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I am grateful to the Prof. Stjepan Marčelja for the care with which he read this thesis

and for his correction and suggestions which made this work better.

I would like to express my thanks to all people in the Laboratoire de Physique
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Résumé

ETUDE PAR DYNAMIQUE MOLECULAIRE DE

LA MICRO-HETEROGENEITE DANS LES MELANGES EAU-ALCOOLS

1. Introduction

L’eau et les alcools sont des liquides associs caractrisés par l’existence de la liai-

son hydrogne, qui favorise l’apparition de structures agrégées par l’intermédiaire de

cette interaction hautement directionnelle. L’étude par simulation en Dynamique

Moléculaire de ces liquides purs et de leurs mélanges permet de confirmer l’existence

de telles structures et de déterminer le comportement structurel et thermodynamique

de ces liquides. L’homogénéité globale de ces systmes implique que le paramètre

d’ordre qui caractérise l’apparition de l’ordre local est la fonction de corrélation de

paire. Dans un premier temps, nous étudions les liquides purs au travers de divers

modèles de champs de force. L’analyse des fonctions de distributions atomiques,

ainsi que les facteurs de structure associés, montre une différence notable entre la

micro-structure de l’eau et celle des alcools simples. Ces derniers forment des phases

agrégats de topologie très riche, alors que la signature de l’ordre dans l’eau se révèle

étonnamment pauvre en comparaison. Nous associons ce dernier comportement à

une structuration associative plus étendue, sans doute de type réseau. Ensuite, nous

analysons la structure des mélanges, notamment par les intégrales de Kirwood-Buff

(KBI) et leur dépendance en concentration d’alcool. Les mélanges font apparatre une

xi



xii

forme différente de micro-structuration, de type micro-ségrégation. Cette structure

se traduit à la fois par l’apparition d’un pré-pic dans le facteur de structure, ainsi

que par des fortes fluctuations des KBI, qui se font à l’échelle du nanomètre et de

la nanoseconde, c’est-àdire àun ordre de magnitude supérieure de celui des échelles

moléculaires. Cette étude montre la richesse surprenante de la micro-hétérogénéité au

sein même de l’homogénéité et du désordre apparent de ces états liquides particuliers.

Ce travail concerne l’analyse structurale des liquides associés comme l’eau et les al-

cools et leur mélanges. Nous sondons par la Dynamique Moléculaire la micro-structure

de ces liquides. A partir du calcul des fonctions de corrélations et des facteurs de

structures associés, ainsi que d’un paramètre d’ordre effectifs, nous proposons une

vision consistante de la micro-hétérogénéité au sein des liquides macroscopiquement

homogènes. Cette analyse nous permet de distinguer entre la micro-structure dans

les liquides purs associés, de celle de micro-ségrégation dans leurs mélanges binaires,

alors que le mécanisme commun est bien la liaison hydrogène. Celle-ci structure

différemment les sites partiels concernés (hydrogène et oxygène), tandis que les sites

inertes méthyles sont purement désordonnés. Ainsi, la micro-hétérogénéité apparat

comme une propriété universelle des mélanges de liquides associés. Ce type d’ordre

local n’appartient pas tout-à-fait à la classe du désordre, pas plus qu’à celle de l’ordre

global. Il apparat donc comme une nouvelle forme d’ordre et défie nos méthodes pour

le mettre en évidence, tant du point de vue expérimental que théorique.

2. La physique statistique

A la température ambiante les mélanges d’alcool et d’eau sont dans l’état liquide.

D’habitude, ces mélanges sont modélises comme les liquides classiques. L’approche

théorique est alors développée en utilisant la physique statistique classique et les

liens entre la mécanique statistique et la thermodynamique. La physique statistique

fournit un cadre pour associer les propriétés microscopiques des molécules à celles

macroscopique du liquide. Ainsi, elle explique la thermodynamique comme le résultat

naturel de l’approche statistique (classique et quantique) au niveau microscopique.
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L’état dynamique d’un liquide monoatomique un composant à chaque instant

est défini par les 3N coordonné es rN = {r1, ..., rN} et 3N moments des particules

pN = {p1, ...,pN}. Ces valeurs définissent un point de phase dans un espase de phase

de 6N dimensions. Un point de phase correspond à celui de l’état d’un système.

Etant donné les coordonné es et les moments des particules à quelque instant, leurs

valeurs plus tard (ou plus tt) dans le temps, peuvent être calculé par l’équations de

mouvements de Newton , lesquelles, en absence d’un champ externe, sont de la forme:

mri = −∇iVN

(
rN

)
(1)

Dans la mécanique statistique toutes les propriétés observables d’un système sont

calculées comme les moyennes sur les trajectoires de phase (la méthode de Boltzmann)

ou comme les moyennes sur un ensemble des systèmes (la méthode de Gibbs). Dans

la formulation de Gibbs la distribution de les points de phase dans un ensemble sont

décrits par la densité de la probabilité f [N ]
(
rN ,pN ; t

)
:

∫ ∫
f [N ]

(
rN ,pN ; t

)
drNdpN = 1, for all t. (2)

La densité de la probabilité d’équilibre est définie par les paramètres macro-

scopiques qui caractérisent l’ensemble. Par exemple, l’ensemble canonique décrit les

systèmes qui ont le volume V, le nombre de particules N et température T constants,

pour lequel la densité de la probabilité est donnée par:

f [N ]
o

(
rN ,pN

)
=

1

h3NN !

e−βH

QN

(3)

oú h est la constante de Planck, β = 1/(kBT ) oú kB = 1.3810−23J/K est la constante

de Boltzmann et la constante de la normalisation QN est la fonction de la partition

canonique, définie comme:

QN =
1

h3NN !

∫ ∫
e−βHdrN , dpN (4)

Les quantités les plus importantes dans notre analyse sont la densité de paire

et la fonction de la distribution de paire, aussi bien que le facteur de structure qui
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correspond à la transformation de Fourier de la fonction de distribution de paire. Elles

peuvent être calculés en utilisant les données de simulation et aussi par les expériences

de diffraction. Ces fonctions contiennent les renseignements sur des corrélations entre

les particules dans le système, et servent ainsi à décrire leur micro-structure.

ρ
(n)
N (rn) =

N !

(N − n)!

1

h3NN !QN

∫ ∫
e−βHdr(N−n)dp(N−n) =

N !

(N − n)!

1

ZN

∫
e−βVN dr(N−n)

(5)

L’équation 5 définit la probabilité de trouver N particules du système avec les coor-

données dans l’élément de volume, sans tenir compte de la position d’autres particules

et sans tenir compte de tous les moments. Les densités de particule et les fonctions de

distribution, définies ci-dessous, fournissent une description complète de la structure

d’un liquide. La connaissance de la distribution de particules, en particulier de la

densité de paire ρ
(2)
N (r1, r2) est souvent suffisant pour calculer l’équation d’état et

d’autres propriétés thermodynamiques. La fonction de distribution de n-particules

est définie par la densité de particule correspondante par:

g
(n)
N (rn) =

ρ
(n)
N (r1, ..., rn)∏n

i=1 ρ
(1)
N (ri)

(6)

qui pour un système homogenous est réduit à

ρng
(n)
N (rn) = ρ

(n)
N (r1, ..., rn) (7)

Nous discuterons plus en détail la fonction de distribution de paire définie comme:

g
(2)
N (r1, r2) =

ρ
(2)
N (r1, r2)

ρ
(1)
N (r1) ρ

(1)
N (r2)

(8)

Si le système est homogène et isotrope, la fonction de distribution de paire g
(2)
N (r1, r2)

est la fonction seulement de la séparation r = |r2 − r1|. Sa moyenne angulaire est

appelée fonction de distribution radiale (RDF). Les oscillations de cette fonction in-

diquent essentiellement l’empilement des particules au voisinage de la particule à
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l’origine. Mais, elles indiquent aussi la nature des corrélations entre voisins et leur in-

terprétation demande souvent un effort de compréhension de la structure sous-jacente,

surtout dans le cas ou des corrélations angulaires sont également présente.

La définition de g(r) implique que le nombre moyen de particules qui est dans la

gamme entre r et r + dr de la particule de référence est 4πρg (r). Les pics dans g (r)

représentent les couches de voisins autour de la particule de référence. L’intégration

de 4πr2ρg (r) jusqu’àla position du premier minimum fournit donc une estimation du

nombre de coordination, CN. Le concept d’une couche et de nombre de coordination

sont plus appropriés pour les solides que pour les liquides, mais ils fournissent une

mesure de la structure d’un liquide. Pour l’argon nous pouvons estimer que le nombre

de coordination est CN ≈ 12.2, qui montre qu’en moyenne chaque atome de l’argon

est entouré par 12 voisins.

Nous avons exploré aussi la fonction de distribution radiale dans l’espace de

Fourier, que l’on appelle le facteur de structure. Le facteur de structure est une

mesure de la réponse de la densité du système, au départ en l’équilibre, à un petite

perturbation externe de longueur d’onde 2π/k [1].

Cette mesure permet aux moyens de déterminer la distribution radiale par l’utilisation

de la transformation de Fourier. I y a donc un lien direct entre la transformation de

Fourier et la mesure par diffusion (SANS ou SAXS). Donc, le S(k) est donné par la

transformation inverse et le g(r) est donné par la transformation inverse:

ρg (r) = (2π)−3

∫
(S (k)− 1) e−ikrdk (9)

Quand le potentiel intermoléculaire est décrit comme étant la somme des inter-

actions entre sites atomiques, la façon naturelle de décrire la structure du liquide est

par les fonctions de distribution site-site. Si la position du site α sur la molécule i

est dénoté par riα et celui du site β sur la molécule j par rjβ, alors la fonction de

distribution site-site radiale, sRDF gαβ (r) est défini comme:

gαβ (rαβ) =
〈ρiα (riα) ρjβ (rjβ)〉

ραρβ

(10)
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oú la densité ρα = Nα/V est la densité d’un site α.

Les fonctions de distribution site-site ont une interprétation physique analogue

à celle de la RDF. Elles sont aussi directement rattachés aux facteurs de structure,

mesuré par la diffusion de rayons X et les neutrons. D’autre part, l’intégration sur

tous les angles implique une perte irrémédiable de renseignements. Ainsi, la fonction

de distribution totale ne peut être reconstruite exactement à partir de l’ensemble fini

de toutes les fonctions de distribution site-site.

3. La Théorie de Kirkwood-Buff

En 1951 Kirkwood et Buff [2] ont proposé une théorie des fluctuations de concentra-

tion dans les solutions. Ils ont montré que les propriétés thermodynamiques comme

les volumes molaire partiels, la compressibilité isotherme et les dérivées du potentiel

chimique par rapport à la concentration, peuvent être exprimé comme les intégrales

des fonctions de distribution radiales de toutes les paires moléculaires présentent dans

les solutions. Quelques décades plus tard, Ben-Naim [3] a suggéré que les mesures

expérimentales des quantités thermodynamiques peuvent, à leur tour, donner les ren-

seignements sur les distributions moléculaires. L’intégrale de Kirkwood-Buff (KBI)

est définie comme:

Gij = 4π

∫ ∞

0

(
g

(2)
ij (r)− 1

)
r2dr (11)

oú i et j représent le soluté et/ou le solvant et gij (r) la fonction de distribution radiale

correspondante.

Les équations valables pour un système binaire sont données dans le paragraphe

suivant, mais la relation semblable peut être écrite pour chaque système à plusieurs

composants. Il est convenable d’exprimer les KBIs(Gij) dans les unités de
[

cm3

mol

]
:

Gij = −G12δij + (1− δij)

(
RTχT − V1V2

VmD̃

)
+

δij

χi

(
Vi

D̃
− Vm

)
(12)
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oú R représente la constante de gaz R = 8.3145JK−1mol−1, χT est la compressibilité

thermique, Vm est le volume molaire, Vj est le volume molaire partiel et µj est le

potentiel chimique pour la fraction molaire χj du mélange et le D̃ = χj
∂βµj

∂χj

.

4. Dynamique moléculaire

En théorie des liquides, on considère souvent que la simulation fournit des données

presque exactes et quasi-expérimentales, à la condition que les modèles bien définis.

Ceci est particulièrement vrai des modèles les liquides simples purs [1]. Les deux

méthodes numériques les plus largement utilisées sont: la méthode de la Dynamique

Moléculaire (MD) et la méthode de Monte-Carlo (MC) [4] [5].

Pour cette thèse, les simulations ont été exécutées en utilisant le programme de

DLPOLY de la Dynamique Moléculaire qui a été développée dans le laboratoire de

Daresbury à Cardiff [6]. Plusieurs différents modèles ont été utilisés pour la simula-

tion des liquides associés, comme l’eau, méthanol et tert-butanol, aussi bien que de

mélange alcools-eau. Les détails sur les champs de force ainsi que les acronymes des

modèles sont énumérés dans la Table I. Tous les modèles sont des modèles site-site

et les approximations de corps rigide ont été utilisées pour modéliser les liaisons in-

tramoléculaire. Le corps rigide est une collection d’atomes dont la géométrie locale

est invariante dans le temps (pas de polarisation). La dynamique de corps rigide est

décrite par le mouvement translationnel du centre de masse et la rotation du corps

rigide. Les interactions inter-moléculaires sont exprimées comme une somme de po-

tentiels de Lennard-Jones et potentiels de Coulomb. Donc le potentiel entre deux

molécules i et j est défini comme la somme d’interactions entre les sites α et β, sur

les molécules i et j, respectivement, avec les charges partielles qαi et qβj, et le diamètre

Lennard-Jones σαiβj, l’énergie εαiβj et les distances relatives rαiβj.

Uij(r) =
∑

4εαiβj

[(
σαiβj

rαiβj

)12

−
(

σαiβj

rαiβj

)6
]

+
∑ 1

4πεo

qαiqβi

rαiβj

(13)
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Les paramètres intermoléculaires Lennard-Jones ont été calculés par l’utilisation

des règles Lorentz-Berthelot pour mélane εαβ =
√

εααεββ et σαβ=(σαα + σββ) /2.

Les conditions des limites périodiques ont été utilisées pour imiter un système

pseudo-infini. Nous avons exécuté la simulation dans les ensembles canonique (NTV

constant) et isobare-isotherme (NPT constant). Les conditions standard ont été im-

posées: la température T=300 K et la pression de 1 atm, maintenus par le thermostat

et barostat de Berendsen avec les temps de relaxation de 0.1 ps et de 0.5 ps, respec-

tivement. Le pas de temps d’intégration a été fixé à 2 fs. Pour l’équilibration les

périodes de au moins 100 ps ont été nécessaires. Nous avons aussi vérifié la conver-

gence de l’énergie intérieure, le volume, la pression, et la stabilisation des fonctions

de distribution. Le calcul des valeurs thermodynamiques, aussi bien que d’autre fonc-

tions, a été exécuté pour un temps d’au moins 64 ps, pris après l’équilibration. Le

pas de temps de 0.5 ps a été utilisé pour la collecte des fonctions de distribution.
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• Table I. Champ de Force

Méthanol OPLS [7] Méthanol WS [8]

H O CH3 H O CH3

ε(kJmol−1) 0.0 0.71131 0.86612 0.088 0.6506 0.8672

σ(Å) 0.0 3.071 3.775 1.58 2.664 3.748

q(e) 0.435 -0.7 0.265 0.52 -0.82 0.3

tertbutanol OPLS [7]

H O C CH3 CH3 CH3

ε(kJmol−1) 0.0 0.71172 0.20936 0.67073 0.67073 0.67073

σÅ 0.0 3.07 3.80 3.91 3.91 3.91

q(e) 0.435 -0.7 0.265 0.0 0.0 0.0

Eau SPC/E [9] Eau TIP4P [10]

HW OW HW OW M

ε(kJmol−1) 0.0 0.650 0.0 0.648 0.0

σ(Å) 0.0 3.116 0.0 3.15365 0.0

q(e) 0.4238 -0.8476 0.5200 0.0 -1.0400

Eau TIP5P [11]

HW OW M1 M2

ε(kJmol−1) 0.0 0.6694 0.0 0.0

σÅ 0.0 3.12 0.0 0.0

q(e) 0.241 0.0 -0.241 -0.241

Acétone OPLS [12]

C O CH3 CH3

ε(kJmol−1) 0.440 0.879 0.67 0.67

σÅ 3.75 2.96 3.91 3.91

q(e) 0.3 -0.424 0.62 0.62
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5. Fluctuations de densité dans l’ensemble N-constant

Afin de clarifier plusieurs problèmes importants qui concernent le calcul des propriétés

structurelles, nous avons examiné la contribution des corrélations de paires au-delàdes

premiers voisins pour les systèmes purs en utilisant les calculs de KBIs et les calculs

d’énergies configurationelles.

La forme asymptotique de RDF aussi bien que la fonction de densité de paire

pour un système fini, est d’habitude décrite avec un correction de 1/N. La correction

générale a été d’abord trouvé par Ornstein et Zernike [13]:

lim
(r→∞)

ρ (1, 2) = ρ2

(
1− ρkBTχT

N

)
(14)

Il a été prouvé de façon plus générale par Lebowitz et Percus [14] dans le cadre de la

thermodynamique statistique. Nous avons évalué comment ce fait affecte les résultats

de la simulation, c’est--dire comment les résultats dépendant de la taille du système.

D’autres questions importantes concerne le calcul de l’intégrale de Kirkwood-Buff.

KBIs simulés sont obtenus par l’hypothèse que:

Gαβ = 4π

∫ ∞

0

(gµV T (r)− 1) r2dr = 4π

∫ R

0

(gNV T (r)− 1) r2dr (15)

Donc, on suppose que dans l’ensemble N-constant nous avons les fluctuations de

densité apparente qui donnent le même résultats que celles dans le système infini.

Lebowitz et Percus [14] discutent aussi sur la nature locale de la densité, et ils mon-

trent qu’une densité qui varie lentement peut être interprété en représentant chaque

élément liquide comme un système ouvert qui échange des particules avec les éléments

liquides adjacents (le nombre de particules total étant maintenu). Cela donne le sens

à un potentiel chimique local aussi bien que àdes fluctuations de la densité locale dans

des systèmes à N-constant. Donc, on peut utiliser les simulation dans l’ensemble à N-

constant pour le calcul des intégrales de Kirkwood-Buff qui est rigoureusement défini

seulement pour les ensembles ouverts de type Grand Canonique.
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Le calcul de RDF et de KBI pour les liquides moléculaires est fait en utilisant les

fonctions site-site. En suivant comment les valeurs asymptotiques sont atteintes, on

peut présenter les quantités courantes (running). L’intégrale courante de Kirkwood-

Buff pour les sites α et β Gαβ (R) est defini par:

Gαβ (R) = 4π

∫ R

0

(
g

(2)
αβ (r)− 1

)
r2dr (16)

D’après le comportement asymptotique d’ intégrales courante KBI on peut con-

stater qu’aux distances intermoléculaires courtes cette quantité oscille, reflétant l’arrangement

microscopique de molécules, tandis que pour des distances les plus grandes elle ne varie

plus, atteignant ainsi sa valeur asymptotique.

Gαβ = lim
(r→∞)

Gαβ (R) = G pour les sites α et β. (17)

De la meme facon, la compressibilité courante peut etre obtenue par l’équation:

χT (R) =
1 + ρG (R)

ρkBT
(18)

avec χT (R →∞) = χT .

L’énergie interne d’excès d’un liquide moléculaire qui est d’ecrit par les interactions

additives par paire des sites vαβ (r) et les RDFs site-site, correspondant, est donné

par:

Uαβ (R) = 2πρ2

R∫

0

vαβ (r) gαβ (r) r2dr (19)

oú les énergies de configuration totales sont égales:

U ex

N
=

∑

α,β

Uαβ (R →∞) (20)

Le terme Uαβ (R) est une nouvelle quantité et il calcule la contribution courante de

la distribution de énergie. Il est fondé sur l’analogie avec l’intégrale de Kirkwood-Buff
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courante (l’équation 16). L’équation 20 permet de calculer séparément les contribu-

tions des interactions Lennard-Jones interactions, et celles des charges partielles. On

peut alors étudier comment chacun des type d’interaction contribue à l’établissement

global de l’énergie du système macroscopique.

L’énergie configurationelle peut être obtenu aussi, en utilisant des méthodes stan-

dard, comme la troncature du potentiel et les sommes d’Ewald. Nous avons évalué

la consistance de ces deux calculs, quand la taille de systèmes a été changée. Cette

étude inclut une simulation de dynamique moléculaire de plusieurs modèle d’eau, aussi

bien que les liquides organiques comme l’acétone et le méthanol, àla température de

300 K et la pression de 1 atm et l’utilisation de plusieurs tailles de système, depuis

N = 256 jusqu’à N = 10976 pour l’eau et N = 256-2048 pour d’autre liquides or-

ganiques. Ici, nous présentons comme un exemple, les résultats de la simulation de

l’eau, mais les résultats semblable ont étés aussi obtenus pour d’autres systèmes

étudiés, comme le méthanol et l’acétone. La Figure 1 montre les KBI courants

(l’équation 16) calculés pour les modèles différents d’eau, aussi bien que la valeur

expérimentale G = −16.9 cm3/mol. Cette valeur a été déduite de la compressibilité

expérimentale à la température ambiante qui est χT = 0.4566 GPa−1[15]. La valeur

pour la compressibilité réduite est alors χ∗T = χT

χ0
T

= 0.0623. La correspondance RDFs,

qui sont égaux àsRDF pour les sites O-O, sont montré dans le haut insert.

L’énergie de Coulomb totale résultante est montrée dans la figure 2, tous les deux

pour les modèles SPC/E et TIPnP. Nous remarquons d’abord que le RDF (l’équation

19) s’accorde très bien avec le calcul direct, tant pour le Lennard-Jones que pour les

énergies de Coulomb.

Notre but principal dans cette étude est la structure de liquides moléculaires

comme l’eau, le méthanol et l’acétone, notamment au-delàdu premier pic des RDF.

Nous avons montré que ces corrélations, qui reflètent les fluctuations de densité, don-

nent des KBIs (ou autrement dit la compressibilité) qui sont constant. Ce fait indique

que les simulations à N-constant n’affectent pas les corrélations dans un large inter-

valle de distance, qui va jusqu’àla demi-bote. En plus, pour tous les modèles étudiés
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Figure 1: L’intégrale de Kirkwood-Buff courante pour les modèles d’eau et pour de
différentes grandeurs de système (SPC/E: N=256 (jaune), 864 (rouge), 2048 (bleu),
4000 (vert), 10,976 (noir); TIP4P: N=2048 (magenta); TIP5P: N=2048 (cyan)).
L’insert supérieur montre le RDF avec memes conventions en couleur. Plus bas
l’insert montre running la compressibilité (réduite) (l’équation 18) pour tous modèles
avec memes conventions en couleur. La ligne horizontale rouge est la compressibilité
expérimentale.

ici, la valeur numérique obtenue pour le KBI des simulations présente un accord tout

à fait remarquable avec les valeurs expérimentales. A lui seul, ce résultat indique

que, non seulement les modèles reproduisent les fluctuations de densité correctement,

mais aussi dans un grand intervalle de distances intermoléculaires.

Nous avons montré que la dépendance de la grandeur n’affecte pas les fonctions

de corrélations. Finalement, nous analysé la distribution d’énergie en comparant la

moyenne avec celle obtenue par le calcul direct des RDF site-site. Cette analyse révè

le que la convergence des interactions LJ est environ 15 Å, alors que l’énergie de
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Figure 2: Les contributions “running” Coulomb total et Lennard-Jones (montré dans
l’insert) les énergies pour les modèles d’eau. Les conventions en couleur sont le meme
comme dans la figure 1. Les lignes horizontales (tous les deux dans le principal et
l’insert) dénote les valeurs des énergies calculé directement dans les simulations.

Coulomb montre des oscillations régulières avec une période sans doute rattachée à

l’alternance de charges de site positifs et négatifs, alors que la décroissance semble

contrôlée par la force d’écrantage. Ce calcul fournit quelques renseignements indirects

sur la structure du liquide pur. Nous avons prouvé que la simulation permet d’obtenir

des résultats concernant la micro-structure et les propriétés qui sont rattachées aux

fluctuations. Donc, elle peut être utilisée pour aborder les fluctuations spatiales et

l’organisation de la micro-hétérogènes dans les liquides pur et dans leur mélanges.
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6. Alcools

Les alcools sont des molécules organiques dans lequel un groupe hydroxyle (-OH) est

attaché àun atome de carbone (-C) d’un alkyle ou groupe alkyle substitué. La for-

mule générale pour un simple l’alcool est CnH2n+1OH. Ils sont classifiés dans les trois

sous-ensembles importants: primaire, secondaire et tertiaire, basé sur le nombre de

carbones avec qui -C est attaché. Le plus petit alcool primaire simple est le méthanol.

L’alcool secondaire le plus simple est de l’alcool isopropyl (propan-2-ol), et un alcool

tertiaire simple est de l’alcool de tert-butyle ou tert-butanol (2-methylpropan-2-ol).

Pour ces alcools les propriétés chimiques et physiques sont fortement sous l’influence

de la nature opposée de leurs composants: le groupe hydroxyle polaire et la queue hy-

drophobe de carbone. La dominance d’une affinité sur l’autre définit aussi la solubilité

d’alcools dans l’eau ou d’autres solvants. Dans le cas d’alcools simples, la tendance

du groupe - OH à former les liaisons hydrogènes permet de vaincre la résistance à

l’eau de la partie hydrophobe, les rendant ainsi solubles à toutes les concentrations.

Dans notre recherche, nous nous concentrons sur le méthanol et tert-butanol. Le

méthanol comme le plus simple de tous les alcools et le tert-butanol car, en plus du

fait d’avoir la géométrie caractéristique de le la partie hydrophobe, il est aussi le plus

grand alcool qui est complètement soluble avec l’eau.

7. Micro-structure de liquides purs

On pense généralement aux liquides comme étant macroscopiquement homogènes,

surtout quand ils sont considérés loin des transitions de phase. Pourtant, dans les

liquides associés, la liaison hydrogène qui est extrêmement directionnelle, a tendance

à modifier localement leur structure, en menant à la formation d’immiscibilité locale

par petits groupements dans la phase homogène à équilibre. A savoir, la topolo-

gie de la liaison hydrogène dépend de l’electronegativité atomique et la forme de

la molécule. La molécule de méthanol, par exemple, a une connectivité linéaire:
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un groupe de hydroxyle OH est en moyenne en liaison avec deux hydrogènes des

molécules adjacentes. Les molécules d’eau forment des liaisons tetrahedrales qui per-

mettent quatre voisins. Pourtant, le fait qu’un système a une topologie anisotrope des

voisins au contact n’est pas suffisant pour le classer cela comme micro-structuré ou

micro-hétérogène. La définition de micro-structure implique l’existence d’associations

spécifiques de molécules sur une plus grande échelle que le contact de paire. C’est

toujours une définition vague, puisque que nous n’avons pas définit les propriétés qui

devraient être sensibles à un tel agrégation, les ”signatures” (thermodynamique ou

structurel) qui émergeraient d’une telle organisation locale. Nous avons donc étudié

par dynamique moléculaire les liquides purs, le méthanol, le tert-butanol ainsi que

l’eau, pour extraire les renseignements sur les propriétés de agrégation.

Nous nous sommes concentrés sur les fonctions de corrélation de densité: fonction

de distribution radiale et facteur de structure. Les propriétés du facteur de struc-

ture sont bien comprises, comme par exemple dans le cas des cristaux. Il a une

forme caractérisée par les interférences constructives et destructives des interférences

sur les atomes périodiquement arrangés. De même, le facteur de structure dans les

liquides indique une périodicité, dans le sens en fait de moyenne, de l’arrangement

des molécules dans le liquide. Donc, il devrait fournir des renseignements sur les

structures locales dans les liquides associés. Nous avons considéré les fonctions de

distribution radiales site-site, afin de produire partiellement les informations angu-

laires et aussi la fonction de distribution radial du centre de masse. Les RDF site-site

sont définis comme:

gαβ (rαβ) =
〈ρα (rα) ρβ (rβ)〉

ραρβ

(21)

En plus de la fonction de site de site gαβ (rαβ), nous avons aussi calculé les facteurs

de structure correspondants:

Sαβ (k) = 1 + ρ

∫
dre−ikrgαβ (r) (22)

Aussi, notre analyse consiste à compter de différentes tailles et des formes de
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groupes liés par la liaison hydrogène. Pour les liquides simples, la distribution de

groupe est un résultat de la fluctuation du nombre de particules et nous utiliserons

cette caractéristique comme une référence. La différence entre le distributions de

groupe calculée et la référence montreront agrégation spécifique qui est la conséquence

de l’heterogenéité locale. Les probabilités de trouver un groupe de grandeur sont

définies comme:

p (n) =

∑

k

s (k, n)

∑

n,k

s (k, n)
(23)

oú s (k, n) représente le nombre de clusters de la taille n dans la configuration k. Donc,

p (n) représente la distribution de taille de agrégat. Pour cette analyse nous avons

choisi la définition de Stillinger [16] oú deux particules sont liés s’ils sont séparés par

moins qu’une certaine valeur d’approche. En pratique, cette distance est choisie pour

correspondre au contact de paire moyen comme décrit par la fonction de distribution

radiale.

La figure 3 montre la fonction de distribution radiale au site pour les sites de

méthanol. Le panneau supérieur montre des corrélations entre les sites de méthyle

aussi bien que la fonction de distribution radiale entre centre de masse. Les autres

panneaux montrent les RDFs des sites qui sont impliqués dans la liaison hydrogène.

La première caracté ristique remarquable sont les oscillations prononcées dans gMM (r)

aussi bien que dans gcm (r), que pour la distance plus grande que ≈6 Å sont presque

superposé. Le gcm (r) a aussi un premier pic étroit qui est la signature de liaison

hydrogène. Donc, la RDF du centre de masse comprend la corrélations à courte

portée en raison de la forte interaction entre les molécules adjacentes et les oscillations

dues à l’empilement moléculaire typiques pour les liquides simples. Les fonctions de

distribution impliquant les sites qui sont lies avec la liaison hydrogène ont aussi des

caractéristiques de courte portée caractéristiques: le fort premier le pic qui correspond

à une liaison hydrogène. La valeur maximale dans gOH (r) est à la distance 2.5 Å qui

est la valeur entrée dans l’usage général pour la liason hydrogène.

Ce qui est surprenant c’est que toutes les fonctions de distribution des HB-sites
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montrent un manque de corrélations pour les distances moyennes et grandes. Les

RDFs de ces sites pour les distances plus grandes que ≈8 Å sont apparemment

égaux à un, pendant que le gcm (r), pour la même distance, a toujours la struc-

ture oscillatoire typique d’un liquide. Le manque d’oscillations pour les distances de

médium-á-longue portée est d’une manière caractéristique trouvée dans la fonction

de distribution monomère-monomère dans les liquides de polymères [17].
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Figure 3: Les RDFs site de site pour OPLS et les modèles de WS de méthanol. Panel
du haut: pour le sites MM (magenta) et le centre de masse (noir). Panel du milieu:
pour OO (rouge) et les sites HH(verts). Panel du bas: pour OH le panel noir, OM
(cyan) et les sites HM (bleus). Pour tous les données, les courbes complètes sont pour
le modèle d’OPLS et anéanties pour WS modèle.

Donc, ces résultats peuvent être interprétés comme: les molécules MetOH ont ten-

dance à former des châınes localement, O et les sites H étant fortement en corrélation

le long les châınes, pendant que les sites M sont distribués aléatoirement autour des
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châınes. La distribution de sites M correspond àune distribution uniforme et n’est

pas apparemment influencée par la formation de châıne. Les corrélations de site

de méthyle aussi bien que le centre de masse ont des caractéristiques semblables au

liquide simples, la structure oscillatoire prononcée indiquant l’empilement typique

du liquide dense, pendant que l’oxygène et les sites hydrogènes ont les corrélations

anisotropes typiques d’une structure de châıne.

Dans le cas du tert-butanol, comme montré dans la figure 4, tous les sites montrent

le pic pointu typique de la liaison hydrogène. Cela indique que la liaison hydrogène

influence aussi les corrélations à courte portée de sites qui ne sont pas impliqués

dans ces interaction. Les RDF des centres de masses sont presque identiques à que

indirectement évalue les positions centrales de l’atome de carbone dans la molécule.

A part le premier pic, toutes les corrélations dans le panneau de gauche suit les

oscillations d’empilement des liquides simples, et ils sont superposés dans les distances

médium-á-grandes. On peut imaginer que ces oscillations estiment grossièrement le

diamètre de particule LJ-sphériques du centre de masse qui ont donc des empilements

semblables. Donc, nous attribuons cette valeur à la grandeur moléculaire moyenne.

Par contraste avec le méthanol, toutes les fonctions de distribution de tert-butanol

affichent le comportement oscillatoire, avec la différence principale dans la période

d’oscillation: les sites qui sont liés avec la liaison hydrogène ont une période plus

grande que le périodicité de corrélation des centres de masses. Alors qu’on s’attend

à ce que la structure d’empilement soit de la grandeur moléculaire, une plus grand

période indique que les corrélations dues àla liaison hydrogène sont modulées par la

supra-structure résultante. Le fait que cette dernière structure oscillatoire est absente

pour le méthanol est indicatif des différences dans l’organisation locale entre deux

liquides: les molécules de TBA forment des micelles sphérique, donc la modulation

du RDF est plus semblable à celle d’un liquide et plus structurée que pour cas de

méthanol, dont nous avons vu la structure de type polymère. Nous nous attendons

donc à observer dans les facteurs de la structure les différences dans la structure

affichées par les RDFs.



xxx

0 5 10 15 20
0,0

0,5

1,0

1,5

2,0

2,5

0 5 10 15
0

2

4

6

8

 

  

 
MM
CC
cm-cm

0 5 10 15 20 25
0,0

0,5

1,0

1,5

2,0

2,5

g
(r

)

r (Å)r (Å)

 

 

 

 

OO
HH

 

 

 

 

Figure 4: Les RDFs site de site pour OPLS tert-butanol; panel gauche: MM (ma-
genta), CC (vert) et noir pour le centre de masse; panel juste: OO (rouge), HH (bleu)
(l’insert montre le détail de le pics).

La figure 5 montre les facteurs de structure pour le méthanol site de site. Dans

les panneaux supérieurs nous montrons les facteurs de structure pour les sites de

méthyle et le centre de masse, pendant que le panneau plus bas représente les sites

liés par la liaison hydrogène. Les facteurs de structure dans le panneau supérieur

ressemblent à ceux d’un liquide de Lennard-Jones-type. Le premier pic dans SMM (k)

est à keff = 1.75 Å−1, dont nous pouvons extraire σeff = 3.42 Å, cela correspond

grossièrement à la grandeur du site de méthyle. Le pic principal dans les facteurs de

structure d’habitude indique la structure empilement. Dans notre cas cela correspond

aux premiers pics du centre de masse aussi bien que le premier pic dans le facteur de

structure de méthyle.

Par contraste avec cela, les facteurs de structure impliquant les sites qui sont liés

avec la liaison hydrogène (le panneau plus bas) ont une forme très particulière: ils
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Figure 5: Les facteurs de structure de site du RDFs (OPLS et les modèles de WS)
montré dans la figue 3, avec la meme couleur et convention de ligne; panel supérieur:
le MM site et le centre de masse; fond panel: OO, OH et les HH. Le pré-pic est
indiqué par la flèche.

ont un pic à kp plus petit alors keff . La plus petite valeur de k correspond à la plus

grande grande de la structure, par exemple SOO (k) a kp = 1.25 Å−1 qui correspond

à un périodicité de σp ≈5.1 Å. Nous appellerons pré-pic ce pic pour souligner que

sa valeur en k est plus petite que celle du pic principal (ce pic est aussi appelé

le pic intérieur dans la littérature [18]). Conformément à l’interprétation spatiale

précédente, nous associons ce pré-pic à la structure semblable à la châıne de sites

liée par liaison hydrogènes dans le méthanol liquide. La figure 6 montre le facteur

de structure du tert-butanol. De nouveau, les facteurs de structure semblables àcelui

d’un liquide typique sont observés pour tous les sites hydrophobes. Le pic principal

de Scm (k) aussi bien que SCC (k) et SMM (k), est au vecteur de signe keff = 1.34
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Å−1 qui correspond à un estimé de la taille moléculaire σeff ≈5.6 Å. La facteur

de la structure de site hydrogène affiche un pré-pic conforme à la longueur 7.85 Å.

Donc, ces deux longueurs correspondent aux deux périodes différentes de la structure

oscillatoire dans la figure 4. Le pré-pic est plus haut que le pic principal, qui accentue

la forte influence de l’association sur les caractéristiques structurel dans le TBA, par

opposition au cas de méthanol liquide, oú le facteur de structure pour le pic principal

a la valeur la plus élevée.
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Figure 6: Les facteurs de structure de site-site pour un RDFs pour OPLS tert-butanol
montré dans figure 4, avec la méme couleur convention. Le pré-pic est indiqué par la
flèche.

Dans la figure 7 nous présentons les résultats pour de probabilité de distribution

d’agrégats comme une fonction de taille de ces agrégats, pour les modèle de WS et

OPLS du méthanol. Le panneau inséré montre pMM (n) pour les agrégations n¡250
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pour le groupe méthyle et pour deux différentes valeurs de contact lc. Les valeurs

s’étendent les distances autour des premiers minimums de gcm (r) (voir la figure 3). La

courbe suit la décroissance de type exponentiel pour de petites grandeurs de agrégat

lc. Les agrégats de grande taille apparaissent pour de plus grandes valeurs de lc. Cela

est en accord avec ce qu’on trouve dans le cas de liquides simples. Le panneau àgauche

dans la figure 7 montre l’agrégation pOO (n) pour les sites oxygènes. La forme globale

est semblable à celle trouvée pour l’agrégation du groupement méthyle, pourtant,

nous observons un pic évident autour de n=5. Cette caractéristique est robuste au

choix de lc pour valeurs autour des premiers minimums.
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Figure 7: La probabilite de clusters de site pour OPLS et WS méthanol: panels
gauches: clusters de site oxygène. panel du milieu: cluster de site méthyle. Pour
chaque clustering les résultats pour deux distances sont montrées. Les données pour
le modèle d’OPLS sont dans les carrés et WS dans les cercles.



xxxiv

Les probabilités élevées pour les tailles de cluster environ 5 indiquent que ces clus-

ters apparaissent plus fréquemment que prévu, indiquant ainsi les structures préférées.

De meme, l’analyse pour le cas de tert-butanol montre un pic à n égale à 4. Pour

l’oxygène, la probabilité d’aggrégat à n=1 est plus élevée que à n=4, indiquant la

plus grande probabilité de monomère. L’algorithme detecte des motifs aggrégés en

forme de boucle, mais aussi des chaines ouvertes. L’analyse est robuste au choix de

la valeur d’approche minimale des sites. Nous négligeons délibérement les clusters

de taille infinie en nous concentrant sur ceux de taille petite. Donc les résultats

plus significatifs sont des motifs structurels trouvés dans le clusters de tailles favor-

ables. Pour le cas de méthanol, dans la gamme n=3-7, nous trouvons que 81 % des

clusters forment les châınes ouvertes et que seulement 19 % apparaissent sous forme

des boucles qui connectent les atomes d’oxygène. Pour le tert-butanol, les meme

calculs ont montré, que dans la taille de n = 3 − 7, environ 65 % des OO clusters

sont des boucles, et 35 % forment une structure de châıne. En cas de deux alcohols

nets simulés, méthanol et tert-butanol, nous avons montré que leurs phases liquides

sont partiellement ou complètement micro-structuré dans les conditions ambiantes.

Nous insistons sur le fait que ces liquides désordonnés sont en fait hautement micro-

structurés sans être pour autant en instabilité. C’est attesté par la petite valeur du

facteur de structure à k = 0. Nous avons montré que les fonctions de corrélation de

densité de site-site traduisent une haute structuration locale. Les fonctions de site hy-

drophobes ressemblent a ceux d’un liquide simple, tandis que les sites qui participent

à la liaison hydrogène traduisent la structuration spécifique. Les facteurs de structure

confirment l’existence de structures locales en accord avec l’analyse en clusters. Le

méthanol apparait comme plus faiblement associé tandis que le TBA est fortement

associé en micelles.

En examinant le cas d’eau liquide, nous n’avons pas trouvé d’évidence de cluster-

ing par l’analyse utilisée dans ce travail, ce qui est aussi en accord avec les conclu-

sions d’autres auteurs [19]. Par rapport à ce point, il est intéressant de noter que le

comportement aux petits k du facteur de structure d’eau montre une augmentation
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remarquable à la température ambiante [20]. Ceci semble suggérer qu’un mécanisme

de type fluctuation de densité se substitue à celui de clustering pour ce liquide si

particulier.

8. Micro-hétérogénéité dans les mélanges eau-alcool

L’existence d’inhomogeneities à l’echelle du nanomètre dans les solutions aqueuses

est maintenant acceptée comme une évidence depuis les dernières 10 années, surtout

grace aux simulations numériques, mais ils sont aussi supportés par toute une série

de résultats expérimentaux. En effet, l’entropie très basse de mélange dans les so-

lutions de méthanol et l’eau (plus basse que pour un mélange ideal) a été expliquée

en utilisant le concept d’immiscibility locale entre l’eau et de méthanol [21]. Les

études spectroscopiques confirment aussi le clustering local d’espèces dans les solu-

tions aqueuses [22]. Donc, c’est la compréhension des propriétés microscopique qui

nous aide à dévoiler les caractéristiques macroscopiques. L’idée principale est que la

ségrégation locale entre l’eau et l’alcool aide à préserver l’homogénéité globale ainsi

que le désordre macroscopique.

La comparaison entre valeuers expérimentales et simulées des propriétes thermo-

dynamiques telles que le volume, la densité et enthalpies, montre que les simula-

tions sont en bonne mesures pour capturer ces propriétes particulières. Pourtant,

l’analyse des quantités d’excès, qui sondent directement les contribution non-idéales,

indiquent que, sur ce niveau, les modèles de simulation ont manqué de suivre les

résultats expérimentaux. En effet, l’excès d’enthalpie a un maximum pour la con-

centration molaire environ 0.3, que le modèles de simulation ont du mal à reproduire

correctement [23], [24]. L’appréciation directe des inhomogeneités locales se fait par

les fonctions de corrélation: la fonction de distribution radiale et le facteur de struc-

tures S(k), définis comme dans les chapitres précédents. La fonction de site mesure

maintenant la corrélation entre les sites de chaque espèce, mais aussi les corrélations

de inter-espèces. Alors, le RKBI est égal :
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Gαiβj (R) = 4π

∫ R

0

(
g

(2)
αiβj (r)− 1

)
r2dr (24)

oú αi et βj sites correspond au site des espèces i et j, àsavoir αi et βj peuvent etre

égaux àn’importe lequel d’H, O, C, M, OW et sites HW. De méme les facteurs de

structure, pour les sites αi et βj, sont définis comme:

Sαiβj (k) = 1 + ραiβj

∫
dre−ikrgαiβj (r) (25)

oú ραjeβj est la densité de sites
√

ραjρβj et ραj = Nαj/V .

La figure 8 montre la dépendance de concentration pour le rapport molaire 0.2,

0.5 et 0.8: le panel supérieur montre la distribution radiale de site, pendant que le

panel plus bas montre les “running” KBIs. Nous avons choisi le site de méthyle et le

site d’oxygène d’eau puisque ces sites suivent les distributions de centre des masse,

donc c’est un bon choix pour contrôler les corrélations d’espèces.

Les fonctions de corrélations de méthyle montrent des oscillations semblables au

liquide et il n’y a presque aucune variation de ces fonctions en ce qui concerne la

concentration. Ce qui est intéressant est le comportement de l’eau. La hauteur du

premier pic du RDF augmente comme la concentration d’eau diminue, indiquant la

majoration de la structure première-adjacente. Donc, les molécules d’eau ont une

forte tendance à s’associer et c’est valide meme pour les petites fractions d’eau. Nous

avons aussi évalué le comportement des sites à liaison hydrogènes du méthanol. Pour

les concentrations de méthanol basses les corrélations entre les sites d’oxygène sont

très faibles et le self-clustering de sites d’oxygène augmente avec l’augmentation des

concentrations de méthanol. Cela montre que dans les solutions riches d’eau, la

compétition pour HB entre l’eau et le méthanol détruit les châınes de OO et c’est

seulement quand la concentration de méthanol augmente que les sites d’oxygène

restituent la self-association anisotrope. Meme si ces résultats semblent au pre-

mier coup d’oeil attendu, il est important de remarquer que les sites à liaison hy-

drogène dans le méthanol montrent une tendance différente que dans le cas de l’eau.

Les molécules d’eau ont la plus forte préférence pour les self-associations , tandis
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Figure 8: La dépendance de concentration du fonctions de distribution radial sont
affichées par les panels supérieurs et les RKBIs correspondants dans les panels plus
bas. Les corrélations de méthanol sont montrées dans les fonctions rouges, d’eau dans
bleu et corrélations de trans-espèces dans vert. Les trois panels verticaux correspondez
aux fractions molar d’alcool 0.2, 0.5 et 0.8 respectivement. Les RKBIs sont montrés
pour deux différentes courses.

que les sites àliaison hydrogènes dans le méthanol agissent en faveur du clustering

de l’eau, en soutenant plutôt qu’en détruisant les cluster d’eau. Les informations

des RDFs sont plus faciles de comprendre aux courtes distances courte, puisque les

corrélations àlongues portées sont cachées dans les queues apparemment sans struc-

turation évidente. Donc, la corrélation pour les distances à moyenne portée sera

plus évidente dans RKBI, oú les variations petites seront amplifiées dans le processus

d’intégration.

Les corrélations àl ongue portée pour tous les sites de méthanol (le méthyle aussi

bien que l’oxygène hydroxyl) montrent un comportement semblable, ils ont une valeur
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asymptotique bien définie et de petites déviations de cette conduite sont observées

pour la concentration de méthanol basse. Les corrélations d’eau, sont au contraire

amplifiées. EN effet, KBIs de l’eau montrent la grande variation de la partie asympto-

tique et il n’est pas clair si ceux-ci tendent vers une limite asymptotique bien définie.

De plus, les résultats des différents calculs par simulation reproduisent les données

qui sont significativement différentes. Ces résultats peuvent etre expliqués par le fait

que l’eau est hautement associée et les différentes simulations échantillonnent sur de

différentes réalisations de ces associations.

Pourquoi alors les fonctions de méthanol ne montrent pas de tels signes de l’association?

Les instantanés des simulations sont montrés dans la figure 10. On voit clairement que

le méthanol est homogènement distribué, pendant que les clusters d’eau forment une

structure semblable àla structure d’éponge. Nous pouvons suggérer que méthanol est

homogènement distribué d’une telle façon que la majorité de molécules de méthanol

sont aussi liées àcelles des domaines d’eau, et que juste quelques molécules de méthanol

sont piégées dans les domaines d’eau. Donc, la micro-ségrégation d’espèces est im-

plicite derrière les résultats montrés ici. C’est quand meme énigmatique que l’eau et

le méthanol, en tant que donneurs et les accepteurs de liaisons hydrogènes, ne forment

pas un mélange plus homogène. Les différences entre les organisations d’eau et de

méthanol sont meme plus apparenten regard des facteurs de structure. Nous nous

intéressons particulièrement aux comportement aux petits k-vecteurs, qui fournissent

les informations sur l’organisation à grande échelle. Nous montrons des résultats puor

concentration 0.2,0.5 et 0.8 (la figure 9)

Nous remarquons que tous les facteurs de structure d’eau montrent des pics aux pe-

tit k-vecteur qui indiquent l’existence d’associations à grande d’échelle. Les résultats

des différentes runs montrent aussi la variation des pics aux petits-k, qui peuvent

alors etre attribués à la réalisation spécifique d’un clustering de l’eau en réseau de

type éponge. Le fait que le pré-pic dans le cas du méthanol, ou dans le cas de l’eau,

possède un petit épaulement dans Sww (k), qui varie avec la concentration, montre

qu’il y a une contribution venant de l’interface eau-alcool. D’habitude, la haute
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Figure 9: Les dépendances de concentration de les facteurs de structure. Les fonctions
de méthyle sont montrées dans les panels supérieurs et les facteurs de structure d’eau
dans panels plus bas. Dans chaque graphique sont montrées les résultats de deux
calculs successifs avec temps de 64 ps: les fonctions de méthanol sont en rouge et
magenta, tandis que les fonctions pour l’eau sont montrées en bleu et cyan. Comme
le cas précédent, les facteurs de structure de chaque système pur sont présentés en
noi : dans le panel supérieur le facteur de structure de méthanol et dans le panel plus
bas le facteur de structure d’eau pure. Les trois panels verticaux correspondent aux
fractions molaires d’alcool 0.2, 0.5 et 0.8 respectivement.

valeur à S (k → 0) indique que les fluctuations de concentration sont élevées et que

le système est près de la séparation de phase. On peut conclure, que dans notre sim-

ulation, la taille du système est trop petite pour décrire les fluctuations qui mèneront

le système à la séparation de phase, et donc tous les résultats sont évocateurs des

structures résultantes. Quand meme, la demixion possible du système est indiquée

par l’augmentation de la fluctuation pour toutes les composantes, qui n’est pas le

cas ici. Donc, nous trouvons l’autre explication plus appropriée. A savoir que ces

mélanges sont stables mais très fortements micro-structurés. Cette immiscibilité lo-

cale est due au fait que les liaisons l’hydrogènes entre les espèces identiques et croisées
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ont tendance àse former pour des raisons énergétique et non pas entropiques, de sorte

que le réseau forme une structure localement hétérogène. Notre analyse montre que

cela s’accompagne aussi d’augmentation des fluctuations de concentrations, simple-

ment à cause la répartition spatiale inégale des espèces moléculaires, qui est donc la

caractéristique inhérente de ces liquides.

Pourtant, les facteurs de structure expérimentaux ne montrent aucun spécificité

dans la région des petits-k-région, pour les mélanges aqueux [21]. Comment nous

pouvons relier dans ce cas la simulation et résultats expérimentaux? Chaque état

petit d’un liquide ordinaire semble hétérogène en raison des fluctuations de nom-

bre de particule. Dans l’approche statistique des liquides simples, en faisant en

moyenne, les fluctuations de densité ou de la concentration disparaissent. Pour les

mélanges aqueux, la MH est l’inhomogénéité locale oú dans chacun l’état les com-

posantes exposent leur immiscibilité locale, et c’est la caractéristique permanente de

chaque réalisation de ce type de système. On peut donc supposer, que la MH cor-

respond àun assemblage des espèces, mais avec un temps de vie bien défini. Donc,

pour l’échantillonnage étendu, la signature due à la MH disparâıtra puisque la variété

de formes et de grandeurs des clusters d’espèces aura une contribution statistique

moyenne. Par contre, dans notre simulation, en raison de la petite grandeur de

système et de aussi de la petite échelle de temps, nous ne sommes capable de mesurer

qu’une partie de la réalisation de la MH, qui produit produit une variation du fac-

teur de structure au petit k-vecteur. Donc, nous avons un échantillonnage sur la

dynamique interne de la micro-heterogeneité. C’est la première fois que la MH est

ainsi rattachée à une quantité mesurable, bien que seulement par l’intermédiaire des

résultats de simulation. L’idée que nous proposons est que la micro-heterogeneité

est la caractéristique inhérente des solutions aqueuses. L’étude de la MH nécessite

des grandes tailles de système et de l’échantillonnage les temps dans les simulations

des solutions aqueuses. Les grand tailles de système sont nécessaires afin de bien

echantilloner toutes les conformations statistiques de la micro-hétérogénéité. Nous

croyons que cette étude est un premier pas dans la direction que nous croyons est
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important pour l’enquete des solutions aqueuses. Nous allons meme jusqu’à postuler

une analogie entre les mélanges aqueux et les micro-émulsions (ME). En effet, les

solutions aqueuses sont un peu semblables àdes systèmes micellaires, dans lequel le

comportement structurelle dominant est gouverné par la micelle en tant que méta-

molécules. La différence principale est que les molécules solute sont plus petites et

ne produit pas un tel morphologies comme micelle. Les micro-émulsions ont été bien

étudiées entre les années 70 et le début des années quatre-vingt, tant du point de vue

expérimental que du point de vue théorique et beaucoup de livres ont été écrits sur

ce sujet. Les vraies approches microscopiques à ME, basé sur la mécanique statis-

tique, sont assez rares [25] [26] [27]. Le fait fondamental qui a permit une formulation

théorique de ces systèmes est que la différence d’échelle entre les motifs formé (env-

iron 1 µ m) et la taille des clusters (aux limites de peu Å à peu de dizaines de Å).

Autrement dit, les forces moléculaires qui produisent la variété de motifs sont les

memes que dans les systèmes que nous étudions, à l’exception du fait que souvent les

micro-émulsions sont des systèmes au moins ternaires, alors nous avons des systèmes

binaires. Pourtant, les expériences récentes avec les rayons X et les neutrons ont

également été faites sur les systèmes binaires d’eau et d’alcool [28], avec pour but

de detecter des analogies. Quand on s’approche de l’échelle moléculaire, il devient

plus dur de définir bien les concepts géométriques de la courbure, qui sont important

pour les micelles et les vésicules. Dès que ce point important est admis, l’importance

de la présente analogie devient plus clair. Ici, nous pouvons parler d’un état fon-

damental pour l’auto-assemblage, quand il commence juste à se produire à l’échelle

moléculaire. Cela offre de nouveaux défis auxquels faire face, tant expérimentalement

que théoriquement.

8. Conclusion

Dans cette thèse, nous étudions l’organisation structurelle dans les liquides associés,

les systèmes purs et mélangés, en utilisant les théories microscopiques comme la
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physique statistique de liquides et les simulations de dynamique moléculaire clas-

siques. Les systèmes étudiés sont de l’eau, alcohols, comme méthanol et tert-butanol

et les mélanges d’alcool et d’eau. Nous distinguons entre l’organisation structurelle

dans les liquides pur et celle dans les systèmes binaires, d’abord défini par l’association

entre molécules de meme espèce, et ensuite celle du mélange qui suit celle conforme à

la ségrégation locale des composantes du système binaire. Dans chaque cas, la liaison

hydrogène hautement anisotropique joue le rôle principal, et pourtant sur de différents

niveaux. Dans les liquides pur l’association se fait par des interactions spécifiques de

entre sites et l’inhomogénéité résulte du clustering de sites. C’est cette caractéristique

que nous avons appelé la micro-structuration [29] [30]. Dans les systèmes binaires,

l’inhomogénéité est en raison d’une ségrégation locale des espèces et cela représente

ce nous avons appelé la micro-hétérogénéité [31].

Les simulations numérique de mieux comprendre le comportement des système

simulés à la nano-échelle dans l’espace et la pico-échelle en temps. C’est une façon

unique d’étudier le comportement des liquides au niveau d’un microétat. Donc, la

première partie de notre investigation devait évaluer la possibilité pour les simulations

pour reproduire correctement la microstructure. La microstructure des systèmes est

directement liée aux fonctions de distribution de paires de particule, car pour un

système homogène, la fonction d’un corps -la densité- a une valeur constante. La

connexion entre les données simulées et les propriétés de système réel a été faite par

le calcul de l’intégrale de Kirkwood-Buff (KBI).

Le KBI peut être calculé tant de la simulation s’ensuit que le thermodynamique

mesures. Nous avons évalué le comportement des systèmes purs et la reproductibilité

du KBI et les fluctuations de concentration. Cette étude montre que les simulation des

systèmes purs reproduit correctement la valeur de KBI (ou encore la compressibilité

isothermal du système). Donc, la microstructure des systèmes simulés peuvent être

raccordés à la microstructure dans les systèmes réels, au moins sur le niveau des

quantités que nous exploré. Les différences entre le facteur de structure entre avec

liaison hydrogènes et les sites hydrophobes montrent la différence dans l’organisation
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locale de ces sites. A savoir, le pré-pic dans les facteurs de structure de sites H-

bonded indique le clustering sur les tailles plus grandes que la distance des premiers

voisins, tandis que les corrélations entre les sites de méthyles montrent seulement le

pic principal, qui correspond à la structure d’empilement et indique une organisation

homogène de ces sites non-liés.

Ces conclusions sont corroborées par le comportement des RDFs. L’utilisation de

l’analogie de polymère en cas du méthanol et de l’analogie avec le système de micelle

pour le cas du tert-butanol. De plus, le calcul de distribution de clusters permet

de définir la taille la plus probable clusters. Dans le cas sites hydrophobes, aussi

bien que le centre de la masse, les distributions de cluster montrent seulement des

caractéristiques des distribution de particules homègenement réparties.

La simulation des melange d’eau et de méthanol montre des résultats encore plus

intéressants. Le comportement aux petits-k indiquele clustering de l’eau et donc

l’immiscibilité local des espèces. Cela est aussi montré aussi par la non-convergence

du RKBIs pour les corrélations d’eau. Nous avons liés ces conclusions avec l’existence

de la micro-hétérogénéité. Donc, le pré-pic dans les corrélations de sites indiquent

les préférences structurelles des sites liés avec la liason hydrogène et les pics aux plus

petits-k avec les corrélations d’espèces (tous les sites qui appartiennent à une meme

espèce) indiquant le clustering des espèces.

Pourquoi insiter sur la MH? Nous avons analysé les données qui ont été accumulées

pendant un temps d’échantillonnage petit (sur les 100 ps), pendant lequel nous avons

essayé seulement quelques réalisations topologiques de l’agrégation. Par cette voie

nous pourrions analyser l’évolution du MH par les pas de 100 ps. Cette dynamique

de MH est vu par les variations du facteur de structure d’eau aux petit-k et aux

travers d’é chantillonnages différents. Le petit temps d’é chantillonnage permet alors

l’approche instantané du clustering des espèces, dans un sens que nous regardons le

système sur une période courte comparée aux temps de relaxation véritables de la

MH (que nous pensons être à l’echelle d’au moins 1 ns). Au contraire, le facteur de

structure expérimental d’eau ne montre aucun grand variations dans la région des
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petits-k. Donc nous attendons à ce que, avec l’augmentation des temps de simulation

et surtout les tailles de systèmes simulés, les résultats de simulation s’approcheront

de ceux expérimentaux. Quand même, en utilisant les arguments présentés ici, nous

avons montré qu’il vaut la peine de faire ces calculs observer le système sur une echelle

plus petite, qui révèle toute la richesse de la micro-structuration dans ces mélange.

L’idée de l’inhomogénéité locale est en dehors de la nécessité des grandes tailles

de système et des grands temps de simulation. Par exemple, la pico-seconde est le

temps de la relaxation du mouvement moléculaire, mais la réorganisation de MH,

basé sur nos résultats de simulation, semble être dans la gamme de la nanoseconde.

Puisque le système est dans l’état désordonné, nous sommes devant le problème de

décrire une forme d’ordre local àl’intérieur du désordre global. C’est ce qui rend les

solutions aqueuses fascinantes, malgré le fait que l’aspect physico-chimique-physique

a été complètement étudié au siècle passé. Nous avons suggéré l’analogie entre la

micro-émulsion et les mélanges de liquides associés: les deux systèmes sont àl’échelle

globale homogène alors qu’ils sont localement hétérogènes, sauf que dans la micro-

émulsion nous avons les motifs nettement définies comme les micelles, tandis que dans

les mélanges de liquides associés, les grandeurs, les formes et les temps des agrégations

ne sont pas bien définis.

L’analogie dérivée dans cette étude est intéressante d’un autre point de vue fon-

damental: il permet analyse très détaillée et explicite de la structure àune echelle mi-

croscopique, ce qui est presque impossible pour les micro-émulsions, oú la différence

dans l’échelle entre le solvant, surfactant et la micro-structure est bien plus grand.

Les résultats obtenes dans cette thèse peuvent aider àla construction d’une ap-

proche théorique plus microscopique pour les liquides associés et leurs mélanges. C’est

notre conviction qu’une telle approche pourrait avoir des résultats inattendus dans

d’autres domaines de la physique de la matière condensé et de la physico-chimie.
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Figure 10: Les instantanés des simulations aux fractions molaires 0.5: panels haut
méthanol; panels fond l’eau [32].
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Chapter 1

Introduction

Water is the essential medium for the life processes and also one of the most investi-

gated liquids. From the scientific and the philosophical point of view it holds a key to

the beginning and the existence of life. Regardless of many theories that have been

proposed to explain its anomalous features, water and aqueous solutions still hold

many secrets and present hard problem for present day science.

The hydrogen bond is certainly the key to understanding the behavior of hydrogen-

bonded liquids also called associated liquids. The strong directional hydrogen bonding

induces the anisotropic connectivity between molecules and therefore the associated

liquids tend to be locally more organized than ordinary liquids. Liquids are disor-

dered, as opposed to solids, and a fundamental question for our understanding of

liquid-systems is how the local heterogeneity can exist at the same time that the

global homogeneity is preserved. Also, it is not clear how the local properties would

get translated in the measurable average quantities or what are the macroscopic

properties that are sensitive to this small scale behavior of the system. These are the

questions that we will address in this thesis.

Our systems of interest are water-alcohol mixtures. The alcohols are smallest

1
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amphipathic molecules. The amphipathicity comes from the opposite nature of their

constituents, in this case the hydrophilic and hydrophobic part. Due to their asym-

metrical preference for water in the aqueous mixture the amphipathic molecules form

specific types of structural organization. The common explanation, for this structural

organization, is hydrophobic effect that buries the hydrophobic part inside the core

leaving the hydrophilic part in touch with the water molecules. The types of aggre-

gates are more apparent for the cases of large amphipathic molecules, for example

for surfactant (surface-active-agents) in the emulsions. Also the hydrophobic effect is

commonly invoked in processes that involve large macromolecules such as folding of

the proteins. However, keeping in mind these ”large-scale behavior”, we start from

the simpler molecular system in order to study the features which on the microscopic

scale have same cause as the above mentioned phenomena. Therefore, the main aim of

this thesis is to investigate the structural organization in water-alcohol mixtures using

the microscopic theories such as the statistical theory of liquids and classical computer

simulations. The common opinion was that these liquids are disordered and isotropic,

where alcohol and water, both hydrogen donors and acceptors, mix well. However,

recent findings show that these constituents actually exhibit nano-scale immiscibility

[21]. This local inhomogeneity of mixtures we will call micro-heterogeneity.

The local heterogeneities are well understood in the case of mixing-demixing phase

transitions. What happens in case of demixing is that the system starts to develop

strong concentration fluctuations, which lead to the final separation of the compo-

nents. During this metastable state, the persisting large local heterogeneities appear

and the system is no longer homogeneous. Therefore, the enhancement of concen-

tration fluctuations are a signal of the instability of the system and this metastable
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state of the system looks micro-heterogeneous.

The aqueous solutions show micro-heterogeneities in equilibrium state far away

from the phase transitions. Namely, in the associated system, the hydrogen bonding

stabilizes the local fluctuations and induces local ordering. Therefore the systems

close to demixing and associated liquids both have features of micro-heterogeneity

but for different reasons: the first one because of strong concentration fluctuations

and the second due to a strong local interaction. This is the first important point of

this thesis. In line with this we will distinguish the concentration fluctuation (CF)

and micro-heterogeneity (MH): the first one that controls the phase behavior and the

second one describes the local inhomogeneities in equilibrium systems.

One can also ask does a MH system have different order-properties than disor-

dered liquids. There are few liquids that are not disordered systems such as nematic

liquids which have orientational order and smetic liquids with both orientational and

positional order. These liquids have global order that is achieved after liquid-liquid

phase transition. MH systems have only one liquid phase, that has no global order.

In other words, nano-scale order of MH system does not propagate on a larger scale,

and these systems preserve the fundamental disordered nature of liquids.

Therefore, MH systems are more reminiscent of systems such as isotropic micro-

emulsion (ME). MEs are also macroscopically in the homogeneous phase, but have

a more ”organized” local heterogeneity, as e.g. micelles. The quantitative difference

between these two systems, as mentioned before is: micro-emulsions of binary systems

occur for amphiphilic molecules with rather large oily tails [28], while the solutes that

we consider here are smaller molecules such as simple alcohols and amides. Therefore,

the comparison between these molecules and ME may seem far fetched, and one does
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not expect any domains or micellar-like structure to be formed in such systems. How-

ever, in this thesis, we wish to show that the frontier between ME and MH systems

is, in reality very diffuse, if it exists at all. First of all, from a thermodynamical point

of view, ME are considered to be in the isotropic disordered phase, and the morpho-

logical changes that occur in them, such as micellar or bicontinuous structure, are

still considered to be disordered phases [33]. Only in very specific conditions do ME

form true ordered phases, such as lyotropic liquid-crystalline or lamellar phases, or

when liquid-gas type phase separation occurs for micellar fluid itself [25]. So, in the

isotropic state, ME are truly random mixtures, much like our systems that we con-

sider here. Therefore, the frontier between ME and MH systems herein, appears to

be somewhat blurred, and the differences must be essentially microscopic in nature,

and not thermodynamical.

Clearly, the difference between CF and MH should help to characterize the difference

between the ME and the binary mixtures we consider here. Concentration fluctua-

tion is a well defined concept of statistical mechanics: it is related to the statistical

averages defining species density fluctuations 〈NαNβ〉 − 〈Nα〉 〈Nβ〉 where Nα is the

number of particles of species α, and the average is performed in the Grand Canonical

ensemble which allows for fluctuations in the number of particles. This quantity is

related to the small wave vector limit k → 0 of the structure factor Sαβ (k), hence the

long range behavior of the pair distribution function gαβ (r). We already mentioned

that concentration fluctuations govern the stability of particular phase and have sev-

eral well defined thermodynamical signatures, such as the divergence of a response

function near spinodal line [34]. On the other hand the MH is a nouvelle concept,

not yet well defined.
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Can MH be viewed as a particular case of CF? Any system when viewed instanta-

neously is locally inhomogeneous for purely statistical reasons. The statistical average

of such inhomogeneity is precisely due to concentration fluctuations. In the MH sys-

tem the inhomogeneities will persist after averaging over all microstates. What is

the structure that does not vanish in averaging? Particular case in ME are micelles

and clearly this structure will leave a signature in statistically averaged values. For

our mixture of smaller molecules, the micro-heterogeneities do not have well defined

shapes. Also, the idea of persistence is ill-defined. The hydrogen bond interactions

are responsible for MH: they bind molecules very directionally and over a short pe-

riod of time (0.1 picosecond). Therefore, over a short period of time the local order

will be destroyed and reformed again, and this frequency will also influence the time

averaging.

The connection between this fact and the existence of MH is not clearly defined

at present. The manifestation of micro-heterogeneities over thermodynamical quan-

tities is also not very well characterized. Clearly the MH should influence also the

thermodynamical properties of the system. The most recent example is the study of

methanol-water solutions where the unusually small entropy of mixing is explained

using concepts of local immiscibility of water and methanol [21]. Another example is

also the large Kirkwood-Buff values reported for some specific aqueous mixtures. The

Kirkwood-Buff value is directly connected to a concentration fluctuation, and its large

value is indication of the enhancement of CF therefore the instability of phase. We

would like to show that these systems are also influenced by the micro-heterogeneous

structuring which enables such systems to be in a stable phase.

At present, it is not possible to disentangle the contributions from CF and MF to
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any of the measurable quantities. However, the computational simulations provide

unique tools to tackle the microscopic properties of systems. It is a unique way of

having an open window to a small time- and space-scale behavior. In other words,

computer simulations allow us to observe systems on the level of one microstate. This

is especially important in our case since the problem of interest is the manifestation

of the nano-scale order which at the present is not clear how or if it will influence

the macroscopic properties. Therefore, we will use primarily the results of compu-

tational simulations to provide clues to clarify the role of micro-heterogeneities in

aqueous solutions. However, computer simulations present new problems specific to

the application of this method to micro-heterogeneous systems. Computational mod-

els, despite the imposed constraints, reproduce reliable results, as we will see when

comparing the macroscopic observable such as enthalpies, volumes or densities. It

is the properties such as excess values that are more sensitive to microscopic details

where the deviation from real values are mostly observed. Another quantity, also very

sensitive to simulation constraints, is the Kirkwood-Buff integral which corresponds

to the integral of radial distribution function. The obvious reason is the limited num-

ber of particles as well as system sizes that are presently possible to simulate. Also, it

is known that aqueous solutions are very ”difficult” to simulate and the large system

sizes as well as extensive time averaging is obligatory [8][35]. Spurious demixing of

water-solute systems such as is a case for acetone-water mixture [36] were also re-

ported. One may argue that the stability of aqueous solutions is governed both by

the MH and CF. We need large system to accommodate the long-ranged correlation

of micro-heterogeneity. Also, the MH system has a local structure on the time scale

that is not yet well understood, it is clear that if we do not use a sufficiently long
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simulation time, the true homogeneity of our system will not be reached. We will

explore the variety of specific simulation results and try to address several problems

mentioned above.

The organization of the doctorate is as follows. We start by the theoretical back-

ground of the statistical physics of liquids, following the theoretical framework of

Kirkwood-Buff theory. The brief introduction of the molecular dynamics simulation

and simulation models as well as the features of the DLPOLY package is given in the

fourth chapter. The following chapters present the results of this thesis. In the fifth

chapter the reliability of computer simulation in studying the microstructure of the

liquid system is discussed. Brief introduction on the alcohols is in the sixth chapter.

The results that consider the behavior of a neat system, as well as the definition

of microstructure and the correlation functions that probe the local inhomogeneity

are presented in the seventh chapter. The micro-heterogeneity of the alcohol-water

mixture is described in the eight chapter. Finally, overall conclusion is given in the

last chapter.



Chapter 2

Statistical physics of simple liquids

At room temperature the mixture of alcohol and water is in the liquid state. The

liquid state of matter is intuitively perceived as being intermediate in nature between

a gas and a solid. Its complexity can not be described using simple ideal models, as

the ideal gas model is used for gasses or the model of harmonic oscillators for solid

states. In this chapter, we give an outline of the statistical physics of liquids which

provides a theoretical framework for the description of a liquid state.

2.1 The liquid state

A starting point for discussion of the properties of any given system is the relation-

ship between pressure P, number density ρ and temperature T in different phases,

summarized in the equation od state f (P, ρ, T ) = 0.

In the one-component phase diagram in ρ − T plane typical of a simple liquid

presented at figure 2.1, the region of existence of liquid is bounded above by the critical

point and below by the triple point. Above the critical point there is only a single fluid

phase. The coexistence curve separates liquid, gas and the solid states. The curve

8
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inside the coexistence curve is called spinodal. The region bounded in-between the

spinodal and coexistence curve is the region of meta-stable physical states. The states

inside spinodal are unstable states, which are physically not allowed. The liquid-gas

and liquid-solid transitions have discontinuous paths and pass over the region inside

the coexistence curve. Similar diagrams are also valid for the mixing-demixing phase

transitions.

Therefore, even if the computational simulation is the tool to study liquids, one

should be very careful to put the simulated model in the conditions which correspond

to a liquid state. Otherwise the simulated system can be in a fluid or glassy state

or even in a physically unreal state such as states inside a coexistence curve. The

first step, therefore, is to verify that all the physical and chemical parameters of the

simulated system agree with those for a liquid state, otherwise the applicability of

the statistical-physical-theory is put in question.

Here we will focus on the classical liquids, meaning we use classical equations and

force fields to describe the behavior of a liquid state. Using the classical approx-

imation, the contribution to thermodynamic properties which arises from thermal

motion can be separated from those due to interactions between particles. The sep-

aration of kinetic and potential terms suggests a simple means of characterizing the

liquid state. Let the VN be the total potential energy of a system and let KN be the

total kinetic energy. Then in the liquid state we find that KN/|VN | ≈ 1, where as

KN/|VN | À 1 corresponds to the dilute gas and KN/|VN | ¿ 1 to the low-temperature

solid. In the liquid state the energy due to thermal motion is of the same order as

the energy of the interaction between particles. Therefore, the structure of the liq-

uid results from both of these contributions. In ideal gas atoms are non-interacting
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Figure 2.1: Schematic phase diagram of a typical monoatomic system like argon.

and thermodynamic quantities have only contributions arising from thermal motion.

In the low-temperature solid the energy of thermal motion is small, the structure

is rigidly defined mainly by the potential energy. Liquids and dense fluids are also

distinguished from dilute gases by the greater importance of collision processes and

short-range correlations, and from solids by the lack of long-range order. Nevertheless

we will question the presence of long-range order in the associated liquids, and try to

expand this oversimplified view of the liquid state.

In a simple monoatomic fluid such as argon Ar or simple molecular system like

nitrogen N2 the correlations are short-ranged and the structure is mainly governed by

the packing requirements. Associated liquids like water or alcohols have another level

of complexity due to the attraction (or equally to the repulsion) of specific parts of the

molecule. The structure of such systems is not defined only by the packing of molecule
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but it combines several contributions such as attraction, repulsion and steric effects.

These contributions result in a build-up of long-range correlations like a hydrogen-

network in water, or towards the local ordering that we call micro-heterogeneity.

We will use a well established theoretical background of the theory of simple

liquids. We will see how the phenomena such as micro-heterogeneity fit into this

framework.

2.2 Statistical physics: introduction

Theoretical background is developed using classical statistical physics and the links

between statistical mechanics and thermodynamics. We follow the outline given in

the book by Hansen and McDonald, ”Theory of simple liquids” [1].

Statistical physics provides a framework for relating the microscopic properties

of individual atoms and molecules to the macroscopic or bulk properties of matter,

therefore it explains thermodynamics as a natural result of statistics and mechanics

(classical and quantum) at the microscopic level.

The dynamical state of a one-component monoatomic fluid at any instant is de-

fined by the 3N coordinates rN = {r1, ..., rN} and 3N momenta pN = {p1, ...,pN}
of the particles. The values of these 6N variables define a phase point in a 6N-

dimensional phase-space. One phase-point corresponds to one state of a system. The

Hamiltonian of the system in a absence of an external field can be written as:

H
(
rN ,pN

)
= KN

(
pN

)
+ VN

(
rN

)
(2.1)

where kinetic energy KN

(
pN

)
=

∑N

i=1
|pi|2
2m

and VN

(
rN

)
is the inter-particle poten-

tial energy. The motion of phase point along its phase trajectory is determined by
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Hamilton’s equations:

ṙi =
∂H

∂pi

ṗi = −∂H

∂ri

(2.2)

The trajectory of a system could be equally defined using Newton’s equations. Given

the coordinates and momenta of the particles at some instant, their values later (or

earlier) in time can be in principle calculated as solution to Newton’s equations of

motions i.e. to a set of 3N coupled second-order, differential equations, which in

absence of an external field, have the form:

mri = −∇iVN

(
rN

)
(2.3)

In statistical mechanics all observable properties of a system are calculated as

averages over phase trajectories (the method of Boltzmann) or as averages over an

ensemble of system (the method of Gibbs). In the Gibbs formulation the distribution

of phase points of the ensemble is described by a phase-space probability density

f [N ]
(
rN ,pN ; t

)
: ∫ ∫

f [N ]
(
rN ,pN ; t

)
drNdpN = 1, for all t. (2.4)

A statistical ensemble is an arbitrary large collection of imaginary systems, each of

which is a replica of the physical system of interest and characterized by the same

macroscopic properties. The systems of the ensemble differ from each other in the

microscopic realization of the coordinates and momenta of the particles. Given a

complete knowledge of the probability density it would be possible to calculate the

average value of any function of the coordinates and momenta. Usually we are not

interested in a full phase-space probability, but only in the behavior of the subset

of particles of size n, and redundant information can be eliminated by integration of

f [N ] over the coordinates and momenta of the other (N − n) particles. We define a
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reduced phase-space distribution function:

f [n] (rn,pn; t) =
N !

(N − n)!

∫ ∫
f [N ]

(
rN ,pN ; t

)
dr(N−n)dp(N−n) (2.5)

For simplicity we use index N as particle number in further text. Let the equilibrium

averages of the function B
(
rN ,pN

)
be 〈B〉. Then time average 〈B〉t for a given

dynamical history is:

〈B〉t = lim
τ→∞

1

τ

τ∫

0

B
(
rN (t) ,pN (t)

)
dt (2.6)

and the equilibrium ensemble average 〈B〉e is defined as integral over equilibrium

probability density f
[N ]
o

(
rN ,pN

)
:

〈B〉e =

∫ ∫
B

(
rN ,pN

)
f [N ]

o

(
rN ,pN

)
drNdpN (2.7)

The time average and the ensemble average are identical if the system is ergodic. The

hypothesis of ergodicity is crucial to our comparison of the simulation and theoretical

data. The ergodicity means that after a suitable lapse of time the phase trajectory

of the system will have passed an equal number of times through every phase-space

element defined by the probability density function. In the experiments, the measure-

ments are usually done as time averages. Similarly, the results of molecular dynamics

simulation are also time averages, but in the Monte Carlo modeling the calculation

of mean values corresponds to the ensemble average.

The equilibrium probability density is defined by the macroscopic parameters

that characterize the ensemble. The canonical ensemble describes systems that have

constant volume V, number of particles N and temperature T and corresponding

probability density is given by:

f [N ]
o

(
rN ,pN

)
=

1

h3NN !

e−βH

QN

(2.8)
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where h is Planck constant, β = 1/(kBT ) where kB = 1.3810−23J/K is the Boltz-

mann constant and the normalization constant QN is the canonical partition function,

defined as:

QN =
1

h3NN !

∫ ∫
e−βHdrN , dpN (2.9)

The inclusion of factor 1
h3N ensures that we have dimensionless function and also for

the consistency with the corresponding quantities of quantum statistical mechanics,

while division by N ! ensures that microscopic states are correctly counted.

The thermodynamic potential appropriate to the (N, V, T ) constant condition is

Helmholtz free energy F. The term potential is introduced because, the equilibrium

at constant (N, V, T ) is reached when F is a minimum with respect to the variation of

any internal parameter. The link between statistical mechanics and thermodynam-

ics is established via relation between thermodynamical potential and the partition

function:

F = −kBT lnQN (2.10)

Separation into the kinetic and potential terms in the manner of integration over all

momenta in relation 2.9 allows the partition function to be rewritten as:

QN =
1

N !

ZN

Λ3N
(2.11)

where Λ is the de Broglie wavelength Λ =
√

2πβ~2
m

(m is the mass of an atom and ~

is the reduced Planck constant divided by 2π) and configurational integral is:

ZN =

∫
e−βVN drN (2.12)

For ideal gas approximation the potential VN is equal to 0 and configuration integral

ZN = V N . Hence the partition function of the uniform ideal gas is:

Qid
N =

1

N !

V N

Λ3N
(2.13)
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Therefore, the partition function for the canonical ensemble can be written in the

form:

QN = Qid
N

ZN

V N
(2.14)

Then, upon taking the logarithm of both sides, the Helmholtz free energy separates

naturally into “ideal” and “excess” part:

F = F id + F ex = kBT
(
lnΛ3ρ− 1

)− kBT ln
ZN

V N
(2.15)

where in calculation of the ideal part we used Stirling’s approximation for lnN !.

The ideal part is the free energy of the system where the interactions between

particles are small and therefore can be neglected and the excess part contains the

contribution to the free energy that arises from interaction between particles. A

similar division into ideal and excess parts can be made of any thermodynamical

function obtained by differentiation of F with respect to either V or T. For example,

the internal energy is equal to the sum of kinetic (ideal gas energy) and potential

energy:

U = U id + U ex =
3

2
NkBT +

1

ZN

∫
VNe−βVN drN (2.16)

In the isothermal-isobaric ensemble, the fixed parameters are pressure P, temperature

T, and number of particle N, while the thermodynamical potential that characterizes

this system is the Gibbs free energy G:

G = F + PV = −kBT ln∆N (2.17)

The link with thermodynamics as written in the relation 2.17, is made through the

isothermal-isobaric partition function ∆N :

∆N =
βP

h3NN !

∞∫

0

dV

∫ ∫
e−β(H+PV )drNdpN = βP

∞∫

0

e−βPV QNdV (2.18)
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Similar conversion can be made between other different ensembles and it is defined

by Laplace transform for partition functions QA and Legendre transform for thermo-

dynamic potential ΨA:

Qnew =

∫
QAe−βaAdA (2.19)

Ψnew = ΨA + aA

where a is an intensive variable such as pressure and temperature and A is an extensive

variable such as total energy and volume.

Our outline so far considers only closed systems, ie. uniform systems containing a

fixed number of particles. The thermodynamic state of an ‘open” system corresponds

to a grand canonical ensemble and is defined by specifying the values of chemical

potential µ, volume V and temperature T. The thermodynamic potential of a grand

canonical ensemble is grand potential Ω:

Ω = F −Nµ = −PV (2.20)

The phase space of the grand canonical ensemble is the union of the phase space

corresponding to all values of the variable N with constant T and µ. The open system

means that the equilibrium is achieved by exchanging both heat and matter with the

surroundings. The equilibrium ensemble probability density is now a function of the

number of particles N:

fo

(
rN ,pN ; N

)
=

e−β(H−Nµ)

Ξ
(2.21)

where grand canonical partition function is:

Ξ =
∞∑

N=0

eNβµ

h3NN !

∫ ∫
e−βHdrNdpN (2.22)

Therefore the link with thermodynamics is established through the relation:

Ω = −kBT lnΞ (2.23)
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and the ensemble average of microscopic variable B
(
rN , pN

)
is:

〈B〉e =
∞∑

N=0

1

h3NN !

∫ ∫
B

(
rN ,pN

)
fo

(
rN ,pN ; N

)
drN , dpN (2.24)

For example, the average number of particles in the system is

〈N〉 =
∞∑

N=0

Np (N) (2.25)

where p (N) is the probability that at equilibrium a system of the ensemble contains

N particles irrespective of their coordinates and momenta:

p (N) =
1

h3NN !

∫ ∫
fo

(
rN ,pN ; N

)
drN , dpN (2.26)

The more detailed discussion of grand canonical ensemble is in chapter 3.

2.3 Fluctuations

The definition of the ensemble means that we have some fixed parameters, while other

thermodynamic parameters are allowed to fluctuate. A measure of the fluctuation

about its average value 〈B〉 is provided by a mean-square deviation σ2
B = 〈B2〉−〈B〉2.

The fluctuations are related to intensive thermodynamic quantities that measure

changes of one thermodynamic parameter with respect to another under a certain

equilibrium condition. For example the internal energy for a canonical ensemble is

obtained as:

U =
〈
H

(
rN ,pN

)〉
=

1

h3NN !QN

∫ ∫
He−βHdrN , dpN (2.27)

The heat capacity at a constant volume (the amount of energy that is given to a

system to rise a temperature for one unit under the constant volume) is defined:

cV =

(
∂U

∂T

)

V

=
1

kBT 2

(
∂U

∂β

)

V

(2.28)
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The derivation of equation 2.27 with respect to β yields:

(
∂U

∂β

)
= − 1

h3NN !

[∫ ∫
H2e−βHdrNdpN

QN

+

(∫ ∫
He−βHdrNdpN

QN

)2
]

=
〈
H2

〉− 〈H〉2 (2.29)

Thus, the heat capacity at a constant volume is equal to the fluctuation of internal

energy:

cV =
1

kBT

(〈
H2

〉− 〈H〉2) (2.30)

Similarly, the isothermal compressibility χT = − 1
V

(
∂V
∂P

)
T

correspond to the fluctua-

tion in number of particle:

〈N2〉 − 〈N〉2
〈N〉 = ρkBTχT (2.31)

The equations 2.30 and 2.31 and other fluctuation formulae can be also derived by

purely thermodynamical arguments using the theory of fluctuations [1].

2.4 Particle densities and distribution functions

The most important quantities in our analysis are pair density and pair distribution

function (as well as structure factor which corresponds to the pair distribution func-

tion in reciprocal space). Firstly, they can be calculated using the simulation data and

also measured using the thermodynamic measurements or spectroscopic and diffrac-

tion experiments. Secondly, these functions are directly related to the microstructure

of the systems and they contain the information of the correlations between particles

in the system. We emphasize this point further in the following chapters.
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The separation of the equilibrium phase-space probability density into the kinetic

and potential terms leads to a division of thermodynamic properties into ideal and

excess parts. A similar factorization can be made for reduced phase space distribution

2.5 for a canonical ensemble, which yields:

f (n)
o (rn,pn) = ρ

(n)
N (rn) f

(n)
Max. (p

n) (2.32)

where

f
(n)
Max. (p

n) =
1

(2πmkBT )3n/2
e−β

∑n
i=1

|pi|2
2m (2.33)

is the product of n independent Maxwell distributions and the ρ
(n)
N (rn) the equilibrium

n-particle density:

ρ
(n)
N (rn) =

N !

(N − n)!

1

h3NN !QN

∫ ∫
e−βHdr(N−n)dp(N−n) =

N !

(N − n)!

1

ZN

∫
e−βVN dr(N−n)

(2.34)

The equation 2.34 defines the probability of finding n particles of the system with

coordinates in the volume element drn, irrespective of the position of the remaining

particles and irrespective of all momenta. The particle densities and the related,

equilibrium particle–particle distribution functions, defined below, provide a com-

plete description of the structure of a fluid. The knowledge of the low-order particle

distribution functions in particular of the pair density ρ
(2)
N (r1, r2) is often sufficient to

calculate the equation of state and other thermodynamic properties. The definition

of the n-particle density follows:
∫

ρ
(n)
N (rn) drn =

N !

(N − n)!
(2.35)

The single-particle density of a uniform fluid is therefore equal to the overall number

density:

ρ
(1)
N (r) =

N

V
= ρ (2.36)



20

In the special case of a uniform, ideal gas the pair density is equal:

ρ
(2)
N = ρ2

(
1− 1

N

)
(2.37)

The n-particles distribution function is defined in terms of the corresponding particle

density by:

g
(n)
N (rn) =

ρ
(n)
N (r1, ..., rn)∏n

i=1 ρ
(1)
N (ri)

(2.38)

which for a homogenous system reduces to

ρng
(n)
N (rn) = ρ

(n)
N (r1, ..., rn) (2.39)

The particle distribution functions measure the extent to which the structure of a

fluid deviates from complete randomness.

The particle densities are also expressible in terms of a δ-function of position in a

form that is very convenient for later purposes. From the definition of δ-function it

follows that:

〈δ (r− r1)〉 =
1

ZN

∫
δ (r− r1) e−βVN (r1,...,rN )drn =

1

ZN

∫
...

∫
e−βVN (r,...,rN )dr2...drn

(2.40)

The ensemble average in 2.40 is a function of the coordinates r but it is independent of

the particle labels (here taken to be 1). The sum over all particles, therefore is equal

to N times the contribution from any one particle. Comparison with the definition

2.34 then shows:

ρ
(1)
N (r) =

〈
N∑

i=1

δ (r− ri)

〉
(2.41)

which represents the ensemble average of a microscopic particle density ρ (r) =

∑N
i=1 δ (r− ri) where ρ (r) is the density of one microstate of the system. Equally, the



21

microscopic density can be regarded as instantaneous density where ρ (r) is the den-

sity of system in one instant of time, that corresponds to one configuration calculated

in the simulation.

2.4.1 Pair distribution function

We will discuss in more details the pair distribution function defined as:

g
(2)
N (r1, r2) =

ρ
(2)
N (r1, r2)

ρ
(1)
N (r1) ρ

(1)
N (r2)

(2.42)

where similarly to equation 2.41 the pair density is expressible as the average of a

product of two δ-function:

ρ
(2)
N (r, r’) =

〈
N∑

i=1

N∑
j=1

i6=j

δ (r− ri) δ (r’− rj)

〉
(2.43)

If the system is homogenous and also isotropic, the pair distribution function g
(2)
N (r1, r2)

is function only of separation r = |r2 − r1| and it is usually called radial distribution

function, RDF. The δ-function formalism also yields some useful expressions for the

radial distribution function of the homogeneous and isotropic system:
〈

1

N

N∑
i=1

N∑
j=1

i6=j

δ (r− rj + ri)

〉
=

〈
1

N

∫ N∑
i=1

N∑
j=1

i6=j

δ (r’− r− rj) δ (r’− ri) dr’

〉
(2.44)

=
1

N

∫
ρ

(2)
N (r’ + r, r’) dr’ =

ρ2

N

∫
g

(2)
N (r, r’) dr’ = ρg (r)

The radial distribution function is a key quantity in the physics of liquids. The

g(r) is measurable by radiation-scattering experiments and also in indirect form by

thermodynamic measurement as explained in the chapter 3. The g(r) for liquid argon

is pictured in figure 2.2.
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Figure 2.2: Radial distribution function of argon for system of N=864 particle at
reduced temperature 0.833 (100 K) and reduced density 0.785 which corresponds to
liquid state argon. Results from diploma thesis of M. Mijaković[37].

The g(r) shows oscillation with the period that is approximately equal to a separa-

tion of atoms. This pattern is characteristic of all monoatomic liquids: the oscillation

that indicates the packing of atoms. For large r, g(r) tends to unity and vanishes as

r → 0 as a consequence of a strongly repulsive force that act at small particle sep-

arations. The definition of g(r) implies that on the average the number of particles

lying within the range r to r + dr from the reference particle is 4πρg (r) and peaks

in g (r) represent “shells” of neighbors around the reference particles. Integration of

4πr2ρg (r) up to the position of the first minimum therefore provides an estimate of

the “coordination number”, CN. The concept of a shell of neighbors and coordination

numbers is more appropriate for solids than for liquids, but it nevertheless provides a

useful measure of the structure of a liquid. From the data for argon we can estimate

that the coordination number is CN ≈ 12.2, which shows that on the average each
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atom of argon is surrounded by 12 neighbors.

Additionally, if the particles interact through the pairwise-additive forces, ther-

modynamic properties can be expressed in terms of integrals over g(r). Consider a

uniform fluid for which the total potential energy is given by the sum of pair interac-

tions:

VN

(
rN

)
=

N∑
i=1

N∑
j>i

v (rij) (2.45)

According to 2.16 and 2.45 the excess internal energy is equal:

U ex =
N (N − 1)

2

∫ ∫
v (r12)

(
1

ZN

∫
...

∫
e−βVN dr3...drn

)
dr1dr2 (2.46)

the double sum over i,j in 2.46 gives rise to N(N−1)
2

terms, each of which leads to the

same result after integration. The definition of the pair density 2.34 and of the pair

distribution function 2.42 allows 2.46 to be rewritten as:

U ex =
N2

2V 2

∫ ∫
v (r12) g

(2)
N (r1, r2) dr1dr2 (2.47)

We can take the position of particle r1 as the origin of coordinates, set r12 = |r1− r2|
and integrate over the coordinate r1 (which yields a factor V) to give:

U ex =
N2

2V 2

∫ ∫
v (r12) g (r12) dr1dr2 =

N2

2V

∫
v (r) g (r) dr (2.48)

or

U ex

N
= 2πρ

∞∫

0

v (r) g (r) r2dr (2.49)

Similarly, it is also possible to express the equation of pressure (called also the equa-

tion of state) as integral over g(r):

Pβ

ρ
= 1− 2πρβ

3

∞∫

0

v′ (r) g (r) r3dr (2.50)
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In the grand canonical ensemble the n-particle density is now a function of the prob-

ability p (N) (relation 2.26):

ρ(n) (rn) =
∞∑

N>n

p (N) ρ
(n)
N (rn) (2.51)

and the corresponding distribution function is:

g(n) (rn) =
ρ(n) (r1, ..., rn)∏n

i=1 ρ(1) (ri)
(2.52)

In a similar manner, as in equation 2.35 the integration over the coordinates yields

for a pair density: ∫ ∫
ρ(2) (r1, r2) dr1dr2 =

〈
N2

〉− 〈N〉 (2.53)

The energy equation and the pressure equation are also valid in the grand canonical

ensemble. In the grand canonical ensemble we also can define compressibility equa-

tions, which express χT as an integral over g (r). The normalization of equation 2.53

and corresponding equation for single-particle density yields:

∫ ∫ [
ρ(2) (r1, r2)− ρ(1) (r1) ρ(1) (r2)

]
dr1dr2 =

〈
N2

〉− 〈N〉 − 〈N〉2 (2.54)

For the homogeneous system follows:

〈N〉+ ρ2

∫ ∫ [
g(2) (r1, r2)− 1

]
dr1dr2 =

〈
N2

〉− 〈N〉2 (2.55)

and by using the same procedure as in 2.44 and the definition for fluctuation in

number of particles 2.31, it follows:

1 + ρ

∫
[g (r)− 1] dr =

〈N2〉 − 〈N〉2
〈N〉 = ρkBTχT (2.56)

We will broaden our discussion on the radial distribution function in the following

chapters.
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2.4.2 Structure factor

We explored also the radial distribution function in inverse space which is called the

structure factor. Namely the structure factor is a measure of the density response of

a system, initially in equilibrium, to a weak external perturbation of wavelength 2π/k

[1]. For example in neutron scattering, S (k) is proportional to the total scattered

intensity in direction of a beam determined by the momentum transfer hk between

beam and sample. This measurement enables means to determine radial distribution

functions by use of the Fourier transformation. Namely the structure factor is more

generally defined in terms of the Fourier transform of the pair correlation function:

S (k) =

〈
1

N
ρkρ−k

〉
(2.57)

where ρk is a Fourier component of the microscopic density:

ρk =

∫
ρ (r) e−ikrdr =

N∑
i=1

e−ikri (2.58)

Using the δ-function representation, the structure factor in the homogenous case

implies:

S (k) =

〈
1

N

N∑
i=1

N∑
j=1

e−ikrieikrj

〉
= 1 +

〈
1

N

N∑
i=1

N∑

j 6=i

e−ik(ri−rj)

〉
(2.59)

= 1 +

〈
1

N

N∑
i=1

N∑

j 6=i

e−ik(r−r′)δ (r− ri) δ (r′ − rj) drdr′
〉

= 1 +

∫ ∫
e−ik(r−r′)ρ

(2)
N (r− r′) drdr′

= 1 + ρ

∫
g (r) e−ikrdr

Therefore the g(r) is given by the inverse transform:

ρg (r) = (2π)−3

∫
(S (k)− 1) e−ikrdk (2.60)
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2.5 Molecular distribution functions

The above description applied to an atomic system. The description of the structure of

a homogeneous molecular fluid in terms of particle densities and distribution functions

can be developed along similar lines. Let Ri be the translational coordinates of

molecule i and let Ωi be the orientation of i in the laboratory-fixed frame of reference.

If the molecule is linear, Ωi = (θi, φi) where θi, φi are usual polar angles; if it is non-

linear, Ωi = (θi, φi, χi), where θi, φi, χi are the Euler angles. Then the generalized

molecular pair density is defined as:

ρ(2) (R, R′, Ω, Ω′) =

〈
N∑

i=1

N∑
j=1

i 6=j

δ (R−Ri) δ (R′ −Rj) δ (Ω− Ωi) δ (Ω′ − Ωj)

〉
(2.61)

and the molecular pair distribution function as:

g (R12, Ω1, Ω2) =

(
Ω

ρ

)2

ρ(2) (R12, Ω1, Ω2) (2.62)

where Ω ≡ ∫
dΩi. From the definition of Ω we get that Ω =

∫ ∫
d (cos θi) dφi = 4π for

linear case and Ω =
∫ ∫

d (cos θi) dφidχi = 8π for non-linear case. The coordinates Ri

are often taken to be those of the molecular centre of mass or some other point of high

symmetry in the molecule, but the choice of molecular centre is entirely arbitrary. To

simplify the notation it is convenient to use symbol i ≡ (Ri, Ωi) to denote both the

coordinates of the molecular centre and the orientation of molecule i. Integration of

the pair distribution function over variables Ωi, Ω2 yields a function:

gc (R) =
1

Ω2

∫ ∫
g (R12, Ω1, Ω2) dΩ1dΩ2 = 〈g (1, 2)〉Ω1,Ω2

(2.63)

When an interaction-site model is used to represent the intermolecular potential the

natural way to describe the structure of the fluid is in terms of site-site distribution
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functions. If the coordinates of site α on molecule i are denoted by riα and those

of site β on molecule j (j 6= i) by rjβ, then the site-site radial distribution function,

sRDF gαβ (r) is defined as:

gαβ (rαβ) =
〈ρiα (riα) ρjβ (rjβ)〉

ραρβ

(2.64)

where the density ρα = Nα/V is the number density of a site α. Similarly, the site-site

radial distribution function can be defined in terms of δ-function:

ρgαβ (r) =

〈
1

N

N∑
i=1

N∑
j=1

i 6=j

δ (r + r2β − r1α)

〉
= 〈 (N − 1)δ(r + r2β − r1α)〉 (2.65)

The definition 2.65 can be used to relate the site-site distribution function to the

molecular pair distribution function. Let liα be vector displacement of site α in

molecule i from the molecular centre Ri (liα = riα −Ri) Then gαβ (r)is given by the

integral of g (1, 2) over all coordinates, subject to the constraint that the vector sep-

aration of sites α, β is equal to r:

gαβ (r) =
1

Ω2

∫ ∫ ∫ ∫
dR1dR2dΩ1dΩ2g (1, 2) ∗ δ [R1 + l1α (Ω1)] δ [R2 + l2β (Ω2)− r]

=
1

Ω2

∫ ∫ ∫ ∫
dR1dR2dΩ1dΩ2g (1, 2) ∗ δ [R12 + l2β (Ω2)− l1α (Ω1)− r] (2.66)

The site-site distribution functions have a simple physical interpretation. They are

also directly related to the structure factors measured in x-ray and neutron-scattering

experiments. On the other hand, the integration in 2.66 involves an irretrievable

loss of information, and g (1, 2) cannot be reconstructed exactly from any finite set

of site-site distribution functions. Many quantities that are expressible as integrals

over g (1, 2) can also be written in terms of site-site distribution functions. If the

intermolecular potential is of the interaction-site form and the site-site potential is
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spherically symmetric, the excess internal energy is given:

U ex

N
= 2πρ

∑
α

∑

β

∞∫

0

vαβ (r) gαβ (r) r2dr (2.67)

The equation of state can be determined by integration of compressibility equation

2.56. Because the choice of molecular centre is arbitrary, and need not be the same

for each molecule, we can write:

ρkBTχT = 1 + ρ

∫
[gαβ (r)− 1] dr (2.68)

where α, β refer to any pair of sites.



Chapter 3

Kirkwood-Buff theory

In this chapter, we give a presentation of the Kirkwood-Buff (KB) theory. It is a

general statistical theory of solutions that connects the molecular distribution function

in integrated form with macroscopic properties that could be measured using standard

thermodynamic techniques. It is developed using the statistical physics and the theory

of composition fluctuation in the grand canonical ensemble. In the last section we

give several physical insights and critically address the experimental measurement of

the Kirkwood-Buff integral.

3.1 Introduction

In 1951 Kirkwood and Buff [2] proposed a theory of concentration fluctuation in so-

lutions. They have shown that the thermodynamic properties such as partial molar

volumes, isothermal compressibility, and concentration derivatives of the chemical po-

tential, could be expressed in terms of integrals of radial distribution functions of the

several types of molecular pairs present in solutions. After a few decades Ben-Naim [3]

rediscovered the power of this theory suggesting that the experimental measurements

29
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of the latter properties provide information of the molecular distribution functions

and therefore give an insight into the microstructure of a system. This especially

comes in handy in exploring the results of the computational simulations, which can

directly probe the microstructural properties.

The KB theory was introduced using the theory of the grand canonical ensemble.

It is a very general theory valid for any kind of particles, not necessarily spherical

and applicable to all types of intermolecular interaction. The grand canonical en-

semble is an ensemble of an open system that has constant volume, temperature

and chemical potential. We consider a multi-component open system that contains

N = {N1, ..., Nν} (N =
∑ν

i=1
Ni) molecules of ν-species in volume V at temperature

T with chemical potential µ = {µ1, ...µν}.
The chemical potentials are defined as the thermodynamic variables conjugate

to the numbers of particles of each species and expressible as derivatives of any of

the thermodynamic potentials. The chemical potential of species α is equal to (with

abbreviation U internal energy, F Helmholtz free energy, G Gibbs energy and H

enthalpy):

µα =

(
δU

δNα

)

V,S,N,
α

=

(
δF

δNα

)

V,T,N,
α

=

(
δG

δNα

)

P,T,N,
α

=

(
δH

δNα

)

T,S,N,
α

(3.1)

N,
α = {N1, ..., Nν}/Nα

where Nα is number of particles of species α.

The partial molar quantities are usually defined for a multi-component system

being the derivatives with respect to a mole-number of each species. For example,

the volume of a mixture, in general, is not equal to a sum of volumes occupied

by the separate components (at the same pressure and temperature) before mixing.

However, we can define the increase in volume on adding the infinitesimal amount of
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species i to a large amount of mixture of known composition. Then, the partial molar

volume of species i is equal to: Vi = ∂V
∂ni

, where ni is mole-number. Total volume

can be expressed in terms of partial molar volumes as: V =
∑ν

i=1 Vini . Similar if

we define partial quantities VNi
as derivatives with respect to the particle-number,

then V =
∑ν

i=1 VNi
Ni. The partial molar properties, which are intensive properties

and depend only on the pressure, temperature and composition of mixture, define

how much of an extensive properties, in this case volume, is to be ascribed to each

component. The function such as compressibility, heat capacity, coefficient of thermal

expansion are also called response functions, namely the compressibility is the volume

change as a response to a pressure change and heat capacity is the amount of energy

required to raise system temperature by one unit.

Using separation into “ideal” and “excess” part, the Gibbs energy and chemical

potential can be written as follows:

G = G0 + kBT

ν∑
i=1

ρilnρi + Gex (3.2)

µα = µ0
α + kBT lnρα + µex

α

where the superscripts 0 and ex indicate the standard state and the excess from the

ideal gas, respectively. Density ρα is number density of species α.

For mixtures, excess quantities such as excess molar Gibbs energy GE
m or excess

molar volume V E
m are often introduced by removing the linear mole fraction depen-

dence in terms of the pure substance quantities, for example the excess molar enthalpy

is equal to:

HE
m (χ) = Hm (χ)−

ν∑
i=1

χiHm (χi = 1) (3.3)
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The χ = {χ1, ..., χν} and Hm (χi = 1) are molar fraction in mixture and molar en-

thalpy of pure system for species i. In the following chapters we will use the con-

vention: GE as excess from ideally mixed solutions and the Gex as excess from the

ideal-gas approximation.

3.2 Short presentation of Kirkwood-Buff theory

In this section, we will introduce the KB theory. The equations of the grand canonical

ensemble are employed first to connect the pair correlation functions to fluctuation

in number of particles, and second to relate composition fluctuation to derivatives of

the chemical potential. Through these relations thermodynamic properties are linked

to molecular distribution functions. Using the same annotation as in chapter 2 the

number density of species α is:

ρ(1)
α (r) =

〈
ρ(1)

α (r)
〉

=

∞∑
N1,...Nν=0

e
µN

kBT

∫
dr1...drN

∑
iα=1

Nαδ (r− riα) QN (V, T )

Ξ (µ, V, T )
, (3.4)

where the grand canonical partition function is equal to

Ξ (µ, V, T ) =
∞∑

N1,...Nν=0

e
µN

kBT

QN (V, T ) . (3.5)

Similarly, the pair density of species α and β is (same annotation was used for a

site-site correlation in chapter 2):

ρ
(2)
αβ (r,r′) =

〈
ρ(1)

α (r) · ρ(1)
β (r′)

〉
=

〈
Nα∑

iα=1

Nβ∑
jβ=1

δ
(
r− r

iα

) · δ (
r′ − rjβ

)
〉

(3.6)

These densities posses by nature of their definition the following integrals:

∫
drρ(1) (r) = 〈Nα〉 (3.7)
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∫ ∫
dr′drρ(2)

αβ (r, r′) = 〈NαNβ〉 − δαβ 〈Nα〉

Combining the above relations we obtain expression:
∫

dr′dr
[
ρ

(2)
αβ (r, r′)− ρ(1)

α (r) ρ
(1)
β (r′)

]
= 〈NαNβ〉 − 〈Nα〉 〈Nβ〉 − δαβ 〈Nα〉 (3.8)

Using the definition for pair distribution function, that correspond to the correlation

between species α and β, g
(2)
αβ (r, r′) =

ρ
(2)
αβ(r,r′)

ρ
(1)
α (r)ρ

(1)
β (r′)

and relation 3.8 the integrated

form of pair distribution function can be expressed as function of particle number

fluctuation:
∫ (

g
(2)
αβ (r)− 1

)
dr = V

[〈NαNβ〉 − 〈Nα〉 〈Nβ〉
〈Nα〉 〈Nβ〉 − δαβ

〈Nα〉
]

(3.9)

This relation is valid for homogenous and isotropic systems, where the pair distribu-

tion function is a function of only the separation r = |r− r′|. Namely, the particle

number fluctuations are related to the radial part of the total pair distribution func-

tion, the radial distribution function g
(2)
αβ (r). We introduce the Kirkwood-Buff integral

(KBI) of species α and β as:

Gαβ = 4π

∫ ∞

0

(
g

(2)
αβ (r)− 1

)
r2dr (3.10)

Therefore, the KBIs can be also defined as a function of the fluctuation in the particle

number:

Gαβ = V

[〈NαNβ〉 − 〈Nα〉 〈Nβ〉
〈Nα〉 〈Nβ〉 − δαβ

〈Nα〉
]

(3.11)

Next one needs to establish the relation between the composition fluctuation and

the chemical potential derivatives. We start from the ensemble average for the number

of species α defined through the grand canonical probability density:

〈Nα〉 =

∞∑
N1,...Nν=0

e
µN

kBT

QN (V, T )

Ξ (µ, V, T )
= kBT

(
∂lnΞ (µ, V, T )

∂µα

)

T,V,µ′α

(3.12)
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µ
′
α = {µ1, ..., µν} /µα

Simple derivation of the relation 3.12 together with the definition of ensemble averages

and the symmetry arguments gives the relations:

kBT

(
∂ 〈Nα〉
∂µβ

)

T,V,µ
′
β

= kBT

(
∂ 〈Nβ〉
∂µα

)

T,V,µ
′
α

= 〈NαNβ〉 − 〈Nα〉 〈Nβ〉 (3.13)

To simplify the calculations, the matrices B and A are introduced:

Bαβ =
kBT

V

(
∂ 〈Nα〉
∂µβ

)

T,V,µ
′
β

= kBT


∂

〈
ρ

(1)
α

〉

∂µβ




T,V,µ
′
β

(3.14)

Aαβ =
V

kBT

(
∂µβ

∂ 〈Nα〉
)

T,V,N
′
β

=
1

kBT


 ∂µβ

∂
〈
ρ

(1)
α

〉



T,ρ
′
β

We notice that from the definition of these matrices it follows A ·B = I where I is

unit-matrix, therefore

Aαβ =
|B|αβ

|B| (3.15)

where |B|αβ is cofactor in the determinant |B|.
It is through the definition of the matrix B and relation 3.13, that we can express

the elements of matrices B in terms of particle number fluctuation, and therefore

introducing the definition 3.11 the Bαβ are equal:

Bαβ = Gαβ
〈Nα〉 〈Nβ〉

V 2
− δαβ

〈Nα〉
V

(3.16)

Usually liquid solutions are considered as homogeneous and isotropic and their

average density is equal to a constant number, therefore ρ
(1)
α (r) = 〈Nα〉

V
= cα where

cα is bulk molecular concentration of species α. Then the elements of the matrix B

can be expressed in terms of concentrations:

Bαβ = cαδ
αβ

+ cαcβGαβ (3.17)
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In order to obtain expressions for the variables measured at the constant pressure

we employ the relation that connects the derivatives for (T,V)-constant and (T,P)-

constant ensemble:

(
∂µβ

∂ 〈Nα〉
)

T,V,N
′
α

=

(
∂µβ

∂ 〈Nα〉
)

T,P,N
′
α

+

(
∂µβ

∂P

)

T,P,N

(
∂P

∂ 〈Nα〉
)

T,V,N
′
α

(3.18)

Using the identity

(
∂P

∂ 〈Nα〉
)

T,V,N
′
α

(
∂ 〈Nα〉

∂V

)

T,P,N

(
∂V

∂P

)

T,V,N

= −1 and expressions

for partial molar volume per particle and thermal compressibility VNα =

(
∂V

∂ 〈Nα〉
)

T,V,N
′
α

=

(
∂µα

∂P

)

T,N

and χT = − 1

V

(
∂V

∂P

)

T,N

we have:

(
∂µβ

∂ 〈Nα〉
)

T,P,N′
α

=

(
∂µβ

∂ 〈Nα〉
)

T,V,N′
α

− VNαVNβ

V χT

(3.19)

The right part of the equation 3.19 is linked to the Aαβ and through the definition 3.15

it is related to the elements of the matrix B. Therefore, the link with thermodynamics

is established combining the relation 3.14 and 3.19:

(
∂µβ

∂ 〈Nα〉
)

T,P,N′
α

=
|B|αβ

|B| − VNαVNβ

V χT

(3.20)

Using straightforward mathematical transformation of expression 3.20 and a well-

known Gibbs-Duhem equality
ν∑

i=1

Ni

(
∂µi

∂ 〈Nα〉
)

T,P,N
′
α

= 0, one can obtain relations:

kBTχT =
|B|∑ν

α,β |B|αβ

VNα =

∑ν
β |B|αβ

∑ν
β,γ |B|βγ

(3.21)

V

kBT

(
∂µβ

∂ 〈Nα〉
)

T,P,N′
α

= |B|αβ −
∑ν

γ cγ |B|γβ ∑ν
γ cγ |B|γα

∑ν
γ,σ cγcσ |B|γσ
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The mathematical inversion of the equation 3.21 together with the definition 3.17

gives the inversion of the Kirkwood-Buff theory that are the relations that express the

molecular distribution function in terms of the thermodynamical properties measured

at constant pressure and temperature. We also notice that relation 3.21 connects

the number fluctuation that are hidden in the B-defined terms and the thermody-

namic variables. The equations valid for a binary system are given in the following

paragraph, but the similar relation can be derived for any multi-component system.

Mathematical inversion of relations 3.21 gives the KBI of species 1 and 2 :

G12 = kBTχT − VN1VN2

V D

G11 = G12 +

(
VN2

D
− V

)
1

N1

(3.22)

G22 = G12 +

(
VN1

D
− V

)
1

N2

Where D depends on the derivatives of the chemical potential:

D =
N1

N2

(
∂βµ1

∂N1

)

P,T,N2

=
N2

N1

(
∂βµ2

∂N2

)

P,T,N1

= −
(

∂βµ1

∂N2

)

P,T,N1

= −
(

∂βµ2

∂N1

)

P,T,N2

It is convenient to express KBIs in terms of mol-fraction derivatives and in Gij

[
cm3

mol

]
units:

Gij = −G12δij + (1− δij)

(
RTχT − V1V2

VmD̃

)
+

δij

χi

(
Vi

D̃
− Vm

)
(3.23)

where R stands for the gas constant R = 8.3145JK−1mol−1 and D̃ = χi
∂βµi

∂χi

= DN .
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3.3 The experimental measurement of Kirkwood-

Buff integral

The KBIs are extremely sensitive to the experimental procedure or to the numeri-

cal treatment of the data [38][39][40]. The most critical parameter is the chemical

potential, which is connected with the energy of the insertion of a solute particle in

the mixture. This insertion energy will strongly depend, not only on the direct inter-

action between the particles, but also on the local organization of the mixture [39].

For liquid solutions, the isothermal compressibility is usually small when compared

to the other terms of the expression 3.23. The partial molar volumes can be obtained

from the total molar volume by the slope intercept method or by differentiation of

the fitted volume. The excess chemical potential is usually calculated using the mea-

surements for partial pressure. The partial pressures pi are commonly determined by

measuring the total pressure P , with the liquid mixture of known composition, and

converting the (P, χi) data set into (pi, χi) by the method due to Barker [41] whereby

an analytic function for the excess Gibbs energy of the mixture is curve-fitted to

obtain the partial pressures. The overall accuracy of KBI strongly depends on the

applicability of the fitting procedure [39].

Apart from thermodynamics, scattering techniques also provide a way to obtain

concentration fluctuations through the structure factor at zero wave vector (see chap-

ter 2). Following Bhatia and Thornton [42] one can relate density fluctuations to

concentration fluctuations through the concentration-concentration structure factor.

They showed that the scattering function is generally expressible in terms of three

structure factors Sχχ (q), SNN (q) and SNχ (q) constructed from the Fourier transforms
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of the local number density and concentration. These structure factors have the prop-

erty that at temperatures above the Debye temperature and in the long-wavelength

limit (q → 0) Sχχ (q) and SNN (q) represent, respectively, the mean square thermal

fluctuations in the particle number and concentration, and SNχ (q) the correlation

between these two fluctuations:

SNN (0) =

〈
(4N)2〉

N
=

N

V
kBTχT + δ2Sχχ (0)

Sχχ (0) = N
〈
(4χ)2〉 =

NkBT(
∂2G
∂χ2

)
T,P,N

(3.24)

SNχ (0) = 〈4N4χ〉 = −δSχχ (0)

where
〈
(4χ)2〉 is the mean square fluctuation,4χ is defined as4χ = [(1−χ)4N1−χ4N2]

N

for binary system with the molar fractions χ = N1

N
= χ1 and 1 − χ = N2

N
= χ2 and

4N = 4N1 +4N2. Factor δ =
VN1

−VN2

χVN1
+(1−χ)VN2

= N
V

(VN1 − VN2) is a dilatation factor

and VNi
are partial molar volumes per particle.

The mole fraction structure factor Sχχ (q) is simply related to a linear combination

of the site-site structure factors Sij:

Sχχ (q) = χ1χ2 [1 + χ1χ2 (S11 (q) + S22 (q)− 2S12 (q))] (3.25)

Similar, relations for density-density and cross structure factors are:

SNN (q) = χ2
1S11 (q) + χ2

2S22 (q) + 2χ1χ2S12 (q) (3.26)

SNχ (q) = χ1χ2 [χ1 (S11 (q)− S12 (q))− χ2 (S22 (q)− 2S (q))]

Above relations provide the calculational background for experimental evaluation of

the KBIs. It is interesting to note that scattering and thermodynamic experiments

probe quantities that are inverse of each other. This is already an internal source of
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discrepancy between the two results, since small errors in one representation will be

magnified in the other. Scattering experiments probe directly the concentration fluc-

tuations, while thermodynamic measurements probe indirectly variations in chemical

potentials [39].

Matteolli and Lepori [38] were among the first to provide extensive measurements

of KBIs for various aqueous mixtures. Their data show a rich display of behavior that

indicates the complexity of aqueous solutions. Nishikawa [43] provided the first X-ray

scattering measurements of KBI. The KBIs were also exploited for reproducing the

more accurate force field (see chapter 4). However, there is a considerable variation

in the published results [38][44][40]. Possible sources of inaccuracies, as discussed in

Perera et al.[39], could have experimental origins and also could come from numerical

treatment of the data.



Chapter 4

Molecular dynamics

In recent years, existence of micro-heterogeneous organization has become more and

more widely recognized in the description of the aqueous solution. To study it we

need a reliable tool that will enable us to peer into the microstructure of our solutions.

This is where the computer simulation comes in handy. These simulations can provide

many sets of configurations which allow a direct insight into the micro-structure of

the simulated system.

In this chapter, we give a brief introduction to computation methods such as

molecular dynamics, and an outline of the recent models of the molecular system of

our concern. At the end, we will describe the DL-POLY package that has been used

in this thesis.

4.1 Computer simulations

Computer simulations are one of the most important tools for studying liquid systems

due to the fact that we lack a simple model that could describe the liquid state.

From the standpoint of the liquid-state theory, computer simulation provide almost

40
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exact, quasi-experimental data on well-defined models, particularly on those that are

prototypical models of simple liquids [1]. Two numerical methods widely used are:

Molecular Dynamics method (MD) and Monte Carlo method (MC) [4][5].

The MD simulation is based on the calculation of the time dependent set of

configurations using classical equations of motion. The configuration of system of

N-particles implies the 3N coordinates rN = {r1, ..., rN} and 3N momenta pN =

{p1, ...,pN} of the particles at some instant of time. From the initial configuration,

the trajectory of the particles, or next configuration is calculated using the 3N cou-

pled, second order differential equations 2.3.

The initial configuration contains the N particle-coordinates within a simulation

cell of volume V, usually a cubic box and assigned velocities usually from a Maxwell

distribution appropriate to the temperature of interest and selected in such a way that

the total linear momentum is equal to zero. The boundary conditions are regulated

using periodically repeated cells which surround the main cell. In mirror-cells the

position and velocity of each particle is periodically repeated and this convention is

called periodic boundary condition (PBC).

The interaction between particles is usually a pairwise and additive. The com-

putation of short-range interaction is calculated up to certain cutoff distance and

an analytic expression (see equation 4.2) is used to estimate the contributions be-

yond this cutoff distance. This truncated potential is usually calculated in a sphere

radii half-cell size. The interactions are computed using the technique called the

”nearest-neighbor” convention [1]. The method such as Ewald summations is applied

to calculate the long-range interaction such as the Coulomb interaction. The time-

evolution of the system is calculated for each chosen time step, using the Verlet or
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related algorithms. The properties of the simulated system, than, are computed as

the time averages over a large number of configurations that are collected after the

system has reached the equilibrium state.

The Monte Carlo simulation starts also with an initial set of coordinates within

periodic boundary conditions, that interacts through some known potential. A se-

quence of configurations is then generated by successive random displacements of the

particles. The new configurations are accepted in such a way that configurational

space is asymptotically sampled according to the probability density corresponding

to a particular statistical mechanical ensemble [1]. The MC method is used to calcu-

late only static properties, and it essentially represents the Boltzmann averaging over

the microstates of the systems.

Computer simulation turns out to be an extremely powerful tool, since it allows

one to perform cheap statistical experiments for a small number of particles, in nearly

experimental conditions-at least this is the credo that prevails among simulators, and

which has been confirmed for the case of simple liquids. Nevertheless, one should be

aware of all approximations that are inherent to the simulations. Strictly, simulations

are used to validate statistical theories and computational models, and are confirmed

for the description of real systems only by the validation of proposed models through

comparison with real-system properties. For example, in the simulation, in general we

have constant-number ensembles and the pseudo-infinite systems introduced through

periodic boundary condition. In experiments we are dealing with an open system with

a number of particles of the order of Avogadro’s number. Usually, force-field models

are defined through pair interactions, for example, the hydrogen-bonding is modeled

by the site-site Coulomb interaction and the sterical contributions by Lennard-Jones
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potential. This is an oversimplified version of all interaction present in a real system,

since it neglects the high-order interaction or polarization effects. Nevertheless, these

models have been proven to reproduce correctly the thermodynamical properties for

large number of real systems. In addition, the simulation of aqueous solutions imposes

problems of its own. Empirically, it has been found that associated systems are very

sluggish to equilibrate [23][35]. The spurious demixing of acetone-water solutions were

reported by Perera and Sokolić [36]. Therefore the simulations of aqueous mixtures

represent another level of complexity which has not yet been properly addressed.

4.2 Computational models

The reliability of the computational simulations depends strongly on the models,

which means basically the force fields between components. These force fields are

expressed in terms of properties like bond lengths, angles, torsion angles, Lennard-

Jones potential, as well as partial atomic charges. These parameters are derived from

spectroscopic and diffraction experiments, quantum chemical calculation or empirical

parameterization used to reproduce liquid properties such as density and molar en-

thalpy. The final testing for a force field is to reproduce other quantities which were

not used in the parameterization process, for example, the thermodynamic properties

of the mixed systems, diffusion constants or dynamic properties such as relaxation

times. In addition, the good transferability of the force field is also required. This is

achieved by minimizing the number of sites or pseudo-atoms that are needed for any

particular molecule, and by using the same parameters for given sites in all types of

molecules [45].
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One of the widely used potentials is the Optimized Intermolecular Potential for

Liquid Solutions (OPLS) proposed by Jorgensen [7]. The set of intermolecular po-

tential functions is derived primarily by directly fitting experimental thermodynamic

and structural data on pure organic liquids, water, water solutions and others [7]. In

OPLS alcohol, for example, there is one site for each atom, except for the CHn groups

which are taken as single sites. The Lennard-Jones parameters for CHn group are

taken directly from OPLS hydrocarbons, in such a way, that prolonging the alcohol

chains reflects as adding the contribution of CHn groups in the force field. The charge

distribution is the same for all alcohols and is assigned to O (negative charge) and

H and α-C, CHn (positive charges). This is a simplification that ignores the influ-

ence of the hydrophobic tail on the electronic structure of the hydroxyl group and

also, using the fixed charges neglects many-body polarization effects [45]. Internal

rotational degrees of freedom are defined by the Intermolecular Rotational Potential

Function using the Fourier expansion. The OPLS models proved to be very good in

modeling the variety of organic liquids [12][7], however, it has been found that OPLS

alcohols are not transferable to the long-chain alcohols and to elevated temperatures

[46]. The group of Siepmann [45] developed The Transferable potential for phase

equilibria (TraPPE) force field. The parameterization follows the same line as OPLS

models fitting the Lennard-Jones parameters for α-C and CHn groups. It is aimed

to reproduce the thermodynamic properties over a wide range of physical conditions,

starting with the single-component vapor-liquid coexistence curve.

Reproducing the macroscopic quantities has been proven to be a good quality

assessment for the validation of different force fields. However, recent studies em-

phasized the importance of probing the reliability of microscopic features, namely,
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the local microscopic structure. Weerasinghe and Smith [47], proposed to use the

Kirkwood-Buff theory to access structural properties. They developed a series of force

fields which are designed to reproduce the experimental Kirkwood-Buff integrals for

condensed and liquid phase solution mixtures. These KB derived force fields (KBFF)

have been shown to reproduce reasonably not only the Kirkwood-Buff integrals, but

also other thermodynamic and physical properties of aqueous solution mixtures [47].

A similar approach was used by Lee and van der Vegt in modeling the aqueous tert-

butanol solutions. They focused on reproducing the solution thermodynamics and

aggregation behavior of tert-butanol-water mixtures [35].

There are more than 100 models for water and none of them so far has been

able to reproduce all the thermodynamic properties or the phase-behavior of water.

A recent review by Guillot listed 46 distinct models and indirectly indicated their

lack of success in quantitatively reproducing the properties of real water [48]. The

most used models are Single-Point-Charge models such as SPC [49] and the more

recent SPC/E [9] and the Transferable Intermolecular Potential models TIP3P, TIP4P

[10][50] and most recent TIP5P [11]. A detailed review of water models is available

at http://www.lsbu.ac.uk/water/models.html.

4.3 Simulations details

For this thesis, the simulations were performed using the DLPOLY program that was

developed in the Daresbury laboratory, Cardiff UK [6]. Several different models were

used for simulation of associated liquids, namely, water and alcohols methanol and

tert-butanol, as well as alcohols-water mixtures; and the details and abbreviations
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are listed in Table I. All models are site-site models and as default the rigid body ap-

proximations were used for modeling the intra-molecular bonding. A rigid body unit

is a collection of point atoms whose local geometry is time invariant. The dynamics

of rigid body is described in terms of the translational motion of the center of mass

and rotation about the center of mass. The calculation of force are solved using the

quaternion formalism.

The inter-molecular interactions are expressed as a sum of Lennard-Jones poten-

tials and Coulomb potentials. That is the force field between two molecules i and j

is defined as a sum of interaction between the sites α and β, on molecules i and j,

respectively, with partial charges qαi and qβj, corresponding Lennard-Jones diameter

σαiβj, energy εαiβj and relative distances rαiβj.

Uij(r) =
∑

4εαiβj

[(
σαiβj

rαiβj

)12

−
(

σαiβj

rαiβj

)6
]

+
∑ 1

4πεo

qαiqβi

rαiβj

(4.1)

The Lennard-Jones intra-molecular parameters were calculated using the Lorentz-

Berthelot mixing rules εαβ =
√

εααεββ and σαβ=(σαασββ) /2.

The cubic periodic boundary conditions (PBC) were used to mimic the pseudo-

infinite system. We performed the simulation in canonical (NTV constant) and

isobaric-isothermal (NPT constant) ensembles. The standard conditions, if not spec-

ified otherwise, were temperature T=300 K and a pressure of 1 atm, that were main-

tained through the Berendsen thermostat and barostat with relaxation times of 0.1

ps and 0.5 ps, respectively. The integration time step was fixed at 2 fs. For the

equilibration periods at least 100 ps were required. We also verified the convergence

of the internal energy, volume and pressure, and the stabilization of the distribution

functions. The calculation of thermodynamic values, as well as other functions, was
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performed for at least 64 ps long runs, taken after the equilibration. The time step

of 0.5 ps was used for the collection of the distribution functions. Other simulation

details are given with corresponding results in the following chapters.

The DLPOLY package computes the configurational part of the internal energy,

by direct averaging of the pair interactions for the Lennard-Jones interaction and by

the Ewald summation techniques for the Coulomb interaction. The Lennard-Jones

interaction contributions were accumulated within the range of certain cutoff value,

usually taken around the half-cell size, and corrected for the part beyond the cutoff

[6]. This correction is analytically calculated using expression:

ULJij(r →∞) =

∫
dr

∑
εαiβj

[(
σαiβj

rαiβj

)12

−
(

σαiβj

rαiβj

)6
]

(4.2)
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• Table I. Force field parameters

Methanol OPLS [7] Methanol WS [8]

H O CH3 H O CH3

ε(kJmol−1) 0.0 0.71131 0.86612 0.088 0.6506 0.8672

σ(Å) 0.0 3.071 3.775 1.58 2.664 3.748

q(e) 0.435 -0.7 0.265 0.52 -0.82 0.3

tertbutanol OPLS [7]

H O C CH3 CH3 CH3

ε(kJmol−1) 0.0 0.71172 0.20936 0.67073 0.67073 0.67073

σ(Å) 0.0 3.07 3.80 3.91 3.91 3.91

q(e) 0.435 -0.7 0.265 0.0 0.0 0.0

Water SPC/E [9] Water TIP4P [10]

HW OW HW OW M

ε(kJmol−1) 0.0 0.650 0.0 0.648 0.0

σ(Å) 0.0 3.116 0.0 3.15365 0.0

q(e) 0.4238 -0.8476 0.5200 0.0 -1.0400

Water TIP5P [11]

HW OW M1 M2

ε(kJmol−1) 0.0 0.6694 0.0 0.0

σ(Å) 0.0 3.12 0.0 0.0

q(e) 0.241 0.0 -0.241 -0.241

Acetone OPLS [12]

C O CH3 CH3

ε(kJmol−1) 0.440 0.879 0.67 0.67

σ(Å) 3.75 2.96 3.91 3.91

q(e) 0.3 -0.424 0.62 0.62
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The Ewald summation technique enables the calculation of energy for the long-

range potentials such as electrostatic potential. The first step is to add the opposite

charge distributions usually gaussian distributions, for each charged site. This way,

the effect of screening transforms the long-range potential into short-range potential,

for which the contribution is calculated by direct summations of the screened pair

interaction using the truncation of potential at the half-cell distance. Now one needs

to subtract the contribution of the added charges. This potential is obtained from

Poisson’s equation and is solved as a Fourier series in reciprocal space. The complete

Ewald sum requires an additional correction, known as the self energy correction,

which arises from a gaussian acting on its own site, and is constant. Ewald’s method

therefore replaces a potentially infinite sum in real space by two finite sums: one in

real space and one in reciprocal space; and the self energy correction [6].



Chapter 5

Density fluctuations in N-constant
ensemble

The structural information, in the integrated form, is partially contained in the

Kirkwood-Buff integrals. These quantities can be derived both from the thermody-

namic measurements and scattering experiments, as well as from computer simulation

calculations of radial distribution functions.

In this chapter, we will discuss the reliability of the radial distribution functions

calculated from computer simulations. We will address several important questions:

a) the reliability of the asymptotic limit of the RDF that is connected to number-

particle fluctuations in the pseudo-infinite system; b) the influence of the system size

and the time of sampling on the simulation results; c) the reproducibility of density

and energy distributions.

5.1 The radial distribution function

The radial distribution function is the central quantity of our investigation. The RDF

provides a means to calculate the Kirkwood-Buff integral and also the structure factor,

50
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which are both experimentally measurable quantities. It provides direct information

about the structural organization in the simulated systems. However, the various

features of the RDF are not often easy to interpret, even for simple Lennard-Jones

liquids [51]. Many studies require the high accuracy of the computed radial distribu-

tion function. Nevertheless, the simulation technique imposes constraints which are

the cause of errors in simulated data.

The errors in simulated data according to Kolafa et al. [52] could be summarized

as follows: a) systematic errors due to a finite number of particles in simulation cell,

usually called finite-size errors; b) closely related with size and density of simulated

system is also the maximum range for which the calculation of RDF is valid, i.e.

the so-called the tail errors; c) errors due to a histogram calculation or grid errors,

which become important in calculation of discrete functions of RDF, such as the

calculation of structure factor using the Fourier transformation, and; d) statistical

errors on collected data which are mainly due to a correlation of accumulated runs in

average calculations.

The finite-size and also tail-errors are mainly due to the fact that the contribu-

tion for the RDF from the maximum radius to infinity is usually approximated as

one. The grid-errors treated with the appropriate mathematical calculation can be

minimized [52]. In statistical averaging we required that each contribution is inde-

pendent (or uncorrelated), and this depends on the frequency of measurements. This

frequency compromise between simulation times and overall efficiency expressed as

overall statistical error. Kolafa et al.[52] discuss in detail the contribution of each

error in calculating the bridge function of hard spheres by direct inversion of simula-

tion data. They uncover that even for a hard-sphere model the contributions of size
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and tail effect play an important part in calculation the inverse functions of RDF. To

overcome this effect the correction functions are suggested in order to eliminate the

”error” contribution from the simulation data.

It is clear that the calculation which is sensitive to the long range limit of RDF

requires extensive simulation or specific treatment of the data. However, in our

research this imposes constraints that lead to a physically incompatible calculations.

Usually the simulations are performed in the canonic or isothermal-isobaric ensemble,

which do not allow for the global fluctuation of the number of particles. The constant-

N constraint imposes a fixed behavior of the asymptotic part of the RDF and it is

not clear how we can use the N-constant RDF to compute the KBI which is strictly

defined only for the grand canonical ensemble.

In addition, the radial distribution function corresponds to angular average of the

pair distribution function; therefore it lacks information about angular correlations.

The molecular liquids that we study have anisotropic interaction such as hydrogen-

bonding, and angular correlations are an important part of the structural information.

To account for the angular correlations we compute also site-site radial distribution

functions (sRDFs) that allows us to tackle the anisotropy indirectly. All formulae are

given in chapter 2.

5.2 Large N-limit of the pair distribution function

Let us examine in more detail the asymptotic behavior of the pair distribution func-

tion. The pair distribution function g
(2)
N (r1, r2) is defined by relation 2.42 which is
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more conveniently to write as:

g (1, 2) =
ρ (1, 2)

ρ2
(5.1)

where ρ (1, 2) = ρ
(2)
N (r1, r2) and ρ2 = ρ

(1)
N (r1) ρ

(1)
N (r2) for homogenous system.

This definition implies that when particles are uncorrelated ρ (1, 2) = ρ2, which

corresponds to:

lim
(r→∞)

g (1, 2) = 1 (5.2)

This relationship is trivially valid for an infinite system, but must be revisited for a

finite system with N-particles. These are the conditions for micro-canonical (constant

NVE), canonical (NVT constant) or isobaric-isothermal (NPT constant) ensembles

in which most simulations are performed.

The asymptotic form of RDF as well as pair density function for a finite-N system,

is usually described in terms of the 1/N correction. The general correction term to the

pair density function for a systems with constant density, was first found by Ornstein

and Zernike [13]:

lim
(r→∞)

ρ (1, 2) = ρ2

(
1− ρkBTχT

N

)
(5.3)

This was proven in more general way by Lebowitz and Percus [14] both through

thermodynamic and statistical mechanic route. They investigated the corrections to

the representation of the joint distribution q + l particles ρ(2)(q + l) to the product

ρ(q)ρ(l) for large separation between sets of q and l particles. They found that the

1/N correction term to a simple product, depends on the derivation of the densities

ρ(1) and ρ(2) with respect to the total density ρ = N/V :

lim
(r→∞)

ρ (1, 2) = ρ(1)ρ(2)− ρkBTχT

N

(
ρ
δρ(1)

δρ

) (
ρ
δρ(2)

δρ

)
(5.4)



54

When particles 1 and 2 are both in the interior of a uniform fluid, equation 5.4

leads to the Ornstein-Zernike relation:

lim
(r→∞)

g (1, 2) = 1− ρkBTχT

N
(5.5)

For the non-interacting particles this asymptotic limes is equal to:

lim
(r→∞)

g (1, 2) = 1− 1

N
(5.6)

which is the exact result for the ideal-gas limit in the canonical ensemble [1]. Simi-

lar calculation for a grand canonical ensemble evaluates the asymptotic value to be

exactly one.

lim
(r→∞)

gµV T (1, 2) = 1 (5.7)

The basic assumption which is made implicitly in the derivation of equations 5.4 and

5.3 is the absence of the long-range correlation in a system, that is the fluctuation

behavior does not extend over all volume of the system.

Therefore, the simulation RDFs should contain the N-dependent term. However,

this correction depends strongly on the reduced compressibility (see equation 5.8)

of the system. For our systems of interest the reduced compressibility is of order

10−2, therefore we expect that this correction will not influence our results since it

is in the range of the statistical error of the simulation data. We will verify this

assumption through the inspection of system size dependence on the RDFs in the

following sections.

The 1/N term in RDFs was discussed also by Ben-Naim [53], where he states that

for a reasonable N the 1/N term is a negligible quantity except when the integration

over RDF extends to infinity. Therefore, we find that this observation at present has

not been adequately addressed, moreover, some algorithms include correction factors
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to force the 1/N-dependent limits, neglecting the correct formula which depends, also,

on the compressibility of the system.

5.3 The density fluctuation in N-constant ensem-

ble simulations

The asymptotic behavior of RDF directly concerns the calculation of Kirkwood-Buff

integrals, as well as indirectly, properties which depend on the fluctuation of particle

number such as compressibility. The expression 3.11 can be rewritten through a

fluctuation-dissipation type relation:

χT

χ0
T

=
∂ρ

∂βP
=
〈NαNβ〉 − 〈Nα〉 〈Nβ〉

〈Nα〉 = 1 + ρGαβ (5.8)

where χ0
T = β/ρ is the ideal gas compressibility, ρ number density and Gαβ is the

Kirkwood-Buff integral. This formula is strictly applicable only to the grand canonical

ensemble and to emphasize we write the physically incorrect formula for N-constant

ensemble, where the 5.8 has trivial and not physical solution, since the global fluctu-

ation is equal to zero (the total number of particles N does not fluctuate):

(
χT

χ0

=
∂ρ

∂βP
=
〈NαNβ〉 − 〈Nα〉 〈Nβ〉

〈Nα〉 = 1 + ρGαβ = 0

)

NV T

(5.9)

Therefore, a natural question is: when we perform simulations with a fixed number

of particles, can we reproduce correct fluctuation of particle number or correct KBI.

It turns out that, even with this constraint the results of a simulation reproduce

correctly the values of the KBI and corresponding compressibility of an open system.

This is in line with a well known calculation of the chemical potential where the

chemical potential is evaluated from the simulation in the N-constant ensemble [54].
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The procedure consists of evaluating the insertion free energy of an additional particle,

which implicitly supports the existence of the local density fluctuations. These local

fluctuations give rise to the apparent global density fluctuation in the very absence of

any such macroscopic feature. Such behavior is observed equally in mixtures, where,

in addition to density fluctuations, concentration fluctuations are equally important.

We are particularly interested in the structural properties and the quantities which

strongly depend on the fluctuation of concentration and fluctuation of the number of

particles in the associated systems.

What is the origin of the density fluctuation in the N-constant ensemble? To

clarify this issue one can look more closely to the properties of a sub-volume of the

box with volume V containing the N particles at the temperature T, keeping in mind

that the configuration of the particles in this cell represents one microstate of NVT

constant ensemble. The intensive properties such as temperature and pressure should

not be changed since the sub-volumes are in equilibrium with the rest of the box, yet

they can fluctuate depending on the size of the sub-volumes. Size of the sub-volumes

is also arbitrary and can be chosen as constant. Therefore, every sub-volume keeps

the T, P or V constant property. However, any chosen sub-volume can exchange the

particles with the rest of the box, that implicates that the N-constant property is

lost. Therefore, in N-constant ensemble the sub-volumes have the features of grand

canonical ensemble, which is the origin of the local fluctuation of particle number in

N-constant ensemble.

The radial distribution function is directly obtained by computing the histogram

H (r, ∆r) which counts the pairs of particles (or specific sites) at distances between r
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and r + ∆r. This histogram is normalized and the resulting expression is:

g (r) =
H (r, ∆r)

N2∆V (r, ∆r)
(5.10)

where ∆V (r, ∆r) ≈ 4π2∆r
V

is the volume of spherical shell centered at each particle

used in counting, reduced by the total volume V of the simulation cell. In practice,

this calculation is performed and averaged over several configurations. It is very

important to note that 5.10 is valid for any statistical ensemble. It is the nature of

fluctuations of particle ensembles that will affect the form of histogram H (r, ∆r) and

determine the corresponding asymptotic behavior of g (r). The computer simulations

with an N constant number of particles are not, strictly speaking, simulations of

finite or closed systems, since the periodic boundary conditions are used to mimic

the infinite system. This pseudo-infinite system has relevant structural information

up to the half size of the cell that contains the N-particles. The information for large

distances is artificially repeated using the PBCs. Therefore, the RDF-histogram is

usually computed using the spherical shells until the half-box length radii. For each

shell the remaining volume acts as a reservoir of particles, and this is valid also for

shells at the half-cell distances. The total, usually cubic, volume is bigger than the

spherical volume that is covered within computation of the histogram, resulting in

fact that the total number of particles counted in each run could be different (some

particles can be left in the corners of box-cell), therefore we do have a fluctuation

even of the total number of particle. This lifts the mystery of the origin of the global

density fluctuation in the N-constant ensemble. First, the PBCs allow simulation

of a pseudo-infinite system and second, with the appropriate counting formula the

fluctuations of particle number are computed. This is in line with more rigorous

discussion on the local nature of the density functions by Lebowitz and Percus [14],
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where they show that a slow varying density can be interpreted by representing each

fluid element as an open system exchanging particles with neighboring fluid elements

(total particle number being maintained). This gives meaning to a local chemical

potential as well as the local density fluctuation in N-constant systems.

5.4 Calculation of the Kirkwood-Buff integral

The KBIs correspond strictly to integrals of RDF in the µV T ensemble. The fact that

the local fluctuations in the N-constant simulations give rise to the apparent global

density fluctuation, allows one to use the simulated N-constant RDFs to calculate the

KBIs. The simulated KBIs are obtained by assuming that:

Gαβ = 4π

∫ ∞

0

(gµV T (r)− 1) r2dr = 4π

∫ R

0

(gNV T (r)− 1) r2dr (5.11)

This assumption includes that gµV T (r) at small distances is approximately equal to

gNV T (r) (or equally for NPT-ensemble simulations, gNPT (r) ) and that for R, the

cutoff distance, gNV T (r) is essentially unity.

In practice, the latter condition is difficult to achieve unless one uses very large

systems. The similarity between the RDF in canonical and grand canonical ensembles

has been illustrated by Weerasinghe and Pettit[55], however, only within the short

range distances and using the simulation of the Lennard-Jones system. Lyubartsev

and Marčelja [56] estimate the radial distribution function of the infinite system from

its N-particle finite system counterpart as equal to:

gopen (r) = gN (r) +
ρkBTχT

N
(5.12)
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One needs to decide, for which distances the approximation in equation 5.11 is valid,

or if it is necessary to use a correction term as in the equation 5.12.

Chitra and Smith[57] used a cutoff distance equal to a range over which the inter-

molecular forces dominate the distribution of particles. The above approximation is

equivalent in spirit to the assumption of a correlation volume used to obtain prefer-

ential solvation parameters through inversion of the KBI theory using experimental

data obtained at constant P and T, and the experimental estimates of the correlation

volume suggest that the sphere of influence of one molecule over another extends for

several molecular diameters [53] [57] [58]. Weerasinghe and Smith suggested that a

reasonable approximation to determine KBI is typically one molecular diameter [47].

For the methanol-water mixture they reported that all RDFs were essentially unity

beyond 1.0 nm and they calculated KBIs by averaging between 0.95 nm and 1.2 nm,

arguing that good agreement with experimental values was achieved [23]. However,

we anticipate that large cutoff distances are necessary for aqueous solutions, since the

pair-correlations are also affected by the micro-heterogeneous structural organization

which is on a larger scale than the first-neighbor distances.

Also, in practice, the r2 weighting in the KBI calculation indicates that long

range effects may dominate, and that numerical errors from the simulation may be

amplified. Due to this reason, one has to have small error in the accumulated data,

and one way to obtain this is to have long runs which would minimize the statistical

error. Weerasinghe and Smith investigated the convergence properties of the KBI as

a function of simulation time [47]. They showed that the reasonable values of the

KBI were obtained after 1 ns, although for the minority species small variations are

seen even after 2 ns. However, they did not discus what is behind the necessity of
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such extensive simulation in order to reach convergence.

Many simulations have been performed using different system sizes and simulation

times. For example, several studies of methanol-water solutions have system sizes such

as: N=2000 for a calculation of KBIs [23]; N=600 to study cluster formation [59];

N=500 for a calculation of the excess properties using the MC simulation [60]; and

the simulation times of the order of several ns. This naturally imposes questions

why are the simulation scales so important for aqueous solutions? We will debate

the idea that aqueous solutions have local persistent inhomogeneities as inherited

feature. Therefore, the structure as well as the stability of such systems is due to the

fine balance between concentration fluctuation and micro-heterogeneity and any size

effect could strongly influence the equilibrium properties. For example, the system,

due to the small size, could be trapped in an unstable state and kept from demixing, or

a small size system could not be able to accommodate a range of correlations between

locally formed clusters. Larger time scales are needed, apart from statistical reasons,

due to the coupling of the two different temporal dynamics, the evolution time of

pair correlations, and the larger evolution time of clusters dynamics. Therefore, the

computer simulations of water solutions should be revisited in line with the recent

concepts of micro-heterogeneities.

5.5 Density and energy distribution

In order to clarify several important issues that we mentioned above, we first examined

the results of simulations of neat liquids. We evaluated the contribution of the pair

correlations beyond the first neighbors for neat systems using the calculations of KBIs
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and the calculation of configurational energies. We anticipate that these results will

provide information of the characteristic behavior that is precursor to what is found

in mixtures.

5.5.1 Theoretical considerations

The computation of RDF and KBI for molecular liquids can be done in terms of the

site-site functions as described in chapter 2. To follow how the asymptotic values

are attained, one can introduce the running quantities. The running Kirkwood-Buff

integral for α and β sites Gαβ (R) is defined as:

Gαβ (R) = 4π

∫ R

0

(
g

(2)
αβ (r)− 1

)
r2dr (5.13)

Following the behavior of running integrals one can see: the range of the inter-

molecular distances over which this quantity fluctuates, reflecting the microscopic

arrangement of molecules; and for which distances it does not vary anymore, match-

ing the expected asymptotic value. An important remark concerns the site-site KBIs.

Since the center of a molecule is arbitrary, all the site-site KBIs are identical and

equal to molecular KBI that is calculated from the molecular RDF (see chapter 2).

Gαβ = lim
(r→∞)

Gαβ (R) = G for any sites α and β. (5.14)

Similar, a running compressibility can be obtained from equation 5.13:

χT (R) =
1 + ρG (R)

ρkBT
(5.15)

and one has χT (R →∞) = χT .
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The excess internal energy of a molecular liquid, modeled using the additive pair-

wise site-site interaction vαβ (r) , can be written as the sum of the site-site interactions

in terms of the corresponding sRDFs (see equation 2.49):

Uαβ (R) = 2πρ2

R∫

0

vαβ (r) gαβ (r) r2dr (5.16)

where the total configuration energies are equal:

U ex

N
=

∑

α,β

Uαβ (R →∞) (5.17)

The term Uαβ (R) is a new quantity and it computes the running contribution from

the energy distribution. It is based on the analogy with the running Kirkwood-

Buff integral 5.13. The equation 5.17 allows one to compute separately the running

integrals for the site-site Lennard-Jones interaction, as well as those from partial

charges. One can then study the way each type of interaction contributes to the

global establishment of the energy of the macroscopic system. Apart from the RDF

route (equation 3.11), the configurational energy can be obtained also, using standard

methods, such as truncation potential and Ewald summations (chapter 4). We tested

the consistency of these two calculations, when the systems size was changed.

5.5.2 Simulation details

We conducted a molecular dynamics study of several water models, as well as organic

liquids such as acetone and methanol, at a temperature of 300 K and a pressure

of 1 atm. The simulation models are listed in Table I (chapter 4). We used the

DLPOLY2 program [6]. The Berendsen algorithm was used for constant temperature

and pressure simulations. The integration time step was fixed at dt = 2 fs. Several
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system sizes were investigated, ranging from N = 256 up to N = 10 976 for water,

and N = 256-2048 for other organic liquids. Each system was equilibrated for 100

ps and the statistics for the RDF were collected for another 100 ps. The DLPOLY

package contains the computation of the configurational part of the internal energy,

by a direct averaging of the pair interactions over the whole cell for the Lennard-

Jones interaction, and by the Ewald summation techniques for the Coulomb part.

The energy and pressure contributions from the long range part of the Lennard-Jones

interactions were corrected, as usual by analytically expressed contributions beyond

the cutoff which is taken to be 15 Å.

5.5.3 Neat water

We studied the SPC/E water model [9] together with the OPLS TIP4P [10] and

more recent TIP5P [11] models. Figure 5.1 shows the running KBIs (equation 5.13)

calculated for different water models, together with the experimental value G =

−16.9 cm3/mol. This value has been deduced from the experimental compressibility

at room temperature which is χT = 0.4566 GPa−1[15]. The value for the reduced

compressibility is then χ∗T = χT

χ0
T

= 0.0623 . The corresponding RDFs, which are

equal to sRDF for O-O sites, are shown in the top inset.

Although, the integrated structure beyond 8 Å appears as a noisy signal, it nev-

ertheless seems reproduced to some extent by most models. This may correspond to

the extent of correlation of the water hydrogen bond network. The lower inset shows

the running compressibility together with the experimental value (red line). It is seen

that all models reproduce this value quite well. The fact that the correlations reflect

the fluctuations until almost the half-width of the simulation box, tends to confirm
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Figure 5.1: The running Kirkwood-Buff integral for water models and for different
system sizes (SPC/E: N=256 (yellow), 864 (red), 2048 (blue), 4000 (green), 10,976
(black)); TIP4P: N=2048 (magenta); TIP5P: N=2048 (cyan)). The upper inset shows
the RDF with same color conventions. The lower inset shows the running (reduced)
compressibility (equation 5.15)for all models with same color conventions. The red
horizontal line is the experimental compressibility

that the asymptotic behavior of the RDF is not affected by the constant-N ensemble

artifact 5.5. From this observation, we tend to believe that the constant-N ensemble

simulations are able to reproduce the same RDF as those calculated in the grand

canonical ensemble. This means that the local fluctuations that one obtains from

N-constant ensemble simulations, are similar to that of a fully fluctuating ensemble

until almost the half-box width.

Figure 5.2 shows the comparison of the running site-site partial Coulomb energies,
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and this for several models and system sizes. By partial Coulomb energy, it is meant

that the sRDFs in gαβ in equation 5.16 is replaced by gαβ − 1. This manipulation

avoids the divergence of the individual site-site Coulomb energies at large r-values.

This is justified through the fact that the total Coulomb energy is not affected by this

manipulation, because of the global neutrality of site charges on each molecule. In

figure 5.2 it is seen that the running site-site energies have a structure similar to the

underlying RDF, albeit in an integrated form. The differences between the 3 water

models simply reflect the differences in the partial charges, as discussed below.

The resulting total Coulomb energy is shown in figure 5.3, both for the SPC/E

models as well as the TIPnP models. We first observe that the RDF route (equation

5.16) matches very well with that of the direct route, both for the Lennard-Jones and

for the Coulomb energies. Although there appears to be almost no difference between

the SPC/E and TIP4P models, even in the short range structure, the TIP5P model

shows very different amplitude in oscillations. The exact shape of the short-range

correlation function depends on the geometry and charge distribution. In TIP4P,

negative charge is larger than in SPC/E and is placed more towards the center of the

mass, which than leads to slightly higher electrostatic energy at the short range, and

increase of the repulsive part of the LJ energy, since due to the electrostatic attraction

sites tend to come closer. On the other hand, distribution the negative charges on

the two meta sites, as in the case of TIP5P model, resulted in noticeable change of

the short-range correlation as well as short-range behavior of the running energies.

The regularity of the oscillations in all models seems to indicate the existence of

a sum rule, possibly due to some kind of alternate distribution of site charges. The
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SPC/E

TIP4P

TIP5P

Figure 5.2: The partial running energies for the water models. The color conventions
are the same as in Fig. 5.1 except that only the N=2048 are shown. Top panel: (- -)
energies, middle panel: (+-) energies and lower panel: (++) energies.

period of oscillations seems close to the water diameter size σW = 3.1 Å. The magni-

tude of oscillations indicates the differences in the geometry and charges between the

3 charged sites models (SPC/E and TIP4P) and the 4 charged sites model TIP5P

(figure 5.3). We note that, despite differences in the total Coulomb energies and in

the partial Coulomb energies between the SPC/E and TIP4P models (fig. 5.2), their

short range oscillations are very similar. The inset shows the total running Lennard-

Jones energy. The larger magnitude of the Coulomb energy −48.5 kJ/mol), when
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Figure 5.3: The total running Coulomb and Lennard-Jones (shown in the inset) en-
ergies for water models. The color conventions are the same as in figure 5.1. The
horizontal lines (both in the main and inset) denotes the values of the energies cal-
culated by the direct route in the simulations.

compared to that of the LJ term (about 9 kJ/mol), is due to the strength of the

hydrogen bonding. We can roughly estimate that both types of energies decay to the

bulk value in the range of four to five molecular diameters. This brings the optimal

system size up to N = 1000-2000 in order to achieve convergence between the direct

and statistical routes for the evaluation of the configurational energy.

Finally, there is a well known 5kJ/mol difference between the total SPC/E config-

urational energy and that of the TIPnP models, which are closer to the experimental
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value. Figure 5.3 shows the partial sources for this difference: the Lennard-Jones

energies differ by 1.8kJ/mol between the SPC/E and both TIPnP models. Although

it is not easily seen on the plot, there is about a 3.2kJ/mol difference in the Coulomb

parts as well. This means that the usual Berendsen argument that this energy differ-

ence in the SPC/E model is due to gas to liquid transfer polarization energy, accounts

also for the Lennard-Jones energy for about nearly one third of the difference [49].

5.5.4 Neat methanol

Figure 5.4 shows the various sRDFs for the OPLS-methanol model, for the N =

256 and N = 2048 system sizes. Perhaps the most noticeable feature is that the

correlations between the methyl sites, and to some extent those involving this site,

tend to show more pronounced oscillations. This would mean that these sites reflect

the packing structure of the liquid. In contrast, the absence of such a structure in the

O and H site correlations, specifically at long range, would reflect the hydrogen bond

network correlations. This observation recoups that made on water, and therefore

tends to support our interpretation.

Figure 5.5 shows the corresponding running site-site KBIs. We observe that the

size dependence is almost unnoticeable, except near the end points of the smallest

system r = 8.5 Å. The correlations between the larger neutral methyl groups, display

clear long ranged oscillations that extend beyond the range of the largest system size

studied here N = 2048. In any case, it is clear that this latter size seems clearly more

appropriate if the correlations have to be studied. It is seen, that all the site-site

running KBIs converge to the same value at large separations, in accordance with

the expected theoretical result in 5.9. This value is also in good agreement with



69

Figure 5.4: The site-site radial distribution functions of the OPLS methanol model
for two different system sizes (N=256 (magenta) and 2048(blue)). Each panel shows
the correlations for the site pairs indicated in the upper corner).

the experimental value (about −40 cm3/mol), which again is a direct test of the

compressibility of the pure fluid as well as equation 5.9. Figure 5.6 shows the running

total Coulomb and Lennard-Jones (inset) energies. Once again the matching of the

direct (horizontal lines) and RDF route for the energies is near perfect.

We observe that the Coulomb part has regular oscillations with a period of 2.5

Å, which is smaller than the diameter of the methanol molecule (about 4 Å). The

convergence of the latter energy is achieved in a shorter range (about 1 nm) than for
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Figure 5.5: The integrated site-site radial distribution functions of the OPLS
methanol model. The horizontal lines correspond to the experimental KBI. The
color convention is same as in figure 5.4.

the LJ part (about 15 Å). This latter part is similar to the range for water, while it

is shorter for the Coulomb part. This might be in line with the fact that the dipolar

and quadrupolar interactions are weaker for methanol than for water. The Coulomb

energy (about −30 kJ/mol) is not as different from the LJ part (−6 kJ/mol) as it

was for water, which means that the hydrogen bonding is weaker in this liquid, as

expected.
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Figure 5.6: The total running Coulomb and Lennard-Jones (shown in the inset)
energies for the OPLS methanol model. The color conventions are the same as in Fig.
5.4

5.5.5 Neat acetone

We conducted similar studies for the OPLS acetone model [12]. Despite several

deficiencies, this model appears as good as the others in what concerns the energy

and the density [36]. Figure 5.7 shows the RDF in the main panel, as well as a zoom

of the long range behavior in the upper inset and the running KBI in the lower inset,

for two system sizes N=864 and N=2048. The oscillations in the running Coulomb

energy extend further than 25 Å, while the LJ energy converges at about 15 Å, as in
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the case of water or methanol. The period of oscillations is around 5 Å, in accordance

with the molecular diameter of acetone.
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Figure 5.7: The integrated radial distribution of the OPLS acetone models for dif-
ferent system sizes (N=256 (magenta) and 2048(blue)). The upper inset shows a
zoom of the large distance behavior, and the lower inset shows the running KBI (the
horizontal line is the experimental value).

Figure 5.8 shows the running LJ and Coulomb energies that can now be shown in

the same panel, since they are about the same order of magnitude. The total Coulomb

term is −6.5 kJ/mol while the LJ part is about −21 kJ/mol. The oscillations in the

running Coulomb energy extend further than 25 Å, while the LJ energy converges at

about 15 Å, as in the case of water or methanol. The period of oscillations is around
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5 Å, in accordance with the molecular diameter of acetone.

The oscillations in the running Coulomb energy extend further than 25 Å, while

the LJ energy converges at about 15 Å, as in the case of water or methanol. The

period of oscillations is around 5 Å, in accordance with the molecular diameter of

acetone.

Figure 5.8: The total running Coulomb and Lennard-Jones energies for the OPLS
acetone model. The color conventions are the same as in figure 5.7.
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5.5.6 Discussion

In view of the fact that the period of oscillations of the running Coulomb energy for

water and acetone seems to match their respective diameter, one may wonder why

those of methanol are even smaller than the diameter of water. One explanation

may be that the alternate charge distribution, corresponding to the O and H sites,

may match the size of the molecule for the former ones, while it may match the O-H

distance in the case of methanol, with the methyl group standing out of the way of

the charge alignment. This is further enlarged in the following chapters where the

structures of water and methanol are studied in more detail. However, this study of

the running energy has already provided indirect information over the microstructure

of molecular fluids. Other observation concerns the range required for the Coulomb

force to reach uniformity. Namely, for water, and to a greater extent for methanol, the

Coulomb force is highly anisotropic, and this anisotropy is seen through the apparent

lack of the long range contribution. A similar observation is valid for the sRDF of

the sites that are involved in the hydrogen bonding (for example O-O correlations

for water and methanol). Namely, the sites that have distributions that corresponds

to the packing structure have apparently long-range correlation seen through the

long-lasting oscillations of sRDF, in contrast to the hydrogen-bonded sites that show

uniformity within the third or forth neighboring shell. The reason behind this con-

tradiction is as follows: the process of angular averaging, for the anisotropic site

distribution leads to the apparent loss of the long-range radial correlation, because

the angular dependance destroys the spherical-symmetric shell packing and correla-

tions are diminished to a very small variation of the RDF. Therefore, the radial part

of the total pair correlation function masks the correct range of the correlation in
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the case of the anisotropic site distribution. This is also valid for the calculation of

Coulomb energy, and therefore based on this calculation, the estimation of sufficient

system size is not totally correct.

To end, we observe that as we go from fully hydrogen bonded water to acetone,

the respective trends in the Coulomb and Lennard-Jones energies are reversed: the

structure of the networked liquids is governed mainly by the electrostatic interactions,

in the sense that these represent the hydrogen bonding according to our modeling.

5.6 Conclusion

In this chapter, we analyzed the structure of molecular liquids such as water, methanol

and acetone, beyond the first peaks of the RDF. We have shown that these correla-

tions, which reflect the density fluctuations, give rise to running KBIs (or alternatively

compressibility) that is constant in a quite large range. This fact indicates that the

N-constant artifacts, such as 5.5 do not affect the correlations in a wide range, which

is until half-box width range. In addition, for all models studied here, the numerical

value obtained for the KBI from the simulations agrees quite well with the experimen-

tal value. This alone indicates that, not only do the models reproduce the correct

density fluctuations, but they also do so over quite a long range. We have shown

that the size dependence does not affect the correlation function and no N-dependent

limit is observed in the computed RDFs. Finally, we analyzed the energy distribution

by comparing the average with that obtained by direct calculation from the site-site

RDF. This analysis reveals that the convergence of LJ interaction is around 15 Å,

while the Coulomb energy shows regularly damped oscillations with a period probably
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related to the alternation of positive and negative site charges, while the decay seems

controlled by the strength of the screening. This calculation provides some indirect in-

formation about the structure of the pure liquid. We have proven that the simulation

produces reliable results concerning the micro-structure and the properties which are

related to fluctuations. Therefore they can be used to tackle the spatial fluctuation

and micro-heterogeneous organizations in pure and mixed associated fluids.



Chapter 6

Alcohols

The alcohols are organic compound in which a hydroxyl group (-OH) is bonded to

a carbon atom (α-C) of an alkyl or substituted alkyl group. The general formula

for a simple alcohol is CnH2n+1OH. They are classified in the three major subsets:

primary, secondary and tertiary, based upon the number of carbons the α-C car-

bon is bonded to. The smallest alcohol methanol is a simple primary alcohol. The

simplest secondary alcohol is isopropyl alcohol (propan-2-ol), and a simple tertiary

alcohol is tert-butyl alcohol or tert-butanol (2-methylpropan-2-ol). For the alcohols

the chemical and physical properties are strongly influenced by the opposite nature

of their constituents: the polar hydroxyl group and the hydrophobic carbon tail. The

dominance of one affinity over the other also defines the solubility of alcohols in wa-

ter or other solvents. In case of the simple alcohols the tendency of -OH group to

form hydrogen bonds wins over the resistance of the hydrophobic part, making them

miscible with water on all concentration.

In our research we namely focus on the methanol and tert-butanol. The methanol

as the simplest of all alcohols and tert-butanol having the characteristic geometry of

the hydrophobic part and being the largest alcohols that is fully miscible with water.

77
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In the solid state, methanol has an infinite chain intermolecular association with two

H bonds per monomer where the intermolecular O-O separation is about 2.66 Å with

monomers arranged in parallel, hydrogen-bonded chains [61]. In gaseous state, there

is evidence for the special stability of hydrogen bonded cyclic methanol tetramers

[62]. However, the structure of the liquid methanol it is still puzzling.

In the following paragraphs, we will mention several experiments that were per-

formed in order to elucidate this structural organization in a liquid alcohols. Early

investigations were targeted on the properties of hydrogen-bonding, that is the near

neighbor contact but recent interest have been oriented to a specificity of long-range

structural organization. Namely, the stability of structure over a wide range of tem-

perature, small viscosity coefficient, the observation of vapor-phase non-ideality and

also measurements of the heat capacity suggest the formation of clusters in alcohol

solutions. The clustering is also very well supported by the results of the computa-

tional simulations [63][64][59]. However, there is on going controversy whether this

association is in linear or cyclic form and what are the proportions of each form.

In the 1967 edition of his book ”The Nature of Chemical Bonding” L. Pauling

based on the presence of cyclic tetrameres in gaseous state, anticipates the dominance

of more energetically stable cyclic hexamer units in the liquid methanol [65]. Following

this idea, Sarkar and Joarder [66] employed a combined analysis of x-ray and neutron

diffraction data to investigate possible clustering of methanol monomers in the liquid

state at room temperature. With assumption that the methanol liquid is an aggregate

of small clusters of various sizes composed of molecules, the total structural function

was written in terms of the cluster structure function. Using the three plausible

clustering of methanol monomers: straight and closed tetramer chains and closed
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hexamer chain, all of them as planar structure, they fitted the experimental data.

This analysis strongly favored closed hexamer chain structure with the respect to

other clusters models [66].

Going one step further, Yamaguchi et al. [67] reported a detailed study of the

structure of pure liquid methanol at −80 oC and +25 oC using the pulsed neutron

diffraction with isotope substitution on the hydroxyl hydrogens. This technique en-

ables the extraction of the composite partial structure factors XX, XH and HH,

where X represents a weighted sum of correlation from carbon, oxygen and methyl

hydrogen atoms on the methanol molecule. The empirical potential structure refine-

ment (EPSR) [68] computer simulation of the liquid at both temperatures was used

to analyze the data. Model distributions of molecules consistent with these data was

used to estimate the individual site-site radial distribution functions, the coefficients

of spherical harmonics expansions of the orientational pair correlation functions and

the length of possible chains of methanol molecules formed in the liquid. The analysis

showed that for both temperatures very few molecules have 3 or more hydrogen bonds,

and that the distributions are peaked strongly at 1.3 hydrogen bond per molecule,

which is against the closed ring structure or even network of molecules. Also, they

showed that the average number of molecules that forms chains is 2.7 on average [67].

Another diffraction experiment was reported by Weitkamp et al. [69]. They did

seven independent diffraction experiments: neutron diffraction on the isotopic species

CD3OD, CD3OH, CD3OM , CZ3OD, CZ3OZ, CM3OD and high energy X-ray

diffraction measurement on CH3OH (M is mixture of H and D and Z the H/D ’zero

mixture’ with zero coherent scattering length), which led to seven partial structural

functions HOHO, HOHC , HCHC , HO(C/O), HC(C/O), C(O/C) and O(O/C). From
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this function they deduced molecular geometry. The position and the angle of O −
HO...O is closed to tetrahedral angle, that suggested parametrization of the methanol

structure in continuous random network, which, when applied successfully described

the intermolecular short distance order. Also they point out that the features of the

intermediate distances agreed better with cluster-like than network-like structure [69].

Adya et al. analyzed near-neighbor correlation using the neutron diffraction

measurement on liquid methanol (CD3OD, CD3OH, CD3O(D/H), CD3OH) un-

der ambient conditions. They obtained the total (intra+intermolecular) and inter-

molecular radial distribution function for three samples. The H/D substitution on

hydroxyl-hydrogen was used to extract the partial distribution functions XHO and

XX (X = C, O and H-methyl hydrogen) from the difference techniques of neutron

diffraction at both the total and intermolecular level. This analysis showed that the

distance O −HO is about 0.98 Å, the distance of H-bond (O...HO) is between 1.75-

1.95 Å, and the coordination number O...HO is 0.82 Å or 0.51 Å using two different

models for extracting the intra-molecular structure [70].

Apart from the scattering experiments, the association in the liquid methanol were

studied by other experimental technique. For example, using a combination of density

functional calculations of molecular clusters with a quantum cluster equilibrium model

Ludwig provided the evidence that liquid methanol is dominated by cyclic and/or

lasso structure. He showed that only cluster populations of these structures fit the

measured thermodynamic and spectroscopic properties such as heat of vaporization,

heat capacity, NMR (Nuclear Magnetic Resonance) chemical shift and quadrupole

coupling constants [71].

One of the first studies of tert-butanol was x-ray diffraction experiment on the
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liquid tert-butanol at 26 oC of Narten and Sandler. The data show that distance of

hydrogen-bond O...O is around 2.74 Å and that each hydroxyl group has two near-

est neighbors at this distance [72]. Zimmermann et al. explored hydrogen bonded

rings, chains and lassos in the case of t-butyl alcohol clusters. They investigate in-

frared OH stretching spectra of hydrogen bonded tert-butanol clusters by ragout-jet

FTIR spectroscopy. It is found that the cyclic tetramer of tert-butanol is particu-

larly stable, also they found that lasso structures are also energetically competitive

with simple ring structures [73]. Using the second-order difference neutron scattering

with hydrogen/deuterium isotopic substitution Bowron et al. measured the inter-

molecular structural correlation in pure liquid tert-butanol. For analysis they used

the EPRS method. The results supports strongly hydrogen bonded intermolecular

correlations with each tertiary butanol molecule bonded to two others via hydroxyl

group interactions [68].



Chapter 7

Micro-structure of neat liquids

Liquids are generally thought of as macroscopically homogenous when they are consid-

ered far from phase transitions. However, in associated liquids, the highly directional

hydrogen-bonding interaction tends to enhance locally their structure.

In this chapter, we analyze the formation of micro-structure in neat associated

liquids, namely, alcohols methanol and tert-butanol. The introduction of the micro-

structure is given in the first section. The main part of this chapter is the analysis of

the results of MD simulations of neat systems. We conclude with the description of

micro-structure in the case of alcohols, and discuss the absence of such clustering in

the case of water.

7.1 Introduction

The unambiguous determination of clustering in any liquid is a problem in itself,

which touches the fundamentally disordered nature of the system. If the system

is homogeneous and disordered the associations of molecules have no distinguishing

features. The clustering becomes important, for example, when a system is close to a

82
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phase transition, and it is the enhancement of the fluctuation of the number of particle

(for a neat system) or concentration fluctuations (for a mixture) that give rise to a

local heterogeneity. In associated systems, the cluster formation in the homogeneous

phase at equilibrium is at the same time obvious and puzzling. Obvious, because

highly directional interaction will tend to strongly associate molecules, and puzzling

because the resulting local ordering shows on the macroscopic features, as we will

explain later.

The main distinguishing feature of the associated liquids is that they have a strong

local ordering as opposed to simple liquids. Namely, simple liquids have a highly

symmetric structure, which is governed, mainly by the excluded volume effects. For

example, the coordination number for a Lennard-Jones liquid is 12, which is the

maximal number of possible near neighbors and it indicates a dense symmetric pack-

ing of spherical particles. In associated liquids first-neighbor topology is due to a

highly directional hydrogen bonding. Namely, the hydrogen bond is often described

as an electrostatic interaction, for example, in water, between the negative partial

charge on the oxygen atom on one water molecule and the positive partial charge

on the hydrogen atom of neighboring molecule. However, it also has some features

of covalent bonding: it is directional, strong, produces interatomic distances shorter

than the sum of van der Waals radii, and usually involves a limited number of inter-

action partners, which can be interpreted as a kind of valence [33]. Therefore, the

topology of hydrogen bonding depends on the atomic electronegativity and shape of

the molecule. The methanol molecule, for example, has linear connectivity: one hy-

droxyl group -OH forms in average two hydrogen bonds with neighboring molecules.

The water molecules form a tetrahedral shape of hydrogen bonding that allows four
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near neighbors. However, just the fact that a system has an anisotropic topology

of near-neighbor contact is not sufficient to classify it as micro-structured or micro-

heterogeneous.

The definition of micro-structure implies existence of specific self-associations of

molecules on a larger scale than a pair-contact. It is still a vague definition, since we

did not define the properties which should be sensitive to such clustering or the ”signs”

(thermodynamical or structural) that would emerge from such local organization.

This was the first step in our investigation, to determine the properties of associated

liquids that directly probe the clustering. We performed molecular dynamics study

of methanol, tert-butanol and also water, in order to extract the information on

the local clustering. We focused on the density-density correlation functions: radial

distribution function and structure factor. The properties of the structure factor are

well understood, for example in the case of crystals. It has a shape of a distinct pattern

that is formed by the constructive and destructive interferences on the periodically

arranged atoms. Similarly, the structure factor in liquids indicates ”periodic”, in

the averaged sense, arrangement of the molecules in the liquid. Therefore, it should

provide information on the local patterns in the associated liquids. Also, counting

different sizes and shapes of clusters induced by hydrogen bonding, comes naturally

into this analysis. For simple liquids, cluster distribution is a result of the fluctuation

of the number of particles, and we will use its features as a reference. The difference

between computed cluster distributions and the reference will point to the specific

clustering that is consequence of the local heterogeneities.
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7.2 Simulation details

We have used two models for methanol CH3OH (MetOH) namely, the OPLS model

[7] and the more recent Weerasinghe-Smith (WS) model [8] which is built to reproduce

the Kirkwood-Buff integrals of aqueous methanol mixtures. It turns out that both

models have very similar local structure as we will show in the later section. We

have equally used the OPLS model for tert-butanol (CH3)3COH (TBA) [7]. We

simulated also the Lennard-Jones (LJ) system using the LJ parameters for a carbon

atom. Water has been modeled using the SPC/E parameters [9]. All models are

site-site models, with three sites for MetOH, namely, oxygen site O, hydrogen site

H, and one single site for the methyl group M = CH3, and six sites for TBA, with

the additional carbon site C. We have only considered rigid models herein. Table I

(chapter 4) gives the corresponding force field parameters used in this work.

All our computer simulations were performed in the constant NPT ensemble,

with the DLPOLY2 package [6]. All reported results concern system size of N=2048

molecules, with the exception of global snapshots of the simulation boxes that are

more readable with N=256 molecules. The conditions were fixed at T=300 K and

a pressure of 1 atm, which were maintained through the Berendsen thermostat and

barostat with relaxation times of 0.1 and 0.5 ps, respectively. A time step of 2 fs was

taken. From the analysis of the convergence of the internal energies and volumes,

as well as from the stability of the correlation functions we found that the required

equilibration time was in general about 100 ps. After this equilibration step, the

latter functions were computed over 1000 configurations separated by 0.5 ps, which

ensured smooth curves, in particular, in view of the numerical Fourier transforms that
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are performed on them. In comparison, the cluster counting needs to be averaged

over a lesser number of configurations in order to ensure similar smoothness in the

data, about 200 configurations sampled every 20 ps, the larger time step selected to

ensure that clusters have been broken and reformed elsewhere from their previous

configurations.

7.3 Results

The values of the configurational energies and molar volumes, as obtained from the

simulations, have been checked for consistency with the experimental enthalpy of liq-

uefaction and densities. This is reported in Table II. It can be seen that the agreement

is generally qualitatively good. Note that the enthalpy for the WS MetOH model is

not corrected here for the additional polarization factor mentioned in reference [8].

• Table II. Enthalpies, molar volumes and densities.

Methanol tert–butanol

Expt OPLS WS Expt OPLS

∆H(kJmol−1) -37.3 -35.43 -41.51 -46.74 -45.74

Vm(cm3mol−1) 40.74 44.26 42.27 94.6 93.25

ρ(gcm−3) 0.7869 0.7239 0.75194 0.78086 0.79487
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7.3.1 Information from the pair distribution functions

The one body density of homogeneous and disordered liquids is just a constant. There-

fore, the information about the local structure can only be retrieved from two-body

density function and higher order density functions. The pair-distribution function

g (r) measures the correlations between any two particles, and any manifestation of

the heterogeneity will be hidden among the usual features of this quantity. It is not

straightforward to extract information about clustering amongst other features that

are generally specific to a regular molecular distribution. Moreover, in our calcula-

tions we have only the radial part of the total pair distribution function and angular

correlations are lost in the process of averaging. We considered the site-site radial

distribution functions, in order to retrieve partly the information of angular prefer-

ences and also the radial distribution function of the center of mass. The site-site

RDFs are defined as in 2.66:

gαβ (rαβ) =
〈ρα (rα) ρβ (rβ)〉

ραρβ

(7.1)

In addition to site-site function gαβ (rαβ), we have equally computed the corre-

sponding structure factors:

Sαβ (k) = 1 + ρ

∫
dre−ikrgαβ (r) (7.2)

There are alternative definitions, where for example the density ρ can be replaced

by the density of sites
√

ραρβ, but these distinctions do not affect the major features

of this function. Direct comparison of the resulting measured and calculated structure

factors often leads only to qualitative similarities. Namely, the calculations show that

this quantity is very sensitive to interaction parameters meaning that size and, also
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position of the peaks can vary depending on the model parameters. Nevertheless, the

major features such as local organization should appear on the both measured and

calculated quantities.

The structure factor nicely complements the radial distribution function by pro-

viding information about medium and long range part of density correlation. Namely,

the RDF in direct space and the corresponding structure factor in reciprocal space,

form a pair related by the Fourier transform. This mathematical operation relates

the long range tail in the radial distribution function into the small k range of the

structure factor. For example, asymptotic value of the RDF corresponds to S (k) at

value k → 0.

In figure 7.1 a typical radial distribution function as well as the structure factor

of an ordinary Lennard-Jones liquid are shown. It has a simple-liquid like feature:

the long-lasting regular oscillation indicating the densely packed homogenous system.

This oscillatory structure corresponds to the main peak in structure factor.

The position of the first peak and the periodicity of peaks in RDF is σ ≈ 3.5Å.

The keff = 2π/σeff ≈ 2.3Å−1, corresponds to a σeff = 2π/keff ≈ 2.7Å. We note

that neither the period of oscillations nor the inverse position of the main peak is

not exactly equal to the LJ radius but rather corresponds to the average value of

first contact. This value is estimated to be 1.4σLJ from the period of oscillation

in RDF[74], which is then equal to a smaller value in the k-space as shown from

the calculation of the peaks position. What do we expect for associated molecular

liquids?
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Figure 7.1: RDF and structure factor for Lennard-Jones liquid.

Results for methanol

Figure 7.2 shows the site-site radial distribution function for methanol-sites. The

upper panel shows correlations between the methyl-methyl sites as well as the center

of mass radial distribution function. The other panels show the RDFs of sites that

are involved in hydrogen bonding. The first distinguishing features are pronounced

oscillations in gMM (r) as well as in gcm (r), which for the distance larger than ≈ 6 Å

are almost superposed. These oscillations are typical for simple liquids as presented

in figure 7.1. The gcm (r) has also a narrow first peak which is a signature of hydrogen

bonding. Therefore, RDF of center of mass comprises the short-range behavior due
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to the strong interaction between neighboring molecules and medium-to-large range

oscillations typical for simple liquids.
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Figure 7.2: Site-site RDFs for OPLS and WS models of methanol. Top panel: for
MM (magenta) sites and center of mass (black). Middle panel: for OO (red) and HH
(green) sites. Bottom panel: for OH black panel, OM (cyan) and HM (blue) sites.
For all data, full curves are for the OPLS model and dashed for WS model.

The distribution functions involving the hydrogen bonded sites have also charac-

teristic short range features: the strong narrow peak that corresponds to a hydrogen-

bonding (HB). The first peak in gOH (r) is at the distance 2.5 Å which is the generally

accepted value for hydrogen bond. What is surprising is that all distribution functions

of HB-sites show a lack of correlations for medium and large distances. The RDFs

of these sites for distances larger than ≈ 8 Å are apparently equal to one, while the
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gcm (r), for the same distance, still shows the liquid-like oscillatory structure. There-

fore the sites which have stronger correlation due to the hydrogen bonding appear

less correlated than randomly distributed sites. The lack of oscillatory structure in

the medium-to-long distances is typically found in monomer-monomer distribution

functions in polymeric fluids [17], and can be understood in the following way. It is

the chained alignment of sites, or monomers that influence the density correlations

preferentially along the chain and the near neighbor correlations are weaker. Due to

the averaging of angular correlations in RDFs this is translated in the first narrow

peaks indicating the strong bond between neighboring sites and the lack of medium-

to-large correlations due to the highly anisotropic chainlike structure. The packing

effects in chains are felt only for gel-type very dense polymer phases [17].

In our case, this observation can be translated to the following interpretation: the

MetOH molecules tend to form chains locally, with O and H sites strongly correlated

along the chains, while Met sites are distributed around the chains. The distribution

of Met sites corresponds to a uniform and random distributions and is apparently

not “influenced” by the chain formation. The methyl site correlations as well as the

center of mass correlations have simple liquid-like features, the pronounced oscillatory

structure indicating the dense-liquid packing, while oxygen and hydrogen sites have

highly anisotropic correlations typical for a chain structure. It is important to note

that the information about chain formation is hidden in the shapeless feature of the

RDF at large distances, and should be better seen in the Fourier space at short wave

vectors.

Figure 7.3 reports the structure factors corresponding to site-site RDF in figure

7.2. In the upper panels we show the structure factors for methyl sites and center of
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mass, while the lower panel pictures the hydrogen-bonded sites. The structure factors

in the top panel look very much like dense Lennard-Jones-type structure factors (see

fig. 7.1). The first peak in SMM (k) is at keff = 1.75 Å
−1

, from which we can extract

σeff = 3.42 Å, that roughly corresponds to the size of the methyl site. The main

peak in structure factors usually indicates the packing structure. In our case this

corresponds to the first peaks of center of mass as well as the first peak in methyl

structure factor.
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Figure 7.3: Site-site structure factors for some RDFs for OPLS and WS models shown
in fig. 7.2, with the same color and line convention. Top panel: MM and center of
mass data. Bottom panel: OO, OH and HH data. Pre-peak is indicated by the arrow.

In contrast to this, the structure factors involving the hydrogen bonding sites

(lower panel) have a very peculiar shape: they exhibit a peak at the wave vector
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kp smaller then keff . The smaller k value corresponds to larger size structure, for

example SOO (k) has kp = 1.25 Å
−1

that corresponds to a periodicity of σp ≈ 5.1 Å.

We will call this peak the pre-peak to emphasize that its k-value is smaller than that

of the main peak (this feature is also called the inner peak in the literature [18]).

In line with previous direct space interpretation, we associate this pre-peak with the

chainlike structure of hydrogen-bonded sites in liquid methanol.

It is important not to mix the features of hydrogen bond between first neighbors

and the chainlike structure that is induced by hydrogen bonding. The signature of

hydrogen bond is the first narrow peak in the radial distribution function, and should

be translated to a large k-vector distance. The small k-vector features of structure

factors are due to the large r behavior of radial distribution function. Therefore the

pre-peak indicates the structure that is hidden in the apparent shapeless tail of RDF.

It is indicative that the HB peak in gcm (r) left almost no sign in the corresponding

Scm (k) . Namely, the presence of the HB peak in RDF does not imply necessarily

the appearance of the pre-peak, which emphasizes that these two features are dis-

tinct. The previous literature is not clear about this problem, and these two features

are often confused for one another. Namely, the narrow first peak in RDF and the

pre-peak in structure factor have the same origin: strong hydrogen bond between the

concerned molecules. However, the peak in RDF expresses direct near neighboring

pairing, while the pre-peak expresses the existence of local organization on a larger

length scale, induced by hydrogen bonding. This directly tackles the puzzle of the

existence of stable local heterogeneity inside macroscopic homogenous fluids. It con-

fronts also the inherited viewpoint of the traditional representation of interaction,

where macroscopic properties are usually built from pair interactions.
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Results for tert-butanol

Figure 7.4 shows the site-site distribution functions for tert-butanol. The correlations

between the hydrogen bonded sites are in the right panel, and the other site-site

distribution functions in the left panel. In contrast to the case of methanol, all sites

show a sharp peak corresponding to hydrogen bonding, except for the methyl group

where only a small bump is observed. This indicates that the hydrogen bonding

influences also the short-range correlations of sites that are not involved in these

interactions. The RDF between the center of masses is almost identical to gCC (r),

which indirectly assesses the central positions of the carbon atom in the molecule.

Apart from the first peak, all correlations in the left panel follow the simple-liquid

packing oscillations, and they are superposed within medium-to-large distances. One

can imagine that these oscillations estimate roughly the diameter of LJ-spherical

particle centered at the center of the mass that have similar packing requirements.

Therefore, we will attribute this value to average molecular size.

The hydrogen bonded sites show a very large narrow first peak, as compared to the

methanol RDFs, indicating that the correlations between first neighbors are stronger

in TBA than in the case of methanol. The maximum in gOO (r), and to some extent

gOH (r), shows two distinct peaks. The modeling of TBA as a rigid molecule imposes

two preferential positions for OH group which correspond to a split-peak feature in

gOO (r) .

All distribution functions display oscillatory behavior, with a main difference in

the period of oscillation: the hydrogen bonded sites have a period larger than the

periodicity of correlation function between the centers of masses. While the struc-

tural packing is expected to be about the molecular size, a larger period indicates
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Figure 7.4: Site-site RDFs for OPLS tert-butanol. Left panel: MM (magenta), CC
(green) and black for the center of mass RDF. Right panel: OO (red), HH (blue) (the
inset shows detail of the peaks).

that hydrogen bonding is modulated by the supra-structure formed by the molecules

though this mechanism. The fact that this latter oscillatory structure is absent for

methanol is indicative of the differences in local organizations between two liquids:

the TBA molecules form a spherical micelle-like structure, so the modulation of the

RDF is more liquid-like and more enhanced than in the case of methanol, which we

have seen to display polymer-like structures.

Hence, we expect to observe in the structure factors the differences in structuring

displayed in the RDFs. Figure 7.5 shows the structure factor of tert-butanol. Again,

the typical liquid-like structure factors are observed for all non-bonded sites. The

main peak of Scm (k) as well as SCC (k) and SMM (k), is at the wave vector keff =
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1.34 Å
−1

which corresponds to a estimated molecular size σeff ≈ 5.6 Å. The structure

factor of hydrogen bonded sites displays a pre-peak on the kp ≈ 0.8Å
−1

, corresponding

to the length scale σeff ≈ 7.85 Å. Therefore, these two lengths correspond to the two

different periods of the oscillatory structure in figure 7.4. The size of the pre-peak

is higher than that of the main peak, which highlights the strong influence of the

association on the structural features in the TBA, as opposed to the case of liquid

methanol, where the structure factor for the main peak has the highest value.
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Figure 7.5: Site-site structure factors for some RDFs for OPLS tert-butanol shown
in figure7.4, with the same color convention. Pre-peak is indicated by the arrow.

In order to assess the origin of the pre-peak, we have simulated the same model

TBA under the same temperature and pressure condition, but without the partial
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charges. We verified that this simulation still corresponds to a dense liquid. The

radial distribution function and structure factor are shown in figure 7.6. It is striking

that the pre-peak has vanished and all site-site distribution functions show similar

behavior: all peaks in the corresponding structure factors match the wave vector of

the main peak. We note that there is a weak remainder of the pre-peak that attests

to the existence of some ordering due to excluded volume effects, the smaller OH

groups tending to cluster together.
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Figure 7.6: Distribution functions for OPLS tert-butanol modeled without charges.
Left panel: sRDFs for MM, CC, HH, OO. Right panel: Site-site structure factors for
same sites. The color convention is same as in figure 7.4.

An important point that we want to stress out here is the difference in small-k

behavior of all the structure factors, between the charged and uncharged cases. Figure

7.6 shows clearly that, in addition to the appearance of a pre-peak, we observe an
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increase of S (k) near and at k = 0, which is absent in the inset. The latter increase

corresponds to an increase in density fluctuations and compressibility. Hence, we can

conclude that micro-structured fluids tend to exhibit larger concentration fluctuations

as well.

7.3.2 Information from the cluster distribution functions

Figure 7.7 pictures a snapshot of a simulation cell of methanol. This snapshot is

only one realization of the system and presents one microstate of system. We can

associate one microstate with instantaneous density ρ(r) that is calculated using the

instantaneous positions of the particle (see equation 2.41):

ρ(r) =
N∑

i=1

δ (r− ri) (7.3)

where r = (R, Ω) are generalized coordinates: R is the position vector and Ω the set

of Euler angles describing the orientation from some arbitrary origin; ri = (Ri, Ωi)

are coordinates of molecule i of N particles in a system.

The relevant quantities are time averages, which for a uniform and homogeneous

system correspond to a constant number density:

〈ρ (r)〉t =
1

T

∫
dtρ (r, t) −→ 〈ρ (r)〉t = ρ (7.4)

A snapshot of any liquid displays some local heterogeneities. Therefore, instantaneous

density for each microstate could be written as a composition of average density ρ

and δρ (r) the quantity which measures the local deviation from uniformity: ρ (r) =

ρ + δρ (r). For a homogeneous system the time average of local deviation is equal

to 〈δρ (r)〉t = 0 , because ρ (r) = n (r) /V , the local number of particles per volume,
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Figure 7.7: Snapshot of the N=256 OPLS methanol system [32].

fluctuates around uniform value throughout the system. The function n (r) measures

distribution of particles from some arbitrarily chosen centre. However, instead of

an arbitrary partition of the system, the total volume could be divided according

to certain constraints. In figure 7.8 we show 2D examples of different partitions

of a system. The presented case is a trivial and oversimplified representation of a

2D microstate; however it gives the visual representation of differences in system-

partitioning. The random partition yields the random distribution of subsystems.

The partitioning due to the association of the particles separates volume into dense
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Figure 7.8: Schematic representation of the two types of the partition of the 2D
system. In the left panel uniform partition of the system where average number of
particles in a chosen sub-volumes is 2. In the right panel partition of system according
to the cluster distribution, where is clear that system prefers to form three particle
clusters.

and less dense regions, making the local heterogeneities more visible.

Then, the local number of particles can be written as a combination of two func-

tions: the particle-number function of the particles that are bonded in clusters and

the particle-number function of the non-connected particles:

n (r) = nc (r) + nnc (r) (7.5)

where nc (r) is local number particles per volume of the associated sites, and nnc (r)

is local number particles of the remaining sites. The time average of instantaneous



101

density separated as n (r) /V = nc (r) /V + nnc (r) /V = ρc (r) + ρnc (r) and δρ (r) =

δρc (r) + δρnc (r), will result in non vanishing deviation 〈δρc (r)〉t 6= 0 for a system

that has strong local heterogeneities. Then counting for each configuration how many

particles appear connected in a cluster of a given size n is a good way to account

for local heterogeneities which will not average to zero when computed over many

realizations. The probability of finding a cluster of size n is defined as:

p (n) =

∑

k

s (k, n)

∑

n,k

s (k, n)
(7.6)

where s (k, n) represents the number of clusters of the size n in the configuration k.

Therefore, p (n) represents cluster size probability function. This definition includes

the arbitrariness through the definition as to when two particles are mutually bonded

within a cluster. For this analysis we chose the Stillinger[16] definition where two

particles are bonded if they are separated for less than certain cutoff value lc. In

practice, this distance is chosen to correspond to the average pair contact probability

as described by the corresponding radial distribution function. Many such distances

can be defined starting from the first-peak distance to a first minimum of radial

distribution function. The distance that corresponds to the first minimum of the

radial distribution function is the most appropriate considering the temporal stability

of clusters [75]. This refers to clustering in the LJ system, however the strongly

bonded HB clusters will have a good temporal stability even for distances that are

smaller than the first minimum. Therefore for associated liquids, we will consider

cluster distribution for a wider ranges of distances between the first peak and the

first minimum of corresponding RDFs.
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What is the relation between s (k, n) and the instantaneous density? Calcula-

tion of s (k, n) comprises counting of the particle and the instantaneous density is a

function of positions of the particles. Therefore, the total number of particle is equal:

N =

∫
dns (k, n) (7.7)

N =

∫
dV ρk (r)

Mapping the instantaneous cluster distribution s (k, n) into the instantaneous den-

sity ρk (r) is not possible because in the counting process we lose the information of

the particle positions, however we gain the distribution function that includes infor-

mation of the local organization. It is important to note that s (k, n) should not be

confused with the pair-functions: it is strictly one-body information relative to the

instantaneous local heterogeneities of the system. Namely, the counting of clusters

involves criteria that are defined by the relative distance of two particles and that

correspond to a two-body function. However, the center of counting is constantly

changing since we impose the distance criteria on each particle within a cluster. In

this process the information of the two-body correlation is lost. The cluster counting

gives only the partitioning of number of particles according to specific criteria, which

is by nature of definition a one-body function.

Associated to a liquid-gas phase transition, in the Landau formalism, the order

parameter is density. In the disordered liquids the density is just a constant, therefore

one needs local parameter of order that would give the information about possible

small-scale structuring, such as clustering or even network-forming structure. This

is concept that goes beyond the traditional description of the order parameter which

are global quantities that varies through the phase transitions. We define a clus-

ter distribution function as local order parameter, since it probes if the system has
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some preferential clustering. The cluster distribution, as explained before has similar

features as density, in a sense that they are both one-body distribution function. An-

other advantage of a cluster distribution function is that it could be calculated using

the results of computer simulations.

Since the liquids studied here are molecular, it is important to account for the

anisotropy of the distribution functions. We will compute the cluster distribution for

molecular centers of masses and also cluster distribution for specific sites, and label

them with the site name formula. The site-site clusters probability function pXX (n)

are counted in such a way that the distance criteria are imposed on the distance

between the sites, while for pcm (n) the bonded pair is defined using corresponding

distances between the centers of mass.

The site-site clustering could be related to like-site and unlike-site distributions.

The computation algorithm used in these two cases differs, due to the nature of the

counting. For like sites we used the standard Stoddard algorithm [76]. The unlike

sites posed a new computational problem, therefore we created a new algorithm that

calculates the cluster distribution of any unlike sites.

Several parameters were additionally checked before the starting analysis. In

figure 7.9 we present the cluster size probability function as a function of cluster size

calculated over a different numbers of configuration.

Even for the small size system (N=256), averaging over 100 configurations gave

reliable results. Our choice for further calculations were system sizes N=2048 and the

number of configuration used in the averaging process was more than 100. The time

sampling of the configuration was 20 ps. This relatively large time ensured that the

clusters had been broken and reformed elsewhere from their previous configuration.
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Figure 7.9: Cluster size probability averaged over k = 100, 500, 1000, 5000 configu-
ration, using same cut-off distance, of OPLS methanol system with size N=256. In
the upper panel we show the carbon-carbon, and in the lower panel oxygen-oxygen
site-site cluster distribution.

The results for a Lennard-Jones liquid are pictured in the figure 7.10. It is intu-

itively apparent that the single molecular cluster n=1 will be the most important and

the p (n) will decrease very fast as n increases. The theory of percolation has exact

results for cluster size probability for points distributed on a 3D lattice and numeri-

cal results are known for Lennard-Jones-type fluids [77]. The percolation is used to

describe the systems which can be spanned using the connectivity criteria, and the

density for which this feature appears is called the percolation density. The simplest

case of percolation is when the cluster distribution comprises the clusters that are
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approximately equal to a total number of particles. At the percolation density the

cluster probability obeys the power law p (n) = An−z, where the exponent z has uni-

versal value [78]. The cluster probability decays more slowly in the dense liquid phase

than in the gas or fluid phase, but even then, the decay in the percolation phase is ex-

ponential. Heyes and Melrose got for the Stilinger cluster in a Lennard-Jones system

z = 2.1± 0.1 [79]. The cluster distribution depends, also on the value of the cutoff lc.

Figure 7.10 displays expected results: for small cutoff-distances only the small size

cluster span the system; as we increase lc the bigger-size clusters appear. This agrees

with the shape of the corresponding radial distribution function in figure 7.1. For a

dense packed LJ liquid the majority of particles is connected if the connectivity is in

the range of the first minimum. This shows, also, the ambiguity of the definition of

the percolation, where all systems could be classified as percolated if the connectivity

criteria is large enough.

What do we expect for the associated liquids? There has been considerable inves-

tigation for water, and the results showed that the cluster size probability function

decays exponentially like in ordinary liquids. It is a puzzling result considering that

water is highly associated by hydrogen bonding. We show that the cluster-size prob-

ability for pure alcohols have more specific features.

Local one-body distribution function of methanol

In figure 7.11 we present the results for cluster size probability as a function of cluster

size for pure methanol OPLS and WS model. The right panel shows pMM (n) for

methyl clustering for the range of cluster sizes n < 250 and for two different values

lc. The values span the distances around the first minima of gcm (r) (refer to figure
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Figure 7.10: Cluster size probability function calculated on Lennard-Jones system
N=2048 and averaged over k = 100 configurations using different cutoff values.

7.2). The curve follows the exponential-type decay for small cluster sizes. Clusters

with larger n appear for larger values of cutoff lc. This agrees with curves for the case

of simple liquids. The left panel in figure 7.11 shows pOO (n) for the oxygen-atom

clustering. The global shape is similar to that found for methyl clustering, however,

we observe a clear bump around n=5. This feature is robust to the choice of lc for

values around the first minima.

The high probability for cluster sizes around 5 indicates that these clusters appear

more often than we would expect. This unusually high probability for specific cluster

sizes highlights local structural preferences in our system. We note that the sizes
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Figure 7.11: Site cluster probabilities for OPLS and WS methanol: Left panels:
oxygen site clusters. Right panel: methyl site cluster. For each clustering the results
for two cutoff distances is showed. The data for OPLS model is in the squares and
WS model in the circles.

around 5 are preferential for all sites which are involved in hydrogen bonding as

shown in figure 7.12. The hydrophobic site as well as the cluster distribution for

center of mass (figure 7.11) behaves similar to LJ-type liquids.

We also note that two different models for methanol produce the similar clustering

information as presented in figure 7.11. In view of their differences in thermodynam-

ical properties from table II, we can conclude that local heterogeneities observed in

local structural preferences are inherent features of liquid menthol.

Methanol has recently attracted interest in computer simulation studies of its mix-

ture with water. Some of these studies indicate that water-methanol mixtures form
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bipercolating phases with local immiscibility [64]. Spectroscopical experiments show

predominance of chains and rings with six and/or eight molecules in liquid methanol

[22]. These findings are contested by the prediction based on the simulations. The

Monte Carlo studies by Bako et al.[80] found no predominance of hexameric rings.

They predicted that cycle structures comprise only about one third of total clusters

in methanol. The average cycle size was predicted to be 4, as well as the average

length of hydrogen-bonded chains. 15% of the methanol molecules existed as single

molecules, eq. singeltons. The MD study by Allison et al.[63] predicted similar re-

sults. The most common size for a cycle structure was found to be 3 or 4, where 30%
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of all clusters contain one or more cyclic motifs.

In line with this ongoing controversy we look in more detail at the structural motifs

in oxygen clustering. The calculations of cluster size probability isolated the specific

cluster sizes, but it lacked the information about cluster shapes. The structural motifs

were investigated by our algorithm that screens previously defined clusters verifying

if the cluster-bonded sites span close loops or compound close loops (comprising the

smaller cyclic loops), or rather the chain-like open shapes. This analysis is rather

robust dividing the cluster shapes only into two categories: open or closed shapes;

however it is a good indicator for the preferential structural motifs. We specifically

focus on the favorable size clusters, deliberately neglecting the total cluster distri-

bution. Namely, the total cluster distribution comprised also “randomly” formed

clusters. Therefore the more significant results are structural motives found in the

clusters of favorable sizes. In the range n=3-7, we find that 81% of cluster form

the open chains, and that only 19% of clusters appear in the form of close loops of

connected oxygen atoms.

We could discuss whether these results contest or confirm recent findings. How-

ever, the cluster probability functions, as well as the favorable structural motifs are

very sensitive to the means of description and applied calculations. It is clear that

by using different simulation models, the results are similar, but not equal as we can

see by comparing the cluster size probability for two different model of methanol.

Therefore, we will rather emphasize, what all these results have in common: the local

ordering on the scale larger than the first neighbors contact that corresponds to local

heterogeneities in the macroscopically homogenous and disordered system.

Important question considers is , also, the dynamics of clustering. Pugnaloni
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and Vericat proposed the time dependent cluster analysis of so-called chemical and

physical clusters [75]. The implementation of this or similar methods will be part of

our future investigation.

So far, we have not discussed the nature of clustering. The local ordering of the

OO sites is due to the hydrogen bonding and all sites that form HB show similar pat-

terns (fig. 7.12). Nevertheless, we have checked if the cluster size probability pOO (n)

corresponds to that of hydrogen-bonded clusters. We use tighter geometrical require-

ments, suggested by Pagliai et al. [81], to eliminate unphysical clusters, including a

OH-O angle smaller than 30o. This value is generally considered to be within the

acceptable value for hydrogen bond. In 20 randomly chosen configurations, less than

2% of the bonds showed an angular deviation above 30o. This result testifies that a

purely electrostatic modeling of the H bond is satisfactory. We considered also that

the instantaneous topology of clusters is equally important as the average one; in

particular, it is relevant to decipher the relations between molecular interaction and

the average cluster shape, as well as its unambiguous detection and description from

available statistical quantities. Also, it is known that the energy of various cluster

shapes is not the same [71], therefore, the clustering should influence the thermody-

namical properties of a system. Figure 7.13 shows some typical clusters found in our

simulations.
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Figure 7.13: Some characteristic clusters for OPLS methanol [32].
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Local one-body distribution function of tert-butanol

Figure 7.14 shows cluster probability functions for the methyl sites, carbon sites

and oxygen sites of tert-butanol. While all curves show usual clustering tendencies of

ordinary liquids, we observe, in the left panel, that pOO (n) and to some extent pCC (n)

(in inset) show radically different behavior at small n values. The distant peak has

emerged at n equal to 4. The differences in comparison with oxygen clustering in the

case of methanol are the following: the single site cluster probability at n = 1 is no

longer the highest and the peak at the n = 4 has the highest probability. The bump

in the pCC (n) shows weaker clustering than the oxygen clustering and is induced

through geometrical constraints of TBA molecule. These features are robust against

the choice of lc for values around the first minima in corresponding RDFs. The right

panel shows no specific clustering for methyl-methyl clusters, hinting that these sites

are randomly distributed, while oxygen and indirectly carbon clusters show specific

associations.

We conducted an analysis of the OH-O alignment similar to that for methanol,

with similar statistic, confirming again that the OO clusters correspond to H-bonded

clusters. The shape classifications showed, contrary to that for methanol, that in the

range of n = 3− 7 clusters, about 65% of OO clusters come in close loops, and 35%

form a chain structure. This result agrees well with the idea of globular clustering

in the case of tert-butanol. A snapshot of a simulation cell of TBA for N=2048

particle is shown in figure 7.15. One can clearly see that the oxygen and hydrogen

are segregated throughout the sample from the methyl group. This segregation is

more apparent than that for methanol, due to the cyclic clustering that enhances

segregation of sites.
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Figure 7.14: Site cluster probabilities for OPLS tert-butanol: Left panels: oxygen and
carbon (inset) for two lc values. Right panel: methyl site clusters for two lc values.
Inset shows all three probabilities for the whole system size at the same cutoff for
N=256.

The underlying cluster structure is displayed in figure 7.16. We note that some

clusters may come in interconnected two pieces that look like a chain of semi-open

loops. These shapes strongly resemble the micelle formation, which is consistent with

other findings.

We notice that the structural motifs for methanol and TBA differ strongly. The

hydrogen bonding of hydroxyl groups has in both cases a liner character: On average

the OH group is connected to two first neighbors. Therefore these differences are

determined by the shape of the hydrophobic part of the molecule. Methyl group in

methanol is small enough to accommodate more open shapes of HB connected sites.
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Figure 7.15: Snapshot of N=2048 OPLS tert-butanol system [32].

The globular shape of the methyl groups in TBA does not allow much flexibility, and

in the resulting clustering the hydroxyl groups are buried into the core of clusters.
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Figure 7.16: Some characteristic clusters for OPLS tert-butanol [32].
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One-body cluster distribution of the centers of mass

The analysis of the clustering as viewed from the center of mass of the molecules for

both alcohols is equally interesting. Figure 7.17 shows that clustering is observed for

the values of lc that lie around the first minima region of radial distribution function of

the center of mass (figures 7.2 and 7.4). The gcm (r) shows distinct first peaks which

correspond to the hydrogen bonding, and medium-to-large distances display liquid

like oscillatory structure. This asymmetry is also present in the cluster probability

function. The cluster bumps appear for a cutoff distance equal to HB distances in

the gcm (r). Smaller or bigger lc produces a distribution of simple liquids.
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Figure 7.17: Center of mass cluster probabilities for different values of lc. Left panel:
methanol. Right panel: tert-butanol.
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Despite the fact that the cluster peak is smaller than observed for the specific sites,

it is remarkable that there is a noticeable clustering at the level of the center of mass.

We note that a single molecule (n=1) has the highest probability for both alcohols,

which indicates that the center mass clustering is weaker than for a specific sites,

particularly for TBA. This observation shows that clustering is highly anisotropic, as

should be expected for these systems.

7.3.3 Liquid water

It is equally interesting to accompany previous findings with those for water, since

water is the most important associated liquid [82]. Figure 7.18 shows the structure

factors for water-sites (see corresponding sRDF in fig. 5.1).

We notice that the water radial distribution functions display a similar behavior

as hydrogen bonded sites for methanol; therefore we expect a strong anisotropic local

organization. However, the structure factors show only a weak shoulder in SOO (k)

at k ≈ 2.1 Å
−1

, which corresponds to the first peak in SOH (k). The wave vector

k ≈ 2.1 Å
−1

corresponds to σ ≈ 3.0 Å which is close to the diameter of SPC/E

water σSPC/E ≈ 3.6 Å. Clearly this does not indicate any supra-molecular clustering

or chain formation, because the σ value is approximately equal to the size of the

molecule. In line with this, the cluster distributions function in figure 7.19 shows

only ordinary liquid features.

In literature similar analysis of water clustering point out to a strong pairing in

tetrahedral configuration and possible clustering on the larger scale is not addressed

[83]. Many percolation studies of water only stress the fact that water looks perco-

lated, but not specifically clustered [19].
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Figure 7.18: Structure factors for SPC/E water: OO (red), OH (black) and HH
(green).

In view of these results water looks even more puzzling. The structure of water is

mainly governed by the strong directional interaction, and excluded volume effects are

negligible. However, the results show that hydrogen bonding in water does not induce

formation of any specific association. The explanation may be that micro-clustering

in water consists of topological conformations that do not get trivially sampled in the

two quantities that we have explored herein. This may be due to the tetrahedrality of

water hydrogen bonds that opens many bifurcations, and thus get sampled to nearly

zero due to a global sphericity of the resulting distribution, indicating the network-like

rather than cluster-like associations.
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Figure 7.19: Oxygen cluster probability for SPC/E water for various lc values.

7.4 Discussion and conclusion

In the case of two simulated neat alcohols, namely, methanol and tert-butanol, we

have shown that their liquid phases are partially or fully micro-structured under

ambient conditions. We stressed the fact that despite being micro-structured, these

liquids remain disordered, and far away from any phase transition instabilities. This

is attested by the small value of the structure factor at the k = 0. We have shown that

the site-site density correlation functions incorporate the information of inherent local

structural patterns. The hydrophobic site functions followed the simple-liquid like

features, while the hydrogen bonded sites correlation functions are modified according
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to the specific self-associations of molecules. The analysis of the sRDF stressed out

the differences in sites structuring and using the corresponding analogies, the features

of sRDFs were connected to the specific clustering. The structure factor analysis

further confirmed this differences in behavior. The structure factors showed two

different structural periodicities, the first corresponding to the packing requirement,

and the second to self-association of the sites on the scales larger than the first-

neighbor contact. This is equally valid for the local one-body functions, cluster size

probability, from which the preferable sizes of clusters were extracted. Both the

site pair functions in reciprocal and direct space and clusters distributions exhibited

features that point to the same micro-clustering characteristic. Namely, methanol is

found to be weakly clustered, forming various chainlike patterns, while tert-butanol

is almost entirely associated and forms a micelle-like primary pattern.

Examining the case of liquid water, we found no apparent clustering through the

analysis used in this work, which is consistent with other authors’ findings [19]. In

that respect, it is interesting to note that the small-k behavior of the structure factor

of water shows a notable increase at room temperature [20]. It may then indirectly

point to some type of micro-clustering, which is not clearly probed through the cluster

counting and the structure factor.

The important issue is also the distinction of the particle number fluctuation

and local heterogeneity. Density fluctuation as well as concentration fluctuation are

directly connected to the value of the structure factor at k = 0. Pre-peak that

indicated the micro-structuring was on the small finite k-value. However, we noted

also that micro-structuring is accompanied by the small enhancement of the density

fluctuations. Therefore the micro-structuring may help to constrain the increase of
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the fluctuations that will drive the liquid out of the stability range. However, the

relation between these two features is still unclear.

In order to position these puzzling facts, it may be interesting to compare them to

other cases where local order competes with global disorder. Let us start with liquid

crystalline molecules that would form a nematic phase. Such molecules are strongly

anisotropic and tend to align parallel to each other even in the dense disordered

isotropic phase. This is related to pre-transitional phenomena. Their phase instability

is driven by the k = 0 behavior of the orientational structure factor [84]. It is only

near the spinodal that micro-domains are formed. Otherwise one goes from global

disorder to global order through the ordering transition. Since, in our system we only

have a local order, these liquid crystal systems do not provide a good comparison

point.

Next, supercritical fluids also exhibit considerable clustering, which is even used

to micro-segregate solute particles at industrial level [85]. However, these effects are

entirely due to the strong concentration fluctuations near k = 0 and high compress-

ibility because of the proximity to the critical point. These liquids do not exhibit any

pre-peak, only a large peak near k = 0 which is due to the high compressibility of

this state. So this case is also ruled out as a comparison point. We note that both

these cases point to an underlying phase transition, which is totally absent from our

case herein. Model fluids may be closer to our case: the dipolar hard sphere fluid

DHSF, for example. The DHSF tends to form long chains[86] although this feature

is not seen in the RDF. In particular, there is no strong main peak, and the struc-

ture looks more like that of a disordered fluid [87]. This may be due to the 1/r3

dependence of the directional interaction. Despite this, we would like to point out
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that this fluid does not have a clear gas-liquid phase transition as it should. One of

the interpretations[88] is that the chain formation blocks the condensation of a true

liquid phase. The main feature that we retain from this model is that directional

interactions can suppress the phase transition, and, like in our case, directional H

bonding can create a stable phase with a considerable sustained microstructure.



Chapter 8

Micro-heterogeneity in
water-alcohol mixture

The existence of nano-scale inhomogeneities of the aqueous solutions have become

apparent in the last decade, thanks mainly to computer simulations. The mere idea

that aqueous solutions are locally immiscible is very intriguing, since it questions the

fundamental features of liquid solutions, which are homogeneity and disorder.

In this chapter, we will describe the micro-heterogeneous distribution of species in

water-alcohol mixture. The introductory part contains the experimental findings that

support the idea of local inhomogeneity. In subsequent sections, computer simulations

are used to explore further this nano-scale heterogeneities. The analogy between

micro-emulsion and aqueous alcohols is discussed in the closing sections.

8.1 Introduction

The research of the alcohol-water mixtures, at first glance, seems to be well advanced.

Indeed, considerable knowledge has been gathered about the nature of the aqueous

solutions (for example thermodynamical properties such as molar volumes, partial

123
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molar volumes, densities, enthalpies, Gibbs free energies, chemical potentials, as well

as dynamical quantities). Namely, the alcohol-water mixtures have been investigated

using a variety of experimental techniques, and also several computation simulations

have been aimed to explore these solutions (see chapter 6). In spite of all this research,

we still lack the physical insight that would explain the behavior of such systems. We

can add one more reason why studying the alcohol-water mixture is so important:

they are the simplest molecules that show the hydrophobic effect, which is the basis

of many biologically important processes such as folding of proteins or construction

of membranes.

One of the puzzles is that when a simple alcohol is mixed with water, the entropy

of the system increases less than expected for an ideal solution of randomly mixed

molecules [89]. This effect has been explained by the fact that the hydrophobic head-

groups create a ice-like or clathrate-like structures in the surrounding water [90].

However, the recent findings suggest that the alcohol molecules in a water mixture

cluster together [21].

Using neutron diffraction with H/D isotope substitution Dixit at al. [21] probe the

molecular-scale structure of a 7:3 molar methanol-water solution. The data indicates

that most of the water molecules exist as small hydrogen-bonded strings and clusters

in a ”fluid” of close-packed methyl groups, with water clusters bridging neighboring

methanol hydroxyl groups through hydrogen bonding. This behavior suggests that

the anomalous thermodynamics of water-alcohol systems arises from incomplete mix-

ing at the molecular level and from retention of remnants of the three-dimensional

hydrogen-bonded network structure of bulk water [21].

This finding has been further confirmed by the report of the Guo et al. [22].
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They investigated the structural properties of pure liquid methanol and methanol-

water solutions using X-ray absorption (XA) and selectively excited X-ray emission

(XE). XA and XE spectra reflect the local electronic structure of the various con-

formations, for example, the oxygen line shape is sensitive to the hydrogen bonding

configurations. They found that a combination of pure liquid XE spectra reproduces

the equimolar solution XE spectrum almost in detail. Due to the fact that these

spectra are very sensitive to the changes in the local electronic structure, this ob-

servation indicates incomplete mixing at the microscopic level. They point out that

any appreciable amount of ”free-swimming” water molecules without hydrogen bonds

would have given a completely different result. The XA spectrum of solution shows

similarities to the spectra of the two pure liquids, but with distinct structures prior to

the main absorption edge which is absent in the spectra of both pure liquids. These

structures directly reflect the local electronic interaction between water and methanol

molecules. They concluded, that specific bonded structures, involving both water and

methanol, are responsible for this spectral behavior, and this feature is explained us-

ing the model where water molecules bridge methanol chains to form rings [22].

The deviation from the ideality of water-alcohol mixture is best expressed in terms of

excess functions (see chapter 3). It is known that the concentration and temperature

dependencies of the excess functions for alcohol solutions are quite complicated [91],

part of it is related to a weakening of hydrogen bonds with the increase of tempera-

ture. The water-alcohol mixtures, also, have unusually large negative excess volumes

and positive excess heat capacities. The current explanation is that the large negative

excess volumes are due to a solute-water bonding, and the positive heat capacities
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are due to the increase of the orientational freedom of both components as the tem-

perature is raised [92]. A large negative excess volume indicates that the water and

alcohol are packed tighter to each other than they are in neat systems. If we suppose

that water and methanol are randomly mixed, than it is not clear how they can have

such large excess volume, since the hydrophobic part of alcohol does not ”like” water

and in the process of mixing this would necessarily cause an increase of the excess

volume. Therefore, the explanation that the large negative excess volume is just due

to solute-water bonding is, clearly not sufficient.

The water alcohol mixture has three regimes of mixing: at the high alcohol concen-

trations the structure is governed by the H-bonded alcohol aggregates; at high water

concentrations the structure is dominated by the tetrahedral-like structure of water;

and at the compositions in between the micro-inhomogeneous regions of both, the

characteristic alcohol and water structures coexist and smooth continuous transitions

between two regimes are observed. However, there is no consensus about what is the

underlying microstructure. For example, there are two main leading views regarding

the water distribution in a mixture with high alcohol concentration. The first de-

fends the hypothesis of the water-rich micro-inhomogeneities in terms of small ”water

pockets”, where water is localized in the hydrophilic regions formed by alcohols. The

second speaks in favor of a more uniform distribution of water over the system, with

the hydration of the hydrophilic -OH chains and of the enhancement of the alcohol

self-associations, which is therefore a more loose structure, where the -OH groups are

either bonded to water or forming clusters characteristic of alcohols. Recent simu-

lation studies by Tomščić et al.[93] strongly support the second scenario. Namely,
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their results show, for pure alcohols, the non-existence of the large hydrophilic re-

gions;and in the case of alcohol solutions, no huge enlargement of the hydrophilic

regions that would point out to a formation of water pockets was observed. This

study corroborates well with our results which we will show in the later sections.

Wakisaka et al. [94] probe the cluster structure in solution studying the clusters

isolated from liquid droplets by using the mass spectrometry. They found that molec-

ular clustering changes with varying the alcohol-water mixing ratio and proposed the

three regions of mixing: at the small alcohols proportion the inherent water-cluster

structure is preserved and alcohol molecules act as substitutions of water molecules

in the hydrogen-bonding network of water; the middle region is characterized by

layer structure and destruction of water network; and with the increase of the alcohol

contents, the alcohol self-aggregation structure becomes dominant [94].

However, it was Koga [95], who pointed out first, that there are three concentration

regions within a single-phase domain in aqueous solutions, in each of which the mixing

scheme is qualitatively different from those in the other regions. Moreover, in his

work, the crossover from one scheme to the next is associated with anomalies in the

thermodynamic quantities that are proportional to the third or the fourth derivatives

of the Gibbs free energy [95]. The similar idea, has been reported for the small mole

fraction of tert-butanol [96]. Namely, the maximum of light scattering as well as

maximum for the specific heat and the minimum for the compressibility has been

found at the concentration 0.03-0.05 mole fraction of alcohol and these anomalies has

been attributed to the fluctuation of the structure [96]. Nishikawa et al. [97] analyzed

the tert-butanol-water structure at low concentration based on the concentration

fluctuation obtained from the x-ray scattering. At the concentration about 0.04 the
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formation of clathrate- hydrate TBA(H2O)n is proposed, and as the concentration

increase the formation of larger clusters of TBAn(H2O)n. The analysis of the KBIs

indicated that both species have tendency of the self-association. However, more

convincing scenario, according to Nishikawa et al. [97], is the exitance of the free

TBA regions and the TBAn(H2O)n domains. Bowron and Moreno [98] investigated

the high alcohol concentration of TBA-water mixture using the neutron diffraction

with hydrogen/deuterium isotope substitution. The results highlighted the creation

of water pockets within the solution structure. Also, these results show that only a

small amount of water is required to drive this solution in the direction of hydrophobic

behavior, more commonly associated with the water-rich solution composition [98].

Therefore, it is the understanding of the microscopic properties, that we lack

in order to uncover the behavior of the macroscopic features. The leading idea is

that of the local segregation of water and alcohol which preserves the macroscopic

homogeneity and disorder. This is close to the features of micro-emulsion, which have

highly heterogeneous distribution of molecules that form aggregates such as micelles,

but remain macroscopically in the homogenous phase. Micro-emulsions consist of a

water component, an oil component and a surfactant, in which the latter forms the

interfacial area between the two otherwise immiscible components. Clearly, they are

more complex systems than a binary mixtures, but nevertheless, this analogy will

prove to be valid for the description of the association of self-species in water-alcohol

mixtures.
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8.2 Simulation details

We have used the OPLS model for methanol CH3OH (MetOH) and equally the OPLS

model for tert-butanol (CH3)3COH (TBA) [7], together with the SPC/E model for

water [9]. As in previous study all models are site-site models: model for MetOH

comprises the oxygen site O, hydrogen site H, and one single site for the methyl

group M = CH3, TBA as six site model with the additional carbon site C, and

SPC/E water with OW oxygen and two HW hydrogen sites. All details are presented

in Table I (chapter 4). The computer simulations were performed in constant NPT

ensemble with the DLPOLY2 package [6]. The number of particle was 2048, and the

simulations were done for a nine different mole fractions from 0.1, 0.2 to 0.9. The

conditions were fixed at T=300 K and a pressure of 1 atm, which were maintained

through the Berendsen thermostat and barostat with relaxation times of 0.1 and

0.5 ps, respectively. A time step of 2 fs was taken. The sampling time for each

simulation run was 64 ps, and number of runs were from four to twenty two (for

equimolar concentration) for different concentrations of methanol in water-methanol

mixtures. The alcohol mole fraction 0.2 in tert-butanol-water mixture was simulated

for thirty two runs of 64 ps, and other concentrations for one or more runs of 64 ps.

We took additional care in the process of the equilibration of the systems. Namely,

each concentration was equilibrated independently of the others. Starting configura-

tion was constructed from the equilibrated configuration of the nearest larger alcohol

concentration in which molecules of alcohol were swaped for the molecules of water to

reach desired concentration. We started this process from the pure alcohol configu-

ration towards the configurations of the smaller alcohol concentrations. Each system
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was equilibrated for et least 64 ps.

Since, we are probing the local inhomogeneities, it is extremely important, to have

well equilibrated system, in a sense that we do not have any memory of the initial

configuration. However, this is not straight forward process, since the time and the

space scale of the relaxation of the strongly bonded micro-heterogenous systems are

not known in advance. Also, standard tests such as the convergence of the energy or

volume is not sufficient to confirm the equilibration of the MH-systems, as we will

point out in the case of water-tert-butanol mixture.

8.3 Theoretical considerations

The computation of RDF, structure factors as well as RKBI is done in terms of

the site-site function as already defined in previous chapters. The site-site function

measure now correlation between sites of each species, but also the cross-species

correlations. Then, the RKBI is equal to:

Gαiβj (R) = 4π

∫ R

0

(
g

(2)
αiβj (r)− 1

)
r2dr (8.1)

where αi and βj sites corresponds to site of species i and j, namely αi and βj can

be equal to any of H, O, C, M, OW and HW sites. Similarly, the structure factors,

for sites αi and βj, are defined as:

Sαiβj (k) = 1 + ραiβj

∫
dre−ikrgαiβj (r) (8.2)

where ραiβj is density of sites
√

ραiρβj and ραi = Nαi/V .
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8.4 Micro-heterogeneity in methanol

In the table III, we show the number of runs and total simulation time for each

alcohol concentration, not including the equilibration-runs. The results presented in

the next sections are taken from the last run for each configuration, accept in case of

the χa = 0.5 where the overall results are showed for the 1.08 ns run.

• Table III. Number of runs and the simulation time for the χa alcohol mole

fraction

χa Number of runs Total simulation time [ps]

0.1 5 320

0.2 7 448

0.3 4 256

0.4 6 384

0.5 22 1408

0.6 5 320

0.7 4 256

0.8 7 448

0.9 5 320

8.4.1 The thermodynamical properties

In this section, we discuss the thermodynamical properties of the simulated system.

We compare the OPLS model with the two other simulation studies of the water-

methanol mixture: the simulation data from Ferrario et al., FHMK model [24] and
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the Weerasinghe and Smith (WS) model [8]. We equally make relation with the

experimental results, which are also shown in each figure [8][99][100].
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Figure 8.1: The concentration dependence of alcohol-water mixture for the OPLS
model shown in blue, the FHMK simulation data in magenta, the WS simulation
results in green and experimental values are shown as red line [100][99]: upper panel
density; middle panel molar volume; and lower panel excess molar volume.

In figure 8.1, density as a function of concentration is displayed in the upper

panel, molar volume in the middle panel, and variation of the excess molar volume

with mole fraction is shown in the lower panel. The correct values of the excess

molar volumes are closely related to the correct description of the microstructure

since the excess volume directly probes the non-ideal contributions of the component
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mixing. We notice that there is a general good agreement of all simulation data

with experimental values. The FHMK model shows the best agreement, because the

parameter of this models were defined in such a way to reproduce the experimental

density and volume. We notice that WS and OPLS model overestimate the volume

of the neat alcohol system, which is then translated to the small increase of the

volume in the high alcohol concentration mixture. The excess molar volumes are also

well reproduced by all models. Again the FHMK-curve is almost identical to the

experimental function, while other data show small deviations. We notice that OPLS

model show small jaggedness for the central concentration region.

The internal energy calculated in the simulation is compared usually with the

heats of the solution that are measured experimentally. These latter quantities are

in fact enthalpies resulting from the dilution of a given quantity of solvent in water.

As far as we are concerned, we are more interested in the enthalpy difference between

the solution and pure water. This enthalpy difference is related to the corresponding

internal energy difference by ∆H = ∆U + P∆V , where ∆V is the volume change

resulting from the dilution of solvent. The experiments are conducted at ambient

pressure conditions, and the MD simulations are performed as close as possible to the

liquid side of the liquid-vapor coexistence curve, that is, at zero pressure condition,

and both the corresponding thermodynamical states are well below the critical point.

Therefore, in the NPT-constant ensemble the P∆V term is negligible when compared

to the energy term, so the internal energy can be directly related to the measured

enthalpy [101]. Since, the kinetic part of the internal energy is constant (in T-constant

ensemble is RkT term) the change of the internal energy of the simulated system is,

than related to the configurational energy. Also, the correct SPC/E energies for neat
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water are lower than the experimental ones by δE = 5 kJ/mol, which corresponds to

the water polarization contribution [49]. Following an argument by Berendsen [49] we

have corrected the displayed water component energies by this term by the following

expression Enew = Eold + δE(1 − χa). The corrected results are shown in figure 8.2.

We presented the concentration dependence of the configurational energy (the upper

panel) and as well the excess configurational energy (the lower panel).
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Figure 8.2: The concentration dependence of alcohol-water mixture for three different
simulation data and the experimental results [23]: upper panel configurational energy;
and lower panel excess configurational energy. Color convention is the same as in
figure 8.1.

The agreement of the simulation and the experimental results is less good than in

the case of the volumes and the densities. The largest deviations is observed for the

FHMK model. Namely, the FHMK model was designed to reproduce experimental
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density, which then resulted in a less good reproducibility of the configurational en-

ergy. This emphasize the fact that it is difficult to produce a model that is equally

good in reproducing all the thermodynamical properties of the systems. The impor-

tant point is also the large variation of the simulated excess energies between the

results of the different models and as well as between the simulation data and the

experimental measurements. We notice that none of the models are able to reproduce

the correct value or the correct position of the minimum of the excess energy. All sim-

ulation data shows the symmetrical distribution with the minimum at the equimolar

concentration. The experimental data have a shifted minimum at the alcohol mole

fraction around χa = 0.3. The literature offers several explanation why the excess

enthalpy function is highly asymmetric, however there is still no consensus. This is

one more puzzle of the aqueous solutions. Even more important question is what the

alcohol or water models ”miss” in order to reproduce correct excess energy.

Let us take a closer look at the energetical contributions of the OPLS simulations. In

figure 8.3, we show in the upper panel the Lennard-Jones (LJ) energy, the Coulomb

energy and their sum which is the total configurational energy, together with the

experimental data; and, in the lower panel corresponding excess energies. The excess

Coulomb energy displays the smooth symmetrical curve. The excess LJ energy is

close to zero, and it has positive contribution for the central mole fraction region.

Therefore, we are tempted to explain the jaggedness of the excess volume using the

arguments that consider Lennard-Jones energy. In the system which has non-bonded

and bonded sites resulting LJ energy is a sum of the two opposite contributions that in

terms of the excess energy correspond to: negative excess energy for the non-bonded

sites and positive excess energy from the bonded sites. In our case, this leads to the
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Figure 8.3: The concentration dependence of alcohol-water mixture for the OPLS
model: the Lennard Jones potential energy is shown in violet, the Coulomb energy
in cyan and the sum of the LJ and Coulomb contribution, the total configurational
energy is shown in blue. The experimental values are shown as red line. The upper
panel displays the energies and the lower panel corresponding excess values.

excess energy which is close to zero. The positive excess LJ energy indicates that the

molecules on the average are closer than the LJ radii, which leads also to a decrease

of the excess volume. It is well known that, due to the strong electrostatic attraction,

the average distance of the first neighbors in hydrogen bonded systems is less that

the van der Waals radii [92]. Important question is why the excess energy becomes

slightly positive in the central molar fraction region. If the system is homogeneous,

than the excess energy should scaled according to the concentration, and the curve

should be smooth. Therefore, we give a purely hypothetical explanation, starting
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from the assumption that the system exhibits segregation of the species. The parti-

cles that are in the interfaces are even more confined, then particles which are in the

species clusters, and they contribute to the positive part of LJ energy. Since, for the

concentration around 0.5, the interfaces between specie clusters is the biggest, the

excess LJ energy becomes slightly more positive.

8.4.2 The pair correlation function in direct space

Figures 8.4, 8.5 and 8.6 show concentration dependence of the selected site-site distri-

bution functions: the upper panel shows site-site radial distribution functions, while

the lower panel shows the corresponding running KBIs. The previous simulation re-

sults confirmed that these sites follow the center of the mass distributions, therefore

there are good choice to monitor the component correlations.

We notice that the methanol-methanol RDFs look similar for all concentrations:

all functions show liquid-like oscillations, and positions as well as size of the peaks do

not vary much. Just looking at these functions, one may assume that the organization

of molecules of methanol is not affected by the presence of water. This could be an

indication of methanol being segregated in pockets. On the contrary, water clearly

displays strong concentration dependence. The height of the first peak increases as

we go from water rich towards water poor solutions, indicating the enhancement of

the first-neighbor structure. This is, also, true for methanol correlations, but to much

smaller extent.

Namely, RDF measures the pair-correlations normalized with respect to the uni-

form density of the species (equation 2.39). Therefore, the enhancement of the first

peak indicates that the molecules tend to cluster, rather than being disperse over
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Figure 8.4: The concentration dependence of the radial distribution functions are
displayed in the upper panels, and the corresponding RKBIs in the lower panels. The
methanol correlations are shown in red, water functions in blue, and cross-species cor-
relations in green. The three vertical panels correspond to the alcohol mole fractions
0.1, 0.3 and 0.4 respectively.

total volume. The increase of the RDF peaks as the concentration of water decrease

shows that molecules of water will self-associate even for small concentrations. As

expected only the height of the peaks changes and not the positions which are equal

to a standard HB 2.5 Å.

Cross-species RDFs show expected behavior: the correlations slowly increase as

the water content decreases.

In order to access the HB correlations in methanol, in figure 8.7, we display
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Figure 8.5: The concentration dependence of the RDFs and RKBIs, with the same
color convention as in Figure 8.4. The three vertical panels correspond to the alcohol
mole fractions 0.2, 0.5 and 0.8 respectively. The RKBIs are shown for two different
runs.

the methanol oxygen correlations, as well as water and cross-species correlation (O-

water)-(methanol-O). The hydroxyl-oxygen correlations follow the same trend as wa-

ter correlations. For low methanol concentrations the correlations between oxygen

sites are very weak, and the self-clustering of oxygen sites increases as concentrations

of methanol increase. This is an expected result, since, in water rich solutions, the

competition for HB between water and methanol destroys the chain-like OO clus-

tering, and only as the concentration of methanol increases the oxygen sites restore

anisotropic self-association.
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Figure 8.6: The concentration dependence of the RDFs and RKBI, with the same
color convention as in Figure 8.4. The three vertical panels correspond to the alcohol
concentrations 0.6, 0.7 and 0.9 respectively.

The RDFs information is easier to understand within short range distances, since

the long-range correlations are hidden in apparently shapeless tails. Therefore, the

medium-to-long range correlation will be more noticeable in RKBI, where the small

variations will be amplified in the process of integration.

What do we expect starting from on the previous findings? The simulations of

pure systems show that the convergence of RKBI is achieved within 3-4 molecular

diameters. Therefore, we expect that all sites RKBIs will tend smoothly towards a

well defined KBI value. Deviations may appear, only for the component in the low

concentration region, that is purely for the statistical reasons.
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Figure 8.7: The concentration dependence of the RDFs and RKBIs. The oxygen-
oxygen methanol correlations are shown in thick red line, the water oxygen correlation
in thin blue line, and the cross correlation (O-water, O-methanol) are shown in green
line. The three vertical panels correspond to the alcohol mole fractions 0.2, 0.5 and
0.8 respectively.

As expected, when the solute component is majority, its RKBI displays the reg-

ular long-lasting oscillations around well defined value of KBI, and small deviations

from this behavior are observed for the low methanol concentration. This is equally

valid for the methyl and the oxygen sites, therefore it is a feature of all methanol-site

correlations. However, the water RKBIs show unexpected results. For almost all

concentrations, medium-to-long range tail of RKBI displays oscillatory-like behav-

ior comprising half (χa = 0.6 − 0.5 of water), one (χa = 0.4) or even two periods
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(χa = 0.2). These results show that water and methanol apparently have two dif-

ferent kinetics of self-associations in water-methanol mixture. Namely, while the

simulation time was large enough for methanol functions to reach uniformity, this

was not sufficient for the water function to converge.

In addition, in figure 8.5 for solute mole fractions 0.2, 0.5 and 0.8 we present

two successive runs. Different statistical runs give the more or less same results

for the methanol functions, which is compatible with the idea of reproducibility and

equilibration of the simulated system. The variations are present only for small solute

concentrations. On the contrary, different runs for water functions displayed totally

different tail variations for all concentrations.

Usually one expects the problems with the sampling for the components with a

smaller number of particles, which is even more valid if these particles tend to cluster.

However, it seems that for water the reproducibility of runs is highly perturbed for

almost every concentrations. Each of these functions has been calculated by sampling

every 0.04 ps for runs typically over 64 ps, which represents 1 600 configurations. This

is quite large when we compare the sampling time needed for a simple liquids (1000

samplings is generally enough), but it is 5 to 10 times smaller (on a 1-2ns run-times

basis) than what seems suggested by recent calculations by other authors [47][35] for

mixtures of associated liquids.

Therefore, we simulated the equimolar concentration with the total simulation

times around 2 ns. The correlation functions were accumulated for 1 ns run, which

was followed by successive runs of the 64 ps until the total time of simulations was

around 2 ns. These results are pictured in figures: water-water functions in 8.8;

and in figure 8.9: in the lower panel solute-solute functions, and in the upper panel
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Figure 8.8: The water-water RKBIs for the equimolar concentration using different
simulation runs. The black line shows the results from the 1.02 ns sampling time and
the other curves are average values from successive simulations runs of the 64 ps. The
order of the runs is following: black-red-green-blue-magenta-cyan line.

cross-component functions.

Again, the solute-solute correlation do not differ much considering the results of

different runs. On the contrary, the water-water functions oscillate above and bellow

the data of the longest run of 1 ns. Therefore, if we applied longer statistics the erratic

behavior of RKBI will eventually vanish, and this large sampling will reproduce the

correct asymptotic limit. This agrees also with the experimental findings that KBI

has the well defined experimental value. Thus, we agree that it is necessary to have

extended simulations for water mixtures in order to reach the correct KBI. However,
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Figure 8.9: The upper panel displays the methyl-methyl RKBIs for the equimolar
concentration calculated using different simulation runs, and the lower panel show
same results for the cross-species functions. The color convention is the same as in
figure 8.8.

we find more interesting to elucidate what is the reason behind this erratic behavior

of RKBI.

The irreproducibility of different simulations runs in the case of water, can be

explained by the fact that water is highly associated, and the different simulation

runs actually sample over different realizations of these associations. On the contrary,

the methanol RDF and RKBI show no signal of clustering, apart at the low methanol

concentrations. The snapshots from the simulations are shown in figure 8.10. One

sees clearly that methanol is homogeneously distributed, while water forms sponge-

like structure. This, at first, is hard to imagine, since if one species is clustered, just
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for the sterical reasons, the other species should also be clustered. We can suggest

that methanol is homogenously distributed in such a way that it is bonded to the

other molecule of methanol and to the water molecule, therefore, the majority of

methanol molecules are also clustered, just some molecules of methanol are trapped

in the water domains, which than results in the apparent homogenous distribution of

methanol.

Therefore, micro-segregation of species is omnipresent behind the results shown

here. It is, nevertheless, puzzling why water and methanol, both being hydrogen

donors and acceptors, would not form a homogeneous mixture. The mixing is result

of the competition of two types of hydrogen bonding, that between self-species and

that between cross-species. Nevertheless, we do not expect that the small methyl

hydrophobic sites will order the mixture as much as that found in a true micro-

emulsion. Apparently, there is no reason why these species should form an uniform

mixture. Nevertheless, the simulation results, as well as experimental results, indicate

that the equilibrium structure of methanol-water is, actually micro-heterogeneous.
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Figure 8.10: The snapshots of water-methanol mixture for mole fraction 0.5 and
N=2048 particles. In the upper figure methanol molecules are displayed and in the
lower water molecules [32].
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8.4.3 The pair structure in the reciprocal space

The site-site structure factors are discussed in the following sections. We are partic-

ularly interested in behavior of small k-vectors, which provide the information of the

large scale organization of the mixture.
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Figure 8.11: The concentration dependencies of the structure factors. The methyl-
methyl functions are shown in the upper panels and the water-water structure factors
in the lower panels. In each graph the results from two successive 64 ps long runs
are shown: methanol functions are in red and magenta, and the water function are
shown in blue and cyan. As referent case, the structure factors of each neat system
are presented in black: in the upper panel the methanol structure factor and in the
lower panel the structure factor of neat water. The three vertical panels correspond
to the alcohol mole fractions 0.1, 0.3 and 0.4 respectively.

Figures 8.11, 8.12 and 8.13 show concentration dependence of the structure factors:

the upper panel show methanol functions, and the lower panel shows water functions.
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Figure 8.12: The concentration dependence of the structure factors. The functions
and the color convention are same as in figure 8.11. The three vertical panels corre-
spond to the alcohol mole fractions 0.2, 0.5 and 0.8 respectively. For the mole fraction
0.5 the results of only one run are displayed since, the detail run-evolution is shown
in figures 8.17.

As before, we equally show two successive runs, together with the structure factor of

the neat liquid (in black line), which helps to measure the departure from homogeneity

due to the presence of the opposing component.

The differences between methanol and water organizations are even more appar-

ent looking at the corresponding structure factors. Water structure factors, at all

concentrations, show large peaks at the small k-vector. Similar peaks for methanol

are only present in the low solute concentration. Again, the results from successive

run are almost superposed for the methyl sites, and show large variation for all water
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Figure 8.13: The concentration dependence of the structure factors. The functions
and the color convention are same as in figure 8.11. The three vertical panels corre-
spond to the alcohol concentrations 0.6, 0.7 and 0.9, respectively.

functions. Apart from the persisting peak at the small k-vector, the shape of the

peaks in water structure factors also changes. Namely, small shoulder present in a

neat system structure factor almost disappears for small water content.

The concentration dependence of the methyl-methyl structure factor are shown

in figure 8.14, and in figure 8.15 oxygen-oxygen of hydroxyl group. We equally show

how the water structure factors vary with the concentration in figure 8.16. The main

peak of methyl site does not show any concentration dependence. However, this is

not true for the structure factor of the hydrogen-bonding site. We also notice that

the variation of the small k-vector peaks is similar for methyl and oxygen functions.
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Therefore, the small k-vector behavior corresponds to the species features and the

changes in pre-peak shows that methanol does not preserve same structure as in neat

system. The water has a strong concentration dependence, which is seen trough the

small-k variation and, also the change of the main peaks.
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Figure 8.14: The concentration dependence of the methyl-methyl structure factor.
The methanol functions are show for the mole fractions 0.1, 0.2 to 1.0., and the cor-
responding colors are red-green-cyan-magenta-blue-yellow-dark yellow-navy-purple-
black. For example, result for the mole fraction 0.5 is shown in blue and methyl-
methyl structure factor of the neat system is in black.

All extracted information from structure factors can be summarized as follows.

The small k-vector peaks indicate the appearance of the large scale associations which

clearly support the idea of self-clustering and micro-heterogeneity. Such peaks are a
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Figure 8.15: The concentration dependence of the oxygen-oxygen methanol structure
factor. The color convention are same as in figure 8.14. Black line is the OO structure
factor of a neat methanol

characteristic feature of all methanol-sites and water functions, therefore, they are an

indication of species association. The fact that the pre-peak, or in the case of water

the small shoulder in Sww (k), vary with concentration, directly asses the change in

hydrogen bonding, showing that the microstructure results from the self-species and

cross-species hydrogen bonding at the cluster interface.

Let us turn now to the data from the successive runs. Figure 8.17 displays the

water structure factors for 2 ns runs for equimolar concentration.We notice that

k = 0.25 Å
−1

corresponds to a σ = 25.12 Å, which is approximately equal to the
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Figure 8.16: The concentration dependence of the water-water structure factor. The
color convention are same as in figure 8.14, only difference is that the black line
corresponds to the neat water correlation.

half-system sizes (the largest distances that we can measure). This, at first, may be

interpreted as if the Fourier transformation was not done properly. However, if this

was the case indeed, than other structure factors would have the same fault. There-

fore, we conclude, that the small-k behavior of Sww (k) is necessarily due to the water

self-association.

Again, we can attribute the peaks from different runs to specific realization of

sponge-like water clustering. The remaining question is: will this signal disappear

if we use additional statistics? We notice that even for the longest run (shown in
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Figure 8.17: The water-water structure factors for the equimolar concentration using
different simulation runs. The color convention is same as in figure 8.8: the black line
show the results from the 1.02 ns sampling time and the other curves are results from
successive simulations runs of 64 ps. The order of the runs is the following: black-
red-green-blue-magenta-cyan line. In inset the small-k vector deviation are zoomed
in.

black) the S (k) has unusually high value at k = 0. Therefore, these results are not

conclusive. However, we expect that extensive simulation will give results that is

closer to the experimental findings in which we do not observe such large values of

structure factor at the small k-vectors.

Usually, the high value at S (k → 0) indicates that the concentration fluctuations

are high and that system is close to the phase separation. One may conclude that, in

our simulation, the size of the system is too small to accommodate the fluctuations
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that will lead system to phase separation and all results are reminiscent of this trapped

structure. Nevertheless, the demixion of the system is indicated by the increase of

the fluctuation for all components which is not the case here. Therefore, we find the

other explanation more appropriate. The equilibrium structure mixtures of associated

liquids is micro-heterogeneous, meaning that on the micro-scale these liquids do not

mix well, while they nevertheless form globally homogeneous mixture. This local

immiscibility is due to the hydrogen-bonding between self-species and cross-species

that tend to form the energetically and entropically most stable hydrogen-bonded

network which corresponds then to a locally heterogeneous structure. Our analysis

shows that this also leads to the enhancement of the concentration fluctuation, simply

because of the unequal spatial partition of the molecular species, that is inherent

feature of these liquids.

8.5 Micro-heterogeneity in tert-butanol

The results for tert-butanol are shown only for the alcohol molar ratio 0.2. The

reason is continuous growth of the large range correlation with simulation time. The

simulation is organized in such a way that each run has a sampling time of 64 ps and

successive runs are numbered starting from 1 to 32. This comprises a total simulation

time of 2.05 ns (64∗32 = 2048ps = 2.048ns). Figure 8.18 shows the time evolution of

the radial distribution functions: in the upper panel the water-water RDFs and in the

lower panel the carbon-carbon functions. We equally show the time evolution of the

corresponding RKBIs: figure 8.20 shows the water-water functions and figure 8.21

in the upper panel carbon-carbon correlation and in the lower panel carbon-water
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functions as cross-component correlations. These functions are chosen to represent

the molecular correlations based on the previous studies of the neat systems. In each

figure the arrow indicates the direction of the time evolution.
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Figure 8.18: The water-water radial distribution functions for the mole fraction 0.2
calculated using different simulation runs. The water-water correlations are displayed
in the upper panel, and in the lower panel the tert-butanol carbon-carbon RDFs. The
run numbered 16 is in red, 20 is in green, 24 is in magenta, 28 is in blue, and run
number 32 is in dark yellow. The number of run indicates the order of successive runs
with a sampling time of 64 ps.

We notice that the growth of the RDFs starts already at the first neighboring

shell. One other characteristic is that tails of the RDFs go under one. This is equally

valid for the water as well as tert-butanol. This behavior translated in terms of RKBIs

shows a large constant growth of the RKBIs with the simulation time. The increase is
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most dramatic for the water-water RKBIs which rises to the value of 2000cm3mol−1,

but nevertheless present also in the carbon-carbon RKBIs. This is quite large when

compared to the experimental value which is in the range 700 − 1000cm3mol−1 for

water-water KBI in water-tert-butanol mixture [97][38]. The cross-species correlations

show the same trend with a different direction of time evolution, namely, the functions

decrease as the time of the simulation increases.

The growth of the RDFs indicates the building up of the association of the

molecules. Therefore, one may assume that system is still evolving. Moreover, the

increase of the self-species correlation together with the decrease of the cross-species

correlation may be an indication that the system evolves toward a separation of the

species. We notice that this behavior is opposite to the simulation results for the

methanol-water mixture, where RKBIs oscillate above and bellow the asymptotic

curve.

However, the visual inspection of the system, presented in figure 8.19 (for run

numbered 6), does not show any clear separation of the species. Moreover, the ther-

modynamical properties of the system are quite stable over extensive simulation.

Namely, the internal energy and the volume fluctuates around the average value and

the fluctuation are of the order of standard deviation. Since, these quantities are

standard assessment to the stability of the system, than it is not so clear what is

happening. Therefore, we hesitate between two opposite scenarios, either the system

is slowly going towards demixion of the species, or this results show the kinetics of

the micro-heterogeneity.
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Figure 8.19: The snapshots of tert-butanol-water mixture for χa = 0.2 concentration
and N=2048 particles. In the upper figure, we show tert-butanol molecules and in
the lower water molecules [32].
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Figure 8.20: The water-water RKBIs for the mole fraction 0.2, calculated using differ-
ent simulation runs. The run numbered 16 is in red, 20 is in green, 24 is in magenta,
28 is in blue, and run number 32 is in dark yellow. The number of the run indicates
the order of successive runs with a sampling time of 64 ps. The arrow shows the time
evolution.

The structure factors, presented in figure 8.22, show large values at the small k-

vector. It is interesting to follow the evolution of the small to medium k-vector range

functions. In figure 8.22, the lower graph zooms in the small k-vector behavior, and

the upper graph, medium k-range. The small k-vector behavior in each plot shows a

constant increase of the S (k) at k → 0 which is characteristic for the process of phase

transitions indicating an enhancement of the concentration fluctuation. The pre-peak

and main peak region shows that water has reached the structural organization of
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Figure 8.21: The upper panel cross-species (carbon-water function) RKBIs and in
the lower panel tert-butanol RKBIs (carbon-carbon function). The functions and the
color convention are same as in figure 8.21.

a neat system, namely, the shoulder and the main peak of Sww (k) agree well with

the structure factor of a neat water. However, this is not true for the tert-butanol

structure factors. The oxygen-oxygen functions have a pre-peaks, that are broader

and shifted towards larger k-values than the pre-peak of a neat system. These results

indicate that we have a micro-heterogeneous organization of components, but in ad-

dition, the concentration fluctuations are also enhanced and these two contributions

cannot be easily separated.

The self-association in the tert-butanol-water mixtures is even more enhanced

than in the case of the methanol-water solutions. The reason for this is a larger
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hydrophobic tail of tert-butanol, which contributes to the segregation of species, and

strongly influences the local structure of the mixture. Due to this, these systems

are even more difficult to simulate. Firstly, good force fields are needed in order

to correctly estimate the electrostatic and hydrophobic contribution. Secondly, the

finite-size effects are extremely important, due to the large species associations which

can be artificially suppressed in small-size systems. Thirdly, the dynamics of clusters

now becomes the dominant factor in the time averaging and the simulation time order

of even 10 ns becomes necessary, especially for a low concentrations.

Kusalik at al.[102] compared two different models: the rigid three-site model and

fully flexible all-atom 15-site model with the O-H stretching described with an an-

harmonic potential well for pure tert-butanol. Generally, it is found that the 15-site

model is superior. Similar results are valid, also, for the mixtures [103]. Therefore,

the flexibility of model is important factor, since the observed structure is a tightly

packed structure. However, in order to have simulation of such extensive model, they

used system-sizes of no more that 600 particles, and this might be not sufficient to

reproduce correct long-range correlations.

The TBA models are also very sensitive to the magnitude of the site charges,

and hence the strength of the H-bonding [102]. The previous studies of OPLS tert-

butanol [7] and GROMOS force field [104] with SPC water [49] indicated excessive

aggregation of the alcohol and water molecules with an almost tenfold overestimation

of the alcohol-alcohol and water-water correlations. These observations indicate that

both models are too much hydrophobic. The Lee and van der Vegt [35] developed a

new force field for TBA using re-parameterizations of the distribution and magnitude

of the partial atomic charges of the GROMOS model. They show that the new model
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reproduces the experimental KBI and their compositional dependence. However, they

noted that the converged value of the KBI were obtained only after 7–10 ns sampling

time. They showed, also, that the finite size effects can be the cause of a large errors

in calculation of KBI.

Our choice of the OPLS models was due to the following reasons: OPLS models

are available for all simple alcohols, and their force fields are built by the process of

adding the CHn group contributions and having the same partial charges of the sites

in hydroxyl group that model the hydrogen bonding. This facilitates the analysis

of the electrostatic and hydrophobic contributions in the cases of different alcohol-

water mixtures. Several reasons could be behind the inability of OPLS simulation

to reproduce correct KBI for mixtures: the finite size effects as well as the small

simulation times, but also the transferability of OPLS parameters, might be not good

for the case of the large alcohols. We will continue to study the tert-butanol-water

mixture using other models in order to study the forming of the micro-heterogeneity.
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Figure 8.22: The structure factors for the mole fraction 0.2 calculated using different
simulation runs. In the first plot we show region around main peak and in the
second plot behavior at the small k-vectors. In each plot the upper panel shows
water structure factors, in the middle panel structure factors of oxygen-oxygen of
the hydroxyl group of tert-butanol and in the lower panel carbon-carbon structure
factors. The color convention is same as in figure 8.21, apart from the structure
factors of neat systems, which are shown in black.



163

8.6 Discussion and conclusion

In this chapter, we presented the results from the molecular dynamics simulation of

aqueous alcohol solutions. The methanol-water mixture was used as a template to

introduce the concept of the micro-heterogeneity: the local inhomogeneities of species

due to the local immiscibility of the components of the mixture.

Discussion of the thermodynamical properties of these systems signaled the under-

lying structural specificity. Namely, the thermodynamical properties such as volume,

density and enthalpies that are standard access to the reliability of the simulation

results showed very good agreement with the experimental results, indicating that

the used models are able to reproduce correctly the real system properties. However,

the analysis of the excess quantities, which directly probe the non-ideal contribution,

indicate that, on this level, simulation models failed to follow the experimental results.

The main assessment to the local inhomogeneities were correlation functions: ra-

dial distribution function and S(k). The correlation functions of water as opposed to

methanol function showed unexpected variation of the long-range correlation seen as

the variation of tail in RKBIs and equally the variation of the small k-vector region

in S (k). Why is such behavior connected to the micro-heterogeneity?

To explain it let us come back to the differentiation of concentration fluctuation

(CF) and micro-heterogeneity (MH). The CF is connected to the asymptotic values

of RKBI and S (k) (zero limit). The water structure factors however, exhibit the

variation at the vectors which are close, but not equal to zero, which indicates the

presence of the large clusters of the species. Therefore, we attributed the peaks at the

small but non-zero k-vector to micro-heterogeneity. Similarly, large variation of tails
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of the RKBI also highlights the aggregation of species. One more reason why we can

attribute these variation to MH and not to CF are the correct thermodynamical values

for mixtures such as internal energy and densities, which are stable over extensive

simulation (50% mixture simulation results).

However, the experimental structure factors do not show any specificity for the

small k-region in the spectra of aqueous solutions [21]. How we can link simulation and

experimental results? Again, we will take the CF-analogy. Every micro state of an

ordinary liquid looks heterogeneous due to the fluctuations of number of particle. In

statistical averaging, for simple liquids, density or concentration fluctuations vanish.

MH is local inhomogeneity where in each micro state the components exhibit local

immiscibility, it is a permanent feature of every realization of a system. One can

argue, that MH corresponds to a self-assembly of the species, but with not well

defined shape or life-time. Therefore, for the extensive sampling the MH will also

vanish since the variety of shapes and sizes of the species-clusters will not give a clear

statistically averaged signal. In our simulation due to the small system size, and also

small time scale, we are able to measure the part of the realization of MH, which then

produces a variation of the structure factor at the small k-vector. Therefore, we have

a sampling over dynamics of the micro-heterogeneity. This is first time that the MH

has been related to a measurable quantity, albeit only from the simulation results.

The idea that we propose is that micro-heterogeneity is the inherent feature of

the aqueous solutions. The MH is also behind the necessity of the large system sizes

and the sampling times in the simulations of the aqueous solutions. The large system

sizes are required to accommodate the heterogeneous structuring of the components

of the mixtures, and the extensive simulation times to sample over the time-scales of
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the dynamics of the MH. We think that this study is one step forward in the direction

which we believe to be an important one for the investigation of the aqueous solutions.

We will go even further and argue about the analogy between the aqueous solutions

and the micro-emulsions (ME). Namely, the aqueous solutions are somewhat similar

to the micellar systems, where the dominant structural behavior is governed by the

micelles acting as meta-molecules. The principal difference is that the solute molecules

are smaller and does not produce such apparent morphologies as micelles.

Micro-emulsions have been well studied between the late seventies and the early

eighties, both from experimental and theoretical point of view, and many books have

been written on this subject. True microscopic approaches to ME, based on statistical

mechanics, are rather scarce [25][26][27]. The fundamental fact that has enabled a

theoretical formulation of these systems is that scale difference between the patterns

formed (about 1 µm) and the size of the constituents (ranging from few Å to few

tens of Å). Otherwise, the molecular forces that produce the variety of patterns is the

same as in the present system, with the exception that often micro-emulsions are at

least ternary systems, while here we have binary systems. However, recent x-ray and

neutron scattering work has equally been focused on binary alcohol-water systems as

well [28]. When molecular scales are approached, it becomes harder to define clear-

cut geometrical concepts about curvature and interfacial sheet. Once this is realized,

the importance of the present analogy becomes clearer. Here, we can speak about a

ground basis for self assembly, when it just starts to occur at molecular scale. This

offers new challenges to face, both experimentally and theoretically.

What is crucially missing is also a theoretical framework in which the local het-

erogeneities are taken explicitly. The analogy with micro-emulsion might give a clue
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where to start. The structure factor can be determined experimentally from measure-

ments of the scattering intensity I(q) [1]. For the ordinary liquids the long wavelength

limit of I(q) is described by Ornstein-Zernike (OZ) behavior:

I(q) ∼ 1

1 + q2ξoz

(8.3)

where ξoz is correlation length. Teubner and Strey (TS) [105] proposed a new phe-

nomenological formula for the micro-emulsion:

I(q) ∼ 1

a2 + c1q2 + c2q4
(8.4)

Fourier transformation of the equation 8.4 is equal to the correlation function:

γ(r) =
d

2πr
e−

r
ξ sin

(
2πr

d

)
(8.5)

In contrast to OZ behavior with it’s single length scale, one now finds two length scale

ξ and d. Parameter d is characteristic for the domain sizes, while ξ is the correlation

length. Teubner and Strey fitted the experimental data and calculated the charac-

teristic scales and the c1 coefficient as they vary with composition and systems [105].

They concluded that the scattering formula 8.4, predicts well two characteristic prop-

erties experimentally observed in small angle scattering: a single broad peak and g−4

decay at large q. This theory permits to describe the single scattering curves of a vari-

ety of ME practically within experimental error with only three fit parameters. They

reported also that there are slight deviations in some cases which have to be discussed

in a more refined version of the theory. D’Arrigo at al. [28] used the Teubner and

Strey phenomenological formula to obtain a measure for the amphiphilicity strength

of several studied systems. They analyzed small angle neutron scattering (SANS) on

binary aqueous solution of some short-chain amphiphiles at room temperature. They
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found that even short-chain amphiphiles have a miscibility gaps and form some sort

of micellar aggregates or short-lived micelle-like structures. Their conclusion is that

the SANS spectra of the investigated short-chain amphiphiles can be satisfactorily

represented by means of a Teubner and Strey equation (eventually with the addition

of a OZ term). According to these studies, the theoretical models for the associated

system, may comprise two different correlation lengths one corresponding to a stan-

dard correlation length that describes fluctuations and other related to the cluster

formation. This is one of the possible pathways for the continuation of our study.



Chapter 9

Conclusion

In this thesis, we study the structural organization in pure and mixed associated

liquids using the microscopic theories as statistical physics of liquids and the classical

molecular dynamics simulations. The studied systems are water, alcohols, namely

methanol and tert-butanol and water-alcohol mixtures.

We proposed the idea that micro-heterogeneity is inherent feature of the associated

liquids meaning that these liquids are locally inhomogeneous while they preserve the

fundamental disordered and homogenous nature of liquids.

We distinguish between the structural organization in pure liquids and in binary

system, first defined through the local self-association of molecules, and second cor-

responding to a local segregation of the components of the binary system. In each

case the highly anisotropic site-site hydrogen bonding interaction has main role, how-

ever on different levels. In neat liquids the association is induced through specific

site-interactions and inhomogeneity is due to the clustering of the hydrogen-bonded

sites. This feature we named micro-structuring [29] [30]. In the binary system the

inhomogeneity is due to a local segregation of species and this features we called

micro-heterogeneity [31].

168
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The computer simulations offer an insight in the nano-space scale and pico-time

scale behavior of simulated system, which is a unique way to study the behavior of the

liquids on the level of one microstate. Therefore, the first part of our investigation was

to test the reliability of computer simulation to reproduce correctly the microstruc-

ture of the simulated systems. The microstructure of system is directly connected

to the particle distribution functions, namely the pair-distribution functions, since

for homogenous system the one-body function, the density, has a constant value.

The connection between the behavior of the radial distribution function and the real

system was made through the calculation of the Kirkwood-Buff integral (KBI). The

KBI can be calculated both from the simulation results and the thermodynamical

measurements. Precisely, the KBI is directly connected to the concentration fluctua-

tion. We tested the behavior of neat system and the reproducibility of the KBI and

concentration fluctuations. This study revels that simulation of a neat system repro-

duce correctly the KBI value or thermal compressibility of the system. Therefore,

microstructure of the simulated systems can be connected to the microstructure in

the real systems, at least on the level of the quantities that we explored [106].

Second step was to define the simulation functions that can probe the local hetero-

geneities. In this case the structure factor which is Fourier transform of RDF and

measurable quantity in scattering experiments proves to be extremely valuable. Dif-

ferences between site-site structure factor of hydrogen-bonded sites and hydrophobic

sites show the difference in the local organization of these sites. Namely, the pre-peak

in the structure factors of H-bonded sites indicates the local clustering on the sizes

larger than the first-neighbor distance, while the correlations between the methyl sites

show only the main peak, which corresponds to the packing structure and indicates a
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homogeneous organization of these non-bonded sites. This findings are corroborated

by the behavior of the RDFs using the polymer analogy in case of methanol and anal-

ogy with micelle system in case of tert-butanol. Moreover, the calculation of cluster

distribution highlights the size of the preferential clusters of hydrogen bonded sites.

In the case of hydrophobic-sites as well as center of the mass, cluster distributions

show only features characteristic for homogenous distribution of particles.

The simulation of methanol-water mixture show interesting results. The small k-

vector behavior indicates clustering of water, and therefore the local immiscibility

of species. This is also shown in the non-convergence of the RKBIs for the water

correlations. We connected these findings with the existence of micro-heterogeneity.

Therefore, the pre-peak in the site-site correlations indicates the structural prefer-

ences of hydrogen bonded sites and the peaks at the smaller k-vectors in the species

correlations (all sites that belong to one species) indicate the clustering of the species.

Why this this related to MH? We analyzed the data which were accumulated dur-

ing the small sampling time (over the 100 ps), during which we sampled only some

specific topological realizations of the self-aggregating configurations. This way we

could analyze the evolution of the MH by steps of 100 ps. This dynamics of MH is

seen by the variations of the structure factor of water at the small k-vector across

various samplings. Namely, small sampling times allow access to ”instantaneous”

clustering of the species, in a sense that we look at the system over short period of

time comparing to the relaxation times of MH (which we approximate to be around 1

ns). On the contrary , the experimental structure factor of water does not show any

large variations in the small-k range. So we expect that with increasing simulation
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times, and especially simulation sizes, the simulation results will approach the exper-

imental ones. Nevertheless, using the arguments presented here, we showed that it is

worthwhile to observe the system on the smaller scales, which reveals all the richness

of the micro-structuring in these mixtures.

The idea of the persistent local inhomogeneity stressed out the necessity of the

large system sizes and the large simulation times. For example, pico-second is the

time scale of the relaxation of the molecular motion, but the reorganization of MH,

based on our simulation results seems to lie in the nanosecond range. Since the system

is disordered, we are facing the problem of describing a form of local order within

global disorder. This is what makes aqueous mixtures fascinating, despite the obvious

physical-chemical aspect, that has been mostly and thoroughly studied in the past

century. We suggested the analogy between the micro-emulsion and the associated

liquids: both system are globally homogeneous while they are locally heterogeneous,

except that in micro-emulsion we have a well-defined shapes such as micelle, while

in associated liquids the sizes, shapes and time scales of the aggregates are not well

defined. The analogy drawn in this study is interesting from another fundamental

point of view: it allows a very detailed and meaningful analysis of the short range

details in the structure, while this is nearly impossible for micro-emulsions, where

the difference in scale between the solvent, surfactant and micro-structure is not

amenable to molecular level simulation while keeping a detailed statistics of the large

structure at the same time. For these reasons, we find it interesting to coin the term

nano-emulsions to aqueous mixtures.

The study puts another important concept forward, the distinction between con-

centration fluctuations and micro-heterogeneity. Micro-heterogeneity is presented as
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a universal feature of aqueous mixtures. It results from several competing interac-

tions, mostly based on the H-bond interaction. First, the direct interaction between

water molecules which tend to self-aggregate, but they can also bond to a solute, and

the solutes can also bond between themselves. Then, indirect interactions, such as

the repulsion of water to the part of the solute that cannot H-bind, and similarly for

the composite solutes themselves. Finally, the usual excluded volume effects and the

Van der Waals dispersive interactions, the two of which are usual of any ordinary

liquid.

It is the first two interactions that carry and contribute mostly to the micro-

heterogeneous features. All 4 interactions contribute to concentration fluctuation.

Therefore it is difficult to disentangle these two contributions. We have shown that

the analysis of the correlation functions, both in the direct and reciprocal spaces, was

an invaluable tool to appreciate both contributions.

The insights provided by the results displayed in this thesis can help building a

more microscopic theoretical approach to these simple yet rich systems which are

associated liquids and their mixtures. It is our belief that such an approach could

have unexpected and unifying fall backs in other areas of condensed matter physics

and chemistry.
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ETUDE PAR DYNAMIQUE MOLECULAIRE DE LA MICRO-HETEROGENEITE DANS LES 
MELANGES EAU-ALCOOLS 

 

 

Ce travail concerne l'analyse structurale des liquides associés comme l'eau et les alcools et 
leur mélanges. Nous sondons par la Dynamique Moléculaire la micro-structure de ces 
liquides. A partir du calcul des fonctions de corrélations et des facteurs de structures 
associés, ainsi que d'un parametre d'ordre effectifs, nous proposons une vision consistente de 
la microhétérogénéité au sein des liquides macroscopiquement homogénes. Cette analyse 
nous permet de distinguer entre la micro-structure dans les liquides purs associés, de celle de 
micro-ségrégation dans leurs mélanges binaires, alors que le mécanisme commun est bien 
la liaison hydrogéne. Celle-ci structure différamment les sites partiels concernés (hydrogéne 
et oxygéne), tandis que les sites inertes méthyls sont purement désordonnés. Ainsi, la micro-
hétérogénéité apparait comme une propriéte universelle des mélanges de liquides associés. 
Ce type d'ordre local n'appartient pas tout-é-fait la classe du désordre, pas plus qu'é celle 
de l'ordre global. Il apparait donc comme une nouvelle forme d'ordre et défie nos méthodes 
pour le mettre en évidence, tant du point de vue expérimental que théorique. 
 
DYNAMIQUE MOLECULARE, SOLUTIONS AQUOUSES, ALCOOL, MICRO-HETEROGENEITE, FUNCTIONS DE CORRELATIONS,  
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MOLECULAR DYNAMICS STUDY OF MICRO-HETEROGENEITIES IN AQUEOUS SOLUTIONS 
 
In this thesis we focus on the structural refinements present in the associated liquids. Using the 
molecular dynamics simulations we probe the microstructure of these liquids, namely the 
neat systems and alcohol-water mixtures. From the correlation functions in direct and 
reciprocal space and as well as the cluster distribution functions we create a consistent 
picture of the structural specificity that exist in the associated liquids. We made a distinction 
between the structural organization in pure liquids and in binary systems, first defined through 
the local self-association of molecules, and second corresponding to a local segregation of 
the components of the binary system. In each case the highly anisotropic site-site hydrogen 
bonding has main role. In the pure liquids the association is induced through specific site-
interactions that lead to an inhomogeneous distribution ofsites, while the molecular 
distribution preserves the liquid-like behavior. In the binary system the micro-heterogeneity is 
due to the local immiscibility of the species. Micro-heterogeneity appears to be universal 
feature of aqueous solutions, predominantly driven by hydrogen bonding. Micro-
heterogeneous order does not quite fit in the class of disorder, but neither in that of order. It 
appears like a new form or order, and challenges our techniques to put this in evidence, both 
experimentally or through simulations. 
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