,[2a,2a + 2n — 1], we have the subpermutation p =
mula,a+n+k—1], and 0(p) = p' = 74y [2a, 2a + 2n — 1]. Thus the map

§ : Perm®(n + k) — Perm?*)(2n)

is a surjective map.

For p = m,la,a +n + k — 1], we can then define three additional maps by looking at
the left, right, and middle restrictions of d(p) = p’. These maps are

61 : Perm®(n + k) — Perm®®) (2n — 1)
Or : Perm®”(n + k) — Permgg;)(Zn —1)
oy Perm®(n + k) — Permgg;)(Qn —2)

and are defined by

It can be readily verified that these three maps are surjective. To see an example of
this, consider the map d., and let 7g(,)[20,2b 4+ 2n — 2] be a subpermutation of 7y, in
Perm®“)(2n — 1). Then for the subpermutation p = m,[b,b+n+k—1], 6,(p) = L(p)) =
Ta(w)[2b, 2b 4 2n — 2] so 0y, is surjective. A similar argument will show that dp and d,; are

also surjective.
Lemma 5.3.7 Forn > Nj:

Taw)(2n — 1) < 2(1,(n + k))
Taw)(2n) < 1p(n+ k) + 7,(n+ Kk +1)

Proof Let n > N,. We have:

’Perm )(2n — 1)| < |Perm®(n + k)|

) (
’Permddd (2n —1)| < |Perm”(n + k)|
‘Permd(w (2n)| < |Perm”(n + k)|
d(w ) (

‘Permodd (2n)| < |Perm“(n + k + 1)|
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since the maps ¢, dr,, O, and 9, are all surjective. Thus we have the following inequalities:

Taw)(2n — 1) = ‘Permd(‘“)(Zn - 1)‘ = ‘Permgg‘“)(Zn — 1)‘ + ‘Permi&ﬁ)@n - 1)‘

< |Perm®(n + k)| + |Perm®(n + k)| = 2(7,(n + k))

ev

Ta(w)(2n) = ‘Permd(w)(Qn)’ = ‘Permd(“)(Qn)‘ + ‘Permggg)@n)‘

< |Perm®“(n + k)| + |[Perm®“(n + k + 1)| = 7,(n + k) + 7o(n + k + 1)

The maps 6, dr, 0g, and &y, can be, but are not necessarily, injective maps. To see
this, consider the following example. For this example we will use the Thue-Morse word
T, defined in Section 5.2, and subpermutations of 77, the infinite permutation associated
with 7. There will be 4 classes of C; words for the Thue-Morse word (namely Cj = 00,
Cy; =01, Cy = 10, and C3 = 11), and any factor of length n > 9 will contain each of these
4 classes. The following example will use subpermutations of length 9, with n = 7 and
k = 2, to keep the example subpermutations short. Examples like this (as in Corollary

5.3.3) can be found for subpermutations of w7 of length 2" + 1 for any r > 3.

p=mr[0,8 =(497261385)

g =mr[12,20] = (59726 1384).
So p # q and both of these subpermutations have form T'[0,7] = T[12,19] = 01101001.
Let p' = 6(p) = mam)[0,13] and ¢ = §(q) = macr)[24,37]. Then by Proposition 5.3.2 we

see:
p'=(5814131210361191247) =4

So d(p) = 0(q) which leads to d.(p) = 01(q), dr(p) = dr(q), and dp(p) = dar(q). Thus
these 4 maps are not injective in general and the values in Lemma 5.3.7 are only an upper
bound. If § is an injective map it implies 0z and &;, are both injective, as shown by the

following lemma.

Lemma 5.3.8 For any aperiodic uniformly recurrent word w, let p, q, p', and ¢ be as

above. Then
(a) p' = ¢ if and only if R(p') = R(¢').

(b) ' =q if and only if L(p') = L(q').
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Proof Let p = myfa,a+n+k—1], ¢ = m,[b,b+n+k—1], p = d(p), and ¢ = §(q).
For both of these cases it should be clear that if p’ = ¢’ then each of R(p') = R(¢') and
L(p') = L(¢'). Also recall that n > Nj.

Also note since u = wla,a+n—1] and v = w[b,b+n—1], d(u) = d(w)[2a,2a+2n — 1]
and d(v) = d(w)[2b,2b + 2n — 1] so for each 0 <i < n — 1 we have

d(u)e; = d(u)eiyr = u; and d(v)y; = d(v)ai1 = v;
We will use the following notation
Uj={i]0<i<n-—1andwla+1i] has C; as a prefix. }

Vi={i1]0<i<n-—1and w[b+1i] has C; as a prefix. }

and due to the length of u and v we know |U;| > 1 and |V;| > 1 for each j.

(a) Suppose p’ # ¢, and assume R(p') = R(q¢'). We will need the following claim
about R(p') and R(q") before we proceed.

Claim 5.3.9 If R(p') = R(¢') then d(u) = d(v).

Proof Suppose R(p') = R(q'). For each 0 < i < 2n —3, R(p'); < R(p')i+1 if and only
if R(¢"); < R(q')ix1 and thus d(u);1 = d(v);y1. Since d(u)g = d(u); and d(v)y = d(v);,
we see d(u)g = d(u); = d(v); = d(v)g. In a similar fashion we see d(u)s, 1 = d(u)2,_2 =
d(v)ap—o = d(v)2n—1. Thus d(u) = d(v) and u = v. |

For each pair of real numbers i # j where 0 <i4,7 < 2n — 2,
R(p)i < R(p); <= R(q): < R(¢);

and thus
/ / / /
Pit1 < Pjy1 <~ Qg1 < Gjq1-

Since p’ # ¢ there must be some 1 < i < 2n — 1 so, without loss of generality,
po < p; and g > g;.

There is an « € {0,1} so d(u); = d(v); = «, and so d(u)y = d(v)y = a. If d(u); =
d(v); # a we have pj, < pj if and only if ¢ < ¢}, which would be a contradiction. So
d(u); = d(v); = a.

Case a.1: Suppose 1 < i < 2n — 2 and recall that py < p} and ¢ > ¢.. If d(u);11 =

e

d(v);+1 # o we have d(u)[0, 1] = ac and d(u)[i, i+1] = af, so p; < p}if and only if ¢ < ¢,
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which is a contradiction, so d(u);+1 = d(v);11 = a. Thus d(u)[i,i+1] = d(v)[i,i+1] = aa
and
Po <p; = Py <P = RPo < R(P);

G > ¢ = q1 > gy = R(d)o > R(¢)

by Claim 5.1.1 which contradicts the assumption. Therefore R(p') # R(q').

Case a.2: Suppose i = 2n—1 is the only 7 so that p, < p} and ¢}, > ¢}. So as above we
have d(u)[0, 1] = d(v)[0, 1] = aq, so d(u)ap—1 = d(v)2p—1 = « and d(u)[2n — 2,2n — 1] =
d(v)[2n —2,2n — 1] = aa. Thus pj < ph,,_; and ¢} > ¢5,_, imply

Poy—1 — 1= R(p')an-2 = R(q)2n—2 = Gop_1-
For each 1 < j < 2n — 2 we know the following
Po <P == 4y <4
R(p)j1 = p; < R({)j-1 = q;-,

and thus p} = ¢ for each 1 < j < 2n — 2, since R(p'); = R(q'); and py > p); implies
R(p')j—1 = pj. So only pj # ¢i and ph,_y # ¢b,—y- Since ph,_y = g3, + 1, it must be

Po = Phy1 — Land gy = g5, ; + 1.

Let 1 < x < 2n so that p, = ¢, ; = = and ¢, = p),,_, =  + 1. Then either p; < pj, 5
or p6 > p,2n72'

Case a.2.i: Suppose p, < ph,_, then p| < ph, ; and py < p,—;. Likewise ¢{ < ¢,,_,
¢y < G4, 1, and gy < ¢p—1. Thus

/ / / /
71 < Qop—1 < qp < Qop_2

and by Lemma 5.3.1 we know o = 1 and there is a j so that both w[b] and w[b+n — 1]
have C; as a prefix. Since both w[b] and w[b + n — 1] have C; as a prefix and ¢y < g,,_1,
there is some m > 1 so that

Gw=z+1 d=r-—m G ,=r+1l+m g, =1

For this to occur ¢p must be less than all other shifts of v which have C; as a prefix, and
¢n—1 must be greater than all other shifts of v which have C; as a prefix.
Thus C} is a prefix of wlal, since u = v. Since wla + n — 1] also begins with a 1 and

Do < Pn-1, the order of p, P!, ph,,_o, and pj, , must be as follows by Lemma 5.3.1
/ / / /
P1 <Py < Pop—1 < Pop—2-
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So we have wla] has C; as a prefix and for ¢ > j wja +n — 1] has C; as a prefix. If
i > j + 1, there will be some [ so that wl[a + {] and w[b + [] each have C;.; as a prefix
which is totally contained in u and v. Thus we would have p; < p,—1 and ¢ > ¢,—1, S0
R(p)a—1 < R(p')on—3 and R(q" )21 > R(q)2,—3 which would be a contradiction, therefore
i=j+1.

Since p; = ¢ for each 1 <7 < 2n — 2, we know
pp=z pi=x—m py ,=r+1+m  py_=z+1

For this to occur py must be greater than all other shifts of u which have C; as a prefix,
and p,_; must be less than all other shifts of u which have Cj; as a prefix. Based on
the construction of p’ and ¢ from Proposition 5.3.2, there will be m shifts of u that
have C; as a prefix, and m shifts of u which have C; as a prefix. Since the word Cj4,
occurs in the word wu, there is at least one [ so that wla + [] has C;; as a prefix which
is totally contained in w. Thus both wla + ] and w[a + n — 1] have Cj,; as a prefix,
wla+n —1] <wla+1], s0 Py, 4, =« + 2 and m must be greater than 1.

Since m > 1, there is some ¢ so that ¢,_1 = ¢; + 1 and thus w[b+ 4] has C; as a prefix
and ¢y, = * — 1. In a similar fashion, there is some i so that py = p; + 1 and thus
wla + 1] has C; as a prefix and Pl =z —1. Thus ¢y =z —1=pl;, and 50 ph; 1 # G5, 14

as well as pl. # ¢} which gives a contradiction.

Case a.2.ii: Suppose p|, > p),_, then pi > p, , and py > p,—1. Likewise ¢{ > ¢),_o,
4y > G4, 1, and qo > ¢n—1. Thus

/ / / /
Dop—2 <Py < Pop—1 < P1-

and by Lemma 5.3.1 we know a = 0 and there is a j so that both w[a] and w[a +n — 1]
have C; as a prefix. Since both w[a] and w]a + n — 1] have C; as a prefix and py > p,_1,

there is some m > 1 so that
pp=z pi=x+l+m ph ,=x-—m py_=z+1

For this to occur py must be greater than all other shifts of u which have C; as a prefix,

and p,_; must be less than all other shifts of « which have C; as a prefix.

Thus C} is a prefix of w(b], since v = v. Since w[b + n — 1] also begins with a 0 and

do > qn-1, the order of ¢, ¢}, ¢5,,_5, and ¢5,,_, must be as follows by Lemma 5.3.1

/ / ! /
Gon—2 < 42,1 < qp < qy-

So we have w[b] has C; as a prefix and for ¢ < j w[b+ n — 1] has C; as a prefix. If
i < j — 1, there will be some [ so that w[a 4[] and w[b + ] each have C;_; as a prefix
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which is totally contained in u and v. Thus we would have p; < p,_1 and ¢ > ¢,_1, so
R(p)a—1 < R(p')2n—3 and R(q¢' )21 > R(q')2n_3 which would be a contradiction, therefore
1=7— 1.

Since p, = ¢. for each 1 < i < 2n — 2, we know
w=x+1 qg=z+1+m ¢, ,=x—m ¢, ;=1

For this to occur gp must be less than all other shifts of v which have C; as a prefix,
and g,—; must be greater than all other shifts of v which have C;_; as a prefix. Based
on the construction of p’ and ¢’ from Proposition 5.3.2, there will be m shifts of v that
have C; as a prefix, and m shifts of v which have C;_; as a prefix. Since the word C}_;
occurs in the word v, there is at least one [ so that w[b+ [] has C;_; as a prefix which
is totally contained in v. Thus both w[b + [] and w[b + n — 1] have C;_; as a prefix,
wlb+n—1] > w[b+1]. so gy, < — 1 and m must be greater than 1.

Since m > 1, there is some ¢ so that p; = p,_; + 1 and thus w(a + ] has C; as a
prefix and p);,; = x+ 2. In a similar fashion, there is some i so that ¢: = qo+ 1 and thus
wlb 4+ 1] has C; as a prefix and ¢y =+ 2. Thus ph ; =2+ 2 = ¢, and s0 py; # ¢y; as
well as p’%r1 + q;%H which gives a contradiction.

In either case (a.2.i) or (a.2.i7) we find a contradiction, so R(p’) # R(q'). Therefore
p = ¢ if and only if R(p') = R(¢).

(b) Suppose p’ # ¢, and assume L(p’) = L(q’). For each pair of real numbers i # j
where 0 < 4,5 < 2n — 2,

L(p)i < L(Y); <= L(d)i < L(q);

and thus
Py <P = ¢ <4qj

In particular for each pair of real numbers ¢ # j where 0 <i,7 <n — 1,
Phi < Plzj = ¢y < qgj'
So we see
P < Py = pi <p;j = L*(p);i < L*(p);
G < 4y = 4 < = L"q)i < L*(q);
and thus LF(p) = L*(q).
We will need the following claim about L(p') and L(q') before we proceed.

Claim 5.3.10 If L(p') = L(¢') then d(u) = d(v).
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Proof Suppose L(p') = L(q¢') and assume d(u) # d(v). Since LF(p) = L*(q) we know
wla,a +n — 2] = wb,b+n — 2] and so d(w)[2a,2a + 2n — 3] = d(w)[2b,2b + 2n — 3.
Thus d(w)[2a 4 2n —2,2a+ 2n — 1] # d(w)[2b+ 2n — 2,20+ 2n — 1], and S0 U1 # Vy_1-
Recall that |u|, is the number of occurrences of the letter 0 in the word w. Without loss

of generality, say u,,—; = 0 and v,_; = 1, and so |u|, = |v|, + 1. We also have

/ / ! !
Pop—2 < Pon—1 and ¢y, 9 > G, 4

and so
Pon—a = L(p)an—2 = L(q)on—2 = g5 5 — L.

For each 0 < ¢ < n —2, if u; = v; = 0 then ¢,_1 > ¢, and so p,_1 > p; because
Lk(p) = L*(q). Likewise if u; = v; = 1 then p, ; < p;, and so ¢, ; < ¢ because
L¥(p) = L*(q). Moreover, wla + n — 1] has 01 as a prefix and w[b + n — 1] has 10 as a
prefix. To see this let 0 < i < n — 3 (we know ¢ < n — 2 because u,,_; = 0) so that
uli, i+ 1] = v[i,i + 1] = 01. Since u; = v; = 0, and p,_1 > p;, wla +n — 1] can not have
00 as a prefix. A similar argument will show w[b+ n — 1] can not have 11 as a prefix.

Thus there are exactly |v|, many j so that g,—1 > ¢;, thus L*(p),—1 = L*(q)n—1 =
lv], + 1 = |u|,. By Proposition 5.3.2 we see

Py = L (D)n—1 + [uly = 2[uly = 2[v], +2
Gon—1 = LE(@)n-1 + [vly = 2]v]y + 1
Fix an 0 < i < n — 3 so that u[i,i+ 1] = v[i,i+1] = 01 and an 0 < i < n — 3 so that
ult, 1+ 1] = v[i,1 + 1] = 10. Since w[a + i] and wla + n — 1] both have 01 as a prefix and
Pn_1 > Pi, we have
Pan—a < Paiy < 2[vf +1

by Lemma 5.3.1. Since w[b + 4] and w[b + n — 1] both have 10 as a prefix and ¢,_; < g,
we have

qgn—2 > Q;g_l 2 2 ’/U‘O + 2

by Lemma 5.3.1. Therefore
Pop_s <2[vfg+1=2[v]j+2-1<qs,_,—1
and we have a contradiction to p), 5 = ¢}, o — 1. Therefore d(u) = d(v) and u=v. ®
Since p’ # ¢’ there must be some 0 < ¢ < 2n — 2 so, without loss of generality,
Pon—1 < pi and g,y > g;.

There is an o € {0,1} so d(u)ep—o = d(v)on—2 = @, so d(u)[2n — 2,2n — 1] = d(v)[2n —
2,2n — 1] = aa. If d(u); = d(v); # o we have p, , < p. if and only if ¢}, ; < ¢}, which
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would be a contradiction, so d(u); = d(v); = a. It should be noted that ¢ # 2n — 2,

because d(u)a,—9 = d(v)on—o = @ 80 P, o < ph,_; if and only if ¢, 5 < ¢, ;.

Case b.1: Suppose for 1 < i < 2n — 2 we have p,,_, < p; and ¢,, | > qi.
If d(u);—1 = d(v);—1 = o we have d(u)[2n —2,2n — 1] = e and d(u)[i — 1,1] = aaq, so

/ / / /
Pop—1 <P; = Pop—2 < DPi_1

Gon1 > @i == oy > G
which contradicts the assumption L(p') = L(¢'). So d(u);—1 = d(v);_1 # «, say d(u);_1 =
d(v);—1 = (. Thus d(u)[i — 1,7+ 1] = faa and i is an even number, so rather than using

7 we will use 2¢. Now we will consider when o« = 0 and when o = 1.

Case b.1.i: Suppose a = 0. Then we know d(u)[2n—2,2n—1| = d(v)[2n—2,2n—1] =
00, and d(u)[2c¢—1,2¢+1] = d(u)[2¢—1, 2¢+1] = 100. So ph,,_5 < Ph_y and ¢h,_o < ¢h,_1,
and since L(p') = L(¢') we see

Do = L(p)2n—2 = L(q')2n—2 = G5 o,

/ !
SO DPoy—o = Qop_o-

Since pl,,_; < ph. and d(u)[2n — 2,2n — 1] = 00 we have

/ / / /
Pop—2 < Pop—1 < Pac < Pocqi-

Thus by Lemma 5.3.1, we know there are ¢ < j so w[a +n — 1] has C; as a prefix and
wla + ¢] has C; as a prefix. Since w[b+ n — 1] also begins with 0 and ¢}, ; > ¢, the

order of g5, @5, 1, Gn_o, and g, , must be as follows by Lemma 5.3.1

/ / ! !
Gon—2 < Q2c < Qo1 < Q2cy1-

So we have both wla +n — 1] and w(a + ¢| have C; as a prefix. If j > i+ 1, there will be
some [ so that wla + 1] and w[b + [] each have C;;; as a prefix which is totally contained
in u and v. Thus we would have p; < p,_; and ¢ > ¢, 1 and L¥(p) # L*(q), therefore
j=i+1.

Since wla + n — 1] has C; as a prefix for each [ € U;y; we know p,_1 < p;, and so
¢n_1 < q since L¥(p) = L*(q). Likewise, since w[b+n — 1] has C;,; as a prefix, for each
[ € V; we know ¢,_1 > ¢q; and so p,_1 > p;. Thus p,_; is the greatest of all occurrences

of C; and ¢,,_; is the least of all occurrences of Cy, 1. So L¥(p),_1 = L*(q),,_1 and we see

Lk(p)n—l = |Uo| + -+ |Ui]
LE(@)por = [Vo| + -+ + Vi + 1.
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Now we investigate how the size of Uy, ..., U; are related to the size of Vg, ..., Vi.
Since u = v, and these words have 0 as a suffix, there is some m > 1 so that 10™ is a
suffix of both u and v. Thus for each 0 < h < n —m — 1, there is some j so w[a + h]
and w[b + h| have C; as a prefix, so h € U; and h € V;. Moreover, this prefix is totally
contained within v and v, respectively, because wla +n —m — 1] and w[b +n —m — 1]
begin with the class 10. For n —m < h <n — 1 we have

n—mEUi,mH, n—m+1EUi,m+2, n—lEUl

n—m &€ Vi, n—m+1¢eVi_ns, n—1¢& V.
For example, if m =1 we have n —1 € U; and n — 1 € V4, so
Uil = Vil + 1 |Uipa| = |[Viga| = 1

and |U;| = |V} for all other j. Since |V;| > 1 we see |U;| > 2.
Ifm=2wehaven—-2cU,_;andn—-2€Vi;n—-1€U;andn—1¢€ V4, so

Uisal = [Via| +1 Uil = Vil U] = [Viga| = 1

and |U;| = |V} for all other j.
Thus for m > 1,

Uicmt1] = [Viemar| +1 Upa| = [Viga| = 1

and |U;| = |V;| for all other j. Since |V;_,,41| > 1 we see |U;_,11]| > 2. Each occurrence
of C;_,,+1 which is contained in u will have C; as a suffix, and since n — 1 € U; we have
\Ui| > |Us_ma1| > 2. Thus by Proposition 5.3.2

Pon—s = L (P)nr + [Uol + - + |Uina| = 2|0 + - - - + |Uia]) + U]

Gon—s = LE(@)nr + [Vol + -+ 4 [Viea| + [Vi] = 2([Vo| + - - + [Viea | + Vi) + 1
=2(10o| + -+ |Uima| + [Ui] = 1) + 1 =2(|Uo| + - - - + |Uia]) + |Us] + [Us] — 1
> o 4+2—1=ph ,+1

and we see p), o < ¢b,_o. Therefore we have a contradiction, and L(p) = L(¢').

Case b.l.ii: Suppose @ = 1. This argument is similar to the argument used in
Case (b.1.7). Then we know d(u)[2n — 2,2n — 1] = d(v)[2n — 2,2n — 1] = 11, and
d(u)[2¢ —1,2¢+ 1] = d(u)[2¢ — 1,2c + 1] = 011. So ph, 5 > ph, , and ¢, 5 > ¢b,_,, and
since L(p') = L(q') we see

p/2n72 - 1= L(p,)Qn—Q - L(q/)Qn—Q = q;n,Q - 1,
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/ )
SO Poy—o = Qop_o-

Since ¢4, > ¢4 and d(v)[2n — 2,2n — 1] = 11 we have

/ / / !
Qoetr1 < o < Qop—1 < Gop_2

Thus by Lemma 5.3.1, we know there are i < j so w[b+ n — 1] has C; as a prefix and
w[b + ¢] has C; as a prefix. Since w[b + n — 1] also begins with 1 and p), , < ph,, the

order of p., Ph.i1, Po,_o, and py, , must be as follows by Lemma 5.3.1

/ / / /
p2c+1 < p2nfl < pQC < p2n72

So we have both w[a + n — 1] and w(a + ¢] have C; as a prefix. If j > i+ 1, there will be
some [ so that wla + 1] and w[b + [] each have C;;; as a prefix which is totally contained
in u and v. Thus we would have p; > p,_; and ¢, < ¢,_1 and L*(p) # L*(q), therefore
j=i+1.

Since wla + n — 1] has C; as a prefix for each [ € U;;; we know p,_1 < p;, and so
¢n_1 < q since L¥(p) = L*(q). Likewise, since w[b+n — 1] has C;, as a prefix, for each
[ € V; we know ¢,_1 > ¢q; and so p,_1 > p;. Thus p,_; is the greatest of all occurrences

of C; and ¢,,_; is the least of all occurrences of Cy, 1. So L¥(p),_1 = L*(q),_1 and we see

LE(p)ns = |Uo| + -+ + |UJ]
LH(@)no1 = Vo + -+ Vi + 1.

Now we investigate how the size of Uy, ..., U; are related to the size of Vg, ..., Vi.
Since u = v, and these words have 1 as a suffix, there is some m > 1 so that 01™ is a
suffix of both w and v. Thus for each 0 < h < n —m — 1, there is some j so wla + h]
and w[b + h| have C; as a prefix, so h € U; and h € V;. Moreover, this prefix is totally
contained within u and v, respectively, because wla +n —m — 1] and wb+n —m — 1]
begin with the class 01.For n —m < h <n — 1 we have

n—me€Uiim_1, n—m+1&€U, 2, n—1e€U;

n—m € Vitm, n—m+1e& Vi1, n—1e¢e V.

For example, if m =1 we have n —1 € U; and n — 1 € V4, so
Vil = Ui+ 1 Vi| = |Ui] = 1

and |U;| = |V;| for all other j. Since |U;11| > 1 we see |Viyq| > 2.
Ifm=2wehaven—-2€U;andn—-2€V, o:n—1€U;andn—1¢€ V4, so

Vital = [Usga| +1  [Viga| = [Uia| Vi = U] =1
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and |U;| = |V;| for all other j.
Thus for m > 1,
Viem| = Uil + 1 Vi = |Ui] =1

and |U;| = |Vj| for all other j. Since |Uj,,| > 1 we see |Viyn,| > 2. Each occurrence of
Ci+m which is contained in v will have C;,; as a suffix, and since n — 1 € V;;; we have
\Vii1| > |Viem| = 2. Thus by Proposition 5.3.2

Pon—o = LE@)na + [Uol + - + [Uiia| + U] = 2(|Us| + - - + Ui 1| + |Ui])

Gono = LED)na + Vol + -+ + Vil + [Viga| = 2(Vol + - - + [Via | + Vi) + [Via| + 1
=2(1Uo| + - + [Uica| + |Ui] = 1) + [Via| + 1 = 2(|Uo| + - - - + [Ui=1]) + [Viga| — 1
> Popot2—1=ph, o +1

and we see ph, 5 < ¢b, 5. Therefore we have a contradiction, and L(p") = L(¢).
Case b.2: Suppose i = 0 is the only ¢ so that p),, ; < p, and ¢},,_, > ¢.. So as above

we have d(u)[0, 1] = d(v)[0, 1] = aq, and d(u)[2n—2,2n — 1] = d(v)[2n —2,2n — 1] = aa.
Thus p,_y < pp and g, > g imply

Po=L(P)o=L(¢")o=qy— 1.
For each 1 < j < 2n — 2 we know the following
/ / / /
Don—1 <Pj == Gop_1 < G

L(p); =p; <= L({); =g},
and thus p; = ¢j for each 1 < j < 2n — 2, because L(p'); = L(¢);. So only py # g and
Dhp_1 7 Ghp_q- Since gy = pp + 1, it must be

Phn1 =Dy — L and ¢h,_, = q) + 1.

Let 1 <z < 2n so that p}, | = ¢, =2 and ¢}, , = pj, = x + 1. Then, as in Case (a.2),
we find a contradiction to the construction of p’ and ¢'.

Therefore p’ = ¢ if and only if L(p") = L(¢). |
From the previous lemma, if the map ¢ is injective,
p=q < p =4 < L) =L({)

p=q <= p =q¢ <= R@)=R({).

105



Therefore when ¢ is injective, 6z and d;, are both injective as well. A troubling fact is
the map § being injective does not imply d,, is injective. As will be shown for the Thue-
Morse word 7', there are cases of distinct subpermutations p and g where §(p) # 6(g) but
d(p)m = dm(q). The following sections deal with some different words and we will show
when 0 and ), are injective, but these proofs will use special properties of the words

considered.

5.3.4 Permutation Complexity of d(s)

In this section we will investigate the permutation complexity of Sturmian words under
the doubling map. We now recall from Section 2.4.2 some of the equivalent definitions
of Sturmian words. The class of Sturmian words are the aperiodic binary words with
minimal factor complexity. So an infinite word s is a Sturmian word if for each n > 0, s
has exactly n + 1 distinct factors of length n, or ps(n) =n+ 1 (the only factor of length
n = 0 being the empty-word). An equivalent definition for Sturmian words is that they
are the class of aperiodic balanced binary words.

First we will show when the map ¢ is applied to permutations from a Sturmian word,
0 is injective and thus a bijection. Then we show the maps dz, 07, and d,; are injective as
well and thus also bijections. First we look at the permutation complexity of Sturmian
words. Recall from Theorem 5.1.7, that if s is a Sturmian word then 74(n) = n for each
n > 1. If s is a Sturmian word, then d(s) is not Sturmian. The word d(s) will contain
both 00 and 11 as factors and is not balanced. Thus we know 745 (n) > n for some n > 3.

Fix a Sturmian word s over {0,1}. Since s is balanced, there is some k > 0 so that
for a,b € {0,1}, with a # b, every a is followed by either k or k—1 b’s. So consecutive a’s

bk;—l

will look like either ab*a or a a. For example consider the Fibonacci word, ¢, where

t =01001010010010100101 . ..

In ¢, consecutive 1’s look like either 1001 or 101, and if 000 or 11 were factors then ¢
would not be balanced.

Let d(s) be the image of s under the doubling map. Let 7s be the infinite permutation
associated to s, and 7y be the infinite permutation associated to d(s). We will now
calculate the permutation complexity of d(s). By Lemma 5.1.4 we may assume there is a
natural number k > 1 so that each 1 is followed by either 0*1 or 0*~'1, because d(s) and

d(3) = d(s) have the same permutation complexity. There will be k + 1 classes of factors
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of s, which are

Co = 0F
C, =01
Cr_1=01
C, =10
For each i € N, s[i] = s;5;11--- will have exactly one the above classes of words as a

prefix. Since Sturmian words are uniformly recurrent ([13]), there is an N € N so that
each factor of s of length n > N will contain each of Cy, C1, ..., C}.

Let u = s[a,a+n — 1] and v = s[b,b+n — 1], a # b, be factors of s of length n > N,
so Cj is a factor of both u and v for each 0 < j < k. For 0 < j <k define

U;={i|0<i<n-—1and s[a+i] has C; as a prefix. }

Vi={i]0<i<n—1and s[b+1| has C; as a prefix. }

and |Up| + |Ur| + - -+ + |Uk| = |Vo| + [Vi| + - - - + |Vi| = n. Since |u| = |[v| > N we know
for each j there is an occurrence of C; in both w and v so |U;| > 1 and |V;| > 1. Let
p = msla,a+n+k—1] and ¢ = ms[b,b+n+ k — 1] be subpermutations of 7;. Then define
subpermutations 6(p) = p’ = mTa)[2a,2a 4+ 2n — 1] and §(q) = ¢ = Ta)[2b, 20 + 2n — 1]
as in Proposition 5.3.2. The following lemma concerns the relationship of p and ¢ to p/

and ¢'.

Lemma 5.3.11 For the Sturmian word s, let p, q, p', and ¢’ be as above. Then p = q if
and only if p' = ¢'.

Proof If p = ¢, then it follows from Lemma 5.3.5 that p’ = ¢'.

Then suppose that p # ¢. Thus p and ¢ have a different form by Lemma 5.1.6. Thus
there is an 0 <7 < n 4+ k — 2 so that, without loss of generality, p; < p;»1 and ¢; > ¢;11.
We will look at the least ¢ where this happens and it will be handled in two cases. First
when 0 < i <n —1, and then when n < <n+k — 2.

Case a: Suppose 0 < ¢ < n — 1 is the least ¢ where p; < p;11 and ¢; > ¢;+1. Then
p' # ¢ follows from Corollary 5.3.4.

Case b: Suppose n < i < n+k—2is the least ¢ where p; < p;11 and ¢; > g;11. Thus
we know u = s[a,a+n — 1] = s[b,b+n — 1] = v, and so L*(p) = L*(q) by Lemma 5.1.6.

If u, 1 = v,_; = 1, then both u and v are followed by 07! so s[a,a +n +k — 2] =
s[b,b+n+k—2] = u0*! and p = ¢ contradicting the assumption. Thus u,_ | = v,_; = 0,
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and lettingm =1—n+1

sla] = u0™1---

s[b] = u0™ .-

For Il =i—n—k+1, sla+1] has Cy as a prefix and s[b+ [] has C; as a prefix. Since
LE(p) = L*(q) and |V;| > 1, by Proposition 5.3.2 we have

p/2l = Lk(ml
dy = L*(q)i + [Vo| = LF(p)i + |Vo| > L¥(p)i + 1,

SO phy < gy, and p' # ¢
Therefore p = ¢q if and only if p = ¢. |

Thus the map
§ : Perm®(n + k) — Perm®® (2n)

ev

is injective when applied to permutations associated with a Sturmian word, and is there-

fore bijective. When Lemma 5.3.11 is used with Lemma 5.3.8 we see the maps
61 - Perm®(n + k) — Perm®“)(2n — 1)
0r : Perm”(n + k) — Permiﬁlﬁ)@n —1)

are also injective, and thus are bijections. So when n > N

ev

‘Permd(s)(Zn)‘ = |Perm®(n + k)| .

ev

‘Permd(s)@n — 1)‘ = |Perm®(n + k)|

‘Permf&?@n — 1)‘ = |Perm®(n + k)| .

We will now show the map 9, is also injective when applied to permutations associated

with a Sturmian word.

/

Lemma 5.3.12 For the Sturmian word s, let p, q, p', and ¢ be as above. Then p' = q
if and only if M(p') = M(q).

Proof It should be clear that if p’ = ¢’ then M(p") = M(q').
Note that since d(u) = d(s)[2a,2a + 2n — 1] and d(v) = d(s)[2b, 2b+ 2n — 1], for each
0<1<n—-1
d(u)g; = d(u)9ip1 = u; and d(v)gy; = d(v)1 = ;.

We will need the following claim about M (p') and M (q') before we proceed.
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Claim 5.3.13 If M(p') = M(q') then d(u) = d(v).

Proof Suppose M (p') = M(q'). For 0 <i < 2n — 3, d(u); = d(v); by Claim 5.3.9. Then
assuming d(u) # d(v) we find a contradiction by Claim 5.3.10, so d(u) = d(v). Therefore
it M(p') = M(q') then d(u) = d(v), and u = v. |

Suppose p' # ¢/, and assume M (p') = M(q'). For each pair of real numbers i # j
where 0 < 4,5 < 2n — 3,

M@ < M(p'); <= M(q): < M(q);

and thus
Pir < Pi1 = iy < Q-
Thus we know d(u) = d(v) and u = v, so L*(p) = L¥(q).
From Lemma 5.3.8 we know R(p') # R(q’) and L(p’) # L(¢') because p’ # ¢', but

Thus there is an 1 < i < 2n—2so that L(p')g < L(p'); and L(¢')o > L(¢');. As in Lemma
5.3.8 Case (a.1), if 1 < i < 2n — 3 we have a contradiction. Thus we can assume that
i = 2n — 2 is the only i so that L(p')g < L(p'); and L(q')o > L(q');- Thus

L(p")o < L(p")an—2 = Py < Phn_y = Do < Pn—1 = Lk(p)o < Lk(p)n—l

L(QI)O > L(q/)2n—2 - Q(/) > qgn—? = qo > Qqn-1 — Lk(Q)U > Lk(q)n—lv

and L*(p) # L*(q), and so by Lemma 5.1.6 we see u # v and d(u) # d(v) which is a
contradiction to the assumption. Therefore M (p) # M (q').
Therefore p’ = ¢’ if and only if M(p") = M(¢'). |

Thus we see, for a Sturmian word s,

p=q < 0(p) =0(q) <= oum(p) = oum(q)

and thus the map
Sy : Perm®(n + k) — Perm?$) (2n — 2)

is also injective, and thus is a bijection. So when n > N
Perm™)(2n — 2)| = [Perm®(n + k)| .

The following theorem will give the permutation complexity of a Sturmian word.
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Theorem 5.3.14 Let s be a Sturmian word over A, where for a,b € A, a # b, there
are strings of either k or k — 1 a’s between each b, with k > 1. There is an N so that
each factor of s of length at least N will contain each of a*, a*~'b, ..., ab, b. For each

n > 2N the permutation complexity of d(s) is
Tas)(n) =n+ 2k + 1

Proof Let s be a Sturmian word as in the hypothesis, and let n > 2N. Then there is
m > N so that either n = 2m or n = 2m — 1, and recall 7,(n) = n for each n > 1. Since

s is Sturmian, each of

J(2m)

(2m —1)
i (2m = 1)
oy : Perm*(m+k+1) — Permgésd)@m)

0 : Perm®(m + k) — Perm

D Q 0O Q.

;
6y : Perm®(m + k) + Perm™

U

O

(
(

Ogr : Perm®(m + k) — Perm
(

are bijections, and so

‘Permiﬁs)@m —1)| = |Perm®(m + k)|

‘Permgésd)(Zm —1)| = |[Perm®(m + k)|
’Permgq(}s)@m) = |Perm®(m + k)|
)Permiﬁi}(?m) = |Perm®(m + k + 1)|.

Thus

Tas)(2m — 1) = ‘Permd(s)@m - 1)) = ‘Permd(s)@m — 1)‘ + ‘Permf&?@m - 1)‘

ev

=(m+k)+(m+k)=02m—-1)+2k+1

Ta(s)(2m) = ‘Permd(s)(Qm)‘ = )Permgff)(Qm)‘ + ’Permfﬁi}(?m)‘

=m+k)+(m+k+1)=2m+2k+1
Therefore for either n = 2m — 1 or n = 2m,

Tas)(n) =n+ 2k + 1.

110



5.3.5 Permutation Complexity of d(T)

In this section we will investigate the permutation complexity of d(7"), the image of the
Thue-Morse word, T', under the doubling map, d. Recall from Section 5.2, the Thue-Morse
word 7' = 011010011001 - - - is the fixed point of the Thue-Morse morphism pp : 0 — 01,
1+ 10.

The calculation of the permutation complexity of d(7") will use the formula for the
factor complexity of 7. Again, the factor complexity is known ([11, 31]) and we will use
the formula calculated by S. Brlek.

Proposition 5.3.15 ([11]) For n > 3, the function pr(n) is given by

6-27"1+4p O0<p<2vt
pr(n) =
8.2 149y 2 lcp<o

where r and p are uniquely determined by the equation
n=2"+p+1, 0<p<2"

We also need many properties from Section 5.2, which we now recall. Theorem 5.2.8
stated that subpermutations of 77 have the same form if and only if they are a comple-
mentary pair. Proposition 5.2.12 calculated, based on subpermutation length, the type
for complementary pairs, and Lemma 5.2.14 which stated how many complementary pairs
of type 1 or 2 can arise for each length n. Finally Theorem 5.2.16 gives the permutation

complexity function.

The following proposition is a variation of Proposition 5.2.7.

Proposition 5.3.16 Suppose p = wrla,a+ n| and ¢ = wr[b, b+ n] are a complementary

pair of type k > 1.
(a) L(p) and L(q) are a complementary pair of type k — 1.
(b) R(p) and R(q) are a complementary pair of type k — 1.

(¢) M(p) and M(q) are a complementary pair of type k — 2.

Proof Let p = nr[a,a + n] and ¢ = 7r[b, b+ n] be a complementary pair of type k > 1.

The argument from Proposition 5.2.7, part (c), will show if p and ¢ are a comple-
mentary pair of type k, then L(p) and L(q) are a complementary pair of type k — 1. In
a similar fashion Proposition 5.2.7, part (d), implies R(p) and R(q) are a complemen-
tary pair of type k — 1, and Proposition 5.2.7, part (e), implies M(p) and M (q) are a
complementary pair of type k — 2. |
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Now to calculate the permutation complexity of d(7T") we need to identify the classes
of factors of T" with blocks of the same letter. Since T is overlap-free, and thus cube-free,

we can identify the 4 classes of factors of T', which are
Co=00, C;=01, Cy=10, CC35=11

For each i € N, T'[i]| = T;T;;, - - - will have exactly one of the above classes of words as a
prefix. Since the Thue-Morse word is uniformly recurrent ([2]), there is an N € N so that
each factor of T of length n > N will contain each of Cy, C;, Cy, and C3. It is readily
verified that any factor of length n > 9 will contain each of these 4 classes of words as a
factor.

Let u = Tla,a +n — 1] and v = T[b,b +n — 1], a # b, be factors of T" of length
n > 9, so C} is a factor of both u and v for each 0 < j < 3. Let p = mpla,a +n + 1] and
q = ms[b, b+ n + 1] be subpermutations of 7. Then define subpermutations §(p) = p’ =
Ta(s)|2a,2a + 2n — 1] and §(q) = ¢’ = m4(5)[20, 20 4 2n — 1] as in Proposition 5.3.2, with
k = 2. The following lemma concerns the relationship of p and ¢ to p’ and ¢'.

Lemma 5.3.17 Let p and q be subpermutations of length n + 2 of mp, with n > 9, and
let p' = 0(p) and ¢' = §(p).

(a) Ifn ¢ {2 —1,2"|r >3}, p=q if and only if p' = ¢

(b) If ne {2" —1,2"|r >3}, p and q have the same form if and only if p' = ¢’

Proof Let p = nr[a,a+n+ 1] and ¢ = 74[b, b+ n + 1], a # b, be subpermutations of 7
of length n + 2, with n > 9, and let v = T[a,a +n — 1] and v = T[b,b + n — 1]. Since
the length of v and v is at least 9, each of Cy, C;, Cs, and C3 occurs in both of u and
v. Then let p' = §(p) = m4s)[2a,2a + 2n — 1] and ¢ = 6(q) = Ty [20,2b 4 2n — 1] as in
Proposition 5.3.2.

(a) Suppose n ¢ {2" —1,2"|r > 3 }. If p = ¢ then p’ = ¢’ by Lemma 5.3.5.
Suppose p # q. Then either p and ¢ have the same form, or they do not have the

same form. These cases will be handled independently.

Case (a.1) Suppose p and ¢ have the same form. Since n ¢ {2" —1,2"|r >3 },
p and ¢ are a complementary pair of type £ > 3, by Theorem 5.2.8. By Proposition
5.3.16, L*(p) and L?(q) are a complementary pair of type k — 2, where k —2 > 1, and so
L?(p) # L*(q). Therefore p’ # ¢, by Corollary 5.3.4.
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Case (a.2) Suppose p and ¢ do not have the same form. Thus there is an 0 <i <n
so that, without loss of generality, p; < p;11 and ¢; > ¢;+1. We may say i« = n is the only
1 so that p; < p;11 and ¢; > ¢;11, because if there is an 0 < i < n —1so p; < p;y1 and
¢ > i1 then u # v, and p’ # ¢’ be Corollary 5.3.4. We may also say L?(p) = L?*(q),
because if L*(p) # L?(q) then p’ # ¢’ be Corollary 5.3.4. Thus u = v and p,, < p,;1 and

An > dn+1-
For 0 <j <3 let

U;j={i|0<i<n-—1and T[a+i| has C; as a prefix. }

Vi={i|0<i<n-—1and T[b+i] has C; as a prefix. }

and |Uy| + |Ur| + |Us| + |Us| = |Vo| + [Vi| + |Va| + | V3| = n. Since u = v and |u| = |v| > 9
we know for each j thereis an 0 <i <n —2so that i € U; and i € Vj, thus |U;| > 1 and
|V;| > 1. Since u = v and p,, < pp+1 and ¢, > @41 there is an a € {0, 1} so that

Tla+n—1,a+n]=a0

Th+n—1,b+n]=al

so either
[Uol # Vol Uil # Wi [Ua] = [Va|  |Us| = | V34

or

ol = Vol [Uhl = Vil |Uaf # [Va|  |Us| # [Va].
If & =0 then |Uy| # |Vo| and |Uy| # |V4], and by Proposition 5.3.2
Doy = L* ()0
q;n—Z = LQ(Q)R—l + |‘/0| 2 L2(p)7’b—1 +1> pIQn—Q’
If a =1 then |Us| # |Va] and |Us| # |V3], and by Proposition 5.3.2
Pon—1 = L*(p)u—1 + [Uo| + |1
Qo1 = L (@)nr + Vol + Vil + Vo] = L2 (p)as + [Uo| + [U1] + 1> phy .

Therefore in either case (a.1) or (a.2), p’ # ¢'.

Therefore if p and ¢ are subpermutations of 7 of length n + 2, with n # 2" — 1 or 2"
for any r > 3, p = ¢ if and only if p/ = ¢’

(b) Suppose n € {2" —1,2"|r > 3 }. If p and ¢ do not have the same form, there is
an 0 < ¢ < n so that, without loss of generality, p; < p;»1 and ¢; > ¢;+1 and p # ¢q. Thus
p and ¢ are as in Case (a.2), and p’ # ¢
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Suppose p and ¢ have the same form, so for each 0 < i < n — 1, there is some j
so that both T'[a + i] and T'[b + i] have C; as a prefix. We can say p # ¢, because if
p = q then p’ = ¢’ by Lemma 5.3.5. By Theorem 5.2.8 and Proposition 5.2.12, p and ¢

are a complementary pair of type 1 or 2 and L?*(p) = L?(q) by Proposition 5.3.16. So by
Corollary 5.3.3, p' = ¢'.

Therefore if p and ¢ are subpermutations of 7 of length n + 2, with n =2" —1 or 2"

for some r > 3, p and ¢ have the same form if and only if p' = ¢'. |
Thus, for n > 9, the maps
§ : Perm” (n + 2) — Perm®?)(2n)

o1 : Perm®(n + 2) — Perm¥?)(2n — 1)
§g : Perm” (n + 2) Permig)@n —1)

when applied to permutations associated with the Thue-Morse word are injective when

n¢{2"—1,2"|r >3 } (or when there are no complementary pairs of type 1 or 2), so

’Perm (M) (2n) ’ = [Perm” (n + 2)|

‘Permi(}T)(Qn - 1)‘ = |[Perm” (n + 2)|
)Permiﬁlg)@n — 1)‘ = [Perm” (n + 2)| .

When n € {2"—1,2" |r > 3 } the maps 9, dg, and 0, are surjective, but not injective
because complementary pairs of type 1 or 2 will give the same subpermutation under
0. In this case, if p and ¢ are subpermutations of 7y of length n + 2, where p has form
v and ¢ has form o, |[v/| = [v'| = n+ 1, §(p) = 0(¢) if and only if v/ = v'. Likewise
we see 0r,(p) = dr(q) and dg(p) = Jdr(q) if and only if ' = ¢’. Thus the number of
subpermutations of gy for these lengths are determined by the number of factors of T,

or

)Perm (2n) ’ = |Fr(n+1)|.
‘Permd(T)( n— 1)‘ = |Fr(n + 1)
(Permodd (2n — 1)‘ = |Fr(n+1)].

The following lemma shows when the map d,; is injective when applied to permuta-
tions associated with the Thue-Morse word.

Lemma 5.3.18 For the Thue-Morse word T, let p, q, p’, and ¢' be as above. Then
(a) If n # 2" — 1,27, or 2" + 1 for any r > 3, p' = ¢ if and only if M(p') = M(q').
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(b) If n=2"—1,2", or 2" + 1 for some r > 3, p and q have the same form if and only
if M(p') = M(q)-

Proof It should be clear for either case that if p’ = ¢’ then M (p') = M(¢').
Note that since d(u) = d(s)[2a,2a+ 2n — 1] and d(v) = d(s)[2b, 2b+ 2n — 1], for each
0<i<n-—1
d(u)y; = d(u)gir1 = u; and d(v)y = d(v)2i11 = v;.
If M(p') = M(¢') then d(u) = d(v), by Claim 5.3.13, and so u = v.

We will again use the notation
Uj={i|0<i<n-—1and T[a+i| has C; as a prefix. }

Vi={1]0<i<n-—1and T[b+i] has C; as a prefix. }

and due to the length of u and v we know |U;| > 1 and |V}| > 1 for each j.

(a) Let n #£ 2" — 1, 2", or 2" + 1 for any r > 3, and p = 7rla,a + n + 1] and
q = mr[b,b+ n + 1] be subpermutations of 7r of length n 4+ 2 > 11. Then p’ = 6(p) and
¢ = d(q) by Proposition 5.3.2.

Suppose p' # ¢/, and assume M (p') = M(q'). For each pair of real numbers i # j
where 0 < 4,5 < 2n — 3,

M(p); < M(p'); <= M(d)i < M(q');
and thus
Pipr < p;+1 = (i, < (J;+1~

d(v) and u = v. There is an a € {0,1} so that d(u); = d(v); = «,
)[ 1] = aer. As in Lemma 5.3.8 we have d(u)[2n — 2,2n — 1] =

Thus we know d(u )

and so d(u)[0,1] =

d(v)[2n —2,2n — 1]
(a.1) Suppose p and ¢ have the same form. By Theorem 5.2.8 and Proposition

IIAII

5.2.12, p and ¢ are a complementary pair of type k& > 4. By Proposition 5.3.16, L*(p)
and L?(q) are a complementary pair of type k — 2 > 2. Thus, without loss of generality,
L*(p)k—o-1+1=L*p)p_1 and L*(q)n_1+1 = L*(q)g_2_1. Thus L*(p)x_3 < L*(p),_1 and
L*(q)k—3 > L*(@)n-1, 50 Phy_g < Pan_s and gy _g > gy, _p. Thus M(p)ar—5 < M(p)20-3
and M (q')ok—5 > M(q')an—3 so M(p') # M (q') which is a contradiction.

(a.2) Suppose p and ¢ do not have the same form. From Lemma 5.3.8 we know
R(p') # R(¢') and L(p') # L(q') because p’ # ¢', but



Thus there is an 1 <7 < 2n—2 so that L(p')o < L(p'); and L(q')o > L(¢');. As in Lemma
5.3.8 Case (a.1), if 1 < i < 2n — 3 we have a contradiction. Thus we can assume that
i = 2n — 2 is the only 7 so that L(p')y < L(p'); and L(q")o > L(¢');. Thus

L(p")o < L0 )an-2 = Py < Porug = Po < pon-1 = L*(p)o < L*(p)n
L(q")o > L(¢)2n—2 = 4 > Ghpo = G0 > @a1 = L*(q)o > L*(q)ns
so L*(p) # L*(q), and v = v. Thus, by Theorem 5.2.8 and Proposition 5.2.12, L?(p)

and L?(q) are a complementary pair of type & > 2. Thus, without loss of generality,
L(p)i-1 < L*(P)n-1 and LA(q)r-1 > L*(@)n-1, SO Py < Php_p and @h_y > G5, .
Thus M(p')og—1 < M(p')2n—3 and M(q")ak—1 > M(q')an—3 so M(p') # M(q') which is a
contradiction.

Therefore if n # 2"—1, 2" or 2"+1 for any r > 3, p/ = ¢’ if and only if M (p') = M(q).

(b) Let n = 2" — 1, 2", or 2" + 1 for some r > 3, and p = 7yp|a,a + n + 1] and
q = mr[b, b+ n + 1] by subpermutations of 7y of length n + 2 > 11. Then p’ = 6(p) and
¢ = d(q) as in Proposition 5.3.2.

(b.1) Suppose p and ¢ have the same form. So for each 0 < i < n,

Pi < Pit1 < Gi < it1-
So we know for each i, T'[a + i| and T'[b+ ¢] both have the same C; as a prefix, so
1el; < i€l
and so |U;| = |V}]| for each j.

If p=gq, then p’ = ¢ and M(p') = M(q'), so we can say p # q. If n = 2"—1 or 2" then
p' = ¢ by Lemma 5.3.17 and M(p') = M(q¢'), so we can say n = 2" + 1 for some r > 3.
Thus p and ¢ are a complementary pair of type 3 by Theorem 5.2.8 and Proposition
5.2.12, and L?(p) and L*(q) are a complementary pair of type 1 by Proposition 5.3.16.
So, without loss of generality, there is some 1 < x < n — 1 so that L*(p)g = L*(¢)p_1 =
and L*(p),_1 = L*(q)o = v + 1, and for each 1 <i <n —2 L*(p); = L*(q);.

Since p and ¢ are a complementary pair of type 3 we know T'[a,a + 1] = T[a +n —
1,a + n], thus we know T'[b,0 + 1] =T[b+n — 1,b+ n| = T[a,a + 1] because u = v. So
there is a j so that each of T'[a], T'la +n — 1], T[b], and T[b + n — 1] each have C; as a
prefix. So by Proposition 5.3.2, there are some y and z so that

Po =Y @0 =y+1
Py =z G =z+1
Popo =y +1 G2 =Y
Pop1 =2+1 Gy = 2
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and for each 2 < ¢ < 2n — 3, p, = ¢/. The order of y and z will be either y <y+1 < z <
2+1 T, =T, =0 orz<z+l<y<y+1({fT,=T,=1). fy<y+l<z<z+1,
then M(p')o=2—1=M(¢')o and M(p')an-—2 =9y =M(¢')on—2. f 2 < z4+1<y<y+1,
then M(p')o =2z = M(q')o and M(p')on—2 =y — 1 = M(q')2n—2. In either case we have,
for 2 <i<2n—3,

Pi<y <= ¢ <y+1 and pi<z+1 <= ¢<z

so M(p')i—1 = M(q')i—1. Therefore M(p') = M(q').
Therefore if p and ¢ have the same form then M (p') = M(q).

(b.2) Suppose p and ¢ do not have the same form, and assume M (p') = M(q'). If p
and ¢ do not have the same form, there is an 0 < ¢ < n so that, without loss of generality,
pi < pip1 and ¢; > ¢;41 and p # ¢. By Lemma 5.3.17, p’ # ¢’. Then as in Case (a.2) we
find a contradiction to the assumption, so M(p') # M(q').

Therefore p and g have the same form if and only if M (p") = M(¢'). |

Thus, for n > 9, the map
Sar 2 Perm® (n +2) — Permiﬁl?(Qn —2)

when applied to permutations associated with the Thue-Morse word are injective when
n#2"—1,2" or 2" +1 for any > 3 (or when there are no complementary pairs of type
1, 2, or 3), so

Permiﬁlg)@n — 2)‘ = |PermT(n + 2)} .

When n = 2" — 1, 2", or 2" 4+ 1 for some r > 3 the map J,, is surjective, but not
injective. In this case, if p and ¢ are subpermutations of 7 of length n + 2, where p has
form u and ¢ has form v, |u| = [v| =n+1, du(p) = dn(q) if and only if u = v. Thus the
number of subpermutations of myy of length 2n — 2 which start in an odd position are

determined by the number of factors of 7" of length n + 1, or
Perm™1) (2n — 2)| = | Fr(n +1)|.
We are now ready to calculate the permutation complexity of d(T).
Theorem 5.3.19 For the Thue-Morse word T, let n > 9.

(a) If n =27, then
Td(T) (277/ o 1) — 27"+2 + 27"+1

Tar)(2n) = ort2 4 oortl 4 ¢y
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(b) If n =2"+p for some 0 < p < 2" — 1, then
Tary(2n — 1) = 2773 4+ 4p
Tary(2n) = 2% 4+ 4p + 2

Proof Let n > 9.

(a) Suppose n = 2". So 2n = 2(2") = 2(2" + 1) — 2, and from Lemma 5.3.17 and
Lemma 5.3.18 each of the maps

6 : Perm® (n + 2) — Perm®™) (2n)

6y - Perm” (n + 2) — Perm®®)(2n — 1)
6r : Perm® (n + 2) — Permi&?(Zn - 1)
Sy : Perm” (n + 3) — Permgg)@n)
are not injective.
Son+1=2"4+1=2""142""14+1 and n+2 =2"+2=2"+1+1. So by Proposition
5.3.15

Ty (2n — 1) = ‘Permgl()T)(Qn — 1)‘ +

Permyy) (2n — 1)| = [Fr(n + )| + [ Fr(n +1)|
— 8(27‘72) + 2(27‘71) + 8(21“72) 4 2(27’71) — 27‘+2 4 2T+1

Tary(2n) = (Permgﬂ@n)] + ]Permg’g? (2n)’ = |Fr(n+ )|+ |Fr(n +2)|

=827 ) 422" ) +6(27 ) +4(1) =272 27 14

(b) Suppose n = 2"+ p. There will be 3 cases to consider. First when 0 < p < 2"—3,
next when p = 2" — 2, and finally when p = 2" — 1.

(b.1) Suppose 0 < p < 2" —3. So 2n = 2(2"+p) = 2(2"+p+ 1) — 2, and from
Lemma 5.3.17 and Lemma 5.3.18 each of the maps
§ : Perm” (n + 2) — Perm®™) (2n)

67 : Perm” (n + 2) = Perm®™) (2 — 1)

§g : Perm” (n +2) — Permg(g)@n - 1)
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6xr - Perm® (n +3) — Permig)@n)

are injective, and thus are bijective.

Son+2=2"+p+2,and n+3=2"+p+ 3. So by Theorem 5.2.16

Tary(2n —1) = ‘PermggT)(Qn — 1)’ + ‘Permgg)@n - 1)’

= [Perm” (n + 2)| + |[Perm” (n + 2)| =2-2(2" +p + 2 — 2)
=22 L 4p

Tary(2n) = ‘Permgf)T)(Qn)‘ + ‘Permig)@n)‘ = [Perm” (n + 2)| + |Perm” (n + 3)|

=2(2"+p+2-2)+22 +p+3-2)=2""+4p+2

(b.2) Suppose p=2"—2,s0n =2"+2" —2 =2t — 2 From Lemma 5.3.17 each
of the maps
§ : Perm” (n + 2) — Perm®™) (2n)
67 - Perm” (n + 2) > Perm®™)(2n — 1)

§r : Perm® (n + 2) — Permgg)(Zn - 1)
are injective, and thus are bijective. Then we have 2n = 2(2"! — 2) = 2(2" "1 — 1) — 2
and by Lemma 5.3.18 the map

6xr - Perm® (n +3) — Permgg)@n)

is not injective.
Son+2=2""1 =27 42" =274 (2" — 1) + 1. So by Proposition 5.3.15 and Theorem
5.2.16

ev

Tary(2n —1) = ‘Permd(T)(Qn — 1)’ + ‘Permﬁé?(?n -1)

= [Perm” (n + 2)| + |[Perm” (n + 2)| = 2(2"*" + 2" — 2) + 2(2"" + 2" — 2)
_ 27‘-‘1—3 + 2r+2 . 8 — 2r+3 + 4(2r - 2)

ev

Tary(2n) = ‘Permd(T)(Qn)‘ + ‘Permié?(?n)) = [Perm” (n + 2)| + | Fr(n + 2)|
— 2(2T+1 + 27’ _ 2) 4 8(27’71) + 2(27“ o 1) — 2T+3 + 27’+2 o 6
=23 4 4(2" —2) +2
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(b.3) Suppose p =2" —1,s0n =2"+2" —1 =2t — 1. So 2n = 2(2"' — 1) =
2(2"1) — 2, and from Lemma 5.3.17 and Lemma 5.3.18 each of the maps

§ : Perm” (n + 2) — Perm®?)(2n)

67 : Perm” (n + 2) — Perm®™) (2 — 1)
§r : Perm® (n + 2) — Permgg)@n - 1)
Sy : Perm” (n + 3) — Permgg)@n)

are not injective.
Son+1=2" =2+ (2 —1)+1,and n+2=2"" +1=2"4+2"+1. So by
Proposition 5.3.15

Td(T)(Z’n — 1) =

Perm®™) (20 — 1)‘ +

Permig)@n — 1)‘ = |Fr(n+ )|+ |Fr(n+1)|
=827 +2(2" —1)+8(2" ) +2(2 —1) =27 22 —4
=2 442" - 1)

Tar)(2n) = ‘Permi(}T)(Zn)‘ + ’Permig)@n)’ = |Fr(n+ V)| + |Fr(n+ 2)|
_ 8(27“71) + 2(27‘ o 1) + 8(27‘71) i 2(27’) — 27’+3 4 27‘+2 -9
=27 442" — 1) +2

5.4 Further Research Ideas

In Section 1.2, some possible directions for further research were given.

One direction of further research will be to investigate a possible relationship be-
tween morphisms and permutation complexity. For words which are the fixed point of a
morphism an initial conjecture could be that permutation complexity can be calculated
recursively, but if the morphism is not N-uniform (recall, |p(a)| = N for each a € A)
there may be complications with such a calculation. It may be possible determine an up-
per bound for the permutation complexity of a fixed point of a morphism based on only
the morphism, but it is unclear at the time of this writing if even this will be possible.

Another research direction is to start with a morphism ¢ on A and determine the
permutation complexity of ¢(w), for some aperiodic binary word w. After the investiga-
tion of permutation complexity and the doubling map, for an arbitrary morphism ¢ it

may not be possible to determine the permutation complexity of ¢(w) based only on ¢.
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There is a class of morphisms, call it M, so that if ¢ € M the permutation complexity
of p(w) can be calculated recursively for any word w. The doubling map is not in the
class M, but the class M is not empty either. Trivially the identity map (a +— a) and
the complement map (0 +— 1;1 — 0) are both in M. A natural question is, are there any
other morphisms in M?

In this study of permutation complexity, the main focus has been on counting the
number of subpermutations which arise from an infinite permutation induced by a word.
In the case of the permutation complexity of the Thue-Morse word we considered a
pattern in subpermutations, but this was the depth of considering the subpermutations
which arise. At the time of this writing, this author is not aware of an investigation
of the subpermutations which arise from an aperiodic word. There are many possible
questions in this area, but one question stands out. Given a permutation group G, where

the maximum length of any permutation in G is n, is there a word w so that
G ={Perm“(i)| i <n}?

Since there are permutations which will not occur in a binary word, there would be some

conditions to impose on G, but what conditions could lead to a possible answer?
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Appendix A

Subpermutations of 7

The subpermutations and their form for factors of length 1 through 8 are shown below.
0:(12) 1:(21)

01:(132) (231)  00:(123)
10:(312) (213)  11:(321)

010 : (2413) (1324)  001:(1243) 100 : (3124)
101: (4231) (3142)  011:(2431)  110: (4312)

0011 :(23541) (13542)  0010: (12435) 1010 : (52413)
0110 : (25413) (35412)  0100: (24135) 1011 : (42531)
1001 : (41253) (31254) 0101 :(14253) 1101 : (54231)
1100 : (53124) (43125)
00110 : (246513) (136524) 00101 : (125364) 10010 : (412536)
01100 : (364125) (254136) 01001 : (251364) 10100 : (524136)
10011 : (523641) (413652)  01011:(253641) 10110 : (526413)
11001 : (641253) (531264) 01101 :(365241) 11010 : (652413)
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123

011001 : (3751264) (2641375) 001011 : (1364752 100101 : (4126375)
100110 : (6247513) (5137624) 001100 : (2475136 101001 : (6251374)
001101 : (2476351 101100 : (5264137)
010010 : (2513647 101101 : (6375241)
010011 : (3624751 110010 : (6412537)
010110 : (2637514 110011 : (6413752)
011010 : (4762513 110100 : (7524136)
0010110 : (13748625) 0110010 : (37512648) 1010011 : (73624851)
0011001 : (24861375) 0110011 : (37514862) 1011001 : (62741385)
0011010 : (25873614) 0110100 : (48625137) 1011010 : (74862513)
0100101 : (25137486) 1001011 : (51374862) 1100101 : (74126385)
0100110 : (37258614) 1001100 : (62485137) 1100110 : (75138624)
0101100 : (26375148) 1001101 : (62487351) 1101001 : (86251374)
0101101 : (37486251) 1010010 : (62513748)
00101101 : (248597361) (148597362) 00101100 : (137486259)
01001011 : (361485972) (261485973) 00110010 : (248613759)
01011010 : (485972613) (385972614) 00110100 : (259736148)
01101001 : (497261385) (597261384) 01001100 : (372596148)
10010110 : (613849725) (513849726) 01011001 : (273851496)
10100101 : (725138496) (625138497) 01100101 : (385127496)
10110100 : (849625137) (749625138) 01100110 : (386149725)
11010010 : (962513748) (862513749) 10011001 : (724961385)
10011010 : (725983614)
10100110 : (837259614)
10110011 : (738514962)
11001011 : (851374962)
11001101 : (862497351)
11010011 : (973624851)
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