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Abstract:

This thesis studies the reduction of radiated and transmitted sound power by
means of piezoelectric passive networks. A detailed analysis of the radiation
and transmission properties of thin plates is presented, and this concept
are used for the optimization of the smart structures. Two main control
strategies are considered: localized and distributed control.
In localized control the piezoelectric elements are positioned in selected
locations, and the circuit is optimized for concentrating the effort of control
in the reduction the radiated sound power. The modelling, optimization and
experimental implementation of a localized smart plate is presented.
In distributed control the transducers are uniformly disposed on the struc-
ture, exploiting this spatial distribution for controlling the radiation. The
modelling of an innovative structure, the Piezoelectric Resistive Electrode
plate, is described in details.

Keywords: Piezoelectricity, Structure borne sound, Passive control,
distributed systems, smart structures, mechatronics

Resumé:

Cette thèse a comme objet la réduction du rayonnement acoustique des
structures minces par un réseau piézoélectrique passif. Une analyse détaillé
des caractéristiques de rayonnement des structures minces est présenté, avec
l’objectif d’utiliser ces caractéristiques pour l’optimisation de la structure
intelligente. Deux stratégies de contrôle sont considérées: contrôle localisé
et contrôle distribué. Le contrôle localisé utilise un réseau de actionneurs
positionnés en des endroits optimisés, et le circuit est conçu pour concentré
l’effort de contrôle dans la réduction de la puissance acoustique rayonnée.
La modélisation, l’optimisation et l’étude expérimentale d’une structure
intelligente localisée est ici présenté. Le contrôle distribué utilise un réseau
uniforme de actionneurs piézoélectriques, connecté à un circuit optimisé pour
profiter de cette distribution spatiale en termes de efficacité dans la réduction
de la puissance acoustique rayonnée et transmise. Une nouvelle structure
intelligente, la plaque avec un électrode résistif (PRE) est ici présenté.

Keywords: Piezoelectricité, Rayonnement acoustique des structures,
Contrôle passif, structures intelligentes
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Chapter 1

Introduction

1.1 Motivations

One of the main aspects that contributes to the valuation of the overall
quality of a certain vehicle, such as a car, a ship or an aircraft, is the noise
propagating into the passenger compartment due to the vibrations of the
structure or to an external source. Moreover uncontrolled vibrations can
affect the reliability and durability of mechanical structures, increasing
fatigue load, and consequently the risk of damaging the structure.

The study of structural vibrations, structure-borne sound and air-borne
sound is then a key topic in the automotive, naval and aeronautic industry.
The classical techniques adopted for reducing vibrations in vehicles are
essentially based on the use of dissipative materials, e.g. viscoelastic layers
bonded on the structure, or on added mass. While these techniques have
the advantage of being easy to optimize, they have as main drawback the
problem of making the structure heavier, especially when trying to efficiently
reduce low frequency vibrations. This is usually in counter-position with the
low-weight requirements, especially for aeronautic and aerospace applica-
tions. In order to overcome this difficulties, the research on active materials,
as piezoelectric ceramics, shape memory alloys, electrostrictive and magnetic
materials, increased over the last twenty years. Their advantages with respect
to traditional solutions are reduced mass and weight, high performances
and adaptability. This work will focus on the application of piezoelectric
materials for reducing the sound power radiated and transmitted by thin
plane structures. Examples of techniques that do not use piezoelectric
actuators can be found in [Li 2007, MasahiroToyoda 2005, Larbi 2006].

The use of piezoelectric elements for vibration control is widely diffused
in the literature, because of their property of generating an electric charge
when subjected to mechanical strains, the so called direct piezoelectric effect,
and vice-versa of generating a local deformation when a charge or a voltage
is applied, the inverse piezoelectric effect. Exploiting these properties, piezo-
electric materials can be used as sensors and actuators. Furthermore one
single transducer can be also used co-located1 sensor.

1A co-located sensor-actuator pair is a transducer capable of measuring a quantity and
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When an electronic circuit is connected to this sensor-actuator network
bonded to the structure, the dynamic of the circuit influences that of the
mechanical system. There exist several categories of vibration control using
piezoelectric transducer, the main are:

• Active control circuits: in active control circuit the signal read by
sensor is processed, amplified and sent through the control circuit to the
actuators. This kind of systems can be very effective, but as drawback
they require high power electronics and, since they supply power to the
mechanical system, they can cause instability.

• Passive and semi-passive control circuits: passive control strate-
gies are obtained shunting the piezoelectric transducers with an op-
timized network of optimized passive components. Being the control
circuit passive, it cannot supply power to the system and then it can-
not cause instability. Since very often this control networks are too
complex for a discrete passive realization, they are realized using active
components, while the control law remaining passive. This systems are
called semi-passive, since they require power. In this category we place
also the switch-shunts.

Even though each of these approaches has its advantages and drawbacks
this study is focused on passive and semi-passive control. The choice of
using a passive control law is mainly motivated by the already mentioned
stability issues. Another reason is that a passive circuit does not need, in
principle, any external power supply and can then be suitable for aerospace
applications, where power electronics cannot be used.

The main principle behind a passive control law is the following: con-
necting a mechanical and an electrical system creates an energy flow, from
the mechanical form to the electrical form and vice versa. Subtracting
mechanical energy and dissipating it into a non-conservative electric circuit
is a means to damp mechanical vibrations. The control technique is then
related to the optimization of the energy flow and the non-conservative
part of the circuit. Examples of active control systems can be found in
[Carneal 2004, Lee 1999b, Lee 1999a, Strassberger 2000, Gardonio 2005,
Gardonio 2004, Zhang 2004, Chomette 2008, Trindade 2007].
When considering passive control two main strategies are possible: local-
ized control and distributed. The first approach uses a control system
with optimally placed piezoelectric patches [Halim 2003, Gawronski 1997],
connected to a circuit operating in selected frequency windows. With
respect to the distributed controller this scheme uses a smaller number
of piezoelectric elements and, usually, a simpler circuit. Examples can be

acting on the same quantity, or another, in the same location.
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found in [Carneal 2004, Behrens 2003, Lee 1999b, Zhang 2004, Ozer 2003].
However, it can introduce a performance trade-off in terms of amount of
vibrational energy transferred to the circuit.
A different approach for solving the same problem considers a distributed
piezoelectric network connected to a passive or semi-passive modular circuit,
optimized for harvesting mechanical energy of the plate and dissipating
it into the non conservative part of the circuit. The uniform spatial
distribution of sensors and actuators permits to have, with optimized
electrical parameters, the duality between the electrical circuit and the
mechanical structure. This duality has as its consequence the superpo-
sition of the electric and mechanic eigenfrequencies and then permits an
optimal energy flow. This passive technique assures stability and opti-
mized broadband control. Applications of this technique can be found in
[Maurini 2005, dell’Isola 2003, Alessandroni 2004, Alessandroni 2002].

Finding the solution of the acoustic problem implies difficult calculations
and sometimes an analytical solution of the considered problem does non
even exist. Following [Wallace 1972, Elliott 1993, Borgiotti 1994, Bai 2002]
the elementary radiator decomposition and the concept of radiation spatial
filters will be used in order to reduce the computational cost of the analytical
treating and to make the synthesis of the controller easier. With the study of
the dispersion relations of the waves, propagating through the fluid and the
structure, it is possible to obtain optimal parameters for the components and
for the acoustic purposes. This is a crucial step for the optimization of the
control strategy and for developing an ad-hoc controller.

1.2 Objectives

The objective of this work is to model and optimize passive and semi-passive
piezoelectric smart structures, with the aim of reducing the radiated and
transmitted sound power.
In particular the main themes that will be investigated are

• Study of the radiation and transmission properties of thin plates, in-
cluding a modal approach to the analysis of the radiation properties
of the structure. Analysis of the transmission properties of single and
double plate structures.

• Model and optimization of a passive localized and distributed piezoelec-
tric smart plate for reducing the radiated sound power. Introduction of
an optimization procedure based on acoustic principles, for the piezo-
electric patches placement. Experimental tests.
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• Modelling and optimization of a passive distributed piezoelectric smart
plate for reducing radiated and transmitted sound power. Introduction
of a novel passive structure to overcome the problems related to the
complexity of the circuitry.

1.3 Outline

The thesis is organized with an introductory part (Chapters 1 and 2), a core
part reporting the theoretical works and numerical simulations (Chapters 3
and 4), an experimental part (Chapter 5) and a closure (Chapter 6). Each
chapter of the core part includes a specific introduction and a dedicated lit-
erature review.

Chapter 2 is a general introduction to the acoustic properties of thin
structures, and introduces all the performance indices that will be used in
the following chapters. A detailed analysis of the radiation properties of thin
plates is included, along with the definition of the modal radiation efficiency.
The study of the transmission of a plane wave and of a diffuse sound field
through single and double plates is also investigated.

Chapter 3 is about the modelling and optimization procedure of a localized
piezoelectric smart plate. First of all the modal model of the plate is derived,
using a variational formulation. Then several passive multimodal control
networks are presented, along with their optimization processes. After this,
an acoustically based optimization procedure for the piezoelectric actuators
positioning is introduced, using the novel concept of acoustical controllability.
The final section of the chapter is devoted to a simulation of the acoustic
behaviour of a smart plate conceived and optimized following the previous
considerations.

Chapter 4 is devoted to the modelling and optimization of a distributed
piezoelectric smart structure. A novel type of distributed smart plate, the
Piezoelectric Resistive Electrode (PRE ) plate, is presented. The model of
the PRE plate is derived using a variational principle, and the optimization
of the electrical parameters is described in detail. Finally the behaviour of
PRE plate in terms of radiation and transmission properties is compared with
other multimodal electric and viscoelasitc passive control strategies.

Chapter 5 resumes the experimental works about the optimization of a
localized piezoelectric smart structures, following the procedures described
in Chapter 3. The full process of conception and assembling of the smart
structure is here described in detail. Acoustic measures of the radiated sound
pressure are presented, in order to confirm the effectiveness of the proposed
control strategies.
Finally Chapter 6 is left for conclusions and suggestions for further extensions
of the present work.
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Object of the Chapter

This chapter is a general introduction to the acoustic properties of thin struc-
tures, and introduces all the performance indices that will be used in the fol-
lowing chapters. A detailed analysis of the radiation properties of thin plates
is included, along with the definition of the modal radiation efficiency. The
study of the transmission of a plane wave and of a diffuse sound field through
single and double plates is also investigated.
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2.1 Equation of acoustic propagation in linear

acoustics

Since acoustics is defined as the dynamics of small perturbations of a
compressible fluid, the starting point is the study of fundamental equa-
tions of continuum mechanics, such as conservation, state and behaviour
equations. Starting from a generic formulation, the linear equations for
small perturbation around a steady state will be briefly derived, following
[Cremer 1973, Fahy 2001, Filippi 1984, Ohayon 1998].

• Conservation of the mass: Let Ω be a closed volume filled with a
homogeneous media with volume density ρ. Then the total mass is
M(Ω) =

∫
Ω
ρdΩ, and the mass conservation equation for any volume Ω

is
d
dt

∫

Ω

ρdΩ = fi, (2.1)

where fi is a source of mass and
d

dt
is the material derivative of a volume

integral.

• Conservation of the linear momentum: being v, T and bv the
velocity of a particle, the stress tensor and the volume density of the
applied forces, the conservation equation for the linear momentum with
boundary ∂Ω and its normal n is

d
dt

∫

Ω

ρvdΩ =

∫

∂Ω

T · ndS +

∫

Ω

bv · vdΩ (2.2)

• Conservation of the energy : being e, q, r the internal energy, the
heat flow and the heat source density, the energy conservation equation
is

d
dt

∫

Ω

ρ

(
e+

1

2
v2

)
dΩ =

∫

∂Ω

(T · n− q)n dS +

∫

Ω

(bv + r) dΩ. (2.3)

The lemma of material derivatives on a volume leads to:

d
dt

∫

Ω

ϕdΩ =

∫

Ω

(
d
dt
ϕ+ ϕ div(v)

)
dΩ =

∫

Ω

(
∂

∂t
ϕ+ div(ϕv)

)
dΩ, (2.4)

where
d
dt
ϕ = ϕ̇+ v · grad(ϕv)

is the material derivative of a function and �̇ denotes a first order time deriva-
tive.
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Using equation (2.4), considering that conservation equations must be inde-
pendent of the volume Ω, using the symmetry of the stress tensor one can
write a local form for equations (2.1), (2.2) and (2.3) as:

d
dt
ρ+ ρ divv = fi, (2.5a)

ρ
d
dt
v − divT = bv, (2.5b)

ρ
d
dt
e+ divq = T : S+ r, (2.5c)

where S is the strain tensor.

2.1.1 State equation

The state equation describes the current thermodynamic state of the system.
For a fluid a state equation can be written choosing two independent thermo-
dynamic variables. With the choice of entropy s and specific volume v = ρ−1,
the internal energy has the form e = e(s, v).
Considering its first differential the Gibbs equation is obtained:

de = Tds− pdv, (2.6)

where T =
(
∂e
∂s

)
v

is the temperature and p =
(
∂e
∂v

)
s
the pressure. In acoustics,

being the perturbations very small, a first differential approximation is enough
accurate. Then, using equation (2.6) the energy balance, equation (2.5c)
becomes

Tρ
d
dt
s = Θ : S− divq+ r (2.7)

where Θ = T− pI is the viscous stress tensor (being I the identity tensor).

2.1.2 Equation of acoustic propagation and linear acous-

tic approximation

In this section the equations of propagation for acoustic waves into a fluid
will be derived.
For sake of simplicity dissipative phenomena in the fluid can be neglected,
i.e. Θ = 0. Then supposing that there is not any heat flow, volume force
density and heat source, that means q, bv and r = 0, the system (2.5) then
finally becomes:

d
dt
ρ+ ρ divv = fi, (2.8a)

ρ
d
dt
v + grad p = 0, (2.8b)

Tρ
d
dt
s = 0, (2.8c)



2.1. EQUATION OF ACOUSTIC PROPAGATION IN LINEAR ACOUSTICS 9

Then applying the definition of material derivative

ρ̇+ v grad ρ+ ρ divv = fi, (2.9a)

ρv̇ + ρv · gradv + grad p = 0, (2.9b)

Tρ (ṡ+ v grad s) = 0, (2.9c)

Considering linear variations near an homogeneous steady state the variables
are rewritten as

ρ = ρ0 + ρ1, p = p0 + p1, v = v1, s = s0 + s1, fi = f 0
i + f 1

i (2.10)

where with the superscripts �0 and �1 an initial state and a variation of the
respective quantity are identifies. Being the initial condition a steady state,
this implies ρ0 = const, p0 = const, s0 = 0, f 0

i = 0, v = 0.
Then the first order terms system (2.9) are

ρ̇1 + ρ0 divv1 = fi, (2.11a)

ρ0v̇1 + grad p1 = 0, (2.11b)

T 0ρ0ṡ1 = 0, (2.11c)

The second order differential of the state equation (2.6) gives the following
equations:

T 1 =
T 0

C0
v

s1 +
1

ρ0α0
s

ρ1 (2.12a)

p1 =
ρ0

α0
v

s1 +
1

ρ0χ0
s

ρ1 (2.12b)

From equation (2.11c) it is evident that the process is adiabatic, i.e. ∂s1

∂t
= 0.

This implies

p1 =
1

ρ0χ0
s

ρ1 (2.13)

that is
ρ1 = ρ0χ0

sp
1 (2.14)

Substituting the last equation into system (2.11) gives

ρ0χ0
s ṗ

1 + ρ0 divv1 = fi, (2.15a)

ρ0v̇1 + grad p1 = 0, (2.15b)

Then considering the partial time derivative of equation (2.15a) minus the
divergence of equation (2.15b) leads to

ρ0χs0 p̈
1 − div

(
grad p1

)
= ḟi.

Introducing c =
√
ρ0χ0

s as the speed of sound in the specific medium the
linearized equation of propagation in the final form is:

p̈1 − 1

c2
div
(
grad p1

)
= ḟi. (2.16)
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It is easy to notice that equation (2.16) is a d’Alembert equation and then
each solution is a wave propagating into the medium. In order to simplify
the notation the superscript which denote the linear approximation will be
neglected throughout the rest of the thesis.

p̈− 1

c2
div (grad p) = ḟi. (2.17)

Remark 1. The only source for acoustic pressure is then the time derivative

of the injection of mass ḟi, that represents any common structural acoustic

source. Vibrating surfaces are to be considered as pistons injecting matter

into the considered volume.

2.2 Sound Radiation of plane structures

In this section the radiation properties of finite plate in an infinite baffle,
figure (2.1) are investigated. The main performance indexes used for de-
termining the radiation properties of a structure will be introduced, as well
as optimized computational methods for calculating these values. Finally a
modal approach to the estimation of the radiated sound power will be de-
scribed. The introduction of modal radiation efficiency coefficients will be
crucial towards the acoustic optimization of the controllers proposed in next
chapters.

Infinite baffle 

e
2

e
3

e
1

Plate 

Fluid 

Figure 2.1: Finite plate in an infinite baffle

2.2.1 Far Field Sound Pressure

The acoustic pressure at a generic point of the space due to the transverse
motion w0 of a portion S of the plate can be calculated using the Rayleigh
formula:

p̂(p, ω, S) =
jωρ

2π

∫

S

e−jk(p−r)

p− r
ŵ0(r, ω)dS, (2.18)

where �̂ denotes a quantity in frequency domain and k = (ω/c k) is the wave
vector of a sound wave propagating in a light fluid along direction k.
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This is a very important performance index, since it is related to a phys-
ical quantity that can be easily measured, such as the pressure. In the
literature there exists a standard method for measuring this quantity, see
[ISO 3745 1977] and figure 2.2.

Figure 2.2: Microphone positions according to [ISO 3745 1977]

2.2.2 Sound Power at plate level

The radiated power at the plate level can be expressed by the surface integral
of the product between the pressure in each point of the plate, calculated
with equation (4.43), multiplied by its velocity:

πr (ω, S) =
1

2

∫

S

Re {(p̂(r, ω)|z=0) · (jωŵ0(r, ω))
∗} dS, (2.19)

where �∗ is a conjugate quantity.
This is a global parameter that gives us different informations with respect
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to the far field pressure, since it involves also the near field, but it is not
a measurable quantity. Unfortunately this double integral very often does
not admit an analytical solution, therefore a optimized numerical approach
is needed for calculating the radiated sound power.

Spatial radiation filters and modal radiation efficiency

The procedure here proposed has a double advantage:

• reduces the computational cost of calculating the radiated sound power

• introduces modal radiation coefficients

The first step consists in performing a standard modal decomposition of the
transverse velocity field of the plate, in terms of the sum of the modal shapes
Ψi(r) and the corresponding modal velocity coefficients yi(ω):

v̂(ω, r) =
N∑

i=1

yi(ω)Ψi(r) (2.20)

Then using equation (4.43), the pressure at the point r1 due to the velocity
of the point r2, where r1 and r2 are both points of the plate, i.e. (r1, r2) ∈ S

is

p̂(ω, r1) =
ρ

2π

∫

S

e−jk·(r2−r1)

(r2 − r1)
v̂(ω, r2)dS. (2.21)

Substituting the modal decomposition for the transverse velocity, equation
(2.20), into equation (2.21) gives

p̂(ω, r1) =
N∑

i=1

yi(ω)
ρ

2π

∫

S

e−
jω

c
k·(r2−r1)

(r2 − r1)
Ψi(r2)dS, (2.22)

that is the modal decomposition for the pressure field. Then using equations
(2.20) and (2.22) into equation (4.44) a reduced modal expression of the
radiated power can be written as:

π̃(ω, S) =
N∑

i=1

|yi(ω)|2
ρ

2π

∫

S

∫

S

e−
jω

c
k·(r2−r1)

(r2 − r1)
Ψi(r2)Ψ

∗

i (r2)dSdS (2.23)

that can be rewritten as

π̃r(ω) =
n∑

i=1

ηi(ω)|yi(ω)|2 (2.24)

where

ηi(ω) =
ρ

2π

∫

S

∫

S

e−
jω

c
k·(r2−r1)

(r2 − r1)
Ψi(r2)Ψ

∗

i (r2)dSdS. (2.25)



2.2. SOUND RADIATION OF PLANE STRUCTURES 13

Equation (2.25) defines the modal radiation efficiency for the ith vibration
mode of the plate, and depends only on the geometry of the plate and the
properties of the fluid. From equation (2.24) the radiated power is then a
quadratic function of the modal velocity, weighted by the modal efficiency
coefficient.

Finding the analytical solutions for equation (2.25) is complicated, as
it was finding the solution of (4.44). Then, following the literature, see
[Elliott 1993, Bai 2002, Borgiotti 1994], a discretization of the domain will
be performed in order to deal with sums instead that with integrals. The
plate domain is then divided in a matrix of M elements, radiating as pistons,
and the discrete form of equation (4.44) is

πr (ω) =
A

2
ℜ
{
vH(ω) · p (ω)

}
, (2.26)

where v is the vector of the complex velocities, p is the vector of the pressure
immediately in front of each element averaged on the surface A of each element
and ℜ{·} denotes the real part of a complex vector.
Being the velocity field known by modal analysis, and given that the pistons
are radiating as plane surfaces with transverse velocity, the pressure on the
nth piston due to the velocity of the mth can be calculated with equation
(4.43)

pn(ω) =
ρ

2π

∫

S

e−jkrn,m

rn,m
vm(ω)dS, (2.27)

For a plate in an infinite baffle the pressure vector can then be then rewritten
as

p = Rv

The matrix R is a real, symmetric, positive definite matrix whose elements
can be analytically calculated:

R(ω) =
ω2ρA2

4πc




1 sin(k r1,2)

k r1,2
...

sin(k r1,M )

k r1,M
sin(k r2,1)

k r2,1
1 ... ...

... ... ... ...
sin(k rM,1)

k rM,1
... ... 1



, (2.28)

where ρ is the density of the medium, c the speed of sound in the medium, S
the area of the elementary radiating element and rn,m the distance between
the nth and the mth piston.

Remark 2. For a plate in an infinite baffle the matrix R only depends on

the dimensions of the plate and the characteristics of the fluid.

Since R is a real, symmetric, positive definite matrix it is always possible
to perform an eigenvalue/eigenvector decomposition

R(ω) = QT (ω)Λ (ω)Q(ω),
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where Q is a N × M matrix, whose columns qi are the eigenvectors, here
called radiation filters, and Λ the diagonal matrix of the eigenvalues. These
radiation filters qi, also called radiation modes in the literature, can be inter-
preted as optimal velocity patterns in terms of radiation efficiency and they
depend on frequency, as well as their associated eigenvalue. An example of

1st radiation mode   2st radiation mode   3st radiation mode   

4st radiation mode   5st radiation mode   6st radiation mode   

Figure 2.3: First six radiation filters of a rectangular plate at 1kHz
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Figure 2.4: Eigenvalues associated to the first six radiation filters of a rectangular

plate.

the first six radiation filters for a rectangular plate is shown in figure 2.3. The
corresponding eigenvalues are plotted in figure 2.4. Being R a large matrix
that depends on frequency, performing an eigenvalue/eigenvector decompo-
sition can be a cumbersome task in terms of computational cost. Since is
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known from the literature, [Elliott 1993], that the largest amount of the ra-
diated power is due to the first radiation filters, only the first L radiation
filters will be considered. In this reduced model the reduced eigenvectors
and eigenvalues matrix are Q̃L×M and Λ̃L×L, and consequently the radiation
matrix is

R(ω)=Q̃T (ω) Λ̃(ω)Q̃(ω).

Each eigenvalue λ̃i(ω) = Λ̃ii(ω) represents the radiation efficiency of each ra-
diation filter, and its value depends on frequency. For the radiation properties
of a plate coupled with a light fluid, these eigenvalues will have a high-pass
behaviour and for frequencies f > fc, where fc is the critical frequency, they
all contribute equally to the radiation, see figure 2.4. This critical frequency
depends only on the geometry of the plate and the properties of the fluid.
Hence, in order to reduce computational costs for calculating the radiated
sound power the so called nesting property of radiation filters, as discussed in
[Borgiotti 1994], can be used. Considering two frequencies f1 and f2 so that
f1 < f2, the nesting property imply that:

Span {q (f1)} ⊂ Span {q (f2)} . (2.29)

The meaning of equation (2.29) is the following: if the eigenvalue correspond-
ing to a radiation filter calculated at f2 is set to zero, that means no radiation,
every radiation filter for f1 < f2 will be set to zero as well. Since we are
interested in controlling the radiation in a limited frequency band, we use
this result to simplify the calculations. After these considerations it is possi-
ble to write the final approximated form for the radiation resistances matrix
calculated at fmax

Rmax(ω) = Q̃T
max Λ̃(ω)Q̃max,

where Q̃max is the matrix of the eigenvectors calculated at fmax, i.e. the
maximum frequency of interest. We can now write an approximated equation
for the radiated power

π̃(ω) = vH(ω)Q̃T
max Λ̃(ω)Q̃maxv(ω).

The compact form of equation (2.20) is

v(ω) = Ψy(ω),

where ΨN×M is the matrix of modal shapes. Therefore the expression of the
radiated power becomes

π̃r(ω) = (Ψy(ω))H Q̃T
max Λ̃(ω)Q̃max (Ψy(ω)) =

= yH(ω)
(
Ψ Q̃max

)H
Λ̃(ω)

(
Ψ Q̃max

)
y(ω) = yH(ω)Ẽ(ω)y(ω)

where

Ẽ(ω) =
(
Ψ Q̃

)H
max

Λ̃(ω)
(
Ψ Q̃max

)



16 CHAPTER 2. SOUND RADIATION AND TRANSMISSION OF PLATES

is the diagonal matrix of the approximated modal radiation efficiencies. Then
the expression of the approximated modal efficiency for each structural mode
is:

η̃i(ω) = Ẽii(ω) =
L∑

n

λn(ω)Ψ̃i · Q̃
max

n
(2.30)

In words each modal radiation efficiency coefficient is determined by the sum
of the projection of that structural mode on each radiation filter, weighted
by the efficiency of that filter. Each coefficient η̃i is the approximation of
the integral radiation coefficient ηi defined in (2.25). Then the approximated
expression for the radiated power is

π̃r(ω) =
N∑

i=1

ηi(ω)|yi(ω)|2.

Since ηi(ω) is a function of the radian frequency in order to know how much
a structural mode effectively radiates the value of the ith coefficient can be
calculated at the corresponding radian frequency ωi. The effective modal
efficiency is then defined as follows:

ηi = ηi(ωi) (2.31)

These coefficients will be used for optimizing the controller.

Remark 3. Since the efficiency of each vibrational mode is calculated form

the efficiency of the radiation filters, and since this efficiency has has a low

pass filter behaviour, these concepts can be used only at low frequencies, below

the critical frequency fc.

2.3 Infinite thin plates

In this section the behaviour of infinite thin plates in terms
of radiation and transmission properties is analysed. This is
done according to the procedure described in the literature,
[Cremer 1973, Fahy 2001, Filippi 1984, Fahy 1985].

2.3.1 Impedance of an infinite thin plate

In order to efficiently describe the plate fluid interaction the concept of plate
impedance will be here introduced. Since the fluid plate interaction can be
modelled as a pressure acting on the plate surface the impedance will be
defined as the ratio between this pressure and the induced displacement.

Z(ω, kx, ky) =
p(x, y)

w(x, y)
(2.32)
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The pressure source is introduced as an unitary progressive plane wave on
the surface:

p(x, y) = e−j(kxx+kyy) (2.33)

The response of the plate in terms of displacement will be a solution of the
generic plate equation

L{w(x, y)} = e−j(kxx+kyy) (2.34)

Since L{·} is a linear differential operator the solution will be in the form

w(x, y) = A(ω, kx, ky)e
−j(kxx+kyy). (2.35)

The expression of A depends on the differential operator L{·} and will always
be a function of ω, kx and ky. Then the impedance of the plate is

Z(ω, kx, ky) =
p(x, y)

w(x, y)
=

1

A(ω, kx, ky)
(2.36)

It is important to denote that the impedance is a pair function of the
wavenumbers, so that Z(ω, kx, ky) = Z(ω,−kx,−ky). This implies that the
impedance is independent on the sense of propagation. A general expression
of the impedance that will be considered in this work is

Z(ω, kx, ky) = D(k2x + k2x)
2

︸ ︷︷ ︸
stiffness

− mω2

︸ ︷︷ ︸
inertia

+ Γ(ω, kx, ky)︸ ︷︷ ︸
piezoelectric coupling

(2.37)

Any sort of mechanical damping will be modelled using complex stiffness coef-
ficients and any electrical damping is included into the piezoelectric coupling
term.

2.3.2 Sound radiation and propagation of coupled waves

Consider two half-spaces filled by identical light fluids, separated by an infinite
plate placed at z = 0. The equation of motion and the boundary conditions
are the following:

Fluid 1 (z < 0)

∇2p1 +
ω2

c2
p1 = 0 (2.38a)

∂p1
∂z

∣∣∣∣
z=0

= ρω2w (2.38b)

Sommerfeld condition1 at infinity (2.38c)

1in 1912 Arnold Sommerfeld defined the condition of radiation for a scalar field satisfying

the Helmholtz equation as "the sources must be sources, not sinks of energy. The energy

which is radiated from the sources must scatter to infinity; no energy may be radiated from

infinity into ... the field.".
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Fluid 2 (z > 0)

∇2p2 +
ω2

c2
p2 = 0 (2.39a)

∂p2
∂z

∣∣∣∣
z=0

= ρω2w (2.39b)

Sommerfeld condition at infinity (2.39c)

Plate (z = 0)

L{w} = (p1 − p2)z=0 , (2.40)

where L{·} is a generic plate operator and w is the transverse displacement
of a point of the plate. Supposing no acoustic sources this kind of solutions
for the pressure and transverse displacement fields are posed

p1 =
(
A1
xe

−jkxx +B1
xe
jkxx
) (
A1
ye

−jkyy +B1
ye
jkyz
) (
B1
ze

+jkzz
)

(2.41a)

p2 =
(
A2
xe

−jkxx +B2
xe
jkxx
) (
A2
ye

−jkyz +B2
ye
jkyy
) (
A2
ze

−jkzz
)

(2.41b)

w1 =
(
Cxe

−jkxx +Dxe
jkxx
) (
Cye

−jkyz +Dye
jkyy
)

(2.41c)

Considering equations (2.38b) and (2.39b) the following relations between the
transverse displacement and the pressure fields in z = 0 are easily obtained

jkzp1 = ω2ρw (2.42a)

−jkzp2 = ω2ρw (2.42b)

Substituting these results into equation (2.40) and neglecting the trivial so-
lution w = 0 the dispersive equation for the coupled system is obtained:

Z(ω, kx, ky) + 2
jω2ρ

kz
= 0 (2.43)

Being

kz =

√
ω2

c2
− k2x − k2y, (2.44)

The general expression of the dispersion relation becomes

Z(ω, kx, ky) + 2
jω2ρ√

ω2

c2
− k2x − k2y

= 0 (2.45)

Then the fields are

p1 = − jω2ρ√
ω2

c2
− k2x − k2y

we
+j

√

√

√

√

ω2

c2
−k2x−k

2
yz

(2.46a)

p2 = − jω2ρ√
ω2

c2
− k2x − k2y

we
−j

√

√

√

√

ω2

c2
−k2x−k

2
y

(2.46b)

w =
(
Cxe

−jkxx +Dxe
jkxx
) (
Cye

−jkzz +Dze
jkz
)

(2.46c)
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This shows that the radiated waves are plane waves, which can be evanescent
or progressive depending on kz. The amount of power radiated by a portion
S of the plate is

π1,2
r (S) =

1

2

∫

S

Re
{
p1,2|z=0w

∗
}
dS (2.47)

and then using equations (2.46)

π1,2
r (S) =

1

2
ω2ρcRe

{
k√

k2 − k2x − k2y

}∫

S

|w|2 dS. (2.48)

Then the quadratic velocity of a generic portion S of the plate can be intro-
duced as

< v2 >=
1

2
ω2

∫

S

|w|2 dS, (2.49)

and the expression of the radiated power is

πr (S) = ρcRe

{
k√

k2 − k2x − k2y

}
< v2 > . (2.50)

From the last equation, the radiation coefficient can be defined as

σr =

∣∣∣∣
πr (S)

ρc < v2 >

∣∣∣∣ = Re

{
k√

k2 − k2x − k2y

}
= Re

{
k

kz

}
(2.51)

Remark 4. Being k always real there is radiated power only if kz, that is for

progressive waves. Evanescent waves does not radiate.

In order to clarify these concepts, the case study of an aluminium plate is
considered.

The case an aluminium plate

Introducing the trace wave-number of the waves propagating into a plate
coupled with fluids as

kf =
√
k2x + k2y, (2.52)

equation (2.45) can be rewritten as

Dk4f −mω2 + 2
jω2

√
k2 − k2f

= 0. (2.53)

In order to study this dispersion relation a new parameter a is introduced:

a =
√
k2f − k2 = jkz, (2.54a)

kf =
√
a2 + k2. (2.54b)
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The parameter a that is then related to the propagation of the waves along
the z direction. Substituting into the dispersive relation

a5 + 2k2a3 +
(
k4 − k4F

)
a− 2

ρf
m1

= 0, (2.55)

where k4F = ρω2/D is the trace wave-number of the plate "in vacuo", a
polynomial equation for a it is obtained. From equations (2.38b) and (2.38b)
and considering the parameter a the value of the pressure fields can be found

p1 =
ωρfck

a
eaz (2.56)

p2 = −ωρfck
a

e−az (2.57)

So the being

πr (S) =
1

2

∫

S

Re {p1|z=0w
∗} dS (2.58)

the amount of power radiated by a portion S of the plate in the halfspace
z > 0, the expression in function of a is

πr (S) =
1

2
ω2ρcRe

{
jk

a

}∫

S

|w|2 dS. (2.59)

The quadratic velocity of the portion of the plate can be introduced as

< v2 >=
1

2
ω2

∫

S

|w|2 dS. (2.60)

then

πr (S) = ρcRe

{
jk

a

}
< v2 > (2.61)

is the expression of the radiated power. The radiation coefficient can be
introduced as

σr =

∣∣∣∣
πr (S)

ρc < v2 >

∣∣∣∣ = Re

{
jk

a

}
= kIm

{
1

a

}
(2.62)

that depends mainly on a. It is useful to study the dispersion relation (2.55)
in order to analyse the radiation coefficient. Introducing the light fluid ap-
proximation, ρ≪ m1, and neglecting the trivial solution a = 0 , the equation
(2.55) becomes

a4 + 2k2a2 + k4 − k4F = 0, (2.63)

and its solutions are

a1,2 = ±j
√
k2 − k2F , (2.64)

a3,4 = ±
√
k2F − k2. (2.65)
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Figure 2.5: Radiation coefficient for an evanescent flexural wave

Negative solutions, that correspond to waves travelling towards the plate,
will not be considered because of the Sommerfeld condition. The remaining
solutions are:

a1 = j
√
k2 − k2F , (2.66a)

a3 =
√
k2F − k2. (2.66b)

From equation (2.54b) we deduce the following relationship between these
solutions and the wave-number kf :

a1 −→ kf = jkF , (2.67)

a3 −→ kf = kF . (2.68)

Analysis of the first solution, evanescent flexural wave (kf = jkF )

The corresponding radiation coefficient is

σ1 =
1√

1 +

(
kF
k

)2
(2.69)

σ1 =
1√

1 +
(ωc
ω

) (2.70)

Where

ωc = c2
√
m1

D
(2.71)

The frequency behaviour of the radiation coefficient σ1 for an evanescent
flexural wave is plotted in figure 2.5. Evanescent flexural waves always radiate,
but the radiation efficiency increase with the frequency and tends to be equal
to one.
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Figure 2.6: Radiation coefficient for a progressive flexural wave

Analysis of the second solution, progressive flexural wave kf = kF
The corresponding radiation coefficient is

σ3 =
1√

1−
(
kF
k

)2
(2.72)

σ3 =
1√

1 +
(ωc
ω

) (2.73)

The frequency behaviour of the radiation coefficient σ3 for an evanescent
flexural wave is plotted in figure 2.6. Progressive flexural waves radiate only
for ω > ωc. Above ωc the radiation coefficient is always greater than one. This
because for ω < ωc the acoustic wave is evanescent, for ω > ωc is progressive.

2.3.3 Transmission properties of single plate structures

Considering the same geometry as in the previous section, this time the sys-
tem is excited by a plane waves with the angles of incidence θ and φ defined
as in figure 2.7.

pinc = e−jk sin θ sinφx−jk sin θ cosφy−jkzz (2.74)

For the sake of simplicity and without losing generality the incident wave can
be chosen with φ = 0.

pinc = e−jkxx−jkzz (2.75)

where

kx = k sin θ, ky = 0, kz = k cos θ, (2.76)

This implies that the wavenumber of the transmitted wave is always real, and
the transmitted wave is always progressive. This result come from the choice
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Figure 2.7: Radiation coefficient for a progressive flexural wave

of using identical fluids.

p1 = e−jkxx( e−jkzz︸ ︷︷ ︸
Incident wave

+ B1
ze
jkzz

︸ ︷︷ ︸
Reflected wave

) (2.77a)

p2 = A2
xe

−jkxx
(
A2
ze

−jkzz
)

︸ ︷︷ ︸
Transmitted wave

(2.77b)

w1 = C1e
−jkxx (2.77c)

Using these solutions in equations (2.38b), (2.39b), and (2.40) it is easy to
obtain the value of the constant C1, that is the modulus of the bending waves.

C1 =
2

Zpl + j2ω
ρc

cos θ

(2.78)

Introducing the transparence function as the ratio between the power radiated
form the plate and that of the incident wave

τ =
πrad
πinc

. (2.79)

where

πinc =
1

2

∫

S

Re

{
pinc|z=0

(
∂pinc
∂z

∣∣∣∣
z=0

1

jωρ

)
∗
}

dS =
1

2

cos θ

ρc
S (2.80)

The value of the transparency is then

πrad =
1

2

∫

S

Re {pinc|z=0 (jωw)
∗} dS =

1

2

ρcω2

cos θ
S|C1|2 (2.81)
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τ (θ, ω) =
ω2ρ2c2

cos θ2
|C1|2. (2.82)

and using equation (2.78)

τ (θ, ω) =
ω2ρ2c2

cos θ2
4∣∣∣Zpl + j2ω

ρc

cos θ

∣∣∣
2 . (2.83)

A standard parameter used in structural acoustics for verifying the perfor-
mances of structures is the Sound Reduction Index, defined as follows:

SRI (θ, ω) = 10 log10

(
1

τ (θ, ω)

)
(2.84)

Sound transmission through an aluminium plate

The trivial case of an aluminium plate is discussed in this section.
Since for an aluminium plate Zpl = Dk4x −mω2 the transparency is

τ (θ, ω) = τ (θ, ω) =
ω2ρ2c2

cos θ2
4∣∣∣Dk4x −mω2 + j2ω

ρc

cos θ

∣∣∣
2 . (2.85)

From the decomposition of the scalar wavenumbers, equation (2.76), it is
known that

kx = k sin θ =
ω

c
sin θ

then introducing the coincidence frequency as

ωcoin(θ) =
c2

sin2 θ

√
m

D
(2.86)

and performing some easy calculations the expression of the transparency is

τ (θ, ω) =
1

(
ωm cos θ

ρc

)2(
1− ω2

ω2
coin

)2

+ 1

. (2.87)

It is easy to verify that at ωcoin the transparency is equal to one. This means
that for ω = ωcoin the plate il completely transparent.

Remark 5. Since ωcoin is a function of the angle of incidence plane waves

with a different angle of incidence have different ωcoin. Since ωcoin(π/2) = ωc
there will be no total transparency below the critical frequency.

Let us set a specific angle θ0, the analysis can now be performed concen-
trating it in three distinct ranges of frequencies.



2.3. INFINITE THIN PLATES 25

Mass Damping Stiffness

0.1 0.2 0.5 1.0 2.0 5.0 10.0
0

20

40

60

80

100

120

Normalized radian frequencyΩ�Ωcoin

S
ou

nd
R

ed
uc

tio
n

In
de

x@d
B
D

Figure 2.8: Sound Reduction Index for a specific incidence angle.

The region of the mass (ω < ωcoin) Since the term ω2/ω2
coin can be

neglected the transparency becomes

τ̃ (θ, ω) =
1

(
ω2
m cos θ

ρc

)2

+ 1

. (2.88)

Then the sound reduction index is

˜SRI (θ, ω) = 10 log

(
ω2

(
m cos θ

ρc

)2

+ 1

)
. (2.89)

It is clear from the last equation that the slope is fixed to 6dB/Octave, then
supposing the parameters of the fluid fixed the only parameter which can
raise the value of sound reduction in this range of frequency is the surface
mass density of the plate, that is why this region is called region of the mass.
A plot of the Sound Reduction Index with different mass values is in figure
2.9(a).

The region of the stiffness (ω > ωcoin): The term ω2/ω2
coin becomes

dominant and the transparency becomes

τ̃ (θ, ω) =
1

ω4

(
sin2 θ cos θ

Dρc2

)2 . (2.90)

Then the sound reduction index is

˜SRI (θ, ω) = 10 log

(
ω4

(
sin θ cos θ

Dρc2

)2
)
. (2.91)



26 CHAPTER 2. SOUND RADIATION AND TRANSMISSION OF PLATES

100 200 500 1000 2000 5000 1!104 2!104
0

20

40

60

80

Frequency !Hz"

S
o
u
n
d
R
ed
u
ct
io
n
In
d
ex
#d
B
$

Mass 

(a) Increasing Mass

100 200 500 1000 2000 5000 1!104 2!104
0

20

40

60

80

Frequency !Hz"

S
o
u
n
d
R
ed
u
ct
io
n
In
d
ex
#d
B
$ Stiffness 

(b) Increasing Stiffness

100 200 500 1000 2000 5000 1!104 2!104
0

20

40

60

80

Frequency !Hz"

S
o
u
n
d
R
ed
u
ct
io
n
In
d
ex
#d
B
$

Damping 

(c) Increasing Damping

Figure 2.9: Sound Reduction index in function of mass, stiffness and damping

This region is called region of the stiffness since the acoustic behaviour of
the structure in this range of frequencies can be influenced only changing the
value of the stiffness D, as before was for the region of the mass. A plot of
the Sound Reduction Index with different stiffness values is in figure 2.9(b).
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The coincidence region (ω = ωcoin) In order to better investigate the
behaviour near this region we need to introduce a structural damping in the
plate equation.
The simplest structural damping modelling for an isotropic plate is done by
introducing a complex Young Modulus Y ∗ = Y (1 + jζ).
Hence the impedance of the plate becomes:

Zpl = Dk4x −mω2 + jζDk4x,

were ζ is the structural damping coefficient.

τ (θ, ω) =
1

(
ωm cos θ

ρc

)2(
1− ω2

ω2
coin

)2

+

(
ζ
cos2 θ

2ρc

ω2

ω2
coin

+ 1

) . (2.92)

Then the value of the transparency at the coincidence frequency becomes

τ (θ, ωcoin) =
1(

ζ cos2 θ

2ρc
+ 1

) . (2.93)

Remark 6. The coincidence region is the only one in which the value of the

Sound Reduction Index depends on the damping.

A plot of the Sound Reduction Index with different values of the damping
parameter is in figure 2.9(c).

3D Plots and Contour Plots Since the value of the SRI depends not
only on frequency, but also on the angle of incidence two clearer way to plot
this quantity is here introduced. The first one is the 3D plot of the SRI as
in figure 2.10(a), where the trend of the ωcoin can be easily identified. Plots
like those in figure 2.8 are to be seen as slices of the 3D plot for a specific
θ. Similarly the contour plot in figure 2.10(b) shows the same results in 2D.
These two way of representing the SRI are very useful in order to compare
the behaviour of different sound transmission control strategies.

2.3.4 Double plate structures

In this section systems composed by two parallel infinite plates are considered,
as sketched in figure 2.11. As already done in section 2.3.2 the equation for
pressure and flexural waves can be written in frequency domain in this way

Fluid 1 (z < 0)

∇2p1 +
ω2

c2
p1 = 0 (2.94a)

∂p1
∂z

∣∣∣∣
z=0

= ρω2w1 (2.94b)
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(a) 3DPlot

(b) ContourPlot

Figure 2.10: Contour Plot and 3D Plot of the Sound Reduction Index in function

of θ.
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Figure 2.11: Infinite double plates
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Fluid 2 (0 < z < a)

∇2p2 −
ω2

c2
p2 = 0 (2.95a)

∂p2
∂z

∣∣∣∣
z=0

= ρω2w1 (2.95b)

∂p2
∂z

∣∣∣∣
z=a

= ρω2w2 (2.95c)

Fluid 3 (z > a)

∇2p3 +
ω2

c2
p3 = 0 (2.96a)

∂p3
∂z

∣∣∣∣
z=a

= ρω2w2 (2.96b)

Sommerfeld condition at infinity

Plate 1

L1 {w1, w2} = (p1 − p2)z=0 (2.97)

Plate 2

L2 {w1, w2} = (p2 − p3)z=a (2.98)

where L{w1, w2} is the generic linear differential operator of the plate. The
generic solutions for the propagation equations supposing an incident wave
in this form

pinc(x, y, z) = e−jk(sinθ)y−jk(cosθ)z (2.99)

are written in this form

p1(x, y, z) = e−jk(sinθ)y
(
e−jk(cosθ)z +B1

ze
+jk(cosθ)z

)
(2.100a)

p2(x, y, z) = e−jk(sinθ)y
(
A2
ze

−jk(cosθ)z +B2
ze

+jk(cosθ)z
)

(2.100b)

p3(x, y, z) = e−jk(sinθ)y
(
A3
ze

−jk(cosθ)z
)

(2.100c)

w1(x, y) = C1e
−jk(sinθ cosφ)y (2.100d)

w2(x, y) = C2e
−jk(sinθ cosφ)y (2.100e)

2.3.4.1 The case of two aluminium plates

In this section a structure composed by two infinite thin aluminium plates im-
mersed in air is considered. Substituting the solutions (2.100) into equations
(2.94), (2.95), (2.96), (2.97), (2.98) the following system, written in matrix
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form, is obtained:



jkcosθ 0 0 0 −ρω2 0

0 −jkcosθ jkcosθ 0 −ρω2 0

0 −jkcosθe−jkcosθa jkcosθejkcosθa 0 0 −ρω2

0 0 0 −jkcosθe−jkcosθa 0 −ρω2

1 −1 −1 0 −Z1 0

0 −e−jkcosθa ejkcosθa ejkcosθa 0 −Z2




×

×




B1
z

A2
z

B2
z

A3
z

C1

C2




=




jkcosθ

0

0

0

0

−1

0




Then the expression of the amplitude coefficients of the waves is

A3
z = jω

ρc

cos θe−jk cos θa
(2.101a)

B1
z = 1 + jω

ρc

cos θ
C1 (2.101b)

A2
z = B2

z + jω
ρc

cos θ
C2 (2.101c)

B2
z =

(
ωρc cot(k cos θa)

2 cos θ
− j

ωρc

2 cos θ

)
C1 −

ρωc

2 cos θ sin(k cos θa)
C2 (2.101d)

A compact form for writing the impedance of a double plate is the following
[
Z11 −Z12

−Z12 Z22

] [
C1

C2

]
=

[
2

0

]
(2.102)

where

Z11 = Z1 + jω
ρc

cos θ
+

ωρc

cos θ
cot(kcosθa) (2.103a)

Z22 = Z1 + jω
ρc

cos θ
+

ωρc

cos θ
cot(kcosθa) (2.103b)

Z12 =
ωρc

cos θ sin(k cos θa)
(2.103c)

Then incident and radiated power are

πinc =

∫

S

1

2
Re

{
pinc(x, y, 0)

(
∂

∂z
pinc(x, y, 0)

1

jωρ

)
∗
}
dS =

1

2

cos θ

ρc
S

(2.104a)

πrad =

∫

S

1

2
Re {p2(x, y, 0) (jωw2(x, y))

∗} dS =
ω2ρc

2 cos θ
|C2|2S

(2.104b)
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and following the definition the transparency coefficient is

τ(ω, θ) =
ω2ρ2c2

cos2 θ
|C2|2 (2.105)

Using system (2.102)

C2 =
2Z12

Z11Z22 − Z2
12

the final expression for the transparency is

τ(ω, θ) = 4ω2
( ρc

cos θ

)2 |Z12|2
|Z11Z22 − Z2

12|2
(2.106)

As already done in section 2.3.2 the analysis will be performed for different
ranges of frequency

Low frequency, the "mass-air-mass" pseudo-resonance

The low frequency region can be defined with the following conditions:

ω ≪ c
π

2

1

cos θa
, (2.107a)

ω ≪ ω
(1)
coin, (2.107b)

ω ≪ ω
(2)
coin. (2.107c)

In this region it is possible to perform the following simplifications:

cot(k cos θe) ⋍
1

k cos θa
, (2.108a)

sin(k cos θe) ⋍ k cos θa, (2.108b)

Z1 ⋍ −ω2m1, (2.108c)

Z2 ⋍ −ω2m2 (2.108d)

where m1 and m2 are the mass densities of each plate. This means neglecting

m
1

m
2

" "

K

Figure 2.12: Mass-spring-mass of the double plate

the stiffness of the plates, and considering the structure as a two degrees of
freedom system, as in figure 2.12 where the parameters are

K =
ρc2

a cos2 θ
(2.109a)

λ =
ρc

cos θ
(2.109b)

ωR =

√
K
m1 +m2

m1m2

(2.109c)
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These parameters are obtained considering that

Z11 = −ω2m1 + jω
ρc

cos θ︸ ︷︷ ︸
λ

+
ρc2

a cos2 θ︸ ︷︷ ︸
K

, (2.110a)

Z22 = −ω2m2 + jω
ρc

cos θ︸ ︷︷ ︸
λ

+
ρc2

a cos2 θ︸ ︷︷ ︸
K

, (2.110b)

Z12 =
ρc2

a cos2 θ︸ ︷︷ ︸
λ

, (2.110c)

The value for the approximated value of the transparency function at low
frequency is then:

τ(ω, θ) =
4ω2λ2K2

[m1m2ω2 (ω2 − ω2
R) + λ2ω2]

2
+ [ω (2λK − ω2 (m1 +m2λ))]

2
(2.111)

The coincidence region

As for a single plate there is a frequency ωcoin for which each single plate
becomes completely transparent. In this case , since there are two plates, it
is crucial to make them have different ωcoin. This can be easily done choosing
different values for the thickness.

The stationary waves phenomenon

When the condition

k cos θa = nπ, (2.112)

that means when the wave vector in the x direction matches the distances
between the plates, stationary waves are excited. This occurs at When the
condition

ωnst = n
c

cos θa
π, (2.113)

and the value of the transparency is

τ(ω, θ) = (ωnst)
2
( ρc

cos θ

) 4∣∣Z1 + Z2 + 2j ρc

cos θ
ωnst
∣∣2 (2.114)
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Figure 2.13: SRI for a double aluminium plate calculated at π/3

(a) 3DPlot

(b) ContourPlot

Figure 2.14: Contour Plot and 3D Plot of the Sound Reduction Index in function

of θ.
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Figure 2.15: SRI for a double aluminium plate calculated at π/3

In figure 2.13 the SRI of a double aluminium plate is plotted. From
figure 2.14(b) it is possible to remark the trend of the Mass-air-mass pseudo-
resonance (Curve A), of the two coincidence frequencies of the plates (Curve
B) and of the first two stationary frequencies (Curve C).
When considering the effects of the parameters variations, the behaviour of
a double plate reflects that of a single plate system, except for the presence
of more parameters, as the distance of the plates or the relative mass and
stiffness, which influence the positioning of the pseudo-resonances. With
respect to damping, the effects on the SRI are concentrated at the coincidence
frequencies, as shown in figure 2.15

2.3.5 Comparison between single and double plate

structures

As seen in sections 2.3.3 and 2.3.4, single plate system and double plate
system have a different behaviour.
The differences can be easily found by analysing figures 2.8 and 2.13,
where the structures are both undamped. The mean slope of the SRI of a
double plate system is higher, as the value od the SRI at the coincidence
frequency, than for a single plate. This means that a double plate system
performs better, in terms of overall properties. But on the other hand, a
double wall structure introduces pseudo-resonances, due to the coupling
phenomenons between the two plates and the inner fluid. It is also important
to remark that the double wall structure here presented does not have any
connection between the two plates, which is needed for evident structural
requirements. Adding structural connections between the two walls results
in a mixed behaviour between a single plate structure, at low frequency, and
a double plate structure at high frequency. This means that in order to
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fully exploit the potential of a double wall structure a specific optimization
procedure is needed, since the involved parameters are manifold, a explained
in [Oniszczuk 2004]. For this reasons, and considering that the proposed
control strategies are always based on damping, the rest of the work the
study is then concentrated on single plate structures. This does not pre-
vent us to extend in the future the proposed works to double plate structures.

2.4 Hearing and sound perception

While the physical characteristics of a sound field can be measured with
precision by standard acoustic instruments (microphones, filters, spectrum
analysers, etc.), the interpretative characteristics of hearing are express-
ible in terms of subjective parameters that lead to statistical predictions of
the judgement of an average listener under assumed or known conditions
[Kuttruff 2007, Kinsler 2000]. For example, judgements of the relative loud-
ness of two sounds of different frequencies allow relating the subjective loud-
ness to the physical parameters of intensity and frequency. The threshold
of audibility and free field, equal loudness level contours for pure tones with
subject facing the source are plotted in figure 2.16.
These kind of experiments often suffer from uncertainty, and it is difficult to

Figure 2.16: Threshold of audibility and free field, equal loudness level contours

[Kuttruff 2007].

find an exact analytical representation od the sensitivity curve of the human
ear. In the literature there exist different kind of weightings. The curve that
will be used as reference in this work is the A-weighting, A(f) and it is defined
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using the auxiliary function RA(f)

RA(f) =
122002f 4

(f 2 + 20.62)(f 2 + 122002)
√

(f 2 + 107.72)(f 2 + 737.92)
(2.115)

as
A(f) = Aoff + 20 log(RA(f)) (2.116)

where the offset Aoff can be used for obtaining a value of 0dB at a certain
frequency.

This weighting will be used in the following sections for the optimization
of the controller with respect to the human hearing characteristics.
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Object of the Chapter

The object of the chapter is the modelling and optimization process of a smart
plate, with the aim of controlling the radiated sound power. The structure
here considered is a thin metal plate with a set of piezoelectric transducers.
The goal is to derive an optimal passive circuit topology which permits to
efficiently reduce the radiated sound power.
Several types of passive piezoelectric networks will be analysed and compared,
and a novel procedure for optimizing the piezoelectric transducer positioning
is presented. The entire modelling and optimization procedure is then applied
to the classical case study of a simply supported plate. These concepts will
be used in the experimental tests described in Chapter 5
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3.1 Introduction and literature review

The aim of this chapter is the modelling and the optimization of a smart
plate that uses localized1 piezoelectric transducers for the reduction of the
radiated sound power. To this end an aluminium plate equipped with a set
of optimally placed patches connected to a passive circuit is considered.
The difficulties in designing a smart structure are not only related to the
conception of the electric circuit used as controller, but also in choosing how
the circuit itself is coupled with the structure. The choice of the number
of transducers to be used, and their positioning, is a crucial step in the
designing process. In this chapter the entire design process of a smart
structure is proposed, with the objective of obtaining the best efficiency in
terms of reduction of radiated sound power. To this end classical instruments
of the vibrational mechanics are used together with acoustic concepts, as
the modal radiation efficiency introduced in Chapter 2. The introduction of
this acoustic characterization of the structure in the optimization process,
is done by using a new cost function, the Acoustic Controllability, for the
optimization of the transducers positioning.

Section 3.2 is devoted to a detailed description of the modelling process.
The equations of motion will be derived by using a variational method based
on the virtual work principle and finally a modal model of the structure is
derived.
The object of section 3.3 is a survey of several passive multi-modal control
circuits. The optimization procedure for each of these circuits is shown.
Section 3.4 is dedicated to optimization of the piezoelectric transducer place-
ment, with the aim of efficiently reduce the radiated sound power. In this
section a novel cost function for the optimization, the acoustic controllability,
is introduced.
In section 4.4.2 the entire design process is applied to the case study of a sim-
ply supported aluminium plate, and some numerical simulations are shown.

3.1.1 Literature review

In the literature there exists lots of examples of control techniques based on
using localized piezoelectric transducers, aimed to the control of structural
vibrations. Some of them are appropriate for being used in acoustics, some
are not.
When choosing suitable circuits for sound radiation control, some essential
requirements must be fulfilled:

1Localized means placed in particular optimized positions, used in counter position to

distributed.



40
CHAPTER 3. MODELLING A LOCALIZED PIEZOELECTRIC SMART

PLATE

• The control must be capable of controlling multiple modes over a large
band, and to concentrate the control effort over some selected modes.

• The controller itself must not generate noise.

These consideratons lead to the choice of linear resonating circuit, over non
linear circuits, as the commutation shunts [Ducarne 2009, Thomas 2009].

One of the first paper that introduces passive linear shunt for piezoelec-
tric material with the aim of damping vibrations is [Hagood 1991]. This is
an adaptation of Den Hartog’s damped vibration absorber for two degrees of
freedom systems [Den Hartog 1956].
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Figure 3.1: Equivalent circuit for a piezoelectric transducer.

The idea behind this control technique is very simple: since a piezoelectric
patch can be modelled as variable current generator in parallel with a ca-
pacitance, figure 3.1, shunting the transducer with a RL circuit will forms
a resonant circuit. When considering a single vibration mode at frequency
ωi, and if the electric resonator is also tuned at the same frequency, the en-
ergy flux between the two systems is optimized for a selected value of the
resistance R. Some optimization techniques used for determining the optimal
circuit parameters are the same used for a two degrees of freedom mechanical
system, as presented in [Hagood 1991, Ozer 2003, Caruso 2001].
The main problems of using a single RL shunt the following:

• each patch can control only one mode,

• large values for the inductances are needed,

• the performances of the system strongly depend on the electromechan-
ical coupling.

To overcome the first problem, a generalized version of this control circuit
is easily obtained using multiple shunted piezoelectric actuators, one for each
target mode. However, since the shunts act independently, a single mode does
not take advantage of the presence of the other actuators. For that reason
several improvements has been made to this first model, in order to amelio-
rate the performances and introduce multi-modal damping. Some works also
concentrates in the reduction of inductance requirements [Fleming 2003].
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In [Behrens 2003] the current flowing shunt is introduced. This circuit is
composed by several RL circuits tuned to different modes, shunted to the
same patch. A filter is added on each branch to permit the current flow only
for a selected frequency. In this way, multiple RL shunts can be used on one
patch. Another advantage of this topology is that using multiple patches and
replicating the circuit, the damping of each mode increases with the number
of patches. The main drawback is that adding a capacitance in the shunt
decreases the electromechanical coupling, and consequently the damping ca-
pability of the controller. Furthermore when using multiple patches the fact
that the shunts are independent does not permit to take advantage of the
spatial distribution of the transducers.

A circuit that adds multi-modal control and that exploits the spatial distri-
bution of the patches is presented in [Giorgio 2009]. The system is optimized
for using one patch for each mode, but since the proposed topology uses an
optimized RL network, the energy flux is optimized thanks to the communi-
cation between the transducers. The main drawback of this control topology
is the need of a simulated circuitry, being the components values too high, or
even negative, and then not suitable for a passive realization.

The optimization procedure for determining the optimal positioning of
the transducers for passive vibration control is presented in different works,
among the others [Halim 2003, Moheimani 1999]. These procedures are all
based on vibration control optimization, and not on sound radiation control.
An acoustic based optimization of the circuit parameter, but not of the
positioning, is presented in [Ozer 2003], considering also the hysteresis of the
piezoelectric materials.

3.1.2 Objectives

From the analysis of the literature these main statement are evinced:

• There exists several passive control techniques that are used for vibra-
tion control, which can be efficiently used for reducing radiated sound
power.

• There does not exists an optimization procedure for placing piezoelectric
co-located transducers that directly involves the radiation properties of
the structure in the cost function.

Theen the objectives of the chapter are the following:

• Find a model for the smart structure

• Find a suitable passive circuit for sound radiation control

• Introduce a novel cost function for optimizing the transducer positioning
for sound radiation control
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3.2 Smart Plate modelling

This section is about the modelling process of a smart plate. The objective
is the derivation of a modal model for the structure, that will be used as a
starting point for the optimization of the circuit. This is done following and
adapting the results present in the literature [Benjeddou 2002, Carrera 2007,
Fernandes 2002, Sze 004, Teresi 1997, Trindade 2008, Hurlebaus 2006].

3.2.1 Geometry

Let us consider a plate of dimensions a × b where two sets of piezoelectric
elements polarized along the thickness are symmetrically bonded and shunted
to form M bimorph pairs.

Figure 3.2: Geometry of the smart plate

The domainB of the plate is then divided in purely elastic portions, and three-
layer piezoelectric portions with an elastic core. The geometry of the structure
is resumed in figures 3.2, and 3.3. We identify the plate by its reference shape
B. Let S be a flat surface of dimensions a × b, e3 the corresponding normal
unit vector, r a generic vector in the plane (I−e3⊗e3), where I is the unitary
tensor, and I(x, y) an interval corresponding to the plate thickness in the
point (x, y). We assume that

B = {r + ze3, r ∈ S, z ∈ I}.
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Introducing the function χr(x, y) that is unity where the rth transducer exists,
and otherwise is zero, it is possible to write the generic expression of the
thickness interval, considering that the patches cannot overlap:

I(x, y) = I2 ∪
(

M⋃

r=1

χr(x, y) (I1 ∪ I3)
)

(3.1)

The value of intervals is (see figure 3.3 for the layer thickness definitions)

I1 =

[
−h
2
− hp,−

h

2

]
, I2 =

[
−h
2
,
h

2

]
, I3 =

[
h

2
,
h

2
+ hp

]
.

Figure 3.3: Transverse section of a piezoelectric actuator

Then following sets of indices are considered in order to distinguish be-
tween piezoelectric and elastic layers:

i = {1, 2, 3, } , l = {1, 3} .

The boundary of B can be decomposed in the lateral boundary ∂S×I1, since
there is the constraint that patches cannot touch the border. Througout the
rest of the thesis we will denote by �(i) a quantity in the generic ith layer.

Kinematic restrictions for the elastic layer

According to the Kirchhoff-Love (K-L) plate theory, the following assumption
for the displacement field is considered:

u(x, y, z, t) = u0 (x, y, t) + w0(x, y, t)e3 − z∇w0(x, y, t)

where w0 is the transverse displacement, and

u0 (x, y, t) = u0 (x, y, t) e1 + v0 (x, y, t) e2

is the displacement of the middle plane. The differential operator is defined
as follows

∇ =
∂

∂x
e1 +

∂

∂x
e2.
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The corresponding strain field is

S(u0, w0) = S0(u)− zS1(w0),

where

S0(u0) = sym(∇u0), S1(w0) = ∇2w0.

Remark 7. The choice of considering a K-L plate theory instead of the more

general Reissner-Mindlin (R-M) plate theory is motivated by to the fact that

the approximations introduced the reduced K-L model do not affect the results

considerably. This because the plate is considerably much thinner than the

considered wavelengths.

Kinematic restrictions for the piezoelectric layers

In each piezoelectric layer the assumptions for the electric potential
ϕ
(l)
r (x, y, z, t) and electric field E(l)

r (x, y, z, t) on the rth patch are

ϕ(l) (x, y, z, t) = ϕ
(l)
0 (x, y, t) + z̟(l)ϕ

(l)
1 (x, y, t) , (3.2)

E(l) (x, y, t) = −grad(ϕ(r)) = −dϕ
(l)

dz
e3. (3.3)

where the value of ̟(l) depends on the polarization of the lth layer. As shown
in figure 3.3 it is ̟(1) = −1 and ̟(3) = 1. These conditions imply that, being
Vr the voltage measured at the electrodes of each patch, and introducing
Ψr =

∫
Vrdt the flux linkage , the electric field is constant along the thickness

and its value is

Er · e3 =
V

(l)
r

hp
= ̟(l) Ψ̇

(l)
r

hp
. (3.4)

A schematic diagram of voltage distribution along the thickness is displayed
in figure 3.4.

z

0

" z( )

V
r

Elastic Layer!

h

2

h

2
+ hp

2

Piezoelectric Layer! 3

Piezoelectric Layer! 1

Figure 3.4: Voltage distribution along the thickness.
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3.2.2 Principle of virtual work and balance equations

According to the kinematic conditions introduced a variational principle will
be applied to the structure, in order to obtain balance equations and well-
posed boundary conditions.

Internal work In order to apply principle of virtual work a suitable ex-
pression for the internal energy must be found. Introducing T and D as the
stress tensor and the electric displacement vector, and defining by �̃ a virtual
quantity, we can write the internal work Lint as

Lint = δEm(T(u0, w0),S(ũ0, w̃0))︸ ︷︷ ︸
Elastic energy

+
M∑

r=1

δE e
r (Dr(Vr), Ẽr(Ṽr))︸ ︷︷ ︸

Electric energy

. (3.5)

In equation (3.5) there are two conservative terms, the variation of elastic
energy δEm and the sum of the variations of the electric energy δE e

r for each
patch. For the kinematic conditions introduced in each layer we have

δEm =

∫

S

∫

I

T℘ : sym
[
∇ũ0 − z∇2w̃0

]
, (3.6)

δE e
r =

∫

S

∫

I

χr(x, y)
Dr · e3
hp

Ṽr, (3.7)

where T℘ = T (I− e3 ⊗ e3) is the projection of T on the plane perpendicular
to e3 and remembering that χr(x, y) is unity where the r − th transducer
exists, otherwise is zero. Introducing the terms

N =

∫

I

T℘, M =

∫

I

−zT℘, q =

∫

I

D · e3
hp

,

we can write the final form for the internal energy

Lint =

∫

S

N : sym(∇ũ0)
︸ ︷︷ ︸

(a)

+

∫

S

M : ∇2w̃0

︸ ︷︷ ︸
(b)

+

∫

S

qṼ

︸ ︷︷ ︸
(c)

. (3.8)

where (a) is the virtual work of the forces acting on the plane (I− e3 ⊗ e3),
(b) that of the bending moments, (c) that of the electric forces.

External work In order to apply the principle of virtual work we now
have to define the work done by the external forces and electric entities on
the virtual displacements. Introducing b, f as the body and surface forces
acting on B, including the inertia forces, and Qr as the electric charge of
the r − th transducer, we can write for the virtual work of a generic virtual
displacement

Lext =

∫

B

b · ũ+
∫

∂B

f · ũ+
M∑

r=1

QrṼr. (3.9)



46
CHAPTER 3. MODELLING A LOCALIZED PIEZOELECTRIC SMART

PLATE

Force Conjugate

bp =
∑

i

∫
Ii
b ũ0

Body bw =
∑

i

∫
Ii
b·e3 w̃0

bm = −
∑

i

∫
Ii
zb ∇w̃0

f
p
=
∑

i

∫
Ii
f ũ0

Surface fw =
∑

i

∫
Ii
f ·e3 w̃0

f
m
=
∑

i

∫
Ii
zf ∇w̃0

Table 3.1: Decomposition of external forces with respect to the conjugate virtual

quantities.

We now decompose the forces and the displacements in their respective con-
jugate quantities, this decomposition is summarized in table 3.1. With these
assumptions the expression of the external work becomes

Lext =

∫

S

[bp · ũ0 + bww̃0 + bm · ∇w̃0]+

+

∫

∂S

[f
p
· ũ0 + fww̃0 + f

m
· ∇w̃0] +

M∑

r=1

QrṼr.

(3.10)

Balance equations The principle of virtual work states that

Lint = Lext. (3.11)

Considering equations (3.8) and (3.10), the balance equations on S can be
obtained, preforming some integrations by parts, as

∇ ·N+ bp = 0 (3.12a)

∇2 : (M) +∇ · (bm)− bw = 0, (3.12b)
M∑

r=1

∫

S

χrqr −Qr = 0, (3.12c)

along with all boundary conditions on ∂B and ∂ (∂B).

3.2.3 Constitutive equations

In this section the constitutive equations for each of both materials used for
assembling the plate are investigated.
The aim is to derive the constitutive equations for the plate itself, that is M,

N, qr as functions of the reduced strain parameters and the electric field.
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Elastic plate constitutive equations From the linear theory of elasticity
we have, for the elastic layer

T = CS (3.13)

where C is the fourth order tensor of elasticity.

Piezoelectric constitutive equations According to [IEEE 1987] the con-
stitutive equations for a piezoelectric material in the (S-E) form are

Tp = C
E
p Sp − eE, (3.14a)

D = etSp + εSE. (3.14b)

Another equivalent form (the T-E form) is obtained from the last equations

Sp =
(
C
E
p

)−1
Tp − dE, (3.15a)

D = dt Sp + εTE, (3.15b)

where
e = C

E
p d.

We will use these constitutive equations in the hypothesis of thin plates in
plane stress and plane strain.

Smart plate constitutive equations In section 3.2.2 we defined the quan-
tities N, M, qr. Now that we have introduced constitutive equations for each
layer, we can find the piezoelectric plate constitutive equations.

N = KNu∇u0, (3.16a)

M = KMw∇2w0 + erχrVr, (3.16b)

qr = −erχr∇2(w0) + CpχrVr, (3.16c)

or in compact form




N

M

qr


 =




KNu 0 0

0 KMw χrer
0 −χrer χrCp






∇(u0)

∇2(w0)

Vr


 (3.17)

where the coefficients are listed in table 3.2 and where we introduced ξp =

hp/h as the ratio between the thickness of the piezoelectric layer and that of
the elastic layer and

α = 8ξ3p + 12ξ2p + 6ξp.

This parameter α which is related to the ratio between the thickness of the
piezoelectric layer and the host plate will appear in the stiffness terms of the
piezoelectric plate equations.
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Coefficient Value Description

KMw

h3

12

[
C
E +

∑M

r=1 χrαC
E
p

]
Bending Stiffness

er
d31Yph(ξp + 1)

(1− νp)
Bending Coupling

KNu h(CE +
∑M

r=1 χr2ξpC
E
p ) Extensional Stiffness

kNV
d31Y
(1−ν)

Extensional Coupling

Cp
εS33
hp

Capacitance

Table 3.2: Coefficients in piezoelectric plate constitutive equations, see appendix

for definitions

3.2.4 Equations of motion

From equations (3.12) and using the system (3.16) we have the complete form
of the Piezoelectric plate equations

KNu∇2u0 + bp = 0, (3.18a)

KMw∇4w0 +∇bm − bw +
M∑

r=1

χrerVr = 0, (3.18b)

∫

S

(
χrCpV̇r + χrei∇2ẇ0

)
= ır, (3.18c)

(3.18d)

where ır = q̇r is the current flowing in each transducer.
In common applications one can neglect bm, that is given by

bw = −ρplẅ0 + fext, (3.19)

bp = −ρplü0, (3.20)

where the ρpl is the surface mass density, being the contribution of the piezo-
electric patches to the overall mass density neglectable. Moreover, being the
ratio ξp very little and considering that the patches do not entirely cover
the plate, the contribution of the transducers to the overall stiffness can be
neglected, and the bending stiffness Spl is then defined as

Spl =
h3

12

[
Y

1− ν2

]
.

With these assumptions the system 3.18 becomes:

KNu∇2u0 + ρplü0 = 0, (3.21a)

Spl∇4w0 + ρplẅ0 +
M∑

i=1

er∇2χrVr = fext, (3.21b)

CrV̇r −
∫

S

χrCpV̇rer∇2(ẇ0) = ır, (3.21c)
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If we only consider bending vibration we have

KNu∇2u0 + ρplü0 = 0.

This derives from the symmetry of the structure with respect to its mean
plane, the so called bimorph configuration for the piezoelectric patches, and
means that the extensional vibrations are uncoupled from the flux linkage.

Remark 8. The bimorph configuration makes extensional vibrations uncou-

pled from flexural ones and electric potential. This is due to the symmetry of

the structure with respect to the middle plane and to the chosen polarization

for the transducers. However when using a small number of thin piezoelectric

patches these couplings are neglectable. Then in common applications this

approximation holds even if the transducers are bonded only on one side of

the structure.

The final form for the governing equations in terms of the transverse
displacement and of voltages is

Spl∇4w0 + ρplẅ0 +
M∑

r=1

er∇2 (χr)Vr = fext, (3.22a)

CrV̇r −
∫

S

χrer∇2(ẇ0) = ır. (3.22b)

where ∇2 (χr) must be considered as a limiting case of some continuous
function of x, y.

3.2.5 Reduced Modal model

The reduced modal form of equations (3.22), is obtained introducing the
following Galerkin decomposition, for the transverse displacement field
w0 (x, y, t):

w0 (x, y, t) =
N∑

i=1

Yi (t)φi (x, y) , (3.23)

where Yi (t) are the Fourier coefficients of the eigenfunctions φi (x, y) defined
by the eigenvalue problem

∇4φi = λ2iφi, (3.24a)

∇2φi = −λiφi, (3.24b)

along with proper boundary conditions.
From equations (3.24) the values for natural frequencies are obtained

ωi = λi

√
Spl
ρpl
.
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Substituting equation (3.23) into equations (3.22) and projecting on the given
basis, we have

ρΩ2
iYi − Ÿi −

M∑

r=1

∫

S

φier∇2 (χr)Vr = fi, (3.25a)

CpV̇r +
N∑

i=1

∫

S

er∇2 (φi) Ẏi = ır. (3.25b)

Since there are no patches at the boundary, the inner product
∫
S
φi∇2 (χr)

can be rewritten in a more convenient form:
∫

S

φi∇2 (χr) =

∫

S

χr∇2 (φi) . (3.26)

Then, using equation (3.24b) the modal coupling coefficient is defined as
follows

gir =

∫

S

χrer∇2 (φi) . (3.27)

The non-dimensional form of system (3.25) is

Ω2
i yi − ÿi −

M∑

r=1

Ωiγirvr = f i, (3.28a)

v̇r +
N∑

i=1

Ωiγirẏi = ır. (3.28b)

where the non-dimensional coupling coefficient is

γir =
gir

ωi
√
Cpρpl

(3.29)

and where the circular frequencies Ω and Ωi are

Ω =
ω

Ω0

, Ωi =
ωi
Ω0

(3.30)

being Ω0 is a scaling circular frequency.
The non-dimensional state variables and forcing terms in equations (3.28) are
given by

y =
y

l0
, v =

V

V0
, f i =

fi
F0

ır =
ır
ı0
.

with the following scaling voltage, force and current:

V0 = l0Ω0

√
ρpl
Cp

F0 = l0Ω
2
0ρpl ı0 = CpΩ0V0.
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In frequency domain the system (3.28) has this form:

Ω2
i ŷi − Ω2tyi −

M∑

r=1

γirΩiv̂r = f̂i, (3.31a)

jΩv̂r + jΩ
N∑

i=1

γirΩiŷi = ı̂r. (3.31b)

where �̂ denotes a non-dimensional quantity in frequency domain.

Compact notation

A more convenient form for writing equations (3.28) and (3.31) is in compact
notation:

ÿ +Ω2 y −ΩΓv = f (3.32a)

v̇ + (ΩΓ)T ẏ = ı (3.32b)

and

Ωŷ − Ω2ŷ −ΩΓ v̂ = f̂ (3.33a)

jΩv̂ + jΩ (ΩΓ)T ŷ = ı̂ (3.33b)

where y is the vector of the non-dimensional modal coordinates, v the vector
of the non-dimensional voltages, f the vector of the non-dimensional me-
chanical forcing terms, ı the vector of the non-dimensional currents, Ω the
diagonal matrix of the non-dimensional circular eigenfrequencies and Γ the
matrix of electromechanical couplings.
In order to introduce symmetry between mechanical and electrical equation
the voltages Vr can be replaced by the flux linkages ψr.

Ψ =

∫
V dt, Ψ̇ = V. (3.34)

Then equations (3.32) become:

ÿ +Ω2 y −ΩΓ ψ̇ = f (3.35a)

ψ̈ + (ΩΓ)T ẏ = ı (3.35b)

and in frequency domain:

Ωŷ − Ω2ŷ − jΩ(Ω)Γ ψ̂ = f̂ (3.36a)

Ω2ψ̂ + jΩ (ΩΓ)T ŷ = ı̂ (3.36b)

where ψ is the vector of non dimensional flux linkages and it is given by:

ψr =
Ψr

Ψ0

(3.37)

where the scaling flux linkage is Ψ0 = l0

√
ρ

Cp
.
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3.3 Linear multimodal passive control networks

and optimization

3.3.1 Multimodal passive control circuits

In this sections several approaches for passive multimodal vibration control
applied to the reduction of the radiated sound power are discussed.
The aim is to damp the most radiating modes, chosen using methods
described in section 2.2. Since the intent is not to control each structural
modes all the control effort has to be concentrated on the limited number of
target modes. This is why only resonant shunts will be considered and all
proposed control systems will be using a number of piezoelectric elements
equal to the number of modes to be controlled.

3.3.2 Multiple RL Shunt

The simplest kind of passive resonant shunt for vibrations control is a RL

circuit, introduced for the first time in [Hagood 1991]. It consists in an in-
ductor in parallel with a resistor, shunted to the piezoelectric transducers, as
in figure 3.5.

ÿ�� �øir ��� �ÿ���
�

� Lr

���
����� �ÿ

� Rr

���ÿ

���
�

���� �ÿ���������� �ÿ
û�����
Vr

Figure 3.5: Equivalent circuit for a virtual passive shunt circuit in parallel con-

figuration.

Since the piezoelectric patch can be also represented with a current gener-
ator in parallel with an inductor, the resulting electrical network is a resonant
RLC circuit.
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Figure 3.6: Smart structure with localize shunted piezoelectric transducers.

A schematic example of a smart structure with a set of shunted piezoelec-
tric transducers is in figure 3.6
The forcing vector introduced in system (3.36) by shunting each transducer
with a RL circuit is the following:

ı = −R
RLψ̇ − L

RLψ (3.38)

and in frequency domain

ı̂ = −jΩR
RLψ̂ − L

RLψ̂ (3.39)

where RRL andL RL are two diagonal matrices whose non-zero elements are
RRL
ii = (1/Ri) and L RL

ii = 1/(Li).
For each mode is then possible to write the closed loop equations as

Ω2
i ŷi + Ω2ŷi +

M∑

r=1

iγirΩΩiψ̂rr = fi, (3.40a)

Ω2ψ̂r − jΩ
1

Ω0CrRr

ψ̂r −
1

Ω0CrLr
ψ̂r +

M∑

i=1

jγirΩΩiŷi = 0. (3.40b)

This system has 2M degrees of freedom (dof), that are the mechanical
resonance frequencies Ωi and the electrical resonance frequencies Ωr =

1/(Ω0

√
LrCr). Supposing to associate each transducer to a vibrational mode,

the electric tuning and damping coefficient βi and δi can be introduced as:

βi =

(
Ωi

Ωi

)2

=
1

Ω2
0Ω

2
iLiCi

, (3.41)

δi =
1

RiCrΩiΩ0

(3.42)
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Figure 3.7: Fixed points.

. If the modes are sufficiently spaced in frequency, the system (3.40) becomes

Ω2
i ŷi − Ω2ŷi − jγiiΩΩiψ̂ii = fi, (3.43a)

Ω2ψ̂rr + jΩΩiδψ̂i + Ω2
iβψ̂i + jγiiΩΩiŷi = 0. (3.43b)

Then it is possible to introduce the Mobility function as the ratio between
the velocity jΩŷ and the forcing term f̂ as

H(β, δ,Ω) =
jΩŷ

f̂
(3.44)

Using equations (3.43) it is easy to derive the expression of the mobility
function for the given system:

H(β, δ,Ω) =
jΩΩ2

i (β − Ω2 + jΩδ)

Ω4 − jΩ3δ − Ω2 (β + 1 + γ2ii) + jΩδ + β
(3.45)

Now that the equation of the closed loop system has been written, the
optimization of the circuit can be performed.

Optimization of the Forced response, the Fixed Points theory

Introduced for the first time in [Den Hartog 1956] for mechanical vibration
absorbers, the fixed point theory can be used to describe the behaviour of two
dof systems. The theory states that given two perfectly coupled systems, as
in equations (3.43) , for a certain fixed value of β in the mobility function
H(β, δ,Ω), there exist two points that are common to all curves of the mo-
bility, regardless of the damping value in the shunt circuit. It is important to
remark that, in general, such two fixed points exist for continuous structures
with well separated natural frequencies.
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When β tends to infinity (meaning that L → 0), H(∞, δ,Ω) is the mobil-
ity function corresponding to the case where the r − th transducer is short-
circuited. As stated by the fixed points theory it is possible to show that the
absolute values of H(∞, δ,Ω) and H(β, δ,Ω) for any value of δ intersect at
two points S = (ΩS, |HS|) and T = (ΩT , |HT |) and that the two amplitudes
|HS| and |HT | are equal when

βopt = 1 =⇒ Lr =
1

Ω2Ω2
iCr

. (3.46)

that is the condition of resonance of the electric system at the mechanical
resonance frequency.
The frequencies ΩS and ΩT can be calculated by looking for the intersection
of the mobility functions H(β, 0,Ω) and H(β,∞,Ω):

ΩS,T =
1

2

√
2 + 2β + γ2 ±

√
(2 + 2β + γ2)2 − 16β (3.47)

For optimizing the forced response a widely adopted approach consists in
minimizing the H∞ norm of the mobility function, defined as

||H(β, δ,Ω)||∞ = sup
Ω∈R

|H(β, δ,Ω)|. (3.48)

Since for β = βopt the modulus of the mobility function has the same value,
satisfying the condition (3.48) means setting the value of δ such that the
transfer function H(βopt, δ,Ω) has horizontal tangents in ΩS and ΩT .
Than imposing

∂

∂Ω
|H(βopt, δ,ΩS)|

∣∣∣∣
Ω=ΩS

=
∂

∂Ω
|H(βopt, δ,ΩT )|

∣∣∣∣
Ω=ΩT

= 0 (3.49)

the resulting optimal value for the damping parameter is

δopt =

√
3

2
γ (3.50)

The corresponding H∞ norm of the mobility function is

H(βopt, δopt) =

√
2

γ
(3.51)

Optimization of the transient response, the Pole Placement crite-

rion

The closed-loop pole locations have a direct impact on time response charac-
teristics of the coupled system, such as transient oscillations. With the pole
placement method, these poles are selected in advance in order to maximise
all closed-loop pole distances from the imaginary axis, while remaining on the
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left part of the complex plane. This means on one hand obtaining a large gain
margin which guarantees asymptotic stability, on the other hand the largest
decay rate of free oscillations, where the decay rate is defined by

D (δ) = min
i=1,2,3,4

(|Re (λi)|) , (3.52)

being λ the closed-loop poles of the ith system.
The characteristic polynomial of the system (3.63) is in this form

λ4 + λ3δ + λ2(γ2 + β + 1) + λδ + β. (3.53)

As stated in [Hagood 1991] this condition is realized when the roots appear
as two complex conjugate pairs. Hence, denoting the closed-loop poles asso-
ciated with the i-th system by

λ1,2 = a+ jb, λ3,4 = a− jb (3.54)

the characteristic polynomial is then

(λ−λ1)2(λ−λ4)2 = λ4−4aλ3+λ2(6a2+2b2)−4λa(a2+b2)+(a2+b2). (3.55)

By imposing that the characteristic polynomial (3.53) is in the desired form
(3.55), the following optimal damping and tuning parameters are found:

βopt = 1, δopt = 2γ (3.56)

and the associated decay rate is

Dopt =
γ

2
. (3.57)

The root locus of the poles can be seen in figure 3.8.

On the stability

The last thing that has to be analyzed is the stability, to this end some energy
considerations are made. Inserting the control law (3.38)in the governing
equations (3.32) we obtain:

ÿ +Ω2 y −ΩΓ ψ̇ = f , (3.58a)

ψ̈ + R
RL ψ̇ + L

RLψ + (ΩΓ)T ẏ = 0. (3.58b)

Next, multiplying the first equation of system (3.58) by ẏT and the second

equation by ψ̇
T

and rearranging, one obtains

d

dt

(
1

2
ẏTẏ

︸ ︷︷ ︸
Kinetic energy

+
1

2
yTΩ2y

)

︸ ︷︷ ︸
Potential energy

= ẏTΩΓ ψ̇︸ ︷︷ ︸
Converted energy

, (3.59a)

d

dt

(
1

2
ψ̇

T
ψ̇

︸ ︷︷ ︸
Electric Energy

+
1

2
ψT

L
RLψ

)

︸ ︷︷ ︸
Magnetic energy

= − ψ̇
T
R
RL ψ̇︸ ︷︷ ︸

Dissipated energy

− ψ̇ T
(ΩΓ)T ẏ︸ ︷︷ ︸

Converted energy

. (3.59b)
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Figure 3.8: Root locus in function of the electrical damping δ.

On the left side of the first equation it is possible to identify the kinetic energy
expressed in terms of modal velocities and the potential energy expressed in
terms of modal displacements; on the left side of the second equation it is
possible to recognise the electric energy stored in the piezoelectric inherent
capacitances and the electric energy associated to the “inductive” gain matrix,
RRL. Last terms on the right hand side represent the power through the
piezoelectric elements toward the mechanical subsystem in the first equation,
and toward the electric subsystem in the second equation. Hence, the balance
of power through the piezoelectric elements yields

ẏTΩΓψ̇ − ψ̇T
(ΩΓ)T ẏ = 0 (3.60)

Next, substituting equation (3.60) in system (3.59) we obtain:

d

dt

(
1

2
ẏTẏ +

1

2
yTΩ2y +

1

2
ψ̇

T
ψ̇ +

1

2
ψT

L
RLψ

)
= −ψ̇ T

R
RL ψ̇ (3.61)

The expression inside the parentheses on the left hand side of equa-
tions (3.61) can be identified as the total energy of the system, including the
effect of the inductive matrix, L RL. The objective of the feedback control
is to drive the total energy to zero. Being the resistive matrix RRL positive
definite, the right hand side of Eqs. (3.61) is sure negative, except when ψ̇
vanishes. Thus, the energy is being dissipated at all times until the whole
structure is driven to rest. Hence, in this case the electro-mechanical struc-
ture is guaranteed to be asymptotically stable. Moreover, anyway being the
gain matrices RRL and L RL positive definite even an unconditional stability
is assured.
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Figure 3.9: Example of a current flowing circuit.
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Figure 3.10: Example of a current flowing circuit with the actual value of the

inductors.

3.3.3 Current flowing shunt

The current flowing shunt multimodal controller was introduced for the first
time in [Behrens 2003], and has as goal the introduction of multimodal contro
using a single patch. This is achieved using multiple RL shunts on the same
patch, allowing the current to flow only in selected branches of the circuit,
for selected frequencies.
This is achieved in a simple way, by using a series capacitor-inductor circuit as
shown in Figure 3.9. The series is tuned to the structural resonance frequency.
The series capacitor-inductor C∗

i , L
∗

i circuit appears to be a short circuit at the
selected frequency and approximately open circuit for all other frequencies.
The shunting branch Li, Ci is also tuned to Ωi. Therefore, each circuit branch,
C∗

i , L
∗

i , Li, Ri is functional at its own frequency Ωi, while being approximately
open circuit at all other frequencies. Some level of interaction between modes
that are closely spaced is expected. However, for modes that are widely
spaced, this interaction will be minimal.

Since the two inductors L∗

i tuned with C∗

i and Li tuned with Cr are in
series, they can be replaced by a single inductor L̃i = L∗

i + Li, as showed in
figure 3.10.
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The admittance of the generalized shunt is then, for the rth transducer:

Yr(Ω) =
M∑

i=1

jΩ(1/Li)

−Ω2 + jΩ(Ri/Li) + 1/(CiLi)
(3.62)

This expression does not depends on r, because the exactly the same circuit
i replicated for each transducer. This circuit has the same behaviour of a RL
shunt, and therefore the optimal value for the resistance is obtained in the
same way.
The advantage of this circuit is the introduction of several electrical degrees
of freedom using only one patch. When generalizing the controller for using
more actuators, one can only replicate the circuit for each one of those. Being
this circuit an extension of an RL series shunt, there is non need to proof its
unconditional stability.

Remark 9. The introduction of a capacitance in the shunt branch compro-

mise the performances reducing the electromechanical coupling, and then its

value must be small. This has as a counter effect that the resonant branch

requires a very high value inductance end this exclude a purely passive real-

ization of the circuit, even at high frequencies.

3.3.4 RL network

From the analysis of the two previous systems, it is clear that for improving
the performances of the controller the use of multiple patches is necessary.
Moreover, the simple replica of the same circuit on each patch, while it per-
mits the control of multiple modes, as for the multiple RL shunt, does not
take advantage of the distribution of the patches over the structure. In fact,
if the piezoelectric patches are optimally positioned and iterconnected, they
can act simultaneously and coordinate the control effort over a target mode.
A schematic example of a network of interconnected transducers is in figure
3.11.
This idea is at the basis of the design of the following control network, pro-
posed in [Giorgio 2009]. As for the other control strategies the number of
piezoelectric patches will be assumed equal to the number of target modes.
We start from the reduced modal model of the structure:

ÿ +Ω2 y −ΩΓ ψ̇ = f (3.63a)

ψ̈ + (ΩΓ)T ẏ = ı (3.63b)

Then the following linear transformation for the electric state variable is in-
troduced

ψ = Uχ (3.64)
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Figure 3.11: A schematic distribution of piezoelectric actuator for a multimodal

shunt.

where U is an M -square matrix and it is the best transformation matrix that
makes the normalized electro-mechanical coupling matrix in the new state
space, G = ΓU , as diagonal as possible.

In this way, being the coupling matrix G , a set of single mode piezoelec-
tric shunting systems is obtained, in the new state space, as it was for the
multiple RL shunt. In fact, the control law adopted represents a generalized
parallel RL shunt circuit in the state space defined by the before mentioned
transformation, in accordance with Wu’s method [Wu 1996].
Thus, this network is an inductive-resistive, and the circuit obtained in the
actual space is passive, for the constitutive matrices are symmetric and posi-
tive definite.
The new governing equations, assuming G diagonal, are represented by

ÿ +Ω2 y −ΩG χ̇ = f , (3.65a)

χ̈ + (ΩG )T ẏ = z, (3.65b)

or in other words as n single mode piezoelectric shunting systems uncoupled.
The vector z = UTı is a new control input.

Remark 10. The matrix U does exist if the rows of Γ are mutually orthog-

onal, if not some terms out of the main diagonal will be different from zero.

This can affect the performances of the system, especially if the modes are not

sufficiently spaced in frequency.
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At this point, it is possible to define in according with Wu’s method the
generalised control vector z as

z = −R χ̇− L χ, (3.66)

defining the diagonal matrices Rhk = (1/rh)δhk and Lhk = (1/ℓh)δhk. The pa-
rameters rh and ℓh are the generalized resistance and inductance respectively.
Thus, the actual control law, ı, assumes the form

ı = −NR ψ̇ −NLψ, (3.67)

setting
NR = URUT, NL = UL UT (3.68)

where NR and NL are control gain matrices. Because rh and ℓh are strictly
positive and the matrix U is orthogonal, it follows that the gain matrices NR

and NL are symmetric and positive definite. The column vectors uh’s of the
matrix U can be interpreted as their common eigenvectors, and (1/rh)’s and
(1/ℓh)’s are the corresponding eigenvalues.

On the stability

The main question remaining is the nature of the gain matrices NR and NL.
To examine the requirement on these matrices, energy considerations are
made, as already done for the multiple RL shunt.
In the same way, inserting the control law (3.67) in the governing equa-
tions (3.63), we obtain

ÿ +Ω2 y −ΩΓ ψ̇ = f , (3.69a)

ψ̈ +NR ψ̇ +NLψ + (ΩΓ)T ẏ = 0. (3.69b)

This system has the same structure of system (3.58), then, being for the
selected transformatio, the matrices NL and NR positive definite, the same
considerations on stability can be done. Multiplying on the left the first
equation of the (3.69) by ẏT and the second equation by ψ̇

T
and rearranging,

one obtains

d

dt

(
1

2
ẏTẏ

︸ ︷︷ ︸
Kinetic energy

+
1

2
yTΩ2y

)

︸ ︷︷ ︸
Potential energy

= ẏTΩΓ ψ̇︸ ︷︷ ︸
Converted energy

(3.70a)

d

dt

(
1

2
ψ̇

T
ψ̇

︸ ︷︷ ︸
Electric Energy

+
1

2
ψTNLψ

)

︸ ︷︷ ︸
Magnetic energy

= − ψ̇
TNR ψ̇︸ ︷︷ ︸

Dissipated energy

− ψ̇ T
(ΩΓ)T ẏ︸ ︷︷ ︸

Converted energy

(3.70b)

The balance of power through the piezoelectric elements yields

ẏTΩ Γ ψ̇ − ψ̇T
(Ω Γ )T ẏ = 0 (3.71)
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Then, with the use of equation (3.71), in system (3.70):

d

dt

(
1

2
ẏTẏ +

1

2
yTΩ2y +

1

2
ψ̇

T
ψ̇ +

1

2
ψTNLψ

)
= −ψ̇ TNR ψ̇ (3.72)

This equation has the same structure as equation (3.61), and then the same
reasoning can be followed, concluding, being the matrices NL and NR positive
definite, that the unconditional stability of the system is assured.

3.3.5 Comparison

The comparison between these three control circuits will be the object of the
last section of this chapter, sections 4.4.2, dedicated to the simulations. A
preliminary comparison between the main characteristics of these circuits is
in table 3.3.

3.4 Transducers positioning optimization for

the control radiated sound power

The choice of transducer positioning is a crucial step when conceiving a smart
structure. This because the position of the transducers influences the energy
exchange between the mechanic and electric part of the circuit, and then
affects the overall behaviour and efficacy of the controller. Since each piezo-
electric patches is a co-located sensor/actuator pair, its positioning does not
influence the stability of the system.
In the literature there exist several criterion for performing this optimization,
depending on the nature of the structure and of the controller, and a number
of articles focus on thin plates. These methods of optimization can be divided
in two main categories:

Open loop optimizations Open loop methods consider the structure
without any circuit connected to it. These methods are based on parame-
ters that can be directly derived from the model, such as the electromechanic
coupling coefficients or the strain energy.

Closed loop optimizations Closed loop methods consider the structure
connected to the controller. These method often give a finer optimization,
being the energy transfer between the mechanic and the optimized electric
system, but they are often very expensive in terms of computational costs,
since a numerical procedure must be used during the optimization.

The optimization method proposed in this section is essentially based
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Multiple RL Shunt Current Flowing RL Network

XSimple circuit XSimple circuit XOptimized multimodal control
XGood performances XMultimodal control with one patch XVery good performances

XRobustness

7 High value of the inductors 7 Medium performances 7 Very complex circuit
7 Mistuning 7 Mistuning 7 Needs an I/O real time system

7 Not optimized for multimodal control 7 Very high value of the inductors

Table 3.3: Comparison between differnt types of passive control circuits
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on the open loop model of the structure, but takes also into account the na-
ture of the controller. This because the RL control network needs a coupling
matrix with the rows as mutally orthogonal as possible. In [Giorgio 2009]
the optimization procedure for the piezoelectric positioning is obtained using
a closed loop method, performing complex and long calculations. Without
performing complicated and long calculations, a good result can be obtained
exploiting the symmetries of she structure and the orthogonality of the
eigenmodes, as shown later in this section.
Following the literature the concept of spatial H norm, useful to describe
the spatial structural vibration response of the system in an average sense,
see [Halim 2003], is used. This concept will be extended to the acoustic opti-
mization using concepts of modal radiation efficiencies introduced in chapter 2

About the electromechanical coupling Consider a piezoelectric patch
of dimensions Lpx Lpy bonded on a plate, as shown in figure 3.12.

Figure 3.12: Plate with a piezoelectric element.

Assuming that one corner of the patch is located at (xj, yj) the value of
the non-dimensional coupling coefficient γir(xj, yj) in function of the position
of the transducer is, from equation (3.29):

γir(xj, yj) =
1

St

√
ρ

Cp

∫ xj+Lpx

xj

∫ yj+Lpy

yj

erφidxdy (3.73)
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From equation (3.73) it is clear that the coupling between the r−th transducer
and the i− th transducer depends on four factors:

• the positioning (xj, yj),

• the dimensions Lpx Lpy,

• the material and the thickness of the transducer er,

• The modal shapes φi

Since the last three parameters are assumed to be fixed, the quantity that will
be optimized is the placement (xj, yj). The cost function for the optimization
will be a function only of the position (xj, yj).

About the cost function The objective of this optimization is the max-
imization of the controller authority over the radiated sound power, so that
the efficacy of the controller is maximized, using a fixed number of transduc-
ers. To this end the concepts introduced in Chapter 2, and in particular the
modal radiation efficiency, are used to choose the cost function.
The inputs of the optimization are then

• modal model of the host structure

• modal radiation coefficients

• piezoelectric transducers

• Maximum frequency of interest fmax, the same used for calculating the
modal radiation coefficients.

The outputs will be:

• the minimum number of piezoelectric transducers to be used for an
efficient reduction of the radiated sound power

• the optimal location for the transducers

in order to do this a mixed optimization method, based on the open loop
model of the structure corrected with some informations about the controller
behaviour, will be used.

3.4.1 Choosing the number of transducers

The first step is to determine the number of transducers to be used. Since
the control circuit uses a number of patches equal to the number of modes
that have to be controlled, it is crucial to determine the most radiating modes
within in the frequency range of interest, that is for f < fmax. To this end
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the modal radiation coefficients ηi introduced in section 2.2.2 are used, along
with the consideration about the sensitivity of the human ear.
In fact, as shown in section 2.4, since the human ear less sensitive at low
frequency, some modes can be neglected, being their contribution to the per-
ceived sound is too low.
In order to do this the A-weighing, introduced as well in section 2.4, is con-
sidered. The function A(f) defined by the equation (2.116) is normalized for
having a value of zero dB when it has its maximum. In this way the value
A(fi) gives an absolute value of how different a sound with the same intensity
is perceived. The set of indices ξC which identifies the modes that have to be
controlled can be then identified, for instance, using the following definition:

ξC := ∀i/ (fi < fmax) (A(fi) < τ) (ηi > 0.1) , (3.74)

where τ is a pre-defined threshold. In common application the value of τ
can be fixed around −20dB, which corresposds, as shown in figure 3.13, in
neglecting the modes below 100Hz.

50 100 500 1000 5000 1´104
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Figure 3.13: A-weighting courbe with the range of the treshold τ = −20dB

highlighted.

Optimization of the positioning, the notion of spatial H2

norm

The main difficulties in optimizing the positioning of piezoelectric transducers
lies in choosing a cost function that really represents the controller authority
over the acoustic radiation of the system, in an average sense.
In vibration mechanics the cost function is usually based on some norm of the
transfer function form the r− th transducer voltage to the transverse velocity
of the plate in a point jΩw0(x, y). Form the modal decomposition (3.23) the
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transfer function takes the form

Gr(x, y,Ω) =
jΩw0(x, yΩ)

Vr(Ω)
=

N∑

i=1

jΩηi(Ω)Φi(x, y)

Vr(Ω)
(3.75)

From the modal equations (3.31) is:

Gr(x, y,Ω) =
N∑

i=1

jΩγirΦi

−Ω2 + Ω2
i + 2jΩΩiζi

(3.76)

where we added the structural damping ζi. The H2 norm of Gr(x, y,Ω) is
defined as follows:

‖Gr(x, y,Ω)‖22 =
∫

∞

−∞

trace {Gr(x, y,Ω) ∗Gr(x, y,Ω)} dΩ (3.77)

The H2 norm of Gr(x, y,Ω) can be used to obtain the response character-
istics at the point (x, y). However, it does not give any information on the
responses of other parts of the structure, because it only considers reaction
a specific location on the plate. To overcome the difficulty in obtaining the
response characteristics of the entire structure, the notion of Spatial H2 norm
was introduced in [Halim 2003, Moheimani 1999]. The Spatial H2 norm of
G(x, y,Ω) is then defined as

〈〈Gr(x, y,Ω)〉〉22 =
1

2π

∫
∞

−∞

∫

S

trace {Gr(x, y,Ω) ∗Gr(x, y,Ω)} drdω. (3.78)

where r ∈ S are all the points of the plate. For the orthonormality properties
of the eigenfunctions, and supposing that the modes are sufficiently spaced
in frequency, the expression can be simplified in this way

〈〈Gr(x, y,Ω)〉〉22 =
N∑

i=1

∥∥∥G̃ir

∥∥∥
2

2
(3.79)

where

G̃ir =
jΩγir

−Ω2 + Ω2
i + 2jΩΩiζi

Since it involves the integration over the entire structure, the spatial H2

norm gives information on the response of all points of the plate.

Modal Controllability and Spatial Controllability

Modal controllability and Spatial controllability are defined in this way: the
modal controllability is a measure of controller authority over each mode,
while the spatial controllability represents controller authority over the entire
structure, or a number of selected modes, in an average sense.
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Form equation (3.78) it is clear that the global response of the system is due
to the sum of the contribution of each mode. To this end, assuming that one
corner of the rth piezoelectric patch is located at the point (xn, yn) ∈ B, the
function κin(xn, yn) is defined as follow:

κin(xn, yn) =
∥∥∥G̃ir

∥∥∥
2
. (3.80)

Then the modal controllability is defined as

Min(xn, yn) =
κin(xn, yn)

maxi=1...N(κin(xn, yn))
, (3.81)

and it represents the control authority of a patch placed in (xn, yn) over the
ith mode. Optimizing the modal controllability Minr(xn, yn) means finding
the point (xn, yn) ∈ B which maximizes the coupling between the rth patch
and the ith mode. This can be enough when considering single degree of
freedom electrical controller, such as a RL shunt, but it is clearly insufficient
when considering control strategies in which every patch has to be coupled
with several modes.
Hence there is the need of introducing a quantity that represents the controller
authority over the entire structure, or a number of selected modes, in an
average sense. The spatial controllability is defined as follows:

Sn(xn, yn) =
1

βn

√√√√
N∑

i

κin(xn, yn)2 (3.82)

where βn = max(xn,yn)∈R

√∑N

i κin(xn, yn)
2.

A classical constrained problem consist in maximizing the spatial controllabil-
ity, while maintaining the modal controllability of each mode i over a certain
threshold bi

max
(xn,yn)∈R

Sn(xn, yn) subject to Minr(xn, yn) > bi, i = 1...N (3.83)

3.4.2 Acoustic controllability

In the literature the spatial H2 norm is used to introduce the concepts of
spatial controllability and modal controllability But, since the radiated sound
power is a quadratic function of the velocity, can be used also for an acoustic
based optimization. The concept of Acoustic Controllability can then be
introduced as the controller authority over the radiated sound power, in an
average sense.
Then, from the concept described in section 3.4.1 it is possible to formulate
another cost function for acoustic purposes. Being the number of piezoelectric
patches limited, and given the chosen control strategy uses one transducer for
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each mode that has to be controlled, only a selected number of modes are
selected among the most radiating ones. These selected modes are identified
by the set of indices ξC and determined with the use of equation (3.74).

A new cost function, the acoustic controllability An , is then defined
starting from modal controllability, introducing in the definition of spatial
controllability the normalized modal efficiency ηnormi = ηi/max ηi as defined
in Chapter 2:

An(xn, yn) =
1

β̃n

√∑

i∈ξC

ηnormi κin(xn, yn)2 (3.84)

where β̃n = max(xn,yn)∈R
√∑

i∈ξ η
norm
i κin(xn, yn)2.

The optimization of the acoustic controllability A gives then the point
(xn, yn) ∈ S which maximize the control authority over the acoustic radi-
ation in the selected band.

3.5 Simulations

In this section the modelling flow described in the previous sections will be
applied to a case study. The first step will be the modal analysis and the
acoustic characterization of the plate is performed„ in order to derive the
modal radiation efficiency needed for optimizing the controller. The last step
will be the optimization of the piezoelectric patches placement, following the
method introduced in section 3.4. Then the system is connected with the
control networks described in section 3.3.

3.5.1 Modal analysis and acoustic characterization of

the structure

The structure selected for the case study is a simply supported aluminium
plate, whose characteristics are resumed in table 3.4, in an infinite baffle,
radiating into an infinite halfspace filled with air.

Parameter Value
Length 30 cm
Width 21 cm
Thickness 2 mm

Table 3.4: Host plate parameters.

Being the plate simply supported, the eigenvalue problem

∇4φmn = λ2mnφmn,
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has analytical solutions in the form:

φmn =
1√
ab

sin
(mπ
a
x
)
sin
(nπ
b
y
)
,

λmn =

√
S

ρ

((mπ
a

)2
+
(nπ
b

)2)
.

Then the indexes (m,n) are replaced by the index i, ordering the eigenvalues
from the lowest to the highest. The first ten modal shapes calculated for the
plate are plotted in figure 3.14 and the corresponding natural frequencies are
listed in table 3.5.

Figure 3.14: Modal shapes

Following the procedure described in section 2.2, the structure is decomposed
in a matrix of 12×12 elementary elements radiating as pistons. The maximal
frequency of interest has been chosen equal to fmax = 1300, in order to
consider the first ten modes. The obtained modal radiation coefficients are
listed in table 3.5 and in figure 3.15. The modal radiation coefficients show
how the most radiated modes are the odd ones, and this is in agreement with
the literature [Cremer 1973] and it is due to the antisymmetric distribution
of the velocity field.
The set ξC of modes that have to be controlled are then distinguished with
the aid of equation 3.74, and it is:

ξC = {1, 4, 8} (3.85)

3.5.2 Piezolectric patches placement optimization

In this section the concepts introduced in section 3.4 will be applied to the
considered structure. Several piezo-elements will be connected in parallel, as
done in section 3.4, in order to obtain a coupling matrix as orthogonal as
possible and in order to uncouple even modes. Since the number of modes
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mode type frequency (Hz) ηi

1 (1,1) 162.38 0.12

2 (1,2) 322.58 0.00

3 (2,1) 489.32 0.00

4 (1,3) 589.58 0.22

5 (2,2) 649.52 0.00

6 (2,3) 916.51 0.00

7 (1,4) 963.38 0.00

8 (3,2) 1034.21 1.00

9 (3,1) 1194.41 0.00

10 (2,4) 1290.31 0.00

Table 3.5: Resonance frequencies of the

plate.

1 2 3 4 5 6 7 8 9 10

0.2

0.4

0.6

0.8

1.0

Figure 3.15: Normalized modal radiation coefficents

ηnorm
i

to be controlled is equal to three, there will be three groups transducers,
each one composed by four piezoelectric patches connected in parallel. The
dimensions of the considered piezo elements are listed in the appendix.
The modal controllabilities Min(xn, yn) in function of the positioning of the
patch for the considered vibrational modes is plotted in figure 3.16.

Figure 3.16: Modal Controllability Min for the selected modes of a simply sup-

ported plate

The spatial controllability S̃in and the acoustic controllability An for the
simply supported plate and for the selected modes are plotted in figures 3.17
and 3.18 respectively.
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Figure 3.17: Reduced spatial controllability S̃in of a simply supported plate

Figure 3.18: Acoustic controllability Ãin of a simply supported plate

Obtaining a coupling matrix with rows as orthogonal as possible

As stated in section 3.3.4, the RL network needs, for being performant, a
coupling matrix Γ with the rows mutually orthogonal. In order to obtain
this result without performing long and complex calculations, one can exploit
the orthogonality of the vibration modes that have to be controlled and the
symmetry of the structure. This can be done by optimizing the positioning of
the transducers on a quarter of the plate, and then replicating this structure
on the rest of the structure, connecting the corresponding patches in parallel.
To this end small square piezoelectric patch will be considered for the opti-
mization.
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The constrained optimization procedure is:

max
(xn,yn)∈R∗

An(xn, yn)

subjected to Minr(xn, yn) > .8, for at least one i ∈ χC

where R∗ represents a quarter of a plate.
With this procedure we maximize the acoustic controllablity, while the modal
controllability of each target mode is manteined over 80%.

Figure 3.19: Acoustic controllability S̃in of a simply supported plate limited to

the set of points R∗

And the optimal placements, with respective values for the acoustic con-
trollability and modal controllability are listed in table 3.6.

Patch (xn, yn) An M1n M4n M8n

1 (0.0899, 0.1349) 1.00 1.00 −1.00 −1.00

2 (0.0899, 0.5548) 0.67 0.67 0.80 −0.67

3 (0.0211, 0.1349) 0.89 −0.51 −0.51 0.99

Table 3.6: Optimal positioning and values of the Acoustical and Modal controlla-

bility.

As discussed in section, for optimizing the RL network control behaviour
the patches are symmetrically disposed along the structure and connected in
parallel,as shown in figure 3.20. This is the simplest way to assure a good
condition for the diagonalization of the matrix of the couplings. A rendering
of the final structure with the connections is in figure 3.21
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Figure 3.20: Optimal positioning for the piezoelectric patches groups

Figure 3.21: Rendering of the assembled structure.
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3.5.3 Coupling coefficients

Using equation (3.73) and considering the optimal positions listed in table
3.6, the matrix of the normalized electromechanical couplings has this form:

Γ =




0.16 0 0 −0.16 0 0 −0.150 0 0

0.11 0.16 0 0.13 0 0 −0.10 0 0

0.08 0 0.14 −0.08 0 −0.14 0.150 −0.10 0


 . (3.86)

Since the target modes are only three, the reduced coupling matrix Γ̃ that
will be used for determining the controller is

Γ̃ =




0.16 −0.16 −0.15

0.11 0.13 −0.10

0.08 −0.08 0.150


 . (3.87)

The best transformation matrix U to make G = ΓU is

U =




0.6580 −0.7384 −0.1475

0.7266 0.5712 0.3817

0.1976 0.3583 −0.9124


 , (3.88)

and then the couplong matrix in the transformed space is

G =




0.2010 −0.0266 −0.0546

−0.0339 0.1580 0.1424

−0.0557 0.1141 0.1972


 . (3.89)

As expected, the matrix G is not diagonal, but the diagonal terms are one
order of magnitude higher than most of the other terms, and this is sufficient
for having good performances with the RL network.
The optimization of the RL network, and of all the other ciruits is based on
the fixed point method. The parameters of all the circuits are listed in the
appendix.

3.6 Results

In this section the results of the simulations are presented. The simulations
have been realized using a Simulink model of the structure with the different
types of control. All the FRF are calculated exciting the structure with
an impact in a random point. The position of the point for measuring the
velocity is chosen to excite and observe all modes in the frequency range
of interest by avoiding nodal lines as more as possible. The impulse has a
peak value F0 of 1N . The time of simulation T is equal to 5.24 s, thus the
frequency resolution df is 0.1907 Hz. The simulation step size is set equal to
1/12500 s to avoid computation errors.
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The first analysis that is performed concerns the velocity, and this is done in
order to verify that the control systems are acting as expected. The FRF
plots of the velocity is in figure 3.22. From the analysis of this first result it
is clear how the RL network behaves better than the other control strategies,
providing an average damping of more than 30dB on the controlled modes.
The less per formant is the Current Flowing circuit, due to the presence of
the additional capacity in the shunt, providing an average damping of 10dB.
The multiple RL shunt performs a trade off between the two other control
strategies, providing a mean damping of 26dB, close to the performances of
the RL network.
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Figure 3.22: FRF of the velocity with different types of control.

The FRF plots of the mean pressure and sound power are plotted in
figures 3.23 and 3.24 respectively. These two plots show that the prediction
of the most radiating modes was correct, and shows the effectiveness of the
controllers, in agreemment with the results obtained for the velocity field.
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Figure 3.23: FRF of the radiated far field pressure with different types of control.
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Figure 3.24: FRF of the radiated sound power with different types of control.

Remark 11. The RL network is connected to all the transducers, and uses

the ensemble of patch for damping each mode. On the contrary a multiple

RL shunt is composed by independent circuit, each one connected to a single

transducer. This means that if there is a problem with one piezo element, the

multiple RL controller can entirely loose the control authority over a mode.

For this reason too, the use of the RL network control system is then prefer-

able.

In order to show how well the mean far field sound pressure level is re-
duced, the transient response of the system is plotted in figure 3.25.
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Figure 3.25: Mean far field sound pressure with RL network control

3.7 Conclusions

In this chapter the modelling and optimization of a piezoelectric smart plate
is presented. This optimization is focused to the development of a smart
structure for sound radiation and transmission control. Several different type
of passive control techniques are presented, and a multi-modal technique is
selected as the most convenient for the control purposes.
A novel optimization technique of the piezoelectric positioning, based on the
control of the radiated sound power is also presented.
Resuming, the results obtained in this chapter are the following:

• a variational method for obtaining the modal equation of the structure
is introduced

• the RL network has been chosen as the best one for passive control

• an optimization procedure for pzt transducer positioning and connec-
tion has been introduced
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Object of the Chapter

The object of this chapter is the application of distributed piezoelectric control
network to the reduction of the sound radiation transmitted through and
radiated by an aluminium panel immersed in a light fluid. An innovative
Piezoelectric Resistive Electrode plate is modelled and optimized here. This
structure consists of an aluminium plate entirely covered by two piezoelectric
layers with a controlled resistivity electrode bonded on each free piezoelectric
surface. The modelling, design and optimization of this structure is described
in detail, and its acoustic behaviour is compared with that of different multi-
modal distributed passive controllers.
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4.1 Introduction and literature review

This chapter is about the application of distributed piezoelectric control sys-
tem to the reduction of the sound power radiated and transmitted by thin
plates. Different passive distributed control systems will be compared.

In section 4.2 the equations of motion for the piezoelectric plate will be
derived, starting from kinematics of each layer, using the principle of virtual
work and introducing the constitutive equations. Sections 4.3 and 4.4will
be devoted to the optimization of the parameters in order to maximize the
performances of the structure. The application of this novel system to the
sound radiation and transmission control will be the object of the final part
of this paper.

4.1.1 Literature review

A distributed circuit, or more in general a distributed control system, has
the advantage of having an homogeneous spatial distribution, which can be
exploited for conceiving a broad-band controller. In fact the most important
problem when designing a localized controller, is the limited number of modes
that can be controlled.

When considering a distributed approach it is still possible to distinguish
from active and passive, or semi-passive, techniques. Active distributed
systems are usally introduced for controlling large scale structures, with
the aim of optimizing the way the system can detect the disturbance and
counteract it. Several examples of this technique can be found in the liter-
ature [Baumann 2007, Elliott 1990, Elliott 2002, Elliott 2004, Elliott 2005,
Frampton 2006, Serrand 2000, Gardonio 2005, Gardonio 2004]. However this
is mainly an extension of the concepts used for localized control, and has the
already cited problems of an active controller, expecially in terms of stability
and power requirements.
A completely different approach for exploiting the uniform spatial distri-
bution of sensors and actuators permits to have, with optimized electrical
parameters, the duality between the electrical circuit and the mechanical
structure. This duality traduces in the superposition of the electric and
mechanic eigenfrequencies and in an optimal energy flow. This passive tech-
nique assures stability and optimized broadband control. Applications of this
technique can be found in [Maurini 2005, dell’Isola 2003, Alessandroni 2004,
Alessandroni 2002, Alessandroni 2005].

When considering discrete distributed systems, it is known from the
literature [Maurini 2004] that there exist several optimal configurations for
the electric circuit for optimizing the vibration damping through piezoelectric
coupling. Being the piezoelectric transducers modelled as a capacitor in
parallel with a current generator, inductors permit to have resonances in the
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Figure 4.1: Optimal purely resistive interconnection for discrete distributed sys-

tems

electric circuit, but as the optimal value to assure the tuning is often too big
for a passive realization, or even negative, they have to be simulated with
active circuits. The use of purely resistive network can be a solution, by
usually the coupling coefficient of the matrix of transducers is too low for
having good results. The advantage in using distributive networks is that
the spatial distribution of the electric elements makes the circuit able to
adapt, in our case, the energy dissipation. Usually this optimal network is
synthetized interconnecting a matrix of piezoelectric actuators with a passive
network of resistors (figure 4.1). For the dimensions of the transducers
smaller than the wavelength of the vibration propagating into the structure,
this discrete system can be homogenized.

4.1.2 Objectives

The objectives of this chapter are

• model a distributed circuit that uses the principle of the "optimized
resistance"

• optimization of the system

• test the performances in terms of sound radiation and transmission
control

4.2 The model of PRE plate

The aim of this section is to derive the model of the PRE plate using a vari-
ational principle. We will start considering the geometry and the kinematics
of the structure, then we will formulate the virtual work principle. Next we



4.2. THE MODEL OF PRE PLATE 83

will derive the constitutive equations for the PRE plate and, finally, obtain
the equations of motion.

4.2.1 Geometry
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Figure 4.2: Geometry of the PRE plate

We consider a Kirchhoff-Love (K-L) plate with piezoelectric layers bonded
on the two sides. The free surface of each piezoelectric layer is covered by a
resistive layer, the other electrode is the aluminium plate itself. A schematic
representation of the system is in figure 4.2. We assume that the plate is
composed of a homogeneous and transversely isotropic material. Piezoelec-
tric elements are polarized along the thickness. We identify the plate by
its reference shape B. Let S be a flat surface, e3 the corresponding normal
unit vector, r a generic vector in the plane of the plate and I an interval
corresponding to the plate thickness.

We assume that

B = {r + ze3, r ∈ S, z ∈ I}.

Since the plate, figure 4.2, is composed of five layers we have that the interval
I is naturally partitioned as I =

⋃
i Ii. Consequently B is decomposed as

B =
⋃
iBi, where B3 is the elastic layer, B2 and B4 are piezoelectric layers,

whilst B1 and B5 are resistive layers.
The following sets of indexes are considered:

i = {1, 2, 3, 4, 5} , l = {2, 4} , r = {1, 5} .

The value of intervals is (see figure 4.2 for the layer thickness definitions)

I1 =

[
−h
2
− hp − hr,−

h

2
− hp

]
, I2 =

[
−h
2
− hp,−

h

2

]
,

I3 =

[
−h
2
,
h

2

]
, I4 =

[
h

2
,
h

2
+ hp

]
,

I5 =

[
h

2
+ hp,

h

2
+ hp + hr

]
.
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The boundary of B can be decomposed in the lateral boundary ∂S × I and
in the upper and lower faces S × I+ and S × I−. Where I+ = max[I5] and
I− = min[I1].

4.2.2 Kinematics

In this section the kinematic restrictions for each kind of layer will be intro-
duced.

Kinematic restrictions for the elastic layer

According to the K-L plate theory, the following assumption for the displace-
ment field is considered:

u(x, y, z, t) = u0 (x, y, t) + w0(x, y, t)e3 − z∇w0(x, y, t)

where w0 is the transverse displacement,

u0 (x, y, t) = u0 (x, y, t) e1 + v0 (x, y, t) e2

is the displacement of the middle plane and the differential operator is defined
as follows

∇ =
∂

∂x
e1 +

∂

∂x
e2.

The corresponding strain field is

S(u0, w0) = S0(u)− zS1(w0),

where

S0(u0) = sym(∇u0), S1(w0) = sym(∇2w0).

Kinematic restrictions for the piezoelectric layers

In each piezoelectric layer the assumptions for the electric potential
ϕ(l) (x, y, z, t) and electric field E(l) (x, y, z, t) are

ϕ(l) (x, y, z, t) = ϕ
(l)
0 (x, y, t) + zϕ

(l)
1 (x, y, t) , (4.1)

E(l) (x, y, t) = −grad(ϕ(l)) = −dϕ
(l)

dz
e3. (4.2)

These conditions imply that, being V (l) the voltage at the interfaces between
the piezoelectric and resistive layer, and being ψ(l) =

∫
V (l)dt the flux linkage

at the interfaces, the electric field is constant along the thickness and its value
is

E(l) · e3 =E
(l)
3 = ̟(l)V

(l)

hp
= ̟(l) ψ̇

(l)

hp
, (4.3)

where the value of ̟(l) depends on the polarization of the l − th layer. As
shown in figure 4.2 it is ̟(2) = −1 and ̟(4) = 1. A schematic diagram of
voltage distribution along the thickness is displayed in figure 4.3.
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Figure 4.3: Voltage distribution along the thickness.

Kinematic restrictions for the resistive layers

For the resistive layer we suppose that the value of the voltage V (l) is constant
along the thickness, so that ∂V (r)/∂z = 0. The kinematic at the interfaces
between the elastic and piezoelectric layer are

V (1) = V (2), V (4) = V (5),

and then

ψ̇(1) = ψ̇(2), ψ̇(4) = ψ̇(5),

where �̇ denotes a partial time derivative.

4.2.3 Principle of virtual work and balance equations

According to the kinematic conditions introduced in section 4.2.2, in this
section, a variational principle will be applied to the structure, in order to
obtain balance equations and well-posed boundary conditions.

Internal work

In order to apply principle of virtual work a suitable expression for the internal
energy must be found. Introducing T, D and J , as the stress tensor, the
electric displacement vector and the current density vector, and defining by
�̃ a virtual quantity, we can write the internal work Lint as

Lint = δEm(T(u0, w0),S(ũ0, w̃0))︸ ︷︷ ︸
Elastic energy

+ δE e(D(ψ), Ẽ(ψ̃))︸ ︷︷ ︸
Electric energy

+L
d(J(ψ),∇ψ̃)︸ ︷︷ ︸

Dissipated energy

. (4.4)

In equation (4.4) there are two conservative terms, the variation of elastic en-
ergy δEm and the variation of the electric energy δE e, and a non-conservative
term L

d of the energy dissipated into each resistive layer by Joule heat. For
the kinematic conditions introduced in each layer we have

δEm =

∫

S

∫

I

T℘ : sym
[
∇ũ0 − z∇2w̃0

]
, (4.5)
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δE e =

∫

S

∫

I

D · e3
hp

Ṽ , (4.6)

L
d =

∫

S

(
∑

r

J (r) · ∇ψ̃
)
hr, (4.7)

where T℘ = T (I− e3 ⊗ e3) is the projection of T on the plane perpendicular
to e3. Introducing the terms

N =

∫

I

T℘, M =

∫

I

−zT℘, q =

∫

I

D · e3
hp

,

we can write the final form for the internal energy

Lint =

∫

S

N : sym(∇ũ0)
︸ ︷︷ ︸

(a)

+

∫

S

M : ∇2w̃0

︸ ︷︷ ︸
(b)

+

∫

S

qṼ

︸ ︷︷ ︸
(c)

+

∫

S

∑

r

J (r) · ∇ψ̃hr
︸ ︷︷ ︸

(d)

. (4.8)

where (a) is the virtual work of the forces acting on the plane (I− e3 ⊗ e3),
(b) that of the bending moments, (c) that of the electric forces and (d) is the
non conservative energy dissipated within each resistive layer.

External work

In order to apply the principle of virtual work we now have to define the work
done by the external forces and electric entities on the virtual displacements.
Introducing b and f as the body and surface forces acting on B including
the acceleration forces we can write for the virtual work of a generic virtual
displacement

Lext =

∫

B

b · ũ+
∫

∂B

f · ũ. (4.9)

We now decompose the forces and the displacements in their respective con-
jugate quantities, this decomposition is summarized in table 4.1. With these

Table 4.1: Decomposition of external forces with respect to the conjugate virtual

quantities.

Force Conjugate

bp =
∑

i

∫
Ii
b ũ0

Body bw =
∑

i

∫
Ii
b·e3 w̃0

bm = −
∑

i

∫
Ii
zb ∇w̃0

f
p
=
∑

i

∫
Ii
f ũ0

Surface fw =
∑

i

∫
Ii
f ·e3 w̃0

f
m
=
∑

i

∫
Ii
zf ∇w̃0
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assumptions the expression of the external work is

Lext =

∫

S

[bp · ũ0 + bww̃0 + bm · ∇w̃0] +

∫

∂B

[f
p
· ũ0 + fww̃0 + f

m
· ∇w̃0]. (4.10)

Balance equations

The principle of virtual work states that

Lint = Lext. (4.11)

Considering equations (4.8) and (4.10), the balance equations on S can be
obtained, preforming some integrations by parts, as

∇ ·N+ bp = 0 (4.12a)

∇2 : (M) +∇ · (bm)− bw = 0, (4.12b)

q̇(2) −∇ ·
(
J (1)
)
hr = 0, (4.12c)

q̇(4) −∇ ·
(
J (5)
)
hr = 0, (4.12d)

along with all boundary conditions on ∂B and ∂ (∂B).

4.2.4 Constitutive equations

In this section the constitutive equations of each material used for building
the plate are investigated. The aim is to derive the constitutive equations for
the plate itself, that is M,N, q(l) as functions of the reduced strain parameters
and the electric field.

Elastic plate constitutive equations

From the linear theory of elasticity we have, for the elastic layer

T = CS (4.13)

where C is the fourth order tensor of elasticity.

Piezoelectric constitutive equations

As for in section 3.2.3, and according to [IEEE 1987] the constitutive equa-
tions for a piezoelectric material are

Tp = C
E
p Sp − eE, (4.14a)

D = etSp + εSE. (4.14b)

Another equivalent form is obtained from the last equations

Sp =
(
C
E
p

)−1
Tp − dE, (4.15a)

D = dt Sp + εTE, (4.15b)
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where
e = C

E
p d.

We will use these constitutive equations in the hypothesis of thin plates in
plane stress and plane strain

Resistive electrode constitutive equations

In each resistive layer we have

J (r) = σrE
(r),

the local form of the Ohm Law, in which σr is the specific conductivity
[Ω−1/m].
For the kinematic assumptions we have

E(r) = −∇V (r),

and then
J (r) = −σ∇ψ̇(r) = − 1

̺r
∇ψ̇(r).

where ̺r is the specific resistivity [Ωm] of the material used for building the
electrode.

PRE plate constitutive equations

In section 4.2.3 we defined the quantities N, M, q, J . Now that we have
introduced constitutive equations for each layer, we can find the PRE plate
constitutive equations.

N = KNu∇u0 + kNψ

(
ψ̇(4) − ψ̇(2)

)
, (4.16a)

M = KMw∇2w0 + Γ
(
ψ̇(2) + ψ̇(4)

)
, (4.16b)

q(2) = −kNψ∇(u0)− Γ∇2(w0) + Cpψ̇
(2), (4.16c)

q(4) = kNψ∇(u0)− Γ∇2(w0) + Cpψ̇
(4), (4.16d)

J (1) = − 1

̺r
∇ψ̇(2), (4.16e)

J (5) = − 1

̺r
∇ψ̇(4), (4.16f)

or in compact form



N

M

q(2)

q(4)

J (1)

J (5)




=




KNu 0 −kNψ kNψ 0 0

0 KMw Γ Γ 0 0

−kNψ −Γ Cp 0 0 0

kNψ −Γ 0 Cp 0 0

0 0 0 0 − 1
̺r

0

0 0 0 0 0 − 1
̺r







∇(u0)

∇2(w0)

ψ̇(2)

ψ̇(4)

∇ψ̇(2)

∇ψ̇(4)




(4.17)
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where the coefficients are listed in table 4.2 and where we introduced ξp =

hp/h as the ratio between the thickness of the piezoelectric layer and that of
the elastic layer and

α = 8ξ3p + 12ξ2p + 6ξp.

This parameter α which is related to the ratio between the thickness of the
piezoelectric layer and the host plate will also appear in the stiffness terms of
the PRE plate equations.

Table 4.2: Coefficients in Constitutive Equations

Coefficient Value Description

KMw

h3

12

[
C
E + αCE

p

]
Bending Stiffness

Γ
d31Ypzth(ξp + 1)

2 (1− νp)
Bending Coupling

KNu h(CE + 2ξpC
E
p ) Extensional Stiffness

kNψ
d31Y
(1−ν)

Extensional Coupling

Cp
εS33
hp

Capacitance

4.2.5 Equations of motion

From equations (4.12) and using equations (4.16) we have the complete form
of the PRE plate equations

KNu∇2u0 +∇kNψ
(
ψ̇(2) − ψ̇(4)

)
+ bp = 0, (4.18a)

KMw∇4w0 + Γ∇2
(
ψ̇(2) + ψ̇(4)

)
+∇bm − bw = 0, (4.18b)

−kNψ∇(u̇0)− Γ∇2ẇ0 + Cpψ̈
(2) − hr

̺r
∇2ψ̇(2) = 0, (4.18c)

kNψ∇(u̇0)− Γ∇2ẇ0 + Cpψ̈
(4) − hr

̺r
∇2ψ̇(4) = 0. (4.18d)

In common applications one can neglect bm, and then introduce the other
forcing terms as

bw = −ρtẅ0 + fext, (4.19)

bp = −ρtü0, (4.20)

where the ρt is the overall surface mass density, calculated from the volume
densities ρpl of the plate and ρpz of the piezoelectric material as follows:

ρt = ρplh+ ρpzhp. (4.21)
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Moreover introducing the overall bending stiffness St as

St =
h3

12

[
Y

1− ν2
+ α

Yp
1− ν2p

]
,

we have

KNu∇2u0 + ρtü0 + kNψ∇
(
ψ̇(4) − ψ̇(2)

)
= 0, (4.22a)

St∇4w0 + ρtẅ0 + Γ∇2
(
ψ̇(4) + ψ̇(2)

)
= fext, (4.22b)

Cpψ̈
(2) − hr

̺r
∇2ψ̇(2) − Γ∇2(ẇ0)− kNψ∇(u̇0) = 0, (4.22c)

Cpψ̈
(4) − hr

̺r
∇2ψ̇(4) − Γ∇2(ẇ0) + kNψ∇(u̇0) = 0. (4.22d)

If we consider only bending vibration we have

∇2u0 + ρpzü0 = 0

and so
ψ̇(4) = ψ̇(2) = ψ̇. (4.23)

This derives from the symmetry of the structure with respect to its mean
plane, the so called bimorph configuration for the piezoelectric patches, and
means that the extensional vibrations are uncoupled from the flux linkage.
Then from additional equations, (4.22c) and (4.22d), and considering equation
(4.23), the final form for the governing equations in terms of the transverse
displacement and of the flux linkage is

St∇4w0 + ρtẅ0 + 2Γ∇2(ψ̇) = fext, (4.24a)

Cpψ̈ − hr
̺r

∇2ψ̇ − Γ∇2(ẇ0) = 0. (4.24b)

4.3 Dynamical Analysis

4.3.1 Wave propagation in a PRE plate

In order to investigate the electromechanical behaviour of the PRE plate, it
is crucial to study the propagation of electrical and vibrational waves in the
structure. This kind of analysis is the best way of determining how the smart
structure is reacting to a mechanical input, such as a bending vibration, and
how it changes its mechanical properties. To this end we suppose that the
plate is infinite and that a bending wave with wave vector kr is propagating
in the plate. We can then easily decompose the state variables w0(x, y, t) and
ψ(x, y, t) as [

w0(x, y, t)

ψ(x, y, t)

]
=

[
W (t)

Ψ(t)

]
ejkr·r.
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The system is then reduced as follows

Stk
4
rW + ρtẄ − 2Γk2r

(
Ψ̇
)
= 0, (4.25a)

CpΨ̈ +
hr
̺r
k2rΨ̇ + Γk2rẆ = 0, (4.25b)

where kr = |kr|.
A non-dimensional form of this system, where � is a non dimensional quan-
tity, is

W + Ẅ − 2γΨ̇ = 0, (4.26a)

Ψ̈− δΨ̇ + γẆ = 0. (4.26b)

The non dimensional state variables in equations (4.26) are

W =
W

l0
Ψ =

Ψ

ψ0

where ψ0 and 0 are the scaling flux linkage and the scaling displacement, and

ψ0 = l0

√
ρt
Cp
. (4.27)

The non-dimensional electromechanical coupling γ and damping coefficient δ
appearing in equations (4.26) are

γ =
2Γ√
CpSt

, δ =
hr
̺rCp

√
ρt
St
, (4.28)

From equation (4.28) we can conclude that δ is independent of the wavenum-
ber kr.

4.3.2 Modal model for a simply supported plate

In this section a modal solution for the PRE plate equations (4.24) will be
developed using Galerkin method. The electromechanical fields w0 (x, y, t)

and ψ (x, y, t) are given by:

w0 (x, y, t) =
N∑

i=1

ηi (t)φi (x, y) , (4.29a)

ψ (x, y, t) =
N∑

i=1

χi (t)φi (x, y) , (4.29b)

where ηi (t) and χi (t) are Fourier coefficients of the eigenfunctions φi (x, y)
defined by the eigenvalue problem

∇4φi = λ2iφi, (4.30)
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along with proper boundary conditions for the displacement field and for the
flux linkage.
It is important to underline that, in order to keep the electromechanical
analogy, the boundary conditions for the electric field must be the analog of
the mechanical ones. This implies that the potions of piezoelectric material
close to constrained edges of the PEM plate, must be suitably shunted. From
equation (4.30) we obtain the values for natural frequencies

ωi = λi

√
St
ρt
.

Substituting equations (4.30) and (4.29) into equations (4.24), projecting on
the given basis a non-dimensional modal form for equations (4.24), denoting
with �̂ a quantity in frequency domain we obtain

Ω2
i η̂i − Ω2η̂i − j2γΩΩiχ̂i = f̂i, (4.31a)

−Ω2χ̂i + jδΩ χ̂i + jγΩΩiη̂i = 0. (4.31b)

where the non-dimensional coupling and damping coefficients are the same
as in equations 4.28 and circular frequencies Ω and Ωi are given by

Ω =
ω

Ω0

, Ωi =
ωi
Ω0

(4.32)

where Ω0 is a scaling circular frequency.
The non-dimensional state variables and forcing term in equations (4.31) are
given by

η̂ =
η

l0
, χ̂ =

χ

ψ0

, f̂i =
fi
F0

.

with the scaling force given by

F0 = l0Ω
2
0ρt. (4.33)

From the second equation of system (4.31) we can obtain

χ̂i =
jγΩΩi

Ω2 − jδΩΩi

η̂i

and then, substituting into the first equation of system (4.31), we have

Ω2
i η̂i − Ω2η̂i +

jγΩΩi

Ω2 − jδΩΩi

η̂i = f̂i.

Finally we have the expression of the Fourier coefficients η̂i and χ̂i

η̂i =
f̂i

Ω2
i − Ω2 + jγΩΩi

Ω2−jδΩΩi

,

χ̂i =
jγΩΩif̂i

(Ω2 − jδΩΩi)
(
Ω2
i − Ω2 + jγΩΩi

Ω2−jδΩΩi

) .
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4.3.3 Optimization

When studying the behaviour of the system it is necessary to analyse both
the transient response and the forced response. In order to do this we will
introduce two different quantities: the decay rate D (δ, γ) for the transient
response and the mobility function H(ω̂, δ, γ) for the forced response, defined
as

D (δ) = min
i=1,2,3

(|Re (λi)|) , (4.34)

H(Ω, δ, γ) =
jΩη̂i(Ω, δ, γ)

f̂i
. (4.35)

The parameter that will be optimized is the damping δ and the resulting
value δopt will be used in equation (4.28) to determine the optimal value for
the specific resistivity for a given thickness of the electrode.The piezoelectric
layer thickness has been optimized maximizing the coupling coefficient γ with
a total added mass constraint of 40%.

Transient response

In order to maximize the damping efficiency, a pole placement criterion will
be used for finding the optimal value for δopt that maximizes D (δ). The
system (4.26) is homogeneous, thus it admits exponential solutions

[
W

Ψ

]
=

[
W

Ψ

]
eλt. (4.36)

The Pole Placement criterion consists in finding the roots λ of system (4.26)
imposing the wave solution (4.36) and then finding the value of δ which
maximizes the decay rate. In order to maximize the damping efficiency a
pole placement criterion will be used for finding the optimal value for δ.
Then, substituting into system (4.26):

[
1 + λ2 −λγ
λγ δλ+ λ2

] [
W

Ψ

]
eλt

then the characteristic polynomial is

λ4 + δλ3 +
(
1 + γ2

)
λ2 + δλ = 0. (4.37)

The three roots of this polynomial, neglecting the trivial solution λ = 0, are
a non-positive real root (λ1 = −c ≤ 0) and a pair of complex conjugate roots
(λ2,3 = −a ± jb, a ≥ 0) functions of the electric parameter δ. It is now
possible to define the decay rate as

D (δ) = min
i=1,2,3

(|Re (λi)|)
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With these assumpitons the characteristic polynomial is then

λ3 + (2a+ c)λ2 +
(
a2 + b2 + 2ac

)
λ+

(
a2 + b2

)
c = 0 (4.38)

Then, imposing the form (4.38) to equation (4.37) we obtain

2a+ c = δ (4.39a)
(
a2 + b2 + 2ac

)
=
(
1 + γ2

)
(4.39b)

(
a2 + b2

)
c = δ (4.39c)

The elimination of b and δ leads to

a = γ2
c

2 (1 + c2)
< c

where the inequality holds because γ ≤ 1, [Maurini 2005]. This means that
the minimization of the decay rate is equivalent to the minimization of a
Then eliminating b and c from the system (4.39) leads to

F (a, δ) = 2a
(
1 + 4a2 + γ2 + δ2

)
−
(
8a2 + γ2

)
δ = 0 (4.40)

Applying the implicit function theorem, the derivative of a in function of δ
can be calculated as

da

dδ
= −Fδ(a, δ)

Fa(a, δ)
=

8a2 + γ2 − 4aδ

16a2 − 16aδ + 2 (1 + 4a2 + γ2 + δ2)
.

It is now possible to find the maximum of a in function of δ:

8a2 + γ2 − 4aδ

16a2 − 16aδ + 2 (1 + 4a2 + γ2 + δ2)
= 0,

for

amax =
1

4

(
δopt −

√
−2γ2 + δ2opt

)
.

Substituting this value into equation (4.40) the optimum value for δ is ob-
tained:

δPPopt = 1 +
γ2

2
,

for which it is

Dopt =
γ2

4
.

Since δ is independent of the wavenumber kr, the optimal damping condition

holds for each wavenumber, and leads to the optimal value for the resistance

̺opt =
hr
Cp

√
ρt
St
.
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Forced response

Using the results obtained in section (4.3.2) it is easy to determine the mo-
bility function , defined as

H(Ω, δ, γ) =
jΩ

Ω2
i − Ω2 + jγΩΩi

Ω2−jδΩΩi

, .

For optimizing the forced response a widely adopted approach consists in
minimizing the ∞− norm of the mobility function, defined as

||H(Ω, δ, γ)||∞ = sup
Ω∈R

|H(Ω, δ, γ)|.

It is known in the literature, see [Den Hartog 1956], that in coupled systems
there exists a so-called fixed point F = (ΩF , |H(ΩF , δ, γ)|) defined as follows

∀γ ∈ R+ ∃ ΩF / ∀δ1, δ2 ∈ R+ |H(ΩF , δ1, γ)| = |H(ΩF , δ2, γ)|. (4.41)

This point corresponds to the circular frequency

ΩF (γ) =

√
1 +

γ2

2
.

Imposing that the maximum of |H(Ω, δ, γ)| is at ΩF we find the optimal value
for δ:

∂

∂Ω
|H(ΩF , δ, γ)|

∣∣∣∣
Ω=ΩF

= 0 ⇒ δFPopt =

√
8 + 10γ2 + 3γ3

8 + 2γ2
≃ 1 +

γ2

2
.

The last approximation holds because γ is small, in practical situations it is

0 < γ < 0.3. (4.42)

As expected, δPPopt ≃ δFPopt so the two criteria give the same result.

Effect of parameter variations

The plots in figure 4.4 show the decay rate and mechanical mobility as func-
tions of the percentage variations of the parameter δ with respect to the
optimum value δopt. Both plots show that relatively high variations of δ near
the optimum value do not affect very much the overall behaviour and the
damping performances of the structure. This because, as shown in the plots,
the derivatives of both curves calculated for ∆δ/δopt are horizontal.
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Figure 4.4: Plot of the performance indexes of the two optimization methods as

a function of damping δ.

4.4 Acoustic Analysis

4.4.1 Acoustic performance indices

As a complement of what done in chapter 2, the main performance indices
for testing the acoustic properties of a thin structure are here resumed.
Let us consider an Euclidean space with its basis (e1, e2, e3). We denote a
generic point of the plate by r = xe1 + ye2 and a generic point in the space
as p = xe1 + ye2 + ze3. The plate separates two identical light fluid media
with density ρ.

Far Field Pressure The pressure p̂(p, ω) in the generic point of the space
due to the motion of a portion S of the plate can be calculated using the
Rayleigh formula:

p̂(p, ω, S) =
jωρ

2π

∫

S

e−jk(p−r)

p− r
ŵ0(r, ω)dS, (4.43)

as explained in [Cremer 1973, Fahy 2001, Filippi 1984].
This is a very important performance index, since it is related to a phys-
ical quantity that can be easily measured, such as the pressure. In the
literature there exists a standard method for measuring this quantity, see
[ISO 3745 1977].

Radiated power at the plate level The radiated power πr at the plate
level can be expressed by the surface integral of the product between the
pressure in each point of the plate, calculated with equation (4.43), multiplied
by its velocity:

πr (ω, S) =
1

2

∫

S

Re {(p̂(r, ω)|z=0) · (jωŵ0(r, ω))
∗} dS, (4.44)
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where �∗ is a conjugate quantity.
This is a global parameter that gives us different informations with respect
to the far field pressure, since it involves also the near field, but it is not a
measurable quantity.

Sound Reduction Index Sound transmission through a panel is usually
studied in the literature by considering an infinite plate, see [Cremer 1973,
Fahy 2001, Filippi 1984]. This approximation is based on the fact that for
higher frequencies the wavelength of the bending vibrations is much smaller
than the characteristic dimension of the structure. Then we consider two
semi-infinite sound media separated by an infinite plate placed at z = 0.
The wave propagating in the two media must satisfy the wave equation

∇2p̂n(r, z, ω) +
1

c2
p̂n(r, z, ω) = 0, n = 1, 2, (4.45)

where c is the speed of sound in the medium.
We now introduce the incident power on a surface S as

πi(θ, ω, φ, S) =
1

2

∫

S

Re
{
(p̂1(p, ω)|z=0) · (jωŵ0(r, ω))

∗
}
dS, (4.46)

where θ and φ the angles that the wave vector of the incident wave forms with
e1 and e2, respectively; for the sake of simplicity we will consider φ = 0 with-
out loss of generality. We can define, using equation (4.44), the transparence
function by

τ(θ, ω) =
πt
πi
. (4.47)

This function represents the fraction of the incident power that actually passes
through the plate. When testing the acoustical behaviour of a structure, a
standard parameter used is the Sound Reduction Index:

SRI(θ, ω) = 10 log

(
1

τ(θ, ω)

)
. (4.48)

4.4.2 Simulations

In this section some numerical simulations are considered, in order to show
the performances of the control system, compared with two other passive con-
trol strategies: a plate with an attached viscoelastic layer and a Piezo Electro
Mechanical (PEM) plate.
The viscoelastic plate is composed by an aluminium plate with an attached
viscoelastic layer. Following [Cremer 1973], the thickness of the viscoelastic
layer has been chosen equal to h. The material used in simulations is a 3M
ISD 112. This structure represents the most simple way to introduce fre-
quency independent damping.
The PEM plate is a smart structure composed by an aluminium plate
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with a distributed matrix of piezoelectric transducers, interconnected by
a passive modular network of inductors and resistors which assures a fre-
quency independent damping. An accurate description of the system is in
[Alessandroni 2004] and the system is described by the following system of
equations:

SPEMt ∇4w0 + ρPEMt ẅ0 + 2ΓPEM∇2(ψ̇) = fext, (4.49a)

βPEM∇4ψ + CPEM
p ψ̈ − δPEM∇2ψ̇ − ΓPEM∇2(ẇ0) = 0. (4.49b)

where β is a tuning coefficient due to the presence of the inductors. As we
can see form equations (4.49) there is the duality between the mechanical
and electrical equations, since both equations have the same differential
poerators.
This structure uses the equivalent amount of piezoelectric material as a
PRE plate. It is important to denote that, being the PEM plate a discrete
structure, the size of each transducer must be smaller than the considered
wavelengths. Consequently the number of connections needed increases with
the maximum frequency of interest, that is the main trade off of this control
technique, along with the problems related to mistuning.
All plots presented in previous sections have been realized considering a
rectangular plate made of aluminium having the characteristics presented in
appendix A.2.

Far Field Pressure According to [ISO 3745 1977] the far field sound pres-
sure can be estimated using the pressure calculated in 10 points optimally
placed in an hemisphere. We can use equation (4.43) to determine the sound
pressure on these points, and then we consider the mean value in order to
have a global parameter for the far field sound radiation. A numerical method
is proposed in [Bai 2002] and will be applied to calculate the sound pressure.
In figure 4.5 the mean pressure field radiated by a PRE plate is compared
with those of an aluminium plate without control, a viscoelastic plate and a
PEM plate. The PRE plate provides a considerable reduction of the mean
value of the far field pressure near the peaks introduced by the most radiating
structural modes and introduces more damping than a viscoelastic plate. The
PEM plate is more efficient, and this was to be expected since it introduces
electrical resonances for each mode maximizing the dissipated energy.
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Figure 4.5: Far Field Pressure of an Aluminium plate, a PRE Plate, a PEM plate

and a plate with viscoelastic treatment.

Radiated power at the plate level This analysis is performed on a finite
simply supported plate. The acoustic power W on the surface of the plate
can be expressed equation (4.44). Since from the modal model, section 4.3.2,
we know the distribution of the velocity field in each point of the structure we
can use equation (4.43) to obtain an expression of the radiated power which
depends only on that known velocity field.
This integral will be calculated in a numerical way, using the method in-
troduced in [Elliott 1993] and then slightly modified in [Bai 2002] with the
results from [Borgiotti 1994]. The idea is to divide the structure into a matrix
of M = n × n elementary elements, radiating as pistons, in order to extract
from the geometry of the structure some of its acoustic properties. In figure
4.6 the radiated sound power plot for a finite simply supported plate is shown.
Also with this performance parameter we can see how the control system is
optimized for each radiating structural modes and the results are in line with
those obtained for the far field sound pressure.
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Figure 4.6: Radiated sound power of an Aluminium plate, a PRE Plate, a PEM

plate and a plate with viscoelastic treatment.

Sound Reduction Index For finding the SRI we need the solution of
equations (4.45) together with equations (4.24) when considering fext = p1−p2
and the following continuity conditions

∂pn
∂z

|z=0 = −ρẅ0, n = 1, 2. (4.50)

The scaling quantities are listed in the Appendix. As discussed in section
4.3.1 we can use the wave equation as solution of this coupled system, in the
form




ŵ0(r,Ω)

ψ̂(r,Ω)

p̂1(r, z,Ω)

p̂2(r, z,Ω)


 =




Ŵ (Ω) 0 0

Ψ̂(Ω) 0 0

0 P̂i(Ω) P̂r(Ω)

0 P̂t(Ω) 0







1

e−jk̂z ẑ

ejk̂z ẑ


 ejk̂r·r̂, (4.51)

where

k̂z = Ωcos θ, |k̂r| = k̂r = Ωsin θ, (4.52)

and where θ is the angle of the incident wave.
Considering the solution (4.51), considering fext = p1−p2 and equation (4.45)
, system (4.24) becomes

k̂4rŴ − Ω2Ŵ − 2γjΩk̂2rΨ̂ = P̂i + P̂r + P̂t (4.53a)

−Ω2Ψ̂ + δjΩk̂2rΨ̂ + γjΩk̂2rŴ = 0 (4.53b)

jk̂z(P̂r + P̂r) = ζΩ2Ŵ (4.53c)

jk̂zP̂t = ζΩ2Ŵ (4.53d)
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From equations (4.46), (4.47), (4.48), (4.53), and considering conditions
(4.52), we have

SRI(θ,Ω) = 10 log




∣∣∣∣∣k̂
4
r − Ω2 +

2γ2Ω2k̂4r

jδΩk̂2r − Ω2
+

2ζΩ2

jkz

∣∣∣∣∣

2

Ω2
4ζ

cos θ




.
In figure 4.7 the Sound Reduction Index for an aluminium plate, a PRE
plate, a viscoelastic plate and a PEM plate are shown. Since all considered
control systems control system are based on damping, no enhancement is
possible in the region controlled by mass, below the critical frequency fcr,
where for the selected structure fcr = 5600Hz. A detailed definition of fcr is in
[Filippi 1984]. Above the critical frequency, since both PRE and viscoelastic
controls are frequency independent, there is a linear enhancement and the
performances of the PRE plate are better than both those of a standard
viscoelastic plate and of a PEM plate.
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Figure 4.7: SRI of an Aluminium plate, a PRE Plate, a PEM plate and a plate

with viscoelastic treatment.

Effect of parameter variations

Hence when considering industrial applications, the incertitudes in the
thickness of the resistive layer hr or of its resistivity ̺r introduced
by the industrial process, will not compromise the behaviour of the
PRE plate. On the other hand, when considering control strategy
based on resonant effects, such as those presented in [Carneal 2004,
Behrens 2003, Lee 1999b, Zhang 2004, Ozer 2003, Batra 2005] as well as in
[Maurini 2005, dell’Isola 2003, Alessandroni 2004, Alessandroni 2002], the
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sensitivity with respect to the tuning parameter is very high, and this is one
of the main problems when considering industrial applications of these kind
of structures.
As an example the effect of small variations of the tuning parameter β on the
performances of a PEM plate on a target mode and on the sound reduction
index are plotted in figure 4.9. As a consequence of the results obtained in
section 4.3.3, small variations of the damping parameter δ do not affect very
much the quality of the control. In figure 4.8 we have plotted the effect of
the variation of δ on the three performance indices.
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Figure 4.8: Sound Radiation Index, Radiated Sound Power and Far Field Pressure

for a PRE plate as a function of δ.
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Figure 4.9: Sound Radiation Index, Radiated Sound Power and Far Field Pressure

for a PEM plate as a function of the tuning parameter.



4.5. CONCLUSIONS 105

4.5 Conclusions

As shown in section 4.4.2 the proposed smart structure contributes to a
considerable improvement of the acoustic isolation properties of a thin plate,
with respect to the acoustic performance index considered, i.e. far field sound
pressure, radiated sound power at plate level and Sound Reduction Index.
A comparison with a standard viscoelastic damping approach and with
another passive piezoelectric structure that introduces frequency independent
control, the PEM plate, shows how the PRE plate performs a trade off
between the two structures. The PRE plate results more efficient in sound
radiation and transmission control than a viscoelastic plate, and it is also
important to denote that the piezoelectric layer is thinner than the viscoelas-
tic one, and this can be an advantage in terms of weight optimization for
high level applications.
The better behaviour of the PEM plate was to be expected, being the PEM
plate a resonant circuit. Despite this fact, the advantages of using a PRE
plates are clear when considering the effects of parameters variations and
when comparing the complexity of the required circuitry. A detailed study
of the dynamic and acoustic behaviour of the proposed smart plate structure
shows how the control is frequency independent and not very sensitive of
parameter variations. The same analysis performed for the PEM plate shows
how sensible a resonant structure is to the tuning parameter variation.
Moreover it is crucial to underline that the PRE plate contains itself a real
embedded circuit, and that does not need any external power supply and
any connection with external circuitry. Other passive smart structures,
such as the PEM plate or other RL shunt based controllers, need very
complex external circuitry that introduce additional weight and required
maintenance. This consideration, along with the distributed nature of the
circuit means that, with a particular industrial process, it is possible to build
smart panels that only need to be assembled, since the optimal parameters
of the circuit are determined at construction level.
The drawback of this structure in terms of realizability consists in finding
an industrial process for building the piezoelectric layer, that is much bigger
than the commercial components available. This problem can be avoided
by using multiple patches immersed in an unique resistive material, or using
piezoelectric fibers.
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Object of the Chapter

The objective of this chapter is to validate the modelling and optimiza-
tion procedure introduced in Chapter 3. To this end an aluminium plate
is equipped with a matrix of optimally placed piezoelectric transducers and it
is connected to the control circuit, realized by using a real time I/O system.
The system is tested in order to verify the control capabilities of the selected
circuitry.
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5.1 Introduction

This chapter resumes all the experimental activities performed to test the
optimization procedure and control systems described in Chapter 3.
The main steps of the experimental part are the following:

1. Identification of the acoustical properties of the selected host structure.

2. Optimization of the piezoelectric patches number and positioning

3. Assembling of the structure

4. Setup of the real time controller

5. Acoustical and vibrational measures

5.2 Experimental set up

5.2.1 Measurement Chain

The measurement chain is composed by:

• piezoelectric patches used as colocated sensors/actuators;

• a piezoelectric patch used for excitation, bonded on the lower side of the
structure;

• Power voltage and current amplifiers used for driving the piezoelectric
patches;

• a PC based real time control system with signal acquisition and gener-
ation cards.

• a laser vibrometer to measure the velocity

• microphones to measure acoustic pressure

The details of each instrument are listed in table 5.1. In figure 5.1 there is
the standard experimental setup.
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Instrument Manufacturer Model

Laser Vibrometer Ometron VPI 8330
I/O System OROS OR763
Piezo Driver TRek PZD350
Microphone Bruel & Kjær Type 4189
Input card National Instruments PCI 6250-E
Output card National Instruments PCI 6630
Real Time Control System - Linux / RTAI

Table 5.1: References for laboratory equipement.
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Figure 5.1: Experimental setup

5.2.2 Piezoelectric materials

The used piezoelectric elements are the piezoelectric sheets from Physik In-
strumente (PI) Ceramics. They are made of a thickness-polarized thin (thick-
ness hp= 0.20 mm) layer of Lead Zirconate Titanate PIC 151. The corre-
sponding material properties are reported in the Appendix. The upper and
lower surfaces of the layer of ceramic material are cover by a thin CuNi film
serving as electrode. The electrode mechanical properties (mass and stiffness)
are negligible. The thickness and the material properties of the piezoelectric
sheets were chosen to obtain relatively high induced-strains with low voltages.
The actuators have an accessible lower side electrode on one corner, as shown
in figure 5.2.
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Figure 5.2: Schematic of the pizoelectric patches used for the experiments.

5.2.3 Real Time control system

Since all the control strategies introduced in chapter 3 need high value, or
even negative inductors, all the electrical networks will be simulated using
an Input/Output Real Time system interfaced with the transducers. The
advantage of using this kind of systems are various, and can be resumed in
the following points:

• Any circuit can be implemented using graphical editors,

• The parameters of the circuit can be modified in real time,

• Easy switch between one circuit to another,

• Virtual oscioloscopes for monitoring control signals without perturbing
the system.

Architecture

To this purpose a Linux based open source system is used, with real time
support added by the community project RTAI (Real Time Application In-

terface) and hardware drivers provided by the COMEDI project. For creating
the real time code a ScicosLab/Scicos environment was used.
A National Instruments PCI6052E card was used for measuring voltages and
a National Instruments PCI6633 card was used for generating currents, pass-
ing through a voltage controlled current generator.
The shunt network is realised through an active feedback control considering
as measurement signal the voltage on each piezoelectric transducer and as
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control signal the current flowing through the same piezoelectric transducer,
in order to virtually implement the network behaviour. The choice of using
voltage as measurement signal and current as control signal is due to the fact
that measuring voltage is more accurate, and that driving a PZT patch with
current reduces hysteretic phenomena.
An example of the desktop of a PC running RTAI linux is in figure 5.3.

Figure 5.3: PC running RTAI Linux

5.2.4 Electronic circuits

Current generators

The voltage control current generators were realized following the scheme in
figure 5.4, using an OPA445 as operational amplifier and precision resistors.
The actual realization of the circuit, with three generators on the same card,
in figure 5.5.
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Figure 5.4: Schematic of one current generator

Figure 5.5: Current generators

5.3 Optimization of the smart structure

5.3.1 Acoustic characterization of the host structure

The host structure chosen for the experiments is a rectangular aluminium
plate, clamped on short edges and free on the others and fixed on a wooden
plate (figure 5.6). The choice of a non classic case study, the Clamped-
Clamped-Free-Free plate, permits to highlight the robustness of the proposed
smart structure when dealing with non ideal boundary conditions.
As discussed in section 2.2 in order to maximize the sound radiation control
performances of the controller with respect to the amount of modes that can
be controlled, an accurate analysis of the radiation properties of the plate is
performed.

Vibrational and numeric analysis

Since with the Clamped-Clamped-Free-Free (C-C-F-F) boundary conditions
it is not possible to analytically derive a solution for the eigenvalue prob-
lem, the finite element software (AbaqusTM) was used to calculate the modal
shapes. The elements used in the finite elements analysis are C3D20R, 20-
node quadratic bricks, with reduced integration.
This result is then compared to the natural frequency measured on the actual
structure. This has been done because usually the clamping boundary con-
dition is not perfect, and then to obtain a better optimization the real values
of natural frequencies will be used.
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Figure 5.6: Sketch of the host structure

To estimate frequency response function (FRF ) of interest, the plate is
excited by one piezoelectric actuator with a random band-limited signal so
as to excite the first ten modes with a frequency spectrum covering a range
from near zero to 1 kHz. A power amplifier to drive the piezoelectric actuator
with current is used. It is well known that the piezoelectric material presents
a non-linear behaviour when the level of excitation is very high. To check for
non-linearity a particular FRF measurement has been repeated a number of
times using different levels and types of excitation. Thus, a suited level of
excitation has been chosen to avoid non-linearity. A laser vibrometer provides
the output. The analysis is performed with a frequency resolution of about
0.625 Hz and 30 averages. The nominal estimate of the FRF magnitude,∣∣∣Ĥ(f)

∣∣∣, and phase, α̂(f),for a given point are shown in figure 5.7. Several

other measures were made, being the amplitude of the FRF at natural fre-
quencies dependent on the position of the measurement point. The coherence
is also displayed to check for random or bias errors.
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Figure 5.7: FRF of the plate.

The measures are compared with the natural frequencies obtained numer-
ically with ABAQUS. The modal shapes calculated for the plate are plotted
in figure 5.8 while the resonance frequencies measured and estimated numer-
ically are listed in table 5.2.

Figure 5.8: Modal shapes calculated with Abaqus
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mode type measured (Hz) numerical (Hz)
1 (1,1) 81.25 89.71 ( +9.43%)
2 (1,2) 106.9 120.98 (+11.64%)
3 (2,1) 203.8 249.62 (+18.36%)
4 (1,3) 258.8 266.79 ( +2.99%)
5 (3,1) 418.1 399.36 ( -4.69%)
6 (2,2) 440.6 461.75 ( +4.58%)
7 (2,3) 478 491.39 ( +2.72%)
8 (3,2) 586.2 543.68 ( -7.82%)
9 (3,3) 660.6 583.61 (-13.19%)
10 (1,4) 725 714.94 ( -1.41%)

Table 5.2: Resonance frequencies and damping ratios of the plate.

From the analysis of table 5.2 one can see that there is a considerable
discrepancy between the estimated and the actual value of the natural fre-
quencies. This difference is due mostly to the nature boundary conditions,
which do not perform a good clamping.

Acoustic characterization

Following the procedure described in section 2.2, and as done in section
4.4.2, the structure is decomposed in a matrix of 12×12 elementary elements
radiating as pistons. The maximal frequency of interest has been chosen
equal to fmax = 1000, in order to consider the first ten modes. The obtained
modal radiation coefficients are listed in table 5.3 and in figure 5.9.

mode frequency (Hz) ηnorm
i

mode (1,1) 81.25 0.638

mode (1,2) 106.9 0.000

mode (2,1) 203.8 0.049

mode (1,3) 258.8 0.520

mode (3,1) 418.1 1.000

mode (2,2) 440.6 0.031

mode (2,3) 478 0.155

mode (3,2) 586.2 0.215

mode (3,3) 660.6 0.398

mode (1,4) 725 0.160

Table 5.3: Resonance frequencies of the

plate.
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Figure 5.9: Normalized modal radiation coefficents

ηnorm
i

The set ξC of modes that have to be controlled are then distinguished with
the aid of equation 3.74, and it is:

ξC = {4, 5, 9} (5.1)
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As expected the most radiating modes are still the odds ones. The first mode
has been neglected, being the corresponding natural frequency too low related
to the human hearing sensitivity.

5.3.2 Piezolectric patches placement optimization

This section is dedicated to the optimization of the piezoelectric transducer
positioning, following the method introduced in section 3.4.
The piezoelectric transducers that will be used for assembling the structure
are square shaped, and their dimensions are 2cm×2cm×0.02cm. In order to
simplify the assembling, the piezoelectric transducers will be positioned only
on the upper face of the plate. As stated in section 3.2, this approximation
holds because extensional waves can be neglected in this range of frequencies.

Several piezo-elements will be connected in parallel, as done in section
3.4, in order to obtain a coupling matrix as orthogonal as possible and for
uncoupling even modes. Since the number of modes to be controlled is equal
to three, there will be three groups transducers, each one composed by four
piezoelectric patches connected in parallel.
The modal controllabilities Min(xn, yn) in function of the positioning of a
single square patch, for target vibrational modes is plotted in figure 5.10.

Figure 5.10: Modal controllability for each target mode

The spatial controllability S (xn, yn) and the acoustic controllability
An(xn, yn) for the plate and for the selected modes are plotted in figures
5.11 and 5.12 respectively. From a comparison between the two plots it is
evident how the acoustical controllability permits to find optimal spots for
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having an higher authority over the radiated sound power.

Figure 5.11: Spatial controllability S (xn, yn) in function of the positioning of the

actuator

Figure 5.12: An(xn, yn) in function of the positioning of the actuator

Analysing figure 5.12 the best spot to assure the acoustic controllability seems
to be near the clampings. This is true when considering perfect boundary con-
ditions. Since in our case study, and as highlighted in the previous section,
the clampings are not perfect, that zone should be avoided. This because the
optimal positioning area is very small, and since the acoustic controllability
decreases roughly, this positioning will probably correspond to a small cou-
pling coefficient.
Hence, the research for the optimal values is limited on the set of points R∗,
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where

R∗ =

{
(x, y ∈ S) /

(
0 ≤ x ≤

(
a− Lpx

2

))(
0.2 ≤ y ≤

(
b− Lpy

2

))}
.

(5.2)
The acoustical controllability for the portion R∗ of the plate is plotted in
figure 5.13.

Figure 5.13: Acoustic controllability limited to the set of points R∗

The constrained optimization procedure for obtaining the best positioning for
the transducers is then the following

max
(xn,yn)∈R∗

An(xn, yn)

subjected to Minr(xn, yn) > .8, for at least one i ∈ χC

,

in order to grant at the same time the highest acoustical controllability as-
suring the modal controllability for the target modes. The optimal points are
then resumed in table 5.4

(xn, yn) An M4n M5n M9n

(0.085, 0.130) 0.95 0.98 0.75 0.97

(0.010, 0.130) 0.78 0.26 0.80 0.76

(0.085, 0.600) 0.75 0.39 0.64 0.89

Table 5.4: Optimal locations for the piezoelectric patches
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5.4 Modal parameters identification

In order to accurately describe a physical system through a reduced order
modal model, as the one introduced in section 3.2.5 , a set of parameters
is needed. Since the structure has 3 groups of piezoelectric patches and is
described by 10 modal coordinates these parameters are:

• 10 short-circuited adimensional circular frequencies Ωi

• 30 dimensionless modal couplings γir

• 3 electric capacitances Cr

Mechanical resonance frequencies are measured analysing the frequency re-
sponse of the system through standard techniques used for linear structures.
The most complex part of the identification procedure is related to the
identification of electromechanical coupling γir and electric capacitances Cr.

About the electric capacitance of a piezoelectric patch

The classical definition of the electrical capacitance C of a pair of plane
conductors separated by a dielectric material is

C =
εS

h
(5.3)

where S is the surface of the conductors, ε the dielectric constant and h the
distance between the conductors.
The capacitance measures the amount of total energy stored per unit volt-
age. In a piezoelectric transducer this energy has mechanical and electrical
contributions. The amount of total energy stored in electrical form depends
on the mechanical constraints applied to the piezoelectric element.
This has as a consequence that piezoelectric patch a without mechanical con-
straints, i.e. free to move, has a different capacitance than a blocked patch.
This different behaviour is modelled using the electric permittivity at con-
stant stress εT and at constant deformation εS. This distinction implies the
definition of two different capacitances for a piezoelectric patch, the blocked
capacitance CS

r and free capacitance CT
r , defined as follows:

CS
r =

εS33S

h
, CT

r =
εT33S

h
. (5.4)

For common piezoelectric materials (e.g. PZT-5H) the percentile difference
between CT and CS is as high as 40%. The capacitance of a piezoelectric
element bonded on, or embedded in a structure is different from both these
values and depends on the relative stiffness of the host structure and the
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piezoelectric material. The capacitance that appears in a modal model is the
capacitance measured when the modal coefficients are blocked, the blocked

modal capacitance CY
r . Unfortunately this capacitance cannot be directly

measured, for instance with a multimeter or an impedance analyzer. The
capacitance that is obtained connecting one of this instruments to a piezo-
electric patch leaving the structure free to deform is the free modal capacitance

CT
r

Overview of the selected identification methods

In the literature several techniques for estimating modal parameters of a
smart structure, are proposed and tested. Among these, three methods have
been selected for solving the identification problem.

The first method is the Open/Shorted circuit (OS) method,introduced in
[Hagood 1991]. It is based on the comparison of the natural frequencies of the
structure with open or short circuited patches. This method has the advan-
tage of being very simple, both in simulations and experimental situations.

The second proposed method is the Resonant Shunting (RS) method,
introduced in [Porfiri 2007]. It is based on the properties of dynamic proper-
ties of systems with two degrees of freedom, and uses a resonant RL circuit
shunted on the piezoelectric patch in order to have a resonant system. This
method permits to measure the coupling coefficient and blocked modal capac-
itance with small uncertainties, but needs a tunable external circuit, usually
difficult to realize. It is difficult to use this method in simulations.

The third method uses a multi-degree of freedom curve fit it order to
derive the piezoelectric parameters from the experimental impedance of the
transducer, and it is described in [Carabelli 2000].

OS method With this method the coupling coefficients γir are identified
using the non-dimensional circular frequencies Ωi of the structure with every
transducer short-circuited, and the non-dimensional circular resonance fre-
quency Ω

(r)
i = ω

(r)
i /ωi of the structure with every transducer short-circuited

except the r − th one left open-circuited.
If the modes are reasonably spaced in frequency the influence of the j − th

mode on the mode i − th can be neglected for j 6= i. Then the value of
open-frequencies can be derived from equations (4.31) with Ir = 0:

Ω
(r)
i = Ωi

√
1 + γ2ir, (5.5)

and then

γir = Ωi

√
1 + γ2ir, (5.6)
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If the circular frequencies are measured with an uncertainty σω, the uncer-
tainty of the coupling estimate is [Porfiri 2007]

σ(|γir|)
|γir|

≃
√
2

γ2ir

σω
ωi

(5.7)

where the approximation holds because the value of γir is usually small, (typ-
ically 0.01 6 γir 6 0.3. Thus, the estimate of γ with the OS method is very
sensitive to errors in the measure of the resonance frequencies

The values of the blocked modal capacitances is derived from the value of
free modal capacitance, measured with a multimeter, and are calculated from
the static form of system (4.31) assuming that the modal forces are zero. The
value of the blocked modal capacitances is then

CY
r =

CF
r

1 +
∑n

j=1 γ
2
ir

(5.8)

It is important to underline that this indirect estimation is more accurate
if the number of considered modes, and then of coupling coefficients in the
series, is sufficiently high.

RS method This method is developed using the concept of fixed points, the
same concept used in section 3.3.2 for the optimization of the forced response
of an RL circuit. When condition (3.46) is satisfied, it is easy to calculate the
absolute value of the coupling coefficient and the Capacitance

|γir| =
√
2
ΩT − ΩT

Ωi

=
√
2
ωT − ωS

ωi
(5.9)

CYi
r =

1

ω2
iL

(5.10)

If the circular frequencies are measured with an uncertainty σω, the uncer-
tainty of the coupling estimate is [Porfiri 2007]

σ(|γir|)
|γir|

≃ 2

|γir|
σω
ω

(5.11)

where the approximation holds because the value of γir is usually small.

Impedences curve fit method Piezoelectric parameters of the transduc-
ers can be derived by performing multi-degree of freedom curve fits, as de-
scribed in [Carabelli 2000]. The generic impedance of a piezoelectric trans-
ducer is defined by the ratio between the voltage Vr of the transducer and the
current Ir injected into the transducer in this way:

Zr(ω) =
1

jω

(
Cr +

1

jωRN

+
N∑

i=1

g2ir
ω2
i − ω2 + 2jζiωiω

)−1

(5.12)
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where RN is the Norton equivalent resistance of the current generator, gir is
the dimensional coupling coefficient, Cr the capacitance and ζi the mechanical
modal damping. This non-linear curve-fitting problem is solved in least-
squares sense defining the cost function

E =
N∑

l=1

wl(Ωl)

∣∣∣∣
(
Ẑh(Ωl)− Zh(Ωl)

)2∣∣∣∣ (5.13)

in which wl(Ωl) is a weighting factor, and N is the number of the data points.
The curve fit process has to determine the values of the unknown piezoelectric
modal parameters such that the error E is minimised. During the estimation
process, uncertainty information is taken into account. The coherence func-
tion, γ̂2xy(Ωl), is chosen as weighting function wl. The normalised piezoelectric
coupling coefficients are computed by the following relationship

γjh =
gjh

ωj
√
ρplCh

(5.14)

Comparison Each strategy has its advantages and its drawbacks. The O/S
method is the simplest, but suffers from the incertitudes in measuring the
natural frequencies, and gives only an indirect calculus for the capacity. The
RS method is accurate, but requires several measures and complex tunings.
For the experimental setup used in our experimentationn, since there are
current generators, the most convenient is the curve fit method.

5.4.1 Numerical simulations

In order to verify the correct positioning of the piezoelectric patches a nu-
merical analysis has been performed, again using Abaqus. For the sake of
simplicity, the numerical coupling coefficients matrix and the capacitances
have been calculated using the Open/Short circuit technique. An example
of a vibration mode calculated with abaqus is in figure 5.14 The obtained
couping matrix is

Γ̃FEM =




−0.055 −0.040 0.012

−0.055 0.036 −0.057

0.079 −0.038 0.044


 . (5.15)

C1 C2 C3

122 121 122

Table 5.5: Capacitances of the piezoelectric transducers (nF), calculated with

Abaqus.

Remark 12. It is important to undeline that this numerical simulation does

not take account of the effect of the epoxy resin.
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Figure 5.14: Mode (3,3) with piezoelectric actuators, calculated with Abaqus.

5.4.2 Assembly of the smart structure

The structure has been assembled following the optimization procedure de-
scribed in the previous section. The piezoelectric patches have been bonded
on the surface of the plate using a two-component structural epoxy resin at
ambient temperature.
The resulting smart structure is in figure 5.15.

Figure 5.15: Assembled smart structure



5.4. MODAL PARAMETERS IDENTIFICATION 125

5.4.3 System Identification Measures

In this section the identification of the electromechanical parameters is per-
formed.

5.4.3.1 Coupling coefficients and capacitances

The method that has been chosen for measuring the piezoelectric parameters
is the impedances curve fit methos. This method has the advantage of being
very easy to apply, and of providing accurate results. Since the modes to be
controlled is limited, only the coupling coefficients relative to those modes
will be measured.
For measuring the impedance of the piezoelectric transducer a random
excitation current is applied over a frequency range near zero to 1 kHz
and the resulting voltage response is measured on the same piezoelectric
transducer. This type of test requires a current source which is voltage driven.
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Figure 5.17: Comparison of the nyquist plot of the measured electric impedance

of the first piezoelectric transducer and curve fit.

In figures 5.16 and 5.17, it is shown the comparison between the mea-
sured piezoelectric impedances and the regenerated curves obtained by the
extracted piezoelectric parameters. The obtained normalized electromechan-
ical matrix is then

Γ̃ =




−0.077(−12%) −0.024(−16%) 0.010(−14%)

−0.036(−12%) 0.031(−16%) −0.033(−14%)

0.059(−12%) −0.054(−17%) 0.030(−13%)


 . (5.16)

while the capacitances are summarized in table 5.6 . As shown by the per-

C1 C2 C3

121(−1%) 120(−1%) 122(±0%)

Table 5.6: Capacitances of the piezoelectric transducers (nF).

centage values in equation (5.16) and table 5.6 , these results differ with
those obtained from the FE simulation, mostly because of the geometrical
imperfections of the plate and of the clampings. These imperfections reflect
on modal shapes influencing the value of the coupling, especially for low fre-
quency modes. This occurs because the optimization of transducers position
was performed starting from the calculated modal shapes, rather than the
ones of the real structure, but also for the presence of the epoxy resin, which
was not considered in the numerical simulations.
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5.5 Results

In this sections the results of simulations and measures are presented. First
of all the three selected control strategies are tested on the electromechanical
model of the structure with the identified parameters. This is done in or-
der to verify the correct behaviour of the controllers, and to give a reference
of how well the real time system works. Then the measures are presented.
The measures have been realized following procedures present in the liter-
ature [Chen 2009, Ducarne 2009, Giorgio 2009, Maurini 2007, Porfiri 2007,
Thomas 2009].

5.5.1 Simulations

Using the parameters calculated in section 5.4.3, the smart structure is simu-
lated, using a Simulink/Matlab code, as done in section 4.4.2. This simulation
uses the actual value of the coupling coefficients, and then permits to have a
good estimation of the control capabilities of the proposed passive circuits.

The first simulation regards the FRF of the velocity at a point of the
plate, figure 5.18. The plot shows how the control system damps the selected
modes. A mean attenuation of 20dB for each target mode is obtained, and
the RL network performs better than the simple RL shunt.
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Figure 5.18: Simulated FRF Response of the plate velocity with different types

of control

The far field sound pressure and the radiated sound power are plotted
in figure 5.19 and 5.20 respectively, showing the effective authority of the
controller over the radiated sound power and pressure.
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Figure 5.19: Simulated FRF of the sound pressure with different types of control
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Figure 5.20: Simulated FRF of the radiated sound power with different types of

control

These simulations are in agreement with those of section 5.5.1. The effect
of this controller are more evident on the 9-th mode because it is well coupled
with all the piezoelectric patches. An accurate description of the results will
follow in the next section.

5.5.2 Setup of the Real Time controller

The use of a real time controller for the implementation of passive circuits for
vibration control is already present in the literature, the most recent works
are [Giorgio 2009, Ducarne 2009]. This authors used the package xPC Terget

from Matlab/Simulink for running the real time code.
In this work the software used is based on a comunity project, RTAI, and all
open source.
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The functionement is almost the same as Simulink. The circuit is composed
by logic boxes interconnected to each other and to the I/O port. An exemple
window of of the program Scicos, the open source equivalent of Simulink, is
in figure 5.21.

Figure 5.21: Scicos example window.

The drivers for the acquisition and generator cards are granted by another
internet community project, COMEDI. The database of card supported by
COMEDI is larger than the one supported by xPC Target, and that is one
of the reasons why we choosed the open source platform for developing the
controllers.

The Sciocos diagram used for the multimode real time controller is in
figure 5.23, while the one used for the RL circuit is in figure 5.22.



130 CHAPTER 5. EXPERIMENTS

Figure 5.22: Scicos diagram for the real time program of the multiple RL circuit.

Figure 5.23: Scicos diagram for the real time program of the RL network circuit.
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5.5.3 Measures

Vibrational analysis

To check the validity of control, an FFT analysis is performed to calculate a
FRF of the beam. To this end an OROS I/O measurement system was used.
The disturbance actuator is one piezoelectric transducer placed in the lower
side of the plate, driven by a random multi-sine waveform with a frequency
range from 50 Hz to 800 Hz and an amplitude of the single sine-wave equal
to 2V. A power voltage amplifier TREk was used to correctly drive the trans-
ducer. A laser vibrometer and a microphone are used to measure the velocity
and pressure, and, therefore, to calculate the FRF. The acquisition time is
1.6 s, and this implies a frequency resolution df = 0.625Hz. The other three
groups of piezoelectric transducers are used to control plate vibrations.

The measures in figure 5.24 were obtained using a PZT patch as distur-
bance and measuring the velocity with the vibrometer and shows how the
proposed control reduces the amplitude of modes of interest more efficiently
than a single RL shunt. The multimodal control has different performances
for each mode because of the different coupling coefficients of the transducers.
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Figure 5.24: FRF Response of the plate velocity with different types of control

This because each piezoelectric patch contributes to the damping of a
certain mode proportionally to its coupling with it. Being the 9th mode,
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the (3,3), well coupled with all three transducers, this results in an higher
damping. The 4th mode, the (3,1), is well coupled only with one transducer
and then the damping is the same of that of the RL shunt. The 5th mode, the
(1,3), is well coupled with two transducers, and then the damping introduced
by the RL network is higher than for the RL Shunt.

Remark 13. It is important to remark that, for the RL shunts, the patches

have been selected for having a good coupling with that mode. This means

that a wrong selection of the patch, or a failure, results in a complete loss of

control authority of the controller on that mode. This does not occur when

using a RL network, which uses all the transducers for controlling each mode.

The damping listed in table 5.7 show how the RL network introduces a
mean 20dB damping on each mode.

Mode No Control Multiple RL RL Network
4 0.57 −16.72 (−17.29) −16.72 (−17.29)

5 −10.57 −17.4 (−6.83) −19.19 (−8.62)

9 7.03 −9.92 (−16.95) −11.9 (−19.82)

Table 5.7: Amplitude of the modal velocities and the damping introduced by the

controllers on each mode.

Acoustic analysis

The measures plotted in figure 5.25 is obtained using a PZT patch as dis-
turbance and measuring the pressure following the ISO 3745 [ISO 3745 1977]
standard. The results show a considerable reduction in terms of far field
sound pressure with the proposed controller, in agreement of the results ob-
tained in figure 5.24.
Several considerations can be done from the analysis of the figure 5.25. First
of all, although the measure being quite disturbed, due to the not perfect
acoustic insolation of the testing room, the uncontrolled curve shows that
the more radiating modes are effectively the ones selected with the previous
acoustical analysis. Then the efficacity of the controller in controlling the
structure at thaose frequencies is confirmed.
Finally it is important to denote as the Real Time control system implemented
using RTAI is performant, allowing us to simulate a multi I/O complex circuit
like the RL network without any problems.

The values of the amplitude of the pressure field, expressed in dB, calcu-
lated for each target mode, are listed in table 5.8

The last measure, plotted in figure 5.26, shows the far field sound pres-
sure radiated by each mode without and with control for each of the three
controlled modes. The measure is obtained exciting each mode with a pure
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Figure 5.25: FRF Response of far field sound pressure with different types of

control

tone sent to a piezoelectric patch with a power voltage amplifier, and mea-
sured using a microphone. From this measure one can appreciate again the
effectiveness of the RL network controller over the three target modes.
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Figure 5.26: Sound pressure of each mode at its natural frequency, with and

without control.
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Mode No Control Multiple RL RL Network
4 −14.28 −26.9 (−12.62) −26.9 (−12.62)

5 −7.51 −14.82 (−7.03) −16.87 (−9.35)

9 −5.58 −20.05 (−14.47) −25.07 (−19.49)

Table 5.8: Amplitude of the sound pressure calculated at the natural frequecies

and damping introduced by the controllers.

Comments

This section presents the experimental activity carried on during the thesis,
and had as main objective the validation of the theoretical results presented
in Chapter 3. A smart plate as been then designed, optimized and assembled
following the guidelines of Chapter 3 and the control system has been realized
using a Real Time I/O controller. The measures show how in a real case study
the proposed design and optimization procedure gives excellent results on the
control of radiated sound power.



Chapter 6

Conclusions

6.1 Summary

The objective of this work was the modelling and optimization of passive and
semi-passive piezoelectric smart structures, with the aim of reducing the ra-
diated and transmitted sound power. This thematic has been analysed in de-
tails, starting from a study of the radiation properties of thin plane structure,
in order to deduce useful elements for finding new criteria of optimization.
These results are then applied to the modelling of smart structure, with local-
ized and distributed piezoelectric patches positioning. Several control circuits
have been analysed and developed, as the case of the Piezoelectric Electrode
Plate. A summary of the main results and the specific original contributions
is presented below.

Radiation and transmission properties of thin plates

The study of radiation and transmission properties of thin plates was the
object of Chapter 2. The analysis of the radiated sound was performed with
the aim, on one hand, of finding a simpler way to solve the radiation prob-
lem, and on the other hand of finding a method for determining the most
radiating modes of the structure. To this end classical methods have been
efficiently placed side by side with novel techniques, with the introduction
of the radiation filters. This had as a main result the introduction of a nu-
merical method which permits to calculate the modal radiation efficiency for
each vibrational mode of the structure. This has as a main advantage the
possibility of effectively optimize the control strategy for acting only on most
radiating modes, but also gives a simple method for calculating the radiated
sound power.
The phenomenon of the transmission of plane waves and diffused sound fields
has been discussed too. The problem has been examined in order to find the
structural modifications to be introduced by the controller to improve sound
isolation.

Localized piezoelectric smart structures

The problem of the modelling and optimization of localized piezoelectric
smart structures has been investigated in chapter 3. The modal model of
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the smart structure has been obtained using a variational principle. The core
of the optimization process stands in the applications of the results obtained
from the analysis of the radiation properties of the structure. This allow us to
concentrate the control effort only on modes that, in terms of radiation effi-
ciency and then, are the most important, using a small number of transducers
and a simpler circuit, for efficiently controlling the radiated sound power over
a large band. The optimization of the number of transducers to be used,
that is equal to the number of modes to be controlled, has been obtained
exploiting the results presented in chapter 2 about modal radiation efficiency
and sensitivity of the human hearing. Then an original procedure for the
optimization of the placement of the piezoelectric patches is presented, along
with the introduction of a novel cost function, the acoustic controllability.

This cost function considers the authority of the control system over the
overall acoustic radiation, giving the best positioning for effectively control
the most radiating modes.
Then several multi-modal passive and semi-passive circuits have been anal-
ysed and optimized for the control of radiated sound power, with the aim
of finding the best circuit suitable for acoustic applications. The best choice
reveals to be a multi-modal RL network, both for the performances that for
the robustness of the controller. The entire modelling and optimization pro-
cedure is then applied to the classical case study of a simply supported plate,
with excellent results.

Distributed piezoelectric smart structures

The thematic of the reduction of radiated and transmitted sound power by
means of distributed piezoelectric smart structures is the object of chapter
4. The main objective was to find a way to design a distributed piezoelec-
tric structure, overcoming to the difficulties related to the complexity of the
circuitry and the density of the transducers, especially at high frequencies.
To this end an original smart structure, the Piezoelectric Resistive Electrode
(PRE ) plate is presented. This structure consists of an aluminium plate
entirely covered by two piezoelectric layers with a controlled resistivity elec-
trode bonded on each free piezoelectric surface. This homogeneous system is
optimized for all frequencies and performs a good trade off between good per-
formances and easy implementation. The modelling, design and optimization
of this structure is described in detail, and its acoustic behaviour is compared
with that of different multi-modal distributed passive controllers. The results
show how the robustness and the performances of the proposed structure are
good for sound radiation and transmission control.
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Experiments

Section 5 presents the experimental activity carried on during the thesis, and
had as main objective the validation of the theoretical results presented in
Chapter 3. A smart plate as been then designed, optimized and assembled
following the guidelines of Chapter 3 and the control system has been realized
using a Real Time I/O controller. The measures show how in a real case
study the proposed design and optimization procedure gives excellent results
on the control of radiated sound power. The application of the procedure
to a non classic case study, the Clamped-Clamped-Free-Free plate permits
to highlight the robustness of the proposed controller when dealing with non
ideal boundary conditions.

6.2 Original contributions

The main original contributions of this thesis to the existing literature are
listed below.

• Complete critical analysis of the radiation properties of thin structures
and definition of modal radiation efficiency, with the aim of optimizing
passive piezoelectric control.

• Model of a localized piezoelectric smart plate using a variational ap-
proach.

• Original approach to sound radiation control, with the controller acting
only on most radiating modes.

• Original procedure for the optimization of the number of transducers
and of their positioning, with the definition of a new cost function, the
acoustic controllability.

• Critical analysis and optimization of semi-passive control networks suit-
able for sound radiation control.

• Modelling, design end optimization of an innovative distributed smart
structure, the Piezoelectric Resistive Electrode plate.

• Application of distributed piezoelectric smart structures to sound radi-
ation and transmission control.

• Setup of a realtime multi-input multi-output control system using open
source software and drivers.

• Comparison between theoretical and experimental results for localized
piezoelectric control and radiation properties of a plate.
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6.3 Suggestions for future work

Further applications and extensions of the work on localized structures should
concentrate on a better way of finding the modal shape of the real structure,
for having a more efficient optimization. This can be efficiently done using
the results provided by the acoustic imagery, or using a automated scanning
laser vibrometer.
Moreover, for the distributed structures, and mainly for the PRE plate, ex-
tensions are possible on the construction of a prototype and on the addition
of mechanical properties, e.g. viscoelastic behaviour, to the resistive layer.

6.4 Pubblications and conference proceedings

The material presented in this thesis was partially published in the following
journal papers and conference proceedings.

1. Control of sound radiation and transmission by a piezoelectric plate
with a optimized resistive electrode, Rosi, Pouget, dell’Isola, European
Journal of Mechanics/A Solids (Submitted)

2. Control of sound radiation and transmission by distributed passive
piezoelectric networks, Giuseppe Rosi, Roberto Paccapeli, Jo el Pouget,
Francesco dell,Isola, part of: Proceedings of the 16th International
Congress on Sound and Vibration (ICSV16), (CD-ROM proceedings)
(ISBN: 978-83-60716-71-7) , pages: 1-7, 2009, International Institute of
Sound and Vibration, Krakow, Poland

3. 9th European Conference on Applications of Polar Dielectrics
(ECAPD9) 26-29 August 2008 Rome : Control of sound radiation and
transmission by distributed passive piezoelectric networks
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Appendix A

Parameters used in simulations

and experiments

A.1 Parameters of the simply supported plate

In this section the parameters used for the simulation described in section 3
are presented:

Coefficient Value Description
Y 70× 109 N/m2 Young Modulus
ν .33 Poisson Ratio
ρ 2700 Kg/m3 Mass density
a .21 m Length
b .30 m Width
h 2× 10−3 m Thickness

Table A.1: Aluminium plate constitutive parameters and dimensions of the plate

used in simulations

Coefficient Value Description
Yp 6.6× 1010 N/m2 Young Modulus
νp .29 Poisson Ratio
ρp 7500 Kg/m3 Mass density
d31 −274× 10−12 m/V Coupling coefficient
εS33 3.0104× 10−8 Fm−1 Dielectric constant
hp 0.20× 10−3 m Thickness

Table A.2: Piezoelectric transducers constitutive parameters and dimensions using

in simulations

A.2 Characteristics of the PRE plate

In this section the parameters used for the simulation described in section 4
are presented.
The dimensions of the aluminium plate are in table A.3 The plate is assumed
to be covered by a piezoelectric layer having the properties shown in Table
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A.5. The properties of the viscoelastic layer are listed in Table A.4. The
characteristic quantities in the simulations are presented in Table A.6. The
optimal values for the resistive layer are presented in Table A.7.

Coefficient Value Description
Y 70× 109 N/m2 Young Modulus
ν .33 Poisson Ratio
ρ 2700 Kg/m3 Mass density
a .21 m Length
b .30 m Width
h 2× 10−3 m Thickness

Table A.3: Aluminium plate constitutive parameters and dimensions

Coefficient Value Description
Y ∗

v See reference [3M 1993] Complex Young Modulus
νv .49 Poisson Ratio
ρv 1000 Kg/m3 Mass density
hv 2× 10−3 m Thickness

Table A.4: Viscoelastic material parameters and dimensions

Coefficient Value Description
Yp 6.6× 1010 N/m2 Young Modulus
νp .29 Poisson Ratio
ρp 7500 Kg/m3 Mass density
d31 −274× 10−12 m/V Coupling coefficient
εS33 3.0104× 10−8 Fm−1 Dielectric constant
hp 0.267× 10−3 m Thickness

Table A.5: Piezoelectric transducers constitutive parameters and dimensions

Coefficient Value Description
t0 1 s Characteristic time
Ψ0 1 V s Characteristic flux linkage
W0 10× 10−3 m Characteristic deflection

Table A.6: Characteristic quantities
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Coefficient Value Description
Y 70× 109 N/m2 Young Modulus
ν .33 Poisson Ratio
ρ 2700 Kg/m3 Mass density
a .21 m Length
b .30 m Width
h 2× 10−3 m Thickness

Table A.8: Aluminium plate constitutive parameters and dimensions of the plate

used in the experiments

Coefficient Value Description
hr 1× 10−4 m Thickness
̺r .231 Ω ·m Specific resistivity

Table A.7: Resistive layer properties

A.3 Characteristics of the smart plate used in

the experiments

Coefficient Value Description
Yp 6.6× 1010 N/m2 Young Modulus
νp .29 Poisson Ratio
ρp 7500 Kg/m3 Mass density
d31 −274× 10−12 m/V Coupling coefficient
εS33 3.0104× 10−8 Fm−1 Dielectric constant
hp 0.20× 10−3 m Thickness

Table A.9: Piezoelectric transducers constitutive parameters and dimensions using

in the experiments
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3.18 Acoustic controllability Ãin of a simply supported plate . . . . 72

3.19 Acoustic controllability S̃in of a simply supported plate limited
to the set of points R∗ . . . . . . . . . . . . . . . . . . . . . . 73

3.20 Optimal positioning for the piezoelectric patches groups . . . . 74

3.21 Rendering of the assembled structure. . . . . . . . . . . . . . . 74

3.22 FRF of the velocity with different types of control. . . . . . . 76

3.23 FRF of the radiated far field pressure with different types of
control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.24 FRF of the radiated sound power with different types of control. 77

3.25 Mean far field sound pressure with RL network control . . . . 78

4.1 Optimal purely resistive interconnection for discrete dis-
tributed systems . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.2 Geometry of the PRE plate . . . . . . . . . . . . . . . . . . . 83

4.3 Voltage distribution along the thickness. . . . . . . . . . . . . 85

4.4 Plot of the performance indexes of the two optimization meth-
ods as a function of damping δ. . . . . . . . . . . . . . . . . . 96

4.5 Far Field Pressure of an Aluminium plate, a PRE Plate, a
PEM plate and a plate with viscoelastic treatment. . . . . . . 99

4.6 Radiated sound power of an Aluminium plate, a PRE Plate, a
PEM plate and a plate with viscoelastic treatment. . . . . . . 100

4.7 SRI of an Aluminium plate, a PRE Plate, a PEM plate and a
plate with viscoelastic treatment. . . . . . . . . . . . . . . . . 101

4.8 Sound Radiation Index, Radiated Sound Power and Far Field
Pressure for a PRE plate as a function of δ. . . . . . . . . . . 103

4.9 Sound Radiation Index, Radiated Sound Power and Far Field
Pressure for a PEM plate as a function of the tuning parameter.104

5.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . 110

5.2 Schematic of the pizoelectric patches used for the experiments. 111

5.3 PC running RTAI Linux . . . . . . . . . . . . . . . . . . . . . 112

5.4 Schematic of one current generator . . . . . . . . . . . . . . . 113

5.5 Current generators . . . . . . . . . . . . . . . . . . . . . . . . 113

5.6 Sketch of the host structure . . . . . . . . . . . . . . . . . . . 114

5.7 FRF of the plate. . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.8 Modal shapes calculated with Abaqus . . . . . . . . . . . . . . 115

5.9 Normalized modal radiation coefficents ηnormi . . . . . . . . . . 116

5.10 Modal controllability for each target mode . . . . . . . . . . . 117



LIST OF FIGURES 153

5.11 Spatial controllability S (xn, yn) in function of the positioning
of the actuator . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.12 An(xn, yn) in function of the positioning of the actuator . . . . 118
5.13 Acoustic controllability limited to the set of points R∗ . . . . 119
5.14 Mode (3,3) with piezoelectric actuators, calculated with Abaqus.124
5.15 Assembled smart structure . . . . . . . . . . . . . . . . . . . . 124
5.16 Comparison of measured electric impedance of the first piezo-

electric transducer and curve fit. . . . . . . . . . . . . . . . . . 125
5.17 Comparison of the nyquist plot of the measured electric

impedance of the first piezoelectric transducer and curve fit. . 126
5.18 Simulated FRF Response of the plate velocity with different

types of control . . . . . . . . . . . . . . . . . . . . . . . . . . 127
5.19 Simulated FRF of the sound pressure with different types of

control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
5.20 Simulated FRF of the radiated sound power with different

types of control . . . . . . . . . . . . . . . . . . . . . . . . . . 128
5.21 Scicos example window. . . . . . . . . . . . . . . . . . . . . . 129
5.22 Scicos diagram for the real time program of the multiple RL

circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
5.23 Scicos diagram for the real time program of the RL network

circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
5.24 FRF Response of the plate velocity with different types of control131
5.25 FRF Response of far field sound pressure with different types

of control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
5.26 Sound pressure of each mode at its natural frequency, with and

without control. . . . . . . . . . . . . . . . . . . . . . . . . . . 133





List of Tables

3.1 Decomposition of external forces with respect to the conjugate
virtual quantities. . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2 Coefficients in piezoelectric plate constitutive equations, see
appendix for definitions . . . . . . . . . . . . . . . . . . . . . . 48

3.3 Comparison between differnt types of passive control circuits . 63
3.4 Host plate parameters. . . . . . . . . . . . . . . . . . . . . . . 69
3.5 Resonance frequencies of the plate. . . . . . . . . . . . . . . . 71
3.6 Optimal positioning and values of the Acoustical and Modal

controllability. . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.1 Decomposition of external forces with respect to the conjugate
virtual quantities. . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.2 Coefficients in Constitutive Equations . . . . . . . . . . . . . . 89

5.1 References for laboratory equipement. . . . . . . . . . . . . . . 110
5.2 Resonance frequencies and damping ratios of the plate. . . . . 116
5.3 Resonance frequencies of the plate. . . . . . . . . . . . . . . . 116
5.4 Optimal locations for the piezoelectric patches . . . . . . . . . 119
5.5 Capacitances of the piezoelectric transducers (nF), calculated

with Abaqus. . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
5.6 Capacitances of the piezoelectric transducers (nF). . . . . . . 126
5.7 Amplitude of the modal velocities and the damping introduced

by the controllers on each mode. . . . . . . . . . . . . . . . . . 132
5.8 Amplitude of the sound pressure calculated at the natural fre-

quecies and damping introduced by the controllers. . . . . . . 134

A.1 Aluminium plate constitutive parameters and dimensions of
the plate used in simulations . . . . . . . . . . . . . . . . . . . 147

A.2 Piezoelectric transducers constitutive parameters and dimen-
sions using in simulations . . . . . . . . . . . . . . . . . . . . . 147

A.3 Aluminium plate constitutive parameters and dimensions . . . 148
A.4 Viscoelastic material parameters and dimensions . . . . . . . . 148
A.5 Piezoelectric transducers constitutive parameters and dimensions148
A.6 Characteristic quantities . . . . . . . . . . . . . . . . . . . . . 148
A.8 Aluminium plate constitutive parameters and dimensions of

the plate used in the experiments . . . . . . . . . . . . . . . . 149
A.7 Resistive layer properties . . . . . . . . . . . . . . . . . . . . . 149
A.9 Piezoelectric transducers constitutive parameters and dimen-

sions using in the experiments . . . . . . . . . . . . . . . . . . 149


	Introduction
	Motivations
	Objectives
	Outline

	Sound radiation and transmission of plates
	Equation of acoustic propagation in linear acoustics
	State equation
	Equation of acoustic propagation and linear acoustic approximation

	Sound Radiation of plane structures
	Far Field Sound Pressure
	Sound Power at plate level

	Infinite thin plates
	Impedance of an infinite thin plate
	Sound radiation and propagation of coupled waves
	Transmission properties of single plate structures
	Double plate structures
	Comparison between single and double plate structures

	Hearing and sound perception

	Modelling a localized piezoelectric smart plate
	Introduction and literature review
	Literature review
	Objectives

	Smart Plate modelling
	Geometry
	Principle of virtual work and balance equations
	Constitutive equations
	Equations of motion
	Reduced Modal model

	Linear multimodal passive control networks and optimization
	Multimodal passive control circuits
	Multiple RL Shunt
	Current flowing shunt
	RL network
	Comparison

	Transducers positioning optimization for the control radiated sound power
	Choosing the number of transducers
	Acoustic controllability

	Simulations
	Modal analysis and acoustic characterization of the structure
	Piezolectric patches placement optimization
	Coupling coefficients

	Results
	Conclusions

	Distributed control networks
	Introduction and literature review
	Literature review
	Objectives

	The model of PRE plate
	Geometry
	Kinematics
	Principle of virtual work and balance equations
	Constitutive equations
	Equations of motion

	Dynamical Analysis
	Wave propagation in a PRE plate
	Modal model for a simply supported plate
	Optimization

	Acoustic Analysis
	Acoustic performance indices
	Simulations

	Conclusions

	Experiments
	Introduction
	Experimental set up
	Measurement Chain
	Piezoelectric materials
	Real Time control system
	Electronic circuits

	Optimization of the smart structure
	Acoustic characterization of the host structure
	Piezolectric patches placement optimization

	Modal parameters identification
	Numerical simulations
	Assembly of the smart structure
	System Identification Measures

	Results
	Simulations
	Setup of the Real Time controller
	Measures


	Conclusions
	Summary
	Original contributions
	Suggestions for future work
	Pubblications and conference proceedings

	Bibliography
	Parameters used in simulations and experiments
	Parameters of the simply supported plate
	Characteristics of the PRE plate
	Characteristics of the smart plate used in the experiments


