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Introduction

In the beginning of the twentieth century of a new theory came and completely changed the way
physicists interpret the world. This theory was given the name ’Quantum Mechanics’ inspired
from various experimental evidence indicating that physical quantities, such as the energy of a
particle for instance, only exist with discrete values called quanta. Quantum Mechanics arose
great controversy amongst contemporary scientists; it suffices for us to remember the legendary
debates between Albert Einstein and Niels Bohr on the interpretation of this, then, new theory.
It’s easy to understand why Quantum Mechanics has gathered so much controversy as its
foundations come in direct contradiction to the world as it is directly observed by our senses
or as it is described by Newtonian classical mechanics; the trajectory of a classical particle,
the deterministic motion of a mass to name a few. Indeed, there lies the revolutionary aspect
of Quantum Mechanics since it gave scientists the tools to further understand the microscopic
world and helped put into the same theoretical framework almost all of the four fundamental
interactions.

One of the grave fundamental ambiguities of the Quantum Mechanics is the quantum mea-
surement problem. It is known that in contrast to a classical system, where the evolution of an
object may be repeatedly measured, the measurement of a quantum system leads to its per-
manent perturbation, leading to the state reduction of the measured object, what is described
in standard Quantum Mechanics textbooks as von Neumann’s reduction postulate. It is a
relatively difficult notion to comprehend conceptually and many thought experiments such as
Heisenberg’s microscope have helped towards this direction. It consists in attaching a stick to
a body whose position one wants to measure. A photon flux is then sent towards the stick and
the experimenter awaits that one photon is scattered by the stick towards a photographic plate
leaving a trace of its position. However, the photon presents a momentum, a part of which is
imported to the stick, thus perturbing its position. This perturbation leads to an imprecision
of the object’s measured position and it is known as the quantum back-action effect describing
the interaction between the quantum system and the probe apparatus. Experimentally, this
effect sets a lower quantum limit to the sensitivity of a measurement. The work of this thesis
is directly related to the experimental study of this effect.

Indeed, our field of study concerns the optomechanical coupling between the light and a
movable mirror; a system presenting direct analogies to Heisenberg’s microscope. A probe field
is coupled to the mirror in order to measure its position with a great accuracy. A momentum
exchange between the field photons and the mirror occurs, leading to a fundamental disturbance
of the mirror and finally setting a limit to the measurement sensitivity. The observation of this
limit, and thus the quantum-back action effect of the displacement measurement caused by the
probe field radiation pressure, presents a great experimental challenge and is the main goal of
this work.

Interferometry has been a great tool in this direction as it helped to drastically improve
the sensitivity of optical measurements. For instance, the homodyne detection, the principal
tool used to detect mirror displacements in our experimental setup, is nothing more than a
sophisticated Michelson interferometer, sensible enough in order to observe radiation-pressure
effects. In fact, related techniques are expected, in the near-future, to allow for the detection
variations on the spacetime metric when a gravitational wave induces a small apparent length
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variation of the interferometer’s arm. Gravitational waves are predicted by Einstein’s general
relativity and until now their existence is only prove indirectly [1, 2] To this purpose giant
gravitational antennas have been constructed in various parts of the world. The experimental
observation of the quantum-back action effect on a table-top system, can also be seen under
this point of view: an effort in order to increase the sensitivity of optical measurements. Indeed,
the sensitivity of these gravitational antennas is expected to be quantum-limited and the use
of squeezed sources of light will be required to further increase the sensitivity by surpassing the
standard quantum limits of the measurement. In fact, the field of research of optomechanics as
a sensitivity study of optical measurement, has emerged in the beginning of the 80’s for such
motivations.

Although the measurement apparatus can provide the necessary sensitivity to observe quan-
tum phenomena, a great experimental limitation has prevented until now to do so. This limita-
tion is imposed by the residual thermal noise of the mirror, whose effect is significantly greater
than that of quantum effects and has forced research groups to use cryogenic techniques dras-
tically increasing the experimental complexity.

The first chapter is an introduction providing all the theoretical framework of the optome-
chanical coupling most notably the introduction of the small-displacement measurement of a
movable mirror, the use of a Fabry-Perot cavity in order to increase the measurement sensi-
tivity [3–8] and the semi-classical approach permitting to write down the associated quantum
fluctuations leading to the so-called Standard Quantum Limit which, in turn, defines the op-
timal sensitivity for a given incident optical power. In the following, the strategy in order
to experimentally demonstrate the associated quantum limit will be described. The optome-
chanical correlations will then be introduced as a direct method to experimentally demonstrate
the measurement back-action effects; the idea being to couple to the cavity two different laser
beams -a pump and a probe- one used to induce a mirror displacement and the other one to
measure it. We will end this chapter by describing the past experimental results obtained by
the group.

In the second chapter we will describe two experiments demonstrating radiation-pressure
effects. The first is a demonstration of pump-probe optomechanical correlations using a classical
intensity noise to simulate intensity quantum fluctuations. The most spectacular result of
this experiment is in fact the demonstration of optomechanical correlations, even with a very
low signal-to-noise ratio, via a time-averaging technique in order to suppress the associated
thermal noise. In particular, we have shown that at low temperature (4 K) the experiment has
the necessary sensitivity to demonstrate the measurement quantum back-action. In addition,
all the limitations will be described: the contamination effect masking any optomechanical
correlations imposing a strict laser frequency stability criterion and the needed averaging time.
The second experiment we will describe is about radiation-pressure effects in a detuned cavity
and is directly related to gravitational-wave research. It is known that at a detuned cavity,
an optical spring is created leading to an effective mechanical susceptibility of the mirror that
results in a frequency shift of the mirror’s movement. The optical spring can the be used to
amplify an apparent length variation of the cavity (a laser frequency modulation or a passing
gravitational wave for instance) and can lead to a sensitivity better than the associated standard
quantum limit.

The third chapter describes all the developments made to the existing experimental setup
during this work. Most notably, the update of the detectors (homodyne and balanced detectors)
and the implementation of a high-finesse mode-cleaner cavity capable of providing a quantum-
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noise limited laser beam up to 10 mW at 1 MHz. This last point is considered to be a critical
one as it can increase the signal-to-noise ratio Srad

x /STx by one order of magnitude. We will
then describe all the complexities induced to the experimental setup by this cavity and the
consequent set-up changes concerning the various feedback loops.

In the fourth chapter, we will describe a novel technique which may be used to lock the
laser frequency on a cavity via a feedback loop. Indeed, a great limitation towards the obser-
vation of quantum optomechanical correlations is the fact that locking imperfections result in
a contamination effect of the measured intensity quadrature severely damaging the optome-
chanical correlations. We will describe how a direct measurement of the cavity detuning can
be made using this contamination effect. This technique is based on the derivation of an error
signal based on a coherent drive of the movable mirror, resulting in a contamination signal in
the reflected intensity of the field coupled to the cavity. We will finally attempt a comparison
between this novel technique and the traditional Pound-Drever-Hall technique widely used in
this kind of table-top experiments.

In the final fifth chapter, we will describe how we have implemented all the work described
in the two previous chapters in order to design an experiment capable of observing quantum
optomechanical correlations at room temperature.





Chapter 1

Optomechanical coupling

Since the invention of the laser in the late sixties the research domain dealing with the
experimental demonstration of intriguing concepts of quantum mechanics has exploded. Light-
matter interaction has given rise to some beautiful experiments. They have helped researchers
to test theoretical concepts developed in the beginning of the twentieth century and to examine
the limits between the classical and the quantum world, a subject widely discussed by physicists
and philosophers until today. In parallel, a great scientific effort has started in the late seventies:
the experimental observation of gravitational waves [9–14] and, thus, a direct proof of Albert
Einstein general relativity theory. Giant Michelson interferometers were constructed for this
reason and some physicists [15,16] developed theories on the fundamental quantum properties
of light and their impact to the sensitivity limits of the gravitational antennas. These theories
finally resulted in a slightly different form of a light-matter interaction compared to the usual
ones, based on atoms or non-linear media: the interaction between light and a moving mirror,
or in other words the optomechanical coupling. When a photon flux is reflected on a mirror
the photons will slightly push the mirror, thus resulting in its motion. This movement will,
in return, induce a phase shift of the reflecting beam. This simple concept can be a tool to
explore some very interesting aspects of the quantum world such as the fundamental quantum
limits in interferometric measurements, the understanding of back-action effects in quantum
measurements and even the manipulation of both the light and the mirror by the optomechanical
coupling, allowing for example to perform quantum optics experiments with optomechanical
systems.

In this first chapter we will briefly describe the physics behind the optomechanical coupling
and we will discuss fundamental phenomenons that can be demonstrated using this coupling.
Some major experimental results obtained by both the international community working on
the optomechanical coupling and the group at the Laboratoire Kastler Brossel will be briefly
described as well. We will present the main issues concerning radiation-pressure effects and
quantum limits in optical measurements, and we will describe the basic elements of our experi-
mental setup. We will finally explain how our experiment can measure very small displacements
of mirrors, at an unprecedented sensitivity of about 10−20 m, and we will briefly present pre-
vious results obtained with this setup.

1.1 Small-displacement measurements

Interference effects have been demonstrated, or used, in the past by well known physicists.
Isaac Newton first demonstrated this effect with his famous interference rings, Young gave
another demonstration of this effect with his brilliant two-slits experiment which continues
until today to give very useful insight into the physical meaning of the Heisenberg uncertainties.
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Movable mirror

Incident !eld

Mirror displacement  δx

Figure 1.1: Simple model of optomechanical
coupling: a laser beam gets reflected by a mir-
ror. Due to momentum exchange between the
two, the mirror is displaced and, in turn, the
reflected beam is phase shifted.

Another well known experiment is of course the
Michelson and Morley experiment where they
used a interferometer in order to observe the
mysterious “ether”. In fact, -thanks to its great
sensitivity reaching resolutions of a small frac-
tion of a wavelength- interferometry techniques
are nowadays widely used in numerous scien-
tific applications : optical cavities, spectrome-
ters, wavemeters, holography, astronomy, and
many more.

The core of our table-top experiment is
the small-displacement measurement of a vi-
brating mirror. An elaborated interferome-
ter technique is used in order to perform this
measurement which will be described in de-
tail in the following. We will start by de-
scribing the interferometry-based displacement
measurement using a laser beam and a single moving mirror and we will continue by describing
how a robust small-displacement measurement can be performed by using a Fabry-Perot cavity
instead of a single mirror.

The simplest system consists in a suspended mirror and a light beam reflected upon it. The
mirror undergoes the radiation-pressure force of the beam resulting in a displacement δx, as
depicted in Figure 1.1. Consequently, the optical path of the laser beam will be altered. It is
well known that the phase shift of the reflected beam will contain the information on the mirror
displacement, which can easily be accessed by an interferometric technique. In particular, the
reflected beam phase will be shifted by a quantity equal to:

δφout = 4π
δx

λ
, (1.1)

where λ is the laser wavelength. This expression shows that the displacement of the mirror can
be measured by comparing it to the light wavelength. There lies the core of the detection of
the mirror displacements since the phase shift of the reflected beam is sensitive to the position
of the mirror, δx. Experimentally, a Michelson interferometer is used to measure this phase
shift, achieving a resolution of a small fraction of the wavelength.

1.2 Sensitivity improvement with a cavity

The sensitivity of the displacement measurement can be considerably increased by using a single
input Fabry-Perot cavity instead of a single moving mirror. Let us consider a system similar
to the one depicted in Figure 1.2(a), with a second mirror (so-called the coupling mirror),
exhibiting a non-zero transmission placed in front of the moving mirror which is assumed to
be perfectly reflecting. This system drastically increases the sensitivity of the displacement
measurement. Indeed, a Fabry-Perot cavity exhibits constructive interferences when the cavity
length L is a multiple of the half wavelength λ/2. As the cavity approaches such an optical
resonance, the intracavity intensity follows a Lorentzian dependence known as an Airy peak.
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Coupling mirror
Movable mirror

Mirror displacement  δx

Intracavity #eld

(a) (b)

Figure 1.2: Sensitivity increase with a cavity. (a) A Fabry-Perot single-input cavity with a
movable mirror. (b) The upper graph depicts the intracavity intensity dependence with the
cavity detuning, while the lower one shows the phase shift occurring at the cavity resonance.

The maximum value of the intracavity intensity I is reached at resonance and is equal to [17]:

I =
2

π
FIin, (1.2)

where Iin is the incident intensity. The cavity finesse F is defined as the ratio between the
distance of two successive resonances (Free Spectral Range) and the Full Width at Half Max-
imum (FWHM) of the Airy peak as depicted in Figure 1.2(b). It is directly related to the s
cavity dissipation processes associated to the coupling mirror transmission and to the mirror
losses. It can also be interpreted as the mean number of round-trips made by the photons in
the cavity. Figure 1.2(b) also shows the phase of the reflected field as a function of the cavity
detuning: at resonance the slope of this phase shift becomes maximal. It can be shown [17]
that the phase shift of the reflected field is equal to:

δφout = 8F δx
λ
. (1.3)

The advantage of using a high-finesse optical cavity in order to measure the mirror displacement
clearly appears by comparing equations (1.1) and (1.3): the cavity finesse increases the resulting
phase shift by a factor of 2F/π.

The effect of a displacement δx should be compared to sources of noise present into the
measured phase shift. These noises can be larger than the signal thus limiting the measurement
sensitivity. We can distinguish them into two main categories: classical noise, such as thermal or
seismic noises, and quantum noise. It turns out that the measured phase shift is contaminated
by noises of both origin. We will show in the following how quantum noises induce fundamental
limits to the sensitivity of the displacement measurement.
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1.3 Optomechanical coupling in a movable mirror cavity

The goal of this section is to derive the equations describing the optomechanical coupling
between a laser beam and a single-input Fabry-Perot cavity, taking into account quantum
noises. For this purpose, we use into a semi-classical input-output formalism [18–20].

1.3.1 Quantum nature of light

According to quantum optics, the electromagnetic field can be decomposed into a series of
modes, each mode corresponding to a harmonic oscillator. Here, we will be interested in a
mono-modal analysis since the presence of a single-input cavity will select one electromagnetic
mode. As the energy of the quantum harmonic oscillator is quantized and the energy levels
are equidistant from each other, we can describe the oscillator and the electromagnetic field by
using the photon creation and annihilation operators â† and â, respectively. These operators
obey the following commutation rule:

[â, â†] = 1. (1.4)

We also define the operators â1 and â2, which are called the quadrature operators of the
electromagnetic field:

â1 = â+ â†, â2 = i(â† − â), (1.5)

which correspond to the position and the momentum in the case of a harmonic oscillator. Since
the annihilation and creation operators do not commute with each other, the two associated
quadrature operators will not commute either. The fluctuations of these observables will then
verify a Heisenberg uncertainty relation:

∆â1∆â2 ≥ 1. (1.6)

Quantum fluctuations of both observables thus arise in a natural manner. In fact, it can be
shown that a laser field can be described by a minimum uncertainty state called a coherent
state. In that case the above Heisenberg uncertainty relation (1.6) becomes:

∆â1∆â2 = 1. (1.7)

In the following pages, a semi-classical approach will be used to describe these fluctuations.

Quantum fluctuations, a semi-classical approach

In order to describe the evolution of the quantum fluctuations after their interaction with a
system -a cavity for example- a semi-classical approach has been proposed [18]. The semi-
classical representation consists in associating to the operators â and â† two pseudo-random
variables, α and α∗, whose statistics are described by a Wigner quasi-probability distribution
W in such a way that the mean value of the product f(â, â†) coincides with the quantum value:

〈f(â, â†)〉 =
∫

dα dα∗W(α, α∗)f(α, α∗). (1.8)
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Figure 1.3: A three-dimensional represen-
tation of quasi-probability Wigner distri-
bution and its projection in the phase-
space (α1, α2).

The random variable α characterizes the quantum
field and we can decompose it into the sum of
a mean value α characterizing the classical static
part of the field, and its quantum fluctuations δα
governed by the probability law W. The field will
then become:

α = α+ δα. (1.9)

Figure 1.3 depicts the Wigner distribution for a
coherent state. The horizontal plane defines the
phase space whose axes are given by the semi-
classical quadratures α1 and α2 which correspond
to the real and imaginary parts of the field, respec-
tively. The mean intensity |α|2 and phase φ of the
laser field are also shown in the figure. For a co-
herent state the Wigner distribution is a Gaussian
distribution taking only positive values, centered
around the mean value α. The fluctuations of the
two quadratures are given by the projection of the
distribution on each axe and they are equal to 1
for a coherent state. In Figure 1.3 we also see the

phasor diagram derived from the Wigner distribution of a coherent state. It is a contour drawn
at the half maximum value of the Wigner distribution. We then define any quadrature of the
field in the following way:

αθ = e−iθα+ eiθα∗, (1.10)

which is simply a rotation by an angle θ of the quadrature α1. In a coherent state, the dispersion
is always equal to 1 for any angle θ:

∆αθ = 1. (1.11)

Two quadratures will have a particular importance for our purposes: the phase and the intensity
of the field. For a given realisation of the field, represented by a point in the phase space, the
distance from the axes’ origin and the angle with respect to the axe α1 give the amplitude and
the phase of the field:

α =
√
Neiφ, (1.12)

where N = |α|2 is the number of photons in the field and φ the phase of the field. Let us now
linearise the expression (1.12) around the field mean value α =

√
Neiφ. The amplitude and

phase fluctuations will then become:

δN = |a|δaφ , (1.13)

δφ =
1

2|a|δaφ+π/2. (1.14)

Intensity and phase fluctuations respectively depend on the fluctuations of the quadrature αφ,
parallel to the field mean value, and αφ+π/2, perpendicular to the field mean value.

From the two equations (1.13) and (1.11) it can be derived that the intensity fluctuations
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for a coherent state are equal to:
∆N2 = N, (1.15)

The dispersion ∆N of the field amplitude scales as the photon number square root. This
is a well expected property since the photons statistics of a coherent source follow a Poisso-
nian distribution. We note as well that the relative fluctuations will decrease as the intensity
increases.

∆N

N
=

1√
N
. (1.16)

The dispersion of the phase fluctuations can be derived from equations (1.11) and (1.14). It is
equal to:

∆φ2 =
1

4N
, (1.17)

and is inversely proportional to the photon mean number. This result can be comprehended
as follows: the phase dispersion ∆φ corresponds to the angle under which the field distribution
is seen from the origin. Since the width of the distribution is always equal to 1 for a coherent
state, ∆φ decreases as the intensity increases.

Equations (1.13) and (1.14) show that the dispersions of the observables N and φ depend on
two orthogonal, and then non-commuting, quadratures. Using equation (1.6) and performing
a simple rotation the following, Heisenberg inequality is derived:

∆N∆φ ≥ 1

2
, (1.18)

showing the intensity-phase non-commutativity. According to equations (1.15) and (1.17), a
coherent state corresponds to a minimum state for the above inequality.

The previous description relies on a static field description and a field quantification model in
a finite, three-dimensional box. The semi-classical framework is an input-output theory adapted
to fields propagating in a physical system. It is obtained by considering time dependent variables
instead of static ones. The field is thus no longer characterised by the photon number N but by
the photon flux I(t) which is the propagating photon number by second. The results presented
in this section can then be used in order to completely characterise the field fluctuations at all
time t, or equivalently at all frequencies. In this framework, any given quantity A(t) can be
decomposed into the sum of its mean value A and its fluctuations δA(t) :

A(t) = A+ δA(t). (1.19)

In the Fourier space, A is then characterised by its fluctuations δA[Ω] at the angular frequency
Ω, defined by the Fourier transform:

δA[Ω] =

∫
dt e−iΩtδA(t) (1.20)

and by its noise spectrum SA[Ω] defined by:

〈δA[Ω]δA[Ω′]〉 = 2πδ(Ω + Ω′)SA[Ω], (1.21)

where 〈...〉 represents the statistical mean value of the Wigner distribution.
In particular, if we consider a coherent state, the phase fluctuations δφ do not depend on
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the frequency and are inversely proportional to the square root of the mean photon flux I. The
spectrum of the phase fluctuations then become:

Sφ[Ω] =
1

4I
, (1.22)

while the spectrum of the intensity fluctuations is:

SI [Ω] = I. (1.23)

We note that both spectra do not depend on the frequency. A coherent state is characterized
by intensity and phase white noises. It is also interesting to note how the two quadratures scale
with the mean intensity of the field. The intensity spectrum increases linearly with the mean
intensity whereas the phase spectrum decreases. This fundamental difference will yield to the
so-called Standard Quantum Limit [15,21] to the displacement measurement sensitivity, which
will be described in detail in section 1.4.3. We will first describe the input-output relation for
a laser beam in a Fabry-Perot cavity.

1.3.2 Movable mirror cavity

In this section we will use the semi-classical method in order to derive the evolution of a coherent
field interacting with a cavity. We will consider a realistic cavity including its losses, composed
of one coupling mirror and one movable end-mirror. The coupling mirror has an amplitude
transmission

√
T and a reflection coefficient

√
1− T , with T ≪ 1. In an ideal lossless cavity

the movable end-mirror would be characterized by a total reflectivity. In a real cavity, however,
optical losses may have a drastic impact on the optical characteristics of the cavity. We will
describe losses as an additional transmission coefficient

√
P of the end mirror, leading to a

reflection coefficient
√
1− P , with P ≪ 1. The coefficient P actually includes the residual

transmission T2 of the end mirror and other cavity losses, such as the diffraction D and the
absorption A on both mirrors. We then have for the cavity global losses:

P = T2 +A+D. (1.24)

Figure 1.4 depicts the amplitudes of the incident αin, reflected αout, intracavity α and α′ and
vacuum αv fields. The conservation of energy at the coupling mirror allows one to write down
the linear and unitary transformation between the field amplitudes:

α(t) =
√
Tαin(t) +

√
1− Tα′(t) (1.25)

αout(t) =
√
Tα′(t)−

√
1− Tαin(t), (1.26)

where the minus sign ensures the energy conservation. The intracavity field α(t) at time t, is
the sum of the transmitted part of the input field αin(t) and the reflected part of the intracavity
field α′(t) having already done a cavity round trip. Similarly, the reflected field αout(t) is the
superposition of the transmitted intracavity field and the reflected input field on the coupling
mirror. In order to find the similar transformation on the end mirror, we have to take into
account the fields propagation in the cavity. The movable mirror induces a time delay and a
phase shift which depends on the total cavity length L(t) = L0 + x(t) where x(t) is the mirror
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Figure 1.4: The description of the incident αin(t), intracavity α(t), reflected αout(t) and trans-
mitted αtr(t) fields associated to the coupling between a laser beam and a Fabry-Perot cavity
with a movable mirror.

displacement. We thus define the round trip time τ and the phase shift Ψ as:

Ψ = 2kL(t)[2π] (1.27)

τ =
2Lx
c

≃ 2L0

c
. (1.28)

We have assumed that the mirror displacement is small enough so that the round trip τ time
can be considered as independent of x(t). The fields transformation on the movable mirror is
then given by:

α′(t+ τ/2)e−iΨ/2 =
√
Pαv(t) +

√
1− Pα(t− τ/2)eiΨ/2, (1.29)

αtr(t) =
√
Pα(t− τ/2)eiΨ/2 −

√
1− Pαv(t). (1.30)

We have already considered the case of a high-finesse cavity with P, T ≪ 1. By also considering
a cavity close to resonance (Ψ ≪ 1) the field envelope varies slowly during a round trip. By
first combining and linearising equations (1.25) and (1.29) and keeping only first order terms
(Ψ, τ ddt ,

√
T and

√
P ) we obtain the input-output field equations:

τ
dα

dt
=

√
Tαin +

√
Pαv +

(
iΨ− γ

)
α(t) (1.31)

αout(t) =
√
Tα(t)− αin(t) (1.32)

αtr(t) =
√
Pα(t)− αv(t), (1.33)

where we noted γ the total losses of the cavity: 2γ = T +P . The phase shift is time dependent:

Ψ(t) = Ψ0 + 2kx(t), (1.34)
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where Ψ0 = 2kL0 [2π] represents the phase shift of the cavity when the mirror is at rest. It
can also be understood as the cavity detuning. In the following, we will solve the above set of
equations within the semi-classical framework.

1.3.3 Solving the evolution equations

From equation (1.9) we decompose the field into the sum of its mean value and its time-
dependent fluctuations in order to linearize the equations. The different fields and the phase
shift can then be written:

α(t) = α+ δα(t),

Ψ(t) = Ψ + δΨ(t), (1.35)

where δΨ(t) = 2kδx(t) and Ψ = Ψ0 + 2kx represent the fluctuations and mean detunings of
the cavity, taking into account the mean recoil of the mirror.

Steady States

First, we are interested in the steady states solutions of our system. By replacing the time-
dependent variables of the equations (4.1), (4.2) and (1.33) with their mean values we obtain:

α =

√
T

γ − iΨ
αin, (1.36)

αout =
γ − P + iΨ

γ − iΨ
αin, (1.37)

αtr =

√
TP

γ − iΨ
αin. (1.38)

We note that the vacuum field has a null mean value: since its Wigner distribution is centered
around zero it contains only fluctuations. At an optical resonance of the cavity (Ψ = 0), the
fields mean values become:

α =

√
T

γ
αin, αout =

γ − P

γ
αin, αtr =

√
TP

γ
αin, (1.39)

showing that all fields are in phase. The intracavity intensity exhibits a Lorentzian profile as a
function of the cavity detuning (see Fig. 1.2(b)) with a full-width at half-maximum (FWHM)
equal to the total cavity losses 2γ, while the reflected intensity profile is described by a negative
Lorentzian peak as the cavity is swept around its resonance (see equation (1.37)). We thus define
a reflection coefficient R0 that relates the reflected intensity with the cavity losses. It is equal
to the ratio between the reflected intensity at resonance (Ψ = 0) and the reflected intensity far
from resonance (Ψ = ±∞):

R0 =
I
Ψ=0

out

I
Ψ=±∞

out

=
|αΨ=0
out |2

|αΨ=±∞
out |2

=

(
T − P

T + P

)2

. (1.40)
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The cavity finesse introduced earlier can also be written as the ratio between the distance
between two consecutive resonances (Free Spectral Range) equal to Ψ = 2π, and the full-width
of the cavity resonance 2γ:

F =
2π

2γ
=

2π

T + P
. (1.41)

It is also interesting to write down the transmission of the cavity using equation (1.38):

Itr =
4TT2

(T + P )2
Iin (1.42)

The three latter equations give the expression of three measurable quantities: the finesse, the
transmission and the reflection of a cavity. Upon experimental measurement of these quantities,
we can access the transmission of both mirrors as well as the sum A + D = P − T2 of the
absorption and diffusion losses. However, these equations do not completely represent reality.
It has actually been assumed that the incident field is perfectly coupled to the fundamental
resonant mode of the cavity. If this is not the case, a portion of light resonates with other
cavity modes; this portion does not enter the cavity and changes both the mean reflected and
transmitted fields. The above equations need to be adjusted by a mode matching coefficient
which will have an impact not only to the reflection and transmission of the cavity, but also
the sensitivity of the small displacement measurements, as we will see in section 1.4.

Mode matching

In order to take into account the mode matching we decompose the incident field Ein(r, t) into
the sum of the cavity fundamental mode, whose spatial profile is υ0(r) ∼ e−r

2/w2
0 , with w0

being the waist, and the transverse ones υn6=0:

Ein(r, t) = α0(t)υ0(r, t)e
−iw0t + E ′

in(t)(r, t), (1.43)

where E ′
in is the contribution of all the transverse modes. We then define the parameter ηcav

characterizing the mode matching quality as the ratio between the intensity |α0|2 actually
coupled to the cavity and the total incident intensity Iin:

ηcav =
|α0|2
Iin

. (1.44)

In the case of an imperfect mode matching (ηcav < 1), the transverse modes will be directly
reflected by the cavity and only a portion ηcavI in of the incident intensity I in will be coupled
to the cavity. Furthermore, imperfections on the mode matching will also affect the reflected
field while, at resonance, only the intensity coupled to the cavity will undergo the cavity losses.
Hence, the reflected intensity becomes:

I
Ψ=0

out =

(
T − P

T + P

)2

|α0|2 + E ′
in. (1.45)

The reflected intensity is thus equal to the reflected fraction of light coupled to the cavity plus
all transverse modes simply reflected by the cavity. Let us then correct the reflection coefficient
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knowing that I
Ψ=∞

out = Iin = |α0|2 + E ′
in:

R0 = ηcav

[(
T − P

T + P

)2

− 1

]
+ 1. (1.46)

If ηcav = 1, we get a perfect mode matching and the reflection coefficient (1.46) is similar to
the one given by equation (1.40). In order to have a good mode matching, the position and
the width of the incident beam waist must be adapted to the geometrical properties of the
cavity. We usually work with Fabry-Perot cavities consisting of two mirrors, one plane and one
concave. The wavefronts of the beam must exactly match the curvature of the mirrors, meaning
that the waist of the beam -where the wavefront is plane- must be set on the plane mirror,
and its width should be set in such a way that its wavefront on the concave mirror matches its
curvature. It can be found [22] that for a plano-concave Fabry-Perot cavity, the width of the
waist must be equal to:

w2
0 =

λ

π

√
L(R− L), (1.47)

where L is the cavity length, R the radius of curvature of the concave mirror and λ the wave-
length of the laser.

1.3.4 Fluctuations in a movable mirror cavity

Let us now study the dynamical evolution of the field fluctuations. We will first write the
equations by considering a perfect mode matching (ηcav = 1). We will take into account the
imperfect mode matching in the final expressions. For this purpose, we will consider that the
cavity is at resonance (Ψ = 0). Furthermore, it will be easier to work in the Fourier domain,
using the fluctuations δα[Ω] at frequency Ω related to the time-dependent fluctuations δα(t)
by equation (1.20). In the framework of the semi-classical approach, we linearize equations
(4.1), (4.2) and (1.33) around the fields mean value and we apply the Fourier transform to the
time-dependent fluctuations quadratures. We obtain:

(
γ − iΩτ

)
δα[Ω] =

√
Tδαin[Ω] +

√
Pδαv[Ω] + 2iαkδx[Ω], (1.48)

δαout[Ω] =
√
Tδα[Ω]− δαin[Ω], (1.49)

δαtr[Ω] =
√
Pδα[Ω]− δαv[Ω], (1.50)

where we have used the relation δΨ[Ω] = 2kδx[Ω]. Next, we will be interested in writing down
the evolution equations for the intensity p and phase q. Using the definition of any quadrature
of angle θ (equation 1.10) and the phase/intensity fluctuations definitions (equations 1.13 and
1.14), the intensity and phase quadratures respectively correspond to θ = 0 and θ = π/2

respectively as the mean fields can be all chosen real. We then get:

δp[Ω] = δα[Ω] + δα∗[Ω], δq[Ω] = i(−δα[Ω] + δα∗[Ω]). (1.51)

Or, equivalently:

δα[Ω] =
δp[Ω] + iδq[Ω]

2
, δα∗[Ω] =

δp[Ω]− iδq[Ω]

2
. (1.52)
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Finally, by combining the above set of equations, the intracavity and reflected intensity and
phase fluctuations can be written as a function of the incident ones:

δp[Ω] =

√
T

γ − iΩτ
δpin[Ω] +

√
P

γ − iΩτ
δpv[Ω], (1.53)

δq[Ω] =

√
T

γ − iΩτ
δqin[Ω] +

√
P

γ − iΩτ
δqv[Ω] +

4kα

γ − iΩτ
δx[Ω], (1.54)

δpout[Ω] =
γ − P + iΩτ

γ − iΩτ
δpin[Ω] +

√
TP

γ − iΩτ
δpv[Ω], (1.55)

δqout[Ω] =
γ − P + iΩτ

γ − iΩτ
δqin[Ω] +

√
TP

γ − iΩτ
δpv[Ω] +

4
√
Tkα

γ − iΩτ
δx[Ω]. (1.56)

From equations (1.53) and (1.55), we deduce that the intracavity and reflected amplitude
fluctuations δp and δpout are completely decoupled from the phase and position fluctuations
δqin, δqv and δx. We can understand this by noting that the cavity working point is at the
maximum of the Airy peak where the intensity does not depend on the phase shift and, thus,
the optical path fluctuations. On the other hand, this is no longer true out of resonance. We
also note that in the case of a lossless cavity (P = 0), the incident intensity fluctuations exit
the cavity unaltered since: |δpout| = |δIin| (see equation (1.55)). According to equations (1.53)
to (1.56) all terms are divided by an additional term 1/

(
γ − iΩτ

)
corresponding to a low-pass

filtering by the cavity. This leads us to define the cavity bandwidth as follows:

Ωcav =
γ

τ
. (1.57)

As a consequence, intensity and phase fluctuations at frequencies larger that the cavity band-
width (Ω ≫ Ωcav) will not interact with the cavity, they will essentially be reflected by the
cavity without affecting intracavity fluctuations. Similarly, the position fluctuations of the
movable mirror for frequencies Ω ≫ Ωcav will have no effect onto the reflected phase shift. By
assuming P = 0, equation (1.56) becomes:

δqout[Ω] =
γ + iΩτ

γ − iΩτ
δqin[Ω] +

4
√
Tkα

γ − iΩτ
δx[Ω] (1.58)

In other words, the cavity is averaging the position fluctuations during a characteristic time
given by the cavity photon storage time 2π/Ωcav = 2Fτ .

1.4 Limits in interferometric measurements

In this section we will study the displacement measurement sensitivity and the consequences
set to it by the quantum nature of light. We will describe the two different noises are associated
with the displacement measurement: the measurement noise and the radiation-pressure noise
and we will show how their compromise lead to the existence of the so-called Standard Quantum
Limit which correspond to the smallest measurable displacement of the movable mirror.



1.4. Limits in interferometric measurements 17

1.4.1 Measurement noise

First we will determine the sensitivity of the measurement in a realistic case where the cavity
losses and the mode matching are taken into consideration. The fact that the reflected phase
fluctuations include not only the fluctuations of the mirror position but also the incident phase
fluctuations will set a limit to the sensitivity of the measurement. We will first calculate the
spectrum of the reflected phase fluctuations (equation (1.56)) using the spectrum definition
(1.21). Since phase, vacuum and displacement fluctuations are independent from each other,
the squared sum of these three quantities are equal to the sum of the squared quantities. Hence
we find:

Sout
q [Ω] = 1 +

(16F
λ

)2( T

T + P

)2 ηcavI in
1 + (Ω/Ωcav)2

Sx[Ω], (1.59)

where we have considered the incident field to be in a coherent state and thus both the vacuum
and the incident phase spectra Sv

q and Sin
q are equal to 1. Equation (1.59) gives the spectrum

of the reflected phase containing the information on the mirror displacement. It is equal to
the sum of the incident phase noise (Sin

q = 1) and the signal which is proportional to the
displacement spectrum Sx. The sensitivity limit is achieved when the signal is at least equal to
the noise, corresponding to a signal-to-noise ratio equal to 1. Hence, the smallest measurable
mirror is equal to:

δxshot =
λ

16F
T + P

T

√
1 +

(
Ω/Ωcav

)2

ηcavI in
. (1.60)

The frequency dependence shows that the sensitivity is reduced at high frequency (Ω ≥ Ωcav)
as the cavity acts like a low-pass filter. As the resonance frequency of the movable mirror
is typically about 1 MHz, a cavity bandwidth larger than 1 MHz should be used in order
to achieve the optimal sensitivity. The cavity bandwidth being inversely proportional to the
cavity length, short cavities must be used. In our experiment cavities length of a few hundreds
of µm are used. We note as well the possible degradation of the sensitivity if an proper mode
matching is not achieved. The sensibility may also be reduced by a factor T/(T + P ) which is
directly related to the cavity losses. It is therefore crucial to minimize the losses P , as compared
to the transmission T, so that the factor T/(T + P ) is the largest possible. We use for this
purpose a movable mirror with losses less than 1 ppm. Losses also play an important role to
the sensitivity via the cavity finesse appears at the denominator of δxshot. A proper choice of
the coupler transmission T thus corresponds to a compromise between a transmission giving a
high optical finesse and at the same time keeping a high loss ratio T/(T + P ). In our case a
transmission T of 20 ppm has been chosen, allowing to achieve a finesse F of up to 300 000. The
measurement noise associated to the shot-noise given by equation (1.60) then gives a spectral
density δxshot ≃ 2.6 · 10−21m/

√
Hz.

Finally, the sensitivity is improved as the incident intensity increases. One could suggest
that an arbitrary sensitivity could be achieved by increasing the incident intensity. As we will
see in the next section, this is not the case as an additional fundamental noise will disturb
the position of the mirror and, therefore, will deteriorate the sensibility of the measurement.
This noise is related to radiation-pressure effects on the mirror and the back-action of the
measurement: it is actually a consequence of the basic concepts of quantum measurement as
any measurement induces a perturbation on the measured system.
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1.4.2 Radiation-pressure back-action

As shown by equation (1.18), the incident intensity exhibits fluctuations of quantum nature.
The movable mirror will thus undergo radiation-pressure fluctuations, resulting in a displace-
ment noise. We will fist describe the mirror response to a force and we will pursue by applying
this formalism to the case of a radiation-pressure force.

Mirror movement

For small displacements, the linear response theory [23] can be used to express the mirror
displacement as a function of the forces applied to it. In the Fourier domain, the mirror
displacement is then given by:

x[Ω] = χ[Ω]F [Ω], (1.61)

where χ[Ω] is the mechanical susceptibility describing the mirror response and F represents
the forces exerted on the mirror to the radiation-pressure. We assume that this motion can be
modelled by a simple harmonic oscillator so that it has the following Lorentzian dependency:

χ[Ω] =
1

M [Ω2
M − Ω2 − iΩΩM/Q]

, (1.62)

where M is the oscillator mass, ΩM is the resonance frequency of the oscillator and Q is its
quality factor. This expression proves to be a very realistic approximation in our case: the
substrate of the mirror presents internal vibration modes that are excited by the radiation
pressure of the light beam; it has been shown [24] that the displacement of the surface of the
mirror is completely equivalent to a global translation of the mirror. In the case of a movable
mirror of a plano-convex geometry made of silica, used throughout this work, a frequency
ΩM/2π ≃ 1 MHz, a mass M ≃ 0.1 mg and a quality factor Q ≃ 1 000 000 are achieved.

Displacement noise

When a photon gets reflected onto a movable mirror, it gives a momentum kick 2~k to the
mirror resulting in a radiation-pressure force:

Frad = 2~k I(t) (1.63)

where k is the photon wave vector and I(t) is the photon flux expressed in photons per seconds.
We will first evaluate the mean displacement xrad of the mirror by writing down equations
(1.61) and (1.62) at zero frequency:

xrad = x[0] = χ[0]F rad, χ[0] =
1

MΩ2
M

, F rad = 2~kI. (1.64)

It follows that:

xrad =
2~kI

MΩ2
M

. (1.65)

For a cavity finesse F = 300 000 and an incident power Pin = 1.5 mW the mean radiation-
pressure force upon the mirror is F rad ≃ 2·10−6 N. Such a force will lead to a mean displacement
xrad ≃ 5 ·10−13, where we used the mirror mechanical parameters given at the beginning of the
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section.
Equation (1.61) allows one to express the mirror displacement fluctuations δxrad induced

by radiation-pressure. Since the intensity noise is given by δI = αδp, the position fluctuations
produced by the fluctuations δF rad of the radiation pressure (equation (1.63)) are equal to:

δxrad[Ω] = χ[Ω]δFrad[Ω] = χ[Ω]2~kδI[Ω] (1.66)

= χ[Ω]2~kαδp[Ω]. (1.67)

Using equation (1.39) and (1.53) we find:

δxrad[Ω] =
4~k

√
ηcavI in

γ − iΩτ
χ[Ω]

Tδpin[Ω] +
√
TPδpv[Ω]

T + P
. (1.68)

As the two incident fluctuations δpin and δpv are not correlated, the spectrum of the position
fluctuations can be derived from the previous expression :

Srad
x =

(
8F
λ

)2
T

T + P
~
2|χ[Ω]|2 ηcavIin

1 + (Ω/Ωcav)2
. (1.69)

This equation shows that the position fluctuations induced by the radiation-pressure increase
as the intensity increases. It is therefore hopeless to improve arbitrarily the measurement
sensitivity by increasing the incident intensity as this noise will become dominant and will
limit the achievable sensitivity. We note that at the resonance frequency ΩM the displacement
induced by the radiation-pressure is of the order of 10−17 m/

√
Hz, that is 4 orders of magnitude

above the shot-noise limit. It is thus unavoidable to take into consideration this effect to the
total measurement sensitivity.

1.4.3 The standard quantum limit

We aim to measure with an optimal sensitivity a signal δxsig that corresponds either to a real
displacement of the mirror or to an apparent length variation of the cavity. The total cavity
length variation is then δx = δxrad + δxsig when taking into account the displacement δxrad,
We have already calculated the corresponding sensitivity (see equation (1.60)) without taking
into consideration the radiation-pressure-induced displacement δxrad which is also included in
the reflected phase quadrature (equation 1.56)). The complete expression of the reflected phase
quadrature then becomes:

δqout[Ω] =
γ − P + iΩτ

γ − iΩτ
δqin[Ω] +

√
TP

γ − iΩτ
δpv[Ω] +

4
√
Tkα

γ − iΩτ

(
δxrad[Ω] + δxsig[Ω]

)
. (1.70)

where δxsig is the displacement signal we want to measure. It is obvious that in order to
find the smallest measurable displacement, the signal must be compared to both the incident
phase fluctuations and the radiation-pressure-induced position fluctuations. As all fluctuations
in equation (1.70) are uncorrelated, the total noise is actually the quadratic sum of the shot-
noise δxshot (equation (1.60)) and the radiation-pressure noise δxrad (equation (1.69)). When
the incident power is increased the phase fluctuations decrease as they scale as 1/

√
Iin. On

the other hand, radiation-pressure effects increase as the squared root of the intensity
√
I in. A

compromise between the two effects will, therefore, give the maximum sensitivity corresponding
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Figure 1.5: Displacement measurement sensitivity as a function of the incident power, at low
frequency (Ω ≪ ΩM ). The sensitivity limit (c) is set by radiation-pressure (b) and incident
phase noises (a). These limits have been calculated for a resonator of mass M=0.1 mg, a
resonance frequency ΩM/2π = 1MHz, a finesse F=300 000, a wavelength λ = 810 nm, a
perfect mode-matching ηcav = 1 and no losses P = 0.

to the so-called Standard Quantum Limit (SQL). At a given frequency Ω, it is reached when the
shot-noise is equal to the radiation-pressure noise (Sshot

x =Srad
x ), that is for an incident intensity

given by:

I
sql

in =

(
λ

8F

)2(T + P

T

)3/2 1

2~|χ[Ω]|
(1 +

(
Ω/Ωcav)

2
)
λ2

ηcav
. (1.71)

The smallest measurable signal, δxsql is obtained using equation (1.70) with an incident intensity
Isql: it corresponds to a signal-to-noise ratio equal to 1.

δxsql =
√

~|χ[Ω]|
(
T + P

T

)1/4

, (1.72)

This fundamental quantum limit appears in any optical measurement where a light beam is
used to get information on the position of a mirror, that is in every interferometric measurement.
As the laser beam extracts the information about the position -via its phase- it unavoidably
perturbs the position -via its intensity noise. The Standard Quantum Limit is thus a funda-
mental limit derived from the Heisenberg uncertainty between two conjugate observables of our
measurement apparatus: the phase and the intensity of the laser beam. Hence, there is an
optimal coupling strength (equation (1.71)) where the compromise between the phase and in-
tensity noises gives the optimal sensitivity. Figure 1.5 depicts this Standard Quantum Limit. It
corresponds to the minimum of the green curve (c), reached for an intensity I

sql

in = 0.25mW for
the given parameters. It corresponds to a smallest measurable displacement δxsql[0] ∼ 5 ·10−21

m/
√
Hz at low frequency with no losses (P = 0). According to equation (1.72), when neglect-

ing the mirror losses, this limit only depends on the mirror characteristics. The sensitivity is
inversely proportional to the mirror mechanical susceptibility. For the purpose of this thesis,
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it is thus preferable to choose a resonator with a large mechanical response in order to observe
these radiation-pressure effects.

We should finally note that the Standard Quantum Limit is not an ultimate limit and,
therefore, can be overcome using quantum noise reduction schemes. Many ideas have been
proposed: the use of squeezed light [25], [26], [27], back-action cancellation [28], back-action
amplification [29]. There nevertheless exists an Ultimate Quantum Limit (UQL) which is
found [30] to only depend on the mirror dissipation mechanism for a lossless cavity:

δxUQL =
√

~|Im[Ω]|. (1.73)

1.5 Observing quantum fluctuations

The optomechanical coupling offers a simple macroscopic playground where fundamental as-
pects of the quantum measurement can be examined. The radiation-pressure noise of a coherent
light, when coupled to a movable mirror, is directly related to a back-action effect limiting the
measurement sensitivity. The observation of quantum fluctuations will offer important exper-
imental in sight to fundamental quantum measurement concepts by creating ultra-sensitive
sensors and pushing even further the sensitivity limits of a macroscopic measurement. The
experimental observation of the Standard Quantum Limit is one of the holy grails of the quan-
tum optics research for the past two decades. It is connected to attempts made to detect
extremely weak signals caused by gravitational waves passing through the Earth. These waves
are actually predicted by the Albert Einstein general relativity theory; they are emitted by
tremendous stellar events such as a supernova explosion or at two-star coalescence. They will
induce a relative displacement of the order of δL/L ≃ 10−22. Giant Michelson interferometers
have been constructed (such as the french-italian VIRGO and american LIGO interferometers)
whose sensitivity is limited by thermal noise and shot noise. However, the second generation
of these detectors is expected to be mostly limited by quantum noises. The work of this thesis
is thus closely related to these efforts. The first stage being the observation of the Standard
Quantum Limit, the second would be the application of quantum optic schemes in order to
overcome these limits. The use of squeezed light would diminish the back-action effect and
would lead to a sensitivity better than the SQL limit. In the following we will describe the nec-
essary experimental conditions in order to observe the Standard Quantum Limit. In particular,
we will introduce the thermal noise which is the main experimental limitation.

1.5.1 Thermal noise

The mirror, being coupled to a thermal bath at a temperature T , is subjected to both thermal
fluctuations and dissipation processes. These dissipation processes introduce a damping effect
described by the imaginary part of the mirror mechanical susceptibility. Thermal fluctuations
can be described by a zero-mean-value Langevin force FT whose spectrum can be found by
using the fluctuation-dissipation theorem [23] which relates this spectrum to the imaginary
part of the mechanical susceptibility:

ST [Ω] = −2kBT

Ω
Im

[
1

χ[Ω]

]
, (1.74)
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where kB is the Boltzmann constant and the Langevin force spectrum is defined as the Fourier
transform of its autocorrelation function:

ST [Ω] =

∫ ∞

−∞

dτ〈FT (t)FT (t+ τ)〉e−iΩτ . (1.75)

Which is equivalent to equation (1.21) for a stationary process. Using equations (1.61), (1.62)
and (1.74), the thermal noise spectrum is deduced:

STx = 2kBTM
ΩM
Q

|χ[Ω]|2. (1.76)

As seen by comparing with equation (1.69), both thermal and radiation-pressure noises have
the same frequency dependence, when neglecting cavity filtering effects: they both scale as the
square of the mechanical susceptibility absolute value. The thermal noise spectral amplitude
will thus also present a Lorentzian profile as a function of the frequency, at least for a single
mechanical oscillator. Hence, the signal-to-noise ratio between radiation-pressure and thermal
effects does not depend on the frequency. Using equations (1.69) and (1.76) it is found to be:

Srad
x

STx
≃ 32

~
2F2I

in

λ2
Q

kBTMΩM
. (1.77)

However, the resonator mass M varies depending on the analysis frequency. At zero frequency
the static mass M0 (at Ω = 0) is several orders of magnitude smaller than the typical mass M
on the resonance frequency (Ω = ΩM ). At zero frequency we can consider a mass M0 = 0.3 mg,
while a typical mass M of a single vibrational mode is 100 mg [31]. Consequently, the signal-
to-noise ratio is optimal on the static regime. Indeed, at a temperature of T = 4 K -using a
helium cryostat for example- thermal noise is less important than radiation-pressure induced
displacement. On the other hand, at resonance, by considering a mass M = 100 mg, equation
(1.77) gives a signal-to-noise ratio 1000 times smaller, meaning that a cryogenic temperature of
T = 4 mK would be necessary to observe radiation-pressure effects; a temperature that requires
non-disposable cryogenic techniques.

The presence of thermal noise sets a number of experimental difficulties that must be over-
come for our system to observe radiation-pressure effects. There are two important parameters
that determine a favourable signal-to-noise ratio. First, the amplitude of the radiation-pressure
fluctuations applied on the movable mirror must be maximised (the term FI in). It is then
necessary to obtain cavities with a very high finesse. For this purpose, the Laboratoire des
Matériaux Avancés has been able to fabricate mirror coating tolerating an intracavity intensity
of the order of FI in = 300 000 · 1 mW = 300 W. The second parameter, is the mechanical
properties of the resonator : the dissipation processes must be minimized (factor Q/ΩM ), so
asthe mass M and the temperature T . For our experiment, it has been chosen to fabricate a
cavity which presents, at one hand, state-of-the-art optical properties (a very high finesse and
very low losses) but on the other hand, a relatively large mass (≃ 100 mg), leading to a signal-

to-noise ratio Sradx /STx ≃ 6 ·10−2 at 4 K at an incident power I
in
= 1 mW which does not suffice

to observe radiation-pressure effects. These calculations have been made with a single-mode
description of the resonator. In reality, the resonator presents numerous vibrational modes
which may lead to a modification of the mirror mechanical response χ[Ω] due to interference
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effects amongst various modes. We can thus expect a more favourable signal-to-noise ratio.
Furthermore, a part of this thesis has been dedicated to the increase of the incident power I

in

from 1 mW to 10 mW in order to increase radiation-pressure effects by a factor 10.

1.5.2 Introducing Optomecanical Correlations

Signal beam 

Meter beam

Figure 1.6: Pump-probe optomechanical cor-
relations: The probe beam is used to measure
the mirror displacement. Since δpsin ≃ δpsout
correlations between the probe output phase
δqmout and the pump output intensity δpsout will
provide a direct experimental demonstration
of quantum radiation-pressure effects.

The observation of intensity quantum fluctua-
tions would be a very easy task if the thermal
noise of the mobile mirror was not predomi-
nant (if Sradx > STx ). One would simply need to
measure the reflected phase quadrature δqout.
However, there is problem posed by the Heisen-
berg inequality: the phase and the intensity of
the light are two non-commutative conjugate
observables and they can therefore not be mea-
sured simultaneously. In order to directly ob-
serve radiation-pressure effects, one should es-
tablish correlations between these two observ-
ables. By drawing inspiration from the atomic
physics pump-probe experiments the group has
developed a double-injection scheme: two dif-
ferent beams are used; one to excite the sys-
tem (pump) and drive the mirror motion, and
a second one to probe the position of the mirror
without disturbing it. The realization of such a
pump-probe experiment requires the develop-
ment of a double injection scheme where two
different laser beams are simultaneously resonant with the cavity. By coupling to the cavity
an intense pump beam used to drive the mirror into motion and a weak probe beam one can
directly measure radiation-pressure effects by establishing correlations between the reflected
phase δqmout of the probe beam and the intensity of the pump beam δpsout where the indexes s
and m stand for signal and meter (see Figure 1.6).

In particular, using equation (1.55), we find that if we neglect losses, the reflected intensity
fluctuations reproduce the incident ones which are responsible for the displacement of the
mirror:

δpsout = δpsin. (1.78)

At the same time, the mirror displacement is imprinted onto the reflected phase of the probe
beam. Using equation (1.56) we get:

δqmout[Ω] = δqmin [Ω] +
128F2I

in

λ2
~χ[Ω]δpsin[Ω], (1.79)

where the radiation-pressure induced displacement, according to equation (1.68), is proportional
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to the incident intensity fluctuations:

δxrad[Ω] =
8F
√
I in

λ
~χ[Ω]δpsin[Ω]. (1.80)

Quantum back-action effects are thus directly related to correlations between the incident pump
intensity δpsin and the reflected probe phase δqsout. Furthermore, as we will see into the next
section this scheme also permits to perform a quantum non demolition measurement of the
pump beam intensity.

A very interesting aspect of the above experimental scheme is the Quantum Non Demolition
(QND) [32–35] character of the measurement. In quantum mechanics, once the information on
an observable is acquired it is not possible for the system to return to its original state; it is von
Neumann projection postulate during the measurement process. A QND measurement permits
to access the measurement of an observable without degrading the associated information. In
order to qualify a measurement as a QND measurement, two criteria must be met [36]. First, the
measurement procedure must not alter the observable, the noise imported by the measurement
must be reported to the conjugated observable. Secondly, the issued measurement signal must
contain the maximum information on the measured observable: strong correlations between the
measurement apparatus and the measured observable must be present. Our double-injection
scheme fulfils both criteria. The intensity of the pump beam is not modified when is it in
resonance with the cavity. Furthermore, when the probe beam is also at resonance with the
cavity the second criterion is satisfied. Indeed, at resonance the quantum correlations between
the phase fluctuations of the reflected fields and the movable mirror displacement fluctuations
are maximal.

1.5.3 Squeezing with a movable mirror cavity

However, there also exists an indirect way to experimentally demonstrate radiation-pressure
effects by measuring the fluctuations of the cavity reflected field. Indeed, the optomechanical
coupling induces a squeezing on the reflected field; certain quadratures will present a dispersion
smaller than the standard quantum noise of the coherent state. This effect is presented in
Figure 1.7. This effect can be understood with the help of equations (1.55) and (1.56) giving
the reflected field quadratures. At low frequency (Ω ≪ Ωcav) and for a lossless cavity, they
become:

δpout[Ω] = δpin[Ω], (1.81)

δqout[Ω] = δqin[Ω] +
128F2I in

λ2
~χ[Ω]δpin[Ω]. (1.82)

We will be interested in the injection of a coherent field into a movable mirror cavity rep-
resented in Figure 1.7 by a circular surface. We note that the unitarity of the input-output
transformation implies the conservation of this surface. The projection of the surface on the
horizontal axis gives the intensity fluctuations. The first equation then imposes the fact that at
low frequency the amplitude fluctuations stay unaltered. On the other hand, the phase fluctua-
tions increase as the radiation-pressure-induced displacement increases, as the second equation
indicates. It corresponds to a widening of the angle under which the Wigner distribution is
seen from the origin (see Figure 1.7). The distribution of quantum noise at the exit of the
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Figure 1.7: Phase-space representation of quantum noise of the incident (left) and reflected
fields (right). The elliptical distribution of the reflected field indicates a squeezed state.

Figure 1.8: Geometry of the plano-convex mirror

cavity is elliptical with its along axis smaller than the original one; a squeezed state of the field
is thus generated. We can finally note the analogy between the squeezing of the reflected field
by optomechanical coupling and the Kerr effect by a non-linear medium in a cavity.

1.6 Experiment: basic elements

The group at the Laboratoire Kastler Brossel has developed a state-of-the-art experimental
setup to perform ultra-sensitive displacement measurements. The main objective of this setup
is to experimentally demonstrate radiation-pressure effects. It uses a measurement cavity, a
Ti:Sa laser source, a spatial filtering cavity and a homodyne detection. All these parts will be
detailed into the following sections.

1.6.1 Movable mirror cavity

The Fabry-Perot movable mirror cavity (FPM) is the core of our experiment. It is a cavity
composed of a standard coupler and a specifically designed movable mirror whose displacement
degree of freedom due to its internal vibrational modes. The design of the movable mirror is
crucial as it has to combine very high optical quality with excellent mechanical properties. We
choose fused silica as the best coatings cooling have been developed for this material and it has
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Figure 1.9: The cylindrical mirror

a very high intrinsic quality factor (up to 107) at room temperature. Figure 1.8 depicts the
geometrical characteristics of the plano-convex mirror. It has a diameter D = 34 mm and a
height h0 = 2.55 mm. The convex side of the mirror has a radius of curvature R = 148 mm.
The advantage of the plano-convex geometry of the substrate lies in the fact that it presents
gaussian vibrational modes confined at the centre of the mirror whose waist, a few mm wide,
is small compared to the mirror global size. These modes are then well isolated from the
clamping and mechanical losses are reduced. The input mirror of the cavity (coupler) presents
a cylindrical geometry (Figure 1.9) whose concave side has a radius of curvature R = 1 m.
The substrates are then super-polished by REO or GSI and the optical coating is made by
the Laboratoire de Matériaux Avancés (LMA) whose contribution is critical since they have
the know-how of coating the dielectric layers on the substrates: the LMA mirrors generally
present a transmission of a few ppm (part per million, i.e. 10−6) with a very low absorption
and scattering losses. The cavity moving end-mirror has a transmission T2 < 1 ppm. The
choice of the coupler transmission T comes from a trade-off between finesse (T ≪ 1) and cavity
losses P smaller than the coupler transmission (T > P ) as shows equation (1.72). Typically,
our cavities present losses P smaller than 10 ppm. For this reason, a coupler transmission of
20 ppm has been chosen in order build a cavity with a finesse F ≃ 300 000.

We have also seen that the cavity has a low-pass filtering effect to the fluctuations, which
is characterized by its bandwidth Ωcav. This cut-off frequency should be high enough not to
limit the sensitivity to the mirror displacements. For the plano-convex geometry of the movable
mirror, resonance frequencies of Ω/2π = 1 MHz are expected, setting a down limit to the cavity
bandwidth (Ωcav > Ω). For a finesse F = 300 000, this limit would lead to a typical cavity
length L = 100 µm, which, in turn, along with the coupler radius of curvature, defines the
optical waist in the cavity. Using equation (1.47) a waist w0 = 60 µm is found.

A mechanical mounting system should also be designed taking into account two important
factors. First, a good parallelism between the two mirrors is required for the cavity optical
modes to be centered on the plano-convex mirror. This condition is necessary to obtain a good
spatial overlap between the laser waist and the Gaussian mechanical modes which are confined
to the centre of the mirror: a deviation of some millimetres of the laser beam away from the
center of the movable mirror would lead to a read-out measurement insensitive to the mirror
displacement. Second, the mirrors must be mounted in such a way that clamping losses are
reduced. The cavity mounting design developed by the group is depicted in Figure 1.10. The
mirrors are stacked into a tube closed by a thin, circular and elastic blade. The mounting is
designed in such a way so that the resulting cavity is compact and rigid, minimizing residual
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Figure 1.10: The mounting design of the movable mirror cavity.

vibrations. For this purpose, no piezoelectric actuator is integrated into the cavity and no active
control of the length cavity is realized. Instead, it is the laser wavelength that is tuned, in order
to keep the cavity on resonance. An adapter ring allows to adapt the diameter of the cylindrical
mirror to that of the plano-convex. Given the importance of the spatial overlap between the
optical and the mechanical modes, we integrated into the mounting design a centering system:
three housing holes are located at 120 degrees from each other in the adapter ring of the input
mirror, in which three steel balls are inserted and pushed by an adjusting screw, thus permitting
the necessary tilt of the coupler.

Mounting and alignment of the cavity

Extreme caution must be taken while mounting the mirrors into the mounting system. The
procedure must take place under a very clean air flow. We have at our disposal a specific
class 1 laminar air flow under which all mirror manipulations take place. The operator must
be equipped with a special uniform, including gloves, a mask and a hat in order to avoid any
external pollution of the superpolished mirrors. The mounting procedure is as follows: first, the
coupler is put on a cylinder with the coated surface facing upwards. The adaptation ring is then
placed around the coupler. The plano-convex mirror is carefully deposited onto the adaptation
ring, the polished surface facing downwards, towards the coupler. The external tube is then
placed round the adaptation ring and the plano-convex mirror. Finally, the system is flipped
in order to be able to close the tube with the thin blade.

Once the mirrors are mounted the system is almost air tight, protecting the fragile optical
coating. It can then directly be mounted onto the experimental setup in a vacuum chamber.
Once an incident beam is well coupled to the coupler, by carefully adjusting its incident angle,
with the help of an infra-red camera, transverse modes can immediately be observed at the
exit of the cavity. The cavity not being stabilized in temperature and the vacuum chamber
being open, its optical length naturally changes and thus the cavity is naturally swept. By
observing the transverse modes we try to focus the light to the centre of the plano-convex
mirror. This is done by carefully tightening the screws to adjust the mirror parallelism and
adjusting the incident beam angle. Once this alignment stage is optimized the temperature
controller is turned on and the vacuum chamber is pumped down to ∼ 10−4 mbar. The second
alignment step consists in modulating the laser frequency at 100 Hz and observing the cavity
transmission via a photodiode. A Lorentzian Airy peak should be visualized with a digital
oscilloscope. Using the micrometric screws of the mirrors that adjust the beam incident angle
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we optimize the coupling between the beam and the cavity.

1.6.2 Laser source

In the previous section, we mentioned that in order to increase the stability of the cavity we
have decided not to implement a piezoelectric actuator into the cavity in order to control the
cavity length. Instead, a widely tunable laser is used. The measurement cavity (FPM) is a
short cavity with a length, typically of the order of some hundreds of microns, which results
in a Free Spectral Range (FSR) of a few hundreds of GHz. This means that the tunability
of the laser should be at least equal to a cavity FSR. Furthermore, the laser source should be
continuously tunable over a frequency range of some GHz, which corresponds to the interval
between two transverse modes νtr. We therefore need a laser source that is continuously tunable
over a frequency range of some GHz and capable of frequency jumps of some hundreds of GHz.
In addition, a fast sweep of a few MHz of the laser frequency is necessary in order to visualize
the FPM Airy peak. The laser frequency should also be stabilized to the frequency of a cavity
resonance at one point. For this purpose, a fast control of the laser frequency should be set
up. Finally, it is very important that the laser technical noises are negligible compared to the
photon noise close to the analysis frequency.

All these requirements are met by a Titane:Sapphire laser constructed by the group and
based on a model designed by François Biraben [37] in the 1980 . The core of the laser is a ring
cavity where the Titane:Sapphire crystal is pumped by a Verdi laser delivering a 18 W laser
beam at 532 nm.

Figure 1.11 depicts the main elements of the laser. The direction of the light path into
the cavity is imposed by a unidirectional system made of a Faraday rotator, which induces a
polarisation rotation compensated by the out-of-plane mirrors M4, M5 and M6. All mirrors
have a high reflectivity for wavelengths of 810 nm except the exit mirror M6 with a transmission
of 4%. The Ti:Sa crystal has a very large gain spectrum compared to the interval between two
longitudinal cavity modes, typically about 200 MHz. The laser cavity alone is thus highly
multimode and a series of optical elements are added into the cavity in order to provide a
monomodal operation of the laser and to be able to select the desired frequency:

• The Lyot filter is made of 4 parallel birefringent plates selecting a frequency range of a
few hundreds of GHz. A motor is coupled to the Lyot filter in order to rotate the 4 plates
and select the desired range.

• The thin etalon is a thin plate made of silica, acting as a Fabry-Perot cavity with a free
spectral range of 150GHz. This etalon can continuously be tilted by means of a motor,
thus controlling the optical path and consequently tuning the optical resonances of the
laser.

• The thick etalon is made of two prisms facing each other in order to form Fabry-Perot
cavity. Each prism presents a reflection coefficient of 30%. The cavity thickness is equal
to 8 mm and its Free Spectral Range is 19 GHz. One of the prisms is mounted on a
piezoelectric actuator in order to shift the cavity resonance comb at will. This piezoelectric
actuator is also used in order to lock its resonance frequency at the laser frequency:
the cavity length is modulated at 3 kHz via the piezoelectric actuator resulting in an
intensity modulation of the laser beam. This modulation is detected and demodulated at
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Figure 1.11: Ring cavity and the different elements in the Ti:Sa laser.

the same frequency creating an error signal used to lock the thick etalon for a maximum
transmission.

The Ti:Sa crystal pumped by a 18 W Verdi laser combined with the three elements described
above provide a monochromatic laser beam, tunable in the range from 790 to 850 nm. We can
modify the laser frequency either continuously or by frequency jumps. To scan continuously
the frequency, we use a twin plate composed of two symmetrical plates. A motor is used to
tilt these plates and thus the laser wavelength. This system allows the tuning of the laser over
a range of a few gigahertz. An internal Electro-Optical Modulator (EO) is also implemented
into the ring cavity also altering the optical path. It can induce small and fast changes in the
laser wavelength; this EO is used to lock the laser frequency to the measurement cavity (up
to 1 MHz). Furthermore, a second piezoelectric actuator is implemented into the laser cavity,
mounted onto the mirror M4, permitting to either sweep the laser frequency over some MHz
or, in addition to the internal EO, to lock the laser wavelength at low frequencies (up to a few
hundreds of Hz). Finally, in order to make frequency jumps, either the Lyot filter or the thin
etalon is used. A commercial wavemeter (Bristol 182) is used to continuously monitor the laser
wavelength. Finally, this system can provide an infrared laser beam of up to 2 W which is only
limited by photon shot-noise at 1 MHz, for an available power of 1 mW.

1.6.3 Tunable double injection

Figure 1.12 depicts a simplified version of the experimental setup. It corresponds to the ac-
tual experimental setup before the implementation of our double injection scheme. The Ti:Sa
delivers an infrared beam at 800 nm which is first spatially filtered by a mode cleaner cavity
(Fabry-Perot Filtering cavity FPF) with a large bandwidth (Ωcav) and then intensity-stabilized
by an Electro-Optic Modulator. The beam is then split into two parts, each one corresponding
to an arm of a Michelson interferometer; one arm being the meter beam and the other the
local oscillator. Both beams, are recombined and the interference pattern is monitored by two
photodiodes. This type of Michelson interferometer is called a homodyne detection and it will
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Figure 1.12: A simple injection scheme. The light emitted by the Ti:Sa is spatially filtered
and intensity stabilized. Then, it is separated into two beams: the local oscillator and the
measuring beam. The laser frequency is also locked on the cavity resonance.

be detailed in the next section.
In order to observe the quantum correlations between the intensity fluctuations and the

displacements of the mirror, the group has developed a scheme to inject two laser beams into
the FPM as in a standard pump-probe scheme: an intense pump beam is used to drive the
mirror motion whereas a weaker probe beam monitors the position of the mirror.

Double injection optical setup

The development of such a scheme involves a number of precautions. First, the two beams
must be well matched to the measurement cavity. The optical structure of both beams must be
identical when they are coupled to the cavity. Their frequencies must also be tunable since the
measurement cavity is rigid and may present birefringent effects. Second, an excellent optical
isolation must be achieved in order to ensure that no optical contamination occurs to either
of the reflected beams. Finally, such a scheme needs two separate detection systems: one to
monitor the reflected intensity of the pump (a simple photodiode) and one to monitor the
mirror displacement (homodyne detection) via the phase-shift of the probe.

Figure 1.13 depicts the optical setup of the double injection scheme. The beam goes through
a system of a half-wave plate and a Polarizing Beam Splitter ( PBS1) in order to split it into two
parts. The reflected part plays the role of the probe beam while the transmitted part is the pump
beam. The pump beam first goes through a non-resonant Electro-Optic Modulator (EOM)
which in combination with the beamsplitter PBS2 forms an intensity modulator. Afterwards,
the pump beam goes through an optical circulator formed by beamsplitters, PBS2, a half-
wave plate and the Faraday rotator. This way the reflected pump beam can be monitored
by the photodiode Phd1. A similar optical system is installed for the probe beam. After its
reflection by beamsplitter PBS1 it passes through a half-wave plate and PBS4 in order to set
the desired intensities for the probe beam and the Local Oscillator (detail on the homodyne
detection will be given in section 1.6.5). In addition, there is a second optical circulator ensuring
the monitoring of the reflected probe beam by the homodyne detection. The probe and the
pump beams are recombined by PBS3. We then have two beams with orthogonal polarizations
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Figure 1.13: Double injection setup: the two cross-polarized beams are split by PBS1 to form
the probe (red) and pump (blue) beam. Both beams are first coupled to the measurement
cavity and then reflected towards their detections.

propagating together. They both pass by two plates -one half-wave and one quarter-wave-
in order to precisely adjust the polarizations of the two beams and to compensate eventual
polarization rotations caused by the cavity. Before they are finally coupled to the cavity, they
both pass by a system of two thin lenses used to match the cavity.

Once the beams are reflected by the cavity, they follow the inverse path. They are once
again split by beamsplitter PBS3 but as each beam propagates back to its own Faraday rotator
their polarization is turned to 90◦ with respect to the beam polarization at first pass. This
way, both the pump and the probe beams are simply transmitted by beamsplitters PBS2 and
PBS4 respectively, allowing their detection.

Tunable double injection

The double injection of two beams with orthogonal polarizations into the same cavity comes
with a major drawback: the cavity birefringence due to the dielectric coatings of the mirrors
induces phase-shifts witch are different for each polarization. The length, the free spectral range
of the cavity and therefore the resonance frequency of each polarization will be different. Our
cavities present birefringent effects which can correspond to several cavity bandwidths. It is
thus necessary to be able to tune the frequency of each beam independently within a range of
at least a few megahertz. For this purpose, a system of two Acousto-Optic Modulators (AOM)
is used to change the frequency of the pump and the probe beam. This type of modulator is
composed of a crystal which is coupled to a piezoelectric actuator. Once the crystal is excited
by the piezoelectric a static wave is formed into the crystal and creates a diffraction grating. As
the laser beam propagates through the crystal there is a momentum exchange between the field
and the acoustic wave: the photons are diffracted and a frequency shift, corresponding to the
number of the involved phonons, occurs. As we only need a frequency difference of a few MHz
between the probe and the pump beams, both beams are sent into two identical double-pass
configured AOM systems. One of them is driven by a constant frequency of 200 MHz, while
the other is driven by a tunable VCO (between 190 and 210 MHz) offering the possibility of a
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Figure 1.14: Tunable double injection: in order to cancel any birefringence effects of the mea-
surement cavity at two double-pass acousto-optic modulators system is system in order to add
a frequency difference between the two beams.

fine and fast tuning of the laser frequency without preventing any tilt noise on the beam. This
two-AOM system is depicted in Figure 1.14. The laser beam is split by beamsplitter PBS1
into two perpendicular polarizations, corresponding to the pump and the probe beam. Both
double-pass system use an AOM (AA Opto-electronic, MT200-A0.5-800). A thin lens (L1 and
L2) is carefully set in order to create an optical waist centered at the AOM, whose Rayleigh
length is comparable to the AOM length. With the help of a diaphragm, we then select the first
order of diffraction. A mirror placed at normal incidence is used to re-inject the beam into the
AOM following exactly the inverse path. A second thin lens (L3 and L4) is placed in order to
create an optical waist onto the mirror so that the properties of the reflected beam are identical
to the incident one. Finally, a quarter-wave plate is used to form an optical circulator with the
beamsplitter PBS1. AOM1 is driven by a fixed-frequency Voltage Controlled Oscillator (VCO)
AA MODA200 2W delivering a radiofrequency signal at 200 MHz, offering the possibility to
alter the wave amplitude by a 0-5 V input. AOM2 is driven by a variable-frequency VCO AA
DRFA10Y, offering, in addition to the amplitude control, a frequency control (±10 MHz) via
a second 0-10 V input. Since this VCO does not deliver a high-power signal, necessary for the
AOM proper operation, its output is sent to an amplifier AA AMPA-B-33, capable of delivering
2 W.
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Mode cleaner

For the mode matching between the laser beam and the measurement cavity (FPM) to be
optimal, the beam must present a perfect Gaussian profile. This is not the case since the Ti:Sa
laser delivers an astigmatic Gaussian beam. In order to correct this, a Fabry-Perot Filtering
cavity (FPF) is used. This is a 12-cm long cavity made of a plane input mirror and a plano-
concave output mirror (radius of curvature R = 1 m) both having a 95% reflectivity; a cavity
finesse of almost 100 is obtained. By maintaining the fundamental mode TEM00 of the cavity
resonant with the laser, only the corresponding component of the beam is transmitted by the
cavity while the other components will be reflected. A perfect Gaussian mode TEM00 is thus
obtained. In order to keep the laser beam at resonance with the fundamental mode of the FPF
cavity, the input mirror is mounted on a piezoelectric actuator and allows to adjust the cavity
length (see Figure 1.13). The locking-loop uses a lock-in scheme that drives the actuator at a
frequency of 4.5 kHz. This cavity length modulation is equivalent to a frequency modulation
leading to an in-phase or out-of-phase intensity modulation, depending on the sign of the cavity
detuning, which can be observed either in the transmitted or in the reflected field. In our case,
the reflected field is monitored by photodiode Phd1. The resulted signal is then demodulated
with a local oscillator at the same frequency creating an error signal which is used to drive
the piezoelectric actuator via a feedback loop. In fact, since both cross-polarized beams are
reflected by the cavity, a polarizing beamsplitter selects only one, whose intensity is sent to the
photodiode. The cavity is then locked only on one of the two beams, which causes no problem
as long as the two beams have strictly the same frequencies. However, due to the birefringent
measurement cavity, the two beams are slightly detuned with respect to each other. In principle,
if the birefringence is greater than the FPF bandwidth νBP = 5.6 MHz, then one of the two
beams will be filtered by the cavity. Since birefringent effects of only a few MHz are observed,
this problem is bypassed limited to the loss of some optical power.

Intensity lock-in

The above tunable double injection setup can also be used also to stabilize the intensities of the
beams using a standard P-I feedback controller. The schematic layout of such a stabilization is
shown on Figure 1.14. The intensity of the beam, is detected at the output of the mode cleaner
cavity, and the working point of the AOM is modified via a feedback loop so that the intensity
of the laser beam is stabilized. In order to perform the feedback, the AOM working point has
to be set at a value below the maximum of diffraction obtained for a control voltage of 5 V.
Ideally, the optimal working point is 2.5 V to have the maximum dynamics for the feedback
loop. However, we have observed that if the working point is lower than 5 Volts then the AOM
adds high-frequency intensity noise to the beam. Therefore, such a noise eater can prove to be
destructive especially for the pump beam which is supposed to be at photon noise, .

1.6.4 Frequency stabilization: the Pound-Drever-Hall technique

A Pound-Drever-Hall (PDH) technique [38] is used to stabilize the laser frequency resonant with
respect to the movable mirror cavity resonance. It consists in observing the cavity response
to a phase modulation of the incident field. The phase modulation is realized by a resonant
electro-optic modulator at a given frequency ΩPM, greater than the cavity bandwidth (see
Figure 1.15). This phase modulation creates sidebands at ΩPM with respect to the carrier.
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When the light enters the cavity it becomes sensitive to the mirror displacement and the cavity
detuning we are seeking to control. The carrier is then phase-shifted proportionally to the
detuning. On the other hand, the sidebands, are very far from the cavity resonance and are
simply reflected by the cavity. Consequently, a phase difference between the sidebands and
the carrier occurs and the incident phase modulation becomes an amplitude modulation on the
reflected field. The beating between the carrier and the sidebands has a slowly-varying envelope
that constitutes the error signal. In order to extract the error signal the reflected field intensity
is then demodulated at the frequency of the phase modulation.

The Pound-Drever-Hall error signal

Figure 1.15: A Pound-Drever-Hall de-
tection scheme: a resonant electro-optic
modulator creates sidebands. The re-
flected intensity is then demodulated to
yield the error signal.

We will see in this section how the Pound-Drever error
signal is derived. The incident laser field α0 is phase-
modulated. It then becomes:

αin(t) = α0(t)e
iβ cos(ΩPMt), (1.83)

where β is the modulation amplitude. This expression
can be developed with the help of the Bessel expan-
sion eiz cos θ =

∑∞
−∞ ineinθJn(z). Assuming a small

modulation depth β, the first-order expansion is:

αin(t) = α0(t)
[
J0(β)+iJ1(β)e

iΩPMt−iJ−1(β)e
−iΩPMt

]
.

(1.84)
From the above equation, we clearly see that the inci-
dent field can be decomposed into a carrier frequency
(term J0) and two sidebands at frequencies ±ΩPM

(terms J±1), in quadrature with respect to the car-
rier. We are now going to derive the error signal in
the simple case where the carrier is detuned from the cavity by a quasi-constant phase-shift.
Using expressions (4.1) and (4.2) describing the incident and reflected fields we deduce the
reflection coefficient rΨ at frequency Ω as a function of the detuning Ψ:

rΨ[Ω] =
γ − P + iΨ+ iΩτ

γ − iΨ− iΩτ
. (1.85)

By applying this static response to each term of equation (1.84) we obtain the expression of
the cavity reflected field:

αout(t) = α0(t)
{
rΨ[0]J0(β) + irΨ[−ΩPM]J1(β)e

iΩPMt − irΨ[ΩPM]J−1(β)e
−iΩPMt

}
. (1.86)

The output field intensity Iout = |αout|2, detected by a photodiode, has a DC component, a
component oscillating at frequency ΩPM/2π and all the harmonics of this frequency coming
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Figure 1.16: Left: sidebands at 20 MHz with respect to the carrier. Right: the corresponding
Pound-Drever error signal. Both curves are calculated for a lossless cavity, with a bandwidth
Ωcav = 1 MHz, for an incident field phase-modulated at 20 MHz.

from higher-order terms of the Bessel expansion. We are interested only in the ΩPM part:

Iout

∣∣∣
ΩPM

= −2J0J1I in

[
Im
[
r∗Ψ[0]

(
rΨ[−ΩPM] + rΨ[ΩPM]

)]
cos(ΩPMt)

+ Re
[
r∗Ψ[0]

(
rΨ[−ΩPM]− rΨ[ΩPM]

)]
sin(ΩPMt)

]
. (1.87)

The above signal will be demodulated at frequency ΩPM: it is mixed with a reference signal
oscillating at the same frequency, i.e. a local oscillator, and a low-pass filter is used to remove
the generated harmonics, keeping only the slow-varying envelope of the reflected field. The
result of this operation can provide either the amplitude of the first or the second term, or a
combination of both, depending on the phase of the local oscillator. The term oscillating as
sin(ΩPMt) has a zero slope at zero detuning. . Hence, this part of the error signal is not useful
to lock the cavity close to resonance. The phase of the local oscillator must thus be set in order
to keep only the term oscillating as cos(ΩPM). The error signal can then be written as:

Verr(Ψ) = 〈Iout(t) cos(ΩPMt)〉 (1.88)

= −J0J1I inIm
[
r∗Ψ[0]

(
rΨ[−ΩPM] + rΨ[ΩPM]

)]
. (1.89)

When the frequency of the sidebands is greater than the cavity bandwidth Ωcav and the detuning
is small compared to the bandwidth, the latter equation can be simplified:

Verr ≈ −J0J1I in
γΨ

γ2 +Ψ2
. (1.90)

This equation shows that the error signal varies rapidly around zero, changing sign as the
cavity working point passes from one side of the Airy peak to the other. Figure 1.16 depicts
the transmission of a cavity swept around its resonance and the corresponding error signal.
The error signal is always positive for red detunings (between the resonance and −ΩPM) and
negative for it symmetrical part corresponding to blue detunings: the feedback loop will thus
be able to locate the cavity resonance. Furthermore, the error signal is still non-zero even for
a detuning much larger that the cavity bandwidth: the capture range is equal to 2Ωcav.
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Figure 1.17: The laser lock-in. The error signal is split into a low-frequency, a high-frequency
and an intermediate frequency component driving the piezoelectric actuator and the electro-
optic modulator of the laser.

Pound-Drever-Hall implementation

We have decided to implement the phase modulator on the pump beam and not on the probe
beam. This decision has been taken primarily due to eventual electronic saturation effects of
the homodyne detection caused by the phase modulation. Figure 1.15 depicts the layout of
this technique. A resonant phase modulator (model 4851 by New Focus) modulates the pump
beam at 20MHz. The frequency modulation was chosen as a good compromise between the
cavity bandwidth and the bandwidth of the photodiode monitoring the reflected pump field.
The optical circulator, formed by beamsplitters PBS2 and PBS3 and the Faraday rotator,
ensures the detection of the reflected field. Once the field is detected, the generated signal is
amplified by a 30 dB amplifier (Nucletudes ALP64-10). The extraction of the error signal is then
realized by a home-made demodulator circuit that consists of a low-pass filter (MiniCircuits
PLP-21.4+), suppressing the phase-modulation harmonics, a frequency mixer (MiniCircuits
SBL-1+), mixing the signal with the local oscillator, and a low-pass filter (MiniCircuits PLP-
1.9+), suppressing the harmonics produced by the mixing procedure. Both the phase modulator
and the local oscillator are driven by a double generator (Tektronix AFG3102) delivering two
monochromatic sinusoidal signals with the same frequency but with an adjustable relative phase
between them. This feature is very convenient in order to chose the correct quadrature of the
demodulated signal.

The produced Pound-Drever error signal is then used in order to lock the laser frequency
to the resonance of the measurement cavity. To this purpose, two optical elements of the laser
cavity are mainly used as feedback transducers: the piezoelectric actuator mounted on mirror
M4 (see Figure 1.17) and the internal electro-optic modulator; each one is driven by a different
spectral band of the error signal. As Figure 1.17 depicts, a series of filters (a high-pass, a low-
pass and a band-pass) splits the error signal into three, well-distinguished, frequency bands: a
slow one (up to 100 Hz), an intermediate one (between 100 Hz and some kHz) and a fast one
(up to 10 kHz). The piezoelectric actuator, presenting a slow response but a great amplitude is
used to compensate the slow drifts of the cavity. The intermediate component, via a low-noise,
high-speed amplifier (TEGAM), drives the internal electro-optical modulator (entry +) while
the fast component also drives directly the electro-optical modulator (entry -). The global error
signal is also filtered by a low-pass filter with a cut-off frequency at 10 kHz adding a global slope
of 10 dB/decade. Finally, once a stable lock-in is achieved, there is an additional integrator
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stage, adding further low-frequency gain to low frequency component ensuring stability on long
time scales, typically several hours.

1.6.5 Homodyne Detection

The double injection scheme consists in using two separate laser beams coupled to the measure-
ment cavity. Both reflected beams are monitored by two separate detectors. For the pump beam
we are interested in measuring its intensity, therefore a simple photodiode suffices. Usually, we
use photodiodes which are coupled to a home-made pre-amplifier circuit. It is based on two
stages, one providing the DC-component of the signal and another giving the high-frequency
component The high-frequency part of the amplifier presents a typical bandwidth of 50 MHz.
A FND100 Si PIN photodiode EG&G is used, presenting a quantum efficiency of 90%.

We need to measure the phase of the probe beam which can be done by an interferometric
scheme. The probe beam reflected by the movable mirror is thus fed into a homodyne detection
[39] in order to detect its phase fluctuations. It is based on the mixing of the signal to be
measured with another field used as a phase reference namely the local oscillator. By carefully
locking the relative mean phase between the local oscillator and the reflected beam we are
capable of measuring a relative phase variation between the two beams. It is thus possible to
measure the fluctuations of any quadrature of the reflected field by accordingly choosing the
phase of the local oscillator.

Principle of the homodyne detection

The optical setup of the homodyne detection is depicted on Figure 1.18. The incident beam,
linearly polarized, is split in two parts thanks to a half-wave plate followed by a polarizing
beam splitter PBS5, creating the probe beam and the local oscillator. In practice, the local
oscillator should be at least one order of magnitude more powerful than the probe beam. By
setting the local oscillator at typically 10 mW the probe beam power may arbitrarily vary up
to 1 mW. Each beam goes through a quarter-wave plate, oriented at 45◦, turning accordingly
their polarization two times as both beams realize a double-trip towards their respective mirrors
and back. This results into a global polarization rotation of 90◦ for each beam which are then
recombined at the fourth output of beam splitter PBS5. At this point the two co-propagating
beams are cross-polarized and thus no interference effects are observed. In order to combine
the two beams, they are directed towards a system made of a half-wave plate, oriented at 22.5◦,
and a polarizing beam splitter which splits them into two parts of equal intensity. Interference
effects can now be observed by directing each output port of the beam splitter towards a
photodiode. By noting αout the reflected field by the cavity and αOLe

iφ the field of the local
oscillator, the fields α1(t) and α2(t) detected by photodiodes Phd1 and Phd2 are:

α1(t) =
1√
2
[αout(t) + αOL(t)e

iφ],

α2(t) =
1√
2
[αout(t)− αOL(t)e

iφ],

(1.91)

where the mean fields amplitudes αOL and αout are assumed real, φ being the relative phase
between the two fields. The two photocurrents produced by the two photodiodes are pre-
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Figure 1.18: Homodyne detection: the incident beam is first split into the two parts by PBS6.
One forming the Local Oscillator and the other the probe beam. PBS6 also serves to recombine
the two beams before feeding them to the balanced detection. The A-B output of the detection
is then split to a HF and LF component serving to observe the mirror motion and to stabilize
the length of the Local Oscillator, respectively.

amplified and then subtracted. The signal I−(t) generated by this operation is:

I−(t) = 2Re[αoutα
∗
OLe

−iφ]. (1.92)

By linearizing this equation we get the fluctuations δI−(t) around the mean value I−(t). The
mean value of the photocurrent difference I−(t) is given by:

I− = 2αoutαOL cosφ, (1.93)

and is directly related to the relative phase between the two fields:

I− = 2

√
IoutIOL cosφ, (1.94)

while the fluctuation δI−(t) are given by:

δI−(t) = αOL

[
δαout(t)e

−iφ + δα∗
out(t)e

iφ
]

+ αout

[
δαOL(t)e

iφ + δα∗
OL(t)e

−iφ
]
.

(1.95)

The fluctuations of I− are then given by the sum of the fluctuations of the reflected field
quadrature αφout and the fluctuations of the local oscillator quadrature αφOL mixed with the
mean fields αOL and αout respectively. By setting the intensity of the local oscillator large
compared to the intensity of the probe beam the second term of the latter equation can be
neglected. The fluctuations of the probe beam are therefore imprinted onto the difference of
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the two photocurrents produced by photodiodes Phd1 and Phd2. The noise spectrum S−[Ω],
as measured by a spectrum analyzer, is then proportional to the noise spectrum Sφout[Ω] of
quadrature αφout:

S−[Ω] = IOLS
φ
out[Ω]. (1.96)

The control of the relative phase φ between the two beams permits access to the noise spectrum
of any quadrature of the field αout. For instance, we can access the phase of the reflected beam
when φ = π/2 by locking the local oscillator at I− = 0.

Real homodyne detection

The previous calculation assumes an ideal detection. Experimental imperfections can add
signal losses and lead to a measurement sensitivity deterioration. The quantum efficiency of
the photodiodes, and more generally the losses induced by the optical elements attenuate the
reflected field and couple it to vacuum fluctuations. The phase spectrum of the reflected field
is then contaminated by the vacuum fluctuations:

S−[Ω] = IOL(ηphS
φ
out[Ω] + 1− ηph), (1.97)

where ηph is the efficiency of the detection and 1 − ηph represents losses. Losses have then a
direct effect on the signal-to-noise ratio: for an efficiency smaller than 1, the noise measurement
remains equal to photon phase noise but the contribution of the mirror displacement is reduced
by a factor

√
ηOL in amplitude. Likewise, an imperfect spatial overlap between the local oscil-

lator and the probe beam can also deteriorate the measurement. Indeed, an imperfect spatial
overlap leads to a reduced contrast in the measured interference between the two beams, given
by:

I− = 2

√
ηOLIOLIout cosφ. (1.98)

An imperfection to the spatial overlap is equivalent to optical losses: the signal is still reduced
by a factor

√
ηOL.

1.6.6 Complete measurement sensitivity

With the description of the homodyne detection and the introduction of the overlap coefficient
between the probe beam and the local oscillator we have completed the description of the
main experimental imperfections of our experiment which limit its sensitivity: cavity losses
T + P , coupler transmission T , mode matching of the measurement cavity ηcav, overlap ηOL

and quantum efficiency of the homodyne detection photodiodes ηph. The complete measurement
sensitivity then becomes:

δxshot =
λ

16Fηcav√ηOLηph

√
T + P

T

√
1 +

(
Ω/Ωcav

)2

I in
. (1.99)

1.7 Position calibration

The homodyne detection readout is fed a Spectrum Analyzer that provides its power spectral
density. It is then crucial to convert this signal in terms of displacements of the movable mirror.



40 Chapter 1. Optomechanical coupling

We will finish this introductory chapter by presenting two different methods for the cali-
bration the readout of the homodyne detection as a displacement. One uses a calibrated phase
modulation which the other makes use of the Pound-Drever error signal. Let us first understand
the nature of the measurement provided by the spectrum analyzer. The input electrical signal
is filtered around frequency f over a given spectral range called the Resolution BandWidth
νRBW. The analyzer also has an input impedance R = 50 Ω and makes a frequency analysis
of the power P (f) dissipated by R. Finally, the analyzer gives the corresponding power P (f)
in dBm. We can establish the relation between the power P (f) provided by the apparatus and
the component VHD(f) at frequency f of the voltage delivered by the homodyne detection.
The dBm is defined as:

dBm = 10 log
P (f)

P0
, (1.100)

where P (f) = VDH(f)2νRBW /R and P0 = 1 mW. It follows that the corresponding amplitude
measured by the spectrum analyser will be given by:

VDH(f) =
10P (f)/20

√
20 νRBW

, (1.101)

where the power P (f) is expressed in dBm. The position calibration, which will be described
below, consists in converting the amplitude V (f) provided by the spectrum analyzer into dis-
placement (V/

√
Hz → m/

√
Hz). This conversion can easily be realized thanks to the well known

fact that a length variation δx of a cavity is completely equivalent to a frequency variation δν
of the laser:

δν

ν
=
δλ

λ
=
δx

L
, (1.102)

where ν is the laser frequency, λ the laser wavelength and L the cavity length.

1.7.1 Pound-Drever-Hall calibration

The Pound-Drever error signal can also be used to calibrate the mirror displacement. It is
generally used in a frequency feedback loop, however it contains all the required information
on the mirror displacement. It can be shown [40] that the error signal fluctuations δVerr can
be written as the product of the detuning fluctuation around the optical resonance δΨ and the
error signal static slope dVerr/δΨ, corrected by the cavity filtering effects at high frequency:

δVerr =
1

1 + Ω2/Ω2
cav

dVerr
dΨΨ=0

δΨ[Ω]. (1.103)

By determining the static slope we can perform a position calibration. The error signal is
visualized with a digital oscilloscope and -exactly as done for the optical characterization- its
time axis is converted into a frequency axis. The slope value expressed in V/Hz ensures the
first step of the calibration. It will permit the conversion from the amplitude given by the
apparatus to a frequency (V/

√
Hz → Hz/

√
Hz). The second step of the calibration consists

in monitoring the high-frequency part of the Pound-Drever error signal and, thus, take a dis-
placement acquisition. Since the spectrum analyser input has an input impedance of 50 Ω, the
numerical oscilloscope input impedance must be equally set to 50 Ω so that both signals have
the same electronic gains. We know that a mirror displacement δx results in a cavity detuning
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equal to δΨ = 4πδxλ. By combining this equation with equation (1.103) we determine the
spectral density of the mirror displacement. We note finally that once the PDH calibration is
done it suffices to compare every homodyne detection acquisition to it in order to calibrate the
homodyne detection as well. The simplicity of this technique is evident: one simple thermal
acquisition using the PDH signal is enough to calibrate the homodyne detection.

1.7.2 Calibration peaks

Thanks to its simplicity, the PDH technique has become our principal technique to calibrate
the homodyne detection readout. We will now describe an alternative calibration than may
be used instead. This calibration method is based on a frequency modulation of the laser
used as a reference. By applying a frequency modulation to the laser and by observing the
associated signal via the homodyne detection equation (1.102) will allow to transform this
signal into the corresponding mirror displacement. The procedure consists of two steps: first,
the frequency modulation must be calibrated and, afterwards, the effect of this modulation on
the measurement cavity is observed by the homodyne detection.

The frequency modulation δνm performed with a signal generator driving the internal Elec-
tro Optic Modulator of the laser ring cavity via an amplification stage (fast amplifier Tegam).
In order to calibrate the frequency modulation a cavity with a known bandwidth is used. For
this purpose, the filtering cavity (FPF), with a bandwidth ΩFPFBP = 5.6 MHz is very suitable.
The filtering cavity will be used to transform the frequency modulation to an intensity modu-
lation by simply detuning it. When the cavity is at resonance the frequency modulation has no
effect on the output intensity as the slope of the Airy peak is zero. On the other hand, if it is
detuned an intensity modulation is apparent on the cavity output. The frequency modulation
can then be calibrated by simply monitoring the output laser beam while the cavity is locked
on the side of the fringe. Its amplitude should be smaller that the cavity bandwidth ΩFPFBP . In
this case it can be found [31] that the intensity modulation depth is given by:

δI[Ω]

I
=
δνm[Ωm]

νFPFBP

. (1.104)

In practice, we ensure that the internal electro-optic modulator does not induce a residual inten-
sity modulation by observing the output intensity while the cavity is at resonance. Afterwards,
the cavity is detuned and maintained on the side of the Airy peak where the slope is maximal,
by adding an offset to the control loop and both the modulation depth δI and the mean inten-
sity I are measured. Once the modulation peak is calibrated, its effect on the measurement can
now be observed via the homodyne detection and used to calibrate the measured displacement
(in meters). It suffices then to compare any signal V to the modulation peak Vm both observed
by the homodyne detection. The amplitude Vm observed at frequency, Ωm, corresponds to a
well known frequency modulation. We thus write:

VDH [Ωm]

Vm[Ωm]
=
δνDH [Ωm]

δνm[Ωm]
, (1.105)

allowing to calibrate the measured signal, initially expressed in volts, to hertz (V/
√
Hz →

Hz/
√
Hz). Finally, by combining equations (1.102), (1.104) and (1.105) the homodyne detection
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readout is calibrated to meters (Hz/
√
Hz → m/

√
Hz):

δx[Ωm] = L
δνm[Ωm]

ν

VDH [Ωm]

Vm[Ωm]
. (1.106)

This method is of course applicable only at a single frequency, Ωm. However, the bandwidth
of our detection is large enough to be able to generalize the above technique to a span of a
few megahertz. In fact, the only frequency dependence comes from cavity-filtering effects and,
hence, equation (1.106) must include this correction by adding a factor 1/(1 + (Ω/Ωcav)

2).

Mechanical characterization

Once the displacement measurement is calibrated all the mechanical properties, the effective
mass Meff of the modes of the movable mirror can be computed by the thermal noise spectrum.
A Lorentzian fit can determine both the center frequency, ΩM and the width, ΓM of the mode.
Therefore, the quality factor of the mode can be straightforwardly calculated: Q = ΩM/ΓM .
Finally, the variance of the movement ∆x2 can also be determined by the Lorentzian fit and
using the energy equipartition theorem

1

2
Meff∆x

2 =
1

2
kBT, (1.107)

the oscillator effective mass Meff can be calculated. kB is the Boltzmann constant and T the
temperature.

1.8 Group past experimental results

The optomechanical coupling has been studied at the Laboratoire Kastler Brossel since 1995
and some remarkable experimental results have been obtained, often setting new standards and
opening new horizons in this research domain. Some of these results will be briefly discussed
here.

1.8.1 Thermal noise observation and measurement sensitivity

The first experimental results were obtained in the late 90’s thanks to the experimental setup
already described in Figure 1.12 allowing to perform a displacement measurement with a sensi-
tivity limited by the phase noise of the incident probe beam. Here we will present the observed
characteristics of thermal noise as well as the sensitivity achieved by the experimental setup.
In order to measure the thermal noise of the mirror, the laser frequency is locked on the cavity
resonance of the cavity, where the sensitivity is maximal, and the homodyne detection monitors
the phase of the reflected beam. Figure 1.19(a) shows the reflected phase noise in and out of
the cavity resonance. The phase noise of the reflected beam is a superposition of the thermal
fluctuations of the mirror and of the phase noise of the incident beam (red curve in Figure
1.19(a)). The spectrum presents a series of peaks, each one corresponding to an acoustic mode
of the mirror which behaves like a damped harmonic oscillator. Between the peaks the noise
level is almost flat in frequency and corresponds to a thermal background due to the uncoherent
sum of the non-resonant thermal noise of all modes. The incident beam phase noise can be
easily measured by performing the same measurement when the cavity is out-of-resonance and
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(a) (b)

Figure 1.19: (a) Thermal noise spectrum between 100 kHz and 2.5 MHz (red). The grey curve is
the experimental sensitivity limit caused by the phase noise of the probe beam while the black
one corresponds to the theoretical limit. (b) Thermal noise spectrum around a mechanical
resonance of the movable mirror.

the beam being only reflected by the cavity (δqin = δqout). The grey curve of 1.19(a)) depicts
this spectrum which corresponds to the experimental sensitivity limit. Finally, in black the
expected theoretical sensitivity is depicted. It has been calculated using expression (1.99) tak-
ing into account the mode matching of the cavity (ηcav = 98%), the overlap between the local
oscillator and the probe beam (ηLO=94 %), the photodiode quantum efficiency (ηph = 91%),
the total cavity losses T + P = 27 ppm and the coupler transmission T = 18 ppm. At low
frequency the theoretical sensitivity is equal to:

δxshot[Ω ≪ Ωcav] = 2.7× 10−20m/
√
Hz. (1.108)

At higher frequency the shot noise level increases due cavity filtering effects. For the presented
spectra the power of the probe beam was set to 50 µW allowing to study the mirror thermal
noise with a good sensitivity and the measured spectra have been calibrated using the technique
presented in section 1.7.2. Finally, Figure 1.19(b)) depicts the thermal noise around one specific
vibrational mode resonance frequency. It has been acquired with a resolution of νRBW = 3 Hz
and has been averaged 80 times. By applying a Lorentzian fit we determine the resonance
frequency ΩM/2π = 1231.133 kHz and a width ΓM/2π = 32 Hz, corresponding to a mechanical
quality factor Q = ΩM/ΓM = 38 500 and an effective mass Meff = 430 mg.

1.8.2 Full mechanical characterization

The group has used dedicated software utilities in order to predict the mechanical characteristics
(resonance frequency and effective mass) of the acoustic modes of the cylindrical mirrors. In
particular, the software CYPRES written by François Bondu, has been used to identify the
mechanical modes. They are described by 3 indexes: the circumferential order η, characterizing
the angular symmetry of the mode, the parity ξ, taking a value equal to either 0 or 1 and
indicating whether the sides of the mirror are vibrating in phase or out-of-phase, and the order
number m which is related to the radial structure of the mode. Our experiment has provided an
excellent agreement between the predicted mechanical modes and the observed ones. The setup
is depicted in Figure 1.20(a). Its principle lies in the driving of the mirror on multiple points
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(a) (b)

Figure 1.20: (a): The experimental setup used to mesure the spatial profile of the mirror
mechanical modes. The intensity of the auxiliary laser beam is modulated by an acousto-optic
modulator. A motor-mounted lens is used to scan the surface of the movable mirror so that
multiple points of the mechanical mode are excited. The signal acquired by the homodyne
detection is then sent to a synchronous detection apparatus in order to extract the amplitude
and the phase of the mirror response. (b) The spatial profiles of 4 mechanical mode of a
cylindrical mirror (diameter 25.4 mm, thickness 6.35 mm). The left column depicts the profiles
reconstitutes experimentally while the centered one presents the profiles calculated by CYPRES.
The right column shows the theoretical and experimental radial function of the modes.

of its surface at the resonance frequency ΩM of one particular mode. The resulting mirror
displacement is proportional to the mode amplitude at the corresponding point. The excitation
is produced by the radiation-pressure of an auxiliary beam whose intensity is modulated at
frequency ΩM by an acousto-optic modulator. The amplitude of the modulation is chosen so
that the resulting displacement is some orders of magnitude greater than thermal noise. The
mirror response for each point is then sampled and recorded with the help of a home-made lock-
in detection providing the amplitude and the phase of the motion. The excitation point is then
scanned over the surface of the mirror thanks to a lens mounted onto a computer-controlled,
motorized translation stage. Monitoring the mirror response allows then to reconstruct the
spatial profile of the mode. The results of this experiment are depicted in Figure 1.20(b)
where and excellent theory-experiment agreement can be noticed. The group has also studied
the time dependence of the thermal noise. It has been experimentally demonstrated [41] that
the thermal noise of a mirror corresponds to a Brownian motion in the phase-space defined
by the quadratures of the mirror displacement. The quadratures of the position δxM (t) of
a mechanical mode are defined as the slowly-varying amplitudes of the two terms (sinus and
cosinus) oscillating at frequency ΩM :

δxM (t) = X1(t) cos(ΩM t) +X2(t) sin(ΩM t), (1.109)

where X1(t) and X2(t) are the two quadratures. A demodulation procedure, depicted in Figure
1.21(a), is implemented in order to extract the quadratures. A band-pass filter is used to filter
the homodyne detection readout around frequency ΩM and isolate the mode in which we are
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interested. The output of the filter is then split into two parts; both are then mixed with two
monochromatic signals, in quadrature in respect with each other and are filtered by a low-
pass filter suppressing the mixing-generated harmonics. The signals are finally calibrated using
the technique described previously (section 1.7.2). Figure 1.21(b) depicts the obtained results
for the fundamental mode of a plano-convex movable mirror whose mechanical characteristics
deduced from its thermal noise spectrum are: resonance frequency ΩM/2π = 1858 MHz, mass
M = 230 mg and width ΓM/2π = 57 Hz. The temporal evolution in phase-space, defined by
the two quadratures X1 and X2, is represented; it corresponds to a bounded random walk as
expected for the Brownian motion of a harmonic oscillator.

1.8.3 Cold damping

Our research group was the first to experimentally demonstrate an active cooling effect on a
mirror by using a feedback loop [42]. This technique is known as cold-damping: it consists in
applying a viscous force to the mirror which increases the mirror dissipation processes with-
out adding any thermal fluctuations. According to the fluctuation-dissipation theorem [23]
this technique can lead to a temperature decrease of the mirror. In particular, a force Ffb[Ω]

proportional to the velocity is applied to the mirror, using the real-time displacement measure-
ment.The feedback actuation is applied on the movable mirror. Its displacement is then given
by:

δx[Ω] = χ[Ω](FT [Ω] + Ffb[Ω]), (1.110)

where FT the Langevin force and Ffb = iΩMΓgδx[Ω] is the force applied by the feedback loop,
with g the dimensionless gain of the loop and ΓM = ΩM/Q is the damping of the mechanical
mode. The mirror displacement becomes:

δx[Ω] =
1

1/χ[Ω]− iΩMΓg
FT [Ω]. (1.111)

(a) (b)

Figure 1.21: (a): the extraction of the movement quadratures. The homodyne detection read-
out is first filtered around the frequency of analysis ΩM . It is then split in two parts. One
part is demodulated using a local oscillator at frequency ΩM whereas the other one using a
local oscillator in quadrature with respect to the first one. (b) Brownian noise trajectory of the
mirror in the phase-space.
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Figure 1.22: Left: the experimental setup used to the cold-damp the moving mirror. Right:
Thermal noise without cold-damping (a) and increasing gains of the feedback loop (b to d).

This expression shows that in presence of the feedback loop, the mirror displacement is still
the response to the Langevin force but with an effective mechanical susceptibility χfb. If we
consider, for simplicity, only one mode of the mirror, the effective mechanical susceptibility is:

χfb[Ω] =
1

M(Ω2
M − Ω2 − i(1 + g)ΓMΩ)

. (1.112)

The feedback loop introduces a modification of the damping of the mechanical mode without
changing the Langevin force characterizing thermal noise. When g > 0, the feedback widens
the mechanical mode by a factor (1+g). The displacement spectrum Sx remains Lorentzian,
but its height and area decrease by a factor (1 + g)2 and (1 + g) respectively. The decrease of
the mode area corresponds to a decrease of the displacement variance which, using the energy
equipartition energy, can be interpreted as a mirror cooling effect. The temperature of the
mechanical mode, in presence of the feedback, is:

Tfb =
T

1 + g
. (1.113)

The group has been able to experimentally demonstrate such a cooling effect, thanks to the
experimental setup depicted on Figure 1.22(a). An auxiliary laser beam is used to apply an
external radiation-pressure force on the movable mirror with an intensity controlled by an
acousto-optic modulator driven by the feedback loop. The signal obtained by the homodyne
detection is filtered by a band-pass filter at ΩM to exclude other mechanical modes from
the feedback loop. Once the signal is filtered, it is phase-shifted in order to set its phase
in quadrature with respect to the displacement and obtain a signal proportional to the mirror
velocity. A variable gain electronic stage completes the feedback loop. The results obtained
with the plano-convex mirror are presented on Figure 1.22(b). A temperature reduction by a
factor 30 has been achieved, the efficiency of the cooling feedback loop being essentially limited
by the thermal noise background.
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1.8.4 Back-action cancellation

Inspired by a theoretical study, also developed in our group [43], on the sensitivity limits of
a gravitational-wave antenna based on a dual resonator, the group has demonstrated an anti-
resonance effect between the fundamental mechanical mode and the mechanical background.
The idea consists in forming a cavity composed of two almost identical movable mirrors and
to measure the cavity length variation δLsig caused by an external force applied to one of the
mirrors, or an apparent length variation (a laser frequency variation or a gravitational wave
in an interferometer). This measurement will contain the quantum phase noise of the incident
probe beam as well as the position fluctuations of the two mirrors δxe and δxf both created
by the back-action effect. At low frequency (Ω ≪ Ωcav) the phase fluctuations of the reflected
field will be given by (equation (1.70)):

δqout[Ω] = δqin[Ω] +
8F
λ

[
δXf [Ω]− δXe[Ω] + δLsig[Ω]

]
. (1.114)

In the framework of the linear response theory, the length fluctuations δXf−δXe can be written
using the corresponding mechanical susceptibilities χe[Ω] and χf [Ω]:

δXf [Ω]− δXe[Ω] =
(
χe[Ω] + χf [Ω]

)
Frad[Ω], (1.115)

where Frad is the radiation-pressure force applied by the intracavity field to the mirrors which
is equal in norm on both mirrors but with an opposite direction. The sensitivity limit δLmin[Ω]

can be calculated the same way as done in section 1.4.1:

δLmin[Ω] =
√
~|χe[Ω] + χf [Ω]|. (1.116)

Compared to equation (1.72) this time the sensitivity depends on the sum of the mirrors
mechanical susceptibilities χf + χe. Since both resonators can be described as two different
harmonic oscillators whose resonance frequencies Ωf and Ωe are close but slightly different,
there will be an anti-resonance effect at frequency Ωar in the range [Ωf ,Ωe] corresponding to
a destructive interference effect between the back-action applied to the two mirrors. Hence,
at the anti-resonance frequency Ωar, the real parts of the two mechanical susceptibilities are
exactly equal with an opposite sign. The latter equation then becomes:

δLmin[Ωar] =

√
~|Im

[
χe[Ωar] + χf [Ωar]

]
|. (1.117)

At the anti-resonance frequency, the sensitivity obtained is then greater than the Standard
Quantum Limit for a single mirror. The back-action cancellation can also be taken advantage
of in order to measure a small force. The idea is to use a two-movable-mirror cavity where
an external force is only applied one of the two mirrors. The force will be transduced into a
measurable displacement δXsig = χf [Ω]Fsig[Ω], where χf is the transducer mechanical suscep-
tibility. The maximum sensitivity of the displacement measurement δXsig leads to a Standard
Quantum Limit for the force measurement given by:

δF
SQL

[Ω] =

√
~

|χf [Ω]|
. (1.118)
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(a) The experimental setup used to observe the back-action
cancellation.

(b) The signal is measurable only to the anti-
resonance region.

Figure 1.23: Back-action cancellation.

Since, the radiation-pressure effects are now proportional to the sum of both susceptibilities
χf + χe the existence of an anti-resonance will lead to a better sensitivity to the applied force
associated to the smallest measurable displacement:

δF
min

[Ω] =

√
~|χf [Ω] + χe[Ω]|

|χf [Ω]|
, (1.119)

which can be much better than δF
SQL

. The group has been able to experimentally demonstrate
such a sensitivity improvement using a high-finesse cavity formed by two cylindrical mirrors.
Since, the two mirrors are almost identical, their mechanical resonances are similar: in the
thermal noise spectrum they appear as doublets. Figure 1.23(a) depicts the experimental setup
used to demonstrate this effect. Close to a doublet we can neglect the contribution of the
thermal background and consider the cavity as a system of two harmonic oscillators. Since the
mirror displacement is dominated by thermal noise, a non-resonant, electro-optic modulator
has been used in order to simulate a quantum intensity noise at a level much higher than
thermal noise. The electro-optic modulator was driven by a white noise filtered in a frequency
band of 600 kHz round the analysis frequency. The signal δFsig to be measured was created by
modulating the signal beam with an acousto-optic modulator. The signal beam then excites
one of the two mirrors, applying a corresponding radiation-pressure force resulting into a length
variation. The result of this measurement is presented in Figure 1.23(b). The applied weak
force is only measurable only round the anti-resonance frequency ΩAR

1.9 Optomechanics worldwide

The LKB group has been active in optomechanics research for more than 15 years and it
is widely considered to be one of the pioneers of the field, providing both the theoretical
framework but also solid experimental results. At the same time, other major research groups
have emerged, pushing even further the barriers of optomechanics by creating optomechanical
systems capable of observing quantum effects that until very recently were only predicted
by theory. Indeed, over 40 groups worldwide are now active in the optomechanics research
domain with systems presenting masses that span from picograms to kilograms and resonance
frequencies from some Hz to some GHz. In figure 1.9 we present some important optomechanical
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Figure 1.24: Some optomechanical systems: (a), (b) gram-scale movable mirrors used in Paris
and in MIT respectively. (c) Micro-toroids used in EPFL but also in MPQ-Paris and in Queens-
land. (d) A commercial SiN membrane used in Yale. (e), (f) A high-Q micropillar and a
low-mass membrane both developed in Paris. (h), (k) Micromirrors used in Vienna and Santa
Barbara. (i) an hybrid, on-chip optomechanical transducer developed in EPFL. (g), (j) A new
generation of photonic crystal where optical and mechanical coexist developed in EPFL and
Caltech.

systems.
As mentioned earlier, our group has developed gram-scale, plano-convex resonators (a) pre-

senting high finesse and a high Q [41]. The group of Nergis Mavalvala at MIT (b) also uses
gram-scale suspended mirrors [44, 45] to explore radiation-pressure induced effects. Our group
is currently developing a photonic crystal membrane (f) in collaboration with the Laboratory
for Photonics and Nanostructures [46, 47] presenting an ultra-low mass (∼ pg) and a high-
Q micropillar (e) in collaboration with the ONERA and the LMA [48]. At the same time,
other types of micromirrors have been developed by the groups of Markus Aspelmeyer in Vi-
enna [49] and Dirk Bouwmeester in Santa Barbara [50]. In parallel, Tobias Kippenberg in the
EPFL has introduced and developed microresonators (d) presenting Whispering Gallery Modes
(WGM) [51, 52] while similar systems are used by Ivan Favero’s group at MPQ-Paris [53] and
Warwick Bowen at the University of Queensland [54]. In the group of Kippenberg they have also
managed to develop an integrated, on-chip transducer where a nanomechanical beam is coupled
to disk-shaped optical resonator [55]. Jack Harris at Yale has introduced the “membrane-in-
the-middle” technique using commercial SiN membranes (d) in order to explore the dispersive
optomechanical coupling [56]. Finally, the co-existence of vibrational and optical modes occurs
in a new generation of photonic crystal membranes (g, j) developed by the LPN/EPFL [57]
and by the group of Oskar Painter at Caltech [58,59].
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This thesis is particularly focused onto the experimental observation of the quantum radiation-
pressure shot-noise and other groups have offered significant contribution towards this end.
Kjetil Børkje et al. in the group of Jack Harris have offered a proposition to distinguish quan-
tum from classical noise [60] while other closely related results have also been by other groups.
Laurent et al. [61] have shown experimental evidence of a negative back-action in interferomet-
ric measurements. Classically-induced optomechanical correlation have been used by Marino
et al. [62] to observe a classical ponderomotive squeezing effects while some other works have
presented equally significant results related to back-action evasion and quantum-noise cancel-
lation measurements [63–65]. Finally, very recently Purdy et al. [66] succeeded in providing a
first direct evidence of a quantum radiation-pressure effect using a membrane-in-the-middle.
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Radiation pressure effects

In our experiment, thermal noise completely dominates over noises of fundamental nature,
notably the radiation pressure noise we want to observe. A possible way to suppress thermal
effects would be to perform the experiment at low temperatures. According to equation (1.77)
this would indeed lead to a more favourable signal-to-noise ratio. However, a major experimen-
tal drawback is the fact that at low temperature the silica resonator loses its good mechanical
behaviour: its quality factor drastically decays down to factors of the orders of 1000 [67], com-
pared to values in the 106 range at ambient temperature. Consequently, the problems expected
at low temperature led us to find alternative ways to observe radiation pressure effects at
ambient temperature.

In this chapter we will describe how a classical simulation of a quantum intensity noise has
been used in order to obtain a favourable signal-to-noise ratio and detect radiation pressure
effects at ambient temperature. A non-resonant EO has been used in order to classically
modulate the pump beam and to induce a mirror displacement more important than the thermal
motion. Under these conditions, classical optomechanical correlations have been observed by
monitoring, at the same time, the intensity of the pump beam and the phase of the probe beam.
A second experiment will also be described, where the same classical intensity modulation was
again applied but now at a level smaller than the thermal noise. In this case, an averaging
technique used to extract pump-probe correlations has been demonstrated.

We present in the following the experimental details concerning in particular the addition
of the classical pump noise, and we present the results obtained in the two regimes of huge
and weak radiation pressure effects. We then briefly describe the limitations and conditions in
order to observe quantum radiation pressure effects, defining the strategy to observe quantum
correlations at room temperature. Finally, we present another experiment, based on the same
classical pump noise, where a signal amplification is observed due to radiation-pressure effects
in a detuned cavity.

2.1 Optomechanical classical correlations

The double injection setup was conceived and installed in order to experimentally observe the
quantum back-action effect in interferometric measurements. The use of a classical intensity
modulation to excite the mirror on a higher level than thermal noise is a necessary, intermediate
step towards quantum correlations, as it allows us to test the capabilities of the double injection
scheme and to better understand the experimental imperfections limiting its performance such
as optical or electrical interferences. The main elements of the double injection have already
been discussed in the previous chapter. The only adjustment to the existing experimental setup
is the implementation of an electro-optic (EO) modulator on the pump beam. A careful study
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was also needed in order to produce a noise signal which, in turn, would drive the EO modulator
and create an intensity modulation exhibiting the same statistical properties as the quantum
intensity noise. Both of these aspects will be presented below.

The basic principle of this experiment is to apply such a classical intensity modulation
to the pump beam so that the intracavity pump beam drives the movable mirror. Since the
measurement cavity presents a very high-finesse, an incident power of 1 mW will correspond
to an intracavity power of a few hundreds of watts, making radiation-pressure effects visible.
Afterwards, a much weaker probe beam will also be coupled to the cavity in order to measure
the induced mirror displacements. The experimental demonstration of these effects needs a
near flawless mode matching between both beams and the cavity, and a good overlap between
the movable mirror mechanical modes and the cavity optical modes. Both of these criteria are
expected to be met. It is strictly the same experiment we want to perform to observe quantum
fluctuations, the only difference being the use hereafter of a classical intensity noise produced
by the non-resonant EO modulator. The same technical problems exist in both experiments
and it is a very crucial intermediate stage towards quantum correlations.

2.1.1 Implementing the modulator

�

�

Figure 2.1: The non-resonant electro-optic modula-
tor emits an electromagnetic parasitic signal at the
very same frequency which is captured by the ho-
modyne detection. By applying a modulation Ω at
its minimum transmission an intensity modulation
at Ω/2 is generated, thus decoupling the signal from
the parasite.

The complete experimental setup used
to perform this experiment is depicted
in figure 2.2, where the only addition
is a non-resonant electro-optic modula-
tor (GSÄNGER LM 202) used to mod-
ulate the phase of the pump beam.
It is inserted between the polarizing
beam splitter (PBS2) which separates
the initial beam into two perpendic-
ular polarizations, thus creating the
cross-polarized probe and pump beams,
and the resonant electro-optic modula-
tor (REO) used for the Pound-Drever
error signal. The axes of the modu-
lator are oriented at 45◦ compared to
the pump beam polarization, and at
its output there is an integrated PBS
transforming the polarization modula-
tion into an intensity modulation while
at the same time it ensures that the
REO input polarization is the proper
one. The non-resonant electro-optic
modulator creates a polarization modulation which is transformed to an intensity modulation
via a PBS placed at the output of the electro-optic. The non-resonant electro-optic modulators
are, in principle, driven using a high-tension modulation. In our case, a low-noise, high-speed
TEGAM amplifier is used, producing a ±200 V output voltage with a 4 MHz bandwidth. This
way, the impedance matching at 50 Ω, in order to maximize the power transfer and avoid
electrical interference, is impossible. Hence, an electromagnetic radiation is emitted which may
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be fully captured by the photodiodes of the homodyne detection, making the physical signal
unobservable. In order to eliminate this problem the non-linear transfer function of the EO is
exploited.

As a matter of fact, its transfer function has a sinusoidal form presenting maxima and min-
ima. Its working point (bias) will define either a linear (maximum slope) or a non linear (zero
slope) response. When a working point is set to a maxima/minima the transmitted intensity
is proportional to the square of the incident voltage applied to the electro-optic modulator.
The double frequency of the input modulation is thus generated. When desired to modulate
the beam intensity at a frequency Ω, the bias is set to a maxima/minima point and a tension
modulation at Ω/2 is applied. Consequently, the light intensity is modulated at Ω whereas the
electromagnetic parasites are emitted at Ω/2 (figure 2.1). The parasites are, thus, decoupled
from the signal to be measured. We note, however, that this method will create a supplemen-
tary difficulty when measuring the mechanical response of the mobile mirror using a network
analyzer. The latter is not capable of modulating at a frequency Ω/2 and monitoring at fre-
quency Ω. We will confront with this problem later on. Once the electromagnetic parasites are
eliminated the optical parasites will have to be dealt with as well.

2.1.2 Optical isolation

The observation of the optomechanical correlations consists in monitoring the intensity of a
pump beam and the phase shift of a probe beam, both injected into the moving mirror cavity.
This requires a double injection system with a perfect optical isolation. If part of the pump
beam contaminates the probe beam, or inversely, it creates fake correlations. To check for the
optical isolation, a careful experimental protocol is applied. The laser frequency is swept around
optical resonance of the moving mirror cavity. The Pound-Drever phase modulation on the
REO is switched on in order to visualize on a digital oscilloscope the PDH error signal. A first
adjustment can be made by monitoring the effect of the probe beam to the error signal generated
by the pump beam. If the optical isolation is nearly perfect, the pump beam is not contaminated
by the probe beam and, thus, the photodiode Ph1 only detects the pump beam; the error signal
then stays identical with or without probe beam. On the other hand, if an important optical
contamination is present, the beating between the two will be detected by the photodiode, it
will be demodulated and it will be finally be visible on the error signal. By carefully adjusting
the half-wave and quarter-wave plates we align the pump beam incident polarization to one of
the cavity axes. In practice, this way we maximize the transmitted Airy peak -the birefringence
effect is small but evident- and at the same time we ensure that the reflected beam polarization
matches the one of the incident beam; it is therefore reflected towards the photodiode Ph1
without contaminating the probe beam. A second, equally delicate, adjustment consists in
modulating the intensity of the pump beam at a given frequency Ω/2π (typically 1 MHz). The
A+B output of the homodyne detection is then monitored with a spectrum analyzer. Again,
using both plates we minimize the corresponding modulation peak in order to suppress the
residual optical parasite. A rejection up to -35 dB has been obtained. This adjustment is
realized when the laser frequency is out of cavity resonance. We have observed that when light
is resonant with the cavity the polarization of the reflected beams slightly changes, leading
to an optical contamination. The second stage of the optical isolation adjustment consists in
locking the laser frequency to the movable mirror cavity and monitoring with the spectrum
analyzer the beating between both beams either at the output of the homodyne detection or
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Figure 2.2: The experimental setup used for the experimental observation of radiation pressure
effects using a classical intensity modulation to mimic quantum noise. It depicts all major
components of the double injection: the laser source, the mode cleaner, the Pound-Drever-Hall
technique, the moving mirror cavity and the homodyne detection. In addition, a non-resonant
electro-optic modulator (EOM) has been implemented in order to modulate the intensity of
the probe beam. A classical modulation excites the mirror via the pump beam and the probe
beam measures the phase shift induced by the resulting mirror displacement.

on the photodiode Ph1. The two plates are then carefully adjusted. We shall note that this
procedure is very delicate: the plates must be rotated by some fractions of a degree. To this
purpose, both plates are mounted on a high-precision rotation mount.

2.1.3 Construction of a classical intensity noise

The remaining step in order to perform the optomechanical classical correlations experiment is
to define the waveform which will drive the non-resonant, electro-optic modulator and properly
mimic the statistical properties of quantum intensity noise. To this purpose, we have pro-
grammed an arbitrary signal generator. We have seen, in the previous chapter that quantum
intensity fluctuations do not present any frequency dependence; it is a white Gaussian noise.
However, it is not necessary to generate a broadband signal to simulate such a noise. Indeed,
through the detection process, any noise is filtered by the bandpass filter of the measurement
apparatus. In our case, the span νspan and the central frequency of the spectrum analyzer, de-
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fine the frequency window of interest. The central frequency is set by the resonance frequency
ΩM/2π of the movable mirror, i.e. 1 MHz, and the frequency span is set to be a few linewidths,
i.e. 1 kHz. In order to mimic, in the best possible way, the statistical properties of a quantum
noise with a classical noise, it suffices to generate a signal with a carrier frequency ΩM/2π of
the form

u(t) = A(t) cos
(
ΩM t+ φ(t)

)
, (2.1)

where the amplitude, A(t), and phase, φ(t), are independently and randomly modulated with a
maximum modulation frequency slightly larger than νspan. The amplitude A(t) should present
Gaussian statistics while the phase φ(t) is uniformly distributed. Equivalently, u(t) may be
written:

u(t) = V1 cos
(
Ωt
)
+ V2 sin

(
Ωt
)
, (2.2)

where V1 and V2 are the slowly-varying noise quadratures. Equations (2.1) and (2.2) offer two
natural ways for generating the noise u(t): either by using a synthesizer generating a sine wave
whose amplitude and phase are modulated with two random signals, or by summing two phase-
locked sine waves at 90◦, whose amplitudes are both modulated with two random signals.
In both cases, one has to precalculate and play two random signals altogether synchronized
with each other and with the carrier at ΩM to obtain a pseudo-random noise u(t) that can be
repeated reproducibly. It is convenient to use the phase-space representation defined by the
signal quadratures V1 and V2 as a visual criterion for the produced optomechanical correlations
between the pump and the probe beam. Since the generated quadratures present Gaussian
statistics the corresponding phase-space representation will also be a centered Gaussian distri-
bution. A good quality noise is a function u(t) that achieves a random walk with a reasonably
good mapping of the phase-space.

2.1.3.1 Hardware

The difficulty in generating such an intensity noise lies in the fact that both the phase and the
amplitude of the signal must be controlled simultaneously. Or, equivalently, both independent
envelopes have to modulate two carriers at exactly the same frequency, Ω/2π, and they have to
be strictly in quadrature. To achieve this, a synthetic work combining the available hardware
and the most convenient programming language was done. Most arbitrary function generators
offer the possibility of uploading a point array, a function or a modulation pattern. The two
most important parameters of the candidate hardware we are interested in are the scan speed
of the array, determining the spectral range of the noise in the Fourier space, the width of
the sidebands and the array memory depth determining the filling level of phase-space. We
have tested various configurations, including two identical Stanford DS345 arbitrary function
generators and a Marconi generator. Both solutions presented serious drawbacks: the Stanford
generators provided a poor memory while the phase modulation provided by the Marconi
generator added extra phase noise to the generated signal, thus making it not reproducible. At
the same time, neither solution provided a centered random walk. We therefore concluded in
the use of two dual-channel Tektronix AFG3102 generators.

It is the same generator we are using to generate the Pound-Drever-Hall error signal (see
section 1.6.4). The advantage of these generators is that they provide two independent signals
having exactly the same carrier frequency, with an adjustable relative phase between them.
Furthermore, they can work in an arbitrary modulation mode where the generated signal am-
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Figure 2.3: The cabling scheme of the two arbitrary waveform generators in order to generate
a random walk mapping all four quadrants of the phase-space {V1, V2}.

plitude is modulated by a user-defined function. In fact, this generator suits particularly well
our purposes, i.e. the generation of a classical intensity noise: both quadratures V1 and V2 can
directly be uploaded in the internal memory as two 4000-long point arrays with 8-bit resolution.
Each quadrature will modulate the amplitude of the sine wave generated by each channel whose
phase is strictly locked at π/2 so that the two output signals are in quadrature. In the follow-
ing, the two outputs of the generator are added using a standard Mini-Circuits power splitter.
Nevertheless, this solution came with some drawbacks, the most important one being the fact
that the generator only accepts amplitude modulation values comprised between 0% and 100%
where V1, V2 > 0. Therefore, the slowly-varying envelopes V1 and V2 of the generated signal
will present only positive values, leading to random walk confined only in the positive quadrant
of the phase-space. To solve this problem, we generated both envelopes with non-null mean
value, great compared to the variance of the envelope. A second, identical, arbitrary generator
was used to generate two supplementary signals at the same frequency, Ω, with an amplitude
equal to the mean value of the generated envelopes, 〈V1〉 and〈V2〉. With a Mini-Circuit splitter
we subtract the corresponding signals and we obtain a signal of the form:

u(t) =
(
V1(t)− 〈V1〉

)
cos(Ωt) +

(
V2(t)− 〈V2〉

)
sin(Ωt), (2.3)

which is a signal covering all four quadrants of the phase-space. In other words, the random
walk is first biased and, then, the splitter subtracts the mean values and re-centers it before
being injected to the intensity modulator. Figure 2.3 depicts the corresponding connections of
the two generators. Furthermore, extra attention was paid in the definition of the relative phase
between both carrier signals since it randomly changes every time the generator configuration
is altered. The relative phase has to be manually aligned to each generator ensuring that both
outputs of each generator are in quadrature. Finally, another imperfection of this scheme is the
limited size of the array of points accepted by the generator, leading to a mediocre Gaussian
statistics as we will see later (see figure 2.5).

2.1.3.2 Software

We decided to compute the classical noise, offering total control over the statistical properties of
the resulting pseudo-random signal. Given its simplicity to establish a communication between
the computer and the Tektronix AFG3102 generator, the programming language LabVIEW was
chosen to compute and upload the intensity quadratures. The first step is to write an algorithm
that generates a filtered array of normally-distributed random numbers, whose dimension and
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Figure 2.4: Left: LabView realization of the Box-Muller transformation (equation (2.4). Right:
the double Lorentzian filter applied to the random number distribution.

filtering properties are user-defined. The second step is to upload this array to the internal
memory of the generator. Since LabVIEW cannot generate by default a random number array
with a normal distribution, we applied the pseudo-random number sampling method known as
the Box-Muller method [68]. This method provides a Gaussian distribution by applying to the
uniformly-distributed random number array in ]0, 1] the following:

(υ1, υ2) 7→ 〈V 〉+ σ cos(2πυ1)
√
−2 ln(υ2). (2.4)

The result is a Gaussian distribution with a mean value 〈V 〉 and a variance σ. The second
stage of the algorithm involves the filtering of the generated noise in order to obtain an apparent
random walk in the phase-space. For this, Lorentzian-type filtering was chosen, similar to the
effect of the mirrors response at mechanical resonance on the Langevin force. The corresponding
operation is then a convolution between the random-number array and the temporal response
of the filter, which is a simple decreasing exponential: n 7→ e−nlna, where a is the width of the
filter. The latter convolution operation can be simply written under the form of the following
recurrence relation:

V [n+ 1] = aV [n] + (1− a)Vrng[n+ 1], (2.5)

where Vrng is the random-array generated by the transformation (2.4). In fact, in order to
eliminate all high-frequency components of the random walk, and thus make is more visible in
the phase-space, the above filter is applied twice. Figure 2.4 depicts the LabVIEW realization
of the pseudo-algorithms (2.4) and (2.5). The third, and final, stage of the software consists of a
communication routine, inspired by the National Instruments Driver, used to upload the filtered,
random arrays into the memory of the generator. We should note that the generated signal is
indexed by a dimensionless integer. The time axis is defined afterwards by the generator itself,
which plays the sequence at a given sampling rate. The modulation depth and the sampling
rate are set manually.
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Figure 2.5: An example of the LabVIEW routines output shown in figure 2.4. The two upper
graphs depict the two generated quadratures. The corresponding random-walk in the phase-
space is depicted in the down-left graph, while the histogram of one quadrature is shown in the
down-right corner. A Gaussian fit has been applied to the latter.

Finally figure 2.5 depicts an example of two generated quadratures V1 and V2 containing
4000 points, the corresponding random walk in phase-space {V1, V2} and an histogram of one
quadrature. We finally note the poor Gaussian statistics, due to the generator-limited number
of sample points (4000) which is clearly visible in the Gaussian fit of the histogram.

At the beginning of this chapter, we have discussed the necessity of using the non-linear
transfer function of the non-resonant electro-optic modulator in order to decouple the signal-
to-be-measured from the electromagnetic parasite captured by the homodyne detection. The
generated signal will, therefore, undergo another transformation induced by the working point
of the electro-optic modulator, set at its minimum transmission. The resonance of the EO
is then quadratic and, hence, the signal which will eventually drive the modulator will be

proportional to the squared signal provided by the generator: ∝ A2(t)
[
cos(2Ωt + 2φ(t))

]
. In

other words, it will undergo the following transformation
(
A′(t), φ′(t)) 7→ (A2(t), 2φ(t)

)
and,

therefore, the generated signal oscillating at half-frequency Ω/2 (see equation 2.1) will become:

u′(t) = u1(t) cos(Ωt) + u2(t) sin(Ωt), (2.6)

where the quadratures are now given by: u1(t) =
V 2
1 (t)−V 2

2 (t)
2 and u2(t) = V1V2. We can

immediately note that these quadratures are no longer independent from each other. Further-
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(a) (b)

Figure 2.6: (a) A simplified experimental setup of the double injection, conceived to demonstrate
correlations between the intensity of the pump beam and the phase of the much weaker probe.
(b) The synchronization and triggering scheme among the spectrum analyzers and the arbitrary
generators: the 10-MHz reference of spectrum analyzer 1 is used to synchronize the three other
apparatus, while the generator 1 triggers the acquisition by the two analyzers.

more, by calculating the Jacobian associated to this transformation, one can easily find that
the probability law governing these quadratures is:

P(u1,u2) =
1

4πσ2
√
u21 + u22

e−
√

u2
1
+u2

2

σ2 , (2.7)

which is not a Gaussian distribution. Instead, it represents a distribution with an accumulation
of points close to the center occurs We then conclude that even though we have successfully
constructed a classical noise mimicking the statistical properties of quantum noise very well,
these properties are partly lost due to the half-frequency drive of the electro-optic modula-
tor. Nevertheless, we have decided to use this “non-Gaussian” classical noise to perform the
experiment.

2.1.4 Experimental results

We will now present the experimental results obtained [69]. Optomechanical correlations have
been demonstrated for various configurations: at and out of mechanical resonance and for
different levels of the intensity modulation. In the following, we will present the results obtained
out of mechanical resonance, for an amplitude of modulation higher or lower than the thermal
noise. The measurement cavity used to perform this experiment was composed by a plano-
convex movable mirror (ref. 3022/12) and a cylindrical coupling mirror (ref. 07125/1). Its
fundamental vibrational mode is at ΩM/1/2π = 1.1 MHz, with a quality factor Q=500 000, an
effective mass Meff = 500 mg and an optical finesse F = 330 000.
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2.1.4.1 Experimental protocol

The experiment consists in establishing optomechanical correlations between the measured
intensity fluctuations of the pump beam δppout = δppin (for a lossless cavity) and the phase
fluctuations δqsout of the reflected probe beam. Equivalently, we are seeking optomechanical
correlations between the intensity fluctuations of the pump beam and the position fluctuations
of the movable mirror (see section 1.5.2). The experimental setup is drawn in figure 2.2. The
non-resonant, electro-optic modulator is driven by the Gaussian noise generator described in the
previous section and modulates the pump beam through a high-speed, high-voltage, low-noise
TEGAM 2340 amplifier, driven by custom-made pre-amplifiers designed to change the bias
voltage of the signal, and is set in such a way so that the modulator transmission is minimal.
The output of the homodyne detection and the high-frequency (HF) output of the photodiode
Ph1 are both monitored by two identical spectrum analyzers Agilent MXA 9020. Analyzer 1
and 2 then measure the reflected phase and intensity fluctuations, respectively. Both analyzers
are set in I/Q mode. They demodulate the input signal in real time and, thus, give immediate
access to the desired quadratures. The principle of the I/Q mode of the MXA spectrum analyzer
is similar to the demodulation procedure depicted in figure 1.21. Two parameters are defined:
the central frequency Ω/2π at which the signal is demodulated and a spectral range (span)
∆Ω, which defines the frequency window around the central frequency. The signal measured
by the analyzer is then filtered around the central frequency on the defined spectral range.
Afterwards, it is mixed with a local oscillator at the same frequency, generated by the analyzer,
and filtered at low frequency in order to suppress the generated harmonics. A sweep time can
also be defined which is related to the defined spectral resolution νRBW of the analyzer. It is
imperative for the acquisition of the two read-out signals to start simultaneously as they are
compared point by point. For this purpose, both spectrum analyzers are triggered by one of the
arbitrary generators via an external input of the analyzers. Furthermore, it is also necessary
that the demodulation process of the two analyzers is realized at exactly the same frequency,
which should of course coincide with the frequency delivered by the two generators. Three of the
apparatuses are synchronized by the same 10-MHz reference frequency provided by analyzer
1. The corresponding configuration is drawn in figure 2.6(b). The first step is to execute
the LabVIEW program in order to generate the intensity noise and upload the corresponding
random arrays in both generators. We then manually define the carrier frequency Ωref of the
signals delivered by the generators. The sweep speed of the arrays is also manually set, defining
the spectral range of the intensity modulation. This range is then measured by the spectrum
analyzer; the frequency span of the I/Q demodulation of both analyzers is set to match the
spectral width of the pseudo-random noise. If the analyzer integrates a signal larger than
the intensity noise spectral range then we will also measure the thermal motion of the mirror
resulting in a degradation of the measured pump-probe correlations. If the span is smaller, we
miss a part of the useful signal and this results in a loss of resolution and a longer acquisition
time. Finally, the laser frequency is locked on the optical resonance of the measurement cavity
and the sequence of acquisitions is started. Both spectrum analyzers provide the pairs of
quadratures under the form of point-files, which can be processed by a computer. We thus
obtain the temporal evolution of the pump beam intensity noise and the probe beam phase
fluctuations. We will finally draw the corresponding trajectories into phase-space and also
compute the correlation coefficient.
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Figure 2.7: Optomechanical correlations obtained out of mechanical resonance. Right: Clas-
sical intensity noise depicted in phase-space as measured by photodiode Ph1. Center: Mirror
motion measured by the homodyne detection. We notice an arbitrary rotation with respect to
the intensity noise caused by the detection chain. A signal-to-noise ratio Srad

x /STx = 6000 is
obtained. Left: Mirror motion, phase-shifted by an angle θ = 74.6o.

2.1.4.2 Out of mechanical resonance

The experimental results presented here were obtained by applying the classical intensity noise
at frequency ΩM/2π = 1123 kHz, 1 kHz away from the mechanical fundamental resonance of
the mirror. The sweep speed was set to 200 ms corresponding to a measured spectral range
of the intensity noise of 400 Hz. Therefore, the I/Q mode of the analyzers was also set at a
frequency ΩM/2π and at a span frequency νspan = 400 Hz. The pump beam was set at a power
of 500 µW, whereas the probe beam at 150 µW. Let us note that even though, in this case, the
probe and pump powers are of the same order of magnitude, the probe beam radiation-pressure
fluctuations are negligible compared to the applied, classical modulation. Figure 2.7 depicts
the correlations obtained for the above parameters. On the left, the phase-space trajectory
of the intensity noise is drawn, as measured by the photodiode Ph1, while in the middle the
corresponding motion of the mirror is depicted as measured by the homodyne detection. This
configuration corresponds to a signal to noise ratio Srad

x /STx = 6000. The correlations between
the intensity and the motion of the mirror are evident in this figure; the phase-space trajectories
are almost identical. We also notice that the trajectories are following a pseudo-random walk,
exploring all four quadrants of the phase-space. Except for the Gaussian statistics, the classical
intensity noise is then acceptable for a proof-of-principle. Nevertheless, the only difference is a
global rotation between the two trajectories which is attributed to the detection chain which
induces a supplementary dephasing to the quadratures measurement.

In order to quantify these optomechanical correlations we will define the correlation coeffi-
cient between the two observables, the reflected phase δqmout and the reflected intensity δqsin:

Cs−m =
〈δpsinδqmout〉
∆psin∆q

m
out

, (2.8)

where 〈...〉 represents the temporal mean value and ∆X the variance of variable X. Cs−m is then
a dimensionless quantity whose value lies in the [−1, 1] range. Cs−m is equal to 1 or -1 when
δpsin and δqmout and perfectly correlated and tends to 0 if δpsin and δqmout are independent. It can
also be expressed in terms of the measured pump intensity δI(t) and the mirror displacement
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Figure 2.8: Optomechanical correlations obtained in mechanical resonance. (a) The classical
intensity noise depicted in the phase-space as measured by photodiode Ph1. (b) The simu-
lated mirror response and (c) the mirror response as measured by the homodyne detection. A
correlation coefficient |CδI−δx|2 = 0.97 between trajectories depicted in b and c is found.

δx(t):

CδI−δx =
〈δI(t)δx(t)〉
∆I(t)∆x(t)

= lim
T→∞

1
T

∫ T
0
dtδI(t)δx(t)

(
1
T

∫ T
0
dtδI2(t)

) 1
2
(

1
T

∫ T
0
dtδx2(t)

) 1
2

, (2.9)

where we have also written the correlation coefficient as the mean value averaged over the
measurement time T and 〈...〉 indicates the expected value of the bracketed function as defined
by: 〈X〉 = lim

T→∞

1
2T

∫ T
−T

X(t) dt. In practice, in order to take advantage of the measured

quadratures directly provided by the spectrum analyzer we chose to represent the two measured
noises by two complex variables I = I1 + iI2 and X = X1 + iX2. These complex variables
directly describe the phase-space trajectory. The correlation function (2.9) then becomes:

CδI−δx =
〈X(t)I∗(t)〉√
|X(t)|2|I(t)|2

= lim
T→∞

1
T

∫ T
0
dtX(t)I∗(t)

(
1
T

∫ T
0
dt|I(t)|2(t)

) 1
2
(

1
T

∫ T
0
dt|X(t)|2(t)

) 1
2

. (2.10)

This coefficient is complex: CδI−δx = |CδI−δx|eiθ. The modulus determines the level of the
correlations while the angle gives the relative position between the two variables. For perfect
correlations, its modulus should be equal to 1. For the trajectories of figure 2.7 we find a
correlation amplitude |CδI−δx|2 = 0.98 and an angle θ = 74, 6◦ (see the right part of figure 2.7).

2.1.4.3 At mechanical resonance

We have also tried to demonstrate optomechanical correlations by applying the classical inten-
sity noise in a frequency band around the fundamental resonance of the plano-convex, movable
mirror. The acquisition protocol is strictly the same as the one described in the previous section.
Figure 2.8 depicts the phase-space trajectories of the applied intensity noise as measured by
photodiode Ph1 (subfigure a) and the resulted mirror displacement provided by the homodyne
detection (subfigure b). By comparing figures a and c we note that there is a global resemblance
between the two trajectories. Nevertheless, some details of the induced displacement are lost.
This signal loss is emphasized by calculating the correlation function using equation (2.10):
|CδI−δx|2 = 0.4. The reason for this “signal loss” is the fact that the mirror mechanical response
acts as a low-pass filter to the intensity fluctuations [24], thus filtering the high-frequency com-
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Figure 2.9: Optomechanical intensity (left)-phase (right) correlations for a signal-to-noise ratio
Srad
x /STx = 0.1. The mirror displacement is mainly dominated by thermal noise.

ponents of the applied intensity noise. In order to reveal the real optomechanical correlations
it suffices to write the temporal evolution X(t) of the mirror displacement quadrature X(t) as
the convolution product:

X(t) = 2~k

+∞∫

0

χ(τ)I(t− τ) dτ (2.11)

and, in the following, to calculate the correlation function whose denominator can be written
as:

〈X(t+ τ)I∗(τ)〉 = 2~k

+∞∫

0

χ(τ ′)〈I(t+ τ − τ ′)I∗(t)〉 dτ, (2.12)

where χ(t) denotes the mirror susceptibility given by [24]: χ(t) = 1/(2MΩM )e−Γt/2. By thus
simulating the mirror response X(t), by performing the convolution between the mechanical
susceptibility χ(t) and the intensity noise measured by photodiode Ph1, we retrace in phase-
space the trajectory corresponding to the filtered intensity noise (see figure 2.8b). We observe
that the resulted, simulated response is almost identical to the mirror displacement measured
by the homodyne detection (figure 2.8c). Finally we can calculate the corrected correlation
function which gives |CδI−δx|2 = 0.97.

Optomechanical correlations with a weak intensity noise

Finally, in figure 2.9 the optomechanical correlations for signal-to-noise ratio smaller than
1 (Srad

x /STx = 0.1) are depicted. In this case, the correlation coefficient is found to be
CδI−δx ≃ 0.1. The mirror displacement is dominated by thermal noise and the big lobe on
the top-left corner is barely distinguishable. In the next section, we will describe an averaging
method in order to suppress thermal contribution to the mirror displacement and extract op-
tomechanical correlations between the intensity fluctuations and the radiation-pressure-induced
displacements even at room temperature when Srad

x /STx is much lower than unity.

2.1.5 Optomechanical correlations in the thermal regime: averaging

We have demonstrated that the double injection scheme is suitable for the detection of radiation
pressure effects. However, the measured effects were induced by a large-amplitude, classical
intensity modulation leading to a signal-to-noise ratio Sradx /STx = 6000. As seen in figure
2.9, it is evident that the mechanical and optical characteristics of our system do not permit
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to directly observe quantum intensity fluctuations. The read-out of the homodyne detection
contains indistinguishably both the thermal motion of the mirror and the radiation pressure
induced motion. However, the thermal contribution completely dominates the quantum effect
of radiation pressure. In this section we describe the averaging method we have implemented
to extract radiation pressure effects in the thermal regime where Sradx ≪ STx .

The idea relies on the incoherence of thermal noise: thermal noise can be suppressed by
sufficient averaging. This averaging can be realized by data-treatment. In particular, when
the correlation experiment is performed two quantities are measured: the probe beam reflected
phase, δqsout, and the pump output intensity, δImout. Equation (1.56) gives the expression of the
output reflected phase. By neglecting cavity filtering effects (Ωcav ≫ Ω) and losses (P ≃ 0), we
obtain:

δqmout = δqmin +
16F

√
I in

λ
(δxT + δxrad). (2.13)

The radiation-pressure induced displacement, δxrad, given by equation 1.68, is proportional to
the incident intensity fluctuations driving the mirror δpsin, and, in our case, is only induced by
the pump beam:

δxrad[Ω] =
8F
√
I in

λ
~χ[Ω]δpsin[Ω]. (2.14)

and, since, δpsin = δpsout the correlation function Cm−s, given by equation (2.9), can be given by
calculating the following time-averaged term:

〈δqmoutδpsout〉 = 〈δqminδpsout〉︸ ︷︷ ︸
→0

+
16F

√
I in

λ
〈δxT δpsout〉︸ ︷︷ ︸

→0

+
128F2I in

λ
~χ[Ω]〈(δpsout)2〉, (2.15)

where 〈...〉 symbolizes a temporal averaging. Since thermal noise δxT and the incident phase
noise δqmin have a null mean value and are completely uncorrelated to the reflected intensity
fluctuations δpsout, the first two terms of the latter equation also present a null mean value
and, therefore, their contribution are then negligible once averaged over a sufficiently long
time. However, the equation also contains a third, quadratic term presenting a strictly non-
zero mean value, containing the information on the radiation pressure-induced displacement.
Therefore, in principle, this method can permit the extraction of real quantum intensity noise
even in the thermal regime. Let us first present a simple experimental demonstration of this
technique.

2.1.5.1 Experimental demonstration

The experimental protocol followed is strictly the same as the one described in sections 2.1.4.1
and 2.1.4.2, the only difference being the amplitude of the classical intensity noise induced to
the pump beam via the EOM. The intensity modulation depth has been set in order for the
resulted mirror displacement to be lower than the thermal noise contribution: the signal-to-
noise ratio is now equal to 3×10−2. Both spectrum analyzers are set in I/Q mode, and provide
the demodulated quadratures of the signals. The center frequency is set at Ω/2π=1123 kHz,
with a spectral range νspan = 400 Hz. The arbitrary point array modulating the intensity of
the pump beam is played with a periodicity of 200 ms. 500 different cycles of the arbitrary
signal have been repeated. At every cycle, the phase of the probe beam and the intensity of the
pump beam were acquired by the spectrum analyzers and uploaded to the computer. Figure
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Figure 2.10: Extraction of the optomechanical correlations in the thermal regime. The classical
intensity noise is repeated 500 times (in blue) and the phase of the reflected beam is acquired.
On each individual run, thermal noise completely covers the radiation-pressure induced dis-
placement (runs 1, 2, 3). However, on the averaged curve deduced from these 500 runs the
imprint of the classical intensity noise is revealed (red).

2.11(c) depicts the results of this experiment. The intensity noise of the pump beam is drawn
in blue, on the top-left corner. We have also included in the figure three different measurements
of the phase quadrature δqmout. While the intensity noise remains strictly constant at each cycle,
we notice that this is not the case for the corresponding mirror displacement. Indeed, as the
mirror motion is dominated by thermal noise, at each cycle the measured signal is different; an
expected characteristic of the mirror Brownian motion (2.11(c) runs 1, 2 and 3). However, if
the data of these 500 runs are averaged, radiation pressure-induced displacements are revealed
as depicted in figure 2.11(c). A straightforward way to deduce the signal-to-noise ratio is to
compare the dispersions of the averaged and the non-averaged displacement measurements,
which in this case is found to be Sradx /STx = 2.9× 10−2.

2.1.6 Averaging restrictions

While the method applied to experimentally demonstrate the classical optomechanical corre-
lations has proven to be very practical and illustrative, it can not be used for real quantum
optomechanical correlations. Evidently, quantum intensity fluctuations are a non-repetitive
white noise that can not be drawn in the phase-space in order to acquire some useful infor-
mation on the intensity-phase correlations. Instead, a purely statistical study of the resulted
correlation function must be done in order to acquire a desired precision to a realistically small
amount of averaging time. Of course, a good precision -even if it is combined in good agreement
with the theoretical predictions- does not suffice to rigorously prove the existence of the quan-
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tum measurement back-action effect: it would be a merely indirect observations of these effects.
However, it is known that the spectral density of intensity fluctuations scale linearly with the
incident power (SI ∼ Iin, see equation (1.23)) while it can be easily shown that classical noises,
such as thermal noise, scale with the square of the incident power. This fundamental difference
between quantum and classical noises must be experimentally proven in order to obtain a solid
demonstration of the quantum intensity fluctuations of a coherent field. Indeed, as we will see in
the next section, the expected value of the correlation function scales linearly with the spectral
density of the incident intensity noise (E[Cs−m] ∝ Sin

p ). This linear dependence allows to prove
that the observed optomechanical correlations indeed reflect the existence of the measurement
quantum back-action.

In the following section, we will quantify the time evolution of the correlation function by
studying its statistical properties and we will also present an experimental demonstration using
the same classical intensity modulation used earlier.

2.1.6.1 Averaging time

In [70] the sufficient averaging time needed to demonstrate the radiation pressure effects was
quantitatively determined with the assumption that the mechanical response is flat within the
detection apparatus bandwidths. Here we propose to extend this approach by considering the
peaked nature of the mechanical response. Therefore, the mirror displacement can be written
as the convolution between its Lorentzian impulse response χ(t) and the force applied to the
mirror Fext = Fth(t) + Frad(t):

δx(t) = χ(t) ⋆ Fext(t)

=

∫ ∞

−∞

dτχ(t− τ)Fext(τ). (2.16)

The impulse response of the mirror is given by [43]:

χ(t) =
1

2MΩM
θ(t)e−ΓMt/2, (2.17)

where M , ΩM and ΓM are the effective mass, the resonance frequency and width of the me-
chanical resonance. For causality reasons, the Heaviside step-function θ(t) is also included.

Let us now repeat that when the optomechanical correlation experiment is performed we
have access to two observables: the reflected phase fluctuations of the probe beam δqmout and the
reflected intensity fluctuations of the pump beam δpsout. These observables are coupled to their
respective detection apparatus which can be described by their respective response functions
Hout
q and Hout

p [19], and can be written:

δp̃sout(t) = δpsout(t) ⋆ H
out
p (t) =

+∞∫

−∞

δpsout(τ)H
out
p (t− τ) dτ, (2.18)

δq̃mout(t) = δqmout(t) ⋆ H
out
q (t) =

+∞∫

−∞

δqmout(τ)H
out
q (t− τ) dτ. (2.19)
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The correlation function Cm−s, according to equation 2.15, can be calculated by1 :

Cm−s ∝ 〈δq̃moutδp̃sout〉T =
1

T

∫ T

0

β̃(t)δp̃sout(t) dt

︸ ︷︷ ︸
A=〈β̃δp̃sout〉T

+
1

T

∫ T

0

δx̃rad(t)δp̃
s
out(t) dt

︸ ︷︷ ︸
B=〈δx̃radδp̃sout〉T

, (2.20)

where, for simplicity reasons, we have introduced the measurement noise β̃(t):

β̃(t) =

[
δqinm(t) +

16F
√
I in

λ
δxT (t)

]
⋆ Hout

q (t). (2.21)

The above expression shows that the correlation function consists of two terms: a noise term
A = 〈β̃δp̃sout〉T corresponding to the measured probe phase fluctuations which are independent
from the radiation pressure driving force, and a signal term B = 〈δx̃radδp̃sout〉T , that we seek to
experimentally observe. To do so, the measurement time T needs to be such that the dispersion
on the signal term is small compared to the correlation expected value:

σ(〈δq̃moutδp̃sout〉T ) ≪ E[〈δq̃moutδp̃sout〉T ]. (2.22)

As already explained, the measurement shot noise δqsin and the thermal noise δxT are both white
noises, statistically independent from the signal intensity fluctuations δpsout; it is straightforward
to show that the mean value of the product δpsoutβ is null. Therefore, the mean value of the
signal term B can easily be shown equal to:

E[Cm−s] ∝ E[B] =
256F2

~I in
λ2T

∫ T

0

dt〈δp̃outs ⋆ χ(t)δp̃outs 〉 = 256F2
~I in

λ2
Sout
p

T

∫ T

0

dtχ(0), (2.23)

To determine the correlation dispersion, we start from its definition,

σ2(Cm−s(T )) = E[C2
m−s(T )]− E

2[Cm−s(T )], (2.24)

where, using equation (2.20), the second-order moment of the correlation function reads:

E[C2
m−s(T )] = E[A2] + E[B2], (2.25)

the cross term contribution in E[C2
m−s(T )] being zero-valued since featuring odd moments of

uncorrelated noises β and δpsout. The correlation variance is therefore the sum of two terms
E[A2] and σ2(B) arising from the random nature of both the noise and signal. Let us start by
calculating the term E[A2]. It writes:

A =
1

T

∫ T

0

dtδq̃min (t)δp̃
s
out(t) +

16F
√
Īin

λT

∫ T

0

dtHout
q (t) ⋆ χ(t) ⋆ FT (t)δp̃

s
out(t). (2.26)

Assuming the mechanical response to be sharp compared to the detection filter enables us to
approximate the latter using a Dirac delta function, Hout

q (t) ≃ δ(t). Hence, we have Hout
q (t) ⋆

1We have noted 〈X(t)〉T =
T∫

0

X(t) dt.
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χ(t) ≃ χ(t), the noise contribution to the correlation variance therefore being:

E[A2] =
1

T 2

∫∫

[0,T ]

dt dt′ 〈δq̃min (t)δq̃min (t′)〉〈δp̃sout(t)δp̃sout(t′)〉

+
256F2I in
λ2T 2

∫∫

[0,T ]

dt dt′ 〈χ(t) ⋆ FT (t)χ(t′) ⋆ FT (t′)〉〈δp̃sout(t)δp̃sout(t′)〉.
(2.27)

All noises δqmin ,δpsout, and FT being assumed to be gaussian white noises, and using the Wiener-
Khinchin theorem, the latter equation simplifies as:

E[A2] =
Sin
p S

out
p

T 2

∫∫

[0,T ]

dt dt′ K[Hout
q ](t, t′)K[Hout

p ](t, t′)

+
256F2I in
λ2T 2

STFS
out
p

T 2

∫∫

[0,T ]

dt dt′K[χ](t, t′)K[Hout
p ](t, t′),

(2.28)

where K is the bi-valuated function K : H 7→
∫ +∞

−∞
dτH(t− τ)H(t′− τ). For simplicity, we also

assume the acquisition of the quantum intensity fluctuations to be performed using a bandwidth
large compared to the mechanical damping rate (Hout

p (t) ≃ δ(t)), the latter equation becoming
therefore:

E[A2] = σ2(A) =
256F2I in

λ2
STFS

out
p

T 2

∫ T

0

dtK[χ](t, t). (2.29)

Equation (2.29) shows that the contribution of the first term in equation (2.28) vanishes: this
is due to the assumption that both Hout

q and Hout
p are Dirac-type: this results in an “instanta-

neous” convergence towards its (zeroed) expected value, which practically is much faster than
the quantities involving the mechanical response. Moreover, this term is experimentally small
as compared to the remaining one (Eq. 2.28), as the thermal noise is resolved with a resolution
exceeding 30 dB in our experiment. The second contribution to the correlation measurement
imprecision (equation (2.25)) arises from the random nature of the driving quantum radiation
pressure force:

Frad(t) =
8~F

√
Īin

λ
δpsin(t). (2.30)

Assuming the cavity losses to be zero, this term reads:

E(B2) =
(256F2

~I in
λT

)2
∫∫

[0,T ]

dt dt′〈χ(t) ⋆ δpsout(t)χ(t′) ⋆ δpsout(t′)δpsout(t)δpsout(t′)〉. (2.31)

The integral in the above equation requires determining the fourth moment of δpsout. This can
be done by means of Wick theorem [71], since δpsout has a Gaussian distribution. One can write:

〈
δpsout(τ1)δp

s
out(τ2)δp

s
out(τ3)δp

s
out(τ4)

〉
=
〈
δpsout(τ1)δp

s
out(τ2)

〉〈
δpsout(τ3)δp

s
out(τ4)

〉

+
〈
δpsout(τ1)δp

s
out(τ4)

〉〈
δpsout(τ2)δp

s
out(τ3)

〉

+
〈
δpsout(τ1)δp

s
out(τ3)

〉〈
δpsout(τ2)δp

s
out(τ4)

〉
.

(2.32)
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Using this expression together with equation (2.31), we obtain:

E(B2) =

(
256F2

~I in
λ

)2(Sout
p

T

)2 ∫∫

[0,T ]2

dt dt′

∫∫

[−∞,+∞]2

dτ dτ ′χ(t− τ)χ(t′ − τ ′)
(
δ(t− t′)δ(τ − τ ′) + δ(t− τ)δ(t′ − τ ′) + δ(t− τ ′)δ(τ − t′)

)
,

(2.33)

where we use that δpsout is a white noise, 〈δpsout(t)δpsout(t′)〉 = Sout
p δ(t−t′). The above expression

can be easily simplified such that one finally obtains:

E(B2) =

(
256F2

~I in
λ

)2(Sout
p

T

)2[
2

∫ T

0

dtK[χ](t, t) +

∫∫

[0,T ]2

dt dt′χ2(0)
]
. (2.34)

By identifying the squared mean value of the correlation function into the second term of the
latter equation one gets:

σ2(B) =

(
256F2

~I in
λ

)2(Sout
p

T

)2

2

∫ T

0

dt K[χ](t, t). (2.35)

The correlation variance finally becomes:

σ
(
Cs−m(T )

)
=

[
256F2

~I in
λ

Sout
p

T

√
2 +

16F
√
I in

λ

√
STFS

out
p

T

]
×
[∫ T

0

dtK[χ](t, t)

]1/2
. (2.36)

Finally, by comparing the calculated mean value to the dispersion of the correlation function
one gets the precision of the acquired correlations:

p =
σ
(
Cs−m

)

E[Cs−m]
= (1 +

√
STx
Srad
x

)×

[ ∫ T
0

dt K[χ](t, t)
]1/2

∫ T
0

dtχ(0)
. (2.37)

We assume that thermal effects are much greater than radiation-pressure effects, such that
STx ≫ Srad

x ; by calculating the associated integrals we get:

p ≈
√

1

ΓMT

STx
Srad
x

⇒ T =
1

p2
1

ΓM

STx
Srad
x

. (2.38)

This equation is relatively simple and verifies basic physical intuitions. First, the precision of
the measurement increases with the averaging time. This averaging time is furthermore directly
proportional to the signal-to-noise ratio between thermal and radiation-pressure noise. Also,
a given precision may be acquired more rapidly if the typical bandwidth of the measurement
-here defined by the width of the mechanical mode ΓM- is large. Consequently, when working
at mechanical resonance a good compromise between the signal-to-noise ratio and the width of
the mechanical resonance should be found in order to make the measurement experimentally
feasible. Ideally, for this purpose, it would be preferable to widen the mechanical mode without
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Figure 2.11: (a) Imprecision over the measurement of the optomechanical correlations as a
function of the measurement time by simulating the mechanical response to a radiation pressure
noise covered by thermal movement. (b) Averaging optomechanical correlations: simulated
expected value of the optomechanical correlations along three different acquisition time, T = 700
ms (a), T = 7 s (b), and T = 70 s (c). The dashed red lines correspond to the expected value of
the optomechanical correlations. The blue zones corresponds to the theoretical imprecision (c)
Time evolution of the optomechanical correlation function for multiple, 2.8-s long independent
acquisitions, by accumulating the product δφmoutδI

s
out normalized by the product ∆φmout∆I

s
out.

At long times (t→ +∞) each acquisition converges towards the value Cs−m ≃ 0.16.

degrading the signal-to-noise ratio. In fact, this ideal case is very well approximated in our
experiment. In particular, our mirrors present a thermal background which presents a better
mechanical response than the fundamental mechanical resonance. This is why, for our system
it is preferable to perform the optomechanical correlation measurement out of mechanical res-
onance where not only the signal-to-noise ratio is optimal but also much greater measurement
bandwidths can be acquired; some kilohertz instead of some hertz.

Before moving on to the out-of-resonance case we will verify the above statistical model by
means of a computer simulation. We have assumed a signal-to-noise ratio Srad

x /STx = 10−2

and a mechanical damping rate equal to ΓM/2π = 50 Hz. We have simulated the mechanical
response to a radiation pressure noise buried into the thermal noise over 100 independent, 1-s
long runs. These runs were used to establish the corresponding optomechanical correlations
whose statistical dispersion is depicted in 2.11(a). The dispersion histogram whose density
plot is drawn is very well fitted by equation (2.38) -the dashed grey line, also drawn to the
figure- verifying our statistical model. Let us note that our model assumes only synchronous
correlations; a null delay time τ = t1 − t2 = 0 for the calculation of the optomechanical
correlations is assumed, where ti is the corresponding time of each quadrature. However, it
can easily be generalized for any non-zero delay time and, in fact, it can be shown [72] that
the imprecision on the optomechanical correlations presents an exponential dependence on the
delay time τ :

p =

[
σ
(
Cs−m

)

E[Cs−m]

]2
=

(
1 +

P

T

)
STx
Srad
x

eΓMτ

ΓMT
. (2.39)

The latter equation shows that it takes longer to measure slower components of the optome-
chanical correlations. This is due to the fact that the expected value of the correlation function
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decreases exponentially with the delay time. This behaviour is illustrated in figure 2.11(b).
The upper figure is acquired within a measurement time equal to T = 220 1/ΓM , which is
insufficient in order to extract quantum optomechanical correlations from the thermal floor.
The middle figure corresponds to an intermediation acquisition time T = 2200ΓM , which
guarantees a measurement resolution better than 20 standard deviations for the synchronous
correlations, but does not enable resolving the correlations over more than a mechanical co-
herence. The third figure shows that acquiring the correlations for T = 22000 1/ΓM ensures a
good resolution over a few mechanical coherences. As radiation pressure response of optome-
chanical systems is improved by decreasing the mechanical damping rate, this eventually poses
an important problem. As an example, let us consider detecting the correlations with a reso-
lution bandwidth νRBW ≃ 1/τ ≤ ΓM/2π in experimental conditions where quantum radiation
pressure effects are four orders of magnitude smaller than thermal noise Srad

x = 5 × 10−4STx ,
while the linewidth of the mechanical resonator is equal to ΓrmM/2π = 1 Hz. In this case,
the extraction of optomechanical correlations would require an acquisition time greater than
T = 370 hours, a duration upon which stable experimental operation needs to be guaranteed.

Out-of-resonance case

The above general calculation of the needed averaging time can be easily simplified for the out-
of-resonance case the difference being that, given the flat mechanical response out of resonance,
the phase shift induced by the mechanical resonance to the measured fluctuations may be
ignored. Therefore, the characteristic time constants of the measurement are only defined by
the apparatus filters H(t) which, in this case, may be approximated by a Lorentzian-type filter:

H(t) = θ(t)
Γspan

2
e−Γspan/2. (2.40)

The steps of this calculation are identical to the one presented above. It is thoroughly described
here [70], giving a very similar result in the out-of resonance case. It can similarly be found
that the expected value of the correlation function is equal to:

E[Cs−m] ∝ E[B] =
16~F2

λMΩ2
M

ΓspanS
out
p . (2.41)

The imprecision on the correlation function is found to be equal to:

σ2(A) =
2S

outSβ
p

16T 2
(ΓspanT + e−ΓspanT − 1), (2.42)

while as the Langevin force dominates the mirror motion: σ(A) ≫ σ(B). We finally get for the
correlation function imprecision:

p =
σ
(
Cs−m

)

E[Cs−m]
=

√
STx
Srad
x

√
2(ΓspanT + e−ΓspanT − 1)1/2

ΓspanT
. (2.43)

By assuming an acquisition time much greater than the time constant of the measurement
τspan = 2/Γspan one may reduce the latter equation to an expression resembling equation
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(2.38):

T =
τspan
p2

× STx
Srad
x

. (2.44)

If one then wants to measure optomechanical correlations with a precision of 10%, a signal-
to-noise ratio Srad

x /STx = 10−2, and a measurement bandwidth of 10 kHz it would take him
only a few seconds, making the averaging idea, particularly interesting in the out-of-resonance
case.

We will finish this section with an experimental demonstration of the above arguments
using the same classical intensity noise as earlier. Figure 2.11(c) shows the time-evolution of
the normalised correlation function Cm−s(T ) for multiple acquisitions, each one realized under
the same experimental conditions; the same 200-ms long intensity noise is applied repeatedly
for a total duration of 2.8 s. We observe that all acquisitions presented in this figure converge
towards a non-zero, asymptomatic value Cm−s(T ) = 0.16.

2.2 Backaction amplification

In the introductory chapter we have discussed the sensitivity limits in the moving mirror dis-
placement measurement. We have shown the existence of the quantum fundamental limit
associated to this measurement, the so-called Standard Quantum Limit (equation 1.72). Our
research group has published various theoretical articles describing these limits. One of these
studies shows how the mirror dynamics are modified in the case of a detuned Fabry-Perot
cavity [73]. In the previous section of this manuscript, we have already described that in a
such detuned cavity a coupling between the displacement of the moving mirror and the intra-
cavity intensity -and consequently the radiation-pressure force applied onto the mirror- occurs.
Pioneering experiments have been carried out by the group, exploiting such effects in order
to cool down the moving mirror via radiation pressure [74], [75]. Another interesting aspect
of this coupling is that it can be used in order to beat the quantum limits associated to the
displacement measurement.

Let us assume we want to measure an extremely weak classical signal, an apparent length
variation induced by a gravitational wave for example. It has been shown, that in a detuned
cavity, the mirror motion becomes sensitive to the signal and, depending on the cavity working
point, a signal amplification can occur. During this thesis, an experimental demonstration of
this effect has been achieved [29].

2.2.1 Sensitivity improvement in a detuned cavity

Figure 2.12: Principle of an apparent
length variation signal Xsig through the
detection of the probe beam phase.

Let us assume a single-ended Fabry-Perot cavity of
length L, composed by a perfectly reflecting, movable
mirror and a fixed slightly transmitting coupler mir-
ror, as depicted in figure 2.12. We want to measure
a small cavity length variation Xsig produced by an
external phenomenon.This signal may be caused by a
gravitational wave, a weak force applied to the mov-
able mirror or, equivalently, a laser frequency modu-
lation. It is superimposed to the actual displacement
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of the movable mirror Xm induced by the radiation
pressure noise of the intracavity field. The cavity de-
tuning then reads:

ψ(t) = 2kL [2π] = ψ0 + 2k[Xm(t) +Xsig(t)]. (2.45)

We have already written down the general input-output field transformation for a cavity with
a non-zero detuning ψ 6= 0 (see equations (4.5) and (4.6)). The force fluctuations that the
movable mirror undergoes are related to the intracavity intensity fluctuations:

δFrad[Ω] = 2~kδI[Ω] = 2~kαδp[Ω]. (2.46)

We can now relate the radiation-pressure fluctuations to the phase, intensity and position
fluctuations:

δFrad[Ω] = δF intra
rad + δFm

rad + δF sig
rad, (2.47)

where:

δF intra
rad = 2~kα

1

∆

√
2γ

γ2 + ψ2

(
(γ2 + ψ

2 − iγΩτ)δpin[Ω]− iψΩτδqin[Ω]
)
,

δFmrad = −8~k2α2 ψ

∆
δXm[Ω]

δF sig
rad = −8~k2α2 ψ

∆
δXsig[Ω].

(2.48)

The first force δF intra
rad corresponds to the radiation-pressure force induced by the quantum fluc-

tuations of the incident field: the quantum back-action of the measurement. The second force
δFmrad depends on the position fluctuations of the mirror and is responsible for the dynamical
modification of the resonator mechanical properties. It is similar to the active feedback force
Ffb we have introduced in section 1.8.3 which may induce a modification of the effective damp-
ing of the mirror as well. When the mirror displacement is dominated by the thermal noise,
the force Ffb may be used for example cool the resonator. Similarly, the dynamical back-action
can be used to the same end. One may qualitatively interpret this optomechanical effect by
an analogy to the Stokes and anti-Stokes processes: the optomechanical coupling lies in the
fact that the mirror displacement is coupled to the intra-cavity intensity. In particular, as we
have seen, the displacement is essential internal vibrational modes oscillating at a frequency
ΩM modulating, in turn, the amplitude of the intra-cavity intensity. In the frequency domain,
this modulation creates two sidebands ω0 +ΩM (anti-Stokes) and ω0 −ΩM (Stokes). Once one
of this sidebands is resonant with the cavity the Stokes/anti-Stokes process takes place either
amplifying or cooling the mirror. Experimental demonstrations of this using radiation pressure
to cool a resonator have been realized in our group [74] and elsewhere [76], [56]. In fact, these
two processes take place at the same time, once both sidebands are in the bandwidth of the
cavity. The resulting dissipative effect is then a competition of the two.

Naturally, one gets a better cooling efficiency by excluding the Stokes process or, in other
words by setting the corresponding sideband out of resonance. This can be achieved when the
cavity bandwidth Ωcav is great compared to the mechanical resonance ΩM and the experience
can be performed in the resolved sideband regime [77], [78], [79]. At low frequency (Ω ≪ Ωcav)



74 Chapter 2. Radiation pressure effects

this force can be written:

Fm
rad ≃ 4~k

dI

dψ
δXm(t), (2.49)

introducing an additional restoring force, often called ponderomotive force or an optical spring,
modifying the resonator spring constant or, equivalently, the resonance frequency. It corre-
sponds to the so-called dynamical back-action which changes the mechanical response of the
mirror, its mechanical susceptibility χ being modified to an effective susceptibility χeff given
by:

χ−1
eff [Ω] = χ−1[Ω] + 8~k2I

ψ

∆
. (2.50)

The third force F sig
rad in equation (2.48) is the force induced by the signal. According to (2.48)

and (5.9), it induces a mirror displacement Xsig
m = χeffF

sig
rad proportional to the signal Xsig,

leading to a total length variation due to the signal:

Xsig
m [Ω] +Xsig[Ω] =

χeff [Ω]

χ[Ω]
Xsig[Ω]. (2.51)

Depending on the ratio between the initial and effective susceptibilities, one then gets either an
amplification or a compensation of the signal by the mirror motion. We now derive the phase
of the field reflected by the cavity, using the usual definition of the phase quadrature q[Ω] for
any field operator a,

|a| q[Ω] = i
(
aa†[Ω]− a⋆a[Ω]

)
. (2.52)

Assuming for simplicity that the frequencies Ω of interest are much smaller than the cavity
bandwidth Ωcav = γ/τ , equations (4.5) show that the phase qout of the reflected field simply
reproduces the cavity length variations Xm+Xsig (including radiation-pressure noise), with an
additional noise term related to the incident phase fluctuations qin,

qout[Ω] = qin[Ω] + 2ξ (Xm[Ω] +Xsig[Ω]) , (2.53)

where ξ = 4kγ
∣∣ain
∣∣ /
(
γ2 + ψ

2
)
. One finally gets the spectrum Sout

q [Ω] of the measured phase

quadrature as
Sout
q

4ξ2
=

1

4ξ2
+ ~

2ξ2 |χeff |2 +
∣∣∣∣
χeff

χ

∣∣∣∣
2

Ssig
x , (2.54)

where Ssig
x [Ω] is the spectrum of the signal Xsig. The first two terms in equation (2.54) are the

usual quantum shot noise and radiation-pressure noise: they exactly correspond to the ones
obtained for a resonant cavity with a mirror having a mechanical susceptibility χeff . Their sum
can be rewritten as |~χeff | ζ

−1+ζ
2 , which only depends on the dimensionless optomechanical

parameter ζ = 2~ξ2 |χeff |. At any frequency Ω, the sum is minimal and equal to the standard
quantum limit |~χeff [Ω]| when ζ[Ω] = 1. Last term in equation (2.54) reflects the signal, but
with an amplification factor |χeff/χ|2 similar to the one already found in equation (2.51). In
absence of dynamical radiation-pressure effects (Xsig

m = 0) as in the case of a resonant cavity,
this factor simply disappears and the second term in equation (2.54) reduces to Ssig

x . It is
then clear that dynamical back-action not only changes the mechanical behavior of the moving
mirror from χ to χeff , but also enables an amplification of the signal in proportion to the factor
|χeff/χ|2. Equation (2.54) therefore shows that a high amplification factor together with an
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Figure 2.13: The experimental setup used
to observe the amplification of an apparent
length variation signal by a dynamical back-
action effect in a detuned cavity. A net-
work analyzer provides a signal δνsig at a
given frequency while measuring the corre-
sponding response of the cavity via the ho-
modyne detection output δqout. The pump
beam is used to lock the laser frequency to
the measurement cavity. The probe beam
is detuned thanks to the acousto-optic mod-
ulator AOM2 and measures the position of
the mirror.

optomechanical parameter ζ ≃ 1 may afford a significant increase of the measurement sensitivity
beyond the SQL |~χeff |.

2.2.2 Experimental protocol and results

As for previously discussed optomechanics experiment, we use a Fabry-Perot cavity with a
plano-convex movable mirror. The references of the mirrors used are: PC 3021/13 for the
plano-convex and 07125/3 for the cylindrical coupler. The resulting cavity presents a quality
factor Q = 762 000 with a resonance frequency at ΩM/2π ≃ 1.128 MHz, an effective mass
Meff = 72 mg and an optical finesse F = 110 000. The principle of the experiment is to
observe the optomechanical effect produced by an apparent length variation in a detuned cav-
ity. The length variation Xsig is a frequency modulation of the laser source induced by the
electro-optic modulator, placed inside the laser ring-cavity. In order to measure the cavity re-
sponse to the signal a network analyzer is used. A network analyzer provides a monochromatic
signal at a well-defined frequency while measuring the system response at the same frequency.
It can perform user-defined frequency sweeps making the measurement of a function transfer
a straightforward procedure. In our case, the signal is the laser frequency modulation and
the response is provided by the read-out of the homodyne detection δqout. We use again the
double-injection scheme adjusted this time to the purposes of this experiment. The probe beam
is coupled to the measurement cavity in order to measure the position of the movable mirror.
The pump beam is also coupled to the cavity, but presents a low power as it is only used to lock
the cavity. We then alter the frequency of the probe beam in order to detune the cavity. The
detuning is done with the help of the acousto-optic modulator coupled to the probe beam by
changing the radio-frequency carrier driving the modulator. The experimental setup is depicted
in figure 2.13. An important experimental change, compared to the optomechanical correlations
experiment described earlier, is the incident power of the two beams, notably because the effect
we want to observe is proportional to the power. It is then preferable to perform the experiment
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Figure 2.14: Left: Thermal noise spectra measured by the homodyne detection, providing the
effective susceptibility χeff of the mirror for different detunings of the probe beam (4 mW):
ψ/γ = −3.64(a),−2.97(b),−2.03(c),−1.87(d). Right: for the same cavity detunings the op-
tomechanical amplification factor provided by the network analyzer.

with a powerful probe beam. The upper limit for the probe power is mainly imposed by one
factor: the saturation limit of the homodyne detection photodiode, which is approximately 30
mW. A proper behaviour of the homodyne detection is ensured when the local oscillator power
is large compared to the probe power. This led us to set the probe power at 5 mW and the
local oscillator at 25 mW. On the other hand, for the lock-in of the measurement cavity, a weak
pump beam suffices; it is set at 200 µW. The small transmission of the measurement cavity can
be used to set the working point of the cavity. As the cavity is coupled to two cross-polarized
beams, a polarizing plate is placed at the exit of the cavity in order to select only the trans-
mitted power from the probe. The intensity transmitted by the cavity is directly related to the
cavity detuning: the bandwidth of the measurement cavity is known (Ωcav/2π = 1.4) MHz and
the transmitted intensity is calibrated by modulating the laser frequency at 100 Hz, to visu-
alise the Airy peak on a digital oscilloscope. One can deduce the absolute detuning value ψ/γ.
The experimental protocol is as follows. We first select the detuning of the probe beam with
respect to the cavity resonance, and we monitor the mirror thermal noise by sending the homo-
dyne detection signal to a spectrum analyzer. This step allows one to determine the effective
mechanical response χeff induced by dynamical back-action. Then, using a network analyzer,
the modulation of the laser frequency is turned on and swept around the mirror mechanical
resonance. The modulation power is set about 25 dB above thermal noise at the mechanical
resonance frequency so that thermal noise can be neglected. The resulting phase modulation
of the reflected probe beam is monitored by the network analyzer. We finally turn the probe
beam off, and we measure the mirror thermal noise immediately after, using the Pound-Drever-
Hall signal. This last step is essential in order to accurately determine the intrinsic mechanical
response χ of the moving mirror (obtained with the locking beam at resonance), which may
be slightly frequency-shifted from one measurement to the other due to slow thermal drifts
-typically 0.1Hz per minute. We present in figure 2.14 the experimental results. On the left
thermal noise, for different detunings, is depicted, as measured by the homodyne detection. We
observe that the mechanical resonance frequency is red-shifted, translating the fact that the
optical spring constant is lowered when the cavity is driven away from resonance. We further-
more notice a change in the mechanical oscillator damping effect cooling down the mirror: the
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thermal noise widens as the detuning increases. On the right, the resulting phase modulation
power Sout

q is drawn. It is measured by the network analyzer when the signal modulation Xsig is
swept around the mechanical resonance frequency ΩM. Curves (a) to (b), obtained for various
negative detunings ψ, are normalized to the phase modulation obtained far from the mechanical
resonance (measured 1 kHz above ΩM). They thus represent the amplification factor |χeff/χ|2
appearing in eq. (2.54), as can be seen from the inset which compares the experimental result
to the expected amplification factor deduced from the measured susceptibilities χeff and χ. A
clear amplification is observed near the effective mechanical resonance of χeff , which is down-
shifted from ΩM as expected from eq. (5.9), whereas one gets an attenuation at the mechanical
resonance ΩM where χ is maximum. Note that similar results are obtained for positive cavity
detunings, corresponding to the amplification regime of the mirror-cavity system rather than
to the cooling one, but the proximity of the parametric instability makes the results less stable.
Nevertheless, we have reached a very large signal amplification effect, with an amplification
factor larger than 6 for curve c: back-action effects induce a motion X

(sig)
m of the mirror in

phase with the signal Xsig, and with an amplitude larger than the signal itself. Finally, we have
determined the sensitivity increase associated to the signal amplification we have observed.
However, our experiment is dominated by thermal noise and thus quantum noise cannot be
measured experimentally. For this reason, in our calculation, thermal noise was completely
neglected. We have considered the case at which the greatest amplification factor is achieved:

Figure 2.15: The calculated sensitivity on a de-
tuned cavity using our experimental parameters. A
sensitivity better than the associated SQL can be
achieved.

ψ/γ = −2.97 and all associated pa-
rameters have been experimentally de-
termined. Figure 2.15a depicts the re-
sults. Curves b and c depict the Stan-
dard Quantum Limits |~χ| and |~χeff |
for two oscillators with a mechanical sus-
ceptibility χ and χeff , respectively. It is
clear on curve a, characterized by an sig-
nal amplification factor 6, that the mea-
surement sensitivity beats the quantum
limits associated to both the oscillator
with a susceptibility χeff and χ. The
sensitivity is optimal at a frequency close
to Ωeff , where an amelioration of almost
9 dB for the resonator χeff is seen.





Chapter 3

Development of the experimental

setup

In the previous chapter we have described a technique to demonstrate quantum radiation
pressure effects. We have showed that potentially our experiment would be capable of doing so
at low temperature. As it is not possible for us to perform the experiment at low temperature,
we have started an effort in order to perform it at ambient temperature. This is the subject
of this chapter. The detection has been upgraded by constructing a balanced detection to
monitor the intensity fluctuations, directly providing the quantum noise of the incident pump
beam. Also, the homodyne detection photodiodes have been replaced with new ones with
better quantum efficiency. Furthermore, in order to achieve a more favourable signal-to-noise
ratio Srad

x /STx , it has been decided to increase the incident power by a factor of 10. Since
our Ti:Sa laser source provides a quantum-noise limited beam up to 1 mW, this implies the
construction of a second mode-cleaner cavity to further filter the laser classical noise at a power
of 10 mW. The implementation of the new mode-cleaner cavity also led us to change the laser
frequency stabilization scheme. As we will discuss later on, this cavity inserted between the
laser source and the FPM makes the laser stabilization very difficult. In an attempt to solve this
experimental drawback, various solutions have been explored during this thesis: a feed-forward
technique, the use of an acousto-optic modulator implemented after the mode-cleaner to lock
the laser frequency to the measurement cavity and the construction of a new measurement
cavity in which a piezoelectric actuator is implemented. In this chapter, these experimental
upgrades of our setup will be detailed.

3.1 Balanced detection

Figure 3.1: Balanced de-
tection.

Until now, the reflected intensity was monitored by a single pho-
todiode. We have decided to replace the photodiode with a bal-
anced detection system. Such a system is depicted in figure 3.1. It
consists of two perfectly identical photodiodes, a polarizing beam
splitter and an electronic circuit working either as a sum or as a
differential amplifier. The incoming light is first separated into two
parts of equal optical power, each one being detected by a photo-
diode. The photocurrents produced by the photodiodes are then
either added or subtracted using the electronic circuit at the out-
put of the photodiodes. The advantage of this system is that it
is able to suppress classical noises. Indeed, once the beam splitter
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divides the incoming light in two parts of equal power, classical noises are correlated in each
other whereas quantum noises are completely uncorrelated. Consequently subtracting the two
photocurrents will lead to a suppression of the sole incident optical, classical noise. Therefore, a
balanced detection system can be very useful when one wants to observe incident quantum noise
but its construction presents several difficulties. The electronic noise of the two photodiodes
will not be suppressed by the subtraction operation since they are uncorrelated to each other
and thus it will contribute to the measured signal. Under this view, electronic noise resembles
quantum noise and, therefore, one cannot distinguish the two noises. This can be controlled
by carefully designing the photodiodes so that they present a favourable signal-to-noise ratio
at the desirable power and frequency. Another technical difficulty is the perfect matching of
the detector. The spectral response of the two photodiodes must be exactly the same. This
is not easy to realize since the spectral response can depend on numerous factors: the photo-
diodes themselves, the actual wiring of the electronic circuit amplifying the photocurrent, the
electronic components of the circuit, for instance the resistors or the operational amplifiers, the
imperfections of the beam splitter and many more. Any detection imbalance may result in a
degradation of the detection efficiency.

3.1.1 Designing the photodetectors

Typically, a photodiode consists of a sensitive surface -usually a PIN semiconductor structure-
converting a photon to an electron: once a photon flux strikes the diode a photocurrent is
produced, with the same statistical properties as the incident light. This structure is usually
mounted on an electronic circuit which transforms the produced photocurrent to a voltage
which is amplified using some stages of operational amplifiers. A similar scheme has been used
for our custom-made photodiodes.

A photodiode is characterized by its electronic noise, and therefore the threshold above
which a signal can be detected, its bandwidth, its saturation level, its quantum efficiency and
its dark noise. The quantum efficiency and the dark noise solely depend on the PIN structure
itself; they then have to be carefully chosen. However, all other properties are set by the design
of the electronic circuit.

Electronic noise

The electronic circuit will be a source of electronic noise, mostly from thermal noise in the
resistors. It is known as Johnson noise and has no spectral dependence; it is a white noise,
given by equation:

Vj =
√
4kBTR νBW , (3.1)

where R is the resistor value, kB the Boltzmann constant, T the temperature and νBW the
detection bandwidth. The origin of this noise is the random process of the electrons passing
through the resistor. It is actually the electronic equivalent to the optical shot noise. There
are other contributions as well to the electronic noise such as the dark noise and the amplifier
noise. We will consider that both of these noises are negligible compared to Johnson noise.
It is Johnson noise that will set a limit to the photodiode sensitivity. The Johnson noise
generated by the photodiode amplifier is to be compared to the generated photocurrent to set
the corresponding signal-to-noise ratio. In fact, usually this quantity is expressed using the
Noise Equivalent Power (NEP) parameter giving the floor noise of the photodiode ensemble or,
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alternatively, the optical power that produces a unity signal-to-noise ratio at the output of the
detector. The balanced detection will replace the photodiode which monitors the light reflected
by the measurement cavity. Typical input powers range from 1 mW to 10 mW. Considering
that the reflection coefficient R0 may reach values down to 10%, depending on the optical
characteristics of the measurement cavity, reflected power of at least 100 µW will be injected
to the balanced detector. This means that the detector must be sensitive enough to detect an
input power of at least 100 µW .

Bandwidth

The bandwidth of a photodetector is an important parameter. It depends on the active compo-
nents of the electronic circuit. The signal we want to monitor correspond to the displacements
of a mirror, which vibrates at relatively low frequencies, around 1 MHz. However, the detector
should be fast enough in order to be able to derive a Pound-Drever error signal. Until now, a
phase modulation at 20 MHz was applied to the laser beam. We have decided, however to in-
crease the phase modulation frequency to 50 MHz in order to increase as well the capture range
of the laser feedback loop. Therefore, the photodiode bandwidth is set by the Pound-Drever
phase modulation and must be at least 50 MHz.

Quantum efficiency

An ideal photodetector would transform each photon into an electron. The quantum efficiency
η would be 1 in this case. However, in a real detector, each photon has a non-zero probability
not to be detected and the quantum efficiency corresponds to the fraction of photons converted
into electrons. It depends on the properties of the detector material. In order to measure it,
one should measure the output voltage V of the photodiode versus the incidence power P . The
photocurrent is given by:

I(t) = η
P (t)e

hν
, (3.2)

where e is the electron charge, h the Planck constant and ν the photon frequency.

Saturation

Finally, there is a saturation level of the detector above which the photocurrent of the detector
no longer increases. Photodiodes are usually polarized by a bias voltage in order to increase their
power tolerance. The photocurrent produced is transformed into a voltage via the load resistor
Rload connected to the output of the photodiode. Once the load voltage becomes comparable
to the bias voltage the photodiode no longer behave normally, presenting saturation effects. As
already stated above, the detector is supposed to detect signals of up to 10 mW, so the load
resistor should be chosen accordingly.

3.1.2 Constructing the detector

To sum up, the major qualities of a good photodiode is its excellent quantum efficiency, a
spectral response large enough in order to efficiently detect both the mirror displacements and
the Pound-Drever error signal, a low NEP and a high saturation level. We will now describe
all the construction stages in order to fulfil all the above requirements.
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Mounting setup

A compact and rigid system, inspired by the one used for the homodyne detection [80] has
been constructed in order to mount the photodiodes. The photodiodes are packaged into
an aluminium box assuring their best isolation from parasitic electromagnetic captures. All
detector elements are fixed onto a 18 times 15-cm2 dural plate. A lens f=100 mm is used to
focus the light onto the sensitive surface of the photodiodes. A system of a half-wave plate
and a polarizing beam splitter (PBS) is used afterwards; the half-wave plate is mounted onto a
turning mount system setting the light power detected by each photodiode. The beam splitter
is mounted onto a micrometric screw system permitting to rotate it around the 3 axes. The
aluminium boxes harbouring the photodiodes are mounted onto two micrometric translation
stages permitting to align the photodiodes on the light beam. The orientation of these boxes
is set to 45◦ compared to the beam orientation. The photodiode will reflect a small portion
of the light, this configuration permits the re-injection of the reflected light using a simple
mirror. This can improve the quantum efficiency by a few percents. The whole rigidity of
the mounting system provides an excellent ground contact of the ensemble and, consequently,
eliminates any high-frequency electronic parasite. Finally, the output of the photodiodes is sent
to the electronic circuit performing the subtraction.

Si PIN photodiode

For the PIN structure we chose the Hamamatsu S5971 Si PIN photodiode. It has an effective
area of 1.2 mm diameter. It has a very low terminal capacitance (Ct = 2 pF), its bandwidth is
high enough for our purpose (100 MHz) and it presents a sensitivity peak at a wavelength of
900 nm -very close to our Ti:Sa typical wavelength. At 830 nm its photo-sensitivity is equal to
0.6 A/W. Its floor noise (NEP) is equal to 7.4 · 10−15 W/

√
Hz. These numbers only represent

the Si PIN photodiode. The photodiode will be used with a 70 V bias in order to reduce its time
response and to be able to increase as much as possible the value of its load resistor reducing
its Johnson noise.

The pre-amplifiers

The pre-amplifier is separated in two parts: one for the low-frequency signals (DC) and one
for the high-frequency (HF) ones. The separation of the two signals is realized by a simple RC
filter consisting of a capacity C = 1 nF placed at the entry of the HF stage and two resistors in
series with the photodiode (Rload = 910 Ω and R′

load = 100 Ω ). The cut-off frequency of this
low-pass filter is fc = 144 kHz.

The HF part has two different amplification stages. The first one of an inverting amplifier
having a feedback resistor Rfb = 2.7 kΩ. The operational amplifier we used for this stage is
the fast (gain bandwidth product=1.6 GHz), low noise (4.8 nV/

√
Hz) OPA657. The choice

of the feedback resistor, Rfb, and the photodiode load resistor, Rload is very critical for the
good operation of the pre-amplifier: it will determine at the same time the Johnson noise
level, the gain and the bandwidth of the amplification stage. Moreover, the load resistor will
set the saturation level of the photodiode. The voltage created across the load resistor by the
photocurrent may compromise the polarization of the photodiode if it reaches values comparable
to the bias voltage (70 V). Therefore, the choice of the load and feedback resistor will result
from a compromise between the proper operation of the PIN diode and the generated Johnson
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Figure 3.2: The pre-amplifier circuit used to transform and amplify the photocurrent. It is
made of mainly three parts. A RC circuit separates a DC and a high-frequency component.
The HF part is more critical and has a high-speed, low-noise operational amplifier and two
amplification stages.

noise. There is also a feedback capacitance, Cf = 0.1 pF used to render the spectral response of
the amplification stage flat at high frequencies. In particular, the amplifier typically presents
resonances at high frequencies (∼ 60 MHz); the amplification stage thus plays the role of a
low-pass filter with a cut-off frequency carefully chosen to suppress the apparent resonance. A
second amplification stage is added in order to amplify a bit more the signal at the expense of a
bandwidth reduction. We used the standard operation amplifier AD844 cabled in an inverting
mode as well, presenting a gain g = 2. The bandwidth of this amplification stage depending
on the choice of the feedback resistor, we chose a Rf2 = 500Ω in order to obtain a bandwidth
of 50 MHz. It is this part of the photodiode pre-amplifier that will provide both the 1-MHz
intensity fluctuations and the 50-MHz Pound-Drever signal. Considering the importance of the
high-frequency stage, in order to assure its low-noise operation, some design precautions were
taken. We have tried to minimize the cabling from the PIN photodiode to the HF stage in
order to avoid any parasitic noise capture. For the same reason, a ground plane on the other
side of the electronic plate has been realized. The DC part is also very critical, since it will be
used to observe the reflected absorptive Airy peak. More importantly, it is the DC signal of
each photodiode upon which we will rely in order to balance the detection. Since no particular
requirements for this stage are necessary -slow signals, up to some hundreds of kHz, no low noise
requirements- we chose the most common operation amplifier OP27. It is designed in order
to operate in non-inverting amplifier mode where the feedback resistors are chosen to have a
gain g=10. No special precaution has been taken when designing the DC part of the circuit.
Figures 3.4(b) and 3.3 show the performance of the custom-made photodiodes. The incident
power versus the output voltage of the DC part is plotted in figure 3.4(b). Equation 3.2 can
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Figure 3.3: The achieved bandwidth of the photodiodes. For an input power of 3.2 mW, a
40-MHz bandwidth is achieved.

be used to derive the quantum efficiency of the photodiode. By adjusting a linear fit to the
measured value we find a quantum efficiency η = 93%. Figure 3.3 shows the spectral response
of the HF part of the photodiodes, by measuring the electronic noise generated by the circuit
and then, the output voltage generated by a 3.2 mW input laser beam. The electronic noise is
then subtracted from the signal in order to find the spectral response of the electronic circuit.
A relatively flat spectral response is observed, presenting a cut-off frequency close to 50 MHz
for a power of 3.2 mW. Finally, by doing a study of the high-frequency response dependence on
the incident power one can measure the detection threshold where the signal-to-noise ratio is
unity. We simply simulate the function of a balanced detector by using a post-data processing:
the classical noise is subtracted from the measured signal. It suffices to perform an electronic
noise measurement, to monitor the photodiode light response varying the incident power and,
finally, to subtract from each measurement the electronic noise. Figure 3.4(a) shows the result
of this study. We observe a threshold of 100µW where the measured signal is equal to the
electronic noise.

We have managed to construct custom-made photodiodes presenting a quantum efficiency
η = 93%, a bandwidth of 50 MHz and a threshold of 100 µW . Even though the two photodiodes
are constructed using the same components it is however not guaranteed that the detector is
perfectly balanced.

3.1.3 Balancing of the detector

The procedure followed is thoroughly described in [80]. Practically, we first balance in the best
possible way the DC part of the photodiodes. We consider, only by observing the DC output,
that each photodiode detects the same light power. Afterwards, by looking the HF response
difference between the two photodiodes at a given frequency (1 MHz for instance) we adjust
accordingly the feedback resistor Rf of one photodiode in order to balance them.
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Figure 3.4: (a) The obtained noise floor obtained at power 100 µW and 200 µW over a spectral
range of 6 MHz. At low frequency (<1 MHz) a unity signal-to-noise ratio is obtained at 100 µW .
(b) The output voltage as a function of input power; the slope gives the quantum efficiency,
η = 93%.

DC

To balance the DC part of the photodiodes an artificial imbalance of the detections is induced
by rotating accordingly the half-wave plate. This imbalance is then detected by the following
procedure: by changing the incident power we monitor both DC outputs, V1 and V2, of the
photodiodes in order to determine their relative difference R1 = (V1 − V 2)/V1. We repeat this
process a second time inverting this time the position of the photodiodes. The corresponding
relative gain differences can be found to be:

R1 = 2ε+
δg

g
, (3.3)

R2 = −2ε+
δg

g
, (3.4)

where ε is the optical imbalance and δg the gain imbalance. The gain g is considered to be equal
to 10. Using the above system of equations the electronic gain imbalance can be measured; it
is equal to g/2(R1 +R2).

HF

Once the DC output is balanced, the half-wave plate is used to perfectly balance the detector.
By observing a monochromatic modulation applied to the light at 1 MHz via an acousto-optic
modulator (AOM), we measure the modulation level with the help of a spectrum analyzer
and we adjust the feedback resistor Rf of one photodiode accordingly. Finally, a modulation
sweep (0-10 MHz) is applied again via the AOM. The sweep is essentially limited by the AOM
bandwidth. Nevertheless, since we want to measure a signal at a frequency of a few MHz, this
sweep suffices. The AOM is driven via a network analyzer which is monitoring at the same time
the response of the balanced detector. The internal potentiometer of the subtraction circuit is
then adjusted accordingly in order to compensate any residual gain imbalance of the HF part.
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3.2 Mode cleaner cavity

A coherent state is also known as "classical light" since it is the quantum state that resembles
the most to the properties of the classical harmonic oscillator; an ideal laser source is described
by such a model. According to it, the quantum noises present in a coherent source pose
fundamental limits to the performance of such a laser source, the so-called Quantum Noise
Limits. A real laser however presents extra classical noises -usually at low frequencies- which
usually completely covers these limits. The laser source of our experimental setup can provide
quantum-noise limited light power up to 1 mW, to the analysis frequency (∼ 1MHz). A way to
increase the signal-to-noise ratio to observe radiation pressure effects would be to increase the
incident power which is limited by the noise properties of the light source. Therefore, since the
Ti:Sa presents classical intensity fluctuations completely dominating the quantum fluctuations
we are trying to observe, the increase of the incident power is not an option. A standard
method of noise reduction is the use of a Fabry-Perot cavity with a small bandwidth. Once
the incident laser beam is resonant with a FP cavity it acts like a low-pass filter that reflects
all spectral components of the light fluctuations at frequencies larger than its bandwidth. The
smallest the bandwidth is, the more efficient the filtering of the classical intensity fluctuations.
We have then envisioned to construct a new mode-cleaner cavity and obtain a quantum-noise
limited light beam of 10 mW, at 1 MHz. By increasing then the incident power by a factor
of 10 we may expect a resulting signal-to-noise ratio Srad

x /STx = 10−2. For reasons that will
be made clear later on, two different filtering cavities were tested. We will start this section
by describing some alternatives methods to optically calibrate a cavity and we will continue
by describing the efforts made to construct such a cavity and efficiently lock the laser on its
optical resonance.

3.2.1 Optical calibration

Optical characterization of the cavity

We will now describe various methods in order to determine the optical characteristics of the
measurement cavity: its length, its bandwidth and its finesse.

Free Spectral Range measurement

It is known that a Fabry-Perot cavity presents multiple optical modes that may be observed
using a CCD camera or even a standard webcam placed at the exit of the cavity. In particular,
by scanning the laser wavelength, a repetitive pattern of resonances (a frequency comb) can
be observed. This comb consists of the fundamental mode (TEM00) and an infinite number
of transverse modes (TEMpq); figure 3.5(a) presents the fundamental mode and 4 transverse
modes. The interval between two longitudinal modes TEM00 is called the Free Spectral Range
of the cavity and is directly related to its length. The Free Spectral Range is given by:

νISL =
c

2L0
, (3.5)

where L0 is the cavity length. Since the laser wavelength is monitored by a wavemeter, we
measure the wavelength of two successive longitudinal modes and we deduce the interval ∆λ is
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(a) (b)

Figure 3.5: (a) The fundamental mode and the first transverse modes of a high-finesse cavity.
Each mode TEMpq is identified by two indexes (p,q) each one indicating the number of nodes
in the horizontal and vertical directions. (b) The sidebands of the Pound-Drever-Hall phase
modulation permit to calibrate the measured cavity bandwidth.

deduced. The Free Spectral Range then becomes:

νISL = c
∆λ

λ2
. (3.6)

Finally, the cavity length can be determined using equation (3.5). The spectral range between
two transverse mode depends not only on the cavity length, but also on the radius of curvature
R of the coupling mirror. By assuming a radius of curvature much larger than the cavity length,
the transverse spectral range, νtr is given by:

νtr =
νISL
π

√
L0

R
=

c

2π
√
RL0

. (3.7)

This way a rough estimation of both the cavity length and the radius of curvature can be made.

Bandwidth and finesse

The are a couple of methods to measure the cavity bandwidth. One of them consists in sweeping
the cavity length of the laser frequency and visualizing the Airy peak with a numerical oscil-
loscope. A fit of the Lorentzian curve then gives its Half-Width at Half-Maximum (HWHM).
This technique however requires to calibrate the horizontal scale of the curve. We can take
advantage of the presence of a Pound-Drever-Hall setup implemented in our experiment. As
we have seen earlier, the Pound-Drever-Hall technique consists in modulating the phase of the
incident beam at a frequency ΩPM. The phase modulation manifests itself with the presence
of two sidebands at ±ΩPM that can be observed in the transmission of the measurement cavity
(see figure 3.5(b)). This can be done using a digital oscilloscope while scanning the piezoelectric
actuator of the laser cavity at 100 Hz. We can thus use these sidebands to calibrate the time
axis of the oscilloscope. The finesse of the cavity can now be directly calculated. It is defined
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as the ratio between the free spectral range and the bandwidth of the cavity:

F =
νISL
2νBW

(3.8)

Cavity ringdown effects I

As already explained, the new mode-cleaner cavity is designed to have a very small bandwidth
in order to filter the classical noise of the laser at the lowest frequency possible. To measure the
FWHM of the cavity which is related directly the optical length of the cavity must be swept,
by modulating either the laser frequency or the cavity length itself via a piezoelectric actuator
glued to one of the mirrors of the cavity. This sweep is usually done at 100 Hz. It is slow enough
so that the piezoelectric actuator has a mechanical response with an amplitude corresponding
to a few tens of MHz, sufficient to visualize both sidebands on the same frequency window. At
the same time, it must be fast enough so that the cavity resonance does not drift away from
the frequency window.

For small cavity bandwidths, the sweep time of the cavity can lead to ringdown effects related
to the photons time life into the cavity. These effects result in a distortion of the Airy peak
Lorentzian shape [81]. When confronted with this problem, the frequency modulation must
be decreased, noting that environmental vibrations will set a lower limit to the modulation
frequency. In such a case this method cannot be applied: at high sweep frequency ringdown
effects are visible whereas at low frequencies the Airy peak will completely be distorted due to
vibrations. Into this section we will show how to use the distorted Airy peak to determine with
high precision the cavity finesse. We will use the equations established in the first chapter for
a lossless cavity. Moreover, the cavity length is swept with a constant speed υ. We can then
write down the usual equation for the intracavity field and transmitted field (equation (4.1)).

τ
dα(t)

dt
=

√
γαin(t) +

(
iΨ(t)− γ

)
α(t), (3.9)

αtr =
√
γα(t), (3.10)

where we have considered the case of a symmetrical cavity where both mirrors present the same
transmission. In this case T = P = γ. It is the usual input-output transformation we have
found in the first chapter. The phase shift Ψ(t) now has two contributions: the phase shift
induced by the beam propagation into the cavity Ψ0(t) and the phase shift induced by the
motion of the mirror:

Ψ(t) = 2kL(t) = 2k(L0 + υt) = Ψ0 + 2Ωvt, (3.11)

with Ψ0 = 2ω0L0/c and Ωv = ω0υ/c. It follows for the transmitted field that:

τ
dαtr(t)

dt
= γαin(t) +

(
iΨ(t)− γ

)
αtr(t). (3.12)

This is a first-order differential equation whose solution is given by:

αtr(t) =
γ

τ
αin

∫ ∞

0

e(−γ+iΨ(t−υ/2))υ/τ dυ. (3.13)

It is convenient to express the above equation with the help of the complementary error function,
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erfc, by making use of the identity:

∞∫

0

e−γυ−υ
2/4β dυ =

√
πβeβγ

2

erfc(γ
√
β). (3.14)

The transmitted intensity then becomes:

Itr ∝ e−Ψ(t)/(2Ωυτcav)

∣∣∣∣erfc
(
γ − iΨ(t)

2
√
iΩυτ

) ∣∣∣∣
2

, (3.15)

where τcav = τ/2γ. We remind that τ is the beam characteristic time for a photon to realize
one cavity round-trip: τ = 2L0/c.

Equation 3.15 may prove very useful to characterize a high-finesse, low-bandwidth cavity
presenting a large photon lifetime. When such a cavity is rapidly swept, the photons do not
have enough time to escape the cavity while new ones enter it. Consequently, interference
effects between “old” and “new” photons occur as they have travelled different optical paths.
These effect occur under the form of rebounds effects visible at the one side of the Airy peak.
We will describe an experimental demonstration of this in the following.

Cavity ringdown effects II

Another technique that might be useful is the optical analogue of the ringdown technique applied
to measure the quality factor Q of a mechanical oscillator. Usually, the resonator is coupled
to an actuator driven at its resonance frequency while its motion is monitored. The excitation
is then abruptly turned off and its relaxation motion is observed, the quality factor Q being
deduced from the exponential decay of the excitation. An analogue scheme can be applied to
an optical cavity in order to measure its finesse F . Practically, the cavity frequency bandwidth
is determined by directly measuring the lifetime of the photons in the cavity. When the cavity
is locked at resonance an intensity modulation with a great depth (δI/I = 100%) is applied to
the light beam. To achieve this the AOM is driven by a TTL signal (0V- 5V) at a frequency
Ω/2π > Ωcav/2π. The cavity transmission is actually flashing thanks to the large capture
range of the Pound-Drever error signal the cavity is relocked automatically. By observing the
transmitted light with a photodiode and a numerical oscilloscope we can visualize the photons
coming out of the cavity and thus their life time into the cavity. Attention must be paid to the
bandwidth of the photodiode, that has to be large compared to the cavity bandwidth, in order
to ensure that we are not observing the photodiode response instead of the photon lifetime.
This technique is known as optical ring-down. The calculation of the transmitted field when
switching off the incident field is straightforward. Considering that there is no incident field
and no loss (αv = αin = 0) equations 4.1 and 1.33 give for the transmitted intensity:

Itr(t) = e−4πνBP t, (3.16)

where νBP is the frequency bandwidth of the cavity. The finesse can then be calculated by
measuring the FSR of the cavity.
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Cavity frequency response

As equation (4.2) suggests, a Fabry-Perot cavity behaves as a first-order low-pass optical filter
for the light, characterised by a cavity bandwidth Ωcav. Every low-pass filter is characterized by
its cut-off frequency which can be deduced from the corresponding spectral response diagram,
the Bode diagram. To do so, the light intensity is modulated via an AOM or an EOM and
the cavity response is monitored at its output. In practice, we use a network analyzer driving
an AOM which is driven by a voltage between 0 V (corresponding to 0% transmission) and 5
V (100% transmission). A home-made preamplifier is used in order to add a 5 V DC voltage
to the network analyzer modulation output and then set the AOM at half-transmission. The
cavity is then locked to the optical resonance and the cavity transmitted power is fed to the
network analyzer input. The analyser executes a frequency sweep and directly provides the
Bode diagram of the cavity.

3.2.2 High-finesse filtering cavity

The measurement Fabry-Perot cavity is a compact and rigid cavity, which provides no possibility
to dynamically control its length. Therefore, in order to stabilize the experiment the laser
frequency is locked to the cavity vibrations. On the other hand, this is not the case for the
filtering cavity. The mirrors of the cavity are both coupled to piezoelectric actuators permitting
to change the cavity length and therefore to lock the cavity on the laser frequency. Furthermore,
the filtering cavity is placed between the laser and the measurement cavity. Consequently,
the filtering cavity must be able to compensate the measurement cavity vibrations that are
imprinted onto the laser frequency. The output of the filtering cavity (FPF) will be coupled
to the measurement cavity (FPM) which will be locked to the laser. The laser frequency will
then follow the length variations of the filtering cavity resulting in a frequency jitter with an
amplitude of some hundreds of kHz. The FPF must then be able to compensate this frequency
noise. Otherwise extra intensity noise will be induced to the output beam. The filtering
cavity already mounted in the experimental setup (see Figure 2.2) has a very large frequency
bandwidth (∼ 4 MHz). This is why the effect is less apparent. On the other hand, if a
small-bandwidth cavity is used, this frequency jitter can be very destructive. The worst-case
scenario would be the complete impossibility of locking the high-finesse filtering cavity to the
laser. The FPF cavity stabilization loop will then be a very important parameter. It will be
realized with a standard PDH technique. There are two factors determining the performance
of cavity stabilization: the cavity finesse and the bandwidth. A high-finesse cavity will be more
sensitive to environmental vibrations, optical bistability effects can occur, and consequently the
feedback loop will be more difficult to realize. At the same time, the narrower the bandwidth
the more difficult it is to stabilize the cavity. The cavity we want to construct combines both
characteristics. It must present a narrow bandwidth and, since the cavity length is limited
to the available space on the optical table, a high-finesse. The right trade-off between these
parameters have to be found in order to render the cavity stabilizations the most robust possible.

The above considerations resulted in the construction of two different cavities, both with
very similar mounting systems but with different mirror qualities in order to find a different
compromise between the optical finesse and the frequency bandwidth. The mode cleaner is
conceived to be a symmetrical cavity (T1 = T2) so that all light is transmitted at optical
resonance as equation 1.46 shows. Both cavities consist of one plane mirror mounted on a
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Figure 3.6: The mechanical resonances present to the filtering cavity mounting system: rapid
piezoelectric actuator+clamp (left) and slow piezoelectric actuator (right).

stack of piezoelectric actuators (total length of 1 cm). The stack presents a large displacement
travelling (∼ 30 µm), it is destined to work at low frequencies (some Hz) and to compensate the
slow drifts of the cavity. The second mirror is a plano-concave mirror, presenting an IR coating
on the curved surface, with a radius-of-curvature equal to 1 m. It is fixed on a small 1-mm
thick piezoelectric actuator with a small displacement amplitude (3 µm) which will operate
at high frequencies (∼ 10 kHz). The mirrors have relatively small dimensions: a diameter of
7.75 mm and a thickness of 4 mm. This way, the mirrors will be lighter and therefore the
cavity lock-in can be faster. All components were glued to the clamps of the cavity using a
standard cyanoacrylide super glue. Special care has been taken in order to fully insulate the
piezoelectric surface in order to avoid any contacts between the high voltage and the ground.
Figure 3.6 depicts the mechanical system residual resonances which define the feedback loop
bandwidth; no feedback at the mechanical resonances must be present otherwise, unavoidable
resonances will occur, preventing proper operation of the cavity lock-in. We observe that the
first resonances occur at 7 kHz and 50 kHz for the slow and rapid actuators respectively, high
enough in order to realize an effective feedback loop.

The cavity is relatively long to ensure a small bandwidth. The alignment procedure can then
be somewhat tricky. The cavity is very sensitive to the smallest mirror tilt. For a mirror with a
radius curvature of 1 m, a tilt of 10−3 rad (≃ 0.06o) is equivalent to a beam offset of 1 mm with
respect to the center of the mirror alreade making the alignment procedure impossible. The
mirrors and the piezoelectric actuator being simply glued to the clamps it is certain that the
two mirrors will not be parallel to each other. Small change to the orientation of the incident
beam will be futile; either resonant modes will occur to the edge of the mirror inducing further
losses or it will be absolutely impossible to find a cavity axis. The mirrors have thus to be
perfectly parallel to each other. To do so, we have adapted a tilting system of the mirror
based on either small springs mounted through the clamp screws or a elastic ring bringing in
contact the clamp and the cavity tube. Both systems permit the tilting of the mirror by simply
tightening or untightening accordingly the screws. In practice, we first ensure that the beam
orientation is perfectly aligned to the cavity tube while both mirrors are unmounted. Then we
mount the cavity end mirror. Normally the light should be reflected perfectly at the centre
of the mirror. We tighten accordingly the screws until the reflection beam coincides with the
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Figure 3.7: Left: the mirror is mounted into a plexiglas recipient which is glued onto a well-
insulated, small and fast piezoelectric actuator. Right: the cavity clamps are mounted to
the cavity cylinder via an elastic ring permitting to slightly tilt the mirror by tightening or
untightening the screws.

incident one. Finally, we repeat the same procedure with the coupling mirror. Then a CDD
camera may be used in order to observe the output of the cavity. Given the cavity small free
spectral range, a fairly good alignment suffices in order to observe optical modes flashing at the
output of the cavity as its residual vibrations naturally sweep its length. Fine adjustments of
the beam orientation are made using the two mirrors in front of the cavity, to obtain a perfect
coupling between the light and the cavity.

Cavity 1

The mirrors used for the first tested cavity were fabricated by ATFilms and present a trans-
mission of 100 ppm with losses guaranteed lower than 10 ppm. The expected finesse with
the combination of these mirrors is ∼ 30] 000. Both mirrors are mounted on a invar cylinder
which determines the cavity length. The tube length is 20 cm which means that the expected
bandwidth of the cavity is 1 kHz. Once the alignment protocol is performed we can proceed to
the characterization of the cavity. As expected, this cavity presents dynamical ringdown effects
to the right side of the Airy peak preventing standard optical calibration by comparison of the
width of the resonance to the Pound-Drever sidebands. Figure 3.8 shows the cavity transmis-
sion for various sweep speeds. The cavity finesse can be determined by simply determining the
ratio of the first two maxima I1/I2 of the oscillations and their corresponding time interval
∆t = t2 − t1. For each measurement the theoretical fit has been applied using equation (3.15).
Each measurement gives a finesse value around 24 000. In order to take all measurements into
consideration one can draw the ∆t evolution versus I1/I2. According to [81] this dependence is
approximately linear, with a slope directly giving the optical finesse of the cavity. Figure 3.9(a)
shows this evolution. The linear fit gives F = 24000, resulting in a bandwidth νBP = 20 kHz.
The alternative calibration methods have also been applied in order to verify the bandwidth
measurement, both giving a value close to 20 kHz. The newly constructed balanced detection
was used to observe the beam photon noise exiting the cavity. The measurement consists in
comparing the sum and the difference of the two photocurrents. The balanced detection in
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Figure 3.8: The cavity transmission for various sweep velocities 10 Hz, 50 Hz, 110 Hz and
200 Hz. We observe the ring-down effect at the right side of the Airy peak under the form of
successive rebounds. The position and amplitude of these rebounds give access to the bandwidth
of the cavity. We have made use of equation 3.15 to fit the measurements. They correspond to
a finesse of 24 000 and to mirror velocities of 2.3 µ/s, 1.6 µm/s, 0.57 µm/s and 0.16 µm/s.

(a) (b)

Figure 3.9: (a) For various velocity sweeps the time interval between two maxima is plotted
as a function of their ratio. A linear approximation [81] of this dependence may provide an
estimation of the finesse of the cavity. (b) A+B and A-B output of the balanced detection for
an input power of 20 mW.

the difference mode will naturally suppress all classical noise leaving only quantum noise. By
switching to the summing mode, and comparing it to the difference one, we can determine if the
light is quantum-noise limited at the frequencies we are interested in. Figure 3.9(b) shows the
balanced detector output for a beam at a 20-mW optical power. We observe the low-frequency
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classical laser noise up to 1 MHz. The low-frequency modulation peak corresponds to a feedback
loop oscillation. At frequencies greater than 1 MHz, no classical noise is evident, indicating
that the beam is quantum-noise limited at 20 mW above 1 MHz.

The main objective is accomplished with this filtering cavity: a quantum noise limited
laser beam at 1 MHz, with a power well above 10 mW, is obtained. At the same time, this
cavity presents a transmission coefficient which is surprisingly low, T = 15%, while the cavity is
supposed to transmit all incident light. This normally poses no problem as it suffices to increase
the input power in order to have enough power at the cavity output. However, optical bistability
effects pose an input threshold power above which the cavity lock-in becomes impossible. For
this cavity, the maximum power at its output is 15 mW. This power is more than the 10 mW
we plan to inject into the measurement cavity. However, if additional optical losses, occurring
during the beam propagation caused while the beam is propagated towards the cavity, are taken
into account, 15 mW is not enough. Two things may explain this disappointing result: either the
cavity is not really symmetric or optical losses are greater than expected. In order to determine
this the mode matching and the reflection coefficient are necessary. It will then suffice to use
equation 1.46,1.30 1.41 to completely characterise the cavity. A mode matching νcav = 95%

and a reflection coefficient R0 = 50% are obtained. We then get for the transmissions of the two
mirrors T1 = 950 ppm T2 = 2000 ppm. The losses are estimated to P = 350 ppm. Evidently,
the purchased mirrors were not sufficiently balanced resulting to a low transmission.

Cavity 2

We have also tested a second Fabry-Perot cavity. In the past, the Ti:Sa laser was frequency
stabilized with the help of a reference cavity (FPE) [31] which became practically useless once
the measurement cavity was locked to the laser source via a Pound-Drever technique. This
reference cavity presents an announced bandwidth νBP = 200 kHz, that might sufficiently filter
the laser beam for our needs. The mirrors of the FPE were unmounted from their previous
mounting system and remounted onto a invar tube of length L=30 cm. The configuration is
strictly the same as the first cavity. The mirrors used were purchased from Research Electro
Optics and present a theoretical transmission of 2000 ppm each. The expected finesse is F =

1600 and the expected bandwidth is νBP = 200 kHz. For this cavity no dynamical ringdown
effects were apparent. The standard calibration technique could then be applied by comparing
the Airy peak width to the sidebands, in this case at 12 MHz. The lorentzian fit in figure 3.10(a)
gives a value of 1500 for the finesse, which for a cavity length L=30 cm gives a bandwidth
of 100 kHz. In addition, we have checked the above value by measuring directly the cavity
bandwidth and by performing ringdown technique described earlier (see figures 3.10(b) and
3.11(a) respectively). Finally, as seen in figure 3.11(b), with this cavity, we also obtain a
quantum-noise limited laser beam at 10 mW, at 1 MHz. This cavity presents a transmission
T = 70% and a reflection coefficient R0 = 77%. For a mode matching νcav = 95% we get
mirror transmission T1 = 1000 ppm and T2 = 2000 ppm.

The first objective is largely accomplished. We have at our disposal two different cavities
providing a quantum-noise limited beam of 10 mW. We will try a comparison between the two.
Cavity 1 presents a bandwidth almost one order of magnitude narrower than cavity 2 (20 kHz
over 100 kHz). Naturally, the narrow cavity comes with a much larger finesse (20 000 over
2 000). It is clear that the first cavity will present more locking difficulties. Even if cavity 1
filters much better the Ti:Sa classical noise, at the same time it presents major drawbacks. The
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(a) (b)

Figure 3.10: (a) The Airy peak of the second filtering cavity in transmission. We observe the
carrier and the Pound-Drever sideband at 12 MHz. A lorentzian fit of the Airy peak gives
the bandwidth of the cavity.(b) Direct measurement of the cavity response to an intensity
modulation applied via an acousto-optic modulator. We obtain a standard low-pass filter
behaviour with a cut-off frequency at approximately 100 kHz.

(a) (b)

Figure 3.11: (a) Optical ringdown: direct photon lifetime measurement by abruptly turning off
the light power. The exponential decay characteristic time directly gives the bandwidth of the
cavity. (b) A+B and A-B output of the balanced detector for an input power of 13 mW.

very low transmission coefficient (15% versus 70% for cavity 2) is an important inconvenience.
The lock-in of the filtering cavity alone is very much possible but it is extremely sensitive to
vibrations. So sensitive that when working on the optical table -while the cavity is locked-
extreme care has to be taken: violent manipulations cannot be tolerated by the cavity. This is
a natural consequence since this cavity has a very high-finesse and a very narrow bandwidth.
For the sake of experimental easiness we have chosen the 100 kHz cavity.

3.2.3 Cavity lock-in

To lock the cavity, a Pound-Drever method was used. The main advantage of the PDH technique
is its large capture range defined by the sidebands created by the phase modulation. It is
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preferable to obtain a capture range as large as possible. There is a limit however imposed by
the cavity bandwidth. If the bandwidth ΩBP is very small compared to the phase modulation
frequency ΩPM the error signal in the frequency range between the cavity bandwidth and the
sidebands drops to zero and the capture range is lost. For this reason, the 20 kHz cavity was
locked using a Pound-Drever signal generated at 3 MHz using a non resonant electro-optic
modulator while this was done for the 100 kHz cavity using a resonant modulator at 12 MHz.

The electro-optic is placed before the two mirrors used to inject the light into the cavity.
The second one presents a transmission coefficient equal to 10%. A portion of the reflected light
from the cavity is then captured by a custom-made rapid photodiode, with an HF output (up
to 50 MHz) and a DC output (up to some kHz). The high-frequency output of the photodiode
is then used to detect the 3 MHz or 12 MHz modulation and to create the error signal, using
a home-made demodulator. The servo-loop used to lock the cavity to the laser frequency drive
both piezoelectric actuators of the cavity. For this the error signal is split into two chanels,
a HF channel and a LF channel, using a simple RC passive filter. The cut-off frequency is
typically a few hertz. This way a slow and a rapid component are defined. The LF channel
drives the stack of piezoelectric actuators and can compensate cavity drifts with frequencies
up to some Hz and the fast channel drives the small piezoelectric actuator and is used to
compensate the flucuations up to some dozens of kHz, only limited by the resonance frequency
of the piezoelectric actuator.

Proportional-Integral gain electric circuit

The group has developed a custom-made Proportional-Integral (PI) gain electrical circuit com-
posed of two integrator stages where all necessary separation filters are already implemented.
Inspired by this concept we have adapted the existing electric circuits in order to better suit
for a double-channel, servo-loop cavity (or laser) lock-in. We have constructed a similar circuit
for the high-finesse filtering cavity. A simplified version of the PI circuit is drawn on Figure
3.12. The error signal is injected into the input of the circuit via a 50 Ω impedance. It first
passes through an inversion stage of amplification with a gain g=5. The second stage adds a
proportional or an integrator gain; a switch permits allows to choose between both modes. The
proportional gain helps to find a good gain configuration before switching the integrator on.
Once the integrator is turned on the amplification stage behaves as an active low pass filter,
its spectral response presenting a 6 dB/octave slope (G1). It is a global gain. The error signal
is the split into a slow and a rapid one. A simple RC circuit acts like a passive low-pass filter,
with a cut-off frequency fc = 1 Hz. The high-frequency part then goes through another ampli-
fication stage. It is essentially another integrator stage with a switch permitting to short-circuit
the feedback capacity and transform the amplification stage from a simple proportional gain
mode to an integrator mode. The feedback resistor, always active, allows the stage to act in
proportional mode up to a certain frequency defined by the cut-off frequency fc = 1/(2πRC).
The global circuit response up to fc is a combination of the two amplification stages and always
presents a 6 dB per octave slope. On the other hand, at high frequencies (f > fc) both stages
behave as pure integrators resulting in a 12 dB/octave slope. This concept provides a high gain
at low frequencies. Typically, it is desirable for the slow part to act at frequencies up to 10
Hz while the fast part is active from 10 Hz up to a limit frequency defined by the piezoelectric
resonance. The 6/12 dB point is thus defined by the frequency resonance of the piezoelectric
actuator. The high-frequency part of the error signal fed back to the system must be sufficiently
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Figure 3.12: The proportional-integral gain circuit (simplified version). The error signal is first
proportionally amplified. A second stage follows which may operate as a pure, global integrator.
A passive RC filter then separates the error signal in two components. The rapid component
goes through a second integrator stage thus attributing to the circuit response a 6/12 dB slope.
The low-frequency component is sent to a similar integrator stage.

dumbed in order not to excite the piezoelectric resonance. The final part of the circuit consists
of two supplementary amplification stages. One acts either as an inverting or non-inverting
amplifier permitting to change the global phase by π. The other is simply a summing amplifier;
it adds to the output signal a supplementary modulation signal called "modulation in", used
either to modulate the piezoelectric actuator and visualize the cavity Airy peak or to test the
response of the servo-loop. The slow part of the circuit is strictly identical to the fast one; the
only difference being that it acts on a slower frequency range. The network analyzer was used
to perform some diagnostic tests of the circuit. The output of the analyzer is injected into the
circuit via the modulation in input. The output signal is monitored by the analyzer while it
is also re-injected at the input of the circuit. We can thus test if the circuit compensates the
injected perturbation. Two tests were performed, one for each channel. Figure 3.13 depicts the
Bode diagram for the slow and rapid part. The perturbation is re-injected into the circuit, the
gain is progressively increased while the network analyzer is sweeping its response. Figure 3.13
shows the Bode diagram for the fast channel. By progressively increasing the rapid gain we
obtain a better noise rejection up to 50 dB. After that the oscillation regime is achieved (black
curve). The second stage integrator acts as a low-pass filter as well. This is why an apparent
performance degradation occurs at high frequencies.

3.2.4 Implementation of the filtering cavity

To implement the cavity into the experimental setup efforts were made to make as few changes
as possible. The filtering cavity being relatively long, the displacement of the old filtering
cavity was imperative. This would mean that both the measurement and the filtering cavities
would have to be rematched. The implementation of the cavity is drawn in figure 3.14(b). The
mirror reflecting the light towards the pump beam AOM of the double injection (3.14(b)) is
replaced with a polarizing beam splitter (PBS1). The beam reflected by PBS1 is injected in
the double-pass setup of AOM2 and thanks to a λ/4, when the beam comes back to PBS1 it
has a polarization perpendicular and is therefore transmitted towards the new mode cleaner.
Two mirrors are used to align the laser beam to the cavity. Just before the first mirror the
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Figure 3.13: The Bode diagram of the home-made PI circuit showing a 50 dB compensation as
the feedback loop gain is increased (yellow).

resonant EOM is mounted on a micrometric stage adjusting its height and its lateral position
. The reflection of the cavity is partly transmitted by mirror M and is monitored by a fast
photodiode. A system of two lenses is used to match the laser beam to the cavity. The cavity
has a length of 30 cm and the plane concave mirror has a radius of curvature of 1 m. By
applying equation 1.47 we find that a waist of 300 µm has to be placed onto the plane cavity
of the mirror. The standard procedure to match a cavity consists in using two lenses. Given
an initial waist size and position on the table, it usually requires 2 thin lenses to obtain a new
waist with the right size and position. In order to do our calculations and estimate the focal
values and position of the two thin lenses a beam profiler (THORLABS) was used to measure
the waist after the thin lens L. The waist meter gave a waist, w0, of 100 µm 12 cm after the thin
lens. We used this value in order to estimate the system of thin lenses to match the incident
beam and the cavity. In practice, there are a lot of error sources affecting the precision of
the waist measurement: the estimation of the position of the measured waist may present an
imprecision of at least 1 cm, the accuracy of the announced focal of the thin lens can also be
an important error to the final calculation. For this, while we initially choose the lenses based
on a theoretical calculation we match the cavity empirically. We apply a large sweep to the
stack piezoelectric of the cavity in order to visualize a full Free Spectral Range with the digital
oscilloscope. Then, by playing with the alignment mirrors Mx and My we deduce what changes
have to be made in order to increase the mode-matching coefficient ncav. If odd modes are
apparent it means that the My alignment is not optimal. On the other hand, if even modes
are apparent it means that the beam waist does not have the right size or z-position. In this
case the optimization implies the change of the lens position. A mode matching of 95% was
obtained for this cavity. All losses essentially are in the TEM02 mode, which means that the
waist of the beam is not optimal. However, 95% of mode matching for a filtering cavity is very
satisfying.

The position of the new cavity was blocking the probe beam propagation. The two mirrors
injecting the light into the old filtering cavity had to be moved. Efforts were made to displace
the mirrors in such a manner so that the beam optical path stays unaltered. However, once the
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Figure 3.14: A realistic representation of the optical table before (a) and after (b) the imple-
mentation of the high-finesse filtering cavity.

alignment procedure was done the cavity was matched by placing a thin lens with focal f=200
mm at a distance d=25 cm from the previous waist situated into the AOM of the pump beam
(w0 = 120 µm). We obtained a mode matching of 95%.

Once both cavities were functional (aligned and matched), we checked the mode matching
of the measurement cavity. Indeed, the implementation of the new filtering cavity proved very
destructive for the mode matching of the measurement cavity: we measured a ncav = 80%.
Given the importance of the mode matching of the measurement cavity -an imperfect mode
matching deteriorates the sensitivity- an improvement was imperative. The measurement cavity
has a very large free spectral range making the matching procedure difficult since all resonant
modes cannot be visualized at the same time. Instead the laser frequency has to be tuned back
and forth to visualize the transverse modes. In practice, once the estimated thin lenses are
placed and the cavity is aligned we observe on the oscilloscope the first two transverse mode
(TEM01 and TEM02). Normally, the 01 should be very small whereas an important portion
of the light should be coupled to the 02 mode, demonstrating a bad location of the waist. We
adjust the position of the waist by moving the thin lens and we repeat the process until a good
matching is obtained. In our case, each beam having a slightly different optical path, a different
system of thin lenses on each beam path helps for the mode matching of the filtering cavity.
Finally, we obtain a mode matching of 98% for both beams.

3.2.5 Difficulties met while implementing the high-finesse filtering

cavity

The principle of a feedback stabilization loop is to modulate the laser frequency for instance
around the resonance of the cavity. This modulation will be transformed into an intensity
modulation which will be detected and demodulated in order to generate an error signal which is



100 Chapter 3. Development of the experimental setup

(a) (b)

Figure 3.15: (a) The problem posed by the implementation of the high-finesse filtering cavity.
The measurement cavity vibrations blaser are imprinted into the laser frequency vibrations δν.
These vibrations result into a corresponding detuning δνFPF of the filtering cavity. (b) The
transmission of both cavities with their corresponding error signals.

essentially a derivative of the Airy peak whose amplitude is proportional to the cavity detuning
and whose phase varies by π around the maximum of the peak. In our case, two different
cavities -measurement and filtering cavity- are coupled in series and both of them require a
feedback loop in order to be stabilized at the same time. For the current experimental setup,
the feedback loops we tested and their configuration are depicted in figure 3.15(a). We denote
blaser, bFPF and bFPM the equivalent frequency noise of the laser, the filtering cavity and the
measurement cavity respectively. The laser frequency undergoes a global feedback loop resulting
in a frequency noise δν equal to:

δν = blaser − gδIFPM, (3.17)

where δIFPM is the detected intensity modulation, g is the feedback loop gain and blaser the
residual laser noise. In the ideal case where no filtering cavity is present and the feedback loop
gain tends to infinity (g → ∞) the laser frequency jitter would only include the measurement
cavity vibrations: δν = −bFPM. Since the term δIFPM is proportional to the residual fluctua-
tions of the measurement cavity, it is obvious that these fluctuations are imprinted to the laser
frequency fluctuations δν. On the other hand, the filtering cavity is stabilized locally thanks
to the two piezoelectric actuators mounted on its mirrors which controls its length:

δνFPF = bFPF − h(δν − δνFPF), (3.18)
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h being the local loop gain. This equation implies that the local feedback loop of the filtering
cavity must be able to compensate both its residual vibrations and the measurement cavity
vibrations. In particular, the residual jitter of the Ti:Sa laser is blaser ≃ 10 kHz. Both filtering
and measurement cavities present a high-finesse (2000 and 100 000 respectively) so they are
expected to be more sensitive to environmental vibrations than the laser cavity. A rough
estimation of their residual vibrations can be done empirically, by manually controlling the
laser frequency on their optical resonance and observing the rapid fluctuations around it. By
comparing these fluctuations to the known bandwidth of each cavity one can estimate the
residual jitter. In our experiment, we can manually maintain the laser frequency within the
bandwidth of the cavities. Therefore, we can assume that the filtering cavity noise is bFPM ≃ 50

kHz while the measurement cavity noise is bFPM ≃ 1 MHz.
Until now we have used a filtering cavity whose bandwidth is comparable to the one of the

measurement cavity. In particular, the mode-cleaner bandwidth is ΩFPF/2π ≃ 4 MHz while
the measurement cavity has ΩFPF/2π ≃ 1 MHz. When the measurement cavity servo-loop is
working, a non-zero “jitter” of some dozens of kHz is not compensated. As the mode-cleaner is
large compared to the measurement cavity this jitter is negligible and the δν term in equation
3.18 may be neglected. However, as figure 3.15(b) illustrates, this is not the case for the new
high-finesse filtering cavity with a bandwidth of 100 kHz.

Therefore, the high-finesse cavity having a very low bandwidth cannot compensate the
frequency jitter induced to the laser once the measurement cavity is locked. In particular, the
filtering always stays in the capture range of the lock in technique, largely thanks to the large
Pound-Drever error signal capture range and the good feedback loop quality at low frequencies
driving the stack piezoelectric actuator. On the other hand, the small, rapid piezoelectric
actuator cannot compensate the rapid measurement cavity vibrations which have very large
amplitudes compared to the mode cleaner bandwidth. This is actually the reason for having
tested two different cavities. We were first confronted to this problem while testing cavity 1
(νBP = 20 kHz). The impossibility of locking both cavities at the same time led us to cavity
2, the larger frequency bandwidth (νBP = 100 kHz) of which might make this effect smaller.
Unfortunately, this was not enough. Neither of the high-finesse filtering cavities could be locked
at the same time with the measurement cavity. To solve this problem, several solutions were
suggested: a feed-forward loop in order to help the local feedback loop to properly stabilize
the filtering cavity, the construction of new measurement cavity in which a rapid piezoelectric
actuator is implemented and the use of an acousto-optic modulator to make the two loop
completely independent.

3.2.6 Feed-forward stabilization

Figure 3.16: Principle of the feedfor-
ward stabilization technique.

The first idea we had in order to solve this problem
was to apply a feed-forward stabilization technique
whose principle is depicted in Figure 3.16. It con-
sists essentially in using the error signal of the mea-
surement cavity(derived by the Pound-Drever-Hall
scheme, both to drive the laser frequency and also
to inject it into the feedback loop used to stabilize
the high-finesse filtering cavity. If the feed-forward is
made with the right amplitude and phase, the feed-
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back of the filtering cavity only has to compensate its residual noise bFPF and not the noise
bFPM of the measurement cavity. An additional experimental difficulty is due to the fact that
pump beam is used to create the error signal of the measurement cavity. For this, we have
decided to use the homodyne detection to generate the error signal. We will start this section
by describing the changes made to the homodyne detection.

3.2.6.1 Homodyne detection changes

The changes realized to the homodyne detection were made at two levels: the photodiodes and
the summing/subtracting circuit.

Photodiodes

First, having realized that the homodyne detection photodiodes (FND100) presented a mediocre
quantum efficiency mainly due to time deterioration -we have measured it to be 73%- we have
decided to replace them with new ones. Since we have already constructed new photodiode
amplifiers for the balanced detection, we simply adjusted the existing electronics for the ho-
modyne detection. We have then constructed a second set of photodiodes to replace the old
ones. However, the photodiodes requirements for the homodyne detection are somewhat dif-
ferent. The homodyne detection consists of the Local Oscillator whose power is relatively high
(∼ 10 mW). Therefore, there is no need for the homodyne detection to possess very sensitive
photodiodes since each photodiode will receive typically ∼ 6mW of light power. The only re-
quirement is to ensure the that the saturation level is high enough. We have then chosen to use
a simplified version of the balanced detector photodiodes. The same Hamamatsu Si PIN S5971
were used presenting a quantum efficiency of 93% as well as the same low-noise, rapid OPA067
operational amplifiers. Two visible differences exist to the new photodiodes as opposed to the
balanced detector ones. First, the second amplification stage of the RF part no longer exists
since the signal is already strong enough at this stage. This change also dramatically increases
the bandwidth of the photodiode since the operational amplifier AD844 is the one who essen-
tially limits the bandwidth. In particular for the new photodiodes we obtain bandwidths of
over 100 MHz. A Pound-Drever error signal may then be easily obtained. The second change
consists in the careful choice of the load and feedback resistors Rload and Rfb in Figure 3.17(a)
depicting the photodiodes electronic design. We have chosen these values in order to obtain
saturation levels well over 10 mW. The balancing procedure described above for the balanced
detection was applied to the new homodyne detection as well.

Pound-Drever-Hall error signal generation

The generation of the error signal using the probe beam and the homodyne detection raises some
questions and problems. First of all, the actual electronics accompanying the optical detection
provide the possibility to acquire either the intensity quadrature or the phase quadrature of
the light via a commutator switching the circuit to either a summing or differential mode.
In order to generate a Pound-Drever error signal and at the same time to detect the mirror
displacements the electronic circuit must be adapted in order to obtain at the same time both
the subtraction and the addition of the two signals. A new electronic circuit was thus designed.
Figure 3.17(b) shows the drawing of the electric circuit. It consists of two parallel amplification
stages, one cabled as a summing amplifier and the other one as a differential amplifier, both
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Figure 3.17: (a) The pre-amplifier circuit used for the homodyne detection photodiodes. (b)
The electronic design of the circuit providing the addition and the subtraction of two signals A
and B at the same time.

having a gain equal to 5. The operational amplifier used is the high speed LM7171 presenting a
unity gain at 200 MHz. As explained in the first chapter the A+B stage provides the intensity
of the input beam while the A-B provides the phase. The A+B signal will be demodulated in
order to provide the error signal while the A-B will directly provide the displacements of the
mirror.

The resonant electro-optic modulator used to create the sidebands of the input field is placed
before the input beam separating into the Local Oscillator and the probe beam. Therefore, the
Local Oscillator is also phase-modulated. The presence of a local oscillator in the homodyne
detection adds a small difficulty to the Pound-Drever technique. In principle, even though the
local oscillator is phase modulated the error signal should not be affected at all. However, we
have observed that once the experiment is locked, the fluctuations, visible on the error signal
used to lock the local oscillator length, were imprinted onto the Pound-Drever signal of the
measurement cavity. In fact, this should be expected: the local oscillator movement should
be detected by the Pound-Drever-Hall technique. Indeed, the local oscillator carrier interferes
with the sidebands of the probe beam making the error signal sensitive to the local oscillator
movement. This is an important imperfection if this error signal is used to lock the pump beam
as we have described in the previous chapter how the movable mirror displacement contaminates
the intensity quadrature of the pump beam.

Experimental procedure

In order to correctly realize the feed-forward loop, the signal must be properly phase-shifted
and possess the correct amplitude. When we want to modulate the frequency of the laser and
visualize the Airy peak of the measurement cavity, we do so by applying a 100-Hz sweep to
the piezoelectric actuator of the laser ring cavity. In addition, a phase shifter is used in a
feed-forward scheme to help locking the filtering cavity while the measurement cavity is swept.
We decided to use the same phase-shifter in order to assist the lock-in of the new high-finesse



104 Chapter 3. Development of the experimental setup

Figure 3.18: Experimental demonstra-
tion of the feed-forward stabilization
technique helping the stabilization of
the high-finesse filtering cavity. The
probe beam is used to generate a
Pound-Drever error signal for the mea-
surement cavity. First, the probe
beam frequency is locked to the reso-
nance of the measurement cavity. The
rapid output of the FPM servo-loop is
then injected in the auxiliary input of
the filtering cavity loop via a home-
made phase-shifter with an indepen-
dent gain.

filtering cavity. This phase-shifter, however, is built especially for a monochromatic signal at
100 Hz. As it is time-consuming and not straightforward to design a wideband phase shifter
we decided to use this circuit unchanged for our purposes; the feed-forward will not be perfect
but still sufficient to lock the cavity.

The corresponding experimental setup is drawn in Figure 3.18. The old filtering cavity is
locked onto the laser frequency via a lock-in technique described in the introductory chapter. A
50-MHz resonant electro-optic modulator is installed in the probe beam. The A+B output of the
homodyne detection monitors the intensity of the probe beam which is demodulated to provide
the error signal of the measurement cavity. The error signal is then split into a LF channel
and a RF channel, driving, respectively, the piezoelectric actuator and the internal electro-
optic modulator of the laser. The high-finesse filtering cavity also presents two piezoelectric
actuators used to modify the cavity length. To realize the feed-forward loop, the output of the
servo-controller, controlling the electro-optic modulator, is sent via the 100-Hz phase-shifter
to the auxiliary input of the rapid piezoelectric actuator servo-controller. Once the resonant
electro-optic modulator (50 MHz) is installed and all cavities are aligned, we visualize on a
digital oscilloscope the error signals of both cavities (see figure 3.15(b)). A typical locking
sequence of all cavities is presented in Figure 3.19. The high-finesse filtering cavity lock-in is
independent from the measurement lock in cavity so that the experimental protocol may be
started by locking the measurement cavity (FPM - third and fourth graphs). During the first
28 seconds, the measurement cavity is not locked but stays in its capture range. When the
feedback loop gain is turned on the laser frequency immediately is stabilized in the measurement
cavity resonance. After 30 seconds, the loop gain of the filtering cavity (two upper graphs) is
also turned on. Immediately, the loop is working well but the frequency jitter of the laser
induced by the measurement cavity lock-in is not compensated and the filtering cavity does not
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Figure 3.19: Experimental demonstration of the feed-forward technique. A lock sequence of 100
seconds is displayed. First the measurement cavity is locked (FPM). When locking the filtering
cavity (feed-forward is in off position) -using the great capture range of the Pound-Drever error
signal we observe the great amplitude of the laser jitter which is not compensated by the FPF
servo-loop. Finally, the feed-forward gain is turned on and the filtering cavity transmission is
stabilized.

stay at resonance. Instead, we may observe these vibrations both on the error signal (red) and
the transmission of the cavity (blue). Finally, after 50 seconds, the feed-forward gain is also
turned on. The working point of the cavity then stays at maximum transmission. Nevertheless,
even if the fluctuations visible on the error signal are compensated by a factor almost 2, there
are still some residual fluctuations due to the fact that the phase-shifter we have used is not
ideal for our purpose. Indeed, the optimal configuration we have found for the phase-shifter
corresponds to a phase-shift equal to π meaning that the phase-shifter is working simply as
inverting amplifier only compensating other inverting amplifier found in the feedback loops.
We thus have not exhausted the potential of this technique. This gave us motivation to test an
acousto-optic modulator in order to stabilize the laser frequency onto the measurement cavity.

3.2.7 Use of an Acousto-Optic Modulator

In modern table-top, optics experiments, an acousto-optic modulator may be used for a number
of applications such as laser beam deviation, intensity modulation or frequency shift of the
beam. In the first chapter we have described the use of two acousto-optic modulators as an
essential part of our double-injection setup. They are used to induce a static frequency shift
between the intense and the probe beam, thus compensating eventual birefringence effects of
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the measurement cavity. We can take advantage of the same experimental scheme in order
to stabilize the laser frequency of a laser beam onto the resonance of a cavity by dynamically
altering the RF modulation driving the acousto-optic modulator. Then, by implementing the
acousto-optic after the high-finesse mode-cleaner cavity all cavities would become operational
at the same time.

Two main advantages come with this technique. First, the high-finesse cavity would obvi-
ously no longer have stabilization issues and the feed-forward scheme, significantly raising the
experimental difficulty, would no longer be necessary. Second, the acousto-optic presents a fast
spectral response which would permit a feedback bandwidth in principle up to the MHz, in
principle. On the other hand, it presents quite small frequency-shift capabilities. Therefore,
for slow drifts with great amplitude this system is not convenient and should be replaced with
a transducer with a low-frequency response but with great amplitude displacement, such as a
piezoelectric stack.

The major experimental difficulty when using an acousto-optic for this purpose is the can-
cellation of any possible pointing noise that would lead to a beam misalignment or an eventual
classical intensity noise. It is well known that this device shifts the laser frequency by diffract-
ing the laser field ω0 on the acoustic standing wave (ΩRF) in the crystal. This frequency-shift
comes with a deviation of the laser beam axis which can prove very problematic when the
beam is later coupled to a Fabry-Perot cavity. A double-pass configuration can be used to
overcome this problem [82]. In particular, after the beam has passed for the first time through
the acousto-optic, it must be re-injected exactly the same way. For this purpose it should be
directed to a retro-reflector optical system, sending the beam back to exactly the exact inverse
path.

A way to do this would be to place a spherical mirror whose radius of curvature coincides
with the distance between the mirror and the modulator, so that the diffracted beam is per-
pendicularly reflected by the mirror. However, a spherical mirror alters the optical properties
of the field as it acts on it as a lens. It would thus be preferable to use a flat mirror in order
to symmetrically reflect the laser beam.We have decided to proceed with a different type of
retro-reflector. A cat’s eye configuration is made of a thin lens and a plane mirror. The thin
lens serves two equally important purposes: first, in the geometrical optics framework, by plac-
ing the lens to a distance equal to its focal length it directs the beam perpendicularly to the
plane mirror so that the latter reflects it to the inverse direction. Second, the lens creates a
beam waist w′

0 onto the plane mirror so that the reflected beam is symmetrical to the incident
one. We define the coupling efficiency between the incident and diffracted light as their power
ratio. For the efficiency to be optimal, the incident field must present an optical waist w0 into
the modulator crystal whose corresponding Rayleigh length zR is comparable to the crystal
length l so that the beam wavefronts are perpendicularly coupled to the diffraction grating.
Furthermore, it is known that when the light is injected at a particular angle θB then it is said
that the modulator operates in the Bragg regime where only one diffraction order is produced
while all others are eliminated by destructive interference effects, thus increasing the efficiency.
The principle of a double-pass acousto-optic modulator system with a cat eye retro-reflector is
depicted in figure 3.20(a).

The mounting protocol of such a system applied to this experiment is the following. A
thin lens is placed prior to the modulator creating a waist (with a Rayleigh length which is
comparable to the modulator length), in the position where the modulator will be placed.
The size and position of the waist is measured with the ThorLabs scanning slit beam profiler
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Figure 3.20: (a) Principle of the double-pass modulator system using a cat eye as a retro-
reflector. (b) The coupling efficiency of this scheme to our experimental setup. An efficiency of
up to 50% is achieved over a bandwidth of 20 MHz.

(BP104-IR). The modulator is mounted on a Newport 3-axis system in order to orient it so
that the simple-pass efficiency is maximal. Typically, values up to 70% may be achieved. Once
only zeroth and first diffraction orders are visible at the output of the modulator a thin lens is
placed at a distance equal to its focal length with respect from the waist position.

The lens is mounted on a x− y translation stage as the position and orientation of the lens
is critical to the double-pass scheme. First, with the modulator turned off, by observing the
very weak lens reflection, we ensure that the 0th diffraction order passes through the center of
the lens so that it is not deflected. Afterwards, the modulator is turned on, we project the two
diffraction orders a few meters away with a mirror. We then observe the deviation between
both 0th and 1st orders and we adjust the z position of the lens so that the beams are perfectly
parallel. This way, the first geometrical criterion is fulfilled. Finally, we measure the waist
position with the beam profiler in order to set the plane mirror position. This last step is less
critical since, thanks to the cat eye configuration the Rayleigh length of the beam after the
thin lens is large and, consequently, the spot size varies slightly. As a first alignment test, we
observe if both reflected 0th and 1st orders a) co-propagate and b) are both well-aligned to the
downstream Fabry-Perot cavity (either the measurement or the filtering cavity).

We can also quantify the coupling efficiency of the double-pass scheme by measuring the ratio
between input and output powers as a function of the RF frequency driving the modulator.
Figure 3.20(b) depicts this efficiency. A double-pass efficiency up to 50% is achieved with
a bandwidth of several tens of MHz. Knowing that the measurement cavity vibrations are
equivalent to less than 1 MHz, this graph shows that any experimental imperfections of the
double-pass configuration, leading to a pointing noise, will be negligible compared to the needed
frequency-shift.

Experimental implementation

The double-injection scheme, already described in the first chapter of this thesis, contained two
double-pass modulator systems with only a plane mirror as a retro-reflector. Nevertheless, the
implementation of the above system after the high-finesse, filtering cavity involved important
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changes in both optical and electronic aspects of the experiment. Figure 3.21(a) depicts the
changes made on the optical table. A polarizing beam splitter is placed at the output of the
high-finesse, filtering cavity replacing the mirror (see figure 3.14(b)). In combination with
a quarter-wave plate it forms an optical circulator preventing the light to return to filtering
cavity. A half-wave plate is placed between the cavity and the beam splitter in order to send
the desirable power to the double-pass modulator. Typically, we have 50 mW of optical power
at the output of the cavity, which is largely sufficient to obtain a frequency-controlled pump
beam up to 10 mW, even when taking into account losses induced by various elements, mostly
by the AOM efficiency.

The beam is then directed towards the acousto-optic modulator implemented in a double-
pass configuration, as described above. We have used two thin lenses; one to create a waist
into the modulator and another to create a waist on the plane mirror.

The implementation changes to the experiment feedback stabilization loops were important.
The new, high-finesse cavity is stabilized by using as feedback transducers the two piezoelectric
actuators on which are mounted its two mirrors, as done in the feed-forward scheme described
earlier. However, it is obvious that the electro-optic of the laser ring-cavity can no longer be
used for the measurement cavity stabilization. Therefore, a natural choice is to use the high-
finesse as a reference cavity (FPE) on which the frequency laser is locked. The low-frequency
fluctuations will be compensated by the laser cavity piezoelectric actuator via the high-finesse
filtering cavity length while the high-frequency fluctuations will be compensated by the AOM.

We use the Pound-Drever error signal to realize a double servo-loop, driving the internal,
piezoelectric actuator of the laser at low frequency and the laser electro-optic modulator at high
frequency (see figure 3.21(b)). The LF and RF channels of the servo-loop are realized using two
identical NewFocus P-I servo-controllers (LB-1005). Two passive low-pass and high-pass filters
split the error signal in two parts each one used to drive the piezoelectric actuator and the
electro-optic modulator; both with a cut-off frequency fc = 1 Hz. The low-frequency output
of the servo controllers drives the stacked piezoelectric-actuator via a home-made, high-voltage
amplifier (1000 V) while the high-frequency drives the electro-optic modulator via a home-made
pre-amplifier (pre-ampli TEGAM) and a high-speed low-noise amplifier (TEGAM 2340). At
the input of the pre-amplifier a passive high-pass filter (fc = 1 Hz) is installed in order to damp
any DC component sent to the electro-optic modulator since it is not designed to be driven a
low frequency. Also, at the output of the pre-amplifier a low-pass filter (fc = 300 kHz) is used
to damp the high-frequency white noise generated by the latter.

Since the electro-optic modulator is used to lock the laser frequency to the new mode-cleaner
cavity, each beam -the pump and the probe- need a separate double-pass-configured acousto-
optic modulator in order to stabilize its own frequency to the measurement cavity resonance.
Furthermore, it is important that both modulators induce identical and fast frequency-shifts to
the beams while simultaneously they are frequency-shifted (cavity birefringence) so that both
resonate at the same time with the cavity. For this purpose, the output of the high-frequency
servo-controller is split in two parts, each one passing through a home-made TEGAM pre-
amplifier serving to add an independent gain and offset to each part. It is very crucial to
ensure the output of the servo-controller contains no DC component which would lead to a
stabilization imbalance between the beams. For this, a high-pass filter is coupled to the output
of the controller.

Both outputs of the pre-amplifiers present an offset of 2.5 V; for such a voltage the cat’s
eye retro-reflector of the double-pass modulator is configured in order for it to work in the flat
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Figure 3.21: (a) A realistic figure depicting the optical elements placements after setting up the
double-pass modulator after the high-finesse filtering cavity. (b) Experimental setup for the
two main feedback loops: the laser frequency is locked on the high-finesse filtering cavity via
a Pound-Drever technique at 12 MHz. The pump beam is used to generate an error signal for
the measurement cavity. The low-frequency component of the error signal drives the stacked
piezoelectric actuator altering the cavity length and consequently the laser frequency. The
high-frequency component drives simultaneously the two double-pass-configured acousto-optic
modulators. (c) The pump reflected intensity noise out of resonance (blue) and at resonance,
locked using the electro-optic modulator (green) and the acousto-optic modulator (red). Both
techniques give the same results.

regime of curve 3.20(b). The gain of the pre-amplifier driving the pump beam is randomly set
since the servo-controller controls the gain of the loop. On the other hand, the pre-amplifier
gain and offset of the probe beam is carefully set to obtain the right frequency offset and gain for
both beams. Again, a low-pass passive filter (fc = 300 Hz) is coupled to the output of both pre-
amplifiers damping any high-speed classical noise that could interfere at the analysis frequency
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(∼ 1 MHz). Finally, the output of each pre-amplifier is sent to two commercial variable-
frequency Voltage-Controlled -Oscillators (VCO, models AA Opto-Electronic (DRFA10Y-B-)
in order to control the frequency of the RF drive. The amplitude of the RF wave is set by
a double Tektronix generator providing two DC signals with a 5V amplitude. Finally, the
acousto-optic modulators are also AA Opto-Electronic-made (models MT200-A0.5-800).
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Figure 3.22: The beating between the
two beams as observed by the balanced
detection (red). In blue is the output of
the balanced detection when the optical
contamination is eliminated.

However, this scheme of electronic circuits has
some imperfections: the gain of the two parallel servo-
loops is identical resulting to a frequency jitter be-
tween the two beams over a range of 500 kHz. This
jitter can be observed by the beating of the two beams
either on the homodyne or on the balanced detection.
Figure 3.22 depicts this beating. While both beams
are locked to the measurement cavity we observe the
reflected intensity readout on a spectrum analyzer.
By creating an optical contamination of the pump
beam by the probe beam the beating becomes appar-
ent. The beating is in fact the frequency difference be-
tween the two beams; since this frequency difference
is not constant the beating is not monochromatic but
it rather dynamically jitters taking a lorentzial-like
form while the measurement is averaged by the spec-
trum analyzer (see figure 3.22). Special care must be
taken with respect to this imperfection since if this beating contaminates the chosen frequency
analysis window it could completely mask the optomechanical correlation signal.

In practice, the λ/2 and λ/4 plates, placed in front of the measurement cavity are well
configured in order to eliminate any optical contamination. Nevertheless, as the measurement
cavity interacts with the incident fields, it slightly rotates the reflected polarizations of the fields
in a dynamical manner, resulting in the appearance of this beating. During an experiment one
must frequently check if this parasitic beating is present. In practice, there is no need for the
probe beam to be completely resonant with the measurement cavity. One can slightly detune
the probe beam and yet only lose less than 3 dB of measurement sensitivity. By then detuning
the probe the beating can be tuned, away from the frequency analysis window.

In order to test the capabilities of this new experimental scheme and to ensure that no
additional classical intensity noise is induced on the pump beam we have performed the following
test. First, the high-finesse mode cleaner as well as the acousto-optic modulator were removed
from the optical table. This way, we could simply lock the laser frequency on the measurement
cavity by monitoring at the same time the reflected and incident intensity noise in and out
of resonance, using the balanced and homodyne detections, respectively. The corresponding
intensity noise graphs are depicted in figure 3.21(c). The blue graph (a) depicts the pump
incident intensity noise at 4 mW out of resonance, which is equivalent to 10 mW of light power
coupled to the measurement cavity ( the reflection coefficient being R0 = 60%). It should be
compared to the reflected intensity noise when the laser frequency is locked to the measurement
cavity with either the electro-optic or the acousto-optic modulator, curves b and c, respectively.
Ideally, all three measurements should give the same result, if no additional, classical noise is
present. However this is not the case: a 5 dbB noise excess is visible near the analysis frequency
at 1 MHz. It is present in both configurations, indicating that there is not a pointing noise
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Figure 3.23: (a) The new measurement cavity. The 20-ppm transmission ATFilm coupler is
glued onto a piezoelectric actuator. (b) The Airy peak of the cavity corresponding to a finesse
F = 50 000.

induced by the acousto-optic modulator. At the same time, a beam splitter is used to direct a
fraction of the incident field towards the balanced detector of the homodyne detection, where
no difference was observed between the in and out of resonance incident intensity noises, also
indicating that the excess noise is not induced by the laser source but by the measurement
cavity. The contamination effect of the reflected intensity by the motion of the movable mirror
is indeed observed.

3.2.8 Piezoelectric-implemented measurement cavity

In parallel to the above efforts in increasing the incident power we have also constructed a new
measurement cavity whose coupler is mounted onto a piezoelectric actuator. Even though the
diagnostics to explore the experimental limitations of this cavity were not conclusive, we will
give a brief description of the cavity in case of future use.

Until now, the design of the measurement cavity is a rigid and compact cavity, in order to
reduce the sensitivity to environmental vibrations. Nevertheless, the possibility of implementing
a piezoelectric actuator has been taken into consideration. The design inspired by the current
measurement cavity is depicted in figure 1.10 and has been modified in order to receive a
piezoelectric actuator. Since the goal was to use the actuator as a high-frequency transducer
for the feedback loop we have chosen to use fast, small ring actuators sold by Physik Instrumente
with an internal diameter of 7 mm, an external diameter of 8 mm and a width of 1 mm. The
idea was to couple this fast actuator to a small, low-weight coupling mirror coupler which would
replace the heavier, cylindrical mirror used in the current cavity. For this, we have purchased
from ATFilms a dielectric coating with a 20 ppm transmission coated on a silica substrate
presenting a diameter of 7.75 mm, a thickness of 4 mm and a radius of curvature of 1 m.

For the design of this cavity great care was given to how the small ATFilm mirror would
be mounted. For this we have designed two different parts: one where the mirror had to be
glued onto it and another that came with a little screw clamping the mirror at its side. Both of
them are made from plexiglass in order to provide an electrical insulation and at the same to be
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light enough for the correct compensation of the high-frequency vibrations. The development
of this cavity only reached the alignment stage where a cavity with a finesse of F = 50 000 was
obtained. Further characterization tests, notably stabilization tests, were dropped due to lack
of time. Figure 3.23(a) depicts the design of the cavity while figure 3.23(b) shows the obtained
finesse using the plano-convex movable mirror.
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Chapter 4

Contamination feedback loop

We have demonstrated in the second chapter a robust averaging technique capable of
extracting optomechanical correlations in the thermal regime. However, as we will see in the
following, the pump beam optical contamination of the intensity quadrature (equation 4.9) by
the motion of the mirror is susceptible to cover the quantum back-action signal we are seeking
to experimentally demonstrate, if the quality of the cavity locking is not sufficiently good.
This effect sets a severe limitation to the optomechanical correlations experiment. We will
start this chapter by presenting a quantitative description of the contamination effect on the
measured correlations and by giving an efficiency criterion on the quality of the feedback loop
stabilization. The success of the experimental observation of the quantum back-action depends
on whether this particularly demanding criterion is met. In the opposite case, the observed
correlations will have a classical origin. We will then explain the strategy chosen to surpass this
experimental problem. In particular, we will describe the efforts made towards the development
of a novel detection method enabling the accurate tracking of the cavity detuning, based on the
derivation of an error signal directly related to the contamination effect on the pump beam. We
will establish a model of this technique and a comparison with the Pound-Drever-Hall locking
technique will also be attempted. We will compare the robustness of this novel technique to the
Pound-Drever-Hall scheme, enabling a significant advance towards demonstrating the quantum
optomechanical correlations and more generally optomechanically-induced quantum optics. We
will finally present the experimental implementation in our setup and the characterization of
the feedback loop realized.

4.1 Contamination effect in a detuned cavity

The averaging time is not the only issue one has to deal with when detecting optomechanical
correlations. There is in fact a contamination effect of the reflected intensity quadrature of the
pump beam, deteriorating the efficiency of phase-intensity optomechanical correlations. We
have already seen in the first chapter that when taking the optical losses of the cavity into
account, the intensity of the reflected field presents a Lorentzian dip near an optical resonance
(Ψ ≃ 0). This corresponds to a non-unity reflection coefficient with a minimum R0 at resonance.
The first effect is a decrease of the optomechanical correlations due to a lower intracavity
intensity and the contamination of the pump beam by the vacuum fluctuations. This can
be easily handled by increasing the input power as long as R0 corresponds to a few dBs of
attenuation as it is the case for our cavity. However, due to experimental imperfections, the
condition of “perfect optical resonance” is in practice never met: the laser frequency is never
perfectly stabilized to the cavity optical resonance. In fact, even when the main locking loop is
locked, a frequency noise still exists which results to a corresponding jitter of the cavity working
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Figure 4.1: The side-of-the-fringe standard
technique to measure the mirror motion via
the reflected intensity: if the intense beam is
not perfectly at resonance with the cavity, it
becomes sensible to the mirror position.

point around the optical resonance. As de-
picted on Figure4.1, the working point of the
system will spend some time on the side of the
Lorentzian dip where the intracavity intensity
is sensitive to the mirror displacement due to
a non-zero derivative dR/dψ 6= 0. In other
words, a coupling between the output inten-
sity fluctuations and the phase/position fluc-
tuations occurs. This coupling does not ex-
ist when the cavity is perfectly resonant where
(dR/dψ = 0) (equations (1.53) and (1.55)). In
the following, we will quantify this effect by
generalizing the calculation already made in
the first chapter by taking this time a non-zero
detuning, ψ 6= 0. A detuned cavity modifies
the relations between the phase and intensity
quadratures. Let us start by recalling the typical input-output transformation equations of a
coherent field interacting with a single-ended, lossy Fabry-Perot cavity:

τ
dα

dt
=

√
Tαin +

√
Pαv +

(
iψ − γ

)
α(t), (4.1)

αout(t) =
√
Tα(t)− αin(t), (4.2)

from which, as before, the steady state amplitudes can be deduced:

α =

√
T

γ − iψ
αin, αout =

γ − P + iψ

γ − iψ
αin. (4.3)

Compared to the in-resonance case, the incident and reflected mean fields αin and αout are
phase-shifted with respect to the mean intra-cavity field α which, for simplicity reasons, is
considered to be real (α = |α|). In the non-zero detuning case, the incident and reflected mean
fields are given by αout = |αin|e−iθin and αout = |αin|e−iθout . By combing these equations with
equation (4.3), one can write down their relative phases:

e−iθin =
γ − iψ√
γ2 + ψ2

, e−iθout =
γ − P + iψ√
(γ − P )2 + ψ2

. (4.4)

These phase-shifts make the calculation of the reflected quadrature more complex since they
have to be taken into account when writing down the corresponding fluctuations. The fluctua-
tions of the incident and reflected field in the out-of-resonance case may be written:

(
γ − iψ − iΩτ

)
δα[Ω] =

√
Tδαin[Ω] +

√
Pδαv[Ω] + 2iαkδx[Ω], (4.5)

δαout[Ω] =
√
Tδα[Ω]− δαin[Ω]. (4.6)

Equation (1.10) defines any quadrature in function of its rotation in the phase-space. We can
thus write down the fluctuations δpout, δαin, δαv of the reflected intensity, the incident intensity
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and the vacuum, respectively:

δpout[Ω] = eiθoutδαout[Ω] + e−iθinδα∗
out[Ω],

δαin[Ω] =
1

2
e−iθin

(
δpin[Ω] + iδqin[Ω]

)
,

δαv[Ω] =
1

2

(
δpv[Ω] + iδqv[Ω]

)
.

(4.7)

We are particularly interested in calculating the reflected intensity fluctuations δpout. The
result is a very long expression; we will focus only on the term that involves the mirror motion
δx:

δpxout = −4kα

√
Tψ(−P + iΩτ)

∆

√
(γ − P )2 + ψ

2
δx[Ω], (4.8)

where ∆ = (γ − iΩτ)2 + ψ
2
. By neglecting cavity-filtering effects (Ωcav ≫ Ω) and for a small

detuning ψ ≪ γ, this can be reduced to the following simple expression:

δpxout[Ω] ≃ 2k
1√
Iout

dIout

dψ
δx[Ω]. (4.9)

Indeed, we find that the reflected intensity, once the cavity is detuned, is sensitive on the
movable mirror displacements: there is a contamination effect of the intensity quadrature by
the mirror displacement which is proportional to the slope of the Airy peak. Therefore, the
reflected signal intensity presents not only the incident intensity fluctuations responsible for
quantum correlations. This inevitably leads to fake correlations as both the pump intensity
and probe phase simply display the effect of thermal noise. The thermal correlation coefficient
Cδsout−δxT

no longer vanishes by time-averaging and may become comparable to the quantum
correlations Cδpsout−δxrad

.

4.2 Contamination effect on optomechanical correlations

We will continue this chapter by quantifying the effect of the contamination on the optomechan-
ical correlation function. The displacement of the movable mirror results from two independent
forces: the Langevin force FT , resulting in a thermal motion δxT , and the radiation-pressure
force Frad, resulting in a displacement δxrad[Ω] = χ[Ω]Frad[Ω]. We will consider that only the
intense pump beam contributes to the radiation-pressure force which is then given by:

Frad[Ω] = 2~αsδps[Ω], (4.10)

where the fluctuations of the intensity quadrature δps are derived by equations (4.5) and (4.7):

δps[Ω] =
√
T
[
(γ − iΩτ) cos θin + ψ sin θin

]
δpsin[Ω]

+
√
T
[
(γ − iΩτ) sin θin − ψ cos θin

]
δqsin[Ω]

+
√
P (γ − iΩτ)δpsv[Ω]− ψ

√
Pδqsv[Ω].

(4.11)
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We will now write the correlation function Cs−m[Ω] under the form:

Cs−m[Ω] = Copto[Ω] + Cx−x[Ω], (4.12)

where we have noted Copto[Ω] the term corresponding to the quantum optomechanical correla-
tions and Cx−x[Ω] the term corresponding to the classical correlations caused by the intensity-
phase quadrature coupling of the pump beam. Using the Wiener-Khinchin theorem, we may
write the spectrum of the correlation function:

2πδ(Ω + Ω′)Cs−m[Ω] = 〈δpsout[Ω]δqmout[Ω′]〉. (4.13)

Likewise, for two terms of the correlation function we write:

2πδ(Ω + Ω′)Copto[Ω] =
4
√
T

γ − iΩτ
kαm〈

(
δpsout[Ω]− δps,xout[Ω]

)
δxrad[Ω

′]〉,

2πδ(Ω + Ω′)Cx−x[Ω] =
4
√
T

γ − iΩτ
kαm〈δps,xout[Ω]δx[Ω

′]〉.
(4.14)

At low frequency (Ω ≪ Ωcav) the two terms of the correlation function can be written as follows:

Copto[Ω] =
8~k2Tαsαm

γ2
χ∗[Ω]Sp,sin [Ω]

Cx−x[Ω] =
8k2

√
Tαm
γ2

dI
s

out

dψ
Sx[Ω].

(4.15)

The ratio between these two terms can give us a tolerance condition of the cavity detuning
ψ on the optomechanical correlations. By considering a quantum-noise-limited incident beam
(Sp,sin = 1)) this ratio becomes:

∣∣∣∣∣
Cx−x[Ω]
Copto[Ω]

∣∣∣∣∣

2

=
16π2

I
s

out

(
dI

s

out

dψ

)2(
Sx[Ω]

λ2

)(
Sx[Ω]

Srad
x [Ω]

)
. (4.16)

The above expression shows us that the contamination effect on the optomechanical correlations
essentially depend on three parameters. First, it is proportional to the Airy peak slope defining
the sensitivity of the reflected beam to the mirror displacement. Second, it is also proportional
to the noise spectrum of the mirror displacement. Third, it is inversely proportional to the
signal-to-noise ratio between radiation-pressure effects and thermal noise. Hence, it is possible
to experimentally observe optomechanical correlations if the above ratio is sufficiently small,
i.e. if it is smaller than the desired measurement precision ε. Consequently, there is a critical
value of the cavity detuning ψε for which the optomechanical correlations are masked by the
contamination:

ψε
γ

=

√
R0

8F
√
I in

γ2

TP

(Sx[Ω]
λ2

)− 1
2

(
Sx[Ω]

Srad
x [Ω]

)− 1
2

ε, (4.17)

where R0 is the reflection coefficient as defined in equation (1.40).
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(a) (b)

Figure 4.2: (a) Intensity spectrum noise around the mechanical resonance frequency ΩM/2π =
1.1287 MHz of the movable mirror for different cavity detunings. From bottom to top
these graphs correspond to detunings −0.0009γ, −0.0082γ, −0.0128γ, −0.021γ, −0.042γ and
−0.097γ. The power of the pump beam was set at 1 mW. The contamination effect increases as
the cavity is further detuned. (b) Evolution of the contamination noise level as a function of the
aforementioned detunings at the mechanical resonance frequency ΩM . The red dots correspond
to the experimental measurements of graph (a), while the continuous blue line corresponds to
the theoretical model described by equation (4.9)

.

4.3 Characterization of the contamination effect

Here we will present the experimental evidence and characterization of the contamination effect
of the intensity quadrature by the motion of the mirror. This effect immediately manifests itself
under the form of an excess noise on the reflected intensity noise spectrum of the pump beam;
see fFigure3.21(c) for instance, where a 5 dB excess noise is visible compared to the quantum
intensity noise: this noise is induced by the thermal motion of the mirror, and can be easily be
compared to the motion measured by the homodyne detection.

To quantify this effect, we have performed a calibration of the contamination as a function
of the cavity working point. This experiment has been carried out using only the pump beam
locked to the measurement cavity using the Pound-Drever error signal. By adding an offset to
this signal the working point of the cavity is slightly detuned. This detuning is calibrated by
comparing the voltage offset to the error signal peak-to-peak amplitude [40]. For different off-
sets, the pump beam frequency is stabilized onto the measurement cavity and the corresponding
contamination effect on the intensity quadrature is measured using the same photodiode as for
the Pound-Drever error signal. We have explored only the blue side of the resonance, as in the
red side the cavity quickly presents parametric instability effects [74], making the measurements
unexploitable.

Figure4.2(a) presents the successive spectra of the reflected intensity Sout
I measured by the

spectrum analyzer for cavity detunings from 0 to −γ/10 and for an incident power of 1 mW.
The contamination is observed over a large frequency band around the mechanical resonance.
Thermal noise is larger and a clear signature of the contamination can be observed. The further
the cavity is detuned away from its resonance the greater the contamination becomes. Indeed,
as equation (4.9) implies, the amplitude of the contamination level should be proportional to



120 Chapter 4. Contamination feedback loop

the Airy peak slope, which is zero at resonance and maximum at the peak half-maximum.
We have thus tried to check this prediction by plotting the contamination level, given by the
measured intensity quadrature spectrum Sout

p at the mechanical resonance frequency ΩM , as a
function of the cavity detuning. This noise power is measured by the spectrum analyzer; the
intensity quadrature δp is recovered using δI = αδp. The mean intensity is deduced by the
corresponding detuning: as the cavity bandwidth is known, for a given detuning the intensity
can be deduced by the in-resonance intensity.

The measurements were done for an input power of the pump beam of 1 mW and are
depicted on Figure4.2(b) in red dots. The blue continuous line corresponds to the theoretical
fit using equation (4.9). This fit is plotted using the optical and mechanical calibrations of the
measurement cavity composed of mirrors 3021/13 and 07125/3, giving a bandwidth νcav = 0.9

MHz, which corresponds to a finesse F = 167 000 and a cavity length L = 500 µm, and a mass
M = 170 mg. We note that the experimental measurements are in very good agreement with
the theoretical model proving that the excess noise we observe is indeed a contamination effect
as modelized in section 4.1. Figure4.2(b) shows the strong dependence of the contamination
with the cavity detuning. In particular, around the optical resonance, the contamination first
varies very strongly before converging to a constant value as the cavity is further detuned. It is
clear that this effect sets an important limitation to the observation of the quantum correlations.
It is also clear that the Pound-Drever-Hall error signal does not provide the necessary cavity
detuning resolution for the feedback loop to sufficiently stabilize the measurement cavity. In
order to overcome this experimental difficulty, a robust technique is needed in order to monitor
the detuning while the cavity is locked. This efforts will be described in the following sections.

4.4 A lock-in scheme

Figure 4.3: Principle of a lock-in
scheme applied for a Fabry-Perot cav-
ity.

For the experiments described until now in this
manuscript, the Pound-Drever-Hall scheme is used to
stabilize the laser frequency to the cavity resonance.
While it is a robust stabilization technique, we used
to use another standard stabilization technique, ap-
plied to a wide range of experiments: the lock-in (LI)
technique. The derivation of the error signal is quite
similar to the Pound-Drever scheme, presenting how-
ever some important disadvantages. Whereas its im-
plementation in table-top optics experiments is quite
simple and permits to perform a lock-in either on the
maxima or on the side of a fringe, it presents a capture range limited by the width of the fringe
and the bandwidth is limited by the reference modulation (νBP < νref). During this manuscript
we attribute the name “Lock-in” (LI) to this technique.

The implementation of the LI scheme is depicted on Figure4.4(a). The system is probed
via a frequency modulation δνref . It may be induced by either modulating the frequency of the
laser or the cavity length via an integrated piezoelectric actuator for example. Once the laser
beam is coupled to the cavity, the reference modulation is superimposed to the residual cavity
noise and is later transformed into an intensity modulation at the same frequency Ωref/2π as
the reference modulation, which can be detected by a photodiode at the output of the cavity.
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(a) (b)

Figure 4.4: (a) Error signal derivation using a typical lock-in scheme: a phase- or frequency-
modulation νref , by modulating either by the frequency of the laser beam or the length of
the cavity. This modulation is added to the residual cavity noise and is in turn transformed
at the output of the cavity to an intensity modulation, proportional to the Airy peak slope
and to the cavity’s residual noise. The intensity modulation presents a slowly-varying envelope
containing the information of the cavity detuning and is then detected and demodulated in order
to obtain a corresponding error signal. (b) Typical lock-in scheme used in our experimental
setup: the reference modulation frequency is induced to the laser electro-optic modulator, while
the intensity modulation is monitored by a photodiode at the output of the cavity.

The intensity modulation is proportional to the Airy peak slope. Therefore, its amplitude varies
proportionally to the detuning amplitude. Moreover, the modulation is in-phase, on the left
side of the peak, and in opposite phase on the right side.

By demodulating this signal at frequency Ωref , one can obtain an error signal providing
an information on the cavity residual noise δν we are trying to compensate. In principle, this
technique seems identical to the Pound-Drever scheme: in both cases, a reference modulation
is coupled to the cavity and later transformed to an intensity modulation. In fact, the major
difference is the frequency of the reference modulation compared to the cavity bandwidth.
Indeed, if the reference modulation is much greater than the cavity bandwidth (δνref ≫ νcav),
it will be filtered by the cavity and no signal will be transmitted by the cavity. In this case, one
should observe the cavity response to the modulation on the beam reflected by the cavity. There
lies the main difference between the two schemes and this is actually why the Pound-Drever
signal is derived on the reflected beam; the sidebands created by the phase modulation are
outside the cavity’s bandwidth and are thus completely reflected (see Figure3.5(b)). In general,
the Pound-Drever makes use of a reference modulation frequency much greater than the cavity
bandwidth (νref ≫ νcav) in order to obtain the largest possible capture range and to be able to
measure high=frequency signals, of the order of νcav and even greater. This major difference
may radically change the performance of the feedback loop notably its bandwidth which is
set by the reference modulation. Such a lock-in feedback loop, will act only to frequencies up
to νref ≪ νcav; the reference modulation may be interpreted as the detection sampling rate
defining a cut-off frequency above which the loop becomes ineffective. In our experimental
setup, the measurement cavity presents typical bandwidth of 1 MHz and therefore a lock-in
scheme can efficiently act up to frequencies of some hundreds of kHz, whereas a Pound-Drever
signal may use a reference modulation up to 50 MHz, as in our experiment.
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Figure 4.5: The two error signals obtained by two different techniques: lock-in (blue) and
Pound-Drever (red), while the cavity is swept (left) and locked (right) using the PDH error
signal.

The implementation of the LI scheme in our experimental setup is depicted on Figure4.4(b).
We will now present a simple demonstration of this technique. The idea is to derive two
independent error signals using the two schemes described: one used to lock the measurement
cavity and the other one to monitor eventual drifts or lock-in imperfections not compensated by
the feedback loop. The Pound-Drever locking is implemented as described in the introductory
chapter: the feedback loop is realized by directly driving the laser frequency. The lock-in
error signal is derived using a digital lock-in amplifier (Stanford Research Systems SR810) also
providing the reference modulation driving the electro-optic modulator of the laser cavity which
is set at 100 kHz; the bandwidth of the PDH loop is limited well below this frequency so that
the reference is not compensated. The intensity modulation is finally detected by a photodiode
placed at the exit of the measurement cavity which uses the few ppm of the movable mirror
transmission. Figure4.4 presents both error signals while the cavity is swept and locked on
the Pound-Drever signal. When the cavity is locked, the contrast between the two signals is
evident: while the Pound-Drever signal rapidly oscillated around a near-zero value, the lock-in
signal, due to its low bandwidth, presents only components much slower than the Pound-Drever
error signal. On the other hand, it clearly shows that at low frequencies the cavity drifts over
almost half a cavity linewidth (∼ 0.4 νcav), demonstrating the lower efficiency of the stabilizing
feedback loop.

The are several experimental reasons for the Pound-Drever inefficiency, the most important
of which being that the Pound-Drever-Hall error signal is sensitive to any possible, parasitic
intensity modulation of the pump beam. Indeed, for the creation of the sidebands, the resonant
electro-optics modulators used are known to also generate an unwanted residual amplitude
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modulation (RAM) rejection at the drive frequency which eventually sets a direct limit to the
sensitivity of the error signal. The sources of this amplitude modulation are not completely
understood although some are well-known: parasitical reflections and temperature variations of
the modulator signal, or even spatial inhomogeneities of the light field coupled to the modula-
tor [83]. Furthermore, once the light field is phase-modulated, it travels a round-trip trajectory
towards the measurement cavity and finally to the balanced detector, passing through various
optical elements. The laser beam propagates through the various optical elements at normal
incidence. Even though the optical elements have an anti-reflecting coating, parasitical reflec-
tions do exist randomly forming low-finesse, Fabry-Perot cavities which result in an additional
intensity modulation. Finally, it is also known that the polarization of the incident beam should
also be horizontal with respect to the crystal’s normal axes. For this a polariser is placed in
the input and the output of the modulator. However, while for different incident polarizations
we have observed a strong dependence on the phase modulation efficiency, no evident change
has been observed on the derived error signal; we attribute this to the simultaneous incidence
of amplitude modulation making its elimination experimentally complex.

The lock-in scheme allowed to experimentally demonstrate the low-frequency drifts of the
cavity even though the feedback loop was on. In the following, we would like to use a combina-
tion of the two error signals, the Pound-Drever and the lock-in signal. However, the LI signal
not only presents a low sensitivity, mainly due to the extremely low transmission of the mea-
surement cavity, but also possible parasitic offsets. In the next section, we will then describe a
novel technique using a contamination measurement to perform a truly independent detuning
effect, that may lead to the pump beam phase-intensity quadrature decoupling.

4.5 Contamination-based lock-in

The idea is to create an artificial contamination on the intensity quadrature δpsout which may
be detected in order to deduce the cavity detuning ψ(t). Indeed, as we have shown in a section
4.1, the unavoidable optical losses P (e.g. scattering, absorption, etc...) in a high-finesse Fabry-
Perot cavity couple the reflected intensity quadrature to the mirror displacements δx, with a
slope proportional to the cavity detuning ψ. By considering that the contamination effect is
much greater than then intensity shot noise (Sps,xout

≫ 1) we may assume the intensity read out
only contains the term δps,xout given by equation (4.9):

δps,xout[Ω] ≃ −4kαs

√
T (−P + iΩτ)ψ

∆

√
(γ − P )2 + ψ

2
δx[Ω]. (4.18)

We also assume that the detuning is small compared to the cavity losses (ψ ≪ γ, P ). The last
expression then becomes:

δps,xout[Ω] ≃ −4kαs

√
T (−P + iΩτ)ψ

∆|γ − P | δx[Ω]. (4.19)

Let us now introduce an external excitation applied onto the movable mirror at frequency
Ωd/2π:

Fext(t) = F0e
iΩdt, (4.20)



124 Chapter 4. Contamination feedback loop

inducing a mirror displacement

δx0[Ω] = χ[Ω]F0δ(Ω− Ωd). (4.21)

If the motion of the mirror is driven at its mechanical frequency Ωd = ΩM , the reflected intensity
quadrature becomes:

δps,xout[Ω] ≃ −4kαs

√
T

|γ − P |
−P + iΩMτ

∆

i

MΓMΩM
F0δ(Ω− ΩM )ψ. (4.22)

By using the following expression:

δIsout[Ω] = I
s

outδp
out
s [Ω], (4.23)

between the measured intensity and its associated quadrature, and by demodulating the output
intensity δIouts,x at frequency ΩM with a phase φ, one gets the following error signal:

Verr = Re
[
− 4k

√
Iouts αs

√
T

|γ − P |
−P + iΩτ

∆

i

MΓMΩM
F0ψe

−iφ
]
. (4.24)

In order to further simplify the above expression, we will assume the demodulation frequency
smaller than the cavity bandwidth and neglect any cavity-filtering effects (ΩM ≪ Ωcav). The
error signal then becomes:

Verr(t) ≃ −4k
√
Iouts αs

T

|γ − P |
F0

MΓMΩM

[(γ − P )2 + ψ
2
]1/2

(γ2 + ψ
2
)2

ψP sinφ. (4.25)

The last expression gives the resulting signal after detection and demodulation of the reflected
intensity at frequency ΩM . Let us notice, that the demodulation angle φ of the local oscillator, if
the movable mirror is driven at its mechanical resonance, must be set at π/2 as the mechanical
response is quadrature with the driving. Finally, if we consider the case of small detunings
(ψ ≪ γ), equation (4.25) shows that the error signal is directly proportional to the cavity
detuning (Verr ∝ ψ). Therefore, in the linear regime, a direct measurement of the cavity
detuning may be performed using this technique. It is now very interesting to compare this
novel scheme to the traditional Pound-Drever-Hall technique by examining its experimental
limitations.

4.5.1 Experimental realization

The idea of the contamination feedback loop is to create an error signal by performing a direct
measurement of the contamination effect on the reflected intensity quadrature. Several options
exist in order to drive the mirror at a given frequency. The most common one would be to use
a piezoelectric actuator coupled to the movable mirror in order to modulate the cavity length.
For reasons stated in the first chapter, this solution is not considered for our experiment (rigid,
compact measurement cavity to reduce environmental vibrations, etc...). Second, a laser phase
modulation may also be used to induce an apparent cavity length variation. However, since
it is desirable to completely decouple the mirror driving from the double injection scheme of
our setup, it has been decided to drive the mirror with an external radiation-pressure force. A
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(a) (b)

Figure 4.6: (a) Experimental setup used to create an error signal based on a contamination
measurement: an acousto-optic modulator modulates the intensity of the beam at a frequency
Ωm ∼ 1 MHz, which in turn induces a mirror motion at the same frequency, creating a con-
tamination signal at the reflected intensity quadrature of the pump beam. This signal is finally
demodulated, providing the corresponding error signal. (b) Error signal derived using the con-
figuration in (a). Blue dots are the experimental measurements with their error bars while the
continuous red line is the theoretical fit using equation (4.24).

system composed of a half-wave plate and a polarizing beam splitter is installed at the output
of the laser in order to split the beam into two parts: one is used to feed the double-injection
experimental setup and the other one to create an auxiliary beam that may be used to directly
drive the movable mirror of the measurement cavity with radiation pressure. The Ti:Sa laser
provides 2 W of laser power at optimal operation. As only some hundreds of milliwatts are
necessary to feed the double injection, about 1 W is still available for the auxiliary beam. In fact,
the optical setup is similar to the one used to create an active feedback loop and to cool down the
movable mirror (1.22(a)). The auxiliary beam is first intensity-modulated by an acousto-optic
modulator. It operates in the Bragg regime where we can reach a coupling efficiency, and thus a
modulation depth δI/I, up to 80%. The zeroth-order diffraction is reflected upon the back-end
of the movable mirror as depicted on Figure4.6(a). We use an acousto-optic modulator sold by
AA opto-electronics (MT200-A0,5-800) driven by RF driver (AMPA-B). For the alignment, a
system of two mirrors and a thin lens -roughly focusing the beam onto the end mirror- is used.
The measurement cavity is placed inside a vacuum chamber (ST300 4He cryostat) presenting
optical front and rear access; the rear access is used to inject the auxiliary beam and drive
the movable mirror with radiation pressure. Two precautions must taken while aligning the
auxiliary beam. First, for the mirror drive to be maximum, it is important for overlap between
the auxiliary beam and the mirror mechanical mode to be optimized.

Second, efforts must be made so that the auxiliary beam is coupled to the movable mirror
under a non-zero angle to prevent any coupling with cavity. Indeed, since the cavity presents
a very high finesse (∼ 105), even a low mode-matching of the high-power beam with the cavity
would eventually damage the dielectric coating of the mirrors. Since the cavity is placed several
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Figure 4.7: (a) Resulted coherent drive of the movable mirror, measured by the homodyne
detection, with the auxiliary beam at a power Paux = 200 mW and a modulation depth of 50%.
A signal 40 dB above the maxima of the thermal resonance is achieved. The thermal spectrum
depicted on blue has been acquired using a resolution bandwidth of νRBW = 4 Hz. (b) Effect
of the coherent drive on the reflected intensity spectrum: the low-frequency classical laser noise
is convoluted with the mirror motion creating sidebands at a range of approximately 400 kHz.

centimetres away from the rear access -which is only 1-cm large- of the cryostat, the possible
manipulation of the laser beam in order to properly align it is limited. Nevertheless, a fairly
good alignment is possible achieving a mechanical response 40 dB above the thermal noise at
the mechanical resonance ΩM (see Figure4.7(a)). The driving level achieved on Figure4.7(a) is
obtained with relatively poor optical characteristics of the auxiliary beam: 200 mW of incident
power and a modulation depth of 50%. It may be optimized by increasing the auxiliary beam
power up to 1 W and increasing the modulation depth by an optimization of the coupling
between the beam and the acousto-optic modulator.

The corresponding displacement peak may be observed on the homodyne detection output
when the probe beam is coupled to the cavity but also at the output of the balanced detection
of the pump beam since its intensity is contaminated by the mirror motion. The A+B output
of the balanced detection is then sent to a home-made demodulator consisting of a low-pass
filter (MiniCircuits PLP 1.9 MHz), a frequency mixer (MiniCircuits SBL-1) and a second low-
pass filter presenting a cut-off frequency fc = 300 kHz (MiniCircuits LPFBOR-300 kHz). The
corresponding error signal is depicted on Figure4.6(b). The blue circles correspond to the
experimental points provided by a digital oscilloscope. The red continuous line is the theoretical
fit done using equation (4.24) where we have used the optical and mechanical parameters of
the cavity measured independently. As Figure4.6(b) indicates, this signal qualifies as an error
signal as it presents a steep slope within the bandwidth of the cavity and changes sign around
zero-point. We note that, as the error bars associated to the experimental points suggest, the
sensitivity of the detuning measurement is maximal very close to resonance. Indeed, as the
cavity is further detuned, either to the blue or to the red side, the reflected intensity becomes
more contaminated by the mirror thermal motion, thereby deteriorating the signal-to-noise
ratio of the measurement. Let us note that this detection is also sensitive to the thermal noise
of the mirror; in particular the contamination lock-in error signal also contains the mirror
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Figure 4.8: (a) The lock-in error signal with the mirror excitation turned off (blue) and off
(red). (b) The error signal while the laser frequency is stabilized onto the measurement cavity.
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Figure 4.9: (a) The spectrum of the lock-in error signal with the feedback loop turned on and
(b) the response of the loop to a coherent perturbation.

displacement Xφ(t). This is directly verified by observing the resulted error signal without the
coherent drive of the mirror. In this case the thermal noise is demodulated at the resonance
frequency ΩM as Figure4.8(a) shows. While sweeping the cavity around its resonance the
auxiliary beam is turned off and the corresponding contamination error signal is observed with
a digital oscilloscope. While the auxiliary beam is off, the red curve shows that the demodulated
quadrature Xφ is clearly visible while the pump beam interacts with the cavity. On the other
hand, as soon as the mirror is driven, a nice error signal is derived. In the following, we have
used the contamination lock-in error signal also to lock the laser frequency onto the cavity. The
stabilized error signal is depicted on Figure4.8(b). Its peak-to-peak amplitude (calibrated in
the cavity-bandwidth units) gives a rough estimation on the stability of the loop. The cavity
detuning is better than 6%.

The movable mirror is coupled to a thermal bath characterized by a temperature T. The
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fundamental gaussian mode of the plano-convex movable mirror indeed drifts some Hz in a
time interval of 30 minutes. Any temperature variation, due to the mirror heating by the
coupled laser field, lead to a drift of the mechanical resonances of the mirror. As we can see in
Figure4.7(a), the mirror is driven to its fundamental high-Q, mechanical resonance. Its width
being 1 Hz, any drift results in a decrease of the response to the drive, as well as in a phase-shift
of the local oscillator used for the demodulation. Both variations are of multiplicative nature
and, as we will see later on, have no impact on the offset of the error signal but only change the
global gain of the servo-loop. We have written a LabVIEW script in order to automate the drive
frequency adjustment. For that purpose, we have interfaced the generator driving the acousto-
optic modulator and the spectrum analyzer coupled to the output of the homodyne detection,
measuring the reflected phase of the probe beam. The sequence is as follows: every 5 minutes
an amplitude measurement of the excitation modulation peak on the intensity quadrature is
realized by the spectrum analyzer. Then, if the amplitude difference between two successive
measurements is greater than 1 dB, a frequency measurement of the modulation peak is realized
and the program sends the corresponding command to the generator. In practice, after 30
minutes of experimental operation, the mirror reaches an equilibrium and frequency adjustment
of the drive is no longer necessary.

This scheme provides an extreme stability on a time scale of one hour. We have finally
measured the spectrum of the error signal while the feedback loop is turned on. The corre-
sponding spectrum is depicted on Figure4.9(a), where we observe that the bandwidth of the
loop reaches 500 kHz as we systematically couple low-pass filters to the lock-box outputs at
some hundreds of kilohertz. Finally, with a network analyzer, we have measured the response
of the feedback loop to a monochromatic external perturbation up to 1 MHz. The perturbation
was induced by a frequency modulation produced by the electro-optic modulator of the laser
cavity. The spectrum of the error signal is thus reproduced while the bandwidth of the loop
is also evident as depicted on Figure4.9(b). Let us note that this Bode diagram is made while
the laser frequency is stabilized and the feedback loop is closed. The open-loop diagram is also
necessary in order to quantify the feedback quality. In order to realize the open-loop measure-
ment, it would be necessary to manually - or at low frequency- keep the laser frequency onto
the cavity resonance. However, the residual vibrations of the cavity overwhelm the measured
signal making the open-loop Bode diagram impossible to measure.

4.5.1.1 Low-frequency measurement of a signal

We have finally tested the low-frequency sensitivity of the contamination lock-in error signal.
For this the double-injection scheme is used. Both beams are coupled to the measurement
cavity. As Figure4.10(a) shows, a laser beam, drawn in blue, is used to create the error signal
which is then used to stabilize the laser frequency via a double-pass acousto-optic modulator.
At the same time, a signal beam is also coupled to the cavity and is used to induce a low-
frequency displacement of the movable mirror. Let us note that even if it is not depicted on
the figure, the signal beam is also coupled to a double-pass AOM used to lock its frequency
but also to modulate its intensity. The VCO that drives the AOM is driven by a 100-Hz pulse
generated by a function generator. Therefore, the intensity of the signal beam is modulated
at 100 Hz with a modulation depth of 100%. Even though the AOM of the signal beam is
placed before the filtering cavity, when the beam is turned for 10 ms it stays in the capture
range of the cavity’s lock-in loop. The 100% depth intensity modulation passes the filtering
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(a) (b)

Figure 4.10: (a) The intense (blue) beam is used to create the contamination error signal. The
laser frequency is locked to the cavity using a double-pass AOM. A signal, beam (red) is also
coupled to the measurement cavity inducing a low-frequency displacement. The signal beam
is intensity-modulated (modulation depth of 100%). The induced displacement is measured by
the contamination error signal and compensated by the feedback loop. The feedback signal
driving the AOM is visualized with a digital oscilloscope. For simplicity reasons, the optical
path of the signal beam is not shown. (b) Derivation of the resulting displacement measurement
for different signal beam powers.

cavity undisturbed. An attenuator serves then to set the power of the signal beam sent into
the measurement cavity.

Since for a closed loop the error signal is zero, the readout of the resulted displacement
is performed by observing the output voltage which drives the AO modulators to compensate
the perturbation. The error signal beam (blue) is set to 1.5 mW while the power of the signal
-red- beam is swept from some µW s up to some hundreds of µW s. The DC output of the
homodyne detection also monitors the reflected intensity of the signal beam. Figure4.10(b)
shows the measured displacements for three different input powers of the signal beam. Each
subfigure contains two curves. The top one corresponds to the output of the feedback loop
V err
out(t) compensating the induced displacement. The second one is the intensity modulation of

the signal beam measured by the homodyne detection.

In order to calibrate the resulted displacements, a ramp is used to drive the laser frequency
via the AOM and sweep the cavity. The Airy peak -or the error signal- is then simultaneously
visualized along with the ramp on a digital oscilloscope. One can then compare the ramp to
the cavity linewidth and derive the corresponding displacement. subfigures (i) to (iii) show
the measured displacement as the input power is increased. In subfigure(i) the displacement is
barely visible as it is lost within the residual vibrations of the cavity, while subfigure(iii) shows
a situation where the low-frequency displacement is clearly visible on the correction signal. The
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resulted low-frequency displacement is found to be ∆xmin ≃ 10−13 m.

4.5.2 Experimental limits

What we proposed earlier is to replace the phase-modulator by directly inducing a mirror dis-
placement. Even though the analogies between the two schemes are visible, we will show that
there exist important differences which may potentially lead to significant improvements on the
limits of the cavity detuning measurements, up to several orders of magnitude. As we have
discussed earlier, two categories of limits could potentially affect the sensitivity of any detection
method in general. On one hand, the slope fluctuations, the fluctuations of the transfer func-
tion which are of multiplicative nature (such as low-frequency intensity fluctuations). These
fluctuations result in a finite accuracy for the measurement. On the other hand, some noises
always add to the measured signal, and imply sensitivity limits for the measurement (such as
a residual amplitude modulation caused by the phase modulator for instance).

4.5.2.1 Slope fluctuations

Equation (4.24) shows that Verr(t) appears as the product of a gain function G(pi) (where pi
denotes the different parameters defining G) with the detuning ψ̄. It is thereby clear that any
gain variation could not be distinguished from a detuning variation. Mathematically, this is
equivalent to write that the increases of Verr along G and ψ̄ respectively are identical:

( dVerr)pi = (dVerr)ψ̄ ⇒ Gδψ̄ = δGψ̄. (4.26)

The above equation implies that a relative increase of the gain function G results in an apparent
relative increase of the measured detuning, δψ̄/ψ̄ = δG/G, such that the direct effect of gain
variation is a finite accuracy over the detuning determination. Two potential sources of slope
fluctuations are identified in our experimental setup: the thermal noise also detected by the
demodulation procedure and the frequency drifts of the mechanical resonance due to the heating
of the mirror. We will now quantitatively estimate the effect of these two parameters.

Thermal noise

The principle of the demodulation procedure used to extract the quadratures of the mirror
motion is depicted on 4.6(a). Naturally, one important source of slope fluctuations arises from
the thermal noise detected when measuring the mirror displacement. Thermal noise then has
to be taken into account when writing the displacement δx[Ω] in equation (4.22):

δIouts [Ω] ≃ 4kᾱs

√
Īouts

√
TP

γ2|γ − P | × ψ̄ × χ[Ω] (F0δ(Ω− Ωd) + FT[Ω]) . (4.27)

This additional term results in a slowly varying noise term Xφ(t) which corresponds to a
thermally-driven motion of the mirror [24], which must be included in the expression of the
demodulated signal:

Verr(ψ̄) = 4kᾱs

√
Īouts

√
TP

γ2|γ − P |

{
F0Re

(
i

MΩMΓM
eiφ
)
+Xφ(t)

}
ψ̄. (4.28)
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This noise term is, in turn, responsible for a statistical dispersion of the slope ∆Verr(ψ̄) given
by:

∆Verr(ψ̄) = 4kᾱs

√
Īouts

√
TP

γ2|γ − P |∆Xφψ̄, (4.29)

with ∆Xφ =
(
kBT/MΩ2

M

)1/2
for a demodulation bandwidth large compared to ΓM [24]. Using

equation (4.26), we can finally give the uncertainty caused by thermal noise (for φ = π/2):

δψ̄

ψ̄
=

∆Verr(ψ̄)

Verr(ψ̄)
=
δxT
δx0

, (4.30)

where δxT = ∆Xφ denotes the thermal induced motion variance and δx0 = F0/MΩMΓM the
coherent oscillation amplitude. Practically, the mechanical mode is driven more than 40 dB

above thermal noise as is depicted on Figure4.7(a). We note that in order to compare the two
measured amplitudes, one must take into account the resolution bandwidth νRBW of the thermal
noise measurement. In this case, the thermal noise acquisition was made with a νRBW = 100

Hz. The monochromatic drive is then almost 500. In reality, the mechanical susceptibility is
not purely Lorentzian: the multimode nature of the mirror results in a so-called thermal back-
ground, which can be considered as being frequency-independent around a specific resonance.
Demodulating over a large bandwidth can make this background contribution comparable or
even larger than the one of the mechanical resonance in ∆Verr(ψ̄). A larger driving amplitude
will then be necessary in order to compensate the additional noise induced by such a large
demodulation bandwidth.

Mechanical frequency drifts

Another important source of slope fluctuations arises from the mechanical frequency drifts
δΩM, which are mostly due to the fluctuations of mirror temperature due to the laser-induced
heating. Their effect on Verr(ψ̄) can be written as follows:

δVerr(ψ̄) = 4kᾱs

√
Īouts

√
TP

γ2|γ − P |F0Re

(
∂χ

∂ΩM
[ΩM]eiφ

)
ψ̄δΩM

= −4kᾱs

√
Īouts

√
TP

γ2|γ − P |F0
ΓMδΩM

M(ΩMΓM)2
ψ̄.

(4.31)

The resulting equivalent detuning fluctuations are therefore given by:

δψ̄

ψ̄
= −δΩM

ΩM
. (4.32)

For ΩM/2π in the MHz-range, the effect of a few Hertz drift will hence be negligible. Note that
the above expression applies as long as the frequency drift us small compared to the resonance
width δΩM ≪ ΓM. However, in our system, we use an ultra-low dissipation mechanical mode
(ΓM/2π ≃ 1Hz) and the drift effects may significant.
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4.5.2.2 Detection noise

The detection noise is more critical than the slope noise, as it sets a lower detection floor.
Taking it into account leads us to include a supplementary noise term in equation 4.22:

δIouts [Ω] = δIshot[Ω] + 4kᾱs

√
Īouts

√
TP

γ2|γ − P | ψ̄δx[Ω]. (4.33)

In our experiment, the reflected intensity detected is quantum-noise-limited. Therefore we may
write the spectrum of the reflected intensity fluctuations as follows:

Sout
Is [Ω] = Īouts +

(
4kᾱs

√
Īouts

√
TP

γ2|γ − P |

)2

ψ̄2Sx[Ω]. (4.34)

Assuming the movable mirror is coherently driven at frequency Ωd = ΩM, and integrating the
above equation along the demodulation bandwidth νDS, one obtains:

〈Verr(ψ̄)2〉 = Īouts νDS +

(
4kᾱs

√
Īouts

√
TP

γ2|γ − P |

)2

ψ̄2δx20, (4.35)

where we noted δx0 = (F0/MΩMΓM). The quantum intensity noise thereby implies a detection
limit ψ̄min given by:

ψ̄min

γ
=

1

4k
√
Ī ins

× γ2(γ − P )

TPδx0
×√

νDS. (4.36)

For a detection bandwidth νDS = 1kHz, an input power Ī ins = 1mW, a wavelength λ = 800 nm,
a finesse F = π/γ = 300 000, external losses P = 0.4 γ, and a driven amplitude δx0 = 0.1 pm,
we find ψ̄min/γ ≃ 2× 10−7, which corresponds to a drift resolution on the order of 100mHz for
a cavity bandwidth in the MHz-range.

4.5.3 Comparison with the Pound-Drever scheme

An interesting question is the quantitative comparison of the lock-in optomechanical detection
with the PDH technique, the latter being thoroughly described in section 1.6.4 and [40]. Its core
principle consists in detecting the intensity of the field reflected by the cavity, at the frequency
ΩPDH of the sidebands applied to the incident light using a phase modulator. In the ideal case,
the phase-modulated incident field writes:

αin(t) = ᾱineiβ cosΩPMt, (4.37)

with β denoting the phase modulation depth. However, commercial, birefringent medium-
based phase modulators do not provide a pure phase modulation, the light amplitude being
unavoidably slightly modulated as well at the frequency of phase modulation (RAM):

αin(t) = ᾱin × (1− β′ − β′ cosΩPMt) e
iβ cosΩPMt, (4.38)
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where β′ denotes the rejection depth. The field reflected by the cavity αout(t) can be thereby
written as [40]:

αout(t)

ᾱin
= (1− β′)×

(
J0rψ[0] + iJ1rψ[−ΩPM]eiβ cosΩPMt + iJ1rψ[ΩPM]e−iβ cosΩPMt

)

− β′

2
eiβ cosΩPMt

(
J0rψ[0] + iJ1rψ[−ΩPM]eiβ cosΩPMt + iJ1rψ[ΩPM]e−iβ cosΩPMt

)

− β′

2
e−iβ cosΩPMt

(
J0rψ[0] + iJ1rψ[−ΩPM]eiβ cosΩPMt + iJ1rψ[ΩPM]e−iβ cosΩPMt

)
,

(4.39)

where J0 = J0(β) and J1 = J1(β) denote the zeroth- and first-order Bessel functions respec-
tively. Keeping only the reflected intensity terms oscillating at frequency ΩPM, and neglecting
the second-order terms in J1 and β′, the above expression yields:

IoutΩPM
(t) = −2(1− β′)J0J1Ī

in
(
Im{r⋆ψ[0](rψ[−ΩPM] + rψ[ΩPM])} cosΩPMt

+ Re{r⋆ψ[0](rψ[−ΩPM] + rψ[ΩPM])} sinΩPMt
)

−J2
0β

′Ī in|rψ[0]|2 cosΩPMt. (4.40)

Demodulating at frequency ΩPM and low-pass filtering the reflected intensity, we obtain (as-
suming ψ̄ ≪ γ):

Verr(ψ) ≃ (1− β′)J0J1Ī
in × 2T

γ2
ψ̄ − J2

0β
′Ī inR0, (4.41)

with R0 = (T−P )2/(T+P )2 the cavity reflection coefficient at the optical resonance. The above
equation shows that the obtained signal is the sum of two terms. The first term, proportional to
the detuning, corresponds to the contribution which identifies to the signal expected in the ideal,
pure phase-modulation case (though with a slope reduced by a factor 1/(1−β′) due to reduced
carrier intensity). The second term is independent from the detuning: as a phase-modulation
converts the phase fluctuations of the incident light into intensity variations, an intensity-
modulation converts the intensity changes into an intensity variation as well. In absence of any
intensity fluctuation, this second term simply results in an offset in the error signal, without any
further consequence on the detuning sensitivity. Instead, in presence of intensity fluctuations
δĪ in, this corresponds to an additive noise, limiting thereby the sensitivity to a lower limit ψ̄min

given by:

ψ̄min/γ =
J0β

′R0γ

2TJ1
× δĪ in

Ī in
. (4.42)

For the above cavity parameters, and with an intensity noise depth δĪ in/Ī in = 1% (typically
reached using a standard stabilization scheme [24]), a phase-modulation depth of 1 rad (corre-
sponding to the optimum parameter [40]), and a rejection depth β′ ≃ 0.01 (corresponding to
a residual intensity-modulation depth of -40 dB [83]) we find that the Pound-Drever detuning
sensitivity is limited to the level of ψ̄min/γ ≃ 3 × 10−5, which is 2 orders of magnitude above
the sensitivity reached with the lock-in optomechanical detection method.





Chapter 5

Towards quantum correlations at

ambient temperature

The main effect preventing us from observing quantum optomechanical correlations at room
temperature is the contamination of both beams by thermal noise. The thermal motion of
the mirror is obviously seen by the probe beam and when the cavity is not perfectly tuned at
resonance this motion is also imprinted on the intense beam. This creates fake correlations
which completely mask the quantum radiation pressure noise. This effect, as we will show in
this chapter, leads to a demanding criterion on the stability of the measurement cavity. In
chapter 3, we described the improvement of our laser source in order to provide a quantum-
noise limited laser light up to 10 mW at 1 MHz. This increases the radiation-pressure effects by
one order of magnitude, leading to a corresponding increase of the signal-to-noise ratio between
radiation pressure and thermal noise. Furthermore, we have developed a novel and robust
technique in order to perform a direct measurement of the contamination. This signal can be
used to either dynamically control the cavity detuning and then the contamination level in a
feedback loop or to perform a feed-forward technique by post-selecting useful data. We will
present in this chapter the efforts made towards this direction. We will begin by providing
a quantitative description of the multi-modal character of the plano-convex movable mirror
in order to show that, in our case, it is preferable to choose a analysis frequency without
any mechanical resonance of the mirror. We will then expand the stability tolerance criterion
(equation 4.16) to the out-of resonance case. Finally, we will discuss the choice of the frequency
analysis and the development of an experiment that may allow the observation of radiation-
pressure effects in the near future.

5.1 Multi-modal response of the movable mirror

Radiation pressure and thermal noise both present very similar effects on a harmonic oscillator
such as our movable mirror. They both come from the response of the resonator to an external
force. However, the multi-modal character of the mirror displacement sets a fundamental
difference between both. Indeed, whereas the same radiation-pressure force is applied to all
vibrational modes of the mirror. Thermal noise can be described as the sum of all the responses
of the modes to uncorrelated Langevin forces. This difference is the reason why a spectral
dependence of the mirror mechanical response occurs. It can be shown [24] that the intra-
cavity field induces a deformation on the surface of the movable which is equivalent to en
effective, one-dimensional displacement of the mirror x(t). In particular, this displacement is
given by the overlap integral between the mirror deformation and the incident laser beam, with
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an optical waist w0 situated on the mirror:

x(t) = 〈u(t), υ20〉, (5.1)

where υ(r) =
√
2/πw2

0e
−r2/w2

0 is the spatial profile of the coupled light field and u(t) is the
projection of the mirror deformation on the propagation direction of the field. An effective
mechanical susceptibility χeff can be introduced to describe the mirror motion induced both by
thermal and radiation pressure effects. The mirror motion x is:

x[Ω] = χeff [Ω](Frad[Ω] + FT [Ω]), (5.2)

where the effective susceptibility is given by the sum of the mechanical susceptibilities over all
modes weighted by the overlap between the light field and the modes profiles un:

χeff [Ω] =
∑

n

〈un, υ20〉χn[Ω]. (5.3)

The susceptibility of each mode is given by equation (??):

χn[Ω] =
1

Mn[Ω2
n − Ω2 − iΩ2

nφ
2
n[Ω]]

, (5.4)

with Mn the mass of the nth mode and φn[Ω] = Ω/(ΩnQn) the corresponding loss angle. The
radiation-pressure force is a global force applied to all modes given by:

Frad[Ω] = 2~kI[Ω], (5.5)

whereas the overall Langevin force FT is the incoherent sum of all the uncorrelated Langevin
forces FnT for modes n given by:

FT [Ω] =
∑

n

〈u(t), υ20〉
χ[Ω]

χeff [Ω]
FT,n[Ω]. (5.6)

As in the mono-modal treatment presented in the first chapter, the spectrum of the Langevin
force is related to the dissipative part of the susceptibility (i.e. the imaginary part) and can
then be written as (equivalently to equation 1.74):

Seff
T,n = −2kBT

Ω
Im(

1

χeff [Ω]
). (5.7)

The spectrum of the radiation-pressure force will be given by equation (1.69). We are specifically
interested in the signal-to-noise ratio, in the case of multi-modal motion of the mirror Srad

x /Seff
T,n,

which is given by:
Srad
x

Seff
T,n

= 32
~
2F2I in
λkBT

−Ω

Im[1/χeff [Ω]]
. (5.8)

For the mono-modal case the second term becomes equal to 1/(MΩφ) and does not depend on
the frequency. The latter equation reduces to equation (1.77). However, in the multi-modal
case the signal-to-noise ratio has a strong frequency dependence as the effective susceptibility
is a quite complex function.The calculation of the effective mechanical susceptibility is an
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extremely complicated task: first, a perfect knowledge of all vibrational modes is needed and,
second, the numerical calculation of such a sum is straightforward. Nevertheless, there exists an
alternative method [84], [85], [86], which, combined with the fluctuation-dissipation theorem,
gives the static effective susceptibility by calculating the mirror deformation to a constant force.
This approach gives a low frequency susceptibility equal to [87]:

χeff [0] =
1− σ2

√
2π(1− iφ0)Ew0

, (5.9)

where σ is the Poisson coefficient, E the Young module of the material and φ0 the loss ange .

5.1.1 Thermal background effect on the response

We will briefly describe the mechanical background effect on the mechanical response. We
can distinguish three different cases: at the mechanical resonance Ωn, at lower and at higher
frequency.

The mechanical resonance corresponds to the orthogonal normal modes of the mirror. For
a small displacement, the linear response theory applies and they can be considered completely
independent from one another. Moreover, it can be shown that [70] the response of the mirror is
the superposition of the response of the resonant mode alone and the response of the mechanical
background of the low frequency of all near-resonant modes. In particular, one may write down
the ratio between the mirror response at resonance and at low frequency:

∣∣∣ χeff
n [Ωn]

χeff
n [Ω = 0]

∣∣∣
2

≃ 2πE2w2
0

(1− σ2)2(M eff
n )2Ω4

nφ
2
n

, (5.10)

where we have supposed that φ0 ≪ 1 and M eff
n = Mn/〈un, υ20〉. Using E = 7.3 × 1010 Pa and

σ = 0.17 we find numerically a ratio of 106, indicating that near a mechanical resonance the
motion is mainly ruled by the resonant mode. The signal-to-noise ratio at resonance is:

Srad
x [Ω ≃ 0]

STx [Ω ≃ 0]
=

32~2F2I in
λ2kBT

1

M eff
n Ωnφn

. (5.11)

Far from resonance, i.e. at low frequency, or in between two resonances, the effective sus-
ceptibility χeff is ruled by the mechanical background. A good estimation of the mechanical
susceptibility is then given by equation (5.9). The corresponding signal-to-noise ratio is ob-
tained by combining equations (5.8) and (5.9):

Srad
x [Ω ≃ 0]

STx [Ω ≃ 0]
=

32~2F2I in
λ2kBT

(1− σ2)2Ω√
2πEw0φ0

. (5.12)

By comparing the two equations above, for the parameters of the fundamental gaussian mode
with M1 = 153 mg, Ω1/2π = 1.1 MHz and φ0 = φ1, we find a a signal-to-noise ratio 500
times better out of resonance than at resonance; at low-frequency the thermal background
responds more than 20 dB better to radiation pressure better than the independent vibrational
mode. Finally, we note that just above the mechanical resonance, destructive interference
effects between the vibrational mode and the mechanical background occur, leading to an anti-
resonance on the mirror response. This effect, already described in section 1.8.4, leads to
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dips in the signal-to-noise ratio at the antiresonance frequency. It can be shown that in the
anti-resonance the mirror responds up to several dozens of dB less.

5.2 Measurement of the mirror response to a radiation-

pressure force

By taking into account the frequency dependence of the multi-modal mechanical response, the
choice of the most favourable analysis frequency band for the optomechanical correlations is an
open question which must be addressed experimentally. As done for the classical optomechani-
cal correlations experiment (see chapter 5), the idea is to apply a radiation-pressure force onto
the movable mirror via the pump beam and observe the mechanical response via the phase-shift
of the probe beam. In the following, we will describe the experimental scheme that may allow
to demonstrate the signal-to-noise Srad

x /STx spectral dependence and to choose the analysis
frequency band on which we will attempt to perform the quantum correlations experiment.

5.2.1 Experimental setup

The core of the experimental setup for this kind of measurement is of course the double-injection
scheme, already described in the first chapter. We have seen that our setup can provide two
different ways to drive the movable mirror: either using the auxiliary beam or the pump beam.
For the classical correlations we wish to observe, it is preferable to use the pump beam. Indeed,
it is crucial for the overlap between the probe beam and the excitation point to be optimal. This
can be done more easily using the pump beam as the double-injection configuration ensures a
perfect alignment of both beams. On the other hand, no such guarantee exists for the auxiliary
beam. Experimentally, it is then difficult to ensure that the incident beam really probes the
excitation point. Furthermore, the fact that the pump beam is coupled to an ultra high-finesse
cavity (F ∼ 105) can prove to be favourable as with an incident beam of 1 mW the intra-
cavity field can reach up to several Watts, making radiation-pressure effects greater; whereas
the auxiliary beam can reach at best 1 Watt.

In order to create a modulation, two possible solutions can be taken into consideration. As
we have done for the classical correlations, the electro-optical modulator can be used. However,
we have described, that the radio-frequency parasite emitted by the high voltage driving the
EOM considerably complicates the measurement (see section 2.1.1). A first attempt has been
made by driving the EOM at the half-frequency Ω/2. The non-linear response of the modulator
then provides an intensity modulation at frequency Ω (see figure 2.1). The frequency of the
output of the network analyzer has to be divided by 2. It is actually the electronic circuit
used to extract the quadratures of the mirror motion as depicted in figure 1.20(a) [24]. It
consists of a Voltage Controlled Oscillator controlled by a Phase Locking Loop (PLL). The
major drawback of this scheme is that the capture range of the lock-in is limited to some kHz.
When the input modulation is out of this range, the circuit must be manually tuned by means
of a potentiometer in order for it to become operational. However, the automatization of the
measurement is severly compromised as every few minutes one has to tune the electronic circuit.

We have then chosen to reduce the complexity of the setup by using the acousto-optic
modulator used to lock the frequency of the pump beam on the measurement cavity (see
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Figure 5.1: A network analyzer is used to measure the mechanical response of the movable
mirror. It induces an intensity modulation via an acousto-optic modulator and monitors the
output of the homodyne detection at the modulation frequency.

figure 3.21(b)). Indeed, the VCO driving the acousto-optic modulator can modulate the inten-
sity of the beam by modulating the amplitude of the acoustic wave inside the AOM crystal.
The corresponding setup is depicted on Figure 5.1. The network analyzer output provides a
monochromatic signal which is sent to a pre-amplifier presenting a gain and an offset (TEGAM
pre-amplifier). A 5 V offset is then added to the signal in order to set the working point of the
AOM [70]. The signal is then sent to the chain of VCO and RF amplifier driving the crystal
of the modulator. This results into a monochromatic intensity modulation of the pump beam
which in turn applies a radiation-pressure force to the movable mirror. In parallel, the same
AOM is also used to lock the laser frequency on the cavity. The probe beam, also coupled to
the cavity, then probes the mirror displacement created by the pump beam. The read out of
the homodyne detection is then plugged into the input of the network analyzer. This way, the
mechanical response of the mirror can be measured at a specific frequency. The great advantage
of the network analyzer is that it can perform frequency sweeps with the given resolution; large
sweeps of the mechanical response can then be realized in order to demonstrate ratio spectral
dependence of the signal-to-noise.

The procedure also requires to measure the thermal noise of the mirror. This is done by
simply turning off the intensity modulation and sending the output of the homodyne detection
to a spectrum-analyzer. It measures the noise on the same frequency range to be compared
with the previous measurement. An additional programming work had to be done in order
to completely automatize this measurement. In particular, we have written two LabVIEW
routines controlling the two apparatuses by automatically changing the frequency range of
the measurements, reading the data and saving them into a computer. The written routines
are drawn on Figures 5.2(b) and 5.2(a). They are based on the official LabVIEW drivers,
downloaded by the National Instruments website, for the spectrum analyzer N9020A MXA
and the network analyzer E5061B ENA. Both routines consist in defining a start frequency
and a span for each sweep, and, once the sweep is finished, a pace changing accordingly the
sweep window. In particular, routine 5.2(a) contains two subroutines: one to set the sweep
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(a) (b)

Figure 5.2: LabVIEW routines controlling the frequency range window of the spectrum analyzer
(a) and the network analyzer, (b).

parameters (frequency range, resolution bandwidth, averaging) of the spectrum analyzer and
one to fetch to the computer the measurement. Likewise, the principle of routine 5.2(b) is the
same, the difference being that we have added a delay clock, whose time constant coincides
with the sweep time, so that the analyzer completes the measurement before it is fetched by
the routine to the computer.

The experimental protocol is as follows. First, one has to ensure that both beams are well
isolated from each other and that no optical contamination occurs (see section 2.1.2) by carefully
orienting the associated plates. Second, eventual electric parasites must be eliminated. Indeed,
during our first test we realized that the probe beam was contaminated by an electric parasitic
modulation present in the feedback loop: the Pound-Drever error signal being sensitive to
intensity fluctuations was directly re-injecting the modulation to both beams via the acousto-
optic modulators. This flaw has been solved by setting the bandwidth of the feedback loop
to some hundreds of kHz with a passive low-pass filter. Once both beams are coupled to
the measurement cavity the acquisition may start. For the mechanical response acquisitions
we have chosen the following parameters: a span νspan = 100 kHz, a resolution bandwidth
νRBW =100 Hz, averaged 3 times, each measurement taking 3× 60 seconds. We have probed a
frequency span larger than 1 MHz (from 900 kHz to 2 MHz). The total acquisition time was
roughly 5 hours. The spectrum analyzer was configured with a 100 kHz window span as well,
each acquisition being averaged 10 times. Thanks to the rapidity of the spectrum analyzer, the
total acquisition time was limited to roughly 30 minutes. Finally, the incident powers of the
pump and probe beam are set at 1.5 mW and 100 µW, respectively.

5.2.2 Experimental results and signal-to-noise ratio

A sample of the results are depicted on Figure 5.3. The red curve corresponds to the thermal
noise over a range of 300 kHz. We observe a part of the mechanical modes superimposed
to the thermal white background. Among various modes, we also observe the fundamental
mode at a frequency 1.128 MHz. The blue curve corresponds to the measurement provided
by the network analyzer. It depicts the mechanical response of each vibration mode and the
mechanical background. A perfect correspondence can be noticed between the thermal modes
and their response, indicating that each mode response can be considered as the one of an
independent harmonic oscillator, in very good agreement with equations (5.3) and (5.6). We
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Figure 5.3: (a) The acquisitions as provided by the network and spectrum analyzer, Srad
x [Ω] and

STx [Ω], respectively. (b) The obtained relative, signal-to-noise ratio between radiation-pressure
effects and thermal noise.

note that the two measurements -thermal noise and mechanical response- were not performed
simultaneously but rather with a time difference of a few hours. Therefore, a frequency offset
due to thermal drifts between the blue and red curves naturally exists. These mechanical drifts
are of the order of 1 Hz. This can be problematic only for the high-Q mechanical modes, such
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as the fundamental gaussian mode at Ω/2π = 1.128 MHz. Such a drift can lead to a wrong
estimation of the signal-to-noise ratio around the fundamental mode. However, this is not the
case for the other mechanical modes as they are large compared to the thermal drifts.

Furthermore, at the right of some vibrational modes, the anti-resonance can be observed
caused by a destructive interference between the mechanical mode and the mechanical back-
ground as predicted in section 5.1.1. Figure 5.3 (green curves) shows the ratio between the
two measurements: the mechanical response and the thermal noise. It provides an information
on the relative signal-to-noise ratio between radiation-pressure and thermal noise. We observe
that its spectral dependence is relatively flat out of mechanical resonance, with the exception
of the high-frequency region where the anti-resonance appears. Indeed, a thermal drift leads
to an overestimation of the signal-to-noise ratio at the fundamental mechanical resonance. We
notice however that, for the high-Q mechanical modes the observed anti-resonance is in fact
an artificial effect due to the sweep velocity of the monochromatic modulation. Indeed, Fig-
ure 5.3(c) depicts the fundamental mechanical resonance and its response for a close-in sweep.
Both measurements were performed with a time gap of a few seconds only in order to avoid
any drifts, due to the much smaller resolution bandwidth ( νBP = 1 Hz). When calculating
the ratio of the two measurements we see that there is actually no difference in the mechanical
response between the fundamental mode and the background. On the other hand, if we take a
closer look on another frequency region, (Figure 5.3(d)) a different behaviour is observed: the
mechanical background mechanical response to radiation pressure is up to 15 dB better than
the resonance, as the dips in the green curve imply.

Indeed then, the response of the mechanical background is at least the same or better than
the resonance and, moreover, its flat dependence over frequency provides a relative freedom on
the frequency analysis window in which the correlation experiment can be performed. Finally,
these graphs do not provide the absolute value of the signal-to-noise ratio Srad

x /STx . This can
be done by comparing the intensity modulation used to apply the radiation pressure force with
the intensity shot noise. This provided a calibration factor of the relative signal-to-noise ratio
shown in 5.3. Let us note that when performing this measurement, the spectrum analyzer
should be set to its maximal resolution bandwidth -in our case νRBW = 1 Hz, in order not
to overestimate the signal-to-noise ratio. In this case, the modulation peak is 70 dB over the
intensity shot-noise, leading to an absolute signal-to-noise ratio of -40 dB at a pump power of
10 mW which, according to equation [70]

|Cs−m|2 =
Srad
x

Srad
x + STx

, (5.13)

corresponds to a correlation coefficient |Cs−m|2 = 10−4.

Let us finally note that this estimation is done by considering a lossless cavity. Indeed,
this calibration assumes no loss, thus underestimating the signal-to-noise ratio. We may adjust
the above estimation by using equation (1.53). By assuming no cavity-filtering effects, the
intracavity intensity fluctuations δp are:

δp[Ω] =

√
T

γ
δpin[Ω] +

√
P

γ
δpv[Ω]. (5.14)

In the calibration scheme described above. a classical intensity modulation δpmod[Ω] is used
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with a spectrum given by:

Smod
p [Ω] =

T

γ2
Smod
p,in [Ω], (5.15)

while the quantum fluctuation spectrum is:

Sp[Ω] =
2

γ
Sp,in[Ω], (5.16)

where we used the equality Sp,in[Ω] = Sv[Ω]. The corresponding radiation-pressure effects are
proportional to Smod

p [Ω] and Sp[Ω] and their ratio is thus given by:

Smod
x [Ω]

Srad
x [Ω]

=
Smod
p [Ω]

Sp[Ω]
=

T

T + P
×
Smod
p,in [Ω]

Sp,in[Ω]
. (5.17)

Let us assume the general case where an intensity modulation peak is n dB above shot noise;
the second term of the above equation is Smod

p,in [Ω]/Sp,in[Ω] = 10n/10. If the intensity modulation
peak induces a mirror displacement of m dB above thermal noise, such that Smod

x [Ω]/ST [Ω] =

10m/10 , we obtain:

Smod
x [Ω]

ST [Ω]
=
Smod
x [Ω]

Srad
x [Ω]

× Srad
x [Ω]

ST [Ω]

=
T

T + P
×
Smod
p,in [Ω]

Sp,in[Ω]
× Srad

x [Ω]

ST [Ω]
.

(5.18)

Finally, the signal-to-noise ratio between radiation-pressure-induced displacement and thermal
noise is given by:

Srad
x [Ω]

ST [Ω]
=
T + P

T
10(m−n)/10. (5.19)

Indeed, the lossless cavity estimation may lead to a slightly underestimated signal-to-noise ratio
since taking into consideration the vacuum fluctuations leads to a correction factor of (1+P/T ).
Our measurement cavity presents losses P = 30 ppm and T = 10 ppm leading to an increase
of the signal-to-noise ratio by 40%.

5.3 Towards quantum radiation-pressure effects at room

temperature

In this section we will describe the recent development of the existing experimental setup
towards the observation of radiation pressure effects at room temperature by means of averaging
the measured fluctuations in order to cancel thermal noise. We have also seen that the optical
losses of the cavity in combination with an imperfect laser frequency stabilization lead to a huge
phase-intensity quadrature coupling leading to fake optomechanical correlations. By modelling
this effect we have derived a very strict stability criterion. In the following sections, we will
briefly describe some theoretical ideas in order to make the stability criterion more flexible.
Equation (4.16) implies that in order to do this, one must optimize the signal-to-noise ratio
Srad
x /STx while at the same time minimizing thermal noise.
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5.4 Stability criterion

Ideally, the optomechanical correlation measurement for our system should be carried out at
low-frequency. At low frequency the mirror motion Sx is minimized while, at the same time, the
signal-to-noise ratio Srad

x /STx can be the same or even better. Furthermore, out of resonance
the measurement bandwidth can be increased, drastically decreasing the averaging time. Let us
reduce the stability criterion, given by equation (4.16, for the low-frequency case by combining
equations (4.16), (1.74), (5.8) and (5.9):

Ψp
γ

≃
√
R0

2TP

√
T

T + P

~Ω

kBTm

p

φ0
, (5.20)

where Ω is the frequency at which the correlations are measured, and φ0 is the loss angle
associated to the thermal background. Let us assume that the background losses are those of
the plano-convex mirror modes (φ0 = 10−6). In this case, the observation of optomechanical
correlation would need a laser frequency stabilization reaching an efficiency of Ψp/γ ≃ 10−2.
For a cavity with a bandwidth Ωcav/2π = 1 MHz this corresponds to a detuning tolerance of
10 kHz, which seems to be experimentally feasible.

5.5 Laser drift effects in optomechanical correlations

Let us re-examine the contamination signal measured by the reflected intensity quadrature. We
will assume small detuning drifts Ψ compared to the cavity linewidth γ (Ψ ≪ γ) and estimate
the corresponding result on the correlation function Cs−m given by equation (2.20):

Cs−m(T ) ∝ 1

T

T∫

0

δpsout(t)δq
m
out(t) dt. (5.21)

In presence of such detunings the reflected signal fluctuations are given by equation (4.9) and
take the form:

δpsout(t) = αδpsin(t) + βΨ(t)δx(t). (5.22)

Therefore, as done in chapter 2 (see equation (??)), the correlation function may be written as
the sum of two terms:

Cs−m(T ) = Copto(T ) + Cx(T ). (5.23)

We will be interested in the contamination term:

Cx(T ) =
β

T

T∫

0

Ψ(t)δx(t)δqmout dt. (5.24)

By assuming now thermal noise much greater that radiation-pressure-induced displacement
δxT ≫ δxrad and by neglecting the shot-noise contribution in the reflected probe beam fluctu-
ations, one gets:

Cx(T ) ≃
8F
λ

β

T

T∫

0

Ψ(t)δx2T (t) dt. (5.25)
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Assuming that the detuning Ψ is a random noise statistically independent from thermal noise
δxT , this equation may be written1:

Cx(T ) ≃
8F
λ

β

T 2

T∫

0

Ψ(t) dt

T∫

0

δx2T (t
′) dt′. (5.26)

We have assumed that the measurement time T is much greater than the coherence times
of the thermal τT and detuning noises τΨ (T ≫ τΨ, τT ). We have seen that at the thermal
regime where δxT ≫ δxrad the optomechanical correlations are obtained over measurement
times T greatly exceeding the mechanical coherence time τM . By then assuming the detuning
fluctuations Ψ with a timescale larger that the mechanical coherence time τΨ ≫ τM , the above
equation becomes:

Cx(T ) ≃
8Fβ〈δx2T 〉

λ

1

T

T∫

0

Ψ(t) dt. (5.27)

Equation (5.27) shows that the contamination effect is simply filtered during the measurement
time T. Averaging for a time long enough should therefore, in principle, enable cancelling
the contamination issue. For example, detecting thermally-limited quantum optomechanical
correlations at the level of 10−1 would require ≃ 10 s using a span of 500 Hz (deduced from
equation (2.22)). The condition on the detuning (with losses on the order of φ0 ≃ 10−3) is
Ψ/γ ≃ 10−2, according to equation (5.20). Instead, it is enough to average the measurement
for τd = 100 × 10 s, since the contamination effect would be filtered by a factor of 100, as
equation (5.27) indicates.

In section 5.2.2 we have described the procedure in order to experimentally determine the
signal-to-noise ratio of our system. We have found that the radiation-pressure effects over
thermal noise are quite unfavourable (Srad

x /STx ≃ 10−4), adding an extra difficulty to the mea-
surement. For this signal-to-noise ratio, according to equation (2.44) an averaging time of 100
s is necessary to extract the radiation-pressure effects. As we have seen that our experimental
setup can remain stable on a one-hour timescale this averaging time is completely realistic. At
the same time, as equation (5.20) suggests, for a cavity finesse F = 100 000, optical losses
P = 0.25T , a mass M = 20 mg, a mechanical quality factor Q = 106 and a mechanical res-
onance frequency Ω/2π ≃ ΩM/2π = 1 MHz, the quantum radiation-pressure force related to
an incident coherent beam with a power of 1 mW (I in = 6 × 1015 photons/sec, for a wave-
length λ = 800 nm), at room temperature for signal-to-noise ration Srad

x /STx ≃ 10−4 can be
demonstrated if Ψ ≤ Ψc ≃ 15 × 10−8γ. For a cavity in the MHz range this corresponds to a
drift tolerance in the 100 mHz range; which is a very stringent condition. We propose several
solutions in order to relax this requirement [72]: a spectral deviation can be realized in order
to distinguish the contamination from the radiation pressure, an active feedback loop can also
be realized in order to enhance the measurement time while at the same the contamination
is reduced, or we can perform an independent high-accuracy contamination measurement and
recover the radiation pressure a posteriori.

1where we have used the ergodic theorem for two random independent and stationary variables a and b:

lim
T→∞

1

T

T∫

0

a(t)b(t) dt = 〈ab〉 = 〈a〉〈b〉 = lim
T,T ′

→∞

1

TT ′

T∫

0

a(t) dt
T ′∫

0

b(t′) dt′.
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Correlations in the presence of cooling

As equation (4.16) implies, a simple way in order to obtain a low contamination level consists
in minimising the displacement spectral density STx . This can be achieved by means of active
cooling [42], [55] which permits to lower the motion variance while leaving the signal-to-noise
ratio unaltered by preserving the relative contributions of the driving forces. In presence of a
feedback, the mirror motion is:

δx[Ω] = χ[Ω]
(
FT [Ω] + Frad[Ω] + Ffb[Ω]

)
+ δxbg, (5.28)

where FT , Frad and Ffb are the Langevin, radiation-pressure and feedback forces, respectively,
while δxbg denotes the thermal background. The feedback force can be written:

Ffb[Ω] = −igMΩΓMδxerr[Ω], (5.29)

where g denotes the gain of the feedback loop and δxerr[Ω] = δx[Ω] + δxshot[Ω] is the measured
signal containing the mirror motion with an imprecision set by the detection shot-noise δxshot.
It is straightforward to show that the mirror motion can be written:

δx = χeff [Ω]
(
FT [Ω] + Frad[Ω]

)
+
χeff [Ω]

χ[Ω]
δxbg[Ω] +

[χeff [Ω]

χ[Ω]
− 1
]
δxshot, (5.30)

where χeff is the effective mechanical susceptibility given by:

χ−1
eff [Ω] = χ−1[Ω]− igMΓMΩ. (5.31)

Assuming that the feedback signal is independently obtained from the reflected probe phase,
δxshot does not contribute to the optomechanical correlations Cs−m, which is the sum of a term
denoting the optomechanical correlations Copto and another denoting the contamination signal
Cx:

Cs−m[g,Ω] = Copto[g,Ω] + Cx[g, Ψ̄,Ω]. (5.32)

In the presence of a non-zero feedback gain the optomechanical correlations are given by:

Copto[g,Ω] =
χ∗
eff [Ω]

χ∗[Ω]
× Copto[g = 0,Ω], , (5.33)

while the contamination is given by:

Cx[g, Ψ̄,Ω] =

∣∣∣∣
χeff [Ω]

χ[Ω]

∣∣∣∣
2

Cx[g = 0, Ψ̄,Ω]. (5.34)

Equations (5.33) and (5.34) show that dissipative feedback enables decreasing the relative con-
tribution of the contamination by a factor |χeff [Ω]/χ[Ω]|2 ≃ 1/g2 around the mechanical res-
onance frequency Ω ≃ ΩM . In practice, the gain is limited to values such that the motion
contamination by the feedback noise Fshot = −igMΓMΩδxshot[Ω] stands well below the radia-
tion pressure force, which implies g2 ≤ Srad

x [ΩM ]/SI [ΩM ].
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Contamination-signal post-selection

The mechanical background of the plano-convex mirror presents a number of advantages: first,
a large frequency span (∼ 10 kHz as opposed to some Hz around the mechanical resonance) can
be chosen to measure the optomechanical correlations, second, the out-of-resonance spectral
density of the mirror motion STx is 30 dB smaller than on resonance, thus lowering the con-
tamination contribution and, third, its mechanical response is potentially up to 20 dB better
than the mechanical resonance, due to destructive interference effects, as we experimentally
demonstrated (see Figure 5.3).

Therefore, for this system, it is reasonable to work far from the mechanical resonance.
While the previous proposal imply the demonstration of optomechanical correlations at the
mechanical resonance, we have decided to experimentally pursue a solution to relax the stability
restrictions out-of-resonance. In the following we will describe a post-selection technique in
order to demonstrate optomechanical correlations using measurement points presenting a low
contamination level. This can be done by performing an independent measurement of the cavity
working point.

Most notably we will describe the implementation of the newly-developed contamination
lock-on detection (CLI) scheme dynamically measuring the cavity detuning. In combination to
the setup evolution as described in 3, these efforts were focused on three main aspects. First,
the combination of the lock-in error signal along with the Pound-Drever signal to stabilize
the laser frequency onto the measurement cavity. Second, the use of the same error signal
in order to dynamically control the working point of the cavity in order to study a potential
feed-forward technique applied to the data processing. Third, the development of a LabVIEW
routine controlling all the associated devices and performing a real-time data upload on the
computer.

5.5.1 Experimental setup

Figure 5.4 shows the global experimental setup. While the double-injection scheme and the
homodyne detection remain unchanged, there exist several major differences with respect to the
setup depicted on Figure 2.2. First the second mode-cleaner cavity providing a quantum-noise
limited pump light field up to 10 mW is installed on the optical table. Second, in place of the
photodiode Ph1, a balanced detection is installed and is used for three purposes at the same
time: monitoring the intensity fluctuations δpouts , generating the Pound-Drever-Hall and the
contamination lock-in error signals. Third, the contamination signal is derived by the auxiliary
beam which is also implemented on the setup. Fourth, the laser frequency stabilization scheme
has changed; a combination of both error signals (PDH and LI) is used to lock the measure-
ment cavity. Finally, we have added a third spectrum analyzer to our read out configuration
monitoring the contamination effect.

Feedback loops The frequency stabilization scheme is based on the splitting the error signal
in two frequency components one driving the piezoelectric actuator of the laser cavity and
one driving a double-pass configured acousto-optic modulator depicted in Figure 3.21(b). The
major difference is the use of both the Pound-Drever and the contamination error signals for
the lock-in feedback loop. The low-frequency component of the contamination error signal
drives the piezoelectric actuator of the laser ring-cavity. A low-pass passive filter with a cut-
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Figure 5.4: The complete experimental setup designed to observe radiation-pressure effects at
room temperature. The measurement cavity is stabilized via a double feedback loop (LI+PDH)
while the read-out is done by three synchronized and triggered spectrum analyzers monitoring
the phase, the intensity and the contamination.

off frequency fc = 1 Hz cuts the rapid components of the error signal. The high-frequency
component of the Pound-Drever error signal drives the acousto-optic modulator; a high-pass
filter (fc = 1 Hz) is coupled to the input of the corresponding lock-box while at its output
a low-pass filter at 300 Hz is coupled. The double feedback-loop is done with two identical
lock-boxes (NewFocus LB1005) one for each frequency component. The locking protocol is the
following: the cavity is manually maintained at resonance using the offset potentiometer of the
high-voltage (0-1000 V) driving the piezoelectric actuator. The cavity resonance is monitored
either by the webcam placed at the output of the measurement cavity, or by the DC-output
of the balanced detection or by the error signal. The low-frequency gain is gradually increased
until the cavity is locked at resonance and the manual track is no longer required. As soon
as this is achieved, the fast gain is increased. At this point, the rapid oscillations start to be
compensated by the feedback loop and the error signal begins to be stabilized around zero.
Then, the low frequency gain is further increased until the feedback loop begins to oscillate.
These oscillations can then be compensated by the rapid gain. This iteration is then repeated
until the rapid loop also oscillates. The configuration of the gains just before the oscillations
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Figure 5.5: The two error signals used to stabilize the laser frequency on the measurement
cavity. In blue the contamination error signal used to drive the LF channel of the servo loop.
In red the Pound-Drever-Hall error signal driving the RF channel.

is considered to be optimal. Let us note that the input of the LF channel of the feedback loop
can be coupled to either the contamination or the Pound-Drever error signal. All possible error
combinations are open; one can lock the cavity using only the Pound-Drever signal, only the
lock-in signal or a combination of both.

Read out configuration The contamination error signal is created with a home-made ana-
log demodulator. However, a digital demodulation can be performed by a spectrum analyzer
operating in I/Q mode. Therefore, we have at our disposal another way to monitor in real
time the cavity detuning. The contamination signal can then be acquired at the same time
as optomechanical correlations. It can be used to perform a post-selection and discard data
taken with the lock imperfections. Once the optomechanical correlations are uploaded, the
corresponding contamination signal can help to perform a data post-selection compensating
any lock imperfections. Along with the two spectrum analyzers, monitoring the phase and the
intensity, we have installed in our chain of detection a third analyzer monitoring the contami-
nation. It is critical that all three analyzers are synchronized and triggered. The corresponding
cable connection is depicted on Figure 5.5.1. The intensity spectrum analyzer is chosen to be
the master apparatus. Analyzer 1 provides a 10-MHz frequency reference on which all other
apparatuses are synchronized via their external reference input. All demodulation processes
are then realized with the same reference. Furthermore, all acquisition should start simulta-
neously. For this purpose the master analyzer triggers the other two by their external trigger.
The function generator driving the acousto-optic modulator used to modulate the intensity of
the auxiliary beam is also synchronised on the 10 MHz modulation reference. The modula-
tion signal delivered by the generator is synchronous with the demodulation frequency of the
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Figure 5.6: The connection configuration of the four apparatuses involved in the experiment.
SA1 has been chosen to be the master apparatus synchronizing the other 3 slave apparatuses,
and triggering the simultaneous acquisitions of all 3 spectrum analyzers.

spectrum analyzer measuring the contamination signal.

Acquisition protocol In order to automatize the acquisition procedure, we have written
a LabVIEW routine launching the acquisitions and uploading them to the computer. The
program works as follows. All analyzers are set in single-run mode; then a single sweep is
performed. The two slave analyzers are initialized first, then they wait for the triggering signal
of the master analyzer. Then, the master analyzer is also initialized at which point it triggers the
simultaneous triple measurement. Afterwards,the data are uploaded to the computer. The loop
is then repeated as many times as necessary. The LabVIEW realization of the aforementioned
program is drawn on Figure 5.5.1. It simply consists of a sequential structure repeated in a
while-loop. Sequences A,B and C initialize the analyzer; the master analyzer being the last
one. The rest of the sequence downloads the binary-encoded data. We use a queue processing
technique (First In, First Out) in a parallel loop to write the data into manageable files. The
FIFO queue allows to gain time; we achieved a duty cycly up to 80%.

In practice, a single loop lasts 1 second. The spectrum analyzers are configured in order to
maximize the number of data acquired within this 1-second time-frame. The I/Q mode provides
the two demodulated quadratures of the input signal under the form of two time series. The
length of the time series is called sweep time and is set by the resolution bandwidth νRBW. In
particular the resolution bandwidth is inversely proportional to the sweep time. In order to
increase the data acquisition efficiency, the sweep time is set at approximately 1 second as well
while at the same time the points are set to the maximum provided by the apparatus.

Experimental protocol Before launching the data acquisition a careful control protocol
must be performed. After optimizing the laser output power and the alignment of both filtering
cavities, a great attention must be paid to the double-pass acousto-optic modulators. Both are
aligned so that their working point is set at the flat region of curve 3.20(b), cancelling this way
any pointing noise. The frequency difference of the signal driving the modulators is set via
the bias voltage to compensate the cavity birefringence. Then a control of the cat eye optical
alignment is done (see Figure 3.20(a)). A thorough control of the acousto-optic modulator which
is coupled to the intense beam must be done, mainly due to the fact that any misalignment or
bad field-modulator coupling can lead to an excess of intensity noise possibly above shot-noise.

In chapter 3 we have explained that, when the laser frequency is locked to the measurement
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Figure 5.7: The LabVIEW routine controlling the intensity, phase and contamination acquisi-
tion by three spectrum analyzers. They are configured in a single-run mode. A and B sequences
start the slave analyzer while sequence C starts the master analyzer triggering at the same time
the slaves. Sequences D, E and F fetch and uploaded the measured data on the computer.

cavity, the frequency difference between the two beams is not constant over time. This results
into a beating between the two beams contaminating both phase and intensity quadratures (see
Figure 3.22). In order to ensure that this beating does not contaminate the measured optome-
chanical correlations, it is tuned away from the frequency span in which the optomechanical
correlations are to be measured. As a precaution, we tune the beating by detuning the probe
beam some hundreds of kHz away from the optical resonance; the bias voltage of the pump
beam is left strictly unaltered in order not to perturb the double-pass optical alignment.

In the following, by using only the Pound-Drever-Hall signal the laser frequency is stabilized
at the resonance of the cavity. The fundamental resonance of the movable mirror at ΩM/2π =

1.128 MHz is observed via the homodyne detection and the auxiliary beam is turned on. The
coherent drive of the mirror is also monitored and optimized by either changing the auxiliary
beam alignment and therefore the excitation point or the modulation depth provided by the
acousto-optic modulation (see Figure 5.4). The frequency analysis window is chosen among
the flat regions of Figure 5.3 and by observing the reflected intensity of the pump beam we
ensure that no extra intensity noise is induced by the presence of the coherent drive. The laser
frequency is then unlocked and the contamination lock-in signal is visualized, simultaneously
with the Pound-Drever signal, and is coupled to the low-frequency channel of the feedback loop.
The laser frequency is then relocked and the acquisition program is launched.

5.5.2 Experimental results

For these experiments we have used a Fabry-Perot cavity formed by a plano-convex movable
mirror (reference: PC 3021/13) and a cylindrical coupler (reference: 07125/3). It is the same
cavity used for the self-amplification experiment and its fundamental guassian mode presents
a quality factor Q = 700 000, an effective mass Meff = 72 mg, a resonance frequency ΩM/2π =

1.128 MHz and an optical finesse of F = 100 000. The read out is done with three identical
MXA spectrum analyzers, one monitoring the reflected phase of the probe beam while the
reflected intensity of the pump beam is simultaneously monitored by the other two analyzers.
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Figure 5.8: Left: an intensity shot-noise measurement of the reflected pump beam, represented
in the phase-space. Right: the contamination synchronous detection error signal provided by
the spectrum analyzer set in I/Q mode. Each point corresponds to a different cavity detuning.

Each one is set at a different frequency window: one is used to measure the optomechanical
correlations, while the other one is used to independently measure the cavity detuning in real
time. All three of them are set in I/Q mode. The center analysis frequency chosen to probe the
optomechanical correlations is Ω/2π = 1.401 MHz with a span of νspan = 7.5 kHz. Over this
range, only the mechanical thermal background is present. The third analyzer center frequency
is set around the fundamental resonance of the plano-convex mirror ΩM/2π = 1.128 MHz,
coinciding with the frequency of the coherent drive. For all analyzers, the resolution bandwidth
νRBW is set to 5 Hz which corresponds to 754-ms sweep time, each sweep giving 43845 points.

The input power of the probe beam is set to 100 µW and the pump beam to 1.5 mW. For
this cavity, the input power can be increased up to 2.5 mW before bistability effects make the
frequency lock-in impossible.

Figure 5.8 depicts a measurement provided by the two I/Q-mode configured spectrum ana-
lyzers monitoring the output of the balanced detection. Both measurements are represented in
phase-space. In the left figure, the typical random walk of the intensity noise is depicted, mea-
sured around Ω/2π = 1.4 MHz over a 7-kHz bandwidth. The coherent contamination induced
by the auxiliary beam, is demodulated by the analyzer and drawn on the right part of the
figure. Since the demodulation process is synchronously performed at the excitation frequency,
all points are aligned on a straight line whose origin (0,0) corresponds to a zero cavity detuning.
In fact, the width of this straight line indicates the signal-to-noise ratio of the contamination
error signal over thermal noise, as the straight line tends to a circle if thermal noise dominates.

We have experimentally studied the dependence of the optomechanical correlations on the
cavity working point. For this, we have acquired the correlations for various detunings by
manually adding a voltage offset to the LF channel of the feedback loop. For a given offset the
optomechanical correlations and the contamination signal are synchronously measured. Figure
5.9(a) depicts these results. On the top subfigure, we depict the time-accumulated detuning
over a total acquisition time of 100 seconds. Each colour corresponds to a curve with the
same colour of the bottom subfigure, depicting the optomechanical correlations. The level
of contamination increases as the cavity is further detuned thus increasing the level of the
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Figure 5.9: Left: Time-accumulated optomechanical correlations acquired (up) for various mean
cavity detunings (down). Right: Resulting correlations Cs−m(T ) as a function of the induced
detuning.

corresponding optomechanical correlations. We note the difficulty to set the contamination
level mean value to a strictly null value. Indeed, before the experiment is performed the
optimization of the working point of the cavity is done by monitoring the reflected intensity
on a spectrum analyzer and minimizing it. However, this protocol is not very accurate since
the fast components of the cavity vibrations prevent the direct observation of the mean value.
Indeed, a certain time averaging is needed in order to measure the mean detuning of the cavity.
Also, we have extracted the obtained optomechanical correlations Cs−m(T ) and plotted versus
the corresponding detuning. The detuning is calibrated by comparing the offset to the peak-
to-peak amplitude of the error signal. Again, very high correlations are observed for various
detunings. For a “zero” detuning the curve reaches its minimum. However, correlations of 15%
are measured, indicating a contamination effect.

In our final experiment the contamination error signal is used to post-select the data. The
idea is to acquire a long series of data and reject or select them according to their level of con-
tamination. All analyzers are triggered according to Figure 5.5.1 so that all three acquisitions
start at the same time and the correspondence between each point of the three measurements
can be made . Therefore, each point of the contamination measurement time-series at instant
t1 strictly corresponds to the phase and intensity point at the same time. During the data pro-
cessing, a threshold can be defined. The points situated above this threshold are not taken into
consideration when establishing the correlations. This threshold is defined by a user-defined
window which is characterized by a width, the post-selection gain gps and an offset which
corresponds to a mean cavity detuning Ψ.

We have varied this window using two different techniques. First, by keeping a constant
width and varying the offset in order to probe the optomechanical correlations by sweeping the
Airy peak. Second, by choosing the offset in order for it to coincide with the zero-detuning
situation and then by varying the post-selection gain, by decreasing the window width.

Figures 5.10(a) and 5.10(c) depict the experimental demonstration of the first technique. On
Figure 5.10(a) a small sample of the contamination error signal, as provided by the third spec-
trum analyzer, is depicted. For each sample the threshold window is superimposed, implying
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Figure 5.10: (a) The blue time-series depicts a small sample of the contamination signal provided
by the analyzer. The offset of the threshold window is varied from the blue side of the fringe
to the red one, both corresponding to high-level contaminations. (b) For each window, the
optomechanical correlation function is estimated. A characteristic “’V” dependence is observed
whose minimum corresponds to the least contaminated case for the given window width. (c) By
choosing the offset of the window, its width is varied in order to include less points as the width
decreases. (d) For each case, the correlation function is estimated. As the post-selection gain
is increased, more points are rejected leading to a decrease of the measured optomechanical
correlations. This iteration is limited by the number of points.

that only point within this window is taken into account when estimating the optomechanical
correlations. A constant window width is chosen and only its offset is varied. Each offset corre-
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sponds to a different mean cavity detuning Ψ. Therefore, the optomechanical correlations are
probed from the blue to the red side of the Airy peak. Figure 5.10(c) depicts the resulted corre-
lations for each case. In the extreme blue and red sides, the correlations are of the order of 60%
and greater. As the mean detuning approaches the optical resonance the level of correlations
decreases and reaches a minima. However, this minimum corresponds to a correlation level of
almost 20%; some orders of magnitude greater than the expected optomechanical correlations
(∼ 10−3). The contamination is still present.

The second step, in order to optimize even more, is to wisely choose the offset corresponding
to the lowest correlations and, around this offset, vary the width of the window. The experi-
mental demonstration is drawn in Figures 5.10(b) and 5.10(d). On Figure 5.10(b), from top to
bottom, the width of the window is decreased. In fact, it can be interpreted as an extra gain of
the feedback loop, thus correcting some locking imperfections. Finally, Figure 5.10(d) depicts
the acquired optomechanical correlations. A clear decrease of the correlations function is seen
as the post-selection gain is increased. In this case, the post-selection gain has an upper-limit
determined by the statistical cut-off due to the limited number of points.





Conclusion

The works presented in this manuscript is part of a general study of interferometric mea-
surements and their fundamental quantum limits. The cornerstone of our experiment is a
Fabry-Perot cavity with a moving end-mirror and the measurements are performed thanks to
the optomechanical coupling. When the mirror is moving, it induces a phase shift to the re-
flected light. This phase-shift can be measured with an interferometric technique accessing this
way the information on the mirror displacements. As the light is reflected by the mirror, a
momentum exchange between the photons and the mirror occurs, resulting in the displacement
of the mirror.

We have studied the sensitivity limits of such an interferometric measurement and seen
that there are a number of noises that limit the sensitivity of the displacement measurement.
These noises can be distinguished in two categories: classical noises and quantum noises. The
classical noises are mainly environmental noises (seismic vibrations, etc...). The most important
of these noises is the so-called thermal noise: the movable mirror is coupled to a thermal
bath at temperature T. The quantum noises associated with this measurement are of two
kinds: the quantum phase noise of the reflected laser light (the measurement noise) and the
radiation-pressure )the back-action noise). The main objective of this work was to open the
way towards the experimental demonstration of the back-action effect and therefore perform
an ultra-sensitive measurement of the mirror position, only limited by the Standard Quantum
Limit, which is the compromise between the measurement and the back-action noises.

We have developed an experimental setup based on a high-finesse Fabry-Perot cavity with
a moving end-mirror is movable. Thanks to the know-how of the LMA in mirror coating, we
have beem able to construct cavities with very high finesses, of the order of 105. We use a very
elaborated tunable light source based on a Ti:Sa laser at 810 nm. The phase detection is done
by a quantum-limited homodyne detection, allowing to measure the position of the mirror with
an extreme sensitivity of the order of 10−20 m/

√
Hz.

As the quantum effects are completely overwhelmed by thermal noise of the mirror, we
have then used this setup in order to perform a proof-of-principle experiment, using two cross-
polarized laser beams injected into the high-finesse cavity. A high-intensity pump beam is
used to drive the mirror into motion while a second, much weaker, probe beam is used to
probe the position of the mirror without disturbing it. We have simulated a quantum intensity
noise of the pump beam and have established phase-intensity correlations between the lasers
beams. We have also demonstrated an averaging technique in order to extract radiation-
pressure effects even when thermal effects are predominant. This technique may be used to
extract quantum optomechanical correlations at room temperature. However, cavity losses
give rise to a contamination effect of the intensity quadrature of the pump beam, leading to
fake correlations. This effect directly depends on cavity locking imperfections. When the laser
frequency is locked to the cavity resonance, a residual frequency "jitter" still exists, imprinting
the mirror motion onto the intensity fluctuations of the reflected beam. We have quantified
this effect and established a laser stability criterion for the direct demonstration of the effect.

Nevertheless, we have started an effort to update our experimental setup in order to solve
this technical problem. These efforts can be distinguished in two categories: (i) an increase of
the measured signal by updating the experimental setup and (ii) a study of the feedback loop
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imperfections present to our stabilization scheme.
In order to increase the signal-to-noise ratio (radiation-pressure effects over thermal noise

Srad
x /STx ) by one order of magnitude, we have implemented a new high-finesse filtering cavity

providing a quantum-noise limited laser light up to 10 mW, at a frequency of 1 MHz. Moreover,
the detection systems of the experiment were also updated. The intensity fluctuations are now
monitored by a balanced detection and the photodiodes of the homodyne detection have been
replaced by new ones with a high quantum efficiency (93%).

The implementation of the new filtering cavity led to important changes in the feedback
loops. The laser frequency was locked on the cavity resonance of the movable mirror cavity but
as the new filtering has a very narrow bandwidth, the feedback could no longer compensate
the residual vibrations of the movable mirror cavity. For this, we have added a double-pass
acousto-optic modulator installed after the filtering cavity. The feedback loops are driven
using the well known Pound-Drever-Hall technique. During this work we have seen that the
Pound-Drever error signal has some imperfections. Most notably, low-frequency drifts are
present in the feedback loops, increasing the contamination of the reflected intensity and finally
leading to a high-level of fake optomechanical correlations. We have seen,that these offsets
are mostly due to parasitic intensity modulations present in the pump beam. In an effort
to solve these imperfections we have designed a novel lock-in detection scheme based on a
monochromatic contamination signal measured by the pump beam. This contamination signal is
created via radiation pressure: an auxiliary laser beam is sent on the back of the movable mirror,
modulating the length of the cavity. This way, an amplitude-rejection-free phase modulation
of the laser beam is performed. We have modelled this lock-in scheme and installed into our
experimental setup. Indeed, at low-frequency, it is very robust while at high-frequency it works
equally well compared to the Pound-Drever scheme. We have also shown, that this novel scheme
provides a high-precision measurement of the detuning of the cavity whose precision may be
better than the Pound-Drever scheme.

Our mechanical resonator not only presents resonant modes but also a mechanical back-
ground where the tails of all resonances interfere either constructively or destructively. During
this work, it has been decided to work out-of-mechanical resonance for three reasons: (i) we have
seen that our resonators potentially present a response to radiation pressure out-of-resonance up
to 100 times better than at resonance, (ii) thermal noise out-of-resonance is much smaller (∼ 30

dB) than at resonance, which helps to relax the stability criterion and (iii) the frequency span
can be substantially increased out-of-resonance (10 kHz, compared to a few Hz at resonance).
For these reasons, we have designed an experimental protocol in order to demonstrate quantum
optomechanical-correlations at room temperature and out of resonance. We have combined the
lock-in scheme (low-frequency) and Pound-Drever-Hall error signal (high frequency) in order to
stabilize the laser frequency onto the measurement cavity. We have also used a third spectrum
analyzer in order to measure in real-time the detuning of the cavity and link it to the measured
correlations. This way, we have demonstrated that a post-selection treatment of the acquired
correlations in order to reject high-level contamination points may lead to a relaxation of the
stability criterion.

The major experimental difficulty being the poor signal-to-noise ratio provided by our mov-
able mirror cavity (∼ 10−5 at an incident power of 1 mW) the next steps in order to demonstrate
quantum radiation-pressure effects are the update of our resonators. Actually, two different
approaches are investigated at the same time. First, similar plano-convex movable mirrors,
but this time made of quartz which may provide the possibility of low-temperature operation.
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Second, low-mass, high-Q micro-pillars are also developed by the group in order to perform
experiments at mechanical resonance with a more favourable signal-to-noise ratio.
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