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CHAPTER 1

Introduction

The objective of this thesis is to study theq-discrete Painlevé Equa-
tions. Two of the remarkable aspects of the Painlevé equations will be our

main interests, namely the determinant form of their special solutions and

the associated linear problems.Using results from the continuous Painlevé

equations as an analogue, we study theq-discrete Painlevé equations, in

particular their special solutions via their associated linear problems in a

q-discrete setting. We introduce the Painlevé Equations andthe discrete

analogue of the Painlevé equations; give the motivation forthis work and

state the main results. The structure of the thesis is outlined at the end of

this chapter.

1.1. Why the Painlevé equations?

The six Painlevé equations (denoted PI-PVI) were first discovered a lit-

tle over one hundred years ago by Painlevé [61], Gambier [23] and Fuchs

[20] in the quest of finding and classifying all second-order ordinary differ-

ential equations (ODEs) whose solutions can be globally continued in the

complex plane.

Second-order differential equations are particularly relevant in the study

of physics. Classical Special Functions which are defined as the solutions

of second-order differential equations (DEs) appear throughout the history

of physics. From the governing equations of classical mechanics: Newton’s

laws of motion, fluid dynamics, optics; to special relativity, quantum me-

chanics and statistical mechanics. As the models in physicswere getting

more and more sophisticated, the governing equations one had to solve at

the end became more and more complicated. The question became rather:

can these second-order DEs be solved at all, hence the model is considered

any “good”, therefore an Integrable model? Ultimately, we need to be able

1



2 1. INTRODUCTION

to make predictions from the theory to compare with observations from ex-

periments.

Painlevé and the mathematicians of his time looked to classify second-

order ODEs by their singularity structure. An ODE is said to have the

Painlevé property if none of its solutions have any movable singularities

around which the solutions are multi-valued, in which case we say it is in-

tegrable. In finding all second-order ODEs of the type

y′′ = F (t; y, y′), ′ =
d

dt
,

that have this property, fifty canonical types (up to a Möbiustransformation)

of equations were found, six of which had never been seen before. These

six equationsdefinenew special functions, in the same sense that equation1

y′′ = −ty (1.1)

known as the Airy equation, together with an initial condition defines the

Airy function Ai(t).

The solutions of the six Painlevé equations are called thePainlevé tran-
scendents. They have been found to naturally arise in many domains of

physics: statistical mechanics models [54], random matrix theory [19],

quantum gravity [31], quantum field theory [16], non-linear optics [26] and

general relativity [53] to name just a few.

The Painlevé equations are also known to relate to importantpartial dif-

ferential equations (PDEs) [3]. In fact, a primary reason for the intense

interest and activity in the the area over the last 30 years isdue to the fact

that Painlevé equations can be obtained by similarity reduction from impor-

tant, completely integrable PDEs such as the nonlinear Schrödinger equa-

tion [11], Boussinesq equation [12], Kadomstev-Petviashvilli (KP) equa-

tion, sine-Gordon equation [50], Korteweg-de Vries (KdV) equation [10]

and the modified Korteweg-de Vries (mKdV) equation [57]. These inte-

grable PDEs are the governing equations of numerous important physical

systems and can all be solved by the inverse scattering transform (IST).

IST is a technique developed by Gardner et al. [24], Zakharov and Shabat

1While Airy equation does not usually have the minus sign on theright, we chose to

use this convention in our work for convenience.
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[77] and Ablowitz et al. [2] in the 1960s for solving integrable non-linear

PDEs via their associated linear problems. For a recent review on the IST

technique, see [1].

Having the Painlevé property, or equivalently being integrable, means

that the equation possesses many beautiful properties which can be used to

study its solutions. In this work, we concern ourselves withtwo of these

characteristics, namely the special solutions and the associated linear prob-

lems of the Painlevé equations.

1.2. Special solutions of the Painlevé equations

As stated before, the general solutions (i.e. the Painlevé transcendents)

of the Painlevé equations cannot be expressed in terms of anyof the clas-

sical special functions. However, for special values of theparameters, the

Painlevé equations can admit special solutions of rationaland hypergeo-

metric type [6, 60, 30]. In particular, PII-PVI admit hypergeometric type

special solutions of Airy, Bessel, Parabolic cylinder, Whittaker and Gauss

hypergeometric type respectively. The rational type special solutions are

related to the so called "special polynomials", in particular, Yablonskii-

Vorobiev polynomials for PII [75, 76], Okamoto polynomials for PIV [60]

and Umemura polynomials for PIII, PV and PVI [22]. PI does not have any

special solutions as it does not contain any parameters.

More recently, these special polynomials were found to be expressible

as determinants whose matrix entries are classical orthogonal polynomials

such as Laguerre and Hermite polynomials [59, 15, 45, 43, 46].
In this thesis we will use the second Painlevé equation (PII)to illustrate

the various characteristics of the Painlevé equations2. PII has one parameter

in its equation,

f ′′ = 2f 3 + tf − a. (1.2)

Let us denote the solution of equation (1.2) with parametera as

f(t) = fa(t).

2See Appendix A for the list of all the six Painlevé equations.
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Example 1.2.1.The simplest rational type special solution for PII occurs

whena = 0. It is easy to check that

f0(t) = 0. (1.3)

Example 1.2.2.The simplest hypergeometric type special solution occurs

whena = 1
2
. In this case PII reduces to a Riccati equation

f ′
1
2

= −f 2
1
2
− t

2
, (1.4)

which can be linearized using the standard transformationf 1
2

= u′

u
. In this

caseu(t) satisfies the Airy type equation

u′′ = − t

2
u,

hence

f 1
2
(t) =

A(2−
1
3 t)′

A(2−
1
3 t)

, (1.5)

whereA(2−
1
3 t) is a solution of the Airy equation (1.1) with respect to the

variable2−
1
3 t.

1.2.1. Bäcklund transformation , special solution hierarchies and de-
terminantal forms. The Painlevé equations possess what are called the

Bäcklund transformations, which is another one of the nice properties of

the Painlevé equations. The Bäcklund transformation relates a solution of

the Painlevé equation for a particular value of the parameter to another so-

lution for a different value of the parameter.

The Bäcklund transformation for PII (1.2), is

fa+1(t) = −fa −
(a + 1/2)

f ′
a − f 2

a − t/2
. (1.6)

Equation (1.6) relates the solutionfa+1(t) of PII equation for when the pa-

rameter isa + 1, to fa(t) and its derivative. A hierarchy of rational type

special solutionsfk(t), for when the parametera = k, k is an integer, can

be generated from the simplest rational type special solution

f0(t) = 0

by successively applying the Bäcklund transformation (1.6.These special

solutions were first obtained by Airault [6]. Here is a few examples of some
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rational hierarchy of special solutions of PII are:

f0(t) = 0,

f1(t) =
1

t
,

f2(t) =
2(−2 + t3)

t(4 + t3)
,

f3(t) =
3t2(160 + 8t3 + t6)

(4 + t3)(−80 + 20t3 + t6)
.

Notice that the numerator and denominator offk(t) can be factorized in

terms of some special polynomial. These polynomials are called the Yablonskii-

Vorobiev polynomials [75, 76]. However, there is a more concise way of

writing these special polynomials hence expressingfk(t) in the form of

determinants whose entries are well-known orthogonal polynomials. De-

terminantal expressions of the special solutions of the Painlevé equations

were first derived by Flaschka and Newell for the special solutions of PII

equation. In the case of PII, the polynomials are of Laguerretype [18].

Theorem 1.2.3.[18]

PII admits rational type special solutionsfk(t) whena = k, k = 0, 1, 2, ...

fk(t) =
d

dt
ln

τk(t)

τk−1(t)
,

whereτk(t) is a polynomial of degreek(k+1)/2 in t and can be represented

as the determinant of ak × k matrix

τk(t) =

∣∣∣∣∣∣∣∣∣∣

Tk Tk+1 . . . T2k−1

Tk−2 Tk−1 . . . T2k−3

...
...

. ..
...

T−k+2 T−k+3 . . . T1

∣∣∣∣∣∣∣∣∣∣

.

HereTk(t) denotes the Laguerre type polynomial of degreek in t, with the

generating function

∞∑

k=0

Tk(t)x
k = exp

(
i
4

3
x3 + itx

)
, (1.7)
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and recurrence type relations

kTk = 4iTk−3 + itTk−1,

dTk

dt
= iTk−1,

andTk = 0, k < 0. A few examples ofTk,

T0 = 1 , T1 = it , T2 = −t2

2
, T3 =

4i

3
− it3

6
.

Similarly, a hierarchy of hypergeometric type solutions for whena is a

half integer,a = 2k+1
2

, k = 0, 1, 2, ..., can be generated from the simplest

hypergeometric type special solution for whenk = 0

f 1
2
(t) =

A(2−
1
3 t)′

A(2−
1
3 t)

by successively applying the Bäcklund transformation . The hypergeomet-

ric type solutionsfk+ 1
2
(t) can also be expressed in the determinantal form.

Theorem 1.2.4.[18]

PII admits hypergeometric type solutionsfk+ 1
2
(t) for a = 2k+1

2
, k = 0, 1, 2, ...

with

fk+ 1
2
(t) =

d

dt
ln

τk(t)

τk−1(t)
,

whereτk(t) is expressed as the determinant of a matrix of Airy type function

and derivatives of Airy type functionA(2−
1
3 t),

τk(t) =

∣∣∣∣∣∣∣∣∣∣

A d
dt

A . . . dk−1

dtk−1 A
d
dt

A d2

dt2
A . . . dk

dtk
A

...
...

. ..
...

dk−1

dtk−1 A
dk

dtk
A . . . d2k−2

dt2k−2 A

∣∣∣∣∣∣∣∣∣∣

,

where
d2A(2−

1
3 t)

dt2
= − t

2
A(2−

1
3 t).

Determinantal expressions for the special solutions of thePainlevé equa-

tions have since been derived from different perspectives (algebraical or ge-

ometrical) by Okamoto and Kajiwara et al. see [60] and [45, 43, 46] for

example.
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1.3. The2 × 2 associated linear problems of the Painlevé equations

Associated linear problems (also known as theLax pair or the iso-
monodromy deformation problem) of the Painlevé equations can be ob-

tained in two ways. The first is by deformation of a2× 2 linear differential

system also is referred to as the spectral problem that preserves the mon-

odromy data of the original linear system, termed the iso-monodromy de-

formation. Fuchs [21], Jimbo and Miwa [36] have found that the Painlevé

equations arise as the compatibility condition of the spectral linear system

and the deformation equation when the deformation is monodromy preserv-

ing.

As we have stated earlier that the Painlevé equations are related to some

completely integrable PDEs by similarity reduction. ThesePDEs each

come with a Lax pair which is seen as an indication of their integrability.

Another way to obtain a Lax pair for the Painlevé equation is by perform-

ing similarity reduction on the Lax pair of the Integrable PDE, to which the

Painlevé equation in question is related. For example, Ablowitz and Segur

[4] have found that PII can be obtained from the mKdV equation bysimilar-

ity reduction. The Lax pair for PII was then derived by similarity reduction

of the Lax pair of mKdV equation. The special case of PIII and its Lax pair

studied in [18] was derived by Newell [56] from similarity reduction of a

integrable PDE and its Lax pair.

In their 1980 paper [18], Flaschka and Newell have developed an analyt-

ical technique for studying the Painlevé equations via their associated linear

problems. The technique is based on the2 × 2 associated linear systems of

PII and a special case of PIII.

Flaschka and Newell’s approach led to many classes of special solutions

of PII and PIII, some of which were previously known, found byinvestigat-

ing the non-linear equations themselves rather than the associated linear

problems. What is appealing about their technique is that by exploring the

connection between the Painlevé equation and its associated linear prob-

lems, the determinantal structure of the hierarchies of special solutions of

the Painlevé equation emerge naturally out of this approach. This is true

for both rational and hypergeometric type special solutions. Studying the

Painlevé equations via their associated linear problems approach was also
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employed by Dubrovin and Mazzoco [17], who have studied the special

solutions of PVI via its associated linear problems from a geometrical per-

spective.

1.4. Discrete Painlevé equations

Due to recent interests in discrete problems in mathematicsand physics,

discrete or difference equations have taken a prominent place in the math-

ematical physics community. Although the general analytical theory for

discrete equations has been stated long ago along with that for differential

equations by the Birkhoff school [14, 9], the development of discrete equa-

tions has lagged behind that of differential equations. With the progress in

discrete analogues of the classical special functions suchas discrete orthog-

onal polynomials [51], and discrete/basic hypergeometric type functions

[25], it was clear that the discrete Painlevé equations should follow. In fact,

the first appearance of the discrete Painlevé equations arose as a discrete

analogue of PI (d-PI) from the study of orthogonal polynomials [70]. More

recently, examples of the discrete analogues of the Painlevé equations have

been found in the context of physics. Another discrete analogue of PI3 was

discovered in the study of the partition function in a 2D model of quantum

gravity [13, 35]. Soon after, a discrete analogue of PII (d-PII) was derived

both in a physics context [62], and from a similarity reduction of discrete

analogue of the mKdV equation [58].

Discrete analogues of PIII-PV were found using the singularity confine-

ment technique [64]. The form of the discrete analogue of PVI remained

elusive until Jimbo and Sakai (1996) [37] derived theq-discrete analogue

of PVI (q-PVI) by formulating the iso-monodromy deformation problem in

a q-discrete setting. Since then, a variety of different formsof the discrete

analogues of the Painlevé equations have been derived, and their proper-

ties have been studied via different perspectives [29]. In 2001, Sakai [68]

classified all possible types of the discrete Painlevé equations by means of

geometry of rational surfaces.

3Discrete equations are named according to what differential equations they become in

the continuum limit, however many distinct discrete equations can have the same differen-

tial equation in the continuum limit, hence are referred to by the same name unfortunately.
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1.5. Special solutions of the discrete Painlevé equations

Although more fundamental than the differential equations, the discrete

Painlevé equations are found to possess many of the beautiful properties

of their differential counterparts, such as admitting special solutions of ra-

tional and hypergeometric type. Like the Painlevé equations, apart from

discrete analogue of PI (d-PI), discrete PII-PVI admit basic hypergeometric

type special solutions which are the discrete analogues of Airy [63], Bessel

[27], parabolic cylinder [71], confluent hypergeometric [72], and the Gauss

hypergeometric functions [37], respectively. We demonstrate this by using

a q-discrete analogue of PII (q-PII)

g(x/λ)g(λx) =
αx2(g(x) + x2)

g(x)(g(x) − 1)
(1.8)

as an example. This equation has one parameterα. Let α = 1
λ4k and denote

the solution of equation (1.8) asgk(x).

Example 1.5.1.Equation (1.8) admits the simplest rational type special

solution fork = 0, α = 1

g0(x) = −ix. (1.9)

Example 1.5.2.Equation (1.8) reduces to aq-discrete analogue of the Ric-

cati equation (q-Riccati) fork = 1
2
, α = 1

λ2 ,

g 1
2
(λx) =

x2 + g 1
2
(x)

g 1
2
(x)

. (1.10)

q-Riccati equation (1.10) can be linearized by letting

g 1
2
(x) = −i

x

λ

ai(x/λ)

ai(x/λ2)
(1.11)

, and we find

ai(x/λ2) − i

λx
ai(x/λ) +

ai(x)

λ
= 0, (1.12)

which we define to be aq-discrete analogue of the Airy equation (q-Airy).

Equations (1.8), (1.10) and (1.12) are calledq-PII, q-Riccati andq-Airy

equations because in the continuum limit1
λ
→ 1, they tends to these equa-

tions respectively. See Appendix C on the continuum limits of equations

(1.8), (1.10) and (1.12).
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1.5.1. Bäcklund transformation and the hierarchies of special solutions
of the discrete Painlevé equations.A simple and systematic procedure

for deriving the Bäcklund transformation of the discrete Painlevé equations

was developed by Joshi et al. [39]. A hierarchy of special solutions can

be calculated by repeatedly applying the Bäcklund transformation on the

simplest solution. The Bäcklund transformation ofq-PII equation (1.8) [39]

is given by

gk+1(x) =
(αx2 − gk(x/λ)gk(x)λ2 + αgk(x)) x2

λ2gk(x) (gk(x)(gk(x/λ) − 1) − x2)
. (1.13)

Equation (1.13) relates solution of equation (1.8) atα = 1
λ4(k+1) to that at

α = 1
λ4k . When we apply the Bäcklund transformation (1.13) on the rational

solution (1.9) we obtain a hierarchy of rational type special solutions ofq-

PII for α = 1
λ4k , k is an integer. If we apply the Bäcklund transformation

(1.13) on theq-Airy type special solution (1.11) we obtain a hierarchy of

q-hypergeometric type special solutions ofq-PII for α = 1
λ4k , k an half

integer.

Example 1.5.3.Let us look at few examples of some rational special solu-

tions. Fork = 0, 1, 2, 3 respectively we have:

g0(x) = −ix,

g1(x) = −i
x (−i + x(1 + λ))

λ2
(
−i + x

λ
(1 + λ)

) = −i
xP1(n)

λ2P1(n + 1)
, (1.14)

g2(x) = −i
x

λ4

P3(n)P1(n + 1)

P1(n)P3(n + 1)
, (1.15)

g3(x) = −i
x

λ6

P6(n)P3(n + 1)

P3(n)P6(n + 1)
, (1.16)

wherex = 1
λn ,

P1(n) := −i + x(1 + λ), (1.17)

P3(n) := ix3λ3(1 + λ)3(1 − λ + λ2)

+x2λ2(1 + λ)2(1 − λ + λ2)(1 + λ + λ2) (1.18)

−ixλ2(1 + λ)(1 − λ + λ2)(1 + λ + λ2) − λ4,
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P6(n) :

= −x6λ7(1 + λ)6(1 − λ + λ2)2(1 − λ + λ2 − λ3 + λ4)

+ix5λ5(1 + λ)5(1 + λ2)(1 − λ + λ2)2(1 + λ + λ2)

×(1 − λ + λ2 − λ3 + λ4)

+x4λ4(1 + λ)4(1 − λ + λ2)2(1 + λ + λ2)(1 + λ + λ2 + λ3 + λ4)

×(1 − λ + λ2 − λ3 + λ4) (1.19)

−ix3λ4(1 + λ)5(1 − λ + λ2)2(1 + λ + λ2 + λ3 + λ4)

×(1 − λ + λ2 − λ3 + λ4)

−x2λ5(1 + λ)2(1 − λ + λ2)(1 + λ + λ2)(1 + λ + λ2 + λ3 + λ4)

×(1 − λ + λ2 − λ3 + λ4)

+ixλ7(1 + λ)(1 − λ + λ2)(1 + λ + λ2)(1 + λ4) + λ11.

In calculating above rational type solutions we have noticed that as in

the case of rational special solutions of PII earlier (section 1.2.1) the numer-

ator and the denominator ofgk(x) factorize into products of some “special

polynomial” in x (1, P1(n), P3(n), P6(n) for example) just as in the con-

tinuous case. However, it does not reveal the determinant structure of these

polynomials and hence the rational type special solutions of q-PII.

1.5.2. Determinant form of special solutions of discrete PII. Using Hi-

rota’s bilinear formalism, Kajiwara et. al. showed that thehierarchies of

special solutions of both rational and hypergeometric typefor some discrete

analogues of PII-PV [48, 49, 47, 42, 44, 34, 32, 40, 41] can be put into the

determinantal form. The determinantal form of theq-hypergeometric type

special solutions ofq-PVI was found by Sakai [67]. More recently Tsuda

and Masuda [74] have obtained the determinantal form of algebraic special

solutions ofq-PVI, again via geometrical means. The determinantal struc-

tures of the two types of special solutions ofq-PII (1.8) example considered

before have not been found, which will be the principal concern of this the-

sis. Here we present some known results on the determinantalforms of

some special solutions of another discrete analogue of PII.It is known that

the special solutions of discrete analogues of the Painlevéequations tend to

the special solutions of the Painlevé equations in the continuum limit (one
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of the many evidences of parallel behaviors of the discrete and differential

integrable systems), we can compare these discrete resultswith the formu-

lae from our examples of PII in section 1.2.1. These results will also give

us an idea of what the determinantal solutions of ourq-PII (1.8) might look

like.

Theorem 1.5.4.[49] Equation

wn+1 + wn−1 =
2

x

(n + 1)wn − (N + 1)

1 − w2
n

, (1.20)

wherex and N are parameters, is a discrete analogue of PII. Equation

(1.20) admits a hierarchy of rational type special solutions indexed byN =

0, 1, 2, ..., expressible in terms of determinants involving the discrete ana-

logue of the Laguerre polynomials given by

wn =
τn+1
N+1τ

n
N

τn
N+1τ

n+1
N

− 1 (1.21)

whereτn
N is a determinant of sizeN × N matrix:

τn
N =

∣∣∣∣∣∣∣∣∣∣

Ln
N Ln

N+1 . . . Ln
2N−1

Ln
N−2 Ln

N−1 . . . Ln
2N−3

...
...

. . .
...

Ln
−N+2 Ln

−N+3 . . . Ln
1

∣∣∣∣∣∣∣∣∣∣

,

andLn
k(ξ) is a discrete analogue of the Laguerre polynomial ofkth degree

in n, defined by

∞∑

k=0

Ln
k(ξ) λk = (1 − λ2)−

ξ
2 (1 − λ)−n−ξ exp

(
− ξλ

1 − λ

)
, (1.22)

Ln
k(ξ) = 0, (k < 0).

Solutions (1.21) correspond to the hierarchy of the rational special so-

lutions of PII in Theorem 1.2.3 in the continuum limit. Equation (1.22) is

equation (1.7) whenξ = − 1
2ǫ3

, n = t
ǫ
, λ = ǫx, asǫ → 0.

Theorem 1.5.5.[48] Equation

wn+1 + wn−1 =
(αn + β)wn + γ

1 − w2
n

(1.23)
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is the PII equation (1.2) witha = −(2N + 1), if α = 2p, β = (2N −
1)p + 2q, γ = −(2N + 1)p, p = −ǫ3, q = 1, wn = ǫf , andn = − t

2ǫ
, in

the limit ǫ → 0. Equation (1.23) admits a hierarchy of special solutions of

d-hypergeometric type. The hierarchy is indexed byN = 0, 1, 2, ...,

wn =
τn+1
N+1τ

n
N

τn
N+1τ

n+1
N

− 1, (1.24)

whereτn
N is a determinant of a sizeN × N matrix,

τn
N =

∣∣∣∣∣∣∣∣∣∣

An An+2 . . . An+2N−2

An+1 An+3 . . . An+2N−1

...
...

. ..
...

An+N−1 An+N+1 . . . An+3N−3

∣∣∣∣∣∣∣∣∣∣

,

whereAn satisfies a discrete analogue of Airy (d-Airy) equation

An+2 = 2An+1 − (pn + q)An. (1.25)

Solutions (1.24) are theq-discrete analogue of the hierarchy of hyperge-

ometric type special solutions of PII in Theorem 1.2.4. The simplest special

solution of this type is whenN = 0, τn
0 = An,

wn =
An+1

An

− 1,

using the determinantal formula.

This can be checked that this is the solution by looking at d-PII equation

(1.23) itself. WhenN = 0, α = 2p, γ = −p, γ = −α
2

and d-PII (1.23)

reduces to the discrete analogue of the Riccati equation

wn+1 =
wn − (pn + q − 1)

1 + wn

,

which can be linearized using

wn =
Gn+1

Gn

− 1,

whereGn satisfies

Gn+2 = 2Gn+1 − (pn + q)Gn,

which is d-Airy equation (1.25).

Results such as theorems 1.5.4, 1.5.5 and the preceding worksof Kaji-

wara et al. on the determinantal forms of some special solutions of discrete
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analogues of the other Painlevé equations [47, 42, 44, 34, 32, 67, 40, 41]

let us to believe that the determinantal forms of the rational and theq-

hypergeometric type special solutions ofq-PII equation (1.8) exist.

On the other hand, we know that there is this other approach ofFlaschka

and Newell [18] from which the determinantal forms of some special solu-

tions of the Painlevé equations can be obtained via the studyof the associ-

ated linear problems.

1.6. The2 × 2 associated linear problems of the discrete Painlevé
equations

As in the continuous case, the2 × 2 associated linear problems of dis-

crete Painlevé equations can be found in two ways. One by iso-monodromy

deformation of a2 × 2 discrete linear system. The Lax pair forq-PVI was

derived in this way by Jimbo and Sakai [37]. Murata [55] has found the

Lax pairs forq-PV-q-PI by a coalescence procedure on Sakai’s Lax pair for

q-PVI. The other way to obtain Lax pairs for discrete Painlevéequations is

by similarity reduction of the Lax pairs of the integrable lattice equations

(discrete analogues of the integrable PDEs) to which the discrete Painlevé

equations are related. A2 × 2 Lax pair for theq-PII equation (1.8) was

found by Hay et al. [33] by performing similarity reduction on the Lax pair

of aq-discrete analogue of the mKdV (q-mKdV) equation. A2×2 Lax pair

of a special case ofq-PIII was derived by Nijhoff and reported in [38] from

similarity reduction of the Lax pair of an integrable lattice equation.

Our aim is to follow Flaschka and Newell’s work in theq-discrete set-

ting and develop the technique for studyingq-Painlevé equations via their

associated linear problems. To the author’s knowledge, this has not been

done before. Our study is based on the2 × 2 Lax pair for q-PII equation

(1.8) [33].

There are of course Lax pairs for discrete Painlevé equations of size

other than2 × 2, for example there is a4 × 4 Lax pair [28] for a discrete

analogue of PIII (d-PIII). For simplicity we will only deal with 2 × 2 Lax

pairs in this thesis. There are also of course discrete Painlevé equations with

2 × 2 Lax pairs other thanq-PII equation (1.8). We chose to investigate

this particular analogue of PII equation because like the Lax pair used by

Flaschka and Newell in [18] which was obtained by similarity reduction of
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the Lax pair of mKdV equation, the Lax pair of equation (1.8) was obtained

by similarity reduction of the Lax pair of aq-mKdV equation.

1.6.1. The Main Results.By following a close analogy with Flaschka and

Newell’s work on the associated linear problems of PII, we have found the

determinantal forms of two types of hierarchies of special solutions ofq-

PII equation (1.8). These results are consistent with the special solutions

of equation (1.8) calculated using the Bäcklund transformation in section

1.5.1.

Theorem 1.6.1.q-PII equation (1.8) with parameterα = 1
λ4k wherek are

integers admits a hierarchy of rational type special solutionsgk(x), given

by

gk(x) = − ix

λ2k

τk(x/λ)τk−1(x/λ2)

τk(x/λ2)τk−1(x/λ)

τk(x) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Tk Tk+1 · · · T2k−2 T2k−1

Tk−2 Tk−1 · · · T2k−4 T2k−3

...
...

. . .
...

...

T2 T3 · · · Tk Tk+1

. ..
...

...

· · · T2 T3

0 · · · · · · T0 T1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Tk(x) is theq discrete polynomial of degreek in x where

Tj(
1

λ2j
− 1)=−i(−i + λx + λ2x)

λ
Tj−1 −

x(−i − iλ + xλ2)

λ
Tj−2 + x2Tj−3

Tj−1(x) =
1

ixλ
(Tj(x/λ) − Tj(x))

andT0(x) = 1, Tk = 0, k < 0. Tj(x) has the generating functionu(ν, x),

u(ν, x) =
1

(ν/λ; λ−2)∞(ixν; λ−2)∞(ixλν; λ−2)∞
=

∞∑

j=0

Tj(x)νj.

Theorem 1.6.2. q-PII equation (1.8) with parameterα = 1
λ4k , wherek

are half integers, that isk = n + 1
2
, n = 0, 1, 2, ... admits a hierarchy of
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hypergeometric type special solutionsgn+ 1
2
(x), given by

gn+ 1
2
(x)





= − ix

λ2n+1

τn+1(x/λ)τn(x/λ2)
τn+1(x/λ2)τn(x/λ)

for n even,

= − ix
λ2n+2

τn+1(x/λ)τn(x/λ2)
τn+1(x/λ2)τn(x/λ)

for n odd,

whereτn(x) is the determinant of an × n matrix

τn(x) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a
( 1
2 )

n

λn
a
( 1
2 )

n

λn · · · a
( 1
2 )

2n−2

λ2n−2

a
( 1
2 )

2n−2

λ2n−2

a
( 1
2 )

n−2

λn−2

a
( 1
2 )

n−2

λn−2 · · · a
( 1
2 )

2n−4

λ2n−4

a
( 1
2 )

2n−4

λ2n−4

...
. ..

...

0 · · · a
( 1
2
)

0 a
( 1
2
)

0
a
( 1
2 )

2

λ2

a
( 1
2 )

2

λ2

0 0 · · · 0 a
( 1
2
)

0 a
( 1
2
)

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

for n even,

τn(x) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a
( 1
2 )

n−1

λn−1

a
( 1
2 )

n+1

λn+1

a
( 1
2 )

n+1

λn+1 · · · a
( 1
2 )

2n−2

λ2n−2

a
( 1
2 )

2n−2

λ2n−2

a
( 1
2 )

n−3

λn−3

a
( 1
2 )

n−1

λn−1

a
( 1
2 )

n−1

λn−1 · · · a
( 1
2 )

2n−4

λ2n−4

a
( 1
2 )

2n−4

λ2n−4

...
. ..

...

0 · · · 0 a
( 1
2
)

0 a
( 1
2
)

0
a
( 1
2 )

2

λ2

a
( 1
2 )

2

λ2

0 0 0 · · · a
( 1
2
)

0 a
( 1
2
)

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

for n odd,

where

a
( 1
2
)

2j = ixλ2a
( 1
2
)

2j − i

xλ2
(

1

λ4j+4
− 1)a

( 1
2
)

2j+2,

a
( 1
2
)

2j = −1

λ
a

( 1
2
)

2j − x2λ3a
( 1
2
)

2j−2 +
i

xλ
a

( 1
2
)

2j .

In particulara
( 1
2
)

0 satisfies theq-Airy equation (1.12)

a
( 1
2
)

0 − i

xλ
a

( 1
2
)

0 +
a

( 1
2
)

0

λ
= 0.
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1.7. Outline of the thesis

The rest of thesis is organized as follows: inchapter 2, we focus on the

continuous Painlevé equations using PII as an example. Two important as-

pects of the Painlevé equations are discussed in detail: thespecial solutions

and the associated linear problems. We describe in detail the method of

Flaschka and Newell [18] of how special solutions of the non-linear prob-

lem, that is the Painlevé equations, can be obtained throughthe analysis of

their associated linear problems.

To study the associated linear problems ofq-Painlevé equations, one

need the theory of linear analysis in theq-discrete setting. Inchapter 3 we

review the theorems of the Birkhoff school [14, 9, 52] on the analysis of

q-linear systems, and the application on two examples. Inchapter 4, we

apply the theorems to the2 × 2 Lax pair [33] of q-PII equation (1.8). We

show that one can find:

• the special values of the parameters for whichq-PII admits special

solutions,

• the simplest special solutions ofq-PII for both q-rational andq-

hypergeometric type,

• the solutions of the linear problems corresponding to the two sim-

plest cases whereq-PII admit special solutions,

• the Bäcklund transformation of the solution of theq-PII equation,

• the Schlesinger transformation of the solutions of the linear systems

of q-PII.

Finally we deduce the determinantal forms of the hierarchies of special so-

lutions of both rational and hypergeometric type. Inchapter 5 we present

a summary and conclusions of this work.

We have included several appendices in this thesis. Appendix A has the

list of the six Painlevé equations. Appendix B gives a summary and all the

formulae of hypergeometric andq-hypergeometric type functions we have

used. In appendix C, we show how to take the continuum limit ofq-discrete

equations.



CHAPTER 2

The second Painlevé equation

This Chapter is a review on Flaschka and Newell’s work in [18]. First,

we show that PII comes as the compatibility equation of a pairof linear

differential systems of equations, that is the Lax pair of PII. The Spectral
half of the Lax pair is studied analytically around its two singularities, a

regular singularity atx = 0, and an irregular singularity of rank 3 atx = ∞.

Formal solutions in the form of series expansions around thesingularities

are then established. We studythe simplest twoof the special cases when

the linear systems can be solved exactly, namely fora = 0 and 1
2
. These

two cases correspond in turn to PII admitting some simple special solutions

of rational and hypergeometric type, respectively. Furthermore, we show

that the solutions of the linear system for all of the specialvalues of the

parameter of PII (that isa are integers, or half integers) can be built on the

first two exact solutions. Determinantal forms of the hierarchies of some

special solutions of PII for both the rational type and the hypergeometric

type can then be obtained using this fact.

We have made the derivation of some expressions more explicit and pro-

vided the complete derivation of the determinantal forms ofthe solutions;

the latter were not included in Flaschka and Newell’s paper [18]. In partic-

ular, we have found the Schlesinger transformation of the associated linear

problem of PII

Φ
(a+1)
1 (x, t) = La(x, t)Φ

(a)
1 (x, t),

which is used to obtain the closed form of theΦ
(a+1)
1 (x, t) in terms of the

two simplest exact solutions of the linear problem:Φ
(0)
1 (x, t) andΦ

( 1
2
)

1 (x, t),

which proves the form of the solutionΦ(a+1)
1 (x, t) (proposition 2.5.4 in this

thesis; equation (3.53) in [18]) used by Flaschka and Newell to obtain the

determinantal form of the hypergeometric type special solutions for whena

are half integers. We have also showed in proposition 2.5.5 that the deter-

minantal form that results from Flaschka and Newell’s approach is the same

18
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as the determinantal form, equation (3) in Kajiwara’s paper, derived using

the bilinear forms of PII.

2.1. The iso-monodromy deformation problem of PII

The iso-monodromy deformation problem :
When analyzing a linear differential equation we look its singularity struc-

ture. For example, where are the singularities and of which kind they are.

Formal solutions of certain forms can be constructed aroundthe singulari-

ties according to their types. Deformation of the linear system with respect

to a parameter (a constant) of the linear system is monodromypreserving

if:

a) the Stokes multipliers associated with formal solutionsabout an ir-

regular singular point,

b) the monodromy matrix about a regular singular point, and

c) the matrix connecting the formal solutions around different singu-

larities

remain unchanged.

The iso-monodromy deformation problem of PII, consists ofthe spectral
problem

Ψx = M(x, t)Ψ (2.1)

=

{ (
0 a

a 0

)
1

x
+

(
−(2f(t)2 + t) 2if ′(t)

−2if ′(t) (2f(t)2 + t)

)
+

(
0 4f(t)

4f(t) 0

)
x

+

(
−i4 0

0 i4

)
x2

}
Ψ, x =

d

dx
,

andthe deformation problem

Ψt = N(x, t)Ψ =

(
−ix f(t)

f(t) ix

)
Ψ, t =

d

dt
, (2.2)

which describes the deformation ofΨ(x, t) in t.

From the form of (2.1) we see that the spectral problem (2.1) has two singu-

lar points,x = ∞ (irregular of rank three) andx = 0 (regular). Monodromy

data are calculated around these two points. The deformation, or differen-

tiation equation (2.2) with respect tot, preserves the monodromy found in
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equation (2.1) [18]. The compatibility of the two linear systems

Ψtx = Ψxt ⇒ Mt − Nx = NM − MN

forcesf(t) to satisfy a second-order non-linear ODE. In this case

f ′′(t) = 2f(t)3 + tf(t) − a ′ =
d

dt
, (2.3)

which is the second Painlevé equation (PII). Hencet, the deformation pa-

rameter is referred to as the Painlevé variable,x as the spectral variable. The

pair of linear systems (2.1, 2.2) is also called the Lax pair or the associated

linear problems of PII.

We will concentrate our linear analysis on equation (2.1), the spectral half

of the Lax pair . This is because the coefficient matrixM(x, t) of the spec-

tral problem (2.1) has polynomial dependence on the spectral variablex

whereas the deformation equation depends transcendentally on its variable

t (via f(t) the solution of PII). Therefore, to analyzeΨ(x, t) in the t plane

we would have to know howf(t) behaves which is precisely what we are

trying to find out in the first place!

2.2. Linear analysis of the spectral problem

Solutions of an × n linear differential system of equations have pre-

scribed form of expansions around the singularities. Near aregular singular

pointx = 0, the solutions are given by

xρi

∞∑

j=0

aijx
j (2.4)

whereρi (i = 1, ..., n) are the eigenvalues of the coefficient matrix atx = 0.

For an irregular singular point at infinity, the solutions have the form

e
Pn

k=1 ωkxk

xl

∞∑

j=0

αij
1

xj
(2.5)

wheren is the rank of the irregularity atx = ∞, ωk, l are constants.

2.2.1. Asymptotic expansions atx = 0. Let the2 × 2 fundamental solu-

tion matrix of the Lax pair (2.1, 2.2) atx = 0 beΦ(x, t) = {φ1, φ2}.
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Proposition 2.2.1.The two linearly independent vector solutions have Frobe-

nius series expansions atx = 0 of the form

φ1(x, t) = xa

(
1 1

1 −1

) ∞∑

j=0

(
a2jx

2j

c2j+1x
2j+1

)
(2.6)

∼ ef(t)xa

(
1 1

1 −1

) {(
1

0

)
+

i(2f ′ − 2f 2 − t)

(1 + 2a)

(
0

1

)
x + ...

}
,

φ2(x, t) = x−a

(
1 1

1 −1

) ∞∑

j=0

(
b2j+1x

2j+1

d2jx
2j

)
(2.7)

∼ e−f(t)x−a

(
1 1

1 −1

) {(
0

1

)
+

i(2f ′ + 2f 2 + t)

(1 − 2a)

(
1

0

)
x + ...

}
,

where the expansion coefficients satisfy the recurrence relations

jaj =−i(2f(t)2 + t + 2f ′(t))cj−1 + 4f(t)aj−2 − 4icj−3 (2.8)

(j + 2a)cj = i(2f ′(t) − 2f(t)2 − t)aj−1 − 4f(t)cj−2 − 4iaj−3 (2.9)

(j − 2a)bj =−i(2f ′(t) + 2f(t)2 + t)dj−1 + 4f(t)bj−2 − 4idj−3 (2.10)

jdj = i(2f(t)2 − t − 2f ′(t))bj−1 − 4f(t)dj−2 − 4ibj−3. (2.11)

and

aodd = dodd = 0 and ceven = beven = 0. (2.12)

In particular
a′

0(t)

a0(t)
= f(t). (2.13)

Proof. Linear problem (2.1) has a regular singularity atx = 0, hence the

solutions take the form of expansion (2.4). First we findρ1 and ρ2, the

two eigenvalues of the coefficient matrixM(x, t) of equation (2.1) near

x = 0. SinceM(x, t) is off-diagonal atx = 0, we diagonalizeM(x, t) by

conjugation with

(
1 1

1 −1

)
. Let

Φ =

(
1 1

1 −1

)
Φ1, (2.14)
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then the Lax pair becomes

Φ1x =
{(

a 0

0 −a

)
1

x
+

(
0 −i(2f(t)2 + t + 2f ′(t))

i(2f ′(t) − 2f(t)2 − t) 0

)

+

(
4f(t) 0

0 −4f(t)

)
x +

(
0 −i4

−i4 0

)
x2

}
Φ1 (2.15)

Φ1t =

(
f(t) −ix

−ix −f(t)

)
Φ1. (2.16)

We foundρ1,2 = a,−a. Therefore the solution matrixΦ1 = {φ11, φ12} has

the Frobenius series expansion of the form

Φ1(x, t) =
∞∑

j=0

(
a2jx

2j b2j+1x
2j+1

c2j+1x
2j+1 d2jx

2j

) (
xa 0

0 x−a

)
(2.17)

The two vector solutions of the spectral equation (2.15) have the leading

behaviourxa andx−a, respectively. Note thata is also the parameter of

PII equation (2.3). The coefficientsaj, bj, cj, dj are in general functions of

the Painlevé variablet and satisfy recurrence relations which are found by

substituting solution (2.17) into the spectral equation (2.15) and equating

powers ofx aroundx = 0, we have

jaj =−i(2f(t)2 + t + 2f ′(t))cj−1 + 4f(t)aj−2 − 4icj−3

(j + 2a)cj = i(2f ′(t) − 2f(t)2 − t)aj−1 − 4f(t)cj−2 − 4iaj−3

(j − 2a)bj =−i(2f ′(t) + 2f(t)2 + t)dj−1 + 4f(t)bj−2 − 4idj−3

jdj =+i(2f(t)2 − t − 2f ′(t))bj−1 − 4f(t)dj−2 − 4ibj−3,

Fora 6= 0, the recurrence relations atj = 0 are

0 × a0 = 0

2a × c0 = 0

−2a × b0 = 0

0 × d0 = 0.

That isb0 = c0 = 0, while a0 andd0 are arbitrary constants (constant with

respect tox, and in general are functions oft). Furthermore,

aodd = dodd = 0 and ceven = beven = 0,
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that is

φ11(x, t)∼a0x
a

{(
1

0

)
+ c1/a0

(
0

1

)
x + a2/a0

(
1

0

)
x2 + ...

}
, (2.18)

φ12(x, t)∼d0x
−a

{(
0

1

)
+ b1/d0

(
1

0

)
x + d2/d0

(
0

1

)
x2 + ...

}
. (2.19)

The coefficientsc1/a0 andb1/d0 can be calculated from the recurrence re-

lations (2.9) and (2.10) respectively forj = 1,

c1

a0

=
i(2f ′ − 2f 2 − t)

(1 + 2a)
,

b1

d0

=
i(2f ′ + 2f 2 + t)

(1 − 2a)
.

The rest of the coefficients of the Frobenius expansion (2.17) can be cal-

culated in a similar manner. As stated earlier the coefficients aj, bj, cj, dj

in general are functions oft. To find how they depend ont we need to

make use of the other half of the Lax pair,deformation equation (2.16).

We substitute solution (2.17) into equation (2.16) and equating the leading

behaviour atx = 0, to leading order yields

a′
0

a0

=
d

dt
ln a0(t) = f(t) ⇒ a0(t) = ef(t), (2.20)

d′
0

d0

=
d

dt
ln d0(t) = −f(t) ⇒ d0(t) = e−f(t). (2.21)

Equations (2.20, 2.21) relatef(t) (the solution of PII) to the leading be-

havioursa0(t) andd0(t) of the solutions of the corresponding associated

linear problems. This fact will be used to obtain the determinantal forms of

the hierarchies of special solutions of PII in the later section. ¤

2.2.2. Expansions atx = ∞.

Proposition 2.2.2. Let Ψ(x, t) = {ψ1, ψ2} be the fundamental solution

matrix of the Lax pair (2.1, 2.2) atx = ∞. The two vector solutions at
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x = ∞ are of the form:

ψ1(x, t)=e−i( 4
3
x3+tx)

∞∑

k=0

(
αk(t)

γk(t)

)
1

xk
, (2.22)

ψ2(x, t)=ei( 4
3
x3+tx)

∞∑

k=0

(
βk(t)

δk(t)

)
1

xk
, (2.23)

where the coefficientsαk, βk, γk, δk satisfy the recurrence relations:

4fγk−1 =−2if 2αk−2 − 2if ′γk−2 − (k − 3)αk−3 − aγk−3, (2.24)

8iγk = −4fαk−1 + 2if ′αk−2 − (2if 2 + 2it)γk−2 (2.25)

−(k − 3)γk−3 − aαk−3,

−8iβk =−4fδk−1 − 2if ′δk−2 + (2if 2 + 2it)βk−2 (2.26)

−(k − 3)βk−3 − aδk−3,

4fβk−1 =−2if 2δk−2 + 2if ′βk−2 − (k − 3)δk−3 − aβk−3, (2.27)

in particular

γ1 =
if(t)

2
, β1 = −if(t)

2
, (2.28)

α1t = −if(t)2

2
, δ1t =

if(t)2

2
. (2.29)

Proof. The spectral equation (2.1) has an irregular singular pointof rank

three atx = ∞. Therefore solutions are of the forms given by (2.5). On

substituting expansion (2.5) into equation (2.1) we found that ω3 = ±i4
3
,

ω2 = 0, ω1 = ±it, and l = 0. That is the solution matrixΨ(x, t) near

x = ∞ has the formal expansion

Ψ(x, t) =
∞∑

k=0

(
αk(t) βk(t)

γk(t) δk(t)

)
1

xk

(
e−i( 4

3
x3+tx) 0

0 ei( 4
3
x3+tx)

)
. (2.30)

To find the recurrence relations for the coefficientsαk, βk, γk, δk we substi-

tute solution (2.30) into the spectral equation (2.1) and equating powers of
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1
x

atx = ∞, we have

4fγk−1 =−2if 2αk−2 − 2if ′γk−2 − (k − 3)αk−3 − aγk−3,

8iγk = −4fαk−1 + 2if ′αk−2 − (2if 2 + 2it)γk−2

−(k − 3)γk−3 − aαk−3,

−8iβk =−4fδk−1 − 2if ′δk−2 + (2if 2 + 2it)βk−2

−(k − 3)βk−3 − aδk−3,

4fβk−1 =−2if 2δk−2 + 2if ′βk−2 − (k − 3)δk−3 − aβk−3.

Equation (2.24) and (2.27) atk = 1 tells us thatγ0 = 0 andβ0 = 0 respec-

tively. In generalαk, βk, γk, δk are functions oft. To find thet dependence

we substitute solution (2.30) into the deformation equation (2.2) and equate

powers of1
x

at x = ∞. We found thatα0 andδ0 are constants, that is they

are not functions oft, and are normalized to be 1. Equations (2.25) and

(2.26) atk = 1 gives us

γ1 =
if(t)

2
, β1 = −if(t)

2
.

We have also found

α1t = −if(t)2

2
, δ1t =

if(t)2

2
,

from the deformation equation. The rest of the coefficientsαk, βk, γk and

δk can be calculated similarly. ¤

2.3. Special solutions

To find the general solution of the associated linear problems of PII, that

is to solve the Riemann-Hilbert (RH) problem of the associatedlinear prob-

lems of PII is not trivial. In fact the associated linear problems are no easier

to solve than the non-linear ODE which they are related to. This makes

sense, since otherwise the associated linear problems could not possibly be

a representation of the transcendental Painlevé equation.However there are

some special cases when the associated linear problems can be solved. We

found that these cases correspond to PII admitting some special solutions.

We know from the analytic theory of linear differential equations (see [8]

for example), that solutions of the form (2.6, 2.7) atx = 0 are not valid in
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general when the difference of the leading powers2a is an integer. Incon-

sistencies can arise in either of the recurrence relations (2.9) or (2.10) when

2a is an integer, leavingc2a or b2a undefined corresponding to whether2a

a negative or a positive integer respectively. When this happens one of the

solutions (2.6) or (2.7) is no longer valid. Since PII possesses the symmetry,

f(t) → −f(t) ⇒ a → −a, we only need to considera > 0 here.

The case2a is an integer separates into two types: (1)2a even, (2)2a

odd. Let us consider type 1 first. For2a even, we see that when the LHS of

equation (2.10) vanishes atj = 2a, the RHS also vanishes sincedodd = 0

and beven = 0. Hence for2a even, solutions (2.6) and (2.7) are still the

valid forms of the expansions of the vector solutions atx = 0. The simplest

example of this type is whena = 0.

2.3.1. The simplest rational type special solution.

Proposition 2.3.1.A vector solution of the corresponding associated linear

problem whena = 0 and PII is solved byf(t) = 0 is given by

ψ1(x, t) =

(
e−i( 4

3
x3+tx)

ei( 4
3
x3+tx)

)
=

∞∑

j=0

(
(−1)jTj(t)x

j

Tj(t)x
j

)
. (2.31)

Proof. It is easy to see that whena = 0, f(t) = 0 is a solution of PII. The

Lax pair (2.1, 2.2) in this case reduces to:

Ψx =

(
−i(4x2 + t) 0

0 i(4x2 + t)

)
Ψ, (2.32)

Ψt =

(
−ix 0

0 ix

)
Ψ. (2.33)

They can be solved easily, since now the second-order systemhas decou-

pled into two first order equations. A solution of Lax pair (2.32, 2.33) is

ψ1(x, t) =

(
e−i( 4

3
x3+tx)

ei( 4
3
x3+tx)

)
.

Proposition 2.3.2.The functionei( 4
3
x3+tx) has series expression nearx = 0.

The coefficients of the expansion are found to be orthogonal polynomials
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of Laguerre type
∞∑

j=0

Tj(t)x
j = exp

(
i
4

3
x3 + itx

)

where

jTj = 4iTj−3 + itTj−1, (2.34)

dTj

dt
= iTj−1, (2.35)

T0 = 1, andTj = 0, j < 0.

Proof. Relations (2.34, 2.35) can be obtained using the definition ofTj(t)

as follows. Let

exp

(
i
4

3
x3 + itx

)
= eθ(x,t),

differentiate with respect tox gives

d

dx
eθ(x,t) = i(4x2 + t)eθ(x,t)

⇒ jTj = 4iTj−3 + itTj−1,

and differentiate with respect tot gives

d

dt
eθ(x,t) = ixeθ(x,t)

⇒ dTj

dt
= iTj−1.

A few examples ofTj are

T0 = 1 , T1 = it , T2 = −t2

2
, T3 =

4i

3
− it3

6
.

¤

Hence

ψ1(x, t) =

(
e−i( 4

3
x3+tx)

ei( 4
3
x3+tx)

)
=

∞∑

j=0

(
(−1)jTj(t)x

j

Tj(t)x
j

)
.

¤

Type (2): for2a odd, while the LHS of equation (2.10) is zero atj = 2a,

the RHS is in general not zero. Unlike the2a even case, heredeven 6= 0 and

bodd 6= 0. Hence whenj = 2a is odd, extra constraints are needed on the

coefficients which are expressions involvingf(t) for the RHS of equation
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(2.10) to vanish, to ensure that no inconsistency arises andsolutionsφ1(x, t)

andφ2(x, t) of the form (2.6) and (2.7) remain valid. Let us consider the

simplest example of this type.

2.3.2. The simplest hypergeometric type special solution.The simplest

example for2a odd is2a = 1. In this case equation (2.10) atj = 1 gives

0 × b1 = −i(2f(t)2 + t + 2f ′(t))d0.

Sinced0 6= 0, it follows that in order for the RHS to vanishf(t) has to

satisfy a Riccati type equation

f ′(t) = −f 2 − t

2
. (2.36)

In other words PII (2.3) has reduced to a first order non-linear ODE when

a = 1
2
. What about the solution of the corresponding linear system?Firstly,

we know from equation (2.13) thatf(t) =
a′

0

a0
. Substituting this into the

Riccati equation (2.36) we obtain an equation fora0(t),

a′′
0 = − t

2
a0. (2.37)

That isa0(t), the coefficient of the leading behaviour of vector solution(2.6)

of the linear problems nearx = 0, is a Airy type function with respect tot.

That is

a0(t) = A(2−
1
3 t),

whereA(2−
1
3 t) is a solution of the Airy equation (1.1) with respect to the

variable2−
1
3 t. Hence a solution of PII equation (2.3) whena = 1

2
denoted

f 1
2
(t) is

f 1
2
(t) =

A(2−
1
3 t)′

A(2−
1
3 t)

. (2.38)

Proposition 2.3.3.A solution of the linear problems (2.1, 2.2) whena = 1
2

andf(t) defined by (2.38) satisfies Riccati equation (2.36) is given by:

φ1(x, t) = x
1
2

(
1 1

1 −1

) (
1 0

−if(t)
x

i
x

) (
A(z)

At(z)

)
(2.39)

= x
1
2

(
1 1

1 −1

) (
1 0

−if(t)
x

i
x

) ∞∑

j=0

(
a2j(t)x

2j

a2j(t)
′x2j

)



2.3. SPECIAL SOLUTIONS 29

wherez(x, t) = 2
2
3 x2 + 2−

1
3 t andA(z) is the solution of the Airy equation,

that is
d2A(z)

dz2
= −zA(z).

FunctionA(z) has the series expansion aroundx = 0

A(z) =
∞∑

j=0

a2j(t)x
2j, (2.40)

wherea2j are defined by two recurrence type relations:

a2j =
2

j

da2j−2

dt
, (2.41)

d2a2j

dt2
= − t

2
a2j − a2j−2, (2.42)

in particular,

d2a0

dt2
= − t

2
a0. (2.43)

Proof. We use the asymptotic behaviour ofφ1(x, t) at x = 0 as a guide

as to how to find the solution in the closed form. Recall in orderto obtain

the leading behavior of the solution of the linear problem (2.1) we need to

diagonalize the coefficient matrixM(x, t) at x = 0.This gives us the first

transformation:

Φ =

(
1 1

1 −1

)
Φ1 (2.44)

where

Φ1x =
{(

1/2 0

0 −1/2

)
1

x
+

(
0 0

i4f ′(t) 0

)
(2.45)

+

(
4f(t) 0

0 −4f(t)

)
x +

(
0 −i4

−i4 0

)
x2

}
Φ1,

Φ1t =

(
f(t) −ix

−ix −f(t)

)
Φ1. (2.46)

We know from equation (2.17) that a vector solution of the Laxpair (2.45,

2.46) with asymptotic behaviourx
1
2 , that is the first column of the solution
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matrixΦ1 = {φ11, φ12} is given by :

φ11(x, t) = x
1
2

∞∑

j=0

(
a2j(t)x

2j

c2j+1(t)x
2j+1

)

wherea0(t) satisfies the Airy type equation (2.37). This indicates the next

transformation

Φ1 = x
1
2 Φ2, (2.47)

where the Lax pair is now

Φ2x =
{(

0 0

0 −1

)
1

x
+

(
0 0

i4f ′(t) 0

)
(2.48)

+

(
4f(t) 0

0 −4f(t)

)
x +

(
0 −i4

−i4 0

)
x2

}
Φ2,

Φ2t =

(
f(t) −ix

−ix −f(t)

)
Φ2. (2.49)

Let a solution of the Lax pair (2.48, 2.49) be
(

u(x, t)

v(x, t)

)
=

∞∑

j=0

(
a2jx

2j

c2j+1x
2j+1

)
,

then

(
u(x, t)

v(x, t)

)
satisfies the Lax pair of equations

(
u

v

)

x

=

(
4fx −4ix2

4if ′ − 4ix2 − 1
x
− 4fx

) (
u

v

)
(2.50)

(
u

v

)

t

=

(
f(t) −ix

−ix −f(t)

) (
u

v

)
. (2.51)

We observe that the top entry of vector equation (2.50) is

v =
ux − 4f(t)xu

−i4x2
.

This tells us howv(x, t) is related tou(x, t). We want to transform to a new

“v(x, t)”, which relates tou(x, t) more simply. Since we know

u(x, t) =
∞∑

j=0

a2jx
2j,
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and
ux

x
=

∞∑

j=0

(2j + 2)a2j+2x
2j,

we choosev1 to be ux

4x
. Then
(

u

v

)
=

(
1 0

−if(t)
x

i
x

) (
u

v1

)
, (2.52)

where

(
u

v1

)
satisfies the Lax pair

Φ3x =

(
0 4x

−x(2t + 4x2) 0

)
Φ3 (2.53)

Φ3t =

(
0 1

−(t/2 + x2) 0

)
Ψ3. (2.54)

We see that transform (2.52) has significantly simplified theLax pair. For

instance, equations (2.53, 2.54) no longer havef(t) (that is the solution

of PII) in their coefficient matrices. The Lax pair (2.53, 2.54) give us two

equations foru(x, t):

du

dt
(x, t) =

1

4x

du

dx
(x, t) (2.55)

and

utt = −(t/2 + x2)u. (2.56)

Equation (2.55) says a solution of the Lax pair (2.53) and (2.54) is
(

u

v1

)
=

(
u
ux

4x

)
=

(
u
du
dt

)
.

In particular it suggests the change of variable

u(x, t) = g
(
z(αx2 + βt)

)
, whereα, β are constants. (2.57)

Since

ux = gz2αx,

ut = gzβ,
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satisfy equation (2.55) for some choice ofα andβ. Now, substitute solution

(2.57) into equation (2.56)

utt = −(t/2 + x2)u

β2gzz = −(t/2 + x2)g

gzz = −
(

1

β2
x2 +

t

2β2

)
g

= −(αx2 + βt)g

= −zg.

For the last line to be true

α =
1

β2
and β =

1

2β2
,

⇒ α = 2
2
3 and β = 2−

1
3 .

This says thatu(x, t) = g (z(x, t)) satisfy the Airy equation (1.1) with re-

spect toz, if the new variable is

z(x, t) = αx2 + βt = 2
2
3 x2 + 2−

1
3 t,

that is

u(x, t) = A(z),

for

z(x, t) = 2
2
3 x2 + 2−

1
3 t.

A vector solution of equations (2.53, 2.54) in closed form isthen :

(
u

v1

)
=

(
u
du
dt

)
=

(
A(z)

At(z)

)
=

(
A(z)

2−
1
3 Az(z)

)
.
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Finally we use transformations (2.44, 2.47, 2.52) to go backto the solution

of the original Lax pair (2.1, 2.2)

φ1 =

(
1 1

1 −1

)
φ11

= x
1
2

(
1 1

1 −1

) (
u

v

)

= x
1
2

(
1 1

1 −1

) (
1 0

−if(t)
x

i
x

) (
u

v1

)

= x
1
2

(
1 1

1 −1

) (
1 0

−if(t)
x

i
x

) (
u
du
dt

)

whereu(x, t) = A(z). Now

u(x, t) = A(z) =
∞∑

j=0

a2j(t)x
2j,

so that equations (2.55) and (2.56) foru(x, t):

du

dt
=

1

4x

du

dx
d2u

dt2
= −(t/2 + x2)u

give us two recurrence type relations fora2j:

a2j =
2

j

da2j−2

dt
,

d2a2j

dt2
= − t

2
a2j − a2j−2,

in particular,

d2a0

dt2
= − t

2
a0.

¤
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2.4. Schlesinger transformations of the linear problem

Recall the solution of the original Lax pair (2.1, 2.2) isΦ(x, t) and to

analyze the linear system (2.1) aroundx = 0 we let

Φ(x, t) =

(
1 1

1 −1

)
Φ1(x, t),

whereΦ1(x, t) satisfies the Lax pair (2.15, 2.16). Let us denote the solution

of PII (2.3) with parametera asfa(t) and the corresponding linear problems

by the superscript(a)

Φ
(a)
1x =

{(
a 0

0 −a

)
1

x
+

(
0 −i(2f 2

a + t + 2f ′
a)

i(2f ′
a − 2f 2

a − t) 0

)

+

(
4fa 0

0 −4fa

)
x +

(
0 −i4

−i4 0

)
x2

}
Φ

(a)
1 (2.58)

Φ
(a)
1t =

(
fa −ix

−ix −fa

)
Φ

(a)
1 . (2.59)

We would like to findLa(x, t) such that

Φ
(a+1)
1 (x, t) = La(x, t)Φ

(a)
1 (x, t).

This is referred to as the Schlesinger transformation of thelinear system

(2.58). Let (
u(a)(x, t)

v(a)(x, t)

)
= xa

∞∑

j=0

(
a

(a)
2j (t)x2j

c
(a)
2j+1(t)x

2j+1

)
(2.60)

be the vector solution of the Lax pair (2.58, 2.59) with the leading order

xa nearx = 0, that is the first column of solution matrix (2.17). It has the

asymptotic behavior
(

u(a)(x, t)

v(a)(x, t)

)
∼ xa

(
a

(a)
0 (t)

c
(a)
1 (t)x

)
, x → 0. (2.61)

Then the solution of the linear system with parametera + 1 and−(a + 1),

where the corresponding PII equation is solved byfa+1(t) is
(

u(a+1)(x, t)

v(a+1)(x, t)

)
= xa+1

∞∑

j=0

(
a

(a+1)
2j (t)x2j

c
(a+1)
2j+1 (t)x2j+1

)
, (2.62)
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with the asymptotic behaviour
(

u(a+1)(x, t)

v(a+1)(x, t)

)
∼ xa+1

(
a

(a+1)
0 (t)

c
(a+1)
1 (t)x

)
. (2.63)

Note thatv(a)(x, t) has the same leading order inx asu(a+1)(x, t), namely

xa+1. This observation has led us to investigate whetherv(a)(x, t) and

u(a+1)(x, t) are simply related. In fact, we will show thatv(a)(x, t) =

u(a+1)(x, t), but first we prove that their respective leading coefficientsc
(a)
1 (t)

anda
(a+1)
0 (t) are the same function oft.

Proposition 2.4.1.

c
(a)
1 (t) = a

(a+1)
0 (t)

Proof. Recall equation (2.13) relates the solution of PII to the leading co-

efficient of the expansion of the solution of the linear problems atx = 0

a0(t), that is

fa(t) =
a

(a)
0

′

a
(a)
0

, ′ =
d

dt
. (2.64)

First we will use the recurrence relation forc
(a)
1 (t) and Bäcklund transfor-

mation of PII to show

a
(a+1)
0

′

a
(a+1)
0

= fa+1(t) =
c
(a)
1

′

c
(a)
1

,

that isa
(a+1)
0 (t) is proportional toc(a)

1 (t). The recurrence relation (2.9) for

c
(a)
1 (t) gives

c
(a)
1 =

i(2f ′
a − 2f 2

a − t)

(1 + 2a)
a

(a)
0 ,

then

c
(a)
1

′

c
(a)
1

=

(
(f ′

a − f 2
a − t

2
)a

(a)
0

)′

(f ′
a − f 2

a − t
2
)a

(a)
0

=
(f ′

a − f 2
a − t

2
)′a

(a)
0

(f ′
a − f 2

a − t
2
)a

(a)
0

+
(f ′

a − f 2
a − t

2
)a

(a)
0

′

(f ′
a − f 2

a − t
2
)a

(a)
0
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=
(f ′

a − f 2
a − t

2
)′

(f ′
a − f 2

a − t
2
)

+
a

(a)
0

′

a
(a)
0

= −2fa −
a + 1

2

(f ′
a − f 2

a − t
2
)

+ fa

= −fa −
a + 1

2

(f ′
a − f 2

a − t
2
)

,

where we have used the PII equation (2.3) to replacef ′′
a in the expression.

The last line is the well-known Bäcklund transformation of PII. That is

fa+1(t) = −fa −
a + 1

2

(f ′
a − f 2

a − t
2
)
, (2.65)

hence we have shown

c
(a)
1

′

c
(a)
1

= fa+1(t) =
a

(a+1)
0

′

a
(a+1)
0

,

which says thata(a+1)
0 (t) is proportional toc(a)

1 (t). The constant of propor-

tion can be set to be 1 without loss of generality. ¤

We have shown thatv(a)(x, t) andu(a+1)(x, t) have the same asymptotic

behaviorxa+1c
(a)
1 (t) nearx = 0. Now we will show that

Proposition 2.4.2.

v(a)(x, t) = u(a+1)(x, t).

Proof. Recall the spectral equation (2.58) is of the form
(

u(a)

v(a)

)

x

= M (a)(x, t)

(
u(a)

v(a)

)
=

(
M

(a)
11 M

(a)
12

M
(a)
21 M

(a)
22

) (
u(a)

v(a)

)
.

This 2 × 2 linear system of coupled first order differential equations(DEs)

can be written as two second order scalar DEs:

u(a)
xx =

M
(a)
12x

M
(a)
12

u(a)
x +

(
M

(a)
11x

− M
(a)
12x

M
(a)
12

M
(a)
11 − det M (a)

)
u(a)(2.66)

v(a)
xx =

M
(a)
21x

M
(a)
21

v(a)
x +

(
M

(a)
22x

− M
(a)
21x

M
(a)
21

M
(a)
22 − det M (a)

)
v(a)(2.67)
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where

M
(a)
11 (x, t) =

a

x
+ 4fax

M
(a)
12 (x, t) = −i(2f 2

a + t + 2f ′
a) − 4 i x2 (2.68)

M
(a)
21 (x, t) = i(−2f 2

a − t + 2f ′
a) − 4 i x2

M
(a)
22 (x, t) = −a

x
− 4fax.

Thenu(a+1)(x, t) solves equation

u(a+1)
xx (2.69)

=
M

(a+1)
12x

M
(a+1)
12

u(a+1)
x +

(
M

(a+1)
11x

− M
(a+1)
12x

M
(a+1)
12

M
(a+1)
11 − det M (a+1)

)
u(a+1).

We can calculateM (a+1)
11 (x, t), M

(a+1)
12 (x, t), M

(a+1)
21 (x, t) andM

(a+1)
22 (x, t)

by lettinga → a + 1 and using Bäcklund transformation (2.65) forfa+1.

It can be easily checked that equation (2.67) is the same as equation (2.69)

providedfa satisfies the PII equation (2.3). Together with the fact that

v(a)(x, t) andu(a+1)(x, t) have the same leading behaviourxa+1c
(a)
1 (t) (or

xa+1a
(a+1)
0 (t)) atx = 0, we have proved the proposition. ¤

Now we can relate

(
u(a+1)(x, t)

v(a+1)(x, t)

)
with

(
u(a)(x, t)

v(a)(x, t)

)
, that is to find the

Schlesinger transformationLa(x, t).

Proposition 2.4.3.The solutions of Lax pair (2.58, 2.59) for parametera+1

anda are related byLa(x, t), that is

(
u(a+1)(x, t)

v(a+1)(x, t)

)
= La(x, t)

(
u(a)(x, t)

v(a)(x, t)

)
(2.70)

=

(
0 1

1 − i(1+2a)
x(t+2f2

a−2f ′

a)

) (
u(a)(x, t)

v(a)(x, t)

)
.

Proof. We already know that

u(a+1)(x, t) = v(a)(x, t).
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It is only left to find howv(a+1)(x, t) can be written in terms ofu(a)(x, t)

andv(a)(x, t). Recall

(
u(a+1)

v(a+1)

)
satisfies the linear system

(
u(a+1)

v(a+1)

)

x

=

(
M

(a+1)
11 M

(a+1)
12

M
(a+1)
21 M

(a+1)
22

) (
u(a+1)

v(a+1)

)
, (2.71)

whereM
(a)
11 ,M

(a)
12 ,M

(a)
21 andM

(a)
11 are defined in equation (2.68). The top

entry of this vector equation is:

u(a+1)
x = M

(a+1)
11 u(a+1) + M

(a+1)
12 v(a+1),

or v(a+1) =
u

(a+1)
x − M

(a+1)
11 u(a+1)

M
(a+1)
12

=
v

(a)
x − M

(a+1)
11 v(a)

M
(a+1)
12

=
M

(a)
21 u(a) + M

(a)
22 v(a)

M
(a+1)
12

− M
(a+1)
11

M
(a+1)
12

v(a),

where we have used

v(a)
x = M

(a)
21 u(a) + M

(a)
22 v(a).

Hence
(

u(a+1)(x, t)

v(a+1)(x, t)

)
=




0 1

M
(a)
21

M
(a+1)
12

M
(a)
22

M
(a+1)
12

− M
(a+1)
11

M
(a+1)
12




(

u(a)(x, t)

v(a)(x, t)

)

=

(
0 1

1 − i(1+2a)
x(t+2f2

a−2f ′

a)

) (
u(a)(x, t)

v(a)(x, t)

)
.

¤

We have found the Schlesinger transformation of the linear system (2.58)
(

u(a+1)(x, t)

v(a+1)(x, t)

)
= La(x, t)

(
u(a)(x, t)

v(a)(x, t)

)

whereLa(x, t) has the form

La(x, t) =

(
0 1

1 la(t)
x

)
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and

la(t) = − i(1 + 2a)

x(t + 2f 2
a − 2f ′

a)
.

Successively applyingLa(x, t) we can eventually relate

(
u(a+1)(x, t)

v(a+1)(x, t)

)
to

(
u(0)(x, t)

v(0)(x, t)

)
or

(
u( 1

2
)(x, t)

v( 1
2
)(x, t)

)
depending on whethera is an integer or a half

integer, respectively. That is
(

u(a+1)(x, t)

v(a+1)(x, t)

)
= LaLa−1 . . . L0

(
u(0)(x, t)

v(0)(x, t)

)
,

and
(

u(a+1)(x, t)

v(a+1)(x, t)

)
= LaLa−1 . . . L 1

2

(
u( 1

2
)(x, t)

v( 1
2
)(x, t)

)
.

The reason we want to do this is because we have solved the associated

linear problems in closed form when the parameter takes value a = 0, cor-

responding to PII admitting the simplest rational special solution f0(t) = 0,
(

u(0)(x, t)

v(0)(x, t)

)
=

(
1 1

1 −1

) (
e−i( 4

3
x3+tx)

ei( 4
3
x3+tx)

)
, (2.72)

and a = 1
2
, corresponding to PII admitting the simplest hypergeometric

special solutionf 1
2
(t) = A(2−

1
3 t)′

A(2−
1
3 t)

,

(
u( 1

2
)(x, t)

v( 1
2
)(x, t)

)
= x

1
2

(
1 0

−if(t)
x

i
x

) (
A(z)

At(z)

)
. (2.73)

in subsection 2.3.1 and 2.3.2 respectively. We also know that the solution

of PII is related to the leading coefficient of the solution ofthe associated

linear problems by

fa+1(t) =
a

(a+1)
0

′

a
(a+1)
0

.

That is we can findfa+1(t) via the expression ofa(a+1)
0 (t) in terms of the

coefficientsa(0)
j (that isTj, (j = 0, 1, . . .) defined by equations (2.34, 2.35))

when the parametera is an integer, or in terms of the coefficientsa
( 1
2
)

2j (that
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is a2j, (j = 0, 1, . . .) defined by equations (2.41, 2.42 )) when the parameter

a is a half integer.

2.5. Determinantal representations of special solutions

2.5.1. Determinantal form of rational special solution hierarchy.

Theorem 2.5.1. [18] PII equation (2.3) whena are integersa = k, k =

0, 1, 2... admits rational type special solutions given by

fk(t) =
d

dt
ln

τk(t)

τk−1(t)

where the functionτk(t) is defined by

τk(t) =

∣∣∣∣∣∣∣∣∣∣

Tk Tk+1 . . . T2k−1

Tk−2 Tk−1 . . . T2k−3

...
...

. ..
...

T−k+2 T−k+3 . . . T1

∣∣∣∣∣∣∣∣∣∣

. (2.74)

The τk(t) function is a polynomial of degreek(k + 1)/2 in t, presented

as the determinant of ak × k matrix, whereTk(t) denotes the Laguerre

polynomial of degreek in t,

jTj = 4iTj−3 + itTj−1,

dTj

dt
= iTj−1,

T0 = 1, andTj = 0, j < 0.

Proof. In [18], Flaschka and Newell did not use the Schlesinger transfor-

mation to obtain the determinantal form of these rational special solutions

of PII. Instead, they have proved this result by consideringa special case of

the Riemann-Hilbert problem of the linear problem (2.1) of PII for whenk

are integers, see [18] for the details.

Whena = k, k is an integer, the two vector solutions of the the Lax pair

(2.1, 2.2) have infinite series expansions nearx = 0 is given by

φ
(k)
1 (x, t)

(
u(k)(x, t)

v(k)(x, t)

)
= xk

(
1 1

1 −1

) ∞∑

j=0

(
a

(k)
2j (t)x2j

c
(k)
2j+1(t)x

2j+1

)
,
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φ
(k)
2 (x, t)

(
u(k)(x, t)

v(k)(x, t)

)
= xk

(
1 1

1 −1

) ∞∑

j=0

(
b
(k)
2j+1(t)x

2j+1

d
(k)
2j (t)x2j

)
,

and the two vector solutions nearx = ∞ is given by

ψ
(k)
1 (x, t) = e−i( 4

3
x3+tx)

{(
1

0

)
+

1

x

(
α

(k)
1 (t)

γ
(k)
1 (t)

)
+ ... +

1

xk

(
α

(k)
k (t)

γ
(k)
k (t)

)}
,

ψ
(k)
2 (x, t) = ei( 4

3
x3+tx)

{(
0

1

)
+

1

x

(
β

(k)
1 (t)

δ
(k)
1 (t)

)
+ ... +

1

xk

(
β

(k)
k (t)

δ
(k)
k (t)

)}
,

whereβ
(k)
1 = −ifk(t)

2
. Note the series expansions ofψ

(k)
1 andψ

(k)
2 termi-

nate at the power1
xk in this case. Sinceφ(k)

1 (x, t), φ
(k)
2 (x, t), ψ

(k)
1 (x, t) and

ψ
(k)
2 (x, t) are solutions of the same2×2 first-order linear systems,ψ

(k)
2 (x, t)

must be a linear combination ofφ
(k)
1 (x, t) andφ

(k)
2 (x, t), that is

ψ
(k)
2 (x, t) = Aφ

(k)
1 (x, t) + Bφ

(k)
2 (x, t),

whereA andB are constants and recalle(i 4
3
x3+itx) =

∑∞
k=0 Tk(t)x

k, and

Tk(t) satisfies relations (2.34, 2.35). Hence we have

∞∑

j=0

Tj(t)x
j

{(
0

1

)
+

1

x

(
β

(k)
1

δ
(k)
1

)
+ ... +

1

xk

(
β

(k)
k

δ
(k)
k

)}

= Axk

(
1 1

1 −1

) {(
a

(k)
0

0

)
+ x

(
0

c
(k)
1

)
+ ...

}

+Bx−k

(
1 1

1 −1

) {(
0

d
(k)
0

)
+ x

(
b
(k)
1

0

)
+ ...

}
.

Equating powers ofx nearx = 0, we see that on the RHS the series summa-

tion of vectors with leading power ofx−k is going to be dominant. We take(
1 1

1 −1

)
matrix factor inside of the series expansion. Since the vectors

of the expansion alternate betweenb
(k)
2j+1

(
1

0

)
andd

(k)
2j

(
0

1

)
, after being

pre-multiplied by

(
1 1

1 −1

)
the vectors alternate betweenb

(k)
2j+1

(
1

1

)
and
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d
(k)
2j

(
1

−1

)
,

∞∑

k=0

Tk(t)x
k

{(
0

1

)
+

1

x

(
β

(k)
1

δ
(k)
1

)
+ ... +

1

xk

(
β

(k)
k

δ
(k)
k

)}

= Axk

(
1 1

1 −1

) {(
a

(k)
0

0

)
+ x

(
0

c
(k)
1

)
+ ...

}

+Bx−k

{
d

(k)
0

(
1

−1

)
+ b

(k)
1 x

(
1

1

)
+ d

(k)
2 x2

(
1

−1

)

+b
(k)
3 x3

(
1

1

)
+ ... + d

(k)
k−2x

k−2

(
1

−1

)
+ b

(k)
k−1x

k−1

(
1

1

)

+... + d
(k)
2k−2x

2k−2

(
1

−1

)
+ b

(k)
2k−1x

2k−1

(
1

1

)
+ ...

}
.

Note the last line is whenk is an even integer, the case fork are odd integers

can be proved similarly. On equating the first2k powers ofx nearx = 0,

that is fromx−k to xk−1, we obtain2k equations. Letξj = β
(k)
j + δ

(k)
j ,

ηj = β
(k)
j − δ

(k)
j . Then

1

xk
: T0

(
β

(k)
k

δ
(k)
k

)
= Bd

(k)
0

(
1

−1

)

⇒ T0ξk = 0,

1

xk−1
: T1

(
β

(k)
k

δ
(k)
k

)
+ T0

(
β

(k)
k−1

δ
(k)
k−1

)
= Bb

(k)
1

(
1

1

)

⇒ T1ηk + T0ηk−1 = 0,

...
...

1

x2
: Tk−2ξk + Tk−3ξk−1 + ... + T0ξ2 = 0

1

x
: Tk−1ηk + Tk−2ηk−1 + ... + T0η1 = 0

...
...
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xk−2 : T2k−2ξk + T2k−3ξk−1 + ... + Tk−1ξ1 = −Tk−2ξ0

xk−1 : T2k−1ηk + T2k−2ηk−1 + ... + Tkη1 = −Tk−1η0.

Recallβ(k)
0 = 0 andδ

(k)
0 = 1, soη0 = β

(k)
0 −δ

(k)
0 = −1, ξ0 = β

(k)
0 +δ

(k)
0 = 1.

We havek equations forξk, ...ξ1 which can be rewritten in a matrix form




Tk−1 Tk · · · T2k−4 T2k−3 T2k−2

Tk−3 Tk−2 · · · T2k−6 T2k−5 T2k−4

...
...

. ..
...

...

T1 T2 · · · Tk−2 Tk−1 Tk

.. .
...

...
...

T0 T1 T2

0 · · · · · · 0 T0









ξ1

ξ2

...

ξk





= −





Tk−2

Tk−4

...

T0

0
...

0





, (2.75)

andk equations forηk, ...η1 which can be rewritten in a matrix form




Tk Tk+1 · · · T2k−2 T2k−1

Tk−2 Tk−1 · · · T2k−4 T2k−3

...
...

. . .
...

...

T2 T3 · · · Tk Tk+1

. ..
...

...

· · · T2 T3

0 · · · · · · T0 T1









η1

η2

...

ηk





=





Tk−1

Tk−3

...

T1

0
...

0





. (2.76)

Now we can evaluateξ1 using Cramer’s rule. We recall Cramer’s rule here,

since we will use it repeatedly below.

Cramer’s rule:
n∑

j=1

Cjxj = B,

where

B = (b1, b2, ..., bn)T T, transpose

A = |C1C2...Cj...Cn|,

thenxj can be calculated using

xj =
1

A
|C1C2...B...Cn|.
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In equation (2.75),B = (Tk−2, Tk−4, ..., T0, 0, ..., 0)T, (C1...Cj...Cn) is the

matrix in equation (2.75), andA is the determinant of this matrix. So forξ1,

applying Cramer’s rule

ξ1 =
1

A
|B C2...Cj...Cn|.

Using the definitions ofB andCj and relation (2.35) for theTjs, we have

dCj

dt
= iCj−1, (2.77)

and we see thatB = idC1

dt
. That is

ξ1 =
i

A
|dC1

dt
C2...Cj...Cn|.

Next we will show that

Proposition 2.5.2.

|dC1

dt
C2...Cj...Cn| =

dA

dt
.

Proof. Since

A = |C1C2...Cj...Cn|
dA

dt
=

n∑

j=1

|C1C2...
dCj

dt
...Cn|

= |dC1

dt
C2...Cj...Cn| + ... + |C1C2...

Cj

dt
...Cn| + ...

+|C1C2...Cj...
dCn

dt
|

= |dC1

dt
C2...Cj...Cn| + ...i|C1C2...Cj−1...Cn| + ...

+i|C1C2...Cj...Cn−1|

= |dC1

dt
C2...Cj...Cn|.

Again we have used relation (2.77) and the fact that a determinant is zero if

two of its columns are the same. ¤

So now we have:

ξ1 =
i

A
|dC1

dt
C2...Cj...Cn| = i

1

A

dA

dt
= i

d

dt
ln A.
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Let τk(t) to be the determinant

τk(t) =

∣∣∣∣∣∣∣∣∣∣

Tk Tk+1 . . . T2k−1

Tk−2 Tk−1 . . . T2k−3

...
...

. ..
...

T−k+2 T−k+3 . . . T1

∣∣∣∣∣∣∣∣∣∣

. (2.78)

Theτk(t) function (2.78) is the determinant of thek × k matrix in equation

(2.76) sinceTk is 0 for k < 0. We observe thatA, the determinant of the

matrix in equation (2.75) isT0τk−1(t). Finally we have

ξ1 = i
1

A

dA

dt
= i

d

dt
ln τk−1(t),

asT0 = 1 so thatdT0

dt
= 0.

Similarly it can be shown that

η1 = −i
d

dt
ln τk(t). (2.79)

Now recall,ξ1 = β
(k)
1 + δ

(k)
1 , η1 = β

(k)
1 − δ

(k)
1 where we know thatβ(k)

1 =

−ifk(t)
2

, hence

ξ1 + η1

2
= β

(k)
1 = −i

fk(t)

2
=

i

2

d

dt
(ln τk−1 − ln τk) .

We have finally

fk(t) =
d

dt
ln

(
τk

τk−1

)
.

¤

2.5.2. Determinantal form of hypergeometric type special solution hi-
erarchy.

Theorem 2.5.3.PII equation (2.3) whena are half integersa = k + 1
2
,

k = 0, 1, 2, ... admits hypergeometric type special solutions given by

fk+ 1
2
(t) =

d

dt
ln

τk+1(t)

τk(t)
,

τk(t) =

∣∣∣∣∣∣∣∣∣∣

A d
dt

A . . . dk−1

dtk−1 A
d
dt

A d2

dt2
A . . . dk

dtk
A

...
...

. ..
...

dk−1

dtk−1 A
dk

dtk
A . . . d2k−2

dt2k−2 A

∣∣∣∣∣∣∣∣∣∣

,
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where
d2

dt2
A(t) = − t

2
A(t).

Proof. A vector solutionφ
(k+ 1

2
)

1 (x, t) of the Lax pair (2.1, 2.2) atx = 0 has

the asymptotic behaviour given by equation (2.6)

φ
(k+ 1

2
)

1 (x, t) ∼ x
1
2

(
1 1

1 −1

) (
a

(k+ 1
2
)

0 (t)xk + ...

c
(k+ 1

2
)

1 (t)xk+1 + ...

)
. (2.80)

The leading coefficient of the solution of the linear problemis related to the

solution of PII by

a
(k+ 1

2
)

0
′

a
(k+ 1

2
)

0

=
d

dt
ln a

(k+ 1
2
)

0 (t) = fk+ 1
2
(t).

Therefore if we knew whata
(k+ 1

2
)

0 (t) is, then we have foundfk+ 1
2
(t), some

special solution of PII for whena = k + 1
2
. First we deriveφ

(k+ 1
2
)

1 (x, t) in

closed form using the Schlesinger transformation.

Proposition 2.5.4.A solution of Lax pair (2.1, 2.2) whena = k + 1
2
, k =

0, 1, 2, ... with leading behaviourxk+ 1
2 is:

φ
(k+ 1

2
)

1 (x, t) =

(
1 1

1 −1

) (
u(k+ 1

2
)(x, t)

v(k+ 1
2
)(x, t)

)
= (2.81)

k even: x
1
2

(
1 1

1 −1

) (
1 + s2

x2 + ... + sk

xk
t2
x2 + ... + tk

xk

s1

x
+ s3

x3 + ... + sk+1

xk+1
i
x

+ ... + tk+1

xk+1

) (
A(z)

At(z)

)

k odd : x
1
2

(
1 1

1 −1

) (
s1

x
+ s3

x3 + ... + sk

xk
i
x

+ ... + tk+1

xk+1

1 + s2

x2 + ... + sk+1

xk+1
t2
x2 + ... + tk+1

xk+1

) (
A(z)

At(z)

)
,

where

A(z) =
∞∑

j=0

a2j(t)x
2j,

and

a2j =
2

j

da2j−2

dt
,

d2a2j

dt2
= − t

2
a2j − a2j−2,

in particulard2a0

dt2
= − t

2
a0, a0(t) = A(t).
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Proof. The solution matrix of Lax pair (2.1, 2.2) isΦ(x, t) and let

Φ(x, t) =

(
1 1

1 −1

)
Φ1(x, t),

whereΦ1(x, t) satisfies Lax pair (2.58, 2.59). Let

(
u(k+ 1

2
)(x, t)

v(k+ 1
2
)(x, t)

)
be the

first column of the matrix solutionΦ1(x, t).

For a = k + 1
2
, k = 0, 1, 2, ... Apply proposition 2.4.3 repetitively to

obtain

(
u(k+ 1

2
)(x, t)

v(k+ 1
2
)(x, t)

)
= L(k−1)+ 1

2
· L(k−2)+ 1

2
. . . L 1

2

(
u( 1

2
)(x, t)

v( 1
2
)(x, t)

)
.

Recall that

(
u( 1

2
)(x, t)

v( 1
2
)(x, t)

)
is given by

(
u( 1

2
)(x, t)

v( 1
2
)(x, t)

)
= x

1
2

(
1 0

−if 1
2
(t)

x
i
x

) (
A(z)

At(z)

)
.

SinceLa(x, t) has simple dependence with respect tox

La(x, t) =

(
0 1

1 la(t)
x

)
,

henceL(k−1)+ 1
2
· L(k−2)+ 1

2
· · ·L 1

2
·
(

1 0
−if 1

2
(t)

x
i
x

)
has the form:

k even: ν
1
2

(
1 + s2

x2 + ... + sk

xk
t2
x2 + ... + tk

xk

s1

x
+ s3

x3 + ... + sk+1

xk+1
i
x

+ ... + tk+1

xk+1

)
,

k odd : x
1
2

(
s1

x
+ s3

x3 + ... + sk

xk
i
x

+ ... + tk
xk

1 + s2

x2 + ... + sk+1

xk+1
t2
x2 + ... + tk+1

xk+1

)
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wheres0 = 1, t0 = 0, t1 = i, s1, ..., sk−1 andt2, ..., tk−1 are functions oft.

Hence we have
(

u(k+ 1
2
)(x, t)

v(k+ 1
2
)(x, t)

)
= (2.82)

k even: x
1
2

(
1 + s2

x2 + ... + sk

xk
t2
x2 + ... + tk

xk

s1

x
+ s3

x3 + ... + sk+1

xk+1
i
x

+ ... + tk+1

xk+1

) (
A(z)

At(z)

)

k odd : x
1
2

(
s1

x
+ s3

x3 + ... + sk+1

xk+1
i
x

+ ... + tk+1

xk+1

1 + s2

x2 + ... + sk

xk
t2
x2 + ... + tk

xk

) (
A(z)

At(z)

)
.

Let φ
(k+ 1

2
)

1 (x, t) be the first column ofΦ(x, t), that is

φ
(k+ 1

2
)

1 (x, t) =

(
1 1

1 −1

) (
u(k+ 1

2
)(x, t)

v(k+ 1
2
)(x, t)

)

we have proved proposition 2.5.4.

For the casek = 0, a = 1
2
, s1 = −if 1

2
(t) wheref 1

2
(t) solves Ric-

cati equation (2.36), the formula forφ
( 1
2
)

1 (x, t) given by proposition 2.5.4 is

consistent with equation (2.39) from earlier section 2.3.2:

φ
( 1
2
)

1 (x, t) = x
1
2

(
1 1

1 −1

) (
1 0

−if 1
2
(t)

x
i
x

) (
A(z)

At(z)

)
,

wherez(x, t) = 2
2
3 x2 + 2−

1
3 t andA(z) is the Airy function, where

d2A

dz2
= −zA.

where

A(z) =
∞∑

j=0

a2j(t)x
2j,

and

a2j =
2

j

da2j−2

dt
,

d2a2j

dt2
= − t

2
a2j − a2j−2,

in particular

d2a0

dt2
= − t

2
a0, a0(t) = A(t).
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We have omitted the superscript( 1
2
) on the coefficientsa2j from φ

( 1
2
)

1 (x, t)

for simplicity. ¤

Now we are ready to use solutionφ
(k+ 1

2
)

1 (x, t) to find fk+ 1
2
(t). Let us

look at the case wherek is even (case fork odd can be proved similarly).

Consider

φ
(k+ 1

2
)

1 (x, t) = (2.83)

x
1
2

(
1 1

1 −1

) (
1 + s2

x2 + ... + sk

xk
t2
x2 + ... + tk

xk

s1

x
+ s3

x3 + . . . + sk+1

xk+1
i
x

+ ... + tk+1

xk+1

) (
A(z)

At(z)

)
.

Recall atx = 0

A(z) = A(2
2
3 x2 + 2−

1
3 t) =

∞∑

j=0

a2jx
2j

At(z) = At(2
2
3 x2 + 2−

1
3 t) =

∞∑

j=0

da2j

dt
x2j.

Moreover, we know the asymptotic behaviour ofφ
(k+ 1

2
)

1 (x, t) is given by

equation (2.80)

∼ x
1
2

(
1 1

1 −1

) (
a

(k+ 1
2
)

0 (t)xk + ...

c
(k+ 1

2
)

1 (t)xk+1 + ...

)
. (2.84)

Equating the two expressions (2.83) and (2.84) ofφ
(k+ 1

2
)

1 (x, t) in the neigh-

bourhood ofx = 0,

φ
(k+ 1

2
)

1 (x, t)

= x
1
2

(
1 1

1 −1

) (
1 + s2

x2 + ... + sk

xk
t2
x2 + ... + tk

xk

s1

x
+ s3

x3 + ... + sk+1

xk+1
i
x

+ ... + tk+1

xk+1

) ∞∑

j=0

(
a2jx

2j

a2j

dt
x2j

)

∼ x
1
2

(
1 1

1 −1

) (
a

(k+ 1
2
)

0 (t)xk + ...

c
(k+ 1

2
)

1 (t)xk+1 + ...

)
, x → 0.

For solution (2.83) to have the correct asymptotic behaviour, sj andtj need

to satisfy systems of equations. From the top entry, equating powers inx,



50 2. THE SECONDPAINLEVÉ EQUATION

from x−k, x−k+2, ..., to xk gives usk + 1 equations for thek + 1 variables

sk, sk−2, ...s0 andtk, tk−2, ...t2:

1

xk
: ska0 + tka

′
0 = 0

1

xk−2
: ska2 + tka

′
2 + sk−2a0 + tk−2a

′
0 = 0

... :
...

xk−2 : ska2k−2 + tka
′
2k−2 + · · · + t2a

′
k + ak−2 = 0

xk : ska2k + tka
′
2k + · · · + t2a

′
k−2 + ak = a

(k+ 1
2
)

0 .

Rewriting these in the form of a(k + 1) × (k + 1) matrix equation:





a0 a′
0 0 0 · · · 0

a2 a′
2 a0 a′

0 0 · · · 0

...
.. .

...

a2k−2 a′
2k−2 · · · ak−4 a′

k−4 ak−2

a2k a′
2k · · · ak−2 a′

k−2 ak









sk

tk

sk−2

...

s2

t2

1





=





0

0
...

0

0

a
(k+ 1

2
)

0





.(2.85)

Let us denote the matrix equation (2.85) as

k+1∑

j=1

Cjxj = B,

that is let

(C1C2...Cj...Ck+1)

be the matrix in equation (2.85) andA is the determinant of this matrix

A = |C1C2...Cj...Ck+1|,

B = (0, ..., 0, a
(k+ 1

2
)

0 )T,

(x1, x2..., xk+1) = (sk, tk, ..., 1).
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Let τk+1(t) be the determinant of thek + 1 × k + 1 matrix

τk+1(t) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a0 a′
0 0 0 · · · 0

a2 a′
2 a0 a′

0 0 · · · 0

...
. ..

...

a2k−2 a′
2k−2 a2k−4 · · · ak−4 a′

k−4 ak−2

a2k a′
2k a2k−2 · · · ak−2 a′

k−2 ak

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

That is

τk+1(t) = |C1C2...Cj...Ck+1| = A.

Applying Cramer’s rule:

xj =
1

A
|C1C2...B...Ck+1|

to evaluatexk+1, we obtain

xk+1 = 1 =

a
(k+ 1

2
)

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a0 a′
0 0 0 · · · 0

a2 a′
2 a0 a′

0 · · · 0

...
. ..

...

a2k−2 a′
2k−2 · · · ak−4 a′

k−4

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

A

=
a

(k+ 1
2
)

0 τk(t)

τk+1(t)
.

Hence we have shown that

a
(k+ 1

2
)

0 (t) =
τk+1(t)

τk(t)
.

To prove theorem 2.5.3 we still need to show
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Proposition 2.5.5.

τk+1(t) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a0 a′
0 0 0 · · · 0

a2 a′
2 a0 a′

0 0 · · · 0

...
. . .

...

a2k−2 a′
2k−2 a2k−4 · · · ak−4 a′

k−4 ak−2

a2k a′
2k a2k−2 · · · ak−2 a′

k−2 ak

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(2.86)

= µ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a0 a′
0 · · · dka0

dtk

a′
0 a′′

0 · · · dk+1a0

dtk+1

...
. . .

...

dk−1a0

dtk−1
dka0

dtk
· · · d2k−1a0

dt2k−1
d2ka0

dt2k

dka0

dtk
dk+1a0

dtk+1 · · · d2ka0

dt2k
d2k+1a0

dt2k+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(2.87)

whereµ is a constant.

Proof. Let

(C1 C2 ... Ck+1) =





a0 a′
0 0 0 · · · 0

a2 a′
2 a0 a′

0 0 · · · 0

...
. ..

...

a2k−2 a′
2k−2 a2k−4 · · · ak−4 a′

k−4 ak−2

a2k a′
2k a2k−2 · · · ak−2 a′

k−2 ak





(2.88)

and

(D1 D2 ... Dk+1) =





a0 a′
0 · · · dka0

dtk

a′
0 a′′

0 · · · dk+1a0

dtk+1

...
. . .

...

dk−1a0

dtk−1
dka0

dtk
· · · d2k−1a0

dt2k−1
d2ka0

dt2k

dka0

dtk
dk+1a0

dtk+1 · · · d2ka0

dt2k
d2k+1a0

dt2k+1





. (2.89)
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We notice that by definition

(D1 D2 ... Dk+1) =
(
D1 D

(1)
1 ... D

(k)
1

)
(2.90)

where(n) = dn

dtn
. We are going to prove proposition 2.5.5 in several steps.

First we show

Proposition 2.5.6.

(C1 C2 ... Ck+1) = (C1 C1
′ ... C

(k)
1 )





1

1 ∗
−1

0
. ..




,

where matrix





1

1 ∗
−1

0
. . .




is an upper triangular matrix. The∗

denotes the fact that the upper triangular entries are in general functions of

t. The bold faced0 denotes the fact that the lower triangular entries are all

zero. The diagonal entries are1 or−1 only.

Proof. Let us look at the1 × (k + 1) column vectorsCn (n=1,. . . , k+1)

of the matrix (2.88) first. We describe the even columnsC2j and the odd

columnsC2j−1 separately.

The even column vectorC2j, is defined to have0 entries until thejth entry

(j = 1, 2, ...) which isa′
0, then followed bya′

2, a′
4. . . , up toa′

2(k−j+1),

C2j = (0, ..., a′
0, a

′
2, ..., a

′
2(k−j+1))

T.

The odd column vectorsC2j−1 have0 entries until thejth entry which is

a0, then followed bya2, a4. . . , up toa2(k−j+1),

C2j−1 = (0, ..., a0, a2, ..., a2(k−j+1))
T.

Immediately from the definition we see that

dC2j−1

dt
= C2j. (2.91)
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Another relation for the column vectors can be obtained by differentiating

C2j,

dC2j

dt
= (0, ..., a′′

0, a
′′
2, ..., a

′′
2(k−j+1))

T

= − t

2
(0, ..., a0, a2, ..., a2(k−j+1))

T

− (0, ..., 0, a0, ..., a2(k−j))
T

= − t

2
C2j−1 − C2j+1 (2.92)

where we have used relation (2.42) to rewritea′′
2j. Proposition 2.5.6 is

equivalent to the statement:

for n = 1, ..., k + 1,

Cn =





C2j+1 = (−1)j

C1
(n−1) +

∑
k<n µk(t)Ck for n odd,

C2j+2 = (−1)j
C1

(n−1) +
∑

k<n µk(t)Ck for n even
(2.93)

whereµk(t) denote functions oft. We will prove this by induction.

For then odd case,n = 1, j = 0,

C1 = C1.

For then even case,n = 2, j = 0, by the definitions ofC2 in equation

(2.88)

C2 = C1
(1).

Now we want to show that in general whenn + 1 is odd

Cn+1 = C2j+3 = C2(j+1)+1 = (−1)j+1
C1

(n) +
∑

k<n+1

µk(t)Ck

and whenn + 1 is even

Cn+1 = C2j+2 = C2j+2 = (−1)j
C1

(n) +
∑

k<n+1

µk(t)Ck.

Whenn + 1 is odd,n is even. RewriteCn+1 using relation (2.92),

Cn+1 = − t

2
Cn−1 − Cn

′.



2.5. DETERMINANTAL REPRESENTATIONS OF SPECIAL SOLUTIONS 55

Now use equation (2.93) for the expression ofCn for n is even

Cn+1 =− t

2
Cn−1 −

(
(−1)j

C1
(n−1) +

∑

k<n

µk(t)Ck

)′

(2.94)

=− t

2
Cn−1 + (−1)j+1

C1
(n) +

∑

k<n

µk(t)Ck
′ +

∑

k<n

µ′
k(t)Ck. (2.95)

Let us look at the first summation on line (2.95). Since

C2j
′ = − t

2
C2j−1 − C2j+1,

the derivatives ofCk (k even) can all be expressed in terms ofCk−1 and

Ck+1. The derivatives ofCk (k odd) can be rewritten in terms ofCk+1

with equation (2.91). Ask can be at mostn − 1, then the derivatives ofCk

in this sum can be rewritten in terms ofCk with k at mostn. The first and

second summation in line (2.95) can be combined as one summation

∑

k<n+1

µ̃k(t)Ck

whereµ̃k(t) are functions oft and

Cn+1 = (−1)j+1
C1

(n) +
∑

k<n+1

µ̃k(t)Ck.

Forn + 1 even,n is odd, use equation (2.91), then (2.93) forCn odd

Cn+1 =
dCn

dt

=

(
(−1)j

C1
(n−1) +

∑

k<n

µk(t)Ck

)′

= (−1)j
C1

(n) +
∑

k<n

µk(t)Ck
′ +

∑

k<n

µ′
k(t)Ck

= (−1)j
C1

(n) +
∑

k<n+1

µ̂k(t)Ck,

whereµ̂k(t) are functions oft.

Equation (2.93) means that eachCn can be written in terms ofC(n−1)
1 and

C1, . . . ,Cn−1, which really means that eachCn can be written in terms of
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C1, . . . ,C(n−1)
1 . In matrix notation

(C1 C2 ... Ck+1) = (C1 C1
′ ... C

(k)
1 )





1

1 ∗
−1

0
. ..




,

where∗ denotes upper triangular entries which are in general functions oft,

0 denotes that all the lower triangular entries are zero. The diagonal entries

are1 or−1 only. We have proved proposition 2.5.6. ¤

Next we show that

Proposition 2.5.7.

(C1 C1
′ ... C

(k)
1 ) =





1

2 0

0
.. .

2k

k!




(D1 D2 ... Dk+1) (2.96)

where





1

2 0

0
.. .

2k

k!




is a constant diagonal matrix.

Proof. Recall

C1 = (a0, a2, . . . , a2k)
T

and

D1 = (a0,
da0

dt
,

d2a0

dt2
, ...

dka0

dtk
)T.

From equation (2.55) we have

a2j =
2

j

da2j−2

dt

=
2

j

2

j − 1

d2a2j−4

dt2

...

=
2j

j!

dja0

dtj
,
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therefore

C1 = (a0, 2
da0

dt
, 2

d2a0

dt2
, ...

2k

k!

dka0

dtk
)T =





1

2 0

0
. ..

2k

k!




D1 (2.97)

where the matrix multuplyingD1 is a constant diagonal matrix. Differenti-

ate equation (2.97) with respect tot n times we have

C
(n)
1 =

dn
C1

dtn
=





1

2 0

0
. ..

2k

k!




D

(n)
1 ,

then the matrix is

(C1 C1
′ ... C

(k)
1 )

= (C1

dC1

dt
...

dk
C1

dtk
) =





1

2 0

0
. ..

2k

k!




(D1

dD1

dt
...

dk
D1

dtk
)

=





1

2 0

0
. ..

2k

k!




(D1 D2 ... Dk+1).

We have proved proposition 2.5.7. ¤
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Proposition 2.5.6 and 2.5.7 together give us

(C1 C2 ... Ck+1)

= (C1 C1
′ ... C

(k)
1 )





1

1 ∗
−1

0
. ..





=





1

2 0

0
. ..

2k

k!




(D1 D2 ... Dk+1)





1

1 ∗
−1

0
. ..




.

Take the determinant on both sides, note the determinants ofthe first and

third matrix on the RHS are both just products of their diagonal entries

which are all constants. We have finally

|C1 C2 C3 ... Ck+1| = µ

∣∣∣∣D1

dD1

dt
...

dk
D1

dtk

∣∣∣∣

whereµ is a constant. We have proved proposition 2.5.5. ¤

Thus, we have shown that

fk+ 1
2
(t) =

d

dt
ln a

(k+ 1
2
)

0 (t) =
d

dt
ln

τk+1

τk

where

τk+1(t) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a0 a′
0 · · · dka0

dtk

a′
0 a′′

0 · · · dk+1a0

dtk+1

...
. ..

...

dk−1a0

dtk−1
dka0

dtk
· · · d2k−1a0

dt2k−1
d2ka0

dt2k

dka0

dtk
dk+1a0

dtk+1 · · · d2ka0

dt2k
d2k+1a0

dt2k+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

We have thus proved theorem 2.5.3 ¤

In this chapter, we have described only two of the cases whichFlaschka

and Newell have studied in [18]. This is because we have only investigated
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theq-analogues of these two cases for theq-discrete Painlevé equation con-

sidered in our work. They are the two most obvious special cases for which

the associated linear problems simplify and indicate special solutions for

the Painlevé equations. However, there are many aspects of the Painlevé

equations which may be understood via their associated linear problems,

such as the asymptotic behaviour, the connection formula, the Bäcklund

transformation , the integral representation etc. see [18] for more details.



CHAPTER 3

q-linear analysis

The aim of this thesis is to develop the technique for studying theq-

Painlevé equations via their associated linear problems, for which we will

need results on the analytic theory of theq-linear system developed a hun-

dred years ago by Birkhoff and his students. We review theorems of the

Birkhoff school [14, 9, 52] on q-linear equations, and see how they work

for the two simplest cases.

3.1. Analytic theory of the q-discrete linear system

Carmichael [14] and Birkhoff [9] studied then × n q-linear system of

the form

Y (qx) =
(
A0 + A1x + A2x

2 + ... + Aµx
µ
)
Y (x)

where whereA0 has eigenvaluesqθj , Aµ has eigenvaluesqρj , j = 1, ...n, and

for i 6= j, θi − θj, ρi − ρj 6= integer. This is referred as the “non-resonant”

condition for the coefficient matrix of theq-linear system. Carmichael has

shown under the non-resonant condition the existence of twosets of fun-

damental solutions, one in a neighbourhood ofx = 0 and the other in a

neighbourhood ofx = ∞. He has further shown that these two fundamen-

tal solution matrix can be related by aq-constant connection matrixP (x),

that isP (qx) = P (x). Hence giving the ingredients of a theory that can be

regarded as the answer to theq-discrete analogue of the Riemann-Hilbert

problem. Birkhoff later has provided a explicit formula for the connection

matrixP (x), and demonstrated by applying on the simplest example. That

is the1× 1 linear system withµ being1. He has shown that the solution of

this problem is theq-discrete analogue of the Gamma function. Le Caine

[52], another student of Birjhoff investigated the next case from the point of

view of simplicity. That is the2× 2 linear system withµ being1 case. She

60
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has found that the solutions are theq-discrete analogue of the Gauss hyper-

geometric functions. We reproduce these two examples in thenext section.

First we state the theorems of Carmichael and Birkhoff.

Theorem 3.1.1.[14] Consider then × n q-discrete linear system

Y (qx) =
(
A0 + A1x + A2x

2 + ... + Aµx
µ
)
Y (x), (3.1)

whereA0 has eigenvaluesqθj , Aµ has eigenvaluesqρj , j = 1, ...n. For

i 6= j, θi − θj, ρi − ρj 6= integer, theq-linear system (3.1) has fundamental

matrix solutionsY0(x), Y∞(x) given by




Y0(x) =

(
xθjǫij(x)

)
1≤i,j≤n

,

Y∞(x) = q
µ
2
(t2−t) (xρjδij(x))1≤i,j≤n ,

(3.2)

wheret = ln x
ln q

, (ǫij)1≤i,j≤n and(δij)1≤i,j≤n aren × n matrices of analytic

functions which can be expanded as a power-series inx or 1
x

aroundx = 0

and∞, respectively.

Birkhoff [9] has completed the study of the non-resonant case of the

n×n linear q-discrete system by solving its generalized Riemannproblem,

giving an explicit formula for the connection matrixP (x).

Theorem 3.1.2.[9] The two fundamental matrix solutionsY0(x) andY∞(x)

are related by the connection matrixP (x),

Y0(x) = Y∞(x)P (x)

whereP (x) is an × n matrix of functions, defined in terms of the Weier-

strass sigma functionσ(t). It is “q constant”, that isP (qx) = P (x). More

explicitly P (x) = pij, for i, j = 1, 2, ...n

pij = cije
− η

2
µt2+(η1(θi−ρj)− η2µ

2 )tσ(t−a
(i,j)
1 )σ(t−a

(i,j)
2 )...σ(t−a(i,j)

µ ) (3.3)

whereω1 = 1 andω2 = 2πi
ln q

are the two periods of theσ(t) function, which

satisfies the relations




σ(t + ω1) = − exp

(
η1(t + 1

2
)
)
σ(t),

σ(t + ω2) = − exp
(
η2(t + ω2

2
)
)
σ(t), with η1ω2 − η2 = 2πi.
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Theµ constants,a(i,j)
λ , satisfy the constraint

µ∑

λ=1

a
(i,j)
λ = θi + ρj −

µπi

ln q
. (3.4)

In the same paper [14] Carmichael had an inverse of theorem 3.1.1,

stated as follows.

Theorem 3.1.3. [14] Let Y0(x) andY∞(x) be two sets ofn × n single-

valued functions which, away from zero and infinity, are analytic, defined

by




Y0(x) =

(
xθjǫij(x)

)
1≤i,j≤n

, | (ǫij(x))1≤i,j≤n | 6= 0

Y∞(x) = q
µ
2
(t2−t) (xρjδij(x))1≤i,j≤n , | (δij(x))1≤i,j≤n | 6= 0,

(3.5)

wheret = ln x
ln q

and fori 6= j, θi − θj, ρi − ρj 6= integer. The two setes of

functions being connected by the relation

Y0(x) = Y∞(x)P (x), P (qx) = P (x).

Then the two sets of functionsY0(x) andY∞(x) are the two simple funda-

mental solutions of a system ofq-discrete equations

Y (qx) = A(x)Y (x),

in which then × n coefficient matrixA(x) is a polynomial of degreeµ in

x.

Above theorem is not simply a repetition of theorem 3.1.1. Rather, it

has a significant implication on the iso-monodromy deformation problem

of q-Painlevé equations and especially relevant in this thesis. It says that

given the forms of the solutions of the linear problem and howthey are

related to each other, one can reconstruct the equation theysatisfy. In the

context of the associated linear problems for theq-Painlevé equations, it

means that once we have solved the spectral linear problem ofthe Lax pair

we can reconstruct information of the solution of theq-Painlevé equation of

which the coefficients of the linear problem are defined in terms of.

Note: Ramis [65] has introduced analytic functions which can be used in

place of the “t = ln x
ln q

” function used by the Birkhoff school, so that there

is no logarithmic singularity atx = 0 or ∞. However, in this thesis, we

follow Birkhoff school, due to its simplicity of expansion.
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3.2. Case1 × 1, degree 1

From constraint (3.4) we can see that in general, the only cases where

a
(i,j)
λ can be evaluated explicitly are whenµ = 1. Birkhoff [9] has solved

the simplest case, the1 × 1, µ = 1 case.

Consider theq-discrete equation

y(qx) = (1 − x)y(x), (3.6)

whereθ1 = 0, ρ1 = − iπ
ln q

, andµ = 1.

The solutions atx = 0 andx = ∞ are given by the infinite products





y0(x) =

(
1 − x

q

) (
1 − x

q2

)
. . . ,

y∞(x) = q
1
2
(t2−t)e−πit 1

1− 1
x

1
1− 1

qx

. . . ,
(3.7)

which can be verified by substitution. The connection matrixP (x) for the

1 × 1 case isp(x) where

y0(x) = y∞(x)p(x). (3.8)

The constanta1 in the definition (3.3) ofp(x) can be calculated from equa-

tion (3.4)

1∑

λ=1

aλ = θ1 − ρ1 −
πi

ln q
= 0 +

πi

ln q
− πi

ln q
= 0.

Now we are ready to evaluate the functionp(x) using formula (3.3), we

have:

p(x) = ce−
1
2
t2+[(η1(θ1−ρ1)− η2

2
]tσ(t − a1)

= ce−
1
2
t2+[(η1( iπ

ln q
)− η2

2
]tσ(t) (3.9)

= ce−
1
2
t2+iπtσ(t),

where we have used the relation

η1
iπ

ln q
− η2 = 2iπ.
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The constantc can be found by evaluating equation (3.8) atx = 1 using

expressions (3.7) and (3.9), we have

y0(x) = (x − 1)y∞(x)
p(x)

x − 1
(3.10)

(
1 − 1

q

)(
1 − 1

q2

)
. . . = c

1(
1 − 1

q

) 1(
1 − 1

q2

) . . . (3.11)

⇒ c =

(
1 − 1

q

)2 (
1 − 1

q2

)2

. . . (3.12)

where we have used the factσ(0) = 0, σ′(0) = 1.

Note: The solution of equation (3.6) is denoted asΓq(1 − x), and is the

q-discrete analogue of the Gamma function. In Birkhoff’s notation, the

solutions atx = 0 andx = ∞ are denoted as




Γ0

q(1 − x),

Γ∞
q (1 − x),

and the two solutions are related by

Γ0
q(1 − x) = Γ∞

q (1 − x)p(x).

Γq(1 − x) is a special case of the so called basic orq-hypergeometric func-

tion defined in Appendix B as

mΦn (a1, ...am; b1, ...bn; q, z) (3.13)

=
∑

k≥0

(a1; q)k...(am; q)k

(b1; q)k...(bn; q)k(q; q)k

[
(−1)kq

“n
2

”]1+n−m

zk

where

(a; q)k =





1, k = 0,

(1 − a)(1 − aq) . . . (1 − aqk−1), k = 1, 2, . . . .

Proposition 3.2.1.Solution of equation (3.6) is given by

Γq(1 − x) = 1Φ0(0,−; q, x) =
∞∑

j=0

xj

(q; q)j

.

Note in this case then in mΦn is 0, which means there is nobj, this is

denoted by “− ” in the notation above.
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Proof. Let

y(x) =
∞∑

j=0

xj

(q; q)j

,

then

y(qx) − y(x) =
∞∑

j=0

xj(qj − 1)

(q; q)j

= −x
∞∑

j=1

xj−1

(q; q)j−1

= −xy(x)

y(qx) = (1 − x)y(x).

¤

Proposition 3.2.2.Γq(1 − x) also has the infinite product expression

Γq(1 − x) =
1

(x; q)∞

where

(a; q)∞ = (1 − a)(1 − aq)(1 − aq2) . . . .

Proof. Let

y(x) =
1

(1 − x)(1 − qx)(1 − q2x)...
,

then

y(qx) =
1

(1 − qx)(1 − q2x)(1 − q3x)...

=
(1 − x)

(1 − x)(1 − qx)(1 − q2x)(1 − q3x)...

= (1 − x)y(x).

We have showed that the two different definitions forΓq(1− x) in Proposi-

tion 3.2.2 and 3.2.1 satisfy the same equation, and since they have the same

asymptotic behavior atx = 0, they must be the same function. ¤
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To summarize, the solution of equation (3.6) is

Γq(1 − x) =
1

(x; q)∞
= 1Φ0(0,−; q, x) (3.14)

=
∞∑

j=0

xj

(q; q)j

,

where we have theΓq(1 − x) function in both the products form and the

summation form.

3.3. Case2 × 2, degree 1

The next case of theq-linear system (3.1) to consider from the point of

view of simplicity is the2 × 2, µ = 1 case. Le Caine [52] considered the

q-linear system

Y (qx) = (Ax + B)Y (x) (3.15)

whereA has eigenvaluesa1, a2, andB has eigenvaluesb1, b2. The coeffi-

cient matrix has zeros atα1, α2, that is

|Ax + B| = 0

whenx = α1, α2. The six constantsa1, a2, b1, b2, α1 andα2 are called the

characteristic constants of system (3.15), they satisfy the constraintb1b2 =

a1a2α1α2. Le Caine proved that any2× 2 systemY (qx) = (Ax + B)Y (x)

with these six characteristic constants can be transformedinto what she

called the “normal form”:

Y (qx) =

(
0 a1(x − α1)

−a2(x − α2) (a1 + a2)x + b1 + b2

)
Y (x), (3.16)

hence we will consider equation (3.16) from now on.

Theorem 3.3.1.[52] The q-linear system (3.16) has fundamental solution

matricesY 0(x),

Y 0(x) = Γ0
q

(
1 − x

α1

)
×

(
2Φ1(a, b; c; q, x

α2
) 2Φ1(aq/c, bq/c, q2/c; q, x

α2
)

− b1
a1α1

2Φ1(a, b; c; q, qx
α2

) − b2
a1α1

2Φ1(aq/c, bq/c, q2/c; q, qx
α2

)

) (
bt
1 0

0 bt
2

)
,
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andY ∞(x),

Y ∞(x) = eπitΓ∞
q

(
1 − α1

x

)
×

(
2Φ1(a, aq

c
, aq

b
; q, q2α1

x
) 2Φ1(b,

bq
c
, bq

a
; q, q2α1

x
)

2Φ1(a, aq
c
, aq

b
; q, qα1

x
) 2Φ1(b,

bq
c
, bq

a
; q, qα1

x
)

)
×

(
at

1 0

0 at
2

)
,

where2Φ1(a, b; c; q, z) is theq-discrete analogue of Gauss’s hypergeometric

function, and is discussed in detail in Appendix B.

The solutions are related by

Y 0(x) = Y ∞(x)P (x),

P (x) = pij, pij = p(−aix/bj)cij, (i, j = 1, 2)

where

p(x) = exp
(
(−η/2)t2 − πit

)
σ(t),

c11 =
∞∏

ν=0

(1 + a1α1q
ν/b2) (1 + b1q

ν+1/(a2α2))

(1 − b1qν+1/b2)(1 − a1qν/a2)

c21 =
∞∏

ν=0

(1 + a2α2q
ν/b2) (1 + b1q

ν+1/(a1α2))

(1 − b1qν+1/b2)(1 − a2qν/a2)

c12 =
∞∏

ν=0

(1 + a1α2q
ν/b1) (1 + b2q

ν+1/(a2α2))

(1 − b2qν+1/b1)(1 − a1qν/a2)

c22 =
∞∏

ν=0

(1 + a2α2q
ν/(b1q

ν)) (1 + b2q
ν+1/(a1α2))

(1 − b2qν+1/b1)(1 − a2qν/a1)
.

Proof. By Theorem 3.1.1, we know the matrix solutions of equation (3.16)

atx = 0 andx = ∞ have the form

Y 0(x) = (E(1)(x), E(2)(x))

(
bt
1 0

0 bt
2

)
, (3.17)

and

Y ∞(x) = (F (1)(x), F (2)(x))

(
at

1 0

0 at
2

)
, (3.18)

whereE(1)(x), E(2)(x) andF (1)(x), F (2)(x) are1 × 2 vectors of functions,

analytic atx = 0 andx = ∞ respectively.
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To findE(1)(x), substitute the vector solutionbt
1E

(1)(x) into equation (3.16),

we have

E(1)(qx) =

(
0 a1

b1
(x − α1)

−a2

b1
(x − α2)

(a1+a2)x+b1+b2
b1

)
E(1)(x).

Now try to get this into a form where we can compare it with the2×2 system

for theq-hypergeometric equation (B.15), solved in terms of2Φ1(a, b; c; q, z).

Let

E(1)(x) = g1(x)E
(1)
1 (x),

where

g1(qx) =

(
1 − x

α1

)
g1(x),

that isg1(x) = Γ0
q

(
1 − x

α1

)
.

Let

E
(1)
1 (x) =

(
u

v1

)
,

now

E
(1)
1 (qx) =

(
u(qx)

v1(qx)

)
=




0 −a1α1

b1

− a2(x−α2)

b1
“
1− x

α1

” (a1+a2)x+b1+b2

b1
“
1− x

α1

”




(

u(x)

v1(x)

)
.

A further transformation is required so that the(1, 2) entry is normalized to

be 1. Let

v(x) = −a1α1

b1

v1(x) = u(qx),

then

(
u(qx)

v(qx)

)
=




0 1

− b2
“

x
α2

−1
”

b1
“
1− x

α1

” (a1+a2)x+b1+b2

b1
“
1− x

α1

”




(

u(x)

v(x)

)
,

where we have used the relationb1b2 = a1a2α1α2 to simplify the expres-

sion.
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Compare this with theq-hypergeometric system (B.15) to obtain

z =
x

α2

,

abz − c

q
=

b1

b2

(
x

α1

− 1

)
,

−(a1 + a2)x + b1 + b2

b2

= (a + b)z −
(

1 +
c

q

)
,

which can be solved to get

z =
x

α2

,

c

q
=

b1

b2

,

a = −a2α2

b2

,

b = −a1α2

b2

,

and

u(x) = 2Φ1

(
a, b; c; q,

x

α2

)
.

Hence, one of the solutions of the2 × 2, µ = 1 linear system (3.15) is

bt
1Γ

0
q

(
1 − x

α1

) (
2Φ1(a, b; c; q, x

α2
)

−a1α1

b1 2Φ1(a, b; c; q, qx
α2

)

)
.

The other vector solution can be found similarly. It is also possible to find

c11,12,21,22 in the connection matrixP (x) since the exact form ofY0 andY∞

are known to be expressed in terms of q-hypergeometric functions. For the

details see [52]. ¤

All the theorems and examples in this Chapter apply toq-linear systems

of non-resonant type. Adams [5] has dropped the non-resonant condition

on the coefficient matrix and studied the solutions of the general q-linear

system. The Riemann problem for the generalq-linear system was looked

at by Trjitzinsky [73], and more recently by Ramis, Sauloy and Zhang [66,
69]. However, since in the study of the associated linear problems ofq-

Painlevé equations, we have only looked atq-linear systems of non-resonant

type , therefore we will not go into details of the theorems for the general

q-linear system here.



CHAPTER 4

A q-discrete analogue of the second Painlevé equation

We have seen that the2 × 2 q-linear system (3.1.1) withµ being1 is

solved by theq-hypergeometric function2Φ1(a, b; c; q, z). Its continuous

analogue is Gauss hypergeometric function2F1(α, β, γ; t). However the

associated linear problems of theq-Painlevé equations are2×2 q-linear sys-

tems, whose coefficient matrices are polynomials of degreeµ greater than

1. In this chapter, we will show that these linear systems can be solved in

terms of the classicalq-special function for the special cases when their as-

sociated non-linear equation, that is theq-Painlevé equations, admit special

solutions for particular values of the parameters. This factis then inverted

and used to find the determinantal forms of some special solutions of the

q-Painlevé equations which is the main result of this work.

4.1. A q-discrete analogue of PII and its associated linear problems

The associated linear problems consist ofthe spectral problem

Ψ̂(ν, x) = Ψ(ν/λ2, x) = A(ν, x)Ψ(ν, x) (4.1)

andthe deformation equation

Ψ(ν, x) = Ψ(ν, x/λ) = B(ν, x)Ψ(ν, x) (4.2)

where

A(ν, x) = A0(x) + A1(x)ν + A2(x)ν2 + A3(x)ν3

=

(
e1 0

0 e2

)
+

(
0 m1(x)

m2(x) 0

)
ν +

(
n1(x) 0

0 n2(x)

)
ν2

+

(
0 f1(x)

f2(x) 0

)
ν3,

70
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B(ν, x) =

(
−i

√
α λx

g(λx)
iλ2x√

α
ν

i x√
α
ν i g(λx)√

αxλ

)
.

Note, ν is theq-discrete analogue of the spectral variable,e1, e2 are con-

stants,m1(x), m2(x), n1(x), n2(x), f1(x) andf2(x) are functions ofg(x)

andx theq-discrete Painlevé variable

m1(x) =
e2g(xλ) (−e1x

2λ2 − e2g(x) + e2g(x)g(xλ))

e1x2λ
, (4.3)

m2(x) = −x2 (e1x
2λ2 − e2g(x)g(xλ)λ2 + e1g(xλ))

λg(x)g(xλ)2
, (4.4)

n1(x) =
e2 (e1x

2 + e2g(x)g(xλ)2 − e2g(x)g(xλ))

e1g(xλ)
, (4.5)

n2(x) = −e2 (−e1x
4λ4 − e1x

2g(xλ)λ2 + e2g(x)g(xλ)2)

e1λ2g(x)g(xλ)
, (4.6)

f1(x) = −e2
2x

2λ

e1

, (4.7)

f2(x) = −e2
2x

2

e1λ
. (4.8)

The compatibility ofq-linear systems (4.1, 4.2),̂Ψ = Ψ̂ is :

A(ν, x/λ)B(ν, x) − B(ν/λ2, x)A(ν, x) = 0

which forcesg(x) to satisfy a second-order non-linearq-discrete equation

g(x/λ)g(λx) =
αx2(g(x) + x2)

g(x)(g(x) − 1)
. (4.9)

This is aq-discrete analogue of PII, denotedq-PII. Equations (4.1, 4.2)

together are called the Lax pair of equation (4.9).

4.2. q-Linear analysis of the spectral problem

We apply Carmichael’s Theorem (3.1.1) on the formal solutions of the

linear q-discrete system to the spectral problem (4.1) ofq-PII which is a

2 × 2 q-linear system with polynomial coefficient matrix of degreeµ = 3.

We concentrate our analysis on the spectral half of the Lax pair for the

reasons similar to those of the continuous case. We see that the coefficient

matrix of the spectral problem has polynomial dependence onits variable
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ν, whereas the dependence of the deformation equation on its variablex is

transcendental, via the solution ofq-PII g(x).

4.2.1. Series expansion nearν = 0.

Proposition 4.2.1.There exists a fundamental solution matrixΦ of theq-

linear systems (4.1, 4.2) atν = 0, for e1

e2
6= 1

λ4k , k is an integer or half

integer,

Φ(ν, x) = {φ1(ν, x), φ2(ν, x)},

φ1(ν, x) = et
1

∞∑

j=0

(
a2j(x)ν2j

c2j+1(x)ν2j+1

)
, (4.10)

φ2(ν, x) = et
2

∞∑

j=0

(
b2j+1(x)ν2j+1

d2j(x)ν2j

)
(4.11)

wheret = −1
2

ln ν
ln λ

, and

e1aj(1/λ
2j − 1) = m1cj−1 + n1aj−2 + f1cj−3 (4.12)

cj(e1/λ
2j − e2) = m2aj−1 + n2cj−2 + f2aj−3 (4.13)

e2dj(1/λ
2j − 1) = m2bj−1 + n2dj−2 + f2bj−3 (4.14)

bj(e2/λ
2j − e1) = m1dj−1 + n1bj−2 + f1dj−3, (4.15)

wherem1,m2, n1, n2, f1, f2 are defined earlier by equations (4.3)-(4.8).

In particular we will show that

g(x) = −ix
√

α
a0(x/λ)

a0(x/λ2)
, (4.16)

g(x) = −ix
√

α
d0(x/λ2)

d0(x/λ)
. (4.17)

Proof. By Carmichael’s theorem, we know nearν = 0 the solution matrix

has the form

Φ(ν, x) =
∞∑

j=0

(
aj(x) bj(x)

cj(x) dj(x)

)
νj

(
et
1 0

0 et
2

)
. (4.18)

To obtain the recurrence relations (4.12-4.15) for the coefficientsaj, bj, cj, dj,

substitute solution (4.18) into equation (4.1) and equate powers ofν near
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ν = 0. We see fore1 6= e2, b0 = c0 = 0, while a0, d0 are arbitrary. The fact

thatb0 = c0 = 0 further implies

aodd = ceven = dodd = beven = 0. (4.19)

Hence the fundamental matrix solution has the form:

Φ(ν, x) =

{ (
a0(x) 0

0 d0(x)

)
+

(
0 b1(x)

c1(x) 0

)
ν +

(
a2(x) 0

0 d2(x)

)
ν2

+

(
0 b3(x)

c3(x) 0

)
ν3 + ...

} (
et
1 0

0 et
2

)
.

Let Φ = {φ1, φ2}, then

φ1(ν, x) = et
1

∞∑

j=0

(
a2j(x)ν2j

c2j+1(x)ν2j+1

)
,

φ2(ν, x) = et
2

∞∑

j=0

(
b2j+1(x)ν2j+1

d2j(x)ν2j

)
.

Note thataj, bj, cj anddj are in general functions ofx asm1,m2, n1, n2, f1

andf2 are functions ofx. To find thex dependence ofaj(x), cj(x), for

example, we substituteφ1(ν, x) solution (4.10) into the other half of the

Lax pair, the deformation equation (4.2),

φ1(ν, x/λ) = et
1

(
a0(x/λ) + ...

c1(x/λ)ν + ...

)

= et
1

(
−i

√
α λx

g(λx)
iλ2x√

α
ν

i x√
α
ν i g(λx)√

αxλ

) (
a0(x) + ...

c1(x)ν + ...

)
.

Equating powers inν:

ν0 : a0(x/λ) = −i
√

α
λx

g(λx)
a0(x)

⇒ g(x) = −ix
√

α
a0(x/λ)

a0(x/λ2)
(4.20)

This says that the solution ofq-PII is given by the ratio of the leading co-

efficient of the solution of its associated linear problems around ν = 0,

with different shifts in thex direction. This difference in shift corresponds

to differentiation in the continuous setting. Equation (4.17) can be found

similarly, so are the rest of the coefficients in the expansion (4.18). ¤
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4.2.2. Series expansion nearν = ∞.

Proposition 4.2.2.The fundamental solution matrix to theq-linear systems

(4.1, 4.2) atν = ∞ is

Ψ = {ψ1, ψ2},

ψ1(ν, x) = I(ν)J(x)u(ν, x)

(
λ λ

1 −1

) ∞∑

j=0

(
αj(x)

γj(x)

)
1

νj
, (4.21)

ψ2(ν, x) = I(ν)J(x)v(ν, x)

(
λ λ

1 −1

) ∞∑

j=0

(
βj(x)

δj(x)

)
1

νj
(4.22)

where

I(ν) =

(
e2
2

e1

)t

, t = −1

2

ln ν

ln λ
,

J(x) =

(
e2

e1

) s
2

, s = − ln x

ln λ
,

u(ν, x) = Γλ−2(1 + ν/λ)Γλ−2(1 + ixν)Γλ−2(1 + ixλν),

v(ν, x) = Γλ−2(1 − ν/λ)Γλ−2(1 − ixν)Γλ−2(1 − ixλν).

Coefficientsαj, βj, γj andδj satisfy the recurrence relations

−x2 e2
2

e1

αj(λ
2j − 1) (4.23)

=

(
(n1 + n2)

2
+

e2
2

e1

x(−i − iλ + xλ2)λ2j−2

λ

)
αj−1 +

(
(n1 − n2)

2

)
γj−1

(
(m1 + m2λ

2)

2λ
− e2

2

e1

i(−i + λx + λ2x)λ2j−4

λ

)
αj−2 +

(−m1 + m2λ
2)

2λ
γj−2

+

(
(e1 + e2)

2
− e2

2λ
2j−6

e1

)
αj−3 +

(e1 − e2)

2
γj−3,



4.2. q-L INEAR ANALYSIS OF THE SPECTRAL PROBLEM 75

−x2 e2
2

e1

γj(λ
2j + 1) (4.24)

=

(
(n1 + n2)

2
+

e2
2

e1

x(−i − iλ + xλ2)λ2j−2

λ

)
γj−1 +

(
(n1 − n2)

2

)
αj−1

(−(m1 + m2λ
2)

2λ
− e2

2

e1

i(−i + λx + λ2x)λ2j−4

λ

)
γj−2 +

(m1 − m2λ
2)

2λ
αj−2

+

(
(e1 + e2)

2
− e2

2λ
2j−6

e1

)
γj−3 +

(e1 − e2)

2
αj−3,

x2 e2
2

e1

βj(λ
2j + 1) (4.25)

=

(
(n1 + n2)

2
+

e2
2

e1

x(−i − iλ + xλ2)λ2j−2

λ

)
βj−1 +

(
(n1 − n2)

2

)
δj−1

(
(m1 + m2λ

2)

2λ
+

e2
2

e1

i(−i + λx + λ2x)λ2j−4

λ

)
βj−2 +

(−m1 + m2λ
2)

2λ
δj−2

+

(
(e1 + e2)

2
− e2

2λ
2j−6

e1

)
βj−3 +

(e1 − e2)

2
δj−3,

x2 e2
2

e1

δj(λ
2j − 1) (4.26)

=

(
(n1 + n2)

2
+

e2
2

e1

x(−i − iλ + xλ2)λ2j−2

λ

)
δj−1 +

(
(n1 − n2)

2

)
βj−1

(−(m1 + m2λ
2)

2λ
+

e2
2

e1

i(−i + λx + λ2x)λ2j−4

λ

)
δj−2 +

(m1 − m2λ
2)

2λ
βj−2

+

(
(e1 + e2)

2
− e2

2λ
2j−6

e1

)
δj−3 +

(e1 − e2)

2
βj−3,

with β0 = γ0 = 0, andα0, δ0 are arbitrary constants set to be 1 without loss

of generality.

Proof. First we need to diagonalize

A3(x) =

(
0 f1(x)

f2(x) 0

)
=

(
0 − e2

2x2λ

e1

− e2
2x2

e1λ
0

)

for the leading behavior of the series expansion atν = ∞. Sincef1(x)
f2(x)

= λ2,

this can be done by conjugation with the constant matrixC = 1
2

(
λ λ

1 −1

)
.
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Let Ψ(ν, x) = CΨ1(ν, x),

Ψ̂1 = C−1A(ν, x)CΨ1, (4.27)

Ψ1 = C−1B(ν, x)CΨ1 (4.28)

where

C−1A(ν, x)C

=

(
− e2

2

e1
x2 0

0 +
e2
2

e1
x2

)
ν3 +

1

2

(
n1 + n2 n1 − n2

n1 − n2 n1 + n2

)
ν2

+
1

2λ

(
m1 + m2λ

2 −m1 + m2λ
2

m1 − m2λ
2 −(m1 + m2λ

2)

)
ν +

1

2

(
e1 + e2 e1 − e2

e1 − e2 e1 + e2

)
,

C−1B(ν, x)C

=




i
√

e2

e1
xλ 0

0 −i
√

e2

e1
xλ



 ν +

(
− i(e1x2λ2−e2g(xλ)2)

xλg(xλ)
− i(e1x2λ2+e2g(xλ)2)

xλg(xλ)

− i(e1x2λ2+e2g(xλ)2)
xλg(xλ)

− i(e1x2λ2−e2g(xλ)2)
xλg(xλ)

)
.

The matrix solution of theq-linear systems (4.27) atν = ∞ therefore has

the form:

Ψ1(ν, x) = I(ν)J(x)
∞∑

j=0

(
αj(x) βj(x)

γj(x) δj(x)

)
1

νj

(
u 0

0 v

)
(4.29)

where on substituting into the spectral linear system (4.27) we have condi-

tions:

I(ν/λ2) =
e2
2

e1

I(ν)

and

u(ν/λ2, x) =

(
1 + ν

i

λ
(−i + λx + λ2x) − ν2x(−i − iλ + xλ2)

λ
− x2ν3

)
u(ν, x)

= (1 + ν/λ)(1 + ixν)(1 + ixλν)u(ν, x),

v(ν/λ2, x) =

(
1 − ν

i

λ
(−i + λx + λ2x) − ν2x(−i − iλ + xλ2)

λ
+ x2ν3

)
v(ν, x)

= (1 − ν/λ)(1 − ixν)(1 − ixλν)v(ν, x).
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For (4.29) also to be a solution of the deformation equation (4.28), the fol-

lowing equations with respect to the Painlevé variablex need to be satisfied

J(x/λ) =

√
e2

e1

J(x),

and

u(ν, x/λ) = (1 + ixλν)u(ν, x),

v(ν, x/λ) = (1 − ixλν)v(ν, x).

Equations forI(ν) andJ(x) are solved by

I(ν) =

(
e2
2

e1

)t

, t = −1

2

ln ν

ln λ
,

J(x) =

(
e2

e1

) s
2

, s = − ln x

ln λ
,

whereas

u(ν, x) = Γλ−2(1 + ν/λ)Γλ−2(1 + ixν)Γλ−2(1 + ixλν),

v(ν, x) = Γλ−2(1 − ν/λ)Γλ−2(1 − ixν)Γλ−2(1 − ixλν)

satisfy the equations foru(ν, x) andv(ν, x). Γq(1− z) is theq-discrete ana-

logue of the Gamma function. The recurrence relations for the coefficients

αj, βj, γj, δj can be found by substituting solution (4.29) into (4.27) and

equate powers ofν atν = ∞, for example

ν3 : −x2 e2
2

e1

(
α0

γ0

)
= x2 e2

2

e1

(
−α0

γ0

)

implies thatα0 is arbitrary andγ0 = 0,

ν2 : −x2 e2
2

e1

(
α1

γ1

)
λ2 − e2

2

e1

x(−i − iλ + xλ2)

λ

(
α0

0

)

= x2 e2
2

e1

(
−α1

γ1

)
+

1

2

(
(n1 + n2)α0

(n1 − n2)α0

)
,
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implies

α1 = −
α0

(
2x(−i − iλ + xλ2) + e1

e2
2
λ(n1 + n2)

)

2x2λ(λ2 − 1)
,

(4.30)

γ1 =
e1

e2
2

α0(−n1 + n2)

2x2(λ2 + 1)
.

In general

ν3+j :
e2
2

e1

(
− x2

(
αj

γj

)
λ2j − x(−i − iλ + xλ2)

λ

(
αj−1

γj−1

)
λ2j−2

+
i

λ
(−i + λx + λ2x)

(
αj−2

γj−2

)
λ2j−4 +

(
αj−3

γj−3

)
λ2j−6

)

= x2 e2
2

e1

(
−αj

γj

)
+

1

2

(
(n1 + n2)αj−1 + (n1 − n2)γj−1

(n1 − n2)αj−1 + (n1 + n2)γj−1

)

+
1

2λ

(
(m1 + m2λ

2)αj−2 + (−m1 + m2λ
2)γj−2

(m1 − m2λ
2)αj−2 − (m1 + m2λ

2)γj−2

)

+
1

2

(
(e1 + e2)αj−3 + (e1 − e2)γj−3

(e1 − e2)αj−3 + (e1 + e2)γj−3

)
,

gives the recurrence relations (4.23) forαj and (4.24) forγj, and

ν3+j :
e2
2

e1

(
x2

(
βj

δj

)
λ2j − x(−i − iλ + xλ2)

λ

(
βj−1

δj−1

)
λ2j−2

− i

λ
(−i + λx + λ2x)

(
βj−2

δj−2

)
λ2j−4 +

(
βj−3

δj−3

)
λ2j−6

)

= x2 e2
2

e1

(
−βj

δj

)
+

1

2

(
(n1 + n2)βj−1 + (n1 − n2)δj−1

(n1 − n2)βj−1 + (n1 + n2)δj−1

)

+
1

2λ

(
(m1 + m2λ

2)βj−2 + (−m1 + m2λ
2)δj−2

(m1 − m2λ
2)βj−2 − (m1 + m2λ

2)δj−2

)

+
1

2

(
(e1 + e2)βj−3 + (e1 − e2)δj−3

(e1 − e2)βj−3 + (e1 + e2)δj−3

)
,
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gives the recurrence relations (4.25) forβj and (4.26) forδj. Similarly it

can be shown thatδ0 is arbitrary,β0 = 0. The rest of the coefficients can be

calculated using the recurrence relations. For example

δ1 =
α0

(
2x(−i − iλ + xλ2) + e1

e2
2
λ(n1 + n2)

)

2x2λ(λ2 − 1)
,

(4.31)

β1 =
e1

e2
2

α0(n1 − n2)

2x2(λ2 + 1)
.

The coefficientsαj, βj, γj andδj are in general functions ofx sincen1, n2,

m1, m2, f1 andf2 are all functions ofx. Their dependence onx can be

found by substituting solution (4.29) into (4.28). We foundthatα0 andδ0

does not depend onx, that isα0(x/λ) = α0(x) andδ0(x/λ) = δ0(x)(the

functionJ(x) is used to take thex dependence of the leading coefficients).

Since they are constants with respect to both variableν andx, therefore can

be set to be 1 without loss of generality. ¤

4.3. Special solutions

Solutions of the form (4.10, 4.11) are in general not valid when e1

e2
is an

integer power of1
λ2 . Inconsistency can arise in either recurrence relations

(4.13) or (4.15) when this is the case. The casee1

e2
= α = 1/λ4k separates

into two types: (1)k is an integer, (2)k is a half integer. Sinceq-PII (4.9)

has the symmetry,

g(x) → −x2/g(x) ⇒ α → 1/α,

we only need to considerk > 0.

Definition 4.3.1. Type (1): e1

e2
= α = λ−4k, k is a positive integer.

For the linear system (4.1) we find that no inconsistencies arise in this case,

and solutions atν = 0 of the form (4.10, 4.11) are still valid. This can be

easily checked as follows, whene1

e2
= 1

λ4k , thej in equation (4.15) is even,

beven × 0 = m1(x)dodd + n1(x)beven + f1(x)dodd.

Since we found in the expansion of solution of the Lax pair (4.1, 4.2) that

dodd = beven = 0 (equation (4.19)), the RHS is also zero. Hence no incon-

sistency arises in this case.
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Definition 4.3.2. Type (2): e1

e2
= α = λ−4k, k is a positive half integer.

In this case inconsistency can occur for the recurrence relations. For exam-

ple whene1

e2
= 1

λ4k , thej in equation (4.15) is odd

bodd × 0 = m1(x)deven + n1(x)bodd + f1(x)deven

but bodd, deven are not necessarily0, so the RHS is not zero in general .

However, there is still a possibility for avoiding inconsistency, if special

conditions are imposed on the coefficientsm1(x), n1(x) andf1(x).

We will look at the simplest case of type (1) and (2) respectively, which

is k = 0, e1

e2
= 1 andk = 1

2
, e1

e2
= 1

λ2 .

Note that the linear problem (4.1) is not easy to solve in general, being

the 2 × 2 system of (3.1) withµ = 3. However, the problem simplifies

whenA0(x), A1(x), A2(x) andA3(x) in A(ν, x) commute, which means

A(ν, x) can be diagonalized by conjugation with a constant matrix, and the

second-order linear problem reduces to two first-order ones.

4.3.1. The simplest rational type special solution.We look at type (1)

first, as it includes the casee1

e2
= 1, when the linear system can be diagonal-

ized by conjugation with a constant matrix and is exactly solved in terms of

theq-Gamma functions.

Proposition 4.3.3.A solution of the Lax pair (4.1, 4.2) whenα = e1

e2
= 1

and the correspondingq-PII equation (4.9) admits solutiong(x) = −ix, is

given by

φ
(0)
1 (ν, x) (4.32)

=
1

2

(
λ λ

1 −1

)(
Γλ−2(1 + ν/λ)Γλ−2(1 + ixν)Γλ−2(1 + ixλν)

Γλ−2(1 − ν/λ)Γλ−2(1 − ixν)Γλ−2(1 − ixλν)

)

=
∑

j=0

(
λT2jν

2j

T2j+1ν
2j+1

)

where

Tj(
1

λ2j
− 1)=−i(−i + λx + λ2x)

λ
Tj−1 −

x(−i − iλ + xλ2)

λ
Tj−2 (4.33)

+x2Tj−3,

Tj−1(x)=
1

ixλ
(Tj(x/λ) − Tj(x)) . (4.34)
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Proof. On asking the four coefficient matricesA0(x), A1(x), A2(x) and

A3(x) in equation (4.1) to commute with each other, we arrive at thecondi-

tions

e1 = e2, n1(x) = n2(x), m1(x) = λ2m2(x), f1(x) = λ2f2(x) (4.35)

and

g(x) = −ix. (4.36)

Substituting the special solution (4.36) into the linear problems (4.1, 4.2)

gives

Ψ(ν/λ2, x) = A0(ν, x)Ψ(ν, x), (4.37)

Ψ(ν, x/λ) = B0(ν, x)Ψ(ν, x) (4.38)

where

A0(ν, x) =

(
1 + ν2 x(−i−iλ+xλ2)

λ
νi(−i + λx + λ2x) − x2λν3

ν i(−i+λx+λ2x)
λ2 − x2

λ
ν3 1 − ν2 x(−i−iλ+xλ2)

λ

)
,

B0(ν, x) =

(
1 iλ2xν

ixν 1

)
.

We have denoted the reducedA(ν, x), B(ν, x) asA0(ν, x), B0(ν, x) in the

case ofe1

e2
= 1 and the other conditions (4.35, 4.36). The solution matrix

in this case is denoted asΦ = {φ(0)
1 , φ

(0)
2 }. The constant matrix which

diagonalizesA0(ν, x) is C = 1
2

(
λ λ

1 −1

)
. LetΨ(ν, x) = CΨ1(ν, x). Then

Ψ̂1 = C−1A0(ν, x)CΨ1, (4.39)

Ψ1 = C−1B0(ν, x)CΨ1 (4.40)
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where

C−1A0(ν, x)C

=

(
1 + ν i

λ
(−i + λx + λ2x) − ν2 x(−i−iλ+xλ2)

λ
− x2ν3 0

0 1 − ν i
λ
(−i + λx + λ2x) − ν2 x(−i−iλ+xλ2)

λ
+ x2ν3

)
Ψ1

=

(
(1 + ν

λ
)(1 + ixν)(1 + ixλν) 0

0 (1 − ν
λ
)(1 − ixν)(1 − ixλν)

)
Ψ1,

C−1B0(ν, x)C =

(
(1 + ixλν) 0

0 (1 − ixλν)

)
Ψ1.

Let the first column of the solution matrix of equations (4.39, 4.40) be(
u(ν, x)

v(ν, x)

)
, that is

φ
(0)
1 (ν, x) =

1

2

(
λ λ

1 −1

) (
u(ν, x)

v(ν, x)

)

where

u(ν/λ2, x) = (1 + ν/λ)(1 + ixν)(1 + ixλν)u(ν, x), (4.41)

u(ν, x/λ) = (1 + ixλν)u(ν, x), (4.42)

v(ν/λ2, x) = (1 − ν/λ)(1 − ixν)(1 − ixλν)v(ν, x), (4.43)

v(ν, x/λ) = (1 − ixλν)v(ν, x). (4.44)

We see that equation (4.41) has solution

u(ν, x) = u1(ν, x)u2(ν, x)u3(ν, x),

where

u1(ν/λ2, x) = (1 + ν/λ)u1(ν, x),

u2(ν/λ2, x) = (1 + ixν)u2(ν, x),

u3(ν/λ2, x) = (1 + ixλν)u3(ν, x),
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each of which can be solved in terms of theq-Gamma functionΓq(1 − z).

We have

u1(ν, x) = Γλ−2(1 + ν/λ),

u2(ν, x) = Γλ−2(1 + ixν),

u3(ν, x) = Γλ−2(1 + ixλν).

Hence

u(ν, x) = Γλ−2(1 + ν/λ)Γλ−2(1 + ixν)Γλ−2(1 + ixλν). (4.45)

It is easy to check that solution (4.45) also satisfies equation (4.42). To see

this we use the infinite product formula ofΓq(1 − z):

Γq(1 − z) =
1

(z; q)∞
,

where(z; q)∞ = (1 − z)(1 − qz)(1 − q2z) . . ..

Now

u(ν, x) =
1

(− ν
λ
; λ−2)∞

1

(−ixν; λ−2)∞

1

(−ixλν; λ−2)∞

=
1

(1 + ν
λ
)(1 + ν

λ3 ) . . .

1

(1 + ixν)(1 + ixν
λ2 ) . . .

1

(1 + ixλν)(1 + ixν
λ

) . . .
,

and

u(ν, x/λ) =
1

(1 + ν
λ
)(1 + ν

λ3 ) . . .

1

(1 + ixν
λ

)(1 + ixν
λ3 ) . . .

1

(1 + ixν)(1 + ixν
λ2 ) . . .

= (1 + ixλν)u(ν, x).

Similarly it can be shown that

v(ν, x) = Γλ−2(1 − ν/λ)Γλ−2(1 − ixν)Γλ−2(1 − ixλν) (4.46)

satisfies equations (4.43) and (4.44). Hence we have

φ
(0)
1 (ν, x) =

1

2

(
λ λ

1 −1

)(
Γλ−2(1 + ν/λ)Γλ−2(1 + ixν)Γλ−2(1 + ixλν)

Γλ−2(1 − ν/λ)Γλ−2(1 − ixν)Γλ−2(1 − ixλν)

)
.

To show the series summation expression ofφ
(0)
1 (ν, x) in equation (4.32)

recall thatΓq(1−z) (see equation (3.14)) has a series summation expression
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at z = 0:

Γq(1 − z) = 1Φ0(0,−; q, z)

=
∞∑

j=0

zj

(q; q)j

.

Thus

u(ν, x)

= 1Φ0(0,−; λ−2,−ν/λ) × 1Φ0(0,−; λ−2,−ixν) × 1Φ0(0,−; λ−2,−ixνλ)

=
∑

h

(− ν
λ
)h

(λ−2; λ−2)h

∑

j

(−ixν)j

(λ−2; λ−2)j

∑

k

(−ixνλ)k

(λ−2; λ−2)k

= 1 +
iνλ

(1 − λ−2)

(
− i + xλ(1 + λ)

)
+ ...

=
∞∑

j=0

Tj(x)νj

whereT0(x) = 1. From the definition ofTj and equations (4.41, 4.42) for

u(ν, x) we have the relations which defineTj(x), j = 1, 2, . . .

Tj(
1

λ2j
− 1)=−i(−i + λx + λ2x)

λ
Tj−1 −

x(−i − iλ + xλ2)

λ
Tj−2

+x2Tj−3

Tj−1(x)=
1

ixλ
(Tj(x/λ) − Tj(x)) .

Similarly for v(ν, x)

v(ν, x)

= 1Φ0(0,−; λ−2, ν/λ) × 1Φ0(0,−; λ−2, ixν) × 1Φ0(0,−; λ−2, ixνλ)

=
∑

h

( ν
λ
)h

(λ−2; λ−2)h

∑

j

(ixν)j

(λ−2; λ−2)j

∑

k

(ixνλ)k

(λ−2; λ−2)k

= 1 − iλν

(1 − λ2)

(
− i + xλ(1 + λ)

)
+ ...

=
∞∑

j=0

(−1)jTj(x)νj.
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Finally we have the solution of equations (4.37, 4.38)

φ
(0)
1 (ν, x) =

1

2

(
λ λ

1 −1

) (
u(ν, x)

v(ν, x)

)

=
1

2

(
λ λ

1 −1

) (
1 + T1ν + T2ν

2 + T3ν
3 + ...

1 − T1ν + T2ν
2 − T3ν

3 + ...

)

=

(
λ(1 + T2ν

2 + ...)

T1ν + T3ν
3 + ...

)

=
∑

j=0

(
λT2jν

2j

T2j+1ν
2j+1

)
.

¤

4.3.2. The simplestq-hypergeometric type special solution.Type (2):

k = 1
2
, e1

e2
= α = 1

λ2 . In this case the recurrence relation (4.15) atj = 1 is:

b1 × 0 = m1(x)d0.

Sinced0 6= 0, m1(x) needs to be zero for the equation above to be consis-

tent. Recallm1 is defined by equation (4.3),

m1(x) =
λ2g(xλ) (−x2 − g(x) + g(x)g(xλ))

x2
= 0

g(x/λ) = x2

λ2(g(x)−1)
(4.47)

⇒ or

g(xλ) = x2+g(x)
g(x)

. (4.48)

Hence like its continuous counter-part, theq-PII equation (4.9) can be re-

duced to aq-discrete analogue of the Riccati equation. In Appendix C

we show that the contiuum limit of equation (4.48) is a differential Riccati

equation.

Consider now the linear systems in this special case. We know from

equation (4.20) that

g(x) = −ix
√

α
a0(x/λ)

a0(x/λ2)

= −i
x

λ

a0(x/λ)

a0(x/λ2)
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wherea0(x) is the coefficient of the leading behaviour of one of the vector

solution of the linear problems atν = 0. q-Riccati equation (4.48) implies
(
−ix

a0(x)

a0(x/λ)

)(−ix

λ

a0(x/λ)

a0(x/λ2)

)
= x2 − ix

λ

a0(x/λ)

a0(x/λ2)

a0(x/λ2) − i

xλ
a0(x/λ) +

a0(x)

λ
= 0. (4.49)

This is aq-discrete analogue of the Airy equation. In Appendix C we show

that the contiuum limit of equation (4.49) tends to the differential Airy equa-

tion as1
λ
→ 1. So we have found that whene1

e2
= α = 1

λ2 , theq-PII equation

(4.9) reduces to theq-Riccati equation (4.48, or 4.47) and the leading co-

efficienta0(x) of the solution of the linear problems atν = 0 satisfies the

q-discrete Airy equation with respect to theq-discrete Painlevé variablex.

Using q-Riccati equation (4.48) to replace theg(xλ) in the Lax pair (4.1,

4.2), recall in this case we havem1(x) = 0,

Ψ(ν/λ2, x) = A 1
2
(ν, x)Ψ(ν, x), (4.50)

Ψ(ν, x/λ) = B 1
2
(ν, x)Ψ(ν, x) (4.51)

where

A 1
2
(ν, x) =

(
1
λ

+ n1(x)ν2 f1(x)ν3

m2(x)ν + f2(x)ν3 λ + n2(x)ν3

)

=




1
λ

+
(

x4λ3+x2λg(x)+x2λ3g(x)
x2+g(x)

)
ν2 −x2λ4ν3

x2(−x2−g(x)−x2λ2g(x)+x2λ4g(x)+λ4g(x)2)
λ2(x2+g(x))2

ν − x2λ2ν2 λ + λ(−x2+x4λ2−g(x))
x2+g(x)

ν3



 ,

B 1
2
(ν, x) =




− ix

1+ x2

g(x)

iλ3xν

ixλν ix

1+ x2

g(x)



 .

We have denotedA(ν, x), B(ν, x) for the caseα = e1

e2
= 1

λ4k = 1
λ2 , as

A 1
2
(ν, x), B 1

2
(ν, x).

Proposition 4.3.4. A solution of the Lax pair (4.1, 4.2) for the caseα =
e1

e2
= 1

λ2 , and the correspondingq-PII (4.9) is solved byg(x) = −ix
λ

a0(x/λ)
a0(x/λ2)
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(wherea0(x) satisfies aq-Airy equation (4.49)) is given by

φ
( 1

2)
1 (ν, x) = ν

1
2

(
1 0

− n1(x)
f1(x)ν

1
λf1(x)ν

) (
1 0

x2λ4 ixλ2

) ∞∑

j=0

(
a2j(x)ν2j

a2j(x/λ)ν2j

)

= ν
1
2

(
1 0

g(x)
λ3(x2+g(x))ν

− i
xλ3ν

) ∞∑

j=0

(
a2j(x)ν2j

a2j(x/λ)ν2j

)
(4.52)

where

a2j = ixλ2a2j −
i

xλ2
(1/λ4j+4 − 1)a2j+2, (4.53)

a2j = −1

λ
a2j − x2λ3a2j−2 +

i

xλ
a2j, (4.54)

in particular,

a0 −
i

xλ
a0 +

a0

λ
= 0,

recally(x) = y(x
λ
).

Proof. We will use the asymptotic behaviour (4.10) ofφ1(ν, t) nearν = 0

as a guide as to how to transform the Lax pair (4.50, 4.51) to a simpler form,

for whenα = e1

e2
= 1

λ2 andg(x) satisfy equation (4.48).

Since

et
1 = (1/λ)t = exp

(
− ln λ

ln ν

ln λ−2

)
= exp

(
1

2
ln ν

)
= ν

1
2 ,

et
2 = (λ)t = exp

(
ln λ

ln ν

ln λ−2

)
= exp

(
−1

2
ln ν

)
= ν− 1

2 ,

we know from equation (4.10), there is a solution of the Lax pair (4.50,

4.51) with asymptotic behaviourν
1
2 of the form

φ1(ν, x) = ν
1
2

∞∑

j=0

(
a2jν

2j

c2j+1ν
2j+1

)

wherea0(x) satisfies equation (4.49). This indicates the first transforma-

tion:

Ψ(ν, x) = ν
1
2 Ψ1(ν, x). (4.55)
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Then,

Ψ̂1(ν, x) = Ψ1(ν/λ2, x) = λA 1
2
(ν, x)Ψ1(ν, x) (4.56)

=

(
1 + λn1(x)ν2 λf1(x)ν3

λm2(x)ν + λf2(x)ν3 λ2 + λn2(x)ν3

)
Ψ1(ν, x).

This transformation does not change equation (4.51) that is

Ψ1(ν, x/λ) = B 1
2
(ν, x)Ψ2(ν, x) =




− ix

1+ x2

g(x)

iλ3xν

ixλν ix

1+ x2

g(x)



 Ψ1(ν, x). (4.57)

Let

(
u(ν, x)

v(ν, x)

)
be a vector solution of the Lax pair (4.56, 4.57), then

(
u(ν/λ2, x)

v(ν/λ2, x)

)
=

(
1 + λn1(x)ν2 λf1(x)ν3

λm2(x)ν + λf2(x)ν3 λ2 + λn2(x)ν3

)(
u(ν, x)

v(ν, x)

)
(4.58)

and (
u(ν, x/λ)

v(ν, x/λ)

)
=




− ix

1+ x2

g(x)

iλ3xν

ixλν ix

1+ x2

g(x)




(

u(ν, x)

v(ν, x)

)
. (4.59)

The top entry of equation (4.58) gives us

û − u

ν2
= λn1(x)u + νλf1(x)v. (4.60)

Equation (4.60) shows howv(ν, x) is related tou(ν, x). We would like to

transform to a new “v”which relates tou more simply. Let

v1 =
û − u

ν2
= λn1(x)u + νλf1(x)v,

then
(

u

v

)
=

(
1 0

− n1(x)
f1(x)ν

1
λf1(x)ν

) (
u

v1

)
= Q(ν, x)

(
u

v1

)
(4.61)

=

(
1 0

x2λ2+g(x)+λ2g(x)
λ3(x2+g(x))ν

− 1
x2λ5ν

) (
u

v1

)
.

The reason for transformation (4.61) is that we know inq-discrete calculus:

y(x) − y(x)

x2(q − 1)
=

y(qx) − y(x)

x2(q − 1)
→ 1

x

dy

dx
, in the limit q → 1,
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which is similar to what we have in the case of PII for the special case

a = 1
2
.

The Lax pair is now
(

û

v̂1

)
= Q̂−1

(
λA 1

2
(ν, x)

)
Q

(
u

v1

)
, (4.62)

(
u

v1

)
=Q

−1
B 1

2
(ν, x)Q

(
u

v1

)
(4.63)

where

Q̂−1
(
λA 1

2
(ν, x)

)
Q

=

(
1 ν2

−x2λ2(−1 − λ2 + x2λ4)ν2 + x4λ6ν4 1 + (−1 + x2λ2 + x2λ4)ν2

)
,

Q
−1

B 1
2
(ν, x)Q=

(
ixλ2 − i

xλ2

ix(−1 − λ2 + x2λ4) − ix3λ4ν2 − i(x2λ2−1)
xλ2

)
.

Now, we see that the transformation equation (4.61) simplifies the Lax pair

significantly. For instance, equations (4.62, 4.63) no longer haveg(x) the

solution ofq-PII in their coefficient matrices. The top entry of the vector

equation (4.63) gives us

u = ixλ2u − i

xλ2

(
û − u

ν2

)
(4.64)

which relates the operation inx to the operation inν.

Finally, let

v2 = u = ixλ2u − i

xλ2

(
û − u

ν2

)
,

so

v2 =
∞∑

j=0

a2j(x/λ)ν2j.

That is (
u

v1

)
=

(
1 0

x2λ4 ixλ2

) (
u

v2

)
, (4.65)
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then
(

û

v̂2

)
=

(
1 + x2λ4ν2 ixλ2ν2

−ixν2 − ix3λ4ν4 1 + (x2λ2 − 1)ν2

) (
u

v2

)
, (4.66)

(
u

v2

)
=

(
0 1

− 1
λ
− x2λ3ν2 i

xλ

) (
u

v2

)
. (4.67)

Recallu(ν, x) at the neighborhood ofν = 0 has the series expansion:

u(ν, x) =
∞∑

j=0

a2j(x)ν2j = a0(x) + a2(x)ν2 + a4(x)ν4 + ...

then equation (4.64) gives us a relation (4.53) fora2j:

a2j = ixλ2a2j −
i

xλ2
(1/λ4j+4 − 1)a2j+2.

The bottom entry of equation (4.67) is:

v2 = u =

(
−1

λ
− x2λ3ν2

)
u +

i

xλ
u (4.68)

which gives us the other relation (4.54) fora2j:

a2j = −1

λ
a2j − x2λ3ν2a2j−2 +

i

xλ
a2j.

Transformations (4.55), (4.61), and (4.65) means we went:

ν
1
2

(
u

v

)
→

(
u

bu−(1+λn1ν2)u
λf1ν3

)
→

(
u

bu−u
ν2

)
→

(
u

u

)
.

A solution of the Lax pair (4.66, 4.67) is

(
u

v2

)
=

(
u

u

)
=

∞∑

j=0

(
a2j(x)ν2j

a2j(x/λ)ν2j

)

anda2j satisfy the relations (4.53) and (4.54). In particular,a0(x) satisfies

theq-Airy equation (4.49). The solution of the original Lax pair(4.50, 4.51)
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can be constructed back using the transformations (4.55), (4.61), and (4.65),

φ
( 1

2)
1 (ν, x) = ν

1
2

(
u

v

)
= ν

1
2

(
1 0

− n1(x)
f1(x)ν

1
λf1(x)ν

) (
u

v1

)

= ν
1
2

(
1 0

− n1(x)
f1(x)ν

1
λf1(x)ν

) (
1 0

x2λ4 ixλ2

) (
u

v2

)

= ν
1
2

(
1 0

g(x)
λ3(x2+g(x))ν

− i
xλ3ν

) ∞∑

j=0

(
a2j(x)ν2j

a2j(x/λ)ν2j

)
.

¤

4.4. Schlesinger transformationLk

Let the Lax pair for whene1 = 1
λ2k , e2 = λ2k, gk(x) is a solution of the

q-PII equation

g(x/λ)g(λx) =
αx2(g(x) + x2)

g(x)(g(x) − 1)
, for α =

e1

e2

=
1

λ4k
,

be denoted as:

Ψ̂(k)(ν, x) = Ak(ν, x)Ψ(k)(ν, x), (4.69)

Ψ
(k)

(ν, x) = Bk(ν, x)Ψ(k)(ν, x) (4.70)

whereAk(ν, x) andBk(ν, x) denote the coefficient matrices of the spectral

(4.1) and deformation (4.2) equations.

Let

(
u(k)(ν, x)

v(k)(ν, x)

)
be the first columnφ(k)

1 (ν, x) of the fundamental matrix

solution of the Lax pair (4.69, 4.70) given by proposition 4.2.1. Therefore,
(

u(k)(ν, x)

v(k)(ν, x)

)
∼ νk

(
a

(k)
0 (x)

c
(k)
1 (x)ν

)
asν → 0,

where the superscript(k) denotes the facte1 = 1
λ2k , e2 = λ2k and the corre-

sponding solution of the theq-PII equation isgk(x). Then, the solution of

the linear system when the parameterα = e1

e2
= 1

λ4(k+1) is
(

u(k+1)(ν, x)

v(k+1)(ν, x)

)
∼ νk+1

(
a

(k+1)
0 (x)

c
(k+1)
1 (x)ν

)
asν → 0.
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The Schlesinger transformationLk(ν, x) is such that
(

u(k+1)(ν, x)

v(k+1)(ν, x)

)
= Lk(ν, x)

(
u(k)(ν, x)

v(k)(ν, x)

)
.

Proposition 4.4.1.The Schlesinger transformation of the associated linear

problem (4.69) ofq-PII is given by

Ψ(k+1)(ν, x) = Lk(ν, x)Ψ(k)(ν, x), (4.71)

where

Lk(ν, x) =




−A

(k)
21 (λ2ν)

|Ak(λ2ν)|
A

(k)
11 (λ2ν)

|Ak(λ2ν)|
A

(k+1)
11 A

(k)
21 (λ2ν)

A
(k+1)
12 |Ak(λ2ν)|

1

A
(k+1)
12

(
1 − A

(k+1)
11

|Ak(λ2ν)|A
(k)
11 (λ2ν)

)



 . (4.72)

Proof. We first relatev(k)(ν, x) with u(k+1)(ν, x) , making use of the Bäck-

lund transformation ofgk(x). We are motivated by an observation that

v(k)(ν, x) has the same order of leading behavior inν with u(k+1)(ν, x) in

the neighbourhood ofν = 0, namely,

v(k)(ν, x) ∼ c
(k)
1 (x)νk+1,

u(k+1)(ν, x) ∼ a
(k+1)
0 (x)νk+1.

Proposition 4.4.2.There exists a constantµ such that

c
(k)
1 (x) = µa

(k+1)
0 (x).

Proof. Recall equation (4.20) relates the solution ofq-PII to the leading

behaviour of the solution of its associated linear problems

gk(x) = −i
x

λ2k

a
(k)
0 (x/λ)

a
(k)
0 (x/λ2)

. (4.73)

Then proposition 4.4.2 is true if we can show

gk+1(x) = −i
x

λ2k+2

a
(k+1)
0 (x/λ)

a
(k+1)
0 (x/λ2)

= −i
x

λ2k+2

c
(k)
1 (x/λ)

c
(k)
1 (x/λ2)

.

From the recurrence relation (4.13) forc
(k)
1 (x) we have

c
(k)
1 (x)

(
e1/λ

2 − e2

)
= m2(x)a

(k)
0 (x)

= −x2 (e1x
2λ2 − e2gk(x)gk(xλ)λ2 + e1gk(xλ))

λgk(x)gk(xλ)2
a

(k)
0 (x),
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then,

c
(k)
1 (x/λ)

c
(k)
1 (x/λ2)

=
m2(x/λ)a

(k)
0 (x/λ)

m2(x/λ2)a
(k)
0 (x/λ2)

=
λ4gk(x/λ2)gk(x/λ)2 (e1x

2 − e2gk(x/λ)gk(x)λ2 + e1gk(x)) a
(k)
0 (x/λ)

λ2gk(x/λ)gk(x)2
(
e1

x2

λ2 − e2gk(x/λ2)gk(x/λ)λ2 + e1gk(x/λ)
)
a

(k)
0 (x/λ2)

.

Use theq-PII equation

gk(x/λ2)gk(x) =

e1

e2

x2

λ2

(
gk(x/λ) + x2

λ2

)

gk(x/λ) (gk(x/λ) − 1)

to eliminategk(x/λ2), and rewritea
(k)
0 (x/λ)

a
(k)
0 (x/λ2)

in terms ofgk(x), we have

c
(k)
1 (x/λ)

c
(k)
1 (x/λ2)

=
(αx2 − gk(x/λ)gk(x)λ2 + αgk(x)) x2

gk(x)2 (gk(x)(gk(x/λ) − 1) − x2)

gk(x)λ2ki

x

= iλ2k (αx2 − gk(x/λ)gk(x)λ2 + αgk(x)) x

gk(x) (gk(x)(gk(x/λ) − 1) − x2)
.

Then

−i
x

λ2k+2

c
(k)
1 (x/λ)

c
(k)
1 (x/λ2)

=
(αx2 − gk(x/λ)gk(x)λ2 + αgk(x)) x2

λ2gk(x) (gk(x)(gk(x/λ) − 1) − x2)
.

The last line is the Bäcklund transformation of ourq-PII equation (4.9),

found by Joshi et al. [39]. That is

gk+1(x) =
(αx2 − gk(x/λ)gk(x)λ2 + αgk(x)) x2

λ2gk(x) (gk(x)(gk(x/λ) − 1) − x2)
, (4.74)

and

gk+1(x) = −i
x

λ2k+2

a
(k+1)
0 (x/λ)

a
(k+1)
0 (x/λ2)

= −i
x

λ2k+2

c
(k)
1 (x/λ)

c
(k)
1 (x/λ2)

.

Thereforea(k+1)
0 (x) is proportional toc(k)

1 (x). ¤

This motivates the following statement

Proposition 4.4.3.

v(k)(λ2ν, x) = u(k+1)(ν, x).
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Proof. Recall the spectral equation (4.69) is of the form
(

û(k)

v̂(k)

)
=

(
A

(k)
11 A

(k)
12

A
(k)
21 A

(k)
22

) (
u(k)

v(k)

)
(4.75)

where

A
(k)
11 =

1

λ2k
+

λ6k
(
λ−4kx2 + gk(x)gk(xλ)2 − gk(x)gk(xλ)

)
ν2

gk(xλ)
(4.76)

A
(k)
12 =

λ6kgk(xλ)
(
−λ−4kx2λ2 − gk(x) + gk(x)gk(xλ)

)
ν

x2λ
− x2λ6kλν3

A
(k)
21 = −λ6kx2ν3

λ
− x2λ−2k

(
x2λ2 − λ4kgk(x)gk(xλ)λ2 + gk(xλ)

)
ν

λgk(x)gk(xλ)2

A
(k)
22 = λ2k − λ2kν2

(
−x4λ4 − x2gk(xλ)λ2 + λ4kgk(x)gk(xλ)2

)

λ2gk(x)gk(xλ)
.

It is useful to note that

|Ak(ν, x)| = (1 − λ4k

λ2
ν2)(1 + λ4kx2ν2)(1 + λ4kx2λ2ν2). (4.77)

This 2 × 2 system of coupled first orderq-discrete equations (q-△Es) can

be written as two second orderq-△Es:

̂̂u
(k)

= (A
(k)
22

Â
(k)
12

A
(k)
12

+ Â
(k)
11 )ûk +

Â
(k)
12

A
(k)
12

|Ak|u(k) (4.78)

̂̂v
(k)

= (A
(k)
11

Â
(k)
21

A
(k)
21

+ Â
(k)
22 )v̂(k) +

Â
(k)
21

A
(k)
21

|Ak|v(k) (4.79)

and the equation foru(k+1) is then

̂̂u
(k+1)

=(A
(k+1)
22

Â
(k+1)
12

A
(k+1)
12

+ Â
(k+1)
11 )û(k+1) +

Â
(k+1)
12

A
(k+1)
12

|Ak+1|u(k+1). (4.80)

We observe from equation (4.77) that

|Ak(ν, x)| = |Ak+1(ν/λ2, x)| = |Âk+1| (4.81)

and using theq-PII equation (4.9) forgk(x) and its Bäcklund transformation

(4.74) we can easily show

Â
(k)
21

A
(k)
21

(ν, x) =
Â

(k+1)
12

A
(k+1)
12

(ν/λ2, x) (4.82)
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and

(A
(k)
11

Â
(k)
21

A
(k)
21

+ Â
(k)
22 )(ν, x) = (A

(k+1)
22

Â
(k+1)
12

A
(k+1)
12

+ Â
(k+1)
11 )(ν/λ2, x).

That isv(k)(ν, x) andu(k+1)(ν/λ2, x) satisfy the same equation. The as-

ymptotic behaviors ofv(k)(ν, x) andu(k+1)(ν/λ2, x) are

c
(k)
1 (x)νk+1 = µa

(k+1)
0 (x)νk+1

and

a
(k+1)
0 (x)

νk+1

λ2k+2

respectively. If we choseµ to be 1
λ2k+2 , that is

c
(k)
1 (x) =

a
(k+1)
0 (x)

λ2k+2
, (4.83)

then we have

u(k+1)(ν/λ2, x) = v(k)(ν, x), or u(k+1)(ν, x) = v(k)(νλ2, x).

¤

So now the problem of writingu(k+1)(ν, x) in terms ofu(k)(ν, x) and

v(k)(ν, x) is reduced to writingv(k)(νλ2, x) in terms ofu(k)(ν, x) andv(k)(ν, x).

Pre-multiply the linear system (4.75) by the inverse ofAk(ν, x),

1

|Ak|

(
A

(k)
22 −A

(k)
12

−A
(k)
21 A

(k)
11

) (
u(k)

v(k)

)
(ν/λ2, x) =

(
u(k)

v(k)

)
(ν, x)

⇒ v(k) =
1

|Ak|
(A

(k)
11 v̂(k) − A

(k)
21 û(k)),

or

v(k)(νλ2) =
1

|Ak(νλ2)|(A
(k)
11 (νλ2)v(k) − A

(k)
21 (νλ2)u(k)).

Note we have made thex dependence implicit, since all the operations are

on the variableν andx does not change.

Henceu(k+1) in terms ofu(k) andv(k) is

u(k+1)(ν) = v(k)(λ2ν) =
1

|Ak(λ2ν)|(A
(k)
11 (λ2ν)v(k) − A

(k)
21 (λ2ν)u(k)).
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Now it is only left for us to writev(k+1) in terms ofu(k) andv(k) to obtain

Lk(ν, x).

From the spectral equation forv(k+1)(ν), we have

v(k+1)(ν) =
1

A
(k+1)
12

(û(k+1) − A
(k+1)
11 u(k+1))

=
1

A
(k+1)
12

(
v(k) − A

(k+1)
11

|Ak(λ2ν)|
(
A

(k)
11 (λ2ν)v(k) − A

(k)
21 (λ2ν)u(k)

))

=
1

A
(k+1)
12

{(
1 − A

(k+1)
11

|Ak(λ2ν)|A
(k)
11 (λ2ν)

)
v(k) +

A
(k+1)
11 A

(k)
21 (λ2ν)

|Ak(λ2ν)| u(k)

}
.

We are now ready to relate

(
u(k+1)

v(k+1)

)
to

(
u(k)

v(k)

)
.

(
u(k+1)(ν, x)

v(k+1)(ν, x)

)

= Lk(ν, x)

(
u(k)(ν, x)

v(k)(ν, x)

)

=




−A

(k)
21 (λ2ν)

|Ak(λ2ν)|
A

(k)
11 (λ2ν)

|Ak(λ2ν)|
A

(k+1)
11 A

(k)
21 (λ2ν)

A
(k+1)
12 |Ak(λ2ν)|

1

A
(k+1)
12

(
1 − A

(k+1)
11

|Ak(λ2ν)|A
(k)
11 (λ2ν)

)





(
u(k)(ν, x)

v(k)(ν, x)

)
.

¤

Recall that the special solutions of PII form an infinite sequence which

can be expressed in a determinantal form [18]. In section 1.5.1 we saw

that those rational andq-hypergeometric type special solutions ofq-PII also

form infinite sequences. We prove here that these also have a determinantal

representation and relate special solutions ofq-PII to the special solutions

of the associated linear problem.

We know that the solution ofq-PII gk(x) is related to the leading co-

efficienta(k)
0 (x) of the solution of the associated linear problemsφ

(k)
1 (ν, x)

by

gk(x) = −i
x

λ2k

a
(k)
0 (x/λ)

a
(k)
0 (x/λ2)

,
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that is one can findgk(x) via the expression ofa(k)
0 (x). We also have the

Schlesinger transformation of the associated linear problem ofq-PII, which

allows us to write down the solution of the linear problem when e1/e2 =
1

λ4k , for k is any integer or half integer.

Fork is an integer,

φ
(k)
1 (ν, x) =

(
u(k)(ν, x)

v(k)(ν, x)

)
= Lk−1Lk−2 . . . L0 φ

(0)
1 (ν, x) (4.84)

= Lk−1Lk−2 . . . L0

(
u(0)(ν, x)

v(0)(ν, x)

)
,

and from proposition 4.3.3 we know

φ
(0)
1

=

(
u(0)(ν, x)

v(0)(ν, x)

)
=

1

2

(
λ λ

1 −1

) (
Γλ−2(1 + ν

λ
)Γλ−2(1 + ixν)Γλ−2(1 + ixλν)

Γλ−2(1 − ν
λ
)Γλ−2(1 − ixν)Γλ−2(1 − ixλν)

)

=
∑

j=0

(
a

(0)
2j ν2j

c
(0)
2j+1ν

2j+1

)
=

∑

j=0

(
λT2jν

2j

T2j+1ν
2j+1

)
(4.85)

where

Tj(
1

λ2j
− 1)=−i(−i + λx + λ2x)

λ
Tj−1 −

x(−i − iλ + xλ2)

λ
Tj−2,

+x2Tj−3,

Tj−1(x)=
1

ixλ
(Tj(x/λ) − Tj(x)) .

Fork is a half integer,

φ
(k)
1 (ν, x) =

(
u(k)(ν, x)

v(k)(ν, x)

)
= Lk−1Lk−2 . . . L 1

2
φ

( 1
2
)

1 (ν, x) (4.86)

= Lk−1Lk−2 . . . L 1
2

(
u( 1

2
)(ν, x)

v( 1
2
)(ν, x)

)
,
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and from proposition 4.3.4 we know

φ
( 1

2)
1 (ν, x) =

(
u( 1

2
)(ν, x)

v( 1
2
)(ν, x)

)

= ν
1
2




1 0

g 1
2
(x)

λ3(x2+g 1
2
(x))ν

− i
xλ3ν




∞∑

j=0

(
a

( 1
2
)

2j (x)ν2j

a
( 1
2
)

2j (x/λ)ν2j

)
, (4.87)

where

a
( 1
2
)

2j = ixλ2a
( 1
2
)

2j − i

xλ2
(1/λ4j+4 − 1)a

( 1
2
)

2j+2,

a
( 1
2
)

2j = −1

λ
a

( 1
2
)

2j − x2λ3a
( 1
2
)

2j−2 +
i

xλ
a

( 1
2
)

2j .

Hence it is possible to findgk(x) via the expression ofa(k)
0 (x) in terms of

Tj, (j = 0, 1, . . .) whenk is an integer, or in terms ofa
( 1
2
)

2j (x) anda
( 1
2
)

2j (x/λ),

(j = 0, 1, . . .) whenk is a half integer.

4.4.1. Using Schlesinger transformationLk for the evaluation of a
(k)
0 .

Recall the Schlesinger transformation for the solutions of the associated

linear problem ofq-PII is

Lk(ν, x) =




−A

(k)
21 (λ2ν)

|Ak(λ2ν)|
A

(k)
11 (λ2ν)

|Ak(λ2ν)|
A

(k+1)
11 A

(k)
21 (λ2ν)

A
(k+1)
12 |Ak(λ2ν)|

1

A
(k+1)
12

(
1 − A

(k+1)
11

|Ak(λ2ν)|A
(k)
11 (λ2ν)

)



 ,

whereA
(k)
11 , A

(k)
12 , A

(k)
21 andA

(k)
22 are defined by equation (4.76). We see that

asν → 0,

A
(k)
11 (ν, x) ∼ O(1),

A
(k)
12 (ν, x) ∼ O(ν),

A
(k)
21 (ν, x) ∼ O(ν),

A
(k)
22 (ν, x) ∼ O(1),

|Ak(ν, x)| ∼ O(1).

Hence

Lk(ν, x) ∼
(

O(ν) O(1)

O(1) O(1/ν)

)
,
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that isLk(ν, x) is a matrix function with infinite series expansion in the

spectral variableν in the neighbourhood ofν = 0, unlike the Schlesinger

transformationLa(x, t) of the linear problem of PII which is a matrix func-

tion of simple dependence of its spectral variablex :

La(x, t) =

(
0 1

1 la(t)
x

)
,

where

la(t) = − i(1 + 2a)

x(t + 2f 2
a − 2f ′

a)
.

We have found that Schlesinger transformationLk(ν, x) is not particularly

helpful for finding determinantal expressions ofa
(k)
0 . Let us look at a few

examples from equation (4.84):

φ
(k)
1 (ν, x) = Lk−1Lk−2 . . . L0 φ

(0)
1 (ν, x),

for k are integers as to see why this is the case.

Fork = 1,

φ
(1)
1 (ν, x) = L0(ν, x)φ

(0)
1 (ν, x), (4.88)

with

φ
(0)
1 (ν, x) =

∑

j=0

(
a2jν

2j

c2j+1ν
2j+1

)
,

where we have omitted the superscript(0) on the coefficients of expansion

here for simplicity, and

L0(ν, x) =




−A

(0)
21 (λ2ν)

|A0(λ2ν)|
A

(0)
11 (λ2ν)

|A0(λ2ν)|
A

(01)
11 A

(0)
21 (λ2ν)

A
(1)
12 |A0(λ2ν)|

1

A
(1)
12

(
1 − A

(1)
11

|A0(λ2ν)|A
(0)
11 (λ2ν)

)





∼
(

s1ν + s3ν
3 + . . . 1

ν
(t1ν + t3ν

3 + . . .)

s0 + s2ν
2 + . . . 1

ν
(t0 + t2ν

2 + . . .)

)
,

where we have named the coefficients ofνj in the (1, 1) and(2, 1) entries

to be sj, the coefficients ofνj−1 in the (1, 2) and (2, 2) entries to betj,

(j = 0, 1, . . .). Notesj andtj are in general functions ofx, which can be
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calculated from the definitions (4.76) ofA
(k)
mn(ν, x), (m,n = 1, 2).

The asymptotic behavior ofφ(1)
1 (ν, x) nearν = 0 is given by

φ
(1)
1 (ν, x) ∼

(
a

(1)
0 ν

c
(1)
1 ν2

)
, asν → 0

but from equation (4.88)φ(1)
1 (ν, x) is given by

φ
(1)
1 (ν, x) =

(
s1ν + s3ν

3 + . . . 1
ν
(t1ν + t3ν

3 + . . .)

s0 + s2ν
2 + . . . 1

ν
(t0 + t2ν

2 + . . .)

) ∞∑

j=0

(
a2jν

2j

c2j+1ν
2j+1

)
.

Equating powers inν of the two expressions ofφ(1)
1 (ν, x):

-the top equation gives

ν : s1a0 + t1c1 = a
(1)
0 ,

-the bottom equation gives

ν0 : s0a0 + t0c1 = 0

ν2 : s0a2 + t0c3 + s2a0 + t2c1 = c
(1)
1 ,

which we can rewrite in the form of a matrix equation, recall from equation

(4.83) thatc(1)
1 =

a
(2)
0

λ4 ,

(
a0 c1 a2 c3

0 0 a0 c1

)




s2

t2
s0

t0




=

(
a
(2)
0

λ4

0

)
. (4.89)

Equation (4.84) fork = 2 is,

φ
(2)
1 (ν, x) = L1L0 φ

(0)
1 (ν, x), (4.90)

where

L1L0 ∼
(

s0 + s2ν
2 + . . . 1

ν
(t0 + t2ν

2 + . . .)
s−1

ν
+ s1νs3ν

3 + . . . 1
ν

(
t−1

ν
+ t1ν + t3ν

3 + . . .
)
)

,

where we have renamed the coefficients ofνj in the(1, 1) and(2, 1) entries

to be sj, the coefficients ofνj−1 in the (1, 2) and (2, 2) entries to betj,

(j = −1, 0, 1, . . .). Note thesj and tj for the casek = 2 are obviously
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different functions from thesj andtj for the casek = 1.

We knowφ
(2)
1 (ν, x)’s asymptotic behaviour is given by

φ
(2)
1 (ν, x) ∼ ν2

(
a

(2)
0

c
(2)
1 ν

)
, asν → 0

but from equation (4.90)φ(2)
1 (ν, x) is given by

φ
(2)
1 (ν, x)

=

(
s0 + s2ν

2 + . . . 1
ν
(t0 + t2ν

2 + . . .)
s−1

ν
+ s1ν + s3ν

3 + . . . 1
ν

(
t−1

ν
+ t1ν + t3ν

3 + . . .
)
) ∞∑

j=0

(
a2jν

2j

c2j+1ν
2j+1

)
.

Equating powers inν of the two expressions ofφ(2)
1 (ν, x):

-the top equation gives

ν0 : s0a0 + t0c1 = 0

ν2 : s0a2 + t0c3 + s2a0 + t2c1 = a
(2)
0

which we have already expressed in the form of a matrix equation (4.89),

-the bottom equation gives

1

ν
: s−1a0 + t−1c1 = 0

ν : s−1a2 + t−1c3 + s1a0 + t1c1 = 0

ν3 : s−1a4 + t−1c5 + s1a2 + t1c3 + s3a0 + t3c1 = c
(2)
1

which we can rewrite in the form of a matrix equation, and recall from

equation (4.83) thatc(2)
1 =

a
(3)
0

λ6 ,




a0 c1 a2 c3 a4 c5

0 0 a0 c1 a2 c3

0 0 0 0 a0 c1









s3

t3
s1

t1

s−1

t−1





=





a
(3)
0

λ6

0

0



 . (4.91)

Equation (4.84) fork = 3 is,

φ
(3)
1 (ν, x) = L2L1L0 φ

(0)
1 (ν, x), (4.92)
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where

L2L1L0 ∼
(

s−1

ν
+ s1ν + s3ν

3 + . . . 1
ν

(
t−1

ν
+ t1ν + t3ν

3 + . . .
)

s−2

ν2 + s0 + s2ν
2 + . . . 1

ν

(
t−2

ν2 + t0 + t2ν
2 + . . .

)
)

.

We know

φ
(3)
1 (ν, x) ∼ ν3

(
a

(3)
0

c
(3)
1 ν

)
, asν → 0

but from equation (4.92)φ(3)
1 (ν, x) is given by

φ
(3)
1 (ν, x)

=

(
s−1

ν
+ s1ν + s3ν

3 + . . . 1
ν

(
t−1

ν
+ t1ν + t3ν

3 + . . .
)

s−2

ν2 + s0 + s2ν
2 + . . . 1

ν

(
t−2

ν2 + t0 + t2ν
2 + . . .

)
) ∞∑

j=0

(
a2jν

2j

c2j+1ν
2j+1

)
.

Equating powers inν of the two expressions ofφ(3)
1 (ν, x):

-the top equation gives

1

ν
: s−1a0 + t−1c1 = 0

ν : s−1a2 + t−1c3 + s1a0 + t1c1 = 0

ν3 : s−1a4 + t−1c5 + s1a2 + t1c3 + s3a0 + t3c1 = a
(3)
0

which we have already expressed in the form of a matrix equation (4.91),

-the bottom equation gives

1

ν2
: s−2a0 + t−2c1 = 0

ν0 : s−2a2 + t−2c3 + s0a0 + t0c1 = 0

ν2 : s−2a4 + t−2c5 + s0a2 + t0c3 + s2a0 + t2c1 = 0

ν4 : s−2a6 + t−2c7 + s0a4 + t0c5 + s2a2 + t2c3 + s4a0 + t4c1 = c
(3)
1 ,
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which we can rewrite in the form of a matrix equation, recall from equation

(4.83) thatc(3)
1 =

a
(4)
0

λ8 ,





a0 c1 a2 c3 a4 c5 a6 c7

0 0 a0 c1 a2 c3 a4 c5

0 0 0 0 a0 c1 a2 c3

0 0 0 0 0 0 a0 c1









s4

t4

s2

t2

s0

t0

s−2

t−2





=





a
(4)
0

λ8

0

0

0




.

From the above examples we see that although we can calculateall the

sj, tj and the coefficientsa(0)
2j , c

(0)
2j+1 (j = 0, 1, . . .) of the expansion of

φ
(0)
1 (ν, x) and hence calculatea(k)

0 , it does not however give usa(k)
0 (x) in

the desired determinantal form. This is due to the fact thatLk(ν, x) in the

neighbourhood ofν = 0 has infinite series expansion in the spectral variable

ν. In the next subsection we will show that there is another Schlesinger

transformation which reveals the determinantal structureof a
(k)
0 (x).

4.5. A simpler Schlesinger transformationΛk

While relation (4.84) is correct, its complexity does not help us to find

a
(k)
0 (x) in a determinantal form. We will show a simpler Schlesinger trans-

formation of the associated linear problem from which the determinantal

form of a
(k)
0 (x) and hencegk(x) can be obtained. Recall the associated

linear problem (4.69)

Ψ̂(k)(ν, x) = Ak(ν, x)Ψ(k)(ν, x)

=

(
A

(k)
11 A

(k)
12

A
(k)
21 A

(k)
22

)
Ψ(k)(ν, x),

whereA
(k)
mn (m,n = 1, 2), are defined in equation (4.76). We also have the

Schlesinger transformation (4.71) that relatesΨ(k+1)(ν, x) to Ψ(k)(ν, x)

Ψ(k+1)(ν, x) = Lk(ν, x)Ψ(k)(ν, x),
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whereLk(ν, x) is defined by equation (4.72)

Lk(ν, x) =




−A

(k)
21 (λ2ν)

|Ak(λ2ν)|
A

(k)
11 (λ2ν)

|Ak(λ2ν)|
A

(k+1)
11 A

(k)
21 (λ2ν)

A
(k+1)
12 |Ak(λ2ν)|

1

A
(k+1)
12

(
1 − A

(k+1)
11

|Ak(λ2ν)|A
(k)
11 (λ2ν)

)



 .

Definition 4.5.1. Let us define a new system of vector functionsF (k)(ν, x),

which are related toφ(k)
1 (ν, x) by

F (k)(ν, x) = φ
(k)
1 (ν/λ2k, x) (4.93)

=
νk

λ2k2

∞∑

j=0

(
a

(k)
2j (x) ν2j

λ4kj

c
(k)
2j+1(x) ν2j+1

λ2k(2j+1)

)
.

Proposition 4.5.2.Now we show that vector functionF (k)(ν, x) have Schlesinger

transformation defined by

F (k+1)(ν, x) = Λk(ν, x)F (k)(ν, x) (4.94)

Λk(ν, x) = Ak+1(ν/λ2k, x)Lk(ν/λ2k, x) =

(
0 1
1
λ2

ρk(x)
ν

)
, (4.95)

where

ρk(x) =
λ2k (e1 − e2λ

2) gk(x)gk(xλ)2

x2λ3 (e1x2λ2 + (e1 − e2λ2gk(x)) gk(xλ))
, (4.96)

recalle1 = 1
λ2k , e2 = λ2k.

Proof. We know

φ̂1

(k+1)
(ν, x) = Ak+1(ν, x)φ1

(k+1)(ν, x)

= Ak+1(ν, x)Lk(ν, x)φ
(k)
1 (ν, x),

now letν → ν
λ2k ,

φ̂1

(k+1)
(ν/λ2k, x) = Ak+1(ν/λ2k, x)Lk(ν/λ2k, x)φ

(k)
1 (ν/λ2k, x)

φ1
(k+1)(ν/λ2k+2, x) = Ak+1(ν/λ2k, x)Lk(ν/λ2k, x)φ

(k)
1 (ν/λ2k, x)

F (k+1)(ν, x) = Ak+1(ν/λ2k, x)Lk(ν/λ2k, x)F (k)(ν, x).
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Use the definition ofAk+1(ν, x) andLk(ν, x) we have

Ak+1(ν, x)Lk(ν, x)

=

(
A

(k+1)
11 (ν, x) A

(k+1)
12 (ν, x)

A
(k+1)
21 (ν, x) A

(k+1)
22 (ν, x)

)

×




−A

(k)
21 (λ2ν)

|Ak(λ2ν)|
A

(k)
11 (λ2ν)

|Ak(λ2ν)|
A

(k+1)
11 A

(k)
21 (λ2ν)

A
(k+1)
12 |Ak(λ2ν)|

1

A
(k+1)
12

(
1 − A

(k+1)
11

|Ak(λ2ν)|A
(k)
11 (λ2ν)

)





=




0 1

A
(k)
21 (λ2ν)|Ak+1(ν)|

A
(k+1)
12 (ν)|Ak(λ2ν)|

−A
(k)
11 (λ2ν)|Ak+1(ν)|+A

(k+1)
22 (ν,x)|Ak(λ2ν)|

A
(k+1)
12 (ν)|Ak(λ2ν)|



 .

An observation from equation (4.77) tells us that

|Ak+1(ν, x)| = |Ak(λ
2ν, x)|.

Using Bäcklund transformation (4.74) ofgk(x) andq-PII equation (4.9) it

can be easily checked that

A
(k)
21 (λ2ν)

A
(k+1)
12 (ν)

=
1

λ2
,

and

−A
(k)
11 (λ2ν) + A

(k+1)
22 (ν, x)

A
(k+1)
12 (ν)

=
(e1 − e2λ

2) gk(x)gk(xλ)2

x2λ3 (e1x2λ2 + (e1 − e2λ2gk(x))gk(xλ)) ν
.

Hence

Λk(ν, x) = Ak+1(ν/λ2k, x)Lk(ν/λ2k, x)

=

(
0 1

1
λ2

λ2k(e1−e2λ2)gk(x)gk(xλ)2

x2λ3(e1x2λ2+(e1−e2λ2gk(x))gk(xλ))ν

)
.

¤

Proposition (4.5.2) gives a much simpler Schlesinger transformation

Λk(ν, x) thenLk(ν, x) which is rational inν. This observation is crucial

in allowing us to obtain the determinantal form ofa
(k)
0 (x) and therefore that

of gk(x). We now have,
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for k is an integer

F (k+1)(ν, x) = ΛkΛk−1 . . .

(
0 1
1
λ2

ρ0(x)
ν

)
F (0)(ν, x) (4.97)

and fork is a half integer

F (k+1)(ν, x) = ΛkΛk−1 . . .

(
0 1

1
λ2

ρ 1
2
(x)

ν

)
F ( 1

2
)(ν, x). (4.98)

More over from the definition ofF (k)(ν, x) (4.93) we have

F (0)(ν, x) = φ
(0)
1 (ν, x) =

∞∑

j=0

(
a2jν

2j

c2j+1ν
2j+1

)
, (4.99)

where we have omitted the superscript(0) on the coefficients of expansion

for simplicity, and

F ( 1
2
)(ν, x) = φ

( 1
2)

1 (ν/λ, x) (4.100)

=
ν

1
2

λ
1
2




1 0

g 1
2
(x)

λ2(x2+g 1
2
(x))ν

− i
xλ2ν




∞∑

j=0

(
a

( 1
2
)

2j (x) ν2j

λ2j

a
( 1
2
)

2j (x/λ) ν2j

λ2j

)
.

4.5.1. F (k+1)(ν, x) when k is an integer. Let us first consider equation

(4.97 of the case wherek is an integer

Λk(ν, x) =

(
0 1
1
λ2

ρk(x)
ν

)
,

whereρk(x) are functions ofgk(x) andx.

Some examples:

Λ1Λ0 =

(
s0

t0
ν

s1

ν
1
ν

(
t1
ν

+ t−1ν
)
)

,

Λ2Λ1Λ0 =

(
s1

ν
1
ν

(
t1
ν

+ t−1ν
)

s2

ν2 + s0
1
ν

(
t2
ν2 + t0

)
)

,

where we have renamed the coefficients ofν−j in the(1, 1) and(2, 1) entries

in each case to besj and the coefficients ofν−j−1 in the (1, 2) and(2, 2)

entries to betj (j = 0, . . . , l). Note the particular form ofΛk(ν, x) implies
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that thes0 andt−1 in each case are constants whereassj andtj in general

are functions ofgk(x) andx. In general fork, an odd integer

Λk . . . Λ1Λ0 =

(
sk−1

νk−1 + . . . + s2

ν2 + s0
1
ν

( tk−1

νk−1 + . . . + t2
ν2 + t0

)

sk

νk + . . . + s3

ν3 + s1

ν
1
ν

(
tk
νk + . . . + t3

ν3 + t1
ν

+ t−1ν
)
)

.

Fork, an even integer

Λk . . . Λ1Λ0 =

(
sk−1

νk−1 + . . . + s3

ν3 + s1

ν
1
ν

( tk−1

νk−1 + . . . + t3
ν3 + t1

ν
+ t−1ν

)

sk

νk + . . . + s2

ν2 + s0
1
ν

(
tk
νk + . . . + t2

ν2 + t0
)

)
.

4.5.2. F (k+1)(ν, x) whenk is a half integer. Fork is a half integer

F (k+1)(ν, x) = ΛkΛk−1 . . .

(
0 1

1
λ2

ρ 1
2
(x)

ν

)
F ( 1

2
)(ν, x),

where

F ( 1
2
)(ν, x) = φ

( 1
2)

1 (ν/λ, x)

=
ν

1
2

λ
1
2




1 0

g 1
2
(x)

λ2(x2+g 1
2
(x))ν

− i
xλ2ν




∞∑

j=0

(
a

( 1
2
)

2j (x) ν2j

λ2j

a
( 1
2
)

2j (x/λ) ν2j

λ2j

)
,

with

a
( 1
2
)

2j = ixλ2a
( 1
2
)

2j − i

xλ2
(1/λ4j+4 − 1)a

( 1
2
)

2j+2,

a
( 1
2
)

2j = −1

λ
a

( 1
2
)

2j − x2λ3a
( 1
2
)

2j−2 +
i

xλ
a

( 1
2
)

2j .

We writek = n − 1
2
, (n = 1, 2, . . .), and consider a few examples:

n = 1 : Λ 1
2




1 0

g 1
2
(x)

λ2(x2+g 1
2
(x))ν

− i
xλ2ν



 =

(
s1

ν
t1
ν

s0 + s2

ν2
t2
ν2

)
,

n = 2 : Λ 3
2
Λ 1

2




1 0

g 1
2
(x)

λ2(x2+g 1
2
(x))ν

− i
xλ2ν



 =

(
s0 + s2

ν2
t2
ν2

s1

ν
+ s3

ν3
t1
ν

+ t3
ν3

)
,

n = 3 : Λ 5
2
Λ 3

2
Λ 1

2




1 0

g 1
2
(x)

λ2(x2+g 1
2
(x))ν

− i
xλ2ν



 =

(
s1

ν
+ s3

ν3
t1
ν

+ t3
ν3

s0 + s2

ν2 + s4

ν4
t2
ν2 + t4

ν4

)
,
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where we have named the coefficients ofν−j in the(1, 1) and(2, 1) entries

on the RHS of the equations in each case to besj, the coefficients ofν−j

in the (1, 2) and (2, 2) entries to betj, (j = 0, 1, . . . , n + 1). From the

particular form of theΛn− 1
2

and matrix




1 0

g 1
2
(x)

λ2(x2+g 1
2
(x))ν

− i
xλ2ν



 ,

we found thats0 is a different constant andt1 = − i
xλ2 for all the cases. In

general forn is an odd integer,n = 1, 3, . . .

Λn− 1
2
. . . Λ 1

2

(
1 0

g(x)
λ3(x2+g(x))ν

− i
xλ3ν

)
=

(
s1

ν
+ s3

ν3 + ... + sn

νn
t1
ν

+ ... + tn
νn

s0 + s2

ν2 + ... + sn+1

νn+1
t2
ν2 + ... + tn+1

νn+1

)

and forn is an even integer,n = 2, 4, . . .

Λn− 1
2
. . . Λ 1

2

(
1 0

g(x)
λ3(x2+g(x))ν

− i
xλ3ν

)
=

(
s0 + s2

ν2 + ... + sn

νn
t2
ν2 + ... + tn

νn

s1

ν
+ s3

ν3 + ... + sn+1

νn+1
t1
ν

+ ... + tn+1

νn+1

)
.

4.6. Determinantal representations of special solutions

4.6.1. Determinantal form of rational type special solutions of q-PII.

Theorem 4.6.1.q-PII equation (4.9) with parameterα = 1
λ4k wherek are

integers admits a hierarchy of rational type special solutionsgk(x), given

by

gk(x) = − ix

λ2k

τk(x/λ)τk−1(x/λ2)

τk(x/λ2)τk−1(x/λ)

τk(x) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Tk Tk+1 · · · T2k−2 T2k−1

Tk−2 Tk−1 · · · T2k−4 T2k−3

...
...

. . .
...

...

T2 T3 · · · Tk Tk+1

. ..
...

...

· · · T2 T3

0 · · · · · · T0 T1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.
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Tk(x) is theq discrete polynomial of degreek in x where

Tj(x)(
1

λ2j
− 1)=−i(−i + λx + λ2x)

λ
Tj−1(x) − x(−i − iλ + xλ2)

λ
Tj−2(x) + x2Tj−3(x)

Tj−1(x) =
1

ixλ
(Tj(x/λ) − Tj(x))

andT0(x) = 1, Tj = 0, j < 0.

Proof. We consider the case whenk is an odd integer, will show later that

the case fork is even can be proved along the way. Recall the Schlesinger

transformation relatingF (k+1) to F (0),

F (k+1)(ν, x) = ΛkΛk−1 . . . Λ0F
(0)(ν, x)

=

(
sk−1

νk−1 + . . . + s2

ν2 + s0
1
ν

( tk−1

νk−1 + . . . + t2
ν2 + t0

)

sk

νk + . . . + s3

ν3 + s1

ν
1
ν

(
tk
νk + . . . + t3

ν3 + t1
ν

+ t−1ν
)
) ∞∑

j=0

(
a2jν

2j

c2j+1ν
2j+1

)
,

and from the definition (4.93) ofF (k) we know

F (k+1)(ν, x) = φ
(k+1)
1 (ν/λ2(k+1), x) ∼ νk+1

λ2(k+1)2

(
a

(k+1)
0

c
(k+1)
1

ν
λ2(k+1)

)
.

Equating the two expressions ofF (k+1) in powers ofν nearν = 0:

-the top entry gives

1

νk−1
: sk−1a0 + tk−1c1 = 0

1

νk−3
: sk−1a2 + tk−1c3 + +sk−3a0 + tk−3c1 = 0

... :
...

νk−1 : sk−1a2k−2 + tk−1c2k−1 + . . . + s0ak−1 + t0ck = 0

νk+1 : sk−1a2k + tk−1c2k+1 + . . . + s0ak+1 + t0ck+2 =
a

(k+1)
0

λ2(k+1)2
,



110 4. Aq-DISCRETE ANALOGUE OF THE SECONDPAINLEVÉ EQUATION

-the bottom entry gives

1

νk
: ska0 + tkc1 = 0

1

νk−2
: ska2 + tkc3 + +sk−2a0 + tk−2c1 = 0

... :
...

νk : ska2k + tkc2k+1 + . . . + s1ak+1 + t1ck+2 + t−1ck = 0

νk+2 : ska2k+2 + tkc2k+3 + . . . + s1ak+3 + t1ck+4 + t−1ck+2 =
c
(k+1)
1

λ2(k+1)(k+2)
.

We can write the equations we have from the top entry in a(k+1)× (k+1)

matrix form




ak+1 ck+2 . . . a2k c2k+1

ak−1 ck . . . a2k−2 c2k−1

. . .

0 . . . a0 c1









s0

t0

s2

...

sk−1

tk−1





=





a
(k+1)
0

λ2(k+1)2

0

...

0





(4.101)

and the equations from the bottom entry in a(k + 2)× (k + 2) matrix form




ck+2 ak+3 . . . a2k+2 c2k+3

ck ak+1 . . . a2k c2k+1

. . .

0 . . . a0 c1









t−1

s1

t1
...

sk

tk





=





c
(k+1)
1

λ2(k+1)(k+2)

0

...

0





. (4.102)

Definition 4.6.2. Recall k is an odd integer, thereforek + 1 is even, let

σeven(x) be

σk+1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ak+1 ck+2 . . . a2k c2k+1

ak−1 ck . . . a2k−2 c2k−1

. . .

0 . . . a0 c1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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andσodd(x) be

σk+2 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ck+2 ak+3 . . . a2k+2 c2k+3

ck ak+1 . . . a2k c2k+1

. ..

0 . . . a0 c1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Apply Cramer’s rule on matrix equation (4.101) to evaluates0, recalls0

is a constant,

s0 =
a

(k+1)
0 (x)σk(x)

σk+1(x)

⇒ a
(k+1)
0 (x) =

s0σk+1(x)

σk(x)
, (4.103)

whereσk = σodd, σk+1 = σeven are defined by definition 4.6.2. We have

a
(even)
0 in terms of determinants.

Apply Cramer’s rule on matrix equation (4.102) fort−1, recall t−1 is

also a constant,

t−1 =
c
(k+1)
1 (x)σk+1(x)

σk+2(x)

c
(k+1)
1 (x) =

t−1σk+2(x)

σk+1(x)
,

however from equation (4.83) we know thatc
(k+1)
1 =

a
(k+2)
0

λ2(k+2) , hence

a
(k+2)
0 (x)

λ2(k+2)
=

t−1σk+2(x)

σk+1(x)
. (4.104)

Now we also havea(odd)
0 in terms of determinants. Recall

F (0)(ν, x) =
∑

j=0

(
a2jν

2j

c2j+1ν
2j+1

)
= φ

(0)
1 (ν, x) =

∑

j=0

(
λT2jν

2j

T2j+1ν
2j+1

)
,

that is

a2j = λT2j, c2j+1 = T2j+1, j = 0, 1, . . . .
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Then fork is any integer, let

τk(x) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Tk Tk+1 · · · T2k−2 T2k−1

Tk−2 Tk−1 · · · T2k−4 T2k−3

...
...

. . .
...

...

T2 T3 · · · Tk Tk+1

. ..
...

...

· · · T2 T3

0 · · · · · · T0 T1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (4.105)

Theτk function defined by equation (4.105) is proportional to theσk func-

tion defined in definition 4.6.2 and

a
(k)
0 (x) = µk

τk(x)

τk−1(x)
,

whereµk is a constant. Finally recall (4.73) we have

gk(x) = − ix

λ2k

a
(k)
0 (x/λ)

a
(k)
0 (x/λ2)

= − ix

λ2k

τk(x/λ)τk−1(x/λ2)

τk(x/λ2)τk−1(x/λ)
.

¤

4.6.2. Determinantal form of q-hypergeometric type special solutions
of q-PII.

Theorem 4.6.3. q-PII equation (4.9) with parameterα = 1
λ4k , wherek

are half integers, that isk = n + 1
2
, n = 0, 1, 2, ... admits a hierarchy of

hypergeometric type special solutionsgn+ 1
2
(x), given by

gn+ 1
2
(x)





= − ix

λ2n+1

τn+1(x/λ)τn(x/λ2)
τn+1(x/λ2)τn(x/λ)

for n even,

= − ix
λ2n+2

τn+1(x/λ)τn(x/λ2)
τn+1(x/λ2)τn(x/λ)

for n odd,
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whereτn(x) is the determinant of an × n matrix

τn(x) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a
( 1
2 )

n

λn
a
( 1
2 )

n

λn · · · a
( 1
2 )

2n−2

λ2n−2

a
( 1
2 )

2n−2

λ2n−2

a
( 1
2 )

n−2

λn−2

a
( 1
2 )

n−2

λn−2 · · · a
( 1
2 )

2n−4

λ2n−4

a
( 1
2 )

2n−4

λ2n−4

...
. ..

...

0 · · · a
( 1
2
)

0 a
( 1
2
)

0
a
( 1
2 )

2

λ2

a
( 1
2 )

2

λ2

0 0 · · · 0 a
( 1
2
)

0 a
( 1
2
)

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

for n even,

τn(x) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a
( 1
2 )

n−1

λn−1

a
( 1
2 )

n+1

λn+1

a
( 1
2 )

n+1

λn+1 · · · a
( 1
2 )

2n−2

λ2n−2

a
( 1
2 )

2n−2

λ2n−2

a
( 1
2 )

n−3

λn−3

a
( 1
2 )

n−1

λn−1

a
( 1
2 )

n−1

λn−1 · · · a
( 1
2 )

2n−4

λ2n−4

a
( 1
2 )

2n−4

λ2n−4

...
. ..

...

0 · · · 0 a
( 1
2
)

0 a
( 1
2
)

0
a
( 1
2 )

2

λ2

a
( 1
2 )

2

λ2

0 0 0 · · · a
( 1
2
)

0 a
( 1
2
)

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

for n odd,

where

a
( 1
2
)

2j = ixλ2a
( 1
2
)

2j − i

xλ2
(

1

λ4j+4
− 1)a

( 1
2
)

2j+2,

a
( 1
2
)

2j = −1

λ
a

( 1
2
)

2j − x2λ3a
( 1
2
)

2j−2 +
i

xλ
a

( 1
2
)

2j .

Proof. Let us considerF (k+1)(ν, x), k is a half integer and we writek =

n − 1
2
, n = 1, 2, . . .. We study the case whenn = 2, 4, . . ., the case forn is
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odd can also be proved here as we will see later.

F (n+ 1
2
)(ν, x) (4.106)

= Λn− 1
2
Λn− 3

2
. . . Λ 1

2
F ( 1

2
)(ν, x)

= Λn− 1
2
Λn− 3

2
. . . Λ 1

2

ν
1
2

λ
1
2




1 0

g 1
2
(x)

λ2(x2+g 1
2
(x))ν

− i
xλ2ν




∞∑

j=0

(
a

( 1
2
)

2j (x) ν2j

λ2j

a
( 1
2
)

2j (x/λ) ν2j

λ2j

)

=
ν

1
2

λ
1
2

(
s0 + s2

ν2 + ... + sn

νn
t2
ν2 + ... + tn

νn

s1

ν
+ s3

ν3 + ... + sn+1

νn+1
t1
ν

+ ... + tn+1

νn+1

) ∞∑

j=0

(
a

( 1
2
)

2j (x) ν2j

λ2j

a
( 1
2
)

2j (x/λ) ν2j

λ2j

)
,

wherea
( 1
2
)

2j is defined by equations (4.53, 4.54). From the definition of

F (n+ 1
2) we also know that asν → 0

F (n+ 1
2)(ν, x) = φ

(n+ 1
2)

1 (ν/λ2n+1, x)

∼ νn+ 1
2

λ(2n+1)(n+1/2)



 a
(n+ 1

2)
0

c
(n+ 1

2)
1

ν
λ2n+1



 . (4.107)

For F (n+ 1
2
)(ν, x) given by equation (4.106) to have the correct leading be-

havior (4.107) in the neighbourhood ofν = 0, sj andtj (j = 0, . . . , n +

1) need to satisfy systems of equations. Equating the two expressions of

F (n+ 1
2)(ν, x), from the top entry we getn+1 equations(ν−n, ν−n+2, ..., νn):

1

νn
: sna

( 1
2
)

0 + tna
( 1
2
)

0 = 0

1

νn−2
: sn

a
( 1
2
)

2

λ2
+ tn

a
( 1
2
)

2

λ2
+ sn−2a

( 1
2
)

0 + tn−2a
( 1
2
)

0 = 0

... :
...

νn−2 : sn

a
( 1
2
)

2n−2

λ2n−2
+ tn

a
( 1
2
)

2n−2

λ2n−2
+ · · · + t2

a
( 1
2
)

n

λn
+ s0

a
( 1
2
)

n−2

λn−2
= 0

νn : sn
a

( 1
2
)

2n

λ2n
+ tn

a
( 1
2
)

2n

λ2n
+ · · · + t2

a
( 1
2
)

n+2

λn+2
+ s0

a
( 1
2
)

n

λn
=

a
(n+ 1

2
)

0

λ(2n+1)(n+1/2)
.
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Rewriting this in the form of a(n + 1) × (n + 1) matrix equation





a
( 1
2 )

n

λn

a
( 1
2 )

n+2

λn+2

a
( 1
2 )

n+2

λn+2 · · · a
( 1
2 )

2n

λ2n

a
( 1
2 )

2n

λ2n

a
( 1
2 )

n−2

λn−2
a
( 1
2 )

n

λn
a
( 1
2 )

n

λn · · · a
( 1
2 )

2n−2

λ2n−2

a
( 1
2 )

2n−2

λ2n−2

...
. . .

...

0 · · · 0 a
( 1
2
)

0 a
( 1
2
)

0
a
( 1
2 )

2

λ2

a
( 1
2 )

2

λ2

0 0 0 · · · a
( 1
2
)

0 a
( 1
2
)

0









s0

s2

...

sn

tn





=





a
(n+1

2 )

0

λ(2n+1)(n+1/2)

0

...

0





.(4.108)

For the bottom entry, we getn + 2 equations(ν−n−1, ν−n+1, ..., νn+1):

1

νn+1
: sn+1a

( 1
2
)

0 + tn+1a
( 1
2
)

0 = 0

1

νn−1
: sn+1

a
( 1
2
)

2

λ2
+ tn+1

a
( 1
2
)

2

λ2
+ sn−1a

( 1
2
)

0 + tn−1a
( 1
2
)

0 = 0

... :
...

νn−1 : sn+1
a

( 1
2
)

2n

λ2n
+ tn+1

a
( 1
2
)

2n

λ2n
+ · · · + s1

a
( 1
2
)

n

λn
+ t1

a
( 1
2
)

n

λn
= 0

νn+1 : sn+1

a
( 1
2
)

2n+2

λ2n+2
+ tn+1

a
( 1
2
)

2n+2

λ2n+2
+ · · · + s1

a
( 1
2
)

n+2

λn+2
+ t1

a
( 1
2
)

n+2

λn+2
=

c
(n+ 1

2)
1

λ(2n+1)(n+3/2)
.

Rewriting this in the form of a(n + 2) × (n + 2) matrix equation





a
( 1
2 )

n+2

λn+2

a
( 1
2 )

n+2

λn+2 · · · a
( 1
2 )

2n+2

λ2n+2

a
( 1
2 )

2n+2

λ2n+2

a
( 1
2 )

n

λn
a
( 1
2 )

n

λn · · · a
( 1
2 )

2n

λ2n

a
( 1
2 )

2n

λ2n

...
. . .

...

0 · · · a
( 1
2
)

0 a
( 1
2
)

0
a
( 1
2 )

2

λ2

a
( 1
2 )

2

λ2

0 0 · · · 0 a
( 1
2
)

0 a
( 1
2
)

0









s1

t1

...

sn+1

tn+1





=





c
(n+1

2)
1

λ(2n+1)(n+3/2)

0

...

0





(4.109)
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Let τn(x) be the determinant of then × n matrix

τn(x) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a
( 1
2 )

n

λn
a
( 1
2 )

n

λn · · · a
( 1
2 )

2n−2

λ2n−2

a
( 1
2 )

2n−2

λ2n−2

a
( 1
2 )

n−2

λn−2

a
( 1
2 )

n−2

λn−2 · · · a
( 1
2 )

2n−4

λ2n−4

a
( 1
2 )

2n−4

λ2n−4

...
.. .

...

0 · · · a
( 1
2
)

0 a
( 1
2
)

0
a
( 1
2 )

2

λ2

a
( 1
2 )

2

λ2

0 0 · · · 0 a
( 1
2
)

0 a
( 1
2
)

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, for n even, (4.110)

τn(x) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a
( 1
2 )

n−1

λn−1

a
( 1
2 )

n+1

λn+1

a
( 1
2 )

n+1

λn+1 · · · a
( 1
2 )

2n−2

λ2n−2

a
( 1
2 )

2n−2

λ2n−2

a
( 1
2 )

n−3

λn−3

a
( 1
2 )

n−1

λn−1

a
( 1
2 )

n−1

λn−1 · · · a
( 1
2 )

2n−4

λ2n−4

a
( 1
2 )

2n−4

λ2n−4

...
.. .

...

0 · · · 0 a
( 1
2
)

0 a
( 1
2
)

0
a
( 1
2 )

2

λ2

a
( 1
2 )

2

λ2

0 0 0 · · · a
( 1
2
)

0 a
( 1
2
)

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, for n odd. (4.111)

Then by Cramer’s rule on equation (4.108) fors0, recalls0 is a constant and

we assumedn is an even integer

a
(n+ 1

2
)

0 (x) = µn
τn+1(x)

τn(x)
, µn is a constant,

we have a formula fora
(n+ 1

2
)

0 (x), n is even. Applying Cramer’s rule on

equation (4.109) fort1, recallt1 = − i
xλ2 ,

c
(n+ 1

2
)

1 (x) = ηna
(n+1+ 1

2
)

0 (x) =
ς ′n
x

τn+2(x)

τn+1(x)
, ηn, ς

′
n are constants.

Sincen + 1 is an odd integer whenn is an even integer we now also have

the formula fora
(n+ 1

2
)

0 (x), n is odd

a
(n+ 1

2
)

0 (x) =
ςn
x

τn+1(x)

τn(x)
, ςn is a constant.
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Recall

gn(x) = − ix

λ2n

a
(n)
0 (x/λ)

a
(n)
0 (x/λ2)

,

a
(n+ 1

2
)

0 (x) for n is an even integer is

a
(n+ 1

2
)

0 (x) = µn
τn+1(x)

τn(x)
,

and whenn is an odd integer is

a
(n+ 1

2
)

0 (x) =
ςn
x

τn+1(x)

τn(x)
,

whereτn(x) is defined by equations (4.110, 4.111). Recallµn andςn are

constants, and

x/λ

x/λ2
=

1

λ
.

Hence forn is an even integer,

gn+ 1
2
(x) = − ix

λ2n+1

a
(n+ 1

2
)

0 (x/λ)

a
(n+ 1

2
)

0 (x/λ2)

= − ix

λ2n+1

τn+1(x/λ)τn(x/λ2)

τn+1(x/λ2)τn(x/λ)

and forn is an odd integer,

gn+ 1
2
(x) = − ix

λ2n+1

a
(n+ 1

2
)

0 (x/λ)

a
(n+ 1

2
)

0 (x/λ2)

= − ix

λ2n+2

τn+1(x/λ)τn(x/λ2)

τn+1(x/λ2)τn(x/λ)
.

¤

Let us look at a few examples of the determinantal formula of the q-

hypergeometric type special solutions ofq-PII. Forn = 1,

g 1
2

= −ix

λ

τ1(x/λ)

τ1(x/λ2)
,

for n = 2,

g 3
2

= −ix

λ

τ2(x/λ)τ1(x/λ2)

τ2(x/λ2)τ1(x/λ)
,
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for n = 3,

g 5
2

= −ix

λ

τ3(x/λ)τ2(x/λ2)

τ3(x/λ2)τ2(x/λ)
,

where

τ1(x) = a
( 1
2
)

0 ,

τ2(x) =

∣∣∣∣∣∣

a
( 1
2 )

2

λ2

a
( 1
2 )

2

λ2

a
( 1
2
)

0 a
( 1
2
)

0

∣∣∣∣∣∣
,

τ3(x) =

∣∣∣∣∣∣∣∣∣

a
( 1
2 )

2

λ2

a
( 1
2 )

4

λ4

a
( 1
2 )

4

λ4

a
( 1
2
)

0
a
( 1
2 )

2

λ2

a
( 1
2 )

2

λ2

0 a
( 1
2
)

0 a
( 1
2
)

0

∣∣∣∣∣∣∣∣∣

.

In this chapter, a general relation between the solution of the linear prob-

lem and the solution ofq-PII equation was established. We have found ex-

act solutions for two special cases of the associated linearproblem ofq-PII,

corresponding toq-PII admitting a simple rational andq-hypergeometric

type special solution respectively. Schlesinger transformation of the lin-

ear problem was found and used to found all the solutions of the linear

problem where the correspondingq-PII equation admits either rational or

q-hypergeometric type special solutions. This fact was thenused to find the

determinantal forms of the hierarchies of the rational and theq-hypergeometric

type special solutions with these two simple special solutions as the first

member respectively.



CHAPTER 5

Conclusions

Motivated by the results of Kajiwara et al. on the determinantal forms

of some special solutions of the discrete analogues of the Painlevé equa-

tions, we aimed to follow Flaschka and Newell’s approach of obtaining

determinantal forms of some special solutions of the Painlevé equations via

the associated linear problem in theq-discrete setting. We have found that

the relationship betweenq-Painlevé equations and their associatedq-linear

problems is very similar to that of continuous Painlevé equations and their

associated linear problems. Hence the method developed by Flaschka and

Newell [18] can be followed analogously and used to studyq-Painlevé equa-

tions in theq-discrete setting. The idea is to use the properties of the linear

problem. In particular since it is the special solutions of the q-Painlevé

equations (that is for special values of its parameters theq-Painlevé equa-

tion admits simpler solutions of rational and hypergeometric type) which

we want to study, therefore we have considered the special cases of the as-

sociated linear problem when it admits simpler solutions for special values

of the parameters.

In differential linear analysis, the fundamental solutions take the forms

of simple Frobenius series expansions when the equation satisfies the “non-

resonant condition”, whereas for the “resonant”case the solutions in general

involves the logarithm function. Flaschka and Newell have considered two

types of the special cases of the associated linear problem under the “res-

onant”condition and found the conditions on the equation for which the

fundamental solutions still take the forms of simple Frobenius series with-

out logarithm functions. They have found that the Painlevé equation admits

rational and hypergeometric type special solutions corresponding to these

two types of the special cases of the linear problem. Furthermore, the

closed form of all of the special solutions of the linear problem of these two

119
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type can be found by using the Schlesinger transform of the linear prob-

lem, iterating from the simplest special solutions of each type respectively.

Determinantal expression of rational and hypergeometric type special solu-

tions of the Painlevé equations can obtained through the special solutions

of the linear problem.

For theq-discrete linear problem there is theq-discrete analogue of the

“non-resonant condition”and fundamental solutions of theforms of simple

Frobenius series expansions and the “resonant”case where the solutions in

general involvesq-discrete analogue of the logarithm function. We have

considered two types of the special cases of the associated linear problem

of q-PII of the “resonant”case and asked for the conditions for the funda-

mental solutions to be without the logarithm function. We have found the

conditions are precisely whereq-PII admits rational andq-hypergeometric

type special solutions. The two simplest cases of the two type of theq-linear

problem was solved:

equation (4.32),

φ
(0)
1 (ν, x)=

1

2

(
λ λ

1 −1

) (
Γλ−2(1 + ν

λ
)Γλ−2(1 + ixν)Γλ−2(1 + ixλν)

Γλ−2(1 − ν
λ
)Γλ−2(1 − ixν)Γλ−2(1 − ixλν)

)

=
∑

j=0

(
λT2jν

2j

T2j+1ν
2j+1

)
,

and equation (4.52),

φ
( 1

2)
1 (ν, x)=ν

1
2




1 0

g 1
2
(x)

λ3(x2+g 1
2
(x))ν

− i
xλ3ν




∞∑

j=0

(
a

( 1
2
)

2j (x)ν2j

a
( 1
2
)

2j (x/λ)ν2j

)
.

The Schlesinger transformation (4.94)Λ(ν, x) of a relatedq-linear system

F (k)(ν, x) = φ
(k)
1 (ν/λ2k, x)

was found:

F (k+1)(ν, x) = Λk(ν, x)F (k)(ν, x)

and used to express all the special solutionsF (k)(ν, x) of theq-linear prob-

lem in the closed form in terms ofF (0)(ν, x) andF ( 1
2
)(ν, x). That is fork
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is an integer

F (k+1)(ν, x) = ΛkΛk−1 . . .

(
0 1
1
λ2

ρ0(x)
ν

)
F (0)(ν, x)

and fork is a half integer

F (k+1)(ν, x) = ΛkΛk−1 . . .

(
0 1

1
λ2

ρ 1
2
(x)

ν

)
F ( 1

2
)(ν, x).

We worked with the set of solutionsF (k)(ν, x) instead ofφ(k)
1 (ν, x) because

the Schlesinger transformation forF (k)(ν, x) are much simpler and that al-

lowed us to obtain the determinantal expression of the special solutions of

theq-PII equation of both rational theorem 4.6.1 andq-hypergeometric type

theorem 4.6.3 where we have found that the entries of the matrix, which the

determinants are defined involve only the coefficients of thethe solution

of the linear problem for the simplest case of its type, equation (4.105) for

rational type special solutions

τk(x) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Tk Tk+1 · · · T2k−2 T2k−1

Tk−2 Tk−1 · · · T2k−4 T2k−3

...
...

. . .
...

...

T2 T3 · · · Tk Tk+1

. ..
...

...

· · · T2 T3

0 · · · · · · T0 T1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

and equations (4.110 and 4.111) forq-hypergeometric type special solutions

of q-PII. In other words, the solutions of the linear problem forthe two

simplest casesφ(0)
1 (ν, x) andφ

( 1
2
)

1 (ν, x) are the generating functions of the

entries of the matrices on which these determinants are defined. This shed

some light on the peculiar asymmetric structure of the determinant forms of

special solutions for the discrete Painlevé equations firstfound by Kajiwara

et al. [48, 47].
In this thesis, we have considered the associatedq-linear problems of a

q-analogue of PII. The method we have developed to study theq-discrete

Painlevé equation via its associatedq-linear problem should work for other

discrete analogues of the Painlevé equations which are in possession of a
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2×2 Lax pair. Such examples are the2×2 Lax pair of Jimbo and Sakai’sq-

PVI [37] and the Lax pairs forq-PV-q-PI found by a coalescence procedure

on the Lax pair of thisq-PVI. The reason of why we have not performed our

analysis on these Lax pairs already is because the correspondingq-Painlevé

equations are represented in the coupled form, for example the q-PVI in

[37] is

yȳ =
(z̄ − tb1)(z̄ − tq/b1)

(z̄ − b3)(z̄ − 1/b3)

zz̄ =
(y − ta1)(y − t/a1)

(y − a3)(y − 1/a3)

wherey = y(t), z = z(t), f̄ = f(qt), f = f(t/q) anda1, a3, b1, b3 are

constants. Whereas the example ofq-PII considered in this thesis is in the

scalar form.

One might ask why we should study the Painlevé equations of both dif-

ferential and discrete type via the associated linear problems when many of

the results may be obtained by studying the non-linear equations directly.

We have in fact shown that the associated linear problems readily reveals

the beautiful determinantal structure of the special solutions of the Painlevé

equations. The technique is entirely analytical; no algebraic or geometrical

knowledge is needed. All of the operations used require onlyelementary

linearq-discrete analysis, which is very similar to linear differential analy-

sis. Furthermore, when a non-linear equation has an Lax pairit implies in-

tegrability, in the sense that the non-linear problem is "reduced" to a linear

problem. Therefore it is advantageous to make use of the linearity of these

very special non-linear equations, the Painlevé and the discrete Painlevé

equations.
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List of the six Painlevé equations

d2y

dz2
= 6y2 + z (A.1)

d2y

dz2
= 2y3 + zy + α (A.2)

d2y

dz2
=

1

y

(
dy

dz

)2

− 1

z

dy

dz
+

αy2 + β

z
+ γy3 +

δ

y
(A.3)

d2y

dz2
=

1

2y

(
dy

dz

)2

+
3

2
y3 + 4zy2 + 2(z2 − α)y +

β

y
(A.4)

d2y

dz2
=

(
1

2y
+

1

y − 1

)(
dy

dz

)2

− 1

z

dy

dz
+

(y − 1)2

z2

(
αy +

β

y

)
(A.5)

+
γy

z
+

δy(y + 1)

y − 1

d2y

dz2
=

1

2

(
1

y
+

1

y − 1
+

1

y − z

) (
dy

dz

)2

−
(

1

z
+

1

z − 1
+

1

y − z

)
dy

dz

+
y(y − 1)y − z)

z2(z − 1)2

(
α +

βz

y2
+

γ(z − 1)

(y − 1)2
+

δz(z − 1)

(y − z)2

)
(A.6)
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APPENDIX B

Differential and discrete hypergeometric functions

B1. Differential hypergeometric functions

A good reference on the special functions is a book [7] by Andrews,

Askey and Roy, whose conventions on the notations of the special functions

have been followed in this thesis.

Definition B1.1. The general hypergeometric function

mFn (a1, ..., am; b1, ..., bn; z) =
∑

k≥0

(a1)k...(am)k

(b1)k...(bn)kk!
zk,

where

(α)n = α(α + 1)...(α + n − 1),

solves the general differential hypergeometric equation

{δ(δ + b1 − 1)...(δ + bn − 1) − z(δ + a1)...(δ + am)}mFn (a1, ..., am; b1, ..., bn; z) = 0

whereδ = z d
dz

.

For m = 2, n = 1, a1 = α, a2 = β and b1 = γ, it is the Gauss’s

hypergeometric function

2F1(α, β; γ; z) =
∑

n≥0

(α)n(β)n

(γ)n n!
zn (B.1)

which solves the hypergeometric equation

(1 − z)δ2y − {(α + β)z + (1 − γ)}δy − αβzy = 0. (B.2)

Equation (B.2) has fundamental solutions:




2F1(α, β; γ; z),

z1−γ
2F1(α − γ + 1, β − γ + 1; 2 − γ; z),

124
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at z = 0, and




(z)−α

2F1(α, α − γ + 1;α − β + 1; 1/z)

(−z)−β
2F1(β, β − γ + 1;β − α + 1; 1/z)

at z = ∞. These are related by

2F1(α, β; γ; z) =
Γ(γ)Γ(β − α)

Γ(γ − α)Γ(β)
(−z)−α

2F1(α, α − γ + 1;α − β + 1; 1/z)

+
Γ(γ)Γ(α − β)

Γ(γ − β)Γ(α)
(−z)−β

2F1(β, β − γ + 1;β − α + 1; 1/z)

whereΓ(a + 1) = aΓ(a) is the Gamma function.

B2. Theq-hypergeometric function

A good reference on theq-discrete (or basic) special functions is a book

[25] by Gasper and Rahman, whose conventions on the notations of the

q-special functions have been followed in this thesis.

Definition B2.1. The generalq-hypergeometric function (also referred to

as thebasic hypergeometric function) is:

mΦn (a1, ..., am; b1, ..., bn; q, z) =
∑

k≥0

(a1; q)k...(am; q)k

(b1; q)k...(bn; q)k(q; q)k

[
(−1)kq

“n
2

”]1+n−m

zk

where

(a; q)n = (1 − a)(1 − aq)...(1 − aqn−1), |q| < 1.

For m = 2, n = 1, a1 = a, a2 = b andb1 = c, it is theq-discrete analogue

of Gauss’s hypergeometric function

2Φ1(a, b; c; q, z) =
∑

n≥0

(a; q)n(b; q)n

(c; q)n(q; q)n

zn. (B.3)

Proposition B2.2. Equation

(abz − c/q)σ2Φ − ((a + b)z − (1 + c/q)) σΦ + (z − 1)Φ = 0 (B.4)

is solved by theq-hypergeometric function (B.3), where

σy(z) = y(qx),
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Proof. Using the definition for2Φ1(a, b; c; q, z),

2Φ1(a, b; c; q, z) =
∑

n≥0

(a; q)n(b; q)n

(c; q)n(q; q)n

zn,

σ2Φ1(a, b; c; q, z) =
∑

n≥0

(a; q)n(b; q)nq
n

(c; q)n(q; q)n

zn,

and

(1 − σ)2Φ1(a, b; c; q, z) =
∑

n≥0

(a; q)n(b; q)n(1 − qn)

(c; q)n(q; q)n

zn

=
∑

n≥0

(a; q)n(b; q)n

(c; q)n(q; q)n−1

zn

=
(1 − a)(1 − b)z

1 − c

∑

n≥1

(aq; q)n−1(bq; q)n−1

(cq; q)n−1(q; q)n−1

zn−1

=
(1 − a)(1 − b)z

1 − c
2Φ1(aq, bq; cq; q, z),

hence

(1 − σ)2Φ1(a, b; c/q; q, z) =
(1 − a)(1 − b)z

1 − c/q

∑

n≥1

(aq; q)n−1(bq; q)n−1

(c; q)n−1(q; q)n−1

zn−1

=
(1 − a)(1 − b)z

1 − c/q
2Φ1(aq, bq, c; q, z),
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and

2Φ1(aq, bq, c; q, z)

=
∑

n≥0

(aq; q)n(bq; q)n

(c; q)n(q; q)n

zn

=
1

(1 − a)(1 − b)

∑

n≥0

(a; q)n(bq; q)n(1 − aqn)(1 − bqn)

(c; q)n(q; q)n

zn

=
1

(1 − a)(1 − b)

∑

n≥0

(a; q)n(bq; q)n(1 − (a + b)qn + abq2n)

(c; q)n(q; q)n

zn

=
1

(1 − a)(1 − b)

{
2Φ1(a, b; c; q, z) − (a + b)2Φ1(a, b; c; q, qz)

+ab2Φ1(a, b; c; q, q2z)
}

=
1

(1 − a)(1 − b)

{
1 − (a + b)σ + abσ2

}
2Φ1(a, b; c; q, z),

but

2Φ1(a, b; c/q; q, z)

=
∑

n≥0

(a; q)n(b; q)n

(c/q; q)n(q; q)n

zn

=
1

1 − c/q

∑

n≥0

(a; q)n(b; q)n(1 − cqk−1)

(c; q)n(q; q)n

zn

=
(1 − cσ/q)

(1 − c/q)
2Φ1(a, b; c; q, z),

therefore

(1 − σ)2Φ1(a, b; c/q; q, z)

= (1 − σ)
(1 − cσ/q)

(1 − c/q)
2Φ1(a, b; c; q, z)

=
z

(1 − c/q)

{
1 − (a + b)σ + abσ2

}
2Φ1(a, b; c; q, z).

Rearrange, taking terms to one side, we get
{
(abz − c/q)σ2 −

(
(a + b)z − (1 + c/q)

)
σ + z − 1

}
2Φ1(a, b; c; q, z) = 0

¤
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Proposition B2.3. The q-hypergeometric equation (B.4) has fundamental

solutions




2Φ1(a, b; c; q, z),

e q
c
(z)2Φ1(a

′, b′; c′; q, z) = e q
c
(z)2Φ1(qa/c, qb/c; q2/c; q, z),

(B.5)

at z = 0 and




ea(cq/abz)2Φ1(a, aq/c; aq

b
; q, cq/abz),

eb(cq/abz)2Φ1(b, bq/c;
bq
a
; q, cq/abz),

(B.6)

at z = ∞, where

σea(z) = ea(qz) = aea(z).

Proof. First, we find and solve theq-discrete analogue of the indicial equa-

tion for equation (B.4). That is,φ(z) is a solution of equation (B.4) with

leading behaviour:

σφ(z) = ρφ(z)

then, let

φ(z) = eρ(z)φ1(z)

where

σeρ(z) = ρeρ(z), and σφ1(z) ∼ φ1(z), to leading order asz → 0.

Substituteφ(x) into equation (B.4), we get

(abz − c/q)ρ2 −
(
(a + b)z − (1 + c/q)

)
ρ + z − 1 = 0. (B.7)

At z = 0, equation (B.7) is
c

q
ρ2 − (1 + c/q)ρ + 1 = 0

(cρ/q − 1)(ρ − 1) = 0

which gives

ρ =
q

c
, 1.

At z = ∞ equation (B.7) goes to

abρ2 − (a + b)ρ + 1 = 0

(aρ − 1)(bρ − 1) = 0
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which gives

ρ =
1

a
,

1

b
.

We have already found one of the solution atz = 0 with leading behaviour

ρ = 1, which is2Φ1(a, b; c; q, z). Letφ(z) be the other solution with leading

behaviourρ = q
c
, that is

φ(z) = e q
c
(z)φ1(z), (B.8)

where

σe q
c
(z) =

q

c
e q

c
(z). (B.9)

Then

σφ = σ(e q
c
φ1)

=
q

c
e q

c
σφ1

σ2φ =
q2

c2
e q

c
σ2φ1

Substitute above into equation (B.4),

q2

c2
e q

c
σ2φ1 − λ

q

c
e q

c
σφ1 + µe q

c
φ1 = 0 (B.10)

which simplifies to

σ2φ1 − λ′σφ1 + µ′φ1 = 0 (B.11)

with 




λ′ = λ
q
c

=
q
c
(a+b)z−(1+q/c)

q2abz

c2
− q

c

,

µ′ = µ
q2

c2

= z−1
q2

c2
(abz−c/q)

= z−1
(q2abz/c2−q/c)

.
(B.12)

Equation (B.11) is solved by

φ1(z) = 2Φ1(a
′, b′, c′; q, z),

where by comparing (B.11) with (B.4) we find

a′ =
qa

c
,

b′ =
qb

c
,

c′ =
q2

c
.
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Hence equation (B.4) have solutions




2Φ1(a, b; c; q, z),

e q
c
(z)2Φ1(a

′, b′; c′; q, z) = e q
c
(z)2Φ1(qa/c, qb/c; q2/c; q, z),

at z = 0.

To find the two fundamental solutions of (B.4) atz = ∞ with leading

behaviorρ = 1
a
, 1

b
, we first rewrite equation (B.4) let

z =
1

t
,

qz =
q

t
,

q2z =
q2

t
,

then

z → qz,

⇒ t → t

q

z → q2z,

⇒ t → t

q2
.

Rewrite equation (B.4) in terms of the variablet,
(

ab

t
− c

q

)
2Φ1(t/q

2) −
(

a + b

t
− (1 + c/q)

)
2Φ1(t/q) +

(
1

t
− 1

)
2Φ1(t) = 0.

On letting

t → q2t,

we have
(

ab

q2t
− c

q

)
2Φ1(t) −

(
a + b

q2t
− (1 + c/q)

)
2Φ1(tq) +

(
1

q2t
− 1

)
2Φ1(q

2t)

= (ab − cqt)2Φ1(t) −
(
(a + b) − (1 + c/q)q2t

)
2Φ1(qt) + (1 − q2t)2Φ1(q

2t)

= −ab

(
cqt

ab
− 1

)
2Φ1(t) − ab

(
a + b

ab
− (1 + c/q)

q2t

ab

)
2Φ1(qt)

−ab

(
q2t − 1

ab

)
2Φ1(q

2t),



B2. THE q-HYPERGEOMETRIC FUNCTION 131

and
(

q2t − 1

ab

)
2Φ1(q

2t) +

(
a + b

ab
− (1 + c/q)

q2t

ab

)
2Φ1(qt) (B.13)

+

(
cqt

ab
− 1

)
2Φ1(t) = 0.

Compare this with equation (B.4), we see the new variable iscqt
ab

= cq
abz

.

We use the hint that atz = ∞ the q-hypergeometric function has leading

behaviorρ = 1
a
, 1

b
. To find the solution withρ = 1

a
behavior let

2Φ1(t) = ea(t)Y (t),

2Φ1(qt) = ea(qt)Y (qt)

= aea(t)Y (qt),

2Φ1(q
2t) = aea(qt)Y (q2t)

= a2ea(t)Y (q2t).

Substitute these into (B.13)
(

q2t − 1

ab

)
a2Y (q2t)+

(
a + b

ab
− (1 + c/q)

q2t

ab

)
aY (qt)+

(
cqt

ab
− 1

)
Y (t) = 0.

Rearrange in terms of the new variable then compare with equation (B.4)

shows

Y (t) = 2Φ1(a
′, b′; c′; q, cqt/ab) = 2Φ1(a, aq/c; qa/b; q, cq/abz).

Solution withρ = 1
a

behavior atz = ∞ can be found similarly by letting

2Φ1(t) = eb(t)Y (t).

In this case we found

Y (t) = 2Φ1(a
′, b′; c′; q, cqt/ab) = 2Φ1(b, bq/c; qb/a; q, cq/abz).

Hence the solutions at∞ are




ea(cq/abz)2Φ1(a, aq/c; qa/b; q, cq/abz)

eb(cq/abz)2Φ1(b, bq/c; qb/a; q, cq/abz).
(B.14)

¤
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Fundamental solutions of equation (B.4) atz = 0,∞ are related by the

formula derived by Watson (1910) using aq-analogue of the contour inte-

gral representation for2Φ1(a, b; c; q, z). For details, see section "Analytic

continuation of2Φ1(a, b; c; q, z)" in Gasper and Rahman’s book [25],

2Φ1(a, b; c; q, z) =
(b, c/a)∞(az, q/az)∞
(c, b/a)∞(z, q/z)∞

2Φ1(a, aq/c; aq/b; q, cq/abz)

+
(a, c/b)∞(bz, q/bz)∞
(c, a/b)∞(z, q/z)∞

2Φ1(b, bq/c; bq/b; q, cq/abz).

Theq-hypergeometric equation (B.4)

(abz − c/q)σ2Φ − ((a + b)z − (1 + c/q)) σΦ + (z − 1)Φ = 0

can be put in form of a2 × 2 matrix eqaution:

σ

(
u

σu

)
=

(
0 1

− (z−1)
(abz−c/q)

(a+b)z−(1+c/q)
(abz−c/q)

) (
u

σu

)
, (B.15)

whereu is a solution of equation (B.4).

B3. Continuum limits

Proposition B3.1. Theq-hypergeometric equation (B.4)

{
(abz − c/q)σ2 −

(
(a + b)z − (1 + c/q)

)
σ + z − 1

}
2Φ1(a, b; c; q, z) = 0

becomes the hypergeometric equation equation (B.2)

(1 − z)δ2y − {(α + β)z + (1 − γ)}δy − αβzy = 0

in the limit q → 1

Proof. We know
σ − 1

q − 1
= z

d

dz
= δ

(σ − 1)2

(q − 1)2
=

(σ2 − 2σ + 1)

(q − 1)2
= δ2
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in the limit q → 1.

Rewriting (B.4) in terms ofδ andδ2:

σ2Φ − λσΦ + µΦ

=
(σ2 − 2σ + 1)

(q − 1)2
Φ +

(2σ − 1)

(q − 1)2
Φ−

λσΦ

(q − 1)2
+

µΦ

(q − 1)2

=
(σ − 1)2

(q − 1)2
Φ +

(2 − λ)(σ − 1)

(q − 1)2
Φ +

(2 − λ)

(q − 1)2
Φ − (1 − µ)

(q − 1)2
Φ

= δ2Φ +
2 − λ

q − 1
δΦ +

1 − λ + µ

(q − 1)2
Φ (B.16)

= 0

what is left is to show

2 − λ

q − 1
∼ −(α + β)z + (1 − γ)

1 − z

and

1 − λ + µ

(q − 1)2
∼ zαβ

1 − z

asq → 1

we have

2 − λ

q − 1
=

2abz − 2c/q − (a + b)z + (1 + c/q)

(abz − c/q)(q − 1)

=
−(a(1 − b)z + b(1 − a)z + (c/q − 1)

(abz − c/q)(q − 1)

=
−(a(1 − b)z + b(1 − a)z + (c/q − 1)

(c/q − abz)(1 − q)

=
−(qα(1 − qβ)z + qβ(1 − qα)z + (qγ−1 − 1)

(qγ−1 − qαβz)(1 − q)

∼ −(β + α)z + (1 − γ)

1 − z
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and
1 − λ + µ

(q − 1)2
=

abz − c/q − (a + b)z + (1 + c/q) + z − 1

(abz − c/q)(q − 1)2

=
z(ab − (a + b) + 1)

(abz − c/q)(q − 1)2

=
z(1 − a)(1 − b))

(abz − c/q)(1 − q)2

=
z(1 − qα)(1 − qβ)

(qαβz − qγ−1)(1 − q)2

∼ − zαβ

1 − z

we have used1−qk

1−q
→ k, as q → 1. ¤

Proposition B3.2. Theq-hypergeometric series equation (B.3)

2Φ1(a, b; c; q, z) =
∑

n≥0

(a; q)n(b; q)n

(c; q)n(q; q)n

zn

becomes the hypergeometric series equation (B.1)

2F1(α, β; γ; z) =
∑

n≥0

(α)n(β)n

(γ)nn!
zn

asq → 1

Proof. If we let a = qα, b = qβ, c = qγ, then it is easily shown using the

fact 1−qk

1−q
→ k, as q → 1. ¤



APPENDIX C

Taking the continuum limit

We show how to take the continuum limit asq → 1,using the example

of q-PII. We show howq-PII reduces toq-Riccati, andq-Riccati toq-Airy,

and how they each tends to their differential analogues. First we recapitulate

what happens in the continuous case.

C1. PII, Riccati, Airy

PII equation:

y′′ = 2y3 + ty − a, ′ =
d

dt
(C.1)

whena = 1
2

reduces to the Riccati equation:

y′ = −y2 − t

2
. (C.2)

Riccati equation (C.2) can be linearized into an Airy type equation by letting

y(t) = Ai′

Ai
, that is

Ai′′ = − t

2
Ai. (C.3)

C2. q-PII, q-Riccati, q-Airy

A q-PII equation:

g(x/λ)g(λx) =
αx2(g(x) + x2)

g(x)(g(x) − 1)
, note hereq = 1

λ
(C.4)

whenα = 1
λ2 reduces to aq-Riccati equation:

g(λx) =
x2 + g(x)

g(x)
. (C.5)

Equation (C.5) can be linearized into aq-Airy equation by lettingg(x) =

−ix
λ

ai(x/λ)
ai(x/λ2)

, which is

ai(x/λ2) − i

λx
ai(x/λ) +

ai(x)

λ
= 0. (C.6)
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C3. Continuum limits

Now we show why we call equations (C.4), (C.5), and (C.6):q-PII,

q-Riccati, andq-Airy respectively.

Proposition C3.1. Theq-discrete equation:

g(x/λ)g(λx) =
αx2(g(x) + x2)

g(x)(g(x) − 1)

tends to PII

y′′ = 2y3 + ty − a

in the continuum limit as1
λ
→ 1 where

x2 = −1

4

1

λ2n

g(x) =
1

2
(1 − y(t)ǫ)

α = (1 + aǫ3)

1

λ2
= (1 + ǫ3/2)

t = nǫ

asǫ → 0.

Proof. Theq-discrete variablex increments by multiples of1
λ
,

x2 = −1

4

1

λ2n
,

where the additive discrete variablen increments by the integers.

The continuous independent variablet is related to theq-difference vari-

ablex through the additive difference variablen:

t = nǫ, .

Hence, iterating theq-discrete variablex implies:

x → x/λ

⇒ n → n + 1

⇒ t → t + ǫ.
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The continuum limit is taken whenǫ → 0, 1
λ
→ 1,

x2 = −1

4

(
1

λ2

)n

,

= −1

4

(
1

λ2

) t
ǫ

,

= −1

4
(1 + ǫ3/2)

t
ǫ ,

= −1

4
e

t
ǫ

ln(1+ǫ3/2),

∼ −1

4
e

t
ǫ
(ǫ3/2+O(ǫ6)),

∼ −1

4
e

tǫ2

2 ,

∼ −1

4
(1 + tǫ2/2),

asǫ → 0.

We can expand the dependent variableg(x) = g(t) whenǫ is small

g(x) = g(t) = g0(t) + g1(t)ǫ + g2(t)ǫ
2 + ...

=
∑

m=0

gm(t)ǫm, (C.7)

where

gk(x/λ) = gk(t + ǫ) = gk(t) + ǫg′
k + ǫ2 g′′

k

2!
+ ...

=
∑

n

ǫn g
(n)
k

n!
,

and

g(x/λ) = g(t + ǫ) = g0(t + ǫ) + g1(t + ǫ)ǫ + g2(t + ǫ)ǫ2 + ...

=
∑

m=0

gm(t + ǫ)ǫm

=
∑

m+n=0

ǫm+n g
(n)
m

n!
, f (n) =

dnf

dtn
. (C.8)



138 C. TAKING THE CONTINUUM LIMIT

Similarly,

g(xλ) = g(t − ǫ) = g0(t − ǫ) + g1(t − ǫ)ǫ + g2(t − ǫ)ǫ2 + ...

=
∑

m=0

gm(t − ǫ)ǫm

=
∑

m+n=0

ǫm+n(−1)n g
(n)
m

n!
. (C.9)

Now substitute expressions (C.7), (C.8) and (C.9) intoq-PII equation (C.4),

and equate powers inǫ:

ǫ0 : g2
0g0(g0 − 1) = −1

4

(
g0 −

1

4

)

⇒ g0 =
1

2
, or − 1

2
,

ǫ : g3
0(g0 − 1) = −1

4

(
g0 −

1

4

)

⇒ g0 =
1

2
.

Equating terms of orderǫ2 shows that the equation is consistent but does

not give any new information.

ǫ3 : −g′′
1

8
+ g3

1 = − t

8
g1 − a/16,

recall that we have chosen

α = (1 + aǫ3).

Let g1 → −g1/2

g′′
1 = 2g3

1 + tg1 − a.

¤

Proposition C3.2. Theq-discrete equation

g(λx) =
x2 + g(x)

g(x)

has Riccati equation

y′ = −y2 − t

2

as its continuum limit as1
λ
→ 1.
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Proof. Substitute the expressions (C.7), (C.8) and (C.9)forg(x), g(x/λ), g(xλ), x2

in terms ofy(t) andt, equating powers inǫ will show that

y′ = −y2 − t

2

andα = 1
λ2 = (1 + ǫ3/2) = (1 + aǫ3) implies thata = 1

2
. ¤

Proposition C3.3. Theq-discrete equation

ai(x/λ2) − i

λx
ai(x/λ) +

ai(x)

λ
= 0

has Airy type equation

w′′ = − t

2
w

as continuum limit as1
λ
→ 1 for ai(x) = w(t).

Proof. Since

x2 ∼ −1

4

(
1 + ǫ2t/2

)
,

1

x
∼

(
−1

4
(1 + ǫ2/t2)

)− 1
2

∼ 2i√
1 + ǫ2t/2

∼ 2i(1 − ǫ2t/4).

Substitute the expressions forai(x) and 1
x

in terms ofw(t) andt, equating

powers inǫ, we obtain

w′′ = − t

2
w.

¤

To summarize, we have shown in this appendix:

q-PII eqn.(C.4) → PII eqn.(2.3)

↓ ↓
q-Riccati eqn.(C.5) → Riccati eqn.(C.2)

↓ ↓
q-Airy eqn.(C.6) → Airy eqn.(C.3).
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