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François Brémond Reviewer Professor, INRIA - Sophia Antipolis - France

Jianhua Ma Reviewer Professor, Hosei University - Japan

Jean-Michel Dumas Examiner Professor, University of Limoges - France

Thierry Artières Examiner Professor, UPMC – Paris - France

Mounir Mokhtari Thesis Director Professor, Institut Mines-Télécom – Evry - France
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Abstract

With the rapid advancement of sensing, computing, networking and storage, recent
years have been witnessing a phenomenal growth of sensor-embedded mobile phones and
prevailing use of GPS devices in vehicles. The digital footprints collected from such systems
provide novel ways to perceive an individual’s behaviors. Furthermore, large collections of
digital footprints from communities bring novel understandings of human behaviors from
the community perspective (community behaviors), such as investigating their characteris-
tics and learning the hidden human intelligence. The perception of human behaviors from
the sensing digital footprints enables novel applications for the sensing systems.

However, it’s not easy to recognize individual and community behaviors from the dig-
ital footprints. Firstly, there are various problems in the sensing data that need to be
preprocessed. Secondly, there are big gaps to be bridged between the raw sensing data
and the recognition of human behaviors. Thirdly, with the observation of behaviors in a
community, learning the hidden human intelligence is a complicated problem. Lastly, for
a smart sensing system that monitors the behaviors of a large number of individuals, it’s
often hard to be scalable and support real time responses.

Bases on the digital footprints collected with accelerometer-embedded mobile phones
and GPS equipped taxis, in this dissertation we present our work in recognizing indi-
vidual behaviors, capturing community behaviors and demonstrating the novel services
enabled. In recognizing individual behaviors, we present the recognition of an individual’s
physical activities with the accelerometer readings collected from mobile phones placed in
the pockets around the pelvic region. Particularly, to overcome the variance of location
and orientation problem, we introduce the orientation invariant sensing magnitude to the
sensor readings and improve the recognition accuracy about 8 percent. Besides, we also
reduce the computing cost with a feature reduction method. With the GPS footprints of
a taxi, we summarize the individual anomalous passenger delivery behaviors and improve
the recognition efficiency of the existing method iBOAT by introducing an inverted index
mechanism. Besides, based on the observations in real life, we propose a method to detect
the work-shifting events of an individual taxi.

With real-life large-scale GPS traces of thousands of taxis, we investigate the anomalous
passenger delivery behaviors and work shifting behaviors from the community perspective
and exploit taxi serving strategies. We find that most anomaly behaviors are intentional
detours and high detour inclination won’t make taxis the top players. And the spatial-
temporal distribution of work shifting events in the taxi community reveals their influences.
While exploiting taxi serving strategies, we propose a novel method to find the initial
intentions in passenger finding. With the strategies modeled for thousands of drivers, we
isolate the good and bad ones by learning from good drivers, measuring the correlation
between each strategy and performance, and classifying different driver groups.

Furthermore, we present a smart taxi system as an example to demonstrate the novel
applications that are enabled by the perceived individual and community behaviors.
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Résumé

Avec les progrès rapides de détection, de l’informatique, des réseaux et du stockage,
ces dernières années ont été témoins d’une croissance phénoménale de téléphones mobiles
avec capteurs intégrés et prévaut l’utilisation des appareils GPS dans les véhicules. Les
empreintes digitales recueillies par ces systèmes offrent de nouvelles façons de percevoir les
comportements d’un individu. En outre, de grandes collections d’empreintes numériques
des communautés apportent de nouvelles compréhensions des comportements humains,
telles que les enquêtes sur leurs caractéristiques et l’apprentissage de l’intelligence humaine
cachée. La perception des comportements humains à partir des empreintes digitales de
détection permet de construire des nouvelles applications sur les systèmes de détection.

Cependant, il n’est pas facile de reconnâıtre les comportements individuels et collec-
tifs depuis des empreintes digitales. Tout d’abord, des divers problèmes dans les données
de détection doivent être prétraité. Deuxièmement, il y a de grandes lacunes à combler
entre les données brutes de détection et la reconnaissance des comportements humains.
Troisièmement, l’observation des comportements d’une communauté et l’apprentissage de
l’intelligence humaine cachée restent des problèmes complexe. Enfin, pour un système in-
telligent de détection qui surveille les comportements d’un grand nombre de personnes, il
est souvent difficile d’être évolutive et de soutenir les réponses en temps réel.

D’après les empreintes digitales recueillies avec l’accéléromètre embarqué dans les téléphones
mobiles et les taxis équipés avec GPS, nous présentons ici notre travail sur la reconnais-
sance des comportements individuels, la capture des comportements communautaires et la
démonstration des nouveaux services activés. En reconnaissant les comportements indivi-
duels, nous présentons la reconnaissance des activités physiques d’une personne avec les
lectures de l’accéléromètre recueillies à partir des téléphones mobiles mis dans les poches
autour de la zone pelvienne. En particulier, pour surmonter le problème de la variation
de l’emplacement et de l’orientation, nous introduisons la grandeur de détection qui est
invariante avec l’orientation dans les lectures de capteurs et améliorons la précision de la
reconnaissance d’environ 8%. Par ailleurs, nous réduisons également le coût de calcul avec
une méthode de réduction de caractéristique. Avec les empreintes GPS d’un taxi, nous
résumons les comportements anormaux du transport des passagers pour un individu et
améliorons l’efficacité de la reconnaissance de la méthode existante IBOA’ en introduisant
un mécanisme de l’index inversé. En outre, sur la base des observations dans la vie réelle,
nous proposons une méthode pour détecter les événements de changement de service d’un
taxi individuel.

Avec des traces GPS à grande échelle et à l’aide des milliers de taxis, nous étudions les
comportements anormaux pour le transport des passagers et les comportements de change-
ment de travail et exploitons les stratégies de service de taxi. Nous constatons que la plupart
des comportements anormaux sont des détours intentionnels et l’inclinaison détour élevé ne
fera pas des taxis les meilleurs joueurs. Et la distribution spatio-temporelle des événements
de changement de travail dans la communauté de taxi montre leurs influences. Durant l’ex-
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ploitation sur les stratégies de service de taxi, nous proposons une méthode pour trouver
les intentions initiales de la recherche des passagers. Avec les stratégies modélisées pour des
milliers de chauffeurs, nous isolons les bonnes et mauvaises stratégies. Par l’apprentissage
auprès des bons chauffeurs, par la mesure de la corrélation entre chaque stratégie et la
performance, et la classification des différents groupes de chauffeurs.

En outre, nous présentons un système intelligent de taxi comme une étude exemplaire
des nouvelles applications qui s’appuie sur les comportements perçus individuelles et com-
munautaires.

Mots-clés

une grande collection d’empreintes numériques, de traces numériques des taxis, la re-
connaissance d’activité, les comportement individuels, les comportements communautaires,
l’analyse du comportement humain
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Chapter 1

Introduction

Contents

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2 Thesis Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.2.1 Digital Footprints Introduction . . . . . . . . . . . . . . . . . . . . 16

1.2.2 Detecting Individual Behaviors . . . . . . . . . . . . . . . . . . . . 17

1.2.3 Understanding Community Behaviors . . . . . . . . . . . . . . . . 18

1.2.4 A Smart Taxi System . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.3 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.1 Overview

With the rapid advancements of sensing, computing, networking, and storage, recent

years have been witnessing a phenomenal growth of sensor-embedded mobile phones, pre-

vailing use of Global Positioning Systems (GPS) in private and public transportation vehi-

cles, and wide adoption of sensor networks in facilities and outdoor environments. Accord-

ing to IDC’s figures for worldwide smartphone unit sales and market share, in the second

quarter of 2012, there were 104.8 million Android and 26 million iOS smart phones sold

world wide. And in 2008, there were 15.1 million GPS units sold in U.S. only. These

systems provide rich services that bring benefits and conveniences to people. The GPS

module in mobile phone and GPS navigation devices can provide the location information,

search points of interests nearby (such as restaurants, hotels, shopping locations and petrol

stations), and find ways to people’s destinations. Besides, with the easy distribution and

access of applications in app shops (e.g., Apple Store or Google Play), smart mobile phones

become powerful computing platforms providing services far beyond the phone calls and
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messaging. Supported by the embedded sensors like accelerometer, video camera, audio,

GPS, proximity and even NFC, the powerful processors and rich memories, and network

connections like 3G and WIFI, they become mobile computing platforms which possess the

computing power of the traditional PCs, the mobility and the sensing capability. They are

used for social networking, such as taking and sharing information like photos and texts

in twitter and Facebook, surfing internet with mobile web browsers, enjoying multimedia

contents like the music, movie and on-line videos, mobile office working such as dealing

with emails and documents.

All these systems have led to an unprecedented accumulation of digital footprints —

the digital traces people left during the interactions with the cyber-physical world [124].

Particularly in this thesis, we are interested in the digital footprints left by the sensing

devices. Take the mobile phones for example, the embedded sensors can sense and record

the surroundings all the time. The accelerometers record the acceleration signals of carriers’

movements. And the GPS sensors collect the locations where they are and thus the traces

they follow. The bluetooth sensors detect the nearby bluetooth devices which implicitly

inform who are close to them. As for vehicles, the GPS navigators could potentially record

the routes they follow and the speeds which in most cases are the reflections of the traffics.

Modern smart taxi dispatch systems gather the real time GPS locations and passenger

status of a large taxi fleet for efficient dispatch and thus can obtain the digital traces of a

drivers community.

The collection of such digital footprints provides valuable opportunities for researchers

to perceive human behaviors. Individually speaking, the collection of digital footprints of

an individual records rich information about one’s movements, behaviors and locations,

and potentially be able to infer high level knowledge such as one’s habits, preferences

and daily routines. For example, experiments in lab environments already proved that,

with accelerometer-embedded sensor boards attached on human body, we can recognize an

individual’s behaviors such as walking, running, driving and so on [8, 41, 51, 52, 69, 71, 72,

90, 116]. The GPS traces recorded by an individual’s mobile phones can tell where one

has been, how long one stayed and even what commune tools one took by data mining

methods [25] and thus provide a comprehensive picture about ones’ daily lives. Not only

mobile phones, the GPS traces of vehicles such as taxis reveal where one taxi driver has

been and thus which area one serves the most for one’s business. And enhanced by the

passenger status, we can feature an individual’s passenger finding and delivery behaviors,

and detect whether one behaves anomalously or not [17, 125].

Furthermore, the aggregation of digital footprints of large number of individuals pro-

vides novel ways to explore human behaviors from a community perspective. Unlike the

individual behaviors which feature only one’s private life, the large aggregation of human
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behaviors in a community provides novel perspectives to understand them in a collective

manner. For instance, with the GPS traces of the tourists in a city, we can easily see the

popular tour route, which kinds of hotels and restaurants they stay, which kinds of com-

mune tools they usually take and etc. Thus we can obtain a general picture of the tourist

business.

Besides, we can also infer high level intelligence from the human behaviors in a com-

munity. As practically human behaviors exert impacts on certain result in an explicit or

implicit way, the large aggregation of them provide possibilities to comprehend the internal

relations and thus generate novel understandings about the human behaviors. For example,

with the aforementioned GPS traces of the tourists, we can see their traveling itinerary (the

tour route, the time stayed in each place, the commune tools) and the resulted experiences

(Are their traveling route covers most of the tourist sites? How much time do they stay in

the commune, Are their behaviors complies with what the majority people do?). And thus

we are able to infer the optimized traveling route, organizing the optimized tour route and

planning suitable time to stay in every tourist site. Such intelligent information is hard

to obtain if merely looking at an individual’s trace. In this paper, we denote the human

behaviors which are explored from the community perspective instead of individually as

community behaviors. This thesis presents our research in finding the common charac-

teristics of the community behaviors and extracting the hidden intelligence from a large

collection of sensing digital footprints from a community.

Meanwhile, the perception of the individual and community behaviors allows sensing

systems to enable various novel pervasive applications. For example, the explore of the

individual and community behaviors in the aggregated GPS traces of the tourists provides

personal management for the individual traveller, helping one to plan the traveling route,

tag the recorded photos and texts with the locations and recall the memory in the future.

Moreover, it’s also useful for the traveling agency to efficiently look for their guests, and the

planning of the optimized tour bus route. To list a few other examples, with the activity

of daily living recognized by mobile phones, we can measure how long a person is sitting

(stationary) down in working environment. If one sits down for too long time(say, longer

than 50 minutes), to keep health, he can be alerted with a mobile phone application which

recommends to take a rest or walk around. To increase the awareness of the sedentary

lifestyle and motivate people to participate in more exercise, it’s possible use the exercise

amount as input in entertainment games. For example, a mobile phone game named UbiFit

garden 1 uses the daily exercise of people to control the growth of flowers in a virtual garden

and effectively improves the exercise situations of the users [22].

There are already many studies about the individual and community behavior enabled

1. http://dub.washington.edu/projects/ubifit
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applications based on the GPS traces collected from a taxi fleet. We can easily detect

the pick-up and drop-off events and use the extracted the pick-up hotspots to guide the

passenger finding process for taxi drivers [15, 56, 63, 86, 102] and the drop-off hotspots to

direct the taxi finding for passengers [84]. Besides, we can also use the passenger delivery

trips to estimate the traveling time among different areas in a city and monitor whether

taxi drivers follow normal routes in passenger deliveries [17, 125]. Considering taxis as

mobile sensing nodes that perceive the activities of city traffics, we can obtain the real time

traffics [92,121], detecting the speeds and traffic accidents, and provide them to navigators

or directly to the public for people’s awareness.

However, it’s not easy to recognize individual and community behaviors from the dig-

ital footprints. Firstly, there are various problems in the sensing data that need to be

preprocessed. Normally the sensing data has various kinds of noises or deficiencies which

require data filtering work. And in case of low sampling rate, techniques like data aug-

mentation are needed to compensate the missing samplings. For example, when recovering

the traveling route, the samples in the GPS trace may only cover a few nonadjacent road

segments and cause difficulties to estimate the missing ones between them. Secondly, there

are big gaps need to bridged between the low level raw sensing data and the high level

human behaviors. For instance, when studying human behaviors by the acceleration of

some body location measured by the placed mobile phones or sensor boards, it’s hard to

tell the activities directly based on the sensor readings. We need to uncover and extract

the easy-to-deal-with features which are hidden intrinsically in the sensing data and are

different from other activities and then use proper methods to differentiate them. Thirdly,

with the observation of community behaviors, how to learn the hidden human intelligence

is a great challenge. For example, with the passenger finding behaviors of all taxi drivers,

how to tell generally which kinds of behaviors are good and which are bad is not an easy

task to deal with. Lastly, from the system point of view, to handle the request of a large

number of individuals, the systems are often required to be scalable and support real time

responses. For instance, in the anomaly passenger delivery detection service presented in

this thesis, the system has to deal with thousands of occupied taxis, tracking their traces

and judging whether the drivers behave normally or not in real time.

In this dissertation we study the individual and community behaviors from the digital

footprints collected with accelerometer-embedded mobile phones and GPS supported taxis.

In studying the individual behaviors, we present the process of recognizing people’s physi-

cal activities with the digital footprints collected from their mobile phones when placed in

the pockets around the pelvic region. Unlike the previous experiment settings of attaching

sensor boards in certain positions or orientations, the mobile phones are in the natural

orientations within several possible pocket locations. So our challenge is how to accurately
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recognize people’s activities when the mobile phone has varying position and orientations.

We conduct experiment to collect the accelerometer readings from 7 volunteers while they

perform the physical activities and transform the data into feature vectors and then rec-

ognize the physical activities with data mining methods. Besides we propose a novel way

to improve the recognition accuracy and reduce the computing cost so that they can be

targeted at mobile phone platforms.

With the GPS footprints of taxis, we reveal the anomalous passenger delivery behaviors

of an individual driver and our work in improving the recognition efficiency, which is critical

for the real time responses of the targeted anomaly passenger delivery monitoring applica-

tions. How to recognize the anomalous passenger delivery trajectories is firstly studied in

our group with two proposed methods, i.e., iBAT, which detects whether a trajectory is

anomalous when it’s finished [125], and iBOAT, which detects the anomalous events while

it’s ongoing [17]. However both of them didn’t explore what the anomalous behaviors are

in nature. This thesis summarizes the types of anomalous passenger delivery behaviors

according to their intrinsic properties which direct lead to the detection methods. Then we

present an inverted index mechanism based method to improve the recognition efficiency

of iBOAT. To obtain the digital traces of individual drivers from a two-driver taxi, we for

the first time study the work shifting problem. We propose a two-step solution which finds

the work shifting agreement first and then detects the daily work shifting events.

With a real-life large-scale GPS dataset collected from a taxi fleet in Hangzhou, China,

we detect huge amount of anomalous passenger delivery behaviors and work-shifting events

of a community of drivers. We perform analysis on these behaviors from the community

perspective. With the 0.44 million anomalous trajectories detected from 7.35 million pas-

senger delivery trips, we perform studies with the intentions to understand the anomalous

behaviors, extracting common characteristics of anomalous behaviors, uncovering the mo-

tivations behind fraudulent behaviors and investigating the impact of anomalous behaviors

on drivers’ revenues. After, we analyze the relationship between detour ratio and taxi

revenue and find out that high detour tendency doesn’t correspond to high revenue. We

compare among different taxi groups and find that, to achieve high revenue, taxi drivers

need to improve their passenger finding and delivering techniques. So we turn to the study

of taxi serving strategies, i.e., the hidden intelligence about taxi serving techniques of a

community of drivers based on their digital traces. We propose a novel way to model the

passenger finding behaviors as well as passenger delivery behaviors and passenger serving

areas of a driver. Then we identify the good and bad strategies by learning from the good

drivers, measuring the correlation between strategies and performance, and finding the

strategies that can classify driver groups with different performance.

Furthermore, we demonstrate the novel services that enabled by the individual and
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community behaviors with a smart taxi systems. It provides various of new services that

benefit not only taxi drivers and passengers, but also the taxi companies, the city traffic

administrative bureaus and even the public. We illustrate the system working scenarios,

interfaces and architecture design. And we evaluate the real time responses and scalability

of the system in real life scenarios.

1.2 Thesis Outlines

The outlines of this thesis are organized as follows. Firstly we survey the state-of-

art in Chapter 2. Then we introduce the digital footprints collected by pocket-placed

mobile phones and GPS-equipped taxis in Chapter 3. In Chapter 4, we present our work

in detecting the individual behaviors based on the obtained digital footprints. After, in

Chapter 5, we analyze the characteristics of the anomalous passenger delivery behaviors and

work shifting behaviors and present how we mine the human intelligence in taxi serving

strategies. In Chaper 6, we present the smart taxi system. In the end, we present the

conclusions. The main contents of each chapter is summarized as follows.

1.2.1 Digital Footprints Introduction

The digital footprints studied in the thesis include the accelerometer sensing data col-

lected from mobile phones while carried in the costume pockets near the pelvic region and

the taxi GPS traces collected from thousands of taxis in Hangzhou, China for one year.

They are introduced in the following two separate sections.

1.2.1.1 Accelerometer Digital Footprints

The digital footprints collected by the mobile phones have various scenarios due to the

many possible ways of how people carry the mobile phone. And we have to carefully choose

the opportunities so that the mobile phones can record the signals of the body movements.

This thesis seizes the opportunity when an individual put his mobile phones inside his

pockets near the pelvic region to recognize his activities. We build mobile phone interfaces

and carefully design experiment scenarios to collect the accelerometer sensing data while

people carry the mobile phone in different locations and orientations. Then we give an

empirical study about the sensor readings in different scenarios to show the big variance.

1.2.1.2 Taxi GPS Traces

The taxi GPS dataset we obtain is collected in Hangzhou, China from April 2009 to

April 2010. We first introduce the city of Hangzhou and how the taxi system works there.

Then we give an empirical study about the collected digital traces and further model the
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GPS traces with a business cycle that contains four stages, i.e., Vacant, Pick-up, Delivery

and Drop-off. Besides, we introduce the data problems within the taxi GPS traces with

real examples, such as data noises and low sampling problems.

1.2.2 Detecting Individual Behaviors

In this chapter we present how to recognize individual behaviors from one’s digital

footprints in the obtained two datasets, including detecting one’s physical activities from

one’s accelerometer traces and recognizing anomalous passenger delivery behaviors and

work-shifting behaviors from individual taxi’s GPS traces.

1.2.2.1 Activity Recognition with Mobile Phone Digital Footprints

Practically, the mobile phones are in natural states inside the pockets around the pelvic

region, so they have varying positions and orientations. This thesis presents how to extract

features from the raw sensing records and how to perform the classification work on these

features to recognize the physical activities. By introducing the acceleration magnitude,

which is invariant under different phone orientations, we manage to improve the recognition

accuracy about 8% comparing with not introducing the magnitude. The comparison of

several data mining methods show that, SVM achieves the highest accuracy. And with a

simple feature reduction algorithm, we succeed to reduce the feature dimension to 8 and

the least number of feature vectors while maintaining the recognition accuracy.

1.2.2.2 Anomalous Passenger Delivery Behavior Modeling and Detection

We summarize the anomalous passenger delivery behaviors into three types according

to their unique properties which lead to different types of solutions. Then we introduce

the iBOAT method and how we improve the recognition efficiency with an inverted index

mechanism. The evaluation result shows that the new method runs at least 5 times faster

than iBOAT.

1.2.2.3 Work Shifting Behavior Detection

Work shifting events occur in China as most taxis are served by two drivers in order

to maximize profit. Observed that the work shifting events normally happen in a fixed

location within a short time range of day, which are pre-negoniated by the two drivers,

and they take some time for the handover of vehicles, we propose a mapping-based method

that firstly detect the work-shifting locations and then find the corresponding work shifting

events to separate the digital traces of the two drivers.
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1.2.3 Understanding Community Behaviors

With the huge number of anomalous passenger delivery behaviors detected in real life,

we perform analysis aiming to answer the following questions. a) What percentage of all

trips are anomalous? b) Out of the anomalous trajectories, what percentage of them travel

longer distance than necessary? c) What statistical “tendencies” can we discern from the

detected anomalous trajectories? d) Do taxi drivers who have a higher tendency to commit

fraud have an economical advantage over those who don’t? We observe that 1) Over 60% of

the anomalous trajectories are “detours” that travel longer distances and time than normal

trajectories; 2) The average trip length of drivers with high-detour tendency is 20% longer

than that of normal drivers; 3) The length of anomalous sub-trajectories is usually less than

a third of the entire trip, and they tend to begin in the first two thirds of the journey; 4)

Although longer distance results in a greater taxi fare, a higher tendency to take anomalous

detours does not result in higher monthly revenue; 5) Taxis with a higher income usually

spend less time finding new passengers and deliver them in faster speed.

We also analyze the spatial and temporal distributions of a large amount of work shifting

behaviors. We find that, afternoon work shiftings normally happen between 16:40∼17:20

in non-hot areas, which explains why people feel hard to get taxis in this time period.

We aim to discover both efficient and inefficient taxi serving strategies from the taxi

serving behaviors of a driver community. We examine the passenger finding strategies after

dropping off passengers, i.e. going distant, hunting locally and waiting locally, and before

picking up passengers, i.e. hunting or waiting, as well as other serving strategies, including

passenger serving areas and passenger delivery speeds. To correctly model the strategies

after dropping off passengers, we propose a novel method to find the initial intentions right

after dropping off passengers in a certain time and location context. By representing the

preference of each strategy with a feature, we obtain a feature vector for each driver and a

feature document for all the drivers. We first propose a method to learn the most preferred

strategies of high revenue drivers. And then we analyze the correlation between each

feature and the revenue, to explore the evolving trends and thus to pinpoint the strategies

that should be emphasized or weakened by most taxis. In the end, we perform L1-SVM

and AdaBoost to select the most salient features that differentiates taxi performance, and

analyze them based on their mutual information with the revenue.

1.2.4 A Smart Taxi System

The perception of individual and community behaviors enables various novel applica-

tions of the sensing systems. We illustrate this trend with a smart taxi system with various

types of services for three types of users, i.e., passengers, drivers, and system monitors.
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The system supports real time tasks like taxi dispatch and anomalous behaviors monitor-

ing as well as other services without prompt response request. We build an easy-to-extend

system architecture with the main system components and evaluate the real time responses

by “replaying” the collected historical records.

1.3 Thesis Contributions

The contributions of this thesis lie in the following aspects.

1. By mining the accelerometer footprints collected when people place their mobile

phone inside the pockets around the pelvic region, we successfully recognize seven

daily physical activities. We conduct real life experiments with two Nokia N97 mo-

bile phones to collect the accelerometer readings from 7 volunteers while conducting

these activities and prove that, we do able to detect people’s physical activities and

by introducing the acceleration magnitude into the sensor reading, the recognition

accuracy could be improved about 8%. The cross validation results of several data

mining methods show that, SVM achieves the best accuracy. With a simple feature

reduction mechanism, we successfully obtain a compact model which is much smaller

than the original one.

2. We summarize the anomalous passenger delivery behaviors, pinpointing their unique

characteristics and the suitable methods to detect them. And then we introduce an

inverted index mechanism to replace the trajectory searching in iBOAT with index

comparisons. The results show that, it improves the computing efficiency at least 5

times.

3. We detect the work shifting events based on the digital footprints of taxis for the

first time. By interviewing with several taxi drivers, we find that the two drivers

serving one taxi normally have an agreed work shifting location and time period and

spend some time for the handover of vehicles. So we extract the waiting locations in

the vacant trajectories and map them into grid decomposition. The grids that the

taxi stays nearly everyday in a fixed time slot are counted as the possible candidates.

After we propose rules to filter out the false candidates and obtain the real work

shifting location. And then we detect the work-shifting events and obtain the GPS

traces for individual drivers.

4. We detect huge number of anomalous passenger delivery behaviors from the digital

traces of a taxi fleet and provide thorough analysis of their characteristics and in-

fluences on taxi revenues. We reveal that, these anomalous behaviors normally cost

longer traveling distance and more traveling time, which means that most of them

are detour events. Even though high detour tendency taxis earn more averagely in
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single trips, they are not the top revenue taxis. Top revenue taxis are good at efficient

passenger finding and passenger delivering, and don’t rely on the fraud behaviors.

5. Understanding the taxi serving strategies aiming to uncover those good and bad

techniques is one typical example of uncovering human intelligence from the digital

footprints of a community of individuals. We first model the taxi serving behaviors

of each driver based on his digital traces from the perspectives of passenger finding,

passenger delivering and serving areas. Particularly, we study the passenger finding

intentions right after dropping off passenger for the first time and propose a novel

method to extract the intentions from the passenger finding trajectories. The taxi

serving behaviors of a driver are described as a feature vector, which reveal his pref-

erences over different strategies. Then we study the good and bad strategies from the

perspectives of learning from top driver, measuring by the correlation between each

strategy and the profitability, and finding the strategies that differentiate the drivers.

We present the methods and results accordingly.

6. Furthermore, we present a smart taxi system, which explores the individual and

community behaviors mined from the digital traces to support various novel applica-

tions. We present the possible users, system architecture and evaluations in real life

scenarios.

This thesis presents several studies of detecting the human behaviors with the collected

digital traces, analyzing their community characteristics and learning the hidden human

intelligence. We hope the illustration of the smart taxi system can inspire novel design of

smart sensing systems.
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We survey the related work from the following two perspectives, detecting individual

behaviors from personal sensing digital footprints and understanding community behav-

iors from community sensing digital footprints. At the same time, we also introduce the

applications that are devised from these studies.

2.1 Exploring Individual Digital Footprints

Automated reasoning about human activities is a central goal of ubiquitous computing

as well as artificial intelligence. With the advances of sensing and computing, one of the

major research fields is to understand human behaviors, goals and intentions, and thus

to provide more sophisticated and human-centric services. Generally speaking, such work

follows the following steps. Firstly, a low level sensing module is designed to capture various

signals about the targeted activities. And then certain features, of which the targeted

activities are somehow different, are extracted from the signals. In the end, a module is

learned from the features that can tell the activity labels of new testing features [99].

Recent years have been witnessing much research about automatic recognition of human

behaviors based on the data collected from mobile and infrastructural sensors. Besides the
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vision-based activity recognition work, the majority of studies rely on placing sensor boards

on human body to detect the signals of body movements (such as the acceleration measured

by accelerometers, and the elevation measured by barometers), or using RFID to detect

the objects possibly used in the activity process, and then infer the activities with machine

learning or data mining methods. There are also other studies based on the location traces

of people (GPS traces and GSM signal traces), which reveal the trips they follow, the

time durations they stay at each place, and even what commune tools they take (walking,

driving or bicycling). These studies are surveyed as follows.

2.1.1 Sensing-Based Activity Recognition

Current sensing-based activity recognition work mainly relies on three types of pervasive

sensing, i.e., ambient sensing, wearable sensing and the combination of the above two [4].

In the following sections, we survey the existing work from these types with consideration

about the feasibility in real life scenarios.

2.1.1.1 Ambient Sensing

Ambient sensing refers to the usage of sensors embedded in the environment to perform

pervasive sensing tasks. One typical example is the smart home system that captures the

environment information and user behaviors and provides services like health monitoring,

assistance and information sharing [95]. Earlier examples, such as MIT’s PlaceLab 1 [39]

and Georgia Tech’s “Aware Home” [48], deployed a set of heterogeneous, wired and wireless

sensors (with constraints of power supply) in the environment to detect people’s behaviors

and provide three kinds of services, i.e., health and well-being management, digital media

and entertainment, and sustainability.

The sensors in ambient sensing include miniaturized cameras, microphones, RFID, pres-

ence and pressures sensors, electricity and water usage detectors. To reduce the adoption

difficulties of such systems, a general trend of such system is to use wireless and self-

managed sensor nodes [115]. Among these sensors, cameras are common used for activity

recognition from vision perspective. For the details of such work, please refer to the sur-

veys [42, 76,85].

However, in many cases, cameras are intrusive to people’s privacies. Thus much re-

search work turns to activity detection based on other types of sensors. In [108] Wilson

et al. used many minimally invasive sensors commonly found in home security systems

to simultaneously recognize and track activities in a smart home environment. Intille et

al. [39] designed a new live-in laboratory “PlaceLab” for studying ubiquitous technologies

1. http://architecture.mit.edu/house n/placelab.html
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in home settings. They deployed various sensors to capture users’ activities, such as switch

sensors for detecting the open-close events of refrigerator and linen closet, and on-off events

of the lighting of a stovetop burner. Logan et al. [68] used a dataset collected from over 900

sensor inputs in “PlaceLab” to recognize dozen of daily living activities and compared the

different sensor modalities in detecting various behaviors. In [101] Kasteren et al. studied

the activities of a 26-year-old man living a smart apartment.

However, due to the high-cost of building a smart home and high recognition complexity,

smart environments that are capable of recognize human behaviors are still far from wide

adoption in real life scenarios.

2.1.1.2 Wearable Sensing

Wearable sensing tries to attach various types of sensors in human body to detect the

signals that can distinguish various types of activities. The research in this field is promising

as people can deploy the sensors in the clothes, belts watches, necklace and mobile phones

and thus observe people’s behaviors in unobtrusively manner. With the movement signals

detected with sensors like the accelerometers, which can be embedded in the devices, many

researchers try to recognize people’s activities. We introduce the related work according

to the ways of the sensor deployment, as it highly influences the feasibility in real life

applications.

Activity Recognition with Multiple Sensor Placements

It’s intuitive that with more sensors deployed on more locations in the body, we can

capture more information about the body movements and thus recognize people’s physical

activities more precisely. In early research work, Kern et al. [47] fixed accelerometer sensor

boards with straps on the major joints on the body, including the locations just above the

ankle, the knee, on the hip, wrist and above the elbow and on the shoulder (totally 12

places). By capturing the movement signals of these locations, they could distinguish not

only basic postures and movements like sitting, standing and walking, but also activities

with the movements of only part of the body, including writing on a whiteboard and typing

on a keyboard, and even shaking hands. Bao et al. [6] attached biaxial accelerometers

on 4 limb positions plus the right hip to distinguish 20 activities. Laerhoven et al. [53]

attached 20 biaial accelerometers along the left leg to distinguish a series of body gestures

and movement, such as walking (up/down staris), running, sitting, standing and so on.

In [81] Pärkkä et al. placed various types of sensors on different parts of the body to

capture not only the movement signals, but also EKG, heart rate, temperature and so on.

With such rich information, the authors proposed methods that successfully recognize lie,

row, ExBike, sit, stand, run, nordic walk and walk. In [50] Kunze et al. attached MT9

sensor boards on right and left of upper arm, lower leg and knee, the neck and rear hip
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to distinguish three types of Tai Chi movements. In [36] Huỳnh et al. attached sensor

boards to the right wrist, hip and thigh to recognize a series of low level actives as well

as high level ones. In [100] Tapia et al. used five 3-D accelerometers (placed at top of

the dominant wrist, side of the dominate ankle, dominate upper arm, dominate upper

thigh and dominant hip) and a wireless heart rate monitor to detect not only the physical

activities, but also their intensities. Ermes et al. [27] attached various types of sensors all

over the body for recognizing activities in both indoor and outdoor environments. Yang

et al. [114] designed a body sensing system which consisted of 5 motion sensors attached

to the wrists, waist and ankles respectively. The evaluation showed that the recognition

accuracy reduced gracefully using smaller set of sensors.

Activity Recognition with Fewer Sensor Placements

Even though multiple sensing positions can recognize sophisticated activities with high

recognize accuracy, the sensor deployments are much cumbersome in most of studied sce-

narios since the sensors were fixed on the corresponding body part with materials like

straps, and thus currently still far away from real life adoptions. To make the system

easy-to-use, much work turns to use fewer number of sensor placements targeting at more

practical use scenarios, and of course, the ambition is reduced to fewer types of activities.

In [57] Lester et al. paced three multi-modal sensor boards on the wrist, waist and shoulder

with straps to distinguish 8 common physical activities and evaluated the scenarios with

just two boards of them. In [104] Ward et al. studied activities about woodwork with

microphones and accelerometers mounted on the dominant arm.

Much research work just placed one sensor board in the body to detect the activities.

The typical positions are the around the pelvic region [1,20,22,89], shoulder [2,58]and wrist

[117]. These types of sensor placements are more practical than the multiple dispositions

as the devices can be embedded into commodity stuffs, such as trouser belt, watch and

clothes. In an early work, Ravi et al. [89] used just an accelerometer worn near the pelvic

region to detect 8 physical activities similar with [57]. Allen et al. [1] used a single triaxial

accelerometer mounted on the waist belt to detect three postures and the status change

among them. To address the problem of growing rate of sedentary lifestyles, UbiFit Garden

[20, 22] used a mobile sensing platform placed on the belt, which was embedded with

multiple sensors like accelerometers, barometers, humidity and so on, to infer user’s physical

activities. The inferred activities were used as inputs of a virtual game in mobile phones

to increase people’s awareness and interests in promoting physical activities. In [2, 58] the

authors also reported the detection of common physical activities with a shoulder mounted

multi-sensor board. Besides, Yang et al. [117] also discriminated eight common domestic

activities under controlled environment with an accelerometer module mounted on the

wrist. The influences of sensor locations in detecting activities were also evaluated in [74].
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Activity Recognition with Mobile Phones

Even though the one sensor deployment style is more acceptable in current stage, it’s

still hard to be promote to mass people, because it’s still troublesome to wear such devices

(normally they were fixed with bags or clips) and it’s costly. The increasingly popular

smart mobile phones, like iPhone, Sumsung, Nokia, and HTC, become the ideal platform

for practical physical activity monitoring for the public as they are already embedded with

relevantly sensing modules. More importantly, they requires no extra cost for hardwares.

Much work has been dedicated to this type of research, such as [8,41,51,52,69,71,72,90,116]

and ours [97]. Different from the other wearable sensing types which fix certain sensing

devices in human body, mobile phone based activity recognition faces new challenges: 1)

The sensor location and orientation are not fixed, as users may hold mobile phones in many

different possible ways, such as holding in their hands, putting in the pockets (many possible

pockets as well) and bags. What’s worse, users may change the way of hold mobile phone

casually as they want; 2) The mobile phone can be used from many other purposes which

influence the recognition of their activities, such as communication and surfing internet; 3)

Users won’t accept the activity recognition application if it severely slows the system. So

the recognition model should not cost too much resources. The reported sensing locations

adopted in the work currently include single locations such as the neck [71], front pant

leg pocket [52], in a pocket (which pocket is unreported in the paper) [105] and multiple

possible locations such as on a table, pants pocket and in the hand in [8], held in the hand,

worn on the hip and armband in [69], arm, waist, chest, hand, pocket, and in a bag in [91]

and different body locations (details unprovided) in [72]. Conducted at the same time

period (year 2010) with most of the work, we also propose to capture the opportunities

when people put their mobile phones in their daily costume pockets around the pelvic

region [97]. The difference of our study from the previous ones is that, the mobile phones

are with many possible location and orientations, which introduces great variances to the

model.

2.1.1.3 Combing Ambient and Wearable Sensing

Effective sensor fusion of both ambient and wearable sensing power can take advantage

of both modalities to provide novel ways for activity recognition. Most work in this field

used RFID bracelet/glove or ear-worn sensors and sensors deployed in the environment to

detect the activities. Mcllwraith et al. [75] combined the usage of an ear worn sensor with

visual sensors, and proposed a probabilistic sensor correlation framework to identify ap-

propriate set of features for the activity recognition. With the advances of RFID systems,

much research turns to use RIFD sensing to detect the objects used and then to infer the

conducted physical activities [32, 82, 83, 96, 99, 109, 111]. Normally these studies attached
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RFID tags on the objects that used in the targeted activities. And then based on the

sequence of object usage, they adopted machine learning or data mining methods to rec-

ognize people’s activities. Atallah et al. [3] adopted an accelerometer-embedded ear worn

activity recognition device combined with wireless ambient sensor in a home environment

to identify common activities of daily living.

2.1.2 Other Exploration of Individual Digital Footprints

There are also many studies about people’s activities from the digital traces in a long

time span, such as the location traces collected with GPS and GSM sensors, location-

embedded photos and accelerometer traces. Such digital traces from a long time span

potentially record rich information about what an individual has done in which place, and

thus could be used to reveal many aspects about one’s live, such as the transportation

mode, activities and life patterns. The obtained model can also be used to further predict

one’s future behaviors under various contexts.

Much research focused on inferring the transportation mode, activities, and life pat-

terns from an individual person’s GPS digital traces. With the GPS data stream of a

traveler, Patterson et al. [25] presented a method that learns a Bayesian model about

one’s movement, which infers the transportation mode as well as the most likely traveling

route simultaneously. Liao et al. [64, 65] found a set of significant places of an individual

user in his historical GPS records and then used a Relational Markov Network to recog-

nize the activities in those place, such as working, visiting or dining out. Furthermore,

They built a dynamic Bayesian network model to learn and infer transportation routines

between the significant places. With such informations, it’s possible to obtain a clear un-

derstanding of the user’s lives, tracking his life patterns and detecting abnormal events,

such as taking a wrong bus, which potentially helps cognitively-impaired people to use

public transportation safely. Zheng et al. [31, 128] proposed an approach to infer the mo-

bility mode, such as walking, driving and so on based on one’s GPS logs. The approach

consists of three parts: a change point-based segmentation method, an inference model

and a post-processing algorithm based on conditional probability. Perceived that trajecto-

ries contain daily whereabouts information of a person, Chen et al. [19] used a clustering

method to detect the significant places in a person’s life, then abstracted the trajectories

and finally extract the movement patterns. With the pattern obtained, the destination of

a trajectory and future route can be predicted. Qiu et al. [88] also presented term weight-

ing approaches to mine significant locations from personal location logs. Ye et al. [118]

captured an individual’s general life style and regularity from his location history. With a

history of a driver’s destinations and driving behaviors data, Krumm et al. [49] presented

a method called Predestination that predicts where a driver is going as a trip progresses.
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Noticing that a large portion of a typical driver’s trips are repeated, Forehlich et al. [45]

predicted the route of a driver based on the observation of his past trips. Ziebart et al. [11]

presented a method called PROCAB, which is used to predict decision at next intersection,

route to known destination and the destination given partially traveled route. Monreale

et al. [77] proposed a method called WhereNext to predict the next location of a moving

object, based on the extracted movement pattern called Trajectory Patterns. Isaacman et

al. [40] inferred important places in people’s lives from cellular network data.

There are also many other studies that take advantage of the GPS traces of individual

vehicles traveling on the road network with purposes to predict the destination, routings

and detecting anomalous behaviors. Edelkamp et al. [26] presented a method to infer a

short path to a destination given the current locations and a set of GPS traces. And Cao

et al. [13] proposed a method for automatically building a routable road network. Zhang

et al. [17, 125] studied the anomalous passenger delivery behaviors of taxis. Anomalous

passenger delivery behaviors refers to delivery routes a taxi follows that people normally

won’t follow to go the destination area from the source. The authors proposed two methods,

including iBAT and iBOAT, to detect the anomalies when the trajectories are finished or

while ongoing respectively. However they didn’t study the methods from the system point of

view. In real practice, the methods will be employed separately on each possible source and

destination pairs with testing trajectories. So the computing cost of the algorithms in each

single source and destination pair will greatly influence the overall system performance.

In this thesis, we propose an inverted index mechanism based method to improve the

recognition efficiency. Besides, we collect huge amount of anomalous passenger delivery

behaviors from real life GPS traces of thousands of taxis and perform thorough analysis to

find the characteristics of the anomalous behaviors from a community perspective.

2.2 Exploring Community Digital Footprints

With the feasibility of collecting digital footprints in community scale, much research

attention has been paid to study the community behaviors, revealing the characteristics

and their reflections on city dynamics and so on. We survey the related work in groups

according to the type of digital footprints them are based on.

2.2.1 Studying the Digital Footprints of Large Group of People

Much research work was conducted based on the GPS traces of large group of people.

Firstly, with the location history of different people, the similarities between them can be

measured [112, 127]. Xiao et al. [112] modeled the GPS history into a semantic location

history (SLH), such as shopping malls → restaurants → cinemas and then measure the
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similarity among the SLHs of different people. Zheng et al. [127] presented a GPS-data-

driven social networking service called GeoLife2.0, where people can share life experiences

and connect to each other with their location histories. By mining the location history, it

can measure the similarity between different users and recommend friends.

The location histories of a community of people reflect the human mobilities and they

can be used to reveal the hidden relationship between different locations (like the correlation

in [130]), recommend traveling route [37,130], places and activities for tourist [126]. In [130]

the correlated locations are those that usually are visited together in people’s trips, and

the highly correlated locations can be used to recommended to tour guide, promote sales

and design bus routes. Based on multiple user-generated GPS trajectories, Yoon et al. [37]

proposed a Location-Interest Graph to model typical user’s routes in the area. Then given

a source, destination and time duration for traveling, it’s able to propose an itinerary which

is suitable for traveling. In [130], Zheng et al. tried to answer two questions: 1) if we want

to do something such as sightseeing or dining in a large city like Beijing, where should we

go? (2) If we want to visit a place such as the Bird’s Nest in Beijing Olympic park, what

can we do there? They modeled the user’s location and activity history as a user-location-

activity rating tensor and proposed three collaborative filtering based algorithms to handle

the data sparseness problem.

2.2.2 Exploring the Digital Footprints from Large Group of Vehicles

There are lots of studies based on the location traces of vehicles. With the wide adoption

of GPS devices in vehicles for navigation and other functions like vehicle dispatch (like

taxis), there were already huge number of digital traces accumulated from large group

of vehicles in real life. The aggregation of such digital traces in large scale potentially

reflects many characteristics about human activities and city dynamics. They trigger much

research work ranging from urban human mobilities [12, 15, 18, 43, 63, 67, 102], uncovering

human behavior patterns [60,66], promoting taxi services [56,60,63,84,86,98,113,123], urban

planning [61, 121,122,129], estimating regional functions [87, 120] and so on. Following we

are going to introduce these research fields separately.

Urban Human Mobility

The research of modeling urban human mobilities based on vehicle traces mainly stud-

ies the hotspots of vehicles and taxi pick-up/drop-off behaviors [15,63,67,102], the general

human movement patterns [43] and the frequent trajectory patterns [18]. Based on the

historical taxi demands, Chang et al. [15] predicted the taxi demand hotspots considering

contexts of time, weather and locations. Based on the patterns discovered in the num-

ber of passenger pick-ups, Li et al. [63] predicted human mobilities. Viewing vehicles as

“sensors”, Liu et al. [67] perceived the vehicle crowdedness based on the clustering of the
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vehicle mobility. With the taxi GPS traces collected in Lisbon, Portugal, Veloso et al. [102]

performed exploratory analysis about the relationships between pick-up and drop-off loca-

tions. Based on the moving trajectories of people revealed by the digital traces of 50 taxis

during a six-month period, Jiang et al. [43] revealed that the Lévy flight behavior of human

mobility patterns is mainly attributed to the underlying street network. Chen et al. [18]

proposed efficient methods to discover trajectory patterns.

Smart Navigations

As the passenger delivery trajectories record the drivers’ selection of route with the

intelligence as a human under different contexts, such as the traffic and road networks, taxi

GPS traces are also used to devise smart navigations in urban environment. Letchner et

al. [59] proposed a route planning prototype TRIP which incorporates driving preference

of the driver and the time-variant traffic conditions which are learned from the GPS traces.

Base on the data collected from road speed sensors, Gonzalez et al. [30] found the fastest

path by partitioning the map into areas by a road hierarchy, extracting frequently traveled

road segments and pre-computing high-benefit paths for each area. Unlike traditional

route planning methods that mainly based on the Dijkstra’s algorithms, Li et al. [61, 62]

incorporated human cognition of the road network which is learned from taxi GPS traces.

They divided the road according to the traveling frequencies into frequent roads, secondary

frequent roads and seldom roads and then performed route planning by trying to travel

through the highest hierarchy roads. In a well known work T-Drive [122], Yuan et al.

constructed a time-dependent landmark graph, where the landmarks are road segments

frequently traversed by taxis, to model the intelligence of taxi drivers and the properties of

dynamic road networks. The routing algorithm first finds a rough route on the landmark

graph, and then refines it to a detailed route in the road network. In later work [121],

Yuan et al. presented a Cloud-mobile architecture system that recommended customized

fast driving to an end user considering traffic conditions and driving behaviors. Compared

with T-Drive, it considers the driver behaviors of the end user and future traffic conditions.

It also incorporate the weather conditions obtained on-line and the drivers’ knowledge in

different regions.

Traffic dynamics

The collective movement of vehicles in a city causes different congestion levels in the

road network throughout different time periods of a day. Knowing traffic dynamics is

helpful for researches such as promote taxi business and smart navigation. The traffics

generally follows regular patterns during the day. Much research work has studied the

patterns to better understand the traffic dynamics. With the synergies of hundreds of GPS-

embedded taxis which send GPS position to the head quarter once per minute, Schäfer et

al. [94] presented a system that reported the real time traffic information. Wen et al. [106]
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measured the traffic changes in Beijing around the Olympic game time period based on

GPS-equipped taxis. Giannotti et al. [29] found traffic jams by detecting groups of vehicles

that move slowly together. Herring et al. [92] estimated the traffic conditions on arterial

roads with a Coupled Hidden Markov Model, in which the data from a fleet of 500 taxis

in San Francisco, CA, which send GPS data to the server once per minute is used. Yuan

et al. [121] inferred the traffic condition at a future time of the landmark graph built

from historical data and real-time traffic flow calculated based on recently received taxi

trajectories.

Promote Taxi Business

Perceiving the mobility patterns of human as well as taxis, much work has been trying

to provide guidances for taxis to efficiently find passengers and vice versa. The studies that

tried to help the passenger finding process based on historical GPS traces of large scale

taxis evolves from simply recommending hot picking-up areas to sophisticated modelings

which consider the competition from other taxis, potential trip length and traffics, and

provide optimized passenger finding place and routes.

Recent years have witnessed much research on extracting passenger pick-up patterns

and hot areas [15, 56, 63, 86, 102], which can be used for taxi recommendations. As the

samples in taxi digital traces record the information including GPS locations, timestamp

and passenger status, it’s easy to extract the individual passenger pick-up events. And by

clustering the locations of these events with K-means under the consideration of different

time periods of day and day of week, Lee et al. [56] analyzed the pick-up patterns of taxi

service in Jeju, Korea and intended to reduce the taxi empty ratio by guiding taxis to these

clusters. Chang et al. [15] first gathered the demand request records by filtering with time,

location and weather contexts, then clustered these requests into hotspots by K-means,

Agglomerative Hierarchical Clustering and DBSCAN and ranked them to provide vacant

taxis with good hotspots. Veloso et al. [102] explored the passenger deliveries patterns and

passenger finding process, and revealed that in Lisbon, Portugal, for finding passengers, in

urban areas taxis normally went to adjacent locations while in suburb areas taxis went to

distant locations. Li et al. [63] predicted the passenger pick-up times in the hotspots based

on the historical information recorded in the taxi GPS traces and used the results to guide

vacant taxis.

Unlike the methods merely focusing on the global hotspots, Powell et al. [86] investigated

only the surrounding local areas. They measured the profitability of each area concerning

the fare gains of all occupied trips originated from that area, the number of all trips and

the cost from current location to the area. Using the knowledge of passenger’s mobility

patterns and taxi drivers’ picking-up/dropping-off behaviors learned from taxi GPS traces,

Yuan et al. [123] provided drivers with some locations and the routes to these locations
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based on the historical passenger finding probability of the routes and the parking places.

Besides the work based on taxi GPS traces, Takayama et al. [98] used survey information

from taxi drivers and proposed promising “waiting/cruising” locations. But the method

is prone to human error and inefficient. Yamamoto et al. [113] recommended routing

strategies for multiple taxis by mutual exchange of their pathways.

Different from the above perspectives, in this thesis, we intend to learn the taxi serving

strategies from the behaviors of taxi drivers based on their digital traces, i.e. to learn the

hidden human intelligence during the business process. Since drivers already consider all

the influencing factors, we can learn the good and bad behaviors from them considering

their behaviors and revenue performance, and then use this knowledge to guide other taxi

drivers. The idea is that, we try to study the relations between the behaviors and the

resulted revenues, and then reveal good and bad taxi serving strategies to the taxi drivers.

Other research topics

Taxi GPS traces also devise many other novel research topics. Zheng et al. [129] detected

flawed urban planning by checking whether the level of connectivity between two areas

satisfies the travel demand between them. They looked at actually versus expected distance

required to travel between two regions, as well as the expected speed and actual volume of

traffic. Their research was based on the trajectories generated by 30, 000 taxis in Beijing

(March to May in 2009 and 2010).

Large-scale taxi GPS traces also provide a possible way to measure social functions

of city regions. Qi et al. [87] measured the relationship between between social functions

of city regions and the pick-up/drop-off characteristics of taxis there. Their results show

that the temporal variation of pick-up/drop-off number in a region can depict the social

dynamics in that area. Yuan et al. [120] separated the city into disjointed regions according

to road structure and inferred the social function in each region using a topic-based inference

model. The model is based on human mobility, which is obtained with a taxi GPS dataset,

and points of interests located in a region.
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3.1 Introduction

According to the wikipedia 1, a digital footprint is a trail left by an entity’s interactions

in a digital environment, including their usage of TV, mobile phones, internet and world

wide web, mobile web and other devices and sensors. Zhang et al. [124] identified three

types of digital footprint sources, including the Internet and Web, the static infrastructures

and the mobile and wearable sensing devices.

In this dissertation, we focus on the digital footprints collected by pervasive sensing

devices. In particular, the digital footprints studied here are the accelerometer sensing

data of mobile phones collected when they are carried by people in their pockets of daily

costumes and a real life large collection of GPS traces of a large taxi fleet. In this chapter,

we give detail introduction about these two data sources.

1. http://en.wikipedia.org/wiki/Digital footprint
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3.2 Mobile Phone Digital Footprints

Recent years have been witnessing an explosion of smart mobile phones. Since the first

launch in June 2007, 250 million iPhone units has been sold world wide. And they still

lead the trend of smart phones with the new iPhone 5, whose pre-orders were sold out in

just one hour. As the major opponent of iOS, Android based mobile phones, such as the

Galaxy series of Sumsung and the HTC mobile phones, also draw great attention of the

market. Until January 2012, Sumsung has sold more than 50 million Galaxy S and S II

mobile phones. In the first quarter of 2011, HTC shipped 9 million smart phones. Beside,

Nokia also develops its own smart phones running on the Symbian and Windows Phone 8.

All these smart phones are enhanced with rich sensing capabilities, which potentially

leave various types of digital footprints during their usage by people in daily lives. Here

list a few of them:

– Proximity sensor: This sensor can determine how close the phones are to users’ faces.

It helps the mobile phones to turn off the screen automatically when people hold

them to the ears to prevent accidental button clicks.

– 3-D Accelerometer sensor: This sensor can detect the acceleration of the device and

help to rotate the screen to appropriate views. We seek the opportunity when the mo-

bile phone moves together with human body and thus the accelerometer can measure

the acceleration patterns of the corresponding body part.

– 3-D Gyroscope sensor: This sensor measures or maintains the orientation of the

device. Together with the accelerometer sensor, it measures the movement in 6

dimensions.

– Microphone: Microphone can not only support the phone calls, but also measure the

sounds nearby, such as the noisy level.

– WIFI: WIFI is considered as a sensor because it’s able detect the available access

points and the wireless signal, which can be used for positioning purpose. A typical

use scenario is the digital wall [80], which uses the wireless network to locate the user

in indoor environment and provides access control.

– Camera: Modern mobile phones are embedded with powerful cameras. For example,

the iPhone 5’s camera is 8-megapixel and five-element lens with f/2.4 aperture. It

allows people to take pictures conveniently.

The digital footprints collected with these sensors when people carry the mobile phones

potentially record many facets about the users. In this thesis, we intend to recognize

people’s physical activities, for which we choose seven common physical activities that

people conduct daily, including stationary, walking, running, bicycling, ascending stairs,

descending stairs and driving. Stationary is the status when people are still, including
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(a) (b) (c)

Figure 3.1: (a) Pocket locations. For each pocket shown, there is a corresponding one on
the left side of the body. (b) Four phone orientations when users put the mobile phone
into the right front pocket of the jeans. (c) Coordinate system of the accelerometer sensor
in Nokia phones.

standing, sitting and lying down. We seek the opportunities when the mobile phones move

together with the human body. As demonstrated in [89], the pelvic region is an ideal

accelerometer sensor deployment position for recognizing various physical activities. And

also the pockets of normal clothes are designed around this region (i.e. the front and rear

pockets of jeans, the front pockets of the coat as shown in Figure 3.1(a)). As revealed

by [38], over 60% men get used to putting their mobile phones into their pockets. And thus

we are trying to seize the opportunity when people place their mobile phone inside their

pocket around the pelvic region to recognize their physical activities.

We choose all the pocket locations shown in Figure 3.1(a) as the potential mobile

phone deployment positions. Due to the constraints of pocket shapes, we observed that

people usually put the mobile phone into the pockets with a few possible orientations. For

example, Figure 3.1(b) shows the scenario when people put the mobile phone inside the

jeans pocket. We can see that, normally there are four typical orientations when people

put the mobile phones into their pockets. Besides, for the activities people conduct while

sitting down, people are not comfortable if they place the mobile phones in the rear pocket

of the trousers, as it hurts their butts and may break the phones.

In previous research, the accelerometer has been proven a powerful tool to recognize

people’s physical activities. In this thesis, we are also trying to use accelerometers in

the mobile phones to measure their physical activities. As the sensors are fixed within

the mobile phone, their orientations are the same with the mobile phones (Figure 3.1(c)

shows the orientation of Nokia phone). So different orientations of the mobile phone cause

different sensor readings for the same activity, which introduce great variation for measuring

the activities.

We conduct experiment to collect the accelerometer data with Nokia N97 at a sampling
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Figure 3.2: Mobile phone interface for labeling the experiment.

rate of 40Hz for each activity with each possible combinations of location and orientation.

To ease the data labeling work, we build a simple touch screen user interface (shown in

Figure 3.2.) to label the experiment when launching the application, which allows the users

to select what activity they will conduct, which pocket to place in and in which orientation.

7 volunteers (one female and six males) from our campus (Institute TELECOM SudParis)

participated in the experiment during a period of three weeks. Before conducting the

experiments, they were given an introduction of how to use the application, together with

a piece of checklist paper with a list of activities and experiment settings to be conducted

with. There were no limitations for the clothes, such as whether to wear tight or loose

clothes, or whether to wear a jeans or a pant.

Each time the test subject carried two mobile phones. After launching the sampling

application and selecting the correct label for the experiment, the participants put the

mobile phones into the targeted pockets according to the chosen settings and conducted the

activity for a duration about 5 to 10 minutes. And then they took the mobile phone out and

terminated the application. The accumulated accelerometer records during the experiment

were saved in a file, whose name is a string with codes for the experiment settings. While

residing in the pockets, the mobile phone was in the natural status that could rotate or

move. Please also noting that when dealing with the front pockets of the coat, due to the

constraints of pocket shapes and user habits, the mobile phone was horizontally facing the

body instead of vertically, which was different from the jeans scenarios. Since the first and

the last few seconds of the records are the overhead when people put the mobile into the

pocket and take it out, they are removed from the official record. In the end, totally we

get 48.2 hours training data. The exact time length of each activity is shown in Table 3.1.

Figure 3.3 shows the raw accelerometer readings with different orientations of the mobile

phone when placed in the left back pocket of jeans for walking and running. It can be easily

seen that, the sensor readings can be quite different when the orientation changes even for
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Table 3.1: The sampling time of the activities.

Activity Station. Walk Run Bicycle Asc. S. Des. S. Drive Total

Time(Hour) 10.4 9.8 6.3 6.6 4.6 4.0 6.5 48.2
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Figure 3.3: Accelerometer readings when the mobile phone is placed in the left back pocket
of jeans with different postures for activities of: (a) walking; (b) running.

the same activity and pocket location. Figure 3.4 reveals the raw accelerometer readings

of different activities when the mobile phone is placed in the left front pocket of jeans with

the posture of facing in head upward. We can see that they are somehow different.

3.3 Taxi GPS Digital Footprints

The other digital footprints this thesis studies is a large collection of GPS traces from

thousands of taxis serving in Hangzhou, China during about one year time period. Before

introducing the dataset, we first briefly introduce the general information about the city

where our dataset was collected and the taxi service there.
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Figure 3.4: Accelerometer readings of different activities when the mobile phone is placed
in the left front pocket of jeans with the posture of facing in head upward.

3.3.1 Introduction of Taxi Service in Hangzhou

Hangzhou is the capital and largest city of Zhejiang Province in Estern China and is

very close to Shanghai and Suzhou (Figure 3.5(a)(b)). It is a densely populated city with

over 8.7 million people dwelling in an area of around 3,000 KM2 (Figure 3.5(c)). Referred
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(a) (b)

(c)

Figure 3.5: Hangzhou in google map. (a) Hangzhou in China; (b) Hangzhou surroundings;
(c) The map of Hangzhou city.
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as “Heaven on Earth”, Hangzhou is famous for its beautiful natural scenery which includes

two National Tourist Parks, two National Nature Reserves and several other highly ranked

tourist sites. In 2010, it attracted 2.8 million over-night tourists globally and 63 million

domestically. To efficiently transport this large population as well as the local dwellers

across the city, taxi service plays an important role thanks to the wide availability, conve-

nience and relatively low price. Currently there are about 8,400 continuously operational

taxis serving in Hangzhou. People can wave down taxis conveniently or call taxi scheduling

center to get a ride quickly. The taxi fare standard when the data was collected worked like

this. For the first 3 kilometers, the cost was 10RMB fixed. With additional 7 kilometers,

the charge was 2RMB per kilometer. For the part over 10 kilometers, the charge was 3RMB

per kilometer.

About 3500 taxis were deployed with GPS sensing devices at the beginning of April 2009

for dispatching. As time passing by, more and more taxis were equipped with such devices

and until April 20th, 2010, the number researched about 7600. These GPS sampling devices

constantly reported to a central server their GPS coordinates, sampling timestamp, pas-

senger status, speed and orientation via telecommunication network at a rate of about once

per minute. The central server received the GPS reports and stored them in a database.

In Hangzhou, all taxis are managed by several big taxi companies who rent taxis to

drivers. To obtain high profit, most taxis are served by two drivers, one during the day

time and the other during the night time. And thus the service of a taxi is divided into

“day work” and “night work”. The day driver who serves for “day work” drives a little bit

longer than night-work drivers but has to pay more renting fee (210∼230 RMB/day, which

is decided by the market) than night-work driver (160∼170 RMB/day).

Each day the two drivers shift work twice, once in the early morning and once in the

afternoon. We interviewed with some drivers and found that, the location and time of the

work shifting are negotiated beforehand and serve as an agreement for daily shifting. If one

driver is late for handing over the taxi to the other driver, he will pay 1RMB/minute to

him, or he has to hand over early in the next day in case they have good relationship. So

drivers will try to shift the taxis on time except that they can earn more money than the

compensation paid. Many night drivers work until 3:00AM in the morning and then park

the taxi at the work shifting location and go back home to sleep, while the others serve all

night long and then go to the work shifting location to hand over the taxi. The afternoon

work shifting happens between 4:30PM and 6:30PM with exact time negotiated by the

drivers. Information obtained by interviewing a few taxi drivers reveals that the work

shifting locations are normally near petrol filling station, bus stations or driver’s home. As

taxi drivers may not be close to the shifting location, they normally will plan to go to the

work shifting location half an hour earlier, which reduces their ability to serve for requests
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Table 3.2: Examples of GPS packets

ID Longitude Latitude Speed Ori. Occupa. Year Mon.Day HourMin. Sec.

9970 120.157762 30.259317 3.7 280 Vacant 2011 11 12 13 2 20
1120 120.258423 30.365834 27 120 occupied 2011 11 12 13 2 50
7869 123.340354 30.289732 18.3 340 Vacant 2011 11 12 13 3 05

with reverse directions and causes difficulties for passengers to find a taxi during this time

period. The work shifting event happens within a few minutes (some taxis say it takes

about 10 minutes) for checking the petrol tank and handing over.

3.3.2 Taxi GPS Traces Introduction

Some examples of the received reports (they are also referred as GPS packets in this

thesis) are shown in Table 3.2, which includes taxi ID, Longitude, Latitude, speed, orienta-

tion, occupation status and timestamp. With a large taxi fleet, large number of such GPS

packets are accumulated each day. For example, during March 2010, we obtained about

441 million GPS packets from the 7600 taxis, which recorded about 7.35 million passenger

delivery events happened in that month.

The accumulated records reveal the digital traces of taxis during their business process.

In Figure 3.6 we visualize a real life digital trace of a taxi during about 1 hour time period.

The markers are the sampling points and their size reflects the waiting time duration with

a default size for non-waiting status. The black color trace denotes the passenger delivery

processes while the red for passenger finding processes. The changes of status from red to

black and from black to red imply passenger pick-up and drop-off events respectively. We

can see that, the driver dropped off passengers at location A and drove to location C for

finding passengers. After staying there for 10 minutes, he still failed to find them and then

decided to go to place B, where it succeeded. It can be seen that, the difference between

passenger finding process and passenger delivery process is, normally passenger delivery

processes are efficient because the aim is to deliver passengers to their destinations as quick

as possible, while passenger finding processes may wander around for finding passengers.

To better understand the business procedure based on the GPS traces, we further

separate the digital traces of a taxi into a business cycle that generally contains four stages,

i.e., Vacant, Pick-up, Delivery, and Drop-off (shown in Figure 3.7). During Vacant stage,

in order to make the most profit, taxi drivers normally try to find suitable passengers in

efficient ways. The influencing factors in this process include the time and driving cost of

finding passengers, the potential traveling distance which directly results in the revenue,

the traffics and the difficulty of finding the next passenger in the destination of the current
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Figure 3.6: Visualization of a real life example of taxi digital trace during about 1 hour
time period. Black is for occupied status while red for vacant.
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Figure 3.7: Different stages of the taxi business and the possible applications.

The Pick-up stage is detected by the state change from vacant to occupied. The ag-

gregation of pick-up events from all taxis reveals the taxi demands in different areas in a

city throughout different time periods of a day. Together with the Drop-off events which

are revealed by the state change from occupied to vacant, we can observe the transport

demands among different regions of a city in different time period of day, which is valuable

for taxi drivers to find passengers and for city planners to design public transportation and

city planning.

After picking up passengers, the Delivery process begins. Taxi drivers normally choose

the efficient routes to deliver passengers to their destinations. Considering the influences of

different traffic situations during a day, there are several possible efficient routes between

two areas instead of limiting to the shortest path. A real life example is given in Figure 3.8.

It shows all the passenger delivery trips between the source and destination areas. It can
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Figure 3.8: The passenger delivery trajectories between two areas in different time periods
of a working day. The red lines are two examples of anomalous trajectories.

be easily seen that during rush hours like between 11:00∼11:59 and between 15:00∼15:59,

taxi drivers follow many possible routes traveling from the source area to the destination

area, while for the non-rush hours like 23:00∼23:59, their choices are reduced.

Taxi drivers may follow some anomalous routes due to reasons like fraudulent driving

or sudden-blocked road segments. As revealed in [125], such behaviors are “few” and

“different” compared with the majority of the trajectories. For instance, the reds lines in

Figure 3.8(b) are two abnormal passenger delivery trajectories. Such anomalous behaviors

don’t reflect what people normally do under certain situation. In later sections, we are

going to introduce the anomalous trajectory detection work conducted in our team and

further investigate the characteristics of real life anomalous trajectories.

After dropping off passengers at their destinations, taxis enter the vacant stage again

and begin the process of finding passengers. Please note that, Vacant stage doesn’t neces-

sarily imply passenger finding behaviors. It also include other behaviors, such as shifting
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work, having meals, taking rests and so on.

3.3.3 Data Problems

Many problems occur in the real life taxis GPS traces, which may seriously reduce the

quality of the sensing data and thus influence the related researches. We summarize the

problems together with some of the possible solutions.

– Data missing. Data missing usually occurs in the low-sampling-rate situations. For

example, a taxi may travel several road segments during the sampling time of one

minute. And then we lack of the samples in these passed by road segments.

Another sever situation is that, sometimes the GPS data is missing in the dataset

for several minutes or even hours (e.g., there is about two hour records missing after

No. 2 record in Table 3.3). The reasons for this deficiency could be the problems of

the GPS sampling devices or a network failure. It results in lacking of information

about the movement during the time period. Depending on the addressed problems,

the trajectory can either be split into two parts or merely thrown away if infected.

– Data erroneous. Occasionally there are errors in some data records, such as the

wrong GPS locations or timestamps. For example, in Table 3.3, there is one GPS

jump from record No.4 to record No.5, which jumps about 46km far in 75 seconds,

and then return back in record No.6. It’s high possibly that record No.5 is a GPS

device failure as it’s impossible for taxis to travel so fast. The samples with this type

of erroneous are normally thrown away in real practice. And if necessary, we can

“fix” this sample by guessing with the surrounding entries.

– Multiple drivers. In many cities, most taxis are served by two drivers to fully take

advantage of the vehicle. But there are no direct indication of the drivers in the data.

We will provide study about this problem in Chapter 4.

– Suspicious taxi status. There are several situations with suspicious taxi status. For

example, the status may be set in very short time durations, resulting in very small

traveling distance, which is practically suspicious for real passenger delivery. Besides,

some taxis may constantly be occupied or vacant for several hours or even several

days while moving around, which looks unreasonable in real life. These problems may

be caused by the device failure or mal-operation of the driver. We can filter out such

deliveries if they are few and not influencing much to the research problem. Besides,

we should also consider the time proportion of such improper flag in the overall time

of the traces and exclude the taxi with extreme high values.

Another problem is caused when the driver quickly picks up a passenger right after

the drop off events and the device fails to catch such events. Or the drop-off and

the following pick-up events are happened in areas without GPS signals. Such events
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Table 3.3: Examples of GPS data problems

No. Taxi ID Longitude Latitude Year Month Day Hour Minute Second

1 1111 120.157762 30.259317 2011 11 12 13 1 10
2 1111 120.157762 30.259317 2011 11 12 13 2 20

3 1111 120.258423 30.365834 2011 11 12 15 2 50
4 1111 123.340354 30.289732 2011 11 12 15 3 05
5 1111 123.0 30.0 2011 11 12 15 4 20

6 1111 123.340354 30.289732 2011 11 12 15 5 30

normally happen in the underground or in-building stations of train and airport. In

such cases, we fail to capture the drop-off events without awareness of them. This

problem is difficult to deal with in most cases. However, for airport, as it’s in an

isolated area far away from the city, one solution is to insert a vacant entry at the

airport and split one passenger delivery trip into two.

– “Dead” taxis. Single drivers and some night drivers often stop and go back home to

sleep during late night. And sometimes they sleep at some hot locations and wait for

passengers to wake them up. Besides, the drivers may need to drive to certain places

for having meals, fueling or shifting works. In these cases, their primary targets are

not finding passengers (their function for taxi service is “dead”). Such behaviors

may influence the observations of the drivers’ behaviors. However, such behaviors

normally have fixed patterns and thus may be detected. For example, in this thesis,

we present the work to detect the work shifting events based on the observation that

the shifting events of a taxis normally happen in a fixed location and time.

We filter out those taxis with too much suspicious status or lacking of records for too

long time and obtain 6863 taxis to conduct the research.
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4.1 Introduction

The digital footprints of individuals provide valuable opportunities to study one’s behav-

iors. In this chapter, we are going to introduce our work in recognizing people’s behaviors

with the obtained two datasets.

While in the pockets, mobile phones move together with people’s bodys and thus their

acceleration patterns are similar. So with the obtained accelerometer sensing data, we are

possible to find out what kind of physical activities they do. With long term monitoring

of their physical activities, we can draw a profile about their physical behaviorial patterns
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and tell whether they live sedentary lifestyles or not. However, the mobile phones are in

the natural states inside many possible pockets. So their orientations and locations are not

fixed, which is different from the previous research. In this work, we conduct experiment

to collect the accelerometer data in various locations and orientations. Then we introduce

our method to deal with the varying sensing orientations and locations problem.

The GPS traces of taxis record the passenger delivery process and provide opportuni-

ties to uncover those anomalous behaviors inside. In this chapter, we introduce what the

anomalous passenger delivery behaviors are in their nature and how to improve the effi-

ciency of the existing method to achieve real time responses in real life anomaly detection

system. Besides, to obtain the digital traces for individual taxis, we also present how to

detect the work shifting events based on the vacant trips.

4.2 Activity Recognition with Pocket Placed Mobile Phones

In this section, we are going to introduce our work in recognizing people’s physical

activities when they put their mobile phones inside their pockets of daily costumes.

4.2.1 Sensor Data Preprocessing

The embedded triaxial accelerometer inside a mobile phone can continuously sample the

experienced accelerations and produce 3-Dimension acceleration readings A = (ax, ay, az),

which are measures of the acceleration experienced in the three orthogonal axes: X-axis,

Y-axis and Z-axis. Taking the Nokia mobile phone for example, the coordinate system

with respect to the phone body is shown in Figure 3.1(c). When the orientation of the

phone body changes, the coordinate system will rotate accordingly and the readings at the

three axes will change. Since the acceleration magnitude is a measure for the quantity of

acceleration and has no directions, it is insensitive to the orientations of the mobile phones.

So it’s intuitive that the acceleration magnitude will help to detect the physical activities.

As the exact orientation of the acceleration is unknown, to relieve the influences of the

phone orientations, we add an the acceleration magnitude to the sensor readings, which

thus become 4-Dimension vectors Ā = (A, |A|) = (ax, ay, az, |ax, ay, az|).

4.2.2 Feature Extraction

The accelerometer senses discretely the acceleration of the body movement in a creation

sampling frequency and generate a sequence of sensor readings (A0, A1, . . .) along the time,

where (Ai = (aix, a
i
y, a

i
z, |a

i
x, a

i
y, a

i
z|)). To describe the real life physical activities, we model

them in separate time slots, with each one a specific activity type. We use a half overlap-

ping window to separate the collected sensing data stream into a number of equal-sized
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windows. Within each window W = (A0, A1, . . . , AN−1), we extract five types of features,

including the mean υ, and variance φ of each sensing dimension, the correlation δ among

all dimensions, The DFT energy η and Entropy ǫ in frequency domain and form a feature

vector

F = 〈υ, φ, δ, η, ǫ〉 (4.1)

. To calculate the frequency domain features, we first perform a discrete Fourier transform

(DFT) on each axis in W to get it frequency domain representations. Given a sequence of

number (a0, a1, . . . , aN−1), DFT transforms it into another sequence of n complex numbers

according to the formula:

Xk =

(N−1)
∑

m=0

am ∗ e
−i2π k

N
m

.

The energy feature η is defined as:

η =

∑N−1
k=1 |X

k|2

N − 1

. And the entropy feature is the normalized information entropy of the DFT component

magnitudes excluding the DC component:

ǫ =

N−1
∑

m=1

pm log
1

pm

, where

pm =
|Xm|

∑N−1
n=1 |t

n|
.

Finally we extract 22 features (4 features for each Mean, Variance, Energy and Frequency-

Domain Entropy respectively, and 6 features for Correlation) from each window, which

forms the feature vector F in Equation 4.2. All the feature vectors together build a fea-

ture matrix with each column corresponding to one specific feature and each row a feature

vector. Each feature vector is labeled with the corresponding activities. Normalization is

performed on the extracted feature matrix before training. In a feature matrix T with m

vectors, the cth column
−→
tc (c = 1, 2, . . . , 22) is scaled to [0,1] with the following equation

−→
tci =

−→
tci−Min(

−→
tc )

Max(
−→
tc )−Min(

−→
tc )

, i = 1, 2, . . . ,m

Practically, we built the feature matrix for different window sizes for two reasons.

Firstly, it’s intuitive that longer observation time should help to recognize the activities to

some extent. So we want obtain the optimized window length to get the best recognition
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accuracy. Secondly, within the range of acceptance, larger window length implies that the

activity recognition frequency is smaller, which could save the energy consumption but also

reduce the sensitivity for activity changes. So choosing an appropriate window length is

important for the activity recognition.

4.2.3 SVM-Based Classification Methods

The Support Vector Machine (SVM) [21] is a machine learning method that constructs

a hyperplane or set of hyperplanes in a high- or infinite-dimensional space to solve clas-

sification, regression, or other tasks. Whereas the original problem is stated in a finite

dimensional space and the classes are not linearly separable in that space, SVM can map

this space into a much higher-dimensional space, presumably making the separation easier

in that space.

Suppose there are two classes P and N to be classified. The training set with n samples

are denoted as {(Fi, gi)}, n = 1, 2, . . . , n, where F is a feature vector (like in Equation 4.2)

and

gi =

{

1, if Fi belongs to P
−1, if Fi belongs to N

.

A separating plane can be written as

W · F+ b = 0. (4.2)

Then the margin maximization problem can be represented in dual form as:

Maximize : W (α) =

n
∑

i=1

αi −
1

2

n
∑

i,j=1

gigjαiαjK(Fi,Fj)

subject to:

n
∑

i=1

giαi = 0,

0 ≤ αi ≤ C, i = 1, 2, . . . , n

(4.3)

. Where αi is the Lagrange factor and K(Fi,Fj) is the kernel function [21]. Then the

classification function will be:

f(x) = sgn(

n
∑

i=1

α∗

i gjK(Fi,Fj) + b∗) (4.4)

, where α∗

i , b
∗ is the optimal solution of Equation 4.3.
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4.2.4 Result Analysis

In this section we firstly compare the recognition accuracies of different machine learning

algorithms based on the extracted feature matrix as well as the impact of the window

length on the performance. Secondly, we evaluate the recognition accuracy improvement

with adding acceleration magnitude. Lastly, we perform feature reduction to get a small

and compact model, which will cost less computing resources.

Comparison of different algorithms

We adopt WEKA toolkit [35] and LibSVM [14] to perform the classification tasks with

the extracted features. We adopt 10-folder cross validation to get the final accuracy of each

trail. All the feature vectors are randomly divided into 10 equal-sized folders. Each time we

select one folder as the testing dataset and the rest as the training data set. Then the final

accuracies is generated by averaging the results of the 10 experiments. For each experiment,

we also perform grid research to obtain the best parameters for each classifiers. The reason

why we don’t take the training dataset of some people to test the others is because of the

population diversity problem. For the details of it, please refer to the section challenge in

Section 7.2.1.

The classification accuracy of each algorithms with respect to different window length

is revealed in Figure 4.1. It can be seen that SVM performs the best (97.7%) comparing

with the rest algorithms. And following is Random Forest [10] (96.5%), whose perfor-

mance is almost the same as SVM when the tree number exceeds 20. Naive Bayes [44]

and RBF Network performs the worst around 70%. When the window length grows from

1 second, the classification accuracy increases for each algorithm. For SVM and Random

Forest, it reaches a stable level when the window length is over 6 second. It complies with

people’s intuition that with longer time observation, the classification accuracy increases

and then reaches a stable level. To save the resource consumption, reducing the classifica-

tion frequency would be acceptable with stable accuracies for some applications. However,

the drawback is that the classification granularity would become coarse when the window

length increases.

The confusion matrix for the generic SVM model is shown in Table 4.1. We can see

that generally speaking, we can classify the activities well. Ascending stairs and descending

stairs have bigger chances to mix together and the same situation happens for stationary

and driving. It’s because intrinsically they are somehow similar.

Improvement with Acceleration Magnitude

We examine the performance improvements of introducing the acceleration magnitude

by comparing the recognition accuracies with and without it under different window lengths.

As SVM shows the best performance, we choose it for the experiment. The result is shown

in Figure 4.2. It can be easily seen that the overall accuracy with acceleration magni-
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Figure 4.1: The classification accuracy of different algorithms with respect to different
window lengths.

Table 4.1: Confusion matrix for the SVM model with window length 6 seconds.

❳
❳
❳

❳
❳
❳

❳
❳
❳

❳
❳

Predicted
Actual

Sta. Walk. Run. Bicy. Asce. Desc. Drive.

Stationary 12776 34 5 75 3 4 129
Walking 88 11923 10 15 91 63 3
Running 60 55 7675 18 21 59 4
Bicycling 104 19 6 7945 23 10 64
Ascending 26 124 4 24 7212 100 4
Descending 72 61 16 48 104 6404 4
Driving 112 7 5 81 6 6 4137

tude outperform those without it. After reaching stable level, introducing the acceleration

magnitude improves the accuracy about 8%.

Feature Dimension Contributions and Reduction

To obtain a compact classification model, we evaluate the contribution of each feature

attribute to the classification accuracy according to Algorithm 1, which is a loop process

with each round excluding the attribute with the least accuracy loss. We choose the window

length as 6 seconds and evaluate the contributions with SVM. Figure 4.3 (a) shows how the

recognition accuracy varies with the number of feature dimensions left in the evaluation

process. It can be seen that when the feature number exceeds 7, the recognition accuracy

becomes stable. As the computation cost when predicting with SVM model is directly
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Figure 4.2: The recognition accuracies with and without the acceleration magnitude.
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Figure 4.3: (a) Feature validation result. (b) The number of support vectors versus the
number of feature dimensions in the feature contribution evaluation process.

related with the number of support vectors and also the feature dimensions, here we show

the number of support vectors with the attribute dimensions left in the evaluation process

in Figure 4.3 (b). It’s surprising to see that the number of support vectors decreases to

the smallest number when the feature dimension is 8 and then increases with less feature

attributes. Given observation in Figure 4.3 (a), we can say that these 8 attributes produce

a compact model with least computing cost while remaining the recognition accuracy.

4.3 Anomalous Passenger Delivery Behavior Detection

Here we change to the detection of human behaviors from the digital traces of taxis.

Generally speaking, anomalous passenger delivery behaviors are those delivery behaviors

that aren’t often seen in the passenger delivery process. Such anomaly may be caused by
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Algorithm 1 Feature Contribution Evaluation

1: DS is the feature dataset T is the feature dimension of DS
2: while 1 < T do

3: Accmax ← 0
4: for t = 1→ T do

5: Dt ← DS
6: Exclude the tth dimension from Dt

7: Perform 10-folder cross validation on Dt and get the average accuracy Acct
8: if Accmax < Acct then
9: Accmax ← Acct

10: MinLossD ← t
11: end if

12: end for

13: Exclude the MinLossDth dimension from DS
14: T is the feature dimension of DS
15: end while

reasons like fraud driving, blocked or newly built roads or required detours from passengers

(for instance, a passenger needs to detour to one place to pick up a friend then go to

another place). Currently there are two methods proposed by other colleagues in our team

to detect such behaviors inside the taxi GPS traces. One is named iBAT, which can detect

the anomaly of a complete trajectory, i.e., it can detect whether there are anomalous

behaviors inside a trajectory. The other is name iBOAT, which can detect the start and

end of anomalous passenger delivery behaviors. In this section, we are going to introduce

the anomalous passenger delivery behaviors from the perspectives of what they are and

what intrinsic properties they have that will help to isolate them. Then we give a brief

introduction of the iBOAT method and introduce our wok in improving the recognition

efficiency, which is critical for adopting such a method in the real time anomalous behavior

monitoring of a large taxi fleet in real life.

4.3.1 Anomalous Passenger Delivery Behavior Introduction

As firstly elaborated in [125], the anomalous passenger delivery trips between given a

source S and destination D (abbreviated as 〈S,D〉) pair are those ones that are “few” and

“different” from the majority trips. Figure 4.4 illustrates the anomalous scenarios that

ever reported in the research. Given the 〈S,D〉, the majority of the trips are denoted as

the black line in Figure 4.4(a) and the two routes A and B in Figure 4.4(b). Besides these

normal routes, there are five lines which are not usually followed (t0, t1, t2, t3, and t4). In

the following sections we are going to analyze these behaviors to give some insights of what

they are and how to detect them.
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Figure 4.4: Scenarios of the anomalous passenger delivery trajectories.

Before analyzing the anomalous trajectories, we firstly explain how to deal with the

GPS coordinates because they are hard to be dealt with directly as points in a 2 dimen-

sional plane space. We map the GPS coordinates into an finite decomposition of the city,

such as the road map or the grid decomposition. In road map decomposition, the GPS

coordinates are mapped into road segments with map-matching methods [70,107]. While in

grid decomposition, the coordinates are mapped into the grid cells they fall in. We refer to

the smallest granularity in a decomposition as the decomposition element (such as a road

segment in the road map or a cell in the grid decomposition). Given a set of trajectories

T between 〈S,D〉, we can count the visiting frequency of each decomposition element, i.e.,

the number of trajectories in T that visit it. If the frequency is high, then the element is

traversed commonly and considered as a normal element, otherwise, it’s a rare element. In

practice, we can decide the “normal” and “rare” attributes by setting a threshold over the

visiting frequency.

!"#$%$&'"()"*+,"-%.!+$%$&'"()"*+,"-%

.%

Figure 4.5: Orientations of the grid cell and the road segment.

It can be easily seen that, if a trajectory follows some rare elements (such as t0, t2,

and t3), then it’s an anomalous trajectory. The rare elements can be safely regarded
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as the anomalous segments, which reflect anomalous passenger delivery behaviors. For

example, t0 follows a route that hardly appears in the trajectories traveling from S to D,

so t0 represents an anomalous passenger delivery behavior. Such behaviors can be easily

detected by checking whether they follow rare elements.

Another type of anomalous passenger delivery behaviors occurs when the taxi follows

normal elements between 〈S,D〉 but in the reverse direction (such as t1). Since all the

visited segments in t1 are frequently traversed by other trajectories, this type of anomaly

will not be detected if solely based on the visiting frequency of the decomposition elements.

However, if we introduce traverse direction of the element when counting the visiting fre-

quency (as shown in Figure 4.5, each grid has 8 directions and each road segment has 2

directions), then instead of calculating the visiting frequency of each decomposition ele-

ment, we count the visiting frequency of each element in each direction. For example, in

grid decomposition shown in Figure 4.5, instead of counting the visiting frequency of a grid,

we count the visiting frequencies in all directions. As the anomalous segment in t1 is rare

in the direction, it can be easily detected.

Besides the above two types, there is another rare type of anomalous behaviors ever

reported in [17]. As shown in Figure 4.4(b), there are two normal routes A and B between

〈S,D〉. However, due to some physical constraints, it’s very rare that a vehicle can switch

from A to B. Then for such an anomalous switch (the red line in Figure 4.4(b)), the

anomaly detection with orientation will not work any more as for the switch point, both

the directions have high visiting frequency. To detect such anomaly, we need to check the

sequence of grids passed through, which describes events like “switch”. Then we can adopt

the sliding window based method to solve this problem, such as the iBOAT method.

4.3.2 Brief Introduction of iBOAT

To detect all the aforementioned anomalous behaviors, Chao in our team proposed a

method called iBOAT, which targets at recognizing the beginning and ending of anomalous

behaviors inside a passenger delivery trip. To test the anomaly of a passenger delivery trip

t, it first gathers a trajectory set T , in which all the trajectories have the same source and

destination area with t. Each trajectory in T is represented as a sequence of grid cells it

passes through. To do this, firstly it decomposes the city map into adjacent equal-sized

grid cells. Then it maps the sampling points into grids where they fall in. Due to the low

sampling problem, the grids mapped may not be consecutive. So it augments them into

a sequence of adjacent grids by filling in the gaps between the non-consecutive grids. The

testing trajectory t is also mapped into grids where it falls in. But it doesn’t need to be

augmented.

Given a sub-trajectory t∗ which tracks the longest normal grid sequence of a testing tra-
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jectory t. iBOAT maintains those trajectories from T that contain the same grid sequence

of t∗ (denoted as T ∗ ). If T ∗ is rare compared to T (judged by a predefined threshold on

|T ∗|/|T |), it means there are very few trajectories in T that follow the current traveling

route, and it reports an anomaly. Then the next grid of t is assigned to t∗ and T ∗ is initial-

ized as T . If T ∗ is big compared to T , then the next grid in t is added to t∗ to extend the

sub-trajectory. This process is repeated until the whole trajectory is tested and we can get

all the anomaly records in t. Meanwhile, iBOAT defines an anomaly score as the traveling

length of the anomalous segments.

4.3.3 Improving the Efficiency of iBOAT

When testing a sub-trajectory t∗, iBOAT searches all trajectories in T ∗ and maintains

those ones that contain t∗. It is a quite time consuming process as it needs to check from

the start to the end of each trajectory in T ∗. Actually it is a perfect case for using Inverted

Index Mechanism to speed up. For example, for searching whether a grid sequence 〈g1, g2〉

is in a trajectory t, instead of searching it from the start to the end of t, we can easily decide

it by checking whether both pos(t, g1) (pos(t, g) is the position of g in t) and pos(t, g2) exist

(i.e., g1 and g2 exist in T ) and pos(t, g1) < pos(t, g2) (i.e., g1 is in front of g2 in T ).

Given a dataset T , we first transform it into an Inverted Index Dataset IID. Let

(t, p) denotes an inverted index, which means the pth position in t. Each item gi :

{(t1, pos1), (t2, pos2), . . .} in IID contains all the inverted indices of gi in the trajecto-

ries belonging to T . We maintain a working indexing set I, initialized to I = {(t, 1)|t ∈ T}.

The indexing set I maintains all trajectories that are consistent with the sub-trajectory t∗

currently being examined. An element (t, pos) in I means that trajectory t is consistent

with on-going sub-trajectory t∗ up to position pos. Thus, at the beginning, all trajectories

from I begin at position 1.

The process is outlined in Algorithm 2. The indexing set I is initialized in line 1. Lines

2 through 18 iterate when we consider more grid cells of the testing trajectory. In line 3,

we fetch the inverted index set G of g in IID. We iterate through the pairs in I in lines

4 through 11, verifying whether each trajectory is still consistent with the new grid cell g:

If g is in t (t is occurred in G) and its location is after pos (pt > pos), then we change the

active position of t in I to be the index of the occurrence of g in t that right follows the

current active position in t, pos (lines 5–7) ; Otherwise, we remove (t, pos) from I (lines

8–9). Once all the trajectories in I have been checked, we determine whether the resulting

size of I is above the allowed threshold (line 12): if so, g is labeled as normal (line 16); if

not, g is labelled as anomalous and we reset I (lines 12–14). The process then proceeds

with the next received grid cell. Once the trajectory is completed, we can compute an

anomalous score using the distance of the anomalous sub-trajectories, as outlined in [17].
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Algorithm 2 Improving iBOAT using inverted index mechanism

Input: IID – inverted index dataset generated from trajectory dataset T ;
1: θ – anomaly threshold;
2: Process:

3: I ← {(t, 1)|t ∈ T};
4: while new grid g of the testing trajectory do

5: G← IID(g);
6: for all (t, pos) ∈ I do

7: if any (t, pt) exists in G that pt > pos then

8: newPos← argmini{i ≥ pos|(t, i) ∈ IDD(g)};
9: update (t, pos) in I to (t, newPos);

10: else

11: delete (t, pos) from I;
12: end if

13: end for

14: if |I| < θ then

15: Label g as anomalous;
16: I ← {(t, 1)|t ∈ T};
17: else

18: Label g as normal;
19: end if

20: end while

21: Report the anomalous score of completed trajectory;

To illustrate this process, we go through a simple example. In Figure 4.6, (a) shows the

cell IDs in the grid decomposition and a testing trajectory (the red line) with the red cells

indicating the position where a GPS sampling happens. (b) lists the historical trajectories

and (c) shows the corresponding IID. We depict how the indexing set I changes as the

trajectory progresses in (d). All 9 trajectories support the first cell S; this number drops to

8 in cell 1, and notice that the active position in all trajectories increases to 2; upon landing

in cell 9 only three trajectories remain, and there are no supporting trajectories at 10 (this

means that there are no historical trajectories that include the path S → 1→ 9→ 10); at

this point the indexing set I is reset to its original state, and on landing on cell 17, there

are only 3 trajectories supporting it; then the destination is finally reached. For simplicity

we say the anomalous threshold is set at zero. Thus, in this example, only one point was

labelled as anomalous: grid cell 10. We can see this process is quite efficient as it can

directly pinpoint those trajectories that contain the testing sub-trajectory.
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S 1 2 3 4 

5 6 7 

8 9 

10 11 12 13 

14 15 

16 17 18 19 D 

Grid cell Contents of I |I|

S
{(t1, 1), (t2, 1), (t3, 1), (t4, 1), (t5, 1),

(t6, 1), (t7, 1), (t8, 1), (t9, 1)}
9

1
{(t1, 2), (t2, 2), (t3, 2), (t4, 2), (t5, 2),

(t7, 2), (t8, 2), (t9, 2)}
8

9 {(t2, 7), (t3, 6), (t4, 5)} 3
10 ∅ 0
17 {(t1, 7), (t5, 7), (t6, 6)} 3
D {(t1, 10), (t5, 10), (t6, 9)} 3

(a) Traversed cells (d) Evolution of indexing set I

t1 : S → 1→ 5→ 8→ 10→ 14→ 17→ 18→ 19→ D
t2 : S → 1→ 2→ 3→ 4→ 7→ 9→ 13→ 15→ 19→ D
t3 : S → 1→ 2→ 3→ 7→ 9→ 13→ 15→ 19→ D
t4 : S → 1→ 2→ 6→ 9→ 13→ 15→ 19→ D
t5 : S → 1→ 5→ 8→ 10→ 14→ 17→ 18→ 19→ D
t6 : S → 5→ 8→ 10→ 14→ 17→ 18→ 19→ D
t7 : S → 1→ 5→ 8→ 10→ 11→ 12→ 13→ 15→ 19→ D
t8 : S → 1→ 5→ 8→ 10→ 11→ 12→ 15→ 19→ D
t9 : S → 1→ 5→ 8→ 11→ 12→ 13→ 15→ 19→ D

(b) Trajectory dataset

(grid)S: {(t1, 1), (t2, 1), (t3, 1), (t4, 1), (t5, 1), (t6, 1), (t7, 1), (t8, 1), (t9, 1)}; 1:{(t1, 2), (t2, 2),
(t3, 2) (t4, 2), (t5, 2), (t7, 2), (t8, 2), (t9, 2))}; 2:{(t2, 3), (t3, 3), (t4, 3)}; 3:{(t2, 4), (t3, 4)};
4:{(t2, 5)}; 5:{(t1, 3), (t5, 3), (t6, 2), (t7, 3), (t8, 3), (t9, 3)}; 6:{(t4, 4)}; 7:{(t2, 6), (t3, 5)}; 8:{(t1, 4),
(t5, 4), (t6, 3), (t7, 4), (t8, 4), (t9, 4)}; 9:{(t2, 7), (t3, 6), (t4, 5)}; 10:{(t1, 5), (t5, 5), (t6, 4), (t7, 5),
(t8, 5)}; 11:{(t7, 6), (t8, 6), (t9, 5)}; 12:{(t7, 7), (t8, 7), (t9, 6)}; 13:{(t2, 8), (t3, 7), (t4, 6), (t7, 8),
(t8, 8), (t9, 7)}; 14:{(t1, 6), (t5, 6), (t6, 5)}; 15:{(t2, 9), (t3, 8), (t4, 7), (t7, 9), (t8, 8), (t9, 8)};
17:{(t1, 7), (t5, 7), (t6, 6)}; 18:{(t1, 8), (t5, 8), (t6, 7)}; 19:{(t1, 9), (t2, 10), (t3, 9), (t4, 8), (t5, 9),
(t6, 8), (t7, 10), (t8, 9), (t9, 9)}; D: {(t1, 10), (t2, 11), (t3, 10), (t4, 9), (t5, 10), (t6, 9), (t7, 11),
(t8, 10), (t9, 10)};

(c) Inverted Index Dataset (IID)

Figure 4.6: An example of iBOAT with inverted indexing mechanism. (a) Example trajec-
tory (red line) with mapped grid cells (red squares), blue lines are the grid decomposition
of the map; (b) Trajectory dataset from S to D; (c) The corresponding Inverted Index
Dataset; (d) Evolution of the indexing set I as the incoming trajectory progresses.

4.3.4 Evaluation Result

We evaluate the performance of Algorithm 2 comparing with the original design in

[17] under different historical trajectory dataset size. We choose about 10,000 testing

trajectories from 300 〈S,D〉 pairs with varying dataset size. For each trajectory, we perform

the anomaly detection with both algorithms under the same computing environment and

measure the computing time. Then we calculate the ratio between time needed in the

original algorithm and time needed by Algorithm 2, and plot the ratio against the size of
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Figure 4.7: Computing time ratio (original/Algorithm 2) versus the size of trajectory set
T .

dataset in Figure 4.7.

It can be easily seen that Algorithm 2 is much faster than the original implementation

(the average improvements are over 5 times faster). The red line depicts the trend of

the mean ratio versus increasing dataset size. It reveals that generally speaking, the ratio

increases linearly when the dataset size becomes larger, meaning that the bigger the dataset

is, the more advantage Algorithm 2 achieves.

4.4 Work-Shifting Detection

In order to study an individual driver’s behaviors based on the GPS traces of a taxi,

we have to extract one’s personal digital traces first. As the digital traces don’t have clear

indication about the driver, it’s unknown when the work shifting events happen. In this

section, based on the spatial-temporal patterns revealed in the traces, we want to find out

the work shifting events and separate the digital traces for each individual driver.

4.4.1 Work-Shifting Detection

Based on the observation that work shifting events normally happen in a pre-negotiated

place around an agreed time period, we detect the work shifting events with the following

two steps. Firstly, we detect the work shifting locations by searching whether there exists a

location where a taxi goes routinely in the same time period of every day. Then we identify

the daily work shifting events and separate daily taxi GPS traces accordingly.
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Figure 4.8: Daily work shifting traces. In March 2010, this taxi went to the work shifting
location during 5:00∼5:20 for 22 days, and parked there to shift work.

Figure 4.8 shows a real life example of daily work-shifting traces of a taxi in a month. In

22 days of March 2010, the taxi went to the work shifting place within 5:00∼5:20. And by

expanding the time slots one hour before and after, we eventually get the visiting records

in this place in 31 days. As normally taxis don’t have such strong patterns in real life,

the visiting frequency becomes an important feature to identify the work shifting location.

However, if we merely depend on it, the road segments a taxi passes through for shifting

work may also have similar patterns. To filter out those segments, we turn to what happens

in the work shifting process. We observe that taxis usually park for about 10 minutes to

handle over the vehicles. So the detection of the work shifting location is based on the

following three facts:

1. The taxi parks in the work shifting place for a while as drivers need some time to

shift the vehicle;

2. For most of the days, the taxi usually visits the work shifting place within a fixed

short time period of day while vacant;

3. By expanding the time slot to a larger range, we are able to find the work shifting

events which are delayed or in advance.

The process of detecting the work shifting location of a taxi are elaborated as follows.
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Algorithm 3 Parking Place Detection

Input: a trajectory Tr, a distance threshold δ, and a time threshold τ
Output: a set of parking locations P
1: Initial a GPS sample queue Q = null, i = 1, ParkT imeDuration = 0; P = null
2: while i < ||T || do
3: j = i+ 1; Put Tr(i) in Q;
4: while j ≤ ||T || do
5: Add Tr(j) in Q;
6: if Range(Q) ≤ δ then

7: j = j + 1;
8: else

9: Delete the last element (Tr(j)) from Q;
10: break;
11: end if

12: end while

13: if Q(tail).t−Q(head).t > τ then

14: Q contains a parking location; Get the centroid p of Q;
15: P← p;
16: end if

17: i = j; Q = null;
18: end while

19: function Range(Q)
20: shortestDist = 0;
21: for i = 1→ ||Q|| − 1 do

22: for j = i+ 1→ ||Q|| do
23: if Distance(Q(i),Q(j)) > shortestDist then
24: shortestDist = Distance(Q(i),Q(j));
25: end if

26: end for

27: end for

28: return shortestDist;
29: end function

Firstly we collect all the vacant trajectories and extract the parking locations inside them

with Algorithm 3. The general idea of detecting the work shifting location is that, if a taxi

stays inside a small place for sufficient long time, we consider it as a parking location. We

build a GPS sample queue Q to maintain the consecutive samples within a short distance

range (i.e., the distance among the samples are within a threshold δ). Figure 4.9 gives an

example of steps of detecting the parking places. The elements inside each dashed cycle are

the GPS samples maintained in Q in each loop of line 2∼18 in Algorithm 3. As the time

span of the samples in Figure 4.9(b) is bigger than τ , we consider it as a waiting location.
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Figure 4.9: Parking place extraction.

In real practice, we choose δ = 20 meters and τ = 5 minutes.

After, we split the city into 50m × 50m large grid cells and separate a day into half-

overlapping 20-minute-long time window. In each time window, we record the days that a

taxi has parking records in each grid. In case the work shifting place is on the edge of a grid,

the shifting events may scatter in different grids. To overcome this problem, when counting

the number of days a taxi parked in a grid, we also count the days of the neighboring grids.

If the number of the parked days in a grid is bigger than 70% of the total number of days,

we will keep it as a possible parking location candidate. Then we expand the time window

one hour ahead and one hour later, to include the days corresponding to the delayed and

ahead shiftings.

Since we count the neighboring grids, the same work shifting events will make the

nearby grids look like possible candidates. Practically we can combine those candidates

into one as they are based on the same work shifting logs. In real life, there are some rare

occasions that the driver changes the work shifting location temporarily for possible reasons

like personal issues or occasionally blocked roads. So we may not be able to get the visiting

records of everyday. In practice, for a taxi, if there is one and only one grid achieves 90%

of the total number of days within 15:00∼19:00, we say it’s the afternoon work shifting

place, and if it’s within 3:00∼8:00, we say it’s the morning work shifting place. In case

there are more than one candidate, we consider it as an uncertain (failed) case. With the

6863 taxis, we successfully find the work shifting locations for 4773 taxis. Besides, there

are 27 taxis having more than 1 location candidate in the afternoon shifting and 100 taxis

in the morning shifting. The rest taxis don’t have candidates and exhibit chaos parking

patterns, and they are believed to be served only by one driver.

One rare case that may influence the work shifting detection is that, a few number of

drivers usually wait at a certain hot place (like the railway station, grand hotels and etc.)

for passengers during a certain time period of day. And they may have the same pattern

as the working shifting events. However, we observe that in this case the majority of the
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corresponding passenger finding records finally succeeded in finding passengers, while the

work shifting events normally happen in not-so-hot places and the taxis usually go away

right after the shifting while vacant. So we can easily filter such events out based on

whether they have passengers after the parking normally.

After obtaining the work shifting location, the digital traces used in counting the visiting

days are the work shifting traces, based on which we can easily separate the digital traces

for the two drivers. For abrupt shifting location change exceptions aforementioned, for

simplicity, we just choose the closest vacant trajectory to work shifting time slots as the

work shifting trajectory and separate the digital trace of that day accordingly.

4.5 Conclusion

In this chapter we introduce how to recognize the physical activities with the accelerom-

eter sensing data from people’s mobile phones and the anomalous passenger delivery be-

haviors and work shifting behaviors with the GPS traces of taxis. When dealing with the

accelerometer sensing data, before extracting features, we add the acceleration magnitude

to the sensor readings, which is invariant to the phone orientations. Experiment shows

that the recognition accuracy reaches 97.7% when people put their mobile phones freely

into the pockets. Evaluations reveal that SVM achieve the best recognition accuracy and

adding the acceleration magnitude could improve the accuracy about 8%. To obtain a

compact model, we evaluate the classification contribution of each feature attribute and

the number of support vectors in the corresponding model. The obtained result shows that

we can reduce the feature dimension to 8 with the minimum number of feature vectors and

meanwhile maintain the recognition accuracy.

We reveal the types of the anomalous passenger delivery behaviors based on the charac-

teristics in the GPS traces. By observing from real examples and summarizing from existing

work, we conclude 3 types of anomalous behaviors, including following rare decomposition

elements, following common elements but in a reverse way and the anomalous switch be-

tween normal routes. We elaborate the nature of these anomalous behaviors which leads

to different solutions. Then, we improve the efficiency of an existing anomalous trajectory

detection method iBOAT with an inverted index mechanism at least 5 times faster.

We also detect the work shifting events of a taxi in order to obtain the digital traces of

each driver. The work is based on three observations: (1) The taxi parks in the place for

a while for drivers to shift the vehicle; (2) For most of the days, the taxi visits the place

within a short time slot of day while vacant; (3) By expanding the time slot to a larger

range, we are able to find the other work shifting events which are delayed or in advance.

We propose a method to detect the waiting locations inside a vacant trajectory first. Then
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we select the possible work shifting location candidates and filter out the false candidates

by rules. With the 6863 taxis, we successfully find 4773 taxis that satisfy the above criteria.

Besides, there are 27 taxis having more than 1 location candidate in the afternoon shifting

and 100 taxis in the morning shifting. The rest taxis don’t have candidates and exhibit

chaos parking patterns, and they are believed to be served only by one driver.
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Large collections of digital traces from a community of individuals are rich resource

for us to find the characteristics about the collective human behaviors and reveal the

hidden human intelligence from such behaviors. In this chapter, we present a thorough

analysis of the anomalous passenger delivery behaviors from the community point of view.

We intend to understand the anomalous passenger delivery behaviors, extracting their

common characteristics, uncovering the motivations behind and investigating the impact

of anomalous behaviors on drivers’ revenues. After, we also investigate the community

behaviors of work shifting. We want to see where taxi drivers normally shift work and

when and thus give clear indications about the influence of work shifting in taxi service.

After, we try to study the serving strategies of drivers based their digital traces and

uncover the good and bad ones which we hope to be able to provide useful guidelines to
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taxi drivers. Based on the passenger finding behaviors observed in a community of drivers,

whose performance can be acquired from their passenger deliveries, the problem is how to

find out the good and bad high level taxi serving strategies, i.e., the strategies that may be

helpful or harmful to taxi drivers’ revenues. The perspectives of the solutions proposed in

this thesis include learning from the behaviors of good drivers, investigating the influence

of each strategy separately and seeking the strategies which can differentiate the driver

groups with different revenue performance.

Since our study is highly related with taxi drivers’ performance, we measure the revenue

capability of all drivers and whether their performance is stable, with the intention to see

whether the good drivers perform well during all time periods of day. The performance of a

taxi driver is influenced by many objective factors like the passenger distributions, passenger

destination distributions, potential passenger traveling distance and traffics, and also the

subjective factors such as how the driver perceives the objective factors and their preferences

and so on. Before studying the behaviors of the drivers, we also provide empirical studies

about some of the factors.

5.1 Anomalous Delivery Behavior Analysis

With Algorithm 2, we can collect a large number of anomalous passenger delivery

behaviors from all the possible source and destination pairs. We want to analyze the

characteristics of such behaviors and provide deep insights about them from the community

point of view. Firstly we briefly introduce the configuration used in detecting the anomalous

passenger delivery behaviors. As in different time periods of day and day of week, the

traffic situations are quite different and thus the normal routes change, we divide a week

into working and non-working days, and separate each day into 4 different time slots: night

(0:00∼6:59), morning (7:00∼11:59), afternoon (12:00∼16:59) and evening (17:00∼23:59).

By combining the type of day and time slots, we get 8 different combinations which we

encode as WN (Working day Night), WM (Working day Morning), WA (Working day

Afternoon), WE (Working day Evening), NWN (Non-Working day Night), NWM (Non-

Working day Morning), NWA (Non-Working day Afternoon), and NWE (Non-Working

day Evening). We choose the GPS dataset in March 2010. Since the weather is almost the

same for the whole month, we simply ignore its influences in the evaluation.

There are about 7.35 million passenger delivery trajectories in the whole month, out

of which we successfully obtain 0.44 million anomalous ones. For each anomalous trajec-

tories, we obtain the anomalous sub-trajectories inside with the exact starts and ends.

From this large collection of anomalous trajectories, we intend to understand the anoma-

lous behaviors, extracting common characteristics of anomalous behaviours, uncovering
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Figure 5.1: Number of anomalous sub-trajectories per trip.

the motivations behind fraudulent behaviours and investigating the impact of anomalous

behaviors on drivers’ revenues. We thus conduct analysis aiming to answer the following

questions.

– What percentage of all trips are anomalous?

– Out of the anomalous trajectories, what percentage of them travel longer distance

than necessary?

– What statistical “tendencies” can we discern from the detected anomalous trajecto-

ries?

– Do taxi drivers who have a higher tendency to commit fraud have an economical

advantage over those who don’t?

In this section we aim to discover what are the common characteristics in the anoma-

lous driving behaviors. Although we can’t know the exact motives behind anomalous

behaviours, these analysis provide clues for these motives, and can potentially increase the

detection rate of future anomaly detection methods, as they provide the most pertinent

conditions that exist when anomalous behaviours occur.

The first aspect we consider is how many anomalous sub-trajectories occur in one trip.

We plot these results for the different time segments in Figure 5.1. And we can see that for

all time slots the grand majority of anomalous trips have only one anomalous sub-trajectory.

It is important to also consider at what point during the trip the anomalous behaviour

began and ended. We split the trips into thirds and examine where each anomalous sub-

trajectory begins and ends. These results are displayed in Table 5.1, and we can see
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Table 5.1: Starting and ending positions of anomalous sub-trajectories.
End

Start 1st third 2nd third 3rd third Total

1st third 10% 19% 16% 46%
2nd third N/A 12% 24% 36%
3rd third N/A N/A 18% 18%

Total 10% 31% 58%
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Figure 5.2: Areas where most of the anomalous trips began.

that anomalous sub-trajectories usually don’t start and begin in the same third, and most

begin in the first or second third. Although this does not clarify the motivations behind

the anomalous behaviours, it does suggest that the anomalous behaviours are occuring as

a result of a conscious decision, and not by “accident”: if drivers had inadvertedly left

their intended route, they would generally return to it immediately. In fact, out of all

anomalous trajectories, 27% of them remain in an anomalous state until they reach the

destination, further reinforcing the belief that these anomalous behaviours are not occurring

by “accident”.

This is further supported by Figure 5.2, where we display the areas where most of the

anomalous trips began. We can see that many of the places are bus stations, where tourists

would generally arrive. It is not surprising that they are responsible for a large fraction

of the anomalous trajectories. This further confirms our previous claim that anomalous

behaviours are conscious decisions.

In Figure 5.3 we display, for varying distances between the source and destination, what

proportion of them were anomalous. We can clearly see that the proportion of anomalous

trips grows with the trip length, indicating that there is a higher probability of an anomalous

trip when the distance between the source and destination is larger. This is consistent with
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Figure 5.3: The anomalous percentage of all trajectories versus distance between source
and destination.

0 0.2 0.4 0.6 0.8 1
0

5%

10%

15%

20%

25%

The length proportion of the anomalous part in the trajectory

P
e
rc

e
n

ta
g

e
 o

f 
a
ll
 a

n
o

m
a
lo

u
s
 t

ra
je

c
to

ri
e
s

Figure 5.4: Percentage of all anomalous trajectories versus Anomalous length proportion
of trajectories.

what one would expect from intuition, as it is easier to take detours in longer trips.

We now examine, out of all the anomalous trips, what proportion of the trips are

anomalous (i.e. how long are the anomalous sub-trajectories with respect to the whole

trip). We display this in Figure 5.4 which demonstrates that even though longer distances

have a higher potential for anomalous behaviours, over half of the anomalous trips have

anomalous sub-sections that are less than 30% of the trip length.

In most research revolving around detecting anomalous taxi driving behaviours, one is

mainly interested in detecting fraudulent activities. We believe that many of these fraud-

ulent trips will take passengers along routes that are much longer than what is considered

normal. Given our database of historical trajectories, we can determine the length of the

longest normal trip between a source and a destination; we can safely say that an anomalous

trip is detouring if the trip distance is longer than this maximal distance. For a source-



72 5.1. ANOMALOUS DELIVERY BEHAVIOR ANALYSIS

Table 5.2: Distribution of anomalous trajectories with respect to traveling distance and
time.

Travel time

Trip length [0,minT ) [minT,maxT ] (maxT,∞)

[0,minD) 0.0013 0.0137 0.0117
[minD,maxD] 0.0062 0.1063 0.0881
(maxD,∞) 0.0045 0.1522 0.6162

destination pair, we denote bymaxD andminD the maximal and minimal lengths amongst

the normal trips. It may be the case that a longer trip is actually a faster route, placing in

doubt whether the driver’s actions were fraudulent. We could try to determine maxT and

minT for the traveling time taken between two points, but due to varying traffic condi-

tions, these values have a high variability. Because of this, for each source-destination pair,

we compute the mean time amongst the normal trajectories, µT , as well as the standard

deviation σT . We then define our boundaries as maxT = µT + σT and minT = µT − σT .

In Table 5.2 we display the distribution of the anomalous trips with respet to these clas-

sifications. We can see that over 60% of all anomalous trajectories are taking long detour

and longer time, clearly suggesting that fraud is one of the main motivating factors behind

anomalous behaviours.

5.1.1 Fraudulent Behaviors versus Revenue

In the last section we observed that most of the anomalous behaviours are due to

fraudulent behaviour, and it is safe to say that drivers engage in fraudulent activities

for higher revenue, since revenue is based strictly on the distance traveled. It has been

previously argued that drivers that take more detours have a higher income [28], in this

section we perform a more thorough analysis that demonstrates that the answer is perhaps

not as simple as expected.

For each taxi, we compute what we call the detour ratio as the total number of anoma-

lous trips divided by the total number of trips. Thus, a higher detour ratio indicates a

higher tendency to commit fraud. To estimate the taxi fare for each trip, we use the fare

structure of taxi service in Hangzhou to convert the travel distance into income, without

considering the waiting time fare compensation (first 3 kilometers, 10 RMB fixed; 2 RMB

per kilometer for additional 7 kilometers; over 10 kilometers, 3 RMB per kilometer). In

Figure 5.5 we plot the monthly revenue versus the detour ratio (each point is a distinct

taxi), as well as the distribution over revenue. We can see that the grand majority of taxis

are not prone to detour, and those that have a higher tendency to commit fraud (higher

detour ratio) usually have a revenue which is only around average. The correlation be-
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Figure 5.5: Revenues of taxis versus trajectory anomalous rate

tween the taxi revenue and the detour ratio is 3.57%, which is quite small. It indicates that

fraudulent behaviour does not necessarily result in higher income, despite popular belief

and what was argued in [28].

Given that we have revealed that fraudulent behaviours does not necessarily lead to

higher income, it is worthwhile trying to discover what differentiates drivers with the highest

revenue from drivers with a higher tendency to commit fraud. We compute all the following

statistics for the 50 taxis with highest revenue, for the 50 taxis with the highest detour

ratio, and for 50 taxis with average revenue. We include this last set of taxis as a baseline

to ensure that the differences found between top revenue and top fraudulent drivers are

not simply the differences between top and average revenue drivers.

In Table 5.3 we display the average number of passenger delivery trips for each category,

the average amount of time taken to find a new passenger, the average speed while serving

a passenger, and the average raw revenue per month. We can see that on average, taxis

that have a higher tendency to detour serve far fewer taxis per day than top revenue

drivers, and even fewer than average income drivers, although the amount of time taken

to find a new passenger and the speed during these trips is about the same as average

taxis. This means that taxis that have a higher tendency to detour have performance that

is almost indistinguishable from average income drivers, except for the average number of

trips served. This is most likely a consequence of these drivers taking longer trips. Indeed,

the average distance travelled by drivers with a higher detour ratio is about 20% than the

distance travelled by the other taxis.

Now if we go back to explain the reason why [28] derives a different conclusion from

ours, the most probable reason for their differing result is that their study is based on the

taxi GPS records from a city where the taxi demand is not as high as in Hangzhou, thus
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Table 5.3: Average daily amount of passenger delivery trips and time taken to find new
passengers

trips(#) Time Speed(km/hr) Average Revenue(RMB)

High inc. 50.9 15 25.64 26.8k
Average inc. 37.9 30.25 21.95 20k
High detour 32.3 29.64 21.95 18.6k
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Figure 5.6: Distribution of work shifting places: (a) Morning work shifting; (b) Evening
work shifting

taking long detour often means having more income for each trip and as a whole. While in

HangZhou, as Taxis are so demanding, thus how to keep the taxi occupied most of the time

and deliver the passengers in shortest possible time is more critical for getting an overall

high revenue.

5.2 Spatial Temporal Distribution of Work Shifting

We collect the work shifting locations and time slots of all the 4773 taxis and analyze

their characteristics in spatial and temporal distribution. We partition the city into 2.4km×

2.4km grid cells and count the number of taxis that shift work in each grid to get the spatial

distribution. The work shifting location distribution for morning and evening are shown

in Figure 5.6 (a) and (b) respectively. It can be easily seen that both distribution are

very similar and most of the morning shifting places locate outside of top hot areas. It’s

surprising to see that lots of drivers choose to shift near the coach station, perhaps because

the drivers can easily take transportation before or after the work shifting.

The shifting time distribution is revealed in Figure 5.7, in which (a) is for the morning

shifting time and (b) is for the evening. The morning work shifting time generally distribute

between 4:00∼7:20 evenly, while the evening shiftings mainly happen between 16:40∼17:20,

which is the one of the major reasons why people feel hard to get taxis around that time
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Figure 5.7: Distribution of work shifting time: (a) Morning work shifting; (b) Evening
work shifting

period. In order to alleviate the problem, policies can be adopted to help the drivers to

shift work evenly instead of gathering together.

5.3 Taxi Revenue Analysis

Before studying the taxi serving strategies, we first investigate the revenues of all drivers

and provide empirical studies about the influencing factors. In particular, we investigate

the profitability of the drivers in different time periods of day. Unlike our initial study

revealed in [60], which considers the revenues of taxis in a whole day, here we look at a

finer granularity (different time periods of day) to check whether the drivers behave well

all day or just part of it.

5.3.1 Driver Profitability Analysis

By summing the Euclidean distances between adjacent GPS packets inside a passenger

delivery trip, we can estimate its traveling distance and convert it into the raw revenue

according to the taxi fare standard (see Section 3.3.1). In order to get rid of the influences

of detour behaviors, We replace the revenues of detour trips with the average revenue of

the normal trips between the same source and destination area.

The profitability of a driver is measured by its hourly revenue rate, which is cal-

culated by dividing the total revenue by the time duration taken. For example, if a

taxi earns 1200RMB during 5:00∼7:00 of 30 days, then the revenue rate is calculated

as 1200RMB/30(day)/2(hour)=20RMB/h.

We divide a day into five different time periods, i.e., late night (0:00∼5:59), morning(6:00∼9:59),

noon(10:00∼13:59), afternoon (14:00∼17:59) and evening(18:00∼23:59). Since working

days may have different patterns from non-working days, we limit our study in working

days only in this dissertation. Since drivers may only serve a little period of time in a time

slot (for example, a night driver who shifts work at 6:20, may only serve 20 minutes in the
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Figure 5.8: Taxi distribution over hourly revenue rate in different time slots of a day.

morning time slot), their behaviors don’t reflect the strategies in the whole time period.

So we don’t count those taxis who serve less than half of the time period in a time slot.

The distribution of taxis over different profitability levels in different time slots is re-

vealed in Figure 5.8. Generally speaking, late night has the worst performance (mostly

around 5∼20 RMB/Hour), while noon time has the best (mostly around 30∼45 RMB/Hour),

following by the evening and afternoon time period. The distribution of taxis over different

performance levels inside each time slot generally follows a normal distribution, which is

compliant with the observation revealed in [66].

We investigate the profitability consistency of the drivers over different time periods by

ranking all drivers according to their hourly revenue rate. We find that, only 110 night

drivers are in the top 500 of both evening and late night time period, and only 67 day

drivers in the top 500 of all day time slots (morning, noon and evening), indicating that

only less than 22% taxis constantly perform well in night time and only 13.4% in day

time. It means only a small fraction of drivers constantly perform well. So when studying

the behaviors of taxi drivers, we should investigate them in each time period individually

instead of treating all of them as a whole.

5.3.2 Empirical Study about the Influencing Factors

Practically, taxi revenue is influenced by many factors. Here, we are going to give a brief

empirical study about two factors, i.e., the passenger delivery times and the taxi demands.

5.3.2.1 Passenger Delivery Times

Intuitively, if taxi drivers deliver more passengers, they earn more money. To validate

this intuition, we calculate the correlation coefficient between the number of passenger
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Table 5.4: Correlation between number of passenger deliveries and revenue.
night morning noon afternoon evening

correlation 0.96 0.84 0.72 0.61 0.86

Table 5.5: Hourly passenger delivery times in each time slot.
night morning noon afternoon evening

good 1.3±0.2 2.0±0.2 2.5±0.3 2.1±0.2 2.6±0.2

ordinary 0.7±0.1 1.4±0.2 2.0±0.2 1.8±0.2 2.0±0.2

g/o 1.87 1.4 1.24 1.21 1.31

deliveries (P ) and revenues (R) of all drivers. The equation is:

corr(P,R) =

∑n
k=1(pk − p) · (rk − r)

√
∑n

k=1(pi − p)2 ·
√

∑n
k=1(ri − r)2

(5.1)

, where pi and ri are the total number of passenger deliveries and raw revenue for driver i

respectively. We consider each driver as a sample and calculate the correlation of passenger

delivery and revenue with all the drivers. The result is shown in Table 5.4 for all the time

slots, which most of them are close to 1, indicating that the revenue is highly related with

the number of passenger deliveries.

We choose the top 500 drivers as the good drivers and the 500 drivers around the

middle income level as the ordinary drivers. We compare the average number of passenger

deliveries of them in Table 5.5 for all the time slots. The hourly number of passenger delivery

records is in “Mean±Std” format. We can see that good drivers deliver significantly more

passengers than ordinary ones, which is at least 21% higher in afternoon and at most 87%

higher at night, implying that good drivers are always better at finding more passengers

than ordinary ones. So it’s always critical for taxi drivers to find passengers efficiently.

5.3.2.2 Passenger Pick-up and Drop-off Hot Areas

One of the main influencing factors is the taxi demands depicted by the passenger

hotspots, which have been proposed to direct taxi drivers in finding passengers in previous

work [15, 56, 86]. In Figure 5.9 we reveal the top 99 pick-up and drop-off hotspots over

different time slots. We can see that the railway stations and the downtown are always

hot pick-up and drop-off areas. Residential areas become the drop-off hot spots at night

time as many people come back late from the night entertainment hotspots. When moving

from downtown to suburb areas, the pick-up rates decreasing greatly. If we look at the hot

degrees and rankings of the hotspots among different time periods of day, we will find that

they are always changing from time to time. For example, the major entertainment area
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annotated in the map becomes less hot in day time than at night time, complying with the

fact that people go to work at day time and enjoy the entertainment at night time.

5.4 Understanding Taxi Serving Strategies

5.4.1 Taxi Serving Strategy Introduction

The performance of a driver is influenced by a variety of ”time-evolving“ objective

factors, such as the passenger distributions and their potential travel lengths, and the

vacant taxi distributions, which are the demand and supply respectively, and the traffic

situations. Meanwhile, it’s also influenced by other more “stable” factors such as the

hunting cost, which is mainly decided by the cost of fuel and elapsed time, the need to shift

work and etc. Moreover, subjectively it’s also highly influenced by the driver’s awareness

of these objective factors (i.e. mainly decided by one’s experiences), and his reactions

accordingly, such as whether hunting nearby, or going to distant hot locations after dropping

off passengers, which area to serve, which route to select to avoid the heavy traffic and so

on.

Current work about promoting taxi drivers’ business mainly focuses on the objective

factors, specifically from the demand and supply perspectives [15,56,63,86,123]. Based on

the historical taxi GPS records, much work explored the taxi demands, i.e, passenger pick-

up patterns and the hot pick-up areas, and recommended to vacant taxis accordingly for

finding passengers [15,56,63,86]. Further work considered the competitions introduced by

other vacant taxis, and measured the taxi demands by passenger finding possibilities, based

on which, a statistically optimized passenger finding location and route can be proposed

[123]. Even though the research trend is to incorporate more and more practical influencing

factors, it’s still hard to acquire a complete and sophisticated model which can perfectly

consider all the influences.

Different from the above perspectives, we intend to learn the good and bad taxi serving

strategies from the behaviors of a community of taxi drivers revealed in their digital traces,

i.e. to learn the hidden human intelligence during the business process. Since taxi drivers

already consider the influencing factors and their actions lead to different revenue levels, we

intend to learn the good and bad behaviors from them by considering the relations between

the behaviors and the revenues in a community of drivers, and provide this information

back to them for improving their performance.

5.4.2 Taxi Serving Strategy Formulation and Extraction

The drivers’ serving strategies studied in this thesis are generally from three perspec-

tives: passenger finding, serving area preferences and passenger delivery techniques. In
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Figure 5.9: Top 99 pick-up and drop-off hot areas for each time slot. The number is the
hourly number of pick-up/drop-off events in each grid.
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particular, in passenger finding strategies we investigate their preference in going distant,

hunting locally or waiting locally right after dropping off passengers and their preference

in hunting or waiting before picking up passengers. And for passenger serving areas, we

study their preference of serving at each area. And for passenger delivery technique, we

study their average passenger delivery speed, which implicitly reflects the drivers’ ability

to choose unobstructed route when delivering passengers. In this section, we introduce how

to extract these strategies from the digital traces.

5.4.2.1 Initial Intention Extraction after Dropping Off Passengers

A passenger finding process may consist of several decisions. As shown in Figure 3.6,

after dropping off passengers at location A, the taxi starts searching for passengers. It drives

to location C, where it waits 10 minutes but still fails to pick up passengers. Then it decides

to cruise to place B, where it succeeds in finding passengers. It can be easily observed that

this passenger finding trace consists of a sequence of decision making processes, and the

final pick-up place is not the result of what the taxi driver decides to do right after the

drop-off, otherwise, it would have gone directly to place B. If we simply model the passenger

finding strategy of “local” or “distant” as the distance between the current drop-off and the

next pick-up locations as in our previous paper [60], then it is “local” as location A and B

is close. However, as C is far away from A, so actually the driver wants to go distant right

after A. As we focus on the passenger finding strategies right after the drop-off locations,

we should investigate what the drivers intend to do right after they drop off passengers

(which we call “initial intention path”) instead of simply observing the final pick-up places.

Although it’s extremely hard to exactly tell the initial mental intention merely based on

the GPS traces, we can still have some clues to model their initial intentions. In Figure 3.6

we can observe that, if anomaly occurs from the drop-off location A to the some point B

in a passenger finding process, which means that the taxi doesn’t follow the efficient way

from A to B and there should be a point of interest (POI) (in this case, location C) from

A to B that firstly attracts the driver before B. Then B shouldn’t be included in the initial

intention. Another case is that, a waiting location also is a point of interest that attracts

the driver earlier than the POIs after it. So we exclude those passenger segments that are

outside of the initial intention and consider the longest normal sub-trajectory starting from

the beginning of a passenger finding trace as the initial intention sub-trajectory. Since we

can easily cut off the records after the first waiting event to get rid of the POIs after it,

the difficult part lies in how to detect the longest normal sub-trajectory in the left part.

A trajectory t is a sequence of points 〈p1, p2 . . . , pn〉, where pi is the GPS location

(i.e. 〈latitude, longitude〉) sampled during a passenger finding or delivering process. For a

passenger finding trajectory tf , whose source area S (where the corresponding drop-off is),
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we first cut off the samples after the first waiting position. Then we gather the passenger

delivery trajectories that either originate from or pass through S to form a trajectory

database TD. Intuitively, as most passenger delivery trajectories follow efficient routes,

we can detect the longest normal sub-trajectory of tf from S by checking the longest

sub-trajectory from S that is not anomalous compared with TD.

Detecting the anomaly of a trajectory has been well studied in [17,125] when its destina-

tion is given. The closest related work is iBOAT [17], which, based on a trajectory dataset

that shares the same source and destination area, can detect the starting and ending lo-

cation of the anomaly segment. However, detecting the longest normal sub-trajectory is a

problem of detecting the first anomaly starting from S that without a given destination.

One intuitive way is assuming that, starting from S, each sampling point is a destination

and then we see whether anomaly occurs in it. But since we need to extract the dataset

for each destination area and perform the anomaly detection accordingly, it is quite time

and resource consuming. In this thesis, we propose a novel method to solve this problem.

Initial Intention Formulation

We denote the ith trajectory in TD as ti. Like iBOAT, for each ti, we map and augment

it into a sequence of adjacent grids where it traverses with the same method used in [125]

and denote it as a mapped trajectory t̄ (t̄ = 〈g1, g2 . . . , gn〉). For a mapped testing sub-

trajectory t̄f = 〈g1, g2 . . . , gm〉, if we can find g1, g2. . . , gm sequentially in t̄i, then we say

ti complies with tf . We define hasPath(TD, tf) as all the trajectories in TD that comply

with tf .

Definition 5.1. Given a sub-trajectory tf whose mapped trajectory is t̄f = 〈g1, g2 . . . , gm〉,

and a trajectory dataset TD,

hasPath(TD, tf) =

{

t′ ∈ TD

∣

∣

∣

∣

(i) ∀i, 1 ≤ i ≤ n, gi ∈ t̄′

(ii) ∃(pos(t̄′, g1) < pos(t̄′, g2) < . . . < pos(t̄′, gm))

}

(5.2)

We also define passTraj(TD, g) as the trajectories in TD that pass through g.

Definition 5.2. Given a trajectory dataset TD and a grid g,

passTraj(TD, g) =
{

t′ ∈ TD
∣

∣g ∈ t̄′
}

(5.3)

Now we formalize what it means for a sub-trajectory t to be anomalous with respect to

a dataset TD.

Definition 5.3. Given a threshold 0 ≤ β ≤ 1, a sub-trajectory tf , whose mapped trajec-

tory t̄f=〈g1, g2 . . . , gm〉, is β-anomalous with respect to a set of trajectories TD if

Support(TD, tf) =
|hasPath(TD, tf)|

|passTraj(TD, gm)|
< β (5.4)
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The difference between θ-anomalous defined in [17] and β-anomalous is that, θ-anomalous

depends on whether the pattern of t̄f is rare in the trajectories of TD, while β-anomalous

depends on whether the pattern of t̄f is rare in the trajectories from the source to the last

grid of t̄f in TD.

The way to detect the initial intention is as following. Starting from g2 of b̄f , if the sub-

trajectory t̄′ = 〈g1, g2〉 is not β-anomalous, then we include the next grid of b̄f into the

sub-trajectory and repeat this process until we find that t̄′ = 〈g1, g2 . . . , gk〉 is β-anomalous

or t̄′ = t̄f , then t′ is the initial intention sub-trajectory of tf .

Inverted Index Based Initial Intention Detection

For each grid in the initial intention sub-trajectory except the first, we need to examine

every trajectory t in TD to calculate the hasPath and passTraj parameter. It is quite

a time and resource consuming process. In this thesis, we propose a novel method which

improves the efficiency with trajectory dataset compression and inverted index searching.

The method generally comprises of three parts, trajectory dataset preprocessing, testing

trajectory pre-processing and anomaly detection engine (shown in Figure 5.10). For each

source area, we accumulate large number of trajectories that either start from or pass

through it. As many trajectories are overlapping, which cause great redundancy if we treat

them separately. So we compress the whole trajectory dataset into a tree-based architecture

TT as illustrated in Figure 5.11. We index each node in TT with (l, p) which l is the node

depth and the p is the order in the row (The dashed square in Figure 5.11 is an example).

Each traverse from the root to any node (l, p) denotes one unique route and is associate

with the number of trajectories that follow it (the black number in the upper left corner

of each node in Figure 5.11). We can easily build such a tree with Algorithm 4. For each

trajectory ti in TD, we search from the root of TT (controlled with id). As the first grid

of t̄i is the root, we start from the second grid (controlled with j) and examine whether

the jth grid is a child of the idth node of TT . If it is, we move to the child and increase its

visiting time vt by 1, otherwise, we create a new node in TT , and add it to the children of

the current node, then we set its vt = 1 and move to this node (Step 7 ∼ 19). We repeat

this process on all trajectories in TD and finally obtain the tree. And then we can simply

calculate the number of trajectories that pass through a grid g by summing the visiting

times of all the nodes in TT whose nodeID is g.

We use an example to illustrate how to calculate the |hasPath(TD, tf)| in Equation 5.4.

Let t̄f = 〈g1, g4, g5〉, we first find the offsprings of g1 whose nodeID is g4 (two red nodes

in Figure 5.11) and record their indices. Then we can simply add the vts of these nodes

to caluate |hasPath(TD, 〈g1, g4〉)|=100+160=260. After we search the offsprings of these

indices and find those nodes whose nodeID is g5 (two blue nodes in Figure 5.11). Then

|hasPath(TD, 〈g1, g4, g5〉)|=10+10=20.
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Figure 5.10: Longest normal sub-trajectory detection method.
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Figure 5.11: Tree representation of the trajectory dataset.

In each round of the aforementioned steps, we need to search all the offsprings of the

current indices, which is also quite time consuming. To fasten the searching process, we

devise an inverted index mechanism based method inspired by the following idea. If node

n2 is an offspring of n1, then n2.layer > n1.layer and 0 < n2.vt <= n1.vt. If we can

define some function offset(n) of the node n, so that when n2.layer > n1.layer, if n2 is

an offspring of n1, then

offset(n1) < n2.vt+ offset(n2) <= offset(n1) + n1.vt (5.5)

will hold, otherwise, it doesn’t hold. Then we can track all the occurrences of each grids

in TT and replace the aforementioned searching process with a simple comparison process
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Algorithm 4 Converting a trajectory dataset into a tree

Input: TD – a set of trajectories
Output: TT – a trajectory dataset tree represented in a structured array
1: Process:

2: TT ← structured array in the format of 〈nodeID, vt, father, children〉, children at-
tribute records all the indices of the children nodes;

3: TT tail index TID ← 0
4: for i = 1 : length(TD) do
5: Convert ti in TD into mapped trajectory t̄i(〈g1, g2 . . . , gm〉);
6: id← 1;
7: for j = 2 : m do

8: if Tree(id).children consists of gj then

9: id← the index of gj in Tree(id).children;
10: Tree(id).vt← Tree(id).vt+ 1;
11: else

12: TID ← TID + 1;
13: TT (TID).nodeID ← gj ;
14: TT (TID).father ← id;
15: TT (TID).vt← 1;
16: TT (TID).children← null;
17: TT (id).children← [TT (id).children TID];
18: id← TID;
19: end if

20: end for

21: end for

of all the occurrences of adjacent grids in t̄f .

We find one feasible definition of offset(n). When the order of the nodes in each layer

is fixed (numbered from left to right as the red numbers in Figure 5.11), offset(n) equals

to the sum of the visiting times vt of all left siblings of the nodes in the traverse from the

root to n.

offset(n) =
∑

ns.vt, ns is the left sibling of a node in the traverse from the root to n.

(5.6)

For example, offset((4, 4)) = 200 as the only left sibling exists in the traverse from the

root to (4, 4) is (2, 1), whose vt is 200. And offset((3, 3)) = 100 + 80 = 180, as the left

siblings are (3, 1) and (3, 2), whose vts are 100 and 80 respectively.

Proof. For two nodes n1 and n2 in TT and n2.layer > n1.layer, if n2 is an offspring of n1,

then

offset(n2) + n2.vt = offset(n1) +
∑

n.vt+ n2.vt ≥ offset(n1)
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, where node n is the left sibling of the nodes in the traverse from n1 to n2. And also since

all the trajectories reaching n1’s offsprings pass through n1, then

n1.vt ≥
∑

n.vt+ n2.vt

, and thus

n1.vt+ offset(n1) ≥ offset(n1) +
∑

n.vt+ n2.vt = offset(n2) + n2.vt.

Then

offset(n1) < n2.vt+ offset(n2) <= offset(n1) + n1.vt

holds.

If n2 is not an offspring of n1, then if n1 is an offspring of the left siblings of the nodes

in the traverse from the root to n2, then

offset(n2) > offset(n1) + n1.vt

; otherwise n1 is an offspring of the right siblings of the nodes in the traverse from the root

to n2, then

offset(n2) + n2.vt < offset(n1)

.

For each node n in Tree, we design an inverted index as

〈ln, offsetn, vtn〉

, in which l, offset and vt are its layer number, offset obtained from the offset function

and visiting times respectively. Then for two nodes n and m, if

ln < lm (5.7)

and

offsetn < offsetm + vtm <= offsetn + vtn (5.8)

, then n is an offspring of m, and otherwise it isn’t.

We maintain an Inverted Index Set IIS which contains the inverted indices of all nodes

in TT indexed by the grids. For example, the IIS of Figure5.11 is shown as in Table 5.6.

Then we can replace the tree searching process in Algorithm 4 with the above comparison

process. Then the algorithm becomes to be Algorithm 5. curSet maintains the current

indices which correspond to the indices in TT , to which the routes from the root support the

sub-trajectory. When testing a new grid, we update curSet with the new locations that
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grid inverted indices vt

g1 {〈1, 0, 500〉} 500

g2 {〈2, 0, 200〉} 200

g3 {〈2, 200, 140〉} 140

g4 {〈2, 340, 160〉,〈3, 0, 100〉} 260

g5 {〈4, 200, 80〉,〈4, 490, 10〉,〈5, 40, 10〉} 100

g6 {〈3, 100, 80〉,〈3, 200, 140〉,〈4, 0, 80〉} 300

g7 {〈4, 170, 10〉} 10

g8 {〈4, 100, 70〉} 70

g9 {〈3, 340, 100〉,〈4, 440, 50〉} 150

g10 {〈3, 180, 20〉,〈3, 440, 60〉,〈4, 280, 30〉,〈5, 0, 40〉} 150

g11 {〈4, 340, 100〉} 100

Table 5.6: IIS of Figure 5.11

Algorithm 5 Longest normal sub-trajectory detection based on IIS

Input: IIS – inverted index set, IIS (g) is the invert indices for grid g;
1: tf – A testing trajectory; β – Threshold for anomaly detection

Output: tln – longest normal sub-trajectory
2: Process:

3: if tf exists waiting for passengers then
4: Get rid of the records after waiting;
5: end if

6: Get the mapped trajectory t̄f ( t̄f = 〈g1, g2 . . . , gm〉);
7: curSet←IIS (g1); SEQ← 〈g1〉;
8: for i=2:m do

9: candSet←IIS (gi); tempSet← {};
10: for each element e1 in CandSet do
11: for each element e2 in curSet do
12: if e1.l > e2.l and e2.offset < e1.offset+ e1.vt <= e2.offset+ e2.vt then
13: add e1 to temp;
14: end if

15: end for

16: end for

17: curSet← temp;

18: if

∑
n∈curSet

n.vt

gi.vt
< β then

19: Anomaly is detected; break;
20: else

21: Put gi at the end of SEQ;
22: end if

23: end for

24: Extract the sub-trajectory that corresponds to SQE and assign it to tln;
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Figure 5.12: Improvement obtained with Inverted Index.

satisfy Equation 5.7 and 5.8. Then |hasPath| =
∑

n∈curSet n.vt and |passTraj| = gi.vt

and Support is calculated with Equation 5.4 for deciding the anomaly status. When the

anomaly is detected, the longest normal grids are detected and the corresponding GPS

samples are the longest normal sub-trajectory.

Efficiency Improvement We examine the efficiency improvement of the new algo-

rithm with real life taxi data. The result is shown in Figure 5.12. We can see that, the

new algorithm can achieves tens and even hundreds of times faster.

5.4.2.2 Passenger Finding Strategies after Dropping off Passengers

After detecting the initial intention sub-trajectories, we proceed to extract the passenger

finding strategies of a driver after dropping off passengers. We use the same decomposition

of the city as in Figure 5.9. For each time slot, we choose the top 99 busiest grids and the

rest as one non-hot area and obtain 100 location labels. For each location label, we are

interested in drivers’ preference of three types of strategies after dropping off passengers,

i.e., going distant, hunting locally and waiting locally. The local and distant properties are

judged by whether the distance between the first and last sample of the initial intention

sub-trajectory ddrop is bigger than a threshold τd and the “hunting” and “waiting” are by

whether the sub-trajectory is ended with waiting (the criteria is shown in Equation 5.9)

event whose time duration twait is bigger than ωd.

dd







> τd going distant

<= τd

{

twait > ωd waiting locally
twait <= ωd hunting locally

(5.9)

For a specific location, we count the times of going distant event sdd, hunting locally

event sdh and waiting locally event sdw. In [60], we build the feature matrix directly

with these numbers. However, as the total number of drop-off events of good drivers are

significantly bigger than that of ordinary drivers, for most of the locations, the numbers
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of committing specific strategies of good drivers are normally bigger than that of ordinary

ones. And this difference can’t reveal whether a driver prefers to this strategy. So in

this thesis, we define a notion called strategy preference SP , which is measured by the

percentage of events that adopt a strategy at a specific location l in time period t.

SP (sl,t) =
sl,t

sl,tdd + sl,tdh + sl,tdw
, sl,t = sl,tdd, s

l,t
dh sl,tdw (5.10)

. SP (sl,t) indicates a driver’s inclination to certain strategies, and it avoids the influence

of different number of drop-offs among different drivers.

As each location has 3 strategies after dropping off passenger, for a driver, we build

a 100 locations × 3 strategies = 300-dimension feature vector, in which each dimension

corresponds to a specific 〈location, strategy〉 combination.

5.4.2.3 Passenger Finding Strategies before Picking up Passengers

Before picking up passengers, we measure whether a driver should wait or hunt around

in one location. For a pick-up record, if the waiting time before picking up twait is bigger

than a threshold ωp, we say it is waiting, and otherwise it is hunting (Equation 5.11). We

adopt the same formulation of location as passenger finding strategies after dropping off.

And we build a 100 locations × 2 strategies = 200-dimension feature vector to enumerate

the preference of each strategy.

twait

{

> ωp hunting
<= ωp waiting

(5.11)

5.4.2.4 Passenger Serving Areas

As shown in [66], high revenue drivers are capable of choosing to serve at certain city

areas to make good profit and meanwhile avoid heavy traffics in Shenzhen, China. In this

thesis, we also investigate the preference of passenger serving areas of different taxi drivers.

Different from the passenger finding strategies, we decompose the city into 10 × 5 areas,

with each one about 5km × 5km. For each driver, we count the passenger finding times

pfti in area i in each time slot. And the preference of area i is defined as:

Pi =
pfti

∑

pfti
(5.12)

. which measures a driver’s preference in serving in each area. For each time slot, we build

50-dimension feature vector, with each one the preference for a particular area.
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5.4.2.5 Passenger Delivery Speeds

The passenger delivery speed is the average speed of all the passenger delivery trips in

a particular time period of day. We calculate the passenger delivery speed speedh in hour

h with the following equation:

speedh =

∑

dhdi
∑

thdi
(5.13)

, in which dhdi and thdi are the delivery distance and time of ith trip in hour h respectively.

Even though speedh can’t provide guidance to the drivers, a higher value of it implies good

skills to choose the unobstructed route. And then for each time slot, we build a feature

vector with each dimension for one hour.

5.4.2.6 Feature Document Preparation

For a time slot, we combine the aforementioned features in one row vector for each

taxi and then accumulate the row vectors of different taxis into a feature matrix FM , in

which each row corresponding to one taxi and each column for one specific strategy. The

following analysis is based on this feature matrix.

5.4.3 Understanding Finding Serving Strategies

In this section we study the taxi serving strategies from the following three perspectives.

1. How can we learn from the strategies of good drivers?

2. What’s the evolving trend of each strategy with the revenue? What strategies should

be emphasized and what should be weakened?

3. What strategies can differentiate good and ordinary drivers?

Intuitively, the strategy inclinations of good drivers in certain time and location context

are valuable experiences for other drivers to learn. So we first try to find the most inclined

strategies of good drivers based on the feature document. Then we evaluate each individual

strategy by measuring its correlation with drivers’ profitability. The positive correlation

value indicates that generally speaking, with more preference of this strategy, the drivers

have higher profitablity, and vice versa. In the end, we investigate the strategical differ-

ences between good and ordinary drivers through classification method and try to find the

strategies that can different the two driver groups.

5.4.3.1 Learning from Good Taxi Drivers

In a given location and time context, we want to learn the strategy that is mostly

preferred by good drivers. To measure the preference of a particular strategy in a group of



90 5.4. UNDERSTANDING TAXI SERVING STRATEGIES

drivers, we have to consider not only the preference of each driver, but also their profitability

level, which is measured as the hourly revenue rate, and their experience, which is measured

by the number of drop-off events in the corresponding location and time context. So we

define a Score(sl,tp ) function to measure the preference of a strategy sl,tp of in a community

of drivers.

Score(sl,tp ) =

N
∑

i=1

SP (sl,ti ) ∗ revti ∗ s
l,t
i (5.14)

, which incorporates the three factors, i.e., in given location l and time period t, for each

good taxi i, SP (sl,ti ) is its strategy preference of s, revti is its hourly revenue rate and sl,ti
is its number of drop off events at location l and time period t.

For the strategies after passenger drop-off, we calculate the Scores of going distant,

hunting locally and waiting locally and convert them into range 0∼1 for each location and

time context (shown in Figure 5.13). We choose the strategy with the maximum value as

the most preferred strategy. Then for each time slot, we can draw a preferred strategy

map which reveals the strategies learned from good drivers in each location (shown in

Figure 5.14). Besides the detailed information, we can observe that, generally speaking,

it’s better to hunt locally in top hot areas and go distant in non-hot areas. And in most of

the cases, hunting is better than waiting. However, there are some exception, such as the

airport and tourist sites around the Western Lake in noon and afternoon time, where it’s

easy to wait for passengers at that time. The preference of waiting locally reduces when

the hotness decreases. On the contrary, the preference of going distant increases in less hot

areas as there are less taxi demands .

The learned strategies are the ones generally followed by good drivers in given location

and time contexts. However, it’s certain that if they are strictly followed by all the drivers,

they will become bad ones because of the competition among the drivers. Actually in

Figure 5.13 we can observe that except late night, when moving to less hot locations,

the scores of going distant and local hunting become increasingly close. It indicates that,

although hunting locally is the most preferred, going distant is not negligible as large

number of drivers also prefer to it. In real life, how much degree a driver follows these

strategies depends on their experiences and may be one key influencing factor of the revenue

performance. So in next section, we intend to investigate how the degree of following one

strategy influences the performance.

5.4.3.2 Evaluation of Individual Strategies

We evaluate each individual strategy by calculating the correlation value of the feature

dimension with the corresponding drivers’ profitability. A positive correlation value implies

that, generally when drivers prefer more to this strategy, they earn more. So for the drivers
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Figure 5.13: Strategy scores in different time slots.
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Figure 5.14: Strategy preference map. Red: hunting locally; Blue: waiting locally; White:
going distant.

with lower preferences of the strategy, they’d better increase it. On the contrary, with small

negative correlation value, the drivers with bigger preference should decrease it. For each

feature dimension f and the hourly revenue r of corresponding drivers, we calculate the

correlation corr(f, r) with Equation 5.1. The result is revealed in Figure 5.15, 5.16 and 5.17.

For the passenger finding strategies after drop-off, one can easily observe that local

waiting normally has negative correlation value for the hot areas, indicating that to make
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Figure 5.15: Correlation of passenger finding strategies after drop-off and the revenue in
different time slots. Horizontal axis is the top 1∼99 hot drop-off locations and the rest area
(labelled as 100).
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more profits, taxi drivers should prefer less to local waiting there. On the contrary, for

most of the location and time contexts, local hunting is positively correlated with the

revenue, which means generally more local hunting causes more revenues. This observation

complies with the experiences learned from good drivers that local hunting is better in most

of the cases by learning from good drivers. And it is also consistent with the results of the

strategies before pick-up (Figure 5.16). For the majority of the locations, hunting before

pick-up is positively correlated with the revenue while waiting is negatively. Meaning in

these areas, taxi drivers should prefer more to hunting and decrease waiting events. From

noon until night, going distant is negatively correlated with the performance in the top hot

areas and the value moves to positive when moving to less hot areas. It also complies with

the previous results that taxi drivers should always focus on hot areas.

The correlations between taxi serving areas and the revenues are shown in Figure 5.17.

The red area in Figure 5.17 covers night entertainment areas (night clubs and etc.) and

the residential areas. Taxis serving more here obtain more revenues generally. The dark

blue areas are where taxis generally earn less if they serve more and are mostly the suburb

areas.

One thing that should be pointed out is, the absolute correlation value is not close to

1, which is because of the fact that revenues are influenced by a variety of practical factors

together with the serving area, such as the traffic, driver preference, passenger distribution

and variance. But still it can provide indications of the profitability trend when the drivers

serve more or less in each area and be used to guide taxi drivers.

5.4.3.3 Differentiating Good and Ordinary Taxi Drivers Based on the Strate-

gies

The aim of this section is to find the group of strategies which can differentiate good

and ordinary taxi drivers, so that we can have a clue of what differentiates them. We

choose the top 500 profitable drivers as the good drivers and the middle 500 taxi drivers

as the ordinary drivers. We label the features vectors of good and ordinary drivers with

1 and -1 respectively, and use L1-SVM [9] and AdaBoost [103] to classify the two groups.

The weaker classifiers in AdaBoost are binary classifiers in each feature dimension:

Label(fi) =

{

1, fi ≥ γ
−1, fi < γ

(5.15)

. For each time slot, we randomly divide the drivers into 5 equal-sized groups and use

5-folder cross validation to get the classification accuracy. The results of L1-SVM and Ad-

aBoost with different number of weak classifiers in different time slots are shown in Table 5.7

and Figure 5.18 respectively. We can see that L1-SVM achieves about 85∼90% accuracy
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Figure 5.16: Correlation of passenger finding strategies before pick-up and the revenue in
different time slots. Horizontal axis is the top 1∼99 hot drop-off locations and the rest area
(labelled as 100).
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Figure 5.17: Correlation of taxi serving areas and the revenue in different time slots.



CHAPTER 5. UNDERSTANDING COMMUNITY BEHAVIORS 97

Table 5.7: Classification accuracy (%) of L1-SVM
night morning noon afternoon evening

89.3±1.5 89.7±2.8 89.2±2.5 87.3±2 85.8±1.7
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Figure 5.18: Classification accuracy of AdaBoost vs. different number of weak classifiers.

and AdaBoost achieves about 86∼94%, implying that there do exist some strategies that

can differentiate good and ordinary drivers.

With L1-SVM, we are able to obtain a set of salient features which can differentiate the

two driver groups. And their contributions are measured by the assigned weights during

the classifier training phrase. These salient features are believed to be useful for suggesting

efficient passenger-finding strategies in [60]. In this thesis, we further study these strategies

individually by examining their mutual information [34] with the revenue.

Much work used information theoretic criteria in feature selection [7, 23]. The mutual

information between a feature f and the target y is defined as:

I(f) =

∫

fi

∫

y

P (fi, y) log
P (fi, y)

P (fi)p(y)
dfdy (5.16)

, in which p(fi) and p(y) are the probability densities of fi and y. Bigger information value

means better differentiating power of f over different ys. In this thesis, ys are the two labels

and fi is preference of strategy f of taxi i. We discrete the range of f into 20 equal-size

intervals and Equation 5.16 becomes to be:

I(f) =
∑

fi

∑

y

P (F = fi, Y = y) log
P (F = fi, Y = y)

P (F = fi)P (Y = y)
(5.17)

, where P (i) can easily be calculated by counting the occurrences.
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Figure 5.19: Rankings of the top 10 positive and negative features in L1-SVM vs. rankings
of their mutual information in all time periods.

The mutual information rankings of the top 10 positive and negative features in L1-SVM

in all time periods are shown in Figure 5.19. We can see that, the information rankings

of the majority positive 10 features are within top 50, indicating that the majority of

these features possess high differentiating power. However, there are several features with

high L1-SVM weights but low information ranking. This is because of that: “a variable

(i.e. feature in this thesis) that is completely useless by itself can provide a significant

performance improvement when taken with others” [34]. And all these features together

reach good differentiating results between the good and ordinary taxis instead of simply

adding their differentiating power together.

With both L1-SVM and AdaBoost, we obtain more than 100 features with non-zero

weights in each time slot, based on which we classify the good and ordinary taxis. It reveals

that good drivers achieve better performance not by a single strategy, but by a combination

of a group ones. By accumulating the advantages through all of them, good drivers achieve

outstanding performance compared with ordinary ones.

5.5 Conclusion and Discussion

The digital footprints of a community of drivers are valuable resources for us to study

the characteristics of taxi drivers’ behaviors and thus to understand the hidden human

intelligence under different context situations. In this chapter, we provide a thorough

analysis of a large number of anomalous passenger delivery behaviors and work shifting

behaviors collected from a community of taxis. we perform analysis aiming to answer

the following questions. a) What percentage of all trips are anomalous? b) Out of the

anomalous trajectories, what percentage of them travel longer distance than necessary? c)
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What statistical “tendencies” can we discern from the detected anomalous trajectories? d)

Do taxi drivers who have a higher tendency to commit fraud have an economical advantage

over those who don’t? We observe that 1) Over 60% of the anomalous trajectories are

“detours” that travel longer distances and time than normal trajectories; 2) The average

trip length of drivers with high-detour tendency is 20% longer than that of normal drivers;

3) The length of anomalous sub-trajectories is usually less than a third of the entire trip,

and they tend to begin in the first two thirds of the journey; 4) Although longer distance

results in a greater taxi fare, a higher tendency to take anomalous detours does not result in

higher monthly revenue; 5) Taxis with a higher income usually spend less time finding new

passengers and deliver them in faster speed. Besides, we analysis the spatial and temporal

distributions of all the work shifting events. We find that, afternoon work shiftings normally

happen between 16:40∼17:20 in non-hot areas, which explains that why people feel hard

to get taxis in this time period.

We also study the taxi serving strategies based on a real life large scale taxi dataset col-

lected from 7600 taxi in China, aiming to discover both efficient and inefficient techniques,

and reveal the underneath facts. To learn the initial intention of drivers right after they drop

off passengers, we propose a novel method to extract the initial intention sub-trajectory

by comparing with the passenger delivery trajectories and improve the efficiency with tree

compression and inverted index searching. Then we formulate the strategies concerning

passenger finding behaviors after dropping off passenger and before picking up passengers,

passenger serving areas, and delivery speeds. By learning from the top performance taxi

drivers, we provide a strategy map, revealing the good strategies at each place in different

time periods of day. Through calculating the correlation relationship between each strat-

egy and the revenue, we measure their influences on performance. Generally we observe

that hunting is better than waiting locally in hot areas with some exceptions including the

airport and some tourist sights. Despite the influence of heavy traffic in hot areas, going

distant is not a good choice. When moving to non-hot areas, they should go to hot areas

(going distant). We further classify the good and ordinary drivers based on the proposed

features,
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6.1 Smart Taxi System Introduction

Enriched by the perception and understanding of human behaviors in scales of individual

and community, the service scope and functionalities of the smart sensing systems will be

greatly expanded. In this chapter, we illustrate this trend with a smart taxi system,

which targets at not only dispatch and navigation services for drivers and passengers,

but a complete and considerate taxi service system that allows passenger to easily and

comfortably enjoy taxi services and assist taxi drivers to in their business process. Besides,

it also adopts the fruits born from the exploration of the digital footprints, especially the

monitoring and understanding of human behaviors, and supports various types of value-

added services to other possible clients, such as taxi companies, city traffic administrative

bureaus and the public.
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Currently, GPS-based taxi dispatch systems are widely adopted in big cities in China

for location-based taxi dispatch service which can greatly improve the taxi service efficiency.

With real time collections of the taxi locations and status, it’s easy for taxi dispatch center

to monitor the locations of the vacant taxis. With the hotlines for people to call for taxi

services, the dispatch center collects the passenger demands and dispatches nearby taxis to

satisfy them. With the advancement of GPS-embedded smart mobile phones, we can design

easy-to-use mobile application which automatically gathers the location of the passenger

and negotiate with the dispatch center to get a delivery efficiently.

Besides taxi dispatches, the smart taxi system actually can work as agents for both

taxi drivers and passengers to assist the whole taxi service process. For taxi drivers, it

can recommend efficient passenger finding suggestions, respond to nearby passenger calls,

navigate passenger deliveries and even automatically handle the payment process. While

for passengers, it can provide “one-click” service which automatically gathers the passen-

ger location and talks with dispatch center to get a taxi ride. Besides, it also can guide

passengers to locations where it’s easier to get taxis in case of rush hours. And by mon-

itoring driver’s anomalous behaviors, it’s able to provide anomaly alerts if required. To

save the cash payment trouble, it can maintain money accounts for both taxi drivers and

passengers. After the delivery is completed, it automatically transfers the payment from

the passenger’s account to the driver’s to save the trouble of money delivery.

By exploring the GPS footprints obtained in the system, the smart taxi system also

provides smart services to taxi companies, city traffic administrative bureaus and even

the public. For example, with the anomalous passenger delivery detection service, taxi

companies can monitor all the anomalous behaviors of taxi drivers and take necessary

measures to reduce such behaviors and improve the taxi service. The hotspots and human

mobility patterns revealed from the GPS traces can serve as data sources for city planners

to design public transportations and for city governors to monitor the abnormal changes in

the city. As taxis are traveling all over the city, whose speeds reflect the traffic situation on

the road, their real time reports provide a perfect picture about the city traffic situations.

Besides, the novel path planning solutions (such as T-Drive) based on large number of

passenger delivery paths provide better navigation services to the public than conventional

methods by incorporating the human intelligence of the experienced drivers.

The working scenarios of the system is illustrated as in Figure 6.1. It consists of four

roles. The first one is the smart taxis, which adopt mobile phones or other professional

taxi dispatch equipments to send GPS reports to a central server and assist the taxi service

process. The second one is the smart passengers, which utilize mobile phone clients to

communicate with the central server for taxi delivery services. The third one is the smart

monitors, which includes other possible clients, such as the taxi companies, traffic bureaus
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Figure 6.1: Working scenarios of the smart taxi system.

and navigation service companies. Based on the detected human behaviors, they can

monitor the taxi service, traffic conditions, city hotspots, human mobilities, and so on.

The last one is the central server, which is the core of the system. It gathers the GPS

reports from taxis and takes in charge of the services to the other three roles.

The conceptual framework of the system is shown in Figure 6.2, which shows the inner

functions and service sequences. Here we introduce the roles and functions of each parts

in detail.

Smart Taxi: The smart taxi client provides assistance to taxi drivers during their

business, such as dispatching taxi drivers to nearby passenger calls and assisting them in

the passenger finding and delivering process. Firstly, during the passenger finding process,

it provides suggestions to the drivers to efficiently find passengers in current contexts (lo-

cation, time and weather) by incorporating hotspots, mobility patterns, or/and detailed

guidance like in [123], or/and strategical guidance like what has been presented in this pa-

per. It also displays the real time delivery demands issued by the passengers in the Smart

Passenger client to the drivers. After picking up passengers, it provides efficient ways to

deliver the passenger to their destinations. Meanwhile, after dropping off passengers, it

provides smart payment service, of which the system calculates the traveling fee and au-

tomatically charges moneys from the passenger account to the driver account. It saves the

money delivery process from both sides.

Smart Passenger: The smart passenger client provides considerate taxi services to

passengers. With it, passengers only need to press a button to issue a taxi delivery demand.
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Figure 6.2: Framework of the smart taxi system.

It automatically collects the GPS location of the user and sends it to the central server

within a taxi delivery request. For simplicity, the server can automatically dispatch the

closest vacant taxi to serve. Meanwhile, we also can adopt the following easy way to select

the taxi with better service quality. When receiving a delivery request, the server automat-

ically replies with a few nearby vacant taxis with their service rankings obtained by the

evaluations of previous passengers and the estimation of traveling time to the passengers’

location. Passengers with the smart passenger client can choose the one she/he wants and

negotiate directly with him to get a taxi ride. Before picked up, the smart passenger client

may show the real time location of the taxi to reduce possible waiting anxiety. During the

delivery process, in case the driver is not following a normal route, the client is able to

issue an alert to the passenger. After dropping-off, it automatically pays the taxi service.

But it needs a prepaid account of the passenger with sufficient amount of money in it.

Smart Monitor: The smart monitor client includes all the services that the smart

taxi system provides to clients other than taxis and passengers. In Figure 6.2, we list

some of the possible applications, including the taxi monitor, traffic monitor, road network

monitor, human mobility monitor and path planning service. Taxi monitor provides the

real time locations, passenger status and the moving speed of all taxis to taxi companies

and city traffic bureaus. It also monitors the anomalous drivers in real time and provides

possibilities for taxi companies to take measures to reduce fraudulent driving. Besides, it’s

also useful for city traffic bureaus to monitor unexpected events like taxi strikes. The traffic

monitor service displays the traffic status of the road network derived from on-line taxi GPS
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packets and the anomalous traffic patterns which might indicate traffic accidents. The road

network monitor refers to the ability to detect the road network changes, including the

opening (e.g., newly-built) or blocking of road segments or even building the road network

from scratches. Human mobility monitor reveals the hotspots and the real time human

mobility among different areas in a city. It’s able to support passenger finding and public

transportation design. Path plan service provides efficient traverse routes to the public,

which are mined from the large-scale passenger delivery behaviors of taxis.

Central Server: The central server is the core component that detects the human

behaviors and provides services to the other three types of clients. The main data source

of it is the GPS reports received in real time from the taxi fleet. It maintains the evalua-

tions generated by previous passengers for each driver. When receiving a delivery demand

initiated by a passenger client, it offers a few of the vacant taxis nearby with their evalua-

tion rankings and handles the following communication between the passenger and the taxi

driver. Meanwhile, it offers delivery navigation service, performs the real time anomaly

delivery behavior detection and provides alerts to drivers if is required by the passenger.

It also maintains an account for each driver and passenger, so that it can automatically

pay the driver from the passenger’s account, saving their effort for the cash delivery. After

drop-off event, it provides the passenger finding guidance to taxi drivers.

Another main function of the central server is to detect the human behaviors, perform

analysis and provide services to the smart monitors. It can either handle the data process

and deliver the results directly to the smart monitors, or it can acts as data feeds of another

smart system that handles the services of smart monitors. For example, the central server

can collect the hotspots directly and visualize it to the city traffic administrative bureau.

It also can collect the human mobility pattern and provide the data to the city planners

who based on such information design publication transportations.

The challenges of such a system are mainly brought by the huge number of taxis and

passengers, as it needs to monitor thousands of taxis in real time. So the system has to

be carefully designed to meet the real time responses. And with the development of the

city, new taxis will enter the market and thus the system should be salable. We envision

this type of system can be deployed in larger cities, such as Beijing (around 70,000 taxis)

and Mexico city (around 250,000 taxis), so it is necessary to verify the scalability of the

proposed system.

6.2 Architecture of Smart Taxi System

We mainly introduce the design of the central server in this thesis, as it handles all the

complicated data processing work such as the activity recognition and analysis tasks. The
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Figure 6.3: System architecture of the smart taxi system.

architecture design of it is shown in Figure 6.3, which includes mainly four modules, Data

Collection and Pre-Processing, Behavior Extraction, Database and Service. Data Collection

and Pre-Processing module receives the GPS packets from all taxis, tracks the operations

of each individual taxi and performs data filtering and mapping tasks. It also collects the

context information from network services (such as the weather service of Yahoo), which

are necessary for applications like anomalous passenger delivery detection. The collected

data is store in the Database module, which stores and manages the raw GPS records for

all taxis and the extracted hotspots, passenger finding and delivery trajectories as well as

the application specific data. The Behavior Extraction module extracts the individual and

community behaviors from the collected records. The results of this module can be used in

the Service module, which provides services to the three clients. We elaboration the details

of these modules in the following sections.
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6.2.1 Data Collection & Pre-Processing

6.2.1.1 GPS Packet Aggregator

GPS Packet Aggregator provides an interface that receives the GPS reports sent from

the smart taxi clients in taxis, whose format is shown in Table 3.2. To effectively gather

data, we adopt the Representational State Transfer (REST) architecture, which represents

each resource (in our case taxis) as an URL. The clients of our system use HTTP POST

operation to upload the GPS packet information into our system with this URL. For ex-

ample . After receiving the data, the GPS Packet Aggregator extracts the taxiID from the

URL and other parameters from the POST message body to form a complete record.

6.2.1.2 Context Manager

The context manager mainly takes care of the environmental factors that influence

the human behaviors and currently it just manages the weather, but it can easily include

other factors if necessary. The reason why we don’t use the weather information directly

is because practically we don’t deal with the weather information directly but use some

classification of it to obtain more general abstractions, such as “server” and “normal”. For

example, in the anomalous passenger delivery detection function, we don’t need to consider

the weather conditions exquisitely as their influences are not so subtle. Each context type

is assigned with a unique ID. When queried, it can reply this ID to the requester.

6.2.1.3 Data Filtering Component

Data filtering component fulfills the data filtering tasks that are needed to handle

the problems mentioned in Section 3.3.3, mainly including the “data entry erroneous” and

“improper occupied flag”. To handle the unreasonable GPS jumps, we calculate the average

traveling speed between the current GPS packet and the previous one. If the speed is higher

than a threshold, it means we need to filter out it. To handle the improper occupied flag

problem, we setup three filtering criteria. The first one is whether the time duration of

a passenger delivery trip is lower than a minimum or longer than a maximum threshold.

The second one is whether the traveling distance of a trip is too short (e.g., less than

200m, very suspicious for real life deliveries). And the last one is whether the vacant time

duration while the taxi is moving is longer than a threshold. If the trip satisfies any of

these criteria, we label it as suspicious and leave the processing logic to the applications.

If the percentage of “suspicious” time duration in a day is too high for a taxi, we will label

it as a “suspicious” taxi.



108 6.2. ARCHITECTURE OF SMART TAXI SYSTEM

6.2.1.4 Mapping & Augmentation

As we mentioned before, in order to feasibly manage the GPS points, we construct

a finite abstract representation, or decomposition, of the original two-dimensional GPS

plane. The Mapping component maps a GPS point into one of the element of the chosen

decomposition where it “lands’ in. Additionally, the Mapping component can also map a

completed trajectory into a sequence of the decomposition elements. However, due to the

low-sampling-rate problem, the successive elements may not be adjacent. The purpose of

augmentation is to ensure that there are no gaps between successive mapped GPS points

in a trajectory.

There are a number of ways to decompose the city, such as the grid decomposition,

digital road network mapping, or partitioning it into different functional regions. In road

network mapping, we map the GPS samples into the road segments where it most likely

traverses. As is shown in Figure 6.4(a), the two cross points are the GPS sampling locations

in a passenger finding trajectory. They are mapped as the red dots in the road segments.

In grid decomposition, we split the city area into a matrix of grid cells (the grids shown in

Figure 6.4(b)), and each GPS point maps to the grid cell where it lands (the black squares

in in Figure 6.4).

Normally the augmentation is only performed for the passenger delivery trajectories, as

they usually follow efficient routes for quick deliveries. For road network mapping, we can

compute the shortest route between the adjacent mapped points (such as the passenger

delivery route shown in Figure 6.4(a)). While for grid decomposition, we can insert pseudo

cells along the line defined by the adjacent two grids. For example, in Figure 6.4(b), three

pseudo cells (shown as gray cells) are inserted between p2 and p3. Eventually, such an

augmenting process will allow us to obtain a cascaded cell sequence for the representation

of each trajectory. However, such augmentation methods aren’t suitable for passenger

finding trajectories, whose primary purpose is for finding passengers. For example, the two

brown dots in Figure 6.4(a) are the sampling locations in a passenger finding trajectory.

Instead of following the shortest path, it takes the brown route because there is a Hilton

hotel, where it’s easy to find passengers.

6.2.1.5 Individual Taxi Trace Manager

Individual Taxi Trace Manager tracks the GPS footprints of each taxi, extracting pas-

senger finding trajectories, passenger delivery trajectories and the pick-up and drop-off

locations. The obtained results are saved in the database that can be directly used for the

other modules. In practice, we manage a GPS packet queue for each taxi. If the queue is

empty or the state of the new arrived packet is the same as the ones managed in the queue,
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Figure 6.4: Illustrative examples of mapping and augmenting a trajectory. (a) road map-
ping; (b)grid decomposition.

we just put the packets in the queue. Otherwise, it implies a passenger pick-up (from

vacant to occupied) or drop-off (from occupied to vacant) event. The trajectory managed

in the queue is a passenger finding or passenger delivery trajectory respectively. It is saved

in the database and the queue is cleared after.

6.2.2 Database and DB Manager

The database stores and manages all the raw GPS records for all taxis. Besides, it

also keeps the extracted hotspots, passenger finding and delivery trajectories, all of which

have been labeled with contextual information provided by the Context Manager, so that

the applications can choose the records with appropriate type of context easily. For the

fast retrieval of passenger finding trajectories, which are widely used for the anomalous

passenger delivery behavior detection and the initial intention detection, we make use of

the inverted index mechanism [132] as well. We maintain a secondary database whose

records are the mapped grid cells and the elements of each record are trajectory-position

pairs, indicating the trajectories where the indexing grid cell appears, along with its position

in that trajectory. Then to select the trajectories traversed from one cell to another, we

compare the pairs of the two cells to choose the trajectories that have records in both grids

in the correct order. The operations are conducted in the DB Manager.
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6.2.3 Behavior Extraction

The Behavior Extraction module is in charge of detecting and analyzing the individual

and community behaviors from the collected GPS traces. We introduce the main compo-

nents presented in the system architecture in the following sections.

6.2.3.1 Hotspot Extraction

The hotspots are the distributions of the pick-up and drop-off behaviors in a taxi fleet.

Hotspots Extraction module takes in charge of extracting the hotspots from the large

collected pick-up and drop-off events. One easy way to do it is by simply counting the

number of such events in each cells in the grid decomposition. Some typical results are

shown in Figure 5.9. The other ways are using the clustering methods, such as the K-

means [73], Agglomerative Hierarchical Clustering [78] and DBSCAN [93] to cluster the

events into a number of clusters.

6.2.3.2 Human Mobility Extraction

With the obtained large number of passenger delivery trips, human mobility model

measures the linkage strength between two different areas. Practically, given the coverage

of two areas, the linkage strength can be simply defined as the number of passenger deliveries

from one area to the other in certain given context, such as time of day and day of week. So

the human mobility pattern depends on how we choose the two areas to measure. Normally

we measure the human mobility among the hotspots of the city. We count the number of

passenger deliveries among the hotspots and rank them in descending order. Then we can

obtain the top strong human mobility patterns.

6.2.3.3 Traffic Detection

When the taxis deliver passengers, they can be considered as running sensors that

perceive the city traffic conditions. By the real time aggregation of the speed information of

a large taxi fleet, we can map the records into the road segments and obtain a comprehensive

picture about the real time city traffic. For a road segment with several taxis, we can first

exclude parked taxis (they should stop for a relatively long time) and then average the

speeds of the rest taxis.

6.2.3.4 Anomalous Passenger Delivery Detection

To detect the anomalous passenger delivery behaviors in real time, we must know the

destination information at the start of the trip. The GPS locations of the taxis have to

be reported to the server if they want to use the smart dispatch service, and this benefit
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could compensate the driver’s unwillingness to be checked with their anomalous behaviors.

To employ the anomalous trajectory detection, the system needs to know the destination

before the trip, so that it can judge whether the trip is anomalous or not. There are many

possible ways to obtain this information and we just offer one simple way, pressing the

destination region for over three seconds. Other opportunities include the chance when

they require the navigation services, or the passengers explicitly require the services. With

the advancement of voice recognition, we are also expecting feasible vocal ways to input by

audio. It’s worth noting that, the destination area needn’t to be precise, because iBOAT

only needs the destination area so that it can gather the historical trajectories that share

the same source and destination areas.

The anomalous passenger delivery detection module aims at detecting the anomalous

passenger deliveries for a large number of taxis simultaneously in real time, the primary issue

we have to address is the response time of the system. In a city like Hangzhou, China (where

our dataset is taken from), there are 8,500 taxis operating in the city. Thus, our system

should be able to perform anomaly detection on all 8,500 occupied taxis simultaneously, at

a rate of at least once per minute (taxi GPS sampling time).

In the process of anomalous trajectory detection, another critical issue is to consider

the effect of context such as time and weather during the preparation of historic trajectory

set. Since our system is based on historical “traces”, it is important to consider only those

historical trajectories that occurred under similar context. It should be noted that previous

anomaly detection mechanisms have only considered physical location as a relevant context

for accumulating historical trajectories. We believe that additional contextual information

will improve the overall accuracy of the system.

As elaborated in Section 4.3, we adopt the inverted index mechanism and greatly im-

prove the recognition efficiency of the iBOAT method. Here we explain how to adopt this

method to conduct the anomaly detection in real life. As passengers may travel among

different areas, there are large number of possible 〈S,D〉 pairs. In practice, it will be much

time costly to build the historical trajectory dataset every time for each passenger deliv-

ery trip. So we build the dataset for all the possible 〈S,D〉 pairs and store them in the

database. Instead of dealing with the trajectory dataset, we directly store the inverted

index dataset of it and update it at a low frequency like once per day. When testing a new

trajectory, we query the corresponding inverted index dataset directly from the database

and perform the anomalous behavior detection task.

6.2.3.5 Work Shifting Detection

Work Shifting Detection module is in charge of detecting the work shifting events of

a taxi. For each taxi, we manage work shifting agreement (the agreed location and time
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period, the detection method is introduced in Section 4.4) in the database. When the time

period is approaching, we monitor the event that the taxi goes to the work shifting location

and stays a while and consider as the event as the work shifting. After the work shifting

event, the owner of the digital traces is changed.

6.2.4 Services

The service layer includes the components that take in charge of the processing of

different applications based on the raw sensing records or the extracted individual and

community behaviors. As these services focus on designing easy-to-use applications (inter-

faces and so on) that cater for the real life demands, they are not the main research target

of this thesis. Here we present some easy design examples of the applications to illustrate

the simple use scenarios. To make the introduction more understandable, we also present

the possible interfaces or logics for the three clients.

6.2.4.1 Taxi Dispatch

Taxi dispatch is the initial purpose of deploying GPS devices in taxi, and it has been

commercialized for a few years in many cities. Here we present a simple application that

takes advantage of people’s mobile phones to provide location-based dispatch services. It

works as follows in our prototype. When a passenger needs to take a taxi, he launches the

smart taxi application in his mobile phone and login with his own account (Figure 6.5(1),

the registration interfaces is shown in Figure 6.5(2)). Upon receiving the request, the system

automatically offers a few nearby taxis to the passenger together with general evaluations

for each of them based on the historical rankings from previous passengers (Figure 6.5(3)).

Then he presses the destination area on the mobile phone screen for over three seconds

to identify where he wants to go (Figure 6.5(4)), and after he chooses one taxi and issues

the delivery request (Figure 6.5(5)). The server directs the request to the taxi client, who

can choose to accept or decline the request (Figure 6.5(6)). If rejects, the taxi driver may

explain the reasons with interface Figure 6.5(7). Otherwise, both the passenger and driver

clients will enter the waiting state for the driver to come to pick the passenger up. During

this process, the passenger can see the location of the taxi to know where it is in real

time (Figure 6.5(8)) to alleviate the anxiety of waiting. After picking up the passenger, the

system reveals the normal routes (Figure 6.5(9)) to both sides and in case the driver follows

an anomalous routes, the system can provide real time alert to the passenger if he wants.

As an illustrative and simple design, the delivery route is marked blue when it’s normal

and marked red when anomaly occurs (Figure 6.5(10)). When the delivery is finished, a

summary of the trip is revealed on the screen of both clients (Figure 6.5(11)).
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Figure 6.5: Mobile phone user interfaces.
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6.2.4.2 Anomalous Passenger Delivery Monitor

Anomalous Passenger Delivery Monitor presents various aspects about the anomalous

passenger delivery behaviors in a city in a real time manner to the taxi companies. Cur-

rently it mainly includes three interfaces, i.e., real-time monitoring the anomalous passen-

ger delivery behaviors in a city, ranking the drivers according to their tendency to detours

(based on criterion such as detour frequency, detour times or detour distance), and search-

ing historical detours. Figure 6.6 shows the three snapshots for the functions listed above

respectively. In Figure 6.6(a) the red taxis are those who are conducting anomalous behav-

iors at the moment. In Figure 6.6(b) the user can select time period and ranking criteria,

and then the system will provide a ranking of taxis. The user can choose a taxi and visual-

ize the detour trajectories. In Figure 6.6(c), we provide a searching interface, which given

a taxi ID and time period, provides the anomalous trajectories satisfy the criterion.

6.2.4.3 Estimating Traveling Time

The traveling time from a source to a destination is highly influenced by the chosen route

and its real time traffic. In practice, we can simply estimate it by averaging the historical

traveling time of similar trips between these two areas in the same contexts (time of day,

day of week and weather) [5]. It triggers the process of extracting a trajectory dataset with

same source and destination areas, which is the same process as the anomalous passenger

delivery detection work (both iBAT and iBOAT ). We are going to evaluate this aspect in

real life cases.

6.2.4.4 Road Network Change Detection

The road network change here includes the blocked or newly-built road segment, which

if we look from the vehicle trace perspective, causes the vanishing or emerging of travel

patterns in the corresponding places respectively. Cao et al. [13] proposed a method to

build a routable road map from the collected vehicle GPS traces. Here we present a easy

complementary method to isolate the road network change areas, whereafter the road map

construction task focuses only on the network changes.

We first use grid decomposition to partition the city into a grid cell matrix (the dashed

grids in Figure 6.7). A grid cell has 8 orientations as shown in the grid decomposition in

Figure 4.5. For each grid cell, we count the visiting frequency, i.e., the number of trips

that traverse through it, in each orientation. For a block road segment, as illustrated in

Figure 6.7(a), the visiting frequencies of the grids along with the road direction, which

cover the changed road segment will change from a big number to zero. On the contrary,

they change from zero to a big number for a new road segment (shown in Figure 6.7(b)). So
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(a)

(b)

(c)

Figure 6.6: Smart Taxi Monitor - User interface for administrators in web browser.
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Figure 6.7: Examples of isolating road network change. (a) blocked road segment; (b) new
road segment.

by checking the visiting frequency change, we can easily isolate the road network change.

6.3 System Evaluation

We are building a prototype of the smart taxi system. In this section, we evaluate

our system with the collected taxis’ GPS dataset. As the anomalous passenger delivery

behavior monitoring requires real time responses, we evaluate the system response time

to show it’s effectiveness in dealing with large number of taxis. Meanwhile, as both the

detection method and traveling time estimation method require a dataset with sufficient

number of trajectories under the same 〈S,D〉 pair, we also evaluate this assumption in real

life scenarios. We define the system coverage as how much percentage of trajectories in

real life that fulfill such a requirement and evaluate it in different situations.

Currently there are about 8,400 taxis operating in Hangzhou, China, out of which

around 7,600 have been deployed with a GPS sensing device. In March 2010 we collected

about 441 million packets from these taxis. In this section we intend to verify whether our

proposed system can handle anomaly detection for such a large fleet of taxis. For the time

settings such as different time periods of day and different day of week, we choose the same

one as in Section 5.1.

We calculate the average daily delivery trips for each taxi and show the distribution

over these averages in Figure 6.8. It shows that most of the taxis have about 30 ∼ 50 trips

per day, but there are a few excellent taxis that make over 50 trips per day. We display the

average number of daily trips in each time slot in Table 6.1. Although there are more trips

in the day time of working days, there are more trips in night time of non-working days.

This behaviour is in accordance with what is expected from our experience, as in working

days, people go out more often at day time, while in non-working days, people go out more
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Figure 6.8: Distribution over average number of daily trips.

often at night time for entertainment and so on.

Table 6.1: Average number of daily trips

Day type Night Morning Afternoon Evening
0∼6:59 7:00∼11:59 12:00∼16:59 17:00∼23:59

Working 27k 58k 63k 87k
Non-Working 34k 54k 61k 95k

6.3.1 System Response Time

We would like to verify that our system is able to handle data coming from a large

fleet of taxis and monitors the anomalousness of on-going trajectories in a timely manner.

Specifically, since the sampling rate of GPS devices is approximately once per minute, we

would like to ensure that our system can respond to all taxis within one minute.

We construct our database using data from March 2010, and use the data from April

2010 to simulate a deployed system. Since each GPS packet includes a timestamp, we

can “replay” each of these packets in the correct order and at the correct time, effectively

replicating the reception of these packets in the real life scenario. We ran the test on a PC

with Intel Xeon CPU (2.8GHz) and 12G memory.

For the dataset of 7,600 taxis, our system was able to respond within 2 seconds, which

is well below one minute. We envision this type of system can be deployed in larger cities,

such as Beijing (around 70,000 taxis) and Mexico city (around 250,000 taxis), so it is
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Figure 6.9: Response time versus number of taxis in the busiest hour.

necessary to verify the scalability of the proposed system. We “cloned” the taxi records in

our database in order to create a large fleet of taxis. In Figure 6.9 we display the response

time of the system during the busiest hour in our dataset (20:00∼21:00). We can see that

the response time grows no more than linearly with increasing data sizes, remaining well

below a minute even for a fleet of 200,000 taxis. This suggests that even for a city with

around 200,000 taxis, the response time should be below one minute by deploying the

system in an office PC.

6.3.2 System Coverage with Extracting Similar Trajectories

The detection of anomalous points is based on the number of support from historical

trajectories. If there are very few trajectories between a particular source and destination

area, the method will not be able to check incoming trajectories between said pair of

points. Thus, given a fixed dataset of trajectories, the threshold we select for determining

the sufficiency of trajectories directly determines how many source-destination pairs can

be tested by iBOAT and how much percentage of trajectories can be tested by our system

(i.e., system coverage) in real life. We choose the grid size 500m × 500m, which is the

same as in [125]. In Figure 6.10 we plot the percentage of trajectories covered by our

system as the threshold varies with all the trajectories in March 2010. We can see it drops

when the threshold increases. As there are 23 working days in that month while only 8

non-working days, the coverage in each time slot of day is bigger in working days than in

non-working days. As the criterion of judging whether the trajectories are anomalous is

decided by whether it is “few” and “different” from the majority, in other words, as long as
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Figure 6.10: System coverage versus sufficient trajectory dataset size thresholds (Using 4
weeks historical data).

the “majority” of trajectories are normal routes, the anomaly detection method will work.

We visualize many source and destination paris, and find that 50 is a quite safe threshold.

It indicates that at least 55% of the trajectories will be covered during the night time of

non-working day, and over 80% during the morning, afternoon and evening time of working

days.

One way to increase the system coverage is to increase the time period of historical

dataset, which means that we consider more amount of historical information. In Fig-

ure 6.11 we vary the number of weeks used to build the historical database and display the

percentage of trajectories covered when the threshold is fixed at 50. We can see that with

more weeks the system coverage increases but the increment per week is decreasing. It’s

because, with longer historical data, the uncovered pairs are those with fewer trajectories

in one week and thus the increment is slow.

Another way is to increase the size of source and destination area, which will include

more trajectories eventually. The detected anomalies are the delivery routes that are not

complying with the normal routes between the 〈S,D〉 areas. With bigger areas, the system

gathers more trajectories between two areas and then some anomalies may become normal

and can’t be detected in our system. But still, the detected anomalies are correct as they

are ”few” and ”different” from the normal routes. We evaluate the system coverage with
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respect to different area size (grid edge length) and show the result in Figure 6.12. We can

see with one month taxi data and threshold 50, in working days, the coverage increases to

over 95% when we choose 1km × 1km grids, while in non-working days, it achieves 90%

with 1.5km× 1.5km grids.

6.4 Conclusion

Enriched by the perception and understanding of individual and community behaviors

from the digital footprints, the service scope and functionalities of the smart sensing sys-

tems are greatly expanded. We present an exemplar study with a smart taxi system in this

chapter, which doesn’t merely provide direct dispatch and navigation services for drivers

and passengers, but a complete and considerate taxi service system that allows passenger to

easily and comfortably enjoy taxi services and assist taxi drivers to efficiently serve passen-

gers. Besides, it also adopts the fruits born from the exploration of the digital footprints,

especially the monitoring and understanding of human behaviors, and supports various

types of value-added services to possible clients other than taxi drivers and passengers.

We identify three types of clients who potentially benefit from the services provided by

this smart taxi system. They are the smart taxis, smart passengers and smart monitors.

Specifically, a central server is deployed in the middle of the system, receiving the GPS

reports from taxis and providing services to all the three clients. It provides passenger

finding guidance, taxi dispatch, navigation and smart payment services to smart taxis and

easy-to-use taxi order services to smart passengers. Besides, it provides various services

to other clients like the taxi company, city traffic bureau and even the public, such as

monitoring real time anomalous behaviors and traffic, revealing the hotspots and human

mobility patterns and so on. We present a system architecture of the central server which

consists of four modules an elaborate the design of them separately.

We evaluate the prototype system by “replaying” the collected taxi GPS data with the

right time order. Based on our proposed trajectory anomaly detection method, the system

response time is within 1 minute with even 200,000 taxis, which is less than the sampling

time of a taxi and good enough for real time applications in big cities like Beijing and

Shanghai. Besides, we evaluate the system coverage of the methods that requires a taxi

trajectory dataset with similar source and destination areas to introduce their usage in real

time usage and propose two ways to increase the system coverage.
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7.1 Conclusion

With the prevailing of smart sensing systems in our daily lives, such as the mobile phones

and GPS navigators, we are able to obtain people’s digital footprints left during their usage

of such devices. The large collections of such digital traces provide unprecedented oppor-

tunities for us to study people’s individual behaviors and community behaviors. In this

thesis, we conduct research to study one’s behaviors based on his individual digital foot-

prints, and to understand human behaviors from a community perspective, investigating

their characteristic and uncovering the hidden human intelligence. The studies are based

on the accelerometer digital footprints of mobile phones when they are placed in people’s

daily costume pockets and the GPS traces of a large taxi fleet. The challenges are mainly

from three aspects. Firstly, the coarse quality of the digital footprints normally need data

refinement to satisfy the requirement of the target research. Take the GPS traces of taxis

as an example, there are entries missing or erroneous due to device failure, network failure

or GPS blind spots. Besides, there are no clear indications of the drivers and the taxis may

be in sleep mode as the drivers need to park and sleep. Secondly, there are big gaps to be

bridged between the low level sensing records and the high level representation of human
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behaviors. It’s always difficult to directly tell the behaviors from the sensing signals. For

example, we have to extract features from the accelerometer sensing data to present the

characteristics that potentially can differentiate different physical activities and then use

data mining methods (such as SVM, decision tree and so on) to train a model and assign

labels to new samples with the model. Thirdly, with the models of the individual behaviors,

how to learn the hidden human intelligences, such as evaluating the good and inappropriate

behaviors, is a big challenge.

This thesis studies the individual and community behaviors hidden in the digital foot-

prints of people’s mobile phone and taxi GPS devices. Specially, we seek the opportunities

when people put their mobile phones in the pockets around the pelvic region to recognize

their physical activities. We use the accelerometer sensing of mobile phones in different

pocket locations with natural orientations to collect the digital footprints. We segment the

accelerometer sensing data into half overlapping windows and extract the features includ-

ing the mean, variance, correlation, DFT energy and entropy. Then we build a the feature

matrix and classify the activities with different data mining methods. Noticing that the

acceleration magnitude is independent of the mobile phone gestures, we add it to the sen-

sor readings and successfully increase the recognition accuracy. Also we propose a simple

method to get rid of the sensing attributes with little contribution and obtain a compact

model with little loss of the recognition accuracy. With the digital traces of taxis, we study

the anomalous passenger delivery behaviors, summarizing them into three categories with

their unique characteristics that can be used for the anomaly detection. We introduce the

anomaly detection method iBOAT and present our effort in improving its efficiency. By

adopting an inverted index mechanism, we successfully improve the efficiency of iBOAT

at least 5 times faster. We also detect the work shifting events of taxis and separate the

digital traces for each individual taxi driver. Based on the observation that work shiftings

of a taxi normally happens in a fixed location within a fixed time period of day, and takes

some time to handle over the vehicle, we detect the work shifting events in the following

two steps. Firstly we find the work shifting location candidates by checking which area

the taxi goes to and stays routinely each day. Then we filter out the false candidates by

rules obtained in the observation. With the work shifting events, we successfully obtain

the digital traces for each taxi driver.

With a large collection of digital traces from thousands of taxis, we obtain a huge

amount of anomalous passenger delivery behaviors and conduct thorough analysis to un-

derstand them, extract their common characteristics, uncover their motivations and in-

vestigate their influences. We find that: 1) over 60% of the anomalous trajectories are

“detours” that travel longer distances and time than normal trajectories; 2) the average

trip length of drivers with high-detour tendency is 20% longer than that of normal drivers;
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3) the length of anomalous sub-trajectories is usually less than a third of the entire trip,

and they tend to begin in the first two thirds of the journey; 4) although longer distance

results in a greater taxi fare, a higher tendency to take anomalous detours does not result

in higher monthly revenue; 5) taxis with a higher income usually spend less time finding

new passengers and deliver them in faster speed. We also analyze the work shifting events

from a community perspective and validate that, work shifting locations are normally in

non-hot areas and the afternoon work shiftings normally happen within 16:40∼17:20, which

is why people feel hard to get taxis around that time period.

By modeling and mining the behaviors of different taxi drivers, we intend to understand

the taxi serving strategies and uncover those good and bad ones. While modeling the pas-

senger finding behaviors of a driver, we have to extract the initial decisions they make right

after the drop-off events. This thesis proposes a novel method capturing that inefficient

passenger finding routes normally contain decision making processes in the middle. So we

propose a novel method to extract the longest normal sub-trajectory in a passenger find-

ing trajectory and treat it as the initial decision process. After, we model the passenger

finding and delivery strategies as well as the passenger serving areas of all drivers and form

a matrix which describes their preferences over each of the strategy. We propose methods

to uncover the good and bad strategies by learning from the good drivers, measuring their

correlations with the taxi performance and finding the strategies that differentiates good

and bad taxi drivers.

The individual and community behaviors extracted from the digital footprints enables

novel applications of smart sensing systems. This thesis demonstrates it with a smart taxi

system, which serves as smart agents for both passengers and taxi drivers, and provides

extra services to the public, such as monitoring the traffic and human mobilities, estimating

traveling time and providing anomalous alerts. We present the roles of three system clients,

including the smart taxi, smart passenger and smart monitor and the system architecture

design. The evaluation of the prototype system proves that it supports real time responses.

And also we reveal the system applicability of the anomalous passenger delivery detection

method.

In summary, the contributions of this thesis are:

1. By mining the accelerometer footprints collected when people place their mobile

phone inside the pockets of daily costumes, we successfully recognize seven daily

physical activities. We conduct real life experiments and prove that, we do able to

detect people’s physical activities and by introducing the acceleration magnitude into

the sensor reading, the recognition accuracy could be improved about 8%. The cross

validation results of several data mining methods show that, SVM achieves the best

accuracy. With a simple feature reduction mechanism, we successfully reduce the
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computing cost.

2. We summarize the anomalous passenger delivery behaviors, pinpointing their unique

characters and the suitable methods to detect them. And then we introduce an

inverted index mechanism to replace the trajectory searching in iBOAT with index

comparisons. The results show that, it improves the computing efficiency at least 5

times.

3. We detect the work shifting events based on the digital footprints of taxis for the

first time. By interviewing with several taxi drivers, we find that the two drivers

serving one taxi normally have an agreed work shifting location and time period and

spend some time for the handover of vehicles. So we extract the waiting locations in

the vacant trajectories and map them into grid decomposition. The grids that the

taxi stays nearly everyday in a fixed time slot are counted as the possible candidates.

After we propose rules to filter out the false candidates and obtain the real work

shifting location. And then we detect the work-shifting events and obtain the GPS

traces for individual drivers.

4. We detect huge number of anomalous passenger delivery behaviors from the digital

traces of a taxi fleet and provide thorough analysis of their characteristics and in-

fluences on taxi revenues. We reveal that, these anomalous behaviors normally cost

longer traveling distance and more traveling time, which means that most of them

are detour events. Even though high detour tendency taxis earn more averagely in

single trips, they are not the top revenue taxis. Top revenue taxis are good at efficient

passenger finding and passenger delivering, and don’t rely on the fraud behaviors.

5. We uncover the good and bad taxi serving techniques from the digital footprints of a

community of drivers. We first model the taxi serving behaviors of each driver based

on his digital traces from the perspectives of passenger finding, passenger delivering

and serving areas. Particularly, we study the passenger finding intentions right after

dropping off passenger for the first time and propose a novel method to extract the

intentions from the passenger finding trajectories. The taxi serving behaviors of a

driver are described as a feature vector, which reveal one’s preferences over different

strategies. Then we study the good and bad strategies from the perspectives of learn-

ing from top driver, measuring by the correlation between each strategy preference

and the performance and finding the strategies that differentiate the drivers. We

present the methods and results accordingly.

6. Furthermore, we present a smart taxi system, which explores the individual and

community behaviors mined from the digital traces to support various novel applica-

tions. We present the possible users, system architecture and evaluations in real life
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scenarios.

7.2 Discussions and Future Work

7.2.1 Understanding Individual Behaviors

Recognizing and understanding individual behaviors from the low level sensing data

will greatly increase the intelligence level of our computing systems in the future. With

the understanding of an individual’s behaviors, the system can adapt its own behaviors to

cater for the needs of the user, provide assistance, and prevent wrong behaviors that may

harm people. Such motives already inspired many researchers to devise various ways to

recognize human behaviors with sensors. However, there are still a long way to go due to

the following two challenges.

One is the high cost of obtaining labeling data. Traditional supervised learning methods

based activity recognition require labeled data so that it can learn models to differentiate

the classes. However, practically, obtaining the labeled data is time and effort costly. It

normally relies on manually label work from either the testers or observers to tag the

data (in our case, we design a touch screen interface to help the volunteers to tag the

data. But it still cost them lots of effort.) As pointed out in [99], these methods have

significant deficiencies in cost, accuracy, scope, coverage and obtrusiveness. Extensive

observation causes fatigue in observers and resentment in those being observed. In addition,

the constant human involvement makes the process costly. Self-reporting is often inaccurate

and of limited usefulness due to exhaustive patience and intentional and unintentional

misreporting.

The solutions to this problem may from the following aspects. The first one is to design

user-friendly interfaces to ease the burden of labeling data. For example, to label people’s

physical activities, we designed a touch-screen interface that is easy to use. Imagining that

by adopting voice recognition or some other technologies that are mature enough, we are

expecting new ways to label the data. The second one is to make use of the unlabeled

data to recognize the activities, such as adopting semi-supervised learning methods or even

unsupervised learning methods. Semi-supervised learning is a type of machine learning

techniques that make use of both labeled and unlabeled data for training typically a small

amount of labeled dat with a large mount of unlabeled data [16]. For example, Longstaff

et al. [69] evaluate ways to augment the activity recognition accuracy with unlabeled data

and prove that, when the initial classifier’s accuracy is low, active learning [46], En-Co-

Training [33] and democratic co-learning [131] can improve the recognition performance

greatly. But when the initial accuracy is high, they are useless but also harmless. Wyatt

et al. [111] treat activity data as a stream of natural language terms and build models to
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map these terms to activity names. They prove that, in such a way they can achieve an

accuracy of 42% over 26 activities with unlabeled RFID sensing data.

The other challenge is the extreme diversity of both the contextual conditions and user

characteristics encountered in the real-world. Take the recognition of physical activities

with mobile phones for example. People carry the mobile phones in many different ways,

such as holding in their hands, placing in their pockets and bags, or even in the car or on

a table. This thesis proved that we can recognize people’s physical activities when their

mobile phones are placed in daily costume pockets. But such a model will certainly fail

if testing with mobile phones in their hands, or on a table. Because the movement of the

hands are different with the pelvic regions, not to mention the scenario on a table. This

problem also happens in the taxi GPS traces. For example, the anomalous behaviors may

be caused by intentional detours, or by blocked routes due to reasons like traffic accidents,

or by some other subjective reasons. So it’s hard to exactly tell whether they are conducting

fraudulent behaviors merely based on the GPS traces. The diversity of user characteristics

are also a big problem. Even we fix the location of the mobile phone, the gait of different

people may be quite different. So the model obtained from the labeled data of a few

individuals will probably fail if applied to the others. Meanwhile, the acquisition of large

scale training data for each user is hardly practical in real life. In his Ph.D thesis recently

defensed, Nicholas D. Lane referred to it as the population diversity problem. People can

have different cultures, live in different places, be different in height, weight, sex and which

extent they are physically active. So they may do the same activity in different ways, which

cause great diversity in the modeling of the behaviors. Lane et al. propose to solve these

problems by looking at people from the community perspective instead of individually.

They propose a framework called CoCo which leverages different types of everyday social

connections between people to build personalized classification models [55]. It exploits

social networks to selectively combine small contribution of labeled data from people with

shared context or user characteristics to relieve the population diversity problem.

7.2.2 Mining Community Digital Traces

The large collections of digital footprints are just emerging in our live. We believe that,

in the near future, the large aggregation of digital footprints in people’s mobile phones

(sensing data + people’s interactions with the mobile phones), the radio signals received

in the cell tower, the GPS traces of vehicles and people, the ticketing data in public trans-

portation, the user generated contents (tweets, check in, photos), transportation sensor

network (cameras and loop sensors, parking lots), environmental sensor network (air qual-

ity, temperature, radiation), transaction records of credit cards, shopping records and so on,

will bring increasingly deep understandings of human beings and the society and provide
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smart and considerate services to people, local communities and even the whole society

in various aspects ranging from personal living and working to community management,

criminal investigation, city dynamics and etc. Zhang et al. [124] propose Social and Com-

munity Intelligence which goes beyond a signal smart space to the community level and

identify three main data sources which are multimodal and heterogeneous, including

1. Social network and Internet interaction services, which provide data about individ-

ual’s preferences and social relationships;

2. infrastructure-bound sensor data about environment;

3. mobile and wearable sensor data about the individual and moving objects.

The mining of these sources together supports services from social networks, urban sensing,

environment monitoring, public safety, amongst others.

A recent event in China implies the great potentials of investigating the community

digital footprints in social management and criminal detection. In the strikes recently

happened all over China against Japan’s illegal “purchase” of the Diaoyu Island, which is

part of China’s territory, a few criminals hidden in the strike destroyed many Japanese-

brand vehicles (both public and personal belongings) without fear of law because it’s hard to

identify them from the crowded group and “laws are not laid down to punish the majorities”.

An extreme case was happened in Xi’an, the capital city of Shaanxi province, Jianli Li,

owner of a “Toyota” private car, was severely attacked with his skull broken by one criminal

while protecting his vehicle. Traditionally this case is hard to solve as the criminals are

hard to be isolated from the whole strike group with clear evidence. However, with the

video surveillance recordings on the street, the police obtained a picture of the criminal

when he was destroying a vehicle and knew that he wore a T-shirt with a character “D”

(shown in Figure 7.1(a)). Afterwards published on the news, many citizens reported the

photos of the crime scene they took with their mobile phones, and the police obtained a

number of clear pictures of the criminal (such as the one shown in Figure 7.1(b)), which

provide evidences and greatly help to catch him.

This case shows the great power with the primitive usage of the digital footprints (the

video/camera records in this case) in our daily lives. Even though this case relies much

on people’s participation, we can design sophisticate process to automate and promote

the process with people’s digital footprints. For example, as people normally carry their

mobile phones, with the radio signal traces collected in the nearby cell towers, we are able to

roughly locate those ones around the crime scene and limit the investigation range. With

the bluetooth traces, we are able know who was close to whom during the process and

hopefully we can reduce the investigation range again by finding people around the vehicle

and identifying those around them. And also with the verification of the videos and photos

recorded by the street camera and people’s mobile phones, we hope to identify the criminal
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(a) (b)

Figure 7.1: Photos of the criminal taken by a street video surveillance system (a) and
people’s mobile phones (b).

quickly. By mining from the photos and videos, the sensing traces of the criminal’s mobile

phones, we expect ways to build concrete evidence to prove the crime he committed.

There are several research issues that arise in the above scenarios, which can motive

much research in the future. The first one is how to deal with the large-scale heterogeneous

data sources. Different types of sensors have different attributes, qualities and capabilities.

And they may be produced in different locations by different individuals (cameras in the

street and personal mobile phones), which may cause synchronization problem and bring

trouble to the learning process. Besides, the system often deals with huge amount of data

collected from large number of individuals and suffers the computational difficulties. So

much work are needed on sampling optimization, problem decomposition, model optimiza-

tion within particular problem domains. The second one is the privacy and trust problem,

although it’s not evolved in this thesis. As we are using the data from many individuals, we

have to protect their privacy so that people can trust us and share their digital footprints

which potentially expose their privacy. As in our case, the police can act with juridical

rights given by the law. However, in many cases, we don’t have such rights and have to

carefully protect people’s privacies and build trust among them for the system. There are

two possible solutions currently, data anonymization and user control, which tries to pro-

tect the contents and the access to the contents. The third one is the sensing mechanism.

Should it be participatory sensing or opportunity sensing, or a tradeoff between them?

In participatory sensing, people decide whether they perform the sensing tasks (such as,

whether to take photos of the crime scene and share to the police), while in opportunistic

sensing, the system automatically decides when to use devices to meet the application’s
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sensing requests [54].

My future work will follow the way to exploit the digital footprints produced by the

sensing devices in our life to devise novel services to individual people, local communities

and even our society. The above listed problems are the possible future research topics.
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